ab1945fea66927d5e988313de5e58f1db95aeb3a
[deliverable/binutils-gdb.git] / gdb / i386-tdep.c
1 /* Intel 386 target-dependent stuff.
2
3 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "gdb_string.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "gdbcore.h"
28 #include "objfiles.h"
29 #include "target.h"
30 #include "floatformat.h"
31 #include "symfile.h"
32 #include "symtab.h"
33 #include "gdbcmd.h"
34 #include "command.h"
35 #include "arch-utils.h"
36 #include "regcache.h"
37 #include "doublest.h"
38 #include "value.h"
39 #include "gdb_assert.h"
40
41 #include "i386-tdep.h"
42 #include "i387-tdep.h"
43
44 /* Names of the registers. The first 10 registers match the register
45 numbering scheme used by GCC for stabs and DWARF. */
46 static char *i386_register_names[] =
47 {
48 "eax", "ecx", "edx", "ebx",
49 "esp", "ebp", "esi", "edi",
50 "eip", "eflags", "cs", "ss",
51 "ds", "es", "fs", "gs",
52 "st0", "st1", "st2", "st3",
53 "st4", "st5", "st6", "st7",
54 "fctrl", "fstat", "ftag", "fiseg",
55 "fioff", "foseg", "fooff", "fop",
56 "xmm0", "xmm1", "xmm2", "xmm3",
57 "xmm4", "xmm5", "xmm6", "xmm7",
58 "mxcsr"
59 };
60
61 /* MMX registers. */
62
63 static char *i386_mmx_names[] =
64 {
65 "mm0", "mm1", "mm2", "mm3",
66 "mm4", "mm5", "mm6", "mm7"
67 };
68 static const int mmx_num_regs = (sizeof (i386_mmx_names)
69 / sizeof (i386_mmx_names[0]));
70 #define MM0_REGNUM (NUM_REGS)
71
72 static int
73 mmx_regnum_p (int reg)
74 {
75 return (reg >= MM0_REGNUM && reg < MM0_REGNUM + mmx_num_regs);
76 }
77
78 /* Return the name of register REG. */
79
80 const char *
81 i386_register_name (int reg)
82 {
83 if (reg < 0)
84 return NULL;
85 if (mmx_regnum_p (reg))
86 return i386_mmx_names[reg - MM0_REGNUM];
87 if (reg >= sizeof (i386_register_names) / sizeof (*i386_register_names))
88 return NULL;
89
90 return i386_register_names[reg];
91 }
92
93 /* Convert stabs register number REG to the appropriate register
94 number used by GDB. */
95
96 static int
97 i386_stab_reg_to_regnum (int reg)
98 {
99 /* This implements what GCC calls the "default" register map. */
100 if (reg >= 0 && reg <= 7)
101 {
102 /* General registers. */
103 return reg;
104 }
105 else if (reg >= 12 && reg <= 19)
106 {
107 /* Floating-point registers. */
108 return reg - 12 + FP0_REGNUM;
109 }
110 else if (reg >= 21 && reg <= 28)
111 {
112 /* SSE registers. */
113 return reg - 21 + XMM0_REGNUM;
114 }
115 else if (reg >= 29 && reg <= 36)
116 {
117 /* MMX registers. */
118 return reg - 29 + MM0_REGNUM;
119 }
120
121 /* This will hopefully provoke a warning. */
122 return NUM_REGS + NUM_PSEUDO_REGS;
123 }
124
125 /* Convert DWARF register number REG to the appropriate register
126 number used by GDB. */
127
128 static int
129 i386_dwarf_reg_to_regnum (int reg)
130 {
131 /* The DWARF register numbering includes %eip and %eflags, and
132 numbers the floating point registers differently. */
133 if (reg >= 0 && reg <= 9)
134 {
135 /* General registers. */
136 return reg;
137 }
138 else if (reg >= 11 && reg <= 18)
139 {
140 /* Floating-point registers. */
141 return reg - 11 + FP0_REGNUM;
142 }
143 else if (reg >= 21)
144 {
145 /* The SSE and MMX registers have identical numbers as in stabs. */
146 return i386_stab_reg_to_regnum (reg);
147 }
148
149 /* This will hopefully provoke a warning. */
150 return NUM_REGS + NUM_PSEUDO_REGS;
151 }
152 \f
153
154 /* This is the variable that is set with "set disassembly-flavor", and
155 its legitimate values. */
156 static const char att_flavor[] = "att";
157 static const char intel_flavor[] = "intel";
158 static const char *valid_flavors[] =
159 {
160 att_flavor,
161 intel_flavor,
162 NULL
163 };
164 static const char *disassembly_flavor = att_flavor;
165
166 /* Stdio style buffering was used to minimize calls to ptrace, but
167 this buffering did not take into account that the code section
168 being accessed may not be an even number of buffers long (even if
169 the buffer is only sizeof(int) long). In cases where the code
170 section size happened to be a non-integral number of buffers long,
171 attempting to read the last buffer would fail. Simply using
172 target_read_memory and ignoring errors, rather than read_memory, is
173 not the correct solution, since legitimate access errors would then
174 be totally ignored. To properly handle this situation and continue
175 to use buffering would require that this code be able to determine
176 the minimum code section size granularity (not the alignment of the
177 section itself, since the actual failing case that pointed out this
178 problem had a section alignment of 4 but was not a multiple of 4
179 bytes long), on a target by target basis, and then adjust it's
180 buffer size accordingly. This is messy, but potentially feasible.
181 It probably needs the bfd library's help and support. For now, the
182 buffer size is set to 1. (FIXME -fnf) */
183
184 #define CODESTREAM_BUFSIZ 1 /* Was sizeof(int), see note above. */
185 static CORE_ADDR codestream_next_addr;
186 static CORE_ADDR codestream_addr;
187 static unsigned char codestream_buf[CODESTREAM_BUFSIZ];
188 static int codestream_off;
189 static int codestream_cnt;
190
191 #define codestream_tell() (codestream_addr + codestream_off)
192 #define codestream_peek() \
193 (codestream_cnt == 0 ? \
194 codestream_fill(1) : codestream_buf[codestream_off])
195 #define codestream_get() \
196 (codestream_cnt-- == 0 ? \
197 codestream_fill(0) : codestream_buf[codestream_off++])
198
199 static unsigned char
200 codestream_fill (int peek_flag)
201 {
202 codestream_addr = codestream_next_addr;
203 codestream_next_addr += CODESTREAM_BUFSIZ;
204 codestream_off = 0;
205 codestream_cnt = CODESTREAM_BUFSIZ;
206 read_memory (codestream_addr, (char *) codestream_buf, CODESTREAM_BUFSIZ);
207
208 if (peek_flag)
209 return (codestream_peek ());
210 else
211 return (codestream_get ());
212 }
213
214 static void
215 codestream_seek (CORE_ADDR place)
216 {
217 codestream_next_addr = place / CODESTREAM_BUFSIZ;
218 codestream_next_addr *= CODESTREAM_BUFSIZ;
219 codestream_cnt = 0;
220 codestream_fill (1);
221 while (codestream_tell () != place)
222 codestream_get ();
223 }
224
225 static void
226 codestream_read (unsigned char *buf, int count)
227 {
228 unsigned char *p;
229 int i;
230 p = buf;
231 for (i = 0; i < count; i++)
232 *p++ = codestream_get ();
233 }
234 \f
235
236 /* If the next instruction is a jump, move to its target. */
237
238 static void
239 i386_follow_jump (void)
240 {
241 unsigned char buf[4];
242 long delta;
243
244 int data16;
245 CORE_ADDR pos;
246
247 pos = codestream_tell ();
248
249 data16 = 0;
250 if (codestream_peek () == 0x66)
251 {
252 codestream_get ();
253 data16 = 1;
254 }
255
256 switch (codestream_get ())
257 {
258 case 0xe9:
259 /* Relative jump: if data16 == 0, disp32, else disp16. */
260 if (data16)
261 {
262 codestream_read (buf, 2);
263 delta = extract_signed_integer (buf, 2);
264
265 /* Include the size of the jmp instruction (including the
266 0x66 prefix). */
267 pos += delta + 4;
268 }
269 else
270 {
271 codestream_read (buf, 4);
272 delta = extract_signed_integer (buf, 4);
273
274 pos += delta + 5;
275 }
276 break;
277 case 0xeb:
278 /* Relative jump, disp8 (ignore data16). */
279 codestream_read (buf, 1);
280 /* Sign-extend it. */
281 delta = extract_signed_integer (buf, 1);
282
283 pos += delta + 2;
284 break;
285 }
286 codestream_seek (pos);
287 }
288
289 /* Find & return the amount a local space allocated, and advance the
290 codestream to the first register push (if any).
