9d1d9e0ad5611b799a3cab1f9df36c9f5896534f
[deliverable/binutils-gdb.git] / gdb / i386-tdep.c
1 /* Intel 386 target-dependent stuff.
2
3 Copyright (C) 1988-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "opcode/i386.h"
22 #include "arch-utils.h"
23 #include "command.h"
24 #include "dummy-frame.h"
25 #include "dwarf2-frame.h"
26 #include "doublest.h"
27 #include "frame.h"
28 #include "frame-base.h"
29 #include "frame-unwind.h"
30 #include "inferior.h"
31 #include "gdbcmd.h"
32 #include "gdbcore.h"
33 #include "gdbtypes.h"
34 #include "objfiles.h"
35 #include "osabi.h"
36 #include "regcache.h"
37 #include "reggroups.h"
38 #include "regset.h"
39 #include "symfile.h"
40 #include "symtab.h"
41 #include "target.h"
42 #include "value.h"
43 #include "dis-asm.h"
44 #include "disasm.h"
45 #include "remote.h"
46 #include "exceptions.h"
47 #include "gdb_assert.h"
48 #include <string.h>
49
50 #include "i386-tdep.h"
51 #include "i387-tdep.h"
52 #include "i386-xstate.h"
53
54 #include "record.h"
55 #include "record-full.h"
56 #include <stdint.h>
57
58 #include "features/i386/i386.c"
59 #include "features/i386/i386-avx.c"
60 #include "features/i386/i386-mpx.c"
61 #include "features/i386/i386-mmx.c"
62
63 #include "ax.h"
64 #include "ax-gdb.h"
65
66 #include "stap-probe.h"
67 #include "user-regs.h"
68 #include "cli/cli-utils.h"
69 #include "expression.h"
70 #include "parser-defs.h"
71 #include <ctype.h>
72
73 /* Register names. */
74
75 static const char *i386_register_names[] =
76 {
77 "eax", "ecx", "edx", "ebx",
78 "esp", "ebp", "esi", "edi",
79 "eip", "eflags", "cs", "ss",
80 "ds", "es", "fs", "gs",
81 "st0", "st1", "st2", "st3",
82 "st4", "st5", "st6", "st7",
83 "fctrl", "fstat", "ftag", "fiseg",
84 "fioff", "foseg", "fooff", "fop",
85 "xmm0", "xmm1", "xmm2", "xmm3",
86 "xmm4", "xmm5", "xmm6", "xmm7",
87 "mxcsr"
88 };
89
90 static const char *i386_ymm_names[] =
91 {
92 "ymm0", "ymm1", "ymm2", "ymm3",
93 "ymm4", "ymm5", "ymm6", "ymm7",
94 };
95
96 static const char *i386_ymmh_names[] =
97 {
98 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
99 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
100 };
101
102 static const char *i386_mpx_names[] =
103 {
104 "bnd0raw", "bnd1raw", "bnd2raw", "bnd3raw", "bndcfgu", "bndstatus"
105 };
106
107 /* Register names for MPX pseudo-registers. */
108
109 static const char *i386_bnd_names[] =
110 {
111 "bnd0", "bnd1", "bnd2", "bnd3"
112 };
113
114 /* Register names for MMX pseudo-registers. */
115
116 static const char *i386_mmx_names[] =
117 {
118 "mm0", "mm1", "mm2", "mm3",
119 "mm4", "mm5", "mm6", "mm7"
120 };
121
122 /* Register names for byte pseudo-registers. */
123
124 static const char *i386_byte_names[] =
125 {
126 "al", "cl", "dl", "bl",
127 "ah", "ch", "dh", "bh"
128 };
129
130 /* Register names for word pseudo-registers. */
131
132 static const char *i386_word_names[] =
133 {
134 "ax", "cx", "dx", "bx",
135 "", "bp", "si", "di"
136 };
137
138 /* MMX register? */
139
140 static int
141 i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
142 {
143 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
144 int mm0_regnum = tdep->mm0_regnum;
145
146 if (mm0_regnum < 0)
147 return 0;
148
149 regnum -= mm0_regnum;
150 return regnum >= 0 && regnum < tdep->num_mmx_regs;
151 }
152
153 /* Byte register? */
154
155 int
156 i386_byte_regnum_p (struct gdbarch *gdbarch, int regnum)
157 {
158 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
159
160 regnum -= tdep->al_regnum;
161 return regnum >= 0 && regnum < tdep->num_byte_regs;
162 }
163
164 /* Word register? */
165
166 int
167 i386_word_regnum_p (struct gdbarch *gdbarch, int regnum)
168 {
169 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
170
171 regnum -= tdep->ax_regnum;
172 return regnum >= 0 && regnum < tdep->num_word_regs;
173 }
174
175 /* Dword register? */
176
177 int
178 i386_dword_regnum_p (struct gdbarch *gdbarch, int regnum)
179 {
180 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
181 int eax_regnum = tdep->eax_regnum;
182
183 if (eax_regnum < 0)
184 return 0;
185
186 regnum -= eax_regnum;
187 return regnum >= 0 && regnum < tdep->num_dword_regs;
188 }
189
190 static int
191 i386_ymmh_regnum_p (struct gdbarch *gdbarch, int regnum)
192 {
193 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
194 int ymm0h_regnum = tdep->ymm0h_regnum;
195
196 if (ymm0h_regnum < 0)
197 return 0;
198
199 regnum -= ymm0h_regnum;
200 return regnum >= 0 && regnum < tdep->num_ymm_regs;
201 }
202
203 /* AVX register? */
204
205 int
206 i386_ymm_regnum_p (struct gdbarch *gdbarch, int regnum)
207 {
208 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
209 int ymm0_regnum = tdep->ymm0_regnum;
210
211 if (ymm0_regnum < 0)
212 return 0;
213
214 regnum -= ymm0_regnum;
215 return regnum >= 0 && regnum < tdep->num_ymm_regs;
216 }
217
218 /* BND register? */
219
220 int
221 i386_bnd_regnum_p (struct gdbarch *gdbarch, int regnum)
222 {
223 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
224 int bnd0_regnum = tdep->bnd0_regnum;
225
226 if (bnd0_regnum < 0)
227 return 0;
228
229 regnum -= bnd0_regnum;
230 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
231 }
232
233 /* SSE register? */
234
235 int
236 i386_xmm_regnum_p (struct gdbarch *gdbarch, int regnum)
237 {
238 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
239 int num_xmm_regs = I387_NUM_XMM_REGS (tdep);
240
241 if (num_xmm_regs == 0)
242 return 0;
243
244 regnum -= I387_XMM0_REGNUM (tdep);
245 return regnum >= 0 && regnum < num_xmm_regs;
246 }
247
248 static int
249 i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
250 {
251 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
252
253 if (I387_NUM_XMM_REGS (tdep) == 0)
254 return 0;
255
256 return (regnum == I387_MXCSR_REGNUM (tdep));
257 }
258
259 /* FP register? */
260
261 int
262 i386_fp_regnum_p (struct gdbarch *gdbarch, int regnum)
263 {
264 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
265
266 if (I387_ST0_REGNUM (tdep) < 0)
267 return 0;
268
269 return (I387_ST0_REGNUM (tdep) <= regnum
270 && regnum < I387_FCTRL_REGNUM (tdep));
271 }
272
273 int
274 i386_fpc_regnum_p (struct gdbarch *gdbarch, int regnum)
275 {
276 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
277
278 if (I387_ST0_REGNUM (tdep) < 0)
279 return 0;
280
281 return (I387_FCTRL_REGNUM (tdep) <= regnum
282 && regnum < I387_XMM0_REGNUM (tdep));
283 }
284
285 /* BNDr (raw) register? */
286
287 static int
288 i386_bndr_regnum_p (struct gdbarch *gdbarch, int regnum)
289 {
290 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
291
292 if (I387_BND0R_REGNUM (tdep) < 0)
293 return 0;
294
295 regnum -= tdep->bnd0r_regnum;
296 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
297 }
298
299 /* BND control register? */
300
301 static int
302 i386_mpx_ctrl_regnum_p (struct gdbarch *gdbarch, int regnum)
303 {
304 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
305
306 if (I387_BNDCFGU_REGNUM (tdep) < 0)
307 return 0;
308
309 regnum -= I387_BNDCFGU_REGNUM (tdep);
310 return regnum >= 0 && regnum < I387_NUM_MPX_CTRL_REGS;
311 }
312
313 /* Return the name of register REGNUM, or the empty string if it is
314 an anonymous register. */
315
316 static const char *
317 i386_register_name (struct gdbarch *gdbarch, int regnum)
318 {
319 /* Hide the upper YMM registers. */
320 if (i386_ymmh_regnum_p (gdbarch, regnum))
321 return "";
322
323 return tdesc_register_name (gdbarch, regnum);
324 }
325
326 /* Return the name of register REGNUM. */
327
328 const char *
329 i386_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
330 {
331 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
332 if (i386_bnd_regnum_p (gdbarch, regnum))
333 return i386_bnd_names[regnum - tdep->bnd0_regnum];
334 if (i386_mmx_regnum_p (gdbarch, regnum))
335 return i386_mmx_names[regnum - I387_MM0_REGNUM (tdep)];
336 else if (i386_ymm_regnum_p (gdbarch, regnum))
337 return i386_ymm_names[regnum - tdep->ymm0_regnum];
338 else if (i386_byte_regnum_p (gdbarch, regnum))
339 return i386_byte_names[regnum - tdep->al_regnum];
340 else if (i386_word_regnum_p (gdbarch, regnum))
341 return i386_word_names[regnum - tdep->ax_regnum];
342
343 internal_error (__FILE__, __LINE__, _("invalid regnum"));
344 }
345
346 /* Convert a dbx register number REG to the appropriate register
347 number used by GDB. */
348
349 static int
350 i386_dbx_reg_to_regnum (struct gdbarch *gdbarch, int reg)
351 {
352 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
353
354 /* This implements what GCC calls the "default" register map
355 (dbx_register_map[]). */
356
357 if (reg >= 0 && reg <= 7)
358 {
359 /* General-purpose registers. The debug info calls %ebp
360 register 4, and %esp register 5. */
361 if (reg == 4)
362 return 5;
363 else if (reg == 5)
364 return 4;
365 else return reg;
366 }
367 else if (reg >= 12 && reg <= 19)
368 {
369 /* Floating-point registers. */
370 return reg - 12 + I387_ST0_REGNUM (tdep);
371 }
372 else if (reg >= 21 && reg <= 28)
373 {
374 /* SSE registers. */
375 int ymm0_regnum = tdep->ymm0_regnum;
376
377 if (ymm0_regnum >= 0
378 && i386_xmm_regnum_p (gdbarch, reg))
379 return reg - 21 + ymm0_regnum;
380 else
381 return reg - 21 + I387_XMM0_REGNUM (tdep);
382 }
383 else if (reg >= 29 && reg <= 36)
384 {
385 /* MMX registers. */
386 return reg - 29 + I387_MM0_REGNUM (tdep);
387 }
388
389 /* This will hopefully provoke a warning. */
390 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
391 }
392
393 /* Convert SVR4 register number REG to the appropriate register number
394 used by GDB. */
395
396 static int
397 i386_svr4_reg_to_regnum (struct gdbarch *gdbarch, int reg)
398 {
399 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
400
401 /* This implements the GCC register map that tries to be compatible
402 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
403
404 /* The SVR4 register numbering includes %eip and %eflags, and
405 numbers the floating point registers differently. */
406 if (reg >= 0 && reg <= 9)
407 {
408 /* General-purpose registers. */
409 return reg;
410 }
411 else if (reg >= 11 && reg <= 18)
412 {
413 /* Floating-point registers. */
414 return reg - 11 + I387_ST0_REGNUM (tdep);
415 }
416 else if (reg >= 21 && reg <= 36)
417 {
418 /* The SSE and MMX registers have the same numbers as with dbx. */
419 return i386_dbx_reg_to_regnum (gdbarch, reg);
420 }
421
422 switch (reg)
423 {
424 case 37: return I387_FCTRL_REGNUM (tdep);
425 case 38: return I387_FSTAT_REGNUM (tdep);
426 case 39: return I387_MXCSR_REGNUM (tdep);
427 case 40: return I386_ES_REGNUM;
428 case 41: return I386_CS_REGNUM;
429 case 42: return I386_SS_REGNUM;
430 case 43: return I386_DS_REGNUM;
431 case 44: return I386_FS_REGNUM;
432 case 45: return I386_GS_REGNUM;
433 }
434
435 /* This will hopefully provoke a warning. */
436 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
437 }
438
439 \f
440
441 /* This is the variable that is set with "set disassembly-flavor", and
442 its legitimate values. */
443 static const char att_flavor[] = "att";
444 static const char intel_flavor[] = "intel";
445 static const char *const valid_flavors[] =
446 {
447 att_flavor,
448 intel_flavor,
449 NULL
450 };
451 static const char *disassembly_flavor = att_flavor;
452 \f
453
454 /* Use the program counter to determine the contents and size of a
455 breakpoint instruction. Return a pointer to a string of bytes that
456 encode a breakpoint instruction, store the length of the string in
457 *LEN and optionally adjust *PC to point to the correct memory
458 location for inserting the breakpoint.
459
460 On the i386 we have a single breakpoint that fits in a single byte
461 and can be inserted anywhere.
462
463 This function is 64-bit safe. */
464
465 static const gdb_byte *
466 i386_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
467 {
468 static gdb_byte break_insn[] = { 0xcc }; /* int 3 */
469
470 *len = sizeof (break_insn);
471 return break_insn;
472 }
473 \f
474 /* Displaced instruction handling. */
475
476 /* Skip the legacy instruction prefixes in INSN.
477 Not all prefixes are valid for any particular insn
478 but we needn't care, the insn will fault if it's invalid.
479 The result is a pointer to the first opcode byte,
480 or NULL if we run off the end of the buffer. */
481
482 static gdb_byte *
483 i386_skip_prefixes (gdb_byte *insn, size_t max_len)
484 {
485 gdb_byte *end = insn + max_len;
486
487 while (insn < end)
488 {
489 switch (*insn)
490 {
491 case DATA_PREFIX_OPCODE:
492 case ADDR_PREFIX_OPCODE:
493 case CS_PREFIX_OPCODE:
494 case DS_PREFIX_OPCODE:
495 case ES_PREFIX_OPCODE:
496 case FS_PREFIX_OPCODE:
497 case GS_PREFIX_OPCODE:
498 case SS_PREFIX_OPCODE:
499 case LOCK_PREFIX_OPCODE:
500 case REPE_PREFIX_OPCODE:
501 case REPNE_PREFIX_OPCODE:
502 ++insn;
503 continue;
504 default:
505 return insn;
506 }
507 }
508
509 return NULL;
510 }
511
512 static int
513 i386_absolute_jmp_p (const gdb_byte *insn)
514 {
515 /* jmp far (absolute address in operand). */
516 if (insn[0] == 0xea)
517 return 1;
518
519 if (insn[0] == 0xff)
520 {
521 /* jump near, absolute indirect (/4). */
522 if ((insn[1] & 0x38) == 0x20)
523 return 1;
524
525 /* jump far, absolute indirect (/5). */
526 if ((insn[1] & 0x38) == 0x28)
527 return 1;
528 }
529
530 return 0;
531 }
532
533 static int
534 i386_absolute_call_p (const gdb_byte *insn)
535 {
536 /* call far, absolute. */
537 if (insn[0] == 0x9a)
538 return 1;
539
540 if (insn[0] == 0xff)
541 {
542 /* Call near, absolute indirect (/2). */
543 if ((insn[1] & 0x38) == 0x10)
544 return 1;
545
546 /* Call far, absolute indirect (/3). */
547 if ((insn[1] & 0x38) == 0x18)
548 return 1;
549 }
550
551 return 0;
552 }
553
554 static int
555 i386_ret_p (const gdb_byte *insn)
556 {
557 switch (insn[0])
558 {
559 case 0xc2: /* ret near, pop N bytes. */
560 case 0xc3: /* ret near */
561 case 0xca: /* ret far, pop N bytes. */
562 case 0xcb: /* ret far */
563 case 0xcf: /* iret */
564 return 1;
565
566 default:
567 return 0;
568 }
569 }
570
571 static int
572 i386_call_p (const gdb_byte *insn)
573 {
574 if (i386_absolute_call_p (insn))
575 return 1;
576
577 /* call near, relative. */
578 if (insn[0] == 0xe8)
579 return 1;
580
581 return 0;
582 }
583
584 /* Return non-zero if INSN is a system call, and set *LENGTHP to its
585 length in bytes. Otherwise, return zero. */
586
587 static int
588 i386_syscall_p (const gdb_byte *insn, int *lengthp)
589 {
590 /* Is it 'int $0x80'? */
591 if ((insn[0] == 0xcd && insn[1] == 0x80)
592 /* Or is it 'sysenter'? */
593 || (insn[0] == 0x0f && insn[1] == 0x34)
594 /* Or is it 'syscall'? */
595 || (insn[0] == 0x0f && insn[1] == 0x05))
596 {
597 *lengthp = 2;
598 return 1;
599 }
600
601 return 0;
602 }
603
604 /* Some kernels may run one past a syscall insn, so we have to cope.
605 Otherwise this is just simple_displaced_step_copy_insn. */
606
607 struct displaced_step_closure *
608 i386_displaced_step_copy_insn (struct gdbarch *gdbarch,
609 CORE_ADDR from, CORE_ADDR to,
610 struct regcache *regs)
611 {
612 size_t len = gdbarch_max_insn_length (gdbarch);
613 gdb_byte *buf = xmalloc (len);
614
615 read_memory (from, buf, len);
616
617 /* GDB may get control back after the insn after the syscall.
618 Presumably this is a kernel bug.
619 If this is a syscall, make sure there's a nop afterwards. */
620 {
621 int syscall_length;
622 gdb_byte *insn;
623
624 insn = i386_skip_prefixes (buf, len);
625 if (insn != NULL && i386_syscall_p (insn, &syscall_length))
626 insn[syscall_length] = NOP_OPCODE;
627 }
628
629 write_memory (to, buf, len);
630
631 if (debug_displaced)
632 {
633 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
634 paddress (gdbarch, from), paddress (gdbarch, to));
635 displaced_step_dump_bytes (gdb_stdlog, buf, len);
636 }
637
638 return (struct displaced_step_closure *) buf;
639 }
640
641 /* Fix up the state of registers and memory after having single-stepped
642 a displaced instruction. */
643
644 void
645 i386_displaced_step_fixup (struct gdbarch *gdbarch,
646 struct displaced_step_closure *closure,
647 CORE_ADDR from, CORE_ADDR to,
648 struct regcache *regs)
649 {
650 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
651
652 /* The offset we applied to the instruction's address.
653 This could well be negative (when viewed as a signed 32-bit
654 value), but ULONGEST won't reflect that, so take care when
655 applying it. */
656 ULONGEST insn_offset = to - from;
657
658 /* Since we use simple_displaced_step_copy_insn, our closure is a
659 copy of the instruction. */
660 gdb_byte *insn = (gdb_byte *) closure;
661 /* The start of the insn, needed in case we see some prefixes. */
662 gdb_byte *insn_start = insn;
663
664 if (debug_displaced)
665 fprintf_unfiltered (gdb_stdlog,
666 "displaced: fixup (%s, %s), "
667 "insn = 0x%02x 0x%02x ...\n",
668 paddress (gdbarch, from), paddress (gdbarch, to),
669 insn[0], insn[1]);
670
671 /* The list of issues to contend with here is taken from
672 resume_execution in arch/i386/kernel/kprobes.c, Linux 2.6.20.
673 Yay for Free Software! */
674
675 /* Relocate the %eip, if necessary. */
676
677 /* The instruction recognizers we use assume any leading prefixes
678 have been skipped. */
679 {
680 /* This is the size of the buffer in closure. */
681 size_t max_insn_len = gdbarch_max_insn_length (gdbarch);
682 gdb_byte *opcode = i386_skip_prefixes (insn, max_insn_len);
683 /* If there are too many prefixes, just ignore the insn.
684 It will fault when run. */
685 if (opcode != NULL)
686 insn = opcode;
687 }
688
689 /* Except in the case of absolute or indirect jump or call
690 instructions, or a return instruction, the new eip is relative to
691 the displaced instruction; make it relative. Well, signal
692 handler returns don't need relocation either, but we use the
693 value of %eip to recognize those; see below. */
694 if (! i386_absolute_jmp_p (insn)
695 && ! i386_absolute_call_p (insn)
696 && ! i386_ret_p (insn))
697 {
698 ULONGEST orig_eip;
699 int insn_len;
700
701 regcache_cooked_read_unsigned (regs, I386_EIP_REGNUM, &orig_eip);
702
703 /* A signal trampoline system call changes the %eip, resuming
704 execution of the main program after the signal handler has
705 returned. That makes them like 'return' instructions; we
706 shouldn't relocate %eip.
707
708 But most system calls don't, and we do need to relocate %eip.
709
710 Our heuristic for distinguishing these cases: if stepping
711 over the system call instruction left control directly after
712 the instruction, the we relocate --- control almost certainly
713 doesn't belong in the displaced copy. Otherwise, we assume
714 the instruction has put control where it belongs, and leave
715 it unrelocated. Goodness help us if there are PC-relative
716 system calls. */
717 if (i386_syscall_p (insn, &insn_len)
718 && orig_eip != to + (insn - insn_start) + insn_len
719 /* GDB can get control back after the insn after the syscall.
720 Presumably this is a kernel bug.
721 i386_displaced_step_copy_insn ensures its a nop,
722 we add one to the length for it. */
723 && orig_eip != to + (insn - insn_start) + insn_len + 1)
724 {
725 if (debug_displaced)
726 fprintf_unfiltered (gdb_stdlog,
727 "displaced: syscall changed %%eip; "
728 "not relocating\n");
729 }
730 else
731 {
732 ULONGEST eip = (orig_eip - insn_offset) & 0xffffffffUL;
733
734 /* If we just stepped over a breakpoint insn, we don't backup
735 the pc on purpose; this is to match behaviour without
736 stepping. */
737
738 regcache_cooked_write_unsigned (regs, I386_EIP_REGNUM, eip);
739
740 if (debug_displaced)
741 fprintf_unfiltered (gdb_stdlog,
742 "displaced: "
743 "relocated %%eip from %s to %s\n",
744 paddress (gdbarch, orig_eip),
745 paddress (gdbarch, eip));
746 }
747 }
748
749 /* If the instruction was PUSHFL, then the TF bit will be set in the
750 pushed value, and should be cleared. We'll leave this for later,
751 since GDB already messes up the TF flag when stepping over a
752 pushfl. */
753
754 /* If the instruction was a call, the return address now atop the
755 stack is the address following the copied instruction. We need
756 to make it the address following the original instruction. */
757 if (i386_call_p (insn))
758 {
759 ULONGEST esp;
760 ULONGEST retaddr;
761 const ULONGEST retaddr_len = 4;
762
763 regcache_cooked_read_unsigned (regs, I386_ESP_REGNUM, &esp);
764 retaddr = read_memory_unsigned_integer (esp, retaddr_len, byte_order);
765 retaddr = (retaddr - insn_offset) & 0xffffffffUL;
766 write_memory_unsigned_integer (esp, retaddr_len, byte_order, retaddr);
767
768 if (debug_displaced)
769 fprintf_unfiltered (gdb_stdlog,
770 "displaced: relocated return addr at %s to %s\n",
771 paddress (gdbarch, esp),
772 paddress (gdbarch, retaddr));
773 }
774 }
775
776 static void
777 append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
778 {
779 target_write_memory (*to, buf, len);
780 *to += len;
781 }
782
783 static void
784 i386_relocate_instruction (struct gdbarch *gdbarch,
785 CORE_ADDR *to, CORE_ADDR oldloc)
786 {
787 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
788 gdb_byte buf[I386_MAX_INSN_LEN];
789 int offset = 0, rel32, newrel;
790 int insn_length;
791 gdb_byte *insn = buf;
792
793 read_memory (oldloc, buf, I386_MAX_INSN_LEN);
794
795 insn_length = gdb_buffered_insn_length (gdbarch, insn,
796 I386_MAX_INSN_LEN, oldloc);
797
798 /* Get past the prefixes. */
799 insn = i386_skip_prefixes (insn, I386_MAX_INSN_LEN);
800
801 /* Adjust calls with 32-bit relative addresses as push/jump, with
802 the address pushed being the location where the original call in
803 the user program would return to. */
804 if (insn[0] == 0xe8)
805 {
806 gdb_byte push_buf[16];
807 unsigned int ret_addr;
808
809 /* Where "ret" in the original code will return to. */
810 ret_addr = oldloc + insn_length;
811 push_buf[0] = 0x68; /* pushq $... */
812 store_unsigned_integer (&push_buf[1], 4, byte_order, ret_addr);
813 /* Push the push. */
814 append_insns (to, 5, push_buf);
815
816 /* Convert the relative call to a relative jump. */
817 insn[0] = 0xe9;
818
819 /* Adjust the destination offset. */
820 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
821 newrel = (oldloc - *to) + rel32;
822 store_signed_integer (insn + 1, 4, byte_order, newrel);
823
824 if (debug_displaced)
825 fprintf_unfiltered (gdb_stdlog,
826 "Adjusted insn rel32=%s at %s to"
827 " rel32=%s at %s\n",
828 hex_string (rel32), paddress (gdbarch, oldloc),
829 hex_string (newrel), paddress (gdbarch, *to));
830
831 /* Write the adjusted jump into its displaced location. */
832 append_insns (to, 5, insn);
833 return;
834 }
835
836 /* Adjust jumps with 32-bit relative addresses. Calls are already
837 handled above. */
838 if (insn[0] == 0xe9)
839 offset = 1;
840 /* Adjust conditional jumps. */
841 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
842 offset = 2;
843
844 if (offset)
845 {
846 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
847 newrel = (oldloc - *to) + rel32;
848 store_signed_integer (insn + offset, 4, byte_order, newrel);
849 if (debug_displaced)
850 fprintf_unfiltered (gdb_stdlog,
851 "Adjusted insn rel32=%s at %s to"
852 " rel32=%s at %s\n",
853 hex_string (rel32), paddress (gdbarch, oldloc),
854 hex_string (newrel), paddress (gdbarch, *to));
855 }
856
857 /* Write the adjusted instructions into their displaced
858 location. */
859 append_insns (to, insn_length, buf);
860 }
861
862 \f
863 #ifdef I386_REGNO_TO_SYMMETRY
864 #error "The Sequent Symmetry is no longer supported."
