* mdebugread.c (parse_symbol): Use new variable
[deliverable/binutils-gdb.git] / gdb / i386-tdep.c
1 /* Intel 386 target-dependent stuff.
2 Copyright (C) 1988, 1989, 1991, 1994 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20 #include "defs.h"
21 #include "frame.h"
22 #include "inferior.h"
23 #include "gdbcore.h"
24 #include "target.h"
25 #include "floatformat.h"
26 #include "symtab.h"
27
28 static long
29 i386_get_frame_setup PARAMS ((int));
30
31 static void
32 i386_follow_jump PARAMS ((void));
33
34 static void
35 codestream_read PARAMS ((unsigned char *, int));
36
37 static void
38 codestream_seek PARAMS ((int));
39
40 static unsigned char
41 codestream_fill PARAMS ((int));
42
43 /* helper functions for tm-i386.h */
44
45 /* Stdio style buffering was used to minimize calls to ptrace, but this
46 buffering did not take into account that the code section being accessed
47 may not be an even number of buffers long (even if the buffer is only
48 sizeof(int) long). In cases where the code section size happened to
49 be a non-integral number of buffers long, attempting to read the last
50 buffer would fail. Simply using target_read_memory and ignoring errors,
51 rather than read_memory, is not the correct solution, since legitimate
52 access errors would then be totally ignored. To properly handle this
53 situation and continue to use buffering would require that this code
54 be able to determine the minimum code section size granularity (not the
55 alignment of the section itself, since the actual failing case that
56 pointed out this problem had a section alignment of 4 but was not a
57 multiple of 4 bytes long), on a target by target basis, and then
58 adjust it's buffer size accordingly. This is messy, but potentially
59 feasible. It probably needs the bfd library's help and support. For
60 now, the buffer size is set to 1. (FIXME -fnf) */
61
62 #define CODESTREAM_BUFSIZ 1 /* Was sizeof(int), see note above. */
63 static CORE_ADDR codestream_next_addr;
64 static CORE_ADDR codestream_addr;
65 static unsigned char codestream_buf[CODESTREAM_BUFSIZ];
66 static int codestream_off;
67 static int codestream_cnt;
68
69 #define codestream_tell() (codestream_addr + codestream_off)
70 #define codestream_peek() (codestream_cnt == 0 ? \
71 codestream_fill(1): codestream_buf[codestream_off])
72 #define codestream_get() (codestream_cnt-- == 0 ? \
73 codestream_fill(0) : codestream_buf[codestream_off++])
74
75 static unsigned char
76 codestream_fill (peek_flag)
77 int peek_flag;
78 {
79 codestream_addr = codestream_next_addr;
80 codestream_next_addr += CODESTREAM_BUFSIZ;
81 codestream_off = 0;
82 codestream_cnt = CODESTREAM_BUFSIZ;
83 read_memory (codestream_addr, (char *) codestream_buf, CODESTREAM_BUFSIZ);
84
85 if (peek_flag)
86 return (codestream_peek());
87 else
88 return (codestream_get());
89 }
90
91 static void
92 codestream_seek (place)
93 int place;
94 {
95 codestream_next_addr = place / CODESTREAM_BUFSIZ;
96 codestream_next_addr *= CODESTREAM_BUFSIZ;
97 codestream_cnt = 0;
98 codestream_fill (1);
99 while (codestream_tell() != place)
100 codestream_get ();
101 }
102
103 static void
104 codestream_read (buf, count)
105 unsigned char *buf;
106 int count;
107 {
108 unsigned char *p;
109 int i;
110 p = buf;
111 for (i = 0; i < count; i++)
112 *p++ = codestream_get ();
113 }
114
115 /* next instruction is a jump, move to target */
116
117 static void
118 i386_follow_jump ()
119 {
120 unsigned char buf[4];
121 long delta;
122
123 int data16;
124 CORE_ADDR pos;
125
126 pos = codestream_tell ();
127
128 data16 = 0;
129 if (codestream_peek () == 0x66)
130 {
131 codestream_get ();
132 data16 = 1;
133 }
134
135 switch (codestream_get ())
136 {
137 case 0xe9:
138 /* relative jump: if data16 == 0, disp32, else disp16 */
139 if (data16)
140 {
141 codestream_read (buf, 2);
142 delta = extract_signed_integer (buf, 2);
143
144 /* include size of jmp inst (including the 0x66 prefix). */
145 pos += delta + 4;
146 }
147 else
148 {
149 codestream_read (buf, 4);
150 delta = extract_signed_integer (buf, 4);
151
152 pos += delta + 5;
153 }
154 break;
155 case 0xeb:
156 /* relative jump, disp8 (ignore data16) */
157 codestream_read (buf, 1);
158 /* Sign-extend it. */
159 delta = extract_signed_integer (buf, 1);
160
161 pos += delta + 2;
162 break;
163 }
164 codestream_seek (pos);
165 }
166
167 /*
168 * find & return amound a local space allocated, and advance codestream to
169 * first register push (if any)
170 *
171 * if entry sequence doesn't make sense, return -1, and leave
172 * codestream pointer random
173 */
174
175 static long
176 i386_get_frame_setup (pc)
177 int pc;
178 {
179 unsigned char op;
180
181 codestream_seek (pc);
182
183 i386_follow_jump ();
184
185 op = codestream_get ();
186
187 if (op == 0x58) /* popl %eax */
188 {
189 /*
190 * this function must start with
191 *
192 * popl %eax 0x58
193 * xchgl %eax, (%esp) 0x87 0x04 0x24
194 * or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
195 *
196 * (the system 5 compiler puts out the second xchg
197 * inst, and the assembler doesn't try to optimize it,
198 * so the 'sib' form gets generated)
199 *
200 * this sequence is used to get the address of the return
201 * buffer for a function that returns a structure
202 */
203 int pos;
204 unsigned char buf[4];
205 static unsigned char proto1[3] = { 0x87,0x04,0x24 };
206 static unsigned char proto2[4] = { 0x87,0x44,0x24,0x00 };
207 pos = codestream_tell ();
208 codestream_read (buf, 4);
209 if (memcmp (buf, proto1, 3) == 0)
210 pos += 3;
211 else if (memcmp (buf, proto2, 4) == 0)
212 pos += 4;
213
214 codestream_seek (pos);
215 op = codestream_get (); /* update next opcode */
216 }
217
218 if (op == 0x55) /* pushl %ebp */
219 {
220 /* check for movl %esp, %ebp - can be written two ways */
221 switch (codestream_get ())
222 {
223 case 0x8b:
224 if (codestream_get () != 0xec)
225 return (-1);
226 break;
227 case 0x89:
228 if (codestream_get () != 0xe5)
229 return (-1);
230 break;
231 default:
232 return (-1);
233 }
234 /* check for stack adjustment
235 *
236 * subl $XXX, %esp
237 *
238 * note: you can't subtract a 16 bit immediate
239 * from a 32 bit reg, so we don't have to worry
240 * about a data16 prefix
241 */
242 op = codestream_peek ();
243 if (op == 0x83)
244 {
245 /* subl with 8 bit immed */
246 codestream_get ();
247 if (codestream_get () != 0xec)
248 /* Some instruction starting with 0x83 other than subl. */
249 {
250 codestream_seek (codestream_tell () - 2);
251 return 0;
252 }
253 /* subl with signed byte immediate
254 * (though it wouldn't make sense to be negative)
255 */
256 return (codestream_get());
257 }
258 else if (op == 0x81)
259 {
260 char buf[4];
261 /* Maybe it is subl with 32 bit immedediate. */
262 codestream_get();
263 if (codestream_get () != 0xec)
264 /* Some instruction starting with 0x81 other than subl. */
265 {
266 codestream_seek (codestream_tell () - 2);
267 return 0;
268 }
269 /* It is subl with 32 bit immediate. */
270 codestream_read ((unsigned char *)buf, 4);
271 return extract_signed_integer (buf, 4);
272 }
273 else
274 {
275 return (0);
276 }
277 }
278 else if (op == 0xc8)
279 {
280 char buf[2];
281 /* enter instruction: arg is 16 bit unsigned immed */
282 codestream_read ((unsigned char *)buf, 2);
283 codestream_get (); /* flush final byte of enter instruction */
284 return extract_unsigned_integer (buf, 2);
285 }
286 return (-1);
287 }
288
289 /* Return number of args passed to a frame.
