9fab6bdd99e9b2ca395e08000cfd8473276c3817
[deliverable/binutils-gdb.git] / gdb / i386-tdep.c
1 /* Intel 386 target-dependent stuff.
2
3 Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
5 2010, 2011 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "opcode/i386.h"
24 #include "arch-utils.h"
25 #include "command.h"
26 #include "dummy-frame.h"
27 #include "dwarf2-frame.h"
28 #include "doublest.h"
29 #include "frame.h"
30 #include "frame-base.h"
31 #include "frame-unwind.h"
32 #include "inferior.h"
33 #include "gdbcmd.h"
34 #include "gdbcore.h"
35 #include "gdbtypes.h"
36 #include "objfiles.h"
37 #include "osabi.h"
38 #include "regcache.h"
39 #include "reggroups.h"
40 #include "regset.h"
41 #include "symfile.h"
42 #include "symtab.h"
43 #include "target.h"
44 #include "value.h"
45 #include "dis-asm.h"
46 #include "disasm.h"
47 #include "remote.h"
48
49 #include "gdb_assert.h"
50 #include "gdb_string.h"
51
52 #include "i386-tdep.h"
53 #include "i387-tdep.h"
54 #include "i386-xstate.h"
55
56 #include "record.h"
57 #include <stdint.h>
58
59 #include "features/i386/i386.c"
60 #include "features/i386/i386-avx.c"
61 #include "features/i386/i386-mmx.c"
62
63 /* Register names. */
64
65 static const char *i386_register_names[] =
66 {
67 "eax", "ecx", "edx", "ebx",
68 "esp", "ebp", "esi", "edi",
69 "eip", "eflags", "cs", "ss",
70 "ds", "es", "fs", "gs",
71 "st0", "st1", "st2", "st3",
72 "st4", "st5", "st6", "st7",
73 "fctrl", "fstat", "ftag", "fiseg",
74 "fioff", "foseg", "fooff", "fop",
75 "xmm0", "xmm1", "xmm2", "xmm3",
76 "xmm4", "xmm5", "xmm6", "xmm7",
77 "mxcsr"
78 };
79
80 static const char *i386_ymm_names[] =
81 {
82 "ymm0", "ymm1", "ymm2", "ymm3",
83 "ymm4", "ymm5", "ymm6", "ymm7",
84 };
85
86 static const char *i386_ymmh_names[] =
87 {
88 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
89 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
90 };
91
92 /* Register names for MMX pseudo-registers. */
93
94 static const char *i386_mmx_names[] =
95 {
96 "mm0", "mm1", "mm2", "mm3",
97 "mm4", "mm5", "mm6", "mm7"
98 };
99
100 /* Register names for byte pseudo-registers. */
101
102 static const char *i386_byte_names[] =
103 {
104 "al", "cl", "dl", "bl",
105 "ah", "ch", "dh", "bh"
106 };
107
108 /* Register names for word pseudo-registers. */
109
110 static const char *i386_word_names[] =
111 {
112 "ax", "cx", "dx", "bx",
113 "", "bp", "si", "di"
114 };
115
116 /* MMX register? */
117
118 static int
119 i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
120 {
121 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
122 int mm0_regnum = tdep->mm0_regnum;
123
124 if (mm0_regnum < 0)
125 return 0;
126
127 regnum -= mm0_regnum;
128 return regnum >= 0 && regnum < tdep->num_mmx_regs;
129 }
130
131 /* Byte register? */
132
133 int
134 i386_byte_regnum_p (struct gdbarch *gdbarch, int regnum)
135 {
136 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
137
138 regnum -= tdep->al_regnum;
139 return regnum >= 0 && regnum < tdep->num_byte_regs;
140 }
141
142 /* Word register? */
143
144 int
145 i386_word_regnum_p (struct gdbarch *gdbarch, int regnum)
146 {
147 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
148
149 regnum -= tdep->ax_regnum;
150 return regnum >= 0 && regnum < tdep->num_word_regs;
151 }
152
153 /* Dword register? */
154
155 int
156 i386_dword_regnum_p (struct gdbarch *gdbarch, int regnum)
157 {
158 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
159 int eax_regnum = tdep->eax_regnum;
160
161 if (eax_regnum < 0)
162 return 0;
163
164 regnum -= eax_regnum;
165 return regnum >= 0 && regnum < tdep->num_dword_regs;
166 }
167
168 static int
169 i386_ymmh_regnum_p (struct gdbarch *gdbarch, int regnum)
170 {
171 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
172 int ymm0h_regnum = tdep->ymm0h_regnum;
173
174 if (ymm0h_regnum < 0)
175 return 0;
176
177 regnum -= ymm0h_regnum;
178 return regnum >= 0 && regnum < tdep->num_ymm_regs;
179 }
180
181 /* AVX register? */
182
183 int
184 i386_ymm_regnum_p (struct gdbarch *gdbarch, int regnum)
185 {
186 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
187 int ymm0_regnum = tdep->ymm0_regnum;
188
189 if (ymm0_regnum < 0)
190 return 0;
191
192 regnum -= ymm0_regnum;
193 return regnum >= 0 && regnum < tdep->num_ymm_regs;
194 }
195
196 /* SSE register? */
197
198 int
199 i386_xmm_regnum_p (struct gdbarch *gdbarch, int regnum)
200 {
201 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
202 int num_xmm_regs = I387_NUM_XMM_REGS (tdep);
203
204 if (num_xmm_regs == 0)
205 return 0;
206
207 regnum -= I387_XMM0_REGNUM (tdep);
208 return regnum >= 0 && regnum < num_xmm_regs;
209 }
210
211 static int
212 i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
213 {
214 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
215
216 if (I387_NUM_XMM_REGS (tdep) == 0)
217 return 0;
218
219 return (regnum == I387_MXCSR_REGNUM (tdep));
220 }
221
222 /* FP register? */
223
224 int
225 i386_fp_regnum_p (struct gdbarch *gdbarch, int regnum)
226 {
227 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
228
229 if (I387_ST0_REGNUM (tdep) < 0)
230 return 0;
231
232 return (I387_ST0_REGNUM (tdep) <= regnum
233 && regnum < I387_FCTRL_REGNUM (tdep));
234 }
235
236 int
237 i386_fpc_regnum_p (struct gdbarch *gdbarch, int regnum)
238 {
239 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
240
241 if (I387_ST0_REGNUM (tdep) < 0)
242 return 0;
243
244 return (I387_FCTRL_REGNUM (tdep) <= regnum
245 && regnum < I387_XMM0_REGNUM (tdep));
246 }
247
248 /* Return the name of register REGNUM, or the empty string if it is
249 an anonymous register. */
250
251 static const char *
252 i386_register_name (struct gdbarch *gdbarch, int regnum)
253 {
254 /* Hide the upper YMM registers. */
255 if (i386_ymmh_regnum_p (gdbarch, regnum))
256 return "";
257
258 return tdesc_register_name (gdbarch, regnum);
259 }
260
261 /* Return the name of register REGNUM. */
262
263 const char *
264 i386_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
265 {
266 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
267 if (i386_mmx_regnum_p (gdbarch, regnum))
268 return i386_mmx_names[regnum - I387_MM0_REGNUM (tdep)];
269 else if (i386_ymm_regnum_p (gdbarch, regnum))
270 return i386_ymm_names[regnum - tdep->ymm0_regnum];
271 else if (i386_byte_regnum_p (gdbarch, regnum))
272 return i386_byte_names[regnum - tdep->al_regnum];
273 else if (i386_word_regnum_p (gdbarch, regnum))
274 return i386_word_names[regnum - tdep->ax_regnum];
275
276 internal_error (__FILE__, __LINE__, _("invalid regnum"));
277 }
278
279 /* Convert a dbx register number REG to the appropriate register
280 number used by GDB. */
281
282 static int
283 i386_dbx_reg_to_regnum (struct gdbarch *gdbarch, int reg)
284 {
285 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
286
287 /* This implements what GCC calls the "default" register map
288 (dbx_register_map[]). */
289
290 if (reg >= 0 && reg <= 7)
291 {
292 /* General-purpose registers. The debug info calls %ebp
293 register 4, and %esp register 5. */
294 if (reg == 4)
295 return 5;
296 else if (reg == 5)
297 return 4;
298 else return reg;
299 }
300 else if (reg >= 12 && reg <= 19)
301 {
302 /* Floating-point registers. */
303 return reg - 12 + I387_ST0_REGNUM (tdep);
304 }
305 else if (reg >= 21 && reg <= 28)
306 {
307 /* SSE registers. */
308 int ymm0_regnum = tdep->ymm0_regnum;
309
310 if (ymm0_regnum >= 0
311 && i386_xmm_regnum_p (gdbarch, reg))
312 return reg - 21 + ymm0_regnum;
313 else
314 return reg - 21 + I387_XMM0_REGNUM (tdep);
315 }
316 else if (reg >= 29 && reg <= 36)
317 {
318 /* MMX registers. */
319 return reg - 29 + I387_MM0_REGNUM (tdep);
320 }
321
322 /* This will hopefully provoke a warning. */
323 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
324 }
325
326 /* Convert SVR4 register number REG to the appropriate register number
327 used by GDB. */
328
329 static int
330 i386_svr4_reg_to_regnum (struct gdbarch *gdbarch, int reg)
331 {
332 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
333
334 /* This implements the GCC register map that tries to be compatible
335 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
336
337 /* The SVR4 register numbering includes %eip and %eflags, and
338 numbers the floating point registers differently. */
339 if (reg >= 0 && reg <= 9)
340 {
341 /* General-purpose registers. */
342 return reg;
343 }
344 else if (reg >= 11 && reg <= 18)
345 {
346 /* Floating-point registers. */
347 return reg - 11 + I387_ST0_REGNUM (tdep);
348 }
349 else if (reg >= 21 && reg <= 36)
350 {
351 /* The SSE and MMX registers have the same numbers as with dbx. */
352 return i386_dbx_reg_to_regnum (gdbarch, reg);
353 }
354
355 switch (reg)
356 {
357 case 37: return I387_FCTRL_REGNUM (tdep);
358 case 38: return I387_FSTAT_REGNUM (tdep);
359 case 39: return I387_MXCSR_REGNUM (tdep);
360 case 40: return I386_ES_REGNUM;
361 case 41: return I386_CS_REGNUM;
362 case 42: return I386_SS_REGNUM;
363 case 43: return I386_DS_REGNUM;
364 case 44: return I386_FS_REGNUM;
365 case 45: return I386_GS_REGNUM;
366 }
367
368 /* This will hopefully provoke a warning. */
369 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
370 }
371
372 \f
373
374 /* This is the variable that is set with "set disassembly-flavor", and
375 its legitimate values. */
376 static const char att_flavor[] = "att";
377 static const char intel_flavor[] = "intel";
378 static const char *valid_flavors[] =
379 {
380 att_flavor,
381 intel_flavor,
382 NULL
383 };
384 static const char *disassembly_flavor = att_flavor;
385 \f
386
387 /* Use the program counter to determine the contents and size of a
388 breakpoint instruction. Return a pointer to a string of bytes that
389 encode a breakpoint instruction, store the length of the string in
390 *LEN and optionally adjust *PC to point to the correct memory
391 location for inserting the breakpoint.
392
393 On the i386 we have a single breakpoint that fits in a single byte
394 and can be inserted anywhere.
395
396 This function is 64-bit safe. */
397
398 static const gdb_byte *
399 i386_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
400 {
401 static gdb_byte break_insn[] = { 0xcc }; /* int 3 */
402
403 *len = sizeof (break_insn);
404 return break_insn;
405 }
406 \f
407 /* Displaced instruction handling. */
408
409 /* Skip the legacy instruction prefixes in INSN.
410 Not all prefixes are valid for any particular insn
411 but we needn't care, the insn will fault if it's invalid.
412 The result is a pointer to the first opcode byte,
413 or NULL if we run off the end of the buffer. */
414
415 static gdb_byte *
416 i386_skip_prefixes (gdb_byte *insn, size_t max_len)
417 {
418 gdb_byte *end = insn + max_len;
419
420 while (insn < end)
421 {
422 switch (*insn)
423 {
424 case DATA_PREFIX_OPCODE:
425 case ADDR_PREFIX_OPCODE:
426 case CS_PREFIX_OPCODE:
427 case DS_PREFIX_OPCODE:
428 case ES_PREFIX_OPCODE:
429 case FS_PREFIX_OPCODE:
430 case GS_PREFIX_OPCODE:
431 case SS_PREFIX_OPCODE:
432 case LOCK_PREFIX_OPCODE:
433 case REPE_PREFIX_OPCODE:
434 case REPNE_PREFIX_OPCODE:
435 ++insn;
436 continue;
437 default:
438 return insn;
439 }
440 }
441
442 return NULL;
443 }
444
445 static int
446 i386_absolute_jmp_p (const gdb_byte *insn)
447 {
448 /* jmp far (absolute address in operand). */
449 if (insn[0] == 0xea)
450 return 1;
451
452 if (insn[0] == 0xff)
453 {
454 /* jump near, absolute indirect (/4). */
455 if ((insn[1] & 0x38) == 0x20)
456 return 1;
457
458 /* jump far, absolute indirect (/5). */
459 if ((insn[1] & 0x38) == 0x28)
460 return 1;
461 }
462
463 return 0;
464 }
465
466 static int
467 i386_absolute_call_p (const gdb_byte *insn)
468 {
469 /* call far, absolute. */
470 if (insn[0] == 0x9a)
471 return 1;
472
473 if (insn[0] == 0xff)
474 {
475 /* Call near, absolute indirect (/2). */
476 if ((insn[1] & 0x38) == 0x10)
477 return 1;
478
479 /* Call far, absolute indirect (/3). */
480 if ((insn[1] & 0x38) == 0x18)
481 return 1;
482 }
483
484 return 0;
485 }
486
487 static int
488 i386_ret_p (const gdb_byte *insn)
489 {
490 switch (insn[0])
491 {
492 case 0xc2: /* ret near, pop N bytes. */
493 case 0xc3: /* ret near */
494 case 0xca: /* ret far, pop N bytes. */
495 case 0xcb: /* ret far */
496 case 0xcf: /* iret */
497 return 1;
498
499 default:
500 return 0;
501 }
502 }
503
504 static int
505 i386_call_p (const gdb_byte *insn)
506 {
507 if (i386_absolute_call_p (insn))
508 return 1;
509
510 /* call near, relative. */
511 if (insn[0] == 0xe8)
512 return 1;
513
514 return 0;
515 }
516
517 /* Return non-zero if INSN is a system call, and set *LENGTHP to its
518 length in bytes. Otherwise, return zero. */
519
520 static int
521 i386_syscall_p (const gdb_byte *insn, int *lengthp)
522 {
523 if (insn[0] == 0xcd)
524 {
525 *lengthp = 2;
526 return 1;
527 }
528
529 return 0;
530 }
531
532 /* Some kernels may run one past a syscall insn, so we have to cope.
533 Otherwise this is just simple_displaced_step_copy_insn. */
534
535 struct displaced_step_closure *
536 i386_displaced_step_copy_insn (struct gdbarch *gdbarch,
537 CORE_ADDR from, CORE_ADDR to,
538 struct regcache *regs)
539 {
540 size_t len = gdbarch_max_insn_length (gdbarch);
541 gdb_byte *buf = xmalloc (len);
542
543 read_memory (from, buf, len);
544
545 /* GDB may get control back after the insn after the syscall.
546 Presumably this is a kernel bug.
547 If this is a syscall, make sure there's a nop afterwards. */
548 {
549 int syscall_length;
550 gdb_byte *insn;
551
552 insn = i386_skip_prefixes (buf, len);
553 if (insn != NULL && i386_syscall_p (insn, &syscall_length))
554 insn[syscall_length] = NOP_OPCODE;
555 }
556
557 write_memory (to, buf, len);
558
559 if (debug_displaced)
560 {
561 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
562 paddress (gdbarch, from), paddress (gdbarch, to));
563 displaced_step_dump_bytes (gdb_stdlog, buf, len);
564 }
565
566 return (struct displaced_step_closure *) buf;
567 }
568
569 /* Fix up the state of registers and memory after having single-stepped
570 a displaced instruction. */
571
572 void
573 i386_displaced_step_fixup (struct gdbarch *gdbarch,
574 struct displaced_step_closure *closure,
575 CORE_ADDR from, CORE_ADDR to,
576 struct regcache *regs)
577 {
578 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
579
580 /* The offset we applied to the instruction's address.
581 This could well be negative (when viewed as a signed 32-bit
582 value), but ULONGEST won't reflect that, so take care when
583 applying it. */
584 ULONGEST insn_offset = to - from;
585
586 /* Since we use simple_displaced_step_copy_insn, our closure is a
587 copy of the instruction. */
588 gdb_byte *insn = (gdb_byte *) closure;
589 /* The start of the insn, needed in case we see some prefixes. */
590 gdb_byte *insn_start = insn;
591
592 if (debug_displaced)
593 fprintf_unfiltered (gdb_stdlog,
594 "displaced: fixup (%s, %s), "
595 "insn = 0x%02x 0x%02x ...\n",
596 paddress (gdbarch, from), paddress (gdbarch, to),
597 insn[0], insn[1]);
598
599 /* The list of issues to contend with here is taken from
600 resume_execution in arch/i386/kernel/kprobes.c, Linux 2.6.20.
601 Yay for Free Software! */
602
603 /* Relocate the %eip, if necessary. */
604
605 /* The instruction recognizers we use assume any leading prefixes
606 have been skipped. */
607 {
608 /* This is the size of the buffer in closure. */
609 size_t max_insn_len = gdbarch_max_insn_length (gdbarch);
610 gdb_byte *opcode = i386_skip_prefixes (insn, max_insn_len);
611 /* If there are too many prefixes, just ignore the insn.
612 It will fault when run. */
613 if (opcode != NULL)
614 insn = opcode;
615 }
616
617 /* Except in the case of absolute or indirect jump or call
618 instructions, or a return instruction, the new eip is relative to
619 the displaced instruction; make it relative. Well, signal
620 handler returns don't need relocation either, but we use the
621 value of %eip to recognize those; see below. */
622 if (! i386_absolute_jmp_p (insn)
623 && ! i386_absolute_call_p (insn)
624 && ! i386_ret_p (insn))
625 {
626 ULONGEST orig_eip;
627 int insn_len;
628
629 regcache_cooked_read_unsigned (regs, I386_EIP_REGNUM, &orig_eip);
630
631 /* A signal trampoline system call changes the %eip, resuming
632 execution of the main program after the signal handler has
633 returned. That makes them like 'return' instructions; we
634 shouldn't relocate %eip.
635
636 But most system calls don't, and we do need to relocate %eip.
637
638 Our heuristic for distinguishing these cases: if stepping
639 over the system call instruction left control directly after
640 the instruction, the we relocate --- control almost certainly
641 doesn't belong in the displaced copy. Otherwise, we assume
642 the instruction has put control where it belongs, and leave
643 it unrelocated. Goodness help us if there are PC-relative
644 system calls. */
645 if (i386_syscall_p (insn, &insn_len)
646 && orig_eip != to + (insn - insn_start) + insn_len
647 /* GDB can get control back after the insn after the syscall.
648 Presumably this is a kernel bug.
649 i386_displaced_step_copy_insn ensures its a nop,
650 we add one to the length for it. */
651 && orig_eip != to + (insn - insn_start) + insn_len + 1)
652 {
653 if (debug_displaced)
654 fprintf_unfiltered (gdb_stdlog,
655 "displaced: syscall changed %%eip; "
656 "not relocating\n");
657 }
658 else
659 {
660 ULONGEST eip = (orig_eip - insn_offset) & 0xffffffffUL;
661
662 /* If we just stepped over a breakpoint insn, we don't backup
663 the pc on purpose; this is to match behaviour without
664 stepping. */
665
666 regcache_cooked_write_unsigned (regs, I386_EIP_REGNUM, eip);
667
668 if (debug_displaced)
669 fprintf_unfiltered (gdb_stdlog,
670 "displaced: "
671 "relocated %%eip from %s to %s\n",
672 paddress (gdbarch, orig_eip),
673 paddress (gdbarch, eip));
674 }
675 }
676
677 /* If the instruction was PUSHFL, then the TF bit will be set in the
678 pushed value, and should be cleared. We'll leave this for later,
679 since GDB already messes up the TF flag when stepping over a
680 pushfl. */
681
682 /* If the instruction was a call, the return address now atop the
683 stack is the address following the copied instruction. We need
684 to make it the address following the original instruction. */
685 if (i386_call_p (insn))
686 {
687 ULONGEST esp;
688 ULONGEST retaddr;
689 const ULONGEST retaddr_len = 4;
690
691 regcache_cooked_read_unsigned (regs, I386_ESP_REGNUM, &esp);
692 retaddr = read_memory_unsigned_integer (esp, retaddr_len, byte_order);
693 retaddr = (retaddr - insn_offset) & 0xffffffffUL;
694 write_memory_unsigned_integer (esp, retaddr_len, byte_order, retaddr);
695
696 if (debug_displaced)
697 fprintf_unfiltered (gdb_stdlog,
698 "displaced: relocated return addr at %s to %s\n",
699 paddress (gdbarch, esp),
700 paddress (gdbarch, retaddr));
701 }
702 }
703
704 static void
705 append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
706 {
707 target_write_memory (*to, buf, len);
708 *to += len;
709 }
710
711 static void
712 i386_relocate_instruction (struct gdbarch *gdbarch,
713 CORE_ADDR *to, CORE_ADDR oldloc)
714 {
715 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
716 gdb_byte buf[I386_MAX_INSN_LEN];
717 int offset = 0, rel32, newrel;
718 int insn_length;
719 gdb_byte *insn = buf;
720
721 read_memory (oldloc, buf, I386_MAX_INSN_LEN);
722
723 insn_length = gdb_buffered_insn_length (gdbarch, insn,
724 I386_MAX_INSN_LEN, oldloc);
725
726 /* Get past the prefixes. */
727 insn = i386_skip_prefixes (insn, I386_MAX_INSN_LEN);
728
729 /* Adjust calls with 32-bit relative addresses as push/jump, with
730 the address pushed being the location where the original call in
731 the user program would return to. */
732 if (insn[0] == 0xe8)
733 {
734 gdb_byte push_buf[16];
735 unsigned int ret_addr;
736
737 /* Where "ret" in the original code will return to. */
738 ret_addr = oldloc + insn_length;
739 push_buf[0] = 0x68; /* pushq $... */
740 memcpy (&push_buf[1], &ret_addr, 4);
741 /* Push the push. */
742 append_insns (to, 5, push_buf);
743
744 /* Convert the relative call to a relative jump. */
745 insn[0] = 0xe9;
746
747 /* Adjust the destination offset. */
748 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
749 newrel = (oldloc - *to) + rel32;
750 store_signed_integer (insn + 1, 4, newrel, byte_order);
751
752 /* Write the adjusted jump into its displaced location. */
753 append_insns (to, 5, insn);
754 return;
755 }
756
757 /* Adjust jumps with 32-bit relative addresses. Calls are already
758 handled above. */
759 if (insn[0] == 0xe9)
760 offset = 1;
761 /* Adjust conditional jumps. */
762 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
763 offset = 2;
764
765 if (offset)
766 {
767 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
768 newrel = (oldloc - *to) + rel32;
769 store_signed_integer (insn + offset, 4, newrel, byte_order);
770 if (debug_displaced)
771 fprintf_unfiltered (gdb_stdlog,
772 "Adjusted insn rel32=0x%s at 0x%s to"
773 " rel32=0x%s at 0x%s\n",
774 hex_string (rel32), paddress (gdbarch, oldloc),
775 hex_string (newrel), paddress (gdbarch, *to));
776 }
777
778 /* Write the adjusted instructions into their displaced
779 location. */
780 append_insns (to, insn_length, buf);
781 }
782
783 \f
784 #ifdef I386_REGNO_TO_SYMMETRY
785 #error "The Sequent Symmetry is no longer supported."
