PR21994, readelf looping on verdefs
[deliverable/binutils-gdb.git] / gdb / i386-tdep.c
1 /* Intel 386 target-dependent stuff.
2
3 Copyright (C) 1988-2017 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "opcode/i386.h"
22 #include "arch-utils.h"
23 #include "command.h"
24 #include "dummy-frame.h"
25 #include "dwarf2-frame.h"
26 #include "doublest.h"
27 #include "frame.h"
28 #include "frame-base.h"
29 #include "frame-unwind.h"
30 #include "inferior.h"
31 #include "infrun.h"
32 #include "gdbcmd.h"
33 #include "gdbcore.h"
34 #include "gdbtypes.h"
35 #include "objfiles.h"
36 #include "osabi.h"
37 #include "regcache.h"
38 #include "reggroups.h"
39 #include "regset.h"
40 #include "symfile.h"
41 #include "symtab.h"
42 #include "target.h"
43 #include "value.h"
44 #include "dis-asm.h"
45 #include "disasm.h"
46 #include "remote.h"
47 #include "i386-tdep.h"
48 #include "i387-tdep.h"
49 #include "x86-xstate.h"
50
51 #include "record.h"
52 #include "record-full.h"
53 #include "features/i386/i386.c"
54 #include "features/i386/i386-avx.c"
55 #include "features/i386/i386-mpx.c"
56 #include "features/i386/i386-avx-mpx.c"
57 #include "features/i386/i386-avx-avx512.c"
58 #include "features/i386/i386-avx-mpx-avx512-pku.c"
59 #include "features/i386/i386-mmx.c"
60
61 #include "ax.h"
62 #include "ax-gdb.h"
63
64 #include "stap-probe.h"
65 #include "user-regs.h"
66 #include "cli/cli-utils.h"
67 #include "expression.h"
68 #include "parser-defs.h"
69 #include <ctype.h>
70 #include <algorithm>
71
72 /* Register names. */
73
74 static const char *i386_register_names[] =
75 {
76 "eax", "ecx", "edx", "ebx",
77 "esp", "ebp", "esi", "edi",
78 "eip", "eflags", "cs", "ss",
79 "ds", "es", "fs", "gs",
80 "st0", "st1", "st2", "st3",
81 "st4", "st5", "st6", "st7",
82 "fctrl", "fstat", "ftag", "fiseg",
83 "fioff", "foseg", "fooff", "fop",
84 "xmm0", "xmm1", "xmm2", "xmm3",
85 "xmm4", "xmm5", "xmm6", "xmm7",
86 "mxcsr"
87 };
88
89 static const char *i386_zmm_names[] =
90 {
91 "zmm0", "zmm1", "zmm2", "zmm3",
92 "zmm4", "zmm5", "zmm6", "zmm7"
93 };
94
95 static const char *i386_zmmh_names[] =
96 {
97 "zmm0h", "zmm1h", "zmm2h", "zmm3h",
98 "zmm4h", "zmm5h", "zmm6h", "zmm7h"
99 };
100
101 static const char *i386_k_names[] =
102 {
103 "k0", "k1", "k2", "k3",
104 "k4", "k5", "k6", "k7"
105 };
106
107 static const char *i386_ymm_names[] =
108 {
109 "ymm0", "ymm1", "ymm2", "ymm3",
110 "ymm4", "ymm5", "ymm6", "ymm7",
111 };
112
113 static const char *i386_ymmh_names[] =
114 {
115 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
116 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
117 };
118
119 static const char *i386_mpx_names[] =
120 {
121 "bnd0raw", "bnd1raw", "bnd2raw", "bnd3raw", "bndcfgu", "bndstatus"
122 };
123
124 static const char* i386_pkeys_names[] =
125 {
126 "pkru"
127 };
128
129 /* Register names for MPX pseudo-registers. */
130
131 static const char *i386_bnd_names[] =
132 {
133 "bnd0", "bnd1", "bnd2", "bnd3"
134 };
135
136 /* Register names for MMX pseudo-registers. */
137
138 static const char *i386_mmx_names[] =
139 {
140 "mm0", "mm1", "mm2", "mm3",
141 "mm4", "mm5", "mm6", "mm7"
142 };
143
144 /* Register names for byte pseudo-registers. */
145
146 static const char *i386_byte_names[] =
147 {
148 "al", "cl", "dl", "bl",
149 "ah", "ch", "dh", "bh"
150 };
151
152 /* Register names for word pseudo-registers. */
153
154 static const char *i386_word_names[] =
155 {
156 "ax", "cx", "dx", "bx",
157 "", "bp", "si", "di"
158 };
159
160 /* Constant used for reading/writing pseudo registers. In 64-bit mode, we have
161 16 lower ZMM regs that extend corresponding xmm/ymm registers. In addition,
162 we have 16 upper ZMM regs that have to be handled differently. */
163
164 const int num_lower_zmm_regs = 16;
165
166 /* MMX register? */
167
168 static int
169 i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
170 {
171 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
172 int mm0_regnum = tdep->mm0_regnum;
173
174 if (mm0_regnum < 0)
175 return 0;
176
177 regnum -= mm0_regnum;
178 return regnum >= 0 && regnum < tdep->num_mmx_regs;
179 }
180
181 /* Byte register? */
182
183 int
184 i386_byte_regnum_p (struct gdbarch *gdbarch, int regnum)
185 {
186 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
187
188 regnum -= tdep->al_regnum;
189 return regnum >= 0 && regnum < tdep->num_byte_regs;
190 }
191
192 /* Word register? */
193
194 int
195 i386_word_regnum_p (struct gdbarch *gdbarch, int regnum)
196 {
197 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
198
199 regnum -= tdep->ax_regnum;
200 return regnum >= 0 && regnum < tdep->num_word_regs;
201 }
202
203 /* Dword register? */
204
205 int
206 i386_dword_regnum_p (struct gdbarch *gdbarch, int regnum)
207 {
208 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
209 int eax_regnum = tdep->eax_regnum;
210
211 if (eax_regnum < 0)
212 return 0;
213
214 regnum -= eax_regnum;
215 return regnum >= 0 && regnum < tdep->num_dword_regs;
216 }
217
218 /* AVX512 register? */
219
220 int
221 i386_zmmh_regnum_p (struct gdbarch *gdbarch, int regnum)
222 {
223 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
224 int zmm0h_regnum = tdep->zmm0h_regnum;
225
226 if (zmm0h_regnum < 0)
227 return 0;
228
229 regnum -= zmm0h_regnum;
230 return regnum >= 0 && regnum < tdep->num_zmm_regs;
231 }
232
233 int
234 i386_zmm_regnum_p (struct gdbarch *gdbarch, int regnum)
235 {
236 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
237 int zmm0_regnum = tdep->zmm0_regnum;
238
239 if (zmm0_regnum < 0)
240 return 0;
241
242 regnum -= zmm0_regnum;
243 return regnum >= 0 && regnum < tdep->num_zmm_regs;
244 }
245
246 int
247 i386_k_regnum_p (struct gdbarch *gdbarch, int regnum)
248 {
249 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
250 int k0_regnum = tdep->k0_regnum;
251
252 if (k0_regnum < 0)
253 return 0;
254
255 regnum -= k0_regnum;
256 return regnum >= 0 && regnum < I387_NUM_K_REGS;
257 }
258
259 static int
260 i386_ymmh_regnum_p (struct gdbarch *gdbarch, int regnum)
261 {
262 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
263 int ymm0h_regnum = tdep->ymm0h_regnum;
264
265 if (ymm0h_regnum < 0)
266 return 0;
267
268 regnum -= ymm0h_regnum;
269 return regnum >= 0 && regnum < tdep->num_ymm_regs;
270 }
271
272 /* AVX register? */
273
274 int
275 i386_ymm_regnum_p (struct gdbarch *gdbarch, int regnum)
276 {
277 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
278 int ymm0_regnum = tdep->ymm0_regnum;
279
280 if (ymm0_regnum < 0)
281 return 0;
282
283 regnum -= ymm0_regnum;
284 return regnum >= 0 && regnum < tdep->num_ymm_regs;
285 }
286
287 static int
288 i386_ymmh_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
289 {
290 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
291 int ymm16h_regnum = tdep->ymm16h_regnum;
292
293 if (ymm16h_regnum < 0)
294 return 0;
295
296 regnum -= ymm16h_regnum;
297 return regnum >= 0 && regnum < tdep->num_ymm_avx512_regs;
298 }
299
300 int
301 i386_ymm_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
302 {
303 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
304 int ymm16_regnum = tdep->ymm16_regnum;
305
306 if (ymm16_regnum < 0)
307 return 0;
308
309 regnum -= ymm16_regnum;
310 return regnum >= 0 && regnum < tdep->num_ymm_avx512_regs;
311 }
312
313 /* BND register? */
314
315 int
316 i386_bnd_regnum_p (struct gdbarch *gdbarch, int regnum)
317 {
318 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
319 int bnd0_regnum = tdep->bnd0_regnum;
320
321 if (bnd0_regnum < 0)
322 return 0;
323
324 regnum -= bnd0_regnum;
325 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
326 }
327
328 /* SSE register? */
329
330 int
331 i386_xmm_regnum_p (struct gdbarch *gdbarch, int regnum)
332 {
333 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
334 int num_xmm_regs = I387_NUM_XMM_REGS (tdep);
335
336 if (num_xmm_regs == 0)
337 return 0;
338
339 regnum -= I387_XMM0_REGNUM (tdep);
340 return regnum >= 0 && regnum < num_xmm_regs;
341 }
342
343 /* XMM_512 register? */
344
345 int
346 i386_xmm_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
347 {
348 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
349 int num_xmm_avx512_regs = I387_NUM_XMM_AVX512_REGS (tdep);
350
351 if (num_xmm_avx512_regs == 0)
352 return 0;
353
354 regnum -= I387_XMM16_REGNUM (tdep);
355 return regnum >= 0 && regnum < num_xmm_avx512_regs;
356 }
357
358 static int
359 i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
360 {
361 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
362
363 if (I387_NUM_XMM_REGS (tdep) == 0)
364 return 0;
365
366 return (regnum == I387_MXCSR_REGNUM (tdep));
367 }
368
369 /* FP register? */
370
371 int
372 i386_fp_regnum_p (struct gdbarch *gdbarch, int regnum)
373 {
374 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
375
376 if (I387_ST0_REGNUM (tdep) < 0)
377 return 0;
378
379 return (I387_ST0_REGNUM (tdep) <= regnum
380 && regnum < I387_FCTRL_REGNUM (tdep));
381 }
382
383 int
384 i386_fpc_regnum_p (struct gdbarch *gdbarch, int regnum)
385 {
386 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
387
388 if (I387_ST0_REGNUM (tdep) < 0)
389 return 0;
390
391 return (I387_FCTRL_REGNUM (tdep) <= regnum
392 && regnum < I387_XMM0_REGNUM (tdep));
393 }
394
395 /* BNDr (raw) register? */
396
397 static int
398 i386_bndr_regnum_p (struct gdbarch *gdbarch, int regnum)
399 {
400 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
401
402 if (I387_BND0R_REGNUM (tdep) < 0)
403 return 0;
404
405 regnum -= tdep->bnd0r_regnum;
406 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
407 }
408
409 /* BND control register? */
410
411 static int
412 i386_mpx_ctrl_regnum_p (struct gdbarch *gdbarch, int regnum)
413 {
414 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
415
416 if (I387_BNDCFGU_REGNUM (tdep) < 0)
417 return 0;
418
419 regnum -= I387_BNDCFGU_REGNUM (tdep);
420 return regnum >= 0 && regnum < I387_NUM_MPX_CTRL_REGS;
421 }
422
423 /* PKRU register? */
424
425 bool
426 i386_pkru_regnum_p (struct gdbarch *gdbarch, int regnum)
427 {
428 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
429 int pkru_regnum = tdep->pkru_regnum;
430
431 if (pkru_regnum < 0)
432 return false;
433
434 regnum -= pkru_regnum;
435 return regnum >= 0 && regnum < I387_NUM_PKEYS_REGS;
436 }
437
438 /* Return the name of register REGNUM, or the empty string if it is
439 an anonymous register. */
440
441 static const char *
442 i386_register_name (struct gdbarch *gdbarch, int regnum)
443 {
444 /* Hide the upper YMM registers. */
445 if (i386_ymmh_regnum_p (gdbarch, regnum))
446 return "";
447
448 /* Hide the upper YMM16-31 registers. */
449 if (i386_ymmh_avx512_regnum_p (gdbarch, regnum))
450 return "";
451
452 /* Hide the upper ZMM registers. */
453 if (i386_zmmh_regnum_p (gdbarch, regnum))
454 return "";
455
456 return tdesc_register_name (gdbarch, regnum);
457 }
458
459 /* Return the name of register REGNUM. */
460
461 const char *
462 i386_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
463 {
464 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
465 if (i386_bnd_regnum_p (gdbarch, regnum))
466 return i386_bnd_names[regnum - tdep->bnd0_regnum];
467 if (i386_mmx_regnum_p (gdbarch, regnum))
468 return i386_mmx_names[regnum - I387_MM0_REGNUM (tdep)];
469 else if (i386_ymm_regnum_p (gdbarch, regnum))
470 return i386_ymm_names[regnum - tdep->ymm0_regnum];
471 else if (i386_zmm_regnum_p (gdbarch, regnum))
472 return i386_zmm_names[regnum - tdep->zmm0_regnum];
473 else if (i386_byte_regnum_p (gdbarch, regnum))
474 return i386_byte_names[regnum - tdep->al_regnum];
475 else if (i386_word_regnum_p (gdbarch, regnum))
476 return i386_word_names[regnum - tdep->ax_regnum];
477
478 internal_error (__FILE__, __LINE__, _("invalid regnum"));
479 }
480
481 /* Convert a dbx register number REG to the appropriate register
482 number used by GDB. */
483
484 static int
485 i386_dbx_reg_to_regnum (struct gdbarch *gdbarch, int reg)
486 {
487 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
488
489 /* This implements what GCC calls the "default" register map
490 (dbx_register_map[]). */
491
492 if (reg >= 0 && reg <= 7)
493 {
494 /* General-purpose registers. The debug info calls %ebp
495 register 4, and %esp register 5. */
496 if (reg == 4)
497 return 5;
498 else if (reg == 5)
499 return 4;
500 else return reg;
501 }
502 else if (reg >= 12 && reg <= 19)
503 {
504 /* Floating-point registers. */
505 return reg - 12 + I387_ST0_REGNUM (tdep);
506 }
507 else if (reg >= 21 && reg <= 28)
508 {
509 /* SSE registers. */
510 int ymm0_regnum = tdep->ymm0_regnum;
511
512 if (ymm0_regnum >= 0
513 && i386_xmm_regnum_p (gdbarch, reg))
514 return reg - 21 + ymm0_regnum;
515 else
516 return reg - 21 + I387_XMM0_REGNUM (tdep);
517 }
518 else if (reg >= 29 && reg <= 36)
519 {
520 /* MMX registers. */
521 return reg - 29 + I387_MM0_REGNUM (tdep);
522 }
523
524 /* This will hopefully provoke a warning. */
525 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
526 }
527
528 /* Convert SVR4 DWARF register number REG to the appropriate register number
529 used by GDB. */
530
531 static int
532 i386_svr4_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
533 {
534 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
535
536 /* This implements the GCC register map that tries to be compatible
537 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
538
539 /* The SVR4 register numbering includes %eip and %eflags, and
540 numbers the floating point registers differently. */
541 if (reg >= 0 && reg <= 9)
542 {
543 /* General-purpose registers. */
544 return reg;
545 }
546 else if (reg >= 11 && reg <= 18)
547 {
548 /* Floating-point registers. */
549 return reg - 11 + I387_ST0_REGNUM (tdep);
550 }
551 else if (reg >= 21 && reg <= 36)
552 {
553 /* The SSE and MMX registers have the same numbers as with dbx. */
554 return i386_dbx_reg_to_regnum (gdbarch, reg);
555 }
556
557 switch (reg)
558 {
559 case 37: return I387_FCTRL_REGNUM (tdep);
560 case 38: return I387_FSTAT_REGNUM (tdep);
561 case 39: return I387_MXCSR_REGNUM (tdep);
562 case 40: return I386_ES_REGNUM;
563 case 41: return I386_CS_REGNUM;
564 case 42: return I386_SS_REGNUM;
565 case 43: return I386_DS_REGNUM;
566 case 44: return I386_FS_REGNUM;
567 case 45: return I386_GS_REGNUM;
568 }
569
570 return -1;
571 }
572
573 /* Wrapper on i386_svr4_dwarf_reg_to_regnum to return
574 num_regs + num_pseudo_regs for other debug formats. */
575
576 int
577 i386_svr4_reg_to_regnum (struct gdbarch *gdbarch, int reg)
578 {
579 int regnum = i386_svr4_dwarf_reg_to_regnum (gdbarch, reg);
580
581 if (regnum == -1)
582 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
583 return regnum;
584 }
585
586 \f
587
588 /* This is the variable that is set with "set disassembly-flavor", and
589 its legitimate values. */
590 static const char att_flavor[] = "att";
591 static const char intel_flavor[] = "intel";
592 static const char *const valid_flavors[] =
593 {
594 att_flavor,
595 intel_flavor,
596 NULL
597 };
598 static const char *disassembly_flavor = att_flavor;
599 \f
600
601 /* Use the program counter to determine the contents and size of a
602 breakpoint instruction. Return a pointer to a string of bytes that
603 encode a breakpoint instruction, store the length of the string in
604 *LEN and optionally adjust *PC to point to the correct memory
605 location for inserting the breakpoint.
606
607 On the i386 we have a single breakpoint that fits in a single byte
608 and can be inserted anywhere.
609
610 This function is 64-bit safe. */
611
612 constexpr gdb_byte i386_break_insn[] = { 0xcc }; /* int 3 */
613
614 typedef BP_MANIPULATION (i386_break_insn) i386_breakpoint;
615
616 \f
617 /* Displaced instruction handling. */
618
619 /* Skip the legacy instruction prefixes in INSN.
620 Not all prefixes are valid for any particular insn
621 but we needn't care, the insn will fault if it's invalid.
622 The result is a pointer to the first opcode byte,
623 or NULL if we run off the end of the buffer. */
624
625 static gdb_byte *
626 i386_skip_prefixes (gdb_byte *insn, size_t max_len)
627 {
628 gdb_byte *end = insn + max_len;
629
630 while (insn < end)
631 {
632 switch (*insn)
633 {
634 case DATA_PREFIX_OPCODE:
635 case ADDR_PREFIX_OPCODE:
636 case CS_PREFIX_OPCODE:
637 case DS_PREFIX_OPCODE:
638 case ES_PREFIX_OPCODE:
639 case FS_PREFIX_OPCODE:
640 case GS_PREFIX_OPCODE:
641 case SS_PREFIX_OPCODE:
642 case LOCK_PREFIX_OPCODE:
643 case REPE_PREFIX_OPCODE:
644 case REPNE_PREFIX_OPCODE:
645 ++insn;
646 continue;
647 default:
648 return insn;
649 }
650 }
651
652 return NULL;
653 }
654
655 static int
656 i386_absolute_jmp_p (const gdb_byte *insn)
657 {
658 /* jmp far (absolute address in operand). */
659 if (insn[0] == 0xea)
660 return 1;
661
662 if (insn[0] == 0xff)
663 {
664 /* jump near, absolute indirect (/4). */
665 if ((insn[1] & 0x38) == 0x20)
666 return 1;
667
668 /* jump far, absolute indirect (/5). */
669 if ((insn[1] & 0x38) == 0x28)
670 return 1;
671 }
672
673 return 0;
674 }
675
676 /* Return non-zero if INSN is a jump, zero otherwise. */
677
678 static int
679 i386_jmp_p (const gdb_byte *insn)
680 {
681 /* jump short, relative. */
682 if (insn[0] == 0xeb)
683 return 1;
684
685 /* jump near, relative. */
686 if (insn[0] == 0xe9)
687 return 1;
688
689 return i386_absolute_jmp_p (insn);
690 }
691
692 static int
693 i386_absolute_call_p (const gdb_byte *insn)
694 {
695 /* call far, absolute. */
696 if (insn[0] == 0x9a)
697 return 1;
698
699 if (insn[0] == 0xff)
700 {
701 /* Call near, absolute indirect (/2). */
702 if ((insn[1] & 0x38) == 0x10)
703 return 1;
704
705 /* Call far, absolute indirect (/3). */
706 if ((insn[1] & 0x38) == 0x18)
707 return 1;
708 }
709
710 return 0;
711 }
712
713 static int
714 i386_ret_p (const gdb_byte *insn)
715 {
716 switch (insn[0])
717 {
718 case 0xc2: /* ret near, pop N bytes. */
719 case 0xc3: /* ret near */
720 case 0xca: /* ret far, pop N bytes. */
721 case 0xcb: /* ret far */
722 case 0xcf: /* iret */
723 return 1;
724
725 default:
726 return 0;
727 }
728 }
729
730 static int
731 i386_call_p (const gdb_byte *insn)
732 {
733 if (i386_absolute_call_p (insn))
734 return 1;
735
736 /* call near, relative. */
737 if (insn[0] == 0xe8)
738 return 1;
739
740 return 0;
741 }
742
743 /* Return non-zero if INSN is a system call, and set *LENGTHP to its
744 length in bytes. Otherwise, return zero. */
745
746 static int
747 i386_syscall_p (const gdb_byte *insn, int *lengthp)
748 {
749 /* Is it 'int $0x80'? */
750 if ((insn[0] == 0xcd && insn[1] == 0x80)
751 /* Or is it 'sysenter'? */
752 || (insn[0] == 0x0f && insn[1] == 0x34)
753 /* Or is it 'syscall'? */
754 || (insn[0] == 0x0f && insn[1] == 0x05))
755 {
756 *lengthp = 2;
757 return 1;
758 }
759
760 return 0;
761 }
762
763 /* The gdbarch insn_is_call method. */
764
765 static int
766 i386_insn_is_call (struct gdbarch *gdbarch, CORE_ADDR addr)
767 {
768 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
769
770 read_code (addr, buf, I386_MAX_INSN_LEN);
771 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
772
773 return i386_call_p (insn);
774 }
775
776 /* The gdbarch insn_is_ret method. */
777
778 static int
779 i386_insn_is_ret (struct gdbarch *gdbarch, CORE_ADDR addr)
780 {
781 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
782
783 read_code (addr, buf, I386_MAX_INSN_LEN);
784 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
785
786 return i386_ret_p (insn);
787 }
788
789 /* The gdbarch insn_is_jump method. */
790
791 static int
792 i386_insn_is_jump (struct gdbarch *gdbarch, CORE_ADDR addr)
793 {
794 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
795
796 read_code (addr, buf, I386_MAX_INSN_LEN);
797 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
798
799 return i386_jmp_p (insn);
800 }
801
802 /* Some kernels may run one past a syscall insn, so we have to cope.
803 Otherwise this is just simple_displaced_step_copy_insn. */
804
805 struct displaced_step_closure *
806 i386_displaced_step_copy_insn (struct gdbarch *gdbarch,
807 CORE_ADDR from, CORE_ADDR to,
808 struct regcache *regs)
809 {
810 size_t len = gdbarch_max_insn_length (gdbarch);
811 gdb_byte *buf = (gdb_byte *) xmalloc (len);
812
813 read_memory (from, buf, len);
814
815 /* GDB may get control back after the insn after the syscall.
816 Presumably this is a kernel bug.
817 If this is a syscall, make sure there's a nop afterwards. */
818 {
819 int syscall_length;
820 gdb_byte *insn;
821
822 insn = i386_skip_prefixes (buf, len);
823 if (insn != NULL && i386_syscall_p (insn, &syscall_length))
824 insn[syscall_length] = NOP_OPCODE;
825 }
826
827 write_memory (to, buf, len);
828
829 if (debug_displaced)
830 {
831 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
832 paddress (gdbarch, from), paddress (gdbarch, to));
833 displaced_step_dump_bytes (gdb_stdlog, buf, len);
834 }
835
836 return (struct displaced_step_closure *) buf;
837 }
838
839 /* Fix up the state of registers and memory after having single-stepped
840 a displaced instruction. */
841
842 void
843 i386_displaced_step_fixup (struct gdbarch *gdbarch,
844 struct displaced_step_closure *closure,
845 CORE_ADDR from, CORE_ADDR to,
846 struct regcache *regs)
847 {
848 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
849
850 /* The offset we applied to the instruction's address.
851 This could well be negative (when viewed as a signed 32-bit
852 value), but ULONGEST won't reflect that, so take care when
853 applying it. */
854 ULONGEST insn_offset = to - from;
855
856 /* Since we use simple_displaced_step_copy_insn, our closure is a
857 copy of the instruction. */
858 gdb_byte *insn = (gdb_byte *) closure;
859 /* The start of the insn, needed in case we see some prefixes. */
860 gdb_byte *insn_start = insn;
861
862 if (debug_displaced)
863 fprintf_unfiltered (gdb_stdlog,
864 "displaced: fixup (%s, %s), "
865 "insn = 0x%02x 0x%02x ...\n",
866 paddress (gdbarch, from), paddress (gdbarch, to),
867 insn[0], insn[1]);
868
869 /* The list of issues to contend with here is taken from
870 resume_execution in arch/i386/kernel/kprobes.c, Linux 2.6.20.
871 Yay for Free Software! */
872
873 /* Relocate the %eip, if necessary. */
874
875 /* The instruction recognizers we use assume any leading prefixes
876 have been skipped. */
877 {
878 /* This is the size of the buffer in closure. */
879 size_t max_insn_len = gdbarch_max_insn_length (gdbarch);
880 gdb_byte *opcode = i386_skip_prefixes (insn, max_insn_len);
881 /* If there are too many prefixes, just ignore the insn.
882 It will fault when run. */
883 if (opcode != NULL)
884 insn = opcode;
885 }
886
887 /* Except in the case of absolute or indirect jump or call
888 instructions, or a return instruction, the new eip is relative to
889 the displaced instruction; make it relative. Well, signal
890 handler returns don't need relocation either, but we use the
891 value of %eip to recognize those; see below. */
892 if (! i386_absolute_jmp_p (insn)
893 && ! i386_absolute_call_p (insn)
894 && ! i386_ret_p (insn))
895 {
896 ULONGEST orig_eip;
897 int insn_len;
898
899 regcache_cooked_read_unsigned (regs, I386_EIP_REGNUM, &orig_eip);
900
901 /* A signal trampoline system call changes the %eip, resuming
902 execution of the main program after the signal handler has
903 returned. That makes them like 'return' instructions; we
904 shouldn't relocate %eip.
905
906 But most system calls don't, and we do need to relocate %eip.
907
908 Our heuristic for distinguishing these cases: if stepping
909 over the system call instruction left control directly after
910 the instruction, the we relocate --- control almost certainly
911 doesn't belong in the displaced copy. Otherwise, we assume
912 the instruction has put control where it belongs, and leave
913 it unrelocated. Goodness help us if there are PC-relative
914 system calls. */
915 if (i386_syscall_p (insn, &insn_len)
916 && orig_eip != to + (insn - insn_start) + insn_len
917 /* GDB can get control back after the insn after the syscall.
918 Presumably this is a kernel bug.
919 i386_displaced_step_copy_insn ensures its a nop,
920 we add one to the length for it. */
921 && orig_eip != to + (insn - insn_start) + insn_len + 1)
922 {
923 if (debug_displaced)
924 fprintf_unfiltered (gdb_stdlog,
925 "displaced: syscall changed %%eip; "
926 "not relocating\n");
927 }
928 else
929 {
930 ULONGEST eip = (orig_eip - insn_offset) & 0xffffffffUL;
931
932 /* If we just stepped over a breakpoint insn, we don't backup
933 the pc on purpose; this is to match behaviour without
934 stepping. */
935
936 regcache_cooked_write_unsigned (regs, I386_EIP_REGNUM, eip);
937
938 if (debug_displaced)
939 fprintf_unfiltered (gdb_stdlog,
940 "displaced: "
941 "relocated %%eip from %s to %s\n",
942 paddress (gdbarch, orig_eip),
943 paddress (gdbarch, eip));
944 }
945 }
946
947 /* If the instruction was PUSHFL, then the TF bit will be set in the
948 pushed value, and should be cleared. We'll leave this for later,
949 since GDB already messes up the TF flag when stepping over a
950 pushfl. */
951
952 /* If the instruction was a call, the return address now atop the
953 stack is the address following the copied instruction. We need
954 to make it the address following the original instruction. */
955 if (i386_call_p (insn))
956 {
957 ULONGEST esp;
958 ULONGEST retaddr;
959 const ULONGEST retaddr_len = 4;
960
961 regcache_cooked_read_unsigned (regs, I386_ESP_REGNUM, &esp);
962 retaddr = read_memory_unsigned_integer (esp, retaddr_len, byte_order);
963 retaddr = (retaddr - insn_offset) & 0xffffffffUL;
964 write_memory_unsigned_integer (esp, retaddr_len, byte_order, retaddr);
965
966 if (debug_displaced)
967 fprintf_unfiltered (gdb_stdlog,
968 "displaced: relocated return addr at %s to %s\n",
969 paddress (gdbarch, esp),
970 paddress (gdbarch, retaddr));
971 }
972 }
973
974 static void
975 append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
976 {
977 target_write_memory (*to, buf, len);
978 *to += len;
979 }
980
981 static void
982 i386_relocate_instruction (struct gdbarch *gdbarch,
983 CORE_ADDR *to, CORE_ADDR oldloc)
984 {
985 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
986 gdb_byte buf[I386_MAX_INSN_LEN];
987 int offset = 0, rel32, newrel;
988 int insn_length;
989 gdb_byte *insn = buf;
990
991 read_memory (oldloc, buf, I386_MAX_INSN_LEN);
992
993 insn_length = gdb_buffered_insn_length (gdbarch, insn,
994 I386_MAX_INSN_LEN, oldloc);
995
996 /* Get past the prefixes. */
997 insn = i386_skip_prefixes (insn, I386_MAX_INSN_LEN);
998
999 /* Adjust calls with 32-bit relative addresses as push/jump, with
1000 the address pushed being the location where the original call in
1001 the user program would return to. */
1002 if (insn[0] == 0xe8)
1003 {
1004 gdb_byte push_buf[16];
1005 unsigned int ret_addr;
1006
1007 /* Where "ret" in the original code will return to. */
1008 ret_addr = oldloc + insn_length;
1009 push_buf[0] = 0x68; /* pushq $... */
1010 store_unsigned_integer (&push_buf[1], 4, byte_order, ret_addr);
1011 /* Push the push. */
1012 append_insns (to, 5, push_buf);
1013
1014 /* Convert the relative call to a relative jump. */
1015 insn[0] = 0xe9;
1016
1017 /* Adjust the destination offset. */
1018 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
1019 newrel = (oldloc - *to) + rel32;
1020 store_signed_integer (insn + 1, 4, byte_order, newrel);
1021
1022 if (debug_displaced)
1023 fprintf_unfiltered (gdb_stdlog,
1024 "Adjusted insn rel32=%s at %s to"
1025 " rel32=%s at %s\n",
1026 hex_string (rel32), paddress (gdbarch, oldloc),
1027 hex_string (newrel), paddress (gdbarch, *to));
1028
1029 /* Write the adjusted jump into its displaced location. */
1030 append_insns (to, 5, insn);
1031 return;
1032 }
1033
1034 /* Adjust jumps with 32-bit relative addresses. Calls are already
1035 handled above. */
1036 if (insn[0] == 0xe9)
1037 offset = 1;
1038 /* Adjust conditional jumps. */
1039 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
1040 offset = 2;
1041
1042 if (offset)
1043 {
1044 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
1045 newrel = (oldloc - *to) + rel32;
1046 store_signed_integer (insn + offset, 4, byte_order, newrel);
1047 if (debug_displaced)
1048 fprintf_unfiltered (gdb_stdlog,
1049 "Adjusted insn rel32=%s at %s to"
1050 " rel32=%s at %s\n",
1051 hex_string (rel32), paddress (gdbarch, oldloc),
1052 hex_string (newrel), paddress (gdbarch, *to));
1053 }
1054
1055 /* Write the adjusted instructions into their displaced
1056 location. */
1057 append_insns (to, insn_length, buf);
1058 }
1059
1060 \f
1061 #ifdef I386_REGNO_TO_SYMMETRY
1062 #error "The Sequent Symmetry is no longer supported."