290 Can return -1, meaning no way to tell. */
291
292 int
293 i386_frame_num_args (fi)
294 struct frame_info *fi;
295 {
296 #if 1
297 return -1;
298 #else
299 /* This loses because not only might the compiler not be popping the
300 args right after the function call, it might be popping args from both
301 this call and a previous one, and we would say there are more args
302 than there really are. */
303
304 int retpc;
305 unsigned char op;
306 struct frame_info *pfi;
307
308 /* on the 386, the instruction following the call could be:
309 popl %ecx - one arg
310 addl $imm, %esp - imm/4 args; imm may be 8 or 32 bits
311 anything else - zero args */
312
313 int frameless;
314
315 FRAMELESS_FUNCTION_INVOCATION (fi, frameless);
316 if (frameless)
317 /* In the absence of a frame pointer, GDB doesn't get correct values
318 for nameless arguments. Return -1, so it doesn't print any
319 nameless arguments. */
320 return -1;
321
322 pfi = get_prev_frame_info (fi);
323 if (pfi == 0)
324 {
325 /* Note: this can happen if we are looking at the frame for
326 main, because FRAME_CHAIN_VALID won't let us go into
327 start. If we have debugging symbols, that's not really
328 a big deal; it just means it will only show as many arguments
329 to main as are declared. */
330 return -1;
331 }
332 else
333 {
334 retpc = pfi->pc;
335 op = read_memory_integer (retpc, 1);
336 if (op == 0x59)
337 /* pop %ecx */
338 return 1;
339 else if (op == 0x83)
340 {
341 op = read_memory_integer (retpc+1, 1);
342 if (op == 0xc4)
343 /* addl $<signed imm 8 bits>, %esp */
344 return (read_memory_integer (retpc+2,1)&0xff)/4;
345 else
346 return 0;
347 }
348 else if (op == 0x81)
349 { /* add with 32 bit immediate */
350 op = read_memory_integer (retpc+1, 1);
351 if (op == 0xc4)
352 /* addl $<imm 32>, %esp */
353 return read_memory_integer (retpc+2, 4) / 4;
354 else
355 return 0;
356 }
357 else
358 {
359 return 0;
360 }
361 }
362 #endif
363 }
364
365 /*
366 * parse the first few instructions of the function to see
367 * what registers were stored.
368 *
369 * We handle these cases:
370 *
371 * The startup sequence can be at the start of the function,
372 * or the function can start with a branch to startup code at the end.
373 *
374 * %ebp can be set up with either the 'enter' instruction, or
375 * 'pushl %ebp, movl %esp, %ebp' (enter is too slow to be useful,
376 * but was once used in the sys5 compiler)
377 *
378 * Local space is allocated just below the saved %ebp by either the
379 * 'enter' instruction, or by 'subl $<size>, %esp'. 'enter' has
380 * a 16 bit unsigned argument for space to allocate, and the
381 * 'addl' instruction could have either a signed byte, or
382 * 32 bit immediate.
383 *
384 * Next, the registers used by this function are pushed. In
385 * the sys5 compiler they will always be in the order: %edi, %esi, %ebx
386 * (and sometimes a harmless bug causes it to also save but not restore %eax);
387 * however, the code below is willing to see the pushes in any order,
388 * and will handle up to 8 of them.
389 *
390 * If the setup sequence is at the end of the function, then the
391 * next instruction will be a branch back to the start.
