b6879b959fe0354b342b93b8c338a37319d80c6a
[deliverable/binutils-gdb.git] / gdb / i386-tdep.c
1 /* Intel 386 target-dependent stuff.
2
3 Copyright (C) 1988-2012 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "opcode/i386.h"
22 #include "arch-utils.h"
23 #include "command.h"
24 #include "dummy-frame.h"
25 #include "dwarf2-frame.h"
26 #include "doublest.h"
27 #include "frame.h"
28 #include "frame-base.h"
29 #include "frame-unwind.h"
30 #include "inferior.h"
31 #include "gdbcmd.h"
32 #include "gdbcore.h"
33 #include "gdbtypes.h"
34 #include "objfiles.h"
35 #include "osabi.h"
36 #include "regcache.h"
37 #include "reggroups.h"
38 #include "regset.h"
39 #include "symfile.h"
40 #include "symtab.h"
41 #include "target.h"
42 #include "value.h"
43 #include "dis-asm.h"
44 #include "disasm.h"
45 #include "remote.h"
46 #include "exceptions.h"
47 #include "gdb_assert.h"
48 #include "gdb_string.h"
49
50 #include "i386-tdep.h"
51 #include "i387-tdep.h"
52 #include "i386-xstate.h"
53
54 #include "record.h"
55 #include <stdint.h>
56
57 #include "features/i386/i386.c"
58 #include "features/i386/i386-avx.c"
59 #include "features/i386/i386-mmx.c"
60
61 #include "ax.h"
62 #include "ax-gdb.h"
63
64 #include "stap-probe.h"
65 #include "user-regs.h"
66 #include "cli/cli-utils.h"
67 #include "expression.h"
68 #include "parser-defs.h"
69 #include <ctype.h>
70
71 /* Register names. */
72
73 static const char *i386_register_names[] =
74 {
75 "eax", "ecx", "edx", "ebx",
76 "esp", "ebp", "esi", "edi",
77 "eip", "eflags", "cs", "ss",
78 "ds", "es", "fs", "gs",
79 "st0", "st1", "st2", "st3",
80 "st4", "st5", "st6", "st7",
81 "fctrl", "fstat", "ftag", "fiseg",
82 "fioff", "foseg", "fooff", "fop",
83 "xmm0", "xmm1", "xmm2", "xmm3",
84 "xmm4", "xmm5", "xmm6", "xmm7",
85 "mxcsr"
86 };
87
88 static const char *i386_ymm_names[] =
89 {
90 "ymm0", "ymm1", "ymm2", "ymm3",
91 "ymm4", "ymm5", "ymm6", "ymm7",
92 };
93
94 static const char *i386_ymmh_names[] =
95 {
96 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
97 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
98 };
99
100 /* Register names for MMX pseudo-registers. */
101
102 static const char *i386_mmx_names[] =
103 {
104 "mm0", "mm1", "mm2", "mm3",
105 "mm4", "mm5", "mm6", "mm7"
106 };
107
108 /* Register names for byte pseudo-registers. */
109
110 static const char *i386_byte_names[] =
111 {
112 "al", "cl", "dl", "bl",
113 "ah", "ch", "dh", "bh"
114 };
115
116 /* Register names for word pseudo-registers. */
117
118 static const char *i386_word_names[] =
119 {
120 "ax", "cx", "dx", "bx",
121 "", "bp", "si", "di"
122 };
123
124 /* MMX register? */
125
126 static int
127 i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
128 {
129 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
130 int mm0_regnum = tdep->mm0_regnum;
131
132 if (mm0_regnum < 0)
133 return 0;
134
135 regnum -= mm0_regnum;
136 return regnum >= 0 && regnum < tdep->num_mmx_regs;
137 }
138
139 /* Byte register? */
140
141 int
142 i386_byte_regnum_p (struct gdbarch *gdbarch, int regnum)
143 {
144 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
145
146 regnum -= tdep->al_regnum;
147 return regnum >= 0 && regnum < tdep->num_byte_regs;
148 }
149
150 /* Word register? */
151
152 int
153 i386_word_regnum_p (struct gdbarch *gdbarch, int regnum)
154 {
155 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
156
157 regnum -= tdep->ax_regnum;
158 return regnum >= 0 && regnum < tdep->num_word_regs;
159 }
160
161 /* Dword register? */
162
163 int
164 i386_dword_regnum_p (struct gdbarch *gdbarch, int regnum)
165 {
166 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
167 int eax_regnum = tdep->eax_regnum;
168
169 if (eax_regnum < 0)
170 return 0;
171
172 regnum -= eax_regnum;
173 return regnum >= 0 && regnum < tdep->num_dword_regs;
174 }
175
176 static int
177 i386_ymmh_regnum_p (struct gdbarch *gdbarch, int regnum)
178 {
179 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
180 int ymm0h_regnum = tdep->ymm0h_regnum;
181
182 if (ymm0h_regnum < 0)
183 return 0;
184
185 regnum -= ymm0h_regnum;
186 return regnum >= 0 && regnum < tdep->num_ymm_regs;
187 }
188
189 /* AVX register? */
190
191 int
192 i386_ymm_regnum_p (struct gdbarch *gdbarch, int regnum)
193 {
194 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
195 int ymm0_regnum = tdep->ymm0_regnum;
196
197 if (ymm0_regnum < 0)
198 return 0;
199
200 regnum -= ymm0_regnum;
201 return regnum >= 0 && regnum < tdep->num_ymm_regs;
202 }
203
204 /* SSE register? */
205
206 int
207 i386_xmm_regnum_p (struct gdbarch *gdbarch, int regnum)
208 {
209 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
210 int num_xmm_regs = I387_NUM_XMM_REGS (tdep);
211
212 if (num_xmm_regs == 0)
213 return 0;
214
215 regnum -= I387_XMM0_REGNUM (tdep);
216 return regnum >= 0 && regnum < num_xmm_regs;
217 }
218
219 static int
220 i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
221 {
222 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
223
224 if (I387_NUM_XMM_REGS (tdep) == 0)
225 return 0;
226
227 return (regnum == I387_MXCSR_REGNUM (tdep));
228 }
229
230 /* FP register? */
231
232 int
233 i386_fp_regnum_p (struct gdbarch *gdbarch, int regnum)
234 {
235 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
236
237 if (I387_ST0_REGNUM (tdep) < 0)
238 return 0;
239
240 return (I387_ST0_REGNUM (tdep) <= regnum
241 && regnum < I387_FCTRL_REGNUM (tdep));
242 }
243
244 int
245 i386_fpc_regnum_p (struct gdbarch *gdbarch, int regnum)
246 {
247 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
248
249 if (I387_ST0_REGNUM (tdep) < 0)
250 return 0;
251
252 return (I387_FCTRL_REGNUM (tdep) <= regnum
253 && regnum < I387_XMM0_REGNUM (tdep));
254 }
255
256 /* Return the name of register REGNUM, or the empty string if it is
257 an anonymous register. */
258
259 static const char *
260 i386_register_name (struct gdbarch *gdbarch, int regnum)
261 {
262 /* Hide the upper YMM registers. */
263 if (i386_ymmh_regnum_p (gdbarch, regnum))
264 return "";
265
266 return tdesc_register_name (gdbarch, regnum);
267 }
268
269 /* Return the name of register REGNUM. */
270
271 const char *
272 i386_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
273 {
274 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
275 if (i386_mmx_regnum_p (gdbarch, regnum))
276 return i386_mmx_names[regnum - I387_MM0_REGNUM (tdep)];
277 else if (i386_ymm_regnum_p (gdbarch, regnum))
278 return i386_ymm_names[regnum - tdep->ymm0_regnum];
279 else if (i386_byte_regnum_p (gdbarch, regnum))
280 return i386_byte_names[regnum - tdep->al_regnum];
281 else if (i386_word_regnum_p (gdbarch, regnum))
282 return i386_word_names[regnum - tdep->ax_regnum];
283
284 internal_error (__FILE__, __LINE__, _("invalid regnum"));
285 }
286
287 /* Convert a dbx register number REG to the appropriate register
288 number used by GDB. */
289
290 static int
291 i386_dbx_reg_to_regnum (struct gdbarch *gdbarch, int reg)
292 {
293 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
294
295 /* This implements what GCC calls the "default" register map
296 (dbx_register_map[]). */
297
298 if (reg >= 0 && reg <= 7)
299 {
300 /* General-purpose registers. The debug info calls %ebp
301 register 4, and %esp register 5. */
302 if (reg == 4)
303 return 5;
304 else if (reg == 5)
305 return 4;
306 else return reg;
307 }
308 else if (reg >= 12 && reg <= 19)
309 {
310 /* Floating-point registers. */
311 return reg - 12 + I387_ST0_REGNUM (tdep);
312 }
313 else if (reg >= 21 && reg <= 28)
314 {
315 /* SSE registers. */
316 int ymm0_regnum = tdep->ymm0_regnum;
317
318 if (ymm0_regnum >= 0
319 && i386_xmm_regnum_p (gdbarch, reg))
320 return reg - 21 + ymm0_regnum;
321 else
322 return reg - 21 + I387_XMM0_REGNUM (tdep);
323 }
324 else if (reg >= 29 && reg <= 36)
325 {
326 /* MMX registers. */
327 return reg - 29 + I387_MM0_REGNUM (tdep);
328 }
329
330 /* This will hopefully provoke a warning. */
331 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
332 }
333
334 /* Convert SVR4 register number REG to the appropriate register number
335 used by GDB. */
336
337 static int
338 i386_svr4_reg_to_regnum (struct gdbarch *gdbarch, int reg)
339 {
340 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
341
342 /* This implements the GCC register map that tries to be compatible
343 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
344
345 /* The SVR4 register numbering includes %eip and %eflags, and
346 numbers the floating point registers differently. */
347 if (reg >= 0 && reg <= 9)
348 {
349 /* General-purpose registers. */
350 return reg;
351 }
352 else if (reg >= 11 && reg <= 18)
353 {
354 /* Floating-point registers. */
355 return reg - 11 + I387_ST0_REGNUM (tdep);
356 }
357 else if (reg >= 21 && reg <= 36)
358 {
359 /* The SSE and MMX registers have the same numbers as with dbx. */
360 return i386_dbx_reg_to_regnum (gdbarch, reg);
361 }
362
363 switch (reg)
364 {
365 case 37: return I387_FCTRL_REGNUM (tdep);
366 case 38: return I387_FSTAT_REGNUM (tdep);
367 case 39: return I387_MXCSR_REGNUM (tdep);
368 case 40: return I386_ES_REGNUM;
369 case 41: return I386_CS_REGNUM;
370 case 42: return I386_SS_REGNUM;
371 case 43: return I386_DS_REGNUM;
372 case 44: return I386_FS_REGNUM;
373 case 45: return I386_GS_REGNUM;
374 }
375
376 /* This will hopefully provoke a warning. */
377 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
378 }
379
380 \f
381
382 /* This is the variable that is set with "set disassembly-flavor", and
383 its legitimate values. */
384 static const char att_flavor[] = "att";
385 static const char intel_flavor[] = "intel";
386 static const char *const valid_flavors[] =
387 {
388 att_flavor,
389 intel_flavor,
390 NULL
391 };
392 static const char *disassembly_flavor = att_flavor;
393 \f
394
395 /* Use the program counter to determine the contents and size of a
396 breakpoint instruction. Return a pointer to a string of bytes that
397 encode a breakpoint instruction, store the length of the string in
398 *LEN and optionally adjust *PC to point to the correct memory
399 location for inserting the breakpoint.
400
401 On the i386 we have a single breakpoint that fits in a single byte
402 and can be inserted anywhere.
403
404 This function is 64-bit safe. */
405
406 static const gdb_byte *
407 i386_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
408 {
409 static gdb_byte break_insn[] = { 0xcc }; /* int 3 */
410
411 *len = sizeof (break_insn);
412 return break_insn;
413 }
414 \f
415 /* Displaced instruction handling. */
416
417 /* Skip the legacy instruction prefixes in INSN.
418 Not all prefixes are valid for any particular insn
419 but we needn't care, the insn will fault if it's invalid.
420 The result is a pointer to the first opcode byte,
421 or NULL if we run off the end of the buffer. */
422
423 static gdb_byte *
424 i386_skip_prefixes (gdb_byte *insn, size_t max_len)
425 {
426 gdb_byte *end = insn + max_len;
427
428 while (insn < end)
429 {
430 switch (*insn)
431 {
432 case DATA_PREFIX_OPCODE:
433 case ADDR_PREFIX_OPCODE:
434 case CS_PREFIX_OPCODE:
435 case DS_PREFIX_OPCODE:
436 case ES_PREFIX_OPCODE:
437 case FS_PREFIX_OPCODE:
438 case GS_PREFIX_OPCODE:
439 case SS_PREFIX_OPCODE:
440 case LOCK_PREFIX_OPCODE:
441 case REPE_PREFIX_OPCODE:
442 case REPNE_PREFIX_OPCODE:
443 ++insn;
444 continue;
445 default:
446 return insn;
447 }
448 }
449
450 return NULL;
451 }
452
453 static int
454 i386_absolute_jmp_p (const gdb_byte *insn)
455 {
456 /* jmp far (absolute address in operand). */
457 if (insn[0] == 0xea)
458 return 1;
459
460 if (insn[0] == 0xff)
461 {
462 /* jump near, absolute indirect (/4). */
463 if ((insn[1] & 0x38) == 0x20)
464 return 1;
465
466 /* jump far, absolute indirect (/5). */
467 if ((insn[1] & 0x38) == 0x28)
468 return 1;
469 }
470
471 return 0;
472 }
473
474 static int
475 i386_absolute_call_p (const gdb_byte *insn)
476 {
477 /* call far, absolute. */
478 if (insn[0] == 0x9a)
479 return 1;
480
481 if (insn[0] == 0xff)
482 {
483 /* Call near, absolute indirect (/2). */
484 if ((insn[1] & 0x38) == 0x10)
485 return 1;
486
487 /* Call far, absolute indirect (/3). */
488 if ((insn[1] & 0x38) == 0x18)
489 return 1;
490 }
491
492 return 0;
493 }
494
495 static int
496 i386_ret_p (const gdb_byte *insn)
497 {
498 switch (insn[0])
499 {
500 case 0xc2: /* ret near, pop N bytes. */
501 case 0xc3: /* ret near */
502 case 0xca: /* ret far, pop N bytes. */
503 case 0xcb: /* ret far */
504 case 0xcf: /* iret */
505 return 1;
506
507 default:
508 return 0;
509 }
510 }
511
512 static int
513 i386_call_p (const gdb_byte *insn)
514 {
515 if (i386_absolute_call_p (insn))
516 return 1;
517
518 /* call near, relative. */
519 if (insn[0] == 0xe8)
520 return 1;
521
522 return 0;
523 }
524
525 /* Return non-zero if INSN is a system call, and set *LENGTHP to its
526 length in bytes. Otherwise, return zero. */
527
528 static int
529 i386_syscall_p (const gdb_byte *insn, int *lengthp)
530 {
531 /* Is it 'int $0x80'? */
532 if ((insn[0] == 0xcd && insn[1] == 0x80)
533 /* Or is it 'sysenter'? */
534 || (insn[0] == 0x0f && insn[1] == 0x34)
535 /* Or is it 'syscall'? */
536 || (insn[0] == 0x0f && insn[1] == 0x05))
537 {
538 *lengthp = 2;
539 return 1;
540 }
541
542 return 0;
543 }
544
545 /* Some kernels may run one past a syscall insn, so we have to cope.
546 Otherwise this is just simple_displaced_step_copy_insn. */
547
548 struct displaced_step_closure *
549 i386_displaced_step_copy_insn (struct gdbarch *gdbarch,
550 CORE_ADDR from, CORE_ADDR to,
551 struct regcache *regs)
552 {
553 size_t len = gdbarch_max_insn_length (gdbarch);
554 gdb_byte *buf = xmalloc (len);
555
556 read_memory (from, buf, len);
557
558 /* GDB may get control back after the insn after the syscall.
559 Presumably this is a kernel bug.
560 If this is a syscall, make sure there's a nop afterwards. */
561 {
562 int syscall_length;
563 gdb_byte *insn;
564
565 insn = i386_skip_prefixes (buf, len);
566 if (insn != NULL && i386_syscall_p (insn, &syscall_length))
567 insn[syscall_length] = NOP_OPCODE;
568 }
569
570 write_memory (to, buf, len);
571
572 if (debug_displaced)
573 {
574 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
575 paddress (gdbarch, from), paddress (gdbarch, to));
576 displaced_step_dump_bytes (gdb_stdlog, buf, len);
577 }
578
579 return (struct displaced_step_closure *) buf;
580 }
581
582 /* Fix up the state of registers and memory after having single-stepped
583 a displaced instruction. */
584
585 void
586 i386_displaced_step_fixup (struct gdbarch *gdbarch,
587 struct displaced_step_closure *closure,
588 CORE_ADDR from, CORE_ADDR to,
589 struct regcache *regs)
590 {
591 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
592
593 /* The offset we applied to the instruction's address.
594 This could well be negative (when viewed as a signed 32-bit
595 value), but ULONGEST won't reflect that, so take care when
596 applying it. */
597 ULONGEST insn_offset = to - from;
598
599 /* Since we use simple_displaced_step_copy_insn, our closure is a
600 copy of the instruction. */
601 gdb_byte *insn = (gdb_byte *) closure;
602 /* The start of the insn, needed in case we see some prefixes. */
603 gdb_byte *insn_start = insn;
604
605 if (debug_displaced)
606 fprintf_unfiltered (gdb_stdlog,
607 "displaced: fixup (%s, %s), "
608 "insn = 0x%02x 0x%02x ...\n",
609 paddress (gdbarch, from), paddress (gdbarch, to),
610 insn[0], insn[1]);
611
612 /* The list of issues to contend with here is taken from
613 resume_execution in arch/i386/kernel/kprobes.c, Linux 2.6.20.
614 Yay for Free Software! */
615
616 /* Relocate the %eip, if necessary. */
617
618 /* The instruction recognizers we use assume any leading prefixes
619 have been skipped. */
620 {
621 /* This is the size of the buffer in closure. */
622 size_t max_insn_len = gdbarch_max_insn_length (gdbarch);
623 gdb_byte *opcode = i386_skip_prefixes (insn, max_insn_len);
624 /* If there are too many prefixes, just ignore the insn.
625 It will fault when run. */
626 if (opcode != NULL)
627 insn = opcode;
628 }
629
630 /* Except in the case of absolute or indirect jump or call
631 instructions, or a return instruction, the new eip is relative to
632 the displaced instruction; make it relative. Well, signal
633 handler returns don't need relocation either, but we use the
634 value of %eip to recognize those; see below. */
635 if (! i386_absolute_jmp_p (insn)
636 && ! i386_absolute_call_p (insn)
637 && ! i386_ret_p (insn))
638 {
639 ULONGEST orig_eip;
640 int insn_len;
641
642 regcache_cooked_read_unsigned (regs, I386_EIP_REGNUM, &orig_eip);
643
644 /* A signal trampoline system call changes the %eip, resuming
645 execution of the main program after the signal handler has
646 returned. That makes them like 'return' instructions; we
647 shouldn't relocate %eip.
648
649 But most system calls don't, and we do need to relocate %eip.
650
651 Our heuristic for distinguishing these cases: if stepping
652 over the system call instruction left control directly after
653 the instruction, the we relocate --- control almost certainly
654 doesn't belong in the displaced copy. Otherwise, we assume
655 the instruction has put control where it belongs, and leave
656 it unrelocated. Goodness help us if there are PC-relative
657 system calls. */
658 if (i386_syscall_p (insn, &insn_len)
659 && orig_eip != to + (insn - insn_start) + insn_len
660 /* GDB can get control back after the insn after the syscall.
661 Presumably this is a kernel bug.
662 i386_displaced_step_copy_insn ensures its a nop,
663 we add one to the length for it. */
664 && orig_eip != to + (insn - insn_start) + insn_len + 1)
665 {
666 if (debug_displaced)
667 fprintf_unfiltered (gdb_stdlog,
668 "displaced: syscall changed %%eip; "
669 "not relocating\n");
670 }
671 else
672 {
673 ULONGEST eip = (orig_eip - insn_offset) & 0xffffffffUL;
674
675 /* If we just stepped over a breakpoint insn, we don't backup
676 the pc on purpose; this is to match behaviour without
677 stepping. */
678
679 regcache_cooked_write_unsigned (regs, I386_EIP_REGNUM, eip);
680
681 if (debug_displaced)
682 fprintf_unfiltered (gdb_stdlog,
683 "displaced: "
684 "relocated %%eip from %s to %s\n",
685 paddress (gdbarch, orig_eip),
686 paddress (gdbarch, eip));
687 }
688 }
689
690 /* If the instruction was PUSHFL, then the TF bit will be set in the
691 pushed value, and should be cleared. We'll leave this for later,
692 since GDB already messes up the TF flag when stepping over a
693 pushfl. */
694
695 /* If the instruction was a call, the return address now atop the
696 stack is the address following the copied instruction. We need
697 to make it the address following the original instruction. */
698 if (i386_call_p (insn))
699 {
700 ULONGEST esp;
701 ULONGEST retaddr;
702 const ULONGEST retaddr_len = 4;
703
704 regcache_cooked_read_unsigned (regs, I386_ESP_REGNUM, &esp);
705 retaddr = read_memory_unsigned_integer (esp, retaddr_len, byte_order);
706 retaddr = (retaddr - insn_offset) & 0xffffffffUL;
707 write_memory_unsigned_integer (esp, retaddr_len, byte_order, retaddr);
708
709 if (debug_displaced)
710 fprintf_unfiltered (gdb_stdlog,
711 "displaced: relocated return addr at %s to %s\n",
712 paddress (gdbarch, esp),
713 paddress (gdbarch, retaddr));
714 }
715 }
716
717 static void
718 append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
719 {
720 target_write_memory (*to, buf, len);
721 *to += len;
722 }
723
724 static void
725 i386_relocate_instruction (struct gdbarch *gdbarch,
726 CORE_ADDR *to, CORE_ADDR oldloc)
727 {
728 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
729 gdb_byte buf[I386_MAX_INSN_LEN];
730 int offset = 0, rel32, newrel;
731 int insn_length;
732 gdb_byte *insn = buf;
733
734 read_memory (oldloc, buf, I386_MAX_INSN_LEN);
735
736 insn_length = gdb_buffered_insn_length (gdbarch, insn,
737 I386_MAX_INSN_LEN, oldloc);
738
739 /* Get past the prefixes. */
740 insn = i386_skip_prefixes (insn, I386_MAX_INSN_LEN);
741
742 /* Adjust calls with 32-bit relative addresses as push/jump, with
743 the address pushed being the location where the original call in
744 the user program would return to. */
745 if (insn[0] == 0xe8)
746 {
747 gdb_byte push_buf[16];
748 unsigned int ret_addr;
749
750 /* Where "ret" in the original code will return to. */
751 ret_addr = oldloc + insn_length;
752 push_buf[0] = 0x68; /* pushq $... */
753 store_unsigned_integer (&push_buf[1], 4, byte_order, ret_addr);
754 /* Push the push. */
755 append_insns (to, 5, push_buf);
756
757 /* Convert the relative call to a relative jump. */
758 insn[0] = 0xe9;
759
760 /* Adjust the destination offset. */
761 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
762 newrel = (oldloc - *to) + rel32;
763 store_signed_integer (insn + 1, 4, byte_order, newrel);
764
765 if (debug_displaced)
766 fprintf_unfiltered (gdb_stdlog,
767 "Adjusted insn rel32=%s at %s to"
768 " rel32=%s at %s\n",
769 hex_string (rel32), paddress (gdbarch, oldloc),
770 hex_string (newrel), paddress (gdbarch, *to));
771
772 /* Write the adjusted jump into its displaced location. */
773 append_insns (to, 5, insn);
774 return;
775 }
776
777 /* Adjust jumps with 32-bit relative addresses. Calls are already
778 handled above. */
779 if (insn[0] == 0xe9)
780 offset = 1;
781 /* Adjust conditional jumps. */
782 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
783 offset = 2;
784
785 if (offset)
786 {
787 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
788 newrel = (oldloc - *to) + rel32;
789 store_signed_integer (insn + offset, 4, byte_order, newrel);
790 if (debug_displaced)
791 fprintf_unfiltered (gdb_stdlog,
792 "Adjusted insn rel32=%s at %s to"
793 " rel32=%s at %s\n",
794 hex_string (rel32), paddress (gdbarch, oldloc),
795 hex_string (newrel), paddress (gdbarch, *to));
796 }
797
798 /* Write the adjusted instructions into their displaced
799 location. */
800 append_insns (to, insn_length, buf);
801 }
802
803 \f
804 #ifdef I386_REGNO_TO_SYMMETRY
805 #error "The Sequent Symmetry is no longer supported."
