* dwarf2-frame.c (clear_pointer_cleanup): New function.
[deliverable/binutils-gdb.git] / gdb / i386-tdep.c
1 /* Intel 386 target-dependent stuff.
2
3 Copyright (C) 1988-2012 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "opcode/i386.h"
22 #include "arch-utils.h"
23 #include "command.h"
24 #include "dummy-frame.h"
25 #include "dwarf2-frame.h"
26 #include "doublest.h"
27 #include "frame.h"
28 #include "frame-base.h"
29 #include "frame-unwind.h"
30 #include "inferior.h"
31 #include "gdbcmd.h"
32 #include "gdbcore.h"
33 #include "gdbtypes.h"
34 #include "objfiles.h"
35 #include "osabi.h"
36 #include "regcache.h"
37 #include "reggroups.h"
38 #include "regset.h"
39 #include "symfile.h"
40 #include "symtab.h"
41 #include "target.h"
42 #include "value.h"
43 #include "dis-asm.h"
44 #include "disasm.h"
45 #include "remote.h"
46 #include "exceptions.h"
47 #include "gdb_assert.h"
48 #include "gdb_string.h"
49
50 #include "i386-tdep.h"
51 #include "i387-tdep.h"
52 #include "i386-xstate.h"
53
54 #include "record.h"
55 #include <stdint.h>
56
57 #include "features/i386/i386.c"
58 #include "features/i386/i386-avx.c"
59 #include "features/i386/i386-mmx.c"
60
61 #include "ax.h"
62 #include "ax-gdb.h"
63
64 #include "stap-probe.h"
65 #include "user-regs.h"
66 #include "cli/cli-utils.h"
67 #include "expression.h"
68 #include "parser-defs.h"
69 #include <ctype.h>
70
71 /* Register names. */
72
73 static const char *i386_register_names[] =
74 {
75 "eax", "ecx", "edx", "ebx",
76 "esp", "ebp", "esi", "edi",
77 "eip", "eflags", "cs", "ss",
78 "ds", "es", "fs", "gs",
79 "st0", "st1", "st2", "st3",
80 "st4", "st5", "st6", "st7",
81 "fctrl", "fstat", "ftag", "fiseg",
82 "fioff", "foseg", "fooff", "fop",
83 "xmm0", "xmm1", "xmm2", "xmm3",
84 "xmm4", "xmm5", "xmm6", "xmm7",
85 "mxcsr"
86 };
87
88 static const char *i386_ymm_names[] =
89 {
90 "ymm0", "ymm1", "ymm2", "ymm3",
91 "ymm4", "ymm5", "ymm6", "ymm7",
92 };
93
94 static const char *i386_ymmh_names[] =
95 {
96 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
97 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
98 };
99
100 /* Register names for MMX pseudo-registers. */
101
102 static const char *i386_mmx_names[] =
103 {
104 "mm0", "mm1", "mm2", "mm3",
105 "mm4", "mm5", "mm6", "mm7"
106 };
107
108 /* Register names for byte pseudo-registers. */
109
110 static const char *i386_byte_names[] =
111 {
112 "al", "cl", "dl", "bl",
113 "ah", "ch", "dh", "bh"
114 };
115
116 /* Register names for word pseudo-registers. */
117
118 static const char *i386_word_names[] =
119 {
120 "ax", "cx", "dx", "bx",
121 "", "bp", "si", "di"
122 };
123
124 /* MMX register? */
125
126 static int
127 i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
128 {
129 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
130 int mm0_regnum = tdep->mm0_regnum;
131
132 if (mm0_regnum < 0)
133 return 0;
134
135 regnum -= mm0_regnum;
136 return regnum >= 0 && regnum < tdep->num_mmx_regs;
137 }
138
139 /* Byte register? */
140
141 int
142 i386_byte_regnum_p (struct gdbarch *gdbarch, int regnum)
143 {
144 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
145
146 regnum -= tdep->al_regnum;
147 return regnum >= 0 && regnum < tdep->num_byte_regs;
148 }
149
150 /* Word register? */
151
152 int
153 i386_word_regnum_p (struct gdbarch *gdbarch, int regnum)
154 {
155 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
156
157 regnum -= tdep->ax_regnum;
158 return regnum >= 0 && regnum < tdep->num_word_regs;
159 }
160
161 /* Dword register? */
162
163 int
164 i386_dword_regnum_p (struct gdbarch *gdbarch, int regnum)
165 {
166 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
167 int eax_regnum = tdep->eax_regnum;
168
169 if (eax_regnum < 0)
170 return 0;
171
172 regnum -= eax_regnum;
173 return regnum >= 0 && regnum < tdep->num_dword_regs;
174 }
175
176 static int
177 i386_ymmh_regnum_p (struct gdbarch *gdbarch, int regnum)
178 {
179 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
180 int ymm0h_regnum = tdep->ymm0h_regnum;
181
182 if (ymm0h_regnum < 0)
183 return 0;
184
185 regnum -= ymm0h_regnum;
186 return regnum >= 0 && regnum < tdep->num_ymm_regs;
187 }
188
189 /* AVX register? */
190
191 int
192 i386_ymm_regnum_p (struct gdbarch *gdbarch, int regnum)
193 {
194 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
195 int ymm0_regnum = tdep->ymm0_regnum;
196
197 if (ymm0_regnum < 0)
198 return 0;
199
200 regnum -= ymm0_regnum;
201 return regnum >= 0 && regnum < tdep->num_ymm_regs;
202 }
203
204 /* SSE register? */
205
206 int
207 i386_xmm_regnum_p (struct gdbarch *gdbarch, int regnum)
208 {
209 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
210 int num_xmm_regs = I387_NUM_XMM_REGS (tdep);
211
212 if (num_xmm_regs == 0)
213 return 0;
214
215 regnum -= I387_XMM0_REGNUM (tdep);
216 return regnum >= 0 && regnum < num_xmm_regs;
217 }
218
219 static int
220 i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
221 {
222 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
223
224 if (I387_NUM_XMM_REGS (tdep) == 0)
225 return 0;
226
227 return (regnum == I387_MXCSR_REGNUM (tdep));
228 }
229
230 /* FP register? */
231
232 int
233 i386_fp_regnum_p (struct gdbarch *gdbarch, int regnum)
234 {
235 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
236
237 if (I387_ST0_REGNUM (tdep) < 0)
238 return 0;
239
240 return (I387_ST0_REGNUM (tdep) <= regnum
241 && regnum < I387_FCTRL_REGNUM (tdep));
242 }
243
244 int
245 i386_fpc_regnum_p (struct gdbarch *gdbarch, int regnum)
246 {
247 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
248
249 if (I387_ST0_REGNUM (tdep) < 0)
250 return 0;
251
252 return (I387_FCTRL_REGNUM (tdep) <= regnum
253 && regnum < I387_XMM0_REGNUM (tdep));
254 }
255
256 /* Return the name of register REGNUM, or the empty string if it is
257 an anonymous register. */
258
259 static const char *
260 i386_register_name (struct gdbarch *gdbarch, int regnum)
261 {
262 /* Hide the upper YMM registers. */
263 if (i386_ymmh_regnum_p (gdbarch, regnum))
264 return "";
265
266 return tdesc_register_name (gdbarch, regnum);
267 }
268
269 /* Return the name of register REGNUM. */
270
271 const char *
272 i386_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
273 {
274 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
275 if (i386_mmx_regnum_p (gdbarch, regnum))
276 return i386_mmx_names[regnum - I387_MM0_REGNUM (tdep)];
277 else if (i386_ymm_regnum_p (gdbarch, regnum))
278 return i386_ymm_names[regnum - tdep->ymm0_regnum];
279 else if (i386_byte_regnum_p (gdbarch, regnum))
280 return i386_byte_names[regnum - tdep->al_regnum];
281 else if (i386_word_regnum_p (gdbarch, regnum))
282 return i386_word_names[regnum - tdep->ax_regnum];
283
284 internal_error (__FILE__, __LINE__, _("invalid regnum"));
285 }
286
287 /* Convert a dbx register number REG to the appropriate register
288 number used by GDB. */
289
290 static int
291 i386_dbx_reg_to_regnum (struct gdbarch *gdbarch, int reg)
292 {
293 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
294
295 /* This implements what GCC calls the "default" register map
296 (dbx_register_map[]). */
297
298 if (reg >= 0 && reg <= 7)
299 {
300 /* General-purpose registers. The debug info calls %ebp
301 register 4, and %esp register 5. */
302 if (reg == 4)
303 return 5;
304 else if (reg == 5)
305 return 4;
306 else return reg;
307 }
308 else if (reg >= 12 && reg <= 19)
309 {
310 /* Floating-point registers. */
311 return reg - 12 + I387_ST0_REGNUM (tdep);
312 }
313 else if (reg >= 21 && reg <= 28)
314 {
315 /* SSE registers. */
316 int ymm0_regnum = tdep->ymm0_regnum;
317
318 if (ymm0_regnum >= 0
319 && i386_xmm_regnum_p (gdbarch, reg))
320 return reg - 21 + ymm0_regnum;
321 else
322 return reg - 21 + I387_XMM0_REGNUM (tdep);
323 }
324 else if (reg >= 29 && reg <= 36)
325 {
326 /* MMX registers. */
327 return reg - 29 + I387_MM0_REGNUM (tdep);
328 }
329
330 /* This will hopefully provoke a warning. */
331 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
332 }
333
334 /* Convert SVR4 register number REG to the appropriate register number
335 used by GDB. */
336
337 static int
338 i386_svr4_reg_to_regnum (struct gdbarch *gdbarch, int reg)
339 {
340 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
341
342 /* This implements the GCC register map that tries to be compatible
343 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
344
345 /* The SVR4 register numbering includes %eip and %eflags, and
346 numbers the floating point registers differently. */
347 if (reg >= 0 && reg <= 9)
348 {
349 /* General-purpose registers. */
350 return reg;
351 }
352 else if (reg >= 11 && reg <= 18)
353 {
354 /* Floating-point registers. */
355 return reg - 11 + I387_ST0_REGNUM (tdep);
356 }
357 else if (reg >= 21 && reg <= 36)
358 {
359 /* The SSE and MMX registers have the same numbers as with dbx. */
360 return i386_dbx_reg_to_regnum (gdbarch, reg);
361 }
362
363 switch (reg)
364 {
365 case 37: return I387_FCTRL_REGNUM (tdep);
366 case 38: return I387_FSTAT_REGNUM (tdep);
367 case 39: return I387_MXCSR_REGNUM (tdep);
368 case 40: return I386_ES_REGNUM;
369 case 41: return I386_CS_REGNUM;
370 case 42: return I386_SS_REGNUM;
371 case 43: return I386_DS_REGNUM;
372 case 44: return I386_FS_REGNUM;
373 case 45: return I386_GS_REGNUM;
374 }
375
376 /* This will hopefully provoke a warning. */
377 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
378 }
379
380 \f
381
382 /* This is the variable that is set with "set disassembly-flavor", and
383 its legitimate values. */
384 static const char att_flavor[] = "att";
385 static const char intel_flavor[] = "intel";
386 static const char *const valid_flavors[] =
387 {
388 att_flavor,
389 intel_flavor,
390 NULL
391 };
392 static const char *disassembly_flavor = att_flavor;
393 \f
394
395 /* Use the program counter to determine the contents and size of a
396 breakpoint instruction. Return a pointer to a string of bytes that
397 encode a breakpoint instruction, store the length of the string in
398 *LEN and optionally adjust *PC to point to the correct memory
399 location for inserting the breakpoint.
400
401 On the i386 we have a single breakpoint that fits in a single byte
402 and can be inserted anywhere.
403
404 This function is 64-bit safe. */
405
406 static const gdb_byte *
407 i386_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
408 {
409 static gdb_byte break_insn[] = { 0xcc }; /* int 3 */
410
411 *len = sizeof (break_insn);
412 return break_insn;
413 }
414 \f
415 /* Displaced instruction handling. */
416
417 /* Skip the legacy instruction prefixes in INSN.
418 Not all prefixes are valid for any particular insn
419 but we needn't care, the insn will fault if it's invalid.
420 The result is a pointer to the first opcode byte,
421 or NULL if we run off the end of the buffer. */
422
423 static gdb_byte *
424 i386_skip_prefixes (gdb_byte *insn, size_t max_len)
425 {
426 gdb_byte *end = insn + max_len;
427
428 while (insn < end)
429 {
430 switch (*insn)
431 {
432 case DATA_PREFIX_OPCODE:
433 case ADDR_PREFIX_OPCODE:
434 case CS_PREFIX_OPCODE:
435 case DS_PREFIX_OPCODE:
436 case ES_PREFIX_OPCODE:
437 case FS_PREFIX_OPCODE:
438 case GS_PREFIX_OPCODE:
439 case SS_PREFIX_OPCODE:
440 case LOCK_PREFIX_OPCODE:
441 case REPE_PREFIX_OPCODE:
442 case REPNE_PREFIX_OPCODE:
443 ++insn;
444 continue;
445 default:
446 return insn;
447 }
448 }
449
450 return NULL;
451 }
452
453 static int
454 i386_absolute_jmp_p (const gdb_byte *insn)
455 {
456 /* jmp far (absolute address in operand). */
457 if (insn[0] == 0xea)
458 return 1;
459
460 if (insn[0] == 0xff)
461 {
462 /* jump near, absolute indirect (/4). */
463 if ((insn[1] & 0x38) == 0x20)
464 return 1;
465
466 /* jump far, absolute indirect (/5). */
467 if ((insn[1] & 0x38) == 0x28)
468 return 1;
469 }
470
471 return 0;
472 }
473
474 static int
475 i386_absolute_call_p (const gdb_byte *insn)
476 {
477 /* call far, absolute. */
478 if (insn[0] == 0x9a)
479 return 1;
480
481 if (insn[0] == 0xff)
482 {
483 /* Call near, absolute indirect (/2). */
484 if ((insn[1] & 0x38) == 0x10)
485 return 1;
486
487 /* Call far, absolute indirect (/3). */
488 if ((insn[1] & 0x38) == 0x18)
489 return 1;
490 }
491
492 return 0;
493 }
494
495 static int
496 i386_ret_p (const gdb_byte *insn)
497 {
498 switch (insn[0])
499 {
500 case 0xc2: /* ret near, pop N bytes. */
501 case 0xc3: /* ret near */
502 case 0xca: /* ret far, pop N bytes. */
503 case 0xcb: /* ret far */
504 case 0xcf: /* iret */
505 return 1;
506
507 default:
508 return 0;
509 }
510 }
511
512 static int
513 i386_call_p (const gdb_byte *insn)
514 {
515 if (i386_absolute_call_p (insn))
516 return 1;
517
518 /* call near, relative. */
519 if (insn[0] == 0xe8)
520 return 1;
521
522 return 0;
523 }
524
525 /* Return non-zero if INSN is a system call, and set *LENGTHP to its
526 length in bytes. Otherwise, return zero. */
527
528 static int
529 i386_syscall_p (const gdb_byte *insn, int *lengthp)
530 {
531 /* Is it 'int $0x80'? */
532 if ((insn[0] == 0xcd && insn[1] == 0x80)
533 /* Or is it 'sysenter'? */
534 || (insn[0] == 0x0f && insn[1] == 0x34)
535 /* Or is it 'syscall'? */
536 || (insn[0] == 0x0f && insn[1] == 0x05))
537 {
538 *lengthp = 2;
539 return 1;
540 }
541
542 return 0;
543 }
544
545 /* Some kernels may run one past a syscall insn, so we have to cope.
546 Otherwise this is just simple_displaced_step_copy_insn. */
547
548 struct displaced_step_closure *
549 i386_displaced_step_copy_insn (struct gdbarch *gdbarch,
550 CORE_ADDR from, CORE_ADDR to,
551 struct regcache *regs)
552 {
553 size_t len = gdbarch_max_insn_length (gdbarch);
554 gdb_byte *buf = xmalloc (len);
555
556 read_memory (from, buf, len);
557
558 /* GDB may get control back after the insn after the syscall.
559 Presumably this is a kernel bug.
560 If this is a syscall, make sure there's a nop afterwards. */
561 {
562 int syscall_length;
563 gdb_byte *insn;
564
565 insn = i386_skip_prefixes (buf, len);
566 if (insn != NULL && i386_syscall_p (insn, &syscall_length))
567 insn[syscall_length] = NOP_OPCODE;
568 }
569
570 write_memory (to, buf, len);
571
572 if (debug_displaced)
573 {
574 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
575 paddress (gdbarch, from), paddress (gdbarch, to));
576 displaced_step_dump_bytes (gdb_stdlog, buf, len);
577 }
578
579 return (struct displaced_step_closure *) buf;
580 }
581
582 /* Fix up the state of registers and memory after having single-stepped
583 a displaced instruction. */
584
585 void
586 i386_displaced_step_fixup (struct gdbarch *gdbarch,
587 struct displaced_step_closure *closure,
588 CORE_ADDR from, CORE_ADDR to,
589 struct regcache *regs)
590 {
591 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
592
593 /* The offset we applied to the instruction's address.
594 This could well be negative (when viewed as a signed 32-bit
595 value), but ULONGEST won't reflect that, so take care when
596 applying it. */
597 ULONGEST insn_offset = to - from;
598
599 /* Since we use simple_displaced_step_copy_insn, our closure is a
600 copy of the instruction. */
601 gdb_byte *insn = (gdb_byte *) closure;
602 /* The start of the insn, needed in case we see some prefixes. */
603 gdb_byte *insn_start = insn;
604
605 if (debug_displaced)
606 fprintf_unfiltered (gdb_stdlog,
607 "displaced: fixup (%s, %s), "
608 "insn = 0x%02x 0x%02x ...\n",
609 paddress (gdbarch, from), paddress (gdbarch, to),
610 insn[0], insn[1]);
611
612 /* The list of issues to contend with here is taken from
613 resume_execution in arch/i386/kernel/kprobes.c, Linux 2.6.20.
614 Yay for Free Software! */
615
616 /* Relocate the %eip, if necessary. */
617
618 /* The instruction recognizers we use assume any leading prefixes
619 have been skipped. */
620 {
621 /* This is the size of the buffer in closure. */
622 size_t max_insn_len = gdbarch_max_insn_length (gdbarch);
623 gdb_byte *opcode = i386_skip_prefixes (insn, max_insn_len);
624 /* If there are too many prefixes, just ignore the insn.
625 It will fault when run. */
626 if (opcode != NULL)
627 insn = opcode;
628 }
629
630 /* Except in the case of absolute or indirect jump or call
631 instructions, or a return instruction, the new eip is relative to
632 the displaced instruction; make it relative. Well, signal
633 handler returns don't need relocation either, but we use the
634 value of %eip to recognize those; see below. */
635 if (! i386_absolute_jmp_p (insn)
636 && ! i386_absolute_call_p (insn)
637 && ! i386_ret_p (insn))
638 {
639 ULONGEST orig_eip;
640 int insn_len;
641
642 regcache_cooked_read_unsigned (regs, I386_EIP_REGNUM, &orig_eip);
643
644 /* A signal trampoline system call changes the %eip, resuming
645 execution of the main program after the signal handler has
646 returned. That makes them like 'return' instructions; we
647 shouldn't relocate %eip.
648
649 But most system calls don't, and we do need to relocate %eip.
650
651 Our heuristic for distinguishing these cases: if stepping
652 over the system call instruction left control directly after
653 the instruction, the we relocate --- control almost certainly
654 doesn't belong in the displaced copy. Otherwise, we assume
655 the instruction has put control where it belongs, and leave
656 it unrelocated. Goodness help us if there are PC-relative
657 system calls. */
658 if (i386_syscall_p (insn, &insn_len)
659 && orig_eip != to + (insn - insn_start) + insn_len
660 /* GDB can get control back after the insn after the syscall.
661 Presumably this is a kernel bug.
662 i386_displaced_step_copy_insn ensures its a nop,
663 we add one to the length for it. */
664 && orig_eip != to + (insn - insn_start) + insn_len + 1)
665 {
666 if (debug_displaced)
667 fprintf_unfiltered (gdb_stdlog,
668 "displaced: syscall changed %%eip; "
669 "not relocating\n");
670 }
671 else
672 {
673 ULONGEST eip = (orig_eip - insn_offset) & 0xffffffffUL;
674
675 /* If we just stepped over a breakpoint insn, we don't backup
676 the pc on purpose; this is to match behaviour without
677 stepping. */
678
679 regcache_cooked_write_unsigned (regs, I386_EIP_REGNUM, eip);
680
681 if (debug_displaced)
682 fprintf_unfiltered (gdb_stdlog,
683 "displaced: "
684 "relocated %%eip from %s to %s\n",
685 paddress (gdbarch, orig_eip),
686 paddress (gdbarch, eip));
687 }
688 }
689
690 /* If the instruction was PUSHFL, then the TF bit will be set in the
691 pushed value, and should be cleared. We'll leave this for later,
692 since GDB already messes up the TF flag when stepping over a
693 pushfl. */
694
695 /* If the instruction was a call, the return address now atop the
696 stack is the address following the copied instruction. We need
697 to make it the address following the original instruction. */
698 if (i386_call_p (insn))
699 {
700 ULONGEST esp;
701 ULONGEST retaddr;
702 const ULONGEST retaddr_len = 4;
703
704 regcache_cooked_read_unsigned (regs, I386_ESP_REGNUM, &esp);
705 retaddr = read_memory_unsigned_integer (esp, retaddr_len, byte_order);
706 retaddr = (retaddr - insn_offset) & 0xffffffffUL;
707 write_memory_unsigned_integer (esp, retaddr_len, byte_order, retaddr);
708
709 if (debug_displaced)
710 fprintf_unfiltered (gdb_stdlog,
711 "displaced: relocated return addr at %s to %s\n",
712 paddress (gdbarch, esp),
713 paddress (gdbarch, retaddr));
714 }
715 }
716
717 static void
718 append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
719 {
720 target_write_memory (*to, buf, len);
721 *to += len;
722 }
723
724 static void
725 i386_relocate_instruction (struct gdbarch *gdbarch,
726 CORE_ADDR *to, CORE_ADDR oldloc)
727 {
728 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
729 gdb_byte buf[I386_MAX_INSN_LEN];
730 int offset = 0, rel32, newrel;
731 int insn_length;
732 gdb_byte *insn = buf;
733
734 read_memory (oldloc, buf, I386_MAX_INSN_LEN);
735
736 insn_length = gdb_buffered_insn_length (gdbarch, insn,
737 I386_MAX_INSN_LEN, oldloc);
738
739 /* Get past the prefixes. */
740 insn = i386_skip_prefixes (insn, I386_MAX_INSN_LEN);
741
742 /* Adjust calls with 32-bit relative addresses as push/jump, with
743 the address pushed being the location where the original call in
744 the user program would return to. */
745 if (insn[0] == 0xe8)
746 {
747 gdb_byte push_buf[16];
748 unsigned int ret_addr;
749
750 /* Where "ret" in the original code will return to. */
751 ret_addr = oldloc + insn_length;
752 push_buf[0] = 0x68; /* pushq $... */
753 memcpy (&push_buf[1], &ret_addr, 4);
754 /* Push the push. */
755 append_insns (to, 5, push_buf);
756
757 /* Convert the relative call to a relative jump. */
758 insn[0] = 0xe9;
759
760 /* Adjust the destination offset. */
761 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
762 newrel = (oldloc - *to) + rel32;
763 store_signed_integer (insn + 1, 4, byte_order, newrel);
764
765 if (debug_displaced)
766 fprintf_unfiltered (gdb_stdlog,
767 "Adjusted insn rel32=%s at %s to"
768 " rel32=%s at %s\n",
769 hex_string (rel32), paddress (gdbarch, oldloc),
770 hex_string (newrel), paddress (gdbarch, *to));
771
772 /* Write the adjusted jump into its displaced location. */
773 append_insns (to, 5, insn);
774 return;
775 }
776
777 /* Adjust jumps with 32-bit relative addresses. Calls are already
778 handled above. */
779 if (insn[0] == 0xe9)
780 offset = 1;
781 /* Adjust conditional jumps. */
782 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
783 offset = 2;
784
785 if (offset)
786 {
787 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
788 newrel = (oldloc - *to) + rel32;
789 store_signed_integer (insn + offset, 4, byte_order, newrel);
790 if (debug_displaced)
791 fprintf_unfiltered (gdb_stdlog,
792 "Adjusted insn rel32=%s at %s to"
793 " rel32=%s at %s\n",
794 hex_string (rel32), paddress (gdbarch, oldloc),
795 hex_string (newrel), paddress (gdbarch, *to));
796 }
797
798 /* Write the adjusted instructions into their displaced
799 location. */
800 append_insns (to, insn_length, buf);
801 }
802
803 \f
804 #ifdef I386_REGNO_TO_SYMMETRY
805 #error "The Sequent Symmetry is no longer supported."
806 #endif
807
808 /* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
809 and %esp "belong" to the calling function. Therefore these
810 registers should be saved if they're going to be modified. */
811
812 /* The maximum number of saved registers. This should include all
813 registers mentioned above, and %eip. */
814 #define I386_NUM_SAVED_REGS I386_NUM_GREGS
815
816 struct i386_frame_cache
817 {
818 /* Base address. */
819 CORE_ADDR base;
820 int base_p;
821 LONGEST sp_offset;
822 CORE_ADDR pc;
823
824 /* Saved registers. */
825 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
826 CORE_ADDR saved_sp;
827 int saved_sp_reg;
828 int pc_in_eax;
829
830 /* Stack space reserved for local variables. */
831 long locals;
832 };
833
834 /* Allocate and initialize a frame cache. */
835
836 static struct i386_frame_cache *
837 i386_alloc_frame_cache (void)
838 {
839 struct i386_frame_cache *cache;
840 int i;
841
842 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
843
844 /* Base address. */
845 cache->base_p = 0;
846 cache->base = 0;
847 cache->sp_offset = -4;
848 cache->pc = 0;
849
850 /* Saved registers. We initialize these to -1 since zero is a valid
851 offset (that's where %ebp is supposed to be stored). */
852 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
853 cache->saved_regs[i] = -1;
854 cache->saved_sp = 0;
855 cache->saved_sp_reg = -1;
856 cache->pc_in_eax = 0;
857
858 /* Frameless until proven otherwise. */
859 cache->locals = -1;
860
861 return cache;
862 }
863
864 /* If the instruction at PC is a jump, return the address of its
865 target. Otherwise, return PC. */
866
867 static CORE_ADDR
868 i386_follow_jump (struct gdbarch *gdbarch, CORE_ADDR pc)
869 {
870 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
871 gdb_byte op;
872 long delta = 0;
873 int data16 = 0;
874
875 if (target_read_memory (pc, &op, 1))
876 return pc;
877
878 if (op == 0x66)
879 {
880 data16 = 1;
881 op = read_memory_unsigned_integer (pc + 1, 1, byte_order);
882 }
883
884 switch (op)
885 {
886 case 0xe9:
887 /* Relative jump: if data16 == 0, disp32, else disp16. */
888 if (data16)
889 {
890 delta = read_memory_integer (pc + 2, 2, byte_order);
891
892 /* Include the size of the jmp instruction (including the
893 0x66 prefix). */
894 delta += 4;
895 }
896 else
897 {
898 delta = read_memory_integer (pc + 1, 4, byte_order);
899
900 /* Include the size of the jmp instruction. */
901 delta += 5;
902 }
903 break;
904 case 0xeb:
905 /* Relative jump, disp8 (ignore data16). */
906 delta = read_memory_integer (pc + data16 + 1, 1, byte_order);
907
908 delta += data16 + 2;
909 break;
910 }
911
912 return pc + delta;
913 }
914
915 /* Check whether PC points at a prologue for a function returning a
916 structure or union. If so, it updates CACHE and returns the
917 address of the first instruction after the code sequence that
918 removes the "hidden" argument from the stack or CURRENT_PC,
919 whichever is smaller. Otherwise, return PC. */
920
921 static CORE_ADDR
922 i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
923 struct i386_frame_cache *cache)
924 {
925 /* Functions that return a structure or union start with:
926
927 popl %eax 0x58
928 xchgl %eax, (%esp) 0x87 0x04 0x24
929 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
930
931 (the System V compiler puts out the second `xchg' instruction,
932 and the assembler doesn't try to optimize it, so the 'sib' form
933 gets generated). This sequence is used to get the address of the
934 return buffer for a function that returns a structure. */
935 static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
936 static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
937 gdb_byte buf[4];
938 gdb_byte op;
939
940 if (current_pc <= pc)
941 return pc;
942
943 if (target_read_memory (pc, &op, 1))
944 return pc;
945
946 if (op != 0x58) /* popl %eax */
947 return pc;
948
949 if (target_read_memory (pc + 1, buf, 4))
950 return pc;
951
952 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
953 return pc;
954
955 if (current_pc == pc)
956 {
957 cache->sp_offset += 4;
958 return current_pc;
959 }
960
961 if (current_pc == pc + 1)
962 {
963 cache->pc_in_eax = 1;
964 return current_pc;
965 }
966
967 if (buf[1] == proto1[1])
968 return pc + 4;
969 else
970 return pc + 5;
971 }
972
973 static CORE_ADDR
974 i386_skip_probe (CORE_ADDR pc)
975 {
976 /* A function may start with
977
978 pushl constant
979 call _probe
980 addl $4, %esp
981
982 followed by
983
984 pushl %ebp
985
986 etc. */
987 gdb_byte buf[8];
988 gdb_byte op;
989
990 if (target_read_memory (pc, &op, 1))
991 return pc;
992
993 if (op == 0x68 || op == 0x6a)
994 {
995 int delta;
996
997 /* Skip past the `pushl' instruction; it has either a one-byte or a
998 four-byte operand, depending on the opcode. */
999 if (op == 0x68)
1000 delta = 5;
1001 else
1002 delta = 2;
1003
1004 /* Read the following 8 bytes, which should be `call _probe' (6
1005 bytes) followed by `addl $4,%esp' (2 bytes). */
1006 read_memory (pc + delta, buf, sizeof (buf));
1007 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
1008 pc += delta + sizeof (buf);
1009 }
1010
1011 return pc;
1012 }
1013
1014 /* GCC 4.1 and later, can put code in the prologue to realign the
1015 stack pointer. Check whether PC points to such code, and update
1016 CACHE accordingly. Return the first instruction after the code
1017 sequence or CURRENT_PC, whichever is smaller. If we don't
1018 recognize the code, return PC. */
1019
1020 static CORE_ADDR
1021 i386_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1022 struct i386_frame_cache *cache)
1023 {
1024 /* There are 2 code sequences to re-align stack before the frame
1025 gets set up:
1026
1027 1. Use a caller-saved saved register:
1028
1029 leal 4(%esp), %reg
1030 andl $-XXX, %esp
1031 pushl -4(%reg)
1032
1033 2. Use a callee-saved saved register:
1034
1035 pushl %reg
1036 leal 8(%esp), %reg
1037 andl $-XXX, %esp
1038 pushl -4(%reg)
1039
1040 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
1041
1042 0x83 0xe4 0xf0 andl $-16, %esp
1043 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
1044 */
1045
1046 gdb_byte buf[14];
1047 int reg;
1048 int offset, offset_and;
1049 static int regnums[8] = {
1050 I386_EAX_REGNUM, /* %eax */
1051 I386_ECX_REGNUM, /* %ecx */
1052 I386_EDX_REGNUM, /* %edx */
1053 I386_EBX_REGNUM, /* %ebx */
1054 I386_ESP_REGNUM, /* %esp */
1055 I386_EBP_REGNUM, /* %ebp */
1056 I386_ESI_REGNUM, /* %esi */
1057 I386_EDI_REGNUM /* %edi */
1058 };
1059
1060 if (target_read_memory (pc, buf, sizeof buf))
1061 return pc;
1062
1063 /* Check caller-saved saved register. The first instruction has
1064 to be "leal 4(%esp), %reg". */
1065 if (buf[0] == 0x8d && buf[2] == 0x24 && buf[3] == 0x4)
1066 {
1067 /* MOD must be binary 10 and R/M must be binary 100. */
1068 if ((buf[1] & 0xc7) != 0x44)
1069 return pc;
1070
1071 /* REG has register number. */
1072 reg = (buf[1] >> 3) & 7;
1073 offset = 4;
1074 }
1075 else
1076 {
1077 /* Check callee-saved saved register. The first instruction
1078 has to be "pushl %reg". */
1079 if ((buf[0] & 0xf8) != 0x50)
1080 return pc;
1081
1082 /* Get register. */
1083 reg = buf[0] & 0x7;
1084
1085 /* The next instruction has to be "leal 8(%esp), %reg". */
1086 if (buf[1] != 0x8d || buf[3] != 0x24 || buf[4] != 0x8)
1087 return pc;
1088
1089 /* MOD must be binary 10 and R/M must be binary 100. */
1090 if ((buf[2] & 0xc7) != 0x44)
1091 return pc;
1092
1093 /* REG has register number. Registers in pushl and leal have to
1094 be the same. */
1095 if (reg != ((buf[2] >> 3) & 7))
1096 return pc;
1097
1098 offset = 5;
1099 }
1100
1101 /* Rigister can't be %esp nor %ebp. */
1102 if (reg == 4 || reg == 5)
1103 return pc;
1104
1105 /* The next instruction has to be "andl $-XXX, %esp". */
1106 if (buf[offset + 1] != 0xe4
1107 || (buf[offset] != 0x81 && buf[offset] != 0x83))
1108 return pc;
1109
1110 offset_and = offset;
1111 offset += buf[offset] == 0x81 ? 6 : 3;
1112
1113 /* The next instruction has to be "pushl -4(%reg)". 8bit -4 is
1114 0xfc. REG must be binary 110 and MOD must be binary 01. */
1115 if (buf[offset] != 0xff
1116 || buf[offset + 2] != 0xfc
1117 || (buf[offset + 1] & 0xf8) != 0x70)
1118 return pc;
1119
1120 /* R/M has register. Registers in leal and pushl have to be the
1121 same. */
1122 if (reg != (buf[offset + 1] & 7))
1123 return pc;
1124
1125 if (current_pc > pc + offset_and)
1126 cache->saved_sp_reg = regnums[reg];
1127
1128 return min (pc + offset + 3, current_pc);
1129 }
1130
1131 /* Maximum instruction length we need to handle. */
1132 #define I386_MAX_MATCHED_INSN_LEN 6
1133
1134 /* Instruction description. */
1135 struct i386_insn
1136 {
1137 size_t len;
1138 gdb_byte insn[I386_MAX_MATCHED_INSN_LEN];
1139 gdb_byte mask[I386_MAX_MATCHED_INSN_LEN];
1140 };
1141
1142 /* Return whether instruction at PC matches PATTERN. */
1143
1144 static int
1145 i386_match_pattern (CORE_ADDR pc, struct i386_insn pattern)
1146 {
1147 gdb_byte op;
1148
1149 if (target_read_memory (pc, &op, 1))
1150 return 0;
1151
1152 if ((op & pattern.mask[0]) == pattern.insn[0])
1153 {
1154 gdb_byte buf[I386_MAX_MATCHED_INSN_LEN - 1];
1155 int insn_matched = 1;
1156 size_t i;
1157
1158 gdb_assert (pattern.len > 1);
1159 gdb_assert (pattern.len <= I386_MAX_MATCHED_INSN_LEN);
1160
1161 if (target_read_memory (pc + 1, buf, pattern.len - 1))
1162 return 0;
1163
1164 for (i = 1; i < pattern.len; i++)
1165 {
1166 if ((buf[i - 1] & pattern.mask[i]) != pattern.insn[i])
1167 insn_matched = 0;
1168 }
1169 return insn_matched;
1170 }
1171 return 0;
1172 }
1173
1174 /* Search for the instruction at PC in the list INSN_PATTERNS. Return
1175 the first instruction description that matches. Otherwise, return
1176 NULL. */
1177
1178 static struct i386_insn *
1179 i386_match_insn (CORE_ADDR pc, struct i386_insn *insn_patterns)
1180 {
1181 struct i386_insn *pattern;
1182
1183 for (pattern = insn_patterns; pattern->len > 0; pattern++)
1184 {
1185 if (i386_match_pattern (pc, *pattern))
1186 return pattern;
1187 }
1188
1189 return NULL;
1190 }
1191
1192 /* Return whether PC points inside a sequence of instructions that
1193 matches INSN_PATTERNS. */
1194
1195 static int
1196 i386_match_insn_block (CORE_ADDR pc, struct i386_insn *insn_patterns)
1197 {
1198 CORE_ADDR current_pc;
1199 int ix, i;
1200 struct i386_insn *insn;
1201
1202 insn = i386_match_insn (pc, insn_patterns);
1203 if (insn == NULL)
1204 return 0;
1205
1206 current_pc = pc;
1207 ix = insn - insn_patterns;
1208 for (i = ix - 1; i >= 0; i--)
1209 {
1210 current_pc -= insn_patterns[i].len;
1211
1212 if (!i386_match_pattern (current_pc, insn_patterns[i]))
1213 return 0;
1214 }
1215
1216 current_pc = pc + insn->len;
1217 for (insn = insn_patterns + ix + 1; insn->len > 0; insn++)
1218 {
1219 if (!i386_match_pattern (current_pc, *insn))
1220 return 0;
1221
1222 current_pc += insn->len;
1223 }
1224
1225 return 1;
1226 }
1227
1228 /* Some special instructions that might be migrated by GCC into the
1229 part of the prologue that sets up the new stack frame. Because the
1230 stack frame hasn't been setup yet, no registers have been saved
1231 yet, and only the scratch registers %eax, %ecx and %edx can be
1232 touched. */
1233
1234 struct i386_insn i386_frame_setup_skip_insns[] =
1235 {
1236 /* Check for `movb imm8, r' and `movl imm32, r'.