1063 #endif
1064
1065 /* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
1066 and %esp "belong" to the calling function. Therefore these
1067 registers should be saved if they're going to be modified. */
1068
1069 /* The maximum number of saved registers. This should include all
1070 registers mentioned above, and %eip. */
1071 #define I386_NUM_SAVED_REGS I386_NUM_GREGS
1072
1073 struct i386_frame_cache
1074 {
1075 /* Base address. */
1076 CORE_ADDR base;
1077 int base_p;
1078 LONGEST sp_offset;
1079 CORE_ADDR pc;
1080
1081 /* Saved registers. */
1082 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
1083 CORE_ADDR saved_sp;
1084 int saved_sp_reg;
1085 int pc_in_eax;
1086
1087 /* Stack space reserved for local variables. */
1088 long locals;
1089 };
1090
1091 /* Allocate and initialize a frame cache. */
1092
1093 static struct i386_frame_cache *
1094 i386_alloc_frame_cache (void)
1095 {
1096 struct i386_frame_cache *cache;
1097 int i;
1098
1099 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
1100
1101 /* Base address. */
1102 cache->base_p = 0;
1103 cache->base = 0;
1104 cache->sp_offset = -4;
1105 cache->pc = 0;
1106
1107 /* Saved registers. We initialize these to -1 since zero is a valid
1108 offset (that's where %ebp is supposed to be stored). */
1109 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
1110 cache->saved_regs[i] = -1;
1111 cache->saved_sp = 0;
1112 cache->saved_sp_reg = -1;
1113 cache->pc_in_eax = 0;
1114
1115 /* Frameless until proven otherwise. */
1116 cache->locals = -1;
1117
1118 return cache;
1119 }
1120
1121 /* If the instruction at PC is a jump, return the address of its
1122 target. Otherwise, return PC. */
1123
1124 static CORE_ADDR
1125 i386_follow_jump (struct gdbarch *gdbarch, CORE_ADDR pc)
1126 {
1127 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1128 gdb_byte op;
1129 long delta = 0;
1130 int data16 = 0;
1131
1132 if (target_read_code (pc, &op, 1))
1133 return pc;
1134
1135 if (op == 0x66)
1136 {
1137 data16 = 1;
1138
1139 op = read_code_unsigned_integer (pc + 1, 1, byte_order);
1140 }
1141
1142 switch (op)
1143 {
1144 case 0xe9:
1145 /* Relative jump: if data16 == 0, disp32, else disp16. */
1146 if (data16)
1147 {
1148 delta = read_memory_integer (pc + 2, 2, byte_order);
1149
1150 /* Include the size of the jmp instruction (including the
1151 0x66 prefix). */
1152 delta += 4;
1153 }
1154 else
1155 {
1156 delta = read_memory_integer (pc + 1, 4, byte_order);
1157
1158 /* Include the size of the jmp instruction. */
1159 delta += 5;
1160 }
1161 break;
1162 case 0xeb:
1163 /* Relative jump, disp8 (ignore data16). */
1164 delta = read_memory_integer (pc + data16 + 1, 1, byte_order);
1165
1166 delta += data16 + 2;
1167 break;
1168 }
1169
1170 return pc + delta;
1171 }
1172
1173 /* Check whether PC points at a prologue for a function returning a
1174 structure or union. If so, it updates CACHE and returns the
1175 address of the first instruction after the code sequence that
1176 removes the "hidden" argument from the stack or CURRENT_PC,
1177 whichever is smaller. Otherwise, return PC. */
1178
1179 static CORE_ADDR
1180 i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
1181 struct i386_frame_cache *cache)
1182 {
1183 /* Functions that return a structure or union start with:
1184
1185 popl %eax 0x58
1186 xchgl %eax, (%esp) 0x87 0x04 0x24
1187 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
1188
1189 (the System V compiler puts out the second `xchg' instruction,
1190 and the assembler doesn't try to optimize it, so the 'sib' form
1191 gets generated). This sequence is used to get the address of the
1192 return buffer for a function that returns a structure. */
1193 static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
1194 static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
1195 gdb_byte buf[4];
1196 gdb_byte op;
1197
1198 if (current_pc <= pc)
1199 return pc;
1200
1201 if (target_read_code (pc, &op, 1))
1202 return pc;
1203
1204 if (op != 0x58) /* popl %eax */
1205 return pc;
1206
1207 if (target_read_code (pc + 1, buf, 4))
1208 return pc;
1209
1210 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
1211 return pc;
1212
1213 if (current_pc == pc)
1214 {
1215 cache->sp_offset += 4;
1216 return current_pc;
1217 }
1218
1219 if (current_pc == pc + 1)
1220 {
1221 cache->pc_in_eax = 1;
1222 return current_pc;
1223 }
1224
1225 if (buf[1] == proto1[1])
1226 return pc + 4;
1227 else
1228 return pc + 5;
1229 }
1230
1231 static CORE_ADDR
1232 i386_skip_probe (CORE_ADDR pc)
1233 {
1234 /* A function may start with
1235
1236 pushl constant
1237 call _probe
1238 addl $4, %esp
1239
1240 followed by
1241
1242 pushl %ebp
1243
1244 etc. */
1245 gdb_byte buf[8];
1246 gdb_byte op;
1247
1248 if (target_read_code (pc, &op, 1))
1249 return pc;
1250
1251 if (op == 0x68 || op == 0x6a)
1252 {
1253 int delta;
1254
1255 /* Skip past the `pushl' instruction; it has either a one-byte or a
1256 four-byte operand, depending on the opcode. */
1257 if (op == 0x68)
1258 delta = 5;
1259 else
1260 delta = 2;
1261
1262 /* Read the following 8 bytes, which should be `call _probe' (6
1263 bytes) followed by `addl $4,%esp' (2 bytes). */
1264 read_memory (pc + delta, buf, sizeof (buf));
1265 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
1266 pc += delta + sizeof (buf);
1267 }
1268
1269 return pc;
1270 }
1271
1272 /* GCC 4.1 and later, can put code in the prologue to realign the
1273 stack pointer. Check whether PC points to such code, and update
1274 CACHE accordingly. Return the first instruction after the code
1275 sequence or CURRENT_PC, whichever is smaller. If we don't
1276 recognize the code, return PC. */
1277
1278 static CORE_ADDR
1279 i386_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1280 struct i386_frame_cache *cache)
1281 {
1282 /* There are 2 code sequences to re-align stack before the frame
1283 gets set up:
1284
1285 1. Use a caller-saved saved register:
1286
1287 leal 4(%esp), %reg
1288 andl $-XXX, %esp
1289 pushl -4(%reg)
1290
1291 2. Use a callee-saved saved register:
1292
1293 pushl %reg
1294 leal 8(%esp), %reg
1295 andl $-XXX, %esp
1296 pushl -4(%reg)
1297
1298 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
1299
1300 0x83 0xe4 0xf0 andl $-16, %esp
1301 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
1302 */
1303
1304 gdb_byte buf[14];
1305 int reg;
1306 int offset, offset_and;
1307 static int regnums[8] = {
1308 I386_EAX_REGNUM, /* %eax */
1309 I386_ECX_REGNUM, /* %ecx */
1310 I386_EDX_REGNUM, /* %edx */
1311 I386_EBX_REGNUM, /* %ebx */
1312 I386_ESP_REGNUM, /* %esp */
1313 I386_EBP_REGNUM, /* %ebp */
1314 I386_ESI_REGNUM, /* %esi */
1315 I386_EDI_REGNUM /* %edi */
1316 };
1317
1318 if (target_read_code (pc, buf, sizeof buf))
1319 return pc;
1320
1321 /* Check caller-saved saved register. The first instruction has
1322 to be "leal 4(%esp), %reg". */
1323 if (buf[0] == 0x8d && buf[2] == 0x24 && buf[3] == 0x4)
1324 {
1325 /* MOD must be binary 10 and R/M must be binary 100. */
1326 if ((buf[1] & 0xc7) != 0x44)
1327 return pc;
1328
1329 /* REG has register number. */
1330 reg = (buf[1] >> 3) & 7;
1331 offset = 4;
1332 }
1333 else
1334 {
1335 /* Check callee-saved saved register. The first instruction
1336 has to be "pushl %reg". */
1337 if ((buf[0] & 0xf8) != 0x50)
1338 return pc;
1339
1340 /* Get register. */
1341 reg = buf[0] & 0x7;
1342
1343 /* The next instruction has to be "leal 8(%esp), %reg". */
1344 if (buf[1] != 0x8d || buf[3] != 0x24 || buf[4] != 0x8)
1345 return pc;
1346
1347 /* MOD must be binary 10 and R/M must be binary 100. */
1348 if ((buf[2] & 0xc7) != 0x44)
1349 return pc;
1350
1351 /* REG has register number. Registers in pushl and leal have to
1352 be the same. */
1353 if (reg != ((buf[2] >> 3) & 7))
1354 return pc;
1355
1356 offset = 5;
1357 }
1358
1359 /* Rigister can't be %esp nor %ebp. */
1360 if (reg == 4 || reg == 5)
1361 return pc;
1362
1363 /* The next instruction has to be "andl $-XXX, %esp". */
1364 if (buf[offset + 1] != 0xe4
1365 || (buf[offset] != 0x81 && buf[offset] != 0x83))
1366 return pc;
1367
1368 offset_and = offset;
1369 offset += buf[offset] == 0x81 ? 6 : 3;
1370
1371 /* The next instruction has to be "pushl -4(%reg)". 8bit -4 is
1372 0xfc. REG must be binary 110 and MOD must be binary 01. */
1373 if (buf[offset] != 0xff
1374 || buf[offset + 2] != 0xfc
1375 || (buf[offset + 1] & 0xf8) != 0x70)
1376 return pc;
1377
1378 /* R/M has register. Registers in leal and pushl have to be the
1379 same. */
1380 if (reg != (buf[offset + 1] & 7))
1381 return pc;
1382
1383 if (current_pc > pc + offset_and)
1384 cache->saved_sp_reg = regnums[reg];
1385
1386 return std::min (pc + offset + 3, current_pc);
1387 }
1388
1389 /* Maximum instruction length we need to handle. */
1390 #define I386_MAX_MATCHED_INSN_LEN 6
1391
1392 /* Instruction description. */
1393 struct i386_insn
1394 {
1395 size_t len;
1396 gdb_byte insn[I386_MAX_MATCHED_INSN_LEN];
1397 gdb_byte mask[I386_MAX_MATCHED_INSN_LEN];
1398 };
1399
1400 /* Return whether instruction at PC matches PATTERN. */
1401
1402 static int
1403 i386_match_pattern (CORE_ADDR pc, struct i386_insn pattern)
1404 {
1405 gdb_byte op;
1406
1407 if (target_read_code (pc, &op, 1))
1408 return 0;
1409
1410 if ((op & pattern.mask[0]) == pattern.insn[0])
1411 {
1412 gdb_byte buf[I386_MAX_MATCHED_INSN_LEN - 1];
1413 int insn_matched = 1;
1414 size_t i;
1415
1416 gdb_assert (pattern.len > 1);
1417 gdb_assert (pattern.len <= I386_MAX_MATCHED_INSN_LEN);
1418
1419 if (target_read_code (pc + 1, buf, pattern.len - 1))
1420 return 0;
1421
1422 for (i = 1; i < pattern.len; i++)
1423 {
1424 if ((buf[i - 1] & pattern.mask[i]) != pattern.insn[i])
1425 insn_matched = 0;
1426 }
1427 return insn_matched;
1428 }
1429 return 0;
1430 }
1431
1432 /* Search for the instruction at PC in the list INSN_PATTERNS. Return
1433 the first instruction description that matches. Otherwise, return
1434 NULL. */
1435
1436 static struct i386_insn *
1437 i386_match_insn (CORE_ADDR pc, struct i386_insn *insn_patterns)
1438 {
1439 struct i386_insn *pattern;
1440
1441 for (pattern = insn_patterns; pattern->len > 0; pattern++)
1442 {
1443 if (i386_match_pattern (pc, *pattern))
1444 return pattern;
1445 }
1446
1447 return NULL;
1448 }
1449
1450 /* Return whether PC points inside a sequence of instructions that
1451 matches INSN_PATTERNS. */
1452
1453 static int
1454 i386_match_insn_block (CORE_ADDR pc, struct i386_insn *insn_patterns)
1455 {
1456 CORE_ADDR current_pc;
1457 int ix, i;
1458 struct i386_insn *insn;
1459
1460 insn = i386_match_insn (pc, insn_patterns);
1461 if (insn == NULL)
1462 return 0;
1463
1464 current_pc = pc;
1465 ix = insn - insn_patterns;
1466 for (i = ix - 1; i >= 0; i--)
1467 {
1468 current_pc -= insn_patterns[i].len;
1469
1470 if (!i386_match_pattern (current_pc, insn_patterns[i]))
1471 return 0;
1472 }
1473
1474 current_pc = pc + insn->len;
1475 for (insn = insn_patterns + ix + 1; insn->len > 0; insn++)
1476 {
1477 if (!i386_match_pattern (current_pc, *insn))
1478 return 0;
1479
1480 current_pc += insn->len;
1481 }
1482
1483 return 1;
1484 }
1485
1486 /* Some special instructions that might be migrated by GCC into the
1487 part of the prologue that sets up the new stack frame. Because the
1488 stack frame hasn't been setup yet, no registers have been saved
1489 yet, and only the scratch registers %eax, %ecx and %edx can be
1490 touched. */
1491
1492 struct i386_insn i386_frame_setup_skip_insns[] =
1493 {
1494 /* Check for `movb imm8, r' and `movl imm32, r'.
1495
1496 ??? Should we handle 16-bit operand-sizes here? */
1497
1498 /* `movb imm8, %al' and `movb imm8, %ah' */
1499 /* `movb imm8, %cl' and `movb imm8, %ch' */
1500 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
1501 /* `movb imm8, %dl' and `movb imm8, %dh' */
1502 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
1503 /* `movl imm32, %eax' and `movl imm32, %ecx' */
1504 { 5, { 0xb8 }, { 0xfe } },
1505 /* `movl imm32, %edx' */
1506 { 5, { 0xba }, { 0xff } },
1507
1508 /* Check for `mov imm32, r32'. Note that there is an alternative
1509 encoding for `mov m32, %eax'.
1510
1511 ??? Should we handle SIB adressing here?
1512 ??? Should we handle 16-bit operand-sizes here? */
1513
1514 /* `movl m32, %eax' */
1515 { 5, { 0xa1 }, { 0xff } },
1516 /* `movl m32, %eax' and `mov; m32, %ecx' */
1517 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
1518 /* `movl m32, %edx' */
1519 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
1520
1521 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
1522 Because of the symmetry, there are actually two ways to encode
1523 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
1524 opcode bytes 0x31 and 0x33 for `xorl'. */
1525
1526 /* `subl %eax, %eax' */
1527 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
1528 /* `subl %ecx, %ecx' */
1529 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
1530 /* `subl %edx, %edx' */
1531 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
1532 /* `xorl %eax, %eax' */
1533 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
1534 /* `xorl %ecx, %ecx' */
1535 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
1536 /* `xorl %edx, %edx' */
1537 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
1538 { 0 }
1539 };
1540
1541
1542 /* Check whether PC points to a no-op instruction. */
1543 static CORE_ADDR
1544 i386_skip_noop (CORE_ADDR pc)
1545 {
1546 gdb_byte op;
1547 int check = 1;
1548
1549 if (target_read_code (pc, &op, 1))
1550 return pc;
1551
1552 while (check)
1553 {
1554 check = 0;
1555 /* Ignore `nop' instruction. */
1556 if (op == 0x90)
1557 {
1558 pc += 1;
1559 if (target_read_code (pc, &op, 1))
1560 return pc;
1561 check = 1;
1562 }
1563 /* Ignore no-op instruction `mov %edi, %edi'.
1564 Microsoft system dlls often start with
1565 a `mov %edi,%edi' instruction.
1566 The 5 bytes before the function start are
1567 filled with `nop' instructions.
1568 This pattern can be used for hot-patching:
1569 The `mov %edi, %edi' instruction can be replaced by a
1570 near jump to the location of the 5 `nop' instructions
1571 which can be replaced by a 32-bit jump to anywhere
1572 in the 32-bit address space. */
1573
1574 else if (op == 0x8b)
1575 {
1576 if (target_read_code (pc + 1, &op, 1))
1577 return pc;
1578
1579 if (op == 0xff)
1580 {
1581 pc += 2;
1582 if (target_read_code (pc, &op, 1))
1583 return pc;
1584
1585 check = 1;
1586 }
1587 }
1588 }
1589 return pc;
1590 }
1591
1592 /* Check whether PC points at a code that sets up a new stack frame.
1593 If so, it updates CACHE and returns the address of the first
1594 instruction after the sequence that sets up the frame or LIMIT,
1595 whichever is smaller. If we don't recognize the code, return PC. */
1596
1597 static CORE_ADDR
1598 i386_analyze_frame_setup (struct gdbarch *gdbarch,
1599 CORE_ADDR pc, CORE_ADDR limit,
1600 struct i386_frame_cache *cache)
1601 {
1602 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1603 struct i386_insn *insn;
1604 gdb_byte op;
1605 int skip = 0;
1606
1607 if (limit <= pc)
1608 return limit;
1609
1610 if (target_read_code (pc, &op, 1))
1611 return pc;
1612
1613 if (op == 0x55) /* pushl %ebp */
1614 {
1615 /* Take into account that we've executed the `pushl %ebp' that
1616 starts this instruction sequence. */
1617 cache->saved_regs[I386_EBP_REGNUM] = 0;
1618 cache->sp_offset += 4;
1619 pc++;
1620
1621 /* If that's all, return now. */
1622 if (limit <= pc)
1623 return limit;
1624
1625 /* Check for some special instructions that might be migrated by
1626 GCC into the prologue and skip them. At this point in the
1627 prologue, code should only touch the scratch registers %eax,
1628 %ecx and %edx, so while the number of posibilities is sheer,
1629 it is limited.
1630
1631 Make sure we only skip these instructions if we later see the
1632 `movl %esp, %ebp' that actually sets up the frame. */
1633 while (pc + skip < limit)
1634 {
1635 insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
1636 if (insn == NULL)
1637 break;
1638
1639 skip += insn->len;
1640 }
1641
1642 /* If that's all, return now. */
1643 if (limit <= pc + skip)
1644 return limit;
1645
1646 if (target_read_code (pc + skip, &op, 1))
1647 return pc + skip;
1648
1649 /* The i386 prologue looks like
1650
1651 push %ebp
1652 mov %esp,%ebp
1653 sub $0x10,%esp
1654
1655 and a different prologue can be generated for atom.
1656
1657 push %ebp
1658 lea (%esp),%ebp
1659 lea -0x10(%esp),%esp
1660
1661 We handle both of them here. */
1662
1663 switch (op)
1664 {
1665 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
1666 case 0x8b:
1667 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
1668 != 0xec)
1669 return pc;
1670 pc += (skip + 2);
1671 break;
1672 case 0x89:
1673 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
1674 != 0xe5)
1675 return pc;
1676 pc += (skip + 2);
1677 break;
1678 case 0x8d: /* Check for 'lea (%ebp), %ebp'. */
1679 if (read_code_unsigned_integer (pc + skip + 1, 2, byte_order)
1680 != 0x242c)
1681 return pc;
1682 pc += (skip + 3);
1683 break;
1684 default:
1685 return pc;
1686 }
1687
1688 /* OK, we actually have a frame. We just don't know how large
1689 it is yet. Set its size to zero. We'll adjust it if
1690 necessary. We also now commit to skipping the special
1691 instructions mentioned before. */
1692 cache->locals = 0;
1693
1694 /* If that's all, return now. */
1695 if (limit <= pc)
1696 return limit;
1697
1698 /* Check for stack adjustment
1699
1700 subl $XXX, %esp
1701 or
1702 lea -XXX(%esp),%esp
1703
1704 NOTE: You can't subtract a 16-bit immediate from a 32-bit
1705 reg, so we don't have to worry about a data16 prefix. */
1706 if (target_read_code (pc, &op, 1))
1707 return pc;
1708 if (op == 0x83)
1709 {
1710 /* `subl' with 8-bit immediate. */
1711 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1712 /* Some instruction starting with 0x83 other than `subl'. */
1713 return pc;
1714
1715 /* `subl' with signed 8-bit immediate (though it wouldn't
1716 make sense to be negative). */
1717 cache->locals = read_code_integer (pc + 2, 1, byte_order);
1718 return pc + 3;
1719 }
1720 else if (op == 0x81)
1721 {
1722 /* Maybe it is `subl' with a 32-bit immediate. */
1723 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1724 /* Some instruction starting with 0x81 other than `subl'. */
1725 return pc;
1726
1727 /* It is `subl' with a 32-bit immediate. */
1728 cache->locals = read_code_integer (pc + 2, 4, byte_order);
1729 return pc + 6;
1730 }
1731 else if (op == 0x8d)
1732 {
1733 /* The ModR/M byte is 0x64. */
1734 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0x64)
1735 return pc;
1736 /* 'lea' with 8-bit displacement. */
1737 cache->locals = -1 * read_code_integer (pc + 3, 1, byte_order);
1738 return pc + 4;
1739 }
1740 else
1741 {
1742 /* Some instruction other than `subl' nor 'lea'. */
1743 return pc;
1744 }
1745 }
1746 else if (op == 0xc8) /* enter */
1747 {
1748 cache->locals = read_code_unsigned_integer (pc + 1, 2, byte_order);
1749 return pc + 4;
1750 }
1751
1752 return pc;
1753 }
1754
1755 /* Check whether PC points at code that saves registers on the stack.
1756 If so, it updates CACHE and returns the address of the first
1757 instruction after the register saves or CURRENT_PC, whichever is
1758 smaller. Otherwise, return PC. */
1759
1760 static CORE_ADDR
1761 i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
1762 struct i386_frame_cache *cache)
1763 {
1764 CORE_ADDR offset = 0;
1765 gdb_byte op;
1766 int i;
1767
1768 if (cache->locals > 0)
1769 offset -= cache->locals;
1770 for (i = 0; i < 8 && pc < current_pc; i++)
1771 {
1772 if (target_read_code (pc, &op, 1))
1773 return pc;
1774 if (op < 0x50 || op > 0x57)
1775 break;
1776
1777 offset -= 4;
1778 cache->saved_regs[op - 0x50] = offset;
1779 cache->sp_offset += 4;
1780 pc++;
1781 }
1782
1783 return pc;
1784 }
1785
1786 /* Do a full analysis of the prologue at PC and update CACHE
1787 accordingly. Bail out early if CURRENT_PC is reached. Return the
1788 address where the analysis stopped.
1789
1790 We handle these cases:
1791
1792 The startup sequence can be at the start of the function, or the
1793 function can start with a branch to startup code at the end.
1794
1795 %ebp can be set up with either the 'enter' instruction, or "pushl
1796 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
1797 once used in the System V compiler).
1798
1799 Local space is allocated just below the saved %ebp by either the
1800 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
1801 16-bit unsigned argument for space to allocate, and the 'addl'
1802 instruction could have either a signed byte, or 32-bit immediate.
1803
1804 Next, the registers used by this function are pushed. With the
1805 System V compiler they will always be in the order: %edi, %esi,
1806 %ebx (and sometimes a harmless bug causes it to also save but not
1807 restore %eax); however, the code below is willing to see the pushes
1808 in any order, and will handle up to 8 of them.
1809
1810 If the setup sequence is at the end of the function, then the next
1811 instruction will be a branch back to the start. */
1812
1813 static CORE_ADDR
1814 i386_analyze_prologue (struct gdbarch *gdbarch,
1815 CORE_ADDR pc, CORE_ADDR current_pc,
1816 struct i386_frame_cache *cache)
1817 {
1818 pc = i386_skip_noop (pc);
1819 pc = i386_follow_jump (gdbarch, pc);
1820 pc = i386_analyze_struct_return (pc, current_pc, cache);
1821 pc = i386_skip_probe (pc);
1822 pc = i386_analyze_stack_align (pc, current_pc, cache);
1823 pc = i386_analyze_frame_setup (gdbarch, pc, current_pc, cache);
1824 return i386_analyze_register_saves (pc, current_pc, cache);
1825 }
1826
1827 /* Return PC of first real instruction. */
1828
1829 static CORE_ADDR
1830 i386_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
1831 {
1832 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1833
1834 static gdb_byte pic_pat[6] =
1835 {
1836 0xe8, 0, 0, 0, 0, /* call 0x0 */
1837 0x5b, /* popl %ebx */
1838 };
1839 struct i386_frame_cache cache;
1840 CORE_ADDR pc;
1841 gdb_byte op;
1842 int i;
1843 CORE_ADDR func_addr;
1844
1845 if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
1846 {
1847 CORE_ADDR post_prologue_pc
1848 = skip_prologue_using_sal (gdbarch, func_addr);
1849 struct compunit_symtab *cust = find_pc_compunit_symtab (func_addr);
1850
1851 /* Clang always emits a line note before the prologue and another
1852 one after. We trust clang to emit usable line notes. */
1853 if (post_prologue_pc
1854 && (cust != NULL
1855 && COMPUNIT_PRODUCER (cust) != NULL
1856 && startswith (COMPUNIT_PRODUCER (cust), "clang ")))
1857 return std::max (start_pc, post_prologue_pc);
1858 }
1859
1860 cache.locals = -1;
1861 pc = i386_analyze_prologue (gdbarch, start_pc, 0xffffffff, &cache);
1862 if (cache.locals < 0)
1863 return start_pc;
1864
1865 /* Found valid frame setup. */
1866
1867 /* The native cc on SVR4 in -K PIC mode inserts the following code
1868 to get the address of the global offset table (GOT) into register
1869 %ebx:
1870
1871 call 0x0
1872 popl %ebx
1873 movl %ebx,x(%ebp) (optional)
1874 addl y,%ebx
1875
1876 This code is with the rest of the prologue (at the end of the
1877 function), so we have to skip it to get to the first real
1878 instruction at the start of the function. */
1879
1880 for (i = 0; i < 6; i++)
1881 {
1882 if (target_read_code (pc + i, &op, 1))
1883 return pc;
1884
1885 if (pic_pat[i] != op)
1886 break;
1887 }
1888 if (i == 6)
1889 {
1890 int delta = 6;
1891
1892 if (target_read_code (pc + delta, &op, 1))
1893 return pc;
1894
1895 if (op == 0x89) /* movl %ebx, x(%ebp) */
1896 {
1897 op = read_code_unsigned_integer (pc + delta + 1, 1, byte_order);
1898
1899 if (op == 0x5d) /* One byte offset from %ebp. */
1900 delta += 3;
1901 else if (op == 0x9d) /* Four byte offset from %ebp. */
1902 delta += 6;
1903 else /* Unexpected instruction. */
1904 delta = 0;
1905
1906 if (target_read_code (pc + delta, &op, 1))
1907 return pc;
1908 }
1909
1910 /* addl y,%ebx */
1911 if (delta > 0 && op == 0x81
1912 && read_code_unsigned_integer (pc + delta + 1, 1, byte_order)
1913 == 0xc3)
1914 {
1915 pc += delta + 6;
1916 }
1917 }
1918
1919 /* If the function starts with a branch (to startup code at the end)
1920 the last instruction should bring us back to the first
1921 instruction of the real code. */
1922 if (i386_follow_jump (gdbarch, start_pc) != start_pc)
1923 pc = i386_follow_jump (gdbarch, pc);
1924
1925 return pc;
1926 }
1927
1928 /* Check that the code pointed to by PC corresponds to a call to
1929 __main, skip it if so. Return PC otherwise. */
1930
1931 CORE_ADDR
1932 i386_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1933 {
1934 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1935 gdb_byte op;
1936
1937 if (target_read_code (pc, &op, 1))
1938 return pc;
1939 if (op == 0xe8)
1940 {
1941 gdb_byte buf[4];
1942
1943 if (target_read_code (pc + 1, buf, sizeof buf) == 0)
1944 {
1945 /* Make sure address is computed correctly as a 32bit
1946 integer even if CORE_ADDR is 64 bit wide. */
1947 struct bound_minimal_symbol s;
1948 CORE_ADDR call_dest;
1949
1950 call_dest = pc + 5 + extract_signed_integer (buf, 4, byte_order);
1951 call_dest = call_dest & 0xffffffffU;
1952 s = lookup_minimal_symbol_by_pc (call_dest);
1953 if (s.minsym != NULL
1954 && MSYMBOL_LINKAGE_NAME (s.minsym) != NULL
1955 && strcmp (MSYMBOL_LINKAGE_NAME (s.minsym), "__main") == 0)
1956 pc += 5;
1957 }
1958 }
1959
1960 return pc;
1961 }
1962
1963 /* This function is 64-bit safe. */
1964
1965 static CORE_ADDR
1966 i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1967 {
1968 gdb_byte buf[8];
1969
1970 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
1971 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
1972 }
1973 \f
1974
1975 /* Normal frames. */
1976
1977 static void
1978 i386_frame_cache_1 (struct frame_info *this_frame,
1979 struct i386_frame_cache *cache)
1980 {
1981 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1982 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1983 gdb_byte buf[4];
1984 int i;
1985
1986 cache->pc = get_frame_func (this_frame);
1987
1988 /* In principle, for normal frames, %ebp holds the frame pointer,
1989 which holds the base address for the current stack frame.
1990 However, for functions that don't need it, the frame pointer is
1991 optional. For these "frameless" functions the frame pointer is
1992 actually the frame pointer of the calling frame. Signal
1993 trampolines are just a special case of a "frameless" function.
1994 They (usually) share their frame pointer with the frame that was
1995 in progress when the signal occurred. */
1996
1997 get_frame_register (this_frame, I386_EBP_REGNUM, buf);
1998 cache->base = extract_unsigned_integer (buf, 4, byte_order);
1999 if (cache->base == 0)
2000 {
2001 cache->base_p = 1;
2002 return;
2003 }
2004
2005 /* For normal frames, %eip is stored at 4(%ebp). */
2006 cache->saved_regs[I386_EIP_REGNUM] = 4;
2007
2008 if (cache->pc != 0)
2009 i386_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
2010 cache);
2011
2012 if (cache->locals < 0)
2013 {
2014 /* We didn't find a valid frame, which means that CACHE->base
2015 currently holds the frame pointer for our calling frame. If
2016 we're at the start of a function, or somewhere half-way its
2017 prologue, the function's frame probably hasn't been fully
2018 setup yet. Try to reconstruct the base address for the stack
2019 frame by looking at the stack pointer. For truly "frameless"
2020 functions this might work too. */
2021
2022 if (cache->saved_sp_reg != -1)
2023 {
2024 /* Saved stack pointer has been saved. */
2025 get_frame_register (this_frame, cache->saved_sp_reg, buf);
2026 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
2027
2028 /* We're halfway aligning the stack. */
2029 cache->base = ((cache->saved_sp - 4) & 0xfffffff0) - 4;
2030 cache->saved_regs[I386_EIP_REGNUM] = cache->saved_sp - 4;
2031
2032 /* This will be added back below. */
2033 cache->saved_regs[I386_EIP_REGNUM] -= cache->base;
2034 }
2035 else if (cache->pc != 0
2036 || target_read_code (get_frame_pc (this_frame), buf, 1))
2037 {
2038 /* We're in a known function, but did not find a frame
2039 setup. Assume that the function does not use %ebp.
2040 Alternatively, we may have jumped to an invalid
2041 address; in that case there is definitely no new
2042 frame in %ebp. */
2043 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2044 cache->base = extract_unsigned_integer (buf, 4, byte_order)
2045 + cache->sp_offset;
2046 }
2047 else
2048 /* We're in an unknown function. We could not find the start
2049 of the function to analyze the prologue; our best option is
2050 to assume a typical frame layout with the caller's %ebp
2051 saved. */
2052 cache->saved_regs[I386_EBP_REGNUM] = 0;
2053 }
2054
2055 if (cache->saved_sp_reg != -1)
2056 {
2057 /* Saved stack pointer has been saved (but the SAVED_SP_REG
2058 register may be unavailable). */
2059 if (cache->saved_sp == 0
2060 && deprecated_frame_register_read (this_frame,
2061 cache->saved_sp_reg, buf))
2062 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
2063 }
2064 /* Now that we have the base address for the stack frame we can
2065 calculate the value of %esp in the calling frame. */
2066 else if (cache->saved_sp == 0)
2067 cache->saved_sp = cache->base + 8;
2068
2069 /* Adjust all the saved registers such that they contain addresses
2070 instead of offsets. */
2071 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
2072 if (cache->saved_regs[i] != -1)
2073 cache->saved_regs[i] += cache->base;
2074
2075 cache->base_p = 1;
2076 }
2077
2078 static struct i386_frame_cache *
2079 i386_frame_cache (struct frame_info *this_frame, void **this_cache)
2080 {
2081 struct i386_frame_cache *cache;
2082
2083 if (*this_cache)
2084 return (struct i386_frame_cache *) *this_cache;
2085
2086 cache = i386_alloc_frame_cache ();
2087 *this_cache = cache;
2088
2089 TRY
2090 {
2091 i386_frame_cache_1 (this_frame, cache);
2092 }
2093 CATCH (ex, RETURN_MASK_ERROR)
2094 {
2095 if (ex.error != NOT_AVAILABLE_ERROR)
2096 throw_exception (ex);
2097 }
2098 END_CATCH
2099
2100 return cache;
2101 }
2102
2103 static void
2104 i386_frame_this_id (struct frame_info *this_frame, void **this_cache,
2105 struct frame_id *this_id)
2106 {
2107 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2108
2109 if (!cache->base_p)
2110 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2111 else if (cache->base == 0)
2112 {
2113 /* This marks the outermost frame. */
2114 }
2115 else
2116 {
2117 /* See the end of i386_push_dummy_call. */
2118 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2119 }
2120 }
2121
2122 static enum unwind_stop_reason
2123 i386_frame_unwind_stop_reason (struct frame_info *this_frame,
2124 void **this_cache)
2125 {
2126 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2127
2128 if (!cache->base_p)
2129 return UNWIND_UNAVAILABLE;
2130
2131 /* This marks the outermost frame. */
2132 if (cache->base == 0)
2133 return UNWIND_OUTERMOST;
2134
2135 return UNWIND_NO_REASON;
2136 }
2137
2138 static struct value *
2139 i386_frame_prev_register (struct frame_info *this_frame, void **this_cache,
2140 int regnum)
2141 {
2142 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2143
2144 gdb_assert (regnum >= 0);
2145
2146 /* The System V ABI says that:
2147
2148 "The flags register contains the system flags, such as the
2149 direction flag and the carry flag. The direction flag must be
2150 set to the forward (that is, zero) direction before entry and
2151 upon exit from a function. Other user flags have no specified
2152 role in the standard calling sequence and are not preserved."
2153
2154 To guarantee the "upon exit" part of that statement we fake a
2155 saved flags register that has its direction flag cleared.
2156
2157 Note that GCC doesn't seem to rely on the fact that the direction
2158 flag is cleared after a function return; it always explicitly
2159 clears the flag before operations where it matters.
2160
2161 FIXME: kettenis/20030316: I'm not quite sure whether this is the
2162 right thing to do. The way we fake the flags register here makes
2163 it impossible to change it. */
2164
2165 if (regnum == I386_EFLAGS_REGNUM)
2166 {
2167 ULONGEST val;
2168
2169 val = get_frame_register_unsigned (this_frame, regnum);
2170 val &= ~(1 << 10);
2171 return frame_unwind_got_constant (this_frame, regnum, val);
2172 }
2173
2174 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
2175 return frame_unwind_got_register (this_frame, regnum, I386_EAX_REGNUM);
2176
2177 if (regnum == I386_ESP_REGNUM
2178 && (cache->saved_sp != 0 || cache->saved_sp_reg != -1))
2179 {
2180 /* If the SP has been saved, but we don't know where, then this
2181 means that SAVED_SP_REG register was found unavailable back
2182 when we built the cache. */
2183 if (cache->saved_sp == 0)
2184 return frame_unwind_got_register (this_frame, regnum,
2185 cache->saved_sp_reg);
2186 else
2187 return frame_unwind_got_constant (this_frame, regnum,
2188 cache->saved_sp);
2189 }
2190
2191 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
2192 return frame_unwind_got_memory (this_frame, regnum,
2193 cache->saved_regs[regnum]);
2194
2195 return frame_unwind_got_register (this_frame, regnum, regnum);
2196 }
2197
2198 static const struct frame_unwind i386_frame_unwind =
2199 {
2200 NORMAL_FRAME,
2201 i386_frame_unwind_stop_reason,
2202 i386_frame_this_id,
2203 i386_frame_prev_register,
2204 NULL,
2205 default_frame_sniffer
2206 };
2207
2208 /* Normal frames, but in a function epilogue. */
2209
2210 /* Implement the stack_frame_destroyed_p gdbarch method.
