2003-07-16 Andrew Cagney <cagney@redhat.com>
[deliverable/binutils-gdb.git] / gdb / i386-tdep.c
1 /* Intel 386 target-dependent stuff.
2
3 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "arch-utils.h"
25 #include "command.h"
26 #include "dummy-frame.h"
27 #include "dwarf2-frame.h"
28 #include "doublest.h"
29 #include "floatformat.h"
30 #include "frame.h"
31 #include "frame-base.h"
32 #include "frame-unwind.h"
33 #include "inferior.h"
34 #include "gdbcmd.h"
35 #include "gdbcore.h"
36 #include "objfiles.h"
37 #include "osabi.h"
38 #include "regcache.h"
39 #include "reggroups.h"
40 #include "symfile.h"
41 #include "symtab.h"
42 #include "target.h"
43 #include "value.h"
44
45 #include "gdb_assert.h"
46 #include "gdb_string.h"
47
48 #include "i386-tdep.h"
49 #include "i387-tdep.h"
50
51 /* Names of the registers. The first 10 registers match the register
52 numbering scheme used by GCC for stabs and DWARF. */
53
54 static char *i386_register_names[] =
55 {
56 "eax", "ecx", "edx", "ebx",
57 "esp", "ebp", "esi", "edi",
58 "eip", "eflags", "cs", "ss",
59 "ds", "es", "fs", "gs",
60 "st0", "st1", "st2", "st3",
61 "st4", "st5", "st6", "st7",
62 "fctrl", "fstat", "ftag", "fiseg",
63 "fioff", "foseg", "fooff", "fop",
64 "xmm0", "xmm1", "xmm2", "xmm3",
65 "xmm4", "xmm5", "xmm6", "xmm7",
66 "mxcsr"
67 };
68
69 static const int i386_num_register_names =
70 (sizeof (i386_register_names) / sizeof (*i386_register_names));
71
72 /* MMX registers. */
73
74 static char *i386_mmx_names[] =
75 {
76 "mm0", "mm1", "mm2", "mm3",
77 "mm4", "mm5", "mm6", "mm7"
78 };
79
80 static const int i386_num_mmx_regs =
81 (sizeof (i386_mmx_names) / sizeof (i386_mmx_names[0]));
82
83 #define MM0_REGNUM NUM_REGS
84
85 static int
86 i386_mmx_regnum_p (int regnum)
87 {
88 return (regnum >= MM0_REGNUM
89 && regnum < MM0_REGNUM + i386_num_mmx_regs);
90 }
91
92 /* FP register? */
93
94 int
95 i386_fp_regnum_p (int regnum)
96 {
97 return (regnum < NUM_REGS
98 && (FP0_REGNUM && FP0_REGNUM <= regnum && regnum < FPC_REGNUM));
99 }
100
101 int
102 i386_fpc_regnum_p (int regnum)
103 {
104 return (regnum < NUM_REGS
105 && (FPC_REGNUM <= regnum && regnum < XMM0_REGNUM));
106 }
107
108 /* SSE register? */
109
110 int
111 i386_sse_regnum_p (int regnum)
112 {
113 return (regnum < NUM_REGS
114 && (XMM0_REGNUM <= regnum && regnum < MXCSR_REGNUM));
115 }
116
117 int
118 i386_mxcsr_regnum_p (int regnum)
119 {
120 return (regnum < NUM_REGS
121 && regnum == MXCSR_REGNUM);
122 }
123
124 /* Return the name of register REG. */
125
126 const char *
127 i386_register_name (int reg)
128 {
129 if (i386_mmx_regnum_p (reg))
130 return i386_mmx_names[reg - MM0_REGNUM];
131
132 if (reg >= 0 && reg < i386_num_register_names)
133 return i386_register_names[reg];
134
135 return NULL;
136 }
137
138 /* Convert stabs register number REG to the appropriate register
139 number used by GDB. */
140
141 static int
142 i386_stab_reg_to_regnum (int reg)
143 {
144 /* This implements what GCC calls the "default" register map. */
145 if (reg >= 0 && reg <= 7)
146 {
147 /* General-purpose registers. */
148 return reg;
149 }
150 else if (reg >= 12 && reg <= 19)
151 {
152 /* Floating-point registers. */
153 return reg - 12 + FP0_REGNUM;
154 }
155 else if (reg >= 21 && reg <= 28)
156 {
157 /* SSE registers. */
158 return reg - 21 + XMM0_REGNUM;
159 }
160 else if (reg >= 29 && reg <= 36)
161 {
162 /* MMX registers. */
163 return reg - 29 + MM0_REGNUM;
164 }
165
166 /* This will hopefully provoke a warning. */
167 return NUM_REGS + NUM_PSEUDO_REGS;
168 }
169
170 /* Convert DWARF register number REG to the appropriate register
171 number used by GDB. */
172
173 static int
174 i386_dwarf_reg_to_regnum (int reg)
175 {
176 /* The DWARF register numbering includes %eip and %eflags, and
177 numbers the floating point registers differently. */
178 if (reg >= 0 && reg <= 9)
179 {
180 /* General-purpose registers. */
181 return reg;
182 }
183 else if (reg >= 11 && reg <= 18)
184 {
185 /* Floating-point registers. */
186 return reg - 11 + FP0_REGNUM;
187 }
188 else if (reg >= 21)
189 {
190 /* The SSE and MMX registers have identical numbers as in stabs. */
191 return i386_stab_reg_to_regnum (reg);
192 }
193
194 /* This will hopefully provoke a warning. */
195 return NUM_REGS + NUM_PSEUDO_REGS;
196 }
197 \f
198
199 /* This is the variable that is set with "set disassembly-flavor", and
200 its legitimate values. */
201 static const char att_flavor[] = "att";
202 static const char intel_flavor[] = "intel";
203 static const char *valid_flavors[] =
204 {
205 att_flavor,
206 intel_flavor,
207 NULL
208 };
209 static const char *disassembly_flavor = att_flavor;
210 \f
211
212 /* Use the program counter to determine the contents and size of a
213 breakpoint instruction. Return a pointer to a string of bytes that
214 encode a breakpoint instruction, store the length of the string in
215 *LEN and optionally adjust *PC to point to the correct memory
216 location for inserting the breakpoint.
217
218 On the i386 we have a single breakpoint that fits in a single byte
219 and can be inserted anywhere.
220
221 This function is 64-bit safe. */
222
223 static const unsigned char *
224 i386_breakpoint_from_pc (CORE_ADDR *pc, int *len)
225 {
226 static unsigned char break_insn[] = { 0xcc }; /* int 3 */
227
228 *len = sizeof (break_insn);
229 return break_insn;
230 }
231 \f
232 #ifdef I386_REGNO_TO_SYMMETRY
233 #error "The Sequent Symmetry is no longer supported."
