add "this" pointers to more target APIs
[deliverable/binutils-gdb.git] / gdb / i386-tdep.c
1 /* Intel 386 target-dependent stuff.
2
3 Copyright (C) 1988-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "opcode/i386.h"
22 #include "arch-utils.h"
23 #include "command.h"
24 #include "dummy-frame.h"
25 #include "dwarf2-frame.h"
26 #include "doublest.h"
27 #include "frame.h"
28 #include "frame-base.h"
29 #include "frame-unwind.h"
30 #include "inferior.h"
31 #include "gdbcmd.h"
32 #include "gdbcore.h"
33 #include "gdbtypes.h"
34 #include "objfiles.h"
35 #include "osabi.h"
36 #include "regcache.h"
37 #include "reggroups.h"
38 #include "regset.h"
39 #include "symfile.h"
40 #include "symtab.h"
41 #include "target.h"
42 #include "value.h"
43 #include "dis-asm.h"
44 #include "disasm.h"
45 #include "remote.h"
46 #include "exceptions.h"
47 #include "gdb_assert.h"
48 #include <string.h>
49
50 #include "i386-tdep.h"
51 #include "i387-tdep.h"
52 #include "i386-xstate.h"
53
54 #include "record.h"
55 #include "record-full.h"
56 #include <stdint.h>
57
58 #include "features/i386/i386.c"
59 #include "features/i386/i386-avx.c"
60 #include "features/i386/i386-mpx.c"
61 #include "features/i386/i386-mmx.c"
62
63 #include "ax.h"
64 #include "ax-gdb.h"
65
66 #include "stap-probe.h"
67 #include "user-regs.h"
68 #include "cli/cli-utils.h"
69 #include "expression.h"
70 #include "parser-defs.h"
71 #include <ctype.h>
72
73 /* Register names. */
74
75 static const char *i386_register_names[] =
76 {
77 "eax", "ecx", "edx", "ebx",
78 "esp", "ebp", "esi", "edi",
79 "eip", "eflags", "cs", "ss",
80 "ds", "es", "fs", "gs",
81 "st0", "st1", "st2", "st3",
82 "st4", "st5", "st6", "st7",
83 "fctrl", "fstat", "ftag", "fiseg",
84 "fioff", "foseg", "fooff", "fop",
85 "xmm0", "xmm1", "xmm2", "xmm3",
86 "xmm4", "xmm5", "xmm6", "xmm7",
87 "mxcsr"
88 };
89
90 static const char *i386_ymm_names[] =
91 {
92 "ymm0", "ymm1", "ymm2", "ymm3",
93 "ymm4", "ymm5", "ymm6", "ymm7",
94 };
95
96 static const char *i386_ymmh_names[] =
97 {
98 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
99 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
100 };
101
102 static const char *i386_mpx_names[] =
103 {
104 "bnd0raw", "bnd1raw", "bnd2raw", "bnd3raw", "bndcfgu", "bndstatus"
105 };
106
107 /* Register names for MPX pseudo-registers. */
108
109 static const char *i386_bnd_names[] =
110 {
111 "bnd0", "bnd1", "bnd2", "bnd3"
112 };
113
114 /* Register names for MMX pseudo-registers. */
115
116 static const char *i386_mmx_names[] =
117 {
118 "mm0", "mm1", "mm2", "mm3",
119 "mm4", "mm5", "mm6", "mm7"
120 };
121
122 /* Register names for byte pseudo-registers. */
123
124 static const char *i386_byte_names[] =
125 {
126 "al", "cl", "dl", "bl",
127 "ah", "ch", "dh", "bh"
128 };
129
130 /* Register names for word pseudo-registers. */
131
132 static const char *i386_word_names[] =
133 {
134 "ax", "cx", "dx", "bx",
135 "", "bp", "si", "di"
136 };
137
138 /* MMX register? */
139
140 static int
141 i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
142 {
143 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
144 int mm0_regnum = tdep->mm0_regnum;
145
146 if (mm0_regnum < 0)
147 return 0;
148
149 regnum -= mm0_regnum;
150 return regnum >= 0 && regnum < tdep->num_mmx_regs;
151 }
152
153 /* Byte register? */
154
155 int
156 i386_byte_regnum_p (struct gdbarch *gdbarch, int regnum)
157 {
158 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
159
160 regnum -= tdep->al_regnum;
161 return regnum >= 0 && regnum < tdep->num_byte_regs;
162 }
163
164 /* Word register? */
165
166 int
167 i386_word_regnum_p (struct gdbarch *gdbarch, int regnum)
168 {
169 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
170
171 regnum -= tdep->ax_regnum;
172 return regnum >= 0 && regnum < tdep->num_word_regs;
173 }
174
175 /* Dword register? */
176
177 int
178 i386_dword_regnum_p (struct gdbarch *gdbarch, int regnum)
179 {
180 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
181 int eax_regnum = tdep->eax_regnum;
182
183 if (eax_regnum < 0)
184 return 0;
185
186 regnum -= eax_regnum;
187 return regnum >= 0 && regnum < tdep->num_dword_regs;
188 }
189
190 static int
191 i386_ymmh_regnum_p (struct gdbarch *gdbarch, int regnum)
192 {
193 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
194 int ymm0h_regnum = tdep->ymm0h_regnum;
195
196 if (ymm0h_regnum < 0)
197 return 0;
198
199 regnum -= ymm0h_regnum;
200 return regnum >= 0 && regnum < tdep->num_ymm_regs;
201 }
202
203 /* AVX register? */
204
205 int
206 i386_ymm_regnum_p (struct gdbarch *gdbarch, int regnum)
207 {
208 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
209 int ymm0_regnum = tdep->ymm0_regnum;
210
211 if (ymm0_regnum < 0)
212 return 0;
213
214 regnum -= ymm0_regnum;
215 return regnum >= 0 && regnum < tdep->num_ymm_regs;
216 }
217
218 /* BND register? */
219
220 int
221 i386_bnd_regnum_p (struct gdbarch *gdbarch, int regnum)
222 {
223 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
224 int bnd0_regnum = tdep->bnd0_regnum;
225
226 if (bnd0_regnum < 0)
227 return 0;
228
229 regnum -= bnd0_regnum;
230 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
231 }
232
233 /* SSE register? */
234
235 int
236 i386_xmm_regnum_p (struct gdbarch *gdbarch, int regnum)
237 {
238 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
239 int num_xmm_regs = I387_NUM_XMM_REGS (tdep);
240
241 if (num_xmm_regs == 0)
242 return 0;
243
244 regnum -= I387_XMM0_REGNUM (tdep);
245 return regnum >= 0 && regnum < num_xmm_regs;
246 }
247
248 static int
249 i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
250 {
251 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
252
253 if (I387_NUM_XMM_REGS (tdep) == 0)
254 return 0;
255
256 return (regnum == I387_MXCSR_REGNUM (tdep));
257 }
258
259 /* FP register? */
260
261 int
262 i386_fp_regnum_p (struct gdbarch *gdbarch, int regnum)
263 {
264 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
265
266 if (I387_ST0_REGNUM (tdep) < 0)
267 return 0;
268
269 return (I387_ST0_REGNUM (tdep) <= regnum
270 && regnum < I387_FCTRL_REGNUM (tdep));
271 }
272
273 int
274 i386_fpc_regnum_p (struct gdbarch *gdbarch, int regnum)
275 {
276 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
277
278 if (I387_ST0_REGNUM (tdep) < 0)
279 return 0;
280
281 return (I387_FCTRL_REGNUM (tdep) <= regnum
282 && regnum < I387_XMM0_REGNUM (tdep));
283 }
284
285 /* BNDr (raw) register? */
286
287 static int
288 i386_bndr_regnum_p (struct gdbarch *gdbarch, int regnum)
289 {
290 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
291
292 if (I387_BND0R_REGNUM (tdep) < 0)
293 return 0;
294
295 regnum -= tdep->bnd0r_regnum;
296 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
297 }
298
299 /* BND control register? */
300
301 static int
302 i386_mpx_ctrl_regnum_p (struct gdbarch *gdbarch, int regnum)
303 {
304 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
305
306 if (I387_BNDCFGU_REGNUM (tdep) < 0)
307 return 0;
308
309 regnum -= I387_BNDCFGU_REGNUM (tdep);
310 return regnum >= 0 && regnum < I387_NUM_MPX_CTRL_REGS;
311 }
312
313 /* Return the name of register REGNUM, or the empty string if it is
314 an anonymous register. */
315
316 static const char *
317 i386_register_name (struct gdbarch *gdbarch, int regnum)
318 {
319 /* Hide the upper YMM registers. */
320 if (i386_ymmh_regnum_p (gdbarch, regnum))
321 return "";
322
323 return tdesc_register_name (gdbarch, regnum);
324 }
325
326 /* Return the name of register REGNUM. */
327
328 const char *
329 i386_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
330 {
331 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
332 if (i386_bnd_regnum_p (gdbarch, regnum))
333 return i386_bnd_names[regnum - tdep->bnd0_regnum];
334 if (i386_mmx_regnum_p (gdbarch, regnum))
335 return i386_mmx_names[regnum - I387_MM0_REGNUM (tdep)];
336 else if (i386_ymm_regnum_p (gdbarch, regnum))
337 return i386_ymm_names[regnum - tdep->ymm0_regnum];
338 else if (i386_byte_regnum_p (gdbarch, regnum))
339 return i386_byte_names[regnum - tdep->al_regnum];
340 else if (i386_word_regnum_p (gdbarch, regnum))
341 return i386_word_names[regnum - tdep->ax_regnum];
342
343 internal_error (__FILE__, __LINE__, _("invalid regnum"));
344 }
345
346 /* Convert a dbx register number REG to the appropriate register
347 number used by GDB. */
348
349 static int
350 i386_dbx_reg_to_regnum (struct gdbarch *gdbarch, int reg)
351 {
352 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
353
354 /* This implements what GCC calls the "default" register map
355 (dbx_register_map[]). */
356
357 if (reg >= 0 && reg <= 7)
358 {
359 /* General-purpose registers. The debug info calls %ebp
360 register 4, and %esp register 5. */
361 if (reg == 4)
362 return 5;
363 else if (reg == 5)
364 return 4;
365 else return reg;
366 }
367 else if (reg >= 12 && reg <= 19)
368 {
369 /* Floating-point registers. */
370 return reg - 12 + I387_ST0_REGNUM (tdep);
371 }
372 else if (reg >= 21 && reg <= 28)
373 {
374 /* SSE registers. */
375 int ymm0_regnum = tdep->ymm0_regnum;
376
377 if (ymm0_regnum >= 0
378 && i386_xmm_regnum_p (gdbarch, reg))
379 return reg - 21 + ymm0_regnum;
380 else
381 return reg - 21 + I387_XMM0_REGNUM (tdep);
382 }
383 else if (reg >= 29 && reg <= 36)
384 {
385 /* MMX registers. */
386 return reg - 29 + I387_MM0_REGNUM (tdep);
387 }
388
389 /* This will hopefully provoke a warning. */
390 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
391 }
392
393 /* Convert SVR4 register number REG to the appropriate register number
394 used by GDB. */
395
396 static int
397 i386_svr4_reg_to_regnum (struct gdbarch *gdbarch, int reg)
398 {
399 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
400
401 /* This implements the GCC register map that tries to be compatible
402 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
403
404 /* The SVR4 register numbering includes %eip and %eflags, and
405 numbers the floating point registers differently. */
406 if (reg >= 0 && reg <= 9)
407 {
408 /* General-purpose registers. */
409 return reg;
410 }
411 else if (reg >= 11 && reg <= 18)
412 {
413 /* Floating-point registers. */
414 return reg - 11 + I387_ST0_REGNUM (tdep);
415 }
416 else if (reg >= 21 && reg <= 36)
417 {
418 /* The SSE and MMX registers have the same numbers as with dbx. */
419 return i386_dbx_reg_to_regnum (gdbarch, reg);
420 }
421
422 switch (reg)
423 {
424 case 37: return I387_FCTRL_REGNUM (tdep);
425 case 38: return I387_FSTAT_REGNUM (tdep);
426 case 39: return I387_MXCSR_REGNUM (tdep);
427 case 40: return I386_ES_REGNUM;
428 case 41: return I386_CS_REGNUM;
429 case 42: return I386_SS_REGNUM;
430 case 43: return I386_DS_REGNUM;
431 case 44: return I386_FS_REGNUM;
432 case 45: return I386_GS_REGNUM;
433 }
434
435 /* This will hopefully provoke a warning. */
436 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
437 }
438
439 \f
440
441 /* This is the variable that is set with "set disassembly-flavor", and
442 its legitimate values. */
443 static const char att_flavor[] = "att";
444 static const char intel_flavor[] = "intel";
445 static const char *const valid_flavors[] =
446 {
447 att_flavor,
448 intel_flavor,
449 NULL
450 };
451 static const char *disassembly_flavor = att_flavor;
452 \f
453
454 /* Use the program counter to determine the contents and size of a
455 breakpoint instruction. Return a pointer to a string of bytes that
456 encode a breakpoint instruction, store the length of the string in
457 *LEN and optionally adjust *PC to point to the correct memory
458 location for inserting the breakpoint.
459
460 On the i386 we have a single breakpoint that fits in a single byte
461 and can be inserted anywhere.
462
463 This function is 64-bit safe. */
464
465 static const gdb_byte *
466 i386_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
467 {
468 static gdb_byte break_insn[] = { 0xcc }; /* int 3 */
469
470 *len = sizeof (break_insn);
471 return break_insn;
472 }
473 \f
474 /* Displaced instruction handling. */
475
476 /* Skip the legacy instruction prefixes in INSN.
477 Not all prefixes are valid for any particular insn
478 but we needn't care, the insn will fault if it's invalid.
479 The result is a pointer to the first opcode byte,
480 or NULL if we run off the end of the buffer. */
481
482 static gdb_byte *
483 i386_skip_prefixes (gdb_byte *insn, size_t max_len)
484 {
485 gdb_byte *end = insn + max_len;
486
487 while (insn < end)
488 {
489 switch (*insn)
490 {
491 case DATA_PREFIX_OPCODE:
492 case ADDR_PREFIX_OPCODE:
493 case CS_PREFIX_OPCODE:
494 case DS_PREFIX_OPCODE:
495 case ES_PREFIX_OPCODE:
496 case FS_PREFIX_OPCODE:
497 case GS_PREFIX_OPCODE:
498 case SS_PREFIX_OPCODE:
499 case LOCK_PREFIX_OPCODE:
500 case REPE_PREFIX_OPCODE:
501 case REPNE_PREFIX_OPCODE:
502 ++insn;
503 continue;
504 default:
505 return insn;
506 }
507 }
508
509 return NULL;
510 }
511
512 static int
513 i386_absolute_jmp_p (const gdb_byte *insn)
514 {
515 /* jmp far (absolute address in operand). */
516 if (insn[0] == 0xea)
517 return 1;
518
519 if (insn[0] == 0xff)
520 {
521 /* jump near, absolute indirect (/4). */
522 if ((insn[1] & 0x38) == 0x20)
523 return 1;
524
525 /* jump far, absolute indirect (/5). */
526 if ((insn[1] & 0x38) == 0x28)
527 return 1;
528 }
529
530 return 0;
531 }
532
533 /* Return non-zero if INSN is a jump, zero otherwise. */
534
535 static int
536 i386_jmp_p (const gdb_byte *insn)
537 {
538 /* jump short, relative. */
539 if (insn[0] == 0xeb)
540 return 1;
541
542 /* jump near, relative. */
543 if (insn[0] == 0xe9)
544 return 1;
545
546 return i386_absolute_jmp_p (insn);
547 }
548
549 static int
550 i386_absolute_call_p (const gdb_byte *insn)
551 {
552 /* call far, absolute. */
553 if (insn[0] == 0x9a)
554 return 1;
555
556 if (insn[0] == 0xff)
557 {
558 /* Call near, absolute indirect (/2). */
559 if ((insn[1] & 0x38) == 0x10)
560 return 1;
561
562 /* Call far, absolute indirect (/3). */
563 if ((insn[1] & 0x38) == 0x18)
564 return 1;
565 }
566
567 return 0;
568 }
569
570 static int
571 i386_ret_p (const gdb_byte *insn)
572 {
573 switch (insn[0])
574 {
575 case 0xc2: /* ret near, pop N bytes. */
576 case 0xc3: /* ret near */
577 case 0xca: /* ret far, pop N bytes. */
578 case 0xcb: /* ret far */
579 case 0xcf: /* iret */
580 return 1;
581
582 default:
583 return 0;
584 }
585 }
586
587 static int
588 i386_call_p (const gdb_byte *insn)
589 {
590 if (i386_absolute_call_p (insn))
591 return 1;
592
593 /* call near, relative. */
594 if (insn[0] == 0xe8)
595 return 1;
596
597 return 0;
598 }
599
600 /* Return non-zero if INSN is a system call, and set *LENGTHP to its
601 length in bytes. Otherwise, return zero. */
602
603 static int
604 i386_syscall_p (const gdb_byte *insn, int *lengthp)
605 {
606 /* Is it 'int $0x80'? */
607 if ((insn[0] == 0xcd && insn[1] == 0x80)
608 /* Or is it 'sysenter'? */
609 || (insn[0] == 0x0f && insn[1] == 0x34)
610 /* Or is it 'syscall'? */
611 || (insn[0] == 0x0f && insn[1] == 0x05))
612 {
613 *lengthp = 2;
614 return 1;
615 }
616
617 return 0;
618 }
619
620 /* The gdbarch insn_is_call method. */
621
622 static int
623 i386_insn_is_call (struct gdbarch *gdbarch, CORE_ADDR addr)
624 {
625 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
626
627 read_code (addr, buf, I386_MAX_INSN_LEN);
628 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
629
630 return i386_call_p (insn);
631 }
632
633 /* The gdbarch insn_is_ret method. */
634
635 static int
636 i386_insn_is_ret (struct gdbarch *gdbarch, CORE_ADDR addr)
637 {
638 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
639
640 read_code (addr, buf, I386_MAX_INSN_LEN);
641 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
642
643 return i386_ret_p (insn);
644 }
645
646 /* The gdbarch insn_is_jump method. */
647
648 static int
649 i386_insn_is_jump (struct gdbarch *gdbarch, CORE_ADDR addr)
650 {
651 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
652
653 read_code (addr, buf, I386_MAX_INSN_LEN);
654 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
655
656 return i386_jmp_p (insn);
657 }
658
659 /* Some kernels may run one past a syscall insn, so we have to cope.
660 Otherwise this is just simple_displaced_step_copy_insn. */
661
662 struct displaced_step_closure *
663 i386_displaced_step_copy_insn (struct gdbarch *gdbarch,
664 CORE_ADDR from, CORE_ADDR to,
665 struct regcache *regs)
666 {
667 size_t len = gdbarch_max_insn_length (gdbarch);
668 gdb_byte *buf = xmalloc (len);
669
670 read_memory (from, buf, len);
671
672 /* GDB may get control back after the insn after the syscall.
673 Presumably this is a kernel bug.
674 If this is a syscall, make sure there's a nop afterwards. */
675 {
676 int syscall_length;
677 gdb_byte *insn;
678
679 insn = i386_skip_prefixes (buf, len);
680 if (insn != NULL && i386_syscall_p (insn, &syscall_length))
681 insn[syscall_length] = NOP_OPCODE;
682 }
683
684 write_memory (to, buf, len);
685
686 if (debug_displaced)
687 {
688 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
689 paddress (gdbarch, from), paddress (gdbarch, to));
690 displaced_step_dump_bytes (gdb_stdlog, buf, len);
691 }
692
693 return (struct displaced_step_closure *) buf;
694 }
695
696 /* Fix up the state of registers and memory after having single-stepped
697 a displaced instruction. */
698
699 void
700 i386_displaced_step_fixup (struct gdbarch *gdbarch,
701 struct displaced_step_closure *closure,
702 CORE_ADDR from, CORE_ADDR to,
703 struct regcache *regs)
704 {
705 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
706
707 /* The offset we applied to the instruction's address.
708 This could well be negative (when viewed as a signed 32-bit
709 value), but ULONGEST won't reflect that, so take care when
710 applying it. */
711 ULONGEST insn_offset = to - from;
712
713 /* Since we use simple_displaced_step_copy_insn, our closure is a
714 copy of the instruction. */
715 gdb_byte *insn = (gdb_byte *) closure;
716 /* The start of the insn, needed in case we see some prefixes. */
717 gdb_byte *insn_start = insn;
718
719 if (debug_displaced)
720 fprintf_unfiltered (gdb_stdlog,
721 "displaced: fixup (%s, %s), "
722 "insn = 0x%02x 0x%02x ...\n",
723 paddress (gdbarch, from), paddress (gdbarch, to),
724 insn[0], insn[1]);
725
726 /* The list of issues to contend with here is taken from
727 resume_execution in arch/i386/kernel/kprobes.c, Linux 2.6.20.
728 Yay for Free Software! */
729
730 /* Relocate the %eip, if necessary. */
731
732 /* The instruction recognizers we use assume any leading prefixes
733 have been skipped. */
734 {
735 /* This is the size of the buffer in closure. */
736 size_t max_insn_len = gdbarch_max_insn_length (gdbarch);
737 gdb_byte *opcode = i386_skip_prefixes (insn, max_insn_len);
738 /* If there are too many prefixes, just ignore the insn.
739 It will fault when run. */
740 if (opcode != NULL)
741 insn = opcode;
742 }
743
744 /* Except in the case of absolute or indirect jump or call
745 instructions, or a return instruction, the new eip is relative to
746 the displaced instruction; make it relative. Well, signal
747 handler returns don't need relocation either, but we use the
748 value of %eip to recognize those; see below. */
749 if (! i386_absolute_jmp_p (insn)
750 && ! i386_absolute_call_p (insn)
751 && ! i386_ret_p (insn))
752 {
753 ULONGEST orig_eip;
754 int insn_len;
755
756 regcache_cooked_read_unsigned (regs, I386_EIP_REGNUM, &orig_eip);
757
758 /* A signal trampoline system call changes the %eip, resuming
759 execution of the main program after the signal handler has
760 returned. That makes them like 'return' instructions; we
761 shouldn't relocate %eip.
762
763 But most system calls don't, and we do need to relocate %eip.
764
765 Our heuristic for distinguishing these cases: if stepping
766 over the system call instruction left control directly after
767 the instruction, the we relocate --- control almost certainly
768 doesn't belong in the displaced copy. Otherwise, we assume
769 the instruction has put control where it belongs, and leave
770 it unrelocated. Goodness help us if there are PC-relative
771 system calls. */
772 if (i386_syscall_p (insn, &insn_len)
773 && orig_eip != to + (insn - insn_start) + insn_len
774 /* GDB can get control back after the insn after the syscall.
775 Presumably this is a kernel bug.
776 i386_displaced_step_copy_insn ensures its a nop,
777 we add one to the length for it. */
778 && orig_eip != to + (insn - insn_start) + insn_len + 1)
779 {
780 if (debug_displaced)
781 fprintf_unfiltered (gdb_stdlog,
782 "displaced: syscall changed %%eip; "
783 "not relocating\n");
784 }
785 else
786 {
787 ULONGEST eip = (orig_eip - insn_offset) & 0xffffffffUL;
788
789 /* If we just stepped over a breakpoint insn, we don't backup
790 the pc on purpose; this is to match behaviour without
791 stepping. */
792
793 regcache_cooked_write_unsigned (regs, I386_EIP_REGNUM, eip);
794
795 if (debug_displaced)
796 fprintf_unfiltered (gdb_stdlog,
797 "displaced: "
798 "relocated %%eip from %s to %s\n",
799 paddress (gdbarch, orig_eip),
800 paddress (gdbarch, eip));
801 }
802 }
803
804 /* If the instruction was PUSHFL, then the TF bit will be set in the
805 pushed value, and should be cleared. We'll leave this for later,
806 since GDB already messes up the TF flag when stepping over a
807 pushfl. */
808
809 /* If the instruction was a call, the return address now atop the
810 stack is the address following the copied instruction. We need
811 to make it the address following the original instruction. */
812 if (i386_call_p (insn))
813 {
814 ULONGEST esp;
815 ULONGEST retaddr;
816 const ULONGEST retaddr_len = 4;
817
818 regcache_cooked_read_unsigned (regs, I386_ESP_REGNUM, &esp);
819 retaddr = read_memory_unsigned_integer (esp, retaddr_len, byte_order);
820 retaddr = (retaddr - insn_offset) & 0xffffffffUL;
821 write_memory_unsigned_integer (esp, retaddr_len, byte_order, retaddr);
822
823 if (debug_displaced)
824 fprintf_unfiltered (gdb_stdlog,
825 "displaced: relocated return addr at %s to %s\n",
826 paddress (gdbarch, esp),
827 paddress (gdbarch, retaddr));
828 }
829 }
830
831 static void
832 append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
833 {
834 target_write_memory (*to, buf, len);
835 *to += len;
836 }
837
838 static void
839 i386_relocate_instruction (struct gdbarch *gdbarch,
840 CORE_ADDR *to, CORE_ADDR oldloc)
841 {
842 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
843 gdb_byte buf[I386_MAX_INSN_LEN];
844 int offset = 0, rel32, newrel;
845 int insn_length;
846 gdb_byte *insn = buf;
847
848 read_memory (oldloc, buf, I386_MAX_INSN_LEN);
849
850 insn_length = gdb_buffered_insn_length (gdbarch, insn,
851 I386_MAX_INSN_LEN, oldloc);
852
853 /* Get past the prefixes. */
854 insn = i386_skip_prefixes (insn, I386_MAX_INSN_LEN);
855
856 /* Adjust calls with 32-bit relative addresses as push/jump, with
857 the address pushed being the location where the original call in
858 the user program would return to. */
859 if (insn[0] == 0xe8)
860 {
861 gdb_byte push_buf[16];
862 unsigned int ret_addr;
863
864 /* Where "ret" in the original code will return to. */
865 ret_addr = oldloc + insn_length;
866 push_buf[0] = 0x68; /* pushq $... */
867 store_unsigned_integer (&push_buf[1], 4, byte_order, ret_addr);
868 /* Push the push. */
869 append_insns (to, 5, push_buf);
870
871 /* Convert the relative call to a relative jump. */
872 insn[0] = 0xe9;
873
874 /* Adjust the destination offset. */
875 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
876 newrel = (oldloc - *to) + rel32;
877 store_signed_integer (insn + 1, 4, byte_order, newrel);
878
879 if (debug_displaced)
880 fprintf_unfiltered (gdb_stdlog,
881 "Adjusted insn rel32=%s at %s to"
882 " rel32=%s at %s\n",
883 hex_string (rel32), paddress (gdbarch, oldloc),
884 hex_string (newrel), paddress (gdbarch, *to));
885
886 /* Write the adjusted jump into its displaced location. */
887 append_insns (to, 5, insn);
888 return;
889 }
890
891 /* Adjust jumps with 32-bit relative addresses. Calls are already
892 handled above. */
893 if (insn[0] == 0xe9)
894 offset = 1;
895 /* Adjust conditional jumps. */
896 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
897 offset = 2;
898
899 if (offset)
900 {
901 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
902 newrel = (oldloc - *to) + rel32;
903 store_signed_integer (insn + offset, 4, byte_order, newrel);
904 if (debug_displaced)
905 fprintf_unfiltered (gdb_stdlog,
906 "Adjusted insn rel32=%s at %s to"
907 " rel32=%s at %s\n",
908 hex_string (rel32), paddress (gdbarch, oldloc),
909 hex_string (newrel), paddress (gdbarch, *to));
910 }
911
912 /* Write the adjusted instructions into their displaced
913 location. */
914 append_insns (to, insn_length, buf);
915 }
916
917 \f
918 #ifdef I386_REGNO_TO_SYMMETRY
919 #error "The Sequent Symmetry is no longer supported."
