70bd47ce3000a7fbdb79dc097bbd76dba0a60d41
[deliverable/binutils-gdb.git] / gdb / i386-tdep.c
1 /* Intel 386 target-dependent stuff.
2
3 Copyright (C) 1988-2017 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "opcode/i386.h"
22 #include "arch-utils.h"
23 #include "command.h"
24 #include "dummy-frame.h"
25 #include "dwarf2-frame.h"
26 #include "doublest.h"
27 #include "frame.h"
28 #include "frame-base.h"
29 #include "frame-unwind.h"
30 #include "inferior.h"
31 #include "infrun.h"
32 #include "gdbcmd.h"
33 #include "gdbcore.h"
34 #include "gdbtypes.h"
35 #include "objfiles.h"
36 #include "osabi.h"
37 #include "regcache.h"
38 #include "reggroups.h"
39 #include "regset.h"
40 #include "symfile.h"
41 #include "symtab.h"
42 #include "target.h"
43 #include "value.h"
44 #include "dis-asm.h"
45 #include "disasm.h"
46 #include "remote.h"
47 #include "i386-tdep.h"
48 #include "i387-tdep.h"
49 #include "x86-xstate.h"
50
51 #include "record.h"
52 #include "record-full.h"
53 #include "features/i386/i386.c"
54 #include "features/i386/i386-avx.c"
55 #include "features/i386/i386-mpx.c"
56 #include "features/i386/i386-avx-mpx.c"
57 #include "features/i386/i386-avx-avx512.c"
58 #include "features/i386/i386-avx-mpx-avx512-pku.c"
59 #include "features/i386/i386-mmx.c"
60
61 #include "ax.h"
62 #include "ax-gdb.h"
63
64 #include "stap-probe.h"
65 #include "user-regs.h"
66 #include "cli/cli-utils.h"
67 #include "expression.h"
68 #include "parser-defs.h"
69 #include <ctype.h>
70 #include <algorithm>
71
72 /* Register names. */
73
74 static const char *i386_register_names[] =
75 {
76 "eax", "ecx", "edx", "ebx",
77 "esp", "ebp", "esi", "edi",
78 "eip", "eflags", "cs", "ss",
79 "ds", "es", "fs", "gs",
80 "st0", "st1", "st2", "st3",
81 "st4", "st5", "st6", "st7",
82 "fctrl", "fstat", "ftag", "fiseg",
83 "fioff", "foseg", "fooff", "fop",
84 "xmm0", "xmm1", "xmm2", "xmm3",
85 "xmm4", "xmm5", "xmm6", "xmm7",
86 "mxcsr"
87 };
88
89 static const char *i386_zmm_names[] =
90 {
91 "zmm0", "zmm1", "zmm2", "zmm3",
92 "zmm4", "zmm5", "zmm6", "zmm7"
93 };
94
95 static const char *i386_zmmh_names[] =
96 {
97 "zmm0h", "zmm1h", "zmm2h", "zmm3h",
98 "zmm4h", "zmm5h", "zmm6h", "zmm7h"
99 };
100
101 static const char *i386_k_names[] =
102 {
103 "k0", "k1", "k2", "k3",
104 "k4", "k5", "k6", "k7"
105 };
106
107 static const char *i386_ymm_names[] =
108 {
109 "ymm0", "ymm1", "ymm2", "ymm3",
110 "ymm4", "ymm5", "ymm6", "ymm7",
111 };
112
113 static const char *i386_ymmh_names[] =
114 {
115 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
116 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
117 };
118
119 static const char *i386_mpx_names[] =
120 {
121 "bnd0raw", "bnd1raw", "bnd2raw", "bnd3raw", "bndcfgu", "bndstatus"
122 };
123
124 static const char* i386_pkeys_names[] =
125 {
126 "pkru"
127 };
128
129 /* Register names for MPX pseudo-registers. */
130
131 static const char *i386_bnd_names[] =
132 {
133 "bnd0", "bnd1", "bnd2", "bnd3"
134 };
135
136 /* Register names for MMX pseudo-registers. */
137
138 static const char *i386_mmx_names[] =
139 {
140 "mm0", "mm1", "mm2", "mm3",
141 "mm4", "mm5", "mm6", "mm7"
142 };
143
144 /* Register names for byte pseudo-registers. */
145
146 static const char *i386_byte_names[] =
147 {
148 "al", "cl", "dl", "bl",
149 "ah", "ch", "dh", "bh"
150 };
151
152 /* Register names for word pseudo-registers. */
153
154 static const char *i386_word_names[] =
155 {
156 "ax", "cx", "dx", "bx",
157 "", "bp", "si", "di"
158 };
159
160 /* Constant used for reading/writing pseudo registers. In 64-bit mode, we have
161 16 lower ZMM regs that extend corresponding xmm/ymm registers. In addition,
162 we have 16 upper ZMM regs that have to be handled differently. */
163
164 const int num_lower_zmm_regs = 16;
165
166 /* MMX register? */
167
168 static int
169 i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
170 {
171 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
172 int mm0_regnum = tdep->mm0_regnum;
173
174 if (mm0_regnum < 0)
175 return 0;
176
177 regnum -= mm0_regnum;
178 return regnum >= 0 && regnum < tdep->num_mmx_regs;
179 }
180
181 /* Byte register? */
182
183 int
184 i386_byte_regnum_p (struct gdbarch *gdbarch, int regnum)
185 {
186 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
187
188 regnum -= tdep->al_regnum;
189 return regnum >= 0 && regnum < tdep->num_byte_regs;
190 }
191
192 /* Word register? */
193
194 int
195 i386_word_regnum_p (struct gdbarch *gdbarch, int regnum)
196 {
197 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
198
199 regnum -= tdep->ax_regnum;
200 return regnum >= 0 && regnum < tdep->num_word_regs;
201 }
202
203 /* Dword register? */
204
205 int
206 i386_dword_regnum_p (struct gdbarch *gdbarch, int regnum)
207 {
208 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
209 int eax_regnum = tdep->eax_regnum;
210
211 if (eax_regnum < 0)
212 return 0;
213
214 regnum -= eax_regnum;
215 return regnum >= 0 && regnum < tdep->num_dword_regs;
216 }
217
218 /* AVX512 register? */
219
220 int
221 i386_zmmh_regnum_p (struct gdbarch *gdbarch, int regnum)
222 {
223 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
224 int zmm0h_regnum = tdep->zmm0h_regnum;
225
226 if (zmm0h_regnum < 0)
227 return 0;
228
229 regnum -= zmm0h_regnum;
230 return regnum >= 0 && regnum < tdep->num_zmm_regs;
231 }
232
233 int
234 i386_zmm_regnum_p (struct gdbarch *gdbarch, int regnum)
235 {
236 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
237 int zmm0_regnum = tdep->zmm0_regnum;
238
239 if (zmm0_regnum < 0)
240 return 0;
241
242 regnum -= zmm0_regnum;
243 return regnum >= 0 && regnum < tdep->num_zmm_regs;
244 }
245
246 int
247 i386_k_regnum_p (struct gdbarch *gdbarch, int regnum)
248 {
249 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
250 int k0_regnum = tdep->k0_regnum;
251
252 if (k0_regnum < 0)
253 return 0;
254
255 regnum -= k0_regnum;
256 return regnum >= 0 && regnum < I387_NUM_K_REGS;
257 }
258
259 static int
260 i386_ymmh_regnum_p (struct gdbarch *gdbarch, int regnum)
261 {
262 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
263 int ymm0h_regnum = tdep->ymm0h_regnum;
264
265 if (ymm0h_regnum < 0)
266 return 0;
267
268 regnum -= ymm0h_regnum;
269 return regnum >= 0 && regnum < tdep->num_ymm_regs;
270 }
271
272 /* AVX register? */
273
274 int
275 i386_ymm_regnum_p (struct gdbarch *gdbarch, int regnum)
276 {
277 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
278 int ymm0_regnum = tdep->ymm0_regnum;
279
280 if (ymm0_regnum < 0)
281 return 0;
282
283 regnum -= ymm0_regnum;
284 return regnum >= 0 && regnum < tdep->num_ymm_regs;
285 }
286
287 static int
288 i386_ymmh_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
289 {
290 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
291 int ymm16h_regnum = tdep->ymm16h_regnum;
292
293 if (ymm16h_regnum < 0)
294 return 0;
295
296 regnum -= ymm16h_regnum;
297 return regnum >= 0 && regnum < tdep->num_ymm_avx512_regs;
298 }
299
300 int
301 i386_ymm_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
302 {
303 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
304 int ymm16_regnum = tdep->ymm16_regnum;
305
306 if (ymm16_regnum < 0)
307 return 0;
308
309 regnum -= ymm16_regnum;
310 return regnum >= 0 && regnum < tdep->num_ymm_avx512_regs;
311 }
312
313 /* BND register? */
314
315 int
316 i386_bnd_regnum_p (struct gdbarch *gdbarch, int regnum)
317 {
318 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
319 int bnd0_regnum = tdep->bnd0_regnum;
320
321 if (bnd0_regnum < 0)
322 return 0;
323
324 regnum -= bnd0_regnum;
325 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
326 }
327
328 /* SSE register? */
329
330 int
331 i386_xmm_regnum_p (struct gdbarch *gdbarch, int regnum)
332 {
333 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
334 int num_xmm_regs = I387_NUM_XMM_REGS (tdep);
335
336 if (num_xmm_regs == 0)
337 return 0;
338
339 regnum -= I387_XMM0_REGNUM (tdep);
340 return regnum >= 0 && regnum < num_xmm_regs;
341 }
342
343 /* XMM_512 register? */
344
345 int
346 i386_xmm_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
347 {
348 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
349 int num_xmm_avx512_regs = I387_NUM_XMM_AVX512_REGS (tdep);
350
351 if (num_xmm_avx512_regs == 0)
352 return 0;
353
354 regnum -= I387_XMM16_REGNUM (tdep);
355 return regnum >= 0 && regnum < num_xmm_avx512_regs;
356 }
357
358 static int
359 i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
360 {
361 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
362
363 if (I387_NUM_XMM_REGS (tdep) == 0)
364 return 0;
365
366 return (regnum == I387_MXCSR_REGNUM (tdep));
367 }
368
369 /* FP register? */
370
371 int
372 i386_fp_regnum_p (struct gdbarch *gdbarch, int regnum)
373 {
374 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
375
376 if (I387_ST0_REGNUM (tdep) < 0)
377 return 0;
378
379 return (I387_ST0_REGNUM (tdep) <= regnum
380 && regnum < I387_FCTRL_REGNUM (tdep));
381 }
382
383 int
384 i386_fpc_regnum_p (struct gdbarch *gdbarch, int regnum)
385 {
386 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
387
388 if (I387_ST0_REGNUM (tdep) < 0)
389 return 0;
390
391 return (I387_FCTRL_REGNUM (tdep) <= regnum
392 && regnum < I387_XMM0_REGNUM (tdep));
393 }
394
395 /* BNDr (raw) register? */
396
397 static int
398 i386_bndr_regnum_p (struct gdbarch *gdbarch, int regnum)
399 {
400 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
401
402 if (I387_BND0R_REGNUM (tdep) < 0)
403 return 0;
404
405 regnum -= tdep->bnd0r_regnum;
406 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
407 }
408
409 /* BND control register? */
410
411 static int
412 i386_mpx_ctrl_regnum_p (struct gdbarch *gdbarch, int regnum)
413 {
414 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
415
416 if (I387_BNDCFGU_REGNUM (tdep) < 0)
417 return 0;
418
419 regnum -= I387_BNDCFGU_REGNUM (tdep);
420 return regnum >= 0 && regnum < I387_NUM_MPX_CTRL_REGS;
421 }
422
423 /* PKRU register? */
424
425 bool
426 i386_pkru_regnum_p (struct gdbarch *gdbarch, int regnum)
427 {
428 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
429 int pkru_regnum = tdep->pkru_regnum;
430
431 if (pkru_regnum < 0)
432 return false;
433
434 regnum -= pkru_regnum;
435 return regnum >= 0 && regnum < I387_NUM_PKEYS_REGS;
436 }
437
438 /* Return the name of register REGNUM, or the empty string if it is
439 an anonymous register. */
440
441 static const char *
442 i386_register_name (struct gdbarch *gdbarch, int regnum)
443 {
444 /* Hide the upper YMM registers. */
445 if (i386_ymmh_regnum_p (gdbarch, regnum))
446 return "";
447
448 /* Hide the upper YMM16-31 registers. */
449 if (i386_ymmh_avx512_regnum_p (gdbarch, regnum))
450 return "";
451
452 /* Hide the upper ZMM registers. */
453 if (i386_zmmh_regnum_p (gdbarch, regnum))
454 return "";
455
456 return tdesc_register_name (gdbarch, regnum);
457 }
458
459 /* Return the name of register REGNUM. */
460
461 const char *
462 i386_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
463 {
464 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
465 if (i386_bnd_regnum_p (gdbarch, regnum))
466 return i386_bnd_names[regnum - tdep->bnd0_regnum];
467 if (i386_mmx_regnum_p (gdbarch, regnum))
468 return i386_mmx_names[regnum - I387_MM0_REGNUM (tdep)];
469 else if (i386_ymm_regnum_p (gdbarch, regnum))
470 return i386_ymm_names[regnum - tdep->ymm0_regnum];
471 else if (i386_zmm_regnum_p (gdbarch, regnum))
472 return i386_zmm_names[regnum - tdep->zmm0_regnum];
473 else if (i386_byte_regnum_p (gdbarch, regnum))
474 return i386_byte_names[regnum - tdep->al_regnum];
475 else if (i386_word_regnum_p (gdbarch, regnum))
476 return i386_word_names[regnum - tdep->ax_regnum];
477
478 internal_error (__FILE__, __LINE__, _("invalid regnum"));
479 }
480
481 /* Convert a dbx register number REG to the appropriate register
482 number used by GDB. */
483
484 static int
485 i386_dbx_reg_to_regnum (struct gdbarch *gdbarch, int reg)
486 {
487 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
488
489 /* This implements what GCC calls the "default" register map
490 (dbx_register_map[]). */
491
492 if (reg >= 0 && reg <= 7)
493 {
494 /* General-purpose registers. The debug info calls %ebp
495 register 4, and %esp register 5. */
496 if (reg == 4)
497 return 5;
498 else if (reg == 5)
499 return 4;
500 else return reg;
501 }
502 else if (reg >= 12 && reg <= 19)
503 {
504 /* Floating-point registers. */
505 return reg - 12 + I387_ST0_REGNUM (tdep);
506 }
507 else if (reg >= 21 && reg <= 28)
508 {
509 /* SSE registers. */
510 int ymm0_regnum = tdep->ymm0_regnum;
511
512 if (ymm0_regnum >= 0
513 && i386_xmm_regnum_p (gdbarch, reg))
514 return reg - 21 + ymm0_regnum;
515 else
516 return reg - 21 + I387_XMM0_REGNUM (tdep);
517 }
518 else if (reg >= 29 && reg <= 36)
519 {
520 /* MMX registers. */
521 return reg - 29 + I387_MM0_REGNUM (tdep);
522 }
523
524 /* This will hopefully provoke a warning. */
525 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
526 }
527
528 /* Convert SVR4 DWARF register number REG to the appropriate register number
529 used by GDB. */
530
531 static int
532 i386_svr4_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
533 {
534 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
535
536 /* This implements the GCC register map that tries to be compatible
537 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
538
539 /* The SVR4 register numbering includes %eip and %eflags, and
540 numbers the floating point registers differently. */
541 if (reg >= 0 && reg <= 9)
542 {
543 /* General-purpose registers. */
544 return reg;
545 }
546 else if (reg >= 11 && reg <= 18)
547 {
548 /* Floating-point registers. */
549 return reg - 11 + I387_ST0_REGNUM (tdep);
550 }
551 else if (reg >= 21 && reg <= 36)
552 {
553 /* The SSE and MMX registers have the same numbers as with dbx. */
554 return i386_dbx_reg_to_regnum (gdbarch, reg);
555 }
556
557 switch (reg)
558 {
559 case 37: return I387_FCTRL_REGNUM (tdep);
560 case 38: return I387_FSTAT_REGNUM (tdep);
561 case 39: return I387_MXCSR_REGNUM (tdep);
562 case 40: return I386_ES_REGNUM;
563 case 41: return I386_CS_REGNUM;
564 case 42: return I386_SS_REGNUM;
565 case 43: return I386_DS_REGNUM;
566 case 44: return I386_FS_REGNUM;
567 case 45: return I386_GS_REGNUM;
568 }
569
570 return -1;
571 }
572
573 /* Wrapper on i386_svr4_dwarf_reg_to_regnum to return
574 num_regs + num_pseudo_regs for other debug formats. */
575
576 static int
577 i386_svr4_reg_to_regnum (struct gdbarch *gdbarch, int reg)
578 {
579 int regnum = i386_svr4_dwarf_reg_to_regnum (gdbarch, reg);
580
581 if (regnum == -1)
582 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
583 return regnum;
584 }
585
586 \f
587
588 /* This is the variable that is set with "set disassembly-flavor", and
589 its legitimate values. */
590 static const char att_flavor[] = "att";
591 static const char intel_flavor[] = "intel";
592 static const char *const valid_flavors[] =
593 {
594 att_flavor,
595 intel_flavor,
596 NULL
597 };
598 static const char *disassembly_flavor = att_flavor;
599 \f
600
601 /* Use the program counter to determine the contents and size of a
602 breakpoint instruction. Return a pointer to a string of bytes that
603 encode a breakpoint instruction, store the length of the string in
604 *LEN and optionally adjust *PC to point to the correct memory
605 location for inserting the breakpoint.
606
607 On the i386 we have a single breakpoint that fits in a single byte
608 and can be inserted anywhere.
609
610 This function is 64-bit safe. */
611
612 constexpr gdb_byte i386_break_insn[] = { 0xcc }; /* int 3 */
613
614 typedef BP_MANIPULATION (i386_break_insn) i386_breakpoint;
615
616 \f
617 /* Displaced instruction handling. */
618
619 /* Skip the legacy instruction prefixes in INSN.
620 Not all prefixes are valid for any particular insn
621 but we needn't care, the insn will fault if it's invalid.
622 The result is a pointer to the first opcode byte,
623 or NULL if we run off the end of the buffer. */
624
625 static gdb_byte *
626 i386_skip_prefixes (gdb_byte *insn, size_t max_len)
627 {
628 gdb_byte *end = insn + max_len;
629
630 while (insn < end)
631 {
632 switch (*insn)
633 {
634 case DATA_PREFIX_OPCODE:
635 case ADDR_PREFIX_OPCODE:
636 case CS_PREFIX_OPCODE:
637 case DS_PREFIX_OPCODE:
638 case ES_PREFIX_OPCODE:
639 case FS_PREFIX_OPCODE:
640 case GS_PREFIX_OPCODE:
641 case SS_PREFIX_OPCODE:
642 case LOCK_PREFIX_OPCODE:
643 case REPE_PREFIX_OPCODE:
644 case REPNE_PREFIX_OPCODE:
645 ++insn;
646 continue;
647 default:
648 return insn;
649 }
650 }
651
652 return NULL;
653 }
654
655 static int
656 i386_absolute_jmp_p (const gdb_byte *insn)
657 {
658 /* jmp far (absolute address in operand). */
659 if (insn[0] == 0xea)
660 return 1;
661
662 if (insn[0] == 0xff)
663 {
664 /* jump near, absolute indirect (/4). */
665 if ((insn[1] & 0x38) == 0x20)
666 return 1;
667
668 /* jump far, absolute indirect (/5). */
669 if ((insn[1] & 0x38) == 0x28)
670 return 1;
671 }
672
673 return 0;
674 }
675
676 /* Return non-zero if INSN is a jump, zero otherwise. */
677
678 static int
679 i386_jmp_p (const gdb_byte *insn)
680 {
681 /* jump short, relative. */
682 if (insn[0] == 0xeb)
683 return 1;
684
685 /* jump near, relative. */
686 if (insn[0] == 0xe9)
687 return 1;
688
689 return i386_absolute_jmp_p (insn);
690 }
691
692 static int
693 i386_absolute_call_p (const gdb_byte *insn)
694 {
695 /* call far, absolute. */
696 if (insn[0] == 0x9a)
697 return 1;
698
699 if (insn[0] == 0xff)
700 {
701 /* Call near, absolute indirect (/2). */
702 if ((insn[1] & 0x38) == 0x10)
703 return 1;
704
705 /* Call far, absolute indirect (/3). */
706 if ((insn[1] & 0x38) == 0x18)
707 return 1;
708 }
709
710 return 0;
711 }
712
713 static int
714 i386_ret_p (const gdb_byte *insn)
715 {
716 switch (insn[0])
717 {
718 case 0xc2: /* ret near, pop N bytes. */
719 case 0xc3: /* ret near */
720 case 0xca: /* ret far, pop N bytes. */
721 case 0xcb: /* ret far */
722 case 0xcf: /* iret */
723 return 1;
724
725 default:
726 return 0;
727 }
728 }
729
730 static int
731 i386_call_p (const gdb_byte *insn)
732 {
733 if (i386_absolute_call_p (insn))
734 return 1;
735
736 /* call near, relative. */
737 if (insn[0] == 0xe8)
738 return 1;
739
740 return 0;
741 }
742
743 /* Return non-zero if INSN is a system call, and set *LENGTHP to its
744 length in bytes. Otherwise, return zero. */
745
746 static int
747 i386_syscall_p (const gdb_byte *insn, int *lengthp)
748 {
749 /* Is it 'int $0x80'? */
750 if ((insn[0] == 0xcd && insn[1] == 0x80)
751 /* Or is it 'sysenter'? */
752 || (insn[0] == 0x0f && insn[1] == 0x34)
753 /* Or is it 'syscall'? */
754 || (insn[0] == 0x0f && insn[1] == 0x05))
755 {
756 *lengthp = 2;
757 return 1;
758 }
759
760 return 0;
761 }
762
763 /* The gdbarch insn_is_call method. */
764
765 static int
766 i386_insn_is_call (struct gdbarch *gdbarch, CORE_ADDR addr)
767 {
768 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
769
770 read_code (addr, buf, I386_MAX_INSN_LEN);
771 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
772
773 return i386_call_p (insn);
774 }
775
776 /* The gdbarch insn_is_ret method. */
777
778 static int
779 i386_insn_is_ret (struct gdbarch *gdbarch, CORE_ADDR addr)
780 {
781 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
782
783 read_code (addr, buf, I386_MAX_INSN_LEN);
784 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
785
786 return i386_ret_p (insn);
787 }
788
789 /* The gdbarch insn_is_jump method. */
790
791 static int
792 i386_insn_is_jump (struct gdbarch *gdbarch, CORE_ADDR addr)
793 {
794 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
795
796 read_code (addr, buf, I386_MAX_INSN_LEN);
797 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
798
799 return i386_jmp_p (insn);
800 }
801
802 /* Some kernels may run one past a syscall insn, so we have to cope.
803 Otherwise this is just simple_displaced_step_copy_insn. */
804
805 struct displaced_step_closure *
806 i386_displaced_step_copy_insn (struct gdbarch *gdbarch,
807 CORE_ADDR from, CORE_ADDR to,
808 struct regcache *regs)
809 {
810 size_t len = gdbarch_max_insn_length (gdbarch);
811 gdb_byte *buf = (gdb_byte *) xmalloc (len);
812
813 read_memory (from, buf, len);
814
815 /* GDB may get control back after the insn after the syscall.
816 Presumably this is a kernel bug.
817 If this is a syscall, make sure there's a nop afterwards. */
818 {
819 int syscall_length;
820 gdb_byte *insn;
821
822 insn = i386_skip_prefixes (buf, len);
823 if (insn != NULL && i386_syscall_p (insn, &syscall_length))
824 insn[syscall_length] = NOP_OPCODE;
825 }
826
827 write_memory (to, buf, len);
828
829 if (debug_displaced)
830 {
831 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
832 paddress (gdbarch, from), paddress (gdbarch, to));
833 displaced_step_dump_bytes (gdb_stdlog, buf, len);
834 }
835
836 return (struct displaced_step_closure *) buf;
837 }
838
839 /* Fix up the state of registers and memory after having single-stepped
840 a displaced instruction. */
841
842 void
843 i386_displaced_step_fixup (struct gdbarch *gdbarch,
844 struct displaced_step_closure *closure,
845 CORE_ADDR from, CORE_ADDR to,
846 struct regcache *regs)
847 {
848 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
849
850 /* The offset we applied to the instruction's address.
851 This could well be negative (when viewed as a signed 32-bit
852 value), but ULONGEST won't reflect that, so take care when
853 applying it. */
854 ULONGEST insn_offset = to - from;
855
856 /* Since we use simple_displaced_step_copy_insn, our closure is a
857 copy of the instruction. */
858 gdb_byte *insn = (gdb_byte *) closure;
859 /* The start of the insn, needed in case we see some prefixes. */
860 gdb_byte *insn_start = insn;
861
862 if (debug_displaced)
863 fprintf_unfiltered (gdb_stdlog,
864 "displaced: fixup (%s, %s), "
865 "insn = 0x%02x 0x%02x ...\n",
866 paddress (gdbarch, from), paddress (gdbarch, to),
867 insn[0], insn[1]);
868
869 /* The list of issues to contend with here is taken from
870 resume_execution in arch/i386/kernel/kprobes.c, Linux 2.6.20.
871 Yay for Free Software! */
872
873 /* Relocate the %eip, if necessary. */
874
875 /* The instruction recognizers we use assume any leading prefixes
876 have been skipped. */
877 {
878 /* This is the size of the buffer in closure. */
879 size_t max_insn_len = gdbarch_max_insn_length (gdbarch);
880 gdb_byte *opcode = i386_skip_prefixes (insn, max_insn_len);
881 /* If there are too many prefixes, just ignore the insn.
882 It will fault when run. */
883 if (opcode != NULL)
884 insn = opcode;
885 }
886
887 /* Except in the case of absolute or indirect jump or call
888 instructions, or a return instruction, the new eip is relative to
889 the displaced instruction; make it relative. Well, signal
890 handler returns don't need relocation either, but we use the
891 value of %eip to recognize those; see below. */
892 if (! i386_absolute_jmp_p (insn)
893 && ! i386_absolute_call_p (insn)
894 && ! i386_ret_p (insn))
895 {
896 ULONGEST orig_eip;
897 int insn_len;
898
899 regcache_cooked_read_unsigned (regs, I386_EIP_REGNUM, &orig_eip);
900
901 /* A signal trampoline system call changes the %eip, resuming
902 execution of the main program after the signal handler has
903 returned. That makes them like 'return' instructions; we
904 shouldn't relocate %eip.
905
906 But most system calls don't, and we do need to relocate %eip.
907
908 Our heuristic for distinguishing these cases: if stepping
909 over the system call instruction left control directly after
910 the instruction, the we relocate --- control almost certainly
911 doesn't belong in the displaced copy. Otherwise, we assume
912 the instruction has put control where it belongs, and leave
913 it unrelocated. Goodness help us if there are PC-relative
914 system calls. */
915 if (i386_syscall_p (insn, &insn_len)
916 && orig_eip != to + (insn - insn_start) + insn_len
917 /* GDB can get control back after the insn after the syscall.
918 Presumably this is a kernel bug.
919 i386_displaced_step_copy_insn ensures its a nop,
920 we add one to the length for it. */
921 && orig_eip != to + (insn - insn_start) + insn_len + 1)
922 {
923 if (debug_displaced)
924 fprintf_unfiltered (gdb_stdlog,
925 "displaced: syscall changed %%eip; "
926 "not relocating\n");
927 }
928 else
929 {
930 ULONGEST eip = (orig_eip - insn_offset) & 0xffffffffUL;
931
932 /* If we just stepped over a breakpoint insn, we don't backup
933 the pc on purpose; this is to match behaviour without
934 stepping. */
935
936 regcache_cooked_write_unsigned (regs, I386_EIP_REGNUM, eip);
937
938 if (debug_displaced)
939 fprintf_unfiltered (gdb_stdlog,
940 "displaced: "
941 "relocated %%eip from %s to %s\n",
942 paddress (gdbarch, orig_eip),
943 paddress (gdbarch, eip));
944 }
945 }
946
947 /* If the instruction was PUSHFL, then the TF bit will be set in the
948 pushed value, and should be cleared. We'll leave this for later,
949 since GDB already messes up the TF flag when stepping over a
950 pushfl. */
951
952 /* If the instruction was a call, the return address now atop the
953 stack is the address following the copied instruction. We need
954 to make it the address following the original instruction. */
955 if (i386_call_p (insn))
956 {
957 ULONGEST esp;
958 ULONGEST retaddr;
959 const ULONGEST retaddr_len = 4;
960
961 regcache_cooked_read_unsigned (regs, I386_ESP_REGNUM, &esp);
962 retaddr = read_memory_unsigned_integer (esp, retaddr_len, byte_order);
963 retaddr = (retaddr - insn_offset) & 0xffffffffUL;
964 write_memory_unsigned_integer (esp, retaddr_len, byte_order, retaddr);
965
966 if (debug_displaced)
967 fprintf_unfiltered (gdb_stdlog,
968 "displaced: relocated return addr at %s to %s\n",
969 paddress (gdbarch, esp),
970 paddress (gdbarch, retaddr));
971 }
972 }
973
974 static void
975 append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
976 {
977 target_write_memory (*to, buf, len);
978 *to += len;
979 }
980
981 static void
982 i386_relocate_instruction (struct gdbarch *gdbarch,
983 CORE_ADDR *to, CORE_ADDR oldloc)
984 {
985 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
986 gdb_byte buf[I386_MAX_INSN_LEN];
987 int offset = 0, rel32, newrel;
988 int insn_length;
989 gdb_byte *insn = buf;
990
991 read_memory (oldloc, buf, I386_MAX_INSN_LEN);
992
993 insn_length = gdb_buffered_insn_length (gdbarch, insn,
994 I386_MAX_INSN_LEN, oldloc);
995
996 /* Get past the prefixes. */
997 insn = i386_skip_prefixes (insn, I386_MAX_INSN_LEN);
998
999 /* Adjust calls with 32-bit relative addresses as push/jump, with
1000 the address pushed being the location where the original call in
1001 the user program would return to. */
1002 if (insn[0] == 0xe8)
1003 {
1004 gdb_byte push_buf[16];
1005 unsigned int ret_addr;
1006
1007 /* Where "ret" in the original code will return to. */
1008 ret_addr = oldloc + insn_length;
1009 push_buf[0] = 0x68; /* pushq $... */
1010 store_unsigned_integer (&push_buf[1], 4, byte_order, ret_addr);
1011 /* Push the push. */
1012 append_insns (to, 5, push_buf);
1013
1014 /* Convert the relative call to a relative jump. */
1015 insn[0] = 0xe9;
1016
1017 /* Adjust the destination offset. */
1018 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
1019 newrel = (oldloc - *to) + rel32;
1020 store_signed_integer (insn + 1, 4, byte_order, newrel);
1021
1022 if (debug_displaced)
1023 fprintf_unfiltered (gdb_stdlog,
1024 "Adjusted insn rel32=%s at %s to"
1025 " rel32=%s at %s\n",
1026 hex_string (rel32), paddress (gdbarch, oldloc),
1027 hex_string (newrel), paddress (gdbarch, *to));
1028
1029 /* Write the adjusted jump into its displaced location. */
1030 append_insns (to, 5, insn);
1031 return;
1032 }
1033
1034 /* Adjust jumps with 32-bit relative addresses. Calls are already
1035 handled above. */
1036 if (insn[0] == 0xe9)
1037 offset = 1;
1038 /* Adjust conditional jumps. */
1039 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
1040 offset = 2;
1041
1042 if (offset)
1043 {
1044 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
1045 newrel = (oldloc - *to) + rel32;
1046 store_signed_integer (insn + offset, 4, byte_order, newrel);
1047 if (debug_displaced)
1048 fprintf_unfiltered (gdb_stdlog,
1049 "Adjusted insn rel32=%s at %s to"
1050 " rel32=%s at %s\n",
1051 hex_string (rel32), paddress (gdbarch, oldloc),
1052 hex_string (newrel), paddress (gdbarch, *to));
1053 }
1054
1055 /* Write the adjusted instructions into their displaced
1056 location. */
1057 append_insns (to, insn_length, buf);
1058 }
1059
1060 \f
1061 #ifdef I386_REGNO_TO_SYMMETRY
1062 #error "The Sequent Symmetry is no longer supported."