865 #endif
866
867 /* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
868 and %esp "belong" to the calling function. Therefore these
869 registers should be saved if they're going to be modified. */
870
871 /* The maximum number of saved registers. This should include all
872 registers mentioned above, and %eip. */
873 #define I386_NUM_SAVED_REGS I386_NUM_GREGS
874
875 struct i386_frame_cache
876 {
877 /* Base address. */
878 CORE_ADDR base;
879 int base_p;
880 LONGEST sp_offset;
881 CORE_ADDR pc;
882
883 /* Saved registers. */
884 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
885 CORE_ADDR saved_sp;
886 int saved_sp_reg;
887 int pc_in_eax;
888
889 /* Stack space reserved for local variables. */
890 long locals;
891 };
892
893 /* Allocate and initialize a frame cache. */
894
895 static struct i386_frame_cache *
896 i386_alloc_frame_cache (void)
897 {
898 struct i386_frame_cache *cache;
899 int i;
900
901 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
902
903 /* Base address. */
904 cache->base_p = 0;
905 cache->base = 0;
906 cache->sp_offset = -4;
907 cache->pc = 0;
908
909 /* Saved registers. We initialize these to -1 since zero is a valid
910 offset (that's where %ebp is supposed to be stored). */
911 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
912 cache->saved_regs[i] = -1;
913 cache->saved_sp = 0;
914 cache->saved_sp_reg = -1;
915 cache->pc_in_eax = 0;
916
917 /* Frameless until proven otherwise. */
918 cache->locals = -1;
919
920 return cache;
921 }
922
923 /* If the instruction at PC is a jump, return the address of its
924 target. Otherwise, return PC. */
925
926 static CORE_ADDR
927 i386_follow_jump (struct gdbarch *gdbarch, CORE_ADDR pc)
928 {
929 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
930 gdb_byte op;
931 long delta = 0;
932 int data16 = 0;
933
934 if (target_read_code (pc, &op, 1))
935 return pc;
936
937 if (op == 0x66)
938 {
939 data16 = 1;
940
941 op = read_code_unsigned_integer (pc + 1, 1, byte_order);
942 }
943
944 switch (op)
945 {
946 case 0xe9:
947 /* Relative jump: if data16 == 0, disp32, else disp16. */
948 if (data16)
949 {
950 delta = read_memory_integer (pc + 2, 2, byte_order);
951
952 /* Include the size of the jmp instruction (including the
953 0x66 prefix). */
954 delta += 4;
955 }
956 else
957 {
958 delta = read_memory_integer (pc + 1, 4, byte_order);
959
960 /* Include the size of the jmp instruction. */
961 delta += 5;
962 }
963 break;
964 case 0xeb:
965 /* Relative jump, disp8 (ignore data16). */
966 delta = read_memory_integer (pc + data16 + 1, 1, byte_order);
967
968 delta += data16 + 2;
969 break;
970 }
971
972 return pc + delta;
973 }
974
975 /* Check whether PC points at a prologue for a function returning a
976 structure or union. If so, it updates CACHE and returns the
977 address of the first instruction after the code sequence that
978 removes the "hidden" argument from the stack or CURRENT_PC,
979 whichever is smaller. Otherwise, return PC. */
980
981 static CORE_ADDR
982 i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
983 struct i386_frame_cache *cache)
984 {
985 /* Functions that return a structure or union start with:
986
987 popl %eax 0x58
988 xchgl %eax, (%esp) 0x87 0x04 0x24
989 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
990
991 (the System V compiler puts out the second `xchg' instruction,
992 and the assembler doesn't try to optimize it, so the 'sib' form
993 gets generated). This sequence is used to get the address of the
994 return buffer for a function that returns a structure. */
995 static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
996 static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
997 gdb_byte buf[4];
998 gdb_byte op;
999
1000 if (current_pc <= pc)
1001 return pc;
1002
1003 if (target_read_code (pc, &op, 1))
1004 return pc;
1005
1006 if (op != 0x58) /* popl %eax */
1007 return pc;
1008
1009 if (target_read_code (pc + 1, buf, 4))
1010 return pc;
1011
1012 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
1013 return pc;
1014
1015 if (current_pc == pc)
1016 {
1017 cache->sp_offset += 4;
1018 return current_pc;
1019 }
1020
1021 if (current_pc == pc + 1)
1022 {
1023 cache->pc_in_eax = 1;
1024 return current_pc;
1025 }
1026
1027 if (buf[1] == proto1[1])
1028 return pc + 4;
1029 else
1030 return pc + 5;
1031 }
1032
1033 static CORE_ADDR
1034 i386_skip_probe (CORE_ADDR pc)
1035 {
1036 /* A function may start with
1037
1038 pushl constant
1039 call _probe
1040 addl $4, %esp
1041
1042 followed by
1043
1044 pushl %ebp
1045
1046 etc. */
1047 gdb_byte buf[8];
1048 gdb_byte op;
1049
1050 if (target_read_code (pc, &op, 1))
1051 return pc;
1052
1053 if (op == 0x68 || op == 0x6a)
1054 {
1055 int delta;
1056
1057 /* Skip past the `pushl' instruction; it has either a one-byte or a
1058 four-byte operand, depending on the opcode. */
1059 if (op == 0x68)
1060 delta = 5;
1061 else
1062 delta = 2;
1063
1064 /* Read the following 8 bytes, which should be `call _probe' (6
1065 bytes) followed by `addl $4,%esp' (2 bytes). */
1066 read_memory (pc + delta, buf, sizeof (buf));
1067 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
1068 pc += delta + sizeof (buf);
1069 }
1070
1071 return pc;
1072 }
1073
1074 /* GCC 4.1 and later, can put code in the prologue to realign the
1075 stack pointer. Check whether PC points to such code, and update
1076 CACHE accordingly. Return the first instruction after the code
1077 sequence or CURRENT_PC, whichever is smaller. If we don't
1078 recognize the code, return PC. */
1079
1080 static CORE_ADDR
1081 i386_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1082 struct i386_frame_cache *cache)
1083 {
1084 /* There are 2 code sequences to re-align stack before the frame
1085 gets set up:
1086
1087 1. Use a caller-saved saved register:
1088
1089 leal 4(%esp), %reg
1090 andl $-XXX, %esp
1091 pushl -4(%reg)
1092
1093 2. Use a callee-saved saved register:
1094
1095 pushl %reg
1096 leal 8(%esp), %reg
1097 andl $-XXX, %esp
1098 pushl -4(%reg)
1099
1100 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
1101
1102 0x83 0xe4 0xf0 andl $-16, %esp
1103 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
1104 */
1105
1106 gdb_byte buf[14];
1107 int reg;
1108 int offset, offset_and;
1109 static int regnums[8] = {
1110 I386_EAX_REGNUM, /* %eax */
1111 I386_ECX_REGNUM, /* %ecx */
1112 I386_EDX_REGNUM, /* %edx */
1113 I386_EBX_REGNUM, /* %ebx */
1114 I386_ESP_REGNUM, /* %esp */
1115 I386_EBP_REGNUM, /* %ebp */
1116 I386_ESI_REGNUM, /* %esi */
1117 I386_EDI_REGNUM /* %edi */
1118 };
1119
1120 if (target_read_code (pc, buf, sizeof buf))
1121 return pc;
1122
1123 /* Check caller-saved saved register. The first instruction has
1124 to be "leal 4(%esp), %reg". */
1125 if (buf[0] == 0x8d && buf[2] == 0x24 && buf[3] == 0x4)
1126 {
1127 /* MOD must be binary 10 and R/M must be binary 100. */
1128 if ((buf[1] & 0xc7) != 0x44)
1129 return pc;
1130
1131 /* REG has register number. */
1132 reg = (buf[1] >> 3) & 7;
1133 offset = 4;
1134 }
1135 else
1136 {
1137 /* Check callee-saved saved register. The first instruction
1138 has to be "pushl %reg". */
1139 if ((buf[0] & 0xf8) != 0x50)
1140 return pc;
1141
1142 /* Get register. */
1143 reg = buf[0] & 0x7;
1144
1145 /* The next instruction has to be "leal 8(%esp), %reg". */
1146 if (buf[1] != 0x8d || buf[3] != 0x24 || buf[4] != 0x8)
1147 return pc;
1148
1149 /* MOD must be binary 10 and R/M must be binary 100. */
1150 if ((buf[2] & 0xc7) != 0x44)
1151 return pc;
1152
1153 /* REG has register number. Registers in pushl and leal have to
1154 be the same. */
1155 if (reg != ((buf[2] >> 3) & 7))
1156 return pc;
1157
1158 offset = 5;
1159 }
1160
1161 /* Rigister can't be %esp nor %ebp. */
1162 if (reg == 4 || reg == 5)
1163 return pc;
1164
1165 /* The next instruction has to be "andl $-XXX, %esp". */
1166 if (buf[offset + 1] != 0xe4
1167 || (buf[offset] != 0x81 && buf[offset] != 0x83))
1168 return pc;
1169
1170 offset_and = offset;
1171 offset += buf[offset] == 0x81 ? 6 : 3;
1172
1173 /* The next instruction has to be "pushl -4(%reg)". 8bit -4 is
1174 0xfc. REG must be binary 110 and MOD must be binary 01. */
1175 if (buf[offset] != 0xff
1176 || buf[offset + 2] != 0xfc
1177 || (buf[offset + 1] & 0xf8) != 0x70)
1178 return pc;
1179
1180 /* R/M has register. Registers in leal and pushl have to be the
1181 same. */
1182 if (reg != (buf[offset + 1] & 7))
1183 return pc;
1184
1185 if (current_pc > pc + offset_and)
1186 cache->saved_sp_reg = regnums[reg];
1187
1188 return min (pc + offset + 3, current_pc);
1189 }
1190
1191 /* Maximum instruction length we need to handle. */
1192 #define I386_MAX_MATCHED_INSN_LEN 6
1193
1194 /* Instruction description. */
1195 struct i386_insn
1196 {
1197 size_t len;
1198 gdb_byte insn[I386_MAX_MATCHED_INSN_LEN];
1199 gdb_byte mask[I386_MAX_MATCHED_INSN_LEN];
1200 };
1201
1202 /* Return whether instruction at PC matches PATTERN. */
1203
1204 static int
1205 i386_match_pattern (CORE_ADDR pc, struct i386_insn pattern)
1206 {
1207 gdb_byte op;
1208
1209 if (target_read_code (pc, &op, 1))
1210 return 0;
1211
1212 if ((op & pattern.mask[0]) == pattern.insn[0])
1213 {
1214 gdb_byte buf[I386_MAX_MATCHED_INSN_LEN - 1];
1215 int insn_matched = 1;
1216 size_t i;
1217
1218 gdb_assert (pattern.len > 1);
1219 gdb_assert (pattern.len <= I386_MAX_MATCHED_INSN_LEN);
1220
1221 if (target_read_code (pc + 1, buf, pattern.len - 1))
1222 return 0;
1223
1224 for (i = 1; i < pattern.len; i++)
1225 {
1226 if ((buf[i - 1] & pattern.mask[i]) != pattern.insn[i])
1227 insn_matched = 0;
1228 }
1229 return insn_matched;
1230 }
1231 return 0;
1232 }
1233
1234 /* Search for the instruction at PC in the list INSN_PATTERNS. Return
1235 the first instruction description that matches. Otherwise, return
1236 NULL. */
1237
1238 static struct i386_insn *
1239 i386_match_insn (CORE_ADDR pc, struct i386_insn *insn_patterns)
1240 {
1241 struct i386_insn *pattern;
1242
1243 for (pattern = insn_patterns; pattern->len > 0; pattern++)
1244 {
1245 if (i386_match_pattern (pc, *pattern))
1246 return pattern;
1247 }
1248
1249 return NULL;
1250 }
1251
1252 /* Return whether PC points inside a sequence of instructions that
1253 matches INSN_PATTERNS. */
1254
1255 static int
1256 i386_match_insn_block (CORE_ADDR pc, struct i386_insn *insn_patterns)
1257 {
1258 CORE_ADDR current_pc;
1259 int ix, i;
1260 struct i386_insn *insn;
1261
1262 insn = i386_match_insn (pc, insn_patterns);
1263 if (insn == NULL)
1264 return 0;
1265
1266 current_pc = pc;
1267 ix = insn - insn_patterns;
1268 for (i = ix - 1; i >= 0; i--)
1269 {
1270 current_pc -= insn_patterns[i].len;
1271
1272 if (!i386_match_pattern (current_pc, insn_patterns[i]))
1273 return 0;
1274 }
1275
1276 current_pc = pc + insn->len;
1277 for (insn = insn_patterns + ix + 1; insn->len > 0; insn++)
1278 {
1279 if (!i386_match_pattern (current_pc, *insn))
1280 return 0;
1281
1282 current_pc += insn->len;
1283 }
1284
1285 return 1;
1286 }
1287
1288 /* Some special instructions that might be migrated by GCC into the
1289 part of the prologue that sets up the new stack frame. Because the
1290 stack frame hasn't been setup yet, no registers have been saved
1291 yet, and only the scratch registers %eax, %ecx and %edx can be
1292 touched. */
1293
1294 struct i386_insn i386_frame_setup_skip_insns[] =
1295 {
1296 /* Check for `movb imm8, r' and `movl imm32, r'.
1297
1298 ??? Should we handle 16-bit operand-sizes here? */
1299
1300 /* `movb imm8, %al' and `movb imm8, %ah' */
1301 /* `movb imm8, %cl' and `movb imm8, %ch' */
1302 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
1303 /* `movb imm8, %dl' and `movb imm8, %dh' */
1304 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
1305 /* `movl imm32, %eax' and `movl imm32, %ecx' */
1306 { 5, { 0xb8 }, { 0xfe } },
1307 /* `movl imm32, %edx' */
1308 { 5, { 0xba }, { 0xff } },
1309
1310 /* Check for `mov imm32, r32'. Note that there is an alternative
1311 encoding for `mov m32, %eax'.
1312
1313 ??? Should we handle SIB adressing here?
1314 ??? Should we handle 16-bit operand-sizes here? */
1315
1316 /* `movl m32, %eax' */
1317 { 5, { 0xa1 }, { 0xff } },
1318 /* `movl m32, %eax' and `mov; m32, %ecx' */
1319 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
1320 /* `movl m32, %edx' */
1321 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
1322
1323 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
1324 Because of the symmetry, there are actually two ways to encode
1325 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
1326 opcode bytes 0x31 and 0x33 for `xorl'. */
1327
1328 /* `subl %eax, %eax' */
1329 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
1330 /* `subl %ecx, %ecx' */
1331 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
1332 /* `subl %edx, %edx' */
1333 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
1334 /* `xorl %eax, %eax' */
1335 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
1336 /* `xorl %ecx, %ecx' */
1337 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
1338 /* `xorl %edx, %edx' */
1339 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
1340 { 0 }
1341 };
1342
1343
1344 /* Check whether PC points to a no-op instruction. */
1345 static CORE_ADDR
1346 i386_skip_noop (CORE_ADDR pc)
1347 {
1348 gdb_byte op;
1349 int check = 1;
1350
1351 if (target_read_code (pc, &op, 1))
1352 return pc;
1353
1354 while (check)
1355 {
1356 check = 0;
1357 /* Ignore `nop' instruction. */
1358 if (op == 0x90)
1359 {
1360 pc += 1;
1361 if (target_read_code (pc, &op, 1))
1362 return pc;
1363 check = 1;
1364 }
1365 /* Ignore no-op instruction `mov %edi, %edi'.
1366 Microsoft system dlls often start with
1367 a `mov %edi,%edi' instruction.
1368 The 5 bytes before the function start are
1369 filled with `nop' instructions.
1370 This pattern can be used for hot-patching:
1371 The `mov %edi, %edi' instruction can be replaced by a
1372 near jump to the location of the 5 `nop' instructions
1373 which can be replaced by a 32-bit jump to anywhere
1374 in the 32-bit address space. */
1375
1376 else if (op == 0x8b)
1377 {
1378 if (target_read_code (pc + 1, &op, 1))
1379 return pc;
1380
1381 if (op == 0xff)
1382 {
1383 pc += 2;
1384 if (target_read_code (pc, &op, 1))
1385 return pc;
1386
1387 check = 1;
1388 }
1389 }
1390 }
1391 return pc;
1392 }
1393
1394 /* Check whether PC points at a code that sets up a new stack frame.
1395 If so, it updates CACHE and returns the address of the first
1396 instruction after the sequence that sets up the frame or LIMIT,
1397 whichever is smaller. If we don't recognize the code, return PC. */
1398
1399 static CORE_ADDR
1400 i386_analyze_frame_setup (struct gdbarch *gdbarch,
1401 CORE_ADDR pc, CORE_ADDR limit,
1402 struct i386_frame_cache *cache)
1403 {
1404 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1405 struct i386_insn *insn;
1406 gdb_byte op;
1407 int skip = 0;
1408
1409 if (limit <= pc)
1410 return limit;
1411
1412 if (target_read_code (pc, &op, 1))
1413 return pc;
1414
1415 if (op == 0x55) /* pushl %ebp */
1416 {
1417 /* Take into account that we've executed the `pushl %ebp' that
1418 starts this instruction sequence. */
1419 cache->saved_regs[I386_EBP_REGNUM] = 0;
1420 cache->sp_offset += 4;
1421 pc++;
1422
1423 /* If that's all, return now. */
1424 if (limit <= pc)
1425 return limit;
1426
1427 /* Check for some special instructions that might be migrated by
1428 GCC into the prologue and skip them. At this point in the
1429 prologue, code should only touch the scratch registers %eax,
1430 %ecx and %edx, so while the number of posibilities is sheer,
1431 it is limited.
1432
1433 Make sure we only skip these instructions if we later see the
1434 `movl %esp, %ebp' that actually sets up the frame. */
1435 while (pc + skip < limit)
1436 {
1437 insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
1438 if (insn == NULL)
1439 break;
1440
1441 skip += insn->len;
1442 }
1443
1444 /* If that's all, return now. */
1445 if (limit <= pc + skip)
1446 return limit;
1447
1448 if (target_read_code (pc + skip, &op, 1))
1449 return pc + skip;
1450
1451 /* The i386 prologue looks like
1452
1453 push %ebp
1454 mov %esp,%ebp
1455 sub $0x10,%esp
1456
1457 and a different prologue can be generated for atom.
1458
1459 push %ebp
1460 lea (%esp),%ebp
1461 lea -0x10(%esp),%esp
1462
1463 We handle both of them here. */
1464
1465 switch (op)
1466 {
1467 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
1468 case 0x8b:
1469 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
1470 != 0xec)
1471 return pc;
1472 pc += (skip + 2);
1473 break;
1474 case 0x89:
1475 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
1476 != 0xe5)
1477 return pc;
1478 pc += (skip + 2);
1479 break;
1480 case 0x8d: /* Check for 'lea (%ebp), %ebp'. */
1481 if (read_code_unsigned_integer (pc + skip + 1, 2, byte_order)
1482 != 0x242c)
1483 return pc;
1484 pc += (skip + 3);
1485 break;
1486 default:
1487 return pc;
1488 }
1489
1490 /* OK, we actually have a frame. We just don't know how large
1491 it is yet. Set its size to zero. We'll adjust it if
1492 necessary. We also now commit to skipping the special
1493 instructions mentioned before. */
1494 cache->locals = 0;
1495
1496 /* If that's all, return now. */
1497 if (limit <= pc)
1498 return limit;
1499
1500 /* Check for stack adjustment
1501
1502 subl $XXX, %esp
1503 or
1504 lea -XXX(%esp),%esp
1505
1506 NOTE: You can't subtract a 16-bit immediate from a 32-bit
1507 reg, so we don't have to worry about a data16 prefix. */
1508 if (target_read_code (pc, &op, 1))
1509 return pc;
1510 if (op == 0x83)
1511 {
1512 /* `subl' with 8-bit immediate. */
1513 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1514 /* Some instruction starting with 0x83 other than `subl'. */
1515 return pc;
1516
1517 /* `subl' with signed 8-bit immediate (though it wouldn't
1518 make sense to be negative). */
1519 cache->locals = read_code_integer (pc + 2, 1, byte_order);
1520 return pc + 3;
1521 }
1522 else if (op == 0x81)
1523 {
1524 /* Maybe it is `subl' with a 32-bit immediate. */
1525 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1526 /* Some instruction starting with 0x81 other than `subl'. */
1527 return pc;
1528
1529 /* It is `subl' with a 32-bit immediate. */
1530 cache->locals = read_code_integer (pc + 2, 4, byte_order);
1531 return pc + 6;
1532 }
1533 else if (op == 0x8d)
1534 {
1535 /* The ModR/M byte is 0x64. */
1536 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0x64)
1537 return pc;
1538 /* 'lea' with 8-bit displacement. */
1539 cache->locals = -1 * read_code_integer (pc + 3, 1, byte_order);
1540 return pc + 4;
1541 }
1542 else
1543 {
1544 /* Some instruction other than `subl' nor 'lea'. */
1545 return pc;
1546 }
1547 }
1548 else if (op == 0xc8) /* enter */
1549 {
1550 cache->locals = read_code_unsigned_integer (pc + 1, 2, byte_order);
1551 return pc + 4;
1552 }
1553
1554 return pc;
1555 }
1556
1557 /* Check whether PC points at code that saves registers on the stack.
1558 If so, it updates CACHE and returns the address of the first
1559 instruction after the register saves or CURRENT_PC, whichever is
1560 smaller. Otherwise, return PC. */
1561
1562 static CORE_ADDR
1563 i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
1564 struct i386_frame_cache *cache)
1565 {
1566 CORE_ADDR offset = 0;
1567 gdb_byte op;
1568 int i;
1569
1570 if (cache->locals > 0)
1571 offset -= cache->locals;
1572 for (i = 0; i < 8 && pc < current_pc; i++)
1573 {
1574 if (target_read_code (pc, &op, 1))
1575 return pc;
1576 if (op < 0x50 || op > 0x57)
1577 break;
1578
1579 offset -= 4;
1580 cache->saved_regs[op - 0x50] = offset;
1581 cache->sp_offset += 4;
1582 pc++;
1583 }
1584
1585 return pc;
1586 }
1587
1588 /* Do a full analysis of the prologue at PC and update CACHE
1589 accordingly. Bail out early if CURRENT_PC is reached. Return the
1590 address where the analysis stopped.
1591
1592 We handle these cases:
1593
1594 The startup sequence can be at the start of the function, or the
1595 function can start with a branch to startup code at the end.
1596
1597 %ebp can be set up with either the 'enter' instruction, or "pushl
1598 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
1599 once used in the System V compiler).
1600
1601 Local space is allocated just below the saved %ebp by either the
1602 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
1603 16-bit unsigned argument for space to allocate, and the 'addl'
1604 instruction could have either a signed byte, or 32-bit immediate.
1605
1606 Next, the registers used by this function are pushed. With the
1607 System V compiler they will always be in the order: %edi, %esi,
1608 %ebx (and sometimes a harmless bug causes it to also save but not
1609 restore %eax); however, the code below is willing to see the pushes
1610 in any order, and will handle up to 8 of them.
1611
1612 If the setup sequence is at the end of the function, then the next
1613 instruction will be a branch back to the start. */
1614
1615 static CORE_ADDR
1616 i386_analyze_prologue (struct gdbarch *gdbarch,
1617 CORE_ADDR pc, CORE_ADDR current_pc,
1618 struct i386_frame_cache *cache)
1619 {
1620 pc = i386_skip_noop (pc);
1621 pc = i386_follow_jump (gdbarch, pc);
1622 pc = i386_analyze_struct_return (pc, current_pc, cache);
1623 pc = i386_skip_probe (pc);
1624 pc = i386_analyze_stack_align (pc, current_pc, cache);
1625 pc = i386_analyze_frame_setup (gdbarch, pc, current_pc, cache);
1626 return i386_analyze_register_saves (pc, current_pc, cache);
1627 }
1628
1629 /* Return PC of first real instruction. */
1630
1631 static CORE_ADDR
1632 i386_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
1633 {
1634 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1635
1636 static gdb_byte pic_pat[6] =
1637 {
1638 0xe8, 0, 0, 0, 0, /* call 0x0 */
1639 0x5b, /* popl %ebx */
1640 };
1641 struct i386_frame_cache cache;
1642 CORE_ADDR pc;
1643 gdb_byte op;
1644 int i;
1645 CORE_ADDR func_addr;
1646
1647 if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
1648 {
1649 CORE_ADDR post_prologue_pc
1650 = skip_prologue_using_sal (gdbarch, func_addr);
1651 struct symtab *s = find_pc_symtab (func_addr);
1652
1653 /* Clang always emits a line note before the prologue and another
1654 one after. We trust clang to emit usable line notes. */
1655 if (post_prologue_pc
1656 && (s != NULL
1657 && s->producer != NULL
1658 && strncmp (s->producer, "clang ", sizeof ("clang ") - 1) == 0))
1659 return max (start_pc, post_prologue_pc);
1660 }
1661
1662 cache.locals = -1;
1663 pc = i386_analyze_prologue (gdbarch, start_pc, 0xffffffff, &cache);
1664 if (cache.locals < 0)
1665 return start_pc;
1666
1667 /* Found valid frame setup. */
1668
1669 /* The native cc on SVR4 in -K PIC mode inserts the following code
1670 to get the address of the global offset table (GOT) into register
1671 %ebx:
1672
1673 call 0x0
1674 popl %ebx
1675 movl %ebx,x(%ebp) (optional)
1676 addl y,%ebx
1677
1678 This code is with the rest of the prologue (at the end of the
1679 function), so we have to skip it to get to the first real
1680 instruction at the start of the function. */
1681
1682 for (i = 0; i < 6; i++)
1683 {
1684 if (target_read_code (pc + i, &op, 1))
1685 return pc;
1686
1687 if (pic_pat[i] != op)
1688 break;
1689 }
1690 if (i == 6)
1691 {
1692 int delta = 6;
1693
1694 if (target_read_code (pc + delta, &op, 1))
1695 return pc;
1696
1697 if (op == 0x89) /* movl %ebx, x(%ebp) */
1698 {
1699 op = read_code_unsigned_integer (pc + delta + 1, 1, byte_order);
1700
1701 if (op == 0x5d) /* One byte offset from %ebp. */
1702 delta += 3;
1703 else if (op == 0x9d) /* Four byte offset from %ebp. */
1704 delta += 6;
1705 else /* Unexpected instruction. */
1706 delta = 0;
1707
1708 if (target_read_code (pc + delta, &op, 1))
1709 return pc;
1710 }
1711
1712 /* addl y,%ebx */
1713 if (delta > 0 && op == 0x81
1714 && read_code_unsigned_integer (pc + delta + 1, 1, byte_order)
1715 == 0xc3)
1716 {
1717 pc += delta + 6;
1718 }
1719 }
1720
1721 /* If the function starts with a branch (to startup code at the end)
1722 the last instruction should bring us back to the first
1723 instruction of the real code. */
1724 if (i386_follow_jump (gdbarch, start_pc) != start_pc)
1725 pc = i386_follow_jump (gdbarch, pc);
1726
1727 return pc;
1728 }
1729
1730 /* Check that the code pointed to by PC corresponds to a call to
1731 __main, skip it if so. Return PC otherwise. */
1732
1733 CORE_ADDR
1734 i386_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1735 {
1736 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1737 gdb_byte op;
1738
1739 if (target_read_code (pc, &op, 1))
1740 return pc;
1741 if (op == 0xe8)
1742 {
1743 gdb_byte buf[4];
1744
1745 if (target_read_code (pc + 1, buf, sizeof buf) == 0)
1746 {
1747 /* Make sure address is computed correctly as a 32bit
1748 integer even if CORE_ADDR is 64 bit wide. */
1749 struct bound_minimal_symbol s;
1750 CORE_ADDR call_dest;
1751
1752 call_dest = pc + 5 + extract_signed_integer (buf, 4, byte_order);
1753 call_dest = call_dest & 0xffffffffU;
1754 s = lookup_minimal_symbol_by_pc (call_dest);
1755 if (s.minsym != NULL
1756 && SYMBOL_LINKAGE_NAME (s.minsym) != NULL
1757 && strcmp (SYMBOL_LINKAGE_NAME (s.minsym), "__main") == 0)
1758 pc += 5;
1759 }
1760 }
1761
1762 return pc;
1763 }
1764
1765 /* This function is 64-bit safe. */
1766
1767 static CORE_ADDR
1768 i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1769 {
1770 gdb_byte buf[8];
1771
1772 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
1773 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
1774 }
1775 \f
1776
1777 /* Normal frames. */
1778
1779 static void
1780 i386_frame_cache_1 (struct frame_info *this_frame,
1781 struct i386_frame_cache *cache)
1782 {
1783 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1784 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1785 gdb_byte buf[4];
1786 int i;
1787
1788 cache->pc = get_frame_func (this_frame);
1789
1790 /* In principle, for normal frames, %ebp holds the frame pointer,
1791 which holds the base address for the current stack frame.
1792 However, for functions that don't need it, the frame pointer is
1793 optional. For these "frameless" functions the frame pointer is
1794 actually the frame pointer of the calling frame. Signal
1795 trampolines are just a special case of a "frameless" function.
1796 They (usually) share their frame pointer with the frame that was
1797 in progress when the signal occurred. */
1798
1799 get_frame_register (this_frame, I386_EBP_REGNUM, buf);
1800 cache->base = extract_unsigned_integer (buf, 4, byte_order);
1801 if (cache->base == 0)
1802 {
1803 cache->base_p = 1;
1804 return;
1805 }
1806
1807 /* For normal frames, %eip is stored at 4(%ebp). */
1808 cache->saved_regs[I386_EIP_REGNUM] = 4;
1809
1810 if (cache->pc != 0)
1811 i386_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
1812 cache);
1813
1814 if (cache->locals < 0)
1815 {
1816 /* We didn't find a valid frame, which means that CACHE->base
1817 currently holds the frame pointer for our calling frame. If
1818 we're at the start of a function, or somewhere half-way its
1819 prologue, the function's frame probably hasn't been fully
1820 setup yet. Try to reconstruct the base address for the stack
1821 frame by looking at the stack pointer. For truly "frameless"
1822 functions this might work too. */
1823
1824 if (cache->saved_sp_reg != -1)
1825 {
1826 /* Saved stack pointer has been saved. */
1827 get_frame_register (this_frame, cache->saved_sp_reg, buf);
1828 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
1829
1830 /* We're halfway aligning the stack. */
1831 cache->base = ((cache->saved_sp - 4) & 0xfffffff0) - 4;
1832 cache->saved_regs[I386_EIP_REGNUM] = cache->saved_sp - 4;
1833
1834 /* This will be added back below. */
1835 cache->saved_regs[I386_EIP_REGNUM] -= cache->base;
1836 }
1837 else if (cache->pc != 0
1838 || target_read_code (get_frame_pc (this_frame), buf, 1))
1839 {
1840 /* We're in a known function, but did not find a frame
1841 setup. Assume that the function does not use %ebp.
1842 Alternatively, we may have jumped to an invalid
1843 address; in that case there is definitely no new
1844 frame in %ebp. */
1845 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
1846 cache->base = extract_unsigned_integer (buf, 4, byte_order)
1847 + cache->sp_offset;
1848 }
1849 else
1850 /* We're in an unknown function. We could not find the start
1851 of the function to analyze the prologue; our best option is
1852 to assume a typical frame layout with the caller's %ebp
1853 saved. */
1854 cache->saved_regs[I386_EBP_REGNUM] = 0;
1855 }
1856
1857 if (cache->saved_sp_reg != -1)
1858 {
1859 /* Saved stack pointer has been saved (but the SAVED_SP_REG
1860 register may be unavailable). */
1861 if (cache->saved_sp == 0
1862 && deprecated_frame_register_read (this_frame,
1863 cache->saved_sp_reg, buf))
1864 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
1865 }
1866 /* Now that we have the base address for the stack frame we can
1867 calculate the value of %esp in the calling frame. */
1868 else if (cache->saved_sp == 0)
1869 cache->saved_sp = cache->base + 8;
1870
1871 /* Adjust all the saved registers such that they contain addresses
1872 instead of offsets. */
1873 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
1874 if (cache->saved_regs[i] != -1)
1875 cache->saved_regs[i] += cache->base;
1876
1877 cache->base_p = 1;
1878 }
1879
1880 static struct i386_frame_cache *
1881 i386_frame_cache (struct frame_info *this_frame, void **this_cache)
1882 {
1883 volatile struct gdb_exception ex;
1884 struct i386_frame_cache *cache;
1885
1886 if (*this_cache)
1887 return *this_cache;
1888
1889 cache = i386_alloc_frame_cache ();
1890 *this_cache = cache;
1891
1892 TRY_CATCH (ex, RETURN_MASK_ERROR)
1893 {
1894 i386_frame_cache_1 (this_frame, cache);
1895 }
1896 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
1897 throw_exception (ex);
1898
1899 return cache;
1900 }
1901
1902 static void
1903 i386_frame_this_id (struct frame_info *this_frame, void **this_cache,
1904 struct frame_id *this_id)
1905 {
1906 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
1907
1908 if (!cache->base_p)
1909 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
1910 else if (cache->base == 0)
1911 {
1912 /* This marks the outermost frame. */
1913 }
1914 else
1915 {
1916 /* See the end of i386_push_dummy_call. */
1917 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
1918 }
1919 }
1920
1921 static enum unwind_stop_reason
1922 i386_frame_unwind_stop_reason (struct frame_info *this_frame,
1923 void **this_cache)
1924 {
1925 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
1926
1927 if (!cache->base_p)
1928 return UNWIND_UNAVAILABLE;
1929
1930 /* This marks the outermost frame. */
1931 if (cache->base == 0)
1932 return UNWIND_OUTERMOST;
1933
1934 return UNWIND_NO_REASON;
1935 }
1936
1937 static struct value *
1938 i386_frame_prev_register (struct frame_info *this_frame, void **this_cache,
1939 int regnum)
1940 {
1941 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
1942
1943 gdb_assert (regnum >= 0);
1944
1945 /* The System V ABI says that:
1946
1947 "The flags register contains the system flags, such as the
1948 direction flag and the carry flag. The direction flag must be
1949 set to the forward (that is, zero) direction before entry and
1950 upon exit from a function. Other user flags have no specified
1951 role in the standard calling sequence and are not preserved."
1952
1953 To guarantee the "upon exit" part of that statement we fake a
1954 saved flags register that has its direction flag cleared.
1955
1956 Note that GCC doesn't seem to rely on the fact that the direction
1957 flag is cleared after a function return; it always explicitly
1958 clears the flag before operations where it matters.