920 #endif
921
922 /* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
923 and %esp "belong" to the calling function. Therefore these
924 registers should be saved if they're going to be modified. */
925
926 /* The maximum number of saved registers. This should include all
927 registers mentioned above, and %eip. */
928 #define I386_NUM_SAVED_REGS I386_NUM_GREGS
929
930 struct i386_frame_cache
931 {
932 /* Base address. */
933 CORE_ADDR base;
934 int base_p;
935 LONGEST sp_offset;
936 CORE_ADDR pc;
937
938 /* Saved registers. */
939 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
940 CORE_ADDR saved_sp;
941 int saved_sp_reg;
942 int pc_in_eax;
943
944 /* Stack space reserved for local variables. */
945 long locals;
946 };
947
948 /* Allocate and initialize a frame cache. */
949
950 static struct i386_frame_cache *
951 i386_alloc_frame_cache (void)
952 {
953 struct i386_frame_cache *cache;
954 int i;
955
956 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
957
958 /* Base address. */
959 cache->base_p = 0;
960 cache->base = 0;
961 cache->sp_offset = -4;
962 cache->pc = 0;
963
964 /* Saved registers. We initialize these to -1 since zero is a valid
965 offset (that's where %ebp is supposed to be stored). */
966 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
967 cache->saved_regs[i] = -1;
968 cache->saved_sp = 0;
969 cache->saved_sp_reg = -1;
970 cache->pc_in_eax = 0;
971
972 /* Frameless until proven otherwise. */
973 cache->locals = -1;
974
975 return cache;
976 }
977
978 /* If the instruction at PC is a jump, return the address of its
979 target. Otherwise, return PC. */
980
981 static CORE_ADDR
982 i386_follow_jump (struct gdbarch *gdbarch, CORE_ADDR pc)
983 {
984 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
985 gdb_byte op;
986 long delta = 0;
987 int data16 = 0;
988
989 if (target_read_code (pc, &op, 1))
990 return pc;
991
992 if (op == 0x66)
993 {
994 data16 = 1;
995
996 op = read_code_unsigned_integer (pc + 1, 1, byte_order);
997 }
998
999 switch (op)
1000 {
1001 case 0xe9:
1002 /* Relative jump: if data16 == 0, disp32, else disp16. */
1003 if (data16)
1004 {
1005 delta = read_memory_integer (pc + 2, 2, byte_order);
1006
1007 /* Include the size of the jmp instruction (including the
1008 0x66 prefix). */
1009 delta += 4;
1010 }
1011 else
1012 {
1013 delta = read_memory_integer (pc + 1, 4, byte_order);
1014
1015 /* Include the size of the jmp instruction. */
1016 delta += 5;
1017 }
1018 break;
1019 case 0xeb:
1020 /* Relative jump, disp8 (ignore data16). */
1021 delta = read_memory_integer (pc + data16 + 1, 1, byte_order);
1022
1023 delta += data16 + 2;
1024 break;
1025 }
1026
1027 return pc + delta;
1028 }
1029
1030 /* Check whether PC points at a prologue for a function returning a
1031 structure or union. If so, it updates CACHE and returns the
1032 address of the first instruction after the code sequence that
1033 removes the "hidden" argument from the stack or CURRENT_PC,
1034 whichever is smaller. Otherwise, return PC. */
1035
1036 static CORE_ADDR
1037 i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
1038 struct i386_frame_cache *cache)
1039 {
1040 /* Functions that return a structure or union start with:
1041
1042 popl %eax 0x58
1043 xchgl %eax, (%esp) 0x87 0x04 0x24
1044 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
1045
1046 (the System V compiler puts out the second `xchg' instruction,
1047 and the assembler doesn't try to optimize it, so the 'sib' form
1048 gets generated). This sequence is used to get the address of the
1049 return buffer for a function that returns a structure. */
1050 static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
1051 static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
1052 gdb_byte buf[4];
1053 gdb_byte op;
1054
1055 if (current_pc <= pc)
1056 return pc;
1057
1058 if (target_read_code (pc, &op, 1))
1059 return pc;
1060
1061 if (op != 0x58) /* popl %eax */
1062 return pc;
1063
1064 if (target_read_code (pc + 1, buf, 4))
1065 return pc;
1066
1067 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
1068 return pc;
1069
1070 if (current_pc == pc)
1071 {
1072 cache->sp_offset += 4;
1073 return current_pc;
1074 }
1075
1076 if (current_pc == pc + 1)
1077 {
1078 cache->pc_in_eax = 1;
1079 return current_pc;
1080 }
1081
1082 if (buf[1] == proto1[1])
1083 return pc + 4;
1084 else
1085 return pc + 5;
1086 }
1087
1088 static CORE_ADDR
1089 i386_skip_probe (CORE_ADDR pc)
1090 {
1091 /* A function may start with
1092
1093 pushl constant
1094 call _probe
1095 addl $4, %esp
1096
1097 followed by
1098
1099 pushl %ebp
1100
1101 etc. */
1102 gdb_byte buf[8];
1103 gdb_byte op;
1104
1105 if (target_read_code (pc, &op, 1))
1106 return pc;
1107
1108 if (op == 0x68 || op == 0x6a)
1109 {
1110 int delta;
1111
1112 /* Skip past the `pushl' instruction; it has either a one-byte or a
1113 four-byte operand, depending on the opcode. */
1114 if (op == 0x68)
1115 delta = 5;
1116 else
1117 delta = 2;
1118
1119 /* Read the following 8 bytes, which should be `call _probe' (6
1120 bytes) followed by `addl $4,%esp' (2 bytes). */
1121 read_memory (pc + delta, buf, sizeof (buf));
1122 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
1123 pc += delta + sizeof (buf);
1124 }
1125
1126 return pc;
1127 }
1128
1129 /* GCC 4.1 and later, can put code in the prologue to realign the
1130 stack pointer. Check whether PC points to such code, and update
1131 CACHE accordingly. Return the first instruction after the code
1132 sequence or CURRENT_PC, whichever is smaller. If we don't
1133 recognize the code, return PC. */
1134
1135 static CORE_ADDR
1136 i386_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1137 struct i386_frame_cache *cache)
1138 {
1139 /* There are 2 code sequences to re-align stack before the frame
1140 gets set up:
1141
1142 1. Use a caller-saved saved register:
1143
1144 leal 4(%esp), %reg
1145 andl $-XXX, %esp
1146 pushl -4(%reg)
1147
1148 2. Use a callee-saved saved register:
1149
1150 pushl %reg
1151 leal 8(%esp), %reg
1152 andl $-XXX, %esp
1153 pushl -4(%reg)
1154
1155 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
1156
1157 0x83 0xe4 0xf0 andl $-16, %esp
1158 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
1159 */
1160
1161 gdb_byte buf[14];
1162 int reg;
1163 int offset, offset_and;
1164 static int regnums[8] = {
1165 I386_EAX_REGNUM, /* %eax */
1166 I386_ECX_REGNUM, /* %ecx */
1167 I386_EDX_REGNUM, /* %edx */
1168 I386_EBX_REGNUM, /* %ebx */
1169 I386_ESP_REGNUM, /* %esp */
1170 I386_EBP_REGNUM, /* %ebp */
1171 I386_ESI_REGNUM, /* %esi */
1172 I386_EDI_REGNUM /* %edi */
1173 };
1174
1175 if (target_read_code (pc, buf, sizeof buf))
1176 return pc;
1177
1178 /* Check caller-saved saved register. The first instruction has
1179 to be "leal 4(%esp), %reg". */
1180 if (buf[0] == 0x8d && buf[2] == 0x24 && buf[3] == 0x4)
1181 {
1182 /* MOD must be binary 10 and R/M must be binary 100. */
1183 if ((buf[1] & 0xc7) != 0x44)
1184 return pc;
1185
1186 /* REG has register number. */
1187 reg = (buf[1] >> 3) & 7;
1188 offset = 4;
1189 }
1190 else
1191 {
1192 /* Check callee-saved saved register. The first instruction
1193 has to be "pushl %reg". */
1194 if ((buf[0] & 0xf8) != 0x50)
1195 return pc;
1196
1197 /* Get register. */
1198 reg = buf[0] & 0x7;
1199
1200 /* The next instruction has to be "leal 8(%esp), %reg". */
1201 if (buf[1] != 0x8d || buf[3] != 0x24 || buf[4] != 0x8)
1202 return pc;
1203
1204 /* MOD must be binary 10 and R/M must be binary 100. */
1205 if ((buf[2] & 0xc7) != 0x44)
1206 return pc;
1207
1208 /* REG has register number. Registers in pushl and leal have to
1209 be the same. */
1210 if (reg != ((buf[2] >> 3) & 7))
1211 return pc;
1212
1213 offset = 5;
1214 }
1215
1216 /* Rigister can't be %esp nor %ebp. */
1217 if (reg == 4 || reg == 5)
1218 return pc;
1219
1220 /* The next instruction has to be "andl $-XXX, %esp". */
1221 if (buf[offset + 1] != 0xe4
1222 || (buf[offset] != 0x81 && buf[offset] != 0x83))
1223 return pc;
1224
1225 offset_and = offset;
1226 offset += buf[offset] == 0x81 ? 6 : 3;
1227
1228 /* The next instruction has to be "pushl -4(%reg)". 8bit -4 is
1229 0xfc. REG must be binary 110 and MOD must be binary 01. */
1230 if (buf[offset] != 0xff
1231 || buf[offset + 2] != 0xfc
1232 || (buf[offset + 1] & 0xf8) != 0x70)
1233 return pc;
1234
1235 /* R/M has register. Registers in leal and pushl have to be the
1236 same. */
1237 if (reg != (buf[offset + 1] & 7))
1238 return pc;
1239
1240 if (current_pc > pc + offset_and)
1241 cache->saved_sp_reg = regnums[reg];
1242
1243 return min (pc + offset + 3, current_pc);
1244 }
1245
1246 /* Maximum instruction length we need to handle. */
1247 #define I386_MAX_MATCHED_INSN_LEN 6
1248
1249 /* Instruction description. */
1250 struct i386_insn
1251 {
1252 size_t len;
1253 gdb_byte insn[I386_MAX_MATCHED_INSN_LEN];
1254 gdb_byte mask[I386_MAX_MATCHED_INSN_LEN];
1255 };
1256
1257 /* Return whether instruction at PC matches PATTERN. */
1258
1259 static int
1260 i386_match_pattern (CORE_ADDR pc, struct i386_insn pattern)
1261 {
1262 gdb_byte op;
1263
1264 if (target_read_code (pc, &op, 1))
1265 return 0;
1266
1267 if ((op & pattern.mask[0]) == pattern.insn[0])
1268 {
1269 gdb_byte buf[I386_MAX_MATCHED_INSN_LEN - 1];
1270 int insn_matched = 1;
1271 size_t i;
1272
1273 gdb_assert (pattern.len > 1);
1274 gdb_assert (pattern.len <= I386_MAX_MATCHED_INSN_LEN);
1275
1276 if (target_read_code (pc + 1, buf, pattern.len - 1))
1277 return 0;
1278
1279 for (i = 1; i < pattern.len; i++)
1280 {
1281 if ((buf[i - 1] & pattern.mask[i]) != pattern.insn[i])
1282 insn_matched = 0;
1283 }
1284 return insn_matched;
1285 }
1286 return 0;
1287 }
1288
1289 /* Search for the instruction at PC in the list INSN_PATTERNS. Return
1290 the first instruction description that matches. Otherwise, return
1291 NULL. */
1292
1293 static struct i386_insn *
1294 i386_match_insn (CORE_ADDR pc, struct i386_insn *insn_patterns)
1295 {
1296 struct i386_insn *pattern;
1297
1298 for (pattern = insn_patterns; pattern->len > 0; pattern++)
1299 {
1300 if (i386_match_pattern (pc, *pattern))
1301 return pattern;
1302 }
1303
1304 return NULL;
1305 }
1306
1307 /* Return whether PC points inside a sequence of instructions that
1308 matches INSN_PATTERNS. */
1309
1310 static int
1311 i386_match_insn_block (CORE_ADDR pc, struct i386_insn *insn_patterns)
1312 {
1313 CORE_ADDR current_pc;
1314 int ix, i;
1315 struct i386_insn *insn;
1316
1317 insn = i386_match_insn (pc, insn_patterns);
1318 if (insn == NULL)
1319 return 0;
1320
1321 current_pc = pc;
1322 ix = insn - insn_patterns;
1323 for (i = ix - 1; i >= 0; i--)
1324 {
1325 current_pc -= insn_patterns[i].len;
1326
1327 if (!i386_match_pattern (current_pc, insn_patterns[i]))
1328 return 0;
1329 }
1330
1331 current_pc = pc + insn->len;
1332 for (insn = insn_patterns + ix + 1; insn->len > 0; insn++)
1333 {
1334 if (!i386_match_pattern (current_pc, *insn))
1335 return 0;
1336
1337 current_pc += insn->len;
1338 }
1339
1340 return 1;
1341 }
1342
1343 /* Some special instructions that might be migrated by GCC into the
1344 part of the prologue that sets up the new stack frame. Because the
1345 stack frame hasn't been setup yet, no registers have been saved
1346 yet, and only the scratch registers %eax, %ecx and %edx can be
1347 touched. */
1348
1349 struct i386_insn i386_frame_setup_skip_insns[] =
1350 {
1351 /* Check for `movb imm8, r' and `movl imm32, r'.
1352
1353 ??? Should we handle 16-bit operand-sizes here? */
1354
1355 /* `movb imm8, %al' and `movb imm8, %ah' */
1356 /* `movb imm8, %cl' and `movb imm8, %ch' */
1357 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
1358 /* `movb imm8, %dl' and `movb imm8, %dh' */
1359 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
1360 /* `movl imm32, %eax' and `movl imm32, %ecx' */
1361 { 5, { 0xb8 }, { 0xfe } },
1362 /* `movl imm32, %edx' */
1363 { 5, { 0xba }, { 0xff } },
1364
1365 /* Check for `mov imm32, r32'. Note that there is an alternative
1366 encoding for `mov m32, %eax'.
1367
1368 ??? Should we handle SIB adressing here?
1369 ??? Should we handle 16-bit operand-sizes here? */
1370
1371 /* `movl m32, %eax' */
1372 { 5, { 0xa1 }, { 0xff } },
1373 /* `movl m32, %eax' and `mov; m32, %ecx' */
1374 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
1375 /* `movl m32, %edx' */
1376 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
1377
1378 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
1379 Because of the symmetry, there are actually two ways to encode
1380 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
1381 opcode bytes 0x31 and 0x33 for `xorl'. */
1382
1383 /* `subl %eax, %eax' */
1384 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
1385 /* `subl %ecx, %ecx' */
1386 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
1387 /* `subl %edx, %edx' */
1388 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
1389 /* `xorl %eax, %eax' */
1390 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
1391 /* `xorl %ecx, %ecx' */
1392 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
1393 /* `xorl %edx, %edx' */
1394 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
1395 { 0 }
1396 };
1397
1398
1399 /* Check whether PC points to a no-op instruction. */
1400 static CORE_ADDR
1401 i386_skip_noop (CORE_ADDR pc)
1402 {
1403 gdb_byte op;
1404 int check = 1;
1405
1406 if (target_read_code (pc, &op, 1))
1407 return pc;
1408
1409 while (check)
1410 {
1411 check = 0;
1412 /* Ignore `nop' instruction. */
1413 if (op == 0x90)
1414 {
1415 pc += 1;
1416 if (target_read_code (pc, &op, 1))
1417 return pc;
1418 check = 1;
1419 }
1420 /* Ignore no-op instruction `mov %edi, %edi'.
1421 Microsoft system dlls often start with
1422 a `mov %edi,%edi' instruction.
1423 The 5 bytes before the function start are
1424 filled with `nop' instructions.
1425 This pattern can be used for hot-patching:
1426 The `mov %edi, %edi' instruction can be replaced by a
1427 near jump to the location of the 5 `nop' instructions
1428 which can be replaced by a 32-bit jump to anywhere
1429 in the 32-bit address space. */
1430
1431 else if (op == 0x8b)
1432 {
1433 if (target_read_code (pc + 1, &op, 1))
1434 return pc;
1435
1436 if (op == 0xff)
1437 {
1438 pc += 2;
1439 if (target_read_code (pc, &op, 1))
1440 return pc;
1441
1442 check = 1;
1443 }
1444 }
1445 }
1446 return pc;
1447 }
1448
1449 /* Check whether PC points at a code that sets up a new stack frame.
1450 If so, it updates CACHE and returns the address of the first
1451 instruction after the sequence that sets up the frame or LIMIT,
1452 whichever is smaller. If we don't recognize the code, return PC. */
1453
1454 static CORE_ADDR
1455 i386_analyze_frame_setup (struct gdbarch *gdbarch,
1456 CORE_ADDR pc, CORE_ADDR limit,
1457 struct i386_frame_cache *cache)
1458 {
1459 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1460 struct i386_insn *insn;
1461 gdb_byte op;
1462 int skip = 0;
1463
1464 if (limit <= pc)
1465 return limit;
1466
1467 if (target_read_code (pc, &op, 1))
1468 return pc;
1469
1470 if (op == 0x55) /* pushl %ebp */
1471 {
1472 /* Take into account that we've executed the `pushl %ebp' that
1473 starts this instruction sequence. */
1474 cache->saved_regs[I386_EBP_REGNUM] = 0;
1475 cache->sp_offset += 4;
1476 pc++;
1477
1478 /* If that's all, return now. */
1479 if (limit <= pc)
1480 return limit;
1481
1482 /* Check for some special instructions that might be migrated by
1483 GCC into the prologue and skip them. At this point in the
1484 prologue, code should only touch the scratch registers %eax,
1485 %ecx and %edx, so while the number of posibilities is sheer,
1486 it is limited.
1487
1488 Make sure we only skip these instructions if we later see the
1489 `movl %esp, %ebp' that actually sets up the frame. */
1490 while (pc + skip < limit)
1491 {
1492 insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
1493 if (insn == NULL)
1494 break;
1495
1496 skip += insn->len;
1497 }
1498
1499 /* If that's all, return now. */
1500 if (limit <= pc + skip)
1501 return limit;
1502
1503 if (target_read_code (pc + skip, &op, 1))
1504 return pc + skip;
1505
1506 /* The i386 prologue looks like
1507
1508 push %ebp
1509 mov %esp,%ebp
1510 sub $0x10,%esp
1511
1512 and a different prologue can be generated for atom.
1513
1514 push %ebp
1515 lea (%esp),%ebp
1516 lea -0x10(%esp),%esp
1517
1518 We handle both of them here. */
1519
1520 switch (op)
1521 {
1522 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
1523 case 0x8b:
1524 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
1525 != 0xec)
1526 return pc;
1527 pc += (skip + 2);
1528 break;
1529 case 0x89:
1530 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
1531 != 0xe5)
1532 return pc;
1533 pc += (skip + 2);
1534 break;
1535 case 0x8d: /* Check for 'lea (%ebp), %ebp'. */
1536 if (read_code_unsigned_integer (pc + skip + 1, 2, byte_order)
1537 != 0x242c)
1538 return pc;
1539 pc += (skip + 3);
1540 break;
1541 default:
1542 return pc;
1543 }
1544
1545 /* OK, we actually have a frame. We just don't know how large
1546 it is yet. Set its size to zero. We'll adjust it if
1547 necessary. We also now commit to skipping the special
1548 instructions mentioned before. */
1549 cache->locals = 0;
1550
1551 /* If that's all, return now. */
1552 if (limit <= pc)
1553 return limit;
1554
1555 /* Check for stack adjustment
1556
1557 subl $XXX, %esp
1558 or
1559 lea -XXX(%esp),%esp
1560
1561 NOTE: You can't subtract a 16-bit immediate from a 32-bit
1562 reg, so we don't have to worry about a data16 prefix. */
1563 if (target_read_code (pc, &op, 1))
1564 return pc;
1565 if (op == 0x83)
1566 {
1567 /* `subl' with 8-bit immediate. */
1568 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1569 /* Some instruction starting with 0x83 other than `subl'. */
1570 return pc;
1571
1572 /* `subl' with signed 8-bit immediate (though it wouldn't
1573 make sense to be negative). */
1574 cache->locals = read_code_integer (pc + 2, 1, byte_order);
1575 return pc + 3;
1576 }
1577 else if (op == 0x81)
1578 {
1579 /* Maybe it is `subl' with a 32-bit immediate. */
1580 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1581 /* Some instruction starting with 0x81 other than `subl'. */
1582 return pc;
1583
1584 /* It is `subl' with a 32-bit immediate. */
1585 cache->locals = read_code_integer (pc + 2, 4, byte_order);
1586 return pc + 6;
1587 }
1588 else if (op == 0x8d)
1589 {
1590 /* The ModR/M byte is 0x64. */
1591 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0x64)
1592 return pc;
1593 /* 'lea' with 8-bit displacement. */
1594 cache->locals = -1 * read_code_integer (pc + 3, 1, byte_order);
1595 return pc + 4;
1596 }
1597 else
1598 {
1599 /* Some instruction other than `subl' nor 'lea'. */
1600 return pc;
1601 }
1602 }
1603 else if (op == 0xc8) /* enter */
1604 {
1605 cache->locals = read_code_unsigned_integer (pc + 1, 2, byte_order);
1606 return pc + 4;
1607 }
1608
1609 return pc;
1610 }
1611
1612 /* Check whether PC points at code that saves registers on the stack.
1613 If so, it updates CACHE and returns the address of the first
1614 instruction after the register saves or CURRENT_PC, whichever is
1615 smaller. Otherwise, return PC. */
1616
1617 static CORE_ADDR
1618 i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
1619 struct i386_frame_cache *cache)
1620 {
1621 CORE_ADDR offset = 0;
1622 gdb_byte op;
1623 int i;
1624
1625 if (cache->locals > 0)
1626 offset -= cache->locals;
1627 for (i = 0; i < 8 && pc < current_pc; i++)
1628 {
1629 if (target_read_code (pc, &op, 1))
1630 return pc;
1631 if (op < 0x50 || op > 0x57)
1632 break;
1633
1634 offset -= 4;
1635 cache->saved_regs[op - 0x50] = offset;
1636 cache->sp_offset += 4;
1637 pc++;
1638 }
1639
1640 return pc;
1641 }
1642
1643 /* Do a full analysis of the prologue at PC and update CACHE
1644 accordingly. Bail out early if CURRENT_PC is reached. Return the
1645 address where the analysis stopped.
1646
1647 We handle these cases:
1648
1649 The startup sequence can be at the start of the function, or the
1650 function can start with a branch to startup code at the end.
1651
1652 %ebp can be set up with either the 'enter' instruction, or "pushl
1653 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
1654 once used in the System V compiler).
1655
1656 Local space is allocated just below the saved %ebp by either the
1657 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
1658 16-bit unsigned argument for space to allocate, and the 'addl'
1659 instruction could have either a signed byte, or 32-bit immediate.
1660
1661 Next, the registers used by this function are pushed. With the
1662 System V compiler they will always be in the order: %edi, %esi,
1663 %ebx (and sometimes a harmless bug causes it to also save but not
1664 restore %eax); however, the code below is willing to see the pushes
1665 in any order, and will handle up to 8 of them.
1666
1667 If the setup sequence is at the end of the function, then the next
1668 instruction will be a branch back to the start. */
1669
1670 static CORE_ADDR
1671 i386_analyze_prologue (struct gdbarch *gdbarch,
1672 CORE_ADDR pc, CORE_ADDR current_pc,
1673 struct i386_frame_cache *cache)
1674 {
1675 pc = i386_skip_noop (pc);
1676 pc = i386_follow_jump (gdbarch, pc);
1677 pc = i386_analyze_struct_return (pc, current_pc, cache);
1678 pc = i386_skip_probe (pc);
1679 pc = i386_analyze_stack_align (pc, current_pc, cache);
1680 pc = i386_analyze_frame_setup (gdbarch, pc, current_pc, cache);
1681 return i386_analyze_register_saves (pc, current_pc, cache);
1682 }
1683
1684 /* Return PC of first real instruction. */
1685
1686 static CORE_ADDR
1687 i386_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
1688 {
1689 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1690
1691 static gdb_byte pic_pat[6] =
1692 {
1693 0xe8, 0, 0, 0, 0, /* call 0x0 */
1694 0x5b, /* popl %ebx */
1695 };
1696 struct i386_frame_cache cache;
1697 CORE_ADDR pc;
1698 gdb_byte op;
1699 int i;
1700 CORE_ADDR func_addr;
1701
1702 if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
1703 {
1704 CORE_ADDR post_prologue_pc
1705 = skip_prologue_using_sal (gdbarch, func_addr);
1706 struct symtab *s = find_pc_symtab (func_addr);
1707
1708 /* Clang always emits a line note before the prologue and another
1709 one after. We trust clang to emit usable line notes. */
1710 if (post_prologue_pc
1711 && (s != NULL
1712 && s->producer != NULL
1713 && strncmp (s->producer, "clang ", sizeof ("clang ") - 1) == 0))
1714 return max (start_pc, post_prologue_pc);
1715 }
1716
1717 cache.locals = -1;
1718 pc = i386_analyze_prologue (gdbarch, start_pc, 0xffffffff, &cache);
1719 if (cache.locals < 0)
1720 return start_pc;
1721
1722 /* Found valid frame setup. */
1723
1724 /* The native cc on SVR4 in -K PIC mode inserts the following code
1725 to get the address of the global offset table (GOT) into register
1726 %ebx:
1727
1728 call 0x0
1729 popl %ebx
1730 movl %ebx,x(%ebp) (optional)
1731 addl y,%ebx
1732
1733 This code is with the rest of the prologue (at the end of the
1734 function), so we have to skip it to get to the first real
1735 instruction at the start of the function. */
1736
1737 for (i = 0; i < 6; i++)
1738 {
1739 if (target_read_code (pc + i, &op, 1))
1740 return pc;
1741
1742 if (pic_pat[i] != op)
1743 break;
1744 }
1745 if (i == 6)
1746 {
1747 int delta = 6;
1748
1749 if (target_read_code (pc + delta, &op, 1))
1750 return pc;
1751
1752 if (op == 0x89) /* movl %ebx, x(%ebp) */
1753 {
1754 op = read_code_unsigned_integer (pc + delta + 1, 1, byte_order);
1755
1756 if (op == 0x5d) /* One byte offset from %ebp. */
1757 delta += 3;
1758 else if (op == 0x9d) /* Four byte offset from %ebp. */
1759 delta += 6;
1760 else /* Unexpected instruction. */
1761 delta = 0;
1762
1763 if (target_read_code (pc + delta, &op, 1))
1764 return pc;
1765 }
1766
1767 /* addl y,%ebx */
1768 if (delta > 0 && op == 0x81
1769 && read_code_unsigned_integer (pc + delta + 1, 1, byte_order)
1770 == 0xc3)
1771 {
1772 pc += delta + 6;
1773 }
1774 }
1775
1776 /* If the function starts with a branch (to startup code at the end)
1777 the last instruction should bring us back to the first
1778 instruction of the real code. */
1779 if (i386_follow_jump (gdbarch, start_pc) != start_pc)
1780 pc = i386_follow_jump (gdbarch, pc);
1781
1782 return pc;
1783 }
1784
1785 /* Check that the code pointed to by PC corresponds to a call to
1786 __main, skip it if so. Return PC otherwise. */
1787
1788 CORE_ADDR
1789 i386_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1790 {
1791 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1792 gdb_byte op;
1793
1794 if (target_read_code (pc, &op, 1))
1795 return pc;
1796 if (op == 0xe8)
1797 {
1798 gdb_byte buf[4];
1799
1800 if (target_read_code (pc + 1, buf, sizeof buf) == 0)
1801 {
1802 /* Make sure address is computed correctly as a 32bit
1803 integer even if CORE_ADDR is 64 bit wide. */
1804 struct bound_minimal_symbol s;
1805 CORE_ADDR call_dest;
1806
1807 call_dest = pc + 5 + extract_signed_integer (buf, 4, byte_order);
1808 call_dest = call_dest & 0xffffffffU;
1809 s = lookup_minimal_symbol_by_pc (call_dest);
1810 if (s.minsym != NULL
1811 && SYMBOL_LINKAGE_NAME (s.minsym) != NULL
1812 && strcmp (SYMBOL_LINKAGE_NAME (s.minsym), "__main") == 0)
1813 pc += 5;
1814 }
1815 }
1816
1817 return pc;
1818 }
1819
1820 /* This function is 64-bit safe. */
1821
1822 static CORE_ADDR
1823 i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1824 {
1825 gdb_byte buf[8];
1826
1827 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
1828 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
1829 }
1830 \f
1831
1832 /* Normal frames. */
1833
1834 static void
1835 i386_frame_cache_1 (struct frame_info *this_frame,
1836 struct i386_frame_cache *cache)
1837 {
1838 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1839 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1840 gdb_byte buf[4];
1841 int i;
1842
1843 cache->pc = get_frame_func (this_frame);
1844
1845 /* In principle, for normal frames, %ebp holds the frame pointer,
1846 which holds the base address for the current stack frame.
1847 However, for functions that don't need it, the frame pointer is
1848 optional. For these "frameless" functions the frame pointer is
1849 actually the frame pointer of the calling frame. Signal
1850 trampolines are just a special case of a "frameless" function.
1851 They (usually) share their frame pointer with the frame that was
1852 in progress when the signal occurred. */
1853
1854 get_frame_register (this_frame, I386_EBP_REGNUM, buf);
1855 cache->base = extract_unsigned_integer (buf, 4, byte_order);
1856 if (cache->base == 0)
1857 {
1858 cache->base_p = 1;
1859 return;
1860 }
1861
1862 /* For normal frames, %eip is stored at 4(%ebp). */
1863 cache->saved_regs[I386_EIP_REGNUM] = 4;
1864
1865 if (cache->pc != 0)
1866 i386_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
1867 cache);
1868
1869 if (cache->locals < 0)
1870 {
1871 /* We didn't find a valid frame, which means that CACHE->base
1872 currently holds the frame pointer for our calling frame. If
1873 we're at the start of a function, or somewhere half-way its
1874 prologue, the function's frame probably hasn't been fully
1875 setup yet. Try to reconstruct the base address for the stack
1876 frame by looking at the stack pointer. For truly "frameless"
1877 functions this might work too. */
1878
1879 if (cache->saved_sp_reg != -1)
1880 {
1881 /* Saved stack pointer has been saved. */
1882 get_frame_register (this_frame, cache->saved_sp_reg, buf);
1883 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
1884
1885 /* We're halfway aligning the stack. */
1886 cache->base = ((cache->saved_sp - 4) & 0xfffffff0) - 4;
1887 cache->saved_regs[I386_EIP_REGNUM] = cache->saved_sp - 4;
1888
1889 /* This will be added back below. */
1890 cache->saved_regs[I386_EIP_REGNUM] -= cache->base;
1891 }
1892 else if (cache->pc != 0
1893 || target_read_code (get_frame_pc (this_frame), buf, 1))
1894 {
1895 /* We're in a known function, but did not find a frame
1896 setup. Assume that the function does not use %ebp.
1897 Alternatively, we may have jumped to an invalid
1898 address; in that case there is definitely no new
1899 frame in %ebp. */
1900 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
1901 cache->base = extract_unsigned_integer (buf, 4, byte_order)
1902 + cache->sp_offset;
1903 }
1904 else
1905 /* We're in an unknown function. We could not find the start
1906 of the function to analyze the prologue; our best option is
1907 to assume a typical frame layout with the caller's %ebp
1908 saved. */
1909 cache->saved_regs[I386_EBP_REGNUM] = 0;
1910 }
1911
1912 if (cache->saved_sp_reg != -1)
1913 {
1914 /* Saved stack pointer has been saved (but the SAVED_SP_REG
1915 register may be unavailable). */
1916 if (cache->saved_sp == 0
1917 && deprecated_frame_register_read (this_frame,
1918 cache->saved_sp_reg, buf))
1919 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
1920 }
1921 /* Now that we have the base address for the stack frame we can
1922 calculate the value of %esp in the calling frame. */
1923 else if (cache->saved_sp == 0)
1924 cache->saved_sp = cache->base + 8;
1925
1926 /* Adjust all the saved registers such that they contain addresses
1927 instead of offsets. */
1928 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
1929 if (cache->saved_regs[i] != -1)
1930 cache->saved_regs[i] += cache->base;
1931
1932 cache->base_p = 1;
1933 }
1934
1935 static struct i386_frame_cache *
1936 i386_frame_cache (struct frame_info *this_frame, void **this_cache)
1937 {
1938 volatile struct gdb_exception ex;
1939 struct i386_frame_cache *cache;
1940
1941 if (*this_cache)
1942 return *this_cache;
1943
1944 cache = i386_alloc_frame_cache ();
1945 *this_cache = cache;
1946
1947 TRY_CATCH (ex, RETURN_MASK_ERROR)
1948 {
1949 i386_frame_cache_1 (this_frame, cache);
1950 }
1951 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
1952 throw_exception (ex);
1953
1954 return cache;
1955 }
1956
1957 static void
1958 i386_frame_this_id (struct frame_info *this_frame, void **this_cache,
1959 struct frame_id *this_id)
1960 {
1961 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
1962
1963 if (!cache->base_p)
1964 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
1965 else if (cache->base == 0)
1966 {
1967 /* This marks the outermost frame. */
1968 }
1969 else
1970 {
1971 /* See the end of i386_push_dummy_call. */
1972 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
1973 }
1974 }
1975
1976 static enum unwind_stop_reason
1977 i386_frame_unwind_stop_reason (struct frame_info *this_frame,
1978 void **this_cache)
1979 {
1980 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
1981
1982 if (!cache->base_p)
1983 return UNWIND_UNAVAILABLE;
1984
1985 /* This marks the outermost frame. */
1986 if (cache->base == 0)
1987 return UNWIND_OUTERMOST;
1988
1989 return UNWIND_NO_REASON;
1990 }
1991
1992 static struct value *
1993 i386_frame_prev_register (struct frame_info *this_frame, void **this_cache,
1994 int regnum)
1995 {
1996 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
1997
1998 gdb_assert (regnum >= 0);
1999
2000 /* The System V ABI says that:
2001
2002 "The flags register contains the system flags, such as the
2003 direction flag and the carry flag. The direction flag must be
2004 set to the forward (that is, zero) direction before entry and
2005 upon exit from a function. Other user flags have no specified
2006 role in the standard calling sequence and are not preserved."
2007
2008 To guarantee the "upon exit" part of that statement we fake a
2009 saved flags register that has its direction flag cleared.
2010
2011 Note that GCC doesn't seem to rely on the fact that the direction
2012 flag is cleared after a function return; it always explicitly
2013 clears the flag before operations where it matters.
