* configure.host: Change irix5 to irix[56]*.
[deliverable/binutils-gdb.git] / gdb / i386-tdep.c
1 /* Intel 386 target-dependent stuff.
2 Copyright (C) 1988, 1989, 1991, 1994, 1995, 1996 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
19
20 #include "defs.h"
21 #include "gdb_string.h"
22 #include "frame.h"
23 #include "inferior.h"
24 #include "gdbcore.h"
25 #include "target.h"
26 #include "floatformat.h"
27 #include "symtab.h"
28 #include "gdbcmd.h"
29
30 static long i386_get_frame_setup PARAMS ((CORE_ADDR));
31
32 static void i386_follow_jump PARAMS ((void));
33
34 static void codestream_read PARAMS ((unsigned char *, int));
35
36 static void codestream_seek PARAMS ((CORE_ADDR));
37
38 static unsigned char codestream_fill PARAMS ((int));
39
40 /* Stdio style buffering was used to minimize calls to ptrace, but this
41 buffering did not take into account that the code section being accessed
42 may not be an even number of buffers long (even if the buffer is only
43 sizeof(int) long). In cases where the code section size happened to
44 be a non-integral number of buffers long, attempting to read the last
45 buffer would fail. Simply using target_read_memory and ignoring errors,
46 rather than read_memory, is not the correct solution, since legitimate
47 access errors would then be totally ignored. To properly handle this
48 situation and continue to use buffering would require that this code
49 be able to determine the minimum code section size granularity (not the
50 alignment of the section itself, since the actual failing case that
51 pointed out this problem had a section alignment of 4 but was not a
52 multiple of 4 bytes long), on a target by target basis, and then
53 adjust it's buffer size accordingly. This is messy, but potentially
54 feasible. It probably needs the bfd library's help and support. For
55 now, the buffer size is set to 1. (FIXME -fnf) */
56
57 #define CODESTREAM_BUFSIZ 1 /* Was sizeof(int), see note above. */
58 static CORE_ADDR codestream_next_addr;
59 static CORE_ADDR codestream_addr;
60 static unsigned char codestream_buf[CODESTREAM_BUFSIZ];
61 static int codestream_off;
62 static int codestream_cnt;
63
64 #define codestream_tell() (codestream_addr + codestream_off)
65 #define codestream_peek() (codestream_cnt == 0 ? \
66 codestream_fill(1): codestream_buf[codestream_off])
67 #define codestream_get() (codestream_cnt-- == 0 ? \
68 codestream_fill(0) : codestream_buf[codestream_off++])
69
70 static unsigned char
71 codestream_fill (peek_flag)
72 int peek_flag;
73 {
74 codestream_addr = codestream_next_addr;
75 codestream_next_addr += CODESTREAM_BUFSIZ;
76 codestream_off = 0;
77 codestream_cnt = CODESTREAM_BUFSIZ;
78 read_memory (codestream_addr, (char *) codestream_buf, CODESTREAM_BUFSIZ);
79
80 if (peek_flag)
81 return (codestream_peek());
82 else
83 return (codestream_get());
84 }
85
86 static void
87 codestream_seek (place)
88 CORE_ADDR place;
89 {
90 codestream_next_addr = place / CODESTREAM_BUFSIZ;
91 codestream_next_addr *= CODESTREAM_BUFSIZ;
92 codestream_cnt = 0;
93 codestream_fill (1);
94 while (codestream_tell() != place)
95 codestream_get ();
96 }
97
98 static void
99 codestream_read (buf, count)
100 unsigned char *buf;
101 int count;
102 {
103 unsigned char *p;
104 int i;
105 p = buf;
106 for (i = 0; i < count; i++)
107 *p++ = codestream_get ();
108 }
109
110 /* next instruction is a jump, move to target */
111
112 static void
113 i386_follow_jump ()
114 {
115 unsigned char buf[4];
116 long delta;
117
118 int data16;
119 CORE_ADDR pos;
120
121 pos = codestream_tell ();
122
123 data16 = 0;
124 if (codestream_peek () == 0x66)
125 {
126 codestream_get ();
127 data16 = 1;
128 }
129
130 switch (codestream_get ())
131 {
132 case 0xe9:
133 /* relative jump: if data16 == 0, disp32, else disp16 */
134 if (data16)
135 {
136 codestream_read (buf, 2);
137 delta = extract_signed_integer (buf, 2);
138
139 /* include size of jmp inst (including the 0x66 prefix). */
140 pos += delta + 4;
141 }
142 else
143 {
144 codestream_read (buf, 4);
145 delta = extract_signed_integer (buf, 4);
146
147 pos += delta + 5;
148 }
149 break;
150 case 0xeb:
151 /* relative jump, disp8 (ignore data16) */
152 codestream_read (buf, 1);
153 /* Sign-extend it. */
154 delta = extract_signed_integer (buf, 1);
155
156 pos += delta + 2;
157 break;
158 }
159 codestream_seek (pos);
160 }
161
162 /*
163 * find & return amound a local space allocated, and advance codestream to
164 * first register push (if any)
165 *
166 * if entry sequence doesn't make sense, return -1, and leave
167 * codestream pointer random
168 */
169
170 static long
171 i386_get_frame_setup (pc)
172 CORE_ADDR pc;
173 {
174 unsigned char op;
175
176 codestream_seek (pc);
177
178 i386_follow_jump ();
179
180 op = codestream_get ();
181
182 if (op == 0x58) /* popl %eax */
183 {
184 /*
185 * this function must start with
186 *
187 * popl %eax 0x58
188 * xchgl %eax, (%esp) 0x87 0x04 0x24
189 * or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
190 *
191 * (the system 5 compiler puts out the second xchg
192 * inst, and the assembler doesn't try to optimize it,
193 * so the 'sib' form gets generated)
194 *
195 * this sequence is used to get the address of the return
196 * buffer for a function that returns a structure
197 */
198 int pos;
199 unsigned char buf[4];
200 static unsigned char proto1[3] = { 0x87,0x04,0x24 };
201 static unsigned char proto2[4] = { 0x87,0x44,0x24,0x00 };
202 pos = codestream_tell ();
203 codestream_read (buf, 4);
204 if (memcmp (buf, proto1, 3) == 0)
205 pos += 3;
206 else if (memcmp (buf, proto2, 4) == 0)
207 pos += 4;
208
209 codestream_seek (pos);
210 op = codestream_get (); /* update next opcode */
211 }
212
213 if (op == 0x55) /* pushl %ebp */
214 {
215 /* check for movl %esp, %ebp - can be written two ways */
216 switch (codestream_get ())
217 {
218 case 0x8b:
219 if (codestream_get () != 0xec)
220 return (-1);
221 break;
222 case 0x89:
223 if (codestream_get () != 0xe5)
224 return (-1);
225 break;
226 default:
227 return (-1);
228 }
229 /* check for stack adjustment
230 *
231 * subl $XXX, %esp
232 *
233 * note: you can't subtract a 16 bit immediate
234 * from a 32 bit reg, so we don't have to worry
235 * about a data16 prefix
236 */
237 op = codestream_peek ();
238 if (op == 0x83)
239 {
240 /* subl with 8 bit immed */
241 codestream_get ();
242 if (codestream_get () != 0xec)
243 /* Some instruction starting with 0x83 other than subl. */
244 {
245 codestream_seek (codestream_tell () - 2);
246 return 0;
247 }
248 /* subl with signed byte immediate
249 * (though it wouldn't make sense to be negative)
250 */
251 return (codestream_get());
252 }
253 else if (op == 0x81)
254 {
255 char buf[4];
256 /* Maybe it is subl with 32 bit immedediate. */
257 codestream_get();
258 if (codestream_get () != 0xec)
259 /* Some instruction starting with 0x81 other than subl. */
260 {
261 codestream_seek (codestream_tell () - 2);
262 return 0;
263 }
264 /* It is subl with 32 bit immediate. */
265 codestream_read ((unsigned char *)buf, 4);
266 return extract_signed_integer (buf, 4);
267 }
268 else
269 {
270 return (0);
271 }
272 }
273 else if (op == 0xc8)
274 {
275 char buf[2];
276 /* enter instruction: arg is 16 bit unsigned immed */
277 codestream_read ((unsigned char *)buf, 2);
278 codestream_get (); /* flush final byte of enter instruction */
279 return extract_unsigned_integer (buf, 2);
280 }
281 return (-1);
282 }
283
284 /* Return number of args passed to a frame.