786 #endif
787
788 /* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
789 and %esp "belong" to the calling function. Therefore these
790 registers should be saved if they're going to be modified. */
791
792 /* The maximum number of saved registers. This should include all
793 registers mentioned above, and %eip. */
794 #define I386_NUM_SAVED_REGS I386_NUM_GREGS
795
796 struct i386_frame_cache
797 {
798 /* Base address. */
799 CORE_ADDR base;
800 LONGEST sp_offset;
801 CORE_ADDR pc;
802
803 /* Saved registers. */
804 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
805 CORE_ADDR saved_sp;
806 int saved_sp_reg;
807 int pc_in_eax;
808
809 /* Stack space reserved for local variables. */
810 long locals;
811 };
812
813 /* Allocate and initialize a frame cache. */
814
815 static struct i386_frame_cache *
816 i386_alloc_frame_cache (void)
817 {
818 struct i386_frame_cache *cache;
819 int i;
820
821 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
822
823 /* Base address. */
824 cache->base = 0;
825 cache->sp_offset = -4;
826 cache->pc = 0;
827
828 /* Saved registers. We initialize these to -1 since zero is a valid
829 offset (that's where %ebp is supposed to be stored). */
830 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
831 cache->saved_regs[i] = -1;
832 cache->saved_sp = 0;
833 cache->saved_sp_reg = -1;
834 cache->pc_in_eax = 0;
835
836 /* Frameless until proven otherwise. */
837 cache->locals = -1;
838
839 return cache;
840 }
841
842 /* If the instruction at PC is a jump, return the address of its
843 target. Otherwise, return PC. */
844
845 static CORE_ADDR
846 i386_follow_jump (struct gdbarch *gdbarch, CORE_ADDR pc)
847 {
848 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
849 gdb_byte op;
850 long delta = 0;
851 int data16 = 0;
852
853 if (target_read_memory (pc, &op, 1))
854 return pc;
855
856 if (op == 0x66)
857 {
858 data16 = 1;
859 op = read_memory_unsigned_integer (pc + 1, 1, byte_order);
860 }
861
862 switch (op)
863 {
864 case 0xe9:
865 /* Relative jump: if data16 == 0, disp32, else disp16. */
866 if (data16)
867 {
868 delta = read_memory_integer (pc + 2, 2, byte_order);
869
870 /* Include the size of the jmp instruction (including the
871 0x66 prefix). */
872 delta += 4;
873 }
874 else
875 {
876 delta = read_memory_integer (pc + 1, 4, byte_order);
877
878 /* Include the size of the jmp instruction. */
879 delta += 5;
880 }
881 break;
882 case 0xeb:
883 /* Relative jump, disp8 (ignore data16). */
884 delta = read_memory_integer (pc + data16 + 1, 1, byte_order);
885
886 delta += data16 + 2;
887 break;
888 }
889
890 return pc + delta;
891 }
892
893 /* Check whether PC points at a prologue for a function returning a
894 structure or union. If so, it updates CACHE and returns the
895 address of the first instruction after the code sequence that
896 removes the "hidden" argument from the stack or CURRENT_PC,
897 whichever is smaller. Otherwise, return PC. */
898
899 static CORE_ADDR
900 i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
901 struct i386_frame_cache *cache)
902 {
903 /* Functions that return a structure or union start with:
904
905 popl %eax 0x58
906 xchgl %eax, (%esp) 0x87 0x04 0x24
907 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
908
909 (the System V compiler puts out the second `xchg' instruction,
910 and the assembler doesn't try to optimize it, so the 'sib' form
911 gets generated). This sequence is used to get the address of the
912 return buffer for a function that returns a structure. */
913 static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
914 static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
915 gdb_byte buf[4];
916 gdb_byte op;
917
918 if (current_pc <= pc)
919 return pc;
920
921 if (target_read_memory (pc, &op, 1))
922 return pc;
923
924 if (op != 0x58) /* popl %eax */
925 return pc;
926
927 if (target_read_memory (pc + 1, buf, 4))
928 return pc;
929
930 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
931 return pc;
932
933 if (current_pc == pc)
934 {
935 cache->sp_offset += 4;
936 return current_pc;
937 }
938
939 if (current_pc == pc + 1)
940 {
941 cache->pc_in_eax = 1;
942 return current_pc;
943 }
944
945 if (buf[1] == proto1[1])
946 return pc + 4;
947 else
948 return pc + 5;
949 }
950
951 static CORE_ADDR
952 i386_skip_probe (CORE_ADDR pc)
953 {
954 /* A function may start with
955
956 pushl constant
957 call _probe
958 addl $4, %esp
959
960 followed by
961
962 pushl %ebp
963
964 etc. */
965 gdb_byte buf[8];
966 gdb_byte op;
967
968 if (target_read_memory (pc, &op, 1))
969 return pc;
970
971 if (op == 0x68 || op == 0x6a)
972 {
973 int delta;
974
975 /* Skip past the `pushl' instruction; it has either a one-byte or a
976 four-byte operand, depending on the opcode. */
977 if (op == 0x68)
978 delta = 5;
979 else
980 delta = 2;
981
982 /* Read the following 8 bytes, which should be `call _probe' (6
983 bytes) followed by `addl $4,%esp' (2 bytes). */
984 read_memory (pc + delta, buf, sizeof (buf));
985 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
986 pc += delta + sizeof (buf);
987 }
988
989 return pc;
990 }
991
992 /* GCC 4.1 and later, can put code in the prologue to realign the
993 stack pointer. Check whether PC points to such code, and update
994 CACHE accordingly. Return the first instruction after the code
995 sequence or CURRENT_PC, whichever is smaller. If we don't
996 recognize the code, return PC. */
997
998 static CORE_ADDR
999 i386_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1000 struct i386_frame_cache *cache)
1001 {
1002 /* There are 2 code sequences to re-align stack before the frame
1003 gets set up:
1004
1005 1. Use a caller-saved saved register:
1006
1007 leal 4(%esp), %reg
1008 andl $-XXX, %esp
1009 pushl -4(%reg)
1010
1011 2. Use a callee-saved saved register:
1012
1013 pushl %reg
1014 leal 8(%esp), %reg
1015 andl $-XXX, %esp
1016 pushl -4(%reg)
1017
1018 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
1019
1020 0x83 0xe4 0xf0 andl $-16, %esp
1021 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
1022 */
1023
1024 gdb_byte buf[14];
1025 int reg;
1026 int offset, offset_and;
1027 static int regnums[8] = {
1028 I386_EAX_REGNUM, /* %eax */
1029 I386_ECX_REGNUM, /* %ecx */
1030 I386_EDX_REGNUM, /* %edx */
1031 I386_EBX_REGNUM, /* %ebx */
1032 I386_ESP_REGNUM, /* %esp */
1033 I386_EBP_REGNUM, /* %ebp */
1034 I386_ESI_REGNUM, /* %esi */
1035 I386_EDI_REGNUM /* %edi */
1036 };
1037
1038 if (target_read_memory (pc, buf, sizeof buf))
1039 return pc;
1040
1041 /* Check caller-saved saved register. The first instruction has
1042 to be "leal 4(%esp), %reg". */
1043 if (buf[0] == 0x8d && buf[2] == 0x24 && buf[3] == 0x4)
1044 {
1045 /* MOD must be binary 10 and R/M must be binary 100. */
1046 if ((buf[1] & 0xc7) != 0x44)
1047 return pc;
1048
1049 /* REG has register number. */
1050 reg = (buf[1] >> 3) & 7;
1051 offset = 4;
1052 }
1053 else
1054 {
1055 /* Check callee-saved saved register. The first instruction
1056 has to be "pushl %reg". */
1057 if ((buf[0] & 0xf8) != 0x50)
1058 return pc;
1059
1060 /* Get register. */
1061 reg = buf[0] & 0x7;
1062
1063 /* The next instruction has to be "leal 8(%esp), %reg". */
1064 if (buf[1] != 0x8d || buf[3] != 0x24 || buf[4] != 0x8)
1065 return pc;
1066
1067 /* MOD must be binary 10 and R/M must be binary 100. */
1068 if ((buf[2] & 0xc7) != 0x44)
1069 return pc;
1070
1071 /* REG has register number. Registers in pushl and leal have to
1072 be the same. */
1073 if (reg != ((buf[2] >> 3) & 7))
1074 return pc;
1075
1076 offset = 5;
1077 }
1078
1079 /* Rigister can't be %esp nor %ebp. */
1080 if (reg == 4 || reg == 5)
1081 return pc;
1082
1083 /* The next instruction has to be "andl $-XXX, %esp". */
1084 if (buf[offset + 1] != 0xe4
1085 || (buf[offset] != 0x81 && buf[offset] != 0x83))
1086 return pc;
1087
1088 offset_and = offset;
1089 offset += buf[offset] == 0x81 ? 6 : 3;
1090
1091 /* The next instruction has to be "pushl -4(%reg)". 8bit -4 is
1092 0xfc. REG must be binary 110 and MOD must be binary 01. */
1093 if (buf[offset] != 0xff
1094 || buf[offset + 2] != 0xfc
1095 || (buf[offset + 1] & 0xf8) != 0x70)
1096 return pc;
1097
1098 /* R/M has register. Registers in leal and pushl have to be the
1099 same. */
1100 if (reg != (buf[offset + 1] & 7))
1101 return pc;
1102
1103 if (current_pc > pc + offset_and)
1104 cache->saved_sp_reg = regnums[reg];
1105
1106 return min (pc + offset + 3, current_pc);
1107 }
1108
1109 /* Maximum instruction length we need to handle. */
1110 #define I386_MAX_MATCHED_INSN_LEN 6
1111
1112 /* Instruction description. */
1113 struct i386_insn
1114 {
1115 size_t len;
1116 gdb_byte insn[I386_MAX_MATCHED_INSN_LEN];
1117 gdb_byte mask[I386_MAX_MATCHED_INSN_LEN];
1118 };
1119
1120 /* Search for the instruction at PC in the list SKIP_INSNS. Return
1121 the first instruction description that matches. Otherwise, return
1122 NULL. */
1123
1124 static struct i386_insn *
1125 i386_match_insn (CORE_ADDR pc, struct i386_insn *skip_insns)
1126 {
1127 struct i386_insn *insn;
1128 gdb_byte op;
1129
1130 if (target_read_memory (pc, &op, 1))
1131 return NULL;
1132
1133 for (insn = skip_insns; insn->len > 0; insn++)
1134 {
1135 if ((op & insn->mask[0]) == insn->insn[0])
1136 {
1137 gdb_byte buf[I386_MAX_MATCHED_INSN_LEN - 1];
1138 int insn_matched = 1;
1139 size_t i;
1140
1141 gdb_assert (insn->len > 1);
1142 gdb_assert (insn->len <= I386_MAX_MATCHED_INSN_LEN);
1143
1144 if (target_read_memory (pc + 1, buf, insn->len - 1))
1145 return NULL;
1146
1147 for (i = 1; i < insn->len; i++)
1148 {
1149 if ((buf[i - 1] & insn->mask[i]) != insn->insn[i])
1150 insn_matched = 0;
1151 }
1152
1153 if (insn_matched)
1154 return insn;
1155 }
1156 }
1157
1158 return NULL;
1159 }
1160
1161 /* Some special instructions that might be migrated by GCC into the
1162 part of the prologue that sets up the new stack frame. Because the
1163 stack frame hasn't been setup yet, no registers have been saved
1164 yet, and only the scratch registers %eax, %ecx and %edx can be
1165 touched. */
1166
1167 struct i386_insn i386_frame_setup_skip_insns[] =
1168 {
1169 /* Check for `movb imm8, r' and `movl imm32, r'.
1170
1171 ??? Should we handle 16-bit operand-sizes here? */
1172
1173 /* `movb imm8, %al' and `movb imm8, %ah' */
1174 /* `movb imm8, %cl' and `movb imm8, %ch' */
1175 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
1176 /* `movb imm8, %dl' and `movb imm8, %dh' */
1177 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
1178 /* `movl imm32, %eax' and `movl imm32, %ecx' */
1179 { 5, { 0xb8 }, { 0xfe } },
1180 /* `movl imm32, %edx' */
1181 { 5, { 0xba }, { 0xff } },
1182
1183 /* Check for `mov imm32, r32'. Note that there is an alternative
1184 encoding for `mov m32, %eax'.
1185
1186 ??? Should we handle SIB adressing here?
1187 ??? Should we handle 16-bit operand-sizes here? */
1188
1189 /* `movl m32, %eax' */
1190 { 5, { 0xa1 }, { 0xff } },
1191 /* `movl m32, %eax' and `mov; m32, %ecx' */
1192 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
1193 /* `movl m32, %edx' */
1194 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
1195
1196 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
1197 Because of the symmetry, there are actually two ways to encode
1198 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
1199 opcode bytes 0x31 and 0x33 for `xorl'. */
1200
1201 /* `subl %eax, %eax' */
1202 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
1203 /* `subl %ecx, %ecx' */
1204 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
1205 /* `subl %edx, %edx' */
1206 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
1207 /* `xorl %eax, %eax' */
1208 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
1209 /* `xorl %ecx, %ecx' */
1210 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
1211 /* `xorl %edx, %edx' */
1212 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
1213 { 0 }
1214 };
1215
1216
1217 /* Check whether PC points to a no-op instruction. */
1218 static CORE_ADDR
1219 i386_skip_noop (CORE_ADDR pc)
1220 {
1221 gdb_byte op;
1222 int check = 1;
1223
1224 if (target_read_memory (pc, &op, 1))
1225 return pc;
1226
1227 while (check)
1228 {
1229 check = 0;
1230 /* Ignore `nop' instruction. */
1231 if (op == 0x90)
1232 {
1233 pc += 1;
1234 if (target_read_memory (pc, &op, 1))
1235 return pc;
1236 check = 1;
1237 }
1238 /* Ignore no-op instruction `mov %edi, %edi'.
1239 Microsoft system dlls often start with
1240 a `mov %edi,%edi' instruction.
1241 The 5 bytes before the function start are
1242 filled with `nop' instructions.
1243 This pattern can be used for hot-patching:
1244 The `mov %edi, %edi' instruction can be replaced by a
1245 near jump to the location of the 5 `nop' instructions
1246 which can be replaced by a 32-bit jump to anywhere
1247 in the 32-bit address space. */
1248
1249 else if (op == 0x8b)
1250 {
1251 if (target_read_memory (pc + 1, &op, 1))
1252 return pc;
1253
1254 if (op == 0xff)
1255 {
1256 pc += 2;
1257 if (target_read_memory (pc, &op, 1))
1258 return pc;
1259
1260 check = 1;
1261 }
1262 }
1263 }
1264 return pc;
1265 }
1266
1267 /* Check whether PC points at a code that sets up a new stack frame.
1268 If so, it updates CACHE and returns the address of the first
1269 instruction after the sequence that sets up the frame or LIMIT,
1270 whichever is smaller. If we don't recognize the code, return PC. */
1271
1272 static CORE_ADDR
1273 i386_analyze_frame_setup (struct gdbarch *gdbarch,
1274 CORE_ADDR pc, CORE_ADDR limit,
1275 struct i386_frame_cache *cache)
1276 {
1277 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1278 struct i386_insn *insn;
1279 gdb_byte op;
1280 int skip = 0;
1281
1282 if (limit <= pc)
1283 return limit;
1284
1285 if (target_read_memory (pc, &op, 1))
1286 return pc;
1287
1288 if (op == 0x55) /* pushl %ebp */
1289 {
1290 /* Take into account that we've executed the `pushl %ebp' that
1291 starts this instruction sequence. */
1292 cache->saved_regs[I386_EBP_REGNUM] = 0;
1293 cache->sp_offset += 4;
1294 pc++;
1295
1296 /* If that's all, return now. */
1297 if (limit <= pc)
1298 return limit;
1299
1300 /* Check for some special instructions that might be migrated by
1301 GCC into the prologue and skip them. At this point in the
1302 prologue, code should only touch the scratch registers %eax,
1303 %ecx and %edx, so while the number of posibilities is sheer,
1304 it is limited.
1305
1306 Make sure we only skip these instructions if we later see the
1307 `movl %esp, %ebp' that actually sets up the frame. */
1308 while (pc + skip < limit)
1309 {
1310 insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
1311 if (insn == NULL)
1312 break;
1313
1314 skip += insn->len;
1315 }
1316
1317 /* If that's all, return now. */
1318 if (limit <= pc + skip)
1319 return limit;
1320
1321 if (target_read_memory (pc + skip, &op, 1))
1322 return pc + skip;
1323
1324 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
1325 switch (op)
1326 {
1327 case 0x8b:
1328 if (read_memory_unsigned_integer (pc + skip + 1, 1, byte_order)
1329 != 0xec)
1330 return pc;
1331 break;
1332 case 0x89:
1333 if (read_memory_unsigned_integer (pc + skip + 1, 1, byte_order)
1334 != 0xe5)
1335 return pc;
1336 break;
1337 default:
1338 return pc;
1339 }
1340
1341 /* OK, we actually have a frame. We just don't know how large
1342 it is yet. Set its size to zero. We'll adjust it if
1343 necessary. We also now commit to skipping the special
1344 instructions mentioned before. */
1345 cache->locals = 0;
1346 pc += (skip + 2);
1347
1348 /* If that's all, return now. */
1349 if (limit <= pc)
1350 return limit;
1351
1352 /* Check for stack adjustment
1353
1354 subl $XXX, %esp
1355
1356 NOTE: You can't subtract a 16-bit immediate from a 32-bit
1357 reg, so we don't have to worry about a data16 prefix. */
1358 if (target_read_memory (pc, &op, 1))
1359 return pc;
1360 if (op == 0x83)
1361 {
1362 /* `subl' with 8-bit immediate. */
1363 if (read_memory_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1364 /* Some instruction starting with 0x83 other than `subl'. */
1365 return pc;
1366
1367 /* `subl' with signed 8-bit immediate (though it wouldn't
1368 make sense to be negative). */
1369 cache->locals = read_memory_integer (pc + 2, 1, byte_order);
1370 return pc + 3;
1371 }
1372 else if (op == 0x81)
1373 {
1374 /* Maybe it is `subl' with a 32-bit immediate. */
1375 if (read_memory_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1376 /* Some instruction starting with 0x81 other than `subl'. */
1377 return pc;
1378
1379 /* It is `subl' with a 32-bit immediate. */
1380 cache->locals = read_memory_integer (pc + 2, 4, byte_order);
1381 return pc + 6;
1382 }
1383 else
1384 {
1385 /* Some instruction other than `subl'. */
1386 return pc;
1387 }
1388 }
1389 else if (op == 0xc8) /* enter */
1390 {
1391 cache->locals = read_memory_unsigned_integer (pc + 1, 2, byte_order);
1392 return pc + 4;
1393 }
1394
1395 return pc;
1396 }
1397
1398 /* Check whether PC points at code that saves registers on the stack.
1399 If so, it updates CACHE and returns the address of the first
1400 instruction after the register saves or CURRENT_PC, whichever is
1401 smaller. Otherwise, return PC. */
1402
1403 static CORE_ADDR
1404 i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
1405 struct i386_frame_cache *cache)
1406 {
1407 CORE_ADDR offset = 0;
1408 gdb_byte op;
1409 int i;
1410
1411 if (cache->locals > 0)
1412 offset -= cache->locals;
1413 for (i = 0; i < 8 && pc < current_pc; i++)
1414 {
1415 if (target_read_memory (pc, &op, 1))
1416 return pc;
1417 if (op < 0x50 || op > 0x57)
1418 break;
1419
1420 offset -= 4;
1421 cache->saved_regs[op - 0x50] = offset;
1422 cache->sp_offset += 4;
1423 pc++;
1424 }
1425
1426 return pc;
1427 }
1428
1429 /* Do a full analysis of the prologue at PC and update CACHE
1430 accordingly. Bail out early if CURRENT_PC is reached. Return the
1431 address where the analysis stopped.
1432
1433 We handle these cases:
1434
1435 The startup sequence can be at the start of the function, or the
1436 function can start with a branch to startup code at the end.
1437
1438 %ebp can be set up with either the 'enter' instruction, or "pushl
1439 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
1440 once used in the System V compiler).
1441
1442 Local space is allocated just below the saved %ebp by either the
1443 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
1444 16-bit unsigned argument for space to allocate, and the 'addl'
1445 instruction could have either a signed byte, or 32-bit immediate.
1446
1447 Next, the registers used by this function are pushed. With the
1448 System V compiler they will always be in the order: %edi, %esi,
1449 %ebx (and sometimes a harmless bug causes it to also save but not
1450 restore %eax); however, the code below is willing to see the pushes
1451 in any order, and will handle up to 8 of them.
1452
1453 If the setup sequence is at the end of the function, then the next
1454 instruction will be a branch back to the start. */
1455
1456 static CORE_ADDR
1457 i386_analyze_prologue (struct gdbarch *gdbarch,
1458 CORE_ADDR pc, CORE_ADDR current_pc,
1459 struct i386_frame_cache *cache)
1460 {
1461 pc = i386_skip_noop (pc);
1462 pc = i386_follow_jump (gdbarch, pc);
1463 pc = i386_analyze_struct_return (pc, current_pc, cache);
1464 pc = i386_skip_probe (pc);
1465 pc = i386_analyze_stack_align (pc, current_pc, cache);
1466 pc = i386_analyze_frame_setup (gdbarch, pc, current_pc, cache);
1467 return i386_analyze_register_saves (pc, current_pc, cache);
1468 }
1469
1470 /* Return PC of first real instruction. */
1471
1472 static CORE_ADDR
1473 i386_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
1474 {
1475 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1476
1477 static gdb_byte pic_pat[6] =
1478 {
1479 0xe8, 0, 0, 0, 0, /* call 0x0 */
1480 0x5b, /* popl %ebx */
1481 };
1482 struct i386_frame_cache cache;
1483 CORE_ADDR pc;
1484 gdb_byte op;
1485 int i;
1486
1487 cache.locals = -1;
1488 pc = i386_analyze_prologue (gdbarch, start_pc, 0xffffffff, &cache);
1489 if (cache.locals < 0)
1490 return start_pc;
1491
1492 /* Found valid frame setup. */
1493
1494 /* The native cc on SVR4 in -K PIC mode inserts the following code
1495 to get the address of the global offset table (GOT) into register
1496 %ebx:
1497
1498 call 0x0
1499 popl %ebx
1500 movl %ebx,x(%ebp) (optional)
1501 addl y,%ebx
1502
1503 This code is with the rest of the prologue (at the end of the
1504 function), so we have to skip it to get to the first real
1505 instruction at the start of the function. */
1506
1507 for (i = 0; i < 6; i++)
1508 {
1509 if (target_read_memory (pc + i, &op, 1))
1510 return pc;
1511
1512 if (pic_pat[i] != op)
1513 break;
1514 }
1515 if (i == 6)
1516 {
1517 int delta = 6;
1518
1519 if (target_read_memory (pc + delta, &op, 1))
1520 return pc;
1521
1522 if (op == 0x89) /* movl %ebx, x(%ebp) */
1523 {
1524 op = read_memory_unsigned_integer (pc + delta + 1, 1, byte_order);
1525
1526 if (op == 0x5d) /* One byte offset from %ebp. */
1527 delta += 3;
1528 else if (op == 0x9d) /* Four byte offset from %ebp. */
1529 delta += 6;
1530 else /* Unexpected instruction. */
1531 delta = 0;
1532
1533 if (target_read_memory (pc + delta, &op, 1))
1534 return pc;
1535 }
1536
1537 /* addl y,%ebx */
1538 if (delta > 0 && op == 0x81
1539 && read_memory_unsigned_integer (pc + delta + 1, 1, byte_order)
1540 == 0xc3)
1541 {
1542 pc += delta + 6;
1543 }
1544 }
1545
1546 /* If the function starts with a branch (to startup code at the end)
1547 the last instruction should bring us back to the first
1548 instruction of the real code. */
1549 if (i386_follow_jump (gdbarch, start_pc) != start_pc)
1550 pc = i386_follow_jump (gdbarch, pc);
1551
1552 return pc;
1553 }
1554
1555 /* Check that the code pointed to by PC corresponds to a call to
1556 __main, skip it if so. Return PC otherwise. */
1557
1558 CORE_ADDR
1559 i386_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1560 {
1561 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1562 gdb_byte op;
1563
1564 if (target_read_memory (pc, &op, 1))
1565 return pc;
1566 if (op == 0xe8)
1567 {
1568 gdb_byte buf[4];
1569
1570 if (target_read_memory (pc + 1, buf, sizeof buf) == 0)
1571 {
1572 /* Make sure address is computed correctly as a 32bit
1573 integer even if CORE_ADDR is 64 bit wide. */
1574 struct minimal_symbol *s;
1575 CORE_ADDR call_dest;
1576
1577 call_dest = pc + 5 + extract_signed_integer (buf, 4, byte_order);
1578 call_dest = call_dest & 0xffffffffU;
1579 s = lookup_minimal_symbol_by_pc (call_dest);
1580 if (s != NULL
1581 && SYMBOL_LINKAGE_NAME (s) != NULL
1582 && strcmp (SYMBOL_LINKAGE_NAME (s), "__main") == 0)
1583 pc += 5;
1584 }
1585 }
1586
1587 return pc;
1588 }
1589
1590 /* This function is 64-bit safe. */
1591
1592 static CORE_ADDR
1593 i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1594 {
1595 gdb_byte buf[8];
1596
1597 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
1598 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
1599 }
1600 \f
1601
1602 /* Normal frames. */
1603
1604 static struct i386_frame_cache *
1605 i386_frame_cache (struct frame_info *this_frame, void **this_cache)
1606 {
1607 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1608 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1609 struct i386_frame_cache *cache;
1610 gdb_byte buf[4];
1611 int i;
1612
1613 if (*this_cache)
1614 return *this_cache;
1615
1616 cache = i386_alloc_frame_cache ();
1617 *this_cache = cache;
1618
1619 /* In principle, for normal frames, %ebp holds the frame pointer,
1620 which holds the base address for the current stack frame.
1621 However, for functions that don't need it, the frame pointer is
1622 optional. For these "frameless" functions the frame pointer is
1623 actually the frame pointer of the calling frame. Signal
1624 trampolines are just a special case of a "frameless" function.
1625 They (usually) share their frame pointer with the frame that was
1626 in progress when the signal occurred. */
1627
1628 get_frame_register (this_frame, I386_EBP_REGNUM, buf);
1629 cache->base = extract_unsigned_integer (buf, 4, byte_order);
1630 if (cache->base == 0)
1631 return cache;
1632
1633 /* For normal frames, %eip is stored at 4(%ebp). */
1634 cache->saved_regs[I386_EIP_REGNUM] = 4;
1635
1636 cache->pc = get_frame_func (this_frame);
1637 if (cache->pc != 0)
1638 i386_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
1639 cache);
1640
1641 if (cache->saved_sp_reg != -1)
1642 {
1643 /* Saved stack pointer has been saved. */
1644 get_frame_register (this_frame, cache->saved_sp_reg, buf);
1645 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
1646 }
1647
1648 if (cache->locals < 0)
1649 {
1650 /* We didn't find a valid frame, which means that CACHE->base
1651 currently holds the frame pointer for our calling frame. If
1652 we're at the start of a function, or somewhere half-way its
1653 prologue, the function's frame probably hasn't been fully
1654 setup yet. Try to reconstruct the base address for the stack
1655 frame by looking at the stack pointer. For truly "frameless"
1656 functions this might work too. */
1657
1658 if (cache->saved_sp_reg != -1)
1659 {
1660 /* We're halfway aligning the stack. */
1661 cache->base = ((cache->saved_sp - 4) & 0xfffffff0) - 4;
1662 cache->saved_regs[I386_EIP_REGNUM] = cache->saved_sp - 4;
1663
1664 /* This will be added back below. */
1665 cache->saved_regs[I386_EIP_REGNUM] -= cache->base;
1666 }
1667 else if (cache->pc != 0
1668 || target_read_memory (get_frame_pc (this_frame), buf, 1))
1669 {
1670 /* We're in a known function, but did not find a frame
1671 setup. Assume that the function does not use %ebp.
1672 Alternatively, we may have jumped to an invalid
1673 address; in that case there is definitely no new
1674 frame in %ebp. */
1675 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
1676 cache->base = extract_unsigned_integer (buf, 4, byte_order)
1677 + cache->sp_offset;
1678 }
1679 else
1680 /* We're in an unknown function. We could not find the start
1681 of the function to analyze the prologue; our best option is
1682 to assume a typical frame layout with the caller's %ebp
1683 saved. */
1684 cache->saved_regs[I386_EBP_REGNUM] = 0;
1685 }
1686
1687 /* Now that we have the base address for the stack frame we can
1688 calculate the value of %esp in the calling frame. */
1689 if (cache->saved_sp == 0)
1690 cache->saved_sp = cache->base + 8;
1691
1692 /* Adjust all the saved registers such that they contain addresses
1693 instead of offsets. */
1694 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
1695 if (cache->saved_regs[i] != -1)
1696 cache->saved_regs[i] += cache->base;
1697
1698 return cache;
1699 }
1700
1701 static void
1702 i386_frame_this_id (struct frame_info *this_frame, void **this_cache,
1703 struct frame_id *this_id)
1704 {
1705 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
1706
1707 /* This marks the outermost frame. */
1708 if (cache->base == 0)
1709 return;
1710
1711 /* See the end of i386_push_dummy_call. */
1712 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
1713 }
1714
1715 static struct value *
1716 i386_frame_prev_register (struct frame_info *this_frame, void **this_cache,
1717 int regnum)
1718 {
1719 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
1720
1721 gdb_assert (regnum >= 0);
1722
1723 /* The System V ABI says that:
1724
1725 "The flags register contains the system flags, such as the
1726 direction flag and the carry flag. The direction flag must be
1727 set to the forward (that is, zero) direction before entry and
1728 upon exit from a function. Other user flags have no specified
1729 role in the standard calling sequence and are not preserved."
1730
1731 To guarantee the "upon exit" part of that statement we fake a
1732 saved flags register that has its direction flag cleared.
1733
1734 Note that GCC doesn't seem to rely on the fact that the direction
1735 flag is cleared after a function return; it always explicitly
1736 clears the flag before operations where it matters.
1737
1738 FIXME: kettenis/20030316: I'm not quite sure whether this is the
1739 right thing to do. The way we fake the flags register here makes
1740 it impossible to change it. */
1741
1742 if (regnum == I386_EFLAGS_REGNUM)
1743 {
1744 ULONGEST val;
1745
1746 val = get_frame_register_unsigned (this_frame, regnum);
1747 val &= ~(1 << 10);
1748 return frame_unwind_got_constant (this_frame, regnum, val);
1749 }
1750
1751 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
1752 return frame_unwind_got_register (this_frame, regnum, I386_EAX_REGNUM);
1753
1754 if (regnum == I386_ESP_REGNUM && cache->saved_sp)
1755 return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
1756
1757 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
1758 return frame_unwind_got_memory (this_frame, regnum,
1759 cache->saved_regs[regnum]);
1760
1761 return frame_unwind_got_register (this_frame, regnum, regnum);
1762 }
1763
1764 static const struct frame_unwind i386_frame_unwind =
1765 {
1766 NORMAL_FRAME,
1767 i386_frame_this_id,
1768 i386_frame_prev_register,
1769 NULL,
1770 default_frame_sniffer
1771 };
1772
1773 /* Normal frames, but in a function epilogue. */
1774
1775 /* The epilogue is defined here as the 'ret' instruction, which will
1776 follow any instruction such as 'leave' or 'pop %ebp' that destroys
1777 the function's stack frame. */
1778
1779 static int
1780 i386_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
1781 {
1782 gdb_byte insn;
1783
1784 if (target_read_memory (pc, &insn, 1))
1785 return 0; /* Can't read memory at pc. */
1786
1787 if (insn != 0xc3) /* 'ret' instruction. */
1788 return 0;
1789
1790 return 1;
1791 }
1792
1793 static int
1794 i386_epilogue_frame_sniffer (const struct frame_unwind *self,
1795 struct frame_info *this_frame,
1796 void **this_prologue_cache)
1797 {
1798 if (frame_relative_level (this_frame) == 0)
1799 return i386_in_function_epilogue_p (get_frame_arch (this_frame),
1800 get_frame_pc (this_frame));
1801 else
1802 return 0;
1803 }
1804
1805 static struct i386_frame_cache *
1806 i386_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
1807 {
1808 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1809 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1810 struct i386_frame_cache *cache;
1811 gdb_byte buf[4];
1812
1813 if (*this_cache)
1814 return *this_cache;
1815
1816 cache = i386_alloc_frame_cache ();
1817 *this_cache = cache;
1818
1819 /* Cache base will be %esp plus cache->sp_offset (-4). */
1820 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
1821 cache->base = extract_unsigned_integer (buf, 4,
1822 byte_order) + cache->sp_offset;
1823
1824 /* Cache pc will be the frame func. */
1825 cache->pc = get_frame_pc (this_frame);
1826
1827 /* The saved %esp will be at cache->base plus 8. */
1828 cache->saved_sp = cache->base + 8;
1829
1830 /* The saved %eip will be at cache->base plus 4. */
1831 cache->saved_regs[I386_EIP_REGNUM] = cache->base + 4;
1832
1833 return cache;
1834 }
1835
1836 static void
1837 i386_epilogue_frame_this_id (struct frame_info *this_frame,
1838 void **this_cache,
1839 struct frame_id *this_id)
1840 {
1841 struct i386_frame_cache *cache = i386_epilogue_frame_cache (this_frame,
1842 this_cache);
1843
1844 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
1845 }
1846
1847 static const struct frame_unwind i386_epilogue_frame_unwind =
1848 {
1849 NORMAL_FRAME,
1850 i386_epilogue_frame_this_id,
1851 i386_frame_prev_register,
1852 NULL,
1853 i386_epilogue_frame_sniffer
1854 };
1855 \f
1856
1857 /* Signal trampolines. */
1858
1859 static struct i386_frame_cache *
1860 i386_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
1861 {
1862 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1863 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1864 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1865 struct i386_frame_cache *cache;
1866 CORE_ADDR addr;
1867 gdb_byte buf[4];
1868
1869 if (*this_cache)
1870 return *this_cache;
1871
1872 cache = i386_alloc_frame_cache ();
1873
1874 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
1875 cache->base = extract_unsigned_integer (buf, 4, byte_order) - 4;
1876
1877 addr = tdep->sigcontext_addr (this_frame);
1878 if (tdep->sc_reg_offset)
1879 {
1880 int i;
1881
1882 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
1883
1884 for (i = 0; i < tdep->sc_num_regs; i++)
1885 if (tdep->sc_reg_offset[i] != -1)
1886 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
1887 }
1888 else
1889 {
1890 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
1891 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
1892 }
1893
1894 *this_cache = cache;
1895 return cache;
1896 }
1897
1898 static void
1899 i386_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache,
1900 struct frame_id *this_id)
1901 {
1902 struct i386_frame_cache *cache =
1903 i386_sigtramp_frame_cache (this_frame, this_cache);
1904
1905 /* See the end of i386_push_dummy_call. */
1906 (*this_id) = frame_id_build (cache->base + 8, get_frame_pc (this_frame));
1907 }
1908
1909 static struct value *
1910 i386_sigtramp_frame_prev_register (struct frame_info *this_frame,
1911 void **this_cache, int regnum)
1912 {
1913 /* Make sure we've initialized the cache. */
1914 i386_sigtramp_frame_cache (this_frame, this_cache);
1915
1916 return i386_frame_prev_register (this_frame, this_cache, regnum);
1917 }
1918
1919 static int
1920 i386_sigtramp_frame_sniffer (const struct frame_unwind *self,
1921 struct frame_info *this_frame,
1922 void **this_prologue_cache)
1923 {
1924 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
1925
1926 /* We shouldn't even bother if we don't have a sigcontext_addr
1927 handler. */
1928 if (tdep->sigcontext_addr == NULL)
1929 return 0;
1930
1931 if (tdep->sigtramp_p != NULL)
1932 {
1933 if (tdep->sigtramp_p (this_frame))
1934 return 1;
1935 }
1936
1937 if (tdep->sigtramp_start != 0)
1938 {
1939 CORE_ADDR pc = get_frame_pc (this_frame);
1940
1941 gdb_assert (tdep->sigtramp_end != 0);
1942 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
1943 return 1;
1944 }
1945
1946 return 0;
1947 }
1948
1949 static const struct frame_unwind i386_sigtramp_frame_unwind =
1950 {
1951 SIGTRAMP_FRAME,
1952 i386_sigtramp_frame_this_id,
1953 i386_sigtramp_frame_prev_register,
1954 NULL,
1955 i386_sigtramp_frame_sniffer
1956 };
1957 \f
1958
1959 static CORE_ADDR
1960 i386_frame_base_address (struct frame_info *this_frame, void **this_cache)
1961 {
1962 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
1963
1964 return cache->base;
1965 }
1966
1967 static const struct frame_base i386_frame_base =
1968 {
1969 &i386_frame_unwind,
1970 i386_frame_base_address,
1971 i386_frame_base_address,
1972 i386_frame_base_address
1973 };
1974
1975 static struct frame_id
1976 i386_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1977 {
1978 CORE_ADDR fp;
1979
1980 fp = get_frame_register_unsigned (this_frame, I386_EBP_REGNUM);
1981
1982 /* See the end of i386_push_dummy_call. */
1983 return frame_id_build (fp + 8, get_frame_pc (this_frame));
1984 }
1985 \f
1986
1987 /* Figure out where the longjmp will land. Slurp the args out of the
1988 stack. We expect the first arg to be a pointer to the jmp_buf
1989 structure from which we extract the address that we will land at.