291
292 If the entry sequence doesn't make sense, return -1, and leave
293 codestream pointer at a random spot. */
294
295 static long
296 i386_get_frame_setup (CORE_ADDR pc)
297 {
298 unsigned char op;
299
300 codestream_seek (pc);
301
302 i386_follow_jump ();
303
304 op = codestream_get ();
305
306 if (op == 0x58) /* popl %eax */
307 {
308 /* This function must start with
309
310 popl %eax 0x58
311 xchgl %eax, (%esp) 0x87 0x04 0x24
312 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
313
314 (the System V compiler puts out the second `xchg'
315 instruction, and the assembler doesn't try to optimize it, so
316 the 'sib' form gets generated). This sequence is used to get
317 the address of the return buffer for a function that returns
318 a structure. */
319 int pos;
320 unsigned char buf[4];
321 static unsigned char proto1[3] = { 0x87, 0x04, 0x24 };
322 static unsigned char proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
323
324 pos = codestream_tell ();
325 codestream_read (buf, 4);
326 if (memcmp (buf, proto1, 3) == 0)
327 pos += 3;
328 else if (memcmp (buf, proto2, 4) == 0)
329 pos += 4;
330
331 codestream_seek (pos);
332 op = codestream_get (); /* Update next opcode. */
333 }
334
335 if (op == 0x68 || op == 0x6a)
336 {
337 /* This function may start with
338
339 pushl constant
340 call _probe
341 addl $4, %esp
342
343 followed by
344
345 pushl %ebp
346
347 etc. */
348 int pos;
349 unsigned char buf[8];
350
351 /* Skip past the `pushl' instruction; it has either a one-byte
352 or a four-byte operand, depending on the opcode. */
353 pos = codestream_tell ();
354 if (op == 0x68)
355 pos += 4;
356 else
357 pos += 1;
358 codestream_seek (pos);
359
360 /* Read the following 8 bytes, which should be "call _probe" (6
361 bytes) followed by "addl $4,%esp" (2 bytes). */
362 codestream_read (buf, sizeof (buf));
363 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
364 pos += sizeof (buf);
365 codestream_seek (pos);
366 op = codestream_get (); /* Update next opcode. */
367 }
368
369 if (op == 0x55) /* pushl %ebp */
370 {
371 /* Check for "movl %esp, %ebp" -- can be written in two ways. */
372 switch (codestream_get ())
373 {
374 case 0x8b:
375 if (codestream_get () != 0xec)
376 return -1;
377 break;
378 case 0x89:
379 if (codestream_get () != 0xe5)
380 return -1;
381 break;
382 default:
383 return -1;
384 }
385 /* Check for stack adjustment
386
387 subl $XXX, %esp
388
389 NOTE: You can't subtract a 16 bit immediate from a 32 bit
390 reg, so we don't have to worry about a data16 prefix. */
391 op = codestream_peek ();
392 if (op == 0x83)
393 {
394 /* `subl' with 8 bit immediate. */
395 codestream_get ();
396 if (codestream_get () != 0xec)
397 /* Some instruction starting with 0x83 other than `subl'. */
398 {
399 codestream_seek (codestream_tell () - 2);
400 return 0;
401 }
402 /* `subl' with signed byte immediate (though it wouldn't
403 make sense to be negative). */
404 return (codestream_get ());
405 }
406 else if (op == 0x81)
407 {
408 char buf[4];
409 /* Maybe it is `subl' with a 32 bit immedediate. */
410 codestream_get ();
411 if (codestream_get () != 0xec)
412 /* Some instruction starting with 0x81 other than `subl'. */
413 {
414 codestream_seek (codestream_tell () - 2);
415 return 0;
416 }
417 /* It is `subl' with a 32 bit immediate. */
418 codestream_read ((unsigned char *) buf, 4);
419 return extract_signed_integer (buf, 4);
420 }
421 else
422 {
423 return 0;
424 }
425 }
426 else if (op == 0xc8)
427 {
428 char buf[2];
429 /* `enter' with 16 bit unsigned immediate. */
430 codestream_read ((unsigned char *) buf, 2);
431 codestream_get (); /* Flush final byte of enter instruction. */
432 return extract_unsigned_integer (buf, 2);
433 }
434 return (-1);
435 }
436
437 /* Signal trampolines don't have a meaningful frame. The frame
438 pointer value we use is actually the frame pointer of the calling
439 frame -- that is, the frame which was in progress when the signal
440 trampoline was entered. GDB mostly treats this frame pointer value
441 as a magic cookie. We detect the case of a signal trampoline by
442 looking at the SIGNAL_HANDLER_CALLER field, which is set based on
443 PC_IN_SIGTRAMP.
444
445 When a signal trampoline is invoked from a frameless function, we
446 essentially have two frameless functions in a row. In this case,
447 we use the same magic cookie for three frames in a row. We detect
448 this case by seeing whether the next frame has
449 SIGNAL_HANDLER_CALLER set, and, if it does, checking whether the
450 current frame is actually frameless. In this case, we need to get
451 the PC by looking at the SP register value stored in the signal
452 context.
