gdb/
[deliverable/binutils-gdb.git] / gdb / i386-tdep.c
1 /* Intel 386 target-dependent stuff.
2
3 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software
5 Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
23
24 #include "defs.h"
25 #include "arch-utils.h"
26 #include "command.h"
27 #include "dummy-frame.h"
28 #include "dwarf2-frame.h"
29 #include "doublest.h"
30 #include "floatformat.h"
31 #include "frame.h"
32 #include "frame-base.h"
33 #include "frame-unwind.h"
34 #include "inferior.h"
35 #include "gdbcmd.h"
36 #include "gdbcore.h"
37 #include "objfiles.h"
38 #include "osabi.h"
39 #include "regcache.h"
40 #include "reggroups.h"
41 #include "regset.h"
42 #include "symfile.h"
43 #include "symtab.h"
44 #include "target.h"
45 #include "value.h"
46 #include "dis-asm.h"
47
48 #include "gdb_assert.h"
49 #include "gdb_string.h"
50
51 #include "i386-tdep.h"
52 #include "i387-tdep.h"
53
54 /* Register names. */
55
56 static char *i386_register_names[] =
57 {
58 "eax", "ecx", "edx", "ebx",
59 "esp", "ebp", "esi", "edi",
60 "eip", "eflags", "cs", "ss",
61 "ds", "es", "fs", "gs",
62 "st0", "st1", "st2", "st3",
63 "st4", "st5", "st6", "st7",
64 "fctrl", "fstat", "ftag", "fiseg",
65 "fioff", "foseg", "fooff", "fop",
66 "xmm0", "xmm1", "xmm2", "xmm3",
67 "xmm4", "xmm5", "xmm6", "xmm7",
68 "mxcsr"
69 };
70
71 static const int i386_num_register_names = ARRAY_SIZE (i386_register_names);
72
73 /* Register names for MMX pseudo-registers. */
74
75 static char *i386_mmx_names[] =
76 {
77 "mm0", "mm1", "mm2", "mm3",
78 "mm4", "mm5", "mm6", "mm7"
79 };
80
81 static const int i386_num_mmx_regs = ARRAY_SIZE (i386_mmx_names);
82
83 static int
84 i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
85 {
86 int mm0_regnum = gdbarch_tdep (gdbarch)->mm0_regnum;
87
88 if (mm0_regnum < 0)
89 return 0;
90
91 return (regnum >= mm0_regnum && regnum < mm0_regnum + i386_num_mmx_regs);
92 }
93
94 /* SSE register? */
95
96 static int
97 i386_sse_regnum_p (struct gdbarch *gdbarch, int regnum)
98 {
99 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
100
101 #define I387_ST0_REGNUM tdep->st0_regnum
102 #define I387_NUM_XMM_REGS tdep->num_xmm_regs
103
104 if (I387_NUM_XMM_REGS == 0)
105 return 0;
106
107 return (I387_XMM0_REGNUM <= regnum && regnum < I387_MXCSR_REGNUM);
108
109 #undef I387_ST0_REGNUM
110 #undef I387_NUM_XMM_REGS
111 }
112
113 static int
114 i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
115 {
116 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
117
118 #define I387_ST0_REGNUM tdep->st0_regnum
119 #define I387_NUM_XMM_REGS tdep->num_xmm_regs
120
121 if (I387_NUM_XMM_REGS == 0)
122 return 0;
123
124 return (regnum == I387_MXCSR_REGNUM);
125
126 #undef I387_ST0_REGNUM
127 #undef I387_NUM_XMM_REGS
128 }
129
130 #define I387_ST0_REGNUM (gdbarch_tdep (current_gdbarch)->st0_regnum)
131 #define I387_MM0_REGNUM (gdbarch_tdep (current_gdbarch)->mm0_regnum)
132 #define I387_NUM_XMM_REGS (gdbarch_tdep (current_gdbarch)->num_xmm_regs)
133
134 /* FP register? */
135
136 int
137 i386_fp_regnum_p (int regnum)
138 {
139 if (I387_ST0_REGNUM < 0)
140 return 0;
141
142 return (I387_ST0_REGNUM <= regnum && regnum < I387_FCTRL_REGNUM);
143 }
144
145 int
146 i386_fpc_regnum_p (int regnum)
147 {
148 if (I387_ST0_REGNUM < 0)
149 return 0;
150
151 return (I387_FCTRL_REGNUM <= regnum && regnum < I387_XMM0_REGNUM);
152 }
153
154 /* Return the name of register REGNUM. */
155
156 const char *
157 i386_register_name (int regnum)
158 {
159 if (i386_mmx_regnum_p (current_gdbarch, regnum))
160 return i386_mmx_names[regnum - I387_MM0_REGNUM];
161
162 if (regnum >= 0 && regnum < i386_num_register_names)
163 return i386_register_names[regnum];
164
165 return NULL;
166 }
167
168 /* Convert a dbx register number REG to the appropriate register
169 number used by GDB. */
170
171 static int
172 i386_dbx_reg_to_regnum (int reg)
173 {
174 /* This implements what GCC calls the "default" register map
175 (dbx_register_map[]). */
176
177 if (reg >= 0 && reg <= 7)
178 {
179 /* General-purpose registers. The debug info calls %ebp
180 register 4, and %esp register 5. */
181 if (reg == 4)
182 return 5;
183 else if (reg == 5)
184 return 4;
185 else return reg;
186 }
187 else if (reg >= 12 && reg <= 19)
188 {
189 /* Floating-point registers. */
190 return reg - 12 + I387_ST0_REGNUM;
191 }
192 else if (reg >= 21 && reg <= 28)
193 {
194 /* SSE registers. */
195 return reg - 21 + I387_XMM0_REGNUM;
196 }
197 else if (reg >= 29 && reg <= 36)
198 {
199 /* MMX registers. */
200 return reg - 29 + I387_MM0_REGNUM;
201 }
202
203 /* This will hopefully provoke a warning. */
204 return NUM_REGS + NUM_PSEUDO_REGS;
205 }
206
207 /* Convert SVR4 register number REG to the appropriate register number
208 used by GDB. */
209
210 static int
211 i386_svr4_reg_to_regnum (int reg)
212 {
213 /* This implements the GCC register map that tries to be compatible
214 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
215
216 /* The SVR4 register numbering includes %eip and %eflags, and
217 numbers the floating point registers differently. */
218 if (reg >= 0 && reg <= 9)
219 {
220 /* General-purpose registers. */
221 return reg;
222 }
223 else if (reg >= 11 && reg <= 18)
224 {
225 /* Floating-point registers. */
226 return reg - 11 + I387_ST0_REGNUM;
227 }
228 else if (reg >= 21 && reg <= 36)
229 {
230 /* The SSE and MMX registers have the same numbers as with dbx. */
231 return i386_dbx_reg_to_regnum (reg);
232 }
233
234 switch (reg)
235 {
236 case 37: return I387_FCTRL_REGNUM;
237 case 38: return I387_FSTAT_REGNUM;
238 case 39: return I387_MXCSR_REGNUM;
239 case 40: return I386_ES_REGNUM;
240 case 41: return I386_CS_REGNUM;
241 case 42: return I386_SS_REGNUM;
242 case 43: return I386_DS_REGNUM;
243 case 44: return I386_FS_REGNUM;
244 case 45: return I386_GS_REGNUM;
245 }
246
247 /* This will hopefully provoke a warning. */
248 return NUM_REGS + NUM_PSEUDO_REGS;
249 }
250
251 #undef I387_ST0_REGNUM
252 #undef I387_MM0_REGNUM
253 #undef I387_NUM_XMM_REGS
254 \f
255
256 /* This is the variable that is set with "set disassembly-flavor", and
257 its legitimate values. */
258 static const char att_flavor[] = "att";
259 static const char intel_flavor[] = "intel";
260 static const char *valid_flavors[] =
261 {
262 att_flavor,
263 intel_flavor,
264 NULL
265 };
266 static const char *disassembly_flavor = att_flavor;
267 \f
268
269 /* Use the program counter to determine the contents and size of a
270 breakpoint instruction. Return a pointer to a string of bytes that
271 encode a breakpoint instruction, store the length of the string in
272 *LEN and optionally adjust *PC to point to the correct memory
273 location for inserting the breakpoint.
274
275 On the i386 we have a single breakpoint that fits in a single byte
276 and can be inserted anywhere.
277
278 This function is 64-bit safe. */
279
280 static const gdb_byte *
281 i386_breakpoint_from_pc (CORE_ADDR *pc, int *len)
282 {
283 static gdb_byte break_insn[] = { 0xcc }; /* int 3 */
284
285 *len = sizeof (break_insn);
286 return break_insn;
287 }
288 \f
289 #ifdef I386_REGNO_TO_SYMMETRY
290 #error "The Sequent Symmetry is no longer supported."