1959
1960 FIXME: kettenis/20030316: I'm not quite sure whether this is the
1961 right thing to do. The way we fake the flags register here makes
1962 it impossible to change it. */
1963
1964 if (regnum == I386_EFLAGS_REGNUM)
1965 {
1966 ULONGEST val;
1967
1968 val = get_frame_register_unsigned (this_frame, regnum);
1969 val &= ~(1 << 10);
1970 return frame_unwind_got_constant (this_frame, regnum, val);
1971 }
1972
1973 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
1974 return frame_unwind_got_register (this_frame, regnum, I386_EAX_REGNUM);
1975
1976 if (regnum == I386_ESP_REGNUM
1977 && (cache->saved_sp != 0 || cache->saved_sp_reg != -1))
1978 {
1979 /* If the SP has been saved, but we don't know where, then this
1980 means that SAVED_SP_REG register was found unavailable back
1981 when we built the cache. */
1982 if (cache->saved_sp == 0)
1983 return frame_unwind_got_register (this_frame, regnum,
1984 cache->saved_sp_reg);
1985 else
1986 return frame_unwind_got_constant (this_frame, regnum,
1987 cache->saved_sp);
1988 }
1989
1990 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
1991 return frame_unwind_got_memory (this_frame, regnum,
1992 cache->saved_regs[regnum]);
1993
1994 return frame_unwind_got_register (this_frame, regnum, regnum);
1995 }
1996
1997 static const struct frame_unwind i386_frame_unwind =
1998 {
1999 NORMAL_FRAME,
2000 i386_frame_unwind_stop_reason,
2001 i386_frame_this_id,
2002 i386_frame_prev_register,
2003 NULL,
2004 default_frame_sniffer
2005 };
2006
2007 /* Normal frames, but in a function epilogue. */
2008
2009 /* The epilogue is defined here as the 'ret' instruction, which will
2010 follow any instruction such as 'leave' or 'pop %ebp' that destroys
2011 the function's stack frame. */
2012
2013 static int
2014 i386_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2015 {
2016 gdb_byte insn;
2017 struct symtab *symtab;
2018
2019 symtab = find_pc_symtab (pc);
2020 if (symtab && symtab->epilogue_unwind_valid)
2021 return 0;
2022
2023 if (target_read_memory (pc, &insn, 1))
2024 return 0; /* Can't read memory at pc. */
2025
2026 if (insn != 0xc3) /* 'ret' instruction. */
2027 return 0;
2028
2029 return 1;
2030 }
2031
2032 static int
2033 i386_epilogue_frame_sniffer (const struct frame_unwind *self,
2034 struct frame_info *this_frame,
2035 void **this_prologue_cache)
2036 {
2037 if (frame_relative_level (this_frame) == 0)
2038 return i386_in_function_epilogue_p (get_frame_arch (this_frame),
2039 get_frame_pc (this_frame));
2040 else
2041 return 0;
2042 }
2043
2044 static struct i386_frame_cache *
2045 i386_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
2046 {
2047 volatile struct gdb_exception ex;
2048 struct i386_frame_cache *cache;
2049 CORE_ADDR sp;
2050
2051 if (*this_cache)
2052 return *this_cache;
2053
2054 cache = i386_alloc_frame_cache ();
2055 *this_cache = cache;
2056
2057 TRY_CATCH (ex, RETURN_MASK_ERROR)
2058 {
2059 cache->pc = get_frame_func (this_frame);
2060
2061 /* At this point the stack looks as if we just entered the
2062 function, with the return address at the top of the
2063 stack. */
2064 sp = get_frame_register_unsigned (this_frame, I386_ESP_REGNUM);
2065 cache->base = sp + cache->sp_offset;
2066 cache->saved_sp = cache->base + 8;
2067 cache->saved_regs[I386_EIP_REGNUM] = cache->base + 4;
2068
2069 cache->base_p = 1;
2070 }
2071 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
2072 throw_exception (ex);
2073
2074 return cache;
2075 }
2076
2077 static enum unwind_stop_reason
2078 i386_epilogue_frame_unwind_stop_reason (struct frame_info *this_frame,
2079 void **this_cache)
2080 {
2081 struct i386_frame_cache *cache =
2082 i386_epilogue_frame_cache (this_frame, this_cache);
2083
2084 if (!cache->base_p)
2085 return UNWIND_UNAVAILABLE;
2086
2087 return UNWIND_NO_REASON;
2088 }
2089
2090 static void
2091 i386_epilogue_frame_this_id (struct frame_info *this_frame,
2092 void **this_cache,
2093 struct frame_id *this_id)
2094 {
2095 struct i386_frame_cache *cache =
2096 i386_epilogue_frame_cache (this_frame, this_cache);
2097
2098 if (!cache->base_p)
2099 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2100 else
2101 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2102 }
2103
2104 static struct value *
2105 i386_epilogue_frame_prev_register (struct frame_info *this_frame,
2106 void **this_cache, int regnum)
2107 {
2108 /* Make sure we've initialized the cache. */
2109 i386_epilogue_frame_cache (this_frame, this_cache);
2110
2111 return i386_frame_prev_register (this_frame, this_cache, regnum);
2112 }
2113
2114 static const struct frame_unwind i386_epilogue_frame_unwind =
2115 {
2116 NORMAL_FRAME,
2117 i386_epilogue_frame_unwind_stop_reason,
2118 i386_epilogue_frame_this_id,
2119 i386_epilogue_frame_prev_register,
2120 NULL,
2121 i386_epilogue_frame_sniffer
2122 };
2123 \f
2124
2125 /* Stack-based trampolines. */
2126
2127 /* These trampolines are used on cross x86 targets, when taking the
2128 address of a nested function. When executing these trampolines,
2129 no stack frame is set up, so we are in a similar situation as in
2130 epilogues and i386_epilogue_frame_this_id can be re-used. */
2131
2132 /* Static chain passed in register. */
2133
2134 struct i386_insn i386_tramp_chain_in_reg_insns[] =
2135 {
2136 /* `movl imm32, %eax' and `movl imm32, %ecx' */
2137 { 5, { 0xb8 }, { 0xfe } },
2138
2139 /* `jmp imm32' */
2140 { 5, { 0xe9 }, { 0xff } },
2141
2142 {0}
2143 };
2144
2145 /* Static chain passed on stack (when regparm=3). */
2146
2147 struct i386_insn i386_tramp_chain_on_stack_insns[] =
2148 {
2149 /* `push imm32' */
2150 { 5, { 0x68 }, { 0xff } },
2151
2152 /* `jmp imm32' */
2153 { 5, { 0xe9 }, { 0xff } },
2154
2155 {0}
2156 };
2157
2158 /* Return whether PC points inside a stack trampoline. */
2159
2160 static int
2161 i386_in_stack_tramp_p (CORE_ADDR pc)
2162 {
2163 gdb_byte insn;
2164 const char *name;
2165
2166 /* A stack trampoline is detected if no name is associated
2167 to the current pc and if it points inside a trampoline
2168 sequence. */
2169
2170 find_pc_partial_function (pc, &name, NULL, NULL);
2171 if (name)
2172 return 0;
2173
2174 if (target_read_memory (pc, &insn, 1))
2175 return 0;
2176
2177 if (!i386_match_insn_block (pc, i386_tramp_chain_in_reg_insns)
2178 && !i386_match_insn_block (pc, i386_tramp_chain_on_stack_insns))
2179 return 0;
2180
2181 return 1;
2182 }
2183
2184 static int
2185 i386_stack_tramp_frame_sniffer (const struct frame_unwind *self,
2186 struct frame_info *this_frame,
2187 void **this_cache)
2188 {
2189 if (frame_relative_level (this_frame) == 0)
2190 return i386_in_stack_tramp_p (get_frame_pc (this_frame));
2191 else
2192 return 0;
2193 }
2194
2195 static const struct frame_unwind i386_stack_tramp_frame_unwind =
2196 {
2197 NORMAL_FRAME,
2198 i386_epilogue_frame_unwind_stop_reason,
2199 i386_epilogue_frame_this_id,
2200 i386_epilogue_frame_prev_register,
2201 NULL,
2202 i386_stack_tramp_frame_sniffer
2203 };
2204 \f
2205 /* Generate a bytecode expression to get the value of the saved PC. */
2206
2207 static void
2208 i386_gen_return_address (struct gdbarch *gdbarch,
2209 struct agent_expr *ax, struct axs_value *value,
2210 CORE_ADDR scope)
2211 {
2212 /* The following sequence assumes the traditional use of the base
2213 register. */
2214 ax_reg (ax, I386_EBP_REGNUM);
2215 ax_const_l (ax, 4);
2216 ax_simple (ax, aop_add);
2217 value->type = register_type (gdbarch, I386_EIP_REGNUM);
2218 value->kind = axs_lvalue_memory;
2219 }
2220 \f
2221
2222 /* Signal trampolines. */
2223
2224 static struct i386_frame_cache *
2225 i386_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
2226 {
2227 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2228 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2229 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2230 volatile struct gdb_exception ex;
2231 struct i386_frame_cache *cache;
2232 CORE_ADDR addr;
2233 gdb_byte buf[4];
2234
2235 if (*this_cache)
2236 return *this_cache;
2237
2238 cache = i386_alloc_frame_cache ();
2239
2240 TRY_CATCH (ex, RETURN_MASK_ERROR)
2241 {
2242 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2243 cache->base = extract_unsigned_integer (buf, 4, byte_order) - 4;
2244
2245 addr = tdep->sigcontext_addr (this_frame);
2246 if (tdep->sc_reg_offset)
2247 {
2248 int i;
2249
2250 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
2251
2252 for (i = 0; i < tdep->sc_num_regs; i++)
2253 if (tdep->sc_reg_offset[i] != -1)
2254 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
2255 }
2256 else
2257 {
2258 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
2259 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
2260 }
2261
2262 cache->base_p = 1;
2263 }
2264 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
2265 throw_exception (ex);
2266
2267 *this_cache = cache;
2268 return cache;
2269 }
2270
2271 static enum unwind_stop_reason
2272 i386_sigtramp_frame_unwind_stop_reason (struct frame_info *this_frame,
2273 void **this_cache)
2274 {
2275 struct i386_frame_cache *cache =
2276 i386_sigtramp_frame_cache (this_frame, this_cache);
2277
2278 if (!cache->base_p)
2279 return UNWIND_UNAVAILABLE;
2280
2281 return UNWIND_NO_REASON;
2282 }
2283
2284 static void
2285 i386_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache,
2286 struct frame_id *this_id)
2287 {
2288 struct i386_frame_cache *cache =
2289 i386_sigtramp_frame_cache (this_frame, this_cache);
2290
2291 if (!cache->base_p)
2292 (*this_id) = frame_id_build_unavailable_stack (get_frame_pc (this_frame));
2293 else
2294 {
2295 /* See the end of i386_push_dummy_call. */
2296 (*this_id) = frame_id_build (cache->base + 8, get_frame_pc (this_frame));
2297 }
2298 }
2299
2300 static struct value *
2301 i386_sigtramp_frame_prev_register (struct frame_info *this_frame,
2302 void **this_cache, int regnum)
2303 {
2304 /* Make sure we've initialized the cache. */
2305 i386_sigtramp_frame_cache (this_frame, this_cache);
2306
2307 return i386_frame_prev_register (this_frame, this_cache, regnum);
2308 }
2309
2310 static int
2311 i386_sigtramp_frame_sniffer (const struct frame_unwind *self,
2312 struct frame_info *this_frame,
2313 void **this_prologue_cache)
2314 {
2315 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
2316
2317 /* We shouldn't even bother if we don't have a sigcontext_addr
2318 handler. */
2319 if (tdep->sigcontext_addr == NULL)
2320 return 0;
2321
2322 if (tdep->sigtramp_p != NULL)
2323 {
2324 if (tdep->sigtramp_p (this_frame))
2325 return 1;
2326 }
2327
2328 if (tdep->sigtramp_start != 0)
2329 {
2330 CORE_ADDR pc = get_frame_pc (this_frame);
2331
2332 gdb_assert (tdep->sigtramp_end != 0);
2333 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
2334 return 1;
2335 }
2336
2337 return 0;
2338 }
2339
2340 static const struct frame_unwind i386_sigtramp_frame_unwind =
2341 {
2342 SIGTRAMP_FRAME,
2343 i386_sigtramp_frame_unwind_stop_reason,
2344 i386_sigtramp_frame_this_id,
2345 i386_sigtramp_frame_prev_register,
2346 NULL,
2347 i386_sigtramp_frame_sniffer
2348 };
2349 \f
2350
2351 static CORE_ADDR
2352 i386_frame_base_address (struct frame_info *this_frame, void **this_cache)
2353 {
2354 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2355
2356 return cache->base;
2357 }
2358
2359 static const struct frame_base i386_frame_base =
2360 {
2361 &i386_frame_unwind,
2362 i386_frame_base_address,
2363 i386_frame_base_address,
2364 i386_frame_base_address
2365 };
2366
2367 static struct frame_id
2368 i386_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2369 {
2370 CORE_ADDR fp;
2371
2372 fp = get_frame_register_unsigned (this_frame, I386_EBP_REGNUM);
2373
2374 /* See the end of i386_push_dummy_call. */
2375 return frame_id_build (fp + 8, get_frame_pc (this_frame));
2376 }
2377
2378 /* _Decimal128 function return values need 16-byte alignment on the
2379 stack. */
2380
2381 static CORE_ADDR
2382 i386_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2383 {
2384 return sp & -(CORE_ADDR)16;
2385 }
2386 \f
2387
2388 /* Figure out where the longjmp will land. Slurp the args out of the
2389 stack. We expect the first arg to be a pointer to the jmp_buf
2390 structure from which we extract the address that we will land at.
2391 This address is copied into PC. This routine returns non-zero on
2392 success. */
2393
2394 static int
2395 i386_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
2396 {
2397 gdb_byte buf[4];
2398 CORE_ADDR sp, jb_addr;
2399 struct gdbarch *gdbarch = get_frame_arch (frame);
2400 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2401 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
2402
2403 /* If JB_PC_OFFSET is -1, we have no way to find out where the
2404 longjmp will land. */
2405 if (jb_pc_offset == -1)
2406 return 0;
2407
2408 get_frame_register (frame, I386_ESP_REGNUM, buf);
2409 sp = extract_unsigned_integer (buf, 4, byte_order);
2410 if (target_read_memory (sp + 4, buf, 4))
2411 return 0;
2412
2413 jb_addr = extract_unsigned_integer (buf, 4, byte_order);
2414 if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
2415 return 0;
2416
2417 *pc = extract_unsigned_integer (buf, 4, byte_order);
2418 return 1;
2419 }
2420 \f
2421
2422 /* Check whether TYPE must be 16-byte-aligned when passed as a
2423 function argument. 16-byte vectors, _Decimal128 and structures or
2424 unions containing such types must be 16-byte-aligned; other
2425 arguments are 4-byte-aligned. */
2426
2427 static int
2428 i386_16_byte_align_p (struct type *type)
2429 {
2430 type = check_typedef (type);
2431 if ((TYPE_CODE (type) == TYPE_CODE_DECFLOAT
2432 || (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type)))
2433 && TYPE_LENGTH (type) == 16)
2434 return 1;
2435 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2436 return i386_16_byte_align_p (TYPE_TARGET_TYPE (type));
2437 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2438 || TYPE_CODE (type) == TYPE_CODE_UNION)
2439 {
2440 int i;
2441 for (i = 0; i < TYPE_NFIELDS (type); i++)
2442 {
2443 if (i386_16_byte_align_p (TYPE_FIELD_TYPE (type, i)))
2444 return 1;
2445 }
2446 }
2447 return 0;
2448 }
2449
2450 /* Implementation for set_gdbarch_push_dummy_code. */
2451
2452 static CORE_ADDR
2453 i386_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, CORE_ADDR funaddr,
2454 struct value **args, int nargs, struct type *value_type,
2455 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
2456 struct regcache *regcache)
2457 {
2458 /* Use 0xcc breakpoint - 1 byte. */
2459 *bp_addr = sp - 1;
2460 *real_pc = funaddr;
2461
2462 /* Keep the stack aligned. */
2463 return sp - 16;
2464 }
2465
2466 static CORE_ADDR
2467 i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2468 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2469 struct value **args, CORE_ADDR sp, int struct_return,
2470 CORE_ADDR struct_addr)
2471 {
2472 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2473 gdb_byte buf[4];
2474 int i;
2475 int write_pass;
2476 int args_space = 0;
2477
2478 /* Determine the total space required for arguments and struct
2479 return address in a first pass (allowing for 16-byte-aligned
2480 arguments), then push arguments in a second pass. */
2481
2482 for (write_pass = 0; write_pass < 2; write_pass++)
2483 {
2484 int args_space_used = 0;
2485
2486 if (struct_return)
2487 {
2488 if (write_pass)
2489 {
2490 /* Push value address. */
2491 store_unsigned_integer (buf, 4, byte_order, struct_addr);
2492 write_memory (sp, buf, 4);
2493 args_space_used += 4;
2494 }
2495 else
2496 args_space += 4;
2497 }
2498
2499 for (i = 0; i < nargs; i++)
2500 {
2501 int len = TYPE_LENGTH (value_enclosing_type (args[i]));
2502
2503 if (write_pass)
2504 {
2505 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2506 args_space_used = align_up (args_space_used, 16);
2507
2508 write_memory (sp + args_space_used,
2509 value_contents_all (args[i]), len);
2510 /* The System V ABI says that:
2511
2512 "An argument's size is increased, if necessary, to make it a
2513 multiple of [32-bit] words. This may require tail padding,
2514 depending on the size of the argument."
2515
2516 This makes sure the stack stays word-aligned. */
2517 args_space_used += align_up (len, 4);
2518 }
2519 else
2520 {
2521 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2522 args_space = align_up (args_space, 16);
2523 args_space += align_up (len, 4);
2524 }
2525 }
2526
2527 if (!write_pass)
2528 {
2529 sp -= args_space;
2530
2531 /* The original System V ABI only requires word alignment,
2532 but modern incarnations need 16-byte alignment in order
2533 to support SSE. Since wasting a few bytes here isn't
2534 harmful we unconditionally enforce 16-byte alignment. */
2535 sp &= ~0xf;
2536 }
2537 }
2538
2539 /* Store return address. */
2540 sp -= 4;
2541 store_unsigned_integer (buf, 4, byte_order, bp_addr);
2542 write_memory (sp, buf, 4);
2543
2544 /* Finally, update the stack pointer... */
2545 store_unsigned_integer (buf, 4, byte_order, sp);
2546 regcache_cooked_write (regcache, I386_ESP_REGNUM, buf);
2547
2548 /* ...and fake a frame pointer. */
2549 regcache_cooked_write (regcache, I386_EBP_REGNUM, buf);
2550
2551 /* MarkK wrote: This "+ 8" is all over the place:
2552 (i386_frame_this_id, i386_sigtramp_frame_this_id,
2553 i386_dummy_id). It's there, since all frame unwinders for
2554 a given target have to agree (within a certain margin) on the
2555 definition of the stack address of a frame. Otherwise frame id
2556 comparison might not work correctly. Since DWARF2/GCC uses the
2557 stack address *before* the function call as a frame's CFA. On
2558 the i386, when %ebp is used as a frame pointer, the offset
2559 between the contents %ebp and the CFA as defined by GCC. */
2560 return sp + 8;
2561 }
2562
2563 /* These registers are used for returning integers (and on some
2564 targets also for returning `struct' and `union' values when their
2565 size and alignment match an integer type). */
2566 #define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
2567 #define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
2568
2569 /* Read, for architecture GDBARCH, a function return value of TYPE
2570 from REGCACHE, and copy that into VALBUF. */
2571
2572 static void
2573 i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
2574 struct regcache *regcache, gdb_byte *valbuf)
2575 {
2576 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2577 int len = TYPE_LENGTH (type);
2578 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2579
2580 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2581 {
2582 if (tdep->st0_regnum < 0)
2583 {
2584 warning (_("Cannot find floating-point return value."));
2585 memset (valbuf, 0, len);
2586 return;
2587 }
2588
2589 /* Floating-point return values can be found in %st(0). Convert
2590 its contents to the desired type. This is probably not
2591 exactly how it would happen on the target itself, but it is
2592 the best we can do. */
2593 regcache_raw_read (regcache, I386_ST0_REGNUM, buf);
2594 convert_typed_floating (buf, i387_ext_type (gdbarch), valbuf, type);
2595 }
2596 else
2597 {
2598 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2599 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2600
2601 if (len <= low_size)
2602 {
2603 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
2604 memcpy (valbuf, buf, len);
2605 }
2606 else if (len <= (low_size + high_size))
2607 {
2608 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
2609 memcpy (valbuf, buf, low_size);
2610 regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
2611 memcpy (valbuf + low_size, buf, len - low_size);
2612 }
2613 else
2614 internal_error (__FILE__, __LINE__,
2615 _("Cannot extract return value of %d bytes long."),
2616 len);
2617 }
2618 }
2619
2620 /* Write, for architecture GDBARCH, a function return value of TYPE
2621 from VALBUF into REGCACHE. */
2622
2623 static void
2624 i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
2625 struct regcache *regcache, const gdb_byte *valbuf)
2626 {
2627 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2628 int len = TYPE_LENGTH (type);
2629
2630 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2631 {
2632 ULONGEST fstat;
2633 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2634
2635 if (tdep->st0_regnum < 0)
2636 {
2637 warning (_("Cannot set floating-point return value."));
2638 return;
2639 }
2640
2641 /* Returning floating-point values is a bit tricky. Apart from
2642 storing the return value in %st(0), we have to simulate the
2643 state of the FPU at function return point. */
2644
2645 /* Convert the value found in VALBUF to the extended
2646 floating-point format used by the FPU. This is probably
2647 not exactly how it would happen on the target itself, but
2648 it is the best we can do. */
2649 convert_typed_floating (valbuf, type, buf, i387_ext_type (gdbarch));
2650 regcache_raw_write (regcache, I386_ST0_REGNUM, buf);
2651
2652 /* Set the top of the floating-point register stack to 7. The
2653 actual value doesn't really matter, but 7 is what a normal
2654 function return would end up with if the program started out
2655 with a freshly initialized FPU. */
2656 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
2657 fstat |= (7 << 11);
2658 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM (tdep), fstat);
2659
2660 /* Mark %st(1) through %st(7) as empty. Since we set the top of
2661 the floating-point register stack to 7, the appropriate value
2662 for the tag word is 0x3fff. */
2663 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM (tdep), 0x3fff);
2664 }
2665 else
2666 {
2667 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2668 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2669
2670 if (len <= low_size)
2671 regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
2672 else if (len <= (low_size + high_size))
2673 {
2674 regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
2675 regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
2676 len - low_size, valbuf + low_size);
2677 }
2678 else
2679 internal_error (__FILE__, __LINE__,
2680 _("Cannot store return value of %d bytes long."), len);
2681 }
2682 }
2683 \f
2684
2685 /* This is the variable that is set with "set struct-convention", and
2686 its legitimate values. */
2687 static const char default_struct_convention[] = "default";
2688 static const char pcc_struct_convention[] = "pcc";
2689 static const char reg_struct_convention[] = "reg";
2690 static const char *const valid_conventions[] =
2691 {
2692 default_struct_convention,
2693 pcc_struct_convention,
2694 reg_struct_convention,
2695 NULL
2696 };
2697 static const char *struct_convention = default_struct_convention;
2698
2699 /* Return non-zero if TYPE, which is assumed to be a structure,
2700 a union type, or an array type, should be returned in registers
2701 for architecture GDBARCH. */
2702
2703 static int
2704 i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
2705 {
2706 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2707 enum type_code code = TYPE_CODE (type);
2708 int len = TYPE_LENGTH (type);
2709
2710 gdb_assert (code == TYPE_CODE_STRUCT
2711 || code == TYPE_CODE_UNION
2712 || code == TYPE_CODE_ARRAY);
2713
2714 if (struct_convention == pcc_struct_convention
2715 || (struct_convention == default_struct_convention
2716 && tdep->struct_return == pcc_struct_return))
2717 return 0;
2718
2719 /* Structures consisting of a single `float', `double' or 'long
2720 double' member are returned in %st(0). */
2721 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2722 {
2723 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
2724 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2725 return (len == 4 || len == 8 || len == 12);
2726 }
2727
2728 return (len == 1 || len == 2 || len == 4 || len == 8);
2729 }
2730
2731 /* Determine, for architecture GDBARCH, how a return value of TYPE
2732 should be returned. If it is supposed to be returned in registers,
2733 and READBUF is non-zero, read the appropriate value from REGCACHE,
2734 and copy it into READBUF. If WRITEBUF is non-zero, write the value
2735 from WRITEBUF into REGCACHE. */
2736
2737 static enum return_value_convention
2738 i386_return_value (struct gdbarch *gdbarch, struct value *function,
2739 struct type *type, struct regcache *regcache,
2740 gdb_byte *readbuf, const gdb_byte *writebuf)
2741 {
2742 enum type_code code = TYPE_CODE (type);
2743
2744 if (((code == TYPE_CODE_STRUCT
2745 || code == TYPE_CODE_UNION
2746 || code == TYPE_CODE_ARRAY)
2747 && !i386_reg_struct_return_p (gdbarch, type))
2748 /* Complex double and long double uses the struct return covention. */
2749 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 16)
2750 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 24)
2751 /* 128-bit decimal float uses the struct return convention. */
2752 || (code == TYPE_CODE_DECFLOAT && TYPE_LENGTH (type) == 16))
2753 {
2754 /* The System V ABI says that:
2755
2756 "A function that returns a structure or union also sets %eax
2757 to the value of the original address of the caller's area
2758 before it returns. Thus when the caller receives control
2759 again, the address of the returned object resides in register
2760 %eax and can be used to access the object."
2761
2762 So the ABI guarantees that we can always find the return
2763 value just after the function has returned. */
2764
2765 /* Note that the ABI doesn't mention functions returning arrays,
2766 which is something possible in certain languages such as Ada.
2767 In this case, the value is returned as if it was wrapped in
2768 a record, so the convention applied to records also applies
2769 to arrays. */
2770
2771 if (readbuf)
2772 {
2773 ULONGEST addr;
2774
2775 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
2776 read_memory (addr, readbuf, TYPE_LENGTH (type));
2777 }
2778
2779 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
2780 }
2781
2782 /* This special case is for structures consisting of a single
2783 `float', `double' or 'long double' member. These structures are
2784 returned in %st(0). For these structures, we call ourselves
2785 recursively, changing TYPE into the type of the first member of
2786 the structure. Since that should work for all structures that
2787 have only one member, we don't bother to check the member's type
2788 here. */
2789 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2790 {
2791 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
2792 return i386_return_value (gdbarch, function, type, regcache,
2793 readbuf, writebuf);
2794 }
2795
2796 if (readbuf)
2797 i386_extract_return_value (gdbarch, type, regcache, readbuf);
2798 if (writebuf)
2799 i386_store_return_value (gdbarch, type, regcache, writebuf);
2800
2801 return RETURN_VALUE_REGISTER_CONVENTION;
2802 }
2803 \f
2804
2805 struct type *
2806 i387_ext_type (struct gdbarch *gdbarch)
2807 {
2808 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2809
2810 if (!tdep->i387_ext_type)
2811 {
2812 tdep->i387_ext_type = tdesc_find_type (gdbarch, "i387_ext");
2813 gdb_assert (tdep->i387_ext_type != NULL);
2814 }
2815
2816 return tdep->i387_ext_type;
2817 }
2818
2819 /* Construct type for pseudo BND registers. We can't use
2820 tdesc_find_type since a complement of one value has to be used
2821 to describe the upper bound. */
2822
2823 static struct type *
2824 i386_bnd_type (struct gdbarch *gdbarch)
2825 {
2826 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2827
2828
2829 if (!tdep->i386_bnd_type)
2830 {
2831 struct type *t, *bound_t;
2832 const struct builtin_type *bt = builtin_type (gdbarch);
2833
2834 /* The type we're building is described bellow: */
2835 #if 0
2836 struct __bound128
2837 {
2838 void *lbound;
2839 void *ubound; /* One complement of raw ubound field. */
2840 };
2841 #endif
2842
2843 t = arch_composite_type (gdbarch,
2844 "__gdb_builtin_type_bound128", TYPE_CODE_STRUCT);
2845
2846 append_composite_type_field (t, "lbound", bt->builtin_data_ptr);
2847 append_composite_type_field (t, "ubound", bt->builtin_data_ptr);
2848
2849 TYPE_NAME (t) = "builtin_type_bound128";
2850 tdep->i386_bnd_type = t;
2851 }
2852
2853 return tdep->i386_bnd_type;
2854 }
2855
2856 /* Construct vector type for pseudo YMM registers. We can't use
2857 tdesc_find_type since YMM isn't described in target description. */
2858
2859 static struct type *
2860 i386_ymm_type (struct gdbarch *gdbarch)
2861 {
2862 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2863
2864 if (!tdep->i386_ymm_type)
2865 {
2866 const struct builtin_type *bt = builtin_type (gdbarch);
2867
2868 /* The type we're building is this: */
2869 #if 0
2870 union __gdb_builtin_type_vec256i
2871 {
2872 int128_t uint128[2];
2873 int64_t v2_int64[4];
2874 int32_t v4_int32[8];
2875 int16_t v8_int16[16];
2876 int8_t v16_int8[32];
2877 double v2_double[4];
2878 float v4_float[8];
2879 };
2880 #endif
2881
2882 struct type *t;
2883
2884 t = arch_composite_type (gdbarch,
2885 "__gdb_builtin_type_vec256i", TYPE_CODE_UNION);
2886 append_composite_type_field (t, "v8_float",
2887 init_vector_type (bt->builtin_float, 8));
2888 append_composite_type_field (t, "v4_double",
2889 init_vector_type (bt->builtin_double, 4));
2890 append_composite_type_field (t, "v32_int8",
2891 init_vector_type (bt->builtin_int8, 32));
2892 append_composite_type_field (t, "v16_int16",
2893 init_vector_type (bt->builtin_int16, 16));
2894 append_composite_type_field (t, "v8_int32",
2895 init_vector_type (bt->builtin_int32, 8));
2896 append_composite_type_field (t, "v4_int64",
2897 init_vector_type (bt->builtin_int64, 4));
2898 append_composite_type_field (t, "v2_int128",
2899 init_vector_type (bt->builtin_int128, 2));
2900
2901 TYPE_VECTOR (t) = 1;
2902 TYPE_NAME (t) = "builtin_type_vec256i";
2903 tdep->i386_ymm_type = t;
2904 }
2905
2906 return tdep->i386_ymm_type;
2907 }
2908
2909 /* Construct vector type for MMX registers. */
2910 static struct type *
2911 i386_mmx_type (struct gdbarch *gdbarch)
2912 {
2913 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2914
2915 if (!tdep->i386_mmx_type)
2916 {
2917 const struct builtin_type *bt = builtin_type (gdbarch);
2918
2919 /* The type we're building is this: */
2920 #if 0
2921 union __gdb_builtin_type_vec64i
2922 {
2923 int64_t uint64;
2924 int32_t v2_int32[2];
2925 int16_t v4_int16[4];
2926 int8_t v8_int8[8];
2927 };
2928 #endif
2929
2930 struct type *t;
2931
2932 t = arch_composite_type (gdbarch,
2933 "__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
2934
2935 append_composite_type_field (t, "uint64", bt->builtin_int64);
2936 append_composite_type_field (t, "v2_int32",
2937 init_vector_type (bt->builtin_int32, 2));
2938 append_composite_type_field (t, "v4_int16",
2939 init_vector_type (bt->builtin_int16, 4));
2940 append_composite_type_field (t, "v8_int8",
2941 init_vector_type (bt->builtin_int8, 8));
2942
2943 TYPE_VECTOR (t) = 1;
2944 TYPE_NAME (t) = "builtin_type_vec64i";
2945 tdep->i386_mmx_type = t;
2946 }
2947
2948 return tdep->i386_mmx_type;
2949 }
2950
2951 /* Return the GDB type object for the "standard" data type of data in
2952 register REGNUM. */
2953
2954 struct type *
2955 i386_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
2956 {
2957 if (i386_bnd_regnum_p (gdbarch, regnum))
2958 return i386_bnd_type (gdbarch);
2959 if (i386_mmx_regnum_p (gdbarch, regnum))
2960 return i386_mmx_type (gdbarch);
2961 else if (i386_ymm_regnum_p (gdbarch, regnum))
2962 return i386_ymm_type (gdbarch);
2963 else
2964 {
2965 const struct builtin_type *bt = builtin_type (gdbarch);
2966 if (i386_byte_regnum_p (gdbarch, regnum))
2967 return bt->builtin_int8;
2968 else if (i386_word_regnum_p (gdbarch, regnum))
2969 return bt->builtin_int16;
2970 else if (i386_dword_regnum_p (gdbarch, regnum))
2971 return bt->builtin_int32;
2972 }
2973
2974 internal_error (__FILE__, __LINE__, _("invalid regnum"));
2975 }
2976
2977 /* Map a cooked register onto a raw register or memory. For the i386,
2978 the MMX registers need to be mapped onto floating point registers. */
2979
2980 static int
2981 i386_mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
2982 {
2983 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
2984 int mmxreg, fpreg;
2985 ULONGEST fstat;
2986 int tos;
2987
2988 mmxreg = regnum - tdep->mm0_regnum;
2989 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
2990 tos = (fstat >> 11) & 0x7;
2991 fpreg = (mmxreg + tos) % 8;
2992
2993 return (I387_ST0_REGNUM (tdep) + fpreg);
2994 }
2995
2996 /* A helper function for us by i386_pseudo_register_read_value and
2997 amd64_pseudo_register_read_value. It does all the work but reads
2998 the data into an already-allocated value. */
2999
3000 void
3001 i386_pseudo_register_read_into_value (struct gdbarch *gdbarch,
3002 struct regcache *regcache,
3003 int regnum,
3004 struct value *result_value)
3005 {
3006 gdb_byte raw_buf[MAX_REGISTER_SIZE];
3007 enum register_status status;
3008 gdb_byte *buf = value_contents_raw (result_value);
3009
3010 if (i386_mmx_regnum_p (gdbarch, regnum))
3011 {
3012 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3013
3014 /* Extract (always little endian). */
3015 status = regcache_raw_read (regcache, fpnum, raw_buf);
3016 if (status != REG_VALID)
3017 mark_value_bytes_unavailable (result_value, 0,
3018 TYPE_LENGTH (value_type (result_value)));
3019 else
3020 memcpy (buf, raw_buf, register_size (gdbarch, regnum));
3021 }
3022 else
3023 {
3024 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3025 if (i386_bnd_regnum_p (gdbarch, regnum))
