gdb/
[deliverable/binutils-gdb.git] / gdb / i386-tdep.c
1 /* Intel 386 target-dependent stuff.
2
3 Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
5 2010, 2011 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "opcode/i386.h"
24 #include "arch-utils.h"
25 #include "command.h"
26 #include "dummy-frame.h"
27 #include "dwarf2-frame.h"
28 #include "doublest.h"
29 #include "frame.h"
30 #include "frame-base.h"
31 #include "frame-unwind.h"
32 #include "inferior.h"
33 #include "gdbcmd.h"
34 #include "gdbcore.h"
35 #include "gdbtypes.h"
36 #include "objfiles.h"
37 #include "osabi.h"
38 #include "regcache.h"
39 #include "reggroups.h"
40 #include "regset.h"
41 #include "symfile.h"
42 #include "symtab.h"
43 #include "target.h"
44 #include "value.h"
45 #include "dis-asm.h"
46 #include "disasm.h"
47 #include "remote.h"
48
49 #include "gdb_assert.h"
50 #include "gdb_string.h"
51
52 #include "i386-tdep.h"
53 #include "i387-tdep.h"
54 #include "i386-xstate.h"
55
56 #include "record.h"
57 #include <stdint.h>
58
59 #include "features/i386/i386.c"
60 #include "features/i386/i386-avx.c"
61 #include "features/i386/i386-mmx.c"
62
63 /* Register names. */
64
65 static const char *i386_register_names[] =
66 {
67 "eax", "ecx", "edx", "ebx",
68 "esp", "ebp", "esi", "edi",
69 "eip", "eflags", "cs", "ss",
70 "ds", "es", "fs", "gs",
71 "st0", "st1", "st2", "st3",
72 "st4", "st5", "st6", "st7",
73 "fctrl", "fstat", "ftag", "fiseg",
74 "fioff", "foseg", "fooff", "fop",
75 "xmm0", "xmm1", "xmm2", "xmm3",
76 "xmm4", "xmm5", "xmm6", "xmm7",
77 "mxcsr"
78 };
79
80 static const char *i386_ymm_names[] =
81 {
82 "ymm0", "ymm1", "ymm2", "ymm3",
83 "ymm4", "ymm5", "ymm6", "ymm7",
84 };
85
86 static const char *i386_ymmh_names[] =
87 {
88 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
89 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
90 };
91
92 /* Register names for MMX pseudo-registers. */
93
94 static const char *i386_mmx_names[] =
95 {
96 "mm0", "mm1", "mm2", "mm3",
97 "mm4", "mm5", "mm6", "mm7"
98 };
99
100 /* Register names for byte pseudo-registers. */
101
102 static const char *i386_byte_names[] =
103 {
104 "al", "cl", "dl", "bl",
105 "ah", "ch", "dh", "bh"
106 };
107
108 /* Register names for word pseudo-registers. */
109
110 static const char *i386_word_names[] =
111 {
112 "ax", "cx", "dx", "bx",
113 "", "bp", "si", "di"
114 };
115
116 /* MMX register? */
117
118 static int
119 i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
120 {
121 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
122 int mm0_regnum = tdep->mm0_regnum;
123
124 if (mm0_regnum < 0)
125 return 0;
126
127 regnum -= mm0_regnum;
128 return regnum >= 0 && regnum < tdep->num_mmx_regs;
129 }
130
131 /* Byte register? */
132
133 int
134 i386_byte_regnum_p (struct gdbarch *gdbarch, int regnum)
135 {
136 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
137
138 regnum -= tdep->al_regnum;
139 return regnum >= 0 && regnum < tdep->num_byte_regs;
140 }
141
142 /* Word register? */
143
144 int
145 i386_word_regnum_p (struct gdbarch *gdbarch, int regnum)
146 {
147 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
148
149 regnum -= tdep->ax_regnum;
150 return regnum >= 0 && regnum < tdep->num_word_regs;
151 }
152
153 /* Dword register? */
154
155 int
156 i386_dword_regnum_p (struct gdbarch *gdbarch, int regnum)
157 {
158 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
159 int eax_regnum = tdep->eax_regnum;
160
161 if (eax_regnum < 0)
162 return 0;
163
164 regnum -= eax_regnum;
165 return regnum >= 0 && regnum < tdep->num_dword_regs;
166 }
167
168 static int
169 i386_ymmh_regnum_p (struct gdbarch *gdbarch, int regnum)
170 {
171 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
172 int ymm0h_regnum = tdep->ymm0h_regnum;
173
174 if (ymm0h_regnum < 0)
175 return 0;
176
177 regnum -= ymm0h_regnum;
178 return regnum >= 0 && regnum < tdep->num_ymm_regs;
179 }
180
181 /* AVX register? */
182
183 int
184 i386_ymm_regnum_p (struct gdbarch *gdbarch, int regnum)
185 {
186 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
187 int ymm0_regnum = tdep->ymm0_regnum;
188
189 if (ymm0_regnum < 0)
190 return 0;
191
192 regnum -= ymm0_regnum;
193 return regnum >= 0 && regnum < tdep->num_ymm_regs;
194 }
195
196 /* SSE register? */
197
198 int
199 i386_xmm_regnum_p (struct gdbarch *gdbarch, int regnum)
200 {
201 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
202 int num_xmm_regs = I387_NUM_XMM_REGS (tdep);
203
204 if (num_xmm_regs == 0)
205 return 0;
206
207 regnum -= I387_XMM0_REGNUM (tdep);
208 return regnum >= 0 && regnum < num_xmm_regs;
209 }
210
211 static int
212 i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
213 {
214 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
215
216 if (I387_NUM_XMM_REGS (tdep) == 0)
217 return 0;
218
219 return (regnum == I387_MXCSR_REGNUM (tdep));
220 }
221
222 /* FP register? */
223
224 int
225 i386_fp_regnum_p (struct gdbarch *gdbarch, int regnum)
226 {
227 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
228
229 if (I387_ST0_REGNUM (tdep) < 0)
230 return 0;
231
232 return (I387_ST0_REGNUM (tdep) <= regnum
233 && regnum < I387_FCTRL_REGNUM (tdep));
234 }
235
236 int
237 i386_fpc_regnum_p (struct gdbarch *gdbarch, int regnum)
238 {
239 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
240
241 if (I387_ST0_REGNUM (tdep) < 0)
242 return 0;
243
244 return (I387_FCTRL_REGNUM (tdep) <= regnum
245 && regnum < I387_XMM0_REGNUM (tdep));
246 }
247
248 /* Return the name of register REGNUM, or the empty string if it is
249 an anonymous register. */
250
251 static const char *
252 i386_register_name (struct gdbarch *gdbarch, int regnum)
253 {
254 /* Hide the upper YMM registers. */
255 if (i386_ymmh_regnum_p (gdbarch, regnum))
256 return "";
257
258 return tdesc_register_name (gdbarch, regnum);
259 }
260
261 /* Return the name of register REGNUM. */
262
263 const char *
264 i386_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
265 {
266 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
267 if (i386_mmx_regnum_p (gdbarch, regnum))
268 return i386_mmx_names[regnum - I387_MM0_REGNUM (tdep)];
269 else if (i386_ymm_regnum_p (gdbarch, regnum))
270 return i386_ymm_names[regnum - tdep->ymm0_regnum];
271 else if (i386_byte_regnum_p (gdbarch, regnum))
272 return i386_byte_names[regnum - tdep->al_regnum];
273 else if (i386_word_regnum_p (gdbarch, regnum))
274 return i386_word_names[regnum - tdep->ax_regnum];
275
276 internal_error (__FILE__, __LINE__, _("invalid regnum"));
277 }
278
279 /* Convert a dbx register number REG to the appropriate register
280 number used by GDB. */
281
282 static int
283 i386_dbx_reg_to_regnum (struct gdbarch *gdbarch, int reg)
284 {
285 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
286
287 /* This implements what GCC calls the "default" register map
288 (dbx_register_map[]). */
289
290 if (reg >= 0 && reg <= 7)
291 {
292 /* General-purpose registers. The debug info calls %ebp
293 register 4, and %esp register 5. */
294 if (reg == 4)
295 return 5;
296 else if (reg == 5)
297 return 4;
298 else return reg;
299 }
300 else if (reg >= 12 && reg <= 19)
301 {
302 /* Floating-point registers. */
303 return reg - 12 + I387_ST0_REGNUM (tdep);
304 }
305 else if (reg >= 21 && reg <= 28)
306 {
307 /* SSE registers. */
308 int ymm0_regnum = tdep->ymm0_regnum;
309
310 if (ymm0_regnum >= 0
311 && i386_xmm_regnum_p (gdbarch, reg))
312 return reg - 21 + ymm0_regnum;
313 else
314 return reg - 21 + I387_XMM0_REGNUM (tdep);
315 }
316 else if (reg >= 29 && reg <= 36)
317 {
318 /* MMX registers. */
319 return reg - 29 + I387_MM0_REGNUM (tdep);
320 }
321
322 /* This will hopefully provoke a warning. */
323 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
324 }
325
326 /* Convert SVR4 register number REG to the appropriate register number
327 used by GDB. */
328
329 static int
330 i386_svr4_reg_to_regnum (struct gdbarch *gdbarch, int reg)
331 {
332 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
333
334 /* This implements the GCC register map that tries to be compatible
335 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
336
337 /* The SVR4 register numbering includes %eip and %eflags, and
338 numbers the floating point registers differently. */
339 if (reg >= 0 && reg <= 9)
340 {
341 /* General-purpose registers. */
342 return reg;
343 }
344 else if (reg >= 11 && reg <= 18)
345 {
346 /* Floating-point registers. */
347 return reg - 11 + I387_ST0_REGNUM (tdep);
348 }
349 else if (reg >= 21 && reg <= 36)
350 {
351 /* The SSE and MMX registers have the same numbers as with dbx. */
352 return i386_dbx_reg_to_regnum (gdbarch, reg);
353 }
354
355 switch (reg)
356 {
357 case 37: return I387_FCTRL_REGNUM (tdep);
358 case 38: return I387_FSTAT_REGNUM (tdep);
359 case 39: return I387_MXCSR_REGNUM (tdep);
360 case 40: return I386_ES_REGNUM;
361 case 41: return I386_CS_REGNUM;
362 case 42: return I386_SS_REGNUM;
363 case 43: return I386_DS_REGNUM;
364 case 44: return I386_FS_REGNUM;
365 case 45: return I386_GS_REGNUM;
366 }
367
368 /* This will hopefully provoke a warning. */
369 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
370 }
371
372 \f
373
374 /* This is the variable that is set with "set disassembly-flavor", and
375 its legitimate values. */
376 static const char att_flavor[] = "att";
377 static const char intel_flavor[] = "intel";
378 static const char *valid_flavors[] =
379 {
380 att_flavor,
381 intel_flavor,
382 NULL
383 };
384 static const char *disassembly_flavor = att_flavor;
385 \f
386
387 /* Use the program counter to determine the contents and size of a
388 breakpoint instruction. Return a pointer to a string of bytes that
389 encode a breakpoint instruction, store the length of the string in
390 *LEN and optionally adjust *PC to point to the correct memory
391 location for inserting the breakpoint.
392
393 On the i386 we have a single breakpoint that fits in a single byte
394 and can be inserted anywhere.
395
396 This function is 64-bit safe. */
397
398 static const gdb_byte *
399 i386_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
400 {
401 static gdb_byte break_insn[] = { 0xcc }; /* int 3 */
402
403 *len = sizeof (break_insn);
404 return break_insn;
405 }
406 \f
407 /* Displaced instruction handling. */
408
409 /* Skip the legacy instruction prefixes in INSN.
410 Not all prefixes are valid for any particular insn
411 but we needn't care, the insn will fault if it's invalid.
412 The result is a pointer to the first opcode byte,
413 or NULL if we run off the end of the buffer. */
414
415 static gdb_byte *
416 i386_skip_prefixes (gdb_byte *insn, size_t max_len)
417 {
418 gdb_byte *end = insn + max_len;
419
420 while (insn < end)
421 {
422 switch (*insn)
423 {
424 case DATA_PREFIX_OPCODE:
425 case ADDR_PREFIX_OPCODE:
426 case CS_PREFIX_OPCODE:
427 case DS_PREFIX_OPCODE:
428 case ES_PREFIX_OPCODE:
429 case FS_PREFIX_OPCODE:
430 case GS_PREFIX_OPCODE:
431 case SS_PREFIX_OPCODE:
432 case LOCK_PREFIX_OPCODE:
433 case REPE_PREFIX_OPCODE:
434 case REPNE_PREFIX_OPCODE:
435 ++insn;
436 continue;
437 default:
438 return insn;
439 }
440 }
441
442 return NULL;
443 }
444
445 static int
446 i386_absolute_jmp_p (const gdb_byte *insn)
447 {
448 /* jmp far (absolute address in operand). */
449 if (insn[0] == 0xea)
450 return 1;
451
452 if (insn[0] == 0xff)
453 {
454 /* jump near, absolute indirect (/4). */
455 if ((insn[1] & 0x38) == 0x20)
456 return 1;
457
458 /* jump far, absolute indirect (/5). */
459 if ((insn[1] & 0x38) == 0x28)
460 return 1;
461 }
462
463 return 0;
464 }
465
466 static int
467 i386_absolute_call_p (const gdb_byte *insn)
468 {
469 /* call far, absolute. */
470 if (insn[0] == 0x9a)
471 return 1;
472
473 if (insn[0] == 0xff)
474 {
475 /* Call near, absolute indirect (/2). */
476 if ((insn[1] & 0x38) == 0x10)
477 return 1;
478
479 /* Call far, absolute indirect (/3). */
480 if ((insn[1] & 0x38) == 0x18)
481 return 1;
482 }
483
484 return 0;
485 }
486
487 static int
488 i386_ret_p (const gdb_byte *insn)
489 {
490 switch (insn[0])
491 {
492 case 0xc2: /* ret near, pop N bytes. */
493 case 0xc3: /* ret near */
494 case 0xca: /* ret far, pop N bytes. */
495 case 0xcb: /* ret far */
496 case 0xcf: /* iret */
497 return 1;
498
499 default:
500 return 0;
501 }
502 }
503
504 static int
505 i386_call_p (const gdb_byte *insn)
506 {
507 if (i386_absolute_call_p (insn))
508 return 1;
509
510 /* call near, relative. */
511 if (insn[0] == 0xe8)
512 return 1;
513
514 return 0;
515 }
516
517 /* Return non-zero if INSN is a system call, and set *LENGTHP to its
518 length in bytes. Otherwise, return zero. */
519
520 static int
521 i386_syscall_p (const gdb_byte *insn, int *lengthp)
522 {
523 if (insn[0] == 0xcd)
524 {
525 *lengthp = 2;
526 return 1;
527 }
528
529 return 0;
530 }
531
532 /* Some kernels may run one past a syscall insn, so we have to cope.
533 Otherwise this is just simple_displaced_step_copy_insn. */
534
535 struct displaced_step_closure *
536 i386_displaced_step_copy_insn (struct gdbarch *gdbarch,
537 CORE_ADDR from, CORE_ADDR to,
538 struct regcache *regs)
539 {
540 size_t len = gdbarch_max_insn_length (gdbarch);
541 gdb_byte *buf = xmalloc (len);
542
543 read_memory (from, buf, len);
544
545 /* GDB may get control back after the insn after the syscall.
546 Presumably this is a kernel bug.
547 If this is a syscall, make sure there's a nop afterwards. */
548 {
549 int syscall_length;
550 gdb_byte *insn;
551
552 insn = i386_skip_prefixes (buf, len);
553 if (insn != NULL && i386_syscall_p (insn, &syscall_length))
554 insn[syscall_length] = NOP_OPCODE;
555 }
556
557 write_memory (to, buf, len);
558
559 if (debug_displaced)
560 {
561 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
562 paddress (gdbarch, from), paddress (gdbarch, to));
563 displaced_step_dump_bytes (gdb_stdlog, buf, len);
564 }
565
566 return (struct displaced_step_closure *) buf;
567 }
568
569 /* Fix up the state of registers and memory after having single-stepped
570 a displaced instruction. */
571
572 void
573 i386_displaced_step_fixup (struct gdbarch *gdbarch,
574 struct displaced_step_closure *closure,
575 CORE_ADDR from, CORE_ADDR to,
576 struct regcache *regs)
577 {
578 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
579
580 /* The offset we applied to the instruction's address.
581 This could well be negative (when viewed as a signed 32-bit
582 value), but ULONGEST won't reflect that, so take care when
583 applying it. */
584 ULONGEST insn_offset = to - from;
585
586 /* Since we use simple_displaced_step_copy_insn, our closure is a
587 copy of the instruction. */
588 gdb_byte *insn = (gdb_byte *) closure;
589 /* The start of the insn, needed in case we see some prefixes. */
590 gdb_byte *insn_start = insn;
591
592 if (debug_displaced)
593 fprintf_unfiltered (gdb_stdlog,
594 "displaced: fixup (%s, %s), "
595 "insn = 0x%02x 0x%02x ...\n",
596 paddress (gdbarch, from), paddress (gdbarch, to),
597 insn[0], insn[1]);
598
599 /* The list of issues to contend with here is taken from
600 resume_execution in arch/i386/kernel/kprobes.c, Linux 2.6.20.
601 Yay for Free Software! */
602
603 /* Relocate the %eip, if necessary. */
604
605 /* The instruction recognizers we use assume any leading prefixes
606 have been skipped. */
607 {
608 /* This is the size of the buffer in closure. */
609 size_t max_insn_len = gdbarch_max_insn_length (gdbarch);
610 gdb_byte *opcode = i386_skip_prefixes (insn, max_insn_len);
611 /* If there are too many prefixes, just ignore the insn.
612 It will fault when run. */
613 if (opcode != NULL)
614 insn = opcode;
615 }
616
617 /* Except in the case of absolute or indirect jump or call
618 instructions, or a return instruction, the new eip is relative to
619 the displaced instruction; make it relative. Well, signal
620 handler returns don't need relocation either, but we use the
621 value of %eip to recognize those; see below. */
622 if (! i386_absolute_jmp_p (insn)
623 && ! i386_absolute_call_p (insn)
624 && ! i386_ret_p (insn))
625 {
626 ULONGEST orig_eip;
627 int insn_len;
628
629 regcache_cooked_read_unsigned (regs, I386_EIP_REGNUM, &orig_eip);
630
631 /* A signal trampoline system call changes the %eip, resuming
632 execution of the main program after the signal handler has
633 returned. That makes them like 'return' instructions; we
634 shouldn't relocate %eip.
635
636 But most system calls don't, and we do need to relocate %eip.
637
638 Our heuristic for distinguishing these cases: if stepping
639 over the system call instruction left control directly after
640 the instruction, the we relocate --- control almost certainly
641 doesn't belong in the displaced copy. Otherwise, we assume
642 the instruction has put control where it belongs, and leave
643 it unrelocated. Goodness help us if there are PC-relative
644 system calls. */
645 if (i386_syscall_p (insn, &insn_len)
646 && orig_eip != to + (insn - insn_start) + insn_len
647 /* GDB can get control back after the insn after the syscall.
648 Presumably this is a kernel bug.
649 i386_displaced_step_copy_insn ensures its a nop,
650 we add one to the length for it. */
651 && orig_eip != to + (insn - insn_start) + insn_len + 1)
652 {
653 if (debug_displaced)
654 fprintf_unfiltered (gdb_stdlog,
655 "displaced: syscall changed %%eip; "
656 "not relocating\n");
657 }
658 else
659 {
660 ULONGEST eip = (orig_eip - insn_offset) & 0xffffffffUL;
661
662 /* If we just stepped over a breakpoint insn, we don't backup
663 the pc on purpose; this is to match behaviour without
664 stepping. */
665
666 regcache_cooked_write_unsigned (regs, I386_EIP_REGNUM, eip);
667
668 if (debug_displaced)
669 fprintf_unfiltered (gdb_stdlog,
670 "displaced: "
671 "relocated %%eip from %s to %s\n",
672 paddress (gdbarch, orig_eip),
673 paddress (gdbarch, eip));
674 }
675 }
676
677 /* If the instruction was PUSHFL, then the TF bit will be set in the
678 pushed value, and should be cleared. We'll leave this for later,
679 since GDB already messes up the TF flag when stepping over a
680 pushfl. */
681
682 /* If the instruction was a call, the return address now atop the
683 stack is the address following the copied instruction. We need
684 to make it the address following the original instruction. */
685 if (i386_call_p (insn))
686 {
687 ULONGEST esp;
688 ULONGEST retaddr;
689 const ULONGEST retaddr_len = 4;
690
691 regcache_cooked_read_unsigned (regs, I386_ESP_REGNUM, &esp);
692 retaddr = read_memory_unsigned_integer (esp, retaddr_len, byte_order);
693 retaddr = (retaddr - insn_offset) & 0xffffffffUL;
694 write_memory_unsigned_integer (esp, retaddr_len, byte_order, retaddr);
695
696 if (debug_displaced)
697 fprintf_unfiltered (gdb_stdlog,
698 "displaced: relocated return addr at %s to %s\n",
699 paddress (gdbarch, esp),
700 paddress (gdbarch, retaddr));
701 }
702 }
703
704 static void
705 append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
706 {
707 target_write_memory (*to, buf, len);
708 *to += len;
709 }
710
711 static void
712 i386_relocate_instruction (struct gdbarch *gdbarch,
713 CORE_ADDR *to, CORE_ADDR oldloc)
714 {
715 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
716 gdb_byte buf[I386_MAX_INSN_LEN];
717 int offset = 0, rel32, newrel;
718 int insn_length;
719 gdb_byte *insn = buf;
720
721 read_memory (oldloc, buf, I386_MAX_INSN_LEN);
722
723 insn_length = gdb_buffered_insn_length (gdbarch, insn,
724 I386_MAX_INSN_LEN, oldloc);
725
726 /* Get past the prefixes. */
727 insn = i386_skip_prefixes (insn, I386_MAX_INSN_LEN);
728
729 /* Adjust calls with 32-bit relative addresses as push/jump, with
730 the address pushed being the location where the original call in
731 the user program would return to. */
732 if (insn[0] == 0xe8)
733 {
734 gdb_byte push_buf[16];
735 unsigned int ret_addr;
736
737 /* Where "ret" in the original code will return to. */
738 ret_addr = oldloc + insn_length;
739 push_buf[0] = 0x68; /* pushq $... */
740 memcpy (&push_buf[1], &ret_addr, 4);
741 /* Push the push. */
742 append_insns (to, 5, push_buf);
743
744 /* Convert the relative call to a relative jump. */
745 insn[0] = 0xe9;
746
747 /* Adjust the destination offset. */
748 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
749 newrel = (oldloc - *to) + rel32;
750 store_signed_integer (insn + 1, 4, byte_order, newrel);
751
752 if (debug_displaced)
753 fprintf_unfiltered (gdb_stdlog,
754 "Adjusted insn rel32=%s at %s to"
755 " rel32=%s at %s\n",
756 hex_string (rel32), paddress (gdbarch, oldloc),
757 hex_string (newrel), paddress (gdbarch, *to));
758
759 /* Write the adjusted jump into its displaced location. */
760 append_insns (to, 5, insn);
761 return;
762 }
763
764 /* Adjust jumps with 32-bit relative addresses. Calls are already
765 handled above. */
766 if (insn[0] == 0xe9)
767 offset = 1;
768 /* Adjust conditional jumps. */
769 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
770 offset = 2;
771
772 if (offset)
773 {
774 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
775 newrel = (oldloc - *to) + rel32;
776 store_signed_integer (insn + offset, 4, byte_order, newrel);
777 if (debug_displaced)
778 fprintf_unfiltered (gdb_stdlog,
779 "Adjusted insn rel32=%s at %s to"
780 " rel32=%s at %s\n",
781 hex_string (rel32), paddress (gdbarch, oldloc),
782 hex_string (newrel), paddress (gdbarch, *to));
783 }
784
785 /* Write the adjusted instructions into their displaced
786 location. */
787 append_insns (to, insn_length, buf);
788 }
789
790 \f
791 #ifdef I386_REGNO_TO_SYMMETRY
792 #error "The Sequent Symmetry is no longer supported."
