Add fall-through comment to i386-tdep.c
[deliverable/binutils-gdb.git] / gdb / i386-tdep.c
1 /* Intel 386 target-dependent stuff.
2
3 Copyright (C) 1988-2018 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "opcode/i386.h"
22 #include "arch-utils.h"
23 #include "command.h"
24 #include "dummy-frame.h"
25 #include "dwarf2-frame.h"
26 #include "frame.h"
27 #include "frame-base.h"
28 #include "frame-unwind.h"
29 #include "inferior.h"
30 #include "infrun.h"
31 #include "gdbcmd.h"
32 #include "gdbcore.h"
33 #include "gdbtypes.h"
34 #include "objfiles.h"
35 #include "osabi.h"
36 #include "regcache.h"
37 #include "reggroups.h"
38 #include "regset.h"
39 #include "symfile.h"
40 #include "symtab.h"
41 #include "target.h"
42 #include "target-float.h"
43 #include "value.h"
44 #include "dis-asm.h"
45 #include "disasm.h"
46 #include "remote.h"
47 #include "i386-tdep.h"
48 #include "i387-tdep.h"
49 #include "x86-xstate.h"
50 #include "x86-tdep.h"
51
52 #include "record.h"
53 #include "record-full.h"
54 #include "target-descriptions.h"
55 #include "arch/i386.h"
56
57 #include "ax.h"
58 #include "ax-gdb.h"
59
60 #include "stap-probe.h"
61 #include "user-regs.h"
62 #include "cli/cli-utils.h"
63 #include "expression.h"
64 #include "parser-defs.h"
65 #include <ctype.h>
66 #include <algorithm>
67
68 /* Register names. */
69
70 static const char *i386_register_names[] =
71 {
72 "eax", "ecx", "edx", "ebx",
73 "esp", "ebp", "esi", "edi",
74 "eip", "eflags", "cs", "ss",
75 "ds", "es", "fs", "gs",
76 "st0", "st1", "st2", "st3",
77 "st4", "st5", "st6", "st7",
78 "fctrl", "fstat", "ftag", "fiseg",
79 "fioff", "foseg", "fooff", "fop",
80 "xmm0", "xmm1", "xmm2", "xmm3",
81 "xmm4", "xmm5", "xmm6", "xmm7",
82 "mxcsr"
83 };
84
85 static const char *i386_zmm_names[] =
86 {
87 "zmm0", "zmm1", "zmm2", "zmm3",
88 "zmm4", "zmm5", "zmm6", "zmm7"
89 };
90
91 static const char *i386_zmmh_names[] =
92 {
93 "zmm0h", "zmm1h", "zmm2h", "zmm3h",
94 "zmm4h", "zmm5h", "zmm6h", "zmm7h"
95 };
96
97 static const char *i386_k_names[] =
98 {
99 "k0", "k1", "k2", "k3",
100 "k4", "k5", "k6", "k7"
101 };
102
103 static const char *i386_ymm_names[] =
104 {
105 "ymm0", "ymm1", "ymm2", "ymm3",
106 "ymm4", "ymm5", "ymm6", "ymm7",
107 };
108
109 static const char *i386_ymmh_names[] =
110 {
111 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
112 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
113 };
114
115 static const char *i386_mpx_names[] =
116 {
117 "bnd0raw", "bnd1raw", "bnd2raw", "bnd3raw", "bndcfgu", "bndstatus"
118 };
119
120 static const char* i386_pkeys_names[] =
121 {
122 "pkru"
123 };
124
125 /* Register names for MPX pseudo-registers. */
126
127 static const char *i386_bnd_names[] =
128 {
129 "bnd0", "bnd1", "bnd2", "bnd3"
130 };
131
132 /* Register names for MMX pseudo-registers. */
133
134 static const char *i386_mmx_names[] =
135 {
136 "mm0", "mm1", "mm2", "mm3",
137 "mm4", "mm5", "mm6", "mm7"
138 };
139
140 /* Register names for byte pseudo-registers. */
141
142 static const char *i386_byte_names[] =
143 {
144 "al", "cl", "dl", "bl",
145 "ah", "ch", "dh", "bh"
146 };
147
148 /* Register names for word pseudo-registers. */
149
150 static const char *i386_word_names[] =
151 {
152 "ax", "cx", "dx", "bx",
153 "", "bp", "si", "di"
154 };
155
156 /* Constant used for reading/writing pseudo registers. In 64-bit mode, we have
157 16 lower ZMM regs that extend corresponding xmm/ymm registers. In addition,
158 we have 16 upper ZMM regs that have to be handled differently. */
159
160 const int num_lower_zmm_regs = 16;
161
162 /* MMX register? */
163
164 static int
165 i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
166 {
167 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
168 int mm0_regnum = tdep->mm0_regnum;
169
170 if (mm0_regnum < 0)
171 return 0;
172
173 regnum -= mm0_regnum;
174 return regnum >= 0 && regnum < tdep->num_mmx_regs;
175 }
176
177 /* Byte register? */
178
179 int
180 i386_byte_regnum_p (struct gdbarch *gdbarch, int regnum)
181 {
182 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
183
184 regnum -= tdep->al_regnum;
185 return regnum >= 0 && regnum < tdep->num_byte_regs;
186 }
187
188 /* Word register? */
189
190 int
191 i386_word_regnum_p (struct gdbarch *gdbarch, int regnum)
192 {
193 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
194
195 regnum -= tdep->ax_regnum;
196 return regnum >= 0 && regnum < tdep->num_word_regs;
197 }
198
199 /* Dword register? */
200
201 int
202 i386_dword_regnum_p (struct gdbarch *gdbarch, int regnum)
203 {
204 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
205 int eax_regnum = tdep->eax_regnum;
206
207 if (eax_regnum < 0)
208 return 0;
209
210 regnum -= eax_regnum;
211 return regnum >= 0 && regnum < tdep->num_dword_regs;
212 }
213
214 /* AVX512 register? */
215
216 int
217 i386_zmmh_regnum_p (struct gdbarch *gdbarch, int regnum)
218 {
219 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
220 int zmm0h_regnum = tdep->zmm0h_regnum;
221
222 if (zmm0h_regnum < 0)
223 return 0;
224
225 regnum -= zmm0h_regnum;
226 return regnum >= 0 && regnum < tdep->num_zmm_regs;
227 }
228
229 int
230 i386_zmm_regnum_p (struct gdbarch *gdbarch, int regnum)
231 {
232 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
233 int zmm0_regnum = tdep->zmm0_regnum;
234
235 if (zmm0_regnum < 0)
236 return 0;
237
238 regnum -= zmm0_regnum;
239 return regnum >= 0 && regnum < tdep->num_zmm_regs;
240 }
241
242 int
243 i386_k_regnum_p (struct gdbarch *gdbarch, int regnum)
244 {
245 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
246 int k0_regnum = tdep->k0_regnum;
247
248 if (k0_regnum < 0)
249 return 0;
250
251 regnum -= k0_regnum;
252 return regnum >= 0 && regnum < I387_NUM_K_REGS;
253 }
254
255 static int
256 i386_ymmh_regnum_p (struct gdbarch *gdbarch, int regnum)
257 {
258 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
259 int ymm0h_regnum = tdep->ymm0h_regnum;
260
261 if (ymm0h_regnum < 0)
262 return 0;
263
264 regnum -= ymm0h_regnum;
265 return regnum >= 0 && regnum < tdep->num_ymm_regs;
266 }
267
268 /* AVX register? */
269
270 int
271 i386_ymm_regnum_p (struct gdbarch *gdbarch, int regnum)
272 {
273 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
274 int ymm0_regnum = tdep->ymm0_regnum;
275
276 if (ymm0_regnum < 0)
277 return 0;
278
279 regnum -= ymm0_regnum;
280 return regnum >= 0 && regnum < tdep->num_ymm_regs;
281 }
282
283 static int
284 i386_ymmh_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
285 {
286 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
287 int ymm16h_regnum = tdep->ymm16h_regnum;
288
289 if (ymm16h_regnum < 0)
290 return 0;
291
292 regnum -= ymm16h_regnum;
293 return regnum >= 0 && regnum < tdep->num_ymm_avx512_regs;
294 }
295
296 int
297 i386_ymm_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
298 {
299 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
300 int ymm16_regnum = tdep->ymm16_regnum;
301
302 if (ymm16_regnum < 0)
303 return 0;
304
305 regnum -= ymm16_regnum;
306 return regnum >= 0 && regnum < tdep->num_ymm_avx512_regs;
307 }
308
309 /* BND register? */
310
311 int
312 i386_bnd_regnum_p (struct gdbarch *gdbarch, int regnum)
313 {
314 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
315 int bnd0_regnum = tdep->bnd0_regnum;
316
317 if (bnd0_regnum < 0)
318 return 0;
319
320 regnum -= bnd0_regnum;
321 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
322 }
323
324 /* SSE register? */
325
326 int
327 i386_xmm_regnum_p (struct gdbarch *gdbarch, int regnum)
328 {
329 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
330 int num_xmm_regs = I387_NUM_XMM_REGS (tdep);
331
332 if (num_xmm_regs == 0)
333 return 0;
334
335 regnum -= I387_XMM0_REGNUM (tdep);
336 return regnum >= 0 && regnum < num_xmm_regs;
337 }
338
339 /* XMM_512 register? */
340
341 int
342 i386_xmm_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
343 {
344 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
345 int num_xmm_avx512_regs = I387_NUM_XMM_AVX512_REGS (tdep);
346
347 if (num_xmm_avx512_regs == 0)
348 return 0;
349
350 regnum -= I387_XMM16_REGNUM (tdep);
351 return regnum >= 0 && regnum < num_xmm_avx512_regs;
352 }
353
354 static int
355 i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
356 {
357 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
358
359 if (I387_NUM_XMM_REGS (tdep) == 0)
360 return 0;
361
362 return (regnum == I387_MXCSR_REGNUM (tdep));
363 }
364
365 /* FP register? */
366
367 int
368 i386_fp_regnum_p (struct gdbarch *gdbarch, int regnum)
369 {
370 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
371
372 if (I387_ST0_REGNUM (tdep) < 0)
373 return 0;
374
375 return (I387_ST0_REGNUM (tdep) <= regnum
376 && regnum < I387_FCTRL_REGNUM (tdep));
377 }
378
379 int
380 i386_fpc_regnum_p (struct gdbarch *gdbarch, int regnum)
381 {
382 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
383
384 if (I387_ST0_REGNUM (tdep) < 0)
385 return 0;
386
387 return (I387_FCTRL_REGNUM (tdep) <= regnum
388 && regnum < I387_XMM0_REGNUM (tdep));
389 }
390
391 /* BNDr (raw) register? */
392
393 static int
394 i386_bndr_regnum_p (struct gdbarch *gdbarch, int regnum)
395 {
396 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
397
398 if (I387_BND0R_REGNUM (tdep) < 0)
399 return 0;
400
401 regnum -= tdep->bnd0r_regnum;
402 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
403 }
404
405 /* BND control register? */
406
407 static int
408 i386_mpx_ctrl_regnum_p (struct gdbarch *gdbarch, int regnum)
409 {
410 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
411
412 if (I387_BNDCFGU_REGNUM (tdep) < 0)
413 return 0;
414
415 regnum -= I387_BNDCFGU_REGNUM (tdep);
416 return regnum >= 0 && regnum < I387_NUM_MPX_CTRL_REGS;
417 }
418
419 /* PKRU register? */
420
421 bool
422 i386_pkru_regnum_p (struct gdbarch *gdbarch, int regnum)
423 {
424 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
425 int pkru_regnum = tdep->pkru_regnum;
426
427 if (pkru_regnum < 0)
428 return false;
429
430 regnum -= pkru_regnum;
431 return regnum >= 0 && regnum < I387_NUM_PKEYS_REGS;
432 }
433
434 /* Return the name of register REGNUM, or the empty string if it is
435 an anonymous register. */
436
437 static const char *
438 i386_register_name (struct gdbarch *gdbarch, int regnum)
439 {
440 /* Hide the upper YMM registers. */
441 if (i386_ymmh_regnum_p (gdbarch, regnum))
442 return "";
443
444 /* Hide the upper YMM16-31 registers. */
445 if (i386_ymmh_avx512_regnum_p (gdbarch, regnum))
446 return "";
447
448 /* Hide the upper ZMM registers. */
449 if (i386_zmmh_regnum_p (gdbarch, regnum))
450 return "";
451
452 return tdesc_register_name (gdbarch, regnum);
453 }
454
455 /* Return the name of register REGNUM. */
456
457 const char *
458 i386_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
459 {
460 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
461 if (i386_bnd_regnum_p (gdbarch, regnum))
462 return i386_bnd_names[regnum - tdep->bnd0_regnum];
463 if (i386_mmx_regnum_p (gdbarch, regnum))
464 return i386_mmx_names[regnum - I387_MM0_REGNUM (tdep)];
465 else if (i386_ymm_regnum_p (gdbarch, regnum))
466 return i386_ymm_names[regnum - tdep->ymm0_regnum];
467 else if (i386_zmm_regnum_p (gdbarch, regnum))
468 return i386_zmm_names[regnum - tdep->zmm0_regnum];
469 else if (i386_byte_regnum_p (gdbarch, regnum))
470 return i386_byte_names[regnum - tdep->al_regnum];
471 else if (i386_word_regnum_p (gdbarch, regnum))
472 return i386_word_names[regnum - tdep->ax_regnum];
473
474 internal_error (__FILE__, __LINE__, _("invalid regnum"));
475 }
476
477 /* Convert a dbx register number REG to the appropriate register
478 number used by GDB. */
479
480 static int
481 i386_dbx_reg_to_regnum (struct gdbarch *gdbarch, int reg)
482 {
483 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
484
485 /* This implements what GCC calls the "default" register map
486 (dbx_register_map[]). */
487
488 if (reg >= 0 && reg <= 7)
489 {
490 /* General-purpose registers. The debug info calls %ebp
491 register 4, and %esp register 5. */
492 if (reg == 4)
493 return 5;
494 else if (reg == 5)
495 return 4;
496 else return reg;
497 }
498 else if (reg >= 12 && reg <= 19)
499 {
500 /* Floating-point registers. */
501 return reg - 12 + I387_ST0_REGNUM (tdep);
502 }
503 else if (reg >= 21 && reg <= 28)
504 {
505 /* SSE registers. */
506 int ymm0_regnum = tdep->ymm0_regnum;
507
508 if (ymm0_regnum >= 0
509 && i386_xmm_regnum_p (gdbarch, reg))
510 return reg - 21 + ymm0_regnum;
511 else
512 return reg - 21 + I387_XMM0_REGNUM (tdep);
513 }
514 else if (reg >= 29 && reg <= 36)
515 {
516 /* MMX registers. */
517 return reg - 29 + I387_MM0_REGNUM (tdep);
518 }
519
520 /* This will hopefully provoke a warning. */
521 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
522 }
523
524 /* Convert SVR4 DWARF register number REG to the appropriate register number
525 used by GDB. */
526
527 static int
528 i386_svr4_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
529 {
530 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
531
532 /* This implements the GCC register map that tries to be compatible
533 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
534
535 /* The SVR4 register numbering includes %eip and %eflags, and
536 numbers the floating point registers differently. */
537 if (reg >= 0 && reg <= 9)
538 {
539 /* General-purpose registers. */
540 return reg;
541 }
542 else if (reg >= 11 && reg <= 18)
543 {
544 /* Floating-point registers. */
545 return reg - 11 + I387_ST0_REGNUM (tdep);
546 }
547 else if (reg >= 21 && reg <= 36)
548 {
549 /* The SSE and MMX registers have the same numbers as with dbx. */
550 return i386_dbx_reg_to_regnum (gdbarch, reg);
551 }
552
553 switch (reg)
554 {
555 case 37: return I387_FCTRL_REGNUM (tdep);
556 case 38: return I387_FSTAT_REGNUM (tdep);
557 case 39: return I387_MXCSR_REGNUM (tdep);
558 case 40: return I386_ES_REGNUM;
559 case 41: return I386_CS_REGNUM;
560 case 42: return I386_SS_REGNUM;
561 case 43: return I386_DS_REGNUM;
562 case 44: return I386_FS_REGNUM;
563 case 45: return I386_GS_REGNUM;
564 }
565
566 return -1;
567 }
568
569 /* Wrapper on i386_svr4_dwarf_reg_to_regnum to return
570 num_regs + num_pseudo_regs for other debug formats. */
571
572 int
573 i386_svr4_reg_to_regnum (struct gdbarch *gdbarch, int reg)
574 {
575 int regnum = i386_svr4_dwarf_reg_to_regnum (gdbarch, reg);
576
577 if (regnum == -1)
578 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
579 return regnum;
580 }
581
582 \f
583
584 /* This is the variable that is set with "set disassembly-flavor", and
585 its legitimate values. */
586 static const char att_flavor[] = "att";
587 static const char intel_flavor[] = "intel";
588 static const char *const valid_flavors[] =
589 {
590 att_flavor,
591 intel_flavor,
592 NULL
593 };
594 static const char *disassembly_flavor = att_flavor;
595 \f
596
597 /* Use the program counter to determine the contents and size of a
598 breakpoint instruction. Return a pointer to a string of bytes that
599 encode a breakpoint instruction, store the length of the string in
600 *LEN and optionally adjust *PC to point to the correct memory
601 location for inserting the breakpoint.
602
603 On the i386 we have a single breakpoint that fits in a single byte
604 and can be inserted anywhere.
605
606 This function is 64-bit safe. */
607
608 constexpr gdb_byte i386_break_insn[] = { 0xcc }; /* int 3 */
609
610 typedef BP_MANIPULATION (i386_break_insn) i386_breakpoint;
611
612 \f
613 /* Displaced instruction handling. */
614
615 /* Skip the legacy instruction prefixes in INSN.
616 Not all prefixes are valid for any particular insn
617 but we needn't care, the insn will fault if it's invalid.
618 The result is a pointer to the first opcode byte,
619 or NULL if we run off the end of the buffer. */
620
621 static gdb_byte *
622 i386_skip_prefixes (gdb_byte *insn, size_t max_len)
623 {
624 gdb_byte *end = insn + max_len;
625
626 while (insn < end)
627 {
628 switch (*insn)
629 {
630 case DATA_PREFIX_OPCODE:
631 case ADDR_PREFIX_OPCODE:
632 case CS_PREFIX_OPCODE:
633 case DS_PREFIX_OPCODE:
634 case ES_PREFIX_OPCODE:
635 case FS_PREFIX_OPCODE:
636 case GS_PREFIX_OPCODE:
637 case SS_PREFIX_OPCODE:
638 case LOCK_PREFIX_OPCODE:
639 case REPE_PREFIX_OPCODE:
640 case REPNE_PREFIX_OPCODE:
641 ++insn;
642 continue;
643 default:
644 return insn;
645 }
646 }
647
648 return NULL;
649 }
650
651 static int
652 i386_absolute_jmp_p (const gdb_byte *insn)
653 {
654 /* jmp far (absolute address in operand). */
655 if (insn[0] == 0xea)
656 return 1;
657
658 if (insn[0] == 0xff)
659 {
660 /* jump near, absolute indirect (/4). */
661 if ((insn[1] & 0x38) == 0x20)
662 return 1;
663
664 /* jump far, absolute indirect (/5). */
665 if ((insn[1] & 0x38) == 0x28)
666 return 1;
667 }
668
669 return 0;
670 }
671
672 /* Return non-zero if INSN is a jump, zero otherwise. */
673
674 static int
675 i386_jmp_p (const gdb_byte *insn)
676 {
677 /* jump short, relative. */
678 if (insn[0] == 0xeb)
679 return 1;
680
681 /* jump near, relative. */
682 if (insn[0] == 0xe9)
683 return 1;
684
685 return i386_absolute_jmp_p (insn);
686 }
687
688 static int
689 i386_absolute_call_p (const gdb_byte *insn)
690 {
691 /* call far, absolute. */
692 if (insn[0] == 0x9a)
693 return 1;
694
695 if (insn[0] == 0xff)
696 {
697 /* Call near, absolute indirect (/2). */
698 if ((insn[1] & 0x38) == 0x10)
699 return 1;
700
701 /* Call far, absolute indirect (/3). */
702 if ((insn[1] & 0x38) == 0x18)
703 return 1;
704 }
705
706 return 0;
707 }
708
709 static int
710 i386_ret_p (const gdb_byte *insn)
711 {
712 switch (insn[0])
713 {
714 case 0xc2: /* ret near, pop N bytes. */
715 case 0xc3: /* ret near */
716 case 0xca: /* ret far, pop N bytes. */
717 case 0xcb: /* ret far */
718 case 0xcf: /* iret */
719 return 1;
720
721 default:
722 return 0;
723 }
724 }
725
726 static int
727 i386_call_p (const gdb_byte *insn)
728 {
729 if (i386_absolute_call_p (insn))
730 return 1;
731
732 /* call near, relative. */
733 if (insn[0] == 0xe8)
734 return 1;
735
736 return 0;
737 }
738
739 /* Return non-zero if INSN is a system call, and set *LENGTHP to its
740 length in bytes. Otherwise, return zero. */
741
742 static int
743 i386_syscall_p (const gdb_byte *insn, int *lengthp)
744 {
745 /* Is it 'int $0x80'? */
746 if ((insn[0] == 0xcd && insn[1] == 0x80)
747 /* Or is it 'sysenter'? */
748 || (insn[0] == 0x0f && insn[1] == 0x34)
749 /* Or is it 'syscall'? */
750 || (insn[0] == 0x0f && insn[1] == 0x05))
751 {
752 *lengthp = 2;
753 return 1;
754 }
755
756 return 0;
757 }
758
759 /* The gdbarch insn_is_call method. */
760
761 static int
762 i386_insn_is_call (struct gdbarch *gdbarch, CORE_ADDR addr)
763 {
764 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
765
766 read_code (addr, buf, I386_MAX_INSN_LEN);
767 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
768
769 return i386_call_p (insn);
770 }
771
772 /* The gdbarch insn_is_ret method. */
773
774 static int
775 i386_insn_is_ret (struct gdbarch *gdbarch, CORE_ADDR addr)
776 {
777 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
778
779 read_code (addr, buf, I386_MAX_INSN_LEN);
780 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
781
782 return i386_ret_p (insn);
783 }
784
785 /* The gdbarch insn_is_jump method. */
786
787 static int
788 i386_insn_is_jump (struct gdbarch *gdbarch, CORE_ADDR addr)
789 {
790 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
791
792 read_code (addr, buf, I386_MAX_INSN_LEN);
793 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
794
795 return i386_jmp_p (insn);
796 }
797
798 /* Some kernels may run one past a syscall insn, so we have to cope. */
799
800 struct displaced_step_closure *
801 i386_displaced_step_copy_insn (struct gdbarch *gdbarch,
802 CORE_ADDR from, CORE_ADDR to,
803 struct regcache *regs)
804 {
805 size_t len = gdbarch_max_insn_length (gdbarch);
806 i386_displaced_step_closure *closure = new i386_displaced_step_closure (len);
807 gdb_byte *buf = closure->buf.data ();
808
809 read_memory (from, buf, len);
810
811 /* GDB may get control back after the insn after the syscall.
812 Presumably this is a kernel bug.
813 If this is a syscall, make sure there's a nop afterwards. */
814 {
815 int syscall_length;
816 gdb_byte *insn;
817
818 insn = i386_skip_prefixes (buf, len);
819 if (insn != NULL && i386_syscall_p (insn, &syscall_length))
820 insn[syscall_length] = NOP_OPCODE;
821 }
822
823 write_memory (to, buf, len);
824
825 if (debug_displaced)
826 {
827 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
828 paddress (gdbarch, from), paddress (gdbarch, to));
829 displaced_step_dump_bytes (gdb_stdlog, buf, len);
830 }
831
832 return closure;
833 }
834
835 /* Fix up the state of registers and memory after having single-stepped
836 a displaced instruction. */
837
838 void
839 i386_displaced_step_fixup (struct gdbarch *gdbarch,
840 struct displaced_step_closure *closure_,
841 CORE_ADDR from, CORE_ADDR to,
842 struct regcache *regs)
843 {
844 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
845
846 /* The offset we applied to the instruction's address.
847 This could well be negative (when viewed as a signed 32-bit
848 value), but ULONGEST won't reflect that, so take care when
849 applying it. */
850 ULONGEST insn_offset = to - from;
851
852 i386_displaced_step_closure *closure
853 = (i386_displaced_step_closure *) closure_;
854 gdb_byte *insn = closure->buf.data ();
855 /* The start of the insn, needed in case we see some prefixes. */
856 gdb_byte *insn_start = insn;
857
858 if (debug_displaced)
859 fprintf_unfiltered (gdb_stdlog,
860 "displaced: fixup (%s, %s), "
861 "insn = 0x%02x 0x%02x ...\n",
862 paddress (gdbarch, from), paddress (gdbarch, to),
863 insn[0], insn[1]);
864
865 /* The list of issues to contend with here is taken from
866 resume_execution in arch/i386/kernel/kprobes.c, Linux 2.6.20.
867 Yay for Free Software! */
868
869 /* Relocate the %eip, if necessary. */
870
871 /* The instruction recognizers we use assume any leading prefixes
872 have been skipped. */
873 {
874 /* This is the size of the buffer in closure. */
875 size_t max_insn_len = gdbarch_max_insn_length (gdbarch);
876 gdb_byte *opcode = i386_skip_prefixes (insn, max_insn_len);
877 /* If there are too many prefixes, just ignore the insn.
878 It will fault when run. */
879 if (opcode != NULL)
880 insn = opcode;
881 }
882
883 /* Except in the case of absolute or indirect jump or call
884 instructions, or a return instruction, the new eip is relative to
885 the displaced instruction; make it relative. Well, signal
886 handler returns don't need relocation either, but we use the
887 value of %eip to recognize those; see below. */
888 if (! i386_absolute_jmp_p (insn)
889 && ! i386_absolute_call_p (insn)
890 && ! i386_ret_p (insn))
891 {
892 ULONGEST orig_eip;
893 int insn_len;
894
895 regcache_cooked_read_unsigned (regs, I386_EIP_REGNUM, &orig_eip);
896
897 /* A signal trampoline system call changes the %eip, resuming
898 execution of the main program after the signal handler has
899 returned. That makes them like 'return' instructions; we
900 shouldn't relocate %eip.
901
902 But most system calls don't, and we do need to relocate %eip.
903
904 Our heuristic for distinguishing these cases: if stepping
905 over the system call instruction left control directly after
906 the instruction, the we relocate --- control almost certainly
907 doesn't belong in the displaced copy. Otherwise, we assume
908 the instruction has put control where it belongs, and leave
909 it unrelocated. Goodness help us if there are PC-relative
910 system calls. */
911 if (i386_syscall_p (insn, &insn_len)
912 && orig_eip != to + (insn - insn_start) + insn_len
913 /* GDB can get control back after the insn after the syscall.
914 Presumably this is a kernel bug.
915 i386_displaced_step_copy_insn ensures its a nop,
916 we add one to the length for it. */
917 && orig_eip != to + (insn - insn_start) + insn_len + 1)
918 {
919 if (debug_displaced)
920 fprintf_unfiltered (gdb_stdlog,
921 "displaced: syscall changed %%eip; "
922 "not relocating\n");
923 }
924 else
925 {
926 ULONGEST eip = (orig_eip - insn_offset) & 0xffffffffUL;
927
928 /* If we just stepped over a breakpoint insn, we don't backup
929 the pc on purpose; this is to match behaviour without
930 stepping. */
931
932 regcache_cooked_write_unsigned (regs, I386_EIP_REGNUM, eip);
933
934 if (debug_displaced)
935 fprintf_unfiltered (gdb_stdlog,
936 "displaced: "
937 "relocated %%eip from %s to %s\n",
938 paddress (gdbarch, orig_eip),
939 paddress (gdbarch, eip));
940 }
941 }
942
943 /* If the instruction was PUSHFL, then the TF bit will be set in the
944 pushed value, and should be cleared. We'll leave this for later,
945 since GDB already messes up the TF flag when stepping over a
946 pushfl. */
947
948 /* If the instruction was a call, the return address now atop the
949 stack is the address following the copied instruction. We need
950 to make it the address following the original instruction. */
951 if (i386_call_p (insn))
952 {
953 ULONGEST esp;
954 ULONGEST retaddr;
955 const ULONGEST retaddr_len = 4;
956
957 regcache_cooked_read_unsigned (regs, I386_ESP_REGNUM, &esp);
958 retaddr = read_memory_unsigned_integer (esp, retaddr_len, byte_order);
959 retaddr = (retaddr - insn_offset) & 0xffffffffUL;
960 write_memory_unsigned_integer (esp, retaddr_len, byte_order, retaddr);
961
962 if (debug_displaced)
963 fprintf_unfiltered (gdb_stdlog,
964 "displaced: relocated return addr at %s to %s\n",
965 paddress (gdbarch, esp),
966 paddress (gdbarch, retaddr));
967 }
968 }
969
970 static void
971 append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
972 {
973 target_write_memory (*to, buf, len);
974 *to += len;
975 }
976
977 static void
978 i386_relocate_instruction (struct gdbarch *gdbarch,
979 CORE_ADDR *to, CORE_ADDR oldloc)
980 {
981 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
982 gdb_byte buf[I386_MAX_INSN_LEN];
983 int offset = 0, rel32, newrel;
984 int insn_length;
985 gdb_byte *insn = buf;
986
987 read_memory (oldloc, buf, I386_MAX_INSN_LEN);
988
989 insn_length = gdb_buffered_insn_length (gdbarch, insn,
990 I386_MAX_INSN_LEN, oldloc);
991
992 /* Get past the prefixes. */
993 insn = i386_skip_prefixes (insn, I386_MAX_INSN_LEN);
994
995 /* Adjust calls with 32-bit relative addresses as push/jump, with
996 the address pushed being the location where the original call in
997 the user program would return to. */
998 if (insn[0] == 0xe8)
999 {
1000 gdb_byte push_buf[16];
1001 unsigned int ret_addr;
1002
1003 /* Where "ret" in the original code will return to. */
1004 ret_addr = oldloc + insn_length;
1005 push_buf[0] = 0x68; /* pushq $... */
1006 store_unsigned_integer (&push_buf[1], 4, byte_order, ret_addr);
1007 /* Push the push. */
1008 append_insns (to, 5, push_buf);
1009
1010 /* Convert the relative call to a relative jump. */
1011 insn[0] = 0xe9;
1012
1013 /* Adjust the destination offset. */
1014 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
1015 newrel = (oldloc - *to) + rel32;
1016 store_signed_integer (insn + 1, 4, byte_order, newrel);
1017
1018 if (debug_displaced)
1019 fprintf_unfiltered (gdb_stdlog,
1020 "Adjusted insn rel32=%s at %s to"
1021 " rel32=%s at %s\n",
1022 hex_string (rel32), paddress (gdbarch, oldloc),
1023 hex_string (newrel), paddress (gdbarch, *to));
1024
1025 /* Write the adjusted jump into its displaced location. */
1026 append_insns (to, 5, insn);
1027 return;
1028 }
1029
1030 /* Adjust jumps with 32-bit relative addresses. Calls are already
1031 handled above. */
1032 if (insn[0] == 0xe9)
1033 offset = 1;
1034 /* Adjust conditional jumps. */
1035 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
1036 offset = 2;
1037
1038 if (offset)
1039 {
1040 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
1041 newrel = (oldloc - *to) + rel32;
1042 store_signed_integer (insn + offset, 4, byte_order, newrel);
1043 if (debug_displaced)
1044 fprintf_unfiltered (gdb_stdlog,
1045 "Adjusted insn rel32=%s at %s to"
1046 " rel32=%s at %s\n",
1047 hex_string (rel32), paddress (gdbarch, oldloc),
1048 hex_string (newrel), paddress (gdbarch, *to));
1049 }
1050
1051 /* Write the adjusted instructions into their displaced
1052 location. */
1053 append_insns (to, insn_length, buf);
1054 }
1055
1056 \f
1057 #ifdef I386_REGNO_TO_SYMMETRY
1058 #error "The Sequent Symmetry is no longer supported."
