Remove cleanups from check_fast_tracepoint_sals
[deliverable/binutils-gdb.git] / gdb / i386-tdep.c
1 /* Intel 386 target-dependent stuff.
2
3 Copyright (C) 1988-2018 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "opcode/i386.h"
22 #include "arch-utils.h"
23 #include "command.h"
24 #include "dummy-frame.h"
25 #include "dwarf2-frame.h"
26 #include "frame.h"
27 #include "frame-base.h"
28 #include "frame-unwind.h"
29 #include "inferior.h"
30 #include "infrun.h"
31 #include "gdbcmd.h"
32 #include "gdbcore.h"
33 #include "gdbtypes.h"
34 #include "objfiles.h"
35 #include "osabi.h"
36 #include "regcache.h"
37 #include "reggroups.h"
38 #include "regset.h"
39 #include "symfile.h"
40 #include "symtab.h"
41 #include "target.h"
42 #include "target-float.h"
43 #include "value.h"
44 #include "dis-asm.h"
45 #include "disasm.h"
46 #include "remote.h"
47 #include "i386-tdep.h"
48 #include "i387-tdep.h"
49 #include "x86-xstate.h"
50
51 #include "record.h"
52 #include "record-full.h"
53 #include "target-descriptions.h"
54 #include "arch/i386.h"
55
56 #include "ax.h"
57 #include "ax-gdb.h"
58
59 #include "stap-probe.h"
60 #include "user-regs.h"
61 #include "cli/cli-utils.h"
62 #include "expression.h"
63 #include "parser-defs.h"
64 #include <ctype.h>
65 #include <algorithm>
66
67 /* Register names. */
68
69 static const char *i386_register_names[] =
70 {
71 "eax", "ecx", "edx", "ebx",
72 "esp", "ebp", "esi", "edi",
73 "eip", "eflags", "cs", "ss",
74 "ds", "es", "fs", "gs",
75 "st0", "st1", "st2", "st3",
76 "st4", "st5", "st6", "st7",
77 "fctrl", "fstat", "ftag", "fiseg",
78 "fioff", "foseg", "fooff", "fop",
79 "xmm0", "xmm1", "xmm2", "xmm3",
80 "xmm4", "xmm5", "xmm6", "xmm7",
81 "mxcsr"
82 };
83
84 static const char *i386_zmm_names[] =
85 {
86 "zmm0", "zmm1", "zmm2", "zmm3",
87 "zmm4", "zmm5", "zmm6", "zmm7"
88 };
89
90 static const char *i386_zmmh_names[] =
91 {
92 "zmm0h", "zmm1h", "zmm2h", "zmm3h",
93 "zmm4h", "zmm5h", "zmm6h", "zmm7h"
94 };
95
96 static const char *i386_k_names[] =
97 {
98 "k0", "k1", "k2", "k3",
99 "k4", "k5", "k6", "k7"
100 };
101
102 static const char *i386_ymm_names[] =
103 {
104 "ymm0", "ymm1", "ymm2", "ymm3",
105 "ymm4", "ymm5", "ymm6", "ymm7",
106 };
107
108 static const char *i386_ymmh_names[] =
109 {
110 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
111 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
112 };
113
114 static const char *i386_mpx_names[] =
115 {
116 "bnd0raw", "bnd1raw", "bnd2raw", "bnd3raw", "bndcfgu", "bndstatus"
117 };
118
119 static const char* i386_pkeys_names[] =
120 {
121 "pkru"
122 };
123
124 /* Register names for MPX pseudo-registers. */
125
126 static const char *i386_bnd_names[] =
127 {
128 "bnd0", "bnd1", "bnd2", "bnd3"
129 };
130
131 /* Register names for MMX pseudo-registers. */
132
133 static const char *i386_mmx_names[] =
134 {
135 "mm0", "mm1", "mm2", "mm3",
136 "mm4", "mm5", "mm6", "mm7"
137 };
138
139 /* Register names for byte pseudo-registers. */
140
141 static const char *i386_byte_names[] =
142 {
143 "al", "cl", "dl", "bl",
144 "ah", "ch", "dh", "bh"
145 };
146
147 /* Register names for word pseudo-registers. */
148
149 static const char *i386_word_names[] =
150 {
151 "ax", "cx", "dx", "bx",
152 "", "bp", "si", "di"
153 };
154
155 /* Constant used for reading/writing pseudo registers. In 64-bit mode, we have
156 16 lower ZMM regs that extend corresponding xmm/ymm registers. In addition,
157 we have 16 upper ZMM regs that have to be handled differently. */
158
159 const int num_lower_zmm_regs = 16;
160
161 /* MMX register? */
162
163 static int
164 i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
165 {
166 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
167 int mm0_regnum = tdep->mm0_regnum;
168
169 if (mm0_regnum < 0)
170 return 0;
171
172 regnum -= mm0_regnum;
173 return regnum >= 0 && regnum < tdep->num_mmx_regs;
174 }
175
176 /* Byte register? */
177
178 int
179 i386_byte_regnum_p (struct gdbarch *gdbarch, int regnum)
180 {
181 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
182
183 regnum -= tdep->al_regnum;
184 return regnum >= 0 && regnum < tdep->num_byte_regs;
185 }
186
187 /* Word register? */
188
189 int
190 i386_word_regnum_p (struct gdbarch *gdbarch, int regnum)
191 {
192 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
193
194 regnum -= tdep->ax_regnum;
195 return regnum >= 0 && regnum < tdep->num_word_regs;
196 }
197
198 /* Dword register? */
199
200 int
201 i386_dword_regnum_p (struct gdbarch *gdbarch, int regnum)
202 {
203 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
204 int eax_regnum = tdep->eax_regnum;
205
206 if (eax_regnum < 0)
207 return 0;
208
209 regnum -= eax_regnum;
210 return regnum >= 0 && regnum < tdep->num_dword_regs;
211 }
212
213 /* AVX512 register? */
214
215 int
216 i386_zmmh_regnum_p (struct gdbarch *gdbarch, int regnum)
217 {
218 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
219 int zmm0h_regnum = tdep->zmm0h_regnum;
220
221 if (zmm0h_regnum < 0)
222 return 0;
223
224 regnum -= zmm0h_regnum;
225 return regnum >= 0 && regnum < tdep->num_zmm_regs;
226 }
227
228 int
229 i386_zmm_regnum_p (struct gdbarch *gdbarch, int regnum)
230 {
231 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
232 int zmm0_regnum = tdep->zmm0_regnum;
233
234 if (zmm0_regnum < 0)
235 return 0;
236
237 regnum -= zmm0_regnum;
238 return regnum >= 0 && regnum < tdep->num_zmm_regs;
239 }
240
241 int
242 i386_k_regnum_p (struct gdbarch *gdbarch, int regnum)
243 {
244 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
245 int k0_regnum = tdep->k0_regnum;
246
247 if (k0_regnum < 0)
248 return 0;
249
250 regnum -= k0_regnum;
251 return regnum >= 0 && regnum < I387_NUM_K_REGS;
252 }
253
254 static int
255 i386_ymmh_regnum_p (struct gdbarch *gdbarch, int regnum)
256 {
257 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
258 int ymm0h_regnum = tdep->ymm0h_regnum;
259
260 if (ymm0h_regnum < 0)
261 return 0;
262
263 regnum -= ymm0h_regnum;
264 return regnum >= 0 && regnum < tdep->num_ymm_regs;
265 }
266
267 /* AVX register? */
268
269 int
270 i386_ymm_regnum_p (struct gdbarch *gdbarch, int regnum)
271 {
272 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
273 int ymm0_regnum = tdep->ymm0_regnum;
274
275 if (ymm0_regnum < 0)
276 return 0;
277
278 regnum -= ymm0_regnum;
279 return regnum >= 0 && regnum < tdep->num_ymm_regs;
280 }
281
282 static int
283 i386_ymmh_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
284 {
285 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
286 int ymm16h_regnum = tdep->ymm16h_regnum;
287
288 if (ymm16h_regnum < 0)
289 return 0;
290
291 regnum -= ymm16h_regnum;
292 return regnum >= 0 && regnum < tdep->num_ymm_avx512_regs;
293 }
294
295 int
296 i386_ymm_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
297 {
298 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
299 int ymm16_regnum = tdep->ymm16_regnum;
300
301 if (ymm16_regnum < 0)
302 return 0;
303
304 regnum -= ymm16_regnum;
305 return regnum >= 0 && regnum < tdep->num_ymm_avx512_regs;
306 }
307
308 /* BND register? */
309
310 int
311 i386_bnd_regnum_p (struct gdbarch *gdbarch, int regnum)
312 {
313 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
314 int bnd0_regnum = tdep->bnd0_regnum;
315
316 if (bnd0_regnum < 0)
317 return 0;
318
319 regnum -= bnd0_regnum;
320 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
321 }
322
323 /* SSE register? */
324
325 int
326 i386_xmm_regnum_p (struct gdbarch *gdbarch, int regnum)
327 {
328 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
329 int num_xmm_regs = I387_NUM_XMM_REGS (tdep);
330
331 if (num_xmm_regs == 0)
332 return 0;
333
334 regnum -= I387_XMM0_REGNUM (tdep);
335 return regnum >= 0 && regnum < num_xmm_regs;
336 }
337
338 /* XMM_512 register? */
339
340 int
341 i386_xmm_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
342 {
343 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
344 int num_xmm_avx512_regs = I387_NUM_XMM_AVX512_REGS (tdep);
345
346 if (num_xmm_avx512_regs == 0)
347 return 0;
348
349 regnum -= I387_XMM16_REGNUM (tdep);
350 return regnum >= 0 && regnum < num_xmm_avx512_regs;
351 }
352
353 static int
354 i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
355 {
356 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
357
358 if (I387_NUM_XMM_REGS (tdep) == 0)
359 return 0;
360
361 return (regnum == I387_MXCSR_REGNUM (tdep));
362 }
363
364 /* FP register? */
365
366 int
367 i386_fp_regnum_p (struct gdbarch *gdbarch, int regnum)
368 {
369 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
370
371 if (I387_ST0_REGNUM (tdep) < 0)
372 return 0;
373
374 return (I387_ST0_REGNUM (tdep) <= regnum
375 && regnum < I387_FCTRL_REGNUM (tdep));
376 }
377
378 int
379 i386_fpc_regnum_p (struct gdbarch *gdbarch, int regnum)
380 {
381 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
382
383 if (I387_ST0_REGNUM (tdep) < 0)
384 return 0;
385
386 return (I387_FCTRL_REGNUM (tdep) <= regnum
387 && regnum < I387_XMM0_REGNUM (tdep));
388 }
389
390 /* BNDr (raw) register? */
391
392 static int
393 i386_bndr_regnum_p (struct gdbarch *gdbarch, int regnum)
394 {
395 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
396
397 if (I387_BND0R_REGNUM (tdep) < 0)
398 return 0;
399
400 regnum -= tdep->bnd0r_regnum;
401 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
402 }
403
404 /* BND control register? */
405
406 static int
407 i386_mpx_ctrl_regnum_p (struct gdbarch *gdbarch, int regnum)
408 {
409 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
410
411 if (I387_BNDCFGU_REGNUM (tdep) < 0)
412 return 0;
413
414 regnum -= I387_BNDCFGU_REGNUM (tdep);
415 return regnum >= 0 && regnum < I387_NUM_MPX_CTRL_REGS;
416 }
417
418 /* PKRU register? */
419
420 bool
421 i386_pkru_regnum_p (struct gdbarch *gdbarch, int regnum)
422 {
423 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
424 int pkru_regnum = tdep->pkru_regnum;
425
426 if (pkru_regnum < 0)
427 return false;
428
429 regnum -= pkru_regnum;
430 return regnum >= 0 && regnum < I387_NUM_PKEYS_REGS;
431 }
432
433 /* Return the name of register REGNUM, or the empty string if it is
434 an anonymous register. */
435
436 static const char *
437 i386_register_name (struct gdbarch *gdbarch, int regnum)
438 {
439 /* Hide the upper YMM registers. */
440 if (i386_ymmh_regnum_p (gdbarch, regnum))
441 return "";
442
443 /* Hide the upper YMM16-31 registers. */
444 if (i386_ymmh_avx512_regnum_p (gdbarch, regnum))
445 return "";
446
447 /* Hide the upper ZMM registers. */
448 if (i386_zmmh_regnum_p (gdbarch, regnum))
449 return "";
450
451 return tdesc_register_name (gdbarch, regnum);
452 }
453
454 /* Return the name of register REGNUM. */
455
456 const char *
457 i386_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
458 {
459 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
460 if (i386_bnd_regnum_p (gdbarch, regnum))
461 return i386_bnd_names[regnum - tdep->bnd0_regnum];
462 if (i386_mmx_regnum_p (gdbarch, regnum))
463 return i386_mmx_names[regnum - I387_MM0_REGNUM (tdep)];
464 else if (i386_ymm_regnum_p (gdbarch, regnum))
465 return i386_ymm_names[regnum - tdep->ymm0_regnum];
466 else if (i386_zmm_regnum_p (gdbarch, regnum))
467 return i386_zmm_names[regnum - tdep->zmm0_regnum];
468 else if (i386_byte_regnum_p (gdbarch, regnum))
469 return i386_byte_names[regnum - tdep->al_regnum];
470 else if (i386_word_regnum_p (gdbarch, regnum))
471 return i386_word_names[regnum - tdep->ax_regnum];
472
473 internal_error (__FILE__, __LINE__, _("invalid regnum"));
474 }
475
476 /* Convert a dbx register number REG to the appropriate register
477 number used by GDB. */
478
479 static int
480 i386_dbx_reg_to_regnum (struct gdbarch *gdbarch, int reg)
481 {
482 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
483
484 /* This implements what GCC calls the "default" register map
485 (dbx_register_map[]). */
486
487 if (reg >= 0 && reg <= 7)
488 {
489 /* General-purpose registers. The debug info calls %ebp
490 register 4, and %esp register 5. */
491 if (reg == 4)
492 return 5;
493 else if (reg == 5)
494 return 4;
495 else return reg;
496 }
497 else if (reg >= 12 && reg <= 19)
498 {
499 /* Floating-point registers. */
500 return reg - 12 + I387_ST0_REGNUM (tdep);
501 }
502 else if (reg >= 21 && reg <= 28)
503 {
504 /* SSE registers. */
505 int ymm0_regnum = tdep->ymm0_regnum;
506
507 if (ymm0_regnum >= 0
508 && i386_xmm_regnum_p (gdbarch, reg))
509 return reg - 21 + ymm0_regnum;
510 else
511 return reg - 21 + I387_XMM0_REGNUM (tdep);
512 }
513 else if (reg >= 29 && reg <= 36)
514 {
515 /* MMX registers. */
516 return reg - 29 + I387_MM0_REGNUM (tdep);
517 }
518
519 /* This will hopefully provoke a warning. */
520 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
521 }
522
523 /* Convert SVR4 DWARF register number REG to the appropriate register number
524 used by GDB. */
525
526 static int
527 i386_svr4_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
528 {
529 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
530
531 /* This implements the GCC register map that tries to be compatible
532 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
533
534 /* The SVR4 register numbering includes %eip and %eflags, and
535 numbers the floating point registers differently. */
536 if (reg >= 0 && reg <= 9)
537 {
538 /* General-purpose registers. */
539 return reg;
540 }
541 else if (reg >= 11 && reg <= 18)
542 {
543 /* Floating-point registers. */
544 return reg - 11 + I387_ST0_REGNUM (tdep);
545 }
546 else if (reg >= 21 && reg <= 36)
547 {
548 /* The SSE and MMX registers have the same numbers as with dbx. */
549 return i386_dbx_reg_to_regnum (gdbarch, reg);
550 }
551
552 switch (reg)
553 {
554 case 37: return I387_FCTRL_REGNUM (tdep);
555 case 38: return I387_FSTAT_REGNUM (tdep);
556 case 39: return I387_MXCSR_REGNUM (tdep);
557 case 40: return I386_ES_REGNUM;
558 case 41: return I386_CS_REGNUM;
559 case 42: return I386_SS_REGNUM;
560 case 43: return I386_DS_REGNUM;
561 case 44: return I386_FS_REGNUM;
562 case 45: return I386_GS_REGNUM;
563 }
564
565 return -1;
566 }
567
568 /* Wrapper on i386_svr4_dwarf_reg_to_regnum to return
569 num_regs + num_pseudo_regs for other debug formats. */
570
571 int
572 i386_svr4_reg_to_regnum (struct gdbarch *gdbarch, int reg)
573 {
574 int regnum = i386_svr4_dwarf_reg_to_regnum (gdbarch, reg);
575
576 if (regnum == -1)
577 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
578 return regnum;
579 }
580
581 \f
582
583 /* This is the variable that is set with "set disassembly-flavor", and
584 its legitimate values. */
585 static const char att_flavor[] = "att";
586 static const char intel_flavor[] = "intel";
587 static const char *const valid_flavors[] =
588 {
589 att_flavor,
590 intel_flavor,
591 NULL
592 };
593 static const char *disassembly_flavor = att_flavor;
594 \f
595
596 /* Use the program counter to determine the contents and size of a
597 breakpoint instruction. Return a pointer to a string of bytes that
598 encode a breakpoint instruction, store the length of the string in
599 *LEN and optionally adjust *PC to point to the correct memory
600 location for inserting the breakpoint.
601
602 On the i386 we have a single breakpoint that fits in a single byte
603 and can be inserted anywhere.
604
605 This function is 64-bit safe. */
606
607 constexpr gdb_byte i386_break_insn[] = { 0xcc }; /* int 3 */
608
609 typedef BP_MANIPULATION (i386_break_insn) i386_breakpoint;
610
611 \f
612 /* Displaced instruction handling. */
613
614 /* Skip the legacy instruction prefixes in INSN.
615 Not all prefixes are valid for any particular insn
616 but we needn't care, the insn will fault if it's invalid.
617 The result is a pointer to the first opcode byte,
618 or NULL if we run off the end of the buffer. */
619
620 static gdb_byte *
621 i386_skip_prefixes (gdb_byte *insn, size_t max_len)
622 {
623 gdb_byte *end = insn + max_len;
624
625 while (insn < end)
626 {
627 switch (*insn)
628 {
629 case DATA_PREFIX_OPCODE:
630 case ADDR_PREFIX_OPCODE:
631 case CS_PREFIX_OPCODE:
632 case DS_PREFIX_OPCODE:
633 case ES_PREFIX_OPCODE:
634 case FS_PREFIX_OPCODE:
635 case GS_PREFIX_OPCODE:
636 case SS_PREFIX_OPCODE:
637 case LOCK_PREFIX_OPCODE:
638 case REPE_PREFIX_OPCODE:
639 case REPNE_PREFIX_OPCODE:
640 ++insn;
641 continue;
642 default:
643 return insn;
644 }
645 }
646
647 return NULL;
648 }
649
650 static int
651 i386_absolute_jmp_p (const gdb_byte *insn)
652 {
653 /* jmp far (absolute address in operand). */
654 if (insn[0] == 0xea)
655 return 1;
656
657 if (insn[0] == 0xff)
658 {
659 /* jump near, absolute indirect (/4). */
660 if ((insn[1] & 0x38) == 0x20)
661 return 1;
662
663 /* jump far, absolute indirect (/5). */
664 if ((insn[1] & 0x38) == 0x28)
665 return 1;
666 }
667
668 return 0;
669 }
670
671 /* Return non-zero if INSN is a jump, zero otherwise. */
672
673 static int
674 i386_jmp_p (const gdb_byte *insn)
675 {
676 /* jump short, relative. */
677 if (insn[0] == 0xeb)
678 return 1;
679
680 /* jump near, relative. */
681 if (insn[0] == 0xe9)
682 return 1;
683
684 return i386_absolute_jmp_p (insn);
685 }
686
687 static int
688 i386_absolute_call_p (const gdb_byte *insn)
689 {
690 /* call far, absolute. */
691 if (insn[0] == 0x9a)
692 return 1;
693
694 if (insn[0] == 0xff)
695 {
696 /* Call near, absolute indirect (/2). */
697 if ((insn[1] & 0x38) == 0x10)
698 return 1;
699
700 /* Call far, absolute indirect (/3). */
701 if ((insn[1] & 0x38) == 0x18)
702 return 1;
703 }
704
705 return 0;
706 }
707
708 static int
709 i386_ret_p (const gdb_byte *insn)
710 {
711 switch (insn[0])
712 {
713 case 0xc2: /* ret near, pop N bytes. */
714 case 0xc3: /* ret near */
715 case 0xca: /* ret far, pop N bytes. */
716 case 0xcb: /* ret far */
717 case 0xcf: /* iret */
718 return 1;
719
720 default:
721 return 0;
722 }
723 }
724
725 static int
726 i386_call_p (const gdb_byte *insn)
727 {
728 if (i386_absolute_call_p (insn))
729 return 1;
730
731 /* call near, relative. */
732 if (insn[0] == 0xe8)
733 return 1;
734
735 return 0;
736 }
737
738 /* Return non-zero if INSN is a system call, and set *LENGTHP to its
739 length in bytes. Otherwise, return zero. */
740
741 static int
742 i386_syscall_p (const gdb_byte *insn, int *lengthp)
743 {
744 /* Is it 'int $0x80'? */
745 if ((insn[0] == 0xcd && insn[1] == 0x80)
746 /* Or is it 'sysenter'? */
747 || (insn[0] == 0x0f && insn[1] == 0x34)
748 /* Or is it 'syscall'? */
749 || (insn[0] == 0x0f && insn[1] == 0x05))
750 {
751 *lengthp = 2;
752 return 1;
753 }
754
755 return 0;
756 }
757
758 /* The gdbarch insn_is_call method. */
759
760 static int
761 i386_insn_is_call (struct gdbarch *gdbarch, CORE_ADDR addr)
762 {
763 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
764
765 read_code (addr, buf, I386_MAX_INSN_LEN);
766 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
767
768 return i386_call_p (insn);
769 }
770
771 /* The gdbarch insn_is_ret method. */
772
773 static int
774 i386_insn_is_ret (struct gdbarch *gdbarch, CORE_ADDR addr)
775 {
776 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
777
778 read_code (addr, buf, I386_MAX_INSN_LEN);
779 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
780
781 return i386_ret_p (insn);
782 }
783
784 /* The gdbarch insn_is_jump method. */
785
786 static int
787 i386_insn_is_jump (struct gdbarch *gdbarch, CORE_ADDR addr)
788 {
789 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
790
791 read_code (addr, buf, I386_MAX_INSN_LEN);
792 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
793
794 return i386_jmp_p (insn);
795 }
796
797 /* Some kernels may run one past a syscall insn, so we have to cope. */
798
799 struct displaced_step_closure *
800 i386_displaced_step_copy_insn (struct gdbarch *gdbarch,
801 CORE_ADDR from, CORE_ADDR to,
802 struct regcache *regs)
803 {
804 size_t len = gdbarch_max_insn_length (gdbarch);
805 i386_displaced_step_closure *closure = new i386_displaced_step_closure (len);
806 gdb_byte *buf = closure->buf.data ();
807
808 read_memory (from, buf, len);
809
810 /* GDB may get control back after the insn after the syscall.
811 Presumably this is a kernel bug.
812 If this is a syscall, make sure there's a nop afterwards. */
813 {
814 int syscall_length;
815 gdb_byte *insn;
816
817 insn = i386_skip_prefixes (buf, len);
818 if (insn != NULL && i386_syscall_p (insn, &syscall_length))
819 insn[syscall_length] = NOP_OPCODE;
820 }
821
822 write_memory (to, buf, len);
823
824 if (debug_displaced)
825 {
826 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
827 paddress (gdbarch, from), paddress (gdbarch, to));
828 displaced_step_dump_bytes (gdb_stdlog, buf, len);
829 }
830
831 return closure;
832 }
833
834 /* Fix up the state of registers and memory after having single-stepped
835 a displaced instruction. */
836
837 void
838 i386_displaced_step_fixup (struct gdbarch *gdbarch,
839 struct displaced_step_closure *closure_,
840 CORE_ADDR from, CORE_ADDR to,
841 struct regcache *regs)
842 {
843 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
844
845 /* The offset we applied to the instruction's address.
846 This could well be negative (when viewed as a signed 32-bit
847 value), but ULONGEST won't reflect that, so take care when
848 applying it. */
849 ULONGEST insn_offset = to - from;
850
851 i386_displaced_step_closure *closure
852 = (i386_displaced_step_closure *) closure_;
853 gdb_byte *insn = closure->buf.data ();
854 /* The start of the insn, needed in case we see some prefixes. */
855 gdb_byte *insn_start = insn;
856
857 if (debug_displaced)
858 fprintf_unfiltered (gdb_stdlog,
859 "displaced: fixup (%s, %s), "
860 "insn = 0x%02x 0x%02x ...\n",
861 paddress (gdbarch, from), paddress (gdbarch, to),
862 insn[0], insn[1]);
863
864 /* The list of issues to contend with here is taken from
865 resume_execution in arch/i386/kernel/kprobes.c, Linux 2.6.20.
866 Yay for Free Software! */
867
868 /* Relocate the %eip, if necessary. */
869
870 /* The instruction recognizers we use assume any leading prefixes
871 have been skipped. */
872 {
873 /* This is the size of the buffer in closure. */
874 size_t max_insn_len = gdbarch_max_insn_length (gdbarch);
875 gdb_byte *opcode = i386_skip_prefixes (insn, max_insn_len);
876 /* If there are too many prefixes, just ignore the insn.
877 It will fault when run. */
878 if (opcode != NULL)
879 insn = opcode;
880 }
881
882 /* Except in the case of absolute or indirect jump or call
883 instructions, or a return instruction, the new eip is relative to
884 the displaced instruction; make it relative. Well, signal
885 handler returns don't need relocation either, but we use the
886 value of %eip to recognize those; see below. */
887 if (! i386_absolute_jmp_p (insn)
888 && ! i386_absolute_call_p (insn)
889 && ! i386_ret_p (insn))
890 {
891 ULONGEST orig_eip;
892 int insn_len;
893
894 regcache_cooked_read_unsigned (regs, I386_EIP_REGNUM, &orig_eip);
895
896 /* A signal trampoline system call changes the %eip, resuming
897 execution of the main program after the signal handler has
898 returned. That makes them like 'return' instructions; we
899 shouldn't relocate %eip.
900
901 But most system calls don't, and we do need to relocate %eip.
902
903 Our heuristic for distinguishing these cases: if stepping
904 over the system call instruction left control directly after
905 the instruction, the we relocate --- control almost certainly
906 doesn't belong in the displaced copy. Otherwise, we assume
907 the instruction has put control where it belongs, and leave
908 it unrelocated. Goodness help us if there are PC-relative
909 system calls. */
910 if (i386_syscall_p (insn, &insn_len)
911 && orig_eip != to + (insn - insn_start) + insn_len
912 /* GDB can get control back after the insn after the syscall.
913 Presumably this is a kernel bug.
914 i386_displaced_step_copy_insn ensures its a nop,
915 we add one to the length for it. */
916 && orig_eip != to + (insn - insn_start) + insn_len + 1)
917 {
918 if (debug_displaced)
919 fprintf_unfiltered (gdb_stdlog,
920 "displaced: syscall changed %%eip; "
921 "not relocating\n");
922 }
923 else
924 {
925 ULONGEST eip = (orig_eip - insn_offset) & 0xffffffffUL;
926
927 /* If we just stepped over a breakpoint insn, we don't backup
928 the pc on purpose; this is to match behaviour without
929 stepping. */
930
931 regcache_cooked_write_unsigned (regs, I386_EIP_REGNUM, eip);
932
933 if (debug_displaced)
934 fprintf_unfiltered (gdb_stdlog,
935 "displaced: "
936 "relocated %%eip from %s to %s\n",
937 paddress (gdbarch, orig_eip),
938 paddress (gdbarch, eip));
939 }
940 }
941
942 /* If the instruction was PUSHFL, then the TF bit will be set in the
943 pushed value, and should be cleared. We'll leave this for later,
944 since GDB already messes up the TF flag when stepping over a
945 pushfl. */
946
947 /* If the instruction was a call, the return address now atop the
948 stack is the address following the copied instruction. We need
949 to make it the address following the original instruction. */
950 if (i386_call_p (insn))
951 {
952 ULONGEST esp;
953 ULONGEST retaddr;
954 const ULONGEST retaddr_len = 4;
955
956 regcache_cooked_read_unsigned (regs, I386_ESP_REGNUM, &esp);
957 retaddr = read_memory_unsigned_integer (esp, retaddr_len, byte_order);
958 retaddr = (retaddr - insn_offset) & 0xffffffffUL;
959 write_memory_unsigned_integer (esp, retaddr_len, byte_order, retaddr);
960
961 if (debug_displaced)
962 fprintf_unfiltered (gdb_stdlog,
963 "displaced: relocated return addr at %s to %s\n",
964 paddress (gdbarch, esp),
965 paddress (gdbarch, retaddr));
966 }
967 }
968
969 static void
970 append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
971 {
972 target_write_memory (*to, buf, len);
973 *to += len;
974 }
975
976 static void
977 i386_relocate_instruction (struct gdbarch *gdbarch,
978 CORE_ADDR *to, CORE_ADDR oldloc)
979 {
980 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
981 gdb_byte buf[I386_MAX_INSN_LEN];
982 int offset = 0, rel32, newrel;
983 int insn_length;
984 gdb_byte *insn = buf;
985
986 read_memory (oldloc, buf, I386_MAX_INSN_LEN);
987
988 insn_length = gdb_buffered_insn_length (gdbarch, insn,
989 I386_MAX_INSN_LEN, oldloc);
990
991 /* Get past the prefixes. */
992 insn = i386_skip_prefixes (insn, I386_MAX_INSN_LEN);
993
994 /* Adjust calls with 32-bit relative addresses as push/jump, with
995 the address pushed being the location where the original call in
996 the user program would return to. */
997 if (insn[0] == 0xe8)
998 {
999 gdb_byte push_buf[16];
1000 unsigned int ret_addr;
1001
1002 /* Where "ret" in the original code will return to. */
1003 ret_addr = oldloc + insn_length;
1004 push_buf[0] = 0x68; /* pushq $... */
1005 store_unsigned_integer (&push_buf[1], 4, byte_order, ret_addr);
1006 /* Push the push. */
1007 append_insns (to, 5, push_buf);
1008
1009 /* Convert the relative call to a relative jump. */
1010 insn[0] = 0xe9;
1011
1012 /* Adjust the destination offset. */
1013 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
1014 newrel = (oldloc - *to) + rel32;
1015 store_signed_integer (insn + 1, 4, byte_order, newrel);
1016
1017 if (debug_displaced)
1018 fprintf_unfiltered (gdb_stdlog,
1019 "Adjusted insn rel32=%s at %s to"
1020 " rel32=%s at %s\n",
1021 hex_string (rel32), paddress (gdbarch, oldloc),
1022 hex_string (newrel), paddress (gdbarch, *to));
1023
1024 /* Write the adjusted jump into its displaced location. */
1025 append_insns (to, 5, insn);
1026 return;
1027 }
1028
1029 /* Adjust jumps with 32-bit relative addresses. Calls are already
1030 handled above. */
1031 if (insn[0] == 0xe9)
1032 offset = 1;
1033 /* Adjust conditional jumps. */
1034 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
1035 offset = 2;
1036
1037 if (offset)
1038 {
1039 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
1040 newrel = (oldloc - *to) + rel32;
1041 store_signed_integer (insn + offset, 4, byte_order, newrel);
1042 if (debug_displaced)
1043 fprintf_unfiltered (gdb_stdlog,
1044 "Adjusted insn rel32=%s at %s to"
1045 " rel32=%s at %s\n",
1046 hex_string (rel32), paddress (gdbarch, oldloc),
1047 hex_string (newrel), paddress (gdbarch, *to));
1048 }
1049
1050 /* Write the adjusted instructions into their displaced
1051 location. */
1052 append_insns (to, insn_length, buf);
1053 }
1054
1055 \f
1056 #ifdef I386_REGNO_TO_SYMMETRY
1057 #error "The Sequent Symmetry is no longer supported."