806 #endif
807
808 /* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
809 and %esp "belong" to the calling function. Therefore these
810 registers should be saved if they're going to be modified. */
811
812 /* The maximum number of saved registers. This should include all
813 registers mentioned above, and %eip. */
814 #define I386_NUM_SAVED_REGS I386_NUM_GREGS
815
816 struct i386_frame_cache
817 {
818 /* Base address. */
819 CORE_ADDR base;
820 int base_p;
821 LONGEST sp_offset;
822 CORE_ADDR pc;
823
824 /* Saved registers. */
825 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
826 CORE_ADDR saved_sp;
827 int saved_sp_reg;
828 int pc_in_eax;
829
830 /* Stack space reserved for local variables. */
831 long locals;
832 };
833
834 /* Allocate and initialize a frame cache. */
835
836 static struct i386_frame_cache *
837 i386_alloc_frame_cache (void)
838 {
839 struct i386_frame_cache *cache;
840 int i;
841
842 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
843
844 /* Base address. */
845 cache->base_p = 0;
846 cache->base = 0;
847 cache->sp_offset = -4;
848 cache->pc = 0;
849
850 /* Saved registers. We initialize these to -1 since zero is a valid
851 offset (that's where %ebp is supposed to be stored). */
852 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
853 cache->saved_regs[i] = -1;
854 cache->saved_sp = 0;
855 cache->saved_sp_reg = -1;
856 cache->pc_in_eax = 0;
857
858 /* Frameless until proven otherwise. */
859 cache->locals = -1;
860
861 return cache;
862 }
863
864 /* If the instruction at PC is a jump, return the address of its
865 target. Otherwise, return PC. */
866
867 static CORE_ADDR
868 i386_follow_jump (struct gdbarch *gdbarch, CORE_ADDR pc)
869 {
870 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
871 gdb_byte op;
872 long delta = 0;
873 int data16 = 0;
874
875 if (target_read_memory (pc, &op, 1))
876 return pc;
877
878 if (op == 0x66)
879 {
880 data16 = 1;
881 op = read_memory_unsigned_integer (pc + 1, 1, byte_order);
882 }
883
884 switch (op)
885 {
886 case 0xe9:
887 /* Relative jump: if data16 == 0, disp32, else disp16. */
888 if (data16)
889 {
890 delta = read_memory_integer (pc + 2, 2, byte_order);
891
892 /* Include the size of the jmp instruction (including the
893 0x66 prefix). */
894 delta += 4;
895 }
896 else
897 {
898 delta = read_memory_integer (pc + 1, 4, byte_order);
899
900 /* Include the size of the jmp instruction. */
901 delta += 5;
902 }
903 break;
904 case 0xeb:
905 /* Relative jump, disp8 (ignore data16). */
906 delta = read_memory_integer (pc + data16 + 1, 1, byte_order);
907
908 delta += data16 + 2;
909 break;
910 }
911
912 return pc + delta;
913 }
914
915 /* Check whether PC points at a prologue for a function returning a
916 structure or union. If so, it updates CACHE and returns the
917 address of the first instruction after the code sequence that
918 removes the "hidden" argument from the stack or CURRENT_PC,
919 whichever is smaller. Otherwise, return PC. */
920
921 static CORE_ADDR
922 i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
923 struct i386_frame_cache *cache)
924 {
925 /* Functions that return a structure or union start with:
926
927 popl %eax 0x58
928 xchgl %eax, (%esp) 0x87 0x04 0x24
929 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
930
931 (the System V compiler puts out the second `xchg' instruction,
932 and the assembler doesn't try to optimize it, so the 'sib' form
933 gets generated). This sequence is used to get the address of the
934 return buffer for a function that returns a structure. */
935 static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
936 static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
937 gdb_byte buf[4];
938 gdb_byte op;
939
940 if (current_pc <= pc)
941 return pc;
942
943 if (target_read_memory (pc, &op, 1))
944 return pc;
945
946 if (op != 0x58) /* popl %eax */
947 return pc;
948
949 if (target_read_memory (pc + 1, buf, 4))
950 return pc;
951
952 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
953 return pc;
954
955 if (current_pc == pc)
956 {
957 cache->sp_offset += 4;
958 return current_pc;
959 }
960
961 if (current_pc == pc + 1)
962 {
963 cache->pc_in_eax = 1;
964 return current_pc;
965 }
966
967 if (buf[1] == proto1[1])
968 return pc + 4;
969 else
970 return pc + 5;
971 }
972
973 static CORE_ADDR
974 i386_skip_probe (CORE_ADDR pc)
975 {
976 /* A function may start with
977
978 pushl constant
979 call _probe
980 addl $4, %esp
981
982 followed by
983
984 pushl %ebp
985
986 etc. */
987 gdb_byte buf[8];
988 gdb_byte op;
989
990 if (target_read_memory (pc, &op, 1))
991 return pc;
992
993 if (op == 0x68 || op == 0x6a)
994 {
995 int delta;
996
997 /* Skip past the `pushl' instruction; it has either a one-byte or a
998 four-byte operand, depending on the opcode. */
999 if (op == 0x68)
1000 delta = 5;
1001 else
1002 delta = 2;
1003
1004 /* Read the following 8 bytes, which should be `call _probe' (6
1005 bytes) followed by `addl $4,%esp' (2 bytes). */
1006 read_memory (pc + delta, buf, sizeof (buf));
1007 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
1008 pc += delta + sizeof (buf);
1009 }
1010
1011 return pc;
1012 }
1013
1014 /* GCC 4.1 and later, can put code in the prologue to realign the
1015 stack pointer. Check whether PC points to such code, and update
1016 CACHE accordingly. Return the first instruction after the code
1017 sequence or CURRENT_PC, whichever is smaller. If we don't
1018 recognize the code, return PC. */
1019
1020 static CORE_ADDR
1021 i386_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1022 struct i386_frame_cache *cache)
1023 {
1024 /* There are 2 code sequences to re-align stack before the frame
1025 gets set up:
1026
1027 1. Use a caller-saved saved register:
1028
1029 leal 4(%esp), %reg
1030 andl $-XXX, %esp
1031 pushl -4(%reg)
1032
1033 2. Use a callee-saved saved register:
1034
1035 pushl %reg
1036 leal 8(%esp), %reg
1037 andl $-XXX, %esp
1038 pushl -4(%reg)
1039
1040 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
1041
1042 0x83 0xe4 0xf0 andl $-16, %esp
1043 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
1044 */
1045
1046 gdb_byte buf[14];
1047 int reg;
1048 int offset, offset_and;
1049 static int regnums[8] = {
1050 I386_EAX_REGNUM, /* %eax */
1051 I386_ECX_REGNUM, /* %ecx */
1052 I386_EDX_REGNUM, /* %edx */
1053 I386_EBX_REGNUM, /* %ebx */
1054 I386_ESP_REGNUM, /* %esp */
1055 I386_EBP_REGNUM, /* %ebp */
1056 I386_ESI_REGNUM, /* %esi */
1057 I386_EDI_REGNUM /* %edi */
1058 };
1059
1060 if (target_read_memory (pc, buf, sizeof buf))
1061 return pc;
1062
1063 /* Check caller-saved saved register. The first instruction has
1064 to be "leal 4(%esp), %reg". */
1065 if (buf[0] == 0x8d && buf[2] == 0x24 && buf[3] == 0x4)
1066 {
1067 /* MOD must be binary 10 and R/M must be binary 100. */
1068 if ((buf[1] & 0xc7) != 0x44)
1069 return pc;
1070
1071 /* REG has register number. */
1072 reg = (buf[1] >> 3) & 7;
1073 offset = 4;
1074 }
1075 else
1076 {
1077 /* Check callee-saved saved register. The first instruction
1078 has to be "pushl %reg". */
1079 if ((buf[0] & 0xf8) != 0x50)
1080 return pc;
1081
1082 /* Get register. */
1083 reg = buf[0] & 0x7;
1084
1085 /* The next instruction has to be "leal 8(%esp), %reg". */
1086 if (buf[1] != 0x8d || buf[3] != 0x24 || buf[4] != 0x8)
1087 return pc;
1088
1089 /* MOD must be binary 10 and R/M must be binary 100. */
1090 if ((buf[2] & 0xc7) != 0x44)
1091 return pc;
1092
1093 /* REG has register number. Registers in pushl and leal have to
1094 be the same. */
1095 if (reg != ((buf[2] >> 3) & 7))
1096 return pc;
1097
1098 offset = 5;
1099 }
1100
1101 /* Rigister can't be %esp nor %ebp. */
1102 if (reg == 4 || reg == 5)
1103 return pc;
1104
1105 /* The next instruction has to be "andl $-XXX, %esp". */
1106 if (buf[offset + 1] != 0xe4
1107 || (buf[offset] != 0x81 && buf[offset] != 0x83))
1108 return pc;
1109
1110 offset_and = offset;
1111 offset += buf[offset] == 0x81 ? 6 : 3;
1112
1113 /* The next instruction has to be "pushl -4(%reg)". 8bit -4 is
1114 0xfc. REG must be binary 110 and MOD must be binary 01. */
1115 if (buf[offset] != 0xff
1116 || buf[offset + 2] != 0xfc
1117 || (buf[offset + 1] & 0xf8) != 0x70)
1118 return pc;
1119
1120 /* R/M has register. Registers in leal and pushl have to be the
1121 same. */
1122 if (reg != (buf[offset + 1] & 7))
1123 return pc;
1124
1125 if (current_pc > pc + offset_and)
1126 cache->saved_sp_reg = regnums[reg];
1127
1128 return min (pc + offset + 3, current_pc);
1129 }
1130
1131 /* Maximum instruction length we need to handle. */
1132 #define I386_MAX_MATCHED_INSN_LEN 6
1133
1134 /* Instruction description. */
1135 struct i386_insn
1136 {
1137 size_t len;
1138 gdb_byte insn[I386_MAX_MATCHED_INSN_LEN];
1139 gdb_byte mask[I386_MAX_MATCHED_INSN_LEN];
1140 };
1141
1142 /* Return whether instruction at PC matches PATTERN. */
1143
1144 static int
1145 i386_match_pattern (CORE_ADDR pc, struct i386_insn pattern)
1146 {
1147 gdb_byte op;
1148
1149 if (target_read_memory (pc, &op, 1))
1150 return 0;
1151
1152 if ((op & pattern.mask[0]) == pattern.insn[0])
1153 {
1154 gdb_byte buf[I386_MAX_MATCHED_INSN_LEN - 1];
1155 int insn_matched = 1;
1156 size_t i;
1157
1158 gdb_assert (pattern.len > 1);
1159 gdb_assert (pattern.len <= I386_MAX_MATCHED_INSN_LEN);
1160
1161 if (target_read_memory (pc + 1, buf, pattern.len - 1))
1162 return 0;
1163
1164 for (i = 1; i < pattern.len; i++)
1165 {
1166 if ((buf[i - 1] & pattern.mask[i]) != pattern.insn[i])
1167 insn_matched = 0;
1168 }
1169 return insn_matched;
1170 }
1171 return 0;
1172 }
1173
1174 /* Search for the instruction at PC in the list INSN_PATTERNS. Return
1175 the first instruction description that matches. Otherwise, return
1176 NULL. */
1177
1178 static struct i386_insn *
1179 i386_match_insn (CORE_ADDR pc, struct i386_insn *insn_patterns)
1180 {
1181 struct i386_insn *pattern;
1182
1183 for (pattern = insn_patterns; pattern->len > 0; pattern++)
1184 {
1185 if (i386_match_pattern (pc, *pattern))
1186 return pattern;
1187 }
1188
1189 return NULL;
1190 }
1191
1192 /* Return whether PC points inside a sequence of instructions that
1193 matches INSN_PATTERNS. */
1194
1195 static int
1196 i386_match_insn_block (CORE_ADDR pc, struct i386_insn *insn_patterns)
1197 {
1198 CORE_ADDR current_pc;
1199 int ix, i;
1200 struct i386_insn *insn;
1201
1202 insn = i386_match_insn (pc, insn_patterns);
1203 if (insn == NULL)
1204 return 0;
1205
1206 current_pc = pc;
1207 ix = insn - insn_patterns;
1208 for (i = ix - 1; i >= 0; i--)
1209 {
1210 current_pc -= insn_patterns[i].len;
1211
1212 if (!i386_match_pattern (current_pc, insn_patterns[i]))
1213 return 0;
1214 }
1215
1216 current_pc = pc + insn->len;
1217 for (insn = insn_patterns + ix + 1; insn->len > 0; insn++)
1218 {
1219 if (!i386_match_pattern (current_pc, *insn))
1220 return 0;
1221
1222 current_pc += insn->len;
1223 }
1224
1225 return 1;
1226 }
1227
1228 /* Some special instructions that might be migrated by GCC into the
1229 part of the prologue that sets up the new stack frame. Because the
1230 stack frame hasn't been setup yet, no registers have been saved
1231 yet, and only the scratch registers %eax, %ecx and %edx can be
1232 touched. */
1233
1234 struct i386_insn i386_frame_setup_skip_insns[] =
1235 {
1236 /* Check for `movb imm8, r' and `movl imm32, r'.
1237
1238 ??? Should we handle 16-bit operand-sizes here? */
1239
1240 /* `movb imm8, %al' and `movb imm8, %ah' */
1241 /* `movb imm8, %cl' and `movb imm8, %ch' */
1242 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
1243 /* `movb imm8, %dl' and `movb imm8, %dh' */
1244 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
1245 /* `movl imm32, %eax' and `movl imm32, %ecx' */
1246 { 5, { 0xb8 }, { 0xfe } },
1247 /* `movl imm32, %edx' */
1248 { 5, { 0xba }, { 0xff } },
1249
1250 /* Check for `mov imm32, r32'. Note that there is an alternative
1251 encoding for `mov m32, %eax'.
1252
1253 ??? Should we handle SIB adressing here?
1254 ??? Should we handle 16-bit operand-sizes here? */
1255
1256 /* `movl m32, %eax' */
1257 { 5, { 0xa1 }, { 0xff } },
1258 /* `movl m32, %eax' and `mov; m32, %ecx' */
1259 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
1260 /* `movl m32, %edx' */
1261 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
1262
1263 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
1264 Because of the symmetry, there are actually two ways to encode
1265 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
1266 opcode bytes 0x31 and 0x33 for `xorl'. */
1267
1268 /* `subl %eax, %eax' */
1269 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
1270 /* `subl %ecx, %ecx' */
1271 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
1272 /* `subl %edx, %edx' */
1273 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
1274 /* `xorl %eax, %eax' */
1275 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
1276 /* `xorl %ecx, %ecx' */
1277 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
1278 /* `xorl %edx, %edx' */
1279 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
1280 { 0 }
1281 };
1282
1283
1284 /* Check whether PC points to a no-op instruction. */
1285 static CORE_ADDR
1286 i386_skip_noop (CORE_ADDR pc)
1287 {
1288 gdb_byte op;
1289 int check = 1;
1290
1291 if (target_read_memory (pc, &op, 1))
1292 return pc;
1293
1294 while (check)
1295 {
1296 check = 0;
1297 /* Ignore `nop' instruction. */
1298 if (op == 0x90)
1299 {
1300 pc += 1;
1301 if (target_read_memory (pc, &op, 1))
1302 return pc;
1303 check = 1;
1304 }
1305 /* Ignore no-op instruction `mov %edi, %edi'.
1306 Microsoft system dlls often start with
1307 a `mov %edi,%edi' instruction.
1308 The 5 bytes before the function start are
1309 filled with `nop' instructions.
1310 This pattern can be used for hot-patching:
1311 The `mov %edi, %edi' instruction can be replaced by a
1312 near jump to the location of the 5 `nop' instructions
1313 which can be replaced by a 32-bit jump to anywhere
1314 in the 32-bit address space. */
1315
1316 else if (op == 0x8b)
1317 {
1318 if (target_read_memory (pc + 1, &op, 1))
1319 return pc;
1320
1321 if (op == 0xff)
1322 {
1323 pc += 2;
1324 if (target_read_memory (pc, &op, 1))
1325 return pc;
1326
1327 check = 1;
1328 }
1329 }
1330 }
1331 return pc;
1332 }
1333
1334 /* Check whether PC points at a code that sets up a new stack frame.
1335 If so, it updates CACHE and returns the address of the first
1336 instruction after the sequence that sets up the frame or LIMIT,
1337 whichever is smaller. If we don't recognize the code, return PC. */
1338
1339 static CORE_ADDR
1340 i386_analyze_frame_setup (struct gdbarch *gdbarch,
1341 CORE_ADDR pc, CORE_ADDR limit,
1342 struct i386_frame_cache *cache)
1343 {
1344 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1345 struct i386_insn *insn;
1346 gdb_byte op;
1347 int skip = 0;
1348
1349 if (limit <= pc)
1350 return limit;
1351
1352 if (target_read_memory (pc, &op, 1))
1353 return pc;
1354
1355 if (op == 0x55) /* pushl %ebp */
1356 {
1357 /* Take into account that we've executed the `pushl %ebp' that
1358 starts this instruction sequence. */
1359 cache->saved_regs[I386_EBP_REGNUM] = 0;
1360 cache->sp_offset += 4;
1361 pc++;
1362
1363 /* If that's all, return now. */
1364 if (limit <= pc)
1365 return limit;
1366
1367 /* Check for some special instructions that might be migrated by
1368 GCC into the prologue and skip them. At this point in the
1369 prologue, code should only touch the scratch registers %eax,
1370 %ecx and %edx, so while the number of posibilities is sheer,
1371 it is limited.
1372
1373 Make sure we only skip these instructions if we later see the
1374 `movl %esp, %ebp' that actually sets up the frame. */
1375 while (pc + skip < limit)
1376 {
1377 insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
1378 if (insn == NULL)
1379 break;
1380
1381 skip += insn->len;
1382 }
1383
1384 /* If that's all, return now. */
1385 if (limit <= pc + skip)
1386 return limit;
1387
1388 if (target_read_memory (pc + skip, &op, 1))
1389 return pc + skip;
1390
1391 /* The i386 prologue looks like
1392
1393 push %ebp
1394 mov %esp,%ebp
1395 sub $0x10,%esp
1396
1397 and a different prologue can be generated for atom.
1398
1399 push %ebp
1400 lea (%esp),%ebp
1401 lea -0x10(%esp),%esp
1402
1403 We handle both of them here. */
1404
1405 switch (op)
1406 {
1407 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
1408 case 0x8b:
1409 if (read_memory_unsigned_integer (pc + skip + 1, 1, byte_order)
1410 != 0xec)
1411 return pc;
1412 pc += (skip + 2);
1413 break;
1414 case 0x89:
1415 if (read_memory_unsigned_integer (pc + skip + 1, 1, byte_order)
1416 != 0xe5)
1417 return pc;
1418 pc += (skip + 2);
1419 break;
1420 case 0x8d: /* Check for 'lea (%ebp), %ebp'. */
1421 if (read_memory_unsigned_integer (pc + skip + 1, 2, byte_order)
1422 != 0x242c)
1423 return pc;
1424 pc += (skip + 3);
1425 break;
1426 default:
1427 return pc;
1428 }
1429
1430 /* OK, we actually have a frame. We just don't know how large
1431 it is yet. Set its size to zero. We'll adjust it if
1432 necessary. We also now commit to skipping the special
1433 instructions mentioned before. */
1434 cache->locals = 0;
1435
1436 /* If that's all, return now. */
1437 if (limit <= pc)
1438 return limit;
1439
1440 /* Check for stack adjustment
1441
1442 subl $XXX, %esp
1443 or
1444 lea -XXX(%esp),%esp
1445
1446 NOTE: You can't subtract a 16-bit immediate from a 32-bit
1447 reg, so we don't have to worry about a data16 prefix. */
1448 if (target_read_memory (pc, &op, 1))
1449 return pc;
1450 if (op == 0x83)
1451 {
1452 /* `subl' with 8-bit immediate. */
1453 if (read_memory_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1454 /* Some instruction starting with 0x83 other than `subl'. */
1455 return pc;
1456
1457 /* `subl' with signed 8-bit immediate (though it wouldn't
1458 make sense to be negative). */
1459 cache->locals = read_memory_integer (pc + 2, 1, byte_order);
1460 return pc + 3;
1461 }
1462 else if (op == 0x81)
1463 {
1464 /* Maybe it is `subl' with a 32-bit immediate. */
1465 if (read_memory_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1466 /* Some instruction starting with 0x81 other than `subl'. */
1467 return pc;
1468
1469 /* It is `subl' with a 32-bit immediate. */
1470 cache->locals = read_memory_integer (pc + 2, 4, byte_order);
1471 return pc + 6;
1472 }
1473 else if (op == 0x8d)
1474 {
1475 /* The ModR/M byte is 0x64. */
1476 if (read_memory_unsigned_integer (pc + 1, 1, byte_order) != 0x64)
1477 return pc;
1478 /* 'lea' with 8-bit displacement. */
1479 cache->locals = -1 * read_memory_integer (pc + 3, 1, byte_order);
1480 return pc + 4;
1481 }
1482 else
1483 {
1484 /* Some instruction other than `subl' nor 'lea'. */
1485 return pc;
1486 }
1487 }
1488 else if (op == 0xc8) /* enter */
1489 {
1490 cache->locals = read_memory_unsigned_integer (pc + 1, 2, byte_order);
1491 return pc + 4;
1492 }
1493
1494 return pc;
1495 }
1496
1497 /* Check whether PC points at code that saves registers on the stack.
1498 If so, it updates CACHE and returns the address of the first
1499 instruction after the register saves or CURRENT_PC, whichever is
1500 smaller. Otherwise, return PC. */
1501
1502 static CORE_ADDR
1503 i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
1504 struct i386_frame_cache *cache)
1505 {
1506 CORE_ADDR offset = 0;
1507 gdb_byte op;
1508 int i;
1509
1510 if (cache->locals > 0)
1511 offset -= cache->locals;
1512 for (i = 0; i < 8 && pc < current_pc; i++)
1513 {
1514 if (target_read_memory (pc, &op, 1))
1515 return pc;
1516 if (op < 0x50 || op > 0x57)
1517 break;
1518
1519 offset -= 4;
1520 cache->saved_regs[op - 0x50] = offset;
1521 cache->sp_offset += 4;
1522 pc++;
1523 }
1524
1525 return pc;
1526 }
1527
1528 /* Do a full analysis of the prologue at PC and update CACHE
1529 accordingly. Bail out early if CURRENT_PC is reached. Return the
1530 address where the analysis stopped.
1531
1532 We handle these cases:
1533
1534 The startup sequence can be at the start of the function, or the
1535 function can start with a branch to startup code at the end.
1536
1537 %ebp can be set up with either the 'enter' instruction, or "pushl
1538 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
1539 once used in the System V compiler).
1540
1541 Local space is allocated just below the saved %ebp by either the
1542 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
1543 16-bit unsigned argument for space to allocate, and the 'addl'
1544 instruction could have either a signed byte, or 32-bit immediate.
1545
1546 Next, the registers used by this function are pushed. With the
1547 System V compiler they will always be in the order: %edi, %esi,
1548 %ebx (and sometimes a harmless bug causes it to also save but not
1549 restore %eax); however, the code below is willing to see the pushes
1550 in any order, and will handle up to 8 of them.
1551
1552 If the setup sequence is at the end of the function, then the next
1553 instruction will be a branch back to the start. */
1554
1555 static CORE_ADDR
1556 i386_analyze_prologue (struct gdbarch *gdbarch,
1557 CORE_ADDR pc, CORE_ADDR current_pc,
1558 struct i386_frame_cache *cache)
1559 {
1560 pc = i386_skip_noop (pc);
1561 pc = i386_follow_jump (gdbarch, pc);
1562 pc = i386_analyze_struct_return (pc, current_pc, cache);
1563 pc = i386_skip_probe (pc);
1564 pc = i386_analyze_stack_align (pc, current_pc, cache);
1565 pc = i386_analyze_frame_setup (gdbarch, pc, current_pc, cache);
1566 return i386_analyze_register_saves (pc, current_pc, cache);
1567 }
1568
1569 /* Return PC of first real instruction. */
1570
1571 static CORE_ADDR
1572 i386_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
1573 {
1574 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1575
1576 static gdb_byte pic_pat[6] =
1577 {
1578 0xe8, 0, 0, 0, 0, /* call 0x0 */
1579 0x5b, /* popl %ebx */
1580 };
1581 struct i386_frame_cache cache;
1582 CORE_ADDR pc;
1583 gdb_byte op;
1584 int i;
1585
1586 cache.locals = -1;
1587 pc = i386_analyze_prologue (gdbarch, start_pc, 0xffffffff, &cache);
1588 if (cache.locals < 0)
1589 return start_pc;
1590
1591 /* Found valid frame setup. */
1592
1593 /* The native cc on SVR4 in -K PIC mode inserts the following code
1594 to get the address of the global offset table (GOT) into register
1595 %ebx:
1596
1597 call 0x0
1598 popl %ebx
1599 movl %ebx,x(%ebp) (optional)
1600 addl y,%ebx
1601
1602 This code is with the rest of the prologue (at the end of the
1603 function), so we have to skip it to get to the first real
1604 instruction at the start of the function. */
1605
1606 for (i = 0; i < 6; i++)
1607 {
1608 if (target_read_memory (pc + i, &op, 1))
1609 return pc;
1610
1611 if (pic_pat[i] != op)
1612 break;
1613 }
1614 if (i == 6)
1615 {
1616 int delta = 6;
1617
1618 if (target_read_memory (pc + delta, &op, 1))
1619 return pc;
1620
1621 if (op == 0x89) /* movl %ebx, x(%ebp) */
1622 {
1623 op = read_memory_unsigned_integer (pc + delta + 1, 1, byte_order);
1624
1625 if (op == 0x5d) /* One byte offset from %ebp. */
1626 delta += 3;
1627 else if (op == 0x9d) /* Four byte offset from %ebp. */
1628 delta += 6;
1629 else /* Unexpected instruction. */
1630 delta = 0;
1631
1632 if (target_read_memory (pc + delta, &op, 1))
1633 return pc;
1634 }
1635
1636 /* addl y,%ebx */
1637 if (delta > 0 && op == 0x81
1638 && read_memory_unsigned_integer (pc + delta + 1, 1, byte_order)
1639 == 0xc3)
1640 {
1641 pc += delta + 6;
1642 }
1643 }
1644
1645 /* If the function starts with a branch (to startup code at the end)
1646 the last instruction should bring us back to the first
1647 instruction of the real code. */
1648 if (i386_follow_jump (gdbarch, start_pc) != start_pc)
1649 pc = i386_follow_jump (gdbarch, pc);
1650
1651 return pc;
1652 }
1653
1654 /* Check that the code pointed to by PC corresponds to a call to
1655 __main, skip it if so. Return PC otherwise. */
1656
1657 CORE_ADDR
1658 i386_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1659 {
1660 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1661 gdb_byte op;
1662
1663 if (target_read_memory (pc, &op, 1))
1664 return pc;
1665 if (op == 0xe8)
1666 {
1667 gdb_byte buf[4];
1668
1669 if (target_read_memory (pc + 1, buf, sizeof buf) == 0)
1670 {
1671 /* Make sure address is computed correctly as a 32bit
1672 integer even if CORE_ADDR is 64 bit wide. */
1673 struct minimal_symbol *s;
1674 CORE_ADDR call_dest;
1675
1676 call_dest = pc + 5 + extract_signed_integer (buf, 4, byte_order);
1677 call_dest = call_dest & 0xffffffffU;
1678 s = lookup_minimal_symbol_by_pc (call_dest);
1679 if (s != NULL
1680 && SYMBOL_LINKAGE_NAME (s) != NULL
1681 && strcmp (SYMBOL_LINKAGE_NAME (s), "__main") == 0)
1682 pc += 5;
1683 }
1684 }
1685
1686 return pc;
1687 }
1688
1689 /* This function is 64-bit safe. */
1690
1691 static CORE_ADDR
1692 i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1693 {
1694 gdb_byte buf[8];
1695
1696 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
1697 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
1698 }
1699 \f
1700
1701 /* Normal frames. */
1702
1703 static void
1704 i386_frame_cache_1 (struct frame_info *this_frame,
1705 struct i386_frame_cache *cache)
1706 {
1707 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1708 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1709 gdb_byte buf[4];
1710 int i;
1711
1712 cache->pc = get_frame_func (this_frame);
1713
1714 /* In principle, for normal frames, %ebp holds the frame pointer,
1715 which holds the base address for the current stack frame.
1716 However, for functions that don't need it, the frame pointer is
1717 optional. For these "frameless" functions the frame pointer is
1718 actually the frame pointer of the calling frame. Signal
1719 trampolines are just a special case of a "frameless" function.
1720 They (usually) share their frame pointer with the frame that was
1721 in progress when the signal occurred. */
1722
1723 get_frame_register (this_frame, I386_EBP_REGNUM, buf);
1724 cache->base = extract_unsigned_integer (buf, 4, byte_order);
1725 if (cache->base == 0)
1726 {
1727 cache->base_p = 1;
1728 return;
1729 }
1730
1731 /* For normal frames, %eip is stored at 4(%ebp). */
1732 cache->saved_regs[I386_EIP_REGNUM] = 4;
1733
1734 if (cache->pc != 0)
1735 i386_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
1736 cache);
1737
1738 if (cache->locals < 0)
1739 {
1740 /* We didn't find a valid frame, which means that CACHE->base
1741 currently holds the frame pointer for our calling frame. If
1742 we're at the start of a function, or somewhere half-way its
1743 prologue, the function's frame probably hasn't been fully
1744 setup yet. Try to reconstruct the base address for the stack
1745 frame by looking at the stack pointer. For truly "frameless"
1746 functions this might work too. */
1747
1748 if (cache->saved_sp_reg != -1)
1749 {
1750 /* Saved stack pointer has been saved. */
1751 get_frame_register (this_frame, cache->saved_sp_reg, buf);
1752 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
1753
1754 /* We're halfway aligning the stack. */
1755 cache->base = ((cache->saved_sp - 4) & 0xfffffff0) - 4;
1756 cache->saved_regs[I386_EIP_REGNUM] = cache->saved_sp - 4;
1757
1758 /* This will be added back below. */
1759 cache->saved_regs[I386_EIP_REGNUM] -= cache->base;
1760 }
1761 else if (cache->pc != 0
1762 || target_read_memory (get_frame_pc (this_frame), buf, 1))
1763 {
1764 /* We're in a known function, but did not find a frame
1765 setup. Assume that the function does not use %ebp.
1766 Alternatively, we may have jumped to an invalid
1767 address; in that case there is definitely no new
1768 frame in %ebp. */
1769 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
1770 cache->base = extract_unsigned_integer (buf, 4, byte_order)
1771 + cache->sp_offset;
1772 }
1773 else
1774 /* We're in an unknown function. We could not find the start
1775 of the function to analyze the prologue; our best option is
1776 to assume a typical frame layout with the caller's %ebp
1777 saved. */
1778 cache->saved_regs[I386_EBP_REGNUM] = 0;
1779 }
1780
1781 if (cache->saved_sp_reg != -1)
1782 {
1783 /* Saved stack pointer has been saved (but the SAVED_SP_REG
1784 register may be unavailable). */
1785 if (cache->saved_sp == 0
1786 && frame_register_read (this_frame, cache->saved_sp_reg, buf))
1787 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
1788 }
1789 /* Now that we have the base address for the stack frame we can
1790 calculate the value of %esp in the calling frame. */
1791 else if (cache->saved_sp == 0)
1792 cache->saved_sp = cache->base + 8;
1793
1794 /* Adjust all the saved registers such that they contain addresses
1795 instead of offsets. */
1796 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
1797 if (cache->saved_regs[i] != -1)
1798 cache->saved_regs[i] += cache->base;
1799
1800 cache->base_p = 1;
1801 }
1802
1803 static struct i386_frame_cache *
1804 i386_frame_cache (struct frame_info *this_frame, void **this_cache)
1805 {
1806 volatile struct gdb_exception ex;
1807 struct i386_frame_cache *cache;
1808
1809 if (*this_cache)
1810 return *this_cache;
1811
1812 cache = i386_alloc_frame_cache ();
1813 *this_cache = cache;
1814
1815 TRY_CATCH (ex, RETURN_MASK_ERROR)
1816 {
1817 i386_frame_cache_1 (this_frame, cache);
1818 }
1819 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
1820 throw_exception (ex);
1821
1822 return cache;
1823 }
1824
1825 static void
1826 i386_frame_this_id (struct frame_info *this_frame, void **this_cache,
1827 struct frame_id *this_id)
1828 {
1829 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
1830
1831 /* This marks the outermost frame. */
1832 if (cache->base == 0)
1833 return;
1834
1835 /* See the end of i386_push_dummy_call. */
1836 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
1837 }
1838
1839 static enum unwind_stop_reason
1840 i386_frame_unwind_stop_reason (struct frame_info *this_frame,
1841 void **this_cache)
1842 {
1843 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
1844
1845 if (!cache->base_p)
1846 return UNWIND_UNAVAILABLE;
1847
1848 /* This marks the outermost frame. */
1849 if (cache->base == 0)
1850 return UNWIND_OUTERMOST;
1851
1852 return UNWIND_NO_REASON;
1853 }
1854
1855 static struct value *
1856 i386_frame_prev_register (struct frame_info *this_frame, void **this_cache,
1857 int regnum)
1858 {
1859 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
1860
1861 gdb_assert (regnum >= 0);
1862
1863 /* The System V ABI says that:
1864
1865 "The flags register contains the system flags, such as the
1866 direction flag and the carry flag. The direction flag must be
1867 set to the forward (that is, zero) direction before entry and
1868 upon exit from a function. Other user flags have no specified
1869 role in the standard calling sequence and are not preserved."
