* gdbtypes.h (TYPE_OBJFILE_OWNED, TYPE_OWNER): New macros.
[deliverable/binutils-gdb.git] / gdb / i386-tdep.c
1 /* Intel 386 target-dependent stuff.
2
3 Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "opcode/i386.h"
24 #include "arch-utils.h"
25 #include "command.h"
26 #include "dummy-frame.h"
27 #include "dwarf2-frame.h"
28 #include "doublest.h"
29 #include "frame.h"
30 #include "frame-base.h"
31 #include "frame-unwind.h"
32 #include "inferior.h"
33 #include "gdbcmd.h"
34 #include "gdbcore.h"
35 #include "gdbtypes.h"
36 #include "objfiles.h"
37 #include "osabi.h"
38 #include "regcache.h"
39 #include "reggroups.h"
40 #include "regset.h"
41 #include "symfile.h"
42 #include "symtab.h"
43 #include "target.h"
44 #include "value.h"
45 #include "dis-asm.h"
46
47 #include "gdb_assert.h"
48 #include "gdb_string.h"
49
50 #include "i386-tdep.h"
51 #include "i387-tdep.h"
52
53 #include "record.h"
54 #include <stdint.h>
55
56 /* Register names. */
57
58 static char *i386_register_names[] =
59 {
60 "eax", "ecx", "edx", "ebx",
61 "esp", "ebp", "esi", "edi",
62 "eip", "eflags", "cs", "ss",
63 "ds", "es", "fs", "gs",
64 "st0", "st1", "st2", "st3",
65 "st4", "st5", "st6", "st7",
66 "fctrl", "fstat", "ftag", "fiseg",
67 "fioff", "foseg", "fooff", "fop",
68 "xmm0", "xmm1", "xmm2", "xmm3",
69 "xmm4", "xmm5", "xmm6", "xmm7",
70 "mxcsr"
71 };
72
73 static const int i386_num_register_names = ARRAY_SIZE (i386_register_names);
74
75 /* Register names for MMX pseudo-registers. */
76
77 static char *i386_mmx_names[] =
78 {
79 "mm0", "mm1", "mm2", "mm3",
80 "mm4", "mm5", "mm6", "mm7"
81 };
82
83 static const int i386_num_mmx_regs = ARRAY_SIZE (i386_mmx_names);
84
85 static int
86 i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
87 {
88 int mm0_regnum = gdbarch_tdep (gdbarch)->mm0_regnum;
89
90 if (mm0_regnum < 0)
91 return 0;
92
93 return (regnum >= mm0_regnum && regnum < mm0_regnum + i386_num_mmx_regs);
94 }
95
96 /* SSE register? */
97
98 static int
99 i386_sse_regnum_p (struct gdbarch *gdbarch, int regnum)
100 {
101 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
102
103 if (I387_NUM_XMM_REGS (tdep) == 0)
104 return 0;
105
106 return (I387_XMM0_REGNUM (tdep) <= regnum
107 && regnum < I387_MXCSR_REGNUM (tdep));
108 }
109
110 static int
111 i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
112 {
113 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
114
115 if (I387_NUM_XMM_REGS (tdep) == 0)
116 return 0;
117
118 return (regnum == I387_MXCSR_REGNUM (tdep));
119 }
120
121 /* FP register? */
122
123 int
124 i386_fp_regnum_p (struct gdbarch *gdbarch, int regnum)
125 {
126 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
127
128 if (I387_ST0_REGNUM (tdep) < 0)
129 return 0;
130
131 return (I387_ST0_REGNUM (tdep) <= regnum
132 && regnum < I387_FCTRL_REGNUM (tdep));
133 }
134
135 int
136 i386_fpc_regnum_p (struct gdbarch *gdbarch, int regnum)
137 {
138 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
139
140 if (I387_ST0_REGNUM (tdep) < 0)
141 return 0;
142
143 return (I387_FCTRL_REGNUM (tdep) <= regnum
144 && regnum < I387_XMM0_REGNUM (tdep));
145 }
146
147 /* Return the name of register REGNUM. */
148
149 const char *
150 i386_register_name (struct gdbarch *gdbarch, int regnum)
151 {
152 if (i386_mmx_regnum_p (gdbarch, regnum))
153 return i386_mmx_names[regnum - I387_MM0_REGNUM (gdbarch_tdep (gdbarch))];
154
155 if (regnum >= 0 && regnum < i386_num_register_names)
156 return i386_register_names[regnum];
157
158 return NULL;
159 }
160
161 /* Convert a dbx register number REG to the appropriate register
162 number used by GDB. */
163
164 static int
165 i386_dbx_reg_to_regnum (struct gdbarch *gdbarch, int reg)
166 {
167 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
168
169 /* This implements what GCC calls the "default" register map
170 (dbx_register_map[]). */
171
172 if (reg >= 0 && reg <= 7)
173 {
174 /* General-purpose registers. The debug info calls %ebp
175 register 4, and %esp register 5. */
176 if (reg == 4)
177 return 5;
178 else if (reg == 5)
179 return 4;
180 else return reg;
181 }
182 else if (reg >= 12 && reg <= 19)
183 {
184 /* Floating-point registers. */
185 return reg - 12 + I387_ST0_REGNUM (tdep);
186 }
187 else if (reg >= 21 && reg <= 28)
188 {
189 /* SSE registers. */
190 return reg - 21 + I387_XMM0_REGNUM (tdep);
191 }
192 else if (reg >= 29 && reg <= 36)
193 {
194 /* MMX registers. */
195 return reg - 29 + I387_MM0_REGNUM (tdep);
196 }
197
198 /* This will hopefully provoke a warning. */
199 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
200 }
201
202 /* Convert SVR4 register number REG to the appropriate register number
203 used by GDB. */
204
205 static int
206 i386_svr4_reg_to_regnum (struct gdbarch *gdbarch, int reg)
207 {
208 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
209
210 /* This implements the GCC register map that tries to be compatible
211 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
212
213 /* The SVR4 register numbering includes %eip and %eflags, and
214 numbers the floating point registers differently. */
215 if (reg >= 0 && reg <= 9)
216 {
217 /* General-purpose registers. */
218 return reg;
219 }
220 else if (reg >= 11 && reg <= 18)
221 {
222 /* Floating-point registers. */
223 return reg - 11 + I387_ST0_REGNUM (tdep);
224 }
225 else if (reg >= 21 && reg <= 36)
226 {
227 /* The SSE and MMX registers have the same numbers as with dbx. */
228 return i386_dbx_reg_to_regnum (gdbarch, reg);
229 }
230
231 switch (reg)
232 {
233 case 37: return I387_FCTRL_REGNUM (tdep);
234 case 38: return I387_FSTAT_REGNUM (tdep);
235 case 39: return I387_MXCSR_REGNUM (tdep);
236 case 40: return I386_ES_REGNUM;
237 case 41: return I386_CS_REGNUM;
238 case 42: return I386_SS_REGNUM;
239 case 43: return I386_DS_REGNUM;
240 case 44: return I386_FS_REGNUM;
241 case 45: return I386_GS_REGNUM;
242 }
243
244 /* This will hopefully provoke a warning. */
245 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
246 }
247
248 \f
249
250 /* This is the variable that is set with "set disassembly-flavor", and
251 its legitimate values. */
252 static const char att_flavor[] = "att";
253 static const char intel_flavor[] = "intel";
254 static const char *valid_flavors[] =
255 {
256 att_flavor,
257 intel_flavor,
258 NULL
259 };
260 static const char *disassembly_flavor = att_flavor;
261 \f
262
263 /* Use the program counter to determine the contents and size of a
264 breakpoint instruction. Return a pointer to a string of bytes that
265 encode a breakpoint instruction, store the length of the string in
266 *LEN and optionally adjust *PC to point to the correct memory
267 location for inserting the breakpoint.
268
269 On the i386 we have a single breakpoint that fits in a single byte
270 and can be inserted anywhere.
271
272 This function is 64-bit safe. */
273
274 static const gdb_byte *
275 i386_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
276 {
277 static gdb_byte break_insn[] = { 0xcc }; /* int 3 */
278
279 *len = sizeof (break_insn);
280 return break_insn;
281 }
282 \f
283 /* Displaced instruction handling. */
284
285 /* Skip the legacy instruction prefixes in INSN.
286 Not all prefixes are valid for any particular insn
287 but we needn't care, the insn will fault if it's invalid.
288 The result is a pointer to the first opcode byte,
289 or NULL if we run off the end of the buffer. */
290
291 static gdb_byte *
292 i386_skip_prefixes (gdb_byte *insn, size_t max_len)
293 {
294 gdb_byte *end = insn + max_len;
295
296 while (insn < end)
297 {
298 switch (*insn)
299 {
300 case DATA_PREFIX_OPCODE:
301 case ADDR_PREFIX_OPCODE:
302 case CS_PREFIX_OPCODE:
303 case DS_PREFIX_OPCODE:
304 case ES_PREFIX_OPCODE:
305 case FS_PREFIX_OPCODE:
306 case GS_PREFIX_OPCODE:
307 case SS_PREFIX_OPCODE:
308 case LOCK_PREFIX_OPCODE:
309 case REPE_PREFIX_OPCODE:
310 case REPNE_PREFIX_OPCODE:
311 ++insn;
312 continue;
313 default:
314 return insn;
315 }
316 }
317
318 return NULL;
319 }
320
321 static int
322 i386_absolute_jmp_p (const gdb_byte *insn)
323 {
324 /* jmp far (absolute address in operand) */
325 if (insn[0] == 0xea)
326 return 1;
327
328 if (insn[0] == 0xff)
329 {
330 /* jump near, absolute indirect (/4) */
331 if ((insn[1] & 0x38) == 0x20)
332 return 1;
333
334 /* jump far, absolute indirect (/5) */
335 if ((insn[1] & 0x38) == 0x28)
336 return 1;
337 }
338
339 return 0;
340 }
341
342 static int
343 i386_absolute_call_p (const gdb_byte *insn)
344 {
345 /* call far, absolute */
346 if (insn[0] == 0x9a)
347 return 1;
348
349 if (insn[0] == 0xff)
350 {
351 /* Call near, absolute indirect (/2) */
352 if ((insn[1] & 0x38) == 0x10)
353 return 1;
354
355 /* Call far, absolute indirect (/3) */
356 if ((insn[1] & 0x38) == 0x18)
357 return 1;
358 }
359
360 return 0;
361 }
362
363 static int
364 i386_ret_p (const gdb_byte *insn)
365 {
366 switch (insn[0])
367 {
368 case 0xc2: /* ret near, pop N bytes */
369 case 0xc3: /* ret near */
370 case 0xca: /* ret far, pop N bytes */
371 case 0xcb: /* ret far */
372 case 0xcf: /* iret */
373 return 1;
374
375 default:
376 return 0;
377 }
378 }
379
380 static int
381 i386_call_p (const gdb_byte *insn)
382 {
383 if (i386_absolute_call_p (insn))
384 return 1;
385
386 /* call near, relative */
387 if (insn[0] == 0xe8)
388 return 1;
389
390 return 0;
391 }
392
393 /* Return non-zero if INSN is a system call, and set *LENGTHP to its
394 length in bytes. Otherwise, return zero. */
395
396 static int
397 i386_syscall_p (const gdb_byte *insn, ULONGEST *lengthp)
398 {
399 if (insn[0] == 0xcd)
400 {
401 *lengthp = 2;
402 return 1;
403 }
404
405 return 0;
406 }
407
408 /* Fix up the state of registers and memory after having single-stepped
409 a displaced instruction. */
410
411 void
412 i386_displaced_step_fixup (struct gdbarch *gdbarch,
413 struct displaced_step_closure *closure,
414 CORE_ADDR from, CORE_ADDR to,
415 struct regcache *regs)
416 {
417 /* The offset we applied to the instruction's address.
418 This could well be negative (when viewed as a signed 32-bit
419 value), but ULONGEST won't reflect that, so take care when
420 applying it. */
421 ULONGEST insn_offset = to - from;
422
423 /* Since we use simple_displaced_step_copy_insn, our closure is a
424 copy of the instruction. */
425 gdb_byte *insn = (gdb_byte *) closure;
426 /* The start of the insn, needed in case we see some prefixes. */
427 gdb_byte *insn_start = insn;
428
429 if (debug_displaced)
430 fprintf_unfiltered (gdb_stdlog,
431 "displaced: fixup (0x%s, 0x%s), "
432 "insn = 0x%02x 0x%02x ...\n",
433 paddr_nz (from), paddr_nz (to), insn[0], insn[1]);
434
435 /* The list of issues to contend with here is taken from
436 resume_execution in arch/i386/kernel/kprobes.c, Linux 2.6.20.
437 Yay for Free Software! */
438
439 /* Relocate the %eip, if necessary. */
440
441 /* The instruction recognizers we use assume any leading prefixes
442 have been skipped. */
443 {
444 /* This is the size of the buffer in closure. */
445 size_t max_insn_len = gdbarch_max_insn_length (gdbarch);
446 gdb_byte *opcode = i386_skip_prefixes (insn, max_insn_len);
447 /* If there are too many prefixes, just ignore the insn.
448 It will fault when run. */
449 if (opcode != NULL)
450 insn = opcode;
451 }
452
453 /* Except in the case of absolute or indirect jump or call
454 instructions, or a return instruction, the new eip is relative to
455 the displaced instruction; make it relative. Well, signal
456 handler returns don't need relocation either, but we use the
457 value of %eip to recognize those; see below. */
458 if (! i386_absolute_jmp_p (insn)
459 && ! i386_absolute_call_p (insn)
460 && ! i386_ret_p (insn))
461 {
462 ULONGEST orig_eip;
463 ULONGEST insn_len;
464
465 regcache_cooked_read_unsigned (regs, I386_EIP_REGNUM, &orig_eip);
466
467 /* A signal trampoline system call changes the %eip, resuming
468 execution of the main program after the signal handler has
469 returned. That makes them like 'return' instructions; we
470 shouldn't relocate %eip.
471
472 But most system calls don't, and we do need to relocate %eip.
473
474 Our heuristic for distinguishing these cases: if stepping
475 over the system call instruction left control directly after
476 the instruction, the we relocate --- control almost certainly
477 doesn't belong in the displaced copy. Otherwise, we assume
478 the instruction has put control where it belongs, and leave
479 it unrelocated. Goodness help us if there are PC-relative
480 system calls. */
481 if (i386_syscall_p (insn, &insn_len)
482 && orig_eip != to + (insn - insn_start) + insn_len)
483 {
484 if (debug_displaced)
485 fprintf_unfiltered (gdb_stdlog,
486 "displaced: syscall changed %%eip; "
487 "not relocating\n");
488 }
489 else
490 {
491 ULONGEST eip = (orig_eip - insn_offset) & 0xffffffffUL;
492
493 /* If we just stepped over a breakpoint insn, we don't backup
494 the pc on purpose; this is to match behaviour without
495 stepping. */
496
497 regcache_cooked_write_unsigned (regs, I386_EIP_REGNUM, eip);
498
499 if (debug_displaced)
500 fprintf_unfiltered (gdb_stdlog,
501 "displaced: "
502 "relocated %%eip from 0x%s to 0x%s\n",
503 paddr_nz (orig_eip), paddr_nz (eip));
504 }
505 }
506
507 /* If the instruction was PUSHFL, then the TF bit will be set in the
508 pushed value, and should be cleared. We'll leave this for later,
509 since GDB already messes up the TF flag when stepping over a
510 pushfl. */
511
512 /* If the instruction was a call, the return address now atop the
513 stack is the address following the copied instruction. We need
514 to make it the address following the original instruction. */
515 if (i386_call_p (insn))
516 {
517 ULONGEST esp;
518 ULONGEST retaddr;
519 const ULONGEST retaddr_len = 4;
520
521 regcache_cooked_read_unsigned (regs, I386_ESP_REGNUM, &esp);
522 retaddr = read_memory_unsigned_integer (esp, retaddr_len);
523 retaddr = (retaddr - insn_offset) & 0xffffffffUL;
524 write_memory_unsigned_integer (esp, retaddr_len, retaddr);
525
526 if (debug_displaced)
527 fprintf_unfiltered (gdb_stdlog,
528 "displaced: relocated return addr at 0x%s "
529 "to 0x%s\n",
530 paddr_nz (esp),
531 paddr_nz (retaddr));
532 }
533 }
534 \f
535 #ifdef I386_REGNO_TO_SYMMETRY
536 #error "The Sequent Symmetry is no longer supported."
