* configure.ac (mips*-*-*linux*, mips*-*-gnu*): Use mt-mips-gnu.
[deliverable/binutils-gdb.git] / gdb / i386-tdep.c
1 /* Intel 386 target-dependent stuff.
2
3 Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "command.h"
25 #include "dummy-frame.h"
26 #include "dwarf2-frame.h"
27 #include "doublest.h"
28 #include "frame.h"
29 #include "frame-base.h"
30 #include "frame-unwind.h"
31 #include "inferior.h"
32 #include "gdbcmd.h"
33 #include "gdbcore.h"
34 #include "gdbtypes.h"
35 #include "objfiles.h"
36 #include "osabi.h"
37 #include "regcache.h"
38 #include "reggroups.h"
39 #include "regset.h"
40 #include "symfile.h"
41 #include "symtab.h"
42 #include "target.h"
43 #include "value.h"
44 #include "dis-asm.h"
45
46 #include "gdb_assert.h"
47 #include "gdb_string.h"
48
49 #include "i386-tdep.h"
50 #include "i387-tdep.h"
51
52 /* Register names. */
53
54 static char *i386_register_names[] =
55 {
56 "eax", "ecx", "edx", "ebx",
57 "esp", "ebp", "esi", "edi",
58 "eip", "eflags", "cs", "ss",
59 "ds", "es", "fs", "gs",
60 "st0", "st1", "st2", "st3",
61 "st4", "st5", "st6", "st7",
62 "fctrl", "fstat", "ftag", "fiseg",
63 "fioff", "foseg", "fooff", "fop",
64 "xmm0", "xmm1", "xmm2", "xmm3",
65 "xmm4", "xmm5", "xmm6", "xmm7",
66 "mxcsr"
67 };
68
69 static const int i386_num_register_names = ARRAY_SIZE (i386_register_names);
70
71 /* Register names for MMX pseudo-registers. */
72
73 static char *i386_mmx_names[] =
74 {
75 "mm0", "mm1", "mm2", "mm3",
76 "mm4", "mm5", "mm6", "mm7"
77 };
78
79 static const int i386_num_mmx_regs = ARRAY_SIZE (i386_mmx_names);
80
81 static int
82 i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
83 {
84 int mm0_regnum = gdbarch_tdep (gdbarch)->mm0_regnum;
85
86 if (mm0_regnum < 0)
87 return 0;
88
89 return (regnum >= mm0_regnum && regnum < mm0_regnum + i386_num_mmx_regs);
90 }
91
92 /* SSE register? */
93
94 static int
95 i386_sse_regnum_p (struct gdbarch *gdbarch, int regnum)
96 {
97 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
98
99 if (I387_NUM_XMM_REGS (tdep) == 0)
100 return 0;
101
102 return (I387_XMM0_REGNUM (tdep) <= regnum
103 && regnum < I387_MXCSR_REGNUM (tdep));
104 }
105
106 static int
107 i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
108 {
109 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
110
111 if (I387_NUM_XMM_REGS (tdep) == 0)
112 return 0;
113
114 return (regnum == I387_MXCSR_REGNUM (tdep));
115 }
116
117 /* FP register? */
118
119 int
120 i386_fp_regnum_p (struct gdbarch *gdbarch, int regnum)
121 {
122 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
123
124 if (I387_ST0_REGNUM (tdep) < 0)
125 return 0;
126
127 return (I387_ST0_REGNUM (tdep) <= regnum
128 && regnum < I387_FCTRL_REGNUM (tdep));
129 }
130
131 int
132 i386_fpc_regnum_p (struct gdbarch *gdbarch, int regnum)
133 {
134 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
135
136 if (I387_ST0_REGNUM (tdep) < 0)
137 return 0;
138
139 return (I387_FCTRL_REGNUM (tdep) <= regnum
140 && regnum < I387_XMM0_REGNUM (tdep));
141 }
142
143 /* Return the name of register REGNUM. */
144
145 const char *
146 i386_register_name (struct gdbarch *gdbarch, int regnum)
147 {
148 if (i386_mmx_regnum_p (gdbarch, regnum))
149 return i386_mmx_names[regnum - I387_MM0_REGNUM (gdbarch_tdep (gdbarch))];
150
151 if (regnum >= 0 && regnum < i386_num_register_names)
152 return i386_register_names[regnum];
153
154 return NULL;
155 }
156
157 /* Convert a dbx register number REG to the appropriate register
158 number used by GDB. */
159
160 static int
161 i386_dbx_reg_to_regnum (struct gdbarch *gdbarch, int reg)
162 {
163 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
164
165 /* This implements what GCC calls the "default" register map
166 (dbx_register_map[]). */
167
168 if (reg >= 0 && reg <= 7)
169 {
170 /* General-purpose registers. The debug info calls %ebp
171 register 4, and %esp register 5. */
172 if (reg == 4)
173 return 5;
174 else if (reg == 5)
175 return 4;
176 else return reg;
177 }
178 else if (reg >= 12 && reg <= 19)
179 {
180 /* Floating-point registers. */
181 return reg - 12 + I387_ST0_REGNUM (tdep);
182 }
183 else if (reg >= 21 && reg <= 28)
184 {
185 /* SSE registers. */
186 return reg - 21 + I387_XMM0_REGNUM (tdep);
187 }
188 else if (reg >= 29 && reg <= 36)
189 {
190 /* MMX registers. */
191 return reg - 29 + I387_MM0_REGNUM (tdep);
192 }
193
194 /* This will hopefully provoke a warning. */
195 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
196 }
197
198 /* Convert SVR4 register number REG to the appropriate register number
199 used by GDB. */
200
201 static int
202 i386_svr4_reg_to_regnum (struct gdbarch *gdbarch, int reg)
203 {
204 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
205
206 /* This implements the GCC register map that tries to be compatible
207 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
208
209 /* The SVR4 register numbering includes %eip and %eflags, and
210 numbers the floating point registers differently. */
211 if (reg >= 0 && reg <= 9)
212 {
213 /* General-purpose registers. */
214 return reg;
215 }
216 else if (reg >= 11 && reg <= 18)
217 {
218 /* Floating-point registers. */
219 return reg - 11 + I387_ST0_REGNUM (tdep);
220 }
221 else if (reg >= 21 && reg <= 36)
222 {
223 /* The SSE and MMX registers have the same numbers as with dbx. */
224 return i386_dbx_reg_to_regnum (gdbarch, reg);
225 }
226
227 switch (reg)
228 {
229 case 37: return I387_FCTRL_REGNUM (tdep);
230 case 38: return I387_FSTAT_REGNUM (tdep);
231 case 39: return I387_MXCSR_REGNUM (tdep);
232 case 40: return I386_ES_REGNUM;
233 case 41: return I386_CS_REGNUM;
234 case 42: return I386_SS_REGNUM;
235 case 43: return I386_DS_REGNUM;
236 case 44: return I386_FS_REGNUM;
237 case 45: return I386_GS_REGNUM;
238 }
239
240 /* This will hopefully provoke a warning. */
241 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
242 }
243
244 \f
245
246 /* This is the variable that is set with "set disassembly-flavor", and
247 its legitimate values. */
248 static const char att_flavor[] = "att";
249 static const char intel_flavor[] = "intel";
250 static const char *valid_flavors[] =
251 {
252 att_flavor,
253 intel_flavor,
254 NULL
255 };
256 static const char *disassembly_flavor = att_flavor;
257 \f
258
259 /* Use the program counter to determine the contents and size of a
260 breakpoint instruction. Return a pointer to a string of bytes that
261 encode a breakpoint instruction, store the length of the string in
262 *LEN and optionally adjust *PC to point to the correct memory
263 location for inserting the breakpoint.
264
265 On the i386 we have a single breakpoint that fits in a single byte
266 and can be inserted anywhere.
267
268 This function is 64-bit safe. */
269
270 static const gdb_byte *
271 i386_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
272 {
273 static gdb_byte break_insn[] = { 0xcc }; /* int 3 */
274
275 *len = sizeof (break_insn);
276 return break_insn;
277 }
278 \f
279 /* Displaced instruction handling. */
280
281
282 static int
283 i386_absolute_jmp_p (gdb_byte *insn)
284 {
285 /* jmp far (absolute address in operand) */
286 if (insn[0] == 0xea)
287 return 1;
288
289 if (insn[0] == 0xff)
290 {
291 /* jump near, absolute indirect (/4) */
292 if ((insn[1] & 0x38) == 0x20)
293 return 1;
294
295 /* jump far, absolute indirect (/5) */
296 if ((insn[1] & 0x38) == 0x28)
297 return 1;
298 }
299
300 return 0;
301 }
302
303 static int
304 i386_absolute_call_p (gdb_byte *insn)
305 {
306 /* call far, absolute */
307 if (insn[0] == 0x9a)
308 return 1;
309
310 if (insn[0] == 0xff)
311 {
312 /* Call near, absolute indirect (/2) */
313 if ((insn[1] & 0x38) == 0x10)
314 return 1;
315
316 /* Call far, absolute indirect (/3) */
317 if ((insn[1] & 0x38) == 0x18)
318 return 1;
319 }
320
321 return 0;
322 }
323
324 static int
325 i386_ret_p (gdb_byte *insn)
326 {
327 switch (insn[0])
328 {
329 case 0xc2: /* ret near, pop N bytes */
330 case 0xc3: /* ret near */
331 case 0xca: /* ret far, pop N bytes */
332 case 0xcb: /* ret far */
333 case 0xcf: /* iret */
334 return 1;
335
336 default:
337 return 0;
338 }
339 }
340
341 static int
342 i386_call_p (gdb_byte *insn)
343 {
344 if (i386_absolute_call_p (insn))
345 return 1;
346
347 /* call near, relative */
348 if (insn[0] == 0xe8)
349 return 1;
350
351 return 0;
352 }
353
354 static int
355 i386_breakpoint_p (gdb_byte *insn)
356 {
357 return insn[0] == 0xcc; /* int 3 */
358 }
359
360 /* Return non-zero if INSN is a system call, and set *LENGTHP to its
361 length in bytes. Otherwise, return zero. */
362 static int
363 i386_syscall_p (gdb_byte *insn, ULONGEST *lengthp)
364 {
365 if (insn[0] == 0xcd)
366 {
367 *lengthp = 2;
368 return 1;
369 }
370
371 return 0;
372 }
373
374 /* Fix up the state of registers and memory after having single-stepped
375 a displaced instruction. */
376 void
377 i386_displaced_step_fixup (struct gdbarch *gdbarch,
378 struct displaced_step_closure *closure,
379 CORE_ADDR from, CORE_ADDR to,
380 struct regcache *regs)
381 {
382 /* The offset we applied to the instruction's address.
383 This could well be negative (when viewed as a signed 32-bit
384 value), but ULONGEST won't reflect that, so take care when
385 applying it. */
386 ULONGEST insn_offset = to - from;
387
388 /* Since we use simple_displaced_step_copy_insn, our closure is a
389 copy of the instruction. */
390 gdb_byte *insn = (gdb_byte *) closure;
391
392 if (debug_displaced)
393 fprintf_unfiltered (gdb_stdlog,
394 "displaced: fixup (0x%s, 0x%s), "
395 "insn = 0x%02x 0x%02x ...\n",
396 paddr_nz (from), paddr_nz (to), insn[0], insn[1]);
397
398 /* The list of issues to contend with here is taken from
399 resume_execution in arch/i386/kernel/kprobes.c, Linux 2.6.20.