1990 This address is copied into PC. This routine returns non-zero on
1991 success. */
1992
1993 static int
1994 i386_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
1995 {
1996 gdb_byte buf[4];
1997 CORE_ADDR sp, jb_addr;
1998 struct gdbarch *gdbarch = get_frame_arch (frame);
1999 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2000 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
2001
2002 /* If JB_PC_OFFSET is -1, we have no way to find out where the
2003 longjmp will land. */
2004 if (jb_pc_offset == -1)
2005 return 0;
2006
2007 get_frame_register (frame, I386_ESP_REGNUM, buf);
2008 sp = extract_unsigned_integer (buf, 4, byte_order);
2009 if (target_read_memory (sp + 4, buf, 4))
2010 return 0;
2011
2012 jb_addr = extract_unsigned_integer (buf, 4, byte_order);
2013 if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
2014 return 0;
2015
2016 *pc = extract_unsigned_integer (buf, 4, byte_order);
2017 return 1;
2018 }
2019 \f
2020
2021 /* Check whether TYPE must be 16-byte-aligned when passed as a
2022 function argument. 16-byte vectors, _Decimal128 and structures or
2023 unions containing such types must be 16-byte-aligned; other
2024 arguments are 4-byte-aligned. */
2025
2026 static int
2027 i386_16_byte_align_p (struct type *type)
2028 {
2029 type = check_typedef (type);
2030 if ((TYPE_CODE (type) == TYPE_CODE_DECFLOAT
2031 || (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type)))
2032 && TYPE_LENGTH (type) == 16)
2033 return 1;
2034 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2035 return i386_16_byte_align_p (TYPE_TARGET_TYPE (type));
2036 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2037 || TYPE_CODE (type) == TYPE_CODE_UNION)
2038 {
2039 int i;
2040 for (i = 0; i < TYPE_NFIELDS (type); i++)
2041 {
2042 if (i386_16_byte_align_p (TYPE_FIELD_TYPE (type, i)))
2043 return 1;
2044 }
2045 }
2046 return 0;
2047 }
2048
2049 static CORE_ADDR
2050 i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2051 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2052 struct value **args, CORE_ADDR sp, int struct_return,
2053 CORE_ADDR struct_addr)
2054 {
2055 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2056 gdb_byte buf[4];
2057 int i;
2058 int write_pass;
2059 int args_space = 0;
2060
2061 /* Determine the total space required for arguments and struct
2062 return address in a first pass (allowing for 16-byte-aligned
2063 arguments), then push arguments in a second pass. */
2064
2065 for (write_pass = 0; write_pass < 2; write_pass++)
2066 {
2067 int args_space_used = 0;
2068 int have_16_byte_aligned_arg = 0;
2069
2070 if (struct_return)
2071 {
2072 if (write_pass)
2073 {
2074 /* Push value address. */
2075 store_unsigned_integer (buf, 4, byte_order, struct_addr);
2076 write_memory (sp, buf, 4);
2077 args_space_used += 4;
2078 }
2079 else
2080 args_space += 4;
2081 }
2082
2083 for (i = 0; i < nargs; i++)
2084 {
2085 int len = TYPE_LENGTH (value_enclosing_type (args[i]));
2086
2087 if (write_pass)
2088 {
2089 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2090 args_space_used = align_up (args_space_used, 16);
2091
2092 write_memory (sp + args_space_used,
2093 value_contents_all (args[i]), len);
2094 /* The System V ABI says that:
2095
2096 "An argument's size is increased, if necessary, to make it a
2097 multiple of [32-bit] words. This may require tail padding,
2098 depending on the size of the argument."
2099
2100 This makes sure the stack stays word-aligned. */
2101 args_space_used += align_up (len, 4);
2102 }
2103 else
2104 {
2105 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2106 {
2107 args_space = align_up (args_space, 16);
2108 have_16_byte_aligned_arg = 1;
2109 }
2110 args_space += align_up (len, 4);
2111 }
2112 }
2113
2114 if (!write_pass)
2115 {
2116 if (have_16_byte_aligned_arg)
2117 args_space = align_up (args_space, 16);
2118 sp -= args_space;
2119 }
2120 }
2121
2122 /* Store return address. */
2123 sp -= 4;
2124 store_unsigned_integer (buf, 4, byte_order, bp_addr);
2125 write_memory (sp, buf, 4);
2126
2127 /* Finally, update the stack pointer... */
2128 store_unsigned_integer (buf, 4, byte_order, sp);
2129 regcache_cooked_write (regcache, I386_ESP_REGNUM, buf);
2130
2131 /* ...and fake a frame pointer. */
2132 regcache_cooked_write (regcache, I386_EBP_REGNUM, buf);
2133
2134 /* MarkK wrote: This "+ 8" is all over the place:
2135 (i386_frame_this_id, i386_sigtramp_frame_this_id,
2136 i386_dummy_id). It's there, since all frame unwinders for
2137 a given target have to agree (within a certain margin) on the
2138 definition of the stack address of a frame. Otherwise frame id
2139 comparison might not work correctly. Since DWARF2/GCC uses the
2140 stack address *before* the function call as a frame's CFA. On
2141 the i386, when %ebp is used as a frame pointer, the offset
2142 between the contents %ebp and the CFA as defined by GCC. */
2143 return sp + 8;
2144 }
2145
2146 /* These registers are used for returning integers (and on some
2147 targets also for returning `struct' and `union' values when their
2148 size and alignment match an integer type). */
2149 #define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
2150 #define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
2151
2152 /* Read, for architecture GDBARCH, a function return value of TYPE
2153 from REGCACHE, and copy that into VALBUF. */
2154
2155 static void
2156 i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
2157 struct regcache *regcache, gdb_byte *valbuf)
2158 {
2159 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2160 int len = TYPE_LENGTH (type);
2161 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2162
2163 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2164 {
2165 if (tdep->st0_regnum < 0)
2166 {
2167 warning (_("Cannot find floating-point return value."));
2168 memset (valbuf, 0, len);
2169 return;
2170 }
2171
2172 /* Floating-point return values can be found in %st(0). Convert
2173 its contents to the desired type. This is probably not
2174 exactly how it would happen on the target itself, but it is
2175 the best we can do. */
2176 regcache_raw_read (regcache, I386_ST0_REGNUM, buf);
2177 convert_typed_floating (buf, i387_ext_type (gdbarch), valbuf, type);
2178 }
2179 else
2180 {
2181 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2182 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2183
2184 if (len <= low_size)
2185 {
2186 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
2187 memcpy (valbuf, buf, len);
2188 }
2189 else if (len <= (low_size + high_size))
2190 {
2191 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
2192 memcpy (valbuf, buf, low_size);
2193 regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
2194 memcpy (valbuf + low_size, buf, len - low_size);
2195 }
2196 else
2197 internal_error (__FILE__, __LINE__,
2198 _("Cannot extract return value of %d bytes long."),
2199 len);
2200 }
2201 }
2202
2203 /* Write, for architecture GDBARCH, a function return value of TYPE
2204 from VALBUF into REGCACHE. */
2205
2206 static void
2207 i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
2208 struct regcache *regcache, const gdb_byte *valbuf)
2209 {
2210 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2211 int len = TYPE_LENGTH (type);
2212
2213 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2214 {
2215 ULONGEST fstat;
2216 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2217
2218 if (tdep->st0_regnum < 0)
2219 {
2220 warning (_("Cannot set floating-point return value."));
2221 return;
2222 }
2223
2224 /* Returning floating-point values is a bit tricky. Apart from
2225 storing the return value in %st(0), we have to simulate the
2226 state of the FPU at function return point. */
2227
2228 /* Convert the value found in VALBUF to the extended
2229 floating-point format used by the FPU. This is probably
2230 not exactly how it would happen on the target itself, but
2231 it is the best we can do. */
2232 convert_typed_floating (valbuf, type, buf, i387_ext_type (gdbarch));
2233 regcache_raw_write (regcache, I386_ST0_REGNUM, buf);
2234
2235 /* Set the top of the floating-point register stack to 7. The
2236 actual value doesn't really matter, but 7 is what a normal
2237 function return would end up with if the program started out
2238 with a freshly initialized FPU. */
2239 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
2240 fstat |= (7 << 11);
2241 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM (tdep), fstat);
2242
2243 /* Mark %st(1) through %st(7) as empty. Since we set the top of
2244 the floating-point register stack to 7, the appropriate value
2245 for the tag word is 0x3fff. */
2246 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM (tdep), 0x3fff);
2247 }
2248 else
2249 {
2250 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2251 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2252
2253 if (len <= low_size)
2254 regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
2255 else if (len <= (low_size + high_size))
2256 {
2257 regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
2258 regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
2259 len - low_size, valbuf + low_size);
2260 }
2261 else
2262 internal_error (__FILE__, __LINE__,
2263 _("Cannot store return value of %d bytes long."), len);
2264 }
2265 }
2266 \f
2267
2268 /* This is the variable that is set with "set struct-convention", and
2269 its legitimate values. */
2270 static const char default_struct_convention[] = "default";
2271 static const char pcc_struct_convention[] = "pcc";
2272 static const char reg_struct_convention[] = "reg";
2273 static const char *valid_conventions[] =
2274 {
2275 default_struct_convention,
2276 pcc_struct_convention,
2277 reg_struct_convention,
2278 NULL
2279 };
2280 static const char *struct_convention = default_struct_convention;
2281
2282 /* Return non-zero if TYPE, which is assumed to be a structure,
2283 a union type, or an array type, should be returned in registers
2284 for architecture GDBARCH. */
2285
2286 static int
2287 i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
2288 {
2289 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2290 enum type_code code = TYPE_CODE (type);
2291 int len = TYPE_LENGTH (type);
2292
2293 gdb_assert (code == TYPE_CODE_STRUCT
2294 || code == TYPE_CODE_UNION
2295 || code == TYPE_CODE_ARRAY);
2296
2297 if (struct_convention == pcc_struct_convention
2298 || (struct_convention == default_struct_convention
2299 && tdep->struct_return == pcc_struct_return))
2300 return 0;
2301
2302 /* Structures consisting of a single `float', `double' or 'long
2303 double' member are returned in %st(0). */
2304 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2305 {
2306 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
2307 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2308 return (len == 4 || len == 8 || len == 12);
2309 }
2310
2311 return (len == 1 || len == 2 || len == 4 || len == 8);
2312 }
2313
2314 /* Determine, for architecture GDBARCH, how a return value of TYPE
2315 should be returned. If it is supposed to be returned in registers,
2316 and READBUF is non-zero, read the appropriate value from REGCACHE,
2317 and copy it into READBUF. If WRITEBUF is non-zero, write the value
2318 from WRITEBUF into REGCACHE. */
2319
2320 static enum return_value_convention
2321 i386_return_value (struct gdbarch *gdbarch, struct type *func_type,
2322 struct type *type, struct regcache *regcache,
2323 gdb_byte *readbuf, const gdb_byte *writebuf)
2324 {
2325 enum type_code code = TYPE_CODE (type);
2326
2327 if (((code == TYPE_CODE_STRUCT
2328 || code == TYPE_CODE_UNION
2329 || code == TYPE_CODE_ARRAY)
2330 && !i386_reg_struct_return_p (gdbarch, type))
2331 /* 128-bit decimal float uses the struct return convention. */
2332 || (code == TYPE_CODE_DECFLOAT && TYPE_LENGTH (type) == 16))
2333 {
2334 /* The System V ABI says that:
2335
2336 "A function that returns a structure or union also sets %eax
2337 to the value of the original address of the caller's area
2338 before it returns. Thus when the caller receives control
2339 again, the address of the returned object resides in register
2340 %eax and can be used to access the object."
2341
2342 So the ABI guarantees that we can always find the return
2343 value just after the function has returned. */
2344
2345 /* Note that the ABI doesn't mention functions returning arrays,
2346 which is something possible in certain languages such as Ada.
2347 In this case, the value is returned as if it was wrapped in
2348 a record, so the convention applied to records also applies
2349 to arrays. */
2350
2351 if (readbuf)
2352 {
2353 ULONGEST addr;
2354
2355 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
2356 read_memory (addr, readbuf, TYPE_LENGTH (type));
2357 }
2358
2359 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
2360 }
2361
2362 /* This special case is for structures consisting of a single
2363 `float', `double' or 'long double' member. These structures are
2364 returned in %st(0). For these structures, we call ourselves
2365 recursively, changing TYPE into the type of the first member of
2366 the structure. Since that should work for all structures that
2367 have only one member, we don't bother to check the member's type
2368 here. */
2369 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2370 {
2371 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
2372 return i386_return_value (gdbarch, func_type, type, regcache,
2373 readbuf, writebuf);
2374 }
2375
2376 if (readbuf)
2377 i386_extract_return_value (gdbarch, type, regcache, readbuf);
2378 if (writebuf)
2379 i386_store_return_value (gdbarch, type, regcache, writebuf);
2380
2381 return RETURN_VALUE_REGISTER_CONVENTION;
2382 }
2383 \f
2384
2385 struct type *
2386 i387_ext_type (struct gdbarch *gdbarch)
2387 {
2388 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2389
2390 if (!tdep->i387_ext_type)
2391 {
2392 tdep->i387_ext_type = tdesc_find_type (gdbarch, "i387_ext");
2393 gdb_assert (tdep->i387_ext_type != NULL);
2394 }
2395
2396 return tdep->i387_ext_type;
2397 }
2398
2399 /* Construct vector type for pseudo YMM registers. We can't use
2400 tdesc_find_type since YMM isn't described in target description. */
2401
2402 static struct type *
2403 i386_ymm_type (struct gdbarch *gdbarch)
2404 {
2405 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2406
2407 if (!tdep->i386_ymm_type)
2408 {
2409 const struct builtin_type *bt = builtin_type (gdbarch);
2410
2411 /* The type we're building is this: */
2412 #if 0
2413 union __gdb_builtin_type_vec256i
2414 {
2415 int128_t uint128[2];
2416 int64_t v2_int64[4];
2417 int32_t v4_int32[8];
2418 int16_t v8_int16[16];
2419 int8_t v16_int8[32];
2420 double v2_double[4];
2421 float v4_float[8];
2422 };
2423 #endif
2424
2425 struct type *t;
2426
2427 t = arch_composite_type (gdbarch,
2428 "__gdb_builtin_type_vec256i", TYPE_CODE_UNION);
2429 append_composite_type_field (t, "v8_float",
2430 init_vector_type (bt->builtin_float, 8));
2431 append_composite_type_field (t, "v4_double",
2432 init_vector_type (bt->builtin_double, 4));
2433 append_composite_type_field (t, "v32_int8",
2434 init_vector_type (bt->builtin_int8, 32));
2435 append_composite_type_field (t, "v16_int16",
2436 init_vector_type (bt->builtin_int16, 16));
2437 append_composite_type_field (t, "v8_int32",
2438 init_vector_type (bt->builtin_int32, 8));
2439 append_composite_type_field (t, "v4_int64",
2440 init_vector_type (bt->builtin_int64, 4));
2441 append_composite_type_field (t, "v2_int128",
2442 init_vector_type (bt->builtin_int128, 2));
2443
2444 TYPE_VECTOR (t) = 1;
2445 TYPE_NAME (t) = "builtin_type_vec256i";
2446 tdep->i386_ymm_type = t;
2447 }
2448
2449 return tdep->i386_ymm_type;
2450 }
2451
2452 /* Construct vector type for MMX registers. */
2453 static struct type *
2454 i386_mmx_type (struct gdbarch *gdbarch)
2455 {
2456 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2457
2458 if (!tdep->i386_mmx_type)
2459 {
2460 const struct builtin_type *bt = builtin_type (gdbarch);
2461
2462 /* The type we're building is this: */
2463 #if 0
2464 union __gdb_builtin_type_vec64i
2465 {
2466 int64_t uint64;
2467 int32_t v2_int32[2];
2468 int16_t v4_int16[4];
2469 int8_t v8_int8[8];
2470 };
2471 #endif
2472
2473 struct type *t;
2474
2475 t = arch_composite_type (gdbarch,
2476 "__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
2477
2478 append_composite_type_field (t, "uint64", bt->builtin_int64);
2479 append_composite_type_field (t, "v2_int32",
2480 init_vector_type (bt->builtin_int32, 2));
2481 append_composite_type_field (t, "v4_int16",
2482 init_vector_type (bt->builtin_int16, 4));
2483 append_composite_type_field (t, "v8_int8",
2484 init_vector_type (bt->builtin_int8, 8));
2485
2486 TYPE_VECTOR (t) = 1;
2487 TYPE_NAME (t) = "builtin_type_vec64i";
2488 tdep->i386_mmx_type = t;
2489 }
2490
2491 return tdep->i386_mmx_type;
2492 }
2493
2494 /* Return the GDB type object for the "standard" data type of data in
2495 register REGNUM. */
2496
2497 static struct type *
2498 i386_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
2499 {
2500 if (i386_mmx_regnum_p (gdbarch, regnum))
2501 return i386_mmx_type (gdbarch);
2502 else if (i386_ymm_regnum_p (gdbarch, regnum))
2503 return i386_ymm_type (gdbarch);
2504 else
2505 {
2506 const struct builtin_type *bt = builtin_type (gdbarch);
2507 if (i386_byte_regnum_p (gdbarch, regnum))
2508 return bt->builtin_int8;
2509 else if (i386_word_regnum_p (gdbarch, regnum))
2510 return bt->builtin_int16;
2511 else if (i386_dword_regnum_p (gdbarch, regnum))
2512 return bt->builtin_int32;
2513 }
2514
2515 internal_error (__FILE__, __LINE__, _("invalid regnum"));
2516 }
2517
2518 /* Map a cooked register onto a raw register or memory. For the i386,
2519 the MMX registers need to be mapped onto floating point registers. */
2520
2521 static int
2522 i386_mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
2523 {
2524 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
2525 int mmxreg, fpreg;
2526 ULONGEST fstat;
2527 int tos;
2528
2529 mmxreg = regnum - tdep->mm0_regnum;
2530 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
2531 tos = (fstat >> 11) & 0x7;
2532 fpreg = (mmxreg + tos) % 8;
2533
2534 return (I387_ST0_REGNUM (tdep) + fpreg);
2535 }
2536
2537 void
2538 i386_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2539 int regnum, gdb_byte *buf)
2540 {
2541 gdb_byte raw_buf[MAX_REGISTER_SIZE];
2542
2543 if (i386_mmx_regnum_p (gdbarch, regnum))
2544 {
2545 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
2546
2547 /* Extract (always little endian). */
2548 regcache_raw_read (regcache, fpnum, raw_buf);
2549 memcpy (buf, raw_buf, register_size (gdbarch, regnum));
2550 }
2551 else
2552 {
2553 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2554
2555 if (i386_ymm_regnum_p (gdbarch, regnum))
2556 {
2557 regnum -= tdep->ymm0_regnum;
2558
2559 /* Extract (always little endian). Read lower 128bits. */
2560 regcache_raw_read (regcache,
2561 I387_XMM0_REGNUM (tdep) + regnum,
2562 raw_buf);
2563 memcpy (buf, raw_buf, 16);
2564 /* Read upper 128bits. */
2565 regcache_raw_read (regcache,
2566 tdep->ymm0h_regnum + regnum,
2567 raw_buf);
2568 memcpy (buf + 16, raw_buf, 16);
2569 }
2570 else if (i386_word_regnum_p (gdbarch, regnum))
2571 {
2572 int gpnum = regnum - tdep->ax_regnum;
2573
2574 /* Extract (always little endian). */
2575 regcache_raw_read (regcache, gpnum, raw_buf);
2576 memcpy (buf, raw_buf, 2);
2577 }
2578 else if (i386_byte_regnum_p (gdbarch, regnum))
2579 {
2580 /* Check byte pseudo registers last since this function will
2581 be called from amd64_pseudo_register_read, which handles
2582 byte pseudo registers differently. */
2583 int gpnum = regnum - tdep->al_regnum;
2584
2585 /* Extract (always little endian). We read both lower and
2586 upper registers. */
2587 regcache_raw_read (regcache, gpnum % 4, raw_buf);
2588 if (gpnum >= 4)
2589 memcpy (buf, raw_buf + 1, 1);
2590 else
2591 memcpy (buf, raw_buf, 1);
2592 }
2593 else
2594 internal_error (__FILE__, __LINE__, _("invalid regnum"));
2595 }
2596 }
2597
2598 void
2599 i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2600 int regnum, const gdb_byte *buf)
2601 {
2602 gdb_byte raw_buf[MAX_REGISTER_SIZE];
2603
2604 if (i386_mmx_regnum_p (gdbarch, regnum))
2605 {
2606 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
2607
2608 /* Read ... */
2609 regcache_raw_read (regcache, fpnum, raw_buf);
2610 /* ... Modify ... (always little endian). */
2611 memcpy (raw_buf, buf, register_size (gdbarch, regnum));
2612 /* ... Write. */
2613 regcache_raw_write (regcache, fpnum, raw_buf);
2614 }
2615 else
2616 {
2617 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2618
2619 if (i386_ymm_regnum_p (gdbarch, regnum))
2620 {
2621 regnum -= tdep->ymm0_regnum;
2622
2623 /* ... Write lower 128bits. */
2624 regcache_raw_write (regcache,
2625 I387_XMM0_REGNUM (tdep) + regnum,
2626 buf);
2627 /* ... Write upper 128bits. */
2628 regcache_raw_write (regcache,
2629 tdep->ymm0h_regnum + regnum,
2630 buf + 16);
2631 }
2632 else if (i386_word_regnum_p (gdbarch, regnum))
2633 {
2634 int gpnum = regnum - tdep->ax_regnum;
2635
2636 /* Read ... */
2637 regcache_raw_read (regcache, gpnum, raw_buf);
2638 /* ... Modify ... (always little endian). */
2639 memcpy (raw_buf, buf, 2);
2640 /* ... Write. */
2641 regcache_raw_write (regcache, gpnum, raw_buf);
2642 }
2643 else if (i386_byte_regnum_p (gdbarch, regnum))
2644 {
2645 /* Check byte pseudo registers last since this function will
2646 be called from amd64_pseudo_register_read, which handles
2647 byte pseudo registers differently. */
2648 int gpnum = regnum - tdep->al_regnum;
2649
2650 /* Read ... We read both lower and upper registers. */
2651 regcache_raw_read (regcache, gpnum % 4, raw_buf);
2652 /* ... Modify ... (always little endian). */
2653 if (gpnum >= 4)
2654 memcpy (raw_buf + 1, buf, 1);
2655 else
2656 memcpy (raw_buf, buf, 1);
2657 /* ... Write. */
2658 regcache_raw_write (regcache, gpnum % 4, raw_buf);
2659 }
2660 else
2661 internal_error (__FILE__, __LINE__, _("invalid regnum"));
2662 }
2663 }
2664 \f
2665
2666 /* Return the register number of the register allocated by GCC after
2667 REGNUM, or -1 if there is no such register. */
2668
2669 static int
2670 i386_next_regnum (int regnum)
2671 {
2672 /* GCC allocates the registers in the order:
2673
2674 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
2675
2676 Since storing a variable in %esp doesn't make any sense we return
2677 -1 for %ebp and for %esp itself. */
2678 static int next_regnum[] =
2679 {
2680 I386_EDX_REGNUM, /* Slot for %eax. */
2681 I386_EBX_REGNUM, /* Slot for %ecx. */
2682 I386_ECX_REGNUM, /* Slot for %edx. */
2683 I386_ESI_REGNUM, /* Slot for %ebx. */
2684 -1, -1, /* Slots for %esp and %ebp. */
2685 I386_EDI_REGNUM, /* Slot for %esi. */
2686 I386_EBP_REGNUM /* Slot for %edi. */
2687 };
2688
2689 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
2690 return next_regnum[regnum];
2691
2692 return -1;
2693 }
2694
2695 /* Return nonzero if a value of type TYPE stored in register REGNUM
2696 needs any special handling. */
2697
2698 static int
2699 i386_convert_register_p (struct gdbarch *gdbarch,
2700 int regnum, struct type *type)
2701 {
2702 int len = TYPE_LENGTH (type);
2703
2704 /* Values may be spread across multiple registers. Most debugging
2705 formats aren't expressive enough to specify the locations, so
2706 some heuristics is involved. Right now we only handle types that
2707 have a length that is a multiple of the word size, since GCC
2708 doesn't seem to put any other types into registers. */
2709 if (len > 4 && len % 4 == 0)
2710 {
2711 int last_regnum = regnum;
2712
2713 while (len > 4)
2714 {
2715 last_regnum = i386_next_regnum (last_regnum);
2716 len -= 4;
2717 }
2718
2719 if (last_regnum != -1)
2720 return 1;
2721 }
2722
2723 return i387_convert_register_p (gdbarch, regnum, type);
2724 }
2725
2726 /* Read a value of type TYPE from register REGNUM in frame FRAME, and
2727 return its contents in TO. */
2728
2729 static void
2730 i386_register_to_value (struct frame_info *frame, int regnum,
2731 struct type *type, gdb_byte *to)
2732 {
2733 struct gdbarch *gdbarch = get_frame_arch (frame);
2734 int len = TYPE_LENGTH (type);
2735
2736 /* FIXME: kettenis/20030609: What should we do if REGNUM isn't
2737 available in FRAME (i.e. if it wasn't saved)? */
2738
2739 if (i386_fp_regnum_p (gdbarch, regnum))
2740 {
2741 i387_register_to_value (frame, regnum, type, to);
2742 return;
2743 }
2744
2745 /* Read a value spread across multiple registers. */
2746
2747 gdb_assert (len > 4 && len % 4 == 0);
2748
2749 while (len > 0)
2750 {
2751 gdb_assert (regnum != -1);
2752 gdb_assert (register_size (gdbarch, regnum) == 4);
2753
2754 get_frame_register (frame, regnum, to);
2755 regnum = i386_next_regnum (regnum);
2756 len -= 4;
2757 to += 4;
2758 }
2759 }
2760
2761 /* Write the contents FROM of a value of type TYPE into register
2762 REGNUM in frame FRAME. */
2763
2764 static void
2765 i386_value_to_register (struct frame_info *frame, int regnum,
