AArch64: Refactor verifiers to make more general.
[deliverable/binutils-gdb.git] / gdb / i386-tdep.c
1 /* Intel 386 target-dependent stuff.
2
3 Copyright (C) 1988-2018 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "opcode/i386.h"
22 #include "arch-utils.h"
23 #include "command.h"
24 #include "dummy-frame.h"
25 #include "dwarf2-frame.h"
26 #include "frame.h"
27 #include "frame-base.h"
28 #include "frame-unwind.h"
29 #include "inferior.h"
30 #include "infrun.h"
31 #include "gdbcmd.h"
32 #include "gdbcore.h"
33 #include "gdbtypes.h"
34 #include "objfiles.h"
35 #include "osabi.h"
36 #include "regcache.h"
37 #include "reggroups.h"
38 #include "regset.h"
39 #include "symfile.h"
40 #include "symtab.h"
41 #include "target.h"
42 #include "target-float.h"
43 #include "value.h"
44 #include "dis-asm.h"
45 #include "disasm.h"
46 #include "remote.h"
47 #include "i386-tdep.h"
48 #include "i387-tdep.h"
49 #include "x86-xstate.h"
50 #include "x86-tdep.h"
51
52 #include "record.h"
53 #include "record-full.h"
54 #include "target-descriptions.h"
55 #include "arch/i386.h"
56
57 #include "ax.h"
58 #include "ax-gdb.h"
59
60 #include "stap-probe.h"
61 #include "user-regs.h"
62 #include "cli/cli-utils.h"
63 #include "expression.h"
64 #include "parser-defs.h"
65 #include <ctype.h>
66 #include <algorithm>
67
68 /* Register names. */
69
70 static const char *i386_register_names[] =
71 {
72 "eax", "ecx", "edx", "ebx",
73 "esp", "ebp", "esi", "edi",
74 "eip", "eflags", "cs", "ss",
75 "ds", "es", "fs", "gs",
76 "st0", "st1", "st2", "st3",
77 "st4", "st5", "st6", "st7",
78 "fctrl", "fstat", "ftag", "fiseg",
79 "fioff", "foseg", "fooff", "fop",
80 "xmm0", "xmm1", "xmm2", "xmm3",
81 "xmm4", "xmm5", "xmm6", "xmm7",
82 "mxcsr"
83 };
84
85 static const char *i386_zmm_names[] =
86 {
87 "zmm0", "zmm1", "zmm2", "zmm3",
88 "zmm4", "zmm5", "zmm6", "zmm7"
89 };
90
91 static const char *i386_zmmh_names[] =
92 {
93 "zmm0h", "zmm1h", "zmm2h", "zmm3h",
94 "zmm4h", "zmm5h", "zmm6h", "zmm7h"
95 };
96
97 static const char *i386_k_names[] =
98 {
99 "k0", "k1", "k2", "k3",
100 "k4", "k5", "k6", "k7"
101 };
102
103 static const char *i386_ymm_names[] =
104 {
105 "ymm0", "ymm1", "ymm2", "ymm3",
106 "ymm4", "ymm5", "ymm6", "ymm7",
107 };
108
109 static const char *i386_ymmh_names[] =
110 {
111 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
112 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
113 };
114
115 static const char *i386_mpx_names[] =
116 {
117 "bnd0raw", "bnd1raw", "bnd2raw", "bnd3raw", "bndcfgu", "bndstatus"
118 };
119
120 static const char* i386_pkeys_names[] =
121 {
122 "pkru"
123 };
124
125 /* Register names for MPX pseudo-registers. */
126
127 static const char *i386_bnd_names[] =
128 {
129 "bnd0", "bnd1", "bnd2", "bnd3"
130 };
131
132 /* Register names for MMX pseudo-registers. */
133
134 static const char *i386_mmx_names[] =
135 {
136 "mm0", "mm1", "mm2", "mm3",
137 "mm4", "mm5", "mm6", "mm7"
138 };
139
140 /* Register names for byte pseudo-registers. */
141
142 static const char *i386_byte_names[] =
143 {
144 "al", "cl", "dl", "bl",
145 "ah", "ch", "dh", "bh"
146 };
147
148 /* Register names for word pseudo-registers. */
149
150 static const char *i386_word_names[] =
151 {
152 "ax", "cx", "dx", "bx",
153 "", "bp", "si", "di"
154 };
155
156 /* Constant used for reading/writing pseudo registers. In 64-bit mode, we have
157 16 lower ZMM regs that extend corresponding xmm/ymm registers. In addition,
158 we have 16 upper ZMM regs that have to be handled differently. */
159
160 const int num_lower_zmm_regs = 16;
161
162 /* MMX register? */
163
164 static int
165 i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
166 {
167 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
168 int mm0_regnum = tdep->mm0_regnum;
169
170 if (mm0_regnum < 0)
171 return 0;
172
173 regnum -= mm0_regnum;
174 return regnum >= 0 && regnum < tdep->num_mmx_regs;
175 }
176
177 /* Byte register? */
178
179 int
180 i386_byte_regnum_p (struct gdbarch *gdbarch, int regnum)
181 {
182 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
183
184 regnum -= tdep->al_regnum;
185 return regnum >= 0 && regnum < tdep->num_byte_regs;
186 }
187
188 /* Word register? */
189
190 int
191 i386_word_regnum_p (struct gdbarch *gdbarch, int regnum)
192 {
193 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
194
195 regnum -= tdep->ax_regnum;
196 return regnum >= 0 && regnum < tdep->num_word_regs;
197 }
198
199 /* Dword register? */
200
201 int
202 i386_dword_regnum_p (struct gdbarch *gdbarch, int regnum)
203 {
204 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
205 int eax_regnum = tdep->eax_regnum;
206
207 if (eax_regnum < 0)
208 return 0;
209
210 regnum -= eax_regnum;
211 return regnum >= 0 && regnum < tdep->num_dword_regs;
212 }
213
214 /* AVX512 register? */
215
216 int
217 i386_zmmh_regnum_p (struct gdbarch *gdbarch, int regnum)
218 {
219 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
220 int zmm0h_regnum = tdep->zmm0h_regnum;
221
222 if (zmm0h_regnum < 0)
223 return 0;
224
225 regnum -= zmm0h_regnum;
226 return regnum >= 0 && regnum < tdep->num_zmm_regs;
227 }
228
229 int
230 i386_zmm_regnum_p (struct gdbarch *gdbarch, int regnum)
231 {
232 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
233 int zmm0_regnum = tdep->zmm0_regnum;
234
235 if (zmm0_regnum < 0)
236 return 0;
237
238 regnum -= zmm0_regnum;
239 return regnum >= 0 && regnum < tdep->num_zmm_regs;
240 }
241
242 int
243 i386_k_regnum_p (struct gdbarch *gdbarch, int regnum)
244 {
245 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
246 int k0_regnum = tdep->k0_regnum;
247
248 if (k0_regnum < 0)
249 return 0;
250
251 regnum -= k0_regnum;
252 return regnum >= 0 && regnum < I387_NUM_K_REGS;
253 }
254
255 static int
256 i386_ymmh_regnum_p (struct gdbarch *gdbarch, int regnum)
257 {
258 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
259 int ymm0h_regnum = tdep->ymm0h_regnum;
260
261 if (ymm0h_regnum < 0)
262 return 0;
263
264 regnum -= ymm0h_regnum;
265 return regnum >= 0 && regnum < tdep->num_ymm_regs;
266 }
267
268 /* AVX register? */
269
270 int
271 i386_ymm_regnum_p (struct gdbarch *gdbarch, int regnum)
272 {
273 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
274 int ymm0_regnum = tdep->ymm0_regnum;
275
276 if (ymm0_regnum < 0)
277 return 0;
278
279 regnum -= ymm0_regnum;
280 return regnum >= 0 && regnum < tdep->num_ymm_regs;
281 }
282
283 static int
284 i386_ymmh_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
285 {
286 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
287 int ymm16h_regnum = tdep->ymm16h_regnum;
288
289 if (ymm16h_regnum < 0)
290 return 0;
291
292 regnum -= ymm16h_regnum;
293 return regnum >= 0 && regnum < tdep->num_ymm_avx512_regs;
294 }
295
296 int
297 i386_ymm_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
298 {
299 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
300 int ymm16_regnum = tdep->ymm16_regnum;
301
302 if (ymm16_regnum < 0)
303 return 0;
304
305 regnum -= ymm16_regnum;
306 return regnum >= 0 && regnum < tdep->num_ymm_avx512_regs;
307 }
308
309 /* BND register? */
310
311 int
312 i386_bnd_regnum_p (struct gdbarch *gdbarch, int regnum)
313 {
314 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
315 int bnd0_regnum = tdep->bnd0_regnum;
316
317 if (bnd0_regnum < 0)
318 return 0;
319
320 regnum -= bnd0_regnum;
321 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
322 }
323
324 /* SSE register? */
325
326 int
327 i386_xmm_regnum_p (struct gdbarch *gdbarch, int regnum)
328 {
329 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
330 int num_xmm_regs = I387_NUM_XMM_REGS (tdep);
331
332 if (num_xmm_regs == 0)
333 return 0;
334
335 regnum -= I387_XMM0_REGNUM (tdep);
336 return regnum >= 0 && regnum < num_xmm_regs;
337 }
338
339 /* XMM_512 register? */
340
341 int
342 i386_xmm_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
343 {
344 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
345 int num_xmm_avx512_regs = I387_NUM_XMM_AVX512_REGS (tdep);
346
347 if (num_xmm_avx512_regs == 0)
348 return 0;
349
350 regnum -= I387_XMM16_REGNUM (tdep);
351 return regnum >= 0 && regnum < num_xmm_avx512_regs;
352 }
353
354 static int
355 i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
356 {
357 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
358
359 if (I387_NUM_XMM_REGS (tdep) == 0)
360 return 0;
361
362 return (regnum == I387_MXCSR_REGNUM (tdep));
363 }
364
365 /* FP register? */
366
367 int
368 i386_fp_regnum_p (struct gdbarch *gdbarch, int regnum)
369 {
370 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
371
372 if (I387_ST0_REGNUM (tdep) < 0)
373 return 0;
374
375 return (I387_ST0_REGNUM (tdep) <= regnum
376 && regnum < I387_FCTRL_REGNUM (tdep));
377 }
378
379 int
380 i386_fpc_regnum_p (struct gdbarch *gdbarch, int regnum)
381 {
382 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
383
384 if (I387_ST0_REGNUM (tdep) < 0)
385 return 0;
386
387 return (I387_FCTRL_REGNUM (tdep) <= regnum
388 && regnum < I387_XMM0_REGNUM (tdep));
389 }
390
391 /* BNDr (raw) register? */
392
393 static int
394 i386_bndr_regnum_p (struct gdbarch *gdbarch, int regnum)
395 {
396 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
397
398 if (I387_BND0R_REGNUM (tdep) < 0)
399 return 0;
400
401 regnum -= tdep->bnd0r_regnum;
402 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
403 }
404
405 /* BND control register? */
406
407 static int
408 i386_mpx_ctrl_regnum_p (struct gdbarch *gdbarch, int regnum)
409 {
410 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
411
412 if (I387_BNDCFGU_REGNUM (tdep) < 0)
413 return 0;
414
415 regnum -= I387_BNDCFGU_REGNUM (tdep);
416 return regnum >= 0 && regnum < I387_NUM_MPX_CTRL_REGS;
417 }
418
419 /* PKRU register? */
420
421 bool
422 i386_pkru_regnum_p (struct gdbarch *gdbarch, int regnum)
423 {
424 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
425 int pkru_regnum = tdep->pkru_regnum;
426
427 if (pkru_regnum < 0)
428 return false;
429
430 regnum -= pkru_regnum;
431 return regnum >= 0 && regnum < I387_NUM_PKEYS_REGS;
432 }
433
434 /* Return the name of register REGNUM, or the empty string if it is
435 an anonymous register. */
436
437 static const char *
438 i386_register_name (struct gdbarch *gdbarch, int regnum)
439 {
440 /* Hide the upper YMM registers. */
441 if (i386_ymmh_regnum_p (gdbarch, regnum))
442 return "";
443
444 /* Hide the upper YMM16-31 registers. */
445 if (i386_ymmh_avx512_regnum_p (gdbarch, regnum))
446 return "";
447
448 /* Hide the upper ZMM registers. */
449 if (i386_zmmh_regnum_p (gdbarch, regnum))
450 return "";
451
452 return tdesc_register_name (gdbarch, regnum);
453 }
454
455 /* Return the name of register REGNUM. */
456
457 const char *
458 i386_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
459 {
460 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
461 if (i386_bnd_regnum_p (gdbarch, regnum))
462 return i386_bnd_names[regnum - tdep->bnd0_regnum];
463 if (i386_mmx_regnum_p (gdbarch, regnum))
464 return i386_mmx_names[regnum - I387_MM0_REGNUM (tdep)];
465 else if (i386_ymm_regnum_p (gdbarch, regnum))
466 return i386_ymm_names[regnum - tdep->ymm0_regnum];
467 else if (i386_zmm_regnum_p (gdbarch, regnum))
468 return i386_zmm_names[regnum - tdep->zmm0_regnum];
469 else if (i386_byte_regnum_p (gdbarch, regnum))
470 return i386_byte_names[regnum - tdep->al_regnum];
471 else if (i386_word_regnum_p (gdbarch, regnum))
472 return i386_word_names[regnum - tdep->ax_regnum];
473
474 internal_error (__FILE__, __LINE__, _("invalid regnum"));
475 }
476
477 /* Convert a dbx register number REG to the appropriate register
478 number used by GDB. */
479
480 static int
481 i386_dbx_reg_to_regnum (struct gdbarch *gdbarch, int reg)
482 {
483 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
484
485 /* This implements what GCC calls the "default" register map
486 (dbx_register_map[]). */
487
488 if (reg >= 0 && reg <= 7)
489 {
490 /* General-purpose registers. The debug info calls %ebp
491 register 4, and %esp register 5. */
492 if (reg == 4)
493 return 5;
494 else if (reg == 5)
495 return 4;
496 else return reg;
497 }
498 else if (reg >= 12 && reg <= 19)
499 {
500 /* Floating-point registers. */
501 return reg - 12 + I387_ST0_REGNUM (tdep);
502 }
503 else if (reg >= 21 && reg <= 28)
504 {
505 /* SSE registers. */
506 int ymm0_regnum = tdep->ymm0_regnum;
507
508 if (ymm0_regnum >= 0
509 && i386_xmm_regnum_p (gdbarch, reg))
510 return reg - 21 + ymm0_regnum;
511 else
512 return reg - 21 + I387_XMM0_REGNUM (tdep);
513 }
514 else if (reg >= 29 && reg <= 36)
515 {
516 /* MMX registers. */
517 return reg - 29 + I387_MM0_REGNUM (tdep);
518 }
519
520 /* This will hopefully provoke a warning. */
521 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
522 }
523
524 /* Convert SVR4 DWARF register number REG to the appropriate register number
525 used by GDB. */
526
527 static int
528 i386_svr4_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
529 {
530 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
531
532 /* This implements the GCC register map that tries to be compatible
533 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
534
535 /* The SVR4 register numbering includes %eip and %eflags, and
536 numbers the floating point registers differently. */
537 if (reg >= 0 && reg <= 9)
538 {
539 /* General-purpose registers. */
540 return reg;
541 }
542 else if (reg >= 11 && reg <= 18)
543 {
544 /* Floating-point registers. */
545 return reg - 11 + I387_ST0_REGNUM (tdep);
546 }
547 else if (reg >= 21 && reg <= 36)
548 {
549 /* The SSE and MMX registers have the same numbers as with dbx. */
550 return i386_dbx_reg_to_regnum (gdbarch, reg);
551 }
552
553 switch (reg)
554 {
555 case 37: return I387_FCTRL_REGNUM (tdep);
556 case 38: return I387_FSTAT_REGNUM (tdep);
557 case 39: return I387_MXCSR_REGNUM (tdep);
558 case 40: return I386_ES_REGNUM;
559 case 41: return I386_CS_REGNUM;
560 case 42: return I386_SS_REGNUM;
561 case 43: return I386_DS_REGNUM;
562 case 44: return I386_FS_REGNUM;
563 case 45: return I386_GS_REGNUM;
564 }
565
566 return -1;
567 }
568
569 /* Wrapper on i386_svr4_dwarf_reg_to_regnum to return
570 num_regs + num_pseudo_regs for other debug formats. */
571
572 int
573 i386_svr4_reg_to_regnum (struct gdbarch *gdbarch, int reg)
574 {
575 int regnum = i386_svr4_dwarf_reg_to_regnum (gdbarch, reg);
576
577 if (regnum == -1)
578 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
579 return regnum;
580 }
581
582 \f
583
584 /* This is the variable that is set with "set disassembly-flavor", and
585 its legitimate values. */
586 static const char att_flavor[] = "att";
587 static const char intel_flavor[] = "intel";
588 static const char *const valid_flavors[] =
589 {
590 att_flavor,
591 intel_flavor,
592 NULL
593 };
594 static const char *disassembly_flavor = att_flavor;
595 \f
596
597 /* Use the program counter to determine the contents and size of a
598 breakpoint instruction. Return a pointer to a string of bytes that
599 encode a breakpoint instruction, store the length of the string in
600 *LEN and optionally adjust *PC to point to the correct memory
601 location for inserting the breakpoint.
602
603 On the i386 we have a single breakpoint that fits in a single byte
604 and can be inserted anywhere.
605
606 This function is 64-bit safe. */
607
608 constexpr gdb_byte i386_break_insn[] = { 0xcc }; /* int 3 */
609
610 typedef BP_MANIPULATION (i386_break_insn) i386_breakpoint;
611
612 \f
613 /* Displaced instruction handling. */
614
615 /* Skip the legacy instruction prefixes in INSN.
616 Not all prefixes are valid for any particular insn
617 but we needn't care, the insn will fault if it's invalid.
618 The result is a pointer to the first opcode byte,
619 or NULL if we run off the end of the buffer. */
620
621 static gdb_byte *
622 i386_skip_prefixes (gdb_byte *insn, size_t max_len)
623 {
624 gdb_byte *end = insn + max_len;
625
626 while (insn < end)
627 {
628 switch (*insn)
629 {
630 case DATA_PREFIX_OPCODE:
631 case ADDR_PREFIX_OPCODE:
632 case CS_PREFIX_OPCODE:
633 case DS_PREFIX_OPCODE:
634 case ES_PREFIX_OPCODE:
635 case FS_PREFIX_OPCODE:
636 case GS_PREFIX_OPCODE:
637 case SS_PREFIX_OPCODE:
638 case LOCK_PREFIX_OPCODE:
639 case REPE_PREFIX_OPCODE:
640 case REPNE_PREFIX_OPCODE:
641 ++insn;
642 continue;
643 default:
644 return insn;
645 }
646 }
647
648 return NULL;
649 }
650
651 static int
652 i386_absolute_jmp_p (const gdb_byte *insn)
653 {
654 /* jmp far (absolute address in operand). */
655 if (insn[0] == 0xea)
656 return 1;
657
658 if (insn[0] == 0xff)
659 {
660 /* jump near, absolute indirect (/4). */
661 if ((insn[1] & 0x38) == 0x20)
662 return 1;
663
664 /* jump far, absolute indirect (/5). */
665 if ((insn[1] & 0x38) == 0x28)
666 return 1;
667 }
668
669 return 0;
670 }
671
672 /* Return non-zero if INSN is a jump, zero otherwise. */
673
674 static int
675 i386_jmp_p (const gdb_byte *insn)
676 {
677 /* jump short, relative. */
678 if (insn[0] == 0xeb)
679 return 1;
680
681 /* jump near, relative. */
682 if (insn[0] == 0xe9)
683 return 1;
684
685 return i386_absolute_jmp_p (insn);
686 }
687
688 static int
689 i386_absolute_call_p (const gdb_byte *insn)
690 {
691 /* call far, absolute. */
692 if (insn[0] == 0x9a)
693 return 1;
694
695 if (insn[0] == 0xff)
696 {
697 /* Call near, absolute indirect (/2). */
698 if ((insn[1] & 0x38) == 0x10)
699 return 1;
700
701 /* Call far, absolute indirect (/3). */
702 if ((insn[1] & 0x38) == 0x18)
703 return 1;
704 }
705
706 return 0;
707 }
708
709 static int
710 i386_ret_p (const gdb_byte *insn)
711 {
712 switch (insn[0])
713 {
714 case 0xc2: /* ret near, pop N bytes. */
715 case 0xc3: /* ret near */
716 case 0xca: /* ret far, pop N bytes. */
717 case 0xcb: /* ret far */
718 case 0xcf: /* iret */
719 return 1;
720
721 default:
722 return 0;
723 }
724 }
725
726 static int
727 i386_call_p (const gdb_byte *insn)
728 {
729 if (i386_absolute_call_p (insn))
730 return 1;
731
732 /* call near, relative. */
733 if (insn[0] == 0xe8)
734 return 1;
735
736 return 0;
737 }
738
739 /* Return non-zero if INSN is a system call, and set *LENGTHP to its
740 length in bytes. Otherwise, return zero. */
741
742 static int
743 i386_syscall_p (const gdb_byte *insn, int *lengthp)
744 {
745 /* Is it 'int $0x80'? */
746 if ((insn[0] == 0xcd && insn[1] == 0x80)
747 /* Or is it 'sysenter'? */
748 || (insn[0] == 0x0f && insn[1] == 0x34)
749 /* Or is it 'syscall'? */
750 || (insn[0] == 0x0f && insn[1] == 0x05))
751 {
752 *lengthp = 2;
753 return 1;
754 }
755
756 return 0;
757 }
758
759 /* The gdbarch insn_is_call method. */
760
761 static int
762 i386_insn_is_call (struct gdbarch *gdbarch, CORE_ADDR addr)
763 {
764 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
765
766 read_code (addr, buf, I386_MAX_INSN_LEN);
767 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
768
769 return i386_call_p (insn);
770 }
771
772 /* The gdbarch insn_is_ret method. */
773
774 static int
775 i386_insn_is_ret (struct gdbarch *gdbarch, CORE_ADDR addr)
776 {
777 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
778
779 read_code (addr, buf, I386_MAX_INSN_LEN);
780 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
781
782 return i386_ret_p (insn);
783 }
784
785 /* The gdbarch insn_is_jump method. */
786
787 static int
788 i386_insn_is_jump (struct gdbarch *gdbarch, CORE_ADDR addr)
789 {
790 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
791
792 read_code (addr, buf, I386_MAX_INSN_LEN);
793 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
794
795 return i386_jmp_p (insn);
796 }
797
798 /* Some kernels may run one past a syscall insn, so we have to cope. */
799
800 struct displaced_step_closure *
801 i386_displaced_step_copy_insn (struct gdbarch *gdbarch,
802 CORE_ADDR from, CORE_ADDR to,
803 struct regcache *regs)
804 {
805 size_t len = gdbarch_max_insn_length (gdbarch);
806 i386_displaced_step_closure *closure = new i386_displaced_step_closure (len);
807 gdb_byte *buf = closure->buf.data ();
808
809 read_memory (from, buf, len);
810
811 /* GDB may get control back after the insn after the syscall.
812 Presumably this is a kernel bug.
813 If this is a syscall, make sure there's a nop afterwards. */
814 {
815 int syscall_length;
816 gdb_byte *insn;
817
818 insn = i386_skip_prefixes (buf, len);
819 if (insn != NULL && i386_syscall_p (insn, &syscall_length))
820 insn[syscall_length] = NOP_OPCODE;
821 }
822
823 write_memory (to, buf, len);
824
825 if (debug_displaced)
826 {
827 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
828 paddress (gdbarch, from), paddress (gdbarch, to));
829 displaced_step_dump_bytes (gdb_stdlog, buf, len);
830 }
831
832 return closure;
833 }
834
835 /* Fix up the state of registers and memory after having single-stepped
836 a displaced instruction. */
837
838 void
839 i386_displaced_step_fixup (struct gdbarch *gdbarch,
840 struct displaced_step_closure *closure_,
841 CORE_ADDR from, CORE_ADDR to,
842 struct regcache *regs)
843 {
844 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
845
846 /* The offset we applied to the instruction's address.
847 This could well be negative (when viewed as a signed 32-bit
848 value), but ULONGEST won't reflect that, so take care when
849 applying it. */
850 ULONGEST insn_offset = to - from;
851
852 i386_displaced_step_closure *closure
853 = (i386_displaced_step_closure *) closure_;
854 gdb_byte *insn = closure->buf.data ();
855 /* The start of the insn, needed in case we see some prefixes. */
856 gdb_byte *insn_start = insn;
857
858 if (debug_displaced)
859 fprintf_unfiltered (gdb_stdlog,
860 "displaced: fixup (%s, %s), "
861 "insn = 0x%02x 0x%02x ...\n",
862 paddress (gdbarch, from), paddress (gdbarch, to),
863 insn[0], insn[1]);
864
865 /* The list of issues to contend with here is taken from
866 resume_execution in arch/i386/kernel/kprobes.c, Linux 2.6.20.
867 Yay for Free Software! */
868
869 /* Relocate the %eip, if necessary. */
870
871 /* The instruction recognizers we use assume any leading prefixes
872 have been skipped. */
873 {
874 /* This is the size of the buffer in closure. */
875 size_t max_insn_len = gdbarch_max_insn_length (gdbarch);
876 gdb_byte *opcode = i386_skip_prefixes (insn, max_insn_len);
877 /* If there are too many prefixes, just ignore the insn.
878 It will fault when run. */
879 if (opcode != NULL)
880 insn = opcode;
881 }
882
883 /* Except in the case of absolute or indirect jump or call
884 instructions, or a return instruction, the new eip is relative to
885 the displaced instruction; make it relative. Well, signal
886 handler returns don't need relocation either, but we use the
887 value of %eip to recognize those; see below. */
888 if (! i386_absolute_jmp_p (insn)
889 && ! i386_absolute_call_p (insn)
890 && ! i386_ret_p (insn))
891 {
892 ULONGEST orig_eip;
893 int insn_len;
894
895 regcache_cooked_read_unsigned (regs, I386_EIP_REGNUM, &orig_eip);
896
897 /* A signal trampoline system call changes the %eip, resuming
898 execution of the main program after the signal handler has
899 returned. That makes them like 'return' instructions; we
900 shouldn't relocate %eip.
901
902 But most system calls don't, and we do need to relocate %eip.
903
904 Our heuristic for distinguishing these cases: if stepping
905 over the system call instruction left control directly after
906 the instruction, the we relocate --- control almost certainly
907 doesn't belong in the displaced copy. Otherwise, we assume
908 the instruction has put control where it belongs, and leave
909 it unrelocated. Goodness help us if there are PC-relative
910 system calls. */
911 if (i386_syscall_p (insn, &insn_len)
912 && orig_eip != to + (insn - insn_start) + insn_len
913 /* GDB can get control back after the insn after the syscall.
914 Presumably this is a kernel bug.
915 i386_displaced_step_copy_insn ensures its a nop,
916 we add one to the length for it. */
917 && orig_eip != to + (insn - insn_start) + insn_len + 1)
918 {
919 if (debug_displaced)
920 fprintf_unfiltered (gdb_stdlog,
921 "displaced: syscall changed %%eip; "
922 "not relocating\n");
923 }
924 else
925 {
926 ULONGEST eip = (orig_eip - insn_offset) & 0xffffffffUL;
927
928 /* If we just stepped over a breakpoint insn, we don't backup
929 the pc on purpose; this is to match behaviour without
930 stepping. */
931
932 regcache_cooked_write_unsigned (regs, I386_EIP_REGNUM, eip);
933
934 if (debug_displaced)
935 fprintf_unfiltered (gdb_stdlog,
936 "displaced: "
937 "relocated %%eip from %s to %s\n",
938 paddress (gdbarch, orig_eip),
939 paddress (gdbarch, eip));
940 }
941 }
942
943 /* If the instruction was PUSHFL, then the TF bit will be set in the
944 pushed value, and should be cleared. We'll leave this for later,
945 since GDB already messes up the TF flag when stepping over a
946 pushfl. */
947
948 /* If the instruction was a call, the return address now atop the
949 stack is the address following the copied instruction. We need
950 to make it the address following the original instruction. */
951 if (i386_call_p (insn))
952 {
953 ULONGEST esp;
954 ULONGEST retaddr;
955 const ULONGEST retaddr_len = 4;
956
957 regcache_cooked_read_unsigned (regs, I386_ESP_REGNUM, &esp);
958 retaddr = read_memory_unsigned_integer (esp, retaddr_len, byte_order);
959 retaddr = (retaddr - insn_offset) & 0xffffffffUL;
960 write_memory_unsigned_integer (esp, retaddr_len, byte_order, retaddr);
961
962 if (debug_displaced)
963 fprintf_unfiltered (gdb_stdlog,
964 "displaced: relocated return addr at %s to %s\n",
965 paddress (gdbarch, esp),
966 paddress (gdbarch, retaddr));
967 }
968 }
969
970 static void
971 append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
972 {
973 target_write_memory (*to, buf, len);
974 *to += len;
975 }
976
977 static void
978 i386_relocate_instruction (struct gdbarch *gdbarch,
979 CORE_ADDR *to, CORE_ADDR oldloc)
980 {
981 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
982 gdb_byte buf[I386_MAX_INSN_LEN];
983 int offset = 0, rel32, newrel;
984 int insn_length;
985 gdb_byte *insn = buf;
986
987 read_memory (oldloc, buf, I386_MAX_INSN_LEN);
988
989 insn_length = gdb_buffered_insn_length (gdbarch, insn,
990 I386_MAX_INSN_LEN, oldloc);
991
992 /* Get past the prefixes. */
993 insn = i386_skip_prefixes (insn, I386_MAX_INSN_LEN);
994
995 /* Adjust calls with 32-bit relative addresses as push/jump, with
996 the address pushed being the location where the original call in
997 the user program would return to. */
998 if (insn[0] == 0xe8)
999 {
1000 gdb_byte push_buf[16];
1001 unsigned int ret_addr;
1002
1003 /* Where "ret" in the original code will return to. */
1004 ret_addr = oldloc + insn_length;
1005 push_buf[0] = 0x68; /* pushq $... */
1006 store_unsigned_integer (&push_buf[1], 4, byte_order, ret_addr);
1007 /* Push the push. */
1008 append_insns (to, 5, push_buf);
1009
1010 /* Convert the relative call to a relative jump. */
1011 insn[0] = 0xe9;
1012
1013 /* Adjust the destination offset. */
1014 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
1015 newrel = (oldloc - *to) + rel32;
1016 store_signed_integer (insn + 1, 4, byte_order, newrel);
1017
1018 if (debug_displaced)
1019 fprintf_unfiltered (gdb_stdlog,
1020 "Adjusted insn rel32=%s at %s to"
1021 " rel32=%s at %s\n",
1022 hex_string (rel32), paddress (gdbarch, oldloc),
1023 hex_string (newrel), paddress (gdbarch, *to));
1024
1025 /* Write the adjusted jump into its displaced location. */
1026 append_insns (to, 5, insn);
1027 return;
1028 }
1029
1030 /* Adjust jumps with 32-bit relative addresses. Calls are already
1031 handled above. */
1032 if (insn[0] == 0xe9)
1033 offset = 1;
1034 /* Adjust conditional jumps. */
1035 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
1036 offset = 2;
1037
1038 if (offset)
1039 {
1040 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
1041 newrel = (oldloc - *to) + rel32;
1042 store_signed_integer (insn + offset, 4, byte_order, newrel);
1043 if (debug_displaced)
1044 fprintf_unfiltered (gdb_stdlog,
1045 "Adjusted insn rel32=%s at %s to"
1046 " rel32=%s at %s\n",
1047 hex_string (rel32), paddress (gdbarch, oldloc),
1048 hex_string (newrel), paddress (gdbarch, *to));
1049 }
1050
1051 /* Write the adjusted instructions into their displaced
1052 location. */
1053 append_insns (to, insn_length, buf);
1054 }
1055
1056 \f
1057 #ifdef I386_REGNO_TO_SYMMETRY
1058 #error "The Sequent Symmetry is no longer supported."