1870
1871 To guarantee the "upon exit" part of that statement we fake a
1872 saved flags register that has its direction flag cleared.
1873
1874 Note that GCC doesn't seem to rely on the fact that the direction
1875 flag is cleared after a function return; it always explicitly
1876 clears the flag before operations where it matters.
1877
1878 FIXME: kettenis/20030316: I'm not quite sure whether this is the
1879 right thing to do. The way we fake the flags register here makes
1880 it impossible to change it. */
1881
1882 if (regnum == I386_EFLAGS_REGNUM)
1883 {
1884 ULONGEST val;
1885
1886 val = get_frame_register_unsigned (this_frame, regnum);
1887 val &= ~(1 << 10);
1888 return frame_unwind_got_constant (this_frame, regnum, val);
1889 }
1890
1891 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
1892 return frame_unwind_got_register (this_frame, regnum, I386_EAX_REGNUM);
1893
1894 if (regnum == I386_ESP_REGNUM
1895 && (cache->saved_sp != 0 || cache->saved_sp_reg != -1))
1896 {
1897 /* If the SP has been saved, but we don't know where, then this
1898 means that SAVED_SP_REG register was found unavailable back
1899 when we built the cache. */
1900 if (cache->saved_sp == 0)
1901 return frame_unwind_got_register (this_frame, regnum,
1902 cache->saved_sp_reg);
1903 else
1904 return frame_unwind_got_constant (this_frame, regnum,
1905 cache->saved_sp);
1906 }
1907
1908 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
1909 return frame_unwind_got_memory (this_frame, regnum,
1910 cache->saved_regs[regnum]);
1911
1912 return frame_unwind_got_register (this_frame, regnum, regnum);
1913 }
1914
1915 static const struct frame_unwind i386_frame_unwind =
1916 {
1917 NORMAL_FRAME,
1918 i386_frame_unwind_stop_reason,
1919 i386_frame_this_id,
1920 i386_frame_prev_register,
1921 NULL,
1922 default_frame_sniffer
1923 };
1924
1925 /* Normal frames, but in a function epilogue. */
1926
1927 /* The epilogue is defined here as the 'ret' instruction, which will
1928 follow any instruction such as 'leave' or 'pop %ebp' that destroys
1929 the function's stack frame. */
1930
1931 static int
1932 i386_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
1933 {
1934 gdb_byte insn;
1935 struct symtab *symtab;
1936
1937 symtab = find_pc_symtab (pc);
1938 if (symtab && symtab->epilogue_unwind_valid)
1939 return 0;
1940
1941 if (target_read_memory (pc, &insn, 1))
1942 return 0; /* Can't read memory at pc. */
1943
1944 if (insn != 0xc3) /* 'ret' instruction. */
1945 return 0;
1946
1947 return 1;
1948 }
1949
1950 static int
1951 i386_epilogue_frame_sniffer (const struct frame_unwind *self,
1952 struct frame_info *this_frame,
1953 void **this_prologue_cache)
1954 {
1955 if (frame_relative_level (this_frame) == 0)
1956 return i386_in_function_epilogue_p (get_frame_arch (this_frame),
1957 get_frame_pc (this_frame));
1958 else
1959 return 0;
1960 }
1961
1962 static struct i386_frame_cache *
1963 i386_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
1964 {
1965 volatile struct gdb_exception ex;
1966 struct i386_frame_cache *cache;
1967 CORE_ADDR sp;
1968
1969 if (*this_cache)
1970 return *this_cache;
1971
1972 cache = i386_alloc_frame_cache ();
1973 *this_cache = cache;
1974
1975 TRY_CATCH (ex, RETURN_MASK_ERROR)
1976 {
1977 cache->pc = get_frame_func (this_frame);
1978
1979 /* At this point the stack looks as if we just entered the
1980 function, with the return address at the top of the
1981 stack. */
1982 sp = get_frame_register_unsigned (this_frame, I386_ESP_REGNUM);
1983 cache->base = sp + cache->sp_offset;
1984 cache->saved_sp = cache->base + 8;
1985 cache->saved_regs[I386_EIP_REGNUM] = cache->base + 4;
1986
1987 cache->base_p = 1;
1988 }
1989 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
1990 throw_exception (ex);
1991
1992 return cache;
1993 }
1994
1995 static enum unwind_stop_reason
1996 i386_epilogue_frame_unwind_stop_reason (struct frame_info *this_frame,
1997 void **this_cache)
1998 {
1999 struct i386_frame_cache *cache =
2000 i386_epilogue_frame_cache (this_frame, this_cache);
2001
2002 if (!cache->base_p)
2003 return UNWIND_UNAVAILABLE;
2004
2005 return UNWIND_NO_REASON;
2006 }
2007
2008 static void
2009 i386_epilogue_frame_this_id (struct frame_info *this_frame,
2010 void **this_cache,
2011 struct frame_id *this_id)
2012 {
2013 struct i386_frame_cache *cache =
2014 i386_epilogue_frame_cache (this_frame, this_cache);
2015
2016 if (!cache->base_p)
2017 return;
2018
2019 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2020 }
2021
2022 static struct value *
2023 i386_epilogue_frame_prev_register (struct frame_info *this_frame,
2024 void **this_cache, int regnum)
2025 {
2026 /* Make sure we've initialized the cache. */
2027 i386_epilogue_frame_cache (this_frame, this_cache);
2028
2029 return i386_frame_prev_register (this_frame, this_cache, regnum);
2030 }
2031
2032 static const struct frame_unwind i386_epilogue_frame_unwind =
2033 {
2034 NORMAL_FRAME,
2035 i386_epilogue_frame_unwind_stop_reason,
2036 i386_epilogue_frame_this_id,
2037 i386_epilogue_frame_prev_register,
2038 NULL,
2039 i386_epilogue_frame_sniffer
2040 };
2041 \f
2042
2043 /* Stack-based trampolines. */
2044
2045 /* These trampolines are used on cross x86 targets, when taking the
2046 address of a nested function. When executing these trampolines,
2047 no stack frame is set up, so we are in a similar situation as in
2048 epilogues and i386_epilogue_frame_this_id can be re-used. */
2049
2050 /* Static chain passed in register. */
2051
2052 struct i386_insn i386_tramp_chain_in_reg_insns[] =
2053 {
2054 /* `movl imm32, %eax' and `movl imm32, %ecx' */
2055 { 5, { 0xb8 }, { 0xfe } },
2056
2057 /* `jmp imm32' */
2058 { 5, { 0xe9 }, { 0xff } },
2059
2060 {0}
2061 };
2062
2063 /* Static chain passed on stack (when regparm=3). */
2064
2065 struct i386_insn i386_tramp_chain_on_stack_insns[] =
2066 {
2067 /* `push imm32' */
2068 { 5, { 0x68 }, { 0xff } },
2069
2070 /* `jmp imm32' */
2071 { 5, { 0xe9 }, { 0xff } },
2072
2073 {0}
2074 };
2075
2076 /* Return whether PC points inside a stack trampoline. */
2077
2078 static int
2079 i386_in_stack_tramp_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2080 {
2081 gdb_byte insn;
2082 const char *name;
2083
2084 /* A stack trampoline is detected if no name is associated
2085 to the current pc and if it points inside a trampoline
2086 sequence. */
2087
2088 find_pc_partial_function (pc, &name, NULL, NULL);
2089 if (name)
2090 return 0;
2091
2092 if (target_read_memory (pc, &insn, 1))
2093 return 0;
2094
2095 if (!i386_match_insn_block (pc, i386_tramp_chain_in_reg_insns)
2096 && !i386_match_insn_block (pc, i386_tramp_chain_on_stack_insns))
2097 return 0;
2098
2099 return 1;
2100 }
2101
2102 static int
2103 i386_stack_tramp_frame_sniffer (const struct frame_unwind *self,
2104 struct frame_info *this_frame,
2105 void **this_cache)
2106 {
2107 if (frame_relative_level (this_frame) == 0)
2108 return i386_in_stack_tramp_p (get_frame_arch (this_frame),
2109 get_frame_pc (this_frame));
2110 else
2111 return 0;
2112 }
2113
2114 static const struct frame_unwind i386_stack_tramp_frame_unwind =
2115 {
2116 NORMAL_FRAME,
2117 i386_epilogue_frame_unwind_stop_reason,
2118 i386_epilogue_frame_this_id,
2119 i386_epilogue_frame_prev_register,
2120 NULL,
2121 i386_stack_tramp_frame_sniffer
2122 };
2123 \f
2124 /* Generate a bytecode expression to get the value of the saved PC. */
2125
2126 static void
2127 i386_gen_return_address (struct gdbarch *gdbarch,
2128 struct agent_expr *ax, struct axs_value *value,
2129 CORE_ADDR scope)
2130 {
2131 /* The following sequence assumes the traditional use of the base
2132 register. */
2133 ax_reg (ax, I386_EBP_REGNUM);
2134 ax_const_l (ax, 4);
2135 ax_simple (ax, aop_add);
2136 value->type = register_type (gdbarch, I386_EIP_REGNUM);
2137 value->kind = axs_lvalue_memory;
2138 }
2139 \f
2140
2141 /* Signal trampolines. */
2142
2143 static struct i386_frame_cache *
2144 i386_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
2145 {
2146 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2147 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2148 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2149 volatile struct gdb_exception ex;
2150 struct i386_frame_cache *cache;
2151 CORE_ADDR addr;
2152 gdb_byte buf[4];
2153
2154 if (*this_cache)
2155 return *this_cache;
2156
2157 cache = i386_alloc_frame_cache ();
2158
2159 TRY_CATCH (ex, RETURN_MASK_ERROR)
2160 {
2161 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2162 cache->base = extract_unsigned_integer (buf, 4, byte_order) - 4;
2163
2164 addr = tdep->sigcontext_addr (this_frame);
2165 if (tdep->sc_reg_offset)
2166 {
2167 int i;
2168
2169 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
2170
2171 for (i = 0; i < tdep->sc_num_regs; i++)
2172 if (tdep->sc_reg_offset[i] != -1)
2173 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
2174 }
2175 else
2176 {
2177 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
2178 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
2179 }
2180
2181 cache->base_p = 1;
2182 }
2183 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
2184 throw_exception (ex);
2185
2186 *this_cache = cache;
2187 return cache;
2188 }
2189
2190 static enum unwind_stop_reason
2191 i386_sigtramp_frame_unwind_stop_reason (struct frame_info *this_frame,
2192 void **this_cache)
2193 {
2194 struct i386_frame_cache *cache =
2195 i386_sigtramp_frame_cache (this_frame, this_cache);
2196
2197 if (!cache->base_p)
2198 return UNWIND_UNAVAILABLE;
2199
2200 return UNWIND_NO_REASON;
2201 }
2202
2203 static void
2204 i386_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache,
2205 struct frame_id *this_id)
2206 {
2207 struct i386_frame_cache *cache =
2208 i386_sigtramp_frame_cache (this_frame, this_cache);
2209
2210 if (!cache->base_p)
2211 return;
2212
2213 /* See the end of i386_push_dummy_call. */
2214 (*this_id) = frame_id_build (cache->base + 8, get_frame_pc (this_frame));
2215 }
2216
2217 static struct value *
2218 i386_sigtramp_frame_prev_register (struct frame_info *this_frame,
2219 void **this_cache, int regnum)
2220 {
2221 /* Make sure we've initialized the cache. */
2222 i386_sigtramp_frame_cache (this_frame, this_cache);
2223
2224 return i386_frame_prev_register (this_frame, this_cache, regnum);
2225 }
2226
2227 static int
2228 i386_sigtramp_frame_sniffer (const struct frame_unwind *self,
2229 struct frame_info *this_frame,
2230 void **this_prologue_cache)
2231 {
2232 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
2233
2234 /* We shouldn't even bother if we don't have a sigcontext_addr
2235 handler. */
2236 if (tdep->sigcontext_addr == NULL)
2237 return 0;
2238
2239 if (tdep->sigtramp_p != NULL)
2240 {
2241 if (tdep->sigtramp_p (this_frame))
2242 return 1;
2243 }
2244
2245 if (tdep->sigtramp_start != 0)
2246 {
2247 CORE_ADDR pc = get_frame_pc (this_frame);
2248
2249 gdb_assert (tdep->sigtramp_end != 0);
2250 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
2251 return 1;
2252 }
2253
2254 return 0;
2255 }
2256
2257 static const struct frame_unwind i386_sigtramp_frame_unwind =
2258 {
2259 SIGTRAMP_FRAME,
2260 i386_sigtramp_frame_unwind_stop_reason,
2261 i386_sigtramp_frame_this_id,
2262 i386_sigtramp_frame_prev_register,
2263 NULL,
2264 i386_sigtramp_frame_sniffer
2265 };
2266 \f
2267
2268 static CORE_ADDR
2269 i386_frame_base_address (struct frame_info *this_frame, void **this_cache)
2270 {
2271 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2272
2273 return cache->base;
2274 }
2275
2276 static const struct frame_base i386_frame_base =
2277 {
2278 &i386_frame_unwind,
2279 i386_frame_base_address,
2280 i386_frame_base_address,
2281 i386_frame_base_address
2282 };
2283
2284 static struct frame_id
2285 i386_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2286 {
2287 CORE_ADDR fp;
2288
2289 fp = get_frame_register_unsigned (this_frame, I386_EBP_REGNUM);
2290
2291 /* See the end of i386_push_dummy_call. */
2292 return frame_id_build (fp + 8, get_frame_pc (this_frame));
2293 }
2294
2295 /* _Decimal128 function return values need 16-byte alignment on the
2296 stack. */
2297
2298 static CORE_ADDR
2299 i386_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2300 {
2301 return sp & -(CORE_ADDR)16;
2302 }
2303 \f
2304
2305 /* Figure out where the longjmp will land. Slurp the args out of the
2306 stack. We expect the first arg to be a pointer to the jmp_buf
2307 structure from which we extract the address that we will land at.
2308 This address is copied into PC. This routine returns non-zero on
2309 success. */
2310
2311 static int
2312 i386_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
2313 {
2314 gdb_byte buf[4];
2315 CORE_ADDR sp, jb_addr;
2316 struct gdbarch *gdbarch = get_frame_arch (frame);
2317 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2318 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
2319
2320 /* If JB_PC_OFFSET is -1, we have no way to find out where the
2321 longjmp will land. */
2322 if (jb_pc_offset == -1)
2323 return 0;
2324
2325 get_frame_register (frame, I386_ESP_REGNUM, buf);
2326 sp = extract_unsigned_integer (buf, 4, byte_order);
2327 if (target_read_memory (sp + 4, buf, 4))
2328 return 0;
2329
2330 jb_addr = extract_unsigned_integer (buf, 4, byte_order);
2331 if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
2332 return 0;
2333
2334 *pc = extract_unsigned_integer (buf, 4, byte_order);
2335 return 1;
2336 }
2337 \f
2338
2339 /* Check whether TYPE must be 16-byte-aligned when passed as a
2340 function argument. 16-byte vectors, _Decimal128 and structures or
2341 unions containing such types must be 16-byte-aligned; other
2342 arguments are 4-byte-aligned. */
2343
2344 static int
2345 i386_16_byte_align_p (struct type *type)
2346 {
2347 type = check_typedef (type);
2348 if ((TYPE_CODE (type) == TYPE_CODE_DECFLOAT
2349 || (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type)))
2350 && TYPE_LENGTH (type) == 16)
2351 return 1;
2352 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2353 return i386_16_byte_align_p (TYPE_TARGET_TYPE (type));
2354 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2355 || TYPE_CODE (type) == TYPE_CODE_UNION)
2356 {
2357 int i;
2358 for (i = 0; i < TYPE_NFIELDS (type); i++)
2359 {
2360 if (i386_16_byte_align_p (TYPE_FIELD_TYPE (type, i)))
2361 return 1;
2362 }
2363 }
2364 return 0;
2365 }
2366
2367 /* Implementation for set_gdbarch_push_dummy_code. */
2368
2369 static CORE_ADDR
2370 i386_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, CORE_ADDR funaddr,
2371 struct value **args, int nargs, struct type *value_type,
2372 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
2373 struct regcache *regcache)
2374 {
2375 /* Use 0xcc breakpoint - 1 byte. */
2376 *bp_addr = sp - 1;
2377 *real_pc = funaddr;
2378
2379 /* Keep the stack aligned. */
2380 return sp - 16;
2381 }
2382
2383 static CORE_ADDR
2384 i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2385 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2386 struct value **args, CORE_ADDR sp, int struct_return,
2387 CORE_ADDR struct_addr)
2388 {
2389 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2390 gdb_byte buf[4];
2391 int i;
2392 int write_pass;
2393 int args_space = 0;
2394
2395 /* Determine the total space required for arguments and struct
2396 return address in a first pass (allowing for 16-byte-aligned
2397 arguments), then push arguments in a second pass. */
2398
2399 for (write_pass = 0; write_pass < 2; write_pass++)
2400 {
2401 int args_space_used = 0;
2402
2403 if (struct_return)
2404 {
2405 if (write_pass)
2406 {
2407 /* Push value address. */
2408 store_unsigned_integer (buf, 4, byte_order, struct_addr);
2409 write_memory (sp, buf, 4);
2410 args_space_used += 4;
2411 }
2412 else
2413 args_space += 4;
2414 }
2415
2416 for (i = 0; i < nargs; i++)
2417 {
2418 int len = TYPE_LENGTH (value_enclosing_type (args[i]));
2419
2420 if (write_pass)
2421 {
2422 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2423 args_space_used = align_up (args_space_used, 16);
2424
2425 write_memory (sp + args_space_used,
2426 value_contents_all (args[i]), len);
2427 /* The System V ABI says that:
2428
2429 "An argument's size is increased, if necessary, to make it a
2430 multiple of [32-bit] words. This may require tail padding,
2431 depending on the size of the argument."
2432
2433 This makes sure the stack stays word-aligned. */
2434 args_space_used += align_up (len, 4);
2435 }
2436 else
2437 {
2438 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2439 args_space = align_up (args_space, 16);
2440 args_space += align_up (len, 4);
2441 }
2442 }
2443
2444 if (!write_pass)
2445 {
2446 sp -= args_space;
2447
2448 /* The original System V ABI only requires word alignment,
2449 but modern incarnations need 16-byte alignment in order
2450 to support SSE. Since wasting a few bytes here isn't
2451 harmful we unconditionally enforce 16-byte alignment. */
2452 sp &= ~0xf;
2453 }
2454 }
2455
2456 /* Store return address. */
2457 sp -= 4;
2458 store_unsigned_integer (buf, 4, byte_order, bp_addr);
2459 write_memory (sp, buf, 4);
2460
2461 /* Finally, update the stack pointer... */
2462 store_unsigned_integer (buf, 4, byte_order, sp);
2463 regcache_cooked_write (regcache, I386_ESP_REGNUM, buf);
2464
2465 /* ...and fake a frame pointer. */
2466 regcache_cooked_write (regcache, I386_EBP_REGNUM, buf);
2467
2468 /* MarkK wrote: This "+ 8" is all over the place:
2469 (i386_frame_this_id, i386_sigtramp_frame_this_id,
2470 i386_dummy_id). It's there, since all frame unwinders for
2471 a given target have to agree (within a certain margin) on the
2472 definition of the stack address of a frame. Otherwise frame id
2473 comparison might not work correctly. Since DWARF2/GCC uses the
2474 stack address *before* the function call as a frame's CFA. On
2475 the i386, when %ebp is used as a frame pointer, the offset
2476 between the contents %ebp and the CFA as defined by GCC. */
2477 return sp + 8;
2478 }
2479
2480 /* These registers are used for returning integers (and on some
2481 targets also for returning `struct' and `union' values when their
2482 size and alignment match an integer type). */
2483 #define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
2484 #define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
2485
2486 /* Read, for architecture GDBARCH, a function return value of TYPE
2487 from REGCACHE, and copy that into VALBUF. */
2488
2489 static void
2490 i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
2491 struct regcache *regcache, gdb_byte *valbuf)
2492 {
2493 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2494 int len = TYPE_LENGTH (type);
2495 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2496
2497 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2498 {
2499 if (tdep->st0_regnum < 0)
2500 {
2501 warning (_("Cannot find floating-point return value."));
2502 memset (valbuf, 0, len);
2503 return;
2504 }
2505
2506 /* Floating-point return values can be found in %st(0). Convert
2507 its contents to the desired type. This is probably not
2508 exactly how it would happen on the target itself, but it is
2509 the best we can do. */
2510 regcache_raw_read (regcache, I386_ST0_REGNUM, buf);
2511 convert_typed_floating (buf, i387_ext_type (gdbarch), valbuf, type);
2512 }
2513 else
2514 {
2515 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2516 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2517
2518 if (len <= low_size)
2519 {
2520 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
2521 memcpy (valbuf, buf, len);
2522 }
2523 else if (len <= (low_size + high_size))
2524 {
2525 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
2526 memcpy (valbuf, buf, low_size);
2527 regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
2528 memcpy (valbuf + low_size, buf, len - low_size);
2529 }
2530 else
2531 internal_error (__FILE__, __LINE__,
2532 _("Cannot extract return value of %d bytes long."),
2533 len);
2534 }
2535 }
2536
2537 /* Write, for architecture GDBARCH, a function return value of TYPE
2538 from VALBUF into REGCACHE. */
2539
2540 static void
2541 i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
2542 struct regcache *regcache, const gdb_byte *valbuf)
2543 {
2544 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2545 int len = TYPE_LENGTH (type);
2546
2547 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2548 {
2549 ULONGEST fstat;
2550 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2551
2552 if (tdep->st0_regnum < 0)
2553 {
2554 warning (_("Cannot set floating-point return value."));
2555 return;
2556 }
2557
2558 /* Returning floating-point values is a bit tricky. Apart from
2559 storing the return value in %st(0), we have to simulate the
2560 state of the FPU at function return point. */
2561
2562 /* Convert the value found in VALBUF to the extended
2563 floating-point format used by the FPU. This is probably
2564 not exactly how it would happen on the target itself, but
2565 it is the best we can do. */
2566 convert_typed_floating (valbuf, type, buf, i387_ext_type (gdbarch));
2567 regcache_raw_write (regcache, I386_ST0_REGNUM, buf);
2568
2569 /* Set the top of the floating-point register stack to 7. The
2570 actual value doesn't really matter, but 7 is what a normal
2571 function return would end up with if the program started out
2572 with a freshly initialized FPU. */
2573 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
2574 fstat |= (7 << 11);
2575 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM (tdep), fstat);
2576
2577 /* Mark %st(1) through %st(7) as empty. Since we set the top of
2578 the floating-point register stack to 7, the appropriate value
2579 for the tag word is 0x3fff. */
2580 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM (tdep), 0x3fff);
2581 }
2582 else
2583 {
2584 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2585 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2586
2587 if (len <= low_size)
2588 regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
2589 else if (len <= (low_size + high_size))
2590 {
2591 regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
2592 regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
2593 len - low_size, valbuf + low_size);
2594 }
2595 else
2596 internal_error (__FILE__, __LINE__,
2597 _("Cannot store return value of %d bytes long."), len);
2598 }
2599 }
2600 \f
2601
2602 /* This is the variable that is set with "set struct-convention", and
2603 its legitimate values. */
2604 static const char default_struct_convention[] = "default";
2605 static const char pcc_struct_convention[] = "pcc";
2606 static const char reg_struct_convention[] = "reg";
2607 static const char *const valid_conventions[] =
2608 {
2609 default_struct_convention,
2610 pcc_struct_convention,
2611 reg_struct_convention,
2612 NULL
2613 };
2614 static const char *struct_convention = default_struct_convention;
2615
2616 /* Return non-zero if TYPE, which is assumed to be a structure,
2617 a union type, or an array type, should be returned in registers
2618 for architecture GDBARCH. */
2619
2620 static int
2621 i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
2622 {
2623 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2624 enum type_code code = TYPE_CODE (type);
2625 int len = TYPE_LENGTH (type);
2626
2627 gdb_assert (code == TYPE_CODE_STRUCT
2628 || code == TYPE_CODE_UNION
2629 || code == TYPE_CODE_ARRAY);
2630
2631 if (struct_convention == pcc_struct_convention
2632 || (struct_convention == default_struct_convention
2633 && tdep->struct_return == pcc_struct_return))
2634 return 0;
2635
2636 /* Structures consisting of a single `float', `double' or 'long
2637 double' member are returned in %st(0). */
2638 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2639 {
2640 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
2641 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2642 return (len == 4 || len == 8 || len == 12);
2643 }
2644
2645 return (len == 1 || len == 2 || len == 4 || len == 8);
2646 }
2647
2648 /* Determine, for architecture GDBARCH, how a return value of TYPE
2649 should be returned. If it is supposed to be returned in registers,
2650 and READBUF is non-zero, read the appropriate value from REGCACHE,
2651 and copy it into READBUF. If WRITEBUF is non-zero, write the value
2652 from WRITEBUF into REGCACHE. */
2653
2654 static enum return_value_convention
2655 i386_return_value (struct gdbarch *gdbarch, struct value *function,
2656 struct type *type, struct regcache *regcache,
2657 gdb_byte *readbuf, const gdb_byte *writebuf)
2658 {
2659 enum type_code code = TYPE_CODE (type);
2660
2661 if (((code == TYPE_CODE_STRUCT
2662 || code == TYPE_CODE_UNION
2663 || code == TYPE_CODE_ARRAY)
2664 && !i386_reg_struct_return_p (gdbarch, type))
2665 /* Complex double and long double uses the struct return covention. */
2666 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 16)
2667 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 24)
2668 /* 128-bit decimal float uses the struct return convention. */
2669 || (code == TYPE_CODE_DECFLOAT && TYPE_LENGTH (type) == 16))
2670 {
2671 /* The System V ABI says that:
2672
2673 "A function that returns a structure or union also sets %eax
2674 to the value of the original address of the caller's area
2675 before it returns. Thus when the caller receives control
2676 again, the address of the returned object resides in register
2677 %eax and can be used to access the object."
2678
2679 So the ABI guarantees that we can always find the return
2680 value just after the function has returned. */
2681
2682 /* Note that the ABI doesn't mention functions returning arrays,
2683 which is something possible in certain languages such as Ada.