1063 #endif
1064
1065 /* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
1066 and %esp "belong" to the calling function. Therefore these
1067 registers should be saved if they're going to be modified. */
1068
1069 /* The maximum number of saved registers. This should include all
1070 registers mentioned above, and %eip. */
1071 #define I386_NUM_SAVED_REGS I386_NUM_GREGS
1072
1073 struct i386_frame_cache
1074 {
1075 /* Base address. */
1076 CORE_ADDR base;
1077 int base_p;
1078 LONGEST sp_offset;
1079 CORE_ADDR pc;
1080
1081 /* Saved registers. */
1082 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
1083 CORE_ADDR saved_sp;
1084 int saved_sp_reg;
1085 int pc_in_eax;
1086
1087 /* Stack space reserved for local variables. */
1088 long locals;
1089 };
1090
1091 /* Allocate and initialize a frame cache. */
1092
1093 static struct i386_frame_cache *
1094 i386_alloc_frame_cache (void)
1095 {
1096 struct i386_frame_cache *cache;
1097 int i;
1098
1099 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
1100
1101 /* Base address. */
1102 cache->base_p = 0;
1103 cache->base = 0;
1104 cache->sp_offset = -4;
1105 cache->pc = 0;
1106
1107 /* Saved registers. We initialize these to -1 since zero is a valid
1108 offset (that's where %ebp is supposed to be stored). */
1109 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
1110 cache->saved_regs[i] = -1;
1111 cache->saved_sp = 0;
1112 cache->saved_sp_reg = -1;
1113 cache->pc_in_eax = 0;
1114
1115 /* Frameless until proven otherwise. */
1116 cache->locals = -1;
1117
1118 return cache;
1119 }
1120
1121 /* If the instruction at PC is a jump, return the address of its
1122 target. Otherwise, return PC. */
1123
1124 static CORE_ADDR
1125 i386_follow_jump (struct gdbarch *gdbarch, CORE_ADDR pc)
1126 {
1127 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1128 gdb_byte op;
1129 long delta = 0;
1130 int data16 = 0;
1131
1132 if (target_read_code (pc, &op, 1))
1133 return pc;
1134
1135 if (op == 0x66)
1136 {
1137 data16 = 1;
1138
1139 op = read_code_unsigned_integer (pc + 1, 1, byte_order);
1140 }
1141
1142 switch (op)
1143 {
1144 case 0xe9:
1145 /* Relative jump: if data16 == 0, disp32, else disp16. */
1146 if (data16)
1147 {
1148 delta = read_memory_integer (pc + 2, 2, byte_order);
1149
1150 /* Include the size of the jmp instruction (including the
1151 0x66 prefix). */
1152 delta += 4;
1153 }
1154 else
1155 {
1156 delta = read_memory_integer (pc + 1, 4, byte_order);
1157
1158 /* Include the size of the jmp instruction. */
1159 delta += 5;
1160 }
1161 break;
1162 case 0xeb:
1163 /* Relative jump, disp8 (ignore data16). */
1164 delta = read_memory_integer (pc + data16 + 1, 1, byte_order);
1165
1166 delta += data16 + 2;
1167 break;
1168 }
1169
1170 return pc + delta;
1171 }
1172
1173 /* Check whether PC points at a prologue for a function returning a
1174 structure or union. If so, it updates CACHE and returns the
1175 address of the first instruction after the code sequence that
1176 removes the "hidden" argument from the stack or CURRENT_PC,
1177 whichever is smaller. Otherwise, return PC. */
1178
1179 static CORE_ADDR
1180 i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
1181 struct i386_frame_cache *cache)
1182 {
1183 /* Functions that return a structure or union start with:
1184
1185 popl %eax 0x58
1186 xchgl %eax, (%esp) 0x87 0x04 0x24
1187 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
1188
1189 (the System V compiler puts out the second `xchg' instruction,
1190 and the assembler doesn't try to optimize it, so the 'sib' form
1191 gets generated). This sequence is used to get the address of the
1192 return buffer for a function that returns a structure. */
1193 static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
1194 static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
1195 gdb_byte buf[4];
1196 gdb_byte op;
1197
1198 if (current_pc <= pc)
1199 return pc;
1200
1201 if (target_read_code (pc, &op, 1))
1202 return pc;
1203
1204 if (op != 0x58) /* popl %eax */
1205 return pc;
1206
1207 if (target_read_code (pc + 1, buf, 4))
1208 return pc;
1209
1210 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
1211 return pc;
1212
1213 if (current_pc == pc)
1214 {
1215 cache->sp_offset += 4;
1216 return current_pc;
1217 }
1218
1219 if (current_pc == pc + 1)
1220 {
1221 cache->pc_in_eax = 1;
1222 return current_pc;
1223 }
1224
1225 if (buf[1] == proto1[1])
1226 return pc + 4;
1227 else
1228 return pc + 5;
1229 }
1230
1231 static CORE_ADDR
1232 i386_skip_probe (CORE_ADDR pc)
1233 {
1234 /* A function may start with
1235
1236 pushl constant
1237 call _probe
1238 addl $4, %esp
1239
1240 followed by
1241
1242 pushl %ebp
1243
1244 etc. */
1245 gdb_byte buf[8];
1246 gdb_byte op;
1247
1248 if (target_read_code (pc, &op, 1))
1249 return pc;
1250
1251 if (op == 0x68 || op == 0x6a)
1252 {
1253 int delta;
1254
1255 /* Skip past the `pushl' instruction; it has either a one-byte or a
1256 four-byte operand, depending on the opcode. */
1257 if (op == 0x68)
1258 delta = 5;
1259 else
1260 delta = 2;
1261
1262 /* Read the following 8 bytes, which should be `call _probe' (6
1263 bytes) followed by `addl $4,%esp' (2 bytes). */
1264 read_memory (pc + delta, buf, sizeof (buf));
1265 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
1266 pc += delta + sizeof (buf);
1267 }
1268
1269 return pc;
1270 }
1271
1272 /* GCC 4.1 and later, can put code in the prologue to realign the
1273 stack pointer. Check whether PC points to such code, and update
1274 CACHE accordingly. Return the first instruction after the code
1275 sequence or CURRENT_PC, whichever is smaller. If we don't
1276 recognize the code, return PC. */
1277
1278 static CORE_ADDR
1279 i386_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1280 struct i386_frame_cache *cache)
1281 {
1282 /* There are 2 code sequences to re-align stack before the frame
1283 gets set up:
1284
1285 1. Use a caller-saved saved register:
1286
1287 leal 4(%esp), %reg
1288 andl $-XXX, %esp
1289 pushl -4(%reg)
1290
1291 2. Use a callee-saved saved register:
1292
1293 pushl %reg
1294 leal 8(%esp), %reg
1295 andl $-XXX, %esp
1296 pushl -4(%reg)
1297
1298 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
1299
1300 0x83 0xe4 0xf0 andl $-16, %esp
1301 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
1302 */
1303
1304 gdb_byte buf[14];
1305 int reg;
1306 int offset, offset_and;
1307 static int regnums[8] = {
1308 I386_EAX_REGNUM, /* %eax */
1309 I386_ECX_REGNUM, /* %ecx */
1310 I386_EDX_REGNUM, /* %edx */
1311 I386_EBX_REGNUM, /* %ebx */
1312 I386_ESP_REGNUM, /* %esp */
1313 I386_EBP_REGNUM, /* %ebp */
1314 I386_ESI_REGNUM, /* %esi */
1315 I386_EDI_REGNUM /* %edi */
1316 };
1317
1318 if (target_read_code (pc, buf, sizeof buf))
1319 return pc;
1320
1321 /* Check caller-saved saved register. The first instruction has
1322 to be "leal 4(%esp), %reg". */
1323 if (buf[0] == 0x8d && buf[2] == 0x24 && buf[3] == 0x4)
1324 {
1325 /* MOD must be binary 10 and R/M must be binary 100. */
1326 if ((buf[1] & 0xc7) != 0x44)
1327 return pc;
1328
1329 /* REG has register number. */
1330 reg = (buf[1] >> 3) & 7;
1331 offset = 4;
1332 }
1333 else
1334 {
1335 /* Check callee-saved saved register. The first instruction
1336 has to be "pushl %reg". */
1337 if ((buf[0] & 0xf8) != 0x50)
1338 return pc;
1339
1340 /* Get register. */
1341 reg = buf[0] & 0x7;
1342
1343 /* The next instruction has to be "leal 8(%esp), %reg". */
1344 if (buf[1] != 0x8d || buf[3] != 0x24 || buf[4] != 0x8)
1345 return pc;
1346
1347 /* MOD must be binary 10 and R/M must be binary 100. */
1348 if ((buf[2] & 0xc7) != 0x44)
1349 return pc;
1350
1351 /* REG has register number. Registers in pushl and leal have to
1352 be the same. */
1353 if (reg != ((buf[2] >> 3) & 7))
1354 return pc;
1355
1356 offset = 5;
1357 }
1358
1359 /* Rigister can't be %esp nor %ebp. */
1360 if (reg == 4 || reg == 5)
1361 return pc;
1362
1363 /* The next instruction has to be "andl $-XXX, %esp". */
1364 if (buf[offset + 1] != 0xe4
1365 || (buf[offset] != 0x81 && buf[offset] != 0x83))
1366 return pc;
1367
1368 offset_and = offset;
1369 offset += buf[offset] == 0x81 ? 6 : 3;
1370
1371 /* The next instruction has to be "pushl -4(%reg)". 8bit -4 is
1372 0xfc. REG must be binary 110 and MOD must be binary 01. */
1373 if (buf[offset] != 0xff
1374 || buf[offset + 2] != 0xfc
1375 || (buf[offset + 1] & 0xf8) != 0x70)
1376 return pc;
1377
1378 /* R/M has register. Registers in leal and pushl have to be the
1379 same. */
1380 if (reg != (buf[offset + 1] & 7))
1381 return pc;
1382
1383 if (current_pc > pc + offset_and)
1384 cache->saved_sp_reg = regnums[reg];
1385
1386 return std::min (pc + offset + 3, current_pc);
1387 }
1388
1389 /* Maximum instruction length we need to handle. */
1390 #define I386_MAX_MATCHED_INSN_LEN 6
1391
1392 /* Instruction description. */
1393 struct i386_insn
1394 {
1395 size_t len;
1396 gdb_byte insn[I386_MAX_MATCHED_INSN_LEN];
1397 gdb_byte mask[I386_MAX_MATCHED_INSN_LEN];
1398 };
1399
1400 /* Return whether instruction at PC matches PATTERN. */
1401
1402 static int
1403 i386_match_pattern (CORE_ADDR pc, struct i386_insn pattern)
1404 {
1405 gdb_byte op;
1406
1407 if (target_read_code (pc, &op, 1))
1408 return 0;
1409
1410 if ((op & pattern.mask[0]) == pattern.insn[0])
1411 {
1412 gdb_byte buf[I386_MAX_MATCHED_INSN_LEN - 1];
1413 int insn_matched = 1;
1414 size_t i;
1415
1416 gdb_assert (pattern.len > 1);
1417 gdb_assert (pattern.len <= I386_MAX_MATCHED_INSN_LEN);
1418
1419 if (target_read_code (pc + 1, buf, pattern.len - 1))
1420 return 0;
1421
1422 for (i = 1; i < pattern.len; i++)
1423 {
1424 if ((buf[i - 1] & pattern.mask[i]) != pattern.insn[i])
1425 insn_matched = 0;
1426 }
1427 return insn_matched;
1428 }
1429 return 0;
1430 }
1431
1432 /* Search for the instruction at PC in the list INSN_PATTERNS. Return
1433 the first instruction description that matches. Otherwise, return
1434 NULL. */
1435
1436 static struct i386_insn *
1437 i386_match_insn (CORE_ADDR pc, struct i386_insn *insn_patterns)
1438 {
1439 struct i386_insn *pattern;
1440
1441 for (pattern = insn_patterns; pattern->len > 0; pattern++)
1442 {
1443 if (i386_match_pattern (pc, *pattern))
1444 return pattern;
1445 }
1446
1447 return NULL;
1448 }
1449
1450 /* Return whether PC points inside a sequence of instructions that
1451 matches INSN_PATTERNS. */
1452
1453 static int
1454 i386_match_insn_block (CORE_ADDR pc, struct i386_insn *insn_patterns)
1455 {
1456 CORE_ADDR current_pc;
1457 int ix, i;
1458 struct i386_insn *insn;
1459
1460 insn = i386_match_insn (pc, insn_patterns);
1461 if (insn == NULL)
1462 return 0;
1463
1464 current_pc = pc;
1465 ix = insn - insn_patterns;
1466 for (i = ix - 1; i >= 0; i--)
1467 {
1468 current_pc -= insn_patterns[i].len;
1469
1470 if (!i386_match_pattern (current_pc, insn_patterns[i]))
1471 return 0;
1472 }
1473
1474 current_pc = pc + insn->len;
1475 for (insn = insn_patterns + ix + 1; insn->len > 0; insn++)
1476 {
1477 if (!i386_match_pattern (current_pc, *insn))
1478 return 0;
1479
1480 current_pc += insn->len;
1481 }
1482
1483 return 1;
1484 }
1485
1486 /* Some special instructions that might be migrated by GCC into the
1487 part of the prologue that sets up the new stack frame. Because the
1488 stack frame hasn't been setup yet, no registers have been saved
1489 yet, and only the scratch registers %eax, %ecx and %edx can be
1490 touched. */
1491
1492 struct i386_insn i386_frame_setup_skip_insns[] =
1493 {
1494 /* Check for `movb imm8, r' and `movl imm32, r'.
1495
1496 ??? Should we handle 16-bit operand-sizes here? */
1497
1498 /* `movb imm8, %al' and `movb imm8, %ah' */
1499 /* `movb imm8, %cl' and `movb imm8, %ch' */
1500 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
1501 /* `movb imm8, %dl' and `movb imm8, %dh' */
1502 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
1503 /* `movl imm32, %eax' and `movl imm32, %ecx' */
1504 { 5, { 0xb8 }, { 0xfe } },
1505 /* `movl imm32, %edx' */
1506 { 5, { 0xba }, { 0xff } },
1507
1508 /* Check for `mov imm32, r32'. Note that there is an alternative
1509 encoding for `mov m32, %eax'.
1510
1511 ??? Should we handle SIB adressing here?
1512 ??? Should we handle 16-bit operand-sizes here? */
1513
1514 /* `movl m32, %eax' */
1515 { 5, { 0xa1 }, { 0xff } },
1516 /* `movl m32, %eax' and `mov; m32, %ecx' */
1517 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
1518 /* `movl m32, %edx' */
1519 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
1520
1521 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
1522 Because of the symmetry, there are actually two ways to encode
1523 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
1524 opcode bytes 0x31 and 0x33 for `xorl'. */
1525
1526 /* `subl %eax, %eax' */
1527 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
1528 /* `subl %ecx, %ecx' */
1529 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
1530 /* `subl %edx, %edx' */
1531 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
1532 /* `xorl %eax, %eax' */
1533 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
1534 /* `xorl %ecx, %ecx' */
1535 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
1536 /* `xorl %edx, %edx' */
1537 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
1538 { 0 }
1539 };
1540
1541
1542 /* Check whether PC points to a no-op instruction. */
1543 static CORE_ADDR
1544 i386_skip_noop (CORE_ADDR pc)
1545 {
1546 gdb_byte op;
1547 int check = 1;
1548
1549 if (target_read_code (pc, &op, 1))
1550 return pc;
1551
1552 while (check)
1553 {
1554 check = 0;
1555 /* Ignore `nop' instruction. */
1556 if (op == 0x90)
1557 {
1558 pc += 1;
1559 if (target_read_code (pc, &op, 1))
1560 return pc;
1561 check = 1;
1562 }
1563 /* Ignore no-op instruction `mov %edi, %edi'.
1564 Microsoft system dlls often start with
1565 a `mov %edi,%edi' instruction.
1566 The 5 bytes before the function start are
1567 filled with `nop' instructions.
1568 This pattern can be used for hot-patching:
1569 The `mov %edi, %edi' instruction can be replaced by a
1570 near jump to the location of the 5 `nop' instructions
1571 which can be replaced by a 32-bit jump to anywhere
1572 in the 32-bit address space. */
1573
1574 else if (op == 0x8b)
1575 {
1576 if (target_read_code (pc + 1, &op, 1))
1577 return pc;
1578
1579 if (op == 0xff)
1580 {
1581 pc += 2;
1582 if (target_read_code (pc, &op, 1))
1583 return pc;
1584
1585 check = 1;
1586 }
1587 }
1588 }
1589 return pc;
1590 }
1591
1592 /* Check whether PC points at a code that sets up a new stack frame.
1593 If so, it updates CACHE and returns the address of the first
1594 instruction after the sequence that sets up the frame or LIMIT,
1595 whichever is smaller. If we don't recognize the code, return PC. */
1596
1597 static CORE_ADDR
1598 i386_analyze_frame_setup (struct gdbarch *gdbarch,
1599 CORE_ADDR pc, CORE_ADDR limit,
1600 struct i386_frame_cache *cache)
1601 {
1602 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1603 struct i386_insn *insn;
1604 gdb_byte op;
1605 int skip = 0;
1606
1607 if (limit <= pc)
1608 return limit;
1609
1610 if (target_read_code (pc, &op, 1))
1611 return pc;
1612
1613 if (op == 0x55) /* pushl %ebp */
1614 {
1615 /* Take into account that we've executed the `pushl %ebp' that
1616 starts this instruction sequence. */
1617 cache->saved_regs[I386_EBP_REGNUM] = 0;
1618 cache->sp_offset += 4;
1619 pc++;
1620
1621 /* If that's all, return now. */
1622 if (limit <= pc)
1623 return limit;
1624
1625 /* Check for some special instructions that might be migrated by
1626 GCC into the prologue and skip them. At this point in the
1627 prologue, code should only touch the scratch registers %eax,
1628 %ecx and %edx, so while the number of posibilities is sheer,
1629 it is limited.
1630
1631 Make sure we only skip these instructions if we later see the
1632 `movl %esp, %ebp' that actually sets up the frame. */
1633 while (pc + skip < limit)
1634 {
1635 insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
1636 if (insn == NULL)
1637 break;
1638
1639 skip += insn->len;
1640 }
1641
1642 /* If that's all, return now. */
1643 if (limit <= pc + skip)
1644 return limit;
1645
1646 if (target_read_code (pc + skip, &op, 1))
1647 return pc + skip;
1648
1649 /* The i386 prologue looks like
1650
1651 push %ebp
1652 mov %esp,%ebp
1653 sub $0x10,%esp
1654
1655 and a different prologue can be generated for atom.
1656
1657 push %ebp
1658 lea (%esp),%ebp
1659 lea -0x10(%esp),%esp
1660
1661 We handle both of them here. */
1662
1663 switch (op)
1664 {
1665 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
1666 case 0x8b:
1667 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
1668 != 0xec)
1669 return pc;
1670 pc += (skip + 2);
1671 break;
1672 case 0x89:
1673 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
1674 != 0xe5)
1675 return pc;
1676 pc += (skip + 2);
1677 break;
1678 case 0x8d: /* Check for 'lea (%ebp), %ebp'. */
1679 if (read_code_unsigned_integer (pc + skip + 1, 2, byte_order)
1680 != 0x242c)
1681 return pc;
1682 pc += (skip + 3);
1683 break;
1684 default:
1685 return pc;
1686 }
1687
1688 /* OK, we actually have a frame. We just don't know how large
1689 it is yet. Set its size to zero. We'll adjust it if
1690 necessary. We also now commit to skipping the special
1691 instructions mentioned before. */
1692 cache->locals = 0;
1693
1694 /* If that's all, return now. */
1695 if (limit <= pc)
1696 return limit;
1697
1698 /* Check for stack adjustment
1699
1700 subl $XXX, %esp
1701 or
1702 lea -XXX(%esp),%esp
1703
1704 NOTE: You can't subtract a 16-bit immediate from a 32-bit
1705 reg, so we don't have to worry about a data16 prefix. */
1706 if (target_read_code (pc, &op, 1))
1707 return pc;
1708 if (op == 0x83)
1709 {
1710 /* `subl' with 8-bit immediate. */
1711 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1712 /* Some instruction starting with 0x83 other than `subl'. */
1713 return pc;
1714
1715 /* `subl' with signed 8-bit immediate (though it wouldn't
1716 make sense to be negative). */
1717 cache->locals = read_code_integer (pc + 2, 1, byte_order);
1718 return pc + 3;
1719 }
1720 else if (op == 0x81)
1721 {
1722 /* Maybe it is `subl' with a 32-bit immediate. */
1723 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1724 /* Some instruction starting with 0x81 other than `subl'. */
1725 return pc;
1726
1727 /* It is `subl' with a 32-bit immediate. */
1728 cache->locals = read_code_integer (pc + 2, 4, byte_order);
1729 return pc + 6;
1730 }
1731 else if (op == 0x8d)
1732 {
1733 /* The ModR/M byte is 0x64. */
1734 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0x64)
1735 return pc;
1736 /* 'lea' with 8-bit displacement. */
1737 cache->locals = -1 * read_code_integer (pc + 3, 1, byte_order);
1738 return pc + 4;
1739 }
1740 else
1741 {
1742 /* Some instruction other than `subl' nor 'lea'. */
1743 return pc;
1744 }
1745 }
1746 else if (op == 0xc8) /* enter */
1747 {
1748 cache->locals = read_code_unsigned_integer (pc + 1, 2, byte_order);
1749 return pc + 4;
1750 }
1751
1752 return pc;
1753 }
1754
1755 /* Check whether PC points at code that saves registers on the stack.
1756 If so, it updates CACHE and returns the address of the first
1757 instruction after the register saves or CURRENT_PC, whichever is
1758 smaller. Otherwise, return PC. */
1759
1760 static CORE_ADDR
1761 i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
1762 struct i386_frame_cache *cache)
1763 {
1764 CORE_ADDR offset = 0;
1765 gdb_byte op;
1766 int i;
1767
1768 if (cache->locals > 0)
1769 offset -= cache->locals;
1770 for (i = 0; i < 8 && pc < current_pc; i++)
1771 {
1772 if (target_read_code (pc, &op, 1))
1773 return pc;
1774 if (op < 0x50 || op > 0x57)
1775 break;
1776
1777 offset -= 4;
1778 cache->saved_regs[op - 0x50] = offset;
1779 cache->sp_offset += 4;
1780 pc++;
1781 }
1782
1783 return pc;
1784 }
1785
1786 /* Do a full analysis of the prologue at PC and update CACHE
1787 accordingly. Bail out early if CURRENT_PC is reached. Return the
1788 address where the analysis stopped.
1789
1790 We handle these cases:
1791
1792 The startup sequence can be at the start of the function, or the
1793 function can start with a branch to startup code at the end.
1794
1795 %ebp can be set up with either the 'enter' instruction, or "pushl
1796 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
1797 once used in the System V compiler).
1798
1799 Local space is allocated just below the saved %ebp by either the
1800 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
1801 16-bit unsigned argument for space to allocate, and the 'addl'
1802 instruction could have either a signed byte, or 32-bit immediate.
1803
1804 Next, the registers used by this function are pushed. With the
1805 System V compiler they will always be in the order: %edi, %esi,
1806 %ebx (and sometimes a harmless bug causes it to also save but not
1807 restore %eax); however, the code below is willing to see the pushes
1808 in any order, and will handle up to 8 of them.
1809
1810 If the setup sequence is at the end of the function, then the next
1811 instruction will be a branch back to the start. */
1812
1813 static CORE_ADDR
1814 i386_analyze_prologue (struct gdbarch *gdbarch,
1815 CORE_ADDR pc, CORE_ADDR current_pc,
1816 struct i386_frame_cache *cache)
1817 {
1818 pc = i386_skip_noop (pc);
1819 pc = i386_follow_jump (gdbarch, pc);
1820 pc = i386_analyze_struct_return (pc, current_pc, cache);
1821 pc = i386_skip_probe (pc);
1822 pc = i386_analyze_stack_align (pc, current_pc, cache);
1823 pc = i386_analyze_frame_setup (gdbarch, pc, current_pc, cache);
1824 return i386_analyze_register_saves (pc, current_pc, cache);
1825 }
1826
1827 /* Return PC of first real instruction. */
1828
1829 static CORE_ADDR
1830 i386_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
1831 {
1832 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1833
1834 static gdb_byte pic_pat[6] =
1835 {
1836 0xe8, 0, 0, 0, 0, /* call 0x0 */
1837 0x5b, /* popl %ebx */
1838 };
1839 struct i386_frame_cache cache;
1840 CORE_ADDR pc;
1841 gdb_byte op;
1842 int i;
1843 CORE_ADDR func_addr;
1844
1845 if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
1846 {
1847 CORE_ADDR post_prologue_pc
1848 = skip_prologue_using_sal (gdbarch, func_addr);
1849 struct compunit_symtab *cust = find_pc_compunit_symtab (func_addr);
1850
1851 /* Clang always emits a line note before the prologue and another
1852 one after. We trust clang to emit usable line notes. */
1853 if (post_prologue_pc
1854 && (cust != NULL
1855 && COMPUNIT_PRODUCER (cust) != NULL
1856 && startswith (COMPUNIT_PRODUCER (cust), "clang ")))
1857 return std::max (start_pc, post_prologue_pc);
1858 }
1859
1860 cache.locals = -1;
1861 pc = i386_analyze_prologue (gdbarch, start_pc, 0xffffffff, &cache);
1862 if (cache.locals < 0)
1863 return start_pc;
1864
1865 /* Found valid frame setup. */
1866
1867 /* The native cc on SVR4 in -K PIC mode inserts the following code
1868 to get the address of the global offset table (GOT) into register
1869 %ebx:
1870
1871 call 0x0
1872 popl %ebx
1873 movl %ebx,x(%ebp) (optional)
1874 addl y,%ebx
1875
1876 This code is with the rest of the prologue (at the end of the
1877 function), so we have to skip it to get to the first real
1878 instruction at the start of the function. */
1879
1880 for (i = 0; i < 6; i++)
1881 {
1882 if (target_read_code (pc + i, &op, 1))
1883 return pc;
1884
1885 if (pic_pat[i] != op)
1886 break;
1887 }
1888 if (i == 6)
1889 {
1890 int delta = 6;
1891
1892 if (target_read_code (pc + delta, &op, 1))
1893 return pc;
1894
1895 if (op == 0x89) /* movl %ebx, x(%ebp) */
1896 {
1897 op = read_code_unsigned_integer (pc + delta + 1, 1, byte_order);
1898
1899 if (op == 0x5d) /* One byte offset from %ebp. */
1900 delta += 3;
1901 else if (op == 0x9d) /* Four byte offset from %ebp. */
1902 delta += 6;
1903 else /* Unexpected instruction. */
1904 delta = 0;
1905
1906 if (target_read_code (pc + delta, &op, 1))
1907 return pc;
1908 }
1909
1910 /* addl y,%ebx */
1911 if (delta > 0 && op == 0x81
1912 && read_code_unsigned_integer (pc + delta + 1, 1, byte_order)
1913 == 0xc3)
1914 {
1915 pc += delta + 6;
1916 }
1917 }
1918
1919 /* If the function starts with a branch (to startup code at the end)
1920 the last instruction should bring us back to the first
1921 instruction of the real code. */
1922 if (i386_follow_jump (gdbarch, start_pc) != start_pc)
1923 pc = i386_follow_jump (gdbarch, pc);
1924
1925 return pc;
1926 }
1927
1928 /* Check that the code pointed to by PC corresponds to a call to
1929 __main, skip it if so. Return PC otherwise. */
1930
1931 CORE_ADDR
1932 i386_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1933 {
1934 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1935 gdb_byte op;
1936
1937 if (target_read_code (pc, &op, 1))
1938 return pc;
1939 if (op == 0xe8)
1940 {
1941 gdb_byte buf[4];
1942
1943 if (target_read_code (pc + 1, buf, sizeof buf) == 0)
1944 {
1945 /* Make sure address is computed correctly as a 32bit
1946 integer even if CORE_ADDR is 64 bit wide. */
1947 struct bound_minimal_symbol s;
1948 CORE_ADDR call_dest;
1949
1950 call_dest = pc + 5 + extract_signed_integer (buf, 4, byte_order);
1951 call_dest = call_dest & 0xffffffffU;
1952 s = lookup_minimal_symbol_by_pc (call_dest);
1953 if (s.minsym != NULL
1954 && MSYMBOL_LINKAGE_NAME (s.minsym) != NULL
1955 && strcmp (MSYMBOL_LINKAGE_NAME (s.minsym), "__main") == 0)
1956 pc += 5;
1957 }
1958 }
1959
1960 return pc;
1961 }
1962
1963 /* This function is 64-bit safe. */
1964
1965 static CORE_ADDR
1966 i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1967 {
1968 gdb_byte buf[8];
1969
1970 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
1971 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
1972 }
1973 \f
1974
1975 /* Normal frames. */
1976
1977 static void
1978 i386_frame_cache_1 (struct frame_info *this_frame,
1979 struct i386_frame_cache *cache)
1980 {
1981 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1982 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1983 gdb_byte buf[4];
1984 int i;
1985
1986 cache->pc = get_frame_func (this_frame);
1987
1988 /* In principle, for normal frames, %ebp holds the frame pointer,
1989 which holds the base address for the current stack frame.
1990 However, for functions that don't need it, the frame pointer is
1991 optional. For these "frameless" functions the frame pointer is
1992 actually the frame pointer of the calling frame. Signal
1993 trampolines are just a special case of a "frameless" function.
1994 They (usually) share their frame pointer with the frame that was
1995 in progress when the signal occurred. */
1996
1997 get_frame_register (this_frame, I386_EBP_REGNUM, buf);
1998 cache->base = extract_unsigned_integer (buf, 4, byte_order);
1999 if (cache->base == 0)
2000 {
2001 cache->base_p = 1;
2002 return;
2003 }
2004
2005 /* For normal frames, %eip is stored at 4(%ebp). */
2006 cache->saved_regs[I386_EIP_REGNUM] = 4;
2007
2008 if (cache->pc != 0)
2009 i386_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
2010 cache);
2011
2012 if (cache->locals < 0)
2013 {
2014 /* We didn't find a valid frame, which means that CACHE->base
2015 currently holds the frame pointer for our calling frame. If
2016 we're at the start of a function, or somewhere half-way its
2017 prologue, the function's frame probably hasn't been fully
2018 setup yet. Try to reconstruct the base address for the stack
2019 frame by looking at the stack pointer. For truly "frameless"
2020 functions this might work too. */
2021
2022 if (cache->saved_sp_reg != -1)
2023 {
2024 /* Saved stack pointer has been saved. */
2025 get_frame_register (this_frame, cache->saved_sp_reg, buf);
2026 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
2027
2028 /* We're halfway aligning the stack. */
2029 cache->base = ((cache->saved_sp - 4) & 0xfffffff0) - 4;
2030 cache->saved_regs[I386_EIP_REGNUM] = cache->saved_sp - 4;
2031
2032 /* This will be added back below. */
2033 cache->saved_regs[I386_EIP_REGNUM] -= cache->base;
2034 }
2035 else if (cache->pc != 0
2036 || target_read_code (get_frame_pc (this_frame), buf, 1))
2037 {
2038 /* We're in a known function, but did not find a frame
2039 setup. Assume that the function does not use %ebp.
2040 Alternatively, we may have jumped to an invalid
2041 address; in that case there is definitely no new
2042 frame in %ebp. */
2043 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2044 cache->base = extract_unsigned_integer (buf, 4, byte_order)
2045 + cache->sp_offset;
2046 }
2047 else
2048 /* We're in an unknown function. We could not find the start
2049 of the function to analyze the prologue; our best option is
2050 to assume a typical frame layout with the caller's %ebp
2051 saved. */
2052 cache->saved_regs[I386_EBP_REGNUM] = 0;
2053 }
2054
2055 if (cache->saved_sp_reg != -1)
2056 {
2057 /* Saved stack pointer has been saved (but the SAVED_SP_REG
2058 register may be unavailable). */
2059 if (cache->saved_sp == 0
2060 && deprecated_frame_register_read (this_frame,
2061 cache->saved_sp_reg, buf))
2062 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
2063 }
2064 /* Now that we have the base address for the stack frame we can
2065 calculate the value of %esp in the calling frame. */
2066 else if (cache->saved_sp == 0)
2067 cache->saved_sp = cache->base + 8;
2068
2069 /* Adjust all the saved registers such that they contain addresses
2070 instead of offsets. */
2071 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
2072 if (cache->saved_regs[i] != -1)
2073 cache->saved_regs[i] += cache->base;
2074
2075 cache->base_p = 1;
2076 }
2077
2078 static struct i386_frame_cache *
2079 i386_frame_cache (struct frame_info *this_frame, void **this_cache)
2080 {
2081 struct i386_frame_cache *cache;
2082
2083 if (*this_cache)
2084 return (struct i386_frame_cache *) *this_cache;
2085
2086 cache = i386_alloc_frame_cache ();
2087 *this_cache = cache;
2088
2089 TRY
2090 {
2091 i386_frame_cache_1 (this_frame, cache);
2092 }
2093 CATCH (ex, RETURN_MASK_ERROR)
2094 {
2095 if (ex.error != NOT_AVAILABLE_ERROR)
2096 throw_exception (ex);
2097 }
2098 END_CATCH
2099
2100 return cache;
2101 }
2102
2103 static void
2104 i386_frame_this_id (struct frame_info *this_frame, void **this_cache,
2105 struct frame_id *this_id)
2106 {
2107 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2108
2109 if (!cache->base_p)
2110 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2111 else if (cache->base == 0)
2112 {
2113 /* This marks the outermost frame. */
2114 }
2115 else
2116 {
2117 /* See the end of i386_push_dummy_call. */
2118 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2119 }
2120 }
2121
2122 static enum unwind_stop_reason
2123 i386_frame_unwind_stop_reason (struct frame_info *this_frame,
2124 void **this_cache)
2125 {
2126 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2127
2128 if (!cache->base_p)
2129 return UNWIND_UNAVAILABLE;
2130
2131 /* This marks the outermost frame. */
2132 if (cache->base == 0)
2133 return UNWIND_OUTERMOST;
2134
2135 return UNWIND_NO_REASON;
2136 }
2137
2138 static struct value *
2139 i386_frame_prev_register (struct frame_info *this_frame, void **this_cache,
2140 int regnum)
2141 {
2142 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2143
2144 gdb_assert (regnum >= 0);
2145
2146 /* The System V ABI says that:
2147
2148 "The flags register contains the system flags, such as the
2149 direction flag and the carry flag. The direction flag must be
2150 set to the forward (that is, zero) direction before entry and
2151 upon exit from a function. Other user flags have no specified
2152 role in the standard calling sequence and are not preserved."
2153
2154 To guarantee the "upon exit" part of that statement we fake a
2155 saved flags register that has its direction flag cleared.
2156
2157 Note that GCC doesn't seem to rely on the fact that the direction
2158 flag is cleared after a function return; it always explicitly
2159 clears the flag before operations where it matters.
2160
2161 FIXME: kettenis/20030316: I'm not quite sure whether this is the
2162 right thing to do. The way we fake the flags register here makes
2163 it impossible to change it. */
2164
2165 if (regnum == I386_EFLAGS_REGNUM)
2166 {
2167 ULONGEST val;
2168
2169 val = get_frame_register_unsigned (this_frame, regnum);
2170 val &= ~(1 << 10);
2171 return frame_unwind_got_constant (this_frame, regnum, val);
2172 }
2173
2174 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
2175 return frame_unwind_got_register (this_frame, regnum, I386_EAX_REGNUM);
2176
2177 if (regnum == I386_ESP_REGNUM
2178 && (cache->saved_sp != 0 || cache->saved_sp_reg != -1))
2179 {
2180 /* If the SP has been saved, but we don't know where, then this
2181 means that SAVED_SP_REG register was found unavailable back
2182 when we built the cache. */
2183 if (cache->saved_sp == 0)
2184 return frame_unwind_got_register (this_frame, regnum,
2185 cache->saved_sp_reg);
2186 else
2187 return frame_unwind_got_constant (this_frame, regnum,
2188 cache->saved_sp);
2189 }
2190
2191 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
2192 return frame_unwind_got_memory (this_frame, regnum,
2193 cache->saved_regs[regnum]);
2194
2195 return frame_unwind_got_register (this_frame, regnum, regnum);
2196 }
2197
2198 static const struct frame_unwind i386_frame_unwind =
2199 {
2200 NORMAL_FRAME,
2201 i386_frame_unwind_stop_reason,
2202 i386_frame_this_id,
2203 i386_frame_prev_register,
2204 NULL,
2205 default_frame_sniffer
2206 };
2207
2208 /* Normal frames, but in a function epilogue. */
2209
2210 /* Implement the stack_frame_destroyed_p gdbarch method.