2014
2015 FIXME: kettenis/20030316: I'm not quite sure whether this is the
2016 right thing to do. The way we fake the flags register here makes
2017 it impossible to change it. */
2018
2019 if (regnum == I386_EFLAGS_REGNUM)
2020 {
2021 ULONGEST val;
2022
2023 val = get_frame_register_unsigned (this_frame, regnum);
2024 val &= ~(1 << 10);
2025 return frame_unwind_got_constant (this_frame, regnum, val);
2026 }
2027
2028 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
2029 return frame_unwind_got_register (this_frame, regnum, I386_EAX_REGNUM);
2030
2031 if (regnum == I386_ESP_REGNUM
2032 && (cache->saved_sp != 0 || cache->saved_sp_reg != -1))
2033 {
2034 /* If the SP has been saved, but we don't know where, then this
2035 means that SAVED_SP_REG register was found unavailable back
2036 when we built the cache. */
2037 if (cache->saved_sp == 0)
2038 return frame_unwind_got_register (this_frame, regnum,
2039 cache->saved_sp_reg);
2040 else
2041 return frame_unwind_got_constant (this_frame, regnum,
2042 cache->saved_sp);
2043 }
2044
2045 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
2046 return frame_unwind_got_memory (this_frame, regnum,
2047 cache->saved_regs[regnum]);
2048
2049 return frame_unwind_got_register (this_frame, regnum, regnum);
2050 }
2051
2052 static const struct frame_unwind i386_frame_unwind =
2053 {
2054 NORMAL_FRAME,
2055 i386_frame_unwind_stop_reason,
2056 i386_frame_this_id,
2057 i386_frame_prev_register,
2058 NULL,
2059 default_frame_sniffer
2060 };
2061
2062 /* Normal frames, but in a function epilogue. */
2063
2064 /* The epilogue is defined here as the 'ret' instruction, which will
2065 follow any instruction such as 'leave' or 'pop %ebp' that destroys
2066 the function's stack frame. */
2067
2068 static int
2069 i386_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2070 {
2071 gdb_byte insn;
2072 struct symtab *symtab;
2073
2074 symtab = find_pc_symtab (pc);
2075 if (symtab && symtab->epilogue_unwind_valid)
2076 return 0;
2077
2078 if (target_read_memory (pc, &insn, 1))
2079 return 0; /* Can't read memory at pc. */
2080
2081 if (insn != 0xc3) /* 'ret' instruction. */
2082 return 0;
2083
2084 return 1;
2085 }
2086
2087 static int
2088 i386_epilogue_frame_sniffer (const struct frame_unwind *self,
2089 struct frame_info *this_frame,
2090 void **this_prologue_cache)
2091 {
2092 if (frame_relative_level (this_frame) == 0)
2093 return i386_in_function_epilogue_p (get_frame_arch (this_frame),
2094 get_frame_pc (this_frame));
2095 else
2096 return 0;
2097 }
2098
2099 static struct i386_frame_cache *
2100 i386_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
2101 {
2102 volatile struct gdb_exception ex;
2103 struct i386_frame_cache *cache;
2104 CORE_ADDR sp;
2105
2106 if (*this_cache)
2107 return *this_cache;
2108
2109 cache = i386_alloc_frame_cache ();
2110 *this_cache = cache;
2111
2112 TRY_CATCH (ex, RETURN_MASK_ERROR)
2113 {
2114 cache->pc = get_frame_func (this_frame);
2115
2116 /* At this point the stack looks as if we just entered the
2117 function, with the return address at the top of the
2118 stack. */
2119 sp = get_frame_register_unsigned (this_frame, I386_ESP_REGNUM);
2120 cache->base = sp + cache->sp_offset;
2121 cache->saved_sp = cache->base + 8;
2122 cache->saved_regs[I386_EIP_REGNUM] = cache->base + 4;
2123
2124 cache->base_p = 1;
2125 }
2126 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
2127 throw_exception (ex);
2128
2129 return cache;
2130 }
2131
2132 static enum unwind_stop_reason
2133 i386_epilogue_frame_unwind_stop_reason (struct frame_info *this_frame,
2134 void **this_cache)
2135 {
2136 struct i386_frame_cache *cache =
2137 i386_epilogue_frame_cache (this_frame, this_cache);
2138
2139 if (!cache->base_p)
2140 return UNWIND_UNAVAILABLE;
2141
2142 return UNWIND_NO_REASON;
2143 }
2144
2145 static void
2146 i386_epilogue_frame_this_id (struct frame_info *this_frame,
2147 void **this_cache,
2148 struct frame_id *this_id)
2149 {
2150 struct i386_frame_cache *cache =
2151 i386_epilogue_frame_cache (this_frame, this_cache);
2152
2153 if (!cache->base_p)
2154 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2155 else
2156 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2157 }
2158
2159 static struct value *
2160 i386_epilogue_frame_prev_register (struct frame_info *this_frame,
2161 void **this_cache, int regnum)
2162 {
2163 /* Make sure we've initialized the cache. */
2164 i386_epilogue_frame_cache (this_frame, this_cache);
2165
2166 return i386_frame_prev_register (this_frame, this_cache, regnum);
2167 }
2168
2169 static const struct frame_unwind i386_epilogue_frame_unwind =
2170 {
2171 NORMAL_FRAME,
2172 i386_epilogue_frame_unwind_stop_reason,
2173 i386_epilogue_frame_this_id,
2174 i386_epilogue_frame_prev_register,
2175 NULL,
2176 i386_epilogue_frame_sniffer
2177 };
2178 \f
2179
2180 /* Stack-based trampolines. */
2181
2182 /* These trampolines are used on cross x86 targets, when taking the
2183 address of a nested function. When executing these trampolines,
2184 no stack frame is set up, so we are in a similar situation as in
2185 epilogues and i386_epilogue_frame_this_id can be re-used. */
2186
2187 /* Static chain passed in register. */
2188
2189 struct i386_insn i386_tramp_chain_in_reg_insns[] =
2190 {
2191 /* `movl imm32, %eax' and `movl imm32, %ecx' */
2192 { 5, { 0xb8 }, { 0xfe } },
2193
2194 /* `jmp imm32' */
2195 { 5, { 0xe9 }, { 0xff } },
2196
2197 {0}
2198 };
2199
2200 /* Static chain passed on stack (when regparm=3). */
2201
2202 struct i386_insn i386_tramp_chain_on_stack_insns[] =
2203 {
2204 /* `push imm32' */
2205 { 5, { 0x68 }, { 0xff } },
2206
2207 /* `jmp imm32' */
2208 { 5, { 0xe9 }, { 0xff } },
2209
2210 {0}
2211 };
2212
2213 /* Return whether PC points inside a stack trampoline. */
2214
2215 static int
2216 i386_in_stack_tramp_p (CORE_ADDR pc)
2217 {
2218 gdb_byte insn;
2219 const char *name;
2220
2221 /* A stack trampoline is detected if no name is associated
2222 to the current pc and if it points inside a trampoline
2223 sequence. */
2224
2225 find_pc_partial_function (pc, &name, NULL, NULL);
2226 if (name)
2227 return 0;
2228
2229 if (target_read_memory (pc, &insn, 1))
2230 return 0;
2231
2232 if (!i386_match_insn_block (pc, i386_tramp_chain_in_reg_insns)
2233 && !i386_match_insn_block (pc, i386_tramp_chain_on_stack_insns))
2234 return 0;
2235
2236 return 1;
2237 }
2238
2239 static int
2240 i386_stack_tramp_frame_sniffer (const struct frame_unwind *self,
2241 struct frame_info *this_frame,
2242 void **this_cache)
2243 {
2244 if (frame_relative_level (this_frame) == 0)
2245 return i386_in_stack_tramp_p (get_frame_pc (this_frame));
2246 else
2247 return 0;
2248 }
2249
2250 static const struct frame_unwind i386_stack_tramp_frame_unwind =
2251 {
2252 NORMAL_FRAME,
2253 i386_epilogue_frame_unwind_stop_reason,
2254 i386_epilogue_frame_this_id,
2255 i386_epilogue_frame_prev_register,
2256 NULL,
2257 i386_stack_tramp_frame_sniffer
2258 };
2259 \f
2260 /* Generate a bytecode expression to get the value of the saved PC. */
2261
2262 static void
2263 i386_gen_return_address (struct gdbarch *gdbarch,
2264 struct agent_expr *ax, struct axs_value *value,
2265 CORE_ADDR scope)
2266 {
2267 /* The following sequence assumes the traditional use of the base
2268 register. */
2269 ax_reg (ax, I386_EBP_REGNUM);
2270 ax_const_l (ax, 4);
2271 ax_simple (ax, aop_add);
2272 value->type = register_type (gdbarch, I386_EIP_REGNUM);
2273 value->kind = axs_lvalue_memory;
2274 }
2275 \f
2276
2277 /* Signal trampolines. */
2278
2279 static struct i386_frame_cache *
2280 i386_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
2281 {
2282 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2283 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2284 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2285 volatile struct gdb_exception ex;
2286 struct i386_frame_cache *cache;
2287 CORE_ADDR addr;
2288 gdb_byte buf[4];
2289
2290 if (*this_cache)
2291 return *this_cache;
2292
2293 cache = i386_alloc_frame_cache ();
2294
2295 TRY_CATCH (ex, RETURN_MASK_ERROR)
2296 {
2297 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2298 cache->base = extract_unsigned_integer (buf, 4, byte_order) - 4;
2299
2300 addr = tdep->sigcontext_addr (this_frame);
2301 if (tdep->sc_reg_offset)
2302 {
2303 int i;
2304
2305 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
2306
2307 for (i = 0; i < tdep->sc_num_regs; i++)
2308 if (tdep->sc_reg_offset[i] != -1)
2309 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
2310 }
2311 else
2312 {
2313 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
2314 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
2315 }
2316
2317 cache->base_p = 1;
2318 }
2319 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
2320 throw_exception (ex);
2321
2322 *this_cache = cache;
2323 return cache;
2324 }
2325
2326 static enum unwind_stop_reason
2327 i386_sigtramp_frame_unwind_stop_reason (struct frame_info *this_frame,
2328 void **this_cache)
2329 {
2330 struct i386_frame_cache *cache =
2331 i386_sigtramp_frame_cache (this_frame, this_cache);
2332
2333 if (!cache->base_p)
2334 return UNWIND_UNAVAILABLE;
2335
2336 return UNWIND_NO_REASON;
2337 }
2338
2339 static void
2340 i386_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache,
2341 struct frame_id *this_id)
2342 {
2343 struct i386_frame_cache *cache =
2344 i386_sigtramp_frame_cache (this_frame, this_cache);
2345
2346 if (!cache->base_p)
2347 (*this_id) = frame_id_build_unavailable_stack (get_frame_pc (this_frame));
2348 else
2349 {
2350 /* See the end of i386_push_dummy_call. */
2351 (*this_id) = frame_id_build (cache->base + 8, get_frame_pc (this_frame));
2352 }
2353 }
2354
2355 static struct value *
2356 i386_sigtramp_frame_prev_register (struct frame_info *this_frame,
2357 void **this_cache, int regnum)
2358 {
2359 /* Make sure we've initialized the cache. */
2360 i386_sigtramp_frame_cache (this_frame, this_cache);
2361
2362 return i386_frame_prev_register (this_frame, this_cache, regnum);
2363 }
2364
2365 static int
2366 i386_sigtramp_frame_sniffer (const struct frame_unwind *self,
2367 struct frame_info *this_frame,
2368 void **this_prologue_cache)
2369 {
2370 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
2371
2372 /* We shouldn't even bother if we don't have a sigcontext_addr
2373 handler. */
2374 if (tdep->sigcontext_addr == NULL)
2375 return 0;
2376
2377 if (tdep->sigtramp_p != NULL)
2378 {
2379 if (tdep->sigtramp_p (this_frame))
2380 return 1;
2381 }
2382
2383 if (tdep->sigtramp_start != 0)
2384 {
2385 CORE_ADDR pc = get_frame_pc (this_frame);
2386
2387 gdb_assert (tdep->sigtramp_end != 0);
2388 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
2389 return 1;
2390 }
2391
2392 return 0;
2393 }
2394
2395 static const struct frame_unwind i386_sigtramp_frame_unwind =
2396 {
2397 SIGTRAMP_FRAME,
2398 i386_sigtramp_frame_unwind_stop_reason,
2399 i386_sigtramp_frame_this_id,
2400 i386_sigtramp_frame_prev_register,
2401 NULL,
2402 i386_sigtramp_frame_sniffer
2403 };
2404 \f
2405
2406 static CORE_ADDR
2407 i386_frame_base_address (struct frame_info *this_frame, void **this_cache)
2408 {
2409 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2410
2411 return cache->base;
2412 }
2413
2414 static const struct frame_base i386_frame_base =
2415 {
2416 &i386_frame_unwind,
2417 i386_frame_base_address,
2418 i386_frame_base_address,
2419 i386_frame_base_address
2420 };
2421
2422 static struct frame_id
2423 i386_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2424 {
2425 CORE_ADDR fp;
2426
2427 fp = get_frame_register_unsigned (this_frame, I386_EBP_REGNUM);
2428
2429 /* See the end of i386_push_dummy_call. */
2430 return frame_id_build (fp + 8, get_frame_pc (this_frame));
2431 }
2432
2433 /* _Decimal128 function return values need 16-byte alignment on the
2434 stack. */
2435
2436 static CORE_ADDR
2437 i386_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2438 {
2439 return sp & -(CORE_ADDR)16;
2440 }
2441 \f
2442
2443 /* Figure out where the longjmp will land. Slurp the args out of the
2444 stack. We expect the first arg to be a pointer to the jmp_buf
2445 structure from which we extract the address that we will land at.
2446 This address is copied into PC. This routine returns non-zero on
2447 success. */
2448
2449 static int
2450 i386_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
2451 {
2452 gdb_byte buf[4];
2453 CORE_ADDR sp, jb_addr;
2454 struct gdbarch *gdbarch = get_frame_arch (frame);
2455 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2456 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
2457
2458 /* If JB_PC_OFFSET is -1, we have no way to find out where the
2459 longjmp will land. */
2460 if (jb_pc_offset == -1)
2461 return 0;
2462
2463 get_frame_register (frame, I386_ESP_REGNUM, buf);
2464 sp = extract_unsigned_integer (buf, 4, byte_order);
2465 if (target_read_memory (sp + 4, buf, 4))
2466 return 0;
2467
2468 jb_addr = extract_unsigned_integer (buf, 4, byte_order);
2469 if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
2470 return 0;
2471
2472 *pc = extract_unsigned_integer (buf, 4, byte_order);
2473 return 1;
2474 }
2475 \f
2476
2477 /* Check whether TYPE must be 16-byte-aligned when passed as a
2478 function argument. 16-byte vectors, _Decimal128 and structures or
2479 unions containing such types must be 16-byte-aligned; other
2480 arguments are 4-byte-aligned. */
2481
2482 static int
2483 i386_16_byte_align_p (struct type *type)
2484 {
2485 type = check_typedef (type);
2486 if ((TYPE_CODE (type) == TYPE_CODE_DECFLOAT
2487 || (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type)))
2488 && TYPE_LENGTH (type) == 16)
2489 return 1;
2490 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2491 return i386_16_byte_align_p (TYPE_TARGET_TYPE (type));
2492 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2493 || TYPE_CODE (type) == TYPE_CODE_UNION)
2494 {
2495 int i;
2496 for (i = 0; i < TYPE_NFIELDS (type); i++)
2497 {
2498 if (i386_16_byte_align_p (TYPE_FIELD_TYPE (type, i)))
2499 return 1;
2500 }
2501 }
2502 return 0;
2503 }
2504
2505 /* Implementation for set_gdbarch_push_dummy_code. */
2506
2507 static CORE_ADDR
2508 i386_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, CORE_ADDR funaddr,
2509 struct value **args, int nargs, struct type *value_type,
2510 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
2511 struct regcache *regcache)
2512 {
2513 /* Use 0xcc breakpoint - 1 byte. */
2514 *bp_addr = sp - 1;
2515 *real_pc = funaddr;
2516
2517 /* Keep the stack aligned. */
2518 return sp - 16;
2519 }
2520
2521 static CORE_ADDR
2522 i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2523 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2524 struct value **args, CORE_ADDR sp, int struct_return,
2525 CORE_ADDR struct_addr)
2526 {
2527 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2528 gdb_byte buf[4];
2529 int i;
2530 int write_pass;
2531 int args_space = 0;
2532
2533 /* Determine the total space required for arguments and struct
2534 return address in a first pass (allowing for 16-byte-aligned
2535 arguments), then push arguments in a second pass. */
2536
2537 for (write_pass = 0; write_pass < 2; write_pass++)
2538 {
2539 int args_space_used = 0;
2540
2541 if (struct_return)
2542 {
2543 if (write_pass)
2544 {
2545 /* Push value address. */
2546 store_unsigned_integer (buf, 4, byte_order, struct_addr);
2547 write_memory (sp, buf, 4);
2548 args_space_used += 4;
2549 }
2550 else
2551 args_space += 4;
2552 }
2553
2554 for (i = 0; i < nargs; i++)
2555 {
2556 int len = TYPE_LENGTH (value_enclosing_type (args[i]));
2557
2558 if (write_pass)
2559 {
2560 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2561 args_space_used = align_up (args_space_used, 16);
2562
2563 write_memory (sp + args_space_used,
2564 value_contents_all (args[i]), len);
2565 /* The System V ABI says that:
2566
2567 "An argument's size is increased, if necessary, to make it a
2568 multiple of [32-bit] words. This may require tail padding,
2569 depending on the size of the argument."
2570
2571 This makes sure the stack stays word-aligned. */
2572 args_space_used += align_up (len, 4);
2573 }
2574 else
2575 {
2576 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2577 args_space = align_up (args_space, 16);
2578 args_space += align_up (len, 4);
2579 }
2580 }
2581
2582 if (!write_pass)
2583 {
2584 sp -= args_space;
2585
2586 /* The original System V ABI only requires word alignment,
2587 but modern incarnations need 16-byte alignment in order
2588 to support SSE. Since wasting a few bytes here isn't
2589 harmful we unconditionally enforce 16-byte alignment. */
2590 sp &= ~0xf;
2591 }
2592 }
2593
2594 /* Store return address. */
2595 sp -= 4;
2596 store_unsigned_integer (buf, 4, byte_order, bp_addr);
2597 write_memory (sp, buf, 4);
2598
2599 /* Finally, update the stack pointer... */
2600 store_unsigned_integer (buf, 4, byte_order, sp);
2601 regcache_cooked_write (regcache, I386_ESP_REGNUM, buf);
2602
2603 /* ...and fake a frame pointer. */
2604 regcache_cooked_write (regcache, I386_EBP_REGNUM, buf);
2605
2606 /* MarkK wrote: This "+ 8" is all over the place:
2607 (i386_frame_this_id, i386_sigtramp_frame_this_id,
2608 i386_dummy_id). It's there, since all frame unwinders for
2609 a given target have to agree (within a certain margin) on the
2610 definition of the stack address of a frame. Otherwise frame id
2611 comparison might not work correctly. Since DWARF2/GCC uses the
2612 stack address *before* the function call as a frame's CFA. On
2613 the i386, when %ebp is used as a frame pointer, the offset
2614 between the contents %ebp and the CFA as defined by GCC. */
2615 return sp + 8;
2616 }
2617
2618 /* These registers are used for returning integers (and on some
2619 targets also for returning `struct' and `union' values when their
2620 size and alignment match an integer type). */
2621 #define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
2622 #define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
2623
2624 /* Read, for architecture GDBARCH, a function return value of TYPE
2625 from REGCACHE, and copy that into VALBUF. */
2626
2627 static void
2628 i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
2629 struct regcache *regcache, gdb_byte *valbuf)
2630 {
2631 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2632 int len = TYPE_LENGTH (type);
2633 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2634
2635 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2636 {
2637 if (tdep->st0_regnum < 0)
2638 {
2639 warning (_("Cannot find floating-point return value."));
2640 memset (valbuf, 0, len);
2641 return;
2642 }
2643
2644 /* Floating-point return values can be found in %st(0). Convert
2645 its contents to the desired type. This is probably not
2646 exactly how it would happen on the target itself, but it is
2647 the best we can do. */
2648 regcache_raw_read (regcache, I386_ST0_REGNUM, buf);
2649 convert_typed_floating (buf, i387_ext_type (gdbarch), valbuf, type);
2650 }
2651 else
2652 {
2653 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2654 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2655
2656 if (len <= low_size)
2657 {
2658 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
2659 memcpy (valbuf, buf, len);
2660 }
2661 else if (len <= (low_size + high_size))
2662 {
2663 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
2664 memcpy (valbuf, buf, low_size);
2665 regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
2666 memcpy (valbuf + low_size, buf, len - low_size);
2667 }
2668 else
2669 internal_error (__FILE__, __LINE__,
2670 _("Cannot extract return value of %d bytes long."),
2671 len);
2672 }
2673 }
2674
2675 /* Write, for architecture GDBARCH, a function return value of TYPE
2676 from VALBUF into REGCACHE. */
2677
2678 static void
2679 i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
2680 struct regcache *regcache, const gdb_byte *valbuf)
2681 {
2682 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2683 int len = TYPE_LENGTH (type);
2684
2685 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2686 {
2687 ULONGEST fstat;
2688 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2689
2690 if (tdep->st0_regnum < 0)
2691 {
2692 warning (_("Cannot set floating-point return value."));
2693 return;
2694 }
2695
2696 /* Returning floating-point values is a bit tricky. Apart from
2697 storing the return value in %st(0), we have to simulate the
2698 state of the FPU at function return point. */
2699
2700 /* Convert the value found in VALBUF to the extended
2701 floating-point format used by the FPU. This is probably
2702 not exactly how it would happen on the target itself, but
2703 it is the best we can do. */
2704 convert_typed_floating (valbuf, type, buf, i387_ext_type (gdbarch));
2705 regcache_raw_write (regcache, I386_ST0_REGNUM, buf);
2706
2707 /* Set the top of the floating-point register stack to 7. The
2708 actual value doesn't really matter, but 7 is what a normal
2709 function return would end up with if the program started out
2710 with a freshly initialized FPU. */
2711 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
2712 fstat |= (7 << 11);
2713 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM (tdep), fstat);
2714
2715 /* Mark %st(1) through %st(7) as empty. Since we set the top of
2716 the floating-point register stack to 7, the appropriate value
2717 for the tag word is 0x3fff. */
2718 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM (tdep), 0x3fff);
2719 }
2720 else
2721 {
2722 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2723 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2724
2725 if (len <= low_size)
2726 regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
2727 else if (len <= (low_size + high_size))
2728 {
2729 regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
2730 regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
2731 len - low_size, valbuf + low_size);
2732 }
2733 else
2734 internal_error (__FILE__, __LINE__,
2735 _("Cannot store return value of %d bytes long."), len);
2736 }
2737 }
2738 \f
2739
2740 /* This is the variable that is set with "set struct-convention", and
2741 its legitimate values. */
2742 static const char default_struct_convention[] = "default";
2743 static const char pcc_struct_convention[] = "pcc";
2744 static const char reg_struct_convention[] = "reg";
2745 static const char *const valid_conventions[] =
2746 {
2747 default_struct_convention,
2748 pcc_struct_convention,
2749 reg_struct_convention,
2750 NULL
2751 };
2752 static const char *struct_convention = default_struct_convention;
2753
2754 /* Return non-zero if TYPE, which is assumed to be a structure,
2755 a union type, or an array type, should be returned in registers
2756 for architecture GDBARCH. */
2757
2758 static int
2759 i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
2760 {
2761 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2762 enum type_code code = TYPE_CODE (type);
2763 int len = TYPE_LENGTH (type);
2764
2765 gdb_assert (code == TYPE_CODE_STRUCT
2766 || code == TYPE_CODE_UNION
2767 || code == TYPE_CODE_ARRAY);
2768
2769 if (struct_convention == pcc_struct_convention
2770 || (struct_convention == default_struct_convention
2771 && tdep->struct_return == pcc_struct_return))
2772 return 0;
2773
2774 /* Structures consisting of a single `float', `double' or 'long
2775 double' member are returned in %st(0). */
2776 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2777 {
2778 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
2779 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2780 return (len == 4 || len == 8 || len == 12);
2781 }
2782
2783 return (len == 1 || len == 2 || len == 4 || len == 8);
2784 }
2785
2786 /* Determine, for architecture GDBARCH, how a return value of TYPE
2787 should be returned. If it is supposed to be returned in registers,
2788 and READBUF is non-zero, read the appropriate value from REGCACHE,
2789 and copy it into READBUF. If WRITEBUF is non-zero, write the value
2790 from WRITEBUF into REGCACHE. */
2791
2792 static enum return_value_convention
2793 i386_return_value (struct gdbarch *gdbarch, struct value *function,
2794 struct type *type, struct regcache *regcache,
2795 gdb_byte *readbuf, const gdb_byte *writebuf)
2796 {
2797 enum type_code code = TYPE_CODE (type);
2798
2799 if (((code == TYPE_CODE_STRUCT
2800 || code == TYPE_CODE_UNION
2801 || code == TYPE_CODE_ARRAY)
2802 && !i386_reg_struct_return_p (gdbarch, type))
2803 /* Complex double and long double uses the struct return covention. */
2804 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 16)
2805 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 24)
2806 /* 128-bit decimal float uses the struct return convention. */
2807 || (code == TYPE_CODE_DECFLOAT && TYPE_LENGTH (type) == 16))
2808 {
2809 /* The System V ABI says that:
2810
2811 "A function that returns a structure or union also sets %eax
2812 to the value of the original address of the caller's area
2813 before it returns. Thus when the caller receives control
2814 again, the address of the returned object resides in register
2815 %eax and can be used to access the object."
2816
2817 So the ABI guarantees that we can always find the return
2818 value just after the function has returned. */
2819
2820 /* Note that the ABI doesn't mention functions returning arrays,
2821 which is something possible in certain languages such as Ada.
2822 In this case, the value is returned as if it was wrapped in
2823 a record, so the convention applied to records also applies
2824 to arrays. */
2825
2826 if (readbuf)
2827 {
2828 ULONGEST addr;
2829
2830 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
2831 read_memory (addr, readbuf, TYPE_LENGTH (type));
2832 }
2833
2834 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
2835 }
2836
2837 /* This special case is for structures consisting of a single
2838 `float', `double' or 'long double' member. These structures are
2839 returned in %st(0). For these structures, we call ourselves
2840 recursively, changing TYPE into the type of the first member of
2841 the structure. Since that should work for all structures that
2842 have only one member, we don't bother to check the member's type
2843 here. */
2844 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2845 {
2846 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
2847 return i386_return_value (gdbarch, function, type, regcache,
2848 readbuf, writebuf);
2849 }
2850
2851 if (readbuf)
2852 i386_extract_return_value (gdbarch, type, regcache, readbuf);
2853 if (writebuf)
2854 i386_store_return_value (gdbarch, type, regcache, writebuf);
2855
2856 return RETURN_VALUE_REGISTER_CONVENTION;
2857 }
2858 \f
2859
2860 struct type *
2861 i387_ext_type (struct gdbarch *gdbarch)
2862 {
2863 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2864
2865 if (!tdep->i387_ext_type)
2866 {
2867 tdep->i387_ext_type = tdesc_find_type (gdbarch, "i387_ext");
2868 gdb_assert (tdep->i387_ext_type != NULL);
2869 }
2870
2871 return tdep->i387_ext_type;
2872 }
2873
2874 /* Construct type for pseudo BND registers. We can't use
2875 tdesc_find_type since a complement of one value has to be used
2876 to describe the upper bound. */
2877
2878 static struct type *
2879 i386_bnd_type (struct gdbarch *gdbarch)
2880 {
2881 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2882
2883
2884 if (!tdep->i386_bnd_type)
2885 {
2886 struct type *t, *bound_t;
2887 const struct builtin_type *bt = builtin_type (gdbarch);
2888
2889 /* The type we're building is described bellow: */
2890 #if 0
2891 struct __bound128
2892 {
2893 void *lbound;
2894 void *ubound; /* One complement of raw ubound field. */
2895 };
2896 #endif
2897
2898 t = arch_composite_type (gdbarch,
2899 "__gdb_builtin_type_bound128", TYPE_CODE_STRUCT);
2900
2901 append_composite_type_field (t, "lbound", bt->builtin_data_ptr);
2902 append_composite_type_field (t, "ubound", bt->builtin_data_ptr);
2903
2904 TYPE_NAME (t) = "builtin_type_bound128";
2905 tdep->i386_bnd_type = t;
2906 }
2907
2908 return tdep->i386_bnd_type;
2909 }
2910
2911 /* Construct vector type for pseudo YMM registers. We can't use
2912 tdesc_find_type since YMM isn't described in target description. */
2913
2914 static struct type *
2915 i386_ymm_type (struct gdbarch *gdbarch)
2916 {
2917 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2918
2919 if (!tdep->i386_ymm_type)
2920 {
2921 const struct builtin_type *bt = builtin_type (gdbarch);
2922
2923 /* The type we're building is this: */
2924 #if 0
2925 union __gdb_builtin_type_vec256i
2926 {
2927 int128_t uint128[2];
2928 int64_t v2_int64[4];
2929 int32_t v4_int32[8];
2930 int16_t v8_int16[16];
2931 int8_t v16_int8[32];
2932 double v2_double[4];
2933 float v4_float[8];
2934 };
2935 #endif
2936
2937 struct type *t;
2938
2939 t = arch_composite_type (gdbarch,
2940 "__gdb_builtin_type_vec256i", TYPE_CODE_UNION);
2941 append_composite_type_field (t, "v8_float",
2942 init_vector_type (bt->builtin_float, 8));
2943 append_composite_type_field (t, "v4_double",
2944 init_vector_type (bt->builtin_double, 4));
2945 append_composite_type_field (t, "v32_int8",
2946 init_vector_type (bt->builtin_int8, 32));
2947 append_composite_type_field (t, "v16_int16",
2948 init_vector_type (bt->builtin_int16, 16));
2949 append_composite_type_field (t, "v8_int32",
2950 init_vector_type (bt->builtin_int32, 8));
2951 append_composite_type_field (t, "v4_int64",
2952 init_vector_type (bt->builtin_int64, 4));
2953 append_composite_type_field (t, "v2_int128",
2954 init_vector_type (bt->builtin_int128, 2));
2955
2956 TYPE_VECTOR (t) = 1;
2957 TYPE_NAME (t) = "builtin_type_vec256i";
2958 tdep->i386_ymm_type = t;
2959 }
2960
2961 return tdep->i386_ymm_type;
2962 }
2963
2964 /* Construct vector type for MMX registers. */
2965 static struct type *
2966 i386_mmx_type (struct gdbarch *gdbarch)
2967 {
2968 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2969
2970 if (!tdep->i386_mmx_type)
2971 {
2972 const struct builtin_type *bt = builtin_type (gdbarch);
2973
2974 /* The type we're building is this: */
2975 #if 0
2976 union __gdb_builtin_type_vec64i
2977 {
2978 int64_t uint64;
2979 int32_t v2_int32[2];
2980 int16_t v4_int16[4];
2981 int8_t v8_int8[8];
2982 };
2983 #endif
2984
2985 struct type *t;
2986
2987 t = arch_composite_type (gdbarch,
2988 "__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
2989
2990 append_composite_type_field (t, "uint64", bt->builtin_int64);
2991 append_composite_type_field (t, "v2_int32",
2992 init_vector_type (bt->builtin_int32, 2));
2993 append_composite_type_field (t, "v4_int16",
2994 init_vector_type (bt->builtin_int16, 4));
2995 append_composite_type_field (t, "v8_int8",
2996 init_vector_type (bt->builtin_int8, 8));
2997
2998 TYPE_VECTOR (t) = 1;
2999 TYPE_NAME (t) = "builtin_type_vec64i";
3000 tdep->i386_mmx_type = t;
3001 }
3002
3003 return tdep->i386_mmx_type;
3004 }
3005
3006 /* Return the GDB type object for the "standard" data type of data in
3007 register REGNUM. */
3008
3009 struct type *
3010 i386_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
3011 {
3012 if (i386_bnd_regnum_p (gdbarch, regnum))
3013 return i386_bnd_type (gdbarch);
3014 if (i386_mmx_regnum_p (gdbarch, regnum))
3015 return i386_mmx_type (gdbarch);
3016 else if (i386_ymm_regnum_p (gdbarch, regnum))
3017 return i386_ymm_type (gdbarch);
3018 else
3019 {
3020 const struct builtin_type *bt = builtin_type (gdbarch);
3021 if (i386_byte_regnum_p (gdbarch, regnum))
3022 return bt->builtin_int8;
3023 else if (i386_word_regnum_p (gdbarch, regnum))
3024 return bt->builtin_int16;
3025 else if (i386_dword_regnum_p (gdbarch, regnum))
3026 return bt->builtin_int32;
3027 }
3028
3029 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3030 }
3031
3032 /* Map a cooked register onto a raw register or memory. For the i386,
3033 the MMX registers need to be mapped onto floating point registers. */
3034
3035 static int
3036 i386_mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
3037 {
3038 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
3039 int mmxreg, fpreg;
3040 ULONGEST fstat;
3041 int tos;
3042
3043 mmxreg = regnum - tdep->mm0_regnum;
3044 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
3045 tos = (fstat >> 11) & 0x7;
3046 fpreg = (mmxreg + tos) % 8;
3047
3048 return (I387_ST0_REGNUM (tdep) + fpreg);
3049 }
3050
3051 /* A helper function for us by i386_pseudo_register_read_value and
3052 amd64_pseudo_register_read_value. It does all the work but reads
3053 the data into an already-allocated value. */
3054
3055 void
3056 i386_pseudo_register_read_into_value (struct gdbarch *gdbarch,
3057 struct regcache *regcache,
3058 int regnum,
3059 struct value *result_value)
3060 {
3061 gdb_byte raw_buf[MAX_REGISTER_SIZE];
3062 enum register_status status;
3063 gdb_byte *buf = value_contents_raw (result_value);
3064
3065 if (i386_mmx_regnum_p (gdbarch, regnum))
3066 {
3067 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3068
3069 /* Extract (always little endian). */
3070 status = regcache_raw_read (regcache, fpnum, raw_buf);
3071 if (status != REG_VALID)
3072 mark_value_bytes_unavailable (result_value, 0,
3073 TYPE_LENGTH (value_type (result_value)));
3074 else
3075 memcpy (buf, raw_buf, register_size (gdbarch, regnum));
3076 }
3077 else
3078 {
3079 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3080 if (i386_bnd_regnum_p (gdbarch, regnum))