1058 #endif
1059
1060 /* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
1061 and %esp "belong" to the calling function. Therefore these
1062 registers should be saved if they're going to be modified. */
1063
1064 /* The maximum number of saved registers. This should include all
1065 registers mentioned above, and %eip. */
1066 #define I386_NUM_SAVED_REGS I386_NUM_GREGS
1067
1068 struct i386_frame_cache
1069 {
1070 /* Base address. */
1071 CORE_ADDR base;
1072 int base_p;
1073 LONGEST sp_offset;
1074 CORE_ADDR pc;
1075
1076 /* Saved registers. */
1077 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
1078 CORE_ADDR saved_sp;
1079 int saved_sp_reg;
1080 int pc_in_eax;
1081
1082 /* Stack space reserved for local variables. */
1083 long locals;
1084 };
1085
1086 /* Allocate and initialize a frame cache. */
1087
1088 static struct i386_frame_cache *
1089 i386_alloc_frame_cache (void)
1090 {
1091 struct i386_frame_cache *cache;
1092 int i;
1093
1094 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
1095
1096 /* Base address. */
1097 cache->base_p = 0;
1098 cache->base = 0;
1099 cache->sp_offset = -4;
1100 cache->pc = 0;
1101
1102 /* Saved registers. We initialize these to -1 since zero is a valid
1103 offset (that's where %ebp is supposed to be stored). */
1104 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
1105 cache->saved_regs[i] = -1;
1106 cache->saved_sp = 0;
1107 cache->saved_sp_reg = -1;
1108 cache->pc_in_eax = 0;
1109
1110 /* Frameless until proven otherwise. */
1111 cache->locals = -1;
1112
1113 return cache;
1114 }
1115
1116 /* If the instruction at PC is a jump, return the address of its
1117 target. Otherwise, return PC. */
1118
1119 static CORE_ADDR
1120 i386_follow_jump (struct gdbarch *gdbarch, CORE_ADDR pc)
1121 {
1122 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1123 gdb_byte op;
1124 long delta = 0;
1125 int data16 = 0;
1126
1127 if (target_read_code (pc, &op, 1))
1128 return pc;
1129
1130 if (op == 0x66)
1131 {
1132 data16 = 1;
1133
1134 op = read_code_unsigned_integer (pc + 1, 1, byte_order);
1135 }
1136
1137 switch (op)
1138 {
1139 case 0xe9:
1140 /* Relative jump: if data16 == 0, disp32, else disp16. */
1141 if (data16)
1142 {
1143 delta = read_memory_integer (pc + 2, 2, byte_order);
1144
1145 /* Include the size of the jmp instruction (including the
1146 0x66 prefix). */
1147 delta += 4;
1148 }
1149 else
1150 {
1151 delta = read_memory_integer (pc + 1, 4, byte_order);
1152
1153 /* Include the size of the jmp instruction. */
1154 delta += 5;
1155 }
1156 break;
1157 case 0xeb:
1158 /* Relative jump, disp8 (ignore data16). */
1159 delta = read_memory_integer (pc + data16 + 1, 1, byte_order);
1160
1161 delta += data16 + 2;
1162 break;
1163 }
1164
1165 return pc + delta;
1166 }
1167
1168 /* Check whether PC points at a prologue for a function returning a
1169 structure or union. If so, it updates CACHE and returns the
1170 address of the first instruction after the code sequence that
1171 removes the "hidden" argument from the stack or CURRENT_PC,
1172 whichever is smaller. Otherwise, return PC. */
1173
1174 static CORE_ADDR
1175 i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
1176 struct i386_frame_cache *cache)
1177 {
1178 /* Functions that return a structure or union start with:
1179
1180 popl %eax 0x58
1181 xchgl %eax, (%esp) 0x87 0x04 0x24
1182 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
1183
1184 (the System V compiler puts out the second `xchg' instruction,
1185 and the assembler doesn't try to optimize it, so the 'sib' form
1186 gets generated). This sequence is used to get the address of the
1187 return buffer for a function that returns a structure. */
1188 static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
1189 static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
1190 gdb_byte buf[4];
1191 gdb_byte op;
1192
1193 if (current_pc <= pc)
1194 return pc;
1195
1196 if (target_read_code (pc, &op, 1))
1197 return pc;
1198
1199 if (op != 0x58) /* popl %eax */
1200 return pc;
1201
1202 if (target_read_code (pc + 1, buf, 4))
1203 return pc;
1204
1205 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
1206 return pc;
1207
1208 if (current_pc == pc)
1209 {
1210 cache->sp_offset += 4;
1211 return current_pc;
1212 }
1213
1214 if (current_pc == pc + 1)
1215 {
1216 cache->pc_in_eax = 1;
1217 return current_pc;
1218 }
1219
1220 if (buf[1] == proto1[1])
1221 return pc + 4;
1222 else
1223 return pc + 5;
1224 }
1225
1226 static CORE_ADDR
1227 i386_skip_probe (CORE_ADDR pc)
1228 {
1229 /* A function may start with
1230
1231 pushl constant
1232 call _probe
1233 addl $4, %esp
1234
1235 followed by
1236
1237 pushl %ebp
1238
1239 etc. */
1240 gdb_byte buf[8];
1241 gdb_byte op;
1242
1243 if (target_read_code (pc, &op, 1))
1244 return pc;
1245
1246 if (op == 0x68 || op == 0x6a)
1247 {
1248 int delta;
1249
1250 /* Skip past the `pushl' instruction; it has either a one-byte or a
1251 four-byte operand, depending on the opcode. */
1252 if (op == 0x68)
1253 delta = 5;
1254 else
1255 delta = 2;
1256
1257 /* Read the following 8 bytes, which should be `call _probe' (6
1258 bytes) followed by `addl $4,%esp' (2 bytes). */
1259 read_memory (pc + delta, buf, sizeof (buf));
1260 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
1261 pc += delta + sizeof (buf);
1262 }
1263
1264 return pc;
1265 }
1266
1267 /* GCC 4.1 and later, can put code in the prologue to realign the
1268 stack pointer. Check whether PC points to such code, and update
1269 CACHE accordingly. Return the first instruction after the code
1270 sequence or CURRENT_PC, whichever is smaller. If we don't
1271 recognize the code, return PC. */
1272
1273 static CORE_ADDR
1274 i386_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1275 struct i386_frame_cache *cache)
1276 {
1277 /* There are 2 code sequences to re-align stack before the frame
1278 gets set up:
1279
1280 1. Use a caller-saved saved register:
1281
1282 leal 4(%esp), %reg
1283 andl $-XXX, %esp
1284 pushl -4(%reg)
1285
1286 2. Use a callee-saved saved register:
1287
1288 pushl %reg
1289 leal 8(%esp), %reg
1290 andl $-XXX, %esp
1291 pushl -4(%reg)
1292
1293 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
1294
1295 0x83 0xe4 0xf0 andl $-16, %esp
1296 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
1297 */
1298
1299 gdb_byte buf[14];
1300 int reg;
1301 int offset, offset_and;
1302 static int regnums[8] = {
1303 I386_EAX_REGNUM, /* %eax */
1304 I386_ECX_REGNUM, /* %ecx */
1305 I386_EDX_REGNUM, /* %edx */
1306 I386_EBX_REGNUM, /* %ebx */
1307 I386_ESP_REGNUM, /* %esp */
1308 I386_EBP_REGNUM, /* %ebp */
1309 I386_ESI_REGNUM, /* %esi */
1310 I386_EDI_REGNUM /* %edi */
1311 };
1312
1313 if (target_read_code (pc, buf, sizeof buf))
1314 return pc;
1315
1316 /* Check caller-saved saved register. The first instruction has
1317 to be "leal 4(%esp), %reg". */
1318 if (buf[0] == 0x8d && buf[2] == 0x24 && buf[3] == 0x4)
1319 {
1320 /* MOD must be binary 10 and R/M must be binary 100. */
1321 if ((buf[1] & 0xc7) != 0x44)
1322 return pc;
1323
1324 /* REG has register number. */
1325 reg = (buf[1] >> 3) & 7;
1326 offset = 4;
1327 }
1328 else
1329 {
1330 /* Check callee-saved saved register. The first instruction
1331 has to be "pushl %reg". */
1332 if ((buf[0] & 0xf8) != 0x50)
1333 return pc;
1334
1335 /* Get register. */
1336 reg = buf[0] & 0x7;
1337
1338 /* The next instruction has to be "leal 8(%esp), %reg". */
1339 if (buf[1] != 0x8d || buf[3] != 0x24 || buf[4] != 0x8)
1340 return pc;
1341
1342 /* MOD must be binary 10 and R/M must be binary 100. */
1343 if ((buf[2] & 0xc7) != 0x44)
1344 return pc;
1345
1346 /* REG has register number. Registers in pushl and leal have to
1347 be the same. */
1348 if (reg != ((buf[2] >> 3) & 7))
1349 return pc;
1350
1351 offset = 5;
1352 }
1353
1354 /* Rigister can't be %esp nor %ebp. */
1355 if (reg == 4 || reg == 5)
1356 return pc;
1357
1358 /* The next instruction has to be "andl $-XXX, %esp". */
1359 if (buf[offset + 1] != 0xe4
1360 || (buf[offset] != 0x81 && buf[offset] != 0x83))
1361 return pc;
1362
1363 offset_and = offset;
1364 offset += buf[offset] == 0x81 ? 6 : 3;
1365
1366 /* The next instruction has to be "pushl -4(%reg)". 8bit -4 is
1367 0xfc. REG must be binary 110 and MOD must be binary 01. */
1368 if (buf[offset] != 0xff
1369 || buf[offset + 2] != 0xfc
1370 || (buf[offset + 1] & 0xf8) != 0x70)
1371 return pc;
1372
1373 /* R/M has register. Registers in leal and pushl have to be the
1374 same. */
1375 if (reg != (buf[offset + 1] & 7))
1376 return pc;
1377
1378 if (current_pc > pc + offset_and)
1379 cache->saved_sp_reg = regnums[reg];
1380
1381 return std::min (pc + offset + 3, current_pc);
1382 }
1383
1384 /* Maximum instruction length we need to handle. */
1385 #define I386_MAX_MATCHED_INSN_LEN 6
1386
1387 /* Instruction description. */
1388 struct i386_insn
1389 {
1390 size_t len;
1391 gdb_byte insn[I386_MAX_MATCHED_INSN_LEN];
1392 gdb_byte mask[I386_MAX_MATCHED_INSN_LEN];
1393 };
1394
1395 /* Return whether instruction at PC matches PATTERN. */
1396
1397 static int
1398 i386_match_pattern (CORE_ADDR pc, struct i386_insn pattern)
1399 {
1400 gdb_byte op;
1401
1402 if (target_read_code (pc, &op, 1))
1403 return 0;
1404
1405 if ((op & pattern.mask[0]) == pattern.insn[0])
1406 {
1407 gdb_byte buf[I386_MAX_MATCHED_INSN_LEN - 1];
1408 int insn_matched = 1;
1409 size_t i;
1410
1411 gdb_assert (pattern.len > 1);
1412 gdb_assert (pattern.len <= I386_MAX_MATCHED_INSN_LEN);
1413
1414 if (target_read_code (pc + 1, buf, pattern.len - 1))
1415 return 0;
1416
1417 for (i = 1; i < pattern.len; i++)
1418 {
1419 if ((buf[i - 1] & pattern.mask[i]) != pattern.insn[i])
1420 insn_matched = 0;
1421 }
1422 return insn_matched;
1423 }
1424 return 0;
1425 }
1426
1427 /* Search for the instruction at PC in the list INSN_PATTERNS. Return
1428 the first instruction description that matches. Otherwise, return
1429 NULL. */
1430
1431 static struct i386_insn *
1432 i386_match_insn (CORE_ADDR pc, struct i386_insn *insn_patterns)
1433 {
1434 struct i386_insn *pattern;
1435
1436 for (pattern = insn_patterns; pattern->len > 0; pattern++)
1437 {
1438 if (i386_match_pattern (pc, *pattern))
1439 return pattern;
1440 }
1441
1442 return NULL;
1443 }
1444
1445 /* Return whether PC points inside a sequence of instructions that
1446 matches INSN_PATTERNS. */
1447
1448 static int
1449 i386_match_insn_block (CORE_ADDR pc, struct i386_insn *insn_patterns)
1450 {
1451 CORE_ADDR current_pc;
1452 int ix, i;
1453 struct i386_insn *insn;
1454
1455 insn = i386_match_insn (pc, insn_patterns);
1456 if (insn == NULL)
1457 return 0;
1458
1459 current_pc = pc;
1460 ix = insn - insn_patterns;
1461 for (i = ix - 1; i >= 0; i--)
1462 {
1463 current_pc -= insn_patterns[i].len;
1464
1465 if (!i386_match_pattern (current_pc, insn_patterns[i]))
1466 return 0;
1467 }
1468
1469 current_pc = pc + insn->len;
1470 for (insn = insn_patterns + ix + 1; insn->len > 0; insn++)
1471 {
1472 if (!i386_match_pattern (current_pc, *insn))
1473 return 0;
1474
1475 current_pc += insn->len;
1476 }
1477
1478 return 1;
1479 }
1480
1481 /* Some special instructions that might be migrated by GCC into the
1482 part of the prologue that sets up the new stack frame. Because the
1483 stack frame hasn't been setup yet, no registers have been saved
1484 yet, and only the scratch registers %eax, %ecx and %edx can be
1485 touched. */
1486
1487 struct i386_insn i386_frame_setup_skip_insns[] =
1488 {
1489 /* Check for `movb imm8, r' and `movl imm32, r'.
1490
1491 ??? Should we handle 16-bit operand-sizes here? */
1492
1493 /* `movb imm8, %al' and `movb imm8, %ah' */
1494 /* `movb imm8, %cl' and `movb imm8, %ch' */
1495 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
1496 /* `movb imm8, %dl' and `movb imm8, %dh' */
1497 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
1498 /* `movl imm32, %eax' and `movl imm32, %ecx' */
1499 { 5, { 0xb8 }, { 0xfe } },
1500 /* `movl imm32, %edx' */
1501 { 5, { 0xba }, { 0xff } },
1502
1503 /* Check for `mov imm32, r32'. Note that there is an alternative
1504 encoding for `mov m32, %eax'.
1505
1506 ??? Should we handle SIB adressing here?
1507 ??? Should we handle 16-bit operand-sizes here? */
1508
1509 /* `movl m32, %eax' */
1510 { 5, { 0xa1 }, { 0xff } },
1511 /* `movl m32, %eax' and `mov; m32, %ecx' */
1512 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
1513 /* `movl m32, %edx' */
1514 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
1515
1516 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
1517 Because of the symmetry, there are actually two ways to encode
1518 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
1519 opcode bytes 0x31 and 0x33 for `xorl'. */
1520
1521 /* `subl %eax, %eax' */
1522 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
1523 /* `subl %ecx, %ecx' */
1524 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
1525 /* `subl %edx, %edx' */
1526 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
1527 /* `xorl %eax, %eax' */
1528 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
1529 /* `xorl %ecx, %ecx' */
1530 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
1531 /* `xorl %edx, %edx' */
1532 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
1533 { 0 }
1534 };
1535
1536
1537 /* Check whether PC points to a no-op instruction. */
1538 static CORE_ADDR
1539 i386_skip_noop (CORE_ADDR pc)
1540 {
1541 gdb_byte op;
1542 int check = 1;
1543
1544 if (target_read_code (pc, &op, 1))
1545 return pc;
1546
1547 while (check)
1548 {
1549 check = 0;
1550 /* Ignore `nop' instruction. */
1551 if (op == 0x90)
1552 {
1553 pc += 1;
1554 if (target_read_code (pc, &op, 1))
1555 return pc;
1556 check = 1;
1557 }
1558 /* Ignore no-op instruction `mov %edi, %edi'.
1559 Microsoft system dlls often start with
1560 a `mov %edi,%edi' instruction.
1561 The 5 bytes before the function start are
1562 filled with `nop' instructions.
1563 This pattern can be used for hot-patching:
1564 The `mov %edi, %edi' instruction can be replaced by a
1565 near jump to the location of the 5 `nop' instructions
1566 which can be replaced by a 32-bit jump to anywhere
1567 in the 32-bit address space. */
1568
1569 else if (op == 0x8b)
1570 {
1571 if (target_read_code (pc + 1, &op, 1))
1572 return pc;
1573
1574 if (op == 0xff)
1575 {
1576 pc += 2;
1577 if (target_read_code (pc, &op, 1))
1578 return pc;
1579
1580 check = 1;
1581 }
1582 }
1583 }
1584 return pc;
1585 }
1586
1587 /* Check whether PC points at a code that sets up a new stack frame.
1588 If so, it updates CACHE and returns the address of the first
1589 instruction after the sequence that sets up the frame or LIMIT,
1590 whichever is smaller. If we don't recognize the code, return PC. */
1591
1592 static CORE_ADDR
1593 i386_analyze_frame_setup (struct gdbarch *gdbarch,
1594 CORE_ADDR pc, CORE_ADDR limit,
1595 struct i386_frame_cache *cache)
1596 {
1597 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1598 struct i386_insn *insn;
1599 gdb_byte op;
1600 int skip = 0;
1601
1602 if (limit <= pc)
1603 return limit;
1604
1605 if (target_read_code (pc, &op, 1))
1606 return pc;
1607
1608 if (op == 0x55) /* pushl %ebp */
1609 {
1610 /* Take into account that we've executed the `pushl %ebp' that
1611 starts this instruction sequence. */
1612 cache->saved_regs[I386_EBP_REGNUM] = 0;
1613 cache->sp_offset += 4;
1614 pc++;
1615
1616 /* If that's all, return now. */
1617 if (limit <= pc)
1618 return limit;
1619
1620 /* Check for some special instructions that might be migrated by
1621 GCC into the prologue and skip them. At this point in the
1622 prologue, code should only touch the scratch registers %eax,
1623 %ecx and %edx, so while the number of posibilities is sheer,
1624 it is limited.
1625
1626 Make sure we only skip these instructions if we later see the
1627 `movl %esp, %ebp' that actually sets up the frame. */
1628 while (pc + skip < limit)
1629 {
1630 insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
1631 if (insn == NULL)
1632 break;
1633
1634 skip += insn->len;
1635 }
1636
1637 /* If that's all, return now. */
1638 if (limit <= pc + skip)
1639 return limit;
1640
1641 if (target_read_code (pc + skip, &op, 1))
1642 return pc + skip;
1643
1644 /* The i386 prologue looks like
1645
1646 push %ebp
1647 mov %esp,%ebp
1648 sub $0x10,%esp
1649
1650 and a different prologue can be generated for atom.
1651
1652 push %ebp
1653 lea (%esp),%ebp
1654 lea -0x10(%esp),%esp
1655
1656 We handle both of them here. */
1657
1658 switch (op)
1659 {
1660 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
1661 case 0x8b:
1662 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
1663 != 0xec)
1664 return pc;
1665 pc += (skip + 2);
1666 break;
1667 case 0x89:
1668 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
1669 != 0xe5)
1670 return pc;
1671 pc += (skip + 2);
1672 break;
1673 case 0x8d: /* Check for 'lea (%ebp), %ebp'. */
1674 if (read_code_unsigned_integer (pc + skip + 1, 2, byte_order)
1675 != 0x242c)
1676 return pc;
1677 pc += (skip + 3);
1678 break;
1679 default:
1680 return pc;
1681 }
1682
1683 /* OK, we actually have a frame. We just don't know how large
1684 it is yet. Set its size to zero. We'll adjust it if
1685 necessary. We also now commit to skipping the special
1686 instructions mentioned before. */
1687 cache->locals = 0;
1688
1689 /* If that's all, return now. */
1690 if (limit <= pc)
1691 return limit;
1692
1693 /* Check for stack adjustment
1694
1695 subl $XXX, %esp
1696 or
1697 lea -XXX(%esp),%esp
1698
1699 NOTE: You can't subtract a 16-bit immediate from a 32-bit
1700 reg, so we don't have to worry about a data16 prefix. */
1701 if (target_read_code (pc, &op, 1))
1702 return pc;
1703 if (op == 0x83)
1704 {
1705 /* `subl' with 8-bit immediate. */
1706 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1707 /* Some instruction starting with 0x83 other than `subl'. */
1708 return pc;
1709
1710 /* `subl' with signed 8-bit immediate (though it wouldn't
1711 make sense to be negative). */
1712 cache->locals = read_code_integer (pc + 2, 1, byte_order);
1713 return pc + 3;
1714 }
1715 else if (op == 0x81)
1716 {
1717 /* Maybe it is `subl' with a 32-bit immediate. */
1718 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1719 /* Some instruction starting with 0x81 other than `subl'. */
1720 return pc;
1721
1722 /* It is `subl' with a 32-bit immediate. */
1723 cache->locals = read_code_integer (pc + 2, 4, byte_order);
1724 return pc + 6;
1725 }
1726 else if (op == 0x8d)
1727 {
1728 /* The ModR/M byte is 0x64. */
1729 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0x64)
1730 return pc;
1731 /* 'lea' with 8-bit displacement. */
1732 cache->locals = -1 * read_code_integer (pc + 3, 1, byte_order);
1733 return pc + 4;
1734 }
1735 else
1736 {
1737 /* Some instruction other than `subl' nor 'lea'. */
1738 return pc;
1739 }
1740 }
1741 else if (op == 0xc8) /* enter */
1742 {
1743 cache->locals = read_code_unsigned_integer (pc + 1, 2, byte_order);
1744 return pc + 4;
1745 }
1746
1747 return pc;
1748 }
1749
1750 /* Check whether PC points at code that saves registers on the stack.
1751 If so, it updates CACHE and returns the address of the first
1752 instruction after the register saves or CURRENT_PC, whichever is
1753 smaller. Otherwise, return PC. */
1754
1755 static CORE_ADDR
1756 i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
1757 struct i386_frame_cache *cache)
1758 {
1759 CORE_ADDR offset = 0;
1760 gdb_byte op;
1761 int i;
1762
1763 if (cache->locals > 0)
1764 offset -= cache->locals;
1765 for (i = 0; i < 8 && pc < current_pc; i++)
1766 {
1767 if (target_read_code (pc, &op, 1))
1768 return pc;
1769 if (op < 0x50 || op > 0x57)
1770 break;
1771
1772 offset -= 4;
1773 cache->saved_regs[op - 0x50] = offset;
1774 cache->sp_offset += 4;
1775 pc++;
1776 }
1777
1778 return pc;
1779 }
1780
1781 /* Do a full analysis of the prologue at PC and update CACHE
1782 accordingly. Bail out early if CURRENT_PC is reached. Return the
1783 address where the analysis stopped.
1784
1785 We handle these cases:
1786
1787 The startup sequence can be at the start of the function, or the
1788 function can start with a branch to startup code at the end.
1789
1790 %ebp can be set up with either the 'enter' instruction, or "pushl
1791 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
1792 once used in the System V compiler).
1793
1794 Local space is allocated just below the saved %ebp by either the
1795 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
1796 16-bit unsigned argument for space to allocate, and the 'addl'
1797 instruction could have either a signed byte, or 32-bit immediate.
1798
1799 Next, the registers used by this function are pushed. With the
1800 System V compiler they will always be in the order: %edi, %esi,
1801 %ebx (and sometimes a harmless bug causes it to also save but not
1802 restore %eax); however, the code below is willing to see the pushes
1803 in any order, and will handle up to 8 of them.
1804
1805 If the setup sequence is at the end of the function, then the next
1806 instruction will be a branch back to the start. */
1807
1808 static CORE_ADDR
1809 i386_analyze_prologue (struct gdbarch *gdbarch,
1810 CORE_ADDR pc, CORE_ADDR current_pc,
1811 struct i386_frame_cache *cache)
1812 {
1813 pc = i386_skip_noop (pc);
1814 pc = i386_follow_jump (gdbarch, pc);
1815 pc = i386_analyze_struct_return (pc, current_pc, cache);
1816 pc = i386_skip_probe (pc);
1817 pc = i386_analyze_stack_align (pc, current_pc, cache);
1818 pc = i386_analyze_frame_setup (gdbarch, pc, current_pc, cache);
1819 return i386_analyze_register_saves (pc, current_pc, cache);
1820 }
1821
1822 /* Return PC of first real instruction. */
1823
1824 static CORE_ADDR
1825 i386_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
1826 {
1827 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1828
1829 static gdb_byte pic_pat[6] =
1830 {
1831 0xe8, 0, 0, 0, 0, /* call 0x0 */
1832 0x5b, /* popl %ebx */
1833 };
1834 struct i386_frame_cache cache;
1835 CORE_ADDR pc;
1836 gdb_byte op;
1837 int i;
1838 CORE_ADDR func_addr;
1839
1840 if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
1841 {
1842 CORE_ADDR post_prologue_pc
1843 = skip_prologue_using_sal (gdbarch, func_addr);
1844 struct compunit_symtab *cust = find_pc_compunit_symtab (func_addr);
1845
1846 /* Clang always emits a line note before the prologue and another
1847 one after. We trust clang to emit usable line notes. */
1848 if (post_prologue_pc
1849 && (cust != NULL
1850 && COMPUNIT_PRODUCER (cust) != NULL
1851 && startswith (COMPUNIT_PRODUCER (cust), "clang ")))
1852 return std::max (start_pc, post_prologue_pc);
1853 }
1854
1855 cache.locals = -1;
1856 pc = i386_analyze_prologue (gdbarch, start_pc, 0xffffffff, &cache);
1857 if (cache.locals < 0)
1858 return start_pc;
1859
1860 /* Found valid frame setup. */
1861
1862 /* The native cc on SVR4 in -K PIC mode inserts the following code
1863 to get the address of the global offset table (GOT) into register
1864 %ebx:
1865
1866 call 0x0
1867 popl %ebx
1868 movl %ebx,x(%ebp) (optional)
1869 addl y,%ebx
1870
1871 This code is with the rest of the prologue (at the end of the
1872 function), so we have to skip it to get to the first real
1873 instruction at the start of the function. */
1874
1875 for (i = 0; i < 6; i++)
1876 {
1877 if (target_read_code (pc + i, &op, 1))
1878 return pc;
1879
1880 if (pic_pat[i] != op)
1881 break;
1882 }
1883 if (i == 6)
1884 {
1885 int delta = 6;
1886
1887 if (target_read_code (pc + delta, &op, 1))
1888 return pc;
1889
1890 if (op == 0x89) /* movl %ebx, x(%ebp) */
1891 {
1892 op = read_code_unsigned_integer (pc + delta + 1, 1, byte_order);
1893
1894 if (op == 0x5d) /* One byte offset from %ebp. */
1895 delta += 3;
1896 else if (op == 0x9d) /* Four byte offset from %ebp. */
1897 delta += 6;
1898 else /* Unexpected instruction. */
1899 delta = 0;
1900
1901 if (target_read_code (pc + delta, &op, 1))
1902 return pc;
1903 }
1904
1905 /* addl y,%ebx */
1906 if (delta > 0 && op == 0x81
1907 && read_code_unsigned_integer (pc + delta + 1, 1, byte_order)
1908 == 0xc3)
1909 {
1910 pc += delta + 6;
1911 }
1912 }
1913
1914 /* If the function starts with a branch (to startup code at the end)
1915 the last instruction should bring us back to the first
1916 instruction of the real code. */
1917 if (i386_follow_jump (gdbarch, start_pc) != start_pc)
1918 pc = i386_follow_jump (gdbarch, pc);
1919
1920 return pc;
1921 }
1922
1923 /* Check that the code pointed to by PC corresponds to a call to
1924 __main, skip it if so. Return PC otherwise. */
1925
1926 CORE_ADDR
1927 i386_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1928 {
1929 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1930 gdb_byte op;
1931
1932 if (target_read_code (pc, &op, 1))
1933 return pc;
1934 if (op == 0xe8)
1935 {
1936 gdb_byte buf[4];
1937
1938 if (target_read_code (pc + 1, buf, sizeof buf) == 0)
1939 {
1940 /* Make sure address is computed correctly as a 32bit
1941 integer even if CORE_ADDR is 64 bit wide. */
1942 struct bound_minimal_symbol s;
1943 CORE_ADDR call_dest;
1944
1945 call_dest = pc + 5 + extract_signed_integer (buf, 4, byte_order);
1946 call_dest = call_dest & 0xffffffffU;
1947 s = lookup_minimal_symbol_by_pc (call_dest);
1948 if (s.minsym != NULL
1949 && MSYMBOL_LINKAGE_NAME (s.minsym) != NULL
1950 && strcmp (MSYMBOL_LINKAGE_NAME (s.minsym), "__main") == 0)
1951 pc += 5;
1952 }
1953 }
1954
1955 return pc;
1956 }
1957
1958 /* This function is 64-bit safe. */
1959
1960 static CORE_ADDR
1961 i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1962 {
1963 gdb_byte buf[8];
1964
1965 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
1966 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
1967 }
1968 \f
1969
1970 /* Normal frames. */
1971
1972 static void
1973 i386_frame_cache_1 (struct frame_info *this_frame,
1974 struct i386_frame_cache *cache)
1975 {
1976 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1977 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1978 gdb_byte buf[4];
1979 int i;
1980
1981 cache->pc = get_frame_func (this_frame);
1982
1983 /* In principle, for normal frames, %ebp holds the frame pointer,
1984 which holds the base address for the current stack frame.
1985 However, for functions that don't need it, the frame pointer is
1986 optional. For these "frameless" functions the frame pointer is
1987 actually the frame pointer of the calling frame. Signal
1988 trampolines are just a special case of a "frameless" function.
1989 They (usually) share their frame pointer with the frame that was
1990 in progress when the signal occurred. */
1991
1992 get_frame_register (this_frame, I386_EBP_REGNUM, buf);
1993 cache->base = extract_unsigned_integer (buf, 4, byte_order);
1994 if (cache->base == 0)
1995 {
1996 cache->base_p = 1;
1997 return;
1998 }
1999
2000 /* For normal frames, %eip is stored at 4(%ebp). */
2001 cache->saved_regs[I386_EIP_REGNUM] = 4;
2002
2003 if (cache->pc != 0)
2004 i386_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
2005 cache);
2006
2007 if (cache->locals < 0)
2008 {
2009 /* We didn't find a valid frame, which means that CACHE->base
2010 currently holds the frame pointer for our calling frame. If
2011 we're at the start of a function, or somewhere half-way its
2012 prologue, the function's frame probably hasn't been fully
2013 setup yet. Try to reconstruct the base address for the stack
2014 frame by looking at the stack pointer. For truly "frameless"
2015 functions this might work too. */
2016
2017 if (cache->saved_sp_reg != -1)
2018 {
2019 /* Saved stack pointer has been saved. */
2020 get_frame_register (this_frame, cache->saved_sp_reg, buf);
2021 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
2022
2023 /* We're halfway aligning the stack. */
2024 cache->base = ((cache->saved_sp - 4) & 0xfffffff0) - 4;
2025 cache->saved_regs[I386_EIP_REGNUM] = cache->saved_sp - 4;
2026
2027 /* This will be added back below. */
2028 cache->saved_regs[I386_EIP_REGNUM] -= cache->base;
2029 }
2030 else if (cache->pc != 0
2031 || target_read_code (get_frame_pc (this_frame), buf, 1))
2032 {
2033 /* We're in a known function, but did not find a frame
2034 setup. Assume that the function does not use %ebp.
2035 Alternatively, we may have jumped to an invalid
2036 address; in that case there is definitely no new
2037 frame in %ebp. */
2038 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2039 cache->base = extract_unsigned_integer (buf, 4, byte_order)
2040 + cache->sp_offset;
2041 }
2042 else
2043 /* We're in an unknown function. We could not find the start
2044 of the function to analyze the prologue; our best option is
2045 to assume a typical frame layout with the caller's %ebp
2046 saved. */
2047 cache->saved_regs[I386_EBP_REGNUM] = 0;
2048 }
2049
2050 if (cache->saved_sp_reg != -1)
2051 {
2052 /* Saved stack pointer has been saved (but the SAVED_SP_REG
2053 register may be unavailable). */
2054 if (cache->saved_sp == 0
2055 && deprecated_frame_register_read (this_frame,
2056 cache->saved_sp_reg, buf))
2057 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
2058 }
2059 /* Now that we have the base address for the stack frame we can
2060 calculate the value of %esp in the calling frame. */
2061 else if (cache->saved_sp == 0)
2062 cache->saved_sp = cache->base + 8;
2063
2064 /* Adjust all the saved registers such that they contain addresses
2065 instead of offsets. */
2066 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
2067 if (cache->saved_regs[i] != -1)
2068 cache->saved_regs[i] += cache->base;
2069
2070 cache->base_p = 1;
2071 }
2072
2073 static struct i386_frame_cache *
2074 i386_frame_cache (struct frame_info *this_frame, void **this_cache)
2075 {
2076 struct i386_frame_cache *cache;
2077
2078 if (*this_cache)
2079 return (struct i386_frame_cache *) *this_cache;
2080
2081 cache = i386_alloc_frame_cache ();
2082 *this_cache = cache;
2083
2084 TRY
2085 {
2086 i386_frame_cache_1 (this_frame, cache);
2087 }
2088 CATCH (ex, RETURN_MASK_ERROR)
2089 {
2090 if (ex.error != NOT_AVAILABLE_ERROR)
2091 throw_exception (ex);
2092 }
2093 END_CATCH
2094
2095 return cache;
2096 }
2097
2098 static void
2099 i386_frame_this_id (struct frame_info *this_frame, void **this_cache,
2100 struct frame_id *this_id)
2101 {
2102 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2103
2104 if (!cache->base_p)
2105 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2106 else if (cache->base == 0)
2107 {
2108 /* This marks the outermost frame. */
2109 }
2110 else
2111 {
2112 /* See the end of i386_push_dummy_call. */
2113 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2114 }
2115 }
2116
2117 static enum unwind_stop_reason
2118 i386_frame_unwind_stop_reason (struct frame_info *this_frame,
2119 void **this_cache)
2120 {
2121 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2122
2123 if (!cache->base_p)
2124 return UNWIND_UNAVAILABLE;
2125
2126 /* This marks the outermost frame. */
2127 if (cache->base == 0)
2128 return UNWIND_OUTERMOST;
2129
2130 return UNWIND_NO_REASON;
2131 }
2132
2133 static struct value *
2134 i386_frame_prev_register (struct frame_info *this_frame, void **this_cache,
2135 int regnum)
2136 {
2137 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2138
2139 gdb_assert (regnum >= 0);
2140
2141 /* The System V ABI says that:
2142
2143 "The flags register contains the system flags, such as the
2144 direction flag and the carry flag. The direction flag must be
2145 set to the forward (that is, zero) direction before entry and
2146 upon exit from a function. Other user flags have no specified
2147 role in the standard calling sequence and are not preserved."
2148
2149 To guarantee the "upon exit" part of that statement we fake a
2150 saved flags register that has its direction flag cleared.
2151
2152 Note that GCC doesn't seem to rely on the fact that the direction
2153 flag is cleared after a function return; it always explicitly
2154 clears the flag before operations where it matters.
2155
2156 FIXME: kettenis/20030316: I'm not quite sure whether this is the
2157 right thing to do. The way we fake the flags register here makes
2158 it impossible to change it. */
2159
2160 if (regnum == I386_EFLAGS_REGNUM)
2161 {
2162 ULONGEST val;
2163
2164 val = get_frame_register_unsigned (this_frame, regnum);
2165 val &= ~(1 << 10);
2166 return frame_unwind_got_constant (this_frame, regnum, val);
2167 }
2168
2169 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
2170 return frame_unwind_got_register (this_frame, regnum, I386_EAX_REGNUM);
2171
2172 if (regnum == I386_ESP_REGNUM
2173 && (cache->saved_sp != 0 || cache->saved_sp_reg != -1))
2174 {
2175 /* If the SP has been saved, but we don't know where, then this
2176 means that SAVED_SP_REG register was found unavailable back
2177 when we built the cache. */
2178 if (cache->saved_sp == 0)
2179 return frame_unwind_got_register (this_frame, regnum,
2180 cache->saved_sp_reg);
2181 else
2182 return frame_unwind_got_constant (this_frame, regnum,
2183 cache->saved_sp);
2184 }
2185
2186 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
2187 return frame_unwind_got_memory (this_frame, regnum,
2188 cache->saved_regs[regnum]);
2189
2190 return frame_unwind_got_register (this_frame, regnum, regnum);
2191 }
2192
2193 static const struct frame_unwind i386_frame_unwind =
2194 {
2195 NORMAL_FRAME,
2196 i386_frame_unwind_stop_reason,
2197 i386_frame_this_id,
2198 i386_frame_prev_register,
2199 NULL,
2200 default_frame_sniffer
2201 };
2202
2203 /* Normal frames, but in a function epilogue. */
2204
2205 /* Implement the stack_frame_destroyed_p gdbarch method.