2211
2212 The epilogue is defined here as the 'ret' instruction, which will
2213 follow any instruction such as 'leave' or 'pop %ebp' that destroys
2214 the function's stack frame. */
2215
2216 static int
2217 i386_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2218 {
2219 gdb_byte insn;
2220 struct compunit_symtab *cust;
2221
2222 cust = find_pc_compunit_symtab (pc);
2223 if (cust != NULL && COMPUNIT_EPILOGUE_UNWIND_VALID (cust))
2224 return 0;
2225
2226 if (target_read_memory (pc, &insn, 1))
2227 return 0; /* Can't read memory at pc. */
2228
2229 if (insn != 0xc3) /* 'ret' instruction. */
2230 return 0;
2231
2232 return 1;
2233 }
2234
2235 static int
2236 i386_epilogue_frame_sniffer (const struct frame_unwind *self,
2237 struct frame_info *this_frame,
2238 void **this_prologue_cache)
2239 {
2240 if (frame_relative_level (this_frame) == 0)
2241 return i386_stack_frame_destroyed_p (get_frame_arch (this_frame),
2242 get_frame_pc (this_frame));
2243 else
2244 return 0;
2245 }
2246
2247 static struct i386_frame_cache *
2248 i386_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
2249 {
2250 struct i386_frame_cache *cache;
2251 CORE_ADDR sp;
2252
2253 if (*this_cache)
2254 return (struct i386_frame_cache *) *this_cache;
2255
2256 cache = i386_alloc_frame_cache ();
2257 *this_cache = cache;
2258
2259 TRY
2260 {
2261 cache->pc = get_frame_func (this_frame);
2262
2263 /* At this point the stack looks as if we just entered the
2264 function, with the return address at the top of the
2265 stack. */
2266 sp = get_frame_register_unsigned (this_frame, I386_ESP_REGNUM);
2267 cache->base = sp + cache->sp_offset;
2268 cache->saved_sp = cache->base + 8;
2269 cache->saved_regs[I386_EIP_REGNUM] = cache->base + 4;
2270
2271 cache->base_p = 1;
2272 }
2273 CATCH (ex, RETURN_MASK_ERROR)
2274 {
2275 if (ex.error != NOT_AVAILABLE_ERROR)
2276 throw_exception (ex);
2277 }
2278 END_CATCH
2279
2280 return cache;
2281 }
2282
2283 static enum unwind_stop_reason
2284 i386_epilogue_frame_unwind_stop_reason (struct frame_info *this_frame,
2285 void **this_cache)
2286 {
2287 struct i386_frame_cache *cache =
2288 i386_epilogue_frame_cache (this_frame, this_cache);
2289
2290 if (!cache->base_p)
2291 return UNWIND_UNAVAILABLE;
2292
2293 return UNWIND_NO_REASON;
2294 }
2295
2296 static void
2297 i386_epilogue_frame_this_id (struct frame_info *this_frame,
2298 void **this_cache,
2299 struct frame_id *this_id)
2300 {
2301 struct i386_frame_cache *cache =
2302 i386_epilogue_frame_cache (this_frame, this_cache);
2303
2304 if (!cache->base_p)
2305 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2306 else
2307 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2308 }
2309
2310 static struct value *
2311 i386_epilogue_frame_prev_register (struct frame_info *this_frame,
2312 void **this_cache, int regnum)
2313 {
2314 /* Make sure we've initialized the cache. */
2315 i386_epilogue_frame_cache (this_frame, this_cache);
2316
2317 return i386_frame_prev_register (this_frame, this_cache, regnum);
2318 }
2319
2320 static const struct frame_unwind i386_epilogue_frame_unwind =
2321 {
2322 NORMAL_FRAME,
2323 i386_epilogue_frame_unwind_stop_reason,
2324 i386_epilogue_frame_this_id,
2325 i386_epilogue_frame_prev_register,
2326 NULL,
2327 i386_epilogue_frame_sniffer
2328 };
2329 \f
2330
2331 /* Stack-based trampolines. */
2332
2333 /* These trampolines are used on cross x86 targets, when taking the
2334 address of a nested function. When executing these trampolines,
2335 no stack frame is set up, so we are in a similar situation as in
2336 epilogues and i386_epilogue_frame_this_id can be re-used. */
2337
2338 /* Static chain passed in register. */
2339
2340 struct i386_insn i386_tramp_chain_in_reg_insns[] =
2341 {
2342 /* `movl imm32, %eax' and `movl imm32, %ecx' */
2343 { 5, { 0xb8 }, { 0xfe } },
2344
2345 /* `jmp imm32' */
2346 { 5, { 0xe9 }, { 0xff } },
2347
2348 {0}
2349 };
2350
2351 /* Static chain passed on stack (when regparm=3). */
2352
2353 struct i386_insn i386_tramp_chain_on_stack_insns[] =
2354 {
2355 /* `push imm32' */
2356 { 5, { 0x68 }, { 0xff } },
2357
2358 /* `jmp imm32' */
2359 { 5, { 0xe9 }, { 0xff } },
2360
2361 {0}
2362 };
2363
2364 /* Return whether PC points inside a stack trampoline. */
2365
2366 static int
2367 i386_in_stack_tramp_p (CORE_ADDR pc)
2368 {
2369 gdb_byte insn;
2370 const char *name;
2371
2372 /* A stack trampoline is detected if no name is associated
2373 to the current pc and if it points inside a trampoline
2374 sequence. */
2375
2376 find_pc_partial_function (pc, &name, NULL, NULL);
2377 if (name)
2378 return 0;
2379
2380 if (target_read_memory (pc, &insn, 1))
2381 return 0;
2382
2383 if (!i386_match_insn_block (pc, i386_tramp_chain_in_reg_insns)
2384 && !i386_match_insn_block (pc, i386_tramp_chain_on_stack_insns))
2385 return 0;
2386
2387 return 1;
2388 }
2389
2390 static int
2391 i386_stack_tramp_frame_sniffer (const struct frame_unwind *self,
2392 struct frame_info *this_frame,
2393 void **this_cache)
2394 {
2395 if (frame_relative_level (this_frame) == 0)
2396 return i386_in_stack_tramp_p (get_frame_pc (this_frame));
2397 else
2398 return 0;
2399 }
2400
2401 static const struct frame_unwind i386_stack_tramp_frame_unwind =
2402 {
2403 NORMAL_FRAME,
2404 i386_epilogue_frame_unwind_stop_reason,
2405 i386_epilogue_frame_this_id,
2406 i386_epilogue_frame_prev_register,
2407 NULL,
2408 i386_stack_tramp_frame_sniffer
2409 };
2410 \f
2411 /* Generate a bytecode expression to get the value of the saved PC. */
2412
2413 static void
2414 i386_gen_return_address (struct gdbarch *gdbarch,
2415 struct agent_expr *ax, struct axs_value *value,
2416 CORE_ADDR scope)
2417 {
2418 /* The following sequence assumes the traditional use of the base
2419 register. */
2420 ax_reg (ax, I386_EBP_REGNUM);
2421 ax_const_l (ax, 4);
2422 ax_simple (ax, aop_add);
2423 value->type = register_type (gdbarch, I386_EIP_REGNUM);
2424 value->kind = axs_lvalue_memory;
2425 }
2426 \f
2427
2428 /* Signal trampolines. */
2429
2430 static struct i386_frame_cache *
2431 i386_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
2432 {
2433 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2434 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2435 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2436 struct i386_frame_cache *cache;
2437 CORE_ADDR addr;
2438 gdb_byte buf[4];
2439
2440 if (*this_cache)
2441 return (struct i386_frame_cache *) *this_cache;
2442
2443 cache = i386_alloc_frame_cache ();
2444
2445 TRY
2446 {
2447 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2448 cache->base = extract_unsigned_integer (buf, 4, byte_order) - 4;
2449
2450 addr = tdep->sigcontext_addr (this_frame);
2451 if (tdep->sc_reg_offset)
2452 {
2453 int i;
2454
2455 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
2456
2457 for (i = 0; i < tdep->sc_num_regs; i++)
2458 if (tdep->sc_reg_offset[i] != -1)
2459 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
2460 }
2461 else
2462 {
2463 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
2464 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
2465 }
2466
2467 cache->base_p = 1;
2468 }
2469 CATCH (ex, RETURN_MASK_ERROR)
2470 {
2471 if (ex.error != NOT_AVAILABLE_ERROR)
2472 throw_exception (ex);
2473 }
2474 END_CATCH
2475
2476 *this_cache = cache;
2477 return cache;
2478 }
2479
2480 static enum unwind_stop_reason
2481 i386_sigtramp_frame_unwind_stop_reason (struct frame_info *this_frame,
2482 void **this_cache)
2483 {
2484 struct i386_frame_cache *cache =
2485 i386_sigtramp_frame_cache (this_frame, this_cache);
2486
2487 if (!cache->base_p)
2488 return UNWIND_UNAVAILABLE;
2489
2490 return UNWIND_NO_REASON;
2491 }
2492
2493 static void
2494 i386_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache,
2495 struct frame_id *this_id)
2496 {
2497 struct i386_frame_cache *cache =
2498 i386_sigtramp_frame_cache (this_frame, this_cache);
2499
2500 if (!cache->base_p)
2501 (*this_id) = frame_id_build_unavailable_stack (get_frame_pc (this_frame));
2502 else
2503 {
2504 /* See the end of i386_push_dummy_call. */
2505 (*this_id) = frame_id_build (cache->base + 8, get_frame_pc (this_frame));
2506 }
2507 }
2508
2509 static struct value *
2510 i386_sigtramp_frame_prev_register (struct frame_info *this_frame,
2511 void **this_cache, int regnum)
2512 {
2513 /* Make sure we've initialized the cache. */
2514 i386_sigtramp_frame_cache (this_frame, this_cache);
2515
2516 return i386_frame_prev_register (this_frame, this_cache, regnum);
2517 }
2518
2519 static int
2520 i386_sigtramp_frame_sniffer (const struct frame_unwind *self,
2521 struct frame_info *this_frame,
2522 void **this_prologue_cache)
2523 {
2524 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
2525
2526 /* We shouldn't even bother if we don't have a sigcontext_addr
2527 handler. */
2528 if (tdep->sigcontext_addr == NULL)
2529 return 0;
2530
2531 if (tdep->sigtramp_p != NULL)
2532 {
2533 if (tdep->sigtramp_p (this_frame))
2534 return 1;
2535 }
2536
2537 if (tdep->sigtramp_start != 0)
2538 {
2539 CORE_ADDR pc = get_frame_pc (this_frame);
2540
2541 gdb_assert (tdep->sigtramp_end != 0);
2542 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
2543 return 1;
2544 }
2545
2546 return 0;
2547 }
2548
2549 static const struct frame_unwind i386_sigtramp_frame_unwind =
2550 {
2551 SIGTRAMP_FRAME,
2552 i386_sigtramp_frame_unwind_stop_reason,
2553 i386_sigtramp_frame_this_id,
2554 i386_sigtramp_frame_prev_register,
2555 NULL,
2556 i386_sigtramp_frame_sniffer
2557 };
2558 \f
2559
2560 static CORE_ADDR
2561 i386_frame_base_address (struct frame_info *this_frame, void **this_cache)
2562 {
2563 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2564
2565 return cache->base;
2566 }
2567
2568 static const struct frame_base i386_frame_base =
2569 {
2570 &i386_frame_unwind,
2571 i386_frame_base_address,
2572 i386_frame_base_address,
2573 i386_frame_base_address
2574 };
2575
2576 static struct frame_id
2577 i386_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2578 {
2579 CORE_ADDR fp;
2580
2581 fp = get_frame_register_unsigned (this_frame, I386_EBP_REGNUM);
2582
2583 /* See the end of i386_push_dummy_call. */
2584 return frame_id_build (fp + 8, get_frame_pc (this_frame));
2585 }
2586
2587 /* _Decimal128 function return values need 16-byte alignment on the
2588 stack. */
2589
2590 static CORE_ADDR
2591 i386_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2592 {
2593 return sp & -(CORE_ADDR)16;
2594 }
2595 \f
2596
2597 /* Figure out where the longjmp will land. Slurp the args out of the
2598 stack. We expect the first arg to be a pointer to the jmp_buf
2599 structure from which we extract the address that we will land at.
2600 This address is copied into PC. This routine returns non-zero on
2601 success. */
2602
2603 static int
2604 i386_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
2605 {
2606 gdb_byte buf[4];
2607 CORE_ADDR sp, jb_addr;
2608 struct gdbarch *gdbarch = get_frame_arch (frame);
2609 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2610 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
2611
2612 /* If JB_PC_OFFSET is -1, we have no way to find out where the
2613 longjmp will land. */
2614 if (jb_pc_offset == -1)
2615 return 0;
2616
2617 get_frame_register (frame, I386_ESP_REGNUM, buf);
2618 sp = extract_unsigned_integer (buf, 4, byte_order);
2619 if (target_read_memory (sp + 4, buf, 4))
2620 return 0;
2621
2622 jb_addr = extract_unsigned_integer (buf, 4, byte_order);
2623 if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
2624 return 0;
2625
2626 *pc = extract_unsigned_integer (buf, 4, byte_order);
2627 return 1;
2628 }
2629 \f
2630
2631 /* Check whether TYPE must be 16-byte-aligned when passed as a
2632 function argument. 16-byte vectors, _Decimal128 and structures or
2633 unions containing such types must be 16-byte-aligned; other
2634 arguments are 4-byte-aligned. */
2635
2636 static int
2637 i386_16_byte_align_p (struct type *type)
2638 {
2639 type = check_typedef (type);
2640 if ((TYPE_CODE (type) == TYPE_CODE_DECFLOAT
2641 || (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type)))
2642 && TYPE_LENGTH (type) == 16)
2643 return 1;
2644 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2645 return i386_16_byte_align_p (TYPE_TARGET_TYPE (type));
2646 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2647 || TYPE_CODE (type) == TYPE_CODE_UNION)
2648 {
2649 int i;
2650 for (i = 0; i < TYPE_NFIELDS (type); i++)
2651 {
2652 if (i386_16_byte_align_p (TYPE_FIELD_TYPE (type, i)))
2653 return 1;
2654 }
2655 }
2656 return 0;
2657 }
2658
2659 /* Implementation for set_gdbarch_push_dummy_code. */
2660
2661 static CORE_ADDR
2662 i386_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, CORE_ADDR funaddr,
2663 struct value **args, int nargs, struct type *value_type,
2664 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
2665 struct regcache *regcache)
2666 {
2667 /* Use 0xcc breakpoint - 1 byte. */
2668 *bp_addr = sp - 1;
2669 *real_pc = funaddr;
2670
2671 /* Keep the stack aligned. */
2672 return sp - 16;
2673 }
2674
2675 static CORE_ADDR
2676 i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2677 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2678 struct value **args, CORE_ADDR sp, int struct_return,
2679 CORE_ADDR struct_addr)
2680 {
2681 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2682 gdb_byte buf[4];
2683 int i;
2684 int write_pass;
2685 int args_space = 0;
2686
2687 /* BND registers can be in arbitrary values at the moment of the
2688 inferior call. This can cause boundary violations that are not
2689 due to a real bug or even desired by the user. The best to be done
2690 is set the BND registers to allow access to the whole memory, INIT
2691 state, before pushing the inferior call. */
2692 i387_reset_bnd_regs (gdbarch, regcache);
2693
2694 /* Determine the total space required for arguments and struct
2695 return address in a first pass (allowing for 16-byte-aligned
2696 arguments), then push arguments in a second pass. */
2697
2698 for (write_pass = 0; write_pass < 2; write_pass++)
2699 {
2700 int args_space_used = 0;
2701
2702 if (struct_return)
2703 {
2704 if (write_pass)
2705 {
2706 /* Push value address. */
2707 store_unsigned_integer (buf, 4, byte_order, struct_addr);
2708 write_memory (sp, buf, 4);
2709 args_space_used += 4;
2710 }
2711 else
2712 args_space += 4;
2713 }
2714
2715 for (i = 0; i < nargs; i++)
2716 {
2717 int len = TYPE_LENGTH (value_enclosing_type (args[i]));
2718
2719 if (write_pass)
2720 {
2721 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2722 args_space_used = align_up (args_space_used, 16);
2723
2724 write_memory (sp + args_space_used,
2725 value_contents_all (args[i]), len);
2726 /* The System V ABI says that:
2727
2728 "An argument's size is increased, if necessary, to make it a
2729 multiple of [32-bit] words. This may require tail padding,
2730 depending on the size of the argument."
2731
2732 This makes sure the stack stays word-aligned. */
2733 args_space_used += align_up (len, 4);
2734 }
2735 else
2736 {
2737 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2738 args_space = align_up (args_space, 16);
2739 args_space += align_up (len, 4);
2740 }
2741 }
2742
2743 if (!write_pass)
2744 {
2745 sp -= args_space;
2746
2747 /* The original System V ABI only requires word alignment,
2748 but modern incarnations need 16-byte alignment in order
2749 to support SSE. Since wasting a few bytes here isn't
2750 harmful we unconditionally enforce 16-byte alignment. */
2751 sp &= ~0xf;
2752 }
2753 }
2754
2755 /* Store return address. */
2756 sp -= 4;
2757 store_unsigned_integer (buf, 4, byte_order, bp_addr);
2758 write_memory (sp, buf, 4);
2759
2760 /* Finally, update the stack pointer... */
2761 store_unsigned_integer (buf, 4, byte_order, sp);
2762 regcache_cooked_write (regcache, I386_ESP_REGNUM, buf);
2763
2764 /* ...and fake a frame pointer. */
2765 regcache_cooked_write (regcache, I386_EBP_REGNUM, buf);
2766
2767 /* MarkK wrote: This "+ 8" is all over the place:
2768 (i386_frame_this_id, i386_sigtramp_frame_this_id,
2769 i386_dummy_id). It's there, since all frame unwinders for
2770 a given target have to agree (within a certain margin) on the
2771 definition of the stack address of a frame. Otherwise frame id
2772 comparison might not work correctly. Since DWARF2/GCC uses the
2773 stack address *before* the function call as a frame's CFA. On
2774 the i386, when %ebp is used as a frame pointer, the offset
2775 between the contents %ebp and the CFA as defined by GCC. */
2776 return sp + 8;
2777 }
2778
2779 /* These registers are used for returning integers (and on some
2780 targets also for returning `struct' and `union' values when their
2781 size and alignment match an integer type). */
2782 #define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
2783 #define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
2784
2785 /* Read, for architecture GDBARCH, a function return value of TYPE
2786 from REGCACHE, and copy that into VALBUF. */
2787
2788 static void
2789 i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
2790 struct regcache *regcache, gdb_byte *valbuf)
2791 {
2792 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2793 int len = TYPE_LENGTH (type);
2794 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2795
2796 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2797 {
2798 if (tdep->st0_regnum < 0)
2799 {
2800 warning (_("Cannot find floating-point return value."));
2801 memset (valbuf, 0, len);
2802 return;
2803 }
2804
2805 /* Floating-point return values can be found in %st(0). Convert
2806 its contents to the desired type. This is probably not
2807 exactly how it would happen on the target itself, but it is
2808 the best we can do. */
2809 regcache_raw_read (regcache, I386_ST0_REGNUM, buf);
2810 convert_typed_floating (buf, i387_ext_type (gdbarch), valbuf, type);
2811 }
2812 else
2813 {
2814 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2815 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2816
2817 if (len <= low_size)
2818 {
2819 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
2820 memcpy (valbuf, buf, len);
2821 }
2822 else if (len <= (low_size + high_size))
2823 {
2824 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
2825 memcpy (valbuf, buf, low_size);
2826 regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
2827 memcpy (valbuf + low_size, buf, len - low_size);
2828 }
2829 else
2830 internal_error (__FILE__, __LINE__,
2831 _("Cannot extract return value of %d bytes long."),
2832 len);
2833 }
2834 }
2835
2836 /* Write, for architecture GDBARCH, a function return value of TYPE
2837 from VALBUF into REGCACHE. */
2838
2839 static void
2840 i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
2841 struct regcache *regcache, const gdb_byte *valbuf)
2842 {
2843 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2844 int len = TYPE_LENGTH (type);
2845
2846 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2847 {
2848 ULONGEST fstat;
2849 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2850
2851 if (tdep->st0_regnum < 0)
2852 {
2853 warning (_("Cannot set floating-point return value."));
2854 return;
2855 }
2856
2857 /* Returning floating-point values is a bit tricky. Apart from
2858 storing the return value in %st(0), we have to simulate the
2859 state of the FPU at function return point. */
2860
2861 /* Convert the value found in VALBUF to the extended
2862 floating-point format used by the FPU. This is probably
2863 not exactly how it would happen on the target itself, but
2864 it is the best we can do. */
2865 convert_typed_floating (valbuf, type, buf, i387_ext_type (gdbarch));
2866 regcache_raw_write (regcache, I386_ST0_REGNUM, buf);
2867
2868 /* Set the top of the floating-point register stack to 7. The
2869 actual value doesn't really matter, but 7 is what a normal
2870 function return would end up with if the program started out
2871 with a freshly initialized FPU. */
2872 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
2873 fstat |= (7 << 11);
2874 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM (tdep), fstat);
2875
2876 /* Mark %st(1) through %st(7) as empty. Since we set the top of
2877 the floating-point register stack to 7, the appropriate value
2878 for the tag word is 0x3fff. */
2879 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM (tdep), 0x3fff);
2880 }
2881 else
2882 {
2883 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2884 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2885
2886 if (len <= low_size)
2887 regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
2888 else if (len <= (low_size + high_size))
2889 {
2890 regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
2891 regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
2892 len - low_size, valbuf + low_size);
2893 }
2894 else
2895 internal_error (__FILE__, __LINE__,
2896 _("Cannot store return value of %d bytes long."), len);
2897 }
2898 }
2899 \f
2900
2901 /* This is the variable that is set with "set struct-convention", and
2902 its legitimate values. */
2903 static const char default_struct_convention[] = "default";
2904 static const char pcc_struct_convention[] = "pcc";
2905 static const char reg_struct_convention[] = "reg";
2906 static const char *const valid_conventions[] =
2907 {
2908 default_struct_convention,
2909 pcc_struct_convention,
2910 reg_struct_convention,
2911 NULL
2912 };
2913 static const char *struct_convention = default_struct_convention;
2914
2915 /* Return non-zero if TYPE, which is assumed to be a structure,
2916 a union type, or an array type, should be returned in registers
2917 for architecture GDBARCH. */
2918
2919 static int
2920 i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
2921 {
2922 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2923 enum type_code code = TYPE_CODE (type);
2924 int len = TYPE_LENGTH (type);
2925
2926 gdb_assert (code == TYPE_CODE_STRUCT
2927 || code == TYPE_CODE_UNION
2928 || code == TYPE_CODE_ARRAY);
2929
2930 if (struct_convention == pcc_struct_convention
2931 || (struct_convention == default_struct_convention
2932 && tdep->struct_return == pcc_struct_return))
2933 return 0;
2934
2935 /* Structures consisting of a single `float', `double' or 'long
2936 double' member are returned in %st(0). */
2937 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2938 {
2939 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
2940 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2941 return (len == 4 || len == 8 || len == 12);
2942 }
2943
2944 return (len == 1 || len == 2 || len == 4 || len == 8);
2945 }
2946
2947 /* Determine, for architecture GDBARCH, how a return value of TYPE
2948 should be returned. If it is supposed to be returned in registers,
2949 and READBUF is non-zero, read the appropriate value from REGCACHE,
2950 and copy it into READBUF. If WRITEBUF is non-zero, write the value
2951 from WRITEBUF into REGCACHE. */
2952
2953 static enum return_value_convention
2954 i386_return_value (struct gdbarch *gdbarch, struct value *function,
2955 struct type *type, struct regcache *regcache,
2956 gdb_byte *readbuf, const gdb_byte *writebuf)
2957 {
2958 enum type_code code = TYPE_CODE (type);
2959
2960 if (((code == TYPE_CODE_STRUCT
2961 || code == TYPE_CODE_UNION
2962 || code == TYPE_CODE_ARRAY)
2963 && !i386_reg_struct_return_p (gdbarch, type))
2964 /* Complex double and long double uses the struct return covention. */
2965 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 16)
2966 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 24)
2967 /* 128-bit decimal float uses the struct return convention. */
2968 || (code == TYPE_CODE_DECFLOAT && TYPE_LENGTH (type) == 16))
2969 {
2970 /* The System V ABI says that:
2971
2972 "A function that returns a structure or union also sets %eax
2973 to the value of the original address of the caller's area
2974 before it returns. Thus when the caller receives control
2975 again, the address of the returned object resides in register
2976 %eax and can be used to access the object."
2977
2978 So the ABI guarantees that we can always find the return
2979 value just after the function has returned. */
2980
2981 /* Note that the ABI doesn't mention functions returning arrays,
2982 which is something possible in certain languages such as Ada.
2983 In this case, the value is returned as if it was wrapped in
2984 a record, so the convention applied to records also applies
2985 to arrays. */
2986
2987 if (readbuf)
2988 {
2989 ULONGEST addr;
2990
2991 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
2992 read_memory (addr, readbuf, TYPE_LENGTH (type));
2993 }
2994
2995 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
2996 }
2997
2998 /* This special case is for structures consisting of a single
2999 `float', `double' or 'long double' member. These structures are
3000 returned in %st(0). For these structures, we call ourselves
3001 recursively, changing TYPE into the type of the first member of
3002 the structure. Since that should work for all structures that
3003 have only one member, we don't bother to check the member's type
3004 here. */
3005 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
3006 {
3007 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
3008 return i386_return_value (gdbarch, function, type, regcache,
3009 readbuf, writebuf);
3010 }
3011
3012 if (readbuf)
3013 i386_extract_return_value (gdbarch, type, regcache, readbuf);
3014 if (writebuf)
3015 i386_store_return_value (gdbarch, type, regcache, writebuf);
3016
3017 return RETURN_VALUE_REGISTER_CONVENTION;
3018 }
3019 \f
3020
3021 struct type *
3022 i387_ext_type (struct gdbarch *gdbarch)
3023 {
3024 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3025
3026 if (!tdep->i387_ext_type)
3027 {
3028 tdep->i387_ext_type = tdesc_find_type (gdbarch, "i387_ext");
3029 gdb_assert (tdep->i387_ext_type != NULL);
3030 }
3031
3032 return tdep->i387_ext_type;
3033 }
3034
3035 /* Construct type for pseudo BND registers. We can't use
3036 tdesc_find_type since a complement of one value has to be used
3037 to describe the upper bound. */
3038
3039 static struct type *
3040 i386_bnd_type (struct gdbarch *gdbarch)
3041 {
3042 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3043
3044
3045 if (!tdep->i386_bnd_type)
3046 {
3047 struct type *t;
3048 const struct builtin_type *bt = builtin_type (gdbarch);
3049
3050 /* The type we're building is described bellow: */
3051 #if 0
3052 struct __bound128
3053 {
3054 void *lbound;
3055 void *ubound; /* One complement of raw ubound field. */
3056 };
3057 #endif
3058
3059 t = arch_composite_type (gdbarch,
3060 "__gdb_builtin_type_bound128", TYPE_CODE_STRUCT);
3061
3062 append_composite_type_field (t, "lbound", bt->builtin_data_ptr);
3063 append_composite_type_field (t, "ubound", bt->builtin_data_ptr);
3064
3065 TYPE_NAME (t) = "builtin_type_bound128";
3066 tdep->i386_bnd_type = t;
3067 }
3068
3069 return tdep->i386_bnd_type;
3070 }
3071
3072 /* Construct vector type for pseudo ZMM registers. We can't use
3073 tdesc_find_type since ZMM isn't described in target description. */
3074
3075 static struct type *
3076 i386_zmm_type (struct gdbarch *gdbarch)
3077 {
3078 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3079
3080 if (!tdep->i386_zmm_type)
3081 {
3082 const struct builtin_type *bt = builtin_type (gdbarch);
3083
3084 /* The type we're building is this: */
3085 #if 0
3086 union __gdb_builtin_type_vec512i
3087 {
3088 int128_t uint128[4];
3089 int64_t v4_int64[8];
3090 int32_t v8_int32[16];
3091 int16_t v16_int16[32];
3092 int8_t v32_int8[64];
3093 double v4_double[8];
3094 float v8_float[16];
3095 };
3096 #endif
3097
3098 struct type *t;
3099
3100 t = arch_composite_type (gdbarch,
3101 "__gdb_builtin_type_vec512i", TYPE_CODE_UNION);
3102 append_composite_type_field (t, "v16_float",
3103 init_vector_type (bt->builtin_float, 16));
3104 append_composite_type_field (t, "v8_double",
3105 init_vector_type (bt->builtin_double, 8));
3106 append_composite_type_field (t, "v64_int8",
3107 init_vector_type (bt->builtin_int8, 64));
3108 append_composite_type_field (t, "v32_int16",
3109 init_vector_type (bt->builtin_int16, 32));
3110 append_composite_type_field (t, "v16_int32",
3111 init_vector_type (bt->builtin_int32, 16));
3112 append_composite_type_field (t, "v8_int64",
3113 init_vector_type (bt->builtin_int64, 8));
3114 append_composite_type_field (t, "v4_int128",
3115 init_vector_type (bt->builtin_int128, 4));
3116
3117 TYPE_VECTOR (t) = 1;
3118 TYPE_NAME (t) = "builtin_type_vec512i";
3119 tdep->i386_zmm_type = t;
3120 }
3121
3122 return tdep->i386_zmm_type;
3123 }
3124
3125 /* Construct vector type for pseudo YMM registers. We can't use
3126 tdesc_find_type since YMM isn't described in target description. */
3127
3128 static struct type *
3129 i386_ymm_type (struct gdbarch *gdbarch)
3130 {
3131 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3132
3133 if (!tdep->i386_ymm_type)
3134 {
3135 const struct builtin_type *bt = builtin_type (gdbarch);
3136
3137 /* The type we're building is this: */
3138 #if 0
3139 union __gdb_builtin_type_vec256i
3140 {
3141 int128_t uint128[2];
3142 int64_t v2_int64[4];
3143 int32_t v4_int32[8];
3144 int16_t v8_int16[16];
3145 int8_t v16_int8[32];
3146 double v2_double[4];
3147 float v4_float[8];
3148 };
3149 #endif
3150
3151 struct type *t;
3152
3153 t = arch_composite_type (gdbarch,
3154 "__gdb_builtin_type_vec256i", TYPE_CODE_UNION);
3155 append_composite_type_field (t, "v8_float",
3156 init_vector_type (bt->builtin_float, 8));
3157 append_composite_type_field (t, "v4_double",
3158 init_vector_type (bt->builtin_double, 4));
3159 append_composite_type_field (t, "v32_int8",
3160 init_vector_type (bt->builtin_int8, 32));
3161 append_composite_type_field (t, "v16_int16",
3162 init_vector_type (bt->builtin_int16, 16));
3163 append_composite_type_field (t, "v8_int32",
3164 init_vector_type (bt->builtin_int32, 8));
3165 append_composite_type_field (t, "v4_int64",
3166 init_vector_type (bt->builtin_int64, 4));
3167 append_composite_type_field (t, "v2_int128",
3168 init_vector_type (bt->builtin_int128, 2));
3169
3170 TYPE_VECTOR (t) = 1;
3171 TYPE_NAME (t) = "builtin_type_vec256i";
3172 tdep->i386_ymm_type = t;
3173 }
3174
3175 return tdep->i386_ymm_type;
3176 }
3177
3178 /* Construct vector type for MMX registers. */
3179 static struct type *
3180 i386_mmx_type (struct gdbarch *gdbarch)
3181 {
3182 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3183
3184 if (!tdep->i386_mmx_type)
3185 {
3186 const struct builtin_type *bt = builtin_type (gdbarch);
3187
3188 /* The type we're building is this: */
3189 #if 0
3190 union __gdb_builtin_type_vec64i
3191 {
3192 int64_t uint64;
3193 int32_t v2_int32[2];
3194 int16_t v4_int16[4];
3195 int8_t v8_int8[8];
3196 };
3197 #endif
3198
3199 struct type *t;
3200
3201 t = arch_composite_type (gdbarch,
3202 "__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
3203
3204 append_composite_type_field (t, "uint64", bt->builtin_int64);
3205 append_composite_type_field (t, "v2_int32",
3206 init_vector_type (bt->builtin_int32, 2));
3207 append_composite_type_field (t, "v4_int16",
3208 init_vector_type (bt->builtin_int16, 4));
3209 append_composite_type_field (t, "v8_int8",
3210 init_vector_type (bt->builtin_int8, 8));
3211
3212 TYPE_VECTOR (t) = 1;
3213 TYPE_NAME (t) = "builtin_type_vec64i";
3214 tdep->i386_mmx_type = t;
3215 }
3216
3217 return tdep->i386_mmx_type;
3218 }
3219
3220 /* Return the GDB type object for the "standard" data type of data in
3221 register REGNUM. */
3222
3223 struct type *
3224 i386_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
3225 {
3226 if (i386_bnd_regnum_p (gdbarch, regnum))
3227 return i386_bnd_type (gdbarch);
3228 if (i386_mmx_regnum_p (gdbarch, regnum))
3229 return i386_mmx_type (gdbarch);
3230 else if (i386_ymm_regnum_p (gdbarch, regnum))
3231 return i386_ymm_type (gdbarch);
3232 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3233 return i386_ymm_type (gdbarch);
3234 else if (i386_zmm_regnum_p (gdbarch, regnum))
3235 return i386_zmm_type (gdbarch);
3236 else
3237 {
3238 const struct builtin_type *bt = builtin_type (gdbarch);
3239 if (i386_byte_regnum_p (gdbarch, regnum))
3240 return bt->builtin_int8;
3241 else if (i386_word_regnum_p (gdbarch, regnum))
3242 return bt->builtin_int16;
3243 else if (i386_dword_regnum_p (gdbarch, regnum))
3244 return bt->builtin_int32;
3245 else if (i386_k_regnum_p (gdbarch, regnum))
3246 return bt->builtin_int64;
3247 }
3248
3249 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3250 }
3251
3252 /* Map a cooked register onto a raw register or memory. For the i386,
3253 the MMX registers need to be mapped onto floating point registers. */
3254
3255 static int
3256 i386_mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
3257 {
3258 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
3259 int mmxreg, fpreg;
3260 ULONGEST fstat;
3261 int tos;
3262
3263 mmxreg = regnum - tdep->mm0_regnum;
3264 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
3265 tos = (fstat >> 11) & 0x7;
3266 fpreg = (mmxreg + tos) % 8;
3267
3268 return (I387_ST0_REGNUM (tdep) + fpreg);
3269 }
3270
3271 /* A helper function for us by i386_pseudo_register_read_value and
3272 amd64_pseudo_register_read_value. It does all the work but reads
3273 the data into an already-allocated value. */
3274
3275 void
3276 i386_pseudo_register_read_into_value (struct gdbarch *gdbarch,
3277 struct regcache *regcache,
3278 int regnum,
3279 struct value *result_value)
3280 {
3281 gdb_byte raw_buf[I386_MAX_REGISTER_SIZE];
3282 enum register_status status;
3283 gdb_byte *buf = value_contents_raw (result_value);
3284
3285 if (i386_mmx_regnum_p (gdbarch, regnum))
3286 {
3287 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3288
3289 /* Extract (always little endian). */
3290 status = regcache_raw_read (regcache, fpnum, raw_buf);
3291 if (status != REG_VALID)
3292 mark_value_bytes_unavailable (result_value, 0,
3293 TYPE_LENGTH (value_type (result_value)));
3294 else
3295 memcpy (buf, raw_buf, register_size (gdbarch, regnum));
3296 }
3297 else
3298 {
3299 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3300 if (i386_bnd_regnum_p (gdbarch, regnum))
3301 {
3302 regnum -= tdep->bnd0_regnum;
3303
3304 /* Extract (always little endian). Read lower 128bits. */
3305 status = regcache_raw_read (regcache,
3306 I387_BND0R_REGNUM (tdep) + regnum,
3307 raw_buf);
3308 if (status != REG_VALID)
3309 mark_value_bytes_unavailable (result_value, 0, 16);
3310 else
3311 {
3312 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3313 LONGEST upper, lower;
3314 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
3315
3316 lower = extract_unsigned_integer (raw_buf, 8, byte_order);
3317 upper = extract_unsigned_integer (raw_buf + 8, 8, byte_order);
3318 upper = ~upper;
3319
3320 memcpy (buf, &lower, size);
3321 memcpy (buf + size, &upper, size);
3322 }
3323 }
3324 else if (i386_k_regnum_p (gdbarch, regnum))
3325 {
3326 regnum -= tdep->k0_regnum;
3327
3328 /* Extract (always little endian). */
3329 status = regcache_raw_read (regcache,
3330 tdep->k0_regnum + regnum,
3331 raw_buf);
3332 if (status != REG_VALID)
3333 mark_value_bytes_unavailable (result_value, 0, 8);
3334 else
3335 memcpy (buf, raw_buf, 8);
3336 }
3337 else if (i386_zmm_regnum_p (gdbarch, regnum))
3338 {
3339 regnum -= tdep->zmm0_regnum;
3340
3341 if (regnum < num_lower_zmm_regs)
3342 {
3343 /* Extract (always little endian). Read lower 128bits. */
3344 status = regcache_raw_read (regcache,
3345 I387_XMM0_REGNUM (tdep) + regnum,
3346 raw_buf);
3347 if (status != REG_VALID)
3348 mark_value_bytes_unavailable (result_value, 0, 16);
3349 else
3350 memcpy (buf, raw_buf, 16);
3351
3352 /* Extract (always little endian). Read upper 128bits. */
3353 status = regcache_raw_read (regcache,
3354 tdep->ymm0h_regnum + regnum,
3355 raw_buf);
3356 if (status != REG_VALID)
3357 mark_value_bytes_unavailable (result_value, 16, 16);
3358 else
3359 memcpy (buf + 16, raw_buf, 16);
3360 }
3361 else
3362 {
3363 /* Extract (always little endian). Read lower 128bits. */
3364 status = regcache_raw_read (regcache,
3365 I387_XMM16_REGNUM (tdep) + regnum
3366 - num_lower_zmm_regs,
3367 raw_buf);
3368 if (status != REG_VALID)
3369 mark_value_bytes_unavailable (result_value, 0, 16);
3370 else
3371 memcpy (buf, raw_buf, 16);
3372
3373 /* Extract (always little endian). Read upper 128bits. */
3374 status = regcache_raw_read (regcache,
3375 I387_YMM16H_REGNUM (tdep) + regnum
3376 - num_lower_zmm_regs,
3377 raw_buf);
3378 if (status != REG_VALID)
3379 mark_value_bytes_unavailable (result_value, 16, 16);
3380 else
3381 memcpy (buf + 16, raw_buf, 16);
3382 }
3383
3384 /* Read upper 256bits. */
3385 status = regcache_raw_read (regcache,
3386 tdep->zmm0h_regnum + regnum,
3387 raw_buf);
3388 if (status != REG_VALID)
3389 mark_value_bytes_unavailable (result_value, 32, 32);
3390 else
3391 memcpy (buf + 32, raw_buf, 32);
3392 }
3393 else if (i386_ymm_regnum_p (gdbarch, regnum))
3394 {
3395 regnum -= tdep->ymm0_regnum;
3396
3397 /* Extract (always little endian). Read lower 128bits. */
3398 status = regcache_raw_read (regcache,
3399 I387_XMM0_REGNUM (tdep) + regnum,
3400 raw_buf);
3401 if (status != REG_VALID)
3402 mark_value_bytes_unavailable (result_value, 0, 16);
3403 else
3404 memcpy (buf, raw_buf, 16);
3405 /* Read upper 128bits. */
3406 status = regcache_raw_read (regcache,
3407 tdep->ymm0h_regnum + regnum,