793 #endif
794
795 /* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
796 and %esp "belong" to the calling function. Therefore these
797 registers should be saved if they're going to be modified. */
798
799 /* The maximum number of saved registers. This should include all
800 registers mentioned above, and %eip. */
801 #define I386_NUM_SAVED_REGS I386_NUM_GREGS
802
803 struct i386_frame_cache
804 {
805 /* Base address. */
806 CORE_ADDR base;
807 LONGEST sp_offset;
808 CORE_ADDR pc;
809
810 /* Saved registers. */
811 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
812 CORE_ADDR saved_sp;
813 int saved_sp_reg;
814 int pc_in_eax;
815
816 /* Stack space reserved for local variables. */
817 long locals;
818 };
819
820 /* Allocate and initialize a frame cache. */
821
822 static struct i386_frame_cache *
823 i386_alloc_frame_cache (void)
824 {
825 struct i386_frame_cache *cache;
826 int i;
827
828 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
829
830 /* Base address. */
831 cache->base = 0;
832 cache->sp_offset = -4;
833 cache->pc = 0;
834
835 /* Saved registers. We initialize these to -1 since zero is a valid
836 offset (that's where %ebp is supposed to be stored). */
837 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
838 cache->saved_regs[i] = -1;
839 cache->saved_sp = 0;
840 cache->saved_sp_reg = -1;
841 cache->pc_in_eax = 0;
842
843 /* Frameless until proven otherwise. */
844 cache->locals = -1;
845
846 return cache;
847 }
848
849 /* If the instruction at PC is a jump, return the address of its
850 target. Otherwise, return PC. */
851
852 static CORE_ADDR
853 i386_follow_jump (struct gdbarch *gdbarch, CORE_ADDR pc)
854 {
855 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
856 gdb_byte op;
857 long delta = 0;
858 int data16 = 0;
859
860 if (target_read_memory (pc, &op, 1))
861 return pc;
862
863 if (op == 0x66)
864 {
865 data16 = 1;
866 op = read_memory_unsigned_integer (pc + 1, 1, byte_order);
867 }
868
869 switch (op)
870 {
871 case 0xe9:
872 /* Relative jump: if data16 == 0, disp32, else disp16. */
873 if (data16)
874 {
875 delta = read_memory_integer (pc + 2, 2, byte_order);
876
877 /* Include the size of the jmp instruction (including the
878 0x66 prefix). */
879 delta += 4;
880 }
881 else
882 {
883 delta = read_memory_integer (pc + 1, 4, byte_order);
884
885 /* Include the size of the jmp instruction. */
886 delta += 5;
887 }
888 break;
889 case 0xeb:
890 /* Relative jump, disp8 (ignore data16). */
891 delta = read_memory_integer (pc + data16 + 1, 1, byte_order);
892
893 delta += data16 + 2;
894 break;
895 }
896
897 return pc + delta;
898 }
899
900 /* Check whether PC points at a prologue for a function returning a
901 structure or union. If so, it updates CACHE and returns the
902 address of the first instruction after the code sequence that
903 removes the "hidden" argument from the stack or CURRENT_PC,
904 whichever is smaller. Otherwise, return PC. */
905
906 static CORE_ADDR
907 i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
908 struct i386_frame_cache *cache)
909 {
910 /* Functions that return a structure or union start with:
911
912 popl %eax 0x58
913 xchgl %eax, (%esp) 0x87 0x04 0x24
914 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
915
916 (the System V compiler puts out the second `xchg' instruction,
917 and the assembler doesn't try to optimize it, so the 'sib' form
918 gets generated). This sequence is used to get the address of the
919 return buffer for a function that returns a structure. */
920 static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
921 static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
922 gdb_byte buf[4];
923 gdb_byte op;
924
925 if (current_pc <= pc)
926 return pc;
927
928 if (target_read_memory (pc, &op, 1))
929 return pc;
930
931 if (op != 0x58) /* popl %eax */
932 return pc;
933
934 if (target_read_memory (pc + 1, buf, 4))
935 return pc;
936
937 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
938 return pc;
939
940 if (current_pc == pc)
941 {
942 cache->sp_offset += 4;
943 return current_pc;
944 }
945
946 if (current_pc == pc + 1)
947 {
948 cache->pc_in_eax = 1;
949 return current_pc;
950 }
951
952 if (buf[1] == proto1[1])
953 return pc + 4;
954 else
955 return pc + 5;
956 }
957
958 static CORE_ADDR
959 i386_skip_probe (CORE_ADDR pc)
960 {
961 /* A function may start with
962
963 pushl constant
964 call _probe
965 addl $4, %esp
966
967 followed by
968
969 pushl %ebp
970
971 etc. */
972 gdb_byte buf[8];
973 gdb_byte op;
974
975 if (target_read_memory (pc, &op, 1))
976 return pc;
977
978 if (op == 0x68 || op == 0x6a)
979 {
980 int delta;
981
982 /* Skip past the `pushl' instruction; it has either a one-byte or a
983 four-byte operand, depending on the opcode. */
984 if (op == 0x68)
985 delta = 5;
986 else
987 delta = 2;
988
989 /* Read the following 8 bytes, which should be `call _probe' (6
990 bytes) followed by `addl $4,%esp' (2 bytes). */
991 read_memory (pc + delta, buf, sizeof (buf));
992 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
993 pc += delta + sizeof (buf);
994 }
995
996 return pc;
997 }
998
999 /* GCC 4.1 and later, can put code in the prologue to realign the
1000 stack pointer. Check whether PC points to such code, and update
1001 CACHE accordingly. Return the first instruction after the code
1002 sequence or CURRENT_PC, whichever is smaller. If we don't
1003 recognize the code, return PC. */
1004
1005 static CORE_ADDR
1006 i386_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1007 struct i386_frame_cache *cache)
1008 {
1009 /* There are 2 code sequences to re-align stack before the frame
1010 gets set up:
1011
1012 1. Use a caller-saved saved register:
1013
1014 leal 4(%esp), %reg
1015 andl $-XXX, %esp
1016 pushl -4(%reg)
1017
1018 2. Use a callee-saved saved register:
1019
1020 pushl %reg
1021 leal 8(%esp), %reg
1022 andl $-XXX, %esp
1023 pushl -4(%reg)
1024
1025 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
1026
1027 0x83 0xe4 0xf0 andl $-16, %esp
1028 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
1029 */
1030
1031 gdb_byte buf[14];
1032 int reg;
1033 int offset, offset_and;
1034 static int regnums[8] = {
1035 I386_EAX_REGNUM, /* %eax */
1036 I386_ECX_REGNUM, /* %ecx */
1037 I386_EDX_REGNUM, /* %edx */
1038 I386_EBX_REGNUM, /* %ebx */
1039 I386_ESP_REGNUM, /* %esp */
1040 I386_EBP_REGNUM, /* %ebp */
1041 I386_ESI_REGNUM, /* %esi */
1042 I386_EDI_REGNUM /* %edi */
1043 };
1044
1045 if (target_read_memory (pc, buf, sizeof buf))
1046 return pc;
1047
1048 /* Check caller-saved saved register. The first instruction has
1049 to be "leal 4(%esp), %reg". */
1050 if (buf[0] == 0x8d && buf[2] == 0x24 && buf[3] == 0x4)
1051 {
1052 /* MOD must be binary 10 and R/M must be binary 100. */
1053 if ((buf[1] & 0xc7) != 0x44)
1054 return pc;
1055
1056 /* REG has register number. */
1057 reg = (buf[1] >> 3) & 7;
1058 offset = 4;
1059 }
1060 else
1061 {
1062 /* Check callee-saved saved register. The first instruction
1063 has to be "pushl %reg". */
1064 if ((buf[0] & 0xf8) != 0x50)
1065 return pc;
1066
1067 /* Get register. */
1068 reg = buf[0] & 0x7;
1069
1070 /* The next instruction has to be "leal 8(%esp), %reg". */
1071 if (buf[1] != 0x8d || buf[3] != 0x24 || buf[4] != 0x8)
1072 return pc;
1073
1074 /* MOD must be binary 10 and R/M must be binary 100. */
1075 if ((buf[2] & 0xc7) != 0x44)
1076 return pc;
1077
1078 /* REG has register number. Registers in pushl and leal have to
1079 be the same. */
1080 if (reg != ((buf[2] >> 3) & 7))
1081 return pc;
1082
1083 offset = 5;
1084 }
1085
1086 /* Rigister can't be %esp nor %ebp. */
1087 if (reg == 4 || reg == 5)
1088 return pc;
1089
1090 /* The next instruction has to be "andl $-XXX, %esp". */
1091 if (buf[offset + 1] != 0xe4
1092 || (buf[offset] != 0x81 && buf[offset] != 0x83))
1093 return pc;
1094
1095 offset_and = offset;
1096 offset += buf[offset] == 0x81 ? 6 : 3;
1097
1098 /* The next instruction has to be "pushl -4(%reg)". 8bit -4 is
1099 0xfc. REG must be binary 110 and MOD must be binary 01. */
1100 if (buf[offset] != 0xff
1101 || buf[offset + 2] != 0xfc
1102 || (buf[offset + 1] & 0xf8) != 0x70)
1103 return pc;
1104
1105 /* R/M has register. Registers in leal and pushl have to be the
1106 same. */
1107 if (reg != (buf[offset + 1] & 7))
1108 return pc;
1109
1110 if (current_pc > pc + offset_and)
1111 cache->saved_sp_reg = regnums[reg];
1112
1113 return min (pc + offset + 3, current_pc);
1114 }
1115
1116 /* Maximum instruction length we need to handle. */
1117 #define I386_MAX_MATCHED_INSN_LEN 6
1118
1119 /* Instruction description. */
1120 struct i386_insn
1121 {
1122 size_t len;
1123 gdb_byte insn[I386_MAX_MATCHED_INSN_LEN];
1124 gdb_byte mask[I386_MAX_MATCHED_INSN_LEN];
1125 };
1126
1127 /* Search for the instruction at PC in the list SKIP_INSNS. Return
1128 the first instruction description that matches. Otherwise, return
1129 NULL. */
1130
1131 static struct i386_insn *
1132 i386_match_insn (CORE_ADDR pc, struct i386_insn *skip_insns)
1133 {
1134 struct i386_insn *insn;
1135 gdb_byte op;
1136
1137 if (target_read_memory (pc, &op, 1))
1138 return NULL;
1139
1140 for (insn = skip_insns; insn->len > 0; insn++)
1141 {
1142 if ((op & insn->mask[0]) == insn->insn[0])
1143 {
1144 gdb_byte buf[I386_MAX_MATCHED_INSN_LEN - 1];
1145 int insn_matched = 1;
1146 size_t i;
1147
1148 gdb_assert (insn->len > 1);
1149 gdb_assert (insn->len <= I386_MAX_MATCHED_INSN_LEN);
1150
1151 if (target_read_memory (pc + 1, buf, insn->len - 1))
1152 return NULL;
1153
1154 for (i = 1; i < insn->len; i++)
1155 {
1156 if ((buf[i - 1] & insn->mask[i]) != insn->insn[i])
1157 insn_matched = 0;
1158 }
1159
1160 if (insn_matched)
1161 return insn;
1162 }
1163 }
1164
1165 return NULL;
1166 }
1167
1168 /* Some special instructions that might be migrated by GCC into the
1169 part of the prologue that sets up the new stack frame. Because the
1170 stack frame hasn't been setup yet, no registers have been saved
1171 yet, and only the scratch registers %eax, %ecx and %edx can be
1172 touched. */
1173
1174 struct i386_insn i386_frame_setup_skip_insns[] =
1175 {
1176 /* Check for `movb imm8, r' and `movl imm32, r'.
1177
1178 ??? Should we handle 16-bit operand-sizes here? */
1179
1180 /* `movb imm8, %al' and `movb imm8, %ah' */
1181 /* `movb imm8, %cl' and `movb imm8, %ch' */
1182 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
1183 /* `movb imm8, %dl' and `movb imm8, %dh' */
1184 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
1185 /* `movl imm32, %eax' and `movl imm32, %ecx' */
1186 { 5, { 0xb8 }, { 0xfe } },
1187 /* `movl imm32, %edx' */
1188 { 5, { 0xba }, { 0xff } },
1189
1190 /* Check for `mov imm32, r32'. Note that there is an alternative
1191 encoding for `mov m32, %eax'.
1192
1193 ??? Should we handle SIB adressing here?
1194 ??? Should we handle 16-bit operand-sizes here? */
1195
1196 /* `movl m32, %eax' */
1197 { 5, { 0xa1 }, { 0xff } },
1198 /* `movl m32, %eax' and `mov; m32, %ecx' */
1199 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
1200 /* `movl m32, %edx' */
1201 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
1202
1203 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
1204 Because of the symmetry, there are actually two ways to encode
1205 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
1206 opcode bytes 0x31 and 0x33 for `xorl'. */
1207
1208 /* `subl %eax, %eax' */
1209 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
1210 /* `subl %ecx, %ecx' */
1211 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
1212 /* `subl %edx, %edx' */
1213 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
1214 /* `xorl %eax, %eax' */
1215 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
1216 /* `xorl %ecx, %ecx' */
1217 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
1218 /* `xorl %edx, %edx' */
1219 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
1220 { 0 }
1221 };
1222
1223
1224 /* Check whether PC points to a no-op instruction. */
1225 static CORE_ADDR
1226 i386_skip_noop (CORE_ADDR pc)
1227 {
1228 gdb_byte op;
1229 int check = 1;
1230
1231 if (target_read_memory (pc, &op, 1))
1232 return pc;
1233
1234 while (check)
1235 {
1236 check = 0;
1237 /* Ignore `nop' instruction. */
1238 if (op == 0x90)
1239 {
1240 pc += 1;
1241 if (target_read_memory (pc, &op, 1))
1242 return pc;
1243 check = 1;
1244 }
1245 /* Ignore no-op instruction `mov %edi, %edi'.
1246 Microsoft system dlls often start with
1247 a `mov %edi,%edi' instruction.
1248 The 5 bytes before the function start are
1249 filled with `nop' instructions.
1250 This pattern can be used for hot-patching:
1251 The `mov %edi, %edi' instruction can be replaced by a
1252 near jump to the location of the 5 `nop' instructions
1253 which can be replaced by a 32-bit jump to anywhere
1254 in the 32-bit address space. */
1255
1256 else if (op == 0x8b)
1257 {
1258 if (target_read_memory (pc + 1, &op, 1))
1259 return pc;
1260
1261 if (op == 0xff)
1262 {
1263 pc += 2;
1264 if (target_read_memory (pc, &op, 1))
1265 return pc;
1266
1267 check = 1;
1268 }
1269 }
1270 }
1271 return pc;
1272 }
1273
1274 /* Check whether PC points at a code that sets up a new stack frame.
1275 If so, it updates CACHE and returns the address of the first
1276 instruction after the sequence that sets up the frame or LIMIT,
1277 whichever is smaller. If we don't recognize the code, return PC. */
1278
1279 static CORE_ADDR
1280 i386_analyze_frame_setup (struct gdbarch *gdbarch,
1281 CORE_ADDR pc, CORE_ADDR limit,
1282 struct i386_frame_cache *cache)
1283 {
1284 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1285 struct i386_insn *insn;
1286 gdb_byte op;
1287 int skip = 0;
1288
1289 if (limit <= pc)
1290 return limit;
1291
1292 if (target_read_memory (pc, &op, 1))
1293 return pc;
1294
1295 if (op == 0x55) /* pushl %ebp */
1296 {
1297 /* Take into account that we've executed the `pushl %ebp' that
1298 starts this instruction sequence. */
1299 cache->saved_regs[I386_EBP_REGNUM] = 0;
1300 cache->sp_offset += 4;
1301 pc++;
1302
1303 /* If that's all, return now. */
1304 if (limit <= pc)
1305 return limit;
1306
1307 /* Check for some special instructions that might be migrated by
1308 GCC into the prologue and skip them. At this point in the
1309 prologue, code should only touch the scratch registers %eax,
1310 %ecx and %edx, so while the number of posibilities is sheer,
1311 it is limited.
1312
1313 Make sure we only skip these instructions if we later see the
1314 `movl %esp, %ebp' that actually sets up the frame. */
1315 while (pc + skip < limit)
1316 {
1317 insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
1318 if (insn == NULL)
1319 break;
1320
1321 skip += insn->len;
1322 }
1323
1324 /* If that's all, return now. */
1325 if (limit <= pc + skip)
1326 return limit;
1327
1328 if (target_read_memory (pc + skip, &op, 1))
1329 return pc + skip;
1330
1331 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
1332 switch (op)
1333 {
1334 case 0x8b:
1335 if (read_memory_unsigned_integer (pc + skip + 1, 1, byte_order)
1336 != 0xec)
1337 return pc;
1338 break;
1339 case 0x89:
1340 if (read_memory_unsigned_integer (pc + skip + 1, 1, byte_order)
1341 != 0xe5)
1342 return pc;
1343 break;
1344 default:
1345 return pc;
1346 }
1347
1348 /* OK, we actually have a frame. We just don't know how large
1349 it is yet. Set its size to zero. We'll adjust it if
1350 necessary. We also now commit to skipping the special
1351 instructions mentioned before. */
1352 cache->locals = 0;
1353 pc += (skip + 2);
1354
1355 /* If that's all, return now. */
1356 if (limit <= pc)
1357 return limit;
1358
1359 /* Check for stack adjustment
1360
1361 subl $XXX, %esp
1362
1363 NOTE: You can't subtract a 16-bit immediate from a 32-bit
1364 reg, so we don't have to worry about a data16 prefix. */
1365 if (target_read_memory (pc, &op, 1))
1366 return pc;
1367 if (op == 0x83)
1368 {
1369 /* `subl' with 8-bit immediate. */
1370 if (read_memory_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1371 /* Some instruction starting with 0x83 other than `subl'. */
1372 return pc;
1373
1374 /* `subl' with signed 8-bit immediate (though it wouldn't
1375 make sense to be negative). */
1376 cache->locals = read_memory_integer (pc + 2, 1, byte_order);
1377 return pc + 3;
1378 }
1379 else if (op == 0x81)
1380 {
1381 /* Maybe it is `subl' with a 32-bit immediate. */
1382 if (read_memory_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1383 /* Some instruction starting with 0x81 other than `subl'. */
1384 return pc;
1385
1386 /* It is `subl' with a 32-bit immediate. */
1387 cache->locals = read_memory_integer (pc + 2, 4, byte_order);
1388 return pc + 6;
1389 }
1390 else
1391 {
1392 /* Some instruction other than `subl'. */
1393 return pc;
1394 }
1395 }
1396 else if (op == 0xc8) /* enter */
1397 {
1398 cache->locals = read_memory_unsigned_integer (pc + 1, 2, byte_order);
1399 return pc + 4;
1400 }
1401
1402 return pc;
1403 }
1404
1405 /* Check whether PC points at code that saves registers on the stack.
1406 If so, it updates CACHE and returns the address of the first
1407 instruction after the register saves or CURRENT_PC, whichever is
1408 smaller. Otherwise, return PC. */
1409
1410 static CORE_ADDR
1411 i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
1412 struct i386_frame_cache *cache)
1413 {
1414 CORE_ADDR offset = 0;
1415 gdb_byte op;
1416 int i;
1417
1418 if (cache->locals > 0)
1419 offset -= cache->locals;
1420 for (i = 0; i < 8 && pc < current_pc; i++)
1421 {
1422 if (target_read_memory (pc, &op, 1))
1423 return pc;
1424 if (op < 0x50 || op > 0x57)
1425 break;
1426
1427 offset -= 4;
1428 cache->saved_regs[op - 0x50] = offset;
1429 cache->sp_offset += 4;
1430 pc++;
1431 }
1432
1433 return pc;
1434 }
1435
1436 /* Do a full analysis of the prologue at PC and update CACHE
1437 accordingly. Bail out early if CURRENT_PC is reached. Return the
1438 address where the analysis stopped.
1439
1440 We handle these cases:
1441
1442 The startup sequence can be at the start of the function, or the
1443 function can start with a branch to startup code at the end.
1444
1445 %ebp can be set up with either the 'enter' instruction, or "pushl
1446 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
1447 once used in the System V compiler).
1448
1449 Local space is allocated just below the saved %ebp by either the
1450 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
1451 16-bit unsigned argument for space to allocate, and the 'addl'
1452 instruction could have either a signed byte, or 32-bit immediate.
1453
1454 Next, the registers used by this function are pushed. With the
1455 System V compiler they will always be in the order: %edi, %esi,
1456 %ebx (and sometimes a harmless bug causes it to also save but not
1457 restore %eax); however, the code below is willing to see the pushes
1458 in any order, and will handle up to 8 of them.
1459
1460 If the setup sequence is at the end of the function, then the next
1461 instruction will be a branch back to the start. */
1462
1463 static CORE_ADDR
1464 i386_analyze_prologue (struct gdbarch *gdbarch,
1465 CORE_ADDR pc, CORE_ADDR current_pc,
1466 struct i386_frame_cache *cache)
1467 {
1468 pc = i386_skip_noop (pc);
1469 pc = i386_follow_jump (gdbarch, pc);
1470 pc = i386_analyze_struct_return (pc, current_pc, cache);
1471 pc = i386_skip_probe (pc);
1472 pc = i386_analyze_stack_align (pc, current_pc, cache);
1473 pc = i386_analyze_frame_setup (gdbarch, pc, current_pc, cache);
1474 return i386_analyze_register_saves (pc, current_pc, cache);
1475 }
1476
1477 /* Return PC of first real instruction. */
1478
1479 static CORE_ADDR
1480 i386_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
1481 {
1482 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1483
1484 static gdb_byte pic_pat[6] =
1485 {
1486 0xe8, 0, 0, 0, 0, /* call 0x0 */
1487 0x5b, /* popl %ebx */
1488 };
1489 struct i386_frame_cache cache;
1490 CORE_ADDR pc;
1491 gdb_byte op;
1492 int i;
1493
1494 cache.locals = -1;
1495 pc = i386_analyze_prologue (gdbarch, start_pc, 0xffffffff, &cache);
1496 if (cache.locals < 0)
1497 return start_pc;
1498
1499 /* Found valid frame setup. */
1500
1501 /* The native cc on SVR4 in -K PIC mode inserts the following code
1502 to get the address of the global offset table (GOT) into register
1503 %ebx:
1504
1505 call 0x0
1506 popl %ebx
1507 movl %ebx,x(%ebp) (optional)
1508 addl y,%ebx
1509
1510 This code is with the rest of the prologue (at the end of the
1511 function), so we have to skip it to get to the first real
1512 instruction at the start of the function. */
1513
1514 for (i = 0; i < 6; i++)
1515 {
1516 if (target_read_memory (pc + i, &op, 1))
1517 return pc;
1518
1519 if (pic_pat[i] != op)
1520 break;
1521 }
1522 if (i == 6)
1523 {
1524 int delta = 6;
1525
1526 if (target_read_memory (pc + delta, &op, 1))
1527 return pc;
1528
1529 if (op == 0x89) /* movl %ebx, x(%ebp) */
1530 {
1531 op = read_memory_unsigned_integer (pc + delta + 1, 1, byte_order);
1532
1533 if (op == 0x5d) /* One byte offset from %ebp. */
1534 delta += 3;
1535 else if (op == 0x9d) /* Four byte offset from %ebp. */
1536 delta += 6;
1537 else /* Unexpected instruction. */
1538 delta = 0;
1539
1540 if (target_read_memory (pc + delta, &op, 1))
1541 return pc;
1542 }
1543
1544 /* addl y,%ebx */
1545 if (delta > 0 && op == 0x81
1546 && read_memory_unsigned_integer (pc + delta + 1, 1, byte_order)
1547 == 0xc3)
1548 {
1549 pc += delta + 6;
1550 }
1551 }
1552
1553 /* If the function starts with a branch (to startup code at the end)
1554 the last instruction should bring us back to the first
1555 instruction of the real code. */
1556 if (i386_follow_jump (gdbarch, start_pc) != start_pc)
1557 pc = i386_follow_jump (gdbarch, pc);
1558
1559 return pc;
1560 }
1561
1562 /* Check that the code pointed to by PC corresponds to a call to
1563 __main, skip it if so. Return PC otherwise. */
1564
1565 CORE_ADDR
1566 i386_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1567 {
1568 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1569 gdb_byte op;
1570
1571 if (target_read_memory (pc, &op, 1))
1572 return pc;
1573 if (op == 0xe8)
1574 {
1575 gdb_byte buf[4];
1576
1577 if (target_read_memory (pc + 1, buf, sizeof buf) == 0)
1578 {
1579 /* Make sure address is computed correctly as a 32bit
1580 integer even if CORE_ADDR is 64 bit wide. */
1581 struct minimal_symbol *s;
1582 CORE_ADDR call_dest;
1583
1584 call_dest = pc + 5 + extract_signed_integer (buf, 4, byte_order);
1585 call_dest = call_dest & 0xffffffffU;
1586 s = lookup_minimal_symbol_by_pc (call_dest);
1587 if (s != NULL
1588 && SYMBOL_LINKAGE_NAME (s) != NULL
1589 && strcmp (SYMBOL_LINKAGE_NAME (s), "__main") == 0)
1590 pc += 5;
1591 }
1592 }
1593
1594 return pc;
1595 }
1596
1597 /* This function is 64-bit safe. */
1598
1599 static CORE_ADDR
1600 i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1601 {
1602 gdb_byte buf[8];
1603
1604 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
1605 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
1606 }
1607 \f
1608
1609 /* Normal frames. */
1610
1611 static struct i386_frame_cache *
1612 i386_frame_cache (struct frame_info *this_frame, void **this_cache)
1613 {
1614 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1615 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1616 struct i386_frame_cache *cache;
1617 gdb_byte buf[4];
1618 int i;
1619
1620 if (*this_cache)
1621 return *this_cache;
1622
1623 cache = i386_alloc_frame_cache ();
1624 *this_cache = cache;
1625
1626 /* In principle, for normal frames, %ebp holds the frame pointer,
1627 which holds the base address for the current stack frame.
1628 However, for functions that don't need it, the frame pointer is
1629 optional. For these "frameless" functions the frame pointer is
1630 actually the frame pointer of the calling frame. Signal
1631 trampolines are just a special case of a "frameless" function.
1632 They (usually) share their frame pointer with the frame that was
1633 in progress when the signal occurred. */
1634
1635 get_frame_register (this_frame, I386_EBP_REGNUM, buf);
1636 cache->base = extract_unsigned_integer (buf, 4, byte_order);
1637 if (cache->base == 0)
1638 return cache;
1639
1640 /* For normal frames, %eip is stored at 4(%ebp). */
1641 cache->saved_regs[I386_EIP_REGNUM] = 4;
1642
1643 cache->pc = get_frame_func (this_frame);
1644 if (cache->pc != 0)
1645 i386_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
1646 cache);
1647
1648 if (cache->saved_sp_reg != -1)
1649 {
1650 /* Saved stack pointer has been saved. */
1651 get_frame_register (this_frame, cache->saved_sp_reg, buf);
1652 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
1653 }
1654
1655 if (cache->locals < 0)
1656 {
1657 /* We didn't find a valid frame, which means that CACHE->base
1658 currently holds the frame pointer for our calling frame. If
1659 we're at the start of a function, or somewhere half-way its
1660 prologue, the function's frame probably hasn't been fully
1661 setup yet. Try to reconstruct the base address for the stack
1662 frame by looking at the stack pointer. For truly "frameless"
1663 functions this might work too. */
1664
1665 if (cache->saved_sp_reg != -1)
1666 {
1667 /* We're halfway aligning the stack. */
1668 cache->base = ((cache->saved_sp - 4) & 0xfffffff0) - 4;
1669 cache->saved_regs[I386_EIP_REGNUM] = cache->saved_sp - 4;
1670
1671 /* This will be added back below. */
1672 cache->saved_regs[I386_EIP_REGNUM] -= cache->base;
1673 }
1674 else if (cache->pc != 0
1675 || target_read_memory (get_frame_pc (this_frame), buf, 1))
1676 {
1677 /* We're in a known function, but did not find a frame
1678 setup. Assume that the function does not use %ebp.
1679 Alternatively, we may have jumped to an invalid
1680 address; in that case there is definitely no new
1681 frame in %ebp. */
1682 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
1683 cache->base = extract_unsigned_integer (buf, 4, byte_order)
1684 + cache->sp_offset;
1685 }
1686 else
1687 /* We're in an unknown function. We could not find the start
1688 of the function to analyze the prologue; our best option is
1689 to assume a typical frame layout with the caller's %ebp
1690 saved. */
1691 cache->saved_regs[I386_EBP_REGNUM] = 0;
1692 }
1693
1694 /* Now that we have the base address for the stack frame we can
1695 calculate the value of %esp in the calling frame. */
1696 if (cache->saved_sp == 0)
1697 cache->saved_sp = cache->base + 8;
1698
1699 /* Adjust all the saved registers such that they contain addresses
1700 instead of offsets. */
1701 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
1702 if (cache->saved_regs[i] != -1)
1703 cache->saved_regs[i] += cache->base;
1704
1705 return cache;
1706 }
1707
1708 static void
1709 i386_frame_this_id (struct frame_info *this_frame, void **this_cache,
1710 struct frame_id *this_id)
1711 {
1712 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
1713
1714 /* This marks the outermost frame. */
1715 if (cache->base == 0)
1716 return;
1717
1718 /* See the end of i386_push_dummy_call. */
1719 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
1720 }
1721
1722 static struct value *
1723 i386_frame_prev_register (struct frame_info *this_frame, void **this_cache,
1724 int regnum)
1725 {
1726 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
1727
1728 gdb_assert (regnum >= 0);
1729
1730 /* The System V ABI says that:
1731
1732 "The flags register contains the system flags, such as the
1733 direction flag and the carry flag. The direction flag must be
1734 set to the forward (that is, zero) direction before entry and
1735 upon exit from a function. Other user flags have no specified
1736 role in the standard calling sequence and are not preserved."
1737
1738 To guarantee the "upon exit" part of that statement we fake a
1739 saved flags register that has its direction flag cleared.
1740
1741 Note that GCC doesn't seem to rely on the fact that the direction
1742 flag is cleared after a function return; it always explicitly
1743 clears the flag before operations where it matters.
1744
1745 FIXME: kettenis/20030316: I'm not quite sure whether this is the
1746 right thing to do. The way we fake the flags register here makes
1747 it impossible to change it. */
1748
1749 if (regnum == I386_EFLAGS_REGNUM)
1750 {
1751 ULONGEST val;
1752
1753 val = get_frame_register_unsigned (this_frame, regnum);
1754 val &= ~(1 << 10);
1755 return frame_unwind_got_constant (this_frame, regnum, val);
1756 }
1757
1758 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
1759 return frame_unwind_got_register (this_frame, regnum, I386_EAX_REGNUM);
1760
1761 if (regnum == I386_ESP_REGNUM && cache->saved_sp)
1762 return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
1763
1764 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
1765 return frame_unwind_got_memory (this_frame, regnum,
1766 cache->saved_regs[regnum]);
1767
1768 return frame_unwind_got_register (this_frame, regnum, regnum);
1769 }
1770
1771 static const struct frame_unwind i386_frame_unwind =
1772 {
1773 NORMAL_FRAME,
1774 i386_frame_this_id,
1775 i386_frame_prev_register,
1776 NULL,
1777 default_frame_sniffer
1778 };
1779
1780 /* Normal frames, but in a function epilogue. */
1781
1782 /* The epilogue is defined here as the 'ret' instruction, which will
1783 follow any instruction such as 'leave' or 'pop %ebp' that destroys
1784 the function's stack frame. */
1785
1786 static int
1787 i386_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
1788 {
1789 gdb_byte insn;
1790
1791 if (target_read_memory (pc, &insn, 1))
1792 return 0; /* Can't read memory at pc. */
1793
1794 if (insn != 0xc3) /* 'ret' instruction. */
1795 return 0;
1796
1797 return 1;
1798 }
1799
1800 static int
1801 i386_epilogue_frame_sniffer (const struct frame_unwind *self,
1802 struct frame_info *this_frame,
1803 void **this_prologue_cache)
1804 {
1805 if (frame_relative_level (this_frame) == 0)
1806 return i386_in_function_epilogue_p (get_frame_arch (this_frame),
1807 get_frame_pc (this_frame));
1808 else
1809 return 0;
1810 }
1811
1812 static struct i386_frame_cache *
1813 i386_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
1814 {
1815 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1816 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1817 struct i386_frame_cache *cache;
1818 gdb_byte buf[4];
1819
1820 if (*this_cache)
1821 return *this_cache;
1822
1823 cache = i386_alloc_frame_cache ();
1824 *this_cache = cache;
1825
1826 /* Cache base will be %esp plus cache->sp_offset (-4). */
1827 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
1828 cache->base = extract_unsigned_integer (buf, 4,
1829 byte_order) + cache->sp_offset;
1830
1831 /* Cache pc will be the frame func. */
1832 cache->pc = get_frame_pc (this_frame);
1833
1834 /* The saved %esp will be at cache->base plus 8. */
1835 cache->saved_sp = cache->base + 8;
1836
1837 /* The saved %eip will be at cache->base plus 4. */
1838 cache->saved_regs[I386_EIP_REGNUM] = cache->base + 4;
1839
1840 return cache;
1841 }
1842
1843 static void
1844 i386_epilogue_frame_this_id (struct frame_info *this_frame,
1845 void **this_cache,
1846 struct frame_id *this_id)
1847 {
1848 struct i386_frame_cache *cache = i386_epilogue_frame_cache (this_frame,
1849 this_cache);
1850
1851 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
1852 }
1853
1854 static const struct frame_unwind i386_epilogue_frame_unwind =
1855 {
1856 NORMAL_FRAME,
1857 i386_epilogue_frame_this_id,
1858 i386_frame_prev_register,
1859 NULL,
1860 i386_epilogue_frame_sniffer
1861 };
1862 \f
1863
1864 /* Signal trampolines. */
1865
1866 static struct i386_frame_cache *
1867 i386_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
1868 {
1869 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1870 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1871 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1872 struct i386_frame_cache *cache;
1873 CORE_ADDR addr;
1874 gdb_byte buf[4];
1875
1876 if (*this_cache)
1877 return *this_cache;
1878
1879 cache = i386_alloc_frame_cache ();
1880
1881 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
1882 cache->base = extract_unsigned_integer (buf, 4, byte_order) - 4;
1883
1884 addr = tdep->sigcontext_addr (this_frame);
1885 if (tdep->sc_reg_offset)
1886 {
1887 int i;
1888
1889 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
1890
1891 for (i = 0; i < tdep->sc_num_regs; i++)
1892 if (tdep->sc_reg_offset[i] != -1)
1893 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
1894 }
1895 else
1896 {
1897 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
1898 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
1899 }
1900
1901 *this_cache = cache;
1902 return cache;
1903 }
1904
1905 static void
1906 i386_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache,
1907 struct frame_id *this_id)
1908 {
1909 struct i386_frame_cache *cache =
1910 i386_sigtramp_frame_cache (this_frame, this_cache);
1911
1912 /* See the end of i386_push_dummy_call. */
1913 (*this_id) = frame_id_build (cache->base + 8, get_frame_pc (this_frame));
1914 }
1915
1916 static struct value *
1917 i386_sigtramp_frame_prev_register (struct frame_info *this_frame,
1918 void **this_cache, int regnum)
1919 {
1920 /* Make sure we've initialized the cache. */
1921 i386_sigtramp_frame_cache (this_frame, this_cache);
1922
1923 return i386_frame_prev_register (this_frame, this_cache, regnum);
1924 }
1925
1926 static int
1927 i386_sigtramp_frame_sniffer (const struct frame_unwind *self,
1928 struct frame_info *this_frame,
1929 void **this_prologue_cache)
1930 {
1931 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
1932
1933 /* We shouldn't even bother if we don't have a sigcontext_addr
1934 handler. */
1935 if (tdep->sigcontext_addr == NULL)
1936 return 0;
1937
1938 if (tdep->sigtramp_p != NULL)
1939 {
1940 if (tdep->sigtramp_p (this_frame))
1941 return 1;
1942 }
1943
1944 if (tdep->sigtramp_start != 0)
1945 {
1946 CORE_ADDR pc = get_frame_pc (this_frame);
1947
1948 gdb_assert (tdep->sigtramp_end != 0);
1949 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
1950 return 1;
1951 }
1952
1953 return 0;
1954 }
1955
1956 static const struct frame_unwind i386_sigtramp_frame_unwind =
1957 {
1958 SIGTRAMP_FRAME,
1959 i386_sigtramp_frame_this_id,
1960 i386_sigtramp_frame_prev_register,
1961 NULL,
1962 i386_sigtramp_frame_sniffer
1963 };
1964 \f
1965
1966 static CORE_ADDR
1967 i386_frame_base_address (struct frame_info *this_frame, void **this_cache)
1968 {
1969 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
1970
1971 return cache->base;
1972 }
1973
1974 static const struct frame_base i386_frame_base =
1975 {
1976 &i386_frame_unwind,
1977 i386_frame_base_address,
1978 i386_frame_base_address,
1979 i386_frame_base_address
1980 };
1981
1982 static struct frame_id
1983 i386_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1984 {
1985 CORE_ADDR fp;
1986
1987 fp = get_frame_register_unsigned (this_frame, I386_EBP_REGNUM);
1988
1989 /* See the end of i386_push_dummy_call. */
1990 return frame_id_build (fp + 8, get_frame_pc (this_frame));
1991 }
1992 \f
1993
1994 /* Figure out where the longjmp will land. Slurp the args out of the
1995 stack. We expect the first arg to be a pointer to the jmp_buf
1996 structure from which we extract the address that we will land at.