285 Can return -1, meaning no way to tell. */
286
287 int
288 i386_frame_num_args (fi)
289 struct frame_info *fi;
290 {
291 #if 1
292 return -1;
293 #else
294 /* This loses because not only might the compiler not be popping the
295 args right after the function call, it might be popping args from both
296 this call and a previous one, and we would say there are more args
297 than there really are. */
298
299 int retpc;
300 unsigned char op;
301 struct frame_info *pfi;
302
303 /* on the 386, the instruction following the call could be:
304 popl %ecx - one arg
305 addl $imm, %esp - imm/4 args; imm may be 8 or 32 bits
306 anything else - zero args */
307
308 int frameless;
309
310 FRAMELESS_FUNCTION_INVOCATION (fi, frameless);
311 if (frameless)
312 /* In the absence of a frame pointer, GDB doesn't get correct values
313 for nameless arguments. Return -1, so it doesn't print any
314 nameless arguments. */
315 return -1;
316
317 pfi = get_prev_frame_info (fi);
318 if (pfi == 0)
319 {
320 /* Note: this can happen if we are looking at the frame for
321 main, because FRAME_CHAIN_VALID won't let us go into
322 start. If we have debugging symbols, that's not really
323 a big deal; it just means it will only show as many arguments
324 to main as are declared. */
325 return -1;
326 }
327 else
328 {
329 retpc = pfi->pc;
330 op = read_memory_integer (retpc, 1);
331 if (op == 0x59)
332 /* pop %ecx */
333 return 1;
334 else if (op == 0x83)
335 {
336 op = read_memory_integer (retpc+1, 1);
337 if (op == 0xc4)
338 /* addl $<signed imm 8 bits>, %esp */
339 return (read_memory_integer (retpc+2,1)&0xff)/4;
340 else
341 return 0;
342 }
343 else if (op == 0x81)
344 { /* add with 32 bit immediate */
345 op = read_memory_integer (retpc+1, 1);
346 if (op == 0xc4)
347 /* addl $<imm 32>, %esp */
348 return read_memory_integer (retpc+2, 4) / 4;
349 else
350 return 0;
351 }
352 else
353 {
354 return 0;
355 }
356 }
357 #endif
358 }
359
360 /*
361 * parse the first few instructions of the function to see
362 * what registers were stored.
363 *
364 * We handle these cases:
365 *
366 * The startup sequence can be at the start of the function,
367 * or the function can start with a branch to startup code at the end.
368 *
369 * %ebp can be set up with either the 'enter' instruction, or
370 * 'pushl %ebp, movl %esp, %ebp' (enter is too slow to be useful,
371 * but was once used in the sys5 compiler)
372 *
373 * Local space is allocated just below the saved %ebp by either the
374 * 'enter' instruction, or by 'subl $<size>, %esp'. 'enter' has
375 * a 16 bit unsigned argument for space to allocate, and the
376 * 'addl' instruction could have either a signed byte, or
377 * 32 bit immediate.
378 *
379 * Next, the registers used by this function are pushed. In
380 * the sys5 compiler they will always be in the order: %edi, %esi, %ebx
381 * (and sometimes a harmless bug causes it to also save but not restore %eax);
382 * however, the code below is willing to see the pushes in any order,
383 * and will handle up to 8 of them.