453
454 This should work in most cases except in horrible situations where
455 a signal occurs just as we enter a function but before the frame
456 has been set up. Incidentally, that's just what happens when we
457 call a function from GDB with a signal pending (there's a test in
458 the testsuite that makes this happen). Therefore we pretend that
459 we have a frameless function if we're stopped at the start of a
460 function. */
461
462 /* Return non-zero if we're dealing with a frameless signal, that is,
463 a signal trampoline invoked from a frameless function. */
464
465 static int
466 i386_frameless_signal_p (struct frame_info *frame)
467 {
468 return (frame->next && frame->next->signal_handler_caller
469 && (frameless_look_for_prologue (frame)
470 || frame->pc == get_pc_function_start (frame->pc)));
471 }
472
473 /* Return the chain-pointer for FRAME. In the case of the i386, the
474 frame's nominal address is the address of a 4-byte word containing
475 the calling frame's address. */
476
477 static CORE_ADDR
478 i386_frame_chain (struct frame_info *frame)
479 {
480 if (PC_IN_CALL_DUMMY (frame->pc, 0, 0))
481 return frame->frame;
482
483 if (frame->signal_handler_caller
484 || i386_frameless_signal_p (frame))
485 return frame->frame;
486
487 if (! inside_entry_file (frame->pc))
488 return read_memory_unsigned_integer (frame->frame, 4);
489
490 return 0;
491 }
492
493 /* Determine whether the function invocation represented by FRAME does
494 not have a from on the stack associated with it. If it does not,
495 return non-zero, otherwise return zero. */
496
497 static int
498 i386_frameless_function_invocation (struct frame_info *frame)
499 {
500 if (frame->signal_handler_caller)
501 return 0;
502
503 return frameless_look_for_prologue (frame);
504 }
505
506 /* Assuming FRAME is for a sigtramp routine, return the saved program
507 counter. */
508
509 static CORE_ADDR
510 i386_sigtramp_saved_pc (struct frame_info *frame)
511 {
512 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
513 CORE_ADDR addr;
514
515 addr = tdep->sigcontext_addr (frame);
516 return read_memory_unsigned_integer (addr + tdep->sc_pc_offset, 4);
517 }
518
519 /* Assuming FRAME is for a sigtramp routine, return the saved stack
520 pointer. */
521
522 static CORE_ADDR
523 i386_sigtramp_saved_sp (struct frame_info *frame)
524 {
525 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
526 CORE_ADDR addr;
527
528 addr = tdep->sigcontext_addr (frame);
529 return read_memory_unsigned_integer (addr + tdep->sc_sp_offset, 4);
530 }
531
532 /* Return the saved program counter for FRAME. */
533
534 static CORE_ADDR
535 i386_frame_saved_pc (struct frame_info *frame)
536 {
537 if (PC_IN_CALL_DUMMY (frame->pc, 0, 0))
538 {
539 ULONGEST pc;
540
541 frame_unwind_unsigned_register (frame, PC_REGNUM, &pc);
542 return pc;
543 }
544
545 if (frame->signal_handler_caller)
546 return i386_sigtramp_saved_pc (frame);
547
548 if (i386_frameless_signal_p (frame))
549 {
550 CORE_ADDR sp = i386_sigtramp_saved_sp (frame->next);
551 return read_memory_unsigned_integer (sp, 4);
552 }
553
554 return read_memory_unsigned_integer (frame->frame + 4, 4);
555 }
556
557 /* Immediately after a function call, return the saved pc. */
558
559 static CORE_ADDR
560 i386_saved_pc_after_call (struct frame_info *frame)
561 {
562 if (frame->signal_handler_caller)
563 return i386_sigtramp_saved_pc (frame);
564
565 return read_memory_unsigned_integer (read_register (SP_REGNUM), 4);
566 }
567
568 /* Return number of args passed to a frame.
569 Can return -1, meaning no way to tell. */
570
571 static int
572 i386_frame_num_args (struct frame_info *fi)
573 {
574 #if 1
575 return -1;
576 #else
577 /* This loses because not only might the compiler not be popping the
578 args right after the function call, it might be popping args from
579 both this call and a previous one, and we would say there are
580 more args than there really are. */
581
582 int retpc;
583 unsigned char op;
584 struct frame_info *pfi;
585
586 /* On the i386, the instruction following the call could be:
587 popl %ecx - one arg
588 addl $imm, %esp - imm/4 args; imm may be 8 or 32 bits
589 anything else - zero args. */
590
591 int frameless;
592
593 frameless = FRAMELESS_FUNCTION_INVOCATION (fi);
594 if (frameless)
595 /* In the absence of a frame pointer, GDB doesn't get correct
596 values for nameless arguments. Return -1, so it doesn't print
597 any nameless arguments. */
598 return -1;
599
600 pfi = get_prev_frame (fi);
601 if (pfi == 0)
602 {
603 /* NOTE: This can happen if we are looking at the frame for
604 main, because FRAME_CHAIN_VALID won't let us go into start.
605 If we have debugging symbols, that's not really a big deal;
606 it just means it will only show as many arguments to main as
607 are declared. */
608 return -1;
609 }
610 else
611 {
612 retpc = pfi->pc;
613 op = read_memory_integer (retpc, 1);
614 if (op == 0x59) /* pop %ecx */
615 return 1;
616 else if (op == 0x83)
617 {
618 op = read_memory_integer (retpc + 1, 1);
619 if (op == 0xc4)
620 /* addl $<signed imm 8 bits>, %esp */
621 return (read_memory_integer (retpc + 2, 1) & 0xff) / 4;
622 else
623 return 0;
624 }
625 else if (op == 0x81) /* `add' with 32 bit immediate. */
626 {
627 op = read_memory_integer (retpc + 1, 1);
628 if (op == 0xc4)
629 /* addl $<imm 32>, %esp */
630 return read_memory_integer (retpc + 2, 4) / 4;
631 else
632 return 0;
633 }
634 else
635 {
636 return 0;
637 }
638 }
639 #endif
640 }
641
642 /* Parse the first few instructions the function to see what registers
643 were stored.
644
645 We handle these cases:
646
647 The startup sequence can be at the start of the function, or the
648 function can start with a branch to startup code at the end.
649
650 %ebp can be set up with either the 'enter' instruction, or "pushl
651 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
652 once used in the System V compiler).
653
654 Local space is allocated just below the saved %ebp by either the
655 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a 16
656 bit unsigned argument for space to allocate, and the 'addl'
657 instruction could have either a signed byte, or 32 bit immediate.
658
659 Next, the registers used by this function are pushed. With the
660 System V compiler they will always be in the order: %edi, %esi,
661 %ebx (and sometimes a harmless bug causes it to also save but not
662 restore %eax); however, the code below is willing to see the pushes
663 in any order, and will handle up to 8 of them.