537 #endif
538
539 /* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
540 and %esp "belong" to the calling function. Therefore these
541 registers should be saved if they're going to be modified. */
542
543 /* The maximum number of saved registers. This should include all
544 registers mentioned above, and %eip. */
545 #define I386_NUM_SAVED_REGS I386_NUM_GREGS
546
547 struct i386_frame_cache
548 {
549 /* Base address. */
550 CORE_ADDR base;
551 LONGEST sp_offset;
552 CORE_ADDR pc;
553
554 /* Saved registers. */
555 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
556 CORE_ADDR saved_sp;
557 int saved_sp_reg;
558 int pc_in_eax;
559
560 /* Stack space reserved for local variables. */
561 long locals;
562 };
563
564 /* Allocate and initialize a frame cache. */
565
566 static struct i386_frame_cache *
567 i386_alloc_frame_cache (void)
568 {
569 struct i386_frame_cache *cache;
570 int i;
571
572 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
573
574 /* Base address. */
575 cache->base = 0;
576 cache->sp_offset = -4;
577 cache->pc = 0;
578
579 /* Saved registers. We initialize these to -1 since zero is a valid
580 offset (that's where %ebp is supposed to be stored). */
581 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
582 cache->saved_regs[i] = -1;
583 cache->saved_sp = 0;
584 cache->saved_sp_reg = -1;
585 cache->pc_in_eax = 0;
586
587 /* Frameless until proven otherwise. */
588 cache->locals = -1;
589
590 return cache;
591 }
592
593 /* If the instruction at PC is a jump, return the address of its
594 target. Otherwise, return PC. */
595
596 static CORE_ADDR
597 i386_follow_jump (CORE_ADDR pc)
598 {
599 gdb_byte op;
600 long delta = 0;
601 int data16 = 0;
602
603 target_read_memory (pc, &op, 1);
604 if (op == 0x66)
605 {
606 data16 = 1;
607 op = read_memory_unsigned_integer (pc + 1, 1);
608 }
609
610 switch (op)
611 {
612 case 0xe9:
613 /* Relative jump: if data16 == 0, disp32, else disp16. */
614 if (data16)
615 {
616 delta = read_memory_integer (pc + 2, 2);
617
618 /* Include the size of the jmp instruction (including the
619 0x66 prefix). */
620 delta += 4;
621 }
622 else
623 {
624 delta = read_memory_integer (pc + 1, 4);
625
626 /* Include the size of the jmp instruction. */
627 delta += 5;
628 }
629 break;
630 case 0xeb:
631 /* Relative jump, disp8 (ignore data16). */
632 delta = read_memory_integer (pc + data16 + 1, 1);
633
634 delta += data16 + 2;
635 break;
636 }
637
638 return pc + delta;
639 }
640
641 /* Check whether PC points at a prologue for a function returning a
642 structure or union. If so, it updates CACHE and returns the
643 address of the first instruction after the code sequence that
644 removes the "hidden" argument from the stack or CURRENT_PC,
645 whichever is smaller. Otherwise, return PC. */
646
647 static CORE_ADDR
648 i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
649 struct i386_frame_cache *cache)
650 {
651 /* Functions that return a structure or union start with:
652
653 popl %eax 0x58
654 xchgl %eax, (%esp) 0x87 0x04 0x24
655 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
656
657 (the System V compiler puts out the second `xchg' instruction,
658 and the assembler doesn't try to optimize it, so the 'sib' form
659 gets generated). This sequence is used to get the address of the
660 return buffer for a function that returns a structure. */
661 static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
662 static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
663 gdb_byte buf[4];
664 gdb_byte op;
665
666 if (current_pc <= pc)
667 return pc;
668
669 target_read_memory (pc, &op, 1);
670
671 if (op != 0x58) /* popl %eax */
672 return pc;
673
674 target_read_memory (pc + 1, buf, 4);
675 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
676 return pc;
677
678 if (current_pc == pc)
679 {
680 cache->sp_offset += 4;
681 return current_pc;
682 }
683
684 if (current_pc == pc + 1)
685 {
686 cache->pc_in_eax = 1;
687 return current_pc;
688 }
689
690 if (buf[1] == proto1[1])
691 return pc + 4;
692 else
693 return pc + 5;
694 }
695
696 static CORE_ADDR
697 i386_skip_probe (CORE_ADDR pc)
698 {
699 /* A function may start with
700
701 pushl constant
702 call _probe
703 addl $4, %esp
704
705 followed by
706
707 pushl %ebp
708
709 etc. */
710 gdb_byte buf[8];
711 gdb_byte op;
712
713 target_read_memory (pc, &op, 1);
714
715 if (op == 0x68 || op == 0x6a)
716 {
717 int delta;
718
719 /* Skip past the `pushl' instruction; it has either a one-byte or a
720 four-byte operand, depending on the opcode. */
721 if (op == 0x68)
722 delta = 5;
723 else
724 delta = 2;
725
726 /* Read the following 8 bytes, which should be `call _probe' (6
727 bytes) followed by `addl $4,%esp' (2 bytes). */
728 read_memory (pc + delta, buf, sizeof (buf));
729 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
730 pc += delta + sizeof (buf);
731 }
732
733 return pc;
734 }
735
736 /* GCC 4.1 and later, can put code in the prologue to realign the
737 stack pointer. Check whether PC points to such code, and update
738 CACHE accordingly. Return the first instruction after the code
739 sequence or CURRENT_PC, whichever is smaller. If we don't
740 recognize the code, return PC. */
741
742 static CORE_ADDR
743 i386_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
744 struct i386_frame_cache *cache)
745 {
746 /* There are 2 code sequences to re-align stack before the frame
747 gets set up:
748
749 1. Use a caller-saved saved register:
750
751 leal 4(%esp), %reg
752 andl $-XXX, %esp
753 pushl -4(%reg)
754
755 2. Use a callee-saved saved register:
756
757 pushl %reg
758 leal 8(%esp), %reg
759 andl $-XXX, %esp
760 pushl -4(%reg)
761
762 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
763
764 0x83 0xe4 0xf0 andl $-16, %esp
765 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
766 */
767
768 gdb_byte buf[14];
769 int reg;
770 int offset, offset_and;
771 static int regnums[8] = {
772 I386_EAX_REGNUM, /* %eax */
773 I386_ECX_REGNUM, /* %ecx */
774 I386_EDX_REGNUM, /* %edx */
775 I386_EBX_REGNUM, /* %ebx */
776 I386_ESP_REGNUM, /* %esp */
777 I386_EBP_REGNUM, /* %ebp */
778 I386_ESI_REGNUM, /* %esi */
779 I386_EDI_REGNUM /* %edi */
780 };
781
782 if (target_read_memory (pc, buf, sizeof buf))
783 return pc;
784
785 /* Check caller-saved saved register. The first instruction has
786 to be "leal 4(%esp), %reg". */
787 if (buf[0] == 0x8d && buf[2] == 0x24 && buf[3] == 0x4)
788 {
789 /* MOD must be binary 10 and R/M must be binary 100. */
790 if ((buf[1] & 0xc7) != 0x44)
791 return pc;
792
793 /* REG has register number. */
794 reg = (buf[1] >> 3) & 7;
795 offset = 4;
796 }
797 else
798 {
799 /* Check callee-saved saved register. The first instruction
800 has to be "pushl %reg". */
801 if ((buf[0] & 0xf8) != 0x50)
802 return pc;
803
804 /* Get register. */
805 reg = buf[0] & 0x7;
806
807 /* The next instruction has to be "leal 8(%esp), %reg". */
808 if (buf[1] != 0x8d || buf[3] != 0x24 || buf[4] != 0x8)
809 return pc;
810
811 /* MOD must be binary 10 and R/M must be binary 100. */
812 if ((buf[2] & 0xc7) != 0x44)
813 return pc;
814
815 /* REG has register number. Registers in pushl and leal have to
816 be the same. */
817 if (reg != ((buf[2] >> 3) & 7))
818 return pc;
819
820 offset = 5;
821 }
822
823 /* Rigister can't be %esp nor %ebp. */
824 if (reg == 4 || reg == 5)
825 return pc;
826
827 /* The next instruction has to be "andl $-XXX, %esp". */
828 if (buf[offset + 1] != 0xe4
829 || (buf[offset] != 0x81 && buf[offset] != 0x83))
830 return pc;
831
832 offset_and = offset;
833 offset += buf[offset] == 0x81 ? 6 : 3;
834
835 /* The next instruction has to be "pushl -4(%reg)". 8bit -4 is
836 0xfc. REG must be binary 110 and MOD must be binary 01. */
837 if (buf[offset] != 0xff
838 || buf[offset + 2] != 0xfc
839 || (buf[offset + 1] & 0xf8) != 0x70)
840 return pc;
841
842 /* R/M has register. Registers in leal and pushl have to be the
843 same. */
844 if (reg != (buf[offset + 1] & 7))
845 return pc;
846
847 if (current_pc > pc + offset_and)
848 cache->saved_sp_reg = regnums[reg];
849
850 return min (pc + offset + 3, current_pc);
851 }
852
853 /* Maximum instruction length we need to handle. */
854 #define I386_MAX_MATCHED_INSN_LEN 6
855
856 /* Instruction description. */
857 struct i386_insn
858 {
859 size_t len;
860 gdb_byte insn[I386_MAX_MATCHED_INSN_LEN];
861 gdb_byte mask[I386_MAX_MATCHED_INSN_LEN];
862 };
863
864 /* Search for the instruction at PC in the list SKIP_INSNS. Return
865 the first instruction description that matches. Otherwise, return
866 NULL. */
867
868 static struct i386_insn *
869 i386_match_insn (CORE_ADDR pc, struct i386_insn *skip_insns)
870 {
871 struct i386_insn *insn;
872 gdb_byte op;
873
874 target_read_memory (pc, &op, 1);
875
876 for (insn = skip_insns; insn->len > 0; insn++)
877 {
878 if ((op & insn->mask[0]) == insn->insn[0])
879 {
880 gdb_byte buf[I386_MAX_MATCHED_INSN_LEN - 1];
881 int insn_matched = 1;
882 size_t i;
883
884 gdb_assert (insn->len > 1);
885 gdb_assert (insn->len <= I386_MAX_MATCHED_INSN_LEN);
886
887 target_read_memory (pc + 1, buf, insn->len - 1);
888 for (i = 1; i < insn->len; i++)
889 {
890 if ((buf[i - 1] & insn->mask[i]) != insn->insn[i])
891 insn_matched = 0;
892 }
893
894 if (insn_matched)
895 return insn;
896 }
897 }
898
899 return NULL;
900 }
901
902 /* Some special instructions that might be migrated by GCC into the
903 part of the prologue that sets up the new stack frame. Because the
904 stack frame hasn't been setup yet, no registers have been saved
905 yet, and only the scratch registers %eax, %ecx and %edx can be
906 touched. */
907
908 struct i386_insn i386_frame_setup_skip_insns[] =
909 {
910 /* Check for `movb imm8, r' and `movl imm32, r'.
911
912 ??? Should we handle 16-bit operand-sizes here? */
913
914 /* `movb imm8, %al' and `movb imm8, %ah' */
915 /* `movb imm8, %cl' and `movb imm8, %ch' */
916 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
917 /* `movb imm8, %dl' and `movb imm8, %dh' */
918 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
919 /* `movl imm32, %eax' and `movl imm32, %ecx' */
920 { 5, { 0xb8 }, { 0xfe } },
921 /* `movl imm32, %edx' */
922 { 5, { 0xba }, { 0xff } },
923
924 /* Check for `mov imm32, r32'. Note that there is an alternative
925 encoding for `mov m32, %eax'.
926
927 ??? Should we handle SIB adressing here?
928 ??? Should we handle 16-bit operand-sizes here? */
929
930 /* `movl m32, %eax' */
931 { 5, { 0xa1 }, { 0xff } },
932 /* `movl m32, %eax' and `mov; m32, %ecx' */
933 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
934 /* `movl m32, %edx' */
935 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
936
937 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
938 Because of the symmetry, there are actually two ways to encode
939 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
940 opcode bytes 0x31 and 0x33 for `xorl'. */
941
942 /* `subl %eax, %eax' */
943 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
944 /* `subl %ecx, %ecx' */
945 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
946 /* `subl %edx, %edx' */
947 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
948 /* `xorl %eax, %eax' */
949 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
950 /* `xorl %ecx, %ecx' */
951 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
952 /* `xorl %edx, %edx' */
953 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
954 { 0 }
955 };
956
957
958 /* Check whether PC points to a no-op instruction. */
959 static CORE_ADDR
960 i386_skip_noop (CORE_ADDR pc)
961 {
962 gdb_byte op;
963 int check = 1;
964
965 target_read_memory (pc, &op, 1);
966
967 while (check)
968 {
969 check = 0;
970 /* Ignore `nop' instruction. */
971 if (op == 0x90)
972 {
973 pc += 1;
974 target_read_memory (pc, &op, 1);
975 check = 1;
976 }
977 /* Ignore no-op instruction `mov %edi, %edi'.
978 Microsoft system dlls often start with
979 a `mov %edi,%edi' instruction.
980 The 5 bytes before the function start are
981 filled with `nop' instructions.
982 This pattern can be used for hot-patching:
983 The `mov %edi, %edi' instruction can be replaced by a
984 near jump to the location of the 5 `nop' instructions
985 which can be replaced by a 32-bit jump to anywhere
986 in the 32-bit address space. */
987
988 else if (op == 0x8b)
989 {
990 target_read_memory (pc + 1, &op, 1);
991 if (op == 0xff)
992 {
993 pc += 2;
994 target_read_memory (pc, &op, 1);
995 check = 1;
996 }
997 }
998 }
999 return pc;
1000 }
1001
1002 /* Check whether PC points at a code that sets up a new stack frame.
1003 If so, it updates CACHE and returns the address of the first
1004 instruction after the sequence that sets up the frame or LIMIT,
1005 whichever is smaller. If we don't recognize the code, return PC. */
1006
1007 static CORE_ADDR
1008 i386_analyze_frame_setup (CORE_ADDR pc, CORE_ADDR limit,
1009 struct i386_frame_cache *cache)
1010 {
1011 struct i386_insn *insn;
1012 gdb_byte op;
1013 int skip = 0;
1014
1015 if (limit <= pc)
1016 return limit;
1017
1018 target_read_memory (pc, &op, 1);
1019
1020 if (op == 0x55) /* pushl %ebp */
1021 {
1022 /* Take into account that we've executed the `pushl %ebp' that
1023 starts this instruction sequence. */
1024 cache->saved_regs[I386_EBP_REGNUM] = 0;
1025 cache->sp_offset += 4;
1026 pc++;
1027
1028 /* If that's all, return now. */
1029 if (limit <= pc)
1030 return limit;
1031
1032 /* Check for some special instructions that might be migrated by
1033 GCC into the prologue and skip them. At this point in the
1034 prologue, code should only touch the scratch registers %eax,
1035 %ecx and %edx, so while the number of posibilities is sheer,
1036 it is limited.
1037
1038 Make sure we only skip these instructions if we later see the
1039 `movl %esp, %ebp' that actually sets up the frame. */
1040 while (pc + skip < limit)
1041 {
1042 insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
1043 if (insn == NULL)
1044 break;
1045
1046 skip += insn->len;
1047 }
1048
1049 /* If that's all, return now. */
1050 if (limit <= pc + skip)
1051 return limit;
1052
1053 target_read_memory (pc + skip, &op, 1);
1054
1055 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
1056 switch (op)
1057 {
1058 case 0x8b:
1059 if (read_memory_unsigned_integer (pc + skip + 1, 1) != 0xec)
1060 return pc;
1061 break;
1062 case 0x89:
1063 if (read_memory_unsigned_integer (pc + skip + 1, 1) != 0xe5)
1064 return pc;
1065 break;
1066 default:
1067 return pc;
1068 }
1069
1070 /* OK, we actually have a frame. We just don't know how large
1071 it is yet. Set its size to zero. We'll adjust it if
1072 necessary. We also now commit to skipping the special
1073 instructions mentioned before. */
1074 cache->locals = 0;
1075 pc += (skip + 2);
1076
1077 /* If that's all, return now. */
1078 if (limit <= pc)
1079 return limit;
1080
1081 /* Check for stack adjustment
1082
1083 subl $XXX, %esp
1084
1085 NOTE: You can't subtract a 16-bit immediate from a 32-bit
1086 reg, so we don't have to worry about a data16 prefix. */
1087 target_read_memory (pc, &op, 1);
1088 if (op == 0x83)
1089 {
1090 /* `subl' with 8-bit immediate. */
1091 if (read_memory_unsigned_integer (pc + 1, 1) != 0xec)
1092 /* Some instruction starting with 0x83 other than `subl'. */
1093 return pc;
1094
1095 /* `subl' with signed 8-bit immediate (though it wouldn't
1096 make sense to be negative). */
1097 cache->locals = read_memory_integer (pc + 2, 1);
1098 return pc + 3;
1099 }
1100 else if (op == 0x81)
1101 {
1102 /* Maybe it is `subl' with a 32-bit immediate. */
1103 if (read_memory_unsigned_integer (pc + 1, 1) != 0xec)
1104 /* Some instruction starting with 0x81 other than `subl'. */
1105 return pc;
1106
1107 /* It is `subl' with a 32-bit immediate. */
1108 cache->locals = read_memory_integer (pc + 2, 4);
1109 return pc + 6;
1110 }
1111 else
1112 {
1113 /* Some instruction other than `subl'. */
1114 return pc;
1115 }
1116 }
1117 else if (op == 0xc8) /* enter */
1118 {
1119 cache->locals = read_memory_unsigned_integer (pc + 1, 2);
1120 return pc + 4;
1121 }
1122
1123 return pc;
1124 }
1125
1126 /* Check whether PC points at code that saves registers on the stack.
1127 If so, it updates CACHE and returns the address of the first
1128 instruction after the register saves or CURRENT_PC, whichever is
1129 smaller. Otherwise, return PC. */
1130
1131 static CORE_ADDR
1132 i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
1133 struct i386_frame_cache *cache)
1134 {
1135 CORE_ADDR offset = 0;
1136 gdb_byte op;
1137 int i;
1138
1139 if (cache->locals > 0)
1140 offset -= cache->locals;
1141 for (i = 0; i < 8 && pc < current_pc; i++)
1142 {
1143 target_read_memory (pc, &op, 1);
1144 if (op < 0x50 || op > 0x57)
1145 break;
1146
1147 offset -= 4;
1148 cache->saved_regs[op - 0x50] = offset;
1149 cache->sp_offset += 4;
1150 pc++;
1151 }
1152
1153 return pc;
1154 }
1155
1156 /* Do a full analysis of the prologue at PC and update CACHE
1157 accordingly. Bail out early if CURRENT_PC is reached. Return the
1158 address where the analysis stopped.
1159
1160 We handle these cases:
1161
1162 The startup sequence can be at the start of the function, or the
1163 function can start with a branch to startup code at the end.
1164
1165 %ebp can be set up with either the 'enter' instruction, or "pushl
1166 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
1167 once used in the System V compiler).
1168
1169 Local space is allocated just below the saved %ebp by either the
1170 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
1171 16-bit unsigned argument for space to allocate, and the 'addl'
1172 instruction could have either a signed byte, or 32-bit immediate.
1173
1174 Next, the registers used by this function are pushed. With the
1175 System V compiler they will always be in the order: %edi, %esi,
1176 %ebx (and sometimes a harmless bug causes it to also save but not
1177 restore %eax); however, the code below is willing to see the pushes
1178 in any order, and will handle up to 8 of them.
1179
1180 If the setup sequence is at the end of the function, then the next
1181 instruction will be a branch back to the start. */
1182
1183 static CORE_ADDR
1184 i386_analyze_prologue (CORE_ADDR pc, CORE_ADDR current_pc,
1185 struct i386_frame_cache *cache)
1186 {
1187 pc = i386_skip_noop (pc);
1188 pc = i386_follow_jump (pc);
1189 pc = i386_analyze_struct_return (pc, current_pc, cache);
1190 pc = i386_skip_probe (pc);
1191 pc = i386_analyze_stack_align (pc, current_pc, cache);
1192 pc = i386_analyze_frame_setup (pc, current_pc, cache);
1193 return i386_analyze_register_saves (pc, current_pc, cache);
1194 }
1195
1196 /* Return PC of first real instruction. */
1197
1198 static CORE_ADDR
1199 i386_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
1200 {
1201 static gdb_byte pic_pat[6] =
1202 {
1203 0xe8, 0, 0, 0, 0, /* call 0x0 */
1204 0x5b, /* popl %ebx */
1205 };
1206 struct i386_frame_cache cache;
1207 CORE_ADDR pc;
1208 gdb_byte op;
1209 int i;
1210
1211 cache.locals = -1;
1212 pc = i386_analyze_prologue (start_pc, 0xffffffff, &cache);
1213 if (cache.locals < 0)
1214 return start_pc;
1215
1216 /* Found valid frame setup. */
1217
1218 /* The native cc on SVR4 in -K PIC mode inserts the following code
1219 to get the address of the global offset table (GOT) into register
1220 %ebx:
1221
1222 call 0x0
1223 popl %ebx
1224 movl %ebx,x(%ebp) (optional)
1225 addl y,%ebx
1226
1227 This code is with the rest of the prologue (at the end of the
1228 function), so we have to skip it to get to the first real
1229 instruction at the start of the function. */
1230
1231 for (i = 0; i < 6; i++)
1232 {
1233 target_read_memory (pc + i, &op, 1);
1234 if (pic_pat[i] != op)
1235 break;
1236 }
1237 if (i == 6)
1238 {
1239 int delta = 6;
1240
1241 target_read_memory (pc + delta, &op, 1);
1242
1243 if (op == 0x89) /* movl %ebx, x(%ebp) */
1244 {
1245 op = read_memory_unsigned_integer (pc + delta + 1, 1);
1246
1247 if (op == 0x5d) /* One byte offset from %ebp. */
1248 delta += 3;
1249 else if (op == 0x9d) /* Four byte offset from %ebp. */
1250 delta += 6;
1251 else /* Unexpected instruction. */
1252 delta = 0;
1253
1254 target_read_memory (pc + delta, &op, 1);
1255 }
1256
1257 /* addl y,%ebx */
1258 if (delta > 0 && op == 0x81
1259 && read_memory_unsigned_integer (pc + delta + 1, 1) == 0xc3)
1260 {
1261 pc += delta + 6;
1262 }
1263 }
1264
1265 /* If the function starts with a branch (to startup code at the end)
1266 the last instruction should bring us back to the first
1267 instruction of the real code. */
1268 if (i386_follow_jump (start_pc) != start_pc)
1269 pc = i386_follow_jump (pc);
1270
1271 return pc;
1272 }
1273
1274 /* Check that the code pointed to by PC corresponds to a call to
1275 __main, skip it if so. Return PC otherwise. */
1276
1277 CORE_ADDR
1278 i386_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1279 {
1280 gdb_byte op;
1281
1282 target_read_memory (pc, &op, 1);
1283 if (op == 0xe8)
1284 {
1285 gdb_byte buf[4];
1286
1287 if (target_read_memory (pc + 1, buf, sizeof buf) == 0)
1288 {
1289 /* Make sure address is computed correctly as a 32bit
1290 integer even if CORE_ADDR is 64 bit wide. */
1291 struct minimal_symbol *s;
1292 CORE_ADDR call_dest = pc + 5 + extract_signed_integer (buf, 4);
1293
1294 call_dest = call_dest & 0xffffffffU;
1295 s = lookup_minimal_symbol_by_pc (call_dest);
1296 if (s != NULL
1297 && SYMBOL_LINKAGE_NAME (s) != NULL
1298 && strcmp (SYMBOL_LINKAGE_NAME (s), "__main") == 0)
1299 pc += 5;
1300 }
1301 }
1302
1303 return pc;
1304 }
1305
1306 /* This function is 64-bit safe. */
1307
1308 static CORE_ADDR
1309 i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1310 {
1311 gdb_byte buf[8];
1312
1313 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
1314 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
1315 }
1316 \f
1317
1318 /* Normal frames. */
1319
1320 static struct i386_frame_cache *
1321 i386_frame_cache (struct frame_info *this_frame, void **this_cache)
1322 {
1323 struct i386_frame_cache *cache;
1324 gdb_byte buf[4];
1325 int i;
1326
1327 if (*this_cache)
1328 return *this_cache;
1329
1330 cache = i386_alloc_frame_cache ();
1331 *this_cache = cache;
1332
1333 /* In principle, for normal frames, %ebp holds the frame pointer,
1334 which holds the base address for the current stack frame.
1335 However, for functions that don't need it, the frame pointer is
1336 optional. For these "frameless" functions the frame pointer is
1337 actually the frame pointer of the calling frame. Signal
1338 trampolines are just a special case of a "frameless" function.