400 Yay for Free Software! */
401
402 /* Relocate the %eip, if necessary. */
403
404 /* Except in the case of absolute or indirect jump or call
405 instructions, or a return instruction, the new eip is relative to
406 the displaced instruction; make it relative. Well, signal
407 handler returns don't need relocation either, but we use the
408 value of %eip to recognize those; see below. */
409 if (! i386_absolute_jmp_p (insn)
410 && ! i386_absolute_call_p (insn)
411 && ! i386_ret_p (insn))
412 {
413 ULONGEST orig_eip;
414 ULONGEST insn_len;
415
416 regcache_cooked_read_unsigned (regs, I386_EIP_REGNUM, &orig_eip);
417
418 /* A signal trampoline system call changes the %eip, resuming
419 execution of the main program after the signal handler has
420 returned. That makes them like 'return' instructions; we
421 shouldn't relocate %eip.
422
423 But most system calls don't, and we do need to relocate %eip.
424
425 Our heuristic for distinguishing these cases: if stepping
426 over the system call instruction left control directly after
427 the instruction, the we relocate --- control almost certainly
428 doesn't belong in the displaced copy. Otherwise, we assume
429 the instruction has put control where it belongs, and leave
430 it unrelocated. Goodness help us if there are PC-relative
431 system calls. */
432 if (i386_syscall_p (insn, &insn_len)
433 && orig_eip != to + insn_len)
434 {
435 if (debug_displaced)
436 fprintf_unfiltered (gdb_stdlog,
437 "displaced: syscall changed %%eip; "
438 "not relocating\n");
439 }
440 else
441 {
442 ULONGEST eip = (orig_eip - insn_offset) & 0xffffffffUL;
443
444 /* If we have stepped over a breakpoint, set the %eip to
445 point at the breakpoint instruction itself.
446
447 (gdbarch_decr_pc_after_break was never something the core
448 of GDB should have been concerned with; arch-specific
449 code should be making PC values consistent before
450 presenting them to GDB.) */
451 if (i386_breakpoint_p (insn))
452 {
453 if (debug_displaced)
454 fprintf_unfiltered (gdb_stdlog,
455 "displaced: stepped breakpoint\n");
456 eip--;
457 }
458
459 regcache_cooked_write_unsigned (regs, I386_EIP_REGNUM, eip);
460
461 if (debug_displaced)
462 fprintf_unfiltered (gdb_stdlog,
463 "displaced: "
464 "relocated %%eip from 0x%s to 0x%s\n",
465 paddr_nz (orig_eip), paddr_nz (eip));
466 }
467 }
468
469 /* If the instruction was PUSHFL, then the TF bit will be set in the
470 pushed value, and should be cleared. We'll leave this for later,
471 since GDB already messes up the TF flag when stepping over a
472 pushfl. */
473
474 /* If the instruction was a call, the return address now atop the
475 stack is the address following the copied instruction. We need
476 to make it the address following the original instruction. */
477 if (i386_call_p (insn))
478 {
479 ULONGEST esp;
480 ULONGEST retaddr;
481 const ULONGEST retaddr_len = 4;
482
483 regcache_cooked_read_unsigned (regs, I386_ESP_REGNUM, &esp);
484 retaddr = read_memory_unsigned_integer (esp, retaddr_len);
485 retaddr = (retaddr - insn_offset) & 0xffffffffUL;
486 write_memory_unsigned_integer (esp, retaddr_len, retaddr);
487
488 if (debug_displaced)
489 fprintf_unfiltered (gdb_stdlog,
490 "displaced: relocated return addr at 0x%s "
491 "to 0x%s\n",
492 paddr_nz (esp),
493 paddr_nz (retaddr));
494 }
495 }
496
497
498 \f
499 #ifdef I386_REGNO_TO_SYMMETRY
500 #error "The Sequent Symmetry is no longer supported."
501 #endif
502
503 /* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
504 and %esp "belong" to the calling function. Therefore these
505 registers should be saved if they're going to be modified. */
506
507 /* The maximum number of saved registers. This should include all
508 registers mentioned above, and %eip. */
509 #define I386_NUM_SAVED_REGS I386_NUM_GREGS
510
511 struct i386_frame_cache
512 {
513 /* Base address. */
514 CORE_ADDR base;
515 LONGEST sp_offset;
516 CORE_ADDR pc;
517
518 /* Saved registers. */
519 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
520 CORE_ADDR saved_sp;
521 int saved_sp_reg;
522 int pc_in_eax;
523
524 /* Stack space reserved for local variables. */
525 long locals;
526 };
527
528 /* Allocate and initialize a frame cache. */
529
530 static struct i386_frame_cache *
531 i386_alloc_frame_cache (void)
532 {
533 struct i386_frame_cache *cache;
534 int i;
535
536 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
537
538 /* Base address. */
539 cache->base = 0;
540 cache->sp_offset = -4;
541 cache->pc = 0;
542
543 /* Saved registers. We initialize these to -1 since zero is a valid
544 offset (that's where %ebp is supposed to be stored). */
545 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
546 cache->saved_regs[i] = -1;
547 cache->saved_sp = 0;
548 cache->saved_sp_reg = -1;
549 cache->pc_in_eax = 0;
550
551 /* Frameless until proven otherwise. */
552 cache->locals = -1;
553
554 return cache;
555 }
556
557 /* If the instruction at PC is a jump, return the address of its
558 target. Otherwise, return PC. */
559
560 static CORE_ADDR
561 i386_follow_jump (CORE_ADDR pc)
562 {
563 gdb_byte op;
564 long delta = 0;
565 int data16 = 0;
566
567 target_read_memory (pc, &op, 1);
568 if (op == 0x66)
569 {
570 data16 = 1;
571 op = read_memory_unsigned_integer (pc + 1, 1);
572 }
573
574 switch (op)
575 {
576 case 0xe9:
577 /* Relative jump: if data16 == 0, disp32, else disp16. */
578 if (data16)
579 {
580 delta = read_memory_integer (pc + 2, 2);
581
582 /* Include the size of the jmp instruction (including the
583 0x66 prefix). */
584 delta += 4;
585 }
586 else
587 {
588 delta = read_memory_integer (pc + 1, 4);
589
590 /* Include the size of the jmp instruction. */
591 delta += 5;
592 }
593 break;
594 case 0xeb:
595 /* Relative jump, disp8 (ignore data16). */
596 delta = read_memory_integer (pc + data16 + 1, 1);
597
598 delta += data16 + 2;
599 break;
600 }
601
602 return pc + delta;
603 }
604
605 /* Check whether PC points at a prologue for a function returning a
606 structure or union. If so, it updates CACHE and returns the
607 address of the first instruction after the code sequence that
608 removes the "hidden" argument from the stack or CURRENT_PC,
609 whichever is smaller. Otherwise, return PC. */
610
611 static CORE_ADDR
612 i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
613 struct i386_frame_cache *cache)
614 {
615 /* Functions that return a structure or union start with:
616
617 popl %eax 0x58
618 xchgl %eax, (%esp) 0x87 0x04 0x24
619 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
620
621 (the System V compiler puts out the second `xchg' instruction,
622 and the assembler doesn't try to optimize it, so the 'sib' form
623 gets generated). This sequence is used to get the address of the
624 return buffer for a function that returns a structure. */
625 static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
626 static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
627 gdb_byte buf[4];
628 gdb_byte op;
629
630 if (current_pc <= pc)
631 return pc;
632
633 target_read_memory (pc, &op, 1);
634
635 if (op != 0x58) /* popl %eax */
636 return pc;
637
638 target_read_memory (pc + 1, buf, 4);
639 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
640 return pc;
641
642 if (current_pc == pc)
643 {
644 cache->sp_offset += 4;
645 return current_pc;
646 }
647
648 if (current_pc == pc + 1)
649 {
650 cache->pc_in_eax = 1;
651 return current_pc;
652 }
653
654 if (buf[1] == proto1[1])
655 return pc + 4;
656 else
657 return pc + 5;
658 }
659
660 static CORE_ADDR
661 i386_skip_probe (CORE_ADDR pc)
662 {
663 /* A function may start with
664
665 pushl constant
666 call _probe
667 addl $4, %esp
668
669 followed by
670
671 pushl %ebp
672
673 etc. */
674 gdb_byte buf[8];
675 gdb_byte op;
676
677 target_read_memory (pc, &op, 1);
678
679 if (op == 0x68 || op == 0x6a)
680 {
681 int delta;
682
683 /* Skip past the `pushl' instruction; it has either a one-byte or a
684 four-byte operand, depending on the opcode. */
685 if (op == 0x68)
686 delta = 5;
687 else
688 delta = 2;
689
690 /* Read the following 8 bytes, which should be `call _probe' (6
691 bytes) followed by `addl $4,%esp' (2 bytes). */
692 read_memory (pc + delta, buf, sizeof (buf));
693 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
694 pc += delta + sizeof (buf);
695 }
696
697 return pc;
698 }
699
700 /* GCC 4.1 and later, can put code in the prologue to realign the
701 stack pointer. Check whether PC points to such code, and update
702 CACHE accordingly. Return the first instruction after the code
703 sequence or CURRENT_PC, whichever is smaller. If we don't
704 recognize the code, return PC. */
705
706 static CORE_ADDR
707 i386_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
708 struct i386_frame_cache *cache)
709 {
710 /* There are 2 code sequences to re-align stack before the frame
711 gets set up:
712
713 1. Use a caller-saved saved register:
714
715 leal 4(%esp), %reg
716 andl $-XXX, %esp
717 pushl -4(%reg)
718
719 2. Use a callee-saved saved register:
720
721 pushl %reg
722 leal 8(%esp), %reg
723 andl $-XXX, %esp
724 pushl -4(%reg)
725
726 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
727
728 0x83 0xe4 0xf0 andl $-16, %esp
729 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
730 */
731
732 gdb_byte buf[14];
733 int reg;
734 int offset, offset_and;
735 static int regnums[8] = {
736 I386_EAX_REGNUM, /* %eax */
737 I386_ECX_REGNUM, /* %ecx */
738 I386_EDX_REGNUM, /* %edx */
739 I386_EBX_REGNUM, /* %ebx */
740 I386_ESP_REGNUM, /* %esp */
741 I386_EBP_REGNUM, /* %ebp */
742 I386_ESI_REGNUM, /* %esi */
743 I386_EDI_REGNUM /* %edi */
744 };
745
746 if (target_read_memory (pc, buf, sizeof buf))
747 return pc;
748
749 /* Check caller-saved saved register. The first instruction has
750 to be "leal 4(%esp), %reg". */
751 if (buf[0] == 0x8d && buf[2] == 0x24 && buf[3] == 0x4)
752 {
753 /* MOD must be binary 10 and R/M must be binary 100. */
754 if ((buf[1] & 0xc7) != 0x44)
755 return pc;
756
757 /* REG has register number. */
758 reg = (buf[1] >> 3) & 7;
759 offset = 4;
760 }
761 else
762 {
763 /* Check callee-saved saved register. The first instruction
764 has to be "pushl %reg". */
765 if ((buf[0] & 0xf8) != 0x50)
766 return pc;
767
768 /* Get register. */
769 reg = buf[0] & 0x7;
770
771 /* The next instruction has to be "leal 8(%esp), %reg". */
772 if (buf[1] != 0x8d || buf[3] != 0x24 || buf[4] != 0x8)
773 return pc;
774
775 /* MOD must be binary 10 and R/M must be binary 100. */
776 if ((buf[2] & 0xc7) != 0x44)
777 return pc;
778
779 /* REG has register number. Registers in pushl and leal have to
780 be the same. */
781 if (reg != ((buf[2] >> 3) & 7))
782 return pc;
783
784 offset = 5;
785 }
786
787 /* Rigister can't be %esp nor %ebp. */
788 if (reg == 4 || reg == 5)
789 return pc;
790
791 /* The next instruction has to be "andl $-XXX, %esp". */
792 if (buf[offset + 1] != 0xe4
793 || (buf[offset] != 0x81 && buf[offset] != 0x83))
794 return pc;
795
796 offset_and = offset;
797 offset += buf[offset] == 0x81 ? 6 : 3;
798
799 /* The next instruction has to be "pushl -4(%reg)". 8bit -4 is
800 0xfc. REG must be binary 110 and MOD must be binary 01. */
801 if (buf[offset] != 0xff
802 || buf[offset + 2] != 0xfc
803 || (buf[offset + 1] & 0xf8) != 0x70)
804 return pc;
805
806 /* R/M has register. Registers in leal and pushl have to be the
807 same. */
808 if (reg != (buf[offset + 1] & 7))
809 return pc;
810
811 if (current_pc > pc + offset_and)
812 cache->saved_sp_reg = regnums[reg];
813
814 return min (pc + offset + 3, current_pc);
815 }
816
817 /* Maximum instruction length we need to handle. */
818 #define I386_MAX_MATCHED_INSN_LEN 6
819
820 /* Instruction description. */
821 struct i386_insn
822 {
823 size_t len;
824 gdb_byte insn[I386_MAX_MATCHED_INSN_LEN];
825 gdb_byte mask[I386_MAX_MATCHED_INSN_LEN];
826 };
827
828 /* Search for the instruction at PC in the list SKIP_INSNS. Return
829 the first instruction description that matches. Otherwise, return
830 NULL. */
831
832 static struct i386_insn *
833 i386_match_insn (CORE_ADDR pc, struct i386_insn *skip_insns)
834 {
835 struct i386_insn *insn;
836 gdb_byte op;
837
838 target_read_memory (pc, &op, 1);
839
840 for (insn = skip_insns; insn->len > 0; insn++)
841 {
842 if ((op & insn->mask[0]) == insn->insn[0])
843 {
844 gdb_byte buf[I386_MAX_MATCHED_INSN_LEN - 1];
845 int insn_matched = 1;
846 size_t i;
847
848 gdb_assert (insn->len > 1);
849 gdb_assert (insn->len <= I386_MAX_MATCHED_INSN_LEN);
850
851 target_read_memory (pc + 1, buf, insn->len - 1);
852 for (i = 1; i < insn->len; i++)
853 {
854 if ((buf[i - 1] & insn->mask[i]) != insn->insn[i])
855 insn_matched = 0;
856 }
857
858 if (insn_matched)
859 return insn;
860 }
861 }
862
863 return NULL;
864 }
865
866 /* Some special instructions that might be migrated by GCC into the
867 part of the prologue that sets up the new stack frame. Because the
868 stack frame hasn't been setup yet, no registers have been saved
869 yet, and only the scratch registers %eax, %ecx and %edx can be
870 touched. */
871
872 struct i386_insn i386_frame_setup_skip_insns[] =
873 {
874 /* Check for `movb imm8, r' and `movl imm32, r'.