2206
2207 The epilogue is defined here as the 'ret' instruction, which will
2208 follow any instruction such as 'leave' or 'pop %ebp' that destroys
2209 the function's stack frame. */
2210
2211 static int
2212 i386_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2213 {
2214 gdb_byte insn;
2215 struct compunit_symtab *cust;
2216
2217 cust = find_pc_compunit_symtab (pc);
2218 if (cust != NULL && COMPUNIT_EPILOGUE_UNWIND_VALID (cust))
2219 return 0;
2220
2221 if (target_read_memory (pc, &insn, 1))
2222 return 0; /* Can't read memory at pc. */
2223
2224 if (insn != 0xc3) /* 'ret' instruction. */
2225 return 0;
2226
2227 return 1;
2228 }
2229
2230 static int
2231 i386_epilogue_frame_sniffer (const struct frame_unwind *self,
2232 struct frame_info *this_frame,
2233 void **this_prologue_cache)
2234 {
2235 if (frame_relative_level (this_frame) == 0)
2236 return i386_stack_frame_destroyed_p (get_frame_arch (this_frame),
2237 get_frame_pc (this_frame));
2238 else
2239 return 0;
2240 }
2241
2242 static struct i386_frame_cache *
2243 i386_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
2244 {
2245 struct i386_frame_cache *cache;
2246 CORE_ADDR sp;
2247
2248 if (*this_cache)
2249 return (struct i386_frame_cache *) *this_cache;
2250
2251 cache = i386_alloc_frame_cache ();
2252 *this_cache = cache;
2253
2254 TRY
2255 {
2256 cache->pc = get_frame_func (this_frame);
2257
2258 /* At this point the stack looks as if we just entered the
2259 function, with the return address at the top of the
2260 stack. */
2261 sp = get_frame_register_unsigned (this_frame, I386_ESP_REGNUM);
2262 cache->base = sp + cache->sp_offset;
2263 cache->saved_sp = cache->base + 8;
2264 cache->saved_regs[I386_EIP_REGNUM] = cache->base + 4;
2265
2266 cache->base_p = 1;
2267 }
2268 CATCH (ex, RETURN_MASK_ERROR)
2269 {
2270 if (ex.error != NOT_AVAILABLE_ERROR)
2271 throw_exception (ex);
2272 }
2273 END_CATCH
2274
2275 return cache;
2276 }
2277
2278 static enum unwind_stop_reason
2279 i386_epilogue_frame_unwind_stop_reason (struct frame_info *this_frame,
2280 void **this_cache)
2281 {
2282 struct i386_frame_cache *cache =
2283 i386_epilogue_frame_cache (this_frame, this_cache);
2284
2285 if (!cache->base_p)
2286 return UNWIND_UNAVAILABLE;
2287
2288 return UNWIND_NO_REASON;
2289 }
2290
2291 static void
2292 i386_epilogue_frame_this_id (struct frame_info *this_frame,
2293 void **this_cache,
2294 struct frame_id *this_id)
2295 {
2296 struct i386_frame_cache *cache =
2297 i386_epilogue_frame_cache (this_frame, this_cache);
2298
2299 if (!cache->base_p)
2300 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2301 else
2302 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2303 }
2304
2305 static struct value *
2306 i386_epilogue_frame_prev_register (struct frame_info *this_frame,
2307 void **this_cache, int regnum)
2308 {
2309 /* Make sure we've initialized the cache. */
2310 i386_epilogue_frame_cache (this_frame, this_cache);
2311
2312 return i386_frame_prev_register (this_frame, this_cache, regnum);
2313 }
2314
2315 static const struct frame_unwind i386_epilogue_frame_unwind =
2316 {
2317 NORMAL_FRAME,
2318 i386_epilogue_frame_unwind_stop_reason,
2319 i386_epilogue_frame_this_id,
2320 i386_epilogue_frame_prev_register,
2321 NULL,
2322 i386_epilogue_frame_sniffer
2323 };
2324 \f
2325
2326 /* Stack-based trampolines. */
2327
2328 /* These trampolines are used on cross x86 targets, when taking the
2329 address of a nested function. When executing these trampolines,
2330 no stack frame is set up, so we are in a similar situation as in
2331 epilogues and i386_epilogue_frame_this_id can be re-used. */
2332
2333 /* Static chain passed in register. */
2334
2335 struct i386_insn i386_tramp_chain_in_reg_insns[] =
2336 {
2337 /* `movl imm32, %eax' and `movl imm32, %ecx' */
2338 { 5, { 0xb8 }, { 0xfe } },
2339
2340 /* `jmp imm32' */
2341 { 5, { 0xe9 }, { 0xff } },
2342
2343 {0}
2344 };
2345
2346 /* Static chain passed on stack (when regparm=3). */
2347
2348 struct i386_insn i386_tramp_chain_on_stack_insns[] =
2349 {
2350 /* `push imm32' */
2351 { 5, { 0x68 }, { 0xff } },
2352
2353 /* `jmp imm32' */
2354 { 5, { 0xe9 }, { 0xff } },
2355
2356 {0}
2357 };
2358
2359 /* Return whether PC points inside a stack trampoline. */
2360
2361 static int
2362 i386_in_stack_tramp_p (CORE_ADDR pc)
2363 {
2364 gdb_byte insn;
2365 const char *name;
2366
2367 /* A stack trampoline is detected if no name is associated
2368 to the current pc and if it points inside a trampoline
2369 sequence. */
2370
2371 find_pc_partial_function (pc, &name, NULL, NULL);
2372 if (name)
2373 return 0;
2374
2375 if (target_read_memory (pc, &insn, 1))
2376 return 0;
2377
2378 if (!i386_match_insn_block (pc, i386_tramp_chain_in_reg_insns)
2379 && !i386_match_insn_block (pc, i386_tramp_chain_on_stack_insns))
2380 return 0;
2381
2382 return 1;
2383 }
2384
2385 static int
2386 i386_stack_tramp_frame_sniffer (const struct frame_unwind *self,
2387 struct frame_info *this_frame,
2388 void **this_cache)
2389 {
2390 if (frame_relative_level (this_frame) == 0)
2391 return i386_in_stack_tramp_p (get_frame_pc (this_frame));
2392 else
2393 return 0;
2394 }
2395
2396 static const struct frame_unwind i386_stack_tramp_frame_unwind =
2397 {
2398 NORMAL_FRAME,
2399 i386_epilogue_frame_unwind_stop_reason,
2400 i386_epilogue_frame_this_id,
2401 i386_epilogue_frame_prev_register,
2402 NULL,
2403 i386_stack_tramp_frame_sniffer
2404 };
2405 \f
2406 /* Generate a bytecode expression to get the value of the saved PC. */
2407
2408 static void
2409 i386_gen_return_address (struct gdbarch *gdbarch,
2410 struct agent_expr *ax, struct axs_value *value,
2411 CORE_ADDR scope)
2412 {
2413 /* The following sequence assumes the traditional use of the base
2414 register. */
2415 ax_reg (ax, I386_EBP_REGNUM);
2416 ax_const_l (ax, 4);
2417 ax_simple (ax, aop_add);
2418 value->type = register_type (gdbarch, I386_EIP_REGNUM);
2419 value->kind = axs_lvalue_memory;
2420 }
2421 \f
2422
2423 /* Signal trampolines. */
2424
2425 static struct i386_frame_cache *
2426 i386_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
2427 {
2428 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2429 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2430 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2431 struct i386_frame_cache *cache;
2432 CORE_ADDR addr;
2433 gdb_byte buf[4];
2434
2435 if (*this_cache)
2436 return (struct i386_frame_cache *) *this_cache;
2437
2438 cache = i386_alloc_frame_cache ();
2439
2440 TRY
2441 {
2442 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2443 cache->base = extract_unsigned_integer (buf, 4, byte_order) - 4;
2444
2445 addr = tdep->sigcontext_addr (this_frame);
2446 if (tdep->sc_reg_offset)
2447 {
2448 int i;
2449
2450 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
2451
2452 for (i = 0; i < tdep->sc_num_regs; i++)
2453 if (tdep->sc_reg_offset[i] != -1)
2454 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
2455 }
2456 else
2457 {
2458 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
2459 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
2460 }
2461
2462 cache->base_p = 1;
2463 }
2464 CATCH (ex, RETURN_MASK_ERROR)
2465 {
2466 if (ex.error != NOT_AVAILABLE_ERROR)
2467 throw_exception (ex);
2468 }
2469 END_CATCH
2470
2471 *this_cache = cache;
2472 return cache;
2473 }
2474
2475 static enum unwind_stop_reason
2476 i386_sigtramp_frame_unwind_stop_reason (struct frame_info *this_frame,
2477 void **this_cache)
2478 {
2479 struct i386_frame_cache *cache =
2480 i386_sigtramp_frame_cache (this_frame, this_cache);
2481
2482 if (!cache->base_p)
2483 return UNWIND_UNAVAILABLE;
2484
2485 return UNWIND_NO_REASON;
2486 }
2487
2488 static void
2489 i386_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache,
2490 struct frame_id *this_id)
2491 {
2492 struct i386_frame_cache *cache =
2493 i386_sigtramp_frame_cache (this_frame, this_cache);
2494
2495 if (!cache->base_p)
2496 (*this_id) = frame_id_build_unavailable_stack (get_frame_pc (this_frame));
2497 else
2498 {
2499 /* See the end of i386_push_dummy_call. */
2500 (*this_id) = frame_id_build (cache->base + 8, get_frame_pc (this_frame));
2501 }
2502 }
2503
2504 static struct value *
2505 i386_sigtramp_frame_prev_register (struct frame_info *this_frame,
2506 void **this_cache, int regnum)
2507 {
2508 /* Make sure we've initialized the cache. */
2509 i386_sigtramp_frame_cache (this_frame, this_cache);
2510
2511 return i386_frame_prev_register (this_frame, this_cache, regnum);
2512 }
2513
2514 static int
2515 i386_sigtramp_frame_sniffer (const struct frame_unwind *self,
2516 struct frame_info *this_frame,
2517 void **this_prologue_cache)
2518 {
2519 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
2520
2521 /* We shouldn't even bother if we don't have a sigcontext_addr
2522 handler. */
2523 if (tdep->sigcontext_addr == NULL)
2524 return 0;
2525
2526 if (tdep->sigtramp_p != NULL)
2527 {
2528 if (tdep->sigtramp_p (this_frame))
2529 return 1;
2530 }
2531
2532 if (tdep->sigtramp_start != 0)
2533 {
2534 CORE_ADDR pc = get_frame_pc (this_frame);
2535
2536 gdb_assert (tdep->sigtramp_end != 0);
2537 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
2538 return 1;
2539 }
2540
2541 return 0;
2542 }
2543
2544 static const struct frame_unwind i386_sigtramp_frame_unwind =
2545 {
2546 SIGTRAMP_FRAME,
2547 i386_sigtramp_frame_unwind_stop_reason,
2548 i386_sigtramp_frame_this_id,
2549 i386_sigtramp_frame_prev_register,
2550 NULL,
2551 i386_sigtramp_frame_sniffer
2552 };
2553 \f
2554
2555 static CORE_ADDR
2556 i386_frame_base_address (struct frame_info *this_frame, void **this_cache)
2557 {
2558 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2559
2560 return cache->base;
2561 }
2562
2563 static const struct frame_base i386_frame_base =
2564 {
2565 &i386_frame_unwind,
2566 i386_frame_base_address,
2567 i386_frame_base_address,
2568 i386_frame_base_address
2569 };
2570
2571 static struct frame_id
2572 i386_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2573 {
2574 CORE_ADDR fp;
2575
2576 fp = get_frame_register_unsigned (this_frame, I386_EBP_REGNUM);
2577
2578 /* See the end of i386_push_dummy_call. */
2579 return frame_id_build (fp + 8, get_frame_pc (this_frame));
2580 }
2581
2582 /* _Decimal128 function return values need 16-byte alignment on the
2583 stack. */
2584
2585 static CORE_ADDR
2586 i386_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2587 {
2588 return sp & -(CORE_ADDR)16;
2589 }
2590 \f
2591
2592 /* Figure out where the longjmp will land. Slurp the args out of the
2593 stack. We expect the first arg to be a pointer to the jmp_buf
2594 structure from which we extract the address that we will land at.
2595 This address is copied into PC. This routine returns non-zero on
2596 success. */
2597
2598 static int
2599 i386_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
2600 {
2601 gdb_byte buf[4];
2602 CORE_ADDR sp, jb_addr;
2603 struct gdbarch *gdbarch = get_frame_arch (frame);
2604 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2605 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
2606
2607 /* If JB_PC_OFFSET is -1, we have no way to find out where the
2608 longjmp will land. */
2609 if (jb_pc_offset == -1)
2610 return 0;
2611
2612 get_frame_register (frame, I386_ESP_REGNUM, buf);
2613 sp = extract_unsigned_integer (buf, 4, byte_order);
2614 if (target_read_memory (sp + 4, buf, 4))
2615 return 0;
2616
2617 jb_addr = extract_unsigned_integer (buf, 4, byte_order);
2618 if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
2619 return 0;
2620
2621 *pc = extract_unsigned_integer (buf, 4, byte_order);
2622 return 1;
2623 }
2624 \f
2625
2626 /* Check whether TYPE must be 16-byte-aligned when passed as a
2627 function argument. 16-byte vectors, _Decimal128 and structures or
2628 unions containing such types must be 16-byte-aligned; other
2629 arguments are 4-byte-aligned. */
2630
2631 static int
2632 i386_16_byte_align_p (struct type *type)
2633 {
2634 type = check_typedef (type);
2635 if ((TYPE_CODE (type) == TYPE_CODE_DECFLOAT
2636 || (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type)))
2637 && TYPE_LENGTH (type) == 16)
2638 return 1;
2639 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2640 return i386_16_byte_align_p (TYPE_TARGET_TYPE (type));
2641 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2642 || TYPE_CODE (type) == TYPE_CODE_UNION)
2643 {
2644 int i;
2645 for (i = 0; i < TYPE_NFIELDS (type); i++)
2646 {
2647 if (i386_16_byte_align_p (TYPE_FIELD_TYPE (type, i)))
2648 return 1;
2649 }
2650 }
2651 return 0;
2652 }
2653
2654 /* Implementation for set_gdbarch_push_dummy_code. */
2655
2656 static CORE_ADDR
2657 i386_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, CORE_ADDR funaddr,
2658 struct value **args, int nargs, struct type *value_type,
2659 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
2660 struct regcache *regcache)
2661 {
2662 /* Use 0xcc breakpoint - 1 byte. */
2663 *bp_addr = sp - 1;
2664 *real_pc = funaddr;
2665
2666 /* Keep the stack aligned. */
2667 return sp - 16;
2668 }
2669
2670 static CORE_ADDR
2671 i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2672 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2673 struct value **args, CORE_ADDR sp, int struct_return,
2674 CORE_ADDR struct_addr)
2675 {
2676 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2677 gdb_byte buf[4];
2678 int i;
2679 int write_pass;
2680 int args_space = 0;
2681
2682 /* BND registers can be in arbitrary values at the moment of the
2683 inferior call. This can cause boundary violations that are not
2684 due to a real bug or even desired by the user. The best to be done
2685 is set the BND registers to allow access to the whole memory, INIT
2686 state, before pushing the inferior call. */
2687 i387_reset_bnd_regs (gdbarch, regcache);
2688
2689 /* Determine the total space required for arguments and struct
2690 return address in a first pass (allowing for 16-byte-aligned
2691 arguments), then push arguments in a second pass. */
2692
2693 for (write_pass = 0; write_pass < 2; write_pass++)
2694 {
2695 int args_space_used = 0;
2696
2697 if (struct_return)
2698 {
2699 if (write_pass)
2700 {
2701 /* Push value address. */
2702 store_unsigned_integer (buf, 4, byte_order, struct_addr);
2703 write_memory (sp, buf, 4);
2704 args_space_used += 4;
2705 }
2706 else
2707 args_space += 4;
2708 }
2709
2710 for (i = 0; i < nargs; i++)
2711 {
2712 int len = TYPE_LENGTH (value_enclosing_type (args[i]));
2713
2714 if (write_pass)
2715 {
2716 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2717 args_space_used = align_up (args_space_used, 16);
2718
2719 write_memory (sp + args_space_used,
2720 value_contents_all (args[i]), len);
2721 /* The System V ABI says that:
2722
2723 "An argument's size is increased, if necessary, to make it a
2724 multiple of [32-bit] words. This may require tail padding,
2725 depending on the size of the argument."
2726
2727 This makes sure the stack stays word-aligned. */
2728 args_space_used += align_up (len, 4);
2729 }
2730 else
2731 {
2732 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2733 args_space = align_up (args_space, 16);
2734 args_space += align_up (len, 4);
2735 }
2736 }
2737
2738 if (!write_pass)
2739 {
2740 sp -= args_space;
2741
2742 /* The original System V ABI only requires word alignment,
2743 but modern incarnations need 16-byte alignment in order
2744 to support SSE. Since wasting a few bytes here isn't
2745 harmful we unconditionally enforce 16-byte alignment. */
2746 sp &= ~0xf;
2747 }
2748 }
2749
2750 /* Store return address. */
2751 sp -= 4;
2752 store_unsigned_integer (buf, 4, byte_order, bp_addr);
2753 write_memory (sp, buf, 4);
2754
2755 /* Finally, update the stack pointer... */
2756 store_unsigned_integer (buf, 4, byte_order, sp);
2757 regcache_cooked_write (regcache, I386_ESP_REGNUM, buf);
2758
2759 /* ...and fake a frame pointer. */
2760 regcache_cooked_write (regcache, I386_EBP_REGNUM, buf);
2761
2762 /* MarkK wrote: This "+ 8" is all over the place:
2763 (i386_frame_this_id, i386_sigtramp_frame_this_id,
2764 i386_dummy_id). It's there, since all frame unwinders for
2765 a given target have to agree (within a certain margin) on the
2766 definition of the stack address of a frame. Otherwise frame id
2767 comparison might not work correctly. Since DWARF2/GCC uses the
2768 stack address *before* the function call as a frame's CFA. On
2769 the i386, when %ebp is used as a frame pointer, the offset
2770 between the contents %ebp and the CFA as defined by GCC. */
2771 return sp + 8;
2772 }
2773
2774 /* These registers are used for returning integers (and on some
2775 targets also for returning `struct' and `union' values when their
2776 size and alignment match an integer type). */
2777 #define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
2778 #define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
2779
2780 /* Read, for architecture GDBARCH, a function return value of TYPE
2781 from REGCACHE, and copy that into VALBUF. */
2782
2783 static void
2784 i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
2785 struct regcache *regcache, gdb_byte *valbuf)
2786 {
2787 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2788 int len = TYPE_LENGTH (type);
2789 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2790
2791 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2792 {
2793 if (tdep->st0_regnum < 0)
2794 {
2795 warning (_("Cannot find floating-point return value."));
2796 memset (valbuf, 0, len);
2797 return;
2798 }
2799
2800 /* Floating-point return values can be found in %st(0). Convert
2801 its contents to the desired type. This is probably not
2802 exactly how it would happen on the target itself, but it is
2803 the best we can do. */
2804 regcache_raw_read (regcache, I386_ST0_REGNUM, buf);
2805 target_float_convert (buf, i387_ext_type (gdbarch), valbuf, type);
2806 }
2807 else
2808 {
2809 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2810 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2811
2812 if (len <= low_size)
2813 {
2814 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
2815 memcpy (valbuf, buf, len);
2816 }
2817 else if (len <= (low_size + high_size))
2818 {
2819 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
2820 memcpy (valbuf, buf, low_size);
2821 regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
2822 memcpy (valbuf + low_size, buf, len - low_size);
2823 }
2824 else
2825 internal_error (__FILE__, __LINE__,
2826 _("Cannot extract return value of %d bytes long."),
2827 len);
2828 }
2829 }
2830
2831 /* Write, for architecture GDBARCH, a function return value of TYPE
2832 from VALBUF into REGCACHE. */
2833
2834 static void
2835 i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
2836 struct regcache *regcache, const gdb_byte *valbuf)
2837 {
2838 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2839 int len = TYPE_LENGTH (type);
2840
2841 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2842 {
2843 ULONGEST fstat;
2844 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2845
2846 if (tdep->st0_regnum < 0)
2847 {
2848 warning (_("Cannot set floating-point return value."));
2849 return;
2850 }
2851
2852 /* Returning floating-point values is a bit tricky. Apart from
2853 storing the return value in %st(0), we have to simulate the
2854 state of the FPU at function return point. */
2855
2856 /* Convert the value found in VALBUF to the extended
2857 floating-point format used by the FPU. This is probably
2858 not exactly how it would happen on the target itself, but
2859 it is the best we can do. */
2860 target_float_convert (valbuf, type, buf, i387_ext_type (gdbarch));
2861 regcache_raw_write (regcache, I386_ST0_REGNUM, buf);
2862
2863 /* Set the top of the floating-point register stack to 7. The
2864 actual value doesn't really matter, but 7 is what a normal
2865 function return would end up with if the program started out
2866 with a freshly initialized FPU. */
2867 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
2868 fstat |= (7 << 11);
2869 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM (tdep), fstat);
2870
2871 /* Mark %st(1) through %st(7) as empty. Since we set the top of
2872 the floating-point register stack to 7, the appropriate value
2873 for the tag word is 0x3fff. */
2874 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM (tdep), 0x3fff);
2875 }
2876 else
2877 {
2878 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2879 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2880
2881 if (len <= low_size)
2882 regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
2883 else if (len <= (low_size + high_size))
2884 {
2885 regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
2886 regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
2887 len - low_size, valbuf + low_size);
2888 }
2889 else
2890 internal_error (__FILE__, __LINE__,
2891 _("Cannot store return value of %d bytes long."), len);
2892 }
2893 }
2894 \f
2895
2896 /* This is the variable that is set with "set struct-convention", and
2897 its legitimate values. */
2898 static const char default_struct_convention[] = "default";
2899 static const char pcc_struct_convention[] = "pcc";
2900 static const char reg_struct_convention[] = "reg";
2901 static const char *const valid_conventions[] =
2902 {
2903 default_struct_convention,
2904 pcc_struct_convention,
2905 reg_struct_convention,
2906 NULL
2907 };
2908 static const char *struct_convention = default_struct_convention;
2909
2910 /* Return non-zero if TYPE, which is assumed to be a structure,
2911 a union type, or an array type, should be returned in registers
2912 for architecture GDBARCH. */
2913
2914 static int
2915 i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
2916 {
2917 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2918 enum type_code code = TYPE_CODE (type);
2919 int len = TYPE_LENGTH (type);
2920
2921 gdb_assert (code == TYPE_CODE_STRUCT
2922 || code == TYPE_CODE_UNION
2923 || code == TYPE_CODE_ARRAY);
2924
2925 if (struct_convention == pcc_struct_convention
2926 || (struct_convention == default_struct_convention
2927 && tdep->struct_return == pcc_struct_return))
2928 return 0;
2929
2930 /* Structures consisting of a single `float', `double' or 'long
2931 double' member are returned in %st(0). */
2932 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2933 {
2934 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
2935 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2936 return (len == 4 || len == 8 || len == 12);
2937 }
2938
2939 return (len == 1 || len == 2 || len == 4 || len == 8);
2940 }
2941
2942 /* Determine, for architecture GDBARCH, how a return value of TYPE
2943 should be returned. If it is supposed to be returned in registers,
2944 and READBUF is non-zero, read the appropriate value from REGCACHE,
2945 and copy it into READBUF. If WRITEBUF is non-zero, write the value
2946 from WRITEBUF into REGCACHE. */
2947
2948 static enum return_value_convention
2949 i386_return_value (struct gdbarch *gdbarch, struct value *function,
2950 struct type *type, struct regcache *regcache,
2951 gdb_byte *readbuf, const gdb_byte *writebuf)
2952 {
2953 enum type_code code = TYPE_CODE (type);
2954
2955 if (((code == TYPE_CODE_STRUCT
2956 || code == TYPE_CODE_UNION
2957 || code == TYPE_CODE_ARRAY)
2958 && !i386_reg_struct_return_p (gdbarch, type))
2959 /* Complex double and long double uses the struct return covention. */
2960 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 16)
2961 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 24)
2962 /* 128-bit decimal float uses the struct return convention. */
2963 || (code == TYPE_CODE_DECFLOAT && TYPE_LENGTH (type) == 16))
2964 {
2965 /* The System V ABI says that:
2966
2967 "A function that returns a structure or union also sets %eax
2968 to the value of the original address of the caller's area
2969 before it returns. Thus when the caller receives control
2970 again, the address of the returned object resides in register
2971 %eax and can be used to access the object."
2972
2973 So the ABI guarantees that we can always find the return
2974 value just after the function has returned. */
2975
2976 /* Note that the ABI doesn't mention functions returning arrays,
2977 which is something possible in certain languages such as Ada.
2978 In this case, the value is returned as if it was wrapped in
2979 a record, so the convention applied to records also applies
2980 to arrays. */
2981
2982 if (readbuf)
2983 {
2984 ULONGEST addr;
2985
2986 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
2987 read_memory (addr, readbuf, TYPE_LENGTH (type));
2988 }
2989
2990 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
2991 }
2992
2993 /* This special case is for structures consisting of a single
2994 `float', `double' or 'long double' member. These structures are
2995 returned in %st(0). For these structures, we call ourselves
2996 recursively, changing TYPE into the type of the first member of
2997 the structure. Since that should work for all structures that
2998 have only one member, we don't bother to check the member's type
2999 here. */
3000 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
3001 {
3002 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
3003 return i386_return_value (gdbarch, function, type, regcache,
3004 readbuf, writebuf);
3005 }
3006
3007 if (readbuf)
3008 i386_extract_return_value (gdbarch, type, regcache, readbuf);
3009 if (writebuf)
3010 i386_store_return_value (gdbarch, type, regcache, writebuf);
3011
3012 return RETURN_VALUE_REGISTER_CONVENTION;
3013 }
3014 \f
3015
3016 struct type *
3017 i387_ext_type (struct gdbarch *gdbarch)
3018 {
3019 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3020
3021 if (!tdep->i387_ext_type)
3022 {
3023 tdep->i387_ext_type = tdesc_find_type (gdbarch, "i387_ext");
3024 gdb_assert (tdep->i387_ext_type != NULL);
3025 }
3026
3027 return tdep->i387_ext_type;
3028 }
3029
3030 /* Construct type for pseudo BND registers. We can't use
3031 tdesc_find_type since a complement of one value has to be used
3032 to describe the upper bound. */
3033
3034 static struct type *
3035 i386_bnd_type (struct gdbarch *gdbarch)
3036 {
3037 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3038
3039
3040 if (!tdep->i386_bnd_type)
3041 {
3042 struct type *t;
3043 const struct builtin_type *bt = builtin_type (gdbarch);
3044
3045 /* The type we're building is described bellow: */
3046 #if 0
3047 struct __bound128
3048 {
3049 void *lbound;
3050 void *ubound; /* One complement of raw ubound field. */
3051 };
3052 #endif
3053
3054 t = arch_composite_type (gdbarch,
3055 "__gdb_builtin_type_bound128", TYPE_CODE_STRUCT);
3056
3057 append_composite_type_field (t, "lbound", bt->builtin_data_ptr);
3058 append_composite_type_field (t, "ubound", bt->builtin_data_ptr);
3059
3060 TYPE_NAME (t) = "builtin_type_bound128";
3061 tdep->i386_bnd_type = t;
3062 }
3063
3064 return tdep->i386_bnd_type;
3065 }
3066
3067 /* Construct vector type for pseudo ZMM registers. We can't use
3068 tdesc_find_type since ZMM isn't described in target description. */
3069
3070 static struct type *
3071 i386_zmm_type (struct gdbarch *gdbarch)
3072 {
3073 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3074
3075 if (!tdep->i386_zmm_type)
3076 {
3077 const struct builtin_type *bt = builtin_type (gdbarch);
3078
3079 /* The type we're building is this: */
3080 #if 0
3081 union __gdb_builtin_type_vec512i
3082 {
3083 int128_t uint128[4];
3084 int64_t v4_int64[8];
3085 int32_t v8_int32[16];
3086 int16_t v16_int16[32];
3087 int8_t v32_int8[64];
3088 double v4_double[8];
3089 float v8_float[16];
3090 };
3091 #endif
3092
3093 struct type *t;
3094
3095 t = arch_composite_type (gdbarch,
3096 "__gdb_builtin_type_vec512i", TYPE_CODE_UNION);
3097 append_composite_type_field (t, "v16_float",
3098 init_vector_type (bt->builtin_float, 16));
3099 append_composite_type_field (t, "v8_double",
3100 init_vector_type (bt->builtin_double, 8));
3101 append_composite_type_field (t, "v64_int8",
3102 init_vector_type (bt->builtin_int8, 64));
3103 append_composite_type_field (t, "v32_int16",
3104 init_vector_type (bt->builtin_int16, 32));
3105 append_composite_type_field (t, "v16_int32",
3106 init_vector_type (bt->builtin_int32, 16));
3107 append_composite_type_field (t, "v8_int64",
3108 init_vector_type (bt->builtin_int64, 8));
3109 append_composite_type_field (t, "v4_int128",
3110 init_vector_type (bt->builtin_int128, 4));
3111
3112 TYPE_VECTOR (t) = 1;
3113 TYPE_NAME (t) = "builtin_type_vec512i";
3114 tdep->i386_zmm_type = t;
3115 }
3116
3117 return tdep->i386_zmm_type;
3118 }
3119
3120 /* Construct vector type for pseudo YMM registers. We can't use
3121 tdesc_find_type since YMM isn't described in target description. */
3122
3123 static struct type *
3124 i386_ymm_type (struct gdbarch *gdbarch)
3125 {
3126 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3127
3128 if (!tdep->i386_ymm_type)
3129 {
3130 const struct builtin_type *bt = builtin_type (gdbarch);
3131
3132 /* The type we're building is this: */
3133 #if 0
3134 union __gdb_builtin_type_vec256i
3135 {
3136 int128_t uint128[2];
3137 int64_t v2_int64[4];
3138 int32_t v4_int32[8];
3139 int16_t v8_int16[16];
3140 int8_t v16_int8[32];
3141 double v2_double[4];
3142 float v4_float[8];
3143 };
3144 #endif
3145
3146 struct type *t;
3147
3148 t = arch_composite_type (gdbarch,
3149 "__gdb_builtin_type_vec256i", TYPE_CODE_UNION);
3150 append_composite_type_field (t, "v8_float",
3151 init_vector_type (bt->builtin_float, 8));
3152 append_composite_type_field (t, "v4_double",
3153 init_vector_type (bt->builtin_double, 4));
3154 append_composite_type_field (t, "v32_int8",
3155 init_vector_type (bt->builtin_int8, 32));
3156 append_composite_type_field (t, "v16_int16",
3157 init_vector_type (bt->builtin_int16, 16));
3158 append_composite_type_field (t, "v8_int32",
3159 init_vector_type (bt->builtin_int32, 8));
3160 append_composite_type_field (t, "v4_int64",
3161 init_vector_type (bt->builtin_int64, 4));
3162 append_composite_type_field (t, "v2_int128",
3163 init_vector_type (bt->builtin_int128, 2));
3164
3165 TYPE_VECTOR (t) = 1;
3166 TYPE_NAME (t) = "builtin_type_vec256i";
3167 tdep->i386_ymm_type = t;
3168 }
3169
3170 return tdep->i386_ymm_type;
3171 }
3172
3173 /* Construct vector type for MMX registers. */
3174 static struct type *
3175 i386_mmx_type (struct gdbarch *gdbarch)
3176 {
3177 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3178
3179 if (!tdep->i386_mmx_type)
3180 {
3181 const struct builtin_type *bt = builtin_type (gdbarch);
3182
3183 /* The type we're building is this: */
3184 #if 0
3185 union __gdb_builtin_type_vec64i
3186 {
3187 int64_t uint64;
3188 int32_t v2_int32[2];
3189 int16_t v4_int16[4];
3190 int8_t v8_int8[8];
3191 };
3192 #endif
3193
3194 struct type *t;
3195
3196 t = arch_composite_type (gdbarch,
3197 "__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
3198
3199 append_composite_type_field (t, "uint64", bt->builtin_int64);
3200 append_composite_type_field (t, "v2_int32",
3201 init_vector_type (bt->builtin_int32, 2));
3202 append_composite_type_field (t, "v4_int16",
3203 init_vector_type (bt->builtin_int16, 4));
3204 append_composite_type_field (t, "v8_int8",
3205 init_vector_type (bt->builtin_int8, 8));
3206
3207 TYPE_VECTOR (t) = 1;
3208 TYPE_NAME (t) = "builtin_type_vec64i";
3209 tdep->i386_mmx_type = t;
3210 }
3211
3212 return tdep->i386_mmx_type;
3213 }
3214
3215 /* Return the GDB type object for the "standard" data type of data in
3216 register REGNUM. */
3217
3218 struct type *
3219 i386_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
3220 {
3221 if (i386_bnd_regnum_p (gdbarch, regnum))
3222 return i386_bnd_type (gdbarch);
3223 if (i386_mmx_regnum_p (gdbarch, regnum))
3224 return i386_mmx_type (gdbarch);
3225 else if (i386_ymm_regnum_p (gdbarch, regnum))
3226 return i386_ymm_type (gdbarch);
3227 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3228 return i386_ymm_type (gdbarch);
3229 else if (i386_zmm_regnum_p (gdbarch, regnum))
3230 return i386_zmm_type (gdbarch);
3231 else
3232 {
3233 const struct builtin_type *bt = builtin_type (gdbarch);
3234 if (i386_byte_regnum_p (gdbarch, regnum))
3235 return bt->builtin_int8;
3236 else if (i386_word_regnum_p (gdbarch, regnum))
3237 return bt->builtin_int16;
3238 else if (i386_dword_regnum_p (gdbarch, regnum))
3239 return bt->builtin_int32;
3240 else if (i386_k_regnum_p (gdbarch, regnum))
3241 return bt->builtin_int64;
3242 }
3243
3244 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3245 }
3246
3247 /* Map a cooked register onto a raw register or memory. For the i386,
3248 the MMX registers need to be mapped onto floating point registers. */
3249
3250 static int
3251 i386_mmx_regnum_to_fp_regnum (readable_regcache *regcache, int regnum)
3252 {
3253 struct gdbarch_tdep *tdep = gdbarch_tdep (regcache->arch ());
3254 int mmxreg, fpreg;
3255 ULONGEST fstat;
3256 int tos;
3257
3258 mmxreg = regnum - tdep->mm0_regnum;
3259 regcache->raw_read (I387_FSTAT_REGNUM (tdep), &fstat);
3260 tos = (fstat >> 11) & 0x7;
3261 fpreg = (mmxreg + tos) % 8;
3262
3263 return (I387_ST0_REGNUM (tdep) + fpreg);
3264 }
3265
3266 /* A helper function for us by i386_pseudo_register_read_value and
3267 amd64_pseudo_register_read_value. It does all the work but reads
3268 the data into an already-allocated value. */
3269
3270 void
3271 i386_pseudo_register_read_into_value (struct gdbarch *gdbarch,
3272 readable_regcache *regcache,
3273 int regnum,
3274 struct value *result_value)
3275 {
3276 gdb_byte raw_buf[I386_MAX_REGISTER_SIZE];
3277 enum register_status status;
3278 gdb_byte *buf = value_contents_raw (result_value);
3279
3280 if (i386_mmx_regnum_p (gdbarch, regnum))
3281 {
3282 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3283
3284 /* Extract (always little endian). */
3285 status = regcache->raw_read (fpnum, raw_buf);
3286 if (status != REG_VALID)
3287 mark_value_bytes_unavailable (result_value, 0,
3288 TYPE_LENGTH (value_type (result_value)));
3289 else
3290 memcpy (buf, raw_buf, register_size (gdbarch, regnum));
3291 }
3292 else
3293 {
3294 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3295 if (i386_bnd_regnum_p (gdbarch, regnum))
3296 {
3297 regnum -= tdep->bnd0_regnum;
3298
3299 /* Extract (always little endian). Read lower 128bits. */
3300 status = regcache->raw_read (I387_BND0R_REGNUM (tdep) + regnum,
3301 raw_buf);
3302 if (status != REG_VALID)
3303 mark_value_bytes_unavailable (result_value, 0, 16);
3304 else
3305 {
3306 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3307 LONGEST upper, lower;
3308 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
3309
3310 lower = extract_unsigned_integer (raw_buf, 8, byte_order);
3311 upper = extract_unsigned_integer (raw_buf + 8, 8, byte_order);
3312 upper = ~upper;
3313
3314 memcpy (buf, &lower, size);
3315 memcpy (buf + size, &upper, size);
3316 }
3317 }
3318 else if (i386_k_regnum_p (gdbarch, regnum))
3319 {
3320 regnum -= tdep->k0_regnum;
3321
3322 /* Extract (always little endian). */
3323 status = regcache->raw_read (tdep->k0_regnum + regnum, raw_buf);
3324 if (status != REG_VALID)
3325 mark_value_bytes_unavailable (result_value, 0, 8);
3326 else
3327 memcpy (buf, raw_buf, 8);
3328 }
3329 else if (i386_zmm_regnum_p (gdbarch, regnum))
3330 {
3331 regnum -= tdep->zmm0_regnum;
3332
3333 if (regnum < num_lower_zmm_regs)
3334 {
3335 /* Extract (always little endian). Read lower 128bits. */
3336 status = regcache->raw_read (I387_XMM0_REGNUM (tdep) + regnum,
3337 raw_buf);
3338 if (status != REG_VALID)
3339 mark_value_bytes_unavailable (result_value, 0, 16);
3340 else
3341 memcpy (buf, raw_buf, 16);
3342
3343 /* Extract (always little endian). Read upper 128bits. */
3344 status = regcache->raw_read (tdep->ymm0h_regnum + regnum,
3345 raw_buf);
3346 if (status != REG_VALID)
3347 mark_value_bytes_unavailable (result_value, 16, 16);
3348 else
3349 memcpy (buf + 16, raw_buf, 16);
3350 }
3351 else
3352 {
3353 /* Extract (always little endian). Read lower 128bits. */
3354 status = regcache->raw_read (I387_XMM16_REGNUM (tdep) + regnum
3355 - num_lower_zmm_regs,
3356 raw_buf);
3357 if (status != REG_VALID)
3358 mark_value_bytes_unavailable (result_value, 0, 16);
3359 else
3360 memcpy (buf, raw_buf, 16);
3361
3362 /* Extract (always little endian). Read upper 128bits. */
3363 status = regcache->raw_read (I387_YMM16H_REGNUM (tdep) + regnum
3364 - num_lower_zmm_regs,
3365 raw_buf);
3366 if (status != REG_VALID)
3367 mark_value_bytes_unavailable (result_value, 16, 16);
3368 else
3369 memcpy (buf + 16, raw_buf, 16);
3370 }
3371
3372 /* Read upper 256bits. */
3373 status = regcache->raw_read (tdep->zmm0h_regnum + regnum,
3374 raw_buf);
3375 if (status != REG_VALID)
3376 mark_value_bytes_unavailable (result_value, 32, 32);