1339 They (usually) share their frame pointer with the frame that was
1340 in progress when the signal occurred. */
1341
1342 get_frame_register (this_frame, I386_EBP_REGNUM, buf);
1343 cache->base = extract_unsigned_integer (buf, 4);
1344 if (cache->base == 0)
1345 return cache;
1346
1347 /* For normal frames, %eip is stored at 4(%ebp). */
1348 cache->saved_regs[I386_EIP_REGNUM] = 4;
1349
1350 cache->pc = get_frame_func (this_frame);
1351 if (cache->pc != 0)
1352 i386_analyze_prologue (cache->pc, get_frame_pc (this_frame), cache);
1353
1354 if (cache->saved_sp_reg != -1)
1355 {
1356 /* Saved stack pointer has been saved. */
1357 get_frame_register (this_frame, cache->saved_sp_reg, buf);
1358 cache->saved_sp = extract_unsigned_integer(buf, 4);
1359 }
1360
1361 if (cache->locals < 0)
1362 {
1363 /* We didn't find a valid frame, which means that CACHE->base
1364 currently holds the frame pointer for our calling frame. If
1365 we're at the start of a function, or somewhere half-way its
1366 prologue, the function's frame probably hasn't been fully
1367 setup yet. Try to reconstruct the base address for the stack
1368 frame by looking at the stack pointer. For truly "frameless"
1369 functions this might work too. */
1370
1371 if (cache->saved_sp_reg != -1)
1372 {
1373 /* We're halfway aligning the stack. */
1374 cache->base = ((cache->saved_sp - 4) & 0xfffffff0) - 4;
1375 cache->saved_regs[I386_EIP_REGNUM] = cache->saved_sp - 4;
1376
1377 /* This will be added back below. */
1378 cache->saved_regs[I386_EIP_REGNUM] -= cache->base;
1379 }
1380 else
1381 {
1382 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
1383 cache->base = extract_unsigned_integer (buf, 4) + cache->sp_offset;
1384 }
1385 }
1386
1387 /* Now that we have the base address for the stack frame we can
1388 calculate the value of %esp in the calling frame. */
1389 if (cache->saved_sp == 0)
1390 cache->saved_sp = cache->base + 8;
1391
1392 /* Adjust all the saved registers such that they contain addresses
1393 instead of offsets. */
1394 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
1395 if (cache->saved_regs[i] != -1)
1396 cache->saved_regs[i] += cache->base;
1397
1398 return cache;
1399 }
1400
1401 static void
1402 i386_frame_this_id (struct frame_info *this_frame, void **this_cache,
1403 struct frame_id *this_id)
1404 {
1405 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
1406
1407 /* This marks the outermost frame. */
1408 if (cache->base == 0)
1409 return;
1410
1411 /* See the end of i386_push_dummy_call. */
1412 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
1413 }
1414
1415 static struct value *
1416 i386_frame_prev_register (struct frame_info *this_frame, void **this_cache,
1417 int regnum)
1418 {
1419 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
1420
1421 gdb_assert (regnum >= 0);
1422
1423 /* The System V ABI says that:
1424
1425 "The flags register contains the system flags, such as the
1426 direction flag and the carry flag. The direction flag must be
1427 set to the forward (that is, zero) direction before entry and
1428 upon exit from a function. Other user flags have no specified
1429 role in the standard calling sequence and are not preserved."
1430
1431 To guarantee the "upon exit" part of that statement we fake a
1432 saved flags register that has its direction flag cleared.
1433
1434 Note that GCC doesn't seem to rely on the fact that the direction
1435 flag is cleared after a function return; it always explicitly
1436 clears the flag before operations where it matters.
1437
1438 FIXME: kettenis/20030316: I'm not quite sure whether this is the
1439 right thing to do. The way we fake the flags register here makes
1440 it impossible to change it. */
1441
1442 if (regnum == I386_EFLAGS_REGNUM)
1443 {
1444 ULONGEST val;
1445
1446 val = get_frame_register_unsigned (this_frame, regnum);
1447 val &= ~(1 << 10);
1448 return frame_unwind_got_constant (this_frame, regnum, val);
1449 }
1450
1451 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
1452 return frame_unwind_got_register (this_frame, regnum, I386_EAX_REGNUM);
1453
1454 if (regnum == I386_ESP_REGNUM && cache->saved_sp)
1455 return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
1456
1457 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
1458 return frame_unwind_got_memory (this_frame, regnum,
1459 cache->saved_regs[regnum]);
1460
1461 return frame_unwind_got_register (this_frame, regnum, regnum);
1462 }
1463
1464 static const struct frame_unwind i386_frame_unwind =
1465 {
1466 NORMAL_FRAME,
1467 i386_frame_this_id,
1468 i386_frame_prev_register,
1469 NULL,
1470 default_frame_sniffer
1471 };
1472 \f
1473
1474 /* Signal trampolines. */
1475
1476 static struct i386_frame_cache *
1477 i386_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
1478 {
1479 struct i386_frame_cache *cache;
1480 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
1481 CORE_ADDR addr;
1482 gdb_byte buf[4];
1483
1484 if (*this_cache)
1485 return *this_cache;
1486
1487 cache = i386_alloc_frame_cache ();
1488
1489 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
1490 cache->base = extract_unsigned_integer (buf, 4) - 4;
1491
1492 addr = tdep->sigcontext_addr (this_frame);
1493 if (tdep->sc_reg_offset)
1494 {
1495 int i;
1496
1497 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
1498
1499 for (i = 0; i < tdep->sc_num_regs; i++)
1500 if (tdep->sc_reg_offset[i] != -1)
1501 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
1502 }
1503 else
1504 {
1505 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
1506 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
1507 }
1508
1509 *this_cache = cache;
1510 return cache;
1511 }
1512
1513 static void
1514 i386_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache,
1515 struct frame_id *this_id)
1516 {
1517 struct i386_frame_cache *cache =
1518 i386_sigtramp_frame_cache (this_frame, this_cache);
1519
1520 /* See the end of i386_push_dummy_call. */
1521 (*this_id) = frame_id_build (cache->base + 8, get_frame_pc (this_frame));
1522 }
1523
1524 static struct value *
1525 i386_sigtramp_frame_prev_register (struct frame_info *this_frame,
1526 void **this_cache, int regnum)
1527 {
1528 /* Make sure we've initialized the cache. */
1529 i386_sigtramp_frame_cache (this_frame, this_cache);
1530
1531 return i386_frame_prev_register (this_frame, this_cache, regnum);
1532 }
1533
1534 static int
1535 i386_sigtramp_frame_sniffer (const struct frame_unwind *self,
1536 struct frame_info *this_frame,
1537 void **this_prologue_cache)
1538 {
1539 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
1540
1541 /* We shouldn't even bother if we don't have a sigcontext_addr
1542 handler. */
1543 if (tdep->sigcontext_addr == NULL)
1544 return 0;
1545
1546 if (tdep->sigtramp_p != NULL)
1547 {
1548 if (tdep->sigtramp_p (this_frame))
1549 return 1;
1550 }
1551
1552 if (tdep->sigtramp_start != 0)
1553 {
1554 CORE_ADDR pc = get_frame_pc (this_frame);
1555
1556 gdb_assert (tdep->sigtramp_end != 0);
1557 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
1558 return 1;
1559 }
1560
1561 return 0;
1562 }
1563
1564 static const struct frame_unwind i386_sigtramp_frame_unwind =
1565 {
1566 SIGTRAMP_FRAME,
1567 i386_sigtramp_frame_this_id,
1568 i386_sigtramp_frame_prev_register,
1569 NULL,
1570 i386_sigtramp_frame_sniffer
1571 };
1572 \f
1573
1574 static CORE_ADDR
1575 i386_frame_base_address (struct frame_info *this_frame, void **this_cache)
1576 {
1577 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
1578
1579 return cache->base;
1580 }
1581
1582 static const struct frame_base i386_frame_base =
1583 {
1584 &i386_frame_unwind,
1585 i386_frame_base_address,
1586 i386_frame_base_address,
1587 i386_frame_base_address
1588 };
1589
1590 static struct frame_id
1591 i386_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1592 {
1593 CORE_ADDR fp;
1594
1595 fp = get_frame_register_unsigned (this_frame, I386_EBP_REGNUM);
1596
1597 /* See the end of i386_push_dummy_call. */
1598 return frame_id_build (fp + 8, get_frame_pc (this_frame));
1599 }
1600 \f
1601
1602 /* Figure out where the longjmp will land. Slurp the args out of the
1603 stack. We expect the first arg to be a pointer to the jmp_buf
1604 structure from which we extract the address that we will land at.
1605 This address is copied into PC. This routine returns non-zero on
1606 success. */
1607
1608 static int
1609 i386_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
1610 {
1611 gdb_byte buf[4];
1612 CORE_ADDR sp, jb_addr;
1613 struct gdbarch *gdbarch = get_frame_arch (frame);
1614 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
1615
1616 /* If JB_PC_OFFSET is -1, we have no way to find out where the
1617 longjmp will land. */
1618 if (jb_pc_offset == -1)
1619 return 0;
1620
1621 get_frame_register (frame, I386_ESP_REGNUM, buf);
1622 sp = extract_unsigned_integer (buf, 4);
1623 if (target_read_memory (sp + 4, buf, 4))
1624 return 0;
1625
1626 jb_addr = extract_unsigned_integer (buf, 4);
1627 if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
1628 return 0;
1629
1630 *pc = extract_unsigned_integer (buf, 4);
1631 return 1;
1632 }
1633 \f
1634
1635 /* Check whether TYPE must be 16-byte-aligned when passed as a
1636 function argument. 16-byte vectors, _Decimal128 and structures or
1637 unions containing such types must be 16-byte-aligned; other
1638 arguments are 4-byte-aligned. */
1639
1640 static int
1641 i386_16_byte_align_p (struct type *type)
1642 {
1643 type = check_typedef (type);
1644 if ((TYPE_CODE (type) == TYPE_CODE_DECFLOAT
1645 || (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type)))
1646 && TYPE_LENGTH (type) == 16)
1647 return 1;
1648 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
1649 return i386_16_byte_align_p (TYPE_TARGET_TYPE (type));
1650 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
1651 || TYPE_CODE (type) == TYPE_CODE_UNION)
1652 {
1653 int i;
1654 for (i = 0; i < TYPE_NFIELDS (type); i++)
1655 {
1656 if (i386_16_byte_align_p (TYPE_FIELD_TYPE (type, i)))
1657 return 1;
1658 }
1659 }
1660 return 0;
1661 }
1662
1663 static CORE_ADDR
1664 i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1665 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
1666 struct value **args, CORE_ADDR sp, int struct_return,
1667 CORE_ADDR struct_addr)
1668 {
1669 gdb_byte buf[4];
1670 int i;
1671 int write_pass;
1672 int args_space = 0;
1673
1674 /* Determine the total space required for arguments and struct
1675 return address in a first pass (allowing for 16-byte-aligned
1676 arguments), then push arguments in a second pass. */
1677
1678 for (write_pass = 0; write_pass < 2; write_pass++)
1679 {
1680 int args_space_used = 0;
1681 int have_16_byte_aligned_arg = 0;
1682
1683 if (struct_return)
1684 {
1685 if (write_pass)
1686 {
1687 /* Push value address. */
1688 store_unsigned_integer (buf, 4, struct_addr);
1689 write_memory (sp, buf, 4);
1690 args_space_used += 4;
1691 }
1692 else
1693 args_space += 4;
1694 }
1695
1696 for (i = 0; i < nargs; i++)
1697 {
1698 int len = TYPE_LENGTH (value_enclosing_type (args[i]));
1699
1700 if (write_pass)
1701 {
1702 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
1703 args_space_used = align_up (args_space_used, 16);
1704
1705 write_memory (sp + args_space_used,
1706 value_contents_all (args[i]), len);
1707 /* The System V ABI says that:
1708
1709 "An argument's size is increased, if necessary, to make it a
1710 multiple of [32-bit] words. This may require tail padding,
1711 depending on the size of the argument."
1712
1713 This makes sure the stack stays word-aligned. */
1714 args_space_used += align_up (len, 4);
1715 }
1716 else
1717 {
1718 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
1719 {
1720 args_space = align_up (args_space, 16);
1721 have_16_byte_aligned_arg = 1;
1722 }
1723 args_space += align_up (len, 4);
1724 }
1725 }
1726
1727 if (!write_pass)
1728 {
1729 if (have_16_byte_aligned_arg)
1730 args_space = align_up (args_space, 16);
1731 sp -= args_space;
1732 }
1733 }
1734
1735 /* Store return address. */
1736 sp -= 4;
1737 store_unsigned_integer (buf, 4, bp_addr);
1738 write_memory (sp, buf, 4);
1739
1740 /* Finally, update the stack pointer... */
1741 store_unsigned_integer (buf, 4, sp);
1742 regcache_cooked_write (regcache, I386_ESP_REGNUM, buf);
1743
1744 /* ...and fake a frame pointer. */
1745 regcache_cooked_write (regcache, I386_EBP_REGNUM, buf);
1746
1747 /* MarkK wrote: This "+ 8" is all over the place:
1748 (i386_frame_this_id, i386_sigtramp_frame_this_id,
1749 i386_dummy_id). It's there, since all frame unwinders for
1750 a given target have to agree (within a certain margin) on the
1751 definition of the stack address of a frame. Otherwise frame id
1752 comparison might not work correctly. Since DWARF2/GCC uses the
1753 stack address *before* the function call as a frame's CFA. On
1754 the i386, when %ebp is used as a frame pointer, the offset
1755 between the contents %ebp and the CFA as defined by GCC. */
1756 return sp + 8;
1757 }
1758
1759 /* These registers are used for returning integers (and on some
1760 targets also for returning `struct' and `union' values when their
1761 size and alignment match an integer type). */
1762 #define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
1763 #define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
1764
1765 /* Read, for architecture GDBARCH, a function return value of TYPE
1766 from REGCACHE, and copy that into VALBUF. */
1767
1768 static void
1769 i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
1770 struct regcache *regcache, gdb_byte *valbuf)
1771 {
1772 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1773 int len = TYPE_LENGTH (type);
1774 gdb_byte buf[I386_MAX_REGISTER_SIZE];
1775
1776 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1777 {
1778 if (tdep->st0_regnum < 0)
1779 {
1780 warning (_("Cannot find floating-point return value."));
1781 memset (valbuf, 0, len);
1782 return;
1783 }
1784
1785 /* Floating-point return values can be found in %st(0). Convert
1786 its contents to the desired type. This is probably not
1787 exactly how it would happen on the target itself, but it is
1788 the best we can do. */
1789 regcache_raw_read (regcache, I386_ST0_REGNUM, buf);
1790 convert_typed_floating (buf, i387_ext_type (gdbarch), valbuf, type);
1791 }
1792 else
1793 {
1794 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
1795 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
1796
1797 if (len <= low_size)
1798 {
1799 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
1800 memcpy (valbuf, buf, len);
1801 }
1802 else if (len <= (low_size + high_size))
1803 {
1804 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
1805 memcpy (valbuf, buf, low_size);
1806 regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
1807 memcpy (valbuf + low_size, buf, len - low_size);
1808 }
1809 else
1810 internal_error (__FILE__, __LINE__,
1811 _("Cannot extract return value of %d bytes long."), len);
1812 }
1813 }
1814
1815 /* Write, for architecture GDBARCH, a function return value of TYPE
1816 from VALBUF into REGCACHE. */
1817
1818 static void
1819 i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
1820 struct regcache *regcache, const gdb_byte *valbuf)
1821 {
1822 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1823 int len = TYPE_LENGTH (type);
1824
1825 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1826 {
1827 ULONGEST fstat;
1828 gdb_byte buf[I386_MAX_REGISTER_SIZE];
1829
1830 if (tdep->st0_regnum < 0)
1831 {
1832 warning (_("Cannot set floating-point return value."));
1833 return;
1834 }
1835
1836 /* Returning floating-point values is a bit tricky. Apart from
1837 storing the return value in %st(0), we have to simulate the
1838 state of the FPU at function return point. */
1839
1840 /* Convert the value found in VALBUF to the extended
1841 floating-point format used by the FPU. This is probably
1842 not exactly how it would happen on the target itself, but
1843 it is the best we can do. */
1844 convert_typed_floating (valbuf, type, buf, i387_ext_type (gdbarch));
1845 regcache_raw_write (regcache, I386_ST0_REGNUM, buf);
1846
1847 /* Set the top of the floating-point register stack to 7. The
1848 actual value doesn't really matter, but 7 is what a normal
1849 function return would end up with if the program started out
1850 with a freshly initialized FPU. */
1851 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
1852 fstat |= (7 << 11);
1853 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM (tdep), fstat);
1854
1855 /* Mark %st(1) through %st(7) as empty. Since we set the top of
1856 the floating-point register stack to 7, the appropriate value
1857 for the tag word is 0x3fff. */
1858 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM (tdep), 0x3fff);
1859 }
1860 else
1861 {
1862 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
1863 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
1864
1865 if (len <= low_size)
1866 regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
1867 else if (len <= (low_size + high_size))
1868 {
1869 regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
1870 regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
1871 len - low_size, valbuf + low_size);
1872 }
1873 else
1874 internal_error (__FILE__, __LINE__,
1875 _("Cannot store return value of %d bytes long."), len);
1876 }
1877 }
1878 \f
1879
1880 /* This is the variable that is set with "set struct-convention", and
1881 its legitimate values. */
1882 static const char default_struct_convention[] = "default";
1883 static const char pcc_struct_convention[] = "pcc";
1884 static const char reg_struct_convention[] = "reg";
1885 static const char *valid_conventions[] =
1886 {
1887 default_struct_convention,
1888 pcc_struct_convention,
1889 reg_struct_convention,
1890 NULL
1891 };
1892 static const char *struct_convention = default_struct_convention;
1893
1894 /* Return non-zero if TYPE, which is assumed to be a structure,
1895 a union type, or an array type, should be returned in registers
1896 for architecture GDBARCH. */
1897
1898 static int
1899 i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
1900 {
1901 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1902 enum type_code code = TYPE_CODE (type);
1903 int len = TYPE_LENGTH (type);
1904
1905 gdb_assert (code == TYPE_CODE_STRUCT
1906 || code == TYPE_CODE_UNION
1907 || code == TYPE_CODE_ARRAY);
1908
1909 if (struct_convention == pcc_struct_convention
1910 || (struct_convention == default_struct_convention
1911 && tdep->struct_return == pcc_struct_return))
1912 return 0;
1913
1914 /* Structures consisting of a single `float', `double' or 'long
1915 double' member are returned in %st(0). */
1916 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
1917 {
1918 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
1919 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1920 return (len == 4 || len == 8 || len == 12);
1921 }
1922
1923 return (len == 1 || len == 2 || len == 4 || len == 8);
1924 }
1925
1926 /* Determine, for architecture GDBARCH, how a return value of TYPE
1927 should be returned. If it is supposed to be returned in registers,
1928 and READBUF is non-zero, read the appropriate value from REGCACHE,
1929 and copy it into READBUF. If WRITEBUF is non-zero, write the value
1930 from WRITEBUF into REGCACHE. */
1931
1932 static enum return_value_convention
1933 i386_return_value (struct gdbarch *gdbarch, struct type *func_type,
1934 struct type *type, struct regcache *regcache,
1935 gdb_byte *readbuf, const gdb_byte *writebuf)
1936 {
1937 enum type_code code = TYPE_CODE (type);
1938
1939 if (((code == TYPE_CODE_STRUCT
1940 || code == TYPE_CODE_UNION
1941 || code == TYPE_CODE_ARRAY)
1942 && !i386_reg_struct_return_p (gdbarch, type))
1943 /* 128-bit decimal float uses the struct return convention. */
1944 || (code == TYPE_CODE_DECFLOAT && TYPE_LENGTH (type) == 16))
1945 {
1946 /* The System V ABI says that:
1947
1948 "A function that returns a structure or union also sets %eax
1949 to the value of the original address of the caller's area
1950 before it returns. Thus when the caller receives control
1951 again, the address of the returned object resides in register
1952 %eax and can be used to access the object."
1953
1954 So the ABI guarantees that we can always find the return
1955 value just after the function has returned. */
1956
1957 /* Note that the ABI doesn't mention functions returning arrays,
1958 which is something possible in certain languages such as Ada.