1059 #endif
1060
1061 /* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
1062 and %esp "belong" to the calling function. Therefore these
1063 registers should be saved if they're going to be modified. */
1064
1065 /* The maximum number of saved registers. This should include all
1066 registers mentioned above, and %eip. */
1067 #define I386_NUM_SAVED_REGS I386_NUM_GREGS
1068
1069 struct i386_frame_cache
1070 {
1071 /* Base address. */
1072 CORE_ADDR base;
1073 int base_p;
1074 LONGEST sp_offset;
1075 CORE_ADDR pc;
1076
1077 /* Saved registers. */
1078 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
1079 CORE_ADDR saved_sp;
1080 int saved_sp_reg;
1081 int pc_in_eax;
1082
1083 /* Stack space reserved for local variables. */
1084 long locals;
1085 };
1086
1087 /* Allocate and initialize a frame cache. */
1088
1089 static struct i386_frame_cache *
1090 i386_alloc_frame_cache (void)
1091 {
1092 struct i386_frame_cache *cache;
1093 int i;
1094
1095 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
1096
1097 /* Base address. */
1098 cache->base_p = 0;
1099 cache->base = 0;
1100 cache->sp_offset = -4;
1101 cache->pc = 0;
1102
1103 /* Saved registers. We initialize these to -1 since zero is a valid
1104 offset (that's where %ebp is supposed to be stored). */
1105 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
1106 cache->saved_regs[i] = -1;
1107 cache->saved_sp = 0;
1108 cache->saved_sp_reg = -1;
1109 cache->pc_in_eax = 0;
1110
1111 /* Frameless until proven otherwise. */
1112 cache->locals = -1;
1113
1114 return cache;
1115 }
1116
1117 /* If the instruction at PC is a jump, return the address of its
1118 target. Otherwise, return PC. */
1119
1120 static CORE_ADDR
1121 i386_follow_jump (struct gdbarch *gdbarch, CORE_ADDR pc)
1122 {
1123 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1124 gdb_byte op;
1125 long delta = 0;
1126 int data16 = 0;
1127
1128 if (target_read_code (pc, &op, 1))
1129 return pc;
1130
1131 if (op == 0x66)
1132 {
1133 data16 = 1;
1134
1135 op = read_code_unsigned_integer (pc + 1, 1, byte_order);
1136 }
1137
1138 switch (op)
1139 {
1140 case 0xe9:
1141 /* Relative jump: if data16 == 0, disp32, else disp16. */
1142 if (data16)
1143 {
1144 delta = read_memory_integer (pc + 2, 2, byte_order);
1145
1146 /* Include the size of the jmp instruction (including the
1147 0x66 prefix). */
1148 delta += 4;
1149 }
1150 else
1151 {
1152 delta = read_memory_integer (pc + 1, 4, byte_order);
1153
1154 /* Include the size of the jmp instruction. */
1155 delta += 5;
1156 }
1157 break;
1158 case 0xeb:
1159 /* Relative jump, disp8 (ignore data16). */
1160 delta = read_memory_integer (pc + data16 + 1, 1, byte_order);
1161
1162 delta += data16 + 2;
1163 break;
1164 }
1165
1166 return pc + delta;
1167 }
1168
1169 /* Check whether PC points at a prologue for a function returning a
1170 structure or union. If so, it updates CACHE and returns the
1171 address of the first instruction after the code sequence that
1172 removes the "hidden" argument from the stack or CURRENT_PC,
1173 whichever is smaller. Otherwise, return PC. */
1174
1175 static CORE_ADDR
1176 i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
1177 struct i386_frame_cache *cache)
1178 {
1179 /* Functions that return a structure or union start with:
1180
1181 popl %eax 0x58
1182 xchgl %eax, (%esp) 0x87 0x04 0x24
1183 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
1184
1185 (the System V compiler puts out the second `xchg' instruction,
1186 and the assembler doesn't try to optimize it, so the 'sib' form
1187 gets generated). This sequence is used to get the address of the
1188 return buffer for a function that returns a structure. */
1189 static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
1190 static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
1191 gdb_byte buf[4];
1192 gdb_byte op;
1193
1194 if (current_pc <= pc)
1195 return pc;
1196
1197 if (target_read_code (pc, &op, 1))
1198 return pc;
1199
1200 if (op != 0x58) /* popl %eax */
1201 return pc;
1202
1203 if (target_read_code (pc + 1, buf, 4))
1204 return pc;
1205
1206 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
1207 return pc;
1208
1209 if (current_pc == pc)
1210 {
1211 cache->sp_offset += 4;
1212 return current_pc;
1213 }
1214
1215 if (current_pc == pc + 1)
1216 {
1217 cache->pc_in_eax = 1;
1218 return current_pc;
1219 }
1220
1221 if (buf[1] == proto1[1])
1222 return pc + 4;
1223 else
1224 return pc + 5;
1225 }
1226
1227 static CORE_ADDR
1228 i386_skip_probe (CORE_ADDR pc)
1229 {
1230 /* A function may start with
1231
1232 pushl constant
1233 call _probe
1234 addl $4, %esp
1235
1236 followed by
1237
1238 pushl %ebp
1239
1240 etc. */
1241 gdb_byte buf[8];
1242 gdb_byte op;
1243
1244 if (target_read_code (pc, &op, 1))
1245 return pc;
1246
1247 if (op == 0x68 || op == 0x6a)
1248 {
1249 int delta;
1250
1251 /* Skip past the `pushl' instruction; it has either a one-byte or a
1252 four-byte operand, depending on the opcode. */
1253 if (op == 0x68)
1254 delta = 5;
1255 else
1256 delta = 2;
1257
1258 /* Read the following 8 bytes, which should be `call _probe' (6
1259 bytes) followed by `addl $4,%esp' (2 bytes). */
1260 read_memory (pc + delta, buf, sizeof (buf));
1261 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
1262 pc += delta + sizeof (buf);
1263 }
1264
1265 return pc;
1266 }
1267
1268 /* GCC 4.1 and later, can put code in the prologue to realign the
1269 stack pointer. Check whether PC points to such code, and update
1270 CACHE accordingly. Return the first instruction after the code
1271 sequence or CURRENT_PC, whichever is smaller. If we don't
1272 recognize the code, return PC. */
1273
1274 static CORE_ADDR
1275 i386_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1276 struct i386_frame_cache *cache)
1277 {
1278 /* There are 2 code sequences to re-align stack before the frame
1279 gets set up:
1280
1281 1. Use a caller-saved saved register:
1282
1283 leal 4(%esp), %reg
1284 andl $-XXX, %esp
1285 pushl -4(%reg)
1286
1287 2. Use a callee-saved saved register:
1288
1289 pushl %reg
1290 leal 8(%esp), %reg
1291 andl $-XXX, %esp
1292 pushl -4(%reg)
1293
1294 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
1295
1296 0x83 0xe4 0xf0 andl $-16, %esp
1297 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
1298 */
1299
1300 gdb_byte buf[14];
1301 int reg;
1302 int offset, offset_and;
1303 static int regnums[8] = {
1304 I386_EAX_REGNUM, /* %eax */
1305 I386_ECX_REGNUM, /* %ecx */
1306 I386_EDX_REGNUM, /* %edx */
1307 I386_EBX_REGNUM, /* %ebx */
1308 I386_ESP_REGNUM, /* %esp */
1309 I386_EBP_REGNUM, /* %ebp */
1310 I386_ESI_REGNUM, /* %esi */
1311 I386_EDI_REGNUM /* %edi */
1312 };
1313
1314 if (target_read_code (pc, buf, sizeof buf))
1315 return pc;
1316
1317 /* Check caller-saved saved register. The first instruction has
1318 to be "leal 4(%esp), %reg". */
1319 if (buf[0] == 0x8d && buf[2] == 0x24 && buf[3] == 0x4)
1320 {
1321 /* MOD must be binary 10 and R/M must be binary 100. */
1322 if ((buf[1] & 0xc7) != 0x44)
1323 return pc;
1324
1325 /* REG has register number. */
1326 reg = (buf[1] >> 3) & 7;
1327 offset = 4;
1328 }
1329 else
1330 {
1331 /* Check callee-saved saved register. The first instruction
1332 has to be "pushl %reg". */
1333 if ((buf[0] & 0xf8) != 0x50)
1334 return pc;
1335
1336 /* Get register. */
1337 reg = buf[0] & 0x7;
1338
1339 /* The next instruction has to be "leal 8(%esp), %reg". */
1340 if (buf[1] != 0x8d || buf[3] != 0x24 || buf[4] != 0x8)
1341 return pc;
1342
1343 /* MOD must be binary 10 and R/M must be binary 100. */
1344 if ((buf[2] & 0xc7) != 0x44)
1345 return pc;
1346
1347 /* REG has register number. Registers in pushl and leal have to
1348 be the same. */
1349 if (reg != ((buf[2] >> 3) & 7))
1350 return pc;
1351
1352 offset = 5;
1353 }
1354
1355 /* Rigister can't be %esp nor %ebp. */
1356 if (reg == 4 || reg == 5)
1357 return pc;
1358
1359 /* The next instruction has to be "andl $-XXX, %esp". */
1360 if (buf[offset + 1] != 0xe4
1361 || (buf[offset] != 0x81 && buf[offset] != 0x83))
1362 return pc;
1363
1364 offset_and = offset;
1365 offset += buf[offset] == 0x81 ? 6 : 3;
1366
1367 /* The next instruction has to be "pushl -4(%reg)". 8bit -4 is
1368 0xfc. REG must be binary 110 and MOD must be binary 01. */
1369 if (buf[offset] != 0xff
1370 || buf[offset + 2] != 0xfc
1371 || (buf[offset + 1] & 0xf8) != 0x70)
1372 return pc;
1373
1374 /* R/M has register. Registers in leal and pushl have to be the
1375 same. */
1376 if (reg != (buf[offset + 1] & 7))
1377 return pc;
1378
1379 if (current_pc > pc + offset_and)
1380 cache->saved_sp_reg = regnums[reg];
1381
1382 return std::min (pc + offset + 3, current_pc);
1383 }
1384
1385 /* Maximum instruction length we need to handle. */
1386 #define I386_MAX_MATCHED_INSN_LEN 6
1387
1388 /* Instruction description. */
1389 struct i386_insn
1390 {
1391 size_t len;
1392 gdb_byte insn[I386_MAX_MATCHED_INSN_LEN];
1393 gdb_byte mask[I386_MAX_MATCHED_INSN_LEN];
1394 };
1395
1396 /* Return whether instruction at PC matches PATTERN. */
1397
1398 static int
1399 i386_match_pattern (CORE_ADDR pc, struct i386_insn pattern)
1400 {
1401 gdb_byte op;
1402
1403 if (target_read_code (pc, &op, 1))
1404 return 0;
1405
1406 if ((op & pattern.mask[0]) == pattern.insn[0])
1407 {
1408 gdb_byte buf[I386_MAX_MATCHED_INSN_LEN - 1];
1409 int insn_matched = 1;
1410 size_t i;
1411
1412 gdb_assert (pattern.len > 1);
1413 gdb_assert (pattern.len <= I386_MAX_MATCHED_INSN_LEN);
1414
1415 if (target_read_code (pc + 1, buf, pattern.len - 1))
1416 return 0;
1417
1418 for (i = 1; i < pattern.len; i++)
1419 {
1420 if ((buf[i - 1] & pattern.mask[i]) != pattern.insn[i])
1421 insn_matched = 0;
1422 }
1423 return insn_matched;
1424 }
1425 return 0;
1426 }
1427
1428 /* Search for the instruction at PC in the list INSN_PATTERNS. Return
1429 the first instruction description that matches. Otherwise, return
1430 NULL. */
1431
1432 static struct i386_insn *
1433 i386_match_insn (CORE_ADDR pc, struct i386_insn *insn_patterns)
1434 {
1435 struct i386_insn *pattern;
1436
1437 for (pattern = insn_patterns; pattern->len > 0; pattern++)
1438 {
1439 if (i386_match_pattern (pc, *pattern))
1440 return pattern;
1441 }
1442
1443 return NULL;
1444 }
1445
1446 /* Return whether PC points inside a sequence of instructions that
1447 matches INSN_PATTERNS. */
1448
1449 static int
1450 i386_match_insn_block (CORE_ADDR pc, struct i386_insn *insn_patterns)
1451 {
1452 CORE_ADDR current_pc;
1453 int ix, i;
1454 struct i386_insn *insn;
1455
1456 insn = i386_match_insn (pc, insn_patterns);
1457 if (insn == NULL)
1458 return 0;
1459
1460 current_pc = pc;
1461 ix = insn - insn_patterns;
1462 for (i = ix - 1; i >= 0; i--)
1463 {
1464 current_pc -= insn_patterns[i].len;
1465
1466 if (!i386_match_pattern (current_pc, insn_patterns[i]))
1467 return 0;
1468 }
1469
1470 current_pc = pc + insn->len;
1471 for (insn = insn_patterns + ix + 1; insn->len > 0; insn++)
1472 {
1473 if (!i386_match_pattern (current_pc, *insn))
1474 return 0;
1475
1476 current_pc += insn->len;
1477 }
1478
1479 return 1;
1480 }
1481
1482 /* Some special instructions that might be migrated by GCC into the
1483 part of the prologue that sets up the new stack frame. Because the
1484 stack frame hasn't been setup yet, no registers have been saved
1485 yet, and only the scratch registers %eax, %ecx and %edx can be
1486 touched. */
1487
1488 struct i386_insn i386_frame_setup_skip_insns[] =
1489 {
1490 /* Check for `movb imm8, r' and `movl imm32, r'.
1491
1492 ??? Should we handle 16-bit operand-sizes here? */
1493
1494 /* `movb imm8, %al' and `movb imm8, %ah' */
1495 /* `movb imm8, %cl' and `movb imm8, %ch' */
1496 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
1497 /* `movb imm8, %dl' and `movb imm8, %dh' */
1498 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
1499 /* `movl imm32, %eax' and `movl imm32, %ecx' */
1500 { 5, { 0xb8 }, { 0xfe } },
1501 /* `movl imm32, %edx' */
1502 { 5, { 0xba }, { 0xff } },
1503
1504 /* Check for `mov imm32, r32'. Note that there is an alternative
1505 encoding for `mov m32, %eax'.
1506
1507 ??? Should we handle SIB adressing here?
1508 ??? Should we handle 16-bit operand-sizes here? */
1509
1510 /* `movl m32, %eax' */
1511 { 5, { 0xa1 }, { 0xff } },
1512 /* `movl m32, %eax' and `mov; m32, %ecx' */
1513 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
1514 /* `movl m32, %edx' */
1515 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
1516
1517 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
1518 Because of the symmetry, there are actually two ways to encode
1519 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
1520 opcode bytes 0x31 and 0x33 for `xorl'. */
1521
1522 /* `subl %eax, %eax' */
1523 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
1524 /* `subl %ecx, %ecx' */
1525 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
1526 /* `subl %edx, %edx' */
1527 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
1528 /* `xorl %eax, %eax' */
1529 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
1530 /* `xorl %ecx, %ecx' */
1531 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
1532 /* `xorl %edx, %edx' */
1533 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
1534 { 0 }
1535 };
1536
1537
1538 /* Check whether PC points to a no-op instruction. */
1539 static CORE_ADDR
1540 i386_skip_noop (CORE_ADDR pc)
1541 {
1542 gdb_byte op;
1543 int check = 1;
1544
1545 if (target_read_code (pc, &op, 1))
1546 return pc;
1547
1548 while (check)
1549 {
1550 check = 0;
1551 /* Ignore `nop' instruction. */
1552 if (op == 0x90)
1553 {
1554 pc += 1;
1555 if (target_read_code (pc, &op, 1))
1556 return pc;
1557 check = 1;
1558 }
1559 /* Ignore no-op instruction `mov %edi, %edi'.
1560 Microsoft system dlls often start with
1561 a `mov %edi,%edi' instruction.
1562 The 5 bytes before the function start are
1563 filled with `nop' instructions.
1564 This pattern can be used for hot-patching:
1565 The `mov %edi, %edi' instruction can be replaced by a
1566 near jump to the location of the 5 `nop' instructions
1567 which can be replaced by a 32-bit jump to anywhere
1568 in the 32-bit address space. */
1569
1570 else if (op == 0x8b)
1571 {
1572 if (target_read_code (pc + 1, &op, 1))
1573 return pc;
1574
1575 if (op == 0xff)
1576 {
1577 pc += 2;
1578 if (target_read_code (pc, &op, 1))
1579 return pc;
1580
1581 check = 1;
1582 }
1583 }
1584 }
1585 return pc;
1586 }
1587
1588 /* Check whether PC points at a code that sets up a new stack frame.
1589 If so, it updates CACHE and returns the address of the first
1590 instruction after the sequence that sets up the frame or LIMIT,
1591 whichever is smaller. If we don't recognize the code, return PC. */
1592
1593 static CORE_ADDR
1594 i386_analyze_frame_setup (struct gdbarch *gdbarch,
1595 CORE_ADDR pc, CORE_ADDR limit,
1596 struct i386_frame_cache *cache)
1597 {
1598 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1599 struct i386_insn *insn;
1600 gdb_byte op;
1601 int skip = 0;
1602
1603 if (limit <= pc)
1604 return limit;
1605
1606 if (target_read_code (pc, &op, 1))
1607 return pc;
1608
1609 if (op == 0x55) /* pushl %ebp */
1610 {
1611 /* Take into account that we've executed the `pushl %ebp' that
1612 starts this instruction sequence. */
1613 cache->saved_regs[I386_EBP_REGNUM] = 0;
1614 cache->sp_offset += 4;
1615 pc++;
1616
1617 /* If that's all, return now. */
1618 if (limit <= pc)
1619 return limit;
1620
1621 /* Check for some special instructions that might be migrated by
1622 GCC into the prologue and skip them. At this point in the
1623 prologue, code should only touch the scratch registers %eax,
1624 %ecx and %edx, so while the number of posibilities is sheer,
1625 it is limited.
1626
1627 Make sure we only skip these instructions if we later see the
1628 `movl %esp, %ebp' that actually sets up the frame. */
1629 while (pc + skip < limit)
1630 {
1631 insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
1632 if (insn == NULL)
1633 break;
1634
1635 skip += insn->len;
1636 }
1637
1638 /* If that's all, return now. */
1639 if (limit <= pc + skip)
1640 return limit;
1641
1642 if (target_read_code (pc + skip, &op, 1))
1643 return pc + skip;
1644
1645 /* The i386 prologue looks like
1646
1647 push %ebp
1648 mov %esp,%ebp
1649 sub $0x10,%esp
1650
1651 and a different prologue can be generated for atom.
1652
1653 push %ebp
1654 lea (%esp),%ebp
1655 lea -0x10(%esp),%esp
1656
1657 We handle both of them here. */
1658
1659 switch (op)
1660 {
1661 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
1662 case 0x8b:
1663 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
1664 != 0xec)
1665 return pc;
1666 pc += (skip + 2);
1667 break;
1668 case 0x89:
1669 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
1670 != 0xe5)
1671 return pc;
1672 pc += (skip + 2);
1673 break;
1674 case 0x8d: /* Check for 'lea (%ebp), %ebp'. */
1675 if (read_code_unsigned_integer (pc + skip + 1, 2, byte_order)
1676 != 0x242c)
1677 return pc;
1678 pc += (skip + 3);
1679 break;
1680 default:
1681 return pc;
1682 }
1683
1684 /* OK, we actually have a frame. We just don't know how large
1685 it is yet. Set its size to zero. We'll adjust it if
1686 necessary. We also now commit to skipping the special
1687 instructions mentioned before. */
1688 cache->locals = 0;
1689
1690 /* If that's all, return now. */
1691 if (limit <= pc)
1692 return limit;
1693
1694 /* Check for stack adjustment
1695
1696 subl $XXX, %esp
1697 or
1698 lea -XXX(%esp),%esp
1699
1700 NOTE: You can't subtract a 16-bit immediate from a 32-bit
1701 reg, so we don't have to worry about a data16 prefix. */
1702 if (target_read_code (pc, &op, 1))
1703 return pc;
1704 if (op == 0x83)
1705 {
1706 /* `subl' with 8-bit immediate. */
1707 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1708 /* Some instruction starting with 0x83 other than `subl'. */
1709 return pc;
1710
1711 /* `subl' with signed 8-bit immediate (though it wouldn't
1712 make sense to be negative). */
1713 cache->locals = read_code_integer (pc + 2, 1, byte_order);
1714 return pc + 3;
1715 }
1716 else if (op == 0x81)
1717 {
1718 /* Maybe it is `subl' with a 32-bit immediate. */
1719 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1720 /* Some instruction starting with 0x81 other than `subl'. */
1721 return pc;
1722
1723 /* It is `subl' with a 32-bit immediate. */
1724 cache->locals = read_code_integer (pc + 2, 4, byte_order);
1725 return pc + 6;
1726 }
1727 else if (op == 0x8d)
1728 {
1729 /* The ModR/M byte is 0x64. */
1730 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0x64)
1731 return pc;
1732 /* 'lea' with 8-bit displacement. */
1733 cache->locals = -1 * read_code_integer (pc + 3, 1, byte_order);
1734 return pc + 4;
1735 }
1736 else
1737 {
1738 /* Some instruction other than `subl' nor 'lea'. */
1739 return pc;
1740 }
1741 }
1742 else if (op == 0xc8) /* enter */
1743 {
1744 cache->locals = read_code_unsigned_integer (pc + 1, 2, byte_order);
1745 return pc + 4;
1746 }
1747
1748 return pc;
1749 }
1750
1751 /* Check whether PC points at code that saves registers on the stack.
1752 If so, it updates CACHE and returns the address of the first
1753 instruction after the register saves or CURRENT_PC, whichever is
1754 smaller. Otherwise, return PC. */
1755
1756 static CORE_ADDR
1757 i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
1758 struct i386_frame_cache *cache)
1759 {
1760 CORE_ADDR offset = 0;
1761 gdb_byte op;
1762 int i;
1763
1764 if (cache->locals > 0)
1765 offset -= cache->locals;
1766 for (i = 0; i < 8 && pc < current_pc; i++)
1767 {
1768 if (target_read_code (pc, &op, 1))
1769 return pc;
1770 if (op < 0x50 || op > 0x57)
1771 break;
1772
1773 offset -= 4;
1774 cache->saved_regs[op - 0x50] = offset;
1775 cache->sp_offset += 4;
1776 pc++;
1777 }
1778
1779 return pc;
1780 }
1781
1782 /* Do a full analysis of the prologue at PC and update CACHE
1783 accordingly. Bail out early if CURRENT_PC is reached. Return the
1784 address where the analysis stopped.
1785
1786 We handle these cases:
1787
1788 The startup sequence can be at the start of the function, or the
1789 function can start with a branch to startup code at the end.
1790
1791 %ebp can be set up with either the 'enter' instruction, or "pushl
1792 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
1793 once used in the System V compiler).
1794
1795 Local space is allocated just below the saved %ebp by either the
1796 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
1797 16-bit unsigned argument for space to allocate, and the 'addl'
1798 instruction could have either a signed byte, or 32-bit immediate.
1799
1800 Next, the registers used by this function are pushed. With the
1801 System V compiler they will always be in the order: %edi, %esi,
1802 %ebx (and sometimes a harmless bug causes it to also save but not
1803 restore %eax); however, the code below is willing to see the pushes
1804 in any order, and will handle up to 8 of them.
1805
1806 If the setup sequence is at the end of the function, then the next
1807 instruction will be a branch back to the start. */
1808
1809 static CORE_ADDR
1810 i386_analyze_prologue (struct gdbarch *gdbarch,
1811 CORE_ADDR pc, CORE_ADDR current_pc,
1812 struct i386_frame_cache *cache)
1813 {
1814 pc = i386_skip_noop (pc);
1815 pc = i386_follow_jump (gdbarch, pc);
1816 pc = i386_analyze_struct_return (pc, current_pc, cache);
1817 pc = i386_skip_probe (pc);
1818 pc = i386_analyze_stack_align (pc, current_pc, cache);
1819 pc = i386_analyze_frame_setup (gdbarch, pc, current_pc, cache);
1820 return i386_analyze_register_saves (pc, current_pc, cache);
1821 }
1822
1823 /* Return PC of first real instruction. */
1824
1825 static CORE_ADDR
1826 i386_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
1827 {
1828 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1829
1830 static gdb_byte pic_pat[6] =
1831 {
1832 0xe8, 0, 0, 0, 0, /* call 0x0 */
1833 0x5b, /* popl %ebx */
1834 };
1835 struct i386_frame_cache cache;
1836 CORE_ADDR pc;
1837 gdb_byte op;
1838 int i;
1839 CORE_ADDR func_addr;
1840
1841 if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
1842 {
1843 CORE_ADDR post_prologue_pc
1844 = skip_prologue_using_sal (gdbarch, func_addr);
1845 struct compunit_symtab *cust = find_pc_compunit_symtab (func_addr);
1846
1847 /* Clang always emits a line note before the prologue and another
1848 one after. We trust clang to emit usable line notes. */
1849 if (post_prologue_pc
1850 && (cust != NULL
1851 && COMPUNIT_PRODUCER (cust) != NULL
1852 && startswith (COMPUNIT_PRODUCER (cust), "clang ")))
1853 return std::max (start_pc, post_prologue_pc);
1854 }
1855
1856 cache.locals = -1;
1857 pc = i386_analyze_prologue (gdbarch, start_pc, 0xffffffff, &cache);
1858 if (cache.locals < 0)
1859 return start_pc;
1860
1861 /* Found valid frame setup. */
1862
1863 /* The native cc on SVR4 in -K PIC mode inserts the following code
1864 to get the address of the global offset table (GOT) into register
1865 %ebx:
1866
1867 call 0x0
1868 popl %ebx
1869 movl %ebx,x(%ebp) (optional)
1870 addl y,%ebx
1871
1872 This code is with the rest of the prologue (at the end of the
1873 function), so we have to skip it to get to the first real
1874 instruction at the start of the function. */
1875
1876 for (i = 0; i < 6; i++)
1877 {
1878 if (target_read_code (pc + i, &op, 1))
1879 return pc;
1880
1881 if (pic_pat[i] != op)
1882 break;
1883 }
1884 if (i == 6)
1885 {
1886 int delta = 6;
1887
1888 if (target_read_code (pc + delta, &op, 1))
1889 return pc;
1890
1891 if (op == 0x89) /* movl %ebx, x(%ebp) */
1892 {
1893 op = read_code_unsigned_integer (pc + delta + 1, 1, byte_order);
1894
1895 if (op == 0x5d) /* One byte offset from %ebp. */
1896 delta += 3;
1897 else if (op == 0x9d) /* Four byte offset from %ebp. */
1898 delta += 6;
1899 else /* Unexpected instruction. */
1900 delta = 0;
1901
1902 if (target_read_code (pc + delta, &op, 1))
1903 return pc;
1904 }
1905
1906 /* addl y,%ebx */
1907 if (delta > 0 && op == 0x81
1908 && read_code_unsigned_integer (pc + delta + 1, 1, byte_order)
1909 == 0xc3)
1910 {
1911 pc += delta + 6;
1912 }
1913 }
1914
1915 /* If the function starts with a branch (to startup code at the end)
1916 the last instruction should bring us back to the first
1917 instruction of the real code. */
1918 if (i386_follow_jump (gdbarch, start_pc) != start_pc)
1919 pc = i386_follow_jump (gdbarch, pc);
1920
1921 return pc;
1922 }
1923
1924 /* Check that the code pointed to by PC corresponds to a call to
1925 __main, skip it if so. Return PC otherwise. */
1926
1927 CORE_ADDR
1928 i386_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1929 {
1930 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1931 gdb_byte op;
1932
1933 if (target_read_code (pc, &op, 1))
1934 return pc;
1935 if (op == 0xe8)
1936 {
1937 gdb_byte buf[4];
1938
1939 if (target_read_code (pc + 1, buf, sizeof buf) == 0)
1940 {
1941 /* Make sure address is computed correctly as a 32bit
1942 integer even if CORE_ADDR is 64 bit wide. */
1943 struct bound_minimal_symbol s;
1944 CORE_ADDR call_dest;
1945
1946 call_dest = pc + 5 + extract_signed_integer (buf, 4, byte_order);
1947 call_dest = call_dest & 0xffffffffU;
1948 s = lookup_minimal_symbol_by_pc (call_dest);
1949 if (s.minsym != NULL
1950 && MSYMBOL_LINKAGE_NAME (s.minsym) != NULL
1951 && strcmp (MSYMBOL_LINKAGE_NAME (s.minsym), "__main") == 0)
1952 pc += 5;
1953 }
1954 }
1955
1956 return pc;
1957 }
1958
1959 /* This function is 64-bit safe. */
1960
1961 static CORE_ADDR
1962 i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1963 {
1964 gdb_byte buf[8];
1965
1966 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
1967 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
1968 }
1969 \f
1970
1971 /* Normal frames. */
1972
1973 static void
1974 i386_frame_cache_1 (struct frame_info *this_frame,
1975 struct i386_frame_cache *cache)
1976 {
1977 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1978 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1979 gdb_byte buf[4];
1980 int i;
1981
1982 cache->pc = get_frame_func (this_frame);
1983
1984 /* In principle, for normal frames, %ebp holds the frame pointer,
1985 which holds the base address for the current stack frame.
1986 However, for functions that don't need it, the frame pointer is
1987 optional. For these "frameless" functions the frame pointer is
1988 actually the frame pointer of the calling frame. Signal
1989 trampolines are just a special case of a "frameless" function.
1990 They (usually) share their frame pointer with the frame that was
1991 in progress when the signal occurred. */
1992
1993 get_frame_register (this_frame, I386_EBP_REGNUM, buf);
1994 cache->base = extract_unsigned_integer (buf, 4, byte_order);
1995 if (cache->base == 0)
1996 {
1997 cache->base_p = 1;
1998 return;
1999 }
2000
2001 /* For normal frames, %eip is stored at 4(%ebp). */
2002 cache->saved_regs[I386_EIP_REGNUM] = 4;
2003
2004 if (cache->pc != 0)
2005 i386_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
2006 cache);
2007
2008 if (cache->locals < 0)
2009 {
2010 /* We didn't find a valid frame, which means that CACHE->base
2011 currently holds the frame pointer for our calling frame. If
2012 we're at the start of a function, or somewhere half-way its
2013 prologue, the function's frame probably hasn't been fully
2014 setup yet. Try to reconstruct the base address for the stack
2015 frame by looking at the stack pointer. For truly "frameless"
2016 functions this might work too. */
2017
2018 if (cache->saved_sp_reg != -1)
2019 {
2020 /* Saved stack pointer has been saved. */
2021 get_frame_register (this_frame, cache->saved_sp_reg, buf);
2022 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
2023
2024 /* We're halfway aligning the stack. */
2025 cache->base = ((cache->saved_sp - 4) & 0xfffffff0) - 4;
2026 cache->saved_regs[I386_EIP_REGNUM] = cache->saved_sp - 4;
2027
2028 /* This will be added back below. */
2029 cache->saved_regs[I386_EIP_REGNUM] -= cache->base;
2030 }
2031 else if (cache->pc != 0
2032 || target_read_code (get_frame_pc (this_frame), buf, 1))
2033 {
2034 /* We're in a known function, but did not find a frame
2035 setup. Assume that the function does not use %ebp.
2036 Alternatively, we may have jumped to an invalid
2037 address; in that case there is definitely no new
2038 frame in %ebp. */
2039 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2040 cache->base = extract_unsigned_integer (buf, 4, byte_order)
2041 + cache->sp_offset;
2042 }
2043 else
2044 /* We're in an unknown function. We could not find the start
2045 of the function to analyze the prologue; our best option is
2046 to assume a typical frame layout with the caller's %ebp
2047 saved. */
2048 cache->saved_regs[I386_EBP_REGNUM] = 0;
2049 }
2050
2051 if (cache->saved_sp_reg != -1)
2052 {
2053 /* Saved stack pointer has been saved (but the SAVED_SP_REG
2054 register may be unavailable). */
2055 if (cache->saved_sp == 0
2056 && deprecated_frame_register_read (this_frame,
2057 cache->saved_sp_reg, buf))
2058 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
2059 }
2060 /* Now that we have the base address for the stack frame we can
2061 calculate the value of %esp in the calling frame. */
2062 else if (cache->saved_sp == 0)
2063 cache->saved_sp = cache->base + 8;
2064
2065 /* Adjust all the saved registers such that they contain addresses
2066 instead of offsets. */
2067 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
2068 if (cache->saved_regs[i] != -1)
2069 cache->saved_regs[i] += cache->base;
2070
2071 cache->base_p = 1;
2072 }
2073
2074 static struct i386_frame_cache *
2075 i386_frame_cache (struct frame_info *this_frame, void **this_cache)
2076 {
2077 struct i386_frame_cache *cache;
2078
2079 if (*this_cache)
2080 return (struct i386_frame_cache *) *this_cache;
2081
2082 cache = i386_alloc_frame_cache ();
2083 *this_cache = cache;
2084
2085 TRY
2086 {
2087 i386_frame_cache_1 (this_frame, cache);
2088 }
2089 CATCH (ex, RETURN_MASK_ERROR)
2090 {
2091 if (ex.error != NOT_AVAILABLE_ERROR)
2092 throw_exception (ex);
2093 }
2094 END_CATCH
2095
2096 return cache;
2097 }
2098
2099 static void
2100 i386_frame_this_id (struct frame_info *this_frame, void **this_cache,
2101 struct frame_id *this_id)
2102 {
2103 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2104
2105 if (!cache->base_p)
2106 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2107 else if (cache->base == 0)
2108 {
2109 /* This marks the outermost frame. */
2110 }
2111 else
2112 {
2113 /* See the end of i386_push_dummy_call. */
2114 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2115 }
2116 }
2117
2118 static enum unwind_stop_reason
2119 i386_frame_unwind_stop_reason (struct frame_info *this_frame,
2120 void **this_cache)
2121 {
2122 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2123
2124 if (!cache->base_p)
2125 return UNWIND_UNAVAILABLE;
2126
2127 /* This marks the outermost frame. */
2128 if (cache->base == 0)
2129 return UNWIND_OUTERMOST;
2130
2131 return UNWIND_NO_REASON;
2132 }
2133
2134 static struct value *
2135 i386_frame_prev_register (struct frame_info *this_frame, void **this_cache,
2136 int regnum)
2137 {
2138 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2139
2140 gdb_assert (regnum >= 0);
2141
2142 /* The System V ABI says that:
2143
2144 "The flags register contains the system flags, such as the
2145 direction flag and the carry flag. The direction flag must be
2146 set to the forward (that is, zero) direction before entry and
2147 upon exit from a function. Other user flags have no specified
2148 role in the standard calling sequence and are not preserved."
2149
2150 To guarantee the "upon exit" part of that statement we fake a
2151 saved flags register that has its direction flag cleared.
2152
2153 Note that GCC doesn't seem to rely on the fact that the direction
2154 flag is cleared after a function return; it always explicitly
2155 clears the flag before operations where it matters.
2156
2157 FIXME: kettenis/20030316: I'm not quite sure whether this is the
2158 right thing to do. The way we fake the flags register here makes
2159 it impossible to change it. */
2160
2161 if (regnum == I386_EFLAGS_REGNUM)
2162 {
2163 ULONGEST val;
2164
2165 val = get_frame_register_unsigned (this_frame, regnum);
2166 val &= ~(1 << 10);
2167 return frame_unwind_got_constant (this_frame, regnum, val);
2168 }
2169
2170 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
2171 return frame_unwind_got_register (this_frame, regnum, I386_EAX_REGNUM);
2172
2173 if (regnum == I386_ESP_REGNUM
2174 && (cache->saved_sp != 0 || cache->saved_sp_reg != -1))
2175 {
2176 /* If the SP has been saved, but we don't know where, then this
2177 means that SAVED_SP_REG register was found unavailable back
2178 when we built the cache. */
2179 if (cache->saved_sp == 0)
2180 return frame_unwind_got_register (this_frame, regnum,
2181 cache->saved_sp_reg);
2182 else
2183 return frame_unwind_got_constant (this_frame, regnum,
2184 cache->saved_sp);
2185 }
2186
2187 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
2188 return frame_unwind_got_memory (this_frame, regnum,
2189 cache->saved_regs[regnum]);
2190
2191 return frame_unwind_got_register (this_frame, regnum, regnum);
2192 }
2193
2194 static const struct frame_unwind i386_frame_unwind =
2195 {
2196 NORMAL_FRAME,
2197 i386_frame_unwind_stop_reason,
2198 i386_frame_this_id,
2199 i386_frame_prev_register,
2200 NULL,
2201 default_frame_sniffer
2202 };
2203
2204 /* Normal frames, but in a function epilogue. */
2205
2206 /* Implement the stack_frame_destroyed_p gdbarch method.