3377 else
3378 memcpy (buf + 32, raw_buf, 32);
3379 }
3380 else if (i386_ymm_regnum_p (gdbarch, regnum))
3381 {
3382 regnum -= tdep->ymm0_regnum;
3383
3384 /* Extract (always little endian). Read lower 128bits. */
3385 status = regcache->raw_read (I387_XMM0_REGNUM (tdep) + regnum,
3386 raw_buf);
3387 if (status != REG_VALID)
3388 mark_value_bytes_unavailable (result_value, 0, 16);
3389 else
3390 memcpy (buf, raw_buf, 16);
3391 /* Read upper 128bits. */
3392 status = regcache->raw_read (tdep->ymm0h_regnum + regnum,
3393 raw_buf);
3394 if (status != REG_VALID)
3395 mark_value_bytes_unavailable (result_value, 16, 32);
3396 else
3397 memcpy (buf + 16, raw_buf, 16);
3398 }
3399 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3400 {
3401 regnum -= tdep->ymm16_regnum;
3402 /* Extract (always little endian). Read lower 128bits. */
3403 status = regcache->raw_read (I387_XMM16_REGNUM (tdep) + regnum,
3404 raw_buf);
3405 if (status != REG_VALID)
3406 mark_value_bytes_unavailable (result_value, 0, 16);
3407 else
3408 memcpy (buf, raw_buf, 16);
3409 /* Read upper 128bits. */
3410 status = regcache->raw_read (tdep->ymm16h_regnum + regnum,
3411 raw_buf);
3412 if (status != REG_VALID)
3413 mark_value_bytes_unavailable (result_value, 16, 16);
3414 else
3415 memcpy (buf + 16, raw_buf, 16);
3416 }
3417 else if (i386_word_regnum_p (gdbarch, regnum))
3418 {
3419 int gpnum = regnum - tdep->ax_regnum;
3420
3421 /* Extract (always little endian). */
3422 status = regcache->raw_read (gpnum, raw_buf);
3423 if (status != REG_VALID)
3424 mark_value_bytes_unavailable (result_value, 0,
3425 TYPE_LENGTH (value_type (result_value)));
3426 else
3427 memcpy (buf, raw_buf, 2);
3428 }
3429 else if (i386_byte_regnum_p (gdbarch, regnum))
3430 {
3431 int gpnum = regnum - tdep->al_regnum;
3432
3433 /* Extract (always little endian). We read both lower and
3434 upper registers. */
3435 status = regcache->raw_read (gpnum % 4, raw_buf);
3436 if (status != REG_VALID)
3437 mark_value_bytes_unavailable (result_value, 0,
3438 TYPE_LENGTH (value_type (result_value)));
3439 else if (gpnum >= 4)
3440 memcpy (buf, raw_buf + 1, 1);
3441 else
3442 memcpy (buf, raw_buf, 1);
3443 }
3444 else
3445 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3446 }
3447 }
3448
3449 static struct value *
3450 i386_pseudo_register_read_value (struct gdbarch *gdbarch,
3451 readable_regcache *regcache,
3452 int regnum)
3453 {
3454 struct value *result;
3455
3456 result = allocate_value (register_type (gdbarch, regnum));
3457 VALUE_LVAL (result) = lval_register;
3458 VALUE_REGNUM (result) = regnum;
3459
3460 i386_pseudo_register_read_into_value (gdbarch, regcache, regnum, result);
3461
3462 return result;
3463 }
3464
3465 void
3466 i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
3467 int regnum, const gdb_byte *buf)
3468 {
3469 gdb_byte raw_buf[I386_MAX_REGISTER_SIZE];
3470
3471 if (i386_mmx_regnum_p (gdbarch, regnum))
3472 {
3473 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3474
3475 /* Read ... */
3476 regcache_raw_read (regcache, fpnum, raw_buf);
3477 /* ... Modify ... (always little endian). */
3478 memcpy (raw_buf, buf, register_size (gdbarch, regnum));
3479 /* ... Write. */
3480 regcache_raw_write (regcache, fpnum, raw_buf);
3481 }
3482 else
3483 {
3484 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3485
3486 if (i386_bnd_regnum_p (gdbarch, regnum))
3487 {
3488 ULONGEST upper, lower;
3489 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
3490 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3491
3492 /* New values from input value. */
3493 regnum -= tdep->bnd0_regnum;
3494 lower = extract_unsigned_integer (buf, size, byte_order);
3495 upper = extract_unsigned_integer (buf + size, size, byte_order);
3496
3497 /* Fetching register buffer. */
3498 regcache_raw_read (regcache,
3499 I387_BND0R_REGNUM (tdep) + regnum,
3500 raw_buf);
3501
3502 upper = ~upper;
3503
3504 /* Set register bits. */
3505 memcpy (raw_buf, &lower, 8);
3506 memcpy (raw_buf + 8, &upper, 8);
3507
3508
3509 regcache_raw_write (regcache,
3510 I387_BND0R_REGNUM (tdep) + regnum,
3511 raw_buf);
3512 }
3513 else if (i386_k_regnum_p (gdbarch, regnum))
3514 {
3515 regnum -= tdep->k0_regnum;
3516
3517 regcache_raw_write (regcache,
3518 tdep->k0_regnum + regnum,
3519 buf);
3520 }
3521 else if (i386_zmm_regnum_p (gdbarch, regnum))
3522 {
3523 regnum -= tdep->zmm0_regnum;
3524
3525 if (regnum < num_lower_zmm_regs)
3526 {
3527 /* Write lower 128bits. */
3528 regcache_raw_write (regcache,
3529 I387_XMM0_REGNUM (tdep) + regnum,
3530 buf);
3531 /* Write upper 128bits. */
3532 regcache_raw_write (regcache,
3533 I387_YMM0_REGNUM (tdep) + regnum,
3534 buf + 16);
3535 }
3536 else
3537 {
3538 /* Write lower 128bits. */
3539 regcache_raw_write (regcache,
3540 I387_XMM16_REGNUM (tdep) + regnum
3541 - num_lower_zmm_regs,
3542 buf);
3543 /* Write upper 128bits. */
3544 regcache_raw_write (regcache,
3545 I387_YMM16H_REGNUM (tdep) + regnum
3546 - num_lower_zmm_regs,
3547 buf + 16);
3548 }
3549 /* Write upper 256bits. */
3550 regcache_raw_write (regcache,
3551 tdep->zmm0h_regnum + regnum,
3552 buf + 32);
3553 }
3554 else if (i386_ymm_regnum_p (gdbarch, regnum))
3555 {
3556 regnum -= tdep->ymm0_regnum;
3557
3558 /* ... Write lower 128bits. */
3559 regcache_raw_write (regcache,
3560 I387_XMM0_REGNUM (tdep) + regnum,
3561 buf);
3562 /* ... Write upper 128bits. */
3563 regcache_raw_write (regcache,
3564 tdep->ymm0h_regnum + regnum,
3565 buf + 16);
3566 }
3567 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3568 {
3569 regnum -= tdep->ymm16_regnum;
3570
3571 /* ... Write lower 128bits. */
3572 regcache_raw_write (regcache,
3573 I387_XMM16_REGNUM (tdep) + regnum,
3574 buf);
3575 /* ... Write upper 128bits. */
3576 regcache_raw_write (regcache,
3577 tdep->ymm16h_regnum + regnum,
3578 buf + 16);
3579 }
3580 else if (i386_word_regnum_p (gdbarch, regnum))
3581 {
3582 int gpnum = regnum - tdep->ax_regnum;
3583
3584 /* Read ... */
3585 regcache_raw_read (regcache, gpnum, raw_buf);
3586 /* ... Modify ... (always little endian). */
3587 memcpy (raw_buf, buf, 2);
3588 /* ... Write. */
3589 regcache_raw_write (regcache, gpnum, raw_buf);
3590 }
3591 else if (i386_byte_regnum_p (gdbarch, regnum))
3592 {
3593 int gpnum = regnum - tdep->al_regnum;
3594
3595 /* Read ... We read both lower and upper registers. */
3596 regcache_raw_read (regcache, gpnum % 4, raw_buf);
3597 /* ... Modify ... (always little endian). */
3598 if (gpnum >= 4)
3599 memcpy (raw_buf + 1, buf, 1);
3600 else
3601 memcpy (raw_buf, buf, 1);
3602 /* ... Write. */
3603 regcache_raw_write (regcache, gpnum % 4, raw_buf);
3604 }
3605 else
3606 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3607 }
3608 }
3609
3610 /* Implement the 'ax_pseudo_register_collect' gdbarch method. */
3611
3612 int
3613 i386_ax_pseudo_register_collect (struct gdbarch *gdbarch,
3614 struct agent_expr *ax, int regnum)
3615 {
3616 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3617
3618 if (i386_mmx_regnum_p (gdbarch, regnum))
3619 {
3620 /* MMX to FPU register mapping depends on current TOS. Let's just
3621 not care and collect everything... */
3622 int i;
3623
3624 ax_reg_mask (ax, I387_FSTAT_REGNUM (tdep));
3625 for (i = 0; i < 8; i++)
3626 ax_reg_mask (ax, I387_ST0_REGNUM (tdep) + i);
3627 return 0;
3628 }
3629 else if (i386_bnd_regnum_p (gdbarch, regnum))
3630 {
3631 regnum -= tdep->bnd0_regnum;
3632 ax_reg_mask (ax, I387_BND0R_REGNUM (tdep) + regnum);
3633 return 0;
3634 }
3635 else if (i386_k_regnum_p (gdbarch, regnum))
3636 {
3637 regnum -= tdep->k0_regnum;
3638 ax_reg_mask (ax, tdep->k0_regnum + regnum);
3639 return 0;
3640 }
3641 else if (i386_zmm_regnum_p (gdbarch, regnum))
3642 {
3643 regnum -= tdep->zmm0_regnum;
3644 if (regnum < num_lower_zmm_regs)
3645 {
3646 ax_reg_mask (ax, I387_XMM0_REGNUM (tdep) + regnum);
3647 ax_reg_mask (ax, tdep->ymm0h_regnum + regnum);
3648 }
3649 else
3650 {
3651 ax_reg_mask (ax, I387_XMM16_REGNUM (tdep) + regnum
3652 - num_lower_zmm_regs);
3653 ax_reg_mask (ax, I387_YMM16H_REGNUM (tdep) + regnum
3654 - num_lower_zmm_regs);
3655 }
3656 ax_reg_mask (ax, tdep->zmm0h_regnum + regnum);
3657 return 0;
3658 }
3659 else if (i386_ymm_regnum_p (gdbarch, regnum))
3660 {
3661 regnum -= tdep->ymm0_regnum;
3662 ax_reg_mask (ax, I387_XMM0_REGNUM (tdep) + regnum);
3663 ax_reg_mask (ax, tdep->ymm0h_regnum + regnum);
3664 return 0;
3665 }
3666 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3667 {
3668 regnum -= tdep->ymm16_regnum;
3669 ax_reg_mask (ax, I387_XMM16_REGNUM (tdep) + regnum);
3670 ax_reg_mask (ax, tdep->ymm16h_regnum + regnum);
3671 return 0;
3672 }
3673 else if (i386_word_regnum_p (gdbarch, regnum))
3674 {
3675 int gpnum = regnum - tdep->ax_regnum;
3676
3677 ax_reg_mask (ax, gpnum);
3678 return 0;
3679 }
3680 else if (i386_byte_regnum_p (gdbarch, regnum))
3681 {
3682 int gpnum = regnum - tdep->al_regnum;
3683
3684 ax_reg_mask (ax, gpnum % 4);
3685 return 0;
3686 }
3687 else
3688 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3689 return 1;
3690 }
3691 \f
3692
3693 /* Return the register number of the register allocated by GCC after
3694 REGNUM, or -1 if there is no such register. */
3695
3696 static int
3697 i386_next_regnum (int regnum)
3698 {
3699 /* GCC allocates the registers in the order:
3700
3701 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
3702
3703 Since storing a variable in %esp doesn't make any sense we return
3704 -1 for %ebp and for %esp itself. */
3705 static int next_regnum[] =
3706 {
3707 I386_EDX_REGNUM, /* Slot for %eax. */
3708 I386_EBX_REGNUM, /* Slot for %ecx. */
3709 I386_ECX_REGNUM, /* Slot for %edx. */
3710 I386_ESI_REGNUM, /* Slot for %ebx. */
3711 -1, -1, /* Slots for %esp and %ebp. */
3712 I386_EDI_REGNUM, /* Slot for %esi. */
3713 I386_EBP_REGNUM /* Slot for %edi. */
3714 };
3715
3716 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
3717 return next_regnum[regnum];
3718
3719 return -1;
3720 }
3721
3722 /* Return nonzero if a value of type TYPE stored in register REGNUM
3723 needs any special handling. */
3724
3725 static int
3726 i386_convert_register_p (struct gdbarch *gdbarch,
3727 int regnum, struct type *type)
3728 {
3729 int len = TYPE_LENGTH (type);
3730
3731 /* Values may be spread across multiple registers. Most debugging
3732 formats aren't expressive enough to specify the locations, so
3733 some heuristics is involved. Right now we only handle types that
3734 have a length that is a multiple of the word size, since GCC
3735 doesn't seem to put any other types into registers. */
3736 if (len > 4 && len % 4 == 0)
3737 {
3738 int last_regnum = regnum;
3739
3740 while (len > 4)
3741 {
3742 last_regnum = i386_next_regnum (last_regnum);
3743 len -= 4;
3744 }
3745
3746 if (last_regnum != -1)
3747 return 1;
3748 }
3749
3750 return i387_convert_register_p (gdbarch, regnum, type);
3751 }
3752
3753 /* Read a value of type TYPE from register REGNUM in frame FRAME, and
3754 return its contents in TO. */
3755
3756 static int
3757 i386_register_to_value (struct frame_info *frame, int regnum,
3758 struct type *type, gdb_byte *to,
3759 int *optimizedp, int *unavailablep)
3760 {
3761 struct gdbarch *gdbarch = get_frame_arch (frame);
3762 int len = TYPE_LENGTH (type);
3763
3764 if (i386_fp_regnum_p (gdbarch, regnum))
3765 return i387_register_to_value (frame, regnum, type, to,
3766 optimizedp, unavailablep);
3767
3768 /* Read a value spread across multiple registers. */
3769
3770 gdb_assert (len > 4 && len % 4 == 0);
3771
3772 while (len > 0)
3773 {
3774 gdb_assert (regnum != -1);
3775 gdb_assert (register_size (gdbarch, regnum) == 4);
3776
3777 if (!get_frame_register_bytes (frame, regnum, 0,
3778 register_size (gdbarch, regnum),
3779 to, optimizedp, unavailablep))
3780 return 0;
3781
3782 regnum = i386_next_regnum (regnum);
3783 len -= 4;
3784 to += 4;
3785 }
3786
3787 *optimizedp = *unavailablep = 0;
3788 return 1;
3789 }
3790
3791 /* Write the contents FROM of a value of type TYPE into register
3792 REGNUM in frame FRAME. */
3793
3794 static void
3795 i386_value_to_register (struct frame_info *frame, int regnum,
3796 struct type *type, const gdb_byte *from)
3797 {
3798 int len = TYPE_LENGTH (type);
3799
3800 if (i386_fp_regnum_p (get_frame_arch (frame), regnum))
3801 {
3802 i387_value_to_register (frame, regnum, type, from);
3803 return;
3804 }
3805
3806 /* Write a value spread across multiple registers. */
3807
3808 gdb_assert (len > 4 && len % 4 == 0);
3809
3810 while (len > 0)
3811 {
3812 gdb_assert (regnum != -1);
3813 gdb_assert (register_size (get_frame_arch (frame), regnum) == 4);
3814
3815 put_frame_register (frame, regnum, from);
3816 regnum = i386_next_regnum (regnum);
3817 len -= 4;
3818 from += 4;
3819 }
3820 }
3821 \f
3822 /* Supply register REGNUM from the buffer specified by GREGS and LEN
3823 in the general-purpose register set REGSET to register cache
3824 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3825
3826 void
3827 i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
3828 int regnum, const void *gregs, size_t len)
3829 {
3830 struct gdbarch *gdbarch = regcache->arch ();
3831 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3832 const gdb_byte *regs = (const gdb_byte *) gregs;
3833 int i;
3834
3835 gdb_assert (len >= tdep->sizeof_gregset);
3836
3837 for (i = 0; i < tdep->gregset_num_regs; i++)
3838 {
3839 if ((regnum == i || regnum == -1)
3840 && tdep->gregset_reg_offset[i] != -1)
3841 regcache_raw_supply (regcache, i, regs + tdep->gregset_reg_offset[i]);
3842 }
3843 }
3844
3845 /* Collect register REGNUM from the register cache REGCACHE and store
3846 it in the buffer specified by GREGS and LEN as described by the
3847 general-purpose register set REGSET. If REGNUM is -1, do this for
3848 all registers in REGSET. */
3849
3850 static void
3851 i386_collect_gregset (const struct regset *regset,
3852 const struct regcache *regcache,
3853 int regnum, void *gregs, size_t len)
3854 {
3855 struct gdbarch *gdbarch = regcache->arch ();
3856 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3857 gdb_byte *regs = (gdb_byte *) gregs;
3858 int i;
3859
3860 gdb_assert (len >= tdep->sizeof_gregset);
3861
3862 for (i = 0; i < tdep->gregset_num_regs; i++)
3863 {
3864 if ((regnum == i || regnum == -1)
3865 && tdep->gregset_reg_offset[i] != -1)
3866 regcache_raw_collect (regcache, i, regs + tdep->gregset_reg_offset[i]);
3867 }
3868 }
3869
3870 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
3871 in the floating-point register set REGSET to register cache
3872 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3873
3874 static void
3875 i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
3876 int regnum, const void *fpregs, size_t len)
3877 {
3878 struct gdbarch *gdbarch = regcache->arch ();
3879 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3880
3881 if (len == I387_SIZEOF_FXSAVE)
3882 {
3883 i387_supply_fxsave (regcache, regnum, fpregs);
3884 return;
3885 }
3886
3887 gdb_assert (len >= tdep->sizeof_fpregset);
3888 i387_supply_fsave (regcache, regnum, fpregs);
3889 }
3890
3891 /* Collect register REGNUM from the register cache REGCACHE and store
3892 it in the buffer specified by FPREGS and LEN as described by the
3893 floating-point register set REGSET. If REGNUM is -1, do this for
3894 all registers in REGSET. */
3895
3896 static void
3897 i386_collect_fpregset (const struct regset *regset,
3898 const struct regcache *regcache,
3899 int regnum, void *fpregs, size_t len)
3900 {
3901 struct gdbarch *gdbarch = regcache->arch ();
3902 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3903
3904 if (len == I387_SIZEOF_FXSAVE)
3905 {
3906 i387_collect_fxsave (regcache, regnum, fpregs);
3907 return;
3908 }
3909
3910 gdb_assert (len >= tdep->sizeof_fpregset);
3911 i387_collect_fsave (regcache, regnum, fpregs);
3912 }
3913
3914 /* Register set definitions. */
3915
3916 const struct regset i386_gregset =
3917 {
3918 NULL, i386_supply_gregset, i386_collect_gregset
3919 };
3920
3921 const struct regset i386_fpregset =
3922 {
3923 NULL, i386_supply_fpregset, i386_collect_fpregset
3924 };
3925
3926 /* Default iterator over core file register note sections. */
3927
3928 void
3929 i386_iterate_over_regset_sections (struct gdbarch *gdbarch,
3930 iterate_over_regset_sections_cb *cb,
3931 void *cb_data,
3932 const struct regcache *regcache)
3933 {
3934 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3935
3936 cb (".reg", tdep->sizeof_gregset, &i386_gregset, NULL, cb_data);
3937 if (tdep->sizeof_fpregset)
3938 cb (".reg2", tdep->sizeof_fpregset, tdep->fpregset, NULL, cb_data);
3939 }
3940 \f
3941
3942 /* Stuff for WIN32 PE style DLL's but is pretty generic really. */
3943
3944 CORE_ADDR
3945 i386_pe_skip_trampoline_code (struct frame_info *frame,
3946 CORE_ADDR pc, char *name)
3947 {
3948 struct gdbarch *gdbarch = get_frame_arch (frame);
3949 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3950
3951 /* jmp *(dest) */
3952 if (pc && read_memory_unsigned_integer (pc, 2, byte_order) == 0x25ff)
3953 {
3954 unsigned long indirect =
3955 read_memory_unsigned_integer (pc + 2, 4, byte_order);
3956 struct minimal_symbol *indsym =
3957 indirect ? lookup_minimal_symbol_by_pc (indirect).minsym : 0;
3958 const char *symname = indsym ? MSYMBOL_LINKAGE_NAME (indsym) : 0;
3959
3960 if (symname)
3961 {
3962 if (startswith (symname, "__imp_")
3963 || startswith (symname, "_imp_"))
3964 return name ? 1 :
3965 read_memory_unsigned_integer (indirect, 4, byte_order);
3966 }
3967 }
3968 return 0; /* Not a trampoline. */
3969 }
3970 \f
3971
3972 /* Return whether the THIS_FRAME corresponds to a sigtramp
3973 routine. */
3974
3975 int
3976 i386_sigtramp_p (struct frame_info *this_frame)
3977 {
3978 CORE_ADDR pc = get_frame_pc (this_frame);
3979 const char *name;
3980
3981 find_pc_partial_function (pc, &name, NULL, NULL);
3982 return (name && strcmp ("_sigtramp", name) == 0);
3983 }
3984 \f
3985
3986 /* We have two flavours of disassembly. The machinery on this page
3987 deals with switching between those. */
3988
3989 static int
3990 i386_print_insn (bfd_vma pc, struct disassemble_info *info)
3991 {
3992 gdb_assert (disassembly_flavor == att_flavor
3993 || disassembly_flavor == intel_flavor);
3994
3995 info->disassembler_options = disassembly_flavor;
3996
3997 return default_print_insn (pc, info);
3998 }
3999 \f
4000
4001 /* There are a few i386 architecture variants that differ only
4002 slightly from the generic i386 target. For now, we don't give them
4003 their own source file, but include them here. As a consequence,
4004 they'll always be included. */
4005
4006 /* System V Release 4 (SVR4). */
4007
4008 /* Return whether THIS_FRAME corresponds to a SVR4 sigtramp
4009 routine. */
4010
4011 static int
4012 i386_svr4_sigtramp_p (struct frame_info *this_frame)
4013 {
4014 CORE_ADDR pc = get_frame_pc (this_frame);
4015 const char *name;
4016
4017 /* The origin of these symbols is currently unknown. */
4018 find_pc_partial_function (pc, &name, NULL, NULL);
4019 return (name && (strcmp ("_sigreturn", name) == 0
4020 || strcmp ("sigvechandler", name) == 0));
4021 }
4022
4023 /* Assuming THIS_FRAME is for a SVR4 sigtramp routine, return the
4024 address of the associated sigcontext (ucontext) structure. */
4025
4026 static CORE_ADDR
4027 i386_svr4_sigcontext_addr (struct frame_info *this_frame)
4028 {
4029 struct gdbarch *gdbarch = get_frame_arch (this_frame);
4030 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4031 gdb_byte buf[4];
4032 CORE_ADDR sp;
4033
4034 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
4035 sp = extract_unsigned_integer (buf, 4, byte_order);
4036
4037 return read_memory_unsigned_integer (sp + 8, 4, byte_order);
4038 }
4039
4040 \f
4041
4042 /* Implementation of `gdbarch_stap_is_single_operand', as defined in
4043 gdbarch.h. */
4044
4045 int
4046 i386_stap_is_single_operand (struct gdbarch *gdbarch, const char *s)
4047 {
4048 return (*s == '$' /* Literal number. */
4049 || (isdigit (*s) && s[1] == '(' && s[2] == '%') /* Displacement. */
4050 || (*s == '(' && s[1] == '%') /* Register indirection. */
4051 || (*s == '%' && isalpha (s[1]))); /* Register access. */
4052 }
4053
4054 /* Helper function for i386_stap_parse_special_token.
4055
4056 This function parses operands of the form `-8+3+1(%rbp)', which
4057 must be interpreted as `*(-8 + 3 - 1 + (void *) $eax)'.
4058
4059 Return 1 if the operand was parsed successfully, zero
4060 otherwise. */
4061
4062 static int
4063 i386_stap_parse_special_token_triplet (struct gdbarch *gdbarch,
4064 struct stap_parse_info *p)
4065 {
4066 const char *s = p->arg;
4067
4068 if (isdigit (*s) || *s == '-' || *s == '+')
4069 {
4070 int got_minus[3];
4071 int i;
4072 long displacements[3];
4073 const char *start;
4074 char *regname;
4075 int len;
4076 struct stoken str;
4077 char *endp;
4078
4079 got_minus[0] = 0;
4080 if (*s == '+')
4081 ++s;
4082 else if (*s == '-')
4083 {
4084 ++s;
4085 got_minus[0] = 1;
4086 }
4087
4088 if (!isdigit ((unsigned char) *s))
4089 return 0;
4090
4091 displacements[0] = strtol (s, &endp, 10);
4092 s = endp;
4093
4094 if (*s != '+' && *s != '-')
4095 {
4096 /* We are not dealing with a triplet. */
4097 return 0;
4098 }
4099
4100 got_minus[1] = 0;
4101 if (*s == '+')
4102 ++s;
4103 else
4104 {
4105 ++s;
4106 got_minus[1] = 1;
4107 }
4108
4109 if (!isdigit ((unsigned char) *s))
4110 return 0;
4111
4112 displacements[1] = strtol (s, &endp, 10);
4113 s = endp;
4114
4115 if (*s != '+' && *s != '-')
4116 {
4117 /* We are not dealing with a triplet. */
4118 return 0;
4119 }
4120
4121 got_minus[2] = 0;
4122 if (*s == '+')
4123 ++s;
4124 else
4125 {
4126 ++s;
4127 got_minus[2] = 1;
4128 }
4129
4130 if (!isdigit ((unsigned char) *s))
4131 return 0;
4132
4133 displacements[2] = strtol (s, &endp, 10);
4134 s = endp;
4135
4136 if (*s != '(' || s[1] != '%')
4137 return 0;
4138
4139 s += 2;
4140 start = s;
4141
4142 while (isalnum (*s))
4143 ++s;
4144
4145 if (*s++ != ')')
4146 return 0;
4147
4148 len = s - start - 1;
4149 regname = (char *) alloca (len + 1);
4150
4151 strncpy (regname, start, len);
4152 regname[len] = '\0';
4153
4154 if (user_reg_map_name_to_regnum (gdbarch, regname, len) == -1)
4155 error (_("Invalid register name `%s' on expression `%s'."),
4156 regname, p->saved_arg);
4157
4158 for (i = 0; i < 3; i++)
4159 {
4160 write_exp_elt_opcode (&p->pstate, OP_LONG);
4161 write_exp_elt_type
4162 (&p->pstate, builtin_type (gdbarch)->builtin_long);
4163 write_exp_elt_longcst (&p->pstate, displacements[i]);
4164 write_exp_elt_opcode (&p->pstate, OP_LONG);
4165 if (got_minus[i])
4166 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
4167 }
4168
4169 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4170 str.ptr = regname;
4171 str.length = len;
4172 write_exp_string (&p->pstate, str);
4173 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4174
4175 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4176 write_exp_elt_type (&p->pstate,
4177 builtin_type (gdbarch)->builtin_data_ptr);
4178 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4179
4180 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4181 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4182 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4183
4184 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4185 write_exp_elt_type (&p->pstate,
4186 lookup_pointer_type (p->arg_type));
4187 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4188
4189 write_exp_elt_opcode (&p->pstate, UNOP_IND);
4190
4191 p->arg = s;
4192
4193 return 1;
4194 }
4195
4196 return 0;
4197 }
4198
4199 /* Helper function for i386_stap_parse_special_token.
4200
4201 This function parses operands of the form `register base +
4202 (register index * size) + offset', as represented in
4203 `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4204
4205 Return 1 if the operand was parsed successfully, zero
4206 otherwise. */
4207
4208 static int
4209 i386_stap_parse_special_token_three_arg_disp (struct gdbarch *gdbarch,
4210 struct stap_parse_info *p)
4211 {
4212 const char *s = p->arg;
4213
4214 if (isdigit (*s) || *s == '(' || *s == '-' || *s == '+')
4215 {
4216 int offset_minus = 0;
4217 long offset = 0;
4218 int size_minus = 0;
4219 long size = 0;
4220 const char *start;
4221 char *base;
4222 int len_base;
4223 char *index;
4224 int len_index;
4225 struct stoken base_token, index_token;
4226
4227 if (*s == '+')
4228 ++s;
4229 else if (*s == '-')
4230 {
4231 ++s;
4232 offset_minus = 1;
4233 }
4234
4235 if (offset_minus && !isdigit (*s))
4236 return 0;
4237
4238 if (isdigit (*s))
4239 {
4240 char *endp;
4241
4242 offset = strtol (s, &endp, 10);
4243 s = endp;
4244 }
4245
4246 if (*s != '(' || s[1] != '%')
4247 return 0;
4248
4249 s += 2;
4250 start = s;
4251
4252 while (isalnum (*s))
4253 ++s;
4254
4255 if (*s != ',' || s[1] != '%')
4256 return 0;
4257
4258 len_base = s - start;
4259 base = (char *) alloca (len_base + 1);
4260 strncpy (base, start, len_base);
4261 base[len_base] = '\0';
4262
4263 if (user_reg_map_name_to_regnum (gdbarch, base, len_base) == -1)
4264 error (_("Invalid register name `%s' on expression `%s'."),
4265 base, p->saved_arg);
4266
4267 s += 2;
4268 start = s;
4269
4270 while (isalnum (*s))
4271 ++s;
4272
4273 len_index = s - start;
4274 index = (char *) alloca (len_index + 1);
4275 strncpy (index, start, len_index);
4276 index[len_index] = '\0';
4277
4278 if (user_reg_map_name_to_regnum (gdbarch, index, len_index) == -1)
4279 error (_("Invalid register name `%s' on expression `%s'."),
4280 index, p->saved_arg);
4281
4282 if (*s != ',' && *s != ')')
4283 return 0;
4284
4285 if (*s == ',')
4286 {
4287 char *endp;
4288
4289 ++s;
4290 if (*s == '+')
4291 ++s;
4292 else if (*s == '-')
4293 {
4294 ++s;
4295 size_minus = 1;
4296 }
4297
4298 size = strtol (s, &endp, 10);
4299 s = endp;
4300
4301 if (*s != ')')
4302 return 0;
4303 }
4304
4305 ++s;
4306
4307 if (offset)
4308 {
4309 write_exp_elt_opcode (&p->pstate, OP_LONG);
4310 write_exp_elt_type (&p->pstate,
4311 builtin_type (gdbarch)->builtin_long);
4312 write_exp_elt_longcst (&p->pstate, offset);
4313 write_exp_elt_opcode (&p->pstate, OP_LONG);
4314 if (offset_minus)
4315 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
4316 }
4317
4318 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4319 base_token.ptr = base;
4320 base_token.length = len_base;
4321 write_exp_string (&p->pstate, base_token);
4322 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4323
4324 if (offset)
4325 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4326
4327 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4328 index_token.ptr = index;
4329 index_token.length = len_index;
4330 write_exp_string (&p->pstate, index_token);
4331 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4332
4333 if (size)
4334 {
4335 write_exp_elt_opcode (&p->pstate, OP_LONG);
4336 write_exp_elt_type (&p->pstate,
4337 builtin_type (gdbarch)->builtin_long);
4338 write_exp_elt_longcst (&p->pstate, size);
4339 write_exp_elt_opcode (&p->pstate, OP_LONG);
4340 if (size_minus)
4341 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
4342 write_exp_elt_opcode (&p->pstate, BINOP_MUL);
4343 }
4344
4345 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4346
4347 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4348 write_exp_elt_type (&p->pstate,
4349 lookup_pointer_type (p->arg_type));
4350 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4351
4352 write_exp_elt_opcode (&p->pstate, UNOP_IND);
4353
4354 p->arg = s;
4355
4356 return 1;
4357 }
4358
4359 return 0;
4360 }
4361
4362 /* Implementation of `gdbarch_stap_parse_special_token', as defined in
4363 gdbarch.h. */
4364
4365 int
4366 i386_stap_parse_special_token (struct gdbarch *gdbarch,
4367 struct stap_parse_info *p)
4368 {
4369 /* In order to parse special tokens, we use a state-machine that go
4370 through every known token and try to get a match. */
4371 enum
4372 {
4373 TRIPLET,
4374 THREE_ARG_DISPLACEMENT,
4375 DONE
4376 };
4377 int current_state;
4378
4379 current_state = TRIPLET;
4380
4381 /* The special tokens to be parsed here are:
4382
4383 - `register base + (register index * size) + offset', as represented
4384 in `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4385
4386 - Operands of the form `-8+3+1(%rbp)', which must be interpreted as
4387 `*(-8 + 3 - 1 + (void *) $eax)'. */
4388
4389 while (current_state != DONE)
4390 {
4391 switch (current_state)
4392 {
4393 case TRIPLET:
4394 if (i386_stap_parse_special_token_triplet (gdbarch, p))
4395 return 1;
4396 break;
4397
4398 case THREE_ARG_DISPLACEMENT:
4399 if (i386_stap_parse_special_token_three_arg_disp (gdbarch, p))
4400 return 1;
4401 break;
4402 }
4403
4404 /* Advancing to the next state. */
4405 ++current_state;
4406 }
4407
4408 return 0;
4409 }
4410
4411 \f
4412
4413 /* gdbarch gnu_triplet_regexp method. Both arches are acceptable as GDB always
4414 also supplies -m64 or -m32 by gdbarch_gcc_target_options. */
4415
4416 static const char *
4417 i386_gnu_triplet_regexp (struct gdbarch *gdbarch)
4418 {
4419 return "(x86_64|i.86)";
4420 }
4421
4422 \f
4423
4424 /* Generic ELF. */
4425
4426 void
4427 i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4428 {
4429 static const char *const stap_integer_prefixes[] = { "$", NULL };
4430 static const char *const stap_register_prefixes[] = { "%", NULL };
4431 static const char *const stap_register_indirection_prefixes[] = { "(",
4432 NULL };
4433 static const char *const stap_register_indirection_suffixes[] = { ")",
4434 NULL };
4435
4436 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
4437 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
4438
4439 /* Registering SystemTap handlers. */
4440 set_gdbarch_stap_integer_prefixes (gdbarch, stap_integer_prefixes);
4441 set_gdbarch_stap_register_prefixes (gdbarch, stap_register_prefixes);
4442 set_gdbarch_stap_register_indirection_prefixes (gdbarch,
4443 stap_register_indirection_prefixes);
4444 set_gdbarch_stap_register_indirection_suffixes (gdbarch,
4445 stap_register_indirection_suffixes);
4446 set_gdbarch_stap_is_single_operand (gdbarch,
4447 i386_stap_is_single_operand);
4448 set_gdbarch_stap_parse_special_token (gdbarch,
4449 i386_stap_parse_special_token);
4450 }
4451
4452 /* System V Release 4 (SVR4). */
4453
4454 void
4455 i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4456 {
4457 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4458
4459 /* System V Release 4 uses ELF. */
4460 i386_elf_init_abi (info, gdbarch);
4461
4462 /* System V Release 4 has shared libraries. */
4463 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
4464
4465 tdep->sigtramp_p = i386_svr4_sigtramp_p;
4466 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
4467 tdep->sc_pc_offset = 36 + 14 * 4;
4468 tdep->sc_sp_offset = 36 + 17 * 4;
4469
4470 tdep->jb_pc_offset = 20;
4471 }
4472
4473 \f
4474
4475 /* i386 register groups. In addition to the normal groups, add "mmx"
4476 and "sse". */
4477
4478 static struct reggroup *i386_sse_reggroup;
4479 static struct reggroup *i386_mmx_reggroup;
4480
4481 static void
4482 i386_init_reggroups (void)
4483 {
4484 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
4485 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
4486 }
4487
4488 static void
4489 i386_add_reggroups (struct gdbarch *gdbarch)
4490 {
4491 reggroup_add (gdbarch, i386_sse_reggroup);
4492 reggroup_add (gdbarch, i386_mmx_reggroup);
4493 reggroup_add (gdbarch, general_reggroup);
4494 reggroup_add (gdbarch, float_reggroup);
4495 reggroup_add (gdbarch, all_reggroup);
4496 reggroup_add (gdbarch, save_reggroup);
4497 reggroup_add (gdbarch, restore_reggroup);
4498 reggroup_add (gdbarch, vector_reggroup);
4499 reggroup_add (gdbarch, system_reggroup);
4500 }
4501
4502 int
4503 i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
4504 struct reggroup *group)
4505 {
4506 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4507 int fp_regnum_p, mmx_regnum_p, xmm_regnum_p, mxcsr_regnum_p,
4508 ymm_regnum_p, ymmh_regnum_p, ymm_avx512_regnum_p, ymmh_avx512_regnum_p,
4509 bndr_regnum_p, bnd_regnum_p, zmm_regnum_p, zmmh_regnum_p,
4510 mpx_ctrl_regnum_p, xmm_avx512_regnum_p,
4511 avx512_p, avx_p, sse_p, pkru_regnum_p;
4512
4513 /* Don't include pseudo registers, except for MMX, in any register
4514 groups. */
4515 if (i386_byte_regnum_p (gdbarch, regnum))
4516 return 0;
4517
4518 if (i386_word_regnum_p (gdbarch, regnum))
4519 return 0;
4520
4521 if (i386_dword_regnum_p (gdbarch, regnum))
4522 return 0;
4523
4524 mmx_regnum_p = i386_mmx_regnum_p (gdbarch, regnum);
4525 if (group == i386_mmx_reggroup)
4526 return mmx_regnum_p;
4527
4528 pkru_regnum_p = i386_pkru_regnum_p(gdbarch, regnum);
4529 xmm_regnum_p = i386_xmm_regnum_p (gdbarch, regnum);
4530 xmm_avx512_regnum_p = i386_xmm_avx512_regnum_p (gdbarch, regnum);
4531 mxcsr_regnum_p = i386_mxcsr_regnum_p (gdbarch, regnum);
4532 if (group == i386_sse_reggroup)
4533 return xmm_regnum_p || xmm_avx512_regnum_p || mxcsr_regnum_p;
4534
4535 ymm_regnum_p = i386_ymm_regnum_p (gdbarch, regnum);
4536 ymm_avx512_regnum_p = i386_ymm_avx512_regnum_p (gdbarch, regnum);
4537 zmm_regnum_p = i386_zmm_regnum_p (gdbarch, regnum);
4538
4539 avx512_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
4540 == X86_XSTATE_AVX_AVX512_MASK);
4541 avx_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
4542 == X86_XSTATE_AVX_MASK) && !avx512_p;
4543 sse_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
4544 == X86_XSTATE_SSE_MASK) && !avx512_p && ! avx_p;
4545
4546 if (group == vector_reggroup)
4547 return (mmx_regnum_p
4548 || (zmm_regnum_p && avx512_p)
4549 || ((ymm_regnum_p || ymm_avx512_regnum_p) && avx_p)
4550 || ((xmm_regnum_p || xmm_avx512_regnum_p) && sse_p)
4551 || mxcsr_regnum_p);
4552
4553 fp_regnum_p = (i386_fp_regnum_p (gdbarch, regnum)
4554 || i386_fpc_regnum_p (gdbarch, regnum));
4555 if (group == float_reggroup)
4556 return fp_regnum_p;
4557
4558 /* For "info reg all", don't include upper YMM registers nor XMM
4559 registers when AVX is supported. */
4560 ymmh_regnum_p = i386_ymmh_regnum_p (gdbarch, regnum);
4561 ymmh_avx512_regnum_p = i386_ymmh_avx512_regnum_p (gdbarch, regnum);
4562 zmmh_regnum_p = i386_zmmh_regnum_p (gdbarch, regnum);
4563 if (group == all_reggroup
4564 && (((xmm_regnum_p || xmm_avx512_regnum_p) && !sse_p)
4565 || ((ymm_regnum_p || ymm_avx512_regnum_p) && !avx_p)
4566 || ymmh_regnum_p
4567 || ymmh_avx512_regnum_p
4568 || zmmh_regnum_p))
4569 return 0;
4570
4571 bnd_regnum_p = i386_bnd_regnum_p (gdbarch, regnum);
4572 if (group == all_reggroup
4573 && ((bnd_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4574 return bnd_regnum_p;
4575
4576 bndr_regnum_p = i386_bndr_regnum_p (gdbarch, regnum);
4577 if (group == all_reggroup
4578 && ((bndr_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4579 return 0;
4580
4581 mpx_ctrl_regnum_p = i386_mpx_ctrl_regnum_p (gdbarch, regnum);
4582 if (group == all_reggroup
4583 && ((mpx_ctrl_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4584 return mpx_ctrl_regnum_p;
4585
4586 if (group == general_reggroup)
4587 return (!fp_regnum_p
4588 && !mmx_regnum_p
4589 && !mxcsr_regnum_p
4590 && !xmm_regnum_p
4591 && !xmm_avx512_regnum_p
4592 && !ymm_regnum_p
4593 && !ymmh_regnum_p
4594 && !ymm_avx512_regnum_p
4595 && !ymmh_avx512_regnum_p
4596 && !bndr_regnum_p
4597 && !bnd_regnum_p
4598 && !mpx_ctrl_regnum_p
4599 && !zmm_regnum_p
4600 && !zmmh_regnum_p
4601 && !pkru_regnum_p);
4602
4603 return default_register_reggroup_p (gdbarch, regnum, group);
4604 }
4605 \f
4606
4607 /* Get the ARGIth function argument for the current function. */
4608
4609 static CORE_ADDR
4610 i386_fetch_pointer_argument (struct frame_info *frame, int argi,
4611 struct type *type)
4612 {
4613 struct gdbarch *gdbarch = get_frame_arch (frame);
4614 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4615 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
4616 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4, byte_order);
4617 }
4618
4619 #define PREFIX_REPZ 0x01
4620 #define PREFIX_REPNZ 0x02
4621 #define PREFIX_LOCK 0x04
4622 #define PREFIX_DATA 0x08
4623 #define PREFIX_ADDR 0x10
4624
4625 /* operand size */
4626 enum
4627 {
4628 OT_BYTE = 0,
4629 OT_WORD,
4630 OT_LONG,
4631 OT_QUAD,
4632 OT_DQUAD,
4633 };
4634
4635 /* i386 arith/logic operations */
4636 enum
4637 {
4638 OP_ADDL,
4639 OP_ORL,
4640 OP_ADCL,
4641 OP_SBBL,
4642 OP_ANDL,
4643 OP_SUBL,
4644 OP_XORL,
4645 OP_CMPL,
4646 };
4647
4648 struct i386_record_s
4649 {
4650 struct gdbarch *gdbarch;
4651 struct regcache *regcache;
4652 CORE_ADDR orig_addr;
4653 CORE_ADDR addr;
4654 int aflag;
4655 int dflag;
4656 int override;
4657 uint8_t modrm;
4658 uint8_t mod, reg, rm;
4659 int ot;
4660 uint8_t rex_x;
4661 uint8_t rex_b;
4662 int rip_offset;
4663 int popl_esp_hack;
4664 const int *regmap;
4665 };
4666
4667 /* Parse the "modrm" part of the memory address irp->addr points at.