3026 {
3027 regnum -= tdep->bnd0_regnum;
3028
3029 /* Extract (always little endian). Read lower 128bits. */
3030 status = regcache_raw_read (regcache,
3031 I387_BND0R_REGNUM (tdep) + regnum,
3032 raw_buf);
3033 if (status != REG_VALID)
3034 mark_value_bytes_unavailable (result_value, 0, 16);
3035 else
3036 {
3037 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3038 LONGEST upper, lower;
3039 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
3040
3041 lower = extract_unsigned_integer (raw_buf, 8, byte_order);
3042 upper = extract_unsigned_integer (raw_buf + 8, 8, byte_order);
3043 upper = ~upper;
3044
3045 memcpy (buf, &lower, size);
3046 memcpy (buf + size, &upper, size);
3047 }
3048 }
3049 else if (i386_ymm_regnum_p (gdbarch, regnum))
3050 {
3051 regnum -= tdep->ymm0_regnum;
3052
3053 /* Extract (always little endian). Read lower 128bits. */
3054 status = regcache_raw_read (regcache,
3055 I387_XMM0_REGNUM (tdep) + regnum,
3056 raw_buf);
3057 if (status != REG_VALID)
3058 mark_value_bytes_unavailable (result_value, 0, 16);
3059 else
3060 memcpy (buf, raw_buf, 16);
3061 /* Read upper 128bits. */
3062 status = regcache_raw_read (regcache,
3063 tdep->ymm0h_regnum + regnum,
3064 raw_buf);
3065 if (status != REG_VALID)
3066 mark_value_bytes_unavailable (result_value, 16, 32);
3067 else
3068 memcpy (buf + 16, raw_buf, 16);
3069 }
3070 else if (i386_word_regnum_p (gdbarch, regnum))
3071 {
3072 int gpnum = regnum - tdep->ax_regnum;
3073
3074 /* Extract (always little endian). */
3075 status = regcache_raw_read (regcache, gpnum, raw_buf);
3076 if (status != REG_VALID)
3077 mark_value_bytes_unavailable (result_value, 0,
3078 TYPE_LENGTH (value_type (result_value)));
3079 else
3080 memcpy (buf, raw_buf, 2);
3081 }
3082 else if (i386_byte_regnum_p (gdbarch, regnum))
3083 {
3084 /* Check byte pseudo registers last since this function will
3085 be called from amd64_pseudo_register_read, which handles
3086 byte pseudo registers differently. */
3087 int gpnum = regnum - tdep->al_regnum;
3088
3089 /* Extract (always little endian). We read both lower and
3090 upper registers. */
3091 status = regcache_raw_read (regcache, gpnum % 4, raw_buf);
3092 if (status != REG_VALID)
3093 mark_value_bytes_unavailable (result_value, 0,
3094 TYPE_LENGTH (value_type (result_value)));
3095 else if (gpnum >= 4)
3096 memcpy (buf, raw_buf + 1, 1);
3097 else
3098 memcpy (buf, raw_buf, 1);
3099 }
3100 else
3101 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3102 }
3103 }
3104
3105 static struct value *
3106 i386_pseudo_register_read_value (struct gdbarch *gdbarch,
3107 struct regcache *regcache,
3108 int regnum)
3109 {
3110 struct value *result;
3111
3112 result = allocate_value (register_type (gdbarch, regnum));
3113 VALUE_LVAL (result) = lval_register;
3114 VALUE_REGNUM (result) = regnum;
3115
3116 i386_pseudo_register_read_into_value (gdbarch, regcache, regnum, result);
3117
3118 return result;
3119 }
3120
3121 void
3122 i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
3123 int regnum, const gdb_byte *buf)
3124 {
3125 gdb_byte raw_buf[MAX_REGISTER_SIZE];
3126
3127 if (i386_mmx_regnum_p (gdbarch, regnum))
3128 {
3129 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3130
3131 /* Read ... */
3132 regcache_raw_read (regcache, fpnum, raw_buf);
3133 /* ... Modify ... (always little endian). */
3134 memcpy (raw_buf, buf, register_size (gdbarch, regnum));
3135 /* ... Write. */
3136 regcache_raw_write (regcache, fpnum, raw_buf);
3137 }
3138 else
3139 {
3140 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3141
3142 if (i386_bnd_regnum_p (gdbarch, regnum))
3143 {
3144 ULONGEST upper, lower;
3145 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
3146 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3147
3148 /* New values from input value. */
3149 regnum -= tdep->bnd0_regnum;
3150 lower = extract_unsigned_integer (buf, size, byte_order);
3151 upper = extract_unsigned_integer (buf + size, size, byte_order);
3152
3153 /* Fetching register buffer. */
3154 regcache_raw_read (regcache,
3155 I387_BND0R_REGNUM (tdep) + regnum,
3156 raw_buf);
3157
3158 upper = ~upper;
3159
3160 /* Set register bits. */
3161 memcpy (raw_buf, &lower, 8);
3162 memcpy (raw_buf + 8, &upper, 8);
3163
3164
3165 regcache_raw_write (regcache,
3166 I387_BND0R_REGNUM (tdep) + regnum,
3167 raw_buf);
3168 }
3169 else if (i386_ymm_regnum_p (gdbarch, regnum))
3170 {
3171 regnum -= tdep->ymm0_regnum;
3172
3173 /* ... Write lower 128bits. */
3174 regcache_raw_write (regcache,
3175 I387_XMM0_REGNUM (tdep) + regnum,
3176 buf);
3177 /* ... Write upper 128bits. */
3178 regcache_raw_write (regcache,
3179 tdep->ymm0h_regnum + regnum,
3180 buf + 16);
3181 }
3182 else if (i386_word_regnum_p (gdbarch, regnum))
3183 {
3184 int gpnum = regnum - tdep->ax_regnum;
3185
3186 /* Read ... */
3187 regcache_raw_read (regcache, gpnum, raw_buf);
3188 /* ... Modify ... (always little endian). */
3189 memcpy (raw_buf, buf, 2);
3190 /* ... Write. */
3191 regcache_raw_write (regcache, gpnum, raw_buf);
3192 }
3193 else if (i386_byte_regnum_p (gdbarch, regnum))
3194 {
3195 /* Check byte pseudo registers last since this function will
3196 be called from amd64_pseudo_register_read, which handles
3197 byte pseudo registers differently. */
3198 int gpnum = regnum - tdep->al_regnum;
3199
3200 /* Read ... We read both lower and upper registers. */
3201 regcache_raw_read (regcache, gpnum % 4, raw_buf);
3202 /* ... Modify ... (always little endian). */
3203 if (gpnum >= 4)
3204 memcpy (raw_buf + 1, buf, 1);
3205 else
3206 memcpy (raw_buf, buf, 1);
3207 /* ... Write. */
3208 regcache_raw_write (regcache, gpnum % 4, raw_buf);
3209 }
3210 else
3211 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3212 }
3213 }
3214 \f
3215
3216 /* Return the register number of the register allocated by GCC after
3217 REGNUM, or -1 if there is no such register. */
3218
3219 static int
3220 i386_next_regnum (int regnum)
3221 {
3222 /* GCC allocates the registers in the order:
3223
3224 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
3225
3226 Since storing a variable in %esp doesn't make any sense we return
3227 -1 for %ebp and for %esp itself. */
3228 static int next_regnum[] =
3229 {
3230 I386_EDX_REGNUM, /* Slot for %eax. */
3231 I386_EBX_REGNUM, /* Slot for %ecx. */
3232 I386_ECX_REGNUM, /* Slot for %edx. */
3233 I386_ESI_REGNUM, /* Slot for %ebx. */
3234 -1, -1, /* Slots for %esp and %ebp. */
3235 I386_EDI_REGNUM, /* Slot for %esi. */
3236 I386_EBP_REGNUM /* Slot for %edi. */
3237 };
3238
3239 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
3240 return next_regnum[regnum];
3241
3242 return -1;
3243 }
3244
3245 /* Return nonzero if a value of type TYPE stored in register REGNUM
3246 needs any special handling. */
3247
3248 static int
3249 i386_convert_register_p (struct gdbarch *gdbarch,
3250 int regnum, struct type *type)
3251 {
3252 int len = TYPE_LENGTH (type);
3253
3254 /* Values may be spread across multiple registers. Most debugging
3255 formats aren't expressive enough to specify the locations, so
3256 some heuristics is involved. Right now we only handle types that
3257 have a length that is a multiple of the word size, since GCC
3258 doesn't seem to put any other types into registers. */
3259 if (len > 4 && len % 4 == 0)
3260 {
3261 int last_regnum = regnum;
3262
3263 while (len > 4)
3264 {
3265 last_regnum = i386_next_regnum (last_regnum);
3266 len -= 4;
3267 }
3268
3269 if (last_regnum != -1)
3270 return 1;
3271 }
3272
3273 return i387_convert_register_p (gdbarch, regnum, type);
3274 }
3275
3276 /* Read a value of type TYPE from register REGNUM in frame FRAME, and
3277 return its contents in TO. */
3278
3279 static int
3280 i386_register_to_value (struct frame_info *frame, int regnum,
3281 struct type *type, gdb_byte *to,
3282 int *optimizedp, int *unavailablep)
3283 {
3284 struct gdbarch *gdbarch = get_frame_arch (frame);
3285 int len = TYPE_LENGTH (type);
3286
3287 if (i386_fp_regnum_p (gdbarch, regnum))
3288 return i387_register_to_value (frame, regnum, type, to,
3289 optimizedp, unavailablep);
3290
3291 /* Read a value spread across multiple registers. */
3292
3293 gdb_assert (len > 4 && len % 4 == 0);
3294
3295 while (len > 0)
3296 {
3297 gdb_assert (regnum != -1);
3298 gdb_assert (register_size (gdbarch, regnum) == 4);
3299
3300 if (!get_frame_register_bytes (frame, regnum, 0,
3301 register_size (gdbarch, regnum),
3302 to, optimizedp, unavailablep))
3303 return 0;
3304
3305 regnum = i386_next_regnum (regnum);
3306 len -= 4;
3307 to += 4;
3308 }
3309
3310 *optimizedp = *unavailablep = 0;
3311 return 1;
3312 }
3313
3314 /* Write the contents FROM of a value of type TYPE into register
3315 REGNUM in frame FRAME. */
3316
3317 static void
3318 i386_value_to_register (struct frame_info *frame, int regnum,
3319 struct type *type, const gdb_byte *from)
3320 {
3321 int len = TYPE_LENGTH (type);
3322
3323 if (i386_fp_regnum_p (get_frame_arch (frame), regnum))
3324 {
3325 i387_value_to_register (frame, regnum, type, from);
3326 return;
3327 }
3328
3329 /* Write a value spread across multiple registers. */
3330
3331 gdb_assert (len > 4 && len % 4 == 0);
3332
3333 while (len > 0)
3334 {
3335 gdb_assert (regnum != -1);
3336 gdb_assert (register_size (get_frame_arch (frame), regnum) == 4);
3337
3338 put_frame_register (frame, regnum, from);
3339 regnum = i386_next_regnum (regnum);
3340 len -= 4;
3341 from += 4;
3342 }
3343 }
3344 \f
3345 /* Supply register REGNUM from the buffer specified by GREGS and LEN
3346 in the general-purpose register set REGSET to register cache
3347 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3348
3349 void
3350 i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
3351 int regnum, const void *gregs, size_t len)
3352 {
3353 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
3354 const gdb_byte *regs = gregs;
3355 int i;
3356
3357 gdb_assert (len == tdep->sizeof_gregset);
3358
3359 for (i = 0; i < tdep->gregset_num_regs; i++)
3360 {
3361 if ((regnum == i || regnum == -1)
3362 && tdep->gregset_reg_offset[i] != -1)
3363 regcache_raw_supply (regcache, i, regs + tdep->gregset_reg_offset[i]);
3364 }
3365 }
3366
3367 /* Collect register REGNUM from the register cache REGCACHE and store
3368 it in the buffer specified by GREGS and LEN as described by the
3369 general-purpose register set REGSET. If REGNUM is -1, do this for
3370 all registers in REGSET. */
3371
3372 void
3373 i386_collect_gregset (const struct regset *regset,
3374 const struct regcache *regcache,
3375 int regnum, void *gregs, size_t len)
3376 {
3377 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
3378 gdb_byte *regs = gregs;
3379 int i;
3380
3381 gdb_assert (len == tdep->sizeof_gregset);
3382
3383 for (i = 0; i < tdep->gregset_num_regs; i++)
3384 {
3385 if ((regnum == i || regnum == -1)
3386 && tdep->gregset_reg_offset[i] != -1)
3387 regcache_raw_collect (regcache, i, regs + tdep->gregset_reg_offset[i]);
3388 }
3389 }
3390
3391 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
3392 in the floating-point register set REGSET to register cache
3393 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3394
3395 static void
3396 i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
3397 int regnum, const void *fpregs, size_t len)
3398 {
3399 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
3400
3401 if (len == I387_SIZEOF_FXSAVE)
3402 {
3403 i387_supply_fxsave (regcache, regnum, fpregs);
3404 return;
3405 }
3406
3407 gdb_assert (len == tdep->sizeof_fpregset);
3408 i387_supply_fsave (regcache, regnum, fpregs);
3409 }
3410
3411 /* Collect register REGNUM from the register cache REGCACHE and store
3412 it in the buffer specified by FPREGS and LEN as described by the
3413 floating-point register set REGSET. If REGNUM is -1, do this for
3414 all registers in REGSET. */
3415
3416 static void
3417 i386_collect_fpregset (const struct regset *regset,
3418 const struct regcache *regcache,
3419 int regnum, void *fpregs, size_t len)
3420 {
3421 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
3422
3423 if (len == I387_SIZEOF_FXSAVE)
3424 {
3425 i387_collect_fxsave (regcache, regnum, fpregs);
3426 return;
3427 }
3428
3429 gdb_assert (len == tdep->sizeof_fpregset);
3430 i387_collect_fsave (regcache, regnum, fpregs);
3431 }
3432
3433 /* Similar to i386_supply_fpregset, but use XSAVE extended state. */
3434
3435 static void
3436 i386_supply_xstateregset (const struct regset *regset,
3437 struct regcache *regcache, int regnum,
3438 const void *xstateregs, size_t len)
3439 {
3440 i387_supply_xsave (regcache, regnum, xstateregs);
3441 }
3442
3443 /* Similar to i386_collect_fpregset , but use XSAVE extended state. */
3444
3445 static void
3446 i386_collect_xstateregset (const struct regset *regset,
3447 const struct regcache *regcache,
3448 int regnum, void *xstateregs, size_t len)
3449 {
3450 i387_collect_xsave (regcache, regnum, xstateregs, 1);
3451 }
3452
3453 /* Return the appropriate register set for the core section identified
3454 by SECT_NAME and SECT_SIZE. */
3455
3456 const struct regset *
3457 i386_regset_from_core_section (struct gdbarch *gdbarch,
3458 const char *sect_name, size_t sect_size)
3459 {
3460 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3461
3462 if (strcmp (sect_name, ".reg") == 0 && sect_size == tdep->sizeof_gregset)
3463 {
3464 if (tdep->gregset == NULL)
3465 tdep->gregset = regset_alloc (gdbarch, i386_supply_gregset,
3466 i386_collect_gregset);
3467 return tdep->gregset;
3468 }
3469
3470 if ((strcmp (sect_name, ".reg2") == 0 && sect_size == tdep->sizeof_fpregset)
3471 || (strcmp (sect_name, ".reg-xfp") == 0
3472 && sect_size == I387_SIZEOF_FXSAVE))
3473 {
3474 if (tdep->fpregset == NULL)
3475 tdep->fpregset = regset_alloc (gdbarch, i386_supply_fpregset,
3476 i386_collect_fpregset);
3477 return tdep->fpregset;
3478 }
3479
3480 if (strcmp (sect_name, ".reg-xstate") == 0)
3481 {
3482 if (tdep->xstateregset == NULL)
3483 tdep->xstateregset = regset_alloc (gdbarch,
3484 i386_supply_xstateregset,
3485 i386_collect_xstateregset);
3486
3487 return tdep->xstateregset;
3488 }
3489
3490 return NULL;
3491 }
3492 \f
3493
3494 /* Stuff for WIN32 PE style DLL's but is pretty generic really. */
3495
3496 CORE_ADDR
3497 i386_pe_skip_trampoline_code (struct frame_info *frame,
3498 CORE_ADDR pc, char *name)
3499 {
3500 struct gdbarch *gdbarch = get_frame_arch (frame);
3501 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3502
3503 /* jmp *(dest) */
3504 if (pc && read_memory_unsigned_integer (pc, 2, byte_order) == 0x25ff)
3505 {
3506 unsigned long indirect =
3507 read_memory_unsigned_integer (pc + 2, 4, byte_order);
3508 struct minimal_symbol *indsym =
3509 indirect ? lookup_minimal_symbol_by_pc (indirect).minsym : 0;
3510 const char *symname = indsym ? SYMBOL_LINKAGE_NAME (indsym) : 0;
3511
3512 if (symname)
3513 {
3514 if (strncmp (symname, "__imp_", 6) == 0
3515 || strncmp (symname, "_imp_", 5) == 0)
3516 return name ? 1 :
3517 read_memory_unsigned_integer (indirect, 4, byte_order);
3518 }
3519 }
3520 return 0; /* Not a trampoline. */
3521 }
3522 \f
3523
3524 /* Return whether the THIS_FRAME corresponds to a sigtramp
3525 routine. */
3526
3527 int
3528 i386_sigtramp_p (struct frame_info *this_frame)
3529 {
3530 CORE_ADDR pc = get_frame_pc (this_frame);
3531 const char *name;
3532
3533 find_pc_partial_function (pc, &name, NULL, NULL);
3534 return (name && strcmp ("_sigtramp", name) == 0);
3535 }
3536 \f
3537
3538 /* We have two flavours of disassembly. The machinery on this page
3539 deals with switching between those. */
3540
3541 static int
3542 i386_print_insn (bfd_vma pc, struct disassemble_info *info)
3543 {
3544 gdb_assert (disassembly_flavor == att_flavor
3545 || disassembly_flavor == intel_flavor);
3546
3547 /* FIXME: kettenis/20020915: Until disassembler_options is properly
3548 constified, cast to prevent a compiler warning. */
3549 info->disassembler_options = (char *) disassembly_flavor;
3550
3551 return print_insn_i386 (pc, info);
3552 }
3553 \f
3554
3555 /* There are a few i386 architecture variants that differ only
3556 slightly from the generic i386 target. For now, we don't give them
3557 their own source file, but include them here. As a consequence,
3558 they'll always be included. */
3559
3560 /* System V Release 4 (SVR4). */
3561
3562 /* Return whether THIS_FRAME corresponds to a SVR4 sigtramp
3563 routine. */
3564
3565 static int
3566 i386_svr4_sigtramp_p (struct frame_info *this_frame)
3567 {
3568 CORE_ADDR pc = get_frame_pc (this_frame);
3569 const char *name;
3570
3571 /* The origin of these symbols is currently unknown. */
3572 find_pc_partial_function (pc, &name, NULL, NULL);
3573 return (name && (strcmp ("_sigreturn", name) == 0
3574 || strcmp ("sigvechandler", name) == 0));
3575 }
3576
3577 /* Assuming THIS_FRAME is for a SVR4 sigtramp routine, return the
3578 address of the associated sigcontext (ucontext) structure. */
3579
3580 static CORE_ADDR
3581 i386_svr4_sigcontext_addr (struct frame_info *this_frame)
3582 {
3583 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3584 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3585 gdb_byte buf[4];
3586 CORE_ADDR sp;
3587
3588 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
3589 sp = extract_unsigned_integer (buf, 4, byte_order);
3590
3591 return read_memory_unsigned_integer (sp + 8, 4, byte_order);
3592 }
3593
3594 \f
3595
3596 /* Implementation of `gdbarch_stap_is_single_operand', as defined in
3597 gdbarch.h. */
3598
3599 int
3600 i386_stap_is_single_operand (struct gdbarch *gdbarch, const char *s)
3601 {
3602 return (*s == '$' /* Literal number. */
3603 || (isdigit (*s) && s[1] == '(' && s[2] == '%') /* Displacement. */
3604 || (*s == '(' && s[1] == '%') /* Register indirection. */
3605 || (*s == '%' && isalpha (s[1]))); /* Register access. */
3606 }
3607
3608 /* Helper function for i386_stap_parse_special_token.
3609
3610 This function parses operands of the form `-8+3+1(%rbp)', which
3611 must be interpreted as `*(-8 + 3 - 1 + (void *) $eax)'.
3612
3613 Return 1 if the operand was parsed successfully, zero
3614 otherwise. */
3615
3616 static int
3617 i386_stap_parse_special_token_triplet (struct gdbarch *gdbarch,
3618 struct stap_parse_info *p)
3619 {
3620 const char *s = p->arg;
3621
3622 if (isdigit (*s) || *s == '-' || *s == '+')
3623 {
3624 int got_minus[3];
3625 int i;
3626 long displacements[3];
3627 const char *start;
3628 char *regname;
3629 int len;
3630 struct stoken str;
3631 char *endp;
3632
3633 got_minus[0] = 0;
3634 if (*s == '+')
3635 ++s;
3636 else if (*s == '-')
3637 {
3638 ++s;
3639 got_minus[0] = 1;
3640 }
3641
3642 displacements[0] = strtol (s, &endp, 10);
3643 s = endp;
3644
3645 if (*s != '+' && *s != '-')
3646 {
3647 /* We are not dealing with a triplet. */
3648 return 0;
3649 }
3650
3651 got_minus[1] = 0;
3652 if (*s == '+')
3653 ++s;
3654 else
3655 {
3656 ++s;
3657 got_minus[1] = 1;
3658 }
3659
3660 displacements[1] = strtol (s, &endp, 10);
3661 s = endp;
3662
3663 if (*s != '+' && *s != '-')
3664 {
3665 /* We are not dealing with a triplet. */
3666 return 0;
3667 }
3668
3669 got_minus[2] = 0;
3670 if (*s == '+')
3671 ++s;
3672 else
3673 {
3674 ++s;
3675 got_minus[2] = 1;
3676 }
3677
3678 displacements[2] = strtol (s, &endp, 10);
3679 s = endp;
3680
3681 if (*s != '(' || s[1] != '%')
3682 return 0;
3683
3684 s += 2;
3685 start = s;
3686
3687 while (isalnum (*s))
3688 ++s;
3689
3690 if (*s++ != ')')
3691 return 0;
3692
3693 len = s - start;
3694 regname = alloca (len + 1);
3695
3696 strncpy (regname, start, len);
3697 regname[len] = '\0';
3698
3699 if (user_reg_map_name_to_regnum (gdbarch, regname, len) == -1)
3700 error (_("Invalid register name `%s' on expression `%s'."),
3701 regname, p->saved_arg);
3702
3703 for (i = 0; i < 3; i++)
3704 {
3705 write_exp_elt_opcode (OP_LONG);
3706 write_exp_elt_type (builtin_type (gdbarch)->builtin_long);
3707 write_exp_elt_longcst (displacements[i]);
3708 write_exp_elt_opcode (OP_LONG);
3709 if (got_minus[i])
3710 write_exp_elt_opcode (UNOP_NEG);
3711 }
3712
3713 write_exp_elt_opcode (OP_REGISTER);
3714 str.ptr = regname;
3715 str.length = len;
3716 write_exp_string (str);
3717 write_exp_elt_opcode (OP_REGISTER);
3718
3719 write_exp_elt_opcode (UNOP_CAST);
3720 write_exp_elt_type (builtin_type (gdbarch)->builtin_data_ptr);
3721 write_exp_elt_opcode (UNOP_CAST);
3722
3723 write_exp_elt_opcode (BINOP_ADD);
3724 write_exp_elt_opcode (BINOP_ADD);
3725 write_exp_elt_opcode (BINOP_ADD);
3726
3727 write_exp_elt_opcode (UNOP_CAST);
3728 write_exp_elt_type (lookup_pointer_type (p->arg_type));
3729 write_exp_elt_opcode (UNOP_CAST);
3730
3731 write_exp_elt_opcode (UNOP_IND);
3732
3733 p->arg = s;
3734
3735 return 1;
3736 }
3737
3738 return 0;
3739 }
3740
3741 /* Helper function for i386_stap_parse_special_token.
3742
3743 This function parses operands of the form `register base +
3744 (register index * size) + offset', as represented in
3745 `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
3746
3747 Return 1 if the operand was parsed successfully, zero
3748 otherwise. */
3749
3750 static int
3751 i386_stap_parse_special_token_three_arg_disp (struct gdbarch *gdbarch,
3752 struct stap_parse_info *p)
3753 {
3754 const char *s = p->arg;
3755
3756 if (isdigit (*s) || *s == '(' || *s == '-' || *s == '+')
3757 {
3758 int offset_minus = 0;
3759 long offset = 0;
3760 int size_minus = 0;
3761 long size = 0;
3762 const char *start;
3763 char *base;
3764 int len_base;
3765 char *index;
3766 int len_index;
3767 struct stoken base_token, index_token;
3768
3769 if (*s == '+')
3770 ++s;
3771 else if (*s == '-')
3772 {
3773 ++s;
3774 offset_minus = 1;
3775 }
3776
3777 if (offset_minus && !isdigit (*s))
3778 return 0;
3779
3780 if (isdigit (*s))
3781 {
3782 char *endp;
3783
3784 offset = strtol (s, &endp, 10);
3785 s = endp;
3786 }
3787
3788 if (*s != '(' || s[1] != '%')
3789 return 0;
3790
3791 s += 2;
3792 start = s;
3793
3794 while (isalnum (*s))
3795 ++s;
3796
3797 if (*s != ',' || s[1] != '%')
3798 return 0;
3799
3800 len_base = s - start;
3801 base = alloca (len_base + 1);
3802 strncpy (base, start, len_base);
3803 base[len_base] = '\0';
3804
3805 if (user_reg_map_name_to_regnum (gdbarch, base, len_base) == -1)
3806 error (_("Invalid register name `%s' on expression `%s'."),
3807 base, p->saved_arg);
3808
3809 s += 2;
3810 start = s;
3811
3812 while (isalnum (*s))
3813 ++s;
3814
3815 len_index = s - start;
3816 index = alloca (len_index + 1);
3817 strncpy (index, start, len_index);
3818 index[len_index] = '\0';
3819
3820 if (user_reg_map_name_to_regnum (gdbarch, index, len_index) == -1)
3821 error (_("Invalid register name `%s' on expression `%s'."),
3822 index, p->saved_arg);
3823
3824 if (*s != ',' && *s != ')')
3825 return 0;
3826
3827 if (*s == ',')
3828 {
3829 char *endp;
3830
3831 ++s;
3832 if (*s == '+')
3833 ++s;
3834 else if (*s == '-')
3835 {
3836 ++s;
3837 size_minus = 1;
3838 }
3839
3840 size = strtol (s, &endp, 10);
3841 s = endp;
3842
3843 if (*s != ')')
3844 return 0;
3845 }
3846
3847 ++s;
3848
3849 if (offset)
3850 {
3851 write_exp_elt_opcode (OP_LONG);
3852 write_exp_elt_type (builtin_type (gdbarch)->builtin_long);
3853 write_exp_elt_longcst (offset);
3854 write_exp_elt_opcode (OP_LONG);
3855 if (offset_minus)
3856 write_exp_elt_opcode (UNOP_NEG);
3857 }
3858
3859 write_exp_elt_opcode (OP_REGISTER);
3860 base_token.ptr = base;
3861 base_token.length = len_base;
3862 write_exp_string (base_token);
3863 write_exp_elt_opcode (OP_REGISTER);
3864
3865 if (offset)
3866 write_exp_elt_opcode (BINOP_ADD);
3867
3868 write_exp_elt_opcode (OP_REGISTER);
3869 index_token.ptr = index;
3870 index_token.length = len_index;
3871 write_exp_string (index_token);
3872 write_exp_elt_opcode (OP_REGISTER);
3873
3874 if (size)
3875 {
3876 write_exp_elt_opcode (OP_LONG);
3877 write_exp_elt_type (builtin_type (gdbarch)->builtin_long);
3878 write_exp_elt_longcst (size);
3879 write_exp_elt_opcode (OP_LONG);
3880 if (size_minus)
3881 write_exp_elt_opcode (UNOP_NEG);
3882 write_exp_elt_opcode (BINOP_MUL);
3883 }
3884
3885 write_exp_elt_opcode (BINOP_ADD);
3886
3887 write_exp_elt_opcode (UNOP_CAST);
3888 write_exp_elt_type (lookup_pointer_type (p->arg_type));
3889 write_exp_elt_opcode (UNOP_CAST);
3890
3891 write_exp_elt_opcode (UNOP_IND);
3892
3893 p->arg = s;
3894
3895 return 1;
3896 }
3897
3898 return 0;
3899 }
3900
3901 /* Implementation of `gdbarch_stap_parse_special_token', as defined in
3902 gdbarch.h. */
3903
3904 int
3905 i386_stap_parse_special_token (struct gdbarch *gdbarch,
3906 struct stap_parse_info *p)
3907 {
3908 /* In order to parse special tokens, we use a state-machine that go
3909 through every known token and try to get a match. */
3910 enum
3911 {
3912 TRIPLET,
3913 THREE_ARG_DISPLACEMENT,
3914 DONE
3915 } current_state;
3916
3917 current_state = TRIPLET;
3918
3919 /* The special tokens to be parsed here are:
3920
3921 - `register base + (register index * size) + offset', as represented
3922 in `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
3923
3924 - Operands of the form `-8+3+1(%rbp)', which must be interpreted as
3925 `*(-8 + 3 - 1 + (void *) $eax)'. */
3926
3927 while (current_state != DONE)
3928 {
3929 switch (current_state)
3930 {
3931 case TRIPLET:
3932 if (i386_stap_parse_special_token_triplet (gdbarch, p))
3933 return 1;
3934 break;
3935
3936 case THREE_ARG_DISPLACEMENT:
3937 if (i386_stap_parse_special_token_three_arg_disp (gdbarch, p))
3938 return 1;
3939 break;
3940 }
3941
3942 /* Advancing to the next state. */
3943 ++current_state;
3944 }
3945
3946 return 0;
3947 }
3948
3949 \f
3950
3951 /* Generic ELF. */
3952
3953 void
3954 i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3955 {
3956 static const char *const stap_integer_prefixes[] = { "$", NULL };
3957 static const char *const stap_register_prefixes[] = { "%", NULL };
3958 static const char *const stap_register_indirection_prefixes[] = { "(",
3959 NULL };
3960 static const char *const stap_register_indirection_suffixes[] = { ")",
3961 NULL };
3962
3963 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
3964 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
3965
3966 /* Registering SystemTap handlers. */
3967 set_gdbarch_stap_integer_prefixes (gdbarch, stap_integer_prefixes);
3968 set_gdbarch_stap_register_prefixes (gdbarch, stap_register_prefixes);
3969 set_gdbarch_stap_register_indirection_prefixes (gdbarch,
3970 stap_register_indirection_prefixes);
3971 set_gdbarch_stap_register_indirection_suffixes (gdbarch,
3972 stap_register_indirection_suffixes);
3973 set_gdbarch_stap_is_single_operand (gdbarch,
3974 i386_stap_is_single_operand);
3975 set_gdbarch_stap_parse_special_token (gdbarch,
3976 i386_stap_parse_special_token);
3977 }
3978
3979 /* System V Release 4 (SVR4). */
3980
3981 void
3982 i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3983 {
3984 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3985
3986 /* System V Release 4 uses ELF. */
3987 i386_elf_init_abi (info, gdbarch);
3988
3989 /* System V Release 4 has shared libraries. */
3990 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
3991
3992 tdep->sigtramp_p = i386_svr4_sigtramp_p;
3993 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
3994 tdep->sc_pc_offset = 36 + 14 * 4;
3995 tdep->sc_sp_offset = 36 + 17 * 4;
3996
3997 tdep->jb_pc_offset = 20;
3998 }
3999
4000 /* DJGPP. */
4001
4002 static void
4003 i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4004 {
4005 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4006
4007 /* DJGPP doesn't have any special frames for signal handlers. */
4008 tdep->sigtramp_p = NULL;
4009
4010 tdep->jb_pc_offset = 36;
4011
4012 /* DJGPP does not support the SSE registers. */
4013 if (! tdesc_has_registers (info.target_desc))
4014 tdep->tdesc = tdesc_i386_mmx;
4015
4016 /* Native compiler is GCC, which uses the SVR4 register numbering
4017 even in COFF and STABS. See the comment in i386_gdbarch_init,
4018 before the calls to set_gdbarch_stab_reg_to_regnum and
4019 set_gdbarch_sdb_reg_to_regnum. */
4020 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
4021 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
4022
4023 set_gdbarch_has_dos_based_file_system (gdbarch, 1);
4024 }
4025 \f
4026
4027 /* i386 register groups. In addition to the normal groups, add "mmx"
4028 and "sse". */
4029
4030 static struct reggroup *i386_sse_reggroup;
4031 static struct reggroup *i386_mmx_reggroup;
4032
4033 static void
4034 i386_init_reggroups (void)
4035 {
4036 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
4037 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
4038 }
4039
4040 static void
4041 i386_add_reggroups (struct gdbarch *gdbarch)
4042 {
4043 reggroup_add (gdbarch, i386_sse_reggroup);
4044 reggroup_add (gdbarch, i386_mmx_reggroup);
4045 reggroup_add (gdbarch, general_reggroup);
4046 reggroup_add (gdbarch, float_reggroup);
4047 reggroup_add (gdbarch, all_reggroup);
4048 reggroup_add (gdbarch, save_reggroup);
4049 reggroup_add (gdbarch, restore_reggroup);
4050 reggroup_add (gdbarch, vector_reggroup);
4051 reggroup_add (gdbarch, system_reggroup);
4052 }
4053
4054 int
4055 i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
4056 struct reggroup *group)
4057 {
4058 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4059 int fp_regnum_p, mmx_regnum_p, xmm_regnum_p, mxcsr_regnum_p,
4060 ymm_regnum_p, ymmh_regnum_p, bndr_regnum_p, bnd_regnum_p,
4061 mpx_ctrl_regnum_p;
4062
4063 /* Don't include pseudo registers, except for MMX, in any register
4064 groups. */
4065 if (i386_byte_regnum_p (gdbarch, regnum))
4066 return 0;
4067
4068 if (i386_word_regnum_p (gdbarch, regnum))
4069 return 0;
4070
4071 if (i386_dword_regnum_p (gdbarch, regnum))
4072 return 0;
4073
4074 mmx_regnum_p = i386_mmx_regnum_p (gdbarch, regnum);
4075 if (group == i386_mmx_reggroup)
4076 return mmx_regnum_p;
4077
4078 xmm_regnum_p = i386_xmm_regnum_p (gdbarch, regnum);
4079 mxcsr_regnum_p = i386_mxcsr_regnum_p (gdbarch, regnum);
4080 if (group == i386_sse_reggroup)
4081 return xmm_regnum_p || mxcsr_regnum_p;
4082
4083 ymm_regnum_p = i386_ymm_regnum_p (gdbarch, regnum);
4084 if (group == vector_reggroup)
4085 return (mmx_regnum_p
4086 || ymm_regnum_p
4087 || mxcsr_regnum_p
4088 || (xmm_regnum_p
4089 && ((tdep->xcr0 & I386_XSTATE_AVX_MASK)
4090 == I386_XSTATE_SSE_MASK)));
4091
4092 fp_regnum_p = (i386_fp_regnum_p (gdbarch, regnum)
4093 || i386_fpc_regnum_p (gdbarch, regnum));
4094 if (group == float_reggroup)
4095 return fp_regnum_p;
4096
4097 /* For "info reg all", don't include upper YMM registers nor XMM
4098 registers when AVX is supported. */
4099 ymmh_regnum_p = i386_ymmh_regnum_p (gdbarch, regnum);
4100 if (group == all_reggroup
4101 && ((xmm_regnum_p
4102 && (tdep->xcr0 & I386_XSTATE_AVX))
4103 || ymmh_regnum_p))
4104 return 0;
4105
4106 bnd_regnum_p = i386_bnd_regnum_p (gdbarch, regnum);
4107 if (group == all_reggroup
4108 && ((bnd_regnum_p && (tdep->xcr0 & I386_XSTATE_MPX_MASK))))
4109 return bnd_regnum_p;
4110
4111 bndr_regnum_p = i386_bndr_regnum_p (gdbarch, regnum);
4112 if (group == all_reggroup
4113 && ((bndr_regnum_p && (tdep->xcr0 & I386_XSTATE_MPX_MASK))))
4114 return 0;
4115
4116 mpx_ctrl_regnum_p = i386_mpx_ctrl_regnum_p (gdbarch, regnum);
4117 if (group == all_reggroup
4118 && ((mpx_ctrl_regnum_p && (tdep->xcr0 & I386_XSTATE_MPX_MASK))))
4119 return mpx_ctrl_regnum_p;
4120
4121 if (group == general_reggroup)
4122 return (!fp_regnum_p
4123 && !mmx_regnum_p
4124 && !mxcsr_regnum_p
4125 && !xmm_regnum_p
4126 && !ymm_regnum_p
4127 && !ymmh_regnum_p
4128 && !bndr_regnum_p
4129 && !bnd_regnum_p
4130 && !mpx_ctrl_regnum_p);
4131
4132 return default_register_reggroup_p (gdbarch, regnum, group);
4133 }
4134 \f
4135
4136 /* Get the ARGIth function argument for the current function. */
4137
4138 static CORE_ADDR
4139 i386_fetch_pointer_argument (struct frame_info *frame, int argi,
4140 struct type *type)
4141 {
4142 struct gdbarch *gdbarch = get_frame_arch (frame);
4143 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4144 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
4145 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4, byte_order);
4146 }
4147
4148 static void
4149 i386_skip_permanent_breakpoint (struct regcache *regcache)
4150 {
4151 CORE_ADDR current_pc = regcache_read_pc (regcache);
4152
4153 /* On i386, breakpoint is exactly 1 byte long, so we just
4154 adjust the PC in the regcache. */
4155 current_pc += 1;
4156 regcache_write_pc (regcache, current_pc);
4157 }
4158
4159
4160 #define PREFIX_REPZ 0x01
4161 #define PREFIX_REPNZ 0x02
4162 #define PREFIX_LOCK 0x04
4163 #define PREFIX_DATA 0x08
4164 #define PREFIX_ADDR 0x10
4165
4166 /* operand size */
4167 enum
4168 {
4169 OT_BYTE = 0,
4170 OT_WORD,
4171 OT_LONG,
4172 OT_QUAD,
4173 OT_DQUAD,
4174 };
4175
4176 /* i386 arith/logic operations */
4177 enum
4178 {
4179 OP_ADDL,
4180 OP_ORL,
4181 OP_ADCL,
4182 OP_SBBL,
4183 OP_ANDL,
4184 OP_SUBL,
4185 OP_XORL,
4186 OP_CMPL,
4187 };
4188
4189 struct i386_record_s
4190 {
4191 struct gdbarch *gdbarch;
4192 struct regcache *regcache;
4193 CORE_ADDR orig_addr;
4194 CORE_ADDR addr;
4195 int aflag;
4196 int dflag;
4197 int override;
4198 uint8_t modrm;
4199 uint8_t mod, reg, rm;
4200 int ot;
4201 uint8_t rex_x;
4202 uint8_t rex_b;
4203 int rip_offset;
4204 int popl_esp_hack;
4205 const int *regmap;
4206 };
4207
4208 /* Parse the "modrm" part of the memory address irp->addr points at.