2211
2212 The epilogue is defined here as the 'ret' instruction, which will
2213 follow any instruction such as 'leave' or 'pop %ebp' that destroys
2214 the function's stack frame. */
2215
2216 static int
2217 i386_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2218 {
2219 gdb_byte insn;
2220 struct compunit_symtab *cust;
2221
2222 cust = find_pc_compunit_symtab (pc);
2223 if (cust != NULL && COMPUNIT_EPILOGUE_UNWIND_VALID (cust))
2224 return 0;
2225
2226 if (target_read_memory (pc, &insn, 1))
2227 return 0; /* Can't read memory at pc. */
2228
2229 if (insn != 0xc3) /* 'ret' instruction. */
2230 return 0;
2231
2232 return 1;
2233 }
2234
2235 static int
2236 i386_epilogue_frame_sniffer (const struct frame_unwind *self,
2237 struct frame_info *this_frame,
2238 void **this_prologue_cache)
2239 {
2240 if (frame_relative_level (this_frame) == 0)
2241 return i386_stack_frame_destroyed_p (get_frame_arch (this_frame),
2242 get_frame_pc (this_frame));
2243 else
2244 return 0;
2245 }
2246
2247 static struct i386_frame_cache *
2248 i386_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
2249 {
2250 struct i386_frame_cache *cache;
2251 CORE_ADDR sp;
2252
2253 if (*this_cache)
2254 return (struct i386_frame_cache *) *this_cache;
2255
2256 cache = i386_alloc_frame_cache ();
2257 *this_cache = cache;
2258
2259 TRY
2260 {
2261 cache->pc = get_frame_func (this_frame);
2262
2263 /* At this point the stack looks as if we just entered the
2264 function, with the return address at the top of the
2265 stack. */
2266 sp = get_frame_register_unsigned (this_frame, I386_ESP_REGNUM);
2267 cache->base = sp + cache->sp_offset;
2268 cache->saved_sp = cache->base + 8;
2269 cache->saved_regs[I386_EIP_REGNUM] = cache->base + 4;
2270
2271 cache->base_p = 1;
2272 }
2273 CATCH (ex, RETURN_MASK_ERROR)
2274 {
2275 if (ex.error != NOT_AVAILABLE_ERROR)
2276 throw_exception (ex);
2277 }
2278 END_CATCH
2279
2280 return cache;
2281 }
2282
2283 static enum unwind_stop_reason
2284 i386_epilogue_frame_unwind_stop_reason (struct frame_info *this_frame,
2285 void **this_cache)
2286 {
2287 struct i386_frame_cache *cache =
2288 i386_epilogue_frame_cache (this_frame, this_cache);
2289
2290 if (!cache->base_p)
2291 return UNWIND_UNAVAILABLE;
2292
2293 return UNWIND_NO_REASON;
2294 }
2295
2296 static void
2297 i386_epilogue_frame_this_id (struct frame_info *this_frame,
2298 void **this_cache,
2299 struct frame_id *this_id)
2300 {
2301 struct i386_frame_cache *cache =
2302 i386_epilogue_frame_cache (this_frame, this_cache);
2303
2304 if (!cache->base_p)
2305 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2306 else
2307 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2308 }
2309
2310 static struct value *
2311 i386_epilogue_frame_prev_register (struct frame_info *this_frame,
2312 void **this_cache, int regnum)
2313 {
2314 /* Make sure we've initialized the cache. */
2315 i386_epilogue_frame_cache (this_frame, this_cache);
2316
2317 return i386_frame_prev_register (this_frame, this_cache, regnum);
2318 }
2319
2320 static const struct frame_unwind i386_epilogue_frame_unwind =
2321 {
2322 NORMAL_FRAME,
2323 i386_epilogue_frame_unwind_stop_reason,
2324 i386_epilogue_frame_this_id,
2325 i386_epilogue_frame_prev_register,
2326 NULL,
2327 i386_epilogue_frame_sniffer
2328 };
2329 \f
2330
2331 /* Stack-based trampolines. */
2332
2333 /* These trampolines are used on cross x86 targets, when taking the
2334 address of a nested function. When executing these trampolines,
2335 no stack frame is set up, so we are in a similar situation as in
2336 epilogues and i386_epilogue_frame_this_id can be re-used. */
2337
2338 /* Static chain passed in register. */
2339
2340 struct i386_insn i386_tramp_chain_in_reg_insns[] =
2341 {
2342 /* `movl imm32, %eax' and `movl imm32, %ecx' */
2343 { 5, { 0xb8 }, { 0xfe } },
2344
2345 /* `jmp imm32' */
2346 { 5, { 0xe9 }, { 0xff } },
2347
2348 {0}
2349 };
2350
2351 /* Static chain passed on stack (when regparm=3). */
2352
2353 struct i386_insn i386_tramp_chain_on_stack_insns[] =
2354 {
2355 /* `push imm32' */
2356 { 5, { 0x68 }, { 0xff } },
2357
2358 /* `jmp imm32' */
2359 { 5, { 0xe9 }, { 0xff } },
2360
2361 {0}
2362 };
2363
2364 /* Return whether PC points inside a stack trampoline. */
2365
2366 static int
2367 i386_in_stack_tramp_p (CORE_ADDR pc)
2368 {
2369 gdb_byte insn;
2370 const char *name;
2371
2372 /* A stack trampoline is detected if no name is associated
2373 to the current pc and if it points inside a trampoline
2374 sequence. */
2375
2376 find_pc_partial_function (pc, &name, NULL, NULL);
2377 if (name)
2378 return 0;
2379
2380 if (target_read_memory (pc, &insn, 1))
2381 return 0;
2382
2383 if (!i386_match_insn_block (pc, i386_tramp_chain_in_reg_insns)
2384 && !i386_match_insn_block (pc, i386_tramp_chain_on_stack_insns))
2385 return 0;
2386
2387 return 1;
2388 }
2389
2390 static int
2391 i386_stack_tramp_frame_sniffer (const struct frame_unwind *self,
2392 struct frame_info *this_frame,
2393 void **this_cache)
2394 {
2395 if (frame_relative_level (this_frame) == 0)
2396 return i386_in_stack_tramp_p (get_frame_pc (this_frame));
2397 else
2398 return 0;
2399 }
2400
2401 static const struct frame_unwind i386_stack_tramp_frame_unwind =
2402 {
2403 NORMAL_FRAME,
2404 i386_epilogue_frame_unwind_stop_reason,
2405 i386_epilogue_frame_this_id,
2406 i386_epilogue_frame_prev_register,
2407 NULL,
2408 i386_stack_tramp_frame_sniffer
2409 };
2410 \f
2411 /* Generate a bytecode expression to get the value of the saved PC. */
2412
2413 static void
2414 i386_gen_return_address (struct gdbarch *gdbarch,
2415 struct agent_expr *ax, struct axs_value *value,
2416 CORE_ADDR scope)
2417 {
2418 /* The following sequence assumes the traditional use of the base
2419 register. */
2420 ax_reg (ax, I386_EBP_REGNUM);
2421 ax_const_l (ax, 4);
2422 ax_simple (ax, aop_add);
2423 value->type = register_type (gdbarch, I386_EIP_REGNUM);
2424 value->kind = axs_lvalue_memory;
2425 }
2426 \f
2427
2428 /* Signal trampolines. */
2429
2430 static struct i386_frame_cache *
2431 i386_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
2432 {
2433 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2434 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2435 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2436 struct i386_frame_cache *cache;
2437 CORE_ADDR addr;
2438 gdb_byte buf[4];
2439
2440 if (*this_cache)
2441 return (struct i386_frame_cache *) *this_cache;
2442
2443 cache = i386_alloc_frame_cache ();
2444
2445 TRY
2446 {
2447 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2448 cache->base = extract_unsigned_integer (buf, 4, byte_order) - 4;
2449
2450 addr = tdep->sigcontext_addr (this_frame);
2451 if (tdep->sc_reg_offset)
2452 {
2453 int i;
2454
2455 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
2456
2457 for (i = 0; i < tdep->sc_num_regs; i++)
2458 if (tdep->sc_reg_offset[i] != -1)
2459 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
2460 }
2461 else
2462 {
2463 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
2464 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
2465 }
2466
2467 cache->base_p = 1;
2468 }
2469 CATCH (ex, RETURN_MASK_ERROR)
2470 {
2471 if (ex.error != NOT_AVAILABLE_ERROR)
2472 throw_exception (ex);
2473 }
2474 END_CATCH
2475
2476 *this_cache = cache;
2477 return cache;
2478 }
2479
2480 static enum unwind_stop_reason
2481 i386_sigtramp_frame_unwind_stop_reason (struct frame_info *this_frame,
2482 void **this_cache)
2483 {
2484 struct i386_frame_cache *cache =
2485 i386_sigtramp_frame_cache (this_frame, this_cache);
2486
2487 if (!cache->base_p)
2488 return UNWIND_UNAVAILABLE;
2489
2490 return UNWIND_NO_REASON;
2491 }
2492
2493 static void
2494 i386_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache,
2495 struct frame_id *this_id)
2496 {
2497 struct i386_frame_cache *cache =
2498 i386_sigtramp_frame_cache (this_frame, this_cache);
2499
2500 if (!cache->base_p)
2501 (*this_id) = frame_id_build_unavailable_stack (get_frame_pc (this_frame));
2502 else
2503 {
2504 /* See the end of i386_push_dummy_call. */
2505 (*this_id) = frame_id_build (cache->base + 8, get_frame_pc (this_frame));
2506 }
2507 }
2508
2509 static struct value *
2510 i386_sigtramp_frame_prev_register (struct frame_info *this_frame,
2511 void **this_cache, int regnum)
2512 {
2513 /* Make sure we've initialized the cache. */
2514 i386_sigtramp_frame_cache (this_frame, this_cache);
2515
2516 return i386_frame_prev_register (this_frame, this_cache, regnum);
2517 }
2518
2519 static int
2520 i386_sigtramp_frame_sniffer (const struct frame_unwind *self,
2521 struct frame_info *this_frame,
2522 void **this_prologue_cache)
2523 {
2524 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
2525
2526 /* We shouldn't even bother if we don't have a sigcontext_addr
2527 handler. */
2528 if (tdep->sigcontext_addr == NULL)
2529 return 0;
2530
2531 if (tdep->sigtramp_p != NULL)
2532 {
2533 if (tdep->sigtramp_p (this_frame))
2534 return 1;
2535 }
2536
2537 if (tdep->sigtramp_start != 0)
2538 {
2539 CORE_ADDR pc = get_frame_pc (this_frame);
2540
2541 gdb_assert (tdep->sigtramp_end != 0);
2542 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
2543 return 1;
2544 }
2545
2546 return 0;
2547 }
2548
2549 static const struct frame_unwind i386_sigtramp_frame_unwind =
2550 {
2551 SIGTRAMP_FRAME,
2552 i386_sigtramp_frame_unwind_stop_reason,
2553 i386_sigtramp_frame_this_id,
2554 i386_sigtramp_frame_prev_register,
2555 NULL,
2556 i386_sigtramp_frame_sniffer
2557 };
2558 \f
2559
2560 static CORE_ADDR
2561 i386_frame_base_address (struct frame_info *this_frame, void **this_cache)
2562 {
2563 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2564
2565 return cache->base;
2566 }
2567
2568 static const struct frame_base i386_frame_base =
2569 {
2570 &i386_frame_unwind,
2571 i386_frame_base_address,
2572 i386_frame_base_address,
2573 i386_frame_base_address
2574 };
2575
2576 static struct frame_id
2577 i386_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2578 {
2579 CORE_ADDR fp;
2580
2581 fp = get_frame_register_unsigned (this_frame, I386_EBP_REGNUM);
2582
2583 /* See the end of i386_push_dummy_call. */
2584 return frame_id_build (fp + 8, get_frame_pc (this_frame));
2585 }
2586
2587 /* _Decimal128 function return values need 16-byte alignment on the
2588 stack. */
2589
2590 static CORE_ADDR
2591 i386_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2592 {
2593 return sp & -(CORE_ADDR)16;
2594 }
2595 \f
2596
2597 /* Figure out where the longjmp will land. Slurp the args out of the
2598 stack. We expect the first arg to be a pointer to the jmp_buf
2599 structure from which we extract the address that we will land at.
2600 This address is copied into PC. This routine returns non-zero on
2601 success. */
2602
2603 static int
2604 i386_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
2605 {
2606 gdb_byte buf[4];
2607 CORE_ADDR sp, jb_addr;
2608 struct gdbarch *gdbarch = get_frame_arch (frame);
2609 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2610 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
2611
2612 /* If JB_PC_OFFSET is -1, we have no way to find out where the
2613 longjmp will land. */
2614 if (jb_pc_offset == -1)
2615 return 0;
2616
2617 get_frame_register (frame, I386_ESP_REGNUM, buf);
2618 sp = extract_unsigned_integer (buf, 4, byte_order);
2619 if (target_read_memory (sp + 4, buf, 4))
2620 return 0;
2621
2622 jb_addr = extract_unsigned_integer (buf, 4, byte_order);
2623 if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
2624 return 0;
2625
2626 *pc = extract_unsigned_integer (buf, 4, byte_order);
2627 return 1;
2628 }
2629 \f
2630
2631 /* Check whether TYPE must be 16-byte-aligned when passed as a
2632 function argument. 16-byte vectors, _Decimal128 and structures or
2633 unions containing such types must be 16-byte-aligned; other
2634 arguments are 4-byte-aligned. */
2635
2636 static int
2637 i386_16_byte_align_p (struct type *type)
2638 {
2639 type = check_typedef (type);
2640 if ((TYPE_CODE (type) == TYPE_CODE_DECFLOAT
2641 || (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type)))
2642 && TYPE_LENGTH (type) == 16)
2643 return 1;
2644 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2645 return i386_16_byte_align_p (TYPE_TARGET_TYPE (type));
2646 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2647 || TYPE_CODE (type) == TYPE_CODE_UNION)
2648 {
2649 int i;
2650 for (i = 0; i < TYPE_NFIELDS (type); i++)
2651 {
2652 if (i386_16_byte_align_p (TYPE_FIELD_TYPE (type, i)))
2653 return 1;
2654 }
2655 }
2656 return 0;
2657 }
2658
2659 /* Implementation for set_gdbarch_push_dummy_code. */
2660
2661 static CORE_ADDR
2662 i386_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, CORE_ADDR funaddr,
2663 struct value **args, int nargs, struct type *value_type,
2664 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
2665 struct regcache *regcache)
2666 {
2667 /* Use 0xcc breakpoint - 1 byte. */
2668 *bp_addr = sp - 1;
2669 *real_pc = funaddr;
2670
2671 /* Keep the stack aligned. */
2672 return sp - 16;
2673 }
2674
2675 static CORE_ADDR
2676 i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2677 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2678 struct value **args, CORE_ADDR sp, int struct_return,
2679 CORE_ADDR struct_addr)
2680 {
2681 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2682 gdb_byte buf[4];
2683 int i;
2684 int write_pass;
2685 int args_space = 0;
2686
2687 /* BND registers can be in arbitrary values at the moment of the
2688 inferior call. This can cause boundary violations that are not
2689 due to a real bug or even desired by the user. The best to be done
2690 is set the BND registers to allow access to the whole memory, INIT
2691 state, before pushing the inferior call. */
2692 i387_reset_bnd_regs (gdbarch, regcache);
2693
2694 /* Determine the total space required for arguments and struct
2695 return address in a first pass (allowing for 16-byte-aligned
2696 arguments), then push arguments in a second pass. */
2697
2698 for (write_pass = 0; write_pass < 2; write_pass++)
2699 {
2700 int args_space_used = 0;
2701
2702 if (struct_return)
2703 {
2704 if (write_pass)
2705 {
2706 /* Push value address. */
2707 store_unsigned_integer (buf, 4, byte_order, struct_addr);
2708 write_memory (sp, buf, 4);
2709 args_space_used += 4;
2710 }
2711 else
2712 args_space += 4;
2713 }
2714
2715 for (i = 0; i < nargs; i++)
2716 {
2717 int len = TYPE_LENGTH (value_enclosing_type (args[i]));
2718
2719 if (write_pass)
2720 {
2721 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2722 args_space_used = align_up (args_space_used, 16);
2723
2724 write_memory (sp + args_space_used,
2725 value_contents_all (args[i]), len);
2726 /* The System V ABI says that:
2727
2728 "An argument's size is increased, if necessary, to make it a
2729 multiple of [32-bit] words. This may require tail padding,
2730 depending on the size of the argument."
2731
2732 This makes sure the stack stays word-aligned. */
2733 args_space_used += align_up (len, 4);
2734 }
2735 else
2736 {
2737 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2738 args_space = align_up (args_space, 16);
2739 args_space += align_up (len, 4);
2740 }
2741 }
2742
2743 if (!write_pass)
2744 {
2745 sp -= args_space;
2746
2747 /* The original System V ABI only requires word alignment,
2748 but modern incarnations need 16-byte alignment in order
2749 to support SSE. Since wasting a few bytes here isn't
2750 harmful we unconditionally enforce 16-byte alignment. */
2751 sp &= ~0xf;
2752 }
2753 }
2754
2755 /* Store return address. */
2756 sp -= 4;
2757 store_unsigned_integer (buf, 4, byte_order, bp_addr);
2758 write_memory (sp, buf, 4);
2759
2760 /* Finally, update the stack pointer... */
2761 store_unsigned_integer (buf, 4, byte_order, sp);
2762 regcache_cooked_write (regcache, I386_ESP_REGNUM, buf);
2763
2764 /* ...and fake a frame pointer. */
2765 regcache_cooked_write (regcache, I386_EBP_REGNUM, buf);
2766
2767 /* MarkK wrote: This "+ 8" is all over the place:
2768 (i386_frame_this_id, i386_sigtramp_frame_this_id,
2769 i386_dummy_id). It's there, since all frame unwinders for
2770 a given target have to agree (within a certain margin) on the
2771 definition of the stack address of a frame. Otherwise frame id
2772 comparison might not work correctly. Since DWARF2/GCC uses the
2773 stack address *before* the function call as a frame's CFA. On
2774 the i386, when %ebp is used as a frame pointer, the offset
2775 between the contents %ebp and the CFA as defined by GCC. */
2776 return sp + 8;
2777 }
2778
2779 /* These registers are used for returning integers (and on some
2780 targets also for returning `struct' and `union' values when their
2781 size and alignment match an integer type). */
2782 #define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
2783 #define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
2784
2785 /* Read, for architecture GDBARCH, a function return value of TYPE
2786 from REGCACHE, and copy that into VALBUF. */
2787
2788 static void
2789 i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
2790 struct regcache *regcache, gdb_byte *valbuf)
2791 {
2792 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2793 int len = TYPE_LENGTH (type);
2794 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2795
2796 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2797 {
2798 if (tdep->st0_regnum < 0)
2799 {
2800 warning (_("Cannot find floating-point return value."));
2801 memset (valbuf, 0, len);
2802 return;
2803 }
2804
2805 /* Floating-point return values can be found in %st(0). Convert
2806 its contents to the desired type. This is probably not
2807 exactly how it would happen on the target itself, but it is
2808 the best we can do. */
2809 regcache_raw_read (regcache, I386_ST0_REGNUM, buf);
2810 convert_typed_floating (buf, i387_ext_type (gdbarch), valbuf, type);
2811 }
2812 else
2813 {
2814 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2815 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2816
2817 if (len <= low_size)
2818 {
2819 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
2820 memcpy (valbuf, buf, len);
2821 }
2822 else if (len <= (low_size + high_size))
2823 {
2824 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
2825 memcpy (valbuf, buf, low_size);
2826 regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
2827 memcpy (valbuf + low_size, buf, len - low_size);
2828 }
2829 else
2830 internal_error (__FILE__, __LINE__,
2831 _("Cannot extract return value of %d bytes long."),
2832 len);
2833 }
2834 }
2835
2836 /* Write, for architecture GDBARCH, a function return value of TYPE
2837 from VALBUF into REGCACHE. */
2838
2839 static void
2840 i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
2841 struct regcache *regcache, const gdb_byte *valbuf)
2842 {
2843 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2844 int len = TYPE_LENGTH (type);
2845
2846 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2847 {
2848 ULONGEST fstat;
2849 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2850
2851 if (tdep->st0_regnum < 0)
2852 {
2853 warning (_("Cannot set floating-point return value."));
2854 return;
2855 }
2856
2857 /* Returning floating-point values is a bit tricky. Apart from
2858 storing the return value in %st(0), we have to simulate the
2859 state of the FPU at function return point. */
2860
2861 /* Convert the value found in VALBUF to the extended
2862 floating-point format used by the FPU. This is probably
2863 not exactly how it would happen on the target itself, but
2864 it is the best we can do. */
2865 convert_typed_floating (valbuf, type, buf, i387_ext_type (gdbarch));
2866 regcache_raw_write (regcache, I386_ST0_REGNUM, buf);
2867
2868 /* Set the top of the floating-point register stack to 7. The
2869 actual value doesn't really matter, but 7 is what a normal
2870 function return would end up with if the program started out
2871 with a freshly initialized FPU. */
2872 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
2873 fstat |= (7 << 11);
2874 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM (tdep), fstat);
2875
2876 /* Mark %st(1) through %st(7) as empty. Since we set the top of
2877 the floating-point register stack to 7, the appropriate value
2878 for the tag word is 0x3fff. */
2879 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM (tdep), 0x3fff);
2880 }
2881 else
2882 {
2883 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2884 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2885
2886 if (len <= low_size)
2887 regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
2888 else if (len <= (low_size + high_size))
2889 {
2890 regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
2891 regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
2892 len - low_size, valbuf + low_size);
2893 }
2894 else
2895 internal_error (__FILE__, __LINE__,
2896 _("Cannot store return value of %d bytes long."), len);
2897 }
2898 }
2899 \f
2900
2901 /* This is the variable that is set with "set struct-convention", and
2902 its legitimate values. */
2903 static const char default_struct_convention[] = "default";
2904 static const char pcc_struct_convention[] = "pcc";
2905 static const char reg_struct_convention[] = "reg";
2906 static const char *const valid_conventions[] =
2907 {
2908 default_struct_convention,
2909 pcc_struct_convention,
2910 reg_struct_convention,
2911 NULL
2912 };
2913 static const char *struct_convention = default_struct_convention;
2914
2915 /* Return non-zero if TYPE, which is assumed to be a structure,
2916 a union type, or an array type, should be returned in registers
2917 for architecture GDBARCH. */
2918
2919 static int
2920 i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
2921 {
2922 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2923 enum type_code code = TYPE_CODE (type);
2924 int len = TYPE_LENGTH (type);
2925
2926 gdb_assert (code == TYPE_CODE_STRUCT
2927 || code == TYPE_CODE_UNION
2928 || code == TYPE_CODE_ARRAY);
2929
2930 if (struct_convention == pcc_struct_convention
2931 || (struct_convention == default_struct_convention
2932 && tdep->struct_return == pcc_struct_return))
2933 return 0;
2934
2935 /* Structures consisting of a single `float', `double' or 'long
2936 double' member are returned in %st(0). */
2937 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2938 {
2939 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
2940 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2941 return (len == 4 || len == 8 || len == 12);
2942 }
2943
2944 return (len == 1 || len == 2 || len == 4 || len == 8);
2945 }
2946
2947 /* Determine, for architecture GDBARCH, how a return value of TYPE
2948 should be returned. If it is supposed to be returned in registers,
2949 and READBUF is non-zero, read the appropriate value from REGCACHE,
2950 and copy it into READBUF. If WRITEBUF is non-zero, write the value
2951 from WRITEBUF into REGCACHE. */
2952
2953 static enum return_value_convention
2954 i386_return_value (struct gdbarch *gdbarch, struct value *function,
2955 struct type *type, struct regcache *regcache,
2956 gdb_byte *readbuf, const gdb_byte *writebuf)
2957 {
2958 enum type_code code = TYPE_CODE (type);
2959
2960 if (((code == TYPE_CODE_STRUCT
2961 || code == TYPE_CODE_UNION
2962 || code == TYPE_CODE_ARRAY)
2963 && !i386_reg_struct_return_p (gdbarch, type))
2964 /* Complex double and long double uses the struct return covention. */
2965 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 16)
2966 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 24)
2967 /* 128-bit decimal float uses the struct return convention. */
2968 || (code == TYPE_CODE_DECFLOAT && TYPE_LENGTH (type) == 16))
2969 {
2970 /* The System V ABI says that:
2971
2972 "A function that returns a structure or union also sets %eax
2973 to the value of the original address of the caller's area
2974 before it returns. Thus when the caller receives control
2975 again, the address of the returned object resides in register
2976 %eax and can be used to access the object."
2977
2978 So the ABI guarantees that we can always find the return
2979 value just after the function has returned. */
2980
2981 /* Note that the ABI doesn't mention functions returning arrays,
2982 which is something possible in certain languages such as Ada.
2983 In this case, the value is returned as if it was wrapped in
2984 a record, so the convention applied to records also applies
2985 to arrays. */
2986
2987 if (readbuf)
2988 {
2989 ULONGEST addr;
2990
2991 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
2992 read_memory (addr, readbuf, TYPE_LENGTH (type));
2993 }
2994
2995 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
2996 }
2997
2998 /* This special case is for structures consisting of a single
2999 `float', `double' or 'long double' member. These structures are
3000 returned in %st(0). For these structures, we call ourselves
3001 recursively, changing TYPE into the type of the first member of
3002 the structure. Since that should work for all structures that
3003 have only one member, we don't bother to check the member's type
3004 here. */
3005 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
3006 {
3007 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
3008 return i386_return_value (gdbarch, function, type, regcache,
3009 readbuf, writebuf);
3010 }
3011
3012 if (readbuf)
3013 i386_extract_return_value (gdbarch, type, regcache, readbuf);
3014 if (writebuf)
3015 i386_store_return_value (gdbarch, type, regcache, writebuf);
3016
3017 return RETURN_VALUE_REGISTER_CONVENTION;
3018 }
3019 \f
3020
3021 struct type *
3022 i387_ext_type (struct gdbarch *gdbarch)
3023 {
3024 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3025
3026 if (!tdep->i387_ext_type)
3027 {
3028 tdep->i387_ext_type = tdesc_find_type (gdbarch, "i387_ext");
3029 gdb_assert (tdep->i387_ext_type != NULL);
3030 }
3031
3032 return tdep->i387_ext_type;
3033 }
3034
3035 /* Construct type for pseudo BND registers. We can't use
3036 tdesc_find_type since a complement of one value has to be used
3037 to describe the upper bound. */
3038
3039 static struct type *
3040 i386_bnd_type (struct gdbarch *gdbarch)
3041 {
3042 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3043
3044
3045 if (!tdep->i386_bnd_type)
3046 {
3047 struct type *t;
3048 const struct builtin_type *bt = builtin_type (gdbarch);
3049
3050 /* The type we're building is described bellow: */
3051 #if 0
3052 struct __bound128
3053 {
3054 void *lbound;
3055 void *ubound; /* One complement of raw ubound field. */
3056 };
3057 #endif
3058
3059 t = arch_composite_type (gdbarch,
3060 "__gdb_builtin_type_bound128", TYPE_CODE_STRUCT);
3061
3062 append_composite_type_field (t, "lbound", bt->builtin_data_ptr);
3063 append_composite_type_field (t, "ubound", bt->builtin_data_ptr);
3064
3065 TYPE_NAME (t) = "builtin_type_bound128";
3066 tdep->i386_bnd_type = t;
3067 }
3068
3069 return tdep->i386_bnd_type;
3070 }
3071
3072 /* Construct vector type for pseudo ZMM registers. We can't use
3073 tdesc_find_type since ZMM isn't described in target description. */
3074
3075 static struct type *
3076 i386_zmm_type (struct gdbarch *gdbarch)
3077 {
3078 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3079
3080 if (!tdep->i386_zmm_type)
3081 {
3082 const struct builtin_type *bt = builtin_type (gdbarch);
3083
3084 /* The type we're building is this: */
3085 #if 0
3086 union __gdb_builtin_type_vec512i
3087 {
3088 int128_t uint128[4];
3089 int64_t v4_int64[8];
3090 int32_t v8_int32[16];
3091 int16_t v16_int16[32];
3092 int8_t v32_int8[64];
3093 double v4_double[8];
3094 float v8_float[16];
3095 };
3096 #endif
3097
3098 struct type *t;
3099
3100 t = arch_composite_type (gdbarch,
3101 "__gdb_builtin_type_vec512i", TYPE_CODE_UNION);
3102 append_composite_type_field (t, "v16_float",
3103 init_vector_type (bt->builtin_float, 16));
3104 append_composite_type_field (t, "v8_double",
3105 init_vector_type (bt->builtin_double, 8));
3106 append_composite_type_field (t, "v64_int8",
3107 init_vector_type (bt->builtin_int8, 64));
3108 append_composite_type_field (t, "v32_int16",
3109 init_vector_type (bt->builtin_int16, 32));
3110 append_composite_type_field (t, "v16_int32",
3111 init_vector_type (bt->builtin_int32, 16));
3112 append_composite_type_field (t, "v8_int64",
3113 init_vector_type (bt->builtin_int64, 8));
3114 append_composite_type_field (t, "v4_int128",
3115 init_vector_type (bt->builtin_int128, 4));
3116
3117 TYPE_VECTOR (t) = 1;
3118 TYPE_NAME (t) = "builtin_type_vec512i";
3119 tdep->i386_zmm_type = t;
3120 }
3121
3122 return tdep->i386_zmm_type;
3123 }
3124
3125 /* Construct vector type for pseudo YMM registers. We can't use
3126 tdesc_find_type since YMM isn't described in target description. */
3127
3128 static struct type *
3129 i386_ymm_type (struct gdbarch *gdbarch)
3130 {
3131 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3132
3133 if (!tdep->i386_ymm_type)
3134 {
3135 const struct builtin_type *bt = builtin_type (gdbarch);
3136
3137 /* The type we're building is this: */
3138 #if 0
3139 union __gdb_builtin_type_vec256i
3140 {
3141 int128_t uint128[2];
3142 int64_t v2_int64[4];
3143 int32_t v4_int32[8];
3144 int16_t v8_int16[16];
3145 int8_t v16_int8[32];
3146 double v2_double[4];
3147 float v4_float[8];
3148 };
3149 #endif
3150
3151 struct type *t;
3152
3153 t = arch_composite_type (gdbarch,
3154 "__gdb_builtin_type_vec256i", TYPE_CODE_UNION);
3155 append_composite_type_field (t, "v8_float",
3156 init_vector_type (bt->builtin_float, 8));
3157 append_composite_type_field (t, "v4_double",
3158 init_vector_type (bt->builtin_double, 4));
3159 append_composite_type_field (t, "v32_int8",
3160 init_vector_type (bt->builtin_int8, 32));
3161 append_composite_type_field (t, "v16_int16",
3162 init_vector_type (bt->builtin_int16, 16));
3163 append_composite_type_field (t, "v8_int32",
3164 init_vector_type (bt->builtin_int32, 8));
3165 append_composite_type_field (t, "v4_int64",
3166 init_vector_type (bt->builtin_int64, 4));
3167 append_composite_type_field (t, "v2_int128",
3168 init_vector_type (bt->builtin_int128, 2));
3169
3170 TYPE_VECTOR (t) = 1;
3171 TYPE_NAME (t) = "builtin_type_vec256i";
3172 tdep->i386_ymm_type = t;
3173 }
3174
3175 return tdep->i386_ymm_type;
3176 }
3177
3178 /* Construct vector type for MMX registers. */
3179 static struct type *
3180 i386_mmx_type (struct gdbarch *gdbarch)
3181 {
3182 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3183
3184 if (!tdep->i386_mmx_type)
3185 {
3186 const struct builtin_type *bt = builtin_type (gdbarch);
3187
3188 /* The type we're building is this: */
3189 #if 0
3190 union __gdb_builtin_type_vec64i
3191 {
3192 int64_t uint64;
3193 int32_t v2_int32[2];
3194 int16_t v4_int16[4];
3195 int8_t v8_int8[8];
3196 };
3197 #endif
3198
3199 struct type *t;
3200
3201 t = arch_composite_type (gdbarch,
3202 "__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
3203
3204 append_composite_type_field (t, "uint64", bt->builtin_int64);
3205 append_composite_type_field (t, "v2_int32",
3206 init_vector_type (bt->builtin_int32, 2));
3207 append_composite_type_field (t, "v4_int16",
3208 init_vector_type (bt->builtin_int16, 4));
3209 append_composite_type_field (t, "v8_int8",
3210 init_vector_type (bt->builtin_int8, 8));
3211
3212 TYPE_VECTOR (t) = 1;
3213 TYPE_NAME (t) = "builtin_type_vec64i";
3214 tdep->i386_mmx_type = t;
3215 }
3216
3217 return tdep->i386_mmx_type;
3218 }
3219
3220 /* Return the GDB type object for the "standard" data type of data in
3221 register REGNUM. */
3222
3223 struct type *
3224 i386_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
3225 {
3226 if (i386_bnd_regnum_p (gdbarch, regnum))
3227 return i386_bnd_type (gdbarch);
3228 if (i386_mmx_regnum_p (gdbarch, regnum))
3229 return i386_mmx_type (gdbarch);
3230 else if (i386_ymm_regnum_p (gdbarch, regnum))
3231 return i386_ymm_type (gdbarch);
3232 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3233 return i386_ymm_type (gdbarch);
3234 else if (i386_zmm_regnum_p (gdbarch, regnum))
3235 return i386_zmm_type (gdbarch);
3236 else
3237 {
3238 const struct builtin_type *bt = builtin_type (gdbarch);
3239 if (i386_byte_regnum_p (gdbarch, regnum))
3240 return bt->builtin_int8;
3241 else if (i386_word_regnum_p (gdbarch, regnum))
3242 return bt->builtin_int16;
3243 else if (i386_dword_regnum_p (gdbarch, regnum))
3244 return bt->builtin_int32;
3245 else if (i386_k_regnum_p (gdbarch, regnum))
3246 return bt->builtin_int64;
3247 }
3248
3249 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3250 }
3251
3252 /* Map a cooked register onto a raw register or memory. For the i386,
3253 the MMX registers need to be mapped onto floating point registers. */
3254
3255 static int
3256 i386_mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
3257 {
3258 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
3259 int mmxreg, fpreg;
3260 ULONGEST fstat;
3261 int tos;
3262
3263 mmxreg = regnum - tdep->mm0_regnum;
3264 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
3265 tos = (fstat >> 11) & 0x7;
3266 fpreg = (mmxreg + tos) % 8;
3267
3268 return (I387_ST0_REGNUM (tdep) + fpreg);
3269 }
3270
3271 /* A helper function for us by i386_pseudo_register_read_value and
3272 amd64_pseudo_register_read_value. It does all the work but reads
3273 the data into an already-allocated value. */
3274
3275 void
3276 i386_pseudo_register_read_into_value (struct gdbarch *gdbarch,
3277 struct regcache *regcache,
3278 int regnum,
3279 struct value *result_value)
3280 {
3281 gdb_byte raw_buf[I386_MAX_REGISTER_SIZE];
3282 enum register_status status;
3283 gdb_byte *buf = value_contents_raw (result_value);
3284
3285 if (i386_mmx_regnum_p (gdbarch, regnum))
3286 {
3287 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3288
3289 /* Extract (always little endian). */
3290 status = regcache_raw_read (regcache, fpnum, raw_buf);
3291 if (status != REG_VALID)
3292 mark_value_bytes_unavailable (result_value, 0,
3293 TYPE_LENGTH (value_type (result_value)));
3294 else
3295 memcpy (buf, raw_buf, register_size (gdbarch, regnum));
3296 }
3297 else
3298 {
3299 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3300 if (i386_bnd_regnum_p (gdbarch, regnum))
3301 {
3302 regnum -= tdep->bnd0_regnum;
3303
3304 /* Extract (always little endian). Read lower 128bits. */
3305 status = regcache_raw_read (regcache,
3306 I387_BND0R_REGNUM (tdep) + regnum,
3307 raw_buf);
3308 if (status != REG_VALID)
3309 mark_value_bytes_unavailable (result_value, 0, 16);
3310 else
3311 {
3312 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3313 LONGEST upper, lower;
3314 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
3315
3316 lower = extract_unsigned_integer (raw_buf, 8, byte_order);
3317 upper = extract_unsigned_integer (raw_buf + 8, 8, byte_order);
3318 upper = ~upper;
3319
3320 memcpy (buf, &lower, size);
3321 memcpy (buf + size, &upper, size);
3322 }
3323 }
3324 else if (i386_k_regnum_p (gdbarch, regnum))
3325 {
3326 regnum -= tdep->k0_regnum;
3327
3328 /* Extract (always little endian). */
3329 status = regcache_raw_read (regcache,
3330 tdep->k0_regnum + regnum,
3331 raw_buf);
3332 if (status != REG_VALID)
3333 mark_value_bytes_unavailable (result_value, 0, 8);
3334 else
3335 memcpy (buf, raw_buf, 8);
3336 }
3337 else if (i386_zmm_regnum_p (gdbarch, regnum))
3338 {
3339 regnum -= tdep->zmm0_regnum;
3340
3341 if (regnum < num_lower_zmm_regs)
3342 {
3343 /* Extract (always little endian). Read lower 128bits. */
3344 status = regcache_raw_read (regcache,
3345 I387_XMM0_REGNUM (tdep) + regnum,
3346 raw_buf);
3347 if (status != REG_VALID)
3348 mark_value_bytes_unavailable (result_value, 0, 16);
3349 else
3350 memcpy (buf, raw_buf, 16);
3351
3352 /* Extract (always little endian). Read upper 128bits. */
3353 status = regcache_raw_read (regcache,
3354 tdep->ymm0h_regnum + regnum,
3355 raw_buf);
3356 if (status != REG_VALID)
3357 mark_value_bytes_unavailable (result_value, 16, 16);
3358 else
3359 memcpy (buf + 16, raw_buf, 16);
3360 }
3361 else
3362 {
3363 /* Extract (always little endian). Read lower 128bits. */
3364 status = regcache_raw_read (regcache,
3365 I387_XMM16_REGNUM (tdep) + regnum
3366 - num_lower_zmm_regs,
3367 raw_buf);
3368 if (status != REG_VALID)
3369 mark_value_bytes_unavailable (result_value, 0, 16);
3370 else
3371 memcpy (buf, raw_buf, 16);
3372
3373 /* Extract (always little endian). Read upper 128bits. */
3374 status = regcache_raw_read (regcache,
3375 I387_YMM16H_REGNUM (tdep) + regnum
3376 - num_lower_zmm_regs,
3377 raw_buf);
3378 if (status != REG_VALID)
3379 mark_value_bytes_unavailable (result_value, 16, 16);
3380 else
3381 memcpy (buf + 16, raw_buf, 16);
3382 }
3383
3384 /* Read upper 256bits. */
3385 status = regcache_raw_read (regcache,
3386 tdep->zmm0h_regnum + regnum,
3387 raw_buf);
3388 if (status != REG_VALID)
3389 mark_value_bytes_unavailable (result_value, 32, 32);
3390 else
