Do target_terminal_ours in query & friends instead of in all callers
[deliverable/binutils-gdb.git] / gdb / i386-tdep.c
1 /* Intel 386 target-dependent stuff.
2
3 Copyright (C) 1988-2016 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "opcode/i386.h"
22 #include "arch-utils.h"
23 #include "command.h"
24 #include "dummy-frame.h"
25 #include "dwarf2-frame.h"
26 #include "doublest.h"
27 #include "frame.h"
28 #include "frame-base.h"
29 #include "frame-unwind.h"
30 #include "inferior.h"
31 #include "infrun.h"
32 #include "gdbcmd.h"
33 #include "gdbcore.h"
34 #include "gdbtypes.h"
35 #include "objfiles.h"
36 #include "osabi.h"
37 #include "regcache.h"
38 #include "reggroups.h"
39 #include "regset.h"
40 #include "symfile.h"
41 #include "symtab.h"
42 #include "target.h"
43 #include "value.h"
44 #include "dis-asm.h"
45 #include "disasm.h"
46 #include "remote.h"
47 #include "i386-tdep.h"
48 #include "i387-tdep.h"
49 #include "x86-xstate.h"
50
51 #include "record.h"
52 #include "record-full.h"
53 #include "features/i386/i386.c"
54 #include "features/i386/i386-avx.c"
55 #include "features/i386/i386-mpx.c"
56 #include "features/i386/i386-avx512.c"
57 #include "features/i386/i386-mmx.c"
58
59 #include "ax.h"
60 #include "ax-gdb.h"
61
62 #include "stap-probe.h"
63 #include "user-regs.h"
64 #include "cli/cli-utils.h"
65 #include "expression.h"
66 #include "parser-defs.h"
67 #include <ctype.h>
68
69 /* Register names. */
70
71 static const char *i386_register_names[] =
72 {
73 "eax", "ecx", "edx", "ebx",
74 "esp", "ebp", "esi", "edi",
75 "eip", "eflags", "cs", "ss",
76 "ds", "es", "fs", "gs",
77 "st0", "st1", "st2", "st3",
78 "st4", "st5", "st6", "st7",
79 "fctrl", "fstat", "ftag", "fiseg",
80 "fioff", "foseg", "fooff", "fop",
81 "xmm0", "xmm1", "xmm2", "xmm3",
82 "xmm4", "xmm5", "xmm6", "xmm7",
83 "mxcsr"
84 };
85
86 static const char *i386_zmm_names[] =
87 {
88 "zmm0", "zmm1", "zmm2", "zmm3",
89 "zmm4", "zmm5", "zmm6", "zmm7"
90 };
91
92 static const char *i386_zmmh_names[] =
93 {
94 "zmm0h", "zmm1h", "zmm2h", "zmm3h",
95 "zmm4h", "zmm5h", "zmm6h", "zmm7h"
96 };
97
98 static const char *i386_k_names[] =
99 {
100 "k0", "k1", "k2", "k3",
101 "k4", "k5", "k6", "k7"
102 };
103
104 static const char *i386_ymm_names[] =
105 {
106 "ymm0", "ymm1", "ymm2", "ymm3",
107 "ymm4", "ymm5", "ymm6", "ymm7",
108 };
109
110 static const char *i386_ymmh_names[] =
111 {
112 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
113 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
114 };
115
116 static const char *i386_mpx_names[] =
117 {
118 "bnd0raw", "bnd1raw", "bnd2raw", "bnd3raw", "bndcfgu", "bndstatus"
119 };
120
121 /* Register names for MPX pseudo-registers. */
122
123 static const char *i386_bnd_names[] =
124 {
125 "bnd0", "bnd1", "bnd2", "bnd3"
126 };
127
128 /* Register names for MMX pseudo-registers. */
129
130 static const char *i386_mmx_names[] =
131 {
132 "mm0", "mm1", "mm2", "mm3",
133 "mm4", "mm5", "mm6", "mm7"
134 };
135
136 /* Register names for byte pseudo-registers. */
137
138 static const char *i386_byte_names[] =
139 {
140 "al", "cl", "dl", "bl",
141 "ah", "ch", "dh", "bh"
142 };
143
144 /* Register names for word pseudo-registers. */
145
146 static const char *i386_word_names[] =
147 {
148 "ax", "cx", "dx", "bx",
149 "", "bp", "si", "di"
150 };
151
152 /* Constant used for reading/writing pseudo registers. In 64-bit mode, we have
153 16 lower ZMM regs that extend corresponding xmm/ymm registers. In addition,
154 we have 16 upper ZMM regs that have to be handled differently. */
155
156 const int num_lower_zmm_regs = 16;
157
158 /* MMX register? */
159
160 static int
161 i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
162 {
163 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
164 int mm0_regnum = tdep->mm0_regnum;
165
166 if (mm0_regnum < 0)
167 return 0;
168
169 regnum -= mm0_regnum;
170 return regnum >= 0 && regnum < tdep->num_mmx_regs;
171 }
172
173 /* Byte register? */
174
175 int
176 i386_byte_regnum_p (struct gdbarch *gdbarch, int regnum)
177 {
178 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
179
180 regnum -= tdep->al_regnum;
181 return regnum >= 0 && regnum < tdep->num_byte_regs;
182 }
183
184 /* Word register? */
185
186 int
187 i386_word_regnum_p (struct gdbarch *gdbarch, int regnum)
188 {
189 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
190
191 regnum -= tdep->ax_regnum;
192 return regnum >= 0 && regnum < tdep->num_word_regs;
193 }
194
195 /* Dword register? */
196
197 int
198 i386_dword_regnum_p (struct gdbarch *gdbarch, int regnum)
199 {
200 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
201 int eax_regnum = tdep->eax_regnum;
202
203 if (eax_regnum < 0)
204 return 0;
205
206 regnum -= eax_regnum;
207 return regnum >= 0 && regnum < tdep->num_dword_regs;
208 }
209
210 /* AVX512 register? */
211
212 int
213 i386_zmmh_regnum_p (struct gdbarch *gdbarch, int regnum)
214 {
215 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
216 int zmm0h_regnum = tdep->zmm0h_regnum;
217
218 if (zmm0h_regnum < 0)
219 return 0;
220
221 regnum -= zmm0h_regnum;
222 return regnum >= 0 && regnum < tdep->num_zmm_regs;
223 }
224
225 int
226 i386_zmm_regnum_p (struct gdbarch *gdbarch, int regnum)
227 {
228 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
229 int zmm0_regnum = tdep->zmm0_regnum;
230
231 if (zmm0_regnum < 0)
232 return 0;
233
234 regnum -= zmm0_regnum;
235 return regnum >= 0 && regnum < tdep->num_zmm_regs;
236 }
237
238 int
239 i386_k_regnum_p (struct gdbarch *gdbarch, int regnum)
240 {
241 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
242 int k0_regnum = tdep->k0_regnum;
243
244 if (k0_regnum < 0)
245 return 0;
246
247 regnum -= k0_regnum;
248 return regnum >= 0 && regnum < I387_NUM_K_REGS;
249 }
250
251 static int
252 i386_ymmh_regnum_p (struct gdbarch *gdbarch, int regnum)
253 {
254 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
255 int ymm0h_regnum = tdep->ymm0h_regnum;
256
257 if (ymm0h_regnum < 0)
258 return 0;
259
260 regnum -= ymm0h_regnum;
261 return regnum >= 0 && regnum < tdep->num_ymm_regs;
262 }
263
264 /* AVX register? */
265
266 int
267 i386_ymm_regnum_p (struct gdbarch *gdbarch, int regnum)
268 {
269 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
270 int ymm0_regnum = tdep->ymm0_regnum;
271
272 if (ymm0_regnum < 0)
273 return 0;
274
275 regnum -= ymm0_regnum;
276 return regnum >= 0 && regnum < tdep->num_ymm_regs;
277 }
278
279 static int
280 i386_ymmh_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
281 {
282 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
283 int ymm16h_regnum = tdep->ymm16h_regnum;
284
285 if (ymm16h_regnum < 0)
286 return 0;
287
288 regnum -= ymm16h_regnum;
289 return regnum >= 0 && regnum < tdep->num_ymm_avx512_regs;
290 }
291
292 int
293 i386_ymm_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
294 {
295 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
296 int ymm16_regnum = tdep->ymm16_regnum;
297
298 if (ymm16_regnum < 0)
299 return 0;
300
301 regnum -= ymm16_regnum;
302 return regnum >= 0 && regnum < tdep->num_ymm_avx512_regs;
303 }
304
305 /* BND register? */
306
307 int
308 i386_bnd_regnum_p (struct gdbarch *gdbarch, int regnum)
309 {
310 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
311 int bnd0_regnum = tdep->bnd0_regnum;
312
313 if (bnd0_regnum < 0)
314 return 0;
315
316 regnum -= bnd0_regnum;
317 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
318 }
319
320 /* SSE register? */
321
322 int
323 i386_xmm_regnum_p (struct gdbarch *gdbarch, int regnum)
324 {
325 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
326 int num_xmm_regs = I387_NUM_XMM_REGS (tdep);
327
328 if (num_xmm_regs == 0)
329 return 0;
330
331 regnum -= I387_XMM0_REGNUM (tdep);
332 return regnum >= 0 && regnum < num_xmm_regs;
333 }
334
335 /* XMM_512 register? */
336
337 int
338 i386_xmm_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
339 {
340 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
341 int num_xmm_avx512_regs = I387_NUM_XMM_AVX512_REGS (tdep);
342
343 if (num_xmm_avx512_regs == 0)
344 return 0;
345
346 regnum -= I387_XMM16_REGNUM (tdep);
347 return regnum >= 0 && regnum < num_xmm_avx512_regs;
348 }
349
350 static int
351 i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
352 {
353 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
354
355 if (I387_NUM_XMM_REGS (tdep) == 0)
356 return 0;
357
358 return (regnum == I387_MXCSR_REGNUM (tdep));
359 }
360
361 /* FP register? */
362
363 int
364 i386_fp_regnum_p (struct gdbarch *gdbarch, int regnum)
365 {
366 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
367
368 if (I387_ST0_REGNUM (tdep) < 0)
369 return 0;
370
371 return (I387_ST0_REGNUM (tdep) <= regnum
372 && regnum < I387_FCTRL_REGNUM (tdep));
373 }
374
375 int
376 i386_fpc_regnum_p (struct gdbarch *gdbarch, int regnum)
377 {
378 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
379
380 if (I387_ST0_REGNUM (tdep) < 0)
381 return 0;
382
383 return (I387_FCTRL_REGNUM (tdep) <= regnum
384 && regnum < I387_XMM0_REGNUM (tdep));
385 }
386
387 /* BNDr (raw) register? */
388
389 static int
390 i386_bndr_regnum_p (struct gdbarch *gdbarch, int regnum)
391 {
392 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
393
394 if (I387_BND0R_REGNUM (tdep) < 0)
395 return 0;
396
397 regnum -= tdep->bnd0r_regnum;
398 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
399 }
400
401 /* BND control register? */
402
403 static int
404 i386_mpx_ctrl_regnum_p (struct gdbarch *gdbarch, int regnum)
405 {
406 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
407
408 if (I387_BNDCFGU_REGNUM (tdep) < 0)
409 return 0;
410
411 regnum -= I387_BNDCFGU_REGNUM (tdep);
412 return regnum >= 0 && regnum < I387_NUM_MPX_CTRL_REGS;
413 }
414
415 /* Return the name of register REGNUM, or the empty string if it is
416 an anonymous register. */
417
418 static const char *
419 i386_register_name (struct gdbarch *gdbarch, int regnum)
420 {
421 /* Hide the upper YMM registers. */
422 if (i386_ymmh_regnum_p (gdbarch, regnum))
423 return "";
424
425 /* Hide the upper YMM16-31 registers. */
426 if (i386_ymmh_avx512_regnum_p (gdbarch, regnum))
427 return "";
428
429 /* Hide the upper ZMM registers. */
430 if (i386_zmmh_regnum_p (gdbarch, regnum))
431 return "";
432
433 return tdesc_register_name (gdbarch, regnum);
434 }
435
436 /* Return the name of register REGNUM. */
437
438 const char *
439 i386_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
440 {
441 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
442 if (i386_bnd_regnum_p (gdbarch, regnum))
443 return i386_bnd_names[regnum - tdep->bnd0_regnum];
444 if (i386_mmx_regnum_p (gdbarch, regnum))
445 return i386_mmx_names[regnum - I387_MM0_REGNUM (tdep)];
446 else if (i386_ymm_regnum_p (gdbarch, regnum))
447 return i386_ymm_names[regnum - tdep->ymm0_regnum];
448 else if (i386_zmm_regnum_p (gdbarch, regnum))
449 return i386_zmm_names[regnum - tdep->zmm0_regnum];
450 else if (i386_byte_regnum_p (gdbarch, regnum))
451 return i386_byte_names[regnum - tdep->al_regnum];
452 else if (i386_word_regnum_p (gdbarch, regnum))
453 return i386_word_names[regnum - tdep->ax_regnum];
454
455 internal_error (__FILE__, __LINE__, _("invalid regnum"));
456 }
457
458 /* Convert a dbx register number REG to the appropriate register
459 number used by GDB. */
460
461 static int
462 i386_dbx_reg_to_regnum (struct gdbarch *gdbarch, int reg)
463 {
464 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
465
466 /* This implements what GCC calls the "default" register map
467 (dbx_register_map[]). */
468
469 if (reg >= 0 && reg <= 7)
470 {
471 /* General-purpose registers. The debug info calls %ebp
472 register 4, and %esp register 5. */
473 if (reg == 4)
474 return 5;
475 else if (reg == 5)
476 return 4;
477 else return reg;
478 }
479 else if (reg >= 12 && reg <= 19)
480 {
481 /* Floating-point registers. */
482 return reg - 12 + I387_ST0_REGNUM (tdep);
483 }
484 else if (reg >= 21 && reg <= 28)
485 {
486 /* SSE registers. */
487 int ymm0_regnum = tdep->ymm0_regnum;
488
489 if (ymm0_regnum >= 0
490 && i386_xmm_regnum_p (gdbarch, reg))
491 return reg - 21 + ymm0_regnum;
492 else
493 return reg - 21 + I387_XMM0_REGNUM (tdep);
494 }
495 else if (reg >= 29 && reg <= 36)
496 {
497 /* MMX registers. */
498 return reg - 29 + I387_MM0_REGNUM (tdep);
499 }
500
501 /* This will hopefully provoke a warning. */
502 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
503 }
504
505 /* Convert SVR4 DWARF register number REG to the appropriate register number
506 used by GDB. */
507
508 static int
509 i386_svr4_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
510 {
511 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
512
513 /* This implements the GCC register map that tries to be compatible
514 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
515
516 /* The SVR4 register numbering includes %eip and %eflags, and
517 numbers the floating point registers differently. */
518 if (reg >= 0 && reg <= 9)
519 {
520 /* General-purpose registers. */
521 return reg;
522 }
523 else if (reg >= 11 && reg <= 18)
524 {
525 /* Floating-point registers. */
526 return reg - 11 + I387_ST0_REGNUM (tdep);
527 }
528 else if (reg >= 21 && reg <= 36)
529 {
530 /* The SSE and MMX registers have the same numbers as with dbx. */
531 return i386_dbx_reg_to_regnum (gdbarch, reg);
532 }
533
534 switch (reg)
535 {
536 case 37: return I387_FCTRL_REGNUM (tdep);
537 case 38: return I387_FSTAT_REGNUM (tdep);
538 case 39: return I387_MXCSR_REGNUM (tdep);
539 case 40: return I386_ES_REGNUM;
540 case 41: return I386_CS_REGNUM;
541 case 42: return I386_SS_REGNUM;
542 case 43: return I386_DS_REGNUM;
543 case 44: return I386_FS_REGNUM;
544 case 45: return I386_GS_REGNUM;
545 }
546
547 return -1;
548 }
549
550 /* Wrapper on i386_svr4_dwarf_reg_to_regnum to return
551 num_regs + num_pseudo_regs for other debug formats. */
552
553 static int
554 i386_svr4_reg_to_regnum (struct gdbarch *gdbarch, int reg)
555 {
556 int regnum = i386_svr4_dwarf_reg_to_regnum (gdbarch, reg);
557
558 if (regnum == -1)
559 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
560 return regnum;
561 }
562
563 \f
564
565 /* This is the variable that is set with "set disassembly-flavor", and
566 its legitimate values. */
567 static const char att_flavor[] = "att";
568 static const char intel_flavor[] = "intel";
569 static const char *const valid_flavors[] =
570 {
571 att_flavor,
572 intel_flavor,
573 NULL
574 };
575 static const char *disassembly_flavor = att_flavor;
576 \f
577
578 /* Use the program counter to determine the contents and size of a
579 breakpoint instruction. Return a pointer to a string of bytes that
580 encode a breakpoint instruction, store the length of the string in
581 *LEN and optionally adjust *PC to point to the correct memory
582 location for inserting the breakpoint.
583
584 On the i386 we have a single breakpoint that fits in a single byte
585 and can be inserted anywhere.
586
587 This function is 64-bit safe. */
588
589 static const gdb_byte *
590 i386_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
591 {
592 static gdb_byte break_insn[] = { 0xcc }; /* int 3 */
593
594 *len = sizeof (break_insn);
595 return break_insn;
596 }
597 \f
598 /* Displaced instruction handling. */
599
600 /* Skip the legacy instruction prefixes in INSN.
601 Not all prefixes are valid for any particular insn
602 but we needn't care, the insn will fault if it's invalid.
603 The result is a pointer to the first opcode byte,
604 or NULL if we run off the end of the buffer. */
605
606 static gdb_byte *
607 i386_skip_prefixes (gdb_byte *insn, size_t max_len)
608 {
609 gdb_byte *end = insn + max_len;
610
611 while (insn < end)
612 {
613 switch (*insn)
614 {
615 case DATA_PREFIX_OPCODE:
616 case ADDR_PREFIX_OPCODE:
617 case CS_PREFIX_OPCODE:
618 case DS_PREFIX_OPCODE:
619 case ES_PREFIX_OPCODE:
620 case FS_PREFIX_OPCODE:
621 case GS_PREFIX_OPCODE:
622 case SS_PREFIX_OPCODE:
623 case LOCK_PREFIX_OPCODE:
624 case REPE_PREFIX_OPCODE:
625 case REPNE_PREFIX_OPCODE:
626 ++insn;
627 continue;
628 default:
629 return insn;
630 }
631 }
632
633 return NULL;
634 }
635
636 static int
637 i386_absolute_jmp_p (const gdb_byte *insn)
638 {
639 /* jmp far (absolute address in operand). */
640 if (insn[0] == 0xea)
641 return 1;
642
643 if (insn[0] == 0xff)
644 {
645 /* jump near, absolute indirect (/4). */
646 if ((insn[1] & 0x38) == 0x20)
647 return 1;
648
649 /* jump far, absolute indirect (/5). */
650 if ((insn[1] & 0x38) == 0x28)
651 return 1;
652 }
653
654 return 0;
655 }
656
657 /* Return non-zero if INSN is a jump, zero otherwise. */
658
659 static int
660 i386_jmp_p (const gdb_byte *insn)
661 {
662 /* jump short, relative. */
663 if (insn[0] == 0xeb)
664 return 1;
665
666 /* jump near, relative. */
667 if (insn[0] == 0xe9)
668 return 1;
669
670 return i386_absolute_jmp_p (insn);
671 }
672
673 static int
674 i386_absolute_call_p (const gdb_byte *insn)
675 {
676 /* call far, absolute. */
677 if (insn[0] == 0x9a)
678 return 1;
679
680 if (insn[0] == 0xff)
681 {
682 /* Call near, absolute indirect (/2). */
683 if ((insn[1] & 0x38) == 0x10)
684 return 1;
685
686 /* Call far, absolute indirect (/3). */
687 if ((insn[1] & 0x38) == 0x18)
688 return 1;
689 }
690
691 return 0;
692 }
693
694 static int
695 i386_ret_p (const gdb_byte *insn)
696 {
697 switch (insn[0])
698 {
699 case 0xc2: /* ret near, pop N bytes. */
700 case 0xc3: /* ret near */
701 case 0xca: /* ret far, pop N bytes. */
702 case 0xcb: /* ret far */
703 case 0xcf: /* iret */
704 return 1;
705
706 default:
707 return 0;
708 }
709 }
710
711 static int
712 i386_call_p (const gdb_byte *insn)
713 {
714 if (i386_absolute_call_p (insn))
715 return 1;
716
717 /* call near, relative. */
718 if (insn[0] == 0xe8)
719 return 1;
720
721 return 0;
722 }
723
724 /* Return non-zero if INSN is a system call, and set *LENGTHP to its
725 length in bytes. Otherwise, return zero. */
726
727 static int
728 i386_syscall_p (const gdb_byte *insn, int *lengthp)
729 {
730 /* Is it 'int $0x80'? */
731 if ((insn[0] == 0xcd && insn[1] == 0x80)
732 /* Or is it 'sysenter'? */
733 || (insn[0] == 0x0f && insn[1] == 0x34)
734 /* Or is it 'syscall'? */
735 || (insn[0] == 0x0f && insn[1] == 0x05))
736 {
737 *lengthp = 2;
738 return 1;
739 }
740
741 return 0;
742 }
743
744 /* The gdbarch insn_is_call method. */
745
746 static int
747 i386_insn_is_call (struct gdbarch *gdbarch, CORE_ADDR addr)
748 {
749 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
750
751 read_code (addr, buf, I386_MAX_INSN_LEN);
752 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
753
754 return i386_call_p (insn);
755 }
756
757 /* The gdbarch insn_is_ret method. */
758
759 static int
760 i386_insn_is_ret (struct gdbarch *gdbarch, CORE_ADDR addr)
761 {
762 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
763
764 read_code (addr, buf, I386_MAX_INSN_LEN);
765 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
766
767 return i386_ret_p (insn);
768 }
769
770 /* The gdbarch insn_is_jump method. */
771
772 static int
773 i386_insn_is_jump (struct gdbarch *gdbarch, CORE_ADDR addr)
774 {
775 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
776
777 read_code (addr, buf, I386_MAX_INSN_LEN);
778 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
779
780 return i386_jmp_p (insn);
781 }
782
783 /* Some kernels may run one past a syscall insn, so we have to cope.
784 Otherwise this is just simple_displaced_step_copy_insn. */
785
786 struct displaced_step_closure *
787 i386_displaced_step_copy_insn (struct gdbarch *gdbarch,
788 CORE_ADDR from, CORE_ADDR to,
789 struct regcache *regs)
790 {
791 size_t len = gdbarch_max_insn_length (gdbarch);
792 gdb_byte *buf = (gdb_byte *) xmalloc (len);
793
794 read_memory (from, buf, len);
795
796 /* GDB may get control back after the insn after the syscall.
797 Presumably this is a kernel bug.
798 If this is a syscall, make sure there's a nop afterwards. */
799 {
800 int syscall_length;
801 gdb_byte *insn;
802
803 insn = i386_skip_prefixes (buf, len);
804 if (insn != NULL && i386_syscall_p (insn, &syscall_length))
805 insn[syscall_length] = NOP_OPCODE;
806 }
807
808 write_memory (to, buf, len);
809
810 if (debug_displaced)
811 {
812 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
813 paddress (gdbarch, from), paddress (gdbarch, to));
814 displaced_step_dump_bytes (gdb_stdlog, buf, len);
815 }
816
817 return (struct displaced_step_closure *) buf;
818 }
819
820 /* Fix up the state of registers and memory after having single-stepped
821 a displaced instruction. */
822
823 void
824 i386_displaced_step_fixup (struct gdbarch *gdbarch,
825 struct displaced_step_closure *closure,
826 CORE_ADDR from, CORE_ADDR to,
827 struct regcache *regs)
828 {
829 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
830
831 /* The offset we applied to the instruction's address.
832 This could well be negative (when viewed as a signed 32-bit
833 value), but ULONGEST won't reflect that, so take care when
834 applying it. */
835 ULONGEST insn_offset = to - from;
836
837 /* Since we use simple_displaced_step_copy_insn, our closure is a
838 copy of the instruction. */
839 gdb_byte *insn = (gdb_byte *) closure;
840 /* The start of the insn, needed in case we see some prefixes. */
841 gdb_byte *insn_start = insn;
842
843 if (debug_displaced)
844 fprintf_unfiltered (gdb_stdlog,
845 "displaced: fixup (%s, %s), "
846 "insn = 0x%02x 0x%02x ...\n",
847 paddress (gdbarch, from), paddress (gdbarch, to),
848 insn[0], insn[1]);
849
850 /* The list of issues to contend with here is taken from
851 resume_execution in arch/i386/kernel/kprobes.c, Linux 2.6.20.
852 Yay for Free Software! */
853
854 /* Relocate the %eip, if necessary. */
855
856 /* The instruction recognizers we use assume any leading prefixes
857 have been skipped. */
858 {
859 /* This is the size of the buffer in closure. */
860 size_t max_insn_len = gdbarch_max_insn_length (gdbarch);
861 gdb_byte *opcode = i386_skip_prefixes (insn, max_insn_len);
862 /* If there are too many prefixes, just ignore the insn.
863 It will fault when run. */
864 if (opcode != NULL)
865 insn = opcode;
866 }
867
868 /* Except in the case of absolute or indirect jump or call
869 instructions, or a return instruction, the new eip is relative to
870 the displaced instruction; make it relative. Well, signal
871 handler returns don't need relocation either, but we use the
872 value of %eip to recognize those; see below. */
873 if (! i386_absolute_jmp_p (insn)
874 && ! i386_absolute_call_p (insn)
875 && ! i386_ret_p (insn))
876 {
877 ULONGEST orig_eip;
878 int insn_len;
879
880 regcache_cooked_read_unsigned (regs, I386_EIP_REGNUM, &orig_eip);
881
882 /* A signal trampoline system call changes the %eip, resuming
883 execution of the main program after the signal handler has
884 returned. That makes them like 'return' instructions; we
885 shouldn't relocate %eip.
886
887 But most system calls don't, and we do need to relocate %eip.
888
889 Our heuristic for distinguishing these cases: if stepping
890 over the system call instruction left control directly after
891 the instruction, the we relocate --- control almost certainly
892 doesn't belong in the displaced copy. Otherwise, we assume
893 the instruction has put control where it belongs, and leave
894 it unrelocated. Goodness help us if there are PC-relative
895 system calls. */
896 if (i386_syscall_p (insn, &insn_len)
897 && orig_eip != to + (insn - insn_start) + insn_len
898 /* GDB can get control back after the insn after the syscall.
899 Presumably this is a kernel bug.
900 i386_displaced_step_copy_insn ensures its a nop,
901 we add one to the length for it. */
902 && orig_eip != to + (insn - insn_start) + insn_len + 1)
903 {
904 if (debug_displaced)
905 fprintf_unfiltered (gdb_stdlog,
906 "displaced: syscall changed %%eip; "
907 "not relocating\n");
908 }
909 else
910 {
911 ULONGEST eip = (orig_eip - insn_offset) & 0xffffffffUL;
912
913 /* If we just stepped over a breakpoint insn, we don't backup
914 the pc on purpose; this is to match behaviour without
915 stepping. */
916
917 regcache_cooked_write_unsigned (regs, I386_EIP_REGNUM, eip);
918
919 if (debug_displaced)
920 fprintf_unfiltered (gdb_stdlog,
921 "displaced: "
922 "relocated %%eip from %s to %s\n",
923 paddress (gdbarch, orig_eip),
924 paddress (gdbarch, eip));
925 }
926 }
927
928 /* If the instruction was PUSHFL, then the TF bit will be set in the
929 pushed value, and should be cleared. We'll leave this for later,
930 since GDB already messes up the TF flag when stepping over a
931 pushfl. */
932
933 /* If the instruction was a call, the return address now atop the
934 stack is the address following the copied instruction. We need
935 to make it the address following the original instruction. */
936 if (i386_call_p (insn))
937 {
938 ULONGEST esp;
939 ULONGEST retaddr;
940 const ULONGEST retaddr_len = 4;
941
942 regcache_cooked_read_unsigned (regs, I386_ESP_REGNUM, &esp);
943 retaddr = read_memory_unsigned_integer (esp, retaddr_len, byte_order);
944 retaddr = (retaddr - insn_offset) & 0xffffffffUL;
945 write_memory_unsigned_integer (esp, retaddr_len, byte_order, retaddr);
946
947 if (debug_displaced)
948 fprintf_unfiltered (gdb_stdlog,
949 "displaced: relocated return addr at %s to %s\n",
950 paddress (gdbarch, esp),
951 paddress (gdbarch, retaddr));
952 }
953 }
954
955 static void
956 append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
957 {
958 target_write_memory (*to, buf, len);
959 *to += len;
960 }
961
962 static void
963 i386_relocate_instruction (struct gdbarch *gdbarch,
964 CORE_ADDR *to, CORE_ADDR oldloc)
965 {
966 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
967 gdb_byte buf[I386_MAX_INSN_LEN];
968 int offset = 0, rel32, newrel;
969 int insn_length;
970 gdb_byte *insn = buf;
971
972 read_memory (oldloc, buf, I386_MAX_INSN_LEN);
973
974 insn_length = gdb_buffered_insn_length (gdbarch, insn,
975 I386_MAX_INSN_LEN, oldloc);
976
977 /* Get past the prefixes. */
978 insn = i386_skip_prefixes (insn, I386_MAX_INSN_LEN);
979
980 /* Adjust calls with 32-bit relative addresses as push/jump, with
981 the address pushed being the location where the original call in
982 the user program would return to. */
983 if (insn[0] == 0xe8)
984 {
985 gdb_byte push_buf[16];
986 unsigned int ret_addr;
987
988 /* Where "ret" in the original code will return to. */
989 ret_addr = oldloc + insn_length;
990 push_buf[0] = 0x68; /* pushq $... */
991 store_unsigned_integer (&push_buf[1], 4, byte_order, ret_addr);
992 /* Push the push. */
993 append_insns (to, 5, push_buf);
994
995 /* Convert the relative call to a relative jump. */
996 insn[0] = 0xe9;
997
998 /* Adjust the destination offset. */
999 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
1000 newrel = (oldloc - *to) + rel32;
1001 store_signed_integer (insn + 1, 4, byte_order, newrel);
1002
1003 if (debug_displaced)
1004 fprintf_unfiltered (gdb_stdlog,
1005 "Adjusted insn rel32=%s at %s to"
1006 " rel32=%s at %s\n",
1007 hex_string (rel32), paddress (gdbarch, oldloc),
1008 hex_string (newrel), paddress (gdbarch, *to));
1009
1010 /* Write the adjusted jump into its displaced location. */
1011 append_insns (to, 5, insn);
1012 return;
1013 }
1014
1015 /* Adjust jumps with 32-bit relative addresses. Calls are already
1016 handled above. */
1017 if (insn[0] == 0xe9)
1018 offset = 1;
1019 /* Adjust conditional jumps. */
1020 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
1021 offset = 2;
1022
1023 if (offset)
1024 {
1025 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
1026 newrel = (oldloc - *to) + rel32;
1027 store_signed_integer (insn + offset, 4, byte_order, newrel);
1028 if (debug_displaced)
1029 fprintf_unfiltered (gdb_stdlog,
1030 "Adjusted insn rel32=%s at %s to"
1031 " rel32=%s at %s\n",
1032 hex_string (rel32), paddress (gdbarch, oldloc),
1033 hex_string (newrel), paddress (gdbarch, *to));
1034 }
1035
1036 /* Write the adjusted instructions into their displaced
1037 location. */
1038 append_insns (to, insn_length, buf);
1039 }
1040
1041 \f
1042 #ifdef I386_REGNO_TO_SYMMETRY
1043 #error "The Sequent Symmetry is no longer supported."