1059 #endif
1060
1061 /* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
1062 and %esp "belong" to the calling function. Therefore these
1063 registers should be saved if they're going to be modified. */
1064
1065 /* The maximum number of saved registers. This should include all
1066 registers mentioned above, and %eip. */
1067 #define I386_NUM_SAVED_REGS I386_NUM_GREGS
1068
1069 struct i386_frame_cache
1070 {
1071 /* Base address. */
1072 CORE_ADDR base;
1073 int base_p;
1074 LONGEST sp_offset;
1075 CORE_ADDR pc;
1076
1077 /* Saved registers. */
1078 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
1079 CORE_ADDR saved_sp;
1080 int saved_sp_reg;
1081 int pc_in_eax;
1082
1083 /* Stack space reserved for local variables. */
1084 long locals;
1085 };
1086
1087 /* Allocate and initialize a frame cache. */
1088
1089 static struct i386_frame_cache *
1090 i386_alloc_frame_cache (void)
1091 {
1092 struct i386_frame_cache *cache;
1093 int i;
1094
1095 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
1096
1097 /* Base address. */
1098 cache->base_p = 0;
1099 cache->base = 0;
1100 cache->sp_offset = -4;
1101 cache->pc = 0;
1102
1103 /* Saved registers. We initialize these to -1 since zero is a valid
1104 offset (that's where %ebp is supposed to be stored). */
1105 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
1106 cache->saved_regs[i] = -1;
1107 cache->saved_sp = 0;
1108 cache->saved_sp_reg = -1;
1109 cache->pc_in_eax = 0;
1110
1111 /* Frameless until proven otherwise. */
1112 cache->locals = -1;
1113
1114 return cache;
1115 }
1116
1117 /* If the instruction at PC is a jump, return the address of its
1118 target. Otherwise, return PC. */
1119
1120 static CORE_ADDR
1121 i386_follow_jump (struct gdbarch *gdbarch, CORE_ADDR pc)
1122 {
1123 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1124 gdb_byte op;
1125 long delta = 0;
1126 int data16 = 0;
1127
1128 if (target_read_code (pc, &op, 1))
1129 return pc;
1130
1131 if (op == 0x66)
1132 {
1133 data16 = 1;
1134
1135 op = read_code_unsigned_integer (pc + 1, 1, byte_order);
1136 }
1137
1138 switch (op)
1139 {
1140 case 0xe9:
1141 /* Relative jump: if data16 == 0, disp32, else disp16. */
1142 if (data16)
1143 {
1144 delta = read_memory_integer (pc + 2, 2, byte_order);
1145
1146 /* Include the size of the jmp instruction (including the
1147 0x66 prefix). */
1148 delta += 4;
1149 }
1150 else
1151 {
1152 delta = read_memory_integer (pc + 1, 4, byte_order);
1153
1154 /* Include the size of the jmp instruction. */
1155 delta += 5;
1156 }
1157 break;
1158 case 0xeb:
1159 /* Relative jump, disp8 (ignore data16). */
1160 delta = read_memory_integer (pc + data16 + 1, 1, byte_order);
1161
1162 delta += data16 + 2;
1163 break;
1164 }
1165
1166 return pc + delta;
1167 }
1168
1169 /* Check whether PC points at a prologue for a function returning a
1170 structure or union. If so, it updates CACHE and returns the
1171 address of the first instruction after the code sequence that
1172 removes the "hidden" argument from the stack or CURRENT_PC,
1173 whichever is smaller. Otherwise, return PC. */
1174
1175 static CORE_ADDR
1176 i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
1177 struct i386_frame_cache *cache)
1178 {
1179 /* Functions that return a structure or union start with:
1180
1181 popl %eax 0x58
1182 xchgl %eax, (%esp) 0x87 0x04 0x24
1183 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
1184
1185 (the System V compiler puts out the second `xchg' instruction,
1186 and the assembler doesn't try to optimize it, so the 'sib' form
1187 gets generated). This sequence is used to get the address of the
1188 return buffer for a function that returns a structure. */
1189 static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
1190 static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
1191 gdb_byte buf[4];
1192 gdb_byte op;
1193
1194 if (current_pc <= pc)
1195 return pc;
1196
1197 if (target_read_code (pc, &op, 1))
1198 return pc;
1199
1200 if (op != 0x58) /* popl %eax */
1201 return pc;
1202
1203 if (target_read_code (pc + 1, buf, 4))
1204 return pc;
1205
1206 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
1207 return pc;
1208
1209 if (current_pc == pc)
1210 {
1211 cache->sp_offset += 4;
1212 return current_pc;
1213 }
1214
1215 if (current_pc == pc + 1)
1216 {
1217 cache->pc_in_eax = 1;
1218 return current_pc;
1219 }
1220
1221 if (buf[1] == proto1[1])
1222 return pc + 4;
1223 else
1224 return pc + 5;
1225 }
1226
1227 static CORE_ADDR
1228 i386_skip_probe (CORE_ADDR pc)
1229 {
1230 /* A function may start with
1231
1232 pushl constant
1233 call _probe
1234 addl $4, %esp
1235
1236 followed by
1237
1238 pushl %ebp
1239
1240 etc. */
1241 gdb_byte buf[8];
1242 gdb_byte op;
1243
1244 if (target_read_code (pc, &op, 1))
1245 return pc;
1246
1247 if (op == 0x68 || op == 0x6a)
1248 {
1249 int delta;
1250
1251 /* Skip past the `pushl' instruction; it has either a one-byte or a
1252 four-byte operand, depending on the opcode. */
1253 if (op == 0x68)
1254 delta = 5;
1255 else
1256 delta = 2;
1257
1258 /* Read the following 8 bytes, which should be `call _probe' (6
1259 bytes) followed by `addl $4,%esp' (2 bytes). */
1260 read_memory (pc + delta, buf, sizeof (buf));
1261 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
1262 pc += delta + sizeof (buf);
1263 }
1264
1265 return pc;
1266 }
1267
1268 /* GCC 4.1 and later, can put code in the prologue to realign the
1269 stack pointer. Check whether PC points to such code, and update
1270 CACHE accordingly. Return the first instruction after the code
1271 sequence or CURRENT_PC, whichever is smaller. If we don't
1272 recognize the code, return PC. */
1273
1274 static CORE_ADDR
1275 i386_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1276 struct i386_frame_cache *cache)
1277 {
1278 /* There are 2 code sequences to re-align stack before the frame
1279 gets set up:
1280
1281 1. Use a caller-saved saved register:
1282
1283 leal 4(%esp), %reg
1284 andl $-XXX, %esp
1285 pushl -4(%reg)
1286
1287 2. Use a callee-saved saved register:
1288
1289 pushl %reg
1290 leal 8(%esp), %reg
1291 andl $-XXX, %esp
1292 pushl -4(%reg)
1293
1294 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
1295
1296 0x83 0xe4 0xf0 andl $-16, %esp
1297 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
1298 */
1299
1300 gdb_byte buf[14];
1301 int reg;
1302 int offset, offset_and;
1303 static int regnums[8] = {
1304 I386_EAX_REGNUM, /* %eax */
1305 I386_ECX_REGNUM, /* %ecx */
1306 I386_EDX_REGNUM, /* %edx */
1307 I386_EBX_REGNUM, /* %ebx */
1308 I386_ESP_REGNUM, /* %esp */
1309 I386_EBP_REGNUM, /* %ebp */
1310 I386_ESI_REGNUM, /* %esi */
1311 I386_EDI_REGNUM /* %edi */
1312 };
1313
1314 if (target_read_code (pc, buf, sizeof buf))
1315 return pc;
1316
1317 /* Check caller-saved saved register. The first instruction has
1318 to be "leal 4(%esp), %reg". */
1319 if (buf[0] == 0x8d && buf[2] == 0x24 && buf[3] == 0x4)
1320 {
1321 /* MOD must be binary 10 and R/M must be binary 100. */
1322 if ((buf[1] & 0xc7) != 0x44)
1323 return pc;
1324
1325 /* REG has register number. */
1326 reg = (buf[1] >> 3) & 7;
1327 offset = 4;
1328 }
1329 else
1330 {
1331 /* Check callee-saved saved register. The first instruction
1332 has to be "pushl %reg". */
1333 if ((buf[0] & 0xf8) != 0x50)
1334 return pc;
1335
1336 /* Get register. */
1337 reg = buf[0] & 0x7;
1338
1339 /* The next instruction has to be "leal 8(%esp), %reg". */
1340 if (buf[1] != 0x8d || buf[3] != 0x24 || buf[4] != 0x8)
1341 return pc;
1342
1343 /* MOD must be binary 10 and R/M must be binary 100. */
1344 if ((buf[2] & 0xc7) != 0x44)
1345 return pc;
1346
1347 /* REG has register number. Registers in pushl and leal have to
1348 be the same. */
1349 if (reg != ((buf[2] >> 3) & 7))
1350 return pc;
1351
1352 offset = 5;
1353 }
1354
1355 /* Rigister can't be %esp nor %ebp. */
1356 if (reg == 4 || reg == 5)
1357 return pc;
1358
1359 /* The next instruction has to be "andl $-XXX, %esp". */
1360 if (buf[offset + 1] != 0xe4
1361 || (buf[offset] != 0x81 && buf[offset] != 0x83))
1362 return pc;
1363
1364 offset_and = offset;
1365 offset += buf[offset] == 0x81 ? 6 : 3;
1366
1367 /* The next instruction has to be "pushl -4(%reg)". 8bit -4 is
1368 0xfc. REG must be binary 110 and MOD must be binary 01. */
1369 if (buf[offset] != 0xff
1370 || buf[offset + 2] != 0xfc
1371 || (buf[offset + 1] & 0xf8) != 0x70)
1372 return pc;
1373
1374 /* R/M has register. Registers in leal and pushl have to be the
1375 same. */
1376 if (reg != (buf[offset + 1] & 7))
1377 return pc;
1378
1379 if (current_pc > pc + offset_and)
1380 cache->saved_sp_reg = regnums[reg];
1381
1382 return std::min (pc + offset + 3, current_pc);
1383 }
1384
1385 /* Maximum instruction length we need to handle. */
1386 #define I386_MAX_MATCHED_INSN_LEN 6
1387
1388 /* Instruction description. */
1389 struct i386_insn
1390 {
1391 size_t len;
1392 gdb_byte insn[I386_MAX_MATCHED_INSN_LEN];
1393 gdb_byte mask[I386_MAX_MATCHED_INSN_LEN];
1394 };
1395
1396 /* Return whether instruction at PC matches PATTERN. */
1397
1398 static int
1399 i386_match_pattern (CORE_ADDR pc, struct i386_insn pattern)
1400 {
1401 gdb_byte op;
1402
1403 if (target_read_code (pc, &op, 1))
1404 return 0;
1405
1406 if ((op & pattern.mask[0]) == pattern.insn[0])
1407 {
1408 gdb_byte buf[I386_MAX_MATCHED_INSN_LEN - 1];
1409 int insn_matched = 1;
1410 size_t i;
1411
1412 gdb_assert (pattern.len > 1);
1413 gdb_assert (pattern.len <= I386_MAX_MATCHED_INSN_LEN);
1414
1415 if (target_read_code (pc + 1, buf, pattern.len - 1))
1416 return 0;
1417
1418 for (i = 1; i < pattern.len; i++)
1419 {
1420 if ((buf[i - 1] & pattern.mask[i]) != pattern.insn[i])
1421 insn_matched = 0;
1422 }
1423 return insn_matched;
1424 }
1425 return 0;
1426 }
1427
1428 /* Search for the instruction at PC in the list INSN_PATTERNS. Return
1429 the first instruction description that matches. Otherwise, return
1430 NULL. */
1431
1432 static struct i386_insn *
1433 i386_match_insn (CORE_ADDR pc, struct i386_insn *insn_patterns)
1434 {
1435 struct i386_insn *pattern;
1436
1437 for (pattern = insn_patterns; pattern->len > 0; pattern++)
1438 {
1439 if (i386_match_pattern (pc, *pattern))
1440 return pattern;
1441 }
1442
1443 return NULL;
1444 }
1445
1446 /* Return whether PC points inside a sequence of instructions that
1447 matches INSN_PATTERNS. */
1448
1449 static int
1450 i386_match_insn_block (CORE_ADDR pc, struct i386_insn *insn_patterns)
1451 {
1452 CORE_ADDR current_pc;
1453 int ix, i;
1454 struct i386_insn *insn;
1455
1456 insn = i386_match_insn (pc, insn_patterns);
1457 if (insn == NULL)
1458 return 0;
1459
1460 current_pc = pc;
1461 ix = insn - insn_patterns;
1462 for (i = ix - 1; i >= 0; i--)
1463 {
1464 current_pc -= insn_patterns[i].len;
1465
1466 if (!i386_match_pattern (current_pc, insn_patterns[i]))
1467 return 0;
1468 }
1469
1470 current_pc = pc + insn->len;
1471 for (insn = insn_patterns + ix + 1; insn->len > 0; insn++)
1472 {
1473 if (!i386_match_pattern (current_pc, *insn))
1474 return 0;
1475
1476 current_pc += insn->len;
1477 }
1478
1479 return 1;
1480 }
1481
1482 /* Some special instructions that might be migrated by GCC into the
1483 part of the prologue that sets up the new stack frame. Because the
1484 stack frame hasn't been setup yet, no registers have been saved
1485 yet, and only the scratch registers %eax, %ecx and %edx can be
1486 touched. */
1487
1488 struct i386_insn i386_frame_setup_skip_insns[] =
1489 {
1490 /* Check for `movb imm8, r' and `movl imm32, r'.
1491
1492 ??? Should we handle 16-bit operand-sizes here? */
1493
1494 /* `movb imm8, %al' and `movb imm8, %ah' */
1495 /* `movb imm8, %cl' and `movb imm8, %ch' */
1496 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
1497 /* `movb imm8, %dl' and `movb imm8, %dh' */
1498 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
1499 /* `movl imm32, %eax' and `movl imm32, %ecx' */
1500 { 5, { 0xb8 }, { 0xfe } },
1501 /* `movl imm32, %edx' */
1502 { 5, { 0xba }, { 0xff } },
1503
1504 /* Check for `mov imm32, r32'. Note that there is an alternative
1505 encoding for `mov m32, %eax'.
1506
1507 ??? Should we handle SIB adressing here?
1508 ??? Should we handle 16-bit operand-sizes here? */
1509
1510 /* `movl m32, %eax' */
1511 { 5, { 0xa1 }, { 0xff } },
1512 /* `movl m32, %eax' and `mov; m32, %ecx' */
1513 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
1514 /* `movl m32, %edx' */
1515 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
1516
1517 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
1518 Because of the symmetry, there are actually two ways to encode
1519 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
1520 opcode bytes 0x31 and 0x33 for `xorl'. */
1521
1522 /* `subl %eax, %eax' */
1523 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
1524 /* `subl %ecx, %ecx' */
1525 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
1526 /* `subl %edx, %edx' */
1527 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
1528 /* `xorl %eax, %eax' */
1529 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
1530 /* `xorl %ecx, %ecx' */
1531 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
1532 /* `xorl %edx, %edx' */
1533 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
1534 { 0 }
1535 };
1536
1537
1538 /* Check whether PC points to a no-op instruction. */
1539 static CORE_ADDR
1540 i386_skip_noop (CORE_ADDR pc)
1541 {
1542 gdb_byte op;
1543 int check = 1;
1544
1545 if (target_read_code (pc, &op, 1))
1546 return pc;
1547
1548 while (check)
1549 {
1550 check = 0;
1551 /* Ignore `nop' instruction. */
1552 if (op == 0x90)
1553 {
1554 pc += 1;
1555 if (target_read_code (pc, &op, 1))
1556 return pc;
1557 check = 1;
1558 }
1559 /* Ignore no-op instruction `mov %edi, %edi'.
1560 Microsoft system dlls often start with
1561 a `mov %edi,%edi' instruction.
1562 The 5 bytes before the function start are
1563 filled with `nop' instructions.
1564 This pattern can be used for hot-patching:
1565 The `mov %edi, %edi' instruction can be replaced by a
1566 near jump to the location of the 5 `nop' instructions
1567 which can be replaced by a 32-bit jump to anywhere
1568 in the 32-bit address space. */
1569
1570 else if (op == 0x8b)
1571 {
1572 if (target_read_code (pc + 1, &op, 1))
1573 return pc;
1574
1575 if (op == 0xff)
1576 {
1577 pc += 2;
1578 if (target_read_code (pc, &op, 1))
1579 return pc;
1580
1581 check = 1;
1582 }
1583 }
1584 }
1585 return pc;
1586 }
1587
1588 /* Check whether PC points at a code that sets up a new stack frame.
1589 If so, it updates CACHE and returns the address of the first
1590 instruction after the sequence that sets up the frame or LIMIT,
1591 whichever is smaller. If we don't recognize the code, return PC. */
1592
1593 static CORE_ADDR
1594 i386_analyze_frame_setup (struct gdbarch *gdbarch,
1595 CORE_ADDR pc, CORE_ADDR limit,
1596 struct i386_frame_cache *cache)
1597 {
1598 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1599 struct i386_insn *insn;
1600 gdb_byte op;
1601 int skip = 0;
1602
1603 if (limit <= pc)
1604 return limit;
1605
1606 if (target_read_code (pc, &op, 1))
1607 return pc;
1608
1609 if (op == 0x55) /* pushl %ebp */
1610 {
1611 /* Take into account that we've executed the `pushl %ebp' that
1612 starts this instruction sequence. */
1613 cache->saved_regs[I386_EBP_REGNUM] = 0;
1614 cache->sp_offset += 4;
1615 pc++;
1616
1617 /* If that's all, return now. */
1618 if (limit <= pc)
1619 return limit;
1620
1621 /* Check for some special instructions that might be migrated by
1622 GCC into the prologue and skip them. At this point in the
1623 prologue, code should only touch the scratch registers %eax,
1624 %ecx and %edx, so while the number of posibilities is sheer,
1625 it is limited.
1626
1627 Make sure we only skip these instructions if we later see the
1628 `movl %esp, %ebp' that actually sets up the frame. */
1629 while (pc + skip < limit)
1630 {
1631 insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
1632 if (insn == NULL)
1633 break;
1634
1635 skip += insn->len;
1636 }
1637
1638 /* If that's all, return now. */
1639 if (limit <= pc + skip)
1640 return limit;
1641
1642 if (target_read_code (pc + skip, &op, 1))
1643 return pc + skip;
1644
1645 /* The i386 prologue looks like
1646
1647 push %ebp
1648 mov %esp,%ebp
1649 sub $0x10,%esp
1650
1651 and a different prologue can be generated for atom.
1652
1653 push %ebp
1654 lea (%esp),%ebp
1655 lea -0x10(%esp),%esp
1656
1657 We handle both of them here. */
1658
1659 switch (op)
1660 {
1661 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
1662 case 0x8b:
1663 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
1664 != 0xec)
1665 return pc;
1666 pc += (skip + 2);
1667 break;
1668 case 0x89:
1669 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
1670 != 0xe5)
1671 return pc;
1672 pc += (skip + 2);
1673 break;
1674 case 0x8d: /* Check for 'lea (%ebp), %ebp'. */
1675 if (read_code_unsigned_integer (pc + skip + 1, 2, byte_order)
1676 != 0x242c)
1677 return pc;
1678 pc += (skip + 3);
1679 break;
1680 default:
1681 return pc;
1682 }
1683
1684 /* OK, we actually have a frame. We just don't know how large
1685 it is yet. Set its size to zero. We'll adjust it if
1686 necessary. We also now commit to skipping the special
1687 instructions mentioned before. */
1688 cache->locals = 0;
1689
1690 /* If that's all, return now. */
1691 if (limit <= pc)
1692 return limit;
1693
1694 /* Check for stack adjustment
1695
1696 subl $XXX, %esp
1697 or
1698 lea -XXX(%esp),%esp
1699
1700 NOTE: You can't subtract a 16-bit immediate from a 32-bit
1701 reg, so we don't have to worry about a data16 prefix. */
1702 if (target_read_code (pc, &op, 1))
1703 return pc;
1704 if (op == 0x83)
1705 {
1706 /* `subl' with 8-bit immediate. */
1707 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1708 /* Some instruction starting with 0x83 other than `subl'. */
1709 return pc;
1710
1711 /* `subl' with signed 8-bit immediate (though it wouldn't
1712 make sense to be negative). */
1713 cache->locals = read_code_integer (pc + 2, 1, byte_order);
1714 return pc + 3;
1715 }
1716 else if (op == 0x81)
1717 {
1718 /* Maybe it is `subl' with a 32-bit immediate. */
1719 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1720 /* Some instruction starting with 0x81 other than `subl'. */
1721 return pc;
1722
1723 /* It is `subl' with a 32-bit immediate. */
1724 cache->locals = read_code_integer (pc + 2, 4, byte_order);
1725 return pc + 6;
1726 }
1727 else if (op == 0x8d)
1728 {
1729 /* The ModR/M byte is 0x64. */
1730 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0x64)
1731 return pc;
1732 /* 'lea' with 8-bit displacement. */
1733 cache->locals = -1 * read_code_integer (pc + 3, 1, byte_order);
1734 return pc + 4;
1735 }
1736 else
1737 {
1738 /* Some instruction other than `subl' nor 'lea'. */
1739 return pc;
1740 }
1741 }
1742 else if (op == 0xc8) /* enter */
1743 {
1744 cache->locals = read_code_unsigned_integer (pc + 1, 2, byte_order);
1745 return pc + 4;
1746 }
1747
1748 return pc;
1749 }
1750
1751 /* Check whether PC points at code that saves registers on the stack.
1752 If so, it updates CACHE and returns the address of the first
1753 instruction after the register saves or CURRENT_PC, whichever is
1754 smaller. Otherwise, return PC. */
1755
1756 static CORE_ADDR
1757 i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
1758 struct i386_frame_cache *cache)
1759 {
1760 CORE_ADDR offset = 0;
1761 gdb_byte op;
1762 int i;
1763
1764 if (cache->locals > 0)
1765 offset -= cache->locals;
1766 for (i = 0; i < 8 && pc < current_pc; i++)
1767 {
1768 if (target_read_code (pc, &op, 1))
1769 return pc;
1770 if (op < 0x50 || op > 0x57)
1771 break;
1772
1773 offset -= 4;
1774 cache->saved_regs[op - 0x50] = offset;
1775 cache->sp_offset += 4;
1776 pc++;
1777 }
1778
1779 return pc;
1780 }
1781
1782 /* Do a full analysis of the prologue at PC and update CACHE
1783 accordingly. Bail out early if CURRENT_PC is reached. Return the
1784 address where the analysis stopped.
1785
1786 We handle these cases:
1787
1788 The startup sequence can be at the start of the function, or the
1789 function can start with a branch to startup code at the end.
1790
1791 %ebp can be set up with either the 'enter' instruction, or "pushl
1792 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
1793 once used in the System V compiler).
1794
1795 Local space is allocated just below the saved %ebp by either the
1796 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
1797 16-bit unsigned argument for space to allocate, and the 'addl'
1798 instruction could have either a signed byte, or 32-bit immediate.
1799
1800 Next, the registers used by this function are pushed. With the
1801 System V compiler they will always be in the order: %edi, %esi,
1802 %ebx (and sometimes a harmless bug causes it to also save but not
1803 restore %eax); however, the code below is willing to see the pushes
1804 in any order, and will handle up to 8 of them.
1805
1806 If the setup sequence is at the end of the function, then the next
1807 instruction will be a branch back to the start. */
1808
1809 static CORE_ADDR
1810 i386_analyze_prologue (struct gdbarch *gdbarch,
1811 CORE_ADDR pc, CORE_ADDR current_pc,
1812 struct i386_frame_cache *cache)
1813 {
1814 pc = i386_skip_noop (pc);
1815 pc = i386_follow_jump (gdbarch, pc);
1816 pc = i386_analyze_struct_return (pc, current_pc, cache);
1817 pc = i386_skip_probe (pc);
1818 pc = i386_analyze_stack_align (pc, current_pc, cache);
1819 pc = i386_analyze_frame_setup (gdbarch, pc, current_pc, cache);
1820 return i386_analyze_register_saves (pc, current_pc, cache);
1821 }
1822
1823 /* Return PC of first real instruction. */
1824
1825 static CORE_ADDR
1826 i386_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
1827 {
1828 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1829
1830 static gdb_byte pic_pat[6] =
1831 {
1832 0xe8, 0, 0, 0, 0, /* call 0x0 */
1833 0x5b, /* popl %ebx */
1834 };
1835 struct i386_frame_cache cache;
1836 CORE_ADDR pc;
1837 gdb_byte op;
1838 int i;
1839 CORE_ADDR func_addr;
1840
1841 if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
1842 {
1843 CORE_ADDR post_prologue_pc
1844 = skip_prologue_using_sal (gdbarch, func_addr);
1845 struct compunit_symtab *cust = find_pc_compunit_symtab (func_addr);
1846
1847 /* Clang always emits a line note before the prologue and another
1848 one after. We trust clang to emit usable line notes. */
1849 if (post_prologue_pc
1850 && (cust != NULL
1851 && COMPUNIT_PRODUCER (cust) != NULL
1852 && startswith (COMPUNIT_PRODUCER (cust), "clang ")))
1853 return std::max (start_pc, post_prologue_pc);
1854 }
1855
1856 cache.locals = -1;
1857 pc = i386_analyze_prologue (gdbarch, start_pc, 0xffffffff, &cache);
1858 if (cache.locals < 0)
1859 return start_pc;
1860
1861 /* Found valid frame setup. */
1862
1863 /* The native cc on SVR4 in -K PIC mode inserts the following code
1864 to get the address of the global offset table (GOT) into register
1865 %ebx:
1866
1867 call 0x0
1868 popl %ebx
1869 movl %ebx,x(%ebp) (optional)
1870 addl y,%ebx
1871
1872 This code is with the rest of the prologue (at the end of the
1873 function), so we have to skip it to get to the first real
1874 instruction at the start of the function. */
1875
1876 for (i = 0; i < 6; i++)
1877 {
1878 if (target_read_code (pc + i, &op, 1))
1879 return pc;
1880
1881 if (pic_pat[i] != op)
1882 break;
1883 }
1884 if (i == 6)
1885 {
1886 int delta = 6;
1887
1888 if (target_read_code (pc + delta, &op, 1))
1889 return pc;
1890
1891 if (op == 0x89) /* movl %ebx, x(%ebp) */
1892 {
1893 op = read_code_unsigned_integer (pc + delta + 1, 1, byte_order);
1894
1895 if (op == 0x5d) /* One byte offset from %ebp. */
1896 delta += 3;
1897 else if (op == 0x9d) /* Four byte offset from %ebp. */
1898 delta += 6;
1899 else /* Unexpected instruction. */
1900 delta = 0;
1901
1902 if (target_read_code (pc + delta, &op, 1))
1903 return pc;
1904 }
1905
1906 /* addl y,%ebx */
1907 if (delta > 0 && op == 0x81
1908 && read_code_unsigned_integer (pc + delta + 1, 1, byte_order)
1909 == 0xc3)
1910 {
1911 pc += delta + 6;
1912 }
1913 }
1914
1915 /* If the function starts with a branch (to startup code at the end)
1916 the last instruction should bring us back to the first
1917 instruction of the real code. */
1918 if (i386_follow_jump (gdbarch, start_pc) != start_pc)
1919 pc = i386_follow_jump (gdbarch, pc);
1920
1921 return pc;
1922 }
1923
1924 /* Check that the code pointed to by PC corresponds to a call to
1925 __main, skip it if so. Return PC otherwise. */
1926
1927 CORE_ADDR
1928 i386_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1929 {
1930 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1931 gdb_byte op;
1932
1933 if (target_read_code (pc, &op, 1))
1934 return pc;
1935 if (op == 0xe8)
1936 {
1937 gdb_byte buf[4];
1938
1939 if (target_read_code (pc + 1, buf, sizeof buf) == 0)
1940 {
1941 /* Make sure address is computed correctly as a 32bit
1942 integer even if CORE_ADDR is 64 bit wide. */
1943 struct bound_minimal_symbol s;
1944 CORE_ADDR call_dest;
1945
1946 call_dest = pc + 5 + extract_signed_integer (buf, 4, byte_order);
1947 call_dest = call_dest & 0xffffffffU;
1948 s = lookup_minimal_symbol_by_pc (call_dest);
1949 if (s.minsym != NULL
1950 && MSYMBOL_LINKAGE_NAME (s.minsym) != NULL
1951 && strcmp (MSYMBOL_LINKAGE_NAME (s.minsym), "__main") == 0)
1952 pc += 5;
1953 }
1954 }
1955
1956 return pc;
1957 }
1958
1959 /* This function is 64-bit safe. */
1960
1961 static CORE_ADDR
1962 i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1963 {
1964 gdb_byte buf[8];
1965
1966 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
1967 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
1968 }
1969 \f
1970
1971 /* Normal frames. */
1972
1973 static void
1974 i386_frame_cache_1 (struct frame_info *this_frame,
1975 struct i386_frame_cache *cache)
1976 {
1977 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1978 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1979 gdb_byte buf[4];
1980 int i;
1981
1982 cache->pc = get_frame_func (this_frame);
1983
1984 /* In principle, for normal frames, %ebp holds the frame pointer,
1985 which holds the base address for the current stack frame.
1986 However, for functions that don't need it, the frame pointer is
1987 optional. For these "frameless" functions the frame pointer is
1988 actually the frame pointer of the calling frame. Signal
1989 trampolines are just a special case of a "frameless" function.
1990 They (usually) share their frame pointer with the frame that was
1991 in progress when the signal occurred. */
1992
1993 get_frame_register (this_frame, I386_EBP_REGNUM, buf);
1994 cache->base = extract_unsigned_integer (buf, 4, byte_order);
1995 if (cache->base == 0)
1996 {
1997 cache->base_p = 1;
1998 return;
1999 }
2000
2001 /* For normal frames, %eip is stored at 4(%ebp). */
2002 cache->saved_regs[I386_EIP_REGNUM] = 4;
2003
2004 if (cache->pc != 0)
2005 i386_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
2006 cache);
2007
2008 if (cache->locals < 0)
2009 {
2010 /* We didn't find a valid frame, which means that CACHE->base
2011 currently holds the frame pointer for our calling frame. If
2012 we're at the start of a function, or somewhere half-way its
2013 prologue, the function's frame probably hasn't been fully
2014 setup yet. Try to reconstruct the base address for the stack
2015 frame by looking at the stack pointer. For truly "frameless"
2016 functions this might work too. */
2017
2018 if (cache->saved_sp_reg != -1)
2019 {
2020 /* Saved stack pointer has been saved. */
2021 get_frame_register (this_frame, cache->saved_sp_reg, buf);
2022 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
2023
2024 /* We're halfway aligning the stack. */
2025 cache->base = ((cache->saved_sp - 4) & 0xfffffff0) - 4;
2026 cache->saved_regs[I386_EIP_REGNUM] = cache->saved_sp - 4;
2027
2028 /* This will be added back below. */
2029 cache->saved_regs[I386_EIP_REGNUM] -= cache->base;
2030 }
2031 else if (cache->pc != 0
2032 || target_read_code (get_frame_pc (this_frame), buf, 1))
2033 {
2034 /* We're in a known function, but did not find a frame
2035 setup. Assume that the function does not use %ebp.
2036 Alternatively, we may have jumped to an invalid
2037 address; in that case there is definitely no new
2038 frame in %ebp. */
2039 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2040 cache->base = extract_unsigned_integer (buf, 4, byte_order)
2041 + cache->sp_offset;
2042 }
2043 else
2044 /* We're in an unknown function. We could not find the start
2045 of the function to analyze the prologue; our best option is
2046 to assume a typical frame layout with the caller's %ebp
2047 saved. */
2048 cache->saved_regs[I386_EBP_REGNUM] = 0;
2049 }
2050
2051 if (cache->saved_sp_reg != -1)
2052 {
2053 /* Saved stack pointer has been saved (but the SAVED_SP_REG
2054 register may be unavailable). */
2055 if (cache->saved_sp == 0
2056 && deprecated_frame_register_read (this_frame,
2057 cache->saved_sp_reg, buf))
2058 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
2059 }
2060 /* Now that we have the base address for the stack frame we can
2061 calculate the value of %esp in the calling frame. */
2062 else if (cache->saved_sp == 0)
2063 cache->saved_sp = cache->base + 8;
2064
2065 /* Adjust all the saved registers such that they contain addresses
2066 instead of offsets. */
2067 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
2068 if (cache->saved_regs[i] != -1)
2069 cache->saved_regs[i] += cache->base;
2070
2071 cache->base_p = 1;
2072 }
2073
2074 static struct i386_frame_cache *
2075 i386_frame_cache (struct frame_info *this_frame, void **this_cache)
2076 {
2077 struct i386_frame_cache *cache;
2078
2079 if (*this_cache)
2080 return (struct i386_frame_cache *) *this_cache;
2081
2082 cache = i386_alloc_frame_cache ();
2083 *this_cache = cache;
2084
2085 TRY
2086 {
2087 i386_frame_cache_1 (this_frame, cache);
2088 }
2089 CATCH (ex, RETURN_MASK_ERROR)
2090 {
2091 if (ex.error != NOT_AVAILABLE_ERROR)
2092 throw_exception (ex);
2093 }
2094 END_CATCH
2095
2096 return cache;
2097 }
2098
2099 static void
2100 i386_frame_this_id (struct frame_info *this_frame, void **this_cache,
2101 struct frame_id *this_id)
2102 {
2103 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2104
2105 if (!cache->base_p)
2106 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2107 else if (cache->base == 0)
2108 {
2109 /* This marks the outermost frame. */
2110 }
2111 else
2112 {
2113 /* See the end of i386_push_dummy_call. */
2114 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2115 }
2116 }
2117
2118 static enum unwind_stop_reason
2119 i386_frame_unwind_stop_reason (struct frame_info *this_frame,
2120 void **this_cache)
2121 {
2122 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2123
2124 if (!cache->base_p)
2125 return UNWIND_UNAVAILABLE;
2126
2127 /* This marks the outermost frame. */
2128 if (cache->base == 0)
2129 return UNWIND_OUTERMOST;
2130
2131 return UNWIND_NO_REASON;
2132 }
2133
2134 static struct value *
2135 i386_frame_prev_register (struct frame_info *this_frame, void **this_cache,
2136 int regnum)
2137 {
2138 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2139
2140 gdb_assert (regnum >= 0);
2141
2142 /* The System V ABI says that:
2143
2144 "The flags register contains the system flags, such as the
2145 direction flag and the carry flag. The direction flag must be
2146 set to the forward (that is, zero) direction before entry and
2147 upon exit from a function. Other user flags have no specified
2148 role in the standard calling sequence and are not preserved."
2149
2150 To guarantee the "upon exit" part of that statement we fake a
2151 saved flags register that has its direction flag cleared.
2152
2153 Note that GCC doesn't seem to rely on the fact that the direction
2154 flag is cleared after a function return; it always explicitly
2155 clears the flag before operations where it matters.
2156
2157 FIXME: kettenis/20030316: I'm not quite sure whether this is the
2158 right thing to do. The way we fake the flags register here makes
2159 it impossible to change it. */
2160
2161 if (regnum == I386_EFLAGS_REGNUM)
2162 {
2163 ULONGEST val;
2164
2165 val = get_frame_register_unsigned (this_frame, regnum);
2166 val &= ~(1 << 10);
2167 return frame_unwind_got_constant (this_frame, regnum, val);
2168 }
2169
2170 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
2171 return frame_unwind_got_register (this_frame, regnum, I386_EAX_REGNUM);
2172
2173 if (regnum == I386_ESP_REGNUM
2174 && (cache->saved_sp != 0 || cache->saved_sp_reg != -1))
2175 {
2176 /* If the SP has been saved, but we don't know where, then this
2177 means that SAVED_SP_REG register was found unavailable back
2178 when we built the cache. */
2179 if (cache->saved_sp == 0)
2180 return frame_unwind_got_register (this_frame, regnum,
2181 cache->saved_sp_reg);
2182 else
2183 return frame_unwind_got_constant (this_frame, regnum,
2184 cache->saved_sp);
2185 }
2186
2187 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
2188 return frame_unwind_got_memory (this_frame, regnum,
2189 cache->saved_regs[regnum]);
2190
2191 return frame_unwind_got_register (this_frame, regnum, regnum);
2192 }
2193
2194 static const struct frame_unwind i386_frame_unwind =
2195 {
2196 NORMAL_FRAME,
2197 i386_frame_unwind_stop_reason,
2198 i386_frame_this_id,
2199 i386_frame_prev_register,
2200 NULL,
2201 default_frame_sniffer
2202 };
2203
2204 /* Normal frames, but in a function epilogue. */
2205
2206 /* Implement the stack_frame_destroyed_p gdbarch method.