1997 This address is copied into PC. This routine returns non-zero on
1998 success. */
1999
2000 static int
2001 i386_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
2002 {
2003 gdb_byte buf[4];
2004 CORE_ADDR sp, jb_addr;
2005 struct gdbarch *gdbarch = get_frame_arch (frame);
2006 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2007 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
2008
2009 /* If JB_PC_OFFSET is -1, we have no way to find out where the
2010 longjmp will land. */
2011 if (jb_pc_offset == -1)
2012 return 0;
2013
2014 get_frame_register (frame, I386_ESP_REGNUM, buf);
2015 sp = extract_unsigned_integer (buf, 4, byte_order);
2016 if (target_read_memory (sp + 4, buf, 4))
2017 return 0;
2018
2019 jb_addr = extract_unsigned_integer (buf, 4, byte_order);
2020 if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
2021 return 0;
2022
2023 *pc = extract_unsigned_integer (buf, 4, byte_order);
2024 return 1;
2025 }
2026 \f
2027
2028 /* Check whether TYPE must be 16-byte-aligned when passed as a
2029 function argument. 16-byte vectors, _Decimal128 and structures or
2030 unions containing such types must be 16-byte-aligned; other
2031 arguments are 4-byte-aligned. */
2032
2033 static int
2034 i386_16_byte_align_p (struct type *type)
2035 {
2036 type = check_typedef (type);
2037 if ((TYPE_CODE (type) == TYPE_CODE_DECFLOAT
2038 || (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type)))
2039 && TYPE_LENGTH (type) == 16)
2040 return 1;
2041 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2042 return i386_16_byte_align_p (TYPE_TARGET_TYPE (type));
2043 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2044 || TYPE_CODE (type) == TYPE_CODE_UNION)
2045 {
2046 int i;
2047 for (i = 0; i < TYPE_NFIELDS (type); i++)
2048 {
2049 if (i386_16_byte_align_p (TYPE_FIELD_TYPE (type, i)))
2050 return 1;
2051 }
2052 }
2053 return 0;
2054 }
2055
2056 static CORE_ADDR
2057 i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2058 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2059 struct value **args, CORE_ADDR sp, int struct_return,
2060 CORE_ADDR struct_addr)
2061 {
2062 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2063 gdb_byte buf[4];
2064 int i;
2065 int write_pass;
2066 int args_space = 0;
2067
2068 /* Determine the total space required for arguments and struct
2069 return address in a first pass (allowing for 16-byte-aligned
2070 arguments), then push arguments in a second pass. */
2071
2072 for (write_pass = 0; write_pass < 2; write_pass++)
2073 {
2074 int args_space_used = 0;
2075 int have_16_byte_aligned_arg = 0;
2076
2077 if (struct_return)
2078 {
2079 if (write_pass)
2080 {
2081 /* Push value address. */
2082 store_unsigned_integer (buf, 4, byte_order, struct_addr);
2083 write_memory (sp, buf, 4);
2084 args_space_used += 4;
2085 }
2086 else
2087 args_space += 4;
2088 }
2089
2090 for (i = 0; i < nargs; i++)
2091 {
2092 int len = TYPE_LENGTH (value_enclosing_type (args[i]));
2093
2094 if (write_pass)
2095 {
2096 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2097 args_space_used = align_up (args_space_used, 16);
2098
2099 write_memory (sp + args_space_used,
2100 value_contents_all (args[i]), len);
2101 /* The System V ABI says that:
2102
2103 "An argument's size is increased, if necessary, to make it a
2104 multiple of [32-bit] words. This may require tail padding,
2105 depending on the size of the argument."
2106
2107 This makes sure the stack stays word-aligned. */
2108 args_space_used += align_up (len, 4);
2109 }
2110 else
2111 {
2112 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2113 {
2114 args_space = align_up (args_space, 16);
2115 have_16_byte_aligned_arg = 1;
2116 }
2117 args_space += align_up (len, 4);
2118 }
2119 }
2120
2121 if (!write_pass)
2122 {
2123 if (have_16_byte_aligned_arg)
2124 args_space = align_up (args_space, 16);
2125 sp -= args_space;
2126 }
2127 }
2128
2129 /* Store return address. */
2130 sp -= 4;
2131 store_unsigned_integer (buf, 4, byte_order, bp_addr);
2132 write_memory (sp, buf, 4);
2133
2134 /* Finally, update the stack pointer... */
2135 store_unsigned_integer (buf, 4, byte_order, sp);
2136 regcache_cooked_write (regcache, I386_ESP_REGNUM, buf);
2137
2138 /* ...and fake a frame pointer. */
2139 regcache_cooked_write (regcache, I386_EBP_REGNUM, buf);
2140
2141 /* MarkK wrote: This "+ 8" is all over the place:
2142 (i386_frame_this_id, i386_sigtramp_frame_this_id,
2143 i386_dummy_id). It's there, since all frame unwinders for
2144 a given target have to agree (within a certain margin) on the
2145 definition of the stack address of a frame. Otherwise frame id
2146 comparison might not work correctly. Since DWARF2/GCC uses the
2147 stack address *before* the function call as a frame's CFA. On
2148 the i386, when %ebp is used as a frame pointer, the offset
2149 between the contents %ebp and the CFA as defined by GCC. */
2150 return sp + 8;
2151 }
2152
2153 /* These registers are used for returning integers (and on some
2154 targets also for returning `struct' and `union' values when their
2155 size and alignment match an integer type). */
2156 #define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
2157 #define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
2158
2159 /* Read, for architecture GDBARCH, a function return value of TYPE
2160 from REGCACHE, and copy that into VALBUF. */
2161
2162 static void
2163 i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
2164 struct regcache *regcache, gdb_byte *valbuf)
2165 {
2166 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2167 int len = TYPE_LENGTH (type);
2168 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2169
2170 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2171 {
2172 if (tdep->st0_regnum < 0)
2173 {
2174 warning (_("Cannot find floating-point return value."));
2175 memset (valbuf, 0, len);
2176 return;
2177 }
2178
2179 /* Floating-point return values can be found in %st(0). Convert
2180 its contents to the desired type. This is probably not
2181 exactly how it would happen on the target itself, but it is
2182 the best we can do. */
2183 regcache_raw_read (regcache, I386_ST0_REGNUM, buf);
2184 convert_typed_floating (buf, i387_ext_type (gdbarch), valbuf, type);
2185 }
2186 else
2187 {
2188 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2189 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2190
2191 if (len <= low_size)
2192 {
2193 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
2194 memcpy (valbuf, buf, len);
2195 }
2196 else if (len <= (low_size + high_size))
2197 {
2198 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
2199 memcpy (valbuf, buf, low_size);
2200 regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
2201 memcpy (valbuf + low_size, buf, len - low_size);
2202 }
2203 else
2204 internal_error (__FILE__, __LINE__,
2205 _("Cannot extract return value of %d bytes long."),
2206 len);
2207 }
2208 }
2209
2210 /* Write, for architecture GDBARCH, a function return value of TYPE
2211 from VALBUF into REGCACHE. */
2212
2213 static void
2214 i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
2215 struct regcache *regcache, const gdb_byte *valbuf)
2216 {
2217 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2218 int len = TYPE_LENGTH (type);
2219
2220 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2221 {
2222 ULONGEST fstat;
2223 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2224
2225 if (tdep->st0_regnum < 0)
2226 {
2227 warning (_("Cannot set floating-point return value."));
2228 return;
2229 }
2230
2231 /* Returning floating-point values is a bit tricky. Apart from
2232 storing the return value in %st(0), we have to simulate the
2233 state of the FPU at function return point. */
2234
2235 /* Convert the value found in VALBUF to the extended
2236 floating-point format used by the FPU. This is probably
2237 not exactly how it would happen on the target itself, but
2238 it is the best we can do. */
2239 convert_typed_floating (valbuf, type, buf, i387_ext_type (gdbarch));
2240 regcache_raw_write (regcache, I386_ST0_REGNUM, buf);
2241
2242 /* Set the top of the floating-point register stack to 7. The
2243 actual value doesn't really matter, but 7 is what a normal
2244 function return would end up with if the program started out
2245 with a freshly initialized FPU. */
2246 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
2247 fstat |= (7 << 11);
2248 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM (tdep), fstat);
2249
2250 /* Mark %st(1) through %st(7) as empty. Since we set the top of
2251 the floating-point register stack to 7, the appropriate value
2252 for the tag word is 0x3fff. */
2253 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM (tdep), 0x3fff);
2254 }
2255 else
2256 {
2257 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2258 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2259
2260 if (len <= low_size)
2261 regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
2262 else if (len <= (low_size + high_size))
2263 {
2264 regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
2265 regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
2266 len - low_size, valbuf + low_size);
2267 }
2268 else
2269 internal_error (__FILE__, __LINE__,
2270 _("Cannot store return value of %d bytes long."), len);
2271 }
2272 }
2273 \f
2274
2275 /* This is the variable that is set with "set struct-convention", and
2276 its legitimate values. */
2277 static const char default_struct_convention[] = "default";
2278 static const char pcc_struct_convention[] = "pcc";
2279 static const char reg_struct_convention[] = "reg";
2280 static const char *valid_conventions[] =
2281 {
2282 default_struct_convention,
2283 pcc_struct_convention,
2284 reg_struct_convention,
2285 NULL
2286 };
2287 static const char *struct_convention = default_struct_convention;
2288
2289 /* Return non-zero if TYPE, which is assumed to be a structure,
2290 a union type, or an array type, should be returned in registers
2291 for architecture GDBARCH. */
2292
2293 static int
2294 i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
2295 {
2296 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2297 enum type_code code = TYPE_CODE (type);
2298 int len = TYPE_LENGTH (type);
2299
2300 gdb_assert (code == TYPE_CODE_STRUCT
2301 || code == TYPE_CODE_UNION
2302 || code == TYPE_CODE_ARRAY);
2303
2304 if (struct_convention == pcc_struct_convention
2305 || (struct_convention == default_struct_convention
2306 && tdep->struct_return == pcc_struct_return))
2307 return 0;
2308
2309 /* Structures consisting of a single `float', `double' or 'long
2310 double' member are returned in %st(0). */
2311 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2312 {
2313 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
2314 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2315 return (len == 4 || len == 8 || len == 12);
2316 }
2317
2318 return (len == 1 || len == 2 || len == 4 || len == 8);
2319 }
2320
2321 /* Determine, for architecture GDBARCH, how a return value of TYPE
2322 should be returned. If it is supposed to be returned in registers,
2323 and READBUF is non-zero, read the appropriate value from REGCACHE,
2324 and copy it into READBUF. If WRITEBUF is non-zero, write the value
2325 from WRITEBUF into REGCACHE. */
2326
2327 static enum return_value_convention
2328 i386_return_value (struct gdbarch *gdbarch, struct type *func_type,
2329 struct type *type, struct regcache *regcache,
2330 gdb_byte *readbuf, const gdb_byte *writebuf)
2331 {
2332 enum type_code code = TYPE_CODE (type);
2333
2334 if (((code == TYPE_CODE_STRUCT
2335 || code == TYPE_CODE_UNION
2336 || code == TYPE_CODE_ARRAY)
2337 && !i386_reg_struct_return_p (gdbarch, type))
2338 /* 128-bit decimal float uses the struct return convention. */
2339 || (code == TYPE_CODE_DECFLOAT && TYPE_LENGTH (type) == 16))
2340 {
2341 /* The System V ABI says that:
2342
2343 "A function that returns a structure or union also sets %eax
2344 to the value of the original address of the caller's area
2345 before it returns. Thus when the caller receives control
2346 again, the address of the returned object resides in register
2347 %eax and can be used to access the object."
2348
2349 So the ABI guarantees that we can always find the return
2350 value just after the function has returned. */
2351
2352 /* Note that the ABI doesn't mention functions returning arrays,
2353 which is something possible in certain languages such as Ada.
2354 In this case, the value is returned as if it was wrapped in
2355 a record, so the convention applied to records also applies
2356 to arrays. */
2357
2358 if (readbuf)
2359 {
2360 ULONGEST addr;
2361
2362 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
2363 read_memory (addr, readbuf, TYPE_LENGTH (type));
2364 }
2365
2366 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
2367 }
2368
2369 /* This special case is for structures consisting of a single
2370 `float', `double' or 'long double' member. These structures are
2371 returned in %st(0). For these structures, we call ourselves
2372 recursively, changing TYPE into the type of the first member of
2373 the structure. Since that should work for all structures that
2374 have only one member, we don't bother to check the member's type
2375 here. */
2376 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2377 {
2378 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
2379 return i386_return_value (gdbarch, func_type, type, regcache,
2380 readbuf, writebuf);
2381 }
2382
2383 if (readbuf)
2384 i386_extract_return_value (gdbarch, type, regcache, readbuf);
2385 if (writebuf)
2386 i386_store_return_value (gdbarch, type, regcache, writebuf);
2387
2388 return RETURN_VALUE_REGISTER_CONVENTION;
2389 }
2390 \f
2391
2392 struct type *
2393 i387_ext_type (struct gdbarch *gdbarch)
2394 {
2395 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2396
2397 if (!tdep->i387_ext_type)
2398 {
2399 tdep->i387_ext_type = tdesc_find_type (gdbarch, "i387_ext");
2400 gdb_assert (tdep->i387_ext_type != NULL);
2401 }
2402
2403 return tdep->i387_ext_type;
2404 }
2405
2406 /* Construct vector type for pseudo YMM registers. We can't use
2407 tdesc_find_type since YMM isn't described in target description. */
2408
2409 static struct type *
2410 i386_ymm_type (struct gdbarch *gdbarch)
2411 {
2412 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2413
2414 if (!tdep->i386_ymm_type)
2415 {
2416 const struct builtin_type *bt = builtin_type (gdbarch);
2417
2418 /* The type we're building is this: */
2419 #if 0
2420 union __gdb_builtin_type_vec256i
2421 {
2422 int128_t uint128[2];
2423 int64_t v2_int64[4];
2424 int32_t v4_int32[8];
2425 int16_t v8_int16[16];
2426 int8_t v16_int8[32];
2427 double v2_double[4];
2428 float v4_float[8];
2429 };
2430 #endif
2431
2432 struct type *t;
2433
2434 t = arch_composite_type (gdbarch,
2435 "__gdb_builtin_type_vec256i", TYPE_CODE_UNION);
2436 append_composite_type_field (t, "v8_float",
2437 init_vector_type (bt->builtin_float, 8));
2438 append_composite_type_field (t, "v4_double",
2439 init_vector_type (bt->builtin_double, 4));
2440 append_composite_type_field (t, "v32_int8",
2441 init_vector_type (bt->builtin_int8, 32));
2442 append_composite_type_field (t, "v16_int16",
2443 init_vector_type (bt->builtin_int16, 16));
2444 append_composite_type_field (t, "v8_int32",
2445 init_vector_type (bt->builtin_int32, 8));
2446 append_composite_type_field (t, "v4_int64",
2447 init_vector_type (bt->builtin_int64, 4));
2448 append_composite_type_field (t, "v2_int128",
2449 init_vector_type (bt->builtin_int128, 2));
2450
2451 TYPE_VECTOR (t) = 1;
2452 TYPE_NAME (t) = "builtin_type_vec256i";
2453 tdep->i386_ymm_type = t;
2454 }
2455
2456 return tdep->i386_ymm_type;
2457 }
2458
2459 /* Construct vector type for MMX registers. */
2460 static struct type *
2461 i386_mmx_type (struct gdbarch *gdbarch)
2462 {
2463 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2464
2465 if (!tdep->i386_mmx_type)
2466 {
2467 const struct builtin_type *bt = builtin_type (gdbarch);
2468
2469 /* The type we're building is this: */
2470 #if 0
2471 union __gdb_builtin_type_vec64i
2472 {
2473 int64_t uint64;
2474 int32_t v2_int32[2];
2475 int16_t v4_int16[4];
2476 int8_t v8_int8[8];
2477 };
2478 #endif
2479
2480 struct type *t;
2481
2482 t = arch_composite_type (gdbarch,
2483 "__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
2484
2485 append_composite_type_field (t, "uint64", bt->builtin_int64);
2486 append_composite_type_field (t, "v2_int32",
2487 init_vector_type (bt->builtin_int32, 2));
2488 append_composite_type_field (t, "v4_int16",
2489 init_vector_type (bt->builtin_int16, 4));
2490 append_composite_type_field (t, "v8_int8",
2491 init_vector_type (bt->builtin_int8, 8));
2492
2493 TYPE_VECTOR (t) = 1;
2494 TYPE_NAME (t) = "builtin_type_vec64i";
2495 tdep->i386_mmx_type = t;
2496 }
2497
2498 return tdep->i386_mmx_type;
2499 }
2500
2501 /* Return the GDB type object for the "standard" data type of data in
2502 register REGNUM. */
2503
2504 static struct type *
2505 i386_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
2506 {
2507 if (i386_mmx_regnum_p (gdbarch, regnum))
2508 return i386_mmx_type (gdbarch);
2509 else if (i386_ymm_regnum_p (gdbarch, regnum))
2510 return i386_ymm_type (gdbarch);
2511 else
2512 {
2513 const struct builtin_type *bt = builtin_type (gdbarch);
2514 if (i386_byte_regnum_p (gdbarch, regnum))
2515 return bt->builtin_int8;
2516 else if (i386_word_regnum_p (gdbarch, regnum))
2517 return bt->builtin_int16;
2518 else if (i386_dword_regnum_p (gdbarch, regnum))
2519 return bt->builtin_int32;
2520 }
2521
2522 internal_error (__FILE__, __LINE__, _("invalid regnum"));
2523 }
2524
2525 /* Map a cooked register onto a raw register or memory. For the i386,
2526 the MMX registers need to be mapped onto floating point registers. */
2527
2528 static int
2529 i386_mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
2530 {
2531 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
2532 int mmxreg, fpreg;
2533 ULONGEST fstat;
2534 int tos;
2535
2536 mmxreg = regnum - tdep->mm0_regnum;
2537 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
2538 tos = (fstat >> 11) & 0x7;
2539 fpreg = (mmxreg + tos) % 8;
2540
2541 return (I387_ST0_REGNUM (tdep) + fpreg);
2542 }
2543
2544 enum register_status
2545 i386_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2546 int regnum, gdb_byte *buf)
2547 {
2548 gdb_byte raw_buf[MAX_REGISTER_SIZE];
2549 enum register_status status;
2550
2551 if (i386_mmx_regnum_p (gdbarch, regnum))
2552 {
2553 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
2554
2555 /* Extract (always little endian). */
2556 status = regcache_raw_read (regcache, fpnum, raw_buf);
2557 if (status != REG_VALID)
2558 return status;
2559 memcpy (buf, raw_buf, register_size (gdbarch, regnum));
2560 }
2561 else
2562 {
2563 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2564
2565 if (i386_ymm_regnum_p (gdbarch, regnum))
2566 {
2567 regnum -= tdep->ymm0_regnum;
2568
2569 /* Extract (always little endian). Read lower 128bits. */
2570 status = regcache_raw_read (regcache,
2571 I387_XMM0_REGNUM (tdep) + regnum,
2572 raw_buf);
2573 if (status != REG_VALID)
2574 return status;
2575 memcpy (buf, raw_buf, 16);
2576 /* Read upper 128bits. */
2577 status = regcache_raw_read (regcache,
2578 tdep->ymm0h_regnum + regnum,
2579 raw_buf);
2580 if (status != REG_VALID)
2581 return status;
2582 memcpy (buf + 16, raw_buf, 16);
2583 }
2584 else if (i386_word_regnum_p (gdbarch, regnum))
2585 {
2586 int gpnum = regnum - tdep->ax_regnum;
2587
2588 /* Extract (always little endian). */
2589 status = regcache_raw_read (regcache, gpnum, raw_buf);
2590 if (status != REG_VALID)
2591 return status;
2592 memcpy (buf, raw_buf, 2);
2593 }
2594 else if (i386_byte_regnum_p (gdbarch, regnum))
2595 {
2596 /* Check byte pseudo registers last since this function will
2597 be called from amd64_pseudo_register_read, which handles
2598 byte pseudo registers differently. */
2599 int gpnum = regnum - tdep->al_regnum;
2600
2601 /* Extract (always little endian). We read both lower and
2602 upper registers. */
2603 status = regcache_raw_read (regcache, gpnum % 4, raw_buf);
2604 if (status != REG_VALID)
2605 return status;
2606 if (gpnum >= 4)
2607 memcpy (buf, raw_buf + 1, 1);
2608 else
2609 memcpy (buf, raw_buf, 1);
2610 }
2611 else
2612 internal_error (__FILE__, __LINE__, _("invalid regnum"));
2613 }
2614
2615 return REG_VALID;
2616 }
2617
2618 void
2619 i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2620 int regnum, const gdb_byte *buf)
2621 {
2622 gdb_byte raw_buf[MAX_REGISTER_SIZE];
2623
2624 if (i386_mmx_regnum_p (gdbarch, regnum))
2625 {
2626 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
2627
2628 /* Read ... */
2629 regcache_raw_read (regcache, fpnum, raw_buf);
2630 /* ... Modify ... (always little endian). */
2631 memcpy (raw_buf, buf, register_size (gdbarch, regnum));
2632 /* ... Write. */
2633 regcache_raw_write (regcache, fpnum, raw_buf);
2634 }
2635 else
2636 {
2637 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2638
2639 if (i386_ymm_regnum_p (gdbarch, regnum))
2640 {
2641 regnum -= tdep->ymm0_regnum;
2642
2643 /* ... Write lower 128bits. */
2644 regcache_raw_write (regcache,
2645 I387_XMM0_REGNUM (tdep) + regnum,
2646 buf);
2647 /* ... Write upper 128bits. */
2648 regcache_raw_write (regcache,
2649 tdep->ymm0h_regnum + regnum,
2650 buf + 16);
2651 }
2652 else if (i386_word_regnum_p (gdbarch, regnum))
2653 {
2654 int gpnum = regnum - tdep->ax_regnum;
2655
2656 /* Read ... */
2657 regcache_raw_read (regcache, gpnum, raw_buf);
2658 /* ... Modify ... (always little endian). */
2659 memcpy (raw_buf, buf, 2);
2660 /* ... Write. */
2661 regcache_raw_write (regcache, gpnum, raw_buf);
2662 }
2663 else if (i386_byte_regnum_p (gdbarch, regnum))
2664 {
2665 /* Check byte pseudo registers last since this function will
2666 be called from amd64_pseudo_register_read, which handles
2667 byte pseudo registers differently. */
2668 int gpnum = regnum - tdep->al_regnum;
2669
2670 /* Read ... We read both lower and upper registers. */
2671 regcache_raw_read (regcache, gpnum % 4, raw_buf);
2672 /* ... Modify ... (always little endian). */
2673 if (gpnum >= 4)
2674 memcpy (raw_buf + 1, buf, 1);
2675 else
2676 memcpy (raw_buf, buf, 1);
2677 /* ... Write. */
2678 regcache_raw_write (regcache, gpnum % 4, raw_buf);
2679 }
2680 else
2681 internal_error (__FILE__, __LINE__, _("invalid regnum"));
2682 }
2683 }
2684 \f
2685
2686 /* Return the register number of the register allocated by GCC after
2687 REGNUM, or -1 if there is no such register. */
2688
2689 static int
2690 i386_next_regnum (int regnum)
2691 {
2692 /* GCC allocates the registers in the order:
2693
2694 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
2695
2696 Since storing a variable in %esp doesn't make any sense we return
2697 -1 for %ebp and for %esp itself. */
2698 static int next_regnum[] =
2699 {
2700 I386_EDX_REGNUM, /* Slot for %eax. */
2701 I386_EBX_REGNUM, /* Slot for %ecx. */
2702 I386_ECX_REGNUM, /* Slot for %edx. */
2703 I386_ESI_REGNUM, /* Slot for %ebx. */
2704 -1, -1, /* Slots for %esp and %ebp. */
2705 I386_EDI_REGNUM, /* Slot for %esi. */
2706 I386_EBP_REGNUM /* Slot for %edi. */
2707 };
2708
2709 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
2710 return next_regnum[regnum];
2711
2712 return -1;
2713 }
2714
2715 /* Return nonzero if a value of type TYPE stored in register REGNUM
2716 needs any special handling. */
2717
2718 static int
2719 i386_convert_register_p (struct gdbarch *gdbarch,
2720 int regnum, struct type *type)
2721 {
2722 int len = TYPE_LENGTH (type);
2723
2724 /* Values may be spread across multiple registers. Most debugging
2725 formats aren't expressive enough to specify the locations, so
2726 some heuristics is involved. Right now we only handle types that
2727 have a length that is a multiple of the word size, since GCC
2728 doesn't seem to put any other types into registers. */
2729 if (len > 4 && len % 4 == 0)
2730 {
2731 int last_regnum = regnum;
2732
2733 while (len > 4)
2734 {
2735 last_regnum = i386_next_regnum (last_regnum);
2736 len -= 4;
2737 }
2738
2739 if (last_regnum != -1)
2740 return 1;
2741 }
2742
2743 return i387_convert_register_p (gdbarch, regnum, type);
2744 }
2745
2746 /* Read a value of type TYPE from register REGNUM in frame FRAME, and
2747 return its contents in TO. */
2748
2749 static int
2750 i386_register_to_value (struct frame_info *frame, int regnum,
2751 struct type *type, gdb_byte *to,
2752 int *optimizedp, int *unavailablep)
2753 {
2754 struct gdbarch *gdbarch = get_frame_arch (frame);
2755 int len = TYPE_LENGTH (type);
2756
2757 if (i386_fp_regnum_p (gdbarch, regnum))
2758 return i387_register_to_value (frame, regnum, type, to,
2759 optimizedp, unavailablep);
2760
2761 /* Read a value spread across multiple registers. */
2762
2763 gdb_assert (len > 4 && len % 4 == 0);
2764
2765 while (len > 0)
2766 {
2767 gdb_assert (regnum != -1);
2768 gdb_assert (register_size (gdbarch, regnum) == 4);
2769
2770 if (!get_frame_register_bytes (frame, regnum, 0,
2771 register_size (gdbarch, regnum),
2772 to, optimizedp, unavailablep))
2773 return 0;
2774
2775 regnum = i386_next_regnum (regnum);
2776 len -= 4;
2777 to += 4;
2778 }
2779
2780 *optimizedp = *unavailablep = 0;