875
876 ??? Should we handle 16-bit operand-sizes here? */
877
878 /* `movb imm8, %al' and `movb imm8, %ah' */
879 /* `movb imm8, %cl' and `movb imm8, %ch' */
880 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
881 /* `movb imm8, %dl' and `movb imm8, %dh' */
882 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
883 /* `movl imm32, %eax' and `movl imm32, %ecx' */
884 { 5, { 0xb8 }, { 0xfe } },
885 /* `movl imm32, %edx' */
886 { 5, { 0xba }, { 0xff } },
887
888 /* Check for `mov imm32, r32'. Note that there is an alternative
889 encoding for `mov m32, %eax'.
890
891 ??? Should we handle SIB adressing here?
892 ??? Should we handle 16-bit operand-sizes here? */
893
894 /* `movl m32, %eax' */
895 { 5, { 0xa1 }, { 0xff } },
896 /* `movl m32, %eax' and `mov; m32, %ecx' */
897 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
898 /* `movl m32, %edx' */
899 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
900
901 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
902 Because of the symmetry, there are actually two ways to encode
903 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
904 opcode bytes 0x31 and 0x33 for `xorl'. */
905
906 /* `subl %eax, %eax' */
907 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
908 /* `subl %ecx, %ecx' */
909 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
910 /* `subl %edx, %edx' */
911 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
912 /* `xorl %eax, %eax' */
913 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
914 /* `xorl %ecx, %ecx' */
915 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
916 /* `xorl %edx, %edx' */
917 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
918 { 0 }
919 };
920
921
922 /* Check whether PC points to a no-op instruction. */
923 static CORE_ADDR
924 i386_skip_noop (CORE_ADDR pc)
925 {
926 gdb_byte op;
927 int check = 1;
928
929 target_read_memory (pc, &op, 1);
930
931 while (check)
932 {
933 check = 0;
934 /* Ignore `nop' instruction. */
935 if (op == 0x90)
936 {
937 pc += 1;
938 target_read_memory (pc, &op, 1);
939 check = 1;
940 }
941 /* Ignore no-op instruction `mov %edi, %edi'.
942 Microsoft system dlls often start with
943 a `mov %edi,%edi' instruction.
944 The 5 bytes before the function start are
945 filled with `nop' instructions.
946 This pattern can be used for hot-patching:
947 The `mov %edi, %edi' instruction can be replaced by a
948 near jump to the location of the 5 `nop' instructions
949 which can be replaced by a 32-bit jump to anywhere
950 in the 32-bit address space. */
951
952 else if (op == 0x8b)
953 {
954 target_read_memory (pc + 1, &op, 1);
955 if (op == 0xff)
956 {
957 pc += 2;
958 target_read_memory (pc, &op, 1);
959 check = 1;
960 }
961 }
962 }
963 return pc;
964 }
965
966 /* Check whether PC points at a code that sets up a new stack frame.
967 If so, it updates CACHE and returns the address of the first
968 instruction after the sequence that sets up the frame or LIMIT,
969 whichever is smaller. If we don't recognize the code, return PC. */
970
971 static CORE_ADDR
972 i386_analyze_frame_setup (CORE_ADDR pc, CORE_ADDR limit,
973 struct i386_frame_cache *cache)
974 {
975 struct i386_insn *insn;
976 gdb_byte op;
977 int skip = 0;
978
979 if (limit <= pc)
980 return limit;
981
982 target_read_memory (pc, &op, 1);
983
984 if (op == 0x55) /* pushl %ebp */
985 {
986 /* Take into account that we've executed the `pushl %ebp' that
987 starts this instruction sequence. */
988 cache->saved_regs[I386_EBP_REGNUM] = 0;
989 cache->sp_offset += 4;
990 pc++;
991
992 /* If that's all, return now. */
993 if (limit <= pc)
994 return limit;
995
996 /* Check for some special instructions that might be migrated by
997 GCC into the prologue and skip them. At this point in the
998 prologue, code should only touch the scratch registers %eax,
999 %ecx and %edx, so while the number of posibilities is sheer,
1000 it is limited.
1001
1002 Make sure we only skip these instructions if we later see the
1003 `movl %esp, %ebp' that actually sets up the frame. */
1004 while (pc + skip < limit)
1005 {
1006 insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
1007 if (insn == NULL)
1008 break;
1009
1010 skip += insn->len;
1011 }
1012
1013 /* If that's all, return now. */
1014 if (limit <= pc + skip)
1015 return limit;
1016
1017 target_read_memory (pc + skip, &op, 1);
1018
1019 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
1020 switch (op)
1021 {
1022 case 0x8b:
1023 if (read_memory_unsigned_integer (pc + skip + 1, 1) != 0xec)
1024 return pc;
1025 break;
1026 case 0x89:
1027 if (read_memory_unsigned_integer (pc + skip + 1, 1) != 0xe5)
1028 return pc;
1029 break;
1030 default:
1031 return pc;
1032 }
1033
1034 /* OK, we actually have a frame. We just don't know how large
1035 it is yet. Set its size to zero. We'll adjust it if
1036 necessary. We also now commit to skipping the special
1037 instructions mentioned before. */
1038 cache->locals = 0;
1039 pc += (skip + 2);
1040
1041 /* If that's all, return now. */
1042 if (limit <= pc)
1043 return limit;
1044
1045 /* Check for stack adjustment
1046
1047 subl $XXX, %esp
1048
1049 NOTE: You can't subtract a 16-bit immediate from a 32-bit
1050 reg, so we don't have to worry about a data16 prefix. */
1051 target_read_memory (pc, &op, 1);
1052 if (op == 0x83)
1053 {
1054 /* `subl' with 8-bit immediate. */
1055 if (read_memory_unsigned_integer (pc + 1, 1) != 0xec)
1056 /* Some instruction starting with 0x83 other than `subl'. */
1057 return pc;
1058
1059 /* `subl' with signed 8-bit immediate (though it wouldn't
1060 make sense to be negative). */
1061 cache->locals = read_memory_integer (pc + 2, 1);
1062 return pc + 3;
1063 }
1064 else if (op == 0x81)
1065 {
1066 /* Maybe it is `subl' with a 32-bit immediate. */
1067 if (read_memory_unsigned_integer (pc + 1, 1) != 0xec)
1068 /* Some instruction starting with 0x81 other than `subl'. */
1069 return pc;
1070
1071 /* It is `subl' with a 32-bit immediate. */
1072 cache->locals = read_memory_integer (pc + 2, 4);
1073 return pc + 6;
1074 }
1075 else
1076 {
1077 /* Some instruction other than `subl'. */
1078 return pc;
1079 }
1080 }
1081 else if (op == 0xc8) /* enter */
1082 {
1083 cache->locals = read_memory_unsigned_integer (pc + 1, 2);
1084 return pc + 4;
1085 }
1086
1087 return pc;
1088 }
1089
1090 /* Check whether PC points at code that saves registers on the stack.
1091 If so, it updates CACHE and returns the address of the first
1092 instruction after the register saves or CURRENT_PC, whichever is
1093 smaller. Otherwise, return PC. */
1094
1095 static CORE_ADDR
1096 i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
1097 struct i386_frame_cache *cache)
1098 {
1099 CORE_ADDR offset = 0;
1100 gdb_byte op;
1101 int i;
1102
1103 if (cache->locals > 0)
1104 offset -= cache->locals;
1105 for (i = 0; i < 8 && pc < current_pc; i++)
1106 {
1107 target_read_memory (pc, &op, 1);
1108 if (op < 0x50 || op > 0x57)
1109 break;
1110
1111 offset -= 4;
1112 cache->saved_regs[op - 0x50] = offset;
1113 cache->sp_offset += 4;
1114 pc++;
1115 }
1116
1117 return pc;
1118 }
1119
1120 /* Do a full analysis of the prologue at PC and update CACHE
1121 accordingly. Bail out early if CURRENT_PC is reached. Return the
1122 address where the analysis stopped.
1123
1124 We handle these cases:
1125
1126 The startup sequence can be at the start of the function, or the
1127 function can start with a branch to startup code at the end.
1128
1129 %ebp can be set up with either the 'enter' instruction, or "pushl
1130 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
1131 once used in the System V compiler).
1132
1133 Local space is allocated just below the saved %ebp by either the
1134 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
1135 16-bit unsigned argument for space to allocate, and the 'addl'
1136 instruction could have either a signed byte, or 32-bit immediate.
1137
1138 Next, the registers used by this function are pushed. With the
1139 System V compiler they will always be in the order: %edi, %esi,
1140 %ebx (and sometimes a harmless bug causes it to also save but not
1141 restore %eax); however, the code below is willing to see the pushes
1142 in any order, and will handle up to 8 of them.