1237
1238 ??? Should we handle 16-bit operand-sizes here? */
1239
1240 /* `movb imm8, %al' and `movb imm8, %ah' */
1241 /* `movb imm8, %cl' and `movb imm8, %ch' */
1242 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
1243 /* `movb imm8, %dl' and `movb imm8, %dh' */
1244 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
1245 /* `movl imm32, %eax' and `movl imm32, %ecx' */
1246 { 5, { 0xb8 }, { 0xfe } },
1247 /* `movl imm32, %edx' */
1248 { 5, { 0xba }, { 0xff } },
1249
1250 /* Check for `mov imm32, r32'. Note that there is an alternative
1251 encoding for `mov m32, %eax'.
1252
1253 ??? Should we handle SIB adressing here?
1254 ??? Should we handle 16-bit operand-sizes here? */
1255
1256 /* `movl m32, %eax' */
1257 { 5, { 0xa1 }, { 0xff } },
1258 /* `movl m32, %eax' and `mov; m32, %ecx' */
1259 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
1260 /* `movl m32, %edx' */
1261 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
1262
1263 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
1264 Because of the symmetry, there are actually two ways to encode
1265 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
1266 opcode bytes 0x31 and 0x33 for `xorl'. */
1267
1268 /* `subl %eax, %eax' */
1269 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
1270 /* `subl %ecx, %ecx' */
1271 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
1272 /* `subl %edx, %edx' */
1273 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
1274 /* `xorl %eax, %eax' */
1275 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
1276 /* `xorl %ecx, %ecx' */
1277 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
1278 /* `xorl %edx, %edx' */
1279 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
1280 { 0 }
1281 };
1282
1283
1284 /* Check whether PC points to a no-op instruction. */
1285 static CORE_ADDR
1286 i386_skip_noop (CORE_ADDR pc)
1287 {
1288 gdb_byte op;
1289 int check = 1;
1290
1291 if (target_read_memory (pc, &op, 1))
1292 return pc;
1293
1294 while (check)
1295 {
1296 check = 0;
1297 /* Ignore `nop' instruction. */
1298 if (op == 0x90)
1299 {
1300 pc += 1;
1301 if (target_read_memory (pc, &op, 1))
1302 return pc;
1303 check = 1;
1304 }
1305 /* Ignore no-op instruction `mov %edi, %edi'.
1306 Microsoft system dlls often start with
1307 a `mov %edi,%edi' instruction.
1308 The 5 bytes before the function start are
1309 filled with `nop' instructions.
1310 This pattern can be used for hot-patching:
1311 The `mov %edi, %edi' instruction can be replaced by a
1312 near jump to the location of the 5 `nop' instructions
1313 which can be replaced by a 32-bit jump to anywhere
1314 in the 32-bit address space. */
1315
1316 else if (op == 0x8b)
1317 {
1318 if (target_read_memory (pc + 1, &op, 1))
1319 return pc;
1320
1321 if (op == 0xff)
1322 {
1323 pc += 2;
1324 if (target_read_memory (pc, &op, 1))
1325 return pc;
1326
1327 check = 1;
1328 }
1329 }
1330 }
1331 return pc;
1332 }
1333
1334 /* Check whether PC points at a code that sets up a new stack frame.
1335 If so, it updates CACHE and returns the address of the first
1336 instruction after the sequence that sets up the frame or LIMIT,
1337 whichever is smaller. If we don't recognize the code, return PC. */
1338
1339 static CORE_ADDR
1340 i386_analyze_frame_setup (struct gdbarch *gdbarch,
1341 CORE_ADDR pc, CORE_ADDR limit,
1342 struct i386_frame_cache *cache)
1343 {
1344 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1345 struct i386_insn *insn;
1346 gdb_byte op;
1347 int skip = 0;
1348
1349 if (limit <= pc)
1350 return limit;
1351
1352 if (target_read_memory (pc, &op, 1))
1353 return pc;
1354
1355 if (op == 0x55) /* pushl %ebp */
1356 {
1357 /* Take into account that we've executed the `pushl %ebp' that
1358 starts this instruction sequence. */
1359 cache->saved_regs[I386_EBP_REGNUM] = 0;
1360 cache->sp_offset += 4;
1361 pc++;
1362
1363 /* If that's all, return now. */
1364 if (limit <= pc)
1365 return limit;
1366
1367 /* Check for some special instructions that might be migrated by
1368 GCC into the prologue and skip them. At this point in the
1369 prologue, code should only touch the scratch registers %eax,
1370 %ecx and %edx, so while the number of posibilities is sheer,
1371 it is limited.
1372
1373 Make sure we only skip these instructions if we later see the
1374 `movl %esp, %ebp' that actually sets up the frame. */
1375 while (pc + skip < limit)
1376 {
1377 insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
1378 if (insn == NULL)
1379 break;
1380
1381 skip += insn->len;
1382 }
1383
1384 /* If that's all, return now. */
1385 if (limit <= pc + skip)
1386 return limit;
1387
1388 if (target_read_memory (pc + skip, &op, 1))
1389 return pc + skip;
1390
1391 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
1392 switch (op)
1393 {
1394 case 0x8b:
1395 if (read_memory_unsigned_integer (pc + skip + 1, 1, byte_order)
1396 != 0xec)
1397 return pc;
1398 break;
1399 case 0x89:
1400 if (read_memory_unsigned_integer (pc + skip + 1, 1, byte_order)
1401 != 0xe5)
1402 return pc;
1403 break;
1404 default:
1405 return pc;
1406 }
1407
1408 /* OK, we actually have a frame. We just don't know how large
1409 it is yet. Set its size to zero. We'll adjust it if
1410 necessary. We also now commit to skipping the special
1411 instructions mentioned before. */
1412 cache->locals = 0;
1413 pc += (skip + 2);
1414
1415 /* If that's all, return now. */
1416 if (limit <= pc)
1417 return limit;
1418
1419 /* Check for stack adjustment
1420
1421 subl $XXX, %esp
1422
1423 NOTE: You can't subtract a 16-bit immediate from a 32-bit
1424 reg, so we don't have to worry about a data16 prefix. */
1425 if (target_read_memory (pc, &op, 1))
1426 return pc;
1427 if (op == 0x83)
1428 {
1429 /* `subl' with 8-bit immediate. */
1430 if (read_memory_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1431 /* Some instruction starting with 0x83 other than `subl'. */
1432 return pc;
1433
1434 /* `subl' with signed 8-bit immediate (though it wouldn't
1435 make sense to be negative). */
1436 cache->locals = read_memory_integer (pc + 2, 1, byte_order);
1437 return pc + 3;
1438 }
1439 else if (op == 0x81)
1440 {
1441 /* Maybe it is `subl' with a 32-bit immediate. */
1442 if (read_memory_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1443 /* Some instruction starting with 0x81 other than `subl'. */
1444 return pc;
1445
1446 /* It is `subl' with a 32-bit immediate. */
1447 cache->locals = read_memory_integer (pc + 2, 4, byte_order);
1448 return pc + 6;
1449 }
1450 else
1451 {
1452 /* Some instruction other than `subl'. */
1453 return pc;
1454 }
1455 }
1456 else if (op == 0xc8) /* enter */
1457 {
1458 cache->locals = read_memory_unsigned_integer (pc + 1, 2, byte_order);
1459 return pc + 4;
1460 }
1461
1462 return pc;
1463 }
1464
1465 /* Check whether PC points at code that saves registers on the stack.
1466 If so, it updates CACHE and returns the address of the first
1467 instruction after the register saves or CURRENT_PC, whichever is
1468 smaller. Otherwise, return PC. */
1469
1470 static CORE_ADDR
1471 i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
1472 struct i386_frame_cache *cache)
1473 {
1474 CORE_ADDR offset = 0;
1475 gdb_byte op;
1476 int i;
1477
1478 if (cache->locals > 0)
1479 offset -= cache->locals;
1480 for (i = 0; i < 8 && pc < current_pc; i++)
1481 {
1482 if (target_read_memory (pc, &op, 1))
1483 return pc;
1484 if (op < 0x50 || op > 0x57)
1485 break;
1486
1487 offset -= 4;
1488 cache->saved_regs[op - 0x50] = offset;
1489 cache->sp_offset += 4;
1490 pc++;
1491 }
1492
1493 return pc;
1494 }
1495
1496 /* Do a full analysis of the prologue at PC and update CACHE
1497 accordingly. Bail out early if CURRENT_PC is reached. Return the
1498 address where the analysis stopped.
1499
1500 We handle these cases:
1501
1502 The startup sequence can be at the start of the function, or the
1503 function can start with a branch to startup code at the end.
1504
1505 %ebp can be set up with either the 'enter' instruction, or "pushl
1506 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
1507 once used in the System V compiler).
1508
1509 Local space is allocated just below the saved %ebp by either the
1510 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
1511 16-bit unsigned argument for space to allocate, and the 'addl'
1512 instruction could have either a signed byte, or 32-bit immediate.
1513
1514 Next, the registers used by this function are pushed. With the
1515 System V compiler they will always be in the order: %edi, %esi,
1516 %ebx (and sometimes a harmless bug causes it to also save but not
1517 restore %eax); however, the code below is willing to see the pushes
1518 in any order, and will handle up to 8 of them.
1519
1520 If the setup sequence is at the end of the function, then the next
1521 instruction will be a branch back to the start. */
1522
1523 static CORE_ADDR
1524 i386_analyze_prologue (struct gdbarch *gdbarch,
1525 CORE_ADDR pc, CORE_ADDR current_pc,
1526 struct i386_frame_cache *cache)
1527 {
1528 pc = i386_skip_noop (pc);
1529 pc = i386_follow_jump (gdbarch, pc);
1530 pc = i386_analyze_struct_return (pc, current_pc, cache);
1531 pc = i386_skip_probe (pc);
1532 pc = i386_analyze_stack_align (pc, current_pc, cache);
1533 pc = i386_analyze_frame_setup (gdbarch, pc, current_pc, cache);
1534 return i386_analyze_register_saves (pc, current_pc, cache);
1535 }
1536
1537 /* Return PC of first real instruction. */
1538
1539 static CORE_ADDR
1540 i386_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
1541 {
1542 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1543
1544 static gdb_byte pic_pat[6] =
1545 {
1546 0xe8, 0, 0, 0, 0, /* call 0x0 */
1547 0x5b, /* popl %ebx */
1548 };
1549 struct i386_frame_cache cache;
1550 CORE_ADDR pc;
1551 gdb_byte op;
1552 int i;
1553
1554 cache.locals = -1;
1555 pc = i386_analyze_prologue (gdbarch, start_pc, 0xffffffff, &cache);
1556 if (cache.locals < 0)
1557 return start_pc;
1558
1559 /* Found valid frame setup. */
1560
1561 /* The native cc on SVR4 in -K PIC mode inserts the following code
1562 to get the address of the global offset table (GOT) into register
1563 %ebx:
1564
1565 call 0x0
1566 popl %ebx
1567 movl %ebx,x(%ebp) (optional)
1568 addl y,%ebx
1569
1570 This code is with the rest of the prologue (at the end of the
1571 function), so we have to skip it to get to the first real
1572 instruction at the start of the function. */
1573
1574 for (i = 0; i < 6; i++)
1575 {
1576 if (target_read_memory (pc + i, &op, 1))
1577 return pc;
1578
1579 if (pic_pat[i] != op)
1580 break;
1581 }
1582 if (i == 6)
1583 {
1584 int delta = 6;
1585
1586 if (target_read_memory (pc + delta, &op, 1))
1587 return pc;
1588
1589 if (op == 0x89) /* movl %ebx, x(%ebp) */
1590 {
1591 op = read_memory_unsigned_integer (pc + delta + 1, 1, byte_order);
1592
1593 if (op == 0x5d) /* One byte offset from %ebp. */
1594 delta += 3;
1595 else if (op == 0x9d) /* Four byte offset from %ebp. */
1596 delta += 6;
1597 else /* Unexpected instruction. */
1598 delta = 0;
1599
1600 if (target_read_memory (pc + delta, &op, 1))
1601 return pc;
1602 }
1603
1604 /* addl y,%ebx */
1605 if (delta > 0 && op == 0x81
1606 && read_memory_unsigned_integer (pc + delta + 1, 1, byte_order)
1607 == 0xc3)
1608 {
1609 pc += delta + 6;
1610 }
1611 }
1612
1613 /* If the function starts with a branch (to startup code at the end)
1614 the last instruction should bring us back to the first
1615 instruction of the real code. */
1616 if (i386_follow_jump (gdbarch, start_pc) != start_pc)
1617 pc = i386_follow_jump (gdbarch, pc);
1618
1619 return pc;
1620 }
1621
1622 /* Check that the code pointed to by PC corresponds to a call to
1623 __main, skip it if so. Return PC otherwise. */
1624
1625 CORE_ADDR
1626 i386_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1627 {
1628 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1629 gdb_byte op;
1630
1631 if (target_read_memory (pc, &op, 1))
1632 return pc;
1633 if (op == 0xe8)
1634 {
1635 gdb_byte buf[4];
1636
1637 if (target_read_memory (pc + 1, buf, sizeof buf) == 0)
1638 {
1639 /* Make sure address is computed correctly as a 32bit
1640 integer even if CORE_ADDR is 64 bit wide. */
1641 struct minimal_symbol *s;
1642 CORE_ADDR call_dest;
1643
1644 call_dest = pc + 5 + extract_signed_integer (buf, 4, byte_order);
1645 call_dest = call_dest & 0xffffffffU;
1646 s = lookup_minimal_symbol_by_pc (call_dest);
1647 if (s != NULL
1648 && SYMBOL_LINKAGE_NAME (s) != NULL
1649 && strcmp (SYMBOL_LINKAGE_NAME (s), "__main") == 0)
1650 pc += 5;
1651 }
1652 }
1653
1654 return pc;
1655 }
1656
1657 /* This function is 64-bit safe. */
1658
1659 static CORE_ADDR
1660 i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1661 {
1662 gdb_byte buf[8];
1663
1664 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
1665 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
1666 }
1667 \f
1668
1669 /* Normal frames. */
1670
1671 static void
1672 i386_frame_cache_1 (struct frame_info *this_frame,
1673 struct i386_frame_cache *cache)
1674 {
1675 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1676 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1677 gdb_byte buf[4];
1678 int i;
1679
1680 cache->pc = get_frame_func (this_frame);
1681
1682 /* In principle, for normal frames, %ebp holds the frame pointer,
1683 which holds the base address for the current stack frame.
1684 However, for functions that don't need it, the frame pointer is
1685 optional. For these "frameless" functions the frame pointer is
1686 actually the frame pointer of the calling frame. Signal
1687 trampolines are just a special case of a "frameless" function.
1688 They (usually) share their frame pointer with the frame that was
1689 in progress when the signal occurred. */
1690
1691 get_frame_register (this_frame, I386_EBP_REGNUM, buf);
1692 cache->base = extract_unsigned_integer (buf, 4, byte_order);
1693 if (cache->base == 0)
1694 {
1695 cache->base_p = 1;
1696 return;
1697 }
1698
1699 /* For normal frames, %eip is stored at 4(%ebp). */
1700 cache->saved_regs[I386_EIP_REGNUM] = 4;
1701
1702 if (cache->pc != 0)
1703 i386_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
1704 cache);
1705
1706 if (cache->locals < 0)
1707 {
1708 /* We didn't find a valid frame, which means that CACHE->base
1709 currently holds the frame pointer for our calling frame. If
1710 we're at the start of a function, or somewhere half-way its
1711 prologue, the function's frame probably hasn't been fully
1712 setup yet. Try to reconstruct the base address for the stack
1713 frame by looking at the stack pointer. For truly "frameless"
1714 functions this might work too. */
1715
1716 if (cache->saved_sp_reg != -1)
1717 {
1718 /* Saved stack pointer has been saved. */
1719 get_frame_register (this_frame, cache->saved_sp_reg, buf);
1720 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
1721
1722 /* We're halfway aligning the stack. */
1723 cache->base = ((cache->saved_sp - 4) & 0xfffffff0) - 4;
1724 cache->saved_regs[I386_EIP_REGNUM] = cache->saved_sp - 4;
1725
1726 /* This will be added back below. */
1727 cache->saved_regs[I386_EIP_REGNUM] -= cache->base;
1728 }
1729 else if (cache->pc != 0
1730 || target_read_memory (get_frame_pc (this_frame), buf, 1))
1731 {
1732 /* We're in a known function, but did not find a frame
1733 setup. Assume that the function does not use %ebp.
1734 Alternatively, we may have jumped to an invalid
1735 address; in that case there is definitely no new
1736 frame in %ebp. */
1737 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
1738 cache->base = extract_unsigned_integer (buf, 4, byte_order)
1739 + cache->sp_offset;
1740 }
1741 else
1742 /* We're in an unknown function. We could not find the start
1743 of the function to analyze the prologue; our best option is
1744 to assume a typical frame layout with the caller's %ebp
1745 saved. */
1746 cache->saved_regs[I386_EBP_REGNUM] = 0;
1747 }
1748
1749 if (cache->saved_sp_reg != -1)
1750 {
1751 /* Saved stack pointer has been saved (but the SAVED_SP_REG
1752 register may be unavailable). */
1753 if (cache->saved_sp == 0
1754 && frame_register_read (this_frame, cache->saved_sp_reg, buf))
1755 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
1756 }
1757 /* Now that we have the base address for the stack frame we can
1758 calculate the value of %esp in the calling frame. */
1759 else if (cache->saved_sp == 0)
1760 cache->saved_sp = cache->base + 8;
1761
1762 /* Adjust all the saved registers such that they contain addresses
1763 instead of offsets. */
1764 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
1765 if (cache->saved_regs[i] != -1)
1766 cache->saved_regs[i] += cache->base;
1767
1768 cache->base_p = 1;
1769 }
1770
1771 static struct i386_frame_cache *
1772 i386_frame_cache (struct frame_info *this_frame, void **this_cache)
1773 {
1774 volatile struct gdb_exception ex;
1775 struct i386_frame_cache *cache;
1776
1777 if (*this_cache)
1778 return *this_cache;
1779
1780 cache = i386_alloc_frame_cache ();
1781 *this_cache = cache;
1782
1783 TRY_CATCH (ex, RETURN_MASK_ERROR)
1784 {
1785 i386_frame_cache_1 (this_frame, cache);
1786 }
1787 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
1788 throw_exception (ex);
1789
1790 return cache;
1791 }
1792
1793 static void
1794 i386_frame_this_id (struct frame_info *this_frame, void **this_cache,
1795 struct frame_id *this_id)
1796 {
1797 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
1798
1799 /* This marks the outermost frame. */
1800 if (cache->base == 0)
1801 return;
1802
1803 /* See the end of i386_push_dummy_call. */
1804 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
1805 }
1806
1807 static enum unwind_stop_reason
1808 i386_frame_unwind_stop_reason (struct frame_info *this_frame,
1809 void **this_cache)
1810 {
1811 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
1812
1813 if (!cache->base_p)
1814 return UNWIND_UNAVAILABLE;
1815
1816 /* This marks the outermost frame. */
1817 if (cache->base == 0)
1818 return UNWIND_OUTERMOST;
1819
1820 return UNWIND_NO_REASON;
1821 }
1822
1823 static struct value *
1824 i386_frame_prev_register (struct frame_info *this_frame, void **this_cache,
1825 int regnum)
1826 {
1827 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
1828
1829 gdb_assert (regnum >= 0);
1830
1831 /* The System V ABI says that:
1832
1833 "The flags register contains the system flags, such as the
1834 direction flag and the carry flag. The direction flag must be
1835 set to the forward (that is, zero) direction before entry and
1836 upon exit from a function. Other user flags have no specified
1837 role in the standard calling sequence and are not preserved."
1838
1839 To guarantee the "upon exit" part of that statement we fake a
1840 saved flags register that has its direction flag cleared.
1841
1842 Note that GCC doesn't seem to rely on the fact that the direction
1843 flag is cleared after a function return; it always explicitly
1844 clears the flag before operations where it matters.