1044 #endif
1045
1046 /* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
1047 and %esp "belong" to the calling function. Therefore these
1048 registers should be saved if they're going to be modified. */
1049
1050 /* The maximum number of saved registers. This should include all
1051 registers mentioned above, and %eip. */
1052 #define I386_NUM_SAVED_REGS I386_NUM_GREGS
1053
1054 struct i386_frame_cache
1055 {
1056 /* Base address. */
1057 CORE_ADDR base;
1058 int base_p;
1059 LONGEST sp_offset;
1060 CORE_ADDR pc;
1061
1062 /* Saved registers. */
1063 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
1064 CORE_ADDR saved_sp;
1065 int saved_sp_reg;
1066 int pc_in_eax;
1067
1068 /* Stack space reserved for local variables. */
1069 long locals;
1070 };
1071
1072 /* Allocate and initialize a frame cache. */
1073
1074 static struct i386_frame_cache *
1075 i386_alloc_frame_cache (void)
1076 {
1077 struct i386_frame_cache *cache;
1078 int i;
1079
1080 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
1081
1082 /* Base address. */
1083 cache->base_p = 0;
1084 cache->base = 0;
1085 cache->sp_offset = -4;
1086 cache->pc = 0;
1087
1088 /* Saved registers. We initialize these to -1 since zero is a valid
1089 offset (that's where %ebp is supposed to be stored). */
1090 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
1091 cache->saved_regs[i] = -1;
1092 cache->saved_sp = 0;
1093 cache->saved_sp_reg = -1;
1094 cache->pc_in_eax = 0;
1095
1096 /* Frameless until proven otherwise. */
1097 cache->locals = -1;
1098
1099 return cache;
1100 }
1101
1102 /* If the instruction at PC is a jump, return the address of its
1103 target. Otherwise, return PC. */
1104
1105 static CORE_ADDR
1106 i386_follow_jump (struct gdbarch *gdbarch, CORE_ADDR pc)
1107 {
1108 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1109 gdb_byte op;
1110 long delta = 0;
1111 int data16 = 0;
1112
1113 if (target_read_code (pc, &op, 1))
1114 return pc;
1115
1116 if (op == 0x66)
1117 {
1118 data16 = 1;
1119
1120 op = read_code_unsigned_integer (pc + 1, 1, byte_order);
1121 }
1122
1123 switch (op)
1124 {
1125 case 0xe9:
1126 /* Relative jump: if data16 == 0, disp32, else disp16. */
1127 if (data16)
1128 {
1129 delta = read_memory_integer (pc + 2, 2, byte_order);
1130
1131 /* Include the size of the jmp instruction (including the
1132 0x66 prefix). */
1133 delta += 4;
1134 }
1135 else
1136 {
1137 delta = read_memory_integer (pc + 1, 4, byte_order);
1138
1139 /* Include the size of the jmp instruction. */
1140 delta += 5;
1141 }
1142 break;
1143 case 0xeb:
1144 /* Relative jump, disp8 (ignore data16). */
1145 delta = read_memory_integer (pc + data16 + 1, 1, byte_order);
1146
1147 delta += data16 + 2;
1148 break;
1149 }
1150
1151 return pc + delta;
1152 }
1153
1154 /* Check whether PC points at a prologue for a function returning a
1155 structure or union. If so, it updates CACHE and returns the
1156 address of the first instruction after the code sequence that
1157 removes the "hidden" argument from the stack or CURRENT_PC,
1158 whichever is smaller. Otherwise, return PC. */
1159
1160 static CORE_ADDR
1161 i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
1162 struct i386_frame_cache *cache)
1163 {
1164 /* Functions that return a structure or union start with:
1165
1166 popl %eax 0x58
1167 xchgl %eax, (%esp) 0x87 0x04 0x24
1168 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
1169
1170 (the System V compiler puts out the second `xchg' instruction,
1171 and the assembler doesn't try to optimize it, so the 'sib' form
1172 gets generated). This sequence is used to get the address of the
1173 return buffer for a function that returns a structure. */
1174 static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
1175 static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
1176 gdb_byte buf[4];
1177 gdb_byte op;
1178
1179 if (current_pc <= pc)
1180 return pc;
1181
1182 if (target_read_code (pc, &op, 1))
1183 return pc;
1184
1185 if (op != 0x58) /* popl %eax */
1186 return pc;
1187
1188 if (target_read_code (pc + 1, buf, 4))
1189 return pc;
1190
1191 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
1192 return pc;
1193
1194 if (current_pc == pc)
1195 {
1196 cache->sp_offset += 4;
1197 return current_pc;
1198 }
1199
1200 if (current_pc == pc + 1)
1201 {
1202 cache->pc_in_eax = 1;
1203 return current_pc;
1204 }
1205
1206 if (buf[1] == proto1[1])
1207 return pc + 4;
1208 else
1209 return pc + 5;
1210 }
1211
1212 static CORE_ADDR
1213 i386_skip_probe (CORE_ADDR pc)
1214 {
1215 /* A function may start with
1216
1217 pushl constant
1218 call _probe
1219 addl $4, %esp
1220
1221 followed by
1222
1223 pushl %ebp
1224
1225 etc. */
1226 gdb_byte buf[8];
1227 gdb_byte op;
1228
1229 if (target_read_code (pc, &op, 1))
1230 return pc;
1231
1232 if (op == 0x68 || op == 0x6a)
1233 {
1234 int delta;
1235
1236 /* Skip past the `pushl' instruction; it has either a one-byte or a
1237 four-byte operand, depending on the opcode. */
1238 if (op == 0x68)
1239 delta = 5;
1240 else
1241 delta = 2;
1242
1243 /* Read the following 8 bytes, which should be `call _probe' (6
1244 bytes) followed by `addl $4,%esp' (2 bytes). */
1245 read_memory (pc + delta, buf, sizeof (buf));
1246 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
1247 pc += delta + sizeof (buf);
1248 }
1249
1250 return pc;
1251 }
1252
1253 /* GCC 4.1 and later, can put code in the prologue to realign the
1254 stack pointer. Check whether PC points to such code, and update
1255 CACHE accordingly. Return the first instruction after the code
1256 sequence or CURRENT_PC, whichever is smaller. If we don't
1257 recognize the code, return PC. */
1258
1259 static CORE_ADDR
1260 i386_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1261 struct i386_frame_cache *cache)
1262 {
1263 /* There are 2 code sequences to re-align stack before the frame
1264 gets set up:
1265
1266 1. Use a caller-saved saved register:
1267
1268 leal 4(%esp), %reg
1269 andl $-XXX, %esp
1270 pushl -4(%reg)
1271
1272 2. Use a callee-saved saved register:
1273
1274 pushl %reg
1275 leal 8(%esp), %reg
1276 andl $-XXX, %esp
1277 pushl -4(%reg)
1278
1279 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
1280
1281 0x83 0xe4 0xf0 andl $-16, %esp
1282 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
1283 */
1284
1285 gdb_byte buf[14];
1286 int reg;
1287 int offset, offset_and;
1288 static int regnums[8] = {
1289 I386_EAX_REGNUM, /* %eax */
1290 I386_ECX_REGNUM, /* %ecx */
1291 I386_EDX_REGNUM, /* %edx */
1292 I386_EBX_REGNUM, /* %ebx */
1293 I386_ESP_REGNUM, /* %esp */
1294 I386_EBP_REGNUM, /* %ebp */
1295 I386_ESI_REGNUM, /* %esi */
1296 I386_EDI_REGNUM /* %edi */
1297 };
1298
1299 if (target_read_code (pc, buf, sizeof buf))
1300 return pc;
1301
1302 /* Check caller-saved saved register. The first instruction has
1303 to be "leal 4(%esp), %reg". */
1304 if (buf[0] == 0x8d && buf[2] == 0x24 && buf[3] == 0x4)
1305 {
1306 /* MOD must be binary 10 and R/M must be binary 100. */
1307 if ((buf[1] & 0xc7) != 0x44)
1308 return pc;
1309
1310 /* REG has register number. */
1311 reg = (buf[1] >> 3) & 7;
1312 offset = 4;
1313 }
1314 else
1315 {
1316 /* Check callee-saved saved register. The first instruction
1317 has to be "pushl %reg". */
1318 if ((buf[0] & 0xf8) != 0x50)
1319 return pc;
1320
1321 /* Get register. */
1322 reg = buf[0] & 0x7;
1323
1324 /* The next instruction has to be "leal 8(%esp), %reg". */
1325 if (buf[1] != 0x8d || buf[3] != 0x24 || buf[4] != 0x8)
1326 return pc;
1327
1328 /* MOD must be binary 10 and R/M must be binary 100. */
1329 if ((buf[2] & 0xc7) != 0x44)
1330 return pc;
1331
1332 /* REG has register number. Registers in pushl and leal have to
1333 be the same. */
1334 if (reg != ((buf[2] >> 3) & 7))
1335 return pc;
1336
1337 offset = 5;
1338 }
1339
1340 /* Rigister can't be %esp nor %ebp. */
1341 if (reg == 4 || reg == 5)
1342 return pc;
1343
1344 /* The next instruction has to be "andl $-XXX, %esp". */
1345 if (buf[offset + 1] != 0xe4
1346 || (buf[offset] != 0x81 && buf[offset] != 0x83))
1347 return pc;
1348
1349 offset_and = offset;
1350 offset += buf[offset] == 0x81 ? 6 : 3;
1351
1352 /* The next instruction has to be "pushl -4(%reg)". 8bit -4 is
1353 0xfc. REG must be binary 110 and MOD must be binary 01. */
1354 if (buf[offset] != 0xff
1355 || buf[offset + 2] != 0xfc
1356 || (buf[offset + 1] & 0xf8) != 0x70)
1357 return pc;
1358
1359 /* R/M has register. Registers in leal and pushl have to be the
1360 same. */
1361 if (reg != (buf[offset + 1] & 7))
1362 return pc;
1363
1364 if (current_pc > pc + offset_and)
1365 cache->saved_sp_reg = regnums[reg];
1366
1367 return min (pc + offset + 3, current_pc);
1368 }
1369
1370 /* Maximum instruction length we need to handle. */
1371 #define I386_MAX_MATCHED_INSN_LEN 6
1372
1373 /* Instruction description. */
1374 struct i386_insn
1375 {
1376 size_t len;
1377 gdb_byte insn[I386_MAX_MATCHED_INSN_LEN];
1378 gdb_byte mask[I386_MAX_MATCHED_INSN_LEN];
1379 };
1380
1381 /* Return whether instruction at PC matches PATTERN. */
1382
1383 static int
1384 i386_match_pattern (CORE_ADDR pc, struct i386_insn pattern)
1385 {
1386 gdb_byte op;
1387
1388 if (target_read_code (pc, &op, 1))
1389 return 0;
1390
1391 if ((op & pattern.mask[0]) == pattern.insn[0])
1392 {
1393 gdb_byte buf[I386_MAX_MATCHED_INSN_LEN - 1];
1394 int insn_matched = 1;
1395 size_t i;
1396
1397 gdb_assert (pattern.len > 1);
1398 gdb_assert (pattern.len <= I386_MAX_MATCHED_INSN_LEN);
1399
1400 if (target_read_code (pc + 1, buf, pattern.len - 1))
1401 return 0;
1402
1403 for (i = 1; i < pattern.len; i++)
1404 {
1405 if ((buf[i - 1] & pattern.mask[i]) != pattern.insn[i])
1406 insn_matched = 0;
1407 }
1408 return insn_matched;
1409 }
1410 return 0;
1411 }
1412
1413 /* Search for the instruction at PC in the list INSN_PATTERNS. Return
1414 the first instruction description that matches. Otherwise, return
1415 NULL. */
1416
1417 static struct i386_insn *
1418 i386_match_insn (CORE_ADDR pc, struct i386_insn *insn_patterns)
1419 {
1420 struct i386_insn *pattern;
1421
1422 for (pattern = insn_patterns; pattern->len > 0; pattern++)
1423 {
1424 if (i386_match_pattern (pc, *pattern))
1425 return pattern;
1426 }
1427
1428 return NULL;
1429 }
1430
1431 /* Return whether PC points inside a sequence of instructions that
1432 matches INSN_PATTERNS. */
1433
1434 static int
1435 i386_match_insn_block (CORE_ADDR pc, struct i386_insn *insn_patterns)
1436 {
1437 CORE_ADDR current_pc;
1438 int ix, i;
1439 struct i386_insn *insn;
1440
1441 insn = i386_match_insn (pc, insn_patterns);
1442 if (insn == NULL)
1443 return 0;
1444
1445 current_pc = pc;
1446 ix = insn - insn_patterns;
1447 for (i = ix - 1; i >= 0; i--)
1448 {
1449 current_pc -= insn_patterns[i].len;
1450
1451 if (!i386_match_pattern (current_pc, insn_patterns[i]))
1452 return 0;
1453 }
1454
1455 current_pc = pc + insn->len;
1456 for (insn = insn_patterns + ix + 1; insn->len > 0; insn++)
1457 {
1458 if (!i386_match_pattern (current_pc, *insn))
1459 return 0;
1460
1461 current_pc += insn->len;
1462 }
1463
1464 return 1;
1465 }
1466
1467 /* Some special instructions that might be migrated by GCC into the
1468 part of the prologue that sets up the new stack frame. Because the
1469 stack frame hasn't been setup yet, no registers have been saved
1470 yet, and only the scratch registers %eax, %ecx and %edx can be
1471 touched. */
1472
1473 struct i386_insn i386_frame_setup_skip_insns[] =
1474 {
1475 /* Check for `movb imm8, r' and `movl imm32, r'.
1476
1477 ??? Should we handle 16-bit operand-sizes here? */
1478
1479 /* `movb imm8, %al' and `movb imm8, %ah' */
1480 /* `movb imm8, %cl' and `movb imm8, %ch' */
1481 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
1482 /* `movb imm8, %dl' and `movb imm8, %dh' */
1483 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
1484 /* `movl imm32, %eax' and `movl imm32, %ecx' */
1485 { 5, { 0xb8 }, { 0xfe } },
1486 /* `movl imm32, %edx' */
1487 { 5, { 0xba }, { 0xff } },
1488
1489 /* Check for `mov imm32, r32'. Note that there is an alternative
1490 encoding for `mov m32, %eax'.
1491
1492 ??? Should we handle SIB adressing here?
1493 ??? Should we handle 16-bit operand-sizes here? */
1494
1495 /* `movl m32, %eax' */
1496 { 5, { 0xa1 }, { 0xff } },
1497 /* `movl m32, %eax' and `mov; m32, %ecx' */
1498 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
1499 /* `movl m32, %edx' */
1500 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
1501
1502 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
1503 Because of the symmetry, there are actually two ways to encode
1504 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
1505 opcode bytes 0x31 and 0x33 for `xorl'. */
1506
1507 /* `subl %eax, %eax' */
1508 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
1509 /* `subl %ecx, %ecx' */
1510 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
1511 /* `subl %edx, %edx' */
1512 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
1513 /* `xorl %eax, %eax' */
1514 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
1515 /* `xorl %ecx, %ecx' */
1516 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
1517 /* `xorl %edx, %edx' */
1518 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
1519 { 0 }
1520 };
1521
1522
1523 /* Check whether PC points to a no-op instruction. */
1524 static CORE_ADDR
1525 i386_skip_noop (CORE_ADDR pc)
1526 {
1527 gdb_byte op;
1528 int check = 1;
1529
1530 if (target_read_code (pc, &op, 1))
1531 return pc;
1532
1533 while (check)
1534 {
1535 check = 0;
1536 /* Ignore `nop' instruction. */
1537 if (op == 0x90)
1538 {
1539 pc += 1;
1540 if (target_read_code (pc, &op, 1))
1541 return pc;
1542 check = 1;
1543 }
1544 /* Ignore no-op instruction `mov %edi, %edi'.
1545 Microsoft system dlls often start with
1546 a `mov %edi,%edi' instruction.
1547 The 5 bytes before the function start are
1548 filled with `nop' instructions.
1549 This pattern can be used for hot-patching:
1550 The `mov %edi, %edi' instruction can be replaced by a
1551 near jump to the location of the 5 `nop' instructions
1552 which can be replaced by a 32-bit jump to anywhere
1553 in the 32-bit address space. */
1554
1555 else if (op == 0x8b)
1556 {
1557 if (target_read_code (pc + 1, &op, 1))
1558 return pc;
1559
1560 if (op == 0xff)
1561 {
1562 pc += 2;
1563 if (target_read_code (pc, &op, 1))
1564 return pc;
1565
1566 check = 1;
1567 }
1568 }
1569 }
1570 return pc;
1571 }
1572
1573 /* Check whether PC points at a code that sets up a new stack frame.
1574 If so, it updates CACHE and returns the address of the first
1575 instruction after the sequence that sets up the frame or LIMIT,
1576 whichever is smaller. If we don't recognize the code, return PC. */
1577
1578 static CORE_ADDR
1579 i386_analyze_frame_setup (struct gdbarch *gdbarch,
1580 CORE_ADDR pc, CORE_ADDR limit,
1581 struct i386_frame_cache *cache)
1582 {
1583 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1584 struct i386_insn *insn;
1585 gdb_byte op;
1586 int skip = 0;
1587
1588 if (limit <= pc)
1589 return limit;
1590
1591 if (target_read_code (pc, &op, 1))
1592 return pc;
1593
1594 if (op == 0x55) /* pushl %ebp */
1595 {
1596 /* Take into account that we've executed the `pushl %ebp' that
1597 starts this instruction sequence. */
1598 cache->saved_regs[I386_EBP_REGNUM] = 0;
1599 cache->sp_offset += 4;
1600 pc++;
1601
1602 /* If that's all, return now. */
1603 if (limit <= pc)
1604 return limit;
1605
1606 /* Check for some special instructions that might be migrated by
1607 GCC into the prologue and skip them. At this point in the
1608 prologue, code should only touch the scratch registers %eax,
1609 %ecx and %edx, so while the number of posibilities is sheer,
1610 it is limited.
1611
1612 Make sure we only skip these instructions if we later see the
1613 `movl %esp, %ebp' that actually sets up the frame. */
1614 while (pc + skip < limit)
1615 {
1616 insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
1617 if (insn == NULL)
1618 break;
1619
1620 skip += insn->len;
1621 }
1622
1623 /* If that's all, return now. */
1624 if (limit <= pc + skip)
1625 return limit;
1626
1627 if (target_read_code (pc + skip, &op, 1))
1628 return pc + skip;
1629
1630 /* The i386 prologue looks like
1631
1632 push %ebp
1633 mov %esp,%ebp
1634 sub $0x10,%esp
1635
1636 and a different prologue can be generated for atom.
1637
1638 push %ebp
1639 lea (%esp),%ebp
1640 lea -0x10(%esp),%esp
1641
1642 We handle both of them here. */
1643
1644 switch (op)
1645 {
1646 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
1647 case 0x8b:
1648 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
1649 != 0xec)
1650 return pc;
1651 pc += (skip + 2);
1652 break;
1653 case 0x89:
1654 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
1655 != 0xe5)
1656 return pc;
1657 pc += (skip + 2);
1658 break;
1659 case 0x8d: /* Check for 'lea (%ebp), %ebp'. */
1660 if (read_code_unsigned_integer (pc + skip + 1, 2, byte_order)
1661 != 0x242c)
1662 return pc;
1663 pc += (skip + 3);
1664 break;
1665 default:
1666 return pc;
1667 }
1668
1669 /* OK, we actually have a frame. We just don't know how large
1670 it is yet. Set its size to zero. We'll adjust it if
1671 necessary. We also now commit to skipping the special
1672 instructions mentioned before. */
1673 cache->locals = 0;
1674
1675 /* If that's all, return now. */
1676 if (limit <= pc)
1677 return limit;
1678
1679 /* Check for stack adjustment
1680
1681 subl $XXX, %esp
1682 or
1683 lea -XXX(%esp),%esp
1684
1685 NOTE: You can't subtract a 16-bit immediate from a 32-bit
1686 reg, so we don't have to worry about a data16 prefix. */
1687 if (target_read_code (pc, &op, 1))
1688 return pc;
1689 if (op == 0x83)
1690 {
1691 /* `subl' with 8-bit immediate. */
1692 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1693 /* Some instruction starting with 0x83 other than `subl'. */
1694 return pc;
1695
1696 /* `subl' with signed 8-bit immediate (though it wouldn't
1697 make sense to be negative). */
1698 cache->locals = read_code_integer (pc + 2, 1, byte_order);
1699 return pc + 3;
1700 }
1701 else if (op == 0x81)
1702 {
1703 /* Maybe it is `subl' with a 32-bit immediate. */
1704 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1705 /* Some instruction starting with 0x81 other than `subl'. */
1706 return pc;
1707
1708 /* It is `subl' with a 32-bit immediate. */
1709 cache->locals = read_code_integer (pc + 2, 4, byte_order);
1710 return pc + 6;
1711 }
1712 else if (op == 0x8d)
1713 {
1714 /* The ModR/M byte is 0x64. */
1715 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0x64)
1716 return pc;
1717 /* 'lea' with 8-bit displacement. */
1718 cache->locals = -1 * read_code_integer (pc + 3, 1, byte_order);
1719 return pc + 4;
1720 }
1721 else
1722 {
1723 /* Some instruction other than `subl' nor 'lea'. */
1724 return pc;
1725 }
1726 }
1727 else if (op == 0xc8) /* enter */
1728 {
1729 cache->locals = read_code_unsigned_integer (pc + 1, 2, byte_order);
1730 return pc + 4;
1731 }
1732
1733 return pc;
1734 }
1735
1736 /* Check whether PC points at code that saves registers on the stack.
1737 If so, it updates CACHE and returns the address of the first
1738 instruction after the register saves or CURRENT_PC, whichever is
1739 smaller. Otherwise, return PC. */
1740
1741 static CORE_ADDR
1742 i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
1743 struct i386_frame_cache *cache)
1744 {
1745 CORE_ADDR offset = 0;
1746 gdb_byte op;
1747 int i;
1748
1749 if (cache->locals > 0)
1750 offset -= cache->locals;
1751 for (i = 0; i < 8 && pc < current_pc; i++)
1752 {
1753 if (target_read_code (pc, &op, 1))
1754 return pc;
1755 if (op < 0x50 || op > 0x57)
1756 break;
1757
1758 offset -= 4;
1759 cache->saved_regs[op - 0x50] = offset;
1760 cache->sp_offset += 4;
1761 pc++;
1762 }
1763
1764 return pc;
1765 }
1766
1767 /* Do a full analysis of the prologue at PC and update CACHE
1768 accordingly. Bail out early if CURRENT_PC is reached. Return the
1769 address where the analysis stopped.
1770
1771 We handle these cases:
1772
1773 The startup sequence can be at the start of the function, or the
1774 function can start with a branch to startup code at the end.
1775
1776 %ebp can be set up with either the 'enter' instruction, or "pushl
1777 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
1778 once used in the System V compiler).
1779
1780 Local space is allocated just below the saved %ebp by either the
1781 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
1782 16-bit unsigned argument for space to allocate, and the 'addl'
1783 instruction could have either a signed byte, or 32-bit immediate.
1784
1785 Next, the registers used by this function are pushed. With the
1786 System V compiler they will always be in the order: %edi, %esi,
1787 %ebx (and sometimes a harmless bug causes it to also save but not
1788 restore %eax); however, the code below is willing to see the pushes
1789 in any order, and will handle up to 8 of them.
1790
1791 If the setup sequence is at the end of the function, then the next
1792 instruction will be a branch back to the start. */
1793
1794 static CORE_ADDR
1795 i386_analyze_prologue (struct gdbarch *gdbarch,
1796 CORE_ADDR pc, CORE_ADDR current_pc,
1797 struct i386_frame_cache *cache)
1798 {
1799 pc = i386_skip_noop (pc);
1800 pc = i386_follow_jump (gdbarch, pc);
1801 pc = i386_analyze_struct_return (pc, current_pc, cache);
1802 pc = i386_skip_probe (pc);
1803 pc = i386_analyze_stack_align (pc, current_pc, cache);
1804 pc = i386_analyze_frame_setup (gdbarch, pc, current_pc, cache);
1805 return i386_analyze_register_saves (pc, current_pc, cache);
1806 }
1807
1808 /* Return PC of first real instruction. */
1809
1810 static CORE_ADDR
1811 i386_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
1812 {
1813 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1814
1815 static gdb_byte pic_pat[6] =
1816 {
1817 0xe8, 0, 0, 0, 0, /* call 0x0 */
1818 0x5b, /* popl %ebx */
1819 };
1820 struct i386_frame_cache cache;
1821 CORE_ADDR pc;
1822 gdb_byte op;
1823 int i;
1824 CORE_ADDR func_addr;
1825
1826 if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
1827 {
1828 CORE_ADDR post_prologue_pc
1829 = skip_prologue_using_sal (gdbarch, func_addr);
1830 struct compunit_symtab *cust = find_pc_compunit_symtab (func_addr);
1831
1832 /* Clang always emits a line note before the prologue and another
1833 one after. We trust clang to emit usable line notes. */
1834 if (post_prologue_pc
1835 && (cust != NULL
1836 && COMPUNIT_PRODUCER (cust) != NULL
1837 && startswith (COMPUNIT_PRODUCER (cust), "clang ")))
1838 return max (start_pc, post_prologue_pc);
1839 }
1840
1841 cache.locals = -1;
1842 pc = i386_analyze_prologue (gdbarch, start_pc, 0xffffffff, &cache);
1843 if (cache.locals < 0)
1844 return start_pc;
1845
1846 /* Found valid frame setup. */
1847
1848 /* The native cc on SVR4 in -K PIC mode inserts the following code
1849 to get the address of the global offset table (GOT) into register
1850 %ebx:
1851
1852 call 0x0
1853 popl %ebx
1854 movl %ebx,x(%ebp) (optional)
1855 addl y,%ebx
1856
1857 This code is with the rest of the prologue (at the end of the
1858 function), so we have to skip it to get to the first real
1859 instruction at the start of the function. */
1860
1861 for (i = 0; i < 6; i++)
1862 {
1863 if (target_read_code (pc + i, &op, 1))
1864 return pc;
1865
1866 if (pic_pat[i] != op)
1867 break;
1868 }
1869 if (i == 6)
1870 {
1871 int delta = 6;
1872
1873 if (target_read_code (pc + delta, &op, 1))
1874 return pc;
1875
1876 if (op == 0x89) /* movl %ebx, x(%ebp) */
1877 {
1878 op = read_code_unsigned_integer (pc + delta + 1, 1, byte_order);
1879
1880 if (op == 0x5d) /* One byte offset from %ebp. */
1881 delta += 3;
1882 else if (op == 0x9d) /* Four byte offset from %ebp. */
1883 delta += 6;
1884 else /* Unexpected instruction. */
1885 delta = 0;
1886
1887 if (target_read_code (pc + delta, &op, 1))
1888 return pc;
1889 }
1890
1891 /* addl y,%ebx */
1892 if (delta > 0 && op == 0x81
1893 && read_code_unsigned_integer (pc + delta + 1, 1, byte_order)
1894 == 0xc3)
1895 {
1896 pc += delta + 6;
1897 }
1898 }
1899
1900 /* If the function starts with a branch (to startup code at the end)
1901 the last instruction should bring us back to the first
1902 instruction of the real code. */
1903 if (i386_follow_jump (gdbarch, start_pc) != start_pc)
1904 pc = i386_follow_jump (gdbarch, pc);
1905
1906 return pc;
1907 }
1908
1909 /* Check that the code pointed to by PC corresponds to a call to
1910 __main, skip it if so. Return PC otherwise. */
1911
1912 CORE_ADDR
1913 i386_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1914 {
1915 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1916 gdb_byte op;
1917
1918 if (target_read_code (pc, &op, 1))
1919 return pc;
1920 if (op == 0xe8)
1921 {
1922 gdb_byte buf[4];
1923
1924 if (target_read_code (pc + 1, buf, sizeof buf) == 0)
1925 {
1926 /* Make sure address is computed correctly as a 32bit
1927 integer even if CORE_ADDR is 64 bit wide. */
1928 struct bound_minimal_symbol s;
1929 CORE_ADDR call_dest;
1930
1931 call_dest = pc + 5 + extract_signed_integer (buf, 4, byte_order);
1932 call_dest = call_dest & 0xffffffffU;
1933 s = lookup_minimal_symbol_by_pc (call_dest);
1934 if (s.minsym != NULL
1935 && MSYMBOL_LINKAGE_NAME (s.minsym) != NULL
1936 && strcmp (MSYMBOL_LINKAGE_NAME (s.minsym), "__main") == 0)
1937 pc += 5;
1938 }
1939 }
1940
1941 return pc;
1942 }
1943
1944 /* This function is 64-bit safe. */
1945
1946 static CORE_ADDR
1947 i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1948 {
1949 gdb_byte buf[8];
1950
1951 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
1952 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
1953 }
1954 \f
1955
1956 /* Normal frames. */
1957
1958 static void
1959 i386_frame_cache_1 (struct frame_info *this_frame,
1960 struct i386_frame_cache *cache)
1961 {
1962 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1963 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1964 gdb_byte buf[4];
1965 int i;
1966
1967 cache->pc = get_frame_func (this_frame);
1968
1969 /* In principle, for normal frames, %ebp holds the frame pointer,
1970 which holds the base address for the current stack frame.
1971 However, for functions that don't need it, the frame pointer is
1972 optional. For these "frameless" functions the frame pointer is
1973 actually the frame pointer of the calling frame. Signal
1974 trampolines are just a special case of a "frameless" function.
1975 They (usually) share their frame pointer with the frame that was
1976 in progress when the signal occurred. */
1977
1978 get_frame_register (this_frame, I386_EBP_REGNUM, buf);
1979 cache->base = extract_unsigned_integer (buf, 4, byte_order);
1980 if (cache->base == 0)
1981 {
1982 cache->base_p = 1;
1983 return;
1984 }
1985
1986 /* For normal frames, %eip is stored at 4(%ebp). */
1987 cache->saved_regs[I386_EIP_REGNUM] = 4;
1988
1989 if (cache->pc != 0)
1990 i386_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
1991 cache);
1992
1993 if (cache->locals < 0)
1994 {
1995 /* We didn't find a valid frame, which means that CACHE->base
1996 currently holds the frame pointer for our calling frame. If
1997 we're at the start of a function, or somewhere half-way its
1998 prologue, the function's frame probably hasn't been fully
1999 setup yet. Try to reconstruct the base address for the stack
2000 frame by looking at the stack pointer. For truly "frameless"
2001 functions this might work too. */
2002
2003 if (cache->saved_sp_reg != -1)
2004 {
2005 /* Saved stack pointer has been saved. */
2006 get_frame_register (this_frame, cache->saved_sp_reg, buf);
2007 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
2008
2009 /* We're halfway aligning the stack. */
2010 cache->base = ((cache->saved_sp - 4) & 0xfffffff0) - 4;
2011 cache->saved_regs[I386_EIP_REGNUM] = cache->saved_sp - 4;
2012
2013 /* This will be added back below. */
2014 cache->saved_regs[I386_EIP_REGNUM] -= cache->base;
2015 }
2016 else if (cache->pc != 0
2017 || target_read_code (get_frame_pc (this_frame), buf, 1))
2018 {
2019 /* We're in a known function, but did not find a frame
2020 setup. Assume that the function does not use %ebp.
2021 Alternatively, we may have jumped to an invalid
2022 address; in that case there is definitely no new
2023 frame in %ebp. */
2024 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2025 cache->base = extract_unsigned_integer (buf, 4, byte_order)
2026 + cache->sp_offset;
2027 }
2028 else
2029 /* We're in an unknown function. We could not find the start
2030 of the function to analyze the prologue; our best option is
2031 to assume a typical frame layout with the caller's %ebp
2032 saved. */
2033 cache->saved_regs[I386_EBP_REGNUM] = 0;
2034 }
2035
2036 if (cache->saved_sp_reg != -1)
2037 {
2038 /* Saved stack pointer has been saved (but the SAVED_SP_REG
2039 register may be unavailable). */
2040 if (cache->saved_sp == 0
2041 && deprecated_frame_register_read (this_frame,
2042 cache->saved_sp_reg, buf))
2043 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
2044 }
2045 /* Now that we have the base address for the stack frame we can
2046 calculate the value of %esp in the calling frame. */
2047 else if (cache->saved_sp == 0)
2048 cache->saved_sp = cache->base + 8;
2049
2050 /* Adjust all the saved registers such that they contain addresses
2051 instead of offsets. */
2052 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
2053 if (cache->saved_regs[i] != -1)
2054 cache->saved_regs[i] += cache->base;
2055
2056 cache->base_p = 1;
2057 }
2058
2059 static struct i386_frame_cache *
2060 i386_frame_cache (struct frame_info *this_frame, void **this_cache)
2061 {
2062 struct i386_frame_cache *cache;
2063
2064 if (*this_cache)
2065 return (struct i386_frame_cache *) *this_cache;
2066
2067 cache = i386_alloc_frame_cache ();
2068 *this_cache = cache;
2069
2070 TRY
2071 {
2072 i386_frame_cache_1 (this_frame, cache);
2073 }
2074 CATCH (ex, RETURN_MASK_ERROR)
2075 {
2076 if (ex.error != NOT_AVAILABLE_ERROR)
2077 throw_exception (ex);
2078 }
2079 END_CATCH
2080
2081 return cache;
2082 }
2083
2084 static void
2085 i386_frame_this_id (struct frame_info *this_frame, void **this_cache,
2086 struct frame_id *this_id)
2087 {
2088 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2089
2090 if (!cache->base_p)
2091 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2092 else if (cache->base == 0)
2093 {
2094 /* This marks the outermost frame. */
2095 }
2096 else
2097 {
2098 /* See the end of i386_push_dummy_call. */
2099 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2100 }
2101 }
2102
2103 static enum unwind_stop_reason
2104 i386_frame_unwind_stop_reason (struct frame_info *this_frame,
2105 void **this_cache)
2106 {
2107 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2108
2109 if (!cache->base_p)
2110 return UNWIND_UNAVAILABLE;
2111
2112 /* This marks the outermost frame. */
2113 if (cache->base == 0)
2114 return UNWIND_OUTERMOST;
2115
2116 return UNWIND_NO_REASON;
2117 }
2118
2119 static struct value *
2120 i386_frame_prev_register (struct frame_info *this_frame, void **this_cache,
2121 int regnum)
2122 {
2123 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2124
2125 gdb_assert (regnum >= 0);
2126
2127 /* The System V ABI says that:
2128
2129 "The flags register contains the system flags, such as the
2130 direction flag and the carry flag. The direction flag must be
2131 set to the forward (that is, zero) direction before entry and
2132 upon exit from a function. Other user flags have no specified
2133 role in the standard calling sequence and are not preserved."
2134
2135 To guarantee the "upon exit" part of that statement we fake a
2136 saved flags register that has its direction flag cleared.
2137
2138 Note that GCC doesn't seem to rely on the fact that the direction
2139 flag is cleared after a function return; it always explicitly
2140 clears the flag before operations where it matters.
2141
2142 FIXME: kettenis/20030316: I'm not quite sure whether this is the
2143 right thing to do. The way we fake the flags register here makes
2144 it impossible to change it. */
2145
2146 if (regnum == I386_EFLAGS_REGNUM)
2147 {
2148 ULONGEST val;
2149
2150 val = get_frame_register_unsigned (this_frame, regnum);
2151 val &= ~(1 << 10);
2152 return frame_unwind_got_constant (this_frame, regnum, val);
2153 }
2154
2155 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
2156 return frame_unwind_got_register (this_frame, regnum, I386_EAX_REGNUM);
2157
2158 if (regnum == I386_ESP_REGNUM
2159 && (cache->saved_sp != 0 || cache->saved_sp_reg != -1))
2160 {
2161 /* If the SP has been saved, but we don't know where, then this
2162 means that SAVED_SP_REG register was found unavailable back
2163 when we built the cache. */
2164 if (cache->saved_sp == 0)
2165 return frame_unwind_got_register (this_frame, regnum,
2166 cache->saved_sp_reg);
2167 else
2168 return frame_unwind_got_constant (this_frame, regnum,
2169 cache->saved_sp);
2170 }
2171
2172 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
2173 return frame_unwind_got_memory (this_frame, regnum,
2174 cache->saved_regs[regnum]);
2175
2176 return frame_unwind_got_register (this_frame, regnum, regnum);
2177 }
2178
2179 static const struct frame_unwind i386_frame_unwind =
2180 {
2181 NORMAL_FRAME,
2182 i386_frame_unwind_stop_reason,
2183 i386_frame_this_id,
2184 i386_frame_prev_register,
2185 NULL,
2186 default_frame_sniffer
2187 };
2188
2189 /* Normal frames, but in a function epilogue. */
2190
2191 /* Implement the stack_frame_destroyed_p gdbarch method.