664
665 If the setup sequence is at the end of the function, then the next
666 instruction will be a branch back to the start. */
667
668 static void
669 i386_frame_init_saved_regs (struct frame_info *fip)
670 {
671 long locals = -1;
672 unsigned char op;
673 CORE_ADDR addr;
674 CORE_ADDR pc;
675 int i;
676
677 if (fip->saved_regs)
678 return;
679
680 frame_saved_regs_zalloc (fip);
681
682 pc = get_pc_function_start (fip->pc);
683 if (pc != 0)
684 locals = i386_get_frame_setup (pc);
685
686 if (locals >= 0)
687 {
688 addr = fip->frame - 4 - locals;
689 for (i = 0; i < 8; i++)
690 {
691 op = codestream_get ();
692 if (op < 0x50 || op > 0x57)
693 break;
694 #ifdef I386_REGNO_TO_SYMMETRY
695 /* Dynix uses different internal numbering. Ick. */
696 fip->saved_regs[I386_REGNO_TO_SYMMETRY (op - 0x50)] = addr;
697 #else
698 fip->saved_regs[op - 0x50] = addr;
699 #endif
700 addr -= 4;
701 }
702 }
703
704 fip->saved_regs[PC_REGNUM] = fip->frame + 4;
705 fip->saved_regs[FP_REGNUM] = fip->frame;
706 }
707
708 /* Return PC of first real instruction. */
709
710 static CORE_ADDR
711 i386_skip_prologue (CORE_ADDR pc)
712 {
713 unsigned char op;
714 int i;
715 static unsigned char pic_pat[6] =
716 { 0xe8, 0, 0, 0, 0, /* call 0x0 */
717 0x5b, /* popl %ebx */
718 };
719 CORE_ADDR pos;
720
721 if (i386_get_frame_setup (pc) < 0)
722 return (pc);
723
724 /* Found valid frame setup -- codestream now points to start of push
725 instructions for saving registers. */
726
727 /* Skip over register saves. */
728 for (i = 0; i < 8; i++)
729 {
730 op = codestream_peek ();
731 /* Break if not `pushl' instrunction. */
732 if (op < 0x50 || op > 0x57)
733 break;
734 codestream_get ();
735 }
736
737 /* The native cc on SVR4 in -K PIC mode inserts the following code
738 to get the address of the global offset table (GOT) into register
739 %ebx
740
741 call 0x0
742 popl %ebx
743 movl %ebx,x(%ebp) (optional)
744 addl y,%ebx
745
746 This code is with the rest of the prologue (at the end of the
747 function), so we have to skip it to get to the first real
748 instruction at the start of the function. */
749
750 pos = codestream_tell ();
751 for (i = 0; i < 6; i++)
752 {
753 op = codestream_get ();
754 if (pic_pat[i] != op)
755 break;
756 }
757 if (i == 6)
758 {
759 unsigned char buf[4];
760 long delta = 6;
761
762 op = codestream_get ();
763 if (op == 0x89) /* movl %ebx, x(%ebp) */
764 {
765 op = codestream_get ();
766 if (op == 0x5d) /* One byte offset from %ebp. */
767 {
768 delta += 3;
769 codestream_read (buf, 1);
770 }
771 else if (op == 0x9d) /* Four byte offset from %ebp. */
772 {
773 delta += 6;
774 codestream_read (buf, 4);
775 }
776 else /* Unexpected instruction. */
777 delta = -1;
778 op = codestream_get ();
779 }
780 /* addl y,%ebx */
781 if (delta > 0 && op == 0x81 && codestream_get () == 0xc3)
782 {
783 pos += delta + 6;
784 }
785 }
786 codestream_seek (pos);
787
788 i386_follow_jump ();
789
790 return (codestream_tell ());
791 }
792
793 /* Use the program counter to determine the contents and size of a
794 breakpoint instruction. Return a pointer to a string of bytes that
795 encode a breakpoint instruction, store the length of the string in
796 *LEN and optionally adjust *PC to point to the correct memory
797 location for inserting the breakpoint.
798
799 On the i386 we have a single breakpoint that fits in a single byte
800 and can be inserted anywhere. */
801
802 static const unsigned char *
803 i386_breakpoint_from_pc (CORE_ADDR *pc, int *len)
804 {
805 static unsigned char break_insn[] = { 0xcc }; /* int 3 */
806
807 *len = sizeof (break_insn);
808 return break_insn;
809 }
810
811 /* Push the return address (pointing to the call dummy) onto the stack
812 and return the new value for the stack pointer. */
813
814 static CORE_ADDR
815 i386_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
816 {
817 char buf[4];
818
819 store_unsigned_integer (buf, 4, CALL_DUMMY_ADDRESS ());
820 write_memory (sp - 4, buf, 4);
821 return sp - 4;
822 }
823
824 static void
825 i386_do_pop_frame (struct frame_info *frame)
826 {
827 CORE_ADDR fp;
828 int regnum;
829 char regbuf[I386_MAX_REGISTER_SIZE];
830
831 fp = FRAME_FP (frame);
832 i386_frame_init_saved_regs (frame);
833
834 for (regnum = 0; regnum < NUM_REGS; regnum++)
835 {
836 CORE_ADDR addr;
837 addr = frame->saved_regs[regnum];
838 if (addr)
839 {
840 read_memory (addr, regbuf, REGISTER_RAW_SIZE (regnum));
841 write_register_gen (regnum, regbuf);
842 }
843 }
844 write_register (FP_REGNUM, read_memory_integer (fp, 4));
845 write_register (PC_REGNUM, read_memory_integer (fp + 4, 4));
846 write_register (SP_REGNUM, fp + 8);
847 flush_cached_frames ();
848 }
849
850 static void
851 i386_pop_frame (void)
852 {
853 generic_pop_current_frame (i386_do_pop_frame);
854 }
855 \f
856
857 /* Figure out where the longjmp will land. Slurp the args out of the
858 stack. We expect the first arg to be a pointer to the jmp_buf
859 structure from which we extract the address that we will land at.