2207
2208 The epilogue is defined here as the 'ret' instruction, which will
2209 follow any instruction such as 'leave' or 'pop %ebp' that destroys
2210 the function's stack frame. */
2211
2212 static int
2213 i386_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2214 {
2215 gdb_byte insn;
2216 struct compunit_symtab *cust;
2217
2218 cust = find_pc_compunit_symtab (pc);
2219 if (cust != NULL && COMPUNIT_EPILOGUE_UNWIND_VALID (cust))
2220 return 0;
2221
2222 if (target_read_memory (pc, &insn, 1))
2223 return 0; /* Can't read memory at pc. */
2224
2225 if (insn != 0xc3) /* 'ret' instruction. */
2226 return 0;
2227
2228 return 1;
2229 }
2230
2231 static int
2232 i386_epilogue_frame_sniffer (const struct frame_unwind *self,
2233 struct frame_info *this_frame,
2234 void **this_prologue_cache)
2235 {
2236 if (frame_relative_level (this_frame) == 0)
2237 return i386_stack_frame_destroyed_p (get_frame_arch (this_frame),
2238 get_frame_pc (this_frame));
2239 else
2240 return 0;
2241 }
2242
2243 static struct i386_frame_cache *
2244 i386_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
2245 {
2246 struct i386_frame_cache *cache;
2247 CORE_ADDR sp;
2248
2249 if (*this_cache)
2250 return (struct i386_frame_cache *) *this_cache;
2251
2252 cache = i386_alloc_frame_cache ();
2253 *this_cache = cache;
2254
2255 TRY
2256 {
2257 cache->pc = get_frame_func (this_frame);
2258
2259 /* At this point the stack looks as if we just entered the
2260 function, with the return address at the top of the
2261 stack. */
2262 sp = get_frame_register_unsigned (this_frame, I386_ESP_REGNUM);
2263 cache->base = sp + cache->sp_offset;
2264 cache->saved_sp = cache->base + 8;
2265 cache->saved_regs[I386_EIP_REGNUM] = cache->base + 4;
2266
2267 cache->base_p = 1;
2268 }
2269 CATCH (ex, RETURN_MASK_ERROR)
2270 {
2271 if (ex.error != NOT_AVAILABLE_ERROR)
2272 throw_exception (ex);
2273 }
2274 END_CATCH
2275
2276 return cache;
2277 }
2278
2279 static enum unwind_stop_reason
2280 i386_epilogue_frame_unwind_stop_reason (struct frame_info *this_frame,
2281 void **this_cache)
2282 {
2283 struct i386_frame_cache *cache =
2284 i386_epilogue_frame_cache (this_frame, this_cache);
2285
2286 if (!cache->base_p)
2287 return UNWIND_UNAVAILABLE;
2288
2289 return UNWIND_NO_REASON;
2290 }
2291
2292 static void
2293 i386_epilogue_frame_this_id (struct frame_info *this_frame,
2294 void **this_cache,
2295 struct frame_id *this_id)
2296 {
2297 struct i386_frame_cache *cache =
2298 i386_epilogue_frame_cache (this_frame, this_cache);
2299
2300 if (!cache->base_p)
2301 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2302 else
2303 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2304 }
2305
2306 static struct value *
2307 i386_epilogue_frame_prev_register (struct frame_info *this_frame,
2308 void **this_cache, int regnum)
2309 {
2310 /* Make sure we've initialized the cache. */
2311 i386_epilogue_frame_cache (this_frame, this_cache);
2312
2313 return i386_frame_prev_register (this_frame, this_cache, regnum);
2314 }
2315
2316 static const struct frame_unwind i386_epilogue_frame_unwind =
2317 {
2318 NORMAL_FRAME,
2319 i386_epilogue_frame_unwind_stop_reason,
2320 i386_epilogue_frame_this_id,
2321 i386_epilogue_frame_prev_register,
2322 NULL,
2323 i386_epilogue_frame_sniffer
2324 };
2325 \f
2326
2327 /* Stack-based trampolines. */
2328
2329 /* These trampolines are used on cross x86 targets, when taking the
2330 address of a nested function. When executing these trampolines,
2331 no stack frame is set up, so we are in a similar situation as in
2332 epilogues and i386_epilogue_frame_this_id can be re-used. */
2333
2334 /* Static chain passed in register. */
2335
2336 struct i386_insn i386_tramp_chain_in_reg_insns[] =
2337 {
2338 /* `movl imm32, %eax' and `movl imm32, %ecx' */
2339 { 5, { 0xb8 }, { 0xfe } },
2340
2341 /* `jmp imm32' */
2342 { 5, { 0xe9 }, { 0xff } },
2343
2344 {0}
2345 };
2346
2347 /* Static chain passed on stack (when regparm=3). */
2348
2349 struct i386_insn i386_tramp_chain_on_stack_insns[] =
2350 {
2351 /* `push imm32' */
2352 { 5, { 0x68 }, { 0xff } },
2353
2354 /* `jmp imm32' */
2355 { 5, { 0xe9 }, { 0xff } },
2356
2357 {0}
2358 };
2359
2360 /* Return whether PC points inside a stack trampoline. */
2361
2362 static int
2363 i386_in_stack_tramp_p (CORE_ADDR pc)
2364 {
2365 gdb_byte insn;
2366 const char *name;
2367
2368 /* A stack trampoline is detected if no name is associated
2369 to the current pc and if it points inside a trampoline
2370 sequence. */
2371
2372 find_pc_partial_function (pc, &name, NULL, NULL);
2373 if (name)
2374 return 0;
2375
2376 if (target_read_memory (pc, &insn, 1))
2377 return 0;
2378
2379 if (!i386_match_insn_block (pc, i386_tramp_chain_in_reg_insns)
2380 && !i386_match_insn_block (pc, i386_tramp_chain_on_stack_insns))
2381 return 0;
2382
2383 return 1;
2384 }
2385
2386 static int
2387 i386_stack_tramp_frame_sniffer (const struct frame_unwind *self,
2388 struct frame_info *this_frame,
2389 void **this_cache)
2390 {
2391 if (frame_relative_level (this_frame) == 0)
2392 return i386_in_stack_tramp_p (get_frame_pc (this_frame));
2393 else
2394 return 0;
2395 }
2396
2397 static const struct frame_unwind i386_stack_tramp_frame_unwind =
2398 {
2399 NORMAL_FRAME,
2400 i386_epilogue_frame_unwind_stop_reason,
2401 i386_epilogue_frame_this_id,
2402 i386_epilogue_frame_prev_register,
2403 NULL,
2404 i386_stack_tramp_frame_sniffer
2405 };
2406 \f
2407 /* Generate a bytecode expression to get the value of the saved PC. */
2408
2409 static void
2410 i386_gen_return_address (struct gdbarch *gdbarch,
2411 struct agent_expr *ax, struct axs_value *value,
2412 CORE_ADDR scope)
2413 {
2414 /* The following sequence assumes the traditional use of the base
2415 register. */
2416 ax_reg (ax, I386_EBP_REGNUM);
2417 ax_const_l (ax, 4);
2418 ax_simple (ax, aop_add);
2419 value->type = register_type (gdbarch, I386_EIP_REGNUM);
2420 value->kind = axs_lvalue_memory;
2421 }
2422 \f
2423
2424 /* Signal trampolines. */
2425
2426 static struct i386_frame_cache *
2427 i386_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
2428 {
2429 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2430 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2431 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2432 struct i386_frame_cache *cache;
2433 CORE_ADDR addr;
2434 gdb_byte buf[4];
2435
2436 if (*this_cache)
2437 return (struct i386_frame_cache *) *this_cache;
2438
2439 cache = i386_alloc_frame_cache ();
2440
2441 TRY
2442 {
2443 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2444 cache->base = extract_unsigned_integer (buf, 4, byte_order) - 4;
2445
2446 addr = tdep->sigcontext_addr (this_frame);
2447 if (tdep->sc_reg_offset)
2448 {
2449 int i;
2450
2451 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
2452
2453 for (i = 0; i < tdep->sc_num_regs; i++)
2454 if (tdep->sc_reg_offset[i] != -1)
2455 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
2456 }
2457 else
2458 {
2459 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
2460 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
2461 }
2462
2463 cache->base_p = 1;
2464 }
2465 CATCH (ex, RETURN_MASK_ERROR)
2466 {
2467 if (ex.error != NOT_AVAILABLE_ERROR)
2468 throw_exception (ex);
2469 }
2470 END_CATCH
2471
2472 *this_cache = cache;
2473 return cache;
2474 }
2475
2476 static enum unwind_stop_reason
2477 i386_sigtramp_frame_unwind_stop_reason (struct frame_info *this_frame,
2478 void **this_cache)
2479 {
2480 struct i386_frame_cache *cache =
2481 i386_sigtramp_frame_cache (this_frame, this_cache);
2482
2483 if (!cache->base_p)
2484 return UNWIND_UNAVAILABLE;
2485
2486 return UNWIND_NO_REASON;
2487 }
2488
2489 static void
2490 i386_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache,
2491 struct frame_id *this_id)
2492 {
2493 struct i386_frame_cache *cache =
2494 i386_sigtramp_frame_cache (this_frame, this_cache);
2495
2496 if (!cache->base_p)
2497 (*this_id) = frame_id_build_unavailable_stack (get_frame_pc (this_frame));
2498 else
2499 {
2500 /* See the end of i386_push_dummy_call. */
2501 (*this_id) = frame_id_build (cache->base + 8, get_frame_pc (this_frame));
2502 }
2503 }
2504
2505 static struct value *
2506 i386_sigtramp_frame_prev_register (struct frame_info *this_frame,
2507 void **this_cache, int regnum)
2508 {
2509 /* Make sure we've initialized the cache. */
2510 i386_sigtramp_frame_cache (this_frame, this_cache);
2511
2512 return i386_frame_prev_register (this_frame, this_cache, regnum);
2513 }
2514
2515 static int
2516 i386_sigtramp_frame_sniffer (const struct frame_unwind *self,
2517 struct frame_info *this_frame,
2518 void **this_prologue_cache)
2519 {
2520 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
2521
2522 /* We shouldn't even bother if we don't have a sigcontext_addr
2523 handler. */
2524 if (tdep->sigcontext_addr == NULL)
2525 return 0;
2526
2527 if (tdep->sigtramp_p != NULL)
2528 {
2529 if (tdep->sigtramp_p (this_frame))
2530 return 1;
2531 }
2532
2533 if (tdep->sigtramp_start != 0)
2534 {
2535 CORE_ADDR pc = get_frame_pc (this_frame);
2536
2537 gdb_assert (tdep->sigtramp_end != 0);
2538 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
2539 return 1;
2540 }
2541
2542 return 0;
2543 }
2544
2545 static const struct frame_unwind i386_sigtramp_frame_unwind =
2546 {
2547 SIGTRAMP_FRAME,
2548 i386_sigtramp_frame_unwind_stop_reason,
2549 i386_sigtramp_frame_this_id,
2550 i386_sigtramp_frame_prev_register,
2551 NULL,
2552 i386_sigtramp_frame_sniffer
2553 };
2554 \f
2555
2556 static CORE_ADDR
2557 i386_frame_base_address (struct frame_info *this_frame, void **this_cache)
2558 {
2559 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2560
2561 return cache->base;
2562 }
2563
2564 static const struct frame_base i386_frame_base =
2565 {
2566 &i386_frame_unwind,
2567 i386_frame_base_address,
2568 i386_frame_base_address,
2569 i386_frame_base_address
2570 };
2571
2572 static struct frame_id
2573 i386_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2574 {
2575 CORE_ADDR fp;
2576
2577 fp = get_frame_register_unsigned (this_frame, I386_EBP_REGNUM);
2578
2579 /* See the end of i386_push_dummy_call. */
2580 return frame_id_build (fp + 8, get_frame_pc (this_frame));
2581 }
2582
2583 /* _Decimal128 function return values need 16-byte alignment on the
2584 stack. */
2585
2586 static CORE_ADDR
2587 i386_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2588 {
2589 return sp & -(CORE_ADDR)16;
2590 }
2591 \f
2592
2593 /* Figure out where the longjmp will land. Slurp the args out of the
2594 stack. We expect the first arg to be a pointer to the jmp_buf
2595 structure from which we extract the address that we will land at.
2596 This address is copied into PC. This routine returns non-zero on
2597 success. */
2598
2599 static int
2600 i386_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
2601 {
2602 gdb_byte buf[4];
2603 CORE_ADDR sp, jb_addr;
2604 struct gdbarch *gdbarch = get_frame_arch (frame);
2605 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2606 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
2607
2608 /* If JB_PC_OFFSET is -1, we have no way to find out where the
2609 longjmp will land. */
2610 if (jb_pc_offset == -1)
2611 return 0;
2612
2613 get_frame_register (frame, I386_ESP_REGNUM, buf);
2614 sp = extract_unsigned_integer (buf, 4, byte_order);
2615 if (target_read_memory (sp + 4, buf, 4))
2616 return 0;
2617
2618 jb_addr = extract_unsigned_integer (buf, 4, byte_order);
2619 if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
2620 return 0;
2621
2622 *pc = extract_unsigned_integer (buf, 4, byte_order);
2623 return 1;
2624 }
2625 \f
2626
2627 /* Check whether TYPE must be 16-byte-aligned when passed as a
2628 function argument. 16-byte vectors, _Decimal128 and structures or
2629 unions containing such types must be 16-byte-aligned; other
2630 arguments are 4-byte-aligned. */
2631
2632 static int
2633 i386_16_byte_align_p (struct type *type)
2634 {
2635 type = check_typedef (type);
2636 if ((TYPE_CODE (type) == TYPE_CODE_DECFLOAT
2637 || (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type)))
2638 && TYPE_LENGTH (type) == 16)
2639 return 1;
2640 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2641 return i386_16_byte_align_p (TYPE_TARGET_TYPE (type));
2642 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2643 || TYPE_CODE (type) == TYPE_CODE_UNION)
2644 {
2645 int i;
2646 for (i = 0; i < TYPE_NFIELDS (type); i++)
2647 {
2648 if (i386_16_byte_align_p (TYPE_FIELD_TYPE (type, i)))
2649 return 1;
2650 }
2651 }
2652 return 0;
2653 }
2654
2655 /* Implementation for set_gdbarch_push_dummy_code. */
2656
2657 static CORE_ADDR
2658 i386_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, CORE_ADDR funaddr,
2659 struct value **args, int nargs, struct type *value_type,
2660 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
2661 struct regcache *regcache)
2662 {
2663 /* Use 0xcc breakpoint - 1 byte. */
2664 *bp_addr = sp - 1;
2665 *real_pc = funaddr;
2666
2667 /* Keep the stack aligned. */
2668 return sp - 16;
2669 }
2670
2671 static CORE_ADDR
2672 i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2673 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2674 struct value **args, CORE_ADDR sp, int struct_return,
2675 CORE_ADDR struct_addr)
2676 {
2677 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2678 gdb_byte buf[4];
2679 int i;
2680 int write_pass;
2681 int args_space = 0;
2682
2683 /* BND registers can be in arbitrary values at the moment of the
2684 inferior call. This can cause boundary violations that are not
2685 due to a real bug or even desired by the user. The best to be done
2686 is set the BND registers to allow access to the whole memory, INIT
2687 state, before pushing the inferior call. */
2688 i387_reset_bnd_regs (gdbarch, regcache);
2689
2690 /* Determine the total space required for arguments and struct
2691 return address in a first pass (allowing for 16-byte-aligned
2692 arguments), then push arguments in a second pass. */
2693
2694 for (write_pass = 0; write_pass < 2; write_pass++)
2695 {
2696 int args_space_used = 0;
2697
2698 if (struct_return)
2699 {
2700 if (write_pass)
2701 {
2702 /* Push value address. */
2703 store_unsigned_integer (buf, 4, byte_order, struct_addr);
2704 write_memory (sp, buf, 4);
2705 args_space_used += 4;
2706 }
2707 else
2708 args_space += 4;
2709 }
2710
2711 for (i = 0; i < nargs; i++)
2712 {
2713 int len = TYPE_LENGTH (value_enclosing_type (args[i]));
2714
2715 if (write_pass)
2716 {
2717 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2718 args_space_used = align_up (args_space_used, 16);
2719
2720 write_memory (sp + args_space_used,
2721 value_contents_all (args[i]), len);
2722 /* The System V ABI says that:
2723
2724 "An argument's size is increased, if necessary, to make it a
2725 multiple of [32-bit] words. This may require tail padding,
2726 depending on the size of the argument."
2727
2728 This makes sure the stack stays word-aligned. */
2729 args_space_used += align_up (len, 4);
2730 }
2731 else
2732 {
2733 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2734 args_space = align_up (args_space, 16);
2735 args_space += align_up (len, 4);
2736 }
2737 }
2738
2739 if (!write_pass)
2740 {
2741 sp -= args_space;
2742
2743 /* The original System V ABI only requires word alignment,
2744 but modern incarnations need 16-byte alignment in order
2745 to support SSE. Since wasting a few bytes here isn't
2746 harmful we unconditionally enforce 16-byte alignment. */
2747 sp &= ~0xf;
2748 }
2749 }
2750
2751 /* Store return address. */
2752 sp -= 4;
2753 store_unsigned_integer (buf, 4, byte_order, bp_addr);
2754 write_memory (sp, buf, 4);
2755
2756 /* Finally, update the stack pointer... */
2757 store_unsigned_integer (buf, 4, byte_order, sp);
2758 regcache->cooked_write (I386_ESP_REGNUM, buf);
2759
2760 /* ...and fake a frame pointer. */
2761 regcache->cooked_write (I386_EBP_REGNUM, buf);
2762
2763 /* MarkK wrote: This "+ 8" is all over the place:
2764 (i386_frame_this_id, i386_sigtramp_frame_this_id,
2765 i386_dummy_id). It's there, since all frame unwinders for
2766 a given target have to agree (within a certain margin) on the
2767 definition of the stack address of a frame. Otherwise frame id
2768 comparison might not work correctly. Since DWARF2/GCC uses the
2769 stack address *before* the function call as a frame's CFA. On
2770 the i386, when %ebp is used as a frame pointer, the offset
2771 between the contents %ebp and the CFA as defined by GCC. */
2772 return sp + 8;
2773 }
2774
2775 /* These registers are used for returning integers (and on some
2776 targets also for returning `struct' and `union' values when their
2777 size and alignment match an integer type). */
2778 #define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
2779 #define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
2780
2781 /* Read, for architecture GDBARCH, a function return value of TYPE
2782 from REGCACHE, and copy that into VALBUF. */
2783
2784 static void
2785 i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
2786 struct regcache *regcache, gdb_byte *valbuf)
2787 {
2788 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2789 int len = TYPE_LENGTH (type);
2790 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2791
2792 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2793 {
2794 if (tdep->st0_regnum < 0)
2795 {
2796 warning (_("Cannot find floating-point return value."));
2797 memset (valbuf, 0, len);
2798 return;
2799 }
2800
2801 /* Floating-point return values can be found in %st(0). Convert
2802 its contents to the desired type. This is probably not
2803 exactly how it would happen on the target itself, but it is
2804 the best we can do. */
2805 regcache->raw_read (I386_ST0_REGNUM, buf);
2806 target_float_convert (buf, i387_ext_type (gdbarch), valbuf, type);
2807 }
2808 else
2809 {
2810 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2811 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2812
2813 if (len <= low_size)
2814 {
2815 regcache->raw_read (LOW_RETURN_REGNUM, buf);
2816 memcpy (valbuf, buf, len);
2817 }
2818 else if (len <= (low_size + high_size))
2819 {
2820 regcache->raw_read (LOW_RETURN_REGNUM, buf);
2821 memcpy (valbuf, buf, low_size);
2822 regcache->raw_read (HIGH_RETURN_REGNUM, buf);
2823 memcpy (valbuf + low_size, buf, len - low_size);
2824 }
2825 else
2826 internal_error (__FILE__, __LINE__,
2827 _("Cannot extract return value of %d bytes long."),
2828 len);
2829 }
2830 }
2831
2832 /* Write, for architecture GDBARCH, a function return value of TYPE
2833 from VALBUF into REGCACHE. */
2834
2835 static void
2836 i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
2837 struct regcache *regcache, const gdb_byte *valbuf)
2838 {
2839 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2840 int len = TYPE_LENGTH (type);
2841
2842 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2843 {
2844 ULONGEST fstat;
2845 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2846
2847 if (tdep->st0_regnum < 0)
2848 {
2849 warning (_("Cannot set floating-point return value."));
2850 return;
2851 }
2852
2853 /* Returning floating-point values is a bit tricky. Apart from
2854 storing the return value in %st(0), we have to simulate the
2855 state of the FPU at function return point. */
2856
2857 /* Convert the value found in VALBUF to the extended
2858 floating-point format used by the FPU. This is probably
2859 not exactly how it would happen on the target itself, but
2860 it is the best we can do. */
2861 target_float_convert (valbuf, type, buf, i387_ext_type (gdbarch));
2862 regcache->raw_write (I386_ST0_REGNUM, buf);
2863
2864 /* Set the top of the floating-point register stack to 7. The
2865 actual value doesn't really matter, but 7 is what a normal
2866 function return would end up with if the program started out
2867 with a freshly initialized FPU. */
2868 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
2869 fstat |= (7 << 11);
2870 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM (tdep), fstat);
2871
2872 /* Mark %st(1) through %st(7) as empty. Since we set the top of
2873 the floating-point register stack to 7, the appropriate value
2874 for the tag word is 0x3fff. */
2875 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM (tdep), 0x3fff);
2876 }
2877 else
2878 {
2879 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2880 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2881
2882 if (len <= low_size)
2883 regcache->raw_write_part (LOW_RETURN_REGNUM, 0, len, valbuf);
2884 else if (len <= (low_size + high_size))
2885 {
2886 regcache->raw_write (LOW_RETURN_REGNUM, valbuf);
2887 regcache->raw_write_part (HIGH_RETURN_REGNUM, 0, len - low_size,
2888 valbuf + low_size);
2889 }
2890 else
2891 internal_error (__FILE__, __LINE__,
2892 _("Cannot store return value of %d bytes long."), len);
2893 }
2894 }
2895 \f
2896
2897 /* This is the variable that is set with "set struct-convention", and
2898 its legitimate values. */
2899 static const char default_struct_convention[] = "default";
2900 static const char pcc_struct_convention[] = "pcc";
2901 static const char reg_struct_convention[] = "reg";
2902 static const char *const valid_conventions[] =
2903 {
2904 default_struct_convention,
2905 pcc_struct_convention,
2906 reg_struct_convention,
2907 NULL
2908 };
2909 static const char *struct_convention = default_struct_convention;
2910
2911 /* Return non-zero if TYPE, which is assumed to be a structure,
2912 a union type, or an array type, should be returned in registers
2913 for architecture GDBARCH. */
2914
2915 static int
2916 i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
2917 {
2918 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2919 enum type_code code = TYPE_CODE (type);
2920 int len = TYPE_LENGTH (type);
2921
2922 gdb_assert (code == TYPE_CODE_STRUCT
2923 || code == TYPE_CODE_UNION
2924 || code == TYPE_CODE_ARRAY);
2925
2926 if (struct_convention == pcc_struct_convention
2927 || (struct_convention == default_struct_convention
2928 && tdep->struct_return == pcc_struct_return))
2929 return 0;
2930
2931 /* Structures consisting of a single `float', `double' or 'long
2932 double' member are returned in %st(0). */
2933 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2934 {
2935 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
2936 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2937 return (len == 4 || len == 8 || len == 12);
2938 }
2939
2940 return (len == 1 || len == 2 || len == 4 || len == 8);
2941 }
2942
2943 /* Determine, for architecture GDBARCH, how a return value of TYPE
2944 should be returned. If it is supposed to be returned in registers,
2945 and READBUF is non-zero, read the appropriate value from REGCACHE,
2946 and copy it into READBUF. If WRITEBUF is non-zero, write the value
2947 from WRITEBUF into REGCACHE. */
2948
2949 static enum return_value_convention
2950 i386_return_value (struct gdbarch *gdbarch, struct value *function,
2951 struct type *type, struct regcache *regcache,
2952 gdb_byte *readbuf, const gdb_byte *writebuf)
2953 {
2954 enum type_code code = TYPE_CODE (type);
2955
2956 if (((code == TYPE_CODE_STRUCT
2957 || code == TYPE_CODE_UNION
2958 || code == TYPE_CODE_ARRAY)
2959 && !i386_reg_struct_return_p (gdbarch, type))
2960 /* Complex double and long double uses the struct return covention. */
2961 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 16)
2962 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 24)
2963 /* 128-bit decimal float uses the struct return convention. */
2964 || (code == TYPE_CODE_DECFLOAT && TYPE_LENGTH (type) == 16))
2965 {
2966 /* The System V ABI says that:
2967
2968 "A function that returns a structure or union also sets %eax
2969 to the value of the original address of the caller's area
2970 before it returns. Thus when the caller receives control
2971 again, the address of the returned object resides in register
2972 %eax and can be used to access the object."
2973
2974 So the ABI guarantees that we can always find the return
2975 value just after the function has returned. */
2976
2977 /* Note that the ABI doesn't mention functions returning arrays,
2978 which is something possible in certain languages such as Ada.
2979 In this case, the value is returned as if it was wrapped in
2980 a record, so the convention applied to records also applies
2981 to arrays. */
2982
2983 if (readbuf)
2984 {
2985 ULONGEST addr;
2986
2987 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
2988 read_memory (addr, readbuf, TYPE_LENGTH (type));
2989 }
2990
2991 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
2992 }
2993
2994 /* This special case is for structures consisting of a single
2995 `float', `double' or 'long double' member. These structures are
2996 returned in %st(0). For these structures, we call ourselves
2997 recursively, changing TYPE into the type of the first member of
2998 the structure. Since that should work for all structures that
2999 have only one member, we don't bother to check the member's type
3000 here. */
3001 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
3002 {
3003 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
3004 return i386_return_value (gdbarch, function, type, regcache,
3005 readbuf, writebuf);
3006 }
3007
3008 if (readbuf)
3009 i386_extract_return_value (gdbarch, type, regcache, readbuf);
3010 if (writebuf)
3011 i386_store_return_value (gdbarch, type, regcache, writebuf);
3012
3013 return RETURN_VALUE_REGISTER_CONVENTION;
3014 }
3015 \f
3016
3017 struct type *
3018 i387_ext_type (struct gdbarch *gdbarch)
3019 {
3020 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3021
3022 if (!tdep->i387_ext_type)
3023 {
3024 tdep->i387_ext_type = tdesc_find_type (gdbarch, "i387_ext");
3025 gdb_assert (tdep->i387_ext_type != NULL);
3026 }
3027
3028 return tdep->i387_ext_type;
3029 }
3030
3031 /* Construct type for pseudo BND registers. We can't use
3032 tdesc_find_type since a complement of one value has to be used
3033 to describe the upper bound. */
3034
3035 static struct type *
3036 i386_bnd_type (struct gdbarch *gdbarch)
3037 {
3038 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3039
3040
3041 if (!tdep->i386_bnd_type)
3042 {
3043 struct type *t;
3044 const struct builtin_type *bt = builtin_type (gdbarch);
3045
3046 /* The type we're building is described bellow: */
3047 #if 0
3048 struct __bound128
3049 {
3050 void *lbound;
3051 void *ubound; /* One complement of raw ubound field. */
3052 };
3053 #endif
3054
3055 t = arch_composite_type (gdbarch,
3056 "__gdb_builtin_type_bound128", TYPE_CODE_STRUCT);
3057
3058 append_composite_type_field (t, "lbound", bt->builtin_data_ptr);
3059 append_composite_type_field (t, "ubound", bt->builtin_data_ptr);
3060
3061 TYPE_NAME (t) = "builtin_type_bound128";
3062 tdep->i386_bnd_type = t;
3063 }
3064
3065 return tdep->i386_bnd_type;
3066 }
3067
3068 /* Construct vector type for pseudo ZMM registers. We can't use
3069 tdesc_find_type since ZMM isn't described in target description. */
3070
3071 static struct type *
3072 i386_zmm_type (struct gdbarch *gdbarch)
3073 {
3074 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3075
3076 if (!tdep->i386_zmm_type)
3077 {
3078 const struct builtin_type *bt = builtin_type (gdbarch);
3079
3080 /* The type we're building is this: */
3081 #if 0
3082 union __gdb_builtin_type_vec512i
3083 {
3084 int128_t uint128[4];
3085 int64_t v4_int64[8];
3086 int32_t v8_int32[16];
3087 int16_t v16_int16[32];
3088 int8_t v32_int8[64];
3089 double v4_double[8];
3090 float v8_float[16];
3091 };
3092 #endif
3093
3094 struct type *t;
3095
3096 t = arch_composite_type (gdbarch,
3097 "__gdb_builtin_type_vec512i", TYPE_CODE_UNION);
3098 append_composite_type_field (t, "v16_float",
3099 init_vector_type (bt->builtin_float, 16));
3100 append_composite_type_field (t, "v8_double",
3101 init_vector_type (bt->builtin_double, 8));
3102 append_composite_type_field (t, "v64_int8",
3103 init_vector_type (bt->builtin_int8, 64));
3104 append_composite_type_field (t, "v32_int16",
3105 init_vector_type (bt->builtin_int16, 32));
3106 append_composite_type_field (t, "v16_int32",
3107 init_vector_type (bt->builtin_int32, 16));
3108 append_composite_type_field (t, "v8_int64",
3109 init_vector_type (bt->builtin_int64, 8));
3110 append_composite_type_field (t, "v4_int128",
3111 init_vector_type (bt->builtin_int128, 4));
3112
3113 TYPE_VECTOR (t) = 1;
3114 TYPE_NAME (t) = "builtin_type_vec512i";
3115 tdep->i386_zmm_type = t;
3116 }
3117
3118 return tdep->i386_zmm_type;
3119 }
3120
3121 /* Construct vector type for pseudo YMM registers. We can't use
3122 tdesc_find_type since YMM isn't described in target description. */
3123
3124 static struct type *
3125 i386_ymm_type (struct gdbarch *gdbarch)
3126 {
3127 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3128
3129 if (!tdep->i386_ymm_type)
3130 {
3131 const struct builtin_type *bt = builtin_type (gdbarch);
3132
3133 /* The type we're building is this: */
3134 #if 0
3135 union __gdb_builtin_type_vec256i
3136 {
3137 int128_t uint128[2];
3138 int64_t v2_int64[4];
3139 int32_t v4_int32[8];
3140 int16_t v8_int16[16];
3141 int8_t v16_int8[32];
3142 double v2_double[4];
3143 float v4_float[8];
3144 };
3145 #endif
3146
3147 struct type *t;
3148
3149 t = arch_composite_type (gdbarch,
3150 "__gdb_builtin_type_vec256i", TYPE_CODE_UNION);
3151 append_composite_type_field (t, "v8_float",
3152 init_vector_type (bt->builtin_float, 8));
3153 append_composite_type_field (t, "v4_double",
3154 init_vector_type (bt->builtin_double, 4));
3155 append_composite_type_field (t, "v32_int8",
3156 init_vector_type (bt->builtin_int8, 32));
3157 append_composite_type_field (t, "v16_int16",
3158 init_vector_type (bt->builtin_int16, 16));
3159 append_composite_type_field (t, "v8_int32",
3160 init_vector_type (bt->builtin_int32, 8));
3161 append_composite_type_field (t, "v4_int64",
3162 init_vector_type (bt->builtin_int64, 4));
3163 append_composite_type_field (t, "v2_int128",
3164 init_vector_type (bt->builtin_int128, 2));
3165
3166 TYPE_VECTOR (t) = 1;
3167 TYPE_NAME (t) = "builtin_type_vec256i";
3168 tdep->i386_ymm_type = t;
3169 }
3170
3171 return tdep->i386_ymm_type;
3172 }
3173
3174 /* Construct vector type for MMX registers. */
3175 static struct type *
3176 i386_mmx_type (struct gdbarch *gdbarch)
3177 {
3178 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3179
3180 if (!tdep->i386_mmx_type)
3181 {
3182 const struct builtin_type *bt = builtin_type (gdbarch);
3183
3184 /* The type we're building is this: */
3185 #if 0
3186 union __gdb_builtin_type_vec64i
3187 {
3188 int64_t uint64;
3189 int32_t v2_int32[2];
3190 int16_t v4_int16[4];
3191 int8_t v8_int8[8];
3192 };
3193 #endif
3194
3195 struct type *t;
3196
3197 t = arch_composite_type (gdbarch,
3198 "__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
3199
3200 append_composite_type_field (t, "uint64", bt->builtin_int64);
3201 append_composite_type_field (t, "v2_int32",
3202 init_vector_type (bt->builtin_int32, 2));
3203 append_composite_type_field (t, "v4_int16",
3204 init_vector_type (bt->builtin_int16, 4));
3205 append_composite_type_field (t, "v8_int8",
3206 init_vector_type (bt->builtin_int8, 8));
3207
3208 TYPE_VECTOR (t) = 1;
3209 TYPE_NAME (t) = "builtin_type_vec64i";
3210 tdep->i386_mmx_type = t;
3211 }
3212
3213 return tdep->i386_mmx_type;
3214 }
3215
3216 /* Return the GDB type object for the "standard" data type of data in
3217 register REGNUM. */
3218
3219 struct type *
3220 i386_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
3221 {
3222 if (i386_bnd_regnum_p (gdbarch, regnum))
3223 return i386_bnd_type (gdbarch);
3224 if (i386_mmx_regnum_p (gdbarch, regnum))
3225 return i386_mmx_type (gdbarch);
3226 else if (i386_ymm_regnum_p (gdbarch, regnum))
3227 return i386_ymm_type (gdbarch);
3228 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3229 return i386_ymm_type (gdbarch);
3230 else if (i386_zmm_regnum_p (gdbarch, regnum))
3231 return i386_zmm_type (gdbarch);
3232 else
3233 {
3234 const struct builtin_type *bt = builtin_type (gdbarch);
3235 if (i386_byte_regnum_p (gdbarch, regnum))
3236 return bt->builtin_int8;
3237 else if (i386_word_regnum_p (gdbarch, regnum))
3238 return bt->builtin_int16;
3239 else if (i386_dword_regnum_p (gdbarch, regnum))
3240 return bt->builtin_int32;
3241 else if (i386_k_regnum_p (gdbarch, regnum))
3242 return bt->builtin_int64;
3243 }
3244
3245 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3246 }
3247
3248 /* Map a cooked register onto a raw register or memory. For the i386,
3249 the MMX registers need to be mapped onto floating point registers. */
3250
3251 static int
3252 i386_mmx_regnum_to_fp_regnum (readable_regcache *regcache, int regnum)
3253 {
3254 struct gdbarch_tdep *tdep = gdbarch_tdep (regcache->arch ());
3255 int mmxreg, fpreg;
3256 ULONGEST fstat;
3257 int tos;
3258
3259 mmxreg = regnum - tdep->mm0_regnum;
3260 regcache->raw_read (I387_FSTAT_REGNUM (tdep), &fstat);
3261 tos = (fstat >> 11) & 0x7;
3262 fpreg = (mmxreg + tos) % 8;
3263
3264 return (I387_ST0_REGNUM (tdep) + fpreg);
3265 }
3266
3267 /* A helper function for us by i386_pseudo_register_read_value and
3268 amd64_pseudo_register_read_value. It does all the work but reads
3269 the data into an already-allocated value. */
3270
3271 void
3272 i386_pseudo_register_read_into_value (struct gdbarch *gdbarch,
3273 readable_regcache *regcache,
3274 int regnum,
3275 struct value *result_value)
3276 {
3277 gdb_byte raw_buf[I386_MAX_REGISTER_SIZE];
3278 enum register_status status;
3279 gdb_byte *buf = value_contents_raw (result_value);
3280
3281 if (i386_mmx_regnum_p (gdbarch, regnum))
3282 {
3283 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3284
3285 /* Extract (always little endian). */
3286 status = regcache->raw_read (fpnum, raw_buf);
3287 if (status != REG_VALID)
3288 mark_value_bytes_unavailable (result_value, 0,
3289 TYPE_LENGTH (value_type (result_value)));
3290 else
3291 memcpy (buf, raw_buf, register_size (gdbarch, regnum));
3292 }
3293 else
3294 {
3295 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3296 if (i386_bnd_regnum_p (gdbarch, regnum))
3297 {
3298 regnum -= tdep->bnd0_regnum;
3299
3300 /* Extract (always little endian). Read lower 128bits. */
3301 status = regcache->raw_read (I387_BND0R_REGNUM (tdep) + regnum,
3302 raw_buf);
3303 if (status != REG_VALID)
3304 mark_value_bytes_unavailable (result_value, 0, 16);
3305 else
3306 {
3307 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3308 LONGEST upper, lower;
3309 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
3310
3311 lower = extract_unsigned_integer (raw_buf, 8, byte_order);
3312 upper = extract_unsigned_integer (raw_buf + 8, 8, byte_order);
3313 upper = ~upper;
3314
3315 memcpy (buf, &lower, size);
3316 memcpy (buf + size, &upper, size);
3317 }
3318 }
3319 else if (i386_k_regnum_p (gdbarch, regnum))
3320 {
3321 regnum -= tdep->k0_regnum;
3322
3323 /* Extract (always little endian). */
3324 status = regcache->raw_read (tdep->k0_regnum + regnum, raw_buf);
3325 if (status != REG_VALID)
3326 mark_value_bytes_unavailable (result_value, 0, 8);
3327 else
3328 memcpy (buf, raw_buf, 8);
3329 }
3330 else if (i386_zmm_regnum_p (gdbarch, regnum))
3331 {
3332 regnum -= tdep->zmm0_regnum;
3333
3334 if (regnum < num_lower_zmm_regs)
3335 {
3336 /* Extract (always little endian). Read lower 128bits. */
3337 status = regcache->raw_read (I387_XMM0_REGNUM (tdep) + regnum,
3338 raw_buf);
3339 if (status != REG_VALID)
3340 mark_value_bytes_unavailable (result_value, 0, 16);
3341 else
3342 memcpy (buf, raw_buf, 16);
3343
3344 /* Extract (always little endian). Read upper 128bits. */
3345 status = regcache->raw_read (tdep->ymm0h_regnum + regnum,
3346 raw_buf);
3347 if (status != REG_VALID)
3348 mark_value_bytes_unavailable (result_value, 16, 16);
3349 else
3350 memcpy (buf + 16, raw_buf, 16);
3351 }
3352 else
3353 {
3354 /* Extract (always little endian). Read lower 128bits. */
3355 status = regcache->raw_read (I387_XMM16_REGNUM (tdep) + regnum
3356 - num_lower_zmm_regs,
3357 raw_buf);
3358 if (status != REG_VALID)
3359 mark_value_bytes_unavailable (result_value, 0, 16);
3360 else
3361 memcpy (buf, raw_buf, 16);
3362
3363 /* Extract (always little endian). Read upper 128bits. */
3364 status = regcache->raw_read (I387_YMM16H_REGNUM (tdep) + regnum
3365 - num_lower_zmm_regs,
3366 raw_buf);
3367 if (status != REG_VALID)
3368 mark_value_bytes_unavailable (result_value, 16, 16);
3369 else
3370 memcpy (buf + 16, raw_buf, 16);
3371 }
3372
3373 /* Read upper 256bits. */
3374 status = regcache->raw_read (tdep->zmm0h_regnum + regnum,
3375 raw_buf);
3376 if (status != REG_VALID)
3377 mark_value_bytes_unavailable (result_value, 32, 32);
3378 else
3379 memcpy (buf + 32, raw_buf, 32);
3380 }
3381 else if (i386_ymm_regnum_p (gdbarch, regnum))
3382 {