1845
1846 FIXME: kettenis/20030316: I'm not quite sure whether this is the
1847 right thing to do. The way we fake the flags register here makes
1848 it impossible to change it. */
1849
1850 if (regnum == I386_EFLAGS_REGNUM)
1851 {
1852 ULONGEST val;
1853
1854 val = get_frame_register_unsigned (this_frame, regnum);
1855 val &= ~(1 << 10);
1856 return frame_unwind_got_constant (this_frame, regnum, val);
1857 }
1858
1859 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
1860 return frame_unwind_got_register (this_frame, regnum, I386_EAX_REGNUM);
1861
1862 if (regnum == I386_ESP_REGNUM
1863 && (cache->saved_sp != 0 || cache->saved_sp_reg != -1))
1864 {
1865 /* If the SP has been saved, but we don't know where, then this
1866 means that SAVED_SP_REG register was found unavailable back
1867 when we built the cache. */
1868 if (cache->saved_sp == 0)
1869 return frame_unwind_got_register (this_frame, regnum,
1870 cache->saved_sp_reg);
1871 else
1872 return frame_unwind_got_constant (this_frame, regnum,
1873 cache->saved_sp);
1874 }
1875
1876 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
1877 return frame_unwind_got_memory (this_frame, regnum,
1878 cache->saved_regs[regnum]);
1879
1880 return frame_unwind_got_register (this_frame, regnum, regnum);
1881 }
1882
1883 static const struct frame_unwind i386_frame_unwind =
1884 {
1885 NORMAL_FRAME,
1886 i386_frame_unwind_stop_reason,
1887 i386_frame_this_id,
1888 i386_frame_prev_register,
1889 NULL,
1890 default_frame_sniffer
1891 };
1892
1893 /* Normal frames, but in a function epilogue. */
1894
1895 /* The epilogue is defined here as the 'ret' instruction, which will
1896 follow any instruction such as 'leave' or 'pop %ebp' that destroys
1897 the function's stack frame. */
1898
1899 static int
1900 i386_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
1901 {
1902 gdb_byte insn;
1903 struct symtab *symtab;
1904
1905 symtab = find_pc_symtab (pc);
1906 if (symtab && symtab->epilogue_unwind_valid)
1907 return 0;
1908
1909 if (target_read_memory (pc, &insn, 1))
1910 return 0; /* Can't read memory at pc. */
1911
1912 if (insn != 0xc3) /* 'ret' instruction. */
1913 return 0;
1914
1915 return 1;
1916 }
1917
1918 static int
1919 i386_epilogue_frame_sniffer (const struct frame_unwind *self,
1920 struct frame_info *this_frame,
1921 void **this_prologue_cache)
1922 {
1923 if (frame_relative_level (this_frame) == 0)
1924 return i386_in_function_epilogue_p (get_frame_arch (this_frame),
1925 get_frame_pc (this_frame));
1926 else
1927 return 0;
1928 }
1929
1930 static struct i386_frame_cache *
1931 i386_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
1932 {
1933 volatile struct gdb_exception ex;
1934 struct i386_frame_cache *cache;
1935 CORE_ADDR sp;
1936
1937 if (*this_cache)
1938 return *this_cache;
1939
1940 cache = i386_alloc_frame_cache ();
1941 *this_cache = cache;
1942
1943 TRY_CATCH (ex, RETURN_MASK_ERROR)
1944 {
1945 cache->pc = get_frame_func (this_frame);
1946
1947 /* At this point the stack looks as if we just entered the
1948 function, with the return address at the top of the
1949 stack. */
1950 sp = get_frame_register_unsigned (this_frame, I386_ESP_REGNUM);
1951 cache->base = sp + cache->sp_offset;
1952 cache->saved_sp = cache->base + 8;
1953 cache->saved_regs[I386_EIP_REGNUM] = cache->base + 4;
1954
1955 cache->base_p = 1;
1956 }
1957 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
1958 throw_exception (ex);
1959
1960 return cache;
1961 }
1962
1963 static enum unwind_stop_reason
1964 i386_epilogue_frame_unwind_stop_reason (struct frame_info *this_frame,
1965 void **this_cache)
1966 {
1967 struct i386_frame_cache *cache =
1968 i386_epilogue_frame_cache (this_frame, this_cache);
1969
1970 if (!cache->base_p)
1971 return UNWIND_UNAVAILABLE;
1972
1973 return UNWIND_NO_REASON;
1974 }
1975
1976 static void
1977 i386_epilogue_frame_this_id (struct frame_info *this_frame,
1978 void **this_cache,
1979 struct frame_id *this_id)
1980 {
1981 struct i386_frame_cache *cache =
1982 i386_epilogue_frame_cache (this_frame, this_cache);
1983
1984 if (!cache->base_p)
1985 return;
1986
1987 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
1988 }
1989
1990 static struct value *
1991 i386_epilogue_frame_prev_register (struct frame_info *this_frame,
1992 void **this_cache, int regnum)
1993 {
1994 /* Make sure we've initialized the cache. */
1995 i386_epilogue_frame_cache (this_frame, this_cache);
1996
1997 return i386_frame_prev_register (this_frame, this_cache, regnum);
1998 }
1999
2000 static const struct frame_unwind i386_epilogue_frame_unwind =
2001 {
2002 NORMAL_FRAME,
2003 i386_epilogue_frame_unwind_stop_reason,
2004 i386_epilogue_frame_this_id,
2005 i386_epilogue_frame_prev_register,
2006 NULL,
2007 i386_epilogue_frame_sniffer
2008 };
2009 \f
2010
2011 /* Stack-based trampolines. */
2012
2013 /* These trampolines are used on cross x86 targets, when taking the
2014 address of a nested function. When executing these trampolines,
2015 no stack frame is set up, so we are in a similar situation as in
2016 epilogues and i386_epilogue_frame_this_id can be re-used. */
2017
2018 /* Static chain passed in register. */
2019
2020 struct i386_insn i386_tramp_chain_in_reg_insns[] =
2021 {
2022 /* `movl imm32, %eax' and `movl imm32, %ecx' */
2023 { 5, { 0xb8 }, { 0xfe } },
2024
2025 /* `jmp imm32' */
2026 { 5, { 0xe9 }, { 0xff } },
2027
2028 {0}
2029 };
2030
2031 /* Static chain passed on stack (when regparm=3). */
2032
2033 struct i386_insn i386_tramp_chain_on_stack_insns[] =
2034 {
2035 /* `push imm32' */
2036 { 5, { 0x68 }, { 0xff } },
2037
2038 /* `jmp imm32' */
2039 { 5, { 0xe9 }, { 0xff } },
2040
2041 {0}
2042 };
2043
2044 /* Return whether PC points inside a stack trampoline. */
2045
2046 static int
2047 i386_in_stack_tramp_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2048 {
2049 gdb_byte insn;
2050 const char *name;
2051
2052 /* A stack trampoline is detected if no name is associated
2053 to the current pc and if it points inside a trampoline
2054 sequence. */
2055
2056 find_pc_partial_function (pc, &name, NULL, NULL);
2057 if (name)
2058 return 0;
2059
2060 if (target_read_memory (pc, &insn, 1))
2061 return 0;
2062
2063 if (!i386_match_insn_block (pc, i386_tramp_chain_in_reg_insns)
2064 && !i386_match_insn_block (pc, i386_tramp_chain_on_stack_insns))
2065 return 0;
2066
2067 return 1;
2068 }
2069
2070 static int
2071 i386_stack_tramp_frame_sniffer (const struct frame_unwind *self,
2072 struct frame_info *this_frame,
2073 void **this_cache)
2074 {
2075 if (frame_relative_level (this_frame) == 0)
2076 return i386_in_stack_tramp_p (get_frame_arch (this_frame),
2077 get_frame_pc (this_frame));
2078 else
2079 return 0;
2080 }
2081
2082 static const struct frame_unwind i386_stack_tramp_frame_unwind =
2083 {
2084 NORMAL_FRAME,
2085 i386_epilogue_frame_unwind_stop_reason,
2086 i386_epilogue_frame_this_id,
2087 i386_epilogue_frame_prev_register,
2088 NULL,
2089 i386_stack_tramp_frame_sniffer
2090 };
2091 \f
2092 /* Generate a bytecode expression to get the value of the saved PC. */
2093
2094 static void
2095 i386_gen_return_address (struct gdbarch *gdbarch,
2096 struct agent_expr *ax, struct axs_value *value,
2097 CORE_ADDR scope)
2098 {
2099 /* The following sequence assumes the traditional use of the base
2100 register. */
2101 ax_reg (ax, I386_EBP_REGNUM);
2102 ax_const_l (ax, 4);
2103 ax_simple (ax, aop_add);
2104 value->type = register_type (gdbarch, I386_EIP_REGNUM);
2105 value->kind = axs_lvalue_memory;
2106 }
2107 \f
2108
2109 /* Signal trampolines. */
2110
2111 static struct i386_frame_cache *
2112 i386_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
2113 {
2114 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2115 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2116 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2117 volatile struct gdb_exception ex;
2118 struct i386_frame_cache *cache;
2119 CORE_ADDR addr;
2120 gdb_byte buf[4];
2121
2122 if (*this_cache)
2123 return *this_cache;
2124
2125 cache = i386_alloc_frame_cache ();
2126
2127 TRY_CATCH (ex, RETURN_MASK_ERROR)
2128 {
2129 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2130 cache->base = extract_unsigned_integer (buf, 4, byte_order) - 4;
2131
2132 addr = tdep->sigcontext_addr (this_frame);
2133 if (tdep->sc_reg_offset)
2134 {
2135 int i;
2136
2137 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
2138
2139 for (i = 0; i < tdep->sc_num_regs; i++)
2140 if (tdep->sc_reg_offset[i] != -1)
2141 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
2142 }
2143 else
2144 {
2145 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
2146 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
2147 }
2148
2149 cache->base_p = 1;
2150 }
2151 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
2152 throw_exception (ex);
2153
2154 *this_cache = cache;
2155 return cache;
2156 }
2157
2158 static enum unwind_stop_reason
2159 i386_sigtramp_frame_unwind_stop_reason (struct frame_info *this_frame,
2160 void **this_cache)
2161 {
2162 struct i386_frame_cache *cache =
2163 i386_sigtramp_frame_cache (this_frame, this_cache);
2164
2165 if (!cache->base_p)
2166 return UNWIND_UNAVAILABLE;
2167
2168 return UNWIND_NO_REASON;
2169 }
2170
2171 static void
2172 i386_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache,
2173 struct frame_id *this_id)
2174 {
2175 struct i386_frame_cache *cache =
2176 i386_sigtramp_frame_cache (this_frame, this_cache);
2177
2178 if (!cache->base_p)
2179 return;
2180
2181 /* See the end of i386_push_dummy_call. */
2182 (*this_id) = frame_id_build (cache->base + 8, get_frame_pc (this_frame));
2183 }
2184
2185 static struct value *
2186 i386_sigtramp_frame_prev_register (struct frame_info *this_frame,
2187 void **this_cache, int regnum)
2188 {
2189 /* Make sure we've initialized the cache. */
2190 i386_sigtramp_frame_cache (this_frame, this_cache);
2191
2192 return i386_frame_prev_register (this_frame, this_cache, regnum);
2193 }
2194
2195 static int
2196 i386_sigtramp_frame_sniffer (const struct frame_unwind *self,
2197 struct frame_info *this_frame,
2198 void **this_prologue_cache)
2199 {
2200 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
2201
2202 /* We shouldn't even bother if we don't have a sigcontext_addr
2203 handler. */
2204 if (tdep->sigcontext_addr == NULL)
2205 return 0;
2206
2207 if (tdep->sigtramp_p != NULL)
2208 {
2209 if (tdep->sigtramp_p (this_frame))
2210 return 1;
2211 }
2212
2213 if (tdep->sigtramp_start != 0)
2214 {
2215 CORE_ADDR pc = get_frame_pc (this_frame);
2216
2217 gdb_assert (tdep->sigtramp_end != 0);
2218 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
2219 return 1;
2220 }
2221
2222 return 0;
2223 }
2224
2225 static const struct frame_unwind i386_sigtramp_frame_unwind =
2226 {
2227 SIGTRAMP_FRAME,
2228 i386_sigtramp_frame_unwind_stop_reason,
2229 i386_sigtramp_frame_this_id,
2230 i386_sigtramp_frame_prev_register,
2231 NULL,
2232 i386_sigtramp_frame_sniffer
2233 };
2234 \f
2235
2236 static CORE_ADDR
2237 i386_frame_base_address (struct frame_info *this_frame, void **this_cache)
2238 {
2239 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2240
2241 return cache->base;
2242 }
2243
2244 static const struct frame_base i386_frame_base =
2245 {
2246 &i386_frame_unwind,
2247 i386_frame_base_address,
2248 i386_frame_base_address,
2249 i386_frame_base_address
2250 };
2251
2252 static struct frame_id
2253 i386_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2254 {
2255 CORE_ADDR fp;
2256
2257 fp = get_frame_register_unsigned (this_frame, I386_EBP_REGNUM);
2258
2259 /* See the end of i386_push_dummy_call. */
2260 return frame_id_build (fp + 8, get_frame_pc (this_frame));
2261 }
2262
2263 /* _Decimal128 function return values need 16-byte alignment on the
2264 stack. */
2265
2266 static CORE_ADDR
2267 i386_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2268 {
2269 return sp & -(CORE_ADDR)16;
2270 }
2271 \f
2272
2273 /* Figure out where the longjmp will land. Slurp the args out of the
2274 stack. We expect the first arg to be a pointer to the jmp_buf
2275 structure from which we extract the address that we will land at.
2276 This address is copied into PC. This routine returns non-zero on
2277 success. */
2278
2279 static int
2280 i386_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
2281 {
2282 gdb_byte buf[4];
2283 CORE_ADDR sp, jb_addr;
2284 struct gdbarch *gdbarch = get_frame_arch (frame);
2285 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2286 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
2287
2288 /* If JB_PC_OFFSET is -1, we have no way to find out where the
2289 longjmp will land. */
2290 if (jb_pc_offset == -1)
2291 return 0;
2292
2293 get_frame_register (frame, I386_ESP_REGNUM, buf);
2294 sp = extract_unsigned_integer (buf, 4, byte_order);
2295 if (target_read_memory (sp + 4, buf, 4))
2296 return 0;
2297
2298 jb_addr = extract_unsigned_integer (buf, 4, byte_order);
2299 if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
2300 return 0;
2301
2302 *pc = extract_unsigned_integer (buf, 4, byte_order);
2303 return 1;
2304 }
2305 \f
2306
2307 /* Check whether TYPE must be 16-byte-aligned when passed as a
2308 function argument. 16-byte vectors, _Decimal128 and structures or
2309 unions containing such types must be 16-byte-aligned; other
2310 arguments are 4-byte-aligned. */
2311
2312 static int
2313 i386_16_byte_align_p (struct type *type)
2314 {
2315 type = check_typedef (type);
2316 if ((TYPE_CODE (type) == TYPE_CODE_DECFLOAT
2317 || (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type)))
2318 && TYPE_LENGTH (type) == 16)
2319 return 1;
2320 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2321 return i386_16_byte_align_p (TYPE_TARGET_TYPE (type));
2322 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2323 || TYPE_CODE (type) == TYPE_CODE_UNION)
2324 {
2325 int i;
2326 for (i = 0; i < TYPE_NFIELDS (type); i++)
2327 {
2328 if (i386_16_byte_align_p (TYPE_FIELD_TYPE (type, i)))
2329 return 1;
2330 }
2331 }
2332 return 0;
2333 }
2334
2335 /* Implementation for set_gdbarch_push_dummy_code. */
2336
2337 static CORE_ADDR
2338 i386_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, CORE_ADDR funaddr,
2339 struct value **args, int nargs, struct type *value_type,
2340 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
2341 struct regcache *regcache)
2342 {
2343 /* Use 0xcc breakpoint - 1 byte. */
2344 *bp_addr = sp - 1;
2345 *real_pc = funaddr;
2346
2347 /* Keep the stack aligned. */
2348 return sp - 16;
2349 }
2350
2351 static CORE_ADDR
2352 i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2353 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2354 struct value **args, CORE_ADDR sp, int struct_return,
2355 CORE_ADDR struct_addr)
2356 {
2357 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2358 gdb_byte buf[4];
2359 int i;
2360 int write_pass;
2361 int args_space = 0;
2362
2363 /* Determine the total space required for arguments and struct
2364 return address in a first pass (allowing for 16-byte-aligned
2365 arguments), then push arguments in a second pass. */
2366
2367 for (write_pass = 0; write_pass < 2; write_pass++)
2368 {
2369 int args_space_used = 0;
2370
2371 if (struct_return)
2372 {
2373 if (write_pass)
2374 {
2375 /* Push value address. */
2376 store_unsigned_integer (buf, 4, byte_order, struct_addr);
2377 write_memory (sp, buf, 4);
2378 args_space_used += 4;
2379 }
2380 else
2381 args_space += 4;
2382 }
2383
2384 for (i = 0; i < nargs; i++)
2385 {
2386 int len = TYPE_LENGTH (value_enclosing_type (args[i]));
2387
2388 if (write_pass)
2389 {
2390 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2391 args_space_used = align_up (args_space_used, 16);
2392
2393 write_memory (sp + args_space_used,
2394 value_contents_all (args[i]), len);
2395 /* The System V ABI says that:
2396
2397 "An argument's size is increased, if necessary, to make it a
2398 multiple of [32-bit] words. This may require tail padding,
2399 depending on the size of the argument."
2400
2401 This makes sure the stack stays word-aligned. */
2402 args_space_used += align_up (len, 4);
2403 }
2404 else
2405 {
2406 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2407 args_space = align_up (args_space, 16);
2408 args_space += align_up (len, 4);
2409 }
2410 }
2411
2412 if (!write_pass)
2413 {
2414 sp -= args_space;
2415
2416 /* The original System V ABI only requires word alignment,
2417 but modern incarnations need 16-byte alignment in order
2418 to support SSE. Since wasting a few bytes here isn't
2419 harmful we unconditionally enforce 16-byte alignment. */
2420 sp &= ~0xf;
2421 }
2422 }
2423
2424 /* Store return address. */
2425 sp -= 4;
2426 store_unsigned_integer (buf, 4, byte_order, bp_addr);
2427 write_memory (sp, buf, 4);
2428
2429 /* Finally, update the stack pointer... */
2430 store_unsigned_integer (buf, 4, byte_order, sp);
2431 regcache_cooked_write (regcache, I386_ESP_REGNUM, buf);
2432
2433 /* ...and fake a frame pointer. */
2434 regcache_cooked_write (regcache, I386_EBP_REGNUM, buf);
2435
2436 /* MarkK wrote: This "+ 8" is all over the place:
2437 (i386_frame_this_id, i386_sigtramp_frame_this_id,
2438 i386_dummy_id). It's there, since all frame unwinders for
2439 a given target have to agree (within a certain margin) on the
2440 definition of the stack address of a frame. Otherwise frame id
2441 comparison might not work correctly. Since DWARF2/GCC uses the
2442 stack address *before* the function call as a frame's CFA. On
2443 the i386, when %ebp is used as a frame pointer, the offset
2444 between the contents %ebp and the CFA as defined by GCC. */
2445 return sp + 8;
2446 }
2447
2448 /* These registers are used for returning integers (and on some
2449 targets also for returning `struct' and `union' values when their
2450 size and alignment match an integer type). */
2451 #define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
2452 #define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
2453
2454 /* Read, for architecture GDBARCH, a function return value of TYPE
2455 from REGCACHE, and copy that into VALBUF. */
2456
2457 static void
2458 i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
2459 struct regcache *regcache, gdb_byte *valbuf)
2460 {
2461 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2462 int len = TYPE_LENGTH (type);
2463 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2464
2465 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2466 {
2467 if (tdep->st0_regnum < 0)
2468 {
2469 warning (_("Cannot find floating-point return value."));
2470 memset (valbuf, 0, len);
2471 return;
2472 }
2473
2474 /* Floating-point return values can be found in %st(0). Convert
2475 its contents to the desired type. This is probably not
2476 exactly how it would happen on the target itself, but it is
2477 the best we can do. */
2478 regcache_raw_read (regcache, I386_ST0_REGNUM, buf);
2479 convert_typed_floating (buf, i387_ext_type (gdbarch), valbuf, type);
2480 }
2481 else
2482 {
2483 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2484 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2485
2486 if (len <= low_size)
2487 {
2488 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
2489 memcpy (valbuf, buf, len);
2490 }
2491 else if (len <= (low_size + high_size))
2492 {
2493 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
2494 memcpy (valbuf, buf, low_size);
2495 regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
2496 memcpy (valbuf + low_size, buf, len - low_size);
2497 }
2498 else
2499 internal_error (__FILE__, __LINE__,
2500 _("Cannot extract return value of %d bytes long."),
2501 len);
2502 }
2503 }
2504
2505 /* Write, for architecture GDBARCH, a function return value of TYPE
2506 from VALBUF into REGCACHE. */
2507
2508 static void
2509 i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
2510 struct regcache *regcache, const gdb_byte *valbuf)
2511 {
2512 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2513 int len = TYPE_LENGTH (type);
2514
2515 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2516 {
2517 ULONGEST fstat;
2518 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2519
2520 if (tdep->st0_regnum < 0)
2521 {
2522 warning (_("Cannot set floating-point return value."));
2523 return;
2524 }
2525
2526 /* Returning floating-point values is a bit tricky. Apart from
2527 storing the return value in %st(0), we have to simulate the
2528 state of the FPU at function return point. */
2529
2530 /* Convert the value found in VALBUF to the extended
2531 floating-point format used by the FPU. This is probably
2532 not exactly how it would happen on the target itself, but
2533 it is the best we can do. */
2534 convert_typed_floating (valbuf, type, buf, i387_ext_type (gdbarch));
2535 regcache_raw_write (regcache, I386_ST0_REGNUM, buf);
2536
2537 /* Set the top of the floating-point register stack to 7. The
2538 actual value doesn't really matter, but 7 is what a normal
2539 function return would end up with if the program started out
2540 with a freshly initialized FPU. */
2541 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
2542 fstat |= (7 << 11);
2543 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM (tdep), fstat);
2544
2545 /* Mark %st(1) through %st(7) as empty. Since we set the top of
2546 the floating-point register stack to 7, the appropriate value
2547 for the tag word is 0x3fff. */
2548 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM (tdep), 0x3fff);
2549 }
2550 else
2551 {
2552 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2553 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2554
2555 if (len <= low_size)
2556 regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
2557 else if (len <= (low_size + high_size))
2558 {
2559 regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
2560 regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
2561 len - low_size, valbuf + low_size);
2562 }
2563 else
2564 internal_error (__FILE__, __LINE__,
2565 _("Cannot store return value of %d bytes long."), len);
2566 }
2567 }
2568 \f
2569
2570 /* This is the variable that is set with "set struct-convention", and
2571 its legitimate values. */
2572 static const char default_struct_convention[] = "default";
2573 static const char pcc_struct_convention[] = "pcc";
2574 static const char reg_struct_convention[] = "reg";
2575 static const char *const valid_conventions[] =
2576 {
2577 default_struct_convention,
2578 pcc_struct_convention,
2579 reg_struct_convention,
2580 NULL
2581 };
2582 static const char *struct_convention = default_struct_convention;
2583
2584 /* Return non-zero if TYPE, which is assumed to be a structure,
2585 a union type, or an array type, should be returned in registers
2586 for architecture GDBARCH. */
2587
2588 static int
2589 i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
2590 {
2591 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2592 enum type_code code = TYPE_CODE (type);
2593 int len = TYPE_LENGTH (type);
2594
2595 gdb_assert (code == TYPE_CODE_STRUCT
2596 || code == TYPE_CODE_UNION
2597 || code == TYPE_CODE_ARRAY);
2598
2599 if (struct_convention == pcc_struct_convention
2600 || (struct_convention == default_struct_convention
2601 && tdep->struct_return == pcc_struct_return))
2602 return 0;
2603
2604 /* Structures consisting of a single `float', `double' or 'long
2605 double' member are returned in %st(0). */
2606 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2607 {
2608 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
2609 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2610 return (len == 4 || len == 8 || len == 12);
2611 }
2612
2613 return (len == 1 || len == 2 || len == 4 || len == 8);
2614 }
2615
2616 /* Determine, for architecture GDBARCH, how a return value of TYPE
2617 should be returned. If it is supposed to be returned in registers,
2618 and READBUF is non-zero, read the appropriate value from REGCACHE,
2619 and copy it into READBUF. If WRITEBUF is non-zero, write the value
2620 from WRITEBUF into REGCACHE. */
2621
2622 static enum return_value_convention
2623 i386_return_value (struct gdbarch *gdbarch, struct value *function,
2624 struct type *type, struct regcache *regcache,
2625 gdb_byte *readbuf, const gdb_byte *writebuf)
2626 {
2627 enum type_code code = TYPE_CODE (type);
2628
2629 if (((code == TYPE_CODE_STRUCT
2630 || code == TYPE_CODE_UNION
2631 || code == TYPE_CODE_ARRAY)
2632 && !i386_reg_struct_return_p (gdbarch, type))
2633 /* 128-bit decimal float uses the struct return convention. */
2634 || (code == TYPE_CODE_DECFLOAT && TYPE_LENGTH (type) == 16))
2635 {
2636 /* The System V ABI says that:
2637
2638 "A function that returns a structure or union also sets %eax
2639 to the value of the original address of the caller's area
2640 before it returns. Thus when the caller receives control
2641 again, the address of the returned object resides in register
2642 %eax and can be used to access the object."
2643
2644 So the ABI guarantees that we can always find the return
2645 value just after the function has returned. */
2646
2647 /* Note that the ABI doesn't mention functions returning arrays,
2648 which is something possible in certain languages such as Ada.
2649 In this case, the value is returned as if it was wrapped in
2650 a record, so the convention applied to records also applies
2651 to arrays. */
2652
2653 if (readbuf)
2654 {
2655 ULONGEST addr;
2656
2657 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
2658 read_memory (addr, readbuf, TYPE_LENGTH (type));
2659 }
2660
2661 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
2662 }
2663
2664 /* This special case is for structures consisting of a single
2665 `float', `double' or 'long double' member. These structures are
2666 returned in %st(0). For these structures, we call ourselves
2667 recursively, changing TYPE into the type of the first member of
2668 the structure. Since that should work for all structures that
2669 have only one member, we don't bother to check the member's type
2670 here. */
2671 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2672 {
2673 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
2674 return i386_return_value (gdbarch, function, type, regcache,
2675 readbuf, writebuf);
2676 }
2677
2678 if (readbuf)
2679 i386_extract_return_value (gdbarch, type, regcache, readbuf);
2680 if (writebuf)
2681 i386_store_return_value (gdbarch, type, regcache, writebuf);
2682
2683 return RETURN_VALUE_REGISTER_CONVENTION;
2684 }
2685 \f
2686
2687 struct type *
2688 i387_ext_type (struct gdbarch *gdbarch)
2689 {
2690 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2691
2692 if (!tdep->i387_ext_type)
2693 {
2694 tdep->i387_ext_type = tdesc_find_type (gdbarch, "i387_ext");
2695 gdb_assert (tdep->i387_ext_type != NULL);
2696 }
2697
2698 return tdep->i387_ext_type;
2699 }
2700
2701 /* Construct vector type for pseudo YMM registers. We can't use
2702 tdesc_find_type since YMM isn't described in target description. */
2703
2704 static struct type *
2705 i386_ymm_type (struct gdbarch *gdbarch)
2706 {
2707 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2708
2709 if (!tdep->i386_ymm_type)
2710 {
2711 const struct builtin_type *bt = builtin_type (gdbarch);
2712
2713 /* The type we're building is this: */
2714 #if 0
2715 union __gdb_builtin_type_vec256i
2716 {
2717 int128_t uint128[2];
2718 int64_t v2_int64[4];
2719 int32_t v4_int32[8];
2720 int16_t v8_int16[16];
2721 int8_t v16_int8[32];
2722 double v2_double[4];
2723 float v4_float[8];
2724 };
2725 #endif
2726
2727 struct type *t;
2728
2729 t = arch_composite_type (gdbarch,
2730 "__gdb_builtin_type_vec256i", TYPE_CODE_UNION);
2731 append_composite_type_field (t, "v8_float",
2732 init_vector_type (bt->builtin_float, 8));
2733 append_composite_type_field (t, "v4_double",
2734 init_vector_type (bt->builtin_double, 4));
2735 append_composite_type_field (t, "v32_int8",
2736 init_vector_type (bt->builtin_int8, 32));
2737 append_composite_type_field (t, "v16_int16",
2738 init_vector_type (bt->builtin_int16, 16));
2739 append_composite_type_field (t, "v8_int32",
2740 init_vector_type (bt->builtin_int32, 8));
2741 append_composite_type_field (t, "v4_int64",
2742 init_vector_type (bt->builtin_int64, 4));
2743 append_composite_type_field (t, "v2_int128",
2744 init_vector_type (bt->builtin_int128, 2));
2745
2746 TYPE_VECTOR (t) = 1;
2747 TYPE_NAME (t) = "builtin_type_vec256i";
2748 tdep->i386_ymm_type = t;
2749 }
2750
2751 return tdep->i386_ymm_type;
2752 }
2753
2754 /* Construct vector type for MMX registers. */
2755 static struct type *
2756 i386_mmx_type (struct gdbarch *gdbarch)
2757 {
2758 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2759
2760 if (!tdep->i386_mmx_type)
2761 {
2762 const struct builtin_type *bt = builtin_type (gdbarch);
2763
2764 /* The type we're building is this: */
2765 #if 0
2766 union __gdb_builtin_type_vec64i
2767 {
2768 int64_t uint64;
2769 int32_t v2_int32[2];
2770 int16_t v4_int16[4];
2771 int8_t v8_int8[8];
2772 };
2773 #endif
2774
2775 struct type *t;
2776
2777 t = arch_composite_type (gdbarch,
2778 "__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
2779
2780 append_composite_type_field (t, "uint64", bt->builtin_int64);
2781 append_composite_type_field (t, "v2_int32",
2782 init_vector_type (bt->builtin_int32, 2));
2783 append_composite_type_field (t, "v4_int16",
2784 init_vector_type (bt->builtin_int16, 4));
2785 append_composite_type_field (t, "v8_int8",
2786 init_vector_type (bt->builtin_int8, 8));
2787
2788 TYPE_VECTOR (t) = 1;
2789 TYPE_NAME (t) = "builtin_type_vec64i";
2790 tdep->i386_mmx_type = t;
2791 }
2792
2793 return tdep->i386_mmx_type;
2794 }
2795
2796 /* Return the GDB type object for the "standard" data type of data in
2797 register REGNUM. */
2798
2799 struct type *
2800 i386_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
2801 {
2802 if (i386_mmx_regnum_p (gdbarch, regnum))
2803 return i386_mmx_type (gdbarch);
2804 else if (i386_ymm_regnum_p (gdbarch, regnum))
2805 return i386_ymm_type (gdbarch);
2806 else
2807 {
2808 const struct builtin_type *bt = builtin_type (gdbarch);
2809 if (i386_byte_regnum_p (gdbarch, regnum))
2810 return bt->builtin_int8;
2811 else if (i386_word_regnum_p (gdbarch, regnum))
2812 return bt->builtin_int16;
2813 else if (i386_dword_regnum_p (gdbarch, regnum))
2814 return bt->builtin_int32;
2815 }
2816
2817 internal_error (__FILE__, __LINE__, _("invalid regnum"));
2818 }
2819
2820 /* Map a cooked register onto a raw register or memory. For the i386,
2821 the MMX registers need to be mapped onto floating point registers. */
2822
2823 static int
2824 i386_mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
2825 {
2826 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
2827 int mmxreg, fpreg;
2828 ULONGEST fstat;
2829 int tos;
2830
2831 mmxreg = regnum - tdep->mm0_regnum;