2766 struct type *type, const gdb_byte *from)
2767 {
2768 int len = TYPE_LENGTH (type);
2769
2770 if (i386_fp_regnum_p (get_frame_arch (frame), regnum))
2771 {
2772 i387_value_to_register (frame, regnum, type, from);
2773 return;
2774 }
2775
2776 /* Write a value spread across multiple registers. */
2777
2778 gdb_assert (len > 4 && len % 4 == 0);
2779
2780 while (len > 0)
2781 {
2782 gdb_assert (regnum != -1);
2783 gdb_assert (register_size (get_frame_arch (frame), regnum) == 4);
2784
2785 put_frame_register (frame, regnum, from);
2786 regnum = i386_next_regnum (regnum);
2787 len -= 4;
2788 from += 4;
2789 }
2790 }
2791 \f
2792 /* Supply register REGNUM from the buffer specified by GREGS and LEN
2793 in the general-purpose register set REGSET to register cache
2794 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
2795
2796 void
2797 i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
2798 int regnum, const void *gregs, size_t len)
2799 {
2800 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
2801 const gdb_byte *regs = gregs;
2802 int i;
2803
2804 gdb_assert (len == tdep->sizeof_gregset);
2805
2806 for (i = 0; i < tdep->gregset_num_regs; i++)
2807 {
2808 if ((regnum == i || regnum == -1)
2809 && tdep->gregset_reg_offset[i] != -1)
2810 regcache_raw_supply (regcache, i, regs + tdep->gregset_reg_offset[i]);
2811 }
2812 }
2813
2814 /* Collect register REGNUM from the register cache REGCACHE and store
2815 it in the buffer specified by GREGS and LEN as described by the
2816 general-purpose register set REGSET. If REGNUM is -1, do this for
2817 all registers in REGSET. */
2818
2819 void
2820 i386_collect_gregset (const struct regset *regset,
2821 const struct regcache *regcache,
2822 int regnum, void *gregs, size_t len)
2823 {
2824 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
2825 gdb_byte *regs = gregs;
2826 int i;
2827
2828 gdb_assert (len == tdep->sizeof_gregset);
2829
2830 for (i = 0; i < tdep->gregset_num_regs; i++)
2831 {
2832 if ((regnum == i || regnum == -1)
2833 && tdep->gregset_reg_offset[i] != -1)
2834 regcache_raw_collect (regcache, i, regs + tdep->gregset_reg_offset[i]);
2835 }
2836 }
2837
2838 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
2839 in the floating-point register set REGSET to register cache
2840 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
2841
2842 static void
2843 i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
2844 int regnum, const void *fpregs, size_t len)
2845 {
2846 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
2847
2848 if (len == I387_SIZEOF_FXSAVE)
2849 {
2850 i387_supply_fxsave (regcache, regnum, fpregs);
2851 return;
2852 }
2853
2854 gdb_assert (len == tdep->sizeof_fpregset);
2855 i387_supply_fsave (regcache, regnum, fpregs);
2856 }
2857
2858 /* Collect register REGNUM from the register cache REGCACHE and store
2859 it in the buffer specified by FPREGS and LEN as described by the
2860 floating-point register set REGSET. If REGNUM is -1, do this for
2861 all registers in REGSET. */
2862
2863 static void
2864 i386_collect_fpregset (const struct regset *regset,
2865 const struct regcache *regcache,
2866 int regnum, void *fpregs, size_t len)
2867 {
2868 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
2869
2870 if (len == I387_SIZEOF_FXSAVE)
2871 {
2872 i387_collect_fxsave (regcache, regnum, fpregs);
2873 return;
2874 }
2875
2876 gdb_assert (len == tdep->sizeof_fpregset);
2877 i387_collect_fsave (regcache, regnum, fpregs);
2878 }
2879
2880 /* Similar to i386_supply_fpregset, but use XSAVE extended state. */
2881
2882 static void
2883 i386_supply_xstateregset (const struct regset *regset,
2884 struct regcache *regcache, int regnum,
2885 const void *xstateregs, size_t len)
2886 {
2887 i387_supply_xsave (regcache, regnum, xstateregs);
2888 }
2889
2890 /* Similar to i386_collect_fpregset , but use XSAVE extended state. */
2891
2892 static void
2893 i386_collect_xstateregset (const struct regset *regset,
2894 const struct regcache *regcache,
2895 int regnum, void *xstateregs, size_t len)
2896 {
2897 i387_collect_xsave (regcache, regnum, xstateregs, 1);
2898 }
2899
2900 /* Return the appropriate register set for the core section identified
2901 by SECT_NAME and SECT_SIZE. */
2902
2903 const struct regset *
2904 i386_regset_from_core_section (struct gdbarch *gdbarch,
2905 const char *sect_name, size_t sect_size)
2906 {
2907 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2908
2909 if (strcmp (sect_name, ".reg") == 0 && sect_size == tdep->sizeof_gregset)
2910 {
2911 if (tdep->gregset == NULL)
2912 tdep->gregset = regset_alloc (gdbarch, i386_supply_gregset,
2913 i386_collect_gregset);
2914 return tdep->gregset;
2915 }
2916
2917 if ((strcmp (sect_name, ".reg2") == 0 && sect_size == tdep->sizeof_fpregset)
2918 || (strcmp (sect_name, ".reg-xfp") == 0
2919 && sect_size == I387_SIZEOF_FXSAVE))
2920 {
2921 if (tdep->fpregset == NULL)
2922 tdep->fpregset = regset_alloc (gdbarch, i386_supply_fpregset,
2923 i386_collect_fpregset);
2924 return tdep->fpregset;
2925 }
2926
2927 if (strcmp (sect_name, ".reg-xstate") == 0)
2928 {
2929 if (tdep->xstateregset == NULL)
2930 tdep->xstateregset = regset_alloc (gdbarch,
2931 i386_supply_xstateregset,
2932 i386_collect_xstateregset);
2933
2934 return tdep->xstateregset;
2935 }
2936
2937 return NULL;
2938 }
2939 \f
2940
2941 /* Stuff for WIN32 PE style DLL's but is pretty generic really. */
2942
2943 CORE_ADDR
2944 i386_pe_skip_trampoline_code (struct frame_info *frame,
2945 CORE_ADDR pc, char *name)
2946 {
2947 struct gdbarch *gdbarch = get_frame_arch (frame);
2948 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2949
2950 /* jmp *(dest) */
2951 if (pc && read_memory_unsigned_integer (pc, 2, byte_order) == 0x25ff)
2952 {
2953 unsigned long indirect =
2954 read_memory_unsigned_integer (pc + 2, 4, byte_order);
2955 struct minimal_symbol *indsym =
2956 indirect ? lookup_minimal_symbol_by_pc (indirect) : 0;
2957 char *symname = indsym ? SYMBOL_LINKAGE_NAME (indsym) : 0;
2958
2959 if (symname)
2960 {
2961 if (strncmp (symname, "__imp_", 6) == 0
2962 || strncmp (symname, "_imp_", 5) == 0)
2963 return name ? 1 :
2964 read_memory_unsigned_integer (indirect, 4, byte_order);
2965 }
2966 }
2967 return 0; /* Not a trampoline. */
2968 }
2969 \f
2970
2971 /* Return whether the THIS_FRAME corresponds to a sigtramp
2972 routine. */
2973
2974 int
2975 i386_sigtramp_p (struct frame_info *this_frame)
2976 {
2977 CORE_ADDR pc = get_frame_pc (this_frame);
2978 char *name;
2979
2980 find_pc_partial_function (pc, &name, NULL, NULL);
2981 return (name && strcmp ("_sigtramp", name) == 0);
2982 }
2983 \f
2984
2985 /* We have two flavours of disassembly. The machinery on this page
2986 deals with switching between those. */
2987
2988 static int
2989 i386_print_insn (bfd_vma pc, struct disassemble_info *info)
2990 {
2991 gdb_assert (disassembly_flavor == att_flavor
2992 || disassembly_flavor == intel_flavor);
2993
2994 /* FIXME: kettenis/20020915: Until disassembler_options is properly
2995 constified, cast to prevent a compiler warning. */
2996 info->disassembler_options = (char *) disassembly_flavor;
2997
2998 return print_insn_i386 (pc, info);
2999 }
3000 \f
3001
3002 /* There are a few i386 architecture variants that differ only
3003 slightly from the generic i386 target. For now, we don't give them
3004 their own source file, but include them here. As a consequence,
3005 they'll always be included. */
3006
3007 /* System V Release 4 (SVR4). */
3008
3009 /* Return whether THIS_FRAME corresponds to a SVR4 sigtramp
3010 routine. */
3011
3012 static int
3013 i386_svr4_sigtramp_p (struct frame_info *this_frame)
3014 {
3015 CORE_ADDR pc = get_frame_pc (this_frame);
3016 char *name;
3017
3018 /* UnixWare uses _sigacthandler. The origin of the other symbols is
3019 currently unknown. */
3020 find_pc_partial_function (pc, &name, NULL, NULL);
3021 return (name && (strcmp ("_sigreturn", name) == 0
3022 || strcmp ("_sigacthandler", name) == 0
3023 || strcmp ("sigvechandler", name) == 0));
3024 }
3025
3026 /* Assuming THIS_FRAME is for a SVR4 sigtramp routine, return the
3027 address of the associated sigcontext (ucontext) structure. */
3028
3029 static CORE_ADDR
3030 i386_svr4_sigcontext_addr (struct frame_info *this_frame)
3031 {
3032 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3033 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3034 gdb_byte buf[4];
3035 CORE_ADDR sp;
3036
3037 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
3038 sp = extract_unsigned_integer (buf, 4, byte_order);
3039
3040 return read_memory_unsigned_integer (sp + 8, 4, byte_order);
3041 }
3042 \f
3043
3044 /* Generic ELF. */
3045
3046 void
3047 i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3048 {
3049 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
3050 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
3051 }
3052
3053 /* System V Release 4 (SVR4). */
3054
3055 void
3056 i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3057 {
3058 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3059
3060 /* System V Release 4 uses ELF. */
3061 i386_elf_init_abi (info, gdbarch);
3062
3063 /* System V Release 4 has shared libraries. */
3064 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
3065
3066 tdep->sigtramp_p = i386_svr4_sigtramp_p;
3067 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
3068 tdep->sc_pc_offset = 36 + 14 * 4;
3069 tdep->sc_sp_offset = 36 + 17 * 4;
3070
3071 tdep->jb_pc_offset = 20;
3072 }
3073
3074 /* DJGPP. */
3075
3076 static void
3077 i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3078 {
3079 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3080
3081 /* DJGPP doesn't have any special frames for signal handlers. */
3082 tdep->sigtramp_p = NULL;
3083
3084 tdep->jb_pc_offset = 36;
3085
3086 /* DJGPP does not support the SSE registers. */
3087 if (! tdesc_has_registers (info.target_desc))
3088 tdep->tdesc = tdesc_i386_mmx;
3089
3090 /* Native compiler is GCC, which uses the SVR4 register numbering
3091 even in COFF and STABS. See the comment in i386_gdbarch_init,
3092 before the calls to set_gdbarch_stab_reg_to_regnum and
3093 set_gdbarch_sdb_reg_to_regnum. */
3094 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
3095 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
3096
3097 set_gdbarch_has_dos_based_file_system (gdbarch, 1);
3098 }
3099 \f
3100
3101 /* i386 register groups. In addition to the normal groups, add "mmx"
3102 and "sse". */
3103
3104 static struct reggroup *i386_sse_reggroup;
3105 static struct reggroup *i386_mmx_reggroup;
3106
3107 static void
3108 i386_init_reggroups (void)
3109 {
3110 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
3111 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
3112 }
3113
3114 static void
3115 i386_add_reggroups (struct gdbarch *gdbarch)
3116 {
3117 reggroup_add (gdbarch, i386_sse_reggroup);
3118 reggroup_add (gdbarch, i386_mmx_reggroup);
3119 reggroup_add (gdbarch, general_reggroup);
3120 reggroup_add (gdbarch, float_reggroup);
3121 reggroup_add (gdbarch, all_reggroup);
3122 reggroup_add (gdbarch, save_reggroup);
3123 reggroup_add (gdbarch, restore_reggroup);
3124 reggroup_add (gdbarch, vector_reggroup);
3125 reggroup_add (gdbarch, system_reggroup);
3126 }
3127
3128 int
3129 i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
3130 struct reggroup *group)
3131 {
3132 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3133 int fp_regnum_p, mmx_regnum_p, xmm_regnum_p, mxcsr_regnum_p,
3134 ymm_regnum_p, ymmh_regnum_p;
3135
3136 /* Don't include pseudo registers, except for MMX, in any register
3137 groups. */
3138 if (i386_byte_regnum_p (gdbarch, regnum))
3139 return 0;
3140
3141 if (i386_word_regnum_p (gdbarch, regnum))
3142 return 0;
3143
3144 if (i386_dword_regnum_p (gdbarch, regnum))
3145 return 0;
3146
3147 mmx_regnum_p = i386_mmx_regnum_p (gdbarch, regnum);
3148 if (group == i386_mmx_reggroup)
3149 return mmx_regnum_p;
3150
3151 xmm_regnum_p = i386_xmm_regnum_p (gdbarch, regnum);
3152 mxcsr_regnum_p = i386_mxcsr_regnum_p (gdbarch, regnum);
3153 if (group == i386_sse_reggroup)
3154 return xmm_regnum_p || mxcsr_regnum_p;
3155
3156 ymm_regnum_p = i386_ymm_regnum_p (gdbarch, regnum);
3157 if (group == vector_reggroup)
3158 return (mmx_regnum_p
3159 || ymm_regnum_p
3160 || mxcsr_regnum_p
3161 || (xmm_regnum_p
3162 && ((tdep->xcr0 & I386_XSTATE_AVX_MASK)
3163 == I386_XSTATE_SSE_MASK)));
3164
3165 fp_regnum_p = (i386_fp_regnum_p (gdbarch, regnum)
3166 || i386_fpc_regnum_p (gdbarch, regnum));
3167 if (group == float_reggroup)
3168 return fp_regnum_p;
3169
3170 /* For "info reg all", don't include upper YMM registers nor XMM
3171 registers when AVX is supported. */
3172 ymmh_regnum_p = i386_ymmh_regnum_p (gdbarch, regnum);
3173 if (group == all_reggroup
3174 && ((xmm_regnum_p
3175 && (tdep->xcr0 & I386_XSTATE_AVX))
3176 || ymmh_regnum_p))
3177 return 0;
3178
3179 if (group == general_reggroup)
3180 return (!fp_regnum_p
3181 && !mmx_regnum_p
3182 && !mxcsr_regnum_p
3183 && !xmm_regnum_p
3184 && !ymm_regnum_p
3185 && !ymmh_regnum_p);
3186
3187 return default_register_reggroup_p (gdbarch, regnum, group);
3188 }
3189 \f
3190
3191 /* Get the ARGIth function argument for the current function. */
3192
3193 static CORE_ADDR
3194 i386_fetch_pointer_argument (struct frame_info *frame, int argi,
3195 struct type *type)
3196 {
3197 struct gdbarch *gdbarch = get_frame_arch (frame);
3198 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3199 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
3200 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4, byte_order);
3201 }
3202
3203 static void
3204 i386_skip_permanent_breakpoint (struct regcache *regcache)
3205 {
3206 CORE_ADDR current_pc = regcache_read_pc (regcache);
3207
3208 /* On i386, breakpoint is exactly 1 byte long, so we just
3209 adjust the PC in the regcache. */
3210 current_pc += 1;
3211 regcache_write_pc (regcache, current_pc);
3212 }
3213
3214
3215 #define PREFIX_REPZ 0x01
3216 #define PREFIX_REPNZ 0x02
3217 #define PREFIX_LOCK 0x04
3218 #define PREFIX_DATA 0x08
3219 #define PREFIX_ADDR 0x10
3220
3221 /* operand size */
3222 enum
3223 {
3224 OT_BYTE = 0,
3225 OT_WORD,
3226 OT_LONG,
3227 OT_QUAD,
3228 OT_DQUAD,
3229 };
3230
3231 /* i386 arith/logic operations */
3232 enum
3233 {
3234 OP_ADDL,
3235 OP_ORL,
3236 OP_ADCL,
3237 OP_SBBL,
3238 OP_ANDL,
3239 OP_SUBL,
3240 OP_XORL,
3241 OP_CMPL,
3242 };
3243
3244 struct i386_record_s
3245 {
3246 struct gdbarch *gdbarch;
3247 struct regcache *regcache;
3248 CORE_ADDR orig_addr;
3249 CORE_ADDR addr;
3250 int aflag;
3251 int dflag;
3252 int override;
3253 uint8_t modrm;
3254 uint8_t mod, reg, rm;
3255 int ot;
3256 uint8_t rex_x;
3257 uint8_t rex_b;
3258 int rip_offset;
3259 int popl_esp_hack;
3260 const int *regmap;
3261 };
3262
3263 /* Parse "modrm" part in current memory address that irp->addr point to
3264 Return -1 if something wrong. */
3265
3266 static int
3267 i386_record_modrm (struct i386_record_s *irp)
3268 {
3269 struct gdbarch *gdbarch = irp->gdbarch;
3270
3271 if (target_read_memory (irp->addr, &irp->modrm, 1))
3272 {
3273 if (record_debug)
3274 printf_unfiltered (_("Process record: error reading memory at "
3275 "addr %s len = 1.\n"),
3276 paddress (gdbarch, irp->addr));
3277 return -1;
3278 }
3279 irp->addr++;
3280 irp->mod = (irp->modrm >> 6) & 3;
3281 irp->reg = (irp->modrm >> 3) & 7;
3282 irp->rm = irp->modrm & 7;
3283
3284 return 0;
3285 }
3286
3287 /* Get the memory address that current instruction write to and set it to
3288 the argument "addr".
3289 Return -1 if something wrong. */
3290
3291 static int
3292 i386_record_lea_modrm_addr (struct i386_record_s *irp, uint64_t *addr)
3293 {
3294 struct gdbarch *gdbarch = irp->gdbarch;
3295 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3296 gdb_byte buf[4];
3297 ULONGEST offset64;
3298
3299 *addr = 0;
3300 if (irp->aflag)
3301 {
3302 /* 32 bits */
3303 int havesib = 0;
3304 uint8_t scale = 0;
3305 uint8_t byte;
3306 uint8_t index = 0;
3307 uint8_t base = irp->rm;
3308
3309 if (base == 4)
3310 {
3311 havesib = 1;
3312 if (target_read_memory (irp->addr, &byte, 1))
3313 {
3314 if (record_debug)
3315 printf_unfiltered (_("Process record: error reading memory "
3316 "at addr %s len = 1.\n"),
3317 paddress (gdbarch, irp->addr));
3318 return -1;
3319 }
3320 irp->addr++;
3321 scale = (byte >> 6) & 3;
3322 index = ((byte >> 3) & 7) | irp->rex_x;
3323 base = (byte & 7);
3324 }
3325 base |= irp->rex_b;
3326
3327 switch (irp->mod)
3328 {
3329 case 0:
3330 if ((base & 7) == 5)
3331 {
3332 base = 0xff;
3333 if (target_read_memory (irp->addr, buf, 4))
3334 {
3335 if (record_debug)
3336 printf_unfiltered (_("Process record: error reading "
3337 "memory at addr %s len = 4.\n"),
3338 paddress (gdbarch, irp->addr));
3339 return -1;
3340 }
3341 irp->addr += 4;
3342 *addr = extract_signed_integer (buf, 4, byte_order);
3343 if (irp->regmap[X86_RECORD_R8_REGNUM] && !havesib)
3344 *addr += irp->addr + irp->rip_offset;
3345 }
3346 break;
3347 case 1:
3348 if (target_read_memory (irp->addr, buf, 1))
3349 {
3350 if (record_debug)
3351 printf_unfiltered (_("Process record: error reading memory "
3352 "at addr %s len = 1.\n"),
3353 paddress (gdbarch, irp->addr));
3354 return -1;
3355 }
3356 irp->addr++;
3357 *addr = (int8_t) buf[0];
3358 break;
3359 case 2:
3360 if (target_read_memory (irp->addr, buf, 4))
3361 {
3362 if (record_debug)
3363 printf_unfiltered (_("Process record: error reading memory "
3364 "at addr %s len = 4.\n"),
3365 paddress (gdbarch, irp->addr));
3366 return -1;
3367 }
3368 *addr = extract_signed_integer (buf, 4, byte_order);
3369 irp->addr += 4;
3370 break;
3371 }
3372
3373 offset64 = 0;
3374 if (base != 0xff)
3375 {
3376 if (base == 4 && irp->popl_esp_hack)
3377 *addr += irp->popl_esp_hack;
3378 regcache_raw_read_unsigned (irp->regcache, irp->regmap[base],
3379 &offset64);
3380 }
3381 if (irp->aflag == 2)
3382 {
3383 *addr += offset64;
3384 }
3385 else
3386 *addr = (uint32_t) (offset64 + *addr);
3387
3388 if (havesib && (index != 4 || scale != 0))
3389 {
3390 regcache_raw_read_unsigned (irp->regcache, irp->regmap[index],
3391 &offset64);
3392 if (irp->aflag == 2)
3393 *addr += offset64 << scale;
3394 else
3395 *addr = (uint32_t) (*addr + (offset64 << scale));
3396 }
3397 }
3398 else
3399 {
3400 /* 16 bits */
3401 switch (irp->mod)
3402 {
3403 case 0:
3404 if (irp->rm == 6)
3405 {
3406 if (target_read_memory (irp->addr, buf, 2))
3407 {
3408 if (record_debug)
3409 printf_unfiltered (_("Process record: error reading "
3410 "memory at addr %s len = 2.\n"),
3411 paddress (gdbarch, irp->addr));
3412 return -1;
3413 }
3414 irp->addr += 2;
3415 *addr = extract_signed_integer (buf, 2, byte_order);
3416 irp->rm = 0;
3417 goto no_rm;
3418 }
3419 break;
3420 case 1:
3421 if (target_read_memory (irp->addr, buf, 1))
3422 {
3423 if (record_debug)
3424 printf_unfiltered (_("Process record: error reading memory "
3425 "at addr %s len = 1.\n"),
3426 paddress (gdbarch, irp->addr));
3427 return -1;
3428 }
3429 irp->addr++;
3430 *addr = (int8_t) buf[0];
3431 break;
3432 case 2:
3433 if (target_read_memory (irp->addr, buf, 2))
3434 {
3435 if (record_debug)
3436 printf_unfiltered (_("Process record: error reading memory "
3437 "at addr %s len = 2.\n"),
3438 paddress (gdbarch, irp->addr));
3439 return -1;
3440 }
3441 irp->addr += 2;
3442 *addr = extract_signed_integer (buf, 2, byte_order);
3443 break;
3444 }
3445
3446 switch (irp->rm)
3447 {
3448 case 0:
3449 regcache_raw_read_unsigned (irp->regcache,
3450 irp->regmap[X86_RECORD_REBX_REGNUM],
3451 &offset64);
3452 *addr = (uint32_t) (*addr + offset64);
3453 regcache_raw_read_unsigned (irp->regcache,
3454 irp->regmap[X86_RECORD_RESI_REGNUM],
3455 &offset64);
3456 *addr = (uint32_t) (*addr + offset64);
3457 break;
3458 case 1:
3459 regcache_raw_read_unsigned (irp->regcache,
3460 irp->regmap[X86_RECORD_REBX_REGNUM],
3461 &offset64);
3462 *addr = (uint32_t) (*addr + offset64);
3463 regcache_raw_read_unsigned (irp->regcache,
3464 irp->regmap[X86_RECORD_REDI_REGNUM],
3465 &offset64);
3466 *addr = (uint32_t) (*addr + offset64);
3467 break;
3468 case 2:
3469 regcache_raw_read_unsigned (irp->regcache,
3470 irp->regmap[X86_RECORD_REBP_REGNUM],
3471 &offset64);
3472 *addr = (uint32_t) (*addr + offset64);
3473 regcache_raw_read_unsigned (irp->regcache,
3474 irp->regmap[X86_RECORD_RESI_REGNUM],
3475 &offset64);
3476 *addr = (uint32_t) (*addr + offset64);
3477 break;
3478 case 3:
3479 regcache_raw_read_unsigned (irp->regcache,
3480 irp->regmap[X86_RECORD_REBP_REGNUM],
3481 &offset64);
3482 *addr = (uint32_t) (*addr + offset64);
3483 regcache_raw_read_unsigned (irp->regcache,
3484 irp->regmap[X86_RECORD_REDI_REGNUM],
3485 &offset64);
3486 *addr = (uint32_t) (*addr + offset64);
3487 break;
3488 case 4:
3489 regcache_raw_read_unsigned (irp->regcache,
3490 irp->regmap[X86_RECORD_RESI_REGNUM],
3491 &offset64);
3492 *addr = (uint32_t) (*addr + offset64);
3493 break;
3494 case 5:
3495 regcache_raw_read_unsigned (irp->regcache,
3496 irp->regmap[X86_RECORD_REDI_REGNUM],
3497 &offset64);
3498 *addr = (uint32_t) (*addr + offset64);
3499 break;
3500 case 6:
3501 regcache_raw_read_unsigned (irp->regcache,
3502 irp->regmap[X86_RECORD_REBP_REGNUM],
3503 &offset64);
3504 *addr = (uint32_t) (*addr + offset64);
3505 break;
3506 case 7:
3507 regcache_raw_read_unsigned (irp->regcache,
3508 irp->regmap[X86_RECORD_REBX_REGNUM],
3509 &offset64);
3510 *addr = (uint32_t) (*addr + offset64);
3511 break;
3512 }
3513 *addr &= 0xffff;
3514 }
3515
3516 no_rm:
3517 return 0;
3518 }
3519
3520 /* Record the value of the memory that willbe changed in current instruction
3521 to "record_arch_list".
3522 Return -1 if something wrong. */
3523
3524 static int
3525 i386_record_lea_modrm (struct i386_record_s *irp)
3526 {
3527 struct gdbarch *gdbarch = irp->gdbarch;
3528 uint64_t addr;
3529
3530 if (irp->override >= 0)
3531 {
3532 if (record_memory_query)
3533 {
3534 int q;
3535
3536 target_terminal_ours ();
3537 q = yquery (_("\
3538 Process record ignores the memory change of instruction at address %s\n\
3539 because it can't get the value of the segment register.\n\
3540 Do you want to stop the program?"),
3541 paddress (gdbarch, irp->orig_addr));
3542 target_terminal_inferior ();
3543 if (q)
3544 return -1;
3545 }
3546
3547 return 0;
3548 }
3549
3550 if (i386_record_lea_modrm_addr (irp, &addr))
3551 return -1;
3552
3553 if (record_arch_list_add_mem (addr, 1 << irp->ot))
3554 return -1;
3555
3556 return 0;
3557 }
3558
3559 /* Record the push operation to "record_arch_list".
3560 Return -1 if something wrong. */
3561
3562 static int
3563 i386_record_push (struct i386_record_s *irp, int size)
3564 {
3565 ULONGEST addr;
3566
3567 if (record_arch_list_add_reg (irp->regcache,
3568 irp->regmap[X86_RECORD_RESP_REGNUM]))
3569 return -1;
3570 regcache_raw_read_unsigned (irp->regcache,
3571 irp->regmap[X86_RECORD_RESP_REGNUM],
3572 &addr);
3573 if (record_arch_list_add_mem ((CORE_ADDR) addr - size, size))
3574 return -1;
3575
3576 return 0;
3577 }
3578
3579
3580 /* Defines contents to record. */
3581 #define I386_SAVE_FPU_REGS 0xfffd
3582 #define I386_SAVE_FPU_ENV 0xfffe
3583 #define I386_SAVE_FPU_ENV_REG_STACK 0xffff
3584
3585 /* Record the value of floating point registers which will be changed
3586 by the current instruction to "record_arch_list". Return -1 if
3587 something is wrong. */
3588
3589 static int i386_record_floats (struct gdbarch *gdbarch,
3590 struct i386_record_s *ir,
3591 uint32_t iregnum)
3592 {
3593 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3594 int i;
3595
3596 /* Oza: Because of floating point insn push/pop of fpu stack is going to
3597 happen. Currently we store st0-st7 registers, but we need not store all
3598 registers all the time, in future we use ftag register and record only
3599 those who are not marked as an empty. */
3600
3601 if (I386_SAVE_FPU_REGS == iregnum)
3602 {
3603 for (i = I387_ST0_REGNUM (tdep); i <= I387_ST0_REGNUM (tdep) + 7; i++)
3604 {
3605 if (record_arch_list_add_reg (ir->regcache, i))
3606 return -1;
3607 }
3608 }
3609 else if (I386_SAVE_FPU_ENV == iregnum)
3610 {
3611 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
3612 {
3613 if (record_arch_list_add_reg (ir->regcache, i))
3614 return -1;
3615 }
3616 }
3617 else if (I386_SAVE_FPU_ENV_REG_STACK == iregnum)
3618 {
3619 for (i = I387_ST0_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
3620 {
3621 if (record_arch_list_add_reg (ir->regcache, i))
3622 return -1;
3623 }
3624 }
3625 else if ((iregnum >= I387_ST0_REGNUM (tdep)) &&
3626 (iregnum <= I387_FOP_REGNUM (tdep)))
3627 {
3628 if (record_arch_list_add_reg (ir->regcache,iregnum))
3629 return -1;
3630 }
3631 else
3632 {
3633 /* Parameter error. */
3634 return -1;
3635 }
3636 if(I386_SAVE_FPU_ENV != iregnum)
3637 {
3638 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
3639 {
3640 if (record_arch_list_add_reg (ir->regcache, i))
3641 return -1;
3642 }
3643 }
3644 return 0;
3645 }
3646
3647 /* Parse the current instruction and record the values of the registers and
3648 memory that will be changed in current instruction to "record_arch_list".