3081 {
3082 regnum -= tdep->bnd0_regnum;
3083
3084 /* Extract (always little endian). Read lower 128bits. */
3085 status = regcache_raw_read (regcache,
3086 I387_BND0R_REGNUM (tdep) + regnum,
3087 raw_buf);
3088 if (status != REG_VALID)
3089 mark_value_bytes_unavailable (result_value, 0, 16);
3090 else
3091 {
3092 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3093 LONGEST upper, lower;
3094 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
3095
3096 lower = extract_unsigned_integer (raw_buf, 8, byte_order);
3097 upper = extract_unsigned_integer (raw_buf + 8, 8, byte_order);
3098 upper = ~upper;
3099
3100 memcpy (buf, &lower, size);
3101 memcpy (buf + size, &upper, size);
3102 }
3103 }
3104 else if (i386_ymm_regnum_p (gdbarch, regnum))
3105 {
3106 regnum -= tdep->ymm0_regnum;
3107
3108 /* Extract (always little endian). Read lower 128bits. */
3109 status = regcache_raw_read (regcache,
3110 I387_XMM0_REGNUM (tdep) + regnum,
3111 raw_buf);
3112 if (status != REG_VALID)
3113 mark_value_bytes_unavailable (result_value, 0, 16);
3114 else
3115 memcpy (buf, raw_buf, 16);
3116 /* Read upper 128bits. */
3117 status = regcache_raw_read (regcache,
3118 tdep->ymm0h_regnum + regnum,
3119 raw_buf);
3120 if (status != REG_VALID)
3121 mark_value_bytes_unavailable (result_value, 16, 32);
3122 else
3123 memcpy (buf + 16, raw_buf, 16);
3124 }
3125 else if (i386_word_regnum_p (gdbarch, regnum))
3126 {
3127 int gpnum = regnum - tdep->ax_regnum;
3128
3129 /* Extract (always little endian). */
3130 status = regcache_raw_read (regcache, gpnum, raw_buf);
3131 if (status != REG_VALID)
3132 mark_value_bytes_unavailable (result_value, 0,
3133 TYPE_LENGTH (value_type (result_value)));
3134 else
3135 memcpy (buf, raw_buf, 2);
3136 }
3137 else if (i386_byte_regnum_p (gdbarch, regnum))
3138 {
3139 /* Check byte pseudo registers last since this function will
3140 be called from amd64_pseudo_register_read, which handles
3141 byte pseudo registers differently. */
3142 int gpnum = regnum - tdep->al_regnum;
3143
3144 /* Extract (always little endian). We read both lower and
3145 upper registers. */
3146 status = regcache_raw_read (regcache, gpnum % 4, raw_buf);
3147 if (status != REG_VALID)
3148 mark_value_bytes_unavailable (result_value, 0,
3149 TYPE_LENGTH (value_type (result_value)));
3150 else if (gpnum >= 4)
3151 memcpy (buf, raw_buf + 1, 1);
3152 else
3153 memcpy (buf, raw_buf, 1);
3154 }
3155 else
3156 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3157 }
3158 }
3159
3160 static struct value *
3161 i386_pseudo_register_read_value (struct gdbarch *gdbarch,
3162 struct regcache *regcache,
3163 int regnum)
3164 {
3165 struct value *result;
3166
3167 result = allocate_value (register_type (gdbarch, regnum));
3168 VALUE_LVAL (result) = lval_register;
3169 VALUE_REGNUM (result) = regnum;
3170
3171 i386_pseudo_register_read_into_value (gdbarch, regcache, regnum, result);
3172
3173 return result;
3174 }
3175
3176 void
3177 i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
3178 int regnum, const gdb_byte *buf)
3179 {
3180 gdb_byte raw_buf[MAX_REGISTER_SIZE];
3181
3182 if (i386_mmx_regnum_p (gdbarch, regnum))
3183 {
3184 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3185
3186 /* Read ... */
3187 regcache_raw_read (regcache, fpnum, raw_buf);
3188 /* ... Modify ... (always little endian). */
3189 memcpy (raw_buf, buf, register_size (gdbarch, regnum));
3190 /* ... Write. */
3191 regcache_raw_write (regcache, fpnum, raw_buf);
3192 }
3193 else
3194 {
3195 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3196
3197 if (i386_bnd_regnum_p (gdbarch, regnum))
3198 {
3199 ULONGEST upper, lower;
3200 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
3201 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3202
3203 /* New values from input value. */
3204 regnum -= tdep->bnd0_regnum;
3205 lower = extract_unsigned_integer (buf, size, byte_order);
3206 upper = extract_unsigned_integer (buf + size, size, byte_order);
3207
3208 /* Fetching register buffer. */
3209 regcache_raw_read (regcache,
3210 I387_BND0R_REGNUM (tdep) + regnum,
3211 raw_buf);
3212
3213 upper = ~upper;
3214
3215 /* Set register bits. */
3216 memcpy (raw_buf, &lower, 8);
3217 memcpy (raw_buf + 8, &upper, 8);
3218
3219
3220 regcache_raw_write (regcache,
3221 I387_BND0R_REGNUM (tdep) + regnum,
3222 raw_buf);
3223 }
3224 else if (i386_ymm_regnum_p (gdbarch, regnum))
3225 {
3226 regnum -= tdep->ymm0_regnum;
3227
3228 /* ... Write lower 128bits. */
3229 regcache_raw_write (regcache,
3230 I387_XMM0_REGNUM (tdep) + regnum,
3231 buf);
3232 /* ... Write upper 128bits. */
3233 regcache_raw_write (regcache,
3234 tdep->ymm0h_regnum + regnum,
3235 buf + 16);
3236 }
3237 else if (i386_word_regnum_p (gdbarch, regnum))
3238 {
3239 int gpnum = regnum - tdep->ax_regnum;
3240
3241 /* Read ... */
3242 regcache_raw_read (regcache, gpnum, raw_buf);
3243 /* ... Modify ... (always little endian). */
3244 memcpy (raw_buf, buf, 2);
3245 /* ... Write. */
3246 regcache_raw_write (regcache, gpnum, raw_buf);
3247 }
3248 else if (i386_byte_regnum_p (gdbarch, regnum))
3249 {
3250 /* Check byte pseudo registers last since this function will
3251 be called from amd64_pseudo_register_read, which handles
3252 byte pseudo registers differently. */
3253 int gpnum = regnum - tdep->al_regnum;
3254
3255 /* Read ... We read both lower and upper registers. */
3256 regcache_raw_read (regcache, gpnum % 4, raw_buf);
3257 /* ... Modify ... (always little endian). */
3258 if (gpnum >= 4)
3259 memcpy (raw_buf + 1, buf, 1);
3260 else
3261 memcpy (raw_buf, buf, 1);
3262 /* ... Write. */
3263 regcache_raw_write (regcache, gpnum % 4, raw_buf);
3264 }
3265 else
3266 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3267 }
3268 }
3269 \f
3270
3271 /* Return the register number of the register allocated by GCC after
3272 REGNUM, or -1 if there is no such register. */
3273
3274 static int
3275 i386_next_regnum (int regnum)
3276 {
3277 /* GCC allocates the registers in the order:
3278
3279 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
3280
3281 Since storing a variable in %esp doesn't make any sense we return
3282 -1 for %ebp and for %esp itself. */
3283 static int next_regnum[] =
3284 {
3285 I386_EDX_REGNUM, /* Slot for %eax. */
3286 I386_EBX_REGNUM, /* Slot for %ecx. */
3287 I386_ECX_REGNUM, /* Slot for %edx. */
3288 I386_ESI_REGNUM, /* Slot for %ebx. */
3289 -1, -1, /* Slots for %esp and %ebp. */
3290 I386_EDI_REGNUM, /* Slot for %esi. */
3291 I386_EBP_REGNUM /* Slot for %edi. */
3292 };
3293
3294 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
3295 return next_regnum[regnum];
3296
3297 return -1;
3298 }
3299
3300 /* Return nonzero if a value of type TYPE stored in register REGNUM
3301 needs any special handling. */
3302
3303 static int
3304 i386_convert_register_p (struct gdbarch *gdbarch,
3305 int regnum, struct type *type)
3306 {
3307 int len = TYPE_LENGTH (type);
3308
3309 /* Values may be spread across multiple registers. Most debugging
3310 formats aren't expressive enough to specify the locations, so
3311 some heuristics is involved. Right now we only handle types that
3312 have a length that is a multiple of the word size, since GCC
3313 doesn't seem to put any other types into registers. */
3314 if (len > 4 && len % 4 == 0)
3315 {
3316 int last_regnum = regnum;
3317
3318 while (len > 4)
3319 {
3320 last_regnum = i386_next_regnum (last_regnum);
3321 len -= 4;
3322 }
3323
3324 if (last_regnum != -1)
3325 return 1;
3326 }
3327
3328 return i387_convert_register_p (gdbarch, regnum, type);
3329 }
3330
3331 /* Read a value of type TYPE from register REGNUM in frame FRAME, and
3332 return its contents in TO. */
3333
3334 static int
3335 i386_register_to_value (struct frame_info *frame, int regnum,
3336 struct type *type, gdb_byte *to,
3337 int *optimizedp, int *unavailablep)
3338 {
3339 struct gdbarch *gdbarch = get_frame_arch (frame);
3340 int len = TYPE_LENGTH (type);
3341
3342 if (i386_fp_regnum_p (gdbarch, regnum))
3343 return i387_register_to_value (frame, regnum, type, to,
3344 optimizedp, unavailablep);
3345
3346 /* Read a value spread across multiple registers. */
3347
3348 gdb_assert (len > 4 && len % 4 == 0);
3349
3350 while (len > 0)
3351 {
3352 gdb_assert (regnum != -1);
3353 gdb_assert (register_size (gdbarch, regnum) == 4);
3354
3355 if (!get_frame_register_bytes (frame, regnum, 0,
3356 register_size (gdbarch, regnum),
3357 to, optimizedp, unavailablep))
3358 return 0;
3359
3360 regnum = i386_next_regnum (regnum);
3361 len -= 4;
3362 to += 4;
3363 }
3364
3365 *optimizedp = *unavailablep = 0;
3366 return 1;
3367 }
3368
3369 /* Write the contents FROM of a value of type TYPE into register
3370 REGNUM in frame FRAME. */
3371
3372 static void
3373 i386_value_to_register (struct frame_info *frame, int regnum,
3374 struct type *type, const gdb_byte *from)
3375 {
3376 int len = TYPE_LENGTH (type);
3377
3378 if (i386_fp_regnum_p (get_frame_arch (frame), regnum))
3379 {
3380 i387_value_to_register (frame, regnum, type, from);
3381 return;
3382 }
3383
3384 /* Write a value spread across multiple registers. */
3385
3386 gdb_assert (len > 4 && len % 4 == 0);
3387
3388 while (len > 0)
3389 {
3390 gdb_assert (regnum != -1);
3391 gdb_assert (register_size (get_frame_arch (frame), regnum) == 4);
3392
3393 put_frame_register (frame, regnum, from);
3394 regnum = i386_next_regnum (regnum);
3395 len -= 4;
3396 from += 4;
3397 }
3398 }
3399 \f
3400 /* Supply register REGNUM from the buffer specified by GREGS and LEN
3401 in the general-purpose register set REGSET to register cache
3402 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3403
3404 void
3405 i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
3406 int regnum, const void *gregs, size_t len)
3407 {
3408 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
3409 const gdb_byte *regs = gregs;
3410 int i;
3411
3412 gdb_assert (len == tdep->sizeof_gregset);
3413
3414 for (i = 0; i < tdep->gregset_num_regs; i++)
3415 {
3416 if ((regnum == i || regnum == -1)
3417 && tdep->gregset_reg_offset[i] != -1)
3418 regcache_raw_supply (regcache, i, regs + tdep->gregset_reg_offset[i]);
3419 }
3420 }
3421
3422 /* Collect register REGNUM from the register cache REGCACHE and store
3423 it in the buffer specified by GREGS and LEN as described by the
3424 general-purpose register set REGSET. If REGNUM is -1, do this for
3425 all registers in REGSET. */
3426
3427 void
3428 i386_collect_gregset (const struct regset *regset,
3429 const struct regcache *regcache,
3430 int regnum, void *gregs, size_t len)
3431 {
3432 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
3433 gdb_byte *regs = gregs;
3434 int i;
3435
3436 gdb_assert (len == tdep->sizeof_gregset);
3437
3438 for (i = 0; i < tdep->gregset_num_regs; i++)
3439 {
3440 if ((regnum == i || regnum == -1)
3441 && tdep->gregset_reg_offset[i] != -1)
3442 regcache_raw_collect (regcache, i, regs + tdep->gregset_reg_offset[i]);
3443 }
3444 }
3445
3446 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
3447 in the floating-point register set REGSET to register cache
3448 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3449
3450 static void
3451 i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
3452 int regnum, const void *fpregs, size_t len)
3453 {
3454 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
3455
3456 if (len == I387_SIZEOF_FXSAVE)
3457 {
3458 i387_supply_fxsave (regcache, regnum, fpregs);
3459 return;
3460 }
3461
3462 gdb_assert (len == tdep->sizeof_fpregset);
3463 i387_supply_fsave (regcache, regnum, fpregs);
3464 }
3465
3466 /* Collect register REGNUM from the register cache REGCACHE and store
3467 it in the buffer specified by FPREGS and LEN as described by the
3468 floating-point register set REGSET. If REGNUM is -1, do this for
3469 all registers in REGSET. */
3470
3471 static void
3472 i386_collect_fpregset (const struct regset *regset,
3473 const struct regcache *regcache,
3474 int regnum, void *fpregs, size_t len)
3475 {
3476 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
3477
3478 if (len == I387_SIZEOF_FXSAVE)
3479 {
3480 i387_collect_fxsave (regcache, regnum, fpregs);
3481 return;
3482 }
3483
3484 gdb_assert (len == tdep->sizeof_fpregset);
3485 i387_collect_fsave (regcache, regnum, fpregs);
3486 }
3487
3488 /* Similar to i386_supply_fpregset, but use XSAVE extended state. */
3489
3490 static void
3491 i386_supply_xstateregset (const struct regset *regset,
3492 struct regcache *regcache, int regnum,
3493 const void *xstateregs, size_t len)
3494 {
3495 i387_supply_xsave (regcache, regnum, xstateregs);
3496 }
3497
3498 /* Similar to i386_collect_fpregset , but use XSAVE extended state. */
3499
3500 static void
3501 i386_collect_xstateregset (const struct regset *regset,
3502 const struct regcache *regcache,
3503 int regnum, void *xstateregs, size_t len)
3504 {
3505 i387_collect_xsave (regcache, regnum, xstateregs, 1);
3506 }
3507
3508 /* Return the appropriate register set for the core section identified
3509 by SECT_NAME and SECT_SIZE. */
3510
3511 const struct regset *
3512 i386_regset_from_core_section (struct gdbarch *gdbarch,
3513 const char *sect_name, size_t sect_size)
3514 {
3515 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3516
3517 if (strcmp (sect_name, ".reg") == 0 && sect_size == tdep->sizeof_gregset)
3518 {
3519 if (tdep->gregset == NULL)
3520 tdep->gregset = regset_alloc (gdbarch, i386_supply_gregset,
3521 i386_collect_gregset);
3522 return tdep->gregset;
3523 }
3524
3525 if ((strcmp (sect_name, ".reg2") == 0 && sect_size == tdep->sizeof_fpregset)
3526 || (strcmp (sect_name, ".reg-xfp") == 0
3527 && sect_size == I387_SIZEOF_FXSAVE))
3528 {
3529 if (tdep->fpregset == NULL)
3530 tdep->fpregset = regset_alloc (gdbarch, i386_supply_fpregset,
3531 i386_collect_fpregset);
3532 return tdep->fpregset;
3533 }
3534
3535 if (strcmp (sect_name, ".reg-xstate") == 0)
3536 {
3537 if (tdep->xstateregset == NULL)
3538 tdep->xstateregset = regset_alloc (gdbarch,
3539 i386_supply_xstateregset,
3540 i386_collect_xstateregset);
3541
3542 return tdep->xstateregset;
3543 }
3544
3545 return NULL;
3546 }
3547 \f
3548
3549 /* Stuff for WIN32 PE style DLL's but is pretty generic really. */
3550
3551 CORE_ADDR
3552 i386_pe_skip_trampoline_code (struct frame_info *frame,
3553 CORE_ADDR pc, char *name)
3554 {
3555 struct gdbarch *gdbarch = get_frame_arch (frame);
3556 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3557
3558 /* jmp *(dest) */
3559 if (pc && read_memory_unsigned_integer (pc, 2, byte_order) == 0x25ff)
3560 {
3561 unsigned long indirect =
3562 read_memory_unsigned_integer (pc + 2, 4, byte_order);
3563 struct minimal_symbol *indsym =
3564 indirect ? lookup_minimal_symbol_by_pc (indirect).minsym : 0;
3565 const char *symname = indsym ? SYMBOL_LINKAGE_NAME (indsym) : 0;
3566
3567 if (symname)
3568 {
3569 if (strncmp (symname, "__imp_", 6) == 0
3570 || strncmp (symname, "_imp_", 5) == 0)
3571 return name ? 1 :
3572 read_memory_unsigned_integer (indirect, 4, byte_order);
3573 }
3574 }
3575 return 0; /* Not a trampoline. */
3576 }
3577 \f
3578
3579 /* Return whether the THIS_FRAME corresponds to a sigtramp
3580 routine. */
3581
3582 int
3583 i386_sigtramp_p (struct frame_info *this_frame)
3584 {
3585 CORE_ADDR pc = get_frame_pc (this_frame);
3586 const char *name;
3587
3588 find_pc_partial_function (pc, &name, NULL, NULL);
3589 return (name && strcmp ("_sigtramp", name) == 0);
3590 }
3591 \f
3592
3593 /* We have two flavours of disassembly. The machinery on this page
3594 deals with switching between those. */
3595
3596 static int
3597 i386_print_insn (bfd_vma pc, struct disassemble_info *info)
3598 {
3599 gdb_assert (disassembly_flavor == att_flavor
3600 || disassembly_flavor == intel_flavor);
3601
3602 /* FIXME: kettenis/20020915: Until disassembler_options is properly
3603 constified, cast to prevent a compiler warning. */
3604 info->disassembler_options = (char *) disassembly_flavor;
3605
3606 return print_insn_i386 (pc, info);
3607 }
3608 \f
3609
3610 /* There are a few i386 architecture variants that differ only
3611 slightly from the generic i386 target. For now, we don't give them
3612 their own source file, but include them here. As a consequence,
3613 they'll always be included. */
3614
3615 /* System V Release 4 (SVR4). */
3616
3617 /* Return whether THIS_FRAME corresponds to a SVR4 sigtramp
3618 routine. */
3619
3620 static int
3621 i386_svr4_sigtramp_p (struct frame_info *this_frame)
3622 {
3623 CORE_ADDR pc = get_frame_pc (this_frame);
3624 const char *name;
3625
3626 /* The origin of these symbols is currently unknown. */
3627 find_pc_partial_function (pc, &name, NULL, NULL);
3628 return (name && (strcmp ("_sigreturn", name) == 0
3629 || strcmp ("sigvechandler", name) == 0));
3630 }
3631
3632 /* Assuming THIS_FRAME is for a SVR4 sigtramp routine, return the
3633 address of the associated sigcontext (ucontext) structure. */
3634
3635 static CORE_ADDR
3636 i386_svr4_sigcontext_addr (struct frame_info *this_frame)
3637 {
3638 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3639 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3640 gdb_byte buf[4];
3641 CORE_ADDR sp;
3642
3643 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
3644 sp = extract_unsigned_integer (buf, 4, byte_order);
3645
3646 return read_memory_unsigned_integer (sp + 8, 4, byte_order);
3647 }
3648
3649 \f
3650
3651 /* Implementation of `gdbarch_stap_is_single_operand', as defined in
3652 gdbarch.h. */
3653
3654 int
3655 i386_stap_is_single_operand (struct gdbarch *gdbarch, const char *s)
3656 {
3657 return (*s == '$' /* Literal number. */
3658 || (isdigit (*s) && s[1] == '(' && s[2] == '%') /* Displacement. */
3659 || (*s == '(' && s[1] == '%') /* Register indirection. */
3660 || (*s == '%' && isalpha (s[1]))); /* Register access. */
3661 }
3662
3663 /* Helper function for i386_stap_parse_special_token.
3664
3665 This function parses operands of the form `-8+3+1(%rbp)', which
3666 must be interpreted as `*(-8 + 3 - 1 + (void *) $eax)'.
3667
3668 Return 1 if the operand was parsed successfully, zero
3669 otherwise. */
3670
3671 static int
3672 i386_stap_parse_special_token_triplet (struct gdbarch *gdbarch,
3673 struct stap_parse_info *p)
3674 {
3675 const char *s = p->arg;
3676
3677 if (isdigit (*s) || *s == '-' || *s == '+')
3678 {
3679 int got_minus[3];
3680 int i;
3681 long displacements[3];
3682 const char *start;
3683 char *regname;
3684 int len;
3685 struct stoken str;
3686 char *endp;
3687
3688 got_minus[0] = 0;
3689 if (*s == '+')
3690 ++s;
3691 else if (*s == '-')
3692 {
3693 ++s;
3694 got_minus[0] = 1;
3695 }
3696
3697 displacements[0] = strtol (s, &endp, 10);
3698 s = endp;
3699
3700 if (*s != '+' && *s != '-')
3701 {
3702 /* We are not dealing with a triplet. */
3703 return 0;
3704 }
3705
3706 got_minus[1] = 0;
3707 if (*s == '+')
3708 ++s;
3709 else
3710 {
3711 ++s;
3712 got_minus[1] = 1;
3713 }
3714
3715 displacements[1] = strtol (s, &endp, 10);
3716 s = endp;
3717
3718 if (*s != '+' && *s != '-')
3719 {
3720 /* We are not dealing with a triplet. */
3721 return 0;
3722 }
3723
3724 got_minus[2] = 0;
3725 if (*s == '+')
3726 ++s;
3727 else
3728 {
3729 ++s;
3730 got_minus[2] = 1;
3731 }
3732
3733 displacements[2] = strtol (s, &endp, 10);
3734 s = endp;
3735
3736 if (*s != '(' || s[1] != '%')
3737 return 0;
3738
3739 s += 2;
3740 start = s;
3741
3742 while (isalnum (*s))
3743 ++s;
3744
3745 if (*s++ != ')')
3746 return 0;
3747
3748 len = s - start;
3749 regname = alloca (len + 1);
3750
3751 strncpy (regname, start, len);
3752 regname[len] = '\0';
3753
3754 if (user_reg_map_name_to_regnum (gdbarch, regname, len) == -1)
3755 error (_("Invalid register name `%s' on expression `%s'."),
3756 regname, p->saved_arg);
3757
3758 for (i = 0; i < 3; i++)
3759 {
3760 write_exp_elt_opcode (OP_LONG);
3761 write_exp_elt_type (builtin_type (gdbarch)->builtin_long);
3762 write_exp_elt_longcst (displacements[i]);
3763 write_exp_elt_opcode (OP_LONG);
3764 if (got_minus[i])
3765 write_exp_elt_opcode (UNOP_NEG);
3766 }
3767
3768 write_exp_elt_opcode (OP_REGISTER);
3769 str.ptr = regname;
3770 str.length = len;
3771 write_exp_string (str);
3772 write_exp_elt_opcode (OP_REGISTER);
3773
3774 write_exp_elt_opcode (UNOP_CAST);
3775 write_exp_elt_type (builtin_type (gdbarch)->builtin_data_ptr);
3776 write_exp_elt_opcode (UNOP_CAST);
3777
3778 write_exp_elt_opcode (BINOP_ADD);
3779 write_exp_elt_opcode (BINOP_ADD);
3780 write_exp_elt_opcode (BINOP_ADD);
3781
3782 write_exp_elt_opcode (UNOP_CAST);
3783 write_exp_elt_type (lookup_pointer_type (p->arg_type));
3784 write_exp_elt_opcode (UNOP_CAST);
3785
3786 write_exp_elt_opcode (UNOP_IND);
3787
3788 p->arg = s;
3789
3790 return 1;
3791 }
3792
3793 return 0;
3794 }
3795
3796 /* Helper function for i386_stap_parse_special_token.
3797
3798 This function parses operands of the form `register base +
3799 (register index * size) + offset', as represented in
3800 `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
3801
3802 Return 1 if the operand was parsed successfully, zero
3803 otherwise. */
3804
3805 static int
3806 i386_stap_parse_special_token_three_arg_disp (struct gdbarch *gdbarch,
3807 struct stap_parse_info *p)
3808 {
3809 const char *s = p->arg;
3810
3811 if (isdigit (*s) || *s == '(' || *s == '-' || *s == '+')
3812 {
3813 int offset_minus = 0;
3814 long offset = 0;
3815 int size_minus = 0;
3816 long size = 0;
3817 const char *start;
3818 char *base;
3819 int len_base;
3820 char *index;
3821 int len_index;
3822 struct stoken base_token, index_token;
3823
3824 if (*s == '+')
3825 ++s;
3826 else if (*s == '-')
3827 {
3828 ++s;
3829 offset_minus = 1;
3830 }
3831
3832 if (offset_minus && !isdigit (*s))
3833 return 0;
3834
3835 if (isdigit (*s))
3836 {
3837 char *endp;
3838
3839 offset = strtol (s, &endp, 10);
3840 s = endp;
3841 }
3842
3843 if (*s != '(' || s[1] != '%')
3844 return 0;
3845
3846 s += 2;
3847 start = s;
3848
3849 while (isalnum (*s))
3850 ++s;
3851
3852 if (*s != ',' || s[1] != '%')
3853 return 0;
3854
3855 len_base = s - start;
3856 base = alloca (len_base + 1);
3857 strncpy (base, start, len_base);
3858 base[len_base] = '\0';
3859
3860 if (user_reg_map_name_to_regnum (gdbarch, base, len_base) == -1)
3861 error (_("Invalid register name `%s' on expression `%s'."),
3862 base, p->saved_arg);
3863
3864 s += 2;
3865 start = s;
3866
3867 while (isalnum (*s))
3868 ++s;
3869
3870 len_index = s - start;
3871 index = alloca (len_index + 1);
3872 strncpy (index, start, len_index);
3873 index[len_index] = '\0';
3874
3875 if (user_reg_map_name_to_regnum (gdbarch, index, len_index) == -1)
3876 error (_("Invalid register name `%s' on expression `%s'."),
3877 index, p->saved_arg);
3878
3879 if (*s != ',' && *s != ')')
3880 return 0;
3881
3882 if (*s == ',')
3883 {
3884 char *endp;
3885
3886 ++s;
3887 if (*s == '+')
3888 ++s;
3889 else if (*s == '-')
3890 {
3891 ++s;
3892 size_minus = 1;
3893 }
3894
3895 size = strtol (s, &endp, 10);
3896 s = endp;
3897
3898 if (*s != ')')
3899 return 0;
3900 }
3901
3902 ++s;
3903
3904 if (offset)
3905 {
3906 write_exp_elt_opcode (OP_LONG);
3907 write_exp_elt_type (builtin_type (gdbarch)->builtin_long);
3908 write_exp_elt_longcst (offset);
3909 write_exp_elt_opcode (OP_LONG);
3910 if (offset_minus)
3911 write_exp_elt_opcode (UNOP_NEG);
3912 }
3913
3914 write_exp_elt_opcode (OP_REGISTER);
3915 base_token.ptr = base;
3916 base_token.length = len_base;
3917 write_exp_string (base_token);
3918 write_exp_elt_opcode (OP_REGISTER);
3919
3920 if (offset)
3921 write_exp_elt_opcode (BINOP_ADD);
3922
3923 write_exp_elt_opcode (OP_REGISTER);
3924 index_token.ptr = index;
3925 index_token.length = len_index;
3926 write_exp_string (index_token);
3927 write_exp_elt_opcode (OP_REGISTER);
3928
3929 if (size)
3930 {
3931 write_exp_elt_opcode (OP_LONG);
3932 write_exp_elt_type (builtin_type (gdbarch)->builtin_long);
3933 write_exp_elt_longcst (size);
3934 write_exp_elt_opcode (OP_LONG);
3935 if (size_minus)
3936 write_exp_elt_opcode (UNOP_NEG);
3937 write_exp_elt_opcode (BINOP_MUL);
3938 }
3939
3940 write_exp_elt_opcode (BINOP_ADD);
3941
3942 write_exp_elt_opcode (UNOP_CAST);
3943 write_exp_elt_type (lookup_pointer_type (p->arg_type));
3944 write_exp_elt_opcode (UNOP_CAST);
3945
3946 write_exp_elt_opcode (UNOP_IND);
3947
3948 p->arg = s;
3949
3950 return 1;
3951 }
3952
3953 return 0;
3954 }
3955
3956 /* Implementation of `gdbarch_stap_parse_special_token', as defined in
3957 gdbarch.h. */
3958
3959 int
3960 i386_stap_parse_special_token (struct gdbarch *gdbarch,
3961 struct stap_parse_info *p)
3962 {
3963 /* In order to parse special tokens, we use a state-machine that go
3964 through every known token and try to get a match. */
3965 enum
3966 {
3967 TRIPLET,
3968 THREE_ARG_DISPLACEMENT,
3969 DONE
3970 } current_state;
3971
3972 current_state = TRIPLET;
3973
3974 /* The special tokens to be parsed here are:
3975
3976 - `register base + (register index * size) + offset', as represented
3977 in `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
3978
3979 - Operands of the form `-8+3+1(%rbp)', which must be interpreted as
3980 `*(-8 + 3 - 1 + (void *) $eax)'. */
3981
3982 while (current_state != DONE)
3983 {
3984 switch (current_state)
3985 {
3986 case TRIPLET:
3987 if (i386_stap_parse_special_token_triplet (gdbarch, p))
3988 return 1;
3989 break;
3990
3991 case THREE_ARG_DISPLACEMENT:
3992 if (i386_stap_parse_special_token_three_arg_disp (gdbarch, p))
3993 return 1;
3994 break;
3995 }
3996
3997 /* Advancing to the next state. */
3998 ++current_state;
3999 }
4000
4001 return 0;
4002 }
4003
4004 \f
4005
4006 /* Generic ELF. */
4007
4008 void
4009 i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4010 {
4011 static const char *const stap_integer_prefixes[] = { "$", NULL };
4012 static const char *const stap_register_prefixes[] = { "%", NULL };
4013 static const char *const stap_register_indirection_prefixes[] = { "(",
4014 NULL };
4015 static const char *const stap_register_indirection_suffixes[] = { ")",
4016 NULL };
4017
4018 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
4019 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
4020
4021 /* Registering SystemTap handlers. */
4022 set_gdbarch_stap_integer_prefixes (gdbarch, stap_integer_prefixes);
4023 set_gdbarch_stap_register_prefixes (gdbarch, stap_register_prefixes);
4024 set_gdbarch_stap_register_indirection_prefixes (gdbarch,
4025 stap_register_indirection_prefixes);
4026 set_gdbarch_stap_register_indirection_suffixes (gdbarch,
4027 stap_register_indirection_suffixes);
4028 set_gdbarch_stap_is_single_operand (gdbarch,
4029 i386_stap_is_single_operand);
4030 set_gdbarch_stap_parse_special_token (gdbarch,
4031 i386_stap_parse_special_token);
4032 }
4033
4034 /* System V Release 4 (SVR4). */
4035
4036 void
4037 i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4038 {
4039 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4040
4041 /* System V Release 4 uses ELF. */
4042 i386_elf_init_abi (info, gdbarch);
4043
4044 /* System V Release 4 has shared libraries. */
4045 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
4046
4047 tdep->sigtramp_p = i386_svr4_sigtramp_p;
4048 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
4049 tdep->sc_pc_offset = 36 + 14 * 4;
4050 tdep->sc_sp_offset = 36 + 17 * 4;
4051
4052 tdep->jb_pc_offset = 20;
4053 }
4054
4055 /* DJGPP. */
4056
4057 static void
4058 i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4059 {
4060 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4061
4062 /* DJGPP doesn't have any special frames for signal handlers. */
4063 tdep->sigtramp_p = NULL;
4064
4065 tdep->jb_pc_offset = 36;
4066
4067 /* DJGPP does not support the SSE registers. */
4068 if (! tdesc_has_registers (info.target_desc))
4069 tdep->tdesc = tdesc_i386_mmx;
4070
4071 /* Native compiler is GCC, which uses the SVR4 register numbering
4072 even in COFF and STABS. See the comment in i386_gdbarch_init,
4073 before the calls to set_gdbarch_stab_reg_to_regnum and
4074 set_gdbarch_sdb_reg_to_regnum. */
4075 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
4076 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
4077
4078 set_gdbarch_has_dos_based_file_system (gdbarch, 1);
4079 }
4080 \f
4081
4082 /* i386 register groups. In addition to the normal groups, add "mmx"
4083 and "sse". */
4084
4085 static struct reggroup *i386_sse_reggroup;
4086 static struct reggroup *i386_mmx_reggroup;
4087
4088 static void
4089 i386_init_reggroups (void)
4090 {
4091 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
4092 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
4093 }
4094
4095 static void
4096 i386_add_reggroups (struct gdbarch *gdbarch)
4097 {
4098 reggroup_add (gdbarch, i386_sse_reggroup);
4099 reggroup_add (gdbarch, i386_mmx_reggroup);
4100 reggroup_add (gdbarch, general_reggroup);
4101 reggroup_add (gdbarch, float_reggroup);
4102 reggroup_add (gdbarch, all_reggroup);
4103 reggroup_add (gdbarch, save_reggroup);
4104 reggroup_add (gdbarch, restore_reggroup);
4105 reggroup_add (gdbarch, vector_reggroup);
4106 reggroup_add (gdbarch, system_reggroup);
4107 }
4108
4109 int
4110 i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
4111 struct reggroup *group)
4112 {
4113 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4114 int fp_regnum_p, mmx_regnum_p, xmm_regnum_p, mxcsr_regnum_p,
4115 ymm_regnum_p, ymmh_regnum_p, bndr_regnum_p, bnd_regnum_p,
4116 mpx_ctrl_regnum_p;
4117
4118 /* Don't include pseudo registers, except for MMX, in any register
4119 groups. */
4120 if (i386_byte_regnum_p (gdbarch, regnum))
4121 return 0;
4122
4123 if (i386_word_regnum_p (gdbarch, regnum))
4124 return 0;
4125
4126 if (i386_dword_regnum_p (gdbarch, regnum))
4127 return 0;
4128
4129 mmx_regnum_p = i386_mmx_regnum_p (gdbarch, regnum);
4130 if (group == i386_mmx_reggroup)
4131 return mmx_regnum_p;
4132
4133 xmm_regnum_p = i386_xmm_regnum_p (gdbarch, regnum);
4134 mxcsr_regnum_p = i386_mxcsr_regnum_p (gdbarch, regnum);
4135 if (group == i386_sse_reggroup)
4136 return xmm_regnum_p || mxcsr_regnum_p;
4137
4138 ymm_regnum_p = i386_ymm_regnum_p (gdbarch, regnum);
4139 if (group == vector_reggroup)
4140 return (mmx_regnum_p
4141 || ymm_regnum_p
4142 || mxcsr_regnum_p
4143 || (xmm_regnum_p
4144 && ((tdep->xcr0 & I386_XSTATE_AVX_MASK)
4145 == I386_XSTATE_SSE_MASK)));
4146
4147 fp_regnum_p = (i386_fp_regnum_p (gdbarch, regnum)
4148 || i386_fpc_regnum_p (gdbarch, regnum));
4149 if (group == float_reggroup)
4150 return fp_regnum_p;
4151
4152 /* For "info reg all", don't include upper YMM registers nor XMM
4153 registers when AVX is supported. */
4154 ymmh_regnum_p = i386_ymmh_regnum_p (gdbarch, regnum);
4155 if (group == all_reggroup
4156 && ((xmm_regnum_p
4157 && (tdep->xcr0 & I386_XSTATE_AVX))
4158 || ymmh_regnum_p))
4159 return 0;
4160
4161 bnd_regnum_p = i386_bnd_regnum_p (gdbarch, regnum);
4162 if (group == all_reggroup
4163 && ((bnd_regnum_p && (tdep->xcr0 & I386_XSTATE_MPX_MASK))))
4164 return bnd_regnum_p;
4165
4166 bndr_regnum_p = i386_bndr_regnum_p (gdbarch, regnum);
4167 if (group == all_reggroup
4168 && ((bndr_regnum_p && (tdep->xcr0 & I386_XSTATE_MPX_MASK))))
4169 return 0;
4170
4171 mpx_ctrl_regnum_p = i386_mpx_ctrl_regnum_p (gdbarch, regnum);
4172 if (group == all_reggroup
4173 && ((mpx_ctrl_regnum_p && (tdep->xcr0 & I386_XSTATE_MPX_MASK))))
4174 return mpx_ctrl_regnum_p;
4175
4176 if (group == general_reggroup)
4177 return (!fp_regnum_p
4178 && !mmx_regnum_p
4179 && !mxcsr_regnum_p
4180 && !xmm_regnum_p
4181 && !ymm_regnum_p
4182 && !ymmh_regnum_p
4183 && !bndr_regnum_p
4184 && !bnd_regnum_p
4185 && !mpx_ctrl_regnum_p);
4186
4187 return default_register_reggroup_p (gdbarch, regnum, group);
4188 }
4189 \f
4190
4191 /* Get the ARGIth function argument for the current function. */
4192
4193 static CORE_ADDR
4194 i386_fetch_pointer_argument (struct frame_info *frame, int argi,
4195 struct type *type)
4196 {
4197 struct gdbarch *gdbarch = get_frame_arch (frame);
4198 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4199 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
4200 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4, byte_order);
4201 }
4202
4203 static void
4204 i386_skip_permanent_breakpoint (struct regcache *regcache)
4205 {
4206 CORE_ADDR current_pc = regcache_read_pc (regcache);
4207
4208 /* On i386, breakpoint is exactly 1 byte long, so we just
4209 adjust the PC in the regcache. */
4210 current_pc += 1;
4211 regcache_write_pc (regcache, current_pc);
4212 }
4213
4214
4215 #define PREFIX_REPZ 0x01
4216 #define PREFIX_REPNZ 0x02
4217 #define PREFIX_LOCK 0x04
4218 #define PREFIX_DATA 0x08
4219 #define PREFIX_ADDR 0x10
4220
4221 /* operand size */
4222 enum
4223 {
4224 OT_BYTE = 0,
4225 OT_WORD,
4226 OT_LONG,
4227 OT_QUAD,
4228 OT_DQUAD,
4229 };
4230
4231 /* i386 arith/logic operations */
4232 enum
4233 {
4234 OP_ADDL,
4235 OP_ORL,
4236 OP_ADCL,
4237 OP_SBBL,
4238 OP_ANDL,
4239 OP_SUBL,
4240 OP_XORL,
4241 OP_CMPL,
4242 };
4243
4244 struct i386_record_s
4245 {
4246 struct gdbarch *gdbarch;
4247 struct regcache *regcache;
4248 CORE_ADDR orig_addr;
4249 CORE_ADDR addr;
4250 int aflag;
4251 int dflag;
4252 int override;
4253 uint8_t modrm;
4254 uint8_t mod, reg, rm;
4255 int ot;
4256 uint8_t rex_x;
4257 uint8_t rex_b;
4258 int rip_offset;
4259 int popl_esp_hack;
4260 const int *regmap;
4261 };
4262
4263 /* Parse the "modrm" part of the memory address irp->addr points at.