2684 In this case, the value is returned as if it was wrapped in
2685 a record, so the convention applied to records also applies
2686 to arrays. */
2687
2688 if (readbuf)
2689 {
2690 ULONGEST addr;
2691
2692 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
2693 read_memory (addr, readbuf, TYPE_LENGTH (type));
2694 }
2695
2696 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
2697 }
2698
2699 /* This special case is for structures consisting of a single
2700 `float', `double' or 'long double' member. These structures are
2701 returned in %st(0). For these structures, we call ourselves
2702 recursively, changing TYPE into the type of the first member of
2703 the structure. Since that should work for all structures that
2704 have only one member, we don't bother to check the member's type
2705 here. */
2706 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2707 {
2708 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
2709 return i386_return_value (gdbarch, function, type, regcache,
2710 readbuf, writebuf);
2711 }
2712
2713 if (readbuf)
2714 i386_extract_return_value (gdbarch, type, regcache, readbuf);
2715 if (writebuf)
2716 i386_store_return_value (gdbarch, type, regcache, writebuf);
2717
2718 return RETURN_VALUE_REGISTER_CONVENTION;
2719 }
2720 \f
2721
2722 struct type *
2723 i387_ext_type (struct gdbarch *gdbarch)
2724 {
2725 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2726
2727 if (!tdep->i387_ext_type)
2728 {
2729 tdep->i387_ext_type = tdesc_find_type (gdbarch, "i387_ext");
2730 gdb_assert (tdep->i387_ext_type != NULL);
2731 }
2732
2733 return tdep->i387_ext_type;
2734 }
2735
2736 /* Construct vector type for pseudo YMM registers. We can't use
2737 tdesc_find_type since YMM isn't described in target description. */
2738
2739 static struct type *
2740 i386_ymm_type (struct gdbarch *gdbarch)
2741 {
2742 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2743
2744 if (!tdep->i386_ymm_type)
2745 {
2746 const struct builtin_type *bt = builtin_type (gdbarch);
2747
2748 /* The type we're building is this: */
2749 #if 0
2750 union __gdb_builtin_type_vec256i
2751 {
2752 int128_t uint128[2];
2753 int64_t v2_int64[4];
2754 int32_t v4_int32[8];
2755 int16_t v8_int16[16];
2756 int8_t v16_int8[32];
2757 double v2_double[4];
2758 float v4_float[8];
2759 };
2760 #endif
2761
2762 struct type *t;
2763
2764 t = arch_composite_type (gdbarch,
2765 "__gdb_builtin_type_vec256i", TYPE_CODE_UNION);
2766 append_composite_type_field (t, "v8_float",
2767 init_vector_type (bt->builtin_float, 8));
2768 append_composite_type_field (t, "v4_double",
2769 init_vector_type (bt->builtin_double, 4));
2770 append_composite_type_field (t, "v32_int8",
2771 init_vector_type (bt->builtin_int8, 32));
2772 append_composite_type_field (t, "v16_int16",
2773 init_vector_type (bt->builtin_int16, 16));
2774 append_composite_type_field (t, "v8_int32",
2775 init_vector_type (bt->builtin_int32, 8));
2776 append_composite_type_field (t, "v4_int64",
2777 init_vector_type (bt->builtin_int64, 4));
2778 append_composite_type_field (t, "v2_int128",
2779 init_vector_type (bt->builtin_int128, 2));
2780
2781 TYPE_VECTOR (t) = 1;
2782 TYPE_NAME (t) = "builtin_type_vec256i";
2783 tdep->i386_ymm_type = t;
2784 }
2785
2786 return tdep->i386_ymm_type;
2787 }
2788
2789 /* Construct vector type for MMX registers. */
2790 static struct type *
2791 i386_mmx_type (struct gdbarch *gdbarch)
2792 {
2793 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2794
2795 if (!tdep->i386_mmx_type)
2796 {
2797 const struct builtin_type *bt = builtin_type (gdbarch);
2798
2799 /* The type we're building is this: */
2800 #if 0
2801 union __gdb_builtin_type_vec64i
2802 {
2803 int64_t uint64;
2804 int32_t v2_int32[2];
2805 int16_t v4_int16[4];
2806 int8_t v8_int8[8];
2807 };
2808 #endif
2809
2810 struct type *t;
2811
2812 t = arch_composite_type (gdbarch,
2813 "__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
2814
2815 append_composite_type_field (t, "uint64", bt->builtin_int64);
2816 append_composite_type_field (t, "v2_int32",
2817 init_vector_type (bt->builtin_int32, 2));
2818 append_composite_type_field (t, "v4_int16",
2819 init_vector_type (bt->builtin_int16, 4));
2820 append_composite_type_field (t, "v8_int8",
2821 init_vector_type (bt->builtin_int8, 8));
2822
2823 TYPE_VECTOR (t) = 1;
2824 TYPE_NAME (t) = "builtin_type_vec64i";
2825 tdep->i386_mmx_type = t;
2826 }
2827
2828 return tdep->i386_mmx_type;
2829 }
2830
2831 /* Return the GDB type object for the "standard" data type of data in
2832 register REGNUM. */
2833
2834 struct type *
2835 i386_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
2836 {
2837 if (i386_mmx_regnum_p (gdbarch, regnum))
2838 return i386_mmx_type (gdbarch);
2839 else if (i386_ymm_regnum_p (gdbarch, regnum))
2840 return i386_ymm_type (gdbarch);
2841 else
2842 {
2843 const struct builtin_type *bt = builtin_type (gdbarch);
2844 if (i386_byte_regnum_p (gdbarch, regnum))
2845 return bt->builtin_int8;
2846 else if (i386_word_regnum_p (gdbarch, regnum))
2847 return bt->builtin_int16;
2848 else if (i386_dword_regnum_p (gdbarch, regnum))
2849 return bt->builtin_int32;
2850 }
2851
2852 internal_error (__FILE__, __LINE__, _("invalid regnum"));
2853 }
2854
2855 /* Map a cooked register onto a raw register or memory. For the i386,
2856 the MMX registers need to be mapped onto floating point registers. */
2857
2858 static int
2859 i386_mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
2860 {
2861 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
2862 int mmxreg, fpreg;
2863 ULONGEST fstat;
2864 int tos;
2865
2866 mmxreg = regnum - tdep->mm0_regnum;
2867 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
2868 tos = (fstat >> 11) & 0x7;
2869 fpreg = (mmxreg + tos) % 8;
2870
2871 return (I387_ST0_REGNUM (tdep) + fpreg);
2872 }
2873
2874 /* A helper function for us by i386_pseudo_register_read_value and
2875 amd64_pseudo_register_read_value. It does all the work but reads
2876 the data into an already-allocated value. */
2877
2878 void
2879 i386_pseudo_register_read_into_value (struct gdbarch *gdbarch,
2880 struct regcache *regcache,
2881 int regnum,
2882 struct value *result_value)
2883 {
2884 gdb_byte raw_buf[MAX_REGISTER_SIZE];
2885 enum register_status status;
2886 gdb_byte *buf = value_contents_raw (result_value);
2887
2888 if (i386_mmx_regnum_p (gdbarch, regnum))
2889 {
2890 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
2891
2892 /* Extract (always little endian). */
2893 status = regcache_raw_read (regcache, fpnum, raw_buf);
2894 if (status != REG_VALID)
2895 mark_value_bytes_unavailable (result_value, 0,
2896 TYPE_LENGTH (value_type (result_value)));
2897 else
2898 memcpy (buf, raw_buf, register_size (gdbarch, regnum));
2899 }
2900 else
2901 {
2902 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2903
2904 if (i386_ymm_regnum_p (gdbarch, regnum))
2905 {
2906 regnum -= tdep->ymm0_regnum;
2907
2908 /* Extract (always little endian). Read lower 128bits. */
2909 status = regcache_raw_read (regcache,
2910 I387_XMM0_REGNUM (tdep) + regnum,
2911 raw_buf);
2912 if (status != REG_VALID)
2913 mark_value_bytes_unavailable (result_value, 0, 16);
2914 else
2915 memcpy (buf, raw_buf, 16);
2916 /* Read upper 128bits. */
2917 status = regcache_raw_read (regcache,
2918 tdep->ymm0h_regnum + regnum,
2919 raw_buf);
2920 if (status != REG_VALID)
2921 mark_value_bytes_unavailable (result_value, 16, 32);
2922 else
2923 memcpy (buf + 16, raw_buf, 16);
2924 }
2925 else if (i386_word_regnum_p (gdbarch, regnum))
2926 {
2927 int gpnum = regnum - tdep->ax_regnum;
2928
2929 /* Extract (always little endian). */
2930 status = regcache_raw_read (regcache, gpnum, raw_buf);
2931 if (status != REG_VALID)
2932 mark_value_bytes_unavailable (result_value, 0,
2933 TYPE_LENGTH (value_type (result_value)));
2934 else
2935 memcpy (buf, raw_buf, 2);
2936 }
2937 else if (i386_byte_regnum_p (gdbarch, regnum))
2938 {
2939 /* Check byte pseudo registers last since this function will
2940 be called from amd64_pseudo_register_read, which handles
2941 byte pseudo registers differently. */
2942 int gpnum = regnum - tdep->al_regnum;
2943
2944 /* Extract (always little endian). We read both lower and
2945 upper registers. */
2946 status = regcache_raw_read (regcache, gpnum % 4, raw_buf);
2947 if (status != REG_VALID)
2948 mark_value_bytes_unavailable (result_value, 0,
2949 TYPE_LENGTH (value_type (result_value)));
2950 else if (gpnum >= 4)
2951 memcpy (buf, raw_buf + 1, 1);
2952 else
2953 memcpy (buf, raw_buf, 1);
2954 }
2955 else
2956 internal_error (__FILE__, __LINE__, _("invalid regnum"));
2957 }
2958 }
2959
2960 static struct value *
2961 i386_pseudo_register_read_value (struct gdbarch *gdbarch,
2962 struct regcache *regcache,
2963 int regnum)
2964 {
2965 struct value *result;
2966
2967 result = allocate_value (register_type (gdbarch, regnum));
2968 VALUE_LVAL (result) = lval_register;
2969 VALUE_REGNUM (result) = regnum;
2970
2971 i386_pseudo_register_read_into_value (gdbarch, regcache, regnum, result);
2972
2973 return result;
2974 }
2975
2976 void
2977 i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2978 int regnum, const gdb_byte *buf)
2979 {
2980 gdb_byte raw_buf[MAX_REGISTER_SIZE];
2981
2982 if (i386_mmx_regnum_p (gdbarch, regnum))
2983 {
2984 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
2985
2986 /* Read ... */
2987 regcache_raw_read (regcache, fpnum, raw_buf);
2988 /* ... Modify ... (always little endian). */
2989 memcpy (raw_buf, buf, register_size (gdbarch, regnum));
2990 /* ... Write. */
2991 regcache_raw_write (regcache, fpnum, raw_buf);
2992 }
2993 else
2994 {
2995 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2996
2997 if (i386_ymm_regnum_p (gdbarch, regnum))
2998 {
2999 regnum -= tdep->ymm0_regnum;
3000
3001 /* ... Write lower 128bits. */
3002 regcache_raw_write (regcache,
3003 I387_XMM0_REGNUM (tdep) + regnum,
3004 buf);
3005 /* ... Write upper 128bits. */
3006 regcache_raw_write (regcache,
3007 tdep->ymm0h_regnum + regnum,
3008 buf + 16);
3009 }
3010 else if (i386_word_regnum_p (gdbarch, regnum))
3011 {
3012 int gpnum = regnum - tdep->ax_regnum;
3013
3014 /* Read ... */
3015 regcache_raw_read (regcache, gpnum, raw_buf);
3016 /* ... Modify ... (always little endian). */
3017 memcpy (raw_buf, buf, 2);
3018 /* ... Write. */
3019 regcache_raw_write (regcache, gpnum, raw_buf);
3020 }
3021 else if (i386_byte_regnum_p (gdbarch, regnum))
3022 {
3023 /* Check byte pseudo registers last since this function will
3024 be called from amd64_pseudo_register_read, which handles
3025 byte pseudo registers differently. */
3026 int gpnum = regnum - tdep->al_regnum;
3027
3028 /* Read ... We read both lower and upper registers. */
3029 regcache_raw_read (regcache, gpnum % 4, raw_buf);
3030 /* ... Modify ... (always little endian). */
3031 if (gpnum >= 4)
3032 memcpy (raw_buf + 1, buf, 1);
3033 else
3034 memcpy (raw_buf, buf, 1);
3035 /* ... Write. */
3036 regcache_raw_write (regcache, gpnum % 4, raw_buf);
3037 }
3038 else
3039 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3040 }
3041 }
3042 \f
3043
3044 /* Return the register number of the register allocated by GCC after
3045 REGNUM, or -1 if there is no such register. */
3046
3047 static int
3048 i386_next_regnum (int regnum)
3049 {
3050 /* GCC allocates the registers in the order:
3051
3052 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
3053
3054 Since storing a variable in %esp doesn't make any sense we return
3055 -1 for %ebp and for %esp itself. */
3056 static int next_regnum[] =
3057 {
3058 I386_EDX_REGNUM, /* Slot for %eax. */
3059 I386_EBX_REGNUM, /* Slot for %ecx. */
3060 I386_ECX_REGNUM, /* Slot for %edx. */
3061 I386_ESI_REGNUM, /* Slot for %ebx. */
3062 -1, -1, /* Slots for %esp and %ebp. */
3063 I386_EDI_REGNUM, /* Slot for %esi. */
3064 I386_EBP_REGNUM /* Slot for %edi. */
3065 };
3066
3067 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
3068 return next_regnum[regnum];
3069
3070 return -1;
3071 }
3072
3073 /* Return nonzero if a value of type TYPE stored in register REGNUM
3074 needs any special handling. */
3075
3076 static int
3077 i386_convert_register_p (struct gdbarch *gdbarch,
3078 int regnum, struct type *type)
3079 {
3080 int len = TYPE_LENGTH (type);
3081
3082 /* Values may be spread across multiple registers. Most debugging
3083 formats aren't expressive enough to specify the locations, so
3084 some heuristics is involved. Right now we only handle types that
3085 have a length that is a multiple of the word size, since GCC
3086 doesn't seem to put any other types into registers. */
3087 if (len > 4 && len % 4 == 0)
3088 {
3089 int last_regnum = regnum;
3090
3091 while (len > 4)
3092 {
3093 last_regnum = i386_next_regnum (last_regnum);
3094 len -= 4;
3095 }
3096
3097 if (last_regnum != -1)
3098 return 1;
3099 }
3100
3101 return i387_convert_register_p (gdbarch, regnum, type);
3102 }
3103
3104 /* Read a value of type TYPE from register REGNUM in frame FRAME, and
3105 return its contents in TO. */
3106
3107 static int
3108 i386_register_to_value (struct frame_info *frame, int regnum,
3109 struct type *type, gdb_byte *to,
3110 int *optimizedp, int *unavailablep)
3111 {
3112 struct gdbarch *gdbarch = get_frame_arch (frame);
3113 int len = TYPE_LENGTH (type);
3114
3115 if (i386_fp_regnum_p (gdbarch, regnum))
3116 return i387_register_to_value (frame, regnum, type, to,
3117 optimizedp, unavailablep);
3118
3119 /* Read a value spread across multiple registers. */
3120
3121 gdb_assert (len > 4 && len % 4 == 0);
3122
3123 while (len > 0)
3124 {
3125 gdb_assert (regnum != -1);
3126 gdb_assert (register_size (gdbarch, regnum) == 4);
3127
3128 if (!get_frame_register_bytes (frame, regnum, 0,
3129 register_size (gdbarch, regnum),
3130 to, optimizedp, unavailablep))
3131 return 0;
3132
3133 regnum = i386_next_regnum (regnum);
3134 len -= 4;
3135 to += 4;
3136 }
3137
3138 *optimizedp = *unavailablep = 0;
3139 return 1;
3140 }
3141
3142 /* Write the contents FROM of a value of type TYPE into register
3143 REGNUM in frame FRAME. */
3144
3145 static void
3146 i386_value_to_register (struct frame_info *frame, int regnum,
3147 struct type *type, const gdb_byte *from)
3148 {
3149 int len = TYPE_LENGTH (type);
3150
3151 if (i386_fp_regnum_p (get_frame_arch (frame), regnum))
3152 {
3153 i387_value_to_register (frame, regnum, type, from);
3154 return;
3155 }
3156
3157 /* Write a value spread across multiple registers. */
3158
3159 gdb_assert (len > 4 && len % 4 == 0);
3160
3161 while (len > 0)
3162 {
3163 gdb_assert (regnum != -1);
3164 gdb_assert (register_size (get_frame_arch (frame), regnum) == 4);
3165
3166 put_frame_register (frame, regnum, from);
3167 regnum = i386_next_regnum (regnum);
3168 len -= 4;
3169 from += 4;
3170 }
3171 }
3172 \f
3173 /* Supply register REGNUM from the buffer specified by GREGS and LEN
3174 in the general-purpose register set REGSET to register cache
3175 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3176
3177 void
3178 i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
3179 int regnum, const void *gregs, size_t len)
3180 {
3181 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
3182 const gdb_byte *regs = gregs;
3183 int i;
3184
3185 gdb_assert (len == tdep->sizeof_gregset);
3186
3187 for (i = 0; i < tdep->gregset_num_regs; i++)
3188 {
3189 if ((regnum == i || regnum == -1)
3190 && tdep->gregset_reg_offset[i] != -1)
3191 regcache_raw_supply (regcache, i, regs + tdep->gregset_reg_offset[i]);
3192 }
3193 }
3194
3195 /* Collect register REGNUM from the register cache REGCACHE and store
3196 it in the buffer specified by GREGS and LEN as described by the
3197 general-purpose register set REGSET. If REGNUM is -1, do this for
3198 all registers in REGSET. */
3199
3200 void
3201 i386_collect_gregset (const struct regset *regset,
3202 const struct regcache *regcache,
3203 int regnum, void *gregs, size_t len)
3204 {
3205 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
3206 gdb_byte *regs = gregs;
3207 int i;
3208
3209 gdb_assert (len == tdep->sizeof_gregset);
3210
3211 for (i = 0; i < tdep->gregset_num_regs; i++)
3212 {
3213 if ((regnum == i || regnum == -1)
3214 && tdep->gregset_reg_offset[i] != -1)
3215 regcache_raw_collect (regcache, i, regs + tdep->gregset_reg_offset[i]);
3216 }
3217 }
3218
3219 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
3220 in the floating-point register set REGSET to register cache
3221 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3222
3223 static void
3224 i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
3225 int regnum, const void *fpregs, size_t len)
3226 {
3227 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
3228
3229 if (len == I387_SIZEOF_FXSAVE)
3230 {
3231 i387_supply_fxsave (regcache, regnum, fpregs);
3232 return;
3233 }
3234
3235 gdb_assert (len == tdep->sizeof_fpregset);
3236 i387_supply_fsave (regcache, regnum, fpregs);
3237 }
3238
3239 /* Collect register REGNUM from the register cache REGCACHE and store
3240 it in the buffer specified by FPREGS and LEN as described by the
3241 floating-point register set REGSET. If REGNUM is -1, do this for
3242 all registers in REGSET. */
3243
3244 static void
3245 i386_collect_fpregset (const struct regset *regset,
3246 const struct regcache *regcache,
3247 int regnum, void *fpregs, size_t len)
3248 {
3249 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
3250
3251 if (len == I387_SIZEOF_FXSAVE)
3252 {
3253 i387_collect_fxsave (regcache, regnum, fpregs);
3254 return;
3255 }
3256
3257 gdb_assert (len == tdep->sizeof_fpregset);
3258 i387_collect_fsave (regcache, regnum, fpregs);
3259 }
3260
3261 /* Similar to i386_supply_fpregset, but use XSAVE extended state. */
3262
3263 static void
3264 i386_supply_xstateregset (const struct regset *regset,
3265 struct regcache *regcache, int regnum,
3266 const void *xstateregs, size_t len)
3267 {
3268 i387_supply_xsave (regcache, regnum, xstateregs);
3269 }
3270
3271 /* Similar to i386_collect_fpregset , but use XSAVE extended state. */
3272
3273 static void
3274 i386_collect_xstateregset (const struct regset *regset,
3275 const struct regcache *regcache,
3276 int regnum, void *xstateregs, size_t len)
3277 {
3278 i387_collect_xsave (regcache, regnum, xstateregs, 1);
3279 }
3280
3281 /* Return the appropriate register set for the core section identified
3282 by SECT_NAME and SECT_SIZE. */
3283
3284 const struct regset *
3285 i386_regset_from_core_section (struct gdbarch *gdbarch,
3286 const char *sect_name, size_t sect_size)
3287 {
3288 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3289
3290 if (strcmp (sect_name, ".reg") == 0 && sect_size == tdep->sizeof_gregset)
3291 {
3292 if (tdep->gregset == NULL)
3293 tdep->gregset = regset_alloc (gdbarch, i386_supply_gregset,
3294 i386_collect_gregset);
3295 return tdep->gregset;
3296 }
3297
3298 if ((strcmp (sect_name, ".reg2") == 0 && sect_size == tdep->sizeof_fpregset)
3299 || (strcmp (sect_name, ".reg-xfp") == 0
3300 && sect_size == I387_SIZEOF_FXSAVE))
3301 {
3302 if (tdep->fpregset == NULL)
3303 tdep->fpregset = regset_alloc (gdbarch, i386_supply_fpregset,
3304 i386_collect_fpregset);
3305 return tdep->fpregset;
3306 }
3307
3308 if (strcmp (sect_name, ".reg-xstate") == 0)
3309 {
3310 if (tdep->xstateregset == NULL)
3311 tdep->xstateregset = regset_alloc (gdbarch,
3312 i386_supply_xstateregset,
3313 i386_collect_xstateregset);
3314
3315 return tdep->xstateregset;
3316 }
3317
3318 return NULL;
3319 }
3320 \f
3321
3322 /* Stuff for WIN32 PE style DLL's but is pretty generic really. */
3323
3324 CORE_ADDR
3325 i386_pe_skip_trampoline_code (struct frame_info *frame,
3326 CORE_ADDR pc, char *name)
3327 {
3328 struct gdbarch *gdbarch = get_frame_arch (frame);
3329 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3330
3331 /* jmp *(dest) */
3332 if (pc && read_memory_unsigned_integer (pc, 2, byte_order) == 0x25ff)
3333 {
3334 unsigned long indirect =
3335 read_memory_unsigned_integer (pc + 2, 4, byte_order);
3336 struct minimal_symbol *indsym =
3337 indirect ? lookup_minimal_symbol_by_pc (indirect) : 0;
3338 const char *symname = indsym ? SYMBOL_LINKAGE_NAME (indsym) : 0;
3339
3340 if (symname)
3341 {
3342 if (strncmp (symname, "__imp_", 6) == 0
3343 || strncmp (symname, "_imp_", 5) == 0)
3344 return name ? 1 :
3345 read_memory_unsigned_integer (indirect, 4, byte_order);
3346 }
3347 }
3348 return 0; /* Not a trampoline. */
3349 }
3350 \f
3351
3352 /* Return whether the THIS_FRAME corresponds to a sigtramp
3353 routine. */
3354
3355 int
3356 i386_sigtramp_p (struct frame_info *this_frame)
3357 {
3358 CORE_ADDR pc = get_frame_pc (this_frame);
3359 const char *name;
3360
3361 find_pc_partial_function (pc, &name, NULL, NULL);
3362 return (name && strcmp ("_sigtramp", name) == 0);
3363 }
3364 \f
3365
3366 /* We have two flavours of disassembly. The machinery on this page
3367 deals with switching between those. */
3368
3369 static int
3370 i386_print_insn (bfd_vma pc, struct disassemble_info *info)
3371 {
3372 gdb_assert (disassembly_flavor == att_flavor
3373 || disassembly_flavor == intel_flavor);
3374
3375 /* FIXME: kettenis/20020915: Until disassembler_options is properly
3376 constified, cast to prevent a compiler warning. */
3377 info->disassembler_options = (char *) disassembly_flavor;
3378
3379 return print_insn_i386 (pc, info);
3380 }
3381 \f
3382
3383 /* There are a few i386 architecture variants that differ only
3384 slightly from the generic i386 target. For now, we don't give them
3385 their own source file, but include them here. As a consequence,
3386 they'll always be included. */
3387
3388 /* System V Release 4 (SVR4). */
3389
3390 /* Return whether THIS_FRAME corresponds to a SVR4 sigtramp
3391 routine. */
3392
3393 static int
3394 i386_svr4_sigtramp_p (struct frame_info *this_frame)
3395 {
3396 CORE_ADDR pc = get_frame_pc (this_frame);
3397 const char *name;
3398
3399 /* UnixWare uses _sigacthandler. The origin of the other symbols is
3400 currently unknown. */
3401 find_pc_partial_function (pc, &name, NULL, NULL);
3402 return (name && (strcmp ("_sigreturn", name) == 0
3403 || strcmp ("_sigacthandler", name) == 0
3404 || strcmp ("sigvechandler", name) == 0));
3405 }
3406
3407 /* Assuming THIS_FRAME is for a SVR4 sigtramp routine, return the
3408 address of the associated sigcontext (ucontext) structure. */
3409
3410 static CORE_ADDR
3411 i386_svr4_sigcontext_addr (struct frame_info *this_frame)
3412 {
3413 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3414 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3415 gdb_byte buf[4];
3416 CORE_ADDR sp;
3417
3418 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
3419 sp = extract_unsigned_integer (buf, 4, byte_order);
3420
3421 return read_memory_unsigned_integer (sp + 8, 4, byte_order);
3422 }
3423
3424 \f
3425
3426 /* Implementation of `gdbarch_stap_is_single_operand', as defined in
3427 gdbarch.h. */
3428
3429 int
3430 i386_stap_is_single_operand (struct gdbarch *gdbarch, const char *s)
3431 {
3432 return (*s == '$' /* Literal number. */
3433 || (isdigit (*s) && s[1] == '(' && s[2] == '%') /* Displacement. */
3434 || (*s == '(' && s[1] == '%') /* Register indirection. */
3435 || (*s == '%' && isalpha (s[1]))); /* Register access. */
3436 }
3437
3438 /* Implementation of `gdbarch_stap_parse_special_token', as defined in
3439 gdbarch.h. */
3440
3441 int
3442 i386_stap_parse_special_token (struct gdbarch *gdbarch,
3443 struct stap_parse_info *p)
3444 {
3445 /* In order to parse special tokens, we use a state-machine that go
3446 through every known token and try to get a match. */
3447 enum
3448 {
3449 TRIPLET,
3450 THREE_ARG_DISPLACEMENT,
3451 DONE
3452 } current_state;
3453
3454 current_state = TRIPLET;
3455
3456 /* The special tokens to be parsed here are:
3457
3458 - `register base + (register index * size) + offset', as represented
3459 in `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
3460