2207
2208 The epilogue is defined here as the 'ret' instruction, which will
2209 follow any instruction such as 'leave' or 'pop %ebp' that destroys
2210 the function's stack frame. */
2211
2212 static int
2213 i386_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2214 {
2215 gdb_byte insn;
2216 struct compunit_symtab *cust;
2217
2218 cust = find_pc_compunit_symtab (pc);
2219 if (cust != NULL && COMPUNIT_EPILOGUE_UNWIND_VALID (cust))
2220 return 0;
2221
2222 if (target_read_memory (pc, &insn, 1))
2223 return 0; /* Can't read memory at pc. */
2224
2225 if (insn != 0xc3) /* 'ret' instruction. */
2226 return 0;
2227
2228 return 1;
2229 }
2230
2231 static int
2232 i386_epilogue_frame_sniffer (const struct frame_unwind *self,
2233 struct frame_info *this_frame,
2234 void **this_prologue_cache)
2235 {
2236 if (frame_relative_level (this_frame) == 0)
2237 return i386_stack_frame_destroyed_p (get_frame_arch (this_frame),
2238 get_frame_pc (this_frame));
2239 else
2240 return 0;
2241 }
2242
2243 static struct i386_frame_cache *
2244 i386_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
2245 {
2246 struct i386_frame_cache *cache;
2247 CORE_ADDR sp;
2248
2249 if (*this_cache)
2250 return (struct i386_frame_cache *) *this_cache;
2251
2252 cache = i386_alloc_frame_cache ();
2253 *this_cache = cache;
2254
2255 TRY
2256 {
2257 cache->pc = get_frame_func (this_frame);
2258
2259 /* At this point the stack looks as if we just entered the
2260 function, with the return address at the top of the
2261 stack. */
2262 sp = get_frame_register_unsigned (this_frame, I386_ESP_REGNUM);
2263 cache->base = sp + cache->sp_offset;
2264 cache->saved_sp = cache->base + 8;
2265 cache->saved_regs[I386_EIP_REGNUM] = cache->base + 4;
2266
2267 cache->base_p = 1;
2268 }
2269 CATCH (ex, RETURN_MASK_ERROR)
2270 {
2271 if (ex.error != NOT_AVAILABLE_ERROR)
2272 throw_exception (ex);
2273 }
2274 END_CATCH
2275
2276 return cache;
2277 }
2278
2279 static enum unwind_stop_reason
2280 i386_epilogue_frame_unwind_stop_reason (struct frame_info *this_frame,
2281 void **this_cache)
2282 {
2283 struct i386_frame_cache *cache =
2284 i386_epilogue_frame_cache (this_frame, this_cache);
2285
2286 if (!cache->base_p)
2287 return UNWIND_UNAVAILABLE;
2288
2289 return UNWIND_NO_REASON;
2290 }
2291
2292 static void
2293 i386_epilogue_frame_this_id (struct frame_info *this_frame,
2294 void **this_cache,
2295 struct frame_id *this_id)
2296 {
2297 struct i386_frame_cache *cache =
2298 i386_epilogue_frame_cache (this_frame, this_cache);
2299
2300 if (!cache->base_p)
2301 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2302 else
2303 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2304 }
2305
2306 static struct value *
2307 i386_epilogue_frame_prev_register (struct frame_info *this_frame,
2308 void **this_cache, int regnum)
2309 {
2310 /* Make sure we've initialized the cache. */
2311 i386_epilogue_frame_cache (this_frame, this_cache);
2312
2313 return i386_frame_prev_register (this_frame, this_cache, regnum);
2314 }
2315
2316 static const struct frame_unwind i386_epilogue_frame_unwind =
2317 {
2318 NORMAL_FRAME,
2319 i386_epilogue_frame_unwind_stop_reason,
2320 i386_epilogue_frame_this_id,
2321 i386_epilogue_frame_prev_register,
2322 NULL,
2323 i386_epilogue_frame_sniffer
2324 };
2325 \f
2326
2327 /* Stack-based trampolines. */
2328
2329 /* These trampolines are used on cross x86 targets, when taking the
2330 address of a nested function. When executing these trampolines,
2331 no stack frame is set up, so we are in a similar situation as in
2332 epilogues and i386_epilogue_frame_this_id can be re-used. */
2333
2334 /* Static chain passed in register. */
2335
2336 struct i386_insn i386_tramp_chain_in_reg_insns[] =
2337 {
2338 /* `movl imm32, %eax' and `movl imm32, %ecx' */
2339 { 5, { 0xb8 }, { 0xfe } },
2340
2341 /* `jmp imm32' */
2342 { 5, { 0xe9 }, { 0xff } },
2343
2344 {0}
2345 };
2346
2347 /* Static chain passed on stack (when regparm=3). */
2348
2349 struct i386_insn i386_tramp_chain_on_stack_insns[] =
2350 {
2351 /* `push imm32' */
2352 { 5, { 0x68 }, { 0xff } },
2353
2354 /* `jmp imm32' */
2355 { 5, { 0xe9 }, { 0xff } },
2356
2357 {0}
2358 };
2359
2360 /* Return whether PC points inside a stack trampoline. */
2361
2362 static int
2363 i386_in_stack_tramp_p (CORE_ADDR pc)
2364 {
2365 gdb_byte insn;
2366 const char *name;
2367
2368 /* A stack trampoline is detected if no name is associated
2369 to the current pc and if it points inside a trampoline
2370 sequence. */
2371
2372 find_pc_partial_function (pc, &name, NULL, NULL);
2373 if (name)
2374 return 0;
2375
2376 if (target_read_memory (pc, &insn, 1))
2377 return 0;
2378
2379 if (!i386_match_insn_block (pc, i386_tramp_chain_in_reg_insns)
2380 && !i386_match_insn_block (pc, i386_tramp_chain_on_stack_insns))
2381 return 0;
2382
2383 return 1;
2384 }
2385
2386 static int
2387 i386_stack_tramp_frame_sniffer (const struct frame_unwind *self,
2388 struct frame_info *this_frame,
2389 void **this_cache)
2390 {
2391 if (frame_relative_level (this_frame) == 0)
2392 return i386_in_stack_tramp_p (get_frame_pc (this_frame));
2393 else
2394 return 0;
2395 }
2396
2397 static const struct frame_unwind i386_stack_tramp_frame_unwind =
2398 {
2399 NORMAL_FRAME,
2400 i386_epilogue_frame_unwind_stop_reason,
2401 i386_epilogue_frame_this_id,
2402 i386_epilogue_frame_prev_register,
2403 NULL,
2404 i386_stack_tramp_frame_sniffer
2405 };
2406 \f
2407 /* Generate a bytecode expression to get the value of the saved PC. */
2408
2409 static void
2410 i386_gen_return_address (struct gdbarch *gdbarch,
2411 struct agent_expr *ax, struct axs_value *value,
2412 CORE_ADDR scope)
2413 {
2414 /* The following sequence assumes the traditional use of the base
2415 register. */
2416 ax_reg (ax, I386_EBP_REGNUM);
2417 ax_const_l (ax, 4);
2418 ax_simple (ax, aop_add);
2419 value->type = register_type (gdbarch, I386_EIP_REGNUM);
2420 value->kind = axs_lvalue_memory;
2421 }
2422 \f
2423
2424 /* Signal trampolines. */
2425
2426 static struct i386_frame_cache *
2427 i386_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
2428 {
2429 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2430 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2431 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2432 struct i386_frame_cache *cache;
2433 CORE_ADDR addr;
2434 gdb_byte buf[4];
2435
2436 if (*this_cache)
2437 return (struct i386_frame_cache *) *this_cache;
2438
2439 cache = i386_alloc_frame_cache ();
2440
2441 TRY
2442 {
2443 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2444 cache->base = extract_unsigned_integer (buf, 4, byte_order) - 4;
2445
2446 addr = tdep->sigcontext_addr (this_frame);
2447 if (tdep->sc_reg_offset)
2448 {
2449 int i;
2450
2451 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
2452
2453 for (i = 0; i < tdep->sc_num_regs; i++)
2454 if (tdep->sc_reg_offset[i] != -1)
2455 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
2456 }
2457 else
2458 {
2459 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
2460 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
2461 }
2462
2463 cache->base_p = 1;
2464 }
2465 CATCH (ex, RETURN_MASK_ERROR)
2466 {
2467 if (ex.error != NOT_AVAILABLE_ERROR)
2468 throw_exception (ex);
2469 }
2470 END_CATCH
2471
2472 *this_cache = cache;
2473 return cache;
2474 }
2475
2476 static enum unwind_stop_reason
2477 i386_sigtramp_frame_unwind_stop_reason (struct frame_info *this_frame,
2478 void **this_cache)
2479 {
2480 struct i386_frame_cache *cache =
2481 i386_sigtramp_frame_cache (this_frame, this_cache);
2482
2483 if (!cache->base_p)
2484 return UNWIND_UNAVAILABLE;
2485
2486 return UNWIND_NO_REASON;
2487 }
2488
2489 static void
2490 i386_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache,
2491 struct frame_id *this_id)
2492 {
2493 struct i386_frame_cache *cache =
2494 i386_sigtramp_frame_cache (this_frame, this_cache);
2495
2496 if (!cache->base_p)
2497 (*this_id) = frame_id_build_unavailable_stack (get_frame_pc (this_frame));
2498 else
2499 {
2500 /* See the end of i386_push_dummy_call. */
2501 (*this_id) = frame_id_build (cache->base + 8, get_frame_pc (this_frame));
2502 }
2503 }
2504
2505 static struct value *
2506 i386_sigtramp_frame_prev_register (struct frame_info *this_frame,
2507 void **this_cache, int regnum)
2508 {
2509 /* Make sure we've initialized the cache. */
2510 i386_sigtramp_frame_cache (this_frame, this_cache);
2511
2512 return i386_frame_prev_register (this_frame, this_cache, regnum);
2513 }
2514
2515 static int
2516 i386_sigtramp_frame_sniffer (const struct frame_unwind *self,
2517 struct frame_info *this_frame,
2518 void **this_prologue_cache)
2519 {
2520 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
2521
2522 /* We shouldn't even bother if we don't have a sigcontext_addr
2523 handler. */
2524 if (tdep->sigcontext_addr == NULL)
2525 return 0;
2526
2527 if (tdep->sigtramp_p != NULL)
2528 {
2529 if (tdep->sigtramp_p (this_frame))
2530 return 1;
2531 }
2532
2533 if (tdep->sigtramp_start != 0)
2534 {
2535 CORE_ADDR pc = get_frame_pc (this_frame);
2536
2537 gdb_assert (tdep->sigtramp_end != 0);
2538 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
2539 return 1;
2540 }
2541
2542 return 0;
2543 }
2544
2545 static const struct frame_unwind i386_sigtramp_frame_unwind =
2546 {
2547 SIGTRAMP_FRAME,
2548 i386_sigtramp_frame_unwind_stop_reason,
2549 i386_sigtramp_frame_this_id,
2550 i386_sigtramp_frame_prev_register,
2551 NULL,
2552 i386_sigtramp_frame_sniffer
2553 };
2554 \f
2555
2556 static CORE_ADDR
2557 i386_frame_base_address (struct frame_info *this_frame, void **this_cache)
2558 {
2559 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2560
2561 return cache->base;
2562 }
2563
2564 static const struct frame_base i386_frame_base =
2565 {
2566 &i386_frame_unwind,
2567 i386_frame_base_address,
2568 i386_frame_base_address,
2569 i386_frame_base_address
2570 };
2571
2572 static struct frame_id
2573 i386_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2574 {
2575 CORE_ADDR fp;
2576
2577 fp = get_frame_register_unsigned (this_frame, I386_EBP_REGNUM);
2578
2579 /* See the end of i386_push_dummy_call. */
2580 return frame_id_build (fp + 8, get_frame_pc (this_frame));
2581 }
2582
2583 /* _Decimal128 function return values need 16-byte alignment on the
2584 stack. */
2585
2586 static CORE_ADDR
2587 i386_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2588 {
2589 return sp & -(CORE_ADDR)16;
2590 }
2591 \f
2592
2593 /* Figure out where the longjmp will land. Slurp the args out of the
2594 stack. We expect the first arg to be a pointer to the jmp_buf
2595 structure from which we extract the address that we will land at.
2596 This address is copied into PC. This routine returns non-zero on
2597 success. */
2598
2599 static int
2600 i386_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
2601 {
2602 gdb_byte buf[4];
2603 CORE_ADDR sp, jb_addr;
2604 struct gdbarch *gdbarch = get_frame_arch (frame);
2605 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2606 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
2607
2608 /* If JB_PC_OFFSET is -1, we have no way to find out where the
2609 longjmp will land. */
2610 if (jb_pc_offset == -1)
2611 return 0;
2612
2613 get_frame_register (frame, I386_ESP_REGNUM, buf);
2614 sp = extract_unsigned_integer (buf, 4, byte_order);
2615 if (target_read_memory (sp + 4, buf, 4))
2616 return 0;
2617
2618 jb_addr = extract_unsigned_integer (buf, 4, byte_order);
2619 if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
2620 return 0;
2621
2622 *pc = extract_unsigned_integer (buf, 4, byte_order);
2623 return 1;
2624 }
2625 \f
2626
2627 /* Check whether TYPE must be 16-byte-aligned when passed as a
2628 function argument. 16-byte vectors, _Decimal128 and structures or
2629 unions containing such types must be 16-byte-aligned; other
2630 arguments are 4-byte-aligned. */
2631
2632 static int
2633 i386_16_byte_align_p (struct type *type)
2634 {
2635 type = check_typedef (type);
2636 if ((TYPE_CODE (type) == TYPE_CODE_DECFLOAT
2637 || (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type)))
2638 && TYPE_LENGTH (type) == 16)
2639 return 1;
2640 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2641 return i386_16_byte_align_p (TYPE_TARGET_TYPE (type));
2642 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2643 || TYPE_CODE (type) == TYPE_CODE_UNION)
2644 {
2645 int i;
2646 for (i = 0; i < TYPE_NFIELDS (type); i++)
2647 {
2648 if (i386_16_byte_align_p (TYPE_FIELD_TYPE (type, i)))
2649 return 1;
2650 }
2651 }
2652 return 0;
2653 }
2654
2655 /* Implementation for set_gdbarch_push_dummy_code. */
2656
2657 static CORE_ADDR
2658 i386_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, CORE_ADDR funaddr,
2659 struct value **args, int nargs, struct type *value_type,
2660 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
2661 struct regcache *regcache)
2662 {
2663 /* Use 0xcc breakpoint - 1 byte. */
2664 *bp_addr = sp - 1;
2665 *real_pc = funaddr;
2666
2667 /* Keep the stack aligned. */
2668 return sp - 16;
2669 }
2670
2671 static CORE_ADDR
2672 i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2673 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2674 struct value **args, CORE_ADDR sp, int struct_return,
2675 CORE_ADDR struct_addr)
2676 {
2677 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2678 gdb_byte buf[4];
2679 int i;
2680 int write_pass;
2681 int args_space = 0;
2682
2683 /* BND registers can be in arbitrary values at the moment of the
2684 inferior call. This can cause boundary violations that are not
2685 due to a real bug or even desired by the user. The best to be done
2686 is set the BND registers to allow access to the whole memory, INIT
2687 state, before pushing the inferior call. */
2688 i387_reset_bnd_regs (gdbarch, regcache);
2689
2690 /* Determine the total space required for arguments and struct
2691 return address in a first pass (allowing for 16-byte-aligned
2692 arguments), then push arguments in a second pass. */
2693
2694 for (write_pass = 0; write_pass < 2; write_pass++)
2695 {
2696 int args_space_used = 0;
2697
2698 if (struct_return)
2699 {
2700 if (write_pass)
2701 {
2702 /* Push value address. */
2703 store_unsigned_integer (buf, 4, byte_order, struct_addr);
2704 write_memory (sp, buf, 4);
2705 args_space_used += 4;
2706 }
2707 else
2708 args_space += 4;
2709 }
2710
2711 for (i = 0; i < nargs; i++)
2712 {
2713 int len = TYPE_LENGTH (value_enclosing_type (args[i]));
2714
2715 if (write_pass)
2716 {
2717 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2718 args_space_used = align_up (args_space_used, 16);
2719
2720 write_memory (sp + args_space_used,
2721 value_contents_all (args[i]), len);
2722 /* The System V ABI says that:
2723
2724 "An argument's size is increased, if necessary, to make it a
2725 multiple of [32-bit] words. This may require tail padding,
2726 depending on the size of the argument."
2727
2728 This makes sure the stack stays word-aligned. */
2729 args_space_used += align_up (len, 4);
2730 }
2731 else
2732 {
2733 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2734 args_space = align_up (args_space, 16);
2735 args_space += align_up (len, 4);
2736 }
2737 }
2738
2739 if (!write_pass)
2740 {
2741 sp -= args_space;
2742
2743 /* The original System V ABI only requires word alignment,
2744 but modern incarnations need 16-byte alignment in order
2745 to support SSE. Since wasting a few bytes here isn't
2746 harmful we unconditionally enforce 16-byte alignment. */
2747 sp &= ~0xf;
2748 }
2749 }
2750
2751 /* Store return address. */
2752 sp -= 4;
2753 store_unsigned_integer (buf, 4, byte_order, bp_addr);
2754 write_memory (sp, buf, 4);
2755
2756 /* Finally, update the stack pointer... */
2757 store_unsigned_integer (buf, 4, byte_order, sp);
2758 regcache_cooked_write (regcache, I386_ESP_REGNUM, buf);
2759
2760 /* ...and fake a frame pointer. */
2761 regcache_cooked_write (regcache, I386_EBP_REGNUM, buf);
2762
2763 /* MarkK wrote: This "+ 8" is all over the place:
2764 (i386_frame_this_id, i386_sigtramp_frame_this_id,
2765 i386_dummy_id). It's there, since all frame unwinders for
2766 a given target have to agree (within a certain margin) on the
2767 definition of the stack address of a frame. Otherwise frame id
2768 comparison might not work correctly. Since DWARF2/GCC uses the
2769 stack address *before* the function call as a frame's CFA. On
2770 the i386, when %ebp is used as a frame pointer, the offset
2771 between the contents %ebp and the CFA as defined by GCC. */
2772 return sp + 8;
2773 }
2774
2775 /* These registers are used for returning integers (and on some
2776 targets also for returning `struct' and `union' values when their
2777 size and alignment match an integer type). */
2778 #define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
2779 #define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
2780
2781 /* Read, for architecture GDBARCH, a function return value of TYPE
2782 from REGCACHE, and copy that into VALBUF. */
2783
2784 static void
2785 i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
2786 struct regcache *regcache, gdb_byte *valbuf)
2787 {
2788 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2789 int len = TYPE_LENGTH (type);
2790 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2791
2792 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2793 {
2794 if (tdep->st0_regnum < 0)
2795 {
2796 warning (_("Cannot find floating-point return value."));
2797 memset (valbuf, 0, len);
2798 return;
2799 }
2800
2801 /* Floating-point return values can be found in %st(0). Convert
2802 its contents to the desired type. This is probably not
2803 exactly how it would happen on the target itself, but it is
2804 the best we can do. */
2805 regcache_raw_read (regcache, I386_ST0_REGNUM, buf);
2806 target_float_convert (buf, i387_ext_type (gdbarch), valbuf, type);
2807 }
2808 else
2809 {
2810 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2811 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2812
2813 if (len <= low_size)
2814 {
2815 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
2816 memcpy (valbuf, buf, len);
2817 }
2818 else if (len <= (low_size + high_size))
2819 {
2820 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
2821 memcpy (valbuf, buf, low_size);
2822 regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
2823 memcpy (valbuf + low_size, buf, len - low_size);
2824 }
2825 else
2826 internal_error (__FILE__, __LINE__,
2827 _("Cannot extract return value of %d bytes long."),
2828 len);
2829 }
2830 }
2831
2832 /* Write, for architecture GDBARCH, a function return value of TYPE
2833 from VALBUF into REGCACHE. */
2834
2835 static void
2836 i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
2837 struct regcache *regcache, const gdb_byte *valbuf)
2838 {
2839 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2840 int len = TYPE_LENGTH (type);
2841
2842 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2843 {
2844 ULONGEST fstat;
2845 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2846
2847 if (tdep->st0_regnum < 0)
2848 {
2849 warning (_("Cannot set floating-point return value."));
2850 return;
2851 }
2852
2853 /* Returning floating-point values is a bit tricky. Apart from
2854 storing the return value in %st(0), we have to simulate the
2855 state of the FPU at function return point. */
2856
2857 /* Convert the value found in VALBUF to the extended
2858 floating-point format used by the FPU. This is probably
2859 not exactly how it would happen on the target itself, but
2860 it is the best we can do. */
2861 target_float_convert (valbuf, type, buf, i387_ext_type (gdbarch));
2862 regcache_raw_write (regcache, I386_ST0_REGNUM, buf);
2863
2864 /* Set the top of the floating-point register stack to 7. The
2865 actual value doesn't really matter, but 7 is what a normal
2866 function return would end up with if the program started out
2867 with a freshly initialized FPU. */
2868 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
2869 fstat |= (7 << 11);
2870 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM (tdep), fstat);
2871
2872 /* Mark %st(1) through %st(7) as empty. Since we set the top of
2873 the floating-point register stack to 7, the appropriate value
2874 for the tag word is 0x3fff. */
2875 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM (tdep), 0x3fff);
2876 }
2877 else
2878 {
2879 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2880 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2881
2882 if (len <= low_size)
2883 regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
2884 else if (len <= (low_size + high_size))
2885 {
2886 regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
2887 regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
2888 len - low_size, valbuf + low_size);
2889 }
2890 else
2891 internal_error (__FILE__, __LINE__,
2892 _("Cannot store return value of %d bytes long."), len);
2893 }
2894 }
2895 \f
2896
2897 /* This is the variable that is set with "set struct-convention", and
2898 its legitimate values. */
2899 static const char default_struct_convention[] = "default";
2900 static const char pcc_struct_convention[] = "pcc";
2901 static const char reg_struct_convention[] = "reg";
2902 static const char *const valid_conventions[] =
2903 {
2904 default_struct_convention,
2905 pcc_struct_convention,
2906 reg_struct_convention,
2907 NULL
2908 };
2909 static const char *struct_convention = default_struct_convention;
2910
2911 /* Return non-zero if TYPE, which is assumed to be a structure,
2912 a union type, or an array type, should be returned in registers
2913 for architecture GDBARCH. */
2914
2915 static int
2916 i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
2917 {
2918 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2919 enum type_code code = TYPE_CODE (type);
2920 int len = TYPE_LENGTH (type);
2921
2922 gdb_assert (code == TYPE_CODE_STRUCT
2923 || code == TYPE_CODE_UNION
2924 || code == TYPE_CODE_ARRAY);
2925
2926 if (struct_convention == pcc_struct_convention
2927 || (struct_convention == default_struct_convention
2928 && tdep->struct_return == pcc_struct_return))
2929 return 0;
2930
2931 /* Structures consisting of a single `float', `double' or 'long
2932 double' member are returned in %st(0). */
2933 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2934 {
2935 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
2936 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2937 return (len == 4 || len == 8 || len == 12);
2938 }
2939
2940 return (len == 1 || len == 2 || len == 4 || len == 8);
2941 }
2942
2943 /* Determine, for architecture GDBARCH, how a return value of TYPE
2944 should be returned. If it is supposed to be returned in registers,
2945 and READBUF is non-zero, read the appropriate value from REGCACHE,
2946 and copy it into READBUF. If WRITEBUF is non-zero, write the value
2947 from WRITEBUF into REGCACHE. */
2948
2949 static enum return_value_convention
2950 i386_return_value (struct gdbarch *gdbarch, struct value *function,
2951 struct type *type, struct regcache *regcache,
2952 gdb_byte *readbuf, const gdb_byte *writebuf)
2953 {
2954 enum type_code code = TYPE_CODE (type);
2955
2956 if (((code == TYPE_CODE_STRUCT
2957 || code == TYPE_CODE_UNION
2958 || code == TYPE_CODE_ARRAY)
2959 && !i386_reg_struct_return_p (gdbarch, type))
2960 /* Complex double and long double uses the struct return covention. */
2961 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 16)
2962 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 24)
2963 /* 128-bit decimal float uses the struct return convention. */
2964 || (code == TYPE_CODE_DECFLOAT && TYPE_LENGTH (type) == 16))
2965 {
2966 /* The System V ABI says that:
2967
2968 "A function that returns a structure or union also sets %eax
2969 to the value of the original address of the caller's area
2970 before it returns. Thus when the caller receives control
2971 again, the address of the returned object resides in register
2972 %eax and can be used to access the object."
2973
2974 So the ABI guarantees that we can always find the return
2975 value just after the function has returned. */
2976
2977 /* Note that the ABI doesn't mention functions returning arrays,
2978 which is something possible in certain languages such as Ada.
2979 In this case, the value is returned as if it was wrapped in
2980 a record, so the convention applied to records also applies
2981 to arrays. */
2982
2983 if (readbuf)
2984 {
2985 ULONGEST addr;
2986
2987 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
2988 read_memory (addr, readbuf, TYPE_LENGTH (type));
2989 }
2990
2991 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
2992 }
2993
2994 /* This special case is for structures consisting of a single
2995 `float', `double' or 'long double' member. These structures are
2996 returned in %st(0). For these structures, we call ourselves
2997 recursively, changing TYPE into the type of the first member of
2998 the structure. Since that should work for all structures that
2999 have only one member, we don't bother to check the member's type
3000 here. */
3001 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
3002 {
3003 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
3004 return i386_return_value (gdbarch, function, type, regcache,
3005 readbuf, writebuf);
3006 }
3007
3008 if (readbuf)
3009 i386_extract_return_value (gdbarch, type, regcache, readbuf);
3010 if (writebuf)
3011 i386_store_return_value (gdbarch, type, regcache, writebuf);
3012
3013 return RETURN_VALUE_REGISTER_CONVENTION;
3014 }
3015 \f
3016
3017 struct type *
3018 i387_ext_type (struct gdbarch *gdbarch)
3019 {
3020 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3021
3022 if (!tdep->i387_ext_type)
3023 {
3024 tdep->i387_ext_type = tdesc_find_type (gdbarch, "i387_ext");
3025 gdb_assert (tdep->i387_ext_type != NULL);
3026 }
3027
3028 return tdep->i387_ext_type;
3029 }
3030
3031 /* Construct type for pseudo BND registers. We can't use
3032 tdesc_find_type since a complement of one value has to be used
3033 to describe the upper bound. */
3034
3035 static struct type *
3036 i386_bnd_type (struct gdbarch *gdbarch)
3037 {
3038 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3039
3040
3041 if (!tdep->i386_bnd_type)
3042 {
3043 struct type *t;
3044 const struct builtin_type *bt = builtin_type (gdbarch);
3045
3046 /* The type we're building is described bellow: */
3047 #if 0
3048 struct __bound128
3049 {
3050 void *lbound;
3051 void *ubound; /* One complement of raw ubound field. */
3052 };
3053 #endif
3054
3055 t = arch_composite_type (gdbarch,
3056 "__gdb_builtin_type_bound128", TYPE_CODE_STRUCT);
3057
3058 append_composite_type_field (t, "lbound", bt->builtin_data_ptr);
3059 append_composite_type_field (t, "ubound", bt->builtin_data_ptr);
3060
3061 TYPE_NAME (t) = "builtin_type_bound128";
3062 tdep->i386_bnd_type = t;
3063 }
3064
3065 return tdep->i386_bnd_type;
3066 }
3067
3068 /* Construct vector type for pseudo ZMM registers. We can't use
3069 tdesc_find_type since ZMM isn't described in target description. */
3070
3071 static struct type *
3072 i386_zmm_type (struct gdbarch *gdbarch)
3073 {
3074 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3075
3076 if (!tdep->i386_zmm_type)
3077 {
3078 const struct builtin_type *bt = builtin_type (gdbarch);
3079
3080 /* The type we're building is this: */
3081 #if 0
3082 union __gdb_builtin_type_vec512i
3083 {
3084 int128_t uint128[4];
3085 int64_t v4_int64[8];
3086 int32_t v8_int32[16];
3087 int16_t v16_int16[32];
3088 int8_t v32_int8[64];
3089 double v4_double[8];
3090 float v8_float[16];
3091 };
3092 #endif
3093
3094 struct type *t;
3095
3096 t = arch_composite_type (gdbarch,
3097 "__gdb_builtin_type_vec512i", TYPE_CODE_UNION);
3098 append_composite_type_field (t, "v16_float",
3099 init_vector_type (bt->builtin_float, 16));
3100 append_composite_type_field (t, "v8_double",
3101 init_vector_type (bt->builtin_double, 8));
3102 append_composite_type_field (t, "v64_int8",
3103 init_vector_type (bt->builtin_int8, 64));
3104 append_composite_type_field (t, "v32_int16",
3105 init_vector_type (bt->builtin_int16, 32));
3106 append_composite_type_field (t, "v16_int32",
3107 init_vector_type (bt->builtin_int32, 16));
3108 append_composite_type_field (t, "v8_int64",
3109 init_vector_type (bt->builtin_int64, 8));
3110 append_composite_type_field (t, "v4_int128",
3111 init_vector_type (bt->builtin_int128, 4));
3112
3113 TYPE_VECTOR (t) = 1;
3114 TYPE_NAME (t) = "builtin_type_vec512i";
3115 tdep->i386_zmm_type = t;
3116 }
3117
3118 return tdep->i386_zmm_type;
3119 }
3120
3121 /* Construct vector type for pseudo YMM registers. We can't use
3122 tdesc_find_type since YMM isn't described in target description. */
3123
3124 static struct type *
3125 i386_ymm_type (struct gdbarch *gdbarch)
3126 {
3127 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3128
3129 if (!tdep->i386_ymm_type)
3130 {
3131 const struct builtin_type *bt = builtin_type (gdbarch);
3132
3133 /* The type we're building is this: */
3134 #if 0
3135 union __gdb_builtin_type_vec256i
3136 {
3137 int128_t uint128[2];
3138 int64_t v2_int64[4];
3139 int32_t v4_int32[8];
3140 int16_t v8_int16[16];
3141 int8_t v16_int8[32];
3142 double v2_double[4];
3143 float v4_float[8];
3144 };
3145 #endif
3146
3147 struct type *t;
3148
3149 t = arch_composite_type (gdbarch,
3150 "__gdb_builtin_type_vec256i", TYPE_CODE_UNION);
3151 append_composite_type_field (t, "v8_float",
3152 init_vector_type (bt->builtin_float, 8));
3153 append_composite_type_field (t, "v4_double",
3154 init_vector_type (bt->builtin_double, 4));
3155 append_composite_type_field (t, "v32_int8",
3156 init_vector_type (bt->builtin_int8, 32));
3157 append_composite_type_field (t, "v16_int16",
3158 init_vector_type (bt->builtin_int16, 16));
3159 append_composite_type_field (t, "v8_int32",
3160 init_vector_type (bt->builtin_int32, 8));
3161 append_composite_type_field (t, "v4_int64",
3162 init_vector_type (bt->builtin_int64, 4));
3163 append_composite_type_field (t, "v2_int128",
3164 init_vector_type (bt->builtin_int128, 2));
3165
3166 TYPE_VECTOR (t) = 1;
3167 TYPE_NAME (t) = "builtin_type_vec256i";
3168 tdep->i386_ymm_type = t;
3169 }
3170
3171 return tdep->i386_ymm_type;
3172 }
3173
3174 /* Construct vector type for MMX registers. */
3175 static struct type *
3176 i386_mmx_type (struct gdbarch *gdbarch)
3177 {
3178 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3179
3180 if (!tdep->i386_mmx_type)
3181 {
3182 const struct builtin_type *bt = builtin_type (gdbarch);
3183
3184 /* The type we're building is this: */
3185 #if 0
3186 union __gdb_builtin_type_vec64i
3187 {
3188 int64_t uint64;
3189 int32_t v2_int32[2];
3190 int16_t v4_int16[4];
3191 int8_t v8_int8[8];
3192 };
3193 #endif
3194
3195 struct type *t;
3196
3197 t = arch_composite_type (gdbarch,
3198 "__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
3199
3200 append_composite_type_field (t, "uint64", bt->builtin_int64);
3201 append_composite_type_field (t, "v2_int32",
3202 init_vector_type (bt->builtin_int32, 2));
3203 append_composite_type_field (t, "v4_int16",
3204 init_vector_type (bt->builtin_int16, 4));
3205 append_composite_type_field (t, "v8_int8",
3206 init_vector_type (bt->builtin_int8, 8));
3207
3208 TYPE_VECTOR (t) = 1;
3209 TYPE_NAME (t) = "builtin_type_vec64i";
3210 tdep->i386_mmx_type = t;
3211 }
3212
3213 return tdep->i386_mmx_type;
3214 }
3215
3216 /* Return the GDB type object for the "standard" data type of data in
3217 register REGNUM. */
3218
3219 struct type *
3220 i386_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
3221 {
3222 if (i386_bnd_regnum_p (gdbarch, regnum))
3223 return i386_bnd_type (gdbarch);
3224 if (i386_mmx_regnum_p (gdbarch, regnum))
3225 return i386_mmx_type (gdbarch);
3226 else if (i386_ymm_regnum_p (gdbarch, regnum))
3227 return i386_ymm_type (gdbarch);
3228 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3229 return i386_ymm_type (gdbarch);
3230 else if (i386_zmm_regnum_p (gdbarch, regnum))
3231 return i386_zmm_type (gdbarch);
3232 else
3233 {
3234 const struct builtin_type *bt = builtin_type (gdbarch);
3235 if (i386_byte_regnum_p (gdbarch, regnum))
3236 return bt->builtin_int8;
3237 else if (i386_word_regnum_p (gdbarch, regnum))
3238 return bt->builtin_int16;
3239 else if (i386_dword_regnum_p (gdbarch, regnum))
3240 return bt->builtin_int32;
3241 else if (i386_k_regnum_p (gdbarch, regnum))
3242 return bt->builtin_int64;
3243 }
3244
3245 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3246 }
3247
3248 /* Map a cooked register onto a raw register or memory. For the i386,
3249 the MMX registers need to be mapped onto floating point registers. */
3250
3251 static int
3252 i386_mmx_regnum_to_fp_regnum (readable_regcache *regcache, int regnum)
3253 {
3254 struct gdbarch_tdep *tdep = gdbarch_tdep (regcache->arch ());
3255 int mmxreg, fpreg;
3256 ULONGEST fstat;
3257 int tos;
3258
3259 mmxreg = regnum - tdep->mm0_regnum;
3260 regcache->raw_read (I387_FSTAT_REGNUM (tdep), &fstat);
3261 tos = (fstat >> 11) & 0x7;
3262 fpreg = (mmxreg + tos) % 8;
3263
3264 return (I387_ST0_REGNUM (tdep) + fpreg);
3265 }
3266
3267 /* A helper function for us by i386_pseudo_register_read_value and
3268 amd64_pseudo_register_read_value. It does all the work but reads
3269 the data into an already-allocated value. */
3270
3271 void
3272 i386_pseudo_register_read_into_value (struct gdbarch *gdbarch,
3273 readable_regcache *regcache,
3274 int regnum,
3275 struct value *result_value)
3276 {
3277 gdb_byte raw_buf[I386_MAX_REGISTER_SIZE];
3278 enum register_status status;
3279 gdb_byte *buf = value_contents_raw (result_value);
3280
3281 if (i386_mmx_regnum_p (gdbarch, regnum))
3282 {
3283 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3284
3285 /* Extract (always little endian). */
3286 status = regcache->raw_read (fpnum, raw_buf);
3287 if (status != REG_VALID)
3288 mark_value_bytes_unavailable (result_value, 0,
3289 TYPE_LENGTH (value_type (result_value)));
3290 else
3291 memcpy (buf, raw_buf, register_size (gdbarch, regnum));
3292 }
3293 else
3294 {
3295 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3296 if (i386_bnd_regnum_p (gdbarch, regnum))
3297 {
3298 regnum -= tdep->bnd0_regnum;
3299
3300 /* Extract (always little endian). Read lower 128bits. */
3301 status = regcache->raw_read (I387_BND0R_REGNUM (tdep) + regnum,
3302 raw_buf);
3303 if (status != REG_VALID)
3304 mark_value_bytes_unavailable (result_value, 0, 16);
3305 else
3306 {
3307 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3308 LONGEST upper, lower;
3309 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
3310
3311 lower = extract_unsigned_integer (raw_buf, 8, byte_order);
3312 upper = extract_unsigned_integer (raw_buf + 8, 8, byte_order);
3313 upper = ~upper;
3314
3315 memcpy (buf, &lower, size);
3316 memcpy (buf + size, &upper, size);
3317 }
3318 }
3319 else if (i386_k_regnum_p (gdbarch, regnum))
3320 {
3321 regnum -= tdep->k0_regnum;
3322
3323 /* Extract (always little endian). */
3324 status = regcache->raw_read (tdep->k0_regnum + regnum, raw_buf);
3325 if (status != REG_VALID)
3326 mark_value_bytes_unavailable (result_value, 0, 8);
3327 else
3328 memcpy (buf, raw_buf, 8);
3329 }
3330 else if (i386_zmm_regnum_p (gdbarch, regnum))
3331 {
3332 regnum -= tdep->zmm0_regnum;
3333
3334 if (regnum < num_lower_zmm_regs)
3335 {
3336 /* Extract (always little endian). Read lower 128bits. */
3337 status = regcache->raw_read (I387_XMM0_REGNUM (tdep) + regnum,
3338 raw_buf);
3339 if (status != REG_VALID)
3340 mark_value_bytes_unavailable (result_value, 0, 16);
3341 else
3342 memcpy (buf, raw_buf, 16);
3343
3344 /* Extract (always little endian). Read upper 128bits. */
3345 status = regcache->raw_read (tdep->ymm0h_regnum + regnum,
3346 raw_buf);
3347 if (status != REG_VALID)
3348 mark_value_bytes_unavailable (result_value, 16, 16);
3349 else
3350 memcpy (buf + 16, raw_buf, 16);
3351 }
3352 else
3353 {
3354 /* Extract (always little endian). Read lower 128bits. */
3355 status = regcache->raw_read (I387_XMM16_REGNUM (tdep) + regnum
3356 - num_lower_zmm_regs,
3357 raw_buf);
3358 if (status != REG_VALID)
3359 mark_value_bytes_unavailable (result_value, 0, 16);
3360 else
3361 memcpy (buf, raw_buf, 16);
3362
3363 /* Extract (always little endian). Read upper 128bits. */
3364 status = regcache->raw_read (I387_YMM16H_REGNUM (tdep) + regnum
3365 - num_lower_zmm_regs,
3366 raw_buf);
3367 if (status != REG_VALID)
3368 mark_value_bytes_unavailable (result_value, 16, 16);
3369 else
3370 memcpy (buf + 16, raw_buf, 16);
3371 }
3372
3373 /* Read upper 256bits. */
3374 status = regcache->raw_read (tdep->zmm0h_regnum + regnum,
3375 raw_buf);
3376 if (status != REG_VALID)
3377 mark_value_bytes_unavailable (result_value, 32, 32);
3378 else
3379 memcpy (buf + 32, raw_buf, 32);
3380 }
3381 else if (i386_ymm_regnum_p (gdbarch, regnum))
3382 {
3383 regnum -= tdep->ymm0_regnum;
3384
3385 /* Extract (always little endian). Read lower 128bits. */