4668 Returns -1 if something goes wrong, 0 otherwise. */
4669
4670 static int
4671 i386_record_modrm (struct i386_record_s *irp)
4672 {
4673 struct gdbarch *gdbarch = irp->gdbarch;
4674
4675 if (record_read_memory (gdbarch, irp->addr, &irp->modrm, 1))
4676 return -1;
4677
4678 irp->addr++;
4679 irp->mod = (irp->modrm >> 6) & 3;
4680 irp->reg = (irp->modrm >> 3) & 7;
4681 irp->rm = irp->modrm & 7;
4682
4683 return 0;
4684 }
4685
4686 /* Extract the memory address that the current instruction writes to,
4687 and return it in *ADDR. Return -1 if something goes wrong. */
4688
4689 static int
4690 i386_record_lea_modrm_addr (struct i386_record_s *irp, uint64_t *addr)
4691 {
4692 struct gdbarch *gdbarch = irp->gdbarch;
4693 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4694 gdb_byte buf[4];
4695 ULONGEST offset64;
4696
4697 *addr = 0;
4698 if (irp->aflag || irp->regmap[X86_RECORD_R8_REGNUM])
4699 {
4700 /* 32/64 bits */
4701 int havesib = 0;
4702 uint8_t scale = 0;
4703 uint8_t byte;
4704 uint8_t index = 0;
4705 uint8_t base = irp->rm;
4706
4707 if (base == 4)
4708 {
4709 havesib = 1;
4710 if (record_read_memory (gdbarch, irp->addr, &byte, 1))
4711 return -1;
4712 irp->addr++;
4713 scale = (byte >> 6) & 3;
4714 index = ((byte >> 3) & 7) | irp->rex_x;
4715 base = (byte & 7);
4716 }
4717 base |= irp->rex_b;
4718
4719 switch (irp->mod)
4720 {
4721 case 0:
4722 if ((base & 7) == 5)
4723 {
4724 base = 0xff;
4725 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4726 return -1;
4727 irp->addr += 4;
4728 *addr = extract_signed_integer (buf, 4, byte_order);
4729 if (irp->regmap[X86_RECORD_R8_REGNUM] && !havesib)
4730 *addr += irp->addr + irp->rip_offset;
4731 }
4732 break;
4733 case 1:
4734 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4735 return -1;
4736 irp->addr++;
4737 *addr = (int8_t) buf[0];
4738 break;
4739 case 2:
4740 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4741 return -1;
4742 *addr = extract_signed_integer (buf, 4, byte_order);
4743 irp->addr += 4;
4744 break;
4745 }
4746
4747 offset64 = 0;
4748 if (base != 0xff)
4749 {
4750 if (base == 4 && irp->popl_esp_hack)
4751 *addr += irp->popl_esp_hack;
4752 regcache_raw_read_unsigned (irp->regcache, irp->regmap[base],
4753 &offset64);
4754 }
4755 if (irp->aflag == 2)
4756 {
4757 *addr += offset64;
4758 }
4759 else
4760 *addr = (uint32_t) (offset64 + *addr);
4761
4762 if (havesib && (index != 4 || scale != 0))
4763 {
4764 regcache_raw_read_unsigned (irp->regcache, irp->regmap[index],
4765 &offset64);
4766 if (irp->aflag == 2)
4767 *addr += offset64 << scale;
4768 else
4769 *addr = (uint32_t) (*addr + (offset64 << scale));
4770 }
4771
4772 if (!irp->aflag)
4773 {
4774 /* Since we are in 64-bit mode with ADDR32 prefix, zero-extend
4775 address from 32-bit to 64-bit. */
4776 *addr = (uint32_t) *addr;
4777 }
4778 }
4779 else
4780 {
4781 /* 16 bits */
4782 switch (irp->mod)
4783 {
4784 case 0:
4785 if (irp->rm == 6)
4786 {
4787 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4788 return -1;
4789 irp->addr += 2;
4790 *addr = extract_signed_integer (buf, 2, byte_order);
4791 irp->rm = 0;
4792 goto no_rm;
4793 }
4794 break;
4795 case 1:
4796 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4797 return -1;
4798 irp->addr++;
4799 *addr = (int8_t) buf[0];
4800 break;
4801 case 2:
4802 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4803 return -1;
4804 irp->addr += 2;
4805 *addr = extract_signed_integer (buf, 2, byte_order);
4806 break;
4807 }
4808
4809 switch (irp->rm)
4810 {
4811 case 0:
4812 regcache_raw_read_unsigned (irp->regcache,
4813 irp->regmap[X86_RECORD_REBX_REGNUM],
4814 &offset64);
4815 *addr = (uint32_t) (*addr + offset64);
4816 regcache_raw_read_unsigned (irp->regcache,
4817 irp->regmap[X86_RECORD_RESI_REGNUM],
4818 &offset64);
4819 *addr = (uint32_t) (*addr + offset64);
4820 break;
4821 case 1:
4822 regcache_raw_read_unsigned (irp->regcache,
4823 irp->regmap[X86_RECORD_REBX_REGNUM],
4824 &offset64);
4825 *addr = (uint32_t) (*addr + offset64);
4826 regcache_raw_read_unsigned (irp->regcache,
4827 irp->regmap[X86_RECORD_REDI_REGNUM],
4828 &offset64);
4829 *addr = (uint32_t) (*addr + offset64);
4830 break;
4831 case 2:
4832 regcache_raw_read_unsigned (irp->regcache,
4833 irp->regmap[X86_RECORD_REBP_REGNUM],
4834 &offset64);
4835 *addr = (uint32_t) (*addr + offset64);
4836 regcache_raw_read_unsigned (irp->regcache,
4837 irp->regmap[X86_RECORD_RESI_REGNUM],
4838 &offset64);
4839 *addr = (uint32_t) (*addr + offset64);
4840 break;
4841 case 3:
4842 regcache_raw_read_unsigned (irp->regcache,
4843 irp->regmap[X86_RECORD_REBP_REGNUM],
4844 &offset64);
4845 *addr = (uint32_t) (*addr + offset64);
4846 regcache_raw_read_unsigned (irp->regcache,
4847 irp->regmap[X86_RECORD_REDI_REGNUM],
4848 &offset64);
4849 *addr = (uint32_t) (*addr + offset64);
4850 break;
4851 case 4:
4852 regcache_raw_read_unsigned (irp->regcache,
4853 irp->regmap[X86_RECORD_RESI_REGNUM],
4854 &offset64);
4855 *addr = (uint32_t) (*addr + offset64);
4856 break;
4857 case 5:
4858 regcache_raw_read_unsigned (irp->regcache,
4859 irp->regmap[X86_RECORD_REDI_REGNUM],
4860 &offset64);
4861 *addr = (uint32_t) (*addr + offset64);
4862 break;
4863 case 6:
4864 regcache_raw_read_unsigned (irp->regcache,
4865 irp->regmap[X86_RECORD_REBP_REGNUM],
4866 &offset64);
4867 *addr = (uint32_t) (*addr + offset64);
4868 break;
4869 case 7:
4870 regcache_raw_read_unsigned (irp->regcache,
4871 irp->regmap[X86_RECORD_REBX_REGNUM],
4872 &offset64);
4873 *addr = (uint32_t) (*addr + offset64);
4874 break;
4875 }
4876 *addr &= 0xffff;
4877 }
4878
4879 no_rm:
4880 return 0;
4881 }
4882
4883 /* Record the address and contents of the memory that will be changed
4884 by the current instruction. Return -1 if something goes wrong, 0
4885 otherwise. */
4886
4887 static int
4888 i386_record_lea_modrm (struct i386_record_s *irp)
4889 {
4890 struct gdbarch *gdbarch = irp->gdbarch;
4891 uint64_t addr;
4892
4893 if (irp->override >= 0)
4894 {
4895 if (record_full_memory_query)
4896 {
4897 if (yquery (_("\
4898 Process record ignores the memory change of instruction at address %s\n\
4899 because it can't get the value of the segment register.\n\
4900 Do you want to stop the program?"),
4901 paddress (gdbarch, irp->orig_addr)))
4902 return -1;
4903 }
4904
4905 return 0;
4906 }
4907
4908 if (i386_record_lea_modrm_addr (irp, &addr))
4909 return -1;
4910
4911 if (record_full_arch_list_add_mem (addr, 1 << irp->ot))
4912 return -1;
4913
4914 return 0;
4915 }
4916
4917 /* Record the effects of a push operation. Return -1 if something
4918 goes wrong, 0 otherwise. */
4919
4920 static int
4921 i386_record_push (struct i386_record_s *irp, int size)
4922 {
4923 ULONGEST addr;
4924
4925 if (record_full_arch_list_add_reg (irp->regcache,
4926 irp->regmap[X86_RECORD_RESP_REGNUM]))
4927 return -1;
4928 regcache_raw_read_unsigned (irp->regcache,
4929 irp->regmap[X86_RECORD_RESP_REGNUM],
4930 &addr);
4931 if (record_full_arch_list_add_mem ((CORE_ADDR) addr - size, size))
4932 return -1;
4933
4934 return 0;
4935 }
4936
4937
4938 /* Defines contents to record. */
4939 #define I386_SAVE_FPU_REGS 0xfffd
4940 #define I386_SAVE_FPU_ENV 0xfffe
4941 #define I386_SAVE_FPU_ENV_REG_STACK 0xffff
4942
4943 /* Record the values of the floating point registers which will be
4944 changed by the current instruction. Returns -1 if something is
4945 wrong, 0 otherwise. */
4946
4947 static int i386_record_floats (struct gdbarch *gdbarch,
4948 struct i386_record_s *ir,
4949 uint32_t iregnum)
4950 {
4951 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4952 int i;
4953
4954 /* Oza: Because of floating point insn push/pop of fpu stack is going to
4955 happen. Currently we store st0-st7 registers, but we need not store all
4956 registers all the time, in future we use ftag register and record only
4957 those who are not marked as an empty. */
4958
4959 if (I386_SAVE_FPU_REGS == iregnum)
4960 {
4961 for (i = I387_ST0_REGNUM (tdep); i <= I387_ST0_REGNUM (tdep) + 7; i++)
4962 {
4963 if (record_full_arch_list_add_reg (ir->regcache, i))
4964 return -1;
4965 }
4966 }
4967 else if (I386_SAVE_FPU_ENV == iregnum)
4968 {
4969 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4970 {
4971 if (record_full_arch_list_add_reg (ir->regcache, i))
4972 return -1;
4973 }
4974 }
4975 else if (I386_SAVE_FPU_ENV_REG_STACK == iregnum)
4976 {
4977 for (i = I387_ST0_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4978 {
4979 if (record_full_arch_list_add_reg (ir->regcache, i))
4980 return -1;
4981 }
4982 }
4983 else if ((iregnum >= I387_ST0_REGNUM (tdep)) &&
4984 (iregnum <= I387_FOP_REGNUM (tdep)))
4985 {
4986 if (record_full_arch_list_add_reg (ir->regcache,iregnum))
4987 return -1;
4988 }
4989 else
4990 {
4991 /* Parameter error. */
4992 return -1;
4993 }
4994 if(I386_SAVE_FPU_ENV != iregnum)
4995 {
4996 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4997 {
4998 if (record_full_arch_list_add_reg (ir->regcache, i))
4999 return -1;
5000 }
5001 }
5002 return 0;
5003 }
5004
5005 /* Parse the current instruction, and record the values of the
5006 registers and memory that will be changed by the current
5007 instruction. Returns -1 if something goes wrong, 0 otherwise. */
5008
5009 #define I386_RECORD_FULL_ARCH_LIST_ADD_REG(regnum) \
5010 record_full_arch_list_add_reg (ir.regcache, ir.regmap[(regnum)])
5011
5012 int
5013 i386_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
5014 CORE_ADDR input_addr)
5015 {
5016 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
5017 int prefixes = 0;
5018 int regnum = 0;
5019 uint32_t opcode;
5020 uint8_t opcode8;
5021 ULONGEST addr;
5022 gdb_byte buf[I386_MAX_REGISTER_SIZE];
5023 struct i386_record_s ir;
5024 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5025 uint8_t rex_w = -1;
5026 uint8_t rex_r = 0;
5027
5028 memset (&ir, 0, sizeof (struct i386_record_s));
5029 ir.regcache = regcache;
5030 ir.addr = input_addr;
5031 ir.orig_addr = input_addr;
5032 ir.aflag = 1;
5033 ir.dflag = 1;
5034 ir.override = -1;
5035 ir.popl_esp_hack = 0;
5036 ir.regmap = tdep->record_regmap;
5037 ir.gdbarch = gdbarch;
5038
5039 if (record_debug > 1)
5040 fprintf_unfiltered (gdb_stdlog, "Process record: i386_process_record "
5041 "addr = %s\n",
5042 paddress (gdbarch, ir.addr));
5043
5044 /* prefixes */
5045 while (1)
5046 {
5047 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
5048 return -1;
5049 ir.addr++;
5050 switch (opcode8) /* Instruction prefixes */
5051 {
5052 case REPE_PREFIX_OPCODE:
5053 prefixes |= PREFIX_REPZ;
5054 break;
5055 case REPNE_PREFIX_OPCODE:
5056 prefixes |= PREFIX_REPNZ;
5057 break;
5058 case LOCK_PREFIX_OPCODE:
5059 prefixes |= PREFIX_LOCK;
5060 break;
5061 case CS_PREFIX_OPCODE:
5062 ir.override = X86_RECORD_CS_REGNUM;
5063 break;
5064 case SS_PREFIX_OPCODE:
5065 ir.override = X86_RECORD_SS_REGNUM;
5066 break;
5067 case DS_PREFIX_OPCODE:
5068 ir.override = X86_RECORD_DS_REGNUM;
5069 break;
5070 case ES_PREFIX_OPCODE:
5071 ir.override = X86_RECORD_ES_REGNUM;
5072 break;
5073 case FS_PREFIX_OPCODE:
5074 ir.override = X86_RECORD_FS_REGNUM;
5075 break;
5076 case GS_PREFIX_OPCODE:
5077 ir.override = X86_RECORD_GS_REGNUM;
5078 break;
5079 case DATA_PREFIX_OPCODE:
5080 prefixes |= PREFIX_DATA;
5081 break;
5082 case ADDR_PREFIX_OPCODE:
5083 prefixes |= PREFIX_ADDR;
5084 break;
5085 case 0x40: /* i386 inc %eax */
5086 case 0x41: /* i386 inc %ecx */
5087 case 0x42: /* i386 inc %edx */
5088 case 0x43: /* i386 inc %ebx */
5089 case 0x44: /* i386 inc %esp */
5090 case 0x45: /* i386 inc %ebp */
5091 case 0x46: /* i386 inc %esi */
5092 case 0x47: /* i386 inc %edi */
5093 case 0x48: /* i386 dec %eax */
5094 case 0x49: /* i386 dec %ecx */
5095 case 0x4a: /* i386 dec %edx */
5096 case 0x4b: /* i386 dec %ebx */
5097 case 0x4c: /* i386 dec %esp */
5098 case 0x4d: /* i386 dec %ebp */
5099 case 0x4e: /* i386 dec %esi */
5100 case 0x4f: /* i386 dec %edi */
5101 if (ir.regmap[X86_RECORD_R8_REGNUM]) /* 64 bit target */
5102 {
5103 /* REX */
5104 rex_w = (opcode8 >> 3) & 1;
5105 rex_r = (opcode8 & 0x4) << 1;
5106 ir.rex_x = (opcode8 & 0x2) << 2;
5107 ir.rex_b = (opcode8 & 0x1) << 3;
5108 }
5109 else /* 32 bit target */
5110 goto out_prefixes;
5111 break;
5112 default:
5113 goto out_prefixes;
5114 break;
5115 }
5116 }
5117 out_prefixes:
5118 if (ir.regmap[X86_RECORD_R8_REGNUM] && rex_w == 1)
5119 {
5120 ir.dflag = 2;
5121 }
5122 else
5123 {
5124 if (prefixes & PREFIX_DATA)
5125 ir.dflag ^= 1;
5126 }
5127 if (prefixes & PREFIX_ADDR)
5128 ir.aflag ^= 1;
5129 else if (ir.regmap[X86_RECORD_R8_REGNUM])
5130 ir.aflag = 2;
5131
5132 /* Now check op code. */
5133 opcode = (uint32_t) opcode8;
5134 reswitch:
5135 switch (opcode)
5136 {
5137 case 0x0f:
5138 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
5139 return -1;
5140 ir.addr++;
5141 opcode = (uint32_t) opcode8 | 0x0f00;
5142 goto reswitch;
5143 break;
5144
5145 case 0x00: /* arith & logic */
5146 case 0x01:
5147 case 0x02:
5148 case 0x03:
5149 case 0x04:
5150 case 0x05:
5151 case 0x08:
5152 case 0x09:
5153 case 0x0a:
5154 case 0x0b:
5155 case 0x0c:
5156 case 0x0d:
5157 case 0x10:
5158 case 0x11:
5159 case 0x12:
5160 case 0x13:
5161 case 0x14:
5162 case 0x15:
5163 case 0x18:
5164 case 0x19:
5165 case 0x1a:
5166 case 0x1b:
5167 case 0x1c:
5168 case 0x1d:
5169 case 0x20:
5170 case 0x21:
5171 case 0x22:
5172 case 0x23:
5173 case 0x24:
5174 case 0x25:
5175 case 0x28:
5176 case 0x29:
5177 case 0x2a:
5178 case 0x2b:
5179 case 0x2c:
5180 case 0x2d:
5181 case 0x30:
5182 case 0x31:
5183 case 0x32:
5184 case 0x33:
5185 case 0x34:
5186 case 0x35:
5187 case 0x38:
5188 case 0x39:
5189 case 0x3a:
5190 case 0x3b:
5191 case 0x3c:
5192 case 0x3d:
5193 if (((opcode >> 3) & 7) != OP_CMPL)
5194 {
5195 if ((opcode & 1) == 0)
5196 ir.ot = OT_BYTE;
5197 else
5198 ir.ot = ir.dflag + OT_WORD;
5199
5200 switch ((opcode >> 1) & 3)
5201 {
5202 case 0: /* OP Ev, Gv */
5203 if (i386_record_modrm (&ir))
5204 return -1;
5205 if (ir.mod != 3)
5206 {
5207 if (i386_record_lea_modrm (&ir))
5208 return -1;
5209 }
5210 else
5211 {
5212 ir.rm |= ir.rex_b;
5213 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5214 ir.rm &= 0x3;
5215 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5216 }
5217 break;
5218 case 1: /* OP Gv, Ev */
5219 if (i386_record_modrm (&ir))
5220 return -1;
5221 ir.reg |= rex_r;
5222 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5223 ir.reg &= 0x3;
5224 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5225 break;
5226 case 2: /* OP A, Iv */
5227 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5228 break;
5229 }
5230 }
5231 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5232 break;
5233
5234 case 0x80: /* GRP1 */
5235 case 0x81:
5236 case 0x82:
5237 case 0x83:
5238 if (i386_record_modrm (&ir))
5239 return -1;
5240
5241 if (ir.reg != OP_CMPL)
5242 {
5243 if ((opcode & 1) == 0)
5244 ir.ot = OT_BYTE;
5245 else
5246 ir.ot = ir.dflag + OT_WORD;
5247
5248 if (ir.mod != 3)
5249 {
5250 if (opcode == 0x83)
5251 ir.rip_offset = 1;
5252 else
5253 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5254 if (i386_record_lea_modrm (&ir))
5255 return -1;
5256 }
5257 else
5258 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5259 }
5260 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5261 break;
5262
5263 case 0x40: /* inc */
5264 case 0x41:
5265 case 0x42:
5266 case 0x43:
5267 case 0x44:
5268 case 0x45:
5269 case 0x46:
5270 case 0x47:
5271
5272 case 0x48: /* dec */
5273 case 0x49:
5274 case 0x4a:
5275 case 0x4b:
5276 case 0x4c:
5277 case 0x4d:
5278 case 0x4e:
5279 case 0x4f:
5280
5281 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 7);
5282 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5283 break;
5284
5285 case 0xf6: /* GRP3 */
5286 case 0xf7:
5287 if ((opcode & 1) == 0)
5288 ir.ot = OT_BYTE;
5289 else
5290 ir.ot = ir.dflag + OT_WORD;
5291 if (i386_record_modrm (&ir))
5292 return -1;
5293
5294 if (ir.mod != 3 && ir.reg == 0)
5295 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5296
5297 switch (ir.reg)
5298 {
5299 case 0: /* test */
5300 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5301 break;
5302 case 2: /* not */
5303 case 3: /* neg */
5304 if (ir.mod != 3)
5305 {
5306 if (i386_record_lea_modrm (&ir))
5307 return -1;
5308 }
5309 else
5310 {
5311 ir.rm |= ir.rex_b;
5312 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5313 ir.rm &= 0x3;
5314 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5315 }
5316 if (ir.reg == 3) /* neg */
5317 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5318 break;
5319 case 4: /* mul */
5320 case 5: /* imul */
5321 case 6: /* div */
5322 case 7: /* idiv */
5323 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5324 if (ir.ot != OT_BYTE)
5325 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5326 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5327 break;
5328 default:
5329 ir.addr -= 2;
5330 opcode = opcode << 8 | ir.modrm;
5331 goto no_support;
5332 break;
5333 }
5334 break;
5335
5336 case 0xfe: /* GRP4 */
5337 case 0xff: /* GRP5 */
5338 if (i386_record_modrm (&ir))
5339 return -1;
5340 if (ir.reg >= 2 && opcode == 0xfe)
5341 {
5342 ir.addr -= 2;
5343 opcode = opcode << 8 | ir.modrm;
5344 goto no_support;
5345 }
5346 switch (ir.reg)
5347 {
5348 case 0: /* inc */
5349 case 1: /* dec */
5350 if ((opcode & 1) == 0)
5351 ir.ot = OT_BYTE;
5352 else
5353 ir.ot = ir.dflag + OT_WORD;
5354 if (ir.mod != 3)
5355 {
5356 if (i386_record_lea_modrm (&ir))
5357 return -1;
5358 }
5359 else
5360 {
5361 ir.rm |= ir.rex_b;
5362 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5363 ir.rm &= 0x3;
5364 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5365 }
5366 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5367 break;
5368 case 2: /* call */
5369 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5370 ir.dflag = 2;
5371 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5372 return -1;
5373 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5374 break;
5375 case 3: /* lcall */
5376 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
5377 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5378 return -1;
5379 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5380 break;
5381 case 4: /* jmp */
5382 case 5: /* ljmp */
5383 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5384 break;
5385 case 6: /* push */
5386 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5387 ir.dflag = 2;
5388 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5389 return -1;
5390 break;
5391 default:
5392 ir.addr -= 2;
5393 opcode = opcode << 8 | ir.modrm;
5394 goto no_support;
5395 break;
5396 }
5397 break;
5398
5399 case 0x84: /* test */
5400 case 0x85:
5401 case 0xa8:
5402 case 0xa9:
5403 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5404 break;
5405
5406 case 0x98: /* CWDE/CBW */
5407 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5408 break;
5409
5410 case 0x99: /* CDQ/CWD */
5411 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5412 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5413 break;
5414
5415 case 0x0faf: /* imul */
5416 case 0x69:
5417 case 0x6b:
5418 ir.ot = ir.dflag + OT_WORD;
5419 if (i386_record_modrm (&ir))
5420 return -1;
5421 if (opcode == 0x69)
5422 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5423 else if (opcode == 0x6b)
5424 ir.rip_offset = 1;
5425 ir.reg |= rex_r;
5426 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5427 ir.reg &= 0x3;
5428 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5429 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5430 break;
5431
5432 case 0x0fc0: /* xadd */
5433 case 0x0fc1:
5434 if ((opcode & 1) == 0)
5435 ir.ot = OT_BYTE;
5436 else
5437 ir.ot = ir.dflag + OT_WORD;
5438 if (i386_record_modrm (&ir))
5439 return -1;
5440 ir.reg |= rex_r;
5441 if (ir.mod == 3)
5442 {
5443 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5444 ir.reg &= 0x3;
5445 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5446 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5447 ir.rm &= 0x3;
5448 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5449 }
5450 else
5451 {
5452 if (i386_record_lea_modrm (&ir))
5453 return -1;
5454 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5455 ir.reg &= 0x3;
5456 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5457 }
5458 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5459 break;
5460
5461 case 0x0fb0: /* cmpxchg */
5462 case 0x0fb1:
5463 if ((opcode & 1) == 0)
5464 ir.ot = OT_BYTE;
5465 else
5466 ir.ot = ir.dflag + OT_WORD;
5467 if (i386_record_modrm (&ir))
5468 return -1;
5469 if (ir.mod == 3)
5470 {
5471 ir.reg |= rex_r;
5472 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5473 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5474 ir.reg &= 0x3;
5475 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5476 }
5477 else
5478 {
5479 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5480 if (i386_record_lea_modrm (&ir))
5481 return -1;
5482 }
5483 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5484 break;
5485
5486 case 0x0fc7: /* cmpxchg8b / rdrand / rdseed */
5487 if (i386_record_modrm (&ir))
5488 return -1;
5489 if (ir.mod == 3)
5490 {
5491 /* rdrand and rdseed use the 3 bits of the REG field of ModR/M as
5492 an extended opcode. rdrand has bits 110 (/6) and rdseed
5493 has bits 111 (/7). */
5494 if (ir.reg == 6 || ir.reg == 7)
5495 {
5496 /* The storage register is described by the 3 R/M bits, but the
5497 REX.B prefix may be used to give access to registers
5498 R8~R15. In this case ir.rex_b + R/M will give us the register
5499 in the range R8~R15.