1959 In this case, the value is returned as if it was wrapped in
1960 a record, so the convention applied to records also applies
1961 to arrays. */
1962
1963 if (readbuf)
1964 {
1965 ULONGEST addr;
1966
1967 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
1968 read_memory (addr, readbuf, TYPE_LENGTH (type));
1969 }
1970
1971 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
1972 }
1973
1974 /* This special case is for structures consisting of a single
1975 `float', `double' or 'long double' member. These structures are
1976 returned in %st(0). For these structures, we call ourselves
1977 recursively, changing TYPE into the type of the first member of
1978 the structure. Since that should work for all structures that
1979 have only one member, we don't bother to check the member's type
1980 here. */
1981 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
1982 {
1983 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
1984 return i386_return_value (gdbarch, func_type, type, regcache,
1985 readbuf, writebuf);
1986 }
1987
1988 if (readbuf)
1989 i386_extract_return_value (gdbarch, type, regcache, readbuf);
1990 if (writebuf)
1991 i386_store_return_value (gdbarch, type, regcache, writebuf);
1992
1993 return RETURN_VALUE_REGISTER_CONVENTION;
1994 }
1995 \f
1996
1997 /* Construct types for ISA-specific registers. */
1998 struct type *
1999 i386_eflags_type (struct gdbarch *gdbarch)
2000 {
2001 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2002
2003 if (!tdep->i386_eflags_type)
2004 {
2005 struct type *type;
2006
2007 type = arch_flags_type (gdbarch, "builtin_type_i386_eflags", 4);
2008 append_flags_type_flag (type, 0, "CF");
2009 append_flags_type_flag (type, 1, NULL);
2010 append_flags_type_flag (type, 2, "PF");
2011 append_flags_type_flag (type, 4, "AF");
2012 append_flags_type_flag (type, 6, "ZF");
2013 append_flags_type_flag (type, 7, "SF");
2014 append_flags_type_flag (type, 8, "TF");
2015 append_flags_type_flag (type, 9, "IF");
2016 append_flags_type_flag (type, 10, "DF");
2017 append_flags_type_flag (type, 11, "OF");
2018 append_flags_type_flag (type, 14, "NT");
2019 append_flags_type_flag (type, 16, "RF");
2020 append_flags_type_flag (type, 17, "VM");
2021 append_flags_type_flag (type, 18, "AC");
2022 append_flags_type_flag (type, 19, "VIF");
2023 append_flags_type_flag (type, 20, "VIP");
2024 append_flags_type_flag (type, 21, "ID");
2025
2026 tdep->i386_eflags_type = type;
2027 }
2028
2029 return tdep->i386_eflags_type;
2030 }
2031
2032 struct type *
2033 i386_mxcsr_type (struct gdbarch *gdbarch)
2034 {
2035 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2036
2037 if (!tdep->i386_mxcsr_type)
2038 {
2039 struct type *type;
2040
2041 type = arch_flags_type (gdbarch, "builtin_type_i386_mxcsr", 4);
2042 append_flags_type_flag (type, 0, "IE");
2043 append_flags_type_flag (type, 1, "DE");
2044 append_flags_type_flag (type, 2, "ZE");
2045 append_flags_type_flag (type, 3, "OE");
2046 append_flags_type_flag (type, 4, "UE");
2047 append_flags_type_flag (type, 5, "PE");
2048 append_flags_type_flag (type, 6, "DAZ");
2049 append_flags_type_flag (type, 7, "IM");
2050 append_flags_type_flag (type, 8, "DM");
2051 append_flags_type_flag (type, 9, "ZM");
2052 append_flags_type_flag (type, 10, "OM");
2053 append_flags_type_flag (type, 11, "UM");
2054 append_flags_type_flag (type, 12, "PM");
2055 append_flags_type_flag (type, 15, "FZ");
2056
2057 tdep->i386_mxcsr_type = type;
2058 }
2059
2060 return tdep->i386_mxcsr_type;
2061 }
2062
2063 struct type *
2064 i387_ext_type (struct gdbarch *gdbarch)
2065 {
2066 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2067
2068 if (!tdep->i387_ext_type)
2069 tdep->i387_ext_type
2070 = arch_float_type (gdbarch, -1, "builtin_type_i387_ext",
2071 floatformats_i387_ext);
2072
2073 return tdep->i387_ext_type;
2074 }
2075
2076 /* Construct vector type for MMX registers. */
2077 struct type *
2078 i386_mmx_type (struct gdbarch *gdbarch)
2079 {
2080 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2081
2082 if (!tdep->i386_mmx_type)
2083 {
2084 const struct builtin_type *bt = builtin_type (gdbarch);
2085
2086 /* The type we're building is this: */
2087 #if 0
2088 union __gdb_builtin_type_vec64i
2089 {
2090 int64_t uint64;
2091 int32_t v2_int32[2];
2092 int16_t v4_int16[4];
2093 int8_t v8_int8[8];
2094 };
2095 #endif
2096
2097 struct type *t;
2098
2099 t = arch_composite_type (gdbarch,
2100 "__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
2101
2102 append_composite_type_field (t, "uint64", bt->builtin_int64);
2103 append_composite_type_field (t, "v2_int32",
2104 init_vector_type (bt->builtin_int32, 2));
2105 append_composite_type_field (t, "v4_int16",
2106 init_vector_type (bt->builtin_int16, 4));
2107 append_composite_type_field (t, "v8_int8",
2108 init_vector_type (bt->builtin_int8, 8));
2109
2110 TYPE_VECTOR (t) = 1;
2111 TYPE_NAME (t) = "builtin_type_vec64i";
2112 tdep->i386_mmx_type = t;
2113 }
2114
2115 return tdep->i386_mmx_type;
2116 }
2117
2118 struct type *
2119 i386_sse_type (struct gdbarch *gdbarch)
2120 {
2121 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2122
2123 if (!tdep->i386_sse_type)
2124 {
2125 const struct builtin_type *bt = builtin_type (gdbarch);
2126
2127 /* The type we're building is this: */
2128 #if 0
2129 union __gdb_builtin_type_vec128i
2130 {
2131 int128_t uint128;
2132 int64_t v2_int64[2];
2133 int32_t v4_int32[4];
2134 int16_t v8_int16[8];
2135 int8_t v16_int8[16];
2136 double v2_double[2];
2137 float v4_float[4];
2138 };
2139 #endif
2140
2141 struct type *t;
2142
2143 t = arch_composite_type (gdbarch,
2144 "__gdb_builtin_type_vec128i", TYPE_CODE_UNION);
2145 append_composite_type_field (t, "v4_float",
2146 init_vector_type (bt->builtin_float, 4));
2147 append_composite_type_field (t, "v2_double",
2148 init_vector_type (bt->builtin_double, 2));
2149 append_composite_type_field (t, "v16_int8",
2150 init_vector_type (bt->builtin_int8, 16));
2151 append_composite_type_field (t, "v8_int16",
2152 init_vector_type (bt->builtin_int16, 8));
2153 append_composite_type_field (t, "v4_int32",
2154 init_vector_type (bt->builtin_int32, 4));
2155 append_composite_type_field (t, "v2_int64",
2156 init_vector_type (bt->builtin_int64, 2));
2157 append_composite_type_field (t, "uint128", bt->builtin_int128);
2158
2159 TYPE_VECTOR (t) = 1;
2160 TYPE_NAME (t) = "builtin_type_vec128i";
2161 tdep->i386_sse_type = t;
2162 }
2163
2164 return tdep->i386_sse_type;
2165 }
2166
2167 /* Return the GDB type object for the "standard" data type of data in
2168 register REGNUM. Perhaps %esi and %edi should go here, but
2169 potentially they could be used for things other than address. */
2170
2171 static struct type *
2172 i386_register_type (struct gdbarch *gdbarch, int regnum)
2173 {
2174 if (regnum == I386_EIP_REGNUM)
2175 return builtin_type (gdbarch)->builtin_func_ptr;
2176
2177 if (regnum == I386_EFLAGS_REGNUM)
2178 return i386_eflags_type (gdbarch);
2179
2180 if (regnum == I386_EBP_REGNUM || regnum == I386_ESP_REGNUM)
2181 return builtin_type (gdbarch)->builtin_data_ptr;
2182
2183 if (i386_fp_regnum_p (gdbarch, regnum))
2184 return i387_ext_type (gdbarch);
2185
2186 if (i386_mmx_regnum_p (gdbarch, regnum))
2187 return i386_mmx_type (gdbarch);
2188
2189 if (i386_sse_regnum_p (gdbarch, regnum))
2190 return i386_sse_type (gdbarch);
2191
2192 if (regnum == I387_MXCSR_REGNUM (gdbarch_tdep (gdbarch)))
2193 return i386_mxcsr_type (gdbarch);
2194
2195 return builtin_type (gdbarch)->builtin_int;
2196 }
2197
2198 /* Map a cooked register onto a raw register or memory. For the i386,
2199 the MMX registers need to be mapped onto floating point registers. */
2200
2201 static int
2202 i386_mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
2203 {
2204 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
2205 int mmxreg, fpreg;
2206 ULONGEST fstat;
2207 int tos;
2208
2209 mmxreg = regnum - tdep->mm0_regnum;
2210 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
2211 tos = (fstat >> 11) & 0x7;
2212 fpreg = (mmxreg + tos) % 8;
2213
2214 return (I387_ST0_REGNUM (tdep) + fpreg);
2215 }
2216
2217 static void
2218 i386_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2219 int regnum, gdb_byte *buf)
2220 {
2221 if (i386_mmx_regnum_p (gdbarch, regnum))
2222 {
2223 gdb_byte mmx_buf[MAX_REGISTER_SIZE];
2224 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
2225
2226 /* Extract (always little endian). */
2227 regcache_raw_read (regcache, fpnum, mmx_buf);
2228 memcpy (buf, mmx_buf, register_size (gdbarch, regnum));
2229 }
2230 else
2231 regcache_raw_read (regcache, regnum, buf);
2232 }
2233
2234 static void
2235 i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2236 int regnum, const gdb_byte *buf)
2237 {
2238 if (i386_mmx_regnum_p (gdbarch, regnum))
2239 {
2240 gdb_byte mmx_buf[MAX_REGISTER_SIZE];
2241 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
2242
2243 /* Read ... */
2244 regcache_raw_read (regcache, fpnum, mmx_buf);
2245 /* ... Modify ... (always little endian). */
2246 memcpy (mmx_buf, buf, register_size (gdbarch, regnum));
2247 /* ... Write. */
2248 regcache_raw_write (regcache, fpnum, mmx_buf);
2249 }
2250 else
2251 regcache_raw_write (regcache, regnum, buf);
2252 }
2253 \f
2254
2255 /* Return the register number of the register allocated by GCC after
2256 REGNUM, or -1 if there is no such register. */
2257
2258 static int
2259 i386_next_regnum (int regnum)
2260 {
2261 /* GCC allocates the registers in the order:
2262
2263 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
2264
2265 Since storing a variable in %esp doesn't make any sense we return
2266 -1 for %ebp and for %esp itself. */
2267 static int next_regnum[] =
2268 {
2269 I386_EDX_REGNUM, /* Slot for %eax. */
2270 I386_EBX_REGNUM, /* Slot for %ecx. */
2271 I386_ECX_REGNUM, /* Slot for %edx. */
2272 I386_ESI_REGNUM, /* Slot for %ebx. */
2273 -1, -1, /* Slots for %esp and %ebp. */
2274 I386_EDI_REGNUM, /* Slot for %esi. */
2275 I386_EBP_REGNUM /* Slot for %edi. */
2276 };
2277
2278 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
2279 return next_regnum[regnum];
2280
2281 return -1;
2282 }
2283
2284 /* Return nonzero if a value of type TYPE stored in register REGNUM
2285 needs any special handling. */
2286
2287 static int
2288 i386_convert_register_p (struct gdbarch *gdbarch, int regnum, struct type *type)
2289 {
2290 int len = TYPE_LENGTH (type);
2291
2292 /* Values may be spread across multiple registers. Most debugging
2293 formats aren't expressive enough to specify the locations, so
2294 some heuristics is involved. Right now we only handle types that
2295 have a length that is a multiple of the word size, since GCC
2296 doesn't seem to put any other types into registers. */
2297 if (len > 4 && len % 4 == 0)
2298 {
2299 int last_regnum = regnum;
2300
2301 while (len > 4)
2302 {
2303 last_regnum = i386_next_regnum (last_regnum);
2304 len -= 4;
2305 }
2306
2307 if (last_regnum != -1)
2308 return 1;
2309 }
2310
2311 return i387_convert_register_p (gdbarch, regnum, type);
2312 }
2313
2314 /* Read a value of type TYPE from register REGNUM in frame FRAME, and
2315 return its contents in TO. */
2316
2317 static void
2318 i386_register_to_value (struct frame_info *frame, int regnum,
2319 struct type *type, gdb_byte *to)
2320 {
2321 struct gdbarch *gdbarch = get_frame_arch (frame);
2322 int len = TYPE_LENGTH (type);
2323
2324 /* FIXME: kettenis/20030609: What should we do if REGNUM isn't
2325 available in FRAME (i.e. if it wasn't saved)? */
2326
2327 if (i386_fp_regnum_p (gdbarch, regnum))
2328 {
2329 i387_register_to_value (frame, regnum, type, to);
2330 return;
2331 }
2332
2333 /* Read a value spread across multiple registers. */
2334
2335 gdb_assert (len > 4 && len % 4 == 0);
2336
2337 while (len > 0)
2338 {
2339 gdb_assert (regnum != -1);
2340 gdb_assert (register_size (gdbarch, regnum) == 4);
2341
2342 get_frame_register (frame, regnum, to);
2343 regnum = i386_next_regnum (regnum);
2344 len -= 4;
2345 to += 4;
2346 }
2347 }
2348
2349 /* Write the contents FROM of a value of type TYPE into register
2350 REGNUM in frame FRAME. */
2351
2352 static void
2353 i386_value_to_register (struct frame_info *frame, int regnum,
2354 struct type *type, const gdb_byte *from)
2355 {
2356 int len = TYPE_LENGTH (type);
2357
2358 if (i386_fp_regnum_p (get_frame_arch (frame), regnum))
2359 {
2360 i387_value_to_register (frame, regnum, type, from);
2361 return;
2362 }
2363
2364 /* Write a value spread across multiple registers. */
2365
2366 gdb_assert (len > 4 && len % 4 == 0);
2367
2368 while (len > 0)
2369 {
2370 gdb_assert (regnum != -1);
2371 gdb_assert (register_size (get_frame_arch (frame), regnum) == 4);
2372
2373 put_frame_register (frame, regnum, from);
2374 regnum = i386_next_regnum (regnum);
2375 len -= 4;
2376 from += 4;
2377 }
2378 }
2379 \f
2380 /* Supply register REGNUM from the buffer specified by GREGS and LEN
2381 in the general-purpose register set REGSET to register cache
2382 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
2383
2384 void
2385 i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
2386 int regnum, const void *gregs, size_t len)
2387 {
2388 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
2389 const gdb_byte *regs = gregs;
2390 int i;
2391
2392 gdb_assert (len == tdep->sizeof_gregset);
2393
2394 for (i = 0; i < tdep->gregset_num_regs; i++)
2395 {
2396 if ((regnum == i || regnum == -1)
2397 && tdep->gregset_reg_offset[i] != -1)
2398 regcache_raw_supply (regcache, i, regs + tdep->gregset_reg_offset[i]);
2399 }
2400 }
2401
2402 /* Collect register REGNUM from the register cache REGCACHE and store
2403 it in the buffer specified by GREGS and LEN as described by the
2404 general-purpose register set REGSET. If REGNUM is -1, do this for
2405 all registers in REGSET. */
2406
2407 void
2408 i386_collect_gregset (const struct regset *regset,
2409 const struct regcache *regcache,
2410 int regnum, void *gregs, size_t len)
2411 {
2412 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
2413 gdb_byte *regs = gregs;
2414 int i;
2415
2416 gdb_assert (len == tdep->sizeof_gregset);
2417
2418 for (i = 0; i < tdep->gregset_num_regs; i++)
2419 {
2420 if ((regnum == i || regnum == -1)
2421 && tdep->gregset_reg_offset[i] != -1)
2422 regcache_raw_collect (regcache, i, regs + tdep->gregset_reg_offset[i]);
2423 }
2424 }
2425
2426 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
2427 in the floating-point register set REGSET to register cache
2428 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
2429
2430 static void
2431 i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
2432 int regnum, const void *fpregs, size_t len)
2433 {
2434 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
2435
2436 if (len == I387_SIZEOF_FXSAVE)
2437 {
2438 i387_supply_fxsave (regcache, regnum, fpregs);
2439 return;
2440 }
2441
2442 gdb_assert (len == tdep->sizeof_fpregset);
2443 i387_supply_fsave (regcache, regnum, fpregs);
2444 }
2445
2446 /* Collect register REGNUM from the register cache REGCACHE and store
2447 it in the buffer specified by FPREGS and LEN as described by the
2448 floating-point register set REGSET. If REGNUM is -1, do this for
2449 all registers in REGSET. */
2450
2451 static void
2452 i386_collect_fpregset (const struct regset *regset,
2453 const struct regcache *regcache,
2454 int regnum, void *fpregs, size_t len)
2455 {
2456 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
2457
2458 if (len == I387_SIZEOF_FXSAVE)
2459 {
2460 i387_collect_fxsave (regcache, regnum, fpregs);
2461 return;
2462 }
2463
2464 gdb_assert (len == tdep->sizeof_fpregset);
2465 i387_collect_fsave (regcache, regnum, fpregs);
2466 }
2467
2468 /* Return the appropriate register set for the core section identified
2469 by SECT_NAME and SECT_SIZE. */
2470
2471 const struct regset *
2472 i386_regset_from_core_section (struct gdbarch *gdbarch,
2473 const char *sect_name, size_t sect_size)
2474 {
2475 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2476
2477 if (strcmp (sect_name, ".reg") == 0 && sect_size == tdep->sizeof_gregset)
2478 {
2479 if (tdep->gregset == NULL)
2480 tdep->gregset = regset_alloc (gdbarch, i386_supply_gregset,
2481 i386_collect_gregset);
2482 return tdep->gregset;
2483 }
2484
2485 if ((strcmp (sect_name, ".reg2") == 0 && sect_size == tdep->sizeof_fpregset)
2486 || (strcmp (sect_name, ".reg-xfp") == 0
2487 && sect_size == I387_SIZEOF_FXSAVE))
2488 {
2489 if (tdep->fpregset == NULL)
2490 tdep->fpregset = regset_alloc (gdbarch, i386_supply_fpregset,
2491 i386_collect_fpregset);
2492 return tdep->fpregset;
2493 }
2494
2495 return NULL;
2496 }
2497 \f
2498
2499 /* Stuff for WIN32 PE style DLL's but is pretty generic really. */
2500
2501 CORE_ADDR
2502 i386_pe_skip_trampoline_code (CORE_ADDR pc, char *name)
2503 {
2504 if (pc && read_memory_unsigned_integer (pc, 2) == 0x25ff) /* jmp *(dest) */
2505 {
2506 unsigned long indirect = read_memory_unsigned_integer (pc + 2, 4);
2507 struct minimal_symbol *indsym =
2508 indirect ? lookup_minimal_symbol_by_pc (indirect) : 0;
2509 char *symname = indsym ? SYMBOL_LINKAGE_NAME (indsym) : 0;
2510
2511 if (symname)
2512 {
2513 if (strncmp (symname, "__imp_", 6) == 0
2514 || strncmp (symname, "_imp_", 5) == 0)
2515 return name ? 1 : read_memory_unsigned_integer (indirect, 4);
2516 }
2517 }
2518 return 0; /* Not a trampoline. */
2519 }
2520 \f
2521
2522 /* Return whether the THIS_FRAME corresponds to a sigtramp
2523 routine. */
2524
2525 int
2526 i386_sigtramp_p (struct frame_info *this_frame)
2527 {
2528 CORE_ADDR pc = get_frame_pc (this_frame);
2529 char *name;
2530
2531 find_pc_partial_function (pc, &name, NULL, NULL);
2532 return (name && strcmp ("_sigtramp", name) == 0);
2533 }
2534 \f
2535
2536 /* We have two flavours of disassembly. The machinery on this page
2537 deals with switching between those. */
2538
2539 static int
2540 i386_print_insn (bfd_vma pc, struct disassemble_info *info)
2541 {
2542 gdb_assert (disassembly_flavor == att_flavor
2543 || disassembly_flavor == intel_flavor);
2544
2545 /* FIXME: kettenis/20020915: Until disassembler_options is properly
2546 constified, cast to prevent a compiler warning. */
2547 info->disassembler_options = (char *) disassembly_flavor;
2548
2549 return print_insn_i386 (pc, info);
2550 }
2551 \f
2552
2553 /* There are a few i386 architecture variants that differ only
2554 slightly from the generic i386 target. For now, we don't give them
2555 their own source file, but include them here. As a consequence,
2556 they'll always be included. */
2557
2558 /* System V Release 4 (SVR4). */
2559
2560 /* Return whether THIS_FRAME corresponds to a SVR4 sigtramp
2561 routine. */
2562
2563 static int
2564 i386_svr4_sigtramp_p (struct frame_info *this_frame)
2565 {
2566 CORE_ADDR pc = get_frame_pc (this_frame);
2567 char *name;
2568
2569 /* UnixWare uses _sigacthandler. The origin of the other symbols is
2570 currently unknown. */
2571 find_pc_partial_function (pc, &name, NULL, NULL);
2572 return (name && (strcmp ("_sigreturn", name) == 0
2573 || strcmp ("_sigacthandler", name) == 0
2574 || strcmp ("sigvechandler", name) == 0));
2575 }
2576
2577 /* Assuming THIS_FRAME is for a SVR4 sigtramp routine, return the
2578 address of the associated sigcontext (ucontext) structure. */
2579
2580 static CORE_ADDR
2581 i386_svr4_sigcontext_addr (struct frame_info *this_frame)
2582 {
2583 gdb_byte buf[4];
2584 CORE_ADDR sp;
2585
2586 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2587 sp = extract_unsigned_integer (buf, 4);
2588
2589 return read_memory_unsigned_integer (sp + 8, 4);
2590 }
2591 \f
2592
2593 /* Generic ELF. */
2594
2595 void
2596 i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2597 {
2598 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
2599 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
2600 }
2601
2602 /* System V Release 4 (SVR4). */
2603
2604 void
2605 i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2606 {
2607 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2608
2609 /* System V Release 4 uses ELF. */
2610 i386_elf_init_abi (info, gdbarch);
2611
2612 /* System V Release 4 has shared libraries. */
2613 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
2614
2615 tdep->sigtramp_p = i386_svr4_sigtramp_p;
2616 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
2617 tdep->sc_pc_offset = 36 + 14 * 4;
2618 tdep->sc_sp_offset = 36 + 17 * 4;
2619
2620 tdep->jb_pc_offset = 20;
2621 }
2622
2623 /* DJGPP. */
2624
2625 static void
2626 i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2627 {
2628 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2629
2630 /* DJGPP doesn't have any special frames for signal handlers. */
2631 tdep->sigtramp_p = NULL;
2632
2633 tdep->jb_pc_offset = 36;
2634
2635 /* DJGPP does not support the SSE registers. */
2636 tdep->num_xmm_regs = 0;
2637 set_gdbarch_num_regs (gdbarch, I386_NUM_GREGS + I386_NUM_FREGS);
2638
2639 /* Native compiler is GCC, which uses the SVR4 register numbering
2640 even in COFF and STABS. See the comment in i386_gdbarch_init,
2641 before the calls to set_gdbarch_stab_reg_to_regnum and
2642 set_gdbarch_sdb_reg_to_regnum. */
2643 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
2644 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
2645 }
2646 \f
2647
2648 /* i386 register groups. In addition to the normal groups, add "mmx"
2649 and "sse". */
2650
2651 static struct reggroup *i386_sse_reggroup;
2652 static struct reggroup *i386_mmx_reggroup;
2653
2654 static void
2655 i386_init_reggroups (void)
2656 {
2657 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
2658 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
2659 }
2660
2661 static void
2662 i386_add_reggroups (struct gdbarch *gdbarch)
2663 {
2664 reggroup_add (gdbarch, i386_sse_reggroup);
2665 reggroup_add (gdbarch, i386_mmx_reggroup);
2666 reggroup_add (gdbarch, general_reggroup);
2667 reggroup_add (gdbarch, float_reggroup);
2668 reggroup_add (gdbarch, all_reggroup);
2669 reggroup_add (gdbarch, save_reggroup);
2670 reggroup_add (gdbarch, restore_reggroup);
2671 reggroup_add (gdbarch, vector_reggroup);
2672 reggroup_add (gdbarch, system_reggroup);
2673 }
2674
2675 int
2676 i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
2677 struct reggroup *group)
2678 {
2679 int sse_regnum_p = (i386_sse_regnum_p (gdbarch, regnum)
2680 || i386_mxcsr_regnum_p (gdbarch, regnum));
2681 int fp_regnum_p = (i386_fp_regnum_p (gdbarch, regnum)
2682 || i386_fpc_regnum_p (gdbarch, regnum));
2683 int mmx_regnum_p = (i386_mmx_regnum_p (gdbarch, regnum));
2684
2685 if (group == i386_mmx_reggroup)
2686 return mmx_regnum_p;
2687 if (group == i386_sse_reggroup)
2688 return sse_regnum_p;
2689 if (group == vector_reggroup)
2690 return (mmx_regnum_p || sse_regnum_p);
2691 if (group == float_reggroup)
2692 return fp_regnum_p;
2693 if (group == general_reggroup)
2694 return (!fp_regnum_p && !mmx_regnum_p && !sse_regnum_p);
2695
2696 return default_register_reggroup_p (gdbarch, regnum, group);
2697 }
2698 \f
2699
2700 /* Get the ARGIth function argument for the current function. */
2701
2702 static CORE_ADDR
2703 i386_fetch_pointer_argument (struct frame_info *frame, int argi,
2704 struct type *type)
2705 {
2706 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
2707 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4);
2708 }
2709
2710 static void
2711 i386_skip_permanent_breakpoint (struct regcache *regcache)
2712 {
2713 CORE_ADDR current_pc = regcache_read_pc (regcache);
2714
2715 /* On i386, breakpoint is exactly 1 byte long, so we just
2716 adjust the PC in the regcache. */
2717 current_pc += 1;
2718 regcache_write_pc (regcache, current_pc);
2719 }
2720
2721
2722 #define PREFIX_REPZ 0x01
2723 #define PREFIX_REPNZ 0x02
2724 #define PREFIX_LOCK 0x04
2725 #define PREFIX_DATA 0x08
2726 #define PREFIX_ADDR 0x10
2727
2728 /* operand size */
2729 enum
2730 {
2731 OT_BYTE = 0,
2732 OT_WORD,
2733 OT_LONG,
2734 };
2735
2736 /* i386 arith/logic operations */
2737 enum
2738 {
2739 OP_ADDL,
2740 OP_ORL,
2741 OP_ADCL,
2742 OP_SBBL,
2743 OP_ANDL,
2744 OP_SUBL,
2745 OP_XORL,
2746 OP_CMPL,
2747 };
2748
2749 struct i386_record_s
2750 {
2751 struct regcache *regcache;
2752 CORE_ADDR addr;
2753 int aflag;
2754 int dflag;
2755 int override;
2756 uint8_t modrm;
2757 uint8_t mod, reg, rm;
2758 int ot;
2759 };
2760
2761 /* Parse "modrm" part in current memory address that irp->addr point to
2762 Return -1 if something wrong. */
2763
2764 static int
2765 i386_record_modrm (struct i386_record_s *irp)
2766 {
2767 if (target_read_memory (irp->addr, &irp->modrm, 1))
2768 {
2769 if (record_debug)
2770 printf_unfiltered (_("Process record: error reading memory at "
2771 "addr 0x%s len = 1.\n"),
2772 paddr_nz (irp->addr));
2773 return -1;
2774 }
2775 irp->addr++;
2776 irp->mod = (irp->modrm >> 6) & 3;
2777 irp->reg = (irp->modrm >> 3) & 7;
2778 irp->rm = irp->modrm & 7;
2779
2780 return 0;
2781 }
2782
2783 /* Get the memory address that current instruction write to and set it to
2784 the argument "addr".