2781 return 1;
2782 }
2783
2784 /* Write the contents FROM of a value of type TYPE into register
2785 REGNUM in frame FRAME. */
2786
2787 static void
2788 i386_value_to_register (struct frame_info *frame, int regnum,
2789 struct type *type, const gdb_byte *from)
2790 {
2791 int len = TYPE_LENGTH (type);
2792
2793 if (i386_fp_regnum_p (get_frame_arch (frame), regnum))
2794 {
2795 i387_value_to_register (frame, regnum, type, from);
2796 return;
2797 }
2798
2799 /* Write a value spread across multiple registers. */
2800
2801 gdb_assert (len > 4 && len % 4 == 0);
2802
2803 while (len > 0)
2804 {
2805 gdb_assert (regnum != -1);
2806 gdb_assert (register_size (get_frame_arch (frame), regnum) == 4);
2807
2808 put_frame_register (frame, regnum, from);
2809 regnum = i386_next_regnum (regnum);
2810 len -= 4;
2811 from += 4;
2812 }
2813 }
2814 \f
2815 /* Supply register REGNUM from the buffer specified by GREGS and LEN
2816 in the general-purpose register set REGSET to register cache
2817 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
2818
2819 void
2820 i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
2821 int regnum, const void *gregs, size_t len)
2822 {
2823 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
2824 const gdb_byte *regs = gregs;
2825 int i;
2826
2827 gdb_assert (len == tdep->sizeof_gregset);
2828
2829 for (i = 0; i < tdep->gregset_num_regs; i++)
2830 {
2831 if ((regnum == i || regnum == -1)
2832 && tdep->gregset_reg_offset[i] != -1)
2833 regcache_raw_supply (regcache, i, regs + tdep->gregset_reg_offset[i]);
2834 }
2835 }
2836
2837 /* Collect register REGNUM from the register cache REGCACHE and store
2838 it in the buffer specified by GREGS and LEN as described by the
2839 general-purpose register set REGSET. If REGNUM is -1, do this for
2840 all registers in REGSET. */
2841
2842 void
2843 i386_collect_gregset (const struct regset *regset,
2844 const struct regcache *regcache,
2845 int regnum, void *gregs, size_t len)
2846 {
2847 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
2848 gdb_byte *regs = gregs;
2849 int i;
2850
2851 gdb_assert (len == tdep->sizeof_gregset);
2852
2853 for (i = 0; i < tdep->gregset_num_regs; i++)
2854 {
2855 if ((regnum == i || regnum == -1)
2856 && tdep->gregset_reg_offset[i] != -1)
2857 regcache_raw_collect (regcache, i, regs + tdep->gregset_reg_offset[i]);
2858 }
2859 }
2860
2861 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
2862 in the floating-point register set REGSET to register cache
2863 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
2864
2865 static void
2866 i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
2867 int regnum, const void *fpregs, size_t len)
2868 {
2869 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
2870
2871 if (len == I387_SIZEOF_FXSAVE)
2872 {
2873 i387_supply_fxsave (regcache, regnum, fpregs);
2874 return;
2875 }
2876
2877 gdb_assert (len == tdep->sizeof_fpregset);
2878 i387_supply_fsave (regcache, regnum, fpregs);
2879 }
2880
2881 /* Collect register REGNUM from the register cache REGCACHE and store
2882 it in the buffer specified by FPREGS and LEN as described by the
2883 floating-point register set REGSET. If REGNUM is -1, do this for
2884 all registers in REGSET. */
2885
2886 static void
2887 i386_collect_fpregset (const struct regset *regset,
2888 const struct regcache *regcache,
2889 int regnum, void *fpregs, size_t len)
2890 {
2891 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
2892
2893 if (len == I387_SIZEOF_FXSAVE)
2894 {
2895 i387_collect_fxsave (regcache, regnum, fpregs);
2896 return;
2897 }
2898
2899 gdb_assert (len == tdep->sizeof_fpregset);
2900 i387_collect_fsave (regcache, regnum, fpregs);
2901 }
2902
2903 /* Similar to i386_supply_fpregset, but use XSAVE extended state. */
2904
2905 static void
2906 i386_supply_xstateregset (const struct regset *regset,
2907 struct regcache *regcache, int regnum,
2908 const void *xstateregs, size_t len)
2909 {
2910 i387_supply_xsave (regcache, regnum, xstateregs);
2911 }
2912
2913 /* Similar to i386_collect_fpregset , but use XSAVE extended state. */
2914
2915 static void
2916 i386_collect_xstateregset (const struct regset *regset,
2917 const struct regcache *regcache,
2918 int regnum, void *xstateregs, size_t len)
2919 {
2920 i387_collect_xsave (regcache, regnum, xstateregs, 1);
2921 }
2922
2923 /* Return the appropriate register set for the core section identified
2924 by SECT_NAME and SECT_SIZE. */
2925
2926 const struct regset *
2927 i386_regset_from_core_section (struct gdbarch *gdbarch,
2928 const char *sect_name, size_t sect_size)
2929 {
2930 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2931
2932 if (strcmp (sect_name, ".reg") == 0 && sect_size == tdep->sizeof_gregset)
2933 {
2934 if (tdep->gregset == NULL)
2935 tdep->gregset = regset_alloc (gdbarch, i386_supply_gregset,
2936 i386_collect_gregset);
2937 return tdep->gregset;
2938 }
2939
2940 if ((strcmp (sect_name, ".reg2") == 0 && sect_size == tdep->sizeof_fpregset)
2941 || (strcmp (sect_name, ".reg-xfp") == 0
2942 && sect_size == I387_SIZEOF_FXSAVE))
2943 {
2944 if (tdep->fpregset == NULL)
2945 tdep->fpregset = regset_alloc (gdbarch, i386_supply_fpregset,
2946 i386_collect_fpregset);
2947 return tdep->fpregset;
2948 }
2949
2950 if (strcmp (sect_name, ".reg-xstate") == 0)
2951 {
2952 if (tdep->xstateregset == NULL)
2953 tdep->xstateregset = regset_alloc (gdbarch,
2954 i386_supply_xstateregset,
2955 i386_collect_xstateregset);
2956
2957 return tdep->xstateregset;
2958 }
2959
2960 return NULL;
2961 }
2962 \f
2963
2964 /* Stuff for WIN32 PE style DLL's but is pretty generic really. */
2965
2966 CORE_ADDR
2967 i386_pe_skip_trampoline_code (struct frame_info *frame,
2968 CORE_ADDR pc, char *name)
2969 {
2970 struct gdbarch *gdbarch = get_frame_arch (frame);
2971 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2972
2973 /* jmp *(dest) */
2974 if (pc && read_memory_unsigned_integer (pc, 2, byte_order) == 0x25ff)
2975 {
2976 unsigned long indirect =
2977 read_memory_unsigned_integer (pc + 2, 4, byte_order);
2978 struct minimal_symbol *indsym =
2979 indirect ? lookup_minimal_symbol_by_pc (indirect) : 0;
2980 char *symname = indsym ? SYMBOL_LINKAGE_NAME (indsym) : 0;
2981
2982 if (symname)
2983 {
2984 if (strncmp (symname, "__imp_", 6) == 0
2985 || strncmp (symname, "_imp_", 5) == 0)
2986 return name ? 1 :
2987 read_memory_unsigned_integer (indirect, 4, byte_order);
2988 }
2989 }
2990 return 0; /* Not a trampoline. */
2991 }
2992 \f
2993
2994 /* Return whether the THIS_FRAME corresponds to a sigtramp
2995 routine. */
2996
2997 int
2998 i386_sigtramp_p (struct frame_info *this_frame)
2999 {
3000 CORE_ADDR pc = get_frame_pc (this_frame);
3001 char *name;
3002
3003 find_pc_partial_function (pc, &name, NULL, NULL);
3004 return (name && strcmp ("_sigtramp", name) == 0);
3005 }
3006 \f
3007
3008 /* We have two flavours of disassembly. The machinery on this page
3009 deals with switching between those. */
3010
3011 static int
3012 i386_print_insn (bfd_vma pc, struct disassemble_info *info)
3013 {
3014 gdb_assert (disassembly_flavor == att_flavor
3015 || disassembly_flavor == intel_flavor);
3016
3017 /* FIXME: kettenis/20020915: Until disassembler_options is properly
3018 constified, cast to prevent a compiler warning. */
3019 info->disassembler_options = (char *) disassembly_flavor;
3020
3021 return print_insn_i386 (pc, info);
3022 }
3023 \f
3024
3025 /* There are a few i386 architecture variants that differ only
3026 slightly from the generic i386 target. For now, we don't give them
3027 their own source file, but include them here. As a consequence,
3028 they'll always be included. */
3029
3030 /* System V Release 4 (SVR4). */
3031
3032 /* Return whether THIS_FRAME corresponds to a SVR4 sigtramp
3033 routine. */
3034
3035 static int
3036 i386_svr4_sigtramp_p (struct frame_info *this_frame)
3037 {
3038 CORE_ADDR pc = get_frame_pc (this_frame);
3039 char *name;
3040
3041 /* UnixWare uses _sigacthandler. The origin of the other symbols is
3042 currently unknown. */
3043 find_pc_partial_function (pc, &name, NULL, NULL);
3044 return (name && (strcmp ("_sigreturn", name) == 0
3045 || strcmp ("_sigacthandler", name) == 0
3046 || strcmp ("sigvechandler", name) == 0));
3047 }
3048
3049 /* Assuming THIS_FRAME is for a SVR4 sigtramp routine, return the
3050 address of the associated sigcontext (ucontext) structure. */
3051
3052 static CORE_ADDR
3053 i386_svr4_sigcontext_addr (struct frame_info *this_frame)
3054 {
3055 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3056 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3057 gdb_byte buf[4];
3058 CORE_ADDR sp;
3059
3060 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
3061 sp = extract_unsigned_integer (buf, 4, byte_order);
3062
3063 return read_memory_unsigned_integer (sp + 8, 4, byte_order);
3064 }
3065 \f
3066
3067 /* Generic ELF. */
3068
3069 void
3070 i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3071 {
3072 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
3073 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
3074 }
3075
3076 /* System V Release 4 (SVR4). */
3077
3078 void
3079 i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3080 {
3081 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3082
3083 /* System V Release 4 uses ELF. */
3084 i386_elf_init_abi (info, gdbarch);
3085
3086 /* System V Release 4 has shared libraries. */
3087 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
3088
3089 tdep->sigtramp_p = i386_svr4_sigtramp_p;
3090 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
3091 tdep->sc_pc_offset = 36 + 14 * 4;
3092 tdep->sc_sp_offset = 36 + 17 * 4;
3093
3094 tdep->jb_pc_offset = 20;
3095 }
3096
3097 /* DJGPP. */
3098
3099 static void
3100 i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3101 {
3102 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3103
3104 /* DJGPP doesn't have any special frames for signal handlers. */
3105 tdep->sigtramp_p = NULL;
3106
3107 tdep->jb_pc_offset = 36;
3108
3109 /* DJGPP does not support the SSE registers. */
3110 if (! tdesc_has_registers (info.target_desc))
3111 tdep->tdesc = tdesc_i386_mmx;
3112
3113 /* Native compiler is GCC, which uses the SVR4 register numbering
3114 even in COFF and STABS. See the comment in i386_gdbarch_init,
3115 before the calls to set_gdbarch_stab_reg_to_regnum and
3116 set_gdbarch_sdb_reg_to_regnum. */
3117 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
3118 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
3119
3120 set_gdbarch_has_dos_based_file_system (gdbarch, 1);
3121 }
3122 \f
3123
3124 /* i386 register groups. In addition to the normal groups, add "mmx"
3125 and "sse". */
3126
3127 static struct reggroup *i386_sse_reggroup;
3128 static struct reggroup *i386_mmx_reggroup;
3129
3130 static void
3131 i386_init_reggroups (void)
3132 {
3133 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
3134 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
3135 }
3136
3137 static void
3138 i386_add_reggroups (struct gdbarch *gdbarch)
3139 {
3140 reggroup_add (gdbarch, i386_sse_reggroup);
3141 reggroup_add (gdbarch, i386_mmx_reggroup);
3142 reggroup_add (gdbarch, general_reggroup);
3143 reggroup_add (gdbarch, float_reggroup);
3144 reggroup_add (gdbarch, all_reggroup);
3145 reggroup_add (gdbarch, save_reggroup);
3146 reggroup_add (gdbarch, restore_reggroup);
3147 reggroup_add (gdbarch, vector_reggroup);
3148 reggroup_add (gdbarch, system_reggroup);
3149 }
3150
3151 int
3152 i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
3153 struct reggroup *group)
3154 {
3155 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3156 int fp_regnum_p, mmx_regnum_p, xmm_regnum_p, mxcsr_regnum_p,
3157 ymm_regnum_p, ymmh_regnum_p;
3158
3159 /* Don't include pseudo registers, except for MMX, in any register
3160 groups. */
3161 if (i386_byte_regnum_p (gdbarch, regnum))
3162 return 0;
3163
3164 if (i386_word_regnum_p (gdbarch, regnum))
3165 return 0;
3166
3167 if (i386_dword_regnum_p (gdbarch, regnum))
3168 return 0;
3169
3170 mmx_regnum_p = i386_mmx_regnum_p (gdbarch, regnum);
3171 if (group == i386_mmx_reggroup)
3172 return mmx_regnum_p;
3173
3174 xmm_regnum_p = i386_xmm_regnum_p (gdbarch, regnum);
3175 mxcsr_regnum_p = i386_mxcsr_regnum_p (gdbarch, regnum);
3176 if (group == i386_sse_reggroup)
3177 return xmm_regnum_p || mxcsr_regnum_p;
3178
3179 ymm_regnum_p = i386_ymm_regnum_p (gdbarch, regnum);
3180 if (group == vector_reggroup)
3181 return (mmx_regnum_p
3182 || ymm_regnum_p
3183 || mxcsr_regnum_p
3184 || (xmm_regnum_p
3185 && ((tdep->xcr0 & I386_XSTATE_AVX_MASK)
3186 == I386_XSTATE_SSE_MASK)));
3187
3188 fp_regnum_p = (i386_fp_regnum_p (gdbarch, regnum)
3189 || i386_fpc_regnum_p (gdbarch, regnum));
3190 if (group == float_reggroup)
3191 return fp_regnum_p;
3192
3193 /* For "info reg all", don't include upper YMM registers nor XMM
3194 registers when AVX is supported. */
3195 ymmh_regnum_p = i386_ymmh_regnum_p (gdbarch, regnum);
3196 if (group == all_reggroup
3197 && ((xmm_regnum_p
3198 && (tdep->xcr0 & I386_XSTATE_AVX))
3199 || ymmh_regnum_p))
3200 return 0;
3201
3202 if (group == general_reggroup)
3203 return (!fp_regnum_p
3204 && !mmx_regnum_p
3205 && !mxcsr_regnum_p
3206 && !xmm_regnum_p
3207 && !ymm_regnum_p
3208 && !ymmh_regnum_p);
3209
3210 return default_register_reggroup_p (gdbarch, regnum, group);
3211 }
3212 \f
3213
3214 /* Get the ARGIth function argument for the current function. */
3215
3216 static CORE_ADDR
3217 i386_fetch_pointer_argument (struct frame_info *frame, int argi,
3218 struct type *type)
3219 {
3220 struct gdbarch *gdbarch = get_frame_arch (frame);
3221 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3222 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
3223 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4, byte_order);
3224 }
3225
3226 static void
3227 i386_skip_permanent_breakpoint (struct regcache *regcache)
3228 {
3229 CORE_ADDR current_pc = regcache_read_pc (regcache);
3230
3231 /* On i386, breakpoint is exactly 1 byte long, so we just
3232 adjust the PC in the regcache. */
3233 current_pc += 1;
3234 regcache_write_pc (regcache, current_pc);
3235 }
3236
3237
3238 #define PREFIX_REPZ 0x01
3239 #define PREFIX_REPNZ 0x02
3240 #define PREFIX_LOCK 0x04
3241 #define PREFIX_DATA 0x08
3242 #define PREFIX_ADDR 0x10
3243
3244 /* operand size */
3245 enum
3246 {
3247 OT_BYTE = 0,
3248 OT_WORD,
3249 OT_LONG,
3250 OT_QUAD,
3251 OT_DQUAD,
3252 };
3253
3254 /* i386 arith/logic operations */
3255 enum
3256 {
3257 OP_ADDL,
3258 OP_ORL,
3259 OP_ADCL,
3260 OP_SBBL,
3261 OP_ANDL,
3262 OP_SUBL,
3263 OP_XORL,
3264 OP_CMPL,
3265 };
3266
3267 struct i386_record_s
3268 {
3269 struct gdbarch *gdbarch;
3270 struct regcache *regcache;
3271 CORE_ADDR orig_addr;
3272 CORE_ADDR addr;
3273 int aflag;
3274 int dflag;
3275 int override;
3276 uint8_t modrm;
3277 uint8_t mod, reg, rm;
3278 int ot;
3279 uint8_t rex_x;
3280 uint8_t rex_b;
3281 int rip_offset;
3282 int popl_esp_hack;
3283 const int *regmap;
3284 };
3285
3286 /* Parse "modrm" part in current memory address that irp->addr point to
3287 Return -1 if something wrong. */
3288
3289 static int
3290 i386_record_modrm (struct i386_record_s *irp)
3291 {
3292 struct gdbarch *gdbarch = irp->gdbarch;
3293
3294 if (target_read_memory (irp->addr, &irp->modrm, 1))
3295 {
3296 if (record_debug)
3297 printf_unfiltered (_("Process record: error reading memory at "
3298 "addr %s len = 1.\n"),
3299 paddress (gdbarch, irp->addr));
3300 return -1;
3301 }
3302 irp->addr++;
3303 irp->mod = (irp->modrm >> 6) & 3;
3304 irp->reg = (irp->modrm >> 3) & 7;
3305 irp->rm = irp->modrm & 7;
3306
3307 return 0;
3308 }
3309
3310 /* Get the memory address that current instruction write to and set it to
3311 the argument "addr".
3312 Return -1 if something wrong. */
3313
3314 static int
3315 i386_record_lea_modrm_addr (struct i386_record_s *irp, uint64_t *addr)
3316 {
3317 struct gdbarch *gdbarch = irp->gdbarch;
3318 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3319 gdb_byte buf[4];
3320 ULONGEST offset64;
3321
3322 *addr = 0;
3323 if (irp->aflag)
3324 {
3325 /* 32 bits */
3326 int havesib = 0;
3327 uint8_t scale = 0;
3328 uint8_t byte;
3329 uint8_t index = 0;
3330 uint8_t base = irp->rm;
3331
3332 if (base == 4)
3333 {
3334 havesib = 1;
3335 if (target_read_memory (irp->addr, &byte, 1))
3336 {
3337 if (record_debug)
3338 printf_unfiltered (_("Process record: error reading memory "
3339 "at addr %s len = 1.\n"),
3340 paddress (gdbarch, irp->addr));
3341 return -1;
3342 }
3343 irp->addr++;
3344 scale = (byte >> 6) & 3;
3345 index = ((byte >> 3) & 7) | irp->rex_x;
3346 base = (byte & 7);
3347 }
3348 base |= irp->rex_b;
3349
3350 switch (irp->mod)
3351 {
3352 case 0:
3353 if ((base & 7) == 5)
3354 {
3355 base = 0xff;
3356 if (target_read_memory (irp->addr, buf, 4))
3357 {
3358 if (record_debug)
3359 printf_unfiltered (_("Process record: error reading "
3360 "memory at addr %s len = 4.\n"),
3361 paddress (gdbarch, irp->addr));
3362 return -1;
3363 }
3364 irp->addr += 4;
3365 *addr = extract_signed_integer (buf, 4, byte_order);
3366 if (irp->regmap[X86_RECORD_R8_REGNUM] && !havesib)
3367 *addr += irp->addr + irp->rip_offset;
3368 }
3369 break;
3370 case 1:
3371 if (target_read_memory (irp->addr, buf, 1))
3372 {
3373 if (record_debug)
3374 printf_unfiltered (_("Process record: error reading memory "
3375 "at addr %s len = 1.\n"),
3376 paddress (gdbarch, irp->addr));
3377 return -1;
3378 }
3379 irp->addr++;
3380 *addr = (int8_t) buf[0];
3381 break;
3382 case 2:
3383 if (target_read_memory (irp->addr, buf, 4))
3384 {
3385 if (record_debug)
3386 printf_unfiltered (_("Process record: error reading memory "
3387 "at addr %s len = 4.\n"),
3388 paddress (gdbarch, irp->addr));
3389 return -1;
3390 }
3391 *addr = extract_signed_integer (buf, 4, byte_order);
3392 irp->addr += 4;
3393 break;
3394 }
3395
3396 offset64 = 0;
3397 if (base != 0xff)
3398 {
3399 if (base == 4 && irp->popl_esp_hack)
3400 *addr += irp->popl_esp_hack;
3401 regcache_raw_read_unsigned (irp->regcache, irp->regmap[base],
3402 &offset64);
3403 }
3404 if (irp->aflag == 2)
3405 {
3406 *addr += offset64;
3407 }
3408 else
3409 *addr = (uint32_t) (offset64 + *addr);
3410
3411 if (havesib && (index != 4 || scale != 0))
3412 {
3413 regcache_raw_read_unsigned (irp->regcache, irp->regmap[index],
3414 &offset64);
3415 if (irp->aflag == 2)
3416 *addr += offset64 << scale;
3417 else
3418 *addr = (uint32_t) (*addr + (offset64 << scale));
3419 }
3420 }
3421 else
3422 {
3423 /* 16 bits */
3424 switch (irp->mod)
3425 {
3426 case 0:
3427 if (irp->rm == 6)
3428 {
3429 if (target_read_memory (irp->addr, buf, 2))
3430 {
3431 if (record_debug)
3432 printf_unfiltered (_("Process record: error reading "
3433 "memory at addr %s len = 2.\n"),
3434 paddress (gdbarch, irp->addr));
3435 return -1;
3436 }
3437 irp->addr += 2;
3438 *addr = extract_signed_integer (buf, 2, byte_order);
3439 irp->rm = 0;
3440 goto no_rm;
3441 }
3442 break;
3443 case 1:
3444 if (target_read_memory (irp->addr, buf, 1))
3445 {
3446 if (record_debug)
3447 printf_unfiltered (_("Process record: error reading memory "
3448 "at addr %s len = 1.\n"),
3449 paddress (gdbarch, irp->addr));
3450 return -1;
3451 }
3452 irp->addr++;
3453 *addr = (int8_t) buf[0];
3454 break;
3455 case 2:
3456 if (target_read_memory (irp->addr, buf, 2))
3457 {
3458 if (record_debug)
3459 printf_unfiltered (_("Process record: error reading memory "
3460 "at addr %s len = 2.\n"),
3461 paddress (gdbarch, irp->addr));
3462 return -1;
3463 }
3464 irp->addr += 2;
3465 *addr = extract_signed_integer (buf, 2, byte_order);
3466 break;
3467 }
3468
3469 switch (irp->rm)
3470 {
3471 case 0:
3472 regcache_raw_read_unsigned (irp->regcache,
3473 irp->regmap[X86_RECORD_REBX_REGNUM],
3474 &offset64);
3475 *addr = (uint32_t) (*addr + offset64);
3476 regcache_raw_read_unsigned (irp->regcache,
3477 irp->regmap[X86_RECORD_RESI_REGNUM],
3478 &offset64);
3479 *addr = (uint32_t) (*addr + offset64);
3480 break;
3481 case 1:
3482 regcache_raw_read_unsigned (irp->regcache,
3483 irp->regmap[X86_RECORD_REBX_REGNUM],
3484 &offset64);
3485 *addr = (uint32_t) (*addr + offset64);
3486 regcache_raw_read_unsigned (irp->regcache,
3487 irp->regmap[X86_RECORD_REDI_REGNUM],
3488 &offset64);
3489 *addr = (uint32_t) (*addr + offset64);
3490 break;
3491 case 2:
3492 regcache_raw_read_unsigned (irp->regcache,
3493 irp->regmap[X86_RECORD_REBP_REGNUM],
3494 &offset64);
3495 *addr = (uint32_t) (*addr + offset64);
3496 regcache_raw_read_unsigned (irp->regcache,
3497 irp->regmap[X86_RECORD_RESI_REGNUM],
3498 &offset64);
3499 *addr = (uint32_t) (*addr + offset64);
3500 break;
3501 case 3:
3502 regcache_raw_read_unsigned (irp->regcache,
3503 irp->regmap[X86_RECORD_REBP_REGNUM],
3504 &offset64);
3505 *addr = (uint32_t) (*addr + offset64);
3506 regcache_raw_read_unsigned (irp->regcache,
3507 irp->regmap[X86_RECORD_REDI_REGNUM],
3508 &offset64);
3509 *addr = (uint32_t) (*addr + offset64);
3510 break;
3511 case 4:
3512 regcache_raw_read_unsigned (irp->regcache,
3513 irp->regmap[X86_RECORD_RESI_REGNUM],
3514 &offset64);
3515 *addr = (uint32_t) (*addr + offset64);
3516 break;
3517 case 5:
3518 regcache_raw_read_unsigned (irp->regcache,
3519 irp->regmap[X86_RECORD_REDI_REGNUM],
3520 &offset64);
3521 *addr = (uint32_t) (*addr + offset64);
3522 break;
3523 case 6:
3524 regcache_raw_read_unsigned (irp->regcache,
3525 irp->regmap[X86_RECORD_REBP_REGNUM],
3526 &offset64);
3527 *addr = (uint32_t) (*addr + offset64);
3528 break;
3529 case 7:
3530 regcache_raw_read_unsigned (irp->regcache,
3531 irp->regmap[X86_RECORD_REBX_REGNUM],
3532 &offset64);
3533 *addr = (uint32_t) (*addr + offset64);
3534 break;
3535 }
3536 *addr &= 0xffff;
3537 }
3538
3539 no_rm:
3540 return 0;
3541 }
3542
3543 /* Record the value of the memory that willbe changed in current instruction
3544 to "record_arch_list".
3545 Return -1 if something wrong. */
3546
3547 static int
3548 i386_record_lea_modrm (struct i386_record_s *irp)
3549 {
3550 struct gdbarch *gdbarch = irp->gdbarch;
3551 uint64_t addr;
3552
3553 if (irp->override >= 0)
3554 {
3555 if (record_memory_query)
3556 {
3557 int q;
3558
3559 target_terminal_ours ();
3560 q = yquery (_("\
3561 Process record ignores the memory change of instruction at address %s\n\
3562 because it can't get the value of the segment register.\n\
3563 Do you want to stop the program?"),
3564 paddress (gdbarch, irp->orig_addr));
3565 target_terminal_inferior ();
3566 if (q)
3567 return -1;
3568 }
3569
3570 return 0;
3571 }
3572
3573 if (i386_record_lea_modrm_addr (irp, &addr))
3574 return -1;
3575
3576 if (record_arch_list_add_mem (addr, 1 << irp->ot))
3577 return -1;
3578
3579 return 0;
3580 }
3581
3582 /* Record the push operation to "record_arch_list".
3583 Return -1 if something wrong. */
3584
3585 static int
3586 i386_record_push (struct i386_record_s *irp, int size)
3587 {
3588 ULONGEST addr;
3589
3590 if (record_arch_list_add_reg (irp->regcache,
3591 irp->regmap[X86_RECORD_RESP_REGNUM]))
3592 return -1;
3593 regcache_raw_read_unsigned (irp->regcache,
3594 irp->regmap[X86_RECORD_RESP_REGNUM],
3595 &addr);
3596 if (record_arch_list_add_mem ((CORE_ADDR) addr - size, size))
3597 return -1;
3598
3599 return 0;
3600 }
3601
3602
3603 /* Defines contents to record. */
3604 #define I386_SAVE_FPU_REGS 0xfffd
3605 #define I386_SAVE_FPU_ENV 0xfffe
3606 #define I386_SAVE_FPU_ENV_REG_STACK 0xffff
3607
3608 /* Record the value of floating point registers which will be changed
3609 by the current instruction to "record_arch_list". Return -1 if
3610 something is wrong. */
3611
3612 static int i386_record_floats (struct gdbarch *gdbarch,
3613 struct i386_record_s *ir,
3614 uint32_t iregnum)
3615 {
3616 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3617 int i;
3618
3619 /* Oza: Because of floating point insn push/pop of fpu stack is going to
3620 happen. Currently we store st0-st7 registers, but we need not store all
3621 registers all the time, in future we use ftag register and record only
3622 those who are not marked as an empty. */
3623
3624 if (I386_SAVE_FPU_REGS == iregnum)
3625 {
3626 for (i = I387_ST0_REGNUM (tdep); i <= I387_ST0_REGNUM (tdep) + 7; i++)
3627 {
3628 if (record_arch_list_add_reg (ir->regcache, i))
3629 return -1;
3630 }
3631 }
3632 else if (I386_SAVE_FPU_ENV == iregnum)
3633 {
3634 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
3635 {
3636 if (record_arch_list_add_reg (ir->regcache, i))
3637 return -1;
3638 }
3639 }
3640 else if (I386_SAVE_FPU_ENV_REG_STACK == iregnum)
3641 {
3642 for (i = I387_ST0_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
3643 {
3644 if (record_arch_list_add_reg (ir->regcache, i))
3645 return -1;
3646 }
3647 }
3648 else if ((iregnum >= I387_ST0_REGNUM (tdep)) &&
3649 (iregnum <= I387_FOP_REGNUM (tdep)))
3650 {
3651 if (record_arch_list_add_reg (ir->regcache,iregnum))
3652 return -1;
3653 }
3654 else
3655 {
3656 /* Parameter error. */
3657 return -1;
3658 }
3659 if(I386_SAVE_FPU_ENV != iregnum)
3660 {
3661 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
3662 {
3663 if (record_arch_list_add_reg (ir->regcache, i))
3664 return -1;
3665 }
3666 }
3667 return 0;
3668 }
3669
3670 /* Parse the current instruction and record the values of the registers and
3671 memory that will be changed in current instruction to "record_arch_list".