4264 Returns -1 if something goes wrong, 0 otherwise. */
4265
4266 static int
4267 i386_record_modrm (struct i386_record_s *irp)
4268 {
4269 struct gdbarch *gdbarch = irp->gdbarch;
4270
4271 if (record_read_memory (gdbarch, irp->addr, &irp->modrm, 1))
4272 return -1;
4273
4274 irp->addr++;
4275 irp->mod = (irp->modrm >> 6) & 3;
4276 irp->reg = (irp->modrm >> 3) & 7;
4277 irp->rm = irp->modrm & 7;
4278
4279 return 0;
4280 }
4281
4282 /* Extract the memory address that the current instruction writes to,
4283 and return it in *ADDR. Return -1 if something goes wrong. */
4284
4285 static int
4286 i386_record_lea_modrm_addr (struct i386_record_s *irp, uint64_t *addr)
4287 {
4288 struct gdbarch *gdbarch = irp->gdbarch;
4289 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4290 gdb_byte buf[4];
4291 ULONGEST offset64;
4292
4293 *addr = 0;
4294 if (irp->aflag || irp->regmap[X86_RECORD_R8_REGNUM])
4295 {
4296 /* 32/64 bits */
4297 int havesib = 0;
4298 uint8_t scale = 0;
4299 uint8_t byte;
4300 uint8_t index = 0;
4301 uint8_t base = irp->rm;
4302
4303 if (base == 4)
4304 {
4305 havesib = 1;
4306 if (record_read_memory (gdbarch, irp->addr, &byte, 1))
4307 return -1;
4308 irp->addr++;
4309 scale = (byte >> 6) & 3;
4310 index = ((byte >> 3) & 7) | irp->rex_x;
4311 base = (byte & 7);
4312 }
4313 base |= irp->rex_b;
4314
4315 switch (irp->mod)
4316 {
4317 case 0:
4318 if ((base & 7) == 5)
4319 {
4320 base = 0xff;
4321 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4322 return -1;
4323 irp->addr += 4;
4324 *addr = extract_signed_integer (buf, 4, byte_order);
4325 if (irp->regmap[X86_RECORD_R8_REGNUM] && !havesib)
4326 *addr += irp->addr + irp->rip_offset;
4327 }
4328 break;
4329 case 1:
4330 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4331 return -1;
4332 irp->addr++;
4333 *addr = (int8_t) buf[0];
4334 break;
4335 case 2:
4336 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4337 return -1;
4338 *addr = extract_signed_integer (buf, 4, byte_order);
4339 irp->addr += 4;
4340 break;
4341 }
4342
4343 offset64 = 0;
4344 if (base != 0xff)
4345 {
4346 if (base == 4 && irp->popl_esp_hack)
4347 *addr += irp->popl_esp_hack;
4348 regcache_raw_read_unsigned (irp->regcache, irp->regmap[base],
4349 &offset64);
4350 }
4351 if (irp->aflag == 2)
4352 {
4353 *addr += offset64;
4354 }
4355 else
4356 *addr = (uint32_t) (offset64 + *addr);
4357
4358 if (havesib && (index != 4 || scale != 0))
4359 {
4360 regcache_raw_read_unsigned (irp->regcache, irp->regmap[index],
4361 &offset64);
4362 if (irp->aflag == 2)
4363 *addr += offset64 << scale;
4364 else
4365 *addr = (uint32_t) (*addr + (offset64 << scale));
4366 }
4367
4368 if (!irp->aflag)
4369 {
4370 /* Since we are in 64-bit mode with ADDR32 prefix, zero-extend
4371 address from 32-bit to 64-bit. */
4372 *addr = (uint32_t) *addr;
4373 }
4374 }
4375 else
4376 {
4377 /* 16 bits */
4378 switch (irp->mod)
4379 {
4380 case 0:
4381 if (irp->rm == 6)
4382 {
4383 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4384 return -1;
4385 irp->addr += 2;
4386 *addr = extract_signed_integer (buf, 2, byte_order);
4387 irp->rm = 0;
4388 goto no_rm;
4389 }
4390 break;
4391 case 1:
4392 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4393 return -1;
4394 irp->addr++;
4395 *addr = (int8_t) buf[0];
4396 break;
4397 case 2:
4398 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4399 return -1;
4400 irp->addr += 2;
4401 *addr = extract_signed_integer (buf, 2, byte_order);
4402 break;
4403 }
4404
4405 switch (irp->rm)
4406 {
4407 case 0:
4408 regcache_raw_read_unsigned (irp->regcache,
4409 irp->regmap[X86_RECORD_REBX_REGNUM],
4410 &offset64);
4411 *addr = (uint32_t) (*addr + offset64);
4412 regcache_raw_read_unsigned (irp->regcache,
4413 irp->regmap[X86_RECORD_RESI_REGNUM],
4414 &offset64);
4415 *addr = (uint32_t) (*addr + offset64);
4416 break;
4417 case 1:
4418 regcache_raw_read_unsigned (irp->regcache,
4419 irp->regmap[X86_RECORD_REBX_REGNUM],
4420 &offset64);
4421 *addr = (uint32_t) (*addr + offset64);
4422 regcache_raw_read_unsigned (irp->regcache,
4423 irp->regmap[X86_RECORD_REDI_REGNUM],
4424 &offset64);
4425 *addr = (uint32_t) (*addr + offset64);
4426 break;
4427 case 2:
4428 regcache_raw_read_unsigned (irp->regcache,
4429 irp->regmap[X86_RECORD_REBP_REGNUM],
4430 &offset64);
4431 *addr = (uint32_t) (*addr + offset64);
4432 regcache_raw_read_unsigned (irp->regcache,
4433 irp->regmap[X86_RECORD_RESI_REGNUM],
4434 &offset64);
4435 *addr = (uint32_t) (*addr + offset64);
4436 break;
4437 case 3:
4438 regcache_raw_read_unsigned (irp->regcache,
4439 irp->regmap[X86_RECORD_REBP_REGNUM],
4440 &offset64);
4441 *addr = (uint32_t) (*addr + offset64);
4442 regcache_raw_read_unsigned (irp->regcache,
4443 irp->regmap[X86_RECORD_REDI_REGNUM],
4444 &offset64);
4445 *addr = (uint32_t) (*addr + offset64);
4446 break;
4447 case 4:
4448 regcache_raw_read_unsigned (irp->regcache,
4449 irp->regmap[X86_RECORD_RESI_REGNUM],
4450 &offset64);
4451 *addr = (uint32_t) (*addr + offset64);
4452 break;
4453 case 5:
4454 regcache_raw_read_unsigned (irp->regcache,
4455 irp->regmap[X86_RECORD_REDI_REGNUM],
4456 &offset64);
4457 *addr = (uint32_t) (*addr + offset64);
4458 break;
4459 case 6:
4460 regcache_raw_read_unsigned (irp->regcache,
4461 irp->regmap[X86_RECORD_REBP_REGNUM],
4462 &offset64);
4463 *addr = (uint32_t) (*addr + offset64);
4464 break;
4465 case 7:
4466 regcache_raw_read_unsigned (irp->regcache,
4467 irp->regmap[X86_RECORD_REBX_REGNUM],
4468 &offset64);
4469 *addr = (uint32_t) (*addr + offset64);
4470 break;
4471 }
4472 *addr &= 0xffff;
4473 }
4474
4475 no_rm:
4476 return 0;
4477 }
4478
4479 /* Record the address and contents of the memory that will be changed
4480 by the current instruction. Return -1 if something goes wrong, 0
4481 otherwise. */
4482
4483 static int
4484 i386_record_lea_modrm (struct i386_record_s *irp)
4485 {
4486 struct gdbarch *gdbarch = irp->gdbarch;
4487 uint64_t addr;
4488
4489 if (irp->override >= 0)
4490 {
4491 if (record_full_memory_query)
4492 {
4493 int q;
4494
4495 target_terminal_ours ();
4496 q = yquery (_("\
4497 Process record ignores the memory change of instruction at address %s\n\
4498 because it can't get the value of the segment register.\n\
4499 Do you want to stop the program?"),
4500 paddress (gdbarch, irp->orig_addr));
4501 target_terminal_inferior ();
4502 if (q)
4503 return -1;
4504 }
4505
4506 return 0;
4507 }
4508
4509 if (i386_record_lea_modrm_addr (irp, &addr))
4510 return -1;
4511
4512 if (record_full_arch_list_add_mem (addr, 1 << irp->ot))
4513 return -1;
4514
4515 return 0;
4516 }
4517
4518 /* Record the effects of a push operation. Return -1 if something
4519 goes wrong, 0 otherwise. */
4520
4521 static int
4522 i386_record_push (struct i386_record_s *irp, int size)
4523 {
4524 ULONGEST addr;
4525
4526 if (record_full_arch_list_add_reg (irp->regcache,
4527 irp->regmap[X86_RECORD_RESP_REGNUM]))
4528 return -1;
4529 regcache_raw_read_unsigned (irp->regcache,
4530 irp->regmap[X86_RECORD_RESP_REGNUM],
4531 &addr);
4532 if (record_full_arch_list_add_mem ((CORE_ADDR) addr - size, size))
4533 return -1;
4534
4535 return 0;
4536 }
4537
4538
4539 /* Defines contents to record. */
4540 #define I386_SAVE_FPU_REGS 0xfffd
4541 #define I386_SAVE_FPU_ENV 0xfffe
4542 #define I386_SAVE_FPU_ENV_REG_STACK 0xffff
4543
4544 /* Record the values of the floating point registers which will be
4545 changed by the current instruction. Returns -1 if something is
4546 wrong, 0 otherwise. */
4547
4548 static int i386_record_floats (struct gdbarch *gdbarch,
4549 struct i386_record_s *ir,
4550 uint32_t iregnum)
4551 {
4552 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4553 int i;
4554
4555 /* Oza: Because of floating point insn push/pop of fpu stack is going to
4556 happen. Currently we store st0-st7 registers, but we need not store all
4557 registers all the time, in future we use ftag register and record only
4558 those who are not marked as an empty. */
4559
4560 if (I386_SAVE_FPU_REGS == iregnum)
4561 {
4562 for (i = I387_ST0_REGNUM (tdep); i <= I387_ST0_REGNUM (tdep) + 7; i++)
4563 {
4564 if (record_full_arch_list_add_reg (ir->regcache, i))
4565 return -1;
4566 }
4567 }
4568 else if (I386_SAVE_FPU_ENV == iregnum)
4569 {
4570 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4571 {
4572 if (record_full_arch_list_add_reg (ir->regcache, i))
4573 return -1;
4574 }
4575 }
4576 else if (I386_SAVE_FPU_ENV_REG_STACK == iregnum)
4577 {
4578 for (i = I387_ST0_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4579 {
4580 if (record_full_arch_list_add_reg (ir->regcache, i))
4581 return -1;
4582 }
4583 }
4584 else if ((iregnum >= I387_ST0_REGNUM (tdep)) &&
4585 (iregnum <= I387_FOP_REGNUM (tdep)))
4586 {
4587 if (record_full_arch_list_add_reg (ir->regcache,iregnum))
4588 return -1;
4589 }
4590 else
4591 {
4592 /* Parameter error. */
4593 return -1;
4594 }
4595 if(I386_SAVE_FPU_ENV != iregnum)
4596 {
4597 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4598 {
4599 if (record_full_arch_list_add_reg (ir->regcache, i))
4600 return -1;
4601 }
4602 }
4603 return 0;
4604 }
4605
4606 /* Parse the current instruction, and record the values of the
4607 registers and memory that will be changed by the current
4608 instruction. Returns -1 if something goes wrong, 0 otherwise. */
4609
4610 #define I386_RECORD_FULL_ARCH_LIST_ADD_REG(regnum) \
4611 record_full_arch_list_add_reg (ir.regcache, ir.regmap[(regnum)])
4612
4613 int
4614 i386_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
4615 CORE_ADDR input_addr)
4616 {
4617 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4618 int prefixes = 0;
4619 int regnum = 0;
4620 uint32_t opcode;
4621 uint8_t opcode8;
4622 ULONGEST addr;
4623 gdb_byte buf[MAX_REGISTER_SIZE];
4624 struct i386_record_s ir;
4625 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4626 uint8_t rex_w = -1;
4627 uint8_t rex_r = 0;
4628
4629 memset (&ir, 0, sizeof (struct i386_record_s));
4630 ir.regcache = regcache;
4631 ir.addr = input_addr;
4632 ir.orig_addr = input_addr;
4633 ir.aflag = 1;
4634 ir.dflag = 1;
4635 ir.override = -1;
4636 ir.popl_esp_hack = 0;
4637 ir.regmap = tdep->record_regmap;
4638 ir.gdbarch = gdbarch;
4639
4640 if (record_debug > 1)
4641 fprintf_unfiltered (gdb_stdlog, "Process record: i386_process_record "
4642 "addr = %s\n",
4643 paddress (gdbarch, ir.addr));
4644
4645 /* prefixes */
4646 while (1)
4647 {
4648 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
4649 return -1;
4650 ir.addr++;
4651 switch (opcode8) /* Instruction prefixes */
4652 {
4653 case REPE_PREFIX_OPCODE:
4654 prefixes |= PREFIX_REPZ;
4655 break;
4656 case REPNE_PREFIX_OPCODE:
4657 prefixes |= PREFIX_REPNZ;
4658 break;
4659 case LOCK_PREFIX_OPCODE:
4660 prefixes |= PREFIX_LOCK;
4661 break;
4662 case CS_PREFIX_OPCODE:
4663 ir.override = X86_RECORD_CS_REGNUM;
4664 break;
4665 case SS_PREFIX_OPCODE:
4666 ir.override = X86_RECORD_SS_REGNUM;
4667 break;
4668 case DS_PREFIX_OPCODE:
4669 ir.override = X86_RECORD_DS_REGNUM;
4670 break;
4671 case ES_PREFIX_OPCODE:
4672 ir.override = X86_RECORD_ES_REGNUM;
4673 break;
4674 case FS_PREFIX_OPCODE:
4675 ir.override = X86_RECORD_FS_REGNUM;
4676 break;
4677 case GS_PREFIX_OPCODE:
4678 ir.override = X86_RECORD_GS_REGNUM;
4679 break;
4680 case DATA_PREFIX_OPCODE:
4681 prefixes |= PREFIX_DATA;
4682 break;
4683 case ADDR_PREFIX_OPCODE:
4684 prefixes |= PREFIX_ADDR;
4685 break;
4686 case 0x40: /* i386 inc %eax */
4687 case 0x41: /* i386 inc %ecx */
4688 case 0x42: /* i386 inc %edx */
4689 case 0x43: /* i386 inc %ebx */
4690 case 0x44: /* i386 inc %esp */
4691 case 0x45: /* i386 inc %ebp */
4692 case 0x46: /* i386 inc %esi */
4693 case 0x47: /* i386 inc %edi */
4694 case 0x48: /* i386 dec %eax */
4695 case 0x49: /* i386 dec %ecx */
4696 case 0x4a: /* i386 dec %edx */
4697 case 0x4b: /* i386 dec %ebx */
4698 case 0x4c: /* i386 dec %esp */
4699 case 0x4d: /* i386 dec %ebp */
4700 case 0x4e: /* i386 dec %esi */
4701 case 0x4f: /* i386 dec %edi */
4702 if (ir.regmap[X86_RECORD_R8_REGNUM]) /* 64 bit target */
4703 {
4704 /* REX */
4705 rex_w = (opcode8 >> 3) & 1;
4706 rex_r = (opcode8 & 0x4) << 1;
4707 ir.rex_x = (opcode8 & 0x2) << 2;
4708 ir.rex_b = (opcode8 & 0x1) << 3;
4709 }
4710 else /* 32 bit target */
4711 goto out_prefixes;
4712 break;
4713 default:
4714 goto out_prefixes;
4715 break;
4716 }
4717 }
4718 out_prefixes:
4719 if (ir.regmap[X86_RECORD_R8_REGNUM] && rex_w == 1)
4720 {
4721 ir.dflag = 2;
4722 }
4723 else
4724 {
4725 if (prefixes & PREFIX_DATA)
4726 ir.dflag ^= 1;
4727 }
4728 if (prefixes & PREFIX_ADDR)
4729 ir.aflag ^= 1;
4730 else if (ir.regmap[X86_RECORD_R8_REGNUM])
4731 ir.aflag = 2;
4732
4733 /* Now check op code. */
4734 opcode = (uint32_t) opcode8;
4735 reswitch:
4736 switch (opcode)
4737 {
4738 case 0x0f:
4739 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
4740 return -1;
4741 ir.addr++;
4742 opcode = (uint32_t) opcode8 | 0x0f00;
4743 goto reswitch;
4744 break;
4745
4746 case 0x00: /* arith & logic */
4747 case 0x01:
4748 case 0x02:
4749 case 0x03:
4750 case 0x04:
4751 case 0x05:
4752 case 0x08:
4753 case 0x09:
4754 case 0x0a:
4755 case 0x0b:
4756 case 0x0c:
4757 case 0x0d:
4758 case 0x10:
4759 case 0x11:
4760 case 0x12:
4761 case 0x13:
4762 case 0x14:
4763 case 0x15:
4764 case 0x18:
4765 case 0x19:
4766 case 0x1a:
4767 case 0x1b:
4768 case 0x1c:
4769 case 0x1d:
4770 case 0x20:
4771 case 0x21:
4772 case 0x22:
4773 case 0x23:
4774 case 0x24:
4775 case 0x25:
4776 case 0x28:
4777 case 0x29:
4778 case 0x2a:
4779 case 0x2b:
4780 case 0x2c:
4781 case 0x2d:
4782 case 0x30:
4783 case 0x31:
4784 case 0x32:
4785 case 0x33:
4786 case 0x34:
4787 case 0x35:
4788 case 0x38:
4789 case 0x39:
4790 case 0x3a:
4791 case 0x3b:
4792 case 0x3c:
4793 case 0x3d:
4794 if (((opcode >> 3) & 7) != OP_CMPL)
4795 {
4796 if ((opcode & 1) == 0)
4797 ir.ot = OT_BYTE;
4798 else
4799 ir.ot = ir.dflag + OT_WORD;
4800
4801 switch ((opcode >> 1) & 3)
4802 {
4803 case 0: /* OP Ev, Gv */
4804 if (i386_record_modrm (&ir))
4805 return -1;
4806 if (ir.mod != 3)
4807 {
4808 if (i386_record_lea_modrm (&ir))
4809 return -1;
4810 }
4811 else
4812 {
4813 ir.rm |= ir.rex_b;
4814 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4815 ir.rm &= 0x3;
4816 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
4817 }
4818 break;
4819 case 1: /* OP Gv, Ev */
4820 if (i386_record_modrm (&ir))
4821 return -1;
4822 ir.reg |= rex_r;
4823 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4824 ir.reg &= 0x3;
4825 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
4826 break;
4827 case 2: /* OP A, Iv */
4828 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4829 break;
4830 }
4831 }
4832 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4833 break;
4834
4835 case 0x80: /* GRP1 */
4836 case 0x81:
4837 case 0x82:
4838 case 0x83:
4839 if (i386_record_modrm (&ir))
4840 return -1;
4841
4842 if (ir.reg != OP_CMPL)
4843 {
4844 if ((opcode & 1) == 0)
4845 ir.ot = OT_BYTE;
4846 else
4847 ir.ot = ir.dflag + OT_WORD;
4848
4849 if (ir.mod != 3)
4850 {
4851 if (opcode == 0x83)
4852 ir.rip_offset = 1;
4853 else
4854 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
4855 if (i386_record_lea_modrm (&ir))
4856 return -1;
4857 }
4858 else
4859 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
4860 }
4861 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4862 break;
4863
4864 case 0x40: /* inc */
4865 case 0x41:
4866 case 0x42:
4867 case 0x43:
4868 case 0x44:
4869 case 0x45:
4870 case 0x46:
4871 case 0x47:
4872
4873 case 0x48: /* dec */
4874 case 0x49:
4875 case 0x4a:
4876 case 0x4b:
4877 case 0x4c:
4878 case 0x4d:
4879 case 0x4e:
4880 case 0x4f:
4881
4882 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 7);
4883 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4884 break;
4885
4886 case 0xf6: /* GRP3 */
4887 case 0xf7:
4888 if ((opcode & 1) == 0)
4889 ir.ot = OT_BYTE;
4890 else
4891 ir.ot = ir.dflag + OT_WORD;
4892 if (i386_record_modrm (&ir))
4893 return -1;
4894
4895 if (ir.mod != 3 && ir.reg == 0)
4896 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
4897
4898 switch (ir.reg)
4899 {
4900 case 0: /* test */
4901 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4902 break;
4903 case 2: /* not */
4904 case 3: /* neg */
4905 if (ir.mod != 3)
4906 {
4907 if (i386_record_lea_modrm (&ir))
4908 return -1;
4909 }
4910 else
4911 {
4912 ir.rm |= ir.rex_b;
4913 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4914 ir.rm &= 0x3;
4915 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
4916 }
4917 if (ir.reg == 3) /* neg */
4918 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4919 break;
4920 case 4: /* mul */
4921 case 5: /* imul */
4922 case 6: /* div */
4923 case 7: /* idiv */
4924 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4925 if (ir.ot != OT_BYTE)
4926 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
4927 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4928 break;
4929 default:
4930 ir.addr -= 2;
4931 opcode = opcode << 8 | ir.modrm;
4932 goto no_support;
4933 break;
4934 }
4935 break;
4936
4937 case 0xfe: /* GRP4 */
4938 case 0xff: /* GRP5 */
4939 if (i386_record_modrm (&ir))
4940 return -1;
4941 if (ir.reg >= 2 && opcode == 0xfe)
4942 {
4943 ir.addr -= 2;
4944 opcode = opcode << 8 | ir.modrm;
4945 goto no_support;
4946 }
4947 switch (ir.reg)
4948 {
4949 case 0: /* inc */
4950 case 1: /* dec */
4951 if ((opcode & 1) == 0)
4952 ir.ot = OT_BYTE;
4953 else
4954 ir.ot = ir.dflag + OT_WORD;
4955 if (ir.mod != 3)
4956 {
4957 if (i386_record_lea_modrm (&ir))
4958 return -1;
4959 }
4960 else
4961 {
4962 ir.rm |= ir.rex_b;
4963 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4964 ir.rm &= 0x3;
4965 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
4966 }
4967 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4968 break;
4969 case 2: /* call */
4970 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4971 ir.dflag = 2;
4972 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4973 return -1;
4974 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4975 break;
4976 case 3: /* lcall */
4977 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
4978 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4979 return -1;
4980 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4981 break;
4982 case 4: /* jmp */
4983 case 5: /* ljmp */
4984 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4985 break;
4986 case 6: /* push */
4987 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4988 ir.dflag = 2;
4989 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4990 return -1;
4991 break;
4992 default:
4993 ir.addr -= 2;
4994 opcode = opcode << 8 | ir.modrm;
4995 goto no_support;
4996 break;
4997 }
4998 break;
4999
5000 case 0x84: /* test */
5001 case 0x85:
5002 case 0xa8:
5003 case 0xa9:
5004 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5005 break;
5006
5007 case 0x98: /* CWDE/CBW */
5008 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5009 break;
5010
5011 case 0x99: /* CDQ/CWD */
5012 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5013 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5014 break;
5015
5016 case 0x0faf: /* imul */
5017 case 0x69:
5018 case 0x6b:
5019 ir.ot = ir.dflag + OT_WORD;
5020 if (i386_record_modrm (&ir))
5021 return -1;
5022 if (opcode == 0x69)
5023 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5024 else if (opcode == 0x6b)
5025 ir.rip_offset = 1;
5026 ir.reg |= rex_r;
5027 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5028 ir.reg &= 0x3;
5029 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5030 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5031 break;
5032
5033 case 0x0fc0: /* xadd */
5034 case 0x0fc1:
5035 if ((opcode & 1) == 0)
5036 ir.ot = OT_BYTE;
5037 else
5038 ir.ot = ir.dflag + OT_WORD;
5039 if (i386_record_modrm (&ir))
5040 return -1;
5041 ir.reg |= rex_r;
5042 if (ir.mod == 3)
5043 {
5044 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5045 ir.reg &= 0x3;
5046 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5047 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5048 ir.rm &= 0x3;
5049 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5050 }
5051 else
5052 {
5053 if (i386_record_lea_modrm (&ir))
5054 return -1;
5055 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5056 ir.reg &= 0x3;
5057 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5058 }
5059 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5060 break;
5061
5062 case 0x0fb0: /* cmpxchg */
5063 case 0x0fb1:
5064 if ((opcode & 1) == 0)
5065 ir.ot = OT_BYTE;
5066 else
5067 ir.ot = ir.dflag + OT_WORD;
5068 if (i386_record_modrm (&ir))
5069 return -1;
5070 if (ir.mod == 3)
5071 {
5072 ir.reg |= rex_r;
5073 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5074 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5075 ir.reg &= 0x3;
5076 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5077 }
5078 else
5079 {
5080 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5081 if (i386_record_lea_modrm (&ir))
5082 return -1;
5083 }
5084 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5085 break;
5086
5087 case 0x0fc7: /* cmpxchg8b */
5088 if (i386_record_modrm (&ir))
5089 return -1;
5090 if (ir.mod == 3)
5091 {
5092 ir.addr -= 2;
5093 opcode = opcode << 8 | ir.modrm;
5094 goto no_support;
5095 }
5096 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5097 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5098 if (i386_record_lea_modrm (&ir))
5099 return -1;
5100 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5101 break;
5102
5103 case 0x50: /* push */
5104 case 0x51:
5105 case 0x52:
5106 case 0x53:
5107 case 0x54:
5108 case 0x55:
5109 case 0x56:
5110 case 0x57:
5111 case 0x68:
5112 case 0x6a:
5113 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5114 ir.dflag = 2;
5115 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5116 return -1;
5117 break;
5118
5119 case 0x06: /* push es */
5120 case 0x0e: /* push cs */
5121 case 0x16: /* push ss */
5122 case 0x1e: /* push ds */
5123 if (ir.regmap[X86_RECORD_R8_REGNUM])
5124 {
5125 ir.addr -= 1;
5126 goto no_support;
5127 }
5128 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5129 return -1;
5130 break;
5131
5132 case 0x0fa0: /* push fs */
5133 case 0x0fa8: /* push gs */
5134 if (ir.regmap[X86_RECORD_R8_REGNUM])
5135 {
5136 ir.addr -= 2;
5137 goto no_support;
5138 }
5139 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5140 return -1;
5141 break;
5142
5143 case 0x60: /* pusha */
5144 if (ir.regmap[X86_RECORD_R8_REGNUM])
5145 {
5146 ir.addr -= 1;
5147 goto no_support;
5148 }
5149 if (i386_record_push (&ir, 1 << (ir.dflag + 4)))
5150 return -1;
5151 break;
5152
5153 case 0x58: /* pop */
5154 case 0x59:
5155 case 0x5a:
5156 case 0x5b:
5157 case 0x5c:
5158 case 0x5d:
5159 case 0x5e:
5160 case 0x5f:
5161 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5162 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
5163 break;
5164
5165 case 0x61: /* popa */
5166 if (ir.regmap[X86_RECORD_R8_REGNUM])
5167 {
5168 ir.addr -= 1;
5169 goto no_support;
5170 }
5171 for (regnum = X86_RECORD_REAX_REGNUM;
5172 regnum <= X86_RECORD_REDI_REGNUM;
5173 regnum++)
5174 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5175 break;
5176
5177 case 0x8f: /* pop */
5178 if (ir.regmap[X86_RECORD_R8_REGNUM])
5179 ir.ot = ir.dflag ? OT_QUAD : OT_WORD;
5180 else
5181 ir.ot = ir.dflag + OT_WORD;
5182 if (i386_record_modrm (&ir))
5183 return -1;
5184 if (ir.mod == 3)
5185 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5186 else
5187 {
5188 ir.popl_esp_hack = 1 << ir.ot;
5189 if (i386_record_lea_modrm (&ir))
5190 return -1;
5191 }
5192 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5193 break;
5194
5195 case 0xc8: /* enter */
5196 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
5197 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5198 ir.dflag = 2;
5199 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5200 return -1;
5201 break;
5202
5203 case 0xc9: /* leave */
5204 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5205 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
5206 break;
5207
5208 case 0x07: /* pop es */
5209 if (ir.regmap[X86_RECORD_R8_REGNUM])
5210 {
5211 ir.addr -= 1;
5212 goto no_support;
5213 }
5214 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5215 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_ES_REGNUM);
5216 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5217 break;
5218
5219 case 0x17: /* pop ss */
5220 if (ir.regmap[X86_RECORD_R8_REGNUM])
5221 {
5222 ir.addr -= 1;
5223 goto no_support;
5224 }
5225 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5226 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_SS_REGNUM);
5227 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5228 break;
5229
5230 case 0x1f: /* pop ds */
5231 if (ir.regmap[X86_RECORD_R8_REGNUM])
5232 {
5233 ir.addr -= 1;
5234 goto no_support;
5235 }
5236 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5237 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_DS_REGNUM);
5238 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5239 break;
5240
5241 case 0x0fa1: /* pop fs */
5242 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5243 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_FS_REGNUM);
5244 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5245 break;
5246
5247 case 0x0fa9: /* pop gs */
5248 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5249 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
5250 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5251 break;
5252
5253 case 0x88: /* mov */
5254 case 0x89:
5255 case 0xc6:
5256 case 0xc7:
5257 if ((opcode & 1) == 0)
5258 ir.ot = OT_BYTE;
5259 else
5260 ir.ot = ir.dflag + OT_WORD;
5261
5262 if (i386_record_modrm (&ir))
5263 return -1;
5264
5265 if (ir.mod != 3)
5266 {
5267 if (opcode == 0xc6 || opcode == 0xc7)
5268 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5269 if (i386_record_lea_modrm (&ir))
5270 return -1;
5271 }
5272 else
5273 {
5274 if (opcode == 0xc6 || opcode == 0xc7)
5275 ir.rm |= ir.rex_b;
5276 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5277 ir.rm &= 0x3;
5278 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5279 }
5280 break;
5281
5282 case 0x8a: /* mov */
5283 case 0x8b:
5284 if ((opcode & 1) == 0)
5285 ir.ot = OT_BYTE;
5286 else