860 This address is copied into PC. This routine returns true on
861 success. */
862
863 static int
864 i386_get_longjmp_target (CORE_ADDR *pc)
865 {
866 char buf[4];
867 CORE_ADDR sp, jb_addr;
868 int jb_pc_offset = gdbarch_tdep (current_gdbarch)->jb_pc_offset;
869
870 /* If JB_PC_OFFSET is -1, we have no way to find out where the
871 longjmp will land. */
872 if (jb_pc_offset == -1)
873 return 0;
874
875 sp = read_register (SP_REGNUM);
876 if (target_read_memory (sp + 4, buf, 4))
877 return 0;
878
879 jb_addr = extract_address (buf, 4);
880 if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
881 return 0;
882
883 *pc = extract_address (buf, 4);
884 return 1;
885 }
886 \f
887
888 static CORE_ADDR
889 i386_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
890 int struct_return, CORE_ADDR struct_addr)
891 {
892 sp = default_push_arguments (nargs, args, sp, struct_return, struct_addr);
893
894 if (struct_return)
895 {
896 char buf[4];
897
898 sp -= 4;
899 store_address (buf, 4, struct_addr);
900 write_memory (sp, buf, 4);
901 }
902
903 return sp;
904 }
905
906 static void
907 i386_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
908 {
909 /* Do nothing. Everything was already done by i386_push_arguments. */
910 }
911
912 /* These registers are used for returning integers (and on some
913 targets also for returning `struct' and `union' values when their
914 size and alignment match an integer type). */
915 #define LOW_RETURN_REGNUM 0 /* %eax */
916 #define HIGH_RETURN_REGNUM 2 /* %edx */
917
918 /* Extract from an array REGBUF containing the (raw) register state, a
919 function return value of TYPE, and copy that, in virtual format,
920 into VALBUF. */
921
922 static void
923 i386_extract_return_value (struct type *type, struct regcache *regcache,
924 void *dst)
925 {
926 bfd_byte *valbuf = dst;
927 int len = TYPE_LENGTH (type);
928 char buf[I386_MAX_REGISTER_SIZE];
929
930 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
931 && TYPE_NFIELDS (type) == 1)
932 {
933 i386_extract_return_value (TYPE_FIELD_TYPE (type, 0), regcache, valbuf);
934 return;
935 }
936
937 if (TYPE_CODE (type) == TYPE_CODE_FLT)
938 {
939 if (FP0_REGNUM == 0)
940 {
941 warning ("Cannot find floating-point return value.");
942 memset (valbuf, 0, len);
943 return;
944 }
945
946 /* Floating-point return values can be found in %st(0). Convert
947 its contents to the desired type. This is probably not
948 exactly how it would happen on the target itself, but it is
949 the best we can do. */
950 regcache_raw_read (regcache, FP0_REGNUM, buf);
951 convert_typed_floating (buf, builtin_type_i387_ext, valbuf, type);
952 }
953 else
954 {
955 int low_size = REGISTER_RAW_SIZE (LOW_RETURN_REGNUM);
956 int high_size = REGISTER_RAW_SIZE (HIGH_RETURN_REGNUM);
957
958 if (len <= low_size)
959 {
960 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
961 memcpy (valbuf, buf, len);
962 }
963 else if (len <= (low_size + high_size))
964 {
965 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
966 memcpy (valbuf, buf, low_size);
967 regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
968 memcpy (valbuf + low_size, buf, len - low_size);
969 }
970 else
971 internal_error (__FILE__, __LINE__,
972 "Cannot extract return value of %d bytes long.", len);
973 }
974 }
975
976 /* Write into the appropriate registers a function return value stored
977 in VALBUF of type TYPE, given in virtual format. */
978
979 static void
980 i386_store_return_value (struct type *type, struct regcache *regcache,
981 const void *valbuf)
982 {
983 int len = TYPE_LENGTH (type);
984
985 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
986 && TYPE_NFIELDS (type) == 1)
987 {
988 i386_store_return_value (TYPE_FIELD_TYPE (type, 0), regcache, valbuf);
989 return;
990 }
991
992 if (TYPE_CODE (type) == TYPE_CODE_FLT)
993 {
994 ULONGEST fstat;
995 char buf[FPU_REG_RAW_SIZE];
996
997 if (FP0_REGNUM == 0)
998 {
999 warning ("Cannot set floating-point return value.");
1000 return;
1001 }
1002
1003 /* Returning floating-point values is a bit tricky. Apart from
1004 storing the return value in %st(0), we have to simulate the
1005 state of the FPU at function return point. */
1006
1007 /* Convert the value found in VALBUF to the extended
1008 floating-point format used by the FPU. This is probably
1009 not exactly how it would happen on the target itself, but
1010 it is the best we can do. */
1011 convert_typed_floating (valbuf, type, buf, builtin_type_i387_ext);
1012 regcache_raw_write (regcache, FP0_REGNUM, buf);
1013
1014 /* Set the top of the floating-point register stack to 7. The
1015 actual value doesn't really matter, but 7 is what a normal
1016 function return would end up with if the program started out
1017 with a freshly initialized FPU. */
1018 regcache_raw_read_unsigned (regcache, FSTAT_REGNUM, &fstat);
1019 fstat |= (7 << 11);
1020 regcache_raw_write_unsigned (regcache, FSTAT_REGNUM, fstat);
1021
1022 /* Mark %st(1) through %st(7) as empty. Since we set the top of
1023 the floating-point register stack to 7, the appropriate value
1024 for the tag word is 0x3fff. */
1025 regcache_raw_write_unsigned (regcache, FTAG_REGNUM, 0x3fff);
1026 }
1027 else
1028 {
1029 int low_size = REGISTER_RAW_SIZE (LOW_RETURN_REGNUM);
1030 int high_size = REGISTER_RAW_SIZE (HIGH_RETURN_REGNUM);
1031
1032 if (len <= low_size)
1033 regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
1034 else if (len <= (low_size + high_size))
1035 {
1036 regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
1037 regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
1038 len - low_size, (char *) valbuf + low_size);
1039 }
1040 else
1041 internal_error (__FILE__, __LINE__,
1042 "Cannot store return value of %d bytes long.", len);
1043 }
1044 }
1045
1046 /* Extract from REGCACHE, which contains the (raw) register state, the
1047 address in which a function should return its structure value, as a
1048 CORE_ADDR. */
1049
1050 static CORE_ADDR
1051 i386_extract_struct_value_address (struct regcache *regcache)
1052 {
1053 ULONGEST addr;
1054
1055 regcache_raw_read_unsigned (regcache, LOW_RETURN_REGNUM, &addr);
1056 return addr;
1057 }
1058 \f
1059
1060 /* This is the variable that is set with "set struct-convention", and
1061 its legitimate values. */
1062 static const char default_struct_convention[] = "default";
1063 static const char pcc_struct_convention[] = "pcc";
1064 static const char reg_struct_convention[] = "reg";
1065 static const char *valid_conventions[] =
1066 {
1067 default_struct_convention,
1068 pcc_struct_convention,
1069 reg_struct_convention,
1070 NULL
1071 };
1072 static const char *struct_convention = default_struct_convention;
1073
1074 static int