3386 status = regcache->raw_read (I387_XMM0_REGNUM (tdep) + regnum,
3387 raw_buf);
3388 if (status != REG_VALID)
3389 mark_value_bytes_unavailable (result_value, 0, 16);
3390 else
3391 memcpy (buf, raw_buf, 16);
3392 /* Read upper 128bits. */
3393 status = regcache->raw_read (tdep->ymm0h_regnum + regnum,
3394 raw_buf);
3395 if (status != REG_VALID)
3396 mark_value_bytes_unavailable (result_value, 16, 32);
3397 else
3398 memcpy (buf + 16, raw_buf, 16);
3399 }
3400 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3401 {
3402 regnum -= tdep->ymm16_regnum;
3403 /* Extract (always little endian). Read lower 128bits. */
3404 status = regcache->raw_read (I387_XMM16_REGNUM (tdep) + regnum,
3405 raw_buf);
3406 if (status != REG_VALID)
3407 mark_value_bytes_unavailable (result_value, 0, 16);
3408 else
3409 memcpy (buf, raw_buf, 16);
3410 /* Read upper 128bits. */
3411 status = regcache->raw_read (tdep->ymm16h_regnum + regnum,
3412 raw_buf);
3413 if (status != REG_VALID)
3414 mark_value_bytes_unavailable (result_value, 16, 16);
3415 else
3416 memcpy (buf + 16, raw_buf, 16);
3417 }
3418 else if (i386_word_regnum_p (gdbarch, regnum))
3419 {
3420 int gpnum = regnum - tdep->ax_regnum;
3421
3422 /* Extract (always little endian). */
3423 status = regcache->raw_read (gpnum, raw_buf);
3424 if (status != REG_VALID)
3425 mark_value_bytes_unavailable (result_value, 0,
3426 TYPE_LENGTH (value_type (result_value)));
3427 else
3428 memcpy (buf, raw_buf, 2);
3429 }
3430 else if (i386_byte_regnum_p (gdbarch, regnum))
3431 {
3432 int gpnum = regnum - tdep->al_regnum;
3433
3434 /* Extract (always little endian). We read both lower and
3435 upper registers. */
3436 status = regcache->raw_read (gpnum % 4, raw_buf);
3437 if (status != REG_VALID)
3438 mark_value_bytes_unavailable (result_value, 0,
3439 TYPE_LENGTH (value_type (result_value)));
3440 else if (gpnum >= 4)
3441 memcpy (buf, raw_buf + 1, 1);
3442 else
3443 memcpy (buf, raw_buf, 1);
3444 }
3445 else
3446 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3447 }
3448 }
3449
3450 static struct value *
3451 i386_pseudo_register_read_value (struct gdbarch *gdbarch,
3452 readable_regcache *regcache,
3453 int regnum)
3454 {
3455 struct value *result;
3456
3457 result = allocate_value (register_type (gdbarch, regnum));
3458 VALUE_LVAL (result) = lval_register;
3459 VALUE_REGNUM (result) = regnum;
3460
3461 i386_pseudo_register_read_into_value (gdbarch, regcache, regnum, result);
3462
3463 return result;
3464 }
3465
3466 void
3467 i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
3468 int regnum, const gdb_byte *buf)
3469 {
3470 gdb_byte raw_buf[I386_MAX_REGISTER_SIZE];
3471
3472 if (i386_mmx_regnum_p (gdbarch, regnum))
3473 {
3474 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3475
3476 /* Read ... */
3477 regcache_raw_read (regcache, fpnum, raw_buf);
3478 /* ... Modify ... (always little endian). */
3479 memcpy (raw_buf, buf, register_size (gdbarch, regnum));
3480 /* ... Write. */
3481 regcache_raw_write (regcache, fpnum, raw_buf);
3482 }
3483 else
3484 {
3485 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3486
3487 if (i386_bnd_regnum_p (gdbarch, regnum))
3488 {
3489 ULONGEST upper, lower;
3490 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
3491 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3492
3493 /* New values from input value. */
3494 regnum -= tdep->bnd0_regnum;
3495 lower = extract_unsigned_integer (buf, size, byte_order);
3496 upper = extract_unsigned_integer (buf + size, size, byte_order);
3497
3498 /* Fetching register buffer. */
3499 regcache_raw_read (regcache,
3500 I387_BND0R_REGNUM (tdep) + regnum,
3501 raw_buf);
3502
3503 upper = ~upper;
3504
3505 /* Set register bits. */
3506 memcpy (raw_buf, &lower, 8);
3507 memcpy (raw_buf + 8, &upper, 8);
3508
3509
3510 regcache_raw_write (regcache,
3511 I387_BND0R_REGNUM (tdep) + regnum,
3512 raw_buf);
3513 }
3514 else if (i386_k_regnum_p (gdbarch, regnum))
3515 {
3516 regnum -= tdep->k0_regnum;
3517
3518 regcache_raw_write (regcache,
3519 tdep->k0_regnum + regnum,
3520 buf);
3521 }
3522 else if (i386_zmm_regnum_p (gdbarch, regnum))
3523 {
3524 regnum -= tdep->zmm0_regnum;
3525
3526 if (regnum < num_lower_zmm_regs)
3527 {
3528 /* Write lower 128bits. */
3529 regcache_raw_write (regcache,
3530 I387_XMM0_REGNUM (tdep) + regnum,
3531 buf);
3532 /* Write upper 128bits. */
3533 regcache_raw_write (regcache,
3534 I387_YMM0_REGNUM (tdep) + regnum,
3535 buf + 16);
3536 }
3537 else
3538 {
3539 /* Write lower 128bits. */
3540 regcache_raw_write (regcache,
3541 I387_XMM16_REGNUM (tdep) + regnum
3542 - num_lower_zmm_regs,
3543 buf);
3544 /* Write upper 128bits. */
3545 regcache_raw_write (regcache,
3546 I387_YMM16H_REGNUM (tdep) + regnum
3547 - num_lower_zmm_regs,
3548 buf + 16);
3549 }
3550 /* Write upper 256bits. */
3551 regcache_raw_write (regcache,
3552 tdep->zmm0h_regnum + regnum,
3553 buf + 32);
3554 }
3555 else if (i386_ymm_regnum_p (gdbarch, regnum))
3556 {
3557 regnum -= tdep->ymm0_regnum;
3558
3559 /* ... Write lower 128bits. */
3560 regcache_raw_write (regcache,
3561 I387_XMM0_REGNUM (tdep) + regnum,
3562 buf);
3563 /* ... Write upper 128bits. */
3564 regcache_raw_write (regcache,
3565 tdep->ymm0h_regnum + regnum,
3566 buf + 16);
3567 }
3568 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3569 {
3570 regnum -= tdep->ymm16_regnum;
3571
3572 /* ... Write lower 128bits. */
3573 regcache_raw_write (regcache,
3574 I387_XMM16_REGNUM (tdep) + regnum,
3575 buf);
3576 /* ... Write upper 128bits. */
3577 regcache_raw_write (regcache,
3578 tdep->ymm16h_regnum + regnum,
3579 buf + 16);
3580 }
3581 else if (i386_word_regnum_p (gdbarch, regnum))
3582 {
3583 int gpnum = regnum - tdep->ax_regnum;
3584
3585 /* Read ... */
3586 regcache_raw_read (regcache, gpnum, raw_buf);
3587 /* ... Modify ... (always little endian). */
3588 memcpy (raw_buf, buf, 2);
3589 /* ... Write. */
3590 regcache_raw_write (regcache, gpnum, raw_buf);
3591 }
3592 else if (i386_byte_regnum_p (gdbarch, regnum))
3593 {
3594 int gpnum = regnum - tdep->al_regnum;
3595
3596 /* Read ... We read both lower and upper registers. */
3597 regcache_raw_read (regcache, gpnum % 4, raw_buf);
3598 /* ... Modify ... (always little endian). */
3599 if (gpnum >= 4)
3600 memcpy (raw_buf + 1, buf, 1);
3601 else
3602 memcpy (raw_buf, buf, 1);
3603 /* ... Write. */
3604 regcache_raw_write (regcache, gpnum % 4, raw_buf);
3605 }
3606 else
3607 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3608 }
3609 }
3610
3611 /* Implement the 'ax_pseudo_register_collect' gdbarch method. */
3612
3613 int
3614 i386_ax_pseudo_register_collect (struct gdbarch *gdbarch,
3615 struct agent_expr *ax, int regnum)
3616 {
3617 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3618
3619 if (i386_mmx_regnum_p (gdbarch, regnum))
3620 {
3621 /* MMX to FPU register mapping depends on current TOS. Let's just
3622 not care and collect everything... */
3623 int i;
3624
3625 ax_reg_mask (ax, I387_FSTAT_REGNUM (tdep));
3626 for (i = 0; i < 8; i++)
3627 ax_reg_mask (ax, I387_ST0_REGNUM (tdep) + i);
3628 return 0;
3629 }
3630 else if (i386_bnd_regnum_p (gdbarch, regnum))
3631 {
3632 regnum -= tdep->bnd0_regnum;
3633 ax_reg_mask (ax, I387_BND0R_REGNUM (tdep) + regnum);
3634 return 0;
3635 }
3636 else if (i386_k_regnum_p (gdbarch, regnum))
3637 {
3638 regnum -= tdep->k0_regnum;
3639 ax_reg_mask (ax, tdep->k0_regnum + regnum);
3640 return 0;
3641 }
3642 else if (i386_zmm_regnum_p (gdbarch, regnum))
3643 {
3644 regnum -= tdep->zmm0_regnum;
3645 if (regnum < num_lower_zmm_regs)
3646 {
3647 ax_reg_mask (ax, I387_XMM0_REGNUM (tdep) + regnum);
3648 ax_reg_mask (ax, tdep->ymm0h_regnum + regnum);
3649 }
3650 else
3651 {
3652 ax_reg_mask (ax, I387_XMM16_REGNUM (tdep) + regnum
3653 - num_lower_zmm_regs);
3654 ax_reg_mask (ax, I387_YMM16H_REGNUM (tdep) + regnum
3655 - num_lower_zmm_regs);
3656 }
3657 ax_reg_mask (ax, tdep->zmm0h_regnum + regnum);
3658 return 0;
3659 }
3660 else if (i386_ymm_regnum_p (gdbarch, regnum))
3661 {
3662 regnum -= tdep->ymm0_regnum;
3663 ax_reg_mask (ax, I387_XMM0_REGNUM (tdep) + regnum);
3664 ax_reg_mask (ax, tdep->ymm0h_regnum + regnum);
3665 return 0;
3666 }
3667 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3668 {
3669 regnum -= tdep->ymm16_regnum;
3670 ax_reg_mask (ax, I387_XMM16_REGNUM (tdep) + regnum);
3671 ax_reg_mask (ax, tdep->ymm16h_regnum + regnum);
3672 return 0;
3673 }
3674 else if (i386_word_regnum_p (gdbarch, regnum))
3675 {
3676 int gpnum = regnum - tdep->ax_regnum;
3677
3678 ax_reg_mask (ax, gpnum);
3679 return 0;
3680 }
3681 else if (i386_byte_regnum_p (gdbarch, regnum))
3682 {
3683 int gpnum = regnum - tdep->al_regnum;
3684
3685 ax_reg_mask (ax, gpnum % 4);
3686 return 0;
3687 }
3688 else
3689 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3690 return 1;
3691 }
3692 \f
3693
3694 /* Return the register number of the register allocated by GCC after
3695 REGNUM, or -1 if there is no such register. */
3696
3697 static int
3698 i386_next_regnum (int regnum)
3699 {
3700 /* GCC allocates the registers in the order:
3701
3702 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
3703
3704 Since storing a variable in %esp doesn't make any sense we return
3705 -1 for %ebp and for %esp itself. */
3706 static int next_regnum[] =
3707 {
3708 I386_EDX_REGNUM, /* Slot for %eax. */
3709 I386_EBX_REGNUM, /* Slot for %ecx. */
3710 I386_ECX_REGNUM, /* Slot for %edx. */
3711 I386_ESI_REGNUM, /* Slot for %ebx. */
3712 -1, -1, /* Slots for %esp and %ebp. */
3713 I386_EDI_REGNUM, /* Slot for %esi. */
3714 I386_EBP_REGNUM /* Slot for %edi. */
3715 };
3716
3717 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
3718 return next_regnum[regnum];
3719
3720 return -1;
3721 }
3722
3723 /* Return nonzero if a value of type TYPE stored in register REGNUM
3724 needs any special handling. */
3725
3726 static int
3727 i386_convert_register_p (struct gdbarch *gdbarch,
3728 int regnum, struct type *type)
3729 {
3730 int len = TYPE_LENGTH (type);
3731
3732 /* Values may be spread across multiple registers. Most debugging
3733 formats aren't expressive enough to specify the locations, so
3734 some heuristics is involved. Right now we only handle types that
3735 have a length that is a multiple of the word size, since GCC
3736 doesn't seem to put any other types into registers. */
3737 if (len > 4 && len % 4 == 0)
3738 {
3739 int last_regnum = regnum;
3740
3741 while (len > 4)
3742 {
3743 last_regnum = i386_next_regnum (last_regnum);
3744 len -= 4;
3745 }
3746
3747 if (last_regnum != -1)
3748 return 1;
3749 }
3750
3751 return i387_convert_register_p (gdbarch, regnum, type);
3752 }
3753
3754 /* Read a value of type TYPE from register REGNUM in frame FRAME, and
3755 return its contents in TO. */
3756
3757 static int
3758 i386_register_to_value (struct frame_info *frame, int regnum,
3759 struct type *type, gdb_byte *to,
3760 int *optimizedp, int *unavailablep)
3761 {
3762 struct gdbarch *gdbarch = get_frame_arch (frame);
3763 int len = TYPE_LENGTH (type);
3764
3765 if (i386_fp_regnum_p (gdbarch, regnum))
3766 return i387_register_to_value (frame, regnum, type, to,
3767 optimizedp, unavailablep);
3768
3769 /* Read a value spread across multiple registers. */
3770
3771 gdb_assert (len > 4 && len % 4 == 0);
3772
3773 while (len > 0)
3774 {
3775 gdb_assert (regnum != -1);
3776 gdb_assert (register_size (gdbarch, regnum) == 4);
3777
3778 if (!get_frame_register_bytes (frame, regnum, 0,
3779 register_size (gdbarch, regnum),
3780 to, optimizedp, unavailablep))
3781 return 0;
3782
3783 regnum = i386_next_regnum (regnum);
3784 len -= 4;
3785 to += 4;
3786 }
3787
3788 *optimizedp = *unavailablep = 0;
3789 return 1;
3790 }
3791
3792 /* Write the contents FROM of a value of type TYPE into register
3793 REGNUM in frame FRAME. */
3794
3795 static void
3796 i386_value_to_register (struct frame_info *frame, int regnum,
3797 struct type *type, const gdb_byte *from)
3798 {
3799 int len = TYPE_LENGTH (type);
3800
3801 if (i386_fp_regnum_p (get_frame_arch (frame), regnum))
3802 {
3803 i387_value_to_register (frame, regnum, type, from);
3804 return;
3805 }
3806
3807 /* Write a value spread across multiple registers. */
3808
3809 gdb_assert (len > 4 && len % 4 == 0);
3810
3811 while (len > 0)
3812 {
3813 gdb_assert (regnum != -1);
3814 gdb_assert (register_size (get_frame_arch (frame), regnum) == 4);
3815
3816 put_frame_register (frame, regnum, from);
3817 regnum = i386_next_regnum (regnum);
3818 len -= 4;
3819 from += 4;
3820 }
3821 }
3822 \f
3823 /* Supply register REGNUM from the buffer specified by GREGS and LEN
3824 in the general-purpose register set REGSET to register cache
3825 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3826
3827 void
3828 i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
3829 int regnum, const void *gregs, size_t len)
3830 {
3831 struct gdbarch *gdbarch = regcache->arch ();
3832 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3833 const gdb_byte *regs = (const gdb_byte *) gregs;
3834 int i;
3835
3836 gdb_assert (len >= tdep->sizeof_gregset);
3837
3838 for (i = 0; i < tdep->gregset_num_regs; i++)
3839 {
3840 if ((regnum == i || regnum == -1)
3841 && tdep->gregset_reg_offset[i] != -1)
3842 regcache_raw_supply (regcache, i, regs + tdep->gregset_reg_offset[i]);
3843 }
3844 }
3845
3846 /* Collect register REGNUM from the register cache REGCACHE and store
3847 it in the buffer specified by GREGS and LEN as described by the
3848 general-purpose register set REGSET. If REGNUM is -1, do this for
3849 all registers in REGSET. */
3850
3851 static void
3852 i386_collect_gregset (const struct regset *regset,
3853 const struct regcache *regcache,
3854 int regnum, void *gregs, size_t len)
3855 {
3856 struct gdbarch *gdbarch = regcache->arch ();
3857 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3858 gdb_byte *regs = (gdb_byte *) gregs;
3859 int i;
3860
3861 gdb_assert (len >= tdep->sizeof_gregset);
3862
3863 for (i = 0; i < tdep->gregset_num_regs; i++)
3864 {
3865 if ((regnum == i || regnum == -1)
3866 && tdep->gregset_reg_offset[i] != -1)
3867 regcache_raw_collect (regcache, i, regs + tdep->gregset_reg_offset[i]);
3868 }
3869 }
3870
3871 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
3872 in the floating-point register set REGSET to register cache
3873 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3874
3875 static void
3876 i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
3877 int regnum, const void *fpregs, size_t len)
3878 {
3879 struct gdbarch *gdbarch = regcache->arch ();
3880 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3881
3882 if (len == I387_SIZEOF_FXSAVE)
3883 {
3884 i387_supply_fxsave (regcache, regnum, fpregs);
3885 return;
3886 }
3887
3888 gdb_assert (len >= tdep->sizeof_fpregset);
3889 i387_supply_fsave (regcache, regnum, fpregs);
3890 }
3891
3892 /* Collect register REGNUM from the register cache REGCACHE and store
3893 it in the buffer specified by FPREGS and LEN as described by the
3894 floating-point register set REGSET. If REGNUM is -1, do this for
3895 all registers in REGSET. */
3896
3897 static void
3898 i386_collect_fpregset (const struct regset *regset,
3899 const struct regcache *regcache,
3900 int regnum, void *fpregs, size_t len)
3901 {
3902 struct gdbarch *gdbarch = regcache->arch ();
3903 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3904
3905 if (len == I387_SIZEOF_FXSAVE)
3906 {
3907 i387_collect_fxsave (regcache, regnum, fpregs);
3908 return;
3909 }
3910
3911 gdb_assert (len >= tdep->sizeof_fpregset);
3912 i387_collect_fsave (regcache, regnum, fpregs);
3913 }
3914
3915 /* Register set definitions. */
3916
3917 const struct regset i386_gregset =
3918 {
3919 NULL, i386_supply_gregset, i386_collect_gregset
3920 };
3921
3922 const struct regset i386_fpregset =
3923 {
3924 NULL, i386_supply_fpregset, i386_collect_fpregset
3925 };
3926
3927 /* Default iterator over core file register note sections. */
3928
3929 void
3930 i386_iterate_over_regset_sections (struct gdbarch *gdbarch,
3931 iterate_over_regset_sections_cb *cb,
3932 void *cb_data,
3933 const struct regcache *regcache)
3934 {
3935 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3936
3937 cb (".reg", tdep->sizeof_gregset, &i386_gregset, NULL, cb_data);
3938 if (tdep->sizeof_fpregset)
3939 cb (".reg2", tdep->sizeof_fpregset, tdep->fpregset, NULL, cb_data);
3940 }
3941 \f
3942
3943 /* Stuff for WIN32 PE style DLL's but is pretty generic really. */
3944
3945 CORE_ADDR
3946 i386_pe_skip_trampoline_code (struct frame_info *frame,
3947 CORE_ADDR pc, char *name)
3948 {
3949 struct gdbarch *gdbarch = get_frame_arch (frame);
3950 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3951
3952 /* jmp *(dest) */
3953 if (pc && read_memory_unsigned_integer (pc, 2, byte_order) == 0x25ff)
3954 {
3955 unsigned long indirect =
3956 read_memory_unsigned_integer (pc + 2, 4, byte_order);
3957 struct minimal_symbol *indsym =
3958 indirect ? lookup_minimal_symbol_by_pc (indirect).minsym : 0;
3959 const char *symname = indsym ? MSYMBOL_LINKAGE_NAME (indsym) : 0;
3960
3961 if (symname)
3962 {
3963 if (startswith (symname, "__imp_")
3964 || startswith (symname, "_imp_"))
3965 return name ? 1 :
3966 read_memory_unsigned_integer (indirect, 4, byte_order);
3967 }
3968 }
3969 return 0; /* Not a trampoline. */
3970 }
3971 \f
3972
3973 /* Return whether the THIS_FRAME corresponds to a sigtramp
3974 routine. */
3975
3976 int
3977 i386_sigtramp_p (struct frame_info *this_frame)
3978 {
3979 CORE_ADDR pc = get_frame_pc (this_frame);
3980 const char *name;
3981
3982 find_pc_partial_function (pc, &name, NULL, NULL);
3983 return (name && strcmp ("_sigtramp", name) == 0);
3984 }
3985 \f
3986
3987 /* We have two flavours of disassembly. The machinery on this page
3988 deals with switching between those. */
3989
3990 static int
3991 i386_print_insn (bfd_vma pc, struct disassemble_info *info)
3992 {
3993 gdb_assert (disassembly_flavor == att_flavor
3994 || disassembly_flavor == intel_flavor);
3995
3996 info->disassembler_options = disassembly_flavor;
3997
3998 return default_print_insn (pc, info);
3999 }
4000 \f
4001
4002 /* There are a few i386 architecture variants that differ only
4003 slightly from the generic i386 target. For now, we don't give them
4004 their own source file, but include them here. As a consequence,
4005 they'll always be included. */
4006
4007 /* System V Release 4 (SVR4). */
4008
4009 /* Return whether THIS_FRAME corresponds to a SVR4 sigtramp
4010 routine. */
4011
4012 static int
4013 i386_svr4_sigtramp_p (struct frame_info *this_frame)
4014 {
4015 CORE_ADDR pc = get_frame_pc (this_frame);
4016 const char *name;
4017
4018 /* The origin of these symbols is currently unknown. */
4019 find_pc_partial_function (pc, &name, NULL, NULL);
4020 return (name && (strcmp ("_sigreturn", name) == 0
4021 || strcmp ("sigvechandler", name) == 0));
4022 }
4023
4024 /* Assuming THIS_FRAME is for a SVR4 sigtramp routine, return the
4025 address of the associated sigcontext (ucontext) structure. */
4026
4027 static CORE_ADDR
4028 i386_svr4_sigcontext_addr (struct frame_info *this_frame)
4029 {
4030 struct gdbarch *gdbarch = get_frame_arch (this_frame);
4031 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4032 gdb_byte buf[4];
4033 CORE_ADDR sp;
4034
4035 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
4036 sp = extract_unsigned_integer (buf, 4, byte_order);
4037
4038 return read_memory_unsigned_integer (sp + 8, 4, byte_order);
4039 }
4040
4041 \f
4042
4043 /* Implementation of `gdbarch_stap_is_single_operand', as defined in
4044 gdbarch.h. */
4045
4046 int
4047 i386_stap_is_single_operand (struct gdbarch *gdbarch, const char *s)
4048 {
4049 return (*s == '$' /* Literal number. */
4050 || (isdigit (*s) && s[1] == '(' && s[2] == '%') /* Displacement. */
4051 || (*s == '(' && s[1] == '%') /* Register indirection. */
4052 || (*s == '%' && isalpha (s[1]))); /* Register access. */
4053 }
4054
4055 /* Helper function for i386_stap_parse_special_token.
4056
4057 This function parses operands of the form `-8+3+1(%rbp)', which
4058 must be interpreted as `*(-8 + 3 - 1 + (void *) $eax)'.
4059
4060 Return 1 if the operand was parsed successfully, zero
4061 otherwise. */
4062
4063 static int
4064 i386_stap_parse_special_token_triplet (struct gdbarch *gdbarch,
4065 struct stap_parse_info *p)
4066 {
4067 const char *s = p->arg;
4068
4069 if (isdigit (*s) || *s == '-' || *s == '+')
4070 {
4071 int got_minus[3];
4072 int i;
4073 long displacements[3];
4074 const char *start;
4075 char *regname;
4076 int len;
4077 struct stoken str;
4078 char *endp;
4079
4080 got_minus[0] = 0;
4081 if (*s == '+')
4082 ++s;
4083 else if (*s == '-')
4084 {
4085 ++s;
4086 got_minus[0] = 1;
4087 }
4088
4089 if (!isdigit ((unsigned char) *s))
4090 return 0;
4091
4092 displacements[0] = strtol (s, &endp, 10);
4093 s = endp;
4094
4095 if (*s != '+' && *s != '-')
4096 {
4097 /* We are not dealing with a triplet. */
4098 return 0;
4099 }
4100
4101 got_minus[1] = 0;
4102 if (*s == '+')
4103 ++s;
4104 else
4105 {
4106 ++s;
4107 got_minus[1] = 1;
4108 }
4109
4110 if (!isdigit ((unsigned char) *s))
4111 return 0;
4112
4113 displacements[1] = strtol (s, &endp, 10);
4114 s = endp;
4115
4116 if (*s != '+' && *s != '-')
4117 {
4118 /* We are not dealing with a triplet. */
4119 return 0;
4120 }
4121
4122 got_minus[2] = 0;
4123 if (*s == '+')
4124 ++s;
4125 else
4126 {
4127 ++s;
4128 got_minus[2] = 1;
4129 }
4130
4131 if (!isdigit ((unsigned char) *s))
4132 return 0;
4133
4134 displacements[2] = strtol (s, &endp, 10);
4135 s = endp;
4136
4137 if (*s != '(' || s[1] != '%')
4138 return 0;
4139
4140 s += 2;
4141 start = s;
4142
4143 while (isalnum (*s))
4144 ++s;
4145
4146 if (*s++ != ')')
4147 return 0;
4148
4149 len = s - start - 1;
4150 regname = (char *) alloca (len + 1);
4151
4152 strncpy (regname, start, len);
4153 regname[len] = '\0';
4154
4155 if (user_reg_map_name_to_regnum (gdbarch, regname, len) == -1)
4156 error (_("Invalid register name `%s' on expression `%s'."),
4157 regname, p->saved_arg);
4158
4159 for (i = 0; i < 3; i++)
4160 {
4161 write_exp_elt_opcode (&p->pstate, OP_LONG);
4162 write_exp_elt_type
4163 (&p->pstate, builtin_type (gdbarch)->builtin_long);
4164 write_exp_elt_longcst (&p->pstate, displacements[i]);
4165 write_exp_elt_opcode (&p->pstate, OP_LONG);
4166 if (got_minus[i])
4167 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
4168 }
4169
4170 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4171 str.ptr = regname;
4172 str.length = len;
4173 write_exp_string (&p->pstate, str);
4174 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4175
4176 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4177 write_exp_elt_type (&p->pstate,
4178 builtin_type (gdbarch)->builtin_data_ptr);
4179 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4180
4181 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4182 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4183 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4184
4185 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4186 write_exp_elt_type (&p->pstate,
4187 lookup_pointer_type (p->arg_type));
4188 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4189
4190 write_exp_elt_opcode (&p->pstate, UNOP_IND);
4191
4192 p->arg = s;
4193
4194 return 1;
4195 }
4196
4197 return 0;
4198 }
4199
4200 /* Helper function for i386_stap_parse_special_token.
4201
4202 This function parses operands of the form `register base +
4203 (register index * size) + offset', as represented in
4204 `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4205
4206 Return 1 if the operand was parsed successfully, zero
4207 otherwise. */
4208
4209 static int
4210 i386_stap_parse_special_token_three_arg_disp (struct gdbarch *gdbarch,
4211 struct stap_parse_info *p)
4212 {
4213 const char *s = p->arg;
4214
4215 if (isdigit (*s) || *s == '(' || *s == '-' || *s == '+')
4216 {
4217 int offset_minus = 0;
4218 long offset = 0;
4219 int size_minus = 0;
4220 long size = 0;
4221 const char *start;
4222 char *base;
4223 int len_base;
4224 char *index;
4225 int len_index;
4226 struct stoken base_token, index_token;
4227
4228 if (*s == '+')
4229 ++s;
4230 else if (*s == '-')
4231 {
4232 ++s;
4233 offset_minus = 1;
4234 }
4235
4236 if (offset_minus && !isdigit (*s))
4237 return 0;
4238
4239 if (isdigit (*s))
4240 {
4241 char *endp;
4242
4243 offset = strtol (s, &endp, 10);
4244 s = endp;
4245 }
4246
4247 if (*s != '(' || s[1] != '%')
4248 return 0;
4249
4250 s += 2;
4251 start = s;
4252
4253 while (isalnum (*s))
4254 ++s;
4255
4256 if (*s != ',' || s[1] != '%')
4257 return 0;
4258
4259 len_base = s - start;
4260 base = (char *) alloca (len_base + 1);
4261 strncpy (base, start, len_base);
4262 base[len_base] = '\0';
4263
4264 if (user_reg_map_name_to_regnum (gdbarch, base, len_base) == -1)
4265 error (_("Invalid register name `%s' on expression `%s'."),
4266 base, p->saved_arg);
4267
4268 s += 2;
4269 start = s;
4270
4271 while (isalnum (*s))
4272 ++s;
4273
4274 len_index = s - start;
4275 index = (char *) alloca (len_index + 1);
4276 strncpy (index, start, len_index);
4277 index[len_index] = '\0';
4278
4279 if (user_reg_map_name_to_regnum (gdbarch, index, len_index) == -1)
4280 error (_("Invalid register name `%s' on expression `%s'."),
4281 index, p->saved_arg);
4282
4283 if (*s != ',' && *s != ')')
4284 return 0;
4285
4286 if (*s == ',')
4287 {
4288 char *endp;
4289
4290 ++s;
4291 if (*s == '+')
4292 ++s;
4293 else if (*s == '-')
4294 {
4295 ++s;
4296 size_minus = 1;
4297 }
4298
4299 size = strtol (s, &endp, 10);
4300 s = endp;
4301
4302 if (*s != ')')
4303 return 0;
4304 }
4305
4306 ++s;
4307
4308 if (offset)
4309 {
4310 write_exp_elt_opcode (&p->pstate, OP_LONG);
4311 write_exp_elt_type (&p->pstate,
4312 builtin_type (gdbarch)->builtin_long);
4313 write_exp_elt_longcst (&p->pstate, offset);
4314 write_exp_elt_opcode (&p->pstate, OP_LONG);
4315 if (offset_minus)
4316 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
4317 }
4318
4319 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4320 base_token.ptr = base;
4321 base_token.length = len_base;
4322 write_exp_string (&p->pstate, base_token);
4323 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4324
4325 if (offset)
4326 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4327
4328 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4329 index_token.ptr = index;
4330 index_token.length = len_index;
4331 write_exp_string (&p->pstate, index_token);
4332 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4333
4334 if (size)
4335 {
4336 write_exp_elt_opcode (&p->pstate, OP_LONG);
4337 write_exp_elt_type (&p->pstate,
4338 builtin_type (gdbarch)->builtin_long);
4339 write_exp_elt_longcst (&p->pstate, size);
4340 write_exp_elt_opcode (&p->pstate, OP_LONG);
4341 if (size_minus)
4342 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
4343 write_exp_elt_opcode (&p->pstate, BINOP_MUL);
4344 }
4345
4346 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4347
4348 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4349 write_exp_elt_type (&p->pstate,
4350 lookup_pointer_type (p->arg_type));
4351 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4352
4353 write_exp_elt_opcode (&p->pstate, UNOP_IND);
4354
4355 p->arg = s;
4356
4357 return 1;
4358 }
4359
4360 return 0;
4361 }
4362
4363 /* Implementation of `gdbarch_stap_parse_special_token', as defined in
4364 gdbarch.h. */
4365
4366 int
4367 i386_stap_parse_special_token (struct gdbarch *gdbarch,
4368 struct stap_parse_info *p)
4369 {
4370 /* In order to parse special tokens, we use a state-machine that go
4371 through every known token and try to get a match. */
4372 enum
4373 {
4374 TRIPLET,
4375 THREE_ARG_DISPLACEMENT,
4376 DONE
4377 };
4378 int current_state;
4379
4380 current_state = TRIPLET;
4381
4382 /* The special tokens to be parsed here are:
4383
4384 - `register base + (register index * size) + offset', as represented
4385 in `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4386
4387 - Operands of the form `-8+3+1(%rbp)', which must be interpreted as
4388 `*(-8 + 3 - 1 + (void *) $eax)'. */
4389
4390 while (current_state != DONE)
4391 {
4392 switch (current_state)
4393 {
4394 case TRIPLET:
4395 if (i386_stap_parse_special_token_triplet (gdbarch, p))
4396 return 1;
4397 break;
4398
4399 case THREE_ARG_DISPLACEMENT:
4400 if (i386_stap_parse_special_token_three_arg_disp (gdbarch, p))
4401 return 1;
4402 break;
4403 }
4404
4405 /* Advancing to the next state. */
4406 ++current_state;
4407 }
4408
4409 return 0;
4410 }
4411
4412 \f
4413
4414 /* gdbarch gnu_triplet_regexp method. Both arches are acceptable as GDB always
4415 also supplies -m64 or -m32 by gdbarch_gcc_target_options. */
4416
4417 static const char *
4418 i386_gnu_triplet_regexp (struct gdbarch *gdbarch)
4419 {
4420 return "(x86_64|i.86)";
4421 }
4422
4423 \f
4424
4425 /* Implement the "in_indirect_branch_thunk" gdbarch function. */
4426
4427 static bool
4428 i386_in_indirect_branch_thunk (struct gdbarch *gdbarch, CORE_ADDR pc)
4429 {
4430 return x86_in_indirect_branch_thunk (pc, i386_register_names,
4431 I386_EAX_REGNUM, I386_EIP_REGNUM);
4432 }
4433
4434 /* Generic ELF. */
4435
4436 void
4437 i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4438 {
4439 static const char *const stap_integer_prefixes[] = { "$", NULL };
4440 static const char *const stap_register_prefixes[] = { "%", NULL };
4441 static const char *const stap_register_indirection_prefixes[] = { "(",
4442 NULL };
4443 static const char *const stap_register_indirection_suffixes[] = { ")",
4444 NULL };
4445
4446 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
4447 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
4448
4449 /* Registering SystemTap handlers. */
4450 set_gdbarch_stap_integer_prefixes (gdbarch, stap_integer_prefixes);
4451 set_gdbarch_stap_register_prefixes (gdbarch, stap_register_prefixes);
4452 set_gdbarch_stap_register_indirection_prefixes (gdbarch,
4453 stap_register_indirection_prefixes);
4454 set_gdbarch_stap_register_indirection_suffixes (gdbarch,
4455 stap_register_indirection_suffixes);
4456 set_gdbarch_stap_is_single_operand (gdbarch,
4457 i386_stap_is_single_operand);
4458 set_gdbarch_stap_parse_special_token (gdbarch,
4459 i386_stap_parse_special_token);
4460
4461 set_gdbarch_in_indirect_branch_thunk (gdbarch,
4462 i386_in_indirect_branch_thunk);
4463 }
4464
4465 /* System V Release 4 (SVR4). */
4466
4467 void
4468 i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4469 {
4470 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4471
4472 /* System V Release 4 uses ELF. */
4473 i386_elf_init_abi (info, gdbarch);
4474
4475 /* System V Release 4 has shared libraries. */
4476 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
4477
4478 tdep->sigtramp_p = i386_svr4_sigtramp_p;
4479 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
4480 tdep->sc_pc_offset = 36 + 14 * 4;
4481 tdep->sc_sp_offset = 36 + 17 * 4;
4482
4483 tdep->jb_pc_offset = 20;
4484 }
4485
4486 \f
4487
4488 /* i386 register groups. In addition to the normal groups, add "mmx"
4489 and "sse". */
4490
4491 static struct reggroup *i386_sse_reggroup;
4492 static struct reggroup *i386_mmx_reggroup;
4493
4494 static void
4495 i386_init_reggroups (void)
4496 {
4497 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
4498 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
4499 }
4500
4501 static void
4502 i386_add_reggroups (struct gdbarch *gdbarch)
4503 {
4504 reggroup_add (gdbarch, i386_sse_reggroup);
4505 reggroup_add (gdbarch, i386_mmx_reggroup);
4506 reggroup_add (gdbarch, general_reggroup);
4507 reggroup_add (gdbarch, float_reggroup);
4508 reggroup_add (gdbarch, all_reggroup);
4509 reggroup_add (gdbarch, save_reggroup);
4510 reggroup_add (gdbarch, restore_reggroup);
4511 reggroup_add (gdbarch, vector_reggroup);
4512 reggroup_add (gdbarch, system_reggroup);
4513 }
4514
4515 int
4516 i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
4517 struct reggroup *group)
4518 {
4519 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4520 int fp_regnum_p, mmx_regnum_p, xmm_regnum_p, mxcsr_regnum_p,
4521 ymm_regnum_p, ymmh_regnum_p, ymm_avx512_regnum_p, ymmh_avx512_regnum_p,
4522 bndr_regnum_p, bnd_regnum_p, zmm_regnum_p, zmmh_regnum_p,
4523 mpx_ctrl_regnum_p, xmm_avx512_regnum_p,
4524 avx512_p, avx_p, sse_p, pkru_regnum_p;
4525
4526 /* Don't include pseudo registers, except for MMX, in any register
4527 groups. */
4528 if (i386_byte_regnum_p (gdbarch, regnum))
4529 return 0;
4530
4531 if (i386_word_regnum_p (gdbarch, regnum))
4532 return 0;
4533
4534 if (i386_dword_regnum_p (gdbarch, regnum))
4535 return 0;
4536
4537 mmx_regnum_p = i386_mmx_regnum_p (gdbarch, regnum);
4538 if (group == i386_mmx_reggroup)
4539 return mmx_regnum_p;
4540
4541 pkru_regnum_p = i386_pkru_regnum_p(gdbarch, regnum);
4542 xmm_regnum_p = i386_xmm_regnum_p (gdbarch, regnum);
4543 xmm_avx512_regnum_p = i386_xmm_avx512_regnum_p (gdbarch, regnum);
4544 mxcsr_regnum_p = i386_mxcsr_regnum_p (gdbarch, regnum);
4545 if (group == i386_sse_reggroup)
4546 return xmm_regnum_p || xmm_avx512_regnum_p || mxcsr_regnum_p;
4547
4548 ymm_regnum_p = i386_ymm_regnum_p (gdbarch, regnum);
4549 ymm_avx512_regnum_p = i386_ymm_avx512_regnum_p (gdbarch, regnum);
4550 zmm_regnum_p = i386_zmm_regnum_p (gdbarch, regnum);
4551
4552 avx512_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
4553 == X86_XSTATE_AVX_AVX512_MASK);
4554 avx_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
4555 == X86_XSTATE_AVX_MASK) && !avx512_p;
4556 sse_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
4557 == X86_XSTATE_SSE_MASK) && !avx512_p && ! avx_p;
4558
4559 if (group == vector_reggroup)
4560 return (mmx_regnum_p
4561 || (zmm_regnum_p && avx512_p)
4562 || ((ymm_regnum_p || ymm_avx512_regnum_p) && avx_p)
4563 || ((xmm_regnum_p || xmm_avx512_regnum_p) && sse_p)
4564 || mxcsr_regnum_p);
4565
4566 fp_regnum_p = (i386_fp_regnum_p (gdbarch, regnum)
4567 || i386_fpc_regnum_p (gdbarch, regnum));
4568 if (group == float_reggroup)
4569 return fp_regnum_p;
4570
4571 /* For "info reg all", don't include upper YMM registers nor XMM
4572 registers when AVX is supported. */
4573 ymmh_regnum_p = i386_ymmh_regnum_p (gdbarch, regnum);
4574 ymmh_avx512_regnum_p = i386_ymmh_avx512_regnum_p (gdbarch, regnum);
4575 zmmh_regnum_p = i386_zmmh_regnum_p (gdbarch, regnum);
4576 if (group == all_reggroup
4577 && (((xmm_regnum_p || xmm_avx512_regnum_p) && !sse_p)
4578 || ((ymm_regnum_p || ymm_avx512_regnum_p) && !avx_p)
4579 || ymmh_regnum_p
4580 || ymmh_avx512_regnum_p
4581 || zmmh_regnum_p))
4582 return 0;
4583
4584 bnd_regnum_p = i386_bnd_regnum_p (gdbarch, regnum);
4585 if (group == all_reggroup
4586 && ((bnd_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4587 return bnd_regnum_p;
4588
4589 bndr_regnum_p = i386_bndr_regnum_p (gdbarch, regnum);
4590 if (group == all_reggroup
4591 && ((bndr_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4592 return 0;
4593
4594 mpx_ctrl_regnum_p = i386_mpx_ctrl_regnum_p (gdbarch, regnum);
4595 if (group == all_reggroup
4596 && ((mpx_ctrl_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4597 return mpx_ctrl_regnum_p;
4598
4599 if (group == general_reggroup)
4600 return (!fp_regnum_p
4601 && !mmx_regnum_p
4602 && !mxcsr_regnum_p
4603 && !xmm_regnum_p
4604 && !xmm_avx512_regnum_p
4605 && !ymm_regnum_p
4606 && !ymmh_regnum_p
4607 && !ymm_avx512_regnum_p
4608 && !ymmh_avx512_regnum_p
4609 && !bndr_regnum_p
4610 && !bnd_regnum_p
4611 && !mpx_ctrl_regnum_p
4612 && !zmm_regnum_p
4613 && !zmmh_regnum_p
4614 && !pkru_regnum_p);
4615
4616 return default_register_reggroup_p (gdbarch, regnum, group);
4617 }
4618 \f
4619
4620 /* Get the ARGIth function argument for the current function. */
4621
4622 static CORE_ADDR
4623 i386_fetch_pointer_argument (struct frame_info *frame, int argi,
4624 struct type *type)
4625 {
4626 struct gdbarch *gdbarch = get_frame_arch (frame);
4627 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4628 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
4629 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4, byte_order);
4630 }
4631
4632 #define PREFIX_REPZ 0x01
4633 #define PREFIX_REPNZ 0x02
4634 #define PREFIX_LOCK 0x04
4635 #define PREFIX_DATA 0x08
4636 #define PREFIX_ADDR 0x10
4637
4638 /* operand size */
4639 enum
4640 {
4641 OT_BYTE = 0,
4642 OT_WORD,
4643 OT_LONG,
4644 OT_QUAD,
4645 OT_DQUAD,
4646 };
4647
4648 /* i386 arith/logic operations */
4649 enum
4650 {
4651 OP_ADDL,
4652 OP_ORL,
4653 OP_ADCL,
4654 OP_SBBL,
4655 OP_ANDL,
4656 OP_SUBL,
4657 OP_XORL,
4658 OP_CMPL,
4659 };
4660
4661 struct i386_record_s
4662 {
4663 struct gdbarch *gdbarch;
4664 struct regcache *regcache;
4665 CORE_ADDR orig_addr;
4666 CORE_ADDR addr;
4667 int aflag;
4668 int dflag;
4669 int override;
4670 uint8_t modrm;
4671 uint8_t mod, reg, rm;
4672 int ot;
4673 uint8_t rex_x;
4674 uint8_t rex_b;
4675 int rip_offset;
4676 int popl_esp_hack;
4677 const int *regmap;
4678 };
4679
4680 /* Parse the "modrm" part of the memory address irp->addr points at.