291 #endif
292
293 /* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
294 and %esp "belong" to the calling function. Therefore these
295 registers should be saved if they're going to be modified. */
296
297 /* The maximum number of saved registers. This should include all
298 registers mentioned above, and %eip. */
299 #define I386_NUM_SAVED_REGS I386_NUM_GREGS
300
301 struct i386_frame_cache
302 {
303 /* Base address. */
304 CORE_ADDR base;
305 LONGEST sp_offset;
306 CORE_ADDR pc;
307
308 /* Saved registers. */
309 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
310 CORE_ADDR saved_sp;
311 int pc_in_eax;
312
313 /* Stack space reserved for local variables. */
314 long locals;
315 };
316
317 /* Allocate and initialize a frame cache. */
318
319 static struct i386_frame_cache *
320 i386_alloc_frame_cache (void)
321 {
322 struct i386_frame_cache *cache;
323 int i;
324
325 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
326
327 /* Base address. */
328 cache->base = 0;
329 cache->sp_offset = -4;
330 cache->pc = 0;
331
332 /* Saved registers. We initialize these to -1 since zero is a valid
333 offset (that's where %ebp is supposed to be stored). */
334 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
335 cache->saved_regs[i] = -1;
336 cache->saved_sp = 0;
337 cache->pc_in_eax = 0;
338
339 /* Frameless until proven otherwise. */
340 cache->locals = -1;
341
342 return cache;
343 }
344
345 /* If the instruction at PC is a jump, return the address of its
346 target. Otherwise, return PC. */
347
348 static CORE_ADDR
349 i386_follow_jump (CORE_ADDR pc)
350 {
351 gdb_byte op;
352 long delta = 0;
353 int data16 = 0;
354
355 op = read_memory_unsigned_integer (pc, 1);
356 if (op == 0x66)
357 {
358 data16 = 1;
359 op = read_memory_unsigned_integer (pc + 1, 1);
360 }
361
362 switch (op)
363 {
364 case 0xe9:
365 /* Relative jump: if data16 == 0, disp32, else disp16. */
366 if (data16)
367 {
368 delta = read_memory_integer (pc + 2, 2);
369
370 /* Include the size of the jmp instruction (including the
371 0x66 prefix). */
372 delta += 4;
373 }
374 else
375 {
376 delta = read_memory_integer (pc + 1, 4);
377
378 /* Include the size of the jmp instruction. */
379 delta += 5;
380 }
381 break;
382 case 0xeb:
383 /* Relative jump, disp8 (ignore data16). */
384 delta = read_memory_integer (pc + data16 + 1, 1);
385
386 delta += data16 + 2;
387 break;
388 }
389
390 return pc + delta;
391 }
392
393 /* Check whether PC points at a prologue for a function returning a
394 structure or union. If so, it updates CACHE and returns the
395 address of the first instruction after the code sequence that
396 removes the "hidden" argument from the stack or CURRENT_PC,
397 whichever is smaller. Otherwise, return PC. */
398
399 static CORE_ADDR
400 i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
401 struct i386_frame_cache *cache)
402 {
403 /* Functions that return a structure or union start with:
404
405 popl %eax 0x58
406 xchgl %eax, (%esp) 0x87 0x04 0x24
407 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
408
409 (the System V compiler puts out the second `xchg' instruction,
410 and the assembler doesn't try to optimize it, so the 'sib' form
411 gets generated). This sequence is used to get the address of the
412 return buffer for a function that returns a structure. */
413 static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
414 static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
415 gdb_byte buf[4];
416 gdb_byte op;
417
418 if (current_pc <= pc)
419 return pc;
420
421 op = read_memory_unsigned_integer (pc, 1);
422
423 if (op != 0x58) /* popl %eax */
424 return pc;
425
426 read_memory (pc + 1, buf, 4);
427 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
428 return pc;
429
430 if (current_pc == pc)
431 {
432 cache->sp_offset += 4;
433 return current_pc;
434 }
435
436 if (current_pc == pc + 1)
437 {
438 cache->pc_in_eax = 1;
439 return current_pc;
440 }
441
442 if (buf[1] == proto1[1])
443 return pc + 4;
444 else
445 return pc + 5;
446 }
447
448 static CORE_ADDR
449 i386_skip_probe (CORE_ADDR pc)
450 {
451 /* A function may start with
452
453 pushl constant
454 call _probe
455 addl $4, %esp
456
457 followed by
458
459 pushl %ebp
460
461 etc. */
462 gdb_byte buf[8];
463 gdb_byte op;
464
465 op = read_memory_unsigned_integer (pc, 1);
466
467 if (op == 0x68 || op == 0x6a)
468 {
469 int delta;
470
471 /* Skip past the `pushl' instruction; it has either a one-byte or a
472 four-byte operand, depending on the opcode. */
473 if (op == 0x68)
474 delta = 5;
475 else
476 delta = 2;
477
478 /* Read the following 8 bytes, which should be `call _probe' (6
479 bytes) followed by `addl $4,%esp' (2 bytes). */
480 read_memory (pc + delta, buf, sizeof (buf));
481 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
482 pc += delta + sizeof (buf);
483 }
484
485 return pc;
486 }
487
488 /* Maximum instruction length we need to handle. */
489 #define I386_MAX_INSN_LEN 6
490
491 /* Instruction description. */
492 struct i386_insn
493 {
494 size_t len;
495 gdb_byte insn[I386_MAX_INSN_LEN];
496 gdb_byte mask[I386_MAX_INSN_LEN];
497 };
498
499 /* Search for the instruction at PC in the list SKIP_INSNS. Return
500 the first instruction description that matches. Otherwise, return
501 NULL. */
502
503 static struct i386_insn *
504 i386_match_insn (CORE_ADDR pc, struct i386_insn *skip_insns)
505 {
506 struct i386_insn *insn;
507 gdb_byte op;
508
509 op = read_memory_unsigned_integer (pc, 1);
510
511 for (insn = skip_insns; insn->len > 0; insn++)
512 {
513 if ((op & insn->mask[0]) == insn->insn[0])
514 {
515 gdb_byte buf[I386_MAX_INSN_LEN - 1];
516 int insn_matched = 1;
517 size_t i;
518
519 gdb_assert (insn->len > 1);
520 gdb_assert (insn->len <= I386_MAX_INSN_LEN);
521
522 read_memory (pc + 1, buf, insn->len - 1);
523 for (i = 1; i < insn->len; i++)
524 {
525 if ((buf[i - 1] & insn->mask[i]) != insn->insn[i])
526 insn_matched = 0;
527 }
528
529 if (insn_matched)
530 return insn;
531 }
532 }
533
534 return NULL;
535 }
536
537 /* Some special instructions that might be migrated by GCC into the
538 part of the prologue that sets up the new stack frame. Because the
539 stack frame hasn't been setup yet, no registers have been saved
540 yet, and only the scratch registers %eax, %ecx and %edx can be
541 touched. */
542
543 struct i386_insn i386_frame_setup_skip_insns[] =
544 {
545 /* Check for `movb imm8, r' and `movl imm32, r'.
546
547 ??? Should we handle 16-bit operand-sizes here? */
548
549 /* `movb imm8, %al' and `movb imm8, %ah' */
550 /* `movb imm8, %cl' and `movb imm8, %ch' */
551 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
552 /* `movb imm8, %dl' and `movb imm8, %dh' */
553 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
554 /* `movl imm32, %eax' and `movl imm32, %ecx' */
555 { 5, { 0xb8 }, { 0xfe } },
556 /* `movl imm32, %edx' */
557 { 5, { 0xba }, { 0xff } },
558
559 /* Check for `mov imm32, r32'. Note that there is an alternative
560 encoding for `mov m32, %eax'.
561
562 ??? Should we handle SIB adressing here?
563 ??? Should we handle 16-bit operand-sizes here? */
564
565 /* `movl m32, %eax' */
566 { 5, { 0xa1 }, { 0xff } },
567 /* `movl m32, %eax' and `mov; m32, %ecx' */
568 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
569 /* `movl m32, %edx' */
570 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
571
572 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
573 Because of the symmetry, there are actually two ways to encode
574 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
575 opcode bytes 0x31 and 0x33 for `xorl'. */
576
577 /* `subl %eax, %eax' */
578 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
579 /* `subl %ecx, %ecx' */
580 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
581 /* `subl %edx, %edx' */
582 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
583 /* `xorl %eax, %eax' */
584 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
585 /* `xorl %ecx, %ecx' */
586 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
587 /* `xorl %edx, %edx' */
588 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
589 { 0 }
590 };
591
592 /* Check whether PC points at a code that sets up a new stack frame.
593 If so, it updates CACHE and returns the address of the first
594 instruction after the sequence that sets up the frame or LIMIT,
595 whichever is smaller. If we don't recognize the code, return PC. */
596
597 static CORE_ADDR
598 i386_analyze_frame_setup (CORE_ADDR pc, CORE_ADDR limit,
599 struct i386_frame_cache *cache)
600 {
601 struct i386_insn *insn;
602 gdb_byte op;
603 int skip = 0;
604
605 if (limit <= pc)
606 return limit;
607
608 op = read_memory_unsigned_integer (pc, 1);
609
610 if (op == 0x55) /* pushl %ebp */
611 {
612 /* Take into account that we've executed the `pushl %ebp' that
613 starts this instruction sequence. */
614 cache->saved_regs[I386_EBP_REGNUM] = 0;
615 cache->sp_offset += 4;
616 pc++;
617
618 /* If that's all, return now. */
619 if (limit <= pc)
620 return limit;
621
622 /* Check for some special instructions that might be migrated by
623 GCC into the prologue and skip them. At this point in the
624 prologue, code should only touch the scratch registers %eax,
625 %ecx and %edx, so while the number of posibilities is sheer,
626 it is limited.