384 *
385 * If the setup sequence is at the end of the function, then the
386 * next instruction will be a branch back to the start.
387 */
388
389 void
390 i386_frame_find_saved_regs (fip, fsrp)
391 struct frame_info *fip;
392 struct frame_saved_regs *fsrp;
393 {
394 long locals;
395 unsigned char op;
396 CORE_ADDR dummy_bottom;
397 CORE_ADDR adr;
398 int i;
399
400 memset (fsrp, 0, sizeof *fsrp);
401
402 /* if frame is the end of a dummy, compute where the
403 * beginning would be
404 */
405 dummy_bottom = fip->frame - 4 - REGISTER_BYTES - CALL_DUMMY_LENGTH;
406
407 /* check if the PC is in the stack, in a dummy frame */
408 if (dummy_bottom <= fip->pc && fip->pc <= fip->frame)
409 {
410 /* all regs were saved by push_call_dummy () */
411 adr = fip->frame;
412 for (i = 0; i < NUM_REGS; i++)
413 {
414 adr -= REGISTER_RAW_SIZE (i);
415 fsrp->regs[i] = adr;
416 }
417 return;
418 }
419
420 locals = i386_get_frame_setup (get_pc_function_start (fip->pc));
421
422 if (locals >= 0)
423 {
424 adr = fip->frame - 4 - locals;
425 for (i = 0; i < 8; i++)
426 {
427 op = codestream_get ();
428 if (op < 0x50 || op > 0x57)
429 break;
430 #ifdef I386_REGNO_TO_SYMMETRY
431 /* Dynix uses different internal numbering. Ick. */
432 fsrp->regs[I386_REGNO_TO_SYMMETRY(op - 0x50)] = adr;
433 #else
434 fsrp->regs[op - 0x50] = adr;
435 #endif
436 adr -= 4;
437 }
438 }
439
440 fsrp->regs[PC_REGNUM] = fip->frame + 4;
441 fsrp->regs[FP_REGNUM] = fip->frame;
442 }
443
444 /* return pc of first real instruction */
445
446 int
447 i386_skip_prologue (pc)
448 int pc;
449 {
450 unsigned char op;
451 int i;
452 static unsigned char pic_pat[6] = { 0xe8, 0, 0, 0, 0, /* call 0x0 */
453 0x5b, /* popl %ebx */
454 };
455 CORE_ADDR pos;
456
457 if (i386_get_frame_setup (pc) < 0)
458 return (pc);
459
460 /* found valid frame setup - codestream now points to
461 * start of push instructions for saving registers
462 */
463
464 /* skip over register saves */
465 for (i = 0; i < 8; i++)
466 {
467 op = codestream_peek ();
468 /* break if not pushl inst */
469 if (op < 0x50 || op > 0x57)
470 break;
471 codestream_get ();
472 }
473
474 /* The native cc on SVR4 in -K PIC mode inserts the following code to get
475 the address of the global offset table (GOT) into register %ebx.