234 #endif
235
236 /* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
237 and %esp "belong" to the calling function. Therefore these
238 registers should be saved if they're going to be modified. */
239
240 /* The maximum number of saved registers. This should include all
241 registers mentioned above, and %eip. */
242 #define I386_NUM_SAVED_REGS I386_NUM_GREGS
243
244 struct i386_frame_cache
245 {
246 /* Base address. */
247 CORE_ADDR base;
248 CORE_ADDR sp_offset;
249 CORE_ADDR pc;
250
251 /* Saved registers. */
252 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
253 CORE_ADDR saved_sp;
254 int pc_in_eax;
255
256 /* Stack space reserved for local variables. */
257 long locals;
258 };
259
260 /* Allocate and initialize a frame cache. */
261
262 static struct i386_frame_cache *
263 i386_alloc_frame_cache (void)
264 {
265 struct i386_frame_cache *cache;
266 int i;
267
268 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
269
270 /* Base address. */
271 cache->base = 0;
272 cache->sp_offset = -4;
273 cache->pc = 0;
274
275 /* Saved registers. We initialize these to -1 since zero is a valid
276 offset (that's where %ebp is supposed to be stored). */
277 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
278 cache->saved_regs[i] = -1;
279 cache->saved_sp = 0;
280 cache->pc_in_eax = 0;
281
282 /* Frameless until proven otherwise. */
283 cache->locals = -1;
284
285 return cache;
286 }
287
288 /* If the instruction at PC is a jump, return the address of its
289 target. Otherwise, return PC. */
290
291 static CORE_ADDR
292 i386_follow_jump (CORE_ADDR pc)
293 {
294 unsigned char op;
295 long delta = 0;
296 int data16 = 0;
297
298 op = read_memory_unsigned_integer (pc, 1);
299 if (op == 0x66)
300 {
301 data16 = 1;
302 op = read_memory_unsigned_integer (pc + 1, 1);
303 }
304
305 switch (op)
306 {
307 case 0xe9:
308 /* Relative jump: if data16 == 0, disp32, else disp16. */
309 if (data16)
310 {
311 delta = read_memory_integer (pc + 2, 2);
312
313 /* Include the size of the jmp instruction (including the
314 0x66 prefix). */
315 delta += 4;
316 }
317 else
318 {
319 delta = read_memory_integer (pc + 1, 4);
320
321 /* Include the size of the jmp instruction. */
322 delta += 5;
323 }
324 break;
325 case 0xeb:
326 /* Relative jump, disp8 (ignore data16). */
327 delta = read_memory_integer (pc + data16 + 1, 1);
328
329 delta += data16 + 2;
330 break;
331 }
332
333 return pc + delta;
334 }
335
336 /* Check whether PC points at a prologue for a function returning a
337 structure or union. If so, it updates CACHE and returns the
338 address of the first instruction after the code sequence that
339 removes the "hidden" argument from the stack or CURRENT_PC,
340 whichever is smaller. Otherwise, return PC. */
341
342 static CORE_ADDR
343 i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
344 struct i386_frame_cache *cache)
345 {
346 /* Functions that return a structure or union start with:
347
348 popl %eax 0x58
349 xchgl %eax, (%esp) 0x87 0x04 0x24
350 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
351
352 (the System V compiler puts out the second `xchg' instruction,
353 and the assembler doesn't try to optimize it, so the 'sib' form
354 gets generated). This sequence is used to get the address of the
355 return buffer for a function that returns a structure. */
356 static unsigned char proto1[3] = { 0x87, 0x04, 0x24 };
357 static unsigned char proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
358 unsigned char buf[4];
359 unsigned char op;
360
361 if (current_pc <= pc)
362 return pc;
363
364 op = read_memory_unsigned_integer (pc, 1);
365
366 if (op != 0x58) /* popl %eax */
367 return pc;
368
369 read_memory (pc + 1, buf, 4);
370 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
371 return pc;
372
373 if (current_pc == pc)
374 {
375 cache->sp_offset += 4;
376 return current_pc;
377 }
378
379 if (current_pc == pc + 1)
380 {
381 cache->pc_in_eax = 1;
382 return current_pc;
383 }
384
385 if (buf[1] == proto1[1])
386 return pc + 4;
387 else
388 return pc + 5;
389 }
390
391 static CORE_ADDR
392 i386_skip_probe (CORE_ADDR pc)
393 {
394 /* A function may start with
395
396 pushl constant
397 call _probe
398 addl $4, %esp
399
400 followed by
401
402 pushl %ebp
403
404 etc. */
405 unsigned char buf[8];
406 unsigned char op;
407
408 op = read_memory_unsigned_integer (pc, 1);
409
410 if (op == 0x68 || op == 0x6a)
411 {
412 int delta;
413
414 /* Skip past the `pushl' instruction; it has either a one-byte or a
415 four-byte operand, depending on the opcode. */
416 if (op == 0x68)
417 delta = 5;
418 else
419 delta = 2;
420
421 /* Read the following 8 bytes, which should be `call _probe' (6
422 bytes) followed by `addl $4,%esp' (2 bytes). */
423 read_memory (pc + delta, buf, sizeof (buf));
424 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
425 pc += delta + sizeof (buf);
426 }
427
428 return pc;
429 }
430
431 /* Check whether PC points at a code that sets up a new stack frame.
432 If so, it updates CACHE and returns the address of the first
433 instruction after the sequence that sets removes the "hidden"
434 argument from the stack or CURRENT_PC, whichever is smaller.
435 Otherwise, return PC. */
436
437 static CORE_ADDR
438 i386_analyze_frame_setup (CORE_ADDR pc, CORE_ADDR current_pc,
439 struct i386_frame_cache *cache)
440 {
441 unsigned char op;
442
443 if (current_pc <= pc)
444 return current_pc;
445
446 op = read_memory_unsigned_integer (pc, 1);
447
448 if (op == 0x55) /* pushl %ebp */
449 {
450 /* Take into account that we've executed the `pushl %ebp' that
451 starts this instruction sequence. */
452 cache->saved_regs[I386_EBP_REGNUM] = 0;
453 cache->sp_offset += 4;
454
455 /* If that's all, return now. */
456 if (current_pc <= pc + 1)
457 return current_pc;
458
459 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
460 op = read_memory_unsigned_integer (pc + 1, 1);
461 switch (op)
462 {
463 case 0x8b:
464 if (read_memory_unsigned_integer (pc + 2, 1) != 0xec)
465 return pc + 1;
466 break;
467 case 0x89:
468 if (read_memory_unsigned_integer (pc + 2, 1) != 0xe5)
469 return pc + 1;
470 break;
471 default:
472 return pc + 1;
473 }
474
475 /* OK, we actually have a frame. We just don't know how large it is
476 yet. Set its size to zero. We'll adjust it if necessary. */
477 cache->locals = 0;
478
479 /* If that's all, return now. */
480 if (current_pc <= pc + 3)
481 return current_pc;
482
483 /* Check for stack adjustment
484
485 subl $XXX, %esp
486
487 NOTE: You can't subtract a 16 bit immediate from a 32 bit
488 reg, so we don't have to worry about a data16 prefix. */
489 op = read_memory_unsigned_integer (pc + 3, 1);
490 if (op == 0x83)
491 {
492 /* `subl' with 8 bit immediate. */
493 if (read_memory_unsigned_integer (pc + 4, 1) != 0xec)
494 /* Some instruction starting with 0x83 other than `subl'. */
495 return pc + 3;
496
497 /* `subl' with signed byte immediate (though it wouldn't make
498 sense to be negative). */
499 cache->locals = read_memory_integer (pc + 5, 1);
500 return pc + 6;
501 }
502 else if (op == 0x81)
503 {
504 /* Maybe it is `subl' with a 32 bit immedediate. */
505 if (read_memory_unsigned_integer (pc + 4, 1) != 0xec)
506 /* Some instruction starting with 0x81 other than `subl'. */
507 return pc + 3;
508
509 /* It is `subl' with a 32 bit immediate. */
510 cache->locals = read_memory_integer (pc + 5, 4);
511 return pc + 9;
512 }
513 else
514 {
515 /* Some instruction other than `subl'. */
516 return pc + 3;
517 }
518 }
519 else if (op == 0xc8) /* enter $XXX */
520 {
521 cache->locals = read_memory_unsigned_integer (pc + 1, 2);
522 return pc + 4;
523 }
524
525 return pc;
526 }
527
528 /* Check whether PC points at code that saves registers on the stack.