4209 Returns -1 if something goes wrong, 0 otherwise. */
4210
4211 static int
4212 i386_record_modrm (struct i386_record_s *irp)
4213 {
4214 struct gdbarch *gdbarch = irp->gdbarch;
4215
4216 if (record_read_memory (gdbarch, irp->addr, &irp->modrm, 1))
4217 return -1;
4218
4219 irp->addr++;
4220 irp->mod = (irp->modrm >> 6) & 3;
4221 irp->reg = (irp->modrm >> 3) & 7;
4222 irp->rm = irp->modrm & 7;
4223
4224 return 0;
4225 }
4226
4227 /* Extract the memory address that the current instruction writes to,
4228 and return it in *ADDR. Return -1 if something goes wrong. */
4229
4230 static int
4231 i386_record_lea_modrm_addr (struct i386_record_s *irp, uint64_t *addr)
4232 {
4233 struct gdbarch *gdbarch = irp->gdbarch;
4234 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4235 gdb_byte buf[4];
4236 ULONGEST offset64;
4237
4238 *addr = 0;
4239 if (irp->aflag || irp->regmap[X86_RECORD_R8_REGNUM])
4240 {
4241 /* 32/64 bits */
4242 int havesib = 0;
4243 uint8_t scale = 0;
4244 uint8_t byte;
4245 uint8_t index = 0;
4246 uint8_t base = irp->rm;
4247
4248 if (base == 4)
4249 {
4250 havesib = 1;
4251 if (record_read_memory (gdbarch, irp->addr, &byte, 1))
4252 return -1;
4253 irp->addr++;
4254 scale = (byte >> 6) & 3;
4255 index = ((byte >> 3) & 7) | irp->rex_x;
4256 base = (byte & 7);
4257 }
4258 base |= irp->rex_b;
4259
4260 switch (irp->mod)
4261 {
4262 case 0:
4263 if ((base & 7) == 5)
4264 {
4265 base = 0xff;
4266 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4267 return -1;
4268 irp->addr += 4;
4269 *addr = extract_signed_integer (buf, 4, byte_order);
4270 if (irp->regmap[X86_RECORD_R8_REGNUM] && !havesib)
4271 *addr += irp->addr + irp->rip_offset;
4272 }
4273 break;
4274 case 1:
4275 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4276 return -1;
4277 irp->addr++;
4278 *addr = (int8_t) buf[0];
4279 break;
4280 case 2:
4281 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4282 return -1;
4283 *addr = extract_signed_integer (buf, 4, byte_order);
4284 irp->addr += 4;
4285 break;
4286 }
4287
4288 offset64 = 0;
4289 if (base != 0xff)
4290 {
4291 if (base == 4 && irp->popl_esp_hack)
4292 *addr += irp->popl_esp_hack;
4293 regcache_raw_read_unsigned (irp->regcache, irp->regmap[base],
4294 &offset64);
4295 }
4296 if (irp->aflag == 2)
4297 {
4298 *addr += offset64;
4299 }
4300 else
4301 *addr = (uint32_t) (offset64 + *addr);
4302
4303 if (havesib && (index != 4 || scale != 0))
4304 {
4305 regcache_raw_read_unsigned (irp->regcache, irp->regmap[index],
4306 &offset64);
4307 if (irp->aflag == 2)
4308 *addr += offset64 << scale;
4309 else
4310 *addr = (uint32_t) (*addr + (offset64 << scale));
4311 }
4312
4313 if (!irp->aflag)
4314 {
4315 /* Since we are in 64-bit mode with ADDR32 prefix, zero-extend
4316 address from 32-bit to 64-bit. */
4317 *addr = (uint32_t) *addr;
4318 }
4319 }
4320 else
4321 {
4322 /* 16 bits */
4323 switch (irp->mod)
4324 {
4325 case 0:
4326 if (irp->rm == 6)
4327 {
4328 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4329 return -1;
4330 irp->addr += 2;
4331 *addr = extract_signed_integer (buf, 2, byte_order);
4332 irp->rm = 0;
4333 goto no_rm;
4334 }
4335 break;
4336 case 1:
4337 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4338 return -1;
4339 irp->addr++;
4340 *addr = (int8_t) buf[0];
4341 break;
4342 case 2:
4343 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4344 return -1;
4345 irp->addr += 2;
4346 *addr = extract_signed_integer (buf, 2, byte_order);
4347 break;
4348 }
4349
4350 switch (irp->rm)
4351 {
4352 case 0:
4353 regcache_raw_read_unsigned (irp->regcache,
4354 irp->regmap[X86_RECORD_REBX_REGNUM],
4355 &offset64);
4356 *addr = (uint32_t) (*addr + offset64);
4357 regcache_raw_read_unsigned (irp->regcache,
4358 irp->regmap[X86_RECORD_RESI_REGNUM],
4359 &offset64);
4360 *addr = (uint32_t) (*addr + offset64);
4361 break;
4362 case 1:
4363 regcache_raw_read_unsigned (irp->regcache,
4364 irp->regmap[X86_RECORD_REBX_REGNUM],
4365 &offset64);
4366 *addr = (uint32_t) (*addr + offset64);
4367 regcache_raw_read_unsigned (irp->regcache,
4368 irp->regmap[X86_RECORD_REDI_REGNUM],
4369 &offset64);
4370 *addr = (uint32_t) (*addr + offset64);
4371 break;
4372 case 2:
4373 regcache_raw_read_unsigned (irp->regcache,
4374 irp->regmap[X86_RECORD_REBP_REGNUM],
4375 &offset64);
4376 *addr = (uint32_t) (*addr + offset64);
4377 regcache_raw_read_unsigned (irp->regcache,
4378 irp->regmap[X86_RECORD_RESI_REGNUM],
4379 &offset64);
4380 *addr = (uint32_t) (*addr + offset64);
4381 break;
4382 case 3:
4383 regcache_raw_read_unsigned (irp->regcache,
4384 irp->regmap[X86_RECORD_REBP_REGNUM],
4385 &offset64);
4386 *addr = (uint32_t) (*addr + offset64);
4387 regcache_raw_read_unsigned (irp->regcache,
4388 irp->regmap[X86_RECORD_REDI_REGNUM],
4389 &offset64);
4390 *addr = (uint32_t) (*addr + offset64);
4391 break;
4392 case 4:
4393 regcache_raw_read_unsigned (irp->regcache,
4394 irp->regmap[X86_RECORD_RESI_REGNUM],
4395 &offset64);
4396 *addr = (uint32_t) (*addr + offset64);
4397 break;
4398 case 5:
4399 regcache_raw_read_unsigned (irp->regcache,
4400 irp->regmap[X86_RECORD_REDI_REGNUM],
4401 &offset64);
4402 *addr = (uint32_t) (*addr + offset64);
4403 break;
4404 case 6:
4405 regcache_raw_read_unsigned (irp->regcache,
4406 irp->regmap[X86_RECORD_REBP_REGNUM],
4407 &offset64);
4408 *addr = (uint32_t) (*addr + offset64);
4409 break;
4410 case 7:
4411 regcache_raw_read_unsigned (irp->regcache,
4412 irp->regmap[X86_RECORD_REBX_REGNUM],
4413 &offset64);
4414 *addr = (uint32_t) (*addr + offset64);
4415 break;
4416 }
4417 *addr &= 0xffff;
4418 }
4419
4420 no_rm:
4421 return 0;
4422 }
4423
4424 /* Record the address and contents of the memory that will be changed
4425 by the current instruction. Return -1 if something goes wrong, 0
4426 otherwise. */
4427
4428 static int
4429 i386_record_lea_modrm (struct i386_record_s *irp)
4430 {
4431 struct gdbarch *gdbarch = irp->gdbarch;
4432 uint64_t addr;
4433
4434 if (irp->override >= 0)
4435 {
4436 if (record_full_memory_query)
4437 {
4438 int q;
4439
4440 target_terminal_ours ();
4441 q = yquery (_("\
4442 Process record ignores the memory change of instruction at address %s\n\
4443 because it can't get the value of the segment register.\n\
4444 Do you want to stop the program?"),
4445 paddress (gdbarch, irp->orig_addr));
4446 target_terminal_inferior ();
4447 if (q)
4448 return -1;
4449 }
4450
4451 return 0;
4452 }
4453
4454 if (i386_record_lea_modrm_addr (irp, &addr))
4455 return -1;
4456
4457 if (record_full_arch_list_add_mem (addr, 1 << irp->ot))
4458 return -1;
4459
4460 return 0;
4461 }
4462
4463 /* Record the effects of a push operation. Return -1 if something
4464 goes wrong, 0 otherwise. */
4465
4466 static int
4467 i386_record_push (struct i386_record_s *irp, int size)
4468 {
4469 ULONGEST addr;
4470
4471 if (record_full_arch_list_add_reg (irp->regcache,
4472 irp->regmap[X86_RECORD_RESP_REGNUM]))
4473 return -1;
4474 regcache_raw_read_unsigned (irp->regcache,
4475 irp->regmap[X86_RECORD_RESP_REGNUM],
4476 &addr);
4477 if (record_full_arch_list_add_mem ((CORE_ADDR) addr - size, size))
4478 return -1;
4479
4480 return 0;
4481 }
4482
4483
4484 /* Defines contents to record. */
4485 #define I386_SAVE_FPU_REGS 0xfffd
4486 #define I386_SAVE_FPU_ENV 0xfffe
4487 #define I386_SAVE_FPU_ENV_REG_STACK 0xffff
4488
4489 /* Record the values of the floating point registers which will be
4490 changed by the current instruction. Returns -1 if something is
4491 wrong, 0 otherwise. */
4492
4493 static int i386_record_floats (struct gdbarch *gdbarch,
4494 struct i386_record_s *ir,
4495 uint32_t iregnum)
4496 {
4497 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4498 int i;
4499
4500 /* Oza: Because of floating point insn push/pop of fpu stack is going to
4501 happen. Currently we store st0-st7 registers, but we need not store all
4502 registers all the time, in future we use ftag register and record only
4503 those who are not marked as an empty. */
4504
4505 if (I386_SAVE_FPU_REGS == iregnum)
4506 {
4507 for (i = I387_ST0_REGNUM (tdep); i <= I387_ST0_REGNUM (tdep) + 7; i++)
4508 {
4509 if (record_full_arch_list_add_reg (ir->regcache, i))
4510 return -1;
4511 }
4512 }
4513 else if (I386_SAVE_FPU_ENV == iregnum)
4514 {
4515 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4516 {
4517 if (record_full_arch_list_add_reg (ir->regcache, i))
4518 return -1;
4519 }
4520 }
4521 else if (I386_SAVE_FPU_ENV_REG_STACK == iregnum)
4522 {
4523 for (i = I387_ST0_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4524 {
4525 if (record_full_arch_list_add_reg (ir->regcache, i))
4526 return -1;
4527 }
4528 }
4529 else if ((iregnum >= I387_ST0_REGNUM (tdep)) &&
4530 (iregnum <= I387_FOP_REGNUM (tdep)))
4531 {
4532 if (record_full_arch_list_add_reg (ir->regcache,iregnum))
4533 return -1;
4534 }
4535 else
4536 {
4537 /* Parameter error. */
4538 return -1;
4539 }
4540 if(I386_SAVE_FPU_ENV != iregnum)
4541 {
4542 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4543 {
4544 if (record_full_arch_list_add_reg (ir->regcache, i))
4545 return -1;
4546 }
4547 }
4548 return 0;
4549 }
4550
4551 /* Parse the current instruction, and record the values of the
4552 registers and memory that will be changed by the current
4553 instruction. Returns -1 if something goes wrong, 0 otherwise. */
4554
4555 #define I386_RECORD_FULL_ARCH_LIST_ADD_REG(regnum) \
4556 record_full_arch_list_add_reg (ir.regcache, ir.regmap[(regnum)])
4557
4558 int
4559 i386_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
4560 CORE_ADDR input_addr)
4561 {
4562 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4563 int prefixes = 0;
4564 int regnum = 0;
4565 uint32_t opcode;
4566 uint8_t opcode8;
4567 ULONGEST addr;
4568 gdb_byte buf[MAX_REGISTER_SIZE];
4569 struct i386_record_s ir;
4570 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4571 uint8_t rex_w = -1;
4572 uint8_t rex_r = 0;
4573
4574 memset (&ir, 0, sizeof (struct i386_record_s));
4575 ir.regcache = regcache;
4576 ir.addr = input_addr;
4577 ir.orig_addr = input_addr;
4578 ir.aflag = 1;
4579 ir.dflag = 1;
4580 ir.override = -1;
4581 ir.popl_esp_hack = 0;
4582 ir.regmap = tdep->record_regmap;
4583 ir.gdbarch = gdbarch;
4584
4585 if (record_debug > 1)
4586 fprintf_unfiltered (gdb_stdlog, "Process record: i386_process_record "
4587 "addr = %s\n",
4588 paddress (gdbarch, ir.addr));
4589
4590 /* prefixes */
4591 while (1)
4592 {
4593 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
4594 return -1;
4595 ir.addr++;
4596 switch (opcode8) /* Instruction prefixes */
4597 {
4598 case REPE_PREFIX_OPCODE:
4599 prefixes |= PREFIX_REPZ;
4600 break;
4601 case REPNE_PREFIX_OPCODE:
4602 prefixes |= PREFIX_REPNZ;
4603 break;
4604 case LOCK_PREFIX_OPCODE:
4605 prefixes |= PREFIX_LOCK;
4606 break;
4607 case CS_PREFIX_OPCODE:
4608 ir.override = X86_RECORD_CS_REGNUM;
4609 break;
4610 case SS_PREFIX_OPCODE:
4611 ir.override = X86_RECORD_SS_REGNUM;
4612 break;
4613 case DS_PREFIX_OPCODE:
4614 ir.override = X86_RECORD_DS_REGNUM;
4615 break;
4616 case ES_PREFIX_OPCODE:
4617 ir.override = X86_RECORD_ES_REGNUM;
4618 break;
4619 case FS_PREFIX_OPCODE:
4620 ir.override = X86_RECORD_FS_REGNUM;
4621 break;
4622 case GS_PREFIX_OPCODE:
4623 ir.override = X86_RECORD_GS_REGNUM;
4624 break;
4625 case DATA_PREFIX_OPCODE:
4626 prefixes |= PREFIX_DATA;
4627 break;
4628 case ADDR_PREFIX_OPCODE:
4629 prefixes |= PREFIX_ADDR;
4630 break;
4631 case 0x40: /* i386 inc %eax */
4632 case 0x41: /* i386 inc %ecx */
4633 case 0x42: /* i386 inc %edx */
4634 case 0x43: /* i386 inc %ebx */
4635 case 0x44: /* i386 inc %esp */
4636 case 0x45: /* i386 inc %ebp */
4637 case 0x46: /* i386 inc %esi */
4638 case 0x47: /* i386 inc %edi */
4639 case 0x48: /* i386 dec %eax */
4640 case 0x49: /* i386 dec %ecx */
4641 case 0x4a: /* i386 dec %edx */
4642 case 0x4b: /* i386 dec %ebx */
4643 case 0x4c: /* i386 dec %esp */
4644 case 0x4d: /* i386 dec %ebp */
4645 case 0x4e: /* i386 dec %esi */
4646 case 0x4f: /* i386 dec %edi */
4647 if (ir.regmap[X86_RECORD_R8_REGNUM]) /* 64 bit target */
4648 {
4649 /* REX */
4650 rex_w = (opcode8 >> 3) & 1;
4651 rex_r = (opcode8 & 0x4) << 1;
4652 ir.rex_x = (opcode8 & 0x2) << 2;
4653 ir.rex_b = (opcode8 & 0x1) << 3;
4654 }
4655 else /* 32 bit target */
4656 goto out_prefixes;
4657 break;
4658 default:
4659 goto out_prefixes;
4660 break;
4661 }
4662 }
4663 out_prefixes:
4664 if (ir.regmap[X86_RECORD_R8_REGNUM] && rex_w == 1)
4665 {
4666 ir.dflag = 2;
4667 }
4668 else
4669 {
4670 if (prefixes & PREFIX_DATA)
4671 ir.dflag ^= 1;
4672 }
4673 if (prefixes & PREFIX_ADDR)
4674 ir.aflag ^= 1;
4675 else if (ir.regmap[X86_RECORD_R8_REGNUM])
4676 ir.aflag = 2;
4677
4678 /* Now check op code. */
4679 opcode = (uint32_t) opcode8;
4680 reswitch:
4681 switch (opcode)
4682 {
4683 case 0x0f:
4684 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
4685 return -1;
4686 ir.addr++;
4687 opcode = (uint32_t) opcode8 | 0x0f00;
4688 goto reswitch;
4689 break;
4690
4691 case 0x00: /* arith & logic */
4692 case 0x01:
4693 case 0x02:
4694 case 0x03:
4695 case 0x04:
4696 case 0x05:
4697 case 0x08:
4698 case 0x09:
4699 case 0x0a:
4700 case 0x0b:
4701 case 0x0c:
4702 case 0x0d:
4703 case 0x10:
4704 case 0x11:
4705 case 0x12:
4706 case 0x13:
4707 case 0x14:
4708 case 0x15:
4709 case 0x18:
4710 case 0x19:
4711 case 0x1a:
4712 case 0x1b:
4713 case 0x1c:
4714 case 0x1d:
4715 case 0x20:
4716 case 0x21:
4717 case 0x22:
4718 case 0x23:
4719 case 0x24:
4720 case 0x25:
4721 case 0x28:
4722 case 0x29:
4723 case 0x2a:
4724 case 0x2b:
4725 case 0x2c:
4726 case 0x2d:
4727 case 0x30:
4728 case 0x31:
4729 case 0x32:
4730 case 0x33:
4731 case 0x34:
4732 case 0x35:
4733 case 0x38:
4734 case 0x39:
4735 case 0x3a:
4736 case 0x3b:
4737 case 0x3c:
4738 case 0x3d:
4739 if (((opcode >> 3) & 7) != OP_CMPL)
4740 {
4741 if ((opcode & 1) == 0)
4742 ir.ot = OT_BYTE;
4743 else
4744 ir.ot = ir.dflag + OT_WORD;
4745
4746 switch ((opcode >> 1) & 3)
4747 {
4748 case 0: /* OP Ev, Gv */
4749 if (i386_record_modrm (&ir))
4750 return -1;
4751 if (ir.mod != 3)
4752 {
4753 if (i386_record_lea_modrm (&ir))
4754 return -1;
4755 }
4756 else
4757 {
4758 ir.rm |= ir.rex_b;
4759 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4760 ir.rm &= 0x3;
4761 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
4762 }
4763 break;
4764 case 1: /* OP Gv, Ev */
4765 if (i386_record_modrm (&ir))
4766 return -1;
4767 ir.reg |= rex_r;
4768 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4769 ir.reg &= 0x3;
4770 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
4771 break;
4772 case 2: /* OP A, Iv */
4773 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4774 break;
4775 }
4776 }
4777 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4778 break;
4779
4780 case 0x80: /* GRP1 */
4781 case 0x81:
4782 case 0x82:
4783 case 0x83:
4784 if (i386_record_modrm (&ir))
4785 return -1;
4786
4787 if (ir.reg != OP_CMPL)
4788 {
4789 if ((opcode & 1) == 0)
4790 ir.ot = OT_BYTE;
4791 else
4792 ir.ot = ir.dflag + OT_WORD;
4793
4794 if (ir.mod != 3)
4795 {
4796 if (opcode == 0x83)
4797 ir.rip_offset = 1;
4798 else
4799 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
4800 if (i386_record_lea_modrm (&ir))
4801 return -1;
4802 }
4803 else
4804 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
4805 }
4806 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4807 break;
4808
4809 case 0x40: /* inc */
4810 case 0x41:
4811 case 0x42:
4812 case 0x43:
4813 case 0x44:
4814 case 0x45:
4815 case 0x46:
4816 case 0x47:
4817
4818 case 0x48: /* dec */
4819 case 0x49:
4820 case 0x4a:
4821 case 0x4b:
4822 case 0x4c:
4823 case 0x4d:
4824 case 0x4e:
4825 case 0x4f:
4826
4827 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 7);
4828 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4829 break;
4830
4831 case 0xf6: /* GRP3 */
4832 case 0xf7:
4833 if ((opcode & 1) == 0)
4834 ir.ot = OT_BYTE;
4835 else
4836 ir.ot = ir.dflag + OT_WORD;
4837 if (i386_record_modrm (&ir))
4838 return -1;
4839
4840 if (ir.mod != 3 && ir.reg == 0)
4841 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
4842
4843 switch (ir.reg)
4844 {
4845 case 0: /* test */
4846 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4847 break;
4848 case 2: /* not */
4849 case 3: /* neg */
4850 if (ir.mod != 3)
4851 {
4852 if (i386_record_lea_modrm (&ir))
4853 return -1;
4854 }
4855 else
4856 {
4857 ir.rm |= ir.rex_b;
4858 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4859 ir.rm &= 0x3;
4860 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
4861 }
4862 if (ir.reg == 3) /* neg */
4863 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4864 break;
4865 case 4: /* mul */
4866 case 5: /* imul */
4867 case 6: /* div */
4868 case 7: /* idiv */
4869 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4870 if (ir.ot != OT_BYTE)
4871 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
4872 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4873 break;
4874 default:
4875 ir.addr -= 2;
4876 opcode = opcode << 8 | ir.modrm;
4877 goto no_support;
4878 break;
4879 }
4880 break;
4881
4882 case 0xfe: /* GRP4 */
4883 case 0xff: /* GRP5 */
4884 if (i386_record_modrm (&ir))
4885 return -1;
4886 if (ir.reg >= 2 && opcode == 0xfe)
4887 {
4888 ir.addr -= 2;
4889 opcode = opcode << 8 | ir.modrm;
4890 goto no_support;
4891 }
4892 switch (ir.reg)
4893 {
4894 case 0: /* inc */
4895 case 1: /* dec */
4896 if ((opcode & 1) == 0)
4897 ir.ot = OT_BYTE;
4898 else
4899 ir.ot = ir.dflag + OT_WORD;
4900 if (ir.mod != 3)
4901 {
4902 if (i386_record_lea_modrm (&ir))
4903 return -1;
4904 }
4905 else
4906 {
4907 ir.rm |= ir.rex_b;
4908 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4909 ir.rm &= 0x3;
4910 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
4911 }
4912 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4913 break;
4914 case 2: /* call */
4915 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4916 ir.dflag = 2;
4917 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4918 return -1;
4919 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4920 break;
4921 case 3: /* lcall */
4922 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
4923 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4924 return -1;
4925 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4926 break;
4927 case 4: /* jmp */
4928 case 5: /* ljmp */
4929 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4930 break;
4931 case 6: /* push */
4932 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4933 ir.dflag = 2;
4934 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4935 return -1;
4936 break;
4937 default:
4938 ir.addr -= 2;
4939 opcode = opcode << 8 | ir.modrm;
4940 goto no_support;
4941 break;
4942 }
4943 break;
4944
4945 case 0x84: /* test */
4946 case 0x85:
4947 case 0xa8:
4948 case 0xa9:
4949 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4950 break;
4951
4952 case 0x98: /* CWDE/CBW */
4953 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4954 break;
4955
4956 case 0x99: /* CDQ/CWD */
4957 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4958 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
4959 break;
4960
4961 case 0x0faf: /* imul */
4962 case 0x69:
4963 case 0x6b:
4964 ir.ot = ir.dflag + OT_WORD;
4965 if (i386_record_modrm (&ir))
4966 return -1;
4967 if (opcode == 0x69)
4968 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
4969 else if (opcode == 0x6b)
4970 ir.rip_offset = 1;
4971 ir.reg |= rex_r;
4972 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4973 ir.reg &= 0x3;
4974 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
4975 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4976 break;
4977
4978 case 0x0fc0: /* xadd */
4979 case 0x0fc1:
4980 if ((opcode & 1) == 0)
4981 ir.ot = OT_BYTE;
4982 else
4983 ir.ot = ir.dflag + OT_WORD;
4984 if (i386_record_modrm (&ir))
4985 return -1;
4986 ir.reg |= rex_r;
4987 if (ir.mod == 3)
4988 {
4989 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4990 ir.reg &= 0x3;
4991 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
4992 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4993 ir.rm &= 0x3;
4994 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
4995 }
4996 else
4997 {
4998 if (i386_record_lea_modrm (&ir))
4999 return -1;
5000 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5001 ir.reg &= 0x3;
5002 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5003 }
5004 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5005 break;
5006
5007 case 0x0fb0: /* cmpxchg */
5008 case 0x0fb1:
5009 if ((opcode & 1) == 0)
5010 ir.ot = OT_BYTE;
5011 else
5012 ir.ot = ir.dflag + OT_WORD;
5013 if (i386_record_modrm (&ir))
5014 return -1;
5015 if (ir.mod == 3)
5016 {
5017 ir.reg |= rex_r;
5018 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5019 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5020 ir.reg &= 0x3;
5021 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5022 }
5023 else
5024 {
5025 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5026 if (i386_record_lea_modrm (&ir))
5027 return -1;
5028 }
5029 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5030 break;
5031
5032 case 0x0fc7: /* cmpxchg8b */
5033 if (i386_record_modrm (&ir))
5034 return -1;
5035 if (ir.mod == 3)
5036 {
5037 ir.addr -= 2;
5038 opcode = opcode << 8 | ir.modrm;
5039 goto no_support;
5040 }
5041 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5042 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5043 if (i386_record_lea_modrm (&ir))
5044 return -1;
5045 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5046 break;
5047
5048 case 0x50: /* push */
5049 case 0x51:
5050 case 0x52:
5051 case 0x53:
5052 case 0x54:
5053 case 0x55:
5054 case 0x56:
5055 case 0x57:
5056 case 0x68:
5057 case 0x6a:
5058 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5059 ir.dflag = 2;
5060 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5061 return -1;
5062 break;
5063
5064 case 0x06: /* push es */
5065 case 0x0e: /* push cs */
5066 case 0x16: /* push ss */
5067 case 0x1e: /* push ds */
5068 if (ir.regmap[X86_RECORD_R8_REGNUM])
5069 {
5070 ir.addr -= 1;
5071 goto no_support;
5072 }
5073 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5074 return -1;
5075 break;
5076
5077 case 0x0fa0: /* push fs */
5078 case 0x0fa8: /* push gs */
5079 if (ir.regmap[X86_RECORD_R8_REGNUM])
5080 {
5081 ir.addr -= 2;
5082 goto no_support;
5083 }
5084 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5085 return -1;
5086 break;
5087
5088 case 0x60: /* pusha */
5089 if (ir.regmap[X86_RECORD_R8_REGNUM])
5090 {
5091 ir.addr -= 1;
5092 goto no_support;
5093 }
5094 if (i386_record_push (&ir, 1 << (ir.dflag + 4)))
5095 return -1;
5096 break;
5097
5098 case 0x58: /* pop */
5099 case 0x59:
5100 case 0x5a:
5101 case 0x5b:
5102 case 0x5c:
5103 case 0x5d:
5104 case 0x5e:
5105 case 0x5f:
5106 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5107 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
5108 break;
5109
5110 case 0x61: /* popa */
5111 if (ir.regmap[X86_RECORD_R8_REGNUM])
5112 {
5113 ir.addr -= 1;
5114 goto no_support;
5115 }
5116 for (regnum = X86_RECORD_REAX_REGNUM;
5117 regnum <= X86_RECORD_REDI_REGNUM;
5118 regnum++)
5119 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5120 break;
5121
5122 case 0x8f: /* pop */
5123 if (ir.regmap[X86_RECORD_R8_REGNUM])
5124 ir.ot = ir.dflag ? OT_QUAD : OT_WORD;
5125 else
5126 ir.ot = ir.dflag + OT_WORD;
5127 if (i386_record_modrm (&ir))
5128 return -1;
5129 if (ir.mod == 3)
5130 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5131 else
5132 {
5133 ir.popl_esp_hack = 1 << ir.ot;
5134 if (i386_record_lea_modrm (&ir))
5135 return -1;
5136 }
5137 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5138 break;
5139
5140 case 0xc8: /* enter */
5141 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
5142 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5143 ir.dflag = 2;
5144 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5145 return -1;
5146 break;
5147
5148 case 0xc9: /* leave */
5149 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5150 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
5151 break;
5152
5153 case 0x07: /* pop es */
5154 if (ir.regmap[X86_RECORD_R8_REGNUM])
5155 {
5156 ir.addr -= 1;
5157 goto no_support;
5158 }
5159 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5160 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_ES_REGNUM);
5161 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5162 break;
5163
5164 case 0x17: /* pop ss */
5165 if (ir.regmap[X86_RECORD_R8_REGNUM])
5166 {
5167 ir.addr -= 1;
5168 goto no_support;
5169 }
5170 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5171 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_SS_REGNUM);
5172 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5173 break;
5174
5175 case 0x1f: /* pop ds */
5176 if (ir.regmap[X86_RECORD_R8_REGNUM])
5177 {
5178 ir.addr -= 1;
5179 goto no_support;
5180 }
5181 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5182 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_DS_REGNUM);
5183 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5184 break;
5185
5186 case 0x0fa1: /* pop fs */
5187 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5188 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_FS_REGNUM);
5189 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5190 break;
5191
5192 case 0x0fa9: /* pop gs */
5193 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5194 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
5195 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5196 break;
5197
5198 case 0x88: /* mov */
5199 case 0x89:
5200 case 0xc6:
5201 case 0xc7:
5202 if ((opcode & 1) == 0)
5203 ir.ot = OT_BYTE;
5204 else
5205 ir.ot = ir.dflag + OT_WORD;
5206
5207 if (i386_record_modrm (&ir))
5208 return -1;
5209
5210 if (ir.mod != 3)
5211 {
5212 if (opcode == 0xc6 || opcode == 0xc7)
5213 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5214 if (i386_record_lea_modrm (&ir))
5215 return -1;
5216 }
5217 else
5218 {
5219 if (opcode == 0xc6 || opcode == 0xc7)
5220 ir.rm |= ir.rex_b;
5221 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5222 ir.rm &= 0x3;
5223 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5224 }
5225 break;
5226
5227 case 0x8a: /* mov */
5228 case 0x8b:
5229 if ((opcode & 1) == 0)