3461 - Operands of the form `-8+3+1(%rbp)', which must be interpreted as
3462 `*(-8 + 3 - 1 + (void *) $eax)'. */
3463
3464 while (current_state != DONE)
3465 {
3466 const char *s = p->arg;
3467
3468 switch (current_state)
3469 {
3470 case TRIPLET:
3471 {
3472 if (isdigit (*s) || *s == '-' || *s == '+')
3473 {
3474 int got_minus[3];
3475 int i;
3476 long displacements[3];
3477 const char *start;
3478 char *regname;
3479 int len;
3480 struct stoken str;
3481
3482 got_minus[0] = 0;
3483 if (*s == '+')
3484 ++s;
3485 else if (*s == '-')
3486 {
3487 ++s;
3488 got_minus[0] = 1;
3489 }
3490
3491 displacements[0] = strtol (s, (char **) &s, 10);
3492
3493 if (*s != '+' && *s != '-')
3494 {
3495 /* We are not dealing with a triplet. */
3496 break;
3497 }
3498
3499 got_minus[1] = 0;
3500 if (*s == '+')
3501 ++s;
3502 else
3503 {
3504 ++s;
3505 got_minus[1] = 1;
3506 }
3507
3508 displacements[1] = strtol (s, (char **) &s, 10);
3509
3510 if (*s != '+' && *s != '-')
3511 {
3512 /* We are not dealing with a triplet. */
3513 break;
3514 }
3515
3516 got_minus[2] = 0;
3517 if (*s == '+')
3518 ++s;
3519 else
3520 {
3521 ++s;
3522 got_minus[2] = 1;
3523 }
3524
3525 displacements[2] = strtol (s, (char **) &s, 10);
3526
3527 if (*s != '(' || s[1] != '%')
3528 break;
3529
3530 s += 2;
3531 start = s;
3532
3533 while (isalnum (*s))
3534 ++s;
3535
3536 if (*s++ != ')')
3537 break;
3538
3539 len = s - start;
3540 regname = alloca (len + 1);
3541
3542 strncpy (regname, start, len);
3543 regname[len] = '\0';
3544
3545 if (user_reg_map_name_to_regnum (gdbarch,
3546 regname, len) == -1)
3547 error (_("Invalid register name `%s' "
3548 "on expression `%s'."),
3549 regname, p->saved_arg);
3550
3551 for (i = 0; i < 3; i++)
3552 {
3553 write_exp_elt_opcode (OP_LONG);
3554 write_exp_elt_type
3555 (builtin_type (gdbarch)->builtin_long);
3556 write_exp_elt_longcst (displacements[i]);
3557 write_exp_elt_opcode (OP_LONG);
3558 if (got_minus[i])
3559 write_exp_elt_opcode (UNOP_NEG);
3560 }
3561
3562 write_exp_elt_opcode (OP_REGISTER);
3563 str.ptr = regname;
3564 str.length = len;
3565 write_exp_string (str);
3566 write_exp_elt_opcode (OP_REGISTER);
3567
3568 write_exp_elt_opcode (UNOP_CAST);
3569 write_exp_elt_type (builtin_type (gdbarch)->builtin_data_ptr);
3570 write_exp_elt_opcode (UNOP_CAST);
3571
3572 write_exp_elt_opcode (BINOP_ADD);
3573 write_exp_elt_opcode (BINOP_ADD);
3574 write_exp_elt_opcode (BINOP_ADD);
3575
3576 write_exp_elt_opcode (UNOP_CAST);
3577 write_exp_elt_type (lookup_pointer_type (p->arg_type));
3578 write_exp_elt_opcode (UNOP_CAST);
3579
3580 write_exp_elt_opcode (UNOP_IND);
3581
3582 p->arg = s;
3583
3584 return 1;
3585 }
3586 break;
3587 }
3588 case THREE_ARG_DISPLACEMENT:
3589 {
3590 if (isdigit (*s) || *s == '(' || *s == '-' || *s == '+')
3591 {
3592 int offset_minus = 0;
3593 long offset = 0;
3594 int size_minus = 0;
3595 long size = 0;
3596 const char *start;
3597 char *base;
3598 int len_base;
3599 char *index;
3600 int len_index;
3601 struct stoken base_token, index_token;
3602
3603 if (*s == '+')
3604 ++s;
3605 else if (*s == '-')
3606 {
3607 ++s;
3608 offset_minus = 1;
3609 }
3610
3611 if (offset_minus && !isdigit (*s))
3612 break;
3613
3614 if (isdigit (*s))
3615 offset = strtol (s, (char **) &s, 10);
3616
3617 if (*s != '(' || s[1] != '%')
3618 break;
3619
3620 s += 2;
3621 start = s;
3622
3623 while (isalnum (*s))
3624 ++s;
3625
3626 if (*s != ',' || s[1] != '%')
3627 break;
3628
3629 len_base = s - start;
3630 base = alloca (len_base + 1);
3631 strncpy (base, start, len_base);
3632 base[len_base] = '\0';
3633
3634 if (user_reg_map_name_to_regnum (gdbarch,
3635 base, len_base) == -1)
3636 error (_("Invalid register name `%s' "
3637 "on expression `%s'."),
3638 base, p->saved_arg);
3639
3640 s += 2;
3641 start = s;
3642
3643 while (isalnum (*s))
3644 ++s;
3645
3646 len_index = s - start;
3647 index = alloca (len_index + 1);
3648 strncpy (index, start, len_index);
3649 index[len_index] = '\0';
3650
3651 if (user_reg_map_name_to_regnum (gdbarch,
3652 index, len_index) == -1)
3653 error (_("Invalid register name `%s' "
3654 "on expression `%s'."),
3655 index, p->saved_arg);
3656
3657 if (*s != ',' && *s != ')')
3658 break;
3659
3660 if (*s == ',')
3661 {
3662 ++s;
3663 if (*s == '+')
3664 ++s;
3665 else if (*s == '-')
3666 {
3667 ++s;
3668 size_minus = 1;
3669 }
3670
3671 size = strtol (s, (char **) &s, 10);
3672
3673 if (*s != ')')
3674 break;
3675 }
3676
3677 ++s;
3678
3679 if (offset)
3680 {
3681 write_exp_elt_opcode (OP_LONG);
3682 write_exp_elt_type
3683 (builtin_type (gdbarch)->builtin_long);
3684 write_exp_elt_longcst (offset);
3685 write_exp_elt_opcode (OP_LONG);
3686 if (offset_minus)
3687 write_exp_elt_opcode (UNOP_NEG);
3688 }
3689
3690 write_exp_elt_opcode (OP_REGISTER);
3691 base_token.ptr = base;
3692 base_token.length = len_base;
3693 write_exp_string (base_token);
3694 write_exp_elt_opcode (OP_REGISTER);
3695
3696 if (offset)
3697 write_exp_elt_opcode (BINOP_ADD);
3698
3699 write_exp_elt_opcode (OP_REGISTER);
3700 index_token.ptr = index;
3701 index_token.length = len_index;
3702 write_exp_string (index_token);
3703 write_exp_elt_opcode (OP_REGISTER);
3704
3705 if (size)
3706 {
3707 write_exp_elt_opcode (OP_LONG);
3708 write_exp_elt_type
3709 (builtin_type (gdbarch)->builtin_long);
3710 write_exp_elt_longcst (size);
3711 write_exp_elt_opcode (OP_LONG);
3712 if (size_minus)
3713 write_exp_elt_opcode (UNOP_NEG);
3714 write_exp_elt_opcode (BINOP_MUL);
3715 }
3716
3717 write_exp_elt_opcode (BINOP_ADD);
3718
3719 write_exp_elt_opcode (UNOP_CAST);
3720 write_exp_elt_type (lookup_pointer_type (p->arg_type));
3721 write_exp_elt_opcode (UNOP_CAST);
3722
3723 write_exp_elt_opcode (UNOP_IND);
3724
3725 p->arg = s;
3726
3727 return 1;
3728 }
3729 break;
3730 }
3731 }
3732
3733 /* Advancing to the next state. */
3734 ++current_state;
3735 }
3736
3737 return 0;
3738 }
3739
3740 \f
3741
3742 /* Generic ELF. */
3743
3744 void
3745 i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3746 {
3747 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
3748 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
3749
3750 /* Registering SystemTap handlers. */
3751 set_gdbarch_stap_integer_prefix (gdbarch, "$");
3752 set_gdbarch_stap_register_prefix (gdbarch, "%");
3753 set_gdbarch_stap_register_indirection_prefix (gdbarch, "(");
3754 set_gdbarch_stap_register_indirection_suffix (gdbarch, ")");
3755 set_gdbarch_stap_is_single_operand (gdbarch,
3756 i386_stap_is_single_operand);
3757 set_gdbarch_stap_parse_special_token (gdbarch,
3758 i386_stap_parse_special_token);
3759 }
3760
3761 /* System V Release 4 (SVR4). */
3762
3763 void
3764 i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3765 {
3766 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3767
3768 /* System V Release 4 uses ELF. */
3769 i386_elf_init_abi (info, gdbarch);
3770
3771 /* System V Release 4 has shared libraries. */
3772 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
3773
3774 tdep->sigtramp_p = i386_svr4_sigtramp_p;
3775 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
3776 tdep->sc_pc_offset = 36 + 14 * 4;
3777 tdep->sc_sp_offset = 36 + 17 * 4;
3778
3779 tdep->jb_pc_offset = 20;
3780 }
3781
3782 /* DJGPP. */
3783
3784 static void
3785 i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3786 {
3787 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3788
3789 /* DJGPP doesn't have any special frames for signal handlers. */
3790 tdep->sigtramp_p = NULL;
3791
3792 tdep->jb_pc_offset = 36;
3793
3794 /* DJGPP does not support the SSE registers. */
3795 if (! tdesc_has_registers (info.target_desc))
3796 tdep->tdesc = tdesc_i386_mmx;
3797
3798 /* Native compiler is GCC, which uses the SVR4 register numbering
3799 even in COFF and STABS. See the comment in i386_gdbarch_init,
3800 before the calls to set_gdbarch_stab_reg_to_regnum and
3801 set_gdbarch_sdb_reg_to_regnum. */
3802 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
3803 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
3804
3805 set_gdbarch_has_dos_based_file_system (gdbarch, 1);
3806 }
3807 \f
3808
3809 /* i386 register groups. In addition to the normal groups, add "mmx"
3810 and "sse". */
3811
3812 static struct reggroup *i386_sse_reggroup;
3813 static struct reggroup *i386_mmx_reggroup;
3814
3815 static void
3816 i386_init_reggroups (void)
3817 {
3818 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
3819 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
3820 }
3821
3822 static void
3823 i386_add_reggroups (struct gdbarch *gdbarch)
3824 {
3825 reggroup_add (gdbarch, i386_sse_reggroup);
3826 reggroup_add (gdbarch, i386_mmx_reggroup);
3827 reggroup_add (gdbarch, general_reggroup);
3828 reggroup_add (gdbarch, float_reggroup);
3829 reggroup_add (gdbarch, all_reggroup);
3830 reggroup_add (gdbarch, save_reggroup);
3831 reggroup_add (gdbarch, restore_reggroup);
3832 reggroup_add (gdbarch, vector_reggroup);
3833 reggroup_add (gdbarch, system_reggroup);
3834 }
3835
3836 int
3837 i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
3838 struct reggroup *group)
3839 {
3840 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3841 int fp_regnum_p, mmx_regnum_p, xmm_regnum_p, mxcsr_regnum_p,
3842 ymm_regnum_p, ymmh_regnum_p;
3843
3844 /* Don't include pseudo registers, except for MMX, in any register
3845 groups. */
3846 if (i386_byte_regnum_p (gdbarch, regnum))
3847 return 0;
3848
3849 if (i386_word_regnum_p (gdbarch, regnum))
3850 return 0;
3851
3852 if (i386_dword_regnum_p (gdbarch, regnum))
3853 return 0;
3854
3855 mmx_regnum_p = i386_mmx_regnum_p (gdbarch, regnum);
3856 if (group == i386_mmx_reggroup)
3857 return mmx_regnum_p;
3858
3859 xmm_regnum_p = i386_xmm_regnum_p (gdbarch, regnum);
3860 mxcsr_regnum_p = i386_mxcsr_regnum_p (gdbarch, regnum);
3861 if (group == i386_sse_reggroup)
3862 return xmm_regnum_p || mxcsr_regnum_p;
3863
3864 ymm_regnum_p = i386_ymm_regnum_p (gdbarch, regnum);
3865 if (group == vector_reggroup)
3866 return (mmx_regnum_p
3867 || ymm_regnum_p
3868 || mxcsr_regnum_p
3869 || (xmm_regnum_p
3870 && ((tdep->xcr0 & I386_XSTATE_AVX_MASK)
3871 == I386_XSTATE_SSE_MASK)));
3872
3873 fp_regnum_p = (i386_fp_regnum_p (gdbarch, regnum)
3874 || i386_fpc_regnum_p (gdbarch, regnum));
3875 if (group == float_reggroup)
3876 return fp_regnum_p;
3877
3878 /* For "info reg all", don't include upper YMM registers nor XMM
3879 registers when AVX is supported. */
3880 ymmh_regnum_p = i386_ymmh_regnum_p (gdbarch, regnum);
3881 if (group == all_reggroup
3882 && ((xmm_regnum_p
3883 && (tdep->xcr0 & I386_XSTATE_AVX))
3884 || ymmh_regnum_p))
3885 return 0;
3886
3887 if (group == general_reggroup)
3888 return (!fp_regnum_p
3889 && !mmx_regnum_p
3890 && !mxcsr_regnum_p
3891 && !xmm_regnum_p
3892 && !ymm_regnum_p
3893 && !ymmh_regnum_p);
3894
3895 return default_register_reggroup_p (gdbarch, regnum, group);
3896 }
3897 \f
3898
3899 /* Get the ARGIth function argument for the current function. */
3900
3901 static CORE_ADDR
3902 i386_fetch_pointer_argument (struct frame_info *frame, int argi,
3903 struct type *type)
3904 {
3905 struct gdbarch *gdbarch = get_frame_arch (frame);
3906 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3907 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
3908 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4, byte_order);
3909 }
3910
3911 static void
3912 i386_skip_permanent_breakpoint (struct regcache *regcache)
3913 {
3914 CORE_ADDR current_pc = regcache_read_pc (regcache);
3915
3916 /* On i386, breakpoint is exactly 1 byte long, so we just
3917 adjust the PC in the regcache. */
3918 current_pc += 1;
3919 regcache_write_pc (regcache, current_pc);
3920 }
3921
3922
3923 #define PREFIX_REPZ 0x01
3924 #define PREFIX_REPNZ 0x02
3925 #define PREFIX_LOCK 0x04
3926 #define PREFIX_DATA 0x08
3927 #define PREFIX_ADDR 0x10
3928
3929 /* operand size */
3930 enum
3931 {
3932 OT_BYTE = 0,
3933 OT_WORD,
3934 OT_LONG,
3935 OT_QUAD,
3936 OT_DQUAD,
3937 };
3938
3939 /* i386 arith/logic operations */
3940 enum
3941 {
3942 OP_ADDL,
3943 OP_ORL,
3944 OP_ADCL,
3945 OP_SBBL,
3946 OP_ANDL,
3947 OP_SUBL,
3948 OP_XORL,
3949 OP_CMPL,
3950 };
3951
3952 struct i386_record_s
3953 {
3954 struct gdbarch *gdbarch;
3955 struct regcache *regcache;
3956 CORE_ADDR orig_addr;
3957 CORE_ADDR addr;
3958 int aflag;
3959 int dflag;
3960 int override;
3961 uint8_t modrm;
3962 uint8_t mod, reg, rm;
3963 int ot;
3964 uint8_t rex_x;
3965 uint8_t rex_b;
3966 int rip_offset;
3967 int popl_esp_hack;
3968 const int *regmap;
3969 };
3970
3971 /* Parse the "modrm" part of the memory address irp->addr points at.
3972 Returns -1 if something goes wrong, 0 otherwise. */
3973
3974 static int
3975 i386_record_modrm (struct i386_record_s *irp)
3976 {
3977 struct gdbarch *gdbarch = irp->gdbarch;
3978
3979 if (record_read_memory (gdbarch, irp->addr, &irp->modrm, 1))
3980 return -1;
3981
3982 irp->addr++;
3983 irp->mod = (irp->modrm >> 6) & 3;
3984 irp->reg = (irp->modrm >> 3) & 7;
3985 irp->rm = irp->modrm & 7;
3986
3987 return 0;
3988 }
3989
3990 /* Extract the memory address that the current instruction writes to,
3991 and return it in *ADDR. Return -1 if something goes wrong. */
3992
3993 static int
3994 i386_record_lea_modrm_addr (struct i386_record_s *irp, uint64_t *addr)
3995 {
3996 struct gdbarch *gdbarch = irp->gdbarch;
3997 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3998 gdb_byte buf[4];
3999 ULONGEST offset64;
4000
4001 *addr = 0;
4002 if (irp->aflag)
4003 {
4004 /* 32 bits */
4005 int havesib = 0;
4006 uint8_t scale = 0;
4007 uint8_t byte;
4008 uint8_t index = 0;
4009 uint8_t base = irp->rm;
4010
4011 if (base == 4)
4012 {
4013 havesib = 1;
4014 if (record_read_memory (gdbarch, irp->addr, &byte, 1))
4015 return -1;
4016 irp->addr++;
4017 scale = (byte >> 6) & 3;
4018 index = ((byte >> 3) & 7) | irp->rex_x;
4019 base = (byte & 7);
4020 }
4021 base |= irp->rex_b;
4022
4023 switch (irp->mod)
4024 {
4025 case 0:
4026 if ((base & 7) == 5)
4027 {
4028 base = 0xff;
4029 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4030 return -1;
4031 irp->addr += 4;
4032 *addr = extract_signed_integer (buf, 4, byte_order);
4033 if (irp->regmap[X86_RECORD_R8_REGNUM] && !havesib)
4034 *addr += irp->addr + irp->rip_offset;
4035 }
4036 break;
4037 case 1:
4038 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4039 return -1;
4040 irp->addr++;
4041 *addr = (int8_t) buf[0];
4042 break;
4043 case 2:
4044 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4045 return -1;
4046 *addr = extract_signed_integer (buf, 4, byte_order);
4047 irp->addr += 4;
4048 break;
4049 }
4050
4051 offset64 = 0;
4052 if (base != 0xff)
4053 {
4054 if (base == 4 && irp->popl_esp_hack)
4055 *addr += irp->popl_esp_hack;
4056 regcache_raw_read_unsigned (irp->regcache, irp->regmap[base],
4057 &offset64);
4058 }
4059 if (irp->aflag == 2)
4060 {
4061 *addr += offset64;
4062 }
4063 else
4064 *addr = (uint32_t) (offset64 + *addr);
4065
4066 if (havesib && (index != 4 || scale != 0))
4067 {
4068 regcache_raw_read_unsigned (irp->regcache, irp->regmap[index],
4069 &offset64);
4070 if (irp->aflag == 2)
4071 *addr += offset64 << scale;
4072 else
4073 *addr = (uint32_t) (*addr + (offset64 << scale));
4074 }
4075 }
4076 else
4077 {
4078 /* 16 bits */
4079 switch (irp->mod)
4080 {
4081 case 0:
4082 if (irp->rm == 6)
4083 {
4084 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4085 return -1;
4086 irp->addr += 2;
4087 *addr = extract_signed_integer (buf, 2, byte_order);
4088 irp->rm = 0;
4089 goto no_rm;
4090 }
4091 break;
4092 case 1:
4093 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4094 return -1;
4095 irp->addr++;
4096 *addr = (int8_t) buf[0];
4097 break;
4098 case 2:
4099 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4100 return -1;
4101 irp->addr += 2;
4102 *addr = extract_signed_integer (buf, 2, byte_order);
4103 break;
4104 }
4105
4106 switch (irp->rm)
4107 {
4108 case 0:
4109 regcache_raw_read_unsigned (irp->regcache,
4110 irp->regmap[X86_RECORD_REBX_REGNUM],
4111 &offset64);
4112 *addr = (uint32_t) (*addr + offset64);
4113 regcache_raw_read_unsigned (irp->regcache,
4114 irp->regmap[X86_RECORD_RESI_REGNUM],
4115 &offset64);
4116 *addr = (uint32_t) (*addr + offset64);
4117 break;
4118 case 1:
4119 regcache_raw_read_unsigned (irp->regcache,
4120 irp->regmap[X86_RECORD_REBX_REGNUM],
4121 &offset64);
4122 *addr = (uint32_t) (*addr + offset64);
4123 regcache_raw_read_unsigned (irp->regcache,
4124 irp->regmap[X86_RECORD_REDI_REGNUM],
4125 &offset64);
4126 *addr = (uint32_t) (*addr + offset64);
4127 break;
4128 case 2:
4129 regcache_raw_read_unsigned (irp->regcache,
4130 irp->regmap[X86_RECORD_REBP_REGNUM],
4131 &offset64);
4132 *addr = (uint32_t) (*addr + offset64);
4133 regcache_raw_read_unsigned (irp->regcache,
4134 irp->regmap[X86_RECORD_RESI_REGNUM],
4135 &offset64);
4136 *addr = (uint32_t) (*addr + offset64);
4137 break;
4138 case 3:
4139 regcache_raw_read_unsigned (irp->regcache,
4140 irp->regmap[X86_RECORD_REBP_REGNUM],
4141 &offset64);
4142 *addr = (uint32_t) (*addr + offset64);
4143 regcache_raw_read_unsigned (irp->regcache,
4144 irp->regmap[X86_RECORD_REDI_REGNUM],
4145 &offset64);
4146 *addr = (uint32_t) (*addr + offset64);
4147 break;
4148 case 4:
4149 regcache_raw_read_unsigned (irp->regcache,
4150 irp->regmap[X86_RECORD_RESI_REGNUM],
4151 &offset64);
4152 *addr = (uint32_t) (*addr + offset64);
4153 break;
4154 case 5:
4155 regcache_raw_read_unsigned (irp->regcache,
4156 irp->regmap[X86_RECORD_REDI_REGNUM],
4157 &offset64);
4158 *addr = (uint32_t) (*addr + offset64);
4159 break;
4160 case 6:
4161 regcache_raw_read_unsigned (irp->regcache,
4162 irp->regmap[X86_RECORD_REBP_REGNUM],
4163 &offset64);
4164 *addr = (uint32_t) (*addr + offset64);
4165 break;
4166 case 7:
4167 regcache_raw_read_unsigned (irp->regcache,
4168 irp->regmap[X86_RECORD_REBX_REGNUM],
4169 &offset64);
4170 *addr = (uint32_t) (*addr + offset64);
4171 break;
4172 }
4173 *addr &= 0xffff;
4174 }
4175
4176 no_rm:
4177 return 0;
4178 }
4179
4180 /* Record the address and contents of the memory that will be changed
4181 by the current instruction. Return -1 if something goes wrong, 0
4182 otherwise. */
4183
4184 static int
4185 i386_record_lea_modrm (struct i386_record_s *irp)
4186 {
4187 struct gdbarch *gdbarch = irp->gdbarch;
4188 uint64_t addr;
4189
4190 if (irp->override >= 0)
4191 {
4192 if (record_memory_query)
4193 {
4194 int q;
4195
4196 target_terminal_ours ();
4197 q = yquery (_("\
4198 Process record ignores the memory change of instruction at address %s\n\
4199 because it can't get the value of the segment register.\n\
4200 Do you want to stop the program?"),
4201 paddress (gdbarch, irp->orig_addr));
4202 target_terminal_inferior ();
4203 if (q)
4204 return -1;
4205 }
4206
4207 return 0;
4208 }
4209
4210 if (i386_record_lea_modrm_addr (irp, &addr))
4211 return -1;
4212
4213 if (record_arch_list_add_mem (addr, 1 << irp->ot))
4214 return -1;
4215
4216 return 0;
4217 }
4218
4219 /* Record the effects of a push operation. Return -1 if something
4220 goes wrong, 0 otherwise. */
4221
4222 static int
4223 i386_record_push (struct i386_record_s *irp, int size)
4224 {
4225 ULONGEST addr;
4226
4227 if (record_arch_list_add_reg (irp->regcache,
4228 irp->regmap[X86_RECORD_RESP_REGNUM]))
4229 return -1;
4230 regcache_raw_read_unsigned (irp->regcache,
4231 irp->regmap[X86_RECORD_RESP_REGNUM],
4232 &addr);
4233 if (record_arch_list_add_mem ((CORE_ADDR) addr - size, size))
4234 return -1;
4235
4236 return 0;
4237 }
4238
4239
4240 /* Defines contents to record. */
4241 #define I386_SAVE_FPU_REGS 0xfffd
4242 #define I386_SAVE_FPU_ENV 0xfffe
4243 #define I386_SAVE_FPU_ENV_REG_STACK 0xffff
4244
4245 /* Record the values of the floating point registers which will be
4246 changed by the current instruction. Returns -1 if something is
4247 wrong, 0 otherwise. */
4248
4249 static int i386_record_floats (struct gdbarch *gdbarch,
4250 struct i386_record_s *ir,
4251 uint32_t iregnum)
4252 {
4253 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4254 int i;
4255
4256 /* Oza: Because of floating point insn push/pop of fpu stack is going to
4257 happen. Currently we store st0-st7 registers, but we need not store all
4258 registers all the time, in future we use ftag register and record only
4259 those who are not marked as an empty. */
4260
4261 if (I386_SAVE_FPU_REGS == iregnum)
4262 {
4263 for (i = I387_ST0_REGNUM (tdep); i <= I387_ST0_REGNUM (tdep) + 7; i++)
4264 {
4265 if (record_arch_list_add_reg (ir->regcache, i))
4266 return -1;
4267 }
4268 }
4269 else if (I386_SAVE_FPU_ENV == iregnum)
4270 {
4271 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4272 {
4273 if (record_arch_list_add_reg (ir->regcache, i))
4274 return -1;
4275 }
4276 }
4277 else if (I386_SAVE_FPU_ENV_REG_STACK == iregnum)
4278 {
4279 for (i = I387_ST0_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4280 {
4281 if (record_arch_list_add_reg (ir->regcache, i))
4282 return -1;
4283 }
4284 }
4285 else if ((iregnum >= I387_ST0_REGNUM (tdep)) &&
4286 (iregnum <= I387_FOP_REGNUM (tdep)))
4287 {
4288 if (record_arch_list_add_reg (ir->regcache,iregnum))
4289 return -1;
4290 }
4291 else
4292 {
4293 /* Parameter error. */
4294 return -1;
4295 }
4296 if(I386_SAVE_FPU_ENV != iregnum)
4297 {
4298 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4299 {
4300 if (record_arch_list_add_reg (ir->regcache, i))
4301 return -1;
4302 }
4303 }
4304 return 0;
4305 }
4306
4307 /* Parse the current instruction, and record the values of the
4308 registers and memory that will be changed by the current
4309 instruction. Returns -1 if something goes wrong, 0 otherwise. */
4310
4311 #define I386_RECORD_ARCH_LIST_ADD_REG(regnum) \
4312 record_arch_list_add_reg (ir.regcache, ir.regmap[(regnum)])
4313
4314 int
4315 i386_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
4316 CORE_ADDR input_addr)
4317 {
4318 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4319 int prefixes = 0;
4320 int regnum = 0;
4321 uint32_t opcode;
4322 uint8_t opcode8;
4323 ULONGEST addr;
4324 gdb_byte buf[MAX_REGISTER_SIZE];
4325 struct i386_record_s ir;
4326 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4327 int rex = 0;
4328 uint8_t rex_w = -1;
4329 uint8_t rex_r = 0;
4330
4331 memset (&ir, 0, sizeof (struct i386_record_s));
4332 ir.regcache = regcache;
4333 ir.addr = input_addr;
4334 ir.orig_addr = input_addr;
4335 ir.aflag = 1;
4336 ir.dflag = 1;
4337 ir.override = -1;
4338 ir.popl_esp_hack = 0;
4339 ir.regmap = tdep->record_regmap;
4340 ir.gdbarch = gdbarch;
4341
4342 if (record_debug > 1)
4343 fprintf_unfiltered (gdb_stdlog, "Process record: i386_process_record "
4344 "addr = %s\n",
4345 paddress (gdbarch, ir.addr));
4346
4347 /* prefixes */
4348 while (1)
4349 {
4350 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
4351 return -1;
4352 ir.addr++;
4353 switch (opcode8) /* Instruction prefixes */
4354 {
4355 case REPE_PREFIX_OPCODE:
4356 prefixes |= PREFIX_REPZ;
4357 break;
4358 case REPNE_PREFIX_OPCODE:
4359 prefixes |= PREFIX_REPNZ;
4360 break;
4361 case LOCK_PREFIX_OPCODE:
4362 prefixes |= PREFIX_LOCK;
4363 break;
4364 case CS_PREFIX_OPCODE:
4365 ir.override = X86_RECORD_CS_REGNUM;
4366 break;
4367 case SS_PREFIX_OPCODE:
4368 ir.override = X86_RECORD_SS_REGNUM;
4369 break;
4370 case DS_PREFIX_OPCODE:
4371 ir.override = X86_RECORD_DS_REGNUM;
4372 break;
4373 case ES_PREFIX_OPCODE:
4374 ir.override = X86_RECORD_ES_REGNUM;
4375 break;
4376 case FS_PREFIX_OPCODE:
4377 ir.override = X86_RECORD_FS_REGNUM;
4378 break;
4379 case GS_PREFIX_OPCODE:
4380 ir.override = X86_RECORD_GS_REGNUM;
4381 break;
4382 case DATA_PREFIX_OPCODE:
4383 prefixes |= PREFIX_DATA;
4384 break;
4385 case ADDR_PREFIX_OPCODE:
4386 prefixes |= PREFIX_ADDR;
4387 break;
4388 case 0x40: /* i386 inc %eax */
4389 case 0x41: /* i386 inc %ecx */
4390 case 0x42: /* i386 inc %edx */
4391 case 0x43: /* i386 inc %ebx */
4392 case 0x44: /* i386 inc %esp */
4393 case 0x45: /* i386 inc %ebp */
4394 case 0x46: /* i386 inc %esi */