3383 regnum -= tdep->ymm0_regnum;
3384
3385 /* Extract (always little endian). Read lower 128bits. */
3386 status = regcache->raw_read (I387_XMM0_REGNUM (tdep) + regnum,
3387 raw_buf);
3388 if (status != REG_VALID)
3389 mark_value_bytes_unavailable (result_value, 0, 16);
3390 else
3391 memcpy (buf, raw_buf, 16);
3392 /* Read upper 128bits. */
3393 status = regcache->raw_read (tdep->ymm0h_regnum + regnum,
3394 raw_buf);
3395 if (status != REG_VALID)
3396 mark_value_bytes_unavailable (result_value, 16, 32);
3397 else
3398 memcpy (buf + 16, raw_buf, 16);
3399 }
3400 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3401 {
3402 regnum -= tdep->ymm16_regnum;
3403 /* Extract (always little endian). Read lower 128bits. */
3404 status = regcache->raw_read (I387_XMM16_REGNUM (tdep) + regnum,
3405 raw_buf);
3406 if (status != REG_VALID)
3407 mark_value_bytes_unavailable (result_value, 0, 16);
3408 else
3409 memcpy (buf, raw_buf, 16);
3410 /* Read upper 128bits. */
3411 status = regcache->raw_read (tdep->ymm16h_regnum + regnum,
3412 raw_buf);
3413 if (status != REG_VALID)
3414 mark_value_bytes_unavailable (result_value, 16, 16);
3415 else
3416 memcpy (buf + 16, raw_buf, 16);
3417 }
3418 else if (i386_word_regnum_p (gdbarch, regnum))
3419 {
3420 int gpnum = regnum - tdep->ax_regnum;
3421
3422 /* Extract (always little endian). */
3423 status = regcache->raw_read (gpnum, raw_buf);
3424 if (status != REG_VALID)
3425 mark_value_bytes_unavailable (result_value, 0,
3426 TYPE_LENGTH (value_type (result_value)));
3427 else
3428 memcpy (buf, raw_buf, 2);
3429 }
3430 else if (i386_byte_regnum_p (gdbarch, regnum))
3431 {
3432 int gpnum = regnum - tdep->al_regnum;
3433
3434 /* Extract (always little endian). We read both lower and
3435 upper registers. */
3436 status = regcache->raw_read (gpnum % 4, raw_buf);
3437 if (status != REG_VALID)
3438 mark_value_bytes_unavailable (result_value, 0,
3439 TYPE_LENGTH (value_type (result_value)));
3440 else if (gpnum >= 4)
3441 memcpy (buf, raw_buf + 1, 1);
3442 else
3443 memcpy (buf, raw_buf, 1);
3444 }
3445 else
3446 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3447 }
3448 }
3449
3450 static struct value *
3451 i386_pseudo_register_read_value (struct gdbarch *gdbarch,
3452 readable_regcache *regcache,
3453 int regnum)
3454 {
3455 struct value *result;
3456
3457 result = allocate_value (register_type (gdbarch, regnum));
3458 VALUE_LVAL (result) = lval_register;
3459 VALUE_REGNUM (result) = regnum;
3460
3461 i386_pseudo_register_read_into_value (gdbarch, regcache, regnum, result);
3462
3463 return result;
3464 }
3465
3466 void
3467 i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
3468 int regnum, const gdb_byte *buf)
3469 {
3470 gdb_byte raw_buf[I386_MAX_REGISTER_SIZE];
3471
3472 if (i386_mmx_regnum_p (gdbarch, regnum))
3473 {
3474 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3475
3476 /* Read ... */
3477 regcache->raw_read (fpnum, raw_buf);
3478 /* ... Modify ... (always little endian). */
3479 memcpy (raw_buf, buf, register_size (gdbarch, regnum));
3480 /* ... Write. */
3481 regcache->raw_write (fpnum, raw_buf);
3482 }
3483 else
3484 {
3485 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3486
3487 if (i386_bnd_regnum_p (gdbarch, regnum))
3488 {
3489 ULONGEST upper, lower;
3490 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
3491 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3492
3493 /* New values from input value. */
3494 regnum -= tdep->bnd0_regnum;
3495 lower = extract_unsigned_integer (buf, size, byte_order);
3496 upper = extract_unsigned_integer (buf + size, size, byte_order);
3497
3498 /* Fetching register buffer. */
3499 regcache->raw_read (I387_BND0R_REGNUM (tdep) + regnum,
3500 raw_buf);
3501
3502 upper = ~upper;
3503
3504 /* Set register bits. */
3505 memcpy (raw_buf, &lower, 8);
3506 memcpy (raw_buf + 8, &upper, 8);
3507
3508 regcache->raw_write (I387_BND0R_REGNUM (tdep) + regnum, raw_buf);
3509 }
3510 else if (i386_k_regnum_p (gdbarch, regnum))
3511 {
3512 regnum -= tdep->k0_regnum;
3513
3514 regcache->raw_write (tdep->k0_regnum + regnum, buf);
3515 }
3516 else if (i386_zmm_regnum_p (gdbarch, regnum))
3517 {
3518 regnum -= tdep->zmm0_regnum;
3519
3520 if (regnum < num_lower_zmm_regs)
3521 {
3522 /* Write lower 128bits. */
3523 regcache->raw_write (I387_XMM0_REGNUM (tdep) + regnum, buf);
3524 /* Write upper 128bits. */
3525 regcache->raw_write (I387_YMM0_REGNUM (tdep) + regnum, buf + 16);
3526 }
3527 else
3528 {
3529 /* Write lower 128bits. */
3530 regcache->raw_write (I387_XMM16_REGNUM (tdep) + regnum
3531 - num_lower_zmm_regs, buf);
3532 /* Write upper 128bits. */
3533 regcache->raw_write (I387_YMM16H_REGNUM (tdep) + regnum
3534 - num_lower_zmm_regs, buf + 16);
3535 }
3536 /* Write upper 256bits. */
3537 regcache->raw_write (tdep->zmm0h_regnum + regnum, buf + 32);
3538 }
3539 else if (i386_ymm_regnum_p (gdbarch, regnum))
3540 {
3541 regnum -= tdep->ymm0_regnum;
3542
3543 /* ... Write lower 128bits. */
3544 regcache->raw_write (I387_XMM0_REGNUM (tdep) + regnum, buf);
3545 /* ... Write upper 128bits. */
3546 regcache->raw_write (tdep->ymm0h_regnum + regnum, buf + 16);
3547 }
3548 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3549 {
3550 regnum -= tdep->ymm16_regnum;
3551
3552 /* ... Write lower 128bits. */
3553 regcache->raw_write (I387_XMM16_REGNUM (tdep) + regnum, buf);
3554 /* ... Write upper 128bits. */
3555 regcache->raw_write (tdep->ymm16h_regnum + regnum, buf + 16);
3556 }
3557 else if (i386_word_regnum_p (gdbarch, regnum))
3558 {
3559 int gpnum = regnum - tdep->ax_regnum;
3560
3561 /* Read ... */
3562 regcache->raw_read (gpnum, raw_buf);
3563 /* ... Modify ... (always little endian). */
3564 memcpy (raw_buf, buf, 2);
3565 /* ... Write. */
3566 regcache->raw_write (gpnum, raw_buf);
3567 }
3568 else if (i386_byte_regnum_p (gdbarch, regnum))
3569 {
3570 int gpnum = regnum - tdep->al_regnum;
3571
3572 /* Read ... We read both lower and upper registers. */
3573 regcache->raw_read (gpnum % 4, raw_buf);
3574 /* ... Modify ... (always little endian). */
3575 if (gpnum >= 4)
3576 memcpy (raw_buf + 1, buf, 1);
3577 else
3578 memcpy (raw_buf, buf, 1);
3579 /* ... Write. */
3580 regcache->raw_write (gpnum % 4, raw_buf);
3581 }
3582 else
3583 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3584 }
3585 }
3586
3587 /* Implement the 'ax_pseudo_register_collect' gdbarch method. */
3588
3589 int
3590 i386_ax_pseudo_register_collect (struct gdbarch *gdbarch,
3591 struct agent_expr *ax, int regnum)
3592 {
3593 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3594
3595 if (i386_mmx_regnum_p (gdbarch, regnum))
3596 {
3597 /* MMX to FPU register mapping depends on current TOS. Let's just
3598 not care and collect everything... */
3599 int i;
3600
3601 ax_reg_mask (ax, I387_FSTAT_REGNUM (tdep));
3602 for (i = 0; i < 8; i++)
3603 ax_reg_mask (ax, I387_ST0_REGNUM (tdep) + i);
3604 return 0;
3605 }
3606 else if (i386_bnd_regnum_p (gdbarch, regnum))
3607 {
3608 regnum -= tdep->bnd0_regnum;
3609 ax_reg_mask (ax, I387_BND0R_REGNUM (tdep) + regnum);
3610 return 0;
3611 }
3612 else if (i386_k_regnum_p (gdbarch, regnum))
3613 {
3614 regnum -= tdep->k0_regnum;
3615 ax_reg_mask (ax, tdep->k0_regnum + regnum);
3616 return 0;
3617 }
3618 else if (i386_zmm_regnum_p (gdbarch, regnum))
3619 {
3620 regnum -= tdep->zmm0_regnum;
3621 if (regnum < num_lower_zmm_regs)
3622 {
3623 ax_reg_mask (ax, I387_XMM0_REGNUM (tdep) + regnum);
3624 ax_reg_mask (ax, tdep->ymm0h_regnum + regnum);
3625 }
3626 else
3627 {
3628 ax_reg_mask (ax, I387_XMM16_REGNUM (tdep) + regnum
3629 - num_lower_zmm_regs);
3630 ax_reg_mask (ax, I387_YMM16H_REGNUM (tdep) + regnum
3631 - num_lower_zmm_regs);
3632 }
3633 ax_reg_mask (ax, tdep->zmm0h_regnum + regnum);
3634 return 0;
3635 }
3636 else if (i386_ymm_regnum_p (gdbarch, regnum))
3637 {
3638 regnum -= tdep->ymm0_regnum;
3639 ax_reg_mask (ax, I387_XMM0_REGNUM (tdep) + regnum);
3640 ax_reg_mask (ax, tdep->ymm0h_regnum + regnum);
3641 return 0;
3642 }
3643 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3644 {
3645 regnum -= tdep->ymm16_regnum;
3646 ax_reg_mask (ax, I387_XMM16_REGNUM (tdep) + regnum);
3647 ax_reg_mask (ax, tdep->ymm16h_regnum + regnum);
3648 return 0;
3649 }
3650 else if (i386_word_regnum_p (gdbarch, regnum))
3651 {
3652 int gpnum = regnum - tdep->ax_regnum;
3653
3654 ax_reg_mask (ax, gpnum);
3655 return 0;
3656 }
3657 else if (i386_byte_regnum_p (gdbarch, regnum))
3658 {
3659 int gpnum = regnum - tdep->al_regnum;
3660
3661 ax_reg_mask (ax, gpnum % 4);
3662 return 0;
3663 }
3664 else
3665 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3666 return 1;
3667 }
3668 \f
3669
3670 /* Return the register number of the register allocated by GCC after
3671 REGNUM, or -1 if there is no such register. */
3672
3673 static int
3674 i386_next_regnum (int regnum)
3675 {
3676 /* GCC allocates the registers in the order:
3677
3678 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
3679
3680 Since storing a variable in %esp doesn't make any sense we return
3681 -1 for %ebp and for %esp itself. */
3682 static int next_regnum[] =
3683 {
3684 I386_EDX_REGNUM, /* Slot for %eax. */
3685 I386_EBX_REGNUM, /* Slot for %ecx. */
3686 I386_ECX_REGNUM, /* Slot for %edx. */
3687 I386_ESI_REGNUM, /* Slot for %ebx. */
3688 -1, -1, /* Slots for %esp and %ebp. */
3689 I386_EDI_REGNUM, /* Slot for %esi. */
3690 I386_EBP_REGNUM /* Slot for %edi. */
3691 };
3692
3693 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
3694 return next_regnum[regnum];
3695
3696 return -1;
3697 }
3698
3699 /* Return nonzero if a value of type TYPE stored in register REGNUM
3700 needs any special handling. */
3701
3702 static int
3703 i386_convert_register_p (struct gdbarch *gdbarch,
3704 int regnum, struct type *type)
3705 {
3706 int len = TYPE_LENGTH (type);
3707
3708 /* Values may be spread across multiple registers. Most debugging
3709 formats aren't expressive enough to specify the locations, so
3710 some heuristics is involved. Right now we only handle types that
3711 have a length that is a multiple of the word size, since GCC
3712 doesn't seem to put any other types into registers. */
3713 if (len > 4 && len % 4 == 0)
3714 {
3715 int last_regnum = regnum;
3716
3717 while (len > 4)
3718 {
3719 last_regnum = i386_next_regnum (last_regnum);
3720 len -= 4;
3721 }
3722
3723 if (last_regnum != -1)
3724 return 1;
3725 }
3726
3727 return i387_convert_register_p (gdbarch, regnum, type);
3728 }
3729
3730 /* Read a value of type TYPE from register REGNUM in frame FRAME, and
3731 return its contents in TO. */
3732
3733 static int
3734 i386_register_to_value (struct frame_info *frame, int regnum,
3735 struct type *type, gdb_byte *to,
3736 int *optimizedp, int *unavailablep)
3737 {
3738 struct gdbarch *gdbarch = get_frame_arch (frame);
3739 int len = TYPE_LENGTH (type);
3740
3741 if (i386_fp_regnum_p (gdbarch, regnum))
3742 return i387_register_to_value (frame, regnum, type, to,
3743 optimizedp, unavailablep);
3744
3745 /* Read a value spread across multiple registers. */
3746
3747 gdb_assert (len > 4 && len % 4 == 0);
3748
3749 while (len > 0)
3750 {
3751 gdb_assert (regnum != -1);
3752 gdb_assert (register_size (gdbarch, regnum) == 4);
3753
3754 if (!get_frame_register_bytes (frame, regnum, 0,
3755 register_size (gdbarch, regnum),
3756 to, optimizedp, unavailablep))
3757 return 0;
3758
3759 regnum = i386_next_regnum (regnum);
3760 len -= 4;
3761 to += 4;
3762 }
3763
3764 *optimizedp = *unavailablep = 0;
3765 return 1;
3766 }
3767
3768 /* Write the contents FROM of a value of type TYPE into register
3769 REGNUM in frame FRAME. */
3770
3771 static void
3772 i386_value_to_register (struct frame_info *frame, int regnum,
3773 struct type *type, const gdb_byte *from)
3774 {
3775 int len = TYPE_LENGTH (type);
3776
3777 if (i386_fp_regnum_p (get_frame_arch (frame), regnum))
3778 {
3779 i387_value_to_register (frame, regnum, type, from);
3780 return;
3781 }
3782
3783 /* Write a value spread across multiple registers. */
3784
3785 gdb_assert (len > 4 && len % 4 == 0);
3786
3787 while (len > 0)
3788 {
3789 gdb_assert (regnum != -1);
3790 gdb_assert (register_size (get_frame_arch (frame), regnum) == 4);
3791
3792 put_frame_register (frame, regnum, from);
3793 regnum = i386_next_regnum (regnum);
3794 len -= 4;
3795 from += 4;
3796 }
3797 }
3798 \f
3799 /* Supply register REGNUM from the buffer specified by GREGS and LEN
3800 in the general-purpose register set REGSET to register cache
3801 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3802
3803 void
3804 i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
3805 int regnum, const void *gregs, size_t len)
3806 {
3807 struct gdbarch *gdbarch = regcache->arch ();
3808 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3809 const gdb_byte *regs = (const gdb_byte *) gregs;
3810 int i;
3811
3812 gdb_assert (len >= tdep->sizeof_gregset);
3813
3814 for (i = 0; i < tdep->gregset_num_regs; i++)
3815 {
3816 if ((regnum == i || regnum == -1)
3817 && tdep->gregset_reg_offset[i] != -1)
3818 regcache->raw_supply (i, regs + tdep->gregset_reg_offset[i]);
3819 }
3820 }
3821
3822 /* Collect register REGNUM from the register cache REGCACHE and store
3823 it in the buffer specified by GREGS and LEN as described by the
3824 general-purpose register set REGSET. If REGNUM is -1, do this for
3825 all registers in REGSET. */
3826
3827 static void
3828 i386_collect_gregset (const struct regset *regset,
3829 const struct regcache *regcache,
3830 int regnum, void *gregs, size_t len)
3831 {
3832 struct gdbarch *gdbarch = regcache->arch ();
3833 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3834 gdb_byte *regs = (gdb_byte *) gregs;
3835 int i;
3836
3837 gdb_assert (len >= tdep->sizeof_gregset);
3838
3839 for (i = 0; i < tdep->gregset_num_regs; i++)
3840 {
3841 if ((regnum == i || regnum == -1)
3842 && tdep->gregset_reg_offset[i] != -1)
3843 regcache->raw_collect (i, regs + tdep->gregset_reg_offset[i]);
3844 }
3845 }
3846
3847 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
3848 in the floating-point register set REGSET to register cache
3849 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3850
3851 static void
3852 i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
3853 int regnum, const void *fpregs, size_t len)
3854 {
3855 struct gdbarch *gdbarch = regcache->arch ();
3856 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3857
3858 if (len == I387_SIZEOF_FXSAVE)
3859 {
3860 i387_supply_fxsave (regcache, regnum, fpregs);
3861 return;
3862 }
3863
3864 gdb_assert (len >= tdep->sizeof_fpregset);
3865 i387_supply_fsave (regcache, regnum, fpregs);
3866 }
3867
3868 /* Collect register REGNUM from the register cache REGCACHE and store
3869 it in the buffer specified by FPREGS and LEN as described by the
3870 floating-point register set REGSET. If REGNUM is -1, do this for
3871 all registers in REGSET. */
3872
3873 static void
3874 i386_collect_fpregset (const struct regset *regset,
3875 const struct regcache *regcache,
3876 int regnum, void *fpregs, size_t len)
3877 {
3878 struct gdbarch *gdbarch = regcache->arch ();
3879 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3880
3881 if (len == I387_SIZEOF_FXSAVE)
3882 {
3883 i387_collect_fxsave (regcache, regnum, fpregs);
3884 return;
3885 }
3886
3887 gdb_assert (len >= tdep->sizeof_fpregset);
3888 i387_collect_fsave (regcache, regnum, fpregs);
3889 }
3890
3891 /* Register set definitions. */
3892
3893 const struct regset i386_gregset =
3894 {
3895 NULL, i386_supply_gregset, i386_collect_gregset
3896 };
3897
3898 const struct regset i386_fpregset =
3899 {
3900 NULL, i386_supply_fpregset, i386_collect_fpregset
3901 };
3902
3903 /* Default iterator over core file register note sections. */
3904
3905 void
3906 i386_iterate_over_regset_sections (struct gdbarch *gdbarch,
3907 iterate_over_regset_sections_cb *cb,
3908 void *cb_data,
3909 const struct regcache *regcache)
3910 {
3911 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3912
3913 cb (".reg", tdep->sizeof_gregset, tdep->sizeof_gregset, &i386_gregset, NULL,
3914 cb_data);
3915 if (tdep->sizeof_fpregset)
3916 cb (".reg2", tdep->sizeof_fpregset, tdep->sizeof_fpregset, tdep->fpregset,
3917 NULL, cb_data);
3918 }
3919 \f
3920
3921 /* Stuff for WIN32 PE style DLL's but is pretty generic really. */
3922
3923 CORE_ADDR
3924 i386_pe_skip_trampoline_code (struct frame_info *frame,
3925 CORE_ADDR pc, char *name)
3926 {
3927 struct gdbarch *gdbarch = get_frame_arch (frame);
3928 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3929
3930 /* jmp *(dest) */
3931 if (pc && read_memory_unsigned_integer (pc, 2, byte_order) == 0x25ff)
3932 {
3933 unsigned long indirect =
3934 read_memory_unsigned_integer (pc + 2, 4, byte_order);
3935 struct minimal_symbol *indsym =
3936 indirect ? lookup_minimal_symbol_by_pc (indirect).minsym : 0;
3937 const char *symname = indsym ? MSYMBOL_LINKAGE_NAME (indsym) : 0;
3938
3939 if (symname)
3940 {
3941 if (startswith (symname, "__imp_")
3942 || startswith (symname, "_imp_"))
3943 return name ? 1 :
3944 read_memory_unsigned_integer (indirect, 4, byte_order);
3945 }
3946 }
3947 return 0; /* Not a trampoline. */
3948 }
3949 \f
3950
3951 /* Return whether the THIS_FRAME corresponds to a sigtramp
3952 routine. */
3953
3954 int
3955 i386_sigtramp_p (struct frame_info *this_frame)
3956 {
3957 CORE_ADDR pc = get_frame_pc (this_frame);
3958 const char *name;
3959
3960 find_pc_partial_function (pc, &name, NULL, NULL);
3961 return (name && strcmp ("_sigtramp", name) == 0);
3962 }
3963 \f
3964
3965 /* We have two flavours of disassembly. The machinery on this page
3966 deals with switching between those. */
3967
3968 static int
3969 i386_print_insn (bfd_vma pc, struct disassemble_info *info)
3970 {
3971 gdb_assert (disassembly_flavor == att_flavor
3972 || disassembly_flavor == intel_flavor);
3973
3974 info->disassembler_options = disassembly_flavor;
3975
3976 return default_print_insn (pc, info);
3977 }
3978 \f
3979
3980 /* There are a few i386 architecture variants that differ only
3981 slightly from the generic i386 target. For now, we don't give them
3982 their own source file, but include them here. As a consequence,
3983 they'll always be included. */
3984
3985 /* System V Release 4 (SVR4). */
3986
3987 /* Return whether THIS_FRAME corresponds to a SVR4 sigtramp
3988 routine. */
3989
3990 static int
3991 i386_svr4_sigtramp_p (struct frame_info *this_frame)
3992 {
3993 CORE_ADDR pc = get_frame_pc (this_frame);
3994 const char *name;
3995
3996 /* The origin of these symbols is currently unknown. */
3997 find_pc_partial_function (pc, &name, NULL, NULL);
3998 return (name && (strcmp ("_sigreturn", name) == 0
3999 || strcmp ("sigvechandler", name) == 0));
4000 }
4001
4002 /* Assuming THIS_FRAME is for a SVR4 sigtramp routine, return the
4003 address of the associated sigcontext (ucontext) structure. */
4004
4005 static CORE_ADDR
4006 i386_svr4_sigcontext_addr (struct frame_info *this_frame)
4007 {
4008 struct gdbarch *gdbarch = get_frame_arch (this_frame);
4009 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4010 gdb_byte buf[4];
4011 CORE_ADDR sp;
4012
4013 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
4014 sp = extract_unsigned_integer (buf, 4, byte_order);
4015
4016 return read_memory_unsigned_integer (sp + 8, 4, byte_order);
4017 }
4018
4019 \f
4020
4021 /* Implementation of `gdbarch_stap_is_single_operand', as defined in
4022 gdbarch.h. */
4023
4024 int
4025 i386_stap_is_single_operand (struct gdbarch *gdbarch, const char *s)
4026 {
4027 return (*s == '$' /* Literal number. */
4028 || (isdigit (*s) && s[1] == '(' && s[2] == '%') /* Displacement. */
4029 || (*s == '(' && s[1] == '%') /* Register indirection. */
4030 || (*s == '%' && isalpha (s[1]))); /* Register access. */
4031 }
4032
4033 /* Helper function for i386_stap_parse_special_token.
4034
4035 This function parses operands of the form `-8+3+1(%rbp)', which
4036 must be interpreted as `*(-8 + 3 - 1 + (void *) $eax)'.
4037
4038 Return 1 if the operand was parsed successfully, zero
4039 otherwise. */
4040
4041 static int
4042 i386_stap_parse_special_token_triplet (struct gdbarch *gdbarch,
4043 struct stap_parse_info *p)
4044 {
4045 const char *s = p->arg;
4046
4047 if (isdigit (*s) || *s == '-' || *s == '+')
4048 {
4049 int got_minus[3];
4050 int i;
4051 long displacements[3];
4052 const char *start;
4053 char *regname;
4054 int len;
4055 struct stoken str;
4056 char *endp;
4057
4058 got_minus[0] = 0;
4059 if (*s == '+')
4060 ++s;
4061 else if (*s == '-')
4062 {
4063 ++s;
4064 got_minus[0] = 1;
4065 }
4066
4067 if (!isdigit ((unsigned char) *s))
4068 return 0;
4069
4070 displacements[0] = strtol (s, &endp, 10);
4071 s = endp;
4072
4073 if (*s != '+' && *s != '-')
4074 {
4075 /* We are not dealing with a triplet. */
4076 return 0;
4077 }
4078
4079 got_minus[1] = 0;
4080 if (*s == '+')
4081 ++s;
4082 else
4083 {
4084 ++s;
4085 got_minus[1] = 1;
4086 }
4087
4088 if (!isdigit ((unsigned char) *s))
4089 return 0;
4090
4091 displacements[1] = strtol (s, &endp, 10);
4092 s = endp;
4093
4094 if (*s != '+' && *s != '-')
4095 {
4096 /* We are not dealing with a triplet. */
4097 return 0;
4098 }
4099
4100 got_minus[2] = 0;
4101 if (*s == '+')
4102 ++s;
4103 else
4104 {
4105 ++s;
4106 got_minus[2] = 1;
4107 }
4108
4109 if (!isdigit ((unsigned char) *s))
4110 return 0;
4111
4112 displacements[2] = strtol (s, &endp, 10);
4113 s = endp;
4114
4115 if (*s != '(' || s[1] != '%')
4116 return 0;
4117
4118 s += 2;
4119 start = s;
4120
4121 while (isalnum (*s))
4122 ++s;
4123
4124 if (*s++ != ')')
4125 return 0;
4126
4127 len = s - start - 1;
4128 regname = (char *) alloca (len + 1);
4129
4130 strncpy (regname, start, len);
4131 regname[len] = '\0';
4132
4133 if (user_reg_map_name_to_regnum (gdbarch, regname, len) == -1)
4134 error (_("Invalid register name `%s' on expression `%s'."),
4135 regname, p->saved_arg);
4136
4137 for (i = 0; i < 3; i++)
4138 {
4139 write_exp_elt_opcode (&p->pstate, OP_LONG);
4140 write_exp_elt_type
4141 (&p->pstate, builtin_type (gdbarch)->builtin_long);
4142 write_exp_elt_longcst (&p->pstate, displacements[i]);
4143 write_exp_elt_opcode (&p->pstate, OP_LONG);
4144 if (got_minus[i])
4145 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
4146 }
4147
4148 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4149 str.ptr = regname;
4150 str.length = len;
4151 write_exp_string (&p->pstate, str);
4152 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4153
4154 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4155 write_exp_elt_type (&p->pstate,
4156 builtin_type (gdbarch)->builtin_data_ptr);
4157 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4158
4159 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4160 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4161 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4162
4163 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4164 write_exp_elt_type (&p->pstate,
4165 lookup_pointer_type (p->arg_type));
4166 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4167
4168 write_exp_elt_opcode (&p->pstate, UNOP_IND);
4169
4170 p->arg = s;
4171
4172 return 1;
4173 }
4174
4175 return 0;
4176 }
4177
4178 /* Helper function for i386_stap_parse_special_token.
4179
4180 This function parses operands of the form `register base +
4181 (register index * size) + offset', as represented in
4182 `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4183
4184 Return 1 if the operand was parsed successfully, zero
4185 otherwise. */
4186
4187 static int
4188 i386_stap_parse_special_token_three_arg_disp (struct gdbarch *gdbarch,
4189 struct stap_parse_info *p)
4190 {
4191 const char *s = p->arg;
4192
4193 if (isdigit (*s) || *s == '(' || *s == '-' || *s == '+')
4194 {
4195 int offset_minus = 0;
4196 long offset = 0;
4197 int size_minus = 0;
4198 long size = 0;
4199 const char *start;
4200 char *base;
4201 int len_base;
4202 char *index;
4203 int len_index;
4204 struct stoken base_token, index_token;
4205
4206 if (*s == '+')
4207 ++s;
4208 else if (*s == '-')
4209 {
4210 ++s;
4211 offset_minus = 1;
4212 }
4213
4214 if (offset_minus && !isdigit (*s))
4215 return 0;
4216
4217 if (isdigit (*s))
4218 {
4219 char *endp;
4220
4221 offset = strtol (s, &endp, 10);
4222 s = endp;
4223 }
4224
4225 if (*s != '(' || s[1] != '%')
4226 return 0;
4227
4228 s += 2;
4229 start = s;
4230
4231 while (isalnum (*s))
4232 ++s;
4233
4234 if (*s != ',' || s[1] != '%')
4235 return 0;
4236
4237 len_base = s - start;
4238 base = (char *) alloca (len_base + 1);
4239 strncpy (base, start, len_base);
4240 base[len_base] = '\0';
4241
4242 if (user_reg_map_name_to_regnum (gdbarch, base, len_base) == -1)
4243 error (_("Invalid register name `%s' on expression `%s'."),
4244 base, p->saved_arg);
4245
4246 s += 2;
4247 start = s;
4248
4249 while (isalnum (*s))
4250 ++s;
4251
4252 len_index = s - start;
4253 index = (char *) alloca (len_index + 1);
4254 strncpy (index, start, len_index);
4255 index[len_index] = '\0';
4256
4257 if (user_reg_map_name_to_regnum (gdbarch, index, len_index) == -1)
4258 error (_("Invalid register name `%s' on expression `%s'."),
4259 index, p->saved_arg);
4260
4261 if (*s != ',' && *s != ')')
4262 return 0;
4263
4264 if (*s == ',')
4265 {
4266 char *endp;
4267
4268 ++s;
4269 if (*s == '+')
4270 ++s;
4271 else if (*s == '-')
4272 {
4273 ++s;
4274 size_minus = 1;
4275 }
4276
4277 size = strtol (s, &endp, 10);
4278 s = endp;
4279
4280 if (*s != ')')
4281 return 0;
4282 }
4283
4284 ++s;
4285
4286 if (offset)
4287 {
4288 write_exp_elt_opcode (&p->pstate, OP_LONG);
4289 write_exp_elt_type (&p->pstate,
4290 builtin_type (gdbarch)->builtin_long);
4291 write_exp_elt_longcst (&p->pstate, offset);
4292 write_exp_elt_opcode (&p->pstate, OP_LONG);
4293 if (offset_minus)
4294 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
4295 }
4296
4297 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4298 base_token.ptr = base;
4299 base_token.length = len_base;
4300 write_exp_string (&p->pstate, base_token);
4301 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4302
4303 if (offset)
4304 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4305
4306 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4307 index_token.ptr = index;
4308 index_token.length = len_index;
4309 write_exp_string (&p->pstate, index_token);
4310 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4311
4312 if (size)
4313 {
4314 write_exp_elt_opcode (&p->pstate, OP_LONG);
4315 write_exp_elt_type (&p->pstate,
4316 builtin_type (gdbarch)->builtin_long);
4317 write_exp_elt_longcst (&p->pstate, size);
4318 write_exp_elt_opcode (&p->pstate, OP_LONG);
4319 if (size_minus)
4320 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
4321 write_exp_elt_opcode (&p->pstate, BINOP_MUL);
4322 }
4323
4324 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4325
4326 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4327 write_exp_elt_type (&p->pstate,
4328 lookup_pointer_type (p->arg_type));
4329 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4330
4331 write_exp_elt_opcode (&p->pstate, UNOP_IND);
4332
4333 p->arg = s;
4334
4335 return 1;
4336 }
4337
4338 return 0;
4339 }
4340
4341 /* Implementation of `gdbarch_stap_parse_special_token', as defined in
4342 gdbarch.h. */
4343
4344 int
4345 i386_stap_parse_special_token (struct gdbarch *gdbarch,
4346 struct stap_parse_info *p)
4347 {
4348 /* In order to parse special tokens, we use a state-machine that go
4349 through every known token and try to get a match. */
4350 enum
4351 {
4352 TRIPLET,
4353 THREE_ARG_DISPLACEMENT,
4354 DONE
4355 };
4356 int current_state;
4357
4358 current_state = TRIPLET;
4359
4360 /* The special tokens to be parsed here are:
4361
4362 - `register base + (register index * size) + offset', as represented
4363 in `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4364
4365 - Operands of the form `-8+3+1(%rbp)', which must be interpreted as
4366 `*(-8 + 3 - 1 + (void *) $eax)'. */
4367
4368 while (current_state != DONE)
4369 {
4370 switch (current_state)
4371 {
4372 case TRIPLET:
4373 if (i386_stap_parse_special_token_triplet (gdbarch, p))
4374 return 1;
4375 break;
4376
4377 case THREE_ARG_DISPLACEMENT:
4378 if (i386_stap_parse_special_token_three_arg_disp (gdbarch, p))
4379 return 1;
4380 break;
4381 }
4382
4383 /* Advancing to the next state. */
4384 ++current_state;
4385 }
4386
4387 return 0;
4388 }
4389
4390 \f
4391
4392 /* gdbarch gnu_triplet_regexp method. Both arches are acceptable as GDB always
4393 also supplies -m64 or -m32 by gdbarch_gcc_target_options. */
4394
4395 static const char *
4396 i386_gnu_triplet_regexp (struct gdbarch *gdbarch)
4397 {
4398 return "(x86_64|i.86)";
4399 }
4400
4401 \f
4402
4403 /* Implement the "in_indirect_branch_thunk" gdbarch function. */
4404
4405 static bool
4406 i386_in_indirect_branch_thunk (struct gdbarch *gdbarch, CORE_ADDR pc)
4407 {
4408 return x86_in_indirect_branch_thunk (pc, i386_register_names,
4409 I386_EAX_REGNUM, I386_EIP_REGNUM);
4410 }
4411
4412 /* Generic ELF. */
4413
4414 void
4415 i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4416 {
4417 static const char *const stap_integer_prefixes[] = { "$", NULL };
4418 static const char *const stap_register_prefixes[] = { "%", NULL };
4419 static const char *const stap_register_indirection_prefixes[] = { "(",
4420 NULL };
4421 static const char *const stap_register_indirection_suffixes[] = { ")",
4422 NULL };
4423
4424 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
4425 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
4426
4427 /* Registering SystemTap handlers. */
4428 set_gdbarch_stap_integer_prefixes (gdbarch, stap_integer_prefixes);
4429 set_gdbarch_stap_register_prefixes (gdbarch, stap_register_prefixes);
4430 set_gdbarch_stap_register_indirection_prefixes (gdbarch,
4431 stap_register_indirection_prefixes);
4432 set_gdbarch_stap_register_indirection_suffixes (gdbarch,
4433 stap_register_indirection_suffixes);
4434 set_gdbarch_stap_is_single_operand (gdbarch,
4435 i386_stap_is_single_operand);
4436 set_gdbarch_stap_parse_special_token (gdbarch,
4437 i386_stap_parse_special_token);
4438
4439 set_gdbarch_in_indirect_branch_thunk (gdbarch,
4440 i386_in_indirect_branch_thunk);
4441 }
4442
4443 /* System V Release 4 (SVR4). */
4444
4445 void
4446 i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4447 {
4448 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4449
4450 /* System V Release 4 uses ELF. */
4451 i386_elf_init_abi (info, gdbarch);
4452
4453 /* System V Release 4 has shared libraries. */
4454 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
4455
4456 tdep->sigtramp_p = i386_svr4_sigtramp_p;
4457 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
4458 tdep->sc_pc_offset = 36 + 14 * 4;
4459 tdep->sc_sp_offset = 36 + 17 * 4;
4460
4461 tdep->jb_pc_offset = 20;
4462 }
4463
4464 \f
4465
4466 /* i386 register groups. In addition to the normal groups, add "mmx"
4467 and "sse". */
4468
4469 static struct reggroup *i386_sse_reggroup;
4470 static struct reggroup *i386_mmx_reggroup;
4471
4472 static void
4473 i386_init_reggroups (void)
4474 {
4475 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
4476 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
4477 }
4478
4479 static void
4480 i386_add_reggroups (struct gdbarch *gdbarch)
4481 {
4482 reggroup_add (gdbarch, i386_sse_reggroup);
4483 reggroup_add (gdbarch, i386_mmx_reggroup);
4484 reggroup_add (gdbarch, general_reggroup);
4485 reggroup_add (gdbarch, float_reggroup);
4486 reggroup_add (gdbarch, all_reggroup);
4487 reggroup_add (gdbarch, save_reggroup);
4488 reggroup_add (gdbarch, restore_reggroup);
4489 reggroup_add (gdbarch, vector_reggroup);
4490 reggroup_add (gdbarch, system_reggroup);
4491 }
4492
4493 int
4494 i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
4495 struct reggroup *group)
4496 {
4497 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4498 int fp_regnum_p, mmx_regnum_p, xmm_regnum_p, mxcsr_regnum_p,
4499 ymm_regnum_p, ymmh_regnum_p, ymm_avx512_regnum_p, ymmh_avx512_regnum_p,
4500 bndr_regnum_p, bnd_regnum_p, zmm_regnum_p, zmmh_regnum_p,
4501 mpx_ctrl_regnum_p, xmm_avx512_regnum_p,
4502 avx512_p, avx_p, sse_p, pkru_regnum_p;
4503
4504 /* Don't include pseudo registers, except for MMX, in any register
4505 groups. */
4506 if (i386_byte_regnum_p (gdbarch, regnum))
4507 return 0;
4508
4509 if (i386_word_regnum_p (gdbarch, regnum))
4510 return 0;
4511
4512 if (i386_dword_regnum_p (gdbarch, regnum))
4513 return 0;
4514
4515 mmx_regnum_p = i386_mmx_regnum_p (gdbarch, regnum);
4516 if (group == i386_mmx_reggroup)
4517 return mmx_regnum_p;
4518
4519 pkru_regnum_p = i386_pkru_regnum_p(gdbarch, regnum);
4520 xmm_regnum_p = i386_xmm_regnum_p (gdbarch, regnum);
4521 xmm_avx512_regnum_p = i386_xmm_avx512_regnum_p (gdbarch, regnum);
4522 mxcsr_regnum_p = i386_mxcsr_regnum_p (gdbarch, regnum);
4523 if (group == i386_sse_reggroup)
4524 return xmm_regnum_p || xmm_avx512_regnum_p || mxcsr_regnum_p;
4525
4526 ymm_regnum_p = i386_ymm_regnum_p (gdbarch, regnum);
4527 ymm_avx512_regnum_p = i386_ymm_avx512_regnum_p (gdbarch, regnum);
4528 zmm_regnum_p = i386_zmm_regnum_p (gdbarch, regnum);
4529
4530 avx512_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
4531 == X86_XSTATE_AVX_AVX512_MASK);
4532 avx_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
4533 == X86_XSTATE_AVX_MASK) && !avx512_p;
4534 sse_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
4535 == X86_XSTATE_SSE_MASK) && !avx512_p && ! avx_p;
4536
4537 if (group == vector_reggroup)
4538 return (mmx_regnum_p
4539 || (zmm_regnum_p && avx512_p)
4540 || ((ymm_regnum_p || ymm_avx512_regnum_p) && avx_p)
4541 || ((xmm_regnum_p || xmm_avx512_regnum_p) && sse_p)
4542 || mxcsr_regnum_p);
4543
4544 fp_regnum_p = (i386_fp_regnum_p (gdbarch, regnum)
4545 || i386_fpc_regnum_p (gdbarch, regnum));
4546 if (group == float_reggroup)
4547 return fp_regnum_p;
4548
4549 /* For "info reg all", don't include upper YMM registers nor XMM
4550 registers when AVX is supported. */
4551 ymmh_regnum_p = i386_ymmh_regnum_p (gdbarch, regnum);
4552 ymmh_avx512_regnum_p = i386_ymmh_avx512_regnum_p (gdbarch, regnum);
4553 zmmh_regnum_p = i386_zmmh_regnum_p (gdbarch, regnum);
4554 if (group == all_reggroup
4555 && (((xmm_regnum_p || xmm_avx512_regnum_p) && !sse_p)
4556 || ((ymm_regnum_p || ymm_avx512_regnum_p) && !avx_p)
4557 || ymmh_regnum_p
4558 || ymmh_avx512_regnum_p
4559 || zmmh_regnum_p))
4560 return 0;
4561
4562 bnd_regnum_p = i386_bnd_regnum_p (gdbarch, regnum);
4563 if (group == all_reggroup
4564 && ((bnd_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4565 return bnd_regnum_p;
4566
4567 bndr_regnum_p = i386_bndr_regnum_p (gdbarch, regnum);
4568 if (group == all_reggroup
4569 && ((bndr_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4570 return 0;
4571
4572 mpx_ctrl_regnum_p = i386_mpx_ctrl_regnum_p (gdbarch, regnum);
4573 if (group == all_reggroup
4574 && ((mpx_ctrl_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4575 return mpx_ctrl_regnum_p;
4576
4577 if (group == general_reggroup)
4578 return (!fp_regnum_p
4579 && !mmx_regnum_p
4580 && !mxcsr_regnum_p
4581 && !xmm_regnum_p
4582 && !xmm_avx512_regnum_p
4583 && !ymm_regnum_p
4584 && !ymmh_regnum_p
4585 && !ymm_avx512_regnum_p
4586 && !ymmh_avx512_regnum_p
4587 && !bndr_regnum_p
4588 && !bnd_regnum_p
4589 && !mpx_ctrl_regnum_p
4590 && !zmm_regnum_p
4591 && !zmmh_regnum_p
4592 && !pkru_regnum_p);
4593
4594 return default_register_reggroup_p (gdbarch, regnum, group);
4595 }
4596 \f
4597
4598 /* Get the ARGIth function argument for the current function. */
4599
4600 static CORE_ADDR
4601 i386_fetch_pointer_argument (struct frame_info *frame, int argi,
4602 struct type *type)
4603 {
4604 struct gdbarch *gdbarch = get_frame_arch (frame);
4605 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4606 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
4607 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4, byte_order);
4608 }
4609
4610 #define PREFIX_REPZ 0x01
4611 #define PREFIX_REPNZ 0x02
4612 #define PREFIX_LOCK 0x04
4613 #define PREFIX_DATA 0x08
4614 #define PREFIX_ADDR 0x10
4615
4616 /* operand size */
4617 enum
4618 {
4619 OT_BYTE = 0,
4620 OT_WORD,
4621 OT_LONG,
4622 OT_QUAD,
4623 OT_DQUAD,
4624 };
4625
4626 /* i386 arith/logic operations */
4627 enum
4628 {
4629 OP_ADDL,
4630 OP_ORL,
4631 OP_ADCL,
4632 OP_SBBL,
4633 OP_ANDL,
4634 OP_SUBL,
4635 OP_XORL,
4636 OP_CMPL,
4637 };
4638
4639 struct i386_record_s
4640 {
4641 struct gdbarch *gdbarch;
4642 struct regcache *regcache;
4643 CORE_ADDR orig_addr;
4644 CORE_ADDR addr;
4645 int aflag;
4646 int dflag;
4647 int override;
4648 uint8_t modrm;
4649 uint8_t mod, reg, rm;
4650 int ot;
4651 uint8_t rex_x;
4652 uint8_t rex_b;
4653 int rip_offset;
4654 int popl_esp_hack;
4655 const int *regmap;
4656 };
4657
4658 /* Parse the "modrm" part of the memory address irp->addr points at.