5230 ir.ot = OT_BYTE;
5231 else
5232 ir.ot = ir.dflag + OT_WORD;
5233 if (i386_record_modrm (&ir))
5234 return -1;
5235 ir.reg |= rex_r;
5236 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5237 ir.reg &= 0x3;
5238 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5239 break;
5240
5241 case 0x8c: /* mov seg */
5242 if (i386_record_modrm (&ir))
5243 return -1;
5244 if (ir.reg > 5)
5245 {
5246 ir.addr -= 2;
5247 opcode = opcode << 8 | ir.modrm;
5248 goto no_support;
5249 }
5250
5251 if (ir.mod == 3)
5252 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5253 else
5254 {
5255 ir.ot = OT_WORD;
5256 if (i386_record_lea_modrm (&ir))
5257 return -1;
5258 }
5259 break;
5260
5261 case 0x8e: /* mov seg */
5262 if (i386_record_modrm (&ir))
5263 return -1;
5264 switch (ir.reg)
5265 {
5266 case 0:
5267 regnum = X86_RECORD_ES_REGNUM;
5268 break;
5269 case 2:
5270 regnum = X86_RECORD_SS_REGNUM;
5271 break;
5272 case 3:
5273 regnum = X86_RECORD_DS_REGNUM;
5274 break;
5275 case 4:
5276 regnum = X86_RECORD_FS_REGNUM;
5277 break;
5278 case 5:
5279 regnum = X86_RECORD_GS_REGNUM;
5280 break;
5281 default:
5282 ir.addr -= 2;
5283 opcode = opcode << 8 | ir.modrm;
5284 goto no_support;
5285 break;
5286 }
5287 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5288 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5289 break;
5290
5291 case 0x0fb6: /* movzbS */
5292 case 0x0fb7: /* movzwS */
5293 case 0x0fbe: /* movsbS */
5294 case 0x0fbf: /* movswS */
5295 if (i386_record_modrm (&ir))
5296 return -1;
5297 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5298 break;
5299
5300 case 0x8d: /* lea */
5301 if (i386_record_modrm (&ir))
5302 return -1;
5303 if (ir.mod == 3)
5304 {
5305 ir.addr -= 2;
5306 opcode = opcode << 8 | ir.modrm;
5307 goto no_support;
5308 }
5309 ir.ot = ir.dflag;
5310 ir.reg |= rex_r;
5311 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5312 ir.reg &= 0x3;
5313 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5314 break;
5315
5316 case 0xa0: /* mov EAX */
5317 case 0xa1:
5318
5319 case 0xd7: /* xlat */
5320 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5321 break;
5322
5323 case 0xa2: /* mov EAX */
5324 case 0xa3:
5325 if (ir.override >= 0)
5326 {
5327 if (record_full_memory_query)
5328 {
5329 int q;
5330
5331 target_terminal_ours ();
5332 q = yquery (_("\
5333 Process record ignores the memory change of instruction at address %s\n\
5334 because it can't get the value of the segment register.\n\
5335 Do you want to stop the program?"),
5336 paddress (gdbarch, ir.orig_addr));
5337 target_terminal_inferior ();
5338 if (q)
5339 return -1;
5340 }
5341 }
5342 else
5343 {
5344 if ((opcode & 1) == 0)
5345 ir.ot = OT_BYTE;
5346 else
5347 ir.ot = ir.dflag + OT_WORD;
5348 if (ir.aflag == 2)
5349 {
5350 if (record_read_memory (gdbarch, ir.addr, buf, 8))
5351 return -1;
5352 ir.addr += 8;
5353 addr = extract_unsigned_integer (buf, 8, byte_order);
5354 }
5355 else if (ir.aflag)
5356 {
5357 if (record_read_memory (gdbarch, ir.addr, buf, 4))
5358 return -1;
5359 ir.addr += 4;
5360 addr = extract_unsigned_integer (buf, 4, byte_order);
5361 }
5362 else
5363 {
5364 if (record_read_memory (gdbarch, ir.addr, buf, 2))
5365 return -1;
5366 ir.addr += 2;
5367 addr = extract_unsigned_integer (buf, 2, byte_order);
5368 }
5369 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
5370 return -1;
5371 }
5372 break;
5373
5374 case 0xb0: /* mov R, Ib */
5375 case 0xb1:
5376 case 0xb2:
5377 case 0xb3:
5378 case 0xb4:
5379 case 0xb5:
5380 case 0xb6:
5381 case 0xb7:
5382 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((ir.regmap[X86_RECORD_R8_REGNUM])
5383 ? ((opcode & 0x7) | ir.rex_b)
5384 : ((opcode & 0x7) & 0x3));
5385 break;
5386
5387 case 0xb8: /* mov R, Iv */
5388 case 0xb9:
5389 case 0xba:
5390 case 0xbb:
5391 case 0xbc:
5392 case 0xbd:
5393 case 0xbe:
5394 case 0xbf:
5395 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
5396 break;
5397
5398 case 0x91: /* xchg R, EAX */
5399 case 0x92:
5400 case 0x93:
5401 case 0x94:
5402 case 0x95:
5403 case 0x96:
5404 case 0x97:
5405 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5406 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 0x7);
5407 break;
5408
5409 case 0x86: /* xchg Ev, Gv */
5410 case 0x87:
5411 if ((opcode & 1) == 0)
5412 ir.ot = OT_BYTE;
5413 else
5414 ir.ot = ir.dflag + OT_WORD;
5415 if (i386_record_modrm (&ir))
5416 return -1;
5417 if (ir.mod == 3)
5418 {
5419 ir.rm |= ir.rex_b;
5420 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5421 ir.rm &= 0x3;
5422 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5423 }
5424 else
5425 {
5426 if (i386_record_lea_modrm (&ir))
5427 return -1;
5428 }
5429 ir.reg |= rex_r;
5430 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5431 ir.reg &= 0x3;
5432 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5433 break;
5434
5435 case 0xc4: /* les Gv */
5436 case 0xc5: /* lds Gv */
5437 if (ir.regmap[X86_RECORD_R8_REGNUM])
5438 {
5439 ir.addr -= 1;
5440 goto no_support;
5441 }
5442 /* FALLTHROUGH */
5443 case 0x0fb2: /* lss Gv */
5444 case 0x0fb4: /* lfs Gv */
5445 case 0x0fb5: /* lgs Gv */
5446 if (i386_record_modrm (&ir))
5447 return -1;
5448 if (ir.mod == 3)
5449 {
5450 if (opcode > 0xff)
5451 ir.addr -= 3;
5452 else
5453 ir.addr -= 2;
5454 opcode = opcode << 8 | ir.modrm;
5455 goto no_support;
5456 }
5457 switch (opcode)
5458 {
5459 case 0xc4: /* les Gv */
5460 regnum = X86_RECORD_ES_REGNUM;
5461 break;
5462 case 0xc5: /* lds Gv */
5463 regnum = X86_RECORD_DS_REGNUM;
5464 break;
5465 case 0x0fb2: /* lss Gv */
5466 regnum = X86_RECORD_SS_REGNUM;
5467 break;
5468 case 0x0fb4: /* lfs Gv */
5469 regnum = X86_RECORD_FS_REGNUM;
5470 break;
5471 case 0x0fb5: /* lgs Gv */
5472 regnum = X86_RECORD_GS_REGNUM;
5473 break;
5474 }
5475 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5476 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5477 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5478 break;
5479
5480 case 0xc0: /* shifts */
5481 case 0xc1:
5482 case 0xd0:
5483 case 0xd1:
5484 case 0xd2:
5485 case 0xd3:
5486 if ((opcode & 1) == 0)
5487 ir.ot = OT_BYTE;
5488 else
5489 ir.ot = ir.dflag + OT_WORD;
5490 if (i386_record_modrm (&ir))
5491 return -1;
5492 if (ir.mod != 3 && (opcode == 0xd2 || opcode == 0xd3))
5493 {
5494 if (i386_record_lea_modrm (&ir))
5495 return -1;
5496 }
5497 else
5498 {
5499 ir.rm |= ir.rex_b;
5500 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5501 ir.rm &= 0x3;
5502 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5503 }
5504 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5505 break;
5506
5507 case 0x0fa4:
5508 case 0x0fa5:
5509 case 0x0fac:
5510 case 0x0fad:
5511 if (i386_record_modrm (&ir))
5512 return -1;
5513 if (ir.mod == 3)
5514 {
5515 if (record_full_arch_list_add_reg (ir.regcache, ir.rm))
5516 return -1;
5517 }
5518 else
5519 {
5520 if (i386_record_lea_modrm (&ir))
5521 return -1;
5522 }
5523 break;
5524
5525 case 0xd8: /* Floats. */
5526 case 0xd9:
5527 case 0xda:
5528 case 0xdb:
5529 case 0xdc:
5530 case 0xdd:
5531 case 0xde:
5532 case 0xdf:
5533 if (i386_record_modrm (&ir))
5534 return -1;
5535 ir.reg |= ((opcode & 7) << 3);
5536 if (ir.mod != 3)
5537 {
5538 /* Memory. */
5539 uint64_t addr64;
5540
5541 if (i386_record_lea_modrm_addr (&ir, &addr64))
5542 return -1;
5543 switch (ir.reg)
5544 {
5545 case 0x02:
5546 case 0x12:
5547 case 0x22:
5548 case 0x32:
5549 /* For fcom, ficom nothing to do. */
5550 break;
5551 case 0x03:
5552 case 0x13:
5553 case 0x23:
5554 case 0x33:
5555 /* For fcomp, ficomp pop FPU stack, store all. */
5556 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5557 return -1;
5558 break;
5559 case 0x00:
5560 case 0x01:
5561 case 0x04:
5562 case 0x05:
5563 case 0x06:
5564 case 0x07:
5565 case 0x10:
5566 case 0x11:
5567 case 0x14:
5568 case 0x15:
5569 case 0x16:
5570 case 0x17:
5571 case 0x20:
5572 case 0x21:
5573 case 0x24:
5574 case 0x25:
5575 case 0x26:
5576 case 0x27:
5577 case 0x30:
5578 case 0x31:
5579 case 0x34:
5580 case 0x35:
5581 case 0x36:
5582 case 0x37:
5583 /* For fadd, fmul, fsub, fsubr, fdiv, fdivr, fiadd, fimul,
5584 fisub, fisubr, fidiv, fidivr, modR/M.reg is an extension
5585 of code, always affects st(0) register. */
5586 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
5587 return -1;
5588 break;
5589 case 0x08:
5590 case 0x0a:
5591 case 0x0b:
5592 case 0x18:
5593 case 0x19:
5594 case 0x1a:
5595 case 0x1b:
5596 case 0x1d:
5597 case 0x28:
5598 case 0x29:
5599 case 0x2a:
5600 case 0x2b:
5601 case 0x38:
5602 case 0x39:
5603 case 0x3a:
5604 case 0x3b:
5605 case 0x3c:
5606 case 0x3d:
5607 switch (ir.reg & 7)
5608 {
5609 case 0:
5610 /* Handling fld, fild. */
5611 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5612 return -1;
5613 break;
5614 case 1:
5615 switch (ir.reg >> 4)
5616 {
5617 case 0:
5618 if (record_full_arch_list_add_mem (addr64, 4))
5619 return -1;
5620 break;
5621 case 2:
5622 if (record_full_arch_list_add_mem (addr64, 8))
5623 return -1;
5624 break;
5625 case 3:
5626 break;
5627 default:
5628 if (record_full_arch_list_add_mem (addr64, 2))
5629 return -1;
5630 break;
5631 }
5632 break;
5633 default:
5634 switch (ir.reg >> 4)
5635 {
5636 case 0:
5637 if (record_full_arch_list_add_mem (addr64, 4))
5638 return -1;
5639 if (3 == (ir.reg & 7))
5640 {
5641 /* For fstp m32fp. */
5642 if (i386_record_floats (gdbarch, &ir,
5643 I386_SAVE_FPU_REGS))
5644 return -1;
5645 }
5646 break;
5647 case 1:
5648 if (record_full_arch_list_add_mem (addr64, 4))
5649 return -1;
5650 if ((3 == (ir.reg & 7))
5651 || (5 == (ir.reg & 7))
5652 || (7 == (ir.reg & 7)))
5653 {
5654 /* For fstp insn. */
5655 if (i386_record_floats (gdbarch, &ir,
5656 I386_SAVE_FPU_REGS))
5657 return -1;
5658 }
5659 break;
5660 case 2:
5661 if (record_full_arch_list_add_mem (addr64, 8))
5662 return -1;
5663 if (3 == (ir.reg & 7))
5664 {
5665 /* For fstp m64fp. */
5666 if (i386_record_floats (gdbarch, &ir,
5667 I386_SAVE_FPU_REGS))
5668 return -1;
5669 }
5670 break;
5671 case 3:
5672 if ((3 <= (ir.reg & 7)) && (6 <= (ir.reg & 7)))
5673 {
5674 /* For fistp, fbld, fild, fbstp. */
5675 if (i386_record_floats (gdbarch, &ir,
5676 I386_SAVE_FPU_REGS))
5677 return -1;
5678 }
5679 /* Fall through */
5680 default:
5681 if (record_full_arch_list_add_mem (addr64, 2))
5682 return -1;
5683 break;
5684 }
5685 break;
5686 }
5687 break;
5688 case 0x0c:
5689 /* Insn fldenv. */
5690 if (i386_record_floats (gdbarch, &ir,
5691 I386_SAVE_FPU_ENV_REG_STACK))
5692 return -1;
5693 break;
5694 case 0x0d:
5695 /* Insn fldcw. */
5696 if (i386_record_floats (gdbarch, &ir, I387_FCTRL_REGNUM (tdep)))
5697 return -1;
5698 break;
5699 case 0x2c:
5700 /* Insn frstor. */
5701 if (i386_record_floats (gdbarch, &ir,
5702 I386_SAVE_FPU_ENV_REG_STACK))
5703 return -1;
5704 break;
5705 case 0x0e:
5706 if (ir.dflag)
5707 {
5708 if (record_full_arch_list_add_mem (addr64, 28))
5709 return -1;
5710 }
5711 else
5712 {
5713 if (record_full_arch_list_add_mem (addr64, 14))
5714 return -1;
5715 }
5716 break;
5717 case 0x0f:
5718 case 0x2f:
5719 if (record_full_arch_list_add_mem (addr64, 2))
5720 return -1;
5721 /* Insn fstp, fbstp. */
5722 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5723 return -1;
5724 break;
5725 case 0x1f:
5726 case 0x3e:
5727 if (record_full_arch_list_add_mem (addr64, 10))
5728 return -1;
5729 break;
5730 case 0x2e:
5731 if (ir.dflag)
5732 {
5733 if (record_full_arch_list_add_mem (addr64, 28))
5734 return -1;
5735 addr64 += 28;
5736 }
5737 else
5738 {
5739 if (record_full_arch_list_add_mem (addr64, 14))
5740 return -1;
5741 addr64 += 14;
5742 }
5743 if (record_full_arch_list_add_mem (addr64, 80))
5744 return -1;
5745 /* Insn fsave. */
5746 if (i386_record_floats (gdbarch, &ir,
5747 I386_SAVE_FPU_ENV_REG_STACK))
5748 return -1;
5749 break;
5750 case 0x3f:
5751 if (record_full_arch_list_add_mem (addr64, 8))
5752 return -1;
5753 /* Insn fistp. */
5754 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5755 return -1;
5756 break;
5757 default:
5758 ir.addr -= 2;
5759 opcode = opcode << 8 | ir.modrm;
5760 goto no_support;
5761 break;
5762 }
5763 }
5764 /* Opcode is an extension of modR/M byte. */
5765 else
5766 {
5767 switch (opcode)
5768 {
5769 case 0xd8:
5770 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
5771 return -1;
5772 break;
5773 case 0xd9:
5774 if (0x0c == (ir.modrm >> 4))
5775 {
5776 if ((ir.modrm & 0x0f) <= 7)
5777 {
5778 if (i386_record_floats (gdbarch, &ir,
5779 I386_SAVE_FPU_REGS))
5780 return -1;
5781 }
5782 else
5783 {
5784 if (i386_record_floats (gdbarch, &ir,
5785 I387_ST0_REGNUM (tdep)))
5786 return -1;
5787 /* If only st(0) is changing, then we have already
5788 recorded. */
5789 if ((ir.modrm & 0x0f) - 0x08)
5790 {
5791 if (i386_record_floats (gdbarch, &ir,
5792 I387_ST0_REGNUM (tdep) +
5793 ((ir.modrm & 0x0f) - 0x08)))
5794 return -1;
5795 }
5796 }
5797 }
5798 else
5799 {
5800 switch (ir.modrm)
5801 {
5802 case 0xe0:
5803 case 0xe1:
5804 case 0xf0:
5805 case 0xf5:
5806 case 0xf8:
5807 case 0xfa:
5808 case 0xfc:
5809 case 0xfe:
5810 case 0xff:
5811 if (i386_record_floats (gdbarch, &ir,
5812 I387_ST0_REGNUM (tdep)))
5813 return -1;
5814 break;
5815 case 0xf1:
5816 case 0xf2:
5817 case 0xf3:
5818 case 0xf4:
5819 case 0xf6:
5820 case 0xf7:
5821 case 0xe8:
5822 case 0xe9:
5823 case 0xea:
5824 case 0xeb:
5825 case 0xec:
5826 case 0xed:
5827 case 0xee:
5828 case 0xf9:
5829 case 0xfb:
5830 if (i386_record_floats (gdbarch, &ir,
5831 I386_SAVE_FPU_REGS))
5832 return -1;
5833 break;
5834 case 0xfd:
5835 if (i386_record_floats (gdbarch, &ir,
5836 I387_ST0_REGNUM (tdep)))
5837 return -1;
5838 if (i386_record_floats (gdbarch, &ir,
5839 I387_ST0_REGNUM (tdep) + 1))
5840 return -1;
5841 break;
5842 }
5843 }
5844 break;
5845 case 0xda:
5846 if (0xe9 == ir.modrm)
5847 {
5848 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5849 return -1;
5850 }
5851 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
5852 {
5853 if (i386_record_floats (gdbarch, &ir,
5854 I387_ST0_REGNUM (tdep)))
5855 return -1;
5856 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
5857 {
5858 if (i386_record_floats (gdbarch, &ir,
5859 I387_ST0_REGNUM (tdep) +
5860 (ir.modrm & 0x0f)))
5861 return -1;
5862 }
5863 else if ((ir.modrm & 0x0f) - 0x08)
5864 {
5865 if (i386_record_floats (gdbarch, &ir,
5866 I387_ST0_REGNUM (tdep) +
5867 ((ir.modrm & 0x0f) - 0x08)))
5868 return -1;
5869 }
5870 }
5871 break;
5872 case 0xdb:
5873 if (0xe3 == ir.modrm)
5874 {
5875 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_ENV))
5876 return -1;
5877 }
5878 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
5879 {
5880 if (i386_record_floats (gdbarch, &ir,
5881 I387_ST0_REGNUM (tdep)))
5882 return -1;
5883 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
5884 {
5885 if (i386_record_floats (gdbarch, &ir,
5886 I387_ST0_REGNUM (tdep) +
5887 (ir.modrm & 0x0f)))
5888 return -1;
5889 }
5890 else if ((ir.modrm & 0x0f) - 0x08)
5891 {
5892 if (i386_record_floats (gdbarch, &ir,
5893 I387_ST0_REGNUM (tdep) +
5894 ((ir.modrm & 0x0f) - 0x08)))
5895 return -1;
5896 }
5897 }
5898 break;
5899 case 0xdc:
5900 if ((0x0c == ir.modrm >> 4)
5901 || (0x0d == ir.modrm >> 4)
5902 || (0x0f == ir.modrm >> 4))
5903 {
5904 if ((ir.modrm & 0x0f) <= 7)
5905 {
5906 if (i386_record_floats (gdbarch, &ir,
5907 I387_ST0_REGNUM (tdep) +
5908 (ir.modrm & 0x0f)))
5909 return -1;
5910 }
5911 else
5912 {
5913 if (i386_record_floats (gdbarch, &ir,
5914 I387_ST0_REGNUM (tdep) +
5915 ((ir.modrm & 0x0f) - 0x08)))
5916 return -1;
5917 }
5918 }
5919 break;
5920 case 0xdd:
5921 if (0x0c == ir.modrm >> 4)
5922 {
5923 if (i386_record_floats (gdbarch, &ir,
5924 I387_FTAG_REGNUM (tdep)))
5925 return -1;
5926 }
5927 else if ((0x0d == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
5928 {
5929 if ((ir.modrm & 0x0f) <= 7)
5930 {
5931 if (i386_record_floats (gdbarch, &ir,
5932 I387_ST0_REGNUM (tdep) +
5933 (ir.modrm & 0x0f)))
5934 return -1;
5935 }
5936 else
5937 {
5938 if (i386_record_floats (gdbarch, &ir,
5939 I386_SAVE_FPU_REGS))
5940 return -1;
5941 }
5942 }
5943 break;
5944 case 0xde:
5945 if ((0x0c == ir.modrm >> 4)
5946 || (0x0e == ir.modrm >> 4)
5947 || (0x0f == ir.modrm >> 4)
5948 || (0xd9 == ir.modrm))
5949 {
5950 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5951 return -1;
5952 }
5953 break;
5954 case 0xdf:
5955 if (0xe0 == ir.modrm)
5956 {
5957 if (record_full_arch_list_add_reg (ir.regcache,
5958 I386_EAX_REGNUM))
5959 return -1;
5960 }
5961 else if ((0x0f == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
5962 {
5963 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5964 return -1;
5965 }
5966 break;
5967 }
5968 }
5969 break;
5970 /* string ops */
5971 case 0xa4: /* movsS */
5972 case 0xa5:
5973 case 0xaa: /* stosS */
5974 case 0xab:
5975 case 0x6c: /* insS */
5976 case 0x6d:
5977 regcache_raw_read_unsigned (ir.regcache,
5978 ir.regmap[X86_RECORD_RECX_REGNUM],
5979 &addr);
5980 if (addr)
5981 {
5982 ULONGEST es, ds;
5983
5984 if ((opcode & 1) == 0)
5985 ir.ot = OT_BYTE;
5986 else
5987 ir.ot = ir.dflag + OT_WORD;
5988 regcache_raw_read_unsigned (ir.regcache,
5989 ir.regmap[X86_RECORD_REDI_REGNUM],
5990 &addr);
5991
5992 regcache_raw_read_unsigned (ir.regcache,
5993 ir.regmap[X86_RECORD_ES_REGNUM],
5994 &es);
5995 regcache_raw_read_unsigned (ir.regcache,
5996 ir.regmap[X86_RECORD_DS_REGNUM],
5997 &ds);
5998 if (ir.aflag && (es != ds))
5999 {
6000 /* addr += ((uint32_t) read_register (I386_ES_REGNUM)) << 4; */
6001 if (record_full_memory_query)
6002 {
6003 int q;
6004
6005 target_terminal_ours ();
6006 q = yquery (_("\
6007 Process record ignores the memory change of instruction at address %s\n\
6008 because it can't get the value of the segment register.\n\
6009 Do you want to stop the program?"),
6010 paddress (gdbarch, ir.orig_addr));
6011 target_terminal_inferior ();
6012 if (q)
6013 return -1;
6014 }
6015 }
6016 else
6017 {
6018 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
6019 return -1;
6020 }
6021
6022 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6023 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6024 if (opcode == 0xa4 || opcode == 0xa5)
6025 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6026 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6027 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6028 }
6029 break;
6030
6031 case 0xa6: /* cmpsS */
6032 case 0xa7:
6033 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6034 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6035 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6036 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6037 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6038 break;
6039
6040 case 0xac: /* lodsS */
6041 case 0xad:
6042 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6043 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6044 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6045 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6046 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6047 break;
6048
6049 case 0xae: /* scasS */
6050 case 0xaf:
6051 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6052 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6053 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6054 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6055 break;
6056
6057 case 0x6e: /* outsS */
6058 case 0x6f:
6059 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6060 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6061 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6062 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6063 break;
6064
6065 case 0xe4: /* port I/O */
6066 case 0xe5:
6067 case 0xec:
6068 case 0xed:
6069 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6070 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6071 break;
6072
6073 case 0xe6:
6074 case 0xe7:
6075 case 0xee:
6076 case 0xef:
6077 break;
6078
6079 /* control */
6080 case 0xc2: /* ret im */
6081 case 0xc3: /* ret */
6082 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6083 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6084 break;
6085
6086 case 0xca: /* lret im */
6087 case 0xcb: /* lret */
6088 case 0xcf: /* iret */
6089 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
6090 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6091 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6092 break;
6093
6094 case 0xe8: /* call im */
6095 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6096 ir.dflag = 2;
6097 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6098 return -1;
6099 break;
6100
6101 case 0x9a: /* lcall im */
6102 if (ir.regmap[X86_RECORD_R8_REGNUM])
6103 {
6104 ir.addr -= 1;
6105 goto no_support;
6106 }
6107 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
6108 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6109 return -1;
6110 break;
6111
6112 case 0xe9: /* jmp im */
6113 case 0xea: /* ljmp im */
6114 case 0xeb: /* jmp Jb */
6115 case 0x70: /* jcc Jb */
6116 case 0x71:
6117 case 0x72:
6118 case 0x73:
6119 case 0x74:
6120 case 0x75:
6121 case 0x76:
6122 case 0x77:
6123 case 0x78:
6124 case 0x79:
6125 case 0x7a:
6126 case 0x7b:
6127 case 0x7c:
6128 case 0x7d:
6129 case 0x7e:
6130 case 0x7f:
6131 case 0x0f80: /* jcc Jv */
6132 case 0x0f81:
6133 case 0x0f82:
6134 case 0x0f83:
6135 case 0x0f84:
6136 case 0x0f85:
6137 case 0x0f86:
6138 case 0x0f87:
6139 case 0x0f88:
6140 case 0x0f89:
6141 case 0x0f8a:
6142 case 0x0f8b:
6143 case 0x0f8c:
6144 case 0x0f8d:
6145 case 0x0f8e:
6146 case 0x0f8f:
6147 break;
6148
6149 case 0x0f90: /* setcc Gv */
6150 case 0x0f91:
6151 case 0x0f92:
6152 case 0x0f93:
6153 case 0x0f94:
6154 case 0x0f95:
6155 case 0x0f96:
6156 case 0x0f97:
6157 case 0x0f98:
6158 case 0x0f99:
6159 case 0x0f9a:
6160 case 0x0f9b:
6161 case 0x0f9c:
6162 case 0x0f9d:
6163 case 0x0f9e:
6164 case 0x0f9f:
6165 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6166 ir.ot = OT_BYTE;
6167 if (i386_record_modrm (&ir))
6168 return -1;
6169 if (ir.mod == 3)
6170 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rex_b ? (ir.rm | ir.rex_b)
6171 : (ir.rm & 0x3));
6172 else
6173 {
6174 if (i386_record_lea_modrm (&ir))
6175 return -1;
6176 }
6177 break;
6178
6179 case 0x0f40: /* cmov Gv, Ev */
6180 case 0x0f41:
6181 case 0x0f42:
6182 case 0x0f43:
6183 case 0x0f44:
6184 case 0x0f45:
6185 case 0x0f46:
6186 case 0x0f47:
6187 case 0x0f48:
6188 case 0x0f49:
6189 case 0x0f4a:
6190 case 0x0f4b:
6191 case 0x0f4c:
6192 case 0x0f4d:
6193 case 0x0f4e:
6194 case 0x0f4f:
6195 if (i386_record_modrm (&ir))
6196 return -1;
6197 ir.reg |= rex_r;
6198 if (ir.dflag == OT_BYTE)
6199 ir.reg &= 0x3;
6200 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
6201 break;
6202
6203 /* flags */
6204 case 0x9c: /* pushf */
6205 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6206 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6207 ir.dflag = 2;
6208 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6209 return -1;
6210 break;
6211
6212 case 0x9d: /* popf */
6213 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6214 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6215 break;
6216
6217 case 0x9e: /* sahf */
6218 if (ir.regmap[X86_RECORD_R8_REGNUM])
6219 {
6220 ir.addr -= 1;
6221 goto no_support;
6222 }
6223 /* FALLTHROUGH */
6224 case 0xf5: /* cmc */
6225 case 0xf8: /* clc */
6226 case 0xf9: /* stc */
6227 case 0xfc: /* cld */
6228 case 0xfd: /* std */
6229 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6230 break;
6231
6232 case 0x9f: /* lahf */
6233 if (ir.regmap[X86_RECORD_R8_REGNUM])
6234 {
6235 ir.addr -= 1;
6236 goto no_support;
6237 }
6238 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6239 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6240 break;
6241
6242 /* bit operations */
6243 case 0x0fba: /* bt/bts/btr/btc Gv, im */
6244 ir.ot = ir.dflag + OT_WORD;
6245 if (i386_record_modrm (&ir))
6246 return -1;
6247 if (ir.reg < 4)
6248 {
6249 ir.addr -= 2;
6250 opcode = opcode << 8 | ir.modrm;
6251 goto no_support;
6252 }
6253 if (ir.reg != 4)
6254 {
6255 if (ir.mod == 3)
6256 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6257 else
6258 {
6259 if (i386_record_lea_modrm (&ir))
6260 return -1;
6261 }
6262 }
6263 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6264 break;
6265
6266 case 0x0fa3: /* bt Gv, Ev */
6267 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6268 break;
6269
6270 case 0x0fab: /* bts */
6271 case 0x0fb3: /* btr */
6272 case 0x0fbb: /* btc */
6273 ir.ot = ir.dflag + OT_WORD;
6274 if (i386_record_modrm (&ir))
6275 return -1;
6276 if (ir.mod == 3)
6277 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6278 else
6279 {
6280 uint64_t addr64;
6281 if (i386_record_lea_modrm_addr (&ir, &addr64))
6282 return -1;
6283 regcache_raw_read_unsigned (ir.regcache,
6284 ir.regmap[ir.reg | rex_r],
6285 &addr);
6286 switch (ir.dflag)
6287 {
6288 case 0:
6289 addr64 += ((int16_t) addr >> 4) << 4;
6290 break;
6291 case 1:
6292 addr64 += ((int32_t) addr >> 5) << 5;
6293 break;
6294 case 2:
6295 addr64 += ((int64_t) addr >> 6) << 6;
6296 break;
6297 }
6298 if (record_full_arch_list_add_mem (addr64, 1 << ir.ot))
6299 return -1;
6300 if (i386_record_lea_modrm (&ir))
6301 return -1;
6302 }
6303 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6304 break;
6305
6306 case 0x0fbc: /* bsf */
6307 case 0x0fbd: /* bsr */
6308 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6309 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6310 break;
6311
6312 /* bcd */
6313 case 0x27: /* daa */
6314 case 0x2f: /* das */
6315 case 0x37: /* aaa */
6316 case 0x3f: /* aas */
6317 case 0xd4: /* aam */
6318 case 0xd5: /* aad */
6319 if (ir.regmap[X86_RECORD_R8_REGNUM])
6320 {
6321 ir.addr -= 1;
6322 goto no_support;
6323 }
6324 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6325 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6326 break;
6327
6328 /* misc */
6329 case 0x90: /* nop */
6330 if (prefixes & PREFIX_LOCK)
6331 {
6332 ir.addr -= 1;
6333 goto no_support;
6334 }
6335 break;
6336
6337 case 0x9b: /* fwait */
6338 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
6339 return -1;
6340 opcode = (uint32_t) opcode8;
6341 ir.addr++;
6342 goto reswitch;
6343 break;
6344
6345 /* XXX */
6346 case 0xcc: /* int3 */
6347 printf_unfiltered (_("Process record does not support instruction "
6348 "int3.\n"));