4395 case 0x47: /* i386 inc %edi */
4396 case 0x48: /* i386 dec %eax */
4397 case 0x49: /* i386 dec %ecx */
4398 case 0x4a: /* i386 dec %edx */
4399 case 0x4b: /* i386 dec %ebx */
4400 case 0x4c: /* i386 dec %esp */
4401 case 0x4d: /* i386 dec %ebp */
4402 case 0x4e: /* i386 dec %esi */
4403 case 0x4f: /* i386 dec %edi */
4404 if (ir.regmap[X86_RECORD_R8_REGNUM]) /* 64 bit target */
4405 {
4406 /* REX */
4407 rex = 1;
4408 rex_w = (opcode8 >> 3) & 1;
4409 rex_r = (opcode8 & 0x4) << 1;
4410 ir.rex_x = (opcode8 & 0x2) << 2;
4411 ir.rex_b = (opcode8 & 0x1) << 3;
4412 }
4413 else /* 32 bit target */
4414 goto out_prefixes;
4415 break;
4416 default:
4417 goto out_prefixes;
4418 break;
4419 }
4420 }
4421 out_prefixes:
4422 if (ir.regmap[X86_RECORD_R8_REGNUM] && rex_w == 1)
4423 {
4424 ir.dflag = 2;
4425 }
4426 else
4427 {
4428 if (prefixes & PREFIX_DATA)
4429 ir.dflag ^= 1;
4430 }
4431 if (prefixes & PREFIX_ADDR)
4432 ir.aflag ^= 1;
4433 else if (ir.regmap[X86_RECORD_R8_REGNUM])
4434 ir.aflag = 2;
4435
4436 /* Now check op code. */
4437 opcode = (uint32_t) opcode8;
4438 reswitch:
4439 switch (opcode)
4440 {
4441 case 0x0f:
4442 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
4443 return -1;
4444 ir.addr++;
4445 opcode = (uint32_t) opcode8 | 0x0f00;
4446 goto reswitch;
4447 break;
4448
4449 case 0x00: /* arith & logic */
4450 case 0x01:
4451 case 0x02:
4452 case 0x03:
4453 case 0x04:
4454 case 0x05:
4455 case 0x08:
4456 case 0x09:
4457 case 0x0a:
4458 case 0x0b:
4459 case 0x0c:
4460 case 0x0d:
4461 case 0x10:
4462 case 0x11:
4463 case 0x12:
4464 case 0x13:
4465 case 0x14:
4466 case 0x15:
4467 case 0x18:
4468 case 0x19:
4469 case 0x1a:
4470 case 0x1b:
4471 case 0x1c:
4472 case 0x1d:
4473 case 0x20:
4474 case 0x21:
4475 case 0x22:
4476 case 0x23:
4477 case 0x24:
4478 case 0x25:
4479 case 0x28:
4480 case 0x29:
4481 case 0x2a:
4482 case 0x2b:
4483 case 0x2c:
4484 case 0x2d:
4485 case 0x30:
4486 case 0x31:
4487 case 0x32:
4488 case 0x33:
4489 case 0x34:
4490 case 0x35:
4491 case 0x38:
4492 case 0x39:
4493 case 0x3a:
4494 case 0x3b:
4495 case 0x3c:
4496 case 0x3d:
4497 if (((opcode >> 3) & 7) != OP_CMPL)
4498 {
4499 if ((opcode & 1) == 0)
4500 ir.ot = OT_BYTE;
4501 else
4502 ir.ot = ir.dflag + OT_WORD;
4503
4504 switch ((opcode >> 1) & 3)
4505 {
4506 case 0: /* OP Ev, Gv */
4507 if (i386_record_modrm (&ir))
4508 return -1;
4509 if (ir.mod != 3)
4510 {
4511 if (i386_record_lea_modrm (&ir))
4512 return -1;
4513 }
4514 else
4515 {
4516 ir.rm |= ir.rex_b;
4517 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4518 ir.rm &= 0x3;
4519 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
4520 }
4521 break;
4522 case 1: /* OP Gv, Ev */
4523 if (i386_record_modrm (&ir))
4524 return -1;
4525 ir.reg |= rex_r;
4526 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4527 ir.reg &= 0x3;
4528 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4529 break;
4530 case 2: /* OP A, Iv */
4531 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4532 break;
4533 }
4534 }
4535 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4536 break;
4537
4538 case 0x80: /* GRP1 */
4539 case 0x81:
4540 case 0x82:
4541 case 0x83:
4542 if (i386_record_modrm (&ir))
4543 return -1;
4544
4545 if (ir.reg != OP_CMPL)
4546 {
4547 if ((opcode & 1) == 0)
4548 ir.ot = OT_BYTE;
4549 else
4550 ir.ot = ir.dflag + OT_WORD;
4551
4552 if (ir.mod != 3)
4553 {
4554 if (opcode == 0x83)
4555 ir.rip_offset = 1;
4556 else
4557 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
4558 if (i386_record_lea_modrm (&ir))
4559 return -1;
4560 }
4561 else
4562 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
4563 }
4564 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4565 break;
4566
4567 case 0x40: /* inc */
4568 case 0x41:
4569 case 0x42:
4570 case 0x43:
4571 case 0x44:
4572 case 0x45:
4573 case 0x46:
4574 case 0x47:
4575
4576 case 0x48: /* dec */
4577 case 0x49:
4578 case 0x4a:
4579 case 0x4b:
4580 case 0x4c:
4581 case 0x4d:
4582 case 0x4e:
4583 case 0x4f:
4584
4585 I386_RECORD_ARCH_LIST_ADD_REG (opcode & 7);
4586 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4587 break;
4588
4589 case 0xf6: /* GRP3 */
4590 case 0xf7:
4591 if ((opcode & 1) == 0)
4592 ir.ot = OT_BYTE;
4593 else
4594 ir.ot = ir.dflag + OT_WORD;
4595 if (i386_record_modrm (&ir))
4596 return -1;
4597
4598 if (ir.mod != 3 && ir.reg == 0)
4599 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
4600
4601 switch (ir.reg)
4602 {
4603 case 0: /* test */
4604 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4605 break;
4606 case 2: /* not */
4607 case 3: /* neg */
4608 if (ir.mod != 3)
4609 {
4610 if (i386_record_lea_modrm (&ir))
4611 return -1;
4612 }
4613 else
4614 {
4615 ir.rm |= ir.rex_b;
4616 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4617 ir.rm &= 0x3;
4618 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
4619 }
4620 if (ir.reg == 3) /* neg */
4621 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4622 break;
4623 case 4: /* mul */
4624 case 5: /* imul */
4625 case 6: /* div */
4626 case 7: /* idiv */
4627 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4628 if (ir.ot != OT_BYTE)
4629 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
4630 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4631 break;
4632 default:
4633 ir.addr -= 2;
4634 opcode = opcode << 8 | ir.modrm;
4635 goto no_support;
4636 break;
4637 }
4638 break;
4639
4640 case 0xfe: /* GRP4 */
4641 case 0xff: /* GRP5 */
4642 if (i386_record_modrm (&ir))
4643 return -1;
4644 if (ir.reg >= 2 && opcode == 0xfe)
4645 {
4646 ir.addr -= 2;
4647 opcode = opcode << 8 | ir.modrm;
4648 goto no_support;
4649 }
4650 switch (ir.reg)
4651 {
4652 case 0: /* inc */
4653 case 1: /* dec */
4654 if ((opcode & 1) == 0)
4655 ir.ot = OT_BYTE;
4656 else
4657 ir.ot = ir.dflag + OT_WORD;
4658 if (ir.mod != 3)
4659 {
4660 if (i386_record_lea_modrm (&ir))
4661 return -1;
4662 }
4663 else
4664 {
4665 ir.rm |= ir.rex_b;
4666 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4667 ir.rm &= 0x3;
4668 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
4669 }
4670 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4671 break;
4672 case 2: /* call */
4673 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4674 ir.dflag = 2;
4675 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4676 return -1;
4677 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4678 break;
4679 case 3: /* lcall */
4680 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
4681 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4682 return -1;
4683 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4684 break;
4685 case 4: /* jmp */
4686 case 5: /* ljmp */
4687 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4688 break;
4689 case 6: /* push */
4690 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4691 ir.dflag = 2;
4692 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4693 return -1;
4694 break;
4695 default:
4696 ir.addr -= 2;
4697 opcode = opcode << 8 | ir.modrm;
4698 goto no_support;
4699 break;
4700 }
4701 break;
4702
4703 case 0x84: /* test */
4704 case 0x85:
4705 case 0xa8:
4706 case 0xa9:
4707 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4708 break;
4709
4710 case 0x98: /* CWDE/CBW */
4711 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4712 break;
4713
4714 case 0x99: /* CDQ/CWD */
4715 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4716 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
4717 break;
4718
4719 case 0x0faf: /* imul */
4720 case 0x69:
4721 case 0x6b:
4722 ir.ot = ir.dflag + OT_WORD;
4723 if (i386_record_modrm (&ir))
4724 return -1;
4725 if (opcode == 0x69)
4726 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
4727 else if (opcode == 0x6b)
4728 ir.rip_offset = 1;
4729 ir.reg |= rex_r;
4730 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4731 ir.reg &= 0x3;
4732 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4733 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4734 break;
4735
4736 case 0x0fc0: /* xadd */
4737 case 0x0fc1:
4738 if ((opcode & 1) == 0)
4739 ir.ot = OT_BYTE;
4740 else
4741 ir.ot = ir.dflag + OT_WORD;
4742 if (i386_record_modrm (&ir))
4743 return -1;
4744 ir.reg |= rex_r;
4745 if (ir.mod == 3)
4746 {
4747 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4748 ir.reg &= 0x3;
4749 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4750 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4751 ir.rm &= 0x3;
4752 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
4753 }
4754 else
4755 {
4756 if (i386_record_lea_modrm (&ir))
4757 return -1;
4758 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4759 ir.reg &= 0x3;
4760 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4761 }
4762 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4763 break;
4764
4765 case 0x0fb0: /* cmpxchg */
4766 case 0x0fb1:
4767 if ((opcode & 1) == 0)
4768 ir.ot = OT_BYTE;
4769 else
4770 ir.ot = ir.dflag + OT_WORD;
4771 if (i386_record_modrm (&ir))
4772 return -1;
4773 if (ir.mod == 3)
4774 {
4775 ir.reg |= rex_r;
4776 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4777 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4778 ir.reg &= 0x3;
4779 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4780 }
4781 else
4782 {
4783 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4784 if (i386_record_lea_modrm (&ir))
4785 return -1;
4786 }
4787 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4788 break;
4789
4790 case 0x0fc7: /* cmpxchg8b */
4791 if (i386_record_modrm (&ir))
4792 return -1;
4793 if (ir.mod == 3)
4794 {
4795 ir.addr -= 2;
4796 opcode = opcode << 8 | ir.modrm;
4797 goto no_support;
4798 }
4799 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4800 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
4801 if (i386_record_lea_modrm (&ir))
4802 return -1;
4803 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4804 break;
4805
4806 case 0x50: /* push */
4807 case 0x51:
4808 case 0x52:
4809 case 0x53:
4810 case 0x54:
4811 case 0x55:
4812 case 0x56:
4813 case 0x57:
4814 case 0x68:
4815 case 0x6a:
4816 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4817 ir.dflag = 2;
4818 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4819 return -1;
4820 break;
4821
4822 case 0x06: /* push es */
4823 case 0x0e: /* push cs */
4824 case 0x16: /* push ss */
4825 case 0x1e: /* push ds */
4826 if (ir.regmap[X86_RECORD_R8_REGNUM])
4827 {
4828 ir.addr -= 1;
4829 goto no_support;
4830 }
4831 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4832 return -1;
4833 break;
4834
4835 case 0x0fa0: /* push fs */
4836 case 0x0fa8: /* push gs */
4837 if (ir.regmap[X86_RECORD_R8_REGNUM])
4838 {
4839 ir.addr -= 2;
4840 goto no_support;
4841 }
4842 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4843 return -1;
4844 break;
4845
4846 case 0x60: /* pusha */
4847 if (ir.regmap[X86_RECORD_R8_REGNUM])
4848 {
4849 ir.addr -= 1;
4850 goto no_support;
4851 }
4852 if (i386_record_push (&ir, 1 << (ir.dflag + 4)))
4853 return -1;
4854 break;
4855
4856 case 0x58: /* pop */
4857 case 0x59:
4858 case 0x5a:
4859 case 0x5b:
4860 case 0x5c:
4861 case 0x5d:
4862 case 0x5e:
4863 case 0x5f:
4864 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4865 I386_RECORD_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
4866 break;
4867
4868 case 0x61: /* popa */
4869 if (ir.regmap[X86_RECORD_R8_REGNUM])
4870 {
4871 ir.addr -= 1;
4872 goto no_support;
4873 }
4874 for (regnum = X86_RECORD_REAX_REGNUM;
4875 regnum <= X86_RECORD_REDI_REGNUM;
4876 regnum++)
4877 I386_RECORD_ARCH_LIST_ADD_REG (regnum);
4878 break;
4879
4880 case 0x8f: /* pop */
4881 if (ir.regmap[X86_RECORD_R8_REGNUM])
4882 ir.ot = ir.dflag ? OT_QUAD : OT_WORD;
4883 else
4884 ir.ot = ir.dflag + OT_WORD;
4885 if (i386_record_modrm (&ir))
4886 return -1;
4887 if (ir.mod == 3)
4888 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
4889 else
4890 {
4891 ir.popl_esp_hack = 1 << ir.ot;
4892 if (i386_record_lea_modrm (&ir))
4893 return -1;
4894 }
4895 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4896 break;
4897
4898 case 0xc8: /* enter */
4899 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
4900 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4901 ir.dflag = 2;
4902 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4903 return -1;
4904 break;
4905
4906 case 0xc9: /* leave */
4907 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4908 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
4909 break;
4910
4911 case 0x07: /* pop es */
4912 if (ir.regmap[X86_RECORD_R8_REGNUM])
4913 {
4914 ir.addr -= 1;
4915 goto no_support;
4916 }
4917 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4918 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_ES_REGNUM);
4919 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4920 break;
4921
4922 case 0x17: /* pop ss */
4923 if (ir.regmap[X86_RECORD_R8_REGNUM])
4924 {
4925 ir.addr -= 1;
4926 goto no_support;
4927 }
4928 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4929 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_SS_REGNUM);
4930 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4931 break;
4932
4933 case 0x1f: /* pop ds */
4934 if (ir.regmap[X86_RECORD_R8_REGNUM])
4935 {
4936 ir.addr -= 1;
4937 goto no_support;
4938 }
4939 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4940 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_DS_REGNUM);
4941 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4942 break;
4943
4944 case 0x0fa1: /* pop fs */
4945 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4946 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_FS_REGNUM);
4947 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4948 break;
4949
4950 case 0x0fa9: /* pop gs */
4951 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4952 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
4953 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4954 break;
4955
4956 case 0x88: /* mov */
4957 case 0x89:
4958 case 0xc6:
4959 case 0xc7:
4960 if ((opcode & 1) == 0)
4961 ir.ot = OT_BYTE;
4962 else
4963 ir.ot = ir.dflag + OT_WORD;
4964
4965 if (i386_record_modrm (&ir))
4966 return -1;
4967
4968 if (ir.mod != 3)
4969 {
4970 if (opcode == 0xc6 || opcode == 0xc7)
4971 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
4972 if (i386_record_lea_modrm (&ir))
4973 return -1;
4974 }
4975 else
4976 {
4977 if (opcode == 0xc6 || opcode == 0xc7)
4978 ir.rm |= ir.rex_b;
4979 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4980 ir.rm &= 0x3;
4981 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
4982 }
4983 break;
4984
4985 case 0x8a: /* mov */
4986 case 0x8b:
4987 if ((opcode & 1) == 0)
4988 ir.ot = OT_BYTE;
4989 else
4990 ir.ot = ir.dflag + OT_WORD;
4991 if (i386_record_modrm (&ir))
4992 return -1;
4993 ir.reg |= rex_r;
4994 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4995 ir.reg &= 0x3;
4996 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4997 break;
4998
4999 case 0x8c: /* mov seg */
5000 if (i386_record_modrm (&ir))
5001 return -1;
5002 if (ir.reg > 5)
5003 {
5004 ir.addr -= 2;
5005 opcode = opcode << 8 | ir.modrm;
5006 goto no_support;
5007 }
5008
5009 if (ir.mod == 3)
5010 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
5011 else
5012 {
5013 ir.ot = OT_WORD;
5014 if (i386_record_lea_modrm (&ir))
5015 return -1;
5016 }
5017 break;
5018
5019 case 0x8e: /* mov seg */
5020 if (i386_record_modrm (&ir))
5021 return -1;
5022 switch (ir.reg)
5023 {
5024 case 0:
5025 regnum = X86_RECORD_ES_REGNUM;
5026 break;
5027 case 2:
5028 regnum = X86_RECORD_SS_REGNUM;
5029 break;
5030 case 3:
5031 regnum = X86_RECORD_DS_REGNUM;
5032 break;
5033 case 4:
5034 regnum = X86_RECORD_FS_REGNUM;
5035 break;
5036 case 5:
5037 regnum = X86_RECORD_GS_REGNUM;
5038 break;
5039 default:
5040 ir.addr -= 2;
5041 opcode = opcode << 8 | ir.modrm;
5042 goto no_support;
5043 break;
5044 }
5045 I386_RECORD_ARCH_LIST_ADD_REG (regnum);
5046 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5047 break;
5048
5049 case 0x0fb6: /* movzbS */
5050 case 0x0fb7: /* movzwS */
5051 case 0x0fbe: /* movsbS */
5052 case 0x0fbf: /* movswS */
5053 if (i386_record_modrm (&ir))
5054 return -1;
5055 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5056 break;
5057
5058 case 0x8d: /* lea */
5059 if (i386_record_modrm (&ir))
5060 return -1;
5061 if (ir.mod == 3)
5062 {
5063 ir.addr -= 2;
5064 opcode = opcode << 8 | ir.modrm;
5065 goto no_support;
5066 }
5067 ir.ot = ir.dflag;
5068 ir.reg |= rex_r;
5069 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5070 ir.reg &= 0x3;
5071 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
5072 break;
5073
5074 case 0xa0: /* mov EAX */
5075 case 0xa1:
5076
5077 case 0xd7: /* xlat */
5078 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5079 break;
5080
5081 case 0xa2: /* mov EAX */
5082 case 0xa3:
5083 if (ir.override >= 0)
5084 {
5085 if (record_memory_query)
5086 {
5087 int q;
5088
5089 target_terminal_ours ();
5090 q = yquery (_("\
5091 Process record ignores the memory change of instruction at address %s\n\
5092 because it can't get the value of the segment register.\n\
5093 Do you want to stop the program?"),
5094 paddress (gdbarch, ir.orig_addr));
5095 target_terminal_inferior ();
5096 if (q)
5097 return -1;
5098 }
5099 }
5100 else
5101 {
5102 if ((opcode & 1) == 0)
5103 ir.ot = OT_BYTE;
5104 else
5105 ir.ot = ir.dflag + OT_WORD;
5106 if (ir.aflag == 2)
5107 {
5108 if (record_read_memory (gdbarch, ir.addr, buf, 8))
5109 return -1;
5110 ir.addr += 8;
5111 addr = extract_unsigned_integer (buf, 8, byte_order);
5112 }
5113 else if (ir.aflag)
5114 {
5115 if (record_read_memory (gdbarch, ir.addr, buf, 4))
5116 return -1;
5117 ir.addr += 4;
5118 addr = extract_unsigned_integer (buf, 4, byte_order);
5119 }
5120 else
5121 {
5122 if (record_read_memory (gdbarch, ir.addr, buf, 2))
5123 return -1;
5124 ir.addr += 2;
5125 addr = extract_unsigned_integer (buf, 2, byte_order);
5126 }
5127 if (record_arch_list_add_mem (addr, 1 << ir.ot))
5128 return -1;
5129 }
5130 break;
5131
5132 case 0xb0: /* mov R, Ib */
5133 case 0xb1:
5134 case 0xb2:
5135 case 0xb3:
5136 case 0xb4:
5137 case 0xb5:
5138 case 0xb6:
5139 case 0xb7:
5140 I386_RECORD_ARCH_LIST_ADD_REG ((ir.regmap[X86_RECORD_R8_REGNUM])
5141 ? ((opcode & 0x7) | ir.rex_b)
5142 : ((opcode & 0x7) & 0x3));
5143 break;
5144
5145 case 0xb8: /* mov R, Iv */
5146 case 0xb9:
5147 case 0xba:
5148 case 0xbb:
5149 case 0xbc:
5150 case 0xbd:
5151 case 0xbe:
5152 case 0xbf:
5153 I386_RECORD_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
5154 break;
5155
5156 case 0x91: /* xchg R, EAX */
5157 case 0x92:
5158 case 0x93:
5159 case 0x94:
5160 case 0x95:
5161 case 0x96:
5162 case 0x97:
5163 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5164 I386_RECORD_ARCH_LIST_ADD_REG (opcode & 0x7);
5165 break;
5166
5167 case 0x86: /* xchg Ev, Gv */
5168 case 0x87:
5169 if ((opcode & 1) == 0)
5170 ir.ot = OT_BYTE;
5171 else
5172 ir.ot = ir.dflag + OT_WORD;
5173 if (i386_record_modrm (&ir))
5174 return -1;
5175 if (ir.mod == 3)
5176 {
5177 ir.rm |= ir.rex_b;
5178 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5179 ir.rm &= 0x3;
5180 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
5181 }
5182 else
5183 {
5184 if (i386_record_lea_modrm (&ir))
5185 return -1;
5186 }
5187 ir.reg |= rex_r;
5188 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5189 ir.reg &= 0x3;
5190 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
5191 break;
5192
5193 case 0xc4: /* les Gv */
5194 case 0xc5: /* lds Gv */
5195 if (ir.regmap[X86_RECORD_R8_REGNUM])
5196 {
5197 ir.addr -= 1;
5198 goto no_support;
5199 }
5200 /* FALLTHROUGH */
5201 case 0x0fb2: /* lss Gv */
5202 case 0x0fb4: /* lfs Gv */
5203 case 0x0fb5: /* lgs Gv */
5204 if (i386_record_modrm (&ir))
5205 return -1;
5206 if (ir.mod == 3)
5207 {
5208 if (opcode > 0xff)
5209 ir.addr -= 3;
5210 else
5211 ir.addr -= 2;
5212 opcode = opcode << 8 | ir.modrm;
5213 goto no_support;
5214 }
5215 switch (opcode)
5216 {
5217 case 0xc4: /* les Gv */
5218 regnum = X86_RECORD_ES_REGNUM;
5219 break;
5220 case 0xc5: /* lds Gv */
5221 regnum = X86_RECORD_DS_REGNUM;
5222 break;
5223 case 0x0fb2: /* lss Gv */
5224 regnum = X86_RECORD_SS_REGNUM;
5225 break;
5226 case 0x0fb4: /* lfs Gv */
5227 regnum = X86_RECORD_FS_REGNUM;
5228 break;
5229 case 0x0fb5: /* lgs Gv */
5230 regnum = X86_RECORD_GS_REGNUM;
5231 break;
5232 }
5233 I386_RECORD_ARCH_LIST_ADD_REG (regnum);
5234 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5235 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5236 break;
5237
5238 case 0xc0: /* shifts */
5239 case 0xc1:
5240 case 0xd0:
5241 case 0xd1:
5242 case 0xd2:
5243 case 0xd3:
5244 if ((opcode & 1) == 0)
5245 ir.ot = OT_BYTE;
5246 else
5247 ir.ot = ir.dflag + OT_WORD;
5248 if (i386_record_modrm (&ir))
5249 return -1;
5250 if (ir.mod != 3 && (opcode == 0xd2 || opcode == 0xd3))
5251 {
5252 if (i386_record_lea_modrm (&ir))
5253 return -1;
5254 }
5255 else
5256 {
5257 ir.rm |= ir.rex_b;
5258 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5259 ir.rm &= 0x3;
5260 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
5261 }
5262 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5263 break;
5264
5265 case 0x0fa4:
5266 case 0x0fa5:
5267 case 0x0fac:
5268 case 0x0fad:
5269 if (i386_record_modrm (&ir))
5270 return -1;
5271 if (ir.mod == 3)
5272 {
5273 if (record_arch_list_add_reg (ir.regcache, ir.rm))
5274 return -1;
5275 }
5276 else
5277 {
5278 if (i386_record_lea_modrm (&ir))
5279 return -1;
5280 }
5281 break;
5282
5283 case 0xd8: /* Floats. */
5284 case 0xd9:
5285 case 0xda:
5286 case 0xdb:
5287 case 0xdc:
5288 case 0xdd:
5289 case 0xde:
5290 case 0xdf:
5291 if (i386_record_modrm (&ir))
5292 return -1;
5293 ir.reg |= ((opcode & 7) << 3);
5294 if (ir.mod != 3)
5295 {
5296 /* Memory. */
5297 uint64_t addr64;
5298
5299 if (i386_record_lea_modrm_addr (&ir, &addr64))
5300 return -1;
5301 switch (ir.reg)
5302 {
5303 case 0x02:
5304 case 0x12:
5305 case 0x22:
5306 case 0x32:
5307 /* For fcom, ficom nothing to do. */
5308 break;
5309 case 0x03:
5310 case 0x13:
5311 case 0x23:
5312 case 0x33:
5313 /* For fcomp, ficomp pop FPU stack, store all. */
5314 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5315 return -1;
5316 break;
5317 case 0x00:
5318 case 0x01:
5319 case 0x04:
5320 case 0x05:
5321 case 0x06:
5322 case 0x07:
5323 case 0x10:
5324 case 0x11:
5325 case 0x14:
5326 case 0x15:
5327 case 0x16:
5328 case 0x17:
5329 case 0x20:
5330 case 0x21:
5331 case 0x24:
5332 case 0x25:
5333 case 0x26:
5334 case 0x27:
5335 case 0x30:
5336 case 0x31:
5337 case 0x34:
5338 case 0x35:
5339 case 0x36:
5340 case 0x37:
5341 /* For fadd, fmul, fsub, fsubr, fdiv, fdivr, fiadd, fimul,
5342 fisub, fisubr, fidiv, fidivr, modR/M.reg is an extension
5343 of code, always affects st(0) register. */
5344 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
5345 return -1;
5346 break;
5347 case 0x08:
5348 case 0x0a:
5349 case 0x0b:
5350 case 0x18:
5351 case 0x19:
5352 case 0x1a:
5353 case 0x1b:
5354 case 0x1d:
5355 case 0x28:
5356 case 0x29:
5357 case 0x2a:
5358 case 0x2b:
5359 case 0x38:
5360 case 0x39:
5361 case 0x3a:
5362 case 0x3b:
5363 case 0x3c:
5364 case 0x3d:
5365 switch (ir.reg & 7)
5366 {
5367 case 0:
5368 /* Handling fld, fild. */
5369 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5370 return -1;
5371 break;
5372 case 1:
5373 switch (ir.reg >> 4)
5374 {
5375 case 0:
5376 if (record_arch_list_add_mem (addr64, 4))
5377 return -1;
5378 break;
5379 case 2:
5380 if (record_arch_list_add_mem (addr64, 8))
5381 return -1;
5382 break;
5383 case 3:
5384 break;
5385 default:
5386 if (record_arch_list_add_mem (addr64, 2))
5387 return -1;
5388 break;
5389 }
5390 break;
5391 default:
5392 switch (ir.reg >> 4)
5393 {
5394 case 0:
5395 if (record_arch_list_add_mem (addr64, 4))
5396 return -1;
5397 if (3 == (ir.reg & 7))
5398 {
5399 /* For fstp m32fp. */
5400 if (i386_record_floats (gdbarch, &ir,
5401 I386_SAVE_FPU_REGS))
5402 return -1;
5403 }
5404 break;