1143
1144 If the setup sequence is at the end of the function, then the next
1145 instruction will be a branch back to the start. */
1146
1147 static CORE_ADDR
1148 i386_analyze_prologue (CORE_ADDR pc, CORE_ADDR current_pc,
1149 struct i386_frame_cache *cache)
1150 {
1151 pc = i386_skip_noop (pc);
1152 pc = i386_follow_jump (pc);
1153 pc = i386_analyze_struct_return (pc, current_pc, cache);
1154 pc = i386_skip_probe (pc);
1155 pc = i386_analyze_stack_align (pc, current_pc, cache);
1156 pc = i386_analyze_frame_setup (pc, current_pc, cache);
1157 return i386_analyze_register_saves (pc, current_pc, cache);
1158 }
1159
1160 /* Return PC of first real instruction. */
1161
1162 static CORE_ADDR
1163 i386_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
1164 {
1165 static gdb_byte pic_pat[6] =
1166 {
1167 0xe8, 0, 0, 0, 0, /* call 0x0 */
1168 0x5b, /* popl %ebx */
1169 };
1170 struct i386_frame_cache cache;
1171 CORE_ADDR pc;
1172 gdb_byte op;
1173 int i;
1174
1175 cache.locals = -1;
1176 pc = i386_analyze_prologue (start_pc, 0xffffffff, &cache);
1177 if (cache.locals < 0)
1178 return start_pc;
1179
1180 /* Found valid frame setup. */
1181
1182 /* The native cc on SVR4 in -K PIC mode inserts the following code
1183 to get the address of the global offset table (GOT) into register
1184 %ebx:
1185
1186 call 0x0
1187 popl %ebx
1188 movl %ebx,x(%ebp) (optional)
1189 addl y,%ebx
1190
1191 This code is with the rest of the prologue (at the end of the
1192 function), so we have to skip it to get to the first real
1193 instruction at the start of the function. */
1194
1195 for (i = 0; i < 6; i++)
1196 {
1197 target_read_memory (pc + i, &op, 1);
1198 if (pic_pat[i] != op)
1199 break;
1200 }
1201 if (i == 6)
1202 {
1203 int delta = 6;
1204
1205 target_read_memory (pc + delta, &op, 1);
1206
1207 if (op == 0x89) /* movl %ebx, x(%ebp) */
1208 {
1209 op = read_memory_unsigned_integer (pc + delta + 1, 1);
1210
1211 if (op == 0x5d) /* One byte offset from %ebp. */
1212 delta += 3;
1213 else if (op == 0x9d) /* Four byte offset from %ebp. */
1214 delta += 6;
1215 else /* Unexpected instruction. */
1216 delta = 0;
1217
1218 target_read_memory (pc + delta, &op, 1);
1219 }
1220
1221 /* addl y,%ebx */
1222 if (delta > 0 && op == 0x81
1223 && read_memory_unsigned_integer (pc + delta + 1, 1) == 0xc3)
1224 {
1225 pc += delta + 6;
1226 }
1227 }
1228
1229 /* If the function starts with a branch (to startup code at the end)
1230 the last instruction should bring us back to the first
1231 instruction of the real code. */
1232 if (i386_follow_jump (start_pc) != start_pc)
1233 pc = i386_follow_jump (pc);
1234
1235 return pc;
1236 }
1237
1238 /* Check that the code pointed to by PC corresponds to a call to
1239 __main, skip it if so. Return PC otherwise. */
1240
1241 CORE_ADDR
1242 i386_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1243 {
1244 gdb_byte op;
1245
1246 target_read_memory (pc, &op, 1);
1247 if (op == 0xe8)
1248 {
1249 gdb_byte buf[4];
1250
1251 if (target_read_memory (pc + 1, buf, sizeof buf) == 0)
1252 {
1253 /* Make sure address is computed correctly as a 32bit
1254 integer even if CORE_ADDR is 64 bit wide. */
1255 struct minimal_symbol *s;
1256 CORE_ADDR call_dest = pc + 5 + extract_signed_integer (buf, 4);
1257
1258 call_dest = call_dest & 0xffffffffU;
1259 s = lookup_minimal_symbol_by_pc (call_dest);
1260 if (s != NULL
1261 && SYMBOL_LINKAGE_NAME (s) != NULL
1262 && strcmp (SYMBOL_LINKAGE_NAME (s), "__main") == 0)
1263 pc += 5;
1264 }
1265 }
1266
1267 return pc;
1268 }
1269
1270 /* This function is 64-bit safe. */
1271
1272 static CORE_ADDR
1273 i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1274 {
1275 gdb_byte buf[8];
1276
1277 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
1278 return extract_typed_address (buf, builtin_type_void_func_ptr);
1279 }
1280 \f
1281
1282 /* Normal frames. */
1283
1284 static struct i386_frame_cache *
1285 i386_frame_cache (struct frame_info *this_frame, void **this_cache)
1286 {
1287 struct i386_frame_cache *cache;
1288 gdb_byte buf[4];
1289 int i;
1290
1291 if (*this_cache)
1292 return *this_cache;
1293
1294 cache = i386_alloc_frame_cache ();
1295 *this_cache = cache;
1296
1297 /* In principle, for normal frames, %ebp holds the frame pointer,
1298 which holds the base address for the current stack frame.
1299 However, for functions that don't need it, the frame pointer is
1300 optional. For these "frameless" functions the frame pointer is
1301 actually the frame pointer of the calling frame. Signal
1302 trampolines are just a special case of a "frameless" function.
1303 They (usually) share their frame pointer with the frame that was
1304 in progress when the signal occurred. */
1305
1306 get_frame_register (this_frame, I386_EBP_REGNUM, buf);
1307 cache->base = extract_unsigned_integer (buf, 4);
1308 if (cache->base == 0)
1309 return cache;
1310
1311 /* For normal frames, %eip is stored at 4(%ebp). */
1312 cache->saved_regs[I386_EIP_REGNUM] = 4;
1313
1314 cache->pc = get_frame_func (this_frame);
1315 if (cache->pc != 0)
1316 i386_analyze_prologue (cache->pc, get_frame_pc (this_frame), cache);
1317
1318 if (cache->saved_sp_reg != -1)
1319 {
1320 /* Saved stack pointer has been saved. */
1321 get_frame_register (this_frame, cache->saved_sp_reg, buf);
1322 cache->saved_sp = extract_unsigned_integer(buf, 4);
1323 }
1324
1325 if (cache->locals < 0)
1326 {
1327 /* We didn't find a valid frame, which means that CACHE->base
1328 currently holds the frame pointer for our calling frame. If
1329 we're at the start of a function, or somewhere half-way its
1330 prologue, the function's frame probably hasn't been fully
1331 setup yet. Try to reconstruct the base address for the stack
1332 frame by looking at the stack pointer. For truly "frameless"
1333 functions this might work too. */
1334
1335 if (cache->saved_sp_reg != -1)
1336 {
1337 /* We're halfway aligning the stack. */
1338 cache->base = ((cache->saved_sp - 4) & 0xfffffff0) - 4;
1339 cache->saved_regs[I386_EIP_REGNUM] = cache->saved_sp - 4;
1340
1341 /* This will be added back below. */
1342 cache->saved_regs[I386_EIP_REGNUM] -= cache->base;
1343 }
1344 else
1345 {
1346 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
1347 cache->base = extract_unsigned_integer (buf, 4) + cache->sp_offset;
1348 }
1349 }
1350
1351 /* Now that we have the base address for the stack frame we can
1352 calculate the value of %esp in the calling frame. */
1353 if (cache->saved_sp == 0)
1354 cache->saved_sp = cache->base + 8;
1355
1356 /* Adjust all the saved registers such that they contain addresses
1357 instead of offsets. */
1358 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
1359 if (cache->saved_regs[i] != -1)
1360 cache->saved_regs[i] += cache->base;
1361
1362 return cache;
1363 }
1364
1365 static void
1366 i386_frame_this_id (struct frame_info *this_frame, void **this_cache,
1367 struct frame_id *this_id)
1368 {
1369 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
1370
1371 /* This marks the outermost frame. */
1372 if (cache->base == 0)
1373 return;
1374
1375 /* See the end of i386_push_dummy_call. */
1376 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
1377 }
1378
1379 static struct value *
1380 i386_frame_prev_register (struct frame_info *this_frame, void **this_cache,
1381 int regnum)
1382 {
1383 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
1384
1385 gdb_assert (regnum >= 0);
1386
1387 /* The System V ABI says that:
1388
1389 "The flags register contains the system flags, such as the
1390 direction flag and the carry flag. The direction flag must be
1391 set to the forward (that is, zero) direction before entry and
1392 upon exit from a function. Other user flags have no specified
1393 role in the standard calling sequence and are not preserved."
1394
1395 To guarantee the "upon exit" part of that statement we fake a
1396 saved flags register that has its direction flag cleared.
1397
1398 Note that GCC doesn't seem to rely on the fact that the direction
1399 flag is cleared after a function return; it always explicitly
1400 clears the flag before operations where it matters.
1401
1402 FIXME: kettenis/20030316: I'm not quite sure whether this is the
1403 right thing to do. The way we fake the flags register here makes
1404 it impossible to change it. */
1405
1406 if (regnum == I386_EFLAGS_REGNUM)
1407 {
1408 ULONGEST val;
1409
1410 val = get_frame_register_unsigned (this_frame, regnum);
1411 val &= ~(1 << 10);
1412 return frame_unwind_got_constant (this_frame, regnum, val);
1413 }
1414
1415 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
1416 return frame_unwind_got_register (this_frame, regnum, I386_EAX_REGNUM);
1417
1418 if (regnum == I386_ESP_REGNUM && cache->saved_sp)
1419 return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
1420
1421 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
1422 return frame_unwind_got_memory (this_frame, regnum,
1423 cache->saved_regs[regnum]);
1424
1425 return frame_unwind_got_register (this_frame, regnum, regnum);
1426 }
1427
1428 static const struct frame_unwind i386_frame_unwind =
1429 {
1430 NORMAL_FRAME,
1431 i386_frame_this_id,
1432 i386_frame_prev_register,
1433 NULL,
1434 default_frame_sniffer
1435 };
1436 \f
1437
1438 /* Signal trampolines. */
1439
1440 static struct i386_frame_cache *
1441 i386_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
1442 {
1443 struct i386_frame_cache *cache;
1444 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
1445 CORE_ADDR addr;
1446 gdb_byte buf[4];
1447
1448 if (*this_cache)
1449 return *this_cache;
1450
1451 cache = i386_alloc_frame_cache ();
1452
1453 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
1454 cache->base = extract_unsigned_integer (buf, 4) - 4;
1455
1456 addr = tdep->sigcontext_addr (this_frame);
1457 if (tdep->sc_reg_offset)
1458 {
1459 int i;
1460
1461 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
1462
1463 for (i = 0; i < tdep->sc_num_regs; i++)
1464 if (tdep->sc_reg_offset[i] != -1)
1465 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
1466 }
1467 else
1468 {
1469 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
1470 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
1471 }
1472
1473 *this_cache = cache;
1474 return cache;
1475 }
1476
1477 static void
1478 i386_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache,
1479 struct frame_id *this_id)
1480 {
1481 struct i386_frame_cache *cache =
1482 i386_sigtramp_frame_cache (this_frame, this_cache);
1483
1484 /* See the end of i386_push_dummy_call. */
1485 (*this_id) = frame_id_build (cache->base + 8, get_frame_pc (this_frame));
1486 }
1487
1488 static struct value *
1489 i386_sigtramp_frame_prev_register (struct frame_info *this_frame,
1490 void **this_cache, int regnum)
1491 {
1492 /* Make sure we've initialized the cache. */
1493 i386_sigtramp_frame_cache (this_frame, this_cache);
1494
1495 return i386_frame_prev_register (this_frame, this_cache, regnum);
1496 }
1497
1498 static int
1499 i386_sigtramp_frame_sniffer (const struct frame_unwind *self,
1500 struct frame_info *this_frame,
1501 void **this_prologue_cache)
1502 {
1503 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
1504
1505 /* We shouldn't even bother if we don't have a sigcontext_addr
1506 handler. */
1507 if (tdep->sigcontext_addr == NULL)
1508 return 0;
1509
1510 if (tdep->sigtramp_p != NULL)
1511 {
1512 if (tdep->sigtramp_p (this_frame))
1513 return 1;
1514 }
1515
1516 if (tdep->sigtramp_start != 0)
1517 {
1518 CORE_ADDR pc = get_frame_pc (this_frame);
1519
1520 gdb_assert (tdep->sigtramp_end != 0);
1521 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
1522 return 1;
1523 }
1524
1525 return 0;
1526 }
1527
1528 static const struct frame_unwind i386_sigtramp_frame_unwind =
1529 {
1530 SIGTRAMP_FRAME,
1531 i386_sigtramp_frame_this_id,
1532 i386_sigtramp_frame_prev_register,
1533 NULL,
1534 i386_sigtramp_frame_sniffer
1535 };
1536 \f
1537
1538 static CORE_ADDR
1539 i386_frame_base_address (struct frame_info *this_frame, void **this_cache)
1540 {
1541 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
1542
1543 return cache->base;
1544 }
1545
1546 static const struct frame_base i386_frame_base =
1547 {
1548 &i386_frame_unwind,
1549 i386_frame_base_address,
1550 i386_frame_base_address,
1551 i386_frame_base_address
1552 };
1553
1554 static struct frame_id
1555 i386_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1556 {
1557 CORE_ADDR fp;
1558
1559 fp = get_frame_register_unsigned (this_frame, I386_EBP_REGNUM);
1560
1561 /* See the end of i386_push_dummy_call. */
1562 return frame_id_build (fp + 8, get_frame_pc (this_frame));
1563 }
1564 \f
1565
1566 /* Figure out where the longjmp will land. Slurp the args out of the
1567 stack. We expect the first arg to be a pointer to the jmp_buf
1568 structure from which we extract the address that we will land at.