2192
2193 The epilogue is defined here as the 'ret' instruction, which will
2194 follow any instruction such as 'leave' or 'pop %ebp' that destroys
2195 the function's stack frame. */
2196
2197 static int
2198 i386_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2199 {
2200 gdb_byte insn;
2201 struct compunit_symtab *cust;
2202
2203 cust = find_pc_compunit_symtab (pc);
2204 if (cust != NULL && COMPUNIT_EPILOGUE_UNWIND_VALID (cust))
2205 return 0;
2206
2207 if (target_read_memory (pc, &insn, 1))
2208 return 0; /* Can't read memory at pc. */
2209
2210 if (insn != 0xc3) /* 'ret' instruction. */
2211 return 0;
2212
2213 return 1;
2214 }
2215
2216 static int
2217 i386_epilogue_frame_sniffer (const struct frame_unwind *self,
2218 struct frame_info *this_frame,
2219 void **this_prologue_cache)
2220 {
2221 if (frame_relative_level (this_frame) == 0)
2222 return i386_stack_frame_destroyed_p (get_frame_arch (this_frame),
2223 get_frame_pc (this_frame));
2224 else
2225 return 0;
2226 }
2227
2228 static struct i386_frame_cache *
2229 i386_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
2230 {
2231 struct i386_frame_cache *cache;
2232 CORE_ADDR sp;
2233
2234 if (*this_cache)
2235 return (struct i386_frame_cache *) *this_cache;
2236
2237 cache = i386_alloc_frame_cache ();
2238 *this_cache = cache;
2239
2240 TRY
2241 {
2242 cache->pc = get_frame_func (this_frame);
2243
2244 /* At this point the stack looks as if we just entered the
2245 function, with the return address at the top of the
2246 stack. */
2247 sp = get_frame_register_unsigned (this_frame, I386_ESP_REGNUM);
2248 cache->base = sp + cache->sp_offset;
2249 cache->saved_sp = cache->base + 8;
2250 cache->saved_regs[I386_EIP_REGNUM] = cache->base + 4;
2251
2252 cache->base_p = 1;
2253 }
2254 CATCH (ex, RETURN_MASK_ERROR)
2255 {
2256 if (ex.error != NOT_AVAILABLE_ERROR)
2257 throw_exception (ex);
2258 }
2259 END_CATCH
2260
2261 return cache;
2262 }
2263
2264 static enum unwind_stop_reason
2265 i386_epilogue_frame_unwind_stop_reason (struct frame_info *this_frame,
2266 void **this_cache)
2267 {
2268 struct i386_frame_cache *cache =
2269 i386_epilogue_frame_cache (this_frame, this_cache);
2270
2271 if (!cache->base_p)
2272 return UNWIND_UNAVAILABLE;
2273
2274 return UNWIND_NO_REASON;
2275 }
2276
2277 static void
2278 i386_epilogue_frame_this_id (struct frame_info *this_frame,
2279 void **this_cache,
2280 struct frame_id *this_id)
2281 {
2282 struct i386_frame_cache *cache =
2283 i386_epilogue_frame_cache (this_frame, this_cache);
2284
2285 if (!cache->base_p)
2286 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2287 else
2288 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2289 }
2290
2291 static struct value *
2292 i386_epilogue_frame_prev_register (struct frame_info *this_frame,
2293 void **this_cache, int regnum)
2294 {
2295 /* Make sure we've initialized the cache. */
2296 i386_epilogue_frame_cache (this_frame, this_cache);
2297
2298 return i386_frame_prev_register (this_frame, this_cache, regnum);
2299 }
2300
2301 static const struct frame_unwind i386_epilogue_frame_unwind =
2302 {
2303 NORMAL_FRAME,
2304 i386_epilogue_frame_unwind_stop_reason,
2305 i386_epilogue_frame_this_id,
2306 i386_epilogue_frame_prev_register,
2307 NULL,
2308 i386_epilogue_frame_sniffer
2309 };
2310 \f
2311
2312 /* Stack-based trampolines. */
2313
2314 /* These trampolines are used on cross x86 targets, when taking the
2315 address of a nested function. When executing these trampolines,
2316 no stack frame is set up, so we are in a similar situation as in
2317 epilogues and i386_epilogue_frame_this_id can be re-used. */
2318
2319 /* Static chain passed in register. */
2320
2321 struct i386_insn i386_tramp_chain_in_reg_insns[] =
2322 {
2323 /* `movl imm32, %eax' and `movl imm32, %ecx' */
2324 { 5, { 0xb8 }, { 0xfe } },
2325
2326 /* `jmp imm32' */
2327 { 5, { 0xe9 }, { 0xff } },
2328
2329 {0}
2330 };
2331
2332 /* Static chain passed on stack (when regparm=3). */
2333
2334 struct i386_insn i386_tramp_chain_on_stack_insns[] =
2335 {
2336 /* `push imm32' */
2337 { 5, { 0x68 }, { 0xff } },
2338
2339 /* `jmp imm32' */
2340 { 5, { 0xe9 }, { 0xff } },
2341
2342 {0}
2343 };
2344
2345 /* Return whether PC points inside a stack trampoline. */
2346
2347 static int
2348 i386_in_stack_tramp_p (CORE_ADDR pc)
2349 {
2350 gdb_byte insn;
2351 const char *name;
2352
2353 /* A stack trampoline is detected if no name is associated
2354 to the current pc and if it points inside a trampoline
2355 sequence. */
2356
2357 find_pc_partial_function (pc, &name, NULL, NULL);
2358 if (name)
2359 return 0;
2360
2361 if (target_read_memory (pc, &insn, 1))
2362 return 0;
2363
2364 if (!i386_match_insn_block (pc, i386_tramp_chain_in_reg_insns)
2365 && !i386_match_insn_block (pc, i386_tramp_chain_on_stack_insns))
2366 return 0;
2367
2368 return 1;
2369 }
2370
2371 static int
2372 i386_stack_tramp_frame_sniffer (const struct frame_unwind *self,
2373 struct frame_info *this_frame,
2374 void **this_cache)
2375 {
2376 if (frame_relative_level (this_frame) == 0)
2377 return i386_in_stack_tramp_p (get_frame_pc (this_frame));
2378 else
2379 return 0;
2380 }
2381
2382 static const struct frame_unwind i386_stack_tramp_frame_unwind =
2383 {
2384 NORMAL_FRAME,
2385 i386_epilogue_frame_unwind_stop_reason,
2386 i386_epilogue_frame_this_id,
2387 i386_epilogue_frame_prev_register,
2388 NULL,
2389 i386_stack_tramp_frame_sniffer
2390 };
2391 \f
2392 /* Generate a bytecode expression to get the value of the saved PC. */
2393
2394 static void
2395 i386_gen_return_address (struct gdbarch *gdbarch,
2396 struct agent_expr *ax, struct axs_value *value,
2397 CORE_ADDR scope)
2398 {
2399 /* The following sequence assumes the traditional use of the base
2400 register. */
2401 ax_reg (ax, I386_EBP_REGNUM);
2402 ax_const_l (ax, 4);
2403 ax_simple (ax, aop_add);
2404 value->type = register_type (gdbarch, I386_EIP_REGNUM);
2405 value->kind = axs_lvalue_memory;
2406 }
2407 \f
2408
2409 /* Signal trampolines. */
2410
2411 static struct i386_frame_cache *
2412 i386_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
2413 {
2414 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2415 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2416 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2417 struct i386_frame_cache *cache;
2418 CORE_ADDR addr;
2419 gdb_byte buf[4];
2420
2421 if (*this_cache)
2422 return (struct i386_frame_cache *) *this_cache;
2423
2424 cache = i386_alloc_frame_cache ();
2425
2426 TRY
2427 {
2428 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2429 cache->base = extract_unsigned_integer (buf, 4, byte_order) - 4;
2430
2431 addr = tdep->sigcontext_addr (this_frame);
2432 if (tdep->sc_reg_offset)
2433 {
2434 int i;
2435
2436 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
2437
2438 for (i = 0; i < tdep->sc_num_regs; i++)
2439 if (tdep->sc_reg_offset[i] != -1)
2440 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
2441 }
2442 else
2443 {
2444 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
2445 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
2446 }
2447
2448 cache->base_p = 1;
2449 }
2450 CATCH (ex, RETURN_MASK_ERROR)
2451 {
2452 if (ex.error != NOT_AVAILABLE_ERROR)
2453 throw_exception (ex);
2454 }
2455 END_CATCH
2456
2457 *this_cache = cache;
2458 return cache;
2459 }
2460
2461 static enum unwind_stop_reason
2462 i386_sigtramp_frame_unwind_stop_reason (struct frame_info *this_frame,
2463 void **this_cache)
2464 {
2465 struct i386_frame_cache *cache =
2466 i386_sigtramp_frame_cache (this_frame, this_cache);
2467
2468 if (!cache->base_p)
2469 return UNWIND_UNAVAILABLE;
2470
2471 return UNWIND_NO_REASON;
2472 }
2473
2474 static void
2475 i386_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache,
2476 struct frame_id *this_id)
2477 {
2478 struct i386_frame_cache *cache =
2479 i386_sigtramp_frame_cache (this_frame, this_cache);
2480
2481 if (!cache->base_p)
2482 (*this_id) = frame_id_build_unavailable_stack (get_frame_pc (this_frame));
2483 else
2484 {
2485 /* See the end of i386_push_dummy_call. */
2486 (*this_id) = frame_id_build (cache->base + 8, get_frame_pc (this_frame));
2487 }
2488 }
2489
2490 static struct value *
2491 i386_sigtramp_frame_prev_register (struct frame_info *this_frame,
2492 void **this_cache, int regnum)
2493 {
2494 /* Make sure we've initialized the cache. */
2495 i386_sigtramp_frame_cache (this_frame, this_cache);
2496
2497 return i386_frame_prev_register (this_frame, this_cache, regnum);
2498 }
2499
2500 static int
2501 i386_sigtramp_frame_sniffer (const struct frame_unwind *self,
2502 struct frame_info *this_frame,
2503 void **this_prologue_cache)
2504 {
2505 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
2506
2507 /* We shouldn't even bother if we don't have a sigcontext_addr
2508 handler. */
2509 if (tdep->sigcontext_addr == NULL)
2510 return 0;
2511
2512 if (tdep->sigtramp_p != NULL)
2513 {
2514 if (tdep->sigtramp_p (this_frame))
2515 return 1;
2516 }
2517
2518 if (tdep->sigtramp_start != 0)
2519 {
2520 CORE_ADDR pc = get_frame_pc (this_frame);
2521
2522 gdb_assert (tdep->sigtramp_end != 0);
2523 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
2524 return 1;
2525 }
2526
2527 return 0;
2528 }
2529
2530 static const struct frame_unwind i386_sigtramp_frame_unwind =
2531 {
2532 SIGTRAMP_FRAME,
2533 i386_sigtramp_frame_unwind_stop_reason,
2534 i386_sigtramp_frame_this_id,
2535 i386_sigtramp_frame_prev_register,
2536 NULL,
2537 i386_sigtramp_frame_sniffer
2538 };
2539 \f
2540
2541 static CORE_ADDR
2542 i386_frame_base_address (struct frame_info *this_frame, void **this_cache)
2543 {
2544 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2545
2546 return cache->base;
2547 }
2548
2549 static const struct frame_base i386_frame_base =
2550 {
2551 &i386_frame_unwind,
2552 i386_frame_base_address,
2553 i386_frame_base_address,
2554 i386_frame_base_address
2555 };
2556
2557 static struct frame_id
2558 i386_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2559 {
2560 CORE_ADDR fp;
2561
2562 fp = get_frame_register_unsigned (this_frame, I386_EBP_REGNUM);
2563
2564 /* See the end of i386_push_dummy_call. */
2565 return frame_id_build (fp + 8, get_frame_pc (this_frame));
2566 }
2567
2568 /* _Decimal128 function return values need 16-byte alignment on the
2569 stack. */
2570
2571 static CORE_ADDR
2572 i386_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2573 {
2574 return sp & -(CORE_ADDR)16;
2575 }
2576 \f
2577
2578 /* Figure out where the longjmp will land. Slurp the args out of the
2579 stack. We expect the first arg to be a pointer to the jmp_buf
2580 structure from which we extract the address that we will land at.
2581 This address is copied into PC. This routine returns non-zero on
2582 success. */
2583
2584 static int
2585 i386_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
2586 {
2587 gdb_byte buf[4];
2588 CORE_ADDR sp, jb_addr;
2589 struct gdbarch *gdbarch = get_frame_arch (frame);
2590 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2591 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
2592
2593 /* If JB_PC_OFFSET is -1, we have no way to find out where the
2594 longjmp will land. */
2595 if (jb_pc_offset == -1)
2596 return 0;
2597
2598 get_frame_register (frame, I386_ESP_REGNUM, buf);
2599 sp = extract_unsigned_integer (buf, 4, byte_order);
2600 if (target_read_memory (sp + 4, buf, 4))
2601 return 0;
2602
2603 jb_addr = extract_unsigned_integer (buf, 4, byte_order);
2604 if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
2605 return 0;
2606
2607 *pc = extract_unsigned_integer (buf, 4, byte_order);
2608 return 1;
2609 }
2610 \f
2611
2612 /* Check whether TYPE must be 16-byte-aligned when passed as a
2613 function argument. 16-byte vectors, _Decimal128 and structures or
2614 unions containing such types must be 16-byte-aligned; other
2615 arguments are 4-byte-aligned. */
2616
2617 static int
2618 i386_16_byte_align_p (struct type *type)
2619 {
2620 type = check_typedef (type);
2621 if ((TYPE_CODE (type) == TYPE_CODE_DECFLOAT
2622 || (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type)))
2623 && TYPE_LENGTH (type) == 16)
2624 return 1;
2625 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2626 return i386_16_byte_align_p (TYPE_TARGET_TYPE (type));
2627 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2628 || TYPE_CODE (type) == TYPE_CODE_UNION)
2629 {
2630 int i;
2631 for (i = 0; i < TYPE_NFIELDS (type); i++)
2632 {
2633 if (i386_16_byte_align_p (TYPE_FIELD_TYPE (type, i)))
2634 return 1;
2635 }
2636 }
2637 return 0;
2638 }
2639
2640 /* Implementation for set_gdbarch_push_dummy_code. */
2641
2642 static CORE_ADDR
2643 i386_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, CORE_ADDR funaddr,
2644 struct value **args, int nargs, struct type *value_type,
2645 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
2646 struct regcache *regcache)
2647 {
2648 /* Use 0xcc breakpoint - 1 byte. */
2649 *bp_addr = sp - 1;
2650 *real_pc = funaddr;
2651
2652 /* Keep the stack aligned. */
2653 return sp - 16;
2654 }
2655
2656 static CORE_ADDR
2657 i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2658 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2659 struct value **args, CORE_ADDR sp, int struct_return,
2660 CORE_ADDR struct_addr)
2661 {
2662 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2663 gdb_byte buf[4];
2664 int i;
2665 int write_pass;
2666 int args_space = 0;
2667
2668 /* Determine the total space required for arguments and struct
2669 return address in a first pass (allowing for 16-byte-aligned
2670 arguments), then push arguments in a second pass. */
2671
2672 for (write_pass = 0; write_pass < 2; write_pass++)
2673 {
2674 int args_space_used = 0;
2675
2676 if (struct_return)
2677 {
2678 if (write_pass)
2679 {
2680 /* Push value address. */
2681 store_unsigned_integer (buf, 4, byte_order, struct_addr);
2682 write_memory (sp, buf, 4);
2683 args_space_used += 4;
2684 }
2685 else
2686 args_space += 4;
2687 }
2688
2689 for (i = 0; i < nargs; i++)
2690 {
2691 int len = TYPE_LENGTH (value_enclosing_type (args[i]));
2692
2693 if (write_pass)
2694 {
2695 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2696 args_space_used = align_up (args_space_used, 16);
2697
2698 write_memory (sp + args_space_used,
2699 value_contents_all (args[i]), len);
2700 /* The System V ABI says that:
2701
2702 "An argument's size is increased, if necessary, to make it a
2703 multiple of [32-bit] words. This may require tail padding,
2704 depending on the size of the argument."
2705
2706 This makes sure the stack stays word-aligned. */
2707 args_space_used += align_up (len, 4);
2708 }
2709 else
2710 {
2711 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2712 args_space = align_up (args_space, 16);
2713 args_space += align_up (len, 4);
2714 }
2715 }
2716
2717 if (!write_pass)
2718 {
2719 sp -= args_space;
2720
2721 /* The original System V ABI only requires word alignment,
2722 but modern incarnations need 16-byte alignment in order
2723 to support SSE. Since wasting a few bytes here isn't
2724 harmful we unconditionally enforce 16-byte alignment. */
2725 sp &= ~0xf;
2726 }
2727 }
2728
2729 /* Store return address. */
2730 sp -= 4;
2731 store_unsigned_integer (buf, 4, byte_order, bp_addr);
2732 write_memory (sp, buf, 4);
2733
2734 /* Finally, update the stack pointer... */
2735 store_unsigned_integer (buf, 4, byte_order, sp);
2736 regcache_cooked_write (regcache, I386_ESP_REGNUM, buf);
2737
2738 /* ...and fake a frame pointer. */
2739 regcache_cooked_write (regcache, I386_EBP_REGNUM, buf);
2740
2741 /* MarkK wrote: This "+ 8" is all over the place:
2742 (i386_frame_this_id, i386_sigtramp_frame_this_id,
2743 i386_dummy_id). It's there, since all frame unwinders for
2744 a given target have to agree (within a certain margin) on the
2745 definition of the stack address of a frame. Otherwise frame id
2746 comparison might not work correctly. Since DWARF2/GCC uses the
2747 stack address *before* the function call as a frame's CFA. On
2748 the i386, when %ebp is used as a frame pointer, the offset
2749 between the contents %ebp and the CFA as defined by GCC. */
2750 return sp + 8;
2751 }
2752
2753 /* These registers are used for returning integers (and on some
2754 targets also for returning `struct' and `union' values when their
2755 size and alignment match an integer type). */
2756 #define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
2757 #define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
2758
2759 /* Read, for architecture GDBARCH, a function return value of TYPE
2760 from REGCACHE, and copy that into VALBUF. */
2761
2762 static void
2763 i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
2764 struct regcache *regcache, gdb_byte *valbuf)
2765 {
2766 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2767 int len = TYPE_LENGTH (type);
2768 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2769
2770 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2771 {
2772 if (tdep->st0_regnum < 0)
2773 {
2774 warning (_("Cannot find floating-point return value."));
2775 memset (valbuf, 0, len);
2776 return;
2777 }
2778
2779 /* Floating-point return values can be found in %st(0). Convert
2780 its contents to the desired type. This is probably not
2781 exactly how it would happen on the target itself, but it is
2782 the best we can do. */
2783 regcache_raw_read (regcache, I386_ST0_REGNUM, buf);
2784 convert_typed_floating (buf, i387_ext_type (gdbarch), valbuf, type);
2785 }
2786 else
2787 {
2788 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2789 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2790
2791 if (len <= low_size)
2792 {
2793 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
2794 memcpy (valbuf, buf, len);
2795 }
2796 else if (len <= (low_size + high_size))
2797 {
2798 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
2799 memcpy (valbuf, buf, low_size);
2800 regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
2801 memcpy (valbuf + low_size, buf, len - low_size);
2802 }
2803 else
2804 internal_error (__FILE__, __LINE__,
2805 _("Cannot extract return value of %d bytes long."),
2806 len);
2807 }
2808 }
2809
2810 /* Write, for architecture GDBARCH, a function return value of TYPE
2811 from VALBUF into REGCACHE. */
2812
2813 static void
2814 i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
2815 struct regcache *regcache, const gdb_byte *valbuf)
2816 {
2817 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2818 int len = TYPE_LENGTH (type);
2819
2820 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2821 {
2822 ULONGEST fstat;
2823 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2824
2825 if (tdep->st0_regnum < 0)
2826 {
2827 warning (_("Cannot set floating-point return value."));
2828 return;
2829 }
2830
2831 /* Returning floating-point values is a bit tricky. Apart from
2832 storing the return value in %st(0), we have to simulate the
2833 state of the FPU at function return point. */
2834
2835 /* Convert the value found in VALBUF to the extended
2836 floating-point format used by the FPU. This is probably
2837 not exactly how it would happen on the target itself, but
2838 it is the best we can do. */
2839 convert_typed_floating (valbuf, type, buf, i387_ext_type (gdbarch));
2840 regcache_raw_write (regcache, I386_ST0_REGNUM, buf);
2841
2842 /* Set the top of the floating-point register stack to 7. The
2843 actual value doesn't really matter, but 7 is what a normal
2844 function return would end up with if the program started out
2845 with a freshly initialized FPU. */
2846 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
2847 fstat |= (7 << 11);
2848 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM (tdep), fstat);
2849
2850 /* Mark %st(1) through %st(7) as empty. Since we set the top of
2851 the floating-point register stack to 7, the appropriate value
2852 for the tag word is 0x3fff. */
2853 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM (tdep), 0x3fff);
2854 }
2855 else
2856 {
2857 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2858 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2859
2860 if (len <= low_size)
2861 regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
2862 else if (len <= (low_size + high_size))
2863 {
2864 regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
2865 regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
2866 len - low_size, valbuf + low_size);
2867 }
2868 else
2869 internal_error (__FILE__, __LINE__,
2870 _("Cannot store return value of %d bytes long."), len);
2871 }
2872 }
2873 \f
2874
2875 /* This is the variable that is set with "set struct-convention", and
2876 its legitimate values. */
2877 static const char default_struct_convention[] = "default";
2878 static const char pcc_struct_convention[] = "pcc";
2879 static const char reg_struct_convention[] = "reg";
2880 static const char *const valid_conventions[] =
2881 {
2882 default_struct_convention,
2883 pcc_struct_convention,
2884 reg_struct_convention,
2885 NULL
2886 };
2887 static const char *struct_convention = default_struct_convention;
2888
2889 /* Return non-zero if TYPE, which is assumed to be a structure,
2890 a union type, or an array type, should be returned in registers
2891 for architecture GDBARCH. */
2892
2893 static int
2894 i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
2895 {
2896 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2897 enum type_code code = TYPE_CODE (type);
2898 int len = TYPE_LENGTH (type);
2899
2900 gdb_assert (code == TYPE_CODE_STRUCT
2901 || code == TYPE_CODE_UNION
2902 || code == TYPE_CODE_ARRAY);
2903
2904 if (struct_convention == pcc_struct_convention
2905 || (struct_convention == default_struct_convention
2906 && tdep->struct_return == pcc_struct_return))
2907 return 0;
2908
2909 /* Structures consisting of a single `float', `double' or 'long
2910 double' member are returned in %st(0). */
2911 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2912 {
2913 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
2914 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2915 return (len == 4 || len == 8 || len == 12);
2916 }
2917
2918 return (len == 1 || len == 2 || len == 4 || len == 8);
2919 }
2920
2921 /* Determine, for architecture GDBARCH, how a return value of TYPE
2922 should be returned. If it is supposed to be returned in registers,
2923 and READBUF is non-zero, read the appropriate value from REGCACHE,
2924 and copy it into READBUF. If WRITEBUF is non-zero, write the value
2925 from WRITEBUF into REGCACHE. */
2926
2927 static enum return_value_convention
2928 i386_return_value (struct gdbarch *gdbarch, struct value *function,
2929 struct type *type, struct regcache *regcache,
2930 gdb_byte *readbuf, const gdb_byte *writebuf)
2931 {
2932 enum type_code code = TYPE_CODE (type);
2933
2934 if (((code == TYPE_CODE_STRUCT
2935 || code == TYPE_CODE_UNION
2936 || code == TYPE_CODE_ARRAY)
2937 && !i386_reg_struct_return_p (gdbarch, type))
2938 /* Complex double and long double uses the struct return covention. */
2939 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 16)
2940 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 24)
2941 /* 128-bit decimal float uses the struct return convention. */
2942 || (code == TYPE_CODE_DECFLOAT && TYPE_LENGTH (type) == 16))
2943 {
2944 /* The System V ABI says that:
2945
2946 "A function that returns a structure or union also sets %eax
2947 to the value of the original address of the caller's area
2948 before it returns. Thus when the caller receives control
2949 again, the address of the returned object resides in register
2950 %eax and can be used to access the object."
2951
2952 So the ABI guarantees that we can always find the return
2953 value just after the function has returned. */
2954
2955 /* Note that the ABI doesn't mention functions returning arrays,
2956 which is something possible in certain languages such as Ada.
2957 In this case, the value is returned as if it was wrapped in
2958 a record, so the convention applied to records also applies
2959 to arrays. */
2960
2961 if (readbuf)
2962 {
2963 ULONGEST addr;
2964
2965 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
2966 read_memory (addr, readbuf, TYPE_LENGTH (type));
2967 }
2968
2969 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
2970 }
2971
2972 /* This special case is for structures consisting of a single
2973 `float', `double' or 'long double' member. These structures are
2974 returned in %st(0). For these structures, we call ourselves
2975 recursively, changing TYPE into the type of the first member of
2976 the structure. Since that should work for all structures that
2977 have only one member, we don't bother to check the member's type
2978 here. */
2979 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2980 {
2981 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
2982 return i386_return_value (gdbarch, function, type, regcache,
2983 readbuf, writebuf);
2984 }
2985
2986 if (readbuf)
2987 i386_extract_return_value (gdbarch, type, regcache, readbuf);
2988 if (writebuf)
2989 i386_store_return_value (gdbarch, type, regcache, writebuf);
2990
2991 return RETURN_VALUE_REGISTER_CONVENTION;
2992 }
2993 \f
2994
2995 struct type *
2996 i387_ext_type (struct gdbarch *gdbarch)
2997 {
2998 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2999
3000 if (!tdep->i387_ext_type)
3001 {
3002 tdep->i387_ext_type = tdesc_find_type (gdbarch, "i387_ext");
3003 gdb_assert (tdep->i387_ext_type != NULL);
3004 }
3005
3006 return tdep->i387_ext_type;
3007 }
3008
3009 /* Construct type for pseudo BND registers. We can't use
3010 tdesc_find_type since a complement of one value has to be used
3011 to describe the upper bound. */
3012
3013 static struct type *
3014 i386_bnd_type (struct gdbarch *gdbarch)
3015 {
3016 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3017
3018
3019 if (!tdep->i386_bnd_type)
3020 {
3021 struct type *t, *bound_t;
3022 const struct builtin_type *bt = builtin_type (gdbarch);
3023
3024 /* The type we're building is described bellow: */
3025 #if 0
3026 struct __bound128
3027 {
3028 void *lbound;
3029 void *ubound; /* One complement of raw ubound field. */
3030 };
3031 #endif
3032
3033 t = arch_composite_type (gdbarch,
3034 "__gdb_builtin_type_bound128", TYPE_CODE_STRUCT);
3035
3036 append_composite_type_field (t, "lbound", bt->builtin_data_ptr);
3037 append_composite_type_field (t, "ubound", bt->builtin_data_ptr);
3038
3039 TYPE_NAME (t) = "builtin_type_bound128";
3040 tdep->i386_bnd_type = t;
3041 }
3042
3043 return tdep->i386_bnd_type;
3044 }
3045
3046 /* Construct vector type for pseudo ZMM registers. We can't use
3047 tdesc_find_type since ZMM isn't described in target description. */
3048
3049 static struct type *
3050 i386_zmm_type (struct gdbarch *gdbarch)
3051 {
3052 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3053
3054 if (!tdep->i386_zmm_type)
3055 {
3056 const struct builtin_type *bt = builtin_type (gdbarch);
3057
3058 /* The type we're building is this: */
3059 #if 0
3060 union __gdb_builtin_type_vec512i
3061 {
3062 int128_t uint128[4];
3063 int64_t v4_int64[8];
3064 int32_t v8_int32[16];
3065 int16_t v16_int16[32];
3066 int8_t v32_int8[64];
3067 double v4_double[8];
3068 float v8_float[16];
3069 };
3070 #endif
3071
3072 struct type *t;
3073
3074 t = arch_composite_type (gdbarch,
3075 "__gdb_builtin_type_vec512i", TYPE_CODE_UNION);
3076 append_composite_type_field (t, "v16_float",
3077 init_vector_type (bt->builtin_float, 16));
3078 append_composite_type_field (t, "v8_double",
3079 init_vector_type (bt->builtin_double, 8));
3080 append_composite_type_field (t, "v64_int8",
3081 init_vector_type (bt->builtin_int8, 64));
3082 append_composite_type_field (t, "v32_int16",
3083 init_vector_type (bt->builtin_int16, 32));
3084 append_composite_type_field (t, "v16_int32",
3085 init_vector_type (bt->builtin_int32, 16));
3086 append_composite_type_field (t, "v8_int64",
3087 init_vector_type (bt->builtin_int64, 8));
3088 append_composite_type_field (t, "v4_int128",
3089 init_vector_type (bt->builtin_int128, 4));
3090
3091 TYPE_VECTOR (t) = 1;
3092 TYPE_NAME (t) = "builtin_type_vec512i";
3093 tdep->i386_zmm_type = t;
3094 }
3095
3096 return tdep->i386_zmm_type;
3097 }
3098
3099 /* Construct vector type for pseudo YMM registers. We can't use
3100 tdesc_find_type since YMM isn't described in target description. */
3101
3102 static struct type *
3103 i386_ymm_type (struct gdbarch *gdbarch)
3104 {
3105 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3106
3107 if (!tdep->i386_ymm_type)
3108 {
3109 const struct builtin_type *bt = builtin_type (gdbarch);
3110
3111 /* The type we're building is this: */
3112 #if 0
3113 union __gdb_builtin_type_vec256i
3114 {
3115 int128_t uint128[2];
3116 int64_t v2_int64[4];
3117 int32_t v4_int32[8];
3118 int16_t v8_int16[16];
3119 int8_t v16_int8[32];
3120 double v2_double[4];
3121 float v4_float[8];
3122 };
3123 #endif
3124
3125 struct type *t;
3126
3127 t = arch_composite_type (gdbarch,
3128 "__gdb_builtin_type_vec256i", TYPE_CODE_UNION);
3129 append_composite_type_field (t, "v8_float",
3130 init_vector_type (bt->builtin_float, 8));
3131 append_composite_type_field (t, "v4_double",
3132 init_vector_type (bt->builtin_double, 4));
3133 append_composite_type_field (t, "v32_int8",
3134 init_vector_type (bt->builtin_int8, 32));
3135 append_composite_type_field (t, "v16_int16",
3136 init_vector_type (bt->builtin_int16, 16));
3137 append_composite_type_field (t, "v8_int32",
3138 init_vector_type (bt->builtin_int32, 8));
3139 append_composite_type_field (t, "v4_int64",
3140 init_vector_type (bt->builtin_int64, 4));
3141 append_composite_type_field (t, "v2_int128",
3142 init_vector_type (bt->builtin_int128, 2));
3143
3144 TYPE_VECTOR (t) = 1;
3145 TYPE_NAME (t) = "builtin_type_vec256i";
3146 tdep->i386_ymm_type = t;
3147 }
3148
3149 return tdep->i386_ymm_type;
3150 }
3151
3152 /* Construct vector type for MMX registers. */
3153 static struct type *
3154 i386_mmx_type (struct gdbarch *gdbarch)
3155 {
3156 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3157
3158 if (!tdep->i386_mmx_type)
3159 {
3160 const struct builtin_type *bt = builtin_type (gdbarch);
3161
3162 /* The type we're building is this: */
3163 #if 0
3164 union __gdb_builtin_type_vec64i
3165 {
3166 int64_t uint64;
3167 int32_t v2_int32[2];
3168 int16_t v4_int16[4];
3169 int8_t v8_int8[8];
3170 };
3171 #endif
3172
3173 struct type *t;
3174
3175 t = arch_composite_type (gdbarch,
3176 "__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
3177
3178 append_composite_type_field (t, "uint64", bt->builtin_int64);
3179 append_composite_type_field (t, "v2_int32",
3180 init_vector_type (bt->builtin_int32, 2));
3181 append_composite_type_field (t, "v4_int16",
3182 init_vector_type (bt->builtin_int16, 4));
3183 append_composite_type_field (t, "v8_int8",
3184 init_vector_type (bt->builtin_int8, 8));
3185
3186 TYPE_VECTOR (t) = 1;
3187 TYPE_NAME (t) = "builtin_type_vec64i";
3188 tdep->i386_mmx_type = t;
3189 }
3190
3191 return tdep->i386_mmx_type;
3192 }
3193
3194 /* Return the GDB type object for the "standard" data type of data in
3195 register REGNUM. */
3196
3197 struct type *
3198 i386_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
3199 {
3200 if (i386_bnd_regnum_p (gdbarch, regnum))
3201 return i386_bnd_type (gdbarch);
3202 if (i386_mmx_regnum_p (gdbarch, regnum))
3203 return i386_mmx_type (gdbarch);
3204 else if (i386_ymm_regnum_p (gdbarch, regnum))
3205 return i386_ymm_type (gdbarch);
3206 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3207 return i386_ymm_type (gdbarch);
3208 else if (i386_zmm_regnum_p (gdbarch, regnum))
3209 return i386_zmm_type (gdbarch);
3210 else
3211 {
3212 const struct builtin_type *bt = builtin_type (gdbarch);
3213 if (i386_byte_regnum_p (gdbarch, regnum))
3214 return bt->builtin_int8;
3215 else if (i386_word_regnum_p (gdbarch, regnum))
3216 return bt->builtin_int16;
3217 else if (i386_dword_regnum_p (gdbarch, regnum))
3218 return bt->builtin_int32;
3219 else if (i386_k_regnum_p (gdbarch, regnum))
3220 return bt->builtin_int64;
3221 }
3222
3223 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3224 }
3225
3226 /* Map a cooked register onto a raw register or memory. For the i386,
3227 the MMX registers need to be mapped onto floating point registers. */
3228
3229 static int
3230 i386_mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
3231 {
3232 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
3233 int mmxreg, fpreg;
3234 ULONGEST fstat;
3235 int tos;
3236
3237 mmxreg = regnum - tdep->mm0_regnum;
3238 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
3239 tos = (fstat >> 11) & 0x7;
3240 fpreg = (mmxreg + tos) % 8;
3241
3242 return (I387_ST0_REGNUM (tdep) + fpreg);
3243 }
3244
3245 /* A helper function for us by i386_pseudo_register_read_value and
3246 amd64_pseudo_register_read_value. It does all the work but reads
3247 the data into an already-allocated value. */
3248
3249 void
3250 i386_pseudo_register_read_into_value (struct gdbarch *gdbarch,
3251 struct regcache *regcache,
3252 int regnum,
3253 struct value *result_value)
3254 {
3255 gdb_byte raw_buf[MAX_REGISTER_SIZE];
3256 enum register_status status;
3257 gdb_byte *buf = value_contents_raw (result_value);
3258
3259 if (i386_mmx_regnum_p (gdbarch, regnum))
3260 {
3261 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3262
3263 /* Extract (always little endian). */
3264 status = regcache_raw_read (regcache, fpnum, raw_buf);
3265 if (status != REG_VALID)
3266 mark_value_bytes_unavailable (result_value, 0,
3267 TYPE_LENGTH (value_type (result_value)));
3268 else
3269 memcpy (buf, raw_buf, register_size (gdbarch, regnum));
3270 }
3271 else
3272 {
3273 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3274 if (i386_bnd_regnum_p (gdbarch, regnum))
3275 {
3276 regnum -= tdep->bnd0_regnum;
3277
3278 /* Extract (always little endian). Read lower 128bits. */
3279 status = regcache_raw_read (regcache,
3280 I387_BND0R_REGNUM (tdep) + regnum,
3281 raw_buf);
3282 if (status != REG_VALID)
3283 mark_value_bytes_unavailable (result_value, 0, 16);
3284 else
3285 {
3286 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3287 LONGEST upper, lower;
3288 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
3289
3290 lower = extract_unsigned_integer (raw_buf, 8, byte_order);
3291 upper = extract_unsigned_integer (raw_buf + 8, 8, byte_order);
3292 upper = ~upper;
3293
3294 memcpy (buf, &lower, size);
3295 memcpy (buf + size, &upper, size);
3296 }
3297 }
3298 else if (i386_k_regnum_p (gdbarch, regnum))
3299 {
3300 regnum -= tdep->k0_regnum;
3301
3302 /* Extract (always little endian). */
3303 status = regcache_raw_read (regcache,
3304 tdep->k0_regnum + regnum,
3305 raw_buf);
3306 if (status != REG_VALID)
3307 mark_value_bytes_unavailable (result_value, 0, 8);
3308 else
3309 memcpy (buf, raw_buf, 8);
3310 }
3311 else if (i386_zmm_regnum_p (gdbarch, regnum))
3312 {
3313 regnum -= tdep->zmm0_regnum;
3314
3315 if (regnum < num_lower_zmm_regs)
3316 {
3317 /* Extract (always little endian). Read lower 128bits. */
3318 status = regcache_raw_read (regcache,
3319 I387_XMM0_REGNUM (tdep) + regnum,
3320 raw_buf);
3321 if (status != REG_VALID)
3322 mark_value_bytes_unavailable (result_value, 0, 16);
3323 else
3324 memcpy (buf, raw_buf, 16);
3325
3326 /* Extract (always little endian). Read upper 128bits. */
3327 status = regcache_raw_read (regcache,
3328 tdep->ymm0h_regnum + regnum,
3329 raw_buf);
3330 if (status != REG_VALID)
3331 mark_value_bytes_unavailable (result_value, 16, 16);
3332 else
3333 memcpy (buf + 16, raw_buf, 16);
3334 }
3335 else
3336 {
3337 /* Extract (always little endian). Read lower 128bits. */
3338 status = regcache_raw_read (regcache,
3339 I387_XMM16_REGNUM (tdep) + regnum
3340 - num_lower_zmm_regs,
3341 raw_buf);
3342 if (status != REG_VALID)
3343 mark_value_bytes_unavailable (result_value, 0, 16);
3344 else
3345 memcpy (buf, raw_buf, 16);
3346
3347 /* Extract (always little endian). Read upper 128bits. */
3348 status = regcache_raw_read (regcache,
3349 I387_YMM16H_REGNUM (tdep) + regnum
3350 - num_lower_zmm_regs,
3351 raw_buf);
3352 if (status != REG_VALID)
3353 mark_value_bytes_unavailable (result_value, 16, 16);
3354 else
3355 memcpy (buf + 16, raw_buf, 16);
3356 }
3357
3358 /* Read upper 256bits. */
3359 status = regcache_raw_read (regcache,
3360 tdep->zmm0h_regnum + regnum,
3361 raw_buf);
3362 if (status != REG_VALID)
3363 mark_value_bytes_unavailable (result_value, 32, 32);
3364 else
3365 memcpy (buf + 32, raw_buf, 32);
3366 }
3367 else if (i386_ymm_regnum_p (gdbarch, regnum))
3368 {
3369 regnum -= tdep->ymm0_regnum;
3370
3371 /* Extract (always little endian). Read lower 128bits. */
3372 status = regcache_raw_read (regcache,
3373 I387_XMM0_REGNUM (tdep) + regnum,
3374 raw_buf);
3375 if (status != REG_VALID)
3376 mark_value_bytes_unavailable (result_value, 0, 16);
3377 else
3378 memcpy (buf, raw_buf, 16);
3379 /* Read upper 128bits. */
3380 status = regcache_raw_read (regcache,
3381 tdep->ymm0h_regnum + regnum,
3382 raw_buf);
3383 if (status != REG_VALID)
3384 mark_value_bytes_unavailable (result_value, 16, 32);
3385 else
3386 memcpy (buf + 16, raw_buf, 16);
3387 }