1075 i386_use_struct_convention (int gcc_p, struct type *type)
1076 {
1077 enum struct_return struct_return;
1078
1079 if (struct_convention == default_struct_convention)
1080 struct_return = gdbarch_tdep (current_gdbarch)->struct_return;
1081 else if (struct_convention == pcc_struct_convention)
1082 struct_return = pcc_struct_return;
1083 else
1084 struct_return = reg_struct_return;
1085
1086 return generic_use_struct_convention (struct_return == reg_struct_return,
1087 type);
1088 }
1089 \f
1090
1091 /* Return the GDB type object for the "standard" data type of data in
1092 register REGNUM. Perhaps %esi and %edi should go here, but
1093 potentially they could be used for things other than address. */
1094
1095 static struct type *
1096 i386_register_virtual_type (int regnum)
1097 {
1098 if (regnum == PC_REGNUM || regnum == FP_REGNUM || regnum == SP_REGNUM)
1099 return lookup_pointer_type (builtin_type_void);
1100
1101 if (FP_REGNUM_P (regnum))
1102 return builtin_type_i387_ext;
1103
1104 if (SSE_REGNUM_P (regnum))
1105 return builtin_type_vec128i;
1106
1107 if (mmx_regnum_p (regnum))
1108 return builtin_type_vec64i;
1109
1110 return builtin_type_int;
1111 }
1112
1113 /* Map a cooked register onto a raw register or memory. For the i386,
1114 the MMX registers need to be mapped onto floating point registers. */
1115
1116 static int
1117 mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
1118 {
1119 int mmxi;
1120 ULONGEST fstat;
1121 int tos;
1122 int fpi;
1123 mmxi = regnum - MM0_REGNUM;
1124 regcache_raw_read_unsigned (regcache, FSTAT_REGNUM, &fstat);
1125 tos = (fstat >> 11) & 0x7;
1126 fpi = (mmxi + tos) % 8;
1127 return (FP0_REGNUM + fpi);
1128 }
1129
1130 static void
1131 i386_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
1132 int regnum, void *buf)
1133 {
1134 if (mmx_regnum_p (regnum))
1135 {
1136 char *mmx_buf = alloca (MAX_REGISTER_RAW_SIZE);
1137 int fpnum = mmx_regnum_to_fp_regnum (regcache, regnum);
1138 regcache_raw_read (regcache, fpnum, mmx_buf);
1139 /* Extract (always little endian). */
1140 memcpy (buf, mmx_buf, REGISTER_RAW_SIZE (regnum));
1141 }
1142 else
1143 regcache_raw_read (regcache, regnum, buf);
1144 }
1145
1146 static void
1147 i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
1148 int regnum, const void *buf)
1149 {
1150 if (mmx_regnum_p (regnum))
1151 {
1152 char *mmx_buf = alloca (MAX_REGISTER_RAW_SIZE);
1153 int fpnum = mmx_regnum_to_fp_regnum (regcache, regnum);
1154 /* Read ... */
1155 regcache_raw_read (regcache, fpnum, mmx_buf);
1156 /* ... Modify ... (always little endian). */
1157 memcpy (mmx_buf, buf, REGISTER_RAW_SIZE (regnum));
1158 /* ... Write. */
1159 regcache_raw_write (regcache, fpnum, mmx_buf);
1160 }
1161 else
1162 regcache_raw_write (regcache, regnum, buf);
1163 }
1164
1165 /* Return true iff register REGNUM's virtual format is different from
1166 its raw format. Note that this definition assumes that the host
1167 supports IEEE 32-bit floats, since it doesn't say that SSE
1168 registers need conversion. Even if we can't find a counterexample,
1169 this is still sloppy. */
1170
1171 static int
1172 i386_register_convertible (int regnum)
1173 {
1174 return FP_REGNUM_P (regnum);
1175 }
1176
1177 /* Convert data from raw format for register REGNUM in buffer FROM to
1178 virtual format with type TYPE in buffer TO. */
1179
1180 static void
1181 i386_register_convert_to_virtual (int regnum, struct type *type,
1182 char *from, char *to)
1183 {
1184 gdb_assert (FP_REGNUM_P (regnum));
1185
1186 /* We only support floating-point values. */
1187 if (TYPE_CODE (type) != TYPE_CODE_FLT)
1188 {
1189 warning ("Cannot convert floating-point register value "
1190 "to non-floating-point type.");
1191 memset (to, 0, TYPE_LENGTH (type));
1192 return;
1193 }
1194
1195 /* Convert to TYPE. This should be a no-op if TYPE is equivalent to
1196 the extended floating-point format used by the FPU. */
1197 convert_typed_floating (from, builtin_type_i387_ext, to, type);
1198 }
1199
1200 /* Convert data from virtual format with type TYPE in buffer FROM to
1201 raw format for register REGNUM in buffer TO. */
1202
1203 static void
1204 i386_register_convert_to_raw (struct type *type, int regnum,
1205 char *from, char *to)
1206 {
1207 gdb_assert (FP_REGNUM_P (regnum));
1208
1209 /* We only support floating-point values. */
1210 if (TYPE_CODE (type) != TYPE_CODE_FLT)
1211 {
1212 warning ("Cannot convert non-floating-point type "
1213 "to floating-point register value.");
1214 memset (to, 0, TYPE_LENGTH (type));
1215 return;
1216 }
1217
1218 /* Convert from TYPE. This should be a no-op if TYPE is equivalent
1219 to the extended floating-point format used by the FPU. */
1220 convert_typed_floating (from, type, to, builtin_type_i387_ext);
1221 }
1222 \f
1223
1224 #ifdef STATIC_TRANSFORM_NAME
1225 /* SunPRO encodes the static variables. This is not related to C++
1226 mangling, it is done for C too. */
1227
1228 char *
1229 sunpro_static_transform_name (char *name)
1230 {
1231 char *p;
1232 if (IS_STATIC_TRANSFORM_NAME (name))
1233 {
1234 /* For file-local statics there will be a period, a bunch of
1235 junk (the contents of which match a string given in the
1236 N_OPT), a period and the name. For function-local statics
1237 there will be a bunch of junk (which seems to change the
1238 second character from 'A' to 'B'), a period, the name of the
1239 function, and the name. So just skip everything before the
1240 last period. */
1241 p = strrchr (name, '.');
1242 if (p != NULL)
1243 name = p + 1;
1244 }
1245 return name;
1246 }
1247 #endif /* STATIC_TRANSFORM_NAME */
1248 \f
1249
1250 /* Stuff for WIN32 PE style DLL's but is pretty generic really. */
1251
1252 CORE_ADDR
1253 i386_pe_skip_trampoline_code (CORE_ADDR pc, char *name)
1254 {
1255 if (pc && read_memory_unsigned_integer (pc, 2) == 0x25ff) /* jmp *(dest) */
1256 {
1257 unsigned long indirect = read_memory_unsigned_integer (pc + 2, 4);
1258 struct minimal_symbol *indsym =
1259 indirect ? lookup_minimal_symbol_by_pc (indirect) : 0;
1260 char *symname = indsym ? SYMBOL_NAME (indsym) : 0;
1261
1262 if (symname)
1263 {
1264 if (strncmp (symname, "__imp_", 6) == 0
1265 || strncmp (symname, "_imp_", 5) == 0)
1266 return name ? 1 : read_memory_unsigned_integer (indirect, 4);
1267 }
1268 }
1269 return 0; /* Not a trampoline. */
1270 }
1271 \f
1272
1273 /* Return non-zero if PC and NAME show that we are in a signal
1274 trampoline. */
1275
1276 static int
1277 i386_pc_in_sigtramp (CORE_ADDR pc, char *name)
1278 {
1279 return (name && strcmp ("_sigtramp", name) == 0);
1280 }
1281 \f
1282
1283 /* We have two flavours of disassembly. The machinery on this page
1284 deals with switching between those. */