3391 memcpy (buf + 32, raw_buf, 32);
3392 }
3393 else if (i386_ymm_regnum_p (gdbarch, regnum))
3394 {
3395 regnum -= tdep->ymm0_regnum;
3396
3397 /* Extract (always little endian). Read lower 128bits. */
3398 status = regcache_raw_read (regcache,
3399 I387_XMM0_REGNUM (tdep) + regnum,
3400 raw_buf);
3401 if (status != REG_VALID)
3402 mark_value_bytes_unavailable (result_value, 0, 16);
3403 else
3404 memcpy (buf, raw_buf, 16);
3405 /* Read upper 128bits. */
3406 status = regcache_raw_read (regcache,
3407 tdep->ymm0h_regnum + regnum,
3408 raw_buf);
3409 if (status != REG_VALID)
3410 mark_value_bytes_unavailable (result_value, 16, 32);
3411 else
3412 memcpy (buf + 16, raw_buf, 16);
3413 }
3414 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3415 {
3416 regnum -= tdep->ymm16_regnum;
3417 /* Extract (always little endian). Read lower 128bits. */
3418 status = regcache_raw_read (regcache,
3419 I387_XMM16_REGNUM (tdep) + regnum,
3420 raw_buf);
3421 if (status != REG_VALID)
3422 mark_value_bytes_unavailable (result_value, 0, 16);
3423 else
3424 memcpy (buf, raw_buf, 16);
3425 /* Read upper 128bits. */
3426 status = regcache_raw_read (regcache,
3427 tdep->ymm16h_regnum + regnum,
3428 raw_buf);
3429 if (status != REG_VALID)
3430 mark_value_bytes_unavailable (result_value, 16, 16);
3431 else
3432 memcpy (buf + 16, raw_buf, 16);
3433 }
3434 else if (i386_word_regnum_p (gdbarch, regnum))
3435 {
3436 int gpnum = regnum - tdep->ax_regnum;
3437
3438 /* Extract (always little endian). */
3439 status = regcache_raw_read (regcache, gpnum, raw_buf);
3440 if (status != REG_VALID)
3441 mark_value_bytes_unavailable (result_value, 0,
3442 TYPE_LENGTH (value_type (result_value)));
3443 else
3444 memcpy (buf, raw_buf, 2);
3445 }
3446 else if (i386_byte_regnum_p (gdbarch, regnum))
3447 {
3448 int gpnum = regnum - tdep->al_regnum;
3449
3450 /* Extract (always little endian). We read both lower and
3451 upper registers. */
3452 status = regcache_raw_read (regcache, gpnum % 4, raw_buf);
3453 if (status != REG_VALID)
3454 mark_value_bytes_unavailable (result_value, 0,
3455 TYPE_LENGTH (value_type (result_value)));
3456 else if (gpnum >= 4)
3457 memcpy (buf, raw_buf + 1, 1);
3458 else
3459 memcpy (buf, raw_buf, 1);
3460 }
3461 else
3462 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3463 }
3464 }
3465
3466 static struct value *
3467 i386_pseudo_register_read_value (struct gdbarch *gdbarch,
3468 struct regcache *regcache,
3469 int regnum)
3470 {
3471 struct value *result;
3472
3473 result = allocate_value (register_type (gdbarch, regnum));
3474 VALUE_LVAL (result) = lval_register;
3475 VALUE_REGNUM (result) = regnum;
3476
3477 i386_pseudo_register_read_into_value (gdbarch, regcache, regnum, result);
3478
3479 return result;
3480 }
3481
3482 void
3483 i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
3484 int regnum, const gdb_byte *buf)
3485 {
3486 gdb_byte raw_buf[I386_MAX_REGISTER_SIZE];
3487
3488 if (i386_mmx_regnum_p (gdbarch, regnum))
3489 {
3490 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3491
3492 /* Read ... */
3493 regcache_raw_read (regcache, fpnum, raw_buf);
3494 /* ... Modify ... (always little endian). */
3495 memcpy (raw_buf, buf, register_size (gdbarch, regnum));
3496 /* ... Write. */
3497 regcache_raw_write (regcache, fpnum, raw_buf);
3498 }
3499 else
3500 {
3501 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3502
3503 if (i386_bnd_regnum_p (gdbarch, regnum))
3504 {
3505 ULONGEST upper, lower;
3506 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
3507 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3508
3509 /* New values from input value. */
3510 regnum -= tdep->bnd0_regnum;
3511 lower = extract_unsigned_integer (buf, size, byte_order);
3512 upper = extract_unsigned_integer (buf + size, size, byte_order);
3513
3514 /* Fetching register buffer. */
3515 regcache_raw_read (regcache,
3516 I387_BND0R_REGNUM (tdep) + regnum,
3517 raw_buf);
3518
3519 upper = ~upper;
3520
3521 /* Set register bits. */
3522 memcpy (raw_buf, &lower, 8);
3523 memcpy (raw_buf + 8, &upper, 8);
3524
3525
3526 regcache_raw_write (regcache,
3527 I387_BND0R_REGNUM (tdep) + regnum,
3528 raw_buf);
3529 }
3530 else if (i386_k_regnum_p (gdbarch, regnum))
3531 {
3532 regnum -= tdep->k0_regnum;
3533
3534 regcache_raw_write (regcache,
3535 tdep->k0_regnum + regnum,
3536 buf);
3537 }
3538 else if (i386_zmm_regnum_p (gdbarch, regnum))
3539 {
3540 regnum -= tdep->zmm0_regnum;
3541
3542 if (regnum < num_lower_zmm_regs)
3543 {
3544 /* Write lower 128bits. */
3545 regcache_raw_write (regcache,
3546 I387_XMM0_REGNUM (tdep) + regnum,
3547 buf);
3548 /* Write upper 128bits. */
3549 regcache_raw_write (regcache,
3550 I387_YMM0_REGNUM (tdep) + regnum,
3551 buf + 16);
3552 }
3553 else
3554 {
3555 /* Write lower 128bits. */
3556 regcache_raw_write (regcache,
3557 I387_XMM16_REGNUM (tdep) + regnum
3558 - num_lower_zmm_regs,
3559 buf);
3560 /* Write upper 128bits. */
3561 regcache_raw_write (regcache,
3562 I387_YMM16H_REGNUM (tdep) + regnum
3563 - num_lower_zmm_regs,
3564 buf + 16);
3565 }
3566 /* Write upper 256bits. */
3567 regcache_raw_write (regcache,
3568 tdep->zmm0h_regnum + regnum,
3569 buf + 32);
3570 }
3571 else if (i386_ymm_regnum_p (gdbarch, regnum))
3572 {
3573 regnum -= tdep->ymm0_regnum;
3574
3575 /* ... Write lower 128bits. */
3576 regcache_raw_write (regcache,
3577 I387_XMM0_REGNUM (tdep) + regnum,
3578 buf);
3579 /* ... Write upper 128bits. */
3580 regcache_raw_write (regcache,
3581 tdep->ymm0h_regnum + regnum,
3582 buf + 16);
3583 }
3584 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3585 {
3586 regnum -= tdep->ymm16_regnum;
3587
3588 /* ... Write lower 128bits. */
3589 regcache_raw_write (regcache,
3590 I387_XMM16_REGNUM (tdep) + regnum,
3591 buf);
3592 /* ... Write upper 128bits. */
3593 regcache_raw_write (regcache,
3594 tdep->ymm16h_regnum + regnum,
3595 buf + 16);
3596 }
3597 else if (i386_word_regnum_p (gdbarch, regnum))
3598 {
3599 int gpnum = regnum - tdep->ax_regnum;
3600
3601 /* Read ... */
3602 regcache_raw_read (regcache, gpnum, raw_buf);
3603 /* ... Modify ... (always little endian). */
3604 memcpy (raw_buf, buf, 2);
3605 /* ... Write. */
3606 regcache_raw_write (regcache, gpnum, raw_buf);
3607 }
3608 else if (i386_byte_regnum_p (gdbarch, regnum))
3609 {
3610 int gpnum = regnum - tdep->al_regnum;
3611
3612 /* Read ... We read both lower and upper registers. */
3613 regcache_raw_read (regcache, gpnum % 4, raw_buf);
3614 /* ... Modify ... (always little endian). */
3615 if (gpnum >= 4)
3616 memcpy (raw_buf + 1, buf, 1);
3617 else
3618 memcpy (raw_buf, buf, 1);
3619 /* ... Write. */
3620 regcache_raw_write (regcache, gpnum % 4, raw_buf);
3621 }
3622 else
3623 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3624 }
3625 }
3626
3627 /* Implement the 'ax_pseudo_register_collect' gdbarch method. */
3628
3629 int
3630 i386_ax_pseudo_register_collect (struct gdbarch *gdbarch,
3631 struct agent_expr *ax, int regnum)
3632 {
3633 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3634
3635 if (i386_mmx_regnum_p (gdbarch, regnum))
3636 {
3637 /* MMX to FPU register mapping depends on current TOS. Let's just
3638 not care and collect everything... */
3639 int i;
3640
3641 ax_reg_mask (ax, I387_FSTAT_REGNUM (tdep));
3642 for (i = 0; i < 8; i++)
3643 ax_reg_mask (ax, I387_ST0_REGNUM (tdep) + i);
3644 return 0;
3645 }
3646 else if (i386_bnd_regnum_p (gdbarch, regnum))
3647 {
3648 regnum -= tdep->bnd0_regnum;
3649 ax_reg_mask (ax, I387_BND0R_REGNUM (tdep) + regnum);
3650 return 0;
3651 }
3652 else if (i386_k_regnum_p (gdbarch, regnum))
3653 {
3654 regnum -= tdep->k0_regnum;
3655 ax_reg_mask (ax, tdep->k0_regnum + regnum);
3656 return 0;
3657 }
3658 else if (i386_zmm_regnum_p (gdbarch, regnum))
3659 {
3660 regnum -= tdep->zmm0_regnum;
3661 if (regnum < num_lower_zmm_regs)
3662 {
3663 ax_reg_mask (ax, I387_XMM0_REGNUM (tdep) + regnum);
3664 ax_reg_mask (ax, tdep->ymm0h_regnum + regnum);
3665 }
3666 else
3667 {
3668 ax_reg_mask (ax, I387_XMM16_REGNUM (tdep) + regnum
3669 - num_lower_zmm_regs);
3670 ax_reg_mask (ax, I387_YMM16H_REGNUM (tdep) + regnum
3671 - num_lower_zmm_regs);
3672 }
3673 ax_reg_mask (ax, tdep->zmm0h_regnum + regnum);
3674 return 0;
3675 }
3676 else if (i386_ymm_regnum_p (gdbarch, regnum))
3677 {
3678 regnum -= tdep->ymm0_regnum;
3679 ax_reg_mask (ax, I387_XMM0_REGNUM (tdep) + regnum);
3680 ax_reg_mask (ax, tdep->ymm0h_regnum + regnum);
3681 return 0;
3682 }
3683 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3684 {
3685 regnum -= tdep->ymm16_regnum;
3686 ax_reg_mask (ax, I387_XMM16_REGNUM (tdep) + regnum);
3687 ax_reg_mask (ax, tdep->ymm16h_regnum + regnum);
3688 return 0;
3689 }
3690 else if (i386_word_regnum_p (gdbarch, regnum))
3691 {
3692 int gpnum = regnum - tdep->ax_regnum;
3693
3694 ax_reg_mask (ax, gpnum);
3695 return 0;
3696 }
3697 else if (i386_byte_regnum_p (gdbarch, regnum))
3698 {
3699 int gpnum = regnum - tdep->al_regnum;
3700
3701 ax_reg_mask (ax, gpnum % 4);
3702 return 0;
3703 }
3704 else
3705 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3706 return 1;
3707 }
3708 \f
3709
3710 /* Return the register number of the register allocated by GCC after
3711 REGNUM, or -1 if there is no such register. */
3712
3713 static int
3714 i386_next_regnum (int regnum)
3715 {
3716 /* GCC allocates the registers in the order:
3717
3718 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
3719
3720 Since storing a variable in %esp doesn't make any sense we return
3721 -1 for %ebp and for %esp itself. */
3722 static int next_regnum[] =
3723 {
3724 I386_EDX_REGNUM, /* Slot for %eax. */
3725 I386_EBX_REGNUM, /* Slot for %ecx. */
3726 I386_ECX_REGNUM, /* Slot for %edx. */
3727 I386_ESI_REGNUM, /* Slot for %ebx. */
3728 -1, -1, /* Slots for %esp and %ebp. */
3729 I386_EDI_REGNUM, /* Slot for %esi. */
3730 I386_EBP_REGNUM /* Slot for %edi. */
3731 };
3732
3733 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
3734 return next_regnum[regnum];
3735
3736 return -1;
3737 }
3738
3739 /* Return nonzero if a value of type TYPE stored in register REGNUM
3740 needs any special handling. */
3741
3742 static int
3743 i386_convert_register_p (struct gdbarch *gdbarch,
3744 int regnum, struct type *type)
3745 {
3746 int len = TYPE_LENGTH (type);
3747
3748 /* Values may be spread across multiple registers. Most debugging
3749 formats aren't expressive enough to specify the locations, so
3750 some heuristics is involved. Right now we only handle types that
3751 have a length that is a multiple of the word size, since GCC
3752 doesn't seem to put any other types into registers. */
3753 if (len > 4 && len % 4 == 0)
3754 {
3755 int last_regnum = regnum;
3756
3757 while (len > 4)
3758 {
3759 last_regnum = i386_next_regnum (last_regnum);
3760 len -= 4;
3761 }
3762
3763 if (last_regnum != -1)
3764 return 1;
3765 }
3766
3767 return i387_convert_register_p (gdbarch, regnum, type);
3768 }
3769
3770 /* Read a value of type TYPE from register REGNUM in frame FRAME, and
3771 return its contents in TO. */
3772
3773 static int
3774 i386_register_to_value (struct frame_info *frame, int regnum,
3775 struct type *type, gdb_byte *to,
3776 int *optimizedp, int *unavailablep)
3777 {
3778 struct gdbarch *gdbarch = get_frame_arch (frame);
3779 int len = TYPE_LENGTH (type);
3780
3781 if (i386_fp_regnum_p (gdbarch, regnum))
3782 return i387_register_to_value (frame, regnum, type, to,
3783 optimizedp, unavailablep);
3784
3785 /* Read a value spread across multiple registers. */
3786
3787 gdb_assert (len > 4 && len % 4 == 0);
3788
3789 while (len > 0)
3790 {
3791 gdb_assert (regnum != -1);
3792 gdb_assert (register_size (gdbarch, regnum) == 4);
3793
3794 if (!get_frame_register_bytes (frame, regnum, 0,
3795 register_size (gdbarch, regnum),
3796 to, optimizedp, unavailablep))
3797 return 0;
3798
3799 regnum = i386_next_regnum (regnum);
3800 len -= 4;
3801 to += 4;
3802 }
3803
3804 *optimizedp = *unavailablep = 0;
3805 return 1;
3806 }
3807
3808 /* Write the contents FROM of a value of type TYPE into register
3809 REGNUM in frame FRAME. */
3810
3811 static void
3812 i386_value_to_register (struct frame_info *frame, int regnum,
3813 struct type *type, const gdb_byte *from)
3814 {
3815 int len = TYPE_LENGTH (type);
3816
3817 if (i386_fp_regnum_p (get_frame_arch (frame), regnum))
3818 {
3819 i387_value_to_register (frame, regnum, type, from);
3820 return;
3821 }
3822
3823 /* Write a value spread across multiple registers. */
3824
3825 gdb_assert (len > 4 && len % 4 == 0);
3826
3827 while (len > 0)
3828 {
3829 gdb_assert (regnum != -1);
3830 gdb_assert (register_size (get_frame_arch (frame), regnum) == 4);
3831
3832 put_frame_register (frame, regnum, from);
3833 regnum = i386_next_regnum (regnum);
3834 len -= 4;
3835 from += 4;
3836 }
3837 }
3838 \f
3839 /* Supply register REGNUM from the buffer specified by GREGS and LEN
3840 in the general-purpose register set REGSET to register cache
3841 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3842
3843 void
3844 i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
3845 int regnum, const void *gregs, size_t len)
3846 {
3847 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3848 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3849 const gdb_byte *regs = (const gdb_byte *) gregs;
3850 int i;
3851
3852 gdb_assert (len >= tdep->sizeof_gregset);
3853
3854 for (i = 0; i < tdep->gregset_num_regs; i++)
3855 {
3856 if ((regnum == i || regnum == -1)
3857 && tdep->gregset_reg_offset[i] != -1)
3858 regcache_raw_supply (regcache, i, regs + tdep->gregset_reg_offset[i]);
3859 }
3860 }
3861
3862 /* Collect register REGNUM from the register cache REGCACHE and store
3863 it in the buffer specified by GREGS and LEN as described by the
3864 general-purpose register set REGSET. If REGNUM is -1, do this for
3865 all registers in REGSET. */
3866
3867 static void
3868 i386_collect_gregset (const struct regset *regset,
3869 const struct regcache *regcache,
3870 int regnum, void *gregs, size_t len)
3871 {
3872 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3873 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3874 gdb_byte *regs = (gdb_byte *) gregs;
3875 int i;
3876
3877 gdb_assert (len >= tdep->sizeof_gregset);
3878
3879 for (i = 0; i < tdep->gregset_num_regs; i++)
3880 {
3881 if ((regnum == i || regnum == -1)
3882 && tdep->gregset_reg_offset[i] != -1)
3883 regcache_raw_collect (regcache, i, regs + tdep->gregset_reg_offset[i]);
3884 }
3885 }
3886
3887 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
3888 in the floating-point register set REGSET to register cache
3889 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3890
3891 static void
3892 i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
3893 int regnum, const void *fpregs, size_t len)
3894 {
3895 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3896 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3897
3898 if (len == I387_SIZEOF_FXSAVE)
3899 {
3900 i387_supply_fxsave (regcache, regnum, fpregs);
3901 return;
3902 }
3903
3904 gdb_assert (len >= tdep->sizeof_fpregset);
3905 i387_supply_fsave (regcache, regnum, fpregs);
3906 }
3907
3908 /* Collect register REGNUM from the register cache REGCACHE and store
3909 it in the buffer specified by FPREGS and LEN as described by the
3910 floating-point register set REGSET. If REGNUM is -1, do this for
3911 all registers in REGSET. */
3912
3913 static void
3914 i386_collect_fpregset (const struct regset *regset,
3915 const struct regcache *regcache,
3916 int regnum, void *fpregs, size_t len)
3917 {
3918 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3919 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3920
3921 if (len == I387_SIZEOF_FXSAVE)
3922 {
3923 i387_collect_fxsave (regcache, regnum, fpregs);
3924 return;
3925 }
3926
3927 gdb_assert (len >= tdep->sizeof_fpregset);
3928 i387_collect_fsave (regcache, regnum, fpregs);
3929 }
3930
3931 /* Register set definitions. */
3932
3933 const struct regset i386_gregset =
3934 {
3935 NULL, i386_supply_gregset, i386_collect_gregset
3936 };
3937
3938 const struct regset i386_fpregset =
3939 {
3940 NULL, i386_supply_fpregset, i386_collect_fpregset
3941 };
3942
3943 /* Default iterator over core file register note sections. */
3944
3945 void
3946 i386_iterate_over_regset_sections (struct gdbarch *gdbarch,
3947 iterate_over_regset_sections_cb *cb,
3948 void *cb_data,
3949 const struct regcache *regcache)
3950 {
3951 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3952
3953 cb (".reg", tdep->sizeof_gregset, &i386_gregset, NULL, cb_data);
3954 if (tdep->sizeof_fpregset)
3955 cb (".reg2", tdep->sizeof_fpregset, tdep->fpregset, NULL, cb_data);
3956 }
3957 \f
3958
3959 /* Stuff for WIN32 PE style DLL's but is pretty generic really. */
3960
3961 CORE_ADDR
3962 i386_pe_skip_trampoline_code (struct frame_info *frame,
3963 CORE_ADDR pc, char *name)
3964 {
3965 struct gdbarch *gdbarch = get_frame_arch (frame);
3966 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3967
3968 /* jmp *(dest) */
3969 if (pc && read_memory_unsigned_integer (pc, 2, byte_order) == 0x25ff)
3970 {
3971 unsigned long indirect =
3972 read_memory_unsigned_integer (pc + 2, 4, byte_order);
3973 struct minimal_symbol *indsym =
3974 indirect ? lookup_minimal_symbol_by_pc (indirect).minsym : 0;
3975 const char *symname = indsym ? MSYMBOL_LINKAGE_NAME (indsym) : 0;
3976
3977 if (symname)
3978 {
3979 if (startswith (symname, "__imp_")
3980 || startswith (symname, "_imp_"))
3981 return name ? 1 :
3982 read_memory_unsigned_integer (indirect, 4, byte_order);
3983 }
3984 }
3985 return 0; /* Not a trampoline. */
3986 }
3987 \f
3988
3989 /* Return whether the THIS_FRAME corresponds to a sigtramp
3990 routine. */
3991
3992 int
3993 i386_sigtramp_p (struct frame_info *this_frame)
3994 {
3995 CORE_ADDR pc = get_frame_pc (this_frame);
3996 const char *name;
3997
3998 find_pc_partial_function (pc, &name, NULL, NULL);
3999 return (name && strcmp ("_sigtramp", name) == 0);
4000 }
4001 \f
4002
4003 /* We have two flavours of disassembly. The machinery on this page
4004 deals with switching between those. */
4005
4006 static int
4007 i386_print_insn (bfd_vma pc, struct disassemble_info *info)
4008 {
4009 gdb_assert (disassembly_flavor == att_flavor
4010 || disassembly_flavor == intel_flavor);
4011
4012 info->disassembler_options = disassembly_flavor;
4013
4014 return default_print_insn (pc, info);
4015 }
4016 \f
4017
4018 /* There are a few i386 architecture variants that differ only
4019 slightly from the generic i386 target. For now, we don't give them
4020 their own source file, but include them here. As a consequence,
4021 they'll always be included. */
4022
4023 /* System V Release 4 (SVR4). */
4024
4025 /* Return whether THIS_FRAME corresponds to a SVR4 sigtramp
4026 routine. */
4027
4028 static int
4029 i386_svr4_sigtramp_p (struct frame_info *this_frame)
4030 {
4031 CORE_ADDR pc = get_frame_pc (this_frame);
4032 const char *name;
4033
4034 /* The origin of these symbols is currently unknown. */
4035 find_pc_partial_function (pc, &name, NULL, NULL);
4036 return (name && (strcmp ("_sigreturn", name) == 0
4037 || strcmp ("sigvechandler", name) == 0));
4038 }
4039
4040 /* Assuming THIS_FRAME is for a SVR4 sigtramp routine, return the
4041 address of the associated sigcontext (ucontext) structure. */
4042
4043 static CORE_ADDR
4044 i386_svr4_sigcontext_addr (struct frame_info *this_frame)
4045 {
4046 struct gdbarch *gdbarch = get_frame_arch (this_frame);
4047 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4048 gdb_byte buf[4];
4049 CORE_ADDR sp;
4050
4051 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
4052 sp = extract_unsigned_integer (buf, 4, byte_order);
4053
4054 return read_memory_unsigned_integer (sp + 8, 4, byte_order);
4055 }
4056
4057 \f
4058
4059 /* Implementation of `gdbarch_stap_is_single_operand', as defined in
4060 gdbarch.h. */
4061
4062 int
4063 i386_stap_is_single_operand (struct gdbarch *gdbarch, const char *s)
4064 {
4065 return (*s == '$' /* Literal number. */
4066 || (isdigit (*s) && s[1] == '(' && s[2] == '%') /* Displacement. */
4067 || (*s == '(' && s[1] == '%') /* Register indirection. */
4068 || (*s == '%' && isalpha (s[1]))); /* Register access. */
4069 }
4070
4071 /* Helper function for i386_stap_parse_special_token.
4072
4073 This function parses operands of the form `-8+3+1(%rbp)', which
4074 must be interpreted as `*(-8 + 3 - 1 + (void *) $eax)'.
4075
4076 Return 1 if the operand was parsed successfully, zero
4077 otherwise. */
4078
4079 static int
4080 i386_stap_parse_special_token_triplet (struct gdbarch *gdbarch,
4081 struct stap_parse_info *p)
4082 {
4083 const char *s = p->arg;
4084
4085 if (isdigit (*s) || *s == '-' || *s == '+')
4086 {
4087 int got_minus[3];
4088 int i;
4089 long displacements[3];
4090 const char *start;
4091 char *regname;
4092 int len;
4093 struct stoken str;
4094 char *endp;
4095
4096 got_minus[0] = 0;
4097 if (*s == '+')
4098 ++s;
4099 else if (*s == '-')
4100 {
4101 ++s;
4102 got_minus[0] = 1;
4103 }
4104
4105 if (!isdigit ((unsigned char) *s))
4106 return 0;
4107
4108 displacements[0] = strtol (s, &endp, 10);
4109 s = endp;
4110
4111 if (*s != '+' && *s != '-')
4112 {
4113 /* We are not dealing with a triplet. */
4114 return 0;
4115 }
4116
4117 got_minus[1] = 0;
4118 if (*s == '+')
4119 ++s;
4120 else
4121 {
4122 ++s;
4123 got_minus[1] = 1;
4124 }
4125
4126 if (!isdigit ((unsigned char) *s))
4127 return 0;
4128
4129 displacements[1] = strtol (s, &endp, 10);
4130 s = endp;
4131
4132 if (*s != '+' && *s != '-')
4133 {
4134 /* We are not dealing with a triplet. */
4135 return 0;
4136 }
4137
4138 got_minus[2] = 0;
4139 if (*s == '+')
4140 ++s;
4141 else
4142 {
4143 ++s;
4144 got_minus[2] = 1;
4145 }
4146
4147 if (!isdigit ((unsigned char) *s))
4148 return 0;
4149
4150 displacements[2] = strtol (s, &endp, 10);
4151 s = endp;
4152
4153 if (*s != '(' || s[1] != '%')
4154 return 0;
4155
4156 s += 2;
4157 start = s;
4158
4159 while (isalnum (*s))
4160 ++s;
4161
4162 if (*s++ != ')')
4163 return 0;
4164
4165 len = s - start - 1;
4166 regname = (char *) alloca (len + 1);
4167
4168 strncpy (regname, start, len);
4169 regname[len] = '\0';
4170
4171 if (user_reg_map_name_to_regnum (gdbarch, regname, len) == -1)
4172 error (_("Invalid register name `%s' on expression `%s'."),
4173 regname, p->saved_arg);
4174
4175 for (i = 0; i < 3; i++)
4176 {
4177 write_exp_elt_opcode (&p->pstate, OP_LONG);
4178 write_exp_elt_type
4179 (&p->pstate, builtin_type (gdbarch)->builtin_long);
4180 write_exp_elt_longcst (&p->pstate, displacements[i]);
4181 write_exp_elt_opcode (&p->pstate, OP_LONG);
4182 if (got_minus[i])
4183 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
4184 }
4185
4186 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4187 str.ptr = regname;
4188 str.length = len;
4189 write_exp_string (&p->pstate, str);
4190 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4191
4192 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4193 write_exp_elt_type (&p->pstate,
4194 builtin_type (gdbarch)->builtin_data_ptr);
4195 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4196
4197 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4198 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4199 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4200
4201 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4202 write_exp_elt_type (&p->pstate,
4203 lookup_pointer_type (p->arg_type));
4204 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4205
4206 write_exp_elt_opcode (&p->pstate, UNOP_IND);
4207
4208 p->arg = s;
4209
4210 return 1;
4211 }
4212
4213 return 0;
4214 }
4215
4216 /* Helper function for i386_stap_parse_special_token.
4217
4218 This function parses operands of the form `register base +
4219 (register index * size) + offset', as represented in
4220 `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4221
4222 Return 1 if the operand was parsed successfully, zero
4223 otherwise. */
4224
4225 static int
4226 i386_stap_parse_special_token_three_arg_disp (struct gdbarch *gdbarch,
4227 struct stap_parse_info *p)
4228 {
4229 const char *s = p->arg;
4230
4231 if (isdigit (*s) || *s == '(' || *s == '-' || *s == '+')
4232 {
4233 int offset_minus = 0;
4234 long offset = 0;
4235 int size_minus = 0;
4236 long size = 0;
4237 const char *start;
4238 char *base;
4239 int len_base;
4240 char *index;
4241 int len_index;
4242 struct stoken base_token, index_token;
4243
4244 if (*s == '+')
4245 ++s;
4246 else if (*s == '-')
4247 {
4248 ++s;
4249 offset_minus = 1;
4250 }
4251
4252 if (offset_minus && !isdigit (*s))
4253 return 0;
4254
4255 if (isdigit (*s))
4256 {
4257 char *endp;
4258
4259 offset = strtol (s, &endp, 10);
4260 s = endp;
4261 }
4262
4263 if (*s != '(' || s[1] != '%')
4264 return 0;
4265
4266 s += 2;
4267 start = s;
4268
4269 while (isalnum (*s))
4270 ++s;
4271
4272 if (*s != ',' || s[1] != '%')
4273 return 0;
4274
4275 len_base = s - start;
4276 base = (char *) alloca (len_base + 1);
4277 strncpy (base, start, len_base);
4278 base[len_base] = '\0';
4279
4280 if (user_reg_map_name_to_regnum (gdbarch, base, len_base) == -1)
4281 error (_("Invalid register name `%s' on expression `%s'."),
4282 base, p->saved_arg);
4283
4284 s += 2;
4285 start = s;
4286
4287 while (isalnum (*s))
4288 ++s;
4289
4290 len_index = s - start;
4291 index = (char *) alloca (len_index + 1);
4292 strncpy (index, start, len_index);
4293 index[len_index] = '\0';
4294
4295 if (user_reg_map_name_to_regnum (gdbarch, index, len_index) == -1)
4296 error (_("Invalid register name `%s' on expression `%s'."),
4297 index, p->saved_arg);
4298
4299 if (*s != ',' && *s != ')')
4300 return 0;
4301
4302 if (*s == ',')
4303 {
4304 char *endp;
4305
4306 ++s;
4307 if (*s == '+')
4308 ++s;
4309 else if (*s == '-')
4310 {
4311 ++s;
4312 size_minus = 1;
4313 }
4314
4315 size = strtol (s, &endp, 10);
4316 s = endp;
4317
4318 if (*s != ')')
4319 return 0;
4320 }
4321
4322 ++s;
4323
4324 if (offset)
4325 {
4326 write_exp_elt_opcode (&p->pstate, OP_LONG);
4327 write_exp_elt_type (&p->pstate,
4328 builtin_type (gdbarch)->builtin_long);
4329 write_exp_elt_longcst (&p->pstate, offset);
4330 write_exp_elt_opcode (&p->pstate, OP_LONG);
4331 if (offset_minus)
4332 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
4333 }
4334
4335 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4336 base_token.ptr = base;
4337 base_token.length = len_base;
4338 write_exp_string (&p->pstate, base_token);
4339 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4340
4341 if (offset)
4342 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4343
4344 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4345 index_token.ptr = index;
4346 index_token.length = len_index;
4347 write_exp_string (&p->pstate, index_token);
4348 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4349
4350 if (size)
4351 {
4352 write_exp_elt_opcode (&p->pstate, OP_LONG);
4353 write_exp_elt_type (&p->pstate,
4354 builtin_type (gdbarch)->builtin_long);
4355 write_exp_elt_longcst (&p->pstate, size);
4356 write_exp_elt_opcode (&p->pstate, OP_LONG);
4357 if (size_minus)
4358 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
4359 write_exp_elt_opcode (&p->pstate, BINOP_MUL);
4360 }
4361
4362 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4363
4364 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4365 write_exp_elt_type (&p->pstate,
4366 lookup_pointer_type (p->arg_type));
4367 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4368
4369 write_exp_elt_opcode (&p->pstate, UNOP_IND);
4370
4371 p->arg = s;
4372
4373 return 1;
4374 }
4375
4376 return 0;
4377 }
4378
4379 /* Implementation of `gdbarch_stap_parse_special_token', as defined in
4380 gdbarch.h. */
4381
4382 int
4383 i386_stap_parse_special_token (struct gdbarch *gdbarch,
4384 struct stap_parse_info *p)
4385 {
4386 /* In order to parse special tokens, we use a state-machine that go
4387 through every known token and try to get a match. */
4388 enum
4389 {
4390 TRIPLET,
4391 THREE_ARG_DISPLACEMENT,
4392 DONE
4393 };
4394 int current_state;
4395
4396 current_state = TRIPLET;
4397
4398 /* The special tokens to be parsed here are:
4399
4400 - `register base + (register index * size) + offset', as represented
4401 in `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4402
4403 - Operands of the form `-8+3+1(%rbp)', which must be interpreted as
4404 `*(-8 + 3 - 1 + (void *) $eax)'. */
4405
4406 while (current_state != DONE)
4407 {
4408 switch (current_state)
4409 {
4410 case TRIPLET:
4411 if (i386_stap_parse_special_token_triplet (gdbarch, p))
4412 return 1;
4413 break;
4414
4415 case THREE_ARG_DISPLACEMENT:
4416 if (i386_stap_parse_special_token_three_arg_disp (gdbarch, p))
4417 return 1;
4418 break;
4419 }
4420
4421 /* Advancing to the next state. */
4422 ++current_state;
4423 }
4424
4425 return 0;
4426 }
4427
4428 \f
4429
4430 /* gdbarch gnu_triplet_regexp method. Both arches are acceptable as GDB always
4431 also supplies -m64 or -m32 by gdbarch_gcc_target_options. */
4432
4433 static const char *
4434 i386_gnu_triplet_regexp (struct gdbarch *gdbarch)
4435 {
4436 return "(x86_64|i.86)";
4437 }
4438
4439 \f
4440
4441 /* Generic ELF. */
4442
4443 void
4444 i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4445 {
4446 static const char *const stap_integer_prefixes[] = { "$", NULL };
4447 static const char *const stap_register_prefixes[] = { "%", NULL };
4448 static const char *const stap_register_indirection_prefixes[] = { "(",
4449 NULL };
4450 static const char *const stap_register_indirection_suffixes[] = { ")",
4451 NULL };
4452
4453 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
4454 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
4455
4456 /* Registering SystemTap handlers. */
4457 set_gdbarch_stap_integer_prefixes (gdbarch, stap_integer_prefixes);
4458 set_gdbarch_stap_register_prefixes (gdbarch, stap_register_prefixes);
4459 set_gdbarch_stap_register_indirection_prefixes (gdbarch,
4460 stap_register_indirection_prefixes);
4461 set_gdbarch_stap_register_indirection_suffixes (gdbarch,
4462 stap_register_indirection_suffixes);
4463 set_gdbarch_stap_is_single_operand (gdbarch,
4464 i386_stap_is_single_operand);
4465 set_gdbarch_stap_parse_special_token (gdbarch,
4466 i386_stap_parse_special_token);
4467 }
4468
4469 /* System V Release 4 (SVR4). */
4470
4471 void
4472 i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4473 {
4474 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4475
4476 /* System V Release 4 uses ELF. */
4477 i386_elf_init_abi (info, gdbarch);
4478
4479 /* System V Release 4 has shared libraries. */
4480 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
4481
4482 tdep->sigtramp_p = i386_svr4_sigtramp_p;
4483 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
4484 tdep->sc_pc_offset = 36 + 14 * 4;
4485 tdep->sc_sp_offset = 36 + 17 * 4;
4486
4487 tdep->jb_pc_offset = 20;
4488 }
4489
4490 \f
4491
4492 /* i386 register groups. In addition to the normal groups, add "mmx"
4493 and "sse". */
4494
4495 static struct reggroup *i386_sse_reggroup;
4496 static struct reggroup *i386_mmx_reggroup;
4497
4498 static void
4499 i386_init_reggroups (void)
4500 {
4501 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
4502 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
4503 }
4504
4505 static void
4506 i386_add_reggroups (struct gdbarch *gdbarch)
4507 {
4508 reggroup_add (gdbarch, i386_sse_reggroup);
4509 reggroup_add (gdbarch, i386_mmx_reggroup);
4510 reggroup_add (gdbarch, general_reggroup);
4511 reggroup_add (gdbarch, float_reggroup);
4512 reggroup_add (gdbarch, all_reggroup);
4513 reggroup_add (gdbarch, save_reggroup);
4514 reggroup_add (gdbarch, restore_reggroup);
4515 reggroup_add (gdbarch, vector_reggroup);
4516 reggroup_add (gdbarch, system_reggroup);
4517 }
4518
4519 int
4520 i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
4521 struct reggroup *group)
4522 {
4523 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4524 int fp_regnum_p, mmx_regnum_p, xmm_regnum_p, mxcsr_regnum_p,
4525 ymm_regnum_p, ymmh_regnum_p, ymm_avx512_regnum_p, ymmh_avx512_regnum_p,
4526 bndr_regnum_p, bnd_regnum_p, k_regnum_p, zmm_regnum_p, zmmh_regnum_p,
4527 zmm_avx512_regnum_p, mpx_ctrl_regnum_p, xmm_avx512_regnum_p,
4528 avx512_p, avx_p, sse_p, pkru_regnum_p;
4529
4530 /* Don't include pseudo registers, except for MMX, in any register
4531 groups. */
4532 if (i386_byte_regnum_p (gdbarch, regnum))
4533 return 0;
4534
4535 if (i386_word_regnum_p (gdbarch, regnum))
4536 return 0;
4537
4538 if (i386_dword_regnum_p (gdbarch, regnum))
4539 return 0;
4540
4541 mmx_regnum_p = i386_mmx_regnum_p (gdbarch, regnum);
4542 if (group == i386_mmx_reggroup)
4543 return mmx_regnum_p;
4544
4545 pkru_regnum_p = i386_pkru_regnum_p(gdbarch, regnum);
4546 xmm_regnum_p = i386_xmm_regnum_p (gdbarch, regnum);
4547 xmm_avx512_regnum_p = i386_xmm_avx512_regnum_p (gdbarch, regnum);
4548 mxcsr_regnum_p = i386_mxcsr_regnum_p (gdbarch, regnum);
4549 if (group == i386_sse_reggroup)
4550 return xmm_regnum_p || xmm_avx512_regnum_p || mxcsr_regnum_p;
4551
4552 ymm_regnum_p = i386_ymm_regnum_p (gdbarch, regnum);
4553 ymm_avx512_regnum_p = i386_ymm_avx512_regnum_p (gdbarch, regnum);
4554 zmm_regnum_p = i386_zmm_regnum_p (gdbarch, regnum);
4555
4556 avx512_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
4557 == X86_XSTATE_AVX_AVX512_MASK);
4558 avx_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
4559 == X86_XSTATE_AVX_MASK) && !avx512_p;
4560 sse_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
4561 == X86_XSTATE_SSE_MASK) && !avx512_p && ! avx_p;
4562
4563 if (group == vector_reggroup)
4564 return (mmx_regnum_p
4565 || (zmm_regnum_p && avx512_p)
4566 || ((ymm_regnum_p || ymm_avx512_regnum_p) && avx_p)
4567 || ((xmm_regnum_p || xmm_avx512_regnum_p) && sse_p)
4568 || mxcsr_regnum_p);
4569
4570 fp_regnum_p = (i386_fp_regnum_p (gdbarch, regnum)
4571 || i386_fpc_regnum_p (gdbarch, regnum));
4572 if (group == float_reggroup)
4573 return fp_regnum_p;
4574
4575 /* For "info reg all", don't include upper YMM registers nor XMM
4576 registers when AVX is supported. */
4577 ymmh_regnum_p = i386_ymmh_regnum_p (gdbarch, regnum);
4578 ymmh_avx512_regnum_p = i386_ymmh_avx512_regnum_p (gdbarch, regnum);
4579 zmmh_regnum_p = i386_zmmh_regnum_p (gdbarch, regnum);
4580 if (group == all_reggroup
4581 && (((xmm_regnum_p || xmm_avx512_regnum_p) && !sse_p)
4582 || ((ymm_regnum_p || ymm_avx512_regnum_p) && !avx_p)
4583 || ymmh_regnum_p
4584 || ymmh_avx512_regnum_p
4585 || zmmh_regnum_p))
4586 return 0;
4587
4588 bnd_regnum_p = i386_bnd_regnum_p (gdbarch, regnum);
4589 if (group == all_reggroup
4590 && ((bnd_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4591 return bnd_regnum_p;
4592
4593 bndr_regnum_p = i386_bndr_regnum_p (gdbarch, regnum);
4594 if (group == all_reggroup
4595 && ((bndr_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4596 return 0;
4597
4598 mpx_ctrl_regnum_p = i386_mpx_ctrl_regnum_p (gdbarch, regnum);
4599 if (group == all_reggroup
4600 && ((mpx_ctrl_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4601 return mpx_ctrl_regnum_p;
4602
4603 if (group == general_reggroup)
4604 return (!fp_regnum_p
4605 && !mmx_regnum_p
4606 && !mxcsr_regnum_p
4607 && !xmm_regnum_p
4608 && !xmm_avx512_regnum_p
4609 && !ymm_regnum_p
4610 && !ymmh_regnum_p
4611 && !ymm_avx512_regnum_p
4612 && !ymmh_avx512_regnum_p
4613 && !bndr_regnum_p
4614 && !bnd_regnum_p
4615 && !mpx_ctrl_regnum_p
4616 && !zmm_regnum_p
4617 && !zmmh_regnum_p
4618 && !pkru_regnum_p);
4619
4620 return default_register_reggroup_p (gdbarch, regnum, group);
4621 }
4622 \f
4623
4624 /* Get the ARGIth function argument for the current function. */
4625
4626 static CORE_ADDR
4627 i386_fetch_pointer_argument (struct frame_info *frame, int argi,
4628 struct type *type)
4629 {
4630 struct gdbarch *gdbarch = get_frame_arch (frame);
4631 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4632 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
4633 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4, byte_order);
4634 }
4635
4636 #define PREFIX_REPZ 0x01
4637 #define PREFIX_REPNZ 0x02
4638 #define PREFIX_LOCK 0x04
4639 #define PREFIX_DATA 0x08
4640 #define PREFIX_ADDR 0x10
4641
4642 /* operand size */
4643 enum
4644 {
4645 OT_BYTE = 0,
4646 OT_WORD,
4647 OT_LONG,
4648 OT_QUAD,
4649 OT_DQUAD,
4650 };
4651
4652 /* i386 arith/logic operations */
4653 enum
4654 {
4655 OP_ADDL,
4656 OP_ORL,
4657 OP_ADCL,
4658 OP_SBBL,
4659 OP_ANDL,
4660 OP_SUBL,
4661 OP_XORL,
4662 OP_CMPL,
4663 };
4664
4665 struct i386_record_s
4666 {
4667 struct gdbarch *gdbarch;
4668 struct regcache *regcache;
4669 CORE_ADDR orig_addr;
4670 CORE_ADDR addr;
4671 int aflag;
4672 int dflag;
4673 int override;
4674 uint8_t modrm;
4675 uint8_t mod, reg, rm;
4676 int ot;
4677 uint8_t rex_x;
4678 uint8_t rex_b;
4679 int rip_offset;
4680 int popl_esp_hack;
4681 const int *regmap;
4682 };
4683
4684 /* Parse the "modrm" part of the memory address irp->addr points at.