4659 Returns -1 if something goes wrong, 0 otherwise. */
4660
4661 static int
4662 i386_record_modrm (struct i386_record_s *irp)
4663 {
4664 struct gdbarch *gdbarch = irp->gdbarch;
4665
4666 if (record_read_memory (gdbarch, irp->addr, &irp->modrm, 1))
4667 return -1;
4668
4669 irp->addr++;
4670 irp->mod = (irp->modrm >> 6) & 3;
4671 irp->reg = (irp->modrm >> 3) & 7;
4672 irp->rm = irp->modrm & 7;
4673
4674 return 0;
4675 }
4676
4677 /* Extract the memory address that the current instruction writes to,
4678 and return it in *ADDR. Return -1 if something goes wrong. */
4679
4680 static int
4681 i386_record_lea_modrm_addr (struct i386_record_s *irp, uint64_t *addr)
4682 {
4683 struct gdbarch *gdbarch = irp->gdbarch;
4684 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4685 gdb_byte buf[4];
4686 ULONGEST offset64;
4687
4688 *addr = 0;
4689 if (irp->aflag || irp->regmap[X86_RECORD_R8_REGNUM])
4690 {
4691 /* 32/64 bits */
4692 int havesib = 0;
4693 uint8_t scale = 0;
4694 uint8_t byte;
4695 uint8_t index = 0;
4696 uint8_t base = irp->rm;
4697
4698 if (base == 4)
4699 {
4700 havesib = 1;
4701 if (record_read_memory (gdbarch, irp->addr, &byte, 1))
4702 return -1;
4703 irp->addr++;
4704 scale = (byte >> 6) & 3;
4705 index = ((byte >> 3) & 7) | irp->rex_x;
4706 base = (byte & 7);
4707 }
4708 base |= irp->rex_b;
4709
4710 switch (irp->mod)
4711 {
4712 case 0:
4713 if ((base & 7) == 5)
4714 {
4715 base = 0xff;
4716 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4717 return -1;
4718 irp->addr += 4;
4719 *addr = extract_signed_integer (buf, 4, byte_order);
4720 if (irp->regmap[X86_RECORD_R8_REGNUM] && !havesib)
4721 *addr += irp->addr + irp->rip_offset;
4722 }
4723 break;
4724 case 1:
4725 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4726 return -1;
4727 irp->addr++;
4728 *addr = (int8_t) buf[0];
4729 break;
4730 case 2:
4731 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4732 return -1;
4733 *addr = extract_signed_integer (buf, 4, byte_order);
4734 irp->addr += 4;
4735 break;
4736 }
4737
4738 offset64 = 0;
4739 if (base != 0xff)
4740 {
4741 if (base == 4 && irp->popl_esp_hack)
4742 *addr += irp->popl_esp_hack;
4743 regcache_raw_read_unsigned (irp->regcache, irp->regmap[base],
4744 &offset64);
4745 }
4746 if (irp->aflag == 2)
4747 {
4748 *addr += offset64;
4749 }
4750 else
4751 *addr = (uint32_t) (offset64 + *addr);
4752
4753 if (havesib && (index != 4 || scale != 0))
4754 {
4755 regcache_raw_read_unsigned (irp->regcache, irp->regmap[index],
4756 &offset64);
4757 if (irp->aflag == 2)
4758 *addr += offset64 << scale;
4759 else
4760 *addr = (uint32_t) (*addr + (offset64 << scale));
4761 }
4762
4763 if (!irp->aflag)
4764 {
4765 /* Since we are in 64-bit mode with ADDR32 prefix, zero-extend
4766 address from 32-bit to 64-bit. */
4767 *addr = (uint32_t) *addr;
4768 }
4769 }
4770 else
4771 {
4772 /* 16 bits */
4773 switch (irp->mod)
4774 {
4775 case 0:
4776 if (irp->rm == 6)
4777 {
4778 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4779 return -1;
4780 irp->addr += 2;
4781 *addr = extract_signed_integer (buf, 2, byte_order);
4782 irp->rm = 0;
4783 goto no_rm;
4784 }
4785 break;
4786 case 1:
4787 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4788 return -1;
4789 irp->addr++;
4790 *addr = (int8_t) buf[0];
4791 break;
4792 case 2:
4793 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4794 return -1;
4795 irp->addr += 2;
4796 *addr = extract_signed_integer (buf, 2, byte_order);
4797 break;
4798 }
4799
4800 switch (irp->rm)
4801 {
4802 case 0:
4803 regcache_raw_read_unsigned (irp->regcache,
4804 irp->regmap[X86_RECORD_REBX_REGNUM],
4805 &offset64);
4806 *addr = (uint32_t) (*addr + offset64);
4807 regcache_raw_read_unsigned (irp->regcache,
4808 irp->regmap[X86_RECORD_RESI_REGNUM],
4809 &offset64);
4810 *addr = (uint32_t) (*addr + offset64);
4811 break;
4812 case 1:
4813 regcache_raw_read_unsigned (irp->regcache,
4814 irp->regmap[X86_RECORD_REBX_REGNUM],
4815 &offset64);
4816 *addr = (uint32_t) (*addr + offset64);
4817 regcache_raw_read_unsigned (irp->regcache,
4818 irp->regmap[X86_RECORD_REDI_REGNUM],
4819 &offset64);
4820 *addr = (uint32_t) (*addr + offset64);
4821 break;
4822 case 2:
4823 regcache_raw_read_unsigned (irp->regcache,
4824 irp->regmap[X86_RECORD_REBP_REGNUM],
4825 &offset64);
4826 *addr = (uint32_t) (*addr + offset64);
4827 regcache_raw_read_unsigned (irp->regcache,
4828 irp->regmap[X86_RECORD_RESI_REGNUM],
4829 &offset64);
4830 *addr = (uint32_t) (*addr + offset64);
4831 break;
4832 case 3:
4833 regcache_raw_read_unsigned (irp->regcache,
4834 irp->regmap[X86_RECORD_REBP_REGNUM],
4835 &offset64);
4836 *addr = (uint32_t) (*addr + offset64);
4837 regcache_raw_read_unsigned (irp->regcache,
4838 irp->regmap[X86_RECORD_REDI_REGNUM],
4839 &offset64);
4840 *addr = (uint32_t) (*addr + offset64);
4841 break;
4842 case 4:
4843 regcache_raw_read_unsigned (irp->regcache,
4844 irp->regmap[X86_RECORD_RESI_REGNUM],
4845 &offset64);
4846 *addr = (uint32_t) (*addr + offset64);
4847 break;
4848 case 5:
4849 regcache_raw_read_unsigned (irp->regcache,
4850 irp->regmap[X86_RECORD_REDI_REGNUM],
4851 &offset64);
4852 *addr = (uint32_t) (*addr + offset64);
4853 break;
4854 case 6:
4855 regcache_raw_read_unsigned (irp->regcache,
4856 irp->regmap[X86_RECORD_REBP_REGNUM],
4857 &offset64);
4858 *addr = (uint32_t) (*addr + offset64);
4859 break;
4860 case 7:
4861 regcache_raw_read_unsigned (irp->regcache,
4862 irp->regmap[X86_RECORD_REBX_REGNUM],
4863 &offset64);
4864 *addr = (uint32_t) (*addr + offset64);
4865 break;
4866 }
4867 *addr &= 0xffff;
4868 }
4869
4870 no_rm:
4871 return 0;
4872 }
4873
4874 /* Record the address and contents of the memory that will be changed
4875 by the current instruction. Return -1 if something goes wrong, 0
4876 otherwise. */
4877
4878 static int
4879 i386_record_lea_modrm (struct i386_record_s *irp)
4880 {
4881 struct gdbarch *gdbarch = irp->gdbarch;
4882 uint64_t addr;
4883
4884 if (irp->override >= 0)
4885 {
4886 if (record_full_memory_query)
4887 {
4888 if (yquery (_("\
4889 Process record ignores the memory change of instruction at address %s\n\
4890 because it can't get the value of the segment register.\n\
4891 Do you want to stop the program?"),
4892 paddress (gdbarch, irp->orig_addr)))
4893 return -1;
4894 }
4895
4896 return 0;
4897 }
4898
4899 if (i386_record_lea_modrm_addr (irp, &addr))
4900 return -1;
4901
4902 if (record_full_arch_list_add_mem (addr, 1 << irp->ot))
4903 return -1;
4904
4905 return 0;
4906 }
4907
4908 /* Record the effects of a push operation. Return -1 if something
4909 goes wrong, 0 otherwise. */
4910
4911 static int
4912 i386_record_push (struct i386_record_s *irp, int size)
4913 {
4914 ULONGEST addr;
4915
4916 if (record_full_arch_list_add_reg (irp->regcache,
4917 irp->regmap[X86_RECORD_RESP_REGNUM]))
4918 return -1;
4919 regcache_raw_read_unsigned (irp->regcache,
4920 irp->regmap[X86_RECORD_RESP_REGNUM],
4921 &addr);
4922 if (record_full_arch_list_add_mem ((CORE_ADDR) addr - size, size))
4923 return -1;
4924
4925 return 0;
4926 }
4927
4928
4929 /* Defines contents to record. */
4930 #define I386_SAVE_FPU_REGS 0xfffd
4931 #define I386_SAVE_FPU_ENV 0xfffe
4932 #define I386_SAVE_FPU_ENV_REG_STACK 0xffff
4933
4934 /* Record the values of the floating point registers which will be
4935 changed by the current instruction. Returns -1 if something is
4936 wrong, 0 otherwise. */
4937
4938 static int i386_record_floats (struct gdbarch *gdbarch,
4939 struct i386_record_s *ir,
4940 uint32_t iregnum)
4941 {
4942 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4943 int i;
4944
4945 /* Oza: Because of floating point insn push/pop of fpu stack is going to
4946 happen. Currently we store st0-st7 registers, but we need not store all
4947 registers all the time, in future we use ftag register and record only
4948 those who are not marked as an empty. */
4949
4950 if (I386_SAVE_FPU_REGS == iregnum)
4951 {
4952 for (i = I387_ST0_REGNUM (tdep); i <= I387_ST0_REGNUM (tdep) + 7; i++)
4953 {
4954 if (record_full_arch_list_add_reg (ir->regcache, i))
4955 return -1;
4956 }
4957 }
4958 else if (I386_SAVE_FPU_ENV == iregnum)
4959 {
4960 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4961 {
4962 if (record_full_arch_list_add_reg (ir->regcache, i))
4963 return -1;
4964 }
4965 }
4966 else if (I386_SAVE_FPU_ENV_REG_STACK == iregnum)
4967 {
4968 for (i = I387_ST0_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4969 {
4970 if (record_full_arch_list_add_reg (ir->regcache, i))
4971 return -1;
4972 }
4973 }
4974 else if ((iregnum >= I387_ST0_REGNUM (tdep)) &&
4975 (iregnum <= I387_FOP_REGNUM (tdep)))
4976 {
4977 if (record_full_arch_list_add_reg (ir->regcache,iregnum))
4978 return -1;
4979 }
4980 else
4981 {
4982 /* Parameter error. */
4983 return -1;
4984 }
4985 if(I386_SAVE_FPU_ENV != iregnum)
4986 {
4987 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4988 {
4989 if (record_full_arch_list_add_reg (ir->regcache, i))
4990 return -1;
4991 }
4992 }
4993 return 0;
4994 }
4995
4996 /* Parse the current instruction, and record the values of the
4997 registers and memory that will be changed by the current
4998 instruction. Returns -1 if something goes wrong, 0 otherwise. */
4999
5000 #define I386_RECORD_FULL_ARCH_LIST_ADD_REG(regnum) \
5001 record_full_arch_list_add_reg (ir.regcache, ir.regmap[(regnum)])
5002
5003 int
5004 i386_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
5005 CORE_ADDR input_addr)
5006 {
5007 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
5008 int prefixes = 0;
5009 int regnum = 0;
5010 uint32_t opcode;
5011 uint8_t opcode8;
5012 ULONGEST addr;
5013 gdb_byte buf[I386_MAX_REGISTER_SIZE];
5014 struct i386_record_s ir;
5015 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5016 uint8_t rex_w = -1;
5017 uint8_t rex_r = 0;
5018
5019 memset (&ir, 0, sizeof (struct i386_record_s));
5020 ir.regcache = regcache;
5021 ir.addr = input_addr;
5022 ir.orig_addr = input_addr;
5023 ir.aflag = 1;
5024 ir.dflag = 1;
5025 ir.override = -1;
5026 ir.popl_esp_hack = 0;
5027 ir.regmap = tdep->record_regmap;
5028 ir.gdbarch = gdbarch;
5029
5030 if (record_debug > 1)
5031 fprintf_unfiltered (gdb_stdlog, "Process record: i386_process_record "
5032 "addr = %s\n",
5033 paddress (gdbarch, ir.addr));
5034
5035 /* prefixes */
5036 while (1)
5037 {
5038 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
5039 return -1;
5040 ir.addr++;
5041 switch (opcode8) /* Instruction prefixes */
5042 {
5043 case REPE_PREFIX_OPCODE:
5044 prefixes |= PREFIX_REPZ;
5045 break;
5046 case REPNE_PREFIX_OPCODE:
5047 prefixes |= PREFIX_REPNZ;
5048 break;
5049 case LOCK_PREFIX_OPCODE:
5050 prefixes |= PREFIX_LOCK;
5051 break;
5052 case CS_PREFIX_OPCODE:
5053 ir.override = X86_RECORD_CS_REGNUM;
5054 break;
5055 case SS_PREFIX_OPCODE:
5056 ir.override = X86_RECORD_SS_REGNUM;
5057 break;
5058 case DS_PREFIX_OPCODE:
5059 ir.override = X86_RECORD_DS_REGNUM;
5060 break;
5061 case ES_PREFIX_OPCODE:
5062 ir.override = X86_RECORD_ES_REGNUM;
5063 break;
5064 case FS_PREFIX_OPCODE:
5065 ir.override = X86_RECORD_FS_REGNUM;
5066 break;
5067 case GS_PREFIX_OPCODE:
5068 ir.override = X86_RECORD_GS_REGNUM;
5069 break;
5070 case DATA_PREFIX_OPCODE:
5071 prefixes |= PREFIX_DATA;
5072 break;
5073 case ADDR_PREFIX_OPCODE:
5074 prefixes |= PREFIX_ADDR;
5075 break;
5076 case 0x40: /* i386 inc %eax */
5077 case 0x41: /* i386 inc %ecx */
5078 case 0x42: /* i386 inc %edx */
5079 case 0x43: /* i386 inc %ebx */
5080 case 0x44: /* i386 inc %esp */
5081 case 0x45: /* i386 inc %ebp */
5082 case 0x46: /* i386 inc %esi */
5083 case 0x47: /* i386 inc %edi */
5084 case 0x48: /* i386 dec %eax */
5085 case 0x49: /* i386 dec %ecx */
5086 case 0x4a: /* i386 dec %edx */
5087 case 0x4b: /* i386 dec %ebx */
5088 case 0x4c: /* i386 dec %esp */
5089 case 0x4d: /* i386 dec %ebp */
5090 case 0x4e: /* i386 dec %esi */
5091 case 0x4f: /* i386 dec %edi */
5092 if (ir.regmap[X86_RECORD_R8_REGNUM]) /* 64 bit target */
5093 {
5094 /* REX */
5095 rex_w = (opcode8 >> 3) & 1;
5096 rex_r = (opcode8 & 0x4) << 1;
5097 ir.rex_x = (opcode8 & 0x2) << 2;
5098 ir.rex_b = (opcode8 & 0x1) << 3;
5099 }
5100 else /* 32 bit target */
5101 goto out_prefixes;
5102 break;
5103 default:
5104 goto out_prefixes;
5105 break;
5106 }
5107 }
5108 out_prefixes:
5109 if (ir.regmap[X86_RECORD_R8_REGNUM] && rex_w == 1)
5110 {
5111 ir.dflag = 2;
5112 }
5113 else
5114 {
5115 if (prefixes & PREFIX_DATA)
5116 ir.dflag ^= 1;
5117 }
5118 if (prefixes & PREFIX_ADDR)
5119 ir.aflag ^= 1;
5120 else if (ir.regmap[X86_RECORD_R8_REGNUM])
5121 ir.aflag = 2;
5122
5123 /* Now check op code. */
5124 opcode = (uint32_t) opcode8;
5125 reswitch:
5126 switch (opcode)
5127 {
5128 case 0x0f:
5129 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
5130 return -1;
5131 ir.addr++;
5132 opcode = (uint32_t) opcode8 | 0x0f00;
5133 goto reswitch;
5134 break;
5135
5136 case 0x00: /* arith & logic */
5137 case 0x01:
5138 case 0x02:
5139 case 0x03:
5140 case 0x04:
5141 case 0x05:
5142 case 0x08:
5143 case 0x09:
5144 case 0x0a:
5145 case 0x0b:
5146 case 0x0c:
5147 case 0x0d:
5148 case 0x10:
5149 case 0x11:
5150 case 0x12:
5151 case 0x13:
5152 case 0x14:
5153 case 0x15:
5154 case 0x18:
5155 case 0x19:
5156 case 0x1a:
5157 case 0x1b:
5158 case 0x1c:
5159 case 0x1d:
5160 case 0x20:
5161 case 0x21:
5162 case 0x22:
5163 case 0x23:
5164 case 0x24:
5165 case 0x25:
5166 case 0x28:
5167 case 0x29:
5168 case 0x2a:
5169 case 0x2b:
5170 case 0x2c:
5171 case 0x2d:
5172 case 0x30:
5173 case 0x31:
5174 case 0x32:
5175 case 0x33:
5176 case 0x34:
5177 case 0x35:
5178 case 0x38:
5179 case 0x39:
5180 case 0x3a:
5181 case 0x3b:
5182 case 0x3c:
5183 case 0x3d:
5184 if (((opcode >> 3) & 7) != OP_CMPL)
5185 {
5186 if ((opcode & 1) == 0)
5187 ir.ot = OT_BYTE;
5188 else
5189 ir.ot = ir.dflag + OT_WORD;
5190
5191 switch ((opcode >> 1) & 3)
5192 {
5193 case 0: /* OP Ev, Gv */
5194 if (i386_record_modrm (&ir))
5195 return -1;
5196 if (ir.mod != 3)
5197 {
5198 if (i386_record_lea_modrm (&ir))
5199 return -1;
5200 }
5201 else
5202 {
5203 ir.rm |= ir.rex_b;
5204 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5205 ir.rm &= 0x3;
5206 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5207 }
5208 break;
5209 case 1: /* OP Gv, Ev */
5210 if (i386_record_modrm (&ir))
5211 return -1;
5212 ir.reg |= rex_r;
5213 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5214 ir.reg &= 0x3;
5215 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5216 break;
5217 case 2: /* OP A, Iv */
5218 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5219 break;
5220 }
5221 }
5222 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5223 break;
5224
5225 case 0x80: /* GRP1 */
5226 case 0x81:
5227 case 0x82:
5228 case 0x83:
5229 if (i386_record_modrm (&ir))
5230 return -1;
5231
5232 if (ir.reg != OP_CMPL)
5233 {
5234 if ((opcode & 1) == 0)
5235 ir.ot = OT_BYTE;
5236 else
5237 ir.ot = ir.dflag + OT_WORD;
5238
5239 if (ir.mod != 3)
5240 {
5241 if (opcode == 0x83)
5242 ir.rip_offset = 1;
5243 else
5244 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5245 if (i386_record_lea_modrm (&ir))
5246 return -1;
5247 }
5248 else
5249 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5250 }
5251 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5252 break;
5253
5254 case 0x40: /* inc */
5255 case 0x41:
5256 case 0x42:
5257 case 0x43:
5258 case 0x44:
5259 case 0x45:
5260 case 0x46:
5261 case 0x47:
5262
5263 case 0x48: /* dec */
5264 case 0x49:
5265 case 0x4a:
5266 case 0x4b:
5267 case 0x4c:
5268 case 0x4d:
5269 case 0x4e:
5270 case 0x4f:
5271
5272 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 7);
5273 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5274 break;
5275
5276 case 0xf6: /* GRP3 */
5277 case 0xf7:
5278 if ((opcode & 1) == 0)
5279 ir.ot = OT_BYTE;
5280 else
5281 ir.ot = ir.dflag + OT_WORD;
5282 if (i386_record_modrm (&ir))
5283 return -1;
5284
5285 if (ir.mod != 3 && ir.reg == 0)
5286 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5287
5288 switch (ir.reg)
5289 {
5290 case 0: /* test */
5291 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5292 break;
5293 case 2: /* not */
5294 case 3: /* neg */
5295 if (ir.mod != 3)
5296 {
5297 if (i386_record_lea_modrm (&ir))
5298 return -1;
5299 }
5300 else
5301 {
5302 ir.rm |= ir.rex_b;
5303 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5304 ir.rm &= 0x3;
5305 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5306 }
5307 if (ir.reg == 3) /* neg */
5308 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5309 break;
5310 case 4: /* mul */
5311 case 5: /* imul */
5312 case 6: /* div */
5313 case 7: /* idiv */
5314 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5315 if (ir.ot != OT_BYTE)
5316 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5317 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5318 break;
5319 default:
5320 ir.addr -= 2;
5321 opcode = opcode << 8 | ir.modrm;
5322 goto no_support;
5323 break;
5324 }
5325 break;
5326
5327 case 0xfe: /* GRP4 */
5328 case 0xff: /* GRP5 */
5329 if (i386_record_modrm (&ir))
5330 return -1;
5331 if (ir.reg >= 2 && opcode == 0xfe)
5332 {
5333 ir.addr -= 2;
5334 opcode = opcode << 8 | ir.modrm;
5335 goto no_support;
5336 }
5337 switch (ir.reg)
5338 {
5339 case 0: /* inc */
5340 case 1: /* dec */
5341 if ((opcode & 1) == 0)
5342 ir.ot = OT_BYTE;
5343 else
5344 ir.ot = ir.dflag + OT_WORD;
5345 if (ir.mod != 3)
5346 {
5347 if (i386_record_lea_modrm (&ir))
5348 return -1;
5349 }
5350 else
5351 {
5352 ir.rm |= ir.rex_b;
5353 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5354 ir.rm &= 0x3;
5355 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5356 }
5357 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5358 break;
5359 case 2: /* call */
5360 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5361 ir.dflag = 2;
5362 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5363 return -1;
5364 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5365 break;
5366 case 3: /* lcall */
5367 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
5368 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5369 return -1;
5370 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5371 break;
5372 case 4: /* jmp */
5373 case 5: /* ljmp */
5374 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5375 break;
5376 case 6: /* push */
5377 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5378 ir.dflag = 2;
5379 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5380 return -1;
5381 break;
5382 default:
5383 ir.addr -= 2;
5384 opcode = opcode << 8 | ir.modrm;
5385 goto no_support;
5386 break;
5387 }
5388 break;
5389
5390 case 0x84: /* test */
5391 case 0x85:
5392 case 0xa8:
5393 case 0xa9:
5394 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5395 break;
5396
5397 case 0x98: /* CWDE/CBW */
5398 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5399 break;
5400
5401 case 0x99: /* CDQ/CWD */
5402 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5403 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5404 break;
5405
5406 case 0x0faf: /* imul */
5407 case 0x69:
5408 case 0x6b:
5409 ir.ot = ir.dflag + OT_WORD;
5410 if (i386_record_modrm (&ir))
5411 return -1;
5412 if (opcode == 0x69)
5413 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5414 else if (opcode == 0x6b)
5415 ir.rip_offset = 1;
5416 ir.reg |= rex_r;
5417 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5418 ir.reg &= 0x3;
5419 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5420 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5421 break;
5422
5423 case 0x0fc0: /* xadd */
5424 case 0x0fc1:
5425 if ((opcode & 1) == 0)
5426 ir.ot = OT_BYTE;
5427 else
5428 ir.ot = ir.dflag + OT_WORD;
5429 if (i386_record_modrm (&ir))
5430 return -1;
5431 ir.reg |= rex_r;
5432 if (ir.mod == 3)
5433 {
5434 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5435 ir.reg &= 0x3;
5436 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5437 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5438 ir.rm &= 0x3;
5439 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5440 }
5441 else
5442 {
5443 if (i386_record_lea_modrm (&ir))
5444 return -1;
5445 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5446 ir.reg &= 0x3;
5447 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5448 }
5449 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5450 break;
5451
5452 case 0x0fb0: /* cmpxchg */
5453 case 0x0fb1:
5454 if ((opcode & 1) == 0)
5455 ir.ot = OT_BYTE;
5456 else
5457 ir.ot = ir.dflag + OT_WORD;
5458 if (i386_record_modrm (&ir))
5459 return -1;
5460 if (ir.mod == 3)
5461 {
5462 ir.reg |= rex_r;
5463 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5464 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5465 ir.reg &= 0x3;
5466 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5467 }
5468 else
5469 {
5470 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5471 if (i386_record_lea_modrm (&ir))
5472 return -1;
5473 }
5474 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5475 break;
5476
5477 case 0x0fc7: /* cmpxchg8b / rdrand / rdseed */
5478 if (i386_record_modrm (&ir))
5479 return -1;
5480 if (ir.mod == 3)
5481 {
5482 /* rdrand and rdseed use the 3 bits of the REG field of ModR/M as
5483 an extended opcode. rdrand has bits 110 (/6) and rdseed
5484 has bits 111 (/7). */
5485 if (ir.reg == 6 || ir.reg == 7)
5486 {
5487 /* The storage register is described by the 3 R/M bits, but the
5488 REX.B prefix may be used to give access to registers
5489 R8~R15. In this case ir.rex_b + R/M will give us the register
5490 in the range R8~R15.