1285
1286 static int
1287 i386_print_insn (bfd_vma pc, disassemble_info *info)
1288 {
1289 gdb_assert (disassembly_flavor == att_flavor
1290 || disassembly_flavor == intel_flavor);
1291
1292 /* FIXME: kettenis/20020915: Until disassembler_options is properly
1293 constified, cast to prevent a compiler warning. */
1294 info->disassembler_options = (char *) disassembly_flavor;
1295 info->mach = gdbarch_bfd_arch_info (current_gdbarch)->mach;
1296
1297 return print_insn_i386 (pc, info);
1298 }
1299 \f
1300
1301 /* There are a few i386 architecture variants that differ only
1302 slightly from the generic i386 target. For now, we don't give them
1303 their own source file, but include them here. As a consequence,
1304 they'll always be included. */
1305
1306 /* System V Release 4 (SVR4). */
1307
1308 static int
1309 i386_svr4_pc_in_sigtramp (CORE_ADDR pc, char *name)
1310 {
1311 return (name && (strcmp ("_sigreturn", name) == 0
1312 || strcmp ("_sigacthandler", name) == 0
1313 || strcmp ("sigvechandler", name) == 0));
1314 }
1315
1316 /* Get address of the pushed ucontext (sigcontext) on the stack for
1317 all three variants of SVR4 sigtramps. */
1318
1319 static CORE_ADDR
1320 i386_svr4_sigcontext_addr (struct frame_info *frame)
1321 {
1322 int sigcontext_offset = -1;
1323 char *name = NULL;
1324
1325 find_pc_partial_function (frame->pc, &name, NULL, NULL);
1326 if (name)
1327 {
1328 if (strcmp (name, "_sigreturn") == 0)
1329 sigcontext_offset = 132;
1330 else if (strcmp (name, "_sigacthandler") == 0)
1331 sigcontext_offset = 80;
1332 else if (strcmp (name, "sigvechandler") == 0)
1333 sigcontext_offset = 120;
1334 }
1335
1336 gdb_assert (sigcontext_offset != -1);
1337
1338 if (frame->next)
1339 return frame->next->frame + sigcontext_offset;
1340 return read_register (SP_REGNUM) + sigcontext_offset;
1341 }
1342 \f
1343
1344 /* DJGPP. */
1345
1346 static int
1347 i386_go32_pc_in_sigtramp (CORE_ADDR pc, char *name)
1348 {
1349 /* DJGPP doesn't have any special frames for signal handlers. */
1350 return 0;
1351 }
1352 \f
1353
1354 /* Generic ELF. */
1355
1356 void
1357 i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1358 {
1359 /* We typically use stabs-in-ELF with the DWARF register numbering. */
1360 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dwarf_reg_to_regnum);
1361 }
1362
1363 /* System V Release 4 (SVR4). */
1364
1365 void
1366 i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1367 {
1368 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1369
1370 /* System V Release 4 uses ELF. */
1371 i386_elf_init_abi (info, gdbarch);
1372
1373 /* System V Release 4 has shared libraries. */
1374 set_gdbarch_in_solib_call_trampoline (gdbarch, in_plt_section);
1375 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
1376
1377 /* FIXME: kettenis/20020511: Why do we override this function here? */
1378 set_gdbarch_frame_chain_valid (gdbarch, generic_func_frame_chain_valid);
1379
1380 set_gdbarch_pc_in_sigtramp (gdbarch, i386_svr4_pc_in_sigtramp);
1381 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
1382 tdep->sc_pc_offset = 14 * 4;
1383 tdep->sc_sp_offset = 7 * 4;
1384
1385 tdep->jb_pc_offset = 20;
1386 }
1387
1388 /* DJGPP. */
1389
1390 static void
1391 i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1392 {
1393 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1394
1395 set_gdbarch_pc_in_sigtramp (gdbarch, i386_go32_pc_in_sigtramp);
1396
1397 tdep->jb_pc_offset = 36;
1398 }
1399
1400 /* NetWare. */
1401
1402 static void
1403 i386_nw_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1404 {
1405 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1406
1407 /* FIXME: kettenis/20020511: Why do we override this function here? */
1408 set_gdbarch_frame_chain_valid (gdbarch, generic_func_frame_chain_valid);
1409
1410 tdep->jb_pc_offset = 24;
1411 }
1412 \f
1413
1414 static struct gdbarch *
1415 i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1416 {
1417 struct gdbarch_tdep *tdep;
1418 struct gdbarch *gdbarch;
1419 enum gdb_osabi osabi = GDB_OSABI_UNKNOWN;
1420
1421 /* Try to determine the OS ABI of the object we're loading. */
1422 if (info.abfd != NULL)
1423 osabi = gdbarch_lookup_osabi (info.abfd);
1424
1425 /* Find a candidate among extant architectures. */
1426 for (arches = gdbarch_list_lookup_by_info (arches, &info);
1427 arches != NULL;
1428 arches = gdbarch_list_lookup_by_info (arches->next, &info))
1429 {
1430 /* Make sure the OS ABI selection matches. */
1431 tdep = gdbarch_tdep (arches->gdbarch);
1432 if (tdep && tdep->osabi == osabi)
1433 return arches->gdbarch;
1434 }
1435
1436 /* Allocate space for the new architecture. */
1437 tdep = XMALLOC (struct gdbarch_tdep);
1438 gdbarch = gdbarch_alloc (&info, tdep);
1439
1440 tdep->osabi = osabi;
1441
1442 /* The i386 default settings don't include the SSE registers.
1443 FIXME: kettenis/20020614: They do include the FPU registers for
1444 now, which probably is not quite right. */
1445 tdep->num_xmm_regs = 0;
1446
1447 tdep->jb_pc_offset = -1;
1448 tdep->struct_return = pcc_struct_return;
1449 tdep->sigtramp_start = 0;
1450 tdep->sigtramp_end = 0;
1451 tdep->sigcontext_addr = NULL;
1452 tdep->sc_pc_offset = -1;
1453 tdep->sc_sp_offset = -1;
1454
1455 /* The format used for `long double' on almost all i386 targets is
1456 the i387 extended floating-point format. In fact, of all targets
1457 in the GCC 2.95 tree, only OSF/1 does it different, and insists
1458 on having a `long double' that's not `long' at all. */
1459 set_gdbarch_long_double_format (gdbarch, &floatformat_i387_ext);
1460
1461 /* Although the i387 extended floating-point has only 80 significant
1462 bits, a `long double' actually takes up 96, probably to enforce
1463 alignment. */
1464 set_gdbarch_long_double_bit (gdbarch, 96);
1465
1466 /* NOTE: tm-i386aix.h, tm-i386bsd.h, tm-i386os9k.h, tm-ptx.h,
1467 tm-symmetry.h currently override this. Sigh. */
1468 set_gdbarch_num_regs (gdbarch, I386_NUM_GREGS + I386_NUM_FREGS);
1469
1470 set_gdbarch_sp_regnum (gdbarch, 4); /* %esp */
1471 set_gdbarch_fp_regnum (gdbarch, 5); /* %ebp */
1472 set_gdbarch_pc_regnum (gdbarch, 8); /* %eip */
1473 set_gdbarch_ps_regnum (gdbarch, 9); /* %eflags */
1474 set_gdbarch_fp0_regnum (gdbarch, 16); /* %st(0) */
1475
1476 /* Use the "default" register numbering scheme for stabs and COFF. */
1477 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_stab_reg_to_regnum);
1478 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_stab_reg_to_regnum);
1479
1480 /* Use the DWARF register numbering scheme for DWARF and DWARF 2. */
1481 set_gdbarch_dwarf_reg_to_regnum (gdbarch, i386_dwarf_reg_to_regnum);
1482 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_dwarf_reg_to_regnum);