4681 Returns -1 if something goes wrong, 0 otherwise. */
4682
4683 static int
4684 i386_record_modrm (struct i386_record_s *irp)
4685 {
4686 struct gdbarch *gdbarch = irp->gdbarch;
4687
4688 if (record_read_memory (gdbarch, irp->addr, &irp->modrm, 1))
4689 return -1;
4690
4691 irp->addr++;
4692 irp->mod = (irp->modrm >> 6) & 3;
4693 irp->reg = (irp->modrm >> 3) & 7;
4694 irp->rm = irp->modrm & 7;
4695
4696 return 0;
4697 }
4698
4699 /* Extract the memory address that the current instruction writes to,
4700 and return it in *ADDR. Return -1 if something goes wrong. */
4701
4702 static int
4703 i386_record_lea_modrm_addr (struct i386_record_s *irp, uint64_t *addr)
4704 {
4705 struct gdbarch *gdbarch = irp->gdbarch;
4706 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4707 gdb_byte buf[4];
4708 ULONGEST offset64;
4709
4710 *addr = 0;
4711 if (irp->aflag || irp->regmap[X86_RECORD_R8_REGNUM])
4712 {
4713 /* 32/64 bits */
4714 int havesib = 0;
4715 uint8_t scale = 0;
4716 uint8_t byte;
4717 uint8_t index = 0;
4718 uint8_t base = irp->rm;
4719
4720 if (base == 4)
4721 {
4722 havesib = 1;
4723 if (record_read_memory (gdbarch, irp->addr, &byte, 1))
4724 return -1;
4725 irp->addr++;
4726 scale = (byte >> 6) & 3;
4727 index = ((byte >> 3) & 7) | irp->rex_x;
4728 base = (byte & 7);
4729 }
4730 base |= irp->rex_b;
4731
4732 switch (irp->mod)
4733 {
4734 case 0:
4735 if ((base & 7) == 5)
4736 {
4737 base = 0xff;
4738 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4739 return -1;
4740 irp->addr += 4;
4741 *addr = extract_signed_integer (buf, 4, byte_order);
4742 if (irp->regmap[X86_RECORD_R8_REGNUM] && !havesib)
4743 *addr += irp->addr + irp->rip_offset;
4744 }
4745 break;
4746 case 1:
4747 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4748 return -1;
4749 irp->addr++;
4750 *addr = (int8_t) buf[0];
4751 break;
4752 case 2:
4753 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4754 return -1;
4755 *addr = extract_signed_integer (buf, 4, byte_order);
4756 irp->addr += 4;
4757 break;
4758 }
4759
4760 offset64 = 0;
4761 if (base != 0xff)
4762 {
4763 if (base == 4 && irp->popl_esp_hack)
4764 *addr += irp->popl_esp_hack;
4765 regcache_raw_read_unsigned (irp->regcache, irp->regmap[base],
4766 &offset64);
4767 }
4768 if (irp->aflag == 2)
4769 {
4770 *addr += offset64;
4771 }
4772 else
4773 *addr = (uint32_t) (offset64 + *addr);
4774
4775 if (havesib && (index != 4 || scale != 0))
4776 {
4777 regcache_raw_read_unsigned (irp->regcache, irp->regmap[index],
4778 &offset64);
4779 if (irp->aflag == 2)
4780 *addr += offset64 << scale;
4781 else
4782 *addr = (uint32_t) (*addr + (offset64 << scale));
4783 }
4784
4785 if (!irp->aflag)
4786 {
4787 /* Since we are in 64-bit mode with ADDR32 prefix, zero-extend
4788 address from 32-bit to 64-bit. */
4789 *addr = (uint32_t) *addr;
4790 }
4791 }
4792 else
4793 {
4794 /* 16 bits */
4795 switch (irp->mod)
4796 {
4797 case 0:
4798 if (irp->rm == 6)
4799 {
4800 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4801 return -1;
4802 irp->addr += 2;
4803 *addr = extract_signed_integer (buf, 2, byte_order);
4804 irp->rm = 0;
4805 goto no_rm;
4806 }
4807 break;
4808 case 1:
4809 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4810 return -1;
4811 irp->addr++;
4812 *addr = (int8_t) buf[0];
4813 break;
4814 case 2:
4815 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4816 return -1;
4817 irp->addr += 2;
4818 *addr = extract_signed_integer (buf, 2, byte_order);
4819 break;
4820 }
4821
4822 switch (irp->rm)
4823 {
4824 case 0:
4825 regcache_raw_read_unsigned (irp->regcache,
4826 irp->regmap[X86_RECORD_REBX_REGNUM],
4827 &offset64);
4828 *addr = (uint32_t) (*addr + offset64);
4829 regcache_raw_read_unsigned (irp->regcache,
4830 irp->regmap[X86_RECORD_RESI_REGNUM],
4831 &offset64);
4832 *addr = (uint32_t) (*addr + offset64);
4833 break;
4834 case 1:
4835 regcache_raw_read_unsigned (irp->regcache,
4836 irp->regmap[X86_RECORD_REBX_REGNUM],
4837 &offset64);
4838 *addr = (uint32_t) (*addr + offset64);
4839 regcache_raw_read_unsigned (irp->regcache,
4840 irp->regmap[X86_RECORD_REDI_REGNUM],
4841 &offset64);
4842 *addr = (uint32_t) (*addr + offset64);
4843 break;
4844 case 2:
4845 regcache_raw_read_unsigned (irp->regcache,
4846 irp->regmap[X86_RECORD_REBP_REGNUM],
4847 &offset64);
4848 *addr = (uint32_t) (*addr + offset64);
4849 regcache_raw_read_unsigned (irp->regcache,
4850 irp->regmap[X86_RECORD_RESI_REGNUM],
4851 &offset64);
4852 *addr = (uint32_t) (*addr + offset64);
4853 break;
4854 case 3:
4855 regcache_raw_read_unsigned (irp->regcache,
4856 irp->regmap[X86_RECORD_REBP_REGNUM],
4857 &offset64);
4858 *addr = (uint32_t) (*addr + offset64);
4859 regcache_raw_read_unsigned (irp->regcache,
4860 irp->regmap[X86_RECORD_REDI_REGNUM],
4861 &offset64);
4862 *addr = (uint32_t) (*addr + offset64);
4863 break;
4864 case 4:
4865 regcache_raw_read_unsigned (irp->regcache,
4866 irp->regmap[X86_RECORD_RESI_REGNUM],
4867 &offset64);
4868 *addr = (uint32_t) (*addr + offset64);
4869 break;
4870 case 5:
4871 regcache_raw_read_unsigned (irp->regcache,
4872 irp->regmap[X86_RECORD_REDI_REGNUM],
4873 &offset64);
4874 *addr = (uint32_t) (*addr + offset64);
4875 break;
4876 case 6:
4877 regcache_raw_read_unsigned (irp->regcache,
4878 irp->regmap[X86_RECORD_REBP_REGNUM],
4879 &offset64);
4880 *addr = (uint32_t) (*addr + offset64);
4881 break;
4882 case 7:
4883 regcache_raw_read_unsigned (irp->regcache,
4884 irp->regmap[X86_RECORD_REBX_REGNUM],
4885 &offset64);
4886 *addr = (uint32_t) (*addr + offset64);
4887 break;
4888 }
4889 *addr &= 0xffff;
4890 }
4891
4892 no_rm:
4893 return 0;
4894 }
4895
4896 /* Record the address and contents of the memory that will be changed
4897 by the current instruction. Return -1 if something goes wrong, 0
4898 otherwise. */
4899
4900 static int
4901 i386_record_lea_modrm (struct i386_record_s *irp)
4902 {
4903 struct gdbarch *gdbarch = irp->gdbarch;
4904 uint64_t addr;
4905
4906 if (irp->override >= 0)
4907 {
4908 if (record_full_memory_query)
4909 {
4910 if (yquery (_("\
4911 Process record ignores the memory change of instruction at address %s\n\
4912 because it can't get the value of the segment register.\n\
4913 Do you want to stop the program?"),
4914 paddress (gdbarch, irp->orig_addr)))
4915 return -1;
4916 }
4917
4918 return 0;
4919 }
4920
4921 if (i386_record_lea_modrm_addr (irp, &addr))
4922 return -1;
4923
4924 if (record_full_arch_list_add_mem (addr, 1 << irp->ot))
4925 return -1;
4926
4927 return 0;
4928 }
4929
4930 /* Record the effects of a push operation. Return -1 if something
4931 goes wrong, 0 otherwise. */
4932
4933 static int
4934 i386_record_push (struct i386_record_s *irp, int size)
4935 {
4936 ULONGEST addr;
4937
4938 if (record_full_arch_list_add_reg (irp->regcache,
4939 irp->regmap[X86_RECORD_RESP_REGNUM]))
4940 return -1;
4941 regcache_raw_read_unsigned (irp->regcache,
4942 irp->regmap[X86_RECORD_RESP_REGNUM],
4943 &addr);
4944 if (record_full_arch_list_add_mem ((CORE_ADDR) addr - size, size))
4945 return -1;
4946
4947 return 0;
4948 }
4949
4950
4951 /* Defines contents to record. */
4952 #define I386_SAVE_FPU_REGS 0xfffd
4953 #define I386_SAVE_FPU_ENV 0xfffe
4954 #define I386_SAVE_FPU_ENV_REG_STACK 0xffff
4955
4956 /* Record the values of the floating point registers which will be
4957 changed by the current instruction. Returns -1 if something is
4958 wrong, 0 otherwise. */
4959
4960 static int i386_record_floats (struct gdbarch *gdbarch,
4961 struct i386_record_s *ir,
4962 uint32_t iregnum)
4963 {
4964 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4965 int i;
4966
4967 /* Oza: Because of floating point insn push/pop of fpu stack is going to
4968 happen. Currently we store st0-st7 registers, but we need not store all
4969 registers all the time, in future we use ftag register and record only
4970 those who are not marked as an empty. */
4971
4972 if (I386_SAVE_FPU_REGS == iregnum)
4973 {
4974 for (i = I387_ST0_REGNUM (tdep); i <= I387_ST0_REGNUM (tdep) + 7; i++)
4975 {
4976 if (record_full_arch_list_add_reg (ir->regcache, i))
4977 return -1;
4978 }
4979 }
4980 else if (I386_SAVE_FPU_ENV == iregnum)
4981 {
4982 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4983 {
4984 if (record_full_arch_list_add_reg (ir->regcache, i))
4985 return -1;
4986 }
4987 }
4988 else if (I386_SAVE_FPU_ENV_REG_STACK == iregnum)
4989 {
4990 for (i = I387_ST0_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4991 {
4992 if (record_full_arch_list_add_reg (ir->regcache, i))
4993 return -1;
4994 }
4995 }
4996 else if ((iregnum >= I387_ST0_REGNUM (tdep)) &&
4997 (iregnum <= I387_FOP_REGNUM (tdep)))
4998 {
4999 if (record_full_arch_list_add_reg (ir->regcache,iregnum))
5000 return -1;
5001 }
5002 else
5003 {
5004 /* Parameter error. */
5005 return -1;
5006 }
5007 if(I386_SAVE_FPU_ENV != iregnum)
5008 {
5009 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
5010 {
5011 if (record_full_arch_list_add_reg (ir->regcache, i))
5012 return -1;
5013 }
5014 }
5015 return 0;
5016 }
5017
5018 /* Parse the current instruction, and record the values of the
5019 registers and memory that will be changed by the current
5020 instruction. Returns -1 if something goes wrong, 0 otherwise. */
5021
5022 #define I386_RECORD_FULL_ARCH_LIST_ADD_REG(regnum) \
5023 record_full_arch_list_add_reg (ir.regcache, ir.regmap[(regnum)])
5024
5025 int
5026 i386_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
5027 CORE_ADDR input_addr)
5028 {
5029 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
5030 int prefixes = 0;
5031 int regnum = 0;
5032 uint32_t opcode;
5033 uint8_t opcode8;
5034 ULONGEST addr;
5035 gdb_byte buf[I386_MAX_REGISTER_SIZE];
5036 struct i386_record_s ir;
5037 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5038 uint8_t rex_w = -1;
5039 uint8_t rex_r = 0;
5040
5041 memset (&ir, 0, sizeof (struct i386_record_s));
5042 ir.regcache = regcache;
5043 ir.addr = input_addr;
5044 ir.orig_addr = input_addr;
5045 ir.aflag = 1;
5046 ir.dflag = 1;
5047 ir.override = -1;
5048 ir.popl_esp_hack = 0;
5049 ir.regmap = tdep->record_regmap;
5050 ir.gdbarch = gdbarch;
5051
5052 if (record_debug > 1)
5053 fprintf_unfiltered (gdb_stdlog, "Process record: i386_process_record "
5054 "addr = %s\n",
5055 paddress (gdbarch, ir.addr));
5056
5057 /* prefixes */
5058 while (1)
5059 {
5060 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
5061 return -1;
5062 ir.addr++;
5063 switch (opcode8) /* Instruction prefixes */
5064 {
5065 case REPE_PREFIX_OPCODE:
5066 prefixes |= PREFIX_REPZ;
5067 break;
5068 case REPNE_PREFIX_OPCODE:
5069 prefixes |= PREFIX_REPNZ;
5070 break;
5071 case LOCK_PREFIX_OPCODE:
5072 prefixes |= PREFIX_LOCK;
5073 break;
5074 case CS_PREFIX_OPCODE:
5075 ir.override = X86_RECORD_CS_REGNUM;
5076 break;
5077 case SS_PREFIX_OPCODE:
5078 ir.override = X86_RECORD_SS_REGNUM;
5079 break;
5080 case DS_PREFIX_OPCODE:
5081 ir.override = X86_RECORD_DS_REGNUM;
5082 break;
5083 case ES_PREFIX_OPCODE:
5084 ir.override = X86_RECORD_ES_REGNUM;
5085 break;
5086 case FS_PREFIX_OPCODE:
5087 ir.override = X86_RECORD_FS_REGNUM;
5088 break;
5089 case GS_PREFIX_OPCODE:
5090 ir.override = X86_RECORD_GS_REGNUM;
5091 break;
5092 case DATA_PREFIX_OPCODE:
5093 prefixes |= PREFIX_DATA;
5094 break;
5095 case ADDR_PREFIX_OPCODE:
5096 prefixes |= PREFIX_ADDR;
5097 break;
5098 case 0x40: /* i386 inc %eax */
5099 case 0x41: /* i386 inc %ecx */
5100 case 0x42: /* i386 inc %edx */
5101 case 0x43: /* i386 inc %ebx */
5102 case 0x44: /* i386 inc %esp */
5103 case 0x45: /* i386 inc %ebp */
5104 case 0x46: /* i386 inc %esi */
5105 case 0x47: /* i386 inc %edi */
5106 case 0x48: /* i386 dec %eax */
5107 case 0x49: /* i386 dec %ecx */
5108 case 0x4a: /* i386 dec %edx */
5109 case 0x4b: /* i386 dec %ebx */
5110 case 0x4c: /* i386 dec %esp */
5111 case 0x4d: /* i386 dec %ebp */
5112 case 0x4e: /* i386 dec %esi */
5113 case 0x4f: /* i386 dec %edi */
5114 if (ir.regmap[X86_RECORD_R8_REGNUM]) /* 64 bit target */
5115 {
5116 /* REX */
5117 rex_w = (opcode8 >> 3) & 1;
5118 rex_r = (opcode8 & 0x4) << 1;
5119 ir.rex_x = (opcode8 & 0x2) << 2;
5120 ir.rex_b = (opcode8 & 0x1) << 3;
5121 }
5122 else /* 32 bit target */
5123 goto out_prefixes;
5124 break;
5125 default:
5126 goto out_prefixes;
5127 break;
5128 }
5129 }
5130 out_prefixes:
5131 if (ir.regmap[X86_RECORD_R8_REGNUM] && rex_w == 1)
5132 {
5133 ir.dflag = 2;
5134 }
5135 else
5136 {
5137 if (prefixes & PREFIX_DATA)
5138 ir.dflag ^= 1;
5139 }
5140 if (prefixes & PREFIX_ADDR)
5141 ir.aflag ^= 1;
5142 else if (ir.regmap[X86_RECORD_R8_REGNUM])
5143 ir.aflag = 2;
5144
5145 /* Now check op code. */
5146 opcode = (uint32_t) opcode8;
5147 reswitch:
5148 switch (opcode)
5149 {
5150 case 0x0f:
5151 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
5152 return -1;
5153 ir.addr++;
5154 opcode = (uint32_t) opcode8 | 0x0f00;
5155 goto reswitch;
5156 break;
5157
5158 case 0x00: /* arith & logic */
5159 case 0x01:
5160 case 0x02:
5161 case 0x03:
5162 case 0x04:
5163 case 0x05:
5164 case 0x08:
5165 case 0x09:
5166 case 0x0a:
5167 case 0x0b:
5168 case 0x0c:
5169 case 0x0d:
5170 case 0x10:
5171 case 0x11:
5172 case 0x12:
5173 case 0x13:
5174 case 0x14:
5175 case 0x15:
5176 case 0x18:
5177 case 0x19:
5178 case 0x1a:
5179 case 0x1b:
5180 case 0x1c:
5181 case 0x1d:
5182 case 0x20:
5183 case 0x21:
5184 case 0x22:
5185 case 0x23:
5186 case 0x24:
5187 case 0x25:
5188 case 0x28:
5189 case 0x29:
5190 case 0x2a:
5191 case 0x2b:
5192 case 0x2c:
5193 case 0x2d:
5194 case 0x30:
5195 case 0x31:
5196 case 0x32:
5197 case 0x33:
5198 case 0x34:
5199 case 0x35:
5200 case 0x38:
5201 case 0x39:
5202 case 0x3a:
5203 case 0x3b:
5204 case 0x3c:
5205 case 0x3d:
5206 if (((opcode >> 3) & 7) != OP_CMPL)
5207 {
5208 if ((opcode & 1) == 0)
5209 ir.ot = OT_BYTE;
5210 else
5211 ir.ot = ir.dflag + OT_WORD;
5212
5213 switch ((opcode >> 1) & 3)
5214 {
5215 case 0: /* OP Ev, Gv */
5216 if (i386_record_modrm (&ir))
5217 return -1;
5218 if (ir.mod != 3)
5219 {
5220 if (i386_record_lea_modrm (&ir))
5221 return -1;
5222 }
5223 else
5224 {
5225 ir.rm |= ir.rex_b;
5226 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5227 ir.rm &= 0x3;
5228 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5229 }
5230 break;
5231 case 1: /* OP Gv, Ev */
5232 if (i386_record_modrm (&ir))
5233 return -1;
5234 ir.reg |= rex_r;
5235 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5236 ir.reg &= 0x3;
5237 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5238 break;
5239 case 2: /* OP A, Iv */
5240 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5241 break;
5242 }
5243 }
5244 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5245 break;
5246
5247 case 0x80: /* GRP1 */
5248 case 0x81:
5249 case 0x82:
5250 case 0x83:
5251 if (i386_record_modrm (&ir))
5252 return -1;
5253
5254 if (ir.reg != OP_CMPL)
5255 {
5256 if ((opcode & 1) == 0)
5257 ir.ot = OT_BYTE;
5258 else
5259 ir.ot = ir.dflag + OT_WORD;
5260
5261 if (ir.mod != 3)
5262 {
5263 if (opcode == 0x83)
5264 ir.rip_offset = 1;
5265 else
5266 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5267 if (i386_record_lea_modrm (&ir))
5268 return -1;
5269 }
5270 else
5271 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5272 }
5273 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5274 break;
5275
5276 case 0x40: /* inc */
5277 case 0x41:
5278 case 0x42:
5279 case 0x43:
5280 case 0x44:
5281 case 0x45:
5282 case 0x46:
5283 case 0x47:
5284
5285 case 0x48: /* dec */
5286 case 0x49:
5287 case 0x4a:
5288 case 0x4b:
5289 case 0x4c:
5290 case 0x4d:
5291 case 0x4e:
5292 case 0x4f:
5293
5294 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 7);
5295 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5296 break;
5297
5298 case 0xf6: /* GRP3 */
5299 case 0xf7:
5300 if ((opcode & 1) == 0)
5301 ir.ot = OT_BYTE;
5302 else
5303 ir.ot = ir.dflag + OT_WORD;
5304 if (i386_record_modrm (&ir))
5305 return -1;
5306
5307 if (ir.mod != 3 && ir.reg == 0)
5308 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5309
5310 switch (ir.reg)
5311 {
5312 case 0: /* test */
5313 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5314 break;
5315 case 2: /* not */
5316 case 3: /* neg */
5317 if (ir.mod != 3)
5318 {
5319 if (i386_record_lea_modrm (&ir))
5320 return -1;
5321 }
5322 else
5323 {
5324 ir.rm |= ir.rex_b;
5325 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5326 ir.rm &= 0x3;
5327 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5328 }
5329 if (ir.reg == 3) /* neg */
5330 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5331 break;
5332 case 4: /* mul */
5333 case 5: /* imul */
5334 case 6: /* div */
5335 case 7: /* idiv */
5336 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5337 if (ir.ot != OT_BYTE)
5338 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5339 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5340 break;
5341 default:
5342 ir.addr -= 2;
5343 opcode = opcode << 8 | ir.modrm;
5344 goto no_support;
5345 break;
5346 }
5347 break;
5348
5349 case 0xfe: /* GRP4 */
5350 case 0xff: /* GRP5 */
5351 if (i386_record_modrm (&ir))
5352 return -1;
5353 if (ir.reg >= 2 && opcode == 0xfe)
5354 {
5355 ir.addr -= 2;
5356 opcode = opcode << 8 | ir.modrm;
5357 goto no_support;
5358 }
5359 switch (ir.reg)
5360 {
5361 case 0: /* inc */
5362 case 1: /* dec */
5363 if ((opcode & 1) == 0)
5364 ir.ot = OT_BYTE;
5365 else
5366 ir.ot = ir.dflag + OT_WORD;
5367 if (ir.mod != 3)
5368 {
5369 if (i386_record_lea_modrm (&ir))
5370 return -1;
5371 }
5372 else
5373 {
5374 ir.rm |= ir.rex_b;
5375 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5376 ir.rm &= 0x3;
5377 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5378 }
5379 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5380 break;
5381 case 2: /* call */
5382 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5383 ir.dflag = 2;
5384 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5385 return -1;
5386 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5387 break;
5388 case 3: /* lcall */
5389 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
5390 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5391 return -1;
5392 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5393 break;
5394 case 4: /* jmp */
5395 case 5: /* ljmp */
5396 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5397 break;
5398 case 6: /* push */
5399 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5400 ir.dflag = 2;
5401 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5402 return -1;
5403 break;
5404 default:
5405 ir.addr -= 2;
5406 opcode = opcode << 8 | ir.modrm;
5407 goto no_support;
5408 break;
5409 }
5410 break;
5411
5412 case 0x84: /* test */
5413 case 0x85:
5414 case 0xa8:
5415 case 0xa9:
5416 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5417 break;
5418
5419 case 0x98: /* CWDE/CBW */
5420 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5421 break;
5422
5423 case 0x99: /* CDQ/CWD */
5424 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5425 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5426 break;
5427
5428 case 0x0faf: /* imul */
5429 case 0x69:
5430 case 0x6b:
5431 ir.ot = ir.dflag + OT_WORD;
5432 if (i386_record_modrm (&ir))
5433 return -1;
5434 if (opcode == 0x69)
5435 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5436 else if (opcode == 0x6b)
5437 ir.rip_offset = 1;
5438 ir.reg |= rex_r;
5439 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5440 ir.reg &= 0x3;
5441 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5442 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5443 break;
5444
5445 case 0x0fc0: /* xadd */
5446 case 0x0fc1:
5447 if ((opcode & 1) == 0)
5448 ir.ot = OT_BYTE;
5449 else
5450 ir.ot = ir.dflag + OT_WORD;
5451 if (i386_record_modrm (&ir))
5452 return -1;
5453 ir.reg |= rex_r;
5454 if (ir.mod == 3)
5455 {
5456 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5457 ir.reg &= 0x3;
5458 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5459 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5460 ir.rm &= 0x3;
5461 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5462 }
5463 else
5464 {
5465 if (i386_record_lea_modrm (&ir))
5466 return -1;
5467 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5468 ir.reg &= 0x3;
5469 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5470 }
5471 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5472 break;
5473
5474 case 0x0fb0: /* cmpxchg */
5475 case 0x0fb1:
5476 if ((opcode & 1) == 0)
5477 ir.ot = OT_BYTE;
5478 else
5479 ir.ot = ir.dflag + OT_WORD;
5480 if (i386_record_modrm (&ir))
5481 return -1;
5482 if (ir.mod == 3)
5483 {
5484 ir.reg |= rex_r;
5485 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5486 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5487 ir.reg &= 0x3;
5488 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5489 }
5490 else
5491 {
5492 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5493 if (i386_record_lea_modrm (&ir))
5494 return -1;
5495 }
5496 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5497 break;
5498
5499 case 0x0fc7: /* cmpxchg8b / rdrand / rdseed */
5500 if (i386_record_modrm (&ir))
5501 return -1;
5502 if (ir.mod == 3)
5503 {
5504 /* rdrand and rdseed use the 3 bits of the REG field of ModR/M as
5505 an extended opcode. rdrand has bits 110 (/6) and rdseed
5506 has bits 111 (/7). */
5507 if (ir.reg == 6 || ir.reg == 7)
5508 {
5509 /* The storage register is described by the 3 R/M bits, but the
5510 REX.B prefix may be used to give access to registers
5511 R8~R15. In this case ir.rex_b + R/M will give us the register
5512 in the range R8~R15.