529 If so, it updates CACHE and returns the address of the first
530 instruction after the register saves or CURRENT_PC, whichever is
531 smaller. Otherwise, return PC. */
532
533 static CORE_ADDR
534 i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
535 struct i386_frame_cache *cache)
536 {
537 if (cache->locals >= 0)
538 {
539 CORE_ADDR offset;
540 unsigned char op;
541 int i;
542
543 offset = - 4 - cache->locals;
544 for (i = 0; i < 8 && pc < current_pc; i++)
545 {
546 op = read_memory_unsigned_integer (pc, 1);
547 if (op < 0x50 || op > 0x57)
548 break;
549
550 cache->saved_regs[op - 0x50] = offset;
551 offset -= 4;
552 pc++;
553 }
554 }
555
556 return pc;
557 }
558
559 /* Do a full analysis of the prologue at PC and update CACHE
560 accordingly. Bail out early if CURRENT_PC is reached. Return the
561 address where the analysis stopped.
562
563 We handle these cases:
564
565 The startup sequence can be at the start of the function, or the
566 function can start with a branch to startup code at the end.
567
568 %ebp can be set up with either the 'enter' instruction, or "pushl
569 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
570 once used in the System V compiler).
571
572 Local space is allocated just below the saved %ebp by either the
573 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a 16
574 bit unsigned argument for space to allocate, and the 'addl'
575 instruction could have either a signed byte, or 32 bit immediate.
576
577 Next, the registers used by this function are pushed. With the
578 System V compiler they will always be in the order: %edi, %esi,
579 %ebx (and sometimes a harmless bug causes it to also save but not
580 restore %eax); however, the code below is willing to see the pushes
581 in any order, and will handle up to 8 of them.
582
583 If the setup sequence is at the end of the function, then the next
584 instruction will be a branch back to the start. */
585
586 static CORE_ADDR
587 i386_analyze_prologue (CORE_ADDR pc, CORE_ADDR current_pc,
588 struct i386_frame_cache *cache)
589 {
590 pc = i386_follow_jump (pc);
591 pc = i386_analyze_struct_return (pc, current_pc, cache);
592 pc = i386_skip_probe (pc);
593 pc = i386_analyze_frame_setup (pc, current_pc, cache);
594 return i386_analyze_register_saves (pc, current_pc, cache);
595 }
596
597 /* Return PC of first real instruction. */
598
599 static CORE_ADDR
600 i386_skip_prologue (CORE_ADDR start_pc)
601 {
602 static unsigned char pic_pat[6] =
603 {
604 0xe8, 0, 0, 0, 0, /* call 0x0 */
605 0x5b, /* popl %ebx */
606 };
607 struct i386_frame_cache cache;
608 CORE_ADDR pc;
609 unsigned char op;
610 int i;
611
612 cache.locals = -1;
613 pc = i386_analyze_prologue (start_pc, 0xffffffff, &cache);
614 if (cache.locals < 0)
615 return start_pc;
616
617 /* Found valid frame setup. */
618
619 /* The native cc on SVR4 in -K PIC mode inserts the following code
620 to get the address of the global offset table (GOT) into register
621 %ebx:
622
623 call 0x0
624 popl %ebx
625 movl %ebx,x(%ebp) (optional)
626 addl y,%ebx
627
628 This code is with the rest of the prologue (at the end of the
629 function), so we have to skip it to get to the first real
630 instruction at the start of the function. */
631
632 for (i = 0; i < 6; i++)
633 {
634 op = read_memory_unsigned_integer (pc + i, 1);
635 if (pic_pat[i] != op)
636 break;
637 }
638 if (i == 6)
639 {
640 int delta = 6;
641
642 op = read_memory_unsigned_integer (pc + delta, 1);
643
644 if (op == 0x89) /* movl %ebx, x(%ebp) */
645 {
646 op = read_memory_unsigned_integer (pc + delta + 1, 1);
647
648 if (op == 0x5d) /* One byte offset from %ebp. */
649 delta += 3;
650 else if (op == 0x9d) /* Four byte offset from %ebp. */
651 delta += 6;
652 else /* Unexpected instruction. */
653 delta = 0;
654
655 op = read_memory_unsigned_integer (pc + delta, 1);
656 }
657
658 /* addl y,%ebx */
659 if (delta > 0 && op == 0x81
660 && read_memory_unsigned_integer (pc + delta + 1, 1) == 0xc3);
661 {
662 pc += delta + 6;
663 }
664 }
665
666 return i386_follow_jump (pc);
667 }
668
669 /* This function is 64-bit safe. */
670
671 static CORE_ADDR
672 i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
673 {
674 char buf[8];
675
676 frame_unwind_register (next_frame, PC_REGNUM, buf);
677 return extract_typed_address (buf, builtin_type_void_func_ptr);
678 }
679 \f
680
681 /* Normal frames. */
682
683 static struct i386_frame_cache *
684 i386_frame_cache (struct frame_info *next_frame, void **this_cache)
685 {
686 struct i386_frame_cache *cache;
687 char buf[4];
688 int i;
689
690 if (*this_cache)
691 return *this_cache;
692
693 cache = i386_alloc_frame_cache ();
694 *this_cache = cache;
695
696 /* In principle, for normal frames, %ebp holds the frame pointer,
697 which holds the base address for the current stack frame.
698 However, for functions that don't need it, the frame pointer is
699 optional. For these "frameless" functions the frame pointer is
700 actually the frame pointer of the calling frame. Signal
701 trampolines are just a special case of a "frameless" function.
702 They (usually) share their frame pointer with the frame that was
703 in progress when the signal occurred. */
704
705 frame_unwind_register (next_frame, I386_EBP_REGNUM, buf);
706 cache->base = extract_unsigned_integer (buf, 4);
707 if (cache->base == 0)
708 return cache;
709
710 /* For normal frames, %eip is stored at 4(%ebp). */
711 cache->saved_regs[I386_EIP_REGNUM] = 4;
712
713 cache->pc = frame_func_unwind (next_frame);
714 if (cache->pc != 0)
715 i386_analyze_prologue (cache->pc, frame_pc_unwind (next_frame), cache);
716
717 if (cache->locals < 0)
718 {
719 /* We didn't find a valid frame, which means that CACHE->base
720 currently holds the frame pointer for our calling frame. If
721 we're at the start of a function, or somewhere half-way its
722 prologue, the function's frame probably hasn't been fully
723 setup yet. Try to reconstruct the base address for the stack
724 frame by looking at the stack pointer. For truly "frameless"
725 functions this might work too. */
726
727 frame_unwind_register (next_frame, I386_ESP_REGNUM, buf);
728 cache->base = extract_unsigned_integer (buf, 4) + cache->sp_offset;
729 }
730
731 /* Now that we have the base address for the stack frame we can
732 calculate the value of %esp in the calling frame. */
733 cache->saved_sp = cache->base + 8;
734
735 /* Adjust all the saved registers such that they contain addresses
736 instead of offsets. */
737 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
738 if (cache->saved_regs[i] != -1)
739 cache->saved_regs[i] += cache->base;
740
741 return cache;
742 }
743
744 static void
745 i386_frame_this_id (struct frame_info *next_frame, void **this_cache,
746 struct frame_id *this_id)
747 {
748 struct i386_frame_cache *cache = i386_frame_cache (next_frame, this_cache);
749
750 /* This marks the outermost frame. */
751 if (cache->base == 0)
752 return;
753
754 /* See the end of i386_push_dummy_call. */
755 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
756 }
757
758 static void
759 i386_frame_prev_register (struct frame_info *next_frame, void **this_cache,
760 int regnum, int *optimizedp,
761 enum lval_type *lvalp, CORE_ADDR *addrp,
762 int *realnump, void *valuep)
763 {
764 struct i386_frame_cache *cache = i386_frame_cache (next_frame, this_cache);
765
766 gdb_assert (regnum >= 0);
767
768 /* The System V ABI says that:
769
770 "The flags register contains the system flags, such as the
771 direction flag and the carry flag. The direction flag must be
772 set to the forward (that is, zero) direction before entry and
773 upon exit from a function. Other user flags have no specified
774 role in the standard calling sequence and are not preserved."