1483
1484 /* We don't define ECOFF_REG_TO_REGNUM, since ECOFF doesn't seem to
1485 be in use on any of the supported i386 targets. */
1486
1487 set_gdbarch_register_name (gdbarch, i386_register_name);
1488 set_gdbarch_register_size (gdbarch, 4);
1489 set_gdbarch_register_bytes (gdbarch, I386_SIZEOF_GREGS + I386_SIZEOF_FREGS);
1490 set_gdbarch_max_register_raw_size (gdbarch, I386_MAX_REGISTER_SIZE);
1491 set_gdbarch_max_register_virtual_size (gdbarch, I386_MAX_REGISTER_SIZE);
1492 set_gdbarch_register_virtual_type (gdbarch, i386_register_virtual_type);
1493
1494 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
1495
1496 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
1497
1498 set_gdbarch_use_generic_dummy_frames (gdbarch, 1);
1499
1500 /* Call dummy code. */
1501 set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
1502 set_gdbarch_call_dummy_address (gdbarch, entry_point_address);
1503 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
1504 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
1505 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
1506 set_gdbarch_call_dummy_length (gdbarch, 0);
1507 set_gdbarch_call_dummy_p (gdbarch, 1);
1508 set_gdbarch_call_dummy_words (gdbarch, NULL);
1509 set_gdbarch_sizeof_call_dummy_words (gdbarch, 0);
1510 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
1511 set_gdbarch_fix_call_dummy (gdbarch, generic_fix_call_dummy);
1512
1513 set_gdbarch_register_convertible (gdbarch, i386_register_convertible);
1514 set_gdbarch_register_convert_to_virtual (gdbarch,
1515 i386_register_convert_to_virtual);
1516 set_gdbarch_register_convert_to_raw (gdbarch, i386_register_convert_to_raw);
1517
1518 set_gdbarch_get_saved_register (gdbarch, generic_unwind_get_saved_register);
1519
1520 set_gdbarch_pc_in_call_dummy (gdbarch, pc_in_call_dummy_at_entry_point);
1521
1522 /* "An argument's size is increased, if necessary, to make it a
1523 multiple of [32-bit] words. This may require tail padding,
1524 depending on the size of the argument" -- from the x86 ABI. */
1525 set_gdbarch_parm_boundary (gdbarch, 32);
1526
1527 set_gdbarch_extract_return_value (gdbarch, i386_extract_return_value);
1528 set_gdbarch_push_arguments (gdbarch, i386_push_arguments);
1529 set_gdbarch_push_dummy_frame (gdbarch, generic_push_dummy_frame);
1530 set_gdbarch_push_return_address (gdbarch, i386_push_return_address);
1531 set_gdbarch_pop_frame (gdbarch, i386_pop_frame);
1532 set_gdbarch_store_struct_return (gdbarch, i386_store_struct_return);
1533 set_gdbarch_store_return_value (gdbarch, i386_store_return_value);
1534 set_gdbarch_extract_struct_value_address (gdbarch,
1535 i386_extract_struct_value_address);
1536 set_gdbarch_use_struct_convention (gdbarch, i386_use_struct_convention);
1537
1538 set_gdbarch_frame_init_saved_regs (gdbarch, i386_frame_init_saved_regs);
1539 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
1540
1541 /* Stack grows downward. */
1542 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1543
1544 set_gdbarch_breakpoint_from_pc (gdbarch, i386_breakpoint_from_pc);
1545 set_gdbarch_decr_pc_after_break (gdbarch, 1);
1546 set_gdbarch_function_start_offset (gdbarch, 0);
1547
1548 /* The following redefines make backtracing through sigtramp work.
1549 They manufacture a fake sigtramp frame and obtain the saved pc in
1550 sigtramp from the sigcontext structure which is pushed by the
1551 kernel on the user stack, along with a pointer to it. */
1552
1553 set_gdbarch_frame_args_skip (gdbarch, 8);
1554 set_gdbarch_frameless_function_invocation (gdbarch,
1555 i386_frameless_function_invocation);
1556 set_gdbarch_frame_chain (gdbarch, i386_frame_chain);
1557 set_gdbarch_frame_chain_valid (gdbarch, generic_file_frame_chain_valid);
1558 set_gdbarch_frame_saved_pc (gdbarch, i386_frame_saved_pc);
1559 set_gdbarch_frame_args_address (gdbarch, default_frame_address);
1560 set_gdbarch_frame_locals_address (gdbarch, default_frame_address);
1561 set_gdbarch_saved_pc_after_call (gdbarch, i386_saved_pc_after_call);
1562 set_gdbarch_frame_num_args (gdbarch, i386_frame_num_args);
1563 set_gdbarch_pc_in_sigtramp (gdbarch, i386_pc_in_sigtramp);
1564
1565 /* Wire in the MMX registers. */
1566 set_gdbarch_num_pseudo_regs (gdbarch, mmx_num_regs);
1567 set_gdbarch_pseudo_register_read (gdbarch, i386_pseudo_register_read);
1568 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
1569
1570 set_gdbarch_print_insn (gdbarch, i386_print_insn);
1571
1572 /* Hook in ABI-specific overrides, if they have been registered. */
1573 gdbarch_init_osabi (info, gdbarch, osabi);
1574
1575 return gdbarch;
1576 }
1577
1578 static enum gdb_osabi
1579 i386_coff_osabi_sniffer (bfd *abfd)
1580 {
1581 if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
1582 || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
1583 return GDB_OSABI_GO32;
1584
1585 return GDB_OSABI_UNKNOWN;
1586 }
1587
1588 static enum gdb_osabi
1589 i386_nlm_osabi_sniffer (bfd *abfd)
1590 {
1591 return GDB_OSABI_NETWARE;
1592 }
1593 \f
1594
1595 /* Provide a prototype to silence -Wmissing-prototypes. */
1596 void _initialize_i386_tdep (void);
1597
1598 void
1599 _initialize_i386_tdep (void)
1600 {
1601 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
1602
1603 /* Add the variable that controls the disassembly flavor. */
1604 {
1605 struct cmd_list_element *new_cmd;
1606
1607 new_cmd = add_set_enum_cmd ("disassembly-flavor", no_class,
1608 valid_flavors,
1609 &disassembly_flavor,
1610 "\
1611 Set the disassembly flavor, the valid values are \"att\" and \"intel\", \
1612 and the default value is \"att\".",
1613 &setlist);
1614 add_show_from_set (new_cmd, &showlist);
1615 }
1616
1617 /* Add the variable that controls the convention for returning
1618 structs. */
1619 {
1620 struct cmd_list_element *new_cmd;
1621
1622 new_cmd = add_set_enum_cmd ("struct-convention", no_class,
1623 valid_conventions,
1624 &struct_convention, "\
1625 Set the convention for returning small structs, valid values \
1626 are \"default\", \"pcc\" and \"reg\", and the default value is \"default\".",
1627 &setlist);
1628 add_show_from_set (new_cmd, &showlist);
1629 }
1630
1631 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
1632 i386_coff_osabi_sniffer);
1633 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_nlm_flavour,
1634 i386_nlm_osabi_sniffer);
1635
1636 gdbarch_register_osabi (bfd_arch_i386, GDB_OSABI_SVR4,
1637 i386_svr4_init_abi);
1638 gdbarch_register_osabi (bfd_arch_i386, GDB_OSABI_GO32,
1639 i386_go32_init_abi);
1640 gdbarch_register_osabi (bfd_arch_i386, GDB_OSABI_NETWARE,
1641 i386_nw_init_abi);
1642 }
This page took 0.063247 seconds and 4 git commands to generate.