5513
5514 REX.W may also be used to access 64-bit registers, but we
5515 already record entire registers and not just partial bits
5516 of them. */
5517 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rex_b + ir.rm);
5518 /* These instructions also set conditional bits. */
5519 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5520 break;
5521 }
5522 else
5523 {
5524 /* We don't handle this particular instruction yet. */
5525 ir.addr -= 2;
5526 opcode = opcode << 8 | ir.modrm;
5527 goto no_support;
5528 }
5529 }
5530 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5531 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5532 if (i386_record_lea_modrm (&ir))
5533 return -1;
5534 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5535 break;
5536
5537 case 0x50: /* push */
5538 case 0x51:
5539 case 0x52:
5540 case 0x53:
5541 case 0x54:
5542 case 0x55:
5543 case 0x56:
5544 case 0x57:
5545 case 0x68:
5546 case 0x6a:
5547 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5548 ir.dflag = 2;
5549 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5550 return -1;
5551 break;
5552
5553 case 0x06: /* push es */
5554 case 0x0e: /* push cs */
5555 case 0x16: /* push ss */
5556 case 0x1e: /* push ds */
5557 if (ir.regmap[X86_RECORD_R8_REGNUM])
5558 {
5559 ir.addr -= 1;
5560 goto no_support;
5561 }
5562 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5563 return -1;
5564 break;
5565
5566 case 0x0fa0: /* push fs */
5567 case 0x0fa8: /* push gs */
5568 if (ir.regmap[X86_RECORD_R8_REGNUM])
5569 {
5570 ir.addr -= 2;
5571 goto no_support;
5572 }
5573 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5574 return -1;
5575 break;
5576
5577 case 0x60: /* pusha */
5578 if (ir.regmap[X86_RECORD_R8_REGNUM])
5579 {
5580 ir.addr -= 1;
5581 goto no_support;
5582 }
5583 if (i386_record_push (&ir, 1 << (ir.dflag + 4)))
5584 return -1;
5585 break;
5586
5587 case 0x58: /* pop */
5588 case 0x59:
5589 case 0x5a:
5590 case 0x5b:
5591 case 0x5c:
5592 case 0x5d:
5593 case 0x5e:
5594 case 0x5f:
5595 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5596 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
5597 break;
5598
5599 case 0x61: /* popa */
5600 if (ir.regmap[X86_RECORD_R8_REGNUM])
5601 {
5602 ir.addr -= 1;
5603 goto no_support;
5604 }
5605 for (regnum = X86_RECORD_REAX_REGNUM;
5606 regnum <= X86_RECORD_REDI_REGNUM;
5607 regnum++)
5608 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5609 break;
5610
5611 case 0x8f: /* pop */
5612 if (ir.regmap[X86_RECORD_R8_REGNUM])
5613 ir.ot = ir.dflag ? OT_QUAD : OT_WORD;
5614 else
5615 ir.ot = ir.dflag + OT_WORD;
5616 if (i386_record_modrm (&ir))
5617 return -1;
5618 if (ir.mod == 3)
5619 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5620 else
5621 {
5622 ir.popl_esp_hack = 1 << ir.ot;
5623 if (i386_record_lea_modrm (&ir))
5624 return -1;
5625 }
5626 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5627 break;
5628
5629 case 0xc8: /* enter */
5630 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
5631 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5632 ir.dflag = 2;
5633 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5634 return -1;
5635 break;
5636
5637 case 0xc9: /* leave */
5638 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5639 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
5640 break;
5641
5642 case 0x07: /* pop es */
5643 if (ir.regmap[X86_RECORD_R8_REGNUM])
5644 {
5645 ir.addr -= 1;
5646 goto no_support;
5647 }
5648 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5649 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_ES_REGNUM);
5650 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5651 break;
5652
5653 case 0x17: /* pop ss */
5654 if (ir.regmap[X86_RECORD_R8_REGNUM])
5655 {
5656 ir.addr -= 1;
5657 goto no_support;
5658 }
5659 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5660 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_SS_REGNUM);
5661 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5662 break;
5663
5664 case 0x1f: /* pop ds */
5665 if (ir.regmap[X86_RECORD_R8_REGNUM])
5666 {
5667 ir.addr -= 1;
5668 goto no_support;
5669 }
5670 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5671 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_DS_REGNUM);
5672 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5673 break;
5674
5675 case 0x0fa1: /* pop fs */
5676 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5677 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_FS_REGNUM);
5678 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5679 break;
5680
5681 case 0x0fa9: /* pop gs */
5682 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5683 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
5684 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5685 break;
5686
5687 case 0x88: /* mov */
5688 case 0x89:
5689 case 0xc6:
5690 case 0xc7:
5691 if ((opcode & 1) == 0)
5692 ir.ot = OT_BYTE;
5693 else
5694 ir.ot = ir.dflag + OT_WORD;
5695
5696 if (i386_record_modrm (&ir))
5697 return -1;
5698
5699 if (ir.mod != 3)
5700 {
5701 if (opcode == 0xc6 || opcode == 0xc7)
5702 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5703 if (i386_record_lea_modrm (&ir))
5704 return -1;
5705 }
5706 else
5707 {
5708 if (opcode == 0xc6 || opcode == 0xc7)
5709 ir.rm |= ir.rex_b;
5710 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5711 ir.rm &= 0x3;
5712 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5713 }
5714 break;
5715
5716 case 0x8a: /* mov */
5717 case 0x8b:
5718 if ((opcode & 1) == 0)
5719 ir.ot = OT_BYTE;
5720 else
5721 ir.ot = ir.dflag + OT_WORD;
5722 if (i386_record_modrm (&ir))
5723 return -1;
5724 ir.reg |= rex_r;
5725 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5726 ir.reg &= 0x3;
5727 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5728 break;
5729
5730 case 0x8c: /* mov seg */
5731 if (i386_record_modrm (&ir))
5732 return -1;
5733 if (ir.reg > 5)
5734 {
5735 ir.addr -= 2;
5736 opcode = opcode << 8 | ir.modrm;
5737 goto no_support;
5738 }
5739
5740 if (ir.mod == 3)
5741 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5742 else
5743 {
5744 ir.ot = OT_WORD;
5745 if (i386_record_lea_modrm (&ir))
5746 return -1;
5747 }
5748 break;
5749
5750 case 0x8e: /* mov seg */
5751 if (i386_record_modrm (&ir))
5752 return -1;
5753 switch (ir.reg)
5754 {
5755 case 0:
5756 regnum = X86_RECORD_ES_REGNUM;
5757 break;
5758 case 2:
5759 regnum = X86_RECORD_SS_REGNUM;
5760 break;
5761 case 3:
5762 regnum = X86_RECORD_DS_REGNUM;
5763 break;
5764 case 4:
5765 regnum = X86_RECORD_FS_REGNUM;
5766 break;
5767 case 5:
5768 regnum = X86_RECORD_GS_REGNUM;
5769 break;
5770 default:
5771 ir.addr -= 2;
5772 opcode = opcode << 8 | ir.modrm;
5773 goto no_support;
5774 break;
5775 }
5776 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5777 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5778 break;
5779
5780 case 0x0fb6: /* movzbS */
5781 case 0x0fb7: /* movzwS */
5782 case 0x0fbe: /* movsbS */
5783 case 0x0fbf: /* movswS */
5784 if (i386_record_modrm (&ir))
5785 return -1;
5786 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5787 break;
5788
5789 case 0x8d: /* lea */
5790 if (i386_record_modrm (&ir))
5791 return -1;
5792 if (ir.mod == 3)
5793 {
5794 ir.addr -= 2;
5795 opcode = opcode << 8 | ir.modrm;
5796 goto no_support;
5797 }
5798 ir.ot = ir.dflag;
5799 ir.reg |= rex_r;
5800 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5801 ir.reg &= 0x3;
5802 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5803 break;
5804
5805 case 0xa0: /* mov EAX */
5806 case 0xa1:
5807
5808 case 0xd7: /* xlat */
5809 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5810 break;
5811
5812 case 0xa2: /* mov EAX */
5813 case 0xa3:
5814 if (ir.override >= 0)
5815 {
5816 if (record_full_memory_query)
5817 {
5818 if (yquery (_("\
5819 Process record ignores the memory change of instruction at address %s\n\
5820 because it can't get the value of the segment register.\n\
5821 Do you want to stop the program?"),
5822 paddress (gdbarch, ir.orig_addr)))
5823 return -1;
5824 }
5825 }
5826 else
5827 {
5828 if ((opcode & 1) == 0)
5829 ir.ot = OT_BYTE;
5830 else
5831 ir.ot = ir.dflag + OT_WORD;
5832 if (ir.aflag == 2)
5833 {
5834 if (record_read_memory (gdbarch, ir.addr, buf, 8))
5835 return -1;
5836 ir.addr += 8;
5837 addr = extract_unsigned_integer (buf, 8, byte_order);
5838 }
5839 else if (ir.aflag)
5840 {
5841 if (record_read_memory (gdbarch, ir.addr, buf, 4))
5842 return -1;
5843 ir.addr += 4;
5844 addr = extract_unsigned_integer (buf, 4, byte_order);
5845 }
5846 else
5847 {
5848 if (record_read_memory (gdbarch, ir.addr, buf, 2))
5849 return -1;
5850 ir.addr += 2;
5851 addr = extract_unsigned_integer (buf, 2, byte_order);
5852 }
5853 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
5854 return -1;
5855 }
5856 break;
5857
5858 case 0xb0: /* mov R, Ib */
5859 case 0xb1:
5860 case 0xb2:
5861 case 0xb3:
5862 case 0xb4:
5863 case 0xb5:
5864 case 0xb6:
5865 case 0xb7:
5866 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((ir.regmap[X86_RECORD_R8_REGNUM])
5867 ? ((opcode & 0x7) | ir.rex_b)
5868 : ((opcode & 0x7) & 0x3));
5869 break;
5870
5871 case 0xb8: /* mov R, Iv */
5872 case 0xb9:
5873 case 0xba:
5874 case 0xbb:
5875 case 0xbc:
5876 case 0xbd:
5877 case 0xbe:
5878 case 0xbf:
5879 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
5880 break;
5881
5882 case 0x91: /* xchg R, EAX */
5883 case 0x92:
5884 case 0x93:
5885 case 0x94:
5886 case 0x95:
5887 case 0x96:
5888 case 0x97:
5889 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5890 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 0x7);
5891 break;
5892
5893 case 0x86: /* xchg Ev, Gv */
5894 case 0x87:
5895 if ((opcode & 1) == 0)
5896 ir.ot = OT_BYTE;
5897 else
5898 ir.ot = ir.dflag + OT_WORD;
5899 if (i386_record_modrm (&ir))
5900 return -1;
5901 if (ir.mod == 3)
5902 {
5903 ir.rm |= ir.rex_b;
5904 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5905 ir.rm &= 0x3;
5906 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5907 }
5908 else
5909 {
5910 if (i386_record_lea_modrm (&ir))
5911 return -1;
5912 }
5913 ir.reg |= rex_r;
5914 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5915 ir.reg &= 0x3;
5916 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5917 break;
5918
5919 case 0xc4: /* les Gv */
5920 case 0xc5: /* lds Gv */
5921 if (ir.regmap[X86_RECORD_R8_REGNUM])
5922 {
5923 ir.addr -= 1;
5924 goto no_support;
5925 }
5926 /* FALLTHROUGH */
5927 case 0x0fb2: /* lss Gv */
5928 case 0x0fb4: /* lfs Gv */
5929 case 0x0fb5: /* lgs Gv */
5930 if (i386_record_modrm (&ir))
5931 return -1;
5932 if (ir.mod == 3)
5933 {
5934 if (opcode > 0xff)
5935 ir.addr -= 3;
5936 else
5937 ir.addr -= 2;
5938 opcode = opcode << 8 | ir.modrm;
5939 goto no_support;
5940 }
5941 switch (opcode)
5942 {
5943 case 0xc4: /* les Gv */
5944 regnum = X86_RECORD_ES_REGNUM;
5945 break;
5946 case 0xc5: /* lds Gv */
5947 regnum = X86_RECORD_DS_REGNUM;
5948 break;
5949 case 0x0fb2: /* lss Gv */
5950 regnum = X86_RECORD_SS_REGNUM;
5951 break;
5952 case 0x0fb4: /* lfs Gv */
5953 regnum = X86_RECORD_FS_REGNUM;
5954 break;
5955 case 0x0fb5: /* lgs Gv */
5956 regnum = X86_RECORD_GS_REGNUM;
5957 break;
5958 }
5959 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5960 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5961 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5962 break;
5963
5964 case 0xc0: /* shifts */
5965 case 0xc1:
5966 case 0xd0:
5967 case 0xd1:
5968 case 0xd2:
5969 case 0xd3:
5970 if ((opcode & 1) == 0)
5971 ir.ot = OT_BYTE;
5972 else
5973 ir.ot = ir.dflag + OT_WORD;
5974 if (i386_record_modrm (&ir))
5975 return -1;
5976 if (ir.mod != 3 && (opcode == 0xd2 || opcode == 0xd3))
5977 {
5978 if (i386_record_lea_modrm (&ir))
5979 return -1;
5980 }
5981 else
5982 {
5983 ir.rm |= ir.rex_b;
5984 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5985 ir.rm &= 0x3;
5986 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5987 }
5988 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5989 break;
5990
5991 case 0x0fa4:
5992 case 0x0fa5:
5993 case 0x0fac:
5994 case 0x0fad:
5995 if (i386_record_modrm (&ir))
5996 return -1;
5997 if (ir.mod == 3)
5998 {
5999 if (record_full_arch_list_add_reg (ir.regcache, ir.rm))
6000 return -1;
6001 }
6002 else
6003 {
6004 if (i386_record_lea_modrm (&ir))
6005 return -1;
6006 }
6007 break;
6008
6009 case 0xd8: /* Floats. */
6010 case 0xd9:
6011 case 0xda:
6012 case 0xdb:
6013 case 0xdc:
6014 case 0xdd:
6015 case 0xde:
6016 case 0xdf:
6017 if (i386_record_modrm (&ir))
6018 return -1;
6019 ir.reg |= ((opcode & 7) << 3);
6020 if (ir.mod != 3)
6021 {
6022 /* Memory. */
6023 uint64_t addr64;
6024
6025 if (i386_record_lea_modrm_addr (&ir, &addr64))
6026 return -1;
6027 switch (ir.reg)
6028 {
6029 case 0x02:
6030 case 0x12:
6031 case 0x22:
6032 case 0x32:
6033 /* For fcom, ficom nothing to do. */
6034 break;
6035 case 0x03:
6036 case 0x13:
6037 case 0x23:
6038 case 0x33:
6039 /* For fcomp, ficomp pop FPU stack, store all. */
6040 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6041 return -1;
6042 break;
6043 case 0x00:
6044 case 0x01:
6045 case 0x04:
6046 case 0x05:
6047 case 0x06:
6048 case 0x07:
6049 case 0x10:
6050 case 0x11:
6051 case 0x14:
6052 case 0x15:
6053 case 0x16:
6054 case 0x17:
6055 case 0x20:
6056 case 0x21:
6057 case 0x24:
6058 case 0x25:
6059 case 0x26:
6060 case 0x27:
6061 case 0x30:
6062 case 0x31:
6063 case 0x34:
6064 case 0x35:
6065 case 0x36:
6066 case 0x37:
6067 /* For fadd, fmul, fsub, fsubr, fdiv, fdivr, fiadd, fimul,
6068 fisub, fisubr, fidiv, fidivr, modR/M.reg is an extension
6069 of code, always affects st(0) register. */
6070 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
6071 return -1;
6072 break;
6073 case 0x08:
6074 case 0x0a:
6075 case 0x0b:
6076 case 0x18:
6077 case 0x19:
6078 case 0x1a:
6079 case 0x1b:
6080 case 0x1d:
6081 case 0x28:
6082 case 0x29:
6083 case 0x2a:
6084 case 0x2b:
6085 case 0x38:
6086 case 0x39:
6087 case 0x3a:
6088 case 0x3b:
6089 case 0x3c:
6090 case 0x3d:
6091 switch (ir.reg & 7)
6092 {
6093 case 0:
6094 /* Handling fld, fild. */
6095 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6096 return -1;
6097 break;
6098 case 1:
6099 switch (ir.reg >> 4)
6100 {
6101 case 0:
6102 if (record_full_arch_list_add_mem (addr64, 4))
6103 return -1;
6104 break;
6105 case 2:
6106 if (record_full_arch_list_add_mem (addr64, 8))
6107 return -1;
6108 break;
6109 case 3:
6110 break;
6111 default:
6112 if (record_full_arch_list_add_mem (addr64, 2))
6113 return -1;
6114 break;
6115 }
6116 break;
6117 default:
6118 switch (ir.reg >> 4)
6119 {
6120 case 0:
6121 if (record_full_arch_list_add_mem (addr64, 4))
6122 return -1;
6123 if (3 == (ir.reg & 7))
6124 {
6125 /* For fstp m32fp. */
6126 if (i386_record_floats (gdbarch, &ir,
6127 I386_SAVE_FPU_REGS))
6128 return -1;
6129 }
6130 break;
6131 case 1:
6132 if (record_full_arch_list_add_mem (addr64, 4))
6133 return -1;
6134 if ((3 == (ir.reg & 7))
6135 || (5 == (ir.reg & 7))
6136 || (7 == (ir.reg & 7)))
6137 {
6138 /* For fstp insn. */
6139 if (i386_record_floats (gdbarch, &ir,
6140 I386_SAVE_FPU_REGS))
6141 return -1;
6142 }
6143 break;
6144 case 2:
6145 if (record_full_arch_list_add_mem (addr64, 8))
6146 return -1;
6147 if (3 == (ir.reg & 7))
6148 {
6149 /* For fstp m64fp. */
6150 if (i386_record_floats (gdbarch, &ir,
6151 I386_SAVE_FPU_REGS))
6152 return -1;
6153 }
6154 break;
6155 case 3:
6156 if ((3 <= (ir.reg & 7)) && (6 <= (ir.reg & 7)))
6157 {
6158 /* For fistp, fbld, fild, fbstp. */
6159 if (i386_record_floats (gdbarch, &ir,
6160 I386_SAVE_FPU_REGS))
6161 return -1;
6162 }
6163 /* Fall through */
6164 default:
6165 if (record_full_arch_list_add_mem (addr64, 2))
6166 return -1;
6167 break;
6168 }
6169 break;
6170 }
6171 break;
6172 case 0x0c:
6173 /* Insn fldenv. */
6174 if (i386_record_floats (gdbarch, &ir,
6175 I386_SAVE_FPU_ENV_REG_STACK))
6176 return -1;
6177 break;
6178 case 0x0d:
6179 /* Insn fldcw. */
6180 if (i386_record_floats (gdbarch, &ir, I387_FCTRL_REGNUM (tdep)))
6181 return -1;
6182 break;
6183 case 0x2c:
6184 /* Insn frstor. */
6185 if (i386_record_floats (gdbarch, &ir,
6186 I386_SAVE_FPU_ENV_REG_STACK))
6187 return -1;
6188 break;
6189 case 0x0e:
6190 if (ir.dflag)
6191 {
6192 if (record_full_arch_list_add_mem (addr64, 28))
6193 return -1;
6194 }
6195 else
6196 {
6197 if (record_full_arch_list_add_mem (addr64, 14))
6198 return -1;
6199 }
6200 break;
6201 case 0x0f:
6202 case 0x2f:
6203 if (record_full_arch_list_add_mem (addr64, 2))
6204 return -1;
6205 /* Insn fstp, fbstp. */
6206 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6207 return -1;
6208 break;
6209 case 0x1f:
6210 case 0x3e:
6211 if (record_full_arch_list_add_mem (addr64, 10))
6212 return -1;
6213 break;
6214 case 0x2e:
6215 if (ir.dflag)
6216 {
6217 if (record_full_arch_list_add_mem (addr64, 28))
6218 return -1;
6219 addr64 += 28;
6220 }
6221 else
6222 {
6223 if (record_full_arch_list_add_mem (addr64, 14))
6224 return -1;
6225 addr64 += 14;
6226 }
6227 if (record_full_arch_list_add_mem (addr64, 80))
6228 return -1;
6229 /* Insn fsave. */
6230 if (i386_record_floats (gdbarch, &ir,
6231 I386_SAVE_FPU_ENV_REG_STACK))
6232 return -1;
6233 break;
6234 case 0x3f:
6235 if (record_full_arch_list_add_mem (addr64, 8))
6236 return -1;
6237 /* Insn fistp. */
6238 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6239 return -1;
6240 break;
6241 default:
6242 ir.addr -= 2;
6243 opcode = opcode << 8 | ir.modrm;
6244 goto no_support;
6245 break;
6246 }
6247 }
6248 /* Opcode is an extension of modR/M byte. */
6249 else
6250 {
6251 switch (opcode)
6252 {
6253 case 0xd8:
6254 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
6255 return -1;
6256 break;
6257 case 0xd9:
6258 if (0x0c == (ir.modrm >> 4))
6259 {
6260 if ((ir.modrm & 0x0f) <= 7)
6261 {
6262 if (i386_record_floats (gdbarch, &ir,
6263 I386_SAVE_FPU_REGS))
6264 return -1;
6265 }
6266 else
6267 {
6268 if (i386_record_floats (gdbarch, &ir,
6269 I387_ST0_REGNUM (tdep)))
6270 return -1;
6271 /* If only st(0) is changing, then we have already
6272 recorded. */
6273 if ((ir.modrm & 0x0f) - 0x08)
6274 {
6275 if (i386_record_floats (gdbarch, &ir,
6276 I387_ST0_REGNUM (tdep) +
6277 ((ir.modrm & 0x0f) - 0x08)))
6278 return -1;
6279 }
6280 }
6281 }
6282 else
6283 {
6284 switch (ir.modrm)
6285 {
6286 case 0xe0:
6287 case 0xe1:
6288 case 0xf0:
6289 case 0xf5:
6290 case 0xf8:
6291 case 0xfa:
6292 case 0xfc:
6293 case 0xfe:
6294 case 0xff:
6295 if (i386_record_floats (gdbarch, &ir,
6296 I387_ST0_REGNUM (tdep)))
6297 return -1;
6298 break;
6299 case 0xf1:
6300 case 0xf2:
6301 case 0xf3:
6302 case 0xf4:
6303 case 0xf6:
6304 case 0xf7:
6305 case 0xe8:
6306 case 0xe9:
6307 case 0xea:
6308 case 0xeb:
6309 case 0xec:
6310 case 0xed:
6311 case 0xee:
6312 case 0xf9:
6313 case 0xfb:
6314 if (i386_record_floats (gdbarch, &ir,
6315 I386_SAVE_FPU_REGS))
6316 return -1;
6317 break;
6318 case 0xfd:
6319 if (i386_record_floats (gdbarch, &ir,
6320 I387_ST0_REGNUM (tdep)))
6321 return -1;
6322 if (i386_record_floats (gdbarch, &ir,
6323 I387_ST0_REGNUM (tdep) + 1))
6324 return -1;
6325 break;
6326 }
6327 }
6328 break;
6329 case 0xda:
6330 if (0xe9 == ir.modrm)
6331 {
6332 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6333 return -1;
6334 }
6335 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
6336 {
6337 if (i386_record_floats (gdbarch, &ir,
6338 I387_ST0_REGNUM (tdep)))
6339 return -1;
6340 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
6341 {
6342 if (i386_record_floats (gdbarch, &ir,
6343 I387_ST0_REGNUM (tdep) +
6344 (ir.modrm & 0x0f)))
6345 return -1;
6346 }
6347 else if ((ir.modrm & 0x0f) - 0x08)
6348 {
6349 if (i386_record_floats (gdbarch, &ir,
6350 I387_ST0_REGNUM (tdep) +
6351 ((ir.modrm & 0x0f) - 0x08)))
6352 return -1;
6353 }
6354 }
6355 break;
6356 case 0xdb:
6357 if (0xe3 == ir.modrm)
6358 {
6359 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_ENV))
6360 return -1;
6361 }
6362 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
6363 {
6364 if (i386_record_floats (gdbarch, &ir,
6365 I387_ST0_REGNUM (tdep)))
6366 return -1;
6367 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
6368 {
6369 if (i386_record_floats (gdbarch, &ir,
6370 I387_ST0_REGNUM (tdep) +
6371 (ir.modrm & 0x0f)))
6372 return -1;
6373 }
6374 else if ((ir.modrm & 0x0f) - 0x08)
6375 {
6376 if (i386_record_floats (gdbarch, &ir,
6377 I387_ST0_REGNUM (tdep) +
6378 ((ir.modrm & 0x0f) - 0x08)))
6379 return -1;
6380 }
6381 }
6382 break;
6383 case 0xdc:
6384 if ((0x0c == ir.modrm >> 4)
6385 || (0x0d == ir.modrm >> 4)
6386 || (0x0f == ir.modrm >> 4))
6387 {
6388 if ((ir.modrm & 0x0f) <= 7)
6389 {
6390 if (i386_record_floats (gdbarch, &ir,
6391 I387_ST0_REGNUM (tdep) +
6392 (ir.modrm & 0x0f)))
6393 return -1;
6394 }
6395 else
6396 {
6397 if (i386_record_floats (gdbarch, &ir,
6398 I387_ST0_REGNUM (tdep) +
6399 ((ir.modrm & 0x0f) - 0x08)))
6400 return -1;
6401 }
6402 }
6403 break;
6404 case 0xdd:
6405 if (0x0c == ir.modrm >> 4)
6406 {
6407 if (i386_record_floats (gdbarch, &ir,
6408 I387_FTAG_REGNUM (tdep)))
6409 return -1;
6410 }
6411 else if ((0x0d == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
6412 {
6413 if ((ir.modrm & 0x0f) <= 7)
6414 {
6415 if (i386_record_floats (gdbarch, &ir,
6416 I387_ST0_REGNUM (tdep) +
6417 (ir.modrm & 0x0f)))
6418 return -1;
6419 }
6420 else
6421 {
6422 if (i386_record_floats (gdbarch, &ir,
6423 I386_SAVE_FPU_REGS))
6424 return -1;
6425 }
6426 }
6427 break;
6428 case 0xde:
6429 if ((0x0c == ir.modrm >> 4)
6430 || (0x0e == ir.modrm >> 4)
6431 || (0x0f == ir.modrm >> 4)
6432 || (0xd9 == ir.modrm))
6433 {
6434 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6435 return -1;
6436 }
6437 break;
6438 case 0xdf:
6439 if (0xe0 == ir.modrm)
6440 {
6441 if (record_full_arch_list_add_reg (ir.regcache,
6442 I386_EAX_REGNUM))
6443 return -1;
6444 }
6445 else if ((0x0f == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
6446 {
6447 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6448 return -1;
6449 }
6450 break;
6451 }
6452 }
6453 break;
6454 /* string ops */
6455 case 0xa4: /* movsS */
6456 case 0xa5:
6457 case 0xaa: /* stosS */
6458 case 0xab:
6459 case 0x6c: /* insS */
6460 case 0x6d:
6461 regcache_raw_read_unsigned (ir.regcache,
6462 ir.regmap[X86_RECORD_RECX_REGNUM],
6463 &addr);
6464 if (addr)
6465 {
6466 ULONGEST es, ds;
6467
6468 if ((opcode & 1) == 0)
6469 ir.ot = OT_BYTE;
6470 else
6471 ir.ot = ir.dflag + OT_WORD;
6472 regcache_raw_read_unsigned (ir.regcache,
6473 ir.regmap[X86_RECORD_REDI_REGNUM],
6474 &addr);
6475
6476 regcache_raw_read_unsigned (ir.regcache,
6477 ir.regmap[X86_RECORD_ES_REGNUM],
6478 &es);
6479 regcache_raw_read_unsigned (ir.regcache,
6480 ir.regmap[X86_RECORD_DS_REGNUM],
6481 &ds);
6482 if (ir.aflag && (es != ds))
6483 {
6484 /* addr += ((uint32_t) read_register (I386_ES_REGNUM)) << 4; */
6485 if (record_full_memory_query)
6486 {
6487 if (yquery (_("\
6488 Process record ignores the memory change of instruction at address %s\n\
6489 because it can't get the value of the segment register.\n\
6490 Do you want to stop the program?"),
6491 paddress (gdbarch, ir.orig_addr)))
6492 return -1;
6493 }
6494 }
6495 else
6496 {
6497 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
6498 return -1;
6499 }
6500
6501 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6502 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6503 if (opcode == 0xa4 || opcode == 0xa5)
6504 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6505 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6506 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6507 }
6508 break;
6509
6510 case 0xa6: /* cmpsS */
6511 case 0xa7:
6512 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6513 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6514 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6515 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6516 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6517 break;
6518
6519 case 0xac: /* lodsS */
6520 case 0xad:
6521 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6522 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6523 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6524 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6525 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6526 break;
6527
6528 case 0xae: /* scasS */
6529 case 0xaf:
6530 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6531 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6532 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6533 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6534 break;
6535
6536 case 0x6e: /* outsS */
6537 case 0x6f:
6538 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6539 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6540 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6541 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6542 break;
6543
6544 case 0xe4: /* port I/O */
6545 case 0xe5:
6546 case 0xec:
6547 case 0xed:
6548 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6549 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6550 break;
6551
6552 case 0xe6:
6553 case 0xe7:
6554 case 0xee:
6555 case 0xef:
6556 break;
6557
6558 /* control */
6559 case 0xc2: /* ret im */
6560 case 0xc3: /* ret */
6561 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6562 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6563 break;
6564
6565 case 0xca: /* lret im */
6566 case 0xcb: /* lret */
6567 case 0xcf: /* iret */
6568 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
6569 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6570 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6571 break;
6572
6573 case 0xe8: /* call im */
6574 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6575 ir.dflag = 2;
6576 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6577 return -1;
6578 break;
6579
6580 case 0x9a: /* lcall im */
6581 if (ir.regmap[X86_RECORD_R8_REGNUM])
6582 {
6583 ir.addr -= 1;
6584 goto no_support;
6585 }
6586 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
6587 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6588 return -1;
6589 break;
6590
6591 case 0xe9: /* jmp im */
6592 case 0xea: /* ljmp im */
6593 case 0xeb: /* jmp Jb */
6594 case 0x70: /* jcc Jb */
6595 case 0x71:
6596 case 0x72:
6597 case 0x73:
6598 case 0x74:
6599 case 0x75:
6600 case 0x76:
6601 case 0x77:
6602 case 0x78:
6603 case 0x79:
6604 case 0x7a:
6605 case 0x7b:
6606 case 0x7c:
6607 case 0x7d:
6608 case 0x7e:
6609 case 0x7f:
6610 case 0x0f80: /* jcc Jv */
6611 case 0x0f81:
6612 case 0x0f82:
6613 case 0x0f83:
6614 case 0x0f84:
6615 case 0x0f85:
6616 case 0x0f86:
6617 case 0x0f87:
6618 case 0x0f88:
6619 case 0x0f89:
6620 case 0x0f8a:
6621 case 0x0f8b:
6622 case 0x0f8c:
6623 case 0x0f8d:
6624 case 0x0f8e:
6625 case 0x0f8f:
6626 break;
6627
6628 case 0x0f90: /* setcc Gv */
6629 case 0x0f91:
6630 case 0x0f92:
6631 case 0x0f93:
6632 case 0x0f94:
6633 case 0x0f95:
6634 case 0x0f96:
6635 case 0x0f97:
6636 case 0x0f98:
6637 case 0x0f99:
6638 case 0x0f9a:
6639 case 0x0f9b:
6640 case 0x0f9c:
6641 case 0x0f9d:
6642 case 0x0f9e:
6643 case 0x0f9f:
6644 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6645 ir.ot = OT_BYTE;
6646 if (i386_record_modrm (&ir))
6647 return -1;
6648 if (ir.mod == 3)
6649 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rex_b ? (ir.rm | ir.rex_b)
6650 : (ir.rm & 0x3));
6651 else
6652 {
6653 if (i386_record_lea_modrm (&ir))
6654 return -1;
6655 }
6656 break;
6657
6658 case 0x0f40: /* cmov Gv, Ev */
6659 case 0x0f41:
6660 case 0x0f42:
6661 case 0x0f43:
6662 case 0x0f44:
6663 case 0x0f45:
6664 case 0x0f46:
6665 case 0x0f47:
6666 case 0x0f48:
6667 case 0x0f49:
6668 case 0x0f4a:
6669 case 0x0f4b:
6670 case 0x0f4c:
6671 case 0x0f4d:
6672 case 0x0f4e:
6673 case 0x0f4f:
6674 if (i386_record_modrm (&ir))
6675 return -1;
6676 ir.reg |= rex_r;
6677 if (ir.dflag == OT_BYTE)
6678 ir.reg &= 0x3;
6679 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
6680 break;
6681
6682 /* flags */
6683 case 0x9c: /* pushf */
6684 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6685 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6686 ir.dflag = 2;
6687 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6688 return -1;
6689 break;
6690
6691 case 0x9d: /* popf */
6692 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6693 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6694 break;
6695
6696 case 0x9e: /* sahf */
6697 if (ir.regmap[X86_RECORD_R8_REGNUM])
6698 {
6699 ir.addr -= 1;
6700 goto no_support;
6701 }
6702 /* FALLTHROUGH */
6703 case 0xf5: /* cmc */
6704 case 0xf8: /* clc */
6705 case 0xf9: /* stc */
6706 case 0xfc: /* cld */
6707 case 0xfd: /* std */
6708 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6709 break;
6710
6711 case 0x9f: /* lahf */
6712 if (ir.regmap[X86_RECORD_R8_REGNUM])
6713 {
6714 ir.addr -= 1;
6715 goto no_support;
6716 }
6717 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6718 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6719 break;
6720
6721 /* bit operations */
6722 case 0x0fba: /* bt/bts/btr/btc Gv, im */
6723 ir.ot = ir.dflag + OT_WORD;
6724 if (i386_record_modrm (&ir))
6725 return -1;
6726 if (ir.reg < 4)
6727 {
6728 ir.addr -= 2;
6729 opcode = opcode << 8 | ir.modrm;
6730 goto no_support;
6731 }
6732 if (ir.reg != 4)
6733 {
6734 if (ir.mod == 3)
6735 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6736 else
6737 {
6738 if (i386_record_lea_modrm (&ir))
6739 return -1;
6740 }
6741 }
6742 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6743 break;
6744
6745 case 0x0fa3: /* bt Gv, Ev */
6746 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6747 break;
6748
6749 case 0x0fab: /* bts */
6750 case 0x0fb3: /* btr */
6751 case 0x0fbb: /* btc */
6752 ir.ot = ir.dflag + OT_WORD;
6753 if (i386_record_modrm (&ir))
6754 return -1;
6755 if (ir.mod == 3)
6756 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6757 else
6758 {
6759 uint64_t addr64;
6760 if (i386_record_lea_modrm_addr (&ir, &addr64))
6761 return -1;
6762 regcache_raw_read_unsigned (ir.regcache,
6763 ir.regmap[ir.reg | rex_r],
6764 &addr);
6765 switch (ir.dflag)
6766 {
6767 case 0:
6768 addr64 += ((int16_t) addr >> 4) << 4;
6769 break;
6770 case 1:
6771 addr64 += ((int32_t) addr >> 5) << 5;
6772 break;
6773 case 2:
6774 addr64 += ((int64_t) addr >> 6) << 6;
6775 break;
6776 }
6777 if (record_full_arch_list_add_mem (addr64, 1 << ir.ot))
6778 return -1;
6779 if (i386_record_lea_modrm (&ir))
6780 return -1;
6781 }
6782 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6783 break;
6784
6785 case 0x0fbc: /* bsf */
6786 case 0x0fbd: /* bsr */
6787 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6788 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6789 break;
6790
6791 /* bcd */
6792 case 0x27: /* daa */
6793 case 0x2f: /* das */
6794 case 0x37: /* aaa */
6795 case 0x3f: /* aas */
6796 case 0xd4: /* aam */
6797 case 0xd5: /* aad */
6798 if (ir.regmap[X86_RECORD_R8_REGNUM])
6799 {
6800 ir.addr -= 1;
6801 goto no_support;
6802 }
6803 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6804 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6805 break;
6806
6807 /* misc */
6808 case 0x90: /* nop */
6809 if (prefixes & PREFIX_LOCK)
6810 {
6811 ir.addr -= 1;
6812 goto no_support;
6813 }
6814 break;
6815
6816 case 0x9b: /* fwait */
6817 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
6818 return -1;
6819 opcode = (uint32_t) opcode8;
6820 ir.addr++;
6821 goto reswitch;
6822 break;
6823
6824 /* XXX */
6825 case 0xcc: /* int3 */
6826 printf_unfiltered (_("Process record does not support instruction "
6827 "int3.\n"));
6828 ir.addr -= 1;
6829 goto no_support;
6830 break;
6831
6832 /* XXX */
6833 case 0xcd: /* int */
6834 {
6835 int ret;
6836 uint8_t interrupt;
6837 if (record_read_memory (gdbarch, ir.addr, &interrupt, 1))
6838 return -1;
6839 ir.addr++;
6840 if (interrupt != 0x80
6841 || tdep->i386_intx80_record == NULL)
6842 {
6843 printf_unfiltered (_("Process record does not support "
6844 "instruction int 0x%02x.\n"),
6845 interrupt);
6846 ir.addr -= 2;
6847 goto no_support;
6848 }
6849 ret = tdep->i386_intx80_record (ir.regcache);
6850 if (ret)
6851 return ret;
6852 }
6853 break;
6854
6855 /* XXX */
6856 case 0xce: /* into */
6857 printf_unfiltered (_("Process record does not support "
6858 "instruction into.\n"));
6859 ir.addr -= 1;
6860 goto no_support;
6861 break;
6862
6863 case 0xfa: /* cli */
6864 case 0xfb: /* sti */
6865 break;
6866
6867 case 0x62: /* bound */
6868 printf_unfiltered (_("Process record does not support "
6869 "instruction bound.\n"));
6870 ir.addr -= 1;
6871 goto no_support;
6872 break;
6873
6874 case 0x0fc8: /* bswap reg */
6875 case 0x0fc9:
6876 case 0x0fca:
6877 case 0x0fcb:
6878 case 0x0fcc:
6879 case 0x0fcd:
6880 case 0x0fce:
6881 case 0x0fcf:
6882 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 7) | ir.rex_b);
6883 break;
6884
6885 case 0xd6: /* salc */
6886 if (ir.regmap[X86_RECORD_R8_REGNUM])
6887 {
6888 ir.addr -= 1;
6889 goto no_support;
6890 }
6891 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6892 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6893 break;
6894
6895 case 0xe0: /* loopnz */
6896 case 0xe1: /* loopz */
6897 case 0xe2: /* loop */
6898 case 0xe3: /* jecxz */
6899 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6900 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6901 break;
6902
6903 case 0x0f30: /* wrmsr */
6904 printf_unfiltered (_("Process record does not support "
6905 "instruction wrmsr.\n"));
6906 ir.addr -= 2;
6907 goto no_support;
6908 break;
6909
6910 case 0x0f32: /* rdmsr */
6911 printf_unfiltered (_("Process record does not support "
6912 "instruction rdmsr.\n"));
6913 ir.addr -= 2;
6914 goto no_support;
6915 break;
6916
6917 case 0x0f31: /* rdtsc */