3649 Return -1 if something wrong. */
3650
3651 #define I386_RECORD_ARCH_LIST_ADD_REG(regnum) \
3652 record_arch_list_add_reg (ir.regcache, ir.regmap[(regnum)])
3653
3654 int
3655 i386_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
3656 CORE_ADDR input_addr)
3657 {
3658 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3659 int prefixes = 0;
3660 int regnum = 0;
3661 uint32_t opcode;
3662 uint8_t opcode8;
3663 ULONGEST addr;
3664 gdb_byte buf[MAX_REGISTER_SIZE];
3665 struct i386_record_s ir;
3666 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3667 int rex = 0;
3668 uint8_t rex_w = -1;
3669 uint8_t rex_r = 0;
3670
3671 memset (&ir, 0, sizeof (struct i386_record_s));
3672 ir.regcache = regcache;
3673 ir.addr = input_addr;
3674 ir.orig_addr = input_addr;
3675 ir.aflag = 1;
3676 ir.dflag = 1;
3677 ir.override = -1;
3678 ir.popl_esp_hack = 0;
3679 ir.regmap = tdep->record_regmap;
3680 ir.gdbarch = gdbarch;
3681
3682 if (record_debug > 1)
3683 fprintf_unfiltered (gdb_stdlog, "Process record: i386_process_record "
3684 "addr = %s\n",
3685 paddress (gdbarch, ir.addr));
3686
3687 /* prefixes */
3688 while (1)
3689 {
3690 if (target_read_memory (ir.addr, &opcode8, 1))
3691 {
3692 if (record_debug)
3693 printf_unfiltered (_("Process record: error reading memory at "
3694 "addr %s len = 1.\n"),
3695 paddress (gdbarch, ir.addr));
3696 return -1;
3697 }
3698 ir.addr++;
3699 switch (opcode8) /* Instruction prefixes */
3700 {
3701 case REPE_PREFIX_OPCODE:
3702 prefixes |= PREFIX_REPZ;
3703 break;
3704 case REPNE_PREFIX_OPCODE:
3705 prefixes |= PREFIX_REPNZ;
3706 break;
3707 case LOCK_PREFIX_OPCODE:
3708 prefixes |= PREFIX_LOCK;
3709 break;
3710 case CS_PREFIX_OPCODE:
3711 ir.override = X86_RECORD_CS_REGNUM;
3712 break;
3713 case SS_PREFIX_OPCODE:
3714 ir.override = X86_RECORD_SS_REGNUM;
3715 break;
3716 case DS_PREFIX_OPCODE:
3717 ir.override = X86_RECORD_DS_REGNUM;
3718 break;
3719 case ES_PREFIX_OPCODE:
3720 ir.override = X86_RECORD_ES_REGNUM;
3721 break;
3722 case FS_PREFIX_OPCODE:
3723 ir.override = X86_RECORD_FS_REGNUM;
3724 break;
3725 case GS_PREFIX_OPCODE:
3726 ir.override = X86_RECORD_GS_REGNUM;
3727 break;
3728 case DATA_PREFIX_OPCODE:
3729 prefixes |= PREFIX_DATA;
3730 break;
3731 case ADDR_PREFIX_OPCODE:
3732 prefixes |= PREFIX_ADDR;
3733 break;
3734 case 0x40: /* i386 inc %eax */
3735 case 0x41: /* i386 inc %ecx */
3736 case 0x42: /* i386 inc %edx */
3737 case 0x43: /* i386 inc %ebx */
3738 case 0x44: /* i386 inc %esp */
3739 case 0x45: /* i386 inc %ebp */
3740 case 0x46: /* i386 inc %esi */
3741 case 0x47: /* i386 inc %edi */
3742 case 0x48: /* i386 dec %eax */
3743 case 0x49: /* i386 dec %ecx */
3744 case 0x4a: /* i386 dec %edx */
3745 case 0x4b: /* i386 dec %ebx */
3746 case 0x4c: /* i386 dec %esp */
3747 case 0x4d: /* i386 dec %ebp */
3748 case 0x4e: /* i386 dec %esi */
3749 case 0x4f: /* i386 dec %edi */
3750 if (ir.regmap[X86_RECORD_R8_REGNUM]) /* 64 bit target */
3751 {
3752 /* REX */
3753 rex = 1;
3754 rex_w = (opcode8 >> 3) & 1;
3755 rex_r = (opcode8 & 0x4) << 1;
3756 ir.rex_x = (opcode8 & 0x2) << 2;
3757 ir.rex_b = (opcode8 & 0x1) << 3;
3758 }
3759 else /* 32 bit target */
3760 goto out_prefixes;
3761 break;
3762 default:
3763 goto out_prefixes;
3764 break;
3765 }
3766 }
3767 out_prefixes:
3768 if (ir.regmap[X86_RECORD_R8_REGNUM] && rex_w == 1)
3769 {
3770 ir.dflag = 2;
3771 }
3772 else
3773 {
3774 if (prefixes & PREFIX_DATA)
3775 ir.dflag ^= 1;
3776 }
3777 if (prefixes & PREFIX_ADDR)
3778 ir.aflag ^= 1;
3779 else if (ir.regmap[X86_RECORD_R8_REGNUM])
3780 ir.aflag = 2;
3781
3782 /* Now check op code. */
3783 opcode = (uint32_t) opcode8;
3784 reswitch:
3785 switch (opcode)
3786 {
3787 case 0x0f:
3788 if (target_read_memory (ir.addr, &opcode8, 1))
3789 {
3790 if (record_debug)
3791 printf_unfiltered (_("Process record: error reading memory at "
3792 "addr %s len = 1.\n"),
3793 paddress (gdbarch, ir.addr));
3794 return -1;
3795 }
3796 ir.addr++;
3797 opcode = (uint32_t) opcode8 | 0x0f00;
3798 goto reswitch;
3799 break;
3800
3801 case 0x00: /* arith & logic */
3802 case 0x01:
3803 case 0x02:
3804 case 0x03:
3805 case 0x04:
3806 case 0x05:
3807 case 0x08:
3808 case 0x09:
3809 case 0x0a:
3810 case 0x0b:
3811 case 0x0c:
3812 case 0x0d:
3813 case 0x10:
3814 case 0x11:
3815 case 0x12:
3816 case 0x13:
3817 case 0x14:
3818 case 0x15:
3819 case 0x18:
3820 case 0x19:
3821 case 0x1a:
3822 case 0x1b:
3823 case 0x1c:
3824 case 0x1d:
3825 case 0x20:
3826 case 0x21:
3827 case 0x22:
3828 case 0x23:
3829 case 0x24:
3830 case 0x25:
3831 case 0x28:
3832 case 0x29:
3833 case 0x2a:
3834 case 0x2b:
3835 case 0x2c:
3836 case 0x2d:
3837 case 0x30:
3838 case 0x31:
3839 case 0x32:
3840 case 0x33:
3841 case 0x34:
3842 case 0x35:
3843 case 0x38:
3844 case 0x39:
3845 case 0x3a:
3846 case 0x3b:
3847 case 0x3c:
3848 case 0x3d:
3849 if (((opcode >> 3) & 7) != OP_CMPL)
3850 {
3851 if ((opcode & 1) == 0)
3852 ir.ot = OT_BYTE;
3853 else
3854 ir.ot = ir.dflag + OT_WORD;
3855
3856 switch ((opcode >> 1) & 3)
3857 {
3858 case 0: /* OP Ev, Gv */
3859 if (i386_record_modrm (&ir))
3860 return -1;
3861 if (ir.mod != 3)
3862 {
3863 if (i386_record_lea_modrm (&ir))
3864 return -1;
3865 }
3866 else
3867 {
3868 ir.rm |= ir.rex_b;
3869 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
3870 ir.rm &= 0x3;
3871 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
3872 }
3873 break;
3874 case 1: /* OP Gv, Ev */
3875 if (i386_record_modrm (&ir))
3876 return -1;
3877 ir.reg |= rex_r;
3878 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
3879 ir.reg &= 0x3;
3880 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
3881 break;
3882 case 2: /* OP A, Iv */
3883 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
3884 break;
3885 }
3886 }
3887 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
3888 break;
3889
3890 case 0x80: /* GRP1 */
3891 case 0x81:
3892 case 0x82:
3893 case 0x83:
3894 if (i386_record_modrm (&ir))
3895 return -1;
3896
3897 if (ir.reg != OP_CMPL)
3898 {
3899 if ((opcode & 1) == 0)
3900 ir.ot = OT_BYTE;
3901 else
3902 ir.ot = ir.dflag + OT_WORD;
3903
3904 if (ir.mod != 3)
3905 {
3906 if (opcode == 0x83)
3907 ir.rip_offset = 1;
3908 else
3909 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
3910 if (i386_record_lea_modrm (&ir))
3911 return -1;
3912 }
3913 else
3914 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
3915 }
3916 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
3917 break;
3918
3919 case 0x40: /* inc */
3920 case 0x41:
3921 case 0x42:
3922 case 0x43:
3923 case 0x44:
3924 case 0x45:
3925 case 0x46:
3926 case 0x47:
3927
3928 case 0x48: /* dec */
3929 case 0x49:
3930 case 0x4a:
3931 case 0x4b:
3932 case 0x4c:
3933 case 0x4d:
3934 case 0x4e:
3935 case 0x4f:
3936
3937 I386_RECORD_ARCH_LIST_ADD_REG (opcode & 7);
3938 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
3939 break;
3940
3941 case 0xf6: /* GRP3 */
3942 case 0xf7:
3943 if ((opcode & 1) == 0)
3944 ir.ot = OT_BYTE;
3945 else
3946 ir.ot = ir.dflag + OT_WORD;
3947 if (i386_record_modrm (&ir))
3948 return -1;
3949
3950 if (ir.mod != 3 && ir.reg == 0)
3951 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
3952
3953 switch (ir.reg)
3954 {
3955 case 0: /* test */
3956 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
3957 break;
3958 case 2: /* not */
3959 case 3: /* neg */
3960 if (ir.mod != 3)
3961 {
3962 if (i386_record_lea_modrm (&ir))
3963 return -1;
3964 }
3965 else
3966 {
3967 ir.rm |= ir.rex_b;
3968 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
3969 ir.rm &= 0x3;
3970 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
3971 }
3972 if (ir.reg == 3) /* neg */
3973 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
3974 break;
3975 case 4: /* mul */
3976 case 5: /* imul */
3977 case 6: /* div */
3978 case 7: /* idiv */
3979 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
3980 if (ir.ot != OT_BYTE)
3981 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
3982 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
3983 break;
3984 default:
3985 ir.addr -= 2;
3986 opcode = opcode << 8 | ir.modrm;
3987 goto no_support;
3988 break;
3989 }
3990 break;
3991
3992 case 0xfe: /* GRP4 */
3993 case 0xff: /* GRP5 */
3994 if (i386_record_modrm (&ir))
3995 return -1;
3996 if (ir.reg >= 2 && opcode == 0xfe)
3997 {
3998 ir.addr -= 2;
3999 opcode = opcode << 8 | ir.modrm;
4000 goto no_support;
4001 }
4002 switch (ir.reg)
4003 {
4004 case 0: /* inc */
4005 case 1: /* dec */
4006 if ((opcode & 1) == 0)
4007 ir.ot = OT_BYTE;
4008 else
4009 ir.ot = ir.dflag + OT_WORD;
4010 if (ir.mod != 3)
4011 {
4012 if (i386_record_lea_modrm (&ir))
4013 return -1;
4014 }
4015 else
4016 {
4017 ir.rm |= ir.rex_b;
4018 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4019 ir.rm &= 0x3;
4020 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
4021 }
4022 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4023 break;
4024 case 2: /* call */
4025 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4026 ir.dflag = 2;
4027 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4028 return -1;
4029 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4030 break;
4031 case 3: /* lcall */
4032 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
4033 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4034 return -1;
4035 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4036 break;
4037 case 4: /* jmp */
4038 case 5: /* ljmp */
4039 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4040 break;
4041 case 6: /* push */
4042 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4043 ir.dflag = 2;
4044 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4045 return -1;
4046 break;
4047 default:
4048 ir.addr -= 2;
4049 opcode = opcode << 8 | ir.modrm;
4050 goto no_support;
4051 break;
4052 }
4053 break;
4054
4055 case 0x84: /* test */
4056 case 0x85:
4057 case 0xa8:
4058 case 0xa9:
4059 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4060 break;
4061
4062 case 0x98: /* CWDE/CBW */
4063 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4064 break;
4065
4066 case 0x99: /* CDQ/CWD */
4067 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4068 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
4069 break;
4070
4071 case 0x0faf: /* imul */
4072 case 0x69:
4073 case 0x6b:
4074 ir.ot = ir.dflag + OT_WORD;
4075 if (i386_record_modrm (&ir))
4076 return -1;
4077 if (opcode == 0x69)
4078 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
4079 else if (opcode == 0x6b)
4080 ir.rip_offset = 1;
4081 ir.reg |= rex_r;
4082 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4083 ir.reg &= 0x3;
4084 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4085 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4086 break;
4087
4088 case 0x0fc0: /* xadd */
4089 case 0x0fc1:
4090 if ((opcode & 1) == 0)
4091 ir.ot = OT_BYTE;
4092 else
4093 ir.ot = ir.dflag + OT_WORD;
4094 if (i386_record_modrm (&ir))
4095 return -1;
4096 ir.reg |= rex_r;
4097 if (ir.mod == 3)
4098 {
4099 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4100 ir.reg &= 0x3;
4101 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4102 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4103 ir.rm &= 0x3;
4104 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
4105 }
4106 else
4107 {
4108 if (i386_record_lea_modrm (&ir))
4109 return -1;
4110 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4111 ir.reg &= 0x3;
4112 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4113 }
4114 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4115 break;
4116
4117 case 0x0fb0: /* cmpxchg */
4118 case 0x0fb1:
4119 if ((opcode & 1) == 0)
4120 ir.ot = OT_BYTE;
4121 else
4122 ir.ot = ir.dflag + OT_WORD;
4123 if (i386_record_modrm (&ir))
4124 return -1;
4125 if (ir.mod == 3)
4126 {
4127 ir.reg |= rex_r;
4128 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4129 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4130 ir.reg &= 0x3;
4131 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4132 }
4133 else
4134 {
4135 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4136 if (i386_record_lea_modrm (&ir))
4137 return -1;
4138 }
4139 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4140 break;
4141
4142 case 0x0fc7: /* cmpxchg8b */
4143 if (i386_record_modrm (&ir))
4144 return -1;
4145 if (ir.mod == 3)
4146 {
4147 ir.addr -= 2;
4148 opcode = opcode << 8 | ir.modrm;
4149 goto no_support;
4150 }
4151 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4152 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
4153 if (i386_record_lea_modrm (&ir))
4154 return -1;
4155 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4156 break;
4157
4158 case 0x50: /* push */
4159 case 0x51:
4160 case 0x52:
4161 case 0x53:
4162 case 0x54:
4163 case 0x55:
4164 case 0x56:
4165 case 0x57:
4166 case 0x68:
4167 case 0x6a:
4168 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4169 ir.dflag = 2;
4170 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4171 return -1;
4172 break;
4173
4174 case 0x06: /* push es */
4175 case 0x0e: /* push cs */
4176 case 0x16: /* push ss */
4177 case 0x1e: /* push ds */
4178 if (ir.regmap[X86_RECORD_R8_REGNUM])
4179 {
4180 ir.addr -= 1;
4181 goto no_support;
4182 }
4183 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4184 return -1;
4185 break;
4186
4187 case 0x0fa0: /* push fs */
4188 case 0x0fa8: /* push gs */
4189 if (ir.regmap[X86_RECORD_R8_REGNUM])
4190 {
4191 ir.addr -= 2;
4192 goto no_support;
4193 }
4194 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4195 return -1;
4196 break;
4197
4198 case 0x60: /* pusha */
4199 if (ir.regmap[X86_RECORD_R8_REGNUM])
4200 {
4201 ir.addr -= 1;
4202 goto no_support;
4203 }
4204 if (i386_record_push (&ir, 1 << (ir.dflag + 4)))
4205 return -1;
4206 break;
4207
4208 case 0x58: /* pop */
4209 case 0x59:
4210 case 0x5a:
4211 case 0x5b:
4212 case 0x5c:
4213 case 0x5d:
4214 case 0x5e:
4215 case 0x5f:
4216 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4217 I386_RECORD_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
4218 break;
4219
4220 case 0x61: /* popa */
4221 if (ir.regmap[X86_RECORD_R8_REGNUM])
4222 {
4223 ir.addr -= 1;
4224 goto no_support;
4225 }
4226 for (regnum = X86_RECORD_REAX_REGNUM;
4227 regnum <= X86_RECORD_REDI_REGNUM;
4228 regnum++)
4229 I386_RECORD_ARCH_LIST_ADD_REG (regnum);
4230 break;
4231
4232 case 0x8f: /* pop */
4233 if (ir.regmap[X86_RECORD_R8_REGNUM])
4234 ir.ot = ir.dflag ? OT_QUAD : OT_WORD;
4235 else
4236 ir.ot = ir.dflag + OT_WORD;
4237 if (i386_record_modrm (&ir))
4238 return -1;
4239 if (ir.mod == 3)
4240 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
4241 else
4242 {
4243 ir.popl_esp_hack = 1 << ir.ot;
4244 if (i386_record_lea_modrm (&ir))
4245 return -1;
4246 }
4247 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4248 break;
4249
4250 case 0xc8: /* enter */
4251 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
4252 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4253 ir.dflag = 2;
4254 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4255 return -1;
4256 break;
4257
4258 case 0xc9: /* leave */
4259 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4260 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
4261 break;
4262
4263 case 0x07: /* pop es */
4264 if (ir.regmap[X86_RECORD_R8_REGNUM])
4265 {
4266 ir.addr -= 1;
4267 goto no_support;
4268 }
4269 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4270 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_ES_REGNUM);
4271 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4272 break;
4273
4274 case 0x17: /* pop ss */
4275 if (ir.regmap[X86_RECORD_R8_REGNUM])
4276 {
4277 ir.addr -= 1;
4278 goto no_support;
4279 }
4280 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4281 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_SS_REGNUM);
4282 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4283 break;
4284
4285 case 0x1f: /* pop ds */
4286 if (ir.regmap[X86_RECORD_R8_REGNUM])
4287 {
4288 ir.addr -= 1;
4289 goto no_support;
4290 }
4291 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4292 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_DS_REGNUM);
4293 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4294 break;
4295
4296 case 0x0fa1: /* pop fs */
4297 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4298 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_FS_REGNUM);
4299 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4300 break;
4301
4302 case 0x0fa9: /* pop gs */
4303 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4304 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
4305 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4306 break;
4307
4308 case 0x88: /* mov */
4309 case 0x89:
4310 case 0xc6:
4311 case 0xc7:
4312 if ((opcode & 1) == 0)
4313 ir.ot = OT_BYTE;
4314 else
4315 ir.ot = ir.dflag + OT_WORD;
4316
4317 if (i386_record_modrm (&ir))
4318 return -1;
4319
4320 if (ir.mod != 3)
4321 {
4322 if (opcode == 0xc6 || opcode == 0xc7)
4323 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
4324 if (i386_record_lea_modrm (&ir))
4325 return -1;
4326 }
4327 else
4328 {
4329 if (opcode == 0xc6 || opcode == 0xc7)
4330 ir.rm |= ir.rex_b;
4331 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4332 ir.rm &= 0x3;
4333 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
4334 }
4335 break;
4336
4337 case 0x8a: /* mov */
4338 case 0x8b:
4339 if ((opcode & 1) == 0)
4340 ir.ot = OT_BYTE;
4341 else
4342 ir.ot = ir.dflag + OT_WORD;
4343 if (i386_record_modrm (&ir))
4344 return -1;
4345 ir.reg |= rex_r;
4346 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4347 ir.reg &= 0x3;
4348 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4349 break;
4350
4351 case 0x8c: /* mov seg */
4352 if (i386_record_modrm (&ir))
4353 return -1;
4354 if (ir.reg > 5)
4355 {
4356 ir.addr -= 2;
4357 opcode = opcode << 8 | ir.modrm;
4358 goto no_support;
4359 }
4360
4361 if (ir.mod == 3)
4362 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
4363 else
4364 {
4365 ir.ot = OT_WORD;
4366 if (i386_record_lea_modrm (&ir))
4367 return -1;
4368 }
4369 break;
4370
4371 case 0x8e: /* mov seg */
4372 if (i386_record_modrm (&ir))
4373 return -1;
4374 switch (ir.reg)
4375 {
4376 case 0:
4377 regnum = X86_RECORD_ES_REGNUM;
4378 break;
4379 case 2:
4380 regnum = X86_RECORD_SS_REGNUM;
4381 break;
4382 case 3:
4383 regnum = X86_RECORD_DS_REGNUM;
4384 break;
4385 case 4:
4386 regnum = X86_RECORD_FS_REGNUM;
4387 break;
4388 case 5:
4389 regnum = X86_RECORD_GS_REGNUM;
4390 break;
4391 default:
4392 ir.addr -= 2;
4393 opcode = opcode << 8 | ir.modrm;
4394 goto no_support;
4395 break;
4396 }
4397 I386_RECORD_ARCH_LIST_ADD_REG (regnum);
4398 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4399 break;
4400
4401 case 0x0fb6: /* movzbS */
4402 case 0x0fb7: /* movzwS */
4403 case 0x0fbe: /* movsbS */
4404 case 0x0fbf: /* movswS */
4405 if (i386_record_modrm (&ir))
4406 return -1;
4407 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
4408 break;
4409
4410 case 0x8d: /* lea */
4411 if (i386_record_modrm (&ir))
4412 return -1;
4413 if (ir.mod == 3)
4414 {
4415 ir.addr -= 2;
4416 opcode = opcode << 8 | ir.modrm;
4417 goto no_support;
4418 }
4419 ir.ot = ir.dflag;
4420 ir.reg |= rex_r;
4421 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4422 ir.reg &= 0x3;
4423 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4424 break;
4425
4426 case 0xa0: /* mov EAX */
4427 case 0xa1:
4428
4429 case 0xd7: /* xlat */
4430 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4431 break;
4432
4433 case 0xa2: /* mov EAX */
4434 case 0xa3:
4435 if (ir.override >= 0)
4436 {
4437 if (record_memory_query)
4438 {
4439 int q;
4440
4441 target_terminal_ours ();
4442 q = yquery (_("\
4443 Process record ignores the memory change of instruction at address %s\n\
4444 because it can't get the value of the segment register.\n\
4445 Do you want to stop the program?"),
4446 paddress (gdbarch, ir.orig_addr));
4447 target_terminal_inferior ();
4448 if (q)
4449 return -1;
4450 }
4451 }
4452 else
4453 {
4454 if ((opcode & 1) == 0)
4455 ir.ot = OT_BYTE;
4456 else
4457 ir.ot = ir.dflag + OT_WORD;
4458 if (ir.aflag == 2)
4459 {
4460 if (target_read_memory (ir.addr, buf, 8))
4461 {
4462 if (record_debug)
4463 printf_unfiltered (_("Process record: error reading "
4464 "memory at addr 0x%s len = 8.\n"),
4465 paddress (gdbarch, ir.addr));
4466 return -1;
4467 }
4468 ir.addr += 8;
4469 addr = extract_unsigned_integer (buf, 8, byte_order);
4470 }
4471 else if (ir.aflag)
4472 {
4473 if (target_read_memory (ir.addr, buf, 4))
4474 {
4475 if (record_debug)
4476 printf_unfiltered (_("Process record: error reading "
4477 "memory at addr 0x%s len = 4.\n"),
4478 paddress (gdbarch, ir.addr));
4479 return -1;
4480 }
4481 ir.addr += 4;
4482 addr = extract_unsigned_integer (buf, 4, byte_order);
4483 }
4484 else
4485 {
4486 if (target_read_memory (ir.addr, buf, 2))
4487 {
4488 if (record_debug)
4489 printf_unfiltered (_("Process record: error reading "
4490 "memory at addr 0x%s len = 2.\n"),
4491 paddress (gdbarch, ir.addr));
4492 return -1;
4493 }
4494 ir.addr += 2;
4495 addr = extract_unsigned_integer (buf, 2, byte_order);
4496 }
4497 if (record_arch_list_add_mem (addr, 1 << ir.ot))
4498 return -1;
4499 }
4500 break;
4501
4502 case 0xb0: /* mov R, Ib */
4503 case 0xb1:
4504 case 0xb2:
4505 case 0xb3:
4506 case 0xb4:
4507 case 0xb5:
4508 case 0xb6:
4509 case 0xb7:
4510 I386_RECORD_ARCH_LIST_ADD_REG ((ir.regmap[X86_RECORD_R8_REGNUM])
4511 ? ((opcode & 0x7) | ir.rex_b)
4512 : ((opcode & 0x7) & 0x3));
4513 break;
4514
4515 case 0xb8: /* mov R, Iv */
4516 case 0xb9:
4517 case 0xba:
4518 case 0xbb:
4519 case 0xbc:
4520 case 0xbd:
4521 case 0xbe:
4522 case 0xbf:
4523 I386_RECORD_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
4524 break;
4525
4526 case 0x91: /* xchg R, EAX */
4527 case 0x92:
4528 case 0x93:
4529 case 0x94:
4530 case 0x95:
4531 case 0x96:
4532 case 0x97:
4533 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4534 I386_RECORD_ARCH_LIST_ADD_REG (opcode & 0x7);
4535 break;
4536
4537 case 0x86: /* xchg Ev, Gv */
4538 case 0x87:
4539 if ((opcode & 1) == 0)
4540 ir.ot = OT_BYTE;
4541 else
4542 ir.ot = ir.dflag + OT_WORD;
4543 if (i386_record_modrm (&ir))
4544 return -1;
4545 if (ir.mod == 3)
4546 {
4547 ir.rm |= ir.rex_b;
4548 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4549 ir.rm &= 0x3;
4550 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
4551 }
4552 else
4553 {
4554 if (i386_record_lea_modrm (&ir))
4555 return -1;
4556 }
4557 ir.reg |= rex_r;
4558 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4559 ir.reg &= 0x3;
4560 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4561 break;
4562
4563 case 0xc4: /* les Gv */
4564 case 0xc5: /* lds Gv */
4565 if (ir.regmap[X86_RECORD_R8_REGNUM])
4566 {
4567 ir.addr -= 1;
4568 goto no_support;
4569 }
4570 /* FALLTHROUGH */
4571 case 0x0fb2: /* lss Gv */
4572 case 0x0fb4: /* lfs Gv */
4573 case 0x0fb5: /* lgs Gv */
4574 if (i386_record_modrm (&ir))
4575 return -1;
4576 if (ir.mod == 3)
4577 {
4578 if (opcode > 0xff)
4579 ir.addr -= 3;
4580 else
4581 ir.addr -= 2;
4582 opcode = opcode << 8 | ir.modrm;
4583 goto no_support;
4584 }
4585 switch (opcode)
4586 {
4587 case 0xc4: /* les Gv */
4588 regnum = X86_RECORD_ES_REGNUM;
4589 break;
4590 case 0xc5: /* lds Gv */
4591 regnum = X86_RECORD_DS_REGNUM;
4592 break;
4593 case 0x0fb2: /* lss Gv */
4594 regnum = X86_RECORD_SS_REGNUM;
4595 break;
4596 case 0x0fb4: /* lfs Gv */
4597 regnum = X86_RECORD_FS_REGNUM;
4598 break;
4599 case 0x0fb5: /* lgs Gv */
4600 regnum = X86_RECORD_GS_REGNUM;
4601 break;
4602 }
4603 I386_RECORD_ARCH_LIST_ADD_REG (regnum);
4604 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