2832 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
2833 tos = (fstat >> 11) & 0x7;
2834 fpreg = (mmxreg + tos) % 8;
2835
2836 return (I387_ST0_REGNUM (tdep) + fpreg);
2837 }
2838
2839 /* A helper function for us by i386_pseudo_register_read_value and
2840 amd64_pseudo_register_read_value. It does all the work but reads
2841 the data into an already-allocated value. */
2842
2843 void
2844 i386_pseudo_register_read_into_value (struct gdbarch *gdbarch,
2845 struct regcache *regcache,
2846 int regnum,
2847 struct value *result_value)
2848 {
2849 gdb_byte raw_buf[MAX_REGISTER_SIZE];
2850 enum register_status status;
2851 gdb_byte *buf = value_contents_raw (result_value);
2852
2853 if (i386_mmx_regnum_p (gdbarch, regnum))
2854 {
2855 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
2856
2857 /* Extract (always little endian). */
2858 status = regcache_raw_read (regcache, fpnum, raw_buf);
2859 if (status != REG_VALID)
2860 mark_value_bytes_unavailable (result_value, 0,
2861 TYPE_LENGTH (value_type (result_value)));
2862 else
2863 memcpy (buf, raw_buf, register_size (gdbarch, regnum));
2864 }
2865 else
2866 {
2867 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2868
2869 if (i386_ymm_regnum_p (gdbarch, regnum))
2870 {
2871 regnum -= tdep->ymm0_regnum;
2872
2873 /* Extract (always little endian). Read lower 128bits. */
2874 status = regcache_raw_read (regcache,
2875 I387_XMM0_REGNUM (tdep) + regnum,
2876 raw_buf);
2877 if (status != REG_VALID)
2878 mark_value_bytes_unavailable (result_value, 0, 16);
2879 else
2880 memcpy (buf, raw_buf, 16);
2881 /* Read upper 128bits. */
2882 status = regcache_raw_read (regcache,
2883 tdep->ymm0h_regnum + regnum,
2884 raw_buf);
2885 if (status != REG_VALID)
2886 mark_value_bytes_unavailable (result_value, 16, 32);
2887 else
2888 memcpy (buf + 16, raw_buf, 16);
2889 }
2890 else if (i386_word_regnum_p (gdbarch, regnum))
2891 {
2892 int gpnum = regnum - tdep->ax_regnum;
2893
2894 /* Extract (always little endian). */
2895 status = regcache_raw_read (regcache, gpnum, raw_buf);
2896 if (status != REG_VALID)
2897 mark_value_bytes_unavailable (result_value, 0,
2898 TYPE_LENGTH (value_type (result_value)));
2899 else
2900 memcpy (buf, raw_buf, 2);
2901 }
2902 else if (i386_byte_regnum_p (gdbarch, regnum))
2903 {
2904 /* Check byte pseudo registers last since this function will
2905 be called from amd64_pseudo_register_read, which handles
2906 byte pseudo registers differently. */
2907 int gpnum = regnum - tdep->al_regnum;
2908
2909 /* Extract (always little endian). We read both lower and
2910 upper registers. */
2911 status = regcache_raw_read (regcache, gpnum % 4, raw_buf);
2912 if (status != REG_VALID)
2913 mark_value_bytes_unavailable (result_value, 0,
2914 TYPE_LENGTH (value_type (result_value)));
2915 else if (gpnum >= 4)
2916 memcpy (buf, raw_buf + 1, 1);
2917 else
2918 memcpy (buf, raw_buf, 1);
2919 }
2920 else
2921 internal_error (__FILE__, __LINE__, _("invalid regnum"));
2922 }
2923 }
2924
2925 static struct value *
2926 i386_pseudo_register_read_value (struct gdbarch *gdbarch,
2927 struct regcache *regcache,
2928 int regnum)
2929 {
2930 struct value *result;
2931
2932 result = allocate_value (register_type (gdbarch, regnum));
2933 VALUE_LVAL (result) = lval_register;
2934 VALUE_REGNUM (result) = regnum;
2935
2936 i386_pseudo_register_read_into_value (gdbarch, regcache, regnum, result);
2937
2938 return result;
2939 }
2940
2941 void
2942 i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2943 int regnum, const gdb_byte *buf)
2944 {
2945 gdb_byte raw_buf[MAX_REGISTER_SIZE];
2946
2947 if (i386_mmx_regnum_p (gdbarch, regnum))
2948 {
2949 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
2950
2951 /* Read ... */
2952 regcache_raw_read (regcache, fpnum, raw_buf);
2953 /* ... Modify ... (always little endian). */
2954 memcpy (raw_buf, buf, register_size (gdbarch, regnum));
2955 /* ... Write. */
2956 regcache_raw_write (regcache, fpnum, raw_buf);
2957 }
2958 else
2959 {
2960 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2961
2962 if (i386_ymm_regnum_p (gdbarch, regnum))
2963 {
2964 regnum -= tdep->ymm0_regnum;
2965
2966 /* ... Write lower 128bits. */
2967 regcache_raw_write (regcache,
2968 I387_XMM0_REGNUM (tdep) + regnum,
2969 buf);
2970 /* ... Write upper 128bits. */
2971 regcache_raw_write (regcache,
2972 tdep->ymm0h_regnum + regnum,
2973 buf + 16);
2974 }
2975 else if (i386_word_regnum_p (gdbarch, regnum))
2976 {
2977 int gpnum = regnum - tdep->ax_regnum;
2978
2979 /* Read ... */
2980 regcache_raw_read (regcache, gpnum, raw_buf);
2981 /* ... Modify ... (always little endian). */
2982 memcpy (raw_buf, buf, 2);
2983 /* ... Write. */
2984 regcache_raw_write (regcache, gpnum, raw_buf);
2985 }
2986 else if (i386_byte_regnum_p (gdbarch, regnum))
2987 {
2988 /* Check byte pseudo registers last since this function will
2989 be called from amd64_pseudo_register_read, which handles
2990 byte pseudo registers differently. */
2991 int gpnum = regnum - tdep->al_regnum;
2992
2993 /* Read ... We read both lower and upper registers. */
2994 regcache_raw_read (regcache, gpnum % 4, raw_buf);
2995 /* ... Modify ... (always little endian). */
2996 if (gpnum >= 4)
2997 memcpy (raw_buf + 1, buf, 1);
2998 else
2999 memcpy (raw_buf, buf, 1);
3000 /* ... Write. */
3001 regcache_raw_write (regcache, gpnum % 4, raw_buf);
3002 }
3003 else
3004 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3005 }
3006 }
3007 \f
3008
3009 /* Return the register number of the register allocated by GCC after
3010 REGNUM, or -1 if there is no such register. */
3011
3012 static int
3013 i386_next_regnum (int regnum)
3014 {
3015 /* GCC allocates the registers in the order:
3016
3017 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
3018
3019 Since storing a variable in %esp doesn't make any sense we return
3020 -1 for %ebp and for %esp itself. */
3021 static int next_regnum[] =
3022 {
3023 I386_EDX_REGNUM, /* Slot for %eax. */
3024 I386_EBX_REGNUM, /* Slot for %ecx. */
3025 I386_ECX_REGNUM, /* Slot for %edx. */
3026 I386_ESI_REGNUM, /* Slot for %ebx. */
3027 -1, -1, /* Slots for %esp and %ebp. */
3028 I386_EDI_REGNUM, /* Slot for %esi. */
3029 I386_EBP_REGNUM /* Slot for %edi. */
3030 };
3031
3032 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
3033 return next_regnum[regnum];
3034
3035 return -1;
3036 }
3037
3038 /* Return nonzero if a value of type TYPE stored in register REGNUM
3039 needs any special handling. */
3040
3041 static int
3042 i386_convert_register_p (struct gdbarch *gdbarch,
3043 int regnum, struct type *type)
3044 {
3045 int len = TYPE_LENGTH (type);
3046
3047 /* Values may be spread across multiple registers. Most debugging
3048 formats aren't expressive enough to specify the locations, so
3049 some heuristics is involved. Right now we only handle types that
3050 have a length that is a multiple of the word size, since GCC
3051 doesn't seem to put any other types into registers. */
3052 if (len > 4 && len % 4 == 0)
3053 {
3054 int last_regnum = regnum;
3055
3056 while (len > 4)
3057 {
3058 last_regnum = i386_next_regnum (last_regnum);
3059 len -= 4;
3060 }
3061
3062 if (last_regnum != -1)
3063 return 1;
3064 }
3065
3066 return i387_convert_register_p (gdbarch, regnum, type);
3067 }
3068
3069 /* Read a value of type TYPE from register REGNUM in frame FRAME, and
3070 return its contents in TO. */
3071
3072 static int
3073 i386_register_to_value (struct frame_info *frame, int regnum,
3074 struct type *type, gdb_byte *to,
3075 int *optimizedp, int *unavailablep)
3076 {
3077 struct gdbarch *gdbarch = get_frame_arch (frame);
3078 int len = TYPE_LENGTH (type);
3079
3080 if (i386_fp_regnum_p (gdbarch, regnum))
3081 return i387_register_to_value (frame, regnum, type, to,
3082 optimizedp, unavailablep);
3083
3084 /* Read a value spread across multiple registers. */
3085
3086 gdb_assert (len > 4 && len % 4 == 0);
3087
3088 while (len > 0)
3089 {
3090 gdb_assert (regnum != -1);
3091 gdb_assert (register_size (gdbarch, regnum) == 4);
3092
3093 if (!get_frame_register_bytes (frame, regnum, 0,
3094 register_size (gdbarch, regnum),
3095 to, optimizedp, unavailablep))
3096 return 0;
3097
3098 regnum = i386_next_regnum (regnum);
3099 len -= 4;
3100 to += 4;
3101 }
3102
3103 *optimizedp = *unavailablep = 0;
3104 return 1;
3105 }
3106
3107 /* Write the contents FROM of a value of type TYPE into register
3108 REGNUM in frame FRAME. */
3109
3110 static void
3111 i386_value_to_register (struct frame_info *frame, int regnum,
3112 struct type *type, const gdb_byte *from)
3113 {
3114 int len = TYPE_LENGTH (type);
3115
3116 if (i386_fp_regnum_p (get_frame_arch (frame), regnum))
3117 {
3118 i387_value_to_register (frame, regnum, type, from);
3119 return;
3120 }
3121
3122 /* Write a value spread across multiple registers. */
3123
3124 gdb_assert (len > 4 && len % 4 == 0);
3125
3126 while (len > 0)
3127 {
3128 gdb_assert (regnum != -1);
3129 gdb_assert (register_size (get_frame_arch (frame), regnum) == 4);
3130
3131 put_frame_register (frame, regnum, from);
3132 regnum = i386_next_regnum (regnum);
3133 len -= 4;
3134 from += 4;
3135 }
3136 }
3137 \f
3138 /* Supply register REGNUM from the buffer specified by GREGS and LEN
3139 in the general-purpose register set REGSET to register cache
3140 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3141
3142 void
3143 i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
3144 int regnum, const void *gregs, size_t len)
3145 {
3146 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
3147 const gdb_byte *regs = gregs;
3148 int i;
3149
3150 gdb_assert (len == tdep->sizeof_gregset);
3151
3152 for (i = 0; i < tdep->gregset_num_regs; i++)
3153 {
3154 if ((regnum == i || regnum == -1)
3155 && tdep->gregset_reg_offset[i] != -1)
3156 regcache_raw_supply (regcache, i, regs + tdep->gregset_reg_offset[i]);
3157 }
3158 }
3159
3160 /* Collect register REGNUM from the register cache REGCACHE and store
3161 it in the buffer specified by GREGS and LEN as described by the
3162 general-purpose register set REGSET. If REGNUM is -1, do this for
3163 all registers in REGSET. */
3164
3165 void
3166 i386_collect_gregset (const struct regset *regset,
3167 const struct regcache *regcache,
3168 int regnum, void *gregs, size_t len)
3169 {
3170 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
3171 gdb_byte *regs = gregs;
3172 int i;
3173
3174 gdb_assert (len == tdep->sizeof_gregset);
3175
3176 for (i = 0; i < tdep->gregset_num_regs; i++)
3177 {
3178 if ((regnum == i || regnum == -1)
3179 && tdep->gregset_reg_offset[i] != -1)
3180 regcache_raw_collect (regcache, i, regs + tdep->gregset_reg_offset[i]);
3181 }
3182 }
3183
3184 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
3185 in the floating-point register set REGSET to register cache
3186 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3187
3188 static void
3189 i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
3190 int regnum, const void *fpregs, size_t len)
3191 {
3192 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
3193
3194 if (len == I387_SIZEOF_FXSAVE)
3195 {
3196 i387_supply_fxsave (regcache, regnum, fpregs);
3197 return;
3198 }
3199
3200 gdb_assert (len == tdep->sizeof_fpregset);
3201 i387_supply_fsave (regcache, regnum, fpregs);
3202 }
3203
3204 /* Collect register REGNUM from the register cache REGCACHE and store
3205 it in the buffer specified by FPREGS and LEN as described by the
3206 floating-point register set REGSET. If REGNUM is -1, do this for
3207 all registers in REGSET. */
3208
3209 static void
3210 i386_collect_fpregset (const struct regset *regset,
3211 const struct regcache *regcache,
3212 int regnum, void *fpregs, size_t len)
3213 {
3214 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
3215
3216 if (len == I387_SIZEOF_FXSAVE)
3217 {
3218 i387_collect_fxsave (regcache, regnum, fpregs);
3219 return;
3220 }
3221
3222 gdb_assert (len == tdep->sizeof_fpregset);
3223 i387_collect_fsave (regcache, regnum, fpregs);
3224 }
3225
3226 /* Similar to i386_supply_fpregset, but use XSAVE extended state. */
3227
3228 static void
3229 i386_supply_xstateregset (const struct regset *regset,
3230 struct regcache *regcache, int regnum,
3231 const void *xstateregs, size_t len)
3232 {
3233 i387_supply_xsave (regcache, regnum, xstateregs);
3234 }
3235
3236 /* Similar to i386_collect_fpregset , but use XSAVE extended state. */
3237
3238 static void
3239 i386_collect_xstateregset (const struct regset *regset,
3240 const struct regcache *regcache,
3241 int regnum, void *xstateregs, size_t len)
3242 {
3243 i387_collect_xsave (regcache, regnum, xstateregs, 1);
3244 }
3245
3246 /* Return the appropriate register set for the core section identified
3247 by SECT_NAME and SECT_SIZE. */
3248
3249 const struct regset *
3250 i386_regset_from_core_section (struct gdbarch *gdbarch,
3251 const char *sect_name, size_t sect_size)
3252 {
3253 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3254
3255 if (strcmp (sect_name, ".reg") == 0 && sect_size == tdep->sizeof_gregset)
3256 {
3257 if (tdep->gregset == NULL)
3258 tdep->gregset = regset_alloc (gdbarch, i386_supply_gregset,
3259 i386_collect_gregset);
3260 return tdep->gregset;
3261 }
3262
3263 if ((strcmp (sect_name, ".reg2") == 0 && sect_size == tdep->sizeof_fpregset)
3264 || (strcmp (sect_name, ".reg-xfp") == 0
3265 && sect_size == I387_SIZEOF_FXSAVE))
3266 {
3267 if (tdep->fpregset == NULL)
3268 tdep->fpregset = regset_alloc (gdbarch, i386_supply_fpregset,
3269 i386_collect_fpregset);
3270 return tdep->fpregset;
3271 }
3272
3273 if (strcmp (sect_name, ".reg-xstate") == 0)
3274 {
3275 if (tdep->xstateregset == NULL)
3276 tdep->xstateregset = regset_alloc (gdbarch,
3277 i386_supply_xstateregset,
3278 i386_collect_xstateregset);
3279
3280 return tdep->xstateregset;
3281 }
3282
3283 return NULL;
3284 }
3285 \f
3286
3287 /* Stuff for WIN32 PE style DLL's but is pretty generic really. */
3288
3289 CORE_ADDR
3290 i386_pe_skip_trampoline_code (struct frame_info *frame,
3291 CORE_ADDR pc, char *name)
3292 {
3293 struct gdbarch *gdbarch = get_frame_arch (frame);
3294 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3295
3296 /* jmp *(dest) */
3297 if (pc && read_memory_unsigned_integer (pc, 2, byte_order) == 0x25ff)
3298 {
3299 unsigned long indirect =
3300 read_memory_unsigned_integer (pc + 2, 4, byte_order);
3301 struct minimal_symbol *indsym =
3302 indirect ? lookup_minimal_symbol_by_pc (indirect) : 0;
3303 const char *symname = indsym ? SYMBOL_LINKAGE_NAME (indsym) : 0;
3304
3305 if (symname)
3306 {
3307 if (strncmp (symname, "__imp_", 6) == 0
3308 || strncmp (symname, "_imp_", 5) == 0)
3309 return name ? 1 :
3310 read_memory_unsigned_integer (indirect, 4, byte_order);
3311 }
3312 }
3313 return 0; /* Not a trampoline. */
3314 }
3315 \f
3316
3317 /* Return whether the THIS_FRAME corresponds to a sigtramp
3318 routine. */
3319
3320 int
3321 i386_sigtramp_p (struct frame_info *this_frame)
3322 {
3323 CORE_ADDR pc = get_frame_pc (this_frame);
3324 const char *name;
3325
3326 find_pc_partial_function (pc, &name, NULL, NULL);
3327 return (name && strcmp ("_sigtramp", name) == 0);
3328 }
3329 \f
3330
3331 /* We have two flavours of disassembly. The machinery on this page
3332 deals with switching between those. */
3333
3334 static int
3335 i386_print_insn (bfd_vma pc, struct disassemble_info *info)
3336 {
3337 gdb_assert (disassembly_flavor == att_flavor
3338 || disassembly_flavor == intel_flavor);
3339
3340 /* FIXME: kettenis/20020915: Until disassembler_options is properly
3341 constified, cast to prevent a compiler warning. */
3342 info->disassembler_options = (char *) disassembly_flavor;
3343
3344 return print_insn_i386 (pc, info);
3345 }
3346 \f
3347
3348 /* There are a few i386 architecture variants that differ only
3349 slightly from the generic i386 target. For now, we don't give them
3350 their own source file, but include them here. As a consequence,
3351 they'll always be included. */
3352
3353 /* System V Release 4 (SVR4). */
3354
3355 /* Return whether THIS_FRAME corresponds to a SVR4 sigtramp
3356 routine. */
3357
3358 static int
3359 i386_svr4_sigtramp_p (struct frame_info *this_frame)
3360 {
3361 CORE_ADDR pc = get_frame_pc (this_frame);
3362 const char *name;
3363
3364 /* UnixWare uses _sigacthandler. The origin of the other symbols is
3365 currently unknown. */
3366 find_pc_partial_function (pc, &name, NULL, NULL);
3367 return (name && (strcmp ("_sigreturn", name) == 0
3368 || strcmp ("_sigacthandler", name) == 0
3369 || strcmp ("sigvechandler", name) == 0));
3370 }
3371
3372 /* Assuming THIS_FRAME is for a SVR4 sigtramp routine, return the
3373 address of the associated sigcontext (ucontext) structure. */
3374
3375 static CORE_ADDR
3376 i386_svr4_sigcontext_addr (struct frame_info *this_frame)
3377 {
3378 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3379 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3380 gdb_byte buf[4];
3381 CORE_ADDR sp;
3382
3383 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
3384 sp = extract_unsigned_integer (buf, 4, byte_order);
3385
3386 return read_memory_unsigned_integer (sp + 8, 4, byte_order);
3387 }
3388
3389 \f
3390
3391 /* Implementation of `gdbarch_stap_is_single_operand', as defined in
3392 gdbarch.h. */
3393
3394 int
3395 i386_stap_is_single_operand (struct gdbarch *gdbarch, const char *s)
3396 {
3397 return (*s == '$' /* Literal number. */
3398 || (isdigit (*s) && s[1] == '(' && s[2] == '%') /* Displacement. */
3399 || (*s == '(' && s[1] == '%') /* Register indirection. */
3400 || (*s == '%' && isalpha (s[1]))); /* Register access. */
3401 }
3402
3403 /* Implementation of `gdbarch_stap_parse_special_token', as defined in
3404 gdbarch.h. */
3405
3406 int
3407 i386_stap_parse_special_token (struct gdbarch *gdbarch,
3408 struct stap_parse_info *p)
3409 {
3410 /* In order to parse special tokens, we use a state-machine that go
3411 through every known token and try to get a match. */
3412 enum
3413 {
3414 TRIPLET,
3415 THREE_ARG_DISPLACEMENT,
3416 DONE
3417 } current_state;
3418
3419 current_state = TRIPLET;
3420
3421 /* The special tokens to be parsed here are:
3422
3423 - `register base + (register index * size) + offset', as represented
3424 in `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
3425
3426 - Operands of the form `-8+3+1(%rbp)', which must be interpreted as
3427 `*(-8 + 3 - 1 + (void *) $eax)'. */
3428
3429 while (current_state != DONE)
3430 {
3431 const char *s = p->arg;
3432
3433 switch (current_state)
3434 {
3435 case TRIPLET:
3436 {
3437 if (isdigit (*s) || *s == '-' || *s == '+')
3438 {
3439 int got_minus[3];
3440 int i;
3441 long displacements[3];
3442 const char *start;
3443 char *regname;
3444 int len;
3445 struct stoken str;
3446
3447 got_minus[0] = 0;
3448 if (*s == '+')
3449 ++s;
3450 else if (*s == '-')
3451 {
3452 ++s;
3453 got_minus[0] = 1;
3454 }
3455
3456 displacements[0] = strtol (s, (char **) &s, 10);
3457
3458 if (*s != '+' && *s != '-')
3459 {
3460 /* We are not dealing with a triplet. */
3461 break;
3462 }
3463
3464 got_minus[1] = 0;
3465 if (*s == '+')
3466 ++s;
3467 else
3468 {
3469 ++s;
3470 got_minus[1] = 1;
3471 }
3472
3473 displacements[1] = strtol (s, (char **) &s, 10);
3474
3475 if (*s != '+' && *s != '-')
3476 {
3477 /* We are not dealing with a triplet. */
3478 break;
3479 }
3480
3481 got_minus[2] = 0;
3482 if (*s == '+')
3483 ++s;
3484 else
3485 {
3486 ++s;
3487 got_minus[2] = 1;
3488 }
3489
3490 displacements[2] = strtol (s, (char **) &s, 10);
3491
3492 if (*s != '(' || s[1] != '%')
3493 break;
3494
3495 s += 2;
3496 start = s;
3497
3498 while (isalnum (*s))
3499 ++s;
3500
3501 if (*s++ != ')')
3502 break;
3503
3504 len = s - start;
3505 regname = alloca (len + 1);
3506
3507 strncpy (regname, start, len);
3508 regname[len] = '\0';
3509
3510 if (user_reg_map_name_to_regnum (gdbarch,
3511 regname, len) == -1)
3512 error (_("Invalid register name `%s' "
3513 "on expression `%s'."),
3514 regname, p->saved_arg);
3515
3516 for (i = 0; i < 3; i++)
3517 {
3518 write_exp_elt_opcode (OP_LONG);
3519 write_exp_elt_type
3520 (builtin_type (gdbarch)->builtin_long);
3521 write_exp_elt_longcst (displacements[i]);
3522 write_exp_elt_opcode (OP_LONG);
3523 if (got_minus[i])
3524 write_exp_elt_opcode (UNOP_NEG);
3525 }
3526
3527 write_exp_elt_opcode (OP_REGISTER);
3528 str.ptr = regname;
3529 str.length = len;
3530 write_exp_string (str);
3531 write_exp_elt_opcode (OP_REGISTER);
3532
3533 write_exp_elt_opcode (UNOP_CAST);
3534 write_exp_elt_type (builtin_type (gdbarch)->builtin_data_ptr);
3535 write_exp_elt_opcode (UNOP_CAST);
3536
3537 write_exp_elt_opcode (BINOP_ADD);
3538 write_exp_elt_opcode (BINOP_ADD);
3539 write_exp_elt_opcode (BINOP_ADD);
3540
3541 write_exp_elt_opcode (UNOP_CAST);
3542 write_exp_elt_type (lookup_pointer_type (p->arg_type));
3543 write_exp_elt_opcode (UNOP_CAST);
3544
3545 write_exp_elt_opcode (UNOP_IND);
3546
3547 p->arg = s;
3548
3549 return 1;
3550 }
3551 break;
3552 }
3553 case THREE_ARG_DISPLACEMENT:
3554 {
3555 if (isdigit (*s) || *s == '(' || *s == '-' || *s == '+')
3556 {
3557 int offset_minus = 0;
3558 long offset = 0;
3559 int size_minus = 0;
3560 long size = 0;
3561 const char *start;
3562 char *base;
3563 int len_base;
3564 char *index;
3565 int len_index;
3566 struct stoken base_token, index_token;
3567
3568 if (*s == '+')
3569 ++s;
3570 else if (*s == '-')
3571 {
3572 ++s;
3573 offset_minus = 1;
3574 }
3575
3576 if (offset_minus && !isdigit (*s))
3577 break;
3578
3579 if (isdigit (*s))
3580 offset = strtol (s, (char **) &s, 10);
3581
3582 if (*s != '(' || s[1] != '%')
3583 break;
3584
3585 s += 2;
3586 start = s;
3587
3588 while (isalnum (*s))
3589 ++s;
3590
3591 if (*s != ',' || s[1] != '%')
3592 break;
3593
3594 len_base = s - start;
3595 base = alloca (len_base + 1);
3596 strncpy (base, start, len_base);
3597 base[len_base] = '\0';
3598
3599 if (user_reg_map_name_to_regnum (gdbarch,
3600 base, len_base) == -1)
3601 error (_("Invalid register name `%s' "
3602 "on expression `%s'."),
3603 base, p->saved_arg);
3604
3605 s += 2;
3606 start = s;
3607
3608 while (isalnum (*s))
3609 ++s;
3610
3611 len_index = s - start;
3612 index = alloca (len_index + 1);
3613 strncpy (index, start, len_index);
3614 index[len_index] = '\0';
3615
3616 if (user_reg_map_name_to_regnum (gdbarch,
3617 index, len_index) == -1)
3618 error (_("Invalid register name `%s' "
3619 "on expression `%s'."),
3620 index, p->saved_arg);
3621
3622 if (*s != ',' && *s != ')')
3623 break;
3624
3625 if (*s == ',')
3626 {
3627 ++s;
3628 if (*s == '+')
3629 ++s;
3630 else if (*s == '-')
3631 {
3632 ++s;
3633 size_minus = 1;
3634 }
3635
3636 size = strtol (s, (char **) &s, 10);
3637
3638 if (*s != ')')
3639 break;
3640 }
3641
3642 ++s;
3643
3644 if (offset)
3645 {
3646 write_exp_elt_opcode (OP_LONG);
3647 write_exp_elt_type
3648 (builtin_type (gdbarch)->builtin_long);
3649 write_exp_elt_longcst (offset);
3650 write_exp_elt_opcode (OP_LONG);
3651 if (offset_minus)
3652 write_exp_elt_opcode (UNOP_NEG);
3653 }
3654
3655 write_exp_elt_opcode (OP_REGISTER);
3656 base_token.ptr = base;
3657 base_token.length = len_base;
3658 write_exp_string (base_token);
3659 write_exp_elt_opcode (OP_REGISTER);
3660
3661 if (offset)
3662 write_exp_elt_opcode (BINOP_ADD);
3663
3664 write_exp_elt_opcode (OP_REGISTER);
3665 index_token.ptr = index;
3666 index_token.length = len_index;
3667 write_exp_string (index_token);
3668 write_exp_elt_opcode (OP_REGISTER);
3669
3670 if (size)
3671 {
3672 write_exp_elt_opcode (OP_LONG);
3673 write_exp_elt_type
3674 (builtin_type (gdbarch)->builtin_long);
3675 write_exp_elt_longcst (size);
3676 write_exp_elt_opcode (OP_LONG);
3677 if (size_minus)
3678 write_exp_elt_opcode (UNOP_NEG);
3679 write_exp_elt_opcode (BINOP_MUL);
3680 }
3681
3682 write_exp_elt_opcode (BINOP_ADD);
3683
3684 write_exp_elt_opcode (UNOP_CAST);
3685 write_exp_elt_type (lookup_pointer_type (p->arg_type));
3686 write_exp_elt_opcode (UNOP_CAST);
3687
3688 write_exp_elt_opcode (UNOP_IND);
3689
3690 p->arg = s;
3691
3692 return 1;
3693 }
3694 break;
3695 }
3696 }
3697
3698 /* Advancing to the next state. */
3699 ++current_state;
3700 }
3701
3702 return 0;
3703 }
3704
3705 \f
3706
3707 /* Generic ELF. */
3708
3709 void
3710 i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3711 {
3712 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
3713 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
3714
3715 /* Registering SystemTap handlers. */
3716 set_gdbarch_stap_integer_prefix (gdbarch, "$");
3717 set_gdbarch_stap_register_prefix (gdbarch, "%");
3718 set_gdbarch_stap_register_indirection_prefix (gdbarch, "(");
3719 set_gdbarch_stap_register_indirection_suffix (gdbarch, ")");
3720 set_gdbarch_stap_is_single_operand (gdbarch,
3721 i386_stap_is_single_operand);
3722 set_gdbarch_stap_parse_special_token (gdbarch,
3723 i386_stap_parse_special_token);
3724 }
3725
3726 /* System V Release 4 (SVR4). */
3727
3728 void
3729 i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3730 {
3731 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3732
3733 /* System V Release 4 uses ELF. */
3734 i386_elf_init_abi (info, gdbarch);
3735
3736 /* System V Release 4 has shared libraries. */
3737 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
3738
3739 tdep->sigtramp_p = i386_svr4_sigtramp_p;
3740 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
3741 tdep->sc_pc_offset = 36 + 14 * 4;
3742 tdep->sc_sp_offset = 36 + 17 * 4;
3743
3744 tdep->jb_pc_offset = 20;
3745 }
3746
3747 /* DJGPP. */
3748
3749 static void
3750 i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3751 {
3752 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3753
3754 /* DJGPP doesn't have any special frames for signal handlers. */
3755 tdep->sigtramp_p = NULL;
3756
3757 tdep->jb_pc_offset = 36;
3758
3759 /* DJGPP does not support the SSE registers. */
3760 if (! tdesc_has_registers (info.target_desc))
3761 tdep->tdesc = tdesc_i386_mmx;
3762
3763 /* Native compiler is GCC, which uses the SVR4 register numbering
3764 even in COFF and STABS. See the comment in i386_gdbarch_init,
3765 before the calls to set_gdbarch_stab_reg_to_regnum and
3766 set_gdbarch_sdb_reg_to_regnum. */
3767 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
3768 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
3769
3770 set_gdbarch_has_dos_based_file_system (gdbarch, 1);
3771 }
3772 \f
3773
3774 /* i386 register groups. In addition to the normal groups, add "mmx"
3775 and "sse". */
3776
3777 static struct reggroup *i386_sse_reggroup;
3778 static struct reggroup *i386_mmx_reggroup;
3779
3780 static void
3781 i386_init_reggroups (void)
3782 {
3783 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
3784 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
3785 }
3786
3787 static void
3788 i386_add_reggroups (struct gdbarch *gdbarch)
3789 {
3790 reggroup_add (gdbarch, i386_sse_reggroup);
3791 reggroup_add (gdbarch, i386_mmx_reggroup);
3792 reggroup_add (gdbarch, general_reggroup);
3793 reggroup_add (gdbarch, float_reggroup);
3794 reggroup_add (gdbarch, all_reggroup);
3795 reggroup_add (gdbarch, save_reggroup);
3796 reggroup_add (gdbarch, restore_reggroup);
3797 reggroup_add (gdbarch, vector_reggroup);
3798 reggroup_add (gdbarch, system_reggroup);
3799 }
3800
3801 int
3802 i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
3803 struct reggroup *group)
3804 {
3805 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3806 int fp_regnum_p, mmx_regnum_p, xmm_regnum_p, mxcsr_regnum_p,
3807 ymm_regnum_p, ymmh_regnum_p;
3808
3809 /* Don't include pseudo registers, except for MMX, in any register
3810 groups. */
3811 if (i386_byte_regnum_p (gdbarch, regnum))
3812 return 0;
3813
3814 if (i386_word_regnum_p (gdbarch, regnum))
3815 return 0;
3816
3817 if (i386_dword_regnum_p (gdbarch, regnum))
3818 return 0;
3819
3820 mmx_regnum_p = i386_mmx_regnum_p (gdbarch, regnum);
3821 if (group == i386_mmx_reggroup)
3822 return mmx_regnum_p;
3823
3824 xmm_regnum_p = i386_xmm_regnum_p (gdbarch, regnum);
3825 mxcsr_regnum_p = i386_mxcsr_regnum_p (gdbarch, regnum);
3826 if (group == i386_sse_reggroup)
3827 return xmm_regnum_p || mxcsr_regnum_p;
3828
3829 ymm_regnum_p = i386_ymm_regnum_p (gdbarch, regnum);
3830 if (group == vector_reggroup)
3831 return (mmx_regnum_p
3832 || ymm_regnum_p
3833 || mxcsr_regnum_p
3834 || (xmm_regnum_p
3835 && ((tdep->xcr0 & I386_XSTATE_AVX_MASK)
3836 == I386_XSTATE_SSE_MASK)));
3837
3838 fp_regnum_p = (i386_fp_regnum_p (gdbarch, regnum)
3839 || i386_fpc_regnum_p (gdbarch, regnum));
3840 if (group == float_reggroup)
3841 return fp_regnum_p;
3842
3843 /* For "info reg all", don't include upper YMM registers nor XMM
3844 registers when AVX is supported. */
3845 ymmh_regnum_p = i386_ymmh_regnum_p (gdbarch, regnum);
3846 if (group == all_reggroup
3847 && ((xmm_regnum_p
3848 && (tdep->xcr0 & I386_XSTATE_AVX))
3849 || ymmh_regnum_p))
3850 return 0;
3851
3852 if (group == general_reggroup)
3853 return (!fp_regnum_p
3854 && !mmx_regnum_p
3855 && !mxcsr_regnum_p
3856 && !xmm_regnum_p
3857 && !ymm_regnum_p
3858 && !ymmh_regnum_p);
3859
3860 return default_register_reggroup_p (gdbarch, regnum, group);
3861 }
3862 \f
3863
3864 /* Get the ARGIth function argument for the current function. */
3865
3866 static CORE_ADDR
3867 i386_fetch_pointer_argument (struct frame_info *frame, int argi,
3868 struct type *type)
3869 {
3870 struct gdbarch *gdbarch = get_frame_arch (frame);
3871 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3872 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
3873 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4, byte_order);
3874 }
3875
3876 static void
3877 i386_skip_permanent_breakpoint (struct regcache *regcache)
3878 {
3879 CORE_ADDR current_pc = regcache_read_pc (regcache);
3880
3881 /* On i386, breakpoint is exactly 1 byte long, so we just
3882 adjust the PC in the regcache. */
3883 current_pc += 1;
3884 regcache_write_pc (regcache, current_pc);
3885 }
3886
3887
3888 #define PREFIX_REPZ 0x01
3889 #define PREFIX_REPNZ 0x02
3890 #define PREFIX_LOCK 0x04
3891 #define PREFIX_DATA 0x08
3892 #define PREFIX_ADDR 0x10
3893
3894 /* operand size */
3895 enum
3896 {
3897 OT_BYTE = 0,
3898 OT_WORD,
3899 OT_LONG,
3900 OT_QUAD,
3901 OT_DQUAD,
3902 };
3903
3904 /* i386 arith/logic operations */
3905 enum
3906 {
3907 OP_ADDL,
3908 OP_ORL,
3909 OP_ADCL,
3910 OP_SBBL,
3911 OP_ANDL,
3912 OP_SUBL,
3913 OP_XORL,
3914 OP_CMPL,
3915 };
3916
3917 struct i386_record_s
3918 {
3919 struct gdbarch *gdbarch;
3920 struct regcache *regcache;
3921 CORE_ADDR orig_addr;
3922 CORE_ADDR addr;
3923 int aflag;
3924 int dflag;
3925 int override;
3926 uint8_t modrm;
3927 uint8_t mod, reg, rm;
3928 int ot;
3929 uint8_t rex_x;
3930 uint8_t rex_b;
3931 int rip_offset;
3932 int popl_esp_hack;
3933 const int *regmap;
3934 };
3935
3936 /* Parse the "modrm" part of the memory address irp->addr points at.