5500
5501 REX.W may also be used to access 64-bit registers, but we
5502 already record entire registers and not just partial bits
5503 of them. */
5504 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rex_b + ir.rm);
5505 /* These instructions also set conditional bits. */
5506 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5507 break;
5508 }
5509 else
5510 {
5511 /* We don't handle this particular instruction yet. */
5512 ir.addr -= 2;
5513 opcode = opcode << 8 | ir.modrm;
5514 goto no_support;
5515 }
5516 }
5517 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5518 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5519 if (i386_record_lea_modrm (&ir))
5520 return -1;
5521 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5522 break;
5523
5524 case 0x50: /* push */
5525 case 0x51:
5526 case 0x52:
5527 case 0x53:
5528 case 0x54:
5529 case 0x55:
5530 case 0x56:
5531 case 0x57:
5532 case 0x68:
5533 case 0x6a:
5534 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5535 ir.dflag = 2;
5536 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5537 return -1;
5538 break;
5539
5540 case 0x06: /* push es */
5541 case 0x0e: /* push cs */
5542 case 0x16: /* push ss */
5543 case 0x1e: /* push ds */
5544 if (ir.regmap[X86_RECORD_R8_REGNUM])
5545 {
5546 ir.addr -= 1;
5547 goto no_support;
5548 }
5549 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5550 return -1;
5551 break;
5552
5553 case 0x0fa0: /* push fs */
5554 case 0x0fa8: /* push gs */
5555 if (ir.regmap[X86_RECORD_R8_REGNUM])
5556 {
5557 ir.addr -= 2;
5558 goto no_support;
5559 }
5560 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5561 return -1;
5562 break;
5563
5564 case 0x60: /* pusha */
5565 if (ir.regmap[X86_RECORD_R8_REGNUM])
5566 {
5567 ir.addr -= 1;
5568 goto no_support;
5569 }
5570 if (i386_record_push (&ir, 1 << (ir.dflag + 4)))
5571 return -1;
5572 break;
5573
5574 case 0x58: /* pop */
5575 case 0x59:
5576 case 0x5a:
5577 case 0x5b:
5578 case 0x5c:
5579 case 0x5d:
5580 case 0x5e:
5581 case 0x5f:
5582 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5583 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
5584 break;
5585
5586 case 0x61: /* popa */
5587 if (ir.regmap[X86_RECORD_R8_REGNUM])
5588 {
5589 ir.addr -= 1;
5590 goto no_support;
5591 }
5592 for (regnum = X86_RECORD_REAX_REGNUM;
5593 regnum <= X86_RECORD_REDI_REGNUM;
5594 regnum++)
5595 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5596 break;
5597
5598 case 0x8f: /* pop */
5599 if (ir.regmap[X86_RECORD_R8_REGNUM])
5600 ir.ot = ir.dflag ? OT_QUAD : OT_WORD;
5601 else
5602 ir.ot = ir.dflag + OT_WORD;
5603 if (i386_record_modrm (&ir))
5604 return -1;
5605 if (ir.mod == 3)
5606 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5607 else
5608 {
5609 ir.popl_esp_hack = 1 << ir.ot;
5610 if (i386_record_lea_modrm (&ir))
5611 return -1;
5612 }
5613 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5614 break;
5615
5616 case 0xc8: /* enter */
5617 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
5618 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5619 ir.dflag = 2;
5620 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5621 return -1;
5622 break;
5623
5624 case 0xc9: /* leave */
5625 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5626 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
5627 break;
5628
5629 case 0x07: /* pop es */
5630 if (ir.regmap[X86_RECORD_R8_REGNUM])
5631 {
5632 ir.addr -= 1;
5633 goto no_support;
5634 }
5635 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5636 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_ES_REGNUM);
5637 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5638 break;
5639
5640 case 0x17: /* pop ss */
5641 if (ir.regmap[X86_RECORD_R8_REGNUM])
5642 {
5643 ir.addr -= 1;
5644 goto no_support;
5645 }
5646 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5647 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_SS_REGNUM);
5648 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5649 break;
5650
5651 case 0x1f: /* pop ds */
5652 if (ir.regmap[X86_RECORD_R8_REGNUM])
5653 {
5654 ir.addr -= 1;
5655 goto no_support;
5656 }
5657 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5658 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_DS_REGNUM);
5659 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5660 break;
5661
5662 case 0x0fa1: /* pop fs */
5663 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5664 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_FS_REGNUM);
5665 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5666 break;
5667
5668 case 0x0fa9: /* pop gs */
5669 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5670 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
5671 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5672 break;
5673
5674 case 0x88: /* mov */
5675 case 0x89:
5676 case 0xc6:
5677 case 0xc7:
5678 if ((opcode & 1) == 0)
5679 ir.ot = OT_BYTE;
5680 else
5681 ir.ot = ir.dflag + OT_WORD;
5682
5683 if (i386_record_modrm (&ir))
5684 return -1;
5685
5686 if (ir.mod != 3)
5687 {
5688 if (opcode == 0xc6 || opcode == 0xc7)
5689 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5690 if (i386_record_lea_modrm (&ir))
5691 return -1;
5692 }
5693 else
5694 {
5695 if (opcode == 0xc6 || opcode == 0xc7)
5696 ir.rm |= ir.rex_b;
5697 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5698 ir.rm &= 0x3;
5699 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5700 }
5701 break;
5702
5703 case 0x8a: /* mov */
5704 case 0x8b:
5705 if ((opcode & 1) == 0)
5706 ir.ot = OT_BYTE;
5707 else
5708 ir.ot = ir.dflag + OT_WORD;
5709 if (i386_record_modrm (&ir))
5710 return -1;
5711 ir.reg |= rex_r;
5712 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5713 ir.reg &= 0x3;
5714 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5715 break;
5716
5717 case 0x8c: /* mov seg */
5718 if (i386_record_modrm (&ir))
5719 return -1;
5720 if (ir.reg > 5)
5721 {
5722 ir.addr -= 2;
5723 opcode = opcode << 8 | ir.modrm;
5724 goto no_support;
5725 }
5726
5727 if (ir.mod == 3)
5728 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5729 else
5730 {
5731 ir.ot = OT_WORD;
5732 if (i386_record_lea_modrm (&ir))
5733 return -1;
5734 }
5735 break;
5736
5737 case 0x8e: /* mov seg */
5738 if (i386_record_modrm (&ir))
5739 return -1;
5740 switch (ir.reg)
5741 {
5742 case 0:
5743 regnum = X86_RECORD_ES_REGNUM;
5744 break;
5745 case 2:
5746 regnum = X86_RECORD_SS_REGNUM;
5747 break;
5748 case 3:
5749 regnum = X86_RECORD_DS_REGNUM;
5750 break;
5751 case 4:
5752 regnum = X86_RECORD_FS_REGNUM;
5753 break;
5754 case 5:
5755 regnum = X86_RECORD_GS_REGNUM;
5756 break;
5757 default:
5758 ir.addr -= 2;
5759 opcode = opcode << 8 | ir.modrm;
5760 goto no_support;
5761 break;
5762 }
5763 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5764 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5765 break;
5766
5767 case 0x0fb6: /* movzbS */
5768 case 0x0fb7: /* movzwS */
5769 case 0x0fbe: /* movsbS */
5770 case 0x0fbf: /* movswS */
5771 if (i386_record_modrm (&ir))
5772 return -1;
5773 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5774 break;
5775
5776 case 0x8d: /* lea */
5777 if (i386_record_modrm (&ir))
5778 return -1;
5779 if (ir.mod == 3)
5780 {
5781 ir.addr -= 2;
5782 opcode = opcode << 8 | ir.modrm;
5783 goto no_support;
5784 }
5785 ir.ot = ir.dflag;
5786 ir.reg |= rex_r;
5787 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5788 ir.reg &= 0x3;
5789 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5790 break;
5791
5792 case 0xa0: /* mov EAX */
5793 case 0xa1:
5794
5795 case 0xd7: /* xlat */
5796 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5797 break;
5798
5799 case 0xa2: /* mov EAX */
5800 case 0xa3:
5801 if (ir.override >= 0)
5802 {
5803 if (record_full_memory_query)
5804 {
5805 if (yquery (_("\
5806 Process record ignores the memory change of instruction at address %s\n\
5807 because it can't get the value of the segment register.\n\
5808 Do you want to stop the program?"),
5809 paddress (gdbarch, ir.orig_addr)))
5810 return -1;
5811 }
5812 }
5813 else
5814 {
5815 if ((opcode & 1) == 0)
5816 ir.ot = OT_BYTE;
5817 else
5818 ir.ot = ir.dflag + OT_WORD;
5819 if (ir.aflag == 2)
5820 {
5821 if (record_read_memory (gdbarch, ir.addr, buf, 8))
5822 return -1;
5823 ir.addr += 8;
5824 addr = extract_unsigned_integer (buf, 8, byte_order);
5825 }
5826 else if (ir.aflag)
5827 {
5828 if (record_read_memory (gdbarch, ir.addr, buf, 4))
5829 return -1;
5830 ir.addr += 4;
5831 addr = extract_unsigned_integer (buf, 4, byte_order);
5832 }
5833 else
5834 {
5835 if (record_read_memory (gdbarch, ir.addr, buf, 2))
5836 return -1;
5837 ir.addr += 2;
5838 addr = extract_unsigned_integer (buf, 2, byte_order);
5839 }
5840 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
5841 return -1;
5842 }
5843 break;
5844
5845 case 0xb0: /* mov R, Ib */
5846 case 0xb1:
5847 case 0xb2:
5848 case 0xb3:
5849 case 0xb4:
5850 case 0xb5:
5851 case 0xb6:
5852 case 0xb7:
5853 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((ir.regmap[X86_RECORD_R8_REGNUM])
5854 ? ((opcode & 0x7) | ir.rex_b)
5855 : ((opcode & 0x7) & 0x3));
5856 break;
5857
5858 case 0xb8: /* mov R, Iv */
5859 case 0xb9:
5860 case 0xba:
5861 case 0xbb:
5862 case 0xbc:
5863 case 0xbd:
5864 case 0xbe:
5865 case 0xbf:
5866 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
5867 break;
5868
5869 case 0x91: /* xchg R, EAX */
5870 case 0x92:
5871 case 0x93:
5872 case 0x94:
5873 case 0x95:
5874 case 0x96:
5875 case 0x97:
5876 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5877 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 0x7);
5878 break;
5879
5880 case 0x86: /* xchg Ev, Gv */
5881 case 0x87:
5882 if ((opcode & 1) == 0)
5883 ir.ot = OT_BYTE;
5884 else
5885 ir.ot = ir.dflag + OT_WORD;
5886 if (i386_record_modrm (&ir))
5887 return -1;
5888 if (ir.mod == 3)
5889 {
5890 ir.rm |= ir.rex_b;
5891 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5892 ir.rm &= 0x3;
5893 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5894 }
5895 else
5896 {
5897 if (i386_record_lea_modrm (&ir))
5898 return -1;
5899 }
5900 ir.reg |= rex_r;
5901 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5902 ir.reg &= 0x3;
5903 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5904 break;
5905
5906 case 0xc4: /* les Gv */
5907 case 0xc5: /* lds Gv */
5908 if (ir.regmap[X86_RECORD_R8_REGNUM])
5909 {
5910 ir.addr -= 1;
5911 goto no_support;
5912 }
5913 /* FALLTHROUGH */
5914 case 0x0fb2: /* lss Gv */
5915 case 0x0fb4: /* lfs Gv */
5916 case 0x0fb5: /* lgs Gv */
5917 if (i386_record_modrm (&ir))
5918 return -1;
5919 if (ir.mod == 3)
5920 {
5921 if (opcode > 0xff)
5922 ir.addr -= 3;
5923 else
5924 ir.addr -= 2;
5925 opcode = opcode << 8 | ir.modrm;
5926 goto no_support;
5927 }
5928 switch (opcode)
5929 {
5930 case 0xc4: /* les Gv */
5931 regnum = X86_RECORD_ES_REGNUM;
5932 break;
5933 case 0xc5: /* lds Gv */
5934 regnum = X86_RECORD_DS_REGNUM;
5935 break;
5936 case 0x0fb2: /* lss Gv */
5937 regnum = X86_RECORD_SS_REGNUM;
5938 break;
5939 case 0x0fb4: /* lfs Gv */
5940 regnum = X86_RECORD_FS_REGNUM;
5941 break;
5942 case 0x0fb5: /* lgs Gv */
5943 regnum = X86_RECORD_GS_REGNUM;
5944 break;
5945 }
5946 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5947 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5948 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5949 break;
5950
5951 case 0xc0: /* shifts */
5952 case 0xc1:
5953 case 0xd0:
5954 case 0xd1:
5955 case 0xd2:
5956 case 0xd3:
5957 if ((opcode & 1) == 0)
5958 ir.ot = OT_BYTE;
5959 else
5960 ir.ot = ir.dflag + OT_WORD;
5961 if (i386_record_modrm (&ir))
5962 return -1;
5963 if (ir.mod != 3 && (opcode == 0xd2 || opcode == 0xd3))
5964 {
5965 if (i386_record_lea_modrm (&ir))
5966 return -1;
5967 }
5968 else
5969 {
5970 ir.rm |= ir.rex_b;
5971 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5972 ir.rm &= 0x3;
5973 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5974 }
5975 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5976 break;
5977
5978 case 0x0fa4:
5979 case 0x0fa5:
5980 case 0x0fac:
5981 case 0x0fad:
5982 if (i386_record_modrm (&ir))
5983 return -1;
5984 if (ir.mod == 3)
5985 {
5986 if (record_full_arch_list_add_reg (ir.regcache, ir.rm))
5987 return -1;
5988 }
5989 else
5990 {
5991 if (i386_record_lea_modrm (&ir))
5992 return -1;
5993 }
5994 break;
5995
5996 case 0xd8: /* Floats. */
5997 case 0xd9:
5998 case 0xda:
5999 case 0xdb:
6000 case 0xdc:
6001 case 0xdd:
6002 case 0xde:
6003 case 0xdf:
6004 if (i386_record_modrm (&ir))
6005 return -1;
6006 ir.reg |= ((opcode & 7) << 3);
6007 if (ir.mod != 3)
6008 {
6009 /* Memory. */
6010 uint64_t addr64;
6011
6012 if (i386_record_lea_modrm_addr (&ir, &addr64))
6013 return -1;
6014 switch (ir.reg)
6015 {
6016 case 0x02:
6017 case 0x12:
6018 case 0x22:
6019 case 0x32:
6020 /* For fcom, ficom nothing to do. */
6021 break;
6022 case 0x03:
6023 case 0x13:
6024 case 0x23:
6025 case 0x33:
6026 /* For fcomp, ficomp pop FPU stack, store all. */
6027 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6028 return -1;
6029 break;
6030 case 0x00:
6031 case 0x01:
6032 case 0x04:
6033 case 0x05:
6034 case 0x06:
6035 case 0x07:
6036 case 0x10:
6037 case 0x11:
6038 case 0x14:
6039 case 0x15:
6040 case 0x16:
6041 case 0x17:
6042 case 0x20:
6043 case 0x21:
6044 case 0x24:
6045 case 0x25:
6046 case 0x26:
6047 case 0x27:
6048 case 0x30:
6049 case 0x31:
6050 case 0x34:
6051 case 0x35:
6052 case 0x36:
6053 case 0x37:
6054 /* For fadd, fmul, fsub, fsubr, fdiv, fdivr, fiadd, fimul,
6055 fisub, fisubr, fidiv, fidivr, modR/M.reg is an extension
6056 of code, always affects st(0) register. */
6057 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
6058 return -1;
6059 break;
6060 case 0x08:
6061 case 0x0a:
6062 case 0x0b:
6063 case 0x18:
6064 case 0x19:
6065 case 0x1a:
6066 case 0x1b:
6067 case 0x1d:
6068 case 0x28:
6069 case 0x29:
6070 case 0x2a:
6071 case 0x2b:
6072 case 0x38:
6073 case 0x39:
6074 case 0x3a:
6075 case 0x3b:
6076 case 0x3c:
6077 case 0x3d:
6078 switch (ir.reg & 7)
6079 {
6080 case 0:
6081 /* Handling fld, fild. */
6082 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6083 return -1;
6084 break;
6085 case 1:
6086 switch (ir.reg >> 4)
6087 {
6088 case 0:
6089 if (record_full_arch_list_add_mem (addr64, 4))
6090 return -1;
6091 break;
6092 case 2:
6093 if (record_full_arch_list_add_mem (addr64, 8))
6094 return -1;
6095 break;
6096 case 3:
6097 break;
6098 default:
6099 if (record_full_arch_list_add_mem (addr64, 2))
6100 return -1;
6101 break;
6102 }
6103 break;
6104 default:
6105 switch (ir.reg >> 4)
6106 {
6107 case 0:
6108 if (record_full_arch_list_add_mem (addr64, 4))
6109 return -1;
6110 if (3 == (ir.reg & 7))
6111 {
6112 /* For fstp m32fp. */
6113 if (i386_record_floats (gdbarch, &ir,
6114 I386_SAVE_FPU_REGS))
6115 return -1;
6116 }
6117 break;
6118 case 1:
6119 if (record_full_arch_list_add_mem (addr64, 4))
6120 return -1;
6121 if ((3 == (ir.reg & 7))
6122 || (5 == (ir.reg & 7))
6123 || (7 == (ir.reg & 7)))
6124 {
6125 /* For fstp insn. */
6126 if (i386_record_floats (gdbarch, &ir,
6127 I386_SAVE_FPU_REGS))
6128 return -1;
6129 }
6130 break;
6131 case 2:
6132 if (record_full_arch_list_add_mem (addr64, 8))
6133 return -1;
6134 if (3 == (ir.reg & 7))
6135 {
6136 /* For fstp m64fp. */
6137 if (i386_record_floats (gdbarch, &ir,
6138 I386_SAVE_FPU_REGS))
6139 return -1;
6140 }
6141 break;
6142 case 3:
6143 if ((3 <= (ir.reg & 7)) && (6 <= (ir.reg & 7)))
6144 {
6145 /* For fistp, fbld, fild, fbstp. */
6146 if (i386_record_floats (gdbarch, &ir,
6147 I386_SAVE_FPU_REGS))
6148 return -1;
6149 }
6150 /* Fall through */
6151 default:
6152 if (record_full_arch_list_add_mem (addr64, 2))
6153 return -1;
6154 break;
6155 }
6156 break;
6157 }
6158 break;
6159 case 0x0c:
6160 /* Insn fldenv. */
6161 if (i386_record_floats (gdbarch, &ir,
6162 I386_SAVE_FPU_ENV_REG_STACK))
6163 return -1;
6164 break;
6165 case 0x0d:
6166 /* Insn fldcw. */
6167 if (i386_record_floats (gdbarch, &ir, I387_FCTRL_REGNUM (tdep)))
6168 return -1;
6169 break;
6170 case 0x2c:
6171 /* Insn frstor. */
6172 if (i386_record_floats (gdbarch, &ir,
6173 I386_SAVE_FPU_ENV_REG_STACK))
6174 return -1;
6175 break;
6176 case 0x0e:
6177 if (ir.dflag)
6178 {
6179 if (record_full_arch_list_add_mem (addr64, 28))
6180 return -1;
6181 }
6182 else
6183 {
6184 if (record_full_arch_list_add_mem (addr64, 14))
6185 return -1;
6186 }
6187 break;
6188 case 0x0f:
6189 case 0x2f:
6190 if (record_full_arch_list_add_mem (addr64, 2))
6191 return -1;
6192 /* Insn fstp, fbstp. */
6193 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6194 return -1;
6195 break;
6196 case 0x1f:
6197 case 0x3e:
6198 if (record_full_arch_list_add_mem (addr64, 10))
6199 return -1;
6200 break;
6201 case 0x2e:
6202 if (ir.dflag)
6203 {
6204 if (record_full_arch_list_add_mem (addr64, 28))
6205 return -1;
6206 addr64 += 28;
6207 }
6208 else
6209 {
6210 if (record_full_arch_list_add_mem (addr64, 14))
6211 return -1;
6212 addr64 += 14;
6213 }
6214 if (record_full_arch_list_add_mem (addr64, 80))
6215 return -1;
6216 /* Insn fsave. */
6217 if (i386_record_floats (gdbarch, &ir,
6218 I386_SAVE_FPU_ENV_REG_STACK))
6219 return -1;
6220 break;
6221 case 0x3f:
6222 if (record_full_arch_list_add_mem (addr64, 8))
6223 return -1;
6224 /* Insn fistp. */
6225 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6226 return -1;
6227 break;
6228 default:
6229 ir.addr -= 2;
6230 opcode = opcode << 8 | ir.modrm;
6231 goto no_support;
6232 break;
6233 }
6234 }
6235 /* Opcode is an extension of modR/M byte. */
6236 else
6237 {
6238 switch (opcode)
6239 {
6240 case 0xd8:
6241 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
6242 return -1;
6243 break;
6244 case 0xd9:
6245 if (0x0c == (ir.modrm >> 4))
6246 {
6247 if ((ir.modrm & 0x0f) <= 7)
6248 {
6249 if (i386_record_floats (gdbarch, &ir,
6250 I386_SAVE_FPU_REGS))
6251 return -1;
6252 }
6253 else
6254 {
6255 if (i386_record_floats (gdbarch, &ir,
6256 I387_ST0_REGNUM (tdep)))
6257 return -1;
6258 /* If only st(0) is changing, then we have already
6259 recorded. */
6260 if ((ir.modrm & 0x0f) - 0x08)
6261 {
6262 if (i386_record_floats (gdbarch, &ir,
6263 I387_ST0_REGNUM (tdep) +
6264 ((ir.modrm & 0x0f) - 0x08)))
6265 return -1;
6266 }
6267 }
6268 }
6269 else
6270 {
6271 switch (ir.modrm)
6272 {
6273 case 0xe0:
6274 case 0xe1:
6275 case 0xf0:
6276 case 0xf5:
6277 case 0xf8:
6278 case 0xfa:
6279 case 0xfc:
6280 case 0xfe:
6281 case 0xff:
6282 if (i386_record_floats (gdbarch, &ir,
6283 I387_ST0_REGNUM (tdep)))
6284 return -1;
6285 break;
6286 case 0xf1:
6287 case 0xf2:
6288 case 0xf3:
6289 case 0xf4:
6290 case 0xf6:
6291 case 0xf7:
6292 case 0xe8:
6293 case 0xe9:
6294 case 0xea:
6295 case 0xeb:
6296 case 0xec:
6297 case 0xed:
6298 case 0xee:
6299 case 0xf9:
6300 case 0xfb:
6301 if (i386_record_floats (gdbarch, &ir,
6302 I386_SAVE_FPU_REGS))
6303 return -1;
6304 break;
6305 case 0xfd:
6306 if (i386_record_floats (gdbarch, &ir,
6307 I387_ST0_REGNUM (tdep)))
6308 return -1;
6309 if (i386_record_floats (gdbarch, &ir,
6310 I387_ST0_REGNUM (tdep) + 1))
6311 return -1;
6312 break;
6313 }
6314 }
6315 break;
6316 case 0xda:
6317 if (0xe9 == ir.modrm)
6318 {
6319 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6320 return -1;
6321 }
6322 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
6323 {
6324 if (i386_record_floats (gdbarch, &ir,
6325 I387_ST0_REGNUM (tdep)))
6326 return -1;
6327 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
6328 {
6329 if (i386_record_floats (gdbarch, &ir,
6330 I387_ST0_REGNUM (tdep) +
6331 (ir.modrm & 0x0f)))
6332 return -1;
6333 }
6334 else if ((ir.modrm & 0x0f) - 0x08)
6335 {
6336 if (i386_record_floats (gdbarch, &ir,
6337 I387_ST0_REGNUM (tdep) +
6338 ((ir.modrm & 0x0f) - 0x08)))
6339 return -1;
6340 }
6341 }
6342 break;
6343 case 0xdb:
6344 if (0xe3 == ir.modrm)
6345 {
6346 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_ENV))
6347 return -1;
6348 }
6349 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
6350 {
6351 if (i386_record_floats (gdbarch, &ir,
6352 I387_ST0_REGNUM (tdep)))
6353 return -1;
6354 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
6355 {
6356 if (i386_record_floats (gdbarch, &ir,
6357 I387_ST0_REGNUM (tdep) +
6358 (ir.modrm & 0x0f)))
6359 return -1;
6360 }
6361 else if ((ir.modrm & 0x0f) - 0x08)
6362 {
6363 if (i386_record_floats (gdbarch, &ir,
6364 I387_ST0_REGNUM (tdep) +
6365 ((ir.modrm & 0x0f) - 0x08)))
6366 return -1;
6367 }
6368 }
6369 break;
6370 case 0xdc:
6371 if ((0x0c == ir.modrm >> 4)
6372 || (0x0d == ir.modrm >> 4)
6373 || (0x0f == ir.modrm >> 4))
6374 {
6375 if ((ir.modrm & 0x0f) <= 7)
6376 {
6377 if (i386_record_floats (gdbarch, &ir,
6378 I387_ST0_REGNUM (tdep) +
6379 (ir.modrm & 0x0f)))
6380 return -1;
6381 }
6382 else
6383 {
6384 if (i386_record_floats (gdbarch, &ir,
6385 I387_ST0_REGNUM (tdep) +
6386 ((ir.modrm & 0x0f) - 0x08)))
6387 return -1;
6388 }
6389 }
6390 break;
6391 case 0xdd:
6392 if (0x0c == ir.modrm >> 4)
6393 {
6394 if (i386_record_floats (gdbarch, &ir,
6395 I387_FTAG_REGNUM (tdep)))
6396 return -1;
6397 }
6398 else if ((0x0d == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
6399 {
6400 if ((ir.modrm & 0x0f) <= 7)
6401 {
6402 if (i386_record_floats (gdbarch, &ir,
6403 I387_ST0_REGNUM (tdep) +
6404 (ir.modrm & 0x0f)))
6405 return -1;
6406 }
6407 else
6408 {
6409 if (i386_record_floats (gdbarch, &ir,
6410 I386_SAVE_FPU_REGS))
6411 return -1;
6412 }
6413 }
6414 break;
6415 case 0xde:
6416 if ((0x0c == ir.modrm >> 4)
6417 || (0x0e == ir.modrm >> 4)
6418 || (0x0f == ir.modrm >> 4)
6419 || (0xd9 == ir.modrm))
6420 {
6421 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6422 return -1;
6423 }
6424 break;
6425 case 0xdf:
6426 if (0xe0 == ir.modrm)
6427 {
6428 if (record_full_arch_list_add_reg (ir.regcache,
6429 I386_EAX_REGNUM))
6430 return -1;
6431 }
6432 else if ((0x0f == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
6433 {
6434 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6435 return -1;
6436 }
6437 break;
6438 }
6439 }
6440 break;
6441 /* string ops */
6442 case 0xa4: /* movsS */
6443 case 0xa5:
6444 case 0xaa: /* stosS */
6445 case 0xab:
6446 case 0x6c: /* insS */
6447 case 0x6d:
6448 regcache_raw_read_unsigned (ir.regcache,
6449 ir.regmap[X86_RECORD_RECX_REGNUM],
6450 &addr);
6451 if (addr)
6452 {
6453 ULONGEST es, ds;
6454
6455 if ((opcode & 1) == 0)
6456 ir.ot = OT_BYTE;
6457 else
6458 ir.ot = ir.dflag + OT_WORD;
6459 regcache_raw_read_unsigned (ir.regcache,
6460 ir.regmap[X86_RECORD_REDI_REGNUM],
6461 &addr);
6462
6463 regcache_raw_read_unsigned (ir.regcache,
6464 ir.regmap[X86_RECORD_ES_REGNUM],
6465 &es);
6466 regcache_raw_read_unsigned (ir.regcache,
6467 ir.regmap[X86_RECORD_DS_REGNUM],
6468 &ds);
6469 if (ir.aflag && (es != ds))
6470 {
6471 /* addr += ((uint32_t) read_register (I386_ES_REGNUM)) << 4; */
6472 if (record_full_memory_query)
6473 {
6474 if (yquery (_("\
6475 Process record ignores the memory change of instruction at address %s\n\
6476 because it can't get the value of the segment register.\n\
6477 Do you want to stop the program?"),
6478 paddress (gdbarch, ir.orig_addr)))
6479 return -1;
6480 }
6481 }
6482 else
6483 {
6484 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
6485 return -1;
6486 }
6487
6488 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6489 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6490 if (opcode == 0xa4 || opcode == 0xa5)
6491 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6492 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6493 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6494 }
6495 break;
6496
6497 case 0xa6: /* cmpsS */
6498 case 0xa7:
6499 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6500 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6501 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6502 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6503 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6504 break;
6505
6506 case 0xac: /* lodsS */
6507 case 0xad:
6508 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6509 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6510 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6511 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6512 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6513 break;
6514
6515 case 0xae: /* scasS */
6516 case 0xaf:
6517 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6518 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6519 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6520 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6521 break;
6522
6523 case 0x6e: /* outsS */
6524 case 0x6f:
6525 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6526 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6527 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6528 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6529 break;
6530
6531 case 0xe4: /* port I/O */
6532 case 0xe5:
6533 case 0xec:
6534 case 0xed:
6535 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6536 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6537 break;
6538
6539 case 0xe6:
6540 case 0xe7:
6541 case 0xee:
6542 case 0xef:
6543 break;
6544
6545 /* control */
6546 case 0xc2: /* ret im */
6547 case 0xc3: /* ret */
6548 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6549 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6550 break;
6551
6552 case 0xca: /* lret im */
6553 case 0xcb: /* lret */
6554 case 0xcf: /* iret */
6555 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
6556 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6557 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6558 break;
6559
6560 case 0xe8: /* call im */
6561 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6562 ir.dflag = 2;
6563 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6564 return -1;
6565 break;
6566
6567 case 0x9a: /* lcall im */
6568 if (ir.regmap[X86_RECORD_R8_REGNUM])
6569 {
6570 ir.addr -= 1;
6571 goto no_support;
6572 }
6573 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
6574 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6575 return -1;
6576 break;
6577
6578 case 0xe9: /* jmp im */
6579 case 0xea: /* ljmp im */
6580 case 0xeb: /* jmp Jb */
6581 case 0x70: /* jcc Jb */
6582 case 0x71:
6583 case 0x72:
6584 case 0x73:
6585 case 0x74:
6586 case 0x75:
6587 case 0x76:
6588 case 0x77:
6589 case 0x78:
6590 case 0x79:
6591 case 0x7a:
6592 case 0x7b:
6593 case 0x7c:
6594 case 0x7d:
6595 case 0x7e:
6596 case 0x7f:
6597 case 0x0f80: /* jcc Jv */
6598 case 0x0f81:
6599 case 0x0f82:
6600 case 0x0f83:
6601 case 0x0f84:
6602 case 0x0f85:
6603 case 0x0f86:
6604 case 0x0f87:
6605 case 0x0f88:
6606 case 0x0f89:
6607 case 0x0f8a:
6608 case 0x0f8b:
6609 case 0x0f8c:
6610 case 0x0f8d:
6611 case 0x0f8e:
6612 case 0x0f8f:
6613 break;
6614
6615 case 0x0f90: /* setcc Gv */
6616 case 0x0f91:
6617 case 0x0f92:
6618 case 0x0f93:
6619 case 0x0f94:
6620 case 0x0f95:
6621 case 0x0f96:
6622 case 0x0f97:
6623 case 0x0f98:
6624 case 0x0f99:
6625 case 0x0f9a:
6626 case 0x0f9b:
6627 case 0x0f9c:
6628 case 0x0f9d:
6629 case 0x0f9e:
6630 case 0x0f9f:
6631 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6632 ir.ot = OT_BYTE;
6633 if (i386_record_modrm (&ir))
6634 return -1;
6635 if (ir.mod == 3)
6636 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rex_b ? (ir.rm | ir.rex_b)
6637 : (ir.rm & 0x3));
6638 else
6639 {
6640 if (i386_record_lea_modrm (&ir))
6641 return -1;
6642 }
6643 break;
6644
6645 case 0x0f40: /* cmov Gv, Ev */
6646 case 0x0f41:
6647 case 0x0f42:
6648 case 0x0f43:
6649 case 0x0f44:
6650 case 0x0f45:
6651 case 0x0f46:
6652 case 0x0f47:
6653 case 0x0f48:
6654 case 0x0f49:
6655 case 0x0f4a:
6656 case 0x0f4b:
6657 case 0x0f4c:
6658 case 0x0f4d:
6659 case 0x0f4e:
6660 case 0x0f4f:
6661 if (i386_record_modrm (&ir))
6662 return -1;
6663 ir.reg |= rex_r;
6664 if (ir.dflag == OT_BYTE)
6665 ir.reg &= 0x3;
6666 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
6667 break;
6668
6669 /* flags */
6670 case 0x9c: /* pushf */
6671 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6672 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6673 ir.dflag = 2;
6674 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6675 return -1;
6676 break;
6677
6678 case 0x9d: /* popf */
6679 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6680 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6681 break;
6682
6683 case 0x9e: /* sahf */
6684 if (ir.regmap[X86_RECORD_R8_REGNUM])
6685 {
6686 ir.addr -= 1;
6687 goto no_support;
6688 }
6689 /* FALLTHROUGH */
6690 case 0xf5: /* cmc */
6691 case 0xf8: /* clc */
6692 case 0xf9: /* stc */
6693 case 0xfc: /* cld */
6694 case 0xfd: /* std */
6695 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6696 break;
6697
6698 case 0x9f: /* lahf */
6699 if (ir.regmap[X86_RECORD_R8_REGNUM])
6700 {
6701 ir.addr -= 1;
6702 goto no_support;
6703 }
6704 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6705 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6706 break;
6707
6708 /* bit operations */
6709 case 0x0fba: /* bt/bts/btr/btc Gv, im */
6710 ir.ot = ir.dflag + OT_WORD;
6711 if (i386_record_modrm (&ir))
6712 return -1;
6713 if (ir.reg < 4)
6714 {
6715 ir.addr -= 2;
6716 opcode = opcode << 8 | ir.modrm;
6717 goto no_support;
6718 }
6719 if (ir.reg != 4)
6720 {
6721 if (ir.mod == 3)
6722 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6723 else
6724 {
6725 if (i386_record_lea_modrm (&ir))
6726 return -1;
6727 }
6728 }
6729 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6730 break;
6731
6732 case 0x0fa3: /* bt Gv, Ev */
6733 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6734 break;
6735
6736 case 0x0fab: /* bts */
6737 case 0x0fb3: /* btr */
6738 case 0x0fbb: /* btc */
6739 ir.ot = ir.dflag + OT_WORD;
6740 if (i386_record_modrm (&ir))
6741 return -1;
6742 if (ir.mod == 3)
6743 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6744 else
6745 {
6746 uint64_t addr64;
6747 if (i386_record_lea_modrm_addr (&ir, &addr64))
6748 return -1;
6749 regcache_raw_read_unsigned (ir.regcache,
6750 ir.regmap[ir.reg | rex_r],
6751 &addr);
6752 switch (ir.dflag)
6753 {
6754 case 0:
6755 addr64 += ((int16_t) addr >> 4) << 4;
6756 break;
6757 case 1:
6758 addr64 += ((int32_t) addr >> 5) << 5;
6759 break;
6760 case 2:
6761 addr64 += ((int64_t) addr >> 6) << 6;
6762 break;
6763 }
6764 if (record_full_arch_list_add_mem (addr64, 1 << ir.ot))
6765 return -1;
6766 if (i386_record_lea_modrm (&ir))
6767 return -1;
6768 }
6769 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6770 break;
6771
6772 case 0x0fbc: /* bsf */
6773 case 0x0fbd: /* bsr */
6774 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6775 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6776 break;
6777
6778 /* bcd */
6779 case 0x27: /* daa */
6780 case 0x2f: /* das */
6781 case 0x37: /* aaa */
6782 case 0x3f: /* aas */
6783 case 0xd4: /* aam */
6784 case 0xd5: /* aad */
6785 if (ir.regmap[X86_RECORD_R8_REGNUM])
6786 {
6787 ir.addr -= 1;
6788 goto no_support;
6789 }
6790 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6791 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6792 break;
6793
6794 /* misc */
6795 case 0x90: /* nop */
6796 if (prefixes & PREFIX_LOCK)
6797 {
6798 ir.addr -= 1;
6799 goto no_support;
6800 }
6801 break;
6802
6803 case 0x9b: /* fwait */
6804 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
6805 return -1;
6806 opcode = (uint32_t) opcode8;
6807 ir.addr++;
6808 goto reswitch;
6809 break;
6810
6811 /* XXX */
6812 case 0xcc: /* int3 */
6813 printf_unfiltered (_("Process record does not support instruction "
6814 "int3.\n"));
6815 ir.addr -= 1;
6816 goto no_support;
6817 break;
6818
6819 /* XXX */
6820 case 0xcd: /* int */
6821 {
6822 int ret;
6823 uint8_t interrupt;
6824 if (record_read_memory (gdbarch, ir.addr, &interrupt, 1))
6825 return -1;
6826 ir.addr++;
6827 if (interrupt != 0x80
6828 || tdep->i386_intx80_record == NULL)
6829 {
6830 printf_unfiltered (_("Process record does not support "
6831 "instruction int 0x%02x.\n"),
6832 interrupt);
6833 ir.addr -= 2;
6834 goto no_support;
6835 }
6836 ret = tdep->i386_intx80_record (ir.regcache);
6837 if (ret)
6838 return ret;
6839 }
6840 break;
6841
6842 /* XXX */
6843 case 0xce: /* into */
6844 printf_unfiltered (_("Process record does not support "
6845 "instruction into.\n"));
6846 ir.addr -= 1;
6847 goto no_support;
6848 break;
6849
6850 case 0xfa: /* cli */
6851 case 0xfb: /* sti */
6852 break;
6853
6854 case 0x62: /* bound */
6855 printf_unfiltered (_("Process record does not support "
6856 "instruction bound.\n"));
6857 ir.addr -= 1;
6858 goto no_support;
6859 break;
6860
6861 case 0x0fc8: /* bswap reg */
6862 case 0x0fc9:
6863 case 0x0fca:
6864 case 0x0fcb:
6865 case 0x0fcc:
6866 case 0x0fcd:
6867 case 0x0fce:
6868 case 0x0fcf:
6869 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 7) | ir.rex_b);
6870 break;
6871
6872 case 0xd6: /* salc */
6873 if (ir.regmap[X86_RECORD_R8_REGNUM])
6874 {
6875 ir.addr -= 1;
6876 goto no_support;
6877 }
6878 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6879 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6880 break;
6881
6882 case 0xe0: /* loopnz */
6883 case 0xe1: /* loopz */
6884 case 0xe2: /* loop */
6885 case 0xe3: /* jecxz */
6886 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6887 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6888 break;
6889
6890 case 0x0f30: /* wrmsr */
6891 printf_unfiltered (_("Process record does not support "
6892 "instruction wrmsr.\n"));
6893 ir.addr -= 2;
6894 goto no_support;
6895 break;
6896
6897 case 0x0f32: /* rdmsr */
6898 printf_unfiltered (_("Process record does not support "
6899 "instruction rdmsr.\n"));
6900 ir.addr -= 2;
6901 goto no_support;
6902 break;
6903
6904 case 0x0f31: /* rdtsc */