4685 Returns -1 if something goes wrong, 0 otherwise. */
4686
4687 static int
4688 i386_record_modrm (struct i386_record_s *irp)
4689 {
4690 struct gdbarch *gdbarch = irp->gdbarch;
4691
4692 if (record_read_memory (gdbarch, irp->addr, &irp->modrm, 1))
4693 return -1;
4694
4695 irp->addr++;
4696 irp->mod = (irp->modrm >> 6) & 3;
4697 irp->reg = (irp->modrm >> 3) & 7;
4698 irp->rm = irp->modrm & 7;
4699
4700 return 0;
4701 }
4702
4703 /* Extract the memory address that the current instruction writes to,
4704 and return it in *ADDR. Return -1 if something goes wrong. */
4705
4706 static int
4707 i386_record_lea_modrm_addr (struct i386_record_s *irp, uint64_t *addr)
4708 {
4709 struct gdbarch *gdbarch = irp->gdbarch;
4710 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4711 gdb_byte buf[4];
4712 ULONGEST offset64;
4713
4714 *addr = 0;
4715 if (irp->aflag || irp->regmap[X86_RECORD_R8_REGNUM])
4716 {
4717 /* 32/64 bits */
4718 int havesib = 0;
4719 uint8_t scale = 0;
4720 uint8_t byte;
4721 uint8_t index = 0;
4722 uint8_t base = irp->rm;
4723
4724 if (base == 4)
4725 {
4726 havesib = 1;
4727 if (record_read_memory (gdbarch, irp->addr, &byte, 1))
4728 return -1;
4729 irp->addr++;
4730 scale = (byte >> 6) & 3;
4731 index = ((byte >> 3) & 7) | irp->rex_x;
4732 base = (byte & 7);
4733 }
4734 base |= irp->rex_b;
4735
4736 switch (irp->mod)
4737 {
4738 case 0:
4739 if ((base & 7) == 5)
4740 {
4741 base = 0xff;
4742 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4743 return -1;
4744 irp->addr += 4;
4745 *addr = extract_signed_integer (buf, 4, byte_order);
4746 if (irp->regmap[X86_RECORD_R8_REGNUM] && !havesib)
4747 *addr += irp->addr + irp->rip_offset;
4748 }
4749 break;
4750 case 1:
4751 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4752 return -1;
4753 irp->addr++;
4754 *addr = (int8_t) buf[0];
4755 break;
4756 case 2:
4757 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4758 return -1;
4759 *addr = extract_signed_integer (buf, 4, byte_order);
4760 irp->addr += 4;
4761 break;
4762 }
4763
4764 offset64 = 0;
4765 if (base != 0xff)
4766 {
4767 if (base == 4 && irp->popl_esp_hack)
4768 *addr += irp->popl_esp_hack;
4769 regcache_raw_read_unsigned (irp->regcache, irp->regmap[base],
4770 &offset64);
4771 }
4772 if (irp->aflag == 2)
4773 {
4774 *addr += offset64;
4775 }
4776 else
4777 *addr = (uint32_t) (offset64 + *addr);
4778
4779 if (havesib && (index != 4 || scale != 0))
4780 {
4781 regcache_raw_read_unsigned (irp->regcache, irp->regmap[index],
4782 &offset64);
4783 if (irp->aflag == 2)
4784 *addr += offset64 << scale;
4785 else
4786 *addr = (uint32_t) (*addr + (offset64 << scale));
4787 }
4788
4789 if (!irp->aflag)
4790 {
4791 /* Since we are in 64-bit mode with ADDR32 prefix, zero-extend
4792 address from 32-bit to 64-bit. */
4793 *addr = (uint32_t) *addr;
4794 }
4795 }
4796 else
4797 {
4798 /* 16 bits */
4799 switch (irp->mod)
4800 {
4801 case 0:
4802 if (irp->rm == 6)
4803 {
4804 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4805 return -1;
4806 irp->addr += 2;
4807 *addr = extract_signed_integer (buf, 2, byte_order);
4808 irp->rm = 0;
4809 goto no_rm;
4810 }
4811 break;
4812 case 1:
4813 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4814 return -1;
4815 irp->addr++;
4816 *addr = (int8_t) buf[0];
4817 break;
4818 case 2:
4819 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4820 return -1;
4821 irp->addr += 2;
4822 *addr = extract_signed_integer (buf, 2, byte_order);
4823 break;
4824 }
4825
4826 switch (irp->rm)
4827 {
4828 case 0:
4829 regcache_raw_read_unsigned (irp->regcache,
4830 irp->regmap[X86_RECORD_REBX_REGNUM],
4831 &offset64);
4832 *addr = (uint32_t) (*addr + offset64);
4833 regcache_raw_read_unsigned (irp->regcache,
4834 irp->regmap[X86_RECORD_RESI_REGNUM],
4835 &offset64);
4836 *addr = (uint32_t) (*addr + offset64);
4837 break;
4838 case 1:
4839 regcache_raw_read_unsigned (irp->regcache,
4840 irp->regmap[X86_RECORD_REBX_REGNUM],
4841 &offset64);
4842 *addr = (uint32_t) (*addr + offset64);
4843 regcache_raw_read_unsigned (irp->regcache,
4844 irp->regmap[X86_RECORD_REDI_REGNUM],
4845 &offset64);
4846 *addr = (uint32_t) (*addr + offset64);
4847 break;
4848 case 2:
4849 regcache_raw_read_unsigned (irp->regcache,
4850 irp->regmap[X86_RECORD_REBP_REGNUM],
4851 &offset64);
4852 *addr = (uint32_t) (*addr + offset64);
4853 regcache_raw_read_unsigned (irp->regcache,
4854 irp->regmap[X86_RECORD_RESI_REGNUM],
4855 &offset64);
4856 *addr = (uint32_t) (*addr + offset64);
4857 break;
4858 case 3:
4859 regcache_raw_read_unsigned (irp->regcache,
4860 irp->regmap[X86_RECORD_REBP_REGNUM],
4861 &offset64);
4862 *addr = (uint32_t) (*addr + offset64);
4863 regcache_raw_read_unsigned (irp->regcache,
4864 irp->regmap[X86_RECORD_REDI_REGNUM],
4865 &offset64);
4866 *addr = (uint32_t) (*addr + offset64);
4867 break;
4868 case 4:
4869 regcache_raw_read_unsigned (irp->regcache,
4870 irp->regmap[X86_RECORD_RESI_REGNUM],
4871 &offset64);
4872 *addr = (uint32_t) (*addr + offset64);
4873 break;
4874 case 5:
4875 regcache_raw_read_unsigned (irp->regcache,
4876 irp->regmap[X86_RECORD_REDI_REGNUM],
4877 &offset64);
4878 *addr = (uint32_t) (*addr + offset64);
4879 break;
4880 case 6:
4881 regcache_raw_read_unsigned (irp->regcache,
4882 irp->regmap[X86_RECORD_REBP_REGNUM],
4883 &offset64);
4884 *addr = (uint32_t) (*addr + offset64);
4885 break;
4886 case 7:
4887 regcache_raw_read_unsigned (irp->regcache,
4888 irp->regmap[X86_RECORD_REBX_REGNUM],
4889 &offset64);
4890 *addr = (uint32_t) (*addr + offset64);
4891 break;
4892 }
4893 *addr &= 0xffff;
4894 }
4895
4896 no_rm:
4897 return 0;
4898 }
4899
4900 /* Record the address and contents of the memory that will be changed
4901 by the current instruction. Return -1 if something goes wrong, 0
4902 otherwise. */
4903
4904 static int
4905 i386_record_lea_modrm (struct i386_record_s *irp)
4906 {
4907 struct gdbarch *gdbarch = irp->gdbarch;
4908 uint64_t addr;
4909
4910 if (irp->override >= 0)
4911 {
4912 if (record_full_memory_query)
4913 {
4914 if (yquery (_("\
4915 Process record ignores the memory change of instruction at address %s\n\
4916 because it can't get the value of the segment register.\n\
4917 Do you want to stop the program?"),
4918 paddress (gdbarch, irp->orig_addr)))
4919 return -1;
4920 }
4921
4922 return 0;
4923 }
4924
4925 if (i386_record_lea_modrm_addr (irp, &addr))
4926 return -1;
4927
4928 if (record_full_arch_list_add_mem (addr, 1 << irp->ot))
4929 return -1;
4930
4931 return 0;
4932 }
4933
4934 /* Record the effects of a push operation. Return -1 if something
4935 goes wrong, 0 otherwise. */
4936
4937 static int
4938 i386_record_push (struct i386_record_s *irp, int size)
4939 {
4940 ULONGEST addr;
4941
4942 if (record_full_arch_list_add_reg (irp->regcache,
4943 irp->regmap[X86_RECORD_RESP_REGNUM]))
4944 return -1;
4945 regcache_raw_read_unsigned (irp->regcache,
4946 irp->regmap[X86_RECORD_RESP_REGNUM],
4947 &addr);
4948 if (record_full_arch_list_add_mem ((CORE_ADDR) addr - size, size))
4949 return -1;
4950
4951 return 0;
4952 }
4953
4954
4955 /* Defines contents to record. */
4956 #define I386_SAVE_FPU_REGS 0xfffd
4957 #define I386_SAVE_FPU_ENV 0xfffe
4958 #define I386_SAVE_FPU_ENV_REG_STACK 0xffff
4959
4960 /* Record the values of the floating point registers which will be
4961 changed by the current instruction. Returns -1 if something is
4962 wrong, 0 otherwise. */
4963
4964 static int i386_record_floats (struct gdbarch *gdbarch,
4965 struct i386_record_s *ir,
4966 uint32_t iregnum)
4967 {
4968 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4969 int i;
4970
4971 /* Oza: Because of floating point insn push/pop of fpu stack is going to
4972 happen. Currently we store st0-st7 registers, but we need not store all
4973 registers all the time, in future we use ftag register and record only
4974 those who are not marked as an empty. */
4975
4976 if (I386_SAVE_FPU_REGS == iregnum)
4977 {
4978 for (i = I387_ST0_REGNUM (tdep); i <= I387_ST0_REGNUM (tdep) + 7; i++)
4979 {
4980 if (record_full_arch_list_add_reg (ir->regcache, i))
4981 return -1;
4982 }
4983 }
4984 else if (I386_SAVE_FPU_ENV == iregnum)
4985 {
4986 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4987 {
4988 if (record_full_arch_list_add_reg (ir->regcache, i))
4989 return -1;
4990 }
4991 }
4992 else if (I386_SAVE_FPU_ENV_REG_STACK == iregnum)
4993 {
4994 for (i = I387_ST0_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4995 {
4996 if (record_full_arch_list_add_reg (ir->regcache, i))
4997 return -1;
4998 }
4999 }
5000 else if ((iregnum >= I387_ST0_REGNUM (tdep)) &&
5001 (iregnum <= I387_FOP_REGNUM (tdep)))
5002 {
5003 if (record_full_arch_list_add_reg (ir->regcache,iregnum))
5004 return -1;
5005 }
5006 else
5007 {
5008 /* Parameter error. */
5009 return -1;
5010 }
5011 if(I386_SAVE_FPU_ENV != iregnum)
5012 {
5013 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
5014 {
5015 if (record_full_arch_list_add_reg (ir->regcache, i))
5016 return -1;
5017 }
5018 }
5019 return 0;
5020 }
5021
5022 /* Parse the current instruction, and record the values of the
5023 registers and memory that will be changed by the current
5024 instruction. Returns -1 if something goes wrong, 0 otherwise. */
5025
5026 #define I386_RECORD_FULL_ARCH_LIST_ADD_REG(regnum) \
5027 record_full_arch_list_add_reg (ir.regcache, ir.regmap[(regnum)])
5028
5029 int
5030 i386_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
5031 CORE_ADDR input_addr)
5032 {
5033 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
5034 int prefixes = 0;
5035 int regnum = 0;
5036 uint32_t opcode;
5037 uint8_t opcode8;
5038 ULONGEST addr;
5039 gdb_byte buf[I386_MAX_REGISTER_SIZE];
5040 struct i386_record_s ir;
5041 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5042 uint8_t rex_w = -1;
5043 uint8_t rex_r = 0;
5044
5045 memset (&ir, 0, sizeof (struct i386_record_s));
5046 ir.regcache = regcache;
5047 ir.addr = input_addr;
5048 ir.orig_addr = input_addr;
5049 ir.aflag = 1;
5050 ir.dflag = 1;
5051 ir.override = -1;
5052 ir.popl_esp_hack = 0;
5053 ir.regmap = tdep->record_regmap;
5054 ir.gdbarch = gdbarch;
5055
5056 if (record_debug > 1)
5057 fprintf_unfiltered (gdb_stdlog, "Process record: i386_process_record "
5058 "addr = %s\n",
5059 paddress (gdbarch, ir.addr));
5060
5061 /* prefixes */
5062 while (1)
5063 {
5064 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
5065 return -1;
5066 ir.addr++;
5067 switch (opcode8) /* Instruction prefixes */
5068 {
5069 case REPE_PREFIX_OPCODE:
5070 prefixes |= PREFIX_REPZ;
5071 break;
5072 case REPNE_PREFIX_OPCODE:
5073 prefixes |= PREFIX_REPNZ;
5074 break;
5075 case LOCK_PREFIX_OPCODE:
5076 prefixes |= PREFIX_LOCK;
5077 break;
5078 case CS_PREFIX_OPCODE:
5079 ir.override = X86_RECORD_CS_REGNUM;
5080 break;
5081 case SS_PREFIX_OPCODE:
5082 ir.override = X86_RECORD_SS_REGNUM;
5083 break;
5084 case DS_PREFIX_OPCODE:
5085 ir.override = X86_RECORD_DS_REGNUM;
5086 break;
5087 case ES_PREFIX_OPCODE:
5088 ir.override = X86_RECORD_ES_REGNUM;
5089 break;
5090 case FS_PREFIX_OPCODE:
5091 ir.override = X86_RECORD_FS_REGNUM;
5092 break;
5093 case GS_PREFIX_OPCODE:
5094 ir.override = X86_RECORD_GS_REGNUM;
5095 break;
5096 case DATA_PREFIX_OPCODE:
5097 prefixes |= PREFIX_DATA;
5098 break;
5099 case ADDR_PREFIX_OPCODE:
5100 prefixes |= PREFIX_ADDR;
5101 break;
5102 case 0x40: /* i386 inc %eax */
5103 case 0x41: /* i386 inc %ecx */
5104 case 0x42: /* i386 inc %edx */
5105 case 0x43: /* i386 inc %ebx */
5106 case 0x44: /* i386 inc %esp */
5107 case 0x45: /* i386 inc %ebp */
5108 case 0x46: /* i386 inc %esi */
5109 case 0x47: /* i386 inc %edi */
5110 case 0x48: /* i386 dec %eax */
5111 case 0x49: /* i386 dec %ecx */
5112 case 0x4a: /* i386 dec %edx */
5113 case 0x4b: /* i386 dec %ebx */
5114 case 0x4c: /* i386 dec %esp */
5115 case 0x4d: /* i386 dec %ebp */
5116 case 0x4e: /* i386 dec %esi */
5117 case 0x4f: /* i386 dec %edi */
5118 if (ir.regmap[X86_RECORD_R8_REGNUM]) /* 64 bit target */
5119 {
5120 /* REX */
5121 rex_w = (opcode8 >> 3) & 1;
5122 rex_r = (opcode8 & 0x4) << 1;
5123 ir.rex_x = (opcode8 & 0x2) << 2;
5124 ir.rex_b = (opcode8 & 0x1) << 3;
5125 }
5126 else /* 32 bit target */
5127 goto out_prefixes;
5128 break;
5129 default:
5130 goto out_prefixes;
5131 break;
5132 }
5133 }
5134 out_prefixes:
5135 if (ir.regmap[X86_RECORD_R8_REGNUM] && rex_w == 1)
5136 {
5137 ir.dflag = 2;
5138 }
5139 else
5140 {
5141 if (prefixes & PREFIX_DATA)
5142 ir.dflag ^= 1;
5143 }
5144 if (prefixes & PREFIX_ADDR)
5145 ir.aflag ^= 1;
5146 else if (ir.regmap[X86_RECORD_R8_REGNUM])
5147 ir.aflag = 2;
5148
5149 /* Now check op code. */
5150 opcode = (uint32_t) opcode8;
5151 reswitch:
5152 switch (opcode)
5153 {
5154 case 0x0f:
5155 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
5156 return -1;
5157 ir.addr++;
5158 opcode = (uint32_t) opcode8 | 0x0f00;
5159 goto reswitch;
5160 break;
5161
5162 case 0x00: /* arith & logic */
5163 case 0x01:
5164 case 0x02:
5165 case 0x03:
5166 case 0x04:
5167 case 0x05:
5168 case 0x08:
5169 case 0x09:
5170 case 0x0a:
5171 case 0x0b:
5172 case 0x0c:
5173 case 0x0d:
5174 case 0x10:
5175 case 0x11:
5176 case 0x12:
5177 case 0x13:
5178 case 0x14:
5179 case 0x15:
5180 case 0x18:
5181 case 0x19:
5182 case 0x1a:
5183 case 0x1b:
5184 case 0x1c:
5185 case 0x1d:
5186 case 0x20:
5187 case 0x21:
5188 case 0x22:
5189 case 0x23:
5190 case 0x24:
5191 case 0x25:
5192 case 0x28:
5193 case 0x29:
5194 case 0x2a:
5195 case 0x2b:
5196 case 0x2c:
5197 case 0x2d:
5198 case 0x30:
5199 case 0x31:
5200 case 0x32:
5201 case 0x33:
5202 case 0x34:
5203 case 0x35:
5204 case 0x38:
5205 case 0x39:
5206 case 0x3a:
5207 case 0x3b:
5208 case 0x3c:
5209 case 0x3d:
5210 if (((opcode >> 3) & 7) != OP_CMPL)
5211 {
5212 if ((opcode & 1) == 0)
5213 ir.ot = OT_BYTE;
5214 else
5215 ir.ot = ir.dflag + OT_WORD;
5216
5217 switch ((opcode >> 1) & 3)
5218 {
5219 case 0: /* OP Ev, Gv */
5220 if (i386_record_modrm (&ir))
5221 return -1;
5222 if (ir.mod != 3)
5223 {
5224 if (i386_record_lea_modrm (&ir))
5225 return -1;
5226 }
5227 else
5228 {
5229 ir.rm |= ir.rex_b;
5230 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5231 ir.rm &= 0x3;
5232 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5233 }
5234 break;
5235 case 1: /* OP Gv, Ev */
5236 if (i386_record_modrm (&ir))
5237 return -1;
5238 ir.reg |= rex_r;
5239 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5240 ir.reg &= 0x3;
5241 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5242 break;
5243 case 2: /* OP A, Iv */
5244 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5245 break;
5246 }
5247 }
5248 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5249 break;
5250
5251 case 0x80: /* GRP1 */
5252 case 0x81:
5253 case 0x82:
5254 case 0x83:
5255 if (i386_record_modrm (&ir))
5256 return -1;
5257
5258 if (ir.reg != OP_CMPL)
5259 {
5260 if ((opcode & 1) == 0)
5261 ir.ot = OT_BYTE;
5262 else
5263 ir.ot = ir.dflag + OT_WORD;
5264
5265 if (ir.mod != 3)
5266 {
5267 if (opcode == 0x83)
5268 ir.rip_offset = 1;
5269 else
5270 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5271 if (i386_record_lea_modrm (&ir))
5272 return -1;
5273 }
5274 else
5275 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5276 }
5277 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5278 break;
5279
5280 case 0x40: /* inc */
5281 case 0x41:
5282 case 0x42:
5283 case 0x43:
5284 case 0x44:
5285 case 0x45:
5286 case 0x46:
5287 case 0x47:
5288
5289 case 0x48: /* dec */
5290 case 0x49:
5291 case 0x4a:
5292 case 0x4b:
5293 case 0x4c:
5294 case 0x4d:
5295 case 0x4e:
5296 case 0x4f:
5297
5298 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 7);
5299 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5300 break;
5301
5302 case 0xf6: /* GRP3 */
5303 case 0xf7:
5304 if ((opcode & 1) == 0)
5305 ir.ot = OT_BYTE;
5306 else
5307 ir.ot = ir.dflag + OT_WORD;
5308 if (i386_record_modrm (&ir))
5309 return -1;
5310
5311 if (ir.mod != 3 && ir.reg == 0)
5312 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5313
5314 switch (ir.reg)
5315 {
5316 case 0: /* test */
5317 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5318 break;
5319 case 2: /* not */
5320 case 3: /* neg */
5321 if (ir.mod != 3)
5322 {
5323 if (i386_record_lea_modrm (&ir))
5324 return -1;
5325 }
5326 else
5327 {
5328 ir.rm |= ir.rex_b;
5329 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5330 ir.rm &= 0x3;
5331 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5332 }
5333 if (ir.reg == 3) /* neg */
5334 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5335 break;
5336 case 4: /* mul */
5337 case 5: /* imul */
5338 case 6: /* div */
5339 case 7: /* idiv */
5340 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5341 if (ir.ot != OT_BYTE)
5342 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5343 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5344 break;
5345 default:
5346 ir.addr -= 2;
5347 opcode = opcode << 8 | ir.modrm;
5348 goto no_support;
5349 break;
5350 }
5351 break;
5352
5353 case 0xfe: /* GRP4 */
5354 case 0xff: /* GRP5 */
5355 if (i386_record_modrm (&ir))
5356 return -1;
5357 if (ir.reg >= 2 && opcode == 0xfe)
5358 {
5359 ir.addr -= 2;
5360 opcode = opcode << 8 | ir.modrm;
5361 goto no_support;
5362 }
5363 switch (ir.reg)
5364 {
5365 case 0: /* inc */
5366 case 1: /* dec */
5367 if ((opcode & 1) == 0)
5368 ir.ot = OT_BYTE;
5369 else
5370 ir.ot = ir.dflag + OT_WORD;
5371 if (ir.mod != 3)
5372 {
5373 if (i386_record_lea_modrm (&ir))
5374 return -1;
5375 }
5376 else
5377 {
5378 ir.rm |= ir.rex_b;
5379 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5380 ir.rm &= 0x3;
5381 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5382 }
5383 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5384 break;
5385 case 2: /* call */
5386 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5387 ir.dflag = 2;
5388 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5389 return -1;
5390 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5391 break;
5392 case 3: /* lcall */
5393 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
5394 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5395 return -1;
5396 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5397 break;
5398 case 4: /* jmp */
5399 case 5: /* ljmp */
5400 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5401 break;
5402 case 6: /* push */
5403 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5404 ir.dflag = 2;
5405 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5406 return -1;
5407 break;
5408 default:
5409 ir.addr -= 2;
5410 opcode = opcode << 8 | ir.modrm;
5411 goto no_support;
5412 break;
5413 }
5414 break;
5415
5416 case 0x84: /* test */
5417 case 0x85:
5418 case 0xa8:
5419 case 0xa9:
5420 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5421 break;
5422
5423 case 0x98: /* CWDE/CBW */
5424 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5425 break;
5426
5427 case 0x99: /* CDQ/CWD */
5428 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5429 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5430 break;
5431
5432 case 0x0faf: /* imul */
5433 case 0x69:
5434 case 0x6b:
5435 ir.ot = ir.dflag + OT_WORD;
5436 if (i386_record_modrm (&ir))
5437 return -1;
5438 if (opcode == 0x69)
5439 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5440 else if (opcode == 0x6b)
5441 ir.rip_offset = 1;
5442 ir.reg |= rex_r;
5443 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5444 ir.reg &= 0x3;
5445 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5446 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5447 break;
5448
5449 case 0x0fc0: /* xadd */
5450 case 0x0fc1:
5451 if ((opcode & 1) == 0)
5452 ir.ot = OT_BYTE;
5453 else
5454 ir.ot = ir.dflag + OT_WORD;
5455 if (i386_record_modrm (&ir))
5456 return -1;
5457 ir.reg |= rex_r;
5458 if (ir.mod == 3)
5459 {
5460 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5461 ir.reg &= 0x3;
5462 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5463 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5464 ir.rm &= 0x3;
5465 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5466 }
5467 else
5468 {
5469 if (i386_record_lea_modrm (&ir))
5470 return -1;
5471 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5472 ir.reg &= 0x3;
5473 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5474 }
5475 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5476 break;
5477
5478 case 0x0fb0: /* cmpxchg */
5479 case 0x0fb1:
5480 if ((opcode & 1) == 0)
5481 ir.ot = OT_BYTE;
5482 else
5483 ir.ot = ir.dflag + OT_WORD;
5484 if (i386_record_modrm (&ir))
5485 return -1;
5486 if (ir.mod == 3)
5487 {
5488 ir.reg |= rex_r;
5489 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5490 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5491 ir.reg &= 0x3;
5492 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5493 }
5494 else
5495 {
5496 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5497 if (i386_record_lea_modrm (&ir))
5498 return -1;
5499 }
5500 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5501 break;
5502
5503 case 0x0fc7: /* cmpxchg8b / rdrand / rdseed */
5504 if (i386_record_modrm (&ir))
5505 return -1;
5506 if (ir.mod == 3)
5507 {
5508 /* rdrand and rdseed use the 3 bits of the REG field of ModR/M as
5509 an extended opcode. rdrand has bits 110 (/6) and rdseed
5510 has bits 111 (/7). */
5511 if (ir.reg == 6 || ir.reg == 7)
5512 {
5513 /* The storage register is described by the 3 R/M bits, but the
5514 REX.B prefix may be used to give access to registers
5515 R8~R15. In this case ir.rex_b + R/M will give us the register
5516 in the range R8~R15.