2785 Return -1 if something wrong. */
2786
2787 static int
2788 i386_record_lea_modrm_addr (struct i386_record_s *irp, uint32_t * addr)
2789 {
2790 uint8_t tmpu8;
2791 uint16_t tmpu16;
2792 uint32_t tmpu32;
2793
2794 *addr = 0;
2795 if (irp->aflag)
2796 {
2797 /* 32 bits */
2798 int havesib = 0;
2799 uint8_t scale = 0;
2800 uint8_t index = 0;
2801 uint8_t base = irp->rm;
2802
2803 if (base == 4)
2804 {
2805 havesib = 1;
2806 if (target_read_memory (irp->addr, &tmpu8, 1))
2807 {
2808 if (record_debug)
2809 printf_unfiltered (_("Process record: error reading memory "
2810 "at addr 0x%s len = 1.\n"),
2811 paddr_nz (irp->addr));
2812 return -1;
2813 }
2814 irp->addr++;
2815 scale = (tmpu8 >> 6) & 3;
2816 index = ((tmpu8 >> 3) & 7);
2817 base = (tmpu8 & 7);
2818 }
2819
2820 switch (irp->mod)
2821 {
2822 case 0:
2823 if ((base & 7) == 5)
2824 {
2825 base = 0xff;
2826 if (target_read_memory (irp->addr, (gdb_byte *) addr, 4))
2827 {
2828 if (record_debug)
2829 printf_unfiltered (_("Process record: error reading "
2830 "memory at addr 0x%s len = 4.\n"),
2831 paddr_nz (irp->addr));
2832 return -1;
2833 }
2834 irp->addr += 4;
2835 }
2836 else
2837 {
2838 *addr = 0;
2839 }
2840 break;
2841 case 1:
2842 if (target_read_memory (irp->addr, &tmpu8, 1))
2843 {
2844 if (record_debug)
2845 printf_unfiltered (_("Process record: error reading memory "
2846 "at addr 0x%s len = 1.\n"),
2847 paddr_nz (irp->addr));
2848 return -1;
2849 }
2850 irp->addr++;
2851 *addr = (int8_t) tmpu8;
2852 break;
2853 case 2:
2854 if (target_read_memory (irp->addr, (gdb_byte *) addr, 4))
2855 {
2856 if (record_debug)
2857 printf_unfiltered (_("Process record: error reading memory "
2858 "at addr 0x%s len = 4.\n"),
2859 paddr_nz (irp->addr));
2860 return -1;
2861 }
2862 irp->addr += 4;
2863 break;
2864 }
2865
2866 if (base != 0xff)
2867 {
2868 regcache_raw_read (irp->regcache, base, (gdb_byte *) & tmpu32);
2869 *addr += tmpu32;
2870 }
2871
2872 /* XXX: index == 4 is always invalid */
2873 if (havesib && (index != 4 || scale != 0))
2874 {
2875 regcache_raw_read (irp->regcache, index, (gdb_byte *) & tmpu32);
2876 *addr += tmpu32 << scale;
2877 }
2878 }
2879 else
2880 {
2881 /* 16 bits */
2882 switch (irp->mod)
2883 {
2884 case 0:
2885 if (irp->rm == 6)
2886 {
2887 if (target_read_memory
2888 (irp->addr, (gdb_byte *) & tmpu16, 2))
2889 {
2890 if (record_debug)
2891 printf_unfiltered (_("Process record: error reading "
2892 "memory at addr 0x%s len = 2.\n"),
2893 paddr_nz (irp->addr));
2894 return -1;
2895 }
2896 irp->addr += 2;
2897 *addr = (int16_t) tmpu16;
2898 irp->rm = 0;
2899 goto no_rm;
2900 }
2901 else
2902 {
2903 *addr = 0;
2904 }
2905 break;
2906 case 1:
2907 if (target_read_memory (irp->addr, &tmpu8, 1))
2908 {
2909 if (record_debug)
2910 printf_unfiltered (_("Process record: error reading memory "
2911 "at addr 0x%s len = 1.\n"),
2912 paddr_nz (irp->addr));
2913 return -1;
2914 }
2915 irp->addr++;
2916 *addr = (int8_t) tmpu8;
2917 break;
2918 case 2:
2919 if (target_read_memory (irp->addr, (gdb_byte *) & tmpu16, 2))
2920 {
2921 if (record_debug)
2922 printf_unfiltered (_("Process record: error reading memory "
2923 "at addr 0x%s len = 2.\n"),
2924 paddr_nz (irp->addr));
2925 return -1;
2926 }
2927 irp->addr += 2;
2928 *addr = (int16_t) tmpu16;
2929 break;
2930 }
2931
2932 switch (irp->rm)
2933 {
2934 case 0:
2935 regcache_raw_read (irp->regcache, I386_EBX_REGNUM,
2936 (gdb_byte *) & tmpu32);
2937 *addr += tmpu32;
2938 regcache_raw_read (irp->regcache, I386_ESI_REGNUM,
2939 (gdb_byte *) & tmpu32);
2940 *addr += tmpu32;
2941 break;
2942 case 1:
2943 regcache_raw_read (irp->regcache, I386_EBX_REGNUM,
2944 (gdb_byte *) & tmpu32);
2945 *addr += tmpu32;
2946 regcache_raw_read (irp->regcache, I386_EDI_REGNUM,
2947 (gdb_byte *) & tmpu32);
2948 *addr += tmpu32;
2949 break;
2950 case 2:
2951 regcache_raw_read (irp->regcache, I386_EBP_REGNUM,
2952 (gdb_byte *) & tmpu32);
2953 *addr += tmpu32;
2954 regcache_raw_read (irp->regcache, I386_ESI_REGNUM,
2955 (gdb_byte *) & tmpu32);
2956 *addr += tmpu32;
2957 break;
2958 case 3:
2959 regcache_raw_read (irp->regcache, I386_EBP_REGNUM,
2960 (gdb_byte *) & tmpu32);
2961 *addr += tmpu32;
2962 regcache_raw_read (irp->regcache, I386_EDI_REGNUM,
2963 (gdb_byte *) & tmpu32);
2964 *addr += tmpu32;
2965 break;
2966 case 4:
2967 regcache_raw_read (irp->regcache, I386_ESI_REGNUM,
2968 (gdb_byte *) & tmpu32);
2969 *addr += tmpu32;
2970 break;
2971 case 5:
2972 regcache_raw_read (irp->regcache, I386_EDI_REGNUM,
2973 (gdb_byte *) & tmpu32);
2974 *addr += tmpu32;
2975 break;
2976 case 6:
2977 regcache_raw_read (irp->regcache, I386_EBP_REGNUM,
2978 (gdb_byte *) & tmpu32);
2979 *addr += tmpu32;
2980 break;
2981 case 7:
2982 regcache_raw_read (irp->regcache, I386_EBX_REGNUM,
2983 (gdb_byte *) & tmpu32);
2984 *addr += tmpu32;
2985 break;
2986 }
2987 *addr &= 0xffff;
2988 }
2989
2990 no_rm:
2991 return 0;
2992 }
2993
2994 /* Record the value of the memory that willbe changed in current instruction
2995 to "record_arch_list".
2996 Return -1 if something wrong. */
2997
2998 static int
2999 i386_record_lea_modrm (struct i386_record_s *irp)
3000 {
3001 uint32_t addr;
3002
3003 if (irp->override)
3004 {
3005 if (record_debug)
3006 printf_unfiltered (_("Process record ignores the memory change "
3007 "of instruction at address 0x%s because it "
3008 "can't get the value of the segment register.\n"),
3009 paddr_nz (irp->addr));
3010 return 0;
3011 }
3012
3013 if (i386_record_lea_modrm_addr (irp, &addr))
3014 return -1;
3015
3016 if (record_arch_list_add_mem (addr, 1 << irp->ot))
3017 return -1;
3018
3019 return 0;
3020 }
3021
3022 /* Parse the current instruction and record the values of the registers and
3023 memory that will be changed in current instruction to "record_arch_list".
3024 Return -1 if something wrong. */
3025
3026 int
3027 i386_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
3028 CORE_ADDR addr)
3029 {
3030 int prefixes = 0;
3031 uint8_t tmpu8;
3032 uint16_t tmpu16;
3033 uint32_t tmpu32;
3034 uint32_t opcode;
3035 struct i386_record_s ir;
3036
3037 memset (&ir, 0, sizeof (struct i386_record_s));
3038 ir.regcache = regcache;
3039 ir.addr = addr;
3040 ir.aflag = 1;
3041 ir.dflag = 1;
3042
3043 if (record_debug > 1)
3044 fprintf_unfiltered (gdb_stdlog, "Process record: i386_process_record "
3045 "addr = 0x%s\n",
3046 paddr_nz (ir.addr));
3047
3048 /* prefixes */
3049 while (1)
3050 {
3051 if (target_read_memory (ir.addr, &tmpu8, 1))
3052 {
3053 if (record_debug)
3054 printf_unfiltered (_("Process record: error reading memory at "
3055 "addr 0x%s len = 1.\n"),
3056 paddr_nz (ir.addr));
3057 return -1;
3058 }
3059 ir.addr++;
3060 switch (tmpu8)
3061 {
3062 case 0xf3:
3063 prefixes |= PREFIX_REPZ;
3064 break;
3065 case 0xf2:
3066 prefixes |= PREFIX_REPNZ;
3067 break;
3068 case 0xf0:
3069 prefixes |= PREFIX_LOCK;
3070 break;
3071 case 0x2e:
3072 ir.override = I386_CS_REGNUM;
3073 break;
3074 case 0x36:
3075 ir.override = I386_SS_REGNUM;
3076 break;
3077 case 0x3e:
3078 ir.override = I386_DS_REGNUM;
3079 break;
3080 case 0x26:
3081 ir.override = I386_ES_REGNUM;
3082 break;
3083 case 0x64:
3084 ir.override = I386_FS_REGNUM;
3085 break;
3086 case 0x65:
3087 ir.override = I386_GS_REGNUM;
3088 break;
3089 case 0x66:
3090 prefixes |= PREFIX_DATA;
3091 break;
3092 case 0x67:
3093 prefixes |= PREFIX_ADDR;
3094 break;
3095 default:
3096 goto out_prefixes;
3097 break;
3098 }
3099 }
3100 out_prefixes:
3101 if (prefixes & PREFIX_DATA)
3102 ir.dflag ^= 1;
3103 if (prefixes & PREFIX_ADDR)
3104 ir.aflag ^= 1;
3105
3106 /* now check op code */
3107 opcode = (uint32_t) tmpu8;
3108 reswitch:
3109 switch (opcode)
3110 {
3111 case 0x0f:
3112 if (target_read_memory (ir.addr, &tmpu8, 1))
3113 {
3114 if (record_debug)
3115 printf_unfiltered (_("Process record: error reading memory at "
3116 "addr 0x%s len = 1.\n"),
3117 paddr_nz (ir.addr));
3118 return -1;
3119 }
3120 ir.addr++;
3121 opcode = (uint16_t) tmpu8 | 0x0f00;
3122 goto reswitch;
3123 break;
3124
3125 /* arith & logic */
3126 case 0x00:
3127 case 0x01:
3128 case 0x02:
3129 case 0x03:
3130 case 0x04:
3131 case 0x05:
3132 case 0x08:
3133 case 0x09:
3134 case 0x0a:
3135 case 0x0b:
3136 case 0x0c:
3137 case 0x0d:
3138 case 0x10:
3139 case 0x11:
3140 case 0x12:
3141 case 0x13:
3142 case 0x14:
3143 case 0x15:
3144 case 0x18:
3145 case 0x19:
3146 case 0x1a:
3147 case 0x1b:
3148 case 0x1c:
3149 case 0x1d:
3150 case 0x20:
3151 case 0x21:
3152 case 0x22:
3153 case 0x23:
3154 case 0x24:
3155 case 0x25:
3156 case 0x28:
3157 case 0x29:
3158 case 0x2a:
3159 case 0x2b:
3160 case 0x2c:
3161 case 0x2d:
3162 case 0x30:
3163 case 0x31:
3164 case 0x32:
3165 case 0x33:
3166 case 0x34:
3167 case 0x35:
3168 case 0x38:
3169 case 0x39:
3170 case 0x3a:
3171 case 0x3b:
3172 case 0x3c:
3173 case 0x3d:
3174 if (((opcode >> 3) & 7) != OP_CMPL)
3175 {
3176 if ((opcode & 1) == 0)
3177 ir.ot = OT_BYTE;
3178 else
3179 ir.ot = ir.dflag + OT_WORD;
3180
3181 switch ((opcode >> 1) & 3)
3182 {
3183 /* OP Ev, Gv */
3184 case 0:
3185 if (i386_record_modrm (&ir))
3186 return -1;
3187 if (ir.mod != 3)
3188 {
3189 if (i386_record_lea_modrm (&ir))
3190 return -1;
3191 }
3192 else
3193 {
3194 if (ir.ot == OT_BYTE)
3195 ir.rm &= 0x3;
3196 if (record_arch_list_add_reg (ir.regcache, ir.rm))
3197 return -1;
3198 }
3199 break;
3200 /* OP Gv, Ev */
3201 case 1:
3202 if (i386_record_modrm (&ir))
3203 return -1;
3204 if (ir.ot == OT_BYTE)
3205 ir.reg &= 0x3;
3206 if (record_arch_list_add_reg (ir.regcache, ir.reg))
3207 return -1;
3208 break;
3209 /* OP A, Iv */
3210 case 2:
3211 if (record_arch_list_add_reg (ir.regcache, I386_EAX_REGNUM))
3212 return -1;
3213 break;
3214 }
3215 }
3216 if (record_arch_list_add_reg (ir.regcache, I386_EFLAGS_REGNUM))
3217 return -1;
3218 break;
3219
3220 /* GRP1 */
3221 case 0x80:
3222 case 0x81:
3223 case 0x82:
3224 case 0x83:
3225 if (i386_record_modrm (&ir))
3226 return -1;
3227
3228 if (ir.reg != OP_CMPL)
3229 {
3230 if ((opcode & 1) == 0)
3231 ir.ot = OT_BYTE;
3232 else
3233 ir.ot = ir.dflag + OT_WORD;
3234
3235 if (ir.mod != 3)
3236 {
3237 if (i386_record_lea_modrm (&ir))
3238 return -1;
3239 }
3240 else
3241 {
3242 if (record_arch_list_add_reg (ir.regcache, ir.rm))
3243 return -1;
3244 }
3245 }
3246 if (record_arch_list_add_reg (ir.regcache, I386_EFLAGS_REGNUM))
3247 return -1;
3248 break;
3249
3250 /* inv */
3251 case 0x40:
3252 case 0x41:
3253 case 0x42:
3254 case 0x43:
3255 case 0x44:
3256 case 0x45:
3257 case 0x46:
3258 case 0x47:
3259 /* dec */
3260 case 0x48:
3261 case 0x49:
3262 case 0x4a:
3263 case 0x4b:
3264 case 0x4c:
3265 case 0x4d:
3266 case 0x4e:
3267 case 0x4f:
3268 if (record_arch_list_add_reg (ir.regcache, opcode & 7))
3269 return -1;
3270 if (record_arch_list_add_reg (ir.regcache, I386_EFLAGS_REGNUM))
3271 return -1;
3272 break;
3273
3274 /* GRP3 */
3275 case 0xf6:
3276 case 0xf7:
3277 if ((opcode & 1) == 0)
3278 ir.ot = OT_BYTE;
3279 else
3280 ir.ot = ir.dflag + OT_WORD;
3281 if (i386_record_modrm (&ir))
3282 return -1;
3283
3284 switch (ir.reg)
3285 {
3286 /* test */
3287 case 0:
3288 if (record_arch_list_add_reg (ir.regcache, I386_EFLAGS_REGNUM))
3289 return -1;
3290 break;
3291 /* not */
3292 case 2:
3293 if (ir.mod != 3)
3294 {
3295 if (i386_record_lea_modrm (&ir))
3296 return -1;
3297 }
3298 else
3299 {
3300 if (ir.ot == OT_BYTE)
3301 ir.rm &= 0x3;
3302 if (record_arch_list_add_reg (ir.regcache, ir.rm))
3303 return -1;
3304 }
3305 break;
3306 /* neg */
3307 case 3:
3308 if (ir.mod != 3)
3309 {
3310 if (i386_record_lea_modrm (&ir))
3311 return -1;
3312 }
3313 else
3314 {
3315 if (ir.ot == OT_BYTE)
3316 ir.rm &= 0x3;
3317 if (record_arch_list_add_reg (ir.regcache, ir.rm))
3318 return -1;
3319 }
3320 if (record_arch_list_add_reg (ir.regcache, I386_EFLAGS_REGNUM))
3321 return -1;
3322 break;
3323 /* mul */
3324 case 4:
3325 /* imul */
3326 case 5:
3327 /* div */
3328 case 6:
3329 /* idiv */
3330 case 7:
3331 if (record_arch_list_add_reg (ir.regcache, I386_EAX_REGNUM))
3332 return -1;
3333 if (ir.ot != OT_BYTE)
3334 {
3335 if (record_arch_list_add_reg (ir.regcache, I386_EDX_REGNUM))
3336 return -1;
3337 }
3338 if (record_arch_list_add_reg (ir.regcache, I386_EFLAGS_REGNUM))
3339 return -1;
3340 break;
3341 default:
3342 ir.addr -= 2;
3343 opcode = opcode << 8 | ir.modrm;
3344 goto no_support;
3345 break;
3346 }
3347 break;
3348
3349 /* GRP4 */
3350 case 0xfe:
3351 /* GRP5 */
3352 case 0xff:
3353 if ((opcode & 1) == 0)
3354 ir.ot = OT_BYTE;
3355 else
3356 ir.ot = ir.dflag + OT_WORD;
3357 if (i386_record_modrm (&ir))
3358 return -1;
3359 if (ir.reg >= 2 && opcode == 0xfe)
3360 {
3361 ir.addr -= 2;
3362 opcode = opcode << 8 | ir.modrm;
3363 goto no_support;
3364 }
3365
3366 switch (ir.reg)
3367 {
3368 /* inc */
3369 case 0:
3370 /* dec */
3371 case 1:
3372 if (ir.mod != 3)
3373 {
3374 if (i386_record_lea_modrm (&ir))
3375 return -1;
3376 }
3377 else
3378 {
3379 if (ir.ot == OT_BYTE)
3380 ir.rm &= 0x3;
3381 if (record_arch_list_add_reg (ir.regcache, ir.rm))
3382 return -1;
3383 }
3384 if (record_arch_list_add_reg (ir.regcache, I386_EFLAGS_REGNUM))
3385 return -1;
3386 break;
3387 /* call */
3388 case 2:
3389 /* push */
3390 case 6:
3391 if (record_arch_list_add_reg (ir.regcache, I386_ESP_REGNUM))
3392 return -1;
3393 regcache_raw_read (ir.regcache, I386_ESP_REGNUM,
3394 (gdb_byte *) & tmpu32);
3395 if (record_arch_list_add_mem
3396 ((CORE_ADDR) tmpu32 - (1 << (ir.dflag + 1)), (1 << (ir.dflag + 1))))
3397 return -1;
3398 break;
3399 /* lcall */
3400 case 3:
3401 if (record_arch_list_add_reg (ir.regcache, I386_ESP_REGNUM))
3402 return -1;
3403 if (record_arch_list_add_reg (ir.regcache, I386_CS_REGNUM))
3404 return -1;
3405 regcache_raw_read (ir.regcache, I386_ESP_REGNUM,
3406 (gdb_byte *) & tmpu32);
3407 if (record_arch_list_add_mem
3408 ((CORE_ADDR) tmpu32 - (1 << (ir.dflag + 2)), (1 << (ir.dflag + 2))))
3409 return -1;
3410 break;
3411 /* jmp */
3412 case 4:
3413 /* ljmp */
3414 case 5:
3415 break;
3416 default:
3417 ir.addr -= 2;
3418 opcode = opcode << 8 | ir.modrm;
3419 goto no_support;
3420 break;
3421 }
3422 break;
3423
3424 /* test */
3425 case 0x84:
3426 case 0x85:
3427 case 0xa8:
3428 case 0xa9:
3429 if (record_arch_list_add_reg (ir.regcache, I386_EFLAGS_REGNUM))
3430 return -1;
3431 break;
3432
3433 /* CWDE/CBW */
3434 case 0x98:
3435 if (record_arch_list_add_reg (ir.regcache, I386_EAX_REGNUM))
3436 return -1;
3437 break;
3438
3439 /* CDQ/CWD */
3440 case 0x99:
3441 if (record_arch_list_add_reg (ir.regcache, I386_EAX_REGNUM))
3442 return -1;
3443 if (record_arch_list_add_reg (ir.regcache, I386_EDX_REGNUM))
3444 return -1;
3445 break;
3446
3447 /* imul */
3448 case 0x0faf:
3449 case 0x69:
3450 case 0x6b:
3451 ir.ot = ir.dflag + OT_WORD;
3452 if (i386_record_modrm (&ir))
3453 return -1;
3454 if (ir.ot == OT_BYTE)
3455 ir.reg &= 0x3;
3456 if (record_arch_list_add_reg (ir.regcache, ir.reg))
3457 return -1;
3458 if (record_arch_list_add_reg (ir.regcache, I386_EFLAGS_REGNUM))
3459 return -1;
3460 break;
3461
3462 /* xadd */
3463 case 0x0fc0:
3464 case 0x0fc1:
3465 if ((opcode & 1) == 0)
3466 ir.ot = OT_BYTE;
3467 else