5287 ir.ot = ir.dflag + OT_WORD;
5288 if (i386_record_modrm (&ir))
5289 return -1;
5290 ir.reg |= rex_r;
5291 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5292 ir.reg &= 0x3;
5293 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5294 break;
5295
5296 case 0x8c: /* mov seg */
5297 if (i386_record_modrm (&ir))
5298 return -1;
5299 if (ir.reg > 5)
5300 {
5301 ir.addr -= 2;
5302 opcode = opcode << 8 | ir.modrm;
5303 goto no_support;
5304 }
5305
5306 if (ir.mod == 3)
5307 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5308 else
5309 {
5310 ir.ot = OT_WORD;
5311 if (i386_record_lea_modrm (&ir))
5312 return -1;
5313 }
5314 break;
5315
5316 case 0x8e: /* mov seg */
5317 if (i386_record_modrm (&ir))
5318 return -1;
5319 switch (ir.reg)
5320 {
5321 case 0:
5322 regnum = X86_RECORD_ES_REGNUM;
5323 break;
5324 case 2:
5325 regnum = X86_RECORD_SS_REGNUM;
5326 break;
5327 case 3:
5328 regnum = X86_RECORD_DS_REGNUM;
5329 break;
5330 case 4:
5331 regnum = X86_RECORD_FS_REGNUM;
5332 break;
5333 case 5:
5334 regnum = X86_RECORD_GS_REGNUM;
5335 break;
5336 default:
5337 ir.addr -= 2;
5338 opcode = opcode << 8 | ir.modrm;
5339 goto no_support;
5340 break;
5341 }
5342 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5343 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5344 break;
5345
5346 case 0x0fb6: /* movzbS */
5347 case 0x0fb7: /* movzwS */
5348 case 0x0fbe: /* movsbS */
5349 case 0x0fbf: /* movswS */
5350 if (i386_record_modrm (&ir))
5351 return -1;
5352 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5353 break;
5354
5355 case 0x8d: /* lea */
5356 if (i386_record_modrm (&ir))
5357 return -1;
5358 if (ir.mod == 3)
5359 {
5360 ir.addr -= 2;
5361 opcode = opcode << 8 | ir.modrm;
5362 goto no_support;
5363 }
5364 ir.ot = ir.dflag;
5365 ir.reg |= rex_r;
5366 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5367 ir.reg &= 0x3;
5368 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5369 break;
5370
5371 case 0xa0: /* mov EAX */
5372 case 0xa1:
5373
5374 case 0xd7: /* xlat */
5375 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5376 break;
5377
5378 case 0xa2: /* mov EAX */
5379 case 0xa3:
5380 if (ir.override >= 0)
5381 {
5382 if (record_full_memory_query)
5383 {
5384 int q;
5385
5386 target_terminal_ours ();
5387 q = yquery (_("\
5388 Process record ignores the memory change of instruction at address %s\n\
5389 because it can't get the value of the segment register.\n\
5390 Do you want to stop the program?"),
5391 paddress (gdbarch, ir.orig_addr));
5392 target_terminal_inferior ();
5393 if (q)
5394 return -1;
5395 }
5396 }
5397 else
5398 {
5399 if ((opcode & 1) == 0)
5400 ir.ot = OT_BYTE;
5401 else
5402 ir.ot = ir.dflag + OT_WORD;
5403 if (ir.aflag == 2)
5404 {
5405 if (record_read_memory (gdbarch, ir.addr, buf, 8))
5406 return -1;
5407 ir.addr += 8;
5408 addr = extract_unsigned_integer (buf, 8, byte_order);
5409 }
5410 else if (ir.aflag)
5411 {
5412 if (record_read_memory (gdbarch, ir.addr, buf, 4))
5413 return -1;
5414 ir.addr += 4;
5415 addr = extract_unsigned_integer (buf, 4, byte_order);
5416 }
5417 else
5418 {
5419 if (record_read_memory (gdbarch, ir.addr, buf, 2))
5420 return -1;
5421 ir.addr += 2;
5422 addr = extract_unsigned_integer (buf, 2, byte_order);
5423 }
5424 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
5425 return -1;
5426 }
5427 break;
5428
5429 case 0xb0: /* mov R, Ib */
5430 case 0xb1:
5431 case 0xb2:
5432 case 0xb3:
5433 case 0xb4:
5434 case 0xb5:
5435 case 0xb6:
5436 case 0xb7:
5437 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((ir.regmap[X86_RECORD_R8_REGNUM])
5438 ? ((opcode & 0x7) | ir.rex_b)
5439 : ((opcode & 0x7) & 0x3));
5440 break;
5441
5442 case 0xb8: /* mov R, Iv */
5443 case 0xb9:
5444 case 0xba:
5445 case 0xbb:
5446 case 0xbc:
5447 case 0xbd:
5448 case 0xbe:
5449 case 0xbf:
5450 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
5451 break;
5452
5453 case 0x91: /* xchg R, EAX */
5454 case 0x92:
5455 case 0x93:
5456 case 0x94:
5457 case 0x95:
5458 case 0x96:
5459 case 0x97:
5460 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5461 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 0x7);
5462 break;
5463
5464 case 0x86: /* xchg Ev, Gv */
5465 case 0x87:
5466 if ((opcode & 1) == 0)
5467 ir.ot = OT_BYTE;
5468 else
5469 ir.ot = ir.dflag + OT_WORD;
5470 if (i386_record_modrm (&ir))
5471 return -1;
5472 if (ir.mod == 3)
5473 {
5474 ir.rm |= ir.rex_b;
5475 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5476 ir.rm &= 0x3;
5477 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5478 }
5479 else
5480 {
5481 if (i386_record_lea_modrm (&ir))
5482 return -1;
5483 }
5484 ir.reg |= rex_r;
5485 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5486 ir.reg &= 0x3;
5487 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5488 break;
5489
5490 case 0xc4: /* les Gv */
5491 case 0xc5: /* lds Gv */
5492 if (ir.regmap[X86_RECORD_R8_REGNUM])
5493 {
5494 ir.addr -= 1;
5495 goto no_support;
5496 }
5497 /* FALLTHROUGH */
5498 case 0x0fb2: /* lss Gv */
5499 case 0x0fb4: /* lfs Gv */
5500 case 0x0fb5: /* lgs Gv */
5501 if (i386_record_modrm (&ir))
5502 return -1;
5503 if (ir.mod == 3)
5504 {
5505 if (opcode > 0xff)
5506 ir.addr -= 3;
5507 else
5508 ir.addr -= 2;
5509 opcode = opcode << 8 | ir.modrm;
5510 goto no_support;
5511 }
5512 switch (opcode)
5513 {
5514 case 0xc4: /* les Gv */
5515 regnum = X86_RECORD_ES_REGNUM;
5516 break;
5517 case 0xc5: /* lds Gv */
5518 regnum = X86_RECORD_DS_REGNUM;
5519 break;
5520 case 0x0fb2: /* lss Gv */
5521 regnum = X86_RECORD_SS_REGNUM;
5522 break;
5523 case 0x0fb4: /* lfs Gv */
5524 regnum = X86_RECORD_FS_REGNUM;
5525 break;
5526 case 0x0fb5: /* lgs Gv */
5527 regnum = X86_RECORD_GS_REGNUM;
5528 break;
5529 }
5530 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5531 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5532 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5533 break;
5534
5535 case 0xc0: /* shifts */
5536 case 0xc1:
5537 case 0xd0:
5538 case 0xd1:
5539 case 0xd2:
5540 case 0xd3:
5541 if ((opcode & 1) == 0)
5542 ir.ot = OT_BYTE;
5543 else
5544 ir.ot = ir.dflag + OT_WORD;
5545 if (i386_record_modrm (&ir))
5546 return -1;
5547 if (ir.mod != 3 && (opcode == 0xd2 || opcode == 0xd3))
5548 {
5549 if (i386_record_lea_modrm (&ir))
5550 return -1;
5551 }
5552 else
5553 {
5554 ir.rm |= ir.rex_b;
5555 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5556 ir.rm &= 0x3;
5557 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5558 }
5559 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5560 break;
5561
5562 case 0x0fa4:
5563 case 0x0fa5:
5564 case 0x0fac:
5565 case 0x0fad:
5566 if (i386_record_modrm (&ir))
5567 return -1;
5568 if (ir.mod == 3)
5569 {
5570 if (record_full_arch_list_add_reg (ir.regcache, ir.rm))
5571 return -1;
5572 }
5573 else
5574 {
5575 if (i386_record_lea_modrm (&ir))
5576 return -1;
5577 }
5578 break;
5579
5580 case 0xd8: /* Floats. */
5581 case 0xd9:
5582 case 0xda:
5583 case 0xdb:
5584 case 0xdc:
5585 case 0xdd:
5586 case 0xde:
5587 case 0xdf:
5588 if (i386_record_modrm (&ir))
5589 return -1;
5590 ir.reg |= ((opcode & 7) << 3);
5591 if (ir.mod != 3)
5592 {
5593 /* Memory. */
5594 uint64_t addr64;
5595
5596 if (i386_record_lea_modrm_addr (&ir, &addr64))
5597 return -1;
5598 switch (ir.reg)
5599 {
5600 case 0x02:
5601 case 0x12:
5602 case 0x22:
5603 case 0x32:
5604 /* For fcom, ficom nothing to do. */
5605 break;
5606 case 0x03:
5607 case 0x13:
5608 case 0x23:
5609 case 0x33:
5610 /* For fcomp, ficomp pop FPU stack, store all. */
5611 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5612 return -1;
5613 break;
5614 case 0x00:
5615 case 0x01:
5616 case 0x04:
5617 case 0x05:
5618 case 0x06:
5619 case 0x07:
5620 case 0x10:
5621 case 0x11:
5622 case 0x14:
5623 case 0x15:
5624 case 0x16:
5625 case 0x17:
5626 case 0x20:
5627 case 0x21:
5628 case 0x24:
5629 case 0x25:
5630 case 0x26:
5631 case 0x27:
5632 case 0x30:
5633 case 0x31:
5634 case 0x34:
5635 case 0x35:
5636 case 0x36:
5637 case 0x37:
5638 /* For fadd, fmul, fsub, fsubr, fdiv, fdivr, fiadd, fimul,
5639 fisub, fisubr, fidiv, fidivr, modR/M.reg is an extension
5640 of code, always affects st(0) register. */
5641 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
5642 return -1;
5643 break;
5644 case 0x08:
5645 case 0x0a:
5646 case 0x0b:
5647 case 0x18:
5648 case 0x19:
5649 case 0x1a:
5650 case 0x1b:
5651 case 0x1d:
5652 case 0x28:
5653 case 0x29:
5654 case 0x2a:
5655 case 0x2b:
5656 case 0x38:
5657 case 0x39:
5658 case 0x3a:
5659 case 0x3b:
5660 case 0x3c:
5661 case 0x3d:
5662 switch (ir.reg & 7)
5663 {
5664 case 0:
5665 /* Handling fld, fild. */
5666 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5667 return -1;
5668 break;
5669 case 1:
5670 switch (ir.reg >> 4)
5671 {
5672 case 0:
5673 if (record_full_arch_list_add_mem (addr64, 4))
5674 return -1;
5675 break;
5676 case 2:
5677 if (record_full_arch_list_add_mem (addr64, 8))
5678 return -1;
5679 break;
5680 case 3:
5681 break;
5682 default:
5683 if (record_full_arch_list_add_mem (addr64, 2))
5684 return -1;
5685 break;
5686 }
5687 break;
5688 default:
5689 switch (ir.reg >> 4)
5690 {
5691 case 0:
5692 if (record_full_arch_list_add_mem (addr64, 4))
5693 return -1;
5694 if (3 == (ir.reg & 7))
5695 {
5696 /* For fstp m32fp. */
5697 if (i386_record_floats (gdbarch, &ir,
5698 I386_SAVE_FPU_REGS))
5699 return -1;
5700 }
5701 break;
5702 case 1:
5703 if (record_full_arch_list_add_mem (addr64, 4))
5704 return -1;
5705 if ((3 == (ir.reg & 7))
5706 || (5 == (ir.reg & 7))
5707 || (7 == (ir.reg & 7)))
5708 {
5709 /* For fstp insn. */
5710 if (i386_record_floats (gdbarch, &ir,
5711 I386_SAVE_FPU_REGS))
5712 return -1;
5713 }
5714 break;
5715 case 2:
5716 if (record_full_arch_list_add_mem (addr64, 8))
5717 return -1;
5718 if (3 == (ir.reg & 7))
5719 {
5720 /* For fstp m64fp. */
5721 if (i386_record_floats (gdbarch, &ir,
5722 I386_SAVE_FPU_REGS))
5723 return -1;
5724 }
5725 break;
5726 case 3:
5727 if ((3 <= (ir.reg & 7)) && (6 <= (ir.reg & 7)))
5728 {
5729 /* For fistp, fbld, fild, fbstp. */
5730 if (i386_record_floats (gdbarch, &ir,
5731 I386_SAVE_FPU_REGS))
5732 return -1;
5733 }
5734 /* Fall through */
5735 default:
5736 if (record_full_arch_list_add_mem (addr64, 2))
5737 return -1;
5738 break;
5739 }
5740 break;
5741 }
5742 break;
5743 case 0x0c:
5744 /* Insn fldenv. */
5745 if (i386_record_floats (gdbarch, &ir,
5746 I386_SAVE_FPU_ENV_REG_STACK))
5747 return -1;
5748 break;
5749 case 0x0d:
5750 /* Insn fldcw. */
5751 if (i386_record_floats (gdbarch, &ir, I387_FCTRL_REGNUM (tdep)))
5752 return -1;
5753 break;
5754 case 0x2c:
5755 /* Insn frstor. */
5756 if (i386_record_floats (gdbarch, &ir,
5757 I386_SAVE_FPU_ENV_REG_STACK))
5758 return -1;
5759 break;
5760 case 0x0e:
5761 if (ir.dflag)
5762 {
5763 if (record_full_arch_list_add_mem (addr64, 28))
5764 return -1;
5765 }
5766 else
5767 {
5768 if (record_full_arch_list_add_mem (addr64, 14))
5769 return -1;
5770 }
5771 break;
5772 case 0x0f:
5773 case 0x2f:
5774 if (record_full_arch_list_add_mem (addr64, 2))
5775 return -1;
5776 /* Insn fstp, fbstp. */
5777 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5778 return -1;
5779 break;
5780 case 0x1f:
5781 case 0x3e:
5782 if (record_full_arch_list_add_mem (addr64, 10))
5783 return -1;
5784 break;
5785 case 0x2e:
5786 if (ir.dflag)
5787 {
5788 if (record_full_arch_list_add_mem (addr64, 28))
5789 return -1;
5790 addr64 += 28;
5791 }
5792 else
5793 {
5794 if (record_full_arch_list_add_mem (addr64, 14))
5795 return -1;
5796 addr64 += 14;
5797 }
5798 if (record_full_arch_list_add_mem (addr64, 80))
5799 return -1;
5800 /* Insn fsave. */
5801 if (i386_record_floats (gdbarch, &ir,
5802 I386_SAVE_FPU_ENV_REG_STACK))
5803 return -1;
5804 break;
5805 case 0x3f:
5806 if (record_full_arch_list_add_mem (addr64, 8))
5807 return -1;
5808 /* Insn fistp. */
5809 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5810 return -1;
5811 break;
5812 default:
5813 ir.addr -= 2;
5814 opcode = opcode << 8 | ir.modrm;
5815 goto no_support;
5816 break;
5817 }
5818 }
5819 /* Opcode is an extension of modR/M byte. */
5820 else
5821 {
5822 switch (opcode)
5823 {
5824 case 0xd8:
5825 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
5826 return -1;
5827 break;
5828 case 0xd9:
5829 if (0x0c == (ir.modrm >> 4))
5830 {
5831 if ((ir.modrm & 0x0f) <= 7)
5832 {
5833 if (i386_record_floats (gdbarch, &ir,
5834 I386_SAVE_FPU_REGS))
5835 return -1;
5836 }
5837 else
5838 {
5839 if (i386_record_floats (gdbarch, &ir,
5840 I387_ST0_REGNUM (tdep)))
5841 return -1;
5842 /* If only st(0) is changing, then we have already
5843 recorded. */
5844 if ((ir.modrm & 0x0f) - 0x08)
5845 {
5846 if (i386_record_floats (gdbarch, &ir,
5847 I387_ST0_REGNUM (tdep) +
5848 ((ir.modrm & 0x0f) - 0x08)))
5849 return -1;
5850 }
5851 }
5852 }
5853 else
5854 {
5855 switch (ir.modrm)
5856 {
5857 case 0xe0:
5858 case 0xe1:
5859 case 0xf0:
5860 case 0xf5:
5861 case 0xf8:
5862 case 0xfa:
5863 case 0xfc:
5864 case 0xfe:
5865 case 0xff:
5866 if (i386_record_floats (gdbarch, &ir,
5867 I387_ST0_REGNUM (tdep)))
5868 return -1;
5869 break;
5870 case 0xf1:
5871 case 0xf2:
5872 case 0xf3:
5873 case 0xf4:
5874 case 0xf6:
5875 case 0xf7:
5876 case 0xe8:
5877 case 0xe9:
5878 case 0xea:
5879 case 0xeb:
5880 case 0xec:
5881 case 0xed:
5882 case 0xee:
5883 case 0xf9:
5884 case 0xfb:
5885 if (i386_record_floats (gdbarch, &ir,
5886 I386_SAVE_FPU_REGS))
5887 return -1;
5888 break;
5889 case 0xfd:
5890 if (i386_record_floats (gdbarch, &ir,
5891 I387_ST0_REGNUM (tdep)))
5892 return -1;
5893 if (i386_record_floats (gdbarch, &ir,
5894 I387_ST0_REGNUM (tdep) + 1))
5895 return -1;
5896 break;
5897 }
5898 }
5899 break;
5900 case 0xda:
5901 if (0xe9 == ir.modrm)
5902 {
5903 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5904 return -1;
5905 }
5906 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
5907 {
5908 if (i386_record_floats (gdbarch, &ir,
5909 I387_ST0_REGNUM (tdep)))
5910 return -1;
5911 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
5912 {
5913 if (i386_record_floats (gdbarch, &ir,
5914 I387_ST0_REGNUM (tdep) +
5915 (ir.modrm & 0x0f)))
5916 return -1;
5917 }
5918 else if ((ir.modrm & 0x0f) - 0x08)
5919 {
5920 if (i386_record_floats (gdbarch, &ir,
5921 I387_ST0_REGNUM (tdep) +
5922 ((ir.modrm & 0x0f) - 0x08)))
5923 return -1;
5924 }
5925 }
5926 break;
5927 case 0xdb:
5928 if (0xe3 == ir.modrm)
5929 {
5930 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_ENV))
5931 return -1;
5932 }
5933 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
5934 {
5935 if (i386_record_floats (gdbarch, &ir,
5936 I387_ST0_REGNUM (tdep)))
5937 return -1;
5938 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
5939 {
5940 if (i386_record_floats (gdbarch, &ir,
5941 I387_ST0_REGNUM (tdep) +
5942 (ir.modrm & 0x0f)))
5943 return -1;
5944 }
5945 else if ((ir.modrm & 0x0f) - 0x08)
5946 {
5947 if (i386_record_floats (gdbarch, &ir,
5948 I387_ST0_REGNUM (tdep) +
5949 ((ir.modrm & 0x0f) - 0x08)))
5950 return -1;
5951 }
5952 }
5953 break;
5954 case 0xdc:
5955 if ((0x0c == ir.modrm >> 4)
5956 || (0x0d == ir.modrm >> 4)
5957 || (0x0f == ir.modrm >> 4))
5958 {
5959 if ((ir.modrm & 0x0f) <= 7)
5960 {
5961 if (i386_record_floats (gdbarch, &ir,
5962 I387_ST0_REGNUM (tdep) +
5963 (ir.modrm & 0x0f)))
5964 return -1;
5965 }
5966 else
5967 {
5968 if (i386_record_floats (gdbarch, &ir,
5969 I387_ST0_REGNUM (tdep) +
5970 ((ir.modrm & 0x0f) - 0x08)))
5971 return -1;
5972 }
5973 }
5974 break;
5975 case 0xdd:
5976 if (0x0c == ir.modrm >> 4)
5977 {
5978 if (i386_record_floats (gdbarch, &ir,
5979 I387_FTAG_REGNUM (tdep)))
5980 return -1;
5981 }
5982 else if ((0x0d == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
5983 {
5984 if ((ir.modrm & 0x0f) <= 7)
5985 {
5986 if (i386_record_floats (gdbarch, &ir,
5987 I387_ST0_REGNUM (tdep) +
5988 (ir.modrm & 0x0f)))
5989 return -1;
5990 }
5991 else
5992 {
5993 if (i386_record_floats (gdbarch, &ir,
5994 I386_SAVE_FPU_REGS))
5995 return -1;
5996 }
5997 }
5998 break;
5999 case 0xde:
6000 if ((0x0c == ir.modrm >> 4)
6001 || (0x0e == ir.modrm >> 4)
6002 || (0x0f == ir.modrm >> 4)
6003 || (0xd9 == ir.modrm))
6004 {
6005 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6006 return -1;
6007 }
6008 break;
6009 case 0xdf:
6010 if (0xe0 == ir.modrm)
6011 {
6012 if (record_full_arch_list_add_reg (ir.regcache,
6013 I386_EAX_REGNUM))
6014 return -1;
6015 }
6016 else if ((0x0f == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
6017 {
6018 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6019 return -1;
6020 }
6021 break;
6022 }
6023 }
6024 break;
6025 /* string ops */
6026 case 0xa4: /* movsS */
6027 case 0xa5:
6028 case 0xaa: /* stosS */
6029 case 0xab:
6030 case 0x6c: /* insS */
6031 case 0x6d:
6032 regcache_raw_read_unsigned (ir.regcache,
6033 ir.regmap[X86_RECORD_RECX_REGNUM],
6034 &addr);
6035 if (addr)
6036 {
6037 ULONGEST es, ds;
6038
6039 if ((opcode & 1) == 0)
6040 ir.ot = OT_BYTE;
6041 else
6042 ir.ot = ir.dflag + OT_WORD;
6043 regcache_raw_read_unsigned (ir.regcache,
6044 ir.regmap[X86_RECORD_REDI_REGNUM],
6045 &addr);
6046
6047 regcache_raw_read_unsigned (ir.regcache,
6048 ir.regmap[X86_RECORD_ES_REGNUM],
6049 &es);
6050 regcache_raw_read_unsigned (ir.regcache,
6051 ir.regmap[X86_RECORD_DS_REGNUM],
6052 &ds);
6053 if (ir.aflag && (es != ds))
6054 {
6055 /* addr += ((uint32_t) read_register (I386_ES_REGNUM)) << 4; */
6056 if (record_full_memory_query)
6057 {
6058 int q;
6059
6060 target_terminal_ours ();
6061 q = yquery (_("\
6062 Process record ignores the memory change of instruction at address %s\n\
6063 because it can't get the value of the segment register.\n\
6064 Do you want to stop the program?"),
6065 paddress (gdbarch, ir.orig_addr));
6066 target_terminal_inferior ();
6067 if (q)
6068 return -1;
6069 }
6070 }
6071 else
6072 {
6073 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
6074 return -1;
6075 }
6076
6077 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6078 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6079 if (opcode == 0xa4 || opcode == 0xa5)
6080 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6081 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6082 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6083 }
6084 break;
6085
6086 case 0xa6: /* cmpsS */
6087 case 0xa7:
6088 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6089 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6090 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6091 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6092 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6093 break;
6094
6095 case 0xac: /* lodsS */
6096 case 0xad:
6097 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6098 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6099 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6100 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6101 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6102 break;
6103
6104 case 0xae: /* scasS */
6105 case 0xaf:
6106 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6107 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6108 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6109 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6110 break;
6111
6112 case 0x6e: /* outsS */
6113 case 0x6f:
6114 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6115 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6116 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6117 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6118 break;
6119
6120 case 0xe4: /* port I/O */
6121 case 0xe5:
6122 case 0xec:
6123 case 0xed:
6124 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6125 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6126 break;
6127
6128 case 0xe6:
6129 case 0xe7:
6130 case 0xee:
6131 case 0xef:
6132 break;
6133
6134 /* control */
6135 case 0xc2: /* ret im */
6136 case 0xc3: /* ret */
6137 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6138 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6139 break;
6140
6141 case 0xca: /* lret im */
6142 case 0xcb: /* lret */
6143 case 0xcf: /* iret */
6144 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
6145 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6146 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6147 break;
6148
6149 case 0xe8: /* call im */
6150 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6151 ir.dflag = 2;
6152 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6153 return -1;
6154 break;
6155
6156 case 0x9a: /* lcall im */
6157 if (ir.regmap[X86_RECORD_R8_REGNUM])
6158 {
6159 ir.addr -= 1;
6160 goto no_support;
6161 }
6162 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
6163 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6164 return -1;
6165 break;
6166
6167 case 0xe9: /* jmp im */
6168 case 0xea: /* ljmp im */
6169 case 0xeb: /* jmp Jb */
6170 case 0x70: /* jcc Jb */
6171 case 0x71:
6172 case 0x72:
6173 case 0x73:
6174 case 0x74:
6175 case 0x75:
6176 case 0x76:
6177 case 0x77:
6178 case 0x78:
6179 case 0x79:
6180 case 0x7a:
6181 case 0x7b:
6182 case 0x7c:
6183 case 0x7d:
6184 case 0x7e:
6185 case 0x7f:
6186 case 0x0f80: /* jcc Jv */
6187 case 0x0f81:
6188 case 0x0f82:
6189 case 0x0f83:
6190 case 0x0f84:
6191 case 0x0f85:
6192 case 0x0f86:
6193 case 0x0f87:
6194 case 0x0f88:
6195 case 0x0f89:
6196 case 0x0f8a:
6197 case 0x0f8b:
6198 case 0x0f8c:
6199 case 0x0f8d:
6200 case 0x0f8e:
6201 case 0x0f8f:
6202 break;
6203
6204 case 0x0f90: /* setcc Gv */
6205 case 0x0f91:
6206 case 0x0f92:
6207 case 0x0f93:
6208 case 0x0f94:
6209 case 0x0f95:
6210 case 0x0f96:
6211 case 0x0f97:
6212 case 0x0f98:
6213 case 0x0f99:
6214 case 0x0f9a:
6215 case 0x0f9b:
6216 case 0x0f9c:
6217 case 0x0f9d:
6218 case 0x0f9e:
6219 case 0x0f9f:
6220 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6221 ir.ot = OT_BYTE;
6222 if (i386_record_modrm (&ir))
6223 return -1;
6224 if (ir.mod == 3)
6225 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rex_b ? (ir.rm | ir.rex_b)
6226 : (ir.rm & 0x3));
6227 else
6228 {
6229 if (i386_record_lea_modrm (&ir))
6230 return -1;
6231 }
6232 break;
6233
6234 case 0x0f40: /* cmov Gv, Ev */
6235 case 0x0f41:
6236 case 0x0f42:
6237 case 0x0f43:
6238 case 0x0f44:
6239 case 0x0f45:
6240 case 0x0f46:
6241 case 0x0f47:
6242 case 0x0f48:
6243 case 0x0f49:
6244 case 0x0f4a:
6245 case 0x0f4b:
6246 case 0x0f4c:
6247 case 0x0f4d:
6248 case 0x0f4e:
6249 case 0x0f4f:
6250 if (i386_record_modrm (&ir))
6251 return -1;
6252 ir.reg |= rex_r;
6253 if (ir.dflag == OT_BYTE)
6254 ir.reg &= 0x3;
6255 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
6256 break;
6257
6258 /* flags */
6259 case 0x9c: /* pushf */
6260 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6261 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6262 ir.dflag = 2;
6263 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6264 return -1;
6265 break;
6266
6267 case 0x9d: /* popf */
6268 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6269 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6270 break;
6271
6272 case 0x9e: /* sahf */
6273 if (ir.regmap[X86_RECORD_R8_REGNUM])
6274 {
6275 ir.addr -= 1;
6276 goto no_support;
6277 }
6278 /* FALLTHROUGH */
6279 case 0xf5: /* cmc */
6280 case 0xf8: /* clc */
6281 case 0xf9: /* stc */
6282 case 0xfc: /* cld */
6283 case 0xfd: /* std */
6284 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6285 break;
6286
6287 case 0x9f: /* lahf */
6288 if (ir.regmap[X86_RECORD_R8_REGNUM])
6289 {
6290 ir.addr -= 1;
6291 goto no_support;
6292 }
6293 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6294 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6295 break;
6296
6297 /* bit operations */
6298 case 0x0fba: /* bt/bts/btr/btc Gv, im */
6299 ir.ot = ir.dflag + OT_WORD;
6300 if (i386_record_modrm (&ir))
6301 return -1;
6302 if (ir.reg < 4)
6303 {
6304 ir.addr -= 2;
6305 opcode = opcode << 8 | ir.modrm;
6306 goto no_support;
6307 }
6308 if (ir.reg != 4)
6309 {
6310 if (ir.mod == 3)
6311 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6312 else
6313 {
6314 if (i386_record_lea_modrm (&ir))
6315 return -1;
6316 }
6317 }
6318 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6319 break;
6320
6321 case 0x0fa3: /* bt Gv, Ev */
6322 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6323 break;
6324
6325 case 0x0fab: /* bts */
6326 case 0x0fb3: /* btr */
6327 case 0x0fbb: /* btc */
6328 ir.ot = ir.dflag + OT_WORD;
6329 if (i386_record_modrm (&ir))
6330 return -1;
6331 if (ir.mod == 3)
6332 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6333 else
6334 {
6335 uint64_t addr64;
6336 if (i386_record_lea_modrm_addr (&ir, &addr64))
6337 return -1;
6338 regcache_raw_read_unsigned (ir.regcache,
6339 ir.regmap[ir.reg | rex_r],
6340 &addr);
6341 switch (ir.dflag)
6342 {
6343 case 0:
6344 addr64 += ((int16_t) addr >> 4) << 4;
6345 break;
6346 case 1:
6347 addr64 += ((int32_t) addr >> 5) << 5;
6348 break;
6349 case 2:
6350 addr64 += ((int64_t) addr >> 6) << 6;
6351 break;
6352 }
6353 if (record_full_arch_list_add_mem (addr64, 1 << ir.ot))
6354 return -1;
6355 if (i386_record_lea_modrm (&ir))
6356 return -1;
6357 }
6358 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6359 break;
6360
6361 case 0x0fbc: /* bsf */
6362 case 0x0fbd: /* bsr */
6363 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6364 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6365 break;
6366
6367 /* bcd */
6368 case 0x27: /* daa */
6369 case 0x2f: /* das */
6370 case 0x37: /* aaa */
6371 case 0x3f: /* aas */
6372 case 0xd4: /* aam */
6373 case 0xd5: /* aad */
6374 if (ir.regmap[X86_RECORD_R8_REGNUM])
6375 {
6376 ir.addr -= 1;
6377 goto no_support;
6378 }
6379 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6380 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6381 break;
6382
6383 /* misc */
6384 case 0x90: /* nop */
6385 if (prefixes & PREFIX_LOCK)
6386 {
6387 ir.addr -= 1;
6388 goto no_support;
6389 }
6390 break;
6391
6392 case 0x9b: /* fwait */
6393 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
6394 return -1;
6395 opcode = (uint32_t) opcode8;
6396 ir.addr++;
6397 goto reswitch;
6398 break;
6399
6400 /* XXX */
6401 case 0xcc: /* int3 */
6402 printf_unfiltered (_("Process record does not support instruction "
6403 "int3.\n"));
6404 ir.addr -= 1;
6405 goto no_support;
6406 break;
6407
6408 /* XXX */
6409 case 0xcd: /* int */