5405 case 1:
5406 if (record_arch_list_add_mem (addr64, 4))
5407 return -1;
5408 if ((3 == (ir.reg & 7))
5409 || (5 == (ir.reg & 7))
5410 || (7 == (ir.reg & 7)))
5411 {
5412 /* For fstp insn. */
5413 if (i386_record_floats (gdbarch, &ir,
5414 I386_SAVE_FPU_REGS))
5415 return -1;
5416 }
5417 break;
5418 case 2:
5419 if (record_arch_list_add_mem (addr64, 8))
5420 return -1;
5421 if (3 == (ir.reg & 7))
5422 {
5423 /* For fstp m64fp. */
5424 if (i386_record_floats (gdbarch, &ir,
5425 I386_SAVE_FPU_REGS))
5426 return -1;
5427 }
5428 break;
5429 case 3:
5430 if ((3 <= (ir.reg & 7)) && (6 <= (ir.reg & 7)))
5431 {
5432 /* For fistp, fbld, fild, fbstp. */
5433 if (i386_record_floats (gdbarch, &ir,
5434 I386_SAVE_FPU_REGS))
5435 return -1;
5436 }
5437 /* Fall through */
5438 default:
5439 if (record_arch_list_add_mem (addr64, 2))
5440 return -1;
5441 break;
5442 }
5443 break;
5444 }
5445 break;
5446 case 0x0c:
5447 /* Insn fldenv. */
5448 if (i386_record_floats (gdbarch, &ir,
5449 I386_SAVE_FPU_ENV_REG_STACK))
5450 return -1;
5451 break;
5452 case 0x0d:
5453 /* Insn fldcw. */
5454 if (i386_record_floats (gdbarch, &ir, I387_FCTRL_REGNUM (tdep)))
5455 return -1;
5456 break;
5457 case 0x2c:
5458 /* Insn frstor. */
5459 if (i386_record_floats (gdbarch, &ir,
5460 I386_SAVE_FPU_ENV_REG_STACK))
5461 return -1;
5462 break;
5463 case 0x0e:
5464 if (ir.dflag)
5465 {
5466 if (record_arch_list_add_mem (addr64, 28))
5467 return -1;
5468 }
5469 else
5470 {
5471 if (record_arch_list_add_mem (addr64, 14))
5472 return -1;
5473 }
5474 break;
5475 case 0x0f:
5476 case 0x2f:
5477 if (record_arch_list_add_mem (addr64, 2))
5478 return -1;
5479 /* Insn fstp, fbstp. */
5480 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5481 return -1;
5482 break;
5483 case 0x1f:
5484 case 0x3e:
5485 if (record_arch_list_add_mem (addr64, 10))
5486 return -1;
5487 break;
5488 case 0x2e:
5489 if (ir.dflag)
5490 {
5491 if (record_arch_list_add_mem (addr64, 28))
5492 return -1;
5493 addr64 += 28;
5494 }
5495 else
5496 {
5497 if (record_arch_list_add_mem (addr64, 14))
5498 return -1;
5499 addr64 += 14;
5500 }
5501 if (record_arch_list_add_mem (addr64, 80))
5502 return -1;
5503 /* Insn fsave. */
5504 if (i386_record_floats (gdbarch, &ir,
5505 I386_SAVE_FPU_ENV_REG_STACK))
5506 return -1;
5507 break;
5508 case 0x3f:
5509 if (record_arch_list_add_mem (addr64, 8))
5510 return -1;
5511 /* Insn fistp. */
5512 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5513 return -1;
5514 break;
5515 default:
5516 ir.addr -= 2;
5517 opcode = opcode << 8 | ir.modrm;
5518 goto no_support;
5519 break;
5520 }
5521 }
5522 /* Opcode is an extension of modR/M byte. */
5523 else
5524 {
5525 switch (opcode)
5526 {
5527 case 0xd8:
5528 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
5529 return -1;
5530 break;
5531 case 0xd9:
5532 if (0x0c == (ir.modrm >> 4))
5533 {
5534 if ((ir.modrm & 0x0f) <= 7)
5535 {
5536 if (i386_record_floats (gdbarch, &ir,
5537 I386_SAVE_FPU_REGS))
5538 return -1;
5539 }
5540 else
5541 {
5542 if (i386_record_floats (gdbarch, &ir,
5543 I387_ST0_REGNUM (tdep)))
5544 return -1;
5545 /* If only st(0) is changing, then we have already
5546 recorded. */
5547 if ((ir.modrm & 0x0f) - 0x08)
5548 {
5549 if (i386_record_floats (gdbarch, &ir,
5550 I387_ST0_REGNUM (tdep) +
5551 ((ir.modrm & 0x0f) - 0x08)))
5552 return -1;
5553 }
5554 }
5555 }
5556 else
5557 {
5558 switch (ir.modrm)
5559 {
5560 case 0xe0:
5561 case 0xe1:
5562 case 0xf0:
5563 case 0xf5:
5564 case 0xf8:
5565 case 0xfa:
5566 case 0xfc:
5567 case 0xfe:
5568 case 0xff:
5569 if (i386_record_floats (gdbarch, &ir,
5570 I387_ST0_REGNUM (tdep)))
5571 return -1;
5572 break;
5573 case 0xf1:
5574 case 0xf2:
5575 case 0xf3:
5576 case 0xf4:
5577 case 0xf6:
5578 case 0xf7:
5579 case 0xe8:
5580 case 0xe9:
5581 case 0xea:
5582 case 0xeb:
5583 case 0xec:
5584 case 0xed:
5585 case 0xee:
5586 case 0xf9:
5587 case 0xfb:
5588 if (i386_record_floats (gdbarch, &ir,
5589 I386_SAVE_FPU_REGS))
5590 return -1;
5591 break;
5592 case 0xfd:
5593 if (i386_record_floats (gdbarch, &ir,
5594 I387_ST0_REGNUM (tdep)))
5595 return -1;
5596 if (i386_record_floats (gdbarch, &ir,
5597 I387_ST0_REGNUM (tdep) + 1))
5598 return -1;
5599 break;
5600 }
5601 }
5602 break;
5603 case 0xda:
5604 if (0xe9 == ir.modrm)
5605 {
5606 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5607 return -1;
5608 }
5609 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
5610 {
5611 if (i386_record_floats (gdbarch, &ir,
5612 I387_ST0_REGNUM (tdep)))
5613 return -1;
5614 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
5615 {
5616 if (i386_record_floats (gdbarch, &ir,
5617 I387_ST0_REGNUM (tdep) +
5618 (ir.modrm & 0x0f)))
5619 return -1;
5620 }
5621 else if ((ir.modrm & 0x0f) - 0x08)
5622 {
5623 if (i386_record_floats (gdbarch, &ir,
5624 I387_ST0_REGNUM (tdep) +
5625 ((ir.modrm & 0x0f) - 0x08)))
5626 return -1;
5627 }
5628 }
5629 break;
5630 case 0xdb:
5631 if (0xe3 == ir.modrm)
5632 {
5633 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_ENV))
5634 return -1;
5635 }
5636 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
5637 {
5638 if (i386_record_floats (gdbarch, &ir,
5639 I387_ST0_REGNUM (tdep)))
5640 return -1;
5641 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
5642 {
5643 if (i386_record_floats (gdbarch, &ir,
5644 I387_ST0_REGNUM (tdep) +
5645 (ir.modrm & 0x0f)))
5646 return -1;
5647 }
5648 else if ((ir.modrm & 0x0f) - 0x08)
5649 {
5650 if (i386_record_floats (gdbarch, &ir,
5651 I387_ST0_REGNUM (tdep) +
5652 ((ir.modrm & 0x0f) - 0x08)))
5653 return -1;
5654 }
5655 }
5656 break;
5657 case 0xdc:
5658 if ((0x0c == ir.modrm >> 4)
5659 || (0x0d == ir.modrm >> 4)
5660 || (0x0f == ir.modrm >> 4))
5661 {
5662 if ((ir.modrm & 0x0f) <= 7)
5663 {
5664 if (i386_record_floats (gdbarch, &ir,
5665 I387_ST0_REGNUM (tdep) +
5666 (ir.modrm & 0x0f)))
5667 return -1;
5668 }
5669 else
5670 {
5671 if (i386_record_floats (gdbarch, &ir,
5672 I387_ST0_REGNUM (tdep) +
5673 ((ir.modrm & 0x0f) - 0x08)))
5674 return -1;
5675 }
5676 }
5677 break;
5678 case 0xdd:
5679 if (0x0c == ir.modrm >> 4)
5680 {
5681 if (i386_record_floats (gdbarch, &ir,
5682 I387_FTAG_REGNUM (tdep)))
5683 return -1;
5684 }
5685 else if ((0x0d == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
5686 {
5687 if ((ir.modrm & 0x0f) <= 7)
5688 {
5689 if (i386_record_floats (gdbarch, &ir,
5690 I387_ST0_REGNUM (tdep) +
5691 (ir.modrm & 0x0f)))
5692 return -1;
5693 }
5694 else
5695 {
5696 if (i386_record_floats (gdbarch, &ir,
5697 I386_SAVE_FPU_REGS))
5698 return -1;
5699 }
5700 }
5701 break;
5702 case 0xde:
5703 if ((0x0c == ir.modrm >> 4)
5704 || (0x0e == ir.modrm >> 4)
5705 || (0x0f == ir.modrm >> 4)
5706 || (0xd9 == ir.modrm))
5707 {
5708 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5709 return -1;
5710 }
5711 break;
5712 case 0xdf:
5713 if (0xe0 == ir.modrm)
5714 {
5715 if (record_arch_list_add_reg (ir.regcache, I386_EAX_REGNUM))
5716 return -1;
5717 }
5718 else if ((0x0f == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
5719 {
5720 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5721 return -1;
5722 }
5723 break;
5724 }
5725 }
5726 break;
5727 /* string ops */
5728 case 0xa4: /* movsS */
5729 case 0xa5:
5730 case 0xaa: /* stosS */
5731 case 0xab:
5732 case 0x6c: /* insS */
5733 case 0x6d:
5734 regcache_raw_read_unsigned (ir.regcache,
5735 ir.regmap[X86_RECORD_RECX_REGNUM],
5736 &addr);
5737 if (addr)
5738 {
5739 ULONGEST es, ds;
5740
5741 if ((opcode & 1) == 0)
5742 ir.ot = OT_BYTE;
5743 else
5744 ir.ot = ir.dflag + OT_WORD;
5745 regcache_raw_read_unsigned (ir.regcache,
5746 ir.regmap[X86_RECORD_REDI_REGNUM],
5747 &addr);
5748
5749 regcache_raw_read_unsigned (ir.regcache,
5750 ir.regmap[X86_RECORD_ES_REGNUM],
5751 &es);
5752 regcache_raw_read_unsigned (ir.regcache,
5753 ir.regmap[X86_RECORD_DS_REGNUM],
5754 &ds);
5755 if (ir.aflag && (es != ds))
5756 {
5757 /* addr += ((uint32_t) read_register (I386_ES_REGNUM)) << 4; */
5758 if (record_memory_query)
5759 {
5760 int q;
5761
5762 target_terminal_ours ();
5763 q = yquery (_("\
5764 Process record ignores the memory change of instruction at address %s\n\
5765 because it can't get the value of the segment register.\n\
5766 Do you want to stop the program?"),
5767 paddress (gdbarch, ir.orig_addr));
5768 target_terminal_inferior ();
5769 if (q)
5770 return -1;
5771 }
5772 }
5773 else
5774 {
5775 if (record_arch_list_add_mem (addr, 1 << ir.ot))
5776 return -1;
5777 }
5778
5779 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
5780 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5781 if (opcode == 0xa4 || opcode == 0xa5)
5782 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
5783 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
5784 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5785 }
5786 break;
5787
5788 case 0xa6: /* cmpsS */
5789 case 0xa7:
5790 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
5791 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
5792 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
5793 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5794 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5795 break;
5796
5797 case 0xac: /* lodsS */
5798 case 0xad:
5799 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5800 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
5801 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
5802 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5803 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5804 break;
5805
5806 case 0xae: /* scasS */
5807 case 0xaf:
5808 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
5809 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
5810 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5811 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5812 break;
5813
5814 case 0x6e: /* outsS */
5815 case 0x6f:
5816 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
5817 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
5818 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5819 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5820 break;
5821
5822 case 0xe4: /* port I/O */
5823 case 0xe5:
5824 case 0xec:
5825 case 0xed:
5826 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5827 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5828 break;
5829
5830 case 0xe6:
5831 case 0xe7:
5832 case 0xee:
5833 case 0xef:
5834 break;
5835
5836 /* control */
5837 case 0xc2: /* ret im */
5838 case 0xc3: /* ret */
5839 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5840 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5841 break;
5842
5843 case 0xca: /* lret im */
5844 case 0xcb: /* lret */
5845 case 0xcf: /* iret */
5846 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
5847 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5848 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5849 break;
5850
5851 case 0xe8: /* call im */
5852 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5853 ir.dflag = 2;
5854 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5855 return -1;
5856 break;
5857
5858 case 0x9a: /* lcall im */
5859 if (ir.regmap[X86_RECORD_R8_REGNUM])
5860 {
5861 ir.addr -= 1;
5862 goto no_support;
5863 }
5864 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
5865 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5866 return -1;
5867 break;
5868
5869 case 0xe9: /* jmp im */
5870 case 0xea: /* ljmp im */
5871 case 0xeb: /* jmp Jb */
5872 case 0x70: /* jcc Jb */
5873 case 0x71:
5874 case 0x72:
5875 case 0x73:
5876 case 0x74:
5877 case 0x75:
5878 case 0x76:
5879 case 0x77:
5880 case 0x78:
5881 case 0x79:
5882 case 0x7a:
5883 case 0x7b:
5884 case 0x7c:
5885 case 0x7d:
5886 case 0x7e:
5887 case 0x7f:
5888 case 0x0f80: /* jcc Jv */
5889 case 0x0f81:
5890 case 0x0f82:
5891 case 0x0f83:
5892 case 0x0f84:
5893 case 0x0f85:
5894 case 0x0f86:
5895 case 0x0f87:
5896 case 0x0f88:
5897 case 0x0f89:
5898 case 0x0f8a:
5899 case 0x0f8b:
5900 case 0x0f8c:
5901 case 0x0f8d:
5902 case 0x0f8e:
5903 case 0x0f8f:
5904 break;
5905
5906 case 0x0f90: /* setcc Gv */
5907 case 0x0f91:
5908 case 0x0f92:
5909 case 0x0f93:
5910 case 0x0f94:
5911 case 0x0f95:
5912 case 0x0f96:
5913 case 0x0f97:
5914 case 0x0f98:
5915 case 0x0f99:
5916 case 0x0f9a:
5917 case 0x0f9b:
5918 case 0x0f9c:
5919 case 0x0f9d:
5920 case 0x0f9e:
5921 case 0x0f9f:
5922 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5923 ir.ot = OT_BYTE;
5924 if (i386_record_modrm (&ir))
5925 return -1;
5926 if (ir.mod == 3)
5927 I386_RECORD_ARCH_LIST_ADD_REG (ir.rex_b ? (ir.rm | ir.rex_b)
5928 : (ir.rm & 0x3));
5929 else
5930 {
5931 if (i386_record_lea_modrm (&ir))
5932 return -1;
5933 }
5934 break;
5935
5936 case 0x0f40: /* cmov Gv, Ev */
5937 case 0x0f41:
5938 case 0x0f42:
5939 case 0x0f43:
5940 case 0x0f44:
5941 case 0x0f45:
5942 case 0x0f46:
5943 case 0x0f47:
5944 case 0x0f48:
5945 case 0x0f49:
5946 case 0x0f4a:
5947 case 0x0f4b:
5948 case 0x0f4c:
5949 case 0x0f4d:
5950 case 0x0f4e:
5951 case 0x0f4f:
5952 if (i386_record_modrm (&ir))
5953 return -1;
5954 ir.reg |= rex_r;
5955 if (ir.dflag == OT_BYTE)
5956 ir.reg &= 0x3;
5957 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
5958 break;
5959
5960 /* flags */
5961 case 0x9c: /* pushf */
5962 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5963 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5964 ir.dflag = 2;
5965 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5966 return -1;
5967 break;
5968
5969 case 0x9d: /* popf */
5970 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5971 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5972 break;
5973
5974 case 0x9e: /* sahf */
5975 if (ir.regmap[X86_RECORD_R8_REGNUM])
5976 {
5977 ir.addr -= 1;
5978 goto no_support;
5979 }
5980 /* FALLTHROUGH */
5981 case 0xf5: /* cmc */
5982 case 0xf8: /* clc */
5983 case 0xf9: /* stc */
5984 case 0xfc: /* cld */
5985 case 0xfd: /* std */
5986 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5987 break;
5988
5989 case 0x9f: /* lahf */
5990 if (ir.regmap[X86_RECORD_R8_REGNUM])
5991 {
5992 ir.addr -= 1;
5993 goto no_support;
5994 }
5995 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5996 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5997 break;
5998
5999 /* bit operations */
6000 case 0x0fba: /* bt/bts/btr/btc Gv, im */
6001 ir.ot = ir.dflag + OT_WORD;
6002 if (i386_record_modrm (&ir))
6003 return -1;
6004 if (ir.reg < 4)
6005 {
6006 ir.addr -= 2;
6007 opcode = opcode << 8 | ir.modrm;
6008 goto no_support;
6009 }
6010 if (ir.reg != 4)
6011 {
6012 if (ir.mod == 3)
6013 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6014 else
6015 {
6016 if (i386_record_lea_modrm (&ir))
6017 return -1;
6018 }
6019 }
6020 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6021 break;
6022
6023 case 0x0fa3: /* bt Gv, Ev */
6024 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6025 break;
6026
6027 case 0x0fab: /* bts */
6028 case 0x0fb3: /* btr */
6029 case 0x0fbb: /* btc */
6030 ir.ot = ir.dflag + OT_WORD;
6031 if (i386_record_modrm (&ir))
6032 return -1;
6033 if (ir.mod == 3)
6034 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6035 else
6036 {
6037 uint64_t addr64;
6038 if (i386_record_lea_modrm_addr (&ir, &addr64))
6039 return -1;
6040 regcache_raw_read_unsigned (ir.regcache,
6041 ir.regmap[ir.reg | rex_r],
6042 &addr);
6043 switch (ir.dflag)
6044 {
6045 case 0:
6046 addr64 += ((int16_t) addr >> 4) << 4;
6047 break;
6048 case 1:
6049 addr64 += ((int32_t) addr >> 5) << 5;
6050 break;
6051 case 2:
6052 addr64 += ((int64_t) addr >> 6) << 6;
6053 break;
6054 }
6055 if (record_arch_list_add_mem (addr64, 1 << ir.ot))
6056 return -1;
6057 if (i386_record_lea_modrm (&ir))
6058 return -1;
6059 }
6060 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6061 break;
6062
6063 case 0x0fbc: /* bsf */
6064 case 0x0fbd: /* bsr */
6065 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6066 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6067 break;
6068
6069 /* bcd */
6070 case 0x27: /* daa */
6071 case 0x2f: /* das */
6072 case 0x37: /* aaa */
6073 case 0x3f: /* aas */
6074 case 0xd4: /* aam */
6075 case 0xd5: /* aad */
6076 if (ir.regmap[X86_RECORD_R8_REGNUM])
6077 {
6078 ir.addr -= 1;
6079 goto no_support;
6080 }
6081 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6082 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6083 break;
6084
6085 /* misc */
6086 case 0x90: /* nop */
6087 if (prefixes & PREFIX_LOCK)
6088 {
6089 ir.addr -= 1;
6090 goto no_support;
6091 }
6092 break;
6093
6094 case 0x9b: /* fwait */
6095 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
6096 return -1;
6097 opcode = (uint32_t) opcode8;
6098 ir.addr++;
6099 goto reswitch;
6100 break;
6101
6102 /* XXX */
6103 case 0xcc: /* int3 */
6104 printf_unfiltered (_("Process record does not support instruction "
6105 "int3.\n"));
6106 ir.addr -= 1;
6107 goto no_support;
6108 break;
6109
6110 /* XXX */
6111 case 0xcd: /* int */
6112 {
6113 int ret;
6114 uint8_t interrupt;
6115 if (record_read_memory (gdbarch, ir.addr, &interrupt, 1))
6116 return -1;
6117 ir.addr++;
6118 if (interrupt != 0x80
6119 || tdep->i386_intx80_record == NULL)
6120 {
6121 printf_unfiltered (_("Process record does not support "
6122 "instruction int 0x%02x.\n"),
6123 interrupt);
6124 ir.addr -= 2;
6125 goto no_support;
6126 }
6127 ret = tdep->i386_intx80_record (ir.regcache);
6128 if (ret)
6129 return ret;
6130 }
6131 break;
6132
6133 /* XXX */
6134 case 0xce: /* into */
6135 printf_unfiltered (_("Process record does not support "
6136 "instruction into.\n"));
6137 ir.addr -= 1;
6138 goto no_support;
6139 break;
6140
6141 case 0xfa: /* cli */
6142 case 0xfb: /* sti */
6143 break;
6144
6145 case 0x62: /* bound */
6146 printf_unfiltered (_("Process record does not support "
6147 "instruction bound.\n"));
6148 ir.addr -= 1;
6149 goto no_support;
6150 break;
6151
6152 case 0x0fc8: /* bswap reg */
6153 case 0x0fc9:
6154 case 0x0fca:
6155 case 0x0fcb:
6156 case 0x0fcc:
6157 case 0x0fcd:
6158 case 0x0fce:
6159 case 0x0fcf:
6160 I386_RECORD_ARCH_LIST_ADD_REG ((opcode & 7) | ir.rex_b);
6161 break;
6162
6163 case 0xd6: /* salc */
6164 if (ir.regmap[X86_RECORD_R8_REGNUM])
6165 {
6166 ir.addr -= 1;
6167 goto no_support;
6168 }
6169 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6170 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6171 break;
6172
6173 case 0xe0: /* loopnz */
6174 case 0xe1: /* loopz */
6175 case 0xe2: /* loop */
6176 case 0xe3: /* jecxz */
6177 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6178 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6179 break;
6180
6181 case 0x0f30: /* wrmsr */
6182 printf_unfiltered (_("Process record does not support "
6183 "instruction wrmsr.\n"));
6184 ir.addr -= 2;
6185 goto no_support;
6186 break;
6187
6188 case 0x0f32: /* rdmsr */
6189 printf_unfiltered (_("Process record does not support "
6190 "instruction rdmsr.\n"));
6191 ir.addr -= 2;
6192 goto no_support;
6193 break;
6194
6195 case 0x0f31: /* rdtsc */
6196 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6197 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6198 break;
6199
6200 case 0x0f34: /* sysenter */
6201 {
6202 int ret;
6203 if (ir.regmap[X86_RECORD_R8_REGNUM])
6204 {
6205 ir.addr -= 2;
6206 goto no_support;
6207 }
6208 if (tdep->i386_sysenter_record == NULL)
6209 {
6210 printf_unfiltered (_("Process record does not support "
6211 "instruction sysenter.\n"));
6212 ir.addr -= 2;
6213 goto no_support;
6214 }
6215 ret = tdep->i386_sysenter_record (ir.regcache);
6216 if (ret)
6217 return ret;
6218 }
6219 break;
6220
6221 case 0x0f35: /* sysexit */
6222 printf_unfiltered (_("Process record does not support "
6223 "instruction sysexit.\n"));
6224 ir.addr -= 2;
6225 goto no_support;
6226 break;
6227
6228 case 0x0f05: /* syscall */
6229 {
6230 int ret;
6231 if (tdep->i386_syscall_record == NULL)
6232 {
6233 printf_unfiltered (_("Process record does not support "
6234 "instruction syscall.\n"));
6235 ir.addr -= 2;
6236 goto no_support;
6237 }
6238 ret = tdep->i386_syscall_record (ir.regcache);
6239 if (ret)
6240 return ret;
6241 }
6242 break;
6243
6244 case 0x0f07: /* sysret */
6245 printf_unfiltered (_("Process record does not support "
6246 "instruction sysret.\n"));
6247 ir.addr -= 2;
6248 goto no_support;
6249 break;
6250
6251 case 0x0fa2: /* cpuid */
6252 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6253 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6254 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6255 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
6256 break;
6257
6258 case 0xf4: /* hlt */
6259 printf_unfiltered (_("Process record does not support "
6260 "instruction hlt.\n"));
6261 ir.addr -= 1;
6262 goto no_support;
6263 break;
6264
6265 case 0x0f00:
6266 if (i386_record_modrm (&ir))
6267 return -1;
6268 switch (ir.reg)
6269 {
6270 case 0: /* sldt */
6271 case 1: /* str */
6272 if (ir.mod == 3)
6273 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6274 else
6275 {
6276 ir.ot = OT_WORD;
6277 if (i386_record_lea_modrm (&ir))
6278 return -1;
6279 }
6280 break;
6281 case 2: /* lldt */
6282 case 3: /* ltr */
6283 break;
6284 case 4: /* verr */
6285 case 5: /* verw */
6286 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6287 break;
6288 default:
6289 ir.addr -= 3;
6290 opcode = opcode << 8 | ir.modrm;
6291 goto no_support;
6292 break;
6293 }
6294 break;
6295
6296 case 0x0f01:
6297 if (i386_record_modrm (&ir))
6298 return -1;
6299 switch (ir.reg)
6300 {
6301 case 0: /* sgdt */
6302 {
6303 uint64_t addr64;
6304
6305 if (ir.mod == 3)
6306 {
6307 ir.addr -= 3;
6308 opcode = opcode << 8 | ir.modrm;
6309 goto no_support;
6310 }
6311 if (ir.override >= 0)
6312 {
6313 if (record_memory_query)
6314 {
6315 int q;
6316
6317 target_terminal_ours ();
6318 q = yquery (_("\
6319 Process record ignores the memory change of instruction at address %s\n\
6320 because it can't get the value of the segment register.\n\
6321 Do you want to stop the program?"),
6322 paddress (gdbarch, ir.orig_addr));
6323 target_terminal_inferior ();
6324 if (q)
6325 return -1;
6326 }
6327 }
6328 else
6329 {
6330 if (i386_record_lea_modrm_addr (&ir, &addr64))
6331 return -1;
6332 if (record_arch_list_add_mem (addr64, 2))
6333 return -1;
6334 addr64 += 2;
6335 if (ir.regmap[X86_RECORD_R8_REGNUM])
6336 {
6337 if (record_arch_list_add_mem (addr64, 8))
6338 return -1;
6339 }
6340 else
6341 {
6342 if (record_arch_list_add_mem (addr64, 4))
6343 return -1;
6344 }
6345 }
6346 }
6347 break;
6348 case 1:
6349 if (ir.mod == 3)
6350 {
6351 switch (ir.rm)
6352 {
6353 case 0: /* monitor */
6354 break;
6355 case 1: /* mwait */
6356 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6357 break;
6358 default:
6359 ir.addr -= 3;
6360 opcode = opcode << 8 | ir.modrm;
6361 goto no_support;
6362 break;
6363 }
6364 }
6365 else
6366 {
6367 /* sidt */
6368 if (ir.override >= 0)
6369 {
6370 if (record_memory_query)
6371 {
6372 int q;
6373
6374 target_terminal_ours ();
6375 q = yquery (_("\
6376 Process record ignores the memory change of instruction at address %s\n\
6377 because it can't get the value of the segment register.\n\
6378 Do you want to stop the program?"),
6379 paddress (gdbarch, ir.orig_addr));
6380 target_terminal_inferior ();
6381 if (q)
6382 return -1;
6383 }
6384 }
6385 else
6386 {
6387 uint64_t addr64;
6388
6389 if (i386_record_lea_modrm_addr (&ir, &addr64))
6390 return -1;
6391 if (record_arch_list_add_mem (addr64, 2))
6392 return -1;
6393 addr64 += 2;
6394 if (ir.regmap[X86_RECORD_R8_REGNUM])
6395 {
6396 if (record_arch_list_add_mem (addr64, 8))
6397 return -1;
6398 }
6399 else
6400 {
6401 if (record_arch_list_add_mem (addr64, 4))
6402 return -1;
6403 }
6404 }
6405 }
6406 break;
6407 case 2: /* lgdt */
6408 if (ir.mod == 3)
6409 {
6410 /* xgetbv */
6411 if (ir.rm == 0)
6412 {
6413 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6414 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6415 break;
6416 }
6417 /* xsetbv */
6418 else if (ir.rm == 1)