476 call 0x0
477 popl %ebx
478 movl %ebx,x(%ebp) (optional)
479 addl y,%ebx
480 This code is with the rest of the prologue (at the end of the
481 function), so we have to skip it to get to the first real
482 instruction at the start of the function. */
483
484 pos = codestream_tell ();
485 for (i = 0; i < 6; i++)
486 {
487 op = codestream_get ();
488 if (pic_pat [i] != op)
489 break;
490 }
491 if (i == 6)
492 {
493 unsigned char buf[4];
494 long delta = 6;
495
496 op = codestream_get ();
497 if (op == 0x89) /* movl %ebx, x(%ebp) */
498 {
499 op = codestream_get ();
500 if (op == 0x5d) /* one byte offset from %ebp */
501 {
502 delta += 3;
503 codestream_read (buf, 1);
504 }
505 else if (op == 0x9d) /* four byte offset from %ebp */
506 {
507 delta += 6;
508 codestream_read (buf, 4);
509 }
510 else /* unexpected instruction */
511 delta = -1;
512 op = codestream_get ();
513 }
514 /* addl y,%ebx */
515 if (delta > 0 && op == 0x81 && codestream_get () == 0xc3)
516 {
517 pos += delta + 6;
518 }
519 }
520 codestream_seek (pos);
521
522 i386_follow_jump ();
523
524 return (codestream_tell ());
525 }
526
527 void
528 i386_push_dummy_frame ()
529 {
530 CORE_ADDR sp = read_register (SP_REGNUM);
531 int regnum;
532 char regbuf[MAX_REGISTER_RAW_SIZE];
533
534 sp = push_word (sp, read_register (PC_REGNUM));
535 sp = push_word (sp, read_register (FP_REGNUM));
536 write_register (FP_REGNUM, sp);
537 for (regnum = 0; regnum < NUM_REGS; regnum++)
538 {
539 read_register_gen (regnum, regbuf);
540 sp = push_bytes (sp, regbuf, REGISTER_RAW_SIZE (regnum));
541 }
542 write_register (SP_REGNUM, sp);
543 }
544
545 void
546 i386_pop_frame ()
547 {
548 struct frame_info *frame = get_current_frame ();
549 CORE_ADDR fp;
550 int regnum;
551 struct frame_saved_regs fsr;
552 char regbuf[MAX_REGISTER_RAW_SIZE];
553
554 fp = FRAME_FP (frame);
555 get_frame_saved_regs (frame, &fsr);
556 for (regnum = 0; regnum < NUM_REGS; regnum++)
557 {
558 CORE_ADDR adr;
559 adr = fsr.regs[regnum];
560 if (adr)
561 {
562 read_memory (adr, regbuf, REGISTER_RAW_SIZE (regnum));
563 write_register_bytes (REGISTER_BYTE (regnum), regbuf,
564 REGISTER_RAW_SIZE (regnum));
565 }
566 }
567 write_register (FP_REGNUM, read_memory_integer (fp, 4));
568 write_register (PC_REGNUM, read_memory_integer (fp + 4, 4));
569 write_register (SP_REGNUM, fp + 8);
570 flush_cached_frames ();
571 }
572
573 #ifdef GET_LONGJMP_TARGET
574
575 /* Figure out where the longjmp will land. Slurp the args out of the stack.
576 We expect the first arg to be a pointer to the jmp_buf structure from which
577 we extract the pc (JB_PC) that we will land at. The pc is copied into PC.
578 This routine returns true on success. */
579
580 int
581 get_longjmp_target(pc)
582 CORE_ADDR *pc;
583 {
584 char buf[TARGET_PTR_BIT / TARGET_CHAR_BIT];
585 CORE_ADDR sp, jb_addr;
586
587 sp = read_register (SP_REGNUM);
588
589 if (target_read_memory (sp + SP_ARG0, /* Offset of first arg on stack */
590 buf,
591 TARGET_PTR_BIT / TARGET_CHAR_BIT))
592 return 0;
593
594 jb_addr = extract_address (buf, TARGET_PTR_BIT / TARGET_CHAR_BIT);
595
596 if (target_read_memory (jb_addr + JB_PC * JB_ELEMENT_SIZE, buf,
597 TARGET_PTR_BIT / TARGET_CHAR_BIT))
598 return 0;
599
600 *pc = extract_address (buf, TARGET_PTR_BIT / TARGET_CHAR_BIT);