1569 This address is copied into PC. This routine returns non-zero on
1570 success. */
1571
1572 static int
1573 i386_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
1574 {
1575 gdb_byte buf[4];
1576 CORE_ADDR sp, jb_addr;
1577 struct gdbarch *gdbarch = get_frame_arch (frame);
1578 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
1579
1580 /* If JB_PC_OFFSET is -1, we have no way to find out where the
1581 longjmp will land. */
1582 if (jb_pc_offset == -1)
1583 return 0;
1584
1585 get_frame_register (frame, I386_ESP_REGNUM, buf);
1586 sp = extract_unsigned_integer (buf, 4);
1587 if (target_read_memory (sp + 4, buf, 4))
1588 return 0;
1589
1590 jb_addr = extract_unsigned_integer (buf, 4);
1591 if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
1592 return 0;
1593
1594 *pc = extract_unsigned_integer (buf, 4);
1595 return 1;
1596 }
1597 \f
1598
1599 /* Check whether TYPE must be 16-byte-aligned when passed as a
1600 function argument. 16-byte vectors, _Decimal128 and structures or
1601 unions containing such types must be 16-byte-aligned; other
1602 arguments are 4-byte-aligned. */
1603
1604 static int
1605 i386_16_byte_align_p (struct type *type)
1606 {
1607 type = check_typedef (type);
1608 if ((TYPE_CODE (type) == TYPE_CODE_DECFLOAT
1609 || (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type)))
1610 && TYPE_LENGTH (type) == 16)
1611 return 1;
1612 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
1613 return i386_16_byte_align_p (TYPE_TARGET_TYPE (type));
1614 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
1615 || TYPE_CODE (type) == TYPE_CODE_UNION)
1616 {
1617 int i;
1618 for (i = 0; i < TYPE_NFIELDS (type); i++)
1619 {
1620 if (i386_16_byte_align_p (TYPE_FIELD_TYPE (type, i)))
1621 return 1;
1622 }
1623 }
1624 return 0;
1625 }
1626
1627 static CORE_ADDR
1628 i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1629 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
1630 struct value **args, CORE_ADDR sp, int struct_return,
1631 CORE_ADDR struct_addr)
1632 {
1633 gdb_byte buf[4];
1634 int i;
1635 int write_pass;
1636 int args_space = 0;
1637
1638 /* Determine the total space required for arguments and struct
1639 return address in a first pass (allowing for 16-byte-aligned
1640 arguments), then push arguments in a second pass. */
1641
1642 for (write_pass = 0; write_pass < 2; write_pass++)
1643 {
1644 int args_space_used = 0;
1645 int have_16_byte_aligned_arg = 0;
1646
1647 if (struct_return)
1648 {
1649 if (write_pass)
1650 {
1651 /* Push value address. */
1652 store_unsigned_integer (buf, 4, struct_addr);
1653 write_memory (sp, buf, 4);
1654 args_space_used += 4;
1655 }
1656 else
1657 args_space += 4;
1658 }
1659
1660 for (i = 0; i < nargs; i++)
1661 {
1662 int len = TYPE_LENGTH (value_enclosing_type (args[i]));
1663
1664 if (write_pass)
1665 {
1666 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
1667 args_space_used = align_up (args_space_used, 16);
1668
1669 write_memory (sp + args_space_used,
1670 value_contents_all (args[i]), len);
1671 /* The System V ABI says that:
1672
1673 "An argument's size is increased, if necessary, to make it a
1674 multiple of [32-bit] words. This may require tail padding,
1675 depending on the size of the argument."
1676
1677 This makes sure the stack stays word-aligned. */
1678 args_space_used += align_up (len, 4);
1679 }
1680 else
1681 {
1682 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
1683 {
1684 args_space = align_up (args_space, 16);
1685 have_16_byte_aligned_arg = 1;
1686 }
1687 args_space += align_up (len, 4);
1688 }
1689 }
1690
1691 if (!write_pass)
1692 {
1693 if (have_16_byte_aligned_arg)
1694 args_space = align_up (args_space, 16);
1695 sp -= args_space;
1696 }
1697 }
1698
1699 /* Store return address. */
1700 sp -= 4;
1701 store_unsigned_integer (buf, 4, bp_addr);
1702 write_memory (sp, buf, 4);
1703
1704 /* Finally, update the stack pointer... */
1705 store_unsigned_integer (buf, 4, sp);
1706 regcache_cooked_write (regcache, I386_ESP_REGNUM, buf);
1707
1708 /* ...and fake a frame pointer. */
1709 regcache_cooked_write (regcache, I386_EBP_REGNUM, buf);
1710
1711 /* MarkK wrote: This "+ 8" is all over the place:
1712 (i386_frame_this_id, i386_sigtramp_frame_this_id,
1713 i386_dummy_id). It's there, since all frame unwinders for
1714 a given target have to agree (within a certain margin) on the
1715 definition of the stack address of a frame. Otherwise
1716 frame_id_inner() won't work correctly. Since DWARF2/GCC uses the
1717 stack address *before* the function call as a frame's CFA. On
1718 the i386, when %ebp is used as a frame pointer, the offset
1719 between the contents %ebp and the CFA as defined by GCC. */
1720 return sp + 8;
1721 }
1722
1723 /* These registers are used for returning integers (and on some
1724 targets also for returning `struct' and `union' values when their
1725 size and alignment match an integer type). */
1726 #define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
1727 #define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
1728
1729 /* Read, for architecture GDBARCH, a function return value of TYPE
1730 from REGCACHE, and copy that into VALBUF. */
1731
1732 static void
1733 i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
1734 struct regcache *regcache, gdb_byte *valbuf)
1735 {
1736 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1737 int len = TYPE_LENGTH (type);
1738 gdb_byte buf[I386_MAX_REGISTER_SIZE];
1739
1740 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1741 {
1742 if (tdep->st0_regnum < 0)
1743 {
1744 warning (_("Cannot find floating-point return value."));
1745 memset (valbuf, 0, len);
1746 return;
1747 }
1748
1749 /* Floating-point return values can be found in %st(0). Convert
1750 its contents to the desired type. This is probably not
1751 exactly how it would happen on the target itself, but it is
1752 the best we can do. */
1753 regcache_raw_read (regcache, I386_ST0_REGNUM, buf);
1754 convert_typed_floating (buf, builtin_type_i387_ext, valbuf, type);
1755 }
1756 else
1757 {
1758 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
1759 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
1760
1761 if (len <= low_size)
1762 {
1763 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
1764 memcpy (valbuf, buf, len);
1765 }
1766 else if (len <= (low_size + high_size))
1767 {
1768 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
1769 memcpy (valbuf, buf, low_size);
1770 regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
1771 memcpy (valbuf + low_size, buf, len - low_size);
1772 }
1773 else
1774 internal_error (__FILE__, __LINE__,
1775 _("Cannot extract return value of %d bytes long."), len);
1776 }
1777 }
1778
1779 /* Write, for architecture GDBARCH, a function return value of TYPE
1780 from VALBUF into REGCACHE. */
1781
1782 static void
1783 i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
1784 struct regcache *regcache, const gdb_byte *valbuf)
1785 {
1786 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1787 int len = TYPE_LENGTH (type);
1788
1789 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1790 {
1791 ULONGEST fstat;
1792 gdb_byte buf[I386_MAX_REGISTER_SIZE];
1793
1794 if (tdep->st0_regnum < 0)
1795 {
1796 warning (_("Cannot set floating-point return value."));
1797 return;
1798 }
1799
1800 /* Returning floating-point values is a bit tricky. Apart from
1801 storing the return value in %st(0), we have to simulate the
1802 state of the FPU at function return point. */
1803
1804 /* Convert the value found in VALBUF to the extended
1805 floating-point format used by the FPU. This is probably
1806 not exactly how it would happen on the target itself, but
1807 it is the best we can do. */
1808 convert_typed_floating (valbuf, type, buf, builtin_type_i387_ext);
1809 regcache_raw_write (regcache, I386_ST0_REGNUM, buf);
1810
1811 /* Set the top of the floating-point register stack to 7. The
1812 actual value doesn't really matter, but 7 is what a normal
1813 function return would end up with if the program started out
1814 with a freshly initialized FPU. */
1815 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
1816 fstat |= (7 << 11);
1817 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM (tdep), fstat);
1818
1819 /* Mark %st(1) through %st(7) as empty. Since we set the top of
1820 the floating-point register stack to 7, the appropriate value
1821 for the tag word is 0x3fff. */
1822 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM (tdep), 0x3fff);
1823 }
1824 else
1825 {
1826 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
1827 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
1828
1829 if (len <= low_size)
1830 regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
1831 else if (len <= (low_size + high_size))
1832 {
1833 regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
1834 regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
1835 len - low_size, valbuf + low_size);
1836 }
1837 else
1838 internal_error (__FILE__, __LINE__,
1839 _("Cannot store return value of %d bytes long."), len);
1840 }
1841 }
1842 \f
1843
1844 /* This is the variable that is set with "set struct-convention", and
1845 its legitimate values. */
1846 static const char default_struct_convention[] = "default";
1847 static const char pcc_struct_convention[] = "pcc";
1848 static const char reg_struct_convention[] = "reg";
1849 static const char *valid_conventions[] =
1850 {
1851 default_struct_convention,
1852 pcc_struct_convention,
1853 reg_struct_convention,
1854 NULL
1855 };
1856 static const char *struct_convention = default_struct_convention;
1857
1858 /* Return non-zero if TYPE, which is assumed to be a structure,
1859 a union type, or an array type, should be returned in registers
1860 for architecture GDBARCH. */
1861
1862 static int
1863 i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
1864 {
1865 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1866 enum type_code code = TYPE_CODE (type);
1867 int len = TYPE_LENGTH (type);
1868
1869 gdb_assert (code == TYPE_CODE_STRUCT
1870 || code == TYPE_CODE_UNION
1871 || code == TYPE_CODE_ARRAY);
1872
1873 if (struct_convention == pcc_struct_convention
1874 || (struct_convention == default_struct_convention
1875 && tdep->struct_return == pcc_struct_return))
1876 return 0;
1877
1878 /* Structures consisting of a single `float', `double' or 'long
1879 double' member are returned in %st(0). */
1880 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
1881 {
1882 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
1883 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1884 return (len == 4 || len == 8 || len == 12);
1885 }
1886
1887 return (len == 1 || len == 2 || len == 4 || len == 8);
1888 }
1889
1890 /* Determine, for architecture GDBARCH, how a return value of TYPE
1891 should be returned. If it is supposed to be returned in registers,
1892 and READBUF is non-zero, read the appropriate value from REGCACHE,
1893 and copy it into READBUF. If WRITEBUF is non-zero, write the value
1894 from WRITEBUF into REGCACHE. */
1895
1896 static enum return_value_convention
1897 i386_return_value (struct gdbarch *gdbarch, struct type *func_type,
1898 struct type *type, struct regcache *regcache,
1899 gdb_byte *readbuf, const gdb_byte *writebuf)
1900 {
1901 enum type_code code = TYPE_CODE (type);
1902
1903 if (((code == TYPE_CODE_STRUCT
1904 || code == TYPE_CODE_UNION
1905 || code == TYPE_CODE_ARRAY)
1906 && !i386_reg_struct_return_p (gdbarch, type))
1907 /* 128-bit decimal float uses the struct return convention. */
1908 || (code == TYPE_CODE_DECFLOAT && TYPE_LENGTH (type) == 16))
1909 {
1910 /* The System V ABI says that:
1911
1912 "A function that returns a structure or union also sets %eax
1913 to the value of the original address of the caller's area
1914 before it returns. Thus when the caller receives control
1915 again, the address of the returned object resides in register
1916 %eax and can be used to access the object."