4605 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4606 break;
4607
4608 case 0xc0: /* shifts */
4609 case 0xc1:
4610 case 0xd0:
4611 case 0xd1:
4612 case 0xd2:
4613 case 0xd3:
4614 if ((opcode & 1) == 0)
4615 ir.ot = OT_BYTE;
4616 else
4617 ir.ot = ir.dflag + OT_WORD;
4618 if (i386_record_modrm (&ir))
4619 return -1;
4620 if (ir.mod != 3 && (opcode == 0xd2 || opcode == 0xd3))
4621 {
4622 if (i386_record_lea_modrm (&ir))
4623 return -1;
4624 }
4625 else
4626 {
4627 ir.rm |= ir.rex_b;
4628 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4629 ir.rm &= 0x3;
4630 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
4631 }
4632 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4633 break;
4634
4635 case 0x0fa4:
4636 case 0x0fa5:
4637 case 0x0fac:
4638 case 0x0fad:
4639 if (i386_record_modrm (&ir))
4640 return -1;
4641 if (ir.mod == 3)
4642 {
4643 if (record_arch_list_add_reg (ir.regcache, ir.rm))
4644 return -1;
4645 }
4646 else
4647 {
4648 if (i386_record_lea_modrm (&ir))
4649 return -1;
4650 }
4651 break;
4652
4653 case 0xd8: /* Floats. */
4654 case 0xd9:
4655 case 0xda:
4656 case 0xdb:
4657 case 0xdc:
4658 case 0xdd:
4659 case 0xde:
4660 case 0xdf:
4661 if (i386_record_modrm (&ir))
4662 return -1;
4663 ir.reg |= ((opcode & 7) << 3);
4664 if (ir.mod != 3)
4665 {
4666 /* Memory. */
4667 uint64_t addr64;
4668
4669 if (i386_record_lea_modrm_addr (&ir, &addr64))
4670 return -1;
4671 switch (ir.reg)
4672 {
4673 case 0x02:
4674 case 0x12:
4675 case 0x22:
4676 case 0x32:
4677 /* For fcom, ficom nothing to do. */
4678 break;
4679 case 0x03:
4680 case 0x13:
4681 case 0x23:
4682 case 0x33:
4683 /* For fcomp, ficomp pop FPU stack, store all. */
4684 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
4685 return -1;
4686 break;
4687 case 0x00:
4688 case 0x01:
4689 case 0x04:
4690 case 0x05:
4691 case 0x06:
4692 case 0x07:
4693 case 0x10:
4694 case 0x11:
4695 case 0x14:
4696 case 0x15:
4697 case 0x16:
4698 case 0x17:
4699 case 0x20:
4700 case 0x21:
4701 case 0x24:
4702 case 0x25:
4703 case 0x26:
4704 case 0x27:
4705 case 0x30:
4706 case 0x31:
4707 case 0x34:
4708 case 0x35:
4709 case 0x36:
4710 case 0x37:
4711 /* For fadd, fmul, fsub, fsubr, fdiv, fdivr, fiadd, fimul,
4712 fisub, fisubr, fidiv, fidivr, modR/M.reg is an extension
4713 of code, always affects st(0) register. */
4714 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
4715 return -1;
4716 break;
4717 case 0x08:
4718 case 0x0a:
4719 case 0x0b:
4720 case 0x18:
4721 case 0x19:
4722 case 0x1a:
4723 case 0x1b:
4724 case 0x1d:
4725 case 0x28:
4726 case 0x29:
4727 case 0x2a:
4728 case 0x2b:
4729 case 0x38:
4730 case 0x39:
4731 case 0x3a:
4732 case 0x3b:
4733 case 0x3c:
4734 case 0x3d:
4735 switch (ir.reg & 7)
4736 {
4737 case 0:
4738 /* Handling fld, fild. */
4739 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
4740 return -1;
4741 break;
4742 case 1:
4743 switch (ir.reg >> 4)
4744 {
4745 case 0:
4746 if (record_arch_list_add_mem (addr64, 4))
4747 return -1;
4748 break;
4749 case 2:
4750 if (record_arch_list_add_mem (addr64, 8))
4751 return -1;
4752 break;
4753 case 3:
4754 break;
4755 default:
4756 if (record_arch_list_add_mem (addr64, 2))
4757 return -1;
4758 break;
4759 }
4760 break;
4761 default:
4762 switch (ir.reg >> 4)
4763 {
4764 case 0:
4765 if (record_arch_list_add_mem (addr64, 4))
4766 return -1;
4767 if (3 == (ir.reg & 7))
4768 {
4769 /* For fstp m32fp. */
4770 if (i386_record_floats (gdbarch, &ir,
4771 I386_SAVE_FPU_REGS))
4772 return -1;
4773 }
4774 break;
4775 case 1:
4776 if (record_arch_list_add_mem (addr64, 4))
4777 return -1;
4778 if ((3 == (ir.reg & 7))
4779 || (5 == (ir.reg & 7))
4780 || (7 == (ir.reg & 7)))
4781 {
4782 /* For fstp insn. */
4783 if (i386_record_floats (gdbarch, &ir,
4784 I386_SAVE_FPU_REGS))
4785 return -1;
4786 }
4787 break;
4788 case 2:
4789 if (record_arch_list_add_mem (addr64, 8))
4790 return -1;
4791 if (3 == (ir.reg & 7))
4792 {
4793 /* For fstp m64fp. */
4794 if (i386_record_floats (gdbarch, &ir,
4795 I386_SAVE_FPU_REGS))
4796 return -1;
4797 }
4798 break;
4799 case 3:
4800 if ((3 <= (ir.reg & 7)) && (6 <= (ir.reg & 7)))
4801 {
4802 /* For fistp, fbld, fild, fbstp. */
4803 if (i386_record_floats (gdbarch, &ir,
4804 I386_SAVE_FPU_REGS))
4805 return -1;
4806 }
4807 /* Fall through */
4808 default:
4809 if (record_arch_list_add_mem (addr64, 2))
4810 return -1;
4811 break;
4812 }
4813 break;
4814 }
4815 break;
4816 case 0x0c:
4817 /* Insn fldenv. */
4818 if (i386_record_floats (gdbarch, &ir,
4819 I386_SAVE_FPU_ENV_REG_STACK))
4820 return -1;
4821 break;
4822 case 0x0d:
4823 /* Insn fldcw. */
4824 if (i386_record_floats (gdbarch, &ir, I387_FCTRL_REGNUM (tdep)))
4825 return -1;
4826 break;
4827 case 0x2c:
4828 /* Insn frstor. */
4829 if (i386_record_floats (gdbarch, &ir,
4830 I386_SAVE_FPU_ENV_REG_STACK))
4831 return -1;
4832 break;
4833 case 0x0e:
4834 if (ir.dflag)
4835 {
4836 if (record_arch_list_add_mem (addr64, 28))
4837 return -1;
4838 }
4839 else
4840 {
4841 if (record_arch_list_add_mem (addr64, 14))
4842 return -1;
4843 }
4844 break;
4845 case 0x0f:
4846 case 0x2f:
4847 if (record_arch_list_add_mem (addr64, 2))
4848 return -1;
4849 /* Insn fstp, fbstp. */
4850 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
4851 return -1;
4852 break;
4853 case 0x1f:
4854 case 0x3e:
4855 if (record_arch_list_add_mem (addr64, 10))
4856 return -1;
4857 break;
4858 case 0x2e:
4859 if (ir.dflag)
4860 {
4861 if (record_arch_list_add_mem (addr64, 28))
4862 return -1;
4863 addr64 += 28;
4864 }
4865 else
4866 {
4867 if (record_arch_list_add_mem (addr64, 14))
4868 return -1;
4869 addr64 += 14;
4870 }
4871 if (record_arch_list_add_mem (addr64, 80))
4872 return -1;
4873 /* Insn fsave. */
4874 if (i386_record_floats (gdbarch, &ir,
4875 I386_SAVE_FPU_ENV_REG_STACK))
4876 return -1;
4877 break;
4878 case 0x3f:
4879 if (record_arch_list_add_mem (addr64, 8))
4880 return -1;
4881 /* Insn fistp. */
4882 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
4883 return -1;
4884 break;
4885 default:
4886 ir.addr -= 2;
4887 opcode = opcode << 8 | ir.modrm;
4888 goto no_support;
4889 break;
4890 }
4891 }
4892 /* Opcode is an extension of modR/M byte. */
4893 else
4894 {
4895 switch (opcode)
4896 {
4897 case 0xd8:
4898 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
4899 return -1;
4900 break;
4901 case 0xd9:
4902 if (0x0c == (ir.modrm >> 4))
4903 {
4904 if ((ir.modrm & 0x0f) <= 7)
4905 {
4906 if (i386_record_floats (gdbarch, &ir,
4907 I386_SAVE_FPU_REGS))
4908 return -1;
4909 }
4910 else
4911 {
4912 if (i386_record_floats (gdbarch, &ir,
4913 I387_ST0_REGNUM (tdep)))
4914 return -1;
4915 /* If only st(0) is changing, then we have already
4916 recorded. */
4917 if ((ir.modrm & 0x0f) - 0x08)
4918 {
4919 if (i386_record_floats (gdbarch, &ir,
4920 I387_ST0_REGNUM (tdep) +
4921 ((ir.modrm & 0x0f) - 0x08)))
4922 return -1;
4923 }
4924 }
4925 }
4926 else
4927 {
4928 switch (ir.modrm)
4929 {
4930 case 0xe0:
4931 case 0xe1:
4932 case 0xf0:
4933 case 0xf5:
4934 case 0xf8:
4935 case 0xfa:
4936 case 0xfc:
4937 case 0xfe:
4938 case 0xff:
4939 if (i386_record_floats (gdbarch, &ir,
4940 I387_ST0_REGNUM (tdep)))
4941 return -1;
4942 break;
4943 case 0xf1:
4944 case 0xf2:
4945 case 0xf3:
4946 case 0xf4:
4947 case 0xf6:
4948 case 0xf7:
4949 case 0xe8:
4950 case 0xe9:
4951 case 0xea:
4952 case 0xeb:
4953 case 0xec:
4954 case 0xed:
4955 case 0xee:
4956 case 0xf9:
4957 case 0xfb:
4958 if (i386_record_floats (gdbarch, &ir,
4959 I386_SAVE_FPU_REGS))
4960 return -1;
4961 break;
4962 case 0xfd:
4963 if (i386_record_floats (gdbarch, &ir,
4964 I387_ST0_REGNUM (tdep)))
4965 return -1;
4966 if (i386_record_floats (gdbarch, &ir,
4967 I387_ST0_REGNUM (tdep) + 1))
4968 return -1;
4969 break;
4970 }
4971 }
4972 break;
4973 case 0xda:
4974 if (0xe9 == ir.modrm)
4975 {
4976 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
4977 return -1;
4978 }
4979 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
4980 {
4981 if (i386_record_floats (gdbarch, &ir,
4982 I387_ST0_REGNUM (tdep)))
4983 return -1;
4984 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
4985 {
4986 if (i386_record_floats (gdbarch, &ir,
4987 I387_ST0_REGNUM (tdep) +
4988 (ir.modrm & 0x0f)))
4989 return -1;
4990 }
4991 else if ((ir.modrm & 0x0f) - 0x08)
4992 {
4993 if (i386_record_floats (gdbarch, &ir,
4994 I387_ST0_REGNUM (tdep) +
4995 ((ir.modrm & 0x0f) - 0x08)))
4996 return -1;
4997 }
4998 }
4999 break;
5000 case 0xdb:
5001 if (0xe3 == ir.modrm)
5002 {
5003 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_ENV))
5004 return -1;
5005 }
5006 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
5007 {
5008 if (i386_record_floats (gdbarch, &ir,
5009 I387_ST0_REGNUM (tdep)))
5010 return -1;
5011 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
5012 {
5013 if (i386_record_floats (gdbarch, &ir,
5014 I387_ST0_REGNUM (tdep) +
5015 (ir.modrm & 0x0f)))
5016 return -1;
5017 }
5018 else if ((ir.modrm & 0x0f) - 0x08)
5019 {
5020 if (i386_record_floats (gdbarch, &ir,
5021 I387_ST0_REGNUM (tdep) +
5022 ((ir.modrm & 0x0f) - 0x08)))
5023 return -1;
5024 }
5025 }
5026 break;
5027 case 0xdc:
5028 if ((0x0c == ir.modrm >> 4)
5029 || (0x0d == ir.modrm >> 4)
5030 || (0x0f == ir.modrm >> 4))
5031 {
5032 if ((ir.modrm & 0x0f) <= 7)
5033 {
5034 if (i386_record_floats (gdbarch, &ir,
5035 I387_ST0_REGNUM (tdep) +
5036 (ir.modrm & 0x0f)))
5037 return -1;
5038 }
5039 else
5040 {
5041 if (i386_record_floats (gdbarch, &ir,
5042 I387_ST0_REGNUM (tdep) +
5043 ((ir.modrm & 0x0f) - 0x08)))
5044 return -1;
5045 }
5046 }
5047 break;
5048 case 0xdd:
5049 if (0x0c == ir.modrm >> 4)
5050 {
5051 if (i386_record_floats (gdbarch, &ir,
5052 I387_FTAG_REGNUM (tdep)))
5053 return -1;
5054 }
5055 else if ((0x0d == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
5056 {
5057 if ((ir.modrm & 0x0f) <= 7)
5058 {
5059 if (i386_record_floats (gdbarch, &ir,
5060 I387_ST0_REGNUM (tdep) +
5061 (ir.modrm & 0x0f)))
5062 return -1;
5063 }
5064 else
5065 {
5066 if (i386_record_floats (gdbarch, &ir,
5067 I386_SAVE_FPU_REGS))
5068 return -1;
5069 }
5070 }
5071 break;
5072 case 0xde:
5073 if ((0x0c == ir.modrm >> 4)
5074 || (0x0e == ir.modrm >> 4)
5075 || (0x0f == ir.modrm >> 4)
5076 || (0xd9 == ir.modrm))
5077 {
5078 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5079 return -1;
5080 }
5081 break;
5082 case 0xdf:
5083 if (0xe0 == ir.modrm)
5084 {
5085 if (record_arch_list_add_reg (ir.regcache, I386_EAX_REGNUM))
5086 return -1;
5087 }
5088 else if ((0x0f == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
5089 {
5090 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5091 return -1;
5092 }
5093 break;
5094 }
5095 }
5096 break;
5097 /* string ops */
5098 case 0xa4: /* movsS */
5099 case 0xa5:
5100 case 0xaa: /* stosS */
5101 case 0xab:
5102 case 0x6c: /* insS */
5103 case 0x6d:
5104 regcache_raw_read_unsigned (ir.regcache,
5105 ir.regmap[X86_RECORD_RECX_REGNUM],
5106 &addr);
5107 if (addr)
5108 {
5109 ULONGEST es, ds;
5110
5111 if ((opcode & 1) == 0)
5112 ir.ot = OT_BYTE;
5113 else
5114 ir.ot = ir.dflag + OT_WORD;
5115 regcache_raw_read_unsigned (ir.regcache,
5116 ir.regmap[X86_RECORD_REDI_REGNUM],
5117 &addr);
5118
5119 regcache_raw_read_unsigned (ir.regcache,
5120 ir.regmap[X86_RECORD_ES_REGNUM],
5121 &es);
5122 regcache_raw_read_unsigned (ir.regcache,
5123 ir.regmap[X86_RECORD_DS_REGNUM],
5124 &ds);
5125 if (ir.aflag && (es != ds))
5126 {
5127 /* addr += ((uint32_t) read_register (I386_ES_REGNUM)) << 4; */
5128 if (record_memory_query)
5129 {
5130 int q;
5131
5132 target_terminal_ours ();
5133 q = yquery (_("\
5134 Process record ignores the memory change of instruction at address %s\n\
5135 because it can't get the value of the segment register.\n\
5136 Do you want to stop the program?"),
5137 paddress (gdbarch, ir.orig_addr));
5138 target_terminal_inferior ();
5139 if (q)
5140 return -1;
5141 }
5142 }
5143 else
5144 {
5145 if (record_arch_list_add_mem (addr, 1 << ir.ot))
5146 return -1;
5147 }
5148
5149 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
5150 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5151 if (opcode == 0xa4 || opcode == 0xa5)
5152 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
5153 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
5154 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5155 }
5156 break;
5157
5158 case 0xa6: /* cmpsS */
5159 case 0xa7:
5160 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
5161 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
5162 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
5163 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5164 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5165 break;
5166
5167 case 0xac: /* lodsS */
5168 case 0xad:
5169 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5170 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
5171 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
5172 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5173 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5174 break;
5175
5176 case 0xae: /* scasS */
5177 case 0xaf:
5178 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
5179 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
5180 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5181 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5182 break;
5183
5184 case 0x6e: /* outsS */
5185 case 0x6f:
5186 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
5187 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
5188 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5189 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5190 break;
5191
5192 case 0xe4: /* port I/O */
5193 case 0xe5:
5194 case 0xec:
5195 case 0xed:
5196 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5197 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5198 break;
5199
5200 case 0xe6:
5201 case 0xe7:
5202 case 0xee:
5203 case 0xef:
5204 break;
5205
5206 /* control */
5207 case 0xc2: /* ret im */
5208 case 0xc3: /* ret */
5209 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5210 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5211 break;
5212
5213 case 0xca: /* lret im */
5214 case 0xcb: /* lret */
5215 case 0xcf: /* iret */
5216 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
5217 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5218 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5219 break;
5220
5221 case 0xe8: /* call im */
5222 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5223 ir.dflag = 2;
5224 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5225 return -1;
5226 break;
5227
5228 case 0x9a: /* lcall im */
5229 if (ir.regmap[X86_RECORD_R8_REGNUM])
5230 {
5231 ir.addr -= 1;
5232 goto no_support;
5233 }
5234 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
5235 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5236 return -1;
5237 break;
5238
5239 case 0xe9: /* jmp im */
5240 case 0xea: /* ljmp im */
5241 case 0xeb: /* jmp Jb */
5242 case 0x70: /* jcc Jb */
5243 case 0x71:
5244 case 0x72:
5245 case 0x73:
5246 case 0x74:
5247 case 0x75:
5248 case 0x76:
5249 case 0x77:
5250 case 0x78:
5251 case 0x79:
5252 case 0x7a:
5253 case 0x7b:
5254 case 0x7c:
5255 case 0x7d:
5256 case 0x7e:
5257 case 0x7f:
5258 case 0x0f80: /* jcc Jv */
5259 case 0x0f81:
5260 case 0x0f82:
5261 case 0x0f83:
5262 case 0x0f84:
5263 case 0x0f85:
5264 case 0x0f86:
5265 case 0x0f87:
5266 case 0x0f88:
5267 case 0x0f89:
5268 case 0x0f8a:
5269 case 0x0f8b:
5270 case 0x0f8c:
5271 case 0x0f8d:
5272 case 0x0f8e:
5273 case 0x0f8f:
5274 break;
5275
5276 case 0x0f90: /* setcc Gv */
5277 case 0x0f91:
5278 case 0x0f92:
5279 case 0x0f93:
5280 case 0x0f94:
5281 case 0x0f95:
5282 case 0x0f96:
5283 case 0x0f97:
5284 case 0x0f98:
5285 case 0x0f99:
5286 case 0x0f9a:
5287 case 0x0f9b:
5288 case 0x0f9c:
5289 case 0x0f9d:
5290 case 0x0f9e:
5291 case 0x0f9f:
5292 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5293 ir.ot = OT_BYTE;
5294 if (i386_record_modrm (&ir))
5295 return -1;
5296 if (ir.mod == 3)
5297 I386_RECORD_ARCH_LIST_ADD_REG (ir.rex_b ? (ir.rm | ir.rex_b)
5298 : (ir.rm & 0x3));
5299 else
5300 {
5301 if (i386_record_lea_modrm (&ir))
5302 return -1;
5303 }
5304 break;
5305
5306 case 0x0f40: /* cmov Gv, Ev */
5307 case 0x0f41:
5308 case 0x0f42:
5309 case 0x0f43:
5310 case 0x0f44:
5311 case 0x0f45:
5312 case 0x0f46:
5313 case 0x0f47:
5314 case 0x0f48:
5315 case 0x0f49:
5316 case 0x0f4a:
5317 case 0x0f4b:
5318 case 0x0f4c:
5319 case 0x0f4d:
5320 case 0x0f4e:
5321 case 0x0f4f:
5322 if (i386_record_modrm (&ir))
5323 return -1;
5324 ir.reg |= rex_r;
5325 if (ir.dflag == OT_BYTE)
5326 ir.reg &= 0x3;
5327 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
5328 break;
5329
5330 /* flags */
5331 case 0x9c: /* pushf */
5332 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5333 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5334 ir.dflag = 2;
5335 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5336 return -1;
5337 break;
5338
5339 case 0x9d: /* popf */
5340 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5341 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5342 break;
5343
5344 case 0x9e: /* sahf */
5345 if (ir.regmap[X86_RECORD_R8_REGNUM])
5346 {
5347 ir.addr -= 1;
5348 goto no_support;
5349 }
5350 /* FALLTHROUGH */
5351 case 0xf5: /* cmc */
5352 case 0xf8: /* clc */
5353 case 0xf9: /* stc */
5354 case 0xfc: /* cld */
5355 case 0xfd: /* std */
5356 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5357 break;
5358
5359 case 0x9f: /* lahf */
5360 if (ir.regmap[X86_RECORD_R8_REGNUM])
5361 {
5362 ir.addr -= 1;
5363 goto no_support;
5364 }
5365 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5366 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5367 break;
5368
5369 /* bit operations */
5370 case 0x0fba: /* bt/bts/btr/btc Gv, im */
5371 ir.ot = ir.dflag + OT_WORD;
5372 if (i386_record_modrm (&ir))
5373 return -1;
5374 if (ir.reg < 4)
5375 {
5376 ir.addr -= 2;
5377 opcode = opcode << 8 | ir.modrm;
5378 goto no_support;
5379 }
5380 if (ir.reg != 4)
5381 {
5382 if (ir.mod == 3)
5383 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5384 else
5385 {
5386 if (i386_record_lea_modrm (&ir))
5387 return -1;
5388 }
5389 }
5390 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5391 break;
5392
5393 case 0x0fa3: /* bt Gv, Ev */
5394 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5395 break;
5396
5397 case 0x0fab: /* bts */
5398 case 0x0fb3: /* btr */
5399 case 0x0fbb: /* btc */
5400 ir.ot = ir.dflag + OT_WORD;
5401 if (i386_record_modrm (&ir))
5402 return -1;
5403 if (ir.mod == 3)
5404 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5405 else
5406 {
5407 uint64_t addr64;
5408 if (i386_record_lea_modrm_addr (&ir, &addr64))
5409 return -1;
5410 regcache_raw_read_unsigned (ir.regcache,
5411 ir.regmap[ir.reg | rex_r],
5412 &addr);
5413 switch (ir.dflag)
5414 {
5415 case 0:
5416 addr64 += ((int16_t) addr >> 4) << 4;
5417 break;
5418 case 1:
5419 addr64 += ((int32_t) addr >> 5) << 5;
5420 break;
5421 case 2:
5422 addr64 += ((int64_t) addr >> 6) << 6;
5423 break;
5424 }
5425 if (record_arch_list_add_mem (addr64, 1 << ir.ot))
5426 return -1;
5427 if (i386_record_lea_modrm (&ir))
5428 return -1;
5429 }
5430 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5431 break;
5432
5433 case 0x0fbc: /* bsf */
5434 case 0x0fbd: /* bsr */
5435 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5436 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5437 break;
5438
5439 /* bcd */
5440 case 0x27: /* daa */
5441 case 0x2f: /* das */
5442 case 0x37: /* aaa */
5443 case 0x3f: /* aas */
5444 case 0xd4: /* aam */
5445 case 0xd5: /* aad */
5446 if (ir.regmap[X86_RECORD_R8_REGNUM])
5447 {
5448 ir.addr -= 1;
5449 goto no_support;
5450 }
5451 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5452 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5453 break;
5454
5455 /* misc */
5456 case 0x90: /* nop */
5457 if (prefixes & PREFIX_LOCK)
5458 {
5459 ir.addr -= 1;
5460 goto no_support;
5461 }
5462 break;
5463
5464 case 0x9b: /* fwait */
5465 if (target_read_memory (ir.addr, &opcode8, 1))
5466 {
5467 if (record_debug)
5468 printf_unfiltered (_("Process record: error reading memory at "
5469 "addr 0x%s len = 1.\n"),
5470 paddress (gdbarch, ir.addr));
5471 return -1;
5472 }
5473 opcode = (uint32_t) opcode8;
5474 ir.addr++;
5475 goto reswitch;
5476 break;
5477
5478 /* XXX */
5479 case 0xcc: /* int3 */
5480 printf_unfiltered (_("Process record does not support instruction "
5481 "int3.\n"));
5482 ir.addr -= 1;
5483 goto no_support;
5484 break;
5485
5486 /* XXX */
5487 case 0xcd: /* int */
5488 {
5489 int ret;
5490 uint8_t interrupt;
5491 if (target_read_memory (ir.addr, &interrupt, 1))
5492 {
5493 if (record_debug)
5494 printf_unfiltered (_("Process record: error reading memory "
5495 "at addr %s len = 1.\n"),
5496 paddress (gdbarch, ir.addr));
5497 return -1;
5498 }
5499 ir.addr++;
5500 if (interrupt != 0x80
5501 || tdep->i386_intx80_record == NULL)
5502 {
5503 printf_unfiltered (_("Process record does not support "
5504 "instruction int 0x%02x.\n"),
5505 interrupt);
5506 ir.addr -= 2;
5507 goto no_support;
5508 }
5509 ret = tdep->i386_intx80_record (ir.regcache);
5510 if (ret)
5511 return ret;
5512 }
5513 break;
5514
5515 /* XXX */
5516 case 0xce: /* into */
5517 printf_unfiltered (_("Process record does not support "
5518 "instruction into.\n"));
5519 ir.addr -= 1;
5520 goto no_support;
5521 break;
5522
5523 case 0xfa: /* cli */
5524 case 0xfb: /* sti */
5525 break;
5526
5527 case 0x62: /* bound */
5528 printf_unfiltered (_("Process record does not support "
5529 "instruction bound.\n"));
5530 ir.addr -= 1;
5531 goto no_support;
5532 break;
5533
5534 case 0x0fc8: /* bswap reg */
5535 case 0x0fc9:
5536 case 0x0fca:
5537 case 0x0fcb:
5538 case 0x0fcc:
5539 case 0x0fcd:
5540 case 0x0fce:
5541 case 0x0fcf:
5542 I386_RECORD_ARCH_LIST_ADD_REG ((opcode & 7) | ir.rex_b);
5543 break;
5544
5545 case 0xd6: /* salc */
5546 if (ir.regmap[X86_RECORD_R8_REGNUM])
5547 {
5548 ir.addr -= 1;
5549 goto no_support;
5550 }
5551 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5552 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5553 break;
5554
5555 case 0xe0: /* loopnz */
5556 case 0xe1: /* loopz */
5557 case 0xe2: /* loop */
5558 case 0xe3: /* jecxz */
5559 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5560 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5561 break;
5562
5563 case 0x0f30: /* wrmsr */
5564 printf_unfiltered (_("Process record does not support "
5565 "instruction wrmsr.\n"));
5566 ir.addr -= 2;
5567 goto no_support;
5568 break;
5569
5570 case 0x0f32: /* rdmsr */
5571 printf_unfiltered (_("Process record does not support "
5572 "instruction rdmsr.\n"));
5573 ir.addr -= 2;
5574 goto no_support;
5575 break;
5576
5577 case 0x0f31: /* rdtsc */
5578 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5579 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5580 break;
5581
5582 case 0x0f34: /* sysenter */
5583 {
5584 int ret;
5585 if (ir.regmap[X86_RECORD_R8_REGNUM])
5586 {
5587 ir.addr -= 2;
5588 goto no_support;
5589 }
5590 if (tdep->i386_sysenter_record == NULL)
5591 {
5592 printf_unfiltered (_("Process record does not support "
5593 "instruction sysenter.\n"));
5594 ir.addr -= 2;
5595 goto no_support;
5596 }
5597 ret = tdep->i386_sysenter_record (ir.regcache);
5598 if (ret)
5599 return ret;
5600 }
5601 break;
5602
5603 case 0x0f35: /* sysexit */
5604 printf_unfiltered (_("Process record does not support "
5605 "instruction sysexit.\n"));
5606 ir.addr -= 2;
5607 goto no_support;
5608 break;
5609
5610 case 0x0f05: /* syscall */
5611 {
5612 int ret;
5613 if (tdep->i386_syscall_record == NULL)