775
776 To guarantee the "upon exit" part of that statement we fake a
777 saved flags register that has its direction flag cleared.
778
779 Note that GCC doesn't seem to rely on the fact that the direction
780 flag is cleared after a function return; it always explicitly
781 clears the flag before operations where it matters.
782
783 FIXME: kettenis/20030316: I'm not quite sure whether this is the
784 right thing to do. The way we fake the flags register here makes
785 it impossible to change it. */
786
787 if (regnum == I386_EFLAGS_REGNUM)
788 {
789 *optimizedp = 0;
790 *lvalp = not_lval;
791 *addrp = 0;
792 *realnump = -1;
793 if (valuep)
794 {
795 ULONGEST val;
796
797 /* Clear the direction flag. */
798 frame_unwind_unsigned_register (next_frame, PS_REGNUM, &val);
799 val &= ~(1 << 10);
800 store_unsigned_integer (valuep, 4, val);
801 }
802
803 return;
804 }
805
806 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
807 {
808 frame_register_unwind (next_frame, I386_EAX_REGNUM,
809 optimizedp, lvalp, addrp, realnump, valuep);
810 return;
811 }
812
813 if (regnum == I386_ESP_REGNUM && cache->saved_sp)
814 {
815 *optimizedp = 0;
816 *lvalp = not_lval;
817 *addrp = 0;
818 *realnump = -1;
819 if (valuep)
820 {
821 /* Store the value. */
822 store_unsigned_integer (valuep, 4, cache->saved_sp);
823 }
824 return;
825 }
826
827 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
828 {
829 *optimizedp = 0;
830 *lvalp = lval_memory;
831 *addrp = cache->saved_regs[regnum];
832 *realnump = -1;
833 if (valuep)
834 {
835 /* Read the value in from memory. */
836 read_memory (*addrp, valuep,
837 register_size (current_gdbarch, regnum));
838 }
839 return;
840 }
841
842 frame_register_unwind (next_frame, regnum,
843 optimizedp, lvalp, addrp, realnump, valuep);
844 }
845
846 static const struct frame_unwind i386_frame_unwind =
847 {
848 NORMAL_FRAME,
849 i386_frame_this_id,
850 i386_frame_prev_register
851 };
852
853 static const struct frame_unwind *
854 i386_frame_sniffer (struct frame_info *next_frame)
855 {
856 return &i386_frame_unwind;
857 }
858 \f
859
860 /* Signal trampolines. */
861
862 static struct i386_frame_cache *
863 i386_sigtramp_frame_cache (struct frame_info *next_frame, void **this_cache)
864 {
865 struct i386_frame_cache *cache;
866 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
867 CORE_ADDR addr;
868 char buf[4];
869
870 if (*this_cache)
871 return *this_cache;
872
873 cache = i386_alloc_frame_cache ();
874
875 frame_unwind_register (next_frame, I386_ESP_REGNUM, buf);
876 cache->base = extract_unsigned_integer (buf, 4) - 4;
877
878 addr = tdep->sigcontext_addr (next_frame);
879 if (tdep->sc_reg_offset)
880 {
881 int i;
882
883 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
884
885 for (i = 0; i < tdep->sc_num_regs; i++)
886 if (tdep->sc_reg_offset[i] != -1)
887 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
888 }
889 else
890 {
891 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
892 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
893 }
894
895 *this_cache = cache;
896 return cache;
897 }
898
899 static void
900 i386_sigtramp_frame_this_id (struct frame_info *next_frame, void **this_cache,
901 struct frame_id *this_id)
902 {
903 struct i386_frame_cache *cache =
904 i386_sigtramp_frame_cache (next_frame, this_cache);
905
906 /* See the end of i386_push_dummy_call. */
907 (*this_id) = frame_id_build (cache->base + 8, frame_pc_unwind (next_frame));
908 }
909
910 static void
911 i386_sigtramp_frame_prev_register (struct frame_info *next_frame,
912 void **this_cache,
913 int regnum, int *optimizedp,
914 enum lval_type *lvalp, CORE_ADDR *addrp,
915 int *realnump, void *valuep)
916 {
917 /* Make sure we've initialized the cache. */
918 i386_sigtramp_frame_cache (next_frame, this_cache);
919
920 i386_frame_prev_register (next_frame, this_cache, regnum,
921 optimizedp, lvalp, addrp, realnump, valuep);
922 }
923
924 static const struct frame_unwind i386_sigtramp_frame_unwind =
925 {
926 SIGTRAMP_FRAME,
927 i386_sigtramp_frame_this_id,
928 i386_sigtramp_frame_prev_register
929 };
930
931 static const struct frame_unwind *
932 i386_sigtramp_frame_sniffer (struct frame_info *next_frame)
933 {
934 CORE_ADDR pc = frame_pc_unwind (next_frame);
935 char *name;
936
937 /* We shouldn't even bother to try if the OSABI didn't register
938 a sigcontext_addr handler. */
939 if (!gdbarch_tdep (current_gdbarch)->sigcontext_addr)
940 return NULL;
941
942 find_pc_partial_function (pc, &name, NULL, NULL);
943 if (PC_IN_SIGTRAMP (pc, name))
944 return &i386_sigtramp_frame_unwind;
945
946 return NULL;
947 }
948 \f
949
950 static CORE_ADDR
951 i386_frame_base_address (struct frame_info *next_frame, void **this_cache)
952 {
953 struct i386_frame_cache *cache = i386_frame_cache (next_frame, this_cache);
954
955 return cache->base;
956 }
957
958 static const struct frame_base i386_frame_base =
959 {
960 &i386_frame_unwind,
961 i386_frame_base_address,
962 i386_frame_base_address,
963 i386_frame_base_address
964 };
965
966 static struct frame_id
967 i386_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
968 {
969 char buf[4];
970 CORE_ADDR fp;
971
972 frame_unwind_register (next_frame, I386_EBP_REGNUM, buf);
973 fp = extract_unsigned_integer (buf, 4);
974
975 /* See the end of i386_push_dummy_call. */
976 return frame_id_build (fp + 8, frame_pc_unwind (next_frame));
977 }
978 \f
979
980 /* Figure out where the longjmp will land. Slurp the args out of the
981 stack. We expect the first arg to be a pointer to the jmp_buf
982 structure from which we extract the address that we will land at.
983 This address is copied into PC. This routine returns non-zero on
984 success.
985
986 This function is 64-bit safe. */
987
988 static int
989 i386_get_longjmp_target (CORE_ADDR *pc)
990 {
991 char buf[8];
992 CORE_ADDR sp, jb_addr;
993 int jb_pc_offset = gdbarch_tdep (current_gdbarch)->jb_pc_offset;
994 int len = TYPE_LENGTH (builtin_type_void_func_ptr);
995
996 /* If JB_PC_OFFSET is -1, we have no way to find out where the
997 longjmp will land. */
998 if (jb_pc_offset == -1)
999 return 0;
1000
1001 sp = read_register (SP_REGNUM);
1002 if (target_read_memory (sp + len, buf, len))
1003 return 0;
1004
1005 jb_addr = extract_typed_address (buf, builtin_type_void_func_ptr);
1006 if (target_read_memory (jb_addr + jb_pc_offset, buf, len))
1007 return 0;
1008
1009 *pc = extract_typed_address (buf, builtin_type_void_func_ptr);
1010 return 1;
1011 }
1012 \f
1013
1014 static CORE_ADDR
1015 i386_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
1016 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
1017 struct value **args, CORE_ADDR sp, int struct_return,
1018 CORE_ADDR struct_addr)
1019 {
1020 char buf[4];
1021 int i;
1022
1023 /* Push arguments in reverse order. */
1024 for (i = nargs - 1; i >= 0; i--)
1025 {
1026 int len = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (args[i]));
1027
1028 /* The System V ABI says that:
1029
1030 "An argument's size is increased, if necessary, to make it a
1031 multiple of [32-bit] words. This may require tail padding,
1032 depending on the size of the argument."