3408 raw_buf);
3409 if (status != REG_VALID)
3410 mark_value_bytes_unavailable (result_value, 16, 32);
3411 else
3412 memcpy (buf + 16, raw_buf, 16);
3413 }
3414 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3415 {
3416 regnum -= tdep->ymm16_regnum;
3417 /* Extract (always little endian). Read lower 128bits. */
3418 status = regcache_raw_read (regcache,
3419 I387_XMM16_REGNUM (tdep) + regnum,
3420 raw_buf);
3421 if (status != REG_VALID)
3422 mark_value_bytes_unavailable (result_value, 0, 16);
3423 else
3424 memcpy (buf, raw_buf, 16);
3425 /* Read upper 128bits. */
3426 status = regcache_raw_read (regcache,
3427 tdep->ymm16h_regnum + regnum,
3428 raw_buf);
3429 if (status != REG_VALID)
3430 mark_value_bytes_unavailable (result_value, 16, 16);
3431 else
3432 memcpy (buf + 16, raw_buf, 16);
3433 }
3434 else if (i386_word_regnum_p (gdbarch, regnum))
3435 {
3436 int gpnum = regnum - tdep->ax_regnum;
3437
3438 /* Extract (always little endian). */
3439 status = regcache_raw_read (regcache, gpnum, raw_buf);
3440 if (status != REG_VALID)
3441 mark_value_bytes_unavailable (result_value, 0,
3442 TYPE_LENGTH (value_type (result_value)));
3443 else
3444 memcpy (buf, raw_buf, 2);
3445 }
3446 else if (i386_byte_regnum_p (gdbarch, regnum))
3447 {
3448 int gpnum = regnum - tdep->al_regnum;
3449
3450 /* Extract (always little endian). We read both lower and
3451 upper registers. */
3452 status = regcache_raw_read (regcache, gpnum % 4, raw_buf);
3453 if (status != REG_VALID)
3454 mark_value_bytes_unavailable (result_value, 0,
3455 TYPE_LENGTH (value_type (result_value)));
3456 else if (gpnum >= 4)
3457 memcpy (buf, raw_buf + 1, 1);
3458 else
3459 memcpy (buf, raw_buf, 1);
3460 }
3461 else
3462 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3463 }
3464 }
3465
3466 static struct value *
3467 i386_pseudo_register_read_value (struct gdbarch *gdbarch,
3468 struct regcache *regcache,
3469 int regnum)
3470 {
3471 struct value *result;
3472
3473 result = allocate_value (register_type (gdbarch, regnum));
3474 VALUE_LVAL (result) = lval_register;
3475 VALUE_REGNUM (result) = regnum;
3476
3477 i386_pseudo_register_read_into_value (gdbarch, regcache, regnum, result);
3478
3479 return result;
3480 }
3481
3482 void
3483 i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
3484 int regnum, const gdb_byte *buf)
3485 {
3486 gdb_byte raw_buf[I386_MAX_REGISTER_SIZE];
3487
3488 if (i386_mmx_regnum_p (gdbarch, regnum))
3489 {
3490 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3491
3492 /* Read ... */
3493 regcache_raw_read (regcache, fpnum, raw_buf);
3494 /* ... Modify ... (always little endian). */
3495 memcpy (raw_buf, buf, register_size (gdbarch, regnum));
3496 /* ... Write. */
3497 regcache_raw_write (regcache, fpnum, raw_buf);
3498 }
3499 else
3500 {
3501 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3502
3503 if (i386_bnd_regnum_p (gdbarch, regnum))
3504 {
3505 ULONGEST upper, lower;
3506 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
3507 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3508
3509 /* New values from input value. */
3510 regnum -= tdep->bnd0_regnum;
3511 lower = extract_unsigned_integer (buf, size, byte_order);
3512 upper = extract_unsigned_integer (buf + size, size, byte_order);
3513
3514 /* Fetching register buffer. */
3515 regcache_raw_read (regcache,
3516 I387_BND0R_REGNUM (tdep) + regnum,
3517 raw_buf);
3518
3519 upper = ~upper;
3520
3521 /* Set register bits. */
3522 memcpy (raw_buf, &lower, 8);
3523 memcpy (raw_buf + 8, &upper, 8);
3524
3525
3526 regcache_raw_write (regcache,
3527 I387_BND0R_REGNUM (tdep) + regnum,
3528 raw_buf);
3529 }
3530 else if (i386_k_regnum_p (gdbarch, regnum))
3531 {
3532 regnum -= tdep->k0_regnum;
3533
3534 regcache_raw_write (regcache,
3535 tdep->k0_regnum + regnum,
3536 buf);
3537 }
3538 else if (i386_zmm_regnum_p (gdbarch, regnum))
3539 {
3540 regnum -= tdep->zmm0_regnum;
3541
3542 if (regnum < num_lower_zmm_regs)
3543 {
3544 /* Write lower 128bits. */
3545 regcache_raw_write (regcache,
3546 I387_XMM0_REGNUM (tdep) + regnum,
3547 buf);
3548 /* Write upper 128bits. */
3549 regcache_raw_write (regcache,
3550 I387_YMM0_REGNUM (tdep) + regnum,
3551 buf + 16);
3552 }
3553 else
3554 {
3555 /* Write lower 128bits. */
3556 regcache_raw_write (regcache,
3557 I387_XMM16_REGNUM (tdep) + regnum
3558 - num_lower_zmm_regs,
3559 buf);
3560 /* Write upper 128bits. */
3561 regcache_raw_write (regcache,
3562 I387_YMM16H_REGNUM (tdep) + regnum
3563 - num_lower_zmm_regs,
3564 buf + 16);
3565 }
3566 /* Write upper 256bits. */
3567 regcache_raw_write (regcache,
3568 tdep->zmm0h_regnum + regnum,
3569 buf + 32);
3570 }
3571 else if (i386_ymm_regnum_p (gdbarch, regnum))
3572 {
3573 regnum -= tdep->ymm0_regnum;
3574
3575 /* ... Write lower 128bits. */
3576 regcache_raw_write (regcache,
3577 I387_XMM0_REGNUM (tdep) + regnum,
3578 buf);
3579 /* ... Write upper 128bits. */
3580 regcache_raw_write (regcache,
3581 tdep->ymm0h_regnum + regnum,
3582 buf + 16);
3583 }
3584 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3585 {
3586 regnum -= tdep->ymm16_regnum;
3587
3588 /* ... Write lower 128bits. */
3589 regcache_raw_write (regcache,
3590 I387_XMM16_REGNUM (tdep) + regnum,
3591 buf);
3592 /* ... Write upper 128bits. */
3593 regcache_raw_write (regcache,
3594 tdep->ymm16h_regnum + regnum,
3595 buf + 16);
3596 }
3597 else if (i386_word_regnum_p (gdbarch, regnum))
3598 {
3599 int gpnum = regnum - tdep->ax_regnum;
3600
3601 /* Read ... */
3602 regcache_raw_read (regcache, gpnum, raw_buf);
3603 /* ... Modify ... (always little endian). */
3604 memcpy (raw_buf, buf, 2);
3605 /* ... Write. */
3606 regcache_raw_write (regcache, gpnum, raw_buf);
3607 }
3608 else if (i386_byte_regnum_p (gdbarch, regnum))
3609 {
3610 int gpnum = regnum - tdep->al_regnum;
3611
3612 /* Read ... We read both lower and upper registers. */
3613 regcache_raw_read (regcache, gpnum % 4, raw_buf);
3614 /* ... Modify ... (always little endian). */
3615 if (gpnum >= 4)
3616 memcpy (raw_buf + 1, buf, 1);
3617 else
3618 memcpy (raw_buf, buf, 1);
3619 /* ... Write. */
3620 regcache_raw_write (regcache, gpnum % 4, raw_buf);
3621 }
3622 else
3623 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3624 }
3625 }
3626
3627 /* Implement the 'ax_pseudo_register_collect' gdbarch method. */
3628
3629 int
3630 i386_ax_pseudo_register_collect (struct gdbarch *gdbarch,
3631 struct agent_expr *ax, int regnum)
3632 {
3633 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3634
3635 if (i386_mmx_regnum_p (gdbarch, regnum))
3636 {
3637 /* MMX to FPU register mapping depends on current TOS. Let's just
3638 not care and collect everything... */
3639 int i;
3640
3641 ax_reg_mask (ax, I387_FSTAT_REGNUM (tdep));
3642 for (i = 0; i < 8; i++)
3643 ax_reg_mask (ax, I387_ST0_REGNUM (tdep) + i);
3644 return 0;
3645 }
3646 else if (i386_bnd_regnum_p (gdbarch, regnum))
3647 {
3648 regnum -= tdep->bnd0_regnum;
3649 ax_reg_mask (ax, I387_BND0R_REGNUM (tdep) + regnum);
3650 return 0;
3651 }
3652 else if (i386_k_regnum_p (gdbarch, regnum))
3653 {
3654 regnum -= tdep->k0_regnum;
3655 ax_reg_mask (ax, tdep->k0_regnum + regnum);
3656 return 0;
3657 }
3658 else if (i386_zmm_regnum_p (gdbarch, regnum))
3659 {
3660 regnum -= tdep->zmm0_regnum;
3661 if (regnum < num_lower_zmm_regs)
3662 {
3663 ax_reg_mask (ax, I387_XMM0_REGNUM (tdep) + regnum);
3664 ax_reg_mask (ax, tdep->ymm0h_regnum + regnum);
3665 }
3666 else
3667 {
3668 ax_reg_mask (ax, I387_XMM16_REGNUM (tdep) + regnum
3669 - num_lower_zmm_regs);
3670 ax_reg_mask (ax, I387_YMM16H_REGNUM (tdep) + regnum
3671 - num_lower_zmm_regs);
3672 }
3673 ax_reg_mask (ax, tdep->zmm0h_regnum + regnum);
3674 return 0;
3675 }
3676 else if (i386_ymm_regnum_p (gdbarch, regnum))
3677 {
3678 regnum -= tdep->ymm0_regnum;
3679 ax_reg_mask (ax, I387_XMM0_REGNUM (tdep) + regnum);
3680 ax_reg_mask (ax, tdep->ymm0h_regnum + regnum);
3681 return 0;
3682 }
3683 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3684 {
3685 regnum -= tdep->ymm16_regnum;
3686 ax_reg_mask (ax, I387_XMM16_REGNUM (tdep) + regnum);
3687 ax_reg_mask (ax, tdep->ymm16h_regnum + regnum);
3688 return 0;
3689 }
3690 else if (i386_word_regnum_p (gdbarch, regnum))
3691 {
3692 int gpnum = regnum - tdep->ax_regnum;
3693
3694 ax_reg_mask (ax, gpnum);
3695 return 0;
3696 }
3697 else if (i386_byte_regnum_p (gdbarch, regnum))
3698 {
3699 int gpnum = regnum - tdep->al_regnum;
3700
3701 ax_reg_mask (ax, gpnum % 4);
3702 return 0;
3703 }
3704 else
3705 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3706 return 1;
3707 }
3708 \f
3709
3710 /* Return the register number of the register allocated by GCC after
3711 REGNUM, or -1 if there is no such register. */
3712
3713 static int
3714 i386_next_regnum (int regnum)
3715 {
3716 /* GCC allocates the registers in the order:
3717
3718 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
3719
3720 Since storing a variable in %esp doesn't make any sense we return
3721 -1 for %ebp and for %esp itself. */
3722 static int next_regnum[] =
3723 {
3724 I386_EDX_REGNUM, /* Slot for %eax. */
3725 I386_EBX_REGNUM, /* Slot for %ecx. */
3726 I386_ECX_REGNUM, /* Slot for %edx. */
3727 I386_ESI_REGNUM, /* Slot for %ebx. */
3728 -1, -1, /* Slots for %esp and %ebp. */
3729 I386_EDI_REGNUM, /* Slot for %esi. */
3730 I386_EBP_REGNUM /* Slot for %edi. */
3731 };
3732
3733 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
3734 return next_regnum[regnum];
3735
3736 return -1;
3737 }
3738
3739 /* Return nonzero if a value of type TYPE stored in register REGNUM
3740 needs any special handling. */
3741
3742 static int
3743 i386_convert_register_p (struct gdbarch *gdbarch,
3744 int regnum, struct type *type)
3745 {
3746 int len = TYPE_LENGTH (type);
3747
3748 /* Values may be spread across multiple registers. Most debugging
3749 formats aren't expressive enough to specify the locations, so
3750 some heuristics is involved. Right now we only handle types that
3751 have a length that is a multiple of the word size, since GCC
3752 doesn't seem to put any other types into registers. */
3753 if (len > 4 && len % 4 == 0)
3754 {
3755 int last_regnum = regnum;
3756
3757 while (len > 4)
3758 {
3759 last_regnum = i386_next_regnum (last_regnum);
3760 len -= 4;
3761 }
3762
3763 if (last_regnum != -1)
3764 return 1;
3765 }
3766
3767 return i387_convert_register_p (gdbarch, regnum, type);
3768 }
3769
3770 /* Read a value of type TYPE from register REGNUM in frame FRAME, and
3771 return its contents in TO. */
3772
3773 static int
3774 i386_register_to_value (struct frame_info *frame, int regnum,
3775 struct type *type, gdb_byte *to,
3776 int *optimizedp, int *unavailablep)
3777 {
3778 struct gdbarch *gdbarch = get_frame_arch (frame);
3779 int len = TYPE_LENGTH (type);
3780
3781 if (i386_fp_regnum_p (gdbarch, regnum))
3782 return i387_register_to_value (frame, regnum, type, to,
3783 optimizedp, unavailablep);
3784
3785 /* Read a value spread across multiple registers. */
3786
3787 gdb_assert (len > 4 && len % 4 == 0);
3788
3789 while (len > 0)
3790 {
3791 gdb_assert (regnum != -1);
3792 gdb_assert (register_size (gdbarch, regnum) == 4);
3793
3794 if (!get_frame_register_bytes (frame, regnum, 0,
3795 register_size (gdbarch, regnum),
3796 to, optimizedp, unavailablep))
3797 return 0;
3798
3799 regnum = i386_next_regnum (regnum);
3800 len -= 4;
3801 to += 4;
3802 }
3803
3804 *optimizedp = *unavailablep = 0;
3805 return 1;
3806 }
3807
3808 /* Write the contents FROM of a value of type TYPE into register
3809 REGNUM in frame FRAME. */
3810
3811 static void
3812 i386_value_to_register (struct frame_info *frame, int regnum,
3813 struct type *type, const gdb_byte *from)
3814 {
3815 int len = TYPE_LENGTH (type);
3816
3817 if (i386_fp_regnum_p (get_frame_arch (frame), regnum))
3818 {
3819 i387_value_to_register (frame, regnum, type, from);
3820 return;
3821 }
3822
3823 /* Write a value spread across multiple registers. */
3824
3825 gdb_assert (len > 4 && len % 4 == 0);
3826
3827 while (len > 0)
3828 {
3829 gdb_assert (regnum != -1);
3830 gdb_assert (register_size (get_frame_arch (frame), regnum) == 4);
3831
3832 put_frame_register (frame, regnum, from);
3833 regnum = i386_next_regnum (regnum);
3834 len -= 4;
3835 from += 4;
3836 }
3837 }
3838 \f
3839 /* Supply register REGNUM from the buffer specified by GREGS and LEN
3840 in the general-purpose register set REGSET to register cache
3841 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3842
3843 void
3844 i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
3845 int regnum, const void *gregs, size_t len)
3846 {
3847 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3848 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3849 const gdb_byte *regs = (const gdb_byte *) gregs;
3850 int i;
3851
3852 gdb_assert (len >= tdep->sizeof_gregset);
3853
3854 for (i = 0; i < tdep->gregset_num_regs; i++)
3855 {
3856 if ((regnum == i || regnum == -1)
3857 && tdep->gregset_reg_offset[i] != -1)
3858 regcache_raw_supply (regcache, i, regs + tdep->gregset_reg_offset[i]);
3859 }
3860 }
3861
3862 /* Collect register REGNUM from the register cache REGCACHE and store
3863 it in the buffer specified by GREGS and LEN as described by the
3864 general-purpose register set REGSET. If REGNUM is -1, do this for
3865 all registers in REGSET. */
3866
3867 static void
3868 i386_collect_gregset (const struct regset *regset,
3869 const struct regcache *regcache,
3870 int regnum, void *gregs, size_t len)
3871 {
3872 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3873 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3874 gdb_byte *regs = (gdb_byte *) gregs;
3875 int i;
3876
3877 gdb_assert (len >= tdep->sizeof_gregset);
3878
3879 for (i = 0; i < tdep->gregset_num_regs; i++)
3880 {
3881 if ((regnum == i || regnum == -1)
3882 && tdep->gregset_reg_offset[i] != -1)
3883 regcache_raw_collect (regcache, i, regs + tdep->gregset_reg_offset[i]);
3884 }
3885 }
3886
3887 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
3888 in the floating-point register set REGSET to register cache
3889 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3890
3891 static void
3892 i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
3893 int regnum, const void *fpregs, size_t len)
3894 {
3895 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3896 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3897
3898 if (len == I387_SIZEOF_FXSAVE)
3899 {
3900 i387_supply_fxsave (regcache, regnum, fpregs);
3901 return;
3902 }
3903
3904 gdb_assert (len >= tdep->sizeof_fpregset);
3905 i387_supply_fsave (regcache, regnum, fpregs);
3906 }
3907
3908 /* Collect register REGNUM from the register cache REGCACHE and store
3909 it in the buffer specified by FPREGS and LEN as described by the
3910 floating-point register set REGSET. If REGNUM is -1, do this for
3911 all registers in REGSET. */
3912
3913 static void
3914 i386_collect_fpregset (const struct regset *regset,
3915 const struct regcache *regcache,
3916 int regnum, void *fpregs, size_t len)
3917 {
3918 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3919 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3920
3921 if (len == I387_SIZEOF_FXSAVE)
3922 {
3923 i387_collect_fxsave (regcache, regnum, fpregs);
3924 return;
3925 }
3926
3927 gdb_assert (len >= tdep->sizeof_fpregset);
3928 i387_collect_fsave (regcache, regnum, fpregs);
3929 }
3930
3931 /* Register set definitions. */
3932
3933 const struct regset i386_gregset =
3934 {
3935 NULL, i386_supply_gregset, i386_collect_gregset
3936 };
3937
3938 const struct regset i386_fpregset =
3939 {
3940 NULL, i386_supply_fpregset, i386_collect_fpregset
3941 };
3942
3943 /* Default iterator over core file register note sections. */
3944
3945 void
3946 i386_iterate_over_regset_sections (struct gdbarch *gdbarch,
3947 iterate_over_regset_sections_cb *cb,
3948 void *cb_data,
3949 const struct regcache *regcache)
3950 {
3951 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3952
3953 cb (".reg", tdep->sizeof_gregset, &i386_gregset, NULL, cb_data);
3954 if (tdep->sizeof_fpregset)
3955 cb (".reg2", tdep->sizeof_fpregset, tdep->fpregset, NULL, cb_data);
3956 }
3957 \f
3958
3959 /* Stuff for WIN32 PE style DLL's but is pretty generic really. */
3960
3961 CORE_ADDR
3962 i386_pe_skip_trampoline_code (struct frame_info *frame,
3963 CORE_ADDR pc, char *name)
3964 {
3965 struct gdbarch *gdbarch = get_frame_arch (frame);
3966 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3967
3968 /* jmp *(dest) */
3969 if (pc && read_memory_unsigned_integer (pc, 2, byte_order) == 0x25ff)
3970 {
3971 unsigned long indirect =
3972 read_memory_unsigned_integer (pc + 2, 4, byte_order);
3973 struct minimal_symbol *indsym =
3974 indirect ? lookup_minimal_symbol_by_pc (indirect).minsym : 0;
3975 const char *symname = indsym ? MSYMBOL_LINKAGE_NAME (indsym) : 0;
3976
3977 if (symname)
3978 {
3979 if (startswith (symname, "__imp_")
3980 || startswith (symname, "_imp_"))
3981 return name ? 1 :
3982 read_memory_unsigned_integer (indirect, 4, byte_order);
3983 }
3984 }
3985 return 0; /* Not a trampoline. */
3986 }
3987 \f
3988
3989 /* Return whether the THIS_FRAME corresponds to a sigtramp
3990 routine. */
3991
3992 int
3993 i386_sigtramp_p (struct frame_info *this_frame)
3994 {
3995 CORE_ADDR pc = get_frame_pc (this_frame);
3996 const char *name;
3997
3998 find_pc_partial_function (pc, &name, NULL, NULL);
3999 return (name && strcmp ("_sigtramp", name) == 0);
4000 }
4001 \f
4002
4003 /* We have two flavours of disassembly. The machinery on this page
4004 deals with switching between those. */
4005
4006 static int
4007 i386_print_insn (bfd_vma pc, struct disassemble_info *info)
4008 {
4009 gdb_assert (disassembly_flavor == att_flavor
4010 || disassembly_flavor == intel_flavor);
4011
4012 info->disassembler_options = disassembly_flavor;
4013
4014 return print_insn_i386 (pc, info);
4015 }
4016 \f
4017
4018 /* There are a few i386 architecture variants that differ only
4019 slightly from the generic i386 target. For now, we don't give them
4020 their own source file, but include them here. As a consequence,
4021 they'll always be included. */
4022
4023 /* System V Release 4 (SVR4). */
4024
4025 /* Return whether THIS_FRAME corresponds to a SVR4 sigtramp
4026 routine. */
4027
4028 static int
4029 i386_svr4_sigtramp_p (struct frame_info *this_frame)
4030 {
4031 CORE_ADDR pc = get_frame_pc (this_frame);
4032 const char *name;
4033
4034 /* The origin of these symbols is currently unknown. */
4035 find_pc_partial_function (pc, &name, NULL, NULL);
4036 return (name && (strcmp ("_sigreturn", name) == 0
4037 || strcmp ("sigvechandler", name) == 0));
4038 }
4039
4040 /* Assuming THIS_FRAME is for a SVR4 sigtramp routine, return the
4041 address of the associated sigcontext (ucontext) structure. */
4042
4043 static CORE_ADDR
4044 i386_svr4_sigcontext_addr (struct frame_info *this_frame)
4045 {
4046 struct gdbarch *gdbarch = get_frame_arch (this_frame);
4047 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4048 gdb_byte buf[4];
4049 CORE_ADDR sp;
4050
4051 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
4052 sp = extract_unsigned_integer (buf, 4, byte_order);
4053
4054 return read_memory_unsigned_integer (sp + 8, 4, byte_order);
4055 }
4056
4057 \f
4058
4059 /* Implementation of `gdbarch_stap_is_single_operand', as defined in
4060 gdbarch.h. */
4061
4062 int
4063 i386_stap_is_single_operand (struct gdbarch *gdbarch, const char *s)
4064 {
4065 return (*s == '$' /* Literal number. */
4066 || (isdigit (*s) && s[1] == '(' && s[2] == '%') /* Displacement. */
4067 || (*s == '(' && s[1] == '%') /* Register indirection. */
4068 || (*s == '%' && isalpha (s[1]))); /* Register access. */
4069 }
4070
4071 /* Helper function for i386_stap_parse_special_token.
4072
4073 This function parses operands of the form `-8+3+1(%rbp)', which
4074 must be interpreted as `*(-8 + 3 - 1 + (void *) $eax)'.
4075
4076 Return 1 if the operand was parsed successfully, zero
4077 otherwise. */
4078
4079 static int
4080 i386_stap_parse_special_token_triplet (struct gdbarch *gdbarch,
4081 struct stap_parse_info *p)
4082 {
4083 const char *s = p->arg;
4084
4085 if (isdigit (*s) || *s == '-' || *s == '+')
4086 {
4087 int got_minus[3];
4088 int i;
4089 long displacements[3];
4090 const char *start;
4091 char *regname;
4092 int len;
4093 struct stoken str;
4094 char *endp;
4095
4096 got_minus[0] = 0;
4097 if (*s == '+')
4098 ++s;
4099 else if (*s == '-')
4100 {
4101 ++s;
4102 got_minus[0] = 1;
4103 }
4104
4105 if (!isdigit ((unsigned char) *s))
4106 return 0;
4107
4108 displacements[0] = strtol (s, &endp, 10);
4109 s = endp;
4110
4111 if (*s != '+' && *s != '-')
4112 {
4113 /* We are not dealing with a triplet. */
4114 return 0;
4115 }
4116
4117 got_minus[1] = 0;
4118 if (*s == '+')
4119 ++s;
4120 else
4121 {
4122 ++s;
4123 got_minus[1] = 1;
4124 }
4125
4126 if (!isdigit ((unsigned char) *s))
4127 return 0;
4128
4129 displacements[1] = strtol (s, &endp, 10);
4130 s = endp;
4131
4132 if (*s != '+' && *s != '-')
4133 {
4134 /* We are not dealing with a triplet. */
4135 return 0;
4136 }
4137
4138 got_minus[2] = 0;
4139 if (*s == '+')
4140 ++s;
4141 else
4142 {
4143 ++s;
4144 got_minus[2] = 1;
4145 }
4146
4147 if (!isdigit ((unsigned char) *s))
4148 return 0;
4149
4150 displacements[2] = strtol (s, &endp, 10);
4151 s = endp;
4152
4153 if (*s != '(' || s[1] != '%')
4154 return 0;
4155
4156 s += 2;
4157 start = s;
4158
4159 while (isalnum (*s))
4160 ++s;
4161
4162 if (*s++ != ')')
4163 return 0;
4164
4165 len = s - start - 1;
4166 regname = (char *) alloca (len + 1);
4167
4168 strncpy (regname, start, len);
4169 regname[len] = '\0';
4170
4171 if (user_reg_map_name_to_regnum (gdbarch, regname, len) == -1)
4172 error (_("Invalid register name `%s' on expression `%s'."),
4173 regname, p->saved_arg);
4174
4175 for (i = 0; i < 3; i++)
4176 {
4177 write_exp_elt_opcode (&p->pstate, OP_LONG);
4178 write_exp_elt_type
4179 (&p->pstate, builtin_type (gdbarch)->builtin_long);
4180 write_exp_elt_longcst (&p->pstate, displacements[i]);
4181 write_exp_elt_opcode (&p->pstate, OP_LONG);
4182 if (got_minus[i])
4183 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
4184 }
4185
4186 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4187 str.ptr = regname;
4188 str.length = len;
4189 write_exp_string (&p->pstate, str);
4190 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4191
4192 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4193 write_exp_elt_type (&p->pstate,
4194 builtin_type (gdbarch)->builtin_data_ptr);
4195 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4196
4197 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4198 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4199 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4200
4201 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4202 write_exp_elt_type (&p->pstate,
4203 lookup_pointer_type (p->arg_type));
4204 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4205
4206 write_exp_elt_opcode (&p->pstate, UNOP_IND);
4207
4208 p->arg = s;
4209
4210 return 1;
4211 }
4212
4213 return 0;
4214 }
4215
4216 /* Helper function for i386_stap_parse_special_token.
4217
4218 This function parses operands of the form `register base +
4219 (register index * size) + offset', as represented in
4220 `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4221
4222 Return 1 if the operand was parsed successfully, zero
4223 otherwise. */
4224
4225 static int
4226 i386_stap_parse_special_token_three_arg_disp (struct gdbarch *gdbarch,
4227 struct stap_parse_info *p)
4228 {
4229 const char *s = p->arg;
4230
4231 if (isdigit (*s) || *s == '(' || *s == '-' || *s == '+')
4232 {
4233 int offset_minus = 0;
4234 long offset = 0;
4235 int size_minus = 0;
4236 long size = 0;
4237 const char *start;
4238 char *base;
4239 int len_base;
4240 char *index;
4241 int len_index;
4242 struct stoken base_token, index_token;
4243
4244 if (*s == '+')
4245 ++s;
4246 else if (*s == '-')
4247 {
4248 ++s;
4249 offset_minus = 1;
4250 }
4251
4252 if (offset_minus && !isdigit (*s))
4253 return 0;
4254
4255 if (isdigit (*s))
4256 {
4257 char *endp;
4258
4259 offset = strtol (s, &endp, 10);
4260 s = endp;
4261 }
4262
4263 if (*s != '(' || s[1] != '%')
4264 return 0;
4265
4266 s += 2;
4267 start = s;
4268
4269 while (isalnum (*s))
4270 ++s;
4271
4272 if (*s != ',' || s[1] != '%')
4273 return 0;
4274
4275 len_base = s - start;
4276 base = (char *) alloca (len_base + 1);
4277 strncpy (base, start, len_base);
4278 base[len_base] = '\0';
4279
4280 if (user_reg_map_name_to_regnum (gdbarch, base, len_base) == -1)
4281 error (_("Invalid register name `%s' on expression `%s'."),
4282 base, p->saved_arg);
4283
4284 s += 2;
4285 start = s;
4286
4287 while (isalnum (*s))
4288 ++s;
4289
4290 len_index = s - start;
4291 index = (char *) alloca (len_index + 1);
4292 strncpy (index, start, len_index);
4293 index[len_index] = '\0';
4294
4295 if (user_reg_map_name_to_regnum (gdbarch, index, len_index) == -1)
4296 error (_("Invalid register name `%s' on expression `%s'."),
4297 index, p->saved_arg);
4298
4299 if (*s != ',' && *s != ')')
4300 return 0;
4301
4302 if (*s == ',')
4303 {
4304 char *endp;
4305
4306 ++s;
4307 if (*s == '+')
4308 ++s;
4309 else if (*s == '-')
4310 {
4311 ++s;
4312 size_minus = 1;
4313 }
4314
4315 size = strtol (s, &endp, 10);
4316 s = endp;
4317
4318 if (*s != ')')
4319 return 0;
4320 }
4321
4322 ++s;
4323
4324 if (offset)
4325 {
4326 write_exp_elt_opcode (&p->pstate, OP_LONG);
4327 write_exp_elt_type (&p->pstate,
4328 builtin_type (gdbarch)->builtin_long);
4329 write_exp_elt_longcst (&p->pstate, offset);
4330 write_exp_elt_opcode (&p->pstate, OP_LONG);
4331 if (offset_minus)
4332 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
4333 }
4334
4335 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4336 base_token.ptr = base;
4337 base_token.length = len_base;
4338 write_exp_string (&p->pstate, base_token);
4339 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4340
4341 if (offset)
4342 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4343
4344 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4345 index_token.ptr = index;
4346 index_token.length = len_index;
4347 write_exp_string (&p->pstate, index_token);
4348 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4349
4350 if (size)
4351 {
4352 write_exp_elt_opcode (&p->pstate, OP_LONG);
4353 write_exp_elt_type (&p->pstate,
4354 builtin_type (gdbarch)->builtin_long);
4355 write_exp_elt_longcst (&p->pstate, size);
4356 write_exp_elt_opcode (&p->pstate, OP_LONG);
4357 if (size_minus)
4358 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
4359 write_exp_elt_opcode (&p->pstate, BINOP_MUL);
4360 }
4361
4362 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4363
4364 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4365 write_exp_elt_type (&p->pstate,
4366 lookup_pointer_type (p->arg_type));
4367 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4368
4369 write_exp_elt_opcode (&p->pstate, UNOP_IND);
4370
4371 p->arg = s;
4372
4373 return 1;
4374 }
4375
4376 return 0;
4377 }
4378
4379 /* Implementation of `gdbarch_stap_parse_special_token', as defined in
4380 gdbarch.h. */
4381
4382 int
4383 i386_stap_parse_special_token (struct gdbarch *gdbarch,
4384 struct stap_parse_info *p)
4385 {
4386 /* In order to parse special tokens, we use a state-machine that go
4387 through every known token and try to get a match. */
4388 enum
4389 {
4390 TRIPLET,
4391 THREE_ARG_DISPLACEMENT,
4392 DONE
4393 };
4394 int current_state;
4395
4396 current_state = TRIPLET;
4397
4398 /* The special tokens to be parsed here are:
4399
4400 - `register base + (register index * size) + offset', as represented
4401 in `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4402
4403 - Operands of the form `-8+3+1(%rbp)', which must be interpreted as
4404 `*(-8 + 3 - 1 + (void *) $eax)'. */
4405
4406 while (current_state != DONE)
4407 {
4408 switch (current_state)
4409 {
4410 case TRIPLET:
4411 if (i386_stap_parse_special_token_triplet (gdbarch, p))
4412 return 1;
4413 break;
4414
4415 case THREE_ARG_DISPLACEMENT:
4416 if (i386_stap_parse_special_token_three_arg_disp (gdbarch, p))
4417 return 1;
4418 break;
4419 }
4420
4421 /* Advancing to the next state. */
4422 ++current_state;
4423 }
4424
4425 return 0;
4426 }
4427
4428 \f
4429
4430 /* gdbarch gnu_triplet_regexp method. Both arches are acceptable as GDB always
4431 also supplies -m64 or -m32 by gdbarch_gcc_target_options. */
4432
4433 static const char *
4434 i386_gnu_triplet_regexp (struct gdbarch *gdbarch)
4435 {
4436 return "(x86_64|i.86)";
4437 }
4438
4439 \f
4440
4441 /* Generic ELF. */
4442
4443 void
4444 i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4445 {
4446 static const char *const stap_integer_prefixes[] = { "$", NULL };
4447 static const char *const stap_register_prefixes[] = { "%", NULL };
4448 static const char *const stap_register_indirection_prefixes[] = { "(",
4449 NULL };
4450 static const char *const stap_register_indirection_suffixes[] = { ")",
4451 NULL };
4452
4453 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
4454 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
4455
4456 /* Registering SystemTap handlers. */
4457 set_gdbarch_stap_integer_prefixes (gdbarch, stap_integer_prefixes);
4458 set_gdbarch_stap_register_prefixes (gdbarch, stap_register_prefixes);
4459 set_gdbarch_stap_register_indirection_prefixes (gdbarch,
4460 stap_register_indirection_prefixes);
4461 set_gdbarch_stap_register_indirection_suffixes (gdbarch,
4462 stap_register_indirection_suffixes);
4463 set_gdbarch_stap_is_single_operand (gdbarch,
4464 i386_stap_is_single_operand);
4465 set_gdbarch_stap_parse_special_token (gdbarch,
4466 i386_stap_parse_special_token);
4467
4468 set_gdbarch_gnu_triplet_regexp (gdbarch, i386_gnu_triplet_regexp);
4469 }
4470
4471 /* System V Release 4 (SVR4). */
4472
4473 void
4474 i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4475 {
4476 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4477
4478 /* System V Release 4 uses ELF. */
4479 i386_elf_init_abi (info, gdbarch);
4480
4481 /* System V Release 4 has shared libraries. */
4482 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
4483
4484 tdep->sigtramp_p = i386_svr4_sigtramp_p;
4485 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
4486 tdep->sc_pc_offset = 36 + 14 * 4;
4487 tdep->sc_sp_offset = 36 + 17 * 4;
4488
4489 tdep->jb_pc_offset = 20;
4490 }
4491
4492 /* DJGPP. */
4493
4494 static void
4495 i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4496 {
4497 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4498
4499 /* DJGPP doesn't have any special frames for signal handlers. */
4500 tdep->sigtramp_p = NULL;
4501
4502 tdep->jb_pc_offset = 36;
4503
4504 /* DJGPP does not support the SSE registers. */
4505 if (! tdesc_has_registers (info.target_desc))
4506 tdep->tdesc = tdesc_i386_mmx;
4507
4508 /* Native compiler is GCC, which uses the SVR4 register numbering
4509 even in COFF and STABS. See the comment in i386_gdbarch_init,
4510 before the calls to set_gdbarch_stab_reg_to_regnum and
4511 set_gdbarch_sdb_reg_to_regnum. */
4512 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
4513 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
4514
4515 set_gdbarch_has_dos_based_file_system (gdbarch, 1);
4516
4517 set_gdbarch_gnu_triplet_regexp (gdbarch, i386_gnu_triplet_regexp);
4518 }
4519 \f
4520
4521 /* i386 register groups. In addition to the normal groups, add "mmx"
4522 and "sse". */
4523
4524 static struct reggroup *i386_sse_reggroup;
4525 static struct reggroup *i386_mmx_reggroup;
4526
4527 static void
4528 i386_init_reggroups (void)
4529 {
4530 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
4531 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
4532 }
4533
4534 static void
4535 i386_add_reggroups (struct gdbarch *gdbarch)
4536 {
4537 reggroup_add (gdbarch, i386_sse_reggroup);
4538 reggroup_add (gdbarch, i386_mmx_reggroup);
4539 reggroup_add (gdbarch, general_reggroup);
4540 reggroup_add (gdbarch, float_reggroup);
4541 reggroup_add (gdbarch, all_reggroup);
4542 reggroup_add (gdbarch, save_reggroup);
4543 reggroup_add (gdbarch, restore_reggroup);
4544 reggroup_add (gdbarch, vector_reggroup);
4545 reggroup_add (gdbarch, system_reggroup);
4546 }
4547
4548 int
4549 i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
4550 struct reggroup *group)
4551 {
4552 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4553 int fp_regnum_p, mmx_regnum_p, xmm_regnum_p, mxcsr_regnum_p,
4554 ymm_regnum_p, ymmh_regnum_p, ymm_avx512_regnum_p, ymmh_avx512_regnum_p,
4555 bndr_regnum_p, bnd_regnum_p, k_regnum_p, zmm_regnum_p, zmmh_regnum_p,
4556 zmm_avx512_regnum_p, mpx_ctrl_regnum_p, xmm_avx512_regnum_p,
4557 avx512_p, avx_p, sse_p, pkru_regnum_p;
4558
4559 /* Don't include pseudo registers, except for MMX, in any register
4560 groups. */
4561 if (i386_byte_regnum_p (gdbarch, regnum))
4562 return 0;
4563
4564 if (i386_word_regnum_p (gdbarch, regnum))
4565 return 0;
4566
4567 if (i386_dword_regnum_p (gdbarch, regnum))
4568 return 0;
4569
4570 mmx_regnum_p = i386_mmx_regnum_p (gdbarch, regnum);
4571 if (group == i386_mmx_reggroup)
4572 return mmx_regnum_p;
4573
4574 pkru_regnum_p = i386_pkru_regnum_p(gdbarch, regnum);
4575 xmm_regnum_p = i386_xmm_regnum_p (gdbarch, regnum);
4576 xmm_avx512_regnum_p = i386_xmm_avx512_regnum_p (gdbarch, regnum);
4577 mxcsr_regnum_p = i386_mxcsr_regnum_p (gdbarch, regnum);
4578 if (group == i386_sse_reggroup)
4579 return xmm_regnum_p || xmm_avx512_regnum_p || mxcsr_regnum_p;
4580
4581 ymm_regnum_p = i386_ymm_regnum_p (gdbarch, regnum);
4582 ymm_avx512_regnum_p = i386_ymm_avx512_regnum_p (gdbarch, regnum);
4583 zmm_regnum_p = i386_zmm_regnum_p (gdbarch, regnum);
4584
4585 avx512_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
4586 == X86_XSTATE_AVX_AVX512_MASK);
4587 avx_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
4588 == X86_XSTATE_AVX_MASK) && !avx512_p;
4589 sse_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
4590 == X86_XSTATE_SSE_MASK) && !avx512_p && ! avx_p;
4591
4592 if (group == vector_reggroup)
4593 return (mmx_regnum_p
4594 || (zmm_regnum_p && avx512_p)
4595 || ((ymm_regnum_p || ymm_avx512_regnum_p) && avx_p)
4596 || ((xmm_regnum_p || xmm_avx512_regnum_p) && sse_p)
4597 || mxcsr_regnum_p);
4598
4599 fp_regnum_p = (i386_fp_regnum_p (gdbarch, regnum)
4600 || i386_fpc_regnum_p (gdbarch, regnum));
4601 if (group == float_reggroup)
4602 return fp_regnum_p;
4603
4604 /* For "info reg all", don't include upper YMM registers nor XMM
4605 registers when AVX is supported. */
4606 ymmh_regnum_p = i386_ymmh_regnum_p (gdbarch, regnum);
4607 ymmh_avx512_regnum_p = i386_ymmh_avx512_regnum_p (gdbarch, regnum);
4608 zmmh_regnum_p = i386_zmmh_regnum_p (gdbarch, regnum);
4609 if (group == all_reggroup
4610 && (((xmm_regnum_p || xmm_avx512_regnum_p) && !sse_p)
4611 || ((ymm_regnum_p || ymm_avx512_regnum_p) && !avx_p)
4612 || ymmh_regnum_p
4613 || ymmh_avx512_regnum_p
4614 || zmmh_regnum_p))
4615 return 0;
4616
4617 bnd_regnum_p = i386_bnd_regnum_p (gdbarch, regnum);
4618 if (group == all_reggroup
4619 && ((bnd_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4620 return bnd_regnum_p;
4621
4622 bndr_regnum_p = i386_bndr_regnum_p (gdbarch, regnum);
4623 if (group == all_reggroup
4624 && ((bndr_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4625 return 0;
4626
4627 mpx_ctrl_regnum_p = i386_mpx_ctrl_regnum_p (gdbarch, regnum);
4628 if (group == all_reggroup
4629 && ((mpx_ctrl_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4630 return mpx_ctrl_regnum_p;
4631
4632 if (group == general_reggroup)
4633 return (!fp_regnum_p
4634 && !mmx_regnum_p
4635 && !mxcsr_regnum_p
4636 && !xmm_regnum_p
4637 && !xmm_avx512_regnum_p
4638 && !ymm_regnum_p
4639 && !ymmh_regnum_p
4640 && !ymm_avx512_regnum_p
4641 && !ymmh_avx512_regnum_p
4642 && !bndr_regnum_p
4643 && !bnd_regnum_p
4644 && !mpx_ctrl_regnum_p
4645 && !zmm_regnum_p
4646 && !zmmh_regnum_p
4647 && !pkru_regnum_p);
4648
4649 return default_register_reggroup_p (gdbarch, regnum, group);
4650 }
4651 \f
4652
4653 /* Get the ARGIth function argument for the current function. */
4654
4655 static CORE_ADDR
4656 i386_fetch_pointer_argument (struct frame_info *frame, int argi,
4657 struct type *type)
4658 {
4659 struct gdbarch *gdbarch = get_frame_arch (frame);
4660 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4661 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
4662 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4, byte_order);
4663 }
4664
4665 #define PREFIX_REPZ 0x01
4666 #define PREFIX_REPNZ 0x02
4667 #define PREFIX_LOCK 0x04
4668 #define PREFIX_DATA 0x08
4669 #define PREFIX_ADDR 0x10
4670
4671 /* operand size */
4672 enum
4673 {
4674 OT_BYTE = 0,
4675 OT_WORD,
4676 OT_LONG,
4677 OT_QUAD,
4678 OT_DQUAD,
4679 };
4680
4681 /* i386 arith/logic operations */
4682 enum
4683 {
4684 OP_ADDL,
4685 OP_ORL,
4686 OP_ADCL,
4687 OP_SBBL,
4688 OP_ANDL,
4689 OP_SUBL,
4690 OP_XORL,
4691 OP_CMPL,
4692 };
4693
4694 struct i386_record_s
4695 {
4696 struct gdbarch *gdbarch;
4697 struct regcache *regcache;
4698 CORE_ADDR orig_addr;
4699 CORE_ADDR addr;
4700 int aflag;
4701 int dflag;
4702 int override;
4703 uint8_t modrm;
4704 uint8_t mod, reg, rm;
4705 int ot;
4706 uint8_t rex_x;
4707 uint8_t rex_b;
4708 int rip_offset;
4709 int popl_esp_hack;
4710 const int *regmap;
4711 };
4712
4713 /* Parse the "modrm" part of the memory address irp->addr points at.