5517
5518 REX.W may also be used to access 64-bit registers, but we
5519 already record entire registers and not just partial bits
5520 of them. */
5521 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rex_b + ir.rm);
5522 /* These instructions also set conditional bits. */
5523 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5524 break;
5525 }
5526 else
5527 {
5528 /* We don't handle this particular instruction yet. */
5529 ir.addr -= 2;
5530 opcode = opcode << 8 | ir.modrm;
5531 goto no_support;
5532 }
5533 }
5534 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5535 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5536 if (i386_record_lea_modrm (&ir))
5537 return -1;
5538 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5539 break;
5540
5541 case 0x50: /* push */
5542 case 0x51:
5543 case 0x52:
5544 case 0x53:
5545 case 0x54:
5546 case 0x55:
5547 case 0x56:
5548 case 0x57:
5549 case 0x68:
5550 case 0x6a:
5551 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5552 ir.dflag = 2;
5553 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5554 return -1;
5555 break;
5556
5557 case 0x06: /* push es */
5558 case 0x0e: /* push cs */
5559 case 0x16: /* push ss */
5560 case 0x1e: /* push ds */
5561 if (ir.regmap[X86_RECORD_R8_REGNUM])
5562 {
5563 ir.addr -= 1;
5564 goto no_support;
5565 }
5566 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5567 return -1;
5568 break;
5569
5570 case 0x0fa0: /* push fs */
5571 case 0x0fa8: /* push gs */
5572 if (ir.regmap[X86_RECORD_R8_REGNUM])
5573 {
5574 ir.addr -= 2;
5575 goto no_support;
5576 }
5577 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5578 return -1;
5579 break;
5580
5581 case 0x60: /* pusha */
5582 if (ir.regmap[X86_RECORD_R8_REGNUM])
5583 {
5584 ir.addr -= 1;
5585 goto no_support;
5586 }
5587 if (i386_record_push (&ir, 1 << (ir.dflag + 4)))
5588 return -1;
5589 break;
5590
5591 case 0x58: /* pop */
5592 case 0x59:
5593 case 0x5a:
5594 case 0x5b:
5595 case 0x5c:
5596 case 0x5d:
5597 case 0x5e:
5598 case 0x5f:
5599 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5600 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
5601 break;
5602
5603 case 0x61: /* popa */
5604 if (ir.regmap[X86_RECORD_R8_REGNUM])
5605 {
5606 ir.addr -= 1;
5607 goto no_support;
5608 }
5609 for (regnum = X86_RECORD_REAX_REGNUM;
5610 regnum <= X86_RECORD_REDI_REGNUM;
5611 regnum++)
5612 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5613 break;
5614
5615 case 0x8f: /* pop */
5616 if (ir.regmap[X86_RECORD_R8_REGNUM])
5617 ir.ot = ir.dflag ? OT_QUAD : OT_WORD;
5618 else
5619 ir.ot = ir.dflag + OT_WORD;
5620 if (i386_record_modrm (&ir))
5621 return -1;
5622 if (ir.mod == 3)
5623 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5624 else
5625 {
5626 ir.popl_esp_hack = 1 << ir.ot;
5627 if (i386_record_lea_modrm (&ir))
5628 return -1;
5629 }
5630 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5631 break;
5632
5633 case 0xc8: /* enter */
5634 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
5635 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5636 ir.dflag = 2;
5637 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5638 return -1;
5639 break;
5640
5641 case 0xc9: /* leave */
5642 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5643 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
5644 break;
5645
5646 case 0x07: /* pop es */
5647 if (ir.regmap[X86_RECORD_R8_REGNUM])
5648 {
5649 ir.addr -= 1;
5650 goto no_support;
5651 }
5652 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5653 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_ES_REGNUM);
5654 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5655 break;
5656
5657 case 0x17: /* pop ss */
5658 if (ir.regmap[X86_RECORD_R8_REGNUM])
5659 {
5660 ir.addr -= 1;
5661 goto no_support;
5662 }
5663 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5664 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_SS_REGNUM);
5665 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5666 break;
5667
5668 case 0x1f: /* pop ds */
5669 if (ir.regmap[X86_RECORD_R8_REGNUM])
5670 {
5671 ir.addr -= 1;
5672 goto no_support;
5673 }
5674 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5675 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_DS_REGNUM);
5676 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5677 break;
5678
5679 case 0x0fa1: /* pop fs */
5680 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5681 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_FS_REGNUM);
5682 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5683 break;
5684
5685 case 0x0fa9: /* pop gs */
5686 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5687 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
5688 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5689 break;
5690
5691 case 0x88: /* mov */
5692 case 0x89:
5693 case 0xc6:
5694 case 0xc7:
5695 if ((opcode & 1) == 0)
5696 ir.ot = OT_BYTE;
5697 else
5698 ir.ot = ir.dflag + OT_WORD;
5699
5700 if (i386_record_modrm (&ir))
5701 return -1;
5702
5703 if (ir.mod != 3)
5704 {
5705 if (opcode == 0xc6 || opcode == 0xc7)
5706 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5707 if (i386_record_lea_modrm (&ir))
5708 return -1;
5709 }
5710 else
5711 {
5712 if (opcode == 0xc6 || opcode == 0xc7)
5713 ir.rm |= ir.rex_b;
5714 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5715 ir.rm &= 0x3;
5716 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5717 }
5718 break;
5719
5720 case 0x8a: /* mov */
5721 case 0x8b:
5722 if ((opcode & 1) == 0)
5723 ir.ot = OT_BYTE;
5724 else
5725 ir.ot = ir.dflag + OT_WORD;
5726 if (i386_record_modrm (&ir))
5727 return -1;
5728 ir.reg |= rex_r;
5729 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5730 ir.reg &= 0x3;
5731 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5732 break;
5733
5734 case 0x8c: /* mov seg */
5735 if (i386_record_modrm (&ir))
5736 return -1;
5737 if (ir.reg > 5)
5738 {
5739 ir.addr -= 2;
5740 opcode = opcode << 8 | ir.modrm;
5741 goto no_support;
5742 }
5743
5744 if (ir.mod == 3)
5745 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5746 else
5747 {
5748 ir.ot = OT_WORD;
5749 if (i386_record_lea_modrm (&ir))
5750 return -1;
5751 }
5752 break;
5753
5754 case 0x8e: /* mov seg */
5755 if (i386_record_modrm (&ir))
5756 return -1;
5757 switch (ir.reg)
5758 {
5759 case 0:
5760 regnum = X86_RECORD_ES_REGNUM;
5761 break;
5762 case 2:
5763 regnum = X86_RECORD_SS_REGNUM;
5764 break;
5765 case 3:
5766 regnum = X86_RECORD_DS_REGNUM;
5767 break;
5768 case 4:
5769 regnum = X86_RECORD_FS_REGNUM;
5770 break;
5771 case 5:
5772 regnum = X86_RECORD_GS_REGNUM;
5773 break;
5774 default:
5775 ir.addr -= 2;
5776 opcode = opcode << 8 | ir.modrm;
5777 goto no_support;
5778 break;
5779 }
5780 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5781 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5782 break;
5783
5784 case 0x0fb6: /* movzbS */
5785 case 0x0fb7: /* movzwS */
5786 case 0x0fbe: /* movsbS */
5787 case 0x0fbf: /* movswS */
5788 if (i386_record_modrm (&ir))
5789 return -1;
5790 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5791 break;
5792
5793 case 0x8d: /* lea */
5794 if (i386_record_modrm (&ir))
5795 return -1;
5796 if (ir.mod == 3)
5797 {
5798 ir.addr -= 2;
5799 opcode = opcode << 8 | ir.modrm;
5800 goto no_support;
5801 }
5802 ir.ot = ir.dflag;
5803 ir.reg |= rex_r;
5804 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5805 ir.reg &= 0x3;
5806 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5807 break;
5808
5809 case 0xa0: /* mov EAX */
5810 case 0xa1:
5811
5812 case 0xd7: /* xlat */
5813 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5814 break;
5815
5816 case 0xa2: /* mov EAX */
5817 case 0xa3:
5818 if (ir.override >= 0)
5819 {
5820 if (record_full_memory_query)
5821 {
5822 if (yquery (_("\
5823 Process record ignores the memory change of instruction at address %s\n\
5824 because it can't get the value of the segment register.\n\
5825 Do you want to stop the program?"),
5826 paddress (gdbarch, ir.orig_addr)))
5827 return -1;
5828 }
5829 }
5830 else
5831 {
5832 if ((opcode & 1) == 0)
5833 ir.ot = OT_BYTE;
5834 else
5835 ir.ot = ir.dflag + OT_WORD;
5836 if (ir.aflag == 2)
5837 {
5838 if (record_read_memory (gdbarch, ir.addr, buf, 8))
5839 return -1;
5840 ir.addr += 8;
5841 addr = extract_unsigned_integer (buf, 8, byte_order);
5842 }
5843 else if (ir.aflag)
5844 {
5845 if (record_read_memory (gdbarch, ir.addr, buf, 4))
5846 return -1;
5847 ir.addr += 4;
5848 addr = extract_unsigned_integer (buf, 4, byte_order);
5849 }
5850 else
5851 {
5852 if (record_read_memory (gdbarch, ir.addr, buf, 2))
5853 return -1;
5854 ir.addr += 2;
5855 addr = extract_unsigned_integer (buf, 2, byte_order);
5856 }
5857 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
5858 return -1;
5859 }
5860 break;
5861
5862 case 0xb0: /* mov R, Ib */
5863 case 0xb1:
5864 case 0xb2:
5865 case 0xb3:
5866 case 0xb4:
5867 case 0xb5:
5868 case 0xb6:
5869 case 0xb7:
5870 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((ir.regmap[X86_RECORD_R8_REGNUM])
5871 ? ((opcode & 0x7) | ir.rex_b)
5872 : ((opcode & 0x7) & 0x3));
5873 break;
5874
5875 case 0xb8: /* mov R, Iv */
5876 case 0xb9:
5877 case 0xba:
5878 case 0xbb:
5879 case 0xbc:
5880 case 0xbd:
5881 case 0xbe:
5882 case 0xbf:
5883 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
5884 break;
5885
5886 case 0x91: /* xchg R, EAX */
5887 case 0x92:
5888 case 0x93:
5889 case 0x94:
5890 case 0x95:
5891 case 0x96:
5892 case 0x97:
5893 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5894 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 0x7);
5895 break;
5896
5897 case 0x86: /* xchg Ev, Gv */
5898 case 0x87:
5899 if ((opcode & 1) == 0)
5900 ir.ot = OT_BYTE;
5901 else
5902 ir.ot = ir.dflag + OT_WORD;
5903 if (i386_record_modrm (&ir))
5904 return -1;
5905 if (ir.mod == 3)
5906 {
5907 ir.rm |= ir.rex_b;
5908 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5909 ir.rm &= 0x3;
5910 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5911 }
5912 else
5913 {
5914 if (i386_record_lea_modrm (&ir))
5915 return -1;
5916 }
5917 ir.reg |= rex_r;
5918 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5919 ir.reg &= 0x3;
5920 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5921 break;
5922
5923 case 0xc4: /* les Gv */
5924 case 0xc5: /* lds Gv */
5925 if (ir.regmap[X86_RECORD_R8_REGNUM])
5926 {
5927 ir.addr -= 1;
5928 goto no_support;
5929 }
5930 /* FALLTHROUGH */
5931 case 0x0fb2: /* lss Gv */
5932 case 0x0fb4: /* lfs Gv */
5933 case 0x0fb5: /* lgs Gv */
5934 if (i386_record_modrm (&ir))
5935 return -1;
5936 if (ir.mod == 3)
5937 {
5938 if (opcode > 0xff)
5939 ir.addr -= 3;
5940 else
5941 ir.addr -= 2;
5942 opcode = opcode << 8 | ir.modrm;
5943 goto no_support;
5944 }
5945 switch (opcode)
5946 {
5947 case 0xc4: /* les Gv */
5948 regnum = X86_RECORD_ES_REGNUM;
5949 break;
5950 case 0xc5: /* lds Gv */
5951 regnum = X86_RECORD_DS_REGNUM;
5952 break;
5953 case 0x0fb2: /* lss Gv */
5954 regnum = X86_RECORD_SS_REGNUM;
5955 break;
5956 case 0x0fb4: /* lfs Gv */
5957 regnum = X86_RECORD_FS_REGNUM;
5958 break;
5959 case 0x0fb5: /* lgs Gv */
5960 regnum = X86_RECORD_GS_REGNUM;
5961 break;
5962 }
5963 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5964 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5965 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5966 break;
5967
5968 case 0xc0: /* shifts */
5969 case 0xc1:
5970 case 0xd0:
5971 case 0xd1:
5972 case 0xd2:
5973 case 0xd3:
5974 if ((opcode & 1) == 0)
5975 ir.ot = OT_BYTE;
5976 else
5977 ir.ot = ir.dflag + OT_WORD;
5978 if (i386_record_modrm (&ir))
5979 return -1;
5980 if (ir.mod != 3 && (opcode == 0xd2 || opcode == 0xd3))
5981 {
5982 if (i386_record_lea_modrm (&ir))
5983 return -1;
5984 }
5985 else
5986 {
5987 ir.rm |= ir.rex_b;
5988 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5989 ir.rm &= 0x3;
5990 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5991 }
5992 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5993 break;
5994
5995 case 0x0fa4:
5996 case 0x0fa5:
5997 case 0x0fac:
5998 case 0x0fad:
5999 if (i386_record_modrm (&ir))
6000 return -1;
6001 if (ir.mod == 3)
6002 {
6003 if (record_full_arch_list_add_reg (ir.regcache, ir.rm))
6004 return -1;
6005 }
6006 else
6007 {
6008 if (i386_record_lea_modrm (&ir))
6009 return -1;
6010 }
6011 break;
6012
6013 case 0xd8: /* Floats. */
6014 case 0xd9:
6015 case 0xda:
6016 case 0xdb:
6017 case 0xdc:
6018 case 0xdd:
6019 case 0xde:
6020 case 0xdf:
6021 if (i386_record_modrm (&ir))
6022 return -1;
6023 ir.reg |= ((opcode & 7) << 3);
6024 if (ir.mod != 3)
6025 {
6026 /* Memory. */
6027 uint64_t addr64;
6028
6029 if (i386_record_lea_modrm_addr (&ir, &addr64))
6030 return -1;
6031 switch (ir.reg)
6032 {
6033 case 0x02:
6034 case 0x12:
6035 case 0x22:
6036 case 0x32:
6037 /* For fcom, ficom nothing to do. */
6038 break;
6039 case 0x03:
6040 case 0x13:
6041 case 0x23:
6042 case 0x33:
6043 /* For fcomp, ficomp pop FPU stack, store all. */
6044 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6045 return -1;
6046 break;
6047 case 0x00:
6048 case 0x01:
6049 case 0x04:
6050 case 0x05:
6051 case 0x06:
6052 case 0x07:
6053 case 0x10:
6054 case 0x11:
6055 case 0x14:
6056 case 0x15:
6057 case 0x16:
6058 case 0x17:
6059 case 0x20:
6060 case 0x21:
6061 case 0x24:
6062 case 0x25:
6063 case 0x26:
6064 case 0x27:
6065 case 0x30:
6066 case 0x31:
6067 case 0x34:
6068 case 0x35:
6069 case 0x36:
6070 case 0x37:
6071 /* For fadd, fmul, fsub, fsubr, fdiv, fdivr, fiadd, fimul,
6072 fisub, fisubr, fidiv, fidivr, modR/M.reg is an extension
6073 of code, always affects st(0) register. */
6074 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
6075 return -1;
6076 break;
6077 case 0x08:
6078 case 0x0a:
6079 case 0x0b:
6080 case 0x18:
6081 case 0x19:
6082 case 0x1a:
6083 case 0x1b:
6084 case 0x1d:
6085 case 0x28:
6086 case 0x29:
6087 case 0x2a:
6088 case 0x2b:
6089 case 0x38:
6090 case 0x39:
6091 case 0x3a:
6092 case 0x3b:
6093 case 0x3c:
6094 case 0x3d:
6095 switch (ir.reg & 7)
6096 {
6097 case 0:
6098 /* Handling fld, fild. */
6099 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6100 return -1;
6101 break;
6102 case 1:
6103 switch (ir.reg >> 4)
6104 {
6105 case 0:
6106 if (record_full_arch_list_add_mem (addr64, 4))
6107 return -1;
6108 break;
6109 case 2:
6110 if (record_full_arch_list_add_mem (addr64, 8))
6111 return -1;
6112 break;
6113 case 3:
6114 break;
6115 default:
6116 if (record_full_arch_list_add_mem (addr64, 2))
6117 return -1;
6118 break;
6119 }
6120 break;
6121 default:
6122 switch (ir.reg >> 4)
6123 {
6124 case 0:
6125 if (record_full_arch_list_add_mem (addr64, 4))
6126 return -1;
6127 if (3 == (ir.reg & 7))
6128 {
6129 /* For fstp m32fp. */
6130 if (i386_record_floats (gdbarch, &ir,
6131 I386_SAVE_FPU_REGS))
6132 return -1;
6133 }
6134 break;
6135 case 1:
6136 if (record_full_arch_list_add_mem (addr64, 4))
6137 return -1;
6138 if ((3 == (ir.reg & 7))
6139 || (5 == (ir.reg & 7))
6140 || (7 == (ir.reg & 7)))
6141 {
6142 /* For fstp insn. */
6143 if (i386_record_floats (gdbarch, &ir,
6144 I386_SAVE_FPU_REGS))
6145 return -1;
6146 }
6147 break;
6148 case 2:
6149 if (record_full_arch_list_add_mem (addr64, 8))
6150 return -1;
6151 if (3 == (ir.reg & 7))
6152 {
6153 /* For fstp m64fp. */
6154 if (i386_record_floats (gdbarch, &ir,
6155 I386_SAVE_FPU_REGS))
6156 return -1;
6157 }
6158 break;
6159 case 3:
6160 if ((3 <= (ir.reg & 7)) && (6 <= (ir.reg & 7)))
6161 {
6162 /* For fistp, fbld, fild, fbstp. */
6163 if (i386_record_floats (gdbarch, &ir,
6164 I386_SAVE_FPU_REGS))
6165 return -1;
6166 }
6167 /* Fall through */
6168 default:
6169 if (record_full_arch_list_add_mem (addr64, 2))
6170 return -1;
6171 break;
6172 }
6173 break;
6174 }
6175 break;
6176 case 0x0c:
6177 /* Insn fldenv. */
6178 if (i386_record_floats (gdbarch, &ir,
6179 I386_SAVE_FPU_ENV_REG_STACK))
6180 return -1;
6181 break;
6182 case 0x0d:
6183 /* Insn fldcw. */
6184 if (i386_record_floats (gdbarch, &ir, I387_FCTRL_REGNUM (tdep)))
6185 return -1;
6186 break;
6187 case 0x2c:
6188 /* Insn frstor. */
6189 if (i386_record_floats (gdbarch, &ir,
6190 I386_SAVE_FPU_ENV_REG_STACK))
6191 return -1;
6192 break;
6193 case 0x0e:
6194 if (ir.dflag)
6195 {
6196 if (record_full_arch_list_add_mem (addr64, 28))
6197 return -1;
6198 }
6199 else
6200 {
6201 if (record_full_arch_list_add_mem (addr64, 14))
6202 return -1;
6203 }
6204 break;
6205 case 0x0f:
6206 case 0x2f:
6207 if (record_full_arch_list_add_mem (addr64, 2))
6208 return -1;
6209 /* Insn fstp, fbstp. */
6210 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6211 return -1;
6212 break;
6213 case 0x1f:
6214 case 0x3e:
6215 if (record_full_arch_list_add_mem (addr64, 10))
6216 return -1;
6217 break;
6218 case 0x2e:
6219 if (ir.dflag)
6220 {
6221 if (record_full_arch_list_add_mem (addr64, 28))
6222 return -1;
6223 addr64 += 28;
6224 }
6225 else
6226 {
6227 if (record_full_arch_list_add_mem (addr64, 14))
6228 return -1;
6229 addr64 += 14;
6230 }
6231 if (record_full_arch_list_add_mem (addr64, 80))
6232 return -1;
6233 /* Insn fsave. */
6234 if (i386_record_floats (gdbarch, &ir,
6235 I386_SAVE_FPU_ENV_REG_STACK))
6236 return -1;
6237 break;
6238 case 0x3f:
6239 if (record_full_arch_list_add_mem (addr64, 8))
6240 return -1;
6241 /* Insn fistp. */
6242 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6243 return -1;
6244 break;
6245 default:
6246 ir.addr -= 2;
6247 opcode = opcode << 8 | ir.modrm;
6248 goto no_support;
6249 break;
6250 }
6251 }
6252 /* Opcode is an extension of modR/M byte. */
6253 else
6254 {
6255 switch (opcode)
6256 {
6257 case 0xd8:
6258 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
6259 return -1;
6260 break;
6261 case 0xd9:
6262 if (0x0c == (ir.modrm >> 4))
6263 {
6264 if ((ir.modrm & 0x0f) <= 7)
6265 {
6266 if (i386_record_floats (gdbarch, &ir,
6267 I386_SAVE_FPU_REGS))
6268 return -1;
6269 }
6270 else
6271 {
6272 if (i386_record_floats (gdbarch, &ir,
6273 I387_ST0_REGNUM (tdep)))
6274 return -1;
6275 /* If only st(0) is changing, then we have already
6276 recorded. */
6277 if ((ir.modrm & 0x0f) - 0x08)
6278 {
6279 if (i386_record_floats (gdbarch, &ir,
6280 I387_ST0_REGNUM (tdep) +
6281 ((ir.modrm & 0x0f) - 0x08)))
6282 return -1;
6283 }
6284 }
6285 }
6286 else
6287 {
6288 switch (ir.modrm)
6289 {
6290 case 0xe0:
6291 case 0xe1:
6292 case 0xf0:
6293 case 0xf5:
6294 case 0xf8:
6295 case 0xfa:
6296 case 0xfc:
6297 case 0xfe:
6298 case 0xff:
6299 if (i386_record_floats (gdbarch, &ir,
6300 I387_ST0_REGNUM (tdep)))
6301 return -1;
6302 break;
6303 case 0xf1:
6304 case 0xf2:
6305 case 0xf3:
6306 case 0xf4:
6307 case 0xf6:
6308 case 0xf7:
6309 case 0xe8:
6310 case 0xe9:
6311 case 0xea:
6312 case 0xeb:
6313 case 0xec:
6314 case 0xed:
6315 case 0xee:
6316 case 0xf9:
6317 case 0xfb:
6318 if (i386_record_floats (gdbarch, &ir,
6319 I386_SAVE_FPU_REGS))
6320 return -1;
6321 break;
6322 case 0xfd:
6323 if (i386_record_floats (gdbarch, &ir,
6324 I387_ST0_REGNUM (tdep)))
6325 return -1;
6326 if (i386_record_floats (gdbarch, &ir,
6327 I387_ST0_REGNUM (tdep) + 1))
6328 return -1;
6329 break;
6330 }
6331 }
6332 break;
6333 case 0xda:
6334 if (0xe9 == ir.modrm)
6335 {
6336 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6337 return -1;
6338 }
6339 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
6340 {
6341 if (i386_record_floats (gdbarch, &ir,
6342 I387_ST0_REGNUM (tdep)))
6343 return -1;
6344 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
6345 {
6346 if (i386_record_floats (gdbarch, &ir,
6347 I387_ST0_REGNUM (tdep) +
6348 (ir.modrm & 0x0f)))
6349 return -1;
6350 }
6351 else if ((ir.modrm & 0x0f) - 0x08)
6352 {
6353 if (i386_record_floats (gdbarch, &ir,
6354 I387_ST0_REGNUM (tdep) +
6355 ((ir.modrm & 0x0f) - 0x08)))
6356 return -1;
6357 }
6358 }
6359 break;
6360 case 0xdb:
6361 if (0xe3 == ir.modrm)
6362 {
6363 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_ENV))
6364 return -1;
6365 }
6366 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
6367 {
6368 if (i386_record_floats (gdbarch, &ir,
6369 I387_ST0_REGNUM (tdep)))
6370 return -1;
6371 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
6372 {
6373 if (i386_record_floats (gdbarch, &ir,
6374 I387_ST0_REGNUM (tdep) +
6375 (ir.modrm & 0x0f)))
6376 return -1;
6377 }
6378 else if ((ir.modrm & 0x0f) - 0x08)
6379 {
6380 if (i386_record_floats (gdbarch, &ir,
6381 I387_ST0_REGNUM (tdep) +
6382 ((ir.modrm & 0x0f) - 0x08)))
6383 return -1;
6384 }
6385 }
6386 break;
6387 case 0xdc:
6388 if ((0x0c == ir.modrm >> 4)
6389 || (0x0d == ir.modrm >> 4)
6390 || (0x0f == ir.modrm >> 4))
6391 {
6392 if ((ir.modrm & 0x0f) <= 7)
6393 {
6394 if (i386_record_floats (gdbarch, &ir,
6395 I387_ST0_REGNUM (tdep) +
6396 (ir.modrm & 0x0f)))
6397 return -1;
6398 }
6399 else
6400 {
6401 if (i386_record_floats (gdbarch, &ir,
6402 I387_ST0_REGNUM (tdep) +
6403 ((ir.modrm & 0x0f) - 0x08)))
6404 return -1;
6405 }
6406 }
6407 break;
6408 case 0xdd:
6409 if (0x0c == ir.modrm >> 4)
6410 {
6411 if (i386_record_floats (gdbarch, &ir,
6412 I387_FTAG_REGNUM (tdep)))
6413 return -1;
6414 }
6415 else if ((0x0d == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
6416 {
6417 if ((ir.modrm & 0x0f) <= 7)
6418 {
6419 if (i386_record_floats (gdbarch, &ir,
6420 I387_ST0_REGNUM (tdep) +
6421 (ir.modrm & 0x0f)))
6422 return -1;
6423 }
6424 else
6425 {
6426 if (i386_record_floats (gdbarch, &ir,
6427 I386_SAVE_FPU_REGS))
6428 return -1;
6429 }
6430 }
6431 break;
6432 case 0xde:
6433 if ((0x0c == ir.modrm >> 4)
6434 || (0x0e == ir.modrm >> 4)
6435 || (0x0f == ir.modrm >> 4)
6436 || (0xd9 == ir.modrm))
6437 {
6438 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6439 return -1;
6440 }
6441 break;
6442 case 0xdf:
6443 if (0xe0 == ir.modrm)
6444 {
6445 if (record_full_arch_list_add_reg (ir.regcache,
6446 I386_EAX_REGNUM))
6447 return -1;
6448 }
6449 else if ((0x0f == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
6450 {
6451 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6452 return -1;
6453 }
6454 break;
6455 }
6456 }
6457 break;
6458 /* string ops */
6459 case 0xa4: /* movsS */
6460 case 0xa5:
6461 case 0xaa: /* stosS */
6462 case 0xab:
6463 case 0x6c: /* insS */
6464 case 0x6d:
6465 regcache_raw_read_unsigned (ir.regcache,
6466 ir.regmap[X86_RECORD_RECX_REGNUM],
6467 &addr);
6468 if (addr)
6469 {
6470 ULONGEST es, ds;
6471
6472 if ((opcode & 1) == 0)
6473 ir.ot = OT_BYTE;
6474 else
6475 ir.ot = ir.dflag + OT_WORD;
6476 regcache_raw_read_unsigned (ir.regcache,
6477 ir.regmap[X86_RECORD_REDI_REGNUM],
6478 &addr);
6479
6480 regcache_raw_read_unsigned (ir.regcache,
6481 ir.regmap[X86_RECORD_ES_REGNUM],
6482 &es);
6483 regcache_raw_read_unsigned (ir.regcache,
6484 ir.regmap[X86_RECORD_DS_REGNUM],
6485 &ds);
6486 if (ir.aflag && (es != ds))
6487 {
6488 /* addr += ((uint32_t) read_register (I386_ES_REGNUM)) << 4; */
6489 if (record_full_memory_query)
6490 {
6491 if (yquery (_("\
6492 Process record ignores the memory change of instruction at address %s\n\
6493 because it can't get the value of the segment register.\n\
6494 Do you want to stop the program?"),
6495 paddress (gdbarch, ir.orig_addr)))
6496 return -1;
6497 }
6498 }
6499 else
6500 {
6501 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
6502 return -1;
6503 }
6504
6505 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6506 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6507 if (opcode == 0xa4 || opcode == 0xa5)
6508 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6509 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6510 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6511 }
6512 break;
6513
6514 case 0xa6: /* cmpsS */
6515 case 0xa7:
6516 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6517 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6518 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6519 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6520 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6521 break;
6522
6523 case 0xac: /* lodsS */
6524 case 0xad:
6525 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6526 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6527 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6528 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6529 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6530 break;
6531
6532 case 0xae: /* scasS */
6533 case 0xaf:
6534 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6535 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6536 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6537 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6538 break;
6539
6540 case 0x6e: /* outsS */
6541 case 0x6f:
6542 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6543 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6544 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6545 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6546 break;
6547
6548 case 0xe4: /* port I/O */
6549 case 0xe5:
6550 case 0xec:
6551 case 0xed:
6552 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6553 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6554 break;
6555
6556 case 0xe6:
6557 case 0xe7:
6558 case 0xee:
6559 case 0xef:
6560 break;
6561
6562 /* control */
6563 case 0xc2: /* ret im */
6564 case 0xc3: /* ret */
6565 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6566 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6567 break;
6568
6569 case 0xca: /* lret im */
6570 case 0xcb: /* lret */
6571 case 0xcf: /* iret */
6572 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
6573 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6574 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6575 break;
6576
6577 case 0xe8: /* call im */
6578 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6579 ir.dflag = 2;
6580 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6581 return -1;
6582 break;
6583
6584 case 0x9a: /* lcall im */
6585 if (ir.regmap[X86_RECORD_R8_REGNUM])
6586 {
6587 ir.addr -= 1;
6588 goto no_support;
6589 }
6590 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
6591 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6592 return -1;
6593 break;
6594
6595 case 0xe9: /* jmp im */
6596 case 0xea: /* ljmp im */
6597 case 0xeb: /* jmp Jb */
6598 case 0x70: /* jcc Jb */
6599 case 0x71:
6600 case 0x72:
6601 case 0x73:
6602 case 0x74:
6603 case 0x75:
6604 case 0x76:
6605 case 0x77:
6606 case 0x78:
6607 case 0x79:
6608 case 0x7a:
6609 case 0x7b:
6610 case 0x7c:
6611 case 0x7d:
6612 case 0x7e:
6613 case 0x7f:
6614 case 0x0f80: /* jcc Jv */
6615 case 0x0f81:
6616 case 0x0f82:
6617 case 0x0f83:
6618 case 0x0f84:
6619 case 0x0f85:
6620 case 0x0f86:
6621 case 0x0f87:
6622 case 0x0f88:
6623 case 0x0f89:
6624 case 0x0f8a:
6625 case 0x0f8b:
6626 case 0x0f8c:
6627 case 0x0f8d:
6628 case 0x0f8e:
6629 case 0x0f8f:
6630 break;
6631
6632 case 0x0f90: /* setcc Gv */
6633 case 0x0f91:
6634 case 0x0f92:
6635 case 0x0f93:
6636 case 0x0f94:
6637 case 0x0f95:
6638 case 0x0f96:
6639 case 0x0f97:
6640 case 0x0f98:
6641 case 0x0f99:
6642 case 0x0f9a:
6643 case 0x0f9b:
6644 case 0x0f9c:
6645 case 0x0f9d:
6646 case 0x0f9e:
6647 case 0x0f9f:
6648 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6649 ir.ot = OT_BYTE;
6650 if (i386_record_modrm (&ir))
6651 return -1;
6652 if (ir.mod == 3)
6653 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rex_b ? (ir.rm | ir.rex_b)
6654 : (ir.rm & 0x3));
6655 else
6656 {
6657 if (i386_record_lea_modrm (&ir))
6658 return -1;
6659 }
6660 break;
6661
6662 case 0x0f40: /* cmov Gv, Ev */
6663 case 0x0f41:
6664 case 0x0f42:
6665 case 0x0f43:
6666 case 0x0f44:
6667 case 0x0f45:
6668 case 0x0f46:
6669 case 0x0f47:
6670 case 0x0f48:
6671 case 0x0f49:
6672 case 0x0f4a:
6673 case 0x0f4b:
6674 case 0x0f4c:
6675 case 0x0f4d:
6676 case 0x0f4e:
6677 case 0x0f4f:
6678 if (i386_record_modrm (&ir))
6679 return -1;
6680 ir.reg |= rex_r;
6681 if (ir.dflag == OT_BYTE)
6682 ir.reg &= 0x3;
6683 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
6684 break;
6685
6686 /* flags */
6687 case 0x9c: /* pushf */
6688 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6689 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6690 ir.dflag = 2;
6691 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6692 return -1;
6693 break;
6694
6695 case 0x9d: /* popf */
6696 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6697 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6698 break;
6699
6700 case 0x9e: /* sahf */
6701 if (ir.regmap[X86_RECORD_R8_REGNUM])
6702 {
6703 ir.addr -= 1;
6704 goto no_support;
6705 }
6706 /* FALLTHROUGH */
6707 case 0xf5: /* cmc */
6708 case 0xf8: /* clc */
6709 case 0xf9: /* stc */
6710 case 0xfc: /* cld */
6711 case 0xfd: /* std */
6712 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6713 break;
6714
6715 case 0x9f: /* lahf */
6716 if (ir.regmap[X86_RECORD_R8_REGNUM])
6717 {
6718 ir.addr -= 1;
6719 goto no_support;
6720 }
6721 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6722 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6723 break;
6724
6725 /* bit operations */
6726 case 0x0fba: /* bt/bts/btr/btc Gv, im */
6727 ir.ot = ir.dflag + OT_WORD;
6728 if (i386_record_modrm (&ir))
6729 return -1;
6730 if (ir.reg < 4)
6731 {
6732 ir.addr -= 2;
6733 opcode = opcode << 8 | ir.modrm;
6734 goto no_support;
6735 }
6736 if (ir.reg != 4)
6737 {
6738 if (ir.mod == 3)
6739 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6740 else
6741 {
6742 if (i386_record_lea_modrm (&ir))
6743 return -1;
6744 }
6745 }
6746 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6747 break;
6748
6749 case 0x0fa3: /* bt Gv, Ev */
6750 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6751 break;
6752
6753 case 0x0fab: /* bts */
6754 case 0x0fb3: /* btr */
6755 case 0x0fbb: /* btc */
6756 ir.ot = ir.dflag + OT_WORD;
6757 if (i386_record_modrm (&ir))
6758 return -1;
6759 if (ir.mod == 3)
6760 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6761 else
6762 {
6763 uint64_t addr64;
6764 if (i386_record_lea_modrm_addr (&ir, &addr64))
6765 return -1;
6766 regcache_raw_read_unsigned (ir.regcache,
6767 ir.regmap[ir.reg | rex_r],
6768 &addr);
6769 switch (ir.dflag)
6770 {
6771 case 0:
6772 addr64 += ((int16_t) addr >> 4) << 4;
6773 break;
6774 case 1:
6775 addr64 += ((int32_t) addr >> 5) << 5;
6776 break;
6777 case 2:
6778 addr64 += ((int64_t) addr >> 6) << 6;
6779 break;
6780 }
6781 if (record_full_arch_list_add_mem (addr64, 1 << ir.ot))
6782 return -1;
6783 if (i386_record_lea_modrm (&ir))
6784 return -1;
6785 }
6786 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6787 break;
6788
6789 case 0x0fbc: /* bsf */
6790 case 0x0fbd: /* bsr */
6791 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6792 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6793 break;
6794
6795 /* bcd */
6796 case 0x27: /* daa */
6797 case 0x2f: /* das */
6798 case 0x37: /* aaa */
6799 case 0x3f: /* aas */
6800 case 0xd4: /* aam */
6801 case 0xd5: /* aad */
6802 if (ir.regmap[X86_RECORD_R8_REGNUM])
6803 {
6804 ir.addr -= 1;
6805 goto no_support;
6806 }
6807 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6808 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6809 break;
6810
6811 /* misc */
6812 case 0x90: /* nop */
6813 if (prefixes & PREFIX_LOCK)
6814 {
6815 ir.addr -= 1;
6816 goto no_support;
6817 }
6818 break;
6819
6820 case 0x9b: /* fwait */
6821 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
6822 return -1;
6823 opcode = (uint32_t) opcode8;
6824 ir.addr++;
6825 goto reswitch;
6826 break;
6827
6828 /* XXX */
6829 case 0xcc: /* int3 */
6830 printf_unfiltered (_("Process record does not support instruction "
6831 "int3.\n"));
6832 ir.addr -= 1;
6833 goto no_support;
6834 break;
6835
6836 /* XXX */
6837 case 0xcd: /* int */
6838 {
6839 int ret;
6840 uint8_t interrupt;
6841 if (record_read_memory (gdbarch, ir.addr, &interrupt, 1))
6842 return -1;
6843 ir.addr++;
6844 if (interrupt != 0x80
6845 || tdep->i386_intx80_record == NULL)
6846 {
6847 printf_unfiltered (_("Process record does not support "
6848 "instruction int 0x%02x.\n"),
6849 interrupt);
6850 ir.addr -= 2;
6851 goto no_support;
6852 }
6853 ret = tdep->i386_intx80_record (ir.regcache);
6854 if (ret)
6855 return ret;
6856 }
6857 break;
6858
6859 /* XXX */
6860 case 0xce: /* into */
6861 printf_unfiltered (_("Process record does not support "
6862 "instruction into.\n"));
6863 ir.addr -= 1;
6864 goto no_support;
6865 break;
6866
6867 case 0xfa: /* cli */
6868 case 0xfb: /* sti */
6869 break;
6870
6871 case 0x62: /* bound */
6872 printf_unfiltered (_("Process record does not support "
6873 "instruction bound.\n"));
6874 ir.addr -= 1;
6875 goto no_support;
6876 break;
6877
6878 case 0x0fc8: /* bswap reg */
6879 case 0x0fc9:
6880 case 0x0fca:
6881 case 0x0fcb:
6882 case 0x0fcc:
6883 case 0x0fcd:
6884 case 0x0fce:
6885 case 0x0fcf:
6886 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 7) | ir.rex_b);
6887 break;
6888
6889 case 0xd6: /* salc */
6890 if (ir.regmap[X86_RECORD_R8_REGNUM])
6891 {
6892 ir.addr -= 1;
6893 goto no_support;
6894 }
6895 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6896 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6897 break;
6898
6899 case 0xe0: /* loopnz */
6900 case 0xe1: /* loopz */
6901 case 0xe2: /* loop */
6902 case 0xe3: /* jecxz */
6903 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6904 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6905 break;
6906
6907 case 0x0f30: /* wrmsr */
6908 printf_unfiltered (_("Process record does not support "
6909 "instruction wrmsr.\n"));
6910 ir.addr -= 2;
6911 goto no_support;
6912 break;
6913
6914 case 0x0f32: /* rdmsr */
6915 printf_unfiltered (_("Process record does not support "
6916 "instruction rdmsr.\n"));
6917 ir.addr -= 2;
6918 goto no_support;
6919 break;
6920
6921 case 0x0f31: /* rdtsc */