3468 ir.ot = ir.dflag + OT_WORD;
3469 if (i386_record_modrm (&ir))
3470 return -1;
3471 if (ir.mod == 3)
3472 {
3473 if (ir.ot == OT_BYTE)
3474 ir.reg &= 0x3;
3475 if (record_arch_list_add_reg (ir.regcache, ir.reg))
3476 return -1;
3477 if (ir.ot == OT_BYTE)
3478 ir.rm &= 0x3;
3479 if (record_arch_list_add_reg (ir.regcache, ir.rm))
3480 return -1;
3481 }
3482 else
3483 {
3484 if (i386_record_lea_modrm (&ir))
3485 return -1;
3486 if (ir.ot == OT_BYTE)
3487 ir.reg &= 0x3;
3488 if (record_arch_list_add_reg (ir.regcache, ir.reg))
3489 return -1;
3490 }
3491 if (record_arch_list_add_reg (ir.regcache, I386_EFLAGS_REGNUM))
3492 return -1;
3493 break;
3494
3495 /* cmpxchg */
3496 case 0x0fb0:
3497 case 0x0fb1:
3498 if ((opcode & 1) == 0)
3499 ir.ot = OT_BYTE;
3500 else
3501 ir.ot = ir.dflag + OT_WORD;
3502 if (i386_record_modrm (&ir))
3503 return -1;
3504 if (ir.mod == 3)
3505 {
3506 if (record_arch_list_add_reg (ir.regcache, I386_EAX_REGNUM))
3507 return -1;
3508 if (ir.ot == OT_BYTE)
3509 ir.reg &= 0x3;
3510 if (record_arch_list_add_reg (ir.regcache, ir.reg))
3511 return -1;
3512 }
3513 else
3514 {
3515 if (record_arch_list_add_reg (ir.regcache, I386_EAX_REGNUM))
3516 return -1;
3517 if (i386_record_lea_modrm (&ir))
3518 return -1;
3519 }
3520 if (record_arch_list_add_reg (ir.regcache, I386_EFLAGS_REGNUM))
3521 return -1;
3522 break;
3523
3524 /* cmpxchg8b */
3525 case 0x0fc7:
3526 if (i386_record_modrm (&ir))
3527 return -1;
3528 if (ir.mod == 3)
3529 {
3530 ir.addr -= 2;
3531 opcode = opcode << 8 | ir.modrm;
3532 goto no_support;
3533 }
3534 if (record_arch_list_add_reg (ir.regcache, I386_EAX_REGNUM))
3535 return -1;
3536 if (record_arch_list_add_reg (ir.regcache, I386_EDX_REGNUM))
3537 return -1;
3538 if (i386_record_lea_modrm (&ir))
3539 return -1;
3540 if (record_arch_list_add_reg (ir.regcache, I386_EFLAGS_REGNUM))
3541 return -1;
3542 break;
3543
3544 /* push */
3545 case 0x50:
3546 case 0x51:
3547 case 0x52:
3548 case 0x53:
3549 case 0x54:
3550 case 0x55:
3551 case 0x56:
3552 case 0x57:
3553 case 0x68:
3554 case 0x6a:
3555 /* push es */
3556 case 0x06:
3557 /* push cs */
3558 case 0x0e:
3559 /* push ss */
3560 case 0x16:
3561 /* push ds */
3562 case 0x1e:
3563 /* push fs */
3564 case 0x0fa0:
3565 /* push gs */
3566 case 0x0fa8:
3567 if (record_arch_list_add_reg (ir.regcache, I386_ESP_REGNUM))
3568 return -1;
3569 regcache_raw_read (ir.regcache, I386_ESP_REGNUM,
3570 (gdb_byte *) & tmpu32);
3571 if (record_arch_list_add_mem
3572 ((CORE_ADDR) tmpu32 - (1 << (ir.dflag + 1)), (1 << (ir.dflag + 1))))
3573 return -1;
3574 break;
3575
3576 /* pop */
3577 case 0x58:
3578 case 0x59:
3579 case 0x5a:
3580 case 0x5b:
3581 case 0x5c:
3582 case 0x5d:
3583 case 0x5e:
3584 case 0x5f:
3585 ir.ot = ir.dflag + OT_WORD;
3586 if (record_arch_list_add_reg (ir.regcache, I386_ESP_REGNUM))
3587 return -1;
3588 if (ir.ot == OT_BYTE)
3589 opcode &= 0x3;
3590 if (record_arch_list_add_reg (ir.regcache, opcode & 0x7))
3591 return -1;
3592 break;
3593
3594 /* pusha */
3595 case 0x60:
3596 if (record_arch_list_add_reg (ir.regcache, I386_ESP_REGNUM))
3597 return -1;
3598 regcache_raw_read (ir.regcache, I386_ESP_REGNUM,
3599 (gdb_byte *) & tmpu32);
3600 if (record_arch_list_add_mem
3601 ((CORE_ADDR) tmpu32 - (1 << (ir.dflag + 4)), (1 << (ir.dflag + 4))))
3602 return -1;
3603 break;
3604
3605 /* popa */
3606 case 0x61:
3607 for (tmpu8 = I386_EAX_REGNUM; tmpu8 <= I386_EDI_REGNUM; tmpu8++)
3608 {
3609 if (record_arch_list_add_reg (ir.regcache, tmpu8))
3610 return -1;
3611 }
3612 break;
3613
3614 /* pop */
3615 case 0x8f:
3616 ir.ot = ir.dflag + OT_WORD;
3617 if (i386_record_modrm (&ir))
3618 return -1;
3619 if (ir.mod == 3)
3620 {
3621 if (record_arch_list_add_reg (ir.regcache, ir.rm))
3622 return -1;
3623 }
3624 else
3625 {
3626 if (i386_record_lea_modrm (&ir))
3627 return -1;
3628 }
3629 if (record_arch_list_add_reg (ir.regcache, I386_ESP_REGNUM))
3630 return -1;
3631 break;
3632
3633 /* enter */
3634 case 0xc8:
3635 if (record_arch_list_add_reg (ir.regcache, I386_ESP_REGNUM))
3636 return -1;
3637 if (record_arch_list_add_reg (ir.regcache, I386_EBP_REGNUM))
3638 return -1;
3639 regcache_raw_read (ir.regcache, I386_ESP_REGNUM,
3640 (gdb_byte *) & tmpu32);
3641 if (record_arch_list_add_mem
3642 ((CORE_ADDR) tmpu32 - (1 << (ir.dflag + 1)), (1 << (ir.dflag + 1))))
3643 return -1;
3644 break;
3645
3646 /* leave */
3647 case 0xc9:
3648 if (record_arch_list_add_reg (ir.regcache, I386_ESP_REGNUM))
3649 return -1;
3650 if (record_arch_list_add_reg (ir.regcache, I386_EBP_REGNUM))
3651 return -1;
3652 break;
3653
3654 /* pop es */
3655 case 0x07:
3656 if (record_arch_list_add_reg (ir.regcache, I386_ESP_REGNUM))
3657 return -1;
3658 if (record_arch_list_add_reg (ir.regcache, I386_ES_REGNUM))
3659 return -1;
3660 break;
3661
3662 /* pop ss */
3663 case 0x17:
3664 if (record_arch_list_add_reg (ir.regcache, I386_ESP_REGNUM))
3665 return -1;
3666 if (record_arch_list_add_reg (ir.regcache, I386_SS_REGNUM))
3667 return -1;
3668 break;
3669
3670 /* pop ds */
3671 case 0x1f:
3672 if (record_arch_list_add_reg (ir.regcache, I386_ESP_REGNUM))
3673 return -1;
3674 if (record_arch_list_add_reg (ir.regcache, I386_DS_REGNUM))
3675 return -1;
3676 break;
3677
3678 /* pop fs */
3679 case 0x0fa1:
3680 if (record_arch_list_add_reg (ir.regcache, I386_ESP_REGNUM))
3681 return -1;
3682 if (record_arch_list_add_reg (ir.regcache, I386_FS_REGNUM))
3683 return -1;
3684 break;
3685
3686 /* pop gs */
3687 case 0x0fa9:
3688 if (record_arch_list_add_reg (ir.regcache, I386_ESP_REGNUM))
3689 return -1;
3690 if (record_arch_list_add_reg (ir.regcache, I386_GS_REGNUM))
3691 return -1;
3692 break;
3693
3694 /* mov */
3695 case 0x88:
3696 case 0x89:
3697 case 0xc6:
3698 case 0xc7:
3699 if ((opcode & 1) == 0)
3700 ir.ot = OT_BYTE;
3701 else
3702 ir.ot = ir.dflag + OT_WORD;
3703
3704 if (i386_record_modrm (&ir))
3705 return -1;
3706
3707 if (ir.mod != 3)
3708 {
3709 if (i386_record_lea_modrm (&ir))
3710 return -1;
3711 }
3712 else
3713 {
3714 if (ir.ot == OT_BYTE)
3715 ir.rm &= 0x3;
3716 if (record_arch_list_add_reg (ir.regcache, ir.rm))
3717 return -1;
3718 }
3719 if (record_arch_list_add_reg (ir.regcache, I386_EFLAGS_REGNUM))
3720 return -1;
3721 break;
3722 /* mov */
3723 case 0x8a:
3724 case 0x8b:
3725 if ((opcode & 1) == 0)
3726 ir.ot = OT_BYTE;
3727 else
3728 ir.ot = ir.dflag + OT_WORD;
3729
3730 if (i386_record_modrm (&ir))
3731 return -1;
3732
3733 if (ir.ot == OT_BYTE)
3734 ir.reg &= 0x3;
3735 if (record_arch_list_add_reg (ir.regcache, ir.reg))
3736 return -1;
3737
3738 if (record_arch_list_add_reg (ir.regcache, I386_EFLAGS_REGNUM))
3739 return -1;
3740 break;
3741
3742 /* mov seg */
3743 case 0x8e:
3744 if (i386_record_modrm (&ir))
3745 return -1;
3746
3747 switch (ir.reg)
3748 {
3749 case 0:
3750 tmpu8 = I386_ES_REGNUM;
3751 break;
3752 case 2:
3753 tmpu8 = I386_SS_REGNUM;
3754 break;
3755 case 3:
3756 tmpu8 = I386_DS_REGNUM;
3757 break;
3758 case 4:
3759 tmpu8 = I386_FS_REGNUM;
3760 break;
3761 case 5:
3762 tmpu8 = I386_GS_REGNUM;
3763 break;
3764 default:
3765 ir.addr -= 2;
3766 opcode = opcode << 8 | ir.modrm;
3767 goto no_support;
3768 break;
3769 }
3770 if (record_arch_list_add_reg (ir.regcache, tmpu8))
3771 return -1;
3772
3773 if (record_arch_list_add_reg (ir.regcache, I386_EFLAGS_REGNUM))
3774 return -1;
3775 break;
3776
3777 /* mov seg */
3778 case 0x8c:
3779 if (i386_record_modrm (&ir))
3780 return -1;
3781 if (ir.reg > 5)
3782 {
3783 ir.addr -= 2;
3784 opcode = opcode << 8 | ir.modrm;
3785 goto no_support;
3786 }
3787
3788 if (ir.mod == 3)
3789 {
3790 if (record_arch_list_add_reg (ir.regcache, ir.rm))
3791 return -1;
3792 }
3793 else
3794 {
3795 ir.ot = OT_WORD;
3796 if (i386_record_lea_modrm (&ir))
3797 return -1;
3798 }
3799
3800 if (record_arch_list_add_reg (ir.regcache, I386_EFLAGS_REGNUM))
3801 return -1;
3802 break;
3803
3804 /* movzbS */
3805 case 0x0fb6:
3806 /* movzwS */
3807 case 0x0fb7:
3808 /* movsbS */
3809 case 0x0fbe:
3810 /* movswS */
3811 case 0x0fbf:
3812 if (i386_record_modrm (&ir))
3813 return -1;
3814 if (record_arch_list_add_reg (ir.regcache, ir.reg))
3815 return -1;
3816 break;
3817
3818 /* lea */
3819 case 0x8d:
3820 if (i386_record_modrm (&ir))
3821 return -1;
3822 if (ir.mod == 3)
3823 {
3824 ir.addr -= 2;
3825 opcode = opcode << 8 | ir.modrm;
3826 goto no_support;
3827 }
3828
3829 ir.ot = ir.dflag;
3830 if (ir.ot == OT_BYTE)
3831 ir.reg &= 0x3;
3832 if (record_arch_list_add_reg (ir.regcache, ir.reg))
3833 return -1;
3834 break;
3835
3836 /* mov EAX */
3837 case 0xa0:
3838 case 0xa1:
3839 /* xlat */
3840 case 0xd7:
3841 if (record_arch_list_add_reg (ir.regcache, I386_EAX_REGNUM))
3842 return -1;
3843 break;
3844
3845 /* mov EAX */
3846 case 0xa2:
3847 case 0xa3:
3848 {
3849 uint32_t addr;
3850
3851 if (ir.override)
3852 {
3853 if (record_debug)
3854 printf_unfiltered (_("Process record ignores the memory change "
3855 "of instruction at address 0x%s because "
3856 "it can't get the value of the segment "
3857 "register.\n"),
3858 paddr_nz (ir.addr));
3859 }
3860 else
3861 {
3862 if ((opcode & 1) == 0)
3863 ir.ot = OT_BYTE;
3864 else
3865 ir.ot = ir.dflag + OT_WORD;
3866 if (ir.aflag)
3867 {
3868 if (target_read_memory
3869 (ir.addr, (gdb_byte *) & addr, 4))
3870 {
3871 if (record_debug)
3872 printf_unfiltered (_("Process record: error reading "
3873 "memory at addr 0x%s len = 4.\n"),
3874 paddr_nz (ir.addr));
3875 return -1;
3876 }
3877 ir.addr += 4;
3878 }
3879 else
3880 {
3881 if (target_read_memory
3882 (ir.addr, (gdb_byte *) & tmpu16, 4))
3883 {
3884 if (record_debug)
3885 printf_unfiltered (_("Process record: error reading "
3886 "memory at addr 0x%s len = 4.\n"),
3887 paddr_nz (ir.addr));
3888 return -1;
3889 }
3890 ir.addr += 2;
3891 addr = tmpu16;
3892 }
3893 if (record_arch_list_add_mem (addr, 1 << ir.ot))
3894 return -1;
3895 }
3896 }
3897 break;
3898
3899 /* mov R, Ib */
3900 case 0xb0:
3901 case 0xb1:
3902 case 0xb2:
3903 case 0xb3:
3904 case 0xb4:
3905 case 0xb5:
3906 case 0xb6:
3907 case 0xb7:
3908 if (record_arch_list_add_reg (ir.regcache, (opcode & 0x7) & 0x3))
3909 return -1;
3910 break;
3911
3912 /* mov R, Iv */
3913 case 0xb8:
3914 case 0xb9:
3915 case 0xba:
3916 case 0xbb:
3917 case 0xbc:
3918 case 0xbd:
3919 case 0xbe:
3920 case 0xbf:
3921 if (record_arch_list_add_reg (ir.regcache, opcode & 0x7))
3922 return -1;
3923 break;
3924
3925 /* xchg R, EAX */
3926 case 0x91:
3927 case 0x92:
3928 case 0x93:
3929 case 0x94:
3930 case 0x95:
3931 case 0x96:
3932 case 0x97:
3933 if (record_arch_list_add_reg (ir.regcache, I386_EAX_REGNUM))
3934 return -1;
3935 if (record_arch_list_add_reg (ir.regcache, opcode & 0x7))
3936 return -1;
3937 break;
3938
3939 /* xchg Ev, Gv */
3940 case 0x86:
3941 case 0x87:
3942 if ((opcode & 1) == 0)
3943 ir.ot = OT_BYTE;
3944 else
3945 ir.ot = ir.dflag + OT_WORD;
3946
3947 if (i386_record_modrm (&ir))
3948 return -1;
3949
3950 if (ir.mod == 3)
3951 {
3952 if (ir.ot == OT_BYTE)
3953 ir.rm &= 0x3;
3954 if (record_arch_list_add_reg (ir.regcache, ir.rm))
3955 return -1;
3956 }
3957 else
3958 {
3959 if (i386_record_lea_modrm (&ir))
3960 return -1;
3961 }
3962
3963 if (ir.ot == OT_BYTE)
3964 ir.reg &= 0x3;
3965 if (record_arch_list_add_reg (ir.regcache, ir.reg))
3966 return -1;
3967 break;
3968
3969 /* les Gv */
3970 case 0xc4:
3971 /* lds Gv */
3972 case 0xc5:
3973 /* lss Gv */
3974 case 0x0fb2:
3975 /* lfs Gv */
3976 case 0x0fb4:
3977 /* lgs Gv */
3978 case 0x0fb5:
3979 if (i386_record_modrm (&ir))
3980 return -1;
3981 if (ir.mod == 3)
3982 {
3983 if (opcode > 0xff)
3984 ir.addr -= 3;
3985 else
3986 ir.addr -= 2;
3987 opcode = opcode << 8 | ir.modrm;
3988 goto no_support;
3989 }
3990
3991 switch (opcode)
3992 {
3993 /* les Gv */
3994 case 0xc4:
3995 tmpu8 = I386_ES_REGNUM;
3996 break;
3997 /* lds Gv */
3998 case 0xc5:
3999 tmpu8 = I386_DS_REGNUM;
4000 break;
4001 /* lss Gv */
4002 case 0x0fb2:
4003 tmpu8 = I386_SS_REGNUM;
4004 break;
4005 /* lfs Gv */
4006 case 0x0fb4:
4007 tmpu8 = I386_FS_REGNUM;
4008 break;
4009 /* lgs Gv */
4010 case 0x0fb5:
4011 tmpu8 = I386_GS_REGNUM;
4012 break;
4013 }
4014 if (record_arch_list_add_reg (ir.regcache, tmpu8))
4015 return -1;
4016
4017 if (record_arch_list_add_reg (ir.regcache, ir.reg))
4018 return -1;
4019 break;
4020
4021 /* shifts */
4022 case 0xc0:
4023 case 0xc1:
4024 case 0xd0:
4025 case 0xd1:
4026 case 0xd2:
4027 case 0xd3:
4028 if ((opcode & 1) == 0)
4029 ir.ot = OT_BYTE;
4030 else
4031 ir.ot = ir.dflag + OT_WORD;
4032
4033 if (i386_record_modrm (&ir))
4034 return -1;
4035
4036 if (ir.mod != 3 && (opcode == 0xd2 || opcode == 0xd3))
4037 {
4038 if (i386_record_lea_modrm (&ir))
4039 return -1;
4040 }
4041 else
4042 {
4043 if (ir.ot == OT_BYTE)
4044 ir.rm &= 0x3;
4045 if (record_arch_list_add_reg (ir.regcache, ir.rm))
4046 return -1;
4047 }
4048
4049 if (record_arch_list_add_reg (ir.regcache, I386_EFLAGS_REGNUM))
4050 return -1;
4051 break;
4052
4053 case 0x0fa4:
4054 case 0x0fa5:
4055 case 0x0fac:
4056 case 0x0fad:
4057 if (i386_record_modrm (&ir))
4058 return -1;
4059 if (ir.mod == 3)
4060 {
4061 if (record_arch_list_add_reg (ir.regcache, ir.rm))
4062 return -1;
4063 }
4064 else
4065 {
4066 if (i386_record_lea_modrm (&ir))
4067 return -1;
4068 }
4069 break;
4070
4071 /* floats */
4072 /* It just record the memory change of instrcution. */
4073 case 0xd8:
4074 case 0xd9:
4075 case 0xda:
4076 case 0xdb:
4077 case 0xdc:
4078 case 0xdd:
4079 case 0xde:
4080 case 0xdf:
4081 if (i386_record_modrm (&ir))
4082 return -1;
4083 ir.reg |= ((opcode & 7) << 3);
4084 if (ir.mod != 3)
4085 {
4086 /* memory */
4087 uint32_t addr;
4088
4089 if (i386_record_lea_modrm_addr (&ir, &addr))
4090 return -1;
4091 switch (ir.reg)
4092 {
4093 case 0x00:
4094 case 0x01:
4095 case 0x02:
4096 case 0x03:
4097 case 0x04:
4098 case 0x05:
4099 case 0x06:
4100 case 0x07:
4101 case 0x10:
4102 case 0x11:
4103 case 0x12:
4104 case 0x13:
4105 case 0x14:
4106 case 0x15:
4107 case 0x16:
4108 case 0x17:
4109 case 0x20:
4110 case 0x21:
4111 case 0x22:
4112 case 0x23:
4113 case 0x24:
4114 case 0x25:
4115 case 0x26:
4116 case 0x27:
4117 case 0x30:
4118 case 0x31:
4119 case 0x32:
4120 case 0x33:
4121 case 0x34:
4122 case 0x35:
4123 case 0x36:
4124 case 0x37:
4125 break;
4126 case 0x08:
4127 case 0x0a:
4128 case 0x0b:
4129 case 0x18:
4130 case 0x19:
4131 case 0x1a:
4132 case 0x1b:
4133 case 0x28:
4134 case 0x29:
4135 case 0x2a:
4136 case 0x2b:
4137 case 0x38:
4138 case 0x39:
4139 case 0x3a:
4140 case 0x3b:
4141 switch (ir.reg & 7)
4142 {
4143 case 0:
4144 break;
4145 case 1:
4146 switch (ir.reg >> 4)
4147 {
4148 case 0:
4149 if (record_arch_list_add_mem (addr, 4))
4150 return -1;
4151 break;
4152 case 2:
4153 if (record_arch_list_add_mem (addr, 8))
4154 return -1;
4155 break;
4156 case 3:
4157 default:
4158 if (record_arch_list_add_mem (addr, 2))
4159 return -1;
4160 break;
4161 }
4162 break;
4163 default:
4164 switch (ir.reg >> 4)
4165 {
4166 case 0:
4167 case 1:
4168 if (record_arch_list_add_mem (addr, 4))
4169 return -1;
4170 break;
4171 case 2:
4172 if (record_arch_list_add_mem (addr, 8))
4173 return -1;
4174 break;
4175 case 3:
4176 default:
4177 if (record_arch_list_add_mem (addr, 2))
4178 return -1;
4179 break;
4180 }
4181 break;
4182 }
4183 break;
4184 case 0x0c:
4185 case 0x0d:
4186 case 0x1d:
4187 case 0x2c:
4188 case 0x3c:
4189 case 0x3d:
4190 break;
4191 case 0x0e:
4192 if (ir.dflag)
4193 {
4194 if (record_arch_list_add_mem (addr, 28))
4195 return -1;
4196 }
4197 else
4198 {
4199 if (record_arch_list_add_mem (addr, 14))
4200 return -1;
4201 }
4202 break;
4203 case 0x0f:
4204 case 0x2f:
4205 if (record_arch_list_add_mem (addr, 2))
4206 return -1;
4207 break;
4208 case 0x1f:
4209 case 0x3e:
4210 if (record_arch_list_add_mem (addr, 10))
4211 return -1;
4212 break;
4213 case 0x2e:
4214 if (ir.dflag)
4215 {
4216 if (record_arch_list_add_mem (addr, 28))
4217 return -1;
4218 addr += 28;
4219 }
4220 else
4221 {
4222 if (record_arch_list_add_mem (addr, 14))
4223 return -1;
4224 addr += 14;
4225 }
4226 if (record_arch_list_add_mem (addr, 80))
4227 return -1;
4228 break;
4229 case 0x3f:
4230 if (record_arch_list_add_mem (addr, 8))
4231 return -1;
4232 break;
4233 default:
4234 ir.addr -= 2;
4235 opcode = opcode << 8 | ir.modrm;
4236 goto no_support;
4237 break;
4238 }
4239 }
4240 break;
4241
4242 /* string ops */
4243 /* movsS */
4244 case 0xa4:
4245 case 0xa5:
4246 /* stosS */
4247 case 0xaa:
4248 case 0xab:
4249 /* insS */
4250 case 0x6c:
4251 case 0x6d:
4252 {
4253 uint32_t addr;
4254
4255 if ((opcode & 1) == 0)
4256 ir.ot = OT_BYTE;
4257 else
4258 ir.ot = ir.dflag + OT_WORD;
4259 if (opcode == 0xa4 || opcode == 0xa5)
4260 {
4261 if (record_arch_list_add_reg (ir.regcache, I386_ESI_REGNUM))
4262 return -1;
4263 }
4264 if (record_arch_list_add_reg (ir.regcache, I386_EDI_REGNUM))
4265 return -1;
4266
4267 regcache_raw_read (ir.regcache, I386_EDI_REGNUM,
4268 (gdb_byte *) & addr);
4269 if (!ir.aflag)
4270 {
4271 addr &= 0xffff;
4272 /* addr += ((uint32_t)read_register (I386_ES_REGNUM)) << 4; */
4273 if (record_debug)
4274 printf_unfiltered (_("Process record ignores the memory change "
4275 "of instruction at address 0x%s because "
4276 "it can't get the value of the segment "
4277 "register.\n"),
4278 paddr_nz (ir.addr));
4279 }
4280
4281 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
4282 {
4283 uint32_t count;
4284
4285 regcache_raw_read (ir.regcache, I386_ECX_REGNUM,
4286 (gdb_byte *) & count);
4287 if (!ir.aflag)
4288 count &= 0xffff;
4289
4290 regcache_raw_read (ir.regcache, I386_EFLAGS_REGNUM,
4291 (gdb_byte *) & tmpu32);
4292 if ((tmpu32 >> 10) & 0x1)
4293 addr -= (count - 1) * (1 << ir.ot);
4294
4295 if (ir.aflag)
4296 {
4297 if (record_arch_list_add_mem (addr, count * (1 << ir.ot)))
4298 return -1;
4299 }
4300
4301 if (record_arch_list_add_reg (ir.regcache, I386_ECX_REGNUM))
4302 return -1;
4303 }
4304 else
4305 {
4306 if (ir.aflag)
4307 {
4308 if (record_arch_list_add_mem (addr, 1 << ir.ot))
4309 return -1;
4310 }
4311 }
4312 }
4313 break;
4314
4315 /* lodsS */
4316 case 0xac:
4317 case 0xad:
4318 if (record_arch_list_add_reg (ir.regcache, I386_EAX_REGNUM))
4319 return -1;
4320 if (record_arch_list_add_reg (ir.regcache, I386_ESI_REGNUM))
4321 return -1;
4322 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
4323 {
4324 if (record_arch_list_add_reg (ir.regcache, I386_ECX_REGNUM))
4325 return -1;
4326 }
4327 break;
4328
4329 /* outsS */
4330 case 0x6e:
4331 case 0x6f:
4332 if (record_arch_list_add_reg (ir.regcache, I386_ESI_REGNUM))
4333 return -1;
4334 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
4335 {
4336 if (record_arch_list_add_reg (ir.regcache, I386_ECX_REGNUM))
4337 return -1;
4338 }
4339 break;
4340
4341 /* scasS */
4342 case 0xae:
4343 case 0xaf:
4344 if (record_arch_list_add_reg (ir.regcache, I386_EDI_REGNUM))
4345 return -1;
4346 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
4347 {
4348 if (record_arch_list_add_reg (ir.regcache, I386_ECX_REGNUM))
4349 return -1;
4350 }
4351 if (record_arch_list_add_reg (ir.regcache, I386_EFLAGS_REGNUM))
4352 return -1;
4353 break;
4354
4355 /* cmpsS */
4356 case 0xa6:
4357 case 0xa7:
4358 if (record_arch_list_add_reg (ir.regcache, I386_EDI_REGNUM))
4359 return -1;
4360 if (record_arch_list_add_reg (ir.regcache, I386_ESI_REGNUM))
4361 return -1;
4362 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
4363 {
4364 if (record_arch_list_add_reg (ir.regcache, I386_ECX_REGNUM))
4365 return -1;
4366 }
4367 if (record_arch_list_add_reg (ir.regcache, I386_EFLAGS_REGNUM))
4368 return -1;
4369 break;
4370
4371 /* port I/O */
4372 case 0xe4:
4373 case 0xe5:
4374 case 0xec:
4375 case 0xed:
4376 if (record_arch_list_add_reg (ir.regcache, I386_EAX_REGNUM))
4377 return -1;
4378 break;
4379
4380 case 0xe6:
4381 case 0xe7:
4382 case 0xee:
4383 case 0xef:
4384 break;
4385
4386 /* control */
4387 /* ret im */
4388 case 0xc2:
4389 /* ret */
4390 case 0xc3:
4391 /* lret im */
4392 case 0xca:
4393 /* lret */
4394 case 0xcb:
4395 if (record_arch_list_add_reg (ir.regcache, I386_ESP_REGNUM))
4396 return -1;
4397 if (record_arch_list_add_reg (ir.regcache, I386_CS_REGNUM))
4398 return -1;
4399 break;
4400
4401 /* iret */
4402 case 0xcf:
4403 if (record_arch_list_add_reg (ir.regcache, I386_ESP_REGNUM))
4404 return -1;
4405 if (record_arch_list_add_reg (ir.regcache, I386_CS_REGNUM))
4406 return -1;
4407 if (record_arch_list_add_reg (ir.regcache, I386_EFLAGS_REGNUM))
4408 return -1;
4409 break;
4410
4411 /* call im */
4412 case 0xe8:
4413 if (record_arch_list_add_reg (ir.regcache, I386_ESP_REGNUM))
4414 return -1;
4415 regcache_raw_read (ir.regcache, I386_ESP_REGNUM,
4416 (gdb_byte *) & tmpu32);
4417 if (record_arch_list_add_mem
4418 ((CORE_ADDR) tmpu32 - (1 << (ir.dflag + 1)), (1 << (ir.dflag + 1))))
4419 return -1;
4420 break;
4421
4422 /* lcall im */
4423 case 0x9a:
4424 if (record_arch_list_add_reg (ir.regcache, I386_CS_REGNUM))
4425 return -1;
4426 if (record_arch_list_add_reg (ir.regcache, I386_ESP_REGNUM))
4427 return -1;
4428 regcache_raw_read (ir.regcache, I386_ESP_REGNUM,
4429 (gdb_byte *) & tmpu32);
4430 if (record_arch_list_add_mem
4431 ((CORE_ADDR) tmpu32 - (1 << (ir.dflag + 2)), (1 << (ir.dflag + 2))))
4432 return -1;
4433 break;
4434
4435 /* jmp im */
4436 case 0xe9:
4437 /* ljmp im */
4438 case 0xea:
4439 /* jmp Jb */
4440 case 0xeb:
4441 /* jcc Jb */
4442 case 0x70:
4443 case 0x71:
4444 case 0x72:
4445 case 0x73:
4446 case 0x74:
4447 case 0x75:
4448 case 0x76:
4449 case 0x77:
4450 case 0x78:
4451 case 0x79:
4452 case 0x7a:
4453 case 0x7b:
4454 case 0x7c:
4455 case 0x7d:
4456 case 0x7e:
4457 case 0x7f:
4458 /* jcc Jv */
4459 case 0x0f80:
4460 case 0x0f81:
4461 case 0x0f82:
4462 case 0x0f83:
4463 case 0x0f84:
4464 case 0x0f85:
4465 case 0x0f86:
4466 case 0x0f87:
4467 case 0x0f88:
4468 case 0x0f89:
4469 case 0x0f8a:
4470 case 0x0f8b:
4471 case 0x0f8c:
4472 case 0x0f8d:
4473 case 0x0f8e:
4474 case 0x0f8f:
4475 break;
4476
4477 /* setcc Gv */
4478 case 0x0f90:
4479 case 0x0f91:
4480 case 0x0f92:
4481 case 0x0f93:
4482 case 0x0f94:
4483 case 0x0f95:
4484 case 0x0f96:
4485 case 0x0f97:
4486 case 0x0f98:
4487 case 0x0f99:
4488 case 0x0f9a:
4489 case 0x0f9b:
4490 case 0x0f9c:
4491 case 0x0f9d:
4492 case 0x0f9e:
4493 case 0x0f9f:
4494 ir.ot = OT_BYTE;
4495 if (i386_record_modrm (&ir))
4496 return -1;
4497 if (ir.mod == 3)
4498 {
4499 if (record_arch_list_add_reg (ir.regcache, ir.rm & 0x3))
4500 return -1;
4501 }
4502 else
4503 {
4504 if (i386_record_lea_modrm (&ir))
4505 return -1;
4506 }
4507 break;
4508
4509 /* cmov Gv, Ev */
4510 case 0x0f40:
4511 case 0x0f41:
4512 case 0x0f42:
4513 case 0x0f43:
4514 case 0x0f44:
4515 case 0x0f45:
4516 case 0x0f46:
4517 case 0x0f47:
4518 case 0x0f48:
4519 case 0x0f49:
4520 case 0x0f4a:
4521 case 0x0f4b:
4522 case 0x0f4c:
4523 case 0x0f4d:
4524 case 0x0f4e:
4525 case 0x0f4f:
4526 if (i386_record_modrm (&ir))
4527 return -1;
4528 if (ir.dflag == OT_BYTE)
4529 ir.reg &= 0x3;
4530 if (record_arch_list_add_reg (ir.regcache, ir.reg & 0x3))
4531 return -1;
4532 break;
4533
4534 /* flags */
4535 /* pushf */
4536 case 0x9c:
4537 if (record_arch_list_add_reg (ir.regcache, I386_ESP_REGNUM))
4538 return -1;
4539 regcache_raw_read (ir.regcache, I386_ESP_REGNUM,
4540 (gdb_byte *) & tmpu32);
4541 if (record_arch_list_add_mem
4542 ((CORE_ADDR) tmpu32 - (1 << (ir.dflag + 1)), (1 << (ir.dflag + 1))))
4543 return -1;
4544 break;
4545
4546 /* popf */
4547 case 0x9d:
4548 if (record_arch_list_add_reg (ir.regcache, I386_ESP_REGNUM))
4549 return -1;
4550 if (record_arch_list_add_reg (ir.regcache, I386_EFLAGS_REGNUM))
4551 return -1;
4552 break;
4553
4554 /* sahf */
4555 case 0x9e:
4556 /* cmc */
4557 case 0xf5:
4558 /* clc */
4559 case 0xf8:
4560 /* stc */
4561 case 0xf9:
4562 /* cld */
4563 case 0xfc:
4564 /* std */
4565 case 0xfd:
4566 if (record_arch_list_add_reg (ir.regcache, I386_EFLAGS_REGNUM))
4567 return -1;
4568 break;
4569
4570 /* lahf */
4571 case 0x9f:
4572 if (record_arch_list_add_reg (ir.regcache, I386_EAX_REGNUM))
4573 return -1;
4574 break;
4575
4576 /* bit operations */
4577 /* bt/bts/btr/btc Gv, im */
4578 case 0x0fba:
4579 /* bts */
4580 case 0x0fab:
4581 /* btr */
4582 case 0x0fb3:
4583 /* btc */
4584 case 0x0fbb:
4585 ir.ot = ir.dflag + OT_WORD;
4586 if (i386_record_modrm (&ir))
4587 return -1;
4588 if (ir.reg < 4)
4589 {
4590 ir.addr -= 3;
4591 opcode = opcode << 8 | ir.modrm;
4592 goto no_support;
4593 }
4594 ir.reg -= 4;
4595 if (ir.reg != 0)
4596 {
4597 if (ir.mod != 3)
4598 {
4599 if (i386_record_lea_modrm (&ir))
4600 return -1;
4601 }
4602 else
4603 {
4604 if (record_arch_list_add_reg (ir.regcache, ir.rm))
4605 return -1;
4606 }
4607 }
4608 if (record_arch_list_add_reg (ir.regcache, I386_EFLAGS_REGNUM))
4609 return -1;
4610 break;
4611
4612 /* bt Gv, Ev */
4613 case 0x0fa3:
4614 if (record_arch_list_add_reg (ir.regcache, I386_EFLAGS_REGNUM))
4615 return -1;
4616 break;
4617
4618 /* bsf */
4619 case 0x0fbc:
4620 /* bsr */
4621 case 0x0fbd:
4622 if (record_arch_list_add_reg (ir.regcache, ir.reg))
4623 return -1;
4624 if (record_arch_list_add_reg (ir.regcache, I386_EFLAGS_REGNUM))
4625 return -1;
4626 break;
4627
4628 /* bcd */
4629 /* daa */
4630 case 0x27:
4631 /* das */
4632 case 0x2f:
4633 /* aaa */
4634 case 0x37:
4635 /* aas */
4636 case 0x3f:
4637 /* aam */
4638 case 0xd4:
4639 /* aad */
4640 case 0xd5:
4641 if (record_arch_list_add_reg (ir.regcache, I386_EAX_REGNUM))
4642 return -1;
4643 if (record_arch_list_add_reg (ir.regcache, I386_EFLAGS_REGNUM))
4644 return -1;
4645 break;
4646
4647 /* misc */
4648 /* nop */
4649 case 0x90:
4650 if (prefixes & PREFIX_LOCK)
4651 {
4652 ir.addr -= 1;
4653 goto no_support;
4654 }
4655 break;
4656
4657 /* fwait */
4658 /* XXX */
4659 case 0x9b:
4660 printf_unfiltered (_("Process record doesn't support instruction "
4661 "fwait.\n"));
4662 ir.addr -= 1;
4663 goto no_support;
4664 break;
4665
4666 /* int3 */
4667 /* XXX */
4668 case 0xcc:
4669 printf_unfiltered (_("Process record doesn't support instruction "
4670 "int3.\n"));
4671 ir.addr -= 1;
4672 goto no_support;
4673 break;
4674
4675 /* int */
4676 /* XXX */
4677 case 0xcd:
4678 {
4679 int ret;
4680 if (target_read_memory (ir.addr, &tmpu8, 1))
4681 {
4682 if (record_debug)
4683 printf_unfiltered (_("Process record: error reading memory "
4684 "at addr 0x%s len = 1.\n"),
4685 paddr_nz (ir.addr));
4686 return -1;
4687 }
4688 ir.addr++;
4689 if (tmpu8 != 0x80
4690 || gdbarch_tdep (gdbarch)->i386_intx80_record == NULL)
4691 {
4692 printf_unfiltered (_("Process record doesn't support "
4693 "instruction int 0x%02x.\n"),
4694 tmpu8);
4695 ir.addr -= 2;
4696 goto no_support;
4697 }
4698 ret = gdbarch_tdep (gdbarch)->i386_intx80_record (ir.regcache);
4699 if (ret)
4700 return ret;
4701 }
4702 break;
4703
4704 /* into */
4705 /* XXX */
4706 case 0xce:
4707 printf_unfiltered (_("Process record doesn't support "
4708 "instruction into.\n"));
4709 ir.addr -= 1;
4710 goto no_support;
4711 break;
4712
4713 /* cli */
4714 case 0xfa:
4715 /* sti */
4716 case 0xfb:
4717 break;
4718
4719 /* bound */
4720 case 0x62:
4721 printf_unfiltered (_("Process record doesn't support "
4722 "instruction bound.\n"));
4723 ir.addr -= 1;
4724 goto no_support;
4725 break;
4726
4727 /* bswap reg */
4728 case 0x0fc8:
4729 case 0x0fc9:
4730 case 0x0fca:
4731 case 0x0fcb:
4732 case 0x0fcc:
4733 case 0x0fcd:
4734 case 0x0fce:
4735 case 0x0fcf:
4736 if (record_arch_list_add_reg (ir.regcache, opcode & 7))
4737 return -1;
4738 break;
4739
4740 /* salc */
4741 case 0xd6:
4742 if (record_arch_list_add_reg (ir.regcache, I386_EAX_REGNUM))
4743 return -1;
4744 if (record_arch_list_add_reg (ir.regcache, I386_EFLAGS_REGNUM))
4745 return -1;
4746 break;
4747
4748 /* loopnz */
4749 case 0xe0:
4750 /* loopz */
4751 case 0xe1:
4752 /* loop */
4753 case 0xe2:
4754 /* jecxz */
4755 case 0xe3:
4756 if (record_arch_list_add_reg (ir.regcache, I386_ECX_REGNUM))
4757 return -1;
4758 break;
4759
4760 /* wrmsr */
4761 case 0x0f30:
4762 printf_unfiltered (_("Process record doesn't support "
4763 "instruction wrmsr.\n"));
4764 ir.addr -= 2;
4765 goto no_support;
4766 break;
4767
4768 /* rdmsr */
4769 case 0x0f32:
4770 printf_unfiltered (_("Process record doesn't support "
4771 "instruction rdmsr.\n"));
4772 ir.addr -= 2;
4773 goto no_support;
4774 break;
4775
4776 /* rdtsc */
4777 case 0x0f31:
4778 printf_unfiltered (_("Process record doesn't support "
4779 "instruction rdtsc.\n"));
4780 ir.addr -= 2;
4781 goto no_support;
4782 break;
4783
4784 /* sysenter */
4785 case 0x0f34:
4786 {
4787 int ret;
4788 if (gdbarch_tdep (gdbarch)->i386_sysenter_record == NULL)
4789 {
4790 printf_unfiltered (_("Process record doesn't support "
4791 "instruction sysenter.\n"));
4792 ir.addr -= 2;
4793 goto no_support;
4794 }
4795 ret = gdbarch_tdep (gdbarch)->i386_sysenter_record (ir.regcache);
4796 if (ret)
4797 return ret;
4798 }
4799 break;
4800
4801 /* sysexit */
4802 case 0x0f35:
4803 printf_unfiltered (_("Process record doesn't support "
4804 "instruction sysexit.\n"));
4805 ir.addr -= 2;
4806 goto no_support;
4807 break;
4808
4809 /* cpuid */
4810 case 0x0fa2:
4811 if (record_arch_list_add_reg (ir.regcache, I386_EAX_REGNUM))
4812 return -1;
4813 if (record_arch_list_add_reg (ir.regcache, I386_ECX_REGNUM))
4814 return -1;
4815 if (record_arch_list_add_reg (ir.regcache, I386_EDX_REGNUM))
4816 return -1;
4817 if (record_arch_list_add_reg (ir.regcache, I386_EBX_REGNUM))
4818 return -1;
4819 break;
4820
4821 /* hlt */
4822 case 0xf4:
4823 printf_unfiltered (_("Process record doesn't support "
4824 "instruction hlt.\n"));
4825 ir.addr -= 1;
4826 goto no_support;
4827 break;
4828
4829 case 0x0f00:
4830 if (i386_record_modrm (&ir))
4831 return -1;
4832 switch (ir.reg)
4833 {
4834 /* sldt */
4835 case 0:
4836 /* str */
4837 case 1:
4838 if (ir.mod == 3)
4839 {
4840 if (record_arch_list_add_reg (ir.regcache, ir.rm))
4841 return -1;
4842 }
4843 else
4844 {
4845 ir.ot = OT_WORD;
4846 if (i386_record_lea_modrm (&ir))
4847 return -1;
4848 }
4849 break;
4850 /* lldt */
4851 case 2:
4852 /* ltr */
4853 case 3:
4854 break;
4855 /* verr */
4856 case 4:
4857 /* verw */
4858 case 5:
4859 if (record_arch_list_add_reg (ir.regcache, I386_EFLAGS_REGNUM))
4860 return -1;
4861 break;