1033
1034 This makes sure the stack says word-aligned. */
1035 sp -= (len + 3) & ~3;
1036 write_memory (sp, VALUE_CONTENTS_ALL (args[i]), len);
1037 }
1038
1039 /* Push value address. */
1040 if (struct_return)
1041 {
1042 sp -= 4;
1043 store_unsigned_integer (buf, 4, struct_addr);
1044 write_memory (sp, buf, 4);
1045 }
1046
1047 /* Store return address. */
1048 sp -= 4;
1049 store_unsigned_integer (buf, 4, bp_addr);
1050 write_memory (sp, buf, 4);
1051
1052 /* Finally, update the stack pointer... */
1053 store_unsigned_integer (buf, 4, sp);
1054 regcache_cooked_write (regcache, I386_ESP_REGNUM, buf);
1055
1056 /* ...and fake a frame pointer. */
1057 regcache_cooked_write (regcache, I386_EBP_REGNUM, buf);
1058
1059 /* MarkK wrote: This "+ 8" is all over the place:
1060 (i386_frame_this_id, i386_sigtramp_frame_this_id,
1061 i386_unwind_dummy_id). It's there, since all frame unwinders for
1062 a given target have to agree (within a certain margin) on the
1063 defenition of the stack address of a frame. Otherwise
1064 frame_id_inner() won't work correctly. Since DWARF2/GCC uses the
1065 stack address *before* the function call as a frame's CFA. On
1066 the i386, when %ebp is used as a frame pointer, the offset
1067 between the contents %ebp and the CFA as defined by GCC. */
1068 return sp + 8;
1069 }
1070
1071 /* These registers are used for returning integers (and on some
1072 targets also for returning `struct' and `union' values when their
1073 size and alignment match an integer type). */
1074 #define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
1075 #define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
1076
1077 /* Extract from an array REGBUF containing the (raw) register state, a
1078 function return value of TYPE, and copy that, in virtual format,
1079 into VALBUF. */
1080
1081 static void
1082 i386_extract_return_value (struct type *type, struct regcache *regcache,
1083 void *dst)
1084 {
1085 bfd_byte *valbuf = dst;
1086 int len = TYPE_LENGTH (type);
1087 char buf[I386_MAX_REGISTER_SIZE];
1088
1089 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
1090 && TYPE_NFIELDS (type) == 1)
1091 {
1092 i386_extract_return_value (TYPE_FIELD_TYPE (type, 0), regcache, valbuf);
1093 return;
1094 }
1095
1096 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1097 {
1098 if (FP0_REGNUM < 0)
1099 {
1100 warning ("Cannot find floating-point return value.");
1101 memset (valbuf, 0, len);
1102 return;
1103 }
1104
1105 /* Floating-point return values can be found in %st(0). Convert
1106 its contents to the desired type. This is probably not
1107 exactly how it would happen on the target itself, but it is
1108 the best we can do. */
1109 regcache_raw_read (regcache, I386_ST0_REGNUM, buf);
1110 convert_typed_floating (buf, builtin_type_i387_ext, valbuf, type);
1111 }
1112 else
1113 {
1114 int low_size = REGISTER_RAW_SIZE (LOW_RETURN_REGNUM);
1115 int high_size = REGISTER_RAW_SIZE (HIGH_RETURN_REGNUM);
1116
1117 if (len <= low_size)
1118 {
1119 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
1120 memcpy (valbuf, buf, len);
1121 }
1122 else if (len <= (low_size + high_size))
1123 {
1124 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
1125 memcpy (valbuf, buf, low_size);
1126 regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
1127 memcpy (valbuf + low_size, buf, len - low_size);
1128 }
1129 else
1130 internal_error (__FILE__, __LINE__,
1131 "Cannot extract return value of %d bytes long.", len);
1132 }
1133 }
1134
1135 /* Write into the appropriate registers a function return value stored
1136 in VALBUF of type TYPE, given in virtual format. */
1137
1138 static void
1139 i386_store_return_value (struct type *type, struct regcache *regcache,
1140 const void *valbuf)
1141 {
1142 int len = TYPE_LENGTH (type);
1143
1144 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
1145 && TYPE_NFIELDS (type) == 1)
1146 {
1147 i386_store_return_value (TYPE_FIELD_TYPE (type, 0), regcache, valbuf);
1148 return;
1149 }
1150
1151 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1152 {
1153 ULONGEST fstat;
1154 char buf[FPU_REG_RAW_SIZE];
1155
1156 if (FP0_REGNUM < 0)
1157 {
1158 warning ("Cannot set floating-point return value.");
1159 return;
1160 }
1161
1162 /* Returning floating-point values is a bit tricky. Apart from
1163 storing the return value in %st(0), we have to simulate the
1164 state of the FPU at function return point. */
1165
1166 /* Convert the value found in VALBUF to the extended
1167 floating-point format used by the FPU. This is probably
1168 not exactly how it would happen on the target itself, but
1169 it is the best we can do. */
1170 convert_typed_floating (valbuf, type, buf, builtin_type_i387_ext);
1171 regcache_raw_write (regcache, I386_ST0_REGNUM, buf);
1172
1173 /* Set the top of the floating-point register stack to 7. The
1174 actual value doesn't really matter, but 7 is what a normal
1175 function return would end up with if the program started out
1176 with a freshly initialized FPU. */
1177 regcache_raw_read_unsigned (regcache, FSTAT_REGNUM, &fstat);
1178 fstat |= (7 << 11);
1179 regcache_raw_write_unsigned (regcache, FSTAT_REGNUM, fstat);
1180
1181 /* Mark %st(1) through %st(7) as empty. Since we set the top of
1182 the floating-point register stack to 7, the appropriate value
1183 for the tag word is 0x3fff. */
1184 regcache_raw_write_unsigned (regcache, FTAG_REGNUM, 0x3fff);
1185 }
1186 else
1187 {
1188 int low_size = REGISTER_RAW_SIZE (LOW_RETURN_REGNUM);
1189 int high_size = REGISTER_RAW_SIZE (HIGH_RETURN_REGNUM);
1190
1191 if (len <= low_size)
1192 regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
1193 else if (len <= (low_size + high_size))
1194 {
1195 regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
1196 regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
1197 len - low_size, (char *) valbuf + low_size);
1198 }
1199 else
1200 internal_error (__FILE__, __LINE__,
1201 "Cannot store return value of %d bytes long.", len);
1202 }
1203 }
1204
1205 /* Extract from REGCACHE, which contains the (raw) register state, the
1206 address in which a function should return its structure value, as a
1207 CORE_ADDR. */
1208
1209 static CORE_ADDR
1210 i386_extract_struct_value_address (struct regcache *regcache)
1211 {
1212 char buf[4];
1213
1214 regcache_cooked_read (regcache, I386_EAX_REGNUM, buf);
1215 return extract_unsigned_integer (buf, 4);
1216 }
1217 \f
1218
1219 /* This is the variable that is set with "set struct-convention", and
1220 its legitimate values. */
1221 static const char default_struct_convention[] = "default";
1222 static const char pcc_struct_convention[] = "pcc";
1223 static const char reg_struct_convention[] = "reg";
1224 static const char *valid_conventions[] =
1225 {
1226 default_struct_convention,
1227 pcc_struct_convention,
1228 reg_struct_convention,
1229 NULL
1230 };
1231 static const char *struct_convention = default_struct_convention;
1232
1233 static int
1234 i386_use_struct_convention (int gcc_p, struct type *type)
1235 {
1236 enum struct_return struct_return;
1237
1238 if (struct_convention == default_struct_convention)