1917
1918 So the ABI guarantees that we can always find the return
1919 value just after the function has returned. */
1920
1921 /* Note that the ABI doesn't mention functions returning arrays,
1922 which is something possible in certain languages such as Ada.
1923 In this case, the value is returned as if it was wrapped in
1924 a record, so the convention applied to records also applies
1925 to arrays. */
1926
1927 if (readbuf)
1928 {
1929 ULONGEST addr;
1930
1931 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
1932 read_memory (addr, readbuf, TYPE_LENGTH (type));
1933 }
1934
1935 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
1936 }
1937
1938 /* This special case is for structures consisting of a single
1939 `float', `double' or 'long double' member. These structures are
1940 returned in %st(0). For these structures, we call ourselves
1941 recursively, changing TYPE into the type of the first member of
1942 the structure. Since that should work for all structures that
1943 have only one member, we don't bother to check the member's type
1944 here. */
1945 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
1946 {
1947 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
1948 return i386_return_value (gdbarch, func_type, type, regcache,
1949 readbuf, writebuf);
1950 }
1951
1952 if (readbuf)
1953 i386_extract_return_value (gdbarch, type, regcache, readbuf);
1954 if (writebuf)
1955 i386_store_return_value (gdbarch, type, regcache, writebuf);
1956
1957 return RETURN_VALUE_REGISTER_CONVENTION;
1958 }
1959 \f
1960
1961 /* Type for %eflags. */
1962 struct type *i386_eflags_type;
1963
1964 /* Type for %mxcsr. */
1965 struct type *i386_mxcsr_type;
1966
1967 /* Construct types for ISA-specific registers. */
1968 static void
1969 i386_init_types (void)
1970 {
1971 struct type *type;
1972
1973 type = init_flags_type ("builtin_type_i386_eflags", 4);
1974 append_flags_type_flag (type, 0, "CF");
1975 append_flags_type_flag (type, 1, NULL);
1976 append_flags_type_flag (type, 2, "PF");
1977 append_flags_type_flag (type, 4, "AF");
1978 append_flags_type_flag (type, 6, "ZF");
1979 append_flags_type_flag (type, 7, "SF");
1980 append_flags_type_flag (type, 8, "TF");
1981 append_flags_type_flag (type, 9, "IF");
1982 append_flags_type_flag (type, 10, "DF");
1983 append_flags_type_flag (type, 11, "OF");
1984 append_flags_type_flag (type, 14, "NT");
1985 append_flags_type_flag (type, 16, "RF");
1986 append_flags_type_flag (type, 17, "VM");
1987 append_flags_type_flag (type, 18, "AC");
1988 append_flags_type_flag (type, 19, "VIF");
1989 append_flags_type_flag (type, 20, "VIP");
1990 append_flags_type_flag (type, 21, "ID");
1991 i386_eflags_type = type;
1992
1993 type = init_flags_type ("builtin_type_i386_mxcsr", 4);
1994 append_flags_type_flag (type, 0, "IE");
1995 append_flags_type_flag (type, 1, "DE");
1996 append_flags_type_flag (type, 2, "ZE");
1997 append_flags_type_flag (type, 3, "OE");
1998 append_flags_type_flag (type, 4, "UE");
1999 append_flags_type_flag (type, 5, "PE");
2000 append_flags_type_flag (type, 6, "DAZ");
2001 append_flags_type_flag (type, 7, "IM");
2002 append_flags_type_flag (type, 8, "DM");
2003 append_flags_type_flag (type, 9, "ZM");
2004 append_flags_type_flag (type, 10, "OM");
2005 append_flags_type_flag (type, 11, "UM");
2006 append_flags_type_flag (type, 12, "PM");
2007 append_flags_type_flag (type, 15, "FZ");
2008 i386_mxcsr_type = type;
2009 }
2010
2011 /* Construct vector type for MMX registers. */
2012 struct type *
2013 i386_mmx_type (struct gdbarch *gdbarch)
2014 {
2015 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2016
2017 if (!tdep->i386_mmx_type)
2018 {
2019 /* The type we're building is this: */
2020 #if 0
2021 union __gdb_builtin_type_vec64i
2022 {
2023 int64_t uint64;
2024 int32_t v2_int32[2];
2025 int16_t v4_int16[4];
2026 int8_t v8_int8[8];
2027 };
2028 #endif
2029
2030 struct type *t;
2031
2032 t = init_composite_type ("__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
2033 append_composite_type_field (t, "uint64", builtin_type_int64);
2034 append_composite_type_field (t, "v2_int32",
2035 init_vector_type (builtin_type_int32, 2));
2036 append_composite_type_field (t, "v4_int16",
2037 init_vector_type (builtin_type_int16, 4));
2038 append_composite_type_field (t, "v8_int8",
2039 init_vector_type (builtin_type_int8, 8));
2040
2041 TYPE_FLAGS (t) |= TYPE_FLAG_VECTOR;
2042 TYPE_NAME (t) = "builtin_type_vec64i";
2043 tdep->i386_mmx_type = t;
2044 }
2045
2046 return tdep->i386_mmx_type;
2047 }
2048
2049 struct type *
2050 i386_sse_type (struct gdbarch *gdbarch)
2051 {
2052 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2053
2054 if (!tdep->i386_sse_type)
2055 {
2056 /* The type we're building is this: */
2057 #if 0
2058 union __gdb_builtin_type_vec128i
2059 {
2060 int128_t uint128;
2061 int64_t v2_int64[2];
2062 int32_t v4_int32[4];
2063 int16_t v8_int16[8];
2064 int8_t v16_int8[16];
2065 double v2_double[2];
2066 float v4_float[4];
2067 };
2068 #endif
2069
2070 struct type *t;
2071
2072 t = init_composite_type ("__gdb_builtin_type_vec128i", TYPE_CODE_UNION);
2073 append_composite_type_field (t, "v4_float",
2074 init_vector_type (builtin_type_float, 4));
2075 append_composite_type_field (t, "v2_double",
2076 init_vector_type (builtin_type_double, 2));
2077 append_composite_type_field (t, "v16_int8",
2078 init_vector_type (builtin_type_int8, 16));
2079 append_composite_type_field (t, "v8_int16",
2080 init_vector_type (builtin_type_int16, 8));
2081 append_composite_type_field (t, "v4_int32",
2082 init_vector_type (builtin_type_int32, 4));
2083 append_composite_type_field (t, "v2_int64",
2084 init_vector_type (builtin_type_int64, 2));
2085 append_composite_type_field (t, "uint128", builtin_type_int128);
2086
2087 TYPE_FLAGS (t) |= TYPE_FLAG_VECTOR;
2088 TYPE_NAME (t) = "builtin_type_vec128i";
2089 tdep->i386_sse_type = t;
2090 }
2091
2092 return tdep->i386_sse_type;
2093 }
2094
2095 /* Return the GDB type object for the "standard" data type of data in
2096 register REGNUM. Perhaps %esi and %edi should go here, but
2097 potentially they could be used for things other than address. */
2098
2099 static struct type *
2100 i386_register_type (struct gdbarch *gdbarch, int regnum)
2101 {
2102 if (regnum == I386_EIP_REGNUM)
2103 return builtin_type_void_func_ptr;
2104
2105 if (regnum == I386_EFLAGS_REGNUM)
2106 return i386_eflags_type;
2107
2108 if (regnum == I386_EBP_REGNUM || regnum == I386_ESP_REGNUM)
2109 return builtin_type_void_data_ptr;
2110
2111 if (i386_fp_regnum_p (gdbarch, regnum))
2112 return builtin_type_i387_ext;
2113
2114 if (i386_mmx_regnum_p (gdbarch, regnum))
2115 return i386_mmx_type (gdbarch);
2116
2117 if (i386_sse_regnum_p (gdbarch, regnum))
2118 return i386_sse_type (gdbarch);
2119
2120 if (regnum == I387_MXCSR_REGNUM (gdbarch_tdep (gdbarch)))
2121 return i386_mxcsr_type;
2122
2123 return builtin_type_int;
2124 }
2125
2126 /* Map a cooked register onto a raw register or memory. For the i386,
2127 the MMX registers need to be mapped onto floating point registers. */
2128
2129 static int
2130 i386_mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
2131 {
2132 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
2133 int mmxreg, fpreg;
2134 ULONGEST fstat;
2135 int tos;
2136
2137 mmxreg = regnum - tdep->mm0_regnum;
2138 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
2139 tos = (fstat >> 11) & 0x7;
2140 fpreg = (mmxreg + tos) % 8;
2141
2142 return (I387_ST0_REGNUM (tdep) + fpreg);
2143 }
2144
2145 static void
2146 i386_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2147 int regnum, gdb_byte *buf)
2148 {
2149 if (i386_mmx_regnum_p (gdbarch, regnum))
2150 {
2151 gdb_byte mmx_buf[MAX_REGISTER_SIZE];
2152 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
2153
2154 /* Extract (always little endian). */
2155 regcache_raw_read (regcache, fpnum, mmx_buf);
2156 memcpy (buf, mmx_buf, register_size (gdbarch, regnum));
2157 }
2158 else
2159 regcache_raw_read (regcache, regnum, buf);
2160 }
2161
2162 static void
2163 i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2164 int regnum, const gdb_byte *buf)
2165 {
2166 if (i386_mmx_regnum_p (gdbarch, regnum))
2167 {
2168 gdb_byte mmx_buf[MAX_REGISTER_SIZE];
2169 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
2170
2171 /* Read ... */
2172 regcache_raw_read (regcache, fpnum, mmx_buf);
2173 /* ... Modify ... (always little endian). */
2174 memcpy (mmx_buf, buf, register_size (gdbarch, regnum));
2175 /* ... Write. */
2176 regcache_raw_write (regcache, fpnum, mmx_buf);
2177 }
2178 else
2179 regcache_raw_write (regcache, regnum, buf);
2180 }
2181 \f
2182
2183 /* Return the register number of the register allocated by GCC after
2184 REGNUM, or -1 if there is no such register. */
2185
2186 static int
2187 i386_next_regnum (int regnum)
2188 {
2189 /* GCC allocates the registers in the order:
2190
2191 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
2192
2193 Since storing a variable in %esp doesn't make any sense we return
2194 -1 for %ebp and for %esp itself. */
2195 static int next_regnum[] =
2196 {
2197 I386_EDX_REGNUM, /* Slot for %eax. */
2198 I386_EBX_REGNUM, /* Slot for %ecx. */
2199 I386_ECX_REGNUM, /* Slot for %edx. */
2200 I386_ESI_REGNUM, /* Slot for %ebx. */
2201 -1, -1, /* Slots for %esp and %ebp. */
2202 I386_EDI_REGNUM, /* Slot for %esi. */
2203 I386_EBP_REGNUM /* Slot for %edi. */
2204 };
2205
2206 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
2207 return next_regnum[regnum];
2208
2209 return -1;
2210 }
2211
2212 /* Return nonzero if a value of type TYPE stored in register REGNUM
2213 needs any special handling. */
2214
2215 static int
2216 i386_convert_register_p (struct gdbarch *gdbarch, int regnum, struct type *type)
2217 {
2218 int len = TYPE_LENGTH (type);
2219
2220 /* Values may be spread across multiple registers. Most debugging
2221 formats aren't expressive enough to specify the locations, so
2222 some heuristics is involved. Right now we only handle types that
2223 have a length that is a multiple of the word size, since GCC
2224 doesn't seem to put any other types into registers. */
2225 if (len > 4 && len % 4 == 0)
2226 {
2227 int last_regnum = regnum;
2228
2229 while (len > 4)
2230 {
2231 last_regnum = i386_next_regnum (last_regnum);
2232 len -= 4;
2233 }
2234
2235 if (last_regnum != -1)
2236 return 1;
2237 }
2238
2239 return i387_convert_register_p (gdbarch, regnum, type);
2240 }
2241
2242 /* Read a value of type TYPE from register REGNUM in frame FRAME, and
2243 return its contents in TO. */
2244
2245 static void
2246 i386_register_to_value (struct frame_info *frame, int regnum,
2247 struct type *type, gdb_byte *to)