3672 Return -1 if something wrong. */
3673
3674 #define I386_RECORD_ARCH_LIST_ADD_REG(regnum) \
3675 record_arch_list_add_reg (ir.regcache, ir.regmap[(regnum)])
3676
3677 int
3678 i386_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
3679 CORE_ADDR input_addr)
3680 {
3681 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3682 int prefixes = 0;
3683 int regnum = 0;
3684 uint32_t opcode;
3685 uint8_t opcode8;
3686 ULONGEST addr;
3687 gdb_byte buf[MAX_REGISTER_SIZE];
3688 struct i386_record_s ir;
3689 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3690 int rex = 0;
3691 uint8_t rex_w = -1;
3692 uint8_t rex_r = 0;
3693
3694 memset (&ir, 0, sizeof (struct i386_record_s));
3695 ir.regcache = regcache;
3696 ir.addr = input_addr;
3697 ir.orig_addr = input_addr;
3698 ir.aflag = 1;
3699 ir.dflag = 1;
3700 ir.override = -1;
3701 ir.popl_esp_hack = 0;
3702 ir.regmap = tdep->record_regmap;
3703 ir.gdbarch = gdbarch;
3704
3705 if (record_debug > 1)
3706 fprintf_unfiltered (gdb_stdlog, "Process record: i386_process_record "
3707 "addr = %s\n",
3708 paddress (gdbarch, ir.addr));
3709
3710 /* prefixes */
3711 while (1)
3712 {
3713 if (target_read_memory (ir.addr, &opcode8, 1))
3714 {
3715 if (record_debug)
3716 printf_unfiltered (_("Process record: error reading memory at "
3717 "addr %s len = 1.\n"),
3718 paddress (gdbarch, ir.addr));
3719 return -1;
3720 }
3721 ir.addr++;
3722 switch (opcode8) /* Instruction prefixes */
3723 {
3724 case REPE_PREFIX_OPCODE:
3725 prefixes |= PREFIX_REPZ;
3726 break;
3727 case REPNE_PREFIX_OPCODE:
3728 prefixes |= PREFIX_REPNZ;
3729 break;
3730 case LOCK_PREFIX_OPCODE:
3731 prefixes |= PREFIX_LOCK;
3732 break;
3733 case CS_PREFIX_OPCODE:
3734 ir.override = X86_RECORD_CS_REGNUM;
3735 break;
3736 case SS_PREFIX_OPCODE:
3737 ir.override = X86_RECORD_SS_REGNUM;
3738 break;
3739 case DS_PREFIX_OPCODE:
3740 ir.override = X86_RECORD_DS_REGNUM;
3741 break;
3742 case ES_PREFIX_OPCODE:
3743 ir.override = X86_RECORD_ES_REGNUM;
3744 break;
3745 case FS_PREFIX_OPCODE:
3746 ir.override = X86_RECORD_FS_REGNUM;
3747 break;
3748 case GS_PREFIX_OPCODE:
3749 ir.override = X86_RECORD_GS_REGNUM;
3750 break;
3751 case DATA_PREFIX_OPCODE:
3752 prefixes |= PREFIX_DATA;
3753 break;
3754 case ADDR_PREFIX_OPCODE:
3755 prefixes |= PREFIX_ADDR;
3756 break;
3757 case 0x40: /* i386 inc %eax */
3758 case 0x41: /* i386 inc %ecx */
3759 case 0x42: /* i386 inc %edx */
3760 case 0x43: /* i386 inc %ebx */
3761 case 0x44: /* i386 inc %esp */
3762 case 0x45: /* i386 inc %ebp */
3763 case 0x46: /* i386 inc %esi */
3764 case 0x47: /* i386 inc %edi */
3765 case 0x48: /* i386 dec %eax */
3766 case 0x49: /* i386 dec %ecx */
3767 case 0x4a: /* i386 dec %edx */
3768 case 0x4b: /* i386 dec %ebx */
3769 case 0x4c: /* i386 dec %esp */
3770 case 0x4d: /* i386 dec %ebp */
3771 case 0x4e: /* i386 dec %esi */
3772 case 0x4f: /* i386 dec %edi */
3773 if (ir.regmap[X86_RECORD_R8_REGNUM]) /* 64 bit target */
3774 {
3775 /* REX */
3776 rex = 1;
3777 rex_w = (opcode8 >> 3) & 1;
3778 rex_r = (opcode8 & 0x4) << 1;
3779 ir.rex_x = (opcode8 & 0x2) << 2;
3780 ir.rex_b = (opcode8 & 0x1) << 3;
3781 }
3782 else /* 32 bit target */
3783 goto out_prefixes;
3784 break;
3785 default:
3786 goto out_prefixes;
3787 break;
3788 }
3789 }
3790 out_prefixes:
3791 if (ir.regmap[X86_RECORD_R8_REGNUM] && rex_w == 1)
3792 {
3793 ir.dflag = 2;
3794 }
3795 else
3796 {
3797 if (prefixes & PREFIX_DATA)
3798 ir.dflag ^= 1;
3799 }
3800 if (prefixes & PREFIX_ADDR)
3801 ir.aflag ^= 1;
3802 else if (ir.regmap[X86_RECORD_R8_REGNUM])
3803 ir.aflag = 2;
3804
3805 /* Now check op code. */
3806 opcode = (uint32_t) opcode8;
3807 reswitch:
3808 switch (opcode)
3809 {
3810 case 0x0f:
3811 if (target_read_memory (ir.addr, &opcode8, 1))
3812 {
3813 if (record_debug)
3814 printf_unfiltered (_("Process record: error reading memory at "
3815 "addr %s len = 1.\n"),
3816 paddress (gdbarch, ir.addr));
3817 return -1;
3818 }
3819 ir.addr++;
3820 opcode = (uint32_t) opcode8 | 0x0f00;
3821 goto reswitch;
3822 break;
3823
3824 case 0x00: /* arith & logic */
3825 case 0x01:
3826 case 0x02:
3827 case 0x03:
3828 case 0x04:
3829 case 0x05:
3830 case 0x08:
3831 case 0x09:
3832 case 0x0a:
3833 case 0x0b:
3834 case 0x0c:
3835 case 0x0d:
3836 case 0x10:
3837 case 0x11:
3838 case 0x12:
3839 case 0x13:
3840 case 0x14:
3841 case 0x15:
3842 case 0x18:
3843 case 0x19:
3844 case 0x1a:
3845 case 0x1b:
3846 case 0x1c:
3847 case 0x1d:
3848 case 0x20:
3849 case 0x21:
3850 case 0x22:
3851 case 0x23:
3852 case 0x24:
3853 case 0x25:
3854 case 0x28:
3855 case 0x29:
3856 case 0x2a:
3857 case 0x2b:
3858 case 0x2c:
3859 case 0x2d:
3860 case 0x30:
3861 case 0x31:
3862 case 0x32:
3863 case 0x33:
3864 case 0x34:
3865 case 0x35:
3866 case 0x38:
3867 case 0x39:
3868 case 0x3a:
3869 case 0x3b:
3870 case 0x3c:
3871 case 0x3d:
3872 if (((opcode >> 3) & 7) != OP_CMPL)
3873 {
3874 if ((opcode & 1) == 0)
3875 ir.ot = OT_BYTE;
3876 else
3877 ir.ot = ir.dflag + OT_WORD;
3878
3879 switch ((opcode >> 1) & 3)
3880 {
3881 case 0: /* OP Ev, Gv */
3882 if (i386_record_modrm (&ir))
3883 return -1;
3884 if (ir.mod != 3)
3885 {
3886 if (i386_record_lea_modrm (&ir))
3887 return -1;
3888 }
3889 else
3890 {
3891 ir.rm |= ir.rex_b;
3892 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
3893 ir.rm &= 0x3;
3894 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
3895 }
3896 break;
3897 case 1: /* OP Gv, Ev */
3898 if (i386_record_modrm (&ir))
3899 return -1;
3900 ir.reg |= rex_r;
3901 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
3902 ir.reg &= 0x3;
3903 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
3904 break;
3905 case 2: /* OP A, Iv */
3906 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
3907 break;
3908 }
3909 }
3910 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
3911 break;
3912
3913 case 0x80: /* GRP1 */
3914 case 0x81:
3915 case 0x82:
3916 case 0x83:
3917 if (i386_record_modrm (&ir))
3918 return -1;
3919
3920 if (ir.reg != OP_CMPL)
3921 {
3922 if ((opcode & 1) == 0)
3923 ir.ot = OT_BYTE;
3924 else
3925 ir.ot = ir.dflag + OT_WORD;
3926
3927 if (ir.mod != 3)
3928 {
3929 if (opcode == 0x83)
3930 ir.rip_offset = 1;
3931 else
3932 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
3933 if (i386_record_lea_modrm (&ir))
3934 return -1;
3935 }
3936 else
3937 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
3938 }
3939 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
3940 break;
3941
3942 case 0x40: /* inc */
3943 case 0x41:
3944 case 0x42:
3945 case 0x43:
3946 case 0x44:
3947 case 0x45:
3948 case 0x46:
3949 case 0x47:
3950
3951 case 0x48: /* dec */
3952 case 0x49:
3953 case 0x4a:
3954 case 0x4b:
3955 case 0x4c:
3956 case 0x4d:
3957 case 0x4e:
3958 case 0x4f:
3959
3960 I386_RECORD_ARCH_LIST_ADD_REG (opcode & 7);
3961 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
3962 break;
3963
3964 case 0xf6: /* GRP3 */
3965 case 0xf7:
3966 if ((opcode & 1) == 0)
3967 ir.ot = OT_BYTE;
3968 else
3969 ir.ot = ir.dflag + OT_WORD;
3970 if (i386_record_modrm (&ir))
3971 return -1;
3972
3973 if (ir.mod != 3 && ir.reg == 0)
3974 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
3975
3976 switch (ir.reg)
3977 {
3978 case 0: /* test */
3979 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
3980 break;
3981 case 2: /* not */
3982 case 3: /* neg */
3983 if (ir.mod != 3)
3984 {
3985 if (i386_record_lea_modrm (&ir))
3986 return -1;
3987 }
3988 else
3989 {
3990 ir.rm |= ir.rex_b;
3991 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
3992 ir.rm &= 0x3;
3993 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
3994 }
3995 if (ir.reg == 3) /* neg */
3996 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
3997 break;
3998 case 4: /* mul */
3999 case 5: /* imul */
4000 case 6: /* div */
4001 case 7: /* idiv */
4002 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4003 if (ir.ot != OT_BYTE)
4004 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
4005 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4006 break;
4007 default:
4008 ir.addr -= 2;
4009 opcode = opcode << 8 | ir.modrm;
4010 goto no_support;
4011 break;
4012 }
4013 break;
4014
4015 case 0xfe: /* GRP4 */
4016 case 0xff: /* GRP5 */
4017 if (i386_record_modrm (&ir))
4018 return -1;
4019 if (ir.reg >= 2 && opcode == 0xfe)
4020 {
4021 ir.addr -= 2;
4022 opcode = opcode << 8 | ir.modrm;
4023 goto no_support;
4024 }
4025 switch (ir.reg)
4026 {
4027 case 0: /* inc */
4028 case 1: /* dec */
4029 if ((opcode & 1) == 0)
4030 ir.ot = OT_BYTE;
4031 else
4032 ir.ot = ir.dflag + OT_WORD;
4033 if (ir.mod != 3)
4034 {
4035 if (i386_record_lea_modrm (&ir))
4036 return -1;
4037 }
4038 else
4039 {
4040 ir.rm |= ir.rex_b;
4041 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4042 ir.rm &= 0x3;
4043 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
4044 }
4045 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4046 break;
4047 case 2: /* call */
4048 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4049 ir.dflag = 2;
4050 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4051 return -1;
4052 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4053 break;
4054 case 3: /* lcall */
4055 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
4056 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4057 return -1;
4058 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4059 break;
4060 case 4: /* jmp */
4061 case 5: /* ljmp */
4062 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4063 break;
4064 case 6: /* push */
4065 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4066 ir.dflag = 2;
4067 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4068 return -1;
4069 break;
4070 default:
4071 ir.addr -= 2;
4072 opcode = opcode << 8 | ir.modrm;
4073 goto no_support;
4074 break;
4075 }
4076 break;
4077
4078 case 0x84: /* test */
4079 case 0x85:
4080 case 0xa8:
4081 case 0xa9:
4082 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4083 break;
4084
4085 case 0x98: /* CWDE/CBW */
4086 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4087 break;
4088
4089 case 0x99: /* CDQ/CWD */
4090 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4091 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
4092 break;
4093
4094 case 0x0faf: /* imul */
4095 case 0x69:
4096 case 0x6b:
4097 ir.ot = ir.dflag + OT_WORD;
4098 if (i386_record_modrm (&ir))
4099 return -1;
4100 if (opcode == 0x69)
4101 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
4102 else if (opcode == 0x6b)
4103 ir.rip_offset = 1;
4104 ir.reg |= rex_r;
4105 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4106 ir.reg &= 0x3;
4107 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4108 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4109 break;
4110
4111 case 0x0fc0: /* xadd */
4112 case 0x0fc1:
4113 if ((opcode & 1) == 0)
4114 ir.ot = OT_BYTE;
4115 else
4116 ir.ot = ir.dflag + OT_WORD;
4117 if (i386_record_modrm (&ir))
4118 return -1;
4119 ir.reg |= rex_r;
4120 if (ir.mod == 3)
4121 {
4122 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4123 ir.reg &= 0x3;
4124 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4125 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4126 ir.rm &= 0x3;
4127 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
4128 }
4129 else
4130 {
4131 if (i386_record_lea_modrm (&ir))
4132 return -1;
4133 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4134 ir.reg &= 0x3;
4135 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4136 }
4137 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4138 break;
4139
4140 case 0x0fb0: /* cmpxchg */
4141 case 0x0fb1:
4142 if ((opcode & 1) == 0)
4143 ir.ot = OT_BYTE;
4144 else
4145 ir.ot = ir.dflag + OT_WORD;
4146 if (i386_record_modrm (&ir))
4147 return -1;
4148 if (ir.mod == 3)
4149 {
4150 ir.reg |= rex_r;
4151 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4152 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4153 ir.reg &= 0x3;
4154 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4155 }
4156 else
4157 {
4158 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4159 if (i386_record_lea_modrm (&ir))
4160 return -1;
4161 }
4162 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4163 break;
4164
4165 case 0x0fc7: /* cmpxchg8b */
4166 if (i386_record_modrm (&ir))
4167 return -1;
4168 if (ir.mod == 3)
4169 {
4170 ir.addr -= 2;
4171 opcode = opcode << 8 | ir.modrm;
4172 goto no_support;
4173 }
4174 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4175 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
4176 if (i386_record_lea_modrm (&ir))
4177 return -1;
4178 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4179 break;
4180
4181 case 0x50: /* push */
4182 case 0x51:
4183 case 0x52:
4184 case 0x53:
4185 case 0x54:
4186 case 0x55:
4187 case 0x56:
4188 case 0x57:
4189 case 0x68:
4190 case 0x6a:
4191 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4192 ir.dflag = 2;
4193 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4194 return -1;
4195 break;
4196
4197 case 0x06: /* push es */
4198 case 0x0e: /* push cs */
4199 case 0x16: /* push ss */
4200 case 0x1e: /* push ds */
4201 if (ir.regmap[X86_RECORD_R8_REGNUM])
4202 {
4203 ir.addr -= 1;
4204 goto no_support;
4205 }
4206 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4207 return -1;
4208 break;
4209
4210 case 0x0fa0: /* push fs */
4211 case 0x0fa8: /* push gs */
4212 if (ir.regmap[X86_RECORD_R8_REGNUM])
4213 {
4214 ir.addr -= 2;
4215 goto no_support;
4216 }
4217 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4218 return -1;
4219 break;
4220
4221 case 0x60: /* pusha */
4222 if (ir.regmap[X86_RECORD_R8_REGNUM])
4223 {
4224 ir.addr -= 1;
4225 goto no_support;
4226 }
4227 if (i386_record_push (&ir, 1 << (ir.dflag + 4)))
4228 return -1;
4229 break;
4230
4231 case 0x58: /* pop */
4232 case 0x59:
4233 case 0x5a:
4234 case 0x5b:
4235 case 0x5c:
4236 case 0x5d:
4237 case 0x5e:
4238 case 0x5f:
4239 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4240 I386_RECORD_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
4241 break;
4242
4243 case 0x61: /* popa */
4244 if (ir.regmap[X86_RECORD_R8_REGNUM])
4245 {
4246 ir.addr -= 1;
4247 goto no_support;
4248 }
4249 for (regnum = X86_RECORD_REAX_REGNUM;
4250 regnum <= X86_RECORD_REDI_REGNUM;
4251 regnum++)
4252 I386_RECORD_ARCH_LIST_ADD_REG (regnum);
4253 break;
4254
4255 case 0x8f: /* pop */
4256 if (ir.regmap[X86_RECORD_R8_REGNUM])
4257 ir.ot = ir.dflag ? OT_QUAD : OT_WORD;
4258 else
4259 ir.ot = ir.dflag + OT_WORD;
4260 if (i386_record_modrm (&ir))
4261 return -1;
4262 if (ir.mod == 3)
4263 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
4264 else
4265 {
4266 ir.popl_esp_hack = 1 << ir.ot;
4267 if (i386_record_lea_modrm (&ir))
4268 return -1;
4269 }
4270 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4271 break;
4272
4273 case 0xc8: /* enter */
4274 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
4275 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4276 ir.dflag = 2;
4277 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4278 return -1;
4279 break;
4280
4281 case 0xc9: /* leave */
4282 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4283 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
4284 break;
4285
4286 case 0x07: /* pop es */
4287 if (ir.regmap[X86_RECORD_R8_REGNUM])
4288 {
4289 ir.addr -= 1;
4290 goto no_support;
4291 }
4292 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4293 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_ES_REGNUM);
4294 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4295 break;
4296
4297 case 0x17: /* pop ss */
4298 if (ir.regmap[X86_RECORD_R8_REGNUM])
4299 {
4300 ir.addr -= 1;
4301 goto no_support;
4302 }
4303 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4304 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_SS_REGNUM);
4305 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4306 break;
4307
4308 case 0x1f: /* pop ds */
4309 if (ir.regmap[X86_RECORD_R8_REGNUM])
4310 {
4311 ir.addr -= 1;
4312 goto no_support;
4313 }
4314 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4315 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_DS_REGNUM);
4316 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4317 break;
4318
4319 case 0x0fa1: /* pop fs */
4320 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4321 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_FS_REGNUM);
4322 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4323 break;
4324
4325 case 0x0fa9: /* pop gs */
4326 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4327 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
4328 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4329 break;
4330
4331 case 0x88: /* mov */
4332 case 0x89:
4333 case 0xc6:
4334 case 0xc7:
4335 if ((opcode & 1) == 0)
4336 ir.ot = OT_BYTE;
4337 else
4338 ir.ot = ir.dflag + OT_WORD;
4339
4340 if (i386_record_modrm (&ir))
4341 return -1;
4342
4343 if (ir.mod != 3)
4344 {
4345 if (opcode == 0xc6 || opcode == 0xc7)
4346 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
4347 if (i386_record_lea_modrm (&ir))
4348 return -1;
4349 }
4350 else
4351 {
4352 if (opcode == 0xc6 || opcode == 0xc7)
4353 ir.rm |= ir.rex_b;
4354 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4355 ir.rm &= 0x3;
4356 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
4357 }
4358 break;
4359
4360 case 0x8a: /* mov */
4361 case 0x8b:
4362 if ((opcode & 1) == 0)
4363 ir.ot = OT_BYTE;
4364 else
4365 ir.ot = ir.dflag + OT_WORD;
4366 if (i386_record_modrm (&ir))
4367 return -1;
4368 ir.reg |= rex_r;
4369 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4370 ir.reg &= 0x3;
4371 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4372 break;
4373
4374 case 0x8c: /* mov seg */
4375 if (i386_record_modrm (&ir))
4376 return -1;
4377 if (ir.reg > 5)
4378 {
4379 ir.addr -= 2;
4380 opcode = opcode << 8 | ir.modrm;
4381 goto no_support;
4382 }
4383
4384 if (ir.mod == 3)
4385 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
4386 else
4387 {
4388 ir.ot = OT_WORD;
4389 if (i386_record_lea_modrm (&ir))
4390 return -1;
4391 }
4392 break;
4393
4394 case 0x8e: /* mov seg */
4395 if (i386_record_modrm (&ir))
4396 return -1;
4397 switch (ir.reg)
4398 {
4399 case 0:
4400 regnum = X86_RECORD_ES_REGNUM;
4401 break;
4402 case 2:
4403 regnum = X86_RECORD_SS_REGNUM;
4404 break;
4405 case 3:
4406 regnum = X86_RECORD_DS_REGNUM;
4407 break;
4408 case 4:
4409 regnum = X86_RECORD_FS_REGNUM;
4410 break;
4411 case 5:
4412 regnum = X86_RECORD_GS_REGNUM;
4413 break;
4414 default:
4415 ir.addr -= 2;
4416 opcode = opcode << 8 | ir.modrm;
4417 goto no_support;
4418 break;
4419 }
4420 I386_RECORD_ARCH_LIST_ADD_REG (regnum);
4421 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4422 break;
4423
4424 case 0x0fb6: /* movzbS */
4425 case 0x0fb7: /* movzwS */
4426 case 0x0fbe: /* movsbS */
4427 case 0x0fbf: /* movswS */
4428 if (i386_record_modrm (&ir))
4429 return -1;
4430 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
4431 break;
4432
4433 case 0x8d: /* lea */
4434 if (i386_record_modrm (&ir))
4435 return -1;
4436 if (ir.mod == 3)
4437 {
4438 ir.addr -= 2;
4439 opcode = opcode << 8 | ir.modrm;
4440 goto no_support;
4441 }
4442 ir.ot = ir.dflag;
4443 ir.reg |= rex_r;
4444 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4445 ir.reg &= 0x3;
4446 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4447 break;
4448
4449 case 0xa0: /* mov EAX */
4450 case 0xa1:
4451
4452 case 0xd7: /* xlat */
4453 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4454 break;
4455
4456 case 0xa2: /* mov EAX */
4457 case 0xa3:
4458 if (ir.override >= 0)
4459 {
4460 if (record_memory_query)
4461 {
4462 int q;
4463
4464 target_terminal_ours ();
4465 q = yquery (_("\
4466 Process record ignores the memory change of instruction at address %s\n\
4467 because it can't get the value of the segment register.\n\
4468 Do you want to stop the program?"),
4469 paddress (gdbarch, ir.orig_addr));
4470 target_terminal_inferior ();
4471 if (q)
4472 return -1;
4473 }
4474 }
4475 else
4476 {
4477 if ((opcode & 1) == 0)
4478 ir.ot = OT_BYTE;
4479 else
4480 ir.ot = ir.dflag + OT_WORD;
4481 if (ir.aflag == 2)
4482 {
4483 if (target_read_memory (ir.addr, buf, 8))
4484 {
4485 if (record_debug)
4486 printf_unfiltered (_("Process record: error reading "
4487 "memory at addr 0x%s len = 8.\n"),
4488 paddress (gdbarch, ir.addr));
4489 return -1;
4490 }
4491 ir.addr += 8;
4492 addr = extract_unsigned_integer (buf, 8, byte_order);
4493 }
4494 else if (ir.aflag)
4495 {
4496 if (target_read_memory (ir.addr, buf, 4))
4497 {
4498 if (record_debug)
4499 printf_unfiltered (_("Process record: error reading "
4500 "memory at addr 0x%s len = 4.\n"),
4501 paddress (gdbarch, ir.addr));
4502 return -1;
4503 }
4504 ir.addr += 4;
4505 addr = extract_unsigned_integer (buf, 4, byte_order);
4506 }
4507 else
4508 {
4509 if (target_read_memory (ir.addr, buf, 2))
4510 {
4511 if (record_debug)
4512 printf_unfiltered (_("Process record: error reading "
4513 "memory at addr 0x%s len = 2.\n"),
4514 paddress (gdbarch, ir.addr));
4515 return -1;
4516 }
4517 ir.addr += 2;
4518 addr = extract_unsigned_integer (buf, 2, byte_order);
4519 }
4520 if (record_arch_list_add_mem (addr, 1 << ir.ot))
4521 return -1;
4522 }
4523 break;
4524
4525 case 0xb0: /* mov R, Ib */
4526 case 0xb1:
4527 case 0xb2:
4528 case 0xb3:
4529 case 0xb4:
4530 case 0xb5:
4531 case 0xb6:
4532 case 0xb7:
4533 I386_RECORD_ARCH_LIST_ADD_REG ((ir.regmap[X86_RECORD_R8_REGNUM])
4534 ? ((opcode & 0x7) | ir.rex_b)
4535 : ((opcode & 0x7) & 0x3));
4536 break;
4537
4538 case 0xb8: /* mov R, Iv */
4539 case 0xb9:
4540 case 0xba:
4541 case 0xbb:
4542 case 0xbc:
4543 case 0xbd:
4544 case 0xbe:
4545 case 0xbf:
4546 I386_RECORD_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
4547 break;
4548
4549 case 0x91: /* xchg R, EAX */
4550 case 0x92:
4551 case 0x93:
4552 case 0x94:
4553 case 0x95:
4554 case 0x96:
4555 case 0x97:
4556 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4557 I386_RECORD_ARCH_LIST_ADD_REG (opcode & 0x7);
4558 break;
4559
4560 case 0x86: /* xchg Ev, Gv */
4561 case 0x87:
4562 if ((opcode & 1) == 0)
4563 ir.ot = OT_BYTE;
4564 else
4565 ir.ot = ir.dflag + OT_WORD;
4566 if (i386_record_modrm (&ir))
4567 return -1;
4568 if (ir.mod == 3)
4569 {
4570 ir.rm |= ir.rex_b;
4571 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4572 ir.rm &= 0x3;
4573 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
4574 }
4575 else
4576 {
4577 if (i386_record_lea_modrm (&ir))
4578 return -1;
4579 }
4580 ir.reg |= rex_r;
4581 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4582 ir.reg &= 0x3;
4583 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4584 break;
4585
4586 case 0xc4: /* les Gv */
4587 case 0xc5: /* lds Gv */
4588 if (ir.regmap[X86_RECORD_R8_REGNUM])
4589 {
4590 ir.addr -= 1;
4591 goto no_support;
4592 }
4593 /* FALLTHROUGH */
4594 case 0x0fb2: /* lss Gv */
4595 case 0x0fb4: /* lfs Gv */
4596 case 0x0fb5: /* lgs Gv */
4597 if (i386_record_modrm (&ir))
4598 return -1;
4599 if (ir.mod == 3)
4600 {
4601 if (opcode > 0xff)
4602 ir.addr -= 3;
4603 else
4604 ir.addr -= 2;
4605 opcode = opcode << 8 | ir.modrm;
4606 goto no_support;
4607 }
4608 switch (opcode)
4609 {
4610 case 0xc4: /* les Gv */
4611 regnum = X86_RECORD_ES_REGNUM;
4612 break;
4613 case 0xc5: /* lds Gv */
4614 regnum = X86_RECORD_DS_REGNUM;
4615 break;
4616 case 0x0fb2: /* lss Gv */
4617 regnum = X86_RECORD_SS_REGNUM;
4618 break;
4619 case 0x0fb4: /* lfs Gv */
4620 regnum = X86_RECORD_FS_REGNUM;
4621 break;
4622 case 0x0fb5: /* lgs Gv */
4623 regnum = X86_RECORD_GS_REGNUM;
4624 break;
4625 }
4626 I386_RECORD_ARCH_LIST_ADD_REG (regnum);
4627 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