3388 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3389 {
3390 regnum -= tdep->ymm16_regnum;
3391 /* Extract (always little endian). Read lower 128bits. */
3392 status = regcache_raw_read (regcache,
3393 I387_XMM16_REGNUM (tdep) + regnum,
3394 raw_buf);
3395 if (status != REG_VALID)
3396 mark_value_bytes_unavailable (result_value, 0, 16);
3397 else
3398 memcpy (buf, raw_buf, 16);
3399 /* Read upper 128bits. */
3400 status = regcache_raw_read (regcache,
3401 tdep->ymm16h_regnum + regnum,
3402 raw_buf);
3403 if (status != REG_VALID)
3404 mark_value_bytes_unavailable (result_value, 16, 16);
3405 else
3406 memcpy (buf + 16, raw_buf, 16);
3407 }
3408 else if (i386_word_regnum_p (gdbarch, regnum))
3409 {
3410 int gpnum = regnum - tdep->ax_regnum;
3411
3412 /* Extract (always little endian). */
3413 status = regcache_raw_read (regcache, gpnum, raw_buf);
3414 if (status != REG_VALID)
3415 mark_value_bytes_unavailable (result_value, 0,
3416 TYPE_LENGTH (value_type (result_value)));
3417 else
3418 memcpy (buf, raw_buf, 2);
3419 }
3420 else if (i386_byte_regnum_p (gdbarch, regnum))
3421 {
3422 int gpnum = regnum - tdep->al_regnum;
3423
3424 /* Extract (always little endian). We read both lower and
3425 upper registers. */
3426 status = regcache_raw_read (regcache, gpnum % 4, raw_buf);
3427 if (status != REG_VALID)
3428 mark_value_bytes_unavailable (result_value, 0,
3429 TYPE_LENGTH (value_type (result_value)));
3430 else if (gpnum >= 4)
3431 memcpy (buf, raw_buf + 1, 1);
3432 else
3433 memcpy (buf, raw_buf, 1);
3434 }
3435 else
3436 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3437 }
3438 }
3439
3440 static struct value *
3441 i386_pseudo_register_read_value (struct gdbarch *gdbarch,
3442 struct regcache *regcache,
3443 int regnum)
3444 {
3445 struct value *result;
3446
3447 result = allocate_value (register_type (gdbarch, regnum));
3448 VALUE_LVAL (result) = lval_register;
3449 VALUE_REGNUM (result) = regnum;
3450
3451 i386_pseudo_register_read_into_value (gdbarch, regcache, regnum, result);
3452
3453 return result;
3454 }
3455
3456 void
3457 i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
3458 int regnum, const gdb_byte *buf)
3459 {
3460 gdb_byte raw_buf[MAX_REGISTER_SIZE];
3461
3462 if (i386_mmx_regnum_p (gdbarch, regnum))
3463 {
3464 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3465
3466 /* Read ... */
3467 regcache_raw_read (regcache, fpnum, raw_buf);
3468 /* ... Modify ... (always little endian). */
3469 memcpy (raw_buf, buf, register_size (gdbarch, regnum));
3470 /* ... Write. */
3471 regcache_raw_write (regcache, fpnum, raw_buf);
3472 }
3473 else
3474 {
3475 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3476
3477 if (i386_bnd_regnum_p (gdbarch, regnum))
3478 {
3479 ULONGEST upper, lower;
3480 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
3481 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3482
3483 /* New values from input value. */
3484 regnum -= tdep->bnd0_regnum;
3485 lower = extract_unsigned_integer (buf, size, byte_order);
3486 upper = extract_unsigned_integer (buf + size, size, byte_order);
3487
3488 /* Fetching register buffer. */
3489 regcache_raw_read (regcache,
3490 I387_BND0R_REGNUM (tdep) + regnum,
3491 raw_buf);
3492
3493 upper = ~upper;
3494
3495 /* Set register bits. */
3496 memcpy (raw_buf, &lower, 8);
3497 memcpy (raw_buf + 8, &upper, 8);
3498
3499
3500 regcache_raw_write (regcache,
3501 I387_BND0R_REGNUM (tdep) + regnum,
3502 raw_buf);
3503 }
3504 else if (i386_k_regnum_p (gdbarch, regnum))
3505 {
3506 regnum -= tdep->k0_regnum;
3507
3508 regcache_raw_write (regcache,
3509 tdep->k0_regnum + regnum,
3510 buf);
3511 }
3512 else if (i386_zmm_regnum_p (gdbarch, regnum))
3513 {
3514 regnum -= tdep->zmm0_regnum;
3515
3516 if (regnum < num_lower_zmm_regs)
3517 {
3518 /* Write lower 128bits. */
3519 regcache_raw_write (regcache,
3520 I387_XMM0_REGNUM (tdep) + regnum,
3521 buf);
3522 /* Write upper 128bits. */
3523 regcache_raw_write (regcache,
3524 I387_YMM0_REGNUM (tdep) + regnum,
3525 buf + 16);
3526 }
3527 else
3528 {
3529 /* Write lower 128bits. */
3530 regcache_raw_write (regcache,
3531 I387_XMM16_REGNUM (tdep) + regnum
3532 - num_lower_zmm_regs,
3533 buf);
3534 /* Write upper 128bits. */
3535 regcache_raw_write (regcache,
3536 I387_YMM16H_REGNUM (tdep) + regnum
3537 - num_lower_zmm_regs,
3538 buf + 16);
3539 }
3540 /* Write upper 256bits. */
3541 regcache_raw_write (regcache,
3542 tdep->zmm0h_regnum + regnum,
3543 buf + 32);
3544 }
3545 else if (i386_ymm_regnum_p (gdbarch, regnum))
3546 {
3547 regnum -= tdep->ymm0_regnum;
3548
3549 /* ... Write lower 128bits. */
3550 regcache_raw_write (regcache,
3551 I387_XMM0_REGNUM (tdep) + regnum,
3552 buf);
3553 /* ... Write upper 128bits. */
3554 regcache_raw_write (regcache,
3555 tdep->ymm0h_regnum + regnum,
3556 buf + 16);
3557 }
3558 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3559 {
3560 regnum -= tdep->ymm16_regnum;
3561
3562 /* ... Write lower 128bits. */
3563 regcache_raw_write (regcache,
3564 I387_XMM16_REGNUM (tdep) + regnum,
3565 buf);
3566 /* ... Write upper 128bits. */
3567 regcache_raw_write (regcache,
3568 tdep->ymm16h_regnum + regnum,
3569 buf + 16);
3570 }
3571 else if (i386_word_regnum_p (gdbarch, regnum))
3572 {
3573 int gpnum = regnum - tdep->ax_regnum;
3574
3575 /* Read ... */
3576 regcache_raw_read (regcache, gpnum, raw_buf);
3577 /* ... Modify ... (always little endian). */
3578 memcpy (raw_buf, buf, 2);
3579 /* ... Write. */
3580 regcache_raw_write (regcache, gpnum, raw_buf);
3581 }
3582 else if (i386_byte_regnum_p (gdbarch, regnum))
3583 {
3584 int gpnum = regnum - tdep->al_regnum;
3585
3586 /* Read ... We read both lower and upper registers. */
3587 regcache_raw_read (regcache, gpnum % 4, raw_buf);
3588 /* ... Modify ... (always little endian). */
3589 if (gpnum >= 4)
3590 memcpy (raw_buf + 1, buf, 1);
3591 else
3592 memcpy (raw_buf, buf, 1);
3593 /* ... Write. */
3594 regcache_raw_write (regcache, gpnum % 4, raw_buf);
3595 }
3596 else
3597 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3598 }
3599 }
3600
3601 /* Implement the 'ax_pseudo_register_collect' gdbarch method. */
3602
3603 int
3604 i386_ax_pseudo_register_collect (struct gdbarch *gdbarch,
3605 struct agent_expr *ax, int regnum)
3606 {
3607 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3608
3609 if (i386_mmx_regnum_p (gdbarch, regnum))
3610 {
3611 /* MMX to FPU register mapping depends on current TOS. Let's just
3612 not care and collect everything... */
3613 int i;
3614
3615 ax_reg_mask (ax, I387_FSTAT_REGNUM (tdep));
3616 for (i = 0; i < 8; i++)
3617 ax_reg_mask (ax, I387_ST0_REGNUM (tdep) + i);
3618 return 0;
3619 }
3620 else if (i386_bnd_regnum_p (gdbarch, regnum))
3621 {
3622 regnum -= tdep->bnd0_regnum;
3623 ax_reg_mask (ax, I387_BND0R_REGNUM (tdep) + regnum);
3624 return 0;
3625 }
3626 else if (i386_k_regnum_p (gdbarch, regnum))
3627 {
3628 regnum -= tdep->k0_regnum;
3629 ax_reg_mask (ax, tdep->k0_regnum + regnum);
3630 return 0;
3631 }
3632 else if (i386_zmm_regnum_p (gdbarch, regnum))
3633 {
3634 regnum -= tdep->zmm0_regnum;
3635 if (regnum < num_lower_zmm_regs)
3636 {
3637 ax_reg_mask (ax, I387_XMM0_REGNUM (tdep) + regnum);
3638 ax_reg_mask (ax, tdep->ymm0h_regnum + regnum);
3639 }
3640 else
3641 {
3642 ax_reg_mask (ax, I387_XMM16_REGNUM (tdep) + regnum
3643 - num_lower_zmm_regs);
3644 ax_reg_mask (ax, I387_YMM16H_REGNUM (tdep) + regnum
3645 - num_lower_zmm_regs);
3646 }
3647 ax_reg_mask (ax, tdep->zmm0h_regnum + regnum);
3648 return 0;
3649 }
3650 else if (i386_ymm_regnum_p (gdbarch, regnum))
3651 {
3652 regnum -= tdep->ymm0_regnum;
3653 ax_reg_mask (ax, I387_XMM0_REGNUM (tdep) + regnum);
3654 ax_reg_mask (ax, tdep->ymm0h_regnum + regnum);
3655 return 0;
3656 }
3657 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3658 {
3659 regnum -= tdep->ymm16_regnum;
3660 ax_reg_mask (ax, I387_XMM16_REGNUM (tdep) + regnum);
3661 ax_reg_mask (ax, tdep->ymm16h_regnum + regnum);
3662 return 0;
3663 }
3664 else if (i386_word_regnum_p (gdbarch, regnum))
3665 {
3666 int gpnum = regnum - tdep->ax_regnum;
3667
3668 ax_reg_mask (ax, gpnum);
3669 return 0;
3670 }
3671 else if (i386_byte_regnum_p (gdbarch, regnum))
3672 {
3673 int gpnum = regnum - tdep->al_regnum;
3674
3675 ax_reg_mask (ax, gpnum % 4);
3676 return 0;
3677 }
3678 else
3679 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3680 return 1;
3681 }
3682 \f
3683
3684 /* Return the register number of the register allocated by GCC after
3685 REGNUM, or -1 if there is no such register. */
3686
3687 static int
3688 i386_next_regnum (int regnum)
3689 {
3690 /* GCC allocates the registers in the order:
3691
3692 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
3693
3694 Since storing a variable in %esp doesn't make any sense we return
3695 -1 for %ebp and for %esp itself. */
3696 static int next_regnum[] =
3697 {
3698 I386_EDX_REGNUM, /* Slot for %eax. */
3699 I386_EBX_REGNUM, /* Slot for %ecx. */
3700 I386_ECX_REGNUM, /* Slot for %edx. */
3701 I386_ESI_REGNUM, /* Slot for %ebx. */
3702 -1, -1, /* Slots for %esp and %ebp. */
3703 I386_EDI_REGNUM, /* Slot for %esi. */
3704 I386_EBP_REGNUM /* Slot for %edi. */
3705 };
3706
3707 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
3708 return next_regnum[regnum];
3709
3710 return -1;
3711 }
3712
3713 /* Return nonzero if a value of type TYPE stored in register REGNUM
3714 needs any special handling. */
3715
3716 static int
3717 i386_convert_register_p (struct gdbarch *gdbarch,
3718 int regnum, struct type *type)
3719 {
3720 int len = TYPE_LENGTH (type);
3721
3722 /* Values may be spread across multiple registers. Most debugging
3723 formats aren't expressive enough to specify the locations, so
3724 some heuristics is involved. Right now we only handle types that
3725 have a length that is a multiple of the word size, since GCC
3726 doesn't seem to put any other types into registers. */
3727 if (len > 4 && len % 4 == 0)
3728 {
3729 int last_regnum = regnum;
3730
3731 while (len > 4)
3732 {
3733 last_regnum = i386_next_regnum (last_regnum);
3734 len -= 4;
3735 }
3736
3737 if (last_regnum != -1)
3738 return 1;
3739 }
3740
3741 return i387_convert_register_p (gdbarch, regnum, type);
3742 }
3743
3744 /* Read a value of type TYPE from register REGNUM in frame FRAME, and
3745 return its contents in TO. */
3746
3747 static int
3748 i386_register_to_value (struct frame_info *frame, int regnum,
3749 struct type *type, gdb_byte *to,
3750 int *optimizedp, int *unavailablep)
3751 {
3752 struct gdbarch *gdbarch = get_frame_arch (frame);
3753 int len = TYPE_LENGTH (type);
3754
3755 if (i386_fp_regnum_p (gdbarch, regnum))
3756 return i387_register_to_value (frame, regnum, type, to,
3757 optimizedp, unavailablep);
3758
3759 /* Read a value spread across multiple registers. */
3760
3761 gdb_assert (len > 4 && len % 4 == 0);
3762
3763 while (len > 0)
3764 {
3765 gdb_assert (regnum != -1);
3766 gdb_assert (register_size (gdbarch, regnum) == 4);
3767
3768 if (!get_frame_register_bytes (frame, regnum, 0,
3769 register_size (gdbarch, regnum),
3770 to, optimizedp, unavailablep))
3771 return 0;
3772
3773 regnum = i386_next_regnum (regnum);
3774 len -= 4;
3775 to += 4;
3776 }
3777
3778 *optimizedp = *unavailablep = 0;
3779 return 1;
3780 }
3781
3782 /* Write the contents FROM of a value of type TYPE into register
3783 REGNUM in frame FRAME. */
3784
3785 static void
3786 i386_value_to_register (struct frame_info *frame, int regnum,
3787 struct type *type, const gdb_byte *from)
3788 {
3789 int len = TYPE_LENGTH (type);
3790
3791 if (i386_fp_regnum_p (get_frame_arch (frame), regnum))
3792 {
3793 i387_value_to_register (frame, regnum, type, from);
3794 return;
3795 }
3796
3797 /* Write a value spread across multiple registers. */
3798
3799 gdb_assert (len > 4 && len % 4 == 0);
3800
3801 while (len > 0)
3802 {
3803 gdb_assert (regnum != -1);
3804 gdb_assert (register_size (get_frame_arch (frame), regnum) == 4);
3805
3806 put_frame_register (frame, regnum, from);
3807 regnum = i386_next_regnum (regnum);
3808 len -= 4;
3809 from += 4;
3810 }
3811 }
3812 \f
3813 /* Supply register REGNUM from the buffer specified by GREGS and LEN
3814 in the general-purpose register set REGSET to register cache
3815 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3816
3817 void
3818 i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
3819 int regnum, const void *gregs, size_t len)
3820 {
3821 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3822 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3823 const gdb_byte *regs = (const gdb_byte *) gregs;
3824 int i;
3825
3826 gdb_assert (len >= tdep->sizeof_gregset);
3827
3828 for (i = 0; i < tdep->gregset_num_regs; i++)
3829 {
3830 if ((regnum == i || regnum == -1)
3831 && tdep->gregset_reg_offset[i] != -1)
3832 regcache_raw_supply (regcache, i, regs + tdep->gregset_reg_offset[i]);
3833 }
3834 }
3835
3836 /* Collect register REGNUM from the register cache REGCACHE and store
3837 it in the buffer specified by GREGS and LEN as described by the
3838 general-purpose register set REGSET. If REGNUM is -1, do this for
3839 all registers in REGSET. */
3840
3841 static void
3842 i386_collect_gregset (const struct regset *regset,
3843 const struct regcache *regcache,
3844 int regnum, void *gregs, size_t len)
3845 {
3846 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3847 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3848 gdb_byte *regs = (gdb_byte *) gregs;
3849 int i;
3850
3851 gdb_assert (len >= tdep->sizeof_gregset);
3852
3853 for (i = 0; i < tdep->gregset_num_regs; i++)
3854 {
3855 if ((regnum == i || regnum == -1)
3856 && tdep->gregset_reg_offset[i] != -1)
3857 regcache_raw_collect (regcache, i, regs + tdep->gregset_reg_offset[i]);
3858 }
3859 }
3860
3861 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
3862 in the floating-point register set REGSET to register cache
3863 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3864
3865 static void
3866 i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
3867 int regnum, const void *fpregs, size_t len)
3868 {
3869 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3870 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3871
3872 if (len == I387_SIZEOF_FXSAVE)
3873 {
3874 i387_supply_fxsave (regcache, regnum, fpregs);
3875 return;
3876 }
3877
3878 gdb_assert (len >= tdep->sizeof_fpregset);
3879 i387_supply_fsave (regcache, regnum, fpregs);
3880 }
3881
3882 /* Collect register REGNUM from the register cache REGCACHE and store
3883 it in the buffer specified by FPREGS and LEN as described by the
3884 floating-point register set REGSET. If REGNUM is -1, do this for
3885 all registers in REGSET. */
3886
3887 static void
3888 i386_collect_fpregset (const struct regset *regset,
3889 const struct regcache *regcache,
3890 int regnum, void *fpregs, size_t len)
3891 {
3892 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3893 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3894
3895 if (len == I387_SIZEOF_FXSAVE)
3896 {
3897 i387_collect_fxsave (regcache, regnum, fpregs);
3898 return;
3899 }
3900
3901 gdb_assert (len >= tdep->sizeof_fpregset);
3902 i387_collect_fsave (regcache, regnum, fpregs);
3903 }
3904
3905 /* Register set definitions. */
3906
3907 const struct regset i386_gregset =
3908 {
3909 NULL, i386_supply_gregset, i386_collect_gregset
3910 };
3911
3912 const struct regset i386_fpregset =
3913 {
3914 NULL, i386_supply_fpregset, i386_collect_fpregset
3915 };
3916
3917 /* Default iterator over core file register note sections. */
3918
3919 void
3920 i386_iterate_over_regset_sections (struct gdbarch *gdbarch,
3921 iterate_over_regset_sections_cb *cb,
3922 void *cb_data,
3923 const struct regcache *regcache)
3924 {
3925 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3926
3927 cb (".reg", tdep->sizeof_gregset, &i386_gregset, NULL, cb_data);
3928 if (tdep->sizeof_fpregset)
3929 cb (".reg2", tdep->sizeof_fpregset, tdep->fpregset, NULL, cb_data);
3930 }
3931 \f
3932
3933 /* Stuff for WIN32 PE style DLL's but is pretty generic really. */
3934
3935 CORE_ADDR
3936 i386_pe_skip_trampoline_code (struct frame_info *frame,
3937 CORE_ADDR pc, char *name)
3938 {
3939 struct gdbarch *gdbarch = get_frame_arch (frame);
3940 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3941
3942 /* jmp *(dest) */
3943 if (pc && read_memory_unsigned_integer (pc, 2, byte_order) == 0x25ff)
3944 {
3945 unsigned long indirect =
3946 read_memory_unsigned_integer (pc + 2, 4, byte_order);
3947 struct minimal_symbol *indsym =
3948 indirect ? lookup_minimal_symbol_by_pc (indirect).minsym : 0;
3949 const char *symname = indsym ? MSYMBOL_LINKAGE_NAME (indsym) : 0;
3950
3951 if (symname)
3952 {
3953 if (startswith (symname, "__imp_")
3954 || startswith (symname, "_imp_"))
3955 return name ? 1 :
3956 read_memory_unsigned_integer (indirect, 4, byte_order);
3957 }
3958 }
3959 return 0; /* Not a trampoline. */
3960 }
3961 \f
3962
3963 /* Return whether the THIS_FRAME corresponds to a sigtramp
3964 routine. */
3965
3966 int
3967 i386_sigtramp_p (struct frame_info *this_frame)
3968 {
3969 CORE_ADDR pc = get_frame_pc (this_frame);
3970 const char *name;
3971
3972 find_pc_partial_function (pc, &name, NULL, NULL);
3973 return (name && strcmp ("_sigtramp", name) == 0);
3974 }
3975 \f
3976
3977 /* We have two flavours of disassembly. The machinery on this page
3978 deals with switching between those. */
3979
3980 static int
3981 i386_print_insn (bfd_vma pc, struct disassemble_info *info)
3982 {
3983 gdb_assert (disassembly_flavor == att_flavor
3984 || disassembly_flavor == intel_flavor);
3985
3986 /* FIXME: kettenis/20020915: Until disassembler_options is properly
3987 constified, cast to prevent a compiler warning. */
3988 info->disassembler_options = (char *) disassembly_flavor;
3989
3990 return print_insn_i386 (pc, info);
3991 }
3992 \f
3993
3994 /* There are a few i386 architecture variants that differ only
3995 slightly from the generic i386 target. For now, we don't give them
3996 their own source file, but include them here. As a consequence,
3997 they'll always be included. */
3998
3999 /* System V Release 4 (SVR4). */
4000
4001 /* Return whether THIS_FRAME corresponds to a SVR4 sigtramp
4002 routine. */
4003
4004 static int
4005 i386_svr4_sigtramp_p (struct frame_info *this_frame)
4006 {
4007 CORE_ADDR pc = get_frame_pc (this_frame);
4008 const char *name;
4009
4010 /* The origin of these symbols is currently unknown. */
4011 find_pc_partial_function (pc, &name, NULL, NULL);
4012 return (name && (strcmp ("_sigreturn", name) == 0
4013 || strcmp ("sigvechandler", name) == 0));
4014 }
4015
4016 /* Assuming THIS_FRAME is for a SVR4 sigtramp routine, return the
4017 address of the associated sigcontext (ucontext) structure. */
4018
4019 static CORE_ADDR
4020 i386_svr4_sigcontext_addr (struct frame_info *this_frame)
4021 {
4022 struct gdbarch *gdbarch = get_frame_arch (this_frame);
4023 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4024 gdb_byte buf[4];
4025 CORE_ADDR sp;
4026
4027 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
4028 sp = extract_unsigned_integer (buf, 4, byte_order);
4029
4030 return read_memory_unsigned_integer (sp + 8, 4, byte_order);
4031 }
4032
4033 \f
4034
4035 /* Implementation of `gdbarch_stap_is_single_operand', as defined in
4036 gdbarch.h. */
4037
4038 int
4039 i386_stap_is_single_operand (struct gdbarch *gdbarch, const char *s)
4040 {
4041 return (*s == '$' /* Literal number. */
4042 || (isdigit (*s) && s[1] == '(' && s[2] == '%') /* Displacement. */
4043 || (*s == '(' && s[1] == '%') /* Register indirection. */
4044 || (*s == '%' && isalpha (s[1]))); /* Register access. */
4045 }
4046
4047 /* Helper function for i386_stap_parse_special_token.
4048
4049 This function parses operands of the form `-8+3+1(%rbp)', which
4050 must be interpreted as `*(-8 + 3 - 1 + (void *) $eax)'.
4051
4052 Return 1 if the operand was parsed successfully, zero
4053 otherwise. */
4054
4055 static int
4056 i386_stap_parse_special_token_triplet (struct gdbarch *gdbarch,
4057 struct stap_parse_info *p)
4058 {
4059 const char *s = p->arg;
4060
4061 if (isdigit (*s) || *s == '-' || *s == '+')
4062 {
4063 int got_minus[3];
4064 int i;
4065 long displacements[3];
4066 const char *start;
4067 char *regname;
4068 int len;
4069 struct stoken str;
4070 char *endp;
4071
4072 got_minus[0] = 0;
4073 if (*s == '+')
4074 ++s;
4075 else if (*s == '-')
4076 {
4077 ++s;
4078 got_minus[0] = 1;
4079 }
4080
4081 if (!isdigit ((unsigned char) *s))
4082 return 0;
4083
4084 displacements[0] = strtol (s, &endp, 10);
4085 s = endp;
4086
4087 if (*s != '+' && *s != '-')
4088 {
4089 /* We are not dealing with a triplet. */
4090 return 0;
4091 }
4092
4093 got_minus[1] = 0;
4094 if (*s == '+')
4095 ++s;
4096 else
4097 {
4098 ++s;
4099 got_minus[1] = 1;
4100 }
4101
4102 if (!isdigit ((unsigned char) *s))
4103 return 0;
4104
4105 displacements[1] = strtol (s, &endp, 10);
4106 s = endp;
4107
4108 if (*s != '+' && *s != '-')
4109 {
4110 /* We are not dealing with a triplet. */
4111 return 0;
4112 }
4113
4114 got_minus[2] = 0;
4115 if (*s == '+')
4116 ++s;
4117 else
4118 {
4119 ++s;
4120 got_minus[2] = 1;
4121 }
4122
4123 if (!isdigit ((unsigned char) *s))
4124 return 0;
4125
4126 displacements[2] = strtol (s, &endp, 10);
4127 s = endp;
4128
4129 if (*s != '(' || s[1] != '%')
4130 return 0;
4131
4132 s += 2;
4133 start = s;
4134
4135 while (isalnum (*s))
4136 ++s;
4137
4138 if (*s++ != ')')
4139 return 0;
4140
4141 len = s - start - 1;
4142 regname = (char *) alloca (len + 1);
4143
4144 strncpy (regname, start, len);
4145 regname[len] = '\0';
4146
4147 if (user_reg_map_name_to_regnum (gdbarch, regname, len) == -1)
4148 error (_("Invalid register name `%s' on expression `%s'."),
4149 regname, p->saved_arg);
4150
4151 for (i = 0; i < 3; i++)
4152 {
4153 write_exp_elt_opcode (&p->pstate, OP_LONG);
4154 write_exp_elt_type
4155 (&p->pstate, builtin_type (gdbarch)->builtin_long);
4156 write_exp_elt_longcst (&p->pstate, displacements[i]);
4157 write_exp_elt_opcode (&p->pstate, OP_LONG);
4158 if (got_minus[i])
4159 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
4160 }
4161
4162 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4163 str.ptr = regname;
4164 str.length = len;
4165 write_exp_string (&p->pstate, str);
4166 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4167
4168 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4169 write_exp_elt_type (&p->pstate,
4170 builtin_type (gdbarch)->builtin_data_ptr);
4171 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4172
4173 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4174 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4175 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4176
4177 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4178 write_exp_elt_type (&p->pstate,
4179 lookup_pointer_type (p->arg_type));
4180 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4181
4182 write_exp_elt_opcode (&p->pstate, UNOP_IND);
4183
4184 p->arg = s;
4185
4186 return 1;
4187 }
4188
4189 return 0;
4190 }
4191
4192 /* Helper function for i386_stap_parse_special_token.
4193
4194 This function parses operands of the form `register base +
4195 (register index * size) + offset', as represented in
4196 `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4197
4198 Return 1 if the operand was parsed successfully, zero
4199 otherwise. */
4200
4201 static int
4202 i386_stap_parse_special_token_three_arg_disp (struct gdbarch *gdbarch,
4203 struct stap_parse_info *p)
4204 {
4205 const char *s = p->arg;
4206
4207 if (isdigit (*s) || *s == '(' || *s == '-' || *s == '+')
4208 {
4209 int offset_minus = 0;
4210 long offset = 0;
4211 int size_minus = 0;
4212 long size = 0;
4213 const char *start;
4214 char *base;
4215 int len_base;
4216 char *index;
4217 int len_index;
4218 struct stoken base_token, index_token;
4219
4220 if (*s == '+')
4221 ++s;
4222 else if (*s == '-')
4223 {
4224 ++s;
4225 offset_minus = 1;
4226 }
4227
4228 if (offset_minus && !isdigit (*s))
4229 return 0;
4230
4231 if (isdigit (*s))
4232 {
4233 char *endp;
4234
4235 offset = strtol (s, &endp, 10);
4236 s = endp;
4237 }
4238
4239 if (*s != '(' || s[1] != '%')
4240 return 0;
4241
4242 s += 2;
4243 start = s;
4244
4245 while (isalnum (*s))
4246 ++s;
4247
4248 if (*s != ',' || s[1] != '%')
4249 return 0;
4250
4251 len_base = s - start;
4252 base = (char *) alloca (len_base + 1);
4253 strncpy (base, start, len_base);
4254 base[len_base] = '\0';
4255
4256 if (user_reg_map_name_to_regnum (gdbarch, base, len_base) == -1)
4257 error (_("Invalid register name `%s' on expression `%s'."),
4258 base, p->saved_arg);
4259
4260 s += 2;
4261 start = s;
4262
4263 while (isalnum (*s))
4264 ++s;
4265
4266 len_index = s - start;
4267 index = (char *) alloca (len_index + 1);
4268 strncpy (index, start, len_index);
4269 index[len_index] = '\0';
4270
4271 if (user_reg_map_name_to_regnum (gdbarch, index, len_index) == -1)
4272 error (_("Invalid register name `%s' on expression `%s'."),
4273 index, p->saved_arg);
4274
4275 if (*s != ',' && *s != ')')
4276 return 0;
4277
4278 if (*s == ',')
4279 {
4280 char *endp;
4281
4282 ++s;
4283 if (*s == '+')
4284 ++s;
4285 else if (*s == '-')
4286 {
4287 ++s;
4288 size_minus = 1;
4289 }
4290
4291 size = strtol (s, &endp, 10);
4292 s = endp;
4293
4294 if (*s != ')')
4295 return 0;
4296 }
4297
4298 ++s;
4299
4300 if (offset)
4301 {
4302 write_exp_elt_opcode (&p->pstate, OP_LONG);
4303 write_exp_elt_type (&p->pstate,
4304 builtin_type (gdbarch)->builtin_long);
4305 write_exp_elt_longcst (&p->pstate, offset);
4306 write_exp_elt_opcode (&p->pstate, OP_LONG);
4307 if (offset_minus)
4308 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
4309 }
4310
4311 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4312 base_token.ptr = base;
4313 base_token.length = len_base;
4314 write_exp_string (&p->pstate, base_token);
4315 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4316
4317 if (offset)
4318 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4319
4320 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4321 index_token.ptr = index;
4322 index_token.length = len_index;
4323 write_exp_string (&p->pstate, index_token);
4324 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4325
4326 if (size)
4327 {
4328 write_exp_elt_opcode (&p->pstate, OP_LONG);
4329 write_exp_elt_type (&p->pstate,
4330 builtin_type (gdbarch)->builtin_long);
4331 write_exp_elt_longcst (&p->pstate, size);
4332 write_exp_elt_opcode (&p->pstate, OP_LONG);
4333 if (size_minus)
4334 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
4335 write_exp_elt_opcode (&p->pstate, BINOP_MUL);
4336 }
4337
4338 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4339
4340 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4341 write_exp_elt_type (&p->pstate,
4342 lookup_pointer_type (p->arg_type));
4343 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4344
4345 write_exp_elt_opcode (&p->pstate, UNOP_IND);
4346
4347 p->arg = s;
4348
4349 return 1;
4350 }
4351
4352 return 0;
4353 }
4354
4355 /* Implementation of `gdbarch_stap_parse_special_token', as defined in
4356 gdbarch.h. */
4357
4358 int
4359 i386_stap_parse_special_token (struct gdbarch *gdbarch,
4360 struct stap_parse_info *p)
4361 {
4362 /* In order to parse special tokens, we use a state-machine that go
4363 through every known token and try to get a match. */
4364 enum
4365 {
4366 TRIPLET,
4367 THREE_ARG_DISPLACEMENT,
4368 DONE
4369 };
4370 int current_state;
4371
4372 current_state = TRIPLET;
4373
4374 /* The special tokens to be parsed here are:
4375
4376 - `register base + (register index * size) + offset', as represented
4377 in `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4378
4379 - Operands of the form `-8+3+1(%rbp)', which must be interpreted as
4380 `*(-8 + 3 - 1 + (void *) $eax)'. */
4381
4382 while (current_state != DONE)
4383 {
4384 switch (current_state)
4385 {
4386 case TRIPLET:
4387 if (i386_stap_parse_special_token_triplet (gdbarch, p))
4388 return 1;
4389 break;
4390
4391 case THREE_ARG_DISPLACEMENT:
4392 if (i386_stap_parse_special_token_three_arg_disp (gdbarch, p))
4393 return 1;
4394 break;
4395 }
4396
4397 /* Advancing to the next state. */
4398 ++current_state;
4399 }
4400
4401 return 0;
4402 }
4403
4404 \f
4405
4406 /* gdbarch gnu_triplet_regexp method. Both arches are acceptable as GDB always
4407 also supplies -m64 or -m32 by gdbarch_gcc_target_options. */
4408
4409 static const char *
4410 i386_gnu_triplet_regexp (struct gdbarch *gdbarch)
4411 {
4412 return "(x86_64|i.86)";
4413 }
4414
4415 \f
4416
4417 /* Generic ELF. */
4418
4419 void
4420 i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4421 {
4422 static const char *const stap_integer_prefixes[] = { "$", NULL };
4423 static const char *const stap_register_prefixes[] = { "%", NULL };
4424 static const char *const stap_register_indirection_prefixes[] = { "(",
4425 NULL };
4426 static const char *const stap_register_indirection_suffixes[] = { ")",
4427 NULL };
4428
4429 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
4430 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
4431
4432 /* Registering SystemTap handlers. */
4433 set_gdbarch_stap_integer_prefixes (gdbarch, stap_integer_prefixes);
4434 set_gdbarch_stap_register_prefixes (gdbarch, stap_register_prefixes);
4435 set_gdbarch_stap_register_indirection_prefixes (gdbarch,
4436 stap_register_indirection_prefixes);
4437 set_gdbarch_stap_register_indirection_suffixes (gdbarch,
4438 stap_register_indirection_suffixes);
4439 set_gdbarch_stap_is_single_operand (gdbarch,
4440 i386_stap_is_single_operand);
4441 set_gdbarch_stap_parse_special_token (gdbarch,
4442 i386_stap_parse_special_token);
4443
4444 set_gdbarch_gnu_triplet_regexp (gdbarch, i386_gnu_triplet_regexp);
4445 }
4446
4447 /* System V Release 4 (SVR4). */
4448
4449 void
4450 i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4451 {
4452 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4453
4454 /* System V Release 4 uses ELF. */
4455 i386_elf_init_abi (info, gdbarch);
4456
4457 /* System V Release 4 has shared libraries. */
4458 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
4459
4460 tdep->sigtramp_p = i386_svr4_sigtramp_p;
4461 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
4462 tdep->sc_pc_offset = 36 + 14 * 4;
4463 tdep->sc_sp_offset = 36 + 17 * 4;
4464
4465 tdep->jb_pc_offset = 20;
4466 }
4467
4468 /* DJGPP. */
4469
4470 static void
4471 i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4472 {
4473 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4474
4475 /* DJGPP doesn't have any special frames for signal handlers. */
4476 tdep->sigtramp_p = NULL;
4477
4478 tdep->jb_pc_offset = 36;
4479
4480 /* DJGPP does not support the SSE registers. */
4481 if (! tdesc_has_registers (info.target_desc))
4482 tdep->tdesc = tdesc_i386_mmx;
4483
4484 /* Native compiler is GCC, which uses the SVR4 register numbering
4485 even in COFF and STABS. See the comment in i386_gdbarch_init,
4486 before the calls to set_gdbarch_stab_reg_to_regnum and
4487 set_gdbarch_sdb_reg_to_regnum. */
4488 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
4489 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
4490
4491 set_gdbarch_has_dos_based_file_system (gdbarch, 1);
4492
4493 set_gdbarch_gnu_triplet_regexp (gdbarch, i386_gnu_triplet_regexp);
4494 }
4495 \f
4496
4497 /* i386 register groups. In addition to the normal groups, add "mmx"
4498 and "sse". */
4499
4500 static struct reggroup *i386_sse_reggroup;
4501 static struct reggroup *i386_mmx_reggroup;
4502
4503 static void
4504 i386_init_reggroups (void)
4505 {
4506 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
4507 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
4508 }
4509
4510 static void
4511 i386_add_reggroups (struct gdbarch *gdbarch)
4512 {
4513 reggroup_add (gdbarch, i386_sse_reggroup);
4514 reggroup_add (gdbarch, i386_mmx_reggroup);
4515 reggroup_add (gdbarch, general_reggroup);
4516 reggroup_add (gdbarch, float_reggroup);
4517 reggroup_add (gdbarch, all_reggroup);
4518 reggroup_add (gdbarch, save_reggroup);
4519 reggroup_add (gdbarch, restore_reggroup);
4520 reggroup_add (gdbarch, vector_reggroup);
4521 reggroup_add (gdbarch, system_reggroup);
4522 }
4523
4524 int
4525 i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
4526 struct reggroup *group)
4527 {
4528 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4529 int fp_regnum_p, mmx_regnum_p, xmm_regnum_p, mxcsr_regnum_p,
4530 ymm_regnum_p, ymmh_regnum_p, ymm_avx512_regnum_p, ymmh_avx512_regnum_p,
4531 bndr_regnum_p, bnd_regnum_p, k_regnum_p, zmm_regnum_p, zmmh_regnum_p,
4532 zmm_avx512_regnum_p, mpx_ctrl_regnum_p, xmm_avx512_regnum_p,
4533 avx512_p, avx_p, sse_p;
4534
4535 /* Don't include pseudo registers, except for MMX, in any register
4536 groups. */
4537 if (i386_byte_regnum_p (gdbarch, regnum))
4538 return 0;
4539
4540 if (i386_word_regnum_p (gdbarch, regnum))
4541 return 0;
4542
4543 if (i386_dword_regnum_p (gdbarch, regnum))
4544 return 0;
4545
4546 mmx_regnum_p = i386_mmx_regnum_p (gdbarch, regnum);
4547 if (group == i386_mmx_reggroup)
4548 return mmx_regnum_p;
4549
4550 xmm_regnum_p = i386_xmm_regnum_p (gdbarch, regnum);
4551 xmm_avx512_regnum_p = i386_xmm_avx512_regnum_p (gdbarch, regnum);
4552 mxcsr_regnum_p = i386_mxcsr_regnum_p (gdbarch, regnum);
4553 if (group == i386_sse_reggroup)
4554 return xmm_regnum_p || xmm_avx512_regnum_p || mxcsr_regnum_p;
4555
4556 ymm_regnum_p = i386_ymm_regnum_p (gdbarch, regnum);
4557 ymm_avx512_regnum_p = i386_ymm_avx512_regnum_p (gdbarch, regnum);
4558 zmm_regnum_p = i386_zmm_regnum_p (gdbarch, regnum);
4559
4560 avx512_p = ((tdep->xcr0 & X86_XSTATE_AVX512_MASK)
4561 == X86_XSTATE_AVX512_MASK);
4562 avx_p = ((tdep->xcr0 & X86_XSTATE_AVX512_MASK)
4563 == X86_XSTATE_AVX_MASK) && !avx512_p;
4564 sse_p = ((tdep->xcr0 & X86_XSTATE_AVX512_MASK)
4565 == X86_XSTATE_SSE_MASK) && !avx512_p && ! avx_p;
4566
4567 if (group == vector_reggroup)
4568 return (mmx_regnum_p
4569 || (zmm_regnum_p && avx512_p)
4570 || ((ymm_regnum_p || ymm_avx512_regnum_p) && avx_p)
4571 || ((xmm_regnum_p || xmm_avx512_regnum_p) && sse_p)
4572 || mxcsr_regnum_p);
4573
4574 fp_regnum_p = (i386_fp_regnum_p (gdbarch, regnum)
4575 || i386_fpc_regnum_p (gdbarch, regnum));
4576 if (group == float_reggroup)
4577 return fp_regnum_p;
4578
4579 /* For "info reg all", don't include upper YMM registers nor XMM
4580 registers when AVX is supported. */
4581 ymmh_regnum_p = i386_ymmh_regnum_p (gdbarch, regnum);
4582 ymmh_avx512_regnum_p = i386_ymmh_avx512_regnum_p (gdbarch, regnum);
4583 zmmh_regnum_p = i386_zmmh_regnum_p (gdbarch, regnum);
4584 if (group == all_reggroup
4585 && (((xmm_regnum_p || xmm_avx512_regnum_p) && !sse_p)
4586 || ((ymm_regnum_p || ymm_avx512_regnum_p) && !avx_p)
4587 || ymmh_regnum_p
4588 || ymmh_avx512_regnum_p
4589 || zmmh_regnum_p))
4590 return 0;
4591
4592 bnd_regnum_p = i386_bnd_regnum_p (gdbarch, regnum);
4593 if (group == all_reggroup
4594 && ((bnd_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4595 return bnd_regnum_p;
4596
4597 bndr_regnum_p = i386_bndr_regnum_p (gdbarch, regnum);
4598 if (group == all_reggroup
4599 && ((bndr_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4600 return 0;
4601
4602 mpx_ctrl_regnum_p = i386_mpx_ctrl_regnum_p (gdbarch, regnum);
4603 if (group == all_reggroup
4604 && ((mpx_ctrl_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4605 return mpx_ctrl_regnum_p;
4606
4607 if (group == general_reggroup)
4608 return (!fp_regnum_p
4609 && !mmx_regnum_p
4610 && !mxcsr_regnum_p
4611 && !xmm_regnum_p
4612 && !xmm_avx512_regnum_p
4613 && !ymm_regnum_p
4614 && !ymmh_regnum_p
4615 && !ymm_avx512_regnum_p
4616 && !ymmh_avx512_regnum_p
4617 && !bndr_regnum_p
4618 && !bnd_regnum_p
4619 && !mpx_ctrl_regnum_p
4620 && !zmm_regnum_p
4621 && !zmmh_regnum_p);
4622
4623 return default_register_reggroup_p (gdbarch, regnum, group);
4624 }
4625 \f
4626
4627 /* Get the ARGIth function argument for the current function. */
4628
4629 static CORE_ADDR
4630 i386_fetch_pointer_argument (struct frame_info *frame, int argi,
4631 struct type *type)
4632 {
4633 struct gdbarch *gdbarch = get_frame_arch (frame);
4634 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4635 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
4636 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4, byte_order);
4637 }
4638
4639 #define PREFIX_REPZ 0x01
4640 #define PREFIX_REPNZ 0x02
4641 #define PREFIX_LOCK 0x04
4642 #define PREFIX_DATA 0x08
4643 #define PREFIX_ADDR 0x10
4644
4645 /* operand size */
4646 enum
4647 {
4648 OT_BYTE = 0,
4649 OT_WORD,
4650 OT_LONG,
4651 OT_QUAD,
4652 OT_DQUAD,
4653 };
4654
4655 /* i386 arith/logic operations */
4656 enum
4657 {
4658 OP_ADDL,
4659 OP_ORL,
4660 OP_ADCL,
4661 OP_SBBL,
4662 OP_ANDL,
4663 OP_SUBL,
4664 OP_XORL,
4665 OP_CMPL,
4666 };
4667
4668 struct i386_record_s
4669 {
4670 struct gdbarch *gdbarch;
4671 struct regcache *regcache;
4672 CORE_ADDR orig_addr;
4673 CORE_ADDR addr;
4674 int aflag;
4675 int dflag;
4676 int override;
4677 uint8_t modrm;
4678 uint8_t mod, reg, rm;
4679 int ot;
4680 uint8_t rex_x;
4681 uint8_t rex_b;
4682 int rip_offset;
4683 int popl_esp_hack;
4684 const int *regmap;
4685 };
4686
4687 /* Parse the "modrm" part of the memory address irp->addr points at.