6349 ir.addr -= 1;
6350 goto no_support;
6351 break;
6352
6353 /* XXX */
6354 case 0xcd: /* int */
6355 {
6356 int ret;
6357 uint8_t interrupt;
6358 if (record_read_memory (gdbarch, ir.addr, &interrupt, 1))
6359 return -1;
6360 ir.addr++;
6361 if (interrupt != 0x80
6362 || tdep->i386_intx80_record == NULL)
6363 {
6364 printf_unfiltered (_("Process record does not support "
6365 "instruction int 0x%02x.\n"),
6366 interrupt);
6367 ir.addr -= 2;
6368 goto no_support;
6369 }
6370 ret = tdep->i386_intx80_record (ir.regcache);
6371 if (ret)
6372 return ret;
6373 }
6374 break;
6375
6376 /* XXX */
6377 case 0xce: /* into */
6378 printf_unfiltered (_("Process record does not support "
6379 "instruction into.\n"));
6380 ir.addr -= 1;
6381 goto no_support;
6382 break;
6383
6384 case 0xfa: /* cli */
6385 case 0xfb: /* sti */
6386 break;
6387
6388 case 0x62: /* bound */
6389 printf_unfiltered (_("Process record does not support "
6390 "instruction bound.\n"));
6391 ir.addr -= 1;
6392 goto no_support;
6393 break;
6394
6395 case 0x0fc8: /* bswap reg */
6396 case 0x0fc9:
6397 case 0x0fca:
6398 case 0x0fcb:
6399 case 0x0fcc:
6400 case 0x0fcd:
6401 case 0x0fce:
6402 case 0x0fcf:
6403 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 7) | ir.rex_b);
6404 break;
6405
6406 case 0xd6: /* salc */
6407 if (ir.regmap[X86_RECORD_R8_REGNUM])
6408 {
6409 ir.addr -= 1;
6410 goto no_support;
6411 }
6412 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6413 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6414 break;
6415
6416 case 0xe0: /* loopnz */
6417 case 0xe1: /* loopz */
6418 case 0xe2: /* loop */
6419 case 0xe3: /* jecxz */
6420 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6421 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6422 break;
6423
6424 case 0x0f30: /* wrmsr */
6425 printf_unfiltered (_("Process record does not support "
6426 "instruction wrmsr.\n"));
6427 ir.addr -= 2;
6428 goto no_support;
6429 break;
6430
6431 case 0x0f32: /* rdmsr */
6432 printf_unfiltered (_("Process record does not support "
6433 "instruction rdmsr.\n"));
6434 ir.addr -= 2;
6435 goto no_support;
6436 break;
6437
6438 case 0x0f31: /* rdtsc */
6439 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6440 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6441 break;
6442
6443 case 0x0f34: /* sysenter */
6444 {
6445 int ret;
6446 if (ir.regmap[X86_RECORD_R8_REGNUM])
6447 {
6448 ir.addr -= 2;
6449 goto no_support;
6450 }
6451 if (tdep->i386_sysenter_record == NULL)
6452 {
6453 printf_unfiltered (_("Process record does not support "
6454 "instruction sysenter.\n"));
6455 ir.addr -= 2;
6456 goto no_support;
6457 }
6458 ret = tdep->i386_sysenter_record (ir.regcache);
6459 if (ret)
6460 return ret;
6461 }
6462 break;
6463
6464 case 0x0f35: /* sysexit */
6465 printf_unfiltered (_("Process record does not support "
6466 "instruction sysexit.\n"));
6467 ir.addr -= 2;
6468 goto no_support;
6469 break;
6470
6471 case 0x0f05: /* syscall */
6472 {
6473 int ret;
6474 if (tdep->i386_syscall_record == NULL)
6475 {
6476 printf_unfiltered (_("Process record does not support "
6477 "instruction syscall.\n"));
6478 ir.addr -= 2;
6479 goto no_support;
6480 }
6481 ret = tdep->i386_syscall_record (ir.regcache);
6482 if (ret)
6483 return ret;
6484 }
6485 break;
6486
6487 case 0x0f07: /* sysret */
6488 printf_unfiltered (_("Process record does not support "
6489 "instruction sysret.\n"));
6490 ir.addr -= 2;
6491 goto no_support;
6492 break;
6493
6494 case 0x0fa2: /* cpuid */
6495 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6496 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6497 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6498 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
6499 break;
6500
6501 case 0xf4: /* hlt */
6502 printf_unfiltered (_("Process record does not support "
6503 "instruction hlt.\n"));
6504 ir.addr -= 1;
6505 goto no_support;
6506 break;
6507
6508 case 0x0f00:
6509 if (i386_record_modrm (&ir))
6510 return -1;
6511 switch (ir.reg)
6512 {
6513 case 0: /* sldt */
6514 case 1: /* str */
6515 if (ir.mod == 3)
6516 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6517 else
6518 {
6519 ir.ot = OT_WORD;
6520 if (i386_record_lea_modrm (&ir))
6521 return -1;
6522 }
6523 break;
6524 case 2: /* lldt */
6525 case 3: /* ltr */
6526 break;
6527 case 4: /* verr */
6528 case 5: /* verw */
6529 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6530 break;
6531 default:
6532 ir.addr -= 3;
6533 opcode = opcode << 8 | ir.modrm;
6534 goto no_support;
6535 break;
6536 }
6537 break;
6538
6539 case 0x0f01:
6540 if (i386_record_modrm (&ir))
6541 return -1;
6542 switch (ir.reg)
6543 {
6544 case 0: /* sgdt */
6545 {
6546 uint64_t addr64;
6547
6548 if (ir.mod == 3)
6549 {
6550 ir.addr -= 3;
6551 opcode = opcode << 8 | ir.modrm;
6552 goto no_support;
6553 }
6554 if (ir.override >= 0)
6555 {
6556 if (record_full_memory_query)
6557 {
6558 int q;
6559
6560 target_terminal_ours ();
6561 q = yquery (_("\
6562 Process record ignores the memory change of instruction at address %s\n\
6563 because it can't get the value of the segment register.\n\
6564 Do you want to stop the program?"),
6565 paddress (gdbarch, ir.orig_addr));
6566 target_terminal_inferior ();
6567 if (q)
6568 return -1;
6569 }
6570 }
6571 else
6572 {
6573 if (i386_record_lea_modrm_addr (&ir, &addr64))
6574 return -1;
6575 if (record_full_arch_list_add_mem (addr64, 2))
6576 return -1;
6577 addr64 += 2;
6578 if (ir.regmap[X86_RECORD_R8_REGNUM])
6579 {
6580 if (record_full_arch_list_add_mem (addr64, 8))
6581 return -1;
6582 }
6583 else
6584 {
6585 if (record_full_arch_list_add_mem (addr64, 4))
6586 return -1;
6587 }
6588 }
6589 }
6590 break;
6591 case 1:
6592 if (ir.mod == 3)
6593 {
6594 switch (ir.rm)
6595 {
6596 case 0: /* monitor */
6597 break;
6598 case 1: /* mwait */
6599 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6600 break;
6601 default:
6602 ir.addr -= 3;
6603 opcode = opcode << 8 | ir.modrm;
6604 goto no_support;
6605 break;
6606 }
6607 }
6608 else
6609 {
6610 /* sidt */
6611 if (ir.override >= 0)
6612 {
6613 if (record_full_memory_query)
6614 {
6615 int q;
6616
6617 target_terminal_ours ();
6618 q = yquery (_("\
6619 Process record ignores the memory change of instruction at address %s\n\
6620 because it can't get the value of the segment register.\n\
6621 Do you want to stop the program?"),
6622 paddress (gdbarch, ir.orig_addr));
6623 target_terminal_inferior ();
6624 if (q)
6625 return -1;
6626 }
6627 }
6628 else
6629 {
6630 uint64_t addr64;
6631
6632 if (i386_record_lea_modrm_addr (&ir, &addr64))
6633 return -1;
6634 if (record_full_arch_list_add_mem (addr64, 2))
6635 return -1;
6636 addr64 += 2;
6637 if (ir.regmap[X86_RECORD_R8_REGNUM])
6638 {
6639 if (record_full_arch_list_add_mem (addr64, 8))
6640 return -1;
6641 }
6642 else
6643 {
6644 if (record_full_arch_list_add_mem (addr64, 4))
6645 return -1;
6646 }
6647 }
6648 }
6649 break;
6650 case 2: /* lgdt */
6651 if (ir.mod == 3)
6652 {
6653 /* xgetbv */
6654 if (ir.rm == 0)
6655 {
6656 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6657 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6658 break;
6659 }
6660 /* xsetbv */
6661 else if (ir.rm == 1)
6662 break;
6663 }
6664 case 3: /* lidt */
6665 if (ir.mod == 3)
6666 {
6667 ir.addr -= 3;
6668 opcode = opcode << 8 | ir.modrm;
6669 goto no_support;
6670 }
6671 break;
6672 case 4: /* smsw */
6673 if (ir.mod == 3)
6674 {
6675 if (record_full_arch_list_add_reg (ir.regcache, ir.rm | ir.rex_b))
6676 return -1;
6677 }
6678 else
6679 {
6680 ir.ot = OT_WORD;
6681 if (i386_record_lea_modrm (&ir))
6682 return -1;
6683 }
6684 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6685 break;
6686 case 6: /* lmsw */
6687 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6688 break;
6689 case 7: /* invlpg */
6690 if (ir.mod == 3)
6691 {
6692 if (ir.rm == 0 && ir.regmap[X86_RECORD_R8_REGNUM])
6693 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
6694 else
6695 {
6696 ir.addr -= 3;
6697 opcode = opcode << 8 | ir.modrm;
6698 goto no_support;
6699 }
6700 }
6701 else
6702 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6703 break;
6704 default:
6705 ir.addr -= 3;
6706 opcode = opcode << 8 | ir.modrm;
6707 goto no_support;
6708 break;
6709 }
6710 break;
6711
6712 case 0x0f08: /* invd */
6713 case 0x0f09: /* wbinvd */
6714 break;
6715
6716 case 0x63: /* arpl */
6717 if (i386_record_modrm (&ir))
6718 return -1;
6719 if (ir.mod == 3 || ir.regmap[X86_RECORD_R8_REGNUM])
6720 {
6721 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.regmap[X86_RECORD_R8_REGNUM]
6722 ? (ir.reg | rex_r) : ir.rm);
6723 }
6724 else
6725 {
6726 ir.ot = ir.dflag ? OT_LONG : OT_WORD;
6727 if (i386_record_lea_modrm (&ir))
6728 return -1;
6729 }
6730 if (!ir.regmap[X86_RECORD_R8_REGNUM])
6731 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6732 break;
6733
6734 case 0x0f02: /* lar */
6735 case 0x0f03: /* lsl */
6736 if (i386_record_modrm (&ir))
6737 return -1;
6738 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6739 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6740 break;
6741
6742 case 0x0f18:
6743 if (i386_record_modrm (&ir))
6744 return -1;
6745 if (ir.mod == 3 && ir.reg == 3)
6746 {
6747 ir.addr -= 3;
6748 opcode = opcode << 8 | ir.modrm;
6749 goto no_support;
6750 }
6751 break;
6752
6753 case 0x0f19:
6754 case 0x0f1a:
6755 case 0x0f1b:
6756 case 0x0f1c:
6757 case 0x0f1d:
6758 case 0x0f1e:
6759 case 0x0f1f:
6760 /* nop (multi byte) */
6761 break;
6762
6763 case 0x0f20: /* mov reg, crN */
6764 case 0x0f22: /* mov crN, reg */
6765 if (i386_record_modrm (&ir))
6766 return -1;
6767 if ((ir.modrm & 0xc0) != 0xc0)
6768 {
6769 ir.addr -= 3;
6770 opcode = opcode << 8 | ir.modrm;
6771 goto no_support;
6772 }
6773 switch (ir.reg)
6774 {
6775 case 0:
6776 case 2:
6777 case 3:
6778 case 4:
6779 case 8:
6780 if (opcode & 2)
6781 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6782 else
6783 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6784 break;
6785 default:
6786 ir.addr -= 3;
6787 opcode = opcode << 8 | ir.modrm;
6788 goto no_support;
6789 break;
6790 }
6791 break;
6792
6793 case 0x0f21: /* mov reg, drN */
6794 case 0x0f23: /* mov drN, reg */
6795 if (i386_record_modrm (&ir))
6796 return -1;
6797 if ((ir.modrm & 0xc0) != 0xc0 || ir.reg == 4
6798 || ir.reg == 5 || ir.reg >= 8)
6799 {
6800 ir.addr -= 3;
6801 opcode = opcode << 8 | ir.modrm;
6802 goto no_support;
6803 }
6804 if (opcode & 2)
6805 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6806 else
6807 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6808 break;
6809
6810 case 0x0f06: /* clts */
6811 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6812 break;
6813
6814 /* MMX 3DNow! SSE SSE2 SSE3 SSSE3 SSE4 */
6815
6816 case 0x0f0d: /* 3DNow! prefetch */
6817 break;
6818
6819 case 0x0f0e: /* 3DNow! femms */
6820 case 0x0f77: /* emms */
6821 if (i386_fpc_regnum_p (gdbarch, I387_FTAG_REGNUM(tdep)))
6822 goto no_support;
6823 record_full_arch_list_add_reg (ir.regcache, I387_FTAG_REGNUM(tdep));
6824 break;
6825
6826 case 0x0f0f: /* 3DNow! data */
6827 if (i386_record_modrm (&ir))
6828 return -1;
6829 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
6830 return -1;
6831 ir.addr++;
6832 switch (opcode8)
6833 {
6834 case 0x0c: /* 3DNow! pi2fw */
6835 case 0x0d: /* 3DNow! pi2fd */
6836 case 0x1c: /* 3DNow! pf2iw */
6837 case 0x1d: /* 3DNow! pf2id */
6838 case 0x8a: /* 3DNow! pfnacc */
6839 case 0x8e: /* 3DNow! pfpnacc */
6840 case 0x90: /* 3DNow! pfcmpge */
6841 case 0x94: /* 3DNow! pfmin */
6842 case 0x96: /* 3DNow! pfrcp */
6843 case 0x97: /* 3DNow! pfrsqrt */
6844 case 0x9a: /* 3DNow! pfsub */
6845 case 0x9e: /* 3DNow! pfadd */
6846 case 0xa0: /* 3DNow! pfcmpgt */
6847 case 0xa4: /* 3DNow! pfmax */
6848 case 0xa6: /* 3DNow! pfrcpit1 */
6849 case 0xa7: /* 3DNow! pfrsqit1 */
6850 case 0xaa: /* 3DNow! pfsubr */
6851 case 0xae: /* 3DNow! pfacc */
6852 case 0xb0: /* 3DNow! pfcmpeq */
6853 case 0xb4: /* 3DNow! pfmul */
6854 case 0xb6: /* 3DNow! pfrcpit2 */
6855 case 0xb7: /* 3DNow! pmulhrw */
6856 case 0xbb: /* 3DNow! pswapd */
6857 case 0xbf: /* 3DNow! pavgusb */
6858 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
6859 goto no_support_3dnow_data;
6860 record_full_arch_list_add_reg (ir.regcache, ir.reg);
6861 break;
6862
6863 default:
6864 no_support_3dnow_data:
6865 opcode = (opcode << 8) | opcode8;
6866 goto no_support;
6867 break;
6868 }
6869 break;
6870
6871 case 0x0faa: /* rsm */
6872 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6873 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6874 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6875 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6876 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
6877 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6878 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
6879 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6880 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6881 break;
6882
6883 case 0x0fae:
6884 if (i386_record_modrm (&ir))
6885 return -1;
6886 switch(ir.reg)
6887 {
6888 case 0: /* fxsave */
6889 {
6890 uint64_t tmpu64;
6891
6892 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6893 if (i386_record_lea_modrm_addr (&ir, &tmpu64))
6894 return -1;
6895 if (record_full_arch_list_add_mem (tmpu64, 512))
6896 return -1;
6897 }
6898 break;
6899
6900 case 1: /* fxrstor */
6901 {
6902 int i;
6903
6904 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6905
6906 for (i = I387_MM0_REGNUM (tdep);
6907 i386_mmx_regnum_p (gdbarch, i); i++)
6908 record_full_arch_list_add_reg (ir.regcache, i);
6909
6910 for (i = I387_XMM0_REGNUM (tdep);
6911 i386_xmm_regnum_p (gdbarch, i); i++)
6912 record_full_arch_list_add_reg (ir.regcache, i);
6913
6914 if (i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
6915 record_full_arch_list_add_reg (ir.regcache,
6916 I387_MXCSR_REGNUM(tdep));
6917
6918 for (i = I387_ST0_REGNUM (tdep);
6919 i386_fp_regnum_p (gdbarch, i); i++)
6920 record_full_arch_list_add_reg (ir.regcache, i);
6921
6922 for (i = I387_FCTRL_REGNUM (tdep);
6923 i386_fpc_regnum_p (gdbarch, i); i++)
6924 record_full_arch_list_add_reg (ir.regcache, i);
6925 }
6926 break;
6927
6928 case 2: /* ldmxcsr */
6929 if (!i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
6930 goto no_support;
6931 record_full_arch_list_add_reg (ir.regcache, I387_MXCSR_REGNUM(tdep));
6932 break;
6933
6934 case 3: /* stmxcsr */
6935 ir.ot = OT_LONG;
6936 if (i386_record_lea_modrm (&ir))
6937 return -1;
6938 break;
6939
6940 case 5: /* lfence */
6941 case 6: /* mfence */
6942 case 7: /* sfence clflush */
6943 break;
6944
6945 default:
6946 opcode = (opcode << 8) | ir.modrm;
6947 goto no_support;
6948 break;
6949 }
6950 break;
6951
6952 case 0x0fc3: /* movnti */
6953 ir.ot = (ir.dflag == 2) ? OT_QUAD : OT_LONG;
6954 if (i386_record_modrm (&ir))
6955 return -1;
6956 if (ir.mod == 3)
6957 goto no_support;
6958 ir.reg |= rex_r;
6959 if (i386_record_lea_modrm (&ir))
6960 return -1;
6961 break;
6962
6963 /* Add prefix to opcode. */
6964 case 0x0f10:
6965 case 0x0f11:
6966 case 0x0f12:
6967 case 0x0f13:
6968 case 0x0f14:
6969 case 0x0f15:
6970 case 0x0f16:
6971 case 0x0f17:
6972 case 0x0f28:
6973 case 0x0f29:
6974 case 0x0f2a:
6975 case 0x0f2b:
6976 case 0x0f2c:
6977 case 0x0f2d:
6978 case 0x0f2e:
6979 case 0x0f2f:
6980 case 0x0f38:
6981 case 0x0f39:
6982 case 0x0f3a:
6983 case 0x0f50:
6984 case 0x0f51:
6985 case 0x0f52:
6986 case 0x0f53:
6987 case 0x0f54:
6988 case 0x0f55:
6989 case 0x0f56:
6990 case 0x0f57:
6991 case 0x0f58:
6992 case 0x0f59:
6993 case 0x0f5a:
6994 case 0x0f5b:
6995 case 0x0f5c:
6996 case 0x0f5d:
6997 case 0x0f5e:
6998 case 0x0f5f:
6999 case 0x0f60:
7000 case 0x0f61:
7001 case 0x0f62:
7002 case 0x0f63:
7003 case 0x0f64:
7004 case 0x0f65:
7005 case 0x0f66:
7006 case 0x0f67:
7007 case 0x0f68:
7008 case 0x0f69:
7009 case 0x0f6a:
7010 case 0x0f6b:
7011 case 0x0f6c:
7012 case 0x0f6d:
7013 case 0x0f6e:
7014 case 0x0f6f:
7015 case 0x0f70:
7016 case 0x0f71:
7017 case 0x0f72:
7018 case 0x0f73:
7019 case 0x0f74:
7020 case 0x0f75:
7021 case 0x0f76:
7022 case 0x0f7c:
7023 case 0x0f7d:
7024 case 0x0f7e:
7025 case 0x0f7f:
7026 case 0x0fb8:
7027 case 0x0fc2:
7028 case 0x0fc4:
7029 case 0x0fc5:
7030 case 0x0fc6:
7031 case 0x0fd0:
7032 case 0x0fd1:
7033 case 0x0fd2:
7034 case 0x0fd3:
7035 case 0x0fd4:
7036 case 0x0fd5:
7037 case 0x0fd6:
7038 case 0x0fd7:
7039 case 0x0fd8:
7040 case 0x0fd9:
7041 case 0x0fda:
7042 case 0x0fdb:
7043 case 0x0fdc:
7044 case 0x0fdd:
7045 case 0x0fde:
7046 case 0x0fdf:
7047 case 0x0fe0:
7048 case 0x0fe1:
7049 case 0x0fe2:
7050 case 0x0fe3:
7051 case 0x0fe4:
7052 case 0x0fe5:
7053 case 0x0fe6:
7054 case 0x0fe7:
7055 case 0x0fe8:
7056 case 0x0fe9:
7057 case 0x0fea:
7058 case 0x0feb:
7059 case 0x0fec:
7060 case 0x0fed:
7061 case 0x0fee:
7062 case 0x0fef:
7063 case 0x0ff0:
7064 case 0x0ff1:
7065 case 0x0ff2:
7066 case 0x0ff3:
7067 case 0x0ff4:
7068 case 0x0ff5:
7069 case 0x0ff6:
7070 case 0x0ff7:
7071 case 0x0ff8:
7072 case 0x0ff9:
7073 case 0x0ffa:
7074 case 0x0ffb:
7075 case 0x0ffc:
7076 case 0x0ffd:
7077 case 0x0ffe:
7078 /* Mask out PREFIX_ADDR. */
7079 switch ((prefixes & ~PREFIX_ADDR))
7080 {
7081 case PREFIX_REPNZ:
7082 opcode |= 0xf20000;
7083 break;
7084 case PREFIX_DATA:
7085 opcode |= 0x660000;
7086 break;
7087 case PREFIX_REPZ:
7088 opcode |= 0xf30000;
7089 break;
7090 }
7091 reswitch_prefix_add:
7092 switch (opcode)
7093 {
7094 case 0x0f38:
7095 case 0x660f38:
7096 case 0xf20f38:
7097 case 0x0f3a:
7098 case 0x660f3a:
7099 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
7100 return -1;
7101 ir.addr++;
7102 opcode = (uint32_t) opcode8 | opcode << 8;
7103 goto reswitch_prefix_add;
7104 break;
7105
7106 case 0x0f10: /* movups */
7107 case 0x660f10: /* movupd */
7108 case 0xf30f10: /* movss */
7109 case 0xf20f10: /* movsd */
7110 case 0x0f12: /* movlps */
7111 case 0x660f12: /* movlpd */
7112 case 0xf30f12: /* movsldup */
7113 case 0xf20f12: /* movddup */
7114 case 0x0f14: /* unpcklps */
7115 case 0x660f14: /* unpcklpd */
7116 case 0x0f15: /* unpckhps */
7117 case 0x660f15: /* unpckhpd */
7118 case 0x0f16: /* movhps */
7119 case 0x660f16: /* movhpd */
7120 case 0xf30f16: /* movshdup */
7121 case 0x0f28: /* movaps */
7122 case 0x660f28: /* movapd */
7123 case 0x0f2a: /* cvtpi2ps */
7124 case 0x660f2a: /* cvtpi2pd */
7125 case 0xf30f2a: /* cvtsi2ss */
7126 case 0xf20f2a: /* cvtsi2sd */
7127 case 0x0f2c: /* cvttps2pi */
7128 case 0x660f2c: /* cvttpd2pi */
7129 case 0x0f2d: /* cvtps2pi */
7130 case 0x660f2d: /* cvtpd2pi */
7131 case 0x660f3800: /* pshufb */
7132 case 0x660f3801: /* phaddw */
7133 case 0x660f3802: /* phaddd */
7134 case 0x660f3803: /* phaddsw */
7135 case 0x660f3804: /* pmaddubsw */
7136 case 0x660f3805: /* phsubw */
7137 case 0x660f3806: /* phsubd */
7138 case 0x660f3807: /* phsubsw */
7139 case 0x660f3808: /* psignb */
7140 case 0x660f3809: /* psignw */
7141 case 0x660f380a: /* psignd */
7142 case 0x660f380b: /* pmulhrsw */
7143 case 0x660f3810: /* pblendvb */
7144 case 0x660f3814: /* blendvps */
7145 case 0x660f3815: /* blendvpd */
7146 case 0x660f381c: /* pabsb */
7147 case 0x660f381d: /* pabsw */
7148 case 0x660f381e: /* pabsd */
7149 case 0x660f3820: /* pmovsxbw */
7150 case 0x660f3821: /* pmovsxbd */
7151 case 0x660f3822: /* pmovsxbq */
7152 case 0x660f3823: /* pmovsxwd */
7153 case 0x660f3824: /* pmovsxwq */
7154 case 0x660f3825: /* pmovsxdq */
7155 case 0x660f3828: /* pmuldq */
7156 case 0x660f3829: /* pcmpeqq */
7157 case 0x660f382a: /* movntdqa */
7158 case 0x660f3a08: /* roundps */
7159 case 0x660f3a09: /* roundpd */
7160 case 0x660f3a0a: /* roundss */
7161 case 0x660f3a0b: /* roundsd */
7162 case 0x660f3a0c: /* blendps */
7163 case 0x660f3a0d: /* blendpd */
7164 case 0x660f3a0e: /* pblendw */
7165 case 0x660f3a0f: /* palignr */
7166 case 0x660f3a20: /* pinsrb */
7167 case 0x660f3a21: /* insertps */
7168 case 0x660f3a22: /* pinsrd pinsrq */
7169 case 0x660f3a40: /* dpps */
7170 case 0x660f3a41: /* dppd */
7171 case 0x660f3a42: /* mpsadbw */
7172 case 0x660f3a60: /* pcmpestrm */
7173 case 0x660f3a61: /* pcmpestri */
7174 case 0x660f3a62: /* pcmpistrm */
7175 case 0x660f3a63: /* pcmpistri */
7176 case 0x0f51: /* sqrtps */
7177 case 0x660f51: /* sqrtpd */
7178 case 0xf20f51: /* sqrtsd */
7179 case 0xf30f51: /* sqrtss */
7180 case 0x0f52: /* rsqrtps */
7181 case 0xf30f52: /* rsqrtss */
7182 case 0x0f53: /* rcpps */
7183 case 0xf30f53: /* rcpss */
7184 case 0x0f54: /* andps */
7185 case 0x660f54: /* andpd */
7186 case 0x0f55: /* andnps */
7187 case 0x660f55: /* andnpd */
7188 case 0x0f56: /* orps */
7189 case 0x660f56: /* orpd */
7190 case 0x0f57: /* xorps */
7191 case 0x660f57: /* xorpd */
7192 case 0x0f58: /* addps */
7193 case 0x660f58: /* addpd */
7194 case 0xf20f58: /* addsd */
7195 case 0xf30f58: /* addss */
7196 case 0x0f59: /* mulps */
7197 case 0x660f59: /* mulpd */
7198 case 0xf20f59: /* mulsd */
7199 case 0xf30f59: /* mulss */
7200 case 0x0f5a: /* cvtps2pd */
7201 case 0x660f5a: /* cvtpd2ps */
7202 case 0xf20f5a: /* cvtsd2ss */
7203 case 0xf30f5a: /* cvtss2sd */
7204 case 0x0f5b: /* cvtdq2ps */
7205 case 0x660f5b: /* cvtps2dq */
7206 case 0xf30f5b: /* cvttps2dq */
7207 case 0x0f5c: /* subps */
7208 case 0x660f5c: /* subpd */
7209 case 0xf20f5c: /* subsd */
7210 case 0xf30f5c: /* subss */
7211 case 0x0f5d: /* minps */
7212 case 0x660f5d: /* minpd */
7213 case 0xf20f5d: /* minsd */
7214 case 0xf30f5d: /* minss */
7215 case 0x0f5e: /* divps */
7216 case 0x660f5e: /* divpd */
7217 case 0xf20f5e: /* divsd */
7218 case 0xf30f5e: /* divss */
7219 case 0x0f5f: /* maxps */
7220 case 0x660f5f: /* maxpd */
7221 case 0xf20f5f: /* maxsd */
7222 case 0xf30f5f: /* maxss */
7223 case 0x660f60: /* punpcklbw */
7224 case 0x660f61: /* punpcklwd */
7225 case 0x660f62: /* punpckldq */
7226 case 0x660f63: /* packsswb */
7227 case 0x660f64: /* pcmpgtb */
7228 case 0x660f65: /* pcmpgtw */
7229 case 0x660f66: /* pcmpgtd */
7230 case 0x660f67: /* packuswb */
7231 case 0x660f68: /* punpckhbw */
7232 case 0x660f69: /* punpckhwd */
7233 case 0x660f6a: /* punpckhdq */
7234 case 0x660f6b: /* packssdw */
7235 case 0x660f6c: /* punpcklqdq */
7236 case 0x660f6d: /* punpckhqdq */
7237 case 0x660f6e: /* movd */
7238 case 0x660f6f: /* movdqa */
7239 case 0xf30f6f: /* movdqu */
7240 case 0x660f70: /* pshufd */
7241 case 0xf20f70: /* pshuflw */
7242 case 0xf30f70: /* pshufhw */
7243 case 0x660f74: /* pcmpeqb */
7244 case 0x660f75: /* pcmpeqw */
7245 case 0x660f76: /* pcmpeqd */
7246 case 0x660f7c: /* haddpd */
7247 case 0xf20f7c: /* haddps */
7248 case 0x660f7d: /* hsubpd */
7249 case 0xf20f7d: /* hsubps */
7250 case 0xf30f7e: /* movq */
7251 case 0x0fc2: /* cmpps */
7252 case 0x660fc2: /* cmppd */
7253 case 0xf20fc2: /* cmpsd */
7254 case 0xf30fc2: /* cmpss */
7255 case 0x660fc4: /* pinsrw */
7256 case 0x0fc6: /* shufps */
7257 case 0x660fc6: /* shufpd */
7258 case 0x660fd0: /* addsubpd */
7259 case 0xf20fd0: /* addsubps */
7260 case 0x660fd1: /* psrlw */
7261 case 0x660fd2: /* psrld */
7262 case 0x660fd3: /* psrlq */
7263 case 0x660fd4: /* paddq */
7264 case 0x660fd5: /* pmullw */
7265 case 0xf30fd6: /* movq2dq */
7266 case 0x660fd8: /* psubusb */
7267 case 0x660fd9: /* psubusw */
7268 case 0x660fda: /* pminub */
7269 case 0x660fdb: /* pand */
7270 case 0x660fdc: /* paddusb */
7271 case 0x660fdd: /* paddusw */
7272 case 0x660fde: /* pmaxub */
7273 case 0x660fdf: /* pandn */
7274 case 0x660fe0: /* pavgb */
7275 case 0x660fe1: /* psraw */
7276 case 0x660fe2: /* psrad */
7277 case 0x660fe3: /* pavgw */
7278 case 0x660fe4: /* pmulhuw */
7279 case 0x660fe5: /* pmulhw */
7280 case 0x660fe6: /* cvttpd2dq */
7281 case 0xf20fe6: /* cvtpd2dq */
7282 case 0xf30fe6: /* cvtdq2pd */
7283 case 0x660fe8: /* psubsb */
7284 case 0x660fe9: /* psubsw */
7285 case 0x660fea: /* pminsw */
7286 case 0x660feb: /* por */
7287 case 0x660fec: /* paddsb */
7288 case 0x660fed: /* paddsw */
7289 case 0x660fee: /* pmaxsw */
7290 case 0x660fef: /* pxor */
7291 case 0xf20ff0: /* lddqu */
7292 case 0x660ff1: /* psllw */
7293 case 0x660ff2: /* pslld */
7294 case 0x660ff3: /* psllq */
7295 case 0x660ff4: /* pmuludq */
7296 case 0x660ff5: /* pmaddwd */
7297 case 0x660ff6: /* psadbw */
7298 case 0x660ff8: /* psubb */
7299 case 0x660ff9: /* psubw */
7300 case 0x660ffa: /* psubd */
7301 case 0x660ffb: /* psubq */
7302 case 0x660ffc: /* paddb */
7303 case 0x660ffd: /* paddw */
7304 case 0x660ffe: /* paddd */
7305 if (i386_record_modrm (&ir))
7306 return -1;
7307 ir.reg |= rex_r;
7308 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.reg))
7309 goto no_support;
7310 record_full_arch_list_add_reg (ir.regcache,
7311 I387_XMM0_REGNUM (tdep) + ir.reg);
7312 if ((opcode & 0xfffffffc) == 0x660f3a60)
7313 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7314 break;
7315
7316 case 0x0f11: /* movups */
7317 case 0x660f11: /* movupd */
7318 case 0xf30f11: /* movss */
7319 case 0xf20f11: /* movsd */
7320 case 0x0f13: /* movlps */
7321 case 0x660f13: /* movlpd */
7322 case 0x0f17: /* movhps */
7323 case 0x660f17: /* movhpd */
7324 case 0x0f29: /* movaps */
7325 case 0x660f29: /* movapd */
7326 case 0x660f3a14: /* pextrb */
7327 case 0x660f3a15: /* pextrw */
7328 case 0x660f3a16: /* pextrd pextrq */
7329 case 0x660f3a17: /* extractps */
7330 case 0x660f7f: /* movdqa */
7331 case 0xf30f7f: /* movdqu */
7332 if (i386_record_modrm (&ir))
7333 return -1;
7334 if (ir.mod == 3)
7335 {
7336 if (opcode == 0x0f13 || opcode == 0x660f13
7337 || opcode == 0x0f17 || opcode == 0x660f17)
7338 goto no_support;
7339 ir.rm |= ir.rex_b;
7340 if (!i386_xmm_regnum_p (gdbarch,
7341 I387_XMM0_REGNUM (tdep) + ir.rm))
7342 goto no_support;
7343 record_full_arch_list_add_reg (ir.regcache,
7344 I387_XMM0_REGNUM (tdep) + ir.rm);
7345 }
7346 else
7347 {
7348 switch (opcode)
7349 {
7350 case 0x660f3a14:
7351 ir.ot = OT_BYTE;
7352 break;
7353 case 0x660f3a15:
7354 ir.ot = OT_WORD;
7355 break;
7356 case 0x660f3a16:
7357 ir.ot = OT_LONG;
7358 break;
7359 case 0x660f3a17:
7360 ir.ot = OT_QUAD;
7361 break;
7362 default:
7363 ir.ot = OT_DQUAD;
7364 break;
7365 }
7366 if (i386_record_lea_modrm (&ir))
7367 return -1;
7368 }
7369 break;
7370
7371 case 0x0f2b: /* movntps */
7372 case 0x660f2b: /* movntpd */
7373 case 0x0fe7: /* movntq */
7374 case 0x660fe7: /* movntdq */
7375 if (ir.mod == 3)