4714 Returns -1 if something goes wrong, 0 otherwise. */
4715
4716 static int
4717 i386_record_modrm (struct i386_record_s *irp)
4718 {
4719 struct gdbarch *gdbarch = irp->gdbarch;
4720
4721 if (record_read_memory (gdbarch, irp->addr, &irp->modrm, 1))
4722 return -1;
4723
4724 irp->addr++;
4725 irp->mod = (irp->modrm >> 6) & 3;
4726 irp->reg = (irp->modrm >> 3) & 7;
4727 irp->rm = irp->modrm & 7;
4728
4729 return 0;
4730 }
4731
4732 /* Extract the memory address that the current instruction writes to,
4733 and return it in *ADDR. Return -1 if something goes wrong. */
4734
4735 static int
4736 i386_record_lea_modrm_addr (struct i386_record_s *irp, uint64_t *addr)
4737 {
4738 struct gdbarch *gdbarch = irp->gdbarch;
4739 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4740 gdb_byte buf[4];
4741 ULONGEST offset64;
4742
4743 *addr = 0;
4744 if (irp->aflag || irp->regmap[X86_RECORD_R8_REGNUM])
4745 {
4746 /* 32/64 bits */
4747 int havesib = 0;
4748 uint8_t scale = 0;
4749 uint8_t byte;
4750 uint8_t index = 0;
4751 uint8_t base = irp->rm;
4752
4753 if (base == 4)
4754 {
4755 havesib = 1;
4756 if (record_read_memory (gdbarch, irp->addr, &byte, 1))
4757 return -1;
4758 irp->addr++;
4759 scale = (byte >> 6) & 3;
4760 index = ((byte >> 3) & 7) | irp->rex_x;
4761 base = (byte & 7);
4762 }
4763 base |= irp->rex_b;
4764
4765 switch (irp->mod)
4766 {
4767 case 0:
4768 if ((base & 7) == 5)
4769 {
4770 base = 0xff;
4771 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4772 return -1;
4773 irp->addr += 4;
4774 *addr = extract_signed_integer (buf, 4, byte_order);
4775 if (irp->regmap[X86_RECORD_R8_REGNUM] && !havesib)
4776 *addr += irp->addr + irp->rip_offset;
4777 }
4778 break;
4779 case 1:
4780 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4781 return -1;
4782 irp->addr++;
4783 *addr = (int8_t) buf[0];
4784 break;
4785 case 2:
4786 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4787 return -1;
4788 *addr = extract_signed_integer (buf, 4, byte_order);
4789 irp->addr += 4;
4790 break;
4791 }
4792
4793 offset64 = 0;
4794 if (base != 0xff)
4795 {
4796 if (base == 4 && irp->popl_esp_hack)
4797 *addr += irp->popl_esp_hack;
4798 regcache_raw_read_unsigned (irp->regcache, irp->regmap[base],
4799 &offset64);
4800 }
4801 if (irp->aflag == 2)
4802 {
4803 *addr += offset64;
4804 }
4805 else
4806 *addr = (uint32_t) (offset64 + *addr);
4807
4808 if (havesib && (index != 4 || scale != 0))
4809 {
4810 regcache_raw_read_unsigned (irp->regcache, irp->regmap[index],
4811 &offset64);
4812 if (irp->aflag == 2)
4813 *addr += offset64 << scale;
4814 else
4815 *addr = (uint32_t) (*addr + (offset64 << scale));
4816 }
4817
4818 if (!irp->aflag)
4819 {
4820 /* Since we are in 64-bit mode with ADDR32 prefix, zero-extend
4821 address from 32-bit to 64-bit. */
4822 *addr = (uint32_t) *addr;
4823 }
4824 }
4825 else
4826 {
4827 /* 16 bits */
4828 switch (irp->mod)
4829 {
4830 case 0:
4831 if (irp->rm == 6)
4832 {
4833 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4834 return -1;
4835 irp->addr += 2;
4836 *addr = extract_signed_integer (buf, 2, byte_order);
4837 irp->rm = 0;
4838 goto no_rm;
4839 }
4840 break;
4841 case 1:
4842 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4843 return -1;
4844 irp->addr++;
4845 *addr = (int8_t) buf[0];
4846 break;
4847 case 2:
4848 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4849 return -1;
4850 irp->addr += 2;
4851 *addr = extract_signed_integer (buf, 2, byte_order);
4852 break;
4853 }
4854
4855 switch (irp->rm)
4856 {
4857 case 0:
4858 regcache_raw_read_unsigned (irp->regcache,
4859 irp->regmap[X86_RECORD_REBX_REGNUM],
4860 &offset64);
4861 *addr = (uint32_t) (*addr + offset64);
4862 regcache_raw_read_unsigned (irp->regcache,
4863 irp->regmap[X86_RECORD_RESI_REGNUM],
4864 &offset64);
4865 *addr = (uint32_t) (*addr + offset64);
4866 break;
4867 case 1:
4868 regcache_raw_read_unsigned (irp->regcache,
4869 irp->regmap[X86_RECORD_REBX_REGNUM],
4870 &offset64);
4871 *addr = (uint32_t) (*addr + offset64);
4872 regcache_raw_read_unsigned (irp->regcache,
4873 irp->regmap[X86_RECORD_REDI_REGNUM],
4874 &offset64);
4875 *addr = (uint32_t) (*addr + offset64);
4876 break;
4877 case 2:
4878 regcache_raw_read_unsigned (irp->regcache,
4879 irp->regmap[X86_RECORD_REBP_REGNUM],
4880 &offset64);
4881 *addr = (uint32_t) (*addr + offset64);
4882 regcache_raw_read_unsigned (irp->regcache,
4883 irp->regmap[X86_RECORD_RESI_REGNUM],
4884 &offset64);
4885 *addr = (uint32_t) (*addr + offset64);
4886 break;
4887 case 3:
4888 regcache_raw_read_unsigned (irp->regcache,
4889 irp->regmap[X86_RECORD_REBP_REGNUM],
4890 &offset64);
4891 *addr = (uint32_t) (*addr + offset64);
4892 regcache_raw_read_unsigned (irp->regcache,
4893 irp->regmap[X86_RECORD_REDI_REGNUM],
4894 &offset64);
4895 *addr = (uint32_t) (*addr + offset64);
4896 break;
4897 case 4:
4898 regcache_raw_read_unsigned (irp->regcache,
4899 irp->regmap[X86_RECORD_RESI_REGNUM],
4900 &offset64);
4901 *addr = (uint32_t) (*addr + offset64);
4902 break;
4903 case 5:
4904 regcache_raw_read_unsigned (irp->regcache,
4905 irp->regmap[X86_RECORD_REDI_REGNUM],
4906 &offset64);
4907 *addr = (uint32_t) (*addr + offset64);
4908 break;
4909 case 6:
4910 regcache_raw_read_unsigned (irp->regcache,
4911 irp->regmap[X86_RECORD_REBP_REGNUM],
4912 &offset64);
4913 *addr = (uint32_t) (*addr + offset64);
4914 break;
4915 case 7:
4916 regcache_raw_read_unsigned (irp->regcache,
4917 irp->regmap[X86_RECORD_REBX_REGNUM],
4918 &offset64);
4919 *addr = (uint32_t) (*addr + offset64);
4920 break;
4921 }
4922 *addr &= 0xffff;
4923 }
4924
4925 no_rm:
4926 return 0;
4927 }
4928
4929 /* Record the address and contents of the memory that will be changed
4930 by the current instruction. Return -1 if something goes wrong, 0
4931 otherwise. */
4932
4933 static int
4934 i386_record_lea_modrm (struct i386_record_s *irp)
4935 {
4936 struct gdbarch *gdbarch = irp->gdbarch;
4937 uint64_t addr;
4938
4939 if (irp->override >= 0)
4940 {
4941 if (record_full_memory_query)
4942 {
4943 if (yquery (_("\
4944 Process record ignores the memory change of instruction at address %s\n\
4945 because it can't get the value of the segment register.\n\
4946 Do you want to stop the program?"),
4947 paddress (gdbarch, irp->orig_addr)))
4948 return -1;
4949 }
4950
4951 return 0;
4952 }
4953
4954 if (i386_record_lea_modrm_addr (irp, &addr))
4955 return -1;
4956
4957 if (record_full_arch_list_add_mem (addr, 1 << irp->ot))
4958 return -1;
4959
4960 return 0;
4961 }
4962
4963 /* Record the effects of a push operation. Return -1 if something
4964 goes wrong, 0 otherwise. */
4965
4966 static int
4967 i386_record_push (struct i386_record_s *irp, int size)
4968 {
4969 ULONGEST addr;
4970
4971 if (record_full_arch_list_add_reg (irp->regcache,
4972 irp->regmap[X86_RECORD_RESP_REGNUM]))
4973 return -1;
4974 regcache_raw_read_unsigned (irp->regcache,
4975 irp->regmap[X86_RECORD_RESP_REGNUM],
4976 &addr);
4977 if (record_full_arch_list_add_mem ((CORE_ADDR) addr - size, size))
4978 return -1;
4979
4980 return 0;
4981 }
4982
4983
4984 /* Defines contents to record. */
4985 #define I386_SAVE_FPU_REGS 0xfffd
4986 #define I386_SAVE_FPU_ENV 0xfffe
4987 #define I386_SAVE_FPU_ENV_REG_STACK 0xffff
4988
4989 /* Record the values of the floating point registers which will be
4990 changed by the current instruction. Returns -1 if something is
4991 wrong, 0 otherwise. */
4992
4993 static int i386_record_floats (struct gdbarch *gdbarch,
4994 struct i386_record_s *ir,
4995 uint32_t iregnum)
4996 {
4997 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4998 int i;
4999
5000 /* Oza: Because of floating point insn push/pop of fpu stack is going to
5001 happen. Currently we store st0-st7 registers, but we need not store all
5002 registers all the time, in future we use ftag register and record only
5003 those who are not marked as an empty. */
5004
5005 if (I386_SAVE_FPU_REGS == iregnum)
5006 {
5007 for (i = I387_ST0_REGNUM (tdep); i <= I387_ST0_REGNUM (tdep) + 7; i++)
5008 {
5009 if (record_full_arch_list_add_reg (ir->regcache, i))
5010 return -1;
5011 }
5012 }
5013 else if (I386_SAVE_FPU_ENV == iregnum)
5014 {
5015 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
5016 {
5017 if (record_full_arch_list_add_reg (ir->regcache, i))
5018 return -1;
5019 }
5020 }
5021 else if (I386_SAVE_FPU_ENV_REG_STACK == iregnum)
5022 {
5023 for (i = I387_ST0_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
5024 {
5025 if (record_full_arch_list_add_reg (ir->regcache, i))
5026 return -1;
5027 }
5028 }
5029 else if ((iregnum >= I387_ST0_REGNUM (tdep)) &&
5030 (iregnum <= I387_FOP_REGNUM (tdep)))
5031 {
5032 if (record_full_arch_list_add_reg (ir->regcache,iregnum))
5033 return -1;
5034 }
5035 else
5036 {
5037 /* Parameter error. */
5038 return -1;
5039 }
5040 if(I386_SAVE_FPU_ENV != iregnum)
5041 {
5042 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
5043 {
5044 if (record_full_arch_list_add_reg (ir->regcache, i))
5045 return -1;
5046 }
5047 }
5048 return 0;
5049 }
5050
5051 /* Parse the current instruction, and record the values of the
5052 registers and memory that will be changed by the current
5053 instruction. Returns -1 if something goes wrong, 0 otherwise. */
5054
5055 #define I386_RECORD_FULL_ARCH_LIST_ADD_REG(regnum) \
5056 record_full_arch_list_add_reg (ir.regcache, ir.regmap[(regnum)])
5057
5058 int
5059 i386_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
5060 CORE_ADDR input_addr)
5061 {
5062 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
5063 int prefixes = 0;
5064 int regnum = 0;
5065 uint32_t opcode;
5066 uint8_t opcode8;
5067 ULONGEST addr;
5068 gdb_byte buf[I386_MAX_REGISTER_SIZE];
5069 struct i386_record_s ir;
5070 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5071 uint8_t rex_w = -1;
5072 uint8_t rex_r = 0;
5073
5074 memset (&ir, 0, sizeof (struct i386_record_s));
5075 ir.regcache = regcache;
5076 ir.addr = input_addr;
5077 ir.orig_addr = input_addr;
5078 ir.aflag = 1;
5079 ir.dflag = 1;
5080 ir.override = -1;
5081 ir.popl_esp_hack = 0;
5082 ir.regmap = tdep->record_regmap;
5083 ir.gdbarch = gdbarch;
5084
5085 if (record_debug > 1)
5086 fprintf_unfiltered (gdb_stdlog, "Process record: i386_process_record "
5087 "addr = %s\n",
5088 paddress (gdbarch, ir.addr));
5089
5090 /* prefixes */
5091 while (1)
5092 {
5093 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
5094 return -1;
5095 ir.addr++;
5096 switch (opcode8) /* Instruction prefixes */
5097 {
5098 case REPE_PREFIX_OPCODE:
5099 prefixes |= PREFIX_REPZ;
5100 break;
5101 case REPNE_PREFIX_OPCODE:
5102 prefixes |= PREFIX_REPNZ;
5103 break;
5104 case LOCK_PREFIX_OPCODE:
5105 prefixes |= PREFIX_LOCK;
5106 break;
5107 case CS_PREFIX_OPCODE:
5108 ir.override = X86_RECORD_CS_REGNUM;
5109 break;
5110 case SS_PREFIX_OPCODE:
5111 ir.override = X86_RECORD_SS_REGNUM;
5112 break;
5113 case DS_PREFIX_OPCODE:
5114 ir.override = X86_RECORD_DS_REGNUM;
5115 break;
5116 case ES_PREFIX_OPCODE:
5117 ir.override = X86_RECORD_ES_REGNUM;
5118 break;
5119 case FS_PREFIX_OPCODE:
5120 ir.override = X86_RECORD_FS_REGNUM;
5121 break;
5122 case GS_PREFIX_OPCODE:
5123 ir.override = X86_RECORD_GS_REGNUM;
5124 break;
5125 case DATA_PREFIX_OPCODE:
5126 prefixes |= PREFIX_DATA;
5127 break;
5128 case ADDR_PREFIX_OPCODE:
5129 prefixes |= PREFIX_ADDR;
5130 break;
5131 case 0x40: /* i386 inc %eax */
5132 case 0x41: /* i386 inc %ecx */
5133 case 0x42: /* i386 inc %edx */
5134 case 0x43: /* i386 inc %ebx */
5135 case 0x44: /* i386 inc %esp */
5136 case 0x45: /* i386 inc %ebp */
5137 case 0x46: /* i386 inc %esi */
5138 case 0x47: /* i386 inc %edi */
5139 case 0x48: /* i386 dec %eax */
5140 case 0x49: /* i386 dec %ecx */
5141 case 0x4a: /* i386 dec %edx */
5142 case 0x4b: /* i386 dec %ebx */
5143 case 0x4c: /* i386 dec %esp */
5144 case 0x4d: /* i386 dec %ebp */
5145 case 0x4e: /* i386 dec %esi */
5146 case 0x4f: /* i386 dec %edi */
5147 if (ir.regmap[X86_RECORD_R8_REGNUM]) /* 64 bit target */
5148 {
5149 /* REX */
5150 rex_w = (opcode8 >> 3) & 1;
5151 rex_r = (opcode8 & 0x4) << 1;
5152 ir.rex_x = (opcode8 & 0x2) << 2;
5153 ir.rex_b = (opcode8 & 0x1) << 3;
5154 }
5155 else /* 32 bit target */
5156 goto out_prefixes;
5157 break;
5158 default:
5159 goto out_prefixes;
5160 break;
5161 }
5162 }
5163 out_prefixes:
5164 if (ir.regmap[X86_RECORD_R8_REGNUM] && rex_w == 1)
5165 {
5166 ir.dflag = 2;
5167 }
5168 else
5169 {
5170 if (prefixes & PREFIX_DATA)
5171 ir.dflag ^= 1;
5172 }
5173 if (prefixes & PREFIX_ADDR)
5174 ir.aflag ^= 1;
5175 else if (ir.regmap[X86_RECORD_R8_REGNUM])
5176 ir.aflag = 2;
5177
5178 /* Now check op code. */
5179 opcode = (uint32_t) opcode8;
5180 reswitch:
5181 switch (opcode)
5182 {
5183 case 0x0f:
5184 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
5185 return -1;
5186 ir.addr++;
5187 opcode = (uint32_t) opcode8 | 0x0f00;
5188 goto reswitch;
5189 break;
5190
5191 case 0x00: /* arith & logic */
5192 case 0x01:
5193 case 0x02:
5194 case 0x03:
5195 case 0x04:
5196 case 0x05:
5197 case 0x08:
5198 case 0x09:
5199 case 0x0a:
5200 case 0x0b:
5201 case 0x0c:
5202 case 0x0d:
5203 case 0x10:
5204 case 0x11:
5205 case 0x12:
5206 case 0x13:
5207 case 0x14:
5208 case 0x15:
5209 case 0x18:
5210 case 0x19:
5211 case 0x1a:
5212 case 0x1b:
5213 case 0x1c:
5214 case 0x1d:
5215 case 0x20:
5216 case 0x21:
5217 case 0x22:
5218 case 0x23:
5219 case 0x24:
5220 case 0x25:
5221 case 0x28:
5222 case 0x29:
5223 case 0x2a:
5224 case 0x2b:
5225 case 0x2c:
5226 case 0x2d:
5227 case 0x30:
5228 case 0x31:
5229 case 0x32:
5230 case 0x33:
5231 case 0x34:
5232 case 0x35:
5233 case 0x38:
5234 case 0x39:
5235 case 0x3a:
5236 case 0x3b:
5237 case 0x3c:
5238 case 0x3d:
5239 if (((opcode >> 3) & 7) != OP_CMPL)
5240 {
5241 if ((opcode & 1) == 0)
5242 ir.ot = OT_BYTE;
5243 else
5244 ir.ot = ir.dflag + OT_WORD;
5245
5246 switch ((opcode >> 1) & 3)
5247 {
5248 case 0: /* OP Ev, Gv */
5249 if (i386_record_modrm (&ir))
5250 return -1;
5251 if (ir.mod != 3)
5252 {
5253 if (i386_record_lea_modrm (&ir))
5254 return -1;
5255 }
5256 else
5257 {
5258 ir.rm |= ir.rex_b;
5259 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5260 ir.rm &= 0x3;
5261 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5262 }
5263 break;
5264 case 1: /* OP Gv, Ev */
5265 if (i386_record_modrm (&ir))
5266 return -1;
5267 ir.reg |= rex_r;
5268 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5269 ir.reg &= 0x3;
5270 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5271 break;
5272 case 2: /* OP A, Iv */
5273 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5274 break;
5275 }
5276 }
5277 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5278 break;
5279
5280 case 0x80: /* GRP1 */
5281 case 0x81:
5282 case 0x82:
5283 case 0x83:
5284 if (i386_record_modrm (&ir))
5285 return -1;
5286
5287 if (ir.reg != OP_CMPL)
5288 {
5289 if ((opcode & 1) == 0)
5290 ir.ot = OT_BYTE;
5291 else
5292 ir.ot = ir.dflag + OT_WORD;
5293
5294 if (ir.mod != 3)
5295 {
5296 if (opcode == 0x83)
5297 ir.rip_offset = 1;
5298 else
5299 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5300 if (i386_record_lea_modrm (&ir))
5301 return -1;
5302 }
5303 else
5304 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5305 }
5306 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5307 break;
5308
5309 case 0x40: /* inc */
5310 case 0x41:
5311 case 0x42:
5312 case 0x43:
5313 case 0x44:
5314 case 0x45:
5315 case 0x46:
5316 case 0x47:
5317
5318 case 0x48: /* dec */
5319 case 0x49:
5320 case 0x4a:
5321 case 0x4b:
5322 case 0x4c:
5323 case 0x4d:
5324 case 0x4e:
5325 case 0x4f:
5326
5327 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 7);
5328 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5329 break;
5330
5331 case 0xf6: /* GRP3 */
5332 case 0xf7:
5333 if ((opcode & 1) == 0)
5334 ir.ot = OT_BYTE;
5335 else
5336 ir.ot = ir.dflag + OT_WORD;
5337 if (i386_record_modrm (&ir))
5338 return -1;
5339
5340 if (ir.mod != 3 && ir.reg == 0)
5341 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5342
5343 switch (ir.reg)
5344 {
5345 case 0: /* test */
5346 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5347 break;
5348 case 2: /* not */
5349 case 3: /* neg */
5350 if (ir.mod != 3)
5351 {
5352 if (i386_record_lea_modrm (&ir))
5353 return -1;
5354 }
5355 else
5356 {
5357 ir.rm |= ir.rex_b;
5358 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5359 ir.rm &= 0x3;
5360 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5361 }
5362 if (ir.reg == 3) /* neg */
5363 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5364 break;
5365 case 4: /* mul */
5366 case 5: /* imul */
5367 case 6: /* div */
5368 case 7: /* idiv */
5369 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5370 if (ir.ot != OT_BYTE)
5371 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5372 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5373 break;
5374 default:
5375 ir.addr -= 2;
5376 opcode = opcode << 8 | ir.modrm;
5377 goto no_support;
5378 break;
5379 }
5380 break;
5381
5382 case 0xfe: /* GRP4 */
5383 case 0xff: /* GRP5 */
5384 if (i386_record_modrm (&ir))
5385 return -1;
5386 if (ir.reg >= 2 && opcode == 0xfe)
5387 {
5388 ir.addr -= 2;
5389 opcode = opcode << 8 | ir.modrm;
5390 goto no_support;
5391 }
5392 switch (ir.reg)
5393 {
5394 case 0: /* inc */
5395 case 1: /* dec */
5396 if ((opcode & 1) == 0)
5397 ir.ot = OT_BYTE;
5398 else
5399 ir.ot = ir.dflag + OT_WORD;
5400 if (ir.mod != 3)
5401 {
5402 if (i386_record_lea_modrm (&ir))
5403 return -1;
5404 }
5405 else
5406 {
5407 ir.rm |= ir.rex_b;
5408 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5409 ir.rm &= 0x3;
5410 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5411 }
5412 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5413 break;
5414 case 2: /* call */
5415 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5416 ir.dflag = 2;
5417 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5418 return -1;
5419 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5420 break;
5421 case 3: /* lcall */
5422 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
5423 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5424 return -1;
5425 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5426 break;
5427 case 4: /* jmp */
5428 case 5: /* ljmp */
5429 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5430 break;
5431 case 6: /* push */
5432 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5433 ir.dflag = 2;
5434 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5435 return -1;
5436 break;
5437 default:
5438 ir.addr -= 2;
5439 opcode = opcode << 8 | ir.modrm;
5440 goto no_support;
5441 break;
5442 }
5443 break;
5444
5445 case 0x84: /* test */
5446 case 0x85:
5447 case 0xa8:
5448 case 0xa9:
5449 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5450 break;
5451
5452 case 0x98: /* CWDE/CBW */
5453 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5454 break;
5455
5456 case 0x99: /* CDQ/CWD */
5457 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5458 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5459 break;
5460
5461 case 0x0faf: /* imul */
5462 case 0x69:
5463 case 0x6b:
5464 ir.ot = ir.dflag + OT_WORD;
5465 if (i386_record_modrm (&ir))
5466 return -1;
5467 if (opcode == 0x69)
5468 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5469 else if (opcode == 0x6b)
5470 ir.rip_offset = 1;
5471 ir.reg |= rex_r;
5472 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5473 ir.reg &= 0x3;
5474 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5475 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5476 break;
5477
5478 case 0x0fc0: /* xadd */
5479 case 0x0fc1:
5480 if ((opcode & 1) == 0)
5481 ir.ot = OT_BYTE;
5482 else
5483 ir.ot = ir.dflag + OT_WORD;
5484 if (i386_record_modrm (&ir))
5485 return -1;
5486 ir.reg |= rex_r;
5487 if (ir.mod == 3)
5488 {
5489 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5490 ir.reg &= 0x3;
5491 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5492 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5493 ir.rm &= 0x3;
5494 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5495 }
5496 else
5497 {
5498 if (i386_record_lea_modrm (&ir))
5499 return -1;
5500 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5501 ir.reg &= 0x3;
5502 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5503 }
5504 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5505 break;
5506
5507 case 0x0fb0: /* cmpxchg */
5508 case 0x0fb1:
5509 if ((opcode & 1) == 0)
5510 ir.ot = OT_BYTE;
5511 else
5512 ir.ot = ir.dflag + OT_WORD;
5513 if (i386_record_modrm (&ir))
5514 return -1;
5515 if (ir.mod == 3)
5516 {
5517 ir.reg |= rex_r;
5518 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5519 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5520 ir.reg &= 0x3;
5521 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5522 }
5523 else
5524 {
5525 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5526 if (i386_record_lea_modrm (&ir))
5527 return -1;
5528 }
5529 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5530 break;
5531
5532 case 0x0fc7: /* cmpxchg8b / rdrand / rdseed */
5533 if (i386_record_modrm (&ir))
5534 return -1;
5535 if (ir.mod == 3)
5536 {
5537 /* rdrand and rdseed use the 3 bits of the REG field of ModR/M as
5538 an extended opcode. rdrand has bits 110 (/6) and rdseed
5539 has bits 111 (/7). */
5540 if (ir.reg == 6 || ir.reg == 7)
5541 {
5542 /* The storage register is described by the 3 R/M bits, but the
5543 REX.B prefix may be used to give access to registers
5544 R8~R15. In this case ir.rex_b + R/M will give us the register
5545 in the range R8~R15.