4688 Returns -1 if something goes wrong, 0 otherwise. */
4689
4690 static int
4691 i386_record_modrm (struct i386_record_s *irp)
4692 {
4693 struct gdbarch *gdbarch = irp->gdbarch;
4694
4695 if (record_read_memory (gdbarch, irp->addr, &irp->modrm, 1))
4696 return -1;
4697
4698 irp->addr++;
4699 irp->mod = (irp->modrm >> 6) & 3;
4700 irp->reg = (irp->modrm >> 3) & 7;
4701 irp->rm = irp->modrm & 7;
4702
4703 return 0;
4704 }
4705
4706 /* Extract the memory address that the current instruction writes to,
4707 and return it in *ADDR. Return -1 if something goes wrong. */
4708
4709 static int
4710 i386_record_lea_modrm_addr (struct i386_record_s *irp, uint64_t *addr)
4711 {
4712 struct gdbarch *gdbarch = irp->gdbarch;
4713 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4714 gdb_byte buf[4];
4715 ULONGEST offset64;
4716
4717 *addr = 0;
4718 if (irp->aflag || irp->regmap[X86_RECORD_R8_REGNUM])
4719 {
4720 /* 32/64 bits */
4721 int havesib = 0;
4722 uint8_t scale = 0;
4723 uint8_t byte;
4724 uint8_t index = 0;
4725 uint8_t base = irp->rm;
4726
4727 if (base == 4)
4728 {
4729 havesib = 1;
4730 if (record_read_memory (gdbarch, irp->addr, &byte, 1))
4731 return -1;
4732 irp->addr++;
4733 scale = (byte >> 6) & 3;
4734 index = ((byte >> 3) & 7) | irp->rex_x;
4735 base = (byte & 7);
4736 }
4737 base |= irp->rex_b;
4738
4739 switch (irp->mod)
4740 {
4741 case 0:
4742 if ((base & 7) == 5)
4743 {
4744 base = 0xff;
4745 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4746 return -1;
4747 irp->addr += 4;
4748 *addr = extract_signed_integer (buf, 4, byte_order);
4749 if (irp->regmap[X86_RECORD_R8_REGNUM] && !havesib)
4750 *addr += irp->addr + irp->rip_offset;
4751 }
4752 break;
4753 case 1:
4754 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4755 return -1;
4756 irp->addr++;
4757 *addr = (int8_t) buf[0];
4758 break;
4759 case 2:
4760 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4761 return -1;
4762 *addr = extract_signed_integer (buf, 4, byte_order);
4763 irp->addr += 4;
4764 break;
4765 }
4766
4767 offset64 = 0;
4768 if (base != 0xff)
4769 {
4770 if (base == 4 && irp->popl_esp_hack)
4771 *addr += irp->popl_esp_hack;
4772 regcache_raw_read_unsigned (irp->regcache, irp->regmap[base],
4773 &offset64);
4774 }
4775 if (irp->aflag == 2)
4776 {
4777 *addr += offset64;
4778 }
4779 else
4780 *addr = (uint32_t) (offset64 + *addr);
4781
4782 if (havesib && (index != 4 || scale != 0))
4783 {
4784 regcache_raw_read_unsigned (irp->regcache, irp->regmap[index],
4785 &offset64);
4786 if (irp->aflag == 2)
4787 *addr += offset64 << scale;
4788 else
4789 *addr = (uint32_t) (*addr + (offset64 << scale));
4790 }
4791
4792 if (!irp->aflag)
4793 {
4794 /* Since we are in 64-bit mode with ADDR32 prefix, zero-extend
4795 address from 32-bit to 64-bit. */
4796 *addr = (uint32_t) *addr;
4797 }
4798 }
4799 else
4800 {
4801 /* 16 bits */
4802 switch (irp->mod)
4803 {
4804 case 0:
4805 if (irp->rm == 6)
4806 {
4807 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4808 return -1;
4809 irp->addr += 2;
4810 *addr = extract_signed_integer (buf, 2, byte_order);
4811 irp->rm = 0;
4812 goto no_rm;
4813 }
4814 break;
4815 case 1:
4816 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4817 return -1;
4818 irp->addr++;
4819 *addr = (int8_t) buf[0];
4820 break;
4821 case 2:
4822 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4823 return -1;
4824 irp->addr += 2;
4825 *addr = extract_signed_integer (buf, 2, byte_order);
4826 break;
4827 }
4828
4829 switch (irp->rm)
4830 {
4831 case 0:
4832 regcache_raw_read_unsigned (irp->regcache,
4833 irp->regmap[X86_RECORD_REBX_REGNUM],
4834 &offset64);
4835 *addr = (uint32_t) (*addr + offset64);
4836 regcache_raw_read_unsigned (irp->regcache,
4837 irp->regmap[X86_RECORD_RESI_REGNUM],
4838 &offset64);
4839 *addr = (uint32_t) (*addr + offset64);
4840 break;
4841 case 1:
4842 regcache_raw_read_unsigned (irp->regcache,
4843 irp->regmap[X86_RECORD_REBX_REGNUM],
4844 &offset64);
4845 *addr = (uint32_t) (*addr + offset64);
4846 regcache_raw_read_unsigned (irp->regcache,
4847 irp->regmap[X86_RECORD_REDI_REGNUM],
4848 &offset64);
4849 *addr = (uint32_t) (*addr + offset64);
4850 break;
4851 case 2:
4852 regcache_raw_read_unsigned (irp->regcache,
4853 irp->regmap[X86_RECORD_REBP_REGNUM],
4854 &offset64);
4855 *addr = (uint32_t) (*addr + offset64);
4856 regcache_raw_read_unsigned (irp->regcache,
4857 irp->regmap[X86_RECORD_RESI_REGNUM],
4858 &offset64);
4859 *addr = (uint32_t) (*addr + offset64);
4860 break;
4861 case 3:
4862 regcache_raw_read_unsigned (irp->regcache,
4863 irp->regmap[X86_RECORD_REBP_REGNUM],
4864 &offset64);
4865 *addr = (uint32_t) (*addr + offset64);
4866 regcache_raw_read_unsigned (irp->regcache,
4867 irp->regmap[X86_RECORD_REDI_REGNUM],
4868 &offset64);
4869 *addr = (uint32_t) (*addr + offset64);
4870 break;
4871 case 4:
4872 regcache_raw_read_unsigned (irp->regcache,
4873 irp->regmap[X86_RECORD_RESI_REGNUM],
4874 &offset64);
4875 *addr = (uint32_t) (*addr + offset64);
4876 break;
4877 case 5:
4878 regcache_raw_read_unsigned (irp->regcache,
4879 irp->regmap[X86_RECORD_REDI_REGNUM],
4880 &offset64);
4881 *addr = (uint32_t) (*addr + offset64);
4882 break;
4883 case 6:
4884 regcache_raw_read_unsigned (irp->regcache,
4885 irp->regmap[X86_RECORD_REBP_REGNUM],
4886 &offset64);
4887 *addr = (uint32_t) (*addr + offset64);
4888 break;
4889 case 7:
4890 regcache_raw_read_unsigned (irp->regcache,
4891 irp->regmap[X86_RECORD_REBX_REGNUM],
4892 &offset64);
4893 *addr = (uint32_t) (*addr + offset64);
4894 break;
4895 }
4896 *addr &= 0xffff;
4897 }
4898
4899 no_rm:
4900 return 0;
4901 }
4902
4903 /* Record the address and contents of the memory that will be changed
4904 by the current instruction. Return -1 if something goes wrong, 0
4905 otherwise. */
4906
4907 static int
4908 i386_record_lea_modrm (struct i386_record_s *irp)
4909 {
4910 struct gdbarch *gdbarch = irp->gdbarch;
4911 uint64_t addr;
4912
4913 if (irp->override >= 0)
4914 {
4915 if (record_full_memory_query)
4916 {
4917 if (yquery (_("\
4918 Process record ignores the memory change of instruction at address %s\n\
4919 because it can't get the value of the segment register.\n\
4920 Do you want to stop the program?"),
4921 paddress (gdbarch, irp->orig_addr)))
4922 return -1;
4923 }
4924
4925 return 0;
4926 }
4927
4928 if (i386_record_lea_modrm_addr (irp, &addr))
4929 return -1;
4930
4931 if (record_full_arch_list_add_mem (addr, 1 << irp->ot))
4932 return -1;
4933
4934 return 0;
4935 }
4936
4937 /* Record the effects of a push operation. Return -1 if something
4938 goes wrong, 0 otherwise. */
4939
4940 static int
4941 i386_record_push (struct i386_record_s *irp, int size)
4942 {
4943 ULONGEST addr;
4944
4945 if (record_full_arch_list_add_reg (irp->regcache,
4946 irp->regmap[X86_RECORD_RESP_REGNUM]))
4947 return -1;
4948 regcache_raw_read_unsigned (irp->regcache,
4949 irp->regmap[X86_RECORD_RESP_REGNUM],
4950 &addr);
4951 if (record_full_arch_list_add_mem ((CORE_ADDR) addr - size, size))
4952 return -1;
4953
4954 return 0;
4955 }
4956
4957
4958 /* Defines contents to record. */
4959 #define I386_SAVE_FPU_REGS 0xfffd
4960 #define I386_SAVE_FPU_ENV 0xfffe
4961 #define I386_SAVE_FPU_ENV_REG_STACK 0xffff
4962
4963 /* Record the values of the floating point registers which will be
4964 changed by the current instruction. Returns -1 if something is
4965 wrong, 0 otherwise. */
4966
4967 static int i386_record_floats (struct gdbarch *gdbarch,
4968 struct i386_record_s *ir,
4969 uint32_t iregnum)
4970 {
4971 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4972 int i;
4973
4974 /* Oza: Because of floating point insn push/pop of fpu stack is going to
4975 happen. Currently we store st0-st7 registers, but we need not store all
4976 registers all the time, in future we use ftag register and record only
4977 those who are not marked as an empty. */
4978
4979 if (I386_SAVE_FPU_REGS == iregnum)
4980 {
4981 for (i = I387_ST0_REGNUM (tdep); i <= I387_ST0_REGNUM (tdep) + 7; i++)
4982 {
4983 if (record_full_arch_list_add_reg (ir->regcache, i))
4984 return -1;
4985 }
4986 }
4987 else if (I386_SAVE_FPU_ENV == iregnum)
4988 {
4989 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4990 {
4991 if (record_full_arch_list_add_reg (ir->regcache, i))
4992 return -1;
4993 }
4994 }
4995 else if (I386_SAVE_FPU_ENV_REG_STACK == iregnum)
4996 {
4997 for (i = I387_ST0_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4998 {
4999 if (record_full_arch_list_add_reg (ir->regcache, i))
5000 return -1;
5001 }
5002 }
5003 else if ((iregnum >= I387_ST0_REGNUM (tdep)) &&
5004 (iregnum <= I387_FOP_REGNUM (tdep)))
5005 {
5006 if (record_full_arch_list_add_reg (ir->regcache,iregnum))
5007 return -1;
5008 }
5009 else
5010 {
5011 /* Parameter error. */
5012 return -1;
5013 }
5014 if(I386_SAVE_FPU_ENV != iregnum)
5015 {
5016 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
5017 {
5018 if (record_full_arch_list_add_reg (ir->regcache, i))
5019 return -1;
5020 }
5021 }
5022 return 0;
5023 }
5024
5025 /* Parse the current instruction, and record the values of the
5026 registers and memory that will be changed by the current
5027 instruction. Returns -1 if something goes wrong, 0 otherwise. */
5028
5029 #define I386_RECORD_FULL_ARCH_LIST_ADD_REG(regnum) \
5030 record_full_arch_list_add_reg (ir.regcache, ir.regmap[(regnum)])
5031
5032 int
5033 i386_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
5034 CORE_ADDR input_addr)
5035 {
5036 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
5037 int prefixes = 0;
5038 int regnum = 0;
5039 uint32_t opcode;
5040 uint8_t opcode8;
5041 ULONGEST addr;
5042 gdb_byte buf[MAX_REGISTER_SIZE];
5043 struct i386_record_s ir;
5044 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5045 uint8_t rex_w = -1;
5046 uint8_t rex_r = 0;
5047
5048 memset (&ir, 0, sizeof (struct i386_record_s));
5049 ir.regcache = regcache;
5050 ir.addr = input_addr;
5051 ir.orig_addr = input_addr;
5052 ir.aflag = 1;
5053 ir.dflag = 1;
5054 ir.override = -1;
5055 ir.popl_esp_hack = 0;
5056 ir.regmap = tdep->record_regmap;
5057 ir.gdbarch = gdbarch;
5058
5059 if (record_debug > 1)
5060 fprintf_unfiltered (gdb_stdlog, "Process record: i386_process_record "
5061 "addr = %s\n",
5062 paddress (gdbarch, ir.addr));
5063
5064 /* prefixes */
5065 while (1)
5066 {
5067 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
5068 return -1;
5069 ir.addr++;
5070 switch (opcode8) /* Instruction prefixes */
5071 {
5072 case REPE_PREFIX_OPCODE:
5073 prefixes |= PREFIX_REPZ;
5074 break;
5075 case REPNE_PREFIX_OPCODE:
5076 prefixes |= PREFIX_REPNZ;
5077 break;
5078 case LOCK_PREFIX_OPCODE:
5079 prefixes |= PREFIX_LOCK;
5080 break;
5081 case CS_PREFIX_OPCODE:
5082 ir.override = X86_RECORD_CS_REGNUM;
5083 break;
5084 case SS_PREFIX_OPCODE:
5085 ir.override = X86_RECORD_SS_REGNUM;
5086 break;
5087 case DS_PREFIX_OPCODE:
5088 ir.override = X86_RECORD_DS_REGNUM;
5089 break;
5090 case ES_PREFIX_OPCODE:
5091 ir.override = X86_RECORD_ES_REGNUM;
5092 break;
5093 case FS_PREFIX_OPCODE:
5094 ir.override = X86_RECORD_FS_REGNUM;
5095 break;
5096 case GS_PREFIX_OPCODE:
5097 ir.override = X86_RECORD_GS_REGNUM;
5098 break;
5099 case DATA_PREFIX_OPCODE:
5100 prefixes |= PREFIX_DATA;
5101 break;
5102 case ADDR_PREFIX_OPCODE:
5103 prefixes |= PREFIX_ADDR;
5104 break;
5105 case 0x40: /* i386 inc %eax */
5106 case 0x41: /* i386 inc %ecx */
5107 case 0x42: /* i386 inc %edx */
5108 case 0x43: /* i386 inc %ebx */
5109 case 0x44: /* i386 inc %esp */
5110 case 0x45: /* i386 inc %ebp */
5111 case 0x46: /* i386 inc %esi */
5112 case 0x47: /* i386 inc %edi */
5113 case 0x48: /* i386 dec %eax */
5114 case 0x49: /* i386 dec %ecx */
5115 case 0x4a: /* i386 dec %edx */
5116 case 0x4b: /* i386 dec %ebx */
5117 case 0x4c: /* i386 dec %esp */
5118 case 0x4d: /* i386 dec %ebp */
5119 case 0x4e: /* i386 dec %esi */
5120 case 0x4f: /* i386 dec %edi */
5121 if (ir.regmap[X86_RECORD_R8_REGNUM]) /* 64 bit target */
5122 {
5123 /* REX */
5124 rex_w = (opcode8 >> 3) & 1;
5125 rex_r = (opcode8 & 0x4) << 1;
5126 ir.rex_x = (opcode8 & 0x2) << 2;
5127 ir.rex_b = (opcode8 & 0x1) << 3;
5128 }
5129 else /* 32 bit target */
5130 goto out_prefixes;
5131 break;
5132 default:
5133 goto out_prefixes;
5134 break;
5135 }
5136 }
5137 out_prefixes:
5138 if (ir.regmap[X86_RECORD_R8_REGNUM] && rex_w == 1)
5139 {
5140 ir.dflag = 2;
5141 }
5142 else
5143 {
5144 if (prefixes & PREFIX_DATA)
5145 ir.dflag ^= 1;
5146 }
5147 if (prefixes & PREFIX_ADDR)
5148 ir.aflag ^= 1;
5149 else if (ir.regmap[X86_RECORD_R8_REGNUM])
5150 ir.aflag = 2;
5151
5152 /* Now check op code. */
5153 opcode = (uint32_t) opcode8;
5154 reswitch:
5155 switch (opcode)
5156 {
5157 case 0x0f:
5158 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
5159 return -1;
5160 ir.addr++;
5161 opcode = (uint32_t) opcode8 | 0x0f00;
5162 goto reswitch;
5163 break;
5164
5165 case 0x00: /* arith & logic */
5166 case 0x01:
5167 case 0x02:
5168 case 0x03:
5169 case 0x04:
5170 case 0x05:
5171 case 0x08:
5172 case 0x09:
5173 case 0x0a:
5174 case 0x0b:
5175 case 0x0c:
5176 case 0x0d:
5177 case 0x10:
5178 case 0x11:
5179 case 0x12:
5180 case 0x13:
5181 case 0x14:
5182 case 0x15:
5183 case 0x18:
5184 case 0x19:
5185 case 0x1a:
5186 case 0x1b:
5187 case 0x1c:
5188 case 0x1d:
5189 case 0x20:
5190 case 0x21:
5191 case 0x22:
5192 case 0x23:
5193 case 0x24:
5194 case 0x25:
5195 case 0x28:
5196 case 0x29:
5197 case 0x2a:
5198 case 0x2b:
5199 case 0x2c:
5200 case 0x2d:
5201 case 0x30:
5202 case 0x31:
5203 case 0x32:
5204 case 0x33:
5205 case 0x34:
5206 case 0x35:
5207 case 0x38:
5208 case 0x39:
5209 case 0x3a:
5210 case 0x3b:
5211 case 0x3c:
5212 case 0x3d:
5213 if (((opcode >> 3) & 7) != OP_CMPL)
5214 {
5215 if ((opcode & 1) == 0)
5216 ir.ot = OT_BYTE;
5217 else
5218 ir.ot = ir.dflag + OT_WORD;
5219
5220 switch ((opcode >> 1) & 3)
5221 {
5222 case 0: /* OP Ev, Gv */
5223 if (i386_record_modrm (&ir))
5224 return -1;
5225 if (ir.mod != 3)
5226 {
5227 if (i386_record_lea_modrm (&ir))
5228 return -1;
5229 }
5230 else
5231 {
5232 ir.rm |= ir.rex_b;
5233 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5234 ir.rm &= 0x3;
5235 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5236 }
5237 break;
5238 case 1: /* OP Gv, Ev */
5239 if (i386_record_modrm (&ir))
5240 return -1;
5241 ir.reg |= rex_r;
5242 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5243 ir.reg &= 0x3;
5244 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5245 break;
5246 case 2: /* OP A, Iv */
5247 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5248 break;
5249 }
5250 }
5251 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5252 break;
5253
5254 case 0x80: /* GRP1 */
5255 case 0x81:
5256 case 0x82:
5257 case 0x83:
5258 if (i386_record_modrm (&ir))
5259 return -1;
5260
5261 if (ir.reg != OP_CMPL)
5262 {
5263 if ((opcode & 1) == 0)
5264 ir.ot = OT_BYTE;
5265 else
5266 ir.ot = ir.dflag + OT_WORD;
5267
5268 if (ir.mod != 3)
5269 {
5270 if (opcode == 0x83)
5271 ir.rip_offset = 1;
5272 else
5273 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5274 if (i386_record_lea_modrm (&ir))
5275 return -1;
5276 }
5277 else
5278 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5279 }
5280 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5281 break;
5282
5283 case 0x40: /* inc */
5284 case 0x41:
5285 case 0x42:
5286 case 0x43:
5287 case 0x44:
5288 case 0x45:
5289 case 0x46:
5290 case 0x47:
5291
5292 case 0x48: /* dec */
5293 case 0x49:
5294 case 0x4a:
5295 case 0x4b:
5296 case 0x4c:
5297 case 0x4d:
5298 case 0x4e:
5299 case 0x4f:
5300
5301 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 7);
5302 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5303 break;
5304
5305 case 0xf6: /* GRP3 */
5306 case 0xf7:
5307 if ((opcode & 1) == 0)
5308 ir.ot = OT_BYTE;
5309 else
5310 ir.ot = ir.dflag + OT_WORD;
5311 if (i386_record_modrm (&ir))
5312 return -1;
5313
5314 if (ir.mod != 3 && ir.reg == 0)
5315 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5316
5317 switch (ir.reg)
5318 {
5319 case 0: /* test */
5320 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5321 break;
5322 case 2: /* not */
5323 case 3: /* neg */
5324 if (ir.mod != 3)
5325 {
5326 if (i386_record_lea_modrm (&ir))
5327 return -1;
5328 }
5329 else
5330 {
5331 ir.rm |= ir.rex_b;
5332 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5333 ir.rm &= 0x3;
5334 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5335 }
5336 if (ir.reg == 3) /* neg */
5337 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5338 break;
5339 case 4: /* mul */
5340 case 5: /* imul */
5341 case 6: /* div */
5342 case 7: /* idiv */
5343 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5344 if (ir.ot != OT_BYTE)
5345 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5346 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5347 break;
5348 default:
5349 ir.addr -= 2;
5350 opcode = opcode << 8 | ir.modrm;
5351 goto no_support;
5352 break;
5353 }
5354 break;
5355
5356 case 0xfe: /* GRP4 */
5357 case 0xff: /* GRP5 */
5358 if (i386_record_modrm (&ir))
5359 return -1;
5360 if (ir.reg >= 2 && opcode == 0xfe)
5361 {
5362 ir.addr -= 2;
5363 opcode = opcode << 8 | ir.modrm;
5364 goto no_support;
5365 }
5366 switch (ir.reg)
5367 {
5368 case 0: /* inc */
5369 case 1: /* dec */
5370 if ((opcode & 1) == 0)
5371 ir.ot = OT_BYTE;
5372 else
5373 ir.ot = ir.dflag + OT_WORD;
5374 if (ir.mod != 3)
5375 {
5376 if (i386_record_lea_modrm (&ir))
5377 return -1;
5378 }
5379 else
5380 {
5381 ir.rm |= ir.rex_b;
5382 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5383 ir.rm &= 0x3;
5384 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5385 }
5386 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5387 break;
5388 case 2: /* call */
5389 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5390 ir.dflag = 2;
5391 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5392 return -1;
5393 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5394 break;
5395 case 3: /* lcall */
5396 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
5397 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5398 return -1;
5399 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5400 break;
5401 case 4: /* jmp */
5402 case 5: /* ljmp */
5403 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5404 break;
5405 case 6: /* push */
5406 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5407 ir.dflag = 2;
5408 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5409 return -1;
5410 break;
5411 default:
5412 ir.addr -= 2;
5413 opcode = opcode << 8 | ir.modrm;
5414 goto no_support;
5415 break;
5416 }
5417 break;
5418
5419 case 0x84: /* test */
5420 case 0x85:
5421 case 0xa8:
5422 case 0xa9:
5423 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5424 break;
5425
5426 case 0x98: /* CWDE/CBW */
5427 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5428 break;
5429
5430 case 0x99: /* CDQ/CWD */
5431 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5432 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5433 break;
5434
5435 case 0x0faf: /* imul */
5436 case 0x69:
5437 case 0x6b:
5438 ir.ot = ir.dflag + OT_WORD;
5439 if (i386_record_modrm (&ir))
5440 return -1;
5441 if (opcode == 0x69)
5442 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5443 else if (opcode == 0x6b)
5444 ir.rip_offset = 1;
5445 ir.reg |= rex_r;
5446 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5447 ir.reg &= 0x3;
5448 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5449 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5450 break;
5451
5452 case 0x0fc0: /* xadd */
5453 case 0x0fc1:
5454 if ((opcode & 1) == 0)
5455 ir.ot = OT_BYTE;
5456 else
5457 ir.ot = ir.dflag + OT_WORD;
5458 if (i386_record_modrm (&ir))
5459 return -1;
5460 ir.reg |= rex_r;
5461 if (ir.mod == 3)
5462 {
5463 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5464 ir.reg &= 0x3;
5465 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5466 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5467 ir.rm &= 0x3;
5468 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5469 }
5470 else
5471 {
5472 if (i386_record_lea_modrm (&ir))
5473 return -1;
5474 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5475 ir.reg &= 0x3;
5476 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5477 }
5478 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5479 break;
5480
5481 case 0x0fb0: /* cmpxchg */
5482 case 0x0fb1:
5483 if ((opcode & 1) == 0)
5484 ir.ot = OT_BYTE;
5485 else
5486 ir.ot = ir.dflag + OT_WORD;
5487 if (i386_record_modrm (&ir))
5488 return -1;
5489 if (ir.mod == 3)
5490 {
5491 ir.reg |= rex_r;
5492 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5493 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5494 ir.reg &= 0x3;
5495 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5496 }
5497 else
5498 {
5499 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5500 if (i386_record_lea_modrm (&ir))
5501 return -1;
5502 }
5503 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5504 break;
5505
5506 case 0x0fc7: /* cmpxchg8b */
5507 if (i386_record_modrm (&ir))
5508 return -1;
5509 if (ir.mod == 3)
5510 {
5511 ir.addr -= 2;
5512 opcode = opcode << 8 | ir.modrm;
5513 goto no_support;
5514 }
5515 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5516 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5517 if (i386_record_lea_modrm (&ir))
5518 return -1;
5519 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5520 break;
5521
5522 case 0x50: /* push */
5523 case 0x51:
5524 case 0x52:
5525 case 0x53:
5526 case 0x54:
5527 case 0x55:
5528 case 0x56:
5529 case 0x57:
5530 case 0x68:
5531 case 0x6a:
5532 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5533 ir.dflag = 2;
5534 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5535 return -1;
5536 break;
5537
5538 case 0x06: /* push es */
5539 case 0x0e: /* push cs */
5540 case 0x16: /* push ss */
5541 case 0x1e: /* push ds */
5542 if (ir.regmap[X86_RECORD_R8_REGNUM])
5543 {
5544 ir.addr -= 1;
5545 goto no_support;
5546 }
5547 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5548 return -1;
5549 break;
5550
5551 case 0x0fa0: /* push fs */
5552 case 0x0fa8: /* push gs */
5553 if (ir.regmap[X86_RECORD_R8_REGNUM])
5554 {
5555 ir.addr -= 2;
5556 goto no_support;
5557 }
5558 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5559 return -1;
5560 break;
5561
5562 case 0x60: /* pusha */
5563 if (ir.regmap[X86_RECORD_R8_REGNUM])
5564 {
5565 ir.addr -= 1;
5566 goto no_support;
5567 }
5568 if (i386_record_push (&ir, 1 << (ir.dflag + 4)))
5569 return -1;
5570 break;
5571
5572 case 0x58: /* pop */
5573 case 0x59:
5574 case 0x5a:
5575 case 0x5b:
5576 case 0x5c:
5577 case 0x5d:
5578 case 0x5e:
5579 case 0x5f:
5580 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5581 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
5582 break;
5583
5584 case 0x61: /* popa */
5585 if (ir.regmap[X86_RECORD_R8_REGNUM])
5586 {
5587 ir.addr -= 1;
5588 goto no_support;
5589 }
5590 for (regnum = X86_RECORD_REAX_REGNUM;
5591 regnum <= X86_RECORD_REDI_REGNUM;
5592 regnum++)
5593 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5594 break;
5595
5596 case 0x8f: /* pop */
5597 if (ir.regmap[X86_RECORD_R8_REGNUM])
5598 ir.ot = ir.dflag ? OT_QUAD : OT_WORD;
5599 else
5600 ir.ot = ir.dflag + OT_WORD;
5601 if (i386_record_modrm (&ir))
5602 return -1;
5603 if (ir.mod == 3)
5604 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5605 else
5606 {
5607 ir.popl_esp_hack = 1 << ir.ot;
5608 if (i386_record_lea_modrm (&ir))
5609 return -1;
5610 }
5611 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5612 break;
5613
5614 case 0xc8: /* enter */
5615 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
5616 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5617 ir.dflag = 2;
5618 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5619 return -1;
5620 break;
5621
5622 case 0xc9: /* leave */
5623 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5624 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
5625 break;
5626
5627 case 0x07: /* pop es */
5628 if (ir.regmap[X86_RECORD_R8_REGNUM])
5629 {
5630 ir.addr -= 1;
5631 goto no_support;
5632 }
5633 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5634 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_ES_REGNUM);
5635 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5636 break;
5637
5638 case 0x17: /* pop ss */
5639 if (ir.regmap[X86_RECORD_R8_REGNUM])
5640 {
5641 ir.addr -= 1;
5642 goto no_support;
5643 }
5644 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5645 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_SS_REGNUM);
5646 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5647 break;
5648
5649 case 0x1f: /* pop ds */
5650 if (ir.regmap[X86_RECORD_R8_REGNUM])
5651 {
5652 ir.addr -= 1;
5653 goto no_support;
5654 }
5655 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5656 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_DS_REGNUM);
5657 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5658 break;
5659
5660 case 0x0fa1: /* pop fs */
5661 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5662 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_FS_REGNUM);
5663 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5664 break;
5665
5666 case 0x0fa9: /* pop gs */
5667 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5668 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
5669 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5670 break;
5671
5672 case 0x88: /* mov */
5673 case 0x89:
5674 case 0xc6:
5675 case 0xc7:
5676 if ((opcode & 1) == 0)
5677 ir.ot = OT_BYTE;
5678 else
5679 ir.ot = ir.dflag + OT_WORD;
5680
5681 if (i386_record_modrm (&ir))
5682 return -1;
5683
5684 if (ir.mod != 3)
5685 {
5686 if (opcode == 0xc6 || opcode == 0xc7)
5687 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5688 if (i386_record_lea_modrm (&ir))
5689 return -1;
5690 }
5691 else
5692 {
5693 if (opcode == 0xc6 || opcode == 0xc7)
5694 ir.rm |= ir.rex_b;
5695 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5696 ir.rm &= 0x3;
5697 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5698 }
5699 break;
5700
5701 case 0x8a: /* mov */
5702 case 0x8b:
5703 if ((opcode & 1) == 0)
5704 ir.ot = OT_BYTE;
5705 else
5706 ir.ot = ir.dflag + OT_WORD;
5707 if (i386_record_modrm (&ir))
5708 return -1;
5709 ir.reg |= rex_r;
5710 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5711 ir.reg &= 0x3;
5712 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5713 break;
5714
5715 case 0x8c: /* mov seg */
5716 if (i386_record_modrm (&ir))
5717 return -1;
5718 if (ir.reg > 5)
5719 {
5720 ir.addr -= 2;
5721 opcode = opcode << 8 | ir.modrm;
5722 goto no_support;
5723 }
5724
5725 if (ir.mod == 3)
5726 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5727 else
5728 {
5729 ir.ot = OT_WORD;
5730 if (i386_record_lea_modrm (&ir))
5731 return -1;
5732 }
5733 break;
5734
5735 case 0x8e: /* mov seg */
5736 if (i386_record_modrm (&ir))
5737 return -1;
5738 switch (ir.reg)
5739 {
5740 case 0:
5741 regnum = X86_RECORD_ES_REGNUM;
5742 break;
5743 case 2:
5744 regnum = X86_RECORD_SS_REGNUM;
5745 break;
5746 case 3:
5747 regnum = X86_RECORD_DS_REGNUM;
5748 break;
5749 case 4:
5750 regnum = X86_RECORD_FS_REGNUM;
5751 break;
5752 case 5:
5753 regnum = X86_RECORD_GS_REGNUM;
5754 break;
5755 default:
5756 ir.addr -= 2;
5757 opcode = opcode << 8 | ir.modrm;
5758 goto no_support;
5759 break;
5760 }
5761 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5762 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5763 break;
5764
5765 case 0x0fb6: /* movzbS */
5766 case 0x0fb7: /* movzwS */
5767 case 0x0fbe: /* movsbS */
5768 case 0x0fbf: /* movswS */
5769 if (i386_record_modrm (&ir))
5770 return -1;
5771 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5772 break;
5773
5774 case 0x8d: /* lea */
5775 if (i386_record_modrm (&ir))
5776 return -1;
5777 if (ir.mod == 3)
5778 {
5779 ir.addr -= 2;
5780 opcode = opcode << 8 | ir.modrm;
5781 goto no_support;
5782 }
5783 ir.ot = ir.dflag;
5784 ir.reg |= rex_r;
5785 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5786 ir.reg &= 0x3;
5787 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5788 break;
5789
5790 case 0xa0: /* mov EAX */
5791 case 0xa1:
5792
5793 case 0xd7: /* xlat */
5794 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5795 break;
5796
5797 case 0xa2: /* mov EAX */
5798 case 0xa3:
5799 if (ir.override >= 0)
5800 {
5801 if (record_full_memory_query)
5802 {
5803 if (yquery (_("\
5804 Process record ignores the memory change of instruction at address %s\n\
5805 because it can't get the value of the segment register.\n\
5806 Do you want to stop the program?"),
5807 paddress (gdbarch, ir.orig_addr)))
5808 return -1;
5809 }
5810 }
5811 else
5812 {
5813 if ((opcode & 1) == 0)
5814 ir.ot = OT_BYTE;
5815 else
5816 ir.ot = ir.dflag + OT_WORD;
5817 if (ir.aflag == 2)
5818 {
5819 if (record_read_memory (gdbarch, ir.addr, buf, 8))
5820 return -1;
5821 ir.addr += 8;
5822 addr = extract_unsigned_integer (buf, 8, byte_order);
5823 }
5824 else if (ir.aflag)
5825 {
5826 if (record_read_memory (gdbarch, ir.addr, buf, 4))
5827 return -1;
5828 ir.addr += 4;
5829 addr = extract_unsigned_integer (buf, 4, byte_order);
5830 }