3937 Returns -1 if something goes wrong, 0 otherwise. */
3938
3939 static int
3940 i386_record_modrm (struct i386_record_s *irp)
3941 {
3942 struct gdbarch *gdbarch = irp->gdbarch;
3943
3944 if (record_read_memory (gdbarch, irp->addr, &irp->modrm, 1))
3945 return -1;
3946
3947 irp->addr++;
3948 irp->mod = (irp->modrm >> 6) & 3;
3949 irp->reg = (irp->modrm >> 3) & 7;
3950 irp->rm = irp->modrm & 7;
3951
3952 return 0;
3953 }
3954
3955 /* Extract the memory address that the current instruction writes to,
3956 and return it in *ADDR. Return -1 if something goes wrong. */
3957
3958 static int
3959 i386_record_lea_modrm_addr (struct i386_record_s *irp, uint64_t *addr)
3960 {
3961 struct gdbarch *gdbarch = irp->gdbarch;
3962 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3963 gdb_byte buf[4];
3964 ULONGEST offset64;
3965
3966 *addr = 0;
3967 if (irp->aflag)
3968 {
3969 /* 32 bits */
3970 int havesib = 0;
3971 uint8_t scale = 0;
3972 uint8_t byte;
3973 uint8_t index = 0;
3974 uint8_t base = irp->rm;
3975
3976 if (base == 4)
3977 {
3978 havesib = 1;
3979 if (record_read_memory (gdbarch, irp->addr, &byte, 1))
3980 return -1;
3981 irp->addr++;
3982 scale = (byte >> 6) & 3;
3983 index = ((byte >> 3) & 7) | irp->rex_x;
3984 base = (byte & 7);
3985 }
3986 base |= irp->rex_b;
3987
3988 switch (irp->mod)
3989 {
3990 case 0:
3991 if ((base & 7) == 5)
3992 {
3993 base = 0xff;
3994 if (record_read_memory (gdbarch, irp->addr, buf, 4))
3995 return -1;
3996 irp->addr += 4;
3997 *addr = extract_signed_integer (buf, 4, byte_order);
3998 if (irp->regmap[X86_RECORD_R8_REGNUM] && !havesib)
3999 *addr += irp->addr + irp->rip_offset;
4000 }
4001 break;
4002 case 1:
4003 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4004 return -1;
4005 irp->addr++;
4006 *addr = (int8_t) buf[0];
4007 break;
4008 case 2:
4009 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4010 return -1;
4011 *addr = extract_signed_integer (buf, 4, byte_order);
4012 irp->addr += 4;
4013 break;
4014 }
4015
4016 offset64 = 0;
4017 if (base != 0xff)
4018 {
4019 if (base == 4 && irp->popl_esp_hack)
4020 *addr += irp->popl_esp_hack;
4021 regcache_raw_read_unsigned (irp->regcache, irp->regmap[base],
4022 &offset64);
4023 }
4024 if (irp->aflag == 2)
4025 {
4026 *addr += offset64;
4027 }
4028 else
4029 *addr = (uint32_t) (offset64 + *addr);
4030
4031 if (havesib && (index != 4 || scale != 0))
4032 {
4033 regcache_raw_read_unsigned (irp->regcache, irp->regmap[index],
4034 &offset64);
4035 if (irp->aflag == 2)
4036 *addr += offset64 << scale;
4037 else
4038 *addr = (uint32_t) (*addr + (offset64 << scale));
4039 }
4040 }
4041 else
4042 {
4043 /* 16 bits */
4044 switch (irp->mod)
4045 {
4046 case 0:
4047 if (irp->rm == 6)
4048 {
4049 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4050 return -1;
4051 irp->addr += 2;
4052 *addr = extract_signed_integer (buf, 2, byte_order);
4053 irp->rm = 0;
4054 goto no_rm;
4055 }
4056 break;
4057 case 1:
4058 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4059 return -1;
4060 irp->addr++;
4061 *addr = (int8_t) buf[0];
4062 break;
4063 case 2:
4064 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4065 return -1;
4066 irp->addr += 2;
4067 *addr = extract_signed_integer (buf, 2, byte_order);
4068 break;
4069 }
4070
4071 switch (irp->rm)
4072 {
4073 case 0:
4074 regcache_raw_read_unsigned (irp->regcache,
4075 irp->regmap[X86_RECORD_REBX_REGNUM],
4076 &offset64);
4077 *addr = (uint32_t) (*addr + offset64);
4078 regcache_raw_read_unsigned (irp->regcache,
4079 irp->regmap[X86_RECORD_RESI_REGNUM],
4080 &offset64);
4081 *addr = (uint32_t) (*addr + offset64);
4082 break;
4083 case 1:
4084 regcache_raw_read_unsigned (irp->regcache,
4085 irp->regmap[X86_RECORD_REBX_REGNUM],
4086 &offset64);
4087 *addr = (uint32_t) (*addr + offset64);
4088 regcache_raw_read_unsigned (irp->regcache,
4089 irp->regmap[X86_RECORD_REDI_REGNUM],
4090 &offset64);
4091 *addr = (uint32_t) (*addr + offset64);
4092 break;
4093 case 2:
4094 regcache_raw_read_unsigned (irp->regcache,
4095 irp->regmap[X86_RECORD_REBP_REGNUM],
4096 &offset64);
4097 *addr = (uint32_t) (*addr + offset64);
4098 regcache_raw_read_unsigned (irp->regcache,
4099 irp->regmap[X86_RECORD_RESI_REGNUM],
4100 &offset64);
4101 *addr = (uint32_t) (*addr + offset64);
4102 break;
4103 case 3:
4104 regcache_raw_read_unsigned (irp->regcache,
4105 irp->regmap[X86_RECORD_REBP_REGNUM],
4106 &offset64);
4107 *addr = (uint32_t) (*addr + offset64);
4108 regcache_raw_read_unsigned (irp->regcache,
4109 irp->regmap[X86_RECORD_REDI_REGNUM],
4110 &offset64);
4111 *addr = (uint32_t) (*addr + offset64);
4112 break;
4113 case 4:
4114 regcache_raw_read_unsigned (irp->regcache,
4115 irp->regmap[X86_RECORD_RESI_REGNUM],
4116 &offset64);
4117 *addr = (uint32_t) (*addr + offset64);
4118 break;
4119 case 5:
4120 regcache_raw_read_unsigned (irp->regcache,
4121 irp->regmap[X86_RECORD_REDI_REGNUM],
4122 &offset64);
4123 *addr = (uint32_t) (*addr + offset64);
4124 break;
4125 case 6:
4126 regcache_raw_read_unsigned (irp->regcache,
4127 irp->regmap[X86_RECORD_REBP_REGNUM],
4128 &offset64);
4129 *addr = (uint32_t) (*addr + offset64);
4130 break;
4131 case 7:
4132 regcache_raw_read_unsigned (irp->regcache,
4133 irp->regmap[X86_RECORD_REBX_REGNUM],
4134 &offset64);
4135 *addr = (uint32_t) (*addr + offset64);
4136 break;
4137 }
4138 *addr &= 0xffff;
4139 }
4140
4141 no_rm:
4142 return 0;
4143 }
4144
4145 /* Record the address and contents of the memory that will be changed
4146 by the current instruction. Return -1 if something goes wrong, 0
4147 otherwise. */
4148
4149 static int
4150 i386_record_lea_modrm (struct i386_record_s *irp)
4151 {
4152 struct gdbarch *gdbarch = irp->gdbarch;
4153 uint64_t addr;
4154
4155 if (irp->override >= 0)
4156 {
4157 if (record_memory_query)
4158 {
4159 int q;
4160
4161 target_terminal_ours ();
4162 q = yquery (_("\
4163 Process record ignores the memory change of instruction at address %s\n\
4164 because it can't get the value of the segment register.\n\
4165 Do you want to stop the program?"),
4166 paddress (gdbarch, irp->orig_addr));
4167 target_terminal_inferior ();
4168 if (q)
4169 return -1;
4170 }
4171
4172 return 0;
4173 }
4174
4175 if (i386_record_lea_modrm_addr (irp, &addr))
4176 return -1;
4177
4178 if (record_arch_list_add_mem (addr, 1 << irp->ot))
4179 return -1;
4180
4181 return 0;
4182 }
4183
4184 /* Record the effects of a push operation. Return -1 if something
4185 goes wrong, 0 otherwise. */
4186
4187 static int
4188 i386_record_push (struct i386_record_s *irp, int size)
4189 {
4190 ULONGEST addr;
4191
4192 if (record_arch_list_add_reg (irp->regcache,
4193 irp->regmap[X86_RECORD_RESP_REGNUM]))
4194 return -1;
4195 regcache_raw_read_unsigned (irp->regcache,
4196 irp->regmap[X86_RECORD_RESP_REGNUM],
4197 &addr);
4198 if (record_arch_list_add_mem ((CORE_ADDR) addr - size, size))
4199 return -1;
4200
4201 return 0;
4202 }
4203
4204
4205 /* Defines contents to record. */
4206 #define I386_SAVE_FPU_REGS 0xfffd
4207 #define I386_SAVE_FPU_ENV 0xfffe
4208 #define I386_SAVE_FPU_ENV_REG_STACK 0xffff
4209
4210 /* Record the values of the floating point registers which will be
4211 changed by the current instruction. Returns -1 if something is
4212 wrong, 0 otherwise. */
4213
4214 static int i386_record_floats (struct gdbarch *gdbarch,
4215 struct i386_record_s *ir,
4216 uint32_t iregnum)
4217 {
4218 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4219 int i;
4220
4221 /* Oza: Because of floating point insn push/pop of fpu stack is going to
4222 happen. Currently we store st0-st7 registers, but we need not store all
4223 registers all the time, in future we use ftag register and record only
4224 those who are not marked as an empty. */
4225
4226 if (I386_SAVE_FPU_REGS == iregnum)
4227 {
4228 for (i = I387_ST0_REGNUM (tdep); i <= I387_ST0_REGNUM (tdep) + 7; i++)
4229 {
4230 if (record_arch_list_add_reg (ir->regcache, i))
4231 return -1;
4232 }
4233 }
4234 else if (I386_SAVE_FPU_ENV == iregnum)
4235 {
4236 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4237 {
4238 if (record_arch_list_add_reg (ir->regcache, i))
4239 return -1;
4240 }
4241 }
4242 else if (I386_SAVE_FPU_ENV_REG_STACK == iregnum)
4243 {
4244 for (i = I387_ST0_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4245 {
4246 if (record_arch_list_add_reg (ir->regcache, i))
4247 return -1;
4248 }
4249 }
4250 else if ((iregnum >= I387_ST0_REGNUM (tdep)) &&
4251 (iregnum <= I387_FOP_REGNUM (tdep)))
4252 {
4253 if (record_arch_list_add_reg (ir->regcache,iregnum))
4254 return -1;
4255 }
4256 else
4257 {
4258 /* Parameter error. */
4259 return -1;
4260 }
4261 if(I386_SAVE_FPU_ENV != iregnum)
4262 {
4263 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4264 {
4265 if (record_arch_list_add_reg (ir->regcache, i))
4266 return -1;
4267 }
4268 }
4269 return 0;
4270 }
4271
4272 /* Parse the current instruction, and record the values of the
4273 registers and memory that will be changed by the current
4274 instruction. Returns -1 if something goes wrong, 0 otherwise. */
4275
4276 #define I386_RECORD_ARCH_LIST_ADD_REG(regnum) \
4277 record_arch_list_add_reg (ir.regcache, ir.regmap[(regnum)])
4278
4279 int
4280 i386_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
4281 CORE_ADDR input_addr)
4282 {
4283 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4284 int prefixes = 0;
4285 int regnum = 0;
4286 uint32_t opcode;
4287 uint8_t opcode8;
4288 ULONGEST addr;
4289 gdb_byte buf[MAX_REGISTER_SIZE];
4290 struct i386_record_s ir;
4291 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4292 int rex = 0;
4293 uint8_t rex_w = -1;
4294 uint8_t rex_r = 0;
4295
4296 memset (&ir, 0, sizeof (struct i386_record_s));
4297 ir.regcache = regcache;
4298 ir.addr = input_addr;
4299 ir.orig_addr = input_addr;
4300 ir.aflag = 1;
4301 ir.dflag = 1;
4302 ir.override = -1;
4303 ir.popl_esp_hack = 0;
4304 ir.regmap = tdep->record_regmap;
4305 ir.gdbarch = gdbarch;
4306
4307 if (record_debug > 1)
4308 fprintf_unfiltered (gdb_stdlog, "Process record: i386_process_record "
4309 "addr = %s\n",
4310 paddress (gdbarch, ir.addr));
4311
4312 /* prefixes */
4313 while (1)
4314 {
4315 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
4316 return -1;
4317 ir.addr++;
4318 switch (opcode8) /* Instruction prefixes */
4319 {
4320 case REPE_PREFIX_OPCODE:
4321 prefixes |= PREFIX_REPZ;
4322 break;
4323 case REPNE_PREFIX_OPCODE:
4324 prefixes |= PREFIX_REPNZ;
4325 break;
4326 case LOCK_PREFIX_OPCODE:
4327 prefixes |= PREFIX_LOCK;
4328 break;
4329 case CS_PREFIX_OPCODE:
4330 ir.override = X86_RECORD_CS_REGNUM;
4331 break;
4332 case SS_PREFIX_OPCODE:
4333 ir.override = X86_RECORD_SS_REGNUM;
4334 break;
4335 case DS_PREFIX_OPCODE:
4336 ir.override = X86_RECORD_DS_REGNUM;
4337 break;
4338 case ES_PREFIX_OPCODE:
4339 ir.override = X86_RECORD_ES_REGNUM;
4340 break;
4341 case FS_PREFIX_OPCODE:
4342 ir.override = X86_RECORD_FS_REGNUM;
4343 break;
4344 case GS_PREFIX_OPCODE:
4345 ir.override = X86_RECORD_GS_REGNUM;
4346 break;
4347 case DATA_PREFIX_OPCODE:
4348 prefixes |= PREFIX_DATA;
4349 break;
4350 case ADDR_PREFIX_OPCODE:
4351 prefixes |= PREFIX_ADDR;
4352 break;
4353 case 0x40: /* i386 inc %eax */
4354 case 0x41: /* i386 inc %ecx */
4355 case 0x42: /* i386 inc %edx */
4356 case 0x43: /* i386 inc %ebx */
4357 case 0x44: /* i386 inc %esp */
4358 case 0x45: /* i386 inc %ebp */
4359 case 0x46: /* i386 inc %esi */
4360 case 0x47: /* i386 inc %edi */
4361 case 0x48: /* i386 dec %eax */
4362 case 0x49: /* i386 dec %ecx */
4363 case 0x4a: /* i386 dec %edx */
4364 case 0x4b: /* i386 dec %ebx */
4365 case 0x4c: /* i386 dec %esp */
4366 case 0x4d: /* i386 dec %ebp */
4367 case 0x4e: /* i386 dec %esi */
4368 case 0x4f: /* i386 dec %edi */
4369 if (ir.regmap[X86_RECORD_R8_REGNUM]) /* 64 bit target */
4370 {
4371 /* REX */
4372 rex = 1;
4373 rex_w = (opcode8 >> 3) & 1;
4374 rex_r = (opcode8 & 0x4) << 1;
4375 ir.rex_x = (opcode8 & 0x2) << 2;
4376 ir.rex_b = (opcode8 & 0x1) << 3;
4377 }
4378 else /* 32 bit target */
4379 goto out_prefixes;
4380 break;
4381 default:
4382 goto out_prefixes;
4383 break;
4384 }
4385 }
4386 out_prefixes:
4387 if (ir.regmap[X86_RECORD_R8_REGNUM] && rex_w == 1)
4388 {
4389 ir.dflag = 2;
4390 }
4391 else
4392 {
4393 if (prefixes & PREFIX_DATA)
4394 ir.dflag ^= 1;
4395 }
4396 if (prefixes & PREFIX_ADDR)
4397 ir.aflag ^= 1;
4398 else if (ir.regmap[X86_RECORD_R8_REGNUM])
4399 ir.aflag = 2;
4400
4401 /* Now check op code. */
4402 opcode = (uint32_t) opcode8;
4403 reswitch:
4404 switch (opcode)
4405 {
4406 case 0x0f:
4407 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
4408 return -1;
4409 ir.addr++;
4410 opcode = (uint32_t) opcode8 | 0x0f00;
4411 goto reswitch;
4412 break;
4413
4414 case 0x00: /* arith & logic */
4415 case 0x01:
4416 case 0x02:
4417 case 0x03:
4418 case 0x04:
4419 case 0x05:
4420 case 0x08:
4421 case 0x09:
4422 case 0x0a:
4423 case 0x0b:
4424 case 0x0c:
4425 case 0x0d:
4426 case 0x10:
4427 case 0x11:
4428 case 0x12:
4429 case 0x13:
4430 case 0x14:
4431 case 0x15:
4432 case 0x18:
4433 case 0x19:
4434 case 0x1a:
4435 case 0x1b:
4436 case 0x1c:
4437 case 0x1d:
4438 case 0x20:
4439 case 0x21:
4440 case 0x22:
4441 case 0x23:
4442 case 0x24:
4443 case 0x25:
4444 case 0x28:
4445 case 0x29:
4446 case 0x2a:
4447 case 0x2b:
4448 case 0x2c:
4449 case 0x2d:
4450 case 0x30:
4451 case 0x31:
4452 case 0x32:
4453 case 0x33:
4454 case 0x34:
4455 case 0x35:
4456 case 0x38:
4457 case 0x39:
4458 case 0x3a:
4459 case 0x3b:
4460 case 0x3c:
4461 case 0x3d:
4462 if (((opcode >> 3) & 7) != OP_CMPL)
4463 {
4464 if ((opcode & 1) == 0)
4465 ir.ot = OT_BYTE;
4466 else
4467 ir.ot = ir.dflag + OT_WORD;
4468
4469 switch ((opcode >> 1) & 3)
4470 {
4471 case 0: /* OP Ev, Gv */
4472 if (i386_record_modrm (&ir))
4473 return -1;
4474 if (ir.mod != 3)
4475 {
4476 if (i386_record_lea_modrm (&ir))
4477 return -1;
4478 }
4479 else
4480 {
4481 ir.rm |= ir.rex_b;
4482 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4483 ir.rm &= 0x3;
4484 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
4485 }
4486 break;
4487 case 1: /* OP Gv, Ev */
4488 if (i386_record_modrm (&ir))
4489 return -1;
4490 ir.reg |= rex_r;
4491 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4492 ir.reg &= 0x3;
4493 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4494 break;
4495 case 2: /* OP A, Iv */
4496 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4497 break;
4498 }
4499 }
4500 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4501 break;
4502
4503 case 0x80: /* GRP1 */
4504 case 0x81:
4505 case 0x82:
4506 case 0x83:
4507 if (i386_record_modrm (&ir))
4508 return -1;
4509
4510 if (ir.reg != OP_CMPL)
4511 {
4512 if ((opcode & 1) == 0)
4513 ir.ot = OT_BYTE;
4514 else
4515 ir.ot = ir.dflag + OT_WORD;
4516
4517 if (ir.mod != 3)
4518 {
4519 if (opcode == 0x83)
4520 ir.rip_offset = 1;
4521 else
4522 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
4523 if (i386_record_lea_modrm (&ir))
4524 return -1;
4525 }
4526 else
4527 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
4528 }
4529 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4530 break;
4531
4532 case 0x40: /* inc */
4533 case 0x41:
4534 case 0x42:
4535 case 0x43:
4536 case 0x44:
4537 case 0x45:
4538 case 0x46:
4539 case 0x47:
4540
4541 case 0x48: /* dec */
4542 case 0x49:
4543 case 0x4a:
4544 case 0x4b:
4545 case 0x4c:
4546 case 0x4d:
4547 case 0x4e:
4548 case 0x4f:
4549
4550 I386_RECORD_ARCH_LIST_ADD_REG (opcode & 7);
4551 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4552 break;
4553
4554 case 0xf6: /* GRP3 */
4555 case 0xf7:
4556 if ((opcode & 1) == 0)
4557 ir.ot = OT_BYTE;
4558 else
4559 ir.ot = ir.dflag + OT_WORD;
4560 if (i386_record_modrm (&ir))
4561 return -1;
4562
4563 if (ir.mod != 3 && ir.reg == 0)
4564 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
4565
4566 switch (ir.reg)
4567 {
4568 case 0: /* test */
4569 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4570 break;
4571 case 2: /* not */
4572 case 3: /* neg */
4573 if (ir.mod != 3)
4574 {
4575 if (i386_record_lea_modrm (&ir))
4576 return -1;
4577 }
4578 else
4579 {
4580 ir.rm |= ir.rex_b;
4581 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4582 ir.rm &= 0x3;
4583 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
4584 }
4585 if (ir.reg == 3) /* neg */
4586 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4587 break;
4588 case 4: /* mul */
4589 case 5: /* imul */
4590 case 6: /* div */
4591 case 7: /* idiv */
4592 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4593 if (ir.ot != OT_BYTE)
4594 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
4595 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4596 break;
4597 default:
4598 ir.addr -= 2;
4599 opcode = opcode << 8 | ir.modrm;
4600 goto no_support;
4601 break;
4602 }
4603 break;
4604
4605 case 0xfe: /* GRP4 */
4606 case 0xff: /* GRP5 */
4607 if (i386_record_modrm (&ir))
4608 return -1;
4609 if (ir.reg >= 2 && opcode == 0xfe)
4610 {
4611 ir.addr -= 2;
4612 opcode = opcode << 8 | ir.modrm;
4613 goto no_support;
4614 }
4615 switch (ir.reg)
4616 {
4617 case 0: /* inc */
4618 case 1: /* dec */
4619 if ((opcode & 1) == 0)
4620 ir.ot = OT_BYTE;
4621 else
4622 ir.ot = ir.dflag + OT_WORD;
4623 if (ir.mod != 3)
4624 {
4625 if (i386_record_lea_modrm (&ir))
4626 return -1;
4627 }
4628 else
4629 {
4630 ir.rm |= ir.rex_b;
4631 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4632 ir.rm &= 0x3;
4633 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
4634 }
4635 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4636 break;
4637 case 2: /* call */
4638 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4639 ir.dflag = 2;
4640 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4641 return -1;
4642 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4643 break;
4644 case 3: /* lcall */
4645 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
4646 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4647 return -1;
4648 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4649 break;
4650 case 4: /* jmp */
4651 case 5: /* ljmp */
4652 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4653 break;
4654 case 6: /* push */
4655 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4656 ir.dflag = 2;
4657 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4658 return -1;
4659 break;
4660 default:
4661 ir.addr -= 2;
4662 opcode = opcode << 8 | ir.modrm;
4663 goto no_support;
4664 break;
4665 }
4666 break;
4667
4668 case 0x84: /* test */
4669 case 0x85:
4670 case 0xa8:
4671 case 0xa9:
4672 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4673 break;
4674
4675 case 0x98: /* CWDE/CBW */
4676 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4677 break;
4678
4679 case 0x99: /* CDQ/CWD */
4680 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4681 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
4682 break;
4683
4684 case 0x0faf: /* imul */
4685 case 0x69:
4686 case 0x6b:
4687 ir.ot = ir.dflag + OT_WORD;
4688 if (i386_record_modrm (&ir))
4689 return -1;
4690 if (opcode == 0x69)
4691 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
4692 else if (opcode == 0x6b)
4693 ir.rip_offset = 1;
4694 ir.reg |= rex_r;
4695 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4696 ir.reg &= 0x3;
4697 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4698 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4699 break;
4700
4701 case 0x0fc0: /* xadd */
4702 case 0x0fc1:
4703 if ((opcode & 1) == 0)
4704 ir.ot = OT_BYTE;
4705 else
4706 ir.ot = ir.dflag + OT_WORD;
4707 if (i386_record_modrm (&ir))
4708 return -1;
4709 ir.reg |= rex_r;
4710 if (ir.mod == 3)
4711 {
4712 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4713 ir.reg &= 0x3;
4714 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4715 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4716 ir.rm &= 0x3;
4717 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
4718 }
4719 else
4720 {
4721 if (i386_record_lea_modrm (&ir))
4722 return -1;
4723 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4724 ir.reg &= 0x3;
4725 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4726 }
4727 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4728 break;
4729
4730 case 0x0fb0: /* cmpxchg */
4731 case 0x0fb1:
4732 if ((opcode & 1) == 0)
4733 ir.ot = OT_BYTE;
4734 else
4735 ir.ot = ir.dflag + OT_WORD;
4736 if (i386_record_modrm (&ir))
4737 return -1;
4738 if (ir.mod == 3)
4739 {
4740 ir.reg |= rex_r;
4741 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4742 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4743 ir.reg &= 0x3;
4744 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4745 }
4746 else
4747 {
4748 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4749 if (i386_record_lea_modrm (&ir))
4750 return -1;
4751 }
4752 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4753 break;
4754
4755 case 0x0fc7: /* cmpxchg8b */
4756 if (i386_record_modrm (&ir))
4757 return -1;
4758 if (ir.mod == 3)
4759 {
4760 ir.addr -= 2;
4761 opcode = opcode << 8 | ir.modrm;
4762 goto no_support;
4763 }
4764 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4765 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
4766 if (i386_record_lea_modrm (&ir))
4767 return -1;
4768 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4769 break;
4770
4771 case 0x50: /* push */
4772 case 0x51:
4773 case 0x52:
4774 case 0x53:
4775 case 0x54:
4776 case 0x55:
4777 case 0x56:
4778 case 0x57:
4779 case 0x68:
4780 case 0x6a:
4781 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4782 ir.dflag = 2;
4783 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4784 return -1;
4785 break;
4786
4787 case 0x06: /* push es */
4788 case 0x0e: /* push cs */
4789 case 0x16: /* push ss */
4790 case 0x1e: /* push ds */
4791 if (ir.regmap[X86_RECORD_R8_REGNUM])
4792 {
4793 ir.addr -= 1;
4794 goto no_support;
4795 }
4796 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4797 return -1;
4798 break;
4799
4800 case 0x0fa0: /* push fs */
4801 case 0x0fa8: /* push gs */
4802 if (ir.regmap[X86_RECORD_R8_REGNUM])
4803 {
4804 ir.addr -= 2;
4805 goto no_support;
4806 }
4807 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4808 return -1;
4809 break;
4810
4811 case 0x60: /* pusha */
4812 if (ir.regmap[X86_RECORD_R8_REGNUM])
4813 {
4814 ir.addr -= 1;
4815 goto no_support;
4816 }
4817 if (i386_record_push (&ir, 1 << (ir.dflag + 4)))
4818 return -1;
4819 break;
4820
4821 case 0x58: /* pop */
4822 case 0x59:
4823 case 0x5a:
4824 case 0x5b:
4825 case 0x5c:
4826 case 0x5d:
4827 case 0x5e:
4828 case 0x5f:
4829 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4830 I386_RECORD_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
4831 break;
4832
4833 case 0x61: /* popa */
4834 if (ir.regmap[X86_RECORD_R8_REGNUM])
4835 {
4836 ir.addr -= 1;
4837 goto no_support;
4838 }
4839 for (regnum = X86_RECORD_REAX_REGNUM;
4840 regnum <= X86_RECORD_REDI_REGNUM;
4841 regnum++)
4842 I386_RECORD_ARCH_LIST_ADD_REG (regnum);
4843 break;
4844
4845 case 0x8f: /* pop */
4846 if (ir.regmap[X86_RECORD_R8_REGNUM])
4847 ir.ot = ir.dflag ? OT_QUAD : OT_WORD;
4848 else
4849 ir.ot = ir.dflag + OT_WORD;
4850 if (i386_record_modrm (&ir))
4851 return -1;
4852 if (ir.mod == 3)
4853 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
4854 else
4855 {
4856 ir.popl_esp_hack = 1 << ir.ot;
4857 if (i386_record_lea_modrm (&ir))
4858 return -1;
4859 }
4860 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4861 break;
4862
4863 case 0xc8: /* enter */
4864 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
4865 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4866 ir.dflag = 2;
4867 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4868 return -1;
4869 break;
4870
4871 case 0xc9: /* leave */
4872 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4873 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
4874 break;
4875
4876 case 0x07: /* pop es */
4877 if (ir.regmap[X86_RECORD_R8_REGNUM])
4878 {
4879 ir.addr -= 1;
4880 goto no_support;
4881 }
4882 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4883 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_ES_REGNUM);
4884 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4885 break;
4886
4887 case 0x17: /* pop ss */
4888 if (ir.regmap[X86_RECORD_R8_REGNUM])
4889 {
4890 ir.addr -= 1;
4891 goto no_support;
4892 }
4893 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4894 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_SS_REGNUM);
4895 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4896 break;
4897
4898 case 0x1f: /* pop ds */
4899 if (ir.regmap[X86_RECORD_R8_REGNUM])
4900 {
4901 ir.addr -= 1;
4902 goto no_support;
4903 }
4904 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4905 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_DS_REGNUM);
4906 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4907 break;
4908
4909 case 0x0fa1: /* pop fs */
4910 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4911 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_FS_REGNUM);
4912 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4913 break;
4914
4915 case 0x0fa9: /* pop gs */
4916 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4917 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
4918 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4919 break;
4920
4921 case 0x88: /* mov */
4922 case 0x89:
4923 case 0xc6:
4924 case 0xc7:
4925 if ((opcode & 1) == 0)
4926 ir.ot = OT_BYTE;
4927 else
4928 ir.ot = ir.dflag + OT_WORD;
4929
4930 if (i386_record_modrm (&ir))
4931 return -1;
4932
4933 if (ir.mod != 3)
4934 {
4935 if (opcode == 0xc6 || opcode == 0xc7)
4936 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
4937 if (i386_record_lea_modrm (&ir))
4938 return -1;
4939 }
4940 else
4941 {
4942 if (opcode == 0xc6 || opcode == 0xc7)
4943 ir.rm |= ir.rex_b;
4944 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4945 ir.rm &= 0x3;
4946 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
4947 }