5546
5547 REX.W may also be used to access 64-bit registers, but we
5548 already record entire registers and not just partial bits
5549 of them. */
5550 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rex_b + ir.rm);
5551 /* These instructions also set conditional bits. */
5552 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5553 break;
5554 }
5555 else
5556 {
5557 /* We don't handle this particular instruction yet. */
5558 ir.addr -= 2;
5559 opcode = opcode << 8 | ir.modrm;
5560 goto no_support;
5561 }
5562 }
5563 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5564 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5565 if (i386_record_lea_modrm (&ir))
5566 return -1;
5567 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5568 break;
5569
5570 case 0x50: /* push */
5571 case 0x51:
5572 case 0x52:
5573 case 0x53:
5574 case 0x54:
5575 case 0x55:
5576 case 0x56:
5577 case 0x57:
5578 case 0x68:
5579 case 0x6a:
5580 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5581 ir.dflag = 2;
5582 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5583 return -1;
5584 break;
5585
5586 case 0x06: /* push es */
5587 case 0x0e: /* push cs */
5588 case 0x16: /* push ss */
5589 case 0x1e: /* push ds */
5590 if (ir.regmap[X86_RECORD_R8_REGNUM])
5591 {
5592 ir.addr -= 1;
5593 goto no_support;
5594 }
5595 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5596 return -1;
5597 break;
5598
5599 case 0x0fa0: /* push fs */
5600 case 0x0fa8: /* push gs */
5601 if (ir.regmap[X86_RECORD_R8_REGNUM])
5602 {
5603 ir.addr -= 2;
5604 goto no_support;
5605 }
5606 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5607 return -1;
5608 break;
5609
5610 case 0x60: /* pusha */
5611 if (ir.regmap[X86_RECORD_R8_REGNUM])
5612 {
5613 ir.addr -= 1;
5614 goto no_support;
5615 }
5616 if (i386_record_push (&ir, 1 << (ir.dflag + 4)))
5617 return -1;
5618 break;
5619
5620 case 0x58: /* pop */
5621 case 0x59:
5622 case 0x5a:
5623 case 0x5b:
5624 case 0x5c:
5625 case 0x5d:
5626 case 0x5e:
5627 case 0x5f:
5628 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5629 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
5630 break;
5631
5632 case 0x61: /* popa */
5633 if (ir.regmap[X86_RECORD_R8_REGNUM])
5634 {
5635 ir.addr -= 1;
5636 goto no_support;
5637 }
5638 for (regnum = X86_RECORD_REAX_REGNUM;
5639 regnum <= X86_RECORD_REDI_REGNUM;
5640 regnum++)
5641 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5642 break;
5643
5644 case 0x8f: /* pop */
5645 if (ir.regmap[X86_RECORD_R8_REGNUM])
5646 ir.ot = ir.dflag ? OT_QUAD : OT_WORD;
5647 else
5648 ir.ot = ir.dflag + OT_WORD;
5649 if (i386_record_modrm (&ir))
5650 return -1;
5651 if (ir.mod == 3)
5652 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5653 else
5654 {
5655 ir.popl_esp_hack = 1 << ir.ot;
5656 if (i386_record_lea_modrm (&ir))
5657 return -1;
5658 }
5659 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5660 break;
5661
5662 case 0xc8: /* enter */
5663 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
5664 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5665 ir.dflag = 2;
5666 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5667 return -1;
5668 break;
5669
5670 case 0xc9: /* leave */
5671 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5672 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
5673 break;
5674
5675 case 0x07: /* pop es */
5676 if (ir.regmap[X86_RECORD_R8_REGNUM])
5677 {
5678 ir.addr -= 1;
5679 goto no_support;
5680 }
5681 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5682 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_ES_REGNUM);
5683 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5684 break;
5685
5686 case 0x17: /* pop ss */
5687 if (ir.regmap[X86_RECORD_R8_REGNUM])
5688 {
5689 ir.addr -= 1;
5690 goto no_support;
5691 }
5692 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5693 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_SS_REGNUM);
5694 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5695 break;
5696
5697 case 0x1f: /* pop ds */
5698 if (ir.regmap[X86_RECORD_R8_REGNUM])
5699 {
5700 ir.addr -= 1;
5701 goto no_support;
5702 }
5703 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5704 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_DS_REGNUM);
5705 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5706 break;
5707
5708 case 0x0fa1: /* pop fs */
5709 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5710 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_FS_REGNUM);
5711 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5712 break;
5713
5714 case 0x0fa9: /* pop gs */
5715 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5716 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
5717 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5718 break;
5719
5720 case 0x88: /* mov */
5721 case 0x89:
5722 case 0xc6:
5723 case 0xc7:
5724 if ((opcode & 1) == 0)
5725 ir.ot = OT_BYTE;
5726 else
5727 ir.ot = ir.dflag + OT_WORD;
5728
5729 if (i386_record_modrm (&ir))
5730 return -1;
5731
5732 if (ir.mod != 3)
5733 {
5734 if (opcode == 0xc6 || opcode == 0xc7)
5735 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5736 if (i386_record_lea_modrm (&ir))
5737 return -1;
5738 }
5739 else
5740 {
5741 if (opcode == 0xc6 || opcode == 0xc7)
5742 ir.rm |= ir.rex_b;
5743 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5744 ir.rm &= 0x3;
5745 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5746 }
5747 break;
5748
5749 case 0x8a: /* mov */
5750 case 0x8b:
5751 if ((opcode & 1) == 0)
5752 ir.ot = OT_BYTE;
5753 else
5754 ir.ot = ir.dflag + OT_WORD;
5755 if (i386_record_modrm (&ir))
5756 return -1;
5757 ir.reg |= rex_r;
5758 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5759 ir.reg &= 0x3;
5760 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5761 break;
5762
5763 case 0x8c: /* mov seg */
5764 if (i386_record_modrm (&ir))
5765 return -1;
5766 if (ir.reg > 5)
5767 {
5768 ir.addr -= 2;
5769 opcode = opcode << 8 | ir.modrm;
5770 goto no_support;
5771 }
5772
5773 if (ir.mod == 3)
5774 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5775 else
5776 {
5777 ir.ot = OT_WORD;
5778 if (i386_record_lea_modrm (&ir))
5779 return -1;
5780 }
5781 break;
5782
5783 case 0x8e: /* mov seg */
5784 if (i386_record_modrm (&ir))
5785 return -1;
5786 switch (ir.reg)
5787 {
5788 case 0:
5789 regnum = X86_RECORD_ES_REGNUM;
5790 break;
5791 case 2:
5792 regnum = X86_RECORD_SS_REGNUM;
5793 break;
5794 case 3:
5795 regnum = X86_RECORD_DS_REGNUM;
5796 break;
5797 case 4:
5798 regnum = X86_RECORD_FS_REGNUM;
5799 break;
5800 case 5:
5801 regnum = X86_RECORD_GS_REGNUM;
5802 break;
5803 default:
5804 ir.addr -= 2;
5805 opcode = opcode << 8 | ir.modrm;
5806 goto no_support;
5807 break;
5808 }
5809 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5810 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5811 break;
5812
5813 case 0x0fb6: /* movzbS */
5814 case 0x0fb7: /* movzwS */
5815 case 0x0fbe: /* movsbS */
5816 case 0x0fbf: /* movswS */
5817 if (i386_record_modrm (&ir))
5818 return -1;
5819 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5820 break;
5821
5822 case 0x8d: /* lea */
5823 if (i386_record_modrm (&ir))
5824 return -1;
5825 if (ir.mod == 3)
5826 {
5827 ir.addr -= 2;
5828 opcode = opcode << 8 | ir.modrm;
5829 goto no_support;
5830 }
5831 ir.ot = ir.dflag;
5832 ir.reg |= rex_r;
5833 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5834 ir.reg &= 0x3;
5835 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5836 break;
5837
5838 case 0xa0: /* mov EAX */
5839 case 0xa1:
5840
5841 case 0xd7: /* xlat */
5842 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5843 break;
5844
5845 case 0xa2: /* mov EAX */
5846 case 0xa3:
5847 if (ir.override >= 0)
5848 {
5849 if (record_full_memory_query)
5850 {
5851 if (yquery (_("\
5852 Process record ignores the memory change of instruction at address %s\n\
5853 because it can't get the value of the segment register.\n\
5854 Do you want to stop the program?"),
5855 paddress (gdbarch, ir.orig_addr)))
5856 return -1;
5857 }
5858 }
5859 else
5860 {
5861 if ((opcode & 1) == 0)
5862 ir.ot = OT_BYTE;
5863 else
5864 ir.ot = ir.dflag + OT_WORD;
5865 if (ir.aflag == 2)
5866 {
5867 if (record_read_memory (gdbarch, ir.addr, buf, 8))
5868 return -1;
5869 ir.addr += 8;
5870 addr = extract_unsigned_integer (buf, 8, byte_order);
5871 }
5872 else if (ir.aflag)
5873 {
5874 if (record_read_memory (gdbarch, ir.addr, buf, 4))
5875 return -1;
5876 ir.addr += 4;
5877 addr = extract_unsigned_integer (buf, 4, byte_order);
5878 }
5879 else
5880 {
5881 if (record_read_memory (gdbarch, ir.addr, buf, 2))
5882 return -1;
5883 ir.addr += 2;
5884 addr = extract_unsigned_integer (buf, 2, byte_order);
5885 }
5886 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
5887 return -1;
5888 }
5889 break;
5890
5891 case 0xb0: /* mov R, Ib */
5892 case 0xb1:
5893 case 0xb2:
5894 case 0xb3:
5895 case 0xb4:
5896 case 0xb5:
5897 case 0xb6:
5898 case 0xb7:
5899 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((ir.regmap[X86_RECORD_R8_REGNUM])
5900 ? ((opcode & 0x7) | ir.rex_b)
5901 : ((opcode & 0x7) & 0x3));
5902 break;
5903
5904 case 0xb8: /* mov R, Iv */
5905 case 0xb9:
5906 case 0xba:
5907 case 0xbb:
5908 case 0xbc:
5909 case 0xbd:
5910 case 0xbe:
5911 case 0xbf:
5912 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
5913 break;
5914
5915 case 0x91: /* xchg R, EAX */
5916 case 0x92:
5917 case 0x93:
5918 case 0x94:
5919 case 0x95:
5920 case 0x96:
5921 case 0x97:
5922 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5923 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 0x7);
5924 break;
5925
5926 case 0x86: /* xchg Ev, Gv */
5927 case 0x87:
5928 if ((opcode & 1) == 0)
5929 ir.ot = OT_BYTE;
5930 else
5931 ir.ot = ir.dflag + OT_WORD;
5932 if (i386_record_modrm (&ir))
5933 return -1;
5934 if (ir.mod == 3)
5935 {
5936 ir.rm |= ir.rex_b;
5937 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5938 ir.rm &= 0x3;
5939 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5940 }
5941 else
5942 {
5943 if (i386_record_lea_modrm (&ir))
5944 return -1;
5945 }
5946 ir.reg |= rex_r;
5947 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5948 ir.reg &= 0x3;
5949 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5950 break;
5951
5952 case 0xc4: /* les Gv */
5953 case 0xc5: /* lds Gv */
5954 if (ir.regmap[X86_RECORD_R8_REGNUM])
5955 {
5956 ir.addr -= 1;
5957 goto no_support;
5958 }
5959 /* FALLTHROUGH */
5960 case 0x0fb2: /* lss Gv */
5961 case 0x0fb4: /* lfs Gv */
5962 case 0x0fb5: /* lgs Gv */
5963 if (i386_record_modrm (&ir))
5964 return -1;
5965 if (ir.mod == 3)
5966 {
5967 if (opcode > 0xff)
5968 ir.addr -= 3;
5969 else
5970 ir.addr -= 2;
5971 opcode = opcode << 8 | ir.modrm;
5972 goto no_support;
5973 }
5974 switch (opcode)
5975 {
5976 case 0xc4: /* les Gv */
5977 regnum = X86_RECORD_ES_REGNUM;
5978 break;
5979 case 0xc5: /* lds Gv */
5980 regnum = X86_RECORD_DS_REGNUM;
5981 break;
5982 case 0x0fb2: /* lss Gv */
5983 regnum = X86_RECORD_SS_REGNUM;
5984 break;
5985 case 0x0fb4: /* lfs Gv */
5986 regnum = X86_RECORD_FS_REGNUM;
5987 break;
5988 case 0x0fb5: /* lgs Gv */
5989 regnum = X86_RECORD_GS_REGNUM;
5990 break;
5991 }
5992 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5993 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5994 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5995 break;
5996
5997 case 0xc0: /* shifts */
5998 case 0xc1:
5999 case 0xd0:
6000 case 0xd1:
6001 case 0xd2:
6002 case 0xd3:
6003 if ((opcode & 1) == 0)
6004 ir.ot = OT_BYTE;
6005 else
6006 ir.ot = ir.dflag + OT_WORD;
6007 if (i386_record_modrm (&ir))
6008 return -1;
6009 if (ir.mod != 3 && (opcode == 0xd2 || opcode == 0xd3))
6010 {
6011 if (i386_record_lea_modrm (&ir))
6012 return -1;
6013 }
6014 else
6015 {
6016 ir.rm |= ir.rex_b;
6017 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
6018 ir.rm &= 0x3;
6019 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
6020 }
6021 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6022 break;
6023
6024 case 0x0fa4:
6025 case 0x0fa5:
6026 case 0x0fac:
6027 case 0x0fad:
6028 if (i386_record_modrm (&ir))
6029 return -1;
6030 if (ir.mod == 3)
6031 {
6032 if (record_full_arch_list_add_reg (ir.regcache, ir.rm))
6033 return -1;
6034 }
6035 else
6036 {
6037 if (i386_record_lea_modrm (&ir))
6038 return -1;
6039 }
6040 break;
6041
6042 case 0xd8: /* Floats. */
6043 case 0xd9:
6044 case 0xda:
6045 case 0xdb:
6046 case 0xdc:
6047 case 0xdd:
6048 case 0xde:
6049 case 0xdf:
6050 if (i386_record_modrm (&ir))
6051 return -1;
6052 ir.reg |= ((opcode & 7) << 3);
6053 if (ir.mod != 3)
6054 {
6055 /* Memory. */
6056 uint64_t addr64;
6057
6058 if (i386_record_lea_modrm_addr (&ir, &addr64))
6059 return -1;
6060 switch (ir.reg)
6061 {
6062 case 0x02:
6063 case 0x12:
6064 case 0x22:
6065 case 0x32:
6066 /* For fcom, ficom nothing to do. */
6067 break;
6068 case 0x03:
6069 case 0x13:
6070 case 0x23:
6071 case 0x33:
6072 /* For fcomp, ficomp pop FPU stack, store all. */
6073 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6074 return -1;
6075 break;
6076 case 0x00:
6077 case 0x01:
6078 case 0x04:
6079 case 0x05:
6080 case 0x06:
6081 case 0x07:
6082 case 0x10:
6083 case 0x11:
6084 case 0x14:
6085 case 0x15:
6086 case 0x16:
6087 case 0x17:
6088 case 0x20:
6089 case 0x21:
6090 case 0x24:
6091 case 0x25:
6092 case 0x26:
6093 case 0x27:
6094 case 0x30:
6095 case 0x31:
6096 case 0x34:
6097 case 0x35:
6098 case 0x36:
6099 case 0x37:
6100 /* For fadd, fmul, fsub, fsubr, fdiv, fdivr, fiadd, fimul,
6101 fisub, fisubr, fidiv, fidivr, modR/M.reg is an extension
6102 of code, always affects st(0) register. */
6103 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
6104 return -1;
6105 break;
6106 case 0x08:
6107 case 0x0a:
6108 case 0x0b:
6109 case 0x18:
6110 case 0x19:
6111 case 0x1a:
6112 case 0x1b:
6113 case 0x1d:
6114 case 0x28:
6115 case 0x29:
6116 case 0x2a:
6117 case 0x2b:
6118 case 0x38:
6119 case 0x39:
6120 case 0x3a:
6121 case 0x3b:
6122 case 0x3c:
6123 case 0x3d:
6124 switch (ir.reg & 7)
6125 {
6126 case 0:
6127 /* Handling fld, fild. */
6128 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6129 return -1;
6130 break;
6131 case 1:
6132 switch (ir.reg >> 4)
6133 {
6134 case 0:
6135 if (record_full_arch_list_add_mem (addr64, 4))
6136 return -1;
6137 break;
6138 case 2:
6139 if (record_full_arch_list_add_mem (addr64, 8))
6140 return -1;
6141 break;
6142 case 3:
6143 break;
6144 default:
6145 if (record_full_arch_list_add_mem (addr64, 2))
6146 return -1;
6147 break;
6148 }
6149 break;
6150 default:
6151 switch (ir.reg >> 4)
6152 {
6153 case 0:
6154 if (record_full_arch_list_add_mem (addr64, 4))
6155 return -1;
6156 if (3 == (ir.reg & 7))
6157 {
6158 /* For fstp m32fp. */
6159 if (i386_record_floats (gdbarch, &ir,
6160 I386_SAVE_FPU_REGS))
6161 return -1;
6162 }
6163 break;
6164 case 1:
6165 if (record_full_arch_list_add_mem (addr64, 4))
6166 return -1;
6167 if ((3 == (ir.reg & 7))
6168 || (5 == (ir.reg & 7))
6169 || (7 == (ir.reg & 7)))
6170 {
6171 /* For fstp insn. */
6172 if (i386_record_floats (gdbarch, &ir,
6173 I386_SAVE_FPU_REGS))
6174 return -1;
6175 }
6176 break;
6177 case 2:
6178 if (record_full_arch_list_add_mem (addr64, 8))
6179 return -1;
6180 if (3 == (ir.reg & 7))
6181 {
6182 /* For fstp m64fp. */
6183 if (i386_record_floats (gdbarch, &ir,
6184 I386_SAVE_FPU_REGS))
6185 return -1;
6186 }
6187 break;
6188 case 3:
6189 if ((3 <= (ir.reg & 7)) && (6 <= (ir.reg & 7)))
6190 {
6191 /* For fistp, fbld, fild, fbstp. */
6192 if (i386_record_floats (gdbarch, &ir,
6193 I386_SAVE_FPU_REGS))
6194 return -1;
6195 }
6196 /* Fall through */
6197 default:
6198 if (record_full_arch_list_add_mem (addr64, 2))
6199 return -1;
6200 break;
6201 }
6202 break;
6203 }
6204 break;
6205 case 0x0c:
6206 /* Insn fldenv. */
6207 if (i386_record_floats (gdbarch, &ir,
6208 I386_SAVE_FPU_ENV_REG_STACK))
6209 return -1;
6210 break;
6211 case 0x0d:
6212 /* Insn fldcw. */
6213 if (i386_record_floats (gdbarch, &ir, I387_FCTRL_REGNUM (tdep)))
6214 return -1;
6215 break;
6216 case 0x2c:
6217 /* Insn frstor. */
6218 if (i386_record_floats (gdbarch, &ir,
6219 I386_SAVE_FPU_ENV_REG_STACK))
6220 return -1;
6221 break;
6222 case 0x0e:
6223 if (ir.dflag)
6224 {
6225 if (record_full_arch_list_add_mem (addr64, 28))
6226 return -1;
6227 }
6228 else
6229 {
6230 if (record_full_arch_list_add_mem (addr64, 14))
6231 return -1;
6232 }
6233 break;
6234 case 0x0f:
6235 case 0x2f:
6236 if (record_full_arch_list_add_mem (addr64, 2))
6237 return -1;
6238 /* Insn fstp, fbstp. */
6239 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6240 return -1;
6241 break;
6242 case 0x1f:
6243 case 0x3e:
6244 if (record_full_arch_list_add_mem (addr64, 10))
6245 return -1;
6246 break;
6247 case 0x2e:
6248 if (ir.dflag)
6249 {
6250 if (record_full_arch_list_add_mem (addr64, 28))
6251 return -1;
6252 addr64 += 28;
6253 }
6254 else
6255 {
6256 if (record_full_arch_list_add_mem (addr64, 14))
6257 return -1;
6258 addr64 += 14;
6259 }
6260 if (record_full_arch_list_add_mem (addr64, 80))
6261 return -1;
6262 /* Insn fsave. */
6263 if (i386_record_floats (gdbarch, &ir,
6264 I386_SAVE_FPU_ENV_REG_STACK))
6265 return -1;
6266 break;
6267 case 0x3f:
6268 if (record_full_arch_list_add_mem (addr64, 8))
6269 return -1;
6270 /* Insn fistp. */
6271 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6272 return -1;
6273 break;
6274 default:
6275 ir.addr -= 2;
6276 opcode = opcode << 8 | ir.modrm;
6277 goto no_support;
6278 break;
6279 }
6280 }
6281 /* Opcode is an extension of modR/M byte. */
6282 else
6283 {
6284 switch (opcode)
6285 {
6286 case 0xd8:
6287 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
6288 return -1;
6289 break;
6290 case 0xd9:
6291 if (0x0c == (ir.modrm >> 4))
6292 {
6293 if ((ir.modrm & 0x0f) <= 7)
6294 {
6295 if (i386_record_floats (gdbarch, &ir,
6296 I386_SAVE_FPU_REGS))
6297 return -1;
6298 }
6299 else
6300 {
6301 if (i386_record_floats (gdbarch, &ir,
6302 I387_ST0_REGNUM (tdep)))
6303 return -1;
6304 /* If only st(0) is changing, then we have already
6305 recorded. */
6306 if ((ir.modrm & 0x0f) - 0x08)
6307 {
6308 if (i386_record_floats (gdbarch, &ir,
6309 I387_ST0_REGNUM (tdep) +
6310 ((ir.modrm & 0x0f) - 0x08)))
6311 return -1;
6312 }
6313 }
6314 }
6315 else
6316 {
6317 switch (ir.modrm)
6318 {
6319 case 0xe0:
6320 case 0xe1:
6321 case 0xf0:
6322 case 0xf5:
6323 case 0xf8:
6324 case 0xfa:
6325 case 0xfc:
6326 case 0xfe:
6327 case 0xff:
6328 if (i386_record_floats (gdbarch, &ir,
6329 I387_ST0_REGNUM (tdep)))
6330 return -1;
6331 break;
6332 case 0xf1:
6333 case 0xf2:
6334 case 0xf3:
6335 case 0xf4:
6336 case 0xf6:
6337 case 0xf7:
6338 case 0xe8:
6339 case 0xe9:
6340 case 0xea:
6341 case 0xeb:
6342 case 0xec:
6343 case 0xed:
6344 case 0xee:
6345 case 0xf9:
6346 case 0xfb:
6347 if (i386_record_floats (gdbarch, &ir,
6348 I386_SAVE_FPU_REGS))
6349 return -1;
6350 break;
6351 case 0xfd:
6352 if (i386_record_floats (gdbarch, &ir,
6353 I387_ST0_REGNUM (tdep)))
6354 return -1;
6355 if (i386_record_floats (gdbarch, &ir,
6356 I387_ST0_REGNUM (tdep) + 1))
6357 return -1;
6358 break;
6359 }
6360 }
6361 break;
6362 case 0xda:
6363 if (0xe9 == ir.modrm)
6364 {
6365 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6366 return -1;
6367 }
6368 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
6369 {
6370 if (i386_record_floats (gdbarch, &ir,
6371 I387_ST0_REGNUM (tdep)))
6372 return -1;
6373 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
6374 {
6375 if (i386_record_floats (gdbarch, &ir,
6376 I387_ST0_REGNUM (tdep) +
6377 (ir.modrm & 0x0f)))
6378 return -1;
6379 }
6380 else if ((ir.modrm & 0x0f) - 0x08)
6381 {
6382 if (i386_record_floats (gdbarch, &ir,
6383 I387_ST0_REGNUM (tdep) +
6384 ((ir.modrm & 0x0f) - 0x08)))
6385 return -1;
6386 }
6387 }
6388 break;
6389 case 0xdb:
6390 if (0xe3 == ir.modrm)
6391 {
6392 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_ENV))
6393 return -1;
6394 }
6395 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
6396 {
6397 if (i386_record_floats (gdbarch, &ir,
6398 I387_ST0_REGNUM (tdep)))
6399 return -1;
6400 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
6401 {
6402 if (i386_record_floats (gdbarch, &ir,
6403 I387_ST0_REGNUM (tdep) +
6404 (ir.modrm & 0x0f)))
6405 return -1;
6406 }
6407 else if ((ir.modrm & 0x0f) - 0x08)
6408 {
6409 if (i386_record_floats (gdbarch, &ir,
6410 I387_ST0_REGNUM (tdep) +
6411 ((ir.modrm & 0x0f) - 0x08)))
6412 return -1;
6413 }
6414 }
6415 break;
6416 case 0xdc:
6417 if ((0x0c == ir.modrm >> 4)
6418 || (0x0d == ir.modrm >> 4)
6419 || (0x0f == ir.modrm >> 4))
6420 {
6421 if ((ir.modrm & 0x0f) <= 7)
6422 {
6423 if (i386_record_floats (gdbarch, &ir,
6424 I387_ST0_REGNUM (tdep) +
6425 (ir.modrm & 0x0f)))
6426 return -1;
6427 }
6428 else
6429 {
6430 if (i386_record_floats (gdbarch, &ir,
6431 I387_ST0_REGNUM (tdep) +
6432 ((ir.modrm & 0x0f) - 0x08)))
6433 return -1;
6434 }
6435 }
6436 break;
6437 case 0xdd:
6438 if (0x0c == ir.modrm >> 4)
6439 {
6440 if (i386_record_floats (gdbarch, &ir,
6441 I387_FTAG_REGNUM (tdep)))
6442 return -1;
6443 }
6444 else if ((0x0d == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
6445 {
6446 if ((ir.modrm & 0x0f) <= 7)
6447 {
6448 if (i386_record_floats (gdbarch, &ir,
6449 I387_ST0_REGNUM (tdep) +
6450 (ir.modrm & 0x0f)))
6451 return -1;
6452 }
6453 else
6454 {
6455 if (i386_record_floats (gdbarch, &ir,
6456 I386_SAVE_FPU_REGS))
6457 return -1;
6458 }
6459 }
6460 break;
6461 case 0xde:
6462 if ((0x0c == ir.modrm >> 4)
6463 || (0x0e == ir.modrm >> 4)
6464 || (0x0f == ir.modrm >> 4)
6465 || (0xd9 == ir.modrm))
6466 {
6467 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6468 return -1;
6469 }
6470 break;
6471 case 0xdf:
6472 if (0xe0 == ir.modrm)
6473 {
6474 if (record_full_arch_list_add_reg (ir.regcache,
6475 I386_EAX_REGNUM))
6476 return -1;
6477 }
6478 else if ((0x0f == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
6479 {
6480 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6481 return -1;
6482 }
6483 break;
6484 }
6485 }
6486 break;
6487 /* string ops */
6488 case 0xa4: /* movsS */
6489 case 0xa5:
6490 case 0xaa: /* stosS */
6491 case 0xab:
6492 case 0x6c: /* insS */
6493 case 0x6d:
6494 regcache_raw_read_unsigned (ir.regcache,
6495 ir.regmap[X86_RECORD_RECX_REGNUM],
6496 &addr);
6497 if (addr)
6498 {
6499 ULONGEST es, ds;
6500
6501 if ((opcode & 1) == 0)
6502 ir.ot = OT_BYTE;
6503 else
6504 ir.ot = ir.dflag + OT_WORD;
6505 regcache_raw_read_unsigned (ir.regcache,
6506 ir.regmap[X86_RECORD_REDI_REGNUM],
6507 &addr);
6508
6509 regcache_raw_read_unsigned (ir.regcache,
6510 ir.regmap[X86_RECORD_ES_REGNUM],
6511 &es);
6512 regcache_raw_read_unsigned (ir.regcache,
6513 ir.regmap[X86_RECORD_DS_REGNUM],
6514 &ds);
6515 if (ir.aflag && (es != ds))
6516 {
6517 /* addr += ((uint32_t) read_register (I386_ES_REGNUM)) << 4; */
6518 if (record_full_memory_query)
6519 {
6520 if (yquery (_("\
6521 Process record ignores the memory change of instruction at address %s\n\
6522 because it can't get the value of the segment register.\n\
6523 Do you want to stop the program?"),
6524 paddress (gdbarch, ir.orig_addr)))
6525 return -1;
6526 }
6527 }
6528 else
6529 {
6530 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
6531 return -1;
6532 }
6533
6534 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6535 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6536 if (opcode == 0xa4 || opcode == 0xa5)
6537 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6538 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6539 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6540 }
6541 break;
6542
6543 case 0xa6: /* cmpsS */
6544 case 0xa7:
6545 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6546 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6547 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6548 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6549 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6550 break;
6551
6552 case 0xac: /* lodsS */
6553 case 0xad:
6554 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6555 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6556 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6557 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6558 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6559 break;
6560
6561 case 0xae: /* scasS */
6562 case 0xaf:
6563 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6564 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6565 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6566 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6567 break;
6568
6569 case 0x6e: /* outsS */
6570 case 0x6f:
6571 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6572 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6573 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6574 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6575 break;
6576
6577 case 0xe4: /* port I/O */
6578 case 0xe5:
6579 case 0xec:
6580 case 0xed:
6581 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6582 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6583 break;
6584
6585 case 0xe6:
6586 case 0xe7:
6587 case 0xee:
6588 case 0xef:
6589 break;
6590
6591 /* control */
6592 case 0xc2: /* ret im */
6593 case 0xc3: /* ret */
6594 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6595 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6596 break;
6597
6598 case 0xca: /* lret im */
6599 case 0xcb: /* lret */
6600 case 0xcf: /* iret */
6601 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
6602 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6603 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6604 break;
6605
6606 case 0xe8: /* call im */
6607 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6608 ir.dflag = 2;
6609 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6610 return -1;
6611 break;
6612
6613 case 0x9a: /* lcall im */
6614 if (ir.regmap[X86_RECORD_R8_REGNUM])
6615 {
6616 ir.addr -= 1;
6617 goto no_support;
6618 }
6619 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
6620 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6621 return -1;
6622 break;
6623
6624 case 0xe9: /* jmp im */
6625 case 0xea: /* ljmp im */
6626 case 0xeb: /* jmp Jb */
6627 case 0x70: /* jcc Jb */
6628 case 0x71:
6629 case 0x72:
6630 case 0x73:
6631 case 0x74:
6632 case 0x75:
6633 case 0x76:
6634 case 0x77:
6635 case 0x78:
6636 case 0x79:
6637 case 0x7a:
6638 case 0x7b:
6639 case 0x7c:
6640 case 0x7d:
6641 case 0x7e:
6642 case 0x7f:
6643 case 0x0f80: /* jcc Jv */
6644 case 0x0f81:
6645 case 0x0f82:
6646 case 0x0f83:
6647 case 0x0f84:
6648 case 0x0f85:
6649 case 0x0f86:
6650 case 0x0f87:
6651 case 0x0f88:
6652 case 0x0f89:
6653 case 0x0f8a:
6654 case 0x0f8b:
6655 case 0x0f8c:
6656 case 0x0f8d:
6657 case 0x0f8e:
6658 case 0x0f8f:
6659 break;
6660
6661 case 0x0f90: /* setcc Gv */
6662 case 0x0f91:
6663 case 0x0f92:
6664 case 0x0f93:
6665 case 0x0f94:
6666 case 0x0f95:
6667 case 0x0f96:
6668 case 0x0f97:
6669 case 0x0f98:
6670 case 0x0f99:
6671 case 0x0f9a:
6672 case 0x0f9b:
6673 case 0x0f9c:
6674 case 0x0f9d:
6675 case 0x0f9e:
6676 case 0x0f9f:
6677 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6678 ir.ot = OT_BYTE;
6679 if (i386_record_modrm (&ir))
6680 return -1;
6681 if (ir.mod == 3)
6682 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rex_b ? (ir.rm | ir.rex_b)
6683 : (ir.rm & 0x3));
6684 else
6685 {
6686 if (i386_record_lea_modrm (&ir))
6687 return -1;
6688 }
6689 break;
6690
6691 case 0x0f40: /* cmov Gv, Ev */
6692 case 0x0f41:
6693 case 0x0f42:
6694 case 0x0f43:
6695 case 0x0f44:
6696 case 0x0f45:
6697 case 0x0f46:
6698 case 0x0f47:
6699 case 0x0f48:
6700 case 0x0f49:
6701 case 0x0f4a:
6702 case 0x0f4b:
6703 case 0x0f4c:
6704 case 0x0f4d:
6705 case 0x0f4e:
6706 case 0x0f4f:
6707 if (i386_record_modrm (&ir))
6708 return -1;
6709 ir.reg |= rex_r;
6710 if (ir.dflag == OT_BYTE)
6711 ir.reg &= 0x3;
6712 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
6713 break;
6714
6715 /* flags */
6716 case 0x9c: /* pushf */
6717 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6718 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6719 ir.dflag = 2;
6720 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6721 return -1;
6722 break;
6723
6724 case 0x9d: /* popf */
6725 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6726 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6727 break;
6728
6729 case 0x9e: /* sahf */
6730 if (ir.regmap[X86_RECORD_R8_REGNUM])
6731 {
6732 ir.addr -= 1;
6733 goto no_support;
6734 }
6735 /* FALLTHROUGH */
6736 case 0xf5: /* cmc */
6737 case 0xf8: /* clc */
6738 case 0xf9: /* stc */
6739 case 0xfc: /* cld */
6740 case 0xfd: /* std */
6741 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6742 break;
6743
6744 case 0x9f: /* lahf */
6745 if (ir.regmap[X86_RECORD_R8_REGNUM])
6746 {
6747 ir.addr -= 1;
6748 goto no_support;
6749 }
6750 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6751 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6752 break;
6753
6754 /* bit operations */
6755 case 0x0fba: /* bt/bts/btr/btc Gv, im */
6756 ir.ot = ir.dflag + OT_WORD;
6757 if (i386_record_modrm (&ir))
6758 return -1;
6759 if (ir.reg < 4)
6760 {
6761 ir.addr -= 2;
6762 opcode = opcode << 8 | ir.modrm;
6763 goto no_support;
6764 }
6765 if (ir.reg != 4)
6766 {
6767 if (ir.mod == 3)
6768 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6769 else
6770 {
6771 if (i386_record_lea_modrm (&ir))
6772 return -1;
6773 }
6774 }
6775 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6776 break;
6777
6778 case 0x0fa3: /* bt Gv, Ev */
6779 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6780 break;
6781
6782 case 0x0fab: /* bts */
6783 case 0x0fb3: /* btr */
6784 case 0x0fbb: /* btc */
6785 ir.ot = ir.dflag + OT_WORD;
6786 if (i386_record_modrm (&ir))
6787 return -1;
6788 if (ir.mod == 3)
6789 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6790 else
6791 {
6792 uint64_t addr64;
6793 if (i386_record_lea_modrm_addr (&ir, &addr64))
6794 return -1;
6795 regcache_raw_read_unsigned (ir.regcache,
6796 ir.regmap[ir.reg | rex_r],
6797 &addr);
6798 switch (ir.dflag)
6799 {
6800 case 0:
6801 addr64 += ((int16_t) addr >> 4) << 4;
6802 break;
6803 case 1:
6804 addr64 += ((int32_t) addr >> 5) << 5;
6805 break;
6806 case 2:
6807 addr64 += ((int64_t) addr >> 6) << 6;
6808 break;
6809 }
6810 if (record_full_arch_list_add_mem (addr64, 1 << ir.ot))
6811 return -1;
6812 if (i386_record_lea_modrm (&ir))
6813 return -1;
6814 }
6815 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6816 break;
6817
6818 case 0x0fbc: /* bsf */
6819 case 0x0fbd: /* bsr */
6820 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6821 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6822 break;
6823
6824 /* bcd */
6825 case 0x27: /* daa */
6826 case 0x2f: /* das */
6827 case 0x37: /* aaa */
6828 case 0x3f: /* aas */
6829 case 0xd4: /* aam */
6830 case 0xd5: /* aad */
6831 if (ir.regmap[X86_RECORD_R8_REGNUM])
6832 {
6833 ir.addr -= 1;
6834 goto no_support;
6835 }
6836 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6837 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6838 break;
6839
6840 /* misc */
6841 case 0x90: /* nop */
6842 if (prefixes & PREFIX_LOCK)
6843 {
6844 ir.addr -= 1;
6845 goto no_support;
6846 }
6847 break;
6848
6849 case 0x9b: /* fwait */
6850 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
6851 return -1;
6852 opcode = (uint32_t) opcode8;
6853 ir.addr++;
6854 goto reswitch;
6855 break;
6856
6857 /* XXX */
6858 case 0xcc: /* int3 */
6859 printf_unfiltered (_("Process record does not support instruction "
6860 "int3.\n"));
6861 ir.addr -= 1;
6862 goto no_support;
6863 break;
6864
6865 /* XXX */
6866 case 0xcd: /* int */
6867 {
6868 int ret;
6869 uint8_t interrupt;
6870 if (record_read_memory (gdbarch, ir.addr, &interrupt, 1))
6871 return -1;
6872 ir.addr++;
6873 if (interrupt != 0x80
6874 || tdep->i386_intx80_record == NULL)
6875 {
6876 printf_unfiltered (_("Process record does not support "
6877 "instruction int 0x%02x.\n"),
6878 interrupt);
6879 ir.addr -= 2;
6880 goto no_support;
6881 }
6882 ret = tdep->i386_intx80_record (ir.regcache);
6883 if (ret)
6884 return ret;
6885 }
6886 break;
6887
6888 /* XXX */
6889 case 0xce: /* into */
6890 printf_unfiltered (_("Process record does not support "
6891 "instruction into.\n"));
6892 ir.addr -= 1;
6893 goto no_support;
6894 break;
6895
6896 case 0xfa: /* cli */
6897 case 0xfb: /* sti */
6898 break;
6899
6900 case 0x62: /* bound */
6901 printf_unfiltered (_("Process record does not support "
6902 "instruction bound.\n"));
6903 ir.addr -= 1;
6904 goto no_support;
6905 break;
6906
6907 case 0x0fc8: /* bswap reg */
6908 case 0x0fc9:
6909 case 0x0fca:
6910 case 0x0fcb:
6911 case 0x0fcc:
6912 case 0x0fcd:
6913 case 0x0fce:
6914 case 0x0fcf:
6915 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 7) | ir.rex_b);
6916 break;
6917
6918 case 0xd6: /* salc */
6919 if (ir.regmap[X86_RECORD_R8_REGNUM])
6920 {
6921 ir.addr -= 1;
6922 goto no_support;
6923 }
6924 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6925 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6926 break;
6927
6928 case 0xe0: /* loopnz */
6929 case 0xe1: /* loopz */
6930 case 0xe2: /* loop */
6931 case 0xe3: /* jecxz */
6932 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6933 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6934 break;
6935
6936 case 0x0f30: /* wrmsr */
6937 printf_unfiltered (_("Process record does not support "
6938 "instruction wrmsr.\n"));
6939 ir.addr -= 2;
6940 goto no_support;
6941 break;
6942
6943 case 0x0f32: /* rdmsr */
6944 printf_unfiltered (_("Process record does not support "
6945 "instruction rdmsr.\n"));
6946 ir.addr -= 2;
6947 goto no_support;
6948 break;
6949
6950 case 0x0f31: /* rdtsc */