4628 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4629 break;
4630
4631 case 0xc0: /* shifts */
4632 case 0xc1:
4633 case 0xd0:
4634 case 0xd1:
4635 case 0xd2:
4636 case 0xd3:
4637 if ((opcode & 1) == 0)
4638 ir.ot = OT_BYTE;
4639 else
4640 ir.ot = ir.dflag + OT_WORD;
4641 if (i386_record_modrm (&ir))
4642 return -1;
4643 if (ir.mod != 3 && (opcode == 0xd2 || opcode == 0xd3))
4644 {
4645 if (i386_record_lea_modrm (&ir))
4646 return -1;
4647 }
4648 else
4649 {
4650 ir.rm |= ir.rex_b;
4651 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4652 ir.rm &= 0x3;
4653 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
4654 }
4655 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4656 break;
4657
4658 case 0x0fa4:
4659 case 0x0fa5:
4660 case 0x0fac:
4661 case 0x0fad:
4662 if (i386_record_modrm (&ir))
4663 return -1;
4664 if (ir.mod == 3)
4665 {
4666 if (record_arch_list_add_reg (ir.regcache, ir.rm))
4667 return -1;
4668 }
4669 else
4670 {
4671 if (i386_record_lea_modrm (&ir))
4672 return -1;
4673 }
4674 break;
4675
4676 case 0xd8: /* Floats. */
4677 case 0xd9:
4678 case 0xda:
4679 case 0xdb:
4680 case 0xdc:
4681 case 0xdd:
4682 case 0xde:
4683 case 0xdf:
4684 if (i386_record_modrm (&ir))
4685 return -1;
4686 ir.reg |= ((opcode & 7) << 3);
4687 if (ir.mod != 3)
4688 {
4689 /* Memory. */
4690 uint64_t addr64;
4691
4692 if (i386_record_lea_modrm_addr (&ir, &addr64))
4693 return -1;
4694 switch (ir.reg)
4695 {
4696 case 0x02:
4697 case 0x12:
4698 case 0x22:
4699 case 0x32:
4700 /* For fcom, ficom nothing to do. */
4701 break;
4702 case 0x03:
4703 case 0x13:
4704 case 0x23:
4705 case 0x33:
4706 /* For fcomp, ficomp pop FPU stack, store all. */
4707 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
4708 return -1;
4709 break;
4710 case 0x00:
4711 case 0x01:
4712 case 0x04:
4713 case 0x05:
4714 case 0x06:
4715 case 0x07:
4716 case 0x10:
4717 case 0x11:
4718 case 0x14:
4719 case 0x15:
4720 case 0x16:
4721 case 0x17:
4722 case 0x20:
4723 case 0x21:
4724 case 0x24:
4725 case 0x25:
4726 case 0x26:
4727 case 0x27:
4728 case 0x30:
4729 case 0x31:
4730 case 0x34:
4731 case 0x35:
4732 case 0x36:
4733 case 0x37:
4734 /* For fadd, fmul, fsub, fsubr, fdiv, fdivr, fiadd, fimul,
4735 fisub, fisubr, fidiv, fidivr, modR/M.reg is an extension
4736 of code, always affects st(0) register. */
4737 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
4738 return -1;
4739 break;
4740 case 0x08:
4741 case 0x0a:
4742 case 0x0b:
4743 case 0x18:
4744 case 0x19:
4745 case 0x1a:
4746 case 0x1b:
4747 case 0x1d:
4748 case 0x28:
4749 case 0x29:
4750 case 0x2a:
4751 case 0x2b:
4752 case 0x38:
4753 case 0x39:
4754 case 0x3a:
4755 case 0x3b:
4756 case 0x3c:
4757 case 0x3d:
4758 switch (ir.reg & 7)
4759 {
4760 case 0:
4761 /* Handling fld, fild. */
4762 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
4763 return -1;
4764 break;
4765 case 1:
4766 switch (ir.reg >> 4)
4767 {
4768 case 0:
4769 if (record_arch_list_add_mem (addr64, 4))
4770 return -1;
4771 break;
4772 case 2:
4773 if (record_arch_list_add_mem (addr64, 8))
4774 return -1;
4775 break;
4776 case 3:
4777 break;
4778 default:
4779 if (record_arch_list_add_mem (addr64, 2))
4780 return -1;
4781 break;
4782 }
4783 break;
4784 default:
4785 switch (ir.reg >> 4)
4786 {
4787 case 0:
4788 if (record_arch_list_add_mem (addr64, 4))
4789 return -1;
4790 if (3 == (ir.reg & 7))
4791 {
4792 /* For fstp m32fp. */
4793 if (i386_record_floats (gdbarch, &ir,
4794 I386_SAVE_FPU_REGS))
4795 return -1;
4796 }
4797 break;
4798 case 1:
4799 if (record_arch_list_add_mem (addr64, 4))
4800 return -1;
4801 if ((3 == (ir.reg & 7))
4802 || (5 == (ir.reg & 7))
4803 || (7 == (ir.reg & 7)))
4804 {
4805 /* For fstp insn. */
4806 if (i386_record_floats (gdbarch, &ir,
4807 I386_SAVE_FPU_REGS))
4808 return -1;
4809 }
4810 break;
4811 case 2:
4812 if (record_arch_list_add_mem (addr64, 8))
4813 return -1;
4814 if (3 == (ir.reg & 7))
4815 {
4816 /* For fstp m64fp. */
4817 if (i386_record_floats (gdbarch, &ir,
4818 I386_SAVE_FPU_REGS))
4819 return -1;
4820 }
4821 break;
4822 case 3:
4823 if ((3 <= (ir.reg & 7)) && (6 <= (ir.reg & 7)))
4824 {
4825 /* For fistp, fbld, fild, fbstp. */
4826 if (i386_record_floats (gdbarch, &ir,
4827 I386_SAVE_FPU_REGS))
4828 return -1;
4829 }
4830 /* Fall through */
4831 default:
4832 if (record_arch_list_add_mem (addr64, 2))
4833 return -1;
4834 break;
4835 }
4836 break;
4837 }
4838 break;
4839 case 0x0c:
4840 /* Insn fldenv. */
4841 if (i386_record_floats (gdbarch, &ir,
4842 I386_SAVE_FPU_ENV_REG_STACK))
4843 return -1;
4844 break;
4845 case 0x0d:
4846 /* Insn fldcw. */
4847 if (i386_record_floats (gdbarch, &ir, I387_FCTRL_REGNUM (tdep)))
4848 return -1;
4849 break;
4850 case 0x2c:
4851 /* Insn frstor. */
4852 if (i386_record_floats (gdbarch, &ir,
4853 I386_SAVE_FPU_ENV_REG_STACK))
4854 return -1;
4855 break;
4856 case 0x0e:
4857 if (ir.dflag)
4858 {
4859 if (record_arch_list_add_mem (addr64, 28))
4860 return -1;
4861 }
4862 else
4863 {
4864 if (record_arch_list_add_mem (addr64, 14))
4865 return -1;
4866 }
4867 break;
4868 case 0x0f:
4869 case 0x2f:
4870 if (record_arch_list_add_mem (addr64, 2))
4871 return -1;
4872 /* Insn fstp, fbstp. */
4873 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
4874 return -1;
4875 break;
4876 case 0x1f:
4877 case 0x3e:
4878 if (record_arch_list_add_mem (addr64, 10))
4879 return -1;
4880 break;
4881 case 0x2e:
4882 if (ir.dflag)
4883 {
4884 if (record_arch_list_add_mem (addr64, 28))
4885 return -1;
4886 addr64 += 28;
4887 }
4888 else
4889 {
4890 if (record_arch_list_add_mem (addr64, 14))
4891 return -1;
4892 addr64 += 14;
4893 }
4894 if (record_arch_list_add_mem (addr64, 80))
4895 return -1;
4896 /* Insn fsave. */
4897 if (i386_record_floats (gdbarch, &ir,
4898 I386_SAVE_FPU_ENV_REG_STACK))
4899 return -1;
4900 break;
4901 case 0x3f:
4902 if (record_arch_list_add_mem (addr64, 8))
4903 return -1;
4904 /* Insn fistp. */
4905 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
4906 return -1;
4907 break;
4908 default:
4909 ir.addr -= 2;
4910 opcode = opcode << 8 | ir.modrm;
4911 goto no_support;
4912 break;
4913 }
4914 }
4915 /* Opcode is an extension of modR/M byte. */
4916 else
4917 {
4918 switch (opcode)
4919 {
4920 case 0xd8:
4921 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
4922 return -1;
4923 break;
4924 case 0xd9:
4925 if (0x0c == (ir.modrm >> 4))
4926 {
4927 if ((ir.modrm & 0x0f) <= 7)
4928 {
4929 if (i386_record_floats (gdbarch, &ir,
4930 I386_SAVE_FPU_REGS))
4931 return -1;
4932 }
4933 else
4934 {
4935 if (i386_record_floats (gdbarch, &ir,
4936 I387_ST0_REGNUM (tdep)))
4937 return -1;
4938 /* If only st(0) is changing, then we have already
4939 recorded. */
4940 if ((ir.modrm & 0x0f) - 0x08)
4941 {
4942 if (i386_record_floats (gdbarch, &ir,
4943 I387_ST0_REGNUM (tdep) +
4944 ((ir.modrm & 0x0f) - 0x08)))
4945 return -1;
4946 }
4947 }
4948 }
4949 else
4950 {
4951 switch (ir.modrm)
4952 {
4953 case 0xe0:
4954 case 0xe1:
4955 case 0xf0:
4956 case 0xf5:
4957 case 0xf8:
4958 case 0xfa:
4959 case 0xfc:
4960 case 0xfe:
4961 case 0xff:
4962 if (i386_record_floats (gdbarch, &ir,
4963 I387_ST0_REGNUM (tdep)))
4964 return -1;
4965 break;
4966 case 0xf1:
4967 case 0xf2:
4968 case 0xf3:
4969 case 0xf4:
4970 case 0xf6:
4971 case 0xf7:
4972 case 0xe8:
4973 case 0xe9:
4974 case 0xea:
4975 case 0xeb:
4976 case 0xec:
4977 case 0xed:
4978 case 0xee:
4979 case 0xf9:
4980 case 0xfb:
4981 if (i386_record_floats (gdbarch, &ir,
4982 I386_SAVE_FPU_REGS))
4983 return -1;
4984 break;
4985 case 0xfd:
4986 if (i386_record_floats (gdbarch, &ir,
4987 I387_ST0_REGNUM (tdep)))
4988 return -1;
4989 if (i386_record_floats (gdbarch, &ir,
4990 I387_ST0_REGNUM (tdep) + 1))
4991 return -1;
4992 break;
4993 }
4994 }
4995 break;
4996 case 0xda:
4997 if (0xe9 == ir.modrm)
4998 {
4999 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5000 return -1;
5001 }
5002 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
5003 {
5004 if (i386_record_floats (gdbarch, &ir,
5005 I387_ST0_REGNUM (tdep)))
5006 return -1;
5007 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
5008 {
5009 if (i386_record_floats (gdbarch, &ir,
5010 I387_ST0_REGNUM (tdep) +
5011 (ir.modrm & 0x0f)))
5012 return -1;
5013 }
5014 else if ((ir.modrm & 0x0f) - 0x08)
5015 {
5016 if (i386_record_floats (gdbarch, &ir,
5017 I387_ST0_REGNUM (tdep) +
5018 ((ir.modrm & 0x0f) - 0x08)))
5019 return -1;
5020 }
5021 }
5022 break;
5023 case 0xdb:
5024 if (0xe3 == ir.modrm)
5025 {
5026 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_ENV))
5027 return -1;
5028 }
5029 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
5030 {
5031 if (i386_record_floats (gdbarch, &ir,
5032 I387_ST0_REGNUM (tdep)))
5033 return -1;
5034 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
5035 {
5036 if (i386_record_floats (gdbarch, &ir,
5037 I387_ST0_REGNUM (tdep) +
5038 (ir.modrm & 0x0f)))
5039 return -1;
5040 }
5041 else if ((ir.modrm & 0x0f) - 0x08)
5042 {
5043 if (i386_record_floats (gdbarch, &ir,
5044 I387_ST0_REGNUM (tdep) +
5045 ((ir.modrm & 0x0f) - 0x08)))
5046 return -1;
5047 }
5048 }
5049 break;
5050 case 0xdc:
5051 if ((0x0c == ir.modrm >> 4)
5052 || (0x0d == ir.modrm >> 4)
5053 || (0x0f == ir.modrm >> 4))
5054 {
5055 if ((ir.modrm & 0x0f) <= 7)
5056 {
5057 if (i386_record_floats (gdbarch, &ir,
5058 I387_ST0_REGNUM (tdep) +
5059 (ir.modrm & 0x0f)))
5060 return -1;
5061 }
5062 else
5063 {
5064 if (i386_record_floats (gdbarch, &ir,
5065 I387_ST0_REGNUM (tdep) +
5066 ((ir.modrm & 0x0f) - 0x08)))
5067 return -1;
5068 }
5069 }
5070 break;
5071 case 0xdd:
5072 if (0x0c == ir.modrm >> 4)
5073 {
5074 if (i386_record_floats (gdbarch, &ir,
5075 I387_FTAG_REGNUM (tdep)))
5076 return -1;
5077 }
5078 else if ((0x0d == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
5079 {
5080 if ((ir.modrm & 0x0f) <= 7)
5081 {
5082 if (i386_record_floats (gdbarch, &ir,
5083 I387_ST0_REGNUM (tdep) +
5084 (ir.modrm & 0x0f)))
5085 return -1;
5086 }
5087 else
5088 {
5089 if (i386_record_floats (gdbarch, &ir,
5090 I386_SAVE_FPU_REGS))
5091 return -1;
5092 }
5093 }
5094 break;
5095 case 0xde:
5096 if ((0x0c == ir.modrm >> 4)
5097 || (0x0e == ir.modrm >> 4)
5098 || (0x0f == ir.modrm >> 4)
5099 || (0xd9 == ir.modrm))
5100 {
5101 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5102 return -1;
5103 }
5104 break;
5105 case 0xdf:
5106 if (0xe0 == ir.modrm)
5107 {
5108 if (record_arch_list_add_reg (ir.regcache, I386_EAX_REGNUM))
5109 return -1;
5110 }
5111 else if ((0x0f == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
5112 {
5113 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5114 return -1;
5115 }
5116 break;
5117 }
5118 }
5119 break;
5120 /* string ops */
5121 case 0xa4: /* movsS */
5122 case 0xa5:
5123 case 0xaa: /* stosS */
5124 case 0xab:
5125 case 0x6c: /* insS */
5126 case 0x6d:
5127 regcache_raw_read_unsigned (ir.regcache,
5128 ir.regmap[X86_RECORD_RECX_REGNUM],
5129 &addr);
5130 if (addr)
5131 {
5132 ULONGEST es, ds;
5133
5134 if ((opcode & 1) == 0)
5135 ir.ot = OT_BYTE;
5136 else
5137 ir.ot = ir.dflag + OT_WORD;
5138 regcache_raw_read_unsigned (ir.regcache,
5139 ir.regmap[X86_RECORD_REDI_REGNUM],
5140 &addr);
5141
5142 regcache_raw_read_unsigned (ir.regcache,
5143 ir.regmap[X86_RECORD_ES_REGNUM],
5144 &es);
5145 regcache_raw_read_unsigned (ir.regcache,
5146 ir.regmap[X86_RECORD_DS_REGNUM],
5147 &ds);
5148 if (ir.aflag && (es != ds))
5149 {
5150 /* addr += ((uint32_t) read_register (I386_ES_REGNUM)) << 4; */
5151 if (record_memory_query)
5152 {
5153 int q;
5154
5155 target_terminal_ours ();
5156 q = yquery (_("\
5157 Process record ignores the memory change of instruction at address %s\n\
5158 because it can't get the value of the segment register.\n\
5159 Do you want to stop the program?"),
5160 paddress (gdbarch, ir.orig_addr));
5161 target_terminal_inferior ();
5162 if (q)
5163 return -1;
5164 }
5165 }
5166 else
5167 {
5168 if (record_arch_list_add_mem (addr, 1 << ir.ot))
5169 return -1;
5170 }
5171
5172 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
5173 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5174 if (opcode == 0xa4 || opcode == 0xa5)
5175 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
5176 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
5177 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5178 }
5179 break;
5180
5181 case 0xa6: /* cmpsS */
5182 case 0xa7:
5183 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
5184 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
5185 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
5186 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5187 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5188 break;
5189
5190 case 0xac: /* lodsS */
5191 case 0xad:
5192 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5193 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
5194 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
5195 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5196 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5197 break;
5198
5199 case 0xae: /* scasS */
5200 case 0xaf:
5201 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
5202 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
5203 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5204 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5205 break;
5206
5207 case 0x6e: /* outsS */
5208 case 0x6f:
5209 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
5210 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
5211 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5212 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5213 break;
5214
5215 case 0xe4: /* port I/O */
5216 case 0xe5:
5217 case 0xec:
5218 case 0xed:
5219 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5220 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5221 break;
5222
5223 case 0xe6:
5224 case 0xe7:
5225 case 0xee:
5226 case 0xef:
5227 break;
5228
5229 /* control */
5230 case 0xc2: /* ret im */
5231 case 0xc3: /* ret */
5232 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5233 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5234 break;
5235
5236 case 0xca: /* lret im */
5237 case 0xcb: /* lret */
5238 case 0xcf: /* iret */
5239 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
5240 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5241 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5242 break;
5243
5244 case 0xe8: /* call im */
5245 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5246 ir.dflag = 2;
5247 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5248 return -1;
5249 break;
5250
5251 case 0x9a: /* lcall im */
5252 if (ir.regmap[X86_RECORD_R8_REGNUM])
5253 {
5254 ir.addr -= 1;
5255 goto no_support;
5256 }
5257 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
5258 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5259 return -1;
5260 break;
5261
5262 case 0xe9: /* jmp im */
5263 case 0xea: /* ljmp im */
5264 case 0xeb: /* jmp Jb */
5265 case 0x70: /* jcc Jb */
5266 case 0x71:
5267 case 0x72:
5268 case 0x73:
5269 case 0x74:
5270 case 0x75:
5271 case 0x76:
5272 case 0x77:
5273 case 0x78:
5274 case 0x79:
5275 case 0x7a:
5276 case 0x7b:
5277 case 0x7c:
5278 case 0x7d:
5279 case 0x7e:
5280 case 0x7f:
5281 case 0x0f80: /* jcc Jv */
5282 case 0x0f81:
5283 case 0x0f82:
5284 case 0x0f83:
5285 case 0x0f84:
5286 case 0x0f85:
5287 case 0x0f86:
5288 case 0x0f87:
5289 case 0x0f88:
5290 case 0x0f89:
5291 case 0x0f8a:
5292 case 0x0f8b:
5293 case 0x0f8c:
5294 case 0x0f8d:
5295 case 0x0f8e:
5296 case 0x0f8f:
5297 break;
5298
5299 case 0x0f90: /* setcc Gv */
5300 case 0x0f91:
5301 case 0x0f92:
5302 case 0x0f93:
5303 case 0x0f94:
5304 case 0x0f95:
5305 case 0x0f96:
5306 case 0x0f97:
5307 case 0x0f98:
5308 case 0x0f99:
5309 case 0x0f9a:
5310 case 0x0f9b:
5311 case 0x0f9c:
5312 case 0x0f9d:
5313 case 0x0f9e:
5314 case 0x0f9f:
5315 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5316 ir.ot = OT_BYTE;
5317 if (i386_record_modrm (&ir))
5318 return -1;
5319 if (ir.mod == 3)
5320 I386_RECORD_ARCH_LIST_ADD_REG (ir.rex_b ? (ir.rm | ir.rex_b)
5321 : (ir.rm & 0x3));
5322 else
5323 {
5324 if (i386_record_lea_modrm (&ir))
5325 return -1;
5326 }
5327 break;
5328
5329 case 0x0f40: /* cmov Gv, Ev */
5330 case 0x0f41:
5331 case 0x0f42:
5332 case 0x0f43:
5333 case 0x0f44:
5334 case 0x0f45:
5335 case 0x0f46:
5336 case 0x0f47:
5337 case 0x0f48:
5338 case 0x0f49:
5339 case 0x0f4a:
5340 case 0x0f4b:
5341 case 0x0f4c:
5342 case 0x0f4d:
5343 case 0x0f4e:
5344 case 0x0f4f:
5345 if (i386_record_modrm (&ir))
5346 return -1;
5347 ir.reg |= rex_r;
5348 if (ir.dflag == OT_BYTE)
5349 ir.reg &= 0x3;
5350 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
5351 break;
5352
5353 /* flags */
5354 case 0x9c: /* pushf */
5355 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5356 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5357 ir.dflag = 2;
5358 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5359 return -1;
5360 break;
5361
5362 case 0x9d: /* popf */
5363 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5364 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5365 break;
5366
5367 case 0x9e: /* sahf */
5368 if (ir.regmap[X86_RECORD_R8_REGNUM])
5369 {
5370 ir.addr -= 1;
5371 goto no_support;
5372 }
5373 /* FALLTHROUGH */
5374 case 0xf5: /* cmc */
5375 case 0xf8: /* clc */
5376 case 0xf9: /* stc */
5377 case 0xfc: /* cld */
5378 case 0xfd: /* std */
5379 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5380 break;
5381
5382 case 0x9f: /* lahf */
5383 if (ir.regmap[X86_RECORD_R8_REGNUM])
5384 {
5385 ir.addr -= 1;
5386 goto no_support;
5387 }
5388 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5389 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5390 break;
5391
5392 /* bit operations */
5393 case 0x0fba: /* bt/bts/btr/btc Gv, im */
5394 ir.ot = ir.dflag + OT_WORD;
5395 if (i386_record_modrm (&ir))
5396 return -1;
5397 if (ir.reg < 4)
5398 {
5399 ir.addr -= 2;
5400 opcode = opcode << 8 | ir.modrm;
5401 goto no_support;
5402 }
5403 if (ir.reg != 4)
5404 {
5405 if (ir.mod == 3)
5406 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5407 else
5408 {
5409 if (i386_record_lea_modrm (&ir))
5410 return -1;
5411 }
5412 }
5413 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5414 break;
5415
5416 case 0x0fa3: /* bt Gv, Ev */
5417 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5418 break;
5419
5420 case 0x0fab: /* bts */
5421 case 0x0fb3: /* btr */
5422 case 0x0fbb: /* btc */
5423 ir.ot = ir.dflag + OT_WORD;
5424 if (i386_record_modrm (&ir))
5425 return -1;
5426 if (ir.mod == 3)
5427 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5428 else
5429 {
5430 uint64_t addr64;
5431 if (i386_record_lea_modrm_addr (&ir, &addr64))
5432 return -1;
5433 regcache_raw_read_unsigned (ir.regcache,
5434 ir.regmap[ir.reg | rex_r],
5435 &addr);
5436 switch (ir.dflag)
5437 {
5438 case 0:
5439 addr64 += ((int16_t) addr >> 4) << 4;
5440 break;
5441 case 1:
5442 addr64 += ((int32_t) addr >> 5) << 5;
5443 break;
5444 case 2:
5445 addr64 += ((int64_t) addr >> 6) << 6;
5446 break;
5447 }
5448 if (record_arch_list_add_mem (addr64, 1 << ir.ot))
5449 return -1;
5450 if (i386_record_lea_modrm (&ir))
5451 return -1;
5452 }
5453 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5454 break;
5455
5456 case 0x0fbc: /* bsf */
5457 case 0x0fbd: /* bsr */
5458 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5459 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5460 break;
5461
5462 /* bcd */
5463 case 0x27: /* daa */
5464 case 0x2f: /* das */
5465 case 0x37: /* aaa */
5466 case 0x3f: /* aas */
5467 case 0xd4: /* aam */
5468 case 0xd5: /* aad */
5469 if (ir.regmap[X86_RECORD_R8_REGNUM])
5470 {
5471 ir.addr -= 1;
5472 goto no_support;
5473 }
5474 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5475 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5476 break;
5477
5478 /* misc */
5479 case 0x90: /* nop */
5480 if (prefixes & PREFIX_LOCK)
5481 {
5482 ir.addr -= 1;
5483 goto no_support;
5484 }
5485 break;
5486
5487 case 0x9b: /* fwait */
5488 if (target_read_memory (ir.addr, &opcode8, 1))
5489 {
5490 if (record_debug)
5491 printf_unfiltered (_("Process record: error reading memory at "
5492 "addr 0x%s len = 1.\n"),
5493 paddress (gdbarch, ir.addr));
5494 return -1;
5495 }
5496 opcode = (uint32_t) opcode8;
5497 ir.addr++;
5498 goto reswitch;
5499 break;
5500
5501 /* XXX */
5502 case 0xcc: /* int3 */
5503 printf_unfiltered (_("Process record does not support instruction "
5504 "int3.\n"));
5505 ir.addr -= 1;
5506 goto no_support;
5507 break;
5508
5509 /* XXX */
5510 case 0xcd: /* int */
5511 {
5512 int ret;
5513 uint8_t interrupt;
5514 if (target_read_memory (ir.addr, &interrupt, 1))
5515 {
5516 if (record_debug)
5517 printf_unfiltered (_("Process record: error reading memory "
5518 "at addr %s len = 1.\n"),
5519 paddress (gdbarch, ir.addr));
5520 return -1;
5521 }
5522 ir.addr++;
5523 if (interrupt != 0x80
5524 || tdep->i386_intx80_record == NULL)
5525 {
5526 printf_unfiltered (_("Process record does not support "
5527 "instruction int 0x%02x.\n"),
5528 interrupt);
5529 ir.addr -= 2;
5530 goto no_support;
5531 }
5532 ret = tdep->i386_intx80_record (ir.regcache);
5533 if (ret)
5534 return ret;
5535 }
5536 break;
5537
5538 /* XXX */
5539 case 0xce: /* into */
5540 printf_unfiltered (_("Process record does not support "
5541 "instruction into.\n"));
5542 ir.addr -= 1;
5543 goto no_support;
5544 break;
5545
5546 case 0xfa: /* cli */
5547 case 0xfb: /* sti */
5548 break;
5549
5550 case 0x62: /* bound */
5551 printf_unfiltered (_("Process record does not support "
5552 "instruction bound.\n"));
5553 ir.addr -= 1;
5554 goto no_support;
5555 break;
5556
5557 case 0x0fc8: /* bswap reg */
5558 case 0x0fc9:
5559 case 0x0fca:
5560 case 0x0fcb:
5561 case 0x0fcc:
5562 case 0x0fcd:
5563 case 0x0fce:
5564 case 0x0fcf:
5565 I386_RECORD_ARCH_LIST_ADD_REG ((opcode & 7) | ir.rex_b);
5566 break;
5567
5568 case 0xd6: /* salc */
5569 if (ir.regmap[X86_RECORD_R8_REGNUM])
5570 {
5571 ir.addr -= 1;
5572 goto no_support;
5573 }
5574 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5575 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5576 break;
5577
5578 case 0xe0: /* loopnz */
5579 case 0xe1: /* loopz */
5580 case 0xe2: /* loop */
5581 case 0xe3: /* jecxz */
5582 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5583 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5584 break;
5585
5586 case 0x0f30: /* wrmsr */
5587 printf_unfiltered (_("Process record does not support "
5588 "instruction wrmsr.\n"));
5589 ir.addr -= 2;
5590 goto no_support;
5591 break;
5592
5593 case 0x0f32: /* rdmsr */
5594 printf_unfiltered (_("Process record does not support "
5595 "instruction rdmsr.\n"));
5596 ir.addr -= 2;
5597 goto no_support;
5598 break;
5599
5600 case 0x0f31: /* rdtsc */
5601 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5602 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5603 break;
5604
5605 case 0x0f34: /* sysenter */
5606 {
5607 int ret;
5608 if (ir.regmap[X86_RECORD_R8_REGNUM])
5609 {
5610 ir.addr -= 2;
5611 goto no_support;
5612 }
5613 if (tdep->i386_sysenter_record == NULL)
5614 {
5615 printf_unfiltered (_("Process record does not support "
5616 "instruction sysenter.\n"));
5617 ir.addr -= 2;
5618 goto no_support;
5619 }
5620 ret = tdep->i386_sysenter_record (ir.regcache);
5621 if (ret)
5622 return ret;
5623 }
5624 break;
5625
5626 case 0x0f35: /* sysexit */
5627 printf_unfiltered (_("Process record does not support "
5628 "instruction sysexit.\n"));
5629 ir.addr -= 2;
5630 goto no_support;
5631 break;
5632
5633 case 0x0f05: /* syscall */
5634 {
5635 int ret;
5636 if (tdep->i386_syscall_record == NULL)