5831 else
5832 {
5833 if (record_read_memory (gdbarch, ir.addr, buf, 2))
5834 return -1;
5835 ir.addr += 2;
5836 addr = extract_unsigned_integer (buf, 2, byte_order);
5837 }
5838 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
5839 return -1;
5840 }
5841 break;
5842
5843 case 0xb0: /* mov R, Ib */
5844 case 0xb1:
5845 case 0xb2:
5846 case 0xb3:
5847 case 0xb4:
5848 case 0xb5:
5849 case 0xb6:
5850 case 0xb7:
5851 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((ir.regmap[X86_RECORD_R8_REGNUM])
5852 ? ((opcode & 0x7) | ir.rex_b)
5853 : ((opcode & 0x7) & 0x3));
5854 break;
5855
5856 case 0xb8: /* mov R, Iv */
5857 case 0xb9:
5858 case 0xba:
5859 case 0xbb:
5860 case 0xbc:
5861 case 0xbd:
5862 case 0xbe:
5863 case 0xbf:
5864 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
5865 break;
5866
5867 case 0x91: /* xchg R, EAX */
5868 case 0x92:
5869 case 0x93:
5870 case 0x94:
5871 case 0x95:
5872 case 0x96:
5873 case 0x97:
5874 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5875 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 0x7);
5876 break;
5877
5878 case 0x86: /* xchg Ev, Gv */
5879 case 0x87:
5880 if ((opcode & 1) == 0)
5881 ir.ot = OT_BYTE;
5882 else
5883 ir.ot = ir.dflag + OT_WORD;
5884 if (i386_record_modrm (&ir))
5885 return -1;
5886 if (ir.mod == 3)
5887 {
5888 ir.rm |= ir.rex_b;
5889 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5890 ir.rm &= 0x3;
5891 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5892 }
5893 else
5894 {
5895 if (i386_record_lea_modrm (&ir))
5896 return -1;
5897 }
5898 ir.reg |= rex_r;
5899 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5900 ir.reg &= 0x3;
5901 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5902 break;
5903
5904 case 0xc4: /* les Gv */
5905 case 0xc5: /* lds Gv */
5906 if (ir.regmap[X86_RECORD_R8_REGNUM])
5907 {
5908 ir.addr -= 1;
5909 goto no_support;
5910 }
5911 /* FALLTHROUGH */
5912 case 0x0fb2: /* lss Gv */
5913 case 0x0fb4: /* lfs Gv */
5914 case 0x0fb5: /* lgs Gv */
5915 if (i386_record_modrm (&ir))
5916 return -1;
5917 if (ir.mod == 3)
5918 {
5919 if (opcode > 0xff)
5920 ir.addr -= 3;
5921 else
5922 ir.addr -= 2;
5923 opcode = opcode << 8 | ir.modrm;
5924 goto no_support;
5925 }
5926 switch (opcode)
5927 {
5928 case 0xc4: /* les Gv */
5929 regnum = X86_RECORD_ES_REGNUM;
5930 break;
5931 case 0xc5: /* lds Gv */
5932 regnum = X86_RECORD_DS_REGNUM;
5933 break;
5934 case 0x0fb2: /* lss Gv */
5935 regnum = X86_RECORD_SS_REGNUM;
5936 break;
5937 case 0x0fb4: /* lfs Gv */
5938 regnum = X86_RECORD_FS_REGNUM;
5939 break;
5940 case 0x0fb5: /* lgs Gv */
5941 regnum = X86_RECORD_GS_REGNUM;
5942 break;
5943 }
5944 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5945 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5946 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5947 break;
5948
5949 case 0xc0: /* shifts */
5950 case 0xc1:
5951 case 0xd0:
5952 case 0xd1:
5953 case 0xd2:
5954 case 0xd3:
5955 if ((opcode & 1) == 0)
5956 ir.ot = OT_BYTE;
5957 else
5958 ir.ot = ir.dflag + OT_WORD;
5959 if (i386_record_modrm (&ir))
5960 return -1;
5961 if (ir.mod != 3 && (opcode == 0xd2 || opcode == 0xd3))
5962 {
5963 if (i386_record_lea_modrm (&ir))
5964 return -1;
5965 }
5966 else
5967 {
5968 ir.rm |= ir.rex_b;
5969 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5970 ir.rm &= 0x3;
5971 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5972 }
5973 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5974 break;
5975
5976 case 0x0fa4:
5977 case 0x0fa5:
5978 case 0x0fac:
5979 case 0x0fad:
5980 if (i386_record_modrm (&ir))
5981 return -1;
5982 if (ir.mod == 3)
5983 {
5984 if (record_full_arch_list_add_reg (ir.regcache, ir.rm))
5985 return -1;
5986 }
5987 else
5988 {
5989 if (i386_record_lea_modrm (&ir))
5990 return -1;
5991 }
5992 break;
5993
5994 case 0xd8: /* Floats. */
5995 case 0xd9:
5996 case 0xda:
5997 case 0xdb:
5998 case 0xdc:
5999 case 0xdd:
6000 case 0xde:
6001 case 0xdf:
6002 if (i386_record_modrm (&ir))
6003 return -1;
6004 ir.reg |= ((opcode & 7) << 3);
6005 if (ir.mod != 3)
6006 {
6007 /* Memory. */
6008 uint64_t addr64;
6009
6010 if (i386_record_lea_modrm_addr (&ir, &addr64))
6011 return -1;
6012 switch (ir.reg)
6013 {
6014 case 0x02:
6015 case 0x12:
6016 case 0x22:
6017 case 0x32:
6018 /* For fcom, ficom nothing to do. */
6019 break;
6020 case 0x03:
6021 case 0x13:
6022 case 0x23:
6023 case 0x33:
6024 /* For fcomp, ficomp pop FPU stack, store all. */
6025 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6026 return -1;
6027 break;
6028 case 0x00:
6029 case 0x01:
6030 case 0x04:
6031 case 0x05:
6032 case 0x06:
6033 case 0x07:
6034 case 0x10:
6035 case 0x11:
6036 case 0x14:
6037 case 0x15:
6038 case 0x16:
6039 case 0x17:
6040 case 0x20:
6041 case 0x21:
6042 case 0x24:
6043 case 0x25:
6044 case 0x26:
6045 case 0x27:
6046 case 0x30:
6047 case 0x31:
6048 case 0x34:
6049 case 0x35:
6050 case 0x36:
6051 case 0x37:
6052 /* For fadd, fmul, fsub, fsubr, fdiv, fdivr, fiadd, fimul,
6053 fisub, fisubr, fidiv, fidivr, modR/M.reg is an extension
6054 of code, always affects st(0) register. */
6055 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
6056 return -1;
6057 break;
6058 case 0x08:
6059 case 0x0a:
6060 case 0x0b:
6061 case 0x18:
6062 case 0x19:
6063 case 0x1a:
6064 case 0x1b:
6065 case 0x1d:
6066 case 0x28:
6067 case 0x29:
6068 case 0x2a:
6069 case 0x2b:
6070 case 0x38:
6071 case 0x39:
6072 case 0x3a:
6073 case 0x3b:
6074 case 0x3c:
6075 case 0x3d:
6076 switch (ir.reg & 7)
6077 {
6078 case 0:
6079 /* Handling fld, fild. */
6080 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6081 return -1;
6082 break;
6083 case 1:
6084 switch (ir.reg >> 4)
6085 {
6086 case 0:
6087 if (record_full_arch_list_add_mem (addr64, 4))
6088 return -1;
6089 break;
6090 case 2:
6091 if (record_full_arch_list_add_mem (addr64, 8))
6092 return -1;
6093 break;
6094 case 3:
6095 break;
6096 default:
6097 if (record_full_arch_list_add_mem (addr64, 2))
6098 return -1;
6099 break;
6100 }
6101 break;
6102 default:
6103 switch (ir.reg >> 4)
6104 {
6105 case 0:
6106 if (record_full_arch_list_add_mem (addr64, 4))
6107 return -1;
6108 if (3 == (ir.reg & 7))
6109 {
6110 /* For fstp m32fp. */
6111 if (i386_record_floats (gdbarch, &ir,
6112 I386_SAVE_FPU_REGS))
6113 return -1;
6114 }
6115 break;
6116 case 1:
6117 if (record_full_arch_list_add_mem (addr64, 4))
6118 return -1;
6119 if ((3 == (ir.reg & 7))
6120 || (5 == (ir.reg & 7))
6121 || (7 == (ir.reg & 7)))
6122 {
6123 /* For fstp insn. */
6124 if (i386_record_floats (gdbarch, &ir,
6125 I386_SAVE_FPU_REGS))
6126 return -1;
6127 }
6128 break;
6129 case 2:
6130 if (record_full_arch_list_add_mem (addr64, 8))
6131 return -1;
6132 if (3 == (ir.reg & 7))
6133 {
6134 /* For fstp m64fp. */
6135 if (i386_record_floats (gdbarch, &ir,
6136 I386_SAVE_FPU_REGS))
6137 return -1;
6138 }
6139 break;
6140 case 3:
6141 if ((3 <= (ir.reg & 7)) && (6 <= (ir.reg & 7)))
6142 {
6143 /* For fistp, fbld, fild, fbstp. */
6144 if (i386_record_floats (gdbarch, &ir,
6145 I386_SAVE_FPU_REGS))
6146 return -1;
6147 }
6148 /* Fall through */
6149 default:
6150 if (record_full_arch_list_add_mem (addr64, 2))
6151 return -1;
6152 break;
6153 }
6154 break;
6155 }
6156 break;
6157 case 0x0c:
6158 /* Insn fldenv. */
6159 if (i386_record_floats (gdbarch, &ir,
6160 I386_SAVE_FPU_ENV_REG_STACK))
6161 return -1;
6162 break;
6163 case 0x0d:
6164 /* Insn fldcw. */
6165 if (i386_record_floats (gdbarch, &ir, I387_FCTRL_REGNUM (tdep)))
6166 return -1;
6167 break;
6168 case 0x2c:
6169 /* Insn frstor. */
6170 if (i386_record_floats (gdbarch, &ir,
6171 I386_SAVE_FPU_ENV_REG_STACK))
6172 return -1;
6173 break;
6174 case 0x0e:
6175 if (ir.dflag)
6176 {
6177 if (record_full_arch_list_add_mem (addr64, 28))
6178 return -1;
6179 }
6180 else
6181 {
6182 if (record_full_arch_list_add_mem (addr64, 14))
6183 return -1;
6184 }
6185 break;
6186 case 0x0f:
6187 case 0x2f:
6188 if (record_full_arch_list_add_mem (addr64, 2))
6189 return -1;
6190 /* Insn fstp, fbstp. */
6191 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6192 return -1;
6193 break;
6194 case 0x1f:
6195 case 0x3e:
6196 if (record_full_arch_list_add_mem (addr64, 10))
6197 return -1;
6198 break;
6199 case 0x2e:
6200 if (ir.dflag)
6201 {
6202 if (record_full_arch_list_add_mem (addr64, 28))
6203 return -1;
6204 addr64 += 28;
6205 }
6206 else
6207 {
6208 if (record_full_arch_list_add_mem (addr64, 14))
6209 return -1;
6210 addr64 += 14;
6211 }
6212 if (record_full_arch_list_add_mem (addr64, 80))
6213 return -1;
6214 /* Insn fsave. */
6215 if (i386_record_floats (gdbarch, &ir,
6216 I386_SAVE_FPU_ENV_REG_STACK))
6217 return -1;
6218 break;
6219 case 0x3f:
6220 if (record_full_arch_list_add_mem (addr64, 8))
6221 return -1;
6222 /* Insn fistp. */
6223 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6224 return -1;
6225 break;
6226 default:
6227 ir.addr -= 2;
6228 opcode = opcode << 8 | ir.modrm;
6229 goto no_support;
6230 break;
6231 }
6232 }
6233 /* Opcode is an extension of modR/M byte. */
6234 else
6235 {
6236 switch (opcode)
6237 {
6238 case 0xd8:
6239 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
6240 return -1;
6241 break;
6242 case 0xd9:
6243 if (0x0c == (ir.modrm >> 4))
6244 {
6245 if ((ir.modrm & 0x0f) <= 7)
6246 {
6247 if (i386_record_floats (gdbarch, &ir,
6248 I386_SAVE_FPU_REGS))
6249 return -1;
6250 }
6251 else
6252 {
6253 if (i386_record_floats (gdbarch, &ir,
6254 I387_ST0_REGNUM (tdep)))
6255 return -1;
6256 /* If only st(0) is changing, then we have already
6257 recorded. */
6258 if ((ir.modrm & 0x0f) - 0x08)
6259 {
6260 if (i386_record_floats (gdbarch, &ir,
6261 I387_ST0_REGNUM (tdep) +
6262 ((ir.modrm & 0x0f) - 0x08)))
6263 return -1;
6264 }
6265 }
6266 }
6267 else
6268 {
6269 switch (ir.modrm)
6270 {
6271 case 0xe0:
6272 case 0xe1:
6273 case 0xf0:
6274 case 0xf5:
6275 case 0xf8:
6276 case 0xfa:
6277 case 0xfc:
6278 case 0xfe:
6279 case 0xff:
6280 if (i386_record_floats (gdbarch, &ir,
6281 I387_ST0_REGNUM (tdep)))
6282 return -1;
6283 break;
6284 case 0xf1:
6285 case 0xf2:
6286 case 0xf3:
6287 case 0xf4:
6288 case 0xf6:
6289 case 0xf7:
6290 case 0xe8:
6291 case 0xe9:
6292 case 0xea:
6293 case 0xeb:
6294 case 0xec:
6295 case 0xed:
6296 case 0xee:
6297 case 0xf9:
6298 case 0xfb:
6299 if (i386_record_floats (gdbarch, &ir,
6300 I386_SAVE_FPU_REGS))
6301 return -1;
6302 break;
6303 case 0xfd:
6304 if (i386_record_floats (gdbarch, &ir,
6305 I387_ST0_REGNUM (tdep)))
6306 return -1;
6307 if (i386_record_floats (gdbarch, &ir,
6308 I387_ST0_REGNUM (tdep) + 1))
6309 return -1;
6310 break;
6311 }
6312 }
6313 break;
6314 case 0xda:
6315 if (0xe9 == ir.modrm)
6316 {
6317 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6318 return -1;
6319 }
6320 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
6321 {
6322 if (i386_record_floats (gdbarch, &ir,
6323 I387_ST0_REGNUM (tdep)))
6324 return -1;
6325 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
6326 {
6327 if (i386_record_floats (gdbarch, &ir,
6328 I387_ST0_REGNUM (tdep) +
6329 (ir.modrm & 0x0f)))
6330 return -1;
6331 }
6332 else if ((ir.modrm & 0x0f) - 0x08)
6333 {
6334 if (i386_record_floats (gdbarch, &ir,
6335 I387_ST0_REGNUM (tdep) +
6336 ((ir.modrm & 0x0f) - 0x08)))
6337 return -1;
6338 }
6339 }
6340 break;
6341 case 0xdb:
6342 if (0xe3 == ir.modrm)
6343 {
6344 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_ENV))
6345 return -1;
6346 }
6347 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
6348 {
6349 if (i386_record_floats (gdbarch, &ir,
6350 I387_ST0_REGNUM (tdep)))
6351 return -1;
6352 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
6353 {
6354 if (i386_record_floats (gdbarch, &ir,
6355 I387_ST0_REGNUM (tdep) +
6356 (ir.modrm & 0x0f)))
6357 return -1;
6358 }
6359 else if ((ir.modrm & 0x0f) - 0x08)
6360 {
6361 if (i386_record_floats (gdbarch, &ir,
6362 I387_ST0_REGNUM (tdep) +
6363 ((ir.modrm & 0x0f) - 0x08)))
6364 return -1;
6365 }
6366 }
6367 break;
6368 case 0xdc:
6369 if ((0x0c == ir.modrm >> 4)
6370 || (0x0d == ir.modrm >> 4)
6371 || (0x0f == ir.modrm >> 4))
6372 {
6373 if ((ir.modrm & 0x0f) <= 7)
6374 {
6375 if (i386_record_floats (gdbarch, &ir,
6376 I387_ST0_REGNUM (tdep) +
6377 (ir.modrm & 0x0f)))
6378 return -1;
6379 }
6380 else
6381 {
6382 if (i386_record_floats (gdbarch, &ir,
6383 I387_ST0_REGNUM (tdep) +
6384 ((ir.modrm & 0x0f) - 0x08)))
6385 return -1;
6386 }
6387 }
6388 break;
6389 case 0xdd:
6390 if (0x0c == ir.modrm >> 4)
6391 {
6392 if (i386_record_floats (gdbarch, &ir,
6393 I387_FTAG_REGNUM (tdep)))
6394 return -1;
6395 }
6396 else if ((0x0d == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
6397 {
6398 if ((ir.modrm & 0x0f) <= 7)
6399 {
6400 if (i386_record_floats (gdbarch, &ir,
6401 I387_ST0_REGNUM (tdep) +
6402 (ir.modrm & 0x0f)))
6403 return -1;
6404 }
6405 else
6406 {
6407 if (i386_record_floats (gdbarch, &ir,
6408 I386_SAVE_FPU_REGS))
6409 return -1;
6410 }
6411 }
6412 break;
6413 case 0xde:
6414 if ((0x0c == ir.modrm >> 4)
6415 || (0x0e == ir.modrm >> 4)
6416 || (0x0f == ir.modrm >> 4)
6417 || (0xd9 == ir.modrm))
6418 {
6419 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6420 return -1;
6421 }
6422 break;
6423 case 0xdf:
6424 if (0xe0 == ir.modrm)
6425 {
6426 if (record_full_arch_list_add_reg (ir.regcache,
6427 I386_EAX_REGNUM))
6428 return -1;
6429 }
6430 else if ((0x0f == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
6431 {
6432 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6433 return -1;
6434 }
6435 break;
6436 }
6437 }
6438 break;
6439 /* string ops */
6440 case 0xa4: /* movsS */
6441 case 0xa5:
6442 case 0xaa: /* stosS */
6443 case 0xab:
6444 case 0x6c: /* insS */
6445 case 0x6d:
6446 regcache_raw_read_unsigned (ir.regcache,
6447 ir.regmap[X86_RECORD_RECX_REGNUM],
6448 &addr);
6449 if (addr)
6450 {
6451 ULONGEST es, ds;
6452
6453 if ((opcode & 1) == 0)
6454 ir.ot = OT_BYTE;
6455 else
6456 ir.ot = ir.dflag + OT_WORD;
6457 regcache_raw_read_unsigned (ir.regcache,
6458 ir.regmap[X86_RECORD_REDI_REGNUM],
6459 &addr);
6460
6461 regcache_raw_read_unsigned (ir.regcache,
6462 ir.regmap[X86_RECORD_ES_REGNUM],
6463 &es);
6464 regcache_raw_read_unsigned (ir.regcache,
6465 ir.regmap[X86_RECORD_DS_REGNUM],
6466 &ds);
6467 if (ir.aflag && (es != ds))
6468 {
6469 /* addr += ((uint32_t) read_register (I386_ES_REGNUM)) << 4; */
6470 if (record_full_memory_query)
6471 {
6472 if (yquery (_("\
6473 Process record ignores the memory change of instruction at address %s\n\
6474 because it can't get the value of the segment register.\n\
6475 Do you want to stop the program?"),
6476 paddress (gdbarch, ir.orig_addr)))
6477 return -1;
6478 }
6479 }
6480 else
6481 {
6482 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
6483 return -1;
6484 }
6485
6486 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6487 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6488 if (opcode == 0xa4 || opcode == 0xa5)
6489 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6490 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6491 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6492 }
6493 break;
6494
6495 case 0xa6: /* cmpsS */
6496 case 0xa7:
6497 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6498 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6499 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6500 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6501 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6502 break;
6503
6504 case 0xac: /* lodsS */
6505 case 0xad:
6506 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6507 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6508 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6509 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6510 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6511 break;
6512
6513 case 0xae: /* scasS */
6514 case 0xaf:
6515 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6516 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6517 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6518 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6519 break;
6520
6521 case 0x6e: /* outsS */
6522 case 0x6f:
6523 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6524 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6525 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6526 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6527 break;
6528
6529 case 0xe4: /* port I/O */
6530 case 0xe5:
6531 case 0xec:
6532 case 0xed:
6533 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6534 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6535 break;
6536
6537 case 0xe6:
6538 case 0xe7:
6539 case 0xee:
6540 case 0xef:
6541 break;
6542
6543 /* control */
6544 case 0xc2: /* ret im */
6545 case 0xc3: /* ret */
6546 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6547 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6548 break;
6549
6550 case 0xca: /* lret im */
6551 case 0xcb: /* lret */
6552 case 0xcf: /* iret */
6553 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
6554 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6555 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6556 break;
6557
6558 case 0xe8: /* call im */
6559 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6560 ir.dflag = 2;
6561 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6562 return -1;
6563 break;
6564
6565 case 0x9a: /* lcall im */
6566 if (ir.regmap[X86_RECORD_R8_REGNUM])
6567 {
6568 ir.addr -= 1;
6569 goto no_support;
6570 }
6571 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
6572 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6573 return -1;
6574 break;
6575
6576 case 0xe9: /* jmp im */
6577 case 0xea: /* ljmp im */
6578 case 0xeb: /* jmp Jb */
6579 case 0x70: /* jcc Jb */
6580 case 0x71:
6581 case 0x72:
6582 case 0x73:
6583 case 0x74:
6584 case 0x75:
6585 case 0x76:
6586 case 0x77:
6587 case 0x78:
6588 case 0x79:
6589 case 0x7a:
6590 case 0x7b:
6591 case 0x7c:
6592 case 0x7d:
6593 case 0x7e:
6594 case 0x7f:
6595 case 0x0f80: /* jcc Jv */
6596 case 0x0f81:
6597 case 0x0f82:
6598 case 0x0f83:
6599 case 0x0f84:
6600 case 0x0f85:
6601 case 0x0f86:
6602 case 0x0f87:
6603 case 0x0f88:
6604 case 0x0f89:
6605 case 0x0f8a:
6606 case 0x0f8b:
6607 case 0x0f8c:
6608 case 0x0f8d:
6609 case 0x0f8e:
6610 case 0x0f8f:
6611 break;
6612
6613 case 0x0f90: /* setcc Gv */
6614 case 0x0f91:
6615 case 0x0f92:
6616 case 0x0f93:
6617 case 0x0f94:
6618 case 0x0f95:
6619 case 0x0f96:
6620 case 0x0f97:
6621 case 0x0f98:
6622 case 0x0f99:
6623 case 0x0f9a:
6624 case 0x0f9b:
6625 case 0x0f9c:
6626 case 0x0f9d:
6627 case 0x0f9e:
6628 case 0x0f9f:
6629 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6630 ir.ot = OT_BYTE;
6631 if (i386_record_modrm (&ir))
6632 return -1;
6633 if (ir.mod == 3)
6634 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rex_b ? (ir.rm | ir.rex_b)
6635 : (ir.rm & 0x3));
6636 else
6637 {
6638 if (i386_record_lea_modrm (&ir))
6639 return -1;
6640 }
6641 break;
6642
6643 case 0x0f40: /* cmov Gv, Ev */
6644 case 0x0f41:
6645 case 0x0f42:
6646 case 0x0f43:
6647 case 0x0f44:
6648 case 0x0f45:
6649 case 0x0f46:
6650 case 0x0f47:
6651 case 0x0f48:
6652 case 0x0f49:
6653 case 0x0f4a:
6654 case 0x0f4b:
6655 case 0x0f4c:
6656 case 0x0f4d:
6657 case 0x0f4e:
6658 case 0x0f4f:
6659 if (i386_record_modrm (&ir))
6660 return -1;
6661 ir.reg |= rex_r;
6662 if (ir.dflag == OT_BYTE)
6663 ir.reg &= 0x3;
6664 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
6665 break;
6666
6667 /* flags */
6668 case 0x9c: /* pushf */
6669 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6670 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6671 ir.dflag = 2;
6672 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6673 return -1;
6674 break;
6675
6676 case 0x9d: /* popf */
6677 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6678 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6679 break;
6680
6681 case 0x9e: /* sahf */
6682 if (ir.regmap[X86_RECORD_R8_REGNUM])
6683 {
6684 ir.addr -= 1;
6685 goto no_support;
6686 }
6687 /* FALLTHROUGH */
6688 case 0xf5: /* cmc */
6689 case 0xf8: /* clc */
6690 case 0xf9: /* stc */
6691 case 0xfc: /* cld */
6692 case 0xfd: /* std */
6693 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6694 break;
6695
6696 case 0x9f: /* lahf */
6697 if (ir.regmap[X86_RECORD_R8_REGNUM])
6698 {
6699 ir.addr -= 1;
6700 goto no_support;
6701 }
6702 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6703 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6704 break;
6705
6706 /* bit operations */
6707 case 0x0fba: /* bt/bts/btr/btc Gv, im */
6708 ir.ot = ir.dflag + OT_WORD;
6709 if (i386_record_modrm (&ir))
6710 return -1;
6711 if (ir.reg < 4)
6712 {
6713 ir.addr -= 2;
6714 opcode = opcode << 8 | ir.modrm;
6715 goto no_support;
6716 }
6717 if (ir.reg != 4)
6718 {
6719 if (ir.mod == 3)
6720 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6721 else
6722 {
6723 if (i386_record_lea_modrm (&ir))
6724 return -1;
6725 }
6726 }
6727 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6728 break;
6729
6730 case 0x0fa3: /* bt Gv, Ev */
6731 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6732 break;
6733
6734 case 0x0fab: /* bts */
6735 case 0x0fb3: /* btr */
6736 case 0x0fbb: /* btc */
6737 ir.ot = ir.dflag + OT_WORD;
6738 if (i386_record_modrm (&ir))
6739 return -1;
6740 if (ir.mod == 3)
6741 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6742 else
6743 {
6744 uint64_t addr64;
6745 if (i386_record_lea_modrm_addr (&ir, &addr64))
6746 return -1;
6747 regcache_raw_read_unsigned (ir.regcache,
6748 ir.regmap[ir.reg | rex_r],
6749 &addr);
6750 switch (ir.dflag)
6751 {
6752 case 0:
6753 addr64 += ((int16_t) addr >> 4) << 4;
6754 break;
6755 case 1:
6756 addr64 += ((int32_t) addr >> 5) << 5;
6757 break;
6758 case 2:
6759 addr64 += ((int64_t) addr >> 6) << 6;
6760 break;
6761 }
6762 if (record_full_arch_list_add_mem (addr64, 1 << ir.ot))
6763 return -1;
6764 if (i386_record_lea_modrm (&ir))
6765 return -1;
6766 }
6767 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6768 break;
6769
6770 case 0x0fbc: /* bsf */
6771 case 0x0fbd: /* bsr */
6772 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6773 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6774 break;
6775
6776 /* bcd */
6777 case 0x27: /* daa */
6778 case 0x2f: /* das */
6779 case 0x37: /* aaa */
6780 case 0x3f: /* aas */
6781 case 0xd4: /* aam */
6782 case 0xd5: /* aad */
6783 if (ir.regmap[X86_RECORD_R8_REGNUM])
6784 {
6785 ir.addr -= 1;
6786 goto no_support;
6787 }
6788 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6789 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6790 break;
6791
6792 /* misc */
6793 case 0x90: /* nop */
6794 if (prefixes & PREFIX_LOCK)
6795 {
6796 ir.addr -= 1;
6797 goto no_support;
6798 }
6799 break;
6800
6801 case 0x9b: /* fwait */
6802 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
6803 return -1;
6804 opcode = (uint32_t) opcode8;
6805 ir.addr++;
6806 goto reswitch;
6807 break;
6808
6809 /* XXX */
6810 case 0xcc: /* int3 */
6811 printf_unfiltered (_("Process record does not support instruction "
6812 "int3.\n"));
6813 ir.addr -= 1;
6814 goto no_support;
6815 break;
6816
6817 /* XXX */
6818 case 0xcd: /* int */
6819 {
6820 int ret;
6821 uint8_t interrupt;
6822 if (record_read_memory (gdbarch, ir.addr, &interrupt, 1))
6823 return -1;
6824 ir.addr++;
6825 if (interrupt != 0x80
6826 || tdep->i386_intx80_record == NULL)
6827 {
6828 printf_unfiltered (_("Process record does not support "
6829 "instruction int 0x%02x.\n"),
6830 interrupt);
6831 ir.addr -= 2;
6832 goto no_support;
6833 }
6834 ret = tdep->i386_intx80_record (ir.regcache);
6835 if (ret)
6836 return ret;
6837 }
6838 break;
6839
6840 /* XXX */
6841 case 0xce: /* into */
6842 printf_unfiltered (_("Process record does not support "
6843 "instruction into.\n"));
6844 ir.addr -= 1;
6845 goto no_support;
6846 break;
6847
6848 case 0xfa: /* cli */
6849 case 0xfb: /* sti */
6850 break;
6851
6852 case 0x62: /* bound */
6853 printf_unfiltered (_("Process record does not support "
6854 "instruction bound.\n"));
6855 ir.addr -= 1;
6856 goto no_support;
6857 break;
6858
6859 case 0x0fc8: /* bswap reg */
6860 case 0x0fc9:
6861 case 0x0fca:
6862 case 0x0fcb:
6863 case 0x0fcc:
6864 case 0x0fcd:
6865 case 0x0fce:
6866 case 0x0fcf:
6867 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 7) | ir.rex_b);
6868 break;
6869
6870 case 0xd6: /* salc */
6871 if (ir.regmap[X86_RECORD_R8_REGNUM])
6872 {
6873 ir.addr -= 1;
6874 goto no_support;
6875 }
6876 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6877 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6878 break;
6879
6880 case 0xe0: /* loopnz */
6881 case 0xe1: /* loopz */
6882 case 0xe2: /* loop */
6883 case 0xe3: /* jecxz */
6884 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6885 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6886 break;
6887
6888 case 0x0f30: /* wrmsr */
6889 printf_unfiltered (_("Process record does not support "
6890 "instruction wrmsr.\n"));
6891 ir.addr -= 2;
6892 goto no_support;
6893 break;
6894
6895 case 0x0f32: /* rdmsr */
6896 printf_unfiltered (_("Process record does not support "
6897 "instruction rdmsr.\n"));
6898 ir.addr -= 2;
6899 goto no_support;
6900 break;
6901
6902 case 0x0f31: /* rdtsc */
6903 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6904 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6905 break;
6906
6907 case 0x0f34: /* sysenter */
6908 {
6909 int ret;
6910 if (ir.regmap[X86_RECORD_R8_REGNUM])
6911 {
6912 ir.addr -= 2;
6913 goto no_support;
6914 }
6915 if (tdep->i386_sysenter_record == NULL)
6916 {
6917 printf_unfiltered (_("Process record does not support "
6918 "instruction sysenter.\n"));
6919 ir.addr -= 2;
6920 goto no_support;
6921 }
6922 ret = tdep->i386_sysenter_record (ir.regcache);
6923 if (ret)
6924 return ret;
6925 }
6926 break;
6927
6928 case 0x0f35: /* sysexit */
6929 printf_unfiltered (_("Process record does not support "
6930 "instruction sysexit.\n"));
6931 ir.addr -= 2;
6932 goto no_support;
6933 break;
6934
6935 case 0x0f05: /* syscall */
6936 {
6937 int ret;
6938 if (tdep->i386_syscall_record == NULL)
6939 {
6940 printf_unfiltered (_("Process record does not support "
6941 "instruction syscall.\n"));
6942 ir.addr -= 2;
6943 goto no_support;
6944 }
6945 ret = tdep->i386_syscall_record (ir.regcache);
6946 if (ret)
6947 return ret;
6948 }
6949 break;
6950
6951 case 0x0f07: /* sysret */
6952 printf_unfiltered (_("Process record does not support "
6953 "instruction sysret.\n"));
6954 ir.addr -= 2;
6955 goto no_support;
6956 break;
6957
6958 case 0x0fa2: /* cpuid */
6959 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6960 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6961 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6962 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
6963 break;
6964
6965 case 0xf4: /* hlt */
6966 printf_unfiltered (_("Process record does not support "
6967 "instruction hlt.\n"));
6968 ir.addr -= 1;
6969 goto no_support;
6970 break;
6971
6972 case 0x0f00:
6973 if (i386_record_modrm (&ir))
6974 return -1;
6975 switch (ir.reg)
6976 {
6977 case 0: /* sldt */
6978 case 1: /* str */
6979 if (ir.mod == 3)
6980 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6981 else
6982 {
6983 ir.ot = OT_WORD;
6984 if (i386_record_lea_modrm (&ir))
6985 return -1;
6986 }
6987 break;
6988 case 2: /* lldt */
6989 case 3: /* ltr */
6990 break;
6991 case 4: /* verr */
6992 case 5: /* verw */
6993 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6994 break;
6995 default:
6996 ir.addr -= 3;
6997 opcode = opcode << 8 | ir.modrm;
6998 goto no_support;
6999 break;
7000 }
7001 break;
7002
7003 case 0x0f01:
7004 if (i386_record_modrm (&ir))
7005 return -1;
7006 switch (ir.reg)
7007 {
7008 case 0: /* sgdt */
7009 {
7010 uint64_t addr64;
7011
7012 if (ir.mod == 3)
7013 {
7014 ir.addr -= 3;
7015 opcode = opcode << 8 | ir.modrm;
7016 goto no_support;
7017 }
7018 if (ir.override >= 0)
7019 {
7020 if (record_full_memory_query)
7021 {
7022 if (yquery (_("\
7023 Process record ignores the memory change of instruction at address %s\n\
7024 because it can't get the value of the segment register.\n\
7025 Do you want to stop the program?"),
7026 paddress (gdbarch, ir.orig_addr)))
7027 return -1;
7028 }
7029 }
7030 else
7031 {
7032 if (i386_record_lea_modrm_addr (&ir, &addr64))
7033 return -1;
7034 if (record_full_arch_list_add_mem (addr64, 2))
7035 return -1;
7036 addr64 += 2;
7037 if (ir.regmap[X86_RECORD_R8_REGNUM])
7038 {
7039 if (record_full_arch_list_add_mem (addr64, 8))
7040 return -1;
7041 }
7042 else
7043 {
7044 if (record_full_arch_list_add_mem (addr64, 4))
7045 return -1;
7046 }
7047 }
7048 }
7049 break;
7050 case 1:
7051 if (ir.mod == 3)
7052 {
7053 switch (ir.rm)
7054 {
7055 case 0: /* monitor */
7056 break;
7057 case 1: /* mwait */
7058 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7059 break;
7060 default:
7061 ir.addr -= 3;
7062 opcode = opcode << 8 | ir.modrm;
7063 goto no_support;
7064 break;
7065 }
7066 }
7067 else
7068 {
7069 /* sidt */
7070 if (ir.override >= 0)
7071 {
7072 if (record_full_memory_query)
7073 {
7074 if (yquery (_("\
7075 Process record ignores the memory change of instruction at address %s\n\