5491
5492 REX.W may also be used to access 64-bit registers, but we
5493 already record entire registers and not just partial bits
5494 of them. */
5495 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rex_b + ir.rm);
5496 /* These instructions also set conditional bits. */
5497 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5498 break;
5499 }
5500 else
5501 {
5502 /* We don't handle this particular instruction yet. */
5503 ir.addr -= 2;
5504 opcode = opcode << 8 | ir.modrm;
5505 goto no_support;
5506 }
5507 }
5508 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5509 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5510 if (i386_record_lea_modrm (&ir))
5511 return -1;
5512 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5513 break;
5514
5515 case 0x50: /* push */
5516 case 0x51:
5517 case 0x52:
5518 case 0x53:
5519 case 0x54:
5520 case 0x55:
5521 case 0x56:
5522 case 0x57:
5523 case 0x68:
5524 case 0x6a:
5525 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5526 ir.dflag = 2;
5527 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5528 return -1;
5529 break;
5530
5531 case 0x06: /* push es */
5532 case 0x0e: /* push cs */
5533 case 0x16: /* push ss */
5534 case 0x1e: /* push ds */
5535 if (ir.regmap[X86_RECORD_R8_REGNUM])
5536 {
5537 ir.addr -= 1;
5538 goto no_support;
5539 }
5540 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5541 return -1;
5542 break;
5543
5544 case 0x0fa0: /* push fs */
5545 case 0x0fa8: /* push gs */
5546 if (ir.regmap[X86_RECORD_R8_REGNUM])
5547 {
5548 ir.addr -= 2;
5549 goto no_support;
5550 }
5551 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5552 return -1;
5553 break;
5554
5555 case 0x60: /* pusha */
5556 if (ir.regmap[X86_RECORD_R8_REGNUM])
5557 {
5558 ir.addr -= 1;
5559 goto no_support;
5560 }
5561 if (i386_record_push (&ir, 1 << (ir.dflag + 4)))
5562 return -1;
5563 break;
5564
5565 case 0x58: /* pop */
5566 case 0x59:
5567 case 0x5a:
5568 case 0x5b:
5569 case 0x5c:
5570 case 0x5d:
5571 case 0x5e:
5572 case 0x5f:
5573 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5574 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
5575 break;
5576
5577 case 0x61: /* popa */
5578 if (ir.regmap[X86_RECORD_R8_REGNUM])
5579 {
5580 ir.addr -= 1;
5581 goto no_support;
5582 }
5583 for (regnum = X86_RECORD_REAX_REGNUM;
5584 regnum <= X86_RECORD_REDI_REGNUM;
5585 regnum++)
5586 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5587 break;
5588
5589 case 0x8f: /* pop */
5590 if (ir.regmap[X86_RECORD_R8_REGNUM])
5591 ir.ot = ir.dflag ? OT_QUAD : OT_WORD;
5592 else
5593 ir.ot = ir.dflag + OT_WORD;
5594 if (i386_record_modrm (&ir))
5595 return -1;
5596 if (ir.mod == 3)
5597 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5598 else
5599 {
5600 ir.popl_esp_hack = 1 << ir.ot;
5601 if (i386_record_lea_modrm (&ir))
5602 return -1;
5603 }
5604 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5605 break;
5606
5607 case 0xc8: /* enter */
5608 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
5609 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5610 ir.dflag = 2;
5611 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5612 return -1;
5613 break;
5614
5615 case 0xc9: /* leave */
5616 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5617 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
5618 break;
5619
5620 case 0x07: /* pop es */
5621 if (ir.regmap[X86_RECORD_R8_REGNUM])
5622 {
5623 ir.addr -= 1;
5624 goto no_support;
5625 }
5626 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5627 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_ES_REGNUM);
5628 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5629 break;
5630
5631 case 0x17: /* pop ss */
5632 if (ir.regmap[X86_RECORD_R8_REGNUM])
5633 {
5634 ir.addr -= 1;
5635 goto no_support;
5636 }
5637 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5638 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_SS_REGNUM);
5639 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5640 break;
5641
5642 case 0x1f: /* pop ds */
5643 if (ir.regmap[X86_RECORD_R8_REGNUM])
5644 {
5645 ir.addr -= 1;
5646 goto no_support;
5647 }
5648 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5649 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_DS_REGNUM);
5650 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5651 break;
5652
5653 case 0x0fa1: /* pop fs */
5654 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5655 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_FS_REGNUM);
5656 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5657 break;
5658
5659 case 0x0fa9: /* pop gs */
5660 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5661 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
5662 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5663 break;
5664
5665 case 0x88: /* mov */
5666 case 0x89:
5667 case 0xc6:
5668 case 0xc7:
5669 if ((opcode & 1) == 0)
5670 ir.ot = OT_BYTE;
5671 else
5672 ir.ot = ir.dflag + OT_WORD;
5673
5674 if (i386_record_modrm (&ir))
5675 return -1;
5676
5677 if (ir.mod != 3)
5678 {
5679 if (opcode == 0xc6 || opcode == 0xc7)
5680 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5681 if (i386_record_lea_modrm (&ir))
5682 return -1;
5683 }
5684 else
5685 {
5686 if (opcode == 0xc6 || opcode == 0xc7)
5687 ir.rm |= ir.rex_b;
5688 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5689 ir.rm &= 0x3;
5690 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5691 }
5692 break;
5693
5694 case 0x8a: /* mov */
5695 case 0x8b:
5696 if ((opcode & 1) == 0)
5697 ir.ot = OT_BYTE;
5698 else
5699 ir.ot = ir.dflag + OT_WORD;
5700 if (i386_record_modrm (&ir))
5701 return -1;
5702 ir.reg |= rex_r;
5703 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5704 ir.reg &= 0x3;
5705 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5706 break;
5707
5708 case 0x8c: /* mov seg */
5709 if (i386_record_modrm (&ir))
5710 return -1;
5711 if (ir.reg > 5)
5712 {
5713 ir.addr -= 2;
5714 opcode = opcode << 8 | ir.modrm;
5715 goto no_support;
5716 }
5717
5718 if (ir.mod == 3)
5719 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5720 else
5721 {
5722 ir.ot = OT_WORD;
5723 if (i386_record_lea_modrm (&ir))
5724 return -1;
5725 }
5726 break;
5727
5728 case 0x8e: /* mov seg */
5729 if (i386_record_modrm (&ir))
5730 return -1;
5731 switch (ir.reg)
5732 {
5733 case 0:
5734 regnum = X86_RECORD_ES_REGNUM;
5735 break;
5736 case 2:
5737 regnum = X86_RECORD_SS_REGNUM;
5738 break;
5739 case 3:
5740 regnum = X86_RECORD_DS_REGNUM;
5741 break;
5742 case 4:
5743 regnum = X86_RECORD_FS_REGNUM;
5744 break;
5745 case 5:
5746 regnum = X86_RECORD_GS_REGNUM;
5747 break;
5748 default:
5749 ir.addr -= 2;
5750 opcode = opcode << 8 | ir.modrm;
5751 goto no_support;
5752 break;
5753 }
5754 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5755 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5756 break;
5757
5758 case 0x0fb6: /* movzbS */
5759 case 0x0fb7: /* movzwS */
5760 case 0x0fbe: /* movsbS */
5761 case 0x0fbf: /* movswS */
5762 if (i386_record_modrm (&ir))
5763 return -1;
5764 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5765 break;
5766
5767 case 0x8d: /* lea */
5768 if (i386_record_modrm (&ir))
5769 return -1;
5770 if (ir.mod == 3)
5771 {
5772 ir.addr -= 2;
5773 opcode = opcode << 8 | ir.modrm;
5774 goto no_support;
5775 }
5776 ir.ot = ir.dflag;
5777 ir.reg |= rex_r;
5778 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5779 ir.reg &= 0x3;
5780 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5781 break;
5782
5783 case 0xa0: /* mov EAX */
5784 case 0xa1:
5785
5786 case 0xd7: /* xlat */
5787 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5788 break;
5789
5790 case 0xa2: /* mov EAX */
5791 case 0xa3:
5792 if (ir.override >= 0)
5793 {
5794 if (record_full_memory_query)
5795 {
5796 if (yquery (_("\
5797 Process record ignores the memory change of instruction at address %s\n\
5798 because it can't get the value of the segment register.\n\
5799 Do you want to stop the program?"),
5800 paddress (gdbarch, ir.orig_addr)))
5801 return -1;
5802 }
5803 }
5804 else
5805 {
5806 if ((opcode & 1) == 0)
5807 ir.ot = OT_BYTE;
5808 else
5809 ir.ot = ir.dflag + OT_WORD;
5810 if (ir.aflag == 2)
5811 {
5812 if (record_read_memory (gdbarch, ir.addr, buf, 8))
5813 return -1;
5814 ir.addr += 8;
5815 addr = extract_unsigned_integer (buf, 8, byte_order);
5816 }
5817 else if (ir.aflag)
5818 {
5819 if (record_read_memory (gdbarch, ir.addr, buf, 4))
5820 return -1;
5821 ir.addr += 4;
5822 addr = extract_unsigned_integer (buf, 4, byte_order);
5823 }
5824 else
5825 {
5826 if (record_read_memory (gdbarch, ir.addr, buf, 2))
5827 return -1;
5828 ir.addr += 2;
5829 addr = extract_unsigned_integer (buf, 2, byte_order);
5830 }
5831 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
5832 return -1;
5833 }
5834 break;
5835
5836 case 0xb0: /* mov R, Ib */
5837 case 0xb1:
5838 case 0xb2:
5839 case 0xb3:
5840 case 0xb4:
5841 case 0xb5:
5842 case 0xb6:
5843 case 0xb7:
5844 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((ir.regmap[X86_RECORD_R8_REGNUM])
5845 ? ((opcode & 0x7) | ir.rex_b)
5846 : ((opcode & 0x7) & 0x3));
5847 break;
5848
5849 case 0xb8: /* mov R, Iv */
5850 case 0xb9:
5851 case 0xba:
5852 case 0xbb:
5853 case 0xbc:
5854 case 0xbd:
5855 case 0xbe:
5856 case 0xbf:
5857 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
5858 break;
5859
5860 case 0x91: /* xchg R, EAX */
5861 case 0x92:
5862 case 0x93:
5863 case 0x94:
5864 case 0x95:
5865 case 0x96:
5866 case 0x97:
5867 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5868 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 0x7);
5869 break;
5870
5871 case 0x86: /* xchg Ev, Gv */
5872 case 0x87:
5873 if ((opcode & 1) == 0)
5874 ir.ot = OT_BYTE;
5875 else
5876 ir.ot = ir.dflag + OT_WORD;
5877 if (i386_record_modrm (&ir))
5878 return -1;
5879 if (ir.mod == 3)
5880 {
5881 ir.rm |= ir.rex_b;
5882 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5883 ir.rm &= 0x3;
5884 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5885 }
5886 else
5887 {
5888 if (i386_record_lea_modrm (&ir))
5889 return -1;
5890 }
5891 ir.reg |= rex_r;
5892 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5893 ir.reg &= 0x3;
5894 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5895 break;
5896
5897 case 0xc4: /* les Gv */
5898 case 0xc5: /* lds Gv */
5899 if (ir.regmap[X86_RECORD_R8_REGNUM])
5900 {
5901 ir.addr -= 1;
5902 goto no_support;
5903 }
5904 /* FALLTHROUGH */
5905 case 0x0fb2: /* lss Gv */
5906 case 0x0fb4: /* lfs Gv */
5907 case 0x0fb5: /* lgs Gv */
5908 if (i386_record_modrm (&ir))
5909 return -1;
5910 if (ir.mod == 3)
5911 {
5912 if (opcode > 0xff)
5913 ir.addr -= 3;
5914 else
5915 ir.addr -= 2;
5916 opcode = opcode << 8 | ir.modrm;
5917 goto no_support;
5918 }
5919 switch (opcode)
5920 {
5921 case 0xc4: /* les Gv */
5922 regnum = X86_RECORD_ES_REGNUM;
5923 break;
5924 case 0xc5: /* lds Gv */
5925 regnum = X86_RECORD_DS_REGNUM;
5926 break;
5927 case 0x0fb2: /* lss Gv */
5928 regnum = X86_RECORD_SS_REGNUM;
5929 break;
5930 case 0x0fb4: /* lfs Gv */
5931 regnum = X86_RECORD_FS_REGNUM;
5932 break;
5933 case 0x0fb5: /* lgs Gv */
5934 regnum = X86_RECORD_GS_REGNUM;
5935 break;
5936 }
5937 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5938 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5939 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5940 break;
5941
5942 case 0xc0: /* shifts */
5943 case 0xc1:
5944 case 0xd0:
5945 case 0xd1:
5946 case 0xd2:
5947 case 0xd3:
5948 if ((opcode & 1) == 0)
5949 ir.ot = OT_BYTE;
5950 else
5951 ir.ot = ir.dflag + OT_WORD;
5952 if (i386_record_modrm (&ir))
5953 return -1;
5954 if (ir.mod != 3 && (opcode == 0xd2 || opcode == 0xd3))
5955 {
5956 if (i386_record_lea_modrm (&ir))
5957 return -1;
5958 }
5959 else
5960 {
5961 ir.rm |= ir.rex_b;
5962 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5963 ir.rm &= 0x3;
5964 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5965 }
5966 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5967 break;
5968
5969 case 0x0fa4:
5970 case 0x0fa5:
5971 case 0x0fac:
5972 case 0x0fad:
5973 if (i386_record_modrm (&ir))
5974 return -1;
5975 if (ir.mod == 3)
5976 {
5977 if (record_full_arch_list_add_reg (ir.regcache, ir.rm))
5978 return -1;
5979 }
5980 else
5981 {
5982 if (i386_record_lea_modrm (&ir))
5983 return -1;
5984 }
5985 break;
5986
5987 case 0xd8: /* Floats. */
5988 case 0xd9:
5989 case 0xda:
5990 case 0xdb:
5991 case 0xdc:
5992 case 0xdd:
5993 case 0xde:
5994 case 0xdf:
5995 if (i386_record_modrm (&ir))
5996 return -1;
5997 ir.reg |= ((opcode & 7) << 3);
5998 if (ir.mod != 3)
5999 {
6000 /* Memory. */
6001 uint64_t addr64;
6002
6003 if (i386_record_lea_modrm_addr (&ir, &addr64))
6004 return -1;
6005 switch (ir.reg)
6006 {
6007 case 0x02:
6008 case 0x12:
6009 case 0x22:
6010 case 0x32:
6011 /* For fcom, ficom nothing to do. */
6012 break;
6013 case 0x03:
6014 case 0x13:
6015 case 0x23:
6016 case 0x33:
6017 /* For fcomp, ficomp pop FPU stack, store all. */
6018 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6019 return -1;
6020 break;
6021 case 0x00:
6022 case 0x01:
6023 case 0x04:
6024 case 0x05:
6025 case 0x06:
6026 case 0x07:
6027 case 0x10:
6028 case 0x11:
6029 case 0x14:
6030 case 0x15:
6031 case 0x16:
6032 case 0x17:
6033 case 0x20:
6034 case 0x21:
6035 case 0x24:
6036 case 0x25:
6037 case 0x26:
6038 case 0x27:
6039 case 0x30:
6040 case 0x31:
6041 case 0x34:
6042 case 0x35:
6043 case 0x36:
6044 case 0x37:
6045 /* For fadd, fmul, fsub, fsubr, fdiv, fdivr, fiadd, fimul,
6046 fisub, fisubr, fidiv, fidivr, modR/M.reg is an extension
6047 of code, always affects st(0) register. */
6048 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
6049 return -1;
6050 break;
6051 case 0x08:
6052 case 0x0a:
6053 case 0x0b:
6054 case 0x18:
6055 case 0x19:
6056 case 0x1a:
6057 case 0x1b:
6058 case 0x1d:
6059 case 0x28:
6060 case 0x29:
6061 case 0x2a:
6062 case 0x2b:
6063 case 0x38:
6064 case 0x39:
6065 case 0x3a:
6066 case 0x3b:
6067 case 0x3c:
6068 case 0x3d:
6069 switch (ir.reg & 7)
6070 {
6071 case 0:
6072 /* Handling fld, fild. */
6073 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6074 return -1;
6075 break;
6076 case 1:
6077 switch (ir.reg >> 4)
6078 {
6079 case 0:
6080 if (record_full_arch_list_add_mem (addr64, 4))
6081 return -1;
6082 break;
6083 case 2:
6084 if (record_full_arch_list_add_mem (addr64, 8))
6085 return -1;
6086 break;
6087 case 3:
6088 break;
6089 default:
6090 if (record_full_arch_list_add_mem (addr64, 2))
6091 return -1;
6092 break;
6093 }
6094 break;
6095 default:
6096 switch (ir.reg >> 4)
6097 {
6098 case 0:
6099 if (record_full_arch_list_add_mem (addr64, 4))
6100 return -1;
6101 if (3 == (ir.reg & 7))
6102 {
6103 /* For fstp m32fp. */
6104 if (i386_record_floats (gdbarch, &ir,
6105 I386_SAVE_FPU_REGS))
6106 return -1;
6107 }
6108 break;
6109 case 1:
6110 if (record_full_arch_list_add_mem (addr64, 4))
6111 return -1;
6112 if ((3 == (ir.reg & 7))
6113 || (5 == (ir.reg & 7))
6114 || (7 == (ir.reg & 7)))
6115 {
6116 /* For fstp insn. */
6117 if (i386_record_floats (gdbarch, &ir,
6118 I386_SAVE_FPU_REGS))
6119 return -1;
6120 }
6121 break;
6122 case 2:
6123 if (record_full_arch_list_add_mem (addr64, 8))
6124 return -1;
6125 if (3 == (ir.reg & 7))
6126 {
6127 /* For fstp m64fp. */
6128 if (i386_record_floats (gdbarch, &ir,
6129 I386_SAVE_FPU_REGS))
6130 return -1;
6131 }
6132 break;
6133 case 3:
6134 if ((3 <= (ir.reg & 7)) && (6 <= (ir.reg & 7)))
6135 {
6136 /* For fistp, fbld, fild, fbstp. */
6137 if (i386_record_floats (gdbarch, &ir,
6138 I386_SAVE_FPU_REGS))
6139 return -1;
6140 }
6141 /* Fall through */
6142 default:
6143 if (record_full_arch_list_add_mem (addr64, 2))
6144 return -1;
6145 break;
6146 }
6147 break;
6148 }
6149 break;
6150 case 0x0c:
6151 /* Insn fldenv. */
6152 if (i386_record_floats (gdbarch, &ir,
6153 I386_SAVE_FPU_ENV_REG_STACK))
6154 return -1;
6155 break;
6156 case 0x0d:
6157 /* Insn fldcw. */
6158 if (i386_record_floats (gdbarch, &ir, I387_FCTRL_REGNUM (tdep)))
6159 return -1;
6160 break;
6161 case 0x2c:
6162 /* Insn frstor. */
6163 if (i386_record_floats (gdbarch, &ir,
6164 I386_SAVE_FPU_ENV_REG_STACK))
6165 return -1;
6166 break;
6167 case 0x0e:
6168 if (ir.dflag)
6169 {
6170 if (record_full_arch_list_add_mem (addr64, 28))
6171 return -1;
6172 }
6173 else
6174 {
6175 if (record_full_arch_list_add_mem (addr64, 14))
6176 return -1;
6177 }
6178 break;
6179 case 0x0f:
6180 case 0x2f:
6181 if (record_full_arch_list_add_mem (addr64, 2))
6182 return -1;
6183 /* Insn fstp, fbstp. */
6184 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6185 return -1;
6186 break;
6187 case 0x1f:
6188 case 0x3e:
6189 if (record_full_arch_list_add_mem (addr64, 10))
6190 return -1;
6191 break;
6192 case 0x2e:
6193 if (ir.dflag)
6194 {
6195 if (record_full_arch_list_add_mem (addr64, 28))
6196 return -1;
6197 addr64 += 28;
6198 }
6199 else
6200 {
6201 if (record_full_arch_list_add_mem (addr64, 14))
6202 return -1;
6203 addr64 += 14;
6204 }
6205 if (record_full_arch_list_add_mem (addr64, 80))
6206 return -1;
6207 /* Insn fsave. */
6208 if (i386_record_floats (gdbarch, &ir,
6209 I386_SAVE_FPU_ENV_REG_STACK))
6210 return -1;
6211 break;
6212 case 0x3f:
6213 if (record_full_arch_list_add_mem (addr64, 8))
6214 return -1;
6215 /* Insn fistp. */
6216 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6217 return -1;
6218 break;
6219 default:
6220 ir.addr -= 2;
6221 opcode = opcode << 8 | ir.modrm;
6222 goto no_support;
6223 break;
6224 }
6225 }
6226 /* Opcode is an extension of modR/M byte. */
6227 else
6228 {
6229 switch (opcode)
6230 {
6231 case 0xd8:
6232 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
6233 return -1;
6234 break;
6235 case 0xd9:
6236 if (0x0c == (ir.modrm >> 4))
6237 {
6238 if ((ir.modrm & 0x0f) <= 7)
6239 {
6240 if (i386_record_floats (gdbarch, &ir,
6241 I386_SAVE_FPU_REGS))
6242 return -1;
6243 }
6244 else
6245 {
6246 if (i386_record_floats (gdbarch, &ir,
6247 I387_ST0_REGNUM (tdep)))
6248 return -1;
6249 /* If only st(0) is changing, then we have already
6250 recorded. */
6251 if ((ir.modrm & 0x0f) - 0x08)
6252 {
6253 if (i386_record_floats (gdbarch, &ir,
6254 I387_ST0_REGNUM (tdep) +
6255 ((ir.modrm & 0x0f) - 0x08)))
6256 return -1;
6257 }
6258 }
6259 }
6260 else
6261 {
6262 switch (ir.modrm)
6263 {
6264 case 0xe0:
6265 case 0xe1:
6266 case 0xf0:
6267 case 0xf5:
6268 case 0xf8:
6269 case 0xfa:
6270 case 0xfc:
6271 case 0xfe:
6272 case 0xff:
6273 if (i386_record_floats (gdbarch, &ir,
6274 I387_ST0_REGNUM (tdep)))
6275 return -1;
6276 break;
6277 case 0xf1:
6278 case 0xf2:
6279 case 0xf3:
6280 case 0xf4:
6281 case 0xf6:
6282 case 0xf7:
6283 case 0xe8:
6284 case 0xe9:
6285 case 0xea:
6286 case 0xeb:
6287 case 0xec:
6288 case 0xed:
6289 case 0xee:
6290 case 0xf9:
6291 case 0xfb:
6292 if (i386_record_floats (gdbarch, &ir,
6293 I386_SAVE_FPU_REGS))
6294 return -1;
6295 break;
6296 case 0xfd:
6297 if (i386_record_floats (gdbarch, &ir,
6298 I387_ST0_REGNUM (tdep)))
6299 return -1;
6300 if (i386_record_floats (gdbarch, &ir,
6301 I387_ST0_REGNUM (tdep) + 1))
6302 return -1;
6303 break;
6304 }
6305 }
6306 break;
6307 case 0xda:
6308 if (0xe9 == ir.modrm)
6309 {
6310 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6311 return -1;
6312 }
6313 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
6314 {
6315 if (i386_record_floats (gdbarch, &ir,
6316 I387_ST0_REGNUM (tdep)))
6317 return -1;
6318 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
6319 {
6320 if (i386_record_floats (gdbarch, &ir,
6321 I387_ST0_REGNUM (tdep) +
6322 (ir.modrm & 0x0f)))
6323 return -1;
6324 }
6325 else if ((ir.modrm & 0x0f) - 0x08)
6326 {
6327 if (i386_record_floats (gdbarch, &ir,
6328 I387_ST0_REGNUM (tdep) +
6329 ((ir.modrm & 0x0f) - 0x08)))
6330 return -1;
6331 }
6332 }
6333 break;
6334 case 0xdb:
6335 if (0xe3 == ir.modrm)
6336 {
6337 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_ENV))
6338 return -1;
6339 }
6340 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
6341 {
6342 if (i386_record_floats (gdbarch, &ir,
6343 I387_ST0_REGNUM (tdep)))
6344 return -1;
6345 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
6346 {
6347 if (i386_record_floats (gdbarch, &ir,
6348 I387_ST0_REGNUM (tdep) +
6349 (ir.modrm & 0x0f)))
6350 return -1;
6351 }
6352 else if ((ir.modrm & 0x0f) - 0x08)
6353 {
6354 if (i386_record_floats (gdbarch, &ir,
6355 I387_ST0_REGNUM (tdep) +
6356 ((ir.modrm & 0x0f) - 0x08)))
6357 return -1;
6358 }
6359 }
6360 break;
6361 case 0xdc:
6362 if ((0x0c == ir.modrm >> 4)
6363 || (0x0d == ir.modrm >> 4)
6364 || (0x0f == ir.modrm >> 4))
6365 {
6366 if ((ir.modrm & 0x0f) <= 7)
6367 {
6368 if (i386_record_floats (gdbarch, &ir,
6369 I387_ST0_REGNUM (tdep) +
6370 (ir.modrm & 0x0f)))
6371 return -1;
6372 }
6373 else
6374 {
6375 if (i386_record_floats (gdbarch, &ir,
6376 I387_ST0_REGNUM (tdep) +
6377 ((ir.modrm & 0x0f) - 0x08)))
6378 return -1;
6379 }
6380 }
6381 break;
6382 case 0xdd:
6383 if (0x0c == ir.modrm >> 4)
6384 {
6385 if (i386_record_floats (gdbarch, &ir,
6386 I387_FTAG_REGNUM (tdep)))
6387 return -1;
6388 }
6389 else if ((0x0d == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
6390 {
6391 if ((ir.modrm & 0x0f) <= 7)
6392 {
6393 if (i386_record_floats (gdbarch, &ir,
6394 I387_ST0_REGNUM (tdep) +
6395 (ir.modrm & 0x0f)))
6396 return -1;
6397 }
6398 else
6399 {
6400 if (i386_record_floats (gdbarch, &ir,
6401 I386_SAVE_FPU_REGS))
6402 return -1;
6403 }
6404 }
6405 break;
6406 case 0xde:
6407 if ((0x0c == ir.modrm >> 4)
6408 || (0x0e == ir.modrm >> 4)
6409 || (0x0f == ir.modrm >> 4)
6410 || (0xd9 == ir.modrm))
6411 {
6412 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6413 return -1;
6414 }
6415 break;
6416 case 0xdf:
6417 if (0xe0 == ir.modrm)
6418 {
6419 if (record_full_arch_list_add_reg (ir.regcache,
6420 I386_EAX_REGNUM))
6421 return -1;
6422 }
6423 else if ((0x0f == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
6424 {
6425 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6426 return -1;
6427 }
6428 break;
6429 }
6430 }
6431 break;
6432 /* string ops */
6433 case 0xa4: /* movsS */
6434 case 0xa5:
6435 case 0xaa: /* stosS */
6436 case 0xab:
6437 case 0x6c: /* insS */
6438 case 0x6d:
6439 regcache_raw_read_unsigned (ir.regcache,
6440 ir.regmap[X86_RECORD_RECX_REGNUM],
6441 &addr);
6442 if (addr)
6443 {
6444 ULONGEST es, ds;
6445
6446 if ((opcode & 1) == 0)
6447 ir.ot = OT_BYTE;
6448 else
6449 ir.ot = ir.dflag + OT_WORD;
6450 regcache_raw_read_unsigned (ir.regcache,
6451 ir.regmap[X86_RECORD_REDI_REGNUM],
6452 &addr);
6453
6454 regcache_raw_read_unsigned (ir.regcache,
6455 ir.regmap[X86_RECORD_ES_REGNUM],
6456 &es);
6457 regcache_raw_read_unsigned (ir.regcache,
6458 ir.regmap[X86_RECORD_DS_REGNUM],
6459 &ds);
6460 if (ir.aflag && (es != ds))
6461 {
6462 /* addr += ((uint32_t) read_register (I386_ES_REGNUM)) << 4; */
6463 if (record_full_memory_query)
6464 {
6465 if (yquery (_("\
6466 Process record ignores the memory change of instruction at address %s\n\
6467 because it can't get the value of the segment register.\n\
6468 Do you want to stop the program?"),
6469 paddress (gdbarch, ir.orig_addr)))
6470 return -1;
6471 }
6472 }
6473 else
6474 {
6475 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
6476 return -1;
6477 }
6478
6479 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6480 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6481 if (opcode == 0xa4 || opcode == 0xa5)
6482 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6483 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6484 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6485 }
6486 break;
6487
6488 case 0xa6: /* cmpsS */
6489 case 0xa7:
6490 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6491 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6492 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6493 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6494 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6495 break;
6496
6497 case 0xac: /* lodsS */
6498 case 0xad:
6499 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6500 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6501 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6502 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6503 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6504 break;
6505
6506 case 0xae: /* scasS */
6507 case 0xaf:
6508 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6509 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6510 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6511 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6512 break;
6513
6514 case 0x6e: /* outsS */
6515 case 0x6f:
6516 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6517 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6518 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6519 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6520 break;
6521
6522 case 0xe4: /* port I/O */
6523 case 0xe5:
6524 case 0xec:
6525 case 0xed:
6526 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6527 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6528 break;
6529
6530 case 0xe6:
6531 case 0xe7:
6532 case 0xee:
6533 case 0xef:
6534 break;
6535
6536 /* control */
6537 case 0xc2: /* ret im */
6538 case 0xc3: /* ret */
6539 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6540 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6541 break;
6542
6543 case 0xca: /* lret im */
6544 case 0xcb: /* lret */
6545 case 0xcf: /* iret */
6546 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
6547 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6548 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6549 break;
6550
6551 case 0xe8: /* call im */
6552 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6553 ir.dflag = 2;
6554 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6555 return -1;
6556 break;
6557
6558 case 0x9a: /* lcall im */
6559 if (ir.regmap[X86_RECORD_R8_REGNUM])
6560 {
6561 ir.addr -= 1;
6562 goto no_support;
6563 }
6564 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
6565 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6566 return -1;
6567 break;
6568
6569 case 0xe9: /* jmp im */
6570 case 0xea: /* ljmp im */
6571 case 0xeb: /* jmp Jb */
6572 case 0x70: /* jcc Jb */
6573 case 0x71:
6574 case 0x72:
6575 case 0x73:
6576 case 0x74:
6577 case 0x75:
6578 case 0x76:
6579 case 0x77:
6580 case 0x78:
6581 case 0x79:
6582 case 0x7a:
6583 case 0x7b:
6584 case 0x7c:
6585 case 0x7d:
6586 case 0x7e:
6587 case 0x7f:
6588 case 0x0f80: /* jcc Jv */
6589 case 0x0f81:
6590 case 0x0f82:
6591 case 0x0f83:
6592 case 0x0f84:
6593 case 0x0f85:
6594 case 0x0f86:
6595 case 0x0f87:
6596 case 0x0f88:
6597 case 0x0f89:
6598 case 0x0f8a:
6599 case 0x0f8b:
6600 case 0x0f8c:
6601 case 0x0f8d:
6602 case 0x0f8e:
6603 case 0x0f8f:
6604 break;
6605
6606 case 0x0f90: /* setcc Gv */
6607 case 0x0f91:
6608 case 0x0f92:
6609 case 0x0f93:
6610 case 0x0f94:
6611 case 0x0f95:
6612 case 0x0f96:
6613 case 0x0f97:
6614 case 0x0f98:
6615 case 0x0f99:
6616 case 0x0f9a:
6617 case 0x0f9b:
6618 case 0x0f9c:
6619 case 0x0f9d:
6620 case 0x0f9e:
6621 case 0x0f9f:
6622 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6623 ir.ot = OT_BYTE;
6624 if (i386_record_modrm (&ir))
6625 return -1;
6626 if (ir.mod == 3)
6627 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rex_b ? (ir.rm | ir.rex_b)
6628 : (ir.rm & 0x3));
6629 else
6630 {
6631 if (i386_record_lea_modrm (&ir))
6632 return -1;
6633 }
6634 break;
6635
6636 case 0x0f40: /* cmov Gv, Ev */
6637 case 0x0f41:
6638 case 0x0f42:
6639 case 0x0f43:
6640 case 0x0f44:
6641 case 0x0f45:
6642 case 0x0f46:
6643 case 0x0f47:
6644 case 0x0f48:
6645 case 0x0f49:
6646 case 0x0f4a:
6647 case 0x0f4b:
6648 case 0x0f4c:
6649 case 0x0f4d:
6650 case 0x0f4e:
6651 case 0x0f4f:
6652 if (i386_record_modrm (&ir))
6653 return -1;
6654 ir.reg |= rex_r;
6655 if (ir.dflag == OT_BYTE)
6656 ir.reg &= 0x3;
6657 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
6658 break;
6659
6660 /* flags */
6661 case 0x9c: /* pushf */
6662 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6663 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6664 ir.dflag = 2;
6665 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6666 return -1;
6667 break;
6668
6669 case 0x9d: /* popf */
6670 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6671 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6672 break;
6673
6674 case 0x9e: /* sahf */
6675 if (ir.regmap[X86_RECORD_R8_REGNUM])
6676 {
6677 ir.addr -= 1;
6678 goto no_support;
6679 }
6680 /* FALLTHROUGH */
6681 case 0xf5: /* cmc */
6682 case 0xf8: /* clc */
6683 case 0xf9: /* stc */
6684 case 0xfc: /* cld */
6685 case 0xfd: /* std */
6686 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6687 break;
6688
6689 case 0x9f: /* lahf */
6690 if (ir.regmap[X86_RECORD_R8_REGNUM])
6691 {
6692 ir.addr -= 1;
6693 goto no_support;
6694 }
6695 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6696 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6697 break;
6698
6699 /* bit operations */
6700 case 0x0fba: /* bt/bts/btr/btc Gv, im */
6701 ir.ot = ir.dflag + OT_WORD;
6702 if (i386_record_modrm (&ir))
6703 return -1;
6704 if (ir.reg < 4)
6705 {
6706 ir.addr -= 2;
6707 opcode = opcode << 8 | ir.modrm;
6708 goto no_support;
6709 }
6710 if (ir.reg != 4)
6711 {
6712 if (ir.mod == 3)
6713 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6714 else
6715 {
6716 if (i386_record_lea_modrm (&ir))
6717 return -1;
6718 }
6719 }
6720 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6721 break;
6722
6723 case 0x0fa3: /* bt Gv, Ev */
6724 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6725 break;
6726
6727 case 0x0fab: /* bts */
6728 case 0x0fb3: /* btr */
6729 case 0x0fbb: /* btc */
6730 ir.ot = ir.dflag + OT_WORD;
6731 if (i386_record_modrm (&ir))
6732 return -1;
6733 if (ir.mod == 3)
6734 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6735 else
6736 {
6737 uint64_t addr64;
6738 if (i386_record_lea_modrm_addr (&ir, &addr64))
6739 return -1;
6740 regcache_raw_read_unsigned (ir.regcache,
6741 ir.regmap[ir.reg | rex_r],
6742 &addr);
6743 switch (ir.dflag)
6744 {
6745 case 0:
6746 addr64 += ((int16_t) addr >> 4) << 4;
6747 break;
6748 case 1:
6749 addr64 += ((int32_t) addr >> 5) << 5;
6750 break;
6751 case 2:
6752 addr64 += ((int64_t) addr >> 6) << 6;
6753 break;
6754 }
6755 if (record_full_arch_list_add_mem (addr64, 1 << ir.ot))
6756 return -1;
6757 if (i386_record_lea_modrm (&ir))
6758 return -1;
6759 }
6760 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6761 break;
6762
6763 case 0x0fbc: /* bsf */
6764 case 0x0fbd: /* bsr */
6765 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6766 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6767 break;
6768
6769 /* bcd */
6770 case 0x27: /* daa */
6771 case 0x2f: /* das */
6772 case 0x37: /* aaa */
6773 case 0x3f: /* aas */
6774 case 0xd4: /* aam */
6775 case 0xd5: /* aad */
6776 if (ir.regmap[X86_RECORD_R8_REGNUM])
6777 {
6778 ir.addr -= 1;
6779 goto no_support;
6780 }
6781 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6782 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6783 break;
6784
6785 /* misc */
6786 case 0x90: /* nop */
6787 if (prefixes & PREFIX_LOCK)
6788 {
6789 ir.addr -= 1;
6790 goto no_support;
6791 }
6792 break;
6793
6794 case 0x9b: /* fwait */
6795 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
6796 return -1;
6797 opcode = (uint32_t) opcode8;
6798 ir.addr++;
6799 goto reswitch;
6800 break;
6801
6802 /* XXX */
6803 case 0xcc: /* int3 */
6804 printf_unfiltered (_("Process record does not support instruction "
6805 "int3.\n"));
6806 ir.addr -= 1;
6807 goto no_support;
6808 break;
6809
6810 /* XXX */
6811 case 0xcd: /* int */
6812 {
6813 int ret;
6814 uint8_t interrupt;
6815 if (record_read_memory (gdbarch, ir.addr, &interrupt, 1))
6816 return -1;
6817 ir.addr++;
6818 if (interrupt != 0x80
6819 || tdep->i386_intx80_record == NULL)
6820 {
6821 printf_unfiltered (_("Process record does not support "
6822 "instruction int 0x%02x.\n"),
6823 interrupt);
6824 ir.addr -= 2;
6825 goto no_support;
6826 }
6827 ret = tdep->i386_intx80_record (ir.regcache);
6828 if (ret)
6829 return ret;
6830 }
6831 break;
6832
6833 /* XXX */
6834 case 0xce: /* into */
6835 printf_unfiltered (_("Process record does not support "
6836 "instruction into.\n"));
6837 ir.addr -= 1;
6838 goto no_support;
6839 break;
6840
6841 case 0xfa: /* cli */
6842 case 0xfb: /* sti */
6843 break;
6844
6845 case 0x62: /* bound */
6846 printf_unfiltered (_("Process record does not support "
6847 "instruction bound.\n"));
6848 ir.addr -= 1;
6849 goto no_support;
6850 break;
6851
6852 case 0x0fc8: /* bswap reg */
6853 case 0x0fc9:
6854 case 0x0fca:
6855 case 0x0fcb:
6856 case 0x0fcc:
6857 case 0x0fcd:
6858 case 0x0fce:
6859 case 0x0fcf:
6860 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 7) | ir.rex_b);
6861 break;
6862
6863 case 0xd6: /* salc */
6864 if (ir.regmap[X86_RECORD_R8_REGNUM])
6865 {
6866 ir.addr -= 1;
6867 goto no_support;
6868 }
6869 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6870 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6871 break;
6872
6873 case 0xe0: /* loopnz */
6874 case 0xe1: /* loopz */
6875 case 0xe2: /* loop */
6876 case 0xe3: /* jecxz */
6877 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6878 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6879 break;
6880
6881 case 0x0f30: /* wrmsr */
6882 printf_unfiltered (_("Process record does not support "
6883 "instruction wrmsr.\n"));
6884 ir.addr -= 2;
6885 goto no_support;
6886 break;
6887
6888 case 0x0f32: /* rdmsr */
6889 printf_unfiltered (_("Process record does not support "
6890 "instruction rdmsr.\n"));
6891 ir.addr -= 2;
6892 goto no_support;
6893 break;
6894
6895 case 0x0f31: /* rdtsc */