5637 {
5638 printf_unfiltered (_("Process record does not support "
5639 "instruction syscall.\n"));
5640 ir.addr -= 2;
5641 goto no_support;
5642 }
5643 ret = tdep->i386_syscall_record (ir.regcache);
5644 if (ret)
5645 return ret;
5646 }
5647 break;
5648
5649 case 0x0f07: /* sysret */
5650 printf_unfiltered (_("Process record does not support "
5651 "instruction sysret.\n"));
5652 ir.addr -= 2;
5653 goto no_support;
5654 break;
5655
5656 case 0x0fa2: /* cpuid */
5657 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5658 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5659 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5660 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
5661 break;
5662
5663 case 0xf4: /* hlt */
5664 printf_unfiltered (_("Process record does not support "
5665 "instruction hlt.\n"));
5666 ir.addr -= 1;
5667 goto no_support;
5668 break;
5669
5670 case 0x0f00:
5671 if (i386_record_modrm (&ir))
5672 return -1;
5673 switch (ir.reg)
5674 {
5675 case 0: /* sldt */
5676 case 1: /* str */
5677 if (ir.mod == 3)
5678 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5679 else
5680 {
5681 ir.ot = OT_WORD;
5682 if (i386_record_lea_modrm (&ir))
5683 return -1;
5684 }
5685 break;
5686 case 2: /* lldt */
5687 case 3: /* ltr */
5688 break;
5689 case 4: /* verr */
5690 case 5: /* verw */
5691 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5692 break;
5693 default:
5694 ir.addr -= 3;
5695 opcode = opcode << 8 | ir.modrm;
5696 goto no_support;
5697 break;
5698 }
5699 break;
5700
5701 case 0x0f01:
5702 if (i386_record_modrm (&ir))
5703 return -1;
5704 switch (ir.reg)
5705 {
5706 case 0: /* sgdt */
5707 {
5708 uint64_t addr64;
5709
5710 if (ir.mod == 3)
5711 {
5712 ir.addr -= 3;
5713 opcode = opcode << 8 | ir.modrm;
5714 goto no_support;
5715 }
5716 if (ir.override >= 0)
5717 {
5718 if (record_memory_query)
5719 {
5720 int q;
5721
5722 target_terminal_ours ();
5723 q = yquery (_("\
5724 Process record ignores the memory change of instruction at address %s\n\
5725 because it can't get the value of the segment register.\n\
5726 Do you want to stop the program?"),
5727 paddress (gdbarch, ir.orig_addr));
5728 target_terminal_inferior ();
5729 if (q)
5730 return -1;
5731 }
5732 }
5733 else
5734 {
5735 if (i386_record_lea_modrm_addr (&ir, &addr64))
5736 return -1;
5737 if (record_arch_list_add_mem (addr64, 2))
5738 return -1;
5739 addr64 += 2;
5740 if (ir.regmap[X86_RECORD_R8_REGNUM])
5741 {
5742 if (record_arch_list_add_mem (addr64, 8))
5743 return -1;
5744 }
5745 else
5746 {
5747 if (record_arch_list_add_mem (addr64, 4))
5748 return -1;
5749 }
5750 }
5751 }
5752 break;
5753 case 1:
5754 if (ir.mod == 3)
5755 {
5756 switch (ir.rm)
5757 {
5758 case 0: /* monitor */
5759 break;
5760 case 1: /* mwait */
5761 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5762 break;
5763 default:
5764 ir.addr -= 3;
5765 opcode = opcode << 8 | ir.modrm;
5766 goto no_support;
5767 break;
5768 }
5769 }
5770 else
5771 {
5772 /* sidt */
5773 if (ir.override >= 0)
5774 {
5775 if (record_memory_query)
5776 {
5777 int q;
5778
5779 target_terminal_ours ();
5780 q = yquery (_("\
5781 Process record ignores the memory change of instruction at address %s\n\
5782 because it can't get the value of the segment register.\n\
5783 Do you want to stop the program?"),
5784 paddress (gdbarch, ir.orig_addr));
5785 target_terminal_inferior ();
5786 if (q)
5787 return -1;
5788 }
5789 }
5790 else
5791 {
5792 uint64_t addr64;
5793
5794 if (i386_record_lea_modrm_addr (&ir, &addr64))
5795 return -1;
5796 if (record_arch_list_add_mem (addr64, 2))
5797 return -1;
5798 addr64 += 2;
5799 if (ir.regmap[X86_RECORD_R8_REGNUM])
5800 {
5801 if (record_arch_list_add_mem (addr64, 8))
5802 return -1;
5803 }
5804 else
5805 {
5806 if (record_arch_list_add_mem (addr64, 4))
5807 return -1;
5808 }
5809 }
5810 }
5811 break;
5812 case 2: /* lgdt */
5813 if (ir.mod == 3)
5814 {
5815 /* xgetbv */
5816 if (ir.rm == 0)
5817 {
5818 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5819 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5820 break;
5821 }
5822 /* xsetbv */
5823 else if (ir.rm == 1)
5824 break;
5825 }
5826 case 3: /* lidt */
5827 if (ir.mod == 3)
5828 {
5829 ir.addr -= 3;
5830 opcode = opcode << 8 | ir.modrm;
5831 goto no_support;
5832 }
5833 break;
5834 case 4: /* smsw */
5835 if (ir.mod == 3)
5836 {
5837 if (record_arch_list_add_reg (ir.regcache, ir.rm | ir.rex_b))
5838 return -1;
5839 }
5840 else
5841 {
5842 ir.ot = OT_WORD;
5843 if (i386_record_lea_modrm (&ir))
5844 return -1;
5845 }
5846 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5847 break;
5848 case 6: /* lmsw */
5849 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5850 break;
5851 case 7: /* invlpg */
5852 if (ir.mod == 3)
5853 {
5854 if (ir.rm == 0 && ir.regmap[X86_RECORD_R8_REGNUM])
5855 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
5856 else
5857 {
5858 ir.addr -= 3;
5859 opcode = opcode << 8 | ir.modrm;
5860 goto no_support;
5861 }
5862 }
5863 else
5864 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5865 break;
5866 default:
5867 ir.addr -= 3;
5868 opcode = opcode << 8 | ir.modrm;
5869 goto no_support;
5870 break;
5871 }
5872 break;
5873
5874 case 0x0f08: /* invd */
5875 case 0x0f09: /* wbinvd */
5876 break;
5877
5878 case 0x63: /* arpl */
5879 if (i386_record_modrm (&ir))
5880 return -1;
5881 if (ir.mod == 3 || ir.regmap[X86_RECORD_R8_REGNUM])
5882 {
5883 I386_RECORD_ARCH_LIST_ADD_REG (ir.regmap[X86_RECORD_R8_REGNUM]
5884 ? (ir.reg | rex_r) : ir.rm);
5885 }
5886 else
5887 {
5888 ir.ot = ir.dflag ? OT_LONG : OT_WORD;
5889 if (i386_record_lea_modrm (&ir))
5890 return -1;
5891 }
5892 if (!ir.regmap[X86_RECORD_R8_REGNUM])
5893 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5894 break;
5895
5896 case 0x0f02: /* lar */
5897 case 0x0f03: /* lsl */
5898 if (i386_record_modrm (&ir))
5899 return -1;
5900 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5901 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5902 break;
5903
5904 case 0x0f18:
5905 if (i386_record_modrm (&ir))
5906 return -1;
5907 if (ir.mod == 3 && ir.reg == 3)
5908 {
5909 ir.addr -= 3;
5910 opcode = opcode << 8 | ir.modrm;
5911 goto no_support;
5912 }
5913 break;
5914
5915 case 0x0f19:
5916 case 0x0f1a:
5917 case 0x0f1b:
5918 case 0x0f1c:
5919 case 0x0f1d:
5920 case 0x0f1e:
5921 case 0x0f1f:
5922 /* nop (multi byte) */
5923 break;
5924
5925 case 0x0f20: /* mov reg, crN */
5926 case 0x0f22: /* mov crN, reg */
5927 if (i386_record_modrm (&ir))
5928 return -1;
5929 if ((ir.modrm & 0xc0) != 0xc0)
5930 {
5931 ir.addr -= 3;
5932 opcode = opcode << 8 | ir.modrm;
5933 goto no_support;
5934 }
5935 switch (ir.reg)
5936 {
5937 case 0:
5938 case 2:
5939 case 3:
5940 case 4:
5941 case 8:
5942 if (opcode & 2)
5943 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5944 else
5945 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5946 break;
5947 default:
5948 ir.addr -= 3;
5949 opcode = opcode << 8 | ir.modrm;
5950 goto no_support;
5951 break;
5952 }
5953 break;
5954
5955 case 0x0f21: /* mov reg, drN */
5956 case 0x0f23: /* mov drN, reg */
5957 if (i386_record_modrm (&ir))
5958 return -1;
5959 if ((ir.modrm & 0xc0) != 0xc0 || ir.reg == 4
5960 || ir.reg == 5 || ir.reg >= 8)
5961 {
5962 ir.addr -= 3;
5963 opcode = opcode << 8 | ir.modrm;
5964 goto no_support;
5965 }
5966 if (opcode & 2)
5967 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5968 else
5969 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5970 break;
5971
5972 case 0x0f06: /* clts */
5973 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5974 break;
5975
5976 /* MMX 3DNow! SSE SSE2 SSE3 SSSE3 SSE4 */
5977
5978 case 0x0f0d: /* 3DNow! prefetch */
5979 break;
5980
5981 case 0x0f0e: /* 3DNow! femms */
5982 case 0x0f77: /* emms */
5983 if (i386_fpc_regnum_p (gdbarch, I387_FTAG_REGNUM(tdep)))
5984 goto no_support;
5985 record_arch_list_add_reg (ir.regcache, I387_FTAG_REGNUM(tdep));
5986 break;
5987
5988 case 0x0f0f: /* 3DNow! data */
5989 if (i386_record_modrm (&ir))
5990 return -1;
5991 if (target_read_memory (ir.addr, &opcode8, 1))
5992 {
5993 printf_unfiltered (_("Process record: error reading memory at "
5994 "addr %s len = 1.\n"),
5995 paddress (gdbarch, ir.addr));
5996 return -1;
5997 }
5998 ir.addr++;
5999 switch (opcode8)
6000 {
6001 case 0x0c: /* 3DNow! pi2fw */
6002 case 0x0d: /* 3DNow! pi2fd */
6003 case 0x1c: /* 3DNow! pf2iw */
6004 case 0x1d: /* 3DNow! pf2id */
6005 case 0x8a: /* 3DNow! pfnacc */
6006 case 0x8e: /* 3DNow! pfpnacc */
6007 case 0x90: /* 3DNow! pfcmpge */
6008 case 0x94: /* 3DNow! pfmin */
6009 case 0x96: /* 3DNow! pfrcp */
6010 case 0x97: /* 3DNow! pfrsqrt */
6011 case 0x9a: /* 3DNow! pfsub */
6012 case 0x9e: /* 3DNow! pfadd */
6013 case 0xa0: /* 3DNow! pfcmpgt */
6014 case 0xa4: /* 3DNow! pfmax */
6015 case 0xa6: /* 3DNow! pfrcpit1 */
6016 case 0xa7: /* 3DNow! pfrsqit1 */
6017 case 0xaa: /* 3DNow! pfsubr */
6018 case 0xae: /* 3DNow! pfacc */
6019 case 0xb0: /* 3DNow! pfcmpeq */
6020 case 0xb4: /* 3DNow! pfmul */
6021 case 0xb6: /* 3DNow! pfrcpit2 */
6022 case 0xb7: /* 3DNow! pmulhrw */
6023 case 0xbb: /* 3DNow! pswapd */
6024 case 0xbf: /* 3DNow! pavgusb */
6025 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
6026 goto no_support_3dnow_data;
6027 record_arch_list_add_reg (ir.regcache, ir.reg);
6028 break;
6029
6030 default:
6031 no_support_3dnow_data:
6032 opcode = (opcode << 8) | opcode8;
6033 goto no_support;
6034 break;
6035 }
6036 break;
6037
6038 case 0x0faa: /* rsm */
6039 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6040 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6041 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6042 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6043 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
6044 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6045 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
6046 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6047 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6048 break;
6049
6050 case 0x0fae:
6051 if (i386_record_modrm (&ir))
6052 return -1;
6053 switch(ir.reg)
6054 {
6055 case 0: /* fxsave */
6056 {
6057 uint64_t tmpu64;
6058
6059 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6060 if (i386_record_lea_modrm_addr (&ir, &tmpu64))
6061 return -1;
6062 if (record_arch_list_add_mem (tmpu64, 512))
6063 return -1;
6064 }
6065 break;
6066
6067 case 1: /* fxrstor */
6068 {
6069 int i;
6070
6071 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6072
6073 for (i = I387_MM0_REGNUM (tdep);
6074 i386_mmx_regnum_p (gdbarch, i); i++)
6075 record_arch_list_add_reg (ir.regcache, i);
6076
6077 for (i = I387_XMM0_REGNUM (tdep);
6078 i386_xmm_regnum_p (gdbarch, i); i++)
6079 record_arch_list_add_reg (ir.regcache, i);
6080
6081 if (i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
6082 record_arch_list_add_reg (ir.regcache, I387_MXCSR_REGNUM(tdep));
6083
6084 for (i = I387_ST0_REGNUM (tdep);
6085 i386_fp_regnum_p (gdbarch, i); i++)
6086 record_arch_list_add_reg (ir.regcache, i);
6087
6088 for (i = I387_FCTRL_REGNUM (tdep);
6089 i386_fpc_regnum_p (gdbarch, i); i++)
6090 record_arch_list_add_reg (ir.regcache, i);
6091 }
6092 break;
6093
6094 case 2: /* ldmxcsr */
6095 if (!i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
6096 goto no_support;
6097 record_arch_list_add_reg (ir.regcache, I387_MXCSR_REGNUM(tdep));
6098 break;
6099
6100 case 3: /* stmxcsr */
6101 ir.ot = OT_LONG;
6102 if (i386_record_lea_modrm (&ir))
6103 return -1;
6104 break;
6105
6106 case 5: /* lfence */
6107 case 6: /* mfence */
6108 case 7: /* sfence clflush */
6109 break;
6110
6111 default:
6112 opcode = (opcode << 8) | ir.modrm;
6113 goto no_support;
6114 break;
6115 }
6116 break;
6117
6118 case 0x0fc3: /* movnti */
6119 ir.ot = (ir.dflag == 2) ? OT_QUAD : OT_LONG;
6120 if (i386_record_modrm (&ir))
6121 return -1;
6122 if (ir.mod == 3)
6123 goto no_support;
6124 ir.reg |= rex_r;
6125 if (i386_record_lea_modrm (&ir))
6126 return -1;
6127 break;
6128
6129 /* Add prefix to opcode. */
6130 case 0x0f10:
6131 case 0x0f11:
6132 case 0x0f12:
6133 case 0x0f13:
6134 case 0x0f14:
6135 case 0x0f15:
6136 case 0x0f16:
6137 case 0x0f17:
6138 case 0x0f28:
6139 case 0x0f29:
6140 case 0x0f2a:
6141 case 0x0f2b:
6142 case 0x0f2c:
6143 case 0x0f2d:
6144 case 0x0f2e:
6145 case 0x0f2f:
6146 case 0x0f38:
6147 case 0x0f39:
6148 case 0x0f3a:
6149 case 0x0f50:
6150 case 0x0f51:
6151 case 0x0f52:
6152 case 0x0f53:
6153 case 0x0f54:
6154 case 0x0f55:
6155 case 0x0f56:
6156 case 0x0f57:
6157 case 0x0f58:
6158 case 0x0f59:
6159 case 0x0f5a:
6160 case 0x0f5b:
6161 case 0x0f5c:
6162 case 0x0f5d:
6163 case 0x0f5e:
6164 case 0x0f5f:
6165 case 0x0f60:
6166 case 0x0f61:
6167 case 0x0f62:
6168 case 0x0f63:
6169 case 0x0f64:
6170 case 0x0f65:
6171 case 0x0f66:
6172 case 0x0f67:
6173 case 0x0f68:
6174 case 0x0f69:
6175 case 0x0f6a:
6176 case 0x0f6b:
6177 case 0x0f6c:
6178 case 0x0f6d:
6179 case 0x0f6e:
6180 case 0x0f6f:
6181 case 0x0f70:
6182 case 0x0f71:
6183 case 0x0f72:
6184 case 0x0f73:
6185 case 0x0f74:
6186 case 0x0f75:
6187 case 0x0f76:
6188 case 0x0f7c:
6189 case 0x0f7d:
6190 case 0x0f7e:
6191 case 0x0f7f:
6192 case 0x0fb8:
6193 case 0x0fc2:
6194 case 0x0fc4:
6195 case 0x0fc5:
6196 case 0x0fc6:
6197 case 0x0fd0:
6198 case 0x0fd1:
6199 case 0x0fd2:
6200 case 0x0fd3:
6201 case 0x0fd4:
6202 case 0x0fd5:
6203 case 0x0fd6:
6204 case 0x0fd7:
6205 case 0x0fd8:
6206 case 0x0fd9:
6207 case 0x0fda:
6208 case 0x0fdb:
6209 case 0x0fdc:
6210 case 0x0fdd:
6211 case 0x0fde:
6212 case 0x0fdf:
6213 case 0x0fe0:
6214 case 0x0fe1:
6215 case 0x0fe2:
6216 case 0x0fe3:
6217 case 0x0fe4:
6218 case 0x0fe5:
6219 case 0x0fe6:
6220 case 0x0fe7:
6221 case 0x0fe8:
6222 case 0x0fe9:
6223 case 0x0fea:
6224 case 0x0feb:
6225 case 0x0fec:
6226 case 0x0fed:
6227 case 0x0fee:
6228 case 0x0fef:
6229 case 0x0ff0:
6230 case 0x0ff1:
6231 case 0x0ff2:
6232 case 0x0ff3:
6233 case 0x0ff4:
6234 case 0x0ff5:
6235 case 0x0ff6:
6236 case 0x0ff7:
6237 case 0x0ff8:
6238 case 0x0ff9:
6239 case 0x0ffa:
6240 case 0x0ffb:
6241 case 0x0ffc:
6242 case 0x0ffd:
6243 case 0x0ffe:
6244 switch (prefixes)
6245 {
6246 case PREFIX_REPNZ:
6247 opcode |= 0xf20000;
6248 break;
6249 case PREFIX_DATA:
6250 opcode |= 0x660000;
6251 break;
6252 case PREFIX_REPZ:
6253 opcode |= 0xf30000;
6254 break;
6255 }
6256 reswitch_prefix_add:
6257 switch (opcode)
6258 {
6259 case 0x0f38:
6260 case 0x660f38:
6261 case 0xf20f38:
6262 case 0x0f3a:
6263 case 0x660f3a:
6264 if (target_read_memory (ir.addr, &opcode8, 1))
6265 {
6266 printf_unfiltered (_("Process record: error reading memory at "
6267 "addr %s len = 1.\n"),
6268 paddress (gdbarch, ir.addr));
6269 return -1;
6270 }
6271 ir.addr++;
6272 opcode = (uint32_t) opcode8 | opcode << 8;
6273 goto reswitch_prefix_add;
6274 break;
6275
6276 case 0x0f10: /* movups */
6277 case 0x660f10: /* movupd */
6278 case 0xf30f10: /* movss */
6279 case 0xf20f10: /* movsd */
6280 case 0x0f12: /* movlps */
6281 case 0x660f12: /* movlpd */
6282 case 0xf30f12: /* movsldup */
6283 case 0xf20f12: /* movddup */
6284 case 0x0f14: /* unpcklps */
6285 case 0x660f14: /* unpcklpd */
6286 case 0x0f15: /* unpckhps */
6287 case 0x660f15: /* unpckhpd */
6288 case 0x0f16: /* movhps */
6289 case 0x660f16: /* movhpd */
6290 case 0xf30f16: /* movshdup */
6291 case 0x0f28: /* movaps */
6292 case 0x660f28: /* movapd */
6293 case 0x0f2a: /* cvtpi2ps */
6294 case 0x660f2a: /* cvtpi2pd */
6295 case 0xf30f2a: /* cvtsi2ss */
6296 case 0xf20f2a: /* cvtsi2sd */
6297 case 0x0f2c: /* cvttps2pi */
6298 case 0x660f2c: /* cvttpd2pi */
6299 case 0x0f2d: /* cvtps2pi */
6300 case 0x660f2d: /* cvtpd2pi */
6301 case 0x660f3800: /* pshufb */
6302 case 0x660f3801: /* phaddw */
6303 case 0x660f3802: /* phaddd */
6304 case 0x660f3803: /* phaddsw */
6305 case 0x660f3804: /* pmaddubsw */
6306 case 0x660f3805: /* phsubw */
6307 case 0x660f3806: /* phsubd */
6308 case 0x660f3807: /* phsubsw */
6309 case 0x660f3808: /* psignb */
6310 case 0x660f3809: /* psignw */
6311 case 0x660f380a: /* psignd */
6312 case 0x660f380b: /* pmulhrsw */
6313 case 0x660f3810: /* pblendvb */
6314 case 0x660f3814: /* blendvps */
6315 case 0x660f3815: /* blendvpd */
6316 case 0x660f381c: /* pabsb */
6317 case 0x660f381d: /* pabsw */
6318 case 0x660f381e: /* pabsd */
6319 case 0x660f3820: /* pmovsxbw */
6320 case 0x660f3821: /* pmovsxbd */
6321 case 0x660f3822: /* pmovsxbq */
6322 case 0x660f3823: /* pmovsxwd */
6323 case 0x660f3824: /* pmovsxwq */
6324 case 0x660f3825: /* pmovsxdq */
6325 case 0x660f3828: /* pmuldq */
6326 case 0x660f3829: /* pcmpeqq */
6327 case 0x660f382a: /* movntdqa */
6328 case 0x660f3a08: /* roundps */
6329 case 0x660f3a09: /* roundpd */
6330 case 0x660f3a0a: /* roundss */
6331 case 0x660f3a0b: /* roundsd */
6332 case 0x660f3a0c: /* blendps */
6333 case 0x660f3a0d: /* blendpd */
6334 case 0x660f3a0e: /* pblendw */
6335 case 0x660f3a0f: /* palignr */
6336 case 0x660f3a20: /* pinsrb */
6337 case 0x660f3a21: /* insertps */
6338 case 0x660f3a22: /* pinsrd pinsrq */
6339 case 0x660f3a40: /* dpps */
6340 case 0x660f3a41: /* dppd */
6341 case 0x660f3a42: /* mpsadbw */
6342 case 0x660f3a60: /* pcmpestrm */
6343 case 0x660f3a61: /* pcmpestri */
6344 case 0x660f3a62: /* pcmpistrm */
6345 case 0x660f3a63: /* pcmpistri */
6346 case 0x0f51: /* sqrtps */
6347 case 0x660f51: /* sqrtpd */
6348 case 0xf20f51: /* sqrtsd */
6349 case 0xf30f51: /* sqrtss */
6350 case 0x0f52: /* rsqrtps */
6351 case 0xf30f52: /* rsqrtss */
6352 case 0x0f53: /* rcpps */
6353 case 0xf30f53: /* rcpss */
6354 case 0x0f54: /* andps */
6355 case 0x660f54: /* andpd */
6356 case 0x0f55: /* andnps */
6357 case 0x660f55: /* andnpd */
6358 case 0x0f56: /* orps */
6359 case 0x660f56: /* orpd */
6360 case 0x0f57: /* xorps */
6361 case 0x660f57: /* xorpd */
6362 case 0x0f58: /* addps */
6363 case 0x660f58: /* addpd */
6364 case 0xf20f58: /* addsd */
6365 case 0xf30f58: /* addss */
6366 case 0x0f59: /* mulps */
6367 case 0x660f59: /* mulpd */
6368 case 0xf20f59: /* mulsd */
6369 case 0xf30f59: /* mulss */
6370 case 0x0f5a: /* cvtps2pd */
6371 case 0x660f5a: /* cvtpd2ps */
6372 case 0xf20f5a: /* cvtsd2ss */
6373 case 0xf30f5a: /* cvtss2sd */
6374 case 0x0f5b: /* cvtdq2ps */
6375 case 0x660f5b: /* cvtps2dq */
6376 case 0xf30f5b: /* cvttps2dq */
6377 case 0x0f5c: /* subps */
6378 case 0x660f5c: /* subpd */
6379 case 0xf20f5c: /* subsd */
6380 case 0xf30f5c: /* subss */
6381 case 0x0f5d: /* minps */
6382 case 0x660f5d: /* minpd */
6383 case 0xf20f5d: /* minsd */
6384 case 0xf30f5d: /* minss */
6385 case 0x0f5e: /* divps */
6386 case 0x660f5e: /* divpd */
6387 case 0xf20f5e: /* divsd */
6388 case 0xf30f5e: /* divss */
6389 case 0x0f5f: /* maxps */
6390 case 0x660f5f: /* maxpd */
6391 case 0xf20f5f: /* maxsd */
6392 case 0xf30f5f: /* maxss */
6393 case 0x660f60: /* punpcklbw */
6394 case 0x660f61: /* punpcklwd */
6395 case 0x660f62: /* punpckldq */
6396 case 0x660f63: /* packsswb */
6397 case 0x660f64: /* pcmpgtb */
6398 case 0x660f65: /* pcmpgtw */
6399 case 0x660f66: /* pcmpgtd */
6400 case 0x660f67: /* packuswb */
6401 case 0x660f68: /* punpckhbw */
6402 case 0x660f69: /* punpckhwd */
6403 case 0x660f6a: /* punpckhdq */
6404 case 0x660f6b: /* packssdw */
6405 case 0x660f6c: /* punpcklqdq */
6406 case 0x660f6d: /* punpckhqdq */
6407 case 0x660f6e: /* movd */
6408 case 0x660f6f: /* movdqa */
6409 case 0xf30f6f: /* movdqu */
6410 case 0x660f70: /* pshufd */
6411 case 0xf20f70: /* pshuflw */
6412 case 0xf30f70: /* pshufhw */
6413 case 0x660f74: /* pcmpeqb */
6414 case 0x660f75: /* pcmpeqw */
6415 case 0x660f76: /* pcmpeqd */
6416 case 0x660f7c: /* haddpd */
6417 case 0xf20f7c: /* haddps */
6418 case 0x660f7d: /* hsubpd */
6419 case 0xf20f7d: /* hsubps */
6420 case 0xf30f7e: /* movq */
6421 case 0x0fc2: /* cmpps */
6422 case 0x660fc2: /* cmppd */
6423 case 0xf20fc2: /* cmpsd */
6424 case 0xf30fc2: /* cmpss */
6425 case 0x660fc4: /* pinsrw */
6426 case 0x0fc6: /* shufps */
6427 case 0x660fc6: /* shufpd */
6428 case 0x660fd0: /* addsubpd */
6429 case 0xf20fd0: /* addsubps */
6430 case 0x660fd1: /* psrlw */
6431 case 0x660fd2: /* psrld */
6432 case 0x660fd3: /* psrlq */
6433 case 0x660fd4: /* paddq */
6434 case 0x660fd5: /* pmullw */
6435 case 0xf30fd6: /* movq2dq */
6436 case 0x660fd8: /* psubusb */
6437 case 0x660fd9: /* psubusw */
6438 case 0x660fda: /* pminub */
6439 case 0x660fdb: /* pand */
6440 case 0x660fdc: /* paddusb */
6441 case 0x660fdd: /* paddusw */
6442 case 0x660fde: /* pmaxub */
6443 case 0x660fdf: /* pandn */
6444 case 0x660fe0: /* pavgb */
6445 case 0x660fe1: /* psraw */
6446 case 0x660fe2: /* psrad */
6447 case 0x660fe3: /* pavgw */
6448 case 0x660fe4: /* pmulhuw */
6449 case 0x660fe5: /* pmulhw */
6450 case 0x660fe6: /* cvttpd2dq */
6451 case 0xf20fe6: /* cvtpd2dq */
6452 case 0xf30fe6: /* cvtdq2pd */
6453 case 0x660fe8: /* psubsb */
6454 case 0x660fe9: /* psubsw */
6455 case 0x660fea: /* pminsw */
6456 case 0x660feb: /* por */
6457 case 0x660fec: /* paddsb */
6458 case 0x660fed: /* paddsw */
6459 case 0x660fee: /* pmaxsw */
6460 case 0x660fef: /* pxor */
6461 case 0xf20ff0: /* lddqu */
6462 case 0x660ff1: /* psllw */
6463 case 0x660ff2: /* pslld */
6464 case 0x660ff3: /* psllq */
6465 case 0x660ff4: /* pmuludq */
6466 case 0x660ff5: /* pmaddwd */
6467 case 0x660ff6: /* psadbw */
6468 case 0x660ff8: /* psubb */
6469 case 0x660ff9: /* psubw */
6470 case 0x660ffa: /* psubd */
6471 case 0x660ffb: /* psubq */
6472 case 0x660ffc: /* paddb */
6473 case 0x660ffd: /* paddw */
6474 case 0x660ffe: /* paddd */
6475 if (i386_record_modrm (&ir))
6476 return -1;
6477 ir.reg |= rex_r;
6478 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.reg))
6479 goto no_support;
6480 record_arch_list_add_reg (ir.regcache,
6481 I387_XMM0_REGNUM (tdep) + ir.reg);
6482 if ((opcode & 0xfffffffc) == 0x660f3a60)
6483 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6484 break;
6485
6486 case 0x0f11: /* movups */
6487 case 0x660f11: /* movupd */
6488 case 0xf30f11: /* movss */
6489 case 0xf20f11: /* movsd */
6490 case 0x0f13: /* movlps */
6491 case 0x660f13: /* movlpd */
6492 case 0x0f17: /* movhps */
6493 case 0x660f17: /* movhpd */
6494 case 0x0f29: /* movaps */
6495 case 0x660f29: /* movapd */
6496 case 0x660f3a14: /* pextrb */
6497 case 0x660f3a15: /* pextrw */
6498 case 0x660f3a16: /* pextrd pextrq */
6499 case 0x660f3a17: /* extractps */
6500 case 0x660f7f: /* movdqa */
6501 case 0xf30f7f: /* movdqu */
6502 if (i386_record_modrm (&ir))
6503 return -1;
6504 if (ir.mod == 3)
6505 {
6506 if (opcode == 0x0f13 || opcode == 0x660f13
6507 || opcode == 0x0f17 || opcode == 0x660f17)
6508 goto no_support;
6509 ir.rm |= ir.rex_b;
6510 if (!i386_xmm_regnum_p (gdbarch,
6511 I387_XMM0_REGNUM (tdep) + ir.rm))
6512 goto no_support;
6513 record_arch_list_add_reg (ir.regcache,
6514 I387_XMM0_REGNUM (tdep) + ir.rm);
6515 }
6516 else
6517 {
6518 switch (opcode)
6519 {
6520 case 0x660f3a14:
6521 ir.ot = OT_BYTE;
6522 break;
6523 case 0x660f3a15:
6524 ir.ot = OT_WORD;
6525 break;
6526 case 0x660f3a16:
6527 ir.ot = OT_LONG;
6528 break;
6529 case 0x660f3a17:
6530 ir.ot = OT_QUAD;
6531 break;
6532 default:
6533 ir.ot = OT_DQUAD;
6534 break;
6535 }
6536 if (i386_record_lea_modrm (&ir))
6537 return -1;
6538 }
6539 break;
6540
6541 case 0x0f2b: /* movntps */
6542 case 0x660f2b: /* movntpd */
6543 case 0x0fe7: /* movntq */
6544 case 0x660fe7: /* movntdq */
6545 if (ir.mod == 3)
6546 goto no_support;
6547 if (opcode == 0x0fe7)
6548 ir.ot = OT_QUAD;
6549 else
6550 ir.ot = OT_DQUAD;
6551 if (i386_record_lea_modrm (&ir))
6552 return -1;
6553 break;
6554
6555 case 0xf30f2c: /* cvttss2si */
6556 case 0xf20f2c: /* cvttsd2si */
6557 case 0xf30f2d: /* cvtss2si */