4948 break;
4949
4950 case 0x8a: /* mov */
4951 case 0x8b:
4952 if ((opcode & 1) == 0)
4953 ir.ot = OT_BYTE;
4954 else
4955 ir.ot = ir.dflag + OT_WORD;
4956 if (i386_record_modrm (&ir))
4957 return -1;
4958 ir.reg |= rex_r;
4959 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4960 ir.reg &= 0x3;
4961 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4962 break;
4963
4964 case 0x8c: /* mov seg */
4965 if (i386_record_modrm (&ir))
4966 return -1;
4967 if (ir.reg > 5)
4968 {
4969 ir.addr -= 2;
4970 opcode = opcode << 8 | ir.modrm;
4971 goto no_support;
4972 }
4973
4974 if (ir.mod == 3)
4975 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
4976 else
4977 {
4978 ir.ot = OT_WORD;
4979 if (i386_record_lea_modrm (&ir))
4980 return -1;
4981 }
4982 break;
4983
4984 case 0x8e: /* mov seg */
4985 if (i386_record_modrm (&ir))
4986 return -1;
4987 switch (ir.reg)
4988 {
4989 case 0:
4990 regnum = X86_RECORD_ES_REGNUM;
4991 break;
4992 case 2:
4993 regnum = X86_RECORD_SS_REGNUM;
4994 break;
4995 case 3:
4996 regnum = X86_RECORD_DS_REGNUM;
4997 break;
4998 case 4:
4999 regnum = X86_RECORD_FS_REGNUM;
5000 break;
5001 case 5:
5002 regnum = X86_RECORD_GS_REGNUM;
5003 break;
5004 default:
5005 ir.addr -= 2;
5006 opcode = opcode << 8 | ir.modrm;
5007 goto no_support;
5008 break;
5009 }
5010 I386_RECORD_ARCH_LIST_ADD_REG (regnum);
5011 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5012 break;
5013
5014 case 0x0fb6: /* movzbS */
5015 case 0x0fb7: /* movzwS */
5016 case 0x0fbe: /* movsbS */
5017 case 0x0fbf: /* movswS */
5018 if (i386_record_modrm (&ir))
5019 return -1;
5020 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5021 break;
5022
5023 case 0x8d: /* lea */
5024 if (i386_record_modrm (&ir))
5025 return -1;
5026 if (ir.mod == 3)
5027 {
5028 ir.addr -= 2;
5029 opcode = opcode << 8 | ir.modrm;
5030 goto no_support;
5031 }
5032 ir.ot = ir.dflag;
5033 ir.reg |= rex_r;
5034 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5035 ir.reg &= 0x3;
5036 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
5037 break;
5038
5039 case 0xa0: /* mov EAX */
5040 case 0xa1:
5041
5042 case 0xd7: /* xlat */
5043 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5044 break;
5045
5046 case 0xa2: /* mov EAX */
5047 case 0xa3:
5048 if (ir.override >= 0)
5049 {
5050 if (record_memory_query)
5051 {
5052 int q;
5053
5054 target_terminal_ours ();
5055 q = yquery (_("\
5056 Process record ignores the memory change of instruction at address %s\n\
5057 because it can't get the value of the segment register.\n\
5058 Do you want to stop the program?"),
5059 paddress (gdbarch, ir.orig_addr));
5060 target_terminal_inferior ();
5061 if (q)
5062 return -1;
5063 }
5064 }
5065 else
5066 {
5067 if ((opcode & 1) == 0)
5068 ir.ot = OT_BYTE;
5069 else
5070 ir.ot = ir.dflag + OT_WORD;
5071 if (ir.aflag == 2)
5072 {
5073 if (record_read_memory (gdbarch, ir.addr, buf, 8))
5074 return -1;
5075 ir.addr += 8;
5076 addr = extract_unsigned_integer (buf, 8, byte_order);
5077 }
5078 else if (ir.aflag)
5079 {
5080 if (record_read_memory (gdbarch, ir.addr, buf, 4))
5081 return -1;
5082 ir.addr += 4;
5083 addr = extract_unsigned_integer (buf, 4, byte_order);
5084 }
5085 else
5086 {
5087 if (record_read_memory (gdbarch, ir.addr, buf, 2))
5088 return -1;
5089 ir.addr += 2;
5090 addr = extract_unsigned_integer (buf, 2, byte_order);
5091 }
5092 if (record_arch_list_add_mem (addr, 1 << ir.ot))
5093 return -1;
5094 }
5095 break;
5096
5097 case 0xb0: /* mov R, Ib */
5098 case 0xb1:
5099 case 0xb2:
5100 case 0xb3:
5101 case 0xb4:
5102 case 0xb5:
5103 case 0xb6:
5104 case 0xb7:
5105 I386_RECORD_ARCH_LIST_ADD_REG ((ir.regmap[X86_RECORD_R8_REGNUM])
5106 ? ((opcode & 0x7) | ir.rex_b)
5107 : ((opcode & 0x7) & 0x3));
5108 break;
5109
5110 case 0xb8: /* mov R, Iv */
5111 case 0xb9:
5112 case 0xba:
5113 case 0xbb:
5114 case 0xbc:
5115 case 0xbd:
5116 case 0xbe:
5117 case 0xbf:
5118 I386_RECORD_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
5119 break;
5120
5121 case 0x91: /* xchg R, EAX */
5122 case 0x92:
5123 case 0x93:
5124 case 0x94:
5125 case 0x95:
5126 case 0x96:
5127 case 0x97:
5128 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5129 I386_RECORD_ARCH_LIST_ADD_REG (opcode & 0x7);
5130 break;
5131
5132 case 0x86: /* xchg Ev, Gv */
5133 case 0x87:
5134 if ((opcode & 1) == 0)
5135 ir.ot = OT_BYTE;
5136 else
5137 ir.ot = ir.dflag + OT_WORD;
5138 if (i386_record_modrm (&ir))
5139 return -1;
5140 if (ir.mod == 3)
5141 {
5142 ir.rm |= ir.rex_b;
5143 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5144 ir.rm &= 0x3;
5145 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
5146 }
5147 else
5148 {
5149 if (i386_record_lea_modrm (&ir))
5150 return -1;
5151 }
5152 ir.reg |= rex_r;
5153 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5154 ir.reg &= 0x3;
5155 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
5156 break;
5157
5158 case 0xc4: /* les Gv */
5159 case 0xc5: /* lds Gv */
5160 if (ir.regmap[X86_RECORD_R8_REGNUM])
5161 {
5162 ir.addr -= 1;
5163 goto no_support;
5164 }
5165 /* FALLTHROUGH */
5166 case 0x0fb2: /* lss Gv */
5167 case 0x0fb4: /* lfs Gv */
5168 case 0x0fb5: /* lgs Gv */
5169 if (i386_record_modrm (&ir))
5170 return -1;
5171 if (ir.mod == 3)
5172 {
5173 if (opcode > 0xff)
5174 ir.addr -= 3;
5175 else
5176 ir.addr -= 2;
5177 opcode = opcode << 8 | ir.modrm;
5178 goto no_support;
5179 }
5180 switch (opcode)
5181 {
5182 case 0xc4: /* les Gv */
5183 regnum = X86_RECORD_ES_REGNUM;
5184 break;
5185 case 0xc5: /* lds Gv */
5186 regnum = X86_RECORD_DS_REGNUM;
5187 break;
5188 case 0x0fb2: /* lss Gv */
5189 regnum = X86_RECORD_SS_REGNUM;
5190 break;
5191 case 0x0fb4: /* lfs Gv */
5192 regnum = X86_RECORD_FS_REGNUM;
5193 break;
5194 case 0x0fb5: /* lgs Gv */
5195 regnum = X86_RECORD_GS_REGNUM;
5196 break;
5197 }
5198 I386_RECORD_ARCH_LIST_ADD_REG (regnum);
5199 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5200 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5201 break;
5202
5203 case 0xc0: /* shifts */
5204 case 0xc1:
5205 case 0xd0:
5206 case 0xd1:
5207 case 0xd2:
5208 case 0xd3:
5209 if ((opcode & 1) == 0)
5210 ir.ot = OT_BYTE;
5211 else
5212 ir.ot = ir.dflag + OT_WORD;
5213 if (i386_record_modrm (&ir))
5214 return -1;
5215 if (ir.mod != 3 && (opcode == 0xd2 || opcode == 0xd3))
5216 {
5217 if (i386_record_lea_modrm (&ir))
5218 return -1;
5219 }
5220 else
5221 {
5222 ir.rm |= ir.rex_b;
5223 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5224 ir.rm &= 0x3;
5225 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
5226 }
5227 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5228 break;
5229
5230 case 0x0fa4:
5231 case 0x0fa5:
5232 case 0x0fac:
5233 case 0x0fad:
5234 if (i386_record_modrm (&ir))
5235 return -1;
5236 if (ir.mod == 3)
5237 {
5238 if (record_arch_list_add_reg (ir.regcache, ir.rm))
5239 return -1;
5240 }
5241 else
5242 {
5243 if (i386_record_lea_modrm (&ir))
5244 return -1;
5245 }
5246 break;
5247
5248 case 0xd8: /* Floats. */
5249 case 0xd9:
5250 case 0xda:
5251 case 0xdb:
5252 case 0xdc:
5253 case 0xdd:
5254 case 0xde:
5255 case 0xdf:
5256 if (i386_record_modrm (&ir))
5257 return -1;
5258 ir.reg |= ((opcode & 7) << 3);
5259 if (ir.mod != 3)
5260 {
5261 /* Memory. */
5262 uint64_t addr64;
5263
5264 if (i386_record_lea_modrm_addr (&ir, &addr64))
5265 return -1;
5266 switch (ir.reg)
5267 {
5268 case 0x02:
5269 case 0x12:
5270 case 0x22:
5271 case 0x32:
5272 /* For fcom, ficom nothing to do. */
5273 break;
5274 case 0x03:
5275 case 0x13:
5276 case 0x23:
5277 case 0x33:
5278 /* For fcomp, ficomp pop FPU stack, store all. */
5279 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5280 return -1;
5281 break;
5282 case 0x00:
5283 case 0x01:
5284 case 0x04:
5285 case 0x05:
5286 case 0x06:
5287 case 0x07:
5288 case 0x10:
5289 case 0x11:
5290 case 0x14:
5291 case 0x15:
5292 case 0x16:
5293 case 0x17:
5294 case 0x20:
5295 case 0x21:
5296 case 0x24:
5297 case 0x25:
5298 case 0x26:
5299 case 0x27:
5300 case 0x30:
5301 case 0x31:
5302 case 0x34:
5303 case 0x35:
5304 case 0x36:
5305 case 0x37:
5306 /* For fadd, fmul, fsub, fsubr, fdiv, fdivr, fiadd, fimul,
5307 fisub, fisubr, fidiv, fidivr, modR/M.reg is an extension
5308 of code, always affects st(0) register. */
5309 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
5310 return -1;
5311 break;
5312 case 0x08:
5313 case 0x0a:
5314 case 0x0b:
5315 case 0x18:
5316 case 0x19:
5317 case 0x1a:
5318 case 0x1b:
5319 case 0x1d:
5320 case 0x28:
5321 case 0x29:
5322 case 0x2a:
5323 case 0x2b:
5324 case 0x38:
5325 case 0x39:
5326 case 0x3a:
5327 case 0x3b:
5328 case 0x3c:
5329 case 0x3d:
5330 switch (ir.reg & 7)
5331 {
5332 case 0:
5333 /* Handling fld, fild. */
5334 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5335 return -1;
5336 break;
5337 case 1:
5338 switch (ir.reg >> 4)
5339 {
5340 case 0:
5341 if (record_arch_list_add_mem (addr64, 4))
5342 return -1;
5343 break;
5344 case 2:
5345 if (record_arch_list_add_mem (addr64, 8))
5346 return -1;
5347 break;
5348 case 3:
5349 break;
5350 default:
5351 if (record_arch_list_add_mem (addr64, 2))
5352 return -1;
5353 break;
5354 }
5355 break;
5356 default:
5357 switch (ir.reg >> 4)
5358 {
5359 case 0:
5360 if (record_arch_list_add_mem (addr64, 4))
5361 return -1;
5362 if (3 == (ir.reg & 7))
5363 {
5364 /* For fstp m32fp. */
5365 if (i386_record_floats (gdbarch, &ir,
5366 I386_SAVE_FPU_REGS))
5367 return -1;
5368 }
5369 break;
5370 case 1:
5371 if (record_arch_list_add_mem (addr64, 4))
5372 return -1;
5373 if ((3 == (ir.reg & 7))
5374 || (5 == (ir.reg & 7))
5375 || (7 == (ir.reg & 7)))
5376 {
5377 /* For fstp insn. */
5378 if (i386_record_floats (gdbarch, &ir,
5379 I386_SAVE_FPU_REGS))
5380 return -1;
5381 }
5382 break;
5383 case 2:
5384 if (record_arch_list_add_mem (addr64, 8))
5385 return -1;
5386 if (3 == (ir.reg & 7))
5387 {
5388 /* For fstp m64fp. */
5389 if (i386_record_floats (gdbarch, &ir,
5390 I386_SAVE_FPU_REGS))
5391 return -1;
5392 }
5393 break;
5394 case 3:
5395 if ((3 <= (ir.reg & 7)) && (6 <= (ir.reg & 7)))
5396 {
5397 /* For fistp, fbld, fild, fbstp. */
5398 if (i386_record_floats (gdbarch, &ir,
5399 I386_SAVE_FPU_REGS))
5400 return -1;
5401 }
5402 /* Fall through */
5403 default:
5404 if (record_arch_list_add_mem (addr64, 2))
5405 return -1;
5406 break;
5407 }
5408 break;
5409 }
5410 break;
5411 case 0x0c:
5412 /* Insn fldenv. */
5413 if (i386_record_floats (gdbarch, &ir,
5414 I386_SAVE_FPU_ENV_REG_STACK))
5415 return -1;
5416 break;
5417 case 0x0d:
5418 /* Insn fldcw. */
5419 if (i386_record_floats (gdbarch, &ir, I387_FCTRL_REGNUM (tdep)))
5420 return -1;
5421 break;
5422 case 0x2c:
5423 /* Insn frstor. */
5424 if (i386_record_floats (gdbarch, &ir,
5425 I386_SAVE_FPU_ENV_REG_STACK))
5426 return -1;
5427 break;
5428 case 0x0e:
5429 if (ir.dflag)
5430 {
5431 if (record_arch_list_add_mem (addr64, 28))
5432 return -1;
5433 }
5434 else
5435 {
5436 if (record_arch_list_add_mem (addr64, 14))
5437 return -1;
5438 }
5439 break;
5440 case 0x0f:
5441 case 0x2f:
5442 if (record_arch_list_add_mem (addr64, 2))
5443 return -1;
5444 /* Insn fstp, fbstp. */
5445 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5446 return -1;
5447 break;
5448 case 0x1f:
5449 case 0x3e:
5450 if (record_arch_list_add_mem (addr64, 10))
5451 return -1;
5452 break;
5453 case 0x2e:
5454 if (ir.dflag)
5455 {
5456 if (record_arch_list_add_mem (addr64, 28))
5457 return -1;
5458 addr64 += 28;
5459 }
5460 else
5461 {
5462 if (record_arch_list_add_mem (addr64, 14))
5463 return -1;
5464 addr64 += 14;
5465 }
5466 if (record_arch_list_add_mem (addr64, 80))
5467 return -1;
5468 /* Insn fsave. */
5469 if (i386_record_floats (gdbarch, &ir,
5470 I386_SAVE_FPU_ENV_REG_STACK))
5471 return -1;
5472 break;
5473 case 0x3f:
5474 if (record_arch_list_add_mem (addr64, 8))
5475 return -1;
5476 /* Insn fistp. */
5477 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5478 return -1;
5479 break;
5480 default:
5481 ir.addr -= 2;
5482 opcode = opcode << 8 | ir.modrm;
5483 goto no_support;
5484 break;
5485 }
5486 }
5487 /* Opcode is an extension of modR/M byte. */
5488 else
5489 {
5490 switch (opcode)
5491 {
5492 case 0xd8:
5493 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
5494 return -1;
5495 break;
5496 case 0xd9:
5497 if (0x0c == (ir.modrm >> 4))
5498 {
5499 if ((ir.modrm & 0x0f) <= 7)
5500 {
5501 if (i386_record_floats (gdbarch, &ir,
5502 I386_SAVE_FPU_REGS))
5503 return -1;
5504 }
5505 else
5506 {
5507 if (i386_record_floats (gdbarch, &ir,
5508 I387_ST0_REGNUM (tdep)))
5509 return -1;
5510 /* If only st(0) is changing, then we have already
5511 recorded. */
5512 if ((ir.modrm & 0x0f) - 0x08)
5513 {
5514 if (i386_record_floats (gdbarch, &ir,
5515 I387_ST0_REGNUM (tdep) +
5516 ((ir.modrm & 0x0f) - 0x08)))
5517 return -1;
5518 }
5519 }
5520 }
5521 else
5522 {
5523 switch (ir.modrm)
5524 {
5525 case 0xe0:
5526 case 0xe1:
5527 case 0xf0:
5528 case 0xf5:
5529 case 0xf8:
5530 case 0xfa:
5531 case 0xfc:
5532 case 0xfe:
5533 case 0xff:
5534 if (i386_record_floats (gdbarch, &ir,
5535 I387_ST0_REGNUM (tdep)))
5536 return -1;
5537 break;
5538 case 0xf1:
5539 case 0xf2:
5540 case 0xf3:
5541 case 0xf4:
5542 case 0xf6:
5543 case 0xf7:
5544 case 0xe8:
5545 case 0xe9:
5546 case 0xea:
5547 case 0xeb:
5548 case 0xec:
5549 case 0xed:
5550 case 0xee:
5551 case 0xf9:
5552 case 0xfb:
5553 if (i386_record_floats (gdbarch, &ir,
5554 I386_SAVE_FPU_REGS))
5555 return -1;
5556 break;
5557 case 0xfd:
5558 if (i386_record_floats (gdbarch, &ir,
5559 I387_ST0_REGNUM (tdep)))
5560 return -1;
5561 if (i386_record_floats (gdbarch, &ir,
5562 I387_ST0_REGNUM (tdep) + 1))
5563 return -1;
5564 break;
5565 }
5566 }
5567 break;
5568 case 0xda:
5569 if (0xe9 == ir.modrm)
5570 {
5571 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5572 return -1;
5573 }
5574 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
5575 {
5576 if (i386_record_floats (gdbarch, &ir,
5577 I387_ST0_REGNUM (tdep)))
5578 return -1;
5579 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
5580 {
5581 if (i386_record_floats (gdbarch, &ir,
5582 I387_ST0_REGNUM (tdep) +
5583 (ir.modrm & 0x0f)))
5584 return -1;
5585 }
5586 else if ((ir.modrm & 0x0f) - 0x08)
5587 {
5588 if (i386_record_floats (gdbarch, &ir,
5589 I387_ST0_REGNUM (tdep) +
5590 ((ir.modrm & 0x0f) - 0x08)))
5591 return -1;
5592 }
5593 }
5594 break;
5595 case 0xdb:
5596 if (0xe3 == ir.modrm)
5597 {
5598 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_ENV))
5599 return -1;
5600 }
5601 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
5602 {
5603 if (i386_record_floats (gdbarch, &ir,
5604 I387_ST0_REGNUM (tdep)))
5605 return -1;
5606 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
5607 {
5608 if (i386_record_floats (gdbarch, &ir,
5609 I387_ST0_REGNUM (tdep) +
5610 (ir.modrm & 0x0f)))
5611 return -1;
5612 }
5613 else if ((ir.modrm & 0x0f) - 0x08)
5614 {
5615 if (i386_record_floats (gdbarch, &ir,
5616 I387_ST0_REGNUM (tdep) +
5617 ((ir.modrm & 0x0f) - 0x08)))
5618 return -1;
5619 }
5620 }
5621 break;
5622 case 0xdc:
5623 if ((0x0c == ir.modrm >> 4)
5624 || (0x0d == ir.modrm >> 4)
5625 || (0x0f == ir.modrm >> 4))
5626 {
5627 if ((ir.modrm & 0x0f) <= 7)
5628 {
5629 if (i386_record_floats (gdbarch, &ir,
5630 I387_ST0_REGNUM (tdep) +
5631 (ir.modrm & 0x0f)))
5632 return -1;
5633 }
5634 else
5635 {
5636 if (i386_record_floats (gdbarch, &ir,
5637 I387_ST0_REGNUM (tdep) +
5638 ((ir.modrm & 0x0f) - 0x08)))
5639 return -1;
5640 }
5641 }
5642 break;
5643 case 0xdd:
5644 if (0x0c == ir.modrm >> 4)
5645 {
5646 if (i386_record_floats (gdbarch, &ir,
5647 I387_FTAG_REGNUM (tdep)))
5648 return -1;
5649 }
5650 else if ((0x0d == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
5651 {
5652 if ((ir.modrm & 0x0f) <= 7)
5653 {
5654 if (i386_record_floats (gdbarch, &ir,
5655 I387_ST0_REGNUM (tdep) +
5656 (ir.modrm & 0x0f)))
5657 return -1;
5658 }
5659 else
5660 {
5661 if (i386_record_floats (gdbarch, &ir,
5662 I386_SAVE_FPU_REGS))
5663 return -1;
5664 }
5665 }
5666 break;
5667 case 0xde:
5668 if ((0x0c == ir.modrm >> 4)
5669 || (0x0e == ir.modrm >> 4)
5670 || (0x0f == ir.modrm >> 4)
5671 || (0xd9 == ir.modrm))
5672 {
5673 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5674 return -1;
5675 }
5676 break;
5677 case 0xdf:
5678 if (0xe0 == ir.modrm)
5679 {
5680 if (record_arch_list_add_reg (ir.regcache, I386_EAX_REGNUM))
5681 return -1;
5682 }
5683 else if ((0x0f == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
5684 {
5685 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5686 return -1;
5687 }
5688 break;
5689 }
5690 }
5691 break;
5692 /* string ops */
5693 case 0xa4: /* movsS */
5694 case 0xa5:
5695 case 0xaa: /* stosS */
5696 case 0xab:
5697 case 0x6c: /* insS */
5698 case 0x6d:
5699 regcache_raw_read_unsigned (ir.regcache,
5700 ir.regmap[X86_RECORD_RECX_REGNUM],
5701 &addr);
5702 if (addr)
5703 {
5704 ULONGEST es, ds;
5705
5706 if ((opcode & 1) == 0)
5707 ir.ot = OT_BYTE;
5708 else
5709 ir.ot = ir.dflag + OT_WORD;
5710 regcache_raw_read_unsigned (ir.regcache,
5711 ir.regmap[X86_RECORD_REDI_REGNUM],
5712 &addr);
5713
5714 regcache_raw_read_unsigned (ir.regcache,
5715 ir.regmap[X86_RECORD_ES_REGNUM],
5716 &es);
5717 regcache_raw_read_unsigned (ir.regcache,
5718 ir.regmap[X86_RECORD_DS_REGNUM],
5719 &ds);
5720 if (ir.aflag && (es != ds))
5721 {
5722 /* addr += ((uint32_t) read_register (I386_ES_REGNUM)) << 4; */
5723 if (record_memory_query)
5724 {
5725 int q;
5726
5727 target_terminal_ours ();
5728 q = yquery (_("\
5729 Process record ignores the memory change of instruction at address %s\n\
5730 because it can't get the value of the segment register.\n\
5731 Do you want to stop the program?"),
5732 paddress (gdbarch, ir.orig_addr));
5733 target_terminal_inferior ();
5734 if (q)
5735 return -1;
5736 }
5737 }
5738 else
5739 {
5740 if (record_arch_list_add_mem (addr, 1 << ir.ot))
5741 return -1;
5742 }
5743
5744 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
5745 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5746 if (opcode == 0xa4 || opcode == 0xa5)
5747 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
5748 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
5749 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5750 }
5751 break;
5752
5753 case 0xa6: /* cmpsS */
5754 case 0xa7:
5755 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
5756 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
5757 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
5758 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5759 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5760 break;
5761
5762 case 0xac: /* lodsS */
5763 case 0xad:
5764 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5765 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
5766 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
5767 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5768 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5769 break;
5770
5771 case 0xae: /* scasS */
5772 case 0xaf:
5773 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
5774 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
5775 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5776 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5777 break;
5778
5779 case 0x6e: /* outsS */
5780 case 0x6f:
5781 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
5782 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
5783 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5784 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5785 break;
5786
5787 case 0xe4: /* port I/O */
5788 case 0xe5:
5789 case 0xec:
5790 case 0xed:
5791 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5792 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5793 break;
5794
5795 case 0xe6:
5796 case 0xe7:
5797 case 0xee:
5798 case 0xef:
5799 break;
5800
5801 /* control */
5802 case 0xc2: /* ret im */
5803 case 0xc3: /* ret */
5804 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5805 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5806 break;
5807
5808 case 0xca: /* lret im */
5809 case 0xcb: /* lret */
5810 case 0xcf: /* iret */
5811 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
5812 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5813 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5814 break;
5815
5816 case 0xe8: /* call im */
5817 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5818 ir.dflag = 2;
5819 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5820 return -1;
5821 break;
5822
5823 case 0x9a: /* lcall im */
5824 if (ir.regmap[X86_RECORD_R8_REGNUM])
5825 {
5826 ir.addr -= 1;
5827 goto no_support;
5828 }
5829 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
5830 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5831 return -1;
5832 break;
5833
5834 case 0xe9: /* jmp im */
5835 case 0xea: /* ljmp im */
5836 case 0xeb: /* jmp Jb */
5837 case 0x70: /* jcc Jb */
5838 case 0x71:
5839 case 0x72:
5840 case 0x73:
5841 case 0x74:
5842 case 0x75:
5843 case 0x76:
5844 case 0x77:
5845 case 0x78:
5846 case 0x79:
5847 case 0x7a:
5848 case 0x7b:
5849 case 0x7c:
5850 case 0x7d:
5851 case 0x7e:
5852 case 0x7f:
5853 case 0x0f80: /* jcc Jv */
5854 case 0x0f81:
5855 case 0x0f82:
5856 case 0x0f83:
5857 case 0x0f84:
5858 case 0x0f85:
5859 case 0x0f86:
5860 case 0x0f87:
5861 case 0x0f88:
5862 case 0x0f89:
5863 case 0x0f8a:
5864 case 0x0f8b:
5865 case 0x0f8c:
5866 case 0x0f8d:
5867 case 0x0f8e:
5868 case 0x0f8f:
5869 break;
5870
5871 case 0x0f90: /* setcc Gv */
5872 case 0x0f91:
5873 case 0x0f92:
5874 case 0x0f93:
5875 case 0x0f94:
5876 case 0x0f95:
5877 case 0x0f96:
5878 case 0x0f97:
5879 case 0x0f98:
5880 case 0x0f99:
5881 case 0x0f9a:
5882 case 0x0f9b:
5883 case 0x0f9c:
5884 case 0x0f9d:
5885 case 0x0f9e:
5886 case 0x0f9f:
5887 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5888 ir.ot = OT_BYTE;
5889 if (i386_record_modrm (&ir))
5890 return -1;
5891 if (ir.mod == 3)
5892 I386_RECORD_ARCH_LIST_ADD_REG (ir.rex_b ? (ir.rm | ir.rex_b)
5893 : (ir.rm & 0x3));
5894 else
5895 {
5896 if (i386_record_lea_modrm (&ir))
5897 return -1;
5898 }
5899 break;
5900
5901 case 0x0f40: /* cmov Gv, Ev */
5902 case 0x0f41:
5903 case 0x0f42:
5904 case 0x0f43:
5905 case 0x0f44:
5906 case 0x0f45:
5907 case 0x0f46:
5908 case 0x0f47:
5909 case 0x0f48:
5910 case 0x0f49:
5911 case 0x0f4a:
5912 case 0x0f4b:
5913 case 0x0f4c:
5914 case 0x0f4d:
5915 case 0x0f4e:
5916 case 0x0f4f:
5917 if (i386_record_modrm (&ir))
5918 return -1;
5919 ir.reg |= rex_r;
5920 if (ir.dflag == OT_BYTE)
5921 ir.reg &= 0x3;
5922 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
5923 break;
5924
5925 /* flags */
5926 case 0x9c: /* pushf */
5927 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5928 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5929 ir.dflag = 2;
5930 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5931 return -1;
5932 break;
5933
5934 case 0x9d: /* popf */
5935 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5936 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5937 break;
5938
5939 case 0x9e: /* sahf */
5940 if (ir.regmap[X86_RECORD_R8_REGNUM])
5941 {
5942 ir.addr -= 1;
5943 goto no_support;
5944 }
5945 /* FALLTHROUGH */
5946 case 0xf5: /* cmc */
5947 case 0xf8: /* clc */
5948 case 0xf9: /* stc */
5949 case 0xfc: /* cld */
5950 case 0xfd: /* std */
5951 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5952 break;
5953
5954 case 0x9f: /* lahf */
5955 if (ir.regmap[X86_RECORD_R8_REGNUM])
5956 {
5957 ir.addr -= 1;
5958 goto no_support;
5959 }
5960 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5961 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5962 break;
5963
5964 /* bit operations */
5965 case 0x0fba: /* bt/bts/btr/btc Gv, im */
5966 ir.ot = ir.dflag + OT_WORD;
5967 if (i386_record_modrm (&ir))
5968 return -1;
5969 if (ir.reg < 4)
5970 {
5971 ir.addr -= 2;
5972 opcode = opcode << 8 | ir.modrm;
5973 goto no_support;
5974 }
5975 if (ir.reg != 4)
5976 {
5977 if (ir.mod == 3)
5978 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5979 else
5980 {
5981 if (i386_record_lea_modrm (&ir))
5982 return -1;
5983 }
5984 }
5985 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5986 break;
5987
5988 case 0x0fa3: /* bt Gv, Ev */
5989 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5990 break;
5991
5992 case 0x0fab: /* bts */
5993 case 0x0fb3: /* btr */
5994 case 0x0fbb: /* btc */
5995 ir.ot = ir.dflag + OT_WORD;
5996 if (i386_record_modrm (&ir))
5997 return -1;
5998 if (ir.mod == 3)
5999 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6000 else
6001 {
6002 uint64_t addr64;
6003 if (i386_record_lea_modrm_addr (&ir, &addr64))
6004 return -1;
6005 regcache_raw_read_unsigned (ir.regcache,
6006 ir.regmap[ir.reg | rex_r],
6007 &addr);
6008 switch (ir.dflag)
6009 {
6010 case 0:
6011 addr64 += ((int16_t) addr >> 4) << 4;
6012 break;
6013 case 1:
6014 addr64 += ((int32_t) addr >> 5) << 5;
6015 break;
6016 case 2:
6017 addr64 += ((int64_t) addr >> 6) << 6;
6018 break;
6019 }
6020 if (record_arch_list_add_mem (addr64, 1 << ir.ot))
6021 return -1;
6022 if (i386_record_lea_modrm (&ir))
6023 return -1;
6024 }
6025 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6026 break;
6027
6028 case 0x0fbc: /* bsf */
6029 case 0x0fbd: /* bsr */
6030 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6031 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6032 break;
6033
6034 /* bcd */
6035 case 0x27: /* daa */
6036 case 0x2f: /* das */
6037 case 0x37: /* aaa */
6038 case 0x3f: /* aas */
6039 case 0xd4: /* aam */
6040 case 0xd5: /* aad */
6041 if (ir.regmap[X86_RECORD_R8_REGNUM])
6042 {
6043 ir.addr -= 1;
6044 goto no_support;
6045 }
6046 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6047 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6048 break;
6049
6050 /* misc */
6051 case 0x90: /* nop */
6052 if (prefixes & PREFIX_LOCK)
6053 {
6054 ir.addr -= 1;
6055 goto no_support;
6056 }
6057 break;
6058
6059 case 0x9b: /* fwait */
6060 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