2248 {
2249 struct gdbarch *gdbarch = get_frame_arch (frame);
2250 int len = TYPE_LENGTH (type);
2251
2252 /* FIXME: kettenis/20030609: What should we do if REGNUM isn't
2253 available in FRAME (i.e. if it wasn't saved)? */
2254
2255 if (i386_fp_regnum_p (gdbarch, regnum))
2256 {
2257 i387_register_to_value (frame, regnum, type, to);
2258 return;
2259 }
2260
2261 /* Read a value spread across multiple registers. */
2262
2263 gdb_assert (len > 4 && len % 4 == 0);
2264
2265 while (len > 0)
2266 {
2267 gdb_assert (regnum != -1);
2268 gdb_assert (register_size (gdbarch, regnum) == 4);
2269
2270 get_frame_register (frame, regnum, to);
2271 regnum = i386_next_regnum (regnum);
2272 len -= 4;
2273 to += 4;
2274 }
2275 }
2276
2277 /* Write the contents FROM of a value of type TYPE into register
2278 REGNUM in frame FRAME. */
2279
2280 static void
2281 i386_value_to_register (struct frame_info *frame, int regnum,
2282 struct type *type, const gdb_byte *from)
2283 {
2284 int len = TYPE_LENGTH (type);
2285
2286 if (i386_fp_regnum_p (get_frame_arch (frame), regnum))
2287 {
2288 i387_value_to_register (frame, regnum, type, from);
2289 return;
2290 }
2291
2292 /* Write a value spread across multiple registers. */
2293
2294 gdb_assert (len > 4 && len % 4 == 0);
2295
2296 while (len > 0)
2297 {
2298 gdb_assert (regnum != -1);
2299 gdb_assert (register_size (get_frame_arch (frame), regnum) == 4);
2300
2301 put_frame_register (frame, regnum, from);
2302 regnum = i386_next_regnum (regnum);
2303 len -= 4;
2304 from += 4;
2305 }
2306 }
2307 \f
2308 /* Supply register REGNUM from the buffer specified by GREGS and LEN
2309 in the general-purpose register set REGSET to register cache
2310 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
2311
2312 void
2313 i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
2314 int regnum, const void *gregs, size_t len)
2315 {
2316 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
2317 const gdb_byte *regs = gregs;
2318 int i;
2319
2320 gdb_assert (len == tdep->sizeof_gregset);
2321
2322 for (i = 0; i < tdep->gregset_num_regs; i++)
2323 {
2324 if ((regnum == i || regnum == -1)
2325 && tdep->gregset_reg_offset[i] != -1)
2326 regcache_raw_supply (regcache, i, regs + tdep->gregset_reg_offset[i]);
2327 }
2328 }
2329
2330 /* Collect register REGNUM from the register cache REGCACHE and store
2331 it in the buffer specified by GREGS and LEN as described by the
2332 general-purpose register set REGSET. If REGNUM is -1, do this for
2333 all registers in REGSET. */
2334
2335 void
2336 i386_collect_gregset (const struct regset *regset,
2337 const struct regcache *regcache,
2338 int regnum, void *gregs, size_t len)
2339 {
2340 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
2341 gdb_byte *regs = gregs;
2342 int i;
2343
2344 gdb_assert (len == tdep->sizeof_gregset);
2345
2346 for (i = 0; i < tdep->gregset_num_regs; i++)
2347 {
2348 if ((regnum == i || regnum == -1)
2349 && tdep->gregset_reg_offset[i] != -1)
2350 regcache_raw_collect (regcache, i, regs + tdep->gregset_reg_offset[i]);
2351 }
2352 }
2353
2354 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
2355 in the floating-point register set REGSET to register cache
2356 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
2357
2358 static void
2359 i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
2360 int regnum, const void *fpregs, size_t len)
2361 {
2362 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
2363
2364 if (len == I387_SIZEOF_FXSAVE)
2365 {
2366 i387_supply_fxsave (regcache, regnum, fpregs);
2367 return;
2368 }
2369
2370 gdb_assert (len == tdep->sizeof_fpregset);
2371 i387_supply_fsave (regcache, regnum, fpregs);
2372 }
2373
2374 /* Collect register REGNUM from the register cache REGCACHE and store
2375 it in the buffer specified by FPREGS and LEN as described by the
2376 floating-point register set REGSET. If REGNUM is -1, do this for
2377 all registers in REGSET. */
2378
2379 static void
2380 i386_collect_fpregset (const struct regset *regset,
2381 const struct regcache *regcache,
2382 int regnum, void *fpregs, size_t len)
2383 {
2384 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
2385
2386 if (len == I387_SIZEOF_FXSAVE)
2387 {
2388 i387_collect_fxsave (regcache, regnum, fpregs);
2389 return;
2390 }
2391
2392 gdb_assert (len == tdep->sizeof_fpregset);
2393 i387_collect_fsave (regcache, regnum, fpregs);
2394 }
2395
2396 /* Return the appropriate register set for the core section identified
2397 by SECT_NAME and SECT_SIZE. */
2398
2399 const struct regset *
2400 i386_regset_from_core_section (struct gdbarch *gdbarch,
2401 const char *sect_name, size_t sect_size)
2402 {
2403 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2404
2405 if (strcmp (sect_name, ".reg") == 0 && sect_size == tdep->sizeof_gregset)
2406 {
2407 if (tdep->gregset == NULL)
2408 tdep->gregset = regset_alloc (gdbarch, i386_supply_gregset,
2409 i386_collect_gregset);
2410 return tdep->gregset;
2411 }
2412
2413 if ((strcmp (sect_name, ".reg2") == 0 && sect_size == tdep->sizeof_fpregset)
2414 || (strcmp (sect_name, ".reg-xfp") == 0
2415 && sect_size == I387_SIZEOF_FXSAVE))
2416 {
2417 if (tdep->fpregset == NULL)
2418 tdep->fpregset = regset_alloc (gdbarch, i386_supply_fpregset,
2419 i386_collect_fpregset);
2420 return tdep->fpregset;
2421 }
2422
2423 return NULL;
2424 }
2425 \f
2426
2427 /* Stuff for WIN32 PE style DLL's but is pretty generic really. */
2428
2429 CORE_ADDR
2430 i386_pe_skip_trampoline_code (CORE_ADDR pc, char *name)
2431 {
2432 if (pc && read_memory_unsigned_integer (pc, 2) == 0x25ff) /* jmp *(dest) */
2433 {
2434 unsigned long indirect = read_memory_unsigned_integer (pc + 2, 4);
2435 struct minimal_symbol *indsym =
2436 indirect ? lookup_minimal_symbol_by_pc (indirect) : 0;
2437 char *symname = indsym ? SYMBOL_LINKAGE_NAME (indsym) : 0;
2438
2439 if (symname)
2440 {
2441 if (strncmp (symname, "__imp_", 6) == 0
2442 || strncmp (symname, "_imp_", 5) == 0)
2443 return name ? 1 : read_memory_unsigned_integer (indirect, 4);
2444 }
2445 }
2446 return 0; /* Not a trampoline. */
2447 }
2448 \f
2449
2450 /* Return whether the THIS_FRAME corresponds to a sigtramp
2451 routine. */
2452
2453 static int
2454 i386_sigtramp_p (struct frame_info *this_frame)
2455 {
2456 CORE_ADDR pc = get_frame_pc (this_frame);
2457 char *name;
2458
2459 find_pc_partial_function (pc, &name, NULL, NULL);
2460 return (name && strcmp ("_sigtramp", name) == 0);
2461 }
2462 \f
2463
2464 /* We have two flavours of disassembly. The machinery on this page
2465 deals with switching between those. */
2466
2467 static int
2468 i386_print_insn (bfd_vma pc, struct disassemble_info *info)
2469 {
2470 gdb_assert (disassembly_flavor == att_flavor
2471 || disassembly_flavor == intel_flavor);
2472
2473 /* FIXME: kettenis/20020915: Until disassembler_options is properly
2474 constified, cast to prevent a compiler warning. */
2475 info->disassembler_options = (char *) disassembly_flavor;
2476
2477 return print_insn_i386 (pc, info);
2478 }
2479 \f
2480
2481 /* There are a few i386 architecture variants that differ only
2482 slightly from the generic i386 target. For now, we don't give them
2483 their own source file, but include them here. As a consequence,
2484 they'll always be included. */
2485
2486 /* System V Release 4 (SVR4). */
2487
2488 /* Return whether THIS_FRAME corresponds to a SVR4 sigtramp
2489 routine. */
2490
2491 static int
2492 i386_svr4_sigtramp_p (struct frame_info *this_frame)
2493 {
2494 CORE_ADDR pc = get_frame_pc (this_frame);
2495 char *name;
2496
2497 /* UnixWare uses _sigacthandler. The origin of the other symbols is
2498 currently unknown. */
2499 find_pc_partial_function (pc, &name, NULL, NULL);
2500 return (name && (strcmp ("_sigreturn", name) == 0
2501 || strcmp ("_sigacthandler", name) == 0
2502 || strcmp ("sigvechandler", name) == 0));
2503 }
2504
2505 /* Assuming THIS_FRAME is for a SVR4 sigtramp routine, return the
2506 address of the associated sigcontext (ucontext) structure. */
2507
2508 static CORE_ADDR
2509 i386_svr4_sigcontext_addr (struct frame_info *this_frame)
2510 {
2511 gdb_byte buf[4];
2512 CORE_ADDR sp;
2513
2514 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2515 sp = extract_unsigned_integer (buf, 4);
2516
2517 return read_memory_unsigned_integer (sp + 8, 4);
2518 }
2519 \f
2520
2521 /* Generic ELF. */
2522
2523 void
2524 i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2525 {
2526 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
2527 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
2528 }
2529
2530 /* System V Release 4 (SVR4). */
2531
2532 void
2533 i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2534 {
2535 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2536
2537 /* System V Release 4 uses ELF. */
2538 i386_elf_init_abi (info, gdbarch);
2539
2540 /* System V Release 4 has shared libraries. */
2541 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
2542
2543 tdep->sigtramp_p = i386_svr4_sigtramp_p;
2544 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
2545 tdep->sc_pc_offset = 36 + 14 * 4;
2546 tdep->sc_sp_offset = 36 + 17 * 4;
2547
2548 tdep->jb_pc_offset = 20;
2549 }
2550
2551 /* DJGPP. */
2552
2553 static void
2554 i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2555 {
2556 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2557
2558 /* DJGPP doesn't have any special frames for signal handlers. */
2559 tdep->sigtramp_p = NULL;
2560
2561 tdep->jb_pc_offset = 36;
2562 }
2563 \f
2564
2565 /* i386 register groups. In addition to the normal groups, add "mmx"
2566 and "sse". */
2567
2568 static struct reggroup *i386_sse_reggroup;
2569 static struct reggroup *i386_mmx_reggroup;
2570
2571 static void
2572 i386_init_reggroups (void)
2573 {
2574 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
2575 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
2576 }
2577
2578 static void
2579 i386_add_reggroups (struct gdbarch *gdbarch)
2580 {
2581 reggroup_add (gdbarch, i386_sse_reggroup);
2582 reggroup_add (gdbarch, i386_mmx_reggroup);
2583 reggroup_add (gdbarch, general_reggroup);
2584 reggroup_add (gdbarch, float_reggroup);
2585 reggroup_add (gdbarch, all_reggroup);
2586 reggroup_add (gdbarch, save_reggroup);
2587 reggroup_add (gdbarch, restore_reggroup);
2588 reggroup_add (gdbarch, vector_reggroup);
2589 reggroup_add (gdbarch, system_reggroup);
2590 }
2591
2592 int
2593 i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
2594 struct reggroup *group)
2595 {
2596 int sse_regnum_p = (i386_sse_regnum_p (gdbarch, regnum)
2597 || i386_mxcsr_regnum_p (gdbarch, regnum));
2598 int fp_regnum_p = (i386_fp_regnum_p (gdbarch, regnum)