6918 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6919 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6920 break;
6921
6922 case 0x0f34: /* sysenter */
6923 {
6924 int ret;
6925 if (ir.regmap[X86_RECORD_R8_REGNUM])
6926 {
6927 ir.addr -= 2;
6928 goto no_support;
6929 }
6930 if (tdep->i386_sysenter_record == NULL)
6931 {
6932 printf_unfiltered (_("Process record does not support "
6933 "instruction sysenter.\n"));
6934 ir.addr -= 2;
6935 goto no_support;
6936 }
6937 ret = tdep->i386_sysenter_record (ir.regcache);
6938 if (ret)
6939 return ret;
6940 }
6941 break;
6942
6943 case 0x0f35: /* sysexit */
6944 printf_unfiltered (_("Process record does not support "
6945 "instruction sysexit.\n"));
6946 ir.addr -= 2;
6947 goto no_support;
6948 break;
6949
6950 case 0x0f05: /* syscall */
6951 {
6952 int ret;
6953 if (tdep->i386_syscall_record == NULL)
6954 {
6955 printf_unfiltered (_("Process record does not support "
6956 "instruction syscall.\n"));
6957 ir.addr -= 2;
6958 goto no_support;
6959 }
6960 ret = tdep->i386_syscall_record (ir.regcache);
6961 if (ret)
6962 return ret;
6963 }
6964 break;
6965
6966 case 0x0f07: /* sysret */
6967 printf_unfiltered (_("Process record does not support "
6968 "instruction sysret.\n"));
6969 ir.addr -= 2;
6970 goto no_support;
6971 break;
6972
6973 case 0x0fa2: /* cpuid */
6974 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6975 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6976 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6977 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
6978 break;
6979
6980 case 0xf4: /* hlt */
6981 printf_unfiltered (_("Process record does not support "
6982 "instruction hlt.\n"));
6983 ir.addr -= 1;
6984 goto no_support;
6985 break;
6986
6987 case 0x0f00:
6988 if (i386_record_modrm (&ir))
6989 return -1;
6990 switch (ir.reg)
6991 {
6992 case 0: /* sldt */
6993 case 1: /* str */
6994 if (ir.mod == 3)
6995 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6996 else
6997 {
6998 ir.ot = OT_WORD;
6999 if (i386_record_lea_modrm (&ir))
7000 return -1;
7001 }
7002 break;
7003 case 2: /* lldt */
7004 case 3: /* ltr */
7005 break;
7006 case 4: /* verr */
7007 case 5: /* verw */
7008 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7009 break;
7010 default:
7011 ir.addr -= 3;
7012 opcode = opcode << 8 | ir.modrm;
7013 goto no_support;
7014 break;
7015 }
7016 break;
7017
7018 case 0x0f01:
7019 if (i386_record_modrm (&ir))
7020 return -1;
7021 switch (ir.reg)
7022 {
7023 case 0: /* sgdt */
7024 {
7025 uint64_t addr64;
7026
7027 if (ir.mod == 3)
7028 {
7029 ir.addr -= 3;
7030 opcode = opcode << 8 | ir.modrm;
7031 goto no_support;
7032 }
7033 if (ir.override >= 0)
7034 {
7035 if (record_full_memory_query)
7036 {
7037 if (yquery (_("\
7038 Process record ignores the memory change of instruction at address %s\n\
7039 because it can't get the value of the segment register.\n\
7040 Do you want to stop the program?"),
7041 paddress (gdbarch, ir.orig_addr)))
7042 return -1;
7043 }
7044 }
7045 else
7046 {
7047 if (i386_record_lea_modrm_addr (&ir, &addr64))
7048 return -1;
7049 if (record_full_arch_list_add_mem (addr64, 2))
7050 return -1;
7051 addr64 += 2;
7052 if (ir.regmap[X86_RECORD_R8_REGNUM])
7053 {
7054 if (record_full_arch_list_add_mem (addr64, 8))
7055 return -1;
7056 }
7057 else
7058 {
7059 if (record_full_arch_list_add_mem (addr64, 4))
7060 return -1;
7061 }
7062 }
7063 }
7064 break;
7065 case 1:
7066 if (ir.mod == 3)
7067 {
7068 switch (ir.rm)
7069 {
7070 case 0: /* monitor */
7071 break;
7072 case 1: /* mwait */
7073 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7074 break;
7075 default:
7076 ir.addr -= 3;
7077 opcode = opcode << 8 | ir.modrm;
7078 goto no_support;
7079 break;
7080 }
7081 }
7082 else
7083 {
7084 /* sidt */
7085 if (ir.override >= 0)
7086 {
7087 if (record_full_memory_query)
7088 {
7089 if (yquery (_("\
7090 Process record ignores the memory change of instruction at address %s\n\
7091 because it can't get the value of the segment register.\n\
7092 Do you want to stop the program?"),
7093 paddress (gdbarch, ir.orig_addr)))
7094 return -1;
7095 }
7096 }
7097 else
7098 {
7099 uint64_t addr64;
7100
7101 if (i386_record_lea_modrm_addr (&ir, &addr64))
7102 return -1;
7103 if (record_full_arch_list_add_mem (addr64, 2))
7104 return -1;
7105 addr64 += 2;
7106 if (ir.regmap[X86_RECORD_R8_REGNUM])
7107 {
7108 if (record_full_arch_list_add_mem (addr64, 8))
7109 return -1;
7110 }
7111 else
7112 {
7113 if (record_full_arch_list_add_mem (addr64, 4))
7114 return -1;
7115 }
7116 }
7117 }
7118 break;
7119 case 2: /* lgdt */
7120 if (ir.mod == 3)
7121 {
7122 /* xgetbv */
7123 if (ir.rm == 0)
7124 {
7125 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7126 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7127 break;
7128 }
7129 /* xsetbv */
7130 else if (ir.rm == 1)
7131 break;
7132 }
7133 /* Fall through. */
7134 case 3: /* lidt */
7135 if (ir.mod == 3)
7136 {
7137 ir.addr -= 3;
7138 opcode = opcode << 8 | ir.modrm;
7139 goto no_support;
7140 }
7141 break;
7142 case 4: /* smsw */
7143 if (ir.mod == 3)
7144 {
7145 if (record_full_arch_list_add_reg (ir.regcache, ir.rm | ir.rex_b))
7146 return -1;
7147 }
7148 else
7149 {
7150 ir.ot = OT_WORD;
7151 if (i386_record_lea_modrm (&ir))
7152 return -1;
7153 }
7154 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7155 break;
7156 case 6: /* lmsw */
7157 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7158 break;
7159 case 7: /* invlpg */
7160 if (ir.mod == 3)
7161 {
7162 if (ir.rm == 0 && ir.regmap[X86_RECORD_R8_REGNUM])
7163 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
7164 else
7165 {
7166 ir.addr -= 3;
7167 opcode = opcode << 8 | ir.modrm;
7168 goto no_support;
7169 }
7170 }
7171 else
7172 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7173 break;
7174 default:
7175 ir.addr -= 3;
7176 opcode = opcode << 8 | ir.modrm;
7177 goto no_support;
7178 break;
7179 }
7180 break;
7181
7182 case 0x0f08: /* invd */
7183 case 0x0f09: /* wbinvd */
7184 break;
7185
7186 case 0x63: /* arpl */
7187 if (i386_record_modrm (&ir))
7188 return -1;
7189 if (ir.mod == 3 || ir.regmap[X86_RECORD_R8_REGNUM])
7190 {
7191 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.regmap[X86_RECORD_R8_REGNUM]
7192 ? (ir.reg | rex_r) : ir.rm);
7193 }
7194 else
7195 {
7196 ir.ot = ir.dflag ? OT_LONG : OT_WORD;
7197 if (i386_record_lea_modrm (&ir))
7198 return -1;
7199 }
7200 if (!ir.regmap[X86_RECORD_R8_REGNUM])
7201 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7202 break;
7203
7204 case 0x0f02: /* lar */
7205 case 0x0f03: /* lsl */
7206 if (i386_record_modrm (&ir))
7207 return -1;
7208 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7209 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7210 break;
7211
7212 case 0x0f18:
7213 if (i386_record_modrm (&ir))
7214 return -1;
7215 if (ir.mod == 3 && ir.reg == 3)
7216 {
7217 ir.addr -= 3;
7218 opcode = opcode << 8 | ir.modrm;
7219 goto no_support;
7220 }
7221 break;
7222
7223 case 0x0f19:
7224 case 0x0f1a:
7225 case 0x0f1b:
7226 case 0x0f1c:
7227 case 0x0f1d:
7228 case 0x0f1e:
7229 case 0x0f1f:
7230 /* nop (multi byte) */
7231 break;
7232
7233 case 0x0f20: /* mov reg, crN */
7234 case 0x0f22: /* mov crN, reg */
7235 if (i386_record_modrm (&ir))
7236 return -1;
7237 if ((ir.modrm & 0xc0) != 0xc0)
7238 {
7239 ir.addr -= 3;
7240 opcode = opcode << 8 | ir.modrm;
7241 goto no_support;
7242 }
7243 switch (ir.reg)
7244 {
7245 case 0:
7246 case 2:
7247 case 3:
7248 case 4:
7249 case 8:
7250 if (opcode & 2)
7251 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7252 else
7253 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7254 break;
7255 default:
7256 ir.addr -= 3;
7257 opcode = opcode << 8 | ir.modrm;
7258 goto no_support;
7259 break;
7260 }
7261 break;
7262
7263 case 0x0f21: /* mov reg, drN */
7264 case 0x0f23: /* mov drN, reg */
7265 if (i386_record_modrm (&ir))
7266 return -1;
7267 if ((ir.modrm & 0xc0) != 0xc0 || ir.reg == 4
7268 || ir.reg == 5 || ir.reg >= 8)
7269 {
7270 ir.addr -= 3;
7271 opcode = opcode << 8 | ir.modrm;
7272 goto no_support;
7273 }
7274 if (opcode & 2)
7275 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7276 else
7277 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7278 break;
7279
7280 case 0x0f06: /* clts */
7281 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7282 break;
7283
7284 /* MMX 3DNow! SSE SSE2 SSE3 SSSE3 SSE4 */
7285
7286 case 0x0f0d: /* 3DNow! prefetch */
7287 break;
7288
7289 case 0x0f0e: /* 3DNow! femms */
7290 case 0x0f77: /* emms */
7291 if (i386_fpc_regnum_p (gdbarch, I387_FTAG_REGNUM(tdep)))
7292 goto no_support;
7293 record_full_arch_list_add_reg (ir.regcache, I387_FTAG_REGNUM(tdep));
7294 break;
7295
7296 case 0x0f0f: /* 3DNow! data */
7297 if (i386_record_modrm (&ir))
7298 return -1;
7299 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
7300 return -1;
7301 ir.addr++;
7302 switch (opcode8)
7303 {
7304 case 0x0c: /* 3DNow! pi2fw */
7305 case 0x0d: /* 3DNow! pi2fd */
7306 case 0x1c: /* 3DNow! pf2iw */
7307 case 0x1d: /* 3DNow! pf2id */
7308 case 0x8a: /* 3DNow! pfnacc */
7309 case 0x8e: /* 3DNow! pfpnacc */
7310 case 0x90: /* 3DNow! pfcmpge */
7311 case 0x94: /* 3DNow! pfmin */
7312 case 0x96: /* 3DNow! pfrcp */
7313 case 0x97: /* 3DNow! pfrsqrt */
7314 case 0x9a: /* 3DNow! pfsub */
7315 case 0x9e: /* 3DNow! pfadd */
7316 case 0xa0: /* 3DNow! pfcmpgt */
7317 case 0xa4: /* 3DNow! pfmax */
7318 case 0xa6: /* 3DNow! pfrcpit1 */
7319 case 0xa7: /* 3DNow! pfrsqit1 */
7320 case 0xaa: /* 3DNow! pfsubr */
7321 case 0xae: /* 3DNow! pfacc */
7322 case 0xb0: /* 3DNow! pfcmpeq */
7323 case 0xb4: /* 3DNow! pfmul */
7324 case 0xb6: /* 3DNow! pfrcpit2 */
7325 case 0xb7: /* 3DNow! pmulhrw */
7326 case 0xbb: /* 3DNow! pswapd */
7327 case 0xbf: /* 3DNow! pavgusb */
7328 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7329 goto no_support_3dnow_data;
7330 record_full_arch_list_add_reg (ir.regcache, ir.reg);
7331 break;
7332
7333 default:
7334 no_support_3dnow_data:
7335 opcode = (opcode << 8) | opcode8;
7336 goto no_support;
7337 break;
7338 }
7339 break;
7340
7341 case 0x0faa: /* rsm */
7342 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7343 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7344 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
7345 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7346 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
7347 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
7348 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
7349 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
7350 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
7351 break;
7352
7353 case 0x0fae:
7354 if (i386_record_modrm (&ir))
7355 return -1;
7356 switch(ir.reg)
7357 {
7358 case 0: /* fxsave */
7359 {
7360 uint64_t tmpu64;
7361
7362 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7363 if (i386_record_lea_modrm_addr (&ir, &tmpu64))
7364 return -1;
7365 if (record_full_arch_list_add_mem (tmpu64, 512))
7366 return -1;
7367 }
7368 break;
7369
7370 case 1: /* fxrstor */
7371 {
7372 int i;
7373
7374 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7375
7376 for (i = I387_MM0_REGNUM (tdep);
7377 i386_mmx_regnum_p (gdbarch, i); i++)
7378 record_full_arch_list_add_reg (ir.regcache, i);
7379
7380 for (i = I387_XMM0_REGNUM (tdep);
7381 i386_xmm_regnum_p (gdbarch, i); i++)
7382 record_full_arch_list_add_reg (ir.regcache, i);
7383
7384 if (i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
7385 record_full_arch_list_add_reg (ir.regcache,
7386 I387_MXCSR_REGNUM(tdep));
7387
7388 for (i = I387_ST0_REGNUM (tdep);
7389 i386_fp_regnum_p (gdbarch, i); i++)
7390 record_full_arch_list_add_reg (ir.regcache, i);
7391
7392 for (i = I387_FCTRL_REGNUM (tdep);
7393 i386_fpc_regnum_p (gdbarch, i); i++)
7394 record_full_arch_list_add_reg (ir.regcache, i);
7395 }
7396 break;
7397
7398 case 2: /* ldmxcsr */
7399 if (!i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
7400 goto no_support;
7401 record_full_arch_list_add_reg (ir.regcache, I387_MXCSR_REGNUM(tdep));
7402 break;
7403
7404 case 3: /* stmxcsr */
7405 ir.ot = OT_LONG;
7406 if (i386_record_lea_modrm (&ir))
7407 return -1;
7408 break;
7409
7410 case 5: /* lfence */
7411 case 6: /* mfence */
7412 case 7: /* sfence clflush */
7413 break;
7414
7415 default:
7416 opcode = (opcode << 8) | ir.modrm;
7417 goto no_support;
7418 break;
7419 }
7420 break;
7421
7422 case 0x0fc3: /* movnti */
7423 ir.ot = (ir.dflag == 2) ? OT_QUAD : OT_LONG;
7424 if (i386_record_modrm (&ir))
7425 return -1;
7426 if (ir.mod == 3)
7427 goto no_support;
7428 ir.reg |= rex_r;
7429 if (i386_record_lea_modrm (&ir))
7430 return -1;
7431 break;
7432
7433 /* Add prefix to opcode. */
7434 case 0x0f10:
7435 case 0x0f11:
7436 case 0x0f12:
7437 case 0x0f13:
7438 case 0x0f14:
7439 case 0x0f15:
7440 case 0x0f16:
7441 case 0x0f17:
7442 case 0x0f28:
7443 case 0x0f29:
7444 case 0x0f2a:
7445 case 0x0f2b:
7446 case 0x0f2c:
7447 case 0x0f2d:
7448 case 0x0f2e:
7449 case 0x0f2f:
7450 case 0x0f38:
7451 case 0x0f39:
7452 case 0x0f3a:
7453 case 0x0f50:
7454 case 0x0f51:
7455 case 0x0f52:
7456 case 0x0f53:
7457 case 0x0f54:
7458 case 0x0f55:
7459 case 0x0f56:
7460 case 0x0f57:
7461 case 0x0f58:
7462 case 0x0f59:
7463 case 0x0f5a:
7464 case 0x0f5b:
7465 case 0x0f5c:
7466 case 0x0f5d:
7467 case 0x0f5e:
7468 case 0x0f5f:
7469 case 0x0f60:
7470 case 0x0f61:
7471 case 0x0f62:
7472 case 0x0f63:
7473 case 0x0f64:
7474 case 0x0f65:
7475 case 0x0f66:
7476 case 0x0f67:
7477 case 0x0f68:
7478 case 0x0f69:
7479 case 0x0f6a:
7480 case 0x0f6b:
7481 case 0x0f6c:
7482 case 0x0f6d:
7483 case 0x0f6e:
7484 case 0x0f6f:
7485 case 0x0f70:
7486 case 0x0f71:
7487 case 0x0f72:
7488 case 0x0f73:
7489 case 0x0f74:
7490 case 0x0f75:
7491 case 0x0f76:
7492 case 0x0f7c:
7493 case 0x0f7d:
7494 case 0x0f7e:
7495 case 0x0f7f:
7496 case 0x0fb8:
7497 case 0x0fc2:
7498 case 0x0fc4:
7499 case 0x0fc5:
7500 case 0x0fc6:
7501 case 0x0fd0:
7502 case 0x0fd1:
7503 case 0x0fd2:
7504 case 0x0fd3:
7505 case 0x0fd4:
7506 case 0x0fd5:
7507 case 0x0fd6:
7508 case 0x0fd7:
7509 case 0x0fd8:
7510 case 0x0fd9:
7511 case 0x0fda:
7512 case 0x0fdb:
7513 case 0x0fdc:
7514 case 0x0fdd:
7515 case 0x0fde:
7516 case 0x0fdf:
7517 case 0x0fe0:
7518 case 0x0fe1:
7519 case 0x0fe2:
7520 case 0x0fe3:
7521 case 0x0fe4:
7522 case 0x0fe5:
7523 case 0x0fe6:
7524 case 0x0fe7:
7525 case 0x0fe8:
7526 case 0x0fe9:
7527 case 0x0fea:
7528 case 0x0feb:
7529 case 0x0fec:
7530 case 0x0fed:
7531 case 0x0fee:
7532 case 0x0fef:
7533 case 0x0ff0:
7534 case 0x0ff1:
7535 case 0x0ff2:
7536 case 0x0ff3:
7537 case 0x0ff4:
7538 case 0x0ff5:
7539 case 0x0ff6:
7540 case 0x0ff7:
7541 case 0x0ff8:
7542 case 0x0ff9:
7543 case 0x0ffa:
7544 case 0x0ffb:
7545 case 0x0ffc:
7546 case 0x0ffd:
7547 case 0x0ffe:
7548 /* Mask out PREFIX_ADDR. */
7549 switch ((prefixes & ~PREFIX_ADDR))
7550 {
7551 case PREFIX_REPNZ:
7552 opcode |= 0xf20000;
7553 break;
7554 case PREFIX_DATA:
7555 opcode |= 0x660000;
7556 break;
7557 case PREFIX_REPZ:
7558 opcode |= 0xf30000;
7559 break;
7560 }
7561 reswitch_prefix_add:
7562 switch (opcode)
7563 {
7564 case 0x0f38:
7565 case 0x660f38:
7566 case 0xf20f38:
7567 case 0x0f3a:
7568 case 0x660f3a:
7569 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
7570 return -1;
7571 ir.addr++;
7572 opcode = (uint32_t) opcode8 | opcode << 8;
7573 goto reswitch_prefix_add;
7574 break;
7575
7576 case 0x0f10: /* movups */
7577 case 0x660f10: /* movupd */
7578 case 0xf30f10: /* movss */
7579 case 0xf20f10: /* movsd */
7580 case 0x0f12: /* movlps */
7581 case 0x660f12: /* movlpd */
7582 case 0xf30f12: /* movsldup */
7583 case 0xf20f12: /* movddup */
7584 case 0x0f14: /* unpcklps */
7585 case 0x660f14: /* unpcklpd */
7586 case 0x0f15: /* unpckhps */
7587 case 0x660f15: /* unpckhpd */
7588 case 0x0f16: /* movhps */
7589 case 0x660f16: /* movhpd */
7590 case 0xf30f16: /* movshdup */
7591 case 0x0f28: /* movaps */
7592 case 0x660f28: /* movapd */
7593 case 0x0f2a: /* cvtpi2ps */
7594 case 0x660f2a: /* cvtpi2pd */
7595 case 0xf30f2a: /* cvtsi2ss */
7596 case 0xf20f2a: /* cvtsi2sd */
7597 case 0x0f2c: /* cvttps2pi */
7598 case 0x660f2c: /* cvttpd2pi */
7599 case 0x0f2d: /* cvtps2pi */
7600 case 0x660f2d: /* cvtpd2pi */
7601 case 0x660f3800: /* pshufb */
7602 case 0x660f3801: /* phaddw */
7603 case 0x660f3802: /* phaddd */
7604 case 0x660f3803: /* phaddsw */
7605 case 0x660f3804: /* pmaddubsw */
7606 case 0x660f3805: /* phsubw */
7607 case 0x660f3806: /* phsubd */
7608 case 0x660f3807: /* phsubsw */
7609 case 0x660f3808: /* psignb */
7610 case 0x660f3809: /* psignw */
7611 case 0x660f380a: /* psignd */
7612 case 0x660f380b: /* pmulhrsw */
7613 case 0x660f3810: /* pblendvb */
7614 case 0x660f3814: /* blendvps */
7615 case 0x660f3815: /* blendvpd */
7616 case 0x660f381c: /* pabsb */
7617 case 0x660f381d: /* pabsw */
7618 case 0x660f381e: /* pabsd */
7619 case 0x660f3820: /* pmovsxbw */
7620 case 0x660f3821: /* pmovsxbd */
7621 case 0x660f3822: /* pmovsxbq */
7622 case 0x660f3823: /* pmovsxwd */
7623 case 0x660f3824: /* pmovsxwq */
7624 case 0x660f3825: /* pmovsxdq */
7625 case 0x660f3828: /* pmuldq */
7626 case 0x660f3829: /* pcmpeqq */
7627 case 0x660f382a: /* movntdqa */
7628 case 0x660f3a08: /* roundps */
7629 case 0x660f3a09: /* roundpd */
7630 case 0x660f3a0a: /* roundss */
7631 case 0x660f3a0b: /* roundsd */
7632 case 0x660f3a0c: /* blendps */
7633 case 0x660f3a0d: /* blendpd */
7634 case 0x660f3a0e: /* pblendw */
7635 case 0x660f3a0f: /* palignr */
7636 case 0x660f3a20: /* pinsrb */
7637 case 0x660f3a21: /* insertps */
7638 case 0x660f3a22: /* pinsrd pinsrq */
7639 case 0x660f3a40: /* dpps */
7640 case 0x660f3a41: /* dppd */
7641 case 0x660f3a42: /* mpsadbw */
7642 case 0x660f3a60: /* pcmpestrm */
7643 case 0x660f3a61: /* pcmpestri */
7644 case 0x660f3a62: /* pcmpistrm */
7645 case 0x660f3a63: /* pcmpistri */
7646 case 0x0f51: /* sqrtps */
7647 case 0x660f51: /* sqrtpd */
7648 case 0xf20f51: /* sqrtsd */
7649 case 0xf30f51: /* sqrtss */
7650 case 0x0f52: /* rsqrtps */
7651 case 0xf30f52: /* rsqrtss */
7652 case 0x0f53: /* rcpps */
7653 case 0xf30f53: /* rcpss */
7654 case 0x0f54: /* andps */
7655 case 0x660f54: /* andpd */
7656 case 0x0f55: /* andnps */
7657 case 0x660f55: /* andnpd */
7658 case 0x0f56: /* orps */
7659 case 0x660f56: /* orpd */
7660 case 0x0f57: /* xorps */
7661 case 0x660f57: /* xorpd */
7662 case 0x0f58: /* addps */
7663 case 0x660f58: /* addpd */
7664 case 0xf20f58: /* addsd */
7665 case 0xf30f58: /* addss */
7666 case 0x0f59: /* mulps */
7667 case 0x660f59: /* mulpd */
7668 case 0xf20f59: /* mulsd */
7669 case 0xf30f59: /* mulss */
7670 case 0x0f5a: /* cvtps2pd */
7671 case 0x660f5a: /* cvtpd2ps */
7672 case 0xf20f5a: /* cvtsd2ss */
7673 case 0xf30f5a: /* cvtss2sd */
7674 case 0x0f5b: /* cvtdq2ps */
7675 case 0x660f5b: /* cvtps2dq */
7676 case 0xf30f5b: /* cvttps2dq */
7677 case 0x0f5c: /* subps */
7678 case 0x660f5c: /* subpd */
7679 case 0xf20f5c: /* subsd */
7680 case 0xf30f5c: /* subss */
7681 case 0x0f5d: /* minps */
7682 case 0x660f5d: /* minpd */
7683 case 0xf20f5d: /* minsd */
7684 case 0xf30f5d: /* minss */
7685 case 0x0f5e: /* divps */
7686 case 0x660f5e: /* divpd */
7687 case 0xf20f5e: /* divsd */
7688 case 0xf30f5e: /* divss */
7689 case 0x0f5f: /* maxps */
7690 case 0x660f5f: /* maxpd */
7691 case 0xf20f5f: /* maxsd */
7692 case 0xf30f5f: /* maxss */
7693 case 0x660f60: /* punpcklbw */
7694 case 0x660f61: /* punpcklwd */
7695 case 0x660f62: /* punpckldq */
7696 case 0x660f63: /* packsswb */
7697 case 0x660f64: /* pcmpgtb */
7698 case 0x660f65: /* pcmpgtw */
7699 case 0x660f66: /* pcmpgtd */
7700 case 0x660f67: /* packuswb */
7701 case 0x660f68: /* punpckhbw */
7702 case 0x660f69: /* punpckhwd */
7703 case 0x660f6a: /* punpckhdq */
7704 case 0x660f6b: /* packssdw */
7705 case 0x660f6c: /* punpcklqdq */
7706 case 0x660f6d: /* punpckhqdq */
7707 case 0x660f6e: /* movd */
7708 case 0x660f6f: /* movdqa */
7709 case 0xf30f6f: /* movdqu */
7710 case 0x660f70: /* pshufd */
7711 case 0xf20f70: /* pshuflw */
7712 case 0xf30f70: /* pshufhw */
7713 case 0x660f74: /* pcmpeqb */
7714 case 0x660f75: /* pcmpeqw */
7715 case 0x660f76: /* pcmpeqd */
7716 case 0x660f7c: /* haddpd */
7717 case 0xf20f7c: /* haddps */
7718 case 0x660f7d: /* hsubpd */
7719 case 0xf20f7d: /* hsubps */
7720 case 0xf30f7e: /* movq */
7721 case 0x0fc2: /* cmpps */
7722 case 0x660fc2: /* cmppd */
7723 case 0xf20fc2: /* cmpsd */
7724 case 0xf30fc2: /* cmpss */
7725 case 0x660fc4: /* pinsrw */
7726 case 0x0fc6: /* shufps */
7727 case 0x660fc6: /* shufpd */
7728 case 0x660fd0: /* addsubpd */
7729 case 0xf20fd0: /* addsubps */
7730 case 0x660fd1: /* psrlw */
7731 case 0x660fd2: /* psrld */
7732 case 0x660fd3: /* psrlq */
7733 case 0x660fd4: /* paddq */
7734 case 0x660fd5: /* pmullw */
7735 case 0xf30fd6: /* movq2dq */
7736 case 0x660fd8: /* psubusb */
7737 case 0x660fd9: /* psubusw */
7738 case 0x660fda: /* pminub */
7739 case 0x660fdb: /* pand */
7740 case 0x660fdc: /* paddusb */
7741 case 0x660fdd: /* paddusw */
7742 case 0x660fde: /* pmaxub */
7743 case 0x660fdf: /* pandn */
7744 case 0x660fe0: /* pavgb */
7745 case 0x660fe1: /* psraw */
7746 case 0x660fe2: /* psrad */
7747 case 0x660fe3: /* pavgw */
7748 case 0x660fe4: /* pmulhuw */
7749 case 0x660fe5: /* pmulhw */
7750 case 0x660fe6: /* cvttpd2dq */
7751 case 0xf20fe6: /* cvtpd2dq */
7752 case 0xf30fe6: /* cvtdq2pd */
7753 case 0x660fe8: /* psubsb */
7754 case 0x660fe9: /* psubsw */
7755 case 0x660fea: /* pminsw */
7756 case 0x660feb: /* por */
7757 case 0x660fec: /* paddsb */
7758 case 0x660fed: /* paddsw */
7759 case 0x660fee: /* pmaxsw */
7760 case 0x660fef: /* pxor */
7761 case 0xf20ff0: /* lddqu */
7762 case 0x660ff1: /* psllw */
7763 case 0x660ff2: /* pslld */
7764 case 0x660ff3: /* psllq */
7765 case 0x660ff4: /* pmuludq */
7766 case 0x660ff5: /* pmaddwd */
7767 case 0x660ff6: /* psadbw */
7768 case 0x660ff8: /* psubb */
7769 case 0x660ff9: /* psubw */
7770 case 0x660ffa: /* psubd */
7771 case 0x660ffb: /* psubq */
7772 case 0x660ffc: /* paddb */
7773 case 0x660ffd: /* paddw */
7774 case 0x660ffe: /* paddd */
7775 if (i386_record_modrm (&ir))
7776 return -1;
7777 ir.reg |= rex_r;
7778 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.reg))
7779 goto no_support;
7780 record_full_arch_list_add_reg (ir.regcache,
7781 I387_XMM0_REGNUM (tdep) + ir.reg);
7782 if ((opcode & 0xfffffffc) == 0x660f3a60)
7783 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7784 break;
7785
7786 case 0x0f11: /* movups */
7787 case 0x660f11: /* movupd */
7788 case 0xf30f11: /* movss */
7789 case 0xf20f11: /* movsd */
7790 case 0x0f13: /* movlps */
7791 case 0x660f13: /* movlpd */
7792 case 0x0f17: /* movhps */
7793 case 0x660f17: /* movhpd */
7794 case 0x0f29: /* movaps */
7795 case 0x660f29: /* movapd */
7796 case 0x660f3a14: /* pextrb */
7797 case 0x660f3a15: /* pextrw */
7798 case 0x660f3a16: /* pextrd pextrq */
7799 case 0x660f3a17: /* extractps */
7800 case 0x660f7f: /* movdqa */
7801 case 0xf30f7f: /* movdqu */
7802 if (i386_record_modrm (&ir))
7803 return -1;
7804 if (ir.mod == 3)
7805 {
7806 if (opcode == 0x0f13 || opcode == 0x660f13
7807 || opcode == 0x0f17 || opcode == 0x660f17)
7808 goto no_support;
7809 ir.rm |= ir.rex_b;
7810 if (!i386_xmm_regnum_p (gdbarch,
7811 I387_XMM0_REGNUM (tdep) + ir.rm))
7812 goto no_support;
7813 record_full_arch_list_add_reg (ir.regcache,
7814 I387_XMM0_REGNUM (tdep) + ir.rm);
7815 }
7816 else
7817 {
7818 switch (opcode)
7819 {
7820 case 0x660f3a14:
7821 ir.ot = OT_BYTE;
7822 break;
7823 case 0x660f3a15:
7824 ir.ot = OT_WORD;
7825 break;
7826 case 0x660f3a16:
7827 ir.ot = OT_LONG;
7828 break;
7829 case 0x660f3a17:
7830 ir.ot = OT_QUAD;
7831 break;
7832 default:
7833 ir.ot = OT_DQUAD;
7834 break;
7835 }
7836 if (i386_record_lea_modrm (&ir))
7837 return -1;
7838 }
7839 break;
7840
7841 case 0x0f2b: /* movntps */
7842 case 0x660f2b: /* movntpd */
7843 case 0x0fe7: /* movntq */
7844 case 0x660fe7: /* movntdq */
7845 if (ir.mod == 3)
7846 goto no_support;
7847 if (opcode == 0x0fe7)
7848 ir.ot = OT_QUAD;
7849 else
7850 ir.ot = OT_DQUAD;
7851 if (i386_record_lea_modrm (&ir))
7852 return -1;
7853 break;
7854
7855 case 0xf30f2c: /* cvttss2si */
7856 case 0xf20f2c: /* cvttsd2si */
7857 case 0xf30f2d: /* cvtss2si */
7858 case 0xf20f2d: /* cvtsd2si */
7859 case 0xf20f38f0: /* crc32 */
7860 case 0xf20f38f1: /* crc32 */
7861 case 0x0f50: /* movmskps */
7862 case 0x660f50: /* movmskpd */
7863 case 0x0fc5: /* pextrw */
7864 case 0x660fc5: /* pextrw */
7865 case 0x0fd7: /* pmovmskb */
7866 case 0x660fd7: /* pmovmskb */
7867 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7868 break;
7869
7870 case 0x0f3800: /* pshufb */
7871 case 0x0f3801: /* phaddw */
7872 case 0x0f3802: /* phaddd */
7873 case 0x0f3803: /* phaddsw */
7874 case 0x0f3804: /* pmaddubsw */
7875 case 0x0f3805: /* phsubw */
7876 case 0x0f3806: /* phsubd */
7877 case 0x0f3807: /* phsubsw */
7878 case 0x0f3808: /* psignb */
7879 case 0x0f3809: /* psignw */
7880 case 0x0f380a: /* psignd */
7881 case 0x0f380b: /* pmulhrsw */
7882 case 0x0f381c: /* pabsb */
7883 case 0x0f381d: /* pabsw */
7884 case 0x0f381e: /* pabsd */
7885 case 0x0f382b: /* packusdw */
7886 case 0x0f3830: /* pmovzxbw */
7887 case 0x0f3831: /* pmovzxbd */
7888 case 0x0f3832: /* pmovzxbq */
7889 case 0x0f3833: /* pmovzxwd */
7890 case 0x0f3834: /* pmovzxwq */
7891 case 0x0f3835: /* pmovzxdq */
7892 case 0x0f3837: /* pcmpgtq */
7893 case 0x0f3838: /* pminsb */
7894 case 0x0f3839: /* pminsd */
7895 case 0x0f383a: /* pminuw */
7896 case 0x0f383b: /* pminud */
7897 case 0x0f383c: /* pmaxsb */
7898 case 0x0f383d: /* pmaxsd */
7899 case 0x0f383e: /* pmaxuw */
7900 case 0x0f383f: /* pmaxud */
7901 case 0x0f3840: /* pmulld */
7902 case 0x0f3841: /* phminposuw */
7903 case 0x0f3a0f: /* palignr */
7904 case 0x0f60: /* punpcklbw */
7905 case 0x0f61: /* punpcklwd */
7906 case 0x0f62: /* punpckldq */
7907 case 0x0f63: /* packsswb */
7908 case 0x0f64: /* pcmpgtb */
7909 case 0x0f65: /* pcmpgtw */
7910 case 0x0f66: /* pcmpgtd */
7911 case 0x0f67: /* packuswb */
7912 case 0x0f68: /* punpckhbw */
7913 case 0x0f69: /* punpckhwd */
7914 case 0x0f6a: /* punpckhdq */
7915 case 0x0f6b: /* packssdw */
7916 case 0x0f6e: /* movd */
7917 case 0x0f6f: /* movq */
7918 case 0x0f70: /* pshufw */
7919 case 0x0f74: /* pcmpeqb */
7920 case 0x0f75: /* pcmpeqw */
7921 case 0x0f76: /* pcmpeqd */
7922 case 0x0fc4: /* pinsrw */
7923 case 0x0fd1: /* psrlw */
7924 case 0x0fd2: /* psrld */
7925 case 0x0fd3: /* psrlq */
7926 case 0x0fd4: /* paddq */
7927 case 0x0fd5: /* pmullw */
7928 case 0xf20fd6: /* movdq2q */
7929 case 0x0fd8: /* psubusb */
7930 case 0x0fd9: /* psubusw */
7931 case 0x0fda: /* pminub */
7932 case 0x0fdb: /* pand */
7933 case 0x0fdc: /* paddusb */
7934 case 0x0fdd: /* paddusw */
7935 case 0x0fde: /* pmaxub */
7936 case 0x0fdf: /* pandn */
7937 case 0x0fe0: /* pavgb */
7938 case 0x0fe1: /* psraw */
7939 case 0x0fe2: /* psrad */
7940 case 0x0fe3: /* pavgw */
7941 case 0x0fe4: /* pmulhuw */
7942 case 0x0fe5: /* pmulhw */
7943 case 0x0fe8: /* psubsb */
7944 case 0x0fe9: /* psubsw */
7945 case 0x0fea: /* pminsw */
7946 case 0x0feb: /* por */
7947 case 0x0fec: /* paddsb */
7948 case 0x0fed: /* paddsw */
7949 case 0x0fee: /* pmaxsw */
7950 case 0x0fef: /* pxor */
7951 case 0x0ff1: /* psllw */
7952 case 0x0ff2: /* pslld */
7953 case 0x0ff3: /* psllq */
7954 case 0x0ff4: /* pmuludq */
7955 case 0x0ff5: /* pmaddwd */
7956 case 0x0ff6: /* psadbw */
7957 case 0x0ff8: /* psubb */
7958 case 0x0ff9: /* psubw */
7959 case 0x0ffa: /* psubd */
7960 case 0x0ffb: /* psubq */
7961 case 0x0ffc: /* paddb */
7962 case 0x0ffd: /* paddw */
7963 case 0x0ffe: /* paddd */
7964 if (i386_record_modrm (&ir))
7965 return -1;
7966 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7967 goto no_support;
7968 record_full_arch_list_add_reg (ir.regcache,
7969 I387_MM0_REGNUM (tdep) + ir.reg);
7970 break;
7971
7972 case 0x0f71: /* psllw */
7973 case 0x0f72: /* pslld */
7974 case 0x0f73: /* psllq */
7975 if (i386_record_modrm (&ir))
7976 return -1;
7977 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
7978 goto no_support;
7979 record_full_arch_list_add_reg (ir.regcache,
7980 I387_MM0_REGNUM (tdep) + ir.rm);
7981 break;
7982
7983 case 0x660f71: /* psllw */
7984 case 0x660f72: /* pslld */
7985 case 0x660f73: /* psllq */
7986 if (i386_record_modrm (&ir))
7987 return -1;
7988 ir.rm |= ir.rex_b;
7989 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.rm))
7990 goto no_support;
7991 record_full_arch_list_add_reg (ir.regcache,
7992 I387_XMM0_REGNUM (tdep) + ir.rm);
7993 break;
7994
7995 case 0x0f7e: /* movd */
7996 case 0x660f7e: /* movd */
7997 if (i386_record_modrm (&ir))
7998 return -1;
7999 if (ir.mod == 3)
8000 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
8001 else
8002 {
8003 if (ir.dflag == 2)
8004 ir.ot = OT_QUAD;
8005 else
8006 ir.ot = OT_LONG;
8007 if (i386_record_lea_modrm (&ir))
8008 return -1;
8009 }
8010 break;
8011
8012 case 0x0f7f: /* movq */
8013 if (i386_record_modrm (&ir))
8014 return -1;
8015 if (ir.mod == 3)
8016 {
8017 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
8018 goto no_support;
8019 record_full_arch_list_add_reg (ir.regcache,
8020 I387_MM0_REGNUM (tdep) + ir.rm);
8021 }
8022 else
8023 {
8024 ir.ot = OT_QUAD;
8025 if (i386_record_lea_modrm (&ir))
8026 return -1;
8027 }
8028 break;
8029
8030 case 0xf30fb8: /* popcnt */
8031 if (i386_record_modrm (&ir))
8032 return -1;
8033 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
8034 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
8035 break;
8036
8037 case 0x660fd6: /* movq */
8038 if (i386_record_modrm (&ir))
8039 return -1;
8040 if (ir.mod == 3)
8041 {
8042 ir.rm |= ir.rex_b;
8043 if (!i386_xmm_regnum_p (gdbarch,
8044 I387_XMM0_REGNUM (tdep) + ir.rm))
8045 goto no_support;
8046 record_full_arch_list_add_reg (ir.regcache,
8047 I387_XMM0_REGNUM (tdep) + ir.rm);
8048 }
8049 else
8050 {
8051 ir.ot = OT_QUAD;
8052 if (i386_record_lea_modrm (&ir))
8053 return -1;
8054 }
8055 break;
8056
8057 case 0x660f3817: /* ptest */
8058 case 0x0f2e: /* ucomiss */
8059 case 0x660f2e: /* ucomisd */
8060 case 0x0f2f: /* comiss */
8061 case 0x660f2f: /* comisd */
8062 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
8063 break;
8064
8065 case 0x0ff7: /* maskmovq */
8066 regcache_raw_read_unsigned (ir.regcache,
8067 ir.regmap[X86_RECORD_REDI_REGNUM],
8068 &addr);
8069 if (record_full_arch_list_add_mem (addr, 64))
8070 return -1;
8071 break;
8072
8073 case 0x660ff7: /* maskmovdqu */
8074 regcache_raw_read_unsigned (ir.regcache,
8075 ir.regmap[X86_RECORD_REDI_REGNUM],
8076 &addr);
8077 if (record_full_arch_list_add_mem (addr, 128))
8078 return -1;
8079 break;
8080
8081 default:
8082 goto no_support;
8083 break;
8084 }
8085 break;
8086
8087 default:
8088 goto no_support;
8089 break;
8090 }
8091
8092 /* In the future, maybe still need to deal with need_dasm. */
8093 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REIP_REGNUM);
8094 if (record_full_arch_list_add_end ())
8095 return -1;
8096
8097 return 0;
8098
8099 no_support:
8100 printf_unfiltered (_("Process record does not support instruction 0x%02x "
8101 "at address %s.\n"),
8102 (unsigned int) (opcode),
8103 paddress (gdbarch, ir.orig_addr));
8104 return -1;
8105 }
8106
8107 static const int i386_record_regmap[] =
8108 {
8109 I386_EAX_REGNUM, I386_ECX_REGNUM, I386_EDX_REGNUM, I386_EBX_REGNUM,
8110 I386_ESP_REGNUM, I386_EBP_REGNUM, I386_ESI_REGNUM, I386_EDI_REGNUM,
8111 0, 0, 0, 0, 0, 0, 0, 0,
8112 I386_EIP_REGNUM, I386_EFLAGS_REGNUM, I386_CS_REGNUM, I386_SS_REGNUM,
8113 I386_DS_REGNUM, I386_ES_REGNUM, I386_FS_REGNUM, I386_GS_REGNUM
8114 };
8115
8116 /* Check that the given address appears suitable for a fast
8117 tracepoint, which on x86-64 means that we need an instruction of at
8118 least 5 bytes, so that we can overwrite it with a 4-byte-offset
8119 jump and not have to worry about program jumps to an address in the
8120 middle of the tracepoint jump. On x86, it may be possible to use
8121 4-byte jumps with a 2-byte offset to a trampoline located in the
8122 bottom 64 KiB of memory. Returns 1 if OK, and writes a size
8123 of instruction to replace, and 0 if not, plus an explanatory
8124 string. */
8125
8126 static int
8127 i386_fast_tracepoint_valid_at (struct gdbarch *gdbarch, CORE_ADDR addr,
8128 std::string *msg)
8129 {
8130 int len, jumplen;
8131
8132 /* Ask the target for the minimum instruction length supported. */
8133 jumplen = target_get_min_fast_tracepoint_insn_len ();
8134
8135 if (jumplen < 0)
8136 {
8137 /* If the target does not support the get_min_fast_tracepoint_insn_len
8138 operation, assume that fast tracepoints will always be implemented
8139 using 4-byte relative jumps on both x86 and x86-64. */
8140 jumplen = 5;
8141 }
8142 else if (jumplen == 0)
8143 {
8144 /* If the target does support get_min_fast_tracepoint_insn_len but
8145 returns zero, then the IPA has not loaded yet. In this case,
8146 we optimistically assume that truncated 2-byte relative jumps
8147 will be available on x86, and compensate later if this assumption
8148 turns out to be incorrect. On x86-64 architectures, 4-byte relative
8149 jumps will always be used. */
8150 jumplen = (register_size (gdbarch, 0) == 8) ? 5 : 4;
8151 }
8152
8153 /* Check for fit. */
8154 len = gdb_insn_length (gdbarch, addr);
8155
8156 if (len < jumplen)
8157 {
8158 /* Return a bit of target-specific detail to add to the caller's
8159 generic failure message. */
8160 if (msg)
8161 *msg = string_printf (_("; instruction is only %d bytes long, "
8162 "need at least %d bytes for the jump"),
8163 len, jumplen);
8164 return 0;
8165 }
8166 else
8167 {
8168 if (msg)
8169 msg->clear ();
8170 return 1;
8171 }
8172 }
8173
8174 /* Return a floating-point format for a floating-point variable of
8175 length LEN in bits. If non-NULL, NAME is the name of its type.