6922 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6923 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6924 break;
6925
6926 case 0x0f34: /* sysenter */
6927 {
6928 int ret;
6929 if (ir.regmap[X86_RECORD_R8_REGNUM])
6930 {
6931 ir.addr -= 2;
6932 goto no_support;
6933 }
6934 if (tdep->i386_sysenter_record == NULL)
6935 {
6936 printf_unfiltered (_("Process record does not support "
6937 "instruction sysenter.\n"));
6938 ir.addr -= 2;
6939 goto no_support;
6940 }
6941 ret = tdep->i386_sysenter_record (ir.regcache);
6942 if (ret)
6943 return ret;
6944 }
6945 break;
6946
6947 case 0x0f35: /* sysexit */
6948 printf_unfiltered (_("Process record does not support "
6949 "instruction sysexit.\n"));
6950 ir.addr -= 2;
6951 goto no_support;
6952 break;
6953
6954 case 0x0f05: /* syscall */
6955 {
6956 int ret;
6957 if (tdep->i386_syscall_record == NULL)
6958 {
6959 printf_unfiltered (_("Process record does not support "
6960 "instruction syscall.\n"));
6961 ir.addr -= 2;
6962 goto no_support;
6963 }
6964 ret = tdep->i386_syscall_record (ir.regcache);
6965 if (ret)
6966 return ret;
6967 }
6968 break;
6969
6970 case 0x0f07: /* sysret */
6971 printf_unfiltered (_("Process record does not support "
6972 "instruction sysret.\n"));
6973 ir.addr -= 2;
6974 goto no_support;
6975 break;
6976
6977 case 0x0fa2: /* cpuid */
6978 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6979 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6980 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6981 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
6982 break;
6983
6984 case 0xf4: /* hlt */
6985 printf_unfiltered (_("Process record does not support "
6986 "instruction hlt.\n"));
6987 ir.addr -= 1;
6988 goto no_support;
6989 break;
6990
6991 case 0x0f00:
6992 if (i386_record_modrm (&ir))
6993 return -1;
6994 switch (ir.reg)
6995 {
6996 case 0: /* sldt */
6997 case 1: /* str */
6998 if (ir.mod == 3)
6999 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7000 else
7001 {
7002 ir.ot = OT_WORD;
7003 if (i386_record_lea_modrm (&ir))
7004 return -1;
7005 }
7006 break;
7007 case 2: /* lldt */
7008 case 3: /* ltr */
7009 break;
7010 case 4: /* verr */
7011 case 5: /* verw */
7012 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7013 break;
7014 default:
7015 ir.addr -= 3;
7016 opcode = opcode << 8 | ir.modrm;
7017 goto no_support;
7018 break;
7019 }
7020 break;
7021
7022 case 0x0f01:
7023 if (i386_record_modrm (&ir))
7024 return -1;
7025 switch (ir.reg)
7026 {
7027 case 0: /* sgdt */
7028 {
7029 uint64_t addr64;
7030
7031 if (ir.mod == 3)
7032 {
7033 ir.addr -= 3;
7034 opcode = opcode << 8 | ir.modrm;
7035 goto no_support;
7036 }
7037 if (ir.override >= 0)
7038 {
7039 if (record_full_memory_query)
7040 {
7041 if (yquery (_("\
7042 Process record ignores the memory change of instruction at address %s\n\
7043 because it can't get the value of the segment register.\n\
7044 Do you want to stop the program?"),
7045 paddress (gdbarch, ir.orig_addr)))
7046 return -1;
7047 }
7048 }
7049 else
7050 {
7051 if (i386_record_lea_modrm_addr (&ir, &addr64))
7052 return -1;
7053 if (record_full_arch_list_add_mem (addr64, 2))
7054 return -1;
7055 addr64 += 2;
7056 if (ir.regmap[X86_RECORD_R8_REGNUM])
7057 {
7058 if (record_full_arch_list_add_mem (addr64, 8))
7059 return -1;
7060 }
7061 else
7062 {
7063 if (record_full_arch_list_add_mem (addr64, 4))
7064 return -1;
7065 }
7066 }
7067 }
7068 break;
7069 case 1:
7070 if (ir.mod == 3)
7071 {
7072 switch (ir.rm)
7073 {
7074 case 0: /* monitor */
7075 break;
7076 case 1: /* mwait */
7077 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7078 break;
7079 default:
7080 ir.addr -= 3;
7081 opcode = opcode << 8 | ir.modrm;
7082 goto no_support;
7083 break;
7084 }
7085 }
7086 else
7087 {
7088 /* sidt */
7089 if (ir.override >= 0)
7090 {
7091 if (record_full_memory_query)
7092 {
7093 if (yquery (_("\
7094 Process record ignores the memory change of instruction at address %s\n\
7095 because it can't get the value of the segment register.\n\
7096 Do you want to stop the program?"),
7097 paddress (gdbarch, ir.orig_addr)))
7098 return -1;
7099 }
7100 }
7101 else
7102 {
7103 uint64_t addr64;
7104
7105 if (i386_record_lea_modrm_addr (&ir, &addr64))
7106 return -1;
7107 if (record_full_arch_list_add_mem (addr64, 2))
7108 return -1;
7109 addr64 += 2;
7110 if (ir.regmap[X86_RECORD_R8_REGNUM])
7111 {
7112 if (record_full_arch_list_add_mem (addr64, 8))
7113 return -1;
7114 }
7115 else
7116 {
7117 if (record_full_arch_list_add_mem (addr64, 4))
7118 return -1;
7119 }
7120 }
7121 }
7122 break;
7123 case 2: /* lgdt */
7124 if (ir.mod == 3)
7125 {
7126 /* xgetbv */
7127 if (ir.rm == 0)
7128 {
7129 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7130 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7131 break;
7132 }
7133 /* xsetbv */
7134 else if (ir.rm == 1)
7135 break;
7136 }
7137 case 3: /* lidt */
7138 if (ir.mod == 3)
7139 {
7140 ir.addr -= 3;
7141 opcode = opcode << 8 | ir.modrm;
7142 goto no_support;
7143 }
7144 break;
7145 case 4: /* smsw */
7146 if (ir.mod == 3)
7147 {
7148 if (record_full_arch_list_add_reg (ir.regcache, ir.rm | ir.rex_b))
7149 return -1;
7150 }
7151 else
7152 {
7153 ir.ot = OT_WORD;
7154 if (i386_record_lea_modrm (&ir))
7155 return -1;
7156 }
7157 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7158 break;
7159 case 6: /* lmsw */
7160 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7161 break;
7162 case 7: /* invlpg */
7163 if (ir.mod == 3)
7164 {
7165 if (ir.rm == 0 && ir.regmap[X86_RECORD_R8_REGNUM])
7166 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
7167 else
7168 {
7169 ir.addr -= 3;
7170 opcode = opcode << 8 | ir.modrm;
7171 goto no_support;
7172 }
7173 }
7174 else
7175 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7176 break;
7177 default:
7178 ir.addr -= 3;
7179 opcode = opcode << 8 | ir.modrm;
7180 goto no_support;
7181 break;
7182 }
7183 break;
7184
7185 case 0x0f08: /* invd */
7186 case 0x0f09: /* wbinvd */
7187 break;
7188
7189 case 0x63: /* arpl */
7190 if (i386_record_modrm (&ir))
7191 return -1;
7192 if (ir.mod == 3 || ir.regmap[X86_RECORD_R8_REGNUM])
7193 {
7194 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.regmap[X86_RECORD_R8_REGNUM]
7195 ? (ir.reg | rex_r) : ir.rm);
7196 }
7197 else
7198 {
7199 ir.ot = ir.dflag ? OT_LONG : OT_WORD;
7200 if (i386_record_lea_modrm (&ir))
7201 return -1;
7202 }
7203 if (!ir.regmap[X86_RECORD_R8_REGNUM])
7204 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7205 break;
7206
7207 case 0x0f02: /* lar */
7208 case 0x0f03: /* lsl */
7209 if (i386_record_modrm (&ir))
7210 return -1;
7211 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7212 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7213 break;
7214
7215 case 0x0f18:
7216 if (i386_record_modrm (&ir))
7217 return -1;
7218 if (ir.mod == 3 && ir.reg == 3)
7219 {
7220 ir.addr -= 3;
7221 opcode = opcode << 8 | ir.modrm;
7222 goto no_support;
7223 }
7224 break;
7225
7226 case 0x0f19:
7227 case 0x0f1a:
7228 case 0x0f1b:
7229 case 0x0f1c:
7230 case 0x0f1d:
7231 case 0x0f1e:
7232 case 0x0f1f:
7233 /* nop (multi byte) */
7234 break;
7235
7236 case 0x0f20: /* mov reg, crN */
7237 case 0x0f22: /* mov crN, reg */
7238 if (i386_record_modrm (&ir))
7239 return -1;
7240 if ((ir.modrm & 0xc0) != 0xc0)
7241 {
7242 ir.addr -= 3;
7243 opcode = opcode << 8 | ir.modrm;
7244 goto no_support;
7245 }
7246 switch (ir.reg)
7247 {
7248 case 0:
7249 case 2:
7250 case 3:
7251 case 4:
7252 case 8:
7253 if (opcode & 2)
7254 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7255 else
7256 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7257 break;
7258 default:
7259 ir.addr -= 3;
7260 opcode = opcode << 8 | ir.modrm;
7261 goto no_support;
7262 break;
7263 }
7264 break;
7265
7266 case 0x0f21: /* mov reg, drN */
7267 case 0x0f23: /* mov drN, reg */
7268 if (i386_record_modrm (&ir))
7269 return -1;
7270 if ((ir.modrm & 0xc0) != 0xc0 || ir.reg == 4
7271 || ir.reg == 5 || ir.reg >= 8)
7272 {
7273 ir.addr -= 3;
7274 opcode = opcode << 8 | ir.modrm;
7275 goto no_support;
7276 }
7277 if (opcode & 2)
7278 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7279 else
7280 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7281 break;
7282
7283 case 0x0f06: /* clts */
7284 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7285 break;
7286
7287 /* MMX 3DNow! SSE SSE2 SSE3 SSSE3 SSE4 */
7288
7289 case 0x0f0d: /* 3DNow! prefetch */
7290 break;
7291
7292 case 0x0f0e: /* 3DNow! femms */
7293 case 0x0f77: /* emms */
7294 if (i386_fpc_regnum_p (gdbarch, I387_FTAG_REGNUM(tdep)))
7295 goto no_support;
7296 record_full_arch_list_add_reg (ir.regcache, I387_FTAG_REGNUM(tdep));
7297 break;
7298
7299 case 0x0f0f: /* 3DNow! data */
7300 if (i386_record_modrm (&ir))
7301 return -1;
7302 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
7303 return -1;
7304 ir.addr++;
7305 switch (opcode8)
7306 {
7307 case 0x0c: /* 3DNow! pi2fw */
7308 case 0x0d: /* 3DNow! pi2fd */
7309 case 0x1c: /* 3DNow! pf2iw */
7310 case 0x1d: /* 3DNow! pf2id */
7311 case 0x8a: /* 3DNow! pfnacc */
7312 case 0x8e: /* 3DNow! pfpnacc */
7313 case 0x90: /* 3DNow! pfcmpge */
7314 case 0x94: /* 3DNow! pfmin */
7315 case 0x96: /* 3DNow! pfrcp */
7316 case 0x97: /* 3DNow! pfrsqrt */
7317 case 0x9a: /* 3DNow! pfsub */
7318 case 0x9e: /* 3DNow! pfadd */
7319 case 0xa0: /* 3DNow! pfcmpgt */
7320 case 0xa4: /* 3DNow! pfmax */
7321 case 0xa6: /* 3DNow! pfrcpit1 */
7322 case 0xa7: /* 3DNow! pfrsqit1 */
7323 case 0xaa: /* 3DNow! pfsubr */
7324 case 0xae: /* 3DNow! pfacc */
7325 case 0xb0: /* 3DNow! pfcmpeq */
7326 case 0xb4: /* 3DNow! pfmul */
7327 case 0xb6: /* 3DNow! pfrcpit2 */
7328 case 0xb7: /* 3DNow! pmulhrw */
7329 case 0xbb: /* 3DNow! pswapd */
7330 case 0xbf: /* 3DNow! pavgusb */
7331 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7332 goto no_support_3dnow_data;
7333 record_full_arch_list_add_reg (ir.regcache, ir.reg);
7334 break;
7335
7336 default:
7337 no_support_3dnow_data:
7338 opcode = (opcode << 8) | opcode8;
7339 goto no_support;
7340 break;
7341 }
7342 break;
7343
7344 case 0x0faa: /* rsm */
7345 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7346 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7347 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
7348 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7349 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
7350 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
7351 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
7352 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
7353 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
7354 break;
7355
7356 case 0x0fae:
7357 if (i386_record_modrm (&ir))
7358 return -1;
7359 switch(ir.reg)
7360 {
7361 case 0: /* fxsave */
7362 {
7363 uint64_t tmpu64;
7364
7365 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7366 if (i386_record_lea_modrm_addr (&ir, &tmpu64))
7367 return -1;
7368 if (record_full_arch_list_add_mem (tmpu64, 512))
7369 return -1;
7370 }
7371 break;
7372
7373 case 1: /* fxrstor */
7374 {
7375 int i;
7376
7377 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7378
7379 for (i = I387_MM0_REGNUM (tdep);
7380 i386_mmx_regnum_p (gdbarch, i); i++)
7381 record_full_arch_list_add_reg (ir.regcache, i);
7382
7383 for (i = I387_XMM0_REGNUM (tdep);
7384 i386_xmm_regnum_p (gdbarch, i); i++)
7385 record_full_arch_list_add_reg (ir.regcache, i);
7386
7387 if (i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
7388 record_full_arch_list_add_reg (ir.regcache,
7389 I387_MXCSR_REGNUM(tdep));
7390
7391 for (i = I387_ST0_REGNUM (tdep);
7392 i386_fp_regnum_p (gdbarch, i); i++)
7393 record_full_arch_list_add_reg (ir.regcache, i);
7394
7395 for (i = I387_FCTRL_REGNUM (tdep);
7396 i386_fpc_regnum_p (gdbarch, i); i++)
7397 record_full_arch_list_add_reg (ir.regcache, i);
7398 }
7399 break;
7400
7401 case 2: /* ldmxcsr */
7402 if (!i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
7403 goto no_support;
7404 record_full_arch_list_add_reg (ir.regcache, I387_MXCSR_REGNUM(tdep));
7405 break;
7406
7407 case 3: /* stmxcsr */
7408 ir.ot = OT_LONG;
7409 if (i386_record_lea_modrm (&ir))
7410 return -1;
7411 break;
7412
7413 case 5: /* lfence */
7414 case 6: /* mfence */
7415 case 7: /* sfence clflush */
7416 break;
7417
7418 default:
7419 opcode = (opcode << 8) | ir.modrm;
7420 goto no_support;
7421 break;
7422 }
7423 break;
7424
7425 case 0x0fc3: /* movnti */
7426 ir.ot = (ir.dflag == 2) ? OT_QUAD : OT_LONG;
7427 if (i386_record_modrm (&ir))
7428 return -1;
7429 if (ir.mod == 3)
7430 goto no_support;
7431 ir.reg |= rex_r;
7432 if (i386_record_lea_modrm (&ir))
7433 return -1;
7434 break;
7435
7436 /* Add prefix to opcode. */
7437 case 0x0f10:
7438 case 0x0f11:
7439 case 0x0f12:
7440 case 0x0f13:
7441 case 0x0f14:
7442 case 0x0f15:
7443 case 0x0f16:
7444 case 0x0f17:
7445 case 0x0f28:
7446 case 0x0f29:
7447 case 0x0f2a:
7448 case 0x0f2b:
7449 case 0x0f2c:
7450 case 0x0f2d:
7451 case 0x0f2e:
7452 case 0x0f2f:
7453 case 0x0f38:
7454 case 0x0f39:
7455 case 0x0f3a:
7456 case 0x0f50:
7457 case 0x0f51:
7458 case 0x0f52:
7459 case 0x0f53:
7460 case 0x0f54:
7461 case 0x0f55:
7462 case 0x0f56:
7463 case 0x0f57:
7464 case 0x0f58:
7465 case 0x0f59:
7466 case 0x0f5a:
7467 case 0x0f5b:
7468 case 0x0f5c:
7469 case 0x0f5d:
7470 case 0x0f5e:
7471 case 0x0f5f:
7472 case 0x0f60:
7473 case 0x0f61:
7474 case 0x0f62:
7475 case 0x0f63:
7476 case 0x0f64:
7477 case 0x0f65:
7478 case 0x0f66:
7479 case 0x0f67:
7480 case 0x0f68:
7481 case 0x0f69:
7482 case 0x0f6a:
7483 case 0x0f6b:
7484 case 0x0f6c:
7485 case 0x0f6d:
7486 case 0x0f6e:
7487 case 0x0f6f:
7488 case 0x0f70:
7489 case 0x0f71:
7490 case 0x0f72:
7491 case 0x0f73:
7492 case 0x0f74:
7493 case 0x0f75:
7494 case 0x0f76:
7495 case 0x0f7c:
7496 case 0x0f7d:
7497 case 0x0f7e:
7498 case 0x0f7f:
7499 case 0x0fb8:
7500 case 0x0fc2:
7501 case 0x0fc4:
7502 case 0x0fc5:
7503 case 0x0fc6:
7504 case 0x0fd0:
7505 case 0x0fd1:
7506 case 0x0fd2:
7507 case 0x0fd3:
7508 case 0x0fd4:
7509 case 0x0fd5:
7510 case 0x0fd6:
7511 case 0x0fd7:
7512 case 0x0fd8:
7513 case 0x0fd9:
7514 case 0x0fda:
7515 case 0x0fdb:
7516 case 0x0fdc:
7517 case 0x0fdd:
7518 case 0x0fde:
7519 case 0x0fdf:
7520 case 0x0fe0:
7521 case 0x0fe1:
7522 case 0x0fe2:
7523 case 0x0fe3:
7524 case 0x0fe4:
7525 case 0x0fe5:
7526 case 0x0fe6:
7527 case 0x0fe7:
7528 case 0x0fe8:
7529 case 0x0fe9:
7530 case 0x0fea:
7531 case 0x0feb:
7532 case 0x0fec:
7533 case 0x0fed:
7534 case 0x0fee:
7535 case 0x0fef:
7536 case 0x0ff0:
7537 case 0x0ff1:
7538 case 0x0ff2:
7539 case 0x0ff3:
7540 case 0x0ff4:
7541 case 0x0ff5:
7542 case 0x0ff6:
7543 case 0x0ff7:
7544 case 0x0ff8:
7545 case 0x0ff9:
7546 case 0x0ffa:
7547 case 0x0ffb:
7548 case 0x0ffc:
7549 case 0x0ffd:
7550 case 0x0ffe:
7551 /* Mask out PREFIX_ADDR. */
7552 switch ((prefixes & ~PREFIX_ADDR))
7553 {
7554 case PREFIX_REPNZ:
7555 opcode |= 0xf20000;
7556 break;
7557 case PREFIX_DATA:
7558 opcode |= 0x660000;
7559 break;
7560 case PREFIX_REPZ:
7561 opcode |= 0xf30000;
7562 break;
7563 }
7564 reswitch_prefix_add:
7565 switch (opcode)
7566 {
7567 case 0x0f38:
7568 case 0x660f38:
7569 case 0xf20f38:
7570 case 0x0f3a:
7571 case 0x660f3a:
7572 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
7573 return -1;
7574 ir.addr++;
7575 opcode = (uint32_t) opcode8 | opcode << 8;
7576 goto reswitch_prefix_add;
7577 break;
7578
7579 case 0x0f10: /* movups */
7580 case 0x660f10: /* movupd */
7581 case 0xf30f10: /* movss */
7582 case 0xf20f10: /* movsd */
7583 case 0x0f12: /* movlps */
7584 case 0x660f12: /* movlpd */
7585 case 0xf30f12: /* movsldup */
7586 case 0xf20f12: /* movddup */
7587 case 0x0f14: /* unpcklps */
7588 case 0x660f14: /* unpcklpd */
7589 case 0x0f15: /* unpckhps */
7590 case 0x660f15: /* unpckhpd */
7591 case 0x0f16: /* movhps */
7592 case 0x660f16: /* movhpd */
7593 case 0xf30f16: /* movshdup */
7594 case 0x0f28: /* movaps */
7595 case 0x660f28: /* movapd */
7596 case 0x0f2a: /* cvtpi2ps */
7597 case 0x660f2a: /* cvtpi2pd */
7598 case 0xf30f2a: /* cvtsi2ss */
7599 case 0xf20f2a: /* cvtsi2sd */
7600 case 0x0f2c: /* cvttps2pi */
7601 case 0x660f2c: /* cvttpd2pi */
7602 case 0x0f2d: /* cvtps2pi */
7603 case 0x660f2d: /* cvtpd2pi */
7604 case 0x660f3800: /* pshufb */
7605 case 0x660f3801: /* phaddw */
7606 case 0x660f3802: /* phaddd */
7607 case 0x660f3803: /* phaddsw */
7608 case 0x660f3804: /* pmaddubsw */
7609 case 0x660f3805: /* phsubw */
7610 case 0x660f3806: /* phsubd */
7611 case 0x660f3807: /* phsubsw */
7612 case 0x660f3808: /* psignb */
7613 case 0x660f3809: /* psignw */
7614 case 0x660f380a: /* psignd */
7615 case 0x660f380b: /* pmulhrsw */
7616 case 0x660f3810: /* pblendvb */
7617 case 0x660f3814: /* blendvps */
7618 case 0x660f3815: /* blendvpd */
7619 case 0x660f381c: /* pabsb */
7620 case 0x660f381d: /* pabsw */
7621 case 0x660f381e: /* pabsd */
7622 case 0x660f3820: /* pmovsxbw */
7623 case 0x660f3821: /* pmovsxbd */
7624 case 0x660f3822: /* pmovsxbq */
7625 case 0x660f3823: /* pmovsxwd */
7626 case 0x660f3824: /* pmovsxwq */
7627 case 0x660f3825: /* pmovsxdq */
7628 case 0x660f3828: /* pmuldq */
7629 case 0x660f3829: /* pcmpeqq */
7630 case 0x660f382a: /* movntdqa */
7631 case 0x660f3a08: /* roundps */
7632 case 0x660f3a09: /* roundpd */
7633 case 0x660f3a0a: /* roundss */
7634 case 0x660f3a0b: /* roundsd */
7635 case 0x660f3a0c: /* blendps */
7636 case 0x660f3a0d: /* blendpd */
7637 case 0x660f3a0e: /* pblendw */
7638 case 0x660f3a0f: /* palignr */
7639 case 0x660f3a20: /* pinsrb */
7640 case 0x660f3a21: /* insertps */
7641 case 0x660f3a22: /* pinsrd pinsrq */
7642 case 0x660f3a40: /* dpps */
7643 case 0x660f3a41: /* dppd */
7644 case 0x660f3a42: /* mpsadbw */
7645 case 0x660f3a60: /* pcmpestrm */
7646 case 0x660f3a61: /* pcmpestri */
7647 case 0x660f3a62: /* pcmpistrm */
7648 case 0x660f3a63: /* pcmpistri */
7649 case 0x0f51: /* sqrtps */
7650 case 0x660f51: /* sqrtpd */
7651 case 0xf20f51: /* sqrtsd */
7652 case 0xf30f51: /* sqrtss */
7653 case 0x0f52: /* rsqrtps */
7654 case 0xf30f52: /* rsqrtss */
7655 case 0x0f53: /* rcpps */
7656 case 0xf30f53: /* rcpss */
7657 case 0x0f54: /* andps */
7658 case 0x660f54: /* andpd */
7659 case 0x0f55: /* andnps */
7660 case 0x660f55: /* andnpd */
7661 case 0x0f56: /* orps */
7662 case 0x660f56: /* orpd */
7663 case 0x0f57: /* xorps */
7664 case 0x660f57: /* xorpd */
7665 case 0x0f58: /* addps */
7666 case 0x660f58: /* addpd */
7667 case 0xf20f58: /* addsd */
7668 case 0xf30f58: /* addss */
7669 case 0x0f59: /* mulps */
7670 case 0x660f59: /* mulpd */
7671 case 0xf20f59: /* mulsd */
7672 case 0xf30f59: /* mulss */
7673 case 0x0f5a: /* cvtps2pd */
7674 case 0x660f5a: /* cvtpd2ps */
7675 case 0xf20f5a: /* cvtsd2ss */
7676 case 0xf30f5a: /* cvtss2sd */
7677 case 0x0f5b: /* cvtdq2ps */
7678 case 0x660f5b: /* cvtps2dq */
7679 case 0xf30f5b: /* cvttps2dq */
7680 case 0x0f5c: /* subps */
7681 case 0x660f5c: /* subpd */
7682 case 0xf20f5c: /* subsd */
7683 case 0xf30f5c: /* subss */
7684 case 0x0f5d: /* minps */
7685 case 0x660f5d: /* minpd */
7686 case 0xf20f5d: /* minsd */
7687 case 0xf30f5d: /* minss */
7688 case 0x0f5e: /* divps */
7689 case 0x660f5e: /* divpd */
7690 case 0xf20f5e: /* divsd */
7691 case 0xf30f5e: /* divss */
7692 case 0x0f5f: /* maxps */
7693 case 0x660f5f: /* maxpd */
7694 case 0xf20f5f: /* maxsd */
7695 case 0xf30f5f: /* maxss */
7696 case 0x660f60: /* punpcklbw */
7697 case 0x660f61: /* punpcklwd */
7698 case 0x660f62: /* punpckldq */
7699 case 0x660f63: /* packsswb */
7700 case 0x660f64: /* pcmpgtb */
7701 case 0x660f65: /* pcmpgtw */
7702 case 0x660f66: /* pcmpgtd */
7703 case 0x660f67: /* packuswb */
7704 case 0x660f68: /* punpckhbw */
7705 case 0x660f69: /* punpckhwd */
7706 case 0x660f6a: /* punpckhdq */
7707 case 0x660f6b: /* packssdw */
7708 case 0x660f6c: /* punpcklqdq */
7709 case 0x660f6d: /* punpckhqdq */
7710 case 0x660f6e: /* movd */
7711 case 0x660f6f: /* movdqa */
7712 case 0xf30f6f: /* movdqu */
7713 case 0x660f70: /* pshufd */
7714 case 0xf20f70: /* pshuflw */
7715 case 0xf30f70: /* pshufhw */
7716 case 0x660f74: /* pcmpeqb */
7717 case 0x660f75: /* pcmpeqw */
7718 case 0x660f76: /* pcmpeqd */
7719 case 0x660f7c: /* haddpd */
7720 case 0xf20f7c: /* haddps */
7721 case 0x660f7d: /* hsubpd */
7722 case 0xf20f7d: /* hsubps */
7723 case 0xf30f7e: /* movq */
7724 case 0x0fc2: /* cmpps */
7725 case 0x660fc2: /* cmppd */
7726 case 0xf20fc2: /* cmpsd */
7727 case 0xf30fc2: /* cmpss */
7728 case 0x660fc4: /* pinsrw */
7729 case 0x0fc6: /* shufps */
7730 case 0x660fc6: /* shufpd */
7731 case 0x660fd0: /* addsubpd */
7732 case 0xf20fd0: /* addsubps */
7733 case 0x660fd1: /* psrlw */
7734 case 0x660fd2: /* psrld */
7735 case 0x660fd3: /* psrlq */
7736 case 0x660fd4: /* paddq */
7737 case 0x660fd5: /* pmullw */
7738 case 0xf30fd6: /* movq2dq */
7739 case 0x660fd8: /* psubusb */
7740 case 0x660fd9: /* psubusw */
7741 case 0x660fda: /* pminub */
7742 case 0x660fdb: /* pand */
7743 case 0x660fdc: /* paddusb */
7744 case 0x660fdd: /* paddusw */
7745 case 0x660fde: /* pmaxub */
7746 case 0x660fdf: /* pandn */
7747 case 0x660fe0: /* pavgb */
7748 case 0x660fe1: /* psraw */
7749 case 0x660fe2: /* psrad */
7750 case 0x660fe3: /* pavgw */
7751 case 0x660fe4: /* pmulhuw */
7752 case 0x660fe5: /* pmulhw */
7753 case 0x660fe6: /* cvttpd2dq */
7754 case 0xf20fe6: /* cvtpd2dq */
7755 case 0xf30fe6: /* cvtdq2pd */
7756 case 0x660fe8: /* psubsb */
7757 case 0x660fe9: /* psubsw */
7758 case 0x660fea: /* pminsw */
7759 case 0x660feb: /* por */
7760 case 0x660fec: /* paddsb */
7761 case 0x660fed: /* paddsw */
7762 case 0x660fee: /* pmaxsw */
7763 case 0x660fef: /* pxor */
7764 case 0xf20ff0: /* lddqu */
7765 case 0x660ff1: /* psllw */
7766 case 0x660ff2: /* pslld */
7767 case 0x660ff3: /* psllq */
7768 case 0x660ff4: /* pmuludq */
7769 case 0x660ff5: /* pmaddwd */
7770 case 0x660ff6: /* psadbw */
7771 case 0x660ff8: /* psubb */
7772 case 0x660ff9: /* psubw */
7773 case 0x660ffa: /* psubd */
7774 case 0x660ffb: /* psubq */
7775 case 0x660ffc: /* paddb */
7776 case 0x660ffd: /* paddw */
7777 case 0x660ffe: /* paddd */
7778 if (i386_record_modrm (&ir))
7779 return -1;
7780 ir.reg |= rex_r;
7781 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.reg))
7782 goto no_support;
7783 record_full_arch_list_add_reg (ir.regcache,
7784 I387_XMM0_REGNUM (tdep) + ir.reg);
7785 if ((opcode & 0xfffffffc) == 0x660f3a60)
7786 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7787 break;
7788
7789 case 0x0f11: /* movups */
7790 case 0x660f11: /* movupd */
7791 case 0xf30f11: /* movss */
7792 case 0xf20f11: /* movsd */
7793 case 0x0f13: /* movlps */
7794 case 0x660f13: /* movlpd */
7795 case 0x0f17: /* movhps */
7796 case 0x660f17: /* movhpd */
7797 case 0x0f29: /* movaps */
7798 case 0x660f29: /* movapd */
7799 case 0x660f3a14: /* pextrb */
7800 case 0x660f3a15: /* pextrw */
7801 case 0x660f3a16: /* pextrd pextrq */
7802 case 0x660f3a17: /* extractps */
7803 case 0x660f7f: /* movdqa */
7804 case 0xf30f7f: /* movdqu */
7805 if (i386_record_modrm (&ir))
7806 return -1;
7807 if (ir.mod == 3)
7808 {
7809 if (opcode == 0x0f13 || opcode == 0x660f13
7810 || opcode == 0x0f17 || opcode == 0x660f17)
7811 goto no_support;
7812 ir.rm |= ir.rex_b;
7813 if (!i386_xmm_regnum_p (gdbarch,
7814 I387_XMM0_REGNUM (tdep) + ir.rm))
7815 goto no_support;
7816 record_full_arch_list_add_reg (ir.regcache,
7817 I387_XMM0_REGNUM (tdep) + ir.rm);
7818 }
7819 else
7820 {
7821 switch (opcode)
7822 {
7823 case 0x660f3a14:
7824 ir.ot = OT_BYTE;
7825 break;
7826 case 0x660f3a15:
7827 ir.ot = OT_WORD;
7828 break;
7829 case 0x660f3a16:
7830 ir.ot = OT_LONG;
7831 break;
7832 case 0x660f3a17:
7833 ir.ot = OT_QUAD;
7834 break;
7835 default:
7836 ir.ot = OT_DQUAD;
7837 break;
7838 }
7839 if (i386_record_lea_modrm (&ir))
7840 return -1;
7841 }
7842 break;
7843
7844 case 0x0f2b: /* movntps */
7845 case 0x660f2b: /* movntpd */
7846 case 0x0fe7: /* movntq */
7847 case 0x660fe7: /* movntdq */
7848 if (ir.mod == 3)
7849 goto no_support;
7850 if (opcode == 0x0fe7)
7851 ir.ot = OT_QUAD;
7852 else
7853 ir.ot = OT_DQUAD;
7854 if (i386_record_lea_modrm (&ir))
7855 return -1;
7856 break;
7857
7858 case 0xf30f2c: /* cvttss2si */
7859 case 0xf20f2c: /* cvttsd2si */
7860 case 0xf30f2d: /* cvtss2si */
7861 case 0xf20f2d: /* cvtsd2si */
7862 case 0xf20f38f0: /* crc32 */
7863 case 0xf20f38f1: /* crc32 */
7864 case 0x0f50: /* movmskps */
7865 case 0x660f50: /* movmskpd */
7866 case 0x0fc5: /* pextrw */
7867 case 0x660fc5: /* pextrw */
7868 case 0x0fd7: /* pmovmskb */
7869 case 0x660fd7: /* pmovmskb */
7870 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7871 break;
7872
7873 case 0x0f3800: /* pshufb */
7874 case 0x0f3801: /* phaddw */
7875 case 0x0f3802: /* phaddd */
7876 case 0x0f3803: /* phaddsw */
7877 case 0x0f3804: /* pmaddubsw */
7878 case 0x0f3805: /* phsubw */
7879 case 0x0f3806: /* phsubd */
7880 case 0x0f3807: /* phsubsw */
7881 case 0x0f3808: /* psignb */
7882 case 0x0f3809: /* psignw */
7883 case 0x0f380a: /* psignd */
7884 case 0x0f380b: /* pmulhrsw */
7885 case 0x0f381c: /* pabsb */
7886 case 0x0f381d: /* pabsw */
7887 case 0x0f381e: /* pabsd */
7888 case 0x0f382b: /* packusdw */
7889 case 0x0f3830: /* pmovzxbw */
7890 case 0x0f3831: /* pmovzxbd */
7891 case 0x0f3832: /* pmovzxbq */
7892 case 0x0f3833: /* pmovzxwd */
7893 case 0x0f3834: /* pmovzxwq */
7894 case 0x0f3835: /* pmovzxdq */
7895 case 0x0f3837: /* pcmpgtq */
7896 case 0x0f3838: /* pminsb */
7897 case 0x0f3839: /* pminsd */
7898 case 0x0f383a: /* pminuw */
7899 case 0x0f383b: /* pminud */
7900 case 0x0f383c: /* pmaxsb */
7901 case 0x0f383d: /* pmaxsd */
7902 case 0x0f383e: /* pmaxuw */
7903 case 0x0f383f: /* pmaxud */
7904 case 0x0f3840: /* pmulld */
7905 case 0x0f3841: /* phminposuw */
7906 case 0x0f3a0f: /* palignr */
7907 case 0x0f60: /* punpcklbw */
7908 case 0x0f61: /* punpcklwd */
7909 case 0x0f62: /* punpckldq */
7910 case 0x0f63: /* packsswb */
7911 case 0x0f64: /* pcmpgtb */
7912 case 0x0f65: /* pcmpgtw */
7913 case 0x0f66: /* pcmpgtd */
7914 case 0x0f67: /* packuswb */
7915 case 0x0f68: /* punpckhbw */
7916 case 0x0f69: /* punpckhwd */
7917 case 0x0f6a: /* punpckhdq */
7918 case 0x0f6b: /* packssdw */
7919 case 0x0f6e: /* movd */
7920 case 0x0f6f: /* movq */
7921 case 0x0f70: /* pshufw */
7922 case 0x0f74: /* pcmpeqb */
7923 case 0x0f75: /* pcmpeqw */
7924 case 0x0f76: /* pcmpeqd */
7925 case 0x0fc4: /* pinsrw */
7926 case 0x0fd1: /* psrlw */
7927 case 0x0fd2: /* psrld */
7928 case 0x0fd3: /* psrlq */
7929 case 0x0fd4: /* paddq */
7930 case 0x0fd5: /* pmullw */
7931 case 0xf20fd6: /* movdq2q */
7932 case 0x0fd8: /* psubusb */
7933 case 0x0fd9: /* psubusw */
7934 case 0x0fda: /* pminub */
7935 case 0x0fdb: /* pand */
7936 case 0x0fdc: /* paddusb */
7937 case 0x0fdd: /* paddusw */
7938 case 0x0fde: /* pmaxub */
7939 case 0x0fdf: /* pandn */
7940 case 0x0fe0: /* pavgb */
7941 case 0x0fe1: /* psraw */
7942 case 0x0fe2: /* psrad */
7943 case 0x0fe3: /* pavgw */
7944 case 0x0fe4: /* pmulhuw */
7945 case 0x0fe5: /* pmulhw */
7946 case 0x0fe8: /* psubsb */
7947 case 0x0fe9: /* psubsw */
7948 case 0x0fea: /* pminsw */
7949 case 0x0feb: /* por */
7950 case 0x0fec: /* paddsb */
7951 case 0x0fed: /* paddsw */
7952 case 0x0fee: /* pmaxsw */
7953 case 0x0fef: /* pxor */
7954 case 0x0ff1: /* psllw */
7955 case 0x0ff2: /* pslld */
7956 case 0x0ff3: /* psllq */
7957 case 0x0ff4: /* pmuludq */
7958 case 0x0ff5: /* pmaddwd */
7959 case 0x0ff6: /* psadbw */
7960 case 0x0ff8: /* psubb */
7961 case 0x0ff9: /* psubw */
7962 case 0x0ffa: /* psubd */
7963 case 0x0ffb: /* psubq */
7964 case 0x0ffc: /* paddb */
7965 case 0x0ffd: /* paddw */
7966 case 0x0ffe: /* paddd */
7967 if (i386_record_modrm (&ir))
7968 return -1;
7969 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7970 goto no_support;
7971 record_full_arch_list_add_reg (ir.regcache,
7972 I387_MM0_REGNUM (tdep) + ir.reg);
7973 break;
7974
7975 case 0x0f71: /* psllw */
7976 case 0x0f72: /* pslld */
7977 case 0x0f73: /* psllq */
7978 if (i386_record_modrm (&ir))
7979 return -1;
7980 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
7981 goto no_support;
7982 record_full_arch_list_add_reg (ir.regcache,
7983 I387_MM0_REGNUM (tdep) + ir.rm);
7984 break;
7985
7986 case 0x660f71: /* psllw */
7987 case 0x660f72: /* pslld */
7988 case 0x660f73: /* psllq */
7989 if (i386_record_modrm (&ir))
7990 return -1;
7991 ir.rm |= ir.rex_b;
7992 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.rm))
7993 goto no_support;
7994 record_full_arch_list_add_reg (ir.regcache,
7995 I387_XMM0_REGNUM (tdep) + ir.rm);
7996 break;
7997
7998 case 0x0f7e: /* movd */
7999 case 0x660f7e: /* movd */
8000 if (i386_record_modrm (&ir))
8001 return -1;
8002 if (ir.mod == 3)
8003 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
8004 else
8005 {
8006 if (ir.dflag == 2)
8007 ir.ot = OT_QUAD;
8008 else
8009 ir.ot = OT_LONG;
8010 if (i386_record_lea_modrm (&ir))
8011 return -1;
8012 }
8013 break;
8014
8015 case 0x0f7f: /* movq */
8016 if (i386_record_modrm (&ir))
8017 return -1;
8018 if (ir.mod == 3)
8019 {
8020 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
8021 goto no_support;
8022 record_full_arch_list_add_reg (ir.regcache,
8023 I387_MM0_REGNUM (tdep) + ir.rm);
8024 }
8025 else
8026 {
8027 ir.ot = OT_QUAD;
8028 if (i386_record_lea_modrm (&ir))
8029 return -1;
8030 }
8031 break;
8032
8033 case 0xf30fb8: /* popcnt */
8034 if (i386_record_modrm (&ir))
8035 return -1;
8036 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
8037 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
8038 break;
8039
8040 case 0x660fd6: /* movq */
8041 if (i386_record_modrm (&ir))
8042 return -1;
8043 if (ir.mod == 3)
8044 {
8045 ir.rm |= ir.rex_b;
8046 if (!i386_xmm_regnum_p (gdbarch,
8047 I387_XMM0_REGNUM (tdep) + ir.rm))
8048 goto no_support;
8049 record_full_arch_list_add_reg (ir.regcache,
8050 I387_XMM0_REGNUM (tdep) + ir.rm);
8051 }
8052 else
8053 {
8054 ir.ot = OT_QUAD;
8055 if (i386_record_lea_modrm (&ir))
8056 return -1;
8057 }
8058 break;
8059
8060 case 0x660f3817: /* ptest */
8061 case 0x0f2e: /* ucomiss */
8062 case 0x660f2e: /* ucomisd */
8063 case 0x0f2f: /* comiss */
8064 case 0x660f2f: /* comisd */
8065 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
8066 break;
8067
8068 case 0x0ff7: /* maskmovq */
8069 regcache_raw_read_unsigned (ir.regcache,
8070 ir.regmap[X86_RECORD_REDI_REGNUM],
8071 &addr);
8072 if (record_full_arch_list_add_mem (addr, 64))
8073 return -1;
8074 break;
8075
8076 case 0x660ff7: /* maskmovdqu */
8077 regcache_raw_read_unsigned (ir.regcache,
8078 ir.regmap[X86_RECORD_REDI_REGNUM],
8079 &addr);
8080 if (record_full_arch_list_add_mem (addr, 128))
8081 return -1;
8082 break;
8083
8084 default:
8085 goto no_support;
8086 break;
8087 }
8088 break;
8089
8090 default:
8091 goto no_support;
8092 break;
8093 }
8094
8095 /* In the future, maybe still need to deal with need_dasm. */
8096 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REIP_REGNUM);
8097 if (record_full_arch_list_add_end ())
8098 return -1;
8099
8100 return 0;
8101
8102 no_support:
8103 printf_unfiltered (_("Process record does not support instruction 0x%02x "
8104 "at address %s.\n"),
8105 (unsigned int) (opcode),
8106 paddress (gdbarch, ir.orig_addr));
8107 return -1;
8108 }
8109
8110 static const int i386_record_regmap[] =
8111 {
8112 I386_EAX_REGNUM, I386_ECX_REGNUM, I386_EDX_REGNUM, I386_EBX_REGNUM,
8113 I386_ESP_REGNUM, I386_EBP_REGNUM, I386_ESI_REGNUM, I386_EDI_REGNUM,
8114 0, 0, 0, 0, 0, 0, 0, 0,
8115 I386_EIP_REGNUM, I386_EFLAGS_REGNUM, I386_CS_REGNUM, I386_SS_REGNUM,
8116 I386_DS_REGNUM, I386_ES_REGNUM, I386_FS_REGNUM, I386_GS_REGNUM
8117 };
8118
8119 /* Check that the given address appears suitable for a fast
8120 tracepoint, which on x86-64 means that we need an instruction of at
8121 least 5 bytes, so that we can overwrite it with a 4-byte-offset
8122 jump and not have to worry about program jumps to an address in the
8123 middle of the tracepoint jump. On x86, it may be possible to use
8124 4-byte jumps with a 2-byte offset to a trampoline located in the
8125 bottom 64 KiB of memory. Returns 1 if OK, and writes a size
8126 of instruction to replace, and 0 if not, plus an explanatory
8127 string. */
8128
8129 static int
8130 i386_fast_tracepoint_valid_at (struct gdbarch *gdbarch, CORE_ADDR addr,
8131 char **msg)
8132 {
8133 int len, jumplen;
8134
8135 /* Ask the target for the minimum instruction length supported. */
8136 jumplen = target_get_min_fast_tracepoint_insn_len ();
8137
8138 if (jumplen < 0)
8139 {
8140 /* If the target does not support the get_min_fast_tracepoint_insn_len
8141 operation, assume that fast tracepoints will always be implemented
8142 using 4-byte relative jumps on both x86 and x86-64. */
8143 jumplen = 5;
8144 }
8145 else if (jumplen == 0)
8146 {
8147 /* If the target does support get_min_fast_tracepoint_insn_len but
8148 returns zero, then the IPA has not loaded yet. In this case,
8149 we optimistically assume that truncated 2-byte relative jumps
8150 will be available on x86, and compensate later if this assumption
8151 turns out to be incorrect. On x86-64 architectures, 4-byte relative
8152 jumps will always be used. */
8153 jumplen = (register_size (gdbarch, 0) == 8) ? 5 : 4;
8154 }
8155
8156 /* Check for fit. */
8157 len = gdb_insn_length (gdbarch, addr);
8158
8159 if (len < jumplen)
8160 {
8161 /* Return a bit of target-specific detail to add to the caller's
8162 generic failure message. */
8163 if (msg)
8164 *msg = xstrprintf (_("; instruction is only %d bytes long, "
8165 "need at least %d bytes for the jump"),
8166 len, jumplen);
8167 return 0;
8168 }
8169 else
8170 {
8171 if (msg)
8172 *msg = NULL;
8173 return 1;
8174 }
8175 }
8176
8177 /* Return a floating-point format for a floating-point variable of
8178 length LEN in bits. If non-NULL, NAME is the name of its type.