6905 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6906 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6907 break;
6908
6909 case 0x0f34: /* sysenter */
6910 {
6911 int ret;
6912 if (ir.regmap[X86_RECORD_R8_REGNUM])
6913 {
6914 ir.addr -= 2;
6915 goto no_support;
6916 }
6917 if (tdep->i386_sysenter_record == NULL)
6918 {
6919 printf_unfiltered (_("Process record does not support "
6920 "instruction sysenter.\n"));
6921 ir.addr -= 2;
6922 goto no_support;
6923 }
6924 ret = tdep->i386_sysenter_record (ir.regcache);
6925 if (ret)
6926 return ret;
6927 }
6928 break;
6929
6930 case 0x0f35: /* sysexit */
6931 printf_unfiltered (_("Process record does not support "
6932 "instruction sysexit.\n"));
6933 ir.addr -= 2;
6934 goto no_support;
6935 break;
6936
6937 case 0x0f05: /* syscall */
6938 {
6939 int ret;
6940 if (tdep->i386_syscall_record == NULL)
6941 {
6942 printf_unfiltered (_("Process record does not support "
6943 "instruction syscall.\n"));
6944 ir.addr -= 2;
6945 goto no_support;
6946 }
6947 ret = tdep->i386_syscall_record (ir.regcache);
6948 if (ret)
6949 return ret;
6950 }
6951 break;
6952
6953 case 0x0f07: /* sysret */
6954 printf_unfiltered (_("Process record does not support "
6955 "instruction sysret.\n"));
6956 ir.addr -= 2;
6957 goto no_support;
6958 break;
6959
6960 case 0x0fa2: /* cpuid */
6961 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6962 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6963 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6964 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
6965 break;
6966
6967 case 0xf4: /* hlt */
6968 printf_unfiltered (_("Process record does not support "
6969 "instruction hlt.\n"));
6970 ir.addr -= 1;
6971 goto no_support;
6972 break;
6973
6974 case 0x0f00:
6975 if (i386_record_modrm (&ir))
6976 return -1;
6977 switch (ir.reg)
6978 {
6979 case 0: /* sldt */
6980 case 1: /* str */
6981 if (ir.mod == 3)
6982 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6983 else
6984 {
6985 ir.ot = OT_WORD;
6986 if (i386_record_lea_modrm (&ir))
6987 return -1;
6988 }
6989 break;
6990 case 2: /* lldt */
6991 case 3: /* ltr */
6992 break;
6993 case 4: /* verr */
6994 case 5: /* verw */
6995 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6996 break;
6997 default:
6998 ir.addr -= 3;
6999 opcode = opcode << 8 | ir.modrm;
7000 goto no_support;
7001 break;
7002 }
7003 break;
7004
7005 case 0x0f01:
7006 if (i386_record_modrm (&ir))
7007 return -1;
7008 switch (ir.reg)
7009 {
7010 case 0: /* sgdt */
7011 {
7012 uint64_t addr64;
7013
7014 if (ir.mod == 3)
7015 {
7016 ir.addr -= 3;
7017 opcode = opcode << 8 | ir.modrm;
7018 goto no_support;
7019 }
7020 if (ir.override >= 0)
7021 {
7022 if (record_full_memory_query)
7023 {
7024 if (yquery (_("\
7025 Process record ignores the memory change of instruction at address %s\n\
7026 because it can't get the value of the segment register.\n\
7027 Do you want to stop the program?"),
7028 paddress (gdbarch, ir.orig_addr)))
7029 return -1;
7030 }
7031 }
7032 else
7033 {
7034 if (i386_record_lea_modrm_addr (&ir, &addr64))
7035 return -1;
7036 if (record_full_arch_list_add_mem (addr64, 2))
7037 return -1;
7038 addr64 += 2;
7039 if (ir.regmap[X86_RECORD_R8_REGNUM])
7040 {
7041 if (record_full_arch_list_add_mem (addr64, 8))
7042 return -1;
7043 }
7044 else
7045 {
7046 if (record_full_arch_list_add_mem (addr64, 4))
7047 return -1;
7048 }
7049 }
7050 }
7051 break;
7052 case 1:
7053 if (ir.mod == 3)
7054 {
7055 switch (ir.rm)
7056 {
7057 case 0: /* monitor */
7058 break;
7059 case 1: /* mwait */
7060 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7061 break;
7062 default:
7063 ir.addr -= 3;
7064 opcode = opcode << 8 | ir.modrm;
7065 goto no_support;
7066 break;
7067 }
7068 }
7069 else
7070 {
7071 /* sidt */
7072 if (ir.override >= 0)
7073 {
7074 if (record_full_memory_query)
7075 {
7076 if (yquery (_("\
7077 Process record ignores the memory change of instruction at address %s\n\
7078 because it can't get the value of the segment register.\n\
7079 Do you want to stop the program?"),
7080 paddress (gdbarch, ir.orig_addr)))
7081 return -1;
7082 }
7083 }
7084 else
7085 {
7086 uint64_t addr64;
7087
7088 if (i386_record_lea_modrm_addr (&ir, &addr64))
7089 return -1;
7090 if (record_full_arch_list_add_mem (addr64, 2))
7091 return -1;
7092 addr64 += 2;
7093 if (ir.regmap[X86_RECORD_R8_REGNUM])
7094 {
7095 if (record_full_arch_list_add_mem (addr64, 8))
7096 return -1;
7097 }
7098 else
7099 {
7100 if (record_full_arch_list_add_mem (addr64, 4))
7101 return -1;
7102 }
7103 }
7104 }
7105 break;
7106 case 2: /* lgdt */
7107 if (ir.mod == 3)
7108 {
7109 /* xgetbv */
7110 if (ir.rm == 0)
7111 {
7112 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7113 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7114 break;
7115 }
7116 /* xsetbv */
7117 else if (ir.rm == 1)
7118 break;
7119 }
7120 case 3: /* lidt */
7121 if (ir.mod == 3)
7122 {
7123 ir.addr -= 3;
7124 opcode = opcode << 8 | ir.modrm;
7125 goto no_support;
7126 }
7127 break;
7128 case 4: /* smsw */
7129 if (ir.mod == 3)
7130 {
7131 if (record_full_arch_list_add_reg (ir.regcache, ir.rm | ir.rex_b))
7132 return -1;
7133 }
7134 else
7135 {
7136 ir.ot = OT_WORD;
7137 if (i386_record_lea_modrm (&ir))
7138 return -1;
7139 }
7140 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7141 break;
7142 case 6: /* lmsw */
7143 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7144 break;
7145 case 7: /* invlpg */
7146 if (ir.mod == 3)
7147 {
7148 if (ir.rm == 0 && ir.regmap[X86_RECORD_R8_REGNUM])
7149 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
7150 else
7151 {
7152 ir.addr -= 3;
7153 opcode = opcode << 8 | ir.modrm;
7154 goto no_support;
7155 }
7156 }
7157 else
7158 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7159 break;
7160 default:
7161 ir.addr -= 3;
7162 opcode = opcode << 8 | ir.modrm;
7163 goto no_support;
7164 break;
7165 }
7166 break;
7167
7168 case 0x0f08: /* invd */
7169 case 0x0f09: /* wbinvd */
7170 break;
7171
7172 case 0x63: /* arpl */
7173 if (i386_record_modrm (&ir))
7174 return -1;
7175 if (ir.mod == 3 || ir.regmap[X86_RECORD_R8_REGNUM])
7176 {
7177 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.regmap[X86_RECORD_R8_REGNUM]
7178 ? (ir.reg | rex_r) : ir.rm);
7179 }
7180 else
7181 {
7182 ir.ot = ir.dflag ? OT_LONG : OT_WORD;
7183 if (i386_record_lea_modrm (&ir))
7184 return -1;
7185 }
7186 if (!ir.regmap[X86_RECORD_R8_REGNUM])
7187 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7188 break;
7189
7190 case 0x0f02: /* lar */
7191 case 0x0f03: /* lsl */
7192 if (i386_record_modrm (&ir))
7193 return -1;
7194 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7195 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7196 break;
7197
7198 case 0x0f18:
7199 if (i386_record_modrm (&ir))
7200 return -1;
7201 if (ir.mod == 3 && ir.reg == 3)
7202 {
7203 ir.addr -= 3;
7204 opcode = opcode << 8 | ir.modrm;
7205 goto no_support;
7206 }
7207 break;
7208
7209 case 0x0f19:
7210 case 0x0f1a:
7211 case 0x0f1b:
7212 case 0x0f1c:
7213 case 0x0f1d:
7214 case 0x0f1e:
7215 case 0x0f1f:
7216 /* nop (multi byte) */
7217 break;
7218
7219 case 0x0f20: /* mov reg, crN */
7220 case 0x0f22: /* mov crN, reg */
7221 if (i386_record_modrm (&ir))
7222 return -1;
7223 if ((ir.modrm & 0xc0) != 0xc0)
7224 {
7225 ir.addr -= 3;
7226 opcode = opcode << 8 | ir.modrm;
7227 goto no_support;
7228 }
7229 switch (ir.reg)
7230 {
7231 case 0:
7232 case 2:
7233 case 3:
7234 case 4:
7235 case 8:
7236 if (opcode & 2)
7237 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7238 else
7239 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7240 break;
7241 default:
7242 ir.addr -= 3;
7243 opcode = opcode << 8 | ir.modrm;
7244 goto no_support;
7245 break;
7246 }
7247 break;
7248
7249 case 0x0f21: /* mov reg, drN */
7250 case 0x0f23: /* mov drN, reg */
7251 if (i386_record_modrm (&ir))
7252 return -1;
7253 if ((ir.modrm & 0xc0) != 0xc0 || ir.reg == 4
7254 || ir.reg == 5 || ir.reg >= 8)
7255 {
7256 ir.addr -= 3;
7257 opcode = opcode << 8 | ir.modrm;
7258 goto no_support;
7259 }
7260 if (opcode & 2)
7261 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7262 else
7263 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7264 break;
7265
7266 case 0x0f06: /* clts */
7267 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7268 break;
7269
7270 /* MMX 3DNow! SSE SSE2 SSE3 SSSE3 SSE4 */
7271
7272 case 0x0f0d: /* 3DNow! prefetch */
7273 break;
7274
7275 case 0x0f0e: /* 3DNow! femms */
7276 case 0x0f77: /* emms */
7277 if (i386_fpc_regnum_p (gdbarch, I387_FTAG_REGNUM(tdep)))
7278 goto no_support;
7279 record_full_arch_list_add_reg (ir.regcache, I387_FTAG_REGNUM(tdep));
7280 break;
7281
7282 case 0x0f0f: /* 3DNow! data */
7283 if (i386_record_modrm (&ir))
7284 return -1;
7285 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
7286 return -1;
7287 ir.addr++;
7288 switch (opcode8)
7289 {
7290 case 0x0c: /* 3DNow! pi2fw */
7291 case 0x0d: /* 3DNow! pi2fd */
7292 case 0x1c: /* 3DNow! pf2iw */
7293 case 0x1d: /* 3DNow! pf2id */
7294 case 0x8a: /* 3DNow! pfnacc */
7295 case 0x8e: /* 3DNow! pfpnacc */
7296 case 0x90: /* 3DNow! pfcmpge */
7297 case 0x94: /* 3DNow! pfmin */
7298 case 0x96: /* 3DNow! pfrcp */
7299 case 0x97: /* 3DNow! pfrsqrt */
7300 case 0x9a: /* 3DNow! pfsub */
7301 case 0x9e: /* 3DNow! pfadd */
7302 case 0xa0: /* 3DNow! pfcmpgt */
7303 case 0xa4: /* 3DNow! pfmax */
7304 case 0xa6: /* 3DNow! pfrcpit1 */
7305 case 0xa7: /* 3DNow! pfrsqit1 */
7306 case 0xaa: /* 3DNow! pfsubr */
7307 case 0xae: /* 3DNow! pfacc */
7308 case 0xb0: /* 3DNow! pfcmpeq */
7309 case 0xb4: /* 3DNow! pfmul */
7310 case 0xb6: /* 3DNow! pfrcpit2 */
7311 case 0xb7: /* 3DNow! pmulhrw */
7312 case 0xbb: /* 3DNow! pswapd */
7313 case 0xbf: /* 3DNow! pavgusb */
7314 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7315 goto no_support_3dnow_data;
7316 record_full_arch_list_add_reg (ir.regcache, ir.reg);
7317 break;
7318
7319 default:
7320 no_support_3dnow_data:
7321 opcode = (opcode << 8) | opcode8;
7322 goto no_support;
7323 break;
7324 }
7325 break;
7326
7327 case 0x0faa: /* rsm */
7328 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7329 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7330 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
7331 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7332 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
7333 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
7334 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
7335 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
7336 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
7337 break;
7338
7339 case 0x0fae:
7340 if (i386_record_modrm (&ir))
7341 return -1;
7342 switch(ir.reg)
7343 {
7344 case 0: /* fxsave */
7345 {
7346 uint64_t tmpu64;
7347
7348 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7349 if (i386_record_lea_modrm_addr (&ir, &tmpu64))
7350 return -1;
7351 if (record_full_arch_list_add_mem (tmpu64, 512))
7352 return -1;
7353 }
7354 break;
7355
7356 case 1: /* fxrstor */
7357 {
7358 int i;
7359
7360 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7361
7362 for (i = I387_MM0_REGNUM (tdep);
7363 i386_mmx_regnum_p (gdbarch, i); i++)
7364 record_full_arch_list_add_reg (ir.regcache, i);
7365
7366 for (i = I387_XMM0_REGNUM (tdep);
7367 i386_xmm_regnum_p (gdbarch, i); i++)
7368 record_full_arch_list_add_reg (ir.regcache, i);
7369
7370 if (i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
7371 record_full_arch_list_add_reg (ir.regcache,
7372 I387_MXCSR_REGNUM(tdep));
7373
7374 for (i = I387_ST0_REGNUM (tdep);
7375 i386_fp_regnum_p (gdbarch, i); i++)
7376 record_full_arch_list_add_reg (ir.regcache, i);
7377
7378 for (i = I387_FCTRL_REGNUM (tdep);
7379 i386_fpc_regnum_p (gdbarch, i); i++)
7380 record_full_arch_list_add_reg (ir.regcache, i);
7381 }
7382 break;
7383
7384 case 2: /* ldmxcsr */
7385 if (!i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
7386 goto no_support;
7387 record_full_arch_list_add_reg (ir.regcache, I387_MXCSR_REGNUM(tdep));
7388 break;
7389
7390 case 3: /* stmxcsr */
7391 ir.ot = OT_LONG;
7392 if (i386_record_lea_modrm (&ir))
7393 return -1;
7394 break;
7395
7396 case 5: /* lfence */
7397 case 6: /* mfence */
7398 case 7: /* sfence clflush */
7399 break;
7400
7401 default:
7402 opcode = (opcode << 8) | ir.modrm;
7403 goto no_support;
7404 break;
7405 }
7406 break;
7407
7408 case 0x0fc3: /* movnti */
7409 ir.ot = (ir.dflag == 2) ? OT_QUAD : OT_LONG;
7410 if (i386_record_modrm (&ir))
7411 return -1;
7412 if (ir.mod == 3)
7413 goto no_support;
7414 ir.reg |= rex_r;
7415 if (i386_record_lea_modrm (&ir))
7416 return -1;
7417 break;
7418
7419 /* Add prefix to opcode. */
7420 case 0x0f10:
7421 case 0x0f11:
7422 case 0x0f12:
7423 case 0x0f13:
7424 case 0x0f14:
7425 case 0x0f15:
7426 case 0x0f16:
7427 case 0x0f17:
7428 case 0x0f28:
7429 case 0x0f29:
7430 case 0x0f2a:
7431 case 0x0f2b:
7432 case 0x0f2c:
7433 case 0x0f2d:
7434 case 0x0f2e:
7435 case 0x0f2f:
7436 case 0x0f38:
7437 case 0x0f39:
7438 case 0x0f3a:
7439 case 0x0f50:
7440 case 0x0f51:
7441 case 0x0f52:
7442 case 0x0f53:
7443 case 0x0f54:
7444 case 0x0f55:
7445 case 0x0f56:
7446 case 0x0f57:
7447 case 0x0f58:
7448 case 0x0f59:
7449 case 0x0f5a:
7450 case 0x0f5b:
7451 case 0x0f5c:
7452 case 0x0f5d:
7453 case 0x0f5e:
7454 case 0x0f5f:
7455 case 0x0f60:
7456 case 0x0f61:
7457 case 0x0f62:
7458 case 0x0f63:
7459 case 0x0f64:
7460 case 0x0f65:
7461 case 0x0f66:
7462 case 0x0f67:
7463 case 0x0f68:
7464 case 0x0f69:
7465 case 0x0f6a:
7466 case 0x0f6b:
7467 case 0x0f6c:
7468 case 0x0f6d:
7469 case 0x0f6e:
7470 case 0x0f6f:
7471 case 0x0f70:
7472 case 0x0f71:
7473 case 0x0f72:
7474 case 0x0f73:
7475 case 0x0f74:
7476 case 0x0f75:
7477 case 0x0f76:
7478 case 0x0f7c:
7479 case 0x0f7d:
7480 case 0x0f7e:
7481 case 0x0f7f:
7482 case 0x0fb8:
7483 case 0x0fc2:
7484 case 0x0fc4:
7485 case 0x0fc5:
7486 case 0x0fc6:
7487 case 0x0fd0:
7488 case 0x0fd1:
7489 case 0x0fd2:
7490 case 0x0fd3:
7491 case 0x0fd4:
7492 case 0x0fd5:
7493 case 0x0fd6:
7494 case 0x0fd7:
7495 case 0x0fd8:
7496 case 0x0fd9:
7497 case 0x0fda:
7498 case 0x0fdb:
7499 case 0x0fdc:
7500 case 0x0fdd:
7501 case 0x0fde:
7502 case 0x0fdf:
7503 case 0x0fe0:
7504 case 0x0fe1:
7505 case 0x0fe2:
7506 case 0x0fe3:
7507 case 0x0fe4:
7508 case 0x0fe5:
7509 case 0x0fe6:
7510 case 0x0fe7:
7511 case 0x0fe8:
7512 case 0x0fe9:
7513 case 0x0fea:
7514 case 0x0feb:
7515 case 0x0fec:
7516 case 0x0fed:
7517 case 0x0fee:
7518 case 0x0fef:
7519 case 0x0ff0:
7520 case 0x0ff1:
7521 case 0x0ff2:
7522 case 0x0ff3:
7523 case 0x0ff4:
7524 case 0x0ff5:
7525 case 0x0ff6:
7526 case 0x0ff7:
7527 case 0x0ff8:
7528 case 0x0ff9:
7529 case 0x0ffa:
7530 case 0x0ffb:
7531 case 0x0ffc:
7532 case 0x0ffd:
7533 case 0x0ffe:
7534 /* Mask out PREFIX_ADDR. */
7535 switch ((prefixes & ~PREFIX_ADDR))
7536 {
7537 case PREFIX_REPNZ:
7538 opcode |= 0xf20000;
7539 break;
7540 case PREFIX_DATA:
7541 opcode |= 0x660000;
7542 break;
7543 case PREFIX_REPZ:
7544 opcode |= 0xf30000;
7545 break;
7546 }
7547 reswitch_prefix_add:
7548 switch (opcode)
7549 {
7550 case 0x0f38:
7551 case 0x660f38:
7552 case 0xf20f38:
7553 case 0x0f3a:
7554 case 0x660f3a:
7555 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
7556 return -1;
7557 ir.addr++;
7558 opcode = (uint32_t) opcode8 | opcode << 8;
7559 goto reswitch_prefix_add;
7560 break;
7561
7562 case 0x0f10: /* movups */
7563 case 0x660f10: /* movupd */
7564 case 0xf30f10: /* movss */
7565 case 0xf20f10: /* movsd */
7566 case 0x0f12: /* movlps */
7567 case 0x660f12: /* movlpd */
7568 case 0xf30f12: /* movsldup */
7569 case 0xf20f12: /* movddup */
7570 case 0x0f14: /* unpcklps */
7571 case 0x660f14: /* unpcklpd */
7572 case 0x0f15: /* unpckhps */
7573 case 0x660f15: /* unpckhpd */
7574 case 0x0f16: /* movhps */
7575 case 0x660f16: /* movhpd */
7576 case 0xf30f16: /* movshdup */
7577 case 0x0f28: /* movaps */
7578 case 0x660f28: /* movapd */
7579 case 0x0f2a: /* cvtpi2ps */
7580 case 0x660f2a: /* cvtpi2pd */
7581 case 0xf30f2a: /* cvtsi2ss */
7582 case 0xf20f2a: /* cvtsi2sd */
7583 case 0x0f2c: /* cvttps2pi */
7584 case 0x660f2c: /* cvttpd2pi */
7585 case 0x0f2d: /* cvtps2pi */
7586 case 0x660f2d: /* cvtpd2pi */
7587 case 0x660f3800: /* pshufb */
7588 case 0x660f3801: /* phaddw */
7589 case 0x660f3802: /* phaddd */
7590 case 0x660f3803: /* phaddsw */
7591 case 0x660f3804: /* pmaddubsw */
7592 case 0x660f3805: /* phsubw */
7593 case 0x660f3806: /* phsubd */
7594 case 0x660f3807: /* phsubsw */
7595 case 0x660f3808: /* psignb */
7596 case 0x660f3809: /* psignw */
7597 case 0x660f380a: /* psignd */
7598 case 0x660f380b: /* pmulhrsw */
7599 case 0x660f3810: /* pblendvb */
7600 case 0x660f3814: /* blendvps */
7601 case 0x660f3815: /* blendvpd */
7602 case 0x660f381c: /* pabsb */
7603 case 0x660f381d: /* pabsw */
7604 case 0x660f381e: /* pabsd */
7605 case 0x660f3820: /* pmovsxbw */
7606 case 0x660f3821: /* pmovsxbd */
7607 case 0x660f3822: /* pmovsxbq */
7608 case 0x660f3823: /* pmovsxwd */
7609 case 0x660f3824: /* pmovsxwq */
7610 case 0x660f3825: /* pmovsxdq */
7611 case 0x660f3828: /* pmuldq */
7612 case 0x660f3829: /* pcmpeqq */
7613 case 0x660f382a: /* movntdqa */
7614 case 0x660f3a08: /* roundps */
7615 case 0x660f3a09: /* roundpd */
7616 case 0x660f3a0a: /* roundss */
7617 case 0x660f3a0b: /* roundsd */
7618 case 0x660f3a0c: /* blendps */
7619 case 0x660f3a0d: /* blendpd */
7620 case 0x660f3a0e: /* pblendw */
7621 case 0x660f3a0f: /* palignr */
7622 case 0x660f3a20: /* pinsrb */
7623 case 0x660f3a21: /* insertps */
7624 case 0x660f3a22: /* pinsrd pinsrq */
7625 case 0x660f3a40: /* dpps */
7626 case 0x660f3a41: /* dppd */
7627 case 0x660f3a42: /* mpsadbw */
7628 case 0x660f3a60: /* pcmpestrm */
7629 case 0x660f3a61: /* pcmpestri */
7630 case 0x660f3a62: /* pcmpistrm */
7631 case 0x660f3a63: /* pcmpistri */
7632 case 0x0f51: /* sqrtps */
7633 case 0x660f51: /* sqrtpd */
7634 case 0xf20f51: /* sqrtsd */
7635 case 0xf30f51: /* sqrtss */
7636 case 0x0f52: /* rsqrtps */
7637 case 0xf30f52: /* rsqrtss */
7638 case 0x0f53: /* rcpps */
7639 case 0xf30f53: /* rcpss */
7640 case 0x0f54: /* andps */
7641 case 0x660f54: /* andpd */
7642 case 0x0f55: /* andnps */
7643 case 0x660f55: /* andnpd */
7644 case 0x0f56: /* orps */
7645 case 0x660f56: /* orpd */
7646 case 0x0f57: /* xorps */
7647 case 0x660f57: /* xorpd */
7648 case 0x0f58: /* addps */
7649 case 0x660f58: /* addpd */
7650 case 0xf20f58: /* addsd */
7651 case 0xf30f58: /* addss */
7652 case 0x0f59: /* mulps */
7653 case 0x660f59: /* mulpd */
7654 case 0xf20f59: /* mulsd */
7655 case 0xf30f59: /* mulss */
7656 case 0x0f5a: /* cvtps2pd */
7657 case 0x660f5a: /* cvtpd2ps */
7658 case 0xf20f5a: /* cvtsd2ss */
7659 case 0xf30f5a: /* cvtss2sd */
7660 case 0x0f5b: /* cvtdq2ps */
7661 case 0x660f5b: /* cvtps2dq */
7662 case 0xf30f5b: /* cvttps2dq */
7663 case 0x0f5c: /* subps */
7664 case 0x660f5c: /* subpd */
7665 case 0xf20f5c: /* subsd */
7666 case 0xf30f5c: /* subss */
7667 case 0x0f5d: /* minps */
7668 case 0x660f5d: /* minpd */
7669 case 0xf20f5d: /* minsd */
7670 case 0xf30f5d: /* minss */
7671 case 0x0f5e: /* divps */
7672 case 0x660f5e: /* divpd */
7673 case 0xf20f5e: /* divsd */
7674 case 0xf30f5e: /* divss */
7675 case 0x0f5f: /* maxps */
7676 case 0x660f5f: /* maxpd */
7677 case 0xf20f5f: /* maxsd */
7678 case 0xf30f5f: /* maxss */
7679 case 0x660f60: /* punpcklbw */
7680 case 0x660f61: /* punpcklwd */
7681 case 0x660f62: /* punpckldq */
7682 case 0x660f63: /* packsswb */
7683 case 0x660f64: /* pcmpgtb */
7684 case 0x660f65: /* pcmpgtw */
7685 case 0x660f66: /* pcmpgtd */
7686 case 0x660f67: /* packuswb */
7687 case 0x660f68: /* punpckhbw */
7688 case 0x660f69: /* punpckhwd */
7689 case 0x660f6a: /* punpckhdq */
7690 case 0x660f6b: /* packssdw */
7691 case 0x660f6c: /* punpcklqdq */
7692 case 0x660f6d: /* punpckhqdq */
7693 case 0x660f6e: /* movd */
7694 case 0x660f6f: /* movdqa */
7695 case 0xf30f6f: /* movdqu */
7696 case 0x660f70: /* pshufd */
7697 case 0xf20f70: /* pshuflw */
7698 case 0xf30f70: /* pshufhw */
7699 case 0x660f74: /* pcmpeqb */
7700 case 0x660f75: /* pcmpeqw */
7701 case 0x660f76: /* pcmpeqd */
7702 case 0x660f7c: /* haddpd */
7703 case 0xf20f7c: /* haddps */
7704 case 0x660f7d: /* hsubpd */
7705 case 0xf20f7d: /* hsubps */
7706 case 0xf30f7e: /* movq */
7707 case 0x0fc2: /* cmpps */
7708 case 0x660fc2: /* cmppd */
7709 case 0xf20fc2: /* cmpsd */
7710 case 0xf30fc2: /* cmpss */
7711 case 0x660fc4: /* pinsrw */
7712 case 0x0fc6: /* shufps */
7713 case 0x660fc6: /* shufpd */
7714 case 0x660fd0: /* addsubpd */
7715 case 0xf20fd0: /* addsubps */
7716 case 0x660fd1: /* psrlw */
7717 case 0x660fd2: /* psrld */
7718 case 0x660fd3: /* psrlq */
7719 case 0x660fd4: /* paddq */
7720 case 0x660fd5: /* pmullw */
7721 case 0xf30fd6: /* movq2dq */
7722 case 0x660fd8: /* psubusb */
7723 case 0x660fd9: /* psubusw */
7724 case 0x660fda: /* pminub */
7725 case 0x660fdb: /* pand */
7726 case 0x660fdc: /* paddusb */
7727 case 0x660fdd: /* paddusw */
7728 case 0x660fde: /* pmaxub */
7729 case 0x660fdf: /* pandn */
7730 case 0x660fe0: /* pavgb */
7731 case 0x660fe1: /* psraw */
7732 case 0x660fe2: /* psrad */
7733 case 0x660fe3: /* pavgw */
7734 case 0x660fe4: /* pmulhuw */
7735 case 0x660fe5: /* pmulhw */
7736 case 0x660fe6: /* cvttpd2dq */
7737 case 0xf20fe6: /* cvtpd2dq */
7738 case 0xf30fe6: /* cvtdq2pd */
7739 case 0x660fe8: /* psubsb */
7740 case 0x660fe9: /* psubsw */
7741 case 0x660fea: /* pminsw */
7742 case 0x660feb: /* por */
7743 case 0x660fec: /* paddsb */
7744 case 0x660fed: /* paddsw */
7745 case 0x660fee: /* pmaxsw */
7746 case 0x660fef: /* pxor */
7747 case 0xf20ff0: /* lddqu */
7748 case 0x660ff1: /* psllw */
7749 case 0x660ff2: /* pslld */
7750 case 0x660ff3: /* psllq */
7751 case 0x660ff4: /* pmuludq */
7752 case 0x660ff5: /* pmaddwd */
7753 case 0x660ff6: /* psadbw */
7754 case 0x660ff8: /* psubb */
7755 case 0x660ff9: /* psubw */
7756 case 0x660ffa: /* psubd */
7757 case 0x660ffb: /* psubq */
7758 case 0x660ffc: /* paddb */
7759 case 0x660ffd: /* paddw */
7760 case 0x660ffe: /* paddd */
7761 if (i386_record_modrm (&ir))
7762 return -1;
7763 ir.reg |= rex_r;
7764 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.reg))
7765 goto no_support;
7766 record_full_arch_list_add_reg (ir.regcache,
7767 I387_XMM0_REGNUM (tdep) + ir.reg);
7768 if ((opcode & 0xfffffffc) == 0x660f3a60)
7769 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7770 break;
7771
7772 case 0x0f11: /* movups */
7773 case 0x660f11: /* movupd */
7774 case 0xf30f11: /* movss */
7775 case 0xf20f11: /* movsd */
7776 case 0x0f13: /* movlps */
7777 case 0x660f13: /* movlpd */
7778 case 0x0f17: /* movhps */
7779 case 0x660f17: /* movhpd */
7780 case 0x0f29: /* movaps */
7781 case 0x660f29: /* movapd */
7782 case 0x660f3a14: /* pextrb */
7783 case 0x660f3a15: /* pextrw */
7784 case 0x660f3a16: /* pextrd pextrq */
7785 case 0x660f3a17: /* extractps */
7786 case 0x660f7f: /* movdqa */
7787 case 0xf30f7f: /* movdqu */
7788 if (i386_record_modrm (&ir))
7789 return -1;
7790 if (ir.mod == 3)
7791 {
7792 if (opcode == 0x0f13 || opcode == 0x660f13
7793 || opcode == 0x0f17 || opcode == 0x660f17)
7794 goto no_support;
7795 ir.rm |= ir.rex_b;
7796 if (!i386_xmm_regnum_p (gdbarch,
7797 I387_XMM0_REGNUM (tdep) + ir.rm))
7798 goto no_support;
7799 record_full_arch_list_add_reg (ir.regcache,
7800 I387_XMM0_REGNUM (tdep) + ir.rm);
7801 }
7802 else
7803 {
7804 switch (opcode)
7805 {
7806 case 0x660f3a14:
7807 ir.ot = OT_BYTE;
7808 break;
7809 case 0x660f3a15:
7810 ir.ot = OT_WORD;
7811 break;
7812 case 0x660f3a16:
7813 ir.ot = OT_LONG;
7814 break;
7815 case 0x660f3a17:
7816 ir.ot = OT_QUAD;
7817 break;
7818 default:
7819 ir.ot = OT_DQUAD;
7820 break;
7821 }
7822 if (i386_record_lea_modrm (&ir))
7823 return -1;
7824 }
7825 break;
7826
7827 case 0x0f2b: /* movntps */
7828 case 0x660f2b: /* movntpd */
7829 case 0x0fe7: /* movntq */
7830 case 0x660fe7: /* movntdq */
7831 if (ir.mod == 3)
7832 goto no_support;
7833 if (opcode == 0x0fe7)
7834 ir.ot = OT_QUAD;
7835 else
7836 ir.ot = OT_DQUAD;
7837 if (i386_record_lea_modrm (&ir))
7838 return -1;
7839 break;
7840
7841 case 0xf30f2c: /* cvttss2si */
7842 case 0xf20f2c: /* cvttsd2si */
7843 case 0xf30f2d: /* cvtss2si */
7844 case 0xf20f2d: /* cvtsd2si */
7845 case 0xf20f38f0: /* crc32 */
7846 case 0xf20f38f1: /* crc32 */
7847 case 0x0f50: /* movmskps */
7848 case 0x660f50: /* movmskpd */
7849 case 0x0fc5: /* pextrw */
7850 case 0x660fc5: /* pextrw */
7851 case 0x0fd7: /* pmovmskb */
7852 case 0x660fd7: /* pmovmskb */
7853 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7854 break;
7855
7856 case 0x0f3800: /* pshufb */
7857 case 0x0f3801: /* phaddw */
7858 case 0x0f3802: /* phaddd */
7859 case 0x0f3803: /* phaddsw */
7860 case 0x0f3804: /* pmaddubsw */
7861 case 0x0f3805: /* phsubw */
7862 case 0x0f3806: /* phsubd */
7863 case 0x0f3807: /* phsubsw */
7864 case 0x0f3808: /* psignb */
7865 case 0x0f3809: /* psignw */
7866 case 0x0f380a: /* psignd */
7867 case 0x0f380b: /* pmulhrsw */
7868 case 0x0f381c: /* pabsb */
7869 case 0x0f381d: /* pabsw */
7870 case 0x0f381e: /* pabsd */
7871 case 0x0f382b: /* packusdw */
7872 case 0x0f3830: /* pmovzxbw */
7873 case 0x0f3831: /* pmovzxbd */
7874 case 0x0f3832: /* pmovzxbq */
7875 case 0x0f3833: /* pmovzxwd */
7876 case 0x0f3834: /* pmovzxwq */
7877 case 0x0f3835: /* pmovzxdq */
7878 case 0x0f3837: /* pcmpgtq */
7879 case 0x0f3838: /* pminsb */
7880 case 0x0f3839: /* pminsd */
7881 case 0x0f383a: /* pminuw */
7882 case 0x0f383b: /* pminud */
7883 case 0x0f383c: /* pmaxsb */
7884 case 0x0f383d: /* pmaxsd */
7885 case 0x0f383e: /* pmaxuw */
7886 case 0x0f383f: /* pmaxud */
7887 case 0x0f3840: /* pmulld */
7888 case 0x0f3841: /* phminposuw */
7889 case 0x0f3a0f: /* palignr */
7890 case 0x0f60: /* punpcklbw */
7891 case 0x0f61: /* punpcklwd */
7892 case 0x0f62: /* punpckldq */
7893 case 0x0f63: /* packsswb */
7894 case 0x0f64: /* pcmpgtb */
7895 case 0x0f65: /* pcmpgtw */
7896 case 0x0f66: /* pcmpgtd */
7897 case 0x0f67: /* packuswb */
7898 case 0x0f68: /* punpckhbw */
7899 case 0x0f69: /* punpckhwd */
7900 case 0x0f6a: /* punpckhdq */
7901 case 0x0f6b: /* packssdw */
7902 case 0x0f6e: /* movd */
7903 case 0x0f6f: /* movq */
7904 case 0x0f70: /* pshufw */
7905 case 0x0f74: /* pcmpeqb */
7906 case 0x0f75: /* pcmpeqw */
7907 case 0x0f76: /* pcmpeqd */
7908 case 0x0fc4: /* pinsrw */
7909 case 0x0fd1: /* psrlw */
7910 case 0x0fd2: /* psrld */
7911 case 0x0fd3: /* psrlq */
7912 case 0x0fd4: /* paddq */
7913 case 0x0fd5: /* pmullw */
7914 case 0xf20fd6: /* movdq2q */
7915 case 0x0fd8: /* psubusb */
7916 case 0x0fd9: /* psubusw */
7917 case 0x0fda: /* pminub */
7918 case 0x0fdb: /* pand */
7919 case 0x0fdc: /* paddusb */
7920 case 0x0fdd: /* paddusw */
7921 case 0x0fde: /* pmaxub */
7922 case 0x0fdf: /* pandn */
7923 case 0x0fe0: /* pavgb */
7924 case 0x0fe1: /* psraw */
7925 case 0x0fe2: /* psrad */
7926 case 0x0fe3: /* pavgw */
7927 case 0x0fe4: /* pmulhuw */
7928 case 0x0fe5: /* pmulhw */
7929 case 0x0fe8: /* psubsb */
7930 case 0x0fe9: /* psubsw */
7931 case 0x0fea: /* pminsw */
7932 case 0x0feb: /* por */
7933 case 0x0fec: /* paddsb */
7934 case 0x0fed: /* paddsw */
7935 case 0x0fee: /* pmaxsw */
7936 case 0x0fef: /* pxor */
7937 case 0x0ff1: /* psllw */
7938 case 0x0ff2: /* pslld */
7939 case 0x0ff3: /* psllq */
7940 case 0x0ff4: /* pmuludq */
7941 case 0x0ff5: /* pmaddwd */
7942 case 0x0ff6: /* psadbw */
7943 case 0x0ff8: /* psubb */
7944 case 0x0ff9: /* psubw */
7945 case 0x0ffa: /* psubd */
7946 case 0x0ffb: /* psubq */
7947 case 0x0ffc: /* paddb */
7948 case 0x0ffd: /* paddw */
7949 case 0x0ffe: /* paddd */
7950 if (i386_record_modrm (&ir))
7951 return -1;
7952 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7953 goto no_support;
7954 record_full_arch_list_add_reg (ir.regcache,
7955 I387_MM0_REGNUM (tdep) + ir.reg);
7956 break;
7957
7958 case 0x0f71: /* psllw */
7959 case 0x0f72: /* pslld */
7960 case 0x0f73: /* psllq */
7961 if (i386_record_modrm (&ir))
7962 return -1;
7963 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
7964 goto no_support;
7965 record_full_arch_list_add_reg (ir.regcache,
7966 I387_MM0_REGNUM (tdep) + ir.rm);
7967 break;
7968
7969 case 0x660f71: /* psllw */
7970 case 0x660f72: /* pslld */
7971 case 0x660f73: /* psllq */
7972 if (i386_record_modrm (&ir))
7973 return -1;
7974 ir.rm |= ir.rex_b;
7975 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.rm))
7976 goto no_support;
7977 record_full_arch_list_add_reg (ir.regcache,
7978 I387_XMM0_REGNUM (tdep) + ir.rm);
7979 break;
7980
7981 case 0x0f7e: /* movd */
7982 case 0x660f7e: /* movd */
7983 if (i386_record_modrm (&ir))
7984 return -1;
7985 if (ir.mod == 3)
7986 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7987 else
7988 {
7989 if (ir.dflag == 2)
7990 ir.ot = OT_QUAD;
7991 else
7992 ir.ot = OT_LONG;
7993 if (i386_record_lea_modrm (&ir))
7994 return -1;
7995 }
7996 break;
7997
7998 case 0x0f7f: /* movq */
7999 if (i386_record_modrm (&ir))
8000 return -1;
8001 if (ir.mod == 3)
8002 {
8003 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
8004 goto no_support;
8005 record_full_arch_list_add_reg (ir.regcache,
8006 I387_MM0_REGNUM (tdep) + ir.rm);
8007 }
8008 else
8009 {
8010 ir.ot = OT_QUAD;
8011 if (i386_record_lea_modrm (&ir))
8012 return -1;
8013 }
8014 break;
8015
8016 case 0xf30fb8: /* popcnt */
8017 if (i386_record_modrm (&ir))
8018 return -1;
8019 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
8020 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
8021 break;
8022
8023 case 0x660fd6: /* movq */
8024 if (i386_record_modrm (&ir))
8025 return -1;
8026 if (ir.mod == 3)
8027 {
8028 ir.rm |= ir.rex_b;
8029 if (!i386_xmm_regnum_p (gdbarch,
8030 I387_XMM0_REGNUM (tdep) + ir.rm))
8031 goto no_support;
8032 record_full_arch_list_add_reg (ir.regcache,
8033 I387_XMM0_REGNUM (tdep) + ir.rm);
8034 }
8035 else
8036 {
8037 ir.ot = OT_QUAD;
8038 if (i386_record_lea_modrm (&ir))
8039 return -1;
8040 }
8041 break;
8042
8043 case 0x660f3817: /* ptest */
8044 case 0x0f2e: /* ucomiss */
8045 case 0x660f2e: /* ucomisd */
8046 case 0x0f2f: /* comiss */
8047 case 0x660f2f: /* comisd */
8048 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
8049 break;
8050
8051 case 0x0ff7: /* maskmovq */
8052 regcache_raw_read_unsigned (ir.regcache,
8053 ir.regmap[X86_RECORD_REDI_REGNUM],
8054 &addr);
8055 if (record_full_arch_list_add_mem (addr, 64))
8056 return -1;
8057 break;
8058
8059 case 0x660ff7: /* maskmovdqu */
8060 regcache_raw_read_unsigned (ir.regcache,
8061 ir.regmap[X86_RECORD_REDI_REGNUM],
8062 &addr);
8063 if (record_full_arch_list_add_mem (addr, 128))
8064 return -1;
8065 break;
8066
8067 default:
8068 goto no_support;
8069 break;
8070 }
8071 break;
8072
8073 default:
8074 goto no_support;
8075 break;
8076 }
8077
8078 /* In the future, maybe still need to deal with need_dasm. */
8079 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REIP_REGNUM);
8080 if (record_full_arch_list_add_end ())
8081 return -1;
8082
8083 return 0;
8084
8085 no_support:
8086 printf_unfiltered (_("Process record does not support instruction 0x%02x "
8087 "at address %s.\n"),
8088 (unsigned int) (opcode),
8089 paddress (gdbarch, ir.orig_addr));
8090 return -1;
8091 }
8092
8093 static const int i386_record_regmap[] =
8094 {
8095 I386_EAX_REGNUM, I386_ECX_REGNUM, I386_EDX_REGNUM, I386_EBX_REGNUM,
8096 I386_ESP_REGNUM, I386_EBP_REGNUM, I386_ESI_REGNUM, I386_EDI_REGNUM,
8097 0, 0, 0, 0, 0, 0, 0, 0,
8098 I386_EIP_REGNUM, I386_EFLAGS_REGNUM, I386_CS_REGNUM, I386_SS_REGNUM,
8099 I386_DS_REGNUM, I386_ES_REGNUM, I386_FS_REGNUM, I386_GS_REGNUM
8100 };
8101
8102 /* Check that the given address appears suitable for a fast
8103 tracepoint, which on x86-64 means that we need an instruction of at
8104 least 5 bytes, so that we can overwrite it with a 4-byte-offset
8105 jump and not have to worry about program jumps to an address in the
8106 middle of the tracepoint jump. On x86, it may be possible to use
8107 4-byte jumps with a 2-byte offset to a trampoline located in the
8108 bottom 64 KiB of memory. Returns 1 if OK, and writes a size
8109 of instruction to replace, and 0 if not, plus an explanatory
8110 string. */
8111
8112 static int
8113 i386_fast_tracepoint_valid_at (struct gdbarch *gdbarch, CORE_ADDR addr,
8114 std::string *msg)
8115 {
8116 int len, jumplen;
8117
8118 /* Ask the target for the minimum instruction length supported. */
8119 jumplen = target_get_min_fast_tracepoint_insn_len ();
8120
8121 if (jumplen < 0)
8122 {
8123 /* If the target does not support the get_min_fast_tracepoint_insn_len
8124 operation, assume that fast tracepoints will always be implemented
8125 using 4-byte relative jumps on both x86 and x86-64. */
8126 jumplen = 5;
8127 }
8128 else if (jumplen == 0)
8129 {
8130 /* If the target does support get_min_fast_tracepoint_insn_len but
8131 returns zero, then the IPA has not loaded yet. In this case,
8132 we optimistically assume that truncated 2-byte relative jumps
8133 will be available on x86, and compensate later if this assumption
8134 turns out to be incorrect. On x86-64 architectures, 4-byte relative
8135 jumps will always be used. */
8136 jumplen = (register_size (gdbarch, 0) == 8) ? 5 : 4;
8137 }
8138
8139 /* Check for fit. */
8140 len = gdb_insn_length (gdbarch, addr);
8141
8142 if (len < jumplen)
8143 {
8144 /* Return a bit of target-specific detail to add to the caller's
8145 generic failure message. */
8146 if (msg)
8147 *msg = string_printf (_("; instruction is only %d bytes long, "
8148 "need at least %d bytes for the jump"),
8149 len, jumplen);
8150 return 0;
8151 }
8152 else
8153 {
8154 if (msg)
8155 msg->clear ();
8156 return 1;
8157 }
8158 }
8159
8160 /* Return a floating-point format for a floating-point variable of
8161 length LEN in bits. If non-NULL, NAME is the name of its type.