5614 {
5615 printf_unfiltered (_("Process record does not support "
5616 "instruction syscall.\n"));
5617 ir.addr -= 2;
5618 goto no_support;
5619 }
5620 ret = tdep->i386_syscall_record (ir.regcache);
5621 if (ret)
5622 return ret;
5623 }
5624 break;
5625
5626 case 0x0f07: /* sysret */
5627 printf_unfiltered (_("Process record does not support "
5628 "instruction sysret.\n"));
5629 ir.addr -= 2;
5630 goto no_support;
5631 break;
5632
5633 case 0x0fa2: /* cpuid */
5634 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5635 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5636 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5637 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
5638 break;
5639
5640 case 0xf4: /* hlt */
5641 printf_unfiltered (_("Process record does not support "
5642 "instruction hlt.\n"));
5643 ir.addr -= 1;
5644 goto no_support;
5645 break;
5646
5647 case 0x0f00:
5648 if (i386_record_modrm (&ir))
5649 return -1;
5650 switch (ir.reg)
5651 {
5652 case 0: /* sldt */
5653 case 1: /* str */
5654 if (ir.mod == 3)
5655 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5656 else
5657 {
5658 ir.ot = OT_WORD;
5659 if (i386_record_lea_modrm (&ir))
5660 return -1;
5661 }
5662 break;
5663 case 2: /* lldt */
5664 case 3: /* ltr */
5665 break;
5666 case 4: /* verr */
5667 case 5: /* verw */
5668 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5669 break;
5670 default:
5671 ir.addr -= 3;
5672 opcode = opcode << 8 | ir.modrm;
5673 goto no_support;
5674 break;
5675 }
5676 break;
5677
5678 case 0x0f01:
5679 if (i386_record_modrm (&ir))
5680 return -1;
5681 switch (ir.reg)
5682 {
5683 case 0: /* sgdt */
5684 {
5685 uint64_t addr64;
5686
5687 if (ir.mod == 3)
5688 {
5689 ir.addr -= 3;
5690 opcode = opcode << 8 | ir.modrm;
5691 goto no_support;
5692 }
5693 if (ir.override >= 0)
5694 {
5695 if (record_memory_query)
5696 {
5697 int q;
5698
5699 target_terminal_ours ();
5700 q = yquery (_("\
5701 Process record ignores the memory change of instruction at address %s\n\
5702 because it can't get the value of the segment register.\n\
5703 Do you want to stop the program?"),
5704 paddress (gdbarch, ir.orig_addr));
5705 target_terminal_inferior ();
5706 if (q)
5707 return -1;
5708 }
5709 }
5710 else
5711 {
5712 if (i386_record_lea_modrm_addr (&ir, &addr64))
5713 return -1;
5714 if (record_arch_list_add_mem (addr64, 2))
5715 return -1;
5716 addr64 += 2;
5717 if (ir.regmap[X86_RECORD_R8_REGNUM])
5718 {
5719 if (record_arch_list_add_mem (addr64, 8))
5720 return -1;
5721 }
5722 else
5723 {
5724 if (record_arch_list_add_mem (addr64, 4))
5725 return -1;
5726 }
5727 }
5728 }
5729 break;
5730 case 1:
5731 if (ir.mod == 3)
5732 {
5733 switch (ir.rm)
5734 {
5735 case 0: /* monitor */
5736 break;
5737 case 1: /* mwait */
5738 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5739 break;
5740 default:
5741 ir.addr -= 3;
5742 opcode = opcode << 8 | ir.modrm;
5743 goto no_support;
5744 break;
5745 }
5746 }
5747 else
5748 {
5749 /* sidt */
5750 if (ir.override >= 0)
5751 {
5752 if (record_memory_query)
5753 {
5754 int q;
5755
5756 target_terminal_ours ();
5757 q = yquery (_("\
5758 Process record ignores the memory change of instruction at address %s\n\
5759 because it can't get the value of the segment register.\n\
5760 Do you want to stop the program?"),
5761 paddress (gdbarch, ir.orig_addr));
5762 target_terminal_inferior ();
5763 if (q)
5764 return -1;
5765 }
5766 }
5767 else
5768 {
5769 uint64_t addr64;
5770
5771 if (i386_record_lea_modrm_addr (&ir, &addr64))
5772 return -1;
5773 if (record_arch_list_add_mem (addr64, 2))
5774 return -1;
5775 addr64 += 2;
5776 if (ir.regmap[X86_RECORD_R8_REGNUM])
5777 {
5778 if (record_arch_list_add_mem (addr64, 8))
5779 return -1;
5780 }
5781 else
5782 {
5783 if (record_arch_list_add_mem (addr64, 4))
5784 return -1;
5785 }
5786 }
5787 }
5788 break;
5789 case 2: /* lgdt */
5790 if (ir.mod == 3)
5791 {
5792 /* xgetbv */
5793 if (ir.rm == 0)
5794 {
5795 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5796 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5797 break;
5798 }
5799 /* xsetbv */
5800 else if (ir.rm == 1)
5801 break;
5802 }
5803 case 3: /* lidt */
5804 if (ir.mod == 3)
5805 {
5806 ir.addr -= 3;
5807 opcode = opcode << 8 | ir.modrm;
5808 goto no_support;
5809 }
5810 break;
5811 case 4: /* smsw */
5812 if (ir.mod == 3)
5813 {
5814 if (record_arch_list_add_reg (ir.regcache, ir.rm | ir.rex_b))
5815 return -1;
5816 }
5817 else
5818 {
5819 ir.ot = OT_WORD;
5820 if (i386_record_lea_modrm (&ir))
5821 return -1;
5822 }
5823 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5824 break;
5825 case 6: /* lmsw */
5826 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5827 break;
5828 case 7: /* invlpg */
5829 if (ir.mod == 3)
5830 {
5831 if (ir.rm == 0 && ir.regmap[X86_RECORD_R8_REGNUM])
5832 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
5833 else
5834 {
5835 ir.addr -= 3;
5836 opcode = opcode << 8 | ir.modrm;
5837 goto no_support;
5838 }
5839 }
5840 else
5841 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5842 break;
5843 default:
5844 ir.addr -= 3;
5845 opcode = opcode << 8 | ir.modrm;
5846 goto no_support;
5847 break;
5848 }
5849 break;
5850
5851 case 0x0f08: /* invd */
5852 case 0x0f09: /* wbinvd */
5853 break;
5854
5855 case 0x63: /* arpl */
5856 if (i386_record_modrm (&ir))
5857 return -1;
5858 if (ir.mod == 3 || ir.regmap[X86_RECORD_R8_REGNUM])
5859 {
5860 I386_RECORD_ARCH_LIST_ADD_REG (ir.regmap[X86_RECORD_R8_REGNUM]
5861 ? (ir.reg | rex_r) : ir.rm);
5862 }
5863 else
5864 {
5865 ir.ot = ir.dflag ? OT_LONG : OT_WORD;
5866 if (i386_record_lea_modrm (&ir))
5867 return -1;
5868 }
5869 if (!ir.regmap[X86_RECORD_R8_REGNUM])
5870 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5871 break;
5872
5873 case 0x0f02: /* lar */
5874 case 0x0f03: /* lsl */
5875 if (i386_record_modrm (&ir))
5876 return -1;
5877 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5878 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5879 break;
5880
5881 case 0x0f18:
5882 if (i386_record_modrm (&ir))
5883 return -1;
5884 if (ir.mod == 3 && ir.reg == 3)
5885 {
5886 ir.addr -= 3;
5887 opcode = opcode << 8 | ir.modrm;
5888 goto no_support;
5889 }
5890 break;
5891
5892 case 0x0f19:
5893 case 0x0f1a:
5894 case 0x0f1b:
5895 case 0x0f1c:
5896 case 0x0f1d:
5897 case 0x0f1e:
5898 case 0x0f1f:
5899 /* nop (multi byte) */
5900 break;
5901
5902 case 0x0f20: /* mov reg, crN */
5903 case 0x0f22: /* mov crN, reg */
5904 if (i386_record_modrm (&ir))
5905 return -1;
5906 if ((ir.modrm & 0xc0) != 0xc0)
5907 {
5908 ir.addr -= 3;
5909 opcode = opcode << 8 | ir.modrm;
5910 goto no_support;
5911 }
5912 switch (ir.reg)
5913 {
5914 case 0:
5915 case 2:
5916 case 3:
5917 case 4:
5918 case 8:
5919 if (opcode & 2)
5920 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5921 else
5922 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5923 break;
5924 default:
5925 ir.addr -= 3;
5926 opcode = opcode << 8 | ir.modrm;
5927 goto no_support;
5928 break;
5929 }
5930 break;
5931
5932 case 0x0f21: /* mov reg, drN */
5933 case 0x0f23: /* mov drN, reg */
5934 if (i386_record_modrm (&ir))
5935 return -1;
5936 if ((ir.modrm & 0xc0) != 0xc0 || ir.reg == 4
5937 || ir.reg == 5 || ir.reg >= 8)
5938 {
5939 ir.addr -= 3;
5940 opcode = opcode << 8 | ir.modrm;
5941 goto no_support;
5942 }
5943 if (opcode & 2)
5944 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5945 else
5946 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5947 break;
5948
5949 case 0x0f06: /* clts */
5950 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5951 break;
5952
5953 /* MMX 3DNow! SSE SSE2 SSE3 SSSE3 SSE4 */
5954
5955 case 0x0f0d: /* 3DNow! prefetch */
5956 break;
5957
5958 case 0x0f0e: /* 3DNow! femms */
5959 case 0x0f77: /* emms */
5960 if (i386_fpc_regnum_p (gdbarch, I387_FTAG_REGNUM(tdep)))
5961 goto no_support;
5962 record_arch_list_add_reg (ir.regcache, I387_FTAG_REGNUM(tdep));
5963 break;
5964
5965 case 0x0f0f: /* 3DNow! data */
5966 if (i386_record_modrm (&ir))
5967 return -1;
5968 if (target_read_memory (ir.addr, &opcode8, 1))
5969 {
5970 printf_unfiltered (_("Process record: error reading memory at "
5971 "addr %s len = 1.\n"),
5972 paddress (gdbarch, ir.addr));
5973 return -1;
5974 }
5975 ir.addr++;
5976 switch (opcode8)
5977 {
5978 case 0x0c: /* 3DNow! pi2fw */
5979 case 0x0d: /* 3DNow! pi2fd */
5980 case 0x1c: /* 3DNow! pf2iw */
5981 case 0x1d: /* 3DNow! pf2id */
5982 case 0x8a: /* 3DNow! pfnacc */
5983 case 0x8e: /* 3DNow! pfpnacc */
5984 case 0x90: /* 3DNow! pfcmpge */
5985 case 0x94: /* 3DNow! pfmin */
5986 case 0x96: /* 3DNow! pfrcp */
5987 case 0x97: /* 3DNow! pfrsqrt */
5988 case 0x9a: /* 3DNow! pfsub */
5989 case 0x9e: /* 3DNow! pfadd */
5990 case 0xa0: /* 3DNow! pfcmpgt */
5991 case 0xa4: /* 3DNow! pfmax */
5992 case 0xa6: /* 3DNow! pfrcpit1 */
5993 case 0xa7: /* 3DNow! pfrsqit1 */
5994 case 0xaa: /* 3DNow! pfsubr */
5995 case 0xae: /* 3DNow! pfacc */
5996 case 0xb0: /* 3DNow! pfcmpeq */
5997 case 0xb4: /* 3DNow! pfmul */
5998 case 0xb6: /* 3DNow! pfrcpit2 */
5999 case 0xb7: /* 3DNow! pmulhrw */
6000 case 0xbb: /* 3DNow! pswapd */
6001 case 0xbf: /* 3DNow! pavgusb */
6002 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
6003 goto no_support_3dnow_data;
6004 record_arch_list_add_reg (ir.regcache, ir.reg);
6005 break;
6006
6007 default:
6008 no_support_3dnow_data:
6009 opcode = (opcode << 8) | opcode8;
6010 goto no_support;
6011 break;
6012 }
6013 break;
6014
6015 case 0x0faa: /* rsm */
6016 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6017 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6018 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6019 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6020 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
6021 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6022 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
6023 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6024 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6025 break;
6026
6027 case 0x0fae:
6028 if (i386_record_modrm (&ir))
6029 return -1;
6030 switch(ir.reg)
6031 {
6032 case 0: /* fxsave */
6033 {
6034 uint64_t tmpu64;
6035
6036 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6037 if (i386_record_lea_modrm_addr (&ir, &tmpu64))
6038 return -1;
6039 if (record_arch_list_add_mem (tmpu64, 512))
6040 return -1;
6041 }
6042 break;
6043
6044 case 1: /* fxrstor */
6045 {
6046 int i;
6047
6048 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6049
6050 for (i = I387_MM0_REGNUM (tdep);
6051 i386_mmx_regnum_p (gdbarch, i); i++)
6052 record_arch_list_add_reg (ir.regcache, i);
6053
6054 for (i = I387_XMM0_REGNUM (tdep);
6055 i386_xmm_regnum_p (gdbarch, i); i++)
6056 record_arch_list_add_reg (ir.regcache, i);
6057
6058 if (i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
6059 record_arch_list_add_reg (ir.regcache, I387_MXCSR_REGNUM(tdep));
6060
6061 for (i = I387_ST0_REGNUM (tdep);
6062 i386_fp_regnum_p (gdbarch, i); i++)
6063 record_arch_list_add_reg (ir.regcache, i);
6064
6065 for (i = I387_FCTRL_REGNUM (tdep);
6066 i386_fpc_regnum_p (gdbarch, i); i++)
6067 record_arch_list_add_reg (ir.regcache, i);
6068 }
6069 break;
6070
6071 case 2: /* ldmxcsr */
6072 if (!i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
6073 goto no_support;
6074 record_arch_list_add_reg (ir.regcache, I387_MXCSR_REGNUM(tdep));
6075 break;
6076
6077 case 3: /* stmxcsr */
6078 ir.ot = OT_LONG;
6079 if (i386_record_lea_modrm (&ir))
6080 return -1;
6081 break;
6082
6083 case 5: /* lfence */
6084 case 6: /* mfence */
6085 case 7: /* sfence clflush */
6086 break;
6087
6088 default:
6089 opcode = (opcode << 8) | ir.modrm;
6090 goto no_support;
6091 break;
6092 }
6093 break;
6094
6095 case 0x0fc3: /* movnti */
6096 ir.ot = (ir.dflag == 2) ? OT_QUAD : OT_LONG;
6097 if (i386_record_modrm (&ir))
6098 return -1;
6099 if (ir.mod == 3)
6100 goto no_support;
6101 ir.reg |= rex_r;
6102 if (i386_record_lea_modrm (&ir))
6103 return -1;
6104 break;
6105
6106 /* Add prefix to opcode. */
6107 case 0x0f10:
6108 case 0x0f11:
6109 case 0x0f12:
6110 case 0x0f13:
6111 case 0x0f14:
6112 case 0x0f15:
6113 case 0x0f16:
6114 case 0x0f17:
6115 case 0x0f28:
6116 case 0x0f29:
6117 case 0x0f2a:
6118 case 0x0f2b:
6119 case 0x0f2c:
6120 case 0x0f2d:
6121 case 0x0f2e:
6122 case 0x0f2f:
6123 case 0x0f38:
6124 case 0x0f39:
6125 case 0x0f3a:
6126 case 0x0f50:
6127 case 0x0f51:
6128 case 0x0f52:
6129 case 0x0f53:
6130 case 0x0f54:
6131 case 0x0f55:
6132 case 0x0f56:
6133 case 0x0f57:
6134 case 0x0f58:
6135 case 0x0f59:
6136 case 0x0f5a:
6137 case 0x0f5b:
6138 case 0x0f5c:
6139 case 0x0f5d:
6140 case 0x0f5e:
6141 case 0x0f5f:
6142 case 0x0f60:
6143 case 0x0f61:
6144 case 0x0f62:
6145 case 0x0f63:
6146 case 0x0f64:
6147 case 0x0f65:
6148 case 0x0f66:
6149 case 0x0f67:
6150 case 0x0f68:
6151 case 0x0f69:
6152 case 0x0f6a:
6153 case 0x0f6b:
6154 case 0x0f6c:
6155 case 0x0f6d:
6156 case 0x0f6e:
6157 case 0x0f6f:
6158 case 0x0f70:
6159 case 0x0f71:
6160 case 0x0f72:
6161 case 0x0f73:
6162 case 0x0f74:
6163 case 0x0f75:
6164 case 0x0f76:
6165 case 0x0f7c:
6166 case 0x0f7d:
6167 case 0x0f7e:
6168 case 0x0f7f:
6169 case 0x0fb8:
6170 case 0x0fc2:
6171 case 0x0fc4:
6172 case 0x0fc5:
6173 case 0x0fc6:
6174 case 0x0fd0:
6175 case 0x0fd1:
6176 case 0x0fd2:
6177 case 0x0fd3:
6178 case 0x0fd4:
6179 case 0x0fd5:
6180 case 0x0fd6:
6181 case 0x0fd7:
6182 case 0x0fd8:
6183 case 0x0fd9:
6184 case 0x0fda:
6185 case 0x0fdb:
6186 case 0x0fdc:
6187 case 0x0fdd:
6188 case 0x0fde:
6189 case 0x0fdf:
6190 case 0x0fe0:
6191 case 0x0fe1:
6192 case 0x0fe2:
6193 case 0x0fe3:
6194 case 0x0fe4:
6195 case 0x0fe5:
6196 case 0x0fe6:
6197 case 0x0fe7:
6198 case 0x0fe8:
6199 case 0x0fe9:
6200 case 0x0fea:
6201 case 0x0feb:
6202 case 0x0fec:
6203 case 0x0fed:
6204 case 0x0fee:
6205 case 0x0fef:
6206 case 0x0ff0:
6207 case 0x0ff1:
6208 case 0x0ff2:
6209 case 0x0ff3:
6210 case 0x0ff4:
6211 case 0x0ff5:
6212 case 0x0ff6:
6213 case 0x0ff7:
6214 case 0x0ff8:
6215 case 0x0ff9:
6216 case 0x0ffa:
6217 case 0x0ffb:
6218 case 0x0ffc:
6219 case 0x0ffd:
6220 case 0x0ffe:
6221 switch (prefixes)
6222 {
6223 case PREFIX_REPNZ:
6224 opcode |= 0xf20000;
6225 break;
6226 case PREFIX_DATA:
6227 opcode |= 0x660000;
6228 break;
6229 case PREFIX_REPZ:
6230 opcode |= 0xf30000;
6231 break;
6232 }
6233 reswitch_prefix_add:
6234 switch (opcode)
6235 {
6236 case 0x0f38:
6237 case 0x660f38:
6238 case 0xf20f38:
6239 case 0x0f3a:
6240 case 0x660f3a:
6241 if (target_read_memory (ir.addr, &opcode8, 1))
6242 {
6243 printf_unfiltered (_("Process record: error reading memory at "
6244 "addr %s len = 1.\n"),
6245 paddress (gdbarch, ir.addr));
6246 return -1;
6247 }
6248 ir.addr++;
6249 opcode = (uint32_t) opcode8 | opcode << 8;
6250 goto reswitch_prefix_add;
6251 break;
6252
6253 case 0x0f10: /* movups */
6254 case 0x660f10: /* movupd */
6255 case 0xf30f10: /* movss */
6256 case 0xf20f10: /* movsd */
6257 case 0x0f12: /* movlps */
6258 case 0x660f12: /* movlpd */
6259 case 0xf30f12: /* movsldup */
6260 case 0xf20f12: /* movddup */
6261 case 0x0f14: /* unpcklps */
6262 case 0x660f14: /* unpcklpd */
6263 case 0x0f15: /* unpckhps */
6264 case 0x660f15: /* unpckhpd */
6265 case 0x0f16: /* movhps */
6266 case 0x660f16: /* movhpd */
6267 case 0xf30f16: /* movshdup */
6268 case 0x0f28: /* movaps */
6269 case 0x660f28: /* movapd */
6270 case 0x0f2a: /* cvtpi2ps */
6271 case 0x660f2a: /* cvtpi2pd */
6272 case 0xf30f2a: /* cvtsi2ss */
6273 case 0xf20f2a: /* cvtsi2sd */
6274 case 0x0f2c: /* cvttps2pi */
6275 case 0x660f2c: /* cvttpd2pi */
6276 case 0x0f2d: /* cvtps2pi */
6277 case 0x660f2d: /* cvtpd2pi */
6278 case 0x660f3800: /* pshufb */
6279 case 0x660f3801: /* phaddw */
6280 case 0x660f3802: /* phaddd */
6281 case 0x660f3803: /* phaddsw */
6282 case 0x660f3804: /* pmaddubsw */
6283 case 0x660f3805: /* phsubw */
6284 case 0x660f3806: /* phsubd */
6285 case 0x660f3807: /* phsubsw */
6286 case 0x660f3808: /* psignb */
6287 case 0x660f3809: /* psignw */
6288 case 0x660f380a: /* psignd */
6289 case 0x660f380b: /* pmulhrsw */
6290 case 0x660f3810: /* pblendvb */
6291 case 0x660f3814: /* blendvps */
6292 case 0x660f3815: /* blendvpd */
6293 case 0x660f381c: /* pabsb */
6294 case 0x660f381d: /* pabsw */
6295 case 0x660f381e: /* pabsd */
6296 case 0x660f3820: /* pmovsxbw */
6297 case 0x660f3821: /* pmovsxbd */
6298 case 0x660f3822: /* pmovsxbq */
6299 case 0x660f3823: /* pmovsxwd */
6300 case 0x660f3824: /* pmovsxwq */
6301 case 0x660f3825: /* pmovsxdq */
6302 case 0x660f3828: /* pmuldq */
6303 case 0x660f3829: /* pcmpeqq */
6304 case 0x660f382a: /* movntdqa */
6305 case 0x660f3a08: /* roundps */
6306 case 0x660f3a09: /* roundpd */
6307 case 0x660f3a0a: /* roundss */
6308 case 0x660f3a0b: /* roundsd */
6309 case 0x660f3a0c: /* blendps */
6310 case 0x660f3a0d: /* blendpd */
6311 case 0x660f3a0e: /* pblendw */
6312 case 0x660f3a0f: /* palignr */
6313 case 0x660f3a20: /* pinsrb */
6314 case 0x660f3a21: /* insertps */
6315 case 0x660f3a22: /* pinsrd pinsrq */
6316 case 0x660f3a40: /* dpps */
6317 case 0x660f3a41: /* dppd */
6318 case 0x660f3a42: /* mpsadbw */
6319 case 0x660f3a60: /* pcmpestrm */
6320 case 0x660f3a61: /* pcmpestri */
6321 case 0x660f3a62: /* pcmpistrm */
6322 case 0x660f3a63: /* pcmpistri */
6323 case 0x0f51: /* sqrtps */
6324 case 0x660f51: /* sqrtpd */
6325 case 0xf20f51: /* sqrtsd */
6326 case 0xf30f51: /* sqrtss */
6327 case 0x0f52: /* rsqrtps */
6328 case 0xf30f52: /* rsqrtss */
6329 case 0x0f53: /* rcpps */
6330 case 0xf30f53: /* rcpss */
6331 case 0x0f54: /* andps */
6332 case 0x660f54: /* andpd */
6333 case 0x0f55: /* andnps */
6334 case 0x660f55: /* andnpd */
6335 case 0x0f56: /* orps */
6336 case 0x660f56: /* orpd */
6337 case 0x0f57: /* xorps */
6338 case 0x660f57: /* xorpd */
6339 case 0x0f58: /* addps */
6340 case 0x660f58: /* addpd */
6341 case 0xf20f58: /* addsd */
6342 case 0xf30f58: /* addss */
6343 case 0x0f59: /* mulps */
6344 case 0x660f59: /* mulpd */
6345 case 0xf20f59: /* mulsd */
6346 case 0xf30f59: /* mulss */
6347 case 0x0f5a: /* cvtps2pd */
6348 case 0x660f5a: /* cvtpd2ps */
6349 case 0xf20f5a: /* cvtsd2ss */
6350 case 0xf30f5a: /* cvtss2sd */
6351 case 0x0f5b: /* cvtdq2ps */
6352 case 0x660f5b: /* cvtps2dq */
6353 case 0xf30f5b: /* cvttps2dq */
6354 case 0x0f5c: /* subps */
6355 case 0x660f5c: /* subpd */
6356 case 0xf20f5c: /* subsd */
6357 case 0xf30f5c: /* subss */
6358 case 0x0f5d: /* minps */
6359 case 0x660f5d: /* minpd */
6360 case 0xf20f5d: /* minsd */
6361 case 0xf30f5d: /* minss */
6362 case 0x0f5e: /* divps */
6363 case 0x660f5e: /* divpd */
6364 case 0xf20f5e: /* divsd */
6365 case 0xf30f5e: /* divss */
6366 case 0x0f5f: /* maxps */
6367 case 0x660f5f: /* maxpd */
6368 case 0xf20f5f: /* maxsd */
6369 case 0xf30f5f: /* maxss */
6370 case 0x660f60: /* punpcklbw */
6371 case 0x660f61: /* punpcklwd */
6372 case 0x660f62: /* punpckldq */
6373 case 0x660f63: /* packsswb */
6374 case 0x660f64: /* pcmpgtb */
6375 case 0x660f65: /* pcmpgtw */
6376 case 0x660f66: /* pcmpgtd */
6377 case 0x660f67: /* packuswb */
6378 case 0x660f68: /* punpckhbw */
6379 case 0x660f69: /* punpckhwd */
6380 case 0x660f6a: /* punpckhdq */
6381 case 0x660f6b: /* packssdw */
6382 case 0x660f6c: /* punpcklqdq */
6383 case 0x660f6d: /* punpckhqdq */
6384 case 0x660f6e: /* movd */
6385 case 0x660f6f: /* movdqa */
6386 case 0xf30f6f: /* movdqu */
6387 case 0x660f70: /* pshufd */
6388 case 0xf20f70: /* pshuflw */
6389 case 0xf30f70: /* pshufhw */
6390 case 0x660f74: /* pcmpeqb */
6391 case 0x660f75: /* pcmpeqw */
6392 case 0x660f76: /* pcmpeqd */
6393 case 0x660f7c: /* haddpd */
6394 case 0xf20f7c: /* haddps */
6395 case 0x660f7d: /* hsubpd */
6396 case 0xf20f7d: /* hsubps */
6397 case 0xf30f7e: /* movq */
6398 case 0x0fc2: /* cmpps */
6399 case 0x660fc2: /* cmppd */
6400 case 0xf20fc2: /* cmpsd */
6401 case 0xf30fc2: /* cmpss */
6402 case 0x660fc4: /* pinsrw */
6403 case 0x0fc6: /* shufps */
6404 case 0x660fc6: /* shufpd */
6405 case 0x660fd0: /* addsubpd */
6406 case 0xf20fd0: /* addsubps */
6407 case 0x660fd1: /* psrlw */
6408 case 0x660fd2: /* psrld */
6409 case 0x660fd3: /* psrlq */
6410 case 0x660fd4: /* paddq */
6411 case 0x660fd5: /* pmullw */
6412 case 0xf30fd6: /* movq2dq */
6413 case 0x660fd8: /* psubusb */
6414 case 0x660fd9: /* psubusw */
6415 case 0x660fda: /* pminub */
6416 case 0x660fdb: /* pand */
6417 case 0x660fdc: /* paddusb */
6418 case 0x660fdd: /* paddusw */
6419 case 0x660fde: /* pmaxub */
6420 case 0x660fdf: /* pandn */
6421 case 0x660fe0: /* pavgb */
6422 case 0x660fe1: /* psraw */
6423 case 0x660fe2: /* psrad */
6424 case 0x660fe3: /* pavgw */
6425 case 0x660fe4: /* pmulhuw */
6426 case 0x660fe5: /* pmulhw */
6427 case 0x660fe6: /* cvttpd2dq */
6428 case 0xf20fe6: /* cvtpd2dq */
6429 case 0xf30fe6: /* cvtdq2pd */
6430 case 0x660fe8: /* psubsb */
6431 case 0x660fe9: /* psubsw */
6432 case 0x660fea: /* pminsw */
6433 case 0x660feb: /* por */
6434 case 0x660fec: /* paddsb */
6435 case 0x660fed: /* paddsw */
6436 case 0x660fee: /* pmaxsw */
6437 case 0x660fef: /* pxor */
6438 case 0xf20ff0: /* lddqu */
6439 case 0x660ff1: /* psllw */
6440 case 0x660ff2: /* pslld */
6441 case 0x660ff3: /* psllq */
6442 case 0x660ff4: /* pmuludq */
6443 case 0x660ff5: /* pmaddwd */
6444 case 0x660ff6: /* psadbw */
6445 case 0x660ff8: /* psubb */
6446 case 0x660ff9: /* psubw */
6447 case 0x660ffa: /* psubd */
6448 case 0x660ffb: /* psubq */
6449 case 0x660ffc: /* paddb */
6450 case 0x660ffd: /* paddw */
6451 case 0x660ffe: /* paddd */
6452 if (i386_record_modrm (&ir))
6453 return -1;
6454 ir.reg |= rex_r;
6455 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.reg))
6456 goto no_support;
6457 record_arch_list_add_reg (ir.regcache,
6458 I387_XMM0_REGNUM (tdep) + ir.reg);
6459 if ((opcode & 0xfffffffc) == 0x660f3a60)
6460 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6461 break;
6462
6463 case 0x0f11: /* movups */
6464 case 0x660f11: /* movupd */
6465 case 0xf30f11: /* movss */
6466 case 0xf20f11: /* movsd */
6467 case 0x0f13: /* movlps */
6468 case 0x660f13: /* movlpd */
6469 case 0x0f17: /* movhps */
6470 case 0x660f17: /* movhpd */
6471 case 0x0f29: /* movaps */
6472 case 0x660f29: /* movapd */
6473 case 0x660f3a14: /* pextrb */
6474 case 0x660f3a15: /* pextrw */
6475 case 0x660f3a16: /* pextrd pextrq */
6476 case 0x660f3a17: /* extractps */
6477 case 0x660f7f: /* movdqa */
6478 case 0xf30f7f: /* movdqu */
6479 if (i386_record_modrm (&ir))
6480 return -1;
6481 if (ir.mod == 3)
6482 {
6483 if (opcode == 0x0f13 || opcode == 0x660f13
6484 || opcode == 0x0f17 || opcode == 0x660f17)
6485 goto no_support;
6486 ir.rm |= ir.rex_b;
6487 if (!i386_xmm_regnum_p (gdbarch,
6488 I387_XMM0_REGNUM (tdep) + ir.rm))
6489 goto no_support;
6490 record_arch_list_add_reg (ir.regcache,
6491 I387_XMM0_REGNUM (tdep) + ir.rm);
6492 }
6493 else
6494 {
6495 switch (opcode)
6496 {
6497 case 0x660f3a14:
6498 ir.ot = OT_BYTE;
6499 break;
6500 case 0x660f3a15:
6501 ir.ot = OT_WORD;
6502 break;
6503 case 0x660f3a16:
6504 ir.ot = OT_LONG;
6505 break;
6506 case 0x660f3a17:
6507 ir.ot = OT_QUAD;
6508 break;
6509 default:
6510 ir.ot = OT_DQUAD;
6511 break;
6512 }
6513 if (i386_record_lea_modrm (&ir))
6514 return -1;
6515 }
6516 break;
6517
6518 case 0x0f2b: /* movntps */
6519 case 0x660f2b: /* movntpd */
6520 case 0x0fe7: /* movntq */
6521 case 0x660fe7: /* movntdq */
6522 if (ir.mod == 3)
6523 goto no_support;
6524 if (opcode == 0x0fe7)
6525 ir.ot = OT_QUAD;
6526 else
6527 ir.ot = OT_DQUAD;
6528 if (i386_record_lea_modrm (&ir))
6529 return -1;
6530 break;
6531
6532 case 0xf30f2c: /* cvttss2si */
6533 case 0xf20f2c: /* cvttsd2si */
6534 case 0xf30f2d: /* cvtss2si */