392 */
393
394 void
395 i386_frame_find_saved_regs (fip, fsrp)
396 struct frame_info *fip;
397 struct frame_saved_regs *fsrp;
398 {
399 long locals;
400 unsigned char op;
401 CORE_ADDR dummy_bottom;
402 CORE_ADDR adr;
403 int i;
404
405 memset (fsrp, 0, sizeof *fsrp);
406
407 /* if frame is the end of a dummy, compute where the
408 * beginning would be
409 */
410 dummy_bottom = fip->frame - 4 - REGISTER_BYTES - CALL_DUMMY_LENGTH;
411
412 /* check if the PC is in the stack, in a dummy frame */
413 if (dummy_bottom <= fip->pc && fip->pc <= fip->frame)
414 {
415 /* all regs were saved by push_call_dummy () */
416 adr = fip->frame;
417 for (i = 0; i < NUM_REGS; i++)
418 {
419 adr -= REGISTER_RAW_SIZE (i);
420 fsrp->regs[i] = adr;
421 }
422 return;
423 }
424
425 locals = i386_get_frame_setup (get_pc_function_start (fip->pc));
426
427 if (locals >= 0)
428 {
429 adr = fip->frame - 4 - locals;
430 for (i = 0; i < 8; i++)
431 {
432 op = codestream_get ();
433 if (op < 0x50 || op > 0x57)
434 break;
435 fsrp->regs[op - 0x50] = adr;
436 adr -= 4;
437 }
438 }
439
440 fsrp->regs[PC_REGNUM] = fip->frame + 4;
441 fsrp->regs[FP_REGNUM] = fip->frame;
442 }
443
444 /* return pc of first real instruction */
445
446 int
447 i386_skip_prologue (pc)
448 int pc;
449 {
450 unsigned char op;
451 int i;
452 static unsigned char pic_pat[6] = { 0xe8, 0, 0, 0, 0, /* call 0x0 */
453 0x5b, /* popl %ebx */
454 };
455 CORE_ADDR pos;
456
457 if (i386_get_frame_setup (pc) < 0)
458 return (pc);
459
460 /* found valid frame setup - codestream now points to
461 * start of push instructions for saving registers
462 */
463
464 /* skip over register saves */
465 for (i = 0; i < 8; i++)
466 {
467 op = codestream_peek ();
468 /* break if not pushl inst */
469 if (op < 0x50 || op > 0x57)
470 break;
471 codestream_get ();
472 }
473
474 /* The native cc on SVR4 in -K PIC mode inserts the following code to get
475 the address of the global offset table (GOT) into register %ebx.
476 call 0x0
477 popl %ebx
478 movl %ebx,x(%ebp) (optional)
479 addl y,%ebx
480 This code is with the rest of the prologue (at the end of the
481 function), so we have to skip it to get to the first real
482 instruction at the start of the function. */
483
484 pos = codestream_tell ();
485 for (i = 0; i < 6; i++)
486 {
487 op = codestream_get ();
488 if (pic_pat [i] != op)
489 break;
490 }
491 if (i == 6)
492 {
493 unsigned char buf[4];
494 long delta = 6;
495
496 op = codestream_get ();
497 if (op == 0x89) /* movl %ebx, x(%ebp) */
498 {
499 op = codestream_get ();
500 if (op == 0x5d) /* one byte offset from %ebp */
501 {
502 delta += 3;
503 codestream_read (buf, 1);
504 }
505 else if (op == 0x9d) /* four byte offset from %ebp */
506 {
507 delta += 6;
508 codestream_read (buf, 4);
509 }
510 else /* unexpected instruction */
511 delta = -1;
512 op = codestream_get ();
513 }
514 /* addl y,%ebx */
515 if (delta > 0 && op == 0x81 && codestream_get () == 0xc3)
516 {
517 pos += delta + 6;
518 }
519 }
520 codestream_seek (pos);
521
522 i386_follow_jump ();
523
524 return (codestream_tell ());
525 }
526
527 void
528 i386_push_dummy_frame ()
529 {
530 CORE_ADDR sp = read_register (SP_REGNUM);
531 int regnum;
532 char regbuf[MAX_REGISTER_RAW_SIZE];
533
534 sp = push_word (sp, read_register (PC_REGNUM));
535 sp = push_word (sp, read_register (FP_REGNUM));
536 write_register (FP_REGNUM, sp);
537 for (regnum = 0; regnum < NUM_REGS; regnum++)
538 {
539 read_register_gen (regnum, regbuf);
540 sp = push_bytes (sp, regbuf, REGISTER_RAW_SIZE (regnum));
541 }
542 write_register (SP_REGNUM, sp);
543 }
544
545 void
546 i386_pop_frame ()
547 {
548 FRAME frame = get_current_frame ();
549 CORE_ADDR fp;
550 int regnum;
551 struct frame_saved_regs fsr;
552 struct frame_info *fi;
553 char regbuf[MAX_REGISTER_RAW_SIZE];
554
555 fi = get_frame_info (frame);
556 fp = fi->frame;
557 get_frame_saved_regs (fi, &fsr);
558 for (regnum = 0; regnum < NUM_REGS; regnum++)
559 {
560 CORE_ADDR adr;
561 adr = fsr.regs[regnum];
562 if (adr)
563 {
564 read_memory (adr, regbuf, REGISTER_RAW_SIZE (regnum));
565 write_register_bytes (REGISTER_BYTE (regnum), regbuf,
566 REGISTER_RAW_SIZE (regnum));
567 }
568 }
569 write_register (FP_REGNUM, read_memory_integer (fp, 4));
570 write_register (PC_REGNUM, read_memory_integer (fp + 4, 4));
571 write_register (SP_REGNUM, fp + 8);
572 flush_cached_frames ();
573 set_current_frame ( create_new_frame (read_register (FP_REGNUM),
574 read_pc ()));
575 }
576
577 #ifdef GET_LONGJMP_TARGET
578
579 /* Figure out where the longjmp will land. Slurp the args out of the stack.