6951 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6952 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6953 break;
6954
6955 case 0x0f34: /* sysenter */
6956 {
6957 int ret;
6958 if (ir.regmap[X86_RECORD_R8_REGNUM])
6959 {
6960 ir.addr -= 2;
6961 goto no_support;
6962 }
6963 if (tdep->i386_sysenter_record == NULL)
6964 {
6965 printf_unfiltered (_("Process record does not support "
6966 "instruction sysenter.\n"));
6967 ir.addr -= 2;
6968 goto no_support;
6969 }
6970 ret = tdep->i386_sysenter_record (ir.regcache);
6971 if (ret)
6972 return ret;
6973 }
6974 break;
6975
6976 case 0x0f35: /* sysexit */
6977 printf_unfiltered (_("Process record does not support "
6978 "instruction sysexit.\n"));
6979 ir.addr -= 2;
6980 goto no_support;
6981 break;
6982
6983 case 0x0f05: /* syscall */
6984 {
6985 int ret;
6986 if (tdep->i386_syscall_record == NULL)
6987 {
6988 printf_unfiltered (_("Process record does not support "
6989 "instruction syscall.\n"));
6990 ir.addr -= 2;
6991 goto no_support;
6992 }
6993 ret = tdep->i386_syscall_record (ir.regcache);
6994 if (ret)
6995 return ret;
6996 }
6997 break;
6998
6999 case 0x0f07: /* sysret */
7000 printf_unfiltered (_("Process record does not support "
7001 "instruction sysret.\n"));
7002 ir.addr -= 2;
7003 goto no_support;
7004 break;
7005
7006 case 0x0fa2: /* cpuid */
7007 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7008 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
7009 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7010 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
7011 break;
7012
7013 case 0xf4: /* hlt */
7014 printf_unfiltered (_("Process record does not support "
7015 "instruction hlt.\n"));
7016 ir.addr -= 1;
7017 goto no_support;
7018 break;
7019
7020 case 0x0f00:
7021 if (i386_record_modrm (&ir))
7022 return -1;
7023 switch (ir.reg)
7024 {
7025 case 0: /* sldt */
7026 case 1: /* str */
7027 if (ir.mod == 3)
7028 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7029 else
7030 {
7031 ir.ot = OT_WORD;
7032 if (i386_record_lea_modrm (&ir))
7033 return -1;
7034 }
7035 break;
7036 case 2: /* lldt */
7037 case 3: /* ltr */
7038 break;
7039 case 4: /* verr */
7040 case 5: /* verw */
7041 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7042 break;
7043 default:
7044 ir.addr -= 3;
7045 opcode = opcode << 8 | ir.modrm;
7046 goto no_support;
7047 break;
7048 }
7049 break;
7050
7051 case 0x0f01:
7052 if (i386_record_modrm (&ir))
7053 return -1;
7054 switch (ir.reg)
7055 {
7056 case 0: /* sgdt */
7057 {
7058 uint64_t addr64;
7059
7060 if (ir.mod == 3)
7061 {
7062 ir.addr -= 3;
7063 opcode = opcode << 8 | ir.modrm;
7064 goto no_support;
7065 }
7066 if (ir.override >= 0)
7067 {
7068 if (record_full_memory_query)
7069 {
7070 if (yquery (_("\
7071 Process record ignores the memory change of instruction at address %s\n\
7072 because it can't get the value of the segment register.\n\
7073 Do you want to stop the program?"),
7074 paddress (gdbarch, ir.orig_addr)))
7075 return -1;
7076 }
7077 }
7078 else
7079 {
7080 if (i386_record_lea_modrm_addr (&ir, &addr64))
7081 return -1;
7082 if (record_full_arch_list_add_mem (addr64, 2))
7083 return -1;
7084 addr64 += 2;
7085 if (ir.regmap[X86_RECORD_R8_REGNUM])
7086 {
7087 if (record_full_arch_list_add_mem (addr64, 8))
7088 return -1;
7089 }
7090 else
7091 {
7092 if (record_full_arch_list_add_mem (addr64, 4))
7093 return -1;
7094 }
7095 }
7096 }
7097 break;
7098 case 1:
7099 if (ir.mod == 3)
7100 {
7101 switch (ir.rm)
7102 {
7103 case 0: /* monitor */
7104 break;
7105 case 1: /* mwait */
7106 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7107 break;
7108 default:
7109 ir.addr -= 3;
7110 opcode = opcode << 8 | ir.modrm;
7111 goto no_support;
7112 break;
7113 }
7114 }
7115 else
7116 {
7117 /* sidt */
7118 if (ir.override >= 0)
7119 {
7120 if (record_full_memory_query)
7121 {
7122 if (yquery (_("\
7123 Process record ignores the memory change of instruction at address %s\n\
7124 because it can't get the value of the segment register.\n\
7125 Do you want to stop the program?"),
7126 paddress (gdbarch, ir.orig_addr)))
7127 return -1;
7128 }
7129 }
7130 else
7131 {
7132 uint64_t addr64;
7133
7134 if (i386_record_lea_modrm_addr (&ir, &addr64))
7135 return -1;
7136 if (record_full_arch_list_add_mem (addr64, 2))
7137 return -1;
7138 addr64 += 2;
7139 if (ir.regmap[X86_RECORD_R8_REGNUM])
7140 {
7141 if (record_full_arch_list_add_mem (addr64, 8))
7142 return -1;
7143 }
7144 else
7145 {
7146 if (record_full_arch_list_add_mem (addr64, 4))
7147 return -1;
7148 }
7149 }
7150 }
7151 break;
7152 case 2: /* lgdt */
7153 if (ir.mod == 3)
7154 {
7155 /* xgetbv */
7156 if (ir.rm == 0)
7157 {
7158 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7159 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7160 break;
7161 }
7162 /* xsetbv */
7163 else if (ir.rm == 1)
7164 break;
7165 }
7166 case 3: /* lidt */
7167 if (ir.mod == 3)
7168 {
7169 ir.addr -= 3;
7170 opcode = opcode << 8 | ir.modrm;
7171 goto no_support;
7172 }
7173 break;
7174 case 4: /* smsw */
7175 if (ir.mod == 3)
7176 {
7177 if (record_full_arch_list_add_reg (ir.regcache, ir.rm | ir.rex_b))
7178 return -1;
7179 }
7180 else
7181 {
7182 ir.ot = OT_WORD;
7183 if (i386_record_lea_modrm (&ir))
7184 return -1;
7185 }
7186 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7187 break;
7188 case 6: /* lmsw */
7189 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7190 break;
7191 case 7: /* invlpg */
7192 if (ir.mod == 3)
7193 {
7194 if (ir.rm == 0 && ir.regmap[X86_RECORD_R8_REGNUM])
7195 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
7196 else
7197 {
7198 ir.addr -= 3;
7199 opcode = opcode << 8 | ir.modrm;
7200 goto no_support;
7201 }
7202 }
7203 else
7204 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7205 break;
7206 default:
7207 ir.addr -= 3;
7208 opcode = opcode << 8 | ir.modrm;
7209 goto no_support;
7210 break;
7211 }
7212 break;
7213
7214 case 0x0f08: /* invd */
7215 case 0x0f09: /* wbinvd */
7216 break;
7217
7218 case 0x63: /* arpl */
7219 if (i386_record_modrm (&ir))
7220 return -1;
7221 if (ir.mod == 3 || ir.regmap[X86_RECORD_R8_REGNUM])
7222 {
7223 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.regmap[X86_RECORD_R8_REGNUM]
7224 ? (ir.reg | rex_r) : ir.rm);
7225 }
7226 else
7227 {
7228 ir.ot = ir.dflag ? OT_LONG : OT_WORD;
7229 if (i386_record_lea_modrm (&ir))
7230 return -1;
7231 }
7232 if (!ir.regmap[X86_RECORD_R8_REGNUM])
7233 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7234 break;
7235
7236 case 0x0f02: /* lar */
7237 case 0x0f03: /* lsl */
7238 if (i386_record_modrm (&ir))
7239 return -1;
7240 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7241 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7242 break;
7243
7244 case 0x0f18:
7245 if (i386_record_modrm (&ir))
7246 return -1;
7247 if (ir.mod == 3 && ir.reg == 3)
7248 {
7249 ir.addr -= 3;
7250 opcode = opcode << 8 | ir.modrm;
7251 goto no_support;
7252 }
7253 break;
7254
7255 case 0x0f19:
7256 case 0x0f1a:
7257 case 0x0f1b:
7258 case 0x0f1c:
7259 case 0x0f1d:
7260 case 0x0f1e:
7261 case 0x0f1f:
7262 /* nop (multi byte) */
7263 break;
7264
7265 case 0x0f20: /* mov reg, crN */
7266 case 0x0f22: /* mov crN, reg */
7267 if (i386_record_modrm (&ir))
7268 return -1;
7269 if ((ir.modrm & 0xc0) != 0xc0)
7270 {
7271 ir.addr -= 3;
7272 opcode = opcode << 8 | ir.modrm;
7273 goto no_support;
7274 }
7275 switch (ir.reg)
7276 {
7277 case 0:
7278 case 2:
7279 case 3:
7280 case 4:
7281 case 8:
7282 if (opcode & 2)
7283 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7284 else
7285 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7286 break;
7287 default:
7288 ir.addr -= 3;
7289 opcode = opcode << 8 | ir.modrm;
7290 goto no_support;
7291 break;
7292 }
7293 break;
7294
7295 case 0x0f21: /* mov reg, drN */
7296 case 0x0f23: /* mov drN, reg */
7297 if (i386_record_modrm (&ir))
7298 return -1;
7299 if ((ir.modrm & 0xc0) != 0xc0 || ir.reg == 4
7300 || ir.reg == 5 || ir.reg >= 8)
7301 {
7302 ir.addr -= 3;
7303 opcode = opcode << 8 | ir.modrm;
7304 goto no_support;
7305 }
7306 if (opcode & 2)
7307 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7308 else
7309 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7310 break;
7311
7312 case 0x0f06: /* clts */
7313 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7314 break;
7315
7316 /* MMX 3DNow! SSE SSE2 SSE3 SSSE3 SSE4 */
7317
7318 case 0x0f0d: /* 3DNow! prefetch */
7319 break;
7320
7321 case 0x0f0e: /* 3DNow! femms */
7322 case 0x0f77: /* emms */
7323 if (i386_fpc_regnum_p (gdbarch, I387_FTAG_REGNUM(tdep)))
7324 goto no_support;
7325 record_full_arch_list_add_reg (ir.regcache, I387_FTAG_REGNUM(tdep));
7326 break;
7327
7328 case 0x0f0f: /* 3DNow! data */
7329 if (i386_record_modrm (&ir))
7330 return -1;
7331 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
7332 return -1;
7333 ir.addr++;
7334 switch (opcode8)
7335 {
7336 case 0x0c: /* 3DNow! pi2fw */
7337 case 0x0d: /* 3DNow! pi2fd */
7338 case 0x1c: /* 3DNow! pf2iw */
7339 case 0x1d: /* 3DNow! pf2id */
7340 case 0x8a: /* 3DNow! pfnacc */
7341 case 0x8e: /* 3DNow! pfpnacc */
7342 case 0x90: /* 3DNow! pfcmpge */
7343 case 0x94: /* 3DNow! pfmin */
7344 case 0x96: /* 3DNow! pfrcp */
7345 case 0x97: /* 3DNow! pfrsqrt */
7346 case 0x9a: /* 3DNow! pfsub */
7347 case 0x9e: /* 3DNow! pfadd */
7348 case 0xa0: /* 3DNow! pfcmpgt */
7349 case 0xa4: /* 3DNow! pfmax */
7350 case 0xa6: /* 3DNow! pfrcpit1 */
7351 case 0xa7: /* 3DNow! pfrsqit1 */
7352 case 0xaa: /* 3DNow! pfsubr */
7353 case 0xae: /* 3DNow! pfacc */
7354 case 0xb0: /* 3DNow! pfcmpeq */
7355 case 0xb4: /* 3DNow! pfmul */
7356 case 0xb6: /* 3DNow! pfrcpit2 */
7357 case 0xb7: /* 3DNow! pmulhrw */
7358 case 0xbb: /* 3DNow! pswapd */
7359 case 0xbf: /* 3DNow! pavgusb */
7360 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7361 goto no_support_3dnow_data;
7362 record_full_arch_list_add_reg (ir.regcache, ir.reg);
7363 break;
7364
7365 default:
7366 no_support_3dnow_data:
7367 opcode = (opcode << 8) | opcode8;
7368 goto no_support;
7369 break;
7370 }
7371 break;
7372
7373 case 0x0faa: /* rsm */
7374 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7375 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7376 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
7377 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7378 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
7379 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
7380 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
7381 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
7382 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
7383 break;
7384
7385 case 0x0fae:
7386 if (i386_record_modrm (&ir))
7387 return -1;
7388 switch(ir.reg)
7389 {
7390 case 0: /* fxsave */
7391 {
7392 uint64_t tmpu64;
7393
7394 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7395 if (i386_record_lea_modrm_addr (&ir, &tmpu64))
7396 return -1;
7397 if (record_full_arch_list_add_mem (tmpu64, 512))
7398 return -1;
7399 }
7400 break;
7401
7402 case 1: /* fxrstor */
7403 {
7404 int i;
7405
7406 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7407
7408 for (i = I387_MM0_REGNUM (tdep);
7409 i386_mmx_regnum_p (gdbarch, i); i++)
7410 record_full_arch_list_add_reg (ir.regcache, i);
7411
7412 for (i = I387_XMM0_REGNUM (tdep);
7413 i386_xmm_regnum_p (gdbarch, i); i++)
7414 record_full_arch_list_add_reg (ir.regcache, i);
7415
7416 if (i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
7417 record_full_arch_list_add_reg (ir.regcache,
7418 I387_MXCSR_REGNUM(tdep));
7419
7420 for (i = I387_ST0_REGNUM (tdep);
7421 i386_fp_regnum_p (gdbarch, i); i++)
7422 record_full_arch_list_add_reg (ir.regcache, i);
7423
7424 for (i = I387_FCTRL_REGNUM (tdep);
7425 i386_fpc_regnum_p (gdbarch, i); i++)
7426 record_full_arch_list_add_reg (ir.regcache, i);
7427 }
7428 break;
7429
7430 case 2: /* ldmxcsr */
7431 if (!i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
7432 goto no_support;
7433 record_full_arch_list_add_reg (ir.regcache, I387_MXCSR_REGNUM(tdep));
7434 break;
7435
7436 case 3: /* stmxcsr */
7437 ir.ot = OT_LONG;
7438 if (i386_record_lea_modrm (&ir))
7439 return -1;
7440 break;
7441
7442 case 5: /* lfence */
7443 case 6: /* mfence */
7444 case 7: /* sfence clflush */
7445 break;
7446
7447 default:
7448 opcode = (opcode << 8) | ir.modrm;
7449 goto no_support;
7450 break;
7451 }
7452 break;
7453
7454 case 0x0fc3: /* movnti */
7455 ir.ot = (ir.dflag == 2) ? OT_QUAD : OT_LONG;
7456 if (i386_record_modrm (&ir))
7457 return -1;
7458 if (ir.mod == 3)
7459 goto no_support;
7460 ir.reg |= rex_r;
7461 if (i386_record_lea_modrm (&ir))
7462 return -1;
7463 break;
7464
7465 /* Add prefix to opcode. */
7466 case 0x0f10:
7467 case 0x0f11:
7468 case 0x0f12:
7469 case 0x0f13:
7470 case 0x0f14:
7471 case 0x0f15:
7472 case 0x0f16:
7473 case 0x0f17:
7474 case 0x0f28:
7475 case 0x0f29:
7476 case 0x0f2a:
7477 case 0x0f2b:
7478 case 0x0f2c:
7479 case 0x0f2d:
7480 case 0x0f2e:
7481 case 0x0f2f:
7482 case 0x0f38:
7483 case 0x0f39:
7484 case 0x0f3a:
7485 case 0x0f50:
7486 case 0x0f51:
7487 case 0x0f52:
7488 case 0x0f53:
7489 case 0x0f54:
7490 case 0x0f55:
7491 case 0x0f56:
7492 case 0x0f57:
7493 case 0x0f58:
7494 case 0x0f59:
7495 case 0x0f5a:
7496 case 0x0f5b:
7497 case 0x0f5c:
7498 case 0x0f5d:
7499 case 0x0f5e:
7500 case 0x0f5f:
7501 case 0x0f60:
7502 case 0x0f61:
7503 case 0x0f62:
7504 case 0x0f63:
7505 case 0x0f64:
7506 case 0x0f65:
7507 case 0x0f66:
7508 case 0x0f67:
7509 case 0x0f68:
7510 case 0x0f69:
7511 case 0x0f6a:
7512 case 0x0f6b:
7513 case 0x0f6c:
7514 case 0x0f6d:
7515 case 0x0f6e:
7516 case 0x0f6f:
7517 case 0x0f70:
7518 case 0x0f71:
7519 case 0x0f72:
7520 case 0x0f73:
7521 case 0x0f74:
7522 case 0x0f75:
7523 case 0x0f76:
7524 case 0x0f7c:
7525 case 0x0f7d:
7526 case 0x0f7e:
7527 case 0x0f7f:
7528 case 0x0fb8:
7529 case 0x0fc2:
7530 case 0x0fc4:
7531 case 0x0fc5:
7532 case 0x0fc6:
7533 case 0x0fd0:
7534 case 0x0fd1:
7535 case 0x0fd2:
7536 case 0x0fd3:
7537 case 0x0fd4:
7538 case 0x0fd5:
7539 case 0x0fd6:
7540 case 0x0fd7:
7541 case 0x0fd8:
7542 case 0x0fd9:
7543 case 0x0fda:
7544 case 0x0fdb:
7545 case 0x0fdc:
7546 case 0x0fdd:
7547 case 0x0fde:
7548 case 0x0fdf:
7549 case 0x0fe0:
7550 case 0x0fe1:
7551 case 0x0fe2:
7552 case 0x0fe3:
7553 case 0x0fe4:
7554 case 0x0fe5:
7555 case 0x0fe6:
7556 case 0x0fe7:
7557 case 0x0fe8:
7558 case 0x0fe9:
7559 case 0x0fea:
7560 case 0x0feb:
7561 case 0x0fec:
7562 case 0x0fed:
7563 case 0x0fee:
7564 case 0x0fef:
7565 case 0x0ff0:
7566 case 0x0ff1:
7567 case 0x0ff2:
7568 case 0x0ff3:
7569 case 0x0ff4:
7570 case 0x0ff5:
7571 case 0x0ff6:
7572 case 0x0ff7:
7573 case 0x0ff8:
7574 case 0x0ff9:
7575 case 0x0ffa:
7576 case 0x0ffb:
7577 case 0x0ffc:
7578 case 0x0ffd:
7579 case 0x0ffe:
7580 /* Mask out PREFIX_ADDR. */
7581 switch ((prefixes & ~PREFIX_ADDR))
7582 {
7583 case PREFIX_REPNZ:
7584 opcode |= 0xf20000;
7585 break;
7586 case PREFIX_DATA:
7587 opcode |= 0x660000;
7588 break;
7589 case PREFIX_REPZ:
7590 opcode |= 0xf30000;
7591 break;
7592 }
7593 reswitch_prefix_add:
7594 switch (opcode)
7595 {
7596 case 0x0f38:
7597 case 0x660f38:
7598 case 0xf20f38:
7599 case 0x0f3a:
7600 case 0x660f3a:
7601 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
7602 return -1;
7603 ir.addr++;
7604 opcode = (uint32_t) opcode8 | opcode << 8;
7605 goto reswitch_prefix_add;
7606 break;
7607
7608 case 0x0f10: /* movups */
7609 case 0x660f10: /* movupd */
7610 case 0xf30f10: /* movss */
7611 case 0xf20f10: /* movsd */
7612 case 0x0f12: /* movlps */
7613 case 0x660f12: /* movlpd */
7614 case 0xf30f12: /* movsldup */
7615 case 0xf20f12: /* movddup */
7616 case 0x0f14: /* unpcklps */
7617 case 0x660f14: /* unpcklpd */
7618 case 0x0f15: /* unpckhps */
7619 case 0x660f15: /* unpckhpd */
7620 case 0x0f16: /* movhps */
7621 case 0x660f16: /* movhpd */
7622 case 0xf30f16: /* movshdup */
7623 case 0x0f28: /* movaps */
7624 case 0x660f28: /* movapd */
7625 case 0x0f2a: /* cvtpi2ps */
7626 case 0x660f2a: /* cvtpi2pd */
7627 case 0xf30f2a: /* cvtsi2ss */
7628 case 0xf20f2a: /* cvtsi2sd */
7629 case 0x0f2c: /* cvttps2pi */
7630 case 0x660f2c: /* cvttpd2pi */
7631 case 0x0f2d: /* cvtps2pi */
7632 case 0x660f2d: /* cvtpd2pi */
7633 case 0x660f3800: /* pshufb */
7634 case 0x660f3801: /* phaddw */
7635 case 0x660f3802: /* phaddd */
7636 case 0x660f3803: /* phaddsw */
7637 case 0x660f3804: /* pmaddubsw */
7638 case 0x660f3805: /* phsubw */
7639 case 0x660f3806: /* phsubd */
7640 case 0x660f3807: /* phsubsw */
7641 case 0x660f3808: /* psignb */
7642 case 0x660f3809: /* psignw */
7643 case 0x660f380a: /* psignd */
7644 case 0x660f380b: /* pmulhrsw */
7645 case 0x660f3810: /* pblendvb */
7646 case 0x660f3814: /* blendvps */
7647 case 0x660f3815: /* blendvpd */
7648 case 0x660f381c: /* pabsb */
7649 case 0x660f381d: /* pabsw */
7650 case 0x660f381e: /* pabsd */
7651 case 0x660f3820: /* pmovsxbw */
7652 case 0x660f3821: /* pmovsxbd */
7653 case 0x660f3822: /* pmovsxbq */
7654 case 0x660f3823: /* pmovsxwd */
7655 case 0x660f3824: /* pmovsxwq */
7656 case 0x660f3825: /* pmovsxdq */
7657 case 0x660f3828: /* pmuldq */
7658 case 0x660f3829: /* pcmpeqq */
7659 case 0x660f382a: /* movntdqa */
7660 case 0x660f3a08: /* roundps */
7661 case 0x660f3a09: /* roundpd */
7662 case 0x660f3a0a: /* roundss */
7663 case 0x660f3a0b: /* roundsd */
7664 case 0x660f3a0c: /* blendps */
7665 case 0x660f3a0d: /* blendpd */
7666 case 0x660f3a0e: /* pblendw */
7667 case 0x660f3a0f: /* palignr */
7668 case 0x660f3a20: /* pinsrb */
7669 case 0x660f3a21: /* insertps */
7670 case 0x660f3a22: /* pinsrd pinsrq */
7671 case 0x660f3a40: /* dpps */
7672 case 0x660f3a41: /* dppd */
7673 case 0x660f3a42: /* mpsadbw */
7674 case 0x660f3a60: /* pcmpestrm */
7675 case 0x660f3a61: /* pcmpestri */
7676 case 0x660f3a62: /* pcmpistrm */
7677 case 0x660f3a63: /* pcmpistri */
7678 case 0x0f51: /* sqrtps */
7679 case 0x660f51: /* sqrtpd */
7680 case 0xf20f51: /* sqrtsd */
7681 case 0xf30f51: /* sqrtss */
7682 case 0x0f52: /* rsqrtps */
7683 case 0xf30f52: /* rsqrtss */
7684 case 0x0f53: /* rcpps */
7685 case 0xf30f53: /* rcpss */
7686 case 0x0f54: /* andps */
7687 case 0x660f54: /* andpd */
7688 case 0x0f55: /* andnps */
7689 case 0x660f55: /* andnpd */
7690 case 0x0f56: /* orps */
7691 case 0x660f56: /* orpd */
7692 case 0x0f57: /* xorps */
7693 case 0x660f57: /* xorpd */
7694 case 0x0f58: /* addps */
7695 case 0x660f58: /* addpd */
7696 case 0xf20f58: /* addsd */
7697 case 0xf30f58: /* addss */
7698 case 0x0f59: /* mulps */
7699 case 0x660f59: /* mulpd */
7700 case 0xf20f59: /* mulsd */
7701 case 0xf30f59: /* mulss */
7702 case 0x0f5a: /* cvtps2pd */
7703 case 0x660f5a: /* cvtpd2ps */
7704 case 0xf20f5a: /* cvtsd2ss */
7705 case 0xf30f5a: /* cvtss2sd */
7706 case 0x0f5b: /* cvtdq2ps */
7707 case 0x660f5b: /* cvtps2dq */
7708 case 0xf30f5b: /* cvttps2dq */
7709 case 0x0f5c: /* subps */
7710 case 0x660f5c: /* subpd */
7711 case 0xf20f5c: /* subsd */
7712 case 0xf30f5c: /* subss */
7713 case 0x0f5d: /* minps */
7714 case 0x660f5d: /* minpd */
7715 case 0xf20f5d: /* minsd */
7716 case 0xf30f5d: /* minss */
7717 case 0x0f5e: /* divps */
7718 case 0x660f5e: /* divpd */
7719 case 0xf20f5e: /* divsd */
7720 case 0xf30f5e: /* divss */
7721 case 0x0f5f: /* maxps */
7722 case 0x660f5f: /* maxpd */
7723 case 0xf20f5f: /* maxsd */
7724 case 0xf30f5f: /* maxss */
7725 case 0x660f60: /* punpcklbw */
7726 case 0x660f61: /* punpcklwd */
7727 case 0x660f62: /* punpckldq */
7728 case 0x660f63: /* packsswb */
7729 case 0x660f64: /* pcmpgtb */
7730 case 0x660f65: /* pcmpgtw */
7731 case 0x660f66: /* pcmpgtd */
7732 case 0x660f67: /* packuswb */
7733 case 0x660f68: /* punpckhbw */
7734 case 0x660f69: /* punpckhwd */
7735 case 0x660f6a: /* punpckhdq */
7736 case 0x660f6b: /* packssdw */
7737 case 0x660f6c: /* punpcklqdq */
7738 case 0x660f6d: /* punpckhqdq */
7739 case 0x660f6e: /* movd */
7740 case 0x660f6f: /* movdqa */
7741 case 0xf30f6f: /* movdqu */
7742 case 0x660f70: /* pshufd */
7743 case 0xf20f70: /* pshuflw */
7744 case 0xf30f70: /* pshufhw */
7745 case 0x660f74: /* pcmpeqb */
7746 case 0x660f75: /* pcmpeqw */
7747 case 0x660f76: /* pcmpeqd */
7748 case 0x660f7c: /* haddpd */
7749 case 0xf20f7c: /* haddps */
7750 case 0x660f7d: /* hsubpd */
7751 case 0xf20f7d: /* hsubps */
7752 case 0xf30f7e: /* movq */
7753 case 0x0fc2: /* cmpps */
7754 case 0x660fc2: /* cmppd */
7755 case 0xf20fc2: /* cmpsd */
7756 case 0xf30fc2: /* cmpss */
7757 case 0x660fc4: /* pinsrw */
7758 case 0x0fc6: /* shufps */
7759 case 0x660fc6: /* shufpd */
7760 case 0x660fd0: /* addsubpd */
7761 case 0xf20fd0: /* addsubps */
7762 case 0x660fd1: /* psrlw */
7763 case 0x660fd2: /* psrld */
7764 case 0x660fd3: /* psrlq */
7765 case 0x660fd4: /* paddq */
7766 case 0x660fd5: /* pmullw */
7767 case 0xf30fd6: /* movq2dq */
7768 case 0x660fd8: /* psubusb */
7769 case 0x660fd9: /* psubusw */
7770 case 0x660fda: /* pminub */
7771 case 0x660fdb: /* pand */
7772 case 0x660fdc: /* paddusb */
7773 case 0x660fdd: /* paddusw */
7774 case 0x660fde: /* pmaxub */
7775 case 0x660fdf: /* pandn */
7776 case 0x660fe0: /* pavgb */
7777 case 0x660fe1: /* psraw */
7778 case 0x660fe2: /* psrad */
7779 case 0x660fe3: /* pavgw */
7780 case 0x660fe4: /* pmulhuw */
7781 case 0x660fe5: /* pmulhw */
7782 case 0x660fe6: /* cvttpd2dq */
7783 case 0xf20fe6: /* cvtpd2dq */
7784 case 0xf30fe6: /* cvtdq2pd */
7785 case 0x660fe8: /* psubsb */
7786 case 0x660fe9: /* psubsw */
7787 case 0x660fea: /* pminsw */
7788 case 0x660feb: /* por */
7789 case 0x660fec: /* paddsb */
7790 case 0x660fed: /* paddsw */
7791 case 0x660fee: /* pmaxsw */
7792 case 0x660fef: /* pxor */
7793 case 0xf20ff0: /* lddqu */
7794 case 0x660ff1: /* psllw */
7795 case 0x660ff2: /* pslld */
7796 case 0x660ff3: /* psllq */
7797 case 0x660ff4: /* pmuludq */
7798 case 0x660ff5: /* pmaddwd */
7799 case 0x660ff6: /* psadbw */
7800 case 0x660ff8: /* psubb */
7801 case 0x660ff9: /* psubw */
7802 case 0x660ffa: /* psubd */
7803 case 0x660ffb: /* psubq */
7804 case 0x660ffc: /* paddb */
7805 case 0x660ffd: /* paddw */
7806 case 0x660ffe: /* paddd */
7807 if (i386_record_modrm (&ir))
7808 return -1;
7809 ir.reg |= rex_r;
7810 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.reg))
7811 goto no_support;
7812 record_full_arch_list_add_reg (ir.regcache,
7813 I387_XMM0_REGNUM (tdep) + ir.reg);
7814 if ((opcode & 0xfffffffc) == 0x660f3a60)
7815 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7816 break;
7817
7818 case 0x0f11: /* movups */
7819 case 0x660f11: /* movupd */
7820 case 0xf30f11: /* movss */
7821 case 0xf20f11: /* movsd */
7822 case 0x0f13: /* movlps */
7823 case 0x660f13: /* movlpd */
7824 case 0x0f17: /* movhps */
7825 case 0x660f17: /* movhpd */
7826 case 0x0f29: /* movaps */
7827 case 0x660f29: /* movapd */
7828 case 0x660f3a14: /* pextrb */
7829 case 0x660f3a15: /* pextrw */
7830 case 0x660f3a16: /* pextrd pextrq */
7831 case 0x660f3a17: /* extractps */
7832 case 0x660f7f: /* movdqa */
7833 case 0xf30f7f: /* movdqu */
7834 if (i386_record_modrm (&ir))
7835 return -1;
7836 if (ir.mod == 3)
7837 {
7838 if (opcode == 0x0f13 || opcode == 0x660f13
7839 || opcode == 0x0f17 || opcode == 0x660f17)
7840 goto no_support;
7841 ir.rm |= ir.rex_b;
7842 if (!i386_xmm_regnum_p (gdbarch,
7843 I387_XMM0_REGNUM (tdep) + ir.rm))
7844 goto no_support;
7845 record_full_arch_list_add_reg (ir.regcache,
7846 I387_XMM0_REGNUM (tdep) + ir.rm);
7847 }
7848 else
7849 {
7850 switch (opcode)
7851 {
7852 case 0x660f3a14:
7853 ir.ot = OT_BYTE;
7854 break;
7855 case 0x660f3a15:
7856 ir.ot = OT_WORD;
7857 break;
7858 case 0x660f3a16:
7859 ir.ot = OT_LONG;
7860 break;
7861 case 0x660f3a17:
7862 ir.ot = OT_QUAD;
7863 break;
7864 default:
7865 ir.ot = OT_DQUAD;
7866 break;
7867 }
7868 if (i386_record_lea_modrm (&ir))
7869 return -1;
7870 }
7871 break;
7872
7873 case 0x0f2b: /* movntps */
7874 case 0x660f2b: /* movntpd */
7875 case 0x0fe7: /* movntq */
7876 case 0x660fe7: /* movntdq */
7877 if (ir.mod == 3)
7878 goto no_support;
7879 if (opcode == 0x0fe7)
7880 ir.ot = OT_QUAD;
7881 else
7882 ir.ot = OT_DQUAD;
7883 if (i386_record_lea_modrm (&ir))
7884 return -1;
7885 break;
7886
7887 case 0xf30f2c: /* cvttss2si */
7888 case 0xf20f2c: /* cvttsd2si */
7889 case 0xf30f2d: /* cvtss2si */
7890 case 0xf20f2d: /* cvtsd2si */
7891 case 0xf20f38f0: /* crc32 */
7892 case 0xf20f38f1: /* crc32 */
7893 case 0x0f50: /* movmskps */
7894 case 0x660f50: /* movmskpd */
7895 case 0x0fc5: /* pextrw */
7896 case 0x660fc5: /* pextrw */
7897 case 0x0fd7: /* pmovmskb */
7898 case 0x660fd7: /* pmovmskb */
7899 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7900 break;
7901
7902 case 0x0f3800: /* pshufb */
7903 case 0x0f3801: /* phaddw */
7904 case 0x0f3802: /* phaddd */
7905 case 0x0f3803: /* phaddsw */
7906 case 0x0f3804: /* pmaddubsw */
7907 case 0x0f3805: /* phsubw */
7908 case 0x0f3806: /* phsubd */
7909 case 0x0f3807: /* phsubsw */
7910 case 0x0f3808: /* psignb */
7911 case 0x0f3809: /* psignw */
7912 case 0x0f380a: /* psignd */
7913 case 0x0f380b: /* pmulhrsw */
7914 case 0x0f381c: /* pabsb */
7915 case 0x0f381d: /* pabsw */
7916 case 0x0f381e: /* pabsd */
7917 case 0x0f382b: /* packusdw */
7918 case 0x0f3830: /* pmovzxbw */
7919 case 0x0f3831: /* pmovzxbd */
7920 case 0x0f3832: /* pmovzxbq */
7921 case 0x0f3833: /* pmovzxwd */
7922 case 0x0f3834: /* pmovzxwq */
7923 case 0x0f3835: /* pmovzxdq */
7924 case 0x0f3837: /* pcmpgtq */
7925 case 0x0f3838: /* pminsb */
7926 case 0x0f3839: /* pminsd */
7927 case 0x0f383a: /* pminuw */
7928 case 0x0f383b: /* pminud */
7929 case 0x0f383c: /* pmaxsb */
7930 case 0x0f383d: /* pmaxsd */
7931 case 0x0f383e: /* pmaxuw */
7932 case 0x0f383f: /* pmaxud */
7933 case 0x0f3840: /* pmulld */
7934 case 0x0f3841: /* phminposuw */
7935 case 0x0f3a0f: /* palignr */
7936 case 0x0f60: /* punpcklbw */
7937 case 0x0f61: /* punpcklwd */
7938 case 0x0f62: /* punpckldq */
7939 case 0x0f63: /* packsswb */
7940 case 0x0f64: /* pcmpgtb */
7941 case 0x0f65: /* pcmpgtw */
7942 case 0x0f66: /* pcmpgtd */
7943 case 0x0f67: /* packuswb */
7944 case 0x0f68: /* punpckhbw */
7945 case 0x0f69: /* punpckhwd */
7946 case 0x0f6a: /* punpckhdq */
7947 case 0x0f6b: /* packssdw */
7948 case 0x0f6e: /* movd */
7949 case 0x0f6f: /* movq */
7950 case 0x0f70: /* pshufw */
7951 case 0x0f74: /* pcmpeqb */
7952 case 0x0f75: /* pcmpeqw */
7953 case 0x0f76: /* pcmpeqd */
7954 case 0x0fc4: /* pinsrw */
7955 case 0x0fd1: /* psrlw */
7956 case 0x0fd2: /* psrld */
7957 case 0x0fd3: /* psrlq */
7958 case 0x0fd4: /* paddq */
7959 case 0x0fd5: /* pmullw */
7960 case 0xf20fd6: /* movdq2q */
7961 case 0x0fd8: /* psubusb */
7962 case 0x0fd9: /* psubusw */
7963 case 0x0fda: /* pminub */
7964 case 0x0fdb: /* pand */
7965 case 0x0fdc: /* paddusb */
7966 case 0x0fdd: /* paddusw */
7967 case 0x0fde: /* pmaxub */
7968 case 0x0fdf: /* pandn */
7969 case 0x0fe0: /* pavgb */
7970 case 0x0fe1: /* psraw */
7971 case 0x0fe2: /* psrad */
7972 case 0x0fe3: /* pavgw */
7973 case 0x0fe4: /* pmulhuw */
7974 case 0x0fe5: /* pmulhw */
7975 case 0x0fe8: /* psubsb */
7976 case 0x0fe9: /* psubsw */
7977 case 0x0fea: /* pminsw */
7978 case 0x0feb: /* por */
7979 case 0x0fec: /* paddsb */
7980 case 0x0fed: /* paddsw */
7981 case 0x0fee: /* pmaxsw */
7982 case 0x0fef: /* pxor */
7983 case 0x0ff1: /* psllw */
7984 case 0x0ff2: /* pslld */
7985 case 0x0ff3: /* psllq */
7986 case 0x0ff4: /* pmuludq */
7987 case 0x0ff5: /* pmaddwd */
7988 case 0x0ff6: /* psadbw */
7989 case 0x0ff8: /* psubb */
7990 case 0x0ff9: /* psubw */
7991 case 0x0ffa: /* psubd */
7992 case 0x0ffb: /* psubq */
7993 case 0x0ffc: /* paddb */
7994 case 0x0ffd: /* paddw */
7995 case 0x0ffe: /* paddd */
7996 if (i386_record_modrm (&ir))
7997 return -1;
7998 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7999 goto no_support;
8000 record_full_arch_list_add_reg (ir.regcache,
8001 I387_MM0_REGNUM (tdep) + ir.reg);
8002 break;
8003
8004 case 0x0f71: /* psllw */
8005 case 0x0f72: /* pslld */
8006 case 0x0f73: /* psllq */
8007 if (i386_record_modrm (&ir))
8008 return -1;
8009 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
8010 goto no_support;
8011 record_full_arch_list_add_reg (ir.regcache,
8012 I387_MM0_REGNUM (tdep) + ir.rm);
8013 break;
8014
8015 case 0x660f71: /* psllw */
8016 case 0x660f72: /* pslld */
8017 case 0x660f73: /* psllq */
8018 if (i386_record_modrm (&ir))
8019 return -1;
8020 ir.rm |= ir.rex_b;
8021 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.rm))
8022 goto no_support;
8023 record_full_arch_list_add_reg (ir.regcache,
8024 I387_XMM0_REGNUM (tdep) + ir.rm);
8025 break;
8026
8027 case 0x0f7e: /* movd */
8028 case 0x660f7e: /* movd */
8029 if (i386_record_modrm (&ir))
8030 return -1;
8031 if (ir.mod == 3)
8032 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
8033 else
8034 {
8035 if (ir.dflag == 2)
8036 ir.ot = OT_QUAD;
8037 else
8038 ir.ot = OT_LONG;
8039 if (i386_record_lea_modrm (&ir))
8040 return -1;
8041 }
8042 break;
8043
8044 case 0x0f7f: /* movq */
8045 if (i386_record_modrm (&ir))
8046 return -1;
8047 if (ir.mod == 3)
8048 {
8049 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
8050 goto no_support;
8051 record_full_arch_list_add_reg (ir.regcache,
8052 I387_MM0_REGNUM (tdep) + ir.rm);
8053 }
8054 else
8055 {
8056 ir.ot = OT_QUAD;
8057 if (i386_record_lea_modrm (&ir))
8058 return -1;
8059 }
8060 break;
8061
8062 case 0xf30fb8: /* popcnt */
8063 if (i386_record_modrm (&ir))
8064 return -1;
8065 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
8066 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
8067 break;
8068
8069 case 0x660fd6: /* movq */
8070 if (i386_record_modrm (&ir))
8071 return -1;
8072 if (ir.mod == 3)
8073 {
8074 ir.rm |= ir.rex_b;
8075 if (!i386_xmm_regnum_p (gdbarch,
8076 I387_XMM0_REGNUM (tdep) + ir.rm))
8077 goto no_support;
8078 record_full_arch_list_add_reg (ir.regcache,
8079 I387_XMM0_REGNUM (tdep) + ir.rm);
8080 }
8081 else
8082 {
8083 ir.ot = OT_QUAD;
8084 if (i386_record_lea_modrm (&ir))
8085 return -1;
8086 }
8087 break;
8088
8089 case 0x660f3817: /* ptest */
8090 case 0x0f2e: /* ucomiss */
8091 case 0x660f2e: /* ucomisd */
8092 case 0x0f2f: /* comiss */
8093 case 0x660f2f: /* comisd */
8094 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
8095 break;
8096
8097 case 0x0ff7: /* maskmovq */
8098 regcache_raw_read_unsigned (ir.regcache,
8099 ir.regmap[X86_RECORD_REDI_REGNUM],
8100 &addr);
8101 if (record_full_arch_list_add_mem (addr, 64))
8102 return -1;
8103 break;
8104
8105 case 0x660ff7: /* maskmovdqu */
8106 regcache_raw_read_unsigned (ir.regcache,
8107 ir.regmap[X86_RECORD_REDI_REGNUM],
8108 &addr);
8109 if (record_full_arch_list_add_mem (addr, 128))
8110 return -1;
8111 break;
8112
8113 default:
8114 goto no_support;
8115 break;
8116 }
8117 break;
8118
8119 default:
8120 goto no_support;
8121 break;
8122 }
8123
8124 /* In the future, maybe still need to deal with need_dasm. */
8125 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REIP_REGNUM);
8126 if (record_full_arch_list_add_end ())
8127 return -1;
8128
8129 return 0;
8130
8131 no_support:
8132 printf_unfiltered (_("Process record does not support instruction 0x%02x "
8133 "at address %s.\n"),
8134 (unsigned int) (opcode),
8135 paddress (gdbarch, ir.orig_addr));
8136 return -1;
8137 }
8138
8139 static const int i386_record_regmap[] =
8140 {
8141 I386_EAX_REGNUM, I386_ECX_REGNUM, I386_EDX_REGNUM, I386_EBX_REGNUM,
8142 I386_ESP_REGNUM, I386_EBP_REGNUM, I386_ESI_REGNUM, I386_EDI_REGNUM,
8143 0, 0, 0, 0, 0, 0, 0, 0,
8144 I386_EIP_REGNUM, I386_EFLAGS_REGNUM, I386_CS_REGNUM, I386_SS_REGNUM,
8145 I386_DS_REGNUM, I386_ES_REGNUM, I386_FS_REGNUM, I386_GS_REGNUM
8146 };
8147
8148 /* Check that the given address appears suitable for a fast
8149 tracepoint, which on x86-64 means that we need an instruction of at
8150 least 5 bytes, so that we can overwrite it with a 4-byte-offset
8151 jump and not have to worry about program jumps to an address in the
8152 middle of the tracepoint jump. On x86, it may be possible to use
8153 4-byte jumps with a 2-byte offset to a trampoline located in the
8154 bottom 64 KiB of memory. Returns 1 if OK, and writes a size
8155 of instruction to replace, and 0 if not, plus an explanatory
8156 string. */
8157
8158 static int
8159 i386_fast_tracepoint_valid_at (struct gdbarch *gdbarch, CORE_ADDR addr,
8160 char **msg)
8161 {
8162 int len, jumplen;
8163
8164 /* Ask the target for the minimum instruction length supported. */
8165 jumplen = target_get_min_fast_tracepoint_insn_len ();
8166
8167 if (jumplen < 0)
8168 {
8169 /* If the target does not support the get_min_fast_tracepoint_insn_len
8170 operation, assume that fast tracepoints will always be implemented
8171 using 4-byte relative jumps on both x86 and x86-64. */
8172 jumplen = 5;
8173 }
8174 else if (jumplen == 0)
8175 {
8176 /* If the target does support get_min_fast_tracepoint_insn_len but
8177 returns zero, then the IPA has not loaded yet. In this case,
8178 we optimistically assume that truncated 2-byte relative jumps
8179 will be available on x86, and compensate later if this assumption
8180 turns out to be incorrect. On x86-64 architectures, 4-byte relative
8181 jumps will always be used. */
8182 jumplen = (register_size (gdbarch, 0) == 8) ? 5 : 4;
8183 }
8184
8185 /* Check for fit. */
8186 len = gdb_insn_length (gdbarch, addr);
8187
8188 if (len < jumplen)
8189 {
8190 /* Return a bit of target-specific detail to add to the caller's
8191 generic failure message. */
8192 if (msg)
8193 *msg = xstrprintf (_("; instruction is only %d bytes long, "
8194 "need at least %d bytes for the jump"),
8195 len, jumplen);
8196 return 0;
8197 }
8198 else
8199 {
8200 if (msg)
8201 *msg = NULL;
8202 return 1;
8203 }
8204 }
8205
8206 /* Return a floating-point format for a floating-point variable of
8207 length LEN in bits. If non-NULL, NAME is the name of its type.