8176 If no suitable type is found, return NULL. */
8177
8178 const struct floatformat **
8179 i386_floatformat_for_type (struct gdbarch *gdbarch,
8180 const char *name, int len)
8181 {
8182 if (len == 128 && name)
8183 if (strcmp (name, "__float128") == 0
8184 || strcmp (name, "_Float128") == 0
8185 || strcmp (name, "complex _Float128") == 0)
8186 return floatformats_ia64_quad;
8187
8188 return default_floatformat_for_type (gdbarch, name, len);
8189 }
8190
8191 static int
8192 i386_validate_tdesc_p (struct gdbarch_tdep *tdep,
8193 struct tdesc_arch_data *tdesc_data)
8194 {
8195 const struct target_desc *tdesc = tdep->tdesc;
8196 const struct tdesc_feature *feature_core;
8197
8198 const struct tdesc_feature *feature_sse, *feature_avx, *feature_mpx,
8199 *feature_avx512, *feature_pkeys;
8200 int i, num_regs, valid_p;
8201
8202 if (! tdesc_has_registers (tdesc))
8203 return 0;
8204
8205 /* Get core registers. */
8206 feature_core = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.core");
8207 if (feature_core == NULL)
8208 return 0;
8209
8210 /* Get SSE registers. */
8211 feature_sse = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.sse");
8212
8213 /* Try AVX registers. */
8214 feature_avx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx");
8215
8216 /* Try MPX registers. */
8217 feature_mpx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx");
8218
8219 /* Try AVX512 registers. */
8220 feature_avx512 = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx512");
8221
8222 /* Try PKEYS */
8223 feature_pkeys = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.pkeys");
8224
8225 valid_p = 1;
8226
8227 /* The XCR0 bits. */
8228 if (feature_avx512)
8229 {
8230 /* AVX512 register description requires AVX register description. */
8231 if (!feature_avx)
8232 return 0;
8233
8234 tdep->xcr0 = X86_XSTATE_AVX_AVX512_MASK;
8235
8236 /* It may have been set by OSABI initialization function. */
8237 if (tdep->k0_regnum < 0)
8238 {
8239 tdep->k_register_names = i386_k_names;
8240 tdep->k0_regnum = I386_K0_REGNUM;
8241 }
8242
8243 for (i = 0; i < I387_NUM_K_REGS; i++)
8244 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8245 tdep->k0_regnum + i,
8246 i386_k_names[i]);
8247
8248 if (tdep->num_zmm_regs == 0)
8249 {
8250 tdep->zmmh_register_names = i386_zmmh_names;
8251 tdep->num_zmm_regs = 8;
8252 tdep->zmm0h_regnum = I386_ZMM0H_REGNUM;
8253 }
8254
8255 for (i = 0; i < tdep->num_zmm_regs; i++)
8256 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8257 tdep->zmm0h_regnum + i,
8258 tdep->zmmh_register_names[i]);
8259
8260 for (i = 0; i < tdep->num_xmm_avx512_regs; i++)
8261 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8262 tdep->xmm16_regnum + i,
8263 tdep->xmm_avx512_register_names[i]);
8264
8265 for (i = 0; i < tdep->num_ymm_avx512_regs; i++)
8266 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8267 tdep->ymm16h_regnum + i,
8268 tdep->ymm16h_register_names[i]);
8269 }
8270 if (feature_avx)
8271 {
8272 /* AVX register description requires SSE register description. */
8273 if (!feature_sse)
8274 return 0;
8275
8276 if (!feature_avx512)
8277 tdep->xcr0 = X86_XSTATE_AVX_MASK;
8278
8279 /* It may have been set by OSABI initialization function. */
8280 if (tdep->num_ymm_regs == 0)
8281 {
8282 tdep->ymmh_register_names = i386_ymmh_names;
8283 tdep->num_ymm_regs = 8;
8284 tdep->ymm0h_regnum = I386_YMM0H_REGNUM;
8285 }
8286
8287 for (i = 0; i < tdep->num_ymm_regs; i++)
8288 valid_p &= tdesc_numbered_register (feature_avx, tdesc_data,
8289 tdep->ymm0h_regnum + i,
8290 tdep->ymmh_register_names[i]);
8291 }
8292 else if (feature_sse)
8293 tdep->xcr0 = X86_XSTATE_SSE_MASK;
8294 else
8295 {
8296 tdep->xcr0 = X86_XSTATE_X87_MASK;
8297 tdep->num_xmm_regs = 0;
8298 }
8299
8300 num_regs = tdep->num_core_regs;
8301 for (i = 0; i < num_regs; i++)
8302 valid_p &= tdesc_numbered_register (feature_core, tdesc_data, i,
8303 tdep->register_names[i]);
8304
8305 if (feature_sse)
8306 {
8307 /* Need to include %mxcsr, so add one. */
8308 num_regs += tdep->num_xmm_regs + 1;
8309 for (; i < num_regs; i++)
8310 valid_p &= tdesc_numbered_register (feature_sse, tdesc_data, i,
8311 tdep->register_names[i]);
8312 }
8313
8314 if (feature_mpx)
8315 {
8316 tdep->xcr0 |= X86_XSTATE_MPX_MASK;
8317
8318 if (tdep->bnd0r_regnum < 0)
8319 {
8320 tdep->mpx_register_names = i386_mpx_names;
8321 tdep->bnd0r_regnum = I386_BND0R_REGNUM;
8322 tdep->bndcfgu_regnum = I386_BNDCFGU_REGNUM;
8323 }
8324
8325 for (i = 0; i < I387_NUM_MPX_REGS; i++)
8326 valid_p &= tdesc_numbered_register (feature_mpx, tdesc_data,
8327 I387_BND0R_REGNUM (tdep) + i,
8328 tdep->mpx_register_names[i]);
8329 }
8330
8331 if (feature_pkeys)
8332 {
8333 tdep->xcr0 |= X86_XSTATE_PKRU;
8334 if (tdep->pkru_regnum < 0)
8335 {
8336 tdep->pkeys_register_names = i386_pkeys_names;
8337 tdep->pkru_regnum = I386_PKRU_REGNUM;
8338 tdep->num_pkeys_regs = 1;
8339 }
8340
8341 for (i = 0; i < I387_NUM_PKEYS_REGS; i++)
8342 valid_p &= tdesc_numbered_register (feature_pkeys, tdesc_data,
8343 I387_PKRU_REGNUM (tdep) + i,
8344 tdep->pkeys_register_names[i]);
8345 }
8346
8347 return valid_p;
8348 }
8349
8350 \f
8351
8352 /* Implement the type_align gdbarch function. */
8353
8354 static ULONGEST
8355 i386_type_align (struct gdbarch *gdbarch, struct type *type)
8356 {
8357 type = check_typedef (type);
8358
8359 if (gdbarch_ptr_bit (gdbarch) == 32)
8360 {
8361 if ((TYPE_CODE (type) == TYPE_CODE_INT
8362 || TYPE_CODE (type) == TYPE_CODE_FLT)
8363 && TYPE_LENGTH (type) > 4)
8364 return 4;
8365
8366 /* Handle x86's funny long double. */
8367 if (TYPE_CODE (type) == TYPE_CODE_FLT
8368 && gdbarch_long_double_bit (gdbarch) == TYPE_LENGTH (type) * 8)
8369 return 4;
8370 }
8371
8372 return TYPE_LENGTH (type);
8373 }
8374
8375 \f
8376 /* Note: This is called for both i386 and amd64. */
8377
8378 static struct gdbarch *
8379 i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
8380 {
8381 struct gdbarch_tdep *tdep;
8382 struct gdbarch *gdbarch;
8383 struct tdesc_arch_data *tdesc_data;
8384 const struct target_desc *tdesc;
8385 int mm0_regnum;
8386 int ymm0_regnum;
8387 int bnd0_regnum;
8388 int num_bnd_cooked;
8389
8390 /* If there is already a candidate, use it. */
8391 arches = gdbarch_list_lookup_by_info (arches, &info);
8392 if (arches != NULL)
8393 return arches->gdbarch;
8394
8395 /* Allocate space for the new architecture. Assume i386 for now. */
8396 tdep = XCNEW (struct gdbarch_tdep);
8397 gdbarch = gdbarch_alloc (&info, tdep);
8398
8399 /* General-purpose registers. */
8400 tdep->gregset_reg_offset = NULL;
8401 tdep->gregset_num_regs = I386_NUM_GREGS;
8402 tdep->sizeof_gregset = 0;
8403
8404 /* Floating-point registers. */
8405 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
8406 tdep->fpregset = &i386_fpregset;
8407
8408 /* The default settings include the FPU registers, the MMX registers
8409 and the SSE registers. This can be overridden for a specific ABI
8410 by adjusting the members `st0_regnum', `mm0_regnum' and
8411 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
8412 will show up in the output of "info all-registers". */
8413
8414 tdep->st0_regnum = I386_ST0_REGNUM;
8415
8416 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
8417 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
8418
8419 tdep->jb_pc_offset = -1;
8420 tdep->struct_return = pcc_struct_return;
8421 tdep->sigtramp_start = 0;
8422 tdep->sigtramp_end = 0;
8423 tdep->sigtramp_p = i386_sigtramp_p;
8424 tdep->sigcontext_addr = NULL;
8425 tdep->sc_reg_offset = NULL;
8426 tdep->sc_pc_offset = -1;
8427 tdep->sc_sp_offset = -1;
8428
8429 tdep->xsave_xcr0_offset = -1;
8430
8431 tdep->record_regmap = i386_record_regmap;
8432
8433 set_gdbarch_type_align (gdbarch, i386_type_align);
8434
8435 /* The format used for `long double' on almost all i386 targets is
8436 the i387 extended floating-point format. In fact, of all targets
8437 in the GCC 2.95 tree, only OSF/1 does it different, and insists
8438 on having a `long double' that's not `long' at all. */
8439 set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext);
8440
8441 /* Although the i387 extended floating-point has only 80 significant
8442 bits, a `long double' actually takes up 96, probably to enforce
8443 alignment. */
8444 set_gdbarch_long_double_bit (gdbarch, 96);
8445
8446 /* Support for floating-point data type variants. */
8447 set_gdbarch_floatformat_for_type (gdbarch, i386_floatformat_for_type);
8448
8449 /* Register numbers of various important registers. */
8450 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
8451 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
8452 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
8453 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
8454
8455 /* NOTE: kettenis/20040418: GCC does have two possible register
8456 numbering schemes on the i386: dbx and SVR4. These schemes
8457 differ in how they number %ebp, %esp, %eflags, and the
8458 floating-point registers, and are implemented by the arrays
8459 dbx_register_map[] and svr4_dbx_register_map in
8460 gcc/config/i386.c. GCC also defines a third numbering scheme in
8461 gcc/config/i386.c, which it designates as the "default" register
8462 map used in 64bit mode. This last register numbering scheme is
8463 implemented in dbx64_register_map, and is used for AMD64; see
8464 amd64-tdep.c.
8465
8466 Currently, each GCC i386 target always uses the same register
8467 numbering scheme across all its supported debugging formats
8468 i.e. SDB (COFF), stabs and DWARF 2. This is because
8469 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
8470 DBX_REGISTER_NUMBER macro which is defined by each target's
8471 respective config header in a manner independent of the requested
8472 output debugging format.
8473
8474 This does not match the arrangement below, which presumes that
8475 the SDB and stabs numbering schemes differ from the DWARF and
8476 DWARF 2 ones. The reason for this arrangement is that it is
8477 likely to get the numbering scheme for the target's
8478 default/native debug format right. For targets where GCC is the
8479 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
8480 targets where the native toolchain uses a different numbering
8481 scheme for a particular debug format (stabs-in-ELF on Solaris)
8482 the defaults below will have to be overridden, like
8483 i386_elf_init_abi() does. */
8484
8485 /* Use the dbx register numbering scheme for stabs and COFF. */
8486 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
8487 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
8488
8489 /* Use the SVR4 register numbering scheme for DWARF 2. */
8490 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_dwarf_reg_to_regnum);
8491
8492 /* We don't set gdbarch_stab_reg_to_regnum, since ECOFF doesn't seem to
8493 be in use on any of the supported i386 targets. */
8494
8495 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
8496
8497 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
8498
8499 /* Call dummy code. */
8500 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
8501 set_gdbarch_push_dummy_code (gdbarch, i386_push_dummy_code);
8502 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
8503 set_gdbarch_frame_align (gdbarch, i386_frame_align);
8504
8505 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
8506 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
8507 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
8508
8509 set_gdbarch_return_value (gdbarch, i386_return_value);
8510
8511 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
8512
8513 /* Stack grows downward. */
8514 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
8515
8516 set_gdbarch_breakpoint_kind_from_pc (gdbarch, i386_breakpoint::kind_from_pc);
8517 set_gdbarch_sw_breakpoint_from_kind (gdbarch, i386_breakpoint::bp_from_kind);
8518
8519 set_gdbarch_decr_pc_after_break (gdbarch, 1);
8520 set_gdbarch_max_insn_length (gdbarch, I386_MAX_INSN_LEN);
8521
8522 set_gdbarch_frame_args_skip (gdbarch, 8);
8523
8524 set_gdbarch_print_insn (gdbarch, i386_print_insn);
8525
8526 set_gdbarch_dummy_id (gdbarch, i386_dummy_id);
8527
8528 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
8529
8530 /* Add the i386 register groups. */
8531 i386_add_reggroups (gdbarch);
8532 tdep->register_reggroup_p = i386_register_reggroup_p;
8533
8534 /* Helper for function argument information. */
8535 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
8536
8537 /* Hook the function epilogue frame unwinder. This unwinder is
8538 appended to the list first, so that it supercedes the DWARF
8539 unwinder in function epilogues (where the DWARF unwinder
8540 currently fails). */
8541 frame_unwind_append_unwinder (gdbarch, &i386_epilogue_frame_unwind);
8542
8543 /* Hook in the DWARF CFI frame unwinder. This unwinder is appended
8544 to the list before the prologue-based unwinders, so that DWARF
8545 CFI info will be used if it is available. */
8546 dwarf2_append_unwinders (gdbarch);
8547
8548 frame_base_set_default (gdbarch, &i386_frame_base);
8549
8550 /* Pseudo registers may be changed by amd64_init_abi. */
8551 set_gdbarch_pseudo_register_read_value (gdbarch,
8552 i386_pseudo_register_read_value);
8553 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
8554 set_gdbarch_ax_pseudo_register_collect (gdbarch,
8555 i386_ax_pseudo_register_collect);
8556
8557 set_tdesc_pseudo_register_type (gdbarch, i386_pseudo_register_type);
8558 set_tdesc_pseudo_register_name (gdbarch, i386_pseudo_register_name);
8559
8560 /* Override the normal target description method to make the AVX
8561 upper halves anonymous. */
8562 set_gdbarch_register_name (gdbarch, i386_register_name);
8563
8564 /* Even though the default ABI only includes general-purpose registers,
8565 floating-point registers and the SSE registers, we have to leave a
8566 gap for the upper AVX, MPX and AVX512 registers. */
8567 set_gdbarch_num_regs (gdbarch, I386_PKEYS_NUM_REGS);
8568
8569 set_gdbarch_gnu_triplet_regexp (gdbarch, i386_gnu_triplet_regexp);
8570
8571 /* Get the x86 target description from INFO. */
8572 tdesc = info.target_desc;
8573 if (! tdesc_has_registers (tdesc))
8574 tdesc = i386_target_description (X86_XSTATE_SSE_MASK);
8575 tdep->tdesc = tdesc;
8576
8577 tdep->num_core_regs = I386_NUM_GREGS + I387_NUM_REGS;
8578 tdep->register_names = i386_register_names;
8579
8580 /* No upper YMM registers. */
8581 tdep->ymmh_register_names = NULL;
8582 tdep->ymm0h_regnum = -1;
8583
8584 /* No upper ZMM registers. */
8585 tdep->zmmh_register_names = NULL;
8586 tdep->zmm0h_regnum = -1;
8587
8588 /* No high XMM registers. */
8589 tdep->xmm_avx512_register_names = NULL;
8590 tdep->xmm16_regnum = -1;
8591
8592 /* No upper YMM16-31 registers. */
8593 tdep->ymm16h_register_names = NULL;
8594 tdep->ymm16h_regnum = -1;
8595
8596 tdep->num_byte_regs = 8;
8597 tdep->num_word_regs = 8;
8598 tdep->num_dword_regs = 0;
8599 tdep->num_mmx_regs = 8;
8600 tdep->num_ymm_regs = 0;
8601
8602 /* No MPX registers. */
8603 tdep->bnd0r_regnum = -1;
8604 tdep->bndcfgu_regnum = -1;
8605
8606 /* No AVX512 registers. */
8607 tdep->k0_regnum = -1;
8608 tdep->num_zmm_regs = 0;
8609 tdep->num_ymm_avx512_regs = 0;
8610 tdep->num_xmm_avx512_regs = 0;
8611
8612 /* No PKEYS registers */
8613 tdep->pkru_regnum = -1;
8614 tdep->num_pkeys_regs = 0;
8615
8616 tdesc_data = tdesc_data_alloc ();
8617
8618 set_gdbarch_relocate_instruction (gdbarch, i386_relocate_instruction);
8619
8620 set_gdbarch_gen_return_address (gdbarch, i386_gen_return_address);
8621
8622 set_gdbarch_insn_is_call (gdbarch, i386_insn_is_call);
8623 set_gdbarch_insn_is_ret (gdbarch, i386_insn_is_ret);
8624 set_gdbarch_insn_is_jump (gdbarch, i386_insn_is_jump);
8625
8626 /* Hook in ABI-specific overrides, if they have been registered.
8627 Note: If INFO specifies a 64 bit arch, this is where we turn
8628 a 32-bit i386 into a 64-bit amd64. */
8629 info.tdesc_data = tdesc_data;
8630 gdbarch_init_osabi (info, gdbarch);
8631
8632 if (!i386_validate_tdesc_p (tdep, tdesc_data))
8633 {
8634 tdesc_data_cleanup (tdesc_data);
8635 xfree (tdep);
8636 gdbarch_free (gdbarch);
8637 return NULL;
8638 }
8639
8640 num_bnd_cooked = (tdep->bnd0r_regnum > 0 ? I387_NUM_BND_REGS : 0);
8641
8642 /* Wire in pseudo registers. Number of pseudo registers may be
8643 changed. */
8644 set_gdbarch_num_pseudo_regs (gdbarch, (tdep->num_byte_regs
8645 + tdep->num_word_regs
8646 + tdep->num_dword_regs
8647 + tdep->num_mmx_regs
8648 + tdep->num_ymm_regs
8649 + num_bnd_cooked
8650 + tdep->num_ymm_avx512_regs
8651 + tdep->num_zmm_regs));
8652
8653 /* Target description may be changed. */
8654 tdesc = tdep->tdesc;
8655
8656 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
8657
8658 /* Override gdbarch_register_reggroup_p set in tdesc_use_registers. */
8659 set_gdbarch_register_reggroup_p (gdbarch, tdep->register_reggroup_p);
8660
8661 /* Make %al the first pseudo-register. */
8662 tdep->al_regnum = gdbarch_num_regs (gdbarch);
8663 tdep->ax_regnum = tdep->al_regnum + tdep->num_byte_regs;
8664
8665 ymm0_regnum = tdep->ax_regnum + tdep->num_word_regs;
8666 if (tdep->num_dword_regs)
8667 {
8668 /* Support dword pseudo-register if it hasn't been disabled. */
8669 tdep->eax_regnum = ymm0_regnum;
8670 ymm0_regnum += tdep->num_dword_regs;
8671 }
8672 else
8673 tdep->eax_regnum = -1;
8674
8675 mm0_regnum = ymm0_regnum;
8676 if (tdep->num_ymm_regs)
8677 {
8678 /* Support YMM pseudo-register if it is available. */
8679 tdep->ymm0_regnum = ymm0_regnum;
8680 mm0_regnum += tdep->num_ymm_regs;
8681 }
8682 else
8683 tdep->ymm0_regnum = -1;
8684
8685 if (tdep->num_ymm_avx512_regs)
8686 {
8687 /* Support YMM16-31 pseudo registers if available. */
8688 tdep->ymm16_regnum = mm0_regnum;
8689 mm0_regnum += tdep->num_ymm_avx512_regs;
8690 }
8691 else
8692 tdep->ymm16_regnum = -1;
8693
8694 if (tdep->num_zmm_regs)
8695 {
8696 /* Support ZMM pseudo-register if it is available. */
8697 tdep->zmm0_regnum = mm0_regnum;
8698 mm0_regnum += tdep->num_zmm_regs;
8699 }
8700 else
8701 tdep->zmm0_regnum = -1;
8702
8703 bnd0_regnum = mm0_regnum;
8704 if (tdep->num_mmx_regs != 0)
8705 {
8706 /* Support MMX pseudo-register if MMX hasn't been disabled. */
8707 tdep->mm0_regnum = mm0_regnum;
8708 bnd0_regnum += tdep->num_mmx_regs;
8709 }
8710 else
8711 tdep->mm0_regnum = -1;
8712
8713 if (tdep->bnd0r_regnum > 0)
8714 tdep->bnd0_regnum = bnd0_regnum;
8715 else
8716 tdep-> bnd0_regnum = -1;
8717
8718 /* Hook in the legacy prologue-based unwinders last (fallback). */
8719 frame_unwind_append_unwinder (gdbarch, &i386_stack_tramp_frame_unwind);
8720 frame_unwind_append_unwinder (gdbarch, &i386_sigtramp_frame_unwind);
8721 frame_unwind_append_unwinder (gdbarch, &i386_frame_unwind);
8722
8723 /* If we have a register mapping, enable the generic core file
8724 support, unless it has already been enabled. */
8725 if (tdep->gregset_reg_offset
8726 && !gdbarch_iterate_over_regset_sections_p (gdbarch))
8727 set_gdbarch_iterate_over_regset_sections
8728 (gdbarch, i386_iterate_over_regset_sections);
8729
8730 set_gdbarch_fast_tracepoint_valid_at (gdbarch,
8731 i386_fast_tracepoint_valid_at);
8732
8733 return gdbarch;
8734 }
8735
8736 \f
8737
8738 /* Return the target description for a specified XSAVE feature mask. */
8739
8740 const struct target_desc *
8741 i386_target_description (uint64_t xcr0)
8742 {
8743 static target_desc *i386_tdescs \
8744 [2/*SSE*/][2/*AVX*/][2/*MPX*/][2/*AVX512*/][2/*PKRU*/] = {};
8745 target_desc **tdesc;
8746
8747 tdesc = &i386_tdescs[(xcr0 & X86_XSTATE_SSE) ? 1 : 0]
8748 [(xcr0 & X86_XSTATE_AVX) ? 1 : 0]
8749 [(xcr0 & X86_XSTATE_MPX) ? 1 : 0]
8750 [(xcr0 & X86_XSTATE_AVX512) ? 1 : 0]
8751 [(xcr0 & X86_XSTATE_PKRU) ? 1 : 0];
8752
8753 if (*tdesc == NULL)
8754 *tdesc = i386_create_target_description (xcr0, false);
8755
8756 return *tdesc;
8757 }
8758
8759 #define MPX_BASE_MASK (~(ULONGEST) 0xfff)
8760
8761 /* Find the bound directory base address. */
8762
8763 static unsigned long
8764 i386_mpx_bd_base (void)
8765 {
8766 struct regcache *rcache;
8767 struct gdbarch_tdep *tdep;
8768 ULONGEST ret;
8769 enum register_status regstatus;
8770
8771 rcache = get_current_regcache ();
8772 tdep = gdbarch_tdep (rcache->arch ());
8773
8774 regstatus = regcache_raw_read_unsigned (rcache, tdep->bndcfgu_regnum, &ret);
8775
8776 if (regstatus != REG_VALID)
8777 error (_("BNDCFGU register invalid, read status %d."), regstatus);
8778
8779 return ret & MPX_BASE_MASK;
8780 }
8781
8782 int
8783 i386_mpx_enabled (void)
8784 {
8785 const struct gdbarch_tdep *tdep = gdbarch_tdep (get_current_arch ());
8786 const struct target_desc *tdesc = tdep->tdesc;
8787
8788 return (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx") != NULL);
8789 }
8790
8791 #define MPX_BD_MASK 0xfffffff00000ULL /* select bits [47:20] */
8792 #define MPX_BT_MASK 0x0000000ffff8 /* select bits [19:3] */
8793 #define MPX_BD_MASK_32 0xfffff000 /* select bits [31:12] */
8794 #define MPX_BT_MASK_32 0x00000ffc /* select bits [11:2] */
8795
8796 /* Find the bound table entry given the pointer location and the base
8797 address of the table. */
8798
8799 static CORE_ADDR
8800 i386_mpx_get_bt_entry (CORE_ADDR ptr, CORE_ADDR bd_base)
8801 {
8802 CORE_ADDR offset1;
8803 CORE_ADDR offset2;
8804 CORE_ADDR mpx_bd_mask, bd_ptr_r_shift, bd_ptr_l_shift;
8805 CORE_ADDR bt_mask, bt_select_r_shift, bt_select_l_shift;
8806 CORE_ADDR bd_entry_addr;
8807 CORE_ADDR bt_addr;
8808 CORE_ADDR bd_entry;
8809 struct gdbarch *gdbarch = get_current_arch ();
8810 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8811
8812
8813 if (gdbarch_ptr_bit (gdbarch) == 64)
8814 {
8815 mpx_bd_mask = (CORE_ADDR) MPX_BD_MASK;
8816 bd_ptr_r_shift = 20;
8817 bd_ptr_l_shift = 3;
8818 bt_select_r_shift = 3;
8819 bt_select_l_shift = 5;
8820 bt_mask = (CORE_ADDR) MPX_BT_MASK;
8821
8822 if ( sizeof (CORE_ADDR) == 4)
8823 error (_("bound table examination not supported\
8824 for 64-bit process with 32-bit GDB"));
8825 }
8826 else
8827 {
8828 mpx_bd_mask = MPX_BD_MASK_32;
8829 bd_ptr_r_shift = 12;
8830 bd_ptr_l_shift = 2;
8831 bt_select_r_shift = 2;
8832 bt_select_l_shift = 4;
8833 bt_mask = MPX_BT_MASK_32;
8834 }
8835
8836 offset1 = ((ptr & mpx_bd_mask) >> bd_ptr_r_shift) << bd_ptr_l_shift;
8837 bd_entry_addr = bd_base + offset1;
8838 bd_entry = read_memory_typed_address (bd_entry_addr, data_ptr_type);
8839
8840 if ((bd_entry & 0x1) == 0)
8841 error (_("Invalid bounds directory entry at %s."),
8842 paddress (get_current_arch (), bd_entry_addr));
8843
8844 /* Clearing status bit. */
8845 bd_entry--;
8846 bt_addr = bd_entry & ~bt_select_r_shift;
8847 offset2 = ((ptr & bt_mask) >> bt_select_r_shift) << bt_select_l_shift;
8848
8849 return bt_addr + offset2;
8850 }
8851
8852 /* Print routine for the mpx bounds. */
8853
8854 static void
8855 i386_mpx_print_bounds (const CORE_ADDR bt_entry[4])
8856 {
8857 struct ui_out *uiout = current_uiout;
8858 LONGEST size;
8859 struct gdbarch *gdbarch = get_current_arch ();
8860 CORE_ADDR onecompl = ~((CORE_ADDR) 0);
8861 int bounds_in_map = ((~bt_entry[1] == 0 && bt_entry[0] == onecompl) ? 1 : 0);
8862
8863 if (bounds_in_map == 1)
8864 {
8865 uiout->text ("Null bounds on map:");
8866 uiout->text (" pointer value = ");
8867 uiout->field_core_addr ("pointer-value", gdbarch, bt_entry[2]);
8868 uiout->text (".");
8869 uiout->text ("\n");
8870 }
8871 else
8872 {
8873 uiout->text ("{lbound = ");
8874 uiout->field_core_addr ("lower-bound", gdbarch, bt_entry[0]);
8875 uiout->text (", ubound = ");
8876
8877 /* The upper bound is stored in 1's complement. */
8878 uiout->field_core_addr ("upper-bound", gdbarch, ~bt_entry[1]);
8879 uiout->text ("}: pointer value = ");
8880 uiout->field_core_addr ("pointer-value", gdbarch, bt_entry[2]);
8881
8882 if (gdbarch_ptr_bit (gdbarch) == 64)
8883 size = ( (~(int64_t) bt_entry[1]) - (int64_t) bt_entry[0]);
8884 else
8885 size = ( ~((int32_t) bt_entry[1]) - (int32_t) bt_entry[0]);
8886
8887 /* In case the bounds are 0x0 and 0xffff... the difference will be -1.
8888 -1 represents in this sense full memory access, and there is no need
8889 one to the size. */
8890
8891 size = (size > -1 ? size + 1 : size);
8892 uiout->text (", size = ");
8893 uiout->field_fmt ("size", "%s", plongest (size));
8894
8895 uiout->text (", metadata = ");
8896 uiout->field_core_addr ("metadata", gdbarch, bt_entry[3]);
8897 uiout->text ("\n");
8898 }
8899 }
8900
8901 /* Implement the command "show mpx bound". */
8902
8903 static void
8904 i386_mpx_info_bounds (const char *args, int from_tty)
8905 {
8906 CORE_ADDR bd_base = 0;
8907 CORE_ADDR addr;
8908 CORE_ADDR bt_entry_addr = 0;
8909 CORE_ADDR bt_entry[4];
8910 int i;
8911 struct gdbarch *gdbarch = get_current_arch ();
8912 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8913
8914 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_i386
8915 || !i386_mpx_enabled ())
8916 {
8917 printf_unfiltered (_("Intel Memory Protection Extensions not "
8918 "supported on this target.\n"));
8919 return;
8920 }
8921
8922 if (args == NULL)
8923 {
8924 printf_unfiltered (_("Address of pointer variable expected.\n"));
8925 return;
8926 }
8927
8928 addr = parse_and_eval_address (args);
8929
8930 bd_base = i386_mpx_bd_base ();
8931 bt_entry_addr = i386_mpx_get_bt_entry (addr, bd_base);
8932
8933 memset (bt_entry, 0, sizeof (bt_entry));
8934
8935 for (i = 0; i < 4; i++)
8936 bt_entry[i] = read_memory_typed_address (bt_entry_addr
8937 + i * TYPE_LENGTH (data_ptr_type),
8938 data_ptr_type);
8939
8940 i386_mpx_print_bounds (bt_entry);
8941 }
8942
8943 /* Implement the command "set mpx bound". */
8944
8945 static void
8946 i386_mpx_set_bounds (const char *args, int from_tty)
8947 {
8948 CORE_ADDR bd_base = 0;
8949 CORE_ADDR addr, lower, upper;
8950 CORE_ADDR bt_entry_addr = 0;
8951 CORE_ADDR bt_entry[2];
8952 const char *input = args;
8953 int i;
8954 struct gdbarch *gdbarch = get_current_arch ();
8955 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
8956 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8957
8958 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_i386
8959 || !i386_mpx_enabled ())
8960 error (_("Intel Memory Protection Extensions not supported\
8961 on this target."));
8962
8963 if (args == NULL)
8964 error (_("Pointer value expected."));
8965
8966 addr = value_as_address (parse_to_comma_and_eval (&input));
8967
8968 if (input[0] == ',')
8969 ++input;
8970 if (input[0] == '\0')
8971 error (_("wrong number of arguments: missing lower and upper bound."));
8972 lower = value_as_address (parse_to_comma_and_eval (&input));
8973
8974 if (input[0] == ',')
8975 ++input;
8976 if (input[0] == '\0')
8977 error (_("Wrong number of arguments; Missing upper bound."));
8978 upper = value_as_address (parse_to_comma_and_eval (&input));
8979
8980 bd_base = i386_mpx_bd_base ();
8981 bt_entry_addr = i386_mpx_get_bt_entry (addr, bd_base);
8982 for (i = 0; i < 2; i++)
8983 bt_entry[i] = read_memory_typed_address (bt_entry_addr
8984 + i * TYPE_LENGTH (data_ptr_type),
8985 data_ptr_type);
8986 bt_entry[0] = (uint64_t) lower;
8987 bt_entry[1] = ~(uint64_t) upper;
8988
8989 for (i = 0; i < 2; i++)
8990 write_memory_unsigned_integer (bt_entry_addr
8991 + i * TYPE_LENGTH (data_ptr_type),
8992 TYPE_LENGTH (data_ptr_type), byte_order,
8993 bt_entry[i]);
8994 }
8995
8996 static struct cmd_list_element *mpx_set_cmdlist, *mpx_show_cmdlist;
8997
8998 /* Helper function for the CLI commands. */
8999
9000 static void
9001 set_mpx_cmd (const char *args, int from_tty)
9002 {
9003 help_list (mpx_set_cmdlist, "set mpx ", all_commands, gdb_stdout);
9004 }
9005
9006 /* Helper function for the CLI commands. */
9007
9008 static void
9009 show_mpx_cmd (const char *args, int from_tty)
9010 {
9011 cmd_show_list (mpx_show_cmdlist, from_tty, "");
9012 }
9013
9014 void
9015 _initialize_i386_tdep (void)
9016 {
9017 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
9018
9019 /* Add the variable that controls the disassembly flavor. */
9020 add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
9021 &disassembly_flavor, _("\
9022 Set the disassembly flavor."), _("\
9023 Show the disassembly flavor."), _("\
9024 The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
9025 NULL,
9026 NULL, /* FIXME: i18n: */
9027 &setlist, &showlist);
9028
9029 /* Add the variable that controls the convention for returning
9030 structs. */
9031 add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
9032 &struct_convention, _("\
9033 Set the convention for returning small structs."), _("\
9034 Show the convention for returning small structs."), _("\
9035 Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
9036 is \"default\"."),
9037 NULL,
9038 NULL, /* FIXME: i18n: */
9039 &setlist, &showlist);
9040
9041 /* Add "mpx" prefix for the set commands. */
9042
9043 add_prefix_cmd ("mpx", class_support, set_mpx_cmd, _("\
9044 Set Intel Memory Protection Extensions specific variables."),
9045 &mpx_set_cmdlist, "set mpx ",
9046 0 /* allow-unknown */, &setlist);
9047
9048 /* Add "mpx" prefix for the show commands. */
9049
9050 add_prefix_cmd ("mpx", class_support, show_mpx_cmd, _("\
9051 Show Intel Memory Protection Extensions specific variables."),
9052 &mpx_show_cmdlist, "show mpx ",
9053 0 /* allow-unknown */, &showlist);
9054
9055 /* Add "bound" command for the show mpx commands list. */
9056
9057 add_cmd ("bound", no_class, i386_mpx_info_bounds,
9058 "Show the memory bounds for a given array/pointer storage\
9059 in the bound table.",
9060 &mpx_show_cmdlist);
9061
9062 /* Add "bound" command for the set mpx commands list. */
9063
9064 add_cmd ("bound", no_class, i386_mpx_set_bounds,
9065 "Set the memory bounds for a given array/pointer storage\
9066 in the bound table.",
9067 &mpx_set_cmdlist);
9068
9069 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
9070 i386_svr4_init_abi);
9071
9072 /* Initialize the i386-specific register groups. */
9073 i386_init_reggroups ();
9074
9075 /* Tell remote stub that we support XML target description. */
9076 register_remote_support_xml ("i386");
9077
9078 #if GDB_SELF_TEST
9079 struct
9080 {
9081 const char *xml;
9082 uint64_t mask;
9083 } xml_masks[] = {
9084 { "i386/i386.xml", X86_XSTATE_SSE_MASK },
9085 { "i386/i386-mmx.xml", X86_XSTATE_X87_MASK },
9086 { "i386/i386-avx.xml", X86_XSTATE_AVX_MASK },
9087 { "i386/i386-mpx.xml", X86_XSTATE_MPX_MASK },
9088 { "i386/i386-avx-mpx.xml", X86_XSTATE_AVX_MPX_MASK },
9089 { "i386/i386-avx-avx512.xml", X86_XSTATE_AVX_AVX512_MASK },
9090 { "i386/i386-avx-mpx-avx512-pku.xml",
9091 X86_XSTATE_AVX_MPX_AVX512_PKU_MASK },
9092 };
9093
9094 for (auto &a : xml_masks)
9095 {
9096 auto tdesc = i386_target_description (a.mask);
9097
9098 selftests::record_xml_tdesc (a.xml, tdesc);
9099 }
9100 #endif /* GDB_SELF_TEST */
9101 }
This page took 0.37517 seconds and 4 git commands to generate.