6410 {
6411 int ret;
6412 uint8_t interrupt;
6413 if (record_read_memory (gdbarch, ir.addr, &interrupt, 1))
6414 return -1;
6415 ir.addr++;
6416 if (interrupt != 0x80
6417 || tdep->i386_intx80_record == NULL)
6418 {
6419 printf_unfiltered (_("Process record does not support "
6420 "instruction int 0x%02x.\n"),
6421 interrupt);
6422 ir.addr -= 2;
6423 goto no_support;
6424 }
6425 ret = tdep->i386_intx80_record (ir.regcache);
6426 if (ret)
6427 return ret;
6428 }
6429 break;
6430
6431 /* XXX */
6432 case 0xce: /* into */
6433 printf_unfiltered (_("Process record does not support "
6434 "instruction into.\n"));
6435 ir.addr -= 1;
6436 goto no_support;
6437 break;
6438
6439 case 0xfa: /* cli */
6440 case 0xfb: /* sti */
6441 break;
6442
6443 case 0x62: /* bound */
6444 printf_unfiltered (_("Process record does not support "
6445 "instruction bound.\n"));
6446 ir.addr -= 1;
6447 goto no_support;
6448 break;
6449
6450 case 0x0fc8: /* bswap reg */
6451 case 0x0fc9:
6452 case 0x0fca:
6453 case 0x0fcb:
6454 case 0x0fcc:
6455 case 0x0fcd:
6456 case 0x0fce:
6457 case 0x0fcf:
6458 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 7) | ir.rex_b);
6459 break;
6460
6461 case 0xd6: /* salc */
6462 if (ir.regmap[X86_RECORD_R8_REGNUM])
6463 {
6464 ir.addr -= 1;
6465 goto no_support;
6466 }
6467 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6468 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6469 break;
6470
6471 case 0xe0: /* loopnz */
6472 case 0xe1: /* loopz */
6473 case 0xe2: /* loop */
6474 case 0xe3: /* jecxz */
6475 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6476 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6477 break;
6478
6479 case 0x0f30: /* wrmsr */
6480 printf_unfiltered (_("Process record does not support "
6481 "instruction wrmsr.\n"));
6482 ir.addr -= 2;
6483 goto no_support;
6484 break;
6485
6486 case 0x0f32: /* rdmsr */
6487 printf_unfiltered (_("Process record does not support "
6488 "instruction rdmsr.\n"));
6489 ir.addr -= 2;
6490 goto no_support;
6491 break;
6492
6493 case 0x0f31: /* rdtsc */
6494 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6495 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6496 break;
6497
6498 case 0x0f34: /* sysenter */
6499 {
6500 int ret;
6501 if (ir.regmap[X86_RECORD_R8_REGNUM])
6502 {
6503 ir.addr -= 2;
6504 goto no_support;
6505 }
6506 if (tdep->i386_sysenter_record == NULL)
6507 {
6508 printf_unfiltered (_("Process record does not support "
6509 "instruction sysenter.\n"));
6510 ir.addr -= 2;
6511 goto no_support;
6512 }
6513 ret = tdep->i386_sysenter_record (ir.regcache);
6514 if (ret)
6515 return ret;
6516 }
6517 break;
6518
6519 case 0x0f35: /* sysexit */
6520 printf_unfiltered (_("Process record does not support "
6521 "instruction sysexit.\n"));
6522 ir.addr -= 2;
6523 goto no_support;
6524 break;
6525
6526 case 0x0f05: /* syscall */
6527 {
6528 int ret;
6529 if (tdep->i386_syscall_record == NULL)
6530 {
6531 printf_unfiltered (_("Process record does not support "
6532 "instruction syscall.\n"));
6533 ir.addr -= 2;
6534 goto no_support;
6535 }
6536 ret = tdep->i386_syscall_record (ir.regcache);
6537 if (ret)
6538 return ret;
6539 }
6540 break;
6541
6542 case 0x0f07: /* sysret */
6543 printf_unfiltered (_("Process record does not support "
6544 "instruction sysret.\n"));
6545 ir.addr -= 2;
6546 goto no_support;
6547 break;
6548
6549 case 0x0fa2: /* cpuid */
6550 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6551 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6552 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6553 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
6554 break;
6555
6556 case 0xf4: /* hlt */
6557 printf_unfiltered (_("Process record does not support "
6558 "instruction hlt.\n"));
6559 ir.addr -= 1;
6560 goto no_support;
6561 break;
6562
6563 case 0x0f00:
6564 if (i386_record_modrm (&ir))
6565 return -1;
6566 switch (ir.reg)
6567 {
6568 case 0: /* sldt */
6569 case 1: /* str */
6570 if (ir.mod == 3)
6571 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6572 else
6573 {
6574 ir.ot = OT_WORD;
6575 if (i386_record_lea_modrm (&ir))
6576 return -1;
6577 }
6578 break;
6579 case 2: /* lldt */
6580 case 3: /* ltr */
6581 break;
6582 case 4: /* verr */
6583 case 5: /* verw */
6584 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6585 break;
6586 default:
6587 ir.addr -= 3;
6588 opcode = opcode << 8 | ir.modrm;
6589 goto no_support;
6590 break;
6591 }
6592 break;
6593
6594 case 0x0f01:
6595 if (i386_record_modrm (&ir))
6596 return -1;
6597 switch (ir.reg)
6598 {
6599 case 0: /* sgdt */
6600 {
6601 uint64_t addr64;
6602
6603 if (ir.mod == 3)
6604 {
6605 ir.addr -= 3;
6606 opcode = opcode << 8 | ir.modrm;
6607 goto no_support;
6608 }
6609 if (ir.override >= 0)
6610 {
6611 if (record_full_memory_query)
6612 {
6613 int q;
6614
6615 target_terminal_ours ();
6616 q = yquery (_("\
6617 Process record ignores the memory change of instruction at address %s\n\
6618 because it can't get the value of the segment register.\n\
6619 Do you want to stop the program?"),
6620 paddress (gdbarch, ir.orig_addr));
6621 target_terminal_inferior ();
6622 if (q)
6623 return -1;
6624 }
6625 }
6626 else
6627 {
6628 if (i386_record_lea_modrm_addr (&ir, &addr64))
6629 return -1;
6630 if (record_full_arch_list_add_mem (addr64, 2))
6631 return -1;
6632 addr64 += 2;
6633 if (ir.regmap[X86_RECORD_R8_REGNUM])
6634 {
6635 if (record_full_arch_list_add_mem (addr64, 8))
6636 return -1;
6637 }
6638 else
6639 {
6640 if (record_full_arch_list_add_mem (addr64, 4))
6641 return -1;
6642 }
6643 }
6644 }
6645 break;
6646 case 1:
6647 if (ir.mod == 3)
6648 {
6649 switch (ir.rm)
6650 {
6651 case 0: /* monitor */
6652 break;
6653 case 1: /* mwait */
6654 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6655 break;
6656 default:
6657 ir.addr -= 3;
6658 opcode = opcode << 8 | ir.modrm;
6659 goto no_support;
6660 break;
6661 }
6662 }
6663 else
6664 {
6665 /* sidt */
6666 if (ir.override >= 0)
6667 {
6668 if (record_full_memory_query)
6669 {
6670 int q;
6671
6672 target_terminal_ours ();
6673 q = yquery (_("\
6674 Process record ignores the memory change of instruction at address %s\n\
6675 because it can't get the value of the segment register.\n\
6676 Do you want to stop the program?"),
6677 paddress (gdbarch, ir.orig_addr));
6678 target_terminal_inferior ();
6679 if (q)
6680 return -1;
6681 }
6682 }
6683 else
6684 {
6685 uint64_t addr64;
6686
6687 if (i386_record_lea_modrm_addr (&ir, &addr64))
6688 return -1;
6689 if (record_full_arch_list_add_mem (addr64, 2))
6690 return -1;
6691 addr64 += 2;
6692 if (ir.regmap[X86_RECORD_R8_REGNUM])
6693 {
6694 if (record_full_arch_list_add_mem (addr64, 8))
6695 return -1;
6696 }
6697 else
6698 {
6699 if (record_full_arch_list_add_mem (addr64, 4))
6700 return -1;
6701 }
6702 }
6703 }
6704 break;
6705 case 2: /* lgdt */
6706 if (ir.mod == 3)
6707 {
6708 /* xgetbv */
6709 if (ir.rm == 0)
6710 {
6711 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6712 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6713 break;
6714 }
6715 /* xsetbv */
6716 else if (ir.rm == 1)
6717 break;
6718 }
6719 case 3: /* lidt */
6720 if (ir.mod == 3)
6721 {
6722 ir.addr -= 3;
6723 opcode = opcode << 8 | ir.modrm;
6724 goto no_support;
6725 }
6726 break;
6727 case 4: /* smsw */
6728 if (ir.mod == 3)
6729 {
6730 if (record_full_arch_list_add_reg (ir.regcache, ir.rm | ir.rex_b))
6731 return -1;
6732 }
6733 else
6734 {
6735 ir.ot = OT_WORD;
6736 if (i386_record_lea_modrm (&ir))
6737 return -1;
6738 }
6739 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6740 break;
6741 case 6: /* lmsw */
6742 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6743 break;
6744 case 7: /* invlpg */
6745 if (ir.mod == 3)
6746 {
6747 if (ir.rm == 0 && ir.regmap[X86_RECORD_R8_REGNUM])
6748 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
6749 else
6750 {
6751 ir.addr -= 3;
6752 opcode = opcode << 8 | ir.modrm;
6753 goto no_support;
6754 }
6755 }
6756 else
6757 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6758 break;
6759 default:
6760 ir.addr -= 3;
6761 opcode = opcode << 8 | ir.modrm;
6762 goto no_support;
6763 break;
6764 }
6765 break;
6766
6767 case 0x0f08: /* invd */
6768 case 0x0f09: /* wbinvd */
6769 break;
6770
6771 case 0x63: /* arpl */
6772 if (i386_record_modrm (&ir))
6773 return -1;
6774 if (ir.mod == 3 || ir.regmap[X86_RECORD_R8_REGNUM])
6775 {
6776 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.regmap[X86_RECORD_R8_REGNUM]
6777 ? (ir.reg | rex_r) : ir.rm);
6778 }
6779 else
6780 {
6781 ir.ot = ir.dflag ? OT_LONG : OT_WORD;
6782 if (i386_record_lea_modrm (&ir))
6783 return -1;
6784 }
6785 if (!ir.regmap[X86_RECORD_R8_REGNUM])
6786 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6787 break;
6788
6789 case 0x0f02: /* lar */
6790 case 0x0f03: /* lsl */
6791 if (i386_record_modrm (&ir))
6792 return -1;
6793 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6794 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6795 break;
6796
6797 case 0x0f18:
6798 if (i386_record_modrm (&ir))
6799 return -1;
6800 if (ir.mod == 3 && ir.reg == 3)
6801 {
6802 ir.addr -= 3;
6803 opcode = opcode << 8 | ir.modrm;
6804 goto no_support;
6805 }
6806 break;
6807
6808 case 0x0f19:
6809 case 0x0f1a:
6810 case 0x0f1b:
6811 case 0x0f1c:
6812 case 0x0f1d:
6813 case 0x0f1e:
6814 case 0x0f1f:
6815 /* nop (multi byte) */
6816 break;
6817
6818 case 0x0f20: /* mov reg, crN */
6819 case 0x0f22: /* mov crN, reg */
6820 if (i386_record_modrm (&ir))
6821 return -1;
6822 if ((ir.modrm & 0xc0) != 0xc0)
6823 {
6824 ir.addr -= 3;
6825 opcode = opcode << 8 | ir.modrm;
6826 goto no_support;
6827 }
6828 switch (ir.reg)
6829 {
6830 case 0:
6831 case 2:
6832 case 3:
6833 case 4:
6834 case 8:
6835 if (opcode & 2)
6836 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6837 else
6838 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6839 break;
6840 default:
6841 ir.addr -= 3;
6842 opcode = opcode << 8 | ir.modrm;
6843 goto no_support;
6844 break;
6845 }
6846 break;
6847
6848 case 0x0f21: /* mov reg, drN */
6849 case 0x0f23: /* mov drN, reg */
6850 if (i386_record_modrm (&ir))
6851 return -1;
6852 if ((ir.modrm & 0xc0) != 0xc0 || ir.reg == 4
6853 || ir.reg == 5 || ir.reg >= 8)
6854 {
6855 ir.addr -= 3;
6856 opcode = opcode << 8 | ir.modrm;
6857 goto no_support;
6858 }
6859 if (opcode & 2)
6860 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6861 else
6862 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6863 break;
6864
6865 case 0x0f06: /* clts */
6866 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6867 break;
6868
6869 /* MMX 3DNow! SSE SSE2 SSE3 SSSE3 SSE4 */
6870
6871 case 0x0f0d: /* 3DNow! prefetch */
6872 break;
6873
6874 case 0x0f0e: /* 3DNow! femms */
6875 case 0x0f77: /* emms */
6876 if (i386_fpc_regnum_p (gdbarch, I387_FTAG_REGNUM(tdep)))
6877 goto no_support;
6878 record_full_arch_list_add_reg (ir.regcache, I387_FTAG_REGNUM(tdep));
6879 break;
6880
6881 case 0x0f0f: /* 3DNow! data */
6882 if (i386_record_modrm (&ir))
6883 return -1;
6884 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
6885 return -1;
6886 ir.addr++;
6887 switch (opcode8)
6888 {
6889 case 0x0c: /* 3DNow! pi2fw */
6890 case 0x0d: /* 3DNow! pi2fd */
6891 case 0x1c: /* 3DNow! pf2iw */
6892 case 0x1d: /* 3DNow! pf2id */
6893 case 0x8a: /* 3DNow! pfnacc */
6894 case 0x8e: /* 3DNow! pfpnacc */
6895 case 0x90: /* 3DNow! pfcmpge */
6896 case 0x94: /* 3DNow! pfmin */
6897 case 0x96: /* 3DNow! pfrcp */
6898 case 0x97: /* 3DNow! pfrsqrt */
6899 case 0x9a: /* 3DNow! pfsub */
6900 case 0x9e: /* 3DNow! pfadd */
6901 case 0xa0: /* 3DNow! pfcmpgt */
6902 case 0xa4: /* 3DNow! pfmax */
6903 case 0xa6: /* 3DNow! pfrcpit1 */
6904 case 0xa7: /* 3DNow! pfrsqit1 */
6905 case 0xaa: /* 3DNow! pfsubr */
6906 case 0xae: /* 3DNow! pfacc */
6907 case 0xb0: /* 3DNow! pfcmpeq */
6908 case 0xb4: /* 3DNow! pfmul */
6909 case 0xb6: /* 3DNow! pfrcpit2 */
6910 case 0xb7: /* 3DNow! pmulhrw */
6911 case 0xbb: /* 3DNow! pswapd */
6912 case 0xbf: /* 3DNow! pavgusb */
6913 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
6914 goto no_support_3dnow_data;
6915 record_full_arch_list_add_reg (ir.regcache, ir.reg);
6916 break;
6917
6918 default:
6919 no_support_3dnow_data:
6920 opcode = (opcode << 8) | opcode8;
6921 goto no_support;
6922 break;
6923 }
6924 break;
6925
6926 case 0x0faa: /* rsm */
6927 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6928 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6929 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6930 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6931 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
6932 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6933 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
6934 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6935 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6936 break;
6937
6938 case 0x0fae:
6939 if (i386_record_modrm (&ir))
6940 return -1;
6941 switch(ir.reg)
6942 {
6943 case 0: /* fxsave */
6944 {
6945 uint64_t tmpu64;
6946
6947 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6948 if (i386_record_lea_modrm_addr (&ir, &tmpu64))
6949 return -1;
6950 if (record_full_arch_list_add_mem (tmpu64, 512))
6951 return -1;
6952 }
6953 break;
6954
6955 case 1: /* fxrstor */
6956 {
6957 int i;
6958
6959 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6960
6961 for (i = I387_MM0_REGNUM (tdep);
6962 i386_mmx_regnum_p (gdbarch, i); i++)
6963 record_full_arch_list_add_reg (ir.regcache, i);
6964
6965 for (i = I387_XMM0_REGNUM (tdep);
6966 i386_xmm_regnum_p (gdbarch, i); i++)
6967 record_full_arch_list_add_reg (ir.regcache, i);
6968
6969 if (i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
6970 record_full_arch_list_add_reg (ir.regcache,
6971 I387_MXCSR_REGNUM(tdep));
6972
6973 for (i = I387_ST0_REGNUM (tdep);
6974 i386_fp_regnum_p (gdbarch, i); i++)
6975 record_full_arch_list_add_reg (ir.regcache, i);
6976
6977 for (i = I387_FCTRL_REGNUM (tdep);
6978 i386_fpc_regnum_p (gdbarch, i); i++)
6979 record_full_arch_list_add_reg (ir.regcache, i);
6980 }
6981 break;
6982
6983 case 2: /* ldmxcsr */
6984 if (!i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
6985 goto no_support;
6986 record_full_arch_list_add_reg (ir.regcache, I387_MXCSR_REGNUM(tdep));
6987 break;
6988
6989 case 3: /* stmxcsr */
6990 ir.ot = OT_LONG;
6991 if (i386_record_lea_modrm (&ir))
6992 return -1;
6993 break;
6994
6995 case 5: /* lfence */
6996 case 6: /* mfence */
6997 case 7: /* sfence clflush */
6998 break;
6999
7000 default:
7001 opcode = (opcode << 8) | ir.modrm;
7002 goto no_support;
7003 break;
7004 }
7005 break;
7006
7007 case 0x0fc3: /* movnti */
7008 ir.ot = (ir.dflag == 2) ? OT_QUAD : OT_LONG;
7009 if (i386_record_modrm (&ir))
7010 return -1;
7011 if (ir.mod == 3)
7012 goto no_support;
7013 ir.reg |= rex_r;
7014 if (i386_record_lea_modrm (&ir))
7015 return -1;
7016 break;
7017
7018 /* Add prefix to opcode. */
7019 case 0x0f10:
7020 case 0x0f11:
7021 case 0x0f12:
7022 case 0x0f13:
7023 case 0x0f14:
7024 case 0x0f15:
7025 case 0x0f16:
7026 case 0x0f17:
7027 case 0x0f28:
7028 case 0x0f29:
7029 case 0x0f2a:
7030 case 0x0f2b:
7031 case 0x0f2c:
7032 case 0x0f2d:
7033 case 0x0f2e:
7034 case 0x0f2f:
7035 case 0x0f38:
7036 case 0x0f39:
7037 case 0x0f3a:
7038 case 0x0f50:
7039 case 0x0f51:
7040 case 0x0f52:
7041 case 0x0f53:
7042 case 0x0f54:
7043 case 0x0f55:
7044 case 0x0f56:
7045 case 0x0f57:
7046 case 0x0f58:
7047 case 0x0f59:
7048 case 0x0f5a:
7049 case 0x0f5b:
7050 case 0x0f5c:
7051 case 0x0f5d:
7052 case 0x0f5e:
7053 case 0x0f5f:
7054 case 0x0f60:
7055 case 0x0f61:
7056 case 0x0f62:
7057 case 0x0f63:
7058 case 0x0f64:
7059 case 0x0f65:
7060 case 0x0f66:
7061 case 0x0f67:
7062 case 0x0f68:
7063 case 0x0f69:
7064 case 0x0f6a:
7065 case 0x0f6b:
7066 case 0x0f6c:
7067 case 0x0f6d:
7068 case 0x0f6e:
7069 case 0x0f6f:
7070 case 0x0f70:
7071 case 0x0f71:
7072 case 0x0f72:
7073 case 0x0f73:
7074 case 0x0f74:
7075 case 0x0f75:
7076 case 0x0f76:
7077 case 0x0f7c:
7078 case 0x0f7d:
7079 case 0x0f7e:
7080 case 0x0f7f:
7081 case 0x0fb8:
7082 case 0x0fc2:
7083 case 0x0fc4:
7084 case 0x0fc5:
7085 case 0x0fc6:
7086 case 0x0fd0:
7087 case 0x0fd1:
7088 case 0x0fd2:
7089 case 0x0fd3:
7090 case 0x0fd4:
7091 case 0x0fd5:
7092 case 0x0fd6:
7093 case 0x0fd7:
7094 case 0x0fd8:
7095 case 0x0fd9:
7096 case 0x0fda:
7097 case 0x0fdb:
7098 case 0x0fdc:
7099 case 0x0fdd:
7100 case 0x0fde:
7101 case 0x0fdf:
7102 case 0x0fe0:
7103 case 0x0fe1:
7104 case 0x0fe2:
7105 case 0x0fe3:
7106 case 0x0fe4:
7107 case 0x0fe5:
7108 case 0x0fe6:
7109 case 0x0fe7:
7110 case 0x0fe8:
7111 case 0x0fe9:
7112 case 0x0fea:
7113 case 0x0feb:
7114 case 0x0fec:
7115 case 0x0fed:
7116 case 0x0fee:
7117 case 0x0fef:
7118 case 0x0ff0:
7119 case 0x0ff1:
7120 case 0x0ff2:
7121 case 0x0ff3:
7122 case 0x0ff4:
7123 case 0x0ff5:
7124 case 0x0ff6:
7125 case 0x0ff7:
7126 case 0x0ff8:
7127 case 0x0ff9:
7128 case 0x0ffa:
7129 case 0x0ffb:
7130 case 0x0ffc:
7131 case 0x0ffd:
7132 case 0x0ffe:
7133 /* Mask out PREFIX_ADDR. */
7134 switch ((prefixes & ~PREFIX_ADDR))
7135 {
7136 case PREFIX_REPNZ:
7137 opcode |= 0xf20000;
7138 break;
7139 case PREFIX_DATA:
7140 opcode |= 0x660000;
7141 break;
7142 case PREFIX_REPZ:
7143 opcode |= 0xf30000;
7144 break;
7145 }
7146 reswitch_prefix_add:
7147 switch (opcode)
7148 {
7149 case 0x0f38:
7150 case 0x660f38:
7151 case 0xf20f38:
7152 case 0x0f3a:
7153 case 0x660f3a:
7154 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
7155 return -1;
7156 ir.addr++;
7157 opcode = (uint32_t) opcode8 | opcode << 8;
7158 goto reswitch_prefix_add;
7159 break;
7160
7161 case 0x0f10: /* movups */
7162 case 0x660f10: /* movupd */
7163 case 0xf30f10: /* movss */
7164 case 0xf20f10: /* movsd */
7165 case 0x0f12: /* movlps */
7166 case 0x660f12: /* movlpd */
7167 case 0xf30f12: /* movsldup */
7168 case 0xf20f12: /* movddup */
7169 case 0x0f14: /* unpcklps */
7170 case 0x660f14: /* unpcklpd */
7171 case 0x0f15: /* unpckhps */
7172 case 0x660f15: /* unpckhpd */
7173 case 0x0f16: /* movhps */
7174 case 0x660f16: /* movhpd */
7175 case 0xf30f16: /* movshdup */
7176 case 0x0f28: /* movaps */
7177 case 0x660f28: /* movapd */
7178 case 0x0f2a: /* cvtpi2ps */
7179 case 0x660f2a: /* cvtpi2pd */
7180 case 0xf30f2a: /* cvtsi2ss */
7181 case 0xf20f2a: /* cvtsi2sd */
7182 case 0x0f2c: /* cvttps2pi */
7183 case 0x660f2c: /* cvttpd2pi */
7184 case 0x0f2d: /* cvtps2pi */
7185 case 0x660f2d: /* cvtpd2pi */
7186 case 0x660f3800: /* pshufb */
7187 case 0x660f3801: /* phaddw */
7188 case 0x660f3802: /* phaddd */
7189 case 0x660f3803: /* phaddsw */
7190 case 0x660f3804: /* pmaddubsw */
7191 case 0x660f3805: /* phsubw */
7192 case 0x660f3806: /* phsubd */
7193 case 0x660f3807: /* phsubsw */
7194 case 0x660f3808: /* psignb */
7195 case 0x660f3809: /* psignw */
7196 case 0x660f380a: /* psignd */
7197 case 0x660f380b: /* pmulhrsw */
7198 case 0x660f3810: /* pblendvb */
7199 case 0x660f3814: /* blendvps */
7200 case 0x660f3815: /* blendvpd */
7201 case 0x660f381c: /* pabsb */
7202 case 0x660f381d: /* pabsw */
7203 case 0x660f381e: /* pabsd */
7204 case 0x660f3820: /* pmovsxbw */
7205 case 0x660f3821: /* pmovsxbd */
7206 case 0x660f3822: /* pmovsxbq */
7207 case 0x660f3823: /* pmovsxwd */
7208 case 0x660f3824: /* pmovsxwq */
7209 case 0x660f3825: /* pmovsxdq */
7210 case 0x660f3828: /* pmuldq */
7211 case 0x660f3829: /* pcmpeqq */
7212 case 0x660f382a: /* movntdqa */
7213 case 0x660f3a08: /* roundps */
7214 case 0x660f3a09: /* roundpd */
7215 case 0x660f3a0a: /* roundss */
7216 case 0x660f3a0b: /* roundsd */
7217 case 0x660f3a0c: /* blendps */
7218 case 0x660f3a0d: /* blendpd */
7219 case 0x660f3a0e: /* pblendw */
7220 case 0x660f3a0f: /* palignr */
7221 case 0x660f3a20: /* pinsrb */
7222 case 0x660f3a21: /* insertps */
7223 case 0x660f3a22: /* pinsrd pinsrq */
7224 case 0x660f3a40: /* dpps */
7225 case 0x660f3a41: /* dppd */
7226 case 0x660f3a42: /* mpsadbw */
7227 case 0x660f3a60: /* pcmpestrm */
7228 case 0x660f3a61: /* pcmpestri */
7229 case 0x660f3a62: /* pcmpistrm */
7230 case 0x660f3a63: /* pcmpistri */
7231 case 0x0f51: /* sqrtps */
7232 case 0x660f51: /* sqrtpd */
7233 case 0xf20f51: /* sqrtsd */
7234 case 0xf30f51: /* sqrtss */
7235 case 0x0f52: /* rsqrtps */
7236 case 0xf30f52: /* rsqrtss */
7237 case 0x0f53: /* rcpps */
7238 case 0xf30f53: /* rcpss */
7239 case 0x0f54: /* andps */
7240 case 0x660f54: /* andpd */
7241 case 0x0f55: /* andnps */
7242 case 0x660f55: /* andnpd */
7243 case 0x0f56: /* orps */
7244 case 0x660f56: /* orpd */
7245 case 0x0f57: /* xorps */
7246 case 0x660f57: /* xorpd */
7247 case 0x0f58: /* addps */
7248 case 0x660f58: /* addpd */
7249 case 0xf20f58: /* addsd */
7250 case 0xf30f58: /* addss */
7251 case 0x0f59: /* mulps */
7252 case 0x660f59: /* mulpd */
7253 case 0xf20f59: /* mulsd */
7254 case 0xf30f59: /* mulss */
7255 case 0x0f5a: /* cvtps2pd */
7256 case 0x660f5a: /* cvtpd2ps */
7257 case 0xf20f5a: /* cvtsd2ss */
7258 case 0xf30f5a: /* cvtss2sd */
7259 case 0x0f5b: /* cvtdq2ps */
7260 case 0x660f5b: /* cvtps2dq */
7261 case 0xf30f5b: /* cvttps2dq */
7262 case 0x0f5c: /* subps */
7263 case 0x660f5c: /* subpd */
7264 case 0xf20f5c: /* subsd */
7265 case 0xf30f5c: /* subss */
7266 case 0x0f5d: /* minps */
7267 case 0x660f5d: /* minpd */
7268 case 0xf20f5d: /* minsd */
7269 case 0xf30f5d: /* minss */
7270 case 0x0f5e: /* divps */
7271 case 0x660f5e: /* divpd */
7272 case 0xf20f5e: /* divsd */
7273 case 0xf30f5e: /* divss */
7274 case 0x0f5f: /* maxps */
7275 case 0x660f5f: /* maxpd */
7276 case 0xf20f5f: /* maxsd */
7277 case 0xf30f5f: /* maxss */
7278 case 0x660f60: /* punpcklbw */
7279 case 0x660f61: /* punpcklwd */
7280 case 0x660f62: /* punpckldq */
7281 case 0x660f63: /* packsswb */
7282 case 0x660f64: /* pcmpgtb */
7283 case 0x660f65: /* pcmpgtw */
7284 case 0x660f66: /* pcmpgtd */
7285 case 0x660f67: /* packuswb */
7286 case 0x660f68: /* punpckhbw */
7287 case 0x660f69: /* punpckhwd */
7288 case 0x660f6a: /* punpckhdq */
7289 case 0x660f6b: /* packssdw */
7290 case 0x660f6c: /* punpcklqdq */
7291 case 0x660f6d: /* punpckhqdq */
7292 case 0x660f6e: /* movd */
7293 case 0x660f6f: /* movdqa */
7294 case 0xf30f6f: /* movdqu */
7295 case 0x660f70: /* pshufd */
7296 case 0xf20f70: /* pshuflw */
7297 case 0xf30f70: /* pshufhw */
7298 case 0x660f74: /* pcmpeqb */
7299 case 0x660f75: /* pcmpeqw */
7300 case 0x660f76: /* pcmpeqd */
7301 case 0x660f7c: /* haddpd */
7302 case 0xf20f7c: /* haddps */
7303 case 0x660f7d: /* hsubpd */
7304 case 0xf20f7d: /* hsubps */
7305 case 0xf30f7e: /* movq */
7306 case 0x0fc2: /* cmpps */
7307 case 0x660fc2: /* cmppd */
7308 case 0xf20fc2: /* cmpsd */
7309 case 0xf30fc2: /* cmpss */
7310 case 0x660fc4: /* pinsrw */
7311 case 0x0fc6: /* shufps */
7312 case 0x660fc6: /* shufpd */
7313 case 0x660fd0: /* addsubpd */
7314 case 0xf20fd0: /* addsubps */
7315 case 0x660fd1: /* psrlw */
7316 case 0x660fd2: /* psrld */
7317 case 0x660fd3: /* psrlq */
7318 case 0x660fd4: /* paddq */
7319 case 0x660fd5: /* pmullw */
7320 case 0xf30fd6: /* movq2dq */
7321 case 0x660fd8: /* psubusb */
7322 case 0x660fd9: /* psubusw */
7323 case 0x660fda: /* pminub */
7324 case 0x660fdb: /* pand */
7325 case 0x660fdc: /* paddusb */
7326 case 0x660fdd: /* paddusw */
7327 case 0x660fde: /* pmaxub */
7328 case 0x660fdf: /* pandn */
7329 case 0x660fe0: /* pavgb */
7330 case 0x660fe1: /* psraw */
7331 case 0x660fe2: /* psrad */
7332 case 0x660fe3: /* pavgw */
7333 case 0x660fe4: /* pmulhuw */
7334 case 0x660fe5: /* pmulhw */
7335 case 0x660fe6: /* cvttpd2dq */
7336 case 0xf20fe6: /* cvtpd2dq */
7337 case 0xf30fe6: /* cvtdq2pd */
7338 case 0x660fe8: /* psubsb */
7339 case 0x660fe9: /* psubsw */
7340 case 0x660fea: /* pminsw */
7341 case 0x660feb: /* por */
7342 case 0x660fec: /* paddsb */
7343 case 0x660fed: /* paddsw */
7344 case 0x660fee: /* pmaxsw */
7345 case 0x660fef: /* pxor */
7346 case 0xf20ff0: /* lddqu */
7347 case 0x660ff1: /* psllw */
7348 case 0x660ff2: /* pslld */
7349 case 0x660ff3: /* psllq */
7350 case 0x660ff4: /* pmuludq */
7351 case 0x660ff5: /* pmaddwd */
7352 case 0x660ff6: /* psadbw */
7353 case 0x660ff8: /* psubb */
7354 case 0x660ff9: /* psubw */
7355 case 0x660ffa: /* psubd */
7356 case 0x660ffb: /* psubq */
7357 case 0x660ffc: /* paddb */
7358 case 0x660ffd: /* paddw */
7359 case 0x660ffe: /* paddd */
7360 if (i386_record_modrm (&ir))
7361 return -1;
7362 ir.reg |= rex_r;
7363 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.reg))
7364 goto no_support;
7365 record_full_arch_list_add_reg (ir.regcache,
7366 I387_XMM0_REGNUM (tdep) + ir.reg);
7367 if ((opcode & 0xfffffffc) == 0x660f3a60)
7368 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7369 break;
7370
7371 case 0x0f11: /* movups */
7372 case 0x660f11: /* movupd */
7373 case 0xf30f11: /* movss */
7374 case 0xf20f11: /* movsd */
7375 case 0x0f13: /* movlps */
7376 case 0x660f13: /* movlpd */
7377 case 0x0f17: /* movhps */
7378 case 0x660f17: /* movhpd */
7379 case 0x0f29: /* movaps */
7380 case 0x660f29: /* movapd */
7381 case 0x660f3a14: /* pextrb */
7382 case 0x660f3a15: /* pextrw */
7383 case 0x660f3a16: /* pextrd pextrq */
7384 case 0x660f3a17: /* extractps */
7385 case 0x660f7f: /* movdqa */
7386 case 0xf30f7f: /* movdqu */
7387 if (i386_record_modrm (&ir))
7388 return -1;
7389 if (ir.mod == 3)
7390 {
7391 if (opcode == 0x0f13 || opcode == 0x660f13
7392 || opcode == 0x0f17 || opcode == 0x660f17)
7393 goto no_support;
7394 ir.rm |= ir.rex_b;
7395 if (!i386_xmm_regnum_p (gdbarch,
7396 I387_XMM0_REGNUM (tdep) + ir.rm))
7397 goto no_support;
7398 record_full_arch_list_add_reg (ir.regcache,
7399 I387_XMM0_REGNUM (tdep) + ir.rm);
7400 }
7401 else
7402 {
7403 switch (opcode)
7404 {
7405 case 0x660f3a14:
7406 ir.ot = OT_BYTE;
7407 break;
7408 case 0x660f3a15:
7409 ir.ot = OT_WORD;
7410 break;
7411 case 0x660f3a16:
7412 ir.ot = OT_LONG;
7413 break;
7414 case 0x660f3a17:
7415 ir.ot = OT_QUAD;
7416 break;
7417 default:
7418 ir.ot = OT_DQUAD;
7419 break;
7420 }
7421 if (i386_record_lea_modrm (&ir))
7422 return -1;
7423 }
7424 break;
7425
7426 case 0x0f2b: /* movntps */
7427 case 0x660f2b: /* movntpd */
7428 case 0x0fe7: /* movntq */
7429 case 0x660fe7: /* movntdq */
7430 if (ir.mod == 3)
7431 goto no_support;
7432 if (opcode == 0x0fe7)
7433 ir.ot = OT_QUAD;
7434 else
7435 ir.ot = OT_DQUAD;
7436 if (i386_record_lea_modrm (&ir))