6061 return -1;
6062 opcode = (uint32_t) opcode8;
6063 ir.addr++;
6064 goto reswitch;
6065 break;
6066
6067 /* XXX */
6068 case 0xcc: /* int3 */
6069 printf_unfiltered (_("Process record does not support instruction "
6070 "int3.\n"));
6071 ir.addr -= 1;
6072 goto no_support;
6073 break;
6074
6075 /* XXX */
6076 case 0xcd: /* int */
6077 {
6078 int ret;
6079 uint8_t interrupt;
6080 if (record_read_memory (gdbarch, ir.addr, &interrupt, 1))
6081 return -1;
6082 ir.addr++;
6083 if (interrupt != 0x80
6084 || tdep->i386_intx80_record == NULL)
6085 {
6086 printf_unfiltered (_("Process record does not support "
6087 "instruction int 0x%02x.\n"),
6088 interrupt);
6089 ir.addr -= 2;
6090 goto no_support;
6091 }
6092 ret = tdep->i386_intx80_record (ir.regcache);
6093 if (ret)
6094 return ret;
6095 }
6096 break;
6097
6098 /* XXX */
6099 case 0xce: /* into */
6100 printf_unfiltered (_("Process record does not support "
6101 "instruction into.\n"));
6102 ir.addr -= 1;
6103 goto no_support;
6104 break;
6105
6106 case 0xfa: /* cli */
6107 case 0xfb: /* sti */
6108 break;
6109
6110 case 0x62: /* bound */
6111 printf_unfiltered (_("Process record does not support "
6112 "instruction bound.\n"));
6113 ir.addr -= 1;
6114 goto no_support;
6115 break;
6116
6117 case 0x0fc8: /* bswap reg */
6118 case 0x0fc9:
6119 case 0x0fca:
6120 case 0x0fcb:
6121 case 0x0fcc:
6122 case 0x0fcd:
6123 case 0x0fce:
6124 case 0x0fcf:
6125 I386_RECORD_ARCH_LIST_ADD_REG ((opcode & 7) | ir.rex_b);
6126 break;
6127
6128 case 0xd6: /* salc */
6129 if (ir.regmap[X86_RECORD_R8_REGNUM])
6130 {
6131 ir.addr -= 1;
6132 goto no_support;
6133 }
6134 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6135 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6136 break;
6137
6138 case 0xe0: /* loopnz */
6139 case 0xe1: /* loopz */
6140 case 0xe2: /* loop */
6141 case 0xe3: /* jecxz */
6142 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6143 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6144 break;
6145
6146 case 0x0f30: /* wrmsr */
6147 printf_unfiltered (_("Process record does not support "
6148 "instruction wrmsr.\n"));
6149 ir.addr -= 2;
6150 goto no_support;
6151 break;
6152
6153 case 0x0f32: /* rdmsr */
6154 printf_unfiltered (_("Process record does not support "
6155 "instruction rdmsr.\n"));
6156 ir.addr -= 2;
6157 goto no_support;
6158 break;
6159
6160 case 0x0f31: /* rdtsc */
6161 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6162 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6163 break;
6164
6165 case 0x0f34: /* sysenter */
6166 {
6167 int ret;
6168 if (ir.regmap[X86_RECORD_R8_REGNUM])
6169 {
6170 ir.addr -= 2;
6171 goto no_support;
6172 }
6173 if (tdep->i386_sysenter_record == NULL)
6174 {
6175 printf_unfiltered (_("Process record does not support "
6176 "instruction sysenter.\n"));
6177 ir.addr -= 2;
6178 goto no_support;
6179 }
6180 ret = tdep->i386_sysenter_record (ir.regcache);
6181 if (ret)
6182 return ret;
6183 }
6184 break;
6185
6186 case 0x0f35: /* sysexit */
6187 printf_unfiltered (_("Process record does not support "
6188 "instruction sysexit.\n"));
6189 ir.addr -= 2;
6190 goto no_support;
6191 break;
6192
6193 case 0x0f05: /* syscall */
6194 {
6195 int ret;
6196 if (tdep->i386_syscall_record == NULL)
6197 {
6198 printf_unfiltered (_("Process record does not support "
6199 "instruction syscall.\n"));
6200 ir.addr -= 2;
6201 goto no_support;
6202 }
6203 ret = tdep->i386_syscall_record (ir.regcache);
6204 if (ret)
6205 return ret;
6206 }
6207 break;
6208
6209 case 0x0f07: /* sysret */
6210 printf_unfiltered (_("Process record does not support "
6211 "instruction sysret.\n"));
6212 ir.addr -= 2;
6213 goto no_support;
6214 break;
6215
6216 case 0x0fa2: /* cpuid */
6217 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6218 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6219 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6220 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
6221 break;
6222
6223 case 0xf4: /* hlt */
6224 printf_unfiltered (_("Process record does not support "
6225 "instruction hlt.\n"));
6226 ir.addr -= 1;
6227 goto no_support;
6228 break;
6229
6230 case 0x0f00:
6231 if (i386_record_modrm (&ir))
6232 return -1;
6233 switch (ir.reg)
6234 {
6235 case 0: /* sldt */
6236 case 1: /* str */
6237 if (ir.mod == 3)
6238 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6239 else
6240 {
6241 ir.ot = OT_WORD;
6242 if (i386_record_lea_modrm (&ir))
6243 return -1;
6244 }
6245 break;
6246 case 2: /* lldt */
6247 case 3: /* ltr */
6248 break;
6249 case 4: /* verr */
6250 case 5: /* verw */
6251 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6252 break;
6253 default:
6254 ir.addr -= 3;
6255 opcode = opcode << 8 | ir.modrm;
6256 goto no_support;
6257 break;
6258 }
6259 break;
6260
6261 case 0x0f01:
6262 if (i386_record_modrm (&ir))
6263 return -1;
6264 switch (ir.reg)
6265 {
6266 case 0: /* sgdt */
6267 {
6268 uint64_t addr64;
6269
6270 if (ir.mod == 3)
6271 {
6272 ir.addr -= 3;
6273 opcode = opcode << 8 | ir.modrm;
6274 goto no_support;
6275 }
6276 if (ir.override >= 0)
6277 {
6278 if (record_memory_query)
6279 {
6280 int q;
6281
6282 target_terminal_ours ();
6283 q = yquery (_("\
6284 Process record ignores the memory change of instruction at address %s\n\
6285 because it can't get the value of the segment register.\n\
6286 Do you want to stop the program?"),
6287 paddress (gdbarch, ir.orig_addr));
6288 target_terminal_inferior ();
6289 if (q)
6290 return -1;
6291 }
6292 }
6293 else
6294 {
6295 if (i386_record_lea_modrm_addr (&ir, &addr64))
6296 return -1;
6297 if (record_arch_list_add_mem (addr64, 2))
6298 return -1;
6299 addr64 += 2;
6300 if (ir.regmap[X86_RECORD_R8_REGNUM])
6301 {
6302 if (record_arch_list_add_mem (addr64, 8))
6303 return -1;
6304 }
6305 else
6306 {
6307 if (record_arch_list_add_mem (addr64, 4))
6308 return -1;
6309 }
6310 }
6311 }
6312 break;
6313 case 1:
6314 if (ir.mod == 3)
6315 {
6316 switch (ir.rm)
6317 {
6318 case 0: /* monitor */
6319 break;
6320 case 1: /* mwait */
6321 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6322 break;
6323 default:
6324 ir.addr -= 3;
6325 opcode = opcode << 8 | ir.modrm;
6326 goto no_support;
6327 break;
6328 }
6329 }
6330 else
6331 {
6332 /* sidt */
6333 if (ir.override >= 0)
6334 {
6335 if (record_memory_query)
6336 {
6337 int q;
6338
6339 target_terminal_ours ();
6340 q = yquery (_("\
6341 Process record ignores the memory change of instruction at address %s\n\
6342 because it can't get the value of the segment register.\n\
6343 Do you want to stop the program?"),
6344 paddress (gdbarch, ir.orig_addr));
6345 target_terminal_inferior ();
6346 if (q)
6347 return -1;
6348 }
6349 }
6350 else
6351 {
6352 uint64_t addr64;
6353
6354 if (i386_record_lea_modrm_addr (&ir, &addr64))
6355 return -1;
6356 if (record_arch_list_add_mem (addr64, 2))
6357 return -1;
6358 addr64 += 2;
6359 if (ir.regmap[X86_RECORD_R8_REGNUM])
6360 {
6361 if (record_arch_list_add_mem (addr64, 8))
6362 return -1;
6363 }
6364 else
6365 {
6366 if (record_arch_list_add_mem (addr64, 4))
6367 return -1;
6368 }
6369 }
6370 }
6371 break;
6372 case 2: /* lgdt */
6373 if (ir.mod == 3)
6374 {
6375 /* xgetbv */
6376 if (ir.rm == 0)
6377 {
6378 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6379 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6380 break;
6381 }
6382 /* xsetbv */
6383 else if (ir.rm == 1)
6384 break;
6385 }
6386 case 3: /* lidt */
6387 if (ir.mod == 3)
6388 {
6389 ir.addr -= 3;
6390 opcode = opcode << 8 | ir.modrm;
6391 goto no_support;
6392 }
6393 break;
6394 case 4: /* smsw */
6395 if (ir.mod == 3)
6396 {
6397 if (record_arch_list_add_reg (ir.regcache, ir.rm | ir.rex_b))
6398 return -1;
6399 }
6400 else
6401 {
6402 ir.ot = OT_WORD;
6403 if (i386_record_lea_modrm (&ir))
6404 return -1;
6405 }
6406 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6407 break;
6408 case 6: /* lmsw */
6409 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6410 break;
6411 case 7: /* invlpg */
6412 if (ir.mod == 3)
6413 {
6414 if (ir.rm == 0 && ir.regmap[X86_RECORD_R8_REGNUM])
6415 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
6416 else
6417 {
6418 ir.addr -= 3;
6419 opcode = opcode << 8 | ir.modrm;
6420 goto no_support;
6421 }
6422 }
6423 else
6424 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6425 break;
6426 default:
6427 ir.addr -= 3;
6428 opcode = opcode << 8 | ir.modrm;
6429 goto no_support;
6430 break;
6431 }
6432 break;
6433
6434 case 0x0f08: /* invd */
6435 case 0x0f09: /* wbinvd */
6436 break;
6437
6438 case 0x63: /* arpl */
6439 if (i386_record_modrm (&ir))
6440 return -1;
6441 if (ir.mod == 3 || ir.regmap[X86_RECORD_R8_REGNUM])
6442 {
6443 I386_RECORD_ARCH_LIST_ADD_REG (ir.regmap[X86_RECORD_R8_REGNUM]
6444 ? (ir.reg | rex_r) : ir.rm);
6445 }
6446 else
6447 {
6448 ir.ot = ir.dflag ? OT_LONG : OT_WORD;
6449 if (i386_record_lea_modrm (&ir))
6450 return -1;
6451 }
6452 if (!ir.regmap[X86_RECORD_R8_REGNUM])
6453 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6454 break;
6455
6456 case 0x0f02: /* lar */
6457 case 0x0f03: /* lsl */
6458 if (i386_record_modrm (&ir))
6459 return -1;
6460 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6461 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6462 break;
6463
6464 case 0x0f18:
6465 if (i386_record_modrm (&ir))
6466 return -1;
6467 if (ir.mod == 3 && ir.reg == 3)
6468 {
6469 ir.addr -= 3;
6470 opcode = opcode << 8 | ir.modrm;
6471 goto no_support;
6472 }
6473 break;
6474
6475 case 0x0f19:
6476 case 0x0f1a:
6477 case 0x0f1b:
6478 case 0x0f1c:
6479 case 0x0f1d:
6480 case 0x0f1e:
6481 case 0x0f1f:
6482 /* nop (multi byte) */
6483 break;
6484
6485 case 0x0f20: /* mov reg, crN */
6486 case 0x0f22: /* mov crN, reg */
6487 if (i386_record_modrm (&ir))
6488 return -1;
6489 if ((ir.modrm & 0xc0) != 0xc0)
6490 {
6491 ir.addr -= 3;
6492 opcode = opcode << 8 | ir.modrm;
6493 goto no_support;
6494 }
6495 switch (ir.reg)
6496 {
6497 case 0:
6498 case 2:
6499 case 3:
6500 case 4:
6501 case 8:
6502 if (opcode & 2)
6503 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6504 else
6505 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6506 break;
6507 default:
6508 ir.addr -= 3;
6509 opcode = opcode << 8 | ir.modrm;
6510 goto no_support;
6511 break;
6512 }
6513 break;
6514
6515 case 0x0f21: /* mov reg, drN */
6516 case 0x0f23: /* mov drN, reg */
6517 if (i386_record_modrm (&ir))
6518 return -1;
6519 if ((ir.modrm & 0xc0) != 0xc0 || ir.reg == 4
6520 || ir.reg == 5 || ir.reg >= 8)
6521 {
6522 ir.addr -= 3;
6523 opcode = opcode << 8 | ir.modrm;
6524 goto no_support;
6525 }
6526 if (opcode & 2)
6527 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6528 else
6529 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6530 break;
6531
6532 case 0x0f06: /* clts */
6533 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6534 break;
6535
6536 /* MMX 3DNow! SSE SSE2 SSE3 SSSE3 SSE4 */
6537
6538 case 0x0f0d: /* 3DNow! prefetch */
6539 break;
6540
6541 case 0x0f0e: /* 3DNow! femms */
6542 case 0x0f77: /* emms */
6543 if (i386_fpc_regnum_p (gdbarch, I387_FTAG_REGNUM(tdep)))
6544 goto no_support;
6545 record_arch_list_add_reg (ir.regcache, I387_FTAG_REGNUM(tdep));
6546 break;
6547
6548 case 0x0f0f: /* 3DNow! data */
6549 if (i386_record_modrm (&ir))
6550 return -1;
6551 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
6552 return -1;
6553 ir.addr++;
6554 switch (opcode8)
6555 {
6556 case 0x0c: /* 3DNow! pi2fw */
6557 case 0x0d: /* 3DNow! pi2fd */
6558 case 0x1c: /* 3DNow! pf2iw */
6559 case 0x1d: /* 3DNow! pf2id */
6560 case 0x8a: /* 3DNow! pfnacc */
6561 case 0x8e: /* 3DNow! pfpnacc */
6562 case 0x90: /* 3DNow! pfcmpge */
6563 case 0x94: /* 3DNow! pfmin */
6564 case 0x96: /* 3DNow! pfrcp */
6565 case 0x97: /* 3DNow! pfrsqrt */
6566 case 0x9a: /* 3DNow! pfsub */
6567 case 0x9e: /* 3DNow! pfadd */
6568 case 0xa0: /* 3DNow! pfcmpgt */
6569 case 0xa4: /* 3DNow! pfmax */
6570 case 0xa6: /* 3DNow! pfrcpit1 */
6571 case 0xa7: /* 3DNow! pfrsqit1 */
6572 case 0xaa: /* 3DNow! pfsubr */
6573 case 0xae: /* 3DNow! pfacc */
6574 case 0xb0: /* 3DNow! pfcmpeq */
6575 case 0xb4: /* 3DNow! pfmul */
6576 case 0xb6: /* 3DNow! pfrcpit2 */
6577 case 0xb7: /* 3DNow! pmulhrw */
6578 case 0xbb: /* 3DNow! pswapd */
6579 case 0xbf: /* 3DNow! pavgusb */
6580 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
6581 goto no_support_3dnow_data;
6582 record_arch_list_add_reg (ir.regcache, ir.reg);
6583 break;
6584
6585 default:
6586 no_support_3dnow_data:
6587 opcode = (opcode << 8) | opcode8;
6588 goto no_support;
6589 break;
6590 }
6591 break;
6592
6593 case 0x0faa: /* rsm */
6594 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6595 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6596 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6597 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6598 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
6599 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6600 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
6601 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6602 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6603 break;
6604
6605 case 0x0fae:
6606 if (i386_record_modrm (&ir))
6607 return -1;
6608 switch(ir.reg)
6609 {
6610 case 0: /* fxsave */
6611 {
6612 uint64_t tmpu64;
6613
6614 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6615 if (i386_record_lea_modrm_addr (&ir, &tmpu64))
6616 return -1;
6617 if (record_arch_list_add_mem (tmpu64, 512))
6618 return -1;
6619 }
6620 break;
6621
6622 case 1: /* fxrstor */
6623 {
6624 int i;
6625
6626 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6627
6628 for (i = I387_MM0_REGNUM (tdep);
6629 i386_mmx_regnum_p (gdbarch, i); i++)
6630 record_arch_list_add_reg (ir.regcache, i);
6631
6632 for (i = I387_XMM0_REGNUM (tdep);
6633 i386_xmm_regnum_p (gdbarch, i); i++)
6634 record_arch_list_add_reg (ir.regcache, i);
6635
6636 if (i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
6637 record_arch_list_add_reg (ir.regcache, I387_MXCSR_REGNUM(tdep));
6638
6639 for (i = I387_ST0_REGNUM (tdep);
6640 i386_fp_regnum_p (gdbarch, i); i++)
6641 record_arch_list_add_reg (ir.regcache, i);
6642
6643 for (i = I387_FCTRL_REGNUM (tdep);
6644 i386_fpc_regnum_p (gdbarch, i); i++)
6645 record_arch_list_add_reg (ir.regcache, i);
6646 }
6647 break;
6648
6649 case 2: /* ldmxcsr */
6650 if (!i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
6651 goto no_support;
6652 record_arch_list_add_reg (ir.regcache, I387_MXCSR_REGNUM(tdep));
6653 break;
6654
6655 case 3: /* stmxcsr */
6656 ir.ot = OT_LONG;
6657 if (i386_record_lea_modrm (&ir))
6658 return -1;
6659 break;
6660
6661 case 5: /* lfence */
6662 case 6: /* mfence */
6663 case 7: /* sfence clflush */
6664 break;
6665
6666 default:
6667 opcode = (opcode << 8) | ir.modrm;
6668 goto no_support;
6669 break;
6670 }
6671 break;
6672
6673 case 0x0fc3: /* movnti */
6674 ir.ot = (ir.dflag == 2) ? OT_QUAD : OT_LONG;
6675 if (i386_record_modrm (&ir))
6676 return -1;
6677 if (ir.mod == 3)
6678 goto no_support;
6679 ir.reg |= rex_r;
6680 if (i386_record_lea_modrm (&ir))
6681 return -1;
6682 break;
6683
6684 /* Add prefix to opcode. */
6685 case 0x0f10:
6686 case 0x0f11:
6687 case 0x0f12:
6688 case 0x0f13:
6689 case 0x0f14:
6690 case 0x0f15:
6691 case 0x0f16:
6692 case 0x0f17:
6693 case 0x0f28:
6694 case 0x0f29:
6695 case 0x0f2a:
6696 case 0x0f2b:
6697 case 0x0f2c:
6698 case 0x0f2d:
6699 case 0x0f2e:
6700 case 0x0f2f:
6701 case 0x0f38:
6702 case 0x0f39:
6703 case 0x0f3a:
6704 case 0x0f50:
6705 case 0x0f51:
6706 case 0x0f52:
6707 case 0x0f53:
6708 case 0x0f54:
6709 case 0x0f55:
6710 case 0x0f56:
6711 case 0x0f57:
6712 case 0x0f58:
6713 case 0x0f59:
6714 case 0x0f5a:
6715 case 0x0f5b:
6716 case 0x0f5c:
6717 case 0x0f5d:
6718 case 0x0f5e:
6719 case 0x0f5f:
6720 case 0x0f60:
6721 case 0x0f61:
6722 case 0x0f62:
6723 case 0x0f63:
6724 case 0x0f64:
6725 case 0x0f65:
6726 case 0x0f66:
6727 case 0x0f67:
6728 case 0x0f68:
6729 case 0x0f69:
6730 case 0x0f6a:
6731 case 0x0f6b:
6732 case 0x0f6c:
6733 case 0x0f6d:
6734 case 0x0f6e:
6735 case 0x0f6f:
6736 case 0x0f70:
6737 case 0x0f71:
6738 case 0x0f72:
6739 case 0x0f73:
6740 case 0x0f74:
6741 case 0x0f75:
6742 case 0x0f76:
6743 case 0x0f7c:
6744 case 0x0f7d:
6745 case 0x0f7e:
6746 case 0x0f7f:
6747 case 0x0fb8:
6748 case 0x0fc2:
6749 case 0x0fc4:
6750 case 0x0fc5:
6751 case 0x0fc6:
6752 case 0x0fd0:
6753 case 0x0fd1:
6754 case 0x0fd2:
6755 case 0x0fd3:
6756 case 0x0fd4:
6757 case 0x0fd5:
6758 case 0x0fd6:
6759 case 0x0fd7:
6760 case 0x0fd8:
6761 case 0x0fd9:
6762 case 0x0fda:
6763 case 0x0fdb:
6764 case 0x0fdc:
6765 case 0x0fdd:
6766 case 0x0fde:
6767 case 0x0fdf:
6768 case 0x0fe0:
6769 case 0x0fe1:
6770 case 0x0fe2:
6771 case 0x0fe3:
6772 case 0x0fe4:
6773 case 0x0fe5:
6774 case 0x0fe6:
6775 case 0x0fe7:
6776 case 0x0fe8:
6777 case 0x0fe9:
6778 case 0x0fea:
6779 case 0x0feb:
6780 case 0x0fec:
6781 case 0x0fed:
6782 case 0x0fee:
6783 case 0x0fef:
6784 case 0x0ff0:
6785 case 0x0ff1:
6786 case 0x0ff2:
6787 case 0x0ff3:
6788 case 0x0ff4:
6789 case 0x0ff5:
6790 case 0x0ff6:
6791 case 0x0ff7:
6792 case 0x0ff8:
6793 case 0x0ff9:
6794 case 0x0ffa:
6795 case 0x0ffb:
6796 case 0x0ffc:
6797 case 0x0ffd:
6798 case 0x0ffe:
6799 switch (prefixes)
6800 {
6801 case PREFIX_REPNZ:
6802 opcode |= 0xf20000;
6803 break;
6804 case PREFIX_DATA:
6805 opcode |= 0x660000;
6806 break;
6807 case PREFIX_REPZ:
6808 opcode |= 0xf30000;
6809 break;
6810 }
6811 reswitch_prefix_add:
6812 switch (opcode)
6813 {
6814 case 0x0f38:
6815 case 0x660f38:
6816 case 0xf20f38:
6817 case 0x0f3a:
6818 case 0x660f3a:
6819 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
6820 return -1;
6821 ir.addr++;
6822 opcode = (uint32_t) opcode8 | opcode << 8;
6823 goto reswitch_prefix_add;
6824 break;
6825
6826 case 0x0f10: /* movups */
6827 case 0x660f10: /* movupd */
6828 case 0xf30f10: /* movss */
6829 case 0xf20f10: /* movsd */
6830 case 0x0f12: /* movlps */
6831 case 0x660f12: /* movlpd */
6832 case 0xf30f12: /* movsldup */
6833 case 0xf20f12: /* movddup */
6834 case 0x0f14: /* unpcklps */
6835 case 0x660f14: /* unpcklpd */
6836 case 0x0f15: /* unpckhps */
6837 case 0x660f15: /* unpckhpd */
6838 case 0x0f16: /* movhps */
6839 case 0x660f16: /* movhpd */
6840 case 0xf30f16: /* movshdup */
6841 case 0x0f28: /* movaps */
6842 case 0x660f28: /* movapd */
6843 case 0x0f2a: /* cvtpi2ps */
6844 case 0x660f2a: /* cvtpi2pd */
6845 case 0xf30f2a: /* cvtsi2ss */
6846 case 0xf20f2a: /* cvtsi2sd */
6847 case 0x0f2c: /* cvttps2pi */
6848 case 0x660f2c: /* cvttpd2pi */
6849 case 0x0f2d: /* cvtps2pi */
6850 case 0x660f2d: /* cvtpd2pi */
6851 case 0x660f3800: /* pshufb */
6852 case 0x660f3801: /* phaddw */
6853 case 0x660f3802: /* phaddd */
6854 case 0x660f3803: /* phaddsw */
6855 case 0x660f3804: /* pmaddubsw */
6856 case 0x660f3805: /* phsubw */
6857 case 0x660f3806: /* phsubd */
6858 case 0x660f3807: /* phsubsw */
6859 case 0x660f3808: /* psignb */
6860 case 0x660f3809: /* psignw */
6861 case 0x660f380a: /* psignd */
6862 case 0x660f380b: /* pmulhrsw */
6863 case 0x660f3810: /* pblendvb */
6864 case 0x660f3814: /* blendvps */
6865 case 0x660f3815: /* blendvpd */
6866 case 0x660f381c: /* pabsb */
6867 case 0x660f381d: /* pabsw */
6868 case 0x660f381e: /* pabsd */
6869 case 0x660f3820: /* pmovsxbw */
6870 case 0x660f3821: /* pmovsxbd */
6871 case 0x660f3822: /* pmovsxbq */
6872 case 0x660f3823: /* pmovsxwd */
6873 case 0x660f3824: /* pmovsxwq */
6874 case 0x660f3825: /* pmovsxdq */
6875 case 0x660f3828: /* pmuldq */
6876 case 0x660f3829: /* pcmpeqq */
6877 case 0x660f382a: /* movntdqa */
6878 case 0x660f3a08: /* roundps */
6879 case 0x660f3a09: /* roundpd */
6880 case 0x660f3a0a: /* roundss */
6881 case 0x660f3a0b: /* roundsd */
6882 case 0x660f3a0c: /* blendps */
6883 case 0x660f3a0d: /* blendpd */
6884 case 0x660f3a0e: /* pblendw */
6885 case 0x660f3a0f: /* palignr */
6886 case 0x660f3a20: /* pinsrb */
6887 case 0x660f3a21: /* insertps */
6888 case 0x660f3a22: /* pinsrd pinsrq */
6889 case 0x660f3a40: /* dpps */
6890 case 0x660f3a41: /* dppd */
6891 case 0x660f3a42: /* mpsadbw */
6892 case 0x660f3a60: /* pcmpestrm */
6893 case 0x660f3a61: /* pcmpestri */
6894 case 0x660f3a62: /* pcmpistrm */
6895 case 0x660f3a63: /* pcmpistri */
6896 case 0x0f51: /* sqrtps */
6897 case 0x660f51: /* sqrtpd */
6898 case 0xf20f51: /* sqrtsd */
6899 case 0xf30f51: /* sqrtss */
6900 case 0x0f52: /* rsqrtps */
6901 case 0xf30f52: /* rsqrtss */
6902 case 0x0f53: /* rcpps */
6903 case 0xf30f53: /* rcpss */
6904 case 0x0f54: /* andps */
6905 case 0x660f54: /* andpd */
6906 case 0x0f55: /* andnps */
6907 case 0x660f55: /* andnpd */
6908 case 0x0f56: /* orps */
6909 case 0x660f56: /* orpd */
6910 case 0x0f57: /* xorps */
6911 case 0x660f57: /* xorpd */
6912 case 0x0f58: /* addps */
6913 case 0x660f58: /* addpd */
6914 case 0xf20f58: /* addsd */
6915 case 0xf30f58: /* addss */
6916 case 0x0f59: /* mulps */
6917 case 0x660f59: /* mulpd */
6918 case 0xf20f59: /* mulsd */
6919 case 0xf30f59: /* mulss */
6920 case 0x0f5a: /* cvtps2pd */
6921 case 0x660f5a: /* cvtpd2ps */
6922 case 0xf20f5a: /* cvtsd2ss */
6923 case 0xf30f5a: /* cvtss2sd */
6924 case 0x0f5b: /* cvtdq2ps */
6925 case 0x660f5b: /* cvtps2dq */
6926 case 0xf30f5b: /* cvttps2dq */
6927 case 0x0f5c: /* subps */
6928 case 0x660f5c: /* subpd */
6929 case 0xf20f5c: /* subsd */
6930 case 0xf30f5c: /* subss */
6931 case 0x0f5d: /* minps */
6932 case 0x660f5d: /* minpd */
6933 case 0xf20f5d: /* minsd */
6934 case 0xf30f5d: /* minss */
6935 case 0x0f5e: /* divps */
6936 case 0x660f5e: /* divpd */
6937 case 0xf20f5e: /* divsd */
6938 case 0xf30f5e: /* divss */
6939 case 0x0f5f: /* maxps */
6940 case 0x660f5f: /* maxpd */
6941 case 0xf20f5f: /* maxsd */
6942 case 0xf30f5f: /* maxss */
6943 case 0x660f60: /* punpcklbw */
6944 case 0x660f61: /* punpcklwd */
6945 case 0x660f62: /* punpckldq */
6946 case 0x660f63: /* packsswb */
6947 case 0x660f64: /* pcmpgtb */
6948 case 0x660f65: /* pcmpgtw */
6949 case 0x660f66: /* pcmpgtd */
6950 case 0x660f67: /* packuswb */
6951 case 0x660f68: /* punpckhbw */
6952 case 0x660f69: /* punpckhwd */
6953 case 0x660f6a: /* punpckhdq */
6954 case 0x660f6b: /* packssdw */
6955 case 0x660f6c: /* punpcklqdq */
6956 case 0x660f6d: /* punpckhqdq */
6957 case 0x660f6e: /* movd */
6958 case 0x660f6f: /* movdqa */
6959 case 0xf30f6f: /* movdqu */
6960 case 0x660f70: /* pshufd */
6961 case 0xf20f70: /* pshuflw */
6962 case 0xf30f70: /* pshufhw */
6963 case 0x660f74: /* pcmpeqb */
6964 case 0x660f75: /* pcmpeqw */
6965 case 0x660f76: /* pcmpeqd */
6966 case 0x660f7c: /* haddpd */
6967 case 0xf20f7c: /* haddps */
6968 case 0x660f7d: /* hsubpd */
6969 case 0xf20f7d: /* hsubps */
6970 case 0xf30f7e: /* movq */
6971 case 0x0fc2: /* cmpps */
6972 case 0x660fc2: /* cmppd */
6973 case 0xf20fc2: /* cmpsd */
6974 case 0xf30fc2: /* cmpss */
6975 case 0x660fc4: /* pinsrw */
6976 case 0x0fc6: /* shufps */
6977 case 0x660fc6: /* shufpd */
6978 case 0x660fd0: /* addsubpd */
6979 case 0xf20fd0: /* addsubps */
6980 case 0x660fd1: /* psrlw */
6981 case 0x660fd2: /* psrld */
6982 case 0x660fd3: /* psrlq */
6983 case 0x660fd4: /* paddq */
6984 case 0x660fd5: /* pmullw */
6985 case 0xf30fd6: /* movq2dq */
6986 case 0x660fd8: /* psubusb */
6987 case 0x660fd9: /* psubusw */
6988 case 0x660fda: /* pminub */
6989 case 0x660fdb: /* pand */
6990 case 0x660fdc: /* paddusb */
6991 case 0x660fdd: /* paddusw */
6992 case 0x660fde: /* pmaxub */
6993 case 0x660fdf: /* pandn */
6994 case 0x660fe0: /* pavgb */
6995 case 0x660fe1: /* psraw */
6996 case 0x660fe2: /* psrad */
6997 case 0x660fe3: /* pavgw */
6998 case 0x660fe4: /* pmulhuw */
6999 case 0x660fe5: /* pmulhw */
7000 case 0x660fe6: /* cvttpd2dq */
7001 case 0xf20fe6: /* cvtpd2dq */
7002 case 0xf30fe6: /* cvtdq2pd */
7003 case 0x660fe8: /* psubsb */
7004 case 0x660fe9: /* psubsw */
7005 case 0x660fea: /* pminsw */
7006 case 0x660feb: /* por */
7007 case 0x660fec: /* paddsb */
7008 case 0x660fed: /* paddsw */
7009 case 0x660fee: /* pmaxsw */
7010 case 0x660fef: /* pxor */
7011 case 0xf20ff0: /* lddqu */
7012 case 0x660ff1: /* psllw */
7013 case 0x660ff2: /* pslld */
7014 case 0x660ff3: /* psllq */
7015 case 0x660ff4: /* pmuludq */
7016 case 0x660ff5: /* pmaddwd */
7017 case 0x660ff6: /* psadbw */
7018 case 0x660ff8: /* psubb */
7019 case 0x660ff9: /* psubw */
7020 case 0x660ffa: /* psubd */
7021 case 0x660ffb: /* psubq */
7022 case 0x660ffc: /* paddb */
7023 case 0x660ffd: /* paddw */
7024 case 0x660ffe: /* paddd */
7025 if (i386_record_modrm (&ir))
7026 return -1;
7027 ir.reg |= rex_r;
7028 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.reg))
7029 goto no_support;
7030 record_arch_list_add_reg (ir.regcache,
7031 I387_XMM0_REGNUM (tdep) + ir.reg);
7032 if ((opcode & 0xfffffffc) == 0x660f3a60)
7033 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7034 break;
7035
7036 case 0x0f11: /* movups */
7037 case 0x660f11: /* movupd */
7038 case 0xf30f11: /* movss */
7039 case 0xf20f11: /* movsd */
7040 case 0x0f13: /* movlps */
7041 case 0x660f13: /* movlpd */
7042 case 0x0f17: /* movhps */
7043 case 0x660f17: /* movhpd */
7044 case 0x0f29: /* movaps */
7045 case 0x660f29: /* movapd */
7046 case 0x660f3a14: /* pextrb */
7047 case 0x660f3a15: /* pextrw */
7048 case 0x660f3a16: /* pextrd pextrq */
7049 case 0x660f3a17: /* extractps */
7050 case 0x660f7f: /* movdqa */
7051 case 0xf30f7f: /* movdqu */
7052 if (i386_record_modrm (&ir))
7053 return -1;
7054 if (ir.mod == 3)
7055 {
7056 if (opcode == 0x0f13 || opcode == 0x660f13
7057 || opcode == 0x0f17 || opcode == 0x660f17)
7058 goto no_support;
7059 ir.rm |= ir.rex_b;
7060 if (!i386_xmm_regnum_p (gdbarch,
7061 I387_XMM0_REGNUM (tdep) + ir.rm))
7062 goto no_support;
7063 record_arch_list_add_reg (ir.regcache,
7064 I387_XMM0_REGNUM (tdep) + ir.rm);
7065 }
7066 else
7067 {
7068 switch (opcode)
7069 {
7070 case 0x660f3a14:
7071 ir.ot = OT_BYTE;
7072 break;
7073 case 0x660f3a15:
7074 ir.ot = OT_WORD;