627
628 Make sure we only skip these instructions if we later see the
629 `movl %esp, %ebp' that actually sets up the frame. */
630 while (pc + skip < limit)
631 {
632 insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
633 if (insn == NULL)
634 break;
635
636 skip += insn->len;
637 }
638
639 /* If that's all, return now. */
640 if (limit <= pc + skip)
641 return limit;
642
643 op = read_memory_unsigned_integer (pc + skip, 1);
644
645 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
646 switch (op)
647 {
648 case 0x8b:
649 if (read_memory_unsigned_integer (pc + skip + 1, 1) != 0xec)
650 return pc;
651 break;
652 case 0x89:
653 if (read_memory_unsigned_integer (pc + skip + 1, 1) != 0xe5)
654 return pc;
655 break;
656 default:
657 return pc;
658 }
659
660 /* OK, we actually have a frame. We just don't know how large
661 it is yet. Set its size to zero. We'll adjust it if
662 necessary. We also now commit to skipping the special
663 instructions mentioned before. */
664 cache->locals = 0;
665 pc += (skip + 2);
666
667 /* If that's all, return now. */
668 if (limit <= pc)
669 return limit;
670
671 /* Check for stack adjustment
672
673 subl $XXX, %esp
674
675 NOTE: You can't subtract a 16-bit immediate from a 32-bit
676 reg, so we don't have to worry about a data16 prefix. */
677 op = read_memory_unsigned_integer (pc, 1);
678 if (op == 0x83)
679 {
680 /* `subl' with 8-bit immediate. */
681 if (read_memory_unsigned_integer (pc + 1, 1) != 0xec)
682 /* Some instruction starting with 0x83 other than `subl'. */
683 return pc;
684
685 /* `subl' with signed 8-bit immediate (though it wouldn't
686 make sense to be negative). */
687 cache->locals = read_memory_integer (pc + 2, 1);
688 return pc + 3;
689 }
690 else if (op == 0x81)
691 {
692 /* Maybe it is `subl' with a 32-bit immediate. */
693 if (read_memory_unsigned_integer (pc + 1, 1) != 0xec)
694 /* Some instruction starting with 0x81 other than `subl'. */
695 return pc;
696
697 /* It is `subl' with a 32-bit immediate. */
698 cache->locals = read_memory_integer (pc + 2, 4);
699 return pc + 6;
700 }
701 else
702 {
703 /* Some instruction other than `subl'. */
704 return pc;
705 }
706 }
707 else if (op == 0xc8) /* enter */
708 {
709 cache->locals = read_memory_unsigned_integer (pc + 1, 2);
710 return pc + 4;
711 }
712
713 return pc;
714 }
715
716 /* Check whether PC points at code that saves registers on the stack.
717 If so, it updates CACHE and returns the address of the first
718 instruction after the register saves or CURRENT_PC, whichever is
719 smaller. Otherwise, return PC. */
720
721 static CORE_ADDR
722 i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
723 struct i386_frame_cache *cache)
724 {
725 CORE_ADDR offset = 0;
726 gdb_byte op;
727 int i;
728
729 if (cache->locals > 0)
730 offset -= cache->locals;
731 for (i = 0; i < 8 && pc < current_pc; i++)
732 {
733 op = read_memory_unsigned_integer (pc, 1);
734 if (op < 0x50 || op > 0x57)
735 break;
736
737 offset -= 4;
738 cache->saved_regs[op - 0x50] = offset;
739 cache->sp_offset += 4;
740 pc++;
741 }
742
743 return pc;
744 }
745
746 /* Do a full analysis of the prologue at PC and update CACHE
747 accordingly. Bail out early if CURRENT_PC is reached. Return the
748 address where the analysis stopped.
749
750 We handle these cases:
751
752 The startup sequence can be at the start of the function, or the
753 function can start with a branch to startup code at the end.
754
755 %ebp can be set up with either the 'enter' instruction, or "pushl
756 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
757 once used in the System V compiler).
758
759 Local space is allocated just below the saved %ebp by either the
760 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
761 16-bit unsigned argument for space to allocate, and the 'addl'
762 instruction could have either a signed byte, or 32-bit immediate.
763
764 Next, the registers used by this function are pushed. With the
765 System V compiler they will always be in the order: %edi, %esi,
766 %ebx (and sometimes a harmless bug causes it to also save but not
767 restore %eax); however, the code below is willing to see the pushes
768 in any order, and will handle up to 8 of them.
769
770 If the setup sequence is at the end of the function, then the next
771 instruction will be a branch back to the start. */
772
773 static CORE_ADDR
774 i386_analyze_prologue (CORE_ADDR pc, CORE_ADDR current_pc,
775 struct i386_frame_cache *cache)
776 {
777 pc = i386_follow_jump (pc);
778 pc = i386_analyze_struct_return (pc, current_pc, cache);
779 pc = i386_skip_probe (pc);
780 pc = i386_analyze_frame_setup (pc, current_pc, cache);
781 return i386_analyze_register_saves (pc, current_pc, cache);
782 }
783
784 /* Return PC of first real instruction. */
785
786 static CORE_ADDR
787 i386_skip_prologue (CORE_ADDR start_pc)
788 {
789 static gdb_byte pic_pat[6] =
790 {
791 0xe8, 0, 0, 0, 0, /* call 0x0 */
792 0x5b, /* popl %ebx */
793 };
794 struct i386_frame_cache cache;
795 CORE_ADDR pc;
796 gdb_byte op;
797 int i;
798
799 cache.locals = -1;
800 pc = i386_analyze_prologue (start_pc, 0xffffffff, &cache);
801 if (cache.locals < 0)
802 return start_pc;
803
804 /* Found valid frame setup. */
805
806 /* The native cc on SVR4 in -K PIC mode inserts the following code
807 to get the address of the global offset table (GOT) into register
808 %ebx:
809
810 call 0x0
811 popl %ebx
812 movl %ebx,x(%ebp) (optional)
813 addl y,%ebx
814
815 This code is with the rest of the prologue (at the end of the
816 function), so we have to skip it to get to the first real
817 instruction at the start of the function. */
818
819 for (i = 0; i < 6; i++)
820 {
821 op = read_memory_unsigned_integer (pc + i, 1);
822 if (pic_pat[i] != op)
823 break;
824 }
825 if (i == 6)
826 {
827 int delta = 6;
828
829 op = read_memory_unsigned_integer (pc + delta, 1);
830
831 if (op == 0x89) /* movl %ebx, x(%ebp) */
832 {
833 op = read_memory_unsigned_integer (pc + delta + 1, 1);
834
835 if (op == 0x5d) /* One byte offset from %ebp. */
836 delta += 3;
837 else if (op == 0x9d) /* Four byte offset from %ebp. */
838 delta += 6;
839 else /* Unexpected instruction. */
840 delta = 0;
841
842 op = read_memory_unsigned_integer (pc + delta, 1);
843 }
844
845 /* addl y,%ebx */
846 if (delta > 0 && op == 0x81
847 && read_memory_unsigned_integer (pc + delta + 1, 1) == 0xc3);
848 {
849 pc += delta + 6;
850 }
851 }
852
853 /* If the function starts with a branch (to startup code at the end)
854 the last instruction should bring us back to the first
855 instruction of the real code. */
856 if (i386_follow_jump (start_pc) != start_pc)
857 pc = i386_follow_jump (pc);
858
859 return pc;
860 }
861
862 /* This function is 64-bit safe. */
863
864 static CORE_ADDR
865 i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
866 {
867 gdb_byte buf[8];
868
869 frame_unwind_register (next_frame, PC_REGNUM, buf);
870 return extract_typed_address (buf, builtin_type_void_func_ptr);
871 }
872 \f
873
874 /* Normal frames. */
875
876 static struct i386_frame_cache *
877 i386_frame_cache (struct frame_info *next_frame, void **this_cache)
878 {
879 struct i386_frame_cache *cache;
880 gdb_byte buf[4];
881 int i;
882
883 if (*this_cache)
884 return *this_cache;
885
886 cache = i386_alloc_frame_cache ();
887 *this_cache = cache;
888
889 /* In principle, for normal frames, %ebp holds the frame pointer,
890 which holds the base address for the current stack frame.
891 However, for functions that don't need it, the frame pointer is
892 optional. For these "frameless" functions the frame pointer is
893 actually the frame pointer of the calling frame. Signal
894 trampolines are just a special case of a "frameless" function.
895 They (usually) share their frame pointer with the frame that was
896 in progress when the signal occurred. */
897
898 frame_unwind_register (next_frame, I386_EBP_REGNUM, buf);
899 cache->base = extract_unsigned_integer (buf, 4);
900 if (cache->base == 0)
901 return cache;
902
903 /* For normal frames, %eip is stored at 4(%ebp). */
904 cache->saved_regs[I386_EIP_REGNUM] = 4;
905
906 cache->pc = frame_func_unwind (next_frame);
907 if (cache->pc != 0)
908 i386_analyze_prologue (cache->pc, frame_pc_unwind (next_frame), cache);
909
910 if (cache->locals < 0)
911 {
912 /* We didn't find a valid frame, which means that CACHE->base
913 currently holds the frame pointer for our calling frame. If
914 we're at the start of a function, or somewhere half-way its
915 prologue, the function's frame probably hasn't been fully
916 setup yet. Try to reconstruct the base address for the stack
917 frame by looking at the stack pointer. For truly "frameless"
918 functions this might work too. */
919
920 frame_unwind_register (next_frame, I386_ESP_REGNUM, buf);
921 cache->base = extract_unsigned_integer (buf, 4) + cache->sp_offset;
922 }
923
924 /* Now that we have the base address for the stack frame we can
925 calculate the value of %esp in the calling frame. */
926 cache->saved_sp = cache->base + 8;
927
928 /* Adjust all the saved registers such that they contain addresses
929 instead of offsets. */
930 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
931 if (cache->saved_regs[i] != -1)
932 cache->saved_regs[i] += cache->base;
933
934 return cache;
935 }
936
937 static void
938 i386_frame_this_id (struct frame_info *next_frame, void **this_cache,
939 struct frame_id *this_id)
940 {
941 struct i386_frame_cache *cache = i386_frame_cache (next_frame, this_cache);
942
943 /* This marks the outermost frame. */
944 if (cache->base == 0)
945 return;
946
947 /* See the end of i386_push_dummy_call. */
948 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
949 }
950
951 static void
952 i386_frame_prev_register (struct frame_info *next_frame, void **this_cache,
953 int regnum, int *optimizedp,
954 enum lval_type *lvalp, CORE_ADDR *addrp,
955 int *realnump, gdb_byte *valuep)
956 {
957 struct i386_frame_cache *cache = i386_frame_cache (next_frame, this_cache);
958
959 gdb_assert (regnum >= 0);
960
961 /* The System V ABI says that:
962
963 "The flags register contains the system flags, such as the
964 direction flag and the carry flag. The direction flag must be
965 set to the forward (that is, zero) direction before entry and
966 upon exit from a function. Other user flags have no specified
967 role in the standard calling sequence and are not preserved."
968
969 To guarantee the "upon exit" part of that statement we fake a
970 saved flags register that has its direction flag cleared.