7076 because it can't get the value of the segment register.\n\
7077 Do you want to stop the program?"),
7078 paddress (gdbarch, ir.orig_addr)))
7079 return -1;
7080 }
7081 }
7082 else
7083 {
7084 uint64_t addr64;
7085
7086 if (i386_record_lea_modrm_addr (&ir, &addr64))
7087 return -1;
7088 if (record_full_arch_list_add_mem (addr64, 2))
7089 return -1;
7090 addr64 += 2;
7091 if (ir.regmap[X86_RECORD_R8_REGNUM])
7092 {
7093 if (record_full_arch_list_add_mem (addr64, 8))
7094 return -1;
7095 }
7096 else
7097 {
7098 if (record_full_arch_list_add_mem (addr64, 4))
7099 return -1;
7100 }
7101 }
7102 }
7103 break;
7104 case 2: /* lgdt */
7105 if (ir.mod == 3)
7106 {
7107 /* xgetbv */
7108 if (ir.rm == 0)
7109 {
7110 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7111 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7112 break;
7113 }
7114 /* xsetbv */
7115 else if (ir.rm == 1)
7116 break;
7117 }
7118 case 3: /* lidt */
7119 if (ir.mod == 3)
7120 {
7121 ir.addr -= 3;
7122 opcode = opcode << 8 | ir.modrm;
7123 goto no_support;
7124 }
7125 break;
7126 case 4: /* smsw */
7127 if (ir.mod == 3)
7128 {
7129 if (record_full_arch_list_add_reg (ir.regcache, ir.rm | ir.rex_b))
7130 return -1;
7131 }
7132 else
7133 {
7134 ir.ot = OT_WORD;
7135 if (i386_record_lea_modrm (&ir))
7136 return -1;
7137 }
7138 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7139 break;
7140 case 6: /* lmsw */
7141 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7142 break;
7143 case 7: /* invlpg */
7144 if (ir.mod == 3)
7145 {
7146 if (ir.rm == 0 && ir.regmap[X86_RECORD_R8_REGNUM])
7147 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
7148 else
7149 {
7150 ir.addr -= 3;
7151 opcode = opcode << 8 | ir.modrm;
7152 goto no_support;
7153 }
7154 }
7155 else
7156 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7157 break;
7158 default:
7159 ir.addr -= 3;
7160 opcode = opcode << 8 | ir.modrm;
7161 goto no_support;
7162 break;
7163 }
7164 break;
7165
7166 case 0x0f08: /* invd */
7167 case 0x0f09: /* wbinvd */
7168 break;
7169
7170 case 0x63: /* arpl */
7171 if (i386_record_modrm (&ir))
7172 return -1;
7173 if (ir.mod == 3 || ir.regmap[X86_RECORD_R8_REGNUM])
7174 {
7175 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.regmap[X86_RECORD_R8_REGNUM]
7176 ? (ir.reg | rex_r) : ir.rm);
7177 }
7178 else
7179 {
7180 ir.ot = ir.dflag ? OT_LONG : OT_WORD;
7181 if (i386_record_lea_modrm (&ir))
7182 return -1;
7183 }
7184 if (!ir.regmap[X86_RECORD_R8_REGNUM])
7185 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7186 break;
7187
7188 case 0x0f02: /* lar */
7189 case 0x0f03: /* lsl */
7190 if (i386_record_modrm (&ir))
7191 return -1;
7192 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7193 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7194 break;
7195
7196 case 0x0f18:
7197 if (i386_record_modrm (&ir))
7198 return -1;
7199 if (ir.mod == 3 && ir.reg == 3)
7200 {
7201 ir.addr -= 3;
7202 opcode = opcode << 8 | ir.modrm;
7203 goto no_support;
7204 }
7205 break;
7206
7207 case 0x0f19:
7208 case 0x0f1a:
7209 case 0x0f1b:
7210 case 0x0f1c:
7211 case 0x0f1d:
7212 case 0x0f1e:
7213 case 0x0f1f:
7214 /* nop (multi byte) */
7215 break;
7216
7217 case 0x0f20: /* mov reg, crN */
7218 case 0x0f22: /* mov crN, reg */
7219 if (i386_record_modrm (&ir))
7220 return -1;
7221 if ((ir.modrm & 0xc0) != 0xc0)
7222 {
7223 ir.addr -= 3;
7224 opcode = opcode << 8 | ir.modrm;
7225 goto no_support;
7226 }
7227 switch (ir.reg)
7228 {
7229 case 0:
7230 case 2:
7231 case 3:
7232 case 4:
7233 case 8:
7234 if (opcode & 2)
7235 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7236 else
7237 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7238 break;
7239 default:
7240 ir.addr -= 3;
7241 opcode = opcode << 8 | ir.modrm;
7242 goto no_support;
7243 break;
7244 }
7245 break;
7246
7247 case 0x0f21: /* mov reg, drN */
7248 case 0x0f23: /* mov drN, reg */
7249 if (i386_record_modrm (&ir))
7250 return -1;
7251 if ((ir.modrm & 0xc0) != 0xc0 || ir.reg == 4
7252 || ir.reg == 5 || ir.reg >= 8)
7253 {
7254 ir.addr -= 3;
7255 opcode = opcode << 8 | ir.modrm;
7256 goto no_support;
7257 }
7258 if (opcode & 2)
7259 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7260 else
7261 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7262 break;
7263
7264 case 0x0f06: /* clts */
7265 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7266 break;
7267
7268 /* MMX 3DNow! SSE SSE2 SSE3 SSSE3 SSE4 */
7269
7270 case 0x0f0d: /* 3DNow! prefetch */
7271 break;
7272
7273 case 0x0f0e: /* 3DNow! femms */
7274 case 0x0f77: /* emms */
7275 if (i386_fpc_regnum_p (gdbarch, I387_FTAG_REGNUM(tdep)))
7276 goto no_support;
7277 record_full_arch_list_add_reg (ir.regcache, I387_FTAG_REGNUM(tdep));
7278 break;
7279
7280 case 0x0f0f: /* 3DNow! data */
7281 if (i386_record_modrm (&ir))
7282 return -1;
7283 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
7284 return -1;
7285 ir.addr++;
7286 switch (opcode8)
7287 {
7288 case 0x0c: /* 3DNow! pi2fw */
7289 case 0x0d: /* 3DNow! pi2fd */
7290 case 0x1c: /* 3DNow! pf2iw */
7291 case 0x1d: /* 3DNow! pf2id */
7292 case 0x8a: /* 3DNow! pfnacc */
7293 case 0x8e: /* 3DNow! pfpnacc */
7294 case 0x90: /* 3DNow! pfcmpge */
7295 case 0x94: /* 3DNow! pfmin */
7296 case 0x96: /* 3DNow! pfrcp */
7297 case 0x97: /* 3DNow! pfrsqrt */
7298 case 0x9a: /* 3DNow! pfsub */
7299 case 0x9e: /* 3DNow! pfadd */
7300 case 0xa0: /* 3DNow! pfcmpgt */
7301 case 0xa4: /* 3DNow! pfmax */
7302 case 0xa6: /* 3DNow! pfrcpit1 */
7303 case 0xa7: /* 3DNow! pfrsqit1 */
7304 case 0xaa: /* 3DNow! pfsubr */
7305 case 0xae: /* 3DNow! pfacc */
7306 case 0xb0: /* 3DNow! pfcmpeq */
7307 case 0xb4: /* 3DNow! pfmul */
7308 case 0xb6: /* 3DNow! pfrcpit2 */
7309 case 0xb7: /* 3DNow! pmulhrw */
7310 case 0xbb: /* 3DNow! pswapd */
7311 case 0xbf: /* 3DNow! pavgusb */
7312 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7313 goto no_support_3dnow_data;
7314 record_full_arch_list_add_reg (ir.regcache, ir.reg);
7315 break;
7316
7317 default:
7318 no_support_3dnow_data:
7319 opcode = (opcode << 8) | opcode8;
7320 goto no_support;
7321 break;
7322 }
7323 break;
7324
7325 case 0x0faa: /* rsm */
7326 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7327 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7328 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
7329 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7330 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
7331 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
7332 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
7333 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
7334 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
7335 break;
7336
7337 case 0x0fae:
7338 if (i386_record_modrm (&ir))
7339 return -1;
7340 switch(ir.reg)
7341 {
7342 case 0: /* fxsave */
7343 {
7344 uint64_t tmpu64;
7345
7346 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7347 if (i386_record_lea_modrm_addr (&ir, &tmpu64))
7348 return -1;
7349 if (record_full_arch_list_add_mem (tmpu64, 512))
7350 return -1;
7351 }
7352 break;
7353
7354 case 1: /* fxrstor */
7355 {
7356 int i;
7357
7358 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7359
7360 for (i = I387_MM0_REGNUM (tdep);
7361 i386_mmx_regnum_p (gdbarch, i); i++)
7362 record_full_arch_list_add_reg (ir.regcache, i);
7363
7364 for (i = I387_XMM0_REGNUM (tdep);
7365 i386_xmm_regnum_p (gdbarch, i); i++)
7366 record_full_arch_list_add_reg (ir.regcache, i);
7367
7368 if (i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
7369 record_full_arch_list_add_reg (ir.regcache,
7370 I387_MXCSR_REGNUM(tdep));
7371
7372 for (i = I387_ST0_REGNUM (tdep);
7373 i386_fp_regnum_p (gdbarch, i); i++)
7374 record_full_arch_list_add_reg (ir.regcache, i);
7375
7376 for (i = I387_FCTRL_REGNUM (tdep);
7377 i386_fpc_regnum_p (gdbarch, i); i++)
7378 record_full_arch_list_add_reg (ir.regcache, i);
7379 }
7380 break;
7381
7382 case 2: /* ldmxcsr */
7383 if (!i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
7384 goto no_support;
7385 record_full_arch_list_add_reg (ir.regcache, I387_MXCSR_REGNUM(tdep));
7386 break;
7387
7388 case 3: /* stmxcsr */
7389 ir.ot = OT_LONG;
7390 if (i386_record_lea_modrm (&ir))
7391 return -1;
7392 break;
7393
7394 case 5: /* lfence */
7395 case 6: /* mfence */
7396 case 7: /* sfence clflush */
7397 break;
7398
7399 default:
7400 opcode = (opcode << 8) | ir.modrm;
7401 goto no_support;
7402 break;
7403 }
7404 break;
7405
7406 case 0x0fc3: /* movnti */
7407 ir.ot = (ir.dflag == 2) ? OT_QUAD : OT_LONG;
7408 if (i386_record_modrm (&ir))
7409 return -1;
7410 if (ir.mod == 3)
7411 goto no_support;
7412 ir.reg |= rex_r;
7413 if (i386_record_lea_modrm (&ir))
7414 return -1;
7415 break;
7416
7417 /* Add prefix to opcode. */
7418 case 0x0f10:
7419 case 0x0f11:
7420 case 0x0f12:
7421 case 0x0f13:
7422 case 0x0f14:
7423 case 0x0f15:
7424 case 0x0f16:
7425 case 0x0f17:
7426 case 0x0f28:
7427 case 0x0f29:
7428 case 0x0f2a:
7429 case 0x0f2b:
7430 case 0x0f2c:
7431 case 0x0f2d:
7432 case 0x0f2e:
7433 case 0x0f2f:
7434 case 0x0f38:
7435 case 0x0f39:
7436 case 0x0f3a:
7437 case 0x0f50:
7438 case 0x0f51:
7439 case 0x0f52:
7440 case 0x0f53:
7441 case 0x0f54:
7442 case 0x0f55:
7443 case 0x0f56:
7444 case 0x0f57:
7445 case 0x0f58:
7446 case 0x0f59:
7447 case 0x0f5a:
7448 case 0x0f5b:
7449 case 0x0f5c:
7450 case 0x0f5d:
7451 case 0x0f5e:
7452 case 0x0f5f:
7453 case 0x0f60:
7454 case 0x0f61:
7455 case 0x0f62:
7456 case 0x0f63:
7457 case 0x0f64:
7458 case 0x0f65:
7459 case 0x0f66:
7460 case 0x0f67:
7461 case 0x0f68:
7462 case 0x0f69:
7463 case 0x0f6a:
7464 case 0x0f6b:
7465 case 0x0f6c:
7466 case 0x0f6d:
7467 case 0x0f6e:
7468 case 0x0f6f:
7469 case 0x0f70:
7470 case 0x0f71:
7471 case 0x0f72:
7472 case 0x0f73:
7473 case 0x0f74:
7474 case 0x0f75:
7475 case 0x0f76:
7476 case 0x0f7c:
7477 case 0x0f7d:
7478 case 0x0f7e:
7479 case 0x0f7f:
7480 case 0x0fb8:
7481 case 0x0fc2:
7482 case 0x0fc4:
7483 case 0x0fc5:
7484 case 0x0fc6:
7485 case 0x0fd0:
7486 case 0x0fd1:
7487 case 0x0fd2:
7488 case 0x0fd3:
7489 case 0x0fd4:
7490 case 0x0fd5:
7491 case 0x0fd6:
7492 case 0x0fd7:
7493 case 0x0fd8:
7494 case 0x0fd9:
7495 case 0x0fda:
7496 case 0x0fdb:
7497 case 0x0fdc:
7498 case 0x0fdd:
7499 case 0x0fde:
7500 case 0x0fdf:
7501 case 0x0fe0:
7502 case 0x0fe1:
7503 case 0x0fe2:
7504 case 0x0fe3:
7505 case 0x0fe4:
7506 case 0x0fe5:
7507 case 0x0fe6:
7508 case 0x0fe7:
7509 case 0x0fe8:
7510 case 0x0fe9:
7511 case 0x0fea:
7512 case 0x0feb:
7513 case 0x0fec:
7514 case 0x0fed:
7515 case 0x0fee:
7516 case 0x0fef:
7517 case 0x0ff0:
7518 case 0x0ff1:
7519 case 0x0ff2:
7520 case 0x0ff3:
7521 case 0x0ff4:
7522 case 0x0ff5:
7523 case 0x0ff6:
7524 case 0x0ff7:
7525 case 0x0ff8:
7526 case 0x0ff9:
7527 case 0x0ffa:
7528 case 0x0ffb:
7529 case 0x0ffc:
7530 case 0x0ffd:
7531 case 0x0ffe:
7532 /* Mask out PREFIX_ADDR. */
7533 switch ((prefixes & ~PREFIX_ADDR))
7534 {
7535 case PREFIX_REPNZ:
7536 opcode |= 0xf20000;
7537 break;
7538 case PREFIX_DATA:
7539 opcode |= 0x660000;
7540 break;
7541 case PREFIX_REPZ:
7542 opcode |= 0xf30000;
7543 break;
7544 }
7545 reswitch_prefix_add:
7546 switch (opcode)
7547 {
7548 case 0x0f38:
7549 case 0x660f38:
7550 case 0xf20f38:
7551 case 0x0f3a:
7552 case 0x660f3a:
7553 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
7554 return -1;
7555 ir.addr++;
7556 opcode = (uint32_t) opcode8 | opcode << 8;
7557 goto reswitch_prefix_add;
7558 break;
7559
7560 case 0x0f10: /* movups */
7561 case 0x660f10: /* movupd */
7562 case 0xf30f10: /* movss */
7563 case 0xf20f10: /* movsd */
7564 case 0x0f12: /* movlps */
7565 case 0x660f12: /* movlpd */
7566 case 0xf30f12: /* movsldup */
7567 case 0xf20f12: /* movddup */
7568 case 0x0f14: /* unpcklps */
7569 case 0x660f14: /* unpcklpd */
7570 case 0x0f15: /* unpckhps */
7571 case 0x660f15: /* unpckhpd */
7572 case 0x0f16: /* movhps */
7573 case 0x660f16: /* movhpd */
7574 case 0xf30f16: /* movshdup */
7575 case 0x0f28: /* movaps */
7576 case 0x660f28: /* movapd */
7577 case 0x0f2a: /* cvtpi2ps */
7578 case 0x660f2a: /* cvtpi2pd */
7579 case 0xf30f2a: /* cvtsi2ss */
7580 case 0xf20f2a: /* cvtsi2sd */
7581 case 0x0f2c: /* cvttps2pi */
7582 case 0x660f2c: /* cvttpd2pi */
7583 case 0x0f2d: /* cvtps2pi */
7584 case 0x660f2d: /* cvtpd2pi */
7585 case 0x660f3800: /* pshufb */
7586 case 0x660f3801: /* phaddw */
7587 case 0x660f3802: /* phaddd */
7588 case 0x660f3803: /* phaddsw */
7589 case 0x660f3804: /* pmaddubsw */
7590 case 0x660f3805: /* phsubw */
7591 case 0x660f3806: /* phsubd */
7592 case 0x660f3807: /* phsubsw */
7593 case 0x660f3808: /* psignb */
7594 case 0x660f3809: /* psignw */
7595 case 0x660f380a: /* psignd */
7596 case 0x660f380b: /* pmulhrsw */
7597 case 0x660f3810: /* pblendvb */
7598 case 0x660f3814: /* blendvps */
7599 case 0x660f3815: /* blendvpd */
7600 case 0x660f381c: /* pabsb */
7601 case 0x660f381d: /* pabsw */
7602 case 0x660f381e: /* pabsd */
7603 case 0x660f3820: /* pmovsxbw */
7604 case 0x660f3821: /* pmovsxbd */
7605 case 0x660f3822: /* pmovsxbq */
7606 case 0x660f3823: /* pmovsxwd */
7607 case 0x660f3824: /* pmovsxwq */
7608 case 0x660f3825: /* pmovsxdq */
7609 case 0x660f3828: /* pmuldq */
7610 case 0x660f3829: /* pcmpeqq */
7611 case 0x660f382a: /* movntdqa */
7612 case 0x660f3a08: /* roundps */
7613 case 0x660f3a09: /* roundpd */
7614 case 0x660f3a0a: /* roundss */
7615 case 0x660f3a0b: /* roundsd */
7616 case 0x660f3a0c: /* blendps */
7617 case 0x660f3a0d: /* blendpd */
7618 case 0x660f3a0e: /* pblendw */
7619 case 0x660f3a0f: /* palignr */
7620 case 0x660f3a20: /* pinsrb */
7621 case 0x660f3a21: /* insertps */
7622 case 0x660f3a22: /* pinsrd pinsrq */
7623 case 0x660f3a40: /* dpps */
7624 case 0x660f3a41: /* dppd */
7625 case 0x660f3a42: /* mpsadbw */
7626 case 0x660f3a60: /* pcmpestrm */
7627 case 0x660f3a61: /* pcmpestri */
7628 case 0x660f3a62: /* pcmpistrm */
7629 case 0x660f3a63: /* pcmpistri */
7630 case 0x0f51: /* sqrtps */
7631 case 0x660f51: /* sqrtpd */
7632 case 0xf20f51: /* sqrtsd */
7633 case 0xf30f51: /* sqrtss */
7634 case 0x0f52: /* rsqrtps */
7635 case 0xf30f52: /* rsqrtss */
7636 case 0x0f53: /* rcpps */
7637 case 0xf30f53: /* rcpss */
7638 case 0x0f54: /* andps */
7639 case 0x660f54: /* andpd */
7640 case 0x0f55: /* andnps */
7641 case 0x660f55: /* andnpd */
7642 case 0x0f56: /* orps */
7643 case 0x660f56: /* orpd */
7644 case 0x0f57: /* xorps */
7645 case 0x660f57: /* xorpd */
7646 case 0x0f58: /* addps */
7647 case 0x660f58: /* addpd */
7648 case 0xf20f58: /* addsd */
7649 case 0xf30f58: /* addss */
7650 case 0x0f59: /* mulps */
7651 case 0x660f59: /* mulpd */
7652 case 0xf20f59: /* mulsd */
7653 case 0xf30f59: /* mulss */
7654 case 0x0f5a: /* cvtps2pd */
7655 case 0x660f5a: /* cvtpd2ps */
7656 case 0xf20f5a: /* cvtsd2ss */
7657 case 0xf30f5a: /* cvtss2sd */
7658 case 0x0f5b: /* cvtdq2ps */
7659 case 0x660f5b: /* cvtps2dq */
7660 case 0xf30f5b: /* cvttps2dq */
7661 case 0x0f5c: /* subps */
7662 case 0x660f5c: /* subpd */
7663 case 0xf20f5c: /* subsd */
7664 case 0xf30f5c: /* subss */
7665 case 0x0f5d: /* minps */
7666 case 0x660f5d: /* minpd */
7667 case 0xf20f5d: /* minsd */
7668 case 0xf30f5d: /* minss */
7669 case 0x0f5e: /* divps */
7670 case 0x660f5e: /* divpd */
7671 case 0xf20f5e: /* divsd */
7672 case 0xf30f5e: /* divss */
7673 case 0x0f5f: /* maxps */
7674 case 0x660f5f: /* maxpd */
7675 case 0xf20f5f: /* maxsd */
7676 case 0xf30f5f: /* maxss */
7677 case 0x660f60: /* punpcklbw */
7678 case 0x660f61: /* punpcklwd */
7679 case 0x660f62: /* punpckldq */
7680 case 0x660f63: /* packsswb */
7681 case 0x660f64: /* pcmpgtb */
7682 case 0x660f65: /* pcmpgtw */
7683 case 0x660f66: /* pcmpgtd */
7684 case 0x660f67: /* packuswb */
7685 case 0x660f68: /* punpckhbw */
7686 case 0x660f69: /* punpckhwd */
7687 case 0x660f6a: /* punpckhdq */
7688 case 0x660f6b: /* packssdw */
7689 case 0x660f6c: /* punpcklqdq */
7690 case 0x660f6d: /* punpckhqdq */
7691 case 0x660f6e: /* movd */
7692 case 0x660f6f: /* movdqa */
7693 case 0xf30f6f: /* movdqu */
7694 case 0x660f70: /* pshufd */
7695 case 0xf20f70: /* pshuflw */
7696 case 0xf30f70: /* pshufhw */
7697 case 0x660f74: /* pcmpeqb */
7698 case 0x660f75: /* pcmpeqw */
7699 case 0x660f76: /* pcmpeqd */
7700 case 0x660f7c: /* haddpd */
7701 case 0xf20f7c: /* haddps */
7702 case 0x660f7d: /* hsubpd */
7703 case 0xf20f7d: /* hsubps */
7704 case 0xf30f7e: /* movq */
7705 case 0x0fc2: /* cmpps */
7706 case 0x660fc2: /* cmppd */
7707 case 0xf20fc2: /* cmpsd */
7708 case 0xf30fc2: /* cmpss */
7709 case 0x660fc4: /* pinsrw */
7710 case 0x0fc6: /* shufps */
7711 case 0x660fc6: /* shufpd */
7712 case 0x660fd0: /* addsubpd */
7713 case 0xf20fd0: /* addsubps */
7714 case 0x660fd1: /* psrlw */
7715 case 0x660fd2: /* psrld */
7716 case 0x660fd3: /* psrlq */
7717 case 0x660fd4: /* paddq */
7718 case 0x660fd5: /* pmullw */
7719 case 0xf30fd6: /* movq2dq */
7720 case 0x660fd8: /* psubusb */
7721 case 0x660fd9: /* psubusw */
7722 case 0x660fda: /* pminub */
7723 case 0x660fdb: /* pand */
7724 case 0x660fdc: /* paddusb */
7725 case 0x660fdd: /* paddusw */
7726 case 0x660fde: /* pmaxub */
7727 case 0x660fdf: /* pandn */
7728 case 0x660fe0: /* pavgb */
7729 case 0x660fe1: /* psraw */
7730 case 0x660fe2: /* psrad */
7731 case 0x660fe3: /* pavgw */
7732 case 0x660fe4: /* pmulhuw */
7733 case 0x660fe5: /* pmulhw */
7734 case 0x660fe6: /* cvttpd2dq */
7735 case 0xf20fe6: /* cvtpd2dq */
7736 case 0xf30fe6: /* cvtdq2pd */
7737 case 0x660fe8: /* psubsb */
7738 case 0x660fe9: /* psubsw */
7739 case 0x660fea: /* pminsw */
7740 case 0x660feb: /* por */
7741 case 0x660fec: /* paddsb */
7742 case 0x660fed: /* paddsw */
7743 case 0x660fee: /* pmaxsw */
7744 case 0x660fef: /* pxor */
7745 case 0xf20ff0: /* lddqu */
7746 case 0x660ff1: /* psllw */
7747 case 0x660ff2: /* pslld */
7748 case 0x660ff3: /* psllq */
7749 case 0x660ff4: /* pmuludq */
7750 case 0x660ff5: /* pmaddwd */
7751 case 0x660ff6: /* psadbw */
7752 case 0x660ff8: /* psubb */
7753 case 0x660ff9: /* psubw */
7754 case 0x660ffa: /* psubd */
7755 case 0x660ffb: /* psubq */
7756 case 0x660ffc: /* paddb */
7757 case 0x660ffd: /* paddw */
7758 case 0x660ffe: /* paddd */
7759 if (i386_record_modrm (&ir))
7760 return -1;
7761 ir.reg |= rex_r;
7762 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.reg))
7763 goto no_support;
7764 record_full_arch_list_add_reg (ir.regcache,
7765 I387_XMM0_REGNUM (tdep) + ir.reg);
7766 if ((opcode & 0xfffffffc) == 0x660f3a60)
7767 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7768 break;
7769
7770 case 0x0f11: /* movups */
7771 case 0x660f11: /* movupd */
7772 case 0xf30f11: /* movss */
7773 case 0xf20f11: /* movsd */
7774 case 0x0f13: /* movlps */
7775 case 0x660f13: /* movlpd */
7776 case 0x0f17: /* movhps */
7777 case 0x660f17: /* movhpd */
7778 case 0x0f29: /* movaps */
7779 case 0x660f29: /* movapd */
7780 case 0x660f3a14: /* pextrb */
7781 case 0x660f3a15: /* pextrw */
7782 case 0x660f3a16: /* pextrd pextrq */
7783 case 0x660f3a17: /* extractps */
7784 case 0x660f7f: /* movdqa */
7785 case 0xf30f7f: /* movdqu */
7786 if (i386_record_modrm (&ir))
7787 return -1;
7788 if (ir.mod == 3)
7789 {
7790 if (opcode == 0x0f13 || opcode == 0x660f13
7791 || opcode == 0x0f17 || opcode == 0x660f17)
7792 goto no_support;
7793 ir.rm |= ir.rex_b;
7794 if (!i386_xmm_regnum_p (gdbarch,
7795 I387_XMM0_REGNUM (tdep) + ir.rm))
7796 goto no_support;
7797 record_full_arch_list_add_reg (ir.regcache,
7798 I387_XMM0_REGNUM (tdep) + ir.rm);
7799 }
7800 else
7801 {
7802 switch (opcode)
7803 {
7804 case 0x660f3a14:
7805 ir.ot = OT_BYTE;
7806 break;
7807 case 0x660f3a15:
7808 ir.ot = OT_WORD;
7809 break;
7810 case 0x660f3a16:
7811 ir.ot = OT_LONG;
7812 break;
7813 case 0x660f3a17:
7814 ir.ot = OT_QUAD;
7815 break;
7816 default:
7817 ir.ot = OT_DQUAD;
7818 break;
7819 }
7820 if (i386_record_lea_modrm (&ir))
7821 return -1;
7822 }
7823 break;
7824
7825 case 0x0f2b: /* movntps */
7826 case 0x660f2b: /* movntpd */
7827 case 0x0fe7: /* movntq */
7828 case 0x660fe7: /* movntdq */
7829 if (ir.mod == 3)
7830 goto no_support;
7831 if (opcode == 0x0fe7)
7832 ir.ot = OT_QUAD;
7833 else
7834 ir.ot = OT_DQUAD;
7835 if (i386_record_lea_modrm (&ir))
7836 return -1;
7837 break;
7838
7839 case 0xf30f2c: /* cvttss2si */
7840 case 0xf20f2c: /* cvttsd2si */
7841 case 0xf30f2d: /* cvtss2si */
7842 case 0xf20f2d: /* cvtsd2si */
7843 case 0xf20f38f0: /* crc32 */
7844 case 0xf20f38f1: /* crc32 */
7845 case 0x0f50: /* movmskps */
7846 case 0x660f50: /* movmskpd */
7847 case 0x0fc5: /* pextrw */
7848 case 0x660fc5: /* pextrw */
7849 case 0x0fd7: /* pmovmskb */
7850 case 0x660fd7: /* pmovmskb */
7851 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7852 break;
7853
7854 case 0x0f3800: /* pshufb */
7855 case 0x0f3801: /* phaddw */
7856 case 0x0f3802: /* phaddd */
7857 case 0x0f3803: /* phaddsw */
7858 case 0x0f3804: /* pmaddubsw */
7859 case 0x0f3805: /* phsubw */
7860 case 0x0f3806: /* phsubd */
7861 case 0x0f3807: /* phsubsw */
7862 case 0x0f3808: /* psignb */
7863 case 0x0f3809: /* psignw */
7864 case 0x0f380a: /* psignd */
7865 case 0x0f380b: /* pmulhrsw */
7866 case 0x0f381c: /* pabsb */
7867 case 0x0f381d: /* pabsw */
7868 case 0x0f381e: /* pabsd */
7869 case 0x0f382b: /* packusdw */
7870 case 0x0f3830: /* pmovzxbw */
7871 case 0x0f3831: /* pmovzxbd */
7872 case 0x0f3832: /* pmovzxbq */
7873 case 0x0f3833: /* pmovzxwd */
7874 case 0x0f3834: /* pmovzxwq */
7875 case 0x0f3835: /* pmovzxdq */
7876 case 0x0f3837: /* pcmpgtq */
7877 case 0x0f3838: /* pminsb */
7878 case 0x0f3839: /* pminsd */
7879 case 0x0f383a: /* pminuw */
7880 case 0x0f383b: /* pminud */
7881 case 0x0f383c: /* pmaxsb */
7882 case 0x0f383d: /* pmaxsd */
7883 case 0x0f383e: /* pmaxuw */
7884 case 0x0f383f: /* pmaxud */
7885 case 0x0f3840: /* pmulld */
7886 case 0x0f3841: /* phminposuw */
7887 case 0x0f3a0f: /* palignr */
7888 case 0x0f60: /* punpcklbw */
7889 case 0x0f61: /* punpcklwd */
7890 case 0x0f62: /* punpckldq */
7891 case 0x0f63: /* packsswb */
7892 case 0x0f64: /* pcmpgtb */
7893 case 0x0f65: /* pcmpgtw */
7894 case 0x0f66: /* pcmpgtd */
7895 case 0x0f67: /* packuswb */
7896 case 0x0f68: /* punpckhbw */
7897 case 0x0f69: /* punpckhwd */
7898 case 0x0f6a: /* punpckhdq */
7899 case 0x0f6b: /* packssdw */
7900 case 0x0f6e: /* movd */
7901 case 0x0f6f: /* movq */
7902 case 0x0f70: /* pshufw */
7903 case 0x0f74: /* pcmpeqb */
7904 case 0x0f75: /* pcmpeqw */
7905 case 0x0f76: /* pcmpeqd */
7906 case 0x0fc4: /* pinsrw */
7907 case 0x0fd1: /* psrlw */
7908 case 0x0fd2: /* psrld */
7909 case 0x0fd3: /* psrlq */
7910 case 0x0fd4: /* paddq */
7911 case 0x0fd5: /* pmullw */
7912 case 0xf20fd6: /* movdq2q */
7913 case 0x0fd8: /* psubusb */
7914 case 0x0fd9: /* psubusw */
7915 case 0x0fda: /* pminub */
7916 case 0x0fdb: /* pand */
7917 case 0x0fdc: /* paddusb */
7918 case 0x0fdd: /* paddusw */
7919 case 0x0fde: /* pmaxub */
7920 case 0x0fdf: /* pandn */
7921 case 0x0fe0: /* pavgb */
7922 case 0x0fe1: /* psraw */
7923 case 0x0fe2: /* psrad */
7924 case 0x0fe3: /* pavgw */
7925 case 0x0fe4: /* pmulhuw */
7926 case 0x0fe5: /* pmulhw */
7927 case 0x0fe8: /* psubsb */
7928 case 0x0fe9: /* psubsw */
7929 case 0x0fea: /* pminsw */
7930 case 0x0feb: /* por */
7931 case 0x0fec: /* paddsb */
7932 case 0x0fed: /* paddsw */
7933 case 0x0fee: /* pmaxsw */
7934 case 0x0fef: /* pxor */
7935 case 0x0ff1: /* psllw */
7936 case 0x0ff2: /* pslld */
7937 case 0x0ff3: /* psllq */
7938 case 0x0ff4: /* pmuludq */
7939 case 0x0ff5: /* pmaddwd */
7940 case 0x0ff6: /* psadbw */
7941 case 0x0ff8: /* psubb */
7942 case 0x0ff9: /* psubw */
7943 case 0x0ffa: /* psubd */
7944 case 0x0ffb: /* psubq */
7945 case 0x0ffc: /* paddb */
7946 case 0x0ffd: /* paddw */
7947 case 0x0ffe: /* paddd */
7948 if (i386_record_modrm (&ir))
7949 return -1;
7950 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7951 goto no_support;
7952 record_full_arch_list_add_reg (ir.regcache,
7953 I387_MM0_REGNUM (tdep) + ir.reg);
7954 break;
7955
7956 case 0x0f71: /* psllw */
7957 case 0x0f72: /* pslld */
7958 case 0x0f73: /* psllq */
7959 if (i386_record_modrm (&ir))
7960 return -1;
7961 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
7962 goto no_support;
7963 record_full_arch_list_add_reg (ir.regcache,
7964 I387_MM0_REGNUM (tdep) + ir.rm);
7965 break;
7966
7967 case 0x660f71: /* psllw */
7968 case 0x660f72: /* pslld */
7969 case 0x660f73: /* psllq */
7970 if (i386_record_modrm (&ir))
7971 return -1;
7972 ir.rm |= ir.rex_b;
7973 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.rm))
7974 goto no_support;
7975 record_full_arch_list_add_reg (ir.regcache,
7976 I387_XMM0_REGNUM (tdep) + ir.rm);
7977 break;
7978
7979 case 0x0f7e: /* movd */
7980 case 0x660f7e: /* movd */
7981 if (i386_record_modrm (&ir))
7982 return -1;
7983 if (ir.mod == 3)
7984 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7985 else
7986 {
7987 if (ir.dflag == 2)
7988 ir.ot = OT_QUAD;
7989 else
7990 ir.ot = OT_LONG;
7991 if (i386_record_lea_modrm (&ir))
7992 return -1;
7993 }
7994 break;
7995
7996 case 0x0f7f: /* movq */
7997 if (i386_record_modrm (&ir))
7998 return -1;
7999 if (ir.mod == 3)
8000 {
8001 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
8002 goto no_support;
8003 record_full_arch_list_add_reg (ir.regcache,
8004 I387_MM0_REGNUM (tdep) + ir.rm);
8005 }
8006 else
8007 {
8008 ir.ot = OT_QUAD;
8009 if (i386_record_lea_modrm (&ir))
8010 return -1;
8011 }
8012 break;
8013
8014 case 0xf30fb8: /* popcnt */
8015 if (i386_record_modrm (&ir))
8016 return -1;
8017 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
8018 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
8019 break;
8020
8021 case 0x660fd6: /* movq */
8022 if (i386_record_modrm (&ir))
8023 return -1;
8024 if (ir.mod == 3)
8025 {
8026 ir.rm |= ir.rex_b;
8027 if (!i386_xmm_regnum_p (gdbarch,
8028 I387_XMM0_REGNUM (tdep) + ir.rm))
8029 goto no_support;
8030 record_full_arch_list_add_reg (ir.regcache,
8031 I387_XMM0_REGNUM (tdep) + ir.rm);
8032 }
8033 else
8034 {
8035 ir.ot = OT_QUAD;
8036 if (i386_record_lea_modrm (&ir))
8037 return -1;
8038 }
8039 break;
8040
8041 case 0x660f3817: /* ptest */
8042 case 0x0f2e: /* ucomiss */
8043 case 0x660f2e: /* ucomisd */
8044 case 0x0f2f: /* comiss */
8045 case 0x660f2f: /* comisd */
8046 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
8047 break;
8048
8049 case 0x0ff7: /* maskmovq */
8050 regcache_raw_read_unsigned (ir.regcache,
8051 ir.regmap[X86_RECORD_REDI_REGNUM],
8052 &addr);
8053 if (record_full_arch_list_add_mem (addr, 64))
8054 return -1;
8055 break;
8056
8057 case 0x660ff7: /* maskmovdqu */
8058 regcache_raw_read_unsigned (ir.regcache,
8059 ir.regmap[X86_RECORD_REDI_REGNUM],
8060 &addr);
8061 if (record_full_arch_list_add_mem (addr, 128))
8062 return -1;
8063 break;
8064
8065 default:
8066 goto no_support;
8067 break;
8068 }
8069 break;
8070
8071 default:
8072 goto no_support;
8073 break;
8074 }
8075
8076 /* In the future, maybe still need to deal with need_dasm. */
8077 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REIP_REGNUM);
8078 if (record_full_arch_list_add_end ())
8079 return -1;
8080
8081 return 0;
8082
8083 no_support:
8084 printf_unfiltered (_("Process record does not support instruction 0x%02x "
8085 "at address %s.\n"),
8086 (unsigned int) (opcode),
8087 paddress (gdbarch, ir.orig_addr));
8088 return -1;
8089 }
8090
8091 static const int i386_record_regmap[] =
8092 {
8093 I386_EAX_REGNUM, I386_ECX_REGNUM, I386_EDX_REGNUM, I386_EBX_REGNUM,
8094 I386_ESP_REGNUM, I386_EBP_REGNUM, I386_ESI_REGNUM, I386_EDI_REGNUM,
8095 0, 0, 0, 0, 0, 0, 0, 0,
8096 I386_EIP_REGNUM, I386_EFLAGS_REGNUM, I386_CS_REGNUM, I386_SS_REGNUM,
8097 I386_DS_REGNUM, I386_ES_REGNUM, I386_FS_REGNUM, I386_GS_REGNUM
8098 };
8099
8100 /* Check that the given address appears suitable for a fast
8101 tracepoint, which on x86-64 means that we need an instruction of at
8102 least 5 bytes, so that we can overwrite it with a 4-byte-offset
8103 jump and not have to worry about program jumps to an address in the
8104 middle of the tracepoint jump. On x86, it may be possible to use
8105 4-byte jumps with a 2-byte offset to a trampoline located in the
8106 bottom 64 KiB of memory. Returns 1 if OK, and writes a size
8107 of instruction to replace, and 0 if not, plus an explanatory
8108 string. */
8109
8110 static int
8111 i386_fast_tracepoint_valid_at (struct gdbarch *gdbarch, CORE_ADDR addr,
8112 char **msg)
8113 {
8114 int len, jumplen;
8115 static struct ui_file *gdb_null = NULL;
8116
8117 /* Ask the target for the minimum instruction length supported. */
8118 jumplen = target_get_min_fast_tracepoint_insn_len ();
8119
8120 if (jumplen < 0)
8121 {
8122 /* If the target does not support the get_min_fast_tracepoint_insn_len
8123 operation, assume that fast tracepoints will always be implemented
8124 using 4-byte relative jumps on both x86 and x86-64. */
8125 jumplen = 5;
8126 }
8127 else if (jumplen == 0)
8128 {
8129 /* If the target does support get_min_fast_tracepoint_insn_len but
8130 returns zero, then the IPA has not loaded yet. In this case,
8131 we optimistically assume that truncated 2-byte relative jumps
8132 will be available on x86, and compensate later if this assumption
8133 turns out to be incorrect. On x86-64 architectures, 4-byte relative
8134 jumps will always be used. */