8208 If no suitable type is found, return NULL. */
8209
8210 const struct floatformat **
8211 i386_floatformat_for_type (struct gdbarch *gdbarch,
8212 const char *name, int len)
8213 {
8214 if (len == 128 && name)
8215 if (strcmp (name, "__float128") == 0
8216 || strcmp (name, "_Float128") == 0
8217 || strcmp (name, "complex _Float128") == 0)
8218 return floatformats_ia64_quad;
8219
8220 return default_floatformat_for_type (gdbarch, name, len);
8221 }
8222
8223 static int
8224 i386_validate_tdesc_p (struct gdbarch_tdep *tdep,
8225 struct tdesc_arch_data *tdesc_data)
8226 {
8227 const struct target_desc *tdesc = tdep->tdesc;
8228 const struct tdesc_feature *feature_core;
8229
8230 const struct tdesc_feature *feature_sse, *feature_avx, *feature_mpx,
8231 *feature_avx512, *feature_pkeys;
8232 int i, num_regs, valid_p;
8233
8234 if (! tdesc_has_registers (tdesc))
8235 return 0;
8236
8237 /* Get core registers. */
8238 feature_core = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.core");
8239 if (feature_core == NULL)
8240 return 0;
8241
8242 /* Get SSE registers. */
8243 feature_sse = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.sse");
8244
8245 /* Try AVX registers. */
8246 feature_avx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx");
8247
8248 /* Try MPX registers. */
8249 feature_mpx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx");
8250
8251 /* Try AVX512 registers. */
8252 feature_avx512 = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx512");
8253
8254 /* Try PKEYS */
8255 feature_pkeys = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.pkeys");
8256
8257 valid_p = 1;
8258
8259 /* The XCR0 bits. */
8260 if (feature_avx512)
8261 {
8262 /* AVX512 register description requires AVX register description. */
8263 if (!feature_avx)
8264 return 0;
8265
8266 tdep->xcr0 = X86_XSTATE_AVX_AVX512_MASK;
8267
8268 /* It may have been set by OSABI initialization function. */
8269 if (tdep->k0_regnum < 0)
8270 {
8271 tdep->k_register_names = i386_k_names;
8272 tdep->k0_regnum = I386_K0_REGNUM;
8273 }
8274
8275 for (i = 0; i < I387_NUM_K_REGS; i++)
8276 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8277 tdep->k0_regnum + i,
8278 i386_k_names[i]);
8279
8280 if (tdep->num_zmm_regs == 0)
8281 {
8282 tdep->zmmh_register_names = i386_zmmh_names;
8283 tdep->num_zmm_regs = 8;
8284 tdep->zmm0h_regnum = I386_ZMM0H_REGNUM;
8285 }
8286
8287 for (i = 0; i < tdep->num_zmm_regs; i++)
8288 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8289 tdep->zmm0h_regnum + i,
8290 tdep->zmmh_register_names[i]);
8291
8292 for (i = 0; i < tdep->num_xmm_avx512_regs; i++)
8293 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8294 tdep->xmm16_regnum + i,
8295 tdep->xmm_avx512_register_names[i]);
8296
8297 for (i = 0; i < tdep->num_ymm_avx512_regs; i++)
8298 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8299 tdep->ymm16h_regnum + i,
8300 tdep->ymm16h_register_names[i]);
8301 }
8302 if (feature_avx)
8303 {
8304 /* AVX register description requires SSE register description. */
8305 if (!feature_sse)
8306 return 0;
8307
8308 if (!feature_avx512)
8309 tdep->xcr0 = X86_XSTATE_AVX_MASK;
8310
8311 /* It may have been set by OSABI initialization function. */
8312 if (tdep->num_ymm_regs == 0)
8313 {
8314 tdep->ymmh_register_names = i386_ymmh_names;
8315 tdep->num_ymm_regs = 8;
8316 tdep->ymm0h_regnum = I386_YMM0H_REGNUM;
8317 }
8318
8319 for (i = 0; i < tdep->num_ymm_regs; i++)
8320 valid_p &= tdesc_numbered_register (feature_avx, tdesc_data,
8321 tdep->ymm0h_regnum + i,
8322 tdep->ymmh_register_names[i]);
8323 }
8324 else if (feature_sse)
8325 tdep->xcr0 = X86_XSTATE_SSE_MASK;
8326 else
8327 {
8328 tdep->xcr0 = X86_XSTATE_X87_MASK;
8329 tdep->num_xmm_regs = 0;
8330 }
8331
8332 num_regs = tdep->num_core_regs;
8333 for (i = 0; i < num_regs; i++)
8334 valid_p &= tdesc_numbered_register (feature_core, tdesc_data, i,
8335 tdep->register_names[i]);
8336
8337 if (feature_sse)
8338 {
8339 /* Need to include %mxcsr, so add one. */
8340 num_regs += tdep->num_xmm_regs + 1;
8341 for (; i < num_regs; i++)
8342 valid_p &= tdesc_numbered_register (feature_sse, tdesc_data, i,
8343 tdep->register_names[i]);
8344 }
8345
8346 if (feature_mpx)
8347 {
8348 tdep->xcr0 |= X86_XSTATE_MPX_MASK;
8349
8350 if (tdep->bnd0r_regnum < 0)
8351 {
8352 tdep->mpx_register_names = i386_mpx_names;
8353 tdep->bnd0r_regnum = I386_BND0R_REGNUM;
8354 tdep->bndcfgu_regnum = I386_BNDCFGU_REGNUM;
8355 }
8356
8357 for (i = 0; i < I387_NUM_MPX_REGS; i++)
8358 valid_p &= tdesc_numbered_register (feature_mpx, tdesc_data,
8359 I387_BND0R_REGNUM (tdep) + i,
8360 tdep->mpx_register_names[i]);
8361 }
8362
8363 if (feature_pkeys)
8364 {
8365 tdep->xcr0 |= X86_XSTATE_PKRU;
8366 if (tdep->pkru_regnum < 0)
8367 {
8368 tdep->pkeys_register_names = i386_pkeys_names;
8369 tdep->pkru_regnum = I386_PKRU_REGNUM;
8370 tdep->num_pkeys_regs = 1;
8371 }
8372
8373 for (i = 0; i < I387_NUM_PKEYS_REGS; i++)
8374 valid_p &= tdesc_numbered_register (feature_pkeys, tdesc_data,
8375 I387_PKRU_REGNUM (tdep) + i,
8376 tdep->pkeys_register_names[i]);
8377 }
8378
8379 return valid_p;
8380 }
8381
8382 \f
8383 /* Note: This is called for both i386 and amd64. */
8384
8385 static struct gdbarch *
8386 i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
8387 {
8388 struct gdbarch_tdep *tdep;
8389 struct gdbarch *gdbarch;
8390 struct tdesc_arch_data *tdesc_data;
8391 const struct target_desc *tdesc;
8392 int mm0_regnum;
8393 int ymm0_regnum;
8394 int bnd0_regnum;
8395 int num_bnd_cooked;
8396
8397 /* If there is already a candidate, use it. */
8398 arches = gdbarch_list_lookup_by_info (arches, &info);
8399 if (arches != NULL)
8400 return arches->gdbarch;
8401
8402 /* Allocate space for the new architecture. Assume i386 for now. */
8403 tdep = XCNEW (struct gdbarch_tdep);
8404 gdbarch = gdbarch_alloc (&info, tdep);
8405
8406 /* General-purpose registers. */
8407 tdep->gregset_reg_offset = NULL;
8408 tdep->gregset_num_regs = I386_NUM_GREGS;
8409 tdep->sizeof_gregset = 0;
8410
8411 /* Floating-point registers. */
8412 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
8413 tdep->fpregset = &i386_fpregset;
8414
8415 /* The default settings include the FPU registers, the MMX registers
8416 and the SSE registers. This can be overridden for a specific ABI
8417 by adjusting the members `st0_regnum', `mm0_regnum' and
8418 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
8419 will show up in the output of "info all-registers". */
8420
8421 tdep->st0_regnum = I386_ST0_REGNUM;
8422
8423 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
8424 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
8425
8426 tdep->jb_pc_offset = -1;
8427 tdep->struct_return = pcc_struct_return;
8428 tdep->sigtramp_start = 0;
8429 tdep->sigtramp_end = 0;
8430 tdep->sigtramp_p = i386_sigtramp_p;
8431 tdep->sigcontext_addr = NULL;
8432 tdep->sc_reg_offset = NULL;
8433 tdep->sc_pc_offset = -1;
8434 tdep->sc_sp_offset = -1;
8435
8436 tdep->xsave_xcr0_offset = -1;
8437
8438 tdep->record_regmap = i386_record_regmap;
8439
8440 set_gdbarch_long_long_align_bit (gdbarch, 32);
8441
8442 /* The format used for `long double' on almost all i386 targets is
8443 the i387 extended floating-point format. In fact, of all targets
8444 in the GCC 2.95 tree, only OSF/1 does it different, and insists
8445 on having a `long double' that's not `long' at all. */
8446 set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext);
8447
8448 /* Although the i387 extended floating-point has only 80 significant
8449 bits, a `long double' actually takes up 96, probably to enforce
8450 alignment. */
8451 set_gdbarch_long_double_bit (gdbarch, 96);
8452
8453 /* Support for floating-point data type variants. */
8454 set_gdbarch_floatformat_for_type (gdbarch, i386_floatformat_for_type);
8455
8456 /* Register numbers of various important registers. */
8457 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
8458 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
8459 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
8460 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
8461
8462 /* NOTE: kettenis/20040418: GCC does have two possible register
8463 numbering schemes on the i386: dbx and SVR4. These schemes
8464 differ in how they number %ebp, %esp, %eflags, and the
8465 floating-point registers, and are implemented by the arrays
8466 dbx_register_map[] and svr4_dbx_register_map in
8467 gcc/config/i386.c. GCC also defines a third numbering scheme in
8468 gcc/config/i386.c, which it designates as the "default" register
8469 map used in 64bit mode. This last register numbering scheme is
8470 implemented in dbx64_register_map, and is used for AMD64; see
8471 amd64-tdep.c.
8472
8473 Currently, each GCC i386 target always uses the same register
8474 numbering scheme across all its supported debugging formats
8475 i.e. SDB (COFF), stabs and DWARF 2. This is because
8476 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
8477 DBX_REGISTER_NUMBER macro which is defined by each target's
8478 respective config header in a manner independent of the requested
8479 output debugging format.
8480
8481 This does not match the arrangement below, which presumes that
8482 the SDB and stabs numbering schemes differ from the DWARF and
8483 DWARF 2 ones. The reason for this arrangement is that it is
8484 likely to get the numbering scheme for the target's
8485 default/native debug format right. For targets where GCC is the
8486 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
8487 targets where the native toolchain uses a different numbering
8488 scheme for a particular debug format (stabs-in-ELF on Solaris)
8489 the defaults below will have to be overridden, like
8490 i386_elf_init_abi() does. */
8491
8492 /* Use the dbx register numbering scheme for stabs and COFF. */
8493 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
8494 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
8495
8496 /* Use the SVR4 register numbering scheme for DWARF 2. */
8497 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_dwarf_reg_to_regnum);
8498
8499 /* We don't set gdbarch_stab_reg_to_regnum, since ECOFF doesn't seem to
8500 be in use on any of the supported i386 targets. */
8501
8502 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
8503
8504 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
8505
8506 /* Call dummy code. */
8507 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
8508 set_gdbarch_push_dummy_code (gdbarch, i386_push_dummy_code);
8509 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
8510 set_gdbarch_frame_align (gdbarch, i386_frame_align);
8511
8512 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
8513 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
8514 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
8515
8516 set_gdbarch_return_value (gdbarch, i386_return_value);
8517
8518 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
8519
8520 /* Stack grows downward. */
8521 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
8522
8523 set_gdbarch_breakpoint_kind_from_pc (gdbarch, i386_breakpoint::kind_from_pc);
8524 set_gdbarch_sw_breakpoint_from_kind (gdbarch, i386_breakpoint::bp_from_kind);
8525
8526 set_gdbarch_decr_pc_after_break (gdbarch, 1);
8527 set_gdbarch_max_insn_length (gdbarch, I386_MAX_INSN_LEN);
8528
8529 set_gdbarch_frame_args_skip (gdbarch, 8);
8530
8531 set_gdbarch_print_insn (gdbarch, i386_print_insn);
8532
8533 set_gdbarch_dummy_id (gdbarch, i386_dummy_id);
8534
8535 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
8536
8537 /* Add the i386 register groups. */
8538 i386_add_reggroups (gdbarch);
8539 tdep->register_reggroup_p = i386_register_reggroup_p;
8540
8541 /* Helper for function argument information. */
8542 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
8543
8544 /* Hook the function epilogue frame unwinder. This unwinder is
8545 appended to the list first, so that it supercedes the DWARF
8546 unwinder in function epilogues (where the DWARF unwinder
8547 currently fails). */
8548 frame_unwind_append_unwinder (gdbarch, &i386_epilogue_frame_unwind);
8549
8550 /* Hook in the DWARF CFI frame unwinder. This unwinder is appended
8551 to the list before the prologue-based unwinders, so that DWARF
8552 CFI info will be used if it is available. */
8553 dwarf2_append_unwinders (gdbarch);
8554
8555 frame_base_set_default (gdbarch, &i386_frame_base);
8556
8557 /* Pseudo registers may be changed by amd64_init_abi. */
8558 set_gdbarch_pseudo_register_read_value (gdbarch,
8559 i386_pseudo_register_read_value);
8560 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
8561 set_gdbarch_ax_pseudo_register_collect (gdbarch,
8562 i386_ax_pseudo_register_collect);
8563
8564 set_tdesc_pseudo_register_type (gdbarch, i386_pseudo_register_type);
8565 set_tdesc_pseudo_register_name (gdbarch, i386_pseudo_register_name);
8566
8567 /* Override the normal target description method to make the AVX
8568 upper halves anonymous. */
8569 set_gdbarch_register_name (gdbarch, i386_register_name);
8570
8571 /* Even though the default ABI only includes general-purpose registers,
8572 floating-point registers and the SSE registers, we have to leave a
8573 gap for the upper AVX, MPX and AVX512 registers. */
8574 set_gdbarch_num_regs (gdbarch, I386_PKEYS_NUM_REGS);
8575
8576 set_gdbarch_gnu_triplet_regexp (gdbarch, i386_gnu_triplet_regexp);
8577
8578 /* Get the x86 target description from INFO. */
8579 tdesc = info.target_desc;
8580 if (! tdesc_has_registers (tdesc))
8581 tdesc = tdesc_i386;
8582 tdep->tdesc = tdesc;
8583
8584 tdep->num_core_regs = I386_NUM_GREGS + I387_NUM_REGS;
8585 tdep->register_names = i386_register_names;
8586
8587 /* No upper YMM registers. */
8588 tdep->ymmh_register_names = NULL;
8589 tdep->ymm0h_regnum = -1;
8590
8591 /* No upper ZMM registers. */
8592 tdep->zmmh_register_names = NULL;
8593 tdep->zmm0h_regnum = -1;
8594
8595 /* No high XMM registers. */
8596 tdep->xmm_avx512_register_names = NULL;
8597 tdep->xmm16_regnum = -1;
8598
8599 /* No upper YMM16-31 registers. */
8600 tdep->ymm16h_register_names = NULL;
8601 tdep->ymm16h_regnum = -1;
8602
8603 tdep->num_byte_regs = 8;
8604 tdep->num_word_regs = 8;
8605 tdep->num_dword_regs = 0;
8606 tdep->num_mmx_regs = 8;
8607 tdep->num_ymm_regs = 0;
8608
8609 /* No MPX registers. */
8610 tdep->bnd0r_regnum = -1;
8611 tdep->bndcfgu_regnum = -1;
8612
8613 /* No AVX512 registers. */
8614 tdep->k0_regnum = -1;
8615 tdep->num_zmm_regs = 0;
8616 tdep->num_ymm_avx512_regs = 0;
8617 tdep->num_xmm_avx512_regs = 0;
8618
8619 /* No PKEYS registers */
8620 tdep->pkru_regnum = -1;
8621 tdep->num_pkeys_regs = 0;
8622
8623 tdesc_data = tdesc_data_alloc ();
8624
8625 set_gdbarch_relocate_instruction (gdbarch, i386_relocate_instruction);
8626
8627 set_gdbarch_gen_return_address (gdbarch, i386_gen_return_address);
8628
8629 set_gdbarch_insn_is_call (gdbarch, i386_insn_is_call);
8630 set_gdbarch_insn_is_ret (gdbarch, i386_insn_is_ret);
8631 set_gdbarch_insn_is_jump (gdbarch, i386_insn_is_jump);
8632
8633 /* Hook in ABI-specific overrides, if they have been registered.
8634 Note: If INFO specifies a 64 bit arch, this is where we turn
8635 a 32-bit i386 into a 64-bit amd64. */
8636 info.tdep_info = tdesc_data;
8637 gdbarch_init_osabi (info, gdbarch);
8638
8639 if (!i386_validate_tdesc_p (tdep, tdesc_data))
8640 {
8641 tdesc_data_cleanup (tdesc_data);
8642 xfree (tdep);
8643 gdbarch_free (gdbarch);
8644 return NULL;
8645 }
8646
8647 num_bnd_cooked = (tdep->bnd0r_regnum > 0 ? I387_NUM_BND_REGS : 0);
8648
8649 /* Wire in pseudo registers. Number of pseudo registers may be
8650 changed. */
8651 set_gdbarch_num_pseudo_regs (gdbarch, (tdep->num_byte_regs
8652 + tdep->num_word_regs
8653 + tdep->num_dword_regs
8654 + tdep->num_mmx_regs
8655 + tdep->num_ymm_regs
8656 + num_bnd_cooked
8657 + tdep->num_ymm_avx512_regs
8658 + tdep->num_zmm_regs));
8659
8660 /* Target description may be changed. */
8661 tdesc = tdep->tdesc;
8662
8663 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
8664
8665 /* Override gdbarch_register_reggroup_p set in tdesc_use_registers. */
8666 set_gdbarch_register_reggroup_p (gdbarch, tdep->register_reggroup_p);
8667
8668 /* Make %al the first pseudo-register. */
8669 tdep->al_regnum = gdbarch_num_regs (gdbarch);
8670 tdep->ax_regnum = tdep->al_regnum + tdep->num_byte_regs;
8671
8672 ymm0_regnum = tdep->ax_regnum + tdep->num_word_regs;
8673 if (tdep->num_dword_regs)
8674 {
8675 /* Support dword pseudo-register if it hasn't been disabled. */
8676 tdep->eax_regnum = ymm0_regnum;
8677 ymm0_regnum += tdep->num_dword_regs;
8678 }
8679 else
8680 tdep->eax_regnum = -1;
8681
8682 mm0_regnum = ymm0_regnum;
8683 if (tdep->num_ymm_regs)
8684 {
8685 /* Support YMM pseudo-register if it is available. */
8686 tdep->ymm0_regnum = ymm0_regnum;
8687 mm0_regnum += tdep->num_ymm_regs;
8688 }
8689 else
8690 tdep->ymm0_regnum = -1;
8691
8692 if (tdep->num_ymm_avx512_regs)
8693 {
8694 /* Support YMM16-31 pseudo registers if available. */
8695 tdep->ymm16_regnum = mm0_regnum;
8696 mm0_regnum += tdep->num_ymm_avx512_regs;
8697 }
8698 else
8699 tdep->ymm16_regnum = -1;
8700
8701 if (tdep->num_zmm_regs)
8702 {
8703 /* Support ZMM pseudo-register if it is available. */
8704 tdep->zmm0_regnum = mm0_regnum;
8705 mm0_regnum += tdep->num_zmm_regs;
8706 }
8707 else
8708 tdep->zmm0_regnum = -1;
8709
8710 bnd0_regnum = mm0_regnum;
8711 if (tdep->num_mmx_regs != 0)
8712 {
8713 /* Support MMX pseudo-register if MMX hasn't been disabled. */
8714 tdep->mm0_regnum = mm0_regnum;
8715 bnd0_regnum += tdep->num_mmx_regs;
8716 }
8717 else
8718 tdep->mm0_regnum = -1;
8719
8720 if (tdep->bnd0r_regnum > 0)
8721 tdep->bnd0_regnum = bnd0_regnum;
8722 else
8723 tdep-> bnd0_regnum = -1;
8724
8725 /* Hook in the legacy prologue-based unwinders last (fallback). */
8726 frame_unwind_append_unwinder (gdbarch, &i386_stack_tramp_frame_unwind);
8727 frame_unwind_append_unwinder (gdbarch, &i386_sigtramp_frame_unwind);
8728 frame_unwind_append_unwinder (gdbarch, &i386_frame_unwind);
8729
8730 /* If we have a register mapping, enable the generic core file
8731 support, unless it has already been enabled. */
8732 if (tdep->gregset_reg_offset
8733 && !gdbarch_iterate_over_regset_sections_p (gdbarch))
8734 set_gdbarch_iterate_over_regset_sections
8735 (gdbarch, i386_iterate_over_regset_sections);
8736
8737 set_gdbarch_fast_tracepoint_valid_at (gdbarch,
8738 i386_fast_tracepoint_valid_at);
8739
8740 return gdbarch;
8741 }
8742
8743 static enum gdb_osabi
8744 i386_coff_osabi_sniffer (bfd *abfd)
8745 {
8746 if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
8747 || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
8748 return GDB_OSABI_GO32;
8749
8750 return GDB_OSABI_UNKNOWN;
8751 }
8752 \f
8753
8754 /* Return the target description for a specified XSAVE feature mask. */
8755
8756 const struct target_desc *
8757 i386_target_description (uint64_t xcr0)
8758 {
8759 switch (xcr0 & X86_XSTATE_ALL_MASK)
8760 {
8761 case X86_XSTATE_AVX_MPX_AVX512_PKU_MASK:
8762 return tdesc_i386_avx_mpx_avx512_pku;
8763 case X86_XSTATE_AVX_AVX512_MASK:
8764 return tdesc_i386_avx_avx512;
8765 case X86_XSTATE_AVX_MPX_MASK:
8766 return tdesc_i386_avx_mpx;
8767 case X86_XSTATE_MPX_MASK:
8768 return tdesc_i386_mpx;
8769 case X86_XSTATE_AVX_MASK:
8770 return tdesc_i386_avx;
8771 default:
8772 return tdesc_i386;
8773 }
8774 }
8775
8776 #define MPX_BASE_MASK (~(ULONGEST) 0xfff)
8777
8778 /* Find the bound directory base address. */
8779
8780 static unsigned long
8781 i386_mpx_bd_base (void)
8782 {
8783 struct regcache *rcache;
8784 struct gdbarch_tdep *tdep;
8785 ULONGEST ret;
8786 enum register_status regstatus;
8787
8788 rcache = get_current_regcache ();
8789 tdep = gdbarch_tdep (get_regcache_arch (rcache));
8790
8791 regstatus = regcache_raw_read_unsigned (rcache, tdep->bndcfgu_regnum, &ret);
8792
8793 if (regstatus != REG_VALID)
8794 error (_("BNDCFGU register invalid, read status %d."), regstatus);
8795
8796 return ret & MPX_BASE_MASK;
8797 }
8798
8799 int
8800 i386_mpx_enabled (void)
8801 {
8802 const struct gdbarch_tdep *tdep = gdbarch_tdep (get_current_arch ());
8803 const struct target_desc *tdesc = tdep->tdesc;
8804
8805 return (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx") != NULL);
8806 }
8807
8808 #define MPX_BD_MASK 0xfffffff00000ULL /* select bits [47:20] */
8809 #define MPX_BT_MASK 0x0000000ffff8 /* select bits [19:3] */
8810 #define MPX_BD_MASK_32 0xfffff000 /* select bits [31:12] */
8811 #define MPX_BT_MASK_32 0x00000ffc /* select bits [11:2] */
8812
8813 /* Find the bound table entry given the pointer location and the base
8814 address of the table. */
8815
8816 static CORE_ADDR
8817 i386_mpx_get_bt_entry (CORE_ADDR ptr, CORE_ADDR bd_base)
8818 {
8819 CORE_ADDR offset1;
8820 CORE_ADDR offset2;
8821 CORE_ADDR mpx_bd_mask, bd_ptr_r_shift, bd_ptr_l_shift;
8822 CORE_ADDR bt_mask, bt_select_r_shift, bt_select_l_shift;
8823 CORE_ADDR bd_entry_addr;
8824 CORE_ADDR bt_addr;
8825 CORE_ADDR bd_entry;
8826 struct gdbarch *gdbarch = get_current_arch ();
8827 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8828
8829
8830 if (gdbarch_ptr_bit (gdbarch) == 64)
8831 {
8832 mpx_bd_mask = (CORE_ADDR) MPX_BD_MASK;
8833 bd_ptr_r_shift = 20;
8834 bd_ptr_l_shift = 3;
8835 bt_select_r_shift = 3;
8836 bt_select_l_shift = 5;
8837 bt_mask = (CORE_ADDR) MPX_BT_MASK;
8838
8839 if ( sizeof (CORE_ADDR) == 4)
8840 error (_("bound table examination not supported\
8841 for 64-bit process with 32-bit GDB"));
8842 }
8843 else
8844 {
8845 mpx_bd_mask = MPX_BD_MASK_32;
8846 bd_ptr_r_shift = 12;
8847 bd_ptr_l_shift = 2;
8848 bt_select_r_shift = 2;
8849 bt_select_l_shift = 4;
8850 bt_mask = MPX_BT_MASK_32;
8851 }
8852
8853 offset1 = ((ptr & mpx_bd_mask) >> bd_ptr_r_shift) << bd_ptr_l_shift;
8854 bd_entry_addr = bd_base + offset1;
8855 bd_entry = read_memory_typed_address (bd_entry_addr, data_ptr_type);
8856
8857 if ((bd_entry & 0x1) == 0)
8858 error (_("Invalid bounds directory entry at %s."),
8859 paddress (get_current_arch (), bd_entry_addr));
8860
8861 /* Clearing status bit. */
8862 bd_entry--;
8863 bt_addr = bd_entry & ~bt_select_r_shift;
8864 offset2 = ((ptr & bt_mask) >> bt_select_r_shift) << bt_select_l_shift;
8865
8866 return bt_addr + offset2;
8867 }
8868
8869 /* Print routine for the mpx bounds. */
8870
8871 static void
8872 i386_mpx_print_bounds (const CORE_ADDR bt_entry[4])
8873 {
8874 struct ui_out *uiout = current_uiout;
8875 LONGEST size;
8876 struct gdbarch *gdbarch = get_current_arch ();
8877 CORE_ADDR onecompl = ~((CORE_ADDR) 0);
8878 int bounds_in_map = ((~bt_entry[1] == 0 && bt_entry[0] == onecompl) ? 1 : 0);
8879
8880 if (bounds_in_map == 1)
8881 {
8882 uiout->text ("Null bounds on map:");
8883 uiout->text (" pointer value = ");
8884 uiout->field_core_addr ("pointer-value", gdbarch, bt_entry[2]);
8885 uiout->text (".");
8886 uiout->text ("\n");
8887 }
8888 else
8889 {
8890 uiout->text ("{lbound = ");
8891 uiout->field_core_addr ("lower-bound", gdbarch, bt_entry[0]);
8892 uiout->text (", ubound = ");
8893
8894 /* The upper bound is stored in 1's complement. */
8895 uiout->field_core_addr ("upper-bound", gdbarch, ~bt_entry[1]);
8896 uiout->text ("}: pointer value = ");
8897 uiout->field_core_addr ("pointer-value", gdbarch, bt_entry[2]);
8898
8899 if (gdbarch_ptr_bit (gdbarch) == 64)
8900 size = ( (~(int64_t) bt_entry[1]) - (int64_t) bt_entry[0]);
8901 else
8902 size = ( ~((int32_t) bt_entry[1]) - (int32_t) bt_entry[0]);
8903
8904 /* In case the bounds are 0x0 and 0xffff... the difference will be -1.
8905 -1 represents in this sense full memory access, and there is no need
8906 one to the size. */
8907
8908 size = (size > -1 ? size + 1 : size);
8909 uiout->text (", size = ");
8910 uiout->field_fmt ("size", "%s", plongest (size));
8911
8912 uiout->text (", metadata = ");
8913 uiout->field_core_addr ("metadata", gdbarch, bt_entry[3]);
8914 uiout->text ("\n");
8915 }
8916 }
8917
8918 /* Implement the command "show mpx bound". */
8919
8920 static void
8921 i386_mpx_info_bounds (char *args, int from_tty)
8922 {
8923 CORE_ADDR bd_base = 0;
8924 CORE_ADDR addr;
8925 CORE_ADDR bt_entry_addr = 0;
8926 CORE_ADDR bt_entry[4];
8927 int i;
8928 struct gdbarch *gdbarch = get_current_arch ();
8929 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8930
8931 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_i386
8932 || !i386_mpx_enabled ())
8933 {
8934 printf_unfiltered (_("Intel Memory Protection Extensions not "
8935 "supported on this target.\n"));
8936 return;
8937 }
8938
8939 if (args == NULL)
8940 {
8941 printf_unfiltered (_("Address of pointer variable expected.\n"));
8942 return;
8943 }
8944
8945 addr = parse_and_eval_address (args);
8946
8947 bd_base = i386_mpx_bd_base ();
8948 bt_entry_addr = i386_mpx_get_bt_entry (addr, bd_base);
8949
8950 memset (bt_entry, 0, sizeof (bt_entry));
8951
8952 for (i = 0; i < 4; i++)
8953 bt_entry[i] = read_memory_typed_address (bt_entry_addr
8954 + i * TYPE_LENGTH (data_ptr_type),
8955 data_ptr_type);
8956
8957 i386_mpx_print_bounds (bt_entry);
8958 }
8959
8960 /* Implement the command "set mpx bound". */
8961
8962 static void
8963 i386_mpx_set_bounds (char *args, int from_tty)
8964 {
8965 CORE_ADDR bd_base = 0;
8966 CORE_ADDR addr, lower, upper;
8967 CORE_ADDR bt_entry_addr = 0;
8968 CORE_ADDR bt_entry[2];
8969 const char *input = args;
8970 int i;
8971 struct gdbarch *gdbarch = get_current_arch ();
8972 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
8973 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8974
8975 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_i386
8976 || !i386_mpx_enabled ())
8977 error (_("Intel Memory Protection Extensions not supported\
8978 on this target."));
8979
8980 if (args == NULL)
8981 error (_("Pointer value expected."));
8982
8983 addr = value_as_address (parse_to_comma_and_eval (&input));
8984
8985 if (input[0] == ',')
8986 ++input;
8987 if (input[0] == '\0')
8988 error (_("wrong number of arguments: missing lower and upper bound."));
8989 lower = value_as_address (parse_to_comma_and_eval (&input));
8990
8991 if (input[0] == ',')
8992 ++input;
8993 if (input[0] == '\0')
8994 error (_("Wrong number of arguments; Missing upper bound."));
8995 upper = value_as_address (parse_to_comma_and_eval (&input));
8996
8997 bd_base = i386_mpx_bd_base ();
8998 bt_entry_addr = i386_mpx_get_bt_entry (addr, bd_base);
8999 for (i = 0; i < 2; i++)
9000 bt_entry[i] = read_memory_typed_address (bt_entry_addr
9001 + i * TYPE_LENGTH (data_ptr_type),
9002 data_ptr_type);
9003 bt_entry[0] = (uint64_t) lower;
9004 bt_entry[1] = ~(uint64_t) upper;
9005
9006 for (i = 0; i < 2; i++)
9007 write_memory_unsigned_integer (bt_entry_addr
9008 + i * TYPE_LENGTH (data_ptr_type),
9009 TYPE_LENGTH (data_ptr_type), byte_order,
9010 bt_entry[i]);
9011 }
9012
9013 static struct cmd_list_element *mpx_set_cmdlist, *mpx_show_cmdlist;
9014
9015 /* Helper function for the CLI commands. */
9016
9017 static void
9018 set_mpx_cmd (char *args, int from_tty)
9019 {
9020 help_list (mpx_set_cmdlist, "set mpx ", all_commands, gdb_stdout);
9021 }
9022
9023 /* Helper function for the CLI commands. */
9024
9025 static void
9026 show_mpx_cmd (char *args, int from_tty)
9027 {
9028 cmd_show_list (mpx_show_cmdlist, from_tty, "");
9029 }
9030
9031 /* Provide a prototype to silence -Wmissing-prototypes. */
9032 void _initialize_i386_tdep (void);
9033
9034 void
9035 _initialize_i386_tdep (void)
9036 {
9037 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
9038
9039 /* Add the variable that controls the disassembly flavor. */
9040 add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
9041 &disassembly_flavor, _("\
9042 Set the disassembly flavor."), _("\
9043 Show the disassembly flavor."), _("\
9044 The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
9045 NULL,
9046 NULL, /* FIXME: i18n: */
9047 &setlist, &showlist);
9048
9049 /* Add the variable that controls the convention for returning
9050 structs. */
9051 add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
9052 &struct_convention, _("\
9053 Set the convention for returning small structs."), _("\
9054 Show the convention for returning small structs."), _("\
9055 Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
9056 is \"default\"."),
9057 NULL,
9058 NULL, /* FIXME: i18n: */
9059 &setlist, &showlist);
9060
9061 /* Add "mpx" prefix for the set commands. */
9062
9063 add_prefix_cmd ("mpx", class_support, set_mpx_cmd, _("\
9064 Set Intel Memory Protection Extensions specific variables."),
9065 &mpx_set_cmdlist, "set mpx ",
9066 0 /* allow-unknown */, &setlist);
9067
9068 /* Add "mpx" prefix for the show commands. */
9069
9070 add_prefix_cmd ("mpx", class_support, show_mpx_cmd, _("\
9071 Show Intel Memory Protection Extensions specific variables."),
9072 &mpx_show_cmdlist, "show mpx ",
9073 0 /* allow-unknown */, &showlist);
9074
9075 /* Add "bound" command for the show mpx commands list. */
9076
9077 add_cmd ("bound", no_class, i386_mpx_info_bounds,
9078 "Show the memory bounds for a given array/pointer storage\
9079 in the bound table.",
9080 &mpx_show_cmdlist);
9081
9082 /* Add "bound" command for the set mpx commands list. */
9083
9084 add_cmd ("bound", no_class, i386_mpx_set_bounds,
9085 "Set the memory bounds for a given array/pointer storage\
9086 in the bound table.",
9087 &mpx_set_cmdlist);
9088
9089 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
9090 i386_coff_osabi_sniffer);
9091
9092 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
9093 i386_svr4_init_abi);
9094 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_GO32,
9095 i386_go32_init_abi);
9096
9097 /* Initialize the i386-specific register groups. */
9098 i386_init_reggroups ();
9099
9100 /* Initialize the standard target descriptions. */
9101 initialize_tdesc_i386 ();
9102 initialize_tdesc_i386_mmx ();
9103 initialize_tdesc_i386_avx ();
9104 initialize_tdesc_i386_mpx ();
9105 initialize_tdesc_i386_avx_mpx ();
9106 initialize_tdesc_i386_avx_avx512 ();
9107 initialize_tdesc_i386_avx_mpx_avx512_pku ();
9108
9109 /* Tell remote stub that we support XML target description. */
9110 register_remote_support_xml ("i386");
9111 }
This page took 0.320543 seconds and 3 git commands to generate.