6535 case 0xf20f2d: /* cvtsd2si */
6536 case 0xf20f38f0: /* crc32 */
6537 case 0xf20f38f1: /* crc32 */
6538 case 0x0f50: /* movmskps */
6539 case 0x660f50: /* movmskpd */
6540 case 0x0fc5: /* pextrw */
6541 case 0x660fc5: /* pextrw */
6542 case 0x0fd7: /* pmovmskb */
6543 case 0x660fd7: /* pmovmskb */
6544 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6545 break;
6546
6547 case 0x0f3800: /* pshufb */
6548 case 0x0f3801: /* phaddw */
6549 case 0x0f3802: /* phaddd */
6550 case 0x0f3803: /* phaddsw */
6551 case 0x0f3804: /* pmaddubsw */
6552 case 0x0f3805: /* phsubw */
6553 case 0x0f3806: /* phsubd */
6554 case 0x0f3807: /* phsubsw */
6555 case 0x0f3808: /* psignb */
6556 case 0x0f3809: /* psignw */
6557 case 0x0f380a: /* psignd */
6558 case 0x0f380b: /* pmulhrsw */
6559 case 0x0f381c: /* pabsb */
6560 case 0x0f381d: /* pabsw */
6561 case 0x0f381e: /* pabsd */
6562 case 0x0f382b: /* packusdw */
6563 case 0x0f3830: /* pmovzxbw */
6564 case 0x0f3831: /* pmovzxbd */
6565 case 0x0f3832: /* pmovzxbq */
6566 case 0x0f3833: /* pmovzxwd */
6567 case 0x0f3834: /* pmovzxwq */
6568 case 0x0f3835: /* pmovzxdq */
6569 case 0x0f3837: /* pcmpgtq */
6570 case 0x0f3838: /* pminsb */
6571 case 0x0f3839: /* pminsd */
6572 case 0x0f383a: /* pminuw */
6573 case 0x0f383b: /* pminud */
6574 case 0x0f383c: /* pmaxsb */
6575 case 0x0f383d: /* pmaxsd */
6576 case 0x0f383e: /* pmaxuw */
6577 case 0x0f383f: /* pmaxud */
6578 case 0x0f3840: /* pmulld */
6579 case 0x0f3841: /* phminposuw */
6580 case 0x0f3a0f: /* palignr */
6581 case 0x0f60: /* punpcklbw */
6582 case 0x0f61: /* punpcklwd */
6583 case 0x0f62: /* punpckldq */
6584 case 0x0f63: /* packsswb */
6585 case 0x0f64: /* pcmpgtb */
6586 case 0x0f65: /* pcmpgtw */
6587 case 0x0f66: /* pcmpgtd */
6588 case 0x0f67: /* packuswb */
6589 case 0x0f68: /* punpckhbw */
6590 case 0x0f69: /* punpckhwd */
6591 case 0x0f6a: /* punpckhdq */
6592 case 0x0f6b: /* packssdw */
6593 case 0x0f6e: /* movd */
6594 case 0x0f6f: /* movq */
6595 case 0x0f70: /* pshufw */
6596 case 0x0f74: /* pcmpeqb */
6597 case 0x0f75: /* pcmpeqw */
6598 case 0x0f76: /* pcmpeqd */
6599 case 0x0fc4: /* pinsrw */
6600 case 0x0fd1: /* psrlw */
6601 case 0x0fd2: /* psrld */
6602 case 0x0fd3: /* psrlq */
6603 case 0x0fd4: /* paddq */
6604 case 0x0fd5: /* pmullw */
6605 case 0xf20fd6: /* movdq2q */
6606 case 0x0fd8: /* psubusb */
6607 case 0x0fd9: /* psubusw */
6608 case 0x0fda: /* pminub */
6609 case 0x0fdb: /* pand */
6610 case 0x0fdc: /* paddusb */
6611 case 0x0fdd: /* paddusw */
6612 case 0x0fde: /* pmaxub */
6613 case 0x0fdf: /* pandn */
6614 case 0x0fe0: /* pavgb */
6615 case 0x0fe1: /* psraw */
6616 case 0x0fe2: /* psrad */
6617 case 0x0fe3: /* pavgw */
6618 case 0x0fe4: /* pmulhuw */
6619 case 0x0fe5: /* pmulhw */
6620 case 0x0fe8: /* psubsb */
6621 case 0x0fe9: /* psubsw */
6622 case 0x0fea: /* pminsw */
6623 case 0x0feb: /* por */
6624 case 0x0fec: /* paddsb */
6625 case 0x0fed: /* paddsw */
6626 case 0x0fee: /* pmaxsw */
6627 case 0x0fef: /* pxor */
6628 case 0x0ff1: /* psllw */
6629 case 0x0ff2: /* pslld */
6630 case 0x0ff3: /* psllq */
6631 case 0x0ff4: /* pmuludq */
6632 case 0x0ff5: /* pmaddwd */
6633 case 0x0ff6: /* psadbw */
6634 case 0x0ff8: /* psubb */
6635 case 0x0ff9: /* psubw */
6636 case 0x0ffa: /* psubd */
6637 case 0x0ffb: /* psubq */
6638 case 0x0ffc: /* paddb */
6639 case 0x0ffd: /* paddw */
6640 case 0x0ffe: /* paddd */
6641 if (i386_record_modrm (&ir))
6642 return -1;
6643 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
6644 goto no_support;
6645 record_arch_list_add_reg (ir.regcache,
6646 I387_MM0_REGNUM (tdep) + ir.reg);
6647 break;
6648
6649 case 0x0f71: /* psllw */
6650 case 0x0f72: /* pslld */
6651 case 0x0f73: /* psllq */
6652 if (i386_record_modrm (&ir))
6653 return -1;
6654 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
6655 goto no_support;
6656 record_arch_list_add_reg (ir.regcache,
6657 I387_MM0_REGNUM (tdep) + ir.rm);
6658 break;
6659
6660 case 0x660f71: /* psllw */
6661 case 0x660f72: /* pslld */
6662 case 0x660f73: /* psllq */
6663 if (i386_record_modrm (&ir))
6664 return -1;
6665 ir.rm |= ir.rex_b;
6666 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.rm))
6667 goto no_support;
6668 record_arch_list_add_reg (ir.regcache,
6669 I387_XMM0_REGNUM (tdep) + ir.rm);
6670 break;
6671
6672 case 0x0f7e: /* movd */
6673 case 0x660f7e: /* movd */
6674 if (i386_record_modrm (&ir))
6675 return -1;
6676 if (ir.mod == 3)
6677 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6678 else
6679 {
6680 if (ir.dflag == 2)
6681 ir.ot = OT_QUAD;
6682 else
6683 ir.ot = OT_LONG;
6684 if (i386_record_lea_modrm (&ir))
6685 return -1;
6686 }
6687 break;
6688
6689 case 0x0f7f: /* movq */
6690 if (i386_record_modrm (&ir))
6691 return -1;
6692 if (ir.mod == 3)
6693 {
6694 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
6695 goto no_support;
6696 record_arch_list_add_reg (ir.regcache,
6697 I387_MM0_REGNUM (tdep) + ir.rm);
6698 }
6699 else
6700 {
6701 ir.ot = OT_QUAD;
6702 if (i386_record_lea_modrm (&ir))
6703 return -1;
6704 }
6705 break;
6706
6707 case 0xf30fb8: /* popcnt */
6708 if (i386_record_modrm (&ir))
6709 return -1;
6710 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
6711 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6712 break;
6713
6714 case 0x660fd6: /* movq */
6715 if (i386_record_modrm (&ir))
6716 return -1;
6717 if (ir.mod == 3)
6718 {
6719 ir.rm |= ir.rex_b;
6720 if (!i386_xmm_regnum_p (gdbarch,
6721 I387_XMM0_REGNUM (tdep) + ir.rm))
6722 goto no_support;
6723 record_arch_list_add_reg (ir.regcache,
6724 I387_XMM0_REGNUM (tdep) + ir.rm);
6725 }
6726 else
6727 {
6728 ir.ot = OT_QUAD;
6729 if (i386_record_lea_modrm (&ir))
6730 return -1;
6731 }
6732 break;
6733
6734 case 0x660f3817: /* ptest */
6735 case 0x0f2e: /* ucomiss */
6736 case 0x660f2e: /* ucomisd */
6737 case 0x0f2f: /* comiss */
6738 case 0x660f2f: /* comisd */
6739 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6740 break;
6741
6742 case 0x0ff7: /* maskmovq */
6743 regcache_raw_read_unsigned (ir.regcache,
6744 ir.regmap[X86_RECORD_REDI_REGNUM],
6745 &addr);
6746 if (record_arch_list_add_mem (addr, 64))
6747 return -1;
6748 break;
6749
6750 case 0x660ff7: /* maskmovdqu */
6751 regcache_raw_read_unsigned (ir.regcache,
6752 ir.regmap[X86_RECORD_REDI_REGNUM],
6753 &addr);
6754 if (record_arch_list_add_mem (addr, 128))
6755 return -1;
6756 break;
6757
6758 default:
6759 goto no_support;
6760 break;
6761 }
6762 break;
6763
6764 default:
6765 goto no_support;
6766 break;
6767 }
6768
6769 /* In the future, maybe still need to deal with need_dasm. */
6770 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REIP_REGNUM);
6771 if (record_arch_list_add_end ())
6772 return -1;
6773
6774 return 0;
6775
6776 no_support:
6777 printf_unfiltered (_("Process record does not support instruction 0x%02x "
6778 "at address %s.\n"),
6779 (unsigned int) (opcode),
6780 paddress (gdbarch, ir.orig_addr));
6781 return -1;
6782 }
6783
6784 static const int i386_record_regmap[] =
6785 {
6786 I386_EAX_REGNUM, I386_ECX_REGNUM, I386_EDX_REGNUM, I386_EBX_REGNUM,
6787 I386_ESP_REGNUM, I386_EBP_REGNUM, I386_ESI_REGNUM, I386_EDI_REGNUM,
6788 0, 0, 0, 0, 0, 0, 0, 0,
6789 I386_EIP_REGNUM, I386_EFLAGS_REGNUM, I386_CS_REGNUM, I386_SS_REGNUM,
6790 I386_DS_REGNUM, I386_ES_REGNUM, I386_FS_REGNUM, I386_GS_REGNUM
6791 };
6792
6793 /* Check that the given address appears suitable for a fast
6794 tracepoint, which on x86 means that we need an instruction of at
6795 least 5 bytes, so that we can overwrite it with a 4-byte-offset
6796 jump and not have to worry about program jumps to an address in the
6797 middle of the tracepoint jump. Returns 1 if OK, and writes a size
6798 of instruction to replace, and 0 if not, plus an explanatory
6799 string. */
6800
6801 static int
6802 i386_fast_tracepoint_valid_at (struct gdbarch *gdbarch,
6803 CORE_ADDR addr, int *isize, char **msg)
6804 {
6805 int len, jumplen;
6806 static struct ui_file *gdb_null = NULL;
6807
6808 /* This is based on the target agent using a 4-byte relative jump.
6809 Alternate future possibilities include 8-byte offset for x86-84,
6810 or 3-byte jumps if the program has trampoline space close by. */
6811 jumplen = 5;
6812
6813 /* Dummy file descriptor for the disassembler. */
6814 if (!gdb_null)
6815 gdb_null = ui_file_new ();
6816
6817 /* Check for fit. */
6818 len = gdb_print_insn (gdbarch, addr, gdb_null, NULL);
6819 if (len < jumplen)
6820 {
6821 /* Return a bit of target-specific detail to add to the caller's
6822 generic failure message. */
6823 if (msg)
6824 *msg = xstrprintf (_("; instruction is only %d bytes long, "
6825 "need at least %d bytes for the jump"),
6826 len, jumplen);
6827 return 0;
6828 }
6829
6830 if (isize)
6831 *isize = len;
6832 if (msg)
6833 *msg = NULL;
6834 return 1;
6835 }
6836
6837 static int
6838 i386_validate_tdesc_p (struct gdbarch_tdep *tdep,
6839 struct tdesc_arch_data *tdesc_data)
6840 {
6841 const struct target_desc *tdesc = tdep->tdesc;
6842 const struct tdesc_feature *feature_core;
6843 const struct tdesc_feature *feature_sse, *feature_avx;
6844 int i, num_regs, valid_p;
6845
6846 if (! tdesc_has_registers (tdesc))
6847 return 0;
6848
6849 /* Get core registers. */
6850 feature_core = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.core");
6851 if (feature_core == NULL)
6852 return 0;
6853
6854 /* Get SSE registers. */
6855 feature_sse = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.sse");
6856
6857 /* Try AVX registers. */
6858 feature_avx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx");
6859
6860 valid_p = 1;
6861
6862 /* The XCR0 bits. */
6863 if (feature_avx)
6864 {
6865 /* AVX register description requires SSE register description. */
6866 if (!feature_sse)
6867 return 0;
6868
6869 tdep->xcr0 = I386_XSTATE_AVX_MASK;
6870
6871 /* It may have been set by OSABI initialization function. */
6872 if (tdep->num_ymm_regs == 0)
6873 {
6874 tdep->ymmh_register_names = i386_ymmh_names;
6875 tdep->num_ymm_regs = 8;
6876 tdep->ymm0h_regnum = I386_YMM0H_REGNUM;
6877 }
6878
6879 for (i = 0; i < tdep->num_ymm_regs; i++)
6880 valid_p &= tdesc_numbered_register (feature_avx, tdesc_data,
6881 tdep->ymm0h_regnum + i,
6882 tdep->ymmh_register_names[i]);
6883 }
6884 else if (feature_sse)
6885 tdep->xcr0 = I386_XSTATE_SSE_MASK;
6886 else
6887 {
6888 tdep->xcr0 = I386_XSTATE_X87_MASK;
6889 tdep->num_xmm_regs = 0;
6890 }
6891
6892 num_regs = tdep->num_core_regs;
6893 for (i = 0; i < num_regs; i++)
6894 valid_p &= tdesc_numbered_register (feature_core, tdesc_data, i,
6895 tdep->register_names[i]);
6896
6897 if (feature_sse)
6898 {
6899 /* Need to include %mxcsr, so add one. */
6900 num_regs += tdep->num_xmm_regs + 1;
6901 for (; i < num_regs; i++)
6902 valid_p &= tdesc_numbered_register (feature_sse, tdesc_data, i,
6903 tdep->register_names[i]);
6904 }
6905
6906 return valid_p;
6907 }
6908
6909 \f
6910 static struct gdbarch *
6911 i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
6912 {
6913 struct gdbarch_tdep *tdep;
6914 struct gdbarch *gdbarch;
6915 struct tdesc_arch_data *tdesc_data;
6916 const struct target_desc *tdesc;
6917 int mm0_regnum;
6918 int ymm0_regnum;
6919
6920 /* If there is already a candidate, use it. */
6921 arches = gdbarch_list_lookup_by_info (arches, &info);
6922 if (arches != NULL)
6923 return arches->gdbarch;
6924
6925 /* Allocate space for the new architecture. */
6926 tdep = XCALLOC (1, struct gdbarch_tdep);
6927 gdbarch = gdbarch_alloc (&info, tdep);
6928
6929 /* General-purpose registers. */
6930 tdep->gregset = NULL;
6931 tdep->gregset_reg_offset = NULL;
6932 tdep->gregset_num_regs = I386_NUM_GREGS;
6933 tdep->sizeof_gregset = 0;
6934
6935 /* Floating-point registers. */
6936 tdep->fpregset = NULL;
6937 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
6938
6939 tdep->xstateregset = NULL;
6940
6941 /* The default settings include the FPU registers, the MMX registers
6942 and the SSE registers. This can be overridden for a specific ABI
6943 by adjusting the members `st0_regnum', `mm0_regnum' and
6944 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
6945 will show up in the output of "info all-registers". */
6946
6947 tdep->st0_regnum = I386_ST0_REGNUM;
6948
6949 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
6950 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
6951
6952 tdep->jb_pc_offset = -1;
6953 tdep->struct_return = pcc_struct_return;
6954 tdep->sigtramp_start = 0;
6955 tdep->sigtramp_end = 0;
6956 tdep->sigtramp_p = i386_sigtramp_p;
6957 tdep->sigcontext_addr = NULL;
6958 tdep->sc_reg_offset = NULL;
6959 tdep->sc_pc_offset = -1;
6960 tdep->sc_sp_offset = -1;
6961
6962 tdep->xsave_xcr0_offset = -1;
6963
6964 tdep->record_regmap = i386_record_regmap;
6965
6966 /* The format used for `long double' on almost all i386 targets is
6967 the i387 extended floating-point format. In fact, of all targets
6968 in the GCC 2.95 tree, only OSF/1 does it different, and insists
6969 on having a `long double' that's not `long' at all. */
6970 set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext);
6971
6972 /* Although the i387 extended floating-point has only 80 significant
6973 bits, a `long double' actually takes up 96, probably to enforce
6974 alignment. */
6975 set_gdbarch_long_double_bit (gdbarch, 96);
6976
6977 /* Register numbers of various important registers. */
6978 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
6979 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
6980 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
6981 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
6982
6983 /* NOTE: kettenis/20040418: GCC does have two possible register
6984 numbering schemes on the i386: dbx and SVR4. These schemes
6985 differ in how they number %ebp, %esp, %eflags, and the
6986 floating-point registers, and are implemented by the arrays
6987 dbx_register_map[] and svr4_dbx_register_map in
6988 gcc/config/i386.c. GCC also defines a third numbering scheme in
6989 gcc/config/i386.c, which it designates as the "default" register
6990 map used in 64bit mode. This last register numbering scheme is
6991 implemented in dbx64_register_map, and is used for AMD64; see
6992 amd64-tdep.c.
6993
6994 Currently, each GCC i386 target always uses the same register
6995 numbering scheme across all its supported debugging formats
6996 i.e. SDB (COFF), stabs and DWARF 2. This is because
6997 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
6998 DBX_REGISTER_NUMBER macro which is defined by each target's
6999 respective config header in a manner independent of the requested
7000 output debugging format.
7001
7002 This does not match the arrangement below, which presumes that
7003 the SDB and stabs numbering schemes differ from the DWARF and
7004 DWARF 2 ones. The reason for this arrangement is that it is
7005 likely to get the numbering scheme for the target's
7006 default/native debug format right. For targets where GCC is the
7007 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
7008 targets where the native toolchain uses a different numbering
7009 scheme for a particular debug format (stabs-in-ELF on Solaris)
7010 the defaults below will have to be overridden, like
7011 i386_elf_init_abi() does. */
7012
7013 /* Use the dbx register numbering scheme for stabs and COFF. */
7014 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
7015 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
7016
7017 /* Use the SVR4 register numbering scheme for DWARF 2. */
7018 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
7019
7020 /* We don't set gdbarch_stab_reg_to_regnum, since ECOFF doesn't seem to
7021 be in use on any of the supported i386 targets. */
7022
7023 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
7024
7025 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
7026
7027 /* Call dummy code. */
7028 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
7029
7030 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
7031 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
7032 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
7033
7034 set_gdbarch_return_value (gdbarch, i386_return_value);
7035
7036 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
7037
7038 /* Stack grows downward. */
7039 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
7040
7041 set_gdbarch_breakpoint_from_pc (gdbarch, i386_breakpoint_from_pc);
7042 set_gdbarch_decr_pc_after_break (gdbarch, 1);
7043 set_gdbarch_max_insn_length (gdbarch, I386_MAX_INSN_LEN);
7044
7045 set_gdbarch_frame_args_skip (gdbarch, 8);
7046
7047 set_gdbarch_print_insn (gdbarch, i386_print_insn);
7048
7049 set_gdbarch_dummy_id (gdbarch, i386_dummy_id);
7050
7051 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
7052
7053 /* Add the i386 register groups. */
7054 i386_add_reggroups (gdbarch);
7055 tdep->register_reggroup_p = i386_register_reggroup_p;
7056
7057 /* Helper for function argument information. */
7058 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
7059
7060 /* Hook the function epilogue frame unwinder. This unwinder is
7061 appended to the list first, so that it supercedes the Dwarf
7062 unwinder in function epilogues (where the Dwarf unwinder
7063 currently fails). */
7064 frame_unwind_append_unwinder (gdbarch, &i386_epilogue_frame_unwind);
7065
7066 /* Hook in the DWARF CFI frame unwinder. This unwinder is appended
7067 to the list before the prologue-based unwinders, so that Dwarf
7068 CFI info will be used if it is available. */
7069 dwarf2_append_unwinders (gdbarch);
7070
7071 frame_base_set_default (gdbarch, &i386_frame_base);
7072
7073 /* Pseudo registers may be changed by amd64_init_abi. */
7074 set_gdbarch_pseudo_register_read (gdbarch, i386_pseudo_register_read);
7075 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
7076
7077 set_tdesc_pseudo_register_type (gdbarch, i386_pseudo_register_type);
7078 set_tdesc_pseudo_register_name (gdbarch, i386_pseudo_register_name);
7079
7080 /* Override the normal target description method to make the AVX
7081 upper halves anonymous. */
7082 set_gdbarch_register_name (gdbarch, i386_register_name);
7083
7084 /* Even though the default ABI only includes general-purpose registers,
7085 floating-point registers and the SSE registers, we have to leave a
7086 gap for the upper AVX registers. */
7087 set_gdbarch_num_regs (gdbarch, I386_AVX_NUM_REGS);
7088
7089 /* Get the x86 target description from INFO. */
7090 tdesc = info.target_desc;
7091 if (! tdesc_has_registers (tdesc))
7092 tdesc = tdesc_i386;
7093 tdep->tdesc = tdesc;
7094
7095 tdep->num_core_regs = I386_NUM_GREGS + I387_NUM_REGS;
7096 tdep->register_names = i386_register_names;
7097
7098 /* No upper YMM registers. */
7099 tdep->ymmh_register_names = NULL;
7100 tdep->ymm0h_regnum = -1;
7101
7102 tdep->num_byte_regs = 8;
7103 tdep->num_word_regs = 8;
7104 tdep->num_dword_regs = 0;
7105 tdep->num_mmx_regs = 8;
7106 tdep->num_ymm_regs = 0;
7107
7108 tdesc_data = tdesc_data_alloc ();
7109
7110 set_gdbarch_relocate_instruction (gdbarch, i386_relocate_instruction);
7111
7112 /* Hook in ABI-specific overrides, if they have been registered. */
7113 info.tdep_info = (void *) tdesc_data;
7114 gdbarch_init_osabi (info, gdbarch);
7115
7116 if (!i386_validate_tdesc_p (tdep, tdesc_data))
7117 {
7118 tdesc_data_cleanup (tdesc_data);
7119 xfree (tdep);
7120 gdbarch_free (gdbarch);
7121 return NULL;
7122 }
7123
7124 /* Wire in pseudo registers. Number of pseudo registers may be
7125 changed. */
7126 set_gdbarch_num_pseudo_regs (gdbarch, (tdep->num_byte_regs
7127 + tdep->num_word_regs
7128 + tdep->num_dword_regs
7129 + tdep->num_mmx_regs
7130 + tdep->num_ymm_regs));
7131
7132 /* Target description may be changed. */
7133 tdesc = tdep->tdesc;
7134
7135 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
7136
7137 /* Override gdbarch_register_reggroup_p set in tdesc_use_registers. */
7138 set_gdbarch_register_reggroup_p (gdbarch, tdep->register_reggroup_p);
7139
7140 /* Make %al the first pseudo-register. */
7141 tdep->al_regnum = gdbarch_num_regs (gdbarch);
7142 tdep->ax_regnum = tdep->al_regnum + tdep->num_byte_regs;
7143
7144 ymm0_regnum = tdep->ax_regnum + tdep->num_word_regs;
7145 if (tdep->num_dword_regs)
7146 {
7147 /* Support dword pseudo-register if it hasn't been disabled. */
7148 tdep->eax_regnum = ymm0_regnum;
7149 ymm0_regnum += tdep->num_dword_regs;
7150 }
7151 else
7152 tdep->eax_regnum = -1;
7153
7154 mm0_regnum = ymm0_regnum;
7155 if (tdep->num_ymm_regs)
7156 {
7157 /* Support YMM pseudo-register if it is available. */
7158 tdep->ymm0_regnum = ymm0_regnum;
7159 mm0_regnum += tdep->num_ymm_regs;
7160 }
7161 else
7162 tdep->ymm0_regnum = -1;
7163
7164 if (tdep->num_mmx_regs != 0)
7165 {
7166 /* Support MMX pseudo-register if MMX hasn't been disabled. */
7167 tdep->mm0_regnum = mm0_regnum;
7168 }
7169 else
7170 tdep->mm0_regnum = -1;
7171
7172 /* Hook in the legacy prologue-based unwinders last (fallback). */
7173 frame_unwind_append_unwinder (gdbarch, &i386_sigtramp_frame_unwind);
7174 frame_unwind_append_unwinder (gdbarch, &i386_frame_unwind);
7175
7176 /* If we have a register mapping, enable the generic core file
7177 support, unless it has already been enabled. */
7178 if (tdep->gregset_reg_offset
7179 && !gdbarch_regset_from_core_section_p (gdbarch))
7180 set_gdbarch_regset_from_core_section (gdbarch,
7181 i386_regset_from_core_section);
7182
7183 set_gdbarch_skip_permanent_breakpoint (gdbarch,
7184 i386_skip_permanent_breakpoint);
7185
7186 set_gdbarch_fast_tracepoint_valid_at (gdbarch,
7187 i386_fast_tracepoint_valid_at);
7188
7189 return gdbarch;
7190 }
7191
7192 static enum gdb_osabi
7193 i386_coff_osabi_sniffer (bfd *abfd)
7194 {
7195 if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
7196 || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
7197 return GDB_OSABI_GO32;
7198
7199 return GDB_OSABI_UNKNOWN;
7200 }
7201 \f
7202
7203 /* Provide a prototype to silence -Wmissing-prototypes. */
7204 void _initialize_i386_tdep (void);
7205
7206 void
7207 _initialize_i386_tdep (void)
7208 {
7209 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
7210
7211 /* Add the variable that controls the disassembly flavor. */
7212 add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
7213 &disassembly_flavor, _("\
7214 Set the disassembly flavor."), _("\
7215 Show the disassembly flavor."), _("\
7216 The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
7217 NULL,
7218 NULL, /* FIXME: i18n: */
7219 &setlist, &showlist);
7220
7221 /* Add the variable that controls the convention for returning
7222 structs. */
7223 add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
7224 &struct_convention, _("\
7225 Set the convention for returning small structs."), _("\
7226 Show the convention for returning small structs."), _("\
7227 Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
7228 is \"default\"."),
7229 NULL,
7230 NULL, /* FIXME: i18n: */
7231 &setlist, &showlist);
7232
7233 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
7234 i386_coff_osabi_sniffer);
7235
7236 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
7237 i386_svr4_init_abi);
7238 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_GO32,
7239 i386_go32_init_abi);
7240
7241 /* Initialize the i386-specific register groups. */
7242 i386_init_reggroups ();
7243
7244 /* Initialize the standard target descriptions. */
7245 initialize_tdesc_i386 ();
7246 initialize_tdesc_i386_mmx ();
7247 initialize_tdesc_i386_avx ();
7248
7249 /* Tell remote stub that we support XML target description. */
7250 register_remote_support_xml ("i386");
7251 }
This page took 0.183441 seconds and 4 git commands to generate.