4862 default:
4863 ir.addr -= 3;
4864 opcode = opcode << 8 | ir.modrm;
4865 goto no_support;
4866 break;
4867 }
4868 break;
4869
4870 case 0x0f01:
4871 if (i386_record_modrm (&ir))
4872 return -1;
4873 switch (ir.reg)
4874 {
4875 /* sgdt */
4876 case 0:
4877 {
4878 uint32_t addr;
4879
4880 if (ir.mod == 3)
4881 {
4882 ir.addr -= 3;
4883 opcode = opcode << 8 | ir.modrm;
4884 goto no_support;
4885 }
4886
4887 if (ir.override)
4888 {
4889 if (record_debug)
4890 printf_unfiltered (_("Process record ignores the memory "
4891 "change of instruction at "
4892 "address 0x%s because it can't get "
4893 "the value of the segment "
4894 "register.\n"),
4895 paddr_nz (ir.addr));
4896 }
4897 else
4898 {
4899 if (i386_record_lea_modrm_addr (&ir, &addr))
4900 return -1;
4901 if (record_arch_list_add_mem (addr, 2))
4902 return -1;
4903 addr += 2;
4904 if (record_arch_list_add_mem (addr, 4))
4905 return -1;
4906 }
4907 }
4908 break;
4909 case 1:
4910 if (ir.mod == 3)
4911 {
4912 switch (ir.rm)
4913 {
4914 /* monitor */
4915 case 0:
4916 break;
4917 /* mwait */
4918 case 1:
4919 if (record_arch_list_add_reg (ir.regcache, I386_EFLAGS_REGNUM))
4920 return -1;
4921 break;
4922 default:
4923 ir.addr -= 3;
4924 opcode = opcode << 8 | ir.modrm;
4925 goto no_support;
4926 break;
4927 }
4928 }
4929 else
4930 {
4931 /* sidt */
4932 if (ir.override)
4933 {
4934 if (record_debug)
4935 printf_unfiltered (_("Process record ignores the memory "
4936 "change of instruction at "
4937 "address 0x%s because it can't get "
4938 "the value of the segment "
4939 "register.\n"),
4940 paddr_nz (ir.addr));
4941 }
4942 else
4943 {
4944 uint32_t addr;
4945
4946 if (i386_record_lea_modrm_addr (&ir, &addr))
4947 return -1;
4948 if (record_arch_list_add_mem (addr, 2))
4949 return -1;
4950 addr += 2;
4951 if (record_arch_list_add_mem (addr, 4))
4952 return -1;
4953 }
4954 }
4955 break;
4956 /* lgdt */
4957 case 2:
4958 /* lidt */
4959 case 3:
4960 /* invlpg */
4961 case 7:
4962 default:
4963 if (ir.mod == 3)
4964 {
4965 ir.addr -= 3;
4966 opcode = opcode << 8 | ir.modrm;
4967 goto no_support;
4968 }
4969 break;
4970 /* smsw */
4971 case 4:
4972 if (ir.mod == 3)
4973 {
4974 if (record_arch_list_add_reg (ir.regcache, ir.rm))
4975 return -1;
4976 }
4977 else
4978 {
4979 ir.ot = OT_WORD;
4980 if (i386_record_lea_modrm (&ir))
4981 return -1;
4982 }
4983 break;
4984 /* lmsw */
4985 case 6:
4986 break;
4987 }
4988 break;
4989
4990 /* invd */
4991 case 0x0f08:
4992 /* wbinvd */
4993 case 0x0f09:
4994 break;
4995
4996 /* arpl */
4997 case 0x63:
4998 ir.ot = ir.dflag ? OT_LONG : OT_WORD;
4999 if (i386_record_modrm (&ir))
5000 return -1;
5001 if (ir.mod != 3)
5002 {
5003 if (i386_record_lea_modrm (&ir))
5004 return -1;
5005 }
5006 else
5007 {
5008 if (record_arch_list_add_reg (ir.regcache, ir.rm))
5009 return -1;
5010 }
5011 if (record_arch_list_add_reg (ir.regcache, I386_EFLAGS_REGNUM))
5012 return -1;
5013 break;
5014
5015 /* lar */
5016 case 0x0f02:
5017 /* lsl */
5018 case 0x0f03:
5019 if (i386_record_modrm (&ir))
5020 return -1;
5021 if (record_arch_list_add_reg (ir.regcache, ir.reg))
5022 return -1;
5023 if (record_arch_list_add_reg (ir.regcache, I386_EFLAGS_REGNUM))
5024 return -1;
5025 break;
5026
5027 case 0x0f18:
5028 break;
5029
5030 /* nop (multi byte) */
5031 case 0x0f19:
5032 case 0x0f1a:
5033 case 0x0f1b:
5034 case 0x0f1c:
5035 case 0x0f1d:
5036 case 0x0f1e:
5037 case 0x0f1f:
5038 break;
5039
5040 /* mov reg, crN */
5041 case 0x0f20:
5042 /* mov crN, reg */
5043 case 0x0f22:
5044 if (i386_record_modrm (&ir))
5045 return -1;
5046 if ((ir.modrm & 0xc0) != 0xc0)
5047 {
5048 ir.addr -= 2;
5049 opcode = opcode << 8 | ir.modrm;
5050 goto no_support;
5051 }
5052 switch (ir.reg)
5053 {
5054 case 0:
5055 case 2:
5056 case 3:
5057 case 4:
5058 case 8:
5059 if (opcode & 2)
5060 {
5061 }
5062 else
5063 {
5064 if (record_arch_list_add_reg (ir.regcache, ir.rm))
5065 return -1;
5066 }
5067 break;
5068 default:
5069 ir.addr -= 2;
5070 opcode = opcode << 8 | ir.modrm;
5071 goto no_support;
5072 break;
5073 }
5074 break;
5075
5076 /* mov reg, drN */
5077 case 0x0f21:
5078 /* mov drN, reg */
5079 case 0x0f23:
5080 if (i386_record_modrm (&ir))
5081 return -1;
5082 if ((ir.modrm & 0xc0) != 0xc0 || ir.reg == 4
5083 || ir.reg == 5 || ir.reg >= 8)
5084 {
5085 ir.addr -= 2;
5086 opcode = opcode << 8 | ir.modrm;
5087 goto no_support;
5088 }
5089 if (opcode & 2)
5090 {
5091 }
5092 else
5093 {
5094 if (record_arch_list_add_reg (ir.regcache, ir.rm))
5095 return -1;
5096 }
5097 break;
5098
5099 /* clts */
5100 case 0x0f06:
5101 break;
5102
5103 /* MMX/SSE/SSE2/PNI support */
5104 /* XXX */
5105
5106 default:
5107 if (opcode > 0xff)
5108 ir.addr -= 2;
5109 else
5110 ir.addr -= 1;
5111 goto no_support;
5112 break;
5113 }
5114
5115 /* In the future, Maybe still need to deal with need_dasm */
5116 if (record_arch_list_add_reg (ir.regcache, I386_EIP_REGNUM))
5117 return -1;
5118 if (record_arch_list_add_end ())
5119 return -1;
5120
5121 return 0;
5122
5123 no_support:
5124 printf_unfiltered (_("Process record doesn't support instruction 0x%02x "
5125 "at address 0x%s.\n"),
5126 (unsigned int) (opcode), paddr_nz (ir.addr));
5127 return -1;
5128 }
5129
5130 \f
5131 static struct gdbarch *
5132 i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
5133 {
5134 struct gdbarch_tdep *tdep;
5135 struct gdbarch *gdbarch;
5136
5137 /* If there is already a candidate, use it. */
5138 arches = gdbarch_list_lookup_by_info (arches, &info);
5139 if (arches != NULL)
5140 return arches->gdbarch;
5141
5142 /* Allocate space for the new architecture. */
5143 tdep = XCALLOC (1, struct gdbarch_tdep);
5144 gdbarch = gdbarch_alloc (&info, tdep);
5145
5146 /* General-purpose registers. */
5147 tdep->gregset = NULL;
5148 tdep->gregset_reg_offset = NULL;
5149 tdep->gregset_num_regs = I386_NUM_GREGS;
5150 tdep->sizeof_gregset = 0;
5151
5152 /* Floating-point registers. */
5153 tdep->fpregset = NULL;
5154 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
5155
5156 /* The default settings include the FPU registers, the MMX registers
5157 and the SSE registers. This can be overridden for a specific ABI
5158 by adjusting the members `st0_regnum', `mm0_regnum' and
5159 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
5160 will show up in the output of "info all-registers". Ideally we
5161 should try to autodetect whether they are available, such that we
5162 can prevent "info all-registers" from displaying registers that
5163 aren't available.
5164
5165 NOTE: kevinb/2003-07-13: ... if it's a choice between printing
5166 [the SSE registers] always (even when they don't exist) or never
5167 showing them to the user (even when they do exist), I prefer the
5168 former over the latter. */
5169
5170 tdep->st0_regnum = I386_ST0_REGNUM;
5171
5172 /* The MMX registers are implemented as pseudo-registers. Put off
5173 calculating the register number for %mm0 until we know the number
5174 of raw registers. */
5175 tdep->mm0_regnum = 0;
5176
5177 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
5178 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
5179
5180 tdep->jb_pc_offset = -1;
5181 tdep->struct_return = pcc_struct_return;
5182 tdep->sigtramp_start = 0;
5183 tdep->sigtramp_end = 0;
5184 tdep->sigtramp_p = i386_sigtramp_p;
5185 tdep->sigcontext_addr = NULL;
5186 tdep->sc_reg_offset = NULL;
5187 tdep->sc_pc_offset = -1;
5188 tdep->sc_sp_offset = -1;
5189
5190 /* The format used for `long double' on almost all i386 targets is
5191 the i387 extended floating-point format. In fact, of all targets
5192 in the GCC 2.95 tree, only OSF/1 does it different, and insists
5193 on having a `long double' that's not `long' at all. */
5194 set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext);
5195
5196 /* Although the i387 extended floating-point has only 80 significant
5197 bits, a `long double' actually takes up 96, probably to enforce
5198 alignment. */
5199 set_gdbarch_long_double_bit (gdbarch, 96);
5200
5201 /* The default ABI includes general-purpose registers,
5202 floating-point registers, and the SSE registers. */
5203 set_gdbarch_num_regs (gdbarch, I386_SSE_NUM_REGS);
5204 set_gdbarch_register_name (gdbarch, i386_register_name);
5205 set_gdbarch_register_type (gdbarch, i386_register_type);
5206
5207 /* Register numbers of various important registers. */
5208 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
5209 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
5210 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
5211 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
5212
5213 /* NOTE: kettenis/20040418: GCC does have two possible register
5214 numbering schemes on the i386: dbx and SVR4. These schemes
5215 differ in how they number %ebp, %esp, %eflags, and the
5216 floating-point registers, and are implemented by the arrays
5217 dbx_register_map[] and svr4_dbx_register_map in
5218 gcc/config/i386.c. GCC also defines a third numbering scheme in
5219 gcc/config/i386.c, which it designates as the "default" register
5220 map used in 64bit mode. This last register numbering scheme is
5221 implemented in dbx64_register_map, and is used for AMD64; see
5222 amd64-tdep.c.
5223
5224 Currently, each GCC i386 target always uses the same register
5225 numbering scheme across all its supported debugging formats
5226 i.e. SDB (COFF), stabs and DWARF 2. This is because
5227 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
5228 DBX_REGISTER_NUMBER macro which is defined by each target's
5229 respective config header in a manner independent of the requested
5230 output debugging format.
5231
5232 This does not match the arrangement below, which presumes that
5233 the SDB and stabs numbering schemes differ from the DWARF and
5234 DWARF 2 ones. The reason for this arrangement is that it is
5235 likely to get the numbering scheme for the target's
5236 default/native debug format right. For targets where GCC is the
5237 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
5238 targets where the native toolchain uses a different numbering
5239 scheme for a particular debug format (stabs-in-ELF on Solaris)
5240 the defaults below will have to be overridden, like
5241 i386_elf_init_abi() does. */
5242
5243 /* Use the dbx register numbering scheme for stabs and COFF. */
5244 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
5245 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
5246
5247 /* Use the SVR4 register numbering scheme for DWARF 2. */
5248 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
5249
5250 /* We don't set gdbarch_stab_reg_to_regnum, since ECOFF doesn't seem to
5251 be in use on any of the supported i386 targets. */
5252
5253 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
5254
5255 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
5256
5257 /* Call dummy code. */
5258 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
5259
5260 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
5261 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
5262 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
5263
5264 set_gdbarch_return_value (gdbarch, i386_return_value);
5265
5266 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
5267
5268 /* Stack grows downward. */
5269 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
5270
5271 set_gdbarch_breakpoint_from_pc (gdbarch, i386_breakpoint_from_pc);
5272 set_gdbarch_decr_pc_after_break (gdbarch, 1);
5273 set_gdbarch_max_insn_length (gdbarch, I386_MAX_INSN_LEN);
5274
5275 set_gdbarch_frame_args_skip (gdbarch, 8);
5276
5277 /* Wire in the MMX registers. */
5278 set_gdbarch_num_pseudo_regs (gdbarch, i386_num_mmx_regs);
5279 set_gdbarch_pseudo_register_read (gdbarch, i386_pseudo_register_read);
5280 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
5281
5282 set_gdbarch_print_insn (gdbarch, i386_print_insn);
5283
5284 set_gdbarch_dummy_id (gdbarch, i386_dummy_id);
5285
5286 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
5287
5288 /* Add the i386 register groups. */
5289 i386_add_reggroups (gdbarch);
5290 set_gdbarch_register_reggroup_p (gdbarch, i386_register_reggroup_p);
5291
5292 /* Helper for function argument information. */
5293 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
5294
5295 /* Hook in the DWARF CFI frame unwinder. */
5296 dwarf2_append_unwinders (gdbarch);
5297
5298 frame_base_set_default (gdbarch, &i386_frame_base);
5299
5300 /* Hook in ABI-specific overrides, if they have been registered. */
5301 gdbarch_init_osabi (info, gdbarch);
5302
5303 frame_unwind_append_unwinder (gdbarch, &i386_sigtramp_frame_unwind);
5304 frame_unwind_append_unwinder (gdbarch, &i386_frame_unwind);
5305
5306 /* If we have a register mapping, enable the generic core file
5307 support, unless it has already been enabled. */
5308 if (tdep->gregset_reg_offset
5309 && !gdbarch_regset_from_core_section_p (gdbarch))
5310 set_gdbarch_regset_from_core_section (gdbarch,
5311 i386_regset_from_core_section);
5312
5313 /* Unless support for MMX has been disabled, make %mm0 the first
5314 pseudo-register. */
5315 if (tdep->mm0_regnum == 0)
5316 tdep->mm0_regnum = gdbarch_num_regs (gdbarch);
5317
5318 set_gdbarch_skip_permanent_breakpoint (gdbarch,
5319 i386_skip_permanent_breakpoint);
5320
5321 return gdbarch;
5322 }
5323
5324 static enum gdb_osabi
5325 i386_coff_osabi_sniffer (bfd *abfd)
5326 {
5327 if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
5328 || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
5329 return GDB_OSABI_GO32;
5330
5331 return GDB_OSABI_UNKNOWN;
5332 }
5333 \f
5334
5335 /* Provide a prototype to silence -Wmissing-prototypes. */
5336 void _initialize_i386_tdep (void);
5337
5338 void
5339 _initialize_i386_tdep (void)
5340 {
5341 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
5342
5343 /* Add the variable that controls the disassembly flavor. */
5344 add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
5345 &disassembly_flavor, _("\
5346 Set the disassembly flavor."), _("\
5347 Show the disassembly flavor."), _("\
5348 The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
5349 NULL,
5350 NULL, /* FIXME: i18n: */
5351 &setlist, &showlist);
5352
5353 /* Add the variable that controls the convention for returning
5354 structs. */
5355 add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
5356 &struct_convention, _("\
5357 Set the convention for returning small structs."), _("\
5358 Show the convention for returning small structs."), _("\
5359 Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
5360 is \"default\"."),
5361 NULL,
5362 NULL, /* FIXME: i18n: */
5363 &setlist, &showlist);
5364
5365 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
5366 i386_coff_osabi_sniffer);
5367
5368 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
5369 i386_svr4_init_abi);
5370 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_GO32,
5371 i386_go32_init_abi);
5372
5373 /* Initialize the i386-specific register groups. */
5374 i386_init_reggroups ();
5375 }
This page took 0.180412 seconds and 4 git commands to generate.