6558 case 0xf20f2d: /* cvtsd2si */
6559 case 0xf20f38f0: /* crc32 */
6560 case 0xf20f38f1: /* crc32 */
6561 case 0x0f50: /* movmskps */
6562 case 0x660f50: /* movmskpd */
6563 case 0x0fc5: /* pextrw */
6564 case 0x660fc5: /* pextrw */
6565 case 0x0fd7: /* pmovmskb */
6566 case 0x660fd7: /* pmovmskb */
6567 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6568 break;
6569
6570 case 0x0f3800: /* pshufb */
6571 case 0x0f3801: /* phaddw */
6572 case 0x0f3802: /* phaddd */
6573 case 0x0f3803: /* phaddsw */
6574 case 0x0f3804: /* pmaddubsw */
6575 case 0x0f3805: /* phsubw */
6576 case 0x0f3806: /* phsubd */
6577 case 0x0f3807: /* phsubsw */
6578 case 0x0f3808: /* psignb */
6579 case 0x0f3809: /* psignw */
6580 case 0x0f380a: /* psignd */
6581 case 0x0f380b: /* pmulhrsw */
6582 case 0x0f381c: /* pabsb */
6583 case 0x0f381d: /* pabsw */
6584 case 0x0f381e: /* pabsd */
6585 case 0x0f382b: /* packusdw */
6586 case 0x0f3830: /* pmovzxbw */
6587 case 0x0f3831: /* pmovzxbd */
6588 case 0x0f3832: /* pmovzxbq */
6589 case 0x0f3833: /* pmovzxwd */
6590 case 0x0f3834: /* pmovzxwq */
6591 case 0x0f3835: /* pmovzxdq */
6592 case 0x0f3837: /* pcmpgtq */
6593 case 0x0f3838: /* pminsb */
6594 case 0x0f3839: /* pminsd */
6595 case 0x0f383a: /* pminuw */
6596 case 0x0f383b: /* pminud */
6597 case 0x0f383c: /* pmaxsb */
6598 case 0x0f383d: /* pmaxsd */
6599 case 0x0f383e: /* pmaxuw */
6600 case 0x0f383f: /* pmaxud */
6601 case 0x0f3840: /* pmulld */
6602 case 0x0f3841: /* phminposuw */
6603 case 0x0f3a0f: /* palignr */
6604 case 0x0f60: /* punpcklbw */
6605 case 0x0f61: /* punpcklwd */
6606 case 0x0f62: /* punpckldq */
6607 case 0x0f63: /* packsswb */
6608 case 0x0f64: /* pcmpgtb */
6609 case 0x0f65: /* pcmpgtw */
6610 case 0x0f66: /* pcmpgtd */
6611 case 0x0f67: /* packuswb */
6612 case 0x0f68: /* punpckhbw */
6613 case 0x0f69: /* punpckhwd */
6614 case 0x0f6a: /* punpckhdq */
6615 case 0x0f6b: /* packssdw */
6616 case 0x0f6e: /* movd */
6617 case 0x0f6f: /* movq */
6618 case 0x0f70: /* pshufw */
6619 case 0x0f74: /* pcmpeqb */
6620 case 0x0f75: /* pcmpeqw */
6621 case 0x0f76: /* pcmpeqd */
6622 case 0x0fc4: /* pinsrw */
6623 case 0x0fd1: /* psrlw */
6624 case 0x0fd2: /* psrld */
6625 case 0x0fd3: /* psrlq */
6626 case 0x0fd4: /* paddq */
6627 case 0x0fd5: /* pmullw */
6628 case 0xf20fd6: /* movdq2q */
6629 case 0x0fd8: /* psubusb */
6630 case 0x0fd9: /* psubusw */
6631 case 0x0fda: /* pminub */
6632 case 0x0fdb: /* pand */
6633 case 0x0fdc: /* paddusb */
6634 case 0x0fdd: /* paddusw */
6635 case 0x0fde: /* pmaxub */
6636 case 0x0fdf: /* pandn */
6637 case 0x0fe0: /* pavgb */
6638 case 0x0fe1: /* psraw */
6639 case 0x0fe2: /* psrad */
6640 case 0x0fe3: /* pavgw */
6641 case 0x0fe4: /* pmulhuw */
6642 case 0x0fe5: /* pmulhw */
6643 case 0x0fe8: /* psubsb */
6644 case 0x0fe9: /* psubsw */
6645 case 0x0fea: /* pminsw */
6646 case 0x0feb: /* por */
6647 case 0x0fec: /* paddsb */
6648 case 0x0fed: /* paddsw */
6649 case 0x0fee: /* pmaxsw */
6650 case 0x0fef: /* pxor */
6651 case 0x0ff1: /* psllw */
6652 case 0x0ff2: /* pslld */
6653 case 0x0ff3: /* psllq */
6654 case 0x0ff4: /* pmuludq */
6655 case 0x0ff5: /* pmaddwd */
6656 case 0x0ff6: /* psadbw */
6657 case 0x0ff8: /* psubb */
6658 case 0x0ff9: /* psubw */
6659 case 0x0ffa: /* psubd */
6660 case 0x0ffb: /* psubq */
6661 case 0x0ffc: /* paddb */
6662 case 0x0ffd: /* paddw */
6663 case 0x0ffe: /* paddd */
6664 if (i386_record_modrm (&ir))
6665 return -1;
6666 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
6667 goto no_support;
6668 record_arch_list_add_reg (ir.regcache,
6669 I387_MM0_REGNUM (tdep) + ir.reg);
6670 break;
6671
6672 case 0x0f71: /* psllw */
6673 case 0x0f72: /* pslld */
6674 case 0x0f73: /* psllq */
6675 if (i386_record_modrm (&ir))
6676 return -1;
6677 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
6678 goto no_support;
6679 record_arch_list_add_reg (ir.regcache,
6680 I387_MM0_REGNUM (tdep) + ir.rm);
6681 break;
6682
6683 case 0x660f71: /* psllw */
6684 case 0x660f72: /* pslld */
6685 case 0x660f73: /* psllq */
6686 if (i386_record_modrm (&ir))
6687 return -1;
6688 ir.rm |= ir.rex_b;
6689 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.rm))
6690 goto no_support;
6691 record_arch_list_add_reg (ir.regcache,
6692 I387_XMM0_REGNUM (tdep) + ir.rm);
6693 break;
6694
6695 case 0x0f7e: /* movd */
6696 case 0x660f7e: /* movd */
6697 if (i386_record_modrm (&ir))
6698 return -1;
6699 if (ir.mod == 3)
6700 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6701 else
6702 {
6703 if (ir.dflag == 2)
6704 ir.ot = OT_QUAD;
6705 else
6706 ir.ot = OT_LONG;
6707 if (i386_record_lea_modrm (&ir))
6708 return -1;
6709 }
6710 break;
6711
6712 case 0x0f7f: /* movq */
6713 if (i386_record_modrm (&ir))
6714 return -1;
6715 if (ir.mod == 3)
6716 {
6717 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
6718 goto no_support;
6719 record_arch_list_add_reg (ir.regcache,
6720 I387_MM0_REGNUM (tdep) + ir.rm);
6721 }
6722 else
6723 {
6724 ir.ot = OT_QUAD;
6725 if (i386_record_lea_modrm (&ir))
6726 return -1;
6727 }
6728 break;
6729
6730 case 0xf30fb8: /* popcnt */
6731 if (i386_record_modrm (&ir))
6732 return -1;
6733 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
6734 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6735 break;
6736
6737 case 0x660fd6: /* movq */
6738 if (i386_record_modrm (&ir))
6739 return -1;
6740 if (ir.mod == 3)
6741 {
6742 ir.rm |= ir.rex_b;
6743 if (!i386_xmm_regnum_p (gdbarch,
6744 I387_XMM0_REGNUM (tdep) + ir.rm))
6745 goto no_support;
6746 record_arch_list_add_reg (ir.regcache,
6747 I387_XMM0_REGNUM (tdep) + ir.rm);
6748 }
6749 else
6750 {
6751 ir.ot = OT_QUAD;
6752 if (i386_record_lea_modrm (&ir))
6753 return -1;
6754 }
6755 break;
6756
6757 case 0x660f3817: /* ptest */
6758 case 0x0f2e: /* ucomiss */
6759 case 0x660f2e: /* ucomisd */
6760 case 0x0f2f: /* comiss */
6761 case 0x660f2f: /* comisd */
6762 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6763 break;
6764
6765 case 0x0ff7: /* maskmovq */
6766 regcache_raw_read_unsigned (ir.regcache,
6767 ir.regmap[X86_RECORD_REDI_REGNUM],
6768 &addr);
6769 if (record_arch_list_add_mem (addr, 64))
6770 return -1;
6771 break;
6772
6773 case 0x660ff7: /* maskmovdqu */
6774 regcache_raw_read_unsigned (ir.regcache,
6775 ir.regmap[X86_RECORD_REDI_REGNUM],
6776 &addr);
6777 if (record_arch_list_add_mem (addr, 128))
6778 return -1;
6779 break;
6780
6781 default:
6782 goto no_support;
6783 break;
6784 }
6785 break;
6786
6787 default:
6788 goto no_support;
6789 break;
6790 }
6791
6792 /* In the future, maybe still need to deal with need_dasm. */
6793 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REIP_REGNUM);
6794 if (record_arch_list_add_end ())
6795 return -1;
6796
6797 return 0;
6798
6799 no_support:
6800 printf_unfiltered (_("Process record does not support instruction 0x%02x "
6801 "at address %s.\n"),
6802 (unsigned int) (opcode),
6803 paddress (gdbarch, ir.orig_addr));
6804 return -1;
6805 }
6806
6807 static const int i386_record_regmap[] =
6808 {
6809 I386_EAX_REGNUM, I386_ECX_REGNUM, I386_EDX_REGNUM, I386_EBX_REGNUM,
6810 I386_ESP_REGNUM, I386_EBP_REGNUM, I386_ESI_REGNUM, I386_EDI_REGNUM,
6811 0, 0, 0, 0, 0, 0, 0, 0,
6812 I386_EIP_REGNUM, I386_EFLAGS_REGNUM, I386_CS_REGNUM, I386_SS_REGNUM,
6813 I386_DS_REGNUM, I386_ES_REGNUM, I386_FS_REGNUM, I386_GS_REGNUM
6814 };
6815
6816 /* Check that the given address appears suitable for a fast
6817 tracepoint, which on x86 means that we need an instruction of at
6818 least 5 bytes, so that we can overwrite it with a 4-byte-offset
6819 jump and not have to worry about program jumps to an address in the
6820 middle of the tracepoint jump. Returns 1 if OK, and writes a size
6821 of instruction to replace, and 0 if not, plus an explanatory
6822 string. */
6823
6824 static int
6825 i386_fast_tracepoint_valid_at (struct gdbarch *gdbarch,
6826 CORE_ADDR addr, int *isize, char **msg)
6827 {
6828 int len, jumplen;
6829 static struct ui_file *gdb_null = NULL;
6830
6831 /* This is based on the target agent using a 4-byte relative jump.
6832 Alternate future possibilities include 8-byte offset for x86-84,
6833 or 3-byte jumps if the program has trampoline space close by. */
6834 jumplen = 5;
6835
6836 /* Dummy file descriptor for the disassembler. */
6837 if (!gdb_null)
6838 gdb_null = ui_file_new ();
6839
6840 /* Check for fit. */
6841 len = gdb_print_insn (gdbarch, addr, gdb_null, NULL);
6842 if (len < jumplen)
6843 {
6844 /* Return a bit of target-specific detail to add to the caller's
6845 generic failure message. */
6846 if (msg)
6847 *msg = xstrprintf (_("; instruction is only %d bytes long, "
6848 "need at least %d bytes for the jump"),
6849 len, jumplen);
6850 return 0;
6851 }
6852
6853 if (isize)
6854 *isize = len;
6855 if (msg)
6856 *msg = NULL;
6857 return 1;
6858 }
6859
6860 static int
6861 i386_validate_tdesc_p (struct gdbarch_tdep *tdep,
6862 struct tdesc_arch_data *tdesc_data)
6863 {
6864 const struct target_desc *tdesc = tdep->tdesc;
6865 const struct tdesc_feature *feature_core;
6866 const struct tdesc_feature *feature_sse, *feature_avx;
6867 int i, num_regs, valid_p;
6868
6869 if (! tdesc_has_registers (tdesc))
6870 return 0;
6871
6872 /* Get core registers. */
6873 feature_core = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.core");
6874 if (feature_core == NULL)
6875 return 0;
6876
6877 /* Get SSE registers. */
6878 feature_sse = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.sse");
6879
6880 /* Try AVX registers. */
6881 feature_avx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx");
6882
6883 valid_p = 1;
6884
6885 /* The XCR0 bits. */
6886 if (feature_avx)
6887 {
6888 /* AVX register description requires SSE register description. */
6889 if (!feature_sse)
6890 return 0;
6891
6892 tdep->xcr0 = I386_XSTATE_AVX_MASK;
6893
6894 /* It may have been set by OSABI initialization function. */
6895 if (tdep->num_ymm_regs == 0)
6896 {
6897 tdep->ymmh_register_names = i386_ymmh_names;
6898 tdep->num_ymm_regs = 8;
6899 tdep->ymm0h_regnum = I386_YMM0H_REGNUM;
6900 }
6901
6902 for (i = 0; i < tdep->num_ymm_regs; i++)
6903 valid_p &= tdesc_numbered_register (feature_avx, tdesc_data,
6904 tdep->ymm0h_regnum + i,
6905 tdep->ymmh_register_names[i]);
6906 }
6907 else if (feature_sse)
6908 tdep->xcr0 = I386_XSTATE_SSE_MASK;
6909 else
6910 {
6911 tdep->xcr0 = I386_XSTATE_X87_MASK;
6912 tdep->num_xmm_regs = 0;
6913 }
6914
6915 num_regs = tdep->num_core_regs;
6916 for (i = 0; i < num_regs; i++)
6917 valid_p &= tdesc_numbered_register (feature_core, tdesc_data, i,
6918 tdep->register_names[i]);
6919
6920 if (feature_sse)
6921 {
6922 /* Need to include %mxcsr, so add one. */
6923 num_regs += tdep->num_xmm_regs + 1;
6924 for (; i < num_regs; i++)
6925 valid_p &= tdesc_numbered_register (feature_sse, tdesc_data, i,
6926 tdep->register_names[i]);
6927 }
6928
6929 return valid_p;
6930 }
6931
6932 \f
6933 static struct gdbarch *
6934 i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
6935 {
6936 struct gdbarch_tdep *tdep;
6937 struct gdbarch *gdbarch;
6938 struct tdesc_arch_data *tdesc_data;
6939 const struct target_desc *tdesc;
6940 int mm0_regnum;
6941 int ymm0_regnum;
6942
6943 /* If there is already a candidate, use it. */
6944 arches = gdbarch_list_lookup_by_info (arches, &info);
6945 if (arches != NULL)
6946 return arches->gdbarch;
6947
6948 /* Allocate space for the new architecture. */
6949 tdep = XCALLOC (1, struct gdbarch_tdep);
6950 gdbarch = gdbarch_alloc (&info, tdep);
6951
6952 /* General-purpose registers. */
6953 tdep->gregset = NULL;
6954 tdep->gregset_reg_offset = NULL;
6955 tdep->gregset_num_regs = I386_NUM_GREGS;
6956 tdep->sizeof_gregset = 0;
6957
6958 /* Floating-point registers. */
6959 tdep->fpregset = NULL;
6960 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
6961
6962 tdep->xstateregset = NULL;
6963
6964 /* The default settings include the FPU registers, the MMX registers
6965 and the SSE registers. This can be overridden for a specific ABI
6966 by adjusting the members `st0_regnum', `mm0_regnum' and
6967 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
6968 will show up in the output of "info all-registers". */
6969
6970 tdep->st0_regnum = I386_ST0_REGNUM;
6971
6972 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
6973 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
6974
6975 tdep->jb_pc_offset = -1;
6976 tdep->struct_return = pcc_struct_return;
6977 tdep->sigtramp_start = 0;
6978 tdep->sigtramp_end = 0;
6979 tdep->sigtramp_p = i386_sigtramp_p;
6980 tdep->sigcontext_addr = NULL;
6981 tdep->sc_reg_offset = NULL;
6982 tdep->sc_pc_offset = -1;
6983 tdep->sc_sp_offset = -1;
6984
6985 tdep->xsave_xcr0_offset = -1;
6986
6987 tdep->record_regmap = i386_record_regmap;
6988
6989 /* The format used for `long double' on almost all i386 targets is
6990 the i387 extended floating-point format. In fact, of all targets
6991 in the GCC 2.95 tree, only OSF/1 does it different, and insists
6992 on having a `long double' that's not `long' at all. */
6993 set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext);
6994
6995 /* Although the i387 extended floating-point has only 80 significant
6996 bits, a `long double' actually takes up 96, probably to enforce
6997 alignment. */
6998 set_gdbarch_long_double_bit (gdbarch, 96);
6999
7000 /* Register numbers of various important registers. */
7001 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
7002 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
7003 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
7004 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
7005
7006 /* NOTE: kettenis/20040418: GCC does have two possible register
7007 numbering schemes on the i386: dbx and SVR4. These schemes
7008 differ in how they number %ebp, %esp, %eflags, and the
7009 floating-point registers, and are implemented by the arrays
7010 dbx_register_map[] and svr4_dbx_register_map in
7011 gcc/config/i386.c. GCC also defines a third numbering scheme in
7012 gcc/config/i386.c, which it designates as the "default" register
7013 map used in 64bit mode. This last register numbering scheme is
7014 implemented in dbx64_register_map, and is used for AMD64; see
7015 amd64-tdep.c.
7016
7017 Currently, each GCC i386 target always uses the same register
7018 numbering scheme across all its supported debugging formats
7019 i.e. SDB (COFF), stabs and DWARF 2. This is because
7020 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
7021 DBX_REGISTER_NUMBER macro which is defined by each target's
7022 respective config header in a manner independent of the requested
7023 output debugging format.
7024
7025 This does not match the arrangement below, which presumes that
7026 the SDB and stabs numbering schemes differ from the DWARF and
7027 DWARF 2 ones. The reason for this arrangement is that it is
7028 likely to get the numbering scheme for the target's
7029 default/native debug format right. For targets where GCC is the
7030 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
7031 targets where the native toolchain uses a different numbering
7032 scheme for a particular debug format (stabs-in-ELF on Solaris)
7033 the defaults below will have to be overridden, like
7034 i386_elf_init_abi() does. */
7035
7036 /* Use the dbx register numbering scheme for stabs and COFF. */
7037 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
7038 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
7039
7040 /* Use the SVR4 register numbering scheme for DWARF 2. */
7041 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
7042
7043 /* We don't set gdbarch_stab_reg_to_regnum, since ECOFF doesn't seem to
7044 be in use on any of the supported i386 targets. */
7045
7046 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
7047
7048 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
7049
7050 /* Call dummy code. */
7051 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
7052
7053 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
7054 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
7055 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
7056
7057 set_gdbarch_return_value (gdbarch, i386_return_value);
7058
7059 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
7060
7061 /* Stack grows downward. */
7062 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
7063
7064 set_gdbarch_breakpoint_from_pc (gdbarch, i386_breakpoint_from_pc);
7065 set_gdbarch_decr_pc_after_break (gdbarch, 1);
7066 set_gdbarch_max_insn_length (gdbarch, I386_MAX_INSN_LEN);
7067
7068 set_gdbarch_frame_args_skip (gdbarch, 8);
7069
7070 set_gdbarch_print_insn (gdbarch, i386_print_insn);
7071
7072 set_gdbarch_dummy_id (gdbarch, i386_dummy_id);
7073
7074 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
7075
7076 /* Add the i386 register groups. */
7077 i386_add_reggroups (gdbarch);
7078 tdep->register_reggroup_p = i386_register_reggroup_p;
7079
7080 /* Helper for function argument information. */
7081 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
7082
7083 /* Hook the function epilogue frame unwinder. This unwinder is
7084 appended to the list first, so that it supercedes the Dwarf
7085 unwinder in function epilogues (where the Dwarf unwinder
7086 currently fails). */
7087 frame_unwind_append_unwinder (gdbarch, &i386_epilogue_frame_unwind);
7088
7089 /* Hook in the DWARF CFI frame unwinder. This unwinder is appended
7090 to the list before the prologue-based unwinders, so that Dwarf
7091 CFI info will be used if it is available. */
7092 dwarf2_append_unwinders (gdbarch);
7093
7094 frame_base_set_default (gdbarch, &i386_frame_base);
7095
7096 /* Pseudo registers may be changed by amd64_init_abi. */
7097 set_gdbarch_pseudo_register_read (gdbarch, i386_pseudo_register_read);
7098 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
7099
7100 set_tdesc_pseudo_register_type (gdbarch, i386_pseudo_register_type);
7101 set_tdesc_pseudo_register_name (gdbarch, i386_pseudo_register_name);
7102
7103 /* Override the normal target description method to make the AVX
7104 upper halves anonymous. */
7105 set_gdbarch_register_name (gdbarch, i386_register_name);
7106
7107 /* Even though the default ABI only includes general-purpose registers,
7108 floating-point registers and the SSE registers, we have to leave a
7109 gap for the upper AVX registers. */
7110 set_gdbarch_num_regs (gdbarch, I386_AVX_NUM_REGS);
7111
7112 /* Get the x86 target description from INFO. */
7113 tdesc = info.target_desc;
7114 if (! tdesc_has_registers (tdesc))
7115 tdesc = tdesc_i386;
7116 tdep->tdesc = tdesc;
7117
7118 tdep->num_core_regs = I386_NUM_GREGS + I387_NUM_REGS;
7119 tdep->register_names = i386_register_names;
7120
7121 /* No upper YMM registers. */
7122 tdep->ymmh_register_names = NULL;
7123 tdep->ymm0h_regnum = -1;
7124
7125 tdep->num_byte_regs = 8;
7126 tdep->num_word_regs = 8;
7127 tdep->num_dword_regs = 0;
7128 tdep->num_mmx_regs = 8;
7129 tdep->num_ymm_regs = 0;
7130
7131 tdesc_data = tdesc_data_alloc ();
7132
7133 set_gdbarch_relocate_instruction (gdbarch, i386_relocate_instruction);
7134
7135 /* Hook in ABI-specific overrides, if they have been registered. */
7136 info.tdep_info = (void *) tdesc_data;
7137 gdbarch_init_osabi (info, gdbarch);
7138
7139 if (!i386_validate_tdesc_p (tdep, tdesc_data))
7140 {
7141 tdesc_data_cleanup (tdesc_data);
7142 xfree (tdep);
7143 gdbarch_free (gdbarch);
7144 return NULL;
7145 }
7146
7147 /* Wire in pseudo registers. Number of pseudo registers may be
7148 changed. */
7149 set_gdbarch_num_pseudo_regs (gdbarch, (tdep->num_byte_regs
7150 + tdep->num_word_regs
7151 + tdep->num_dword_regs
7152 + tdep->num_mmx_regs
7153 + tdep->num_ymm_regs));
7154
7155 /* Target description may be changed. */
7156 tdesc = tdep->tdesc;
7157
7158 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
7159
7160 /* Override gdbarch_register_reggroup_p set in tdesc_use_registers. */
7161 set_gdbarch_register_reggroup_p (gdbarch, tdep->register_reggroup_p);
7162
7163 /* Make %al the first pseudo-register. */
7164 tdep->al_regnum = gdbarch_num_regs (gdbarch);
7165 tdep->ax_regnum = tdep->al_regnum + tdep->num_byte_regs;
7166
7167 ymm0_regnum = tdep->ax_regnum + tdep->num_word_regs;
7168 if (tdep->num_dword_regs)
7169 {
7170 /* Support dword pseudo-register if it hasn't been disabled. */
7171 tdep->eax_regnum = ymm0_regnum;
7172 ymm0_regnum += tdep->num_dword_regs;
7173 }
7174 else
7175 tdep->eax_regnum = -1;
7176
7177 mm0_regnum = ymm0_regnum;
7178 if (tdep->num_ymm_regs)
7179 {
7180 /* Support YMM pseudo-register if it is available. */
7181 tdep->ymm0_regnum = ymm0_regnum;
7182 mm0_regnum += tdep->num_ymm_regs;
7183 }
7184 else
7185 tdep->ymm0_regnum = -1;
7186
7187 if (tdep->num_mmx_regs != 0)
7188 {
7189 /* Support MMX pseudo-register if MMX hasn't been disabled. */
7190 tdep->mm0_regnum = mm0_regnum;
7191 }
7192 else
7193 tdep->mm0_regnum = -1;
7194
7195 /* Hook in the legacy prologue-based unwinders last (fallback). */
7196 frame_unwind_append_unwinder (gdbarch, &i386_sigtramp_frame_unwind);
7197 frame_unwind_append_unwinder (gdbarch, &i386_frame_unwind);
7198
7199 /* If we have a register mapping, enable the generic core file
7200 support, unless it has already been enabled. */
7201 if (tdep->gregset_reg_offset
7202 && !gdbarch_regset_from_core_section_p (gdbarch))
7203 set_gdbarch_regset_from_core_section (gdbarch,
7204 i386_regset_from_core_section);
7205
7206 set_gdbarch_skip_permanent_breakpoint (gdbarch,
7207 i386_skip_permanent_breakpoint);
7208
7209 set_gdbarch_fast_tracepoint_valid_at (gdbarch,
7210 i386_fast_tracepoint_valid_at);
7211
7212 return gdbarch;
7213 }
7214
7215 static enum gdb_osabi
7216 i386_coff_osabi_sniffer (bfd *abfd)
7217 {
7218 if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
7219 || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
7220 return GDB_OSABI_GO32;
7221
7222 return GDB_OSABI_UNKNOWN;
7223 }
7224 \f
7225
7226 /* Provide a prototype to silence -Wmissing-prototypes. */
7227 void _initialize_i386_tdep (void);
7228
7229 void
7230 _initialize_i386_tdep (void)
7231 {
7232 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
7233
7234 /* Add the variable that controls the disassembly flavor. */
7235 add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
7236 &disassembly_flavor, _("\
7237 Set the disassembly flavor."), _("\
7238 Show the disassembly flavor."), _("\
7239 The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
7240 NULL,
7241 NULL, /* FIXME: i18n: */
7242 &setlist, &showlist);
7243
7244 /* Add the variable that controls the convention for returning
7245 structs. */
7246 add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
7247 &struct_convention, _("\
7248 Set the convention for returning small structs."), _("\
7249 Show the convention for returning small structs."), _("\
7250 Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
7251 is \"default\"."),
7252 NULL,
7253 NULL, /* FIXME: i18n: */
7254 &setlist, &showlist);
7255
7256 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
7257 i386_coff_osabi_sniffer);
7258
7259 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
7260 i386_svr4_init_abi);
7261 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_GO32,
7262 i386_go32_init_abi);
7263
7264 /* Initialize the i386-specific register groups. */
7265 i386_init_reggroups ();
7266
7267 /* Initialize the standard target descriptions. */
7268 initialize_tdesc_i386 ();
7269 initialize_tdesc_i386_mmx ();
7270 initialize_tdesc_i386_avx ();
7271
7272 /* Tell remote stub that we support XML target description. */
7273 register_remote_support_xml ("i386");
7274 }
This page took 0.209656 seconds and 4 git commands to generate.