8162 If no suitable type is found, return NULL. */
8163
8164 const struct floatformat **
8165 i386_floatformat_for_type (struct gdbarch *gdbarch,
8166 const char *name, int len)
8167 {
8168 if (len == 128 && name)
8169 if (strcmp (name, "__float128") == 0
8170 || strcmp (name, "_Float128") == 0
8171 || strcmp (name, "complex _Float128") == 0)
8172 return floatformats_ia64_quad;
8173
8174 return default_floatformat_for_type (gdbarch, name, len);
8175 }
8176
8177 static int
8178 i386_validate_tdesc_p (struct gdbarch_tdep *tdep,
8179 struct tdesc_arch_data *tdesc_data)
8180 {
8181 const struct target_desc *tdesc = tdep->tdesc;
8182 const struct tdesc_feature *feature_core;
8183
8184 const struct tdesc_feature *feature_sse, *feature_avx, *feature_mpx,
8185 *feature_avx512, *feature_pkeys;
8186 int i, num_regs, valid_p;
8187
8188 if (! tdesc_has_registers (tdesc))
8189 return 0;
8190
8191 /* Get core registers. */
8192 feature_core = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.core");
8193 if (feature_core == NULL)
8194 return 0;
8195
8196 /* Get SSE registers. */
8197 feature_sse = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.sse");
8198
8199 /* Try AVX registers. */
8200 feature_avx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx");
8201
8202 /* Try MPX registers. */
8203 feature_mpx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx");
8204
8205 /* Try AVX512 registers. */
8206 feature_avx512 = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx512");
8207
8208 /* Try PKEYS */
8209 feature_pkeys = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.pkeys");
8210
8211 valid_p = 1;
8212
8213 /* The XCR0 bits. */
8214 if (feature_avx512)
8215 {
8216 /* AVX512 register description requires AVX register description. */
8217 if (!feature_avx)
8218 return 0;
8219
8220 tdep->xcr0 = X86_XSTATE_AVX_AVX512_MASK;
8221
8222 /* It may have been set by OSABI initialization function. */
8223 if (tdep->k0_regnum < 0)
8224 {
8225 tdep->k_register_names = i386_k_names;
8226 tdep->k0_regnum = I386_K0_REGNUM;
8227 }
8228
8229 for (i = 0; i < I387_NUM_K_REGS; i++)
8230 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8231 tdep->k0_regnum + i,
8232 i386_k_names[i]);
8233
8234 if (tdep->num_zmm_regs == 0)
8235 {
8236 tdep->zmmh_register_names = i386_zmmh_names;
8237 tdep->num_zmm_regs = 8;
8238 tdep->zmm0h_regnum = I386_ZMM0H_REGNUM;
8239 }
8240
8241 for (i = 0; i < tdep->num_zmm_regs; i++)
8242 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8243 tdep->zmm0h_regnum + i,
8244 tdep->zmmh_register_names[i]);
8245
8246 for (i = 0; i < tdep->num_xmm_avx512_regs; i++)
8247 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8248 tdep->xmm16_regnum + i,
8249 tdep->xmm_avx512_register_names[i]);
8250
8251 for (i = 0; i < tdep->num_ymm_avx512_regs; i++)
8252 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8253 tdep->ymm16h_regnum + i,
8254 tdep->ymm16h_register_names[i]);
8255 }
8256 if (feature_avx)
8257 {
8258 /* AVX register description requires SSE register description. */
8259 if (!feature_sse)
8260 return 0;
8261
8262 if (!feature_avx512)
8263 tdep->xcr0 = X86_XSTATE_AVX_MASK;
8264
8265 /* It may have been set by OSABI initialization function. */
8266 if (tdep->num_ymm_regs == 0)
8267 {
8268 tdep->ymmh_register_names = i386_ymmh_names;
8269 tdep->num_ymm_regs = 8;
8270 tdep->ymm0h_regnum = I386_YMM0H_REGNUM;
8271 }
8272
8273 for (i = 0; i < tdep->num_ymm_regs; i++)
8274 valid_p &= tdesc_numbered_register (feature_avx, tdesc_data,
8275 tdep->ymm0h_regnum + i,
8276 tdep->ymmh_register_names[i]);
8277 }
8278 else if (feature_sse)
8279 tdep->xcr0 = X86_XSTATE_SSE_MASK;
8280 else
8281 {
8282 tdep->xcr0 = X86_XSTATE_X87_MASK;
8283 tdep->num_xmm_regs = 0;
8284 }
8285
8286 num_regs = tdep->num_core_regs;
8287 for (i = 0; i < num_regs; i++)
8288 valid_p &= tdesc_numbered_register (feature_core, tdesc_data, i,
8289 tdep->register_names[i]);
8290
8291 if (feature_sse)
8292 {
8293 /* Need to include %mxcsr, so add one. */
8294 num_regs += tdep->num_xmm_regs + 1;
8295 for (; i < num_regs; i++)
8296 valid_p &= tdesc_numbered_register (feature_sse, tdesc_data, i,
8297 tdep->register_names[i]);
8298 }
8299
8300 if (feature_mpx)
8301 {
8302 tdep->xcr0 |= X86_XSTATE_MPX_MASK;
8303
8304 if (tdep->bnd0r_regnum < 0)
8305 {
8306 tdep->mpx_register_names = i386_mpx_names;
8307 tdep->bnd0r_regnum = I386_BND0R_REGNUM;
8308 tdep->bndcfgu_regnum = I386_BNDCFGU_REGNUM;
8309 }
8310
8311 for (i = 0; i < I387_NUM_MPX_REGS; i++)
8312 valid_p &= tdesc_numbered_register (feature_mpx, tdesc_data,
8313 I387_BND0R_REGNUM (tdep) + i,
8314 tdep->mpx_register_names[i]);
8315 }
8316
8317 if (feature_pkeys)
8318 {
8319 tdep->xcr0 |= X86_XSTATE_PKRU;
8320 if (tdep->pkru_regnum < 0)
8321 {
8322 tdep->pkeys_register_names = i386_pkeys_names;
8323 tdep->pkru_regnum = I386_PKRU_REGNUM;
8324 tdep->num_pkeys_regs = 1;
8325 }
8326
8327 for (i = 0; i < I387_NUM_PKEYS_REGS; i++)
8328 valid_p &= tdesc_numbered_register (feature_pkeys, tdesc_data,
8329 I387_PKRU_REGNUM (tdep) + i,
8330 tdep->pkeys_register_names[i]);
8331 }
8332
8333 return valid_p;
8334 }
8335
8336 \f
8337 /* Note: This is called for both i386 and amd64. */
8338
8339 static struct gdbarch *
8340 i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
8341 {
8342 struct gdbarch_tdep *tdep;
8343 struct gdbarch *gdbarch;
8344 struct tdesc_arch_data *tdesc_data;
8345 const struct target_desc *tdesc;
8346 int mm0_regnum;
8347 int ymm0_regnum;
8348 int bnd0_regnum;
8349 int num_bnd_cooked;
8350
8351 /* If there is already a candidate, use it. */
8352 arches = gdbarch_list_lookup_by_info (arches, &info);
8353 if (arches != NULL)
8354 return arches->gdbarch;
8355
8356 /* Allocate space for the new architecture. Assume i386 for now. */
8357 tdep = XCNEW (struct gdbarch_tdep);
8358 gdbarch = gdbarch_alloc (&info, tdep);
8359
8360 /* General-purpose registers. */
8361 tdep->gregset_reg_offset = NULL;
8362 tdep->gregset_num_regs = I386_NUM_GREGS;
8363 tdep->sizeof_gregset = 0;
8364
8365 /* Floating-point registers. */
8366 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
8367 tdep->fpregset = &i386_fpregset;
8368
8369 /* The default settings include the FPU registers, the MMX registers
8370 and the SSE registers. This can be overridden for a specific ABI
8371 by adjusting the members `st0_regnum', `mm0_regnum' and
8372 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
8373 will show up in the output of "info all-registers". */
8374
8375 tdep->st0_regnum = I386_ST0_REGNUM;
8376
8377 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
8378 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
8379
8380 tdep->jb_pc_offset = -1;
8381 tdep->struct_return = pcc_struct_return;
8382 tdep->sigtramp_start = 0;
8383 tdep->sigtramp_end = 0;
8384 tdep->sigtramp_p = i386_sigtramp_p;
8385 tdep->sigcontext_addr = NULL;
8386 tdep->sc_reg_offset = NULL;
8387 tdep->sc_pc_offset = -1;
8388 tdep->sc_sp_offset = -1;
8389
8390 tdep->xsave_xcr0_offset = -1;
8391
8392 tdep->record_regmap = i386_record_regmap;
8393
8394 set_gdbarch_long_long_align_bit (gdbarch, 32);
8395
8396 /* The format used for `long double' on almost all i386 targets is
8397 the i387 extended floating-point format. In fact, of all targets
8398 in the GCC 2.95 tree, only OSF/1 does it different, and insists
8399 on having a `long double' that's not `long' at all. */
8400 set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext);
8401
8402 /* Although the i387 extended floating-point has only 80 significant
8403 bits, a `long double' actually takes up 96, probably to enforce
8404 alignment. */
8405 set_gdbarch_long_double_bit (gdbarch, 96);
8406
8407 /* Support for floating-point data type variants. */
8408 set_gdbarch_floatformat_for_type (gdbarch, i386_floatformat_for_type);
8409
8410 /* Register numbers of various important registers. */
8411 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
8412 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
8413 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
8414 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
8415
8416 /* NOTE: kettenis/20040418: GCC does have two possible register
8417 numbering schemes on the i386: dbx and SVR4. These schemes
8418 differ in how they number %ebp, %esp, %eflags, and the
8419 floating-point registers, and are implemented by the arrays
8420 dbx_register_map[] and svr4_dbx_register_map in
8421 gcc/config/i386.c. GCC also defines a third numbering scheme in
8422 gcc/config/i386.c, which it designates as the "default" register
8423 map used in 64bit mode. This last register numbering scheme is
8424 implemented in dbx64_register_map, and is used for AMD64; see
8425 amd64-tdep.c.
8426
8427 Currently, each GCC i386 target always uses the same register
8428 numbering scheme across all its supported debugging formats
8429 i.e. SDB (COFF), stabs and DWARF 2. This is because
8430 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
8431 DBX_REGISTER_NUMBER macro which is defined by each target's
8432 respective config header in a manner independent of the requested
8433 output debugging format.
8434
8435 This does not match the arrangement below, which presumes that
8436 the SDB and stabs numbering schemes differ from the DWARF and
8437 DWARF 2 ones. The reason for this arrangement is that it is
8438 likely to get the numbering scheme for the target's
8439 default/native debug format right. For targets where GCC is the
8440 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
8441 targets where the native toolchain uses a different numbering
8442 scheme for a particular debug format (stabs-in-ELF on Solaris)
8443 the defaults below will have to be overridden, like
8444 i386_elf_init_abi() does. */
8445
8446 /* Use the dbx register numbering scheme for stabs and COFF. */
8447 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
8448 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
8449
8450 /* Use the SVR4 register numbering scheme for DWARF 2. */
8451 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_dwarf_reg_to_regnum);
8452
8453 /* We don't set gdbarch_stab_reg_to_regnum, since ECOFF doesn't seem to
8454 be in use on any of the supported i386 targets. */
8455
8456 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
8457
8458 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
8459
8460 /* Call dummy code. */
8461 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
8462 set_gdbarch_push_dummy_code (gdbarch, i386_push_dummy_code);
8463 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
8464 set_gdbarch_frame_align (gdbarch, i386_frame_align);
8465
8466 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
8467 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
8468 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
8469
8470 set_gdbarch_return_value (gdbarch, i386_return_value);
8471
8472 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
8473
8474 /* Stack grows downward. */
8475 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
8476
8477 set_gdbarch_breakpoint_kind_from_pc (gdbarch, i386_breakpoint::kind_from_pc);
8478 set_gdbarch_sw_breakpoint_from_kind (gdbarch, i386_breakpoint::bp_from_kind);
8479
8480 set_gdbarch_decr_pc_after_break (gdbarch, 1);
8481 set_gdbarch_max_insn_length (gdbarch, I386_MAX_INSN_LEN);
8482
8483 set_gdbarch_frame_args_skip (gdbarch, 8);
8484
8485 set_gdbarch_print_insn (gdbarch, i386_print_insn);
8486
8487 set_gdbarch_dummy_id (gdbarch, i386_dummy_id);
8488
8489 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
8490
8491 /* Add the i386 register groups. */
8492 i386_add_reggroups (gdbarch);
8493 tdep->register_reggroup_p = i386_register_reggroup_p;
8494
8495 /* Helper for function argument information. */
8496 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
8497
8498 /* Hook the function epilogue frame unwinder. This unwinder is
8499 appended to the list first, so that it supercedes the DWARF
8500 unwinder in function epilogues (where the DWARF unwinder
8501 currently fails). */
8502 frame_unwind_append_unwinder (gdbarch, &i386_epilogue_frame_unwind);
8503
8504 /* Hook in the DWARF CFI frame unwinder. This unwinder is appended
8505 to the list before the prologue-based unwinders, so that DWARF
8506 CFI info will be used if it is available. */
8507 dwarf2_append_unwinders (gdbarch);
8508
8509 frame_base_set_default (gdbarch, &i386_frame_base);
8510
8511 /* Pseudo registers may be changed by amd64_init_abi. */
8512 set_gdbarch_pseudo_register_read_value (gdbarch,
8513 i386_pseudo_register_read_value);
8514 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
8515 set_gdbarch_ax_pseudo_register_collect (gdbarch,
8516 i386_ax_pseudo_register_collect);
8517
8518 set_tdesc_pseudo_register_type (gdbarch, i386_pseudo_register_type);
8519 set_tdesc_pseudo_register_name (gdbarch, i386_pseudo_register_name);
8520
8521 /* Override the normal target description method to make the AVX
8522 upper halves anonymous. */
8523 set_gdbarch_register_name (gdbarch, i386_register_name);
8524
8525 /* Even though the default ABI only includes general-purpose registers,
8526 floating-point registers and the SSE registers, we have to leave a
8527 gap for the upper AVX, MPX and AVX512 registers. */
8528 set_gdbarch_num_regs (gdbarch, I386_PKEYS_NUM_REGS);
8529
8530 set_gdbarch_gnu_triplet_regexp (gdbarch, i386_gnu_triplet_regexp);
8531
8532 /* Get the x86 target description from INFO. */
8533 tdesc = info.target_desc;
8534 if (! tdesc_has_registers (tdesc))
8535 tdesc = i386_target_description (X86_XSTATE_SSE_MASK);
8536 tdep->tdesc = tdesc;
8537
8538 tdep->num_core_regs = I386_NUM_GREGS + I387_NUM_REGS;
8539 tdep->register_names = i386_register_names;
8540
8541 /* No upper YMM registers. */
8542 tdep->ymmh_register_names = NULL;
8543 tdep->ymm0h_regnum = -1;
8544
8545 /* No upper ZMM registers. */
8546 tdep->zmmh_register_names = NULL;
8547 tdep->zmm0h_regnum = -1;
8548
8549 /* No high XMM registers. */
8550 tdep->xmm_avx512_register_names = NULL;
8551 tdep->xmm16_regnum = -1;
8552
8553 /* No upper YMM16-31 registers. */
8554 tdep->ymm16h_register_names = NULL;
8555 tdep->ymm16h_regnum = -1;
8556
8557 tdep->num_byte_regs = 8;
8558 tdep->num_word_regs = 8;
8559 tdep->num_dword_regs = 0;
8560 tdep->num_mmx_regs = 8;
8561 tdep->num_ymm_regs = 0;
8562
8563 /* No MPX registers. */
8564 tdep->bnd0r_regnum = -1;
8565 tdep->bndcfgu_regnum = -1;
8566
8567 /* No AVX512 registers. */
8568 tdep->k0_regnum = -1;
8569 tdep->num_zmm_regs = 0;
8570 tdep->num_ymm_avx512_regs = 0;
8571 tdep->num_xmm_avx512_regs = 0;
8572
8573 /* No PKEYS registers */
8574 tdep->pkru_regnum = -1;
8575 tdep->num_pkeys_regs = 0;
8576
8577 tdesc_data = tdesc_data_alloc ();
8578
8579 set_gdbarch_relocate_instruction (gdbarch, i386_relocate_instruction);
8580
8581 set_gdbarch_gen_return_address (gdbarch, i386_gen_return_address);
8582
8583 set_gdbarch_insn_is_call (gdbarch, i386_insn_is_call);
8584 set_gdbarch_insn_is_ret (gdbarch, i386_insn_is_ret);
8585 set_gdbarch_insn_is_jump (gdbarch, i386_insn_is_jump);
8586
8587 /* Hook in ABI-specific overrides, if they have been registered.
8588 Note: If INFO specifies a 64 bit arch, this is where we turn
8589 a 32-bit i386 into a 64-bit amd64. */
8590 info.tdesc_data = tdesc_data;
8591 gdbarch_init_osabi (info, gdbarch);
8592
8593 if (!i386_validate_tdesc_p (tdep, tdesc_data))
8594 {
8595 tdesc_data_cleanup (tdesc_data);
8596 xfree (tdep);
8597 gdbarch_free (gdbarch);
8598 return NULL;
8599 }
8600
8601 num_bnd_cooked = (tdep->bnd0r_regnum > 0 ? I387_NUM_BND_REGS : 0);
8602
8603 /* Wire in pseudo registers. Number of pseudo registers may be
8604 changed. */
8605 set_gdbarch_num_pseudo_regs (gdbarch, (tdep->num_byte_regs
8606 + tdep->num_word_regs
8607 + tdep->num_dword_regs
8608 + tdep->num_mmx_regs
8609 + tdep->num_ymm_regs
8610 + num_bnd_cooked
8611 + tdep->num_ymm_avx512_regs
8612 + tdep->num_zmm_regs));
8613
8614 /* Target description may be changed. */
8615 tdesc = tdep->tdesc;
8616
8617 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
8618
8619 /* Override gdbarch_register_reggroup_p set in tdesc_use_registers. */
8620 set_gdbarch_register_reggroup_p (gdbarch, tdep->register_reggroup_p);
8621
8622 /* Make %al the first pseudo-register. */
8623 tdep->al_regnum = gdbarch_num_regs (gdbarch);
8624 tdep->ax_regnum = tdep->al_regnum + tdep->num_byte_regs;
8625
8626 ymm0_regnum = tdep->ax_regnum + tdep->num_word_regs;
8627 if (tdep->num_dword_regs)
8628 {
8629 /* Support dword pseudo-register if it hasn't been disabled. */
8630 tdep->eax_regnum = ymm0_regnum;
8631 ymm0_regnum += tdep->num_dword_regs;
8632 }
8633 else
8634 tdep->eax_regnum = -1;
8635
8636 mm0_regnum = ymm0_regnum;
8637 if (tdep->num_ymm_regs)
8638 {
8639 /* Support YMM pseudo-register if it is available. */
8640 tdep->ymm0_regnum = ymm0_regnum;
8641 mm0_regnum += tdep->num_ymm_regs;
8642 }
8643 else
8644 tdep->ymm0_regnum = -1;
8645
8646 if (tdep->num_ymm_avx512_regs)
8647 {
8648 /* Support YMM16-31 pseudo registers if available. */
8649 tdep->ymm16_regnum = mm0_regnum;
8650 mm0_regnum += tdep->num_ymm_avx512_regs;
8651 }
8652 else
8653 tdep->ymm16_regnum = -1;
8654
8655 if (tdep->num_zmm_regs)
8656 {
8657 /* Support ZMM pseudo-register if it is available. */
8658 tdep->zmm0_regnum = mm0_regnum;
8659 mm0_regnum += tdep->num_zmm_regs;
8660 }
8661 else
8662 tdep->zmm0_regnum = -1;
8663
8664 bnd0_regnum = mm0_regnum;
8665 if (tdep->num_mmx_regs != 0)
8666 {
8667 /* Support MMX pseudo-register if MMX hasn't been disabled. */
8668 tdep->mm0_regnum = mm0_regnum;
8669 bnd0_regnum += tdep->num_mmx_regs;
8670 }
8671 else
8672 tdep->mm0_regnum = -1;
8673
8674 if (tdep->bnd0r_regnum > 0)
8675 tdep->bnd0_regnum = bnd0_regnum;
8676 else
8677 tdep-> bnd0_regnum = -1;
8678
8679 /* Hook in the legacy prologue-based unwinders last (fallback). */
8680 frame_unwind_append_unwinder (gdbarch, &i386_stack_tramp_frame_unwind);
8681 frame_unwind_append_unwinder (gdbarch, &i386_sigtramp_frame_unwind);
8682 frame_unwind_append_unwinder (gdbarch, &i386_frame_unwind);
8683
8684 /* If we have a register mapping, enable the generic core file
8685 support, unless it has already been enabled. */
8686 if (tdep->gregset_reg_offset
8687 && !gdbarch_iterate_over_regset_sections_p (gdbarch))
8688 set_gdbarch_iterate_over_regset_sections
8689 (gdbarch, i386_iterate_over_regset_sections);
8690
8691 set_gdbarch_fast_tracepoint_valid_at (gdbarch,
8692 i386_fast_tracepoint_valid_at);
8693
8694 return gdbarch;
8695 }
8696
8697 \f
8698
8699 /* Return the target description for a specified XSAVE feature mask. */
8700
8701 const struct target_desc *
8702 i386_target_description (uint64_t xcr0)
8703 {
8704 static target_desc *i386_tdescs \
8705 [2/*SSE*/][2/*AVX*/][2/*MPX*/][2/*AVX512*/][2/*PKRU*/] = {};
8706 target_desc **tdesc;
8707
8708 tdesc = &i386_tdescs[(xcr0 & X86_XSTATE_SSE) ? 1 : 0]
8709 [(xcr0 & X86_XSTATE_AVX) ? 1 : 0]
8710 [(xcr0 & X86_XSTATE_MPX) ? 1 : 0]
8711 [(xcr0 & X86_XSTATE_AVX512) ? 1 : 0]
8712 [(xcr0 & X86_XSTATE_PKRU) ? 1 : 0];
8713
8714 if (*tdesc == NULL)
8715 *tdesc = i386_create_target_description (xcr0, false);
8716
8717 return *tdesc;
8718 }
8719
8720 #define MPX_BASE_MASK (~(ULONGEST) 0xfff)
8721
8722 /* Find the bound directory base address. */
8723
8724 static unsigned long
8725 i386_mpx_bd_base (void)
8726 {
8727 struct regcache *rcache;
8728 struct gdbarch_tdep *tdep;
8729 ULONGEST ret;
8730 enum register_status regstatus;
8731
8732 rcache = get_current_regcache ();
8733 tdep = gdbarch_tdep (rcache->arch ());
8734
8735 regstatus = regcache_raw_read_unsigned (rcache, tdep->bndcfgu_regnum, &ret);
8736
8737 if (regstatus != REG_VALID)
8738 error (_("BNDCFGU register invalid, read status %d."), regstatus);
8739
8740 return ret & MPX_BASE_MASK;
8741 }
8742
8743 int
8744 i386_mpx_enabled (void)
8745 {
8746 const struct gdbarch_tdep *tdep = gdbarch_tdep (get_current_arch ());
8747 const struct target_desc *tdesc = tdep->tdesc;
8748
8749 return (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx") != NULL);
8750 }
8751
8752 #define MPX_BD_MASK 0xfffffff00000ULL /* select bits [47:20] */
8753 #define MPX_BT_MASK 0x0000000ffff8 /* select bits [19:3] */
8754 #define MPX_BD_MASK_32 0xfffff000 /* select bits [31:12] */
8755 #define MPX_BT_MASK_32 0x00000ffc /* select bits [11:2] */
8756
8757 /* Find the bound table entry given the pointer location and the base
8758 address of the table. */
8759
8760 static CORE_ADDR
8761 i386_mpx_get_bt_entry (CORE_ADDR ptr, CORE_ADDR bd_base)
8762 {
8763 CORE_ADDR offset1;
8764 CORE_ADDR offset2;
8765 CORE_ADDR mpx_bd_mask, bd_ptr_r_shift, bd_ptr_l_shift;
8766 CORE_ADDR bt_mask, bt_select_r_shift, bt_select_l_shift;
8767 CORE_ADDR bd_entry_addr;
8768 CORE_ADDR bt_addr;
8769 CORE_ADDR bd_entry;
8770 struct gdbarch *gdbarch = get_current_arch ();
8771 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8772
8773
8774 if (gdbarch_ptr_bit (gdbarch) == 64)
8775 {
8776 mpx_bd_mask = (CORE_ADDR) MPX_BD_MASK;
8777 bd_ptr_r_shift = 20;
8778 bd_ptr_l_shift = 3;
8779 bt_select_r_shift = 3;
8780 bt_select_l_shift = 5;
8781 bt_mask = (CORE_ADDR) MPX_BT_MASK;
8782
8783 if ( sizeof (CORE_ADDR) == 4)
8784 error (_("bound table examination not supported\
8785 for 64-bit process with 32-bit GDB"));
8786 }
8787 else
8788 {
8789 mpx_bd_mask = MPX_BD_MASK_32;
8790 bd_ptr_r_shift = 12;
8791 bd_ptr_l_shift = 2;
8792 bt_select_r_shift = 2;
8793 bt_select_l_shift = 4;
8794 bt_mask = MPX_BT_MASK_32;
8795 }
8796
8797 offset1 = ((ptr & mpx_bd_mask) >> bd_ptr_r_shift) << bd_ptr_l_shift;
8798 bd_entry_addr = bd_base + offset1;
8799 bd_entry = read_memory_typed_address (bd_entry_addr, data_ptr_type);
8800
8801 if ((bd_entry & 0x1) == 0)
8802 error (_("Invalid bounds directory entry at %s."),
8803 paddress (get_current_arch (), bd_entry_addr));
8804
8805 /* Clearing status bit. */
8806 bd_entry--;
8807 bt_addr = bd_entry & ~bt_select_r_shift;
8808 offset2 = ((ptr & bt_mask) >> bt_select_r_shift) << bt_select_l_shift;
8809
8810 return bt_addr + offset2;
8811 }
8812
8813 /* Print routine for the mpx bounds. */
8814
8815 static void
8816 i386_mpx_print_bounds (const CORE_ADDR bt_entry[4])
8817 {
8818 struct ui_out *uiout = current_uiout;
8819 LONGEST size;
8820 struct gdbarch *gdbarch = get_current_arch ();
8821 CORE_ADDR onecompl = ~((CORE_ADDR) 0);
8822 int bounds_in_map = ((~bt_entry[1] == 0 && bt_entry[0] == onecompl) ? 1 : 0);
8823
8824 if (bounds_in_map == 1)
8825 {
8826 uiout->text ("Null bounds on map:");
8827 uiout->text (" pointer value = ");
8828 uiout->field_core_addr ("pointer-value", gdbarch, bt_entry[2]);
8829 uiout->text (".");
8830 uiout->text ("\n");
8831 }
8832 else
8833 {
8834 uiout->text ("{lbound = ");
8835 uiout->field_core_addr ("lower-bound", gdbarch, bt_entry[0]);
8836 uiout->text (", ubound = ");
8837
8838 /* The upper bound is stored in 1's complement. */
8839 uiout->field_core_addr ("upper-bound", gdbarch, ~bt_entry[1]);
8840 uiout->text ("}: pointer value = ");
8841 uiout->field_core_addr ("pointer-value", gdbarch, bt_entry[2]);
8842
8843 if (gdbarch_ptr_bit (gdbarch) == 64)
8844 size = ( (~(int64_t) bt_entry[1]) - (int64_t) bt_entry[0]);
8845 else
8846 size = ( ~((int32_t) bt_entry[1]) - (int32_t) bt_entry[0]);
8847
8848 /* In case the bounds are 0x0 and 0xffff... the difference will be -1.
8849 -1 represents in this sense full memory access, and there is no need
8850 one to the size. */
8851
8852 size = (size > -1 ? size + 1 : size);
8853 uiout->text (", size = ");
8854 uiout->field_fmt ("size", "%s", plongest (size));
8855
8856 uiout->text (", metadata = ");
8857 uiout->field_core_addr ("metadata", gdbarch, bt_entry[3]);
8858 uiout->text ("\n");
8859 }
8860 }
8861
8862 /* Implement the command "show mpx bound". */
8863
8864 static void
8865 i386_mpx_info_bounds (const char *args, int from_tty)
8866 {
8867 CORE_ADDR bd_base = 0;
8868 CORE_ADDR addr;
8869 CORE_ADDR bt_entry_addr = 0;
8870 CORE_ADDR bt_entry[4];
8871 int i;
8872 struct gdbarch *gdbarch = get_current_arch ();
8873 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8874
8875 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_i386
8876 || !i386_mpx_enabled ())
8877 {
8878 printf_unfiltered (_("Intel Memory Protection Extensions not "
8879 "supported on this target.\n"));
8880 return;
8881 }
8882
8883 if (args == NULL)
8884 {
8885 printf_unfiltered (_("Address of pointer variable expected.\n"));
8886 return;
8887 }
8888
8889 addr = parse_and_eval_address (args);
8890
8891 bd_base = i386_mpx_bd_base ();
8892 bt_entry_addr = i386_mpx_get_bt_entry (addr, bd_base);
8893
8894 memset (bt_entry, 0, sizeof (bt_entry));
8895
8896 for (i = 0; i < 4; i++)
8897 bt_entry[i] = read_memory_typed_address (bt_entry_addr
8898 + i * TYPE_LENGTH (data_ptr_type),
8899 data_ptr_type);
8900
8901 i386_mpx_print_bounds (bt_entry);
8902 }
8903
8904 /* Implement the command "set mpx bound". */
8905
8906 static void
8907 i386_mpx_set_bounds (const char *args, int from_tty)
8908 {
8909 CORE_ADDR bd_base = 0;
8910 CORE_ADDR addr, lower, upper;
8911 CORE_ADDR bt_entry_addr = 0;
8912 CORE_ADDR bt_entry[2];
8913 const char *input = args;
8914 int i;
8915 struct gdbarch *gdbarch = get_current_arch ();
8916 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
8917 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8918
8919 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_i386
8920 || !i386_mpx_enabled ())
8921 error (_("Intel Memory Protection Extensions not supported\
8922 on this target."));
8923
8924 if (args == NULL)
8925 error (_("Pointer value expected."));
8926
8927 addr = value_as_address (parse_to_comma_and_eval (&input));
8928
8929 if (input[0] == ',')
8930 ++input;
8931 if (input[0] == '\0')
8932 error (_("wrong number of arguments: missing lower and upper bound."));
8933 lower = value_as_address (parse_to_comma_and_eval (&input));
8934
8935 if (input[0] == ',')
8936 ++input;
8937 if (input[0] == '\0')
8938 error (_("Wrong number of arguments; Missing upper bound."));
8939 upper = value_as_address (parse_to_comma_and_eval (&input));
8940
8941 bd_base = i386_mpx_bd_base ();
8942 bt_entry_addr = i386_mpx_get_bt_entry (addr, bd_base);
8943 for (i = 0; i < 2; i++)
8944 bt_entry[i] = read_memory_typed_address (bt_entry_addr
8945 + i * TYPE_LENGTH (data_ptr_type),
8946 data_ptr_type);
8947 bt_entry[0] = (uint64_t) lower;
8948 bt_entry[1] = ~(uint64_t) upper;
8949
8950 for (i = 0; i < 2; i++)
8951 write_memory_unsigned_integer (bt_entry_addr
8952 + i * TYPE_LENGTH (data_ptr_type),
8953 TYPE_LENGTH (data_ptr_type), byte_order,
8954 bt_entry[i]);
8955 }
8956
8957 static struct cmd_list_element *mpx_set_cmdlist, *mpx_show_cmdlist;
8958
8959 /* Helper function for the CLI commands. */
8960
8961 static void
8962 set_mpx_cmd (const char *args, int from_tty)
8963 {
8964 help_list (mpx_set_cmdlist, "set mpx ", all_commands, gdb_stdout);
8965 }
8966
8967 /* Helper function for the CLI commands. */
8968
8969 static void
8970 show_mpx_cmd (const char *args, int from_tty)
8971 {
8972 cmd_show_list (mpx_show_cmdlist, from_tty, "");
8973 }
8974
8975 void
8976 _initialize_i386_tdep (void)
8977 {
8978 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
8979
8980 /* Add the variable that controls the disassembly flavor. */
8981 add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
8982 &disassembly_flavor, _("\
8983 Set the disassembly flavor."), _("\
8984 Show the disassembly flavor."), _("\
8985 The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
8986 NULL,
8987 NULL, /* FIXME: i18n: */
8988 &setlist, &showlist);
8989
8990 /* Add the variable that controls the convention for returning
8991 structs. */
8992 add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
8993 &struct_convention, _("\
8994 Set the convention for returning small structs."), _("\
8995 Show the convention for returning small structs."), _("\
8996 Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
8997 is \"default\"."),
8998 NULL,
8999 NULL, /* FIXME: i18n: */
9000 &setlist, &showlist);
9001
9002 /* Add "mpx" prefix for the set commands. */
9003
9004 add_prefix_cmd ("mpx", class_support, set_mpx_cmd, _("\
9005 Set Intel Memory Protection Extensions specific variables."),
9006 &mpx_set_cmdlist, "set mpx ",
9007 0 /* allow-unknown */, &setlist);
9008
9009 /* Add "mpx" prefix for the show commands. */
9010
9011 add_prefix_cmd ("mpx", class_support, show_mpx_cmd, _("\
9012 Show Intel Memory Protection Extensions specific variables."),
9013 &mpx_show_cmdlist, "show mpx ",
9014 0 /* allow-unknown */, &showlist);
9015
9016 /* Add "bound" command for the show mpx commands list. */
9017
9018 add_cmd ("bound", no_class, i386_mpx_info_bounds,
9019 "Show the memory bounds for a given array/pointer storage\
9020 in the bound table.",
9021 &mpx_show_cmdlist);
9022
9023 /* Add "bound" command for the set mpx commands list. */
9024
9025 add_cmd ("bound", no_class, i386_mpx_set_bounds,
9026 "Set the memory bounds for a given array/pointer storage\
9027 in the bound table.",
9028 &mpx_set_cmdlist);
9029
9030 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
9031 i386_svr4_init_abi);
9032
9033 /* Initialize the i386-specific register groups. */
9034 i386_init_reggroups ();
9035
9036 /* Tell remote stub that we support XML target description. */
9037 register_remote_support_xml ("i386");
9038
9039 #if GDB_SELF_TEST
9040 struct
9041 {
9042 const char *xml;
9043 uint64_t mask;
9044 } xml_masks[] = {
9045 { "i386/i386.xml", X86_XSTATE_SSE_MASK },
9046 { "i386/i386-mmx.xml", X86_XSTATE_X87_MASK },
9047 { "i386/i386-avx.xml", X86_XSTATE_AVX_MASK },
9048 { "i386/i386-mpx.xml", X86_XSTATE_MPX_MASK },
9049 { "i386/i386-avx-mpx.xml", X86_XSTATE_AVX_MPX_MASK },
9050 { "i386/i386-avx-avx512.xml", X86_XSTATE_AVX_AVX512_MASK },
9051 { "i386/i386-avx-mpx-avx512-pku.xml",
9052 X86_XSTATE_AVX_MPX_AVX512_PKU_MASK },
9053 };
9054
9055 for (auto &a : xml_masks)
9056 {
9057 auto tdesc = i386_target_description (a.mask);
9058
9059 selftests::record_xml_tdesc (a.xml, tdesc);
9060 }
9061 #endif /* GDB_SELF_TEST */
9062 }
This page took 0.215924 seconds and 4 git commands to generate.