7376 goto no_support;
7377 if (opcode == 0x0fe7)
7378 ir.ot = OT_QUAD;
7379 else
7380 ir.ot = OT_DQUAD;
7381 if (i386_record_lea_modrm (&ir))
7382 return -1;
7383 break;
7384
7385 case 0xf30f2c: /* cvttss2si */
7386 case 0xf20f2c: /* cvttsd2si */
7387 case 0xf30f2d: /* cvtss2si */
7388 case 0xf20f2d: /* cvtsd2si */
7389 case 0xf20f38f0: /* crc32 */
7390 case 0xf20f38f1: /* crc32 */
7391 case 0x0f50: /* movmskps */
7392 case 0x660f50: /* movmskpd */
7393 case 0x0fc5: /* pextrw */
7394 case 0x660fc5: /* pextrw */
7395 case 0x0fd7: /* pmovmskb */
7396 case 0x660fd7: /* pmovmskb */
7397 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7398 break;
7399
7400 case 0x0f3800: /* pshufb */
7401 case 0x0f3801: /* phaddw */
7402 case 0x0f3802: /* phaddd */
7403 case 0x0f3803: /* phaddsw */
7404 case 0x0f3804: /* pmaddubsw */
7405 case 0x0f3805: /* phsubw */
7406 case 0x0f3806: /* phsubd */
7407 case 0x0f3807: /* phsubsw */
7408 case 0x0f3808: /* psignb */
7409 case 0x0f3809: /* psignw */
7410 case 0x0f380a: /* psignd */
7411 case 0x0f380b: /* pmulhrsw */
7412 case 0x0f381c: /* pabsb */
7413 case 0x0f381d: /* pabsw */
7414 case 0x0f381e: /* pabsd */
7415 case 0x0f382b: /* packusdw */
7416 case 0x0f3830: /* pmovzxbw */
7417 case 0x0f3831: /* pmovzxbd */
7418 case 0x0f3832: /* pmovzxbq */
7419 case 0x0f3833: /* pmovzxwd */
7420 case 0x0f3834: /* pmovzxwq */
7421 case 0x0f3835: /* pmovzxdq */
7422 case 0x0f3837: /* pcmpgtq */
7423 case 0x0f3838: /* pminsb */
7424 case 0x0f3839: /* pminsd */
7425 case 0x0f383a: /* pminuw */
7426 case 0x0f383b: /* pminud */
7427 case 0x0f383c: /* pmaxsb */
7428 case 0x0f383d: /* pmaxsd */
7429 case 0x0f383e: /* pmaxuw */
7430 case 0x0f383f: /* pmaxud */
7431 case 0x0f3840: /* pmulld */
7432 case 0x0f3841: /* phminposuw */
7433 case 0x0f3a0f: /* palignr */
7434 case 0x0f60: /* punpcklbw */
7435 case 0x0f61: /* punpcklwd */
7436 case 0x0f62: /* punpckldq */
7437 case 0x0f63: /* packsswb */
7438 case 0x0f64: /* pcmpgtb */
7439 case 0x0f65: /* pcmpgtw */
7440 case 0x0f66: /* pcmpgtd */
7441 case 0x0f67: /* packuswb */
7442 case 0x0f68: /* punpckhbw */
7443 case 0x0f69: /* punpckhwd */
7444 case 0x0f6a: /* punpckhdq */
7445 case 0x0f6b: /* packssdw */
7446 case 0x0f6e: /* movd */
7447 case 0x0f6f: /* movq */
7448 case 0x0f70: /* pshufw */
7449 case 0x0f74: /* pcmpeqb */
7450 case 0x0f75: /* pcmpeqw */
7451 case 0x0f76: /* pcmpeqd */
7452 case 0x0fc4: /* pinsrw */
7453 case 0x0fd1: /* psrlw */
7454 case 0x0fd2: /* psrld */
7455 case 0x0fd3: /* psrlq */
7456 case 0x0fd4: /* paddq */
7457 case 0x0fd5: /* pmullw */
7458 case 0xf20fd6: /* movdq2q */
7459 case 0x0fd8: /* psubusb */
7460 case 0x0fd9: /* psubusw */
7461 case 0x0fda: /* pminub */
7462 case 0x0fdb: /* pand */
7463 case 0x0fdc: /* paddusb */
7464 case 0x0fdd: /* paddusw */
7465 case 0x0fde: /* pmaxub */
7466 case 0x0fdf: /* pandn */
7467 case 0x0fe0: /* pavgb */
7468 case 0x0fe1: /* psraw */
7469 case 0x0fe2: /* psrad */
7470 case 0x0fe3: /* pavgw */
7471 case 0x0fe4: /* pmulhuw */
7472 case 0x0fe5: /* pmulhw */
7473 case 0x0fe8: /* psubsb */
7474 case 0x0fe9: /* psubsw */
7475 case 0x0fea: /* pminsw */
7476 case 0x0feb: /* por */
7477 case 0x0fec: /* paddsb */
7478 case 0x0fed: /* paddsw */
7479 case 0x0fee: /* pmaxsw */
7480 case 0x0fef: /* pxor */
7481 case 0x0ff1: /* psllw */
7482 case 0x0ff2: /* pslld */
7483 case 0x0ff3: /* psllq */
7484 case 0x0ff4: /* pmuludq */
7485 case 0x0ff5: /* pmaddwd */
7486 case 0x0ff6: /* psadbw */
7487 case 0x0ff8: /* psubb */
7488 case 0x0ff9: /* psubw */
7489 case 0x0ffa: /* psubd */
7490 case 0x0ffb: /* psubq */
7491 case 0x0ffc: /* paddb */
7492 case 0x0ffd: /* paddw */
7493 case 0x0ffe: /* paddd */
7494 if (i386_record_modrm (&ir))
7495 return -1;
7496 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7497 goto no_support;
7498 record_full_arch_list_add_reg (ir.regcache,
7499 I387_MM0_REGNUM (tdep) + ir.reg);
7500 break;
7501
7502 case 0x0f71: /* psllw */
7503 case 0x0f72: /* pslld */
7504 case 0x0f73: /* psllq */
7505 if (i386_record_modrm (&ir))
7506 return -1;
7507 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
7508 goto no_support;
7509 record_full_arch_list_add_reg (ir.regcache,
7510 I387_MM0_REGNUM (tdep) + ir.rm);
7511 break;
7512
7513 case 0x660f71: /* psllw */
7514 case 0x660f72: /* pslld */
7515 case 0x660f73: /* psllq */
7516 if (i386_record_modrm (&ir))
7517 return -1;
7518 ir.rm |= ir.rex_b;
7519 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.rm))
7520 goto no_support;
7521 record_full_arch_list_add_reg (ir.regcache,
7522 I387_XMM0_REGNUM (tdep) + ir.rm);
7523 break;
7524
7525 case 0x0f7e: /* movd */
7526 case 0x660f7e: /* movd */
7527 if (i386_record_modrm (&ir))
7528 return -1;
7529 if (ir.mod == 3)
7530 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7531 else
7532 {
7533 if (ir.dflag == 2)
7534 ir.ot = OT_QUAD;
7535 else
7536 ir.ot = OT_LONG;
7537 if (i386_record_lea_modrm (&ir))
7538 return -1;
7539 }
7540 break;
7541
7542 case 0x0f7f: /* movq */
7543 if (i386_record_modrm (&ir))
7544 return -1;
7545 if (ir.mod == 3)
7546 {
7547 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
7548 goto no_support;
7549 record_full_arch_list_add_reg (ir.regcache,
7550 I387_MM0_REGNUM (tdep) + ir.rm);
7551 }
7552 else
7553 {
7554 ir.ot = OT_QUAD;
7555 if (i386_record_lea_modrm (&ir))
7556 return -1;
7557 }
7558 break;
7559
7560 case 0xf30fb8: /* popcnt */
7561 if (i386_record_modrm (&ir))
7562 return -1;
7563 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
7564 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7565 break;
7566
7567 case 0x660fd6: /* movq */
7568 if (i386_record_modrm (&ir))
7569 return -1;
7570 if (ir.mod == 3)
7571 {
7572 ir.rm |= ir.rex_b;
7573 if (!i386_xmm_regnum_p (gdbarch,
7574 I387_XMM0_REGNUM (tdep) + ir.rm))
7575 goto no_support;
7576 record_full_arch_list_add_reg (ir.regcache,
7577 I387_XMM0_REGNUM (tdep) + ir.rm);
7578 }
7579 else
7580 {
7581 ir.ot = OT_QUAD;
7582 if (i386_record_lea_modrm (&ir))
7583 return -1;
7584 }
7585 break;
7586
7587 case 0x660f3817: /* ptest */
7588 case 0x0f2e: /* ucomiss */
7589 case 0x660f2e: /* ucomisd */
7590 case 0x0f2f: /* comiss */
7591 case 0x660f2f: /* comisd */
7592 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7593 break;
7594
7595 case 0x0ff7: /* maskmovq */
7596 regcache_raw_read_unsigned (ir.regcache,
7597 ir.regmap[X86_RECORD_REDI_REGNUM],
7598 &addr);
7599 if (record_full_arch_list_add_mem (addr, 64))
7600 return -1;
7601 break;
7602
7603 case 0x660ff7: /* maskmovdqu */
7604 regcache_raw_read_unsigned (ir.regcache,
7605 ir.regmap[X86_RECORD_REDI_REGNUM],
7606 &addr);
7607 if (record_full_arch_list_add_mem (addr, 128))
7608 return -1;
7609 break;
7610
7611 default:
7612 goto no_support;
7613 break;
7614 }
7615 break;
7616
7617 default:
7618 goto no_support;
7619 break;
7620 }
7621
7622 /* In the future, maybe still need to deal with need_dasm. */
7623 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REIP_REGNUM);
7624 if (record_full_arch_list_add_end ())
7625 return -1;
7626
7627 return 0;
7628
7629 no_support:
7630 printf_unfiltered (_("Process record does not support instruction 0x%02x "
7631 "at address %s.\n"),
7632 (unsigned int) (opcode),
7633 paddress (gdbarch, ir.orig_addr));
7634 return -1;
7635 }
7636
7637 static const int i386_record_regmap[] =
7638 {
7639 I386_EAX_REGNUM, I386_ECX_REGNUM, I386_EDX_REGNUM, I386_EBX_REGNUM,
7640 I386_ESP_REGNUM, I386_EBP_REGNUM, I386_ESI_REGNUM, I386_EDI_REGNUM,
7641 0, 0, 0, 0, 0, 0, 0, 0,
7642 I386_EIP_REGNUM, I386_EFLAGS_REGNUM, I386_CS_REGNUM, I386_SS_REGNUM,
7643 I386_DS_REGNUM, I386_ES_REGNUM, I386_FS_REGNUM, I386_GS_REGNUM
7644 };
7645
7646 /* Check that the given address appears suitable for a fast
7647 tracepoint, which on x86-64 means that we need an instruction of at
7648 least 5 bytes, so that we can overwrite it with a 4-byte-offset
7649 jump and not have to worry about program jumps to an address in the
7650 middle of the tracepoint jump. On x86, it may be possible to use
7651 4-byte jumps with a 2-byte offset to a trampoline located in the
7652 bottom 64 KiB of memory. Returns 1 if OK, and writes a size
7653 of instruction to replace, and 0 if not, plus an explanatory
7654 string. */
7655
7656 static int
7657 i386_fast_tracepoint_valid_at (struct gdbarch *gdbarch,
7658 CORE_ADDR addr, int *isize, char **msg)
7659 {
7660 int len, jumplen;
7661 static struct ui_file *gdb_null = NULL;
7662
7663 /* Ask the target for the minimum instruction length supported. */
7664 jumplen = target_get_min_fast_tracepoint_insn_len ();
7665
7666 if (jumplen < 0)
7667 {
7668 /* If the target does not support the get_min_fast_tracepoint_insn_len
7669 operation, assume that fast tracepoints will always be implemented
7670 using 4-byte relative jumps on both x86 and x86-64. */
7671 jumplen = 5;
7672 }
7673 else if (jumplen == 0)
7674 {
7675 /* If the target does support get_min_fast_tracepoint_insn_len but
7676 returns zero, then the IPA has not loaded yet. In this case,
7677 we optimistically assume that truncated 2-byte relative jumps
7678 will be available on x86, and compensate later if this assumption
7679 turns out to be incorrect. On x86-64 architectures, 4-byte relative
7680 jumps will always be used. */
7681 jumplen = (register_size (gdbarch, 0) == 8) ? 5 : 4;
7682 }
7683
7684 /* Dummy file descriptor for the disassembler. */
7685 if (!gdb_null)
7686 gdb_null = ui_file_new ();
7687
7688 /* Check for fit. */
7689 len = gdb_print_insn (gdbarch, addr, gdb_null, NULL);
7690 if (isize)
7691 *isize = len;
7692
7693 if (len < jumplen)
7694 {
7695 /* Return a bit of target-specific detail to add to the caller's
7696 generic failure message. */
7697 if (msg)
7698 *msg = xstrprintf (_("; instruction is only %d bytes long, "
7699 "need at least %d bytes for the jump"),
7700 len, jumplen);
7701 return 0;
7702 }
7703 else
7704 {
7705 if (msg)
7706 *msg = NULL;
7707 return 1;
7708 }
7709 }
7710
7711 static int
7712 i386_validate_tdesc_p (struct gdbarch_tdep *tdep,
7713 struct tdesc_arch_data *tdesc_data)
7714 {
7715 const struct target_desc *tdesc = tdep->tdesc;
7716 const struct tdesc_feature *feature_core;
7717 const struct tdesc_feature *feature_sse, *feature_avx, *feature_mpx;
7718 int i, num_regs, valid_p;
7719
7720 if (! tdesc_has_registers (tdesc))
7721 return 0;
7722
7723 /* Get core registers. */
7724 feature_core = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.core");
7725 if (feature_core == NULL)
7726 return 0;
7727
7728 /* Get SSE registers. */
7729 feature_sse = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.sse");
7730
7731 /* Try AVX registers. */
7732 feature_avx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx");
7733
7734 /* Try MPX registers. */
7735 feature_mpx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx");
7736
7737 valid_p = 1;
7738
7739 /* The XCR0 bits. */
7740 if (feature_avx)
7741 {
7742 /* AVX register description requires SSE register description. */
7743 if (!feature_sse)
7744 return 0;
7745
7746 tdep->xcr0 = I386_XSTATE_AVX_MASK;
7747
7748 /* It may have been set by OSABI initialization function. */
7749 if (tdep->num_ymm_regs == 0)
7750 {
7751 tdep->ymmh_register_names = i386_ymmh_names;
7752 tdep->num_ymm_regs = 8;
7753 tdep->ymm0h_regnum = I386_YMM0H_REGNUM;
7754 }
7755
7756 for (i = 0; i < tdep->num_ymm_regs; i++)
7757 valid_p &= tdesc_numbered_register (feature_avx, tdesc_data,
7758 tdep->ymm0h_regnum + i,
7759 tdep->ymmh_register_names[i]);
7760 }
7761 else if (feature_sse)
7762 tdep->xcr0 = I386_XSTATE_SSE_MASK;
7763 else
7764 {
7765 tdep->xcr0 = I386_XSTATE_X87_MASK;
7766 tdep->num_xmm_regs = 0;
7767 }
7768
7769 num_regs = tdep->num_core_regs;
7770 for (i = 0; i < num_regs; i++)
7771 valid_p &= tdesc_numbered_register (feature_core, tdesc_data, i,
7772 tdep->register_names[i]);
7773
7774 if (feature_sse)
7775 {
7776 /* Need to include %mxcsr, so add one. */
7777 num_regs += tdep->num_xmm_regs + 1;
7778 for (; i < num_regs; i++)
7779 valid_p &= tdesc_numbered_register (feature_sse, tdesc_data, i,
7780 tdep->register_names[i]);
7781 }
7782
7783 if (feature_mpx)
7784 {
7785 tdep->xcr0 = I386_XSTATE_MPX_MASK;
7786
7787 if (tdep->bnd0r_regnum < 0)
7788 {
7789 tdep->mpx_register_names = i386_mpx_names;
7790 tdep->bnd0r_regnum = I386_BND0R_REGNUM;
7791 tdep->bndcfgu_regnum = I386_BNDCFGU_REGNUM;
7792 }
7793
7794 for (i = 0; i < I387_NUM_MPX_REGS; i++)
7795 valid_p &= tdesc_numbered_register (feature_mpx, tdesc_data,
7796 I387_BND0R_REGNUM (tdep) + i,
7797 tdep->mpx_register_names[i]);
7798 }
7799
7800 return valid_p;
7801 }
7802
7803 \f
7804 static struct gdbarch *
7805 i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
7806 {
7807 struct gdbarch_tdep *tdep;
7808 struct gdbarch *gdbarch;
7809 struct tdesc_arch_data *tdesc_data;
7810 const struct target_desc *tdesc;
7811 int mm0_regnum;
7812 int ymm0_regnum;
7813 int bnd0_regnum;
7814 int num_bnd_cooked;
7815
7816 /* If there is already a candidate, use it. */
7817 arches = gdbarch_list_lookup_by_info (arches, &info);
7818 if (arches != NULL)
7819 return arches->gdbarch;
7820
7821 /* Allocate space for the new architecture. */
7822 tdep = XCALLOC (1, struct gdbarch_tdep);
7823 gdbarch = gdbarch_alloc (&info, tdep);
7824
7825 /* General-purpose registers. */
7826 tdep->gregset = NULL;
7827 tdep->gregset_reg_offset = NULL;
7828 tdep->gregset_num_regs = I386_NUM_GREGS;
7829 tdep->sizeof_gregset = 0;
7830
7831 /* Floating-point registers. */
7832 tdep->fpregset = NULL;
7833 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
7834
7835 tdep->xstateregset = NULL;
7836
7837 /* The default settings include the FPU registers, the MMX registers
7838 and the SSE registers. This can be overridden for a specific ABI
7839 by adjusting the members `st0_regnum', `mm0_regnum' and
7840 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
7841 will show up in the output of "info all-registers". */
7842
7843 tdep->st0_regnum = I386_ST0_REGNUM;
7844
7845 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
7846 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
7847
7848 tdep->jb_pc_offset = -1;
7849 tdep->struct_return = pcc_struct_return;
7850 tdep->sigtramp_start = 0;
7851 tdep->sigtramp_end = 0;
7852 tdep->sigtramp_p = i386_sigtramp_p;
7853 tdep->sigcontext_addr = NULL;
7854 tdep->sc_reg_offset = NULL;
7855 tdep->sc_pc_offset = -1;
7856 tdep->sc_sp_offset = -1;
7857
7858 tdep->xsave_xcr0_offset = -1;
7859
7860 tdep->record_regmap = i386_record_regmap;
7861
7862 set_gdbarch_long_long_align_bit (gdbarch, 32);
7863
7864 /* The format used for `long double' on almost all i386 targets is
7865 the i387 extended floating-point format. In fact, of all targets
7866 in the GCC 2.95 tree, only OSF/1 does it different, and insists
7867 on having a `long double' that's not `long' at all. */
7868 set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext);
7869
7870 /* Although the i387 extended floating-point has only 80 significant
7871 bits, a `long double' actually takes up 96, probably to enforce
7872 alignment. */
7873 set_gdbarch_long_double_bit (gdbarch, 96);
7874
7875 /* Register numbers of various important registers. */
7876 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
7877 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
7878 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
7879 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
7880
7881 /* NOTE: kettenis/20040418: GCC does have two possible register
7882 numbering schemes on the i386: dbx and SVR4. These schemes
7883 differ in how they number %ebp, %esp, %eflags, and the
7884 floating-point registers, and are implemented by the arrays
7885 dbx_register_map[] and svr4_dbx_register_map in
7886 gcc/config/i386.c. GCC also defines a third numbering scheme in
7887 gcc/config/i386.c, which it designates as the "default" register
7888 map used in 64bit mode. This last register numbering scheme is
7889 implemented in dbx64_register_map, and is used for AMD64; see
7890 amd64-tdep.c.
7891
7892 Currently, each GCC i386 target always uses the same register
7893 numbering scheme across all its supported debugging formats
7894 i.e. SDB (COFF), stabs and DWARF 2. This is because
7895 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
7896 DBX_REGISTER_NUMBER macro which is defined by each target's
7897 respective config header in a manner independent of the requested
7898 output debugging format.
7899
7900 This does not match the arrangement below, which presumes that
7901 the SDB and stabs numbering schemes differ from the DWARF and
7902 DWARF 2 ones. The reason for this arrangement is that it is
7903 likely to get the numbering scheme for the target's
7904 default/native debug format right. For targets where GCC is the
7905 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
7906 targets where the native toolchain uses a different numbering
7907 scheme for a particular debug format (stabs-in-ELF on Solaris)
7908 the defaults below will have to be overridden, like
7909 i386_elf_init_abi() does. */
7910
7911 /* Use the dbx register numbering scheme for stabs and COFF. */
7912 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
7913 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
7914
7915 /* Use the SVR4 register numbering scheme for DWARF 2. */
7916 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
7917
7918 /* We don't set gdbarch_stab_reg_to_regnum, since ECOFF doesn't seem to
7919 be in use on any of the supported i386 targets. */
7920
7921 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
7922
7923 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
7924
7925 /* Call dummy code. */
7926 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
7927 set_gdbarch_push_dummy_code (gdbarch, i386_push_dummy_code);
7928 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
7929 set_gdbarch_frame_align (gdbarch, i386_frame_align);
7930
7931 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
7932 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
7933 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
7934
7935 set_gdbarch_return_value (gdbarch, i386_return_value);
7936
7937 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
7938
7939 /* Stack grows downward. */
7940 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
7941
7942 set_gdbarch_breakpoint_from_pc (gdbarch, i386_breakpoint_from_pc);
7943 set_gdbarch_decr_pc_after_break (gdbarch, 1);
7944 set_gdbarch_max_insn_length (gdbarch, I386_MAX_INSN_LEN);
7945
7946 set_gdbarch_frame_args_skip (gdbarch, 8);
7947
7948 set_gdbarch_print_insn (gdbarch, i386_print_insn);
7949
7950 set_gdbarch_dummy_id (gdbarch, i386_dummy_id);
7951
7952 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
7953
7954 /* Add the i386 register groups. */
7955 i386_add_reggroups (gdbarch);
7956 tdep->register_reggroup_p = i386_register_reggroup_p;
7957
7958 /* Helper for function argument information. */
7959 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
7960
7961 /* Hook the function epilogue frame unwinder. This unwinder is
7962 appended to the list first, so that it supercedes the DWARF
7963 unwinder in function epilogues (where the DWARF unwinder
7964 currently fails). */
7965 frame_unwind_append_unwinder (gdbarch, &i386_epilogue_frame_unwind);
7966
7967 /* Hook in the DWARF CFI frame unwinder. This unwinder is appended
7968 to the list before the prologue-based unwinders, so that DWARF
7969 CFI info will be used if it is available. */
7970 dwarf2_append_unwinders (gdbarch);
7971
7972 frame_base_set_default (gdbarch, &i386_frame_base);
7973
7974 /* Pseudo registers may be changed by amd64_init_abi. */
7975 set_gdbarch_pseudo_register_read_value (gdbarch,
7976 i386_pseudo_register_read_value);
7977 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
7978
7979 set_tdesc_pseudo_register_type (gdbarch, i386_pseudo_register_type);
7980 set_tdesc_pseudo_register_name (gdbarch, i386_pseudo_register_name);
7981
7982 /* Override the normal target description method to make the AVX
7983 upper halves anonymous. */
7984 set_gdbarch_register_name (gdbarch, i386_register_name);
7985
7986 /* Even though the default ABI only includes general-purpose registers,
7987 floating-point registers and the SSE registers, we have to leave a
7988 gap for the upper AVX registers and the MPX registers. */
7989 set_gdbarch_num_regs (gdbarch, I386_MPX_NUM_REGS);
7990
7991 /* Get the x86 target description from INFO. */
7992 tdesc = info.target_desc;
7993 if (! tdesc_has_registers (tdesc))
7994 tdesc = tdesc_i386;
7995 tdep->tdesc = tdesc;
7996
7997 tdep->num_core_regs = I386_NUM_GREGS + I387_NUM_REGS;
7998 tdep->register_names = i386_register_names;
7999
8000 /* No upper YMM registers. */
8001 tdep->ymmh_register_names = NULL;
8002 tdep->ymm0h_regnum = -1;
8003
8004 tdep->num_byte_regs = 8;
8005 tdep->num_word_regs = 8;
8006 tdep->num_dword_regs = 0;
8007 tdep->num_mmx_regs = 8;
8008 tdep->num_ymm_regs = 0;
8009
8010 /* No MPX registers. */
8011 tdep->bnd0r_regnum = -1;
8012 tdep->bndcfgu_regnum = -1;
8013
8014 tdesc_data = tdesc_data_alloc ();
8015
8016 set_gdbarch_relocate_instruction (gdbarch, i386_relocate_instruction);
8017
8018 set_gdbarch_gen_return_address (gdbarch, i386_gen_return_address);
8019
8020 /* Hook in ABI-specific overrides, if they have been registered. */
8021 info.tdep_info = (void *) tdesc_data;
8022 gdbarch_init_osabi (info, gdbarch);
8023
8024 if (!i386_validate_tdesc_p (tdep, tdesc_data))
8025 {
8026 tdesc_data_cleanup (tdesc_data);
8027 xfree (tdep);
8028 gdbarch_free (gdbarch);
8029 return NULL;
8030 }
8031
8032 num_bnd_cooked = (tdep->bnd0r_regnum > 0 ? I387_NUM_BND_REGS : 0);
8033
8034 /* Wire in pseudo registers. Number of pseudo registers may be
8035 changed. */
8036 set_gdbarch_num_pseudo_regs (gdbarch, (tdep->num_byte_regs
8037 + tdep->num_word_regs
8038 + tdep->num_dword_regs
8039 + tdep->num_mmx_regs
8040 + tdep->num_ymm_regs
8041 + num_bnd_cooked));
8042
8043 /* Target description may be changed. */
8044 tdesc = tdep->tdesc;
8045
8046 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
8047
8048 /* Override gdbarch_register_reggroup_p set in tdesc_use_registers. */
8049 set_gdbarch_register_reggroup_p (gdbarch, tdep->register_reggroup_p);
8050
8051 /* Make %al the first pseudo-register. */
8052 tdep->al_regnum = gdbarch_num_regs (gdbarch);
8053 tdep->ax_regnum = tdep->al_regnum + tdep->num_byte_regs;
8054
8055 ymm0_regnum = tdep->ax_regnum + tdep->num_word_regs;
8056 if (tdep->num_dword_regs)
8057 {
8058 /* Support dword pseudo-register if it hasn't been disabled. */
8059 tdep->eax_regnum = ymm0_regnum;
8060 ymm0_regnum += tdep->num_dword_regs;
8061 }
8062 else
8063 tdep->eax_regnum = -1;
8064
8065 mm0_regnum = ymm0_regnum;
8066 if (tdep->num_ymm_regs)
8067 {
8068 /* Support YMM pseudo-register if it is available. */
8069 tdep->ymm0_regnum = ymm0_regnum;
8070 mm0_regnum += tdep->num_ymm_regs;
8071 }
8072 else
8073 tdep->ymm0_regnum = -1;
8074
8075 bnd0_regnum = mm0_regnum;
8076 if (tdep->num_mmx_regs != 0)
8077 {
8078 /* Support MMX pseudo-register if MMX hasn't been disabled. */
8079 tdep->mm0_regnum = mm0_regnum;
8080 bnd0_regnum += tdep->num_mmx_regs;
8081 }
8082 else
8083 tdep->mm0_regnum = -1;
8084
8085 if (tdep->bnd0r_regnum > 0)
8086 tdep->bnd0_regnum = bnd0_regnum;
8087 else
8088 tdep-> bnd0_regnum = -1;
8089
8090 /* Hook in the legacy prologue-based unwinders last (fallback). */
8091 frame_unwind_append_unwinder (gdbarch, &i386_stack_tramp_frame_unwind);
8092 frame_unwind_append_unwinder (gdbarch, &i386_sigtramp_frame_unwind);
8093 frame_unwind_append_unwinder (gdbarch, &i386_frame_unwind);
8094
8095 /* If we have a register mapping, enable the generic core file
8096 support, unless it has already been enabled. */
8097 if (tdep->gregset_reg_offset
8098 && !gdbarch_regset_from_core_section_p (gdbarch))
8099 set_gdbarch_regset_from_core_section (gdbarch,
8100 i386_regset_from_core_section);
8101
8102 set_gdbarch_skip_permanent_breakpoint (gdbarch,
8103 i386_skip_permanent_breakpoint);
8104
8105 set_gdbarch_fast_tracepoint_valid_at (gdbarch,
8106 i386_fast_tracepoint_valid_at);
8107
8108 return gdbarch;
8109 }
8110
8111 static enum gdb_osabi
8112 i386_coff_osabi_sniffer (bfd *abfd)
8113 {
8114 if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
8115 || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
8116 return GDB_OSABI_GO32;
8117
8118 return GDB_OSABI_UNKNOWN;
8119 }
8120 \f
8121
8122 /* Provide a prototype to silence -Wmissing-prototypes. */
8123 void _initialize_i386_tdep (void);
8124
8125 void
8126 _initialize_i386_tdep (void)
8127 {
8128 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
8129
8130 /* Add the variable that controls the disassembly flavor. */
8131 add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
8132 &disassembly_flavor, _("\
8133 Set the disassembly flavor."), _("\
8134 Show the disassembly flavor."), _("\
8135 The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
8136 NULL,
8137 NULL, /* FIXME: i18n: */
8138 &setlist, &showlist);
8139
8140 /* Add the variable that controls the convention for returning
8141 structs. */
8142 add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
8143 &struct_convention, _("\
8144 Set the convention for returning small structs."), _("\
8145 Show the convention for returning small structs."), _("\
8146 Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
8147 is \"default\"."),
8148 NULL,
8149 NULL, /* FIXME: i18n: */
8150 &setlist, &showlist);
8151
8152 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
8153 i386_coff_osabi_sniffer);
8154
8155 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
8156 i386_svr4_init_abi);
8157 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_GO32,
8158 i386_go32_init_abi);
8159
8160 /* Initialize the i386-specific register groups. */
8161 i386_init_reggroups ();
8162
8163 /* Initialize the standard target descriptions. */
8164 initialize_tdesc_i386 ();
8165 initialize_tdesc_i386_mmx ();
8166 initialize_tdesc_i386_avx ();
8167 initialize_tdesc_i386_mpx ();
8168
8169 /* Tell remote stub that we support XML target description. */
8170 register_remote_support_xml ("i386");
8171 }
This page took 0.282079 seconds and 3 git commands to generate.