1239 struct_return = gdbarch_tdep (current_gdbarch)->struct_return;
1240 else if (struct_convention == pcc_struct_convention)
1241 struct_return = pcc_struct_return;
1242 else
1243 struct_return = reg_struct_return;
1244
1245 return generic_use_struct_convention (struct_return == reg_struct_return,
1246 type);
1247 }
1248 \f
1249
1250 /* Return the GDB type object for the "standard" data type of data in
1251 register REGNUM. Perhaps %esi and %edi should go here, but
1252 potentially they could be used for things other than address. */
1253
1254 static struct type *
1255 i386_register_type (struct gdbarch *gdbarch, int regnum)
1256 {
1257 if (regnum == I386_EIP_REGNUM
1258 || regnum == I386_EBP_REGNUM || regnum == I386_ESP_REGNUM)
1259 return lookup_pointer_type (builtin_type_void);
1260
1261 if (i386_fp_regnum_p (regnum))
1262 return builtin_type_i387_ext;
1263
1264 if (i386_sse_regnum_p (regnum))
1265 return builtin_type_vec128i;
1266
1267 if (i386_mmx_regnum_p (regnum))
1268 return builtin_type_vec64i;
1269
1270 return builtin_type_int;
1271 }
1272
1273 /* Map a cooked register onto a raw register or memory. For the i386,
1274 the MMX registers need to be mapped onto floating point registers. */
1275
1276 static int
1277 i386_mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
1278 {
1279 int mmxi;
1280 ULONGEST fstat;
1281 int tos;
1282 int fpi;
1283
1284 mmxi = regnum - MM0_REGNUM;
1285 regcache_raw_read_unsigned (regcache, FSTAT_REGNUM, &fstat);
1286 tos = (fstat >> 11) & 0x7;
1287 fpi = (mmxi + tos) % 8;
1288
1289 return (FP0_REGNUM + fpi);
1290 }
1291
1292 static void
1293 i386_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
1294 int regnum, void *buf)
1295 {
1296 if (i386_mmx_regnum_p (regnum))
1297 {
1298 char mmx_buf[MAX_REGISTER_SIZE];
1299 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
1300
1301 /* Extract (always little endian). */
1302 regcache_raw_read (regcache, fpnum, mmx_buf);
1303 memcpy (buf, mmx_buf, REGISTER_RAW_SIZE (regnum));
1304 }
1305 else
1306 regcache_raw_read (regcache, regnum, buf);
1307 }
1308
1309 static void
1310 i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
1311 int regnum, const void *buf)
1312 {
1313 if (i386_mmx_regnum_p (regnum))
1314 {
1315 char mmx_buf[MAX_REGISTER_SIZE];
1316 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
1317
1318 /* Read ... */
1319 regcache_raw_read (regcache, fpnum, mmx_buf);
1320 /* ... Modify ... (always little endian). */
1321 memcpy (mmx_buf, buf, REGISTER_RAW_SIZE (regnum));
1322 /* ... Write. */
1323 regcache_raw_write (regcache, fpnum, mmx_buf);
1324 }
1325 else
1326 regcache_raw_write (regcache, regnum, buf);
1327 }
1328 \f
1329
1330 /* These registers don't have pervasive standard uses. Move them to
1331 i386-tdep.h if necessary. */
1332
1333 #define I386_EBX_REGNUM 3 /* %ebx */
1334 #define I386_ECX_REGNUM 1 /* %ecx */
1335 #define I386_ESI_REGNUM 6 /* %esi */
1336 #define I386_EDI_REGNUM 7 /* %edi */
1337
1338 /* Return the register number of the register allocated by GCC after
1339 REGNUM, or -1 if there is no such register. */
1340
1341 static int
1342 i386_next_regnum (int regnum)
1343 {
1344 /* GCC allocates the registers in the order:
1345
1346 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
1347
1348 Since storing a variable in %esp doesn't make any sense we return
1349 -1 for %ebp and for %esp itself. */
1350 static int next_regnum[] =
1351 {
1352 I386_EDX_REGNUM, /* Slot for %eax. */
1353 I386_EBX_REGNUM, /* Slot for %ecx. */
1354 I386_ECX_REGNUM, /* Slot for %edx. */
1355 I386_ESI_REGNUM, /* Slot for %ebx. */
1356 -1, -1, /* Slots for %esp and %ebp. */
1357 I386_EDI_REGNUM, /* Slot for %esi. */
1358 I386_EBP_REGNUM /* Slot for %edi. */
1359 };
1360
1361 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
1362 return next_regnum[regnum];
1363
1364 return -1;
1365 }
1366
1367 /* Return nonzero if a value of type TYPE stored in register REGNUM
1368 needs any special handling. */
1369
1370 static int
1371 i386_convert_register_p (int regnum, struct type *type)
1372 {
1373 int len = TYPE_LENGTH (type);
1374
1375 /* Values may be spread across multiple registers. Most debugging
1376 formats aren't expressive enough to specify the locations, so
1377 some heuristics is involved. Right now we only handle types that
1378 have a length that is a multiple of the word size, since GCC
1379 doesn't seem to put any other types into registers. */
1380 if (len > 4 && len % 4 == 0)
1381 {
1382 int last_regnum = regnum;
1383
1384 while (len > 4)
1385 {
1386 last_regnum = i386_next_regnum (last_regnum);
1387 len -= 4;
1388 }
1389
1390 if (last_regnum != -1)
1391 return 1;
1392 }
1393
1394 return i386_fp_regnum_p (regnum);
1395 }
1396
1397 /* Read a value of type TYPE from register REGNUM in frame FRAME, and
1398 return its contents in TO. */
1399
1400 static void
1401 i386_register_to_value (struct frame_info *frame, int regnum,
1402 struct type *type, void *to)
1403 {
1404 int len = TYPE_LENGTH (type);
1405 char *buf = to;
1406
1407 /* FIXME: kettenis/20030609: What should we do if REGNUM isn't
1408 available in FRAME (i.e. if it wasn't saved)? */
1409
1410 if (i386_fp_regnum_p (regnum))
1411 {
1412 i387_register_to_value (frame, regnum, type, to);
1413 return;
1414 }
1415
1416 /* Read a value spread accross multiple registers. */
1417
1418 gdb_assert (len > 4 && len % 4 == 0);
1419
1420 while (len > 0)
1421 {
1422 gdb_assert (regnum != -1);
1423 gdb_assert (register_size (current_gdbarch, regnum) == 4);
1424
1425 frame_read_register (frame, regnum, buf);
1426 regnum = i386_next_regnum (regnum);
1427 len -= 4;
1428 buf += 4;
1429 }
1430 }
1431
1432 /* Write the contents FROM of a value of type TYPE into register
1433 REGNUM in frame FRAME. */
1434
1435 static void
1436 i386_value_to_register (struct frame_info *frame, int regnum,
1437 struct type *type, const void *from)
1438 {
1439 int len = TYPE_LENGTH (type);
1440 const char *buf = from;
1441
1442 if (i386_fp_regnum_p (regnum))
1443 {
1444 i387_value_to_register (frame, regnum, type, from);
1445 return;
1446 }
1447
1448 /* Write a value spread accross multiple registers. */
1449
1450 gdb_assert (len > 4 && len % 4 == 0);
1451
1452 while (len > 0)
1453 {
1454 gdb_assert (regnum != -1);
1455 gdb_assert (register_size (current_gdbarch, regnum) == 4);
1456
1457 put_frame_register (frame, regnum, buf);
1458 regnum = i386_next_regnum (regnum);
1459 len -= 4;
1460 buf += 4;
1461 }
1462 }
1463 \f
1464
1465
1466 #ifdef STATIC_TRANSFORM_NAME
1467 /* SunPRO encodes the static variables. This is not related to C++
1468 mangling, it is done for C too. */
1469
1470 char *
1471 sunpro_static_transform_name (char *name)
1472 {
1473 char *p;
1474 if (IS_STATIC_TRANSFORM_NAME (name))
1475 {
1476 /* For file-local statics there will be a period, a bunch of
1477 junk (the contents of which match a string given in the
1478 N_OPT), a period and the name. For function-local statics
1479 there will be a bunch of junk (which seems to change the
1480 second character from 'A' to 'B'), a period, the name of the
1481 function, and the name. So just skip everything before the
1482 last period. */