7437 return -1;
7438 break;
7439
7440 case 0xf30f2c: /* cvttss2si */
7441 case 0xf20f2c: /* cvttsd2si */
7442 case 0xf30f2d: /* cvtss2si */
7443 case 0xf20f2d: /* cvtsd2si */
7444 case 0xf20f38f0: /* crc32 */
7445 case 0xf20f38f1: /* crc32 */
7446 case 0x0f50: /* movmskps */
7447 case 0x660f50: /* movmskpd */
7448 case 0x0fc5: /* pextrw */
7449 case 0x660fc5: /* pextrw */
7450 case 0x0fd7: /* pmovmskb */
7451 case 0x660fd7: /* pmovmskb */
7452 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7453 break;
7454
7455 case 0x0f3800: /* pshufb */
7456 case 0x0f3801: /* phaddw */
7457 case 0x0f3802: /* phaddd */
7458 case 0x0f3803: /* phaddsw */
7459 case 0x0f3804: /* pmaddubsw */
7460 case 0x0f3805: /* phsubw */
7461 case 0x0f3806: /* phsubd */
7462 case 0x0f3807: /* phsubsw */
7463 case 0x0f3808: /* psignb */
7464 case 0x0f3809: /* psignw */
7465 case 0x0f380a: /* psignd */
7466 case 0x0f380b: /* pmulhrsw */
7467 case 0x0f381c: /* pabsb */
7468 case 0x0f381d: /* pabsw */
7469 case 0x0f381e: /* pabsd */
7470 case 0x0f382b: /* packusdw */
7471 case 0x0f3830: /* pmovzxbw */
7472 case 0x0f3831: /* pmovzxbd */
7473 case 0x0f3832: /* pmovzxbq */
7474 case 0x0f3833: /* pmovzxwd */
7475 case 0x0f3834: /* pmovzxwq */
7476 case 0x0f3835: /* pmovzxdq */
7477 case 0x0f3837: /* pcmpgtq */
7478 case 0x0f3838: /* pminsb */
7479 case 0x0f3839: /* pminsd */
7480 case 0x0f383a: /* pminuw */
7481 case 0x0f383b: /* pminud */
7482 case 0x0f383c: /* pmaxsb */
7483 case 0x0f383d: /* pmaxsd */
7484 case 0x0f383e: /* pmaxuw */
7485 case 0x0f383f: /* pmaxud */
7486 case 0x0f3840: /* pmulld */
7487 case 0x0f3841: /* phminposuw */
7488 case 0x0f3a0f: /* palignr */
7489 case 0x0f60: /* punpcklbw */
7490 case 0x0f61: /* punpcklwd */
7491 case 0x0f62: /* punpckldq */
7492 case 0x0f63: /* packsswb */
7493 case 0x0f64: /* pcmpgtb */
7494 case 0x0f65: /* pcmpgtw */
7495 case 0x0f66: /* pcmpgtd */
7496 case 0x0f67: /* packuswb */
7497 case 0x0f68: /* punpckhbw */
7498 case 0x0f69: /* punpckhwd */
7499 case 0x0f6a: /* punpckhdq */
7500 case 0x0f6b: /* packssdw */
7501 case 0x0f6e: /* movd */
7502 case 0x0f6f: /* movq */
7503 case 0x0f70: /* pshufw */
7504 case 0x0f74: /* pcmpeqb */
7505 case 0x0f75: /* pcmpeqw */
7506 case 0x0f76: /* pcmpeqd */
7507 case 0x0fc4: /* pinsrw */
7508 case 0x0fd1: /* psrlw */
7509 case 0x0fd2: /* psrld */
7510 case 0x0fd3: /* psrlq */
7511 case 0x0fd4: /* paddq */
7512 case 0x0fd5: /* pmullw */
7513 case 0xf20fd6: /* movdq2q */
7514 case 0x0fd8: /* psubusb */
7515 case 0x0fd9: /* psubusw */
7516 case 0x0fda: /* pminub */
7517 case 0x0fdb: /* pand */
7518 case 0x0fdc: /* paddusb */
7519 case 0x0fdd: /* paddusw */
7520 case 0x0fde: /* pmaxub */
7521 case 0x0fdf: /* pandn */
7522 case 0x0fe0: /* pavgb */
7523 case 0x0fe1: /* psraw */
7524 case 0x0fe2: /* psrad */
7525 case 0x0fe3: /* pavgw */
7526 case 0x0fe4: /* pmulhuw */
7527 case 0x0fe5: /* pmulhw */
7528 case 0x0fe8: /* psubsb */
7529 case 0x0fe9: /* psubsw */
7530 case 0x0fea: /* pminsw */
7531 case 0x0feb: /* por */
7532 case 0x0fec: /* paddsb */
7533 case 0x0fed: /* paddsw */
7534 case 0x0fee: /* pmaxsw */
7535 case 0x0fef: /* pxor */
7536 case 0x0ff1: /* psllw */
7537 case 0x0ff2: /* pslld */
7538 case 0x0ff3: /* psllq */
7539 case 0x0ff4: /* pmuludq */
7540 case 0x0ff5: /* pmaddwd */
7541 case 0x0ff6: /* psadbw */
7542 case 0x0ff8: /* psubb */
7543 case 0x0ff9: /* psubw */
7544 case 0x0ffa: /* psubd */
7545 case 0x0ffb: /* psubq */
7546 case 0x0ffc: /* paddb */
7547 case 0x0ffd: /* paddw */
7548 case 0x0ffe: /* paddd */
7549 if (i386_record_modrm (&ir))
7550 return -1;
7551 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7552 goto no_support;
7553 record_full_arch_list_add_reg (ir.regcache,
7554 I387_MM0_REGNUM (tdep) + ir.reg);
7555 break;
7556
7557 case 0x0f71: /* psllw */
7558 case 0x0f72: /* pslld */
7559 case 0x0f73: /* psllq */
7560 if (i386_record_modrm (&ir))
7561 return -1;
7562 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
7563 goto no_support;
7564 record_full_arch_list_add_reg (ir.regcache,
7565 I387_MM0_REGNUM (tdep) + ir.rm);
7566 break;
7567
7568 case 0x660f71: /* psllw */
7569 case 0x660f72: /* pslld */
7570 case 0x660f73: /* psllq */
7571 if (i386_record_modrm (&ir))
7572 return -1;
7573 ir.rm |= ir.rex_b;
7574 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.rm))
7575 goto no_support;
7576 record_full_arch_list_add_reg (ir.regcache,
7577 I387_XMM0_REGNUM (tdep) + ir.rm);
7578 break;
7579
7580 case 0x0f7e: /* movd */
7581 case 0x660f7e: /* movd */
7582 if (i386_record_modrm (&ir))
7583 return -1;
7584 if (ir.mod == 3)
7585 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7586 else
7587 {
7588 if (ir.dflag == 2)
7589 ir.ot = OT_QUAD;
7590 else
7591 ir.ot = OT_LONG;
7592 if (i386_record_lea_modrm (&ir))
7593 return -1;
7594 }
7595 break;
7596
7597 case 0x0f7f: /* movq */
7598 if (i386_record_modrm (&ir))
7599 return -1;
7600 if (ir.mod == 3)
7601 {
7602 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
7603 goto no_support;
7604 record_full_arch_list_add_reg (ir.regcache,
7605 I387_MM0_REGNUM (tdep) + ir.rm);
7606 }
7607 else
7608 {
7609 ir.ot = OT_QUAD;
7610 if (i386_record_lea_modrm (&ir))
7611 return -1;
7612 }
7613 break;
7614
7615 case 0xf30fb8: /* popcnt */
7616 if (i386_record_modrm (&ir))
7617 return -1;
7618 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
7619 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7620 break;
7621
7622 case 0x660fd6: /* movq */
7623 if (i386_record_modrm (&ir))
7624 return -1;
7625 if (ir.mod == 3)
7626 {
7627 ir.rm |= ir.rex_b;
7628 if (!i386_xmm_regnum_p (gdbarch,
7629 I387_XMM0_REGNUM (tdep) + ir.rm))
7630 goto no_support;
7631 record_full_arch_list_add_reg (ir.regcache,
7632 I387_XMM0_REGNUM (tdep) + ir.rm);
7633 }
7634 else
7635 {
7636 ir.ot = OT_QUAD;
7637 if (i386_record_lea_modrm (&ir))
7638 return -1;
7639 }
7640 break;
7641
7642 case 0x660f3817: /* ptest */
7643 case 0x0f2e: /* ucomiss */
7644 case 0x660f2e: /* ucomisd */
7645 case 0x0f2f: /* comiss */
7646 case 0x660f2f: /* comisd */
7647 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7648 break;
7649
7650 case 0x0ff7: /* maskmovq */
7651 regcache_raw_read_unsigned (ir.regcache,
7652 ir.regmap[X86_RECORD_REDI_REGNUM],
7653 &addr);
7654 if (record_full_arch_list_add_mem (addr, 64))
7655 return -1;
7656 break;
7657
7658 case 0x660ff7: /* maskmovdqu */
7659 regcache_raw_read_unsigned (ir.regcache,
7660 ir.regmap[X86_RECORD_REDI_REGNUM],
7661 &addr);
7662 if (record_full_arch_list_add_mem (addr, 128))
7663 return -1;
7664 break;
7665
7666 default:
7667 goto no_support;
7668 break;
7669 }
7670 break;
7671
7672 default:
7673 goto no_support;
7674 break;
7675 }
7676
7677 /* In the future, maybe still need to deal with need_dasm. */
7678 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REIP_REGNUM);
7679 if (record_full_arch_list_add_end ())
7680 return -1;
7681
7682 return 0;
7683
7684 no_support:
7685 printf_unfiltered (_("Process record does not support instruction 0x%02x "
7686 "at address %s.\n"),
7687 (unsigned int) (opcode),
7688 paddress (gdbarch, ir.orig_addr));
7689 return -1;
7690 }
7691
7692 static const int i386_record_regmap[] =
7693 {
7694 I386_EAX_REGNUM, I386_ECX_REGNUM, I386_EDX_REGNUM, I386_EBX_REGNUM,
7695 I386_ESP_REGNUM, I386_EBP_REGNUM, I386_ESI_REGNUM, I386_EDI_REGNUM,
7696 0, 0, 0, 0, 0, 0, 0, 0,
7697 I386_EIP_REGNUM, I386_EFLAGS_REGNUM, I386_CS_REGNUM, I386_SS_REGNUM,
7698 I386_DS_REGNUM, I386_ES_REGNUM, I386_FS_REGNUM, I386_GS_REGNUM
7699 };
7700
7701 /* Check that the given address appears suitable for a fast
7702 tracepoint, which on x86-64 means that we need an instruction of at
7703 least 5 bytes, so that we can overwrite it with a 4-byte-offset
7704 jump and not have to worry about program jumps to an address in the
7705 middle of the tracepoint jump. On x86, it may be possible to use
7706 4-byte jumps with a 2-byte offset to a trampoline located in the
7707 bottom 64 KiB of memory. Returns 1 if OK, and writes a size
7708 of instruction to replace, and 0 if not, plus an explanatory
7709 string. */
7710
7711 static int
7712 i386_fast_tracepoint_valid_at (struct gdbarch *gdbarch,
7713 CORE_ADDR addr, int *isize, char **msg)
7714 {
7715 int len, jumplen;
7716 static struct ui_file *gdb_null = NULL;
7717
7718 /* Ask the target for the minimum instruction length supported. */
7719 jumplen = target_get_min_fast_tracepoint_insn_len ();
7720
7721 if (jumplen < 0)
7722 {
7723 /* If the target does not support the get_min_fast_tracepoint_insn_len
7724 operation, assume that fast tracepoints will always be implemented
7725 using 4-byte relative jumps on both x86 and x86-64. */
7726 jumplen = 5;
7727 }
7728 else if (jumplen == 0)
7729 {
7730 /* If the target does support get_min_fast_tracepoint_insn_len but
7731 returns zero, then the IPA has not loaded yet. In this case,
7732 we optimistically assume that truncated 2-byte relative jumps
7733 will be available on x86, and compensate later if this assumption
7734 turns out to be incorrect. On x86-64 architectures, 4-byte relative
7735 jumps will always be used. */
7736 jumplen = (register_size (gdbarch, 0) == 8) ? 5 : 4;
7737 }
7738
7739 /* Dummy file descriptor for the disassembler. */
7740 if (!gdb_null)
7741 gdb_null = ui_file_new ();
7742
7743 /* Check for fit. */
7744 len = gdb_print_insn (gdbarch, addr, gdb_null, NULL);
7745 if (isize)
7746 *isize = len;
7747
7748 if (len < jumplen)
7749 {
7750 /* Return a bit of target-specific detail to add to the caller's
7751 generic failure message. */
7752 if (msg)
7753 *msg = xstrprintf (_("; instruction is only %d bytes long, "
7754 "need at least %d bytes for the jump"),
7755 len, jumplen);
7756 return 0;
7757 }
7758 else
7759 {
7760 if (msg)
7761 *msg = NULL;
7762 return 1;
7763 }
7764 }
7765
7766 static int
7767 i386_validate_tdesc_p (struct gdbarch_tdep *tdep,
7768 struct tdesc_arch_data *tdesc_data)
7769 {
7770 const struct target_desc *tdesc = tdep->tdesc;
7771 const struct tdesc_feature *feature_core;
7772 const struct tdesc_feature *feature_sse, *feature_avx, *feature_mpx;
7773 int i, num_regs, valid_p;
7774
7775 if (! tdesc_has_registers (tdesc))
7776 return 0;
7777
7778 /* Get core registers. */
7779 feature_core = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.core");
7780 if (feature_core == NULL)
7781 return 0;
7782
7783 /* Get SSE registers. */
7784 feature_sse = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.sse");
7785
7786 /* Try AVX registers. */
7787 feature_avx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx");
7788
7789 /* Try MPX registers. */
7790 feature_mpx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx");
7791
7792 valid_p = 1;
7793
7794 /* The XCR0 bits. */
7795 if (feature_avx)
7796 {
7797 /* AVX register description requires SSE register description. */
7798 if (!feature_sse)
7799 return 0;
7800
7801 tdep->xcr0 = I386_XSTATE_AVX_MASK;
7802
7803 /* It may have been set by OSABI initialization function. */
7804 if (tdep->num_ymm_regs == 0)
7805 {
7806 tdep->ymmh_register_names = i386_ymmh_names;
7807 tdep->num_ymm_regs = 8;
7808 tdep->ymm0h_regnum = I386_YMM0H_REGNUM;
7809 }
7810
7811 for (i = 0; i < tdep->num_ymm_regs; i++)
7812 valid_p &= tdesc_numbered_register (feature_avx, tdesc_data,
7813 tdep->ymm0h_regnum + i,
7814 tdep->ymmh_register_names[i]);
7815 }
7816 else if (feature_sse)
7817 tdep->xcr0 = I386_XSTATE_SSE_MASK;
7818 else
7819 {
7820 tdep->xcr0 = I386_XSTATE_X87_MASK;
7821 tdep->num_xmm_regs = 0;
7822 }
7823
7824 num_regs = tdep->num_core_regs;
7825 for (i = 0; i < num_regs; i++)
7826 valid_p &= tdesc_numbered_register (feature_core, tdesc_data, i,
7827 tdep->register_names[i]);
7828
7829 if (feature_sse)
7830 {
7831 /* Need to include %mxcsr, so add one. */
7832 num_regs += tdep->num_xmm_regs + 1;
7833 for (; i < num_regs; i++)
7834 valid_p &= tdesc_numbered_register (feature_sse, tdesc_data, i,
7835 tdep->register_names[i]);
7836 }
7837
7838 if (feature_mpx)
7839 {
7840 tdep->xcr0 = I386_XSTATE_MPX_MASK;
7841
7842 if (tdep->bnd0r_regnum < 0)
7843 {
7844 tdep->mpx_register_names = i386_mpx_names;
7845 tdep->bnd0r_regnum = I386_BND0R_REGNUM;
7846 tdep->bndcfgu_regnum = I386_BNDCFGU_REGNUM;
7847 }
7848
7849 for (i = 0; i < I387_NUM_MPX_REGS; i++)
7850 valid_p &= tdesc_numbered_register (feature_mpx, tdesc_data,
7851 I387_BND0R_REGNUM (tdep) + i,
7852 tdep->mpx_register_names[i]);
7853 }
7854
7855 return valid_p;
7856 }
7857
7858 \f
7859 static struct gdbarch *
7860 i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
7861 {
7862 struct gdbarch_tdep *tdep;
7863 struct gdbarch *gdbarch;
7864 struct tdesc_arch_data *tdesc_data;
7865 const struct target_desc *tdesc;
7866 int mm0_regnum;
7867 int ymm0_regnum;
7868 int bnd0_regnum;
7869 int num_bnd_cooked;
7870
7871 /* If there is already a candidate, use it. */
7872 arches = gdbarch_list_lookup_by_info (arches, &info);
7873 if (arches != NULL)
7874 return arches->gdbarch;
7875
7876 /* Allocate space for the new architecture. */
7877 tdep = XCNEW (struct gdbarch_tdep);
7878 gdbarch = gdbarch_alloc (&info, tdep);
7879
7880 /* General-purpose registers. */
7881 tdep->gregset = NULL;
7882 tdep->gregset_reg_offset = NULL;
7883 tdep->gregset_num_regs = I386_NUM_GREGS;
7884 tdep->sizeof_gregset = 0;
7885
7886 /* Floating-point registers. */
7887 tdep->fpregset = NULL;
7888 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
7889
7890 tdep->xstateregset = NULL;
7891
7892 /* The default settings include the FPU registers, the MMX registers
7893 and the SSE registers. This can be overridden for a specific ABI
7894 by adjusting the members `st0_regnum', `mm0_regnum' and
7895 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
7896 will show up in the output of "info all-registers". */
7897
7898 tdep->st0_regnum = I386_ST0_REGNUM;
7899
7900 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
7901 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
7902
7903 tdep->jb_pc_offset = -1;
7904 tdep->struct_return = pcc_struct_return;
7905 tdep->sigtramp_start = 0;
7906 tdep->sigtramp_end = 0;
7907 tdep->sigtramp_p = i386_sigtramp_p;
7908 tdep->sigcontext_addr = NULL;
7909 tdep->sc_reg_offset = NULL;
7910 tdep->sc_pc_offset = -1;
7911 tdep->sc_sp_offset = -1;
7912
7913 tdep->xsave_xcr0_offset = -1;
7914
7915 tdep->record_regmap = i386_record_regmap;
7916
7917 set_gdbarch_long_long_align_bit (gdbarch, 32);
7918
7919 /* The format used for `long double' on almost all i386 targets is
7920 the i387 extended floating-point format. In fact, of all targets
7921 in the GCC 2.95 tree, only OSF/1 does it different, and insists
7922 on having a `long double' that's not `long' at all. */
7923 set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext);
7924
7925 /* Although the i387 extended floating-point has only 80 significant
7926 bits, a `long double' actually takes up 96, probably to enforce
7927 alignment. */
7928 set_gdbarch_long_double_bit (gdbarch, 96);
7929
7930 /* Register numbers of various important registers. */
7931 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
7932 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
7933 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
7934 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
7935
7936 /* NOTE: kettenis/20040418: GCC does have two possible register
7937 numbering schemes on the i386: dbx and SVR4. These schemes
7938 differ in how they number %ebp, %esp, %eflags, and the
7939 floating-point registers, and are implemented by the arrays
7940 dbx_register_map[] and svr4_dbx_register_map in
7941 gcc/config/i386.c. GCC also defines a third numbering scheme in
7942 gcc/config/i386.c, which it designates as the "default" register
7943 map used in 64bit mode. This last register numbering scheme is
7944 implemented in dbx64_register_map, and is used for AMD64; see
7945 amd64-tdep.c.
7946
7947 Currently, each GCC i386 target always uses the same register
7948 numbering scheme across all its supported debugging formats
7949 i.e. SDB (COFF), stabs and DWARF 2. This is because
7950 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
7951 DBX_REGISTER_NUMBER macro which is defined by each target's
7952 respective config header in a manner independent of the requested
7953 output debugging format.
7954
7955 This does not match the arrangement below, which presumes that
7956 the SDB and stabs numbering schemes differ from the DWARF and
7957 DWARF 2 ones. The reason for this arrangement is that it is
7958 likely to get the numbering scheme for the target's
7959 default/native debug format right. For targets where GCC is the
7960 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
7961 targets where the native toolchain uses a different numbering
7962 scheme for a particular debug format (stabs-in-ELF on Solaris)
7963 the defaults below will have to be overridden, like
7964 i386_elf_init_abi() does. */
7965
7966 /* Use the dbx register numbering scheme for stabs and COFF. */
7967 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
7968 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
7969
7970 /* Use the SVR4 register numbering scheme for DWARF 2. */
7971 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
7972
7973 /* We don't set gdbarch_stab_reg_to_regnum, since ECOFF doesn't seem to
7974 be in use on any of the supported i386 targets. */
7975
7976 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
7977
7978 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
7979
7980 /* Call dummy code. */
7981 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
7982 set_gdbarch_push_dummy_code (gdbarch, i386_push_dummy_code);
7983 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
7984 set_gdbarch_frame_align (gdbarch, i386_frame_align);
7985
7986 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
7987 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
7988 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
7989
7990 set_gdbarch_return_value (gdbarch, i386_return_value);
7991
7992 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
7993
7994 /* Stack grows downward. */
7995 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
7996
7997 set_gdbarch_breakpoint_from_pc (gdbarch, i386_breakpoint_from_pc);
7998 set_gdbarch_decr_pc_after_break (gdbarch, 1);
7999 set_gdbarch_max_insn_length (gdbarch, I386_MAX_INSN_LEN);
8000
8001 set_gdbarch_frame_args_skip (gdbarch, 8);
8002
8003 set_gdbarch_print_insn (gdbarch, i386_print_insn);
8004
8005 set_gdbarch_dummy_id (gdbarch, i386_dummy_id);
8006
8007 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
8008
8009 /* Add the i386 register groups. */
8010 i386_add_reggroups (gdbarch);
8011 tdep->register_reggroup_p = i386_register_reggroup_p;
8012
8013 /* Helper for function argument information. */
8014 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
8015
8016 /* Hook the function epilogue frame unwinder. This unwinder is
8017 appended to the list first, so that it supercedes the DWARF
8018 unwinder in function epilogues (where the DWARF unwinder
8019 currently fails). */
8020 frame_unwind_append_unwinder (gdbarch, &i386_epilogue_frame_unwind);
8021
8022 /* Hook in the DWARF CFI frame unwinder. This unwinder is appended
8023 to the list before the prologue-based unwinders, so that DWARF
8024 CFI info will be used if it is available. */
8025 dwarf2_append_unwinders (gdbarch);
8026
8027 frame_base_set_default (gdbarch, &i386_frame_base);
8028
8029 /* Pseudo registers may be changed by amd64_init_abi. */
8030 set_gdbarch_pseudo_register_read_value (gdbarch,
8031 i386_pseudo_register_read_value);
8032 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
8033
8034 set_tdesc_pseudo_register_type (gdbarch, i386_pseudo_register_type);
8035 set_tdesc_pseudo_register_name (gdbarch, i386_pseudo_register_name);
8036
8037 /* Override the normal target description method to make the AVX
8038 upper halves anonymous. */
8039 set_gdbarch_register_name (gdbarch, i386_register_name);
8040
8041 /* Even though the default ABI only includes general-purpose registers,
8042 floating-point registers and the SSE registers, we have to leave a
8043 gap for the upper AVX registers and the MPX registers. */
8044 set_gdbarch_num_regs (gdbarch, I386_MPX_NUM_REGS);
8045
8046 /* Get the x86 target description from INFO. */
8047 tdesc = info.target_desc;
8048 if (! tdesc_has_registers (tdesc))
8049 tdesc = tdesc_i386;
8050 tdep->tdesc = tdesc;
8051
8052 tdep->num_core_regs = I386_NUM_GREGS + I387_NUM_REGS;
8053 tdep->register_names = i386_register_names;
8054
8055 /* No upper YMM registers. */
8056 tdep->ymmh_register_names = NULL;
8057 tdep->ymm0h_regnum = -1;
8058
8059 tdep->num_byte_regs = 8;
8060 tdep->num_word_regs = 8;
8061 tdep->num_dword_regs = 0;
8062 tdep->num_mmx_regs = 8;
8063 tdep->num_ymm_regs = 0;
8064
8065 /* No MPX registers. */
8066 tdep->bnd0r_regnum = -1;
8067 tdep->bndcfgu_regnum = -1;
8068
8069 tdesc_data = tdesc_data_alloc ();
8070
8071 set_gdbarch_relocate_instruction (gdbarch, i386_relocate_instruction);
8072
8073 set_gdbarch_gen_return_address (gdbarch, i386_gen_return_address);
8074
8075 set_gdbarch_insn_is_call (gdbarch, i386_insn_is_call);
8076 set_gdbarch_insn_is_ret (gdbarch, i386_insn_is_ret);
8077 set_gdbarch_insn_is_jump (gdbarch, i386_insn_is_jump);
8078
8079 /* Hook in ABI-specific overrides, if they have been registered. */
8080 info.tdep_info = (void *) tdesc_data;
8081 gdbarch_init_osabi (info, gdbarch);
8082
8083 if (!i386_validate_tdesc_p (tdep, tdesc_data))
8084 {
8085 tdesc_data_cleanup (tdesc_data);
8086 xfree (tdep);
8087 gdbarch_free (gdbarch);
8088 return NULL;
8089 }
8090
8091 num_bnd_cooked = (tdep->bnd0r_regnum > 0 ? I387_NUM_BND_REGS : 0);
8092
8093 /* Wire in pseudo registers. Number of pseudo registers may be
8094 changed. */
8095 set_gdbarch_num_pseudo_regs (gdbarch, (tdep->num_byte_regs
8096 + tdep->num_word_regs
8097 + tdep->num_dword_regs
8098 + tdep->num_mmx_regs
8099 + tdep->num_ymm_regs
8100 + num_bnd_cooked));
8101
8102 /* Target description may be changed. */
8103 tdesc = tdep->tdesc;
8104
8105 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
8106
8107 /* Override gdbarch_register_reggroup_p set in tdesc_use_registers. */
8108 set_gdbarch_register_reggroup_p (gdbarch, tdep->register_reggroup_p);
8109
8110 /* Make %al the first pseudo-register. */
8111 tdep->al_regnum = gdbarch_num_regs (gdbarch);
8112 tdep->ax_regnum = tdep->al_regnum + tdep->num_byte_regs;
8113
8114 ymm0_regnum = tdep->ax_regnum + tdep->num_word_regs;
8115 if (tdep->num_dword_regs)
8116 {
8117 /* Support dword pseudo-register if it hasn't been disabled. */
8118 tdep->eax_regnum = ymm0_regnum;
8119 ymm0_regnum += tdep->num_dword_regs;
8120 }
8121 else
8122 tdep->eax_regnum = -1;
8123
8124 mm0_regnum = ymm0_regnum;
8125 if (tdep->num_ymm_regs)
8126 {
8127 /* Support YMM pseudo-register if it is available. */
8128 tdep->ymm0_regnum = ymm0_regnum;
8129 mm0_regnum += tdep->num_ymm_regs;
8130 }
8131 else
8132 tdep->ymm0_regnum = -1;
8133
8134 bnd0_regnum = mm0_regnum;
8135 if (tdep->num_mmx_regs != 0)
8136 {
8137 /* Support MMX pseudo-register if MMX hasn't been disabled. */
8138 tdep->mm0_regnum = mm0_regnum;
8139 bnd0_regnum += tdep->num_mmx_regs;
8140 }
8141 else
8142 tdep->mm0_regnum = -1;
8143
8144 if (tdep->bnd0r_regnum > 0)
8145 tdep->bnd0_regnum = bnd0_regnum;
8146 else
8147 tdep-> bnd0_regnum = -1;
8148
8149 /* Hook in the legacy prologue-based unwinders last (fallback). */
8150 frame_unwind_append_unwinder (gdbarch, &i386_stack_tramp_frame_unwind);
8151 frame_unwind_append_unwinder (gdbarch, &i386_sigtramp_frame_unwind);
8152 frame_unwind_append_unwinder (gdbarch, &i386_frame_unwind);
8153
8154 /* If we have a register mapping, enable the generic core file
8155 support, unless it has already been enabled. */
8156 if (tdep->gregset_reg_offset
8157 && !gdbarch_regset_from_core_section_p (gdbarch))
8158 set_gdbarch_regset_from_core_section (gdbarch,
8159 i386_regset_from_core_section);
8160
8161 set_gdbarch_skip_permanent_breakpoint (gdbarch,
8162 i386_skip_permanent_breakpoint);
8163
8164 set_gdbarch_fast_tracepoint_valid_at (gdbarch,
8165 i386_fast_tracepoint_valid_at);
8166
8167 return gdbarch;
8168 }
8169
8170 static enum gdb_osabi
8171 i386_coff_osabi_sniffer (bfd *abfd)
8172 {
8173 if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
8174 || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
8175 return GDB_OSABI_GO32;
8176
8177 return GDB_OSABI_UNKNOWN;
8178 }
8179 \f
8180
8181 /* Provide a prototype to silence -Wmissing-prototypes. */
8182 void _initialize_i386_tdep (void);
8183
8184 void
8185 _initialize_i386_tdep (void)
8186 {
8187 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
8188
8189 /* Add the variable that controls the disassembly flavor. */
8190 add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
8191 &disassembly_flavor, _("\
8192 Set the disassembly flavor."), _("\
8193 Show the disassembly flavor."), _("\
8194 The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
8195 NULL,
8196 NULL, /* FIXME: i18n: */
8197 &setlist, &showlist);
8198
8199 /* Add the variable that controls the convention for returning
8200 structs. */
8201 add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
8202 &struct_convention, _("\
8203 Set the convention for returning small structs."), _("\
8204 Show the convention for returning small structs."), _("\
8205 Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
8206 is \"default\"."),
8207 NULL,
8208 NULL, /* FIXME: i18n: */
8209 &setlist, &showlist);
8210
8211 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
8212 i386_coff_osabi_sniffer);
8213
8214 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
8215 i386_svr4_init_abi);
8216 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_GO32,
8217 i386_go32_init_abi);
8218
8219 /* Initialize the i386-specific register groups. */
8220 i386_init_reggroups ();
8221
8222 /* Initialize the standard target descriptions. */
8223 initialize_tdesc_i386 ();
8224 initialize_tdesc_i386_mmx ();
8225 initialize_tdesc_i386_avx ();
8226 initialize_tdesc_i386_mpx ();
8227
8228 /* Tell remote stub that we support XML target description. */
8229 register_remote_support_xml ("i386");
8230 }
This page took 0.440562 seconds and 4 git commands to generate.