971
972 Note that GCC doesn't seem to rely on the fact that the direction
973 flag is cleared after a function return; it always explicitly
974 clears the flag before operations where it matters.
975
976 FIXME: kettenis/20030316: I'm not quite sure whether this is the
977 right thing to do. The way we fake the flags register here makes
978 it impossible to change it. */
979
980 if (regnum == I386_EFLAGS_REGNUM)
981 {
982 *optimizedp = 0;
983 *lvalp = not_lval;
984 *addrp = 0;
985 *realnump = -1;
986 if (valuep)
987 {
988 ULONGEST val;
989
990 /* Clear the direction flag. */
991 val = frame_unwind_register_unsigned (next_frame,
992 I386_EFLAGS_REGNUM);
993 val &= ~(1 << 10);
994 store_unsigned_integer (valuep, 4, val);
995 }
996
997 return;
998 }
999
1000 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
1001 {
1002 *optimizedp = 0;
1003 *lvalp = lval_register;
1004 *addrp = 0;
1005 *realnump = I386_EAX_REGNUM;
1006 if (valuep)
1007 frame_unwind_register (next_frame, (*realnump), valuep);
1008 return;
1009 }
1010
1011 if (regnum == I386_ESP_REGNUM && cache->saved_sp)
1012 {
1013 *optimizedp = 0;
1014 *lvalp = not_lval;
1015 *addrp = 0;
1016 *realnump = -1;
1017 if (valuep)
1018 {
1019 /* Store the value. */
1020 store_unsigned_integer (valuep, 4, cache->saved_sp);
1021 }
1022 return;
1023 }
1024
1025 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
1026 {
1027 *optimizedp = 0;
1028 *lvalp = lval_memory;
1029 *addrp = cache->saved_regs[regnum];
1030 *realnump = -1;
1031 if (valuep)
1032 {
1033 /* Read the value in from memory. */
1034 read_memory (*addrp, valuep,
1035 register_size (current_gdbarch, regnum));
1036 }
1037 return;
1038 }
1039
1040 *optimizedp = 0;
1041 *lvalp = lval_register;
1042 *addrp = 0;
1043 *realnump = regnum;
1044 if (valuep)
1045 frame_unwind_register (next_frame, (*realnump), valuep);
1046 }
1047
1048 static const struct frame_unwind i386_frame_unwind =
1049 {
1050 NORMAL_FRAME,
1051 i386_frame_this_id,
1052 i386_frame_prev_register
1053 };
1054
1055 static const struct frame_unwind *
1056 i386_frame_sniffer (struct frame_info *next_frame)
1057 {
1058 return &i386_frame_unwind;
1059 }
1060 \f
1061
1062 /* Signal trampolines. */
1063
1064 static struct i386_frame_cache *
1065 i386_sigtramp_frame_cache (struct frame_info *next_frame, void **this_cache)
1066 {
1067 struct i386_frame_cache *cache;
1068 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1069 CORE_ADDR addr;
1070 gdb_byte buf[4];
1071
1072 if (*this_cache)
1073 return *this_cache;
1074
1075 cache = i386_alloc_frame_cache ();
1076
1077 frame_unwind_register (next_frame, I386_ESP_REGNUM, buf);
1078 cache->base = extract_unsigned_integer (buf, 4) - 4;
1079
1080 addr = tdep->sigcontext_addr (next_frame);
1081 if (tdep->sc_reg_offset)
1082 {
1083 int i;
1084
1085 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
1086
1087 for (i = 0; i < tdep->sc_num_regs; i++)
1088 if (tdep->sc_reg_offset[i] != -1)
1089 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
1090 }
1091 else
1092 {
1093 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
1094 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
1095 }
1096
1097 *this_cache = cache;
1098 return cache;
1099 }
1100
1101 static void
1102 i386_sigtramp_frame_this_id (struct frame_info *next_frame, void **this_cache,
1103 struct frame_id *this_id)
1104 {
1105 struct i386_frame_cache *cache =
1106 i386_sigtramp_frame_cache (next_frame, this_cache);
1107
1108 /* See the end of i386_push_dummy_call. */
1109 (*this_id) = frame_id_build (cache->base + 8, frame_pc_unwind (next_frame));
1110 }
1111
1112 static void
1113 i386_sigtramp_frame_prev_register (struct frame_info *next_frame,
1114 void **this_cache,
1115 int regnum, int *optimizedp,
1116 enum lval_type *lvalp, CORE_ADDR *addrp,
1117 int *realnump, gdb_byte *valuep)
1118 {
1119 /* Make sure we've initialized the cache. */
1120 i386_sigtramp_frame_cache (next_frame, this_cache);
1121
1122 i386_frame_prev_register (next_frame, this_cache, regnum,
1123 optimizedp, lvalp, addrp, realnump, valuep);
1124 }
1125
1126 static const struct frame_unwind i386_sigtramp_frame_unwind =
1127 {
1128 SIGTRAMP_FRAME,
1129 i386_sigtramp_frame_this_id,
1130 i386_sigtramp_frame_prev_register
1131 };
1132
1133 static const struct frame_unwind *
1134 i386_sigtramp_frame_sniffer (struct frame_info *next_frame)
1135 {
1136 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (next_frame));
1137
1138 /* We shouldn't even bother if we don't have a sigcontext_addr
1139 handler. */
1140 if (tdep->sigcontext_addr == NULL)
1141 return NULL;
1142
1143 if (tdep->sigtramp_p != NULL)
1144 {
1145 if (tdep->sigtramp_p (next_frame))
1146 return &i386_sigtramp_frame_unwind;
1147 }
1148
1149 if (tdep->sigtramp_start != 0)
1150 {
1151 CORE_ADDR pc = frame_pc_unwind (next_frame);
1152
1153 gdb_assert (tdep->sigtramp_end != 0);
1154 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
1155 return &i386_sigtramp_frame_unwind;
1156 }
1157
1158 return NULL;
1159 }
1160 \f
1161
1162 static CORE_ADDR
1163 i386_frame_base_address (struct frame_info *next_frame, void **this_cache)
1164 {
1165 struct i386_frame_cache *cache = i386_frame_cache (next_frame, this_cache);
1166
1167 return cache->base;
1168 }
1169
1170 static const struct frame_base i386_frame_base =
1171 {
1172 &i386_frame_unwind,
1173 i386_frame_base_address,
1174 i386_frame_base_address,
1175 i386_frame_base_address
1176 };
1177
1178 static struct frame_id
1179 i386_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
1180 {
1181 gdb_byte buf[4];
1182 CORE_ADDR fp;
1183
1184 frame_unwind_register (next_frame, I386_EBP_REGNUM, buf);
1185 fp = extract_unsigned_integer (buf, 4);
1186
1187 /* See the end of i386_push_dummy_call. */
1188 return frame_id_build (fp + 8, frame_pc_unwind (next_frame));
1189 }
1190 \f
1191
1192 /* Figure out where the longjmp will land. Slurp the args out of the
1193 stack. We expect the first arg to be a pointer to the jmp_buf
1194 structure from which we extract the address that we will land at.
1195 This address is copied into PC. This routine returns non-zero on
1196 success.
1197
1198 This function is 64-bit safe. */
1199
1200 static int
1201 i386_get_longjmp_target (CORE_ADDR *pc)
1202 {
1203 gdb_byte buf[8];
1204 CORE_ADDR sp, jb_addr;
1205 int jb_pc_offset = gdbarch_tdep (current_gdbarch)->jb_pc_offset;
1206 int len = TYPE_LENGTH (builtin_type_void_func_ptr);
1207
1208 /* If JB_PC_OFFSET is -1, we have no way to find out where the
1209 longjmp will land. */
1210 if (jb_pc_offset == -1)
1211 return 0;
1212
1213 /* Don't use I386_ESP_REGNUM here, since this function is also used
1214 for AMD64. */
1215 regcache_cooked_read (current_regcache, SP_REGNUM, buf);
1216 sp = extract_typed_address (buf, builtin_type_void_data_ptr);
1217 if (target_read_memory (sp + len, buf, len))
1218 return 0;
1219
1220 jb_addr = extract_typed_address (buf, builtin_type_void_data_ptr);
1221 if (target_read_memory (jb_addr + jb_pc_offset, buf, len))
1222 return 0;
1223
1224 *pc = extract_typed_address (buf, builtin_type_void_func_ptr);
1225 return 1;
1226 }
1227 \f
1228
1229 static CORE_ADDR
1230 i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1231 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
1232 struct value **args, CORE_ADDR sp, int struct_return,
1233 CORE_ADDR struct_addr)
1234 {
1235 gdb_byte buf[4];
1236 int i;
1237
1238 /* Push arguments in reverse order. */
1239 for (i = nargs - 1; i >= 0; i--)
1240 {
1241 int len = TYPE_LENGTH (value_enclosing_type (args[i]));
1242
1243 /* The System V ABI says that:
1244
1245 "An argument's size is increased, if necessary, to make it a
1246 multiple of [32-bit] words. This may require tail padding,
1247 depending on the size of the argument."