1483 p = strrchr (name, '.');
1484 if (p != NULL)
1485 name = p + 1;
1486 }
1487 return name;
1488 }
1489 #endif /* STATIC_TRANSFORM_NAME */
1490 \f
1491
1492 /* Stuff for WIN32 PE style DLL's but is pretty generic really. */
1493
1494 CORE_ADDR
1495 i386_pe_skip_trampoline_code (CORE_ADDR pc, char *name)
1496 {
1497 if (pc && read_memory_unsigned_integer (pc, 2) == 0x25ff) /* jmp *(dest) */
1498 {
1499 unsigned long indirect = read_memory_unsigned_integer (pc + 2, 4);
1500 struct minimal_symbol *indsym =
1501 indirect ? lookup_minimal_symbol_by_pc (indirect) : 0;
1502 char *symname = indsym ? SYMBOL_LINKAGE_NAME (indsym) : 0;
1503
1504 if (symname)
1505 {
1506 if (strncmp (symname, "__imp_", 6) == 0
1507 || strncmp (symname, "_imp_", 5) == 0)
1508 return name ? 1 : read_memory_unsigned_integer (indirect, 4);
1509 }
1510 }
1511 return 0; /* Not a trampoline. */
1512 }
1513 \f
1514
1515 /* Return non-zero if PC and NAME show that we are in a signal
1516 trampoline. */
1517
1518 static int
1519 i386_pc_in_sigtramp (CORE_ADDR pc, char *name)
1520 {
1521 return (name && strcmp ("_sigtramp", name) == 0);
1522 }
1523 \f
1524
1525 /* We have two flavours of disassembly. The machinery on this page
1526 deals with switching between those. */
1527
1528 static int
1529 i386_print_insn (bfd_vma pc, disassemble_info *info)
1530 {
1531 gdb_assert (disassembly_flavor == att_flavor
1532 || disassembly_flavor == intel_flavor);
1533
1534 /* FIXME: kettenis/20020915: Until disassembler_options is properly
1535 constified, cast to prevent a compiler warning. */
1536 info->disassembler_options = (char *) disassembly_flavor;
1537 info->mach = gdbarch_bfd_arch_info (current_gdbarch)->mach;
1538
1539 return print_insn_i386 (pc, info);
1540 }
1541 \f
1542
1543 /* There are a few i386 architecture variants that differ only
1544 slightly from the generic i386 target. For now, we don't give them
1545 their own source file, but include them here. As a consequence,
1546 they'll always be included. */
1547
1548 /* System V Release 4 (SVR4). */
1549
1550 static int
1551 i386_svr4_pc_in_sigtramp (CORE_ADDR pc, char *name)
1552 {
1553 /* UnixWare uses _sigacthandler. The origin of the other symbols is
1554 currently unknown. */
1555 return (name && (strcmp ("_sigreturn", name) == 0
1556 || strcmp ("_sigacthandler", name) == 0
1557 || strcmp ("sigvechandler", name) == 0));
1558 }
1559
1560 /* Assuming NEXT_FRAME is for a frame following a SVR4 sigtramp
1561 routine, return the address of the associated sigcontext (ucontext)
1562 structure. */
1563
1564 static CORE_ADDR
1565 i386_svr4_sigcontext_addr (struct frame_info *next_frame)
1566 {
1567 char buf[4];
1568 CORE_ADDR sp;
1569
1570 frame_unwind_register (next_frame, I386_ESP_REGNUM, buf);
1571 sp = extract_unsigned_integer (buf, 4);
1572
1573 return read_memory_unsigned_integer (sp + 8, 4);
1574 }
1575 \f
1576
1577 /* DJGPP. */
1578
1579 static int
1580 i386_go32_pc_in_sigtramp (CORE_ADDR pc, char *name)
1581 {
1582 /* DJGPP doesn't have any special frames for signal handlers. */
1583 return 0;
1584 }
1585 \f
1586
1587 /* Generic ELF. */
1588
1589 void
1590 i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1591 {
1592 /* We typically use stabs-in-ELF with the DWARF register numbering. */
1593 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dwarf_reg_to_regnum);
1594 }
1595
1596 /* System V Release 4 (SVR4). */
1597
1598 void
1599 i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1600 {
1601 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1602
1603 /* System V Release 4 uses ELF. */
1604 i386_elf_init_abi (info, gdbarch);
1605
1606 /* System V Release 4 has shared libraries. */
1607 set_gdbarch_in_solib_call_trampoline (gdbarch, in_plt_section);
1608 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
1609
1610 set_gdbarch_pc_in_sigtramp (gdbarch, i386_svr4_pc_in_sigtramp);
1611 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
1612 tdep->sc_pc_offset = 36 + 14 * 4;
1613 tdep->sc_sp_offset = 36 + 17 * 4;
1614
1615 tdep->jb_pc_offset = 20;
1616 }
1617
1618 /* DJGPP. */
1619
1620 static void
1621 i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1622 {
1623 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1624
1625 set_gdbarch_pc_in_sigtramp (gdbarch, i386_go32_pc_in_sigtramp);
1626
1627 tdep->jb_pc_offset = 36;
1628 }
1629
1630 /* NetWare. */
1631
1632 static void
1633 i386_nw_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1634 {
1635 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1636
1637 tdep->jb_pc_offset = 24;
1638 }
1639 \f
1640
1641 /* i386 register groups. In addition to the normal groups, add "mmx"
1642 and "sse". */
1643
1644 static struct reggroup *i386_sse_reggroup;
1645 static struct reggroup *i386_mmx_reggroup;
1646
1647 static void
1648 i386_init_reggroups (void)
1649 {
1650 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
1651 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
1652 }
1653
1654 static void
1655 i386_add_reggroups (struct gdbarch *gdbarch)
1656 {
1657 reggroup_add (gdbarch, i386_sse_reggroup);
1658 reggroup_add (gdbarch, i386_mmx_reggroup);
1659 reggroup_add (gdbarch, general_reggroup);
1660 reggroup_add (gdbarch, float_reggroup);
1661 reggroup_add (gdbarch, all_reggroup);
1662 reggroup_add (gdbarch, save_reggroup);
1663 reggroup_add (gdbarch, restore_reggroup);
1664 reggroup_add (gdbarch, vector_reggroup);
1665 reggroup_add (gdbarch, system_reggroup);
1666 }
1667
1668 int
1669 i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
1670 struct reggroup *group)
1671 {
1672 int sse_regnum_p = (i386_sse_regnum_p (regnum)
1673 || i386_mxcsr_regnum_p (regnum));
1674 int fp_regnum_p = (i386_fp_regnum_p (regnum)
1675 || i386_fpc_regnum_p (regnum));
1676 int mmx_regnum_p = (i386_mmx_regnum_p (regnum));
1677
1678 if (group == i386_mmx_reggroup)
1679 return mmx_regnum_p;
1680 if (group == i386_sse_reggroup)
1681 return sse_regnum_p;
1682 if (group == vector_reggroup)
1683 return (mmx_regnum_p || sse_regnum_p);
1684 if (group == float_reggroup)
1685 return fp_regnum_p;
1686 if (group == general_reggroup)
1687 return (!fp_regnum_p && !mmx_regnum_p && !sse_regnum_p);
1688
1689 return default_register_reggroup_p (gdbarch, regnum, group);
1690 }
1691 \f
1692
1693 /* Get the ith function argument for the current function. */
1694 static CORE_ADDR
1695 i386_fetch_pointer_argument (struct frame_info *frame, int argi,
1696 struct type *type)
1697 {
1698 CORE_ADDR stack;
1699 frame_read_register (frame, SP_REGNUM, &stack);
1700 return read_memory_unsigned_integer (stack + (4 * (argi + 1)), 4);
1701 }
1702
1703 \f
1704 static struct gdbarch *
1705 i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1706 {
1707 struct gdbarch_tdep *tdep;
1708 struct gdbarch *gdbarch;
1709
1710 /* If there is already a candidate, use it. */
1711 arches = gdbarch_list_lookup_by_info (arches, &info);
1712 if (arches != NULL)
1713 return arches->gdbarch;
1714
1715 /* Allocate space for the new architecture. */
1716 tdep = XMALLOC (struct gdbarch_tdep);
1717 gdbarch = gdbarch_alloc (&info, tdep);
1718
1719 /* The i386 default settings don't include the SSE registers.