7075 break;
7076 case 0x660f3a16:
7077 ir.ot = OT_LONG;
7078 break;
7079 case 0x660f3a17:
7080 ir.ot = OT_QUAD;
7081 break;
7082 default:
7083 ir.ot = OT_DQUAD;
7084 break;
7085 }
7086 if (i386_record_lea_modrm (&ir))
7087 return -1;
7088 }
7089 break;
7090
7091 case 0x0f2b: /* movntps */
7092 case 0x660f2b: /* movntpd */
7093 case 0x0fe7: /* movntq */
7094 case 0x660fe7: /* movntdq */
7095 if (ir.mod == 3)
7096 goto no_support;
7097 if (opcode == 0x0fe7)
7098 ir.ot = OT_QUAD;
7099 else
7100 ir.ot = OT_DQUAD;
7101 if (i386_record_lea_modrm (&ir))
7102 return -1;
7103 break;
7104
7105 case 0xf30f2c: /* cvttss2si */
7106 case 0xf20f2c: /* cvttsd2si */
7107 case 0xf30f2d: /* cvtss2si */
7108 case 0xf20f2d: /* cvtsd2si */
7109 case 0xf20f38f0: /* crc32 */
7110 case 0xf20f38f1: /* crc32 */
7111 case 0x0f50: /* movmskps */
7112 case 0x660f50: /* movmskpd */
7113 case 0x0fc5: /* pextrw */
7114 case 0x660fc5: /* pextrw */
7115 case 0x0fd7: /* pmovmskb */
7116 case 0x660fd7: /* pmovmskb */
7117 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7118 break;
7119
7120 case 0x0f3800: /* pshufb */
7121 case 0x0f3801: /* phaddw */
7122 case 0x0f3802: /* phaddd */
7123 case 0x0f3803: /* phaddsw */
7124 case 0x0f3804: /* pmaddubsw */
7125 case 0x0f3805: /* phsubw */
7126 case 0x0f3806: /* phsubd */
7127 case 0x0f3807: /* phsubsw */
7128 case 0x0f3808: /* psignb */
7129 case 0x0f3809: /* psignw */
7130 case 0x0f380a: /* psignd */
7131 case 0x0f380b: /* pmulhrsw */
7132 case 0x0f381c: /* pabsb */
7133 case 0x0f381d: /* pabsw */
7134 case 0x0f381e: /* pabsd */
7135 case 0x0f382b: /* packusdw */
7136 case 0x0f3830: /* pmovzxbw */
7137 case 0x0f3831: /* pmovzxbd */
7138 case 0x0f3832: /* pmovzxbq */
7139 case 0x0f3833: /* pmovzxwd */
7140 case 0x0f3834: /* pmovzxwq */
7141 case 0x0f3835: /* pmovzxdq */
7142 case 0x0f3837: /* pcmpgtq */
7143 case 0x0f3838: /* pminsb */
7144 case 0x0f3839: /* pminsd */
7145 case 0x0f383a: /* pminuw */
7146 case 0x0f383b: /* pminud */
7147 case 0x0f383c: /* pmaxsb */
7148 case 0x0f383d: /* pmaxsd */
7149 case 0x0f383e: /* pmaxuw */
7150 case 0x0f383f: /* pmaxud */
7151 case 0x0f3840: /* pmulld */
7152 case 0x0f3841: /* phminposuw */
7153 case 0x0f3a0f: /* palignr */
7154 case 0x0f60: /* punpcklbw */
7155 case 0x0f61: /* punpcklwd */
7156 case 0x0f62: /* punpckldq */
7157 case 0x0f63: /* packsswb */
7158 case 0x0f64: /* pcmpgtb */
7159 case 0x0f65: /* pcmpgtw */
7160 case 0x0f66: /* pcmpgtd */
7161 case 0x0f67: /* packuswb */
7162 case 0x0f68: /* punpckhbw */
7163 case 0x0f69: /* punpckhwd */
7164 case 0x0f6a: /* punpckhdq */
7165 case 0x0f6b: /* packssdw */
7166 case 0x0f6e: /* movd */
7167 case 0x0f6f: /* movq */
7168 case 0x0f70: /* pshufw */
7169 case 0x0f74: /* pcmpeqb */
7170 case 0x0f75: /* pcmpeqw */
7171 case 0x0f76: /* pcmpeqd */
7172 case 0x0fc4: /* pinsrw */
7173 case 0x0fd1: /* psrlw */
7174 case 0x0fd2: /* psrld */
7175 case 0x0fd3: /* psrlq */
7176 case 0x0fd4: /* paddq */
7177 case 0x0fd5: /* pmullw */
7178 case 0xf20fd6: /* movdq2q */
7179 case 0x0fd8: /* psubusb */
7180 case 0x0fd9: /* psubusw */
7181 case 0x0fda: /* pminub */
7182 case 0x0fdb: /* pand */
7183 case 0x0fdc: /* paddusb */
7184 case 0x0fdd: /* paddusw */
7185 case 0x0fde: /* pmaxub */
7186 case 0x0fdf: /* pandn */
7187 case 0x0fe0: /* pavgb */
7188 case 0x0fe1: /* psraw */
7189 case 0x0fe2: /* psrad */
7190 case 0x0fe3: /* pavgw */
7191 case 0x0fe4: /* pmulhuw */
7192 case 0x0fe5: /* pmulhw */
7193 case 0x0fe8: /* psubsb */
7194 case 0x0fe9: /* psubsw */
7195 case 0x0fea: /* pminsw */
7196 case 0x0feb: /* por */
7197 case 0x0fec: /* paddsb */
7198 case 0x0fed: /* paddsw */
7199 case 0x0fee: /* pmaxsw */
7200 case 0x0fef: /* pxor */
7201 case 0x0ff1: /* psllw */
7202 case 0x0ff2: /* pslld */
7203 case 0x0ff3: /* psllq */
7204 case 0x0ff4: /* pmuludq */
7205 case 0x0ff5: /* pmaddwd */
7206 case 0x0ff6: /* psadbw */
7207 case 0x0ff8: /* psubb */
7208 case 0x0ff9: /* psubw */
7209 case 0x0ffa: /* psubd */
7210 case 0x0ffb: /* psubq */
7211 case 0x0ffc: /* paddb */
7212 case 0x0ffd: /* paddw */
7213 case 0x0ffe: /* paddd */
7214 if (i386_record_modrm (&ir))
7215 return -1;
7216 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7217 goto no_support;
7218 record_arch_list_add_reg (ir.regcache,
7219 I387_MM0_REGNUM (tdep) + ir.reg);
7220 break;
7221
7222 case 0x0f71: /* psllw */
7223 case 0x0f72: /* pslld */
7224 case 0x0f73: /* psllq */
7225 if (i386_record_modrm (&ir))
7226 return -1;
7227 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
7228 goto no_support;
7229 record_arch_list_add_reg (ir.regcache,
7230 I387_MM0_REGNUM (tdep) + ir.rm);
7231 break;
7232
7233 case 0x660f71: /* psllw */
7234 case 0x660f72: /* pslld */
7235 case 0x660f73: /* psllq */
7236 if (i386_record_modrm (&ir))
7237 return -1;
7238 ir.rm |= ir.rex_b;
7239 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.rm))
7240 goto no_support;
7241 record_arch_list_add_reg (ir.regcache,
7242 I387_XMM0_REGNUM (tdep) + ir.rm);
7243 break;
7244
7245 case 0x0f7e: /* movd */
7246 case 0x660f7e: /* movd */
7247 if (i386_record_modrm (&ir))
7248 return -1;
7249 if (ir.mod == 3)
7250 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7251 else
7252 {
7253 if (ir.dflag == 2)
7254 ir.ot = OT_QUAD;
7255 else
7256 ir.ot = OT_LONG;
7257 if (i386_record_lea_modrm (&ir))
7258 return -1;
7259 }
7260 break;
7261
7262 case 0x0f7f: /* movq */
7263 if (i386_record_modrm (&ir))
7264 return -1;
7265 if (ir.mod == 3)
7266 {
7267 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
7268 goto no_support;
7269 record_arch_list_add_reg (ir.regcache,
7270 I387_MM0_REGNUM (tdep) + ir.rm);
7271 }
7272 else
7273 {
7274 ir.ot = OT_QUAD;
7275 if (i386_record_lea_modrm (&ir))
7276 return -1;
7277 }
7278 break;
7279
7280 case 0xf30fb8: /* popcnt */
7281 if (i386_record_modrm (&ir))
7282 return -1;
7283 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
7284 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7285 break;
7286
7287 case 0x660fd6: /* movq */
7288 if (i386_record_modrm (&ir))
7289 return -1;
7290 if (ir.mod == 3)
7291 {
7292 ir.rm |= ir.rex_b;
7293 if (!i386_xmm_regnum_p (gdbarch,
7294 I387_XMM0_REGNUM (tdep) + ir.rm))
7295 goto no_support;
7296 record_arch_list_add_reg (ir.regcache,
7297 I387_XMM0_REGNUM (tdep) + ir.rm);
7298 }
7299 else
7300 {
7301 ir.ot = OT_QUAD;
7302 if (i386_record_lea_modrm (&ir))
7303 return -1;
7304 }
7305 break;
7306
7307 case 0x660f3817: /* ptest */
7308 case 0x0f2e: /* ucomiss */
7309 case 0x660f2e: /* ucomisd */
7310 case 0x0f2f: /* comiss */
7311 case 0x660f2f: /* comisd */
7312 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7313 break;
7314
7315 case 0x0ff7: /* maskmovq */
7316 regcache_raw_read_unsigned (ir.regcache,
7317 ir.regmap[X86_RECORD_REDI_REGNUM],
7318 &addr);
7319 if (record_arch_list_add_mem (addr, 64))
7320 return -1;
7321 break;
7322
7323 case 0x660ff7: /* maskmovdqu */
7324 regcache_raw_read_unsigned (ir.regcache,
7325 ir.regmap[X86_RECORD_REDI_REGNUM],
7326 &addr);
7327 if (record_arch_list_add_mem (addr, 128))
7328 return -1;
7329 break;
7330
7331 default:
7332 goto no_support;
7333 break;
7334 }
7335 break;
7336
7337 default:
7338 goto no_support;
7339 break;
7340 }
7341
7342 /* In the future, maybe still need to deal with need_dasm. */
7343 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REIP_REGNUM);
7344 if (record_arch_list_add_end ())
7345 return -1;
7346
7347 return 0;
7348
7349 no_support:
7350 printf_unfiltered (_("Process record does not support instruction 0x%02x "
7351 "at address %s.\n"),
7352 (unsigned int) (opcode),
7353 paddress (gdbarch, ir.orig_addr));
7354 return -1;
7355 }
7356
7357 static const int i386_record_regmap[] =
7358 {
7359 I386_EAX_REGNUM, I386_ECX_REGNUM, I386_EDX_REGNUM, I386_EBX_REGNUM,
7360 I386_ESP_REGNUM, I386_EBP_REGNUM, I386_ESI_REGNUM, I386_EDI_REGNUM,
7361 0, 0, 0, 0, 0, 0, 0, 0,
7362 I386_EIP_REGNUM, I386_EFLAGS_REGNUM, I386_CS_REGNUM, I386_SS_REGNUM,
7363 I386_DS_REGNUM, I386_ES_REGNUM, I386_FS_REGNUM, I386_GS_REGNUM
7364 };
7365
7366 /* Check that the given address appears suitable for a fast
7367 tracepoint, which on x86-64 means that we need an instruction of at
7368 least 5 bytes, so that we can overwrite it with a 4-byte-offset
7369 jump and not have to worry about program jumps to an address in the
7370 middle of the tracepoint jump. On x86, it may be possible to use
7371 4-byte jumps with a 2-byte offset to a trampoline located in the
7372 bottom 64 KiB of memory. Returns 1 if OK, and writes a size
7373 of instruction to replace, and 0 if not, plus an explanatory
7374 string. */
7375
7376 static int
7377 i386_fast_tracepoint_valid_at (struct gdbarch *gdbarch,
7378 CORE_ADDR addr, int *isize, char **msg)
7379 {
7380 int len, jumplen;
7381 static struct ui_file *gdb_null = NULL;
7382
7383 /* Ask the target for the minimum instruction length supported. */
7384 jumplen = target_get_min_fast_tracepoint_insn_len ();
7385
7386 if (jumplen < 0)
7387 {
7388 /* If the target does not support the get_min_fast_tracepoint_insn_len
7389 operation, assume that fast tracepoints will always be implemented
7390 using 4-byte relative jumps on both x86 and x86-64. */
7391 jumplen = 5;
7392 }
7393 else if (jumplen == 0)
7394 {
7395 /* If the target does support get_min_fast_tracepoint_insn_len but
7396 returns zero, then the IPA has not loaded yet. In this case,
7397 we optimistically assume that truncated 2-byte relative jumps
7398 will be available on x86, and compensate later if this assumption
7399 turns out to be incorrect. On x86-64 architectures, 4-byte relative
7400 jumps will always be used. */
7401 jumplen = (register_size (gdbarch, 0) == 8) ? 5 : 4;
7402 }
7403
7404 /* Dummy file descriptor for the disassembler. */
7405 if (!gdb_null)
7406 gdb_null = ui_file_new ();
7407
7408 /* Check for fit. */
7409 len = gdb_print_insn (gdbarch, addr, gdb_null, NULL);
7410 if (isize)
7411 *isize = len;
7412
7413 if (len < jumplen)
7414 {
7415 /* Return a bit of target-specific detail to add to the caller's
7416 generic failure message. */
7417 if (msg)
7418 *msg = xstrprintf (_("; instruction is only %d bytes long, "
7419 "need at least %d bytes for the jump"),
7420 len, jumplen);
7421 return 0;
7422 }
7423 else
7424 {
7425 if (msg)
7426 *msg = NULL;
7427 return 1;
7428 }
7429 }
7430
7431 static int
7432 i386_validate_tdesc_p (struct gdbarch_tdep *tdep,
7433 struct tdesc_arch_data *tdesc_data)
7434 {
7435 const struct target_desc *tdesc = tdep->tdesc;
7436 const struct tdesc_feature *feature_core;
7437 const struct tdesc_feature *feature_sse, *feature_avx;
7438 int i, num_regs, valid_p;
7439
7440 if (! tdesc_has_registers (tdesc))
7441 return 0;
7442
7443 /* Get core registers. */
7444 feature_core = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.core");
7445 if (feature_core == NULL)
7446 return 0;
7447
7448 /* Get SSE registers. */
7449 feature_sse = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.sse");
7450
7451 /* Try AVX registers. */
7452 feature_avx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx");
7453
7454 valid_p = 1;
7455
7456 /* The XCR0 bits. */
7457 if (feature_avx)
7458 {
7459 /* AVX register description requires SSE register description. */
7460 if (!feature_sse)
7461 return 0;
7462
7463 tdep->xcr0 = I386_XSTATE_AVX_MASK;
7464
7465 /* It may have been set by OSABI initialization function. */
7466 if (tdep->num_ymm_regs == 0)
7467 {
7468 tdep->ymmh_register_names = i386_ymmh_names;
7469 tdep->num_ymm_regs = 8;
7470 tdep->ymm0h_regnum = I386_YMM0H_REGNUM;
7471 }
7472
7473 for (i = 0; i < tdep->num_ymm_regs; i++)
7474 valid_p &= tdesc_numbered_register (feature_avx, tdesc_data,
7475 tdep->ymm0h_regnum + i,
7476 tdep->ymmh_register_names[i]);
7477 }
7478 else if (feature_sse)
7479 tdep->xcr0 = I386_XSTATE_SSE_MASK;
7480 else
7481 {
7482 tdep->xcr0 = I386_XSTATE_X87_MASK;
7483 tdep->num_xmm_regs = 0;
7484 }
7485
7486 num_regs = tdep->num_core_regs;
7487 for (i = 0; i < num_regs; i++)
7488 valid_p &= tdesc_numbered_register (feature_core, tdesc_data, i,
7489 tdep->register_names[i]);
7490
7491 if (feature_sse)
7492 {
7493 /* Need to include %mxcsr, so add one. */
7494 num_regs += tdep->num_xmm_regs + 1;
7495 for (; i < num_regs; i++)
7496 valid_p &= tdesc_numbered_register (feature_sse, tdesc_data, i,
7497 tdep->register_names[i]);
7498 }
7499
7500 return valid_p;
7501 }
7502
7503 \f
7504 static struct gdbarch *
7505 i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
7506 {
7507 struct gdbarch_tdep *tdep;
7508 struct gdbarch *gdbarch;
7509 struct tdesc_arch_data *tdesc_data;
7510 const struct target_desc *tdesc;
7511 int mm0_regnum;
7512 int ymm0_regnum;
7513
7514 /* If there is already a candidate, use it. */
7515 arches = gdbarch_list_lookup_by_info (arches, &info);
7516 if (arches != NULL)
7517 return arches->gdbarch;
7518
7519 /* Allocate space for the new architecture. */
7520 tdep = XCALLOC (1, struct gdbarch_tdep);
7521 gdbarch = gdbarch_alloc (&info, tdep);
7522
7523 /* General-purpose registers. */
7524 tdep->gregset = NULL;
7525 tdep->gregset_reg_offset = NULL;
7526 tdep->gregset_num_regs = I386_NUM_GREGS;
7527 tdep->sizeof_gregset = 0;
7528
7529 /* Floating-point registers. */
7530 tdep->fpregset = NULL;
7531 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
7532
7533 tdep->xstateregset = NULL;
7534
7535 /* The default settings include the FPU registers, the MMX registers
7536 and the SSE registers. This can be overridden for a specific ABI
7537 by adjusting the members `st0_regnum', `mm0_regnum' and
7538 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
7539 will show up in the output of "info all-registers". */
7540
7541 tdep->st0_regnum = I386_ST0_REGNUM;
7542
7543 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
7544 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
7545
7546 tdep->jb_pc_offset = -1;
7547 tdep->struct_return = pcc_struct_return;
7548 tdep->sigtramp_start = 0;
7549 tdep->sigtramp_end = 0;
7550 tdep->sigtramp_p = i386_sigtramp_p;
7551 tdep->sigcontext_addr = NULL;
7552 tdep->sc_reg_offset = NULL;
7553 tdep->sc_pc_offset = -1;
7554 tdep->sc_sp_offset = -1;
7555
7556 tdep->xsave_xcr0_offset = -1;
7557
7558 tdep->record_regmap = i386_record_regmap;
7559
7560 set_gdbarch_long_long_align_bit (gdbarch, 32);
7561
7562 /* The format used for `long double' on almost all i386 targets is
7563 the i387 extended floating-point format. In fact, of all targets
7564 in the GCC 2.95 tree, only OSF/1 does it different, and insists
7565 on having a `long double' that's not `long' at all. */
7566 set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext);
7567
7568 /* Although the i387 extended floating-point has only 80 significant
7569 bits, a `long double' actually takes up 96, probably to enforce
7570 alignment. */
7571 set_gdbarch_long_double_bit (gdbarch, 96);
7572
7573 /* Register numbers of various important registers. */
7574 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
7575 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
7576 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
7577 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
7578
7579 /* NOTE: kettenis/20040418: GCC does have two possible register
7580 numbering schemes on the i386: dbx and SVR4. These schemes
7581 differ in how they number %ebp, %esp, %eflags, and the
7582 floating-point registers, and are implemented by the arrays
7583 dbx_register_map[] and svr4_dbx_register_map in
7584 gcc/config/i386.c. GCC also defines a third numbering scheme in
7585 gcc/config/i386.c, which it designates as the "default" register
7586 map used in 64bit mode. This last register numbering scheme is
7587 implemented in dbx64_register_map, and is used for AMD64; see
7588 amd64-tdep.c.
7589
7590 Currently, each GCC i386 target always uses the same register
7591 numbering scheme across all its supported debugging formats
7592 i.e. SDB (COFF), stabs and DWARF 2. This is because
7593 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
7594 DBX_REGISTER_NUMBER macro which is defined by each target's
7595 respective config header in a manner independent of the requested
7596 output debugging format.
7597
7598 This does not match the arrangement below, which presumes that
7599 the SDB and stabs numbering schemes differ from the DWARF and
7600 DWARF 2 ones. The reason for this arrangement is that it is
7601 likely to get the numbering scheme for the target's
7602 default/native debug format right. For targets where GCC is the
7603 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
7604 targets where the native toolchain uses a different numbering
7605 scheme for a particular debug format (stabs-in-ELF on Solaris)
7606 the defaults below will have to be overridden, like
7607 i386_elf_init_abi() does. */
7608
7609 /* Use the dbx register numbering scheme for stabs and COFF. */
7610 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
7611 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
7612
7613 /* Use the SVR4 register numbering scheme for DWARF 2. */
7614 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
7615
7616 /* We don't set gdbarch_stab_reg_to_regnum, since ECOFF doesn't seem to
7617 be in use on any of the supported i386 targets. */
7618
7619 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
7620
7621 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
7622
7623 /* Call dummy code. */
7624 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
7625 set_gdbarch_push_dummy_code (gdbarch, i386_push_dummy_code);
7626 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
7627 set_gdbarch_frame_align (gdbarch, i386_frame_align);
7628
7629 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
7630 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
7631 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
7632
7633 set_gdbarch_return_value (gdbarch, i386_return_value);
7634
7635 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
7636
7637 /* Stack grows downward. */
7638 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
7639
7640 set_gdbarch_breakpoint_from_pc (gdbarch, i386_breakpoint_from_pc);
7641 set_gdbarch_decr_pc_after_break (gdbarch, 1);
7642 set_gdbarch_max_insn_length (gdbarch, I386_MAX_INSN_LEN);
7643
7644 set_gdbarch_frame_args_skip (gdbarch, 8);
7645
7646 set_gdbarch_print_insn (gdbarch, i386_print_insn);
7647
7648 set_gdbarch_dummy_id (gdbarch, i386_dummy_id);
7649
7650 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
7651
7652 /* Add the i386 register groups. */
7653 i386_add_reggroups (gdbarch);
7654 tdep->register_reggroup_p = i386_register_reggroup_p;
7655
7656 /* Helper for function argument information. */
7657 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
7658
7659 /* Hook the function epilogue frame unwinder. This unwinder is
7660 appended to the list first, so that it supercedes the DWARF
7661 unwinder in function epilogues (where the DWARF unwinder
7662 currently fails). */
7663 frame_unwind_append_unwinder (gdbarch, &i386_epilogue_frame_unwind);
7664
7665 /* Hook in the DWARF CFI frame unwinder. This unwinder is appended
7666 to the list before the prologue-based unwinders, so that DWARF
7667 CFI info will be used if it is available. */
7668 dwarf2_append_unwinders (gdbarch);
7669
7670 frame_base_set_default (gdbarch, &i386_frame_base);
7671
7672 /* Pseudo registers may be changed by amd64_init_abi. */
7673 set_gdbarch_pseudo_register_read_value (gdbarch,
7674 i386_pseudo_register_read_value);
7675 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
7676
7677 set_tdesc_pseudo_register_type (gdbarch, i386_pseudo_register_type);
7678 set_tdesc_pseudo_register_name (gdbarch, i386_pseudo_register_name);
7679
7680 /* Override the normal target description method to make the AVX
7681 upper halves anonymous. */
7682 set_gdbarch_register_name (gdbarch, i386_register_name);
7683
7684 /* Even though the default ABI only includes general-purpose registers,
7685 floating-point registers and the SSE registers, we have to leave a
7686 gap for the upper AVX registers. */
7687 set_gdbarch_num_regs (gdbarch, I386_AVX_NUM_REGS);
7688
7689 /* Get the x86 target description from INFO. */
7690 tdesc = info.target_desc;
7691 if (! tdesc_has_registers (tdesc))
7692 tdesc = tdesc_i386;
7693 tdep->tdesc = tdesc;
7694
7695 tdep->num_core_regs = I386_NUM_GREGS + I387_NUM_REGS;
7696 tdep->register_names = i386_register_names;
7697
7698 /* No upper YMM registers. */
7699 tdep->ymmh_register_names = NULL;
7700 tdep->ymm0h_regnum = -1;
7701
7702 tdep->num_byte_regs = 8;
7703 tdep->num_word_regs = 8;
7704 tdep->num_dword_regs = 0;
7705 tdep->num_mmx_regs = 8;
7706 tdep->num_ymm_regs = 0;
7707
7708 tdep->sp_regnum_from_eax = -1;
7709 tdep->pc_regnum_from_eax = -1;
7710
7711 tdesc_data = tdesc_data_alloc ();
7712
7713 set_gdbarch_relocate_instruction (gdbarch, i386_relocate_instruction);
7714
7715 set_gdbarch_gen_return_address (gdbarch, i386_gen_return_address);
7716
7717 /* Hook in ABI-specific overrides, if they have been registered. */
7718 info.tdep_info = (void *) tdesc_data;
7719 gdbarch_init_osabi (info, gdbarch);
7720
7721 if (!i386_validate_tdesc_p (tdep, tdesc_data))
7722 {
7723 tdesc_data_cleanup (tdesc_data);
7724 xfree (tdep);
7725 gdbarch_free (gdbarch);
7726 return NULL;
7727 }
7728
7729 /* Wire in pseudo registers. Number of pseudo registers may be
7730 changed. */
7731 set_gdbarch_num_pseudo_regs (gdbarch, (tdep->num_byte_regs
7732 + tdep->num_word_regs
7733 + tdep->num_dword_regs
7734 + tdep->num_mmx_regs
7735 + tdep->num_ymm_regs));
7736
7737 /* Target description may be changed. */
7738 tdesc = tdep->tdesc;
7739
7740 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
7741
7742 /* Override gdbarch_register_reggroup_p set in tdesc_use_registers. */
7743 set_gdbarch_register_reggroup_p (gdbarch, tdep->register_reggroup_p);
7744
7745 /* Make %al the first pseudo-register. */
7746 tdep->al_regnum = gdbarch_num_regs (gdbarch);
7747 tdep->ax_regnum = tdep->al_regnum + tdep->num_byte_regs;
7748
7749 ymm0_regnum = tdep->ax_regnum + tdep->num_word_regs;
7750 if (tdep->num_dword_regs)
7751 {
7752 /* Support dword pseudo-register if it hasn't been disabled. */
7753 tdep->eax_regnum = ymm0_regnum;
7754 ymm0_regnum += tdep->num_dword_regs;
7755 if (tdep->sp_regnum_from_eax != -1)
7756 set_gdbarch_sp_regnum (gdbarch,
7757 (tdep->eax_regnum
7758 + tdep->sp_regnum_from_eax));
7759 if (tdep->pc_regnum_from_eax != -1)
7760 set_gdbarch_pc_regnum (gdbarch,
7761 (tdep->eax_regnum
7762 + tdep->pc_regnum_from_eax));
7763 }
7764 else
7765 tdep->eax_regnum = -1;
7766
7767 mm0_regnum = ymm0_regnum;
7768 if (tdep->num_ymm_regs)
7769 {
7770 /* Support YMM pseudo-register if it is available. */
7771 tdep->ymm0_regnum = ymm0_regnum;
7772 mm0_regnum += tdep->num_ymm_regs;
7773 }
7774 else
7775 tdep->ymm0_regnum = -1;
7776
7777 if (tdep->num_mmx_regs != 0)
7778 {
7779 /* Support MMX pseudo-register if MMX hasn't been disabled. */
7780 tdep->mm0_regnum = mm0_regnum;
7781 }
7782 else
7783 tdep->mm0_regnum = -1;
7784
7785 /* Hook in the legacy prologue-based unwinders last (fallback). */
7786 frame_unwind_append_unwinder (gdbarch, &i386_stack_tramp_frame_unwind);
7787 frame_unwind_append_unwinder (gdbarch, &i386_sigtramp_frame_unwind);
7788 frame_unwind_append_unwinder (gdbarch, &i386_frame_unwind);
7789
7790 /* If we have a register mapping, enable the generic core file
7791 support, unless it has already been enabled. */
7792 if (tdep->gregset_reg_offset
7793 && !gdbarch_regset_from_core_section_p (gdbarch))
7794 set_gdbarch_regset_from_core_section (gdbarch,
7795 i386_regset_from_core_section);
7796
7797 set_gdbarch_skip_permanent_breakpoint (gdbarch,
7798 i386_skip_permanent_breakpoint);
7799
7800 set_gdbarch_fast_tracepoint_valid_at (gdbarch,
7801 i386_fast_tracepoint_valid_at);
7802
7803 return gdbarch;
7804 }
7805
7806 static enum gdb_osabi
7807 i386_coff_osabi_sniffer (bfd *abfd)
7808 {
7809 if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
7810 || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
7811 return GDB_OSABI_GO32;
7812
7813 return GDB_OSABI_UNKNOWN;
7814 }
7815 \f
7816
7817 /* Provide a prototype to silence -Wmissing-prototypes. */
7818 void _initialize_i386_tdep (void);
7819
7820 void
7821 _initialize_i386_tdep (void)
7822 {
7823 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
7824
7825 /* Add the variable that controls the disassembly flavor. */
7826 add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
7827 &disassembly_flavor, _("\
7828 Set the disassembly flavor."), _("\
7829 Show the disassembly flavor."), _("\
7830 The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
7831 NULL,
7832 NULL, /* FIXME: i18n: */
7833 &setlist, &showlist);
7834
7835 /* Add the variable that controls the convention for returning
7836 structs. */
7837 add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
7838 &struct_convention, _("\
7839 Set the convention for returning small structs."), _("\
7840 Show the convention for returning small structs."), _("\
7841 Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
7842 is \"default\"."),
7843 NULL,
7844 NULL, /* FIXME: i18n: */
7845 &setlist, &showlist);
7846
7847 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
7848 i386_coff_osabi_sniffer);
7849
7850 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
7851 i386_svr4_init_abi);
7852 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_GO32,
7853 i386_go32_init_abi);
7854
7855 /* Initialize the i386-specific register groups. */
7856 i386_init_reggroups ();
7857
7858 /* Initialize the standard target descriptions. */
7859 initialize_tdesc_i386 ();
7860 initialize_tdesc_i386_mmx ();
7861 initialize_tdesc_i386_avx ();
7862
7863 /* Tell remote stub that we support XML target description. */
7864 register_remote_support_xml ("i386");
7865 }
This page took 0.286593 seconds and 4 git commands to generate.