1248
1249 This makes sure the stack says word-aligned. */
1250 sp -= (len + 3) & ~3;
1251 write_memory (sp, value_contents_all (args[i]), len);
1252 }
1253
1254 /* Push value address. */
1255 if (struct_return)
1256 {
1257 sp -= 4;
1258 store_unsigned_integer (buf, 4, struct_addr);
1259 write_memory (sp, buf, 4);
1260 }
1261
1262 /* Store return address. */
1263 sp -= 4;
1264 store_unsigned_integer (buf, 4, bp_addr);
1265 write_memory (sp, buf, 4);
1266
1267 /* Finally, update the stack pointer... */
1268 store_unsigned_integer (buf, 4, sp);
1269 regcache_cooked_write (regcache, I386_ESP_REGNUM, buf);
1270
1271 /* ...and fake a frame pointer. */
1272 regcache_cooked_write (regcache, I386_EBP_REGNUM, buf);
1273
1274 /* MarkK wrote: This "+ 8" is all over the place:
1275 (i386_frame_this_id, i386_sigtramp_frame_this_id,
1276 i386_unwind_dummy_id). It's there, since all frame unwinders for
1277 a given target have to agree (within a certain margin) on the
1278 definition of the stack address of a frame. Otherwise
1279 frame_id_inner() won't work correctly. Since DWARF2/GCC uses the
1280 stack address *before* the function call as a frame's CFA. On
1281 the i386, when %ebp is used as a frame pointer, the offset
1282 between the contents %ebp and the CFA as defined by GCC. */
1283 return sp + 8;
1284 }
1285
1286 /* These registers are used for returning integers (and on some
1287 targets also for returning `struct' and `union' values when their
1288 size and alignment match an integer type). */
1289 #define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
1290 #define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
1291
1292 /* Read, for architecture GDBARCH, a function return value of TYPE
1293 from REGCACHE, and copy that into VALBUF. */
1294
1295 static void
1296 i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
1297 struct regcache *regcache, gdb_byte *valbuf)
1298 {
1299 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1300 int len = TYPE_LENGTH (type);
1301 gdb_byte buf[I386_MAX_REGISTER_SIZE];
1302
1303 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1304 {
1305 if (tdep->st0_regnum < 0)
1306 {
1307 warning (_("Cannot find floating-point return value."));
1308 memset (valbuf, 0, len);
1309 return;
1310 }
1311
1312 /* Floating-point return values can be found in %st(0). Convert
1313 its contents to the desired type. This is probably not
1314 exactly how it would happen on the target itself, but it is
1315 the best we can do. */
1316 regcache_raw_read (regcache, I386_ST0_REGNUM, buf);
1317 convert_typed_floating (buf, builtin_type_i387_ext, valbuf, type);
1318 }
1319 else
1320 {
1321 int low_size = register_size (current_gdbarch, LOW_RETURN_REGNUM);
1322 int high_size = register_size (current_gdbarch, HIGH_RETURN_REGNUM);
1323
1324 if (len <= low_size)
1325 {
1326 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
1327 memcpy (valbuf, buf, len);
1328 }
1329 else if (len <= (low_size + high_size))
1330 {
1331 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
1332 memcpy (valbuf, buf, low_size);
1333 regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
1334 memcpy (valbuf + low_size, buf, len - low_size);
1335 }
1336 else
1337 internal_error (__FILE__, __LINE__,
1338 _("Cannot extract return value of %d bytes long."), len);
1339 }
1340 }
1341
1342 /* Write, for architecture GDBARCH, a function return value of TYPE
1343 from VALBUF into REGCACHE. */
1344
1345 static void
1346 i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
1347 struct regcache *regcache, const gdb_byte *valbuf)
1348 {
1349 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1350 int len = TYPE_LENGTH (type);
1351
1352 /* Define I387_ST0_REGNUM such that we use the proper definitions
1353 for the architecture. */
1354 #define I387_ST0_REGNUM I386_ST0_REGNUM
1355
1356 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1357 {
1358 ULONGEST fstat;
1359 gdb_byte buf[I386_MAX_REGISTER_SIZE];
1360
1361 if (tdep->st0_regnum < 0)
1362 {
1363 warning (_("Cannot set floating-point return value."));
1364 return;
1365 }
1366
1367 /* Returning floating-point values is a bit tricky. Apart from
1368 storing the return value in %st(0), we have to simulate the
1369 state of the FPU at function return point. */
1370
1371 /* Convert the value found in VALBUF to the extended
1372 floating-point format used by the FPU. This is probably
1373 not exactly how it would happen on the target itself, but
1374 it is the best we can do. */
1375 convert_typed_floating (valbuf, type, buf, builtin_type_i387_ext);
1376 regcache_raw_write (regcache, I386_ST0_REGNUM, buf);
1377
1378 /* Set the top of the floating-point register stack to 7. The
1379 actual value doesn't really matter, but 7 is what a normal
1380 function return would end up with if the program started out
1381 with a freshly initialized FPU. */
1382 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM, &fstat);
1383 fstat |= (7 << 11);
1384 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM, fstat);
1385
1386 /* Mark %st(1) through %st(7) as empty. Since we set the top of
1387 the floating-point register stack to 7, the appropriate value
1388 for the tag word is 0x3fff. */
1389 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM, 0x3fff);
1390 }
1391 else
1392 {
1393 int low_size = register_size (current_gdbarch, LOW_RETURN_REGNUM);
1394 int high_size = register_size (current_gdbarch, HIGH_RETURN_REGNUM);
1395
1396 if (len <= low_size)
1397 regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
1398 else if (len <= (low_size + high_size))
1399 {
1400 regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
1401 regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
1402 len - low_size, valbuf + low_size);
1403 }
1404 else
1405 internal_error (__FILE__, __LINE__,
1406 _("Cannot store return value of %d bytes long."), len);
1407 }
1408
1409 #undef I387_ST0_REGNUM
1410 }
1411 \f
1412
1413 /* This is the variable that is set with "set struct-convention", and
1414 its legitimate values. */
1415 static const char default_struct_convention[] = "default";
1416 static const char pcc_struct_convention[] = "pcc";
1417 static const char reg_struct_convention[] = "reg";
1418 static const char *valid_conventions[] =
1419 {
1420 default_struct_convention,
1421 pcc_struct_convention,
1422 reg_struct_convention,
1423 NULL
1424 };
1425 static const char *struct_convention = default_struct_convention;
1426
1427 /* Return non-zero if TYPE, which is assumed to be a structure or
1428 union type, should be returned in registers for architecture
1429 GDBARCH. */
1430
1431 static int
1432 i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
1433 {
1434 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1435 enum type_code code = TYPE_CODE (type);
1436 int len = TYPE_LENGTH (type);
1437
1438 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
1439
1440 if (struct_convention == pcc_struct_convention
1441 || (struct_convention == default_struct_convention
1442 && tdep->struct_return == pcc_struct_return))
1443 return 0;
1444
1445 /* Structures consisting of a single `float', `double' or 'long
1446 double' member are returned in %st(0). */
1447 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
1448 {
1449 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
1450 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1451 return (len == 4 || len == 8 || len == 12);
1452 }
1453
1454 return (len == 1 || len == 2 || len == 4 || len == 8);
1455 }
1456
1457 /* Determine, for architecture GDBARCH, how a return value of TYPE
1458 should be returned. If it is supposed to be returned in registers,
1459 and READBUF is non-zero, read the appropriate value from REGCACHE,
1460 and copy it into READBUF. If WRITEBUF is non-zero, write the value
1461 from WRITEBUF into REGCACHE. */
1462
1463 static enum return_value_convention
1464 i386_return_value (struct gdbarch *gdbarch, struct type *type,
1465 struct regcache *regcache, gdb_byte *readbuf,
1466 const gdb_byte *writebuf)
1467 {
1468 enum type_code code = TYPE_CODE (type);
1469
1470 if ((code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION)
1471 && !i386_reg_struct_return_p (gdbarch, type))
1472 {
1473 /* The System V ABI says that:
1474
1475 "A function that returns a structure or union also sets %eax
1476 to the value of the original address of the caller's area
1477 before it returns. Thus when the caller receives control
1478 again, the address of the returned object resides in register
1479 %eax and can be used to access the object."