1720 FIXME: kettenis/20020614: They do include the FPU registers for
1721 now, which probably is not quite right. */
1722 tdep->num_xmm_regs = 0;
1723
1724 tdep->jb_pc_offset = -1;
1725 tdep->struct_return = pcc_struct_return;
1726 tdep->sigtramp_start = 0;
1727 tdep->sigtramp_end = 0;
1728 tdep->sigcontext_addr = NULL;
1729 tdep->sc_reg_offset = NULL;
1730 tdep->sc_pc_offset = -1;
1731 tdep->sc_sp_offset = -1;
1732
1733 /* The format used for `long double' on almost all i386 targets is
1734 the i387 extended floating-point format. In fact, of all targets
1735 in the GCC 2.95 tree, only OSF/1 does it different, and insists
1736 on having a `long double' that's not `long' at all. */
1737 set_gdbarch_long_double_format (gdbarch, &floatformat_i387_ext);
1738
1739 /* Although the i387 extended floating-point has only 80 significant
1740 bits, a `long double' actually takes up 96, probably to enforce
1741 alignment. */
1742 set_gdbarch_long_double_bit (gdbarch, 96);
1743
1744 /* The default ABI includes general-purpose registers and
1745 floating-point registers. */
1746 set_gdbarch_num_regs (gdbarch, I386_NUM_GREGS + I386_NUM_FREGS);
1747 set_gdbarch_register_name (gdbarch, i386_register_name);
1748 set_gdbarch_register_type (gdbarch, i386_register_type);
1749
1750 /* Register numbers of various important registers. */
1751 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
1752 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
1753 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
1754 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
1755
1756 /* Use the "default" register numbering scheme for stabs and COFF. */
1757 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_stab_reg_to_regnum);
1758 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_stab_reg_to_regnum);
1759
1760 /* Use the DWARF register numbering scheme for DWARF and DWARF 2. */
1761 set_gdbarch_dwarf_reg_to_regnum (gdbarch, i386_dwarf_reg_to_regnum);
1762 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_dwarf_reg_to_regnum);
1763
1764 /* We don't define ECOFF_REG_TO_REGNUM, since ECOFF doesn't seem to
1765 be in use on any of the supported i386 targets. */
1766
1767 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
1768
1769 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
1770
1771 /* Call dummy code. */
1772 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
1773
1774 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
1775 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
1776 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
1777
1778 set_gdbarch_extract_return_value (gdbarch, i386_extract_return_value);
1779 set_gdbarch_store_return_value (gdbarch, i386_store_return_value);
1780 set_gdbarch_extract_struct_value_address (gdbarch,
1781 i386_extract_struct_value_address);
1782 set_gdbarch_use_struct_convention (gdbarch, i386_use_struct_convention);
1783
1784 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
1785
1786 /* Stack grows downward. */
1787 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1788
1789 set_gdbarch_breakpoint_from_pc (gdbarch, i386_breakpoint_from_pc);
1790 set_gdbarch_decr_pc_after_break (gdbarch, 1);
1791 set_gdbarch_function_start_offset (gdbarch, 0);
1792
1793 set_gdbarch_frame_args_skip (gdbarch, 8);
1794 set_gdbarch_pc_in_sigtramp (gdbarch, i386_pc_in_sigtramp);
1795
1796 /* Wire in the MMX registers. */
1797 set_gdbarch_num_pseudo_regs (gdbarch, i386_num_mmx_regs);
1798 set_gdbarch_pseudo_register_read (gdbarch, i386_pseudo_register_read);
1799 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
1800
1801 set_gdbarch_print_insn (gdbarch, i386_print_insn);
1802
1803 set_gdbarch_unwind_dummy_id (gdbarch, i386_unwind_dummy_id);
1804
1805 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
1806
1807 /* Add the i386 register groups. */
1808 i386_add_reggroups (gdbarch);
1809 set_gdbarch_register_reggroup_p (gdbarch, i386_register_reggroup_p);
1810
1811 /* Helper for function argument information. */
1812 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
1813
1814 /* Hook in the DWARF CFI frame unwinder. */
1815 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
1816 set_gdbarch_dwarf2_build_frame_info (gdbarch, dwarf2_build_frame_info);
1817
1818 frame_base_set_default (gdbarch, &i386_frame_base);
1819
1820 /* Hook in ABI-specific overrides, if they have been registered. */
1821 gdbarch_init_osabi (info, gdbarch);
1822
1823 frame_unwind_append_sniffer (gdbarch, i386_sigtramp_frame_sniffer);
1824 frame_unwind_append_sniffer (gdbarch, i386_frame_sniffer);
1825
1826 return gdbarch;
1827 }
1828
1829 static enum gdb_osabi
1830 i386_coff_osabi_sniffer (bfd *abfd)
1831 {
1832 if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
1833 || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
1834 return GDB_OSABI_GO32;
1835
1836 return GDB_OSABI_UNKNOWN;
1837 }
1838
1839 static enum gdb_osabi
1840 i386_nlm_osabi_sniffer (bfd *abfd)
1841 {
1842 return GDB_OSABI_NETWARE;
1843 }
1844 \f
1845
1846 /* Provide a prototype to silence -Wmissing-prototypes. */
1847 void _initialize_i386_tdep (void);
1848
1849 void
1850 _initialize_i386_tdep (void)
1851 {
1852 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
1853
1854 /* Add the variable that controls the disassembly flavor. */
1855 {
1856 struct cmd_list_element *new_cmd;
1857
1858 new_cmd = add_set_enum_cmd ("disassembly-flavor", no_class,
1859 valid_flavors,
1860 &disassembly_flavor,
1861 "\
1862 Set the disassembly flavor, the valid values are \"att\" and \"intel\", \
1863 and the default value is \"att\".",
1864 &setlist);
1865 add_show_from_set (new_cmd, &showlist);
1866 }
1867
1868 /* Add the variable that controls the convention for returning
1869 structs. */
1870 {
1871 struct cmd_list_element *new_cmd;
1872
1873 new_cmd = add_set_enum_cmd ("struct-convention", no_class,
1874 valid_conventions,
1875 &struct_convention, "\
1876 Set the convention for returning small structs, valid values \
1877 are \"default\", \"pcc\" and \"reg\", and the default value is \"default\".",
1878 &setlist);
1879 add_show_from_set (new_cmd, &showlist);
1880 }
1881
1882 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
1883 i386_coff_osabi_sniffer);
1884 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_nlm_flavour,
1885 i386_nlm_osabi_sniffer);
1886
1887 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
1888 i386_svr4_init_abi);
1889 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_GO32,
1890 i386_go32_init_abi);
1891 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_NETWARE,
1892 i386_nw_init_abi);
1893
1894 /* Initialize the i386 specific register groups. */
1895 i386_init_reggroups ();
1896 }
This page took 0.075741 seconds and 4 git commands to generate.