6896 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6897 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6898 break;
6899
6900 case 0x0f34: /* sysenter */
6901 {
6902 int ret;
6903 if (ir.regmap[X86_RECORD_R8_REGNUM])
6904 {
6905 ir.addr -= 2;
6906 goto no_support;
6907 }
6908 if (tdep->i386_sysenter_record == NULL)
6909 {
6910 printf_unfiltered (_("Process record does not support "
6911 "instruction sysenter.\n"));
6912 ir.addr -= 2;
6913 goto no_support;
6914 }
6915 ret = tdep->i386_sysenter_record (ir.regcache);
6916 if (ret)
6917 return ret;
6918 }
6919 break;
6920
6921 case 0x0f35: /* sysexit */
6922 printf_unfiltered (_("Process record does not support "
6923 "instruction sysexit.\n"));
6924 ir.addr -= 2;
6925 goto no_support;
6926 break;
6927
6928 case 0x0f05: /* syscall */
6929 {
6930 int ret;
6931 if (tdep->i386_syscall_record == NULL)
6932 {
6933 printf_unfiltered (_("Process record does not support "
6934 "instruction syscall.\n"));
6935 ir.addr -= 2;
6936 goto no_support;
6937 }
6938 ret = tdep->i386_syscall_record (ir.regcache);
6939 if (ret)
6940 return ret;
6941 }
6942 break;
6943
6944 case 0x0f07: /* sysret */
6945 printf_unfiltered (_("Process record does not support "
6946 "instruction sysret.\n"));
6947 ir.addr -= 2;
6948 goto no_support;
6949 break;
6950
6951 case 0x0fa2: /* cpuid */
6952 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6953 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6954 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6955 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
6956 break;
6957
6958 case 0xf4: /* hlt */
6959 printf_unfiltered (_("Process record does not support "
6960 "instruction hlt.\n"));
6961 ir.addr -= 1;
6962 goto no_support;
6963 break;
6964
6965 case 0x0f00:
6966 if (i386_record_modrm (&ir))
6967 return -1;
6968 switch (ir.reg)
6969 {
6970 case 0: /* sldt */
6971 case 1: /* str */
6972 if (ir.mod == 3)
6973 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6974 else
6975 {
6976 ir.ot = OT_WORD;
6977 if (i386_record_lea_modrm (&ir))
6978 return -1;
6979 }
6980 break;
6981 case 2: /* lldt */
6982 case 3: /* ltr */
6983 break;
6984 case 4: /* verr */
6985 case 5: /* verw */
6986 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6987 break;
6988 default:
6989 ir.addr -= 3;
6990 opcode = opcode << 8 | ir.modrm;
6991 goto no_support;
6992 break;
6993 }
6994 break;
6995
6996 case 0x0f01:
6997 if (i386_record_modrm (&ir))
6998 return -1;
6999 switch (ir.reg)
7000 {
7001 case 0: /* sgdt */
7002 {
7003 uint64_t addr64;
7004
7005 if (ir.mod == 3)
7006 {
7007 ir.addr -= 3;
7008 opcode = opcode << 8 | ir.modrm;
7009 goto no_support;
7010 }
7011 if (ir.override >= 0)
7012 {
7013 if (record_full_memory_query)
7014 {
7015 if (yquery (_("\
7016 Process record ignores the memory change of instruction at address %s\n\
7017 because it can't get the value of the segment register.\n\
7018 Do you want to stop the program?"),
7019 paddress (gdbarch, ir.orig_addr)))
7020 return -1;
7021 }
7022 }
7023 else
7024 {
7025 if (i386_record_lea_modrm_addr (&ir, &addr64))
7026 return -1;
7027 if (record_full_arch_list_add_mem (addr64, 2))
7028 return -1;
7029 addr64 += 2;
7030 if (ir.regmap[X86_RECORD_R8_REGNUM])
7031 {
7032 if (record_full_arch_list_add_mem (addr64, 8))
7033 return -1;
7034 }
7035 else
7036 {
7037 if (record_full_arch_list_add_mem (addr64, 4))
7038 return -1;
7039 }
7040 }
7041 }
7042 break;
7043 case 1:
7044 if (ir.mod == 3)
7045 {
7046 switch (ir.rm)
7047 {
7048 case 0: /* monitor */
7049 break;
7050 case 1: /* mwait */
7051 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7052 break;
7053 default:
7054 ir.addr -= 3;
7055 opcode = opcode << 8 | ir.modrm;
7056 goto no_support;
7057 break;
7058 }
7059 }
7060 else
7061 {
7062 /* sidt */
7063 if (ir.override >= 0)
7064 {
7065 if (record_full_memory_query)
7066 {
7067 if (yquery (_("\
7068 Process record ignores the memory change of instruction at address %s\n\
7069 because it can't get the value of the segment register.\n\
7070 Do you want to stop the program?"),
7071 paddress (gdbarch, ir.orig_addr)))
7072 return -1;
7073 }
7074 }
7075 else
7076 {
7077 uint64_t addr64;
7078
7079 if (i386_record_lea_modrm_addr (&ir, &addr64))
7080 return -1;
7081 if (record_full_arch_list_add_mem (addr64, 2))
7082 return -1;
7083 addr64 += 2;
7084 if (ir.regmap[X86_RECORD_R8_REGNUM])
7085 {
7086 if (record_full_arch_list_add_mem (addr64, 8))
7087 return -1;
7088 }
7089 else
7090 {
7091 if (record_full_arch_list_add_mem (addr64, 4))
7092 return -1;
7093 }
7094 }
7095 }
7096 break;
7097 case 2: /* lgdt */
7098 if (ir.mod == 3)
7099 {
7100 /* xgetbv */
7101 if (ir.rm == 0)
7102 {
7103 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7104 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7105 break;
7106 }
7107 /* xsetbv */
7108 else if (ir.rm == 1)
7109 break;
7110 }
7111 /* Fall through. */
7112 case 3: /* lidt */
7113 if (ir.mod == 3)
7114 {
7115 ir.addr -= 3;
7116 opcode = opcode << 8 | ir.modrm;
7117 goto no_support;
7118 }
7119 break;
7120 case 4: /* smsw */
7121 if (ir.mod == 3)
7122 {
7123 if (record_full_arch_list_add_reg (ir.regcache, ir.rm | ir.rex_b))
7124 return -1;
7125 }
7126 else
7127 {
7128 ir.ot = OT_WORD;
7129 if (i386_record_lea_modrm (&ir))
7130 return -1;
7131 }
7132 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7133 break;
7134 case 6: /* lmsw */
7135 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7136 break;
7137 case 7: /* invlpg */
7138 if (ir.mod == 3)
7139 {
7140 if (ir.rm == 0 && ir.regmap[X86_RECORD_R8_REGNUM])
7141 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
7142 else
7143 {
7144 ir.addr -= 3;
7145 opcode = opcode << 8 | ir.modrm;
7146 goto no_support;
7147 }
7148 }
7149 else
7150 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7151 break;
7152 default:
7153 ir.addr -= 3;
7154 opcode = opcode << 8 | ir.modrm;
7155 goto no_support;
7156 break;
7157 }
7158 break;
7159
7160 case 0x0f08: /* invd */
7161 case 0x0f09: /* wbinvd */
7162 break;
7163
7164 case 0x63: /* arpl */
7165 if (i386_record_modrm (&ir))
7166 return -1;
7167 if (ir.mod == 3 || ir.regmap[X86_RECORD_R8_REGNUM])
7168 {
7169 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.regmap[X86_RECORD_R8_REGNUM]
7170 ? (ir.reg | rex_r) : ir.rm);
7171 }
7172 else
7173 {
7174 ir.ot = ir.dflag ? OT_LONG : OT_WORD;
7175 if (i386_record_lea_modrm (&ir))
7176 return -1;
7177 }
7178 if (!ir.regmap[X86_RECORD_R8_REGNUM])
7179 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7180 break;
7181
7182 case 0x0f02: /* lar */
7183 case 0x0f03: /* lsl */
7184 if (i386_record_modrm (&ir))
7185 return -1;
7186 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7187 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7188 break;
7189
7190 case 0x0f18:
7191 if (i386_record_modrm (&ir))
7192 return -1;
7193 if (ir.mod == 3 && ir.reg == 3)
7194 {
7195 ir.addr -= 3;
7196 opcode = opcode << 8 | ir.modrm;
7197 goto no_support;
7198 }
7199 break;
7200
7201 case 0x0f19:
7202 case 0x0f1a:
7203 case 0x0f1b:
7204 case 0x0f1c:
7205 case 0x0f1d:
7206 case 0x0f1e:
7207 case 0x0f1f:
7208 /* nop (multi byte) */
7209 break;
7210
7211 case 0x0f20: /* mov reg, crN */
7212 case 0x0f22: /* mov crN, reg */
7213 if (i386_record_modrm (&ir))
7214 return -1;
7215 if ((ir.modrm & 0xc0) != 0xc0)
7216 {
7217 ir.addr -= 3;
7218 opcode = opcode << 8 | ir.modrm;
7219 goto no_support;
7220 }
7221 switch (ir.reg)
7222 {
7223 case 0:
7224 case 2:
7225 case 3:
7226 case 4:
7227 case 8:
7228 if (opcode & 2)
7229 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7230 else
7231 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7232 break;
7233 default:
7234 ir.addr -= 3;
7235 opcode = opcode << 8 | ir.modrm;
7236 goto no_support;
7237 break;
7238 }
7239 break;
7240
7241 case 0x0f21: /* mov reg, drN */
7242 case 0x0f23: /* mov drN, reg */
7243 if (i386_record_modrm (&ir))
7244 return -1;
7245 if ((ir.modrm & 0xc0) != 0xc0 || ir.reg == 4
7246 || ir.reg == 5 || ir.reg >= 8)
7247 {
7248 ir.addr -= 3;
7249 opcode = opcode << 8 | ir.modrm;
7250 goto no_support;
7251 }
7252 if (opcode & 2)
7253 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7254 else
7255 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7256 break;
7257
7258 case 0x0f06: /* clts */
7259 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7260 break;
7261
7262 /* MMX 3DNow! SSE SSE2 SSE3 SSSE3 SSE4 */
7263
7264 case 0x0f0d: /* 3DNow! prefetch */
7265 break;
7266
7267 case 0x0f0e: /* 3DNow! femms */
7268 case 0x0f77: /* emms */
7269 if (i386_fpc_regnum_p (gdbarch, I387_FTAG_REGNUM(tdep)))
7270 goto no_support;
7271 record_full_arch_list_add_reg (ir.regcache, I387_FTAG_REGNUM(tdep));
7272 break;
7273
7274 case 0x0f0f: /* 3DNow! data */
7275 if (i386_record_modrm (&ir))
7276 return -1;
7277 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
7278 return -1;
7279 ir.addr++;
7280 switch (opcode8)
7281 {
7282 case 0x0c: /* 3DNow! pi2fw */
7283 case 0x0d: /* 3DNow! pi2fd */
7284 case 0x1c: /* 3DNow! pf2iw */
7285 case 0x1d: /* 3DNow! pf2id */
7286 case 0x8a: /* 3DNow! pfnacc */
7287 case 0x8e: /* 3DNow! pfpnacc */
7288 case 0x90: /* 3DNow! pfcmpge */
7289 case 0x94: /* 3DNow! pfmin */
7290 case 0x96: /* 3DNow! pfrcp */
7291 case 0x97: /* 3DNow! pfrsqrt */
7292 case 0x9a: /* 3DNow! pfsub */
7293 case 0x9e: /* 3DNow! pfadd */
7294 case 0xa0: /* 3DNow! pfcmpgt */
7295 case 0xa4: /* 3DNow! pfmax */
7296 case 0xa6: /* 3DNow! pfrcpit1 */
7297 case 0xa7: /* 3DNow! pfrsqit1 */
7298 case 0xaa: /* 3DNow! pfsubr */
7299 case 0xae: /* 3DNow! pfacc */
7300 case 0xb0: /* 3DNow! pfcmpeq */
7301 case 0xb4: /* 3DNow! pfmul */
7302 case 0xb6: /* 3DNow! pfrcpit2 */
7303 case 0xb7: /* 3DNow! pmulhrw */
7304 case 0xbb: /* 3DNow! pswapd */
7305 case 0xbf: /* 3DNow! pavgusb */
7306 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7307 goto no_support_3dnow_data;
7308 record_full_arch_list_add_reg (ir.regcache, ir.reg);
7309 break;
7310
7311 default:
7312 no_support_3dnow_data:
7313 opcode = (opcode << 8) | opcode8;
7314 goto no_support;
7315 break;
7316 }
7317 break;
7318
7319 case 0x0faa: /* rsm */
7320 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7321 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7322 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
7323 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7324 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
7325 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
7326 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
7327 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
7328 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
7329 break;
7330
7331 case 0x0fae:
7332 if (i386_record_modrm (&ir))
7333 return -1;
7334 switch(ir.reg)
7335 {
7336 case 0: /* fxsave */
7337 {
7338 uint64_t tmpu64;
7339
7340 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7341 if (i386_record_lea_modrm_addr (&ir, &tmpu64))
7342 return -1;
7343 if (record_full_arch_list_add_mem (tmpu64, 512))
7344 return -1;
7345 }
7346 break;
7347
7348 case 1: /* fxrstor */
7349 {
7350 int i;
7351
7352 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7353
7354 for (i = I387_MM0_REGNUM (tdep);
7355 i386_mmx_regnum_p (gdbarch, i); i++)
7356 record_full_arch_list_add_reg (ir.regcache, i);
7357
7358 for (i = I387_XMM0_REGNUM (tdep);
7359 i386_xmm_regnum_p (gdbarch, i); i++)
7360 record_full_arch_list_add_reg (ir.regcache, i);
7361
7362 if (i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
7363 record_full_arch_list_add_reg (ir.regcache,
7364 I387_MXCSR_REGNUM(tdep));
7365
7366 for (i = I387_ST0_REGNUM (tdep);
7367 i386_fp_regnum_p (gdbarch, i); i++)
7368 record_full_arch_list_add_reg (ir.regcache, i);
7369
7370 for (i = I387_FCTRL_REGNUM (tdep);
7371 i386_fpc_regnum_p (gdbarch, i); i++)
7372 record_full_arch_list_add_reg (ir.regcache, i);
7373 }
7374 break;
7375
7376 case 2: /* ldmxcsr */
7377 if (!i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
7378 goto no_support;
7379 record_full_arch_list_add_reg (ir.regcache, I387_MXCSR_REGNUM(tdep));
7380 break;
7381
7382 case 3: /* stmxcsr */
7383 ir.ot = OT_LONG;
7384 if (i386_record_lea_modrm (&ir))
7385 return -1;
7386 break;
7387
7388 case 5: /* lfence */
7389 case 6: /* mfence */
7390 case 7: /* sfence clflush */
7391 break;
7392
7393 default:
7394 opcode = (opcode << 8) | ir.modrm;
7395 goto no_support;
7396 break;
7397 }
7398 break;
7399
7400 case 0x0fc3: /* movnti */
7401 ir.ot = (ir.dflag == 2) ? OT_QUAD : OT_LONG;
7402 if (i386_record_modrm (&ir))
7403 return -1;
7404 if (ir.mod == 3)
7405 goto no_support;
7406 ir.reg |= rex_r;
7407 if (i386_record_lea_modrm (&ir))
7408 return -1;
7409 break;
7410
7411 /* Add prefix to opcode. */
7412 case 0x0f10:
7413 case 0x0f11:
7414 case 0x0f12:
7415 case 0x0f13:
7416 case 0x0f14:
7417 case 0x0f15:
7418 case 0x0f16:
7419 case 0x0f17:
7420 case 0x0f28:
7421 case 0x0f29:
7422 case 0x0f2a:
7423 case 0x0f2b:
7424 case 0x0f2c:
7425 case 0x0f2d:
7426 case 0x0f2e:
7427 case 0x0f2f:
7428 case 0x0f38:
7429 case 0x0f39:
7430 case 0x0f3a:
7431 case 0x0f50:
7432 case 0x0f51:
7433 case 0x0f52:
7434 case 0x0f53:
7435 case 0x0f54:
7436 case 0x0f55:
7437 case 0x0f56:
7438 case 0x0f57:
7439 case 0x0f58:
7440 case 0x0f59:
7441 case 0x0f5a:
7442 case 0x0f5b:
7443 case 0x0f5c:
7444 case 0x0f5d:
7445 case 0x0f5e:
7446 case 0x0f5f:
7447 case 0x0f60:
7448 case 0x0f61:
7449 case 0x0f62:
7450 case 0x0f63:
7451 case 0x0f64:
7452 case 0x0f65:
7453 case 0x0f66:
7454 case 0x0f67:
7455 case 0x0f68:
7456 case 0x0f69:
7457 case 0x0f6a:
7458 case 0x0f6b:
7459 case 0x0f6c:
7460 case 0x0f6d:
7461 case 0x0f6e:
7462 case 0x0f6f:
7463 case 0x0f70:
7464 case 0x0f71:
7465 case 0x0f72:
7466 case 0x0f73:
7467 case 0x0f74:
7468 case 0x0f75:
7469 case 0x0f76:
7470 case 0x0f7c:
7471 case 0x0f7d:
7472 case 0x0f7e:
7473 case 0x0f7f:
7474 case 0x0fb8:
7475 case 0x0fc2:
7476 case 0x0fc4:
7477 case 0x0fc5:
7478 case 0x0fc6:
7479 case 0x0fd0:
7480 case 0x0fd1:
7481 case 0x0fd2:
7482 case 0x0fd3:
7483 case 0x0fd4:
7484 case 0x0fd5:
7485 case 0x0fd6:
7486 case 0x0fd7:
7487 case 0x0fd8:
7488 case 0x0fd9:
7489 case 0x0fda:
7490 case 0x0fdb:
7491 case 0x0fdc:
7492 case 0x0fdd:
7493 case 0x0fde:
7494 case 0x0fdf:
7495 case 0x0fe0:
7496 case 0x0fe1:
7497 case 0x0fe2:
7498 case 0x0fe3:
7499 case 0x0fe4:
7500 case 0x0fe5:
7501 case 0x0fe6:
7502 case 0x0fe7:
7503 case 0x0fe8:
7504 case 0x0fe9:
7505 case 0x0fea:
7506 case 0x0feb:
7507 case 0x0fec:
7508 case 0x0fed:
7509 case 0x0fee:
7510 case 0x0fef:
7511 case 0x0ff0:
7512 case 0x0ff1:
7513 case 0x0ff2:
7514 case 0x0ff3:
7515 case 0x0ff4:
7516 case 0x0ff5:
7517 case 0x0ff6:
7518 case 0x0ff7:
7519 case 0x0ff8:
7520 case 0x0ff9:
7521 case 0x0ffa:
7522 case 0x0ffb:
7523 case 0x0ffc:
7524 case 0x0ffd:
7525 case 0x0ffe:
7526 /* Mask out PREFIX_ADDR. */
7527 switch ((prefixes & ~PREFIX_ADDR))
7528 {
7529 case PREFIX_REPNZ:
7530 opcode |= 0xf20000;
7531 break;
7532 case PREFIX_DATA:
7533 opcode |= 0x660000;
7534 break;
7535 case PREFIX_REPZ:
7536 opcode |= 0xf30000;
7537 break;
7538 }
7539 reswitch_prefix_add:
7540 switch (opcode)
7541 {
7542 case 0x0f38:
7543 case 0x660f38:
7544 case 0xf20f38:
7545 case 0x0f3a:
7546 case 0x660f3a:
7547 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
7548 return -1;
7549 ir.addr++;
7550 opcode = (uint32_t) opcode8 | opcode << 8;
7551 goto reswitch_prefix_add;
7552 break;
7553
7554 case 0x0f10: /* movups */
7555 case 0x660f10: /* movupd */
7556 case 0xf30f10: /* movss */
7557 case 0xf20f10: /* movsd */
7558 case 0x0f12: /* movlps */
7559 case 0x660f12: /* movlpd */
7560 case 0xf30f12: /* movsldup */
7561 case 0xf20f12: /* movddup */
7562 case 0x0f14: /* unpcklps */
7563 case 0x660f14: /* unpcklpd */
7564 case 0x0f15: /* unpckhps */
7565 case 0x660f15: /* unpckhpd */
7566 case 0x0f16: /* movhps */
7567 case 0x660f16: /* movhpd */
7568 case 0xf30f16: /* movshdup */
7569 case 0x0f28: /* movaps */
7570 case 0x660f28: /* movapd */
7571 case 0x0f2a: /* cvtpi2ps */
7572 case 0x660f2a: /* cvtpi2pd */
7573 case 0xf30f2a: /* cvtsi2ss */
7574 case 0xf20f2a: /* cvtsi2sd */
7575 case 0x0f2c: /* cvttps2pi */
7576 case 0x660f2c: /* cvttpd2pi */
7577 case 0x0f2d: /* cvtps2pi */
7578 case 0x660f2d: /* cvtpd2pi */
7579 case 0x660f3800: /* pshufb */
7580 case 0x660f3801: /* phaddw */
7581 case 0x660f3802: /* phaddd */
7582 case 0x660f3803: /* phaddsw */
7583 case 0x660f3804: /* pmaddubsw */
7584 case 0x660f3805: /* phsubw */
7585 case 0x660f3806: /* phsubd */
7586 case 0x660f3807: /* phsubsw */
7587 case 0x660f3808: /* psignb */
7588 case 0x660f3809: /* psignw */
7589 case 0x660f380a: /* psignd */
7590 case 0x660f380b: /* pmulhrsw */
7591 case 0x660f3810: /* pblendvb */
7592 case 0x660f3814: /* blendvps */
7593 case 0x660f3815: /* blendvpd */
7594 case 0x660f381c: /* pabsb */
7595 case 0x660f381d: /* pabsw */
7596 case 0x660f381e: /* pabsd */
7597 case 0x660f3820: /* pmovsxbw */
7598 case 0x660f3821: /* pmovsxbd */
7599 case 0x660f3822: /* pmovsxbq */
7600 case 0x660f3823: /* pmovsxwd */
7601 case 0x660f3824: /* pmovsxwq */
7602 case 0x660f3825: /* pmovsxdq */
7603 case 0x660f3828: /* pmuldq */
7604 case 0x660f3829: /* pcmpeqq */
7605 case 0x660f382a: /* movntdqa */
7606 case 0x660f3a08: /* roundps */
7607 case 0x660f3a09: /* roundpd */
7608 case 0x660f3a0a: /* roundss */
7609 case 0x660f3a0b: /* roundsd */
7610 case 0x660f3a0c: /* blendps */
7611 case 0x660f3a0d: /* blendpd */
7612 case 0x660f3a0e: /* pblendw */
7613 case 0x660f3a0f: /* palignr */
7614 case 0x660f3a20: /* pinsrb */
7615 case 0x660f3a21: /* insertps */
7616 case 0x660f3a22: /* pinsrd pinsrq */
7617 case 0x660f3a40: /* dpps */
7618 case 0x660f3a41: /* dppd */
7619 case 0x660f3a42: /* mpsadbw */
7620 case 0x660f3a60: /* pcmpestrm */
7621 case 0x660f3a61: /* pcmpestri */
7622 case 0x660f3a62: /* pcmpistrm */
7623 case 0x660f3a63: /* pcmpistri */
7624 case 0x0f51: /* sqrtps */
7625 case 0x660f51: /* sqrtpd */
7626 case 0xf20f51: /* sqrtsd */
7627 case 0xf30f51: /* sqrtss */
7628 case 0x0f52: /* rsqrtps */
7629 case 0xf30f52: /* rsqrtss */
7630 case 0x0f53: /* rcpps */
7631 case 0xf30f53: /* rcpss */
7632 case 0x0f54: /* andps */
7633 case 0x660f54: /* andpd */
7634 case 0x0f55: /* andnps */
7635 case 0x660f55: /* andnpd */
7636 case 0x0f56: /* orps */
7637 case 0x660f56: /* orpd */
7638 case 0x0f57: /* xorps */
7639 case 0x660f57: /* xorpd */
7640 case 0x0f58: /* addps */
7641 case 0x660f58: /* addpd */
7642 case 0xf20f58: /* addsd */
7643 case 0xf30f58: /* addss */
7644 case 0x0f59: /* mulps */
7645 case 0x660f59: /* mulpd */
7646 case 0xf20f59: /* mulsd */
7647 case 0xf30f59: /* mulss */
7648 case 0x0f5a: /* cvtps2pd */
7649 case 0x660f5a: /* cvtpd2ps */
7650 case 0xf20f5a: /* cvtsd2ss */
7651 case 0xf30f5a: /* cvtss2sd */
7652 case 0x0f5b: /* cvtdq2ps */
7653 case 0x660f5b: /* cvtps2dq */
7654 case 0xf30f5b: /* cvttps2dq */
7655 case 0x0f5c: /* subps */
7656 case 0x660f5c: /* subpd */
7657 case 0xf20f5c: /* subsd */
7658 case 0xf30f5c: /* subss */
7659 case 0x0f5d: /* minps */
7660 case 0x660f5d: /* minpd */
7661 case 0xf20f5d: /* minsd */
7662 case 0xf30f5d: /* minss */
7663 case 0x0f5e: /* divps */
7664 case 0x660f5e: /* divpd */
7665 case 0xf20f5e: /* divsd */
7666 case 0xf30f5e: /* divss */
7667 case 0x0f5f: /* maxps */
7668 case 0x660f5f: /* maxpd */
7669 case 0xf20f5f: /* maxsd */
7670 case 0xf30f5f: /* maxss */
7671 case 0x660f60: /* punpcklbw */
7672 case 0x660f61: /* punpcklwd */
7673 case 0x660f62: /* punpckldq */
7674 case 0x660f63: /* packsswb */
7675 case 0x660f64: /* pcmpgtb */
7676 case 0x660f65: /* pcmpgtw */
7677 case 0x660f66: /* pcmpgtd */
7678 case 0x660f67: /* packuswb */
7679 case 0x660f68: /* punpckhbw */
7680 case 0x660f69: /* punpckhwd */
7681 case 0x660f6a: /* punpckhdq */
7682 case 0x660f6b: /* packssdw */
7683 case 0x660f6c: /* punpcklqdq */
7684 case 0x660f6d: /* punpckhqdq */
7685 case 0x660f6e: /* movd */
7686 case 0x660f6f: /* movdqa */
7687 case 0xf30f6f: /* movdqu */
7688 case 0x660f70: /* pshufd */
7689 case 0xf20f70: /* pshuflw */
7690 case 0xf30f70: /* pshufhw */
7691 case 0x660f74: /* pcmpeqb */
7692 case 0x660f75: /* pcmpeqw */
7693 case 0x660f76: /* pcmpeqd */
7694 case 0x660f7c: /* haddpd */
7695 case 0xf20f7c: /* haddps */
7696 case 0x660f7d: /* hsubpd */
7697 case 0xf20f7d: /* hsubps */
7698 case 0xf30f7e: /* movq */
7699 case 0x0fc2: /* cmpps */
7700 case 0x660fc2: /* cmppd */
7701 case 0xf20fc2: /* cmpsd */
7702 case 0xf30fc2: /* cmpss */
7703 case 0x660fc4: /* pinsrw */
7704 case 0x0fc6: /* shufps */
7705 case 0x660fc6: /* shufpd */
7706 case 0x660fd0: /* addsubpd */
7707 case 0xf20fd0: /* addsubps */
7708 case 0x660fd1: /* psrlw */
7709 case 0x660fd2: /* psrld */
7710 case 0x660fd3: /* psrlq */
7711 case 0x660fd4: /* paddq */
7712 case 0x660fd5: /* pmullw */
7713 case 0xf30fd6: /* movq2dq */
7714 case 0x660fd8: /* psubusb */
7715 case 0x660fd9: /* psubusw */
7716 case 0x660fda: /* pminub */
7717 case 0x660fdb: /* pand */
7718 case 0x660fdc: /* paddusb */
7719 case 0x660fdd: /* paddusw */
7720 case 0x660fde: /* pmaxub */
7721 case 0x660fdf: /* pandn */
7722 case 0x660fe0: /* pavgb */
7723 case 0x660fe1: /* psraw */
7724 case 0x660fe2: /* psrad */
7725 case 0x660fe3: /* pavgw */
7726 case 0x660fe4: /* pmulhuw */
7727 case 0x660fe5: /* pmulhw */
7728 case 0x660fe6: /* cvttpd2dq */
7729 case 0xf20fe6: /* cvtpd2dq */
7730 case 0xf30fe6: /* cvtdq2pd */
7731 case 0x660fe8: /* psubsb */
7732 case 0x660fe9: /* psubsw */
7733 case 0x660fea: /* pminsw */
7734 case 0x660feb: /* por */
7735 case 0x660fec: /* paddsb */
7736 case 0x660fed: /* paddsw */
7737 case 0x660fee: /* pmaxsw */
7738 case 0x660fef: /* pxor */
7739 case 0xf20ff0: /* lddqu */
7740 case 0x660ff1: /* psllw */
7741 case 0x660ff2: /* pslld */
7742 case 0x660ff3: /* psllq */
7743 case 0x660ff4: /* pmuludq */
7744 case 0x660ff5: /* pmaddwd */
7745 case 0x660ff6: /* psadbw */
7746 case 0x660ff8: /* psubb */
7747 case 0x660ff9: /* psubw */
7748 case 0x660ffa: /* psubd */
7749 case 0x660ffb: /* psubq */
7750 case 0x660ffc: /* paddb */
7751 case 0x660ffd: /* paddw */
7752 case 0x660ffe: /* paddd */
7753 if (i386_record_modrm (&ir))
7754 return -1;
7755 ir.reg |= rex_r;
7756 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.reg))
7757 goto no_support;
7758 record_full_arch_list_add_reg (ir.regcache,
7759 I387_XMM0_REGNUM (tdep) + ir.reg);
7760 if ((opcode & 0xfffffffc) == 0x660f3a60)
7761 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7762 break;
7763
7764 case 0x0f11: /* movups */
7765 case 0x660f11: /* movupd */
7766 case 0xf30f11: /* movss */
7767 case 0xf20f11: /* movsd */
7768 case 0x0f13: /* movlps */
7769 case 0x660f13: /* movlpd */
7770 case 0x0f17: /* movhps */
7771 case 0x660f17: /* movhpd */
7772 case 0x0f29: /* movaps */
7773 case 0x660f29: /* movapd */
7774 case 0x660f3a14: /* pextrb */
7775 case 0x660f3a15: /* pextrw */
7776 case 0x660f3a16: /* pextrd pextrq */
7777 case 0x660f3a17: /* extractps */
7778 case 0x660f7f: /* movdqa */
7779 case 0xf30f7f: /* movdqu */
7780 if (i386_record_modrm (&ir))
7781 return -1;
7782 if (ir.mod == 3)
7783 {
7784 if (opcode == 0x0f13 || opcode == 0x660f13
7785 || opcode == 0x0f17 || opcode == 0x660f17)
7786 goto no_support;
7787 ir.rm |= ir.rex_b;
7788 if (!i386_xmm_regnum_p (gdbarch,
7789 I387_XMM0_REGNUM (tdep) + ir.rm))
7790 goto no_support;
7791 record_full_arch_list_add_reg (ir.regcache,
7792 I387_XMM0_REGNUM (tdep) + ir.rm);
7793 }
7794 else
7795 {
7796 switch (opcode)
7797 {
7798 case 0x660f3a14:
7799 ir.ot = OT_BYTE;
7800 break;
7801 case 0x660f3a15:
7802 ir.ot = OT_WORD;
7803 break;
7804 case 0x660f3a16:
7805 ir.ot = OT_LONG;
7806 break;
7807 case 0x660f3a17:
7808 ir.ot = OT_QUAD;
7809 break;
7810 default:
7811 ir.ot = OT_DQUAD;
7812 break;
7813 }
7814 if (i386_record_lea_modrm (&ir))
7815 return -1;
7816 }
7817 break;
7818
7819 case 0x0f2b: /* movntps */
7820 case 0x660f2b: /* movntpd */
7821 case 0x0fe7: /* movntq */
7822 case 0x660fe7: /* movntdq */
7823 if (ir.mod == 3)
7824 goto no_support;
7825 if (opcode == 0x0fe7)
7826 ir.ot = OT_QUAD;
7827 else
7828 ir.ot = OT_DQUAD;
7829 if (i386_record_lea_modrm (&ir))
7830 return -1;
7831 break;
7832
7833 case 0xf30f2c: /* cvttss2si */
7834 case 0xf20f2c: /* cvttsd2si */
7835 case 0xf30f2d: /* cvtss2si */
7836 case 0xf20f2d: /* cvtsd2si */
7837 case 0xf20f38f0: /* crc32 */
7838 case 0xf20f38f1: /* crc32 */
7839 case 0x0f50: /* movmskps */
7840 case 0x660f50: /* movmskpd */
7841 case 0x0fc5: /* pextrw */
7842 case 0x660fc5: /* pextrw */
7843 case 0x0fd7: /* pmovmskb */
7844 case 0x660fd7: /* pmovmskb */
7845 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7846 break;
7847
7848 case 0x0f3800: /* pshufb */
7849 case 0x0f3801: /* phaddw */
7850 case 0x0f3802: /* phaddd */
7851 case 0x0f3803: /* phaddsw */
7852 case 0x0f3804: /* pmaddubsw */
7853 case 0x0f3805: /* phsubw */
7854 case 0x0f3806: /* phsubd */
7855 case 0x0f3807: /* phsubsw */
7856 case 0x0f3808: /* psignb */
7857 case 0x0f3809: /* psignw */
7858 case 0x0f380a: /* psignd */
7859 case 0x0f380b: /* pmulhrsw */
7860 case 0x0f381c: /* pabsb */
7861 case 0x0f381d: /* pabsw */
7862 case 0x0f381e: /* pabsd */
7863 case 0x0f382b: /* packusdw */
7864 case 0x0f3830: /* pmovzxbw */
7865 case 0x0f3831: /* pmovzxbd */
7866 case 0x0f3832: /* pmovzxbq */
7867 case 0x0f3833: /* pmovzxwd */
7868 case 0x0f3834: /* pmovzxwq */
7869 case 0x0f3835: /* pmovzxdq */
7870 case 0x0f3837: /* pcmpgtq */
7871 case 0x0f3838: /* pminsb */
7872 case 0x0f3839: /* pminsd */
7873 case 0x0f383a: /* pminuw */
7874 case 0x0f383b: /* pminud */
7875 case 0x0f383c: /* pmaxsb */
7876 case 0x0f383d: /* pmaxsd */
7877 case 0x0f383e: /* pmaxuw */
7878 case 0x0f383f: /* pmaxud */
7879 case 0x0f3840: /* pmulld */
7880 case 0x0f3841: /* phminposuw */
7881 case 0x0f3a0f: /* palignr */
7882 case 0x0f60: /* punpcklbw */
7883 case 0x0f61: /* punpcklwd */
7884 case 0x0f62: /* punpckldq */
7885 case 0x0f63: /* packsswb */
7886 case 0x0f64: /* pcmpgtb */
7887 case 0x0f65: /* pcmpgtw */
7888 case 0x0f66: /* pcmpgtd */
7889 case 0x0f67: /* packuswb */
7890 case 0x0f68: /* punpckhbw */
7891 case 0x0f69: /* punpckhwd */
7892 case 0x0f6a: /* punpckhdq */
7893 case 0x0f6b: /* packssdw */
7894 case 0x0f6e: /* movd */
7895 case 0x0f6f: /* movq */
7896 case 0x0f70: /* pshufw */
7897 case 0x0f74: /* pcmpeqb */
7898 case 0x0f75: /* pcmpeqw */
7899 case 0x0f76: /* pcmpeqd */
7900 case 0x0fc4: /* pinsrw */
7901 case 0x0fd1: /* psrlw */
7902 case 0x0fd2: /* psrld */
7903 case 0x0fd3: /* psrlq */
7904 case 0x0fd4: /* paddq */
7905 case 0x0fd5: /* pmullw */
7906 case 0xf20fd6: /* movdq2q */
7907 case 0x0fd8: /* psubusb */
7908 case 0x0fd9: /* psubusw */
7909 case 0x0fda: /* pminub */
7910 case 0x0fdb: /* pand */
7911 case 0x0fdc: /* paddusb */
7912 case 0x0fdd: /* paddusw */
7913 case 0x0fde: /* pmaxub */
7914 case 0x0fdf: /* pandn */
7915 case 0x0fe0: /* pavgb */
7916 case 0x0fe1: /* psraw */
7917 case 0x0fe2: /* psrad */
7918 case 0x0fe3: /* pavgw */
7919 case 0x0fe4: /* pmulhuw */
7920 case 0x0fe5: /* pmulhw */
7921 case 0x0fe8: /* psubsb */
7922 case 0x0fe9: /* psubsw */
7923 case 0x0fea: /* pminsw */
7924 case 0x0feb: /* por */
7925 case 0x0fec: /* paddsb */
7926 case 0x0fed: /* paddsw */
7927 case 0x0fee: /* pmaxsw */
7928 case 0x0fef: /* pxor */
7929 case 0x0ff1: /* psllw */
7930 case 0x0ff2: /* pslld */
7931 case 0x0ff3: /* psllq */
7932 case 0x0ff4: /* pmuludq */
7933 case 0x0ff5: /* pmaddwd */
7934 case 0x0ff6: /* psadbw */
7935 case 0x0ff8: /* psubb */
7936 case 0x0ff9: /* psubw */
7937 case 0x0ffa: /* psubd */
7938 case 0x0ffb: /* psubq */
7939 case 0x0ffc: /* paddb */
7940 case 0x0ffd: /* paddw */
7941 case 0x0ffe: /* paddd */
7942 if (i386_record_modrm (&ir))
7943 return -1;
7944 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7945 goto no_support;
7946 record_full_arch_list_add_reg (ir.regcache,
7947 I387_MM0_REGNUM (tdep) + ir.reg);
7948 break;
7949
7950 case 0x0f71: /* psllw */
7951 case 0x0f72: /* pslld */
7952 case 0x0f73: /* psllq */
7953 if (i386_record_modrm (&ir))
7954 return -1;
7955 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
7956 goto no_support;
7957 record_full_arch_list_add_reg (ir.regcache,
7958 I387_MM0_REGNUM (tdep) + ir.rm);
7959 break;
7960
7961 case 0x660f71: /* psllw */
7962 case 0x660f72: /* pslld */
7963 case 0x660f73: /* psllq */
7964 if (i386_record_modrm (&ir))
7965 return -1;
7966 ir.rm |= ir.rex_b;
7967 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.rm))
7968 goto no_support;
7969 record_full_arch_list_add_reg (ir.regcache,
7970 I387_XMM0_REGNUM (tdep) + ir.rm);
7971 break;
7972
7973 case 0x0f7e: /* movd */
7974 case 0x660f7e: /* movd */
7975 if (i386_record_modrm (&ir))
7976 return -1;
7977 if (ir.mod == 3)
7978 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7979 else
7980 {
7981 if (ir.dflag == 2)
7982 ir.ot = OT_QUAD;
7983 else
7984 ir.ot = OT_LONG;
7985 if (i386_record_lea_modrm (&ir))
7986 return -1;
7987 }
7988 break;
7989
7990 case 0x0f7f: /* movq */
7991 if (i386_record_modrm (&ir))
7992 return -1;
7993 if (ir.mod == 3)
7994 {
7995 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
7996 goto no_support;
7997 record_full_arch_list_add_reg (ir.regcache,
7998 I387_MM0_REGNUM (tdep) + ir.rm);
7999 }
8000 else
8001 {
8002 ir.ot = OT_QUAD;
8003 if (i386_record_lea_modrm (&ir))
8004 return -1;
8005 }
8006 break;
8007
8008 case 0xf30fb8: /* popcnt */
8009 if (i386_record_modrm (&ir))
8010 return -1;
8011 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
8012 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
8013 break;
8014
8015 case 0x660fd6: /* movq */
8016 if (i386_record_modrm (&ir))
8017 return -1;
8018 if (ir.mod == 3)
8019 {
8020 ir.rm |= ir.rex_b;
8021 if (!i386_xmm_regnum_p (gdbarch,
8022 I387_XMM0_REGNUM (tdep) + ir.rm))
8023 goto no_support;
8024 record_full_arch_list_add_reg (ir.regcache,
8025 I387_XMM0_REGNUM (tdep) + ir.rm);
8026 }
8027 else
8028 {
8029 ir.ot = OT_QUAD;
8030 if (i386_record_lea_modrm (&ir))
8031 return -1;
8032 }
8033 break;
8034
8035 case 0x660f3817: /* ptest */
8036 case 0x0f2e: /* ucomiss */
8037 case 0x660f2e: /* ucomisd */
8038 case 0x0f2f: /* comiss */
8039 case 0x660f2f: /* comisd */
8040 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
8041 break;
8042
8043 case 0x0ff7: /* maskmovq */
8044 regcache_raw_read_unsigned (ir.regcache,
8045 ir.regmap[X86_RECORD_REDI_REGNUM],
8046 &addr);
8047 if (record_full_arch_list_add_mem (addr, 64))
8048 return -1;
8049 break;
8050
8051 case 0x660ff7: /* maskmovdqu */
8052 regcache_raw_read_unsigned (ir.regcache,
8053 ir.regmap[X86_RECORD_REDI_REGNUM],
8054 &addr);
8055 if (record_full_arch_list_add_mem (addr, 128))
8056 return -1;
8057 break;
8058
8059 default:
8060 goto no_support;
8061 break;
8062 }
8063 break;
8064
8065 default:
8066 goto no_support;
8067 break;
8068 }
8069
8070 /* In the future, maybe still need to deal with need_dasm. */
8071 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REIP_REGNUM);
8072 if (record_full_arch_list_add_end ())
8073 return -1;
8074
8075 return 0;
8076
8077 no_support:
8078 printf_unfiltered (_("Process record does not support instruction 0x%02x "
8079 "at address %s.\n"),
8080 (unsigned int) (opcode),
8081 paddress (gdbarch, ir.orig_addr));
8082 return -1;
8083 }
8084
8085 static const int i386_record_regmap[] =
8086 {
8087 I386_EAX_REGNUM, I386_ECX_REGNUM, I386_EDX_REGNUM, I386_EBX_REGNUM,
8088 I386_ESP_REGNUM, I386_EBP_REGNUM, I386_ESI_REGNUM, I386_EDI_REGNUM,
8089 0, 0, 0, 0, 0, 0, 0, 0,
8090 I386_EIP_REGNUM, I386_EFLAGS_REGNUM, I386_CS_REGNUM, I386_SS_REGNUM,
8091 I386_DS_REGNUM, I386_ES_REGNUM, I386_FS_REGNUM, I386_GS_REGNUM
8092 };
8093
8094 /* Check that the given address appears suitable for a fast
8095 tracepoint, which on x86-64 means that we need an instruction of at
8096 least 5 bytes, so that we can overwrite it with a 4-byte-offset
8097 jump and not have to worry about program jumps to an address in the
8098 middle of the tracepoint jump. On x86, it may be possible to use
8099 4-byte jumps with a 2-byte offset to a trampoline located in the
8100 bottom 64 KiB of memory. Returns 1 if OK, and writes a size
8101 of instruction to replace, and 0 if not, plus an explanatory
8102 string. */
8103
8104 static int
8105 i386_fast_tracepoint_valid_at (struct gdbarch *gdbarch, CORE_ADDR addr,
8106 std::string *msg)
8107 {
8108 int len, jumplen;
8109
8110 /* Ask the target for the minimum instruction length supported. */
8111 jumplen = target_get_min_fast_tracepoint_insn_len ();
8112
8113 if (jumplen < 0)
8114 {
8115 /* If the target does not support the get_min_fast_tracepoint_insn_len
8116 operation, assume that fast tracepoints will always be implemented
8117 using 4-byte relative jumps on both x86 and x86-64. */
8118 jumplen = 5;
8119 }
8120 else if (jumplen == 0)
8121 {
8122 /* If the target does support get_min_fast_tracepoint_insn_len but
8123 returns zero, then the IPA has not loaded yet. In this case,
8124 we optimistically assume that truncated 2-byte relative jumps
8125 will be available on x86, and compensate later if this assumption
8126 turns out to be incorrect. On x86-64 architectures, 4-byte relative
8127 jumps will always be used. */
8128 jumplen = (register_size (gdbarch, 0) == 8) ? 5 : 4;
8129 }
8130
8131 /* Check for fit. */
8132 len = gdb_insn_length (gdbarch, addr);
8133
8134 if (len < jumplen)
8135 {
8136 /* Return a bit of target-specific detail to add to the caller's
8137 generic failure message. */
8138 if (msg)
8139 *msg = string_printf (_("; instruction is only %d bytes long, "
8140 "need at least %d bytes for the jump"),
8141 len, jumplen);
8142 return 0;
8143 }
8144 else
8145 {
8146 if (msg)
8147 msg->clear ();
8148 return 1;
8149 }
8150 }
8151
8152 /* Return a floating-point format for a floating-point variable of
8153 length LEN in bits. If non-NULL, NAME is the name of its type.