1480
1481 So the ABI guarantees that we can always find the return
1482 value just after the function has returned. */
1483
1484 if (readbuf)
1485 {
1486 ULONGEST addr;
1487
1488 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
1489 read_memory (addr, readbuf, TYPE_LENGTH (type));
1490 }
1491
1492 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
1493 }
1494
1495 /* This special case is for structures consisting of a single
1496 `float', `double' or 'long double' member. These structures are
1497 returned in %st(0). For these structures, we call ourselves
1498 recursively, changing TYPE into the type of the first member of
1499 the structure. Since that should work for all structures that
1500 have only one member, we don't bother to check the member's type
1501 here. */
1502 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
1503 {
1504 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
1505 return i386_return_value (gdbarch, type, regcache, readbuf, writebuf);
1506 }
1507
1508 if (readbuf)
1509 i386_extract_return_value (gdbarch, type, regcache, readbuf);
1510 if (writebuf)
1511 i386_store_return_value (gdbarch, type, regcache, writebuf);
1512
1513 return RETURN_VALUE_REGISTER_CONVENTION;
1514 }
1515 \f
1516
1517 /* Types for the MMX and SSE registers. */
1518 static struct type *i386_mmx_type;
1519 static struct type *i386_sse_type;
1520
1521 /* Construct the type for MMX registers. */
1522 static struct type *
1523 i386_build_mmx_type (void)
1524 {
1525 /* The type we're building is this: */
1526 #if 0
1527 union __gdb_builtin_type_vec64i
1528 {
1529 int64_t uint64;
1530 int32_t v2_int32[2];
1531 int16_t v4_int16[4];
1532 int8_t v8_int8[8];
1533 };
1534 #endif
1535
1536 if (! i386_mmx_type)
1537 {
1538 struct type *t;
1539
1540 t = init_composite_type ("__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
1541 append_composite_type_field (t, "uint64", builtin_type_int64);
1542 append_composite_type_field (t, "v2_int32", builtin_type_v2_int32);
1543 append_composite_type_field (t, "v4_int16", builtin_type_v4_int16);
1544 append_composite_type_field (t, "v8_int8", builtin_type_v8_int8);
1545
1546 TYPE_FLAGS (t) |= TYPE_FLAG_VECTOR;
1547 TYPE_NAME (t) = "builtin_type_vec64i";
1548
1549 i386_mmx_type = t;
1550 }
1551
1552 return i386_mmx_type;
1553 }
1554
1555 /* Construct the type for SSE registers. */
1556 static struct type *
1557 i386_build_sse_type (void)
1558 {
1559 if (! i386_sse_type)
1560 {
1561 struct type *t;
1562
1563 t = init_composite_type ("__gdb_builtin_type_vec128i", TYPE_CODE_UNION);
1564 append_composite_type_field (t, "v4_float", builtin_type_v4_float);
1565 append_composite_type_field (t, "v2_double", builtin_type_v2_double);
1566 append_composite_type_field (t, "v16_int8", builtin_type_v16_int8);
1567 append_composite_type_field (t, "v8_int16", builtin_type_v8_int16);
1568 append_composite_type_field (t, "v4_int32", builtin_type_v4_int32);
1569 append_composite_type_field (t, "v2_int64", builtin_type_v2_int64);
1570 append_composite_type_field (t, "uint128", builtin_type_int128);
1571
1572 TYPE_FLAGS (t) |= TYPE_FLAG_VECTOR;
1573 TYPE_NAME (t) = "builtin_type_vec128i";
1574
1575 i386_sse_type = t;
1576 }
1577
1578 return i386_sse_type;
1579 }
1580
1581 /* Return the GDB type object for the "standard" data type of data in
1582 register REGNUM. Perhaps %esi and %edi should go here, but
1583 potentially they could be used for things other than address. */
1584
1585 static struct type *
1586 i386_register_type (struct gdbarch *gdbarch, int regnum)
1587 {
1588 if (regnum == I386_EIP_REGNUM)
1589 return builtin_type_void_func_ptr;
1590
1591 if (regnum == I386_EBP_REGNUM || regnum == I386_ESP_REGNUM)
1592 return builtin_type_void_data_ptr;
1593
1594 if (i386_fp_regnum_p (regnum))
1595 return builtin_type_i387_ext;
1596
1597 if (i386_sse_regnum_p (gdbarch, regnum))
1598 return i386_build_sse_type ();
1599
1600 if (i386_mmx_regnum_p (gdbarch, regnum))
1601 return i386_build_mmx_type ();
1602
1603 return builtin_type_int;
1604 }
1605
1606 /* Map a cooked register onto a raw register or memory. For the i386,
1607 the MMX registers need to be mapped onto floating point registers. */
1608
1609 static int
1610 i386_mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
1611 {
1612 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
1613 int mmxreg, fpreg;
1614 ULONGEST fstat;
1615 int tos;
1616
1617 /* Define I387_ST0_REGNUM such that we use the proper definitions
1618 for REGCACHE's architecture. */
1619 #define I387_ST0_REGNUM tdep->st0_regnum
1620
1621 mmxreg = regnum - tdep->mm0_regnum;
1622 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM, &fstat);
1623 tos = (fstat >> 11) & 0x7;
1624 fpreg = (mmxreg + tos) % 8;
1625
1626 return (I387_ST0_REGNUM + fpreg);
1627
1628 #undef I387_ST0_REGNUM
1629 }
1630
1631 static void
1632 i386_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
1633 int regnum, gdb_byte *buf)
1634 {
1635 if (i386_mmx_regnum_p (gdbarch, regnum))
1636 {
1637 gdb_byte mmx_buf[MAX_REGISTER_SIZE];
1638 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
1639
1640 /* Extract (always little endian). */
1641 regcache_raw_read (regcache, fpnum, mmx_buf);
1642 memcpy (buf, mmx_buf, register_size (gdbarch, regnum));
1643 }
1644 else
1645 regcache_raw_read (regcache, regnum, buf);
1646 }
1647
1648 static void
1649 i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
1650 int regnum, const gdb_byte *buf)
1651 {
1652 if (i386_mmx_regnum_p (gdbarch, regnum))
1653 {
1654 gdb_byte mmx_buf[MAX_REGISTER_SIZE];
1655 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
1656
1657 /* Read ... */
1658 regcache_raw_read (regcache, fpnum, mmx_buf);
1659 /* ... Modify ... (always little endian). */
1660 memcpy (mmx_buf, buf, register_size (gdbarch, regnum));
1661 /* ... Write. */
1662 regcache_raw_write (regcache, fpnum, mmx_buf);
1663 }
1664 else
1665 regcache_raw_write (regcache, regnum, buf);
1666 }
1667 \f
1668
1669 /* Return the register number of the register allocated by GCC after
1670 REGNUM, or -1 if there is no such register. */
1671
1672 static int
1673 i386_next_regnum (int regnum)
1674 {
1675 /* GCC allocates the registers in the order:
1676
1677 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
1678
1679 Since storing a variable in %esp doesn't make any sense we return
1680 -1 for %ebp and for %esp itself. */
1681 static int next_regnum[] =
1682 {
1683 I386_EDX_REGNUM, /* Slot for %eax. */
1684 I386_EBX_REGNUM, /* Slot for %ecx. */
1685 I386_ECX_REGNUM, /* Slot for %edx. */
1686 I386_ESI_REGNUM, /* Slot for %ebx. */
1687 -1, -1, /* Slots for %esp and %ebp. */
1688 I386_EDI_REGNUM, /* Slot for %esi. */
1689 I386_EBP_REGNUM /* Slot for %edi. */
1690 };
1691
1692 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
1693 return next_regnum[regnum];
1694
1695 return -1;
1696 }
1697
1698 /* Return nonzero if a value of type TYPE stored in register REGNUM
1699 needs any special handling. */
1700
1701 static int
1702 i386_convert_register_p (int regnum, struct type *type)
1703 {
1704 int len = TYPE_LENGTH (type);
1705
1706 /* Values may be spread across multiple registers. Most debugging
1707 formats aren't expressive enough to specify the locations, so
1708 some heuristics is involved. Right now we only handle types that
1709 have a length that is a multiple of the word size, since GCC
1710 doesn't seem to put any other types into registers. */
1711 if (len > 4 && len % 4 == 0)
1712 {
1713 int last_regnum = regnum;
1714
1715 while (len > 4)
1716 {
1717 last_regnum = i386_next_regnum (last_regnum);
1718 len -= 4;
1719 }
1720
1721 if (last_regnum != -1)
1722 return 1;
1723 }
1724
1725 return i386_fp_regnum_p (regnum);
1726 }
1727
1728 /* Read a value of type TYPE from register REGNUM in frame FRAME, and
1729 return its contents in TO. */
1730
1731 static void
1732 i386_register_to_value (struct frame_info *frame, int regnum,
1733 struct type *type, gdb_byte *to)
1734 {
1735 int len = TYPE_LENGTH (type);
1736
1737 /* FIXME: kettenis/20030609: What should we do if REGNUM isn't
1738 available in FRAME (i.e. if it wasn't saved)? */
1739
1740 if (i386_fp_regnum_p (regnum))
1741 {
1742 i387_register_to_value (frame, regnum, type, to);
1743 return;
1744 }
1745
1746 /* Read a value spread across multiple registers. */
1747
1748 gdb_assert (len > 4 && len % 4 == 0);
1749
1750 while (len > 0)
1751 {
1752 gdb_assert (regnum != -1);
1753 gdb_assert (register_size (current_gdbarch, regnum) == 4);
1754
1755 get_frame_register (frame, regnum, to);
1756 regnum = i386_next_regnum (regnum);
1757 len -= 4;
1758 to += 4;
1759 }
1760 }
1761
1762 /* Write the contents FROM of a value of type TYPE into register
1763 REGNUM in frame FRAME. */
1764
1765 static void
1766 i386_value_to_register (struct frame_info *frame, int regnum,
1767 struct type *type, const gdb_byte *from)
1768 {
1769 int len = TYPE_LENGTH (type);
1770
1771 if (i386_fp_regnum_p (regnum))
1772 {
1773 i387_value_to_register (frame, regnum, type, from);
1774 return;
1775 }
1776
1777 /* Write a value spread across multiple registers. */
1778
1779 gdb_assert (len > 4 && len % 4 == 0);
1780
1781 while (len > 0)
1782 {
1783 gdb_assert (regnum != -1);
1784 gdb_assert (register_size (current_gdbarch, regnum) == 4);
1785
1786 put_frame_register (frame, regnum, from);
1787 regnum = i386_next_regnum (regnum);
1788 len -= 4;
1789 from += 4;
1790 }
1791 }
1792 \f
1793 /* Supply register REGNUM from the buffer specified by GREGS and LEN
1794 in the general-purpose register set REGSET to register cache
1795 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
1796
1797 void
1798 i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
1799 int regnum, const void *gregs, size_t len)
1800 {
1801 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
1802 const gdb_byte *regs = gregs;
1803 int i;
1804
1805 gdb_assert (len == tdep->sizeof_gregset);
1806
1807 for (i = 0; i < tdep->gregset_num_regs; i++)
1808 {
1809 if ((regnum == i || regnum == -1)
1810 && tdep->gregset_reg_offset[i] != -1)
1811 regcache_raw_supply (regcache, i, regs + tdep->gregset_reg_offset[i]);
1812 }
1813 }
1814
1815 /* Collect register REGNUM from the register cache REGCACHE and store
1816 it in the buffer specified by GREGS and LEN as described by the
1817 general-purpose register set REGSET. If REGNUM is -1, do this for
1818 all registers in REGSET. */
1819
1820 void
1821 i386_collect_gregset (const struct regset *regset,
1822 const struct regcache *regcache,
1823 int regnum, void *gregs, size_t len)
1824 {
1825 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
1826 gdb_byte *regs = gregs;
1827 int i;
1828
1829 gdb_assert (len == tdep->sizeof_gregset);
1830
1831 for (i = 0; i < tdep->gregset_num_regs; i++)
1832 {
1833 if ((regnum == i || regnum == -1)
1834 && tdep->gregset_reg_offset[i] != -1)
1835 regcache_raw_collect (regcache, i, regs + tdep->gregset_reg_offset[i]);
1836 }
1837 }
1838