2599 || i386_fpc_regnum_p (gdbarch, regnum));
2600 int mmx_regnum_p = (i386_mmx_regnum_p (gdbarch, regnum));
2601
2602 if (group == i386_mmx_reggroup)
2603 return mmx_regnum_p;
2604 if (group == i386_sse_reggroup)
2605 return sse_regnum_p;
2606 if (group == vector_reggroup)
2607 return (mmx_regnum_p || sse_regnum_p);
2608 if (group == float_reggroup)
2609 return fp_regnum_p;
2610 if (group == general_reggroup)
2611 return (!fp_regnum_p && !mmx_regnum_p && !sse_regnum_p);
2612
2613 return default_register_reggroup_p (gdbarch, regnum, group);
2614 }
2615 \f
2616
2617 /* Get the ARGIth function argument for the current function. */
2618
2619 static CORE_ADDR
2620 i386_fetch_pointer_argument (struct frame_info *frame, int argi,
2621 struct type *type)
2622 {
2623 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
2624 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4);
2625 }
2626
2627 \f
2628 static struct gdbarch *
2629 i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2630 {
2631 struct gdbarch_tdep *tdep;
2632 struct gdbarch *gdbarch;
2633
2634 /* If there is already a candidate, use it. */
2635 arches = gdbarch_list_lookup_by_info (arches, &info);
2636 if (arches != NULL)
2637 return arches->gdbarch;
2638
2639 /* Allocate space for the new architecture. */
2640 tdep = XCALLOC (1, struct gdbarch_tdep);
2641 gdbarch = gdbarch_alloc (&info, tdep);
2642
2643 /* General-purpose registers. */
2644 tdep->gregset = NULL;
2645 tdep->gregset_reg_offset = NULL;
2646 tdep->gregset_num_regs = I386_NUM_GREGS;
2647 tdep->sizeof_gregset = 0;
2648
2649 /* Floating-point registers. */
2650 tdep->fpregset = NULL;
2651 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
2652
2653 /* The default settings include the FPU registers, the MMX registers
2654 and the SSE registers. This can be overridden for a specific ABI
2655 by adjusting the members `st0_regnum', `mm0_regnum' and
2656 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
2657 will show up in the output of "info all-registers". Ideally we
2658 should try to autodetect whether they are available, such that we
2659 can prevent "info all-registers" from displaying registers that
2660 aren't available.
2661
2662 NOTE: kevinb/2003-07-13: ... if it's a choice between printing
2663 [the SSE registers] always (even when they don't exist) or never
2664 showing them to the user (even when they do exist), I prefer the
2665 former over the latter. */
2666
2667 tdep->st0_regnum = I386_ST0_REGNUM;
2668
2669 /* The MMX registers are implemented as pseudo-registers. Put off
2670 calculating the register number for %mm0 until we know the number
2671 of raw registers. */
2672 tdep->mm0_regnum = 0;
2673
2674 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
2675 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
2676
2677 tdep->jb_pc_offset = -1;
2678 tdep->struct_return = pcc_struct_return;
2679 tdep->sigtramp_start = 0;
2680 tdep->sigtramp_end = 0;
2681 tdep->sigtramp_p = i386_sigtramp_p;
2682 tdep->sigcontext_addr = NULL;
2683 tdep->sc_reg_offset = NULL;
2684 tdep->sc_pc_offset = -1;
2685 tdep->sc_sp_offset = -1;
2686
2687 /* The format used for `long double' on almost all i386 targets is
2688 the i387 extended floating-point format. In fact, of all targets
2689 in the GCC 2.95 tree, only OSF/1 does it different, and insists
2690 on having a `long double' that's not `long' at all. */
2691 set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext);
2692
2693 /* Although the i387 extended floating-point has only 80 significant
2694 bits, a `long double' actually takes up 96, probably to enforce
2695 alignment. */
2696 set_gdbarch_long_double_bit (gdbarch, 96);
2697
2698 /* The default ABI includes general-purpose registers,
2699 floating-point registers, and the SSE registers. */
2700 set_gdbarch_num_regs (gdbarch, I386_SSE_NUM_REGS);
2701 set_gdbarch_register_name (gdbarch, i386_register_name);
2702 set_gdbarch_register_type (gdbarch, i386_register_type);
2703
2704 /* Register numbers of various important registers. */
2705 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
2706 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
2707 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
2708 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
2709
2710 /* NOTE: kettenis/20040418: GCC does have two possible register
2711 numbering schemes on the i386: dbx and SVR4. These schemes
2712 differ in how they number %ebp, %esp, %eflags, and the
2713 floating-point registers, and are implemented by the arrays
2714 dbx_register_map[] and svr4_dbx_register_map in
2715 gcc/config/i386.c. GCC also defines a third numbering scheme in
2716 gcc/config/i386.c, which it designates as the "default" register
2717 map used in 64bit mode. This last register numbering scheme is
2718 implemented in dbx64_register_map, and is used for AMD64; see
2719 amd64-tdep.c.
2720
2721 Currently, each GCC i386 target always uses the same register
2722 numbering scheme across all its supported debugging formats
2723 i.e. SDB (COFF), stabs and DWARF 2. This is because
2724 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
2725 DBX_REGISTER_NUMBER macro which is defined by each target's
2726 respective config header in a manner independent of the requested
2727 output debugging format.
2728
2729 This does not match the arrangement below, which presumes that
2730 the SDB and stabs numbering schemes differ from the DWARF and
2731 DWARF 2 ones. The reason for this arrangement is that it is
2732 likely to get the numbering scheme for the target's
2733 default/native debug format right. For targets where GCC is the
2734 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
2735 targets where the native toolchain uses a different numbering
2736 scheme for a particular debug format (stabs-in-ELF on Solaris)
2737 the defaults below will have to be overridden, like
2738 i386_elf_init_abi() does. */
2739
2740 /* Use the dbx register numbering scheme for stabs and COFF. */
2741 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
2742 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
2743
2744 /* Use the SVR4 register numbering scheme for DWARF 2. */
2745 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
2746
2747 /* We don't set gdbarch_stab_reg_to_regnum, since ECOFF doesn't seem to
2748 be in use on any of the supported i386 targets. */
2749
2750 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
2751
2752 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
2753
2754 /* Call dummy code. */
2755 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
2756
2757 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
2758 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
2759 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
2760
2761 set_gdbarch_return_value (gdbarch, i386_return_value);
2762
2763 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
2764
2765 /* Stack grows downward. */
2766 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2767
2768 set_gdbarch_breakpoint_from_pc (gdbarch, i386_breakpoint_from_pc);
2769 set_gdbarch_decr_pc_after_break (gdbarch, 1);
2770 set_gdbarch_max_insn_length (gdbarch, I386_MAX_INSN_LEN);
2771
2772 set_gdbarch_frame_args_skip (gdbarch, 8);
2773
2774 /* Wire in the MMX registers. */
2775 set_gdbarch_num_pseudo_regs (gdbarch, i386_num_mmx_regs);
2776 set_gdbarch_pseudo_register_read (gdbarch, i386_pseudo_register_read);
2777 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
2778
2779 set_gdbarch_print_insn (gdbarch, i386_print_insn);
2780
2781 set_gdbarch_dummy_id (gdbarch, i386_dummy_id);
2782
2783 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
2784
2785 /* Add the i386 register groups. */
2786 i386_add_reggroups (gdbarch);
2787 set_gdbarch_register_reggroup_p (gdbarch, i386_register_reggroup_p);
2788
2789 /* Helper for function argument information. */
2790 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
2791
2792 /* Hook in the DWARF CFI frame unwinder. */
2793 dwarf2_append_unwinders (gdbarch);
2794
2795 frame_base_set_default (gdbarch, &i386_frame_base);
2796
2797 /* Hook in ABI-specific overrides, if they have been registered. */
2798 gdbarch_init_osabi (info, gdbarch);
2799
2800 frame_unwind_append_unwinder (gdbarch, &i386_sigtramp_frame_unwind);
2801 frame_unwind_append_unwinder (gdbarch, &i386_frame_unwind);
2802
2803 /* If we have a register mapping, enable the generic core file
2804 support, unless it has already been enabled. */
2805 if (tdep->gregset_reg_offset
2806 && !gdbarch_regset_from_core_section_p (gdbarch))
2807 set_gdbarch_regset_from_core_section (gdbarch,
2808 i386_regset_from_core_section);
2809
2810 /* Unless support for MMX has been disabled, make %mm0 the first
2811 pseudo-register. */
2812 if (tdep->mm0_regnum == 0)
2813 tdep->mm0_regnum = gdbarch_num_regs (gdbarch);
2814
2815 return gdbarch;
2816 }
2817
2818 static enum gdb_osabi
2819 i386_coff_osabi_sniffer (bfd *abfd)
2820 {
2821 if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
2822 || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
2823 return GDB_OSABI_GO32;
2824
2825 return GDB_OSABI_UNKNOWN;
2826 }
2827 \f
2828
2829 /* Provide a prototype to silence -Wmissing-prototypes. */
2830 void _initialize_i386_tdep (void);
2831
2832 void
2833 _initialize_i386_tdep (void)
2834 {
2835 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
2836
2837 /* Add the variable that controls the disassembly flavor. */
2838 add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
2839 &disassembly_flavor, _("\
2840 Set the disassembly flavor."), _("\
2841 Show the disassembly flavor."), _("\
2842 The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
2843 NULL,
2844 NULL, /* FIXME: i18n: */
2845 &setlist, &showlist);
2846
2847 /* Add the variable that controls the convention for returning
2848 structs. */
2849 add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
2850 &struct_convention, _("\
2851 Set the convention for returning small structs."), _("\
2852 Show the convention for returning small structs."), _("\
2853 Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
2854 is \"default\"."),
2855 NULL,
2856 NULL, /* FIXME: i18n: */
2857 &setlist, &showlist);
2858
2859 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
2860 i386_coff_osabi_sniffer);
2861
2862 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
2863 i386_svr4_init_abi);
2864 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_GO32,
2865 i386_go32_init_abi);
2866
2867 /* Initialize the i386-specific register groups & types. */
2868 i386_init_reggroups ();
2869 i386_init_types();
2870 }
This page took 0.095985 seconds and 4 git commands to generate.