8135 jumplen = (register_size (gdbarch, 0) == 8) ? 5 : 4;
8136 }
8137
8138 /* Dummy file descriptor for the disassembler. */
8139 if (!gdb_null)
8140 gdb_null = ui_file_new ();
8141
8142 /* Check for fit. */
8143 len = gdb_print_insn (gdbarch, addr, gdb_null, NULL);
8144
8145 if (len < jumplen)
8146 {
8147 /* Return a bit of target-specific detail to add to the caller's
8148 generic failure message. */
8149 if (msg)
8150 *msg = xstrprintf (_("; instruction is only %d bytes long, "
8151 "need at least %d bytes for the jump"),
8152 len, jumplen);
8153 return 0;
8154 }
8155 else
8156 {
8157 if (msg)
8158 *msg = NULL;
8159 return 1;
8160 }
8161 }
8162
8163 static int
8164 i386_validate_tdesc_p (struct gdbarch_tdep *tdep,
8165 struct tdesc_arch_data *tdesc_data)
8166 {
8167 const struct target_desc *tdesc = tdep->tdesc;
8168 const struct tdesc_feature *feature_core;
8169
8170 const struct tdesc_feature *feature_sse, *feature_avx, *feature_mpx,
8171 *feature_avx512;
8172 int i, num_regs, valid_p;
8173
8174 if (! tdesc_has_registers (tdesc))
8175 return 0;
8176
8177 /* Get core registers. */
8178 feature_core = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.core");
8179 if (feature_core == NULL)
8180 return 0;
8181
8182 /* Get SSE registers. */
8183 feature_sse = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.sse");
8184
8185 /* Try AVX registers. */
8186 feature_avx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx");
8187
8188 /* Try MPX registers. */
8189 feature_mpx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx");
8190
8191 /* Try AVX512 registers. */
8192 feature_avx512 = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx512");
8193
8194 valid_p = 1;
8195
8196 /* The XCR0 bits. */
8197 if (feature_avx512)
8198 {
8199 /* AVX512 register description requires AVX register description. */
8200 if (!feature_avx)
8201 return 0;
8202
8203 tdep->xcr0 = X86_XSTATE_MPX_AVX512_MASK;
8204
8205 /* It may have been set by OSABI initialization function. */
8206 if (tdep->k0_regnum < 0)
8207 {
8208 tdep->k_register_names = i386_k_names;
8209 tdep->k0_regnum = I386_K0_REGNUM;
8210 }
8211
8212 for (i = 0; i < I387_NUM_K_REGS; i++)
8213 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8214 tdep->k0_regnum + i,
8215 i386_k_names[i]);
8216
8217 if (tdep->num_zmm_regs == 0)
8218 {
8219 tdep->zmmh_register_names = i386_zmmh_names;
8220 tdep->num_zmm_regs = 8;
8221 tdep->zmm0h_regnum = I386_ZMM0H_REGNUM;
8222 }
8223
8224 for (i = 0; i < tdep->num_zmm_regs; i++)
8225 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8226 tdep->zmm0h_regnum + i,
8227 tdep->zmmh_register_names[i]);
8228
8229 for (i = 0; i < tdep->num_xmm_avx512_regs; i++)
8230 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8231 tdep->xmm16_regnum + i,
8232 tdep->xmm_avx512_register_names[i]);
8233
8234 for (i = 0; i < tdep->num_ymm_avx512_regs; i++)
8235 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8236 tdep->ymm16h_regnum + i,
8237 tdep->ymm16h_register_names[i]);
8238 }
8239 if (feature_avx)
8240 {
8241 /* AVX register description requires SSE register description. */
8242 if (!feature_sse)
8243 return 0;
8244
8245 if (!feature_avx512)
8246 tdep->xcr0 = X86_XSTATE_AVX_MASK;
8247
8248 /* It may have been set by OSABI initialization function. */
8249 if (tdep->num_ymm_regs == 0)
8250 {
8251 tdep->ymmh_register_names = i386_ymmh_names;
8252 tdep->num_ymm_regs = 8;
8253 tdep->ymm0h_regnum = I386_YMM0H_REGNUM;
8254 }
8255
8256 for (i = 0; i < tdep->num_ymm_regs; i++)
8257 valid_p &= tdesc_numbered_register (feature_avx, tdesc_data,
8258 tdep->ymm0h_regnum + i,
8259 tdep->ymmh_register_names[i]);
8260 }
8261 else if (feature_sse)
8262 tdep->xcr0 = X86_XSTATE_SSE_MASK;
8263 else
8264 {
8265 tdep->xcr0 = X86_XSTATE_X87_MASK;
8266 tdep->num_xmm_regs = 0;
8267 }
8268
8269 num_regs = tdep->num_core_regs;
8270 for (i = 0; i < num_regs; i++)
8271 valid_p &= tdesc_numbered_register (feature_core, tdesc_data, i,
8272 tdep->register_names[i]);
8273
8274 if (feature_sse)
8275 {
8276 /* Need to include %mxcsr, so add one. */
8277 num_regs += tdep->num_xmm_regs + 1;
8278 for (; i < num_regs; i++)
8279 valid_p &= tdesc_numbered_register (feature_sse, tdesc_data, i,
8280 tdep->register_names[i]);
8281 }
8282
8283 if (feature_mpx)
8284 {
8285 tdep->xcr0 |= X86_XSTATE_MPX_MASK;
8286
8287 if (tdep->bnd0r_regnum < 0)
8288 {
8289 tdep->mpx_register_names = i386_mpx_names;
8290 tdep->bnd0r_regnum = I386_BND0R_REGNUM;
8291 tdep->bndcfgu_regnum = I386_BNDCFGU_REGNUM;
8292 }
8293
8294 for (i = 0; i < I387_NUM_MPX_REGS; i++)
8295 valid_p &= tdesc_numbered_register (feature_mpx, tdesc_data,
8296 I387_BND0R_REGNUM (tdep) + i,
8297 tdep->mpx_register_names[i]);
8298 }
8299
8300 return valid_p;
8301 }
8302
8303 \f
8304 static struct gdbarch *
8305 i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
8306 {
8307 struct gdbarch_tdep *tdep;
8308 struct gdbarch *gdbarch;
8309 struct tdesc_arch_data *tdesc_data;
8310 const struct target_desc *tdesc;
8311 int mm0_regnum;
8312 int ymm0_regnum;
8313 int bnd0_regnum;
8314 int num_bnd_cooked;
8315 int k0_regnum;
8316 int zmm0_regnum;
8317
8318 /* If there is already a candidate, use it. */
8319 arches = gdbarch_list_lookup_by_info (arches, &info);
8320 if (arches != NULL)
8321 return arches->gdbarch;
8322
8323 /* Allocate space for the new architecture. */
8324 tdep = XCNEW (struct gdbarch_tdep);
8325 gdbarch = gdbarch_alloc (&info, tdep);
8326
8327 /* General-purpose registers. */
8328 tdep->gregset_reg_offset = NULL;
8329 tdep->gregset_num_regs = I386_NUM_GREGS;
8330 tdep->sizeof_gregset = 0;
8331
8332 /* Floating-point registers. */
8333 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
8334 tdep->fpregset = &i386_fpregset;
8335
8336 /* The default settings include the FPU registers, the MMX registers
8337 and the SSE registers. This can be overridden for a specific ABI
8338 by adjusting the members `st0_regnum', `mm0_regnum' and
8339 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
8340 will show up in the output of "info all-registers". */
8341
8342 tdep->st0_regnum = I386_ST0_REGNUM;
8343
8344 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
8345 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
8346
8347 tdep->jb_pc_offset = -1;
8348 tdep->struct_return = pcc_struct_return;
8349 tdep->sigtramp_start = 0;
8350 tdep->sigtramp_end = 0;
8351 tdep->sigtramp_p = i386_sigtramp_p;
8352 tdep->sigcontext_addr = NULL;
8353 tdep->sc_reg_offset = NULL;
8354 tdep->sc_pc_offset = -1;
8355 tdep->sc_sp_offset = -1;
8356
8357 tdep->xsave_xcr0_offset = -1;
8358
8359 tdep->record_regmap = i386_record_regmap;
8360
8361 set_gdbarch_long_long_align_bit (gdbarch, 32);
8362
8363 /* The format used for `long double' on almost all i386 targets is
8364 the i387 extended floating-point format. In fact, of all targets
8365 in the GCC 2.95 tree, only OSF/1 does it different, and insists
8366 on having a `long double' that's not `long' at all. */
8367 set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext);
8368
8369 /* Although the i387 extended floating-point has only 80 significant
8370 bits, a `long double' actually takes up 96, probably to enforce
8371 alignment. */
8372 set_gdbarch_long_double_bit (gdbarch, 96);
8373
8374 /* Register numbers of various important registers. */
8375 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
8376 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
8377 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
8378 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
8379
8380 /* NOTE: kettenis/20040418: GCC does have two possible register
8381 numbering schemes on the i386: dbx and SVR4. These schemes
8382 differ in how they number %ebp, %esp, %eflags, and the
8383 floating-point registers, and are implemented by the arrays
8384 dbx_register_map[] and svr4_dbx_register_map in
8385 gcc/config/i386.c. GCC also defines a third numbering scheme in
8386 gcc/config/i386.c, which it designates as the "default" register
8387 map used in 64bit mode. This last register numbering scheme is
8388 implemented in dbx64_register_map, and is used for AMD64; see
8389 amd64-tdep.c.
8390
8391 Currently, each GCC i386 target always uses the same register
8392 numbering scheme across all its supported debugging formats
8393 i.e. SDB (COFF), stabs and DWARF 2. This is because
8394 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
8395 DBX_REGISTER_NUMBER macro which is defined by each target's
8396 respective config header in a manner independent of the requested
8397 output debugging format.
8398
8399 This does not match the arrangement below, which presumes that
8400 the SDB and stabs numbering schemes differ from the DWARF and
8401 DWARF 2 ones. The reason for this arrangement is that it is
8402 likely to get the numbering scheme for the target's
8403 default/native debug format right. For targets where GCC is the
8404 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
8405 targets where the native toolchain uses a different numbering
8406 scheme for a particular debug format (stabs-in-ELF on Solaris)
8407 the defaults below will have to be overridden, like
8408 i386_elf_init_abi() does. */
8409
8410 /* Use the dbx register numbering scheme for stabs and COFF. */
8411 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
8412 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
8413
8414 /* Use the SVR4 register numbering scheme for DWARF 2. */
8415 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_dwarf_reg_to_regnum);
8416
8417 /* We don't set gdbarch_stab_reg_to_regnum, since ECOFF doesn't seem to
8418 be in use on any of the supported i386 targets. */
8419
8420 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
8421
8422 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
8423
8424 /* Call dummy code. */
8425 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
8426 set_gdbarch_push_dummy_code (gdbarch, i386_push_dummy_code);
8427 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
8428 set_gdbarch_frame_align (gdbarch, i386_frame_align);
8429
8430 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
8431 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
8432 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
8433
8434 set_gdbarch_return_value (gdbarch, i386_return_value);
8435
8436 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
8437
8438 /* Stack grows downward. */
8439 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
8440
8441 set_gdbarch_breakpoint_from_pc (gdbarch, i386_breakpoint_from_pc);
8442 set_gdbarch_decr_pc_after_break (gdbarch, 1);
8443 set_gdbarch_max_insn_length (gdbarch, I386_MAX_INSN_LEN);
8444
8445 set_gdbarch_frame_args_skip (gdbarch, 8);
8446
8447 set_gdbarch_print_insn (gdbarch, i386_print_insn);
8448
8449 set_gdbarch_dummy_id (gdbarch, i386_dummy_id);
8450
8451 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
8452
8453 /* Add the i386 register groups. */
8454 i386_add_reggroups (gdbarch);
8455 tdep->register_reggroup_p = i386_register_reggroup_p;
8456
8457 /* Helper for function argument information. */
8458 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
8459
8460 /* Hook the function epilogue frame unwinder. This unwinder is
8461 appended to the list first, so that it supercedes the DWARF
8462 unwinder in function epilogues (where the DWARF unwinder
8463 currently fails). */
8464 frame_unwind_append_unwinder (gdbarch, &i386_epilogue_frame_unwind);
8465
8466 /* Hook in the DWARF CFI frame unwinder. This unwinder is appended
8467 to the list before the prologue-based unwinders, so that DWARF
8468 CFI info will be used if it is available. */
8469 dwarf2_append_unwinders (gdbarch);
8470
8471 frame_base_set_default (gdbarch, &i386_frame_base);
8472
8473 /* Pseudo registers may be changed by amd64_init_abi. */
8474 set_gdbarch_pseudo_register_read_value (gdbarch,
8475 i386_pseudo_register_read_value);
8476 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
8477 set_gdbarch_ax_pseudo_register_collect (gdbarch,
8478 i386_ax_pseudo_register_collect);
8479
8480 set_tdesc_pseudo_register_type (gdbarch, i386_pseudo_register_type);
8481 set_tdesc_pseudo_register_name (gdbarch, i386_pseudo_register_name);
8482
8483 /* Override the normal target description method to make the AVX
8484 upper halves anonymous. */
8485 set_gdbarch_register_name (gdbarch, i386_register_name);
8486
8487 /* Even though the default ABI only includes general-purpose registers,
8488 floating-point registers and the SSE registers, we have to leave a
8489 gap for the upper AVX, MPX and AVX512 registers. */
8490 set_gdbarch_num_regs (gdbarch, I386_AVX512_NUM_REGS);
8491
8492 set_gdbarch_gnu_triplet_regexp (gdbarch, i386_gnu_triplet_regexp);
8493
8494 /* Get the x86 target description from INFO. */
8495 tdesc = info.target_desc;
8496 if (! tdesc_has_registers (tdesc))
8497 tdesc = tdesc_i386;
8498 tdep->tdesc = tdesc;
8499
8500 tdep->num_core_regs = I386_NUM_GREGS + I387_NUM_REGS;
8501 tdep->register_names = i386_register_names;
8502
8503 /* No upper YMM registers. */
8504 tdep->ymmh_register_names = NULL;
8505 tdep->ymm0h_regnum = -1;
8506
8507 /* No upper ZMM registers. */
8508 tdep->zmmh_register_names = NULL;
8509 tdep->zmm0h_regnum = -1;
8510
8511 /* No high XMM registers. */
8512 tdep->xmm_avx512_register_names = NULL;
8513 tdep->xmm16_regnum = -1;
8514
8515 /* No upper YMM16-31 registers. */
8516 tdep->ymm16h_register_names = NULL;
8517 tdep->ymm16h_regnum = -1;
8518
8519 tdep->num_byte_regs = 8;
8520 tdep->num_word_regs = 8;
8521 tdep->num_dword_regs = 0;
8522 tdep->num_mmx_regs = 8;
8523 tdep->num_ymm_regs = 0;
8524
8525 /* No MPX registers. */
8526 tdep->bnd0r_regnum = -1;
8527 tdep->bndcfgu_regnum = -1;
8528
8529 /* No AVX512 registers. */
8530 tdep->k0_regnum = -1;
8531 tdep->num_zmm_regs = 0;
8532 tdep->num_ymm_avx512_regs = 0;
8533 tdep->num_xmm_avx512_regs = 0;
8534
8535 tdesc_data = tdesc_data_alloc ();
8536
8537 set_gdbarch_relocate_instruction (gdbarch, i386_relocate_instruction);
8538
8539 set_gdbarch_gen_return_address (gdbarch, i386_gen_return_address);
8540
8541 set_gdbarch_insn_is_call (gdbarch, i386_insn_is_call);
8542 set_gdbarch_insn_is_ret (gdbarch, i386_insn_is_ret);
8543 set_gdbarch_insn_is_jump (gdbarch, i386_insn_is_jump);
8544
8545 /* Hook in ABI-specific overrides, if they have been registered. */
8546 info.tdep_info = tdesc_data;
8547 gdbarch_init_osabi (info, gdbarch);
8548
8549 if (!i386_validate_tdesc_p (tdep, tdesc_data))
8550 {
8551 tdesc_data_cleanup (tdesc_data);
8552 xfree (tdep);
8553 gdbarch_free (gdbarch);
8554 return NULL;
8555 }
8556
8557 num_bnd_cooked = (tdep->bnd0r_regnum > 0 ? I387_NUM_BND_REGS : 0);
8558
8559 /* Wire in pseudo registers. Number of pseudo registers may be
8560 changed. */
8561 set_gdbarch_num_pseudo_regs (gdbarch, (tdep->num_byte_regs
8562 + tdep->num_word_regs
8563 + tdep->num_dword_regs
8564 + tdep->num_mmx_regs
8565 + tdep->num_ymm_regs
8566 + num_bnd_cooked
8567 + tdep->num_ymm_avx512_regs
8568 + tdep->num_zmm_regs));
8569
8570 /* Target description may be changed. */
8571 tdesc = tdep->tdesc;
8572
8573 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
8574
8575 /* Override gdbarch_register_reggroup_p set in tdesc_use_registers. */
8576 set_gdbarch_register_reggroup_p (gdbarch, tdep->register_reggroup_p);
8577
8578 /* Make %al the first pseudo-register. */
8579 tdep->al_regnum = gdbarch_num_regs (gdbarch);
8580 tdep->ax_regnum = tdep->al_regnum + tdep->num_byte_regs;
8581
8582 ymm0_regnum = tdep->ax_regnum + tdep->num_word_regs;
8583 if (tdep->num_dword_regs)
8584 {
8585 /* Support dword pseudo-register if it hasn't been disabled. */
8586 tdep->eax_regnum = ymm0_regnum;
8587 ymm0_regnum += tdep->num_dword_regs;
8588 }
8589 else
8590 tdep->eax_regnum = -1;
8591
8592 mm0_regnum = ymm0_regnum;
8593 if (tdep->num_ymm_regs)
8594 {
8595 /* Support YMM pseudo-register if it is available. */
8596 tdep->ymm0_regnum = ymm0_regnum;
8597 mm0_regnum += tdep->num_ymm_regs;
8598 }
8599 else
8600 tdep->ymm0_regnum = -1;
8601
8602 if (tdep->num_ymm_avx512_regs)
8603 {
8604 /* Support YMM16-31 pseudo registers if available. */
8605 tdep->ymm16_regnum = mm0_regnum;
8606 mm0_regnum += tdep->num_ymm_avx512_regs;
8607 }
8608 else
8609 tdep->ymm16_regnum = -1;
8610
8611 if (tdep->num_zmm_regs)
8612 {
8613 /* Support ZMM pseudo-register if it is available. */
8614 tdep->zmm0_regnum = mm0_regnum;
8615 mm0_regnum += tdep->num_zmm_regs;
8616 }
8617 else
8618 tdep->zmm0_regnum = -1;
8619
8620 bnd0_regnum = mm0_regnum;
8621 if (tdep->num_mmx_regs != 0)
8622 {
8623 /* Support MMX pseudo-register if MMX hasn't been disabled. */
8624 tdep->mm0_regnum = mm0_regnum;
8625 bnd0_regnum += tdep->num_mmx_regs;
8626 }
8627 else
8628 tdep->mm0_regnum = -1;
8629
8630 if (tdep->bnd0r_regnum > 0)
8631 tdep->bnd0_regnum = bnd0_regnum;
8632 else
8633 tdep-> bnd0_regnum = -1;
8634
8635 /* Hook in the legacy prologue-based unwinders last (fallback). */
8636 frame_unwind_append_unwinder (gdbarch, &i386_stack_tramp_frame_unwind);
8637 frame_unwind_append_unwinder (gdbarch, &i386_sigtramp_frame_unwind);
8638 frame_unwind_append_unwinder (gdbarch, &i386_frame_unwind);
8639
8640 /* If we have a register mapping, enable the generic core file
8641 support, unless it has already been enabled. */
8642 if (tdep->gregset_reg_offset
8643 && !gdbarch_iterate_over_regset_sections_p (gdbarch))
8644 set_gdbarch_iterate_over_regset_sections
8645 (gdbarch, i386_iterate_over_regset_sections);
8646
8647 set_gdbarch_fast_tracepoint_valid_at (gdbarch,
8648 i386_fast_tracepoint_valid_at);
8649
8650 return gdbarch;
8651 }
8652
8653 static enum gdb_osabi
8654 i386_coff_osabi_sniffer (bfd *abfd)
8655 {
8656 if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
8657 || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
8658 return GDB_OSABI_GO32;
8659
8660 return GDB_OSABI_UNKNOWN;
8661 }
8662 \f
8663
8664 /* Return the target description for a specified XSAVE feature mask. */
8665
8666 const struct target_desc *
8667 i386_target_description (uint64_t xcr0)
8668 {
8669 switch (xcr0 & X86_XSTATE_ALL_MASK)
8670 {
8671 case X86_XSTATE_MPX_AVX512_MASK:
8672 case X86_XSTATE_AVX512_MASK:
8673 return tdesc_i386_avx512;
8674 case X86_XSTATE_MPX_MASK:
8675 return tdesc_i386_mpx;
8676 case X86_XSTATE_AVX_MASK:
8677 return tdesc_i386_avx;
8678 default:
8679 return tdesc_i386;
8680 }
8681 }
8682
8683 #define MPX_BASE_MASK (~(ULONGEST) 0xfff)
8684
8685 /* Find the bound directory base address. */
8686
8687 static unsigned long
8688 i386_mpx_bd_base (void)
8689 {
8690 struct regcache *rcache;
8691 struct gdbarch_tdep *tdep;
8692 ULONGEST ret;
8693 enum register_status regstatus;
8694 struct gdb_exception except;
8695
8696 rcache = get_current_regcache ();
8697 tdep = gdbarch_tdep (get_regcache_arch (rcache));
8698
8699 regstatus = regcache_raw_read_unsigned (rcache, tdep->bndcfgu_regnum, &ret);
8700
8701 if (regstatus != REG_VALID)
8702 error (_("BNDCFGU register invalid, read status %d."), regstatus);
8703
8704 return ret & MPX_BASE_MASK;
8705 }
8706
8707 int
8708 i386_mpx_enabled (void)
8709 {
8710 const struct gdbarch_tdep *tdep = gdbarch_tdep (get_current_arch ());
8711 const struct target_desc *tdesc = tdep->tdesc;
8712
8713 return (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx") != NULL);
8714 }
8715
8716 #define MPX_BD_MASK 0xfffffff00000ULL /* select bits [47:20] */
8717 #define MPX_BT_MASK 0x0000000ffff8 /* select bits [19:3] */
8718 #define MPX_BD_MASK_32 0xfffff000 /* select bits [31:12] */
8719 #define MPX_BT_MASK_32 0x00000ffc /* select bits [11:2] */
8720
8721 /* Find the bound table entry given the pointer location and the base
8722 address of the table. */
8723
8724 static CORE_ADDR
8725 i386_mpx_get_bt_entry (CORE_ADDR ptr, CORE_ADDR bd_base)
8726 {
8727 CORE_ADDR offset1;
8728 CORE_ADDR offset2;
8729 CORE_ADDR mpx_bd_mask, bd_ptr_r_shift, bd_ptr_l_shift;
8730 CORE_ADDR bt_mask, bt_select_r_shift, bt_select_l_shift;
8731 CORE_ADDR bd_entry_addr;
8732 CORE_ADDR bt_addr;
8733 CORE_ADDR bd_entry;
8734 struct gdbarch *gdbarch = get_current_arch ();
8735 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8736
8737
8738 if (gdbarch_ptr_bit (gdbarch) == 64)
8739 {
8740 mpx_bd_mask = (CORE_ADDR) MPX_BD_MASK;
8741 bd_ptr_r_shift = 20;
8742 bd_ptr_l_shift = 3;
8743 bt_select_r_shift = 3;
8744 bt_select_l_shift = 5;
8745 bt_mask = (CORE_ADDR) MPX_BT_MASK;
8746
8747 if ( sizeof (CORE_ADDR) == 4)
8748 error (_("bound table examination not supported\
8749 for 64-bit process with 32-bit GDB"));
8750 }
8751 else
8752 {
8753 mpx_bd_mask = MPX_BD_MASK_32;
8754 bd_ptr_r_shift = 12;
8755 bd_ptr_l_shift = 2;
8756 bt_select_r_shift = 2;
8757 bt_select_l_shift = 4;
8758 bt_mask = MPX_BT_MASK_32;
8759 }
8760
8761 offset1 = ((ptr & mpx_bd_mask) >> bd_ptr_r_shift) << bd_ptr_l_shift;
8762 bd_entry_addr = bd_base + offset1;
8763 bd_entry = read_memory_typed_address (bd_entry_addr, data_ptr_type);
8764
8765 if ((bd_entry & 0x1) == 0)
8766 error (_("Invalid bounds directory entry at %s."),
8767 paddress (get_current_arch (), bd_entry_addr));
8768
8769 /* Clearing status bit. */
8770 bd_entry--;
8771 bt_addr = bd_entry & ~bt_select_r_shift;
8772 offset2 = ((ptr & bt_mask) >> bt_select_r_shift) << bt_select_l_shift;
8773
8774 return bt_addr + offset2;
8775 }
8776
8777 /* Print routine for the mpx bounds. */
8778
8779 static void
8780 i386_mpx_print_bounds (const CORE_ADDR bt_entry[4])
8781 {
8782 struct ui_out *uiout = current_uiout;
8783 LONGEST size;
8784 struct gdbarch *gdbarch = get_current_arch ();
8785 CORE_ADDR onecompl = ~((CORE_ADDR) 0);
8786 int bounds_in_map = ((~bt_entry[1] == 0 && bt_entry[0] == onecompl) ? 1 : 0);
8787
8788 if (bounds_in_map == 1)
8789 {
8790 ui_out_text (uiout, "Null bounds on map:");
8791 ui_out_text (uiout, " pointer value = ");
8792 ui_out_field_core_addr (uiout, "pointer-value", gdbarch, bt_entry[2]);
8793 ui_out_text (uiout, ".");
8794 ui_out_text (uiout, "\n");
8795 }
8796 else
8797 {
8798 ui_out_text (uiout, "{lbound = ");
8799 ui_out_field_core_addr (uiout, "lower-bound", gdbarch, bt_entry[0]);
8800 ui_out_text (uiout, ", ubound = ");
8801
8802 /* The upper bound is stored in 1's complement. */
8803 ui_out_field_core_addr (uiout, "upper-bound", gdbarch, ~bt_entry[1]);
8804 ui_out_text (uiout, "}: pointer value = ");
8805 ui_out_field_core_addr (uiout, "pointer-value", gdbarch, bt_entry[2]);
8806
8807 if (gdbarch_ptr_bit (gdbarch) == 64)
8808 size = ( (~(int64_t) bt_entry[1]) - (int64_t) bt_entry[0]);
8809 else
8810 size = ( ~((int32_t) bt_entry[1]) - (int32_t) bt_entry[0]);
8811
8812 /* In case the bounds are 0x0 and 0xffff... the difference will be -1.
8813 -1 represents in this sense full memory access, and there is no need
8814 one to the size. */
8815
8816 size = (size > -1 ? size + 1 : size);
8817 ui_out_text (uiout, ", size = ");
8818 ui_out_field_fmt (uiout, "size", "%s", plongest (size));
8819
8820 ui_out_text (uiout, ", metadata = ");
8821 ui_out_field_core_addr (uiout, "metadata", gdbarch, bt_entry[3]);
8822 ui_out_text (uiout, "\n");
8823 }
8824 }
8825
8826 /* Implement the command "show mpx bound". */
8827
8828 static void
8829 i386_mpx_info_bounds (char *args, int from_tty)
8830 {
8831 CORE_ADDR bd_base = 0;
8832 CORE_ADDR addr;
8833 CORE_ADDR bt_entry_addr = 0;
8834 CORE_ADDR bt_entry[4];
8835 int i;
8836 struct gdbarch *gdbarch = get_current_arch ();
8837 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8838
8839 if (!i386_mpx_enabled ())
8840 {
8841 printf_unfiltered (_("Intel Memory Protection Extensions not "
8842 "supported on this target.\n"));
8843 return;
8844 }
8845
8846 if (args == NULL)
8847 {
8848 printf_unfiltered (_("Address of pointer variable expected.\n"));
8849 return;
8850 }
8851
8852 addr = parse_and_eval_address (args);
8853
8854 bd_base = i386_mpx_bd_base ();
8855 bt_entry_addr = i386_mpx_get_bt_entry (addr, bd_base);
8856
8857 memset (bt_entry, 0, sizeof (bt_entry));
8858
8859 for (i = 0; i < 4; i++)
8860 bt_entry[i] = read_memory_typed_address (bt_entry_addr
8861 + i * TYPE_LENGTH (data_ptr_type),
8862 data_ptr_type);
8863
8864 i386_mpx_print_bounds (bt_entry);
8865 }
8866
8867 /* Implement the command "set mpx bound". */
8868
8869 static void
8870 i386_mpx_set_bounds (char *args, int from_tty)
8871 {
8872 CORE_ADDR bd_base = 0;
8873 CORE_ADDR addr, lower, upper;
8874 CORE_ADDR bt_entry_addr = 0;
8875 CORE_ADDR bt_entry[2];
8876 const char *input = args;
8877 int i;
8878 struct gdbarch *gdbarch = get_current_arch ();
8879 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
8880 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8881
8882 if (!i386_mpx_enabled ())
8883 error (_("Intel Memory Protection Extensions not supported\
8884 on this target."));
8885
8886 if (args == NULL)
8887 error (_("Pointer value expected."));
8888
8889 addr = value_as_address (parse_to_comma_and_eval (&input));
8890
8891 if (input[0] == ',')
8892 ++input;
8893 if (input[0] == '\0')
8894 error (_("wrong number of arguments: missing lower and upper bound."));
8895 lower = value_as_address (parse_to_comma_and_eval (&input));
8896
8897 if (input[0] == ',')
8898 ++input;
8899 if (input[0] == '\0')
8900 error (_("Wrong number of arguments; Missing upper bound."));
8901 upper = value_as_address (parse_to_comma_and_eval (&input));
8902
8903 bd_base = i386_mpx_bd_base ();
8904 bt_entry_addr = i386_mpx_get_bt_entry (addr, bd_base);
8905 for (i = 0; i < 2; i++)
8906 bt_entry[i] = read_memory_typed_address (bt_entry_addr
8907 + i * TYPE_LENGTH (data_ptr_type),
8908 data_ptr_type);
8909 bt_entry[0] = (uint64_t) lower;
8910 bt_entry[1] = ~(uint64_t) upper;
8911
8912 for (i = 0; i < 2; i++)
8913 write_memory_unsigned_integer (bt_entry_addr
8914 + i * TYPE_LENGTH (data_ptr_type),
8915 TYPE_LENGTH (data_ptr_type), byte_order,
8916 bt_entry[i]);
8917 }
8918
8919 static struct cmd_list_element *mpx_set_cmdlist, *mpx_show_cmdlist;
8920
8921 /* Helper function for the CLI commands. */
8922
8923 static void
8924 set_mpx_cmd (char *args, int from_tty)
8925 {
8926 help_list (mpx_set_cmdlist, "set mpx ", all_commands, gdb_stdout);
8927 }
8928
8929 /* Helper function for the CLI commands. */
8930
8931 static void
8932 show_mpx_cmd (char *args, int from_tty)
8933 {
8934 cmd_show_list (mpx_show_cmdlist, from_tty, "");
8935 }
8936
8937 /* Provide a prototype to silence -Wmissing-prototypes. */
8938 void _initialize_i386_tdep (void);
8939
8940 void
8941 _initialize_i386_tdep (void)
8942 {
8943 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
8944
8945 /* Add the variable that controls the disassembly flavor. */
8946 add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
8947 &disassembly_flavor, _("\
8948 Set the disassembly flavor."), _("\
8949 Show the disassembly flavor."), _("\
8950 The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
8951 NULL,
8952 NULL, /* FIXME: i18n: */
8953 &setlist, &showlist);
8954
8955 /* Add the variable that controls the convention for returning
8956 structs. */
8957 add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
8958 &struct_convention, _("\
8959 Set the convention for returning small structs."), _("\
8960 Show the convention for returning small structs."), _("\
8961 Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
8962 is \"default\"."),
8963 NULL,
8964 NULL, /* FIXME: i18n: */
8965 &setlist, &showlist);
8966
8967 /* Add "mpx" prefix for the set commands. */
8968
8969 add_prefix_cmd ("mpx", class_support, set_mpx_cmd, _("\
8970 Set Intel Memory Protection Extensions specific variables."),
8971 &mpx_set_cmdlist, "set mpx ",
8972 0 /* allow-unknown */, &setlist);
8973
8974 /* Add "mpx" prefix for the show commands. */
8975
8976 add_prefix_cmd ("mpx", class_support, show_mpx_cmd, _("\
8977 Show Intel Memory Protection Extensions specific variables."),
8978 &mpx_show_cmdlist, "show mpx ",
8979 0 /* allow-unknown */, &showlist);
8980
8981 /* Add "bound" command for the show mpx commands list. */
8982
8983 add_cmd ("bound", no_class, i386_mpx_info_bounds,
8984 "Show the memory bounds for a given array/pointer storage\
8985 in the bound table.",
8986 &mpx_show_cmdlist);
8987
8988 /* Add "bound" command for the set mpx commands list. */
8989
8990 add_cmd ("bound", no_class, i386_mpx_set_bounds,
8991 "Set the memory bounds for a given array/pointer storage\
8992 in the bound table.",
8993 &mpx_set_cmdlist);
8994
8995 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
8996 i386_coff_osabi_sniffer);
8997
8998 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
8999 i386_svr4_init_abi);
9000 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_GO32,
9001 i386_go32_init_abi);
9002
9003 /* Initialize the i386-specific register groups. */
9004 i386_init_reggroups ();
9005
9006 /* Initialize the standard target descriptions. */
9007 initialize_tdesc_i386 ();
9008 initialize_tdesc_i386_mmx ();
9009 initialize_tdesc_i386_avx ();
9010 initialize_tdesc_i386_mpx ();
9011 initialize_tdesc_i386_avx512 ();
9012
9013 /* Tell remote stub that we support XML target description. */
9014 register_remote_support_xml ("i386");
9015 }
This page took 0.223882 seconds and 4 git commands to generate.