1839 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
1840 in the floating-point register set REGSET to register cache
1841 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
1842
1843 static void
1844 i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
1845 int regnum, const void *fpregs, size_t len)
1846 {
1847 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
1848
1849 if (len == I387_SIZEOF_FXSAVE)
1850 {
1851 i387_supply_fxsave (regcache, regnum, fpregs);
1852 return;
1853 }
1854
1855 gdb_assert (len == tdep->sizeof_fpregset);
1856 i387_supply_fsave (regcache, regnum, fpregs);
1857 }
1858
1859 /* Collect register REGNUM from the register cache REGCACHE and store
1860 it in the buffer specified by FPREGS and LEN as described by the
1861 floating-point register set REGSET. If REGNUM is -1, do this for
1862 all registers in REGSET. */
1863
1864 static void
1865 i386_collect_fpregset (const struct regset *regset,
1866 const struct regcache *regcache,
1867 int regnum, void *fpregs, size_t len)
1868 {
1869 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
1870
1871 if (len == I387_SIZEOF_FXSAVE)
1872 {
1873 i387_collect_fxsave (regcache, regnum, fpregs);
1874 return;
1875 }
1876
1877 gdb_assert (len == tdep->sizeof_fpregset);
1878 i387_collect_fsave (regcache, regnum, fpregs);
1879 }
1880
1881 /* Return the appropriate register set for the core section identified
1882 by SECT_NAME and SECT_SIZE. */
1883
1884 const struct regset *
1885 i386_regset_from_core_section (struct gdbarch *gdbarch,
1886 const char *sect_name, size_t sect_size)
1887 {
1888 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1889
1890 if (strcmp (sect_name, ".reg") == 0 && sect_size == tdep->sizeof_gregset)
1891 {
1892 if (tdep->gregset == NULL)
1893 tdep->gregset = regset_alloc (gdbarch, i386_supply_gregset,
1894 i386_collect_gregset);
1895 return tdep->gregset;
1896 }
1897
1898 if ((strcmp (sect_name, ".reg2") == 0 && sect_size == tdep->sizeof_fpregset)
1899 || (strcmp (sect_name, ".reg-xfp") == 0
1900 && sect_size == I387_SIZEOF_FXSAVE))
1901 {
1902 if (tdep->fpregset == NULL)
1903 tdep->fpregset = regset_alloc (gdbarch, i386_supply_fpregset,
1904 i386_collect_fpregset);
1905 return tdep->fpregset;
1906 }
1907
1908 return NULL;
1909 }
1910 \f
1911
1912 #ifdef STATIC_TRANSFORM_NAME
1913 /* SunPRO encodes the static variables. This is not related to C++
1914 mangling, it is done for C too. */
1915
1916 char *
1917 sunpro_static_transform_name (char *name)
1918 {
1919 char *p;
1920 if (IS_STATIC_TRANSFORM_NAME (name))
1921 {
1922 /* For file-local statics there will be a period, a bunch of
1923 junk (the contents of which match a string given in the
1924 N_OPT), a period and the name. For function-local statics
1925 there will be a bunch of junk (which seems to change the
1926 second character from 'A' to 'B'), a period, the name of the
1927 function, and the name. So just skip everything before the
1928 last period. */
1929 p = strrchr (name, '.');
1930 if (p != NULL)
1931 name = p + 1;
1932 }
1933 return name;
1934 }
1935 #endif /* STATIC_TRANSFORM_NAME */
1936 \f
1937
1938 /* Stuff for WIN32 PE style DLL's but is pretty generic really. */
1939
1940 CORE_ADDR
1941 i386_pe_skip_trampoline_code (CORE_ADDR pc, char *name)
1942 {
1943 if (pc && read_memory_unsigned_integer (pc, 2) == 0x25ff) /* jmp *(dest) */
1944 {
1945 unsigned long indirect = read_memory_unsigned_integer (pc + 2, 4);
1946 struct minimal_symbol *indsym =
1947 indirect ? lookup_minimal_symbol_by_pc (indirect) : 0;
1948 char *symname = indsym ? SYMBOL_LINKAGE_NAME (indsym) : 0;
1949
1950 if (symname)
1951 {
1952 if (strncmp (symname, "__imp_", 6) == 0
1953 || strncmp (symname, "_imp_", 5) == 0)
1954 return name ? 1 : read_memory_unsigned_integer (indirect, 4);
1955 }
1956 }
1957 return 0; /* Not a trampoline. */
1958 }
1959 \f
1960
1961 /* Return whether the frame preceding NEXT_FRAME corresponds to a
1962 sigtramp routine. */
1963
1964 static int
1965 i386_sigtramp_p (struct frame_info *next_frame)
1966 {
1967 CORE_ADDR pc = frame_pc_unwind (next_frame);
1968 char *name;
1969
1970 find_pc_partial_function (pc, &name, NULL, NULL);
1971 return (name && strcmp ("_sigtramp", name) == 0);
1972 }
1973 \f
1974
1975 /* We have two flavours of disassembly. The machinery on this page
1976 deals with switching between those. */
1977
1978 static int
1979 i386_print_insn (bfd_vma pc, struct disassemble_info *info)
1980 {
1981 gdb_assert (disassembly_flavor == att_flavor
1982 || disassembly_flavor == intel_flavor);
1983
1984 /* FIXME: kettenis/20020915: Until disassembler_options is properly
1985 constified, cast to prevent a compiler warning. */
1986 info->disassembler_options = (char *) disassembly_flavor;
1987 info->mach = gdbarch_bfd_arch_info (current_gdbarch)->mach;
1988
1989 return print_insn_i386 (pc, info);
1990 }
1991 \f
1992
1993 /* There are a few i386 architecture variants that differ only
1994 slightly from the generic i386 target. For now, we don't give them
1995 their own source file, but include them here. As a consequence,
1996 they'll always be included. */
1997
1998 /* System V Release 4 (SVR4). */
1999
2000 /* Return whether the frame preceding NEXT_FRAME corresponds to a SVR4
2001 sigtramp routine. */
2002
2003 static int
2004 i386_svr4_sigtramp_p (struct frame_info *next_frame)
2005 {
2006 CORE_ADDR pc = frame_pc_unwind (next_frame);
2007 char *name;
2008
2009 /* UnixWare uses _sigacthandler. The origin of the other symbols is
2010 currently unknown. */
2011 find_pc_partial_function (pc, &name, NULL, NULL);
2012 return (name && (strcmp ("_sigreturn", name) == 0
2013 || strcmp ("_sigacthandler", name) == 0
2014 || strcmp ("sigvechandler", name) == 0));
2015 }
2016
2017 /* Assuming NEXT_FRAME is for a frame following a SVR4 sigtramp
2018 routine, return the address of the associated sigcontext (ucontext)
2019 structure. */
2020
2021 static CORE_ADDR
2022 i386_svr4_sigcontext_addr (struct frame_info *next_frame)
2023 {
2024 gdb_byte buf[4];
2025 CORE_ADDR sp;
2026
2027 frame_unwind_register (next_frame, I386_ESP_REGNUM, buf);
2028 sp = extract_unsigned_integer (buf, 4);
2029
2030 return read_memory_unsigned_integer (sp + 8, 4);
2031 }
2032 \f
2033
2034 /* Generic ELF. */
2035
2036 void
2037 i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2038 {
2039 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
2040 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
2041 }
2042
2043 /* System V Release 4 (SVR4). */
2044
2045 void
2046 i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2047 {
2048 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2049
2050 /* System V Release 4 uses ELF. */
2051 i386_elf_init_abi (info, gdbarch);
2052
2053 /* System V Release 4 has shared libraries. */
2054 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
2055
2056 tdep->sigtramp_p = i386_svr4_sigtramp_p;
2057 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
2058 tdep->sc_pc_offset = 36 + 14 * 4;
2059 tdep->sc_sp_offset = 36 + 17 * 4;
2060
2061 tdep->jb_pc_offset = 20;
2062 }
2063
2064 /* DJGPP. */
2065
2066 static void
2067 i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2068 {
2069 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2070
2071 /* DJGPP doesn't have any special frames for signal handlers. */
2072 tdep->sigtramp_p = NULL;
2073
2074 tdep->jb_pc_offset = 36;
2075 }
2076
2077 /* NetWare. */
2078
2079 static void
2080 i386_nw_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2081 {
2082 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2083
2084 tdep->jb_pc_offset = 24;
2085 }
2086 \f
2087
2088 /* i386 register groups. In addition to the normal groups, add "mmx"
2089 and "sse". */
2090
2091 static struct reggroup *i386_sse_reggroup;
2092 static struct reggroup *i386_mmx_reggroup;
2093
2094 static void
2095 i386_init_reggroups (void)
2096 {
2097 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
2098 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
2099 }
2100
2101 static void
2102 i386_add_reggroups (struct gdbarch *gdbarch)
2103 {
2104 reggroup_add (gdbarch, i386_sse_reggroup);
2105 reggroup_add (gdbarch, i386_mmx_reggroup);
2106 reggroup_add (gdbarch, general_reggroup);
2107 reggroup_add (gdbarch, float_reggroup);
2108 reggroup_add (gdbarch, all_reggroup);
2109 reggroup_add (gdbarch, save_reggroup);
2110 reggroup_add (gdbarch, restore_reggroup);
2111 reggroup_add (gdbarch, vector_reggroup);
2112 reggroup_add (gdbarch, system_reggroup);
2113 }
2114
2115 int
2116 i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
2117 struct reggroup *group)
2118 {
2119 int sse_regnum_p = (i386_sse_regnum_p (gdbarch, regnum)
2120 || i386_mxcsr_regnum_p (gdbarch, regnum));
2121 int fp_regnum_p = (i386_fp_regnum_p (regnum)
2122 || i386_fpc_regnum_p (regnum));
2123 int mmx_regnum_p = (i386_mmx_regnum_p (gdbarch, regnum));
2124
2125 if (group == i386_mmx_reggroup)
2126 return mmx_regnum_p;
2127 if (group == i386_sse_reggroup)
2128 return sse_regnum_p;
2129 if (group == vector_reggroup)
2130 return (mmx_regnum_p || sse_regnum_p);
2131 if (group == float_reggroup)
2132 return fp_regnum_p;
2133 if (group == general_reggroup)
2134 return (!fp_regnum_p && !mmx_regnum_p && !sse_regnum_p);
2135
2136 return default_register_reggroup_p (gdbarch, regnum, group);
2137 }
2138 \f
2139
2140 /* Get the ARGIth function argument for the current function. */
2141
2142 static CORE_ADDR
2143 i386_fetch_pointer_argument (struct frame_info *frame, int argi,
2144 struct type *type)
2145 {
2146 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
2147 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4);
2148 }
2149
2150 \f
2151 static struct gdbarch *
2152 i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2153 {
2154 struct gdbarch_tdep *tdep;
2155 struct gdbarch *gdbarch;
2156
2157 /* If there is already a candidate, use it. */
2158 arches = gdbarch_list_lookup_by_info (arches, &info);
2159 if (arches != NULL)
2160 return arches->gdbarch;
2161
2162 /* Allocate space for the new architecture. */
2163 tdep = XMALLOC (struct gdbarch_tdep);
2164 gdbarch = gdbarch_alloc (&info, tdep);
2165
2166 /* General-purpose registers. */
2167 tdep->gregset = NULL;
2168 tdep->gregset_reg_offset = NULL;
2169 tdep->gregset_num_regs = I386_NUM_GREGS;
2170 tdep->sizeof_gregset = 0;
2171
2172 /* Floating-point registers. */
2173 tdep->fpregset = NULL;
2174 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
2175
2176 /* The default settings include the FPU registers, the MMX registers
2177 and the SSE registers. This can be overridden for a specific ABI
2178 by adjusting the members `st0_regnum', `mm0_regnum' and
2179 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
2180 will show up in the output of "info all-registers". Ideally we
2181 should try to autodetect whether they are available, such that we
2182 can prevent "info all-registers" from displaying registers that
2183 aren't available.