8154 If no suitable type is found, return NULL. */
8155
8156 const struct floatformat **
8157 i386_floatformat_for_type (struct gdbarch *gdbarch,
8158 const char *name, int len)
8159 {
8160 if (len == 128 && name)
8161 if (strcmp (name, "__float128") == 0
8162 || strcmp (name, "_Float128") == 0
8163 || strcmp (name, "complex _Float128") == 0)
8164 return floatformats_ia64_quad;
8165
8166 return default_floatformat_for_type (gdbarch, name, len);
8167 }
8168
8169 static int
8170 i386_validate_tdesc_p (struct gdbarch_tdep *tdep,
8171 struct tdesc_arch_data *tdesc_data)
8172 {
8173 const struct target_desc *tdesc = tdep->tdesc;
8174 const struct tdesc_feature *feature_core;
8175
8176 const struct tdesc_feature *feature_sse, *feature_avx, *feature_mpx,
8177 *feature_avx512, *feature_pkeys;
8178 int i, num_regs, valid_p;
8179
8180 if (! tdesc_has_registers (tdesc))
8181 return 0;
8182
8183 /* Get core registers. */
8184 feature_core = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.core");
8185 if (feature_core == NULL)
8186 return 0;
8187
8188 /* Get SSE registers. */
8189 feature_sse = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.sse");
8190
8191 /* Try AVX registers. */
8192 feature_avx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx");
8193
8194 /* Try MPX registers. */
8195 feature_mpx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx");
8196
8197 /* Try AVX512 registers. */
8198 feature_avx512 = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx512");
8199
8200 /* Try PKEYS */
8201 feature_pkeys = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.pkeys");
8202
8203 valid_p = 1;
8204
8205 /* The XCR0 bits. */
8206 if (feature_avx512)
8207 {
8208 /* AVX512 register description requires AVX register description. */
8209 if (!feature_avx)
8210 return 0;
8211
8212 tdep->xcr0 = X86_XSTATE_AVX_AVX512_MASK;
8213
8214 /* It may have been set by OSABI initialization function. */
8215 if (tdep->k0_regnum < 0)
8216 {
8217 tdep->k_register_names = i386_k_names;
8218 tdep->k0_regnum = I386_K0_REGNUM;
8219 }
8220
8221 for (i = 0; i < I387_NUM_K_REGS; i++)
8222 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8223 tdep->k0_regnum + i,
8224 i386_k_names[i]);
8225
8226 if (tdep->num_zmm_regs == 0)
8227 {
8228 tdep->zmmh_register_names = i386_zmmh_names;
8229 tdep->num_zmm_regs = 8;
8230 tdep->zmm0h_regnum = I386_ZMM0H_REGNUM;
8231 }
8232
8233 for (i = 0; i < tdep->num_zmm_regs; i++)
8234 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8235 tdep->zmm0h_regnum + i,
8236 tdep->zmmh_register_names[i]);
8237
8238 for (i = 0; i < tdep->num_xmm_avx512_regs; i++)
8239 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8240 tdep->xmm16_regnum + i,
8241 tdep->xmm_avx512_register_names[i]);
8242
8243 for (i = 0; i < tdep->num_ymm_avx512_regs; i++)
8244 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8245 tdep->ymm16h_regnum + i,
8246 tdep->ymm16h_register_names[i]);
8247 }
8248 if (feature_avx)
8249 {
8250 /* AVX register description requires SSE register description. */
8251 if (!feature_sse)
8252 return 0;
8253
8254 if (!feature_avx512)
8255 tdep->xcr0 = X86_XSTATE_AVX_MASK;
8256
8257 /* It may have been set by OSABI initialization function. */
8258 if (tdep->num_ymm_regs == 0)
8259 {
8260 tdep->ymmh_register_names = i386_ymmh_names;
8261 tdep->num_ymm_regs = 8;
8262 tdep->ymm0h_regnum = I386_YMM0H_REGNUM;
8263 }
8264
8265 for (i = 0; i < tdep->num_ymm_regs; i++)
8266 valid_p &= tdesc_numbered_register (feature_avx, tdesc_data,
8267 tdep->ymm0h_regnum + i,
8268 tdep->ymmh_register_names[i]);
8269 }
8270 else if (feature_sse)
8271 tdep->xcr0 = X86_XSTATE_SSE_MASK;
8272 else
8273 {
8274 tdep->xcr0 = X86_XSTATE_X87_MASK;
8275 tdep->num_xmm_regs = 0;
8276 }
8277
8278 num_regs = tdep->num_core_regs;
8279 for (i = 0; i < num_regs; i++)
8280 valid_p &= tdesc_numbered_register (feature_core, tdesc_data, i,
8281 tdep->register_names[i]);
8282
8283 if (feature_sse)
8284 {
8285 /* Need to include %mxcsr, so add one. */
8286 num_regs += tdep->num_xmm_regs + 1;
8287 for (; i < num_regs; i++)
8288 valid_p &= tdesc_numbered_register (feature_sse, tdesc_data, i,
8289 tdep->register_names[i]);
8290 }
8291
8292 if (feature_mpx)
8293 {
8294 tdep->xcr0 |= X86_XSTATE_MPX_MASK;
8295
8296 if (tdep->bnd0r_regnum < 0)
8297 {
8298 tdep->mpx_register_names = i386_mpx_names;
8299 tdep->bnd0r_regnum = I386_BND0R_REGNUM;
8300 tdep->bndcfgu_regnum = I386_BNDCFGU_REGNUM;
8301 }
8302
8303 for (i = 0; i < I387_NUM_MPX_REGS; i++)
8304 valid_p &= tdesc_numbered_register (feature_mpx, tdesc_data,
8305 I387_BND0R_REGNUM (tdep) + i,
8306 tdep->mpx_register_names[i]);
8307 }
8308
8309 if (feature_pkeys)
8310 {
8311 tdep->xcr0 |= X86_XSTATE_PKRU;
8312 if (tdep->pkru_regnum < 0)
8313 {
8314 tdep->pkeys_register_names = i386_pkeys_names;
8315 tdep->pkru_regnum = I386_PKRU_REGNUM;
8316 tdep->num_pkeys_regs = 1;
8317 }
8318
8319 for (i = 0; i < I387_NUM_PKEYS_REGS; i++)
8320 valid_p &= tdesc_numbered_register (feature_pkeys, tdesc_data,
8321 I387_PKRU_REGNUM (tdep) + i,
8322 tdep->pkeys_register_names[i]);
8323 }
8324
8325 return valid_p;
8326 }
8327
8328 \f
8329
8330 /* Implement the type_align gdbarch function. */
8331
8332 static ULONGEST
8333 i386_type_align (struct gdbarch *gdbarch, struct type *type)
8334 {
8335 type = check_typedef (type);
8336
8337 if (gdbarch_ptr_bit (gdbarch) == 32)
8338 {
8339 if ((TYPE_CODE (type) == TYPE_CODE_INT
8340 || TYPE_CODE (type) == TYPE_CODE_FLT)
8341 && TYPE_LENGTH (type) > 4)
8342 return 4;
8343
8344 /* Handle x86's funny long double. */
8345 if (TYPE_CODE (type) == TYPE_CODE_FLT
8346 && gdbarch_long_double_bit (gdbarch) == TYPE_LENGTH (type) * 8)
8347 return 4;
8348 }
8349
8350 return TYPE_LENGTH (type);
8351 }
8352
8353 \f
8354 /* Note: This is called for both i386 and amd64. */
8355
8356 static struct gdbarch *
8357 i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
8358 {
8359 struct gdbarch_tdep *tdep;
8360 struct gdbarch *gdbarch;
8361 struct tdesc_arch_data *tdesc_data;
8362 const struct target_desc *tdesc;
8363 int mm0_regnum;
8364 int ymm0_regnum;
8365 int bnd0_regnum;
8366 int num_bnd_cooked;
8367
8368 /* If there is already a candidate, use it. */
8369 arches = gdbarch_list_lookup_by_info (arches, &info);
8370 if (arches != NULL)
8371 return arches->gdbarch;
8372
8373 /* Allocate space for the new architecture. Assume i386 for now. */
8374 tdep = XCNEW (struct gdbarch_tdep);
8375 gdbarch = gdbarch_alloc (&info, tdep);
8376
8377 /* General-purpose registers. */
8378 tdep->gregset_reg_offset = NULL;
8379 tdep->gregset_num_regs = I386_NUM_GREGS;
8380 tdep->sizeof_gregset = 0;
8381
8382 /* Floating-point registers. */
8383 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
8384 tdep->fpregset = &i386_fpregset;
8385
8386 /* The default settings include the FPU registers, the MMX registers
8387 and the SSE registers. This can be overridden for a specific ABI
8388 by adjusting the members `st0_regnum', `mm0_regnum' and
8389 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
8390 will show up in the output of "info all-registers". */
8391
8392 tdep->st0_regnum = I386_ST0_REGNUM;
8393
8394 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
8395 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
8396
8397 tdep->jb_pc_offset = -1;
8398 tdep->struct_return = pcc_struct_return;
8399 tdep->sigtramp_start = 0;
8400 tdep->sigtramp_end = 0;
8401 tdep->sigtramp_p = i386_sigtramp_p;
8402 tdep->sigcontext_addr = NULL;
8403 tdep->sc_reg_offset = NULL;
8404 tdep->sc_pc_offset = -1;
8405 tdep->sc_sp_offset = -1;
8406
8407 tdep->xsave_xcr0_offset = -1;
8408
8409 tdep->record_regmap = i386_record_regmap;
8410
8411 set_gdbarch_type_align (gdbarch, i386_type_align);
8412
8413 /* The format used for `long double' on almost all i386 targets is
8414 the i387 extended floating-point format. In fact, of all targets
8415 in the GCC 2.95 tree, only OSF/1 does it different, and insists
8416 on having a `long double' that's not `long' at all. */
8417 set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext);
8418
8419 /* Although the i387 extended floating-point has only 80 significant
8420 bits, a `long double' actually takes up 96, probably to enforce
8421 alignment. */
8422 set_gdbarch_long_double_bit (gdbarch, 96);
8423
8424 /* Support for floating-point data type variants. */
8425 set_gdbarch_floatformat_for_type (gdbarch, i386_floatformat_for_type);
8426
8427 /* Register numbers of various important registers. */
8428 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
8429 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
8430 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
8431 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
8432
8433 /* NOTE: kettenis/20040418: GCC does have two possible register
8434 numbering schemes on the i386: dbx and SVR4. These schemes
8435 differ in how they number %ebp, %esp, %eflags, and the
8436 floating-point registers, and are implemented by the arrays
8437 dbx_register_map[] and svr4_dbx_register_map in
8438 gcc/config/i386.c. GCC also defines a third numbering scheme in
8439 gcc/config/i386.c, which it designates as the "default" register
8440 map used in 64bit mode. This last register numbering scheme is
8441 implemented in dbx64_register_map, and is used for AMD64; see
8442 amd64-tdep.c.
8443
8444 Currently, each GCC i386 target always uses the same register
8445 numbering scheme across all its supported debugging formats
8446 i.e. SDB (COFF), stabs and DWARF 2. This is because
8447 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
8448 DBX_REGISTER_NUMBER macro which is defined by each target's
8449 respective config header in a manner independent of the requested
8450 output debugging format.
8451
8452 This does not match the arrangement below, which presumes that
8453 the SDB and stabs numbering schemes differ from the DWARF and
8454 DWARF 2 ones. The reason for this arrangement is that it is
8455 likely to get the numbering scheme for the target's
8456 default/native debug format right. For targets where GCC is the
8457 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
8458 targets where the native toolchain uses a different numbering
8459 scheme for a particular debug format (stabs-in-ELF on Solaris)
8460 the defaults below will have to be overridden, like
8461 i386_elf_init_abi() does. */
8462
8463 /* Use the dbx register numbering scheme for stabs and COFF. */
8464 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
8465 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
8466
8467 /* Use the SVR4 register numbering scheme for DWARF 2. */
8468 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_dwarf_reg_to_regnum);
8469
8470 /* We don't set gdbarch_stab_reg_to_regnum, since ECOFF doesn't seem to
8471 be in use on any of the supported i386 targets. */
8472
8473 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
8474
8475 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
8476
8477 /* Call dummy code. */
8478 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
8479 set_gdbarch_push_dummy_code (gdbarch, i386_push_dummy_code);
8480 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
8481 set_gdbarch_frame_align (gdbarch, i386_frame_align);
8482
8483 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
8484 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
8485 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
8486
8487 set_gdbarch_return_value (gdbarch, i386_return_value);
8488
8489 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
8490
8491 /* Stack grows downward. */
8492 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
8493
8494 set_gdbarch_breakpoint_kind_from_pc (gdbarch, i386_breakpoint::kind_from_pc);
8495 set_gdbarch_sw_breakpoint_from_kind (gdbarch, i386_breakpoint::bp_from_kind);
8496
8497 set_gdbarch_decr_pc_after_break (gdbarch, 1);
8498 set_gdbarch_max_insn_length (gdbarch, I386_MAX_INSN_LEN);
8499
8500 set_gdbarch_frame_args_skip (gdbarch, 8);
8501
8502 set_gdbarch_print_insn (gdbarch, i386_print_insn);
8503
8504 set_gdbarch_dummy_id (gdbarch, i386_dummy_id);
8505
8506 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
8507
8508 /* Add the i386 register groups. */
8509 i386_add_reggroups (gdbarch);
8510 tdep->register_reggroup_p = i386_register_reggroup_p;
8511
8512 /* Helper for function argument information. */
8513 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
8514
8515 /* Hook the function epilogue frame unwinder. This unwinder is
8516 appended to the list first, so that it supercedes the DWARF
8517 unwinder in function epilogues (where the DWARF unwinder
8518 currently fails). */
8519 frame_unwind_append_unwinder (gdbarch, &i386_epilogue_frame_unwind);
8520
8521 /* Hook in the DWARF CFI frame unwinder. This unwinder is appended
8522 to the list before the prologue-based unwinders, so that DWARF
8523 CFI info will be used if it is available. */
8524 dwarf2_append_unwinders (gdbarch);
8525
8526 frame_base_set_default (gdbarch, &i386_frame_base);
8527
8528 /* Pseudo registers may be changed by amd64_init_abi. */
8529 set_gdbarch_pseudo_register_read_value (gdbarch,
8530 i386_pseudo_register_read_value);
8531 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
8532 set_gdbarch_ax_pseudo_register_collect (gdbarch,
8533 i386_ax_pseudo_register_collect);
8534
8535 set_tdesc_pseudo_register_type (gdbarch, i386_pseudo_register_type);
8536 set_tdesc_pseudo_register_name (gdbarch, i386_pseudo_register_name);
8537
8538 /* Override the normal target description method to make the AVX
8539 upper halves anonymous. */
8540 set_gdbarch_register_name (gdbarch, i386_register_name);
8541
8542 /* Even though the default ABI only includes general-purpose registers,
8543 floating-point registers and the SSE registers, we have to leave a
8544 gap for the upper AVX, MPX and AVX512 registers. */
8545 set_gdbarch_num_regs (gdbarch, I386_PKEYS_NUM_REGS);
8546
8547 set_gdbarch_gnu_triplet_regexp (gdbarch, i386_gnu_triplet_regexp);
8548
8549 /* Get the x86 target description from INFO. */
8550 tdesc = info.target_desc;
8551 if (! tdesc_has_registers (tdesc))
8552 tdesc = i386_target_description (X86_XSTATE_SSE_MASK);
8553 tdep->tdesc = tdesc;
8554
8555 tdep->num_core_regs = I386_NUM_GREGS + I387_NUM_REGS;
8556 tdep->register_names = i386_register_names;
8557
8558 /* No upper YMM registers. */
8559 tdep->ymmh_register_names = NULL;
8560 tdep->ymm0h_regnum = -1;
8561
8562 /* No upper ZMM registers. */
8563 tdep->zmmh_register_names = NULL;
8564 tdep->zmm0h_regnum = -1;
8565
8566 /* No high XMM registers. */
8567 tdep->xmm_avx512_register_names = NULL;
8568 tdep->xmm16_regnum = -1;
8569
8570 /* No upper YMM16-31 registers. */
8571 tdep->ymm16h_register_names = NULL;
8572 tdep->ymm16h_regnum = -1;
8573
8574 tdep->num_byte_regs = 8;
8575 tdep->num_word_regs = 8;
8576 tdep->num_dword_regs = 0;
8577 tdep->num_mmx_regs = 8;
8578 tdep->num_ymm_regs = 0;
8579
8580 /* No MPX registers. */
8581 tdep->bnd0r_regnum = -1;
8582 tdep->bndcfgu_regnum = -1;
8583
8584 /* No AVX512 registers. */
8585 tdep->k0_regnum = -1;
8586 tdep->num_zmm_regs = 0;
8587 tdep->num_ymm_avx512_regs = 0;
8588 tdep->num_xmm_avx512_regs = 0;
8589
8590 /* No PKEYS registers */
8591 tdep->pkru_regnum = -1;
8592 tdep->num_pkeys_regs = 0;
8593
8594 tdesc_data = tdesc_data_alloc ();
8595
8596 set_gdbarch_relocate_instruction (gdbarch, i386_relocate_instruction);
8597
8598 set_gdbarch_gen_return_address (gdbarch, i386_gen_return_address);
8599
8600 set_gdbarch_insn_is_call (gdbarch, i386_insn_is_call);
8601 set_gdbarch_insn_is_ret (gdbarch, i386_insn_is_ret);
8602 set_gdbarch_insn_is_jump (gdbarch, i386_insn_is_jump);
8603
8604 /* Hook in ABI-specific overrides, if they have been registered.
8605 Note: If INFO specifies a 64 bit arch, this is where we turn
8606 a 32-bit i386 into a 64-bit amd64. */
8607 info.tdesc_data = tdesc_data;
8608 gdbarch_init_osabi (info, gdbarch);
8609
8610 if (!i386_validate_tdesc_p (tdep, tdesc_data))
8611 {
8612 tdesc_data_cleanup (tdesc_data);
8613 xfree (tdep);
8614 gdbarch_free (gdbarch);
8615 return NULL;
8616 }
8617
8618 num_bnd_cooked = (tdep->bnd0r_regnum > 0 ? I387_NUM_BND_REGS : 0);
8619
8620 /* Wire in pseudo registers. Number of pseudo registers may be
8621 changed. */
8622 set_gdbarch_num_pseudo_regs (gdbarch, (tdep->num_byte_regs
8623 + tdep->num_word_regs
8624 + tdep->num_dword_regs
8625 + tdep->num_mmx_regs
8626 + tdep->num_ymm_regs
8627 + num_bnd_cooked
8628 + tdep->num_ymm_avx512_regs
8629 + tdep->num_zmm_regs));
8630
8631 /* Target description may be changed. */
8632 tdesc = tdep->tdesc;
8633
8634 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
8635
8636 /* Override gdbarch_register_reggroup_p set in tdesc_use_registers. */
8637 set_gdbarch_register_reggroup_p (gdbarch, tdep->register_reggroup_p);
8638
8639 /* Make %al the first pseudo-register. */
8640 tdep->al_regnum = gdbarch_num_regs (gdbarch);
8641 tdep->ax_regnum = tdep->al_regnum + tdep->num_byte_regs;
8642
8643 ymm0_regnum = tdep->ax_regnum + tdep->num_word_regs;
8644 if (tdep->num_dword_regs)
8645 {
8646 /* Support dword pseudo-register if it hasn't been disabled. */
8647 tdep->eax_regnum = ymm0_regnum;
8648 ymm0_regnum += tdep->num_dword_regs;
8649 }
8650 else
8651 tdep->eax_regnum = -1;
8652
8653 mm0_regnum = ymm0_regnum;
8654 if (tdep->num_ymm_regs)
8655 {
8656 /* Support YMM pseudo-register if it is available. */
8657 tdep->ymm0_regnum = ymm0_regnum;
8658 mm0_regnum += tdep->num_ymm_regs;
8659 }
8660 else
8661 tdep->ymm0_regnum = -1;
8662
8663 if (tdep->num_ymm_avx512_regs)
8664 {
8665 /* Support YMM16-31 pseudo registers if available. */
8666 tdep->ymm16_regnum = mm0_regnum;
8667 mm0_regnum += tdep->num_ymm_avx512_regs;
8668 }
8669 else
8670 tdep->ymm16_regnum = -1;
8671
8672 if (tdep->num_zmm_regs)
8673 {
8674 /* Support ZMM pseudo-register if it is available. */
8675 tdep->zmm0_regnum = mm0_regnum;
8676 mm0_regnum += tdep->num_zmm_regs;
8677 }
8678 else
8679 tdep->zmm0_regnum = -1;
8680
8681 bnd0_regnum = mm0_regnum;
8682 if (tdep->num_mmx_regs != 0)
8683 {
8684 /* Support MMX pseudo-register if MMX hasn't been disabled. */
8685 tdep->mm0_regnum = mm0_regnum;
8686 bnd0_regnum += tdep->num_mmx_regs;
8687 }
8688 else
8689 tdep->mm0_regnum = -1;
8690
8691 if (tdep->bnd0r_regnum > 0)
8692 tdep->bnd0_regnum = bnd0_regnum;
8693 else
8694 tdep-> bnd0_regnum = -1;
8695
8696 /* Hook in the legacy prologue-based unwinders last (fallback). */
8697 frame_unwind_append_unwinder (gdbarch, &i386_stack_tramp_frame_unwind);
8698 frame_unwind_append_unwinder (gdbarch, &i386_sigtramp_frame_unwind);
8699 frame_unwind_append_unwinder (gdbarch, &i386_frame_unwind);
8700
8701 /* If we have a register mapping, enable the generic core file
8702 support, unless it has already been enabled. */
8703 if (tdep->gregset_reg_offset
8704 && !gdbarch_iterate_over_regset_sections_p (gdbarch))
8705 set_gdbarch_iterate_over_regset_sections
8706 (gdbarch, i386_iterate_over_regset_sections);
8707
8708 set_gdbarch_fast_tracepoint_valid_at (gdbarch,
8709 i386_fast_tracepoint_valid_at);
8710
8711 return gdbarch;
8712 }
8713
8714 \f
8715
8716 /* Return the target description for a specified XSAVE feature mask. */
8717
8718 const struct target_desc *
8719 i386_target_description (uint64_t xcr0)
8720 {
8721 static target_desc *i386_tdescs \
8722 [2/*SSE*/][2/*AVX*/][2/*MPX*/][2/*AVX512*/][2/*PKRU*/] = {};
8723 target_desc **tdesc;
8724
8725 tdesc = &i386_tdescs[(xcr0 & X86_XSTATE_SSE) ? 1 : 0]
8726 [(xcr0 & X86_XSTATE_AVX) ? 1 : 0]
8727 [(xcr0 & X86_XSTATE_MPX) ? 1 : 0]
8728 [(xcr0 & X86_XSTATE_AVX512) ? 1 : 0]
8729 [(xcr0 & X86_XSTATE_PKRU) ? 1 : 0];
8730
8731 if (*tdesc == NULL)
8732 *tdesc = i386_create_target_description (xcr0, false);
8733
8734 return *tdesc;
8735 }
8736
8737 #define MPX_BASE_MASK (~(ULONGEST) 0xfff)
8738
8739 /* Find the bound directory base address. */
8740
8741 static unsigned long
8742 i386_mpx_bd_base (void)
8743 {
8744 struct regcache *rcache;
8745 struct gdbarch_tdep *tdep;
8746 ULONGEST ret;
8747 enum register_status regstatus;
8748
8749 rcache = get_current_regcache ();
8750 tdep = gdbarch_tdep (rcache->arch ());
8751
8752 regstatus = regcache_raw_read_unsigned (rcache, tdep->bndcfgu_regnum, &ret);
8753
8754 if (regstatus != REG_VALID)
8755 error (_("BNDCFGU register invalid, read status %d."), regstatus);
8756
8757 return ret & MPX_BASE_MASK;
8758 }
8759
8760 int
8761 i386_mpx_enabled (void)
8762 {
8763 const struct gdbarch_tdep *tdep = gdbarch_tdep (get_current_arch ());
8764 const struct target_desc *tdesc = tdep->tdesc;
8765
8766 return (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx") != NULL);
8767 }
8768
8769 #define MPX_BD_MASK 0xfffffff00000ULL /* select bits [47:20] */
8770 #define MPX_BT_MASK 0x0000000ffff8 /* select bits [19:3] */
8771 #define MPX_BD_MASK_32 0xfffff000 /* select bits [31:12] */
8772 #define MPX_BT_MASK_32 0x00000ffc /* select bits [11:2] */
8773
8774 /* Find the bound table entry given the pointer location and the base
8775 address of the table. */
8776
8777 static CORE_ADDR
8778 i386_mpx_get_bt_entry (CORE_ADDR ptr, CORE_ADDR bd_base)
8779 {
8780 CORE_ADDR offset1;
8781 CORE_ADDR offset2;
8782 CORE_ADDR mpx_bd_mask, bd_ptr_r_shift, bd_ptr_l_shift;
8783 CORE_ADDR bt_mask, bt_select_r_shift, bt_select_l_shift;
8784 CORE_ADDR bd_entry_addr;
8785 CORE_ADDR bt_addr;
8786 CORE_ADDR bd_entry;
8787 struct gdbarch *gdbarch = get_current_arch ();
8788 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8789
8790
8791 if (gdbarch_ptr_bit (gdbarch) == 64)
8792 {
8793 mpx_bd_mask = (CORE_ADDR) MPX_BD_MASK;
8794 bd_ptr_r_shift = 20;
8795 bd_ptr_l_shift = 3;
8796 bt_select_r_shift = 3;
8797 bt_select_l_shift = 5;
8798 bt_mask = (CORE_ADDR) MPX_BT_MASK;
8799
8800 if ( sizeof (CORE_ADDR) == 4)
8801 error (_("bound table examination not supported\
8802 for 64-bit process with 32-bit GDB"));
8803 }
8804 else
8805 {
8806 mpx_bd_mask = MPX_BD_MASK_32;
8807 bd_ptr_r_shift = 12;
8808 bd_ptr_l_shift = 2;
8809 bt_select_r_shift = 2;
8810 bt_select_l_shift = 4;
8811 bt_mask = MPX_BT_MASK_32;
8812 }
8813
8814 offset1 = ((ptr & mpx_bd_mask) >> bd_ptr_r_shift) << bd_ptr_l_shift;
8815 bd_entry_addr = bd_base + offset1;
8816 bd_entry = read_memory_typed_address (bd_entry_addr, data_ptr_type);
8817
8818 if ((bd_entry & 0x1) == 0)
8819 error (_("Invalid bounds directory entry at %s."),
8820 paddress (get_current_arch (), bd_entry_addr));
8821
8822 /* Clearing status bit. */
8823 bd_entry--;
8824 bt_addr = bd_entry & ~bt_select_r_shift;
8825 offset2 = ((ptr & bt_mask) >> bt_select_r_shift) << bt_select_l_shift;
8826
8827 return bt_addr + offset2;
8828 }
8829
8830 /* Print routine for the mpx bounds. */
8831
8832 static void
8833 i386_mpx_print_bounds (const CORE_ADDR bt_entry[4])
8834 {
8835 struct ui_out *uiout = current_uiout;
8836 LONGEST size;
8837 struct gdbarch *gdbarch = get_current_arch ();
8838 CORE_ADDR onecompl = ~((CORE_ADDR) 0);
8839 int bounds_in_map = ((~bt_entry[1] == 0 && bt_entry[0] == onecompl) ? 1 : 0);
8840
8841 if (bounds_in_map == 1)
8842 {
8843 uiout->text ("Null bounds on map:");
8844 uiout->text (" pointer value = ");
8845 uiout->field_core_addr ("pointer-value", gdbarch, bt_entry[2]);
8846 uiout->text (".");
8847 uiout->text ("\n");
8848 }
8849 else
8850 {
8851 uiout->text ("{lbound = ");
8852 uiout->field_core_addr ("lower-bound", gdbarch, bt_entry[0]);
8853 uiout->text (", ubound = ");
8854
8855 /* The upper bound is stored in 1's complement. */
8856 uiout->field_core_addr ("upper-bound", gdbarch, ~bt_entry[1]);
8857 uiout->text ("}: pointer value = ");
8858 uiout->field_core_addr ("pointer-value", gdbarch, bt_entry[2]);
8859
8860 if (gdbarch_ptr_bit (gdbarch) == 64)
8861 size = ( (~(int64_t) bt_entry[1]) - (int64_t) bt_entry[0]);
8862 else
8863 size = ( ~((int32_t) bt_entry[1]) - (int32_t) bt_entry[0]);
8864
8865 /* In case the bounds are 0x0 and 0xffff... the difference will be -1.
8866 -1 represents in this sense full memory access, and there is no need
8867 one to the size. */
8868
8869 size = (size > -1 ? size + 1 : size);
8870 uiout->text (", size = ");
8871 uiout->field_fmt ("size", "%s", plongest (size));
8872
8873 uiout->text (", metadata = ");
8874 uiout->field_core_addr ("metadata", gdbarch, bt_entry[3]);
8875 uiout->text ("\n");
8876 }
8877 }
8878
8879 /* Implement the command "show mpx bound". */
8880
8881 static void
8882 i386_mpx_info_bounds (const char *args, int from_tty)
8883 {
8884 CORE_ADDR bd_base = 0;
8885 CORE_ADDR addr;
8886 CORE_ADDR bt_entry_addr = 0;
8887 CORE_ADDR bt_entry[4];
8888 int i;
8889 struct gdbarch *gdbarch = get_current_arch ();
8890 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8891
8892 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_i386
8893 || !i386_mpx_enabled ())
8894 {
8895 printf_unfiltered (_("Intel Memory Protection Extensions not "
8896 "supported on this target.\n"));
8897 return;
8898 }
8899
8900 if (args == NULL)
8901 {
8902 printf_unfiltered (_("Address of pointer variable expected.\n"));
8903 return;
8904 }
8905
8906 addr = parse_and_eval_address (args);
8907
8908 bd_base = i386_mpx_bd_base ();
8909 bt_entry_addr = i386_mpx_get_bt_entry (addr, bd_base);
8910
8911 memset (bt_entry, 0, sizeof (bt_entry));
8912
8913 for (i = 0; i < 4; i++)
8914 bt_entry[i] = read_memory_typed_address (bt_entry_addr
8915 + i * TYPE_LENGTH (data_ptr_type),
8916 data_ptr_type);
8917
8918 i386_mpx_print_bounds (bt_entry);
8919 }
8920
8921 /* Implement the command "set mpx bound". */
8922
8923 static void
8924 i386_mpx_set_bounds (const char *args, int from_tty)
8925 {
8926 CORE_ADDR bd_base = 0;
8927 CORE_ADDR addr, lower, upper;
8928 CORE_ADDR bt_entry_addr = 0;
8929 CORE_ADDR bt_entry[2];
8930 const char *input = args;
8931 int i;
8932 struct gdbarch *gdbarch = get_current_arch ();
8933 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
8934 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8935
8936 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_i386
8937 || !i386_mpx_enabled ())
8938 error (_("Intel Memory Protection Extensions not supported\
8939 on this target."));
8940
8941 if (args == NULL)
8942 error (_("Pointer value expected."));
8943
8944 addr = value_as_address (parse_to_comma_and_eval (&input));
8945
8946 if (input[0] == ',')
8947 ++input;
8948 if (input[0] == '\0')
8949 error (_("wrong number of arguments: missing lower and upper bound."));
8950 lower = value_as_address (parse_to_comma_and_eval (&input));
8951
8952 if (input[0] == ',')
8953 ++input;
8954 if (input[0] == '\0')
8955 error (_("Wrong number of arguments; Missing upper bound."));
8956 upper = value_as_address (parse_to_comma_and_eval (&input));
8957
8958 bd_base = i386_mpx_bd_base ();
8959 bt_entry_addr = i386_mpx_get_bt_entry (addr, bd_base);
8960 for (i = 0; i < 2; i++)
8961 bt_entry[i] = read_memory_typed_address (bt_entry_addr
8962 + i * TYPE_LENGTH (data_ptr_type),
8963 data_ptr_type);
8964 bt_entry[0] = (uint64_t) lower;
8965 bt_entry[1] = ~(uint64_t) upper;
8966
8967 for (i = 0; i < 2; i++)
8968 write_memory_unsigned_integer (bt_entry_addr
8969 + i * TYPE_LENGTH (data_ptr_type),
8970 TYPE_LENGTH (data_ptr_type), byte_order,
8971 bt_entry[i]);
8972 }
8973
8974 static struct cmd_list_element *mpx_set_cmdlist, *mpx_show_cmdlist;
8975
8976 /* Helper function for the CLI commands. */
8977
8978 static void
8979 set_mpx_cmd (const char *args, int from_tty)
8980 {
8981 help_list (mpx_set_cmdlist, "set mpx ", all_commands, gdb_stdout);
8982 }
8983
8984 /* Helper function for the CLI commands. */
8985
8986 static void
8987 show_mpx_cmd (const char *args, int from_tty)
8988 {
8989 cmd_show_list (mpx_show_cmdlist, from_tty, "");
8990 }
8991
8992 void
8993 _initialize_i386_tdep (void)
8994 {
8995 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
8996
8997 /* Add the variable that controls the disassembly flavor. */
8998 add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
8999 &disassembly_flavor, _("\
9000 Set the disassembly flavor."), _("\
9001 Show the disassembly flavor."), _("\
9002 The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
9003 NULL,
9004 NULL, /* FIXME: i18n: */
9005 &setlist, &showlist);
9006
9007 /* Add the variable that controls the convention for returning
9008 structs. */
9009 add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
9010 &struct_convention, _("\
9011 Set the convention for returning small structs."), _("\
9012 Show the convention for returning small structs."), _("\
9013 Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
9014 is \"default\"."),
9015 NULL,
9016 NULL, /* FIXME: i18n: */
9017 &setlist, &showlist);
9018
9019 /* Add "mpx" prefix for the set commands. */
9020
9021 add_prefix_cmd ("mpx", class_support, set_mpx_cmd, _("\
9022 Set Intel Memory Protection Extensions specific variables."),
9023 &mpx_set_cmdlist, "set mpx ",
9024 0 /* allow-unknown */, &setlist);
9025
9026 /* Add "mpx" prefix for the show commands. */
9027
9028 add_prefix_cmd ("mpx", class_support, show_mpx_cmd, _("\
9029 Show Intel Memory Protection Extensions specific variables."),
9030 &mpx_show_cmdlist, "show mpx ",
9031 0 /* allow-unknown */, &showlist);
9032
9033 /* Add "bound" command for the show mpx commands list. */
9034
9035 add_cmd ("bound", no_class, i386_mpx_info_bounds,
9036 "Show the memory bounds for a given array/pointer storage\
9037 in the bound table.",
9038 &mpx_show_cmdlist);
9039
9040 /* Add "bound" command for the set mpx commands list. */
9041
9042 add_cmd ("bound", no_class, i386_mpx_set_bounds,
9043 "Set the memory bounds for a given array/pointer storage\
9044 in the bound table.",
9045 &mpx_set_cmdlist);
9046
9047 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
9048 i386_svr4_init_abi);
9049
9050 /* Initialize the i386-specific register groups. */
9051 i386_init_reggroups ();
9052
9053 /* Tell remote stub that we support XML target description. */
9054 register_remote_support_xml ("i386");
9055
9056 #if GDB_SELF_TEST
9057 struct
9058 {
9059 const char *xml;
9060 uint64_t mask;
9061 } xml_masks[] = {
9062 { "i386/i386.xml", X86_XSTATE_SSE_MASK },
9063 { "i386/i386-mmx.xml", X86_XSTATE_X87_MASK },
9064 { "i386/i386-avx.xml", X86_XSTATE_AVX_MASK },
9065 { "i386/i386-mpx.xml", X86_XSTATE_MPX_MASK },
9066 { "i386/i386-avx-mpx.xml", X86_XSTATE_AVX_MPX_MASK },
9067 { "i386/i386-avx-avx512.xml", X86_XSTATE_AVX_AVX512_MASK },
9068 { "i386/i386-avx-mpx-avx512-pku.xml",
9069 X86_XSTATE_AVX_MPX_AVX512_PKU_MASK },
9070 };
9071
9072 for (auto &a : xml_masks)
9073 {
9074 auto tdesc = i386_target_description (a.mask);
9075
9076 selftests::record_xml_tdesc (a.xml, tdesc);
9077 }
9078 #endif /* GDB_SELF_TEST */
9079 }
This page took 0.246348 seconds and 4 git commands to generate.