601
602 return 1;
603 }
604
605 #endif /* GET_LONGJMP_TARGET */
606
607 void
608 i386_extract_return_value(type, regbuf, valbuf)
609 struct type *type;
610 char regbuf[REGISTER_BYTES];
611 char *valbuf;
612 {
613 /* On AIX, floating point values are returned in floating point registers. */
614 #ifdef I386_AIX_TARGET
615 if (TYPE_CODE_FLT == TYPE_CODE(type))
616 {
617 double d;
618 /* 387 %st(0), gcc uses this */
619 floatformat_to_double (&floatformat_i387_ext,
620 &regbuf[REGISTER_BYTE(FP0_REGNUM)],
621 &d);
622 store_floating (valbuf, TYPE_LENGTH (type), d);
623 }
624 else
625 #endif /* I386_AIX_TARGET */
626 {
627 memcpy (valbuf, regbuf, TYPE_LENGTH (type));
628 }
629 }
630
631 #ifdef I386V4_SIGTRAMP_SAVED_PC
632 /* Get saved user PC for sigtramp from the pushed ucontext on the stack
633 for all three variants of SVR4 sigtramps. */
634
635 CORE_ADDR
636 i386v4_sigtramp_saved_pc (frame)
637 struct frame_info *frame;
638 {
639 CORE_ADDR saved_pc_offset = 4;
640 char *name = NULL;
641
642 find_pc_partial_function (frame->pc, &name, NULL, NULL);
643 if (name)
644 {
645 if (STREQ (name, "_sigreturn"))
646 saved_pc_offset = 132 + 14 * 4;
647 else if (STREQ (name, "_sigacthandler"))
648 saved_pc_offset = 80 + 14 * 4;
649 else if (STREQ (name, "sigvechandler"))
650 saved_pc_offset = 120 + 14 * 4;
651 }
652
653 if (frame->next)
654 return read_memory_integer (frame->next->frame + saved_pc_offset, 4);
655 return read_memory_integer (read_register (SP_REGNUM) + saved_pc_offset, 4);
656 }
657 #endif /* I386V4_SIGTRAMP_SAVED_PC */
658
659
660
661 /* Stuff for WIN32 PE style DLL's but is pretty generic really. */
662
663 CORE_ADDR
664 skip_trampoline_code (pc, name)
665 CORE_ADDR pc;
666 char *name;
667 {
668 if (pc && read_memory_unsigned_integer (pc, 2) == 0x25ff) /* jmp *(dest) */
669 {
670 unsigned long indirect = read_memory_unsigned_integer (pc+2, 4);
671 struct minimal_symbol *indsym =
672 indirect ? lookup_minimal_symbol_by_pc (indirect) : 0;
673 char *symname = indsym ? SYMBOL_NAME(indsym) : 0;
674
675 if (symname)
676 {
677 if (strncmp (symname,"__imp_", 6) == 0
678 || strncmp (symname,"_imp_", 5) == 0)
679 return name ? 1 : read_memory_unsigned_integer (indirect, 4);
680 }
681 }
682 return 0; /* not a trampoline */
683 }
684
685 static char *x86_assembly_types[] = {"i386", "i8086", NULL};
686 static char *x86_assembly_result = "i386";
687
688 static void
689 set_assembly_language_command (ignore, from_tty, c)
690 char *ignore;
691 int from_tty;
692 struct cmd_list_element *c;
693 {
694 if (strcmp (x86_assembly_result, "i386") == 0)
695 tm_print_insn = print_insn_i386;
696 else
697 tm_print_insn = print_insn_i8086;
698 }
699
700 void
701 _initialize_i386_tdep ()
702 {
703 struct cmd_list_element *cmd;
704
705 tm_print_insn = print_insn_i386;
706
707 cmd = add_set_enum_cmd ("assembly-language", class_obscure,
708 x86_assembly_types, (char *)&x86_assembly_result,
709 "Set x86 instruction set to use for disassembly.\n\
710 This value can be set to either i386 or i8086 to change how instructions are disassembled.",
711 &setlist);
712 add_show_from_set (cmd, &showlist);
713
714 cmd->function.sfunc = set_assembly_language_command;
715 }
This page took 0.046064 seconds and 4 git commands to generate.