2184
2185 NOTE: kevinb/2003-07-13: ... if it's a choice between printing
2186 [the SSE registers] always (even when they don't exist) or never
2187 showing them to the user (even when they do exist), I prefer the
2188 former over the latter. */
2189
2190 tdep->st0_regnum = I386_ST0_REGNUM;
2191
2192 /* The MMX registers are implemented as pseudo-registers. Put off
2193 calculating the register number for %mm0 until we know the number
2194 of raw registers. */
2195 tdep->mm0_regnum = 0;
2196
2197 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
2198 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
2199
2200 tdep->jb_pc_offset = -1;
2201 tdep->struct_return = pcc_struct_return;
2202 tdep->sigtramp_start = 0;
2203 tdep->sigtramp_end = 0;
2204 tdep->sigtramp_p = i386_sigtramp_p;
2205 tdep->sigcontext_addr = NULL;
2206 tdep->sc_reg_offset = NULL;
2207 tdep->sc_pc_offset = -1;
2208 tdep->sc_sp_offset = -1;
2209
2210 /* The format used for `long double' on almost all i386 targets is
2211 the i387 extended floating-point format. In fact, of all targets
2212 in the GCC 2.95 tree, only OSF/1 does it different, and insists
2213 on having a `long double' that's not `long' at all. */
2214 set_gdbarch_long_double_format (gdbarch, &floatformat_i387_ext);
2215
2216 /* Although the i387 extended floating-point has only 80 significant
2217 bits, a `long double' actually takes up 96, probably to enforce
2218 alignment. */
2219 set_gdbarch_long_double_bit (gdbarch, 96);
2220
2221 /* The default ABI includes general-purpose registers,
2222 floating-point registers, and the SSE registers. */
2223 set_gdbarch_num_regs (gdbarch, I386_SSE_NUM_REGS);
2224 set_gdbarch_register_name (gdbarch, i386_register_name);
2225 set_gdbarch_register_type (gdbarch, i386_register_type);
2226
2227 /* Register numbers of various important registers. */
2228 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
2229 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
2230 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
2231 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
2232
2233 /* NOTE: kettenis/20040418: GCC does have two possible register
2234 numbering schemes on the i386: dbx and SVR4. These schemes
2235 differ in how they number %ebp, %esp, %eflags, and the
2236 floating-point registers, and are implemented by the arrays
2237 dbx_register_map[] and svr4_dbx_register_map in
2238 gcc/config/i386.c. GCC also defines a third numbering scheme in
2239 gcc/config/i386.c, which it designates as the "default" register
2240 map used in 64bit mode. This last register numbering scheme is
2241 implemented in dbx64_register_map, and is used for AMD64; see
2242 amd64-tdep.c.
2243
2244 Currently, each GCC i386 target always uses the same register
2245 numbering scheme across all its supported debugging formats
2246 i.e. SDB (COFF), stabs and DWARF 2. This is because
2247 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
2248 DBX_REGISTER_NUMBER macro which is defined by each target's
2249 respective config header in a manner independent of the requested
2250 output debugging format.
2251
2252 This does not match the arrangement below, which presumes that
2253 the SDB and stabs numbering schemes differ from the DWARF and
2254 DWARF 2 ones. The reason for this arrangement is that it is
2255 likely to get the numbering scheme for the target's
2256 default/native debug format right. For targets where GCC is the
2257 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
2258 targets where the native toolchain uses a different numbering
2259 scheme for a particular debug format (stabs-in-ELF on Solaris)
2260 the defaults below will have to be overridden, like
2261 i386_elf_init_abi() does. */
2262
2263 /* Use the dbx register numbering scheme for stabs and COFF. */
2264 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
2265 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
2266
2267 /* Use the SVR4 register numbering scheme for DWARF and DWARF 2. */
2268 set_gdbarch_dwarf_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
2269 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
2270
2271 /* We don't define ECOFF_REG_TO_REGNUM, since ECOFF doesn't seem to
2272 be in use on any of the supported i386 targets. */
2273
2274 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
2275
2276 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
2277
2278 /* Call dummy code. */
2279 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
2280
2281 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
2282 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
2283 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
2284
2285 set_gdbarch_return_value (gdbarch, i386_return_value);
2286
2287 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
2288
2289 /* Stack grows downward. */
2290 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2291
2292 set_gdbarch_breakpoint_from_pc (gdbarch, i386_breakpoint_from_pc);
2293 set_gdbarch_decr_pc_after_break (gdbarch, 1);
2294
2295 set_gdbarch_frame_args_skip (gdbarch, 8);
2296
2297 /* Wire in the MMX registers. */
2298 set_gdbarch_num_pseudo_regs (gdbarch, i386_num_mmx_regs);
2299 set_gdbarch_pseudo_register_read (gdbarch, i386_pseudo_register_read);
2300 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
2301
2302 set_gdbarch_print_insn (gdbarch, i386_print_insn);
2303
2304 set_gdbarch_unwind_dummy_id (gdbarch, i386_unwind_dummy_id);
2305
2306 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
2307
2308 /* Add the i386 register groups. */
2309 i386_add_reggroups (gdbarch);
2310 set_gdbarch_register_reggroup_p (gdbarch, i386_register_reggroup_p);
2311
2312 /* Helper for function argument information. */
2313 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
2314
2315 /* Hook in the DWARF CFI frame unwinder. */
2316 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
2317
2318 frame_base_set_default (gdbarch, &i386_frame_base);
2319
2320 /* Hook in ABI-specific overrides, if they have been registered. */
2321 gdbarch_init_osabi (info, gdbarch);
2322
2323 frame_unwind_append_sniffer (gdbarch, i386_sigtramp_frame_sniffer);
2324 frame_unwind_append_sniffer (gdbarch, i386_frame_sniffer);
2325
2326 /* If we have a register mapping, enable the generic core file
2327 support, unless it has already been enabled. */
2328 if (tdep->gregset_reg_offset
2329 && !gdbarch_regset_from_core_section_p (gdbarch))
2330 set_gdbarch_regset_from_core_section (gdbarch,
2331 i386_regset_from_core_section);
2332
2333 /* Unless support for MMX has been disabled, make %mm0 the first
2334 pseudo-register. */
2335 if (tdep->mm0_regnum == 0)
2336 tdep->mm0_regnum = gdbarch_num_regs (gdbarch);
2337
2338 return gdbarch;
2339 }
2340
2341 static enum gdb_osabi
2342 i386_coff_osabi_sniffer (bfd *abfd)
2343 {
2344 if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
2345 || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
2346 return GDB_OSABI_GO32;
2347
2348 return GDB_OSABI_UNKNOWN;
2349 }
2350
2351 static enum gdb_osabi
2352 i386_nlm_osabi_sniffer (bfd *abfd)
2353 {
2354 return GDB_OSABI_NETWARE;
2355 }
2356 \f
2357
2358 /* Provide a prototype to silence -Wmissing-prototypes. */
2359 void _initialize_i386_tdep (void);
2360
2361 void
2362 _initialize_i386_tdep (void)
2363 {
2364 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
2365
2366 /* Add the variable that controls the disassembly flavor. */
2367 add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
2368 &disassembly_flavor, _("\
2369 Set the disassembly flavor."), _("\
2370 Show the disassembly flavor."), _("\
2371 The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
2372 NULL,
2373 NULL, /* FIXME: i18n: */
2374 &setlist, &showlist);
2375
2376 /* Add the variable that controls the convention for returning
2377 structs. */
2378 add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
2379 &struct_convention, _("\
2380 Set the convention for returning small structs."), _("\
2381 Show the convention for returning small structs."), _("\
2382 Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
2383 is \"default\"."),
2384 NULL,
2385 NULL, /* FIXME: i18n: */
2386 &setlist, &showlist);
2387
2388 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
2389 i386_coff_osabi_sniffer);
2390 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_nlm_flavour,
2391 i386_nlm_osabi_sniffer);
2392
2393 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
2394 i386_svr4_init_abi);
2395 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_GO32,
2396 i386_go32_init_abi);
2397 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_NETWARE,
2398 i386_nw_init_abi);
2399
2400 /* Initialize the i386 specific register groups. */
2401 i386_init_reggroups ();
2402 }
This page took 0.084062 seconds and 4 git commands to generate.