8179 If no suitable type is found, return NULL. */
8180
8181 const struct floatformat **
8182 i386_floatformat_for_type (struct gdbarch *gdbarch,
8183 const char *name, int len)
8184 {
8185 if (len == 128 && name)
8186 if (strcmp (name, "__float128") == 0
8187 || strcmp (name, "_Float128") == 0
8188 || strcmp (name, "complex _Float128") == 0)
8189 return floatformats_ia64_quad;
8190
8191 return default_floatformat_for_type (gdbarch, name, len);
8192 }
8193
8194 static int
8195 i386_validate_tdesc_p (struct gdbarch_tdep *tdep,
8196 struct tdesc_arch_data *tdesc_data)
8197 {
8198 const struct target_desc *tdesc = tdep->tdesc;
8199 const struct tdesc_feature *feature_core;
8200
8201 const struct tdesc_feature *feature_sse, *feature_avx, *feature_mpx,
8202 *feature_avx512, *feature_pkeys;
8203 int i, num_regs, valid_p;
8204
8205 if (! tdesc_has_registers (tdesc))
8206 return 0;
8207
8208 /* Get core registers. */
8209 feature_core = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.core");
8210 if (feature_core == NULL)
8211 return 0;
8212
8213 /* Get SSE registers. */
8214 feature_sse = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.sse");
8215
8216 /* Try AVX registers. */
8217 feature_avx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx");
8218
8219 /* Try MPX registers. */
8220 feature_mpx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx");
8221
8222 /* Try AVX512 registers. */
8223 feature_avx512 = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx512");
8224
8225 /* Try PKEYS */
8226 feature_pkeys = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.pkeys");
8227
8228 valid_p = 1;
8229
8230 /* The XCR0 bits. */
8231 if (feature_avx512)
8232 {
8233 /* AVX512 register description requires AVX register description. */
8234 if (!feature_avx)
8235 return 0;
8236
8237 tdep->xcr0 = X86_XSTATE_AVX_AVX512_MASK;
8238
8239 /* It may have been set by OSABI initialization function. */
8240 if (tdep->k0_regnum < 0)
8241 {
8242 tdep->k_register_names = i386_k_names;
8243 tdep->k0_regnum = I386_K0_REGNUM;
8244 }
8245
8246 for (i = 0; i < I387_NUM_K_REGS; i++)
8247 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8248 tdep->k0_regnum + i,
8249 i386_k_names[i]);
8250
8251 if (tdep->num_zmm_regs == 0)
8252 {
8253 tdep->zmmh_register_names = i386_zmmh_names;
8254 tdep->num_zmm_regs = 8;
8255 tdep->zmm0h_regnum = I386_ZMM0H_REGNUM;
8256 }
8257
8258 for (i = 0; i < tdep->num_zmm_regs; i++)
8259 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8260 tdep->zmm0h_regnum + i,
8261 tdep->zmmh_register_names[i]);
8262
8263 for (i = 0; i < tdep->num_xmm_avx512_regs; i++)
8264 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8265 tdep->xmm16_regnum + i,
8266 tdep->xmm_avx512_register_names[i]);
8267
8268 for (i = 0; i < tdep->num_ymm_avx512_regs; i++)
8269 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8270 tdep->ymm16h_regnum + i,
8271 tdep->ymm16h_register_names[i]);
8272 }
8273 if (feature_avx)
8274 {
8275 /* AVX register description requires SSE register description. */
8276 if (!feature_sse)
8277 return 0;
8278
8279 if (!feature_avx512)
8280 tdep->xcr0 = X86_XSTATE_AVX_MASK;
8281
8282 /* It may have been set by OSABI initialization function. */
8283 if (tdep->num_ymm_regs == 0)
8284 {
8285 tdep->ymmh_register_names = i386_ymmh_names;
8286 tdep->num_ymm_regs = 8;
8287 tdep->ymm0h_regnum = I386_YMM0H_REGNUM;
8288 }
8289
8290 for (i = 0; i < tdep->num_ymm_regs; i++)
8291 valid_p &= tdesc_numbered_register (feature_avx, tdesc_data,
8292 tdep->ymm0h_regnum + i,
8293 tdep->ymmh_register_names[i]);
8294 }
8295 else if (feature_sse)
8296 tdep->xcr0 = X86_XSTATE_SSE_MASK;
8297 else
8298 {
8299 tdep->xcr0 = X86_XSTATE_X87_MASK;
8300 tdep->num_xmm_regs = 0;
8301 }
8302
8303 num_regs = tdep->num_core_regs;
8304 for (i = 0; i < num_regs; i++)
8305 valid_p &= tdesc_numbered_register (feature_core, tdesc_data, i,
8306 tdep->register_names[i]);
8307
8308 if (feature_sse)
8309 {
8310 /* Need to include %mxcsr, so add one. */
8311 num_regs += tdep->num_xmm_regs + 1;
8312 for (; i < num_regs; i++)
8313 valid_p &= tdesc_numbered_register (feature_sse, tdesc_data, i,
8314 tdep->register_names[i]);
8315 }
8316
8317 if (feature_mpx)
8318 {
8319 tdep->xcr0 |= X86_XSTATE_MPX_MASK;
8320
8321 if (tdep->bnd0r_regnum < 0)
8322 {
8323 tdep->mpx_register_names = i386_mpx_names;
8324 tdep->bnd0r_regnum = I386_BND0R_REGNUM;
8325 tdep->bndcfgu_regnum = I386_BNDCFGU_REGNUM;
8326 }
8327
8328 for (i = 0; i < I387_NUM_MPX_REGS; i++)
8329 valid_p &= tdesc_numbered_register (feature_mpx, tdesc_data,
8330 I387_BND0R_REGNUM (tdep) + i,
8331 tdep->mpx_register_names[i]);
8332 }
8333
8334 if (feature_pkeys)
8335 {
8336 tdep->xcr0 |= X86_XSTATE_PKRU;
8337 if (tdep->pkru_regnum < 0)
8338 {
8339 tdep->pkeys_register_names = i386_pkeys_names;
8340 tdep->pkru_regnum = I386_PKRU_REGNUM;
8341 tdep->num_pkeys_regs = 1;
8342 }
8343
8344 for (i = 0; i < I387_NUM_PKEYS_REGS; i++)
8345 valid_p &= tdesc_numbered_register (feature_pkeys, tdesc_data,
8346 I387_PKRU_REGNUM (tdep) + i,
8347 tdep->pkeys_register_names[i]);
8348 }
8349
8350 return valid_p;
8351 }
8352
8353 \f
8354 /* Note: This is called for both i386 and amd64. */
8355
8356 static struct gdbarch *
8357 i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
8358 {
8359 struct gdbarch_tdep *tdep;
8360 struct gdbarch *gdbarch;
8361 struct tdesc_arch_data *tdesc_data;
8362 const struct target_desc *tdesc;
8363 int mm0_regnum;
8364 int ymm0_regnum;
8365 int bnd0_regnum;
8366 int num_bnd_cooked;
8367
8368 /* If there is already a candidate, use it. */
8369 arches = gdbarch_list_lookup_by_info (arches, &info);
8370 if (arches != NULL)
8371 return arches->gdbarch;
8372
8373 /* Allocate space for the new architecture. Assume i386 for now. */
8374 tdep = XCNEW (struct gdbarch_tdep);
8375 gdbarch = gdbarch_alloc (&info, tdep);
8376
8377 /* General-purpose registers. */
8378 tdep->gregset_reg_offset = NULL;
8379 tdep->gregset_num_regs = I386_NUM_GREGS;
8380 tdep->sizeof_gregset = 0;
8381
8382 /* Floating-point registers. */
8383 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
8384 tdep->fpregset = &i386_fpregset;
8385
8386 /* The default settings include the FPU registers, the MMX registers
8387 and the SSE registers. This can be overridden for a specific ABI
8388 by adjusting the members `st0_regnum', `mm0_regnum' and
8389 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
8390 will show up in the output of "info all-registers". */
8391
8392 tdep->st0_regnum = I386_ST0_REGNUM;
8393
8394 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
8395 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
8396
8397 tdep->jb_pc_offset = -1;
8398 tdep->struct_return = pcc_struct_return;
8399 tdep->sigtramp_start = 0;
8400 tdep->sigtramp_end = 0;
8401 tdep->sigtramp_p = i386_sigtramp_p;
8402 tdep->sigcontext_addr = NULL;
8403 tdep->sc_reg_offset = NULL;
8404 tdep->sc_pc_offset = -1;
8405 tdep->sc_sp_offset = -1;
8406
8407 tdep->xsave_xcr0_offset = -1;
8408
8409 tdep->record_regmap = i386_record_regmap;
8410
8411 set_gdbarch_long_long_align_bit (gdbarch, 32);
8412
8413 /* The format used for `long double' on almost all i386 targets is
8414 the i387 extended floating-point format. In fact, of all targets
8415 in the GCC 2.95 tree, only OSF/1 does it different, and insists
8416 on having a `long double' that's not `long' at all. */
8417 set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext);
8418
8419 /* Although the i387 extended floating-point has only 80 significant
8420 bits, a `long double' actually takes up 96, probably to enforce
8421 alignment. */
8422 set_gdbarch_long_double_bit (gdbarch, 96);
8423
8424 /* Support for floating-point data type variants. */
8425 set_gdbarch_floatformat_for_type (gdbarch, i386_floatformat_for_type);
8426
8427 /* Register numbers of various important registers. */
8428 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
8429 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
8430 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
8431 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
8432
8433 /* NOTE: kettenis/20040418: GCC does have two possible register
8434 numbering schemes on the i386: dbx and SVR4. These schemes
8435 differ in how they number %ebp, %esp, %eflags, and the
8436 floating-point registers, and are implemented by the arrays
8437 dbx_register_map[] and svr4_dbx_register_map in
8438 gcc/config/i386.c. GCC also defines a third numbering scheme in
8439 gcc/config/i386.c, which it designates as the "default" register
8440 map used in 64bit mode. This last register numbering scheme is
8441 implemented in dbx64_register_map, and is used for AMD64; see
8442 amd64-tdep.c.
8443
8444 Currently, each GCC i386 target always uses the same register
8445 numbering scheme across all its supported debugging formats
8446 i.e. SDB (COFF), stabs and DWARF 2. This is because
8447 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
8448 DBX_REGISTER_NUMBER macro which is defined by each target's
8449 respective config header in a manner independent of the requested
8450 output debugging format.
8451
8452 This does not match the arrangement below, which presumes that
8453 the SDB and stabs numbering schemes differ from the DWARF and
8454 DWARF 2 ones. The reason for this arrangement is that it is
8455 likely to get the numbering scheme for the target's
8456 default/native debug format right. For targets where GCC is the
8457 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
8458 targets where the native toolchain uses a different numbering
8459 scheme for a particular debug format (stabs-in-ELF on Solaris)
8460 the defaults below will have to be overridden, like
8461 i386_elf_init_abi() does. */
8462
8463 /* Use the dbx register numbering scheme for stabs and COFF. */
8464 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
8465 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
8466
8467 /* Use the SVR4 register numbering scheme for DWARF 2. */
8468 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_dwarf_reg_to_regnum);
8469
8470 /* We don't set gdbarch_stab_reg_to_regnum, since ECOFF doesn't seem to
8471 be in use on any of the supported i386 targets. */
8472
8473 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
8474
8475 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
8476
8477 /* Call dummy code. */
8478 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
8479 set_gdbarch_push_dummy_code (gdbarch, i386_push_dummy_code);
8480 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
8481 set_gdbarch_frame_align (gdbarch, i386_frame_align);
8482
8483 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
8484 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
8485 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
8486
8487 set_gdbarch_return_value (gdbarch, i386_return_value);
8488
8489 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
8490
8491 /* Stack grows downward. */
8492 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
8493
8494 set_gdbarch_breakpoint_kind_from_pc (gdbarch, i386_breakpoint::kind_from_pc);
8495 set_gdbarch_sw_breakpoint_from_kind (gdbarch, i386_breakpoint::bp_from_kind);
8496
8497 set_gdbarch_decr_pc_after_break (gdbarch, 1);
8498 set_gdbarch_max_insn_length (gdbarch, I386_MAX_INSN_LEN);
8499
8500 set_gdbarch_frame_args_skip (gdbarch, 8);
8501
8502 set_gdbarch_print_insn (gdbarch, i386_print_insn);
8503
8504 set_gdbarch_dummy_id (gdbarch, i386_dummy_id);
8505
8506 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
8507
8508 /* Add the i386 register groups. */
8509 i386_add_reggroups (gdbarch);
8510 tdep->register_reggroup_p = i386_register_reggroup_p;
8511
8512 /* Helper for function argument information. */
8513 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
8514
8515 /* Hook the function epilogue frame unwinder. This unwinder is
8516 appended to the list first, so that it supercedes the DWARF
8517 unwinder in function epilogues (where the DWARF unwinder
8518 currently fails). */
8519 frame_unwind_append_unwinder (gdbarch, &i386_epilogue_frame_unwind);
8520
8521 /* Hook in the DWARF CFI frame unwinder. This unwinder is appended
8522 to the list before the prologue-based unwinders, so that DWARF
8523 CFI info will be used if it is available. */
8524 dwarf2_append_unwinders (gdbarch);
8525
8526 frame_base_set_default (gdbarch, &i386_frame_base);
8527
8528 /* Pseudo registers may be changed by amd64_init_abi. */
8529 set_gdbarch_pseudo_register_read_value (gdbarch,
8530 i386_pseudo_register_read_value);
8531 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
8532 set_gdbarch_ax_pseudo_register_collect (gdbarch,
8533 i386_ax_pseudo_register_collect);
8534
8535 set_tdesc_pseudo_register_type (gdbarch, i386_pseudo_register_type);
8536 set_tdesc_pseudo_register_name (gdbarch, i386_pseudo_register_name);
8537
8538 /* Override the normal target description method to make the AVX
8539 upper halves anonymous. */
8540 set_gdbarch_register_name (gdbarch, i386_register_name);
8541
8542 /* Even though the default ABI only includes general-purpose registers,
8543 floating-point registers and the SSE registers, we have to leave a
8544 gap for the upper AVX, MPX and AVX512 registers. */
8545 set_gdbarch_num_regs (gdbarch, I386_PKEYS_NUM_REGS);
8546
8547 set_gdbarch_gnu_triplet_regexp (gdbarch, i386_gnu_triplet_regexp);
8548
8549 /* Get the x86 target description from INFO. */
8550 tdesc = info.target_desc;
8551 if (! tdesc_has_registers (tdesc))
8552 tdesc = tdesc_i386;
8553 tdep->tdesc = tdesc;
8554
8555 tdep->num_core_regs = I386_NUM_GREGS + I387_NUM_REGS;
8556 tdep->register_names = i386_register_names;
8557
8558 /* No upper YMM registers. */
8559 tdep->ymmh_register_names = NULL;
8560 tdep->ymm0h_regnum = -1;
8561
8562 /* No upper ZMM registers. */
8563 tdep->zmmh_register_names = NULL;
8564 tdep->zmm0h_regnum = -1;
8565
8566 /* No high XMM registers. */
8567 tdep->xmm_avx512_register_names = NULL;
8568 tdep->xmm16_regnum = -1;
8569
8570 /* No upper YMM16-31 registers. */
8571 tdep->ymm16h_register_names = NULL;
8572 tdep->ymm16h_regnum = -1;
8573
8574 tdep->num_byte_regs = 8;
8575 tdep->num_word_regs = 8;
8576 tdep->num_dword_regs = 0;
8577 tdep->num_mmx_regs = 8;
8578 tdep->num_ymm_regs = 0;
8579
8580 /* No MPX registers. */
8581 tdep->bnd0r_regnum = -1;
8582 tdep->bndcfgu_regnum = -1;
8583
8584 /* No AVX512 registers. */
8585 tdep->k0_regnum = -1;
8586 tdep->num_zmm_regs = 0;
8587 tdep->num_ymm_avx512_regs = 0;
8588 tdep->num_xmm_avx512_regs = 0;
8589
8590 /* No PKEYS registers */
8591 tdep->pkru_regnum = -1;
8592 tdep->num_pkeys_regs = 0;
8593
8594 tdesc_data = tdesc_data_alloc ();
8595
8596 set_gdbarch_relocate_instruction (gdbarch, i386_relocate_instruction);
8597
8598 set_gdbarch_gen_return_address (gdbarch, i386_gen_return_address);
8599
8600 set_gdbarch_insn_is_call (gdbarch, i386_insn_is_call);
8601 set_gdbarch_insn_is_ret (gdbarch, i386_insn_is_ret);
8602 set_gdbarch_insn_is_jump (gdbarch, i386_insn_is_jump);
8603
8604 /* Hook in ABI-specific overrides, if they have been registered.
8605 Note: If INFO specifies a 64 bit arch, this is where we turn
8606 a 32-bit i386 into a 64-bit amd64. */
8607 info.tdesc_data = tdesc_data;
8608 gdbarch_init_osabi (info, gdbarch);
8609
8610 if (!i386_validate_tdesc_p (tdep, tdesc_data))
8611 {
8612 tdesc_data_cleanup (tdesc_data);
8613 xfree (tdep);
8614 gdbarch_free (gdbarch);
8615 return NULL;
8616 }
8617
8618 num_bnd_cooked = (tdep->bnd0r_regnum > 0 ? I387_NUM_BND_REGS : 0);
8619
8620 /* Wire in pseudo registers. Number of pseudo registers may be
8621 changed. */
8622 set_gdbarch_num_pseudo_regs (gdbarch, (tdep->num_byte_regs
8623 + tdep->num_word_regs
8624 + tdep->num_dword_regs
8625 + tdep->num_mmx_regs
8626 + tdep->num_ymm_regs
8627 + num_bnd_cooked
8628 + tdep->num_ymm_avx512_regs
8629 + tdep->num_zmm_regs));
8630
8631 /* Target description may be changed. */
8632 tdesc = tdep->tdesc;
8633
8634 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
8635
8636 /* Override gdbarch_register_reggroup_p set in tdesc_use_registers. */
8637 set_gdbarch_register_reggroup_p (gdbarch, tdep->register_reggroup_p);
8638
8639 /* Make %al the first pseudo-register. */
8640 tdep->al_regnum = gdbarch_num_regs (gdbarch);
8641 tdep->ax_regnum = tdep->al_regnum + tdep->num_byte_regs;
8642
8643 ymm0_regnum = tdep->ax_regnum + tdep->num_word_regs;
8644 if (tdep->num_dword_regs)
8645 {
8646 /* Support dword pseudo-register if it hasn't been disabled. */
8647 tdep->eax_regnum = ymm0_regnum;
8648 ymm0_regnum += tdep->num_dword_regs;
8649 }
8650 else
8651 tdep->eax_regnum = -1;
8652
8653 mm0_regnum = ymm0_regnum;
8654 if (tdep->num_ymm_regs)
8655 {
8656 /* Support YMM pseudo-register if it is available. */
8657 tdep->ymm0_regnum = ymm0_regnum;
8658 mm0_regnum += tdep->num_ymm_regs;
8659 }
8660 else
8661 tdep->ymm0_regnum = -1;
8662
8663 if (tdep->num_ymm_avx512_regs)
8664 {
8665 /* Support YMM16-31 pseudo registers if available. */
8666 tdep->ymm16_regnum = mm0_regnum;
8667 mm0_regnum += tdep->num_ymm_avx512_regs;
8668 }
8669 else
8670 tdep->ymm16_regnum = -1;
8671
8672 if (tdep->num_zmm_regs)
8673 {
8674 /* Support ZMM pseudo-register if it is available. */
8675 tdep->zmm0_regnum = mm0_regnum;
8676 mm0_regnum += tdep->num_zmm_regs;
8677 }
8678 else
8679 tdep->zmm0_regnum = -1;
8680
8681 bnd0_regnum = mm0_regnum;
8682 if (tdep->num_mmx_regs != 0)
8683 {
8684 /* Support MMX pseudo-register if MMX hasn't been disabled. */
8685 tdep->mm0_regnum = mm0_regnum;
8686 bnd0_regnum += tdep->num_mmx_regs;
8687 }
8688 else
8689 tdep->mm0_regnum = -1;
8690
8691 if (tdep->bnd0r_regnum > 0)
8692 tdep->bnd0_regnum = bnd0_regnum;
8693 else
8694 tdep-> bnd0_regnum = -1;
8695
8696 /* Hook in the legacy prologue-based unwinders last (fallback). */
8697 frame_unwind_append_unwinder (gdbarch, &i386_stack_tramp_frame_unwind);
8698 frame_unwind_append_unwinder (gdbarch, &i386_sigtramp_frame_unwind);
8699 frame_unwind_append_unwinder (gdbarch, &i386_frame_unwind);
8700
8701 /* If we have a register mapping, enable the generic core file
8702 support, unless it has already been enabled. */
8703 if (tdep->gregset_reg_offset
8704 && !gdbarch_iterate_over_regset_sections_p (gdbarch))
8705 set_gdbarch_iterate_over_regset_sections
8706 (gdbarch, i386_iterate_over_regset_sections);
8707
8708 set_gdbarch_fast_tracepoint_valid_at (gdbarch,
8709 i386_fast_tracepoint_valid_at);
8710
8711 return gdbarch;
8712 }
8713
8714 \f
8715
8716 /* Return the target description for a specified XSAVE feature mask. */
8717
8718 const struct target_desc *
8719 i386_target_description (uint64_t xcr0)
8720 {
8721 switch (xcr0 & X86_XSTATE_ALL_MASK)
8722 {
8723 case X86_XSTATE_AVX_MPX_AVX512_PKU_MASK:
8724 return tdesc_i386_avx_mpx_avx512_pku;
8725 case X86_XSTATE_AVX_AVX512_MASK:
8726 return tdesc_i386_avx_avx512;
8727 case X86_XSTATE_AVX_MPX_MASK:
8728 return tdesc_i386_avx_mpx;
8729 case X86_XSTATE_MPX_MASK:
8730 return tdesc_i386_mpx;
8731 case X86_XSTATE_AVX_MASK:
8732 return tdesc_i386_avx;
8733 default:
8734 return tdesc_i386;
8735 }
8736 }
8737
8738 #define MPX_BASE_MASK (~(ULONGEST) 0xfff)
8739
8740 /* Find the bound directory base address. */
8741
8742 static unsigned long
8743 i386_mpx_bd_base (void)
8744 {
8745 struct regcache *rcache;
8746 struct gdbarch_tdep *tdep;
8747 ULONGEST ret;
8748 enum register_status regstatus;
8749
8750 rcache = get_current_regcache ();
8751 tdep = gdbarch_tdep (get_regcache_arch (rcache));
8752
8753 regstatus = regcache_raw_read_unsigned (rcache, tdep->bndcfgu_regnum, &ret);
8754
8755 if (regstatus != REG_VALID)
8756 error (_("BNDCFGU register invalid, read status %d."), regstatus);
8757
8758 return ret & MPX_BASE_MASK;
8759 }
8760
8761 int
8762 i386_mpx_enabled (void)
8763 {
8764 const struct gdbarch_tdep *tdep = gdbarch_tdep (get_current_arch ());
8765 const struct target_desc *tdesc = tdep->tdesc;
8766
8767 return (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx") != NULL);
8768 }
8769
8770 #define MPX_BD_MASK 0xfffffff00000ULL /* select bits [47:20] */
8771 #define MPX_BT_MASK 0x0000000ffff8 /* select bits [19:3] */
8772 #define MPX_BD_MASK_32 0xfffff000 /* select bits [31:12] */
8773 #define MPX_BT_MASK_32 0x00000ffc /* select bits [11:2] */
8774
8775 /* Find the bound table entry given the pointer location and the base
8776 address of the table. */
8777
8778 static CORE_ADDR
8779 i386_mpx_get_bt_entry (CORE_ADDR ptr, CORE_ADDR bd_base)
8780 {
8781 CORE_ADDR offset1;
8782 CORE_ADDR offset2;
8783 CORE_ADDR mpx_bd_mask, bd_ptr_r_shift, bd_ptr_l_shift;
8784 CORE_ADDR bt_mask, bt_select_r_shift, bt_select_l_shift;
8785 CORE_ADDR bd_entry_addr;
8786 CORE_ADDR bt_addr;
8787 CORE_ADDR bd_entry;
8788 struct gdbarch *gdbarch = get_current_arch ();
8789 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8790
8791
8792 if (gdbarch_ptr_bit (gdbarch) == 64)
8793 {
8794 mpx_bd_mask = (CORE_ADDR) MPX_BD_MASK;
8795 bd_ptr_r_shift = 20;
8796 bd_ptr_l_shift = 3;
8797 bt_select_r_shift = 3;
8798 bt_select_l_shift = 5;
8799 bt_mask = (CORE_ADDR) MPX_BT_MASK;
8800
8801 if ( sizeof (CORE_ADDR) == 4)
8802 error (_("bound table examination not supported\
8803 for 64-bit process with 32-bit GDB"));
8804 }
8805 else
8806 {
8807 mpx_bd_mask = MPX_BD_MASK_32;
8808 bd_ptr_r_shift = 12;
8809 bd_ptr_l_shift = 2;
8810 bt_select_r_shift = 2;
8811 bt_select_l_shift = 4;
8812 bt_mask = MPX_BT_MASK_32;
8813 }
8814
8815 offset1 = ((ptr & mpx_bd_mask) >> bd_ptr_r_shift) << bd_ptr_l_shift;
8816 bd_entry_addr = bd_base + offset1;
8817 bd_entry = read_memory_typed_address (bd_entry_addr, data_ptr_type);
8818
8819 if ((bd_entry & 0x1) == 0)
8820 error (_("Invalid bounds directory entry at %s."),
8821 paddress (get_current_arch (), bd_entry_addr));
8822
8823 /* Clearing status bit. */
8824 bd_entry--;
8825 bt_addr = bd_entry & ~bt_select_r_shift;
8826 offset2 = ((ptr & bt_mask) >> bt_select_r_shift) << bt_select_l_shift;
8827
8828 return bt_addr + offset2;
8829 }
8830
8831 /* Print routine for the mpx bounds. */
8832
8833 static void
8834 i386_mpx_print_bounds (const CORE_ADDR bt_entry[4])
8835 {
8836 struct ui_out *uiout = current_uiout;
8837 LONGEST size;
8838 struct gdbarch *gdbarch = get_current_arch ();
8839 CORE_ADDR onecompl = ~((CORE_ADDR) 0);
8840 int bounds_in_map = ((~bt_entry[1] == 0 && bt_entry[0] == onecompl) ? 1 : 0);
8841
8842 if (bounds_in_map == 1)
8843 {
8844 uiout->text ("Null bounds on map:");
8845 uiout->text (" pointer value = ");
8846 uiout->field_core_addr ("pointer-value", gdbarch, bt_entry[2]);
8847 uiout->text (".");
8848 uiout->text ("\n");
8849 }
8850 else
8851 {
8852 uiout->text ("{lbound = ");
8853 uiout->field_core_addr ("lower-bound", gdbarch, bt_entry[0]);
8854 uiout->text (", ubound = ");
8855
8856 /* The upper bound is stored in 1's complement. */
8857 uiout->field_core_addr ("upper-bound", gdbarch, ~bt_entry[1]);
8858 uiout->text ("}: pointer value = ");
8859 uiout->field_core_addr ("pointer-value", gdbarch, bt_entry[2]);
8860
8861 if (gdbarch_ptr_bit (gdbarch) == 64)
8862 size = ( (~(int64_t) bt_entry[1]) - (int64_t) bt_entry[0]);
8863 else
8864 size = ( ~((int32_t) bt_entry[1]) - (int32_t) bt_entry[0]);
8865
8866 /* In case the bounds are 0x0 and 0xffff... the difference will be -1.
8867 -1 represents in this sense full memory access, and there is no need
8868 one to the size. */
8869
8870 size = (size > -1 ? size + 1 : size);
8871 uiout->text (", size = ");
8872 uiout->field_fmt ("size", "%s", plongest (size));
8873
8874 uiout->text (", metadata = ");
8875 uiout->field_core_addr ("metadata", gdbarch, bt_entry[3]);
8876 uiout->text ("\n");
8877 }
8878 }
8879
8880 /* Implement the command "show mpx bound". */
8881
8882 static void
8883 i386_mpx_info_bounds (char *args, int from_tty)
8884 {
8885 CORE_ADDR bd_base = 0;
8886 CORE_ADDR addr;
8887 CORE_ADDR bt_entry_addr = 0;
8888 CORE_ADDR bt_entry[4];
8889 int i;
8890 struct gdbarch *gdbarch = get_current_arch ();
8891 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8892
8893 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_i386
8894 || !i386_mpx_enabled ())
8895 {
8896 printf_unfiltered (_("Intel Memory Protection Extensions not "
8897 "supported on this target.\n"));
8898 return;
8899 }
8900
8901 if (args == NULL)
8902 {
8903 printf_unfiltered (_("Address of pointer variable expected.\n"));
8904 return;
8905 }
8906
8907 addr = parse_and_eval_address (args);
8908
8909 bd_base = i386_mpx_bd_base ();
8910 bt_entry_addr = i386_mpx_get_bt_entry (addr, bd_base);
8911
8912 memset (bt_entry, 0, sizeof (bt_entry));
8913
8914 for (i = 0; i < 4; i++)
8915 bt_entry[i] = read_memory_typed_address (bt_entry_addr
8916 + i * TYPE_LENGTH (data_ptr_type),
8917 data_ptr_type);
8918
8919 i386_mpx_print_bounds (bt_entry);
8920 }
8921
8922 /* Implement the command "set mpx bound". */
8923
8924 static void
8925 i386_mpx_set_bounds (char *args, int from_tty)
8926 {
8927 CORE_ADDR bd_base = 0;
8928 CORE_ADDR addr, lower, upper;
8929 CORE_ADDR bt_entry_addr = 0;
8930 CORE_ADDR bt_entry[2];
8931 const char *input = args;
8932 int i;
8933 struct gdbarch *gdbarch = get_current_arch ();
8934 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
8935 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8936
8937 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_i386
8938 || !i386_mpx_enabled ())
8939 error (_("Intel Memory Protection Extensions not supported\
8940 on this target."));
8941
8942 if (args == NULL)
8943 error (_("Pointer value expected."));
8944
8945 addr = value_as_address (parse_to_comma_and_eval (&input));
8946
8947 if (input[0] == ',')
8948 ++input;
8949 if (input[0] == '\0')
8950 error (_("wrong number of arguments: missing lower and upper bound."));
8951 lower = value_as_address (parse_to_comma_and_eval (&input));
8952
8953 if (input[0] == ',')
8954 ++input;
8955 if (input[0] == '\0')
8956 error (_("Wrong number of arguments; Missing upper bound."));
8957 upper = value_as_address (parse_to_comma_and_eval (&input));
8958
8959 bd_base = i386_mpx_bd_base ();
8960 bt_entry_addr = i386_mpx_get_bt_entry (addr, bd_base);
8961 for (i = 0; i < 2; i++)
8962 bt_entry[i] = read_memory_typed_address (bt_entry_addr
8963 + i * TYPE_LENGTH (data_ptr_type),
8964 data_ptr_type);
8965 bt_entry[0] = (uint64_t) lower;
8966 bt_entry[1] = ~(uint64_t) upper;
8967
8968 for (i = 0; i < 2; i++)
8969 write_memory_unsigned_integer (bt_entry_addr
8970 + i * TYPE_LENGTH (data_ptr_type),
8971 TYPE_LENGTH (data_ptr_type), byte_order,
8972 bt_entry[i]);
8973 }
8974
8975 static struct cmd_list_element *mpx_set_cmdlist, *mpx_show_cmdlist;
8976
8977 /* Helper function for the CLI commands. */
8978
8979 static void
8980 set_mpx_cmd (char *args, int from_tty)
8981 {
8982 help_list (mpx_set_cmdlist, "set mpx ", all_commands, gdb_stdout);
8983 }
8984
8985 /* Helper function for the CLI commands. */
8986
8987 static void
8988 show_mpx_cmd (char *args, int from_tty)
8989 {
8990 cmd_show_list (mpx_show_cmdlist, from_tty, "");
8991 }
8992
8993 /* Provide a prototype to silence -Wmissing-prototypes. */
8994 void _initialize_i386_tdep (void);
8995
8996 void
8997 _initialize_i386_tdep (void)
8998 {
8999 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
9000
9001 /* Add the variable that controls the disassembly flavor. */
9002 add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
9003 &disassembly_flavor, _("\
9004 Set the disassembly flavor."), _("\
9005 Show the disassembly flavor."), _("\
9006 The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
9007 NULL,
9008 NULL, /* FIXME: i18n: */
9009 &setlist, &showlist);
9010
9011 /* Add the variable that controls the convention for returning
9012 structs. */
9013 add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
9014 &struct_convention, _("\
9015 Set the convention for returning small structs."), _("\
9016 Show the convention for returning small structs."), _("\
9017 Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
9018 is \"default\"."),
9019 NULL,
9020 NULL, /* FIXME: i18n: */
9021 &setlist, &showlist);
9022
9023 /* Add "mpx" prefix for the set commands. */
9024
9025 add_prefix_cmd ("mpx", class_support, set_mpx_cmd, _("\
9026 Set Intel Memory Protection Extensions specific variables."),
9027 &mpx_set_cmdlist, "set mpx ",
9028 0 /* allow-unknown */, &setlist);
9029
9030 /* Add "mpx" prefix for the show commands. */
9031
9032 add_prefix_cmd ("mpx", class_support, show_mpx_cmd, _("\
9033 Show Intel Memory Protection Extensions specific variables."),
9034 &mpx_show_cmdlist, "show mpx ",
9035 0 /* allow-unknown */, &showlist);
9036
9037 /* Add "bound" command for the show mpx commands list. */
9038
9039 add_cmd ("bound", no_class, i386_mpx_info_bounds,
9040 "Show the memory bounds for a given array/pointer storage\
9041 in the bound table.",
9042 &mpx_show_cmdlist);
9043
9044 /* Add "bound" command for the set mpx commands list. */
9045
9046 add_cmd ("bound", no_class, i386_mpx_set_bounds,
9047 "Set the memory bounds for a given array/pointer storage\
9048 in the bound table.",
9049 &mpx_set_cmdlist);
9050
9051 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
9052 i386_svr4_init_abi);
9053
9054 /* Initialize the i386-specific register groups. */
9055 i386_init_reggroups ();
9056
9057 /* Initialize the standard target descriptions. */
9058 initialize_tdesc_i386 ();
9059 initialize_tdesc_i386_mmx ();
9060 initialize_tdesc_i386_avx ();
9061 initialize_tdesc_i386_mpx ();
9062 initialize_tdesc_i386_avx_mpx ();
9063 initialize_tdesc_i386_avx_avx512 ();
9064 initialize_tdesc_i386_avx_mpx_avx512_pku ();
9065
9066 /* Tell remote stub that we support XML target description. */
9067 register_remote_support_xml ("i386");
9068 }
This page took 0.236912 seconds and 4 git commands to generate.