580 We expect the first arg to be a pointer to the jmp_buf structure from which
581 we extract the pc (JB_PC) that we will land at. The pc is copied into PC.
582 This routine returns true on success. */
583
584 int
585 get_longjmp_target(pc)
586 CORE_ADDR *pc;
587 {
588 char buf[TARGET_PTR_BIT / TARGET_CHAR_BIT];
589 CORE_ADDR sp, jb_addr;
590
591 sp = read_register (SP_REGNUM);
592
593 if (target_read_memory (sp + SP_ARG0, /* Offset of first arg on stack */
594 buf,
595 TARGET_PTR_BIT / TARGET_CHAR_BIT))
596 return 0;
597
598 jb_addr = extract_address (buf, TARGET_PTR_BIT / TARGET_CHAR_BIT);
599
600 if (target_read_memory (jb_addr + JB_PC * JB_ELEMENT_SIZE, buf,
601 TARGET_PTR_BIT / TARGET_CHAR_BIT))
602 return 0;
603
604 *pc = extract_address (buf, TARGET_PTR_BIT / TARGET_CHAR_BIT);
605
606 return 1;
607 }
608
609 #endif /* GET_LONGJMP_TARGET */
610
611 #ifdef I386_AIX_TARGET
612 /* On AIX, floating point values are returned in floating point registers. */
613
614 void
615 i386_extract_return_value(type, regbuf, valbuf)
616 struct type *type;
617 char regbuf[REGISTER_BYTES];
618 char *valbuf;
619 {
620 if (TYPE_CODE_FLT == TYPE_CODE(type))
621 {
622 double d;
623 /* 387 %st(0), gcc uses this */
624 floatformat_to_double (&floatformat_i387_ext,
625 &regbuf[REGISTER_BYTE(FP0_REGNUM)],
626 &d);
627 store_floating (valbuf, TYPE_LENGTH (type), d);
628 }
629 else
630 {
631 memcpy (valbuf, regbuf, TYPE_LENGTH (type));
632 }
633 }
634 #endif /* I386_AIX_TARGET */
635
636 #ifdef I386V4_SIGTRAMP_SAVED_PC
637 /* Get saved user PC for sigtramp from the pushed ucontext on the stack
638 for all three variants of SVR4 sigtramps. */
639
640 CORE_ADDR
641 i386v4_sigtramp_saved_pc (frame)
642 FRAME frame;
643 {
644 CORE_ADDR saved_pc_offset = 4;
645 char *name = NULL;
646
647 find_pc_partial_function (frame->pc, &name,
648 (CORE_ADDR *)NULL,(CORE_ADDR *)NULL);
649 if (name)
650 {
651 if (STREQ (name, "_sigreturn"))
652 saved_pc_offset = 132 + 14 * 4;
653 else if (STREQ (name, "_sigacthandler"))
654 saved_pc_offset = 80 + 14 * 4;
655 else if (STREQ (name, "sigvechandler"))
656 saved_pc_offset = 120 + 14 * 4;
657 }
658
659 if (frame->next)
660 return read_memory_integer (frame->next->frame + saved_pc_offset, 4);
661 return read_memory_integer (read_register (SP_REGNUM) + saved_pc_offset, 4);
662 }
663 #endif /* I386V4_SIGTRAMP_SAVED_PC */
This page took 0.055913 seconds and 4 git commands to generate.