6419 break;
6420 }
6421 case 3: /* lidt */
6422 if (ir.mod == 3)
6423 {
6424 ir.addr -= 3;
6425 opcode = opcode << 8 | ir.modrm;
6426 goto no_support;
6427 }
6428 break;
6429 case 4: /* smsw */
6430 if (ir.mod == 3)
6431 {
6432 if (record_arch_list_add_reg (ir.regcache, ir.rm | ir.rex_b))
6433 return -1;
6434 }
6435 else
6436 {
6437 ir.ot = OT_WORD;
6438 if (i386_record_lea_modrm (&ir))
6439 return -1;
6440 }
6441 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6442 break;
6443 case 6: /* lmsw */
6444 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6445 break;
6446 case 7: /* invlpg */
6447 if (ir.mod == 3)
6448 {
6449 if (ir.rm == 0 && ir.regmap[X86_RECORD_R8_REGNUM])
6450 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
6451 else
6452 {
6453 ir.addr -= 3;
6454 opcode = opcode << 8 | ir.modrm;
6455 goto no_support;
6456 }
6457 }
6458 else
6459 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6460 break;
6461 default:
6462 ir.addr -= 3;
6463 opcode = opcode << 8 | ir.modrm;
6464 goto no_support;
6465 break;
6466 }
6467 break;
6468
6469 case 0x0f08: /* invd */
6470 case 0x0f09: /* wbinvd */
6471 break;
6472
6473 case 0x63: /* arpl */
6474 if (i386_record_modrm (&ir))
6475 return -1;
6476 if (ir.mod == 3 || ir.regmap[X86_RECORD_R8_REGNUM])
6477 {
6478 I386_RECORD_ARCH_LIST_ADD_REG (ir.regmap[X86_RECORD_R8_REGNUM]
6479 ? (ir.reg | rex_r) : ir.rm);
6480 }
6481 else
6482 {
6483 ir.ot = ir.dflag ? OT_LONG : OT_WORD;
6484 if (i386_record_lea_modrm (&ir))
6485 return -1;
6486 }
6487 if (!ir.regmap[X86_RECORD_R8_REGNUM])
6488 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6489 break;
6490
6491 case 0x0f02: /* lar */
6492 case 0x0f03: /* lsl */
6493 if (i386_record_modrm (&ir))
6494 return -1;
6495 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6496 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6497 break;
6498
6499 case 0x0f18:
6500 if (i386_record_modrm (&ir))
6501 return -1;
6502 if (ir.mod == 3 && ir.reg == 3)
6503 {
6504 ir.addr -= 3;
6505 opcode = opcode << 8 | ir.modrm;
6506 goto no_support;
6507 }
6508 break;
6509
6510 case 0x0f19:
6511 case 0x0f1a:
6512 case 0x0f1b:
6513 case 0x0f1c:
6514 case 0x0f1d:
6515 case 0x0f1e:
6516 case 0x0f1f:
6517 /* nop (multi byte) */
6518 break;
6519
6520 case 0x0f20: /* mov reg, crN */
6521 case 0x0f22: /* mov crN, reg */
6522 if (i386_record_modrm (&ir))
6523 return -1;
6524 if ((ir.modrm & 0xc0) != 0xc0)
6525 {
6526 ir.addr -= 3;
6527 opcode = opcode << 8 | ir.modrm;
6528 goto no_support;
6529 }
6530 switch (ir.reg)
6531 {
6532 case 0:
6533 case 2:
6534 case 3:
6535 case 4:
6536 case 8:
6537 if (opcode & 2)
6538 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6539 else
6540 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6541 break;
6542 default:
6543 ir.addr -= 3;
6544 opcode = opcode << 8 | ir.modrm;
6545 goto no_support;
6546 break;
6547 }
6548 break;
6549
6550 case 0x0f21: /* mov reg, drN */
6551 case 0x0f23: /* mov drN, reg */
6552 if (i386_record_modrm (&ir))
6553 return -1;
6554 if ((ir.modrm & 0xc0) != 0xc0 || ir.reg == 4
6555 || ir.reg == 5 || ir.reg >= 8)
6556 {
6557 ir.addr -= 3;
6558 opcode = opcode << 8 | ir.modrm;
6559 goto no_support;
6560 }
6561 if (opcode & 2)
6562 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6563 else
6564 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6565 break;
6566
6567 case 0x0f06: /* clts */
6568 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6569 break;
6570
6571 /* MMX 3DNow! SSE SSE2 SSE3 SSSE3 SSE4 */
6572
6573 case 0x0f0d: /* 3DNow! prefetch */
6574 break;
6575
6576 case 0x0f0e: /* 3DNow! femms */
6577 case 0x0f77: /* emms */
6578 if (i386_fpc_regnum_p (gdbarch, I387_FTAG_REGNUM(tdep)))
6579 goto no_support;
6580 record_arch_list_add_reg (ir.regcache, I387_FTAG_REGNUM(tdep));
6581 break;
6582
6583 case 0x0f0f: /* 3DNow! data */
6584 if (i386_record_modrm (&ir))
6585 return -1;
6586 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
6587 return -1;
6588 ir.addr++;
6589 switch (opcode8)
6590 {
6591 case 0x0c: /* 3DNow! pi2fw */
6592 case 0x0d: /* 3DNow! pi2fd */
6593 case 0x1c: /* 3DNow! pf2iw */
6594 case 0x1d: /* 3DNow! pf2id */
6595 case 0x8a: /* 3DNow! pfnacc */
6596 case 0x8e: /* 3DNow! pfpnacc */
6597 case 0x90: /* 3DNow! pfcmpge */
6598 case 0x94: /* 3DNow! pfmin */
6599 case 0x96: /* 3DNow! pfrcp */
6600 case 0x97: /* 3DNow! pfrsqrt */
6601 case 0x9a: /* 3DNow! pfsub */
6602 case 0x9e: /* 3DNow! pfadd */
6603 case 0xa0: /* 3DNow! pfcmpgt */
6604 case 0xa4: /* 3DNow! pfmax */
6605 case 0xa6: /* 3DNow! pfrcpit1 */
6606 case 0xa7: /* 3DNow! pfrsqit1 */
6607 case 0xaa: /* 3DNow! pfsubr */
6608 case 0xae: /* 3DNow! pfacc */
6609 case 0xb0: /* 3DNow! pfcmpeq */
6610 case 0xb4: /* 3DNow! pfmul */
6611 case 0xb6: /* 3DNow! pfrcpit2 */
6612 case 0xb7: /* 3DNow! pmulhrw */
6613 case 0xbb: /* 3DNow! pswapd */
6614 case 0xbf: /* 3DNow! pavgusb */
6615 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
6616 goto no_support_3dnow_data;
6617 record_arch_list_add_reg (ir.regcache, ir.reg);
6618 break;
6619
6620 default:
6621 no_support_3dnow_data:
6622 opcode = (opcode << 8) | opcode8;
6623 goto no_support;
6624 break;
6625 }
6626 break;
6627
6628 case 0x0faa: /* rsm */
6629 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6630 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6631 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6632 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6633 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
6634 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6635 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
6636 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6637 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6638 break;
6639
6640 case 0x0fae:
6641 if (i386_record_modrm (&ir))
6642 return -1;
6643 switch(ir.reg)
6644 {
6645 case 0: /* fxsave */
6646 {
6647 uint64_t tmpu64;
6648
6649 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6650 if (i386_record_lea_modrm_addr (&ir, &tmpu64))
6651 return -1;
6652 if (record_arch_list_add_mem (tmpu64, 512))
6653 return -1;
6654 }
6655 break;
6656
6657 case 1: /* fxrstor */
6658 {
6659 int i;
6660
6661 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6662
6663 for (i = I387_MM0_REGNUM (tdep);
6664 i386_mmx_regnum_p (gdbarch, i); i++)
6665 record_arch_list_add_reg (ir.regcache, i);
6666
6667 for (i = I387_XMM0_REGNUM (tdep);
6668 i386_xmm_regnum_p (gdbarch, i); i++)
6669 record_arch_list_add_reg (ir.regcache, i);
6670
6671 if (i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
6672 record_arch_list_add_reg (ir.regcache, I387_MXCSR_REGNUM(tdep));
6673
6674 for (i = I387_ST0_REGNUM (tdep);
6675 i386_fp_regnum_p (gdbarch, i); i++)
6676 record_arch_list_add_reg (ir.regcache, i);
6677
6678 for (i = I387_FCTRL_REGNUM (tdep);
6679 i386_fpc_regnum_p (gdbarch, i); i++)
6680 record_arch_list_add_reg (ir.regcache, i);
6681 }
6682 break;
6683
6684 case 2: /* ldmxcsr */
6685 if (!i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
6686 goto no_support;
6687 record_arch_list_add_reg (ir.regcache, I387_MXCSR_REGNUM(tdep));
6688 break;
6689
6690 case 3: /* stmxcsr */
6691 ir.ot = OT_LONG;
6692 if (i386_record_lea_modrm (&ir))
6693 return -1;
6694 break;
6695
6696 case 5: /* lfence */
6697 case 6: /* mfence */
6698 case 7: /* sfence clflush */
6699 break;
6700
6701 default:
6702 opcode = (opcode << 8) | ir.modrm;
6703 goto no_support;
6704 break;
6705 }
6706 break;
6707
6708 case 0x0fc3: /* movnti */
6709 ir.ot = (ir.dflag == 2) ? OT_QUAD : OT_LONG;
6710 if (i386_record_modrm (&ir))
6711 return -1;
6712 if (ir.mod == 3)
6713 goto no_support;
6714 ir.reg |= rex_r;
6715 if (i386_record_lea_modrm (&ir))
6716 return -1;
6717 break;
6718
6719 /* Add prefix to opcode. */
6720 case 0x0f10:
6721 case 0x0f11:
6722 case 0x0f12:
6723 case 0x0f13:
6724 case 0x0f14:
6725 case 0x0f15:
6726 case 0x0f16:
6727 case 0x0f17:
6728 case 0x0f28:
6729 case 0x0f29:
6730 case 0x0f2a:
6731 case 0x0f2b:
6732 case 0x0f2c:
6733 case 0x0f2d:
6734 case 0x0f2e:
6735 case 0x0f2f:
6736 case 0x0f38:
6737 case 0x0f39:
6738 case 0x0f3a:
6739 case 0x0f50:
6740 case 0x0f51:
6741 case 0x0f52:
6742 case 0x0f53:
6743 case 0x0f54:
6744 case 0x0f55:
6745 case 0x0f56:
6746 case 0x0f57:
6747 case 0x0f58:
6748 case 0x0f59:
6749 case 0x0f5a:
6750 case 0x0f5b:
6751 case 0x0f5c:
6752 case 0x0f5d:
6753 case 0x0f5e:
6754 case 0x0f5f:
6755 case 0x0f60:
6756 case 0x0f61:
6757 case 0x0f62:
6758 case 0x0f63:
6759 case 0x0f64:
6760 case 0x0f65:
6761 case 0x0f66:
6762 case 0x0f67:
6763 case 0x0f68:
6764 case 0x0f69:
6765 case 0x0f6a:
6766 case 0x0f6b:
6767 case 0x0f6c:
6768 case 0x0f6d:
6769 case 0x0f6e:
6770 case 0x0f6f:
6771 case 0x0f70:
6772 case 0x0f71:
6773 case 0x0f72:
6774 case 0x0f73:
6775 case 0x0f74:
6776 case 0x0f75:
6777 case 0x0f76:
6778 case 0x0f7c:
6779 case 0x0f7d:
6780 case 0x0f7e:
6781 case 0x0f7f:
6782 case 0x0fb8:
6783 case 0x0fc2:
6784 case 0x0fc4:
6785 case 0x0fc5:
6786 case 0x0fc6:
6787 case 0x0fd0:
6788 case 0x0fd1:
6789 case 0x0fd2:
6790 case 0x0fd3:
6791 case 0x0fd4:
6792 case 0x0fd5:
6793 case 0x0fd6:
6794 case 0x0fd7:
6795 case 0x0fd8:
6796 case 0x0fd9:
6797 case 0x0fda:
6798 case 0x0fdb:
6799 case 0x0fdc:
6800 case 0x0fdd:
6801 case 0x0fde:
6802 case 0x0fdf:
6803 case 0x0fe0:
6804 case 0x0fe1:
6805 case 0x0fe2:
6806 case 0x0fe3:
6807 case 0x0fe4:
6808 case 0x0fe5:
6809 case 0x0fe6:
6810 case 0x0fe7:
6811 case 0x0fe8:
6812 case 0x0fe9:
6813 case 0x0fea:
6814 case 0x0feb:
6815 case 0x0fec:
6816 case 0x0fed:
6817 case 0x0fee:
6818 case 0x0fef:
6819 case 0x0ff0:
6820 case 0x0ff1:
6821 case 0x0ff2:
6822 case 0x0ff3:
6823 case 0x0ff4:
6824 case 0x0ff5:
6825 case 0x0ff6:
6826 case 0x0ff7:
6827 case 0x0ff8:
6828 case 0x0ff9:
6829 case 0x0ffa:
6830 case 0x0ffb:
6831 case 0x0ffc:
6832 case 0x0ffd:
6833 case 0x0ffe:
6834 switch (prefixes)
6835 {
6836 case PREFIX_REPNZ:
6837 opcode |= 0xf20000;
6838 break;
6839 case PREFIX_DATA:
6840 opcode |= 0x660000;
6841 break;
6842 case PREFIX_REPZ:
6843 opcode |= 0xf30000;
6844 break;
6845 }
6846 reswitch_prefix_add:
6847 switch (opcode)
6848 {
6849 case 0x0f38:
6850 case 0x660f38:
6851 case 0xf20f38:
6852 case 0x0f3a:
6853 case 0x660f3a:
6854 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
6855 return -1;
6856 ir.addr++;
6857 opcode = (uint32_t) opcode8 | opcode << 8;
6858 goto reswitch_prefix_add;
6859 break;
6860
6861 case 0x0f10: /* movups */
6862 case 0x660f10: /* movupd */
6863 case 0xf30f10: /* movss */
6864 case 0xf20f10: /* movsd */
6865 case 0x0f12: /* movlps */
6866 case 0x660f12: /* movlpd */
6867 case 0xf30f12: /* movsldup */
6868 case 0xf20f12: /* movddup */
6869 case 0x0f14: /* unpcklps */
6870 case 0x660f14: /* unpcklpd */
6871 case 0x0f15: /* unpckhps */
6872 case 0x660f15: /* unpckhpd */
6873 case 0x0f16: /* movhps */
6874 case 0x660f16: /* movhpd */
6875 case 0xf30f16: /* movshdup */
6876 case 0x0f28: /* movaps */
6877 case 0x660f28: /* movapd */
6878 case 0x0f2a: /* cvtpi2ps */
6879 case 0x660f2a: /* cvtpi2pd */
6880 case 0xf30f2a: /* cvtsi2ss */
6881 case 0xf20f2a: /* cvtsi2sd */
6882 case 0x0f2c: /* cvttps2pi */
6883 case 0x660f2c: /* cvttpd2pi */
6884 case 0x0f2d: /* cvtps2pi */
6885 case 0x660f2d: /* cvtpd2pi */
6886 case 0x660f3800: /* pshufb */
6887 case 0x660f3801: /* phaddw */
6888 case 0x660f3802: /* phaddd */
6889 case 0x660f3803: /* phaddsw */
6890 case 0x660f3804: /* pmaddubsw */
6891 case 0x660f3805: /* phsubw */
6892 case 0x660f3806: /* phsubd */
6893 case 0x660f3807: /* phsubsw */
6894 case 0x660f3808: /* psignb */
6895 case 0x660f3809: /* psignw */
6896 case 0x660f380a: /* psignd */
6897 case 0x660f380b: /* pmulhrsw */
6898 case 0x660f3810: /* pblendvb */
6899 case 0x660f3814: /* blendvps */
6900 case 0x660f3815: /* blendvpd */
6901 case 0x660f381c: /* pabsb */
6902 case 0x660f381d: /* pabsw */
6903 case 0x660f381e: /* pabsd */
6904 case 0x660f3820: /* pmovsxbw */
6905 case 0x660f3821: /* pmovsxbd */
6906 case 0x660f3822: /* pmovsxbq */
6907 case 0x660f3823: /* pmovsxwd */
6908 case 0x660f3824: /* pmovsxwq */
6909 case 0x660f3825: /* pmovsxdq */
6910 case 0x660f3828: /* pmuldq */
6911 case 0x660f3829: /* pcmpeqq */
6912 case 0x660f382a: /* movntdqa */
6913 case 0x660f3a08: /* roundps */
6914 case 0x660f3a09: /* roundpd */
6915 case 0x660f3a0a: /* roundss */
6916 case 0x660f3a0b: /* roundsd */
6917 case 0x660f3a0c: /* blendps */
6918 case 0x660f3a0d: /* blendpd */
6919 case 0x660f3a0e: /* pblendw */
6920 case 0x660f3a0f: /* palignr */
6921 case 0x660f3a20: /* pinsrb */
6922 case 0x660f3a21: /* insertps */
6923 case 0x660f3a22: /* pinsrd pinsrq */
6924 case 0x660f3a40: /* dpps */
6925 case 0x660f3a41: /* dppd */
6926 case 0x660f3a42: /* mpsadbw */
6927 case 0x660f3a60: /* pcmpestrm */
6928 case 0x660f3a61: /* pcmpestri */
6929 case 0x660f3a62: /* pcmpistrm */
6930 case 0x660f3a63: /* pcmpistri */
6931 case 0x0f51: /* sqrtps */
6932 case 0x660f51: /* sqrtpd */
6933 case 0xf20f51: /* sqrtsd */
6934 case 0xf30f51: /* sqrtss */
6935 case 0x0f52: /* rsqrtps */
6936 case 0xf30f52: /* rsqrtss */
6937 case 0x0f53: /* rcpps */
6938 case 0xf30f53: /* rcpss */
6939 case 0x0f54: /* andps */
6940 case 0x660f54: /* andpd */
6941 case 0x0f55: /* andnps */
6942 case 0x660f55: /* andnpd */
6943 case 0x0f56: /* orps */
6944 case 0x660f56: /* orpd */
6945 case 0x0f57: /* xorps */
6946 case 0x660f57: /* xorpd */
6947 case 0x0f58: /* addps */
6948 case 0x660f58: /* addpd */
6949 case 0xf20f58: /* addsd */
6950 case 0xf30f58: /* addss */
6951 case 0x0f59: /* mulps */
6952 case 0x660f59: /* mulpd */
6953 case 0xf20f59: /* mulsd */
6954 case 0xf30f59: /* mulss */
6955 case 0x0f5a: /* cvtps2pd */
6956 case 0x660f5a: /* cvtpd2ps */
6957 case 0xf20f5a: /* cvtsd2ss */
6958 case 0xf30f5a: /* cvtss2sd */
6959 case 0x0f5b: /* cvtdq2ps */
6960 case 0x660f5b: /* cvtps2dq */
6961 case 0xf30f5b: /* cvttps2dq */
6962 case 0x0f5c: /* subps */
6963 case 0x660f5c: /* subpd */
6964 case 0xf20f5c: /* subsd */
6965 case 0xf30f5c: /* subss */
6966 case 0x0f5d: /* minps */
6967 case 0x660f5d: /* minpd */
6968 case 0xf20f5d: /* minsd */
6969 case 0xf30f5d: /* minss */
6970 case 0x0f5e: /* divps */
6971 case 0x660f5e: /* divpd */
6972 case 0xf20f5e: /* divsd */
6973 case 0xf30f5e: /* divss */
6974 case 0x0f5f: /* maxps */
6975 case 0x660f5f: /* maxpd */
6976 case 0xf20f5f: /* maxsd */
6977 case 0xf30f5f: /* maxss */
6978 case 0x660f60: /* punpcklbw */
6979 case 0x660f61: /* punpcklwd */
6980 case 0x660f62: /* punpckldq */
6981 case 0x660f63: /* packsswb */
6982 case 0x660f64: /* pcmpgtb */
6983 case 0x660f65: /* pcmpgtw */
6984 case 0x660f66: /* pcmpgtd */
6985 case 0x660f67: /* packuswb */
6986 case 0x660f68: /* punpckhbw */
6987 case 0x660f69: /* punpckhwd */
6988 case 0x660f6a: /* punpckhdq */
6989 case 0x660f6b: /* packssdw */
6990 case 0x660f6c: /* punpcklqdq */
6991 case 0x660f6d: /* punpckhqdq */
6992 case 0x660f6e: /* movd */
6993 case 0x660f6f: /* movdqa */
6994 case 0xf30f6f: /* movdqu */
6995 case 0x660f70: /* pshufd */
6996 case 0xf20f70: /* pshuflw */
6997 case 0xf30f70: /* pshufhw */
6998 case 0x660f74: /* pcmpeqb */
6999 case 0x660f75: /* pcmpeqw */
7000 case 0x660f76: /* pcmpeqd */
7001 case 0x660f7c: /* haddpd */
7002 case 0xf20f7c: /* haddps */
7003 case 0x660f7d: /* hsubpd */
7004 case 0xf20f7d: /* hsubps */
7005 case 0xf30f7e: /* movq */
7006 case 0x0fc2: /* cmpps */
7007 case 0x660fc2: /* cmppd */
7008 case 0xf20fc2: /* cmpsd */
7009 case 0xf30fc2: /* cmpss */
7010 case 0x660fc4: /* pinsrw */
7011 case 0x0fc6: /* shufps */
7012 case 0x660fc6: /* shufpd */
7013 case 0x660fd0: /* addsubpd */
7014 case 0xf20fd0: /* addsubps */
7015 case 0x660fd1: /* psrlw */
7016 case 0x660fd2: /* psrld */
7017 case 0x660fd3: /* psrlq */
7018 case 0x660fd4: /* paddq */
7019 case 0x660fd5: /* pmullw */
7020 case 0xf30fd6: /* movq2dq */
7021 case 0x660fd8: /* psubusb */
7022 case 0x660fd9: /* psubusw */
7023 case 0x660fda: /* pminub */
7024 case 0x660fdb: /* pand */
7025 case 0x660fdc: /* paddusb */
7026 case 0x660fdd: /* paddusw */
7027 case 0x660fde: /* pmaxub */
7028 case 0x660fdf: /* pandn */
7029 case 0x660fe0: /* pavgb */
7030 case 0x660fe1: /* psraw */
7031 case 0x660fe2: /* psrad */
7032 case 0x660fe3: /* pavgw */
7033 case 0x660fe4: /* pmulhuw */
7034 case 0x660fe5: /* pmulhw */
7035 case 0x660fe6: /* cvttpd2dq */
7036 case 0xf20fe6: /* cvtpd2dq */
7037 case 0xf30fe6: /* cvtdq2pd */
7038 case 0x660fe8: /* psubsb */
7039 case 0x660fe9: /* psubsw */
7040 case 0x660fea: /* pminsw */
7041 case 0x660feb: /* por */
7042 case 0x660fec: /* paddsb */
7043 case 0x660fed: /* paddsw */
7044 case 0x660fee: /* pmaxsw */
7045 case 0x660fef: /* pxor */
7046 case 0xf20ff0: /* lddqu */
7047 case 0x660ff1: /* psllw */
7048 case 0x660ff2: /* pslld */
7049 case 0x660ff3: /* psllq */
7050 case 0x660ff4: /* pmuludq */
7051 case 0x660ff5: /* pmaddwd */
7052 case 0x660ff6: /* psadbw */
7053 case 0x660ff8: /* psubb */
7054 case 0x660ff9: /* psubw */
7055 case 0x660ffa: /* psubd */
7056 case 0x660ffb: /* psubq */
7057 case 0x660ffc: /* paddb */
7058 case 0x660ffd: /* paddw */
7059 case 0x660ffe: /* paddd */
7060 if (i386_record_modrm (&ir))
7061 return -1;
7062 ir.reg |= rex_r;
7063 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.reg))
7064 goto no_support;
7065 record_arch_list_add_reg (ir.regcache,
7066 I387_XMM0_REGNUM (tdep) + ir.reg);
7067 if ((opcode & 0xfffffffc) == 0x660f3a60)
7068 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7069 break;
7070
7071 case 0x0f11: /* movups */
7072 case 0x660f11: /* movupd */
7073 case 0xf30f11: /* movss */
7074 case 0xf20f11: /* movsd */
7075 case 0x0f13: /* movlps */
7076 case 0x660f13: /* movlpd */
7077 case 0x0f17: /* movhps */
7078 case 0x660f17: /* movhpd */
7079 case 0x0f29: /* movaps */
7080 case 0x660f29: /* movapd */
7081 case 0x660f3a14: /* pextrb */
7082 case 0x660f3a15: /* pextrw */
7083 case 0x660f3a16: /* pextrd pextrq */
7084 case 0x660f3a17: /* extractps */
7085 case 0x660f7f: /* movdqa */
7086 case 0xf30f7f: /* movdqu */
7087 if (i386_record_modrm (&ir))
7088 return -1;
7089 if (ir.mod == 3)
7090 {
7091 if (opcode == 0x0f13 || opcode == 0x660f13
7092 || opcode == 0x0f17 || opcode == 0x660f17)
7093 goto no_support;
7094 ir.rm |= ir.rex_b;
7095 if (!i386_xmm_regnum_p (gdbarch,
7096 I387_XMM0_REGNUM (tdep) + ir.rm))
7097 goto no_support;
7098 record_arch_list_add_reg (ir.regcache,
7099 I387_XMM0_REGNUM (tdep) + ir.rm);
7100 }
7101 else
7102 {
7103 switch (opcode)
7104 {
7105 case 0x660f3a14:
7106 ir.ot = OT_BYTE;
7107 break;
7108 case 0x660f3a15:
7109 ir.ot = OT_WORD;
7110 break;
7111 case 0x660f3a16:
7112 ir.ot = OT_LONG;
7113 break;
7114 case 0x660f3a17:
7115 ir.ot = OT_QUAD;
7116 break;
7117 default:
7118 ir.ot = OT_DQUAD;
7119 break;
7120 }
7121 if (i386_record_lea_modrm (&ir))
7122 return -1;
7123 }
7124 break;
7125
7126 case 0x0f2b: /* movntps */
7127 case 0x660f2b: /* movntpd */
7128 case 0x0fe7: /* movntq */
7129 case 0x660fe7: /* movntdq */
7130 if (ir.mod == 3)
7131 goto no_support;
7132 if (opcode == 0x0fe7)
7133 ir.ot = OT_QUAD;
7134 else
7135 ir.ot = OT_DQUAD;
7136 if (i386_record_lea_modrm (&ir))
7137 return -1;
7138 break;
7139
7140 case 0xf30f2c: /* cvttss2si */
7141 case 0xf20f2c: /* cvttsd2si */
7142 case 0xf30f2d: /* cvtss2si */
7143 case 0xf20f2d: /* cvtsd2si */
7144 case 0xf20f38f0: /* crc32 */
7145 case 0xf20f38f1: /* crc32 */
7146 case 0x0f50: /* movmskps */
7147 case 0x660f50: /* movmskpd */
7148 case 0x0fc5: /* pextrw */
7149 case 0x660fc5: /* pextrw */
7150 case 0x0fd7: /* pmovmskb */
7151 case 0x660fd7: /* pmovmskb */
7152 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7153 break;
7154
7155 case 0x0f3800: /* pshufb */
7156 case 0x0f3801: /* phaddw */
7157 case 0x0f3802: /* phaddd */
7158 case 0x0f3803: /* phaddsw */
7159 case 0x0f3804: /* pmaddubsw */
7160 case 0x0f3805: /* phsubw */
7161 case 0x0f3806: /* phsubd */
7162 case 0x0f3807: /* phsubsw */
7163 case 0x0f3808: /* psignb */
7164 case 0x0f3809: /* psignw */
7165 case 0x0f380a: /* psignd */
7166 case 0x0f380b: /* pmulhrsw */
7167 case 0x0f381c: /* pabsb */
7168 case 0x0f381d: /* pabsw */
7169 case 0x0f381e: /* pabsd */
7170 case 0x0f382b: /* packusdw */
7171 case 0x0f3830: /* pmovzxbw */
7172 case 0x0f3831: /* pmovzxbd */
7173 case 0x0f3832: /* pmovzxbq */
7174 case 0x0f3833: /* pmovzxwd */
7175 case 0x0f3834: /* pmovzxwq */
7176 case 0x0f3835: /* pmovzxdq */
7177 case 0x0f3837: /* pcmpgtq */
7178 case 0x0f3838: /* pminsb */
7179 case 0x0f3839: /* pminsd */
7180 case 0x0f383a: /* pminuw */
7181 case 0x0f383b: /* pminud */
7182 case 0x0f383c: /* pmaxsb */
7183 case 0x0f383d: /* pmaxsd */
7184 case 0x0f383e: /* pmaxuw */
7185 case 0x0f383f: /* pmaxud */
7186 case 0x0f3840: /* pmulld */
7187 case 0x0f3841: /* phminposuw */
7188 case 0x0f3a0f: /* palignr */
7189 case 0x0f60: /* punpcklbw */
7190 case 0x0f61: /* punpcklwd */
7191 case 0x0f62: /* punpckldq */
7192 case 0x0f63: /* packsswb */
7193 case 0x0f64: /* pcmpgtb */
7194 case 0x0f65: /* pcmpgtw */
7195 case 0x0f66: /* pcmpgtd */
7196 case 0x0f67: /* packuswb */
7197 case 0x0f68: /* punpckhbw */
7198 case 0x0f69: /* punpckhwd */
7199 case 0x0f6a: /* punpckhdq */
7200 case 0x0f6b: /* packssdw */
7201 case 0x0f6e: /* movd */
7202 case 0x0f6f: /* movq */
7203 case 0x0f70: /* pshufw */
7204 case 0x0f74: /* pcmpeqb */
7205 case 0x0f75: /* pcmpeqw */
7206 case 0x0f76: /* pcmpeqd */
7207 case 0x0fc4: /* pinsrw */
7208 case 0x0fd1: /* psrlw */
7209 case 0x0fd2: /* psrld */
7210 case 0x0fd3: /* psrlq */
7211 case 0x0fd4: /* paddq */
7212 case 0x0fd5: /* pmullw */
7213 case 0xf20fd6: /* movdq2q */
7214 case 0x0fd8: /* psubusb */
7215 case 0x0fd9: /* psubusw */
7216 case 0x0fda: /* pminub */
7217 case 0x0fdb: /* pand */
7218 case 0x0fdc: /* paddusb */
7219 case 0x0fdd: /* paddusw */
7220 case 0x0fde: /* pmaxub */
7221 case 0x0fdf: /* pandn */
7222 case 0x0fe0: /* pavgb */
7223 case 0x0fe1: /* psraw */
7224 case 0x0fe2: /* psrad */
7225 case 0x0fe3: /* pavgw */
7226 case 0x0fe4: /* pmulhuw */
7227 case 0x0fe5: /* pmulhw */
7228 case 0x0fe8: /* psubsb */
7229 case 0x0fe9: /* psubsw */
7230 case 0x0fea: /* pminsw */
7231 case 0x0feb: /* por */
7232 case 0x0fec: /* paddsb */
7233 case 0x0fed: /* paddsw */
7234 case 0x0fee: /* pmaxsw */
7235 case 0x0fef: /* pxor */
7236 case 0x0ff1: /* psllw */
7237 case 0x0ff2: /* pslld */
7238 case 0x0ff3: /* psllq */
7239 case 0x0ff4: /* pmuludq */
7240 case 0x0ff5: /* pmaddwd */
7241 case 0x0ff6: /* psadbw */
7242 case 0x0ff8: /* psubb */
7243 case 0x0ff9: /* psubw */
7244 case 0x0ffa: /* psubd */
7245 case 0x0ffb: /* psubq */
7246 case 0x0ffc: /* paddb */
7247 case 0x0ffd: /* paddw */
7248 case 0x0ffe: /* paddd */
7249 if (i386_record_modrm (&ir))
7250 return -1;
7251 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7252 goto no_support;
7253 record_arch_list_add_reg (ir.regcache,
7254 I387_MM0_REGNUM (tdep) + ir.reg);
7255 break;
7256
7257 case 0x0f71: /* psllw */
7258 case 0x0f72: /* pslld */
7259 case 0x0f73: /* psllq */
7260 if (i386_record_modrm (&ir))
7261 return -1;
7262 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
7263 goto no_support;
7264 record_arch_list_add_reg (ir.regcache,
7265 I387_MM0_REGNUM (tdep) + ir.rm);
7266 break;
7267
7268 case 0x660f71: /* psllw */
7269 case 0x660f72: /* pslld */
7270 case 0x660f73: /* psllq */
7271 if (i386_record_modrm (&ir))
7272 return -1;
7273 ir.rm |= ir.rex_b;
7274 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.rm))
7275 goto no_support;
7276 record_arch_list_add_reg (ir.regcache,
7277 I387_XMM0_REGNUM (tdep) + ir.rm);
7278 break;
7279
7280 case 0x0f7e: /* movd */
7281 case 0x660f7e: /* movd */
7282 if (i386_record_modrm (&ir))
7283 return -1;
7284 if (ir.mod == 3)
7285 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7286 else
7287 {
7288 if (ir.dflag == 2)
7289 ir.ot = OT_QUAD;
7290 else
7291 ir.ot = OT_LONG;
7292 if (i386_record_lea_modrm (&ir))
7293 return -1;
7294 }
7295 break;
7296
7297 case 0x0f7f: /* movq */
7298 if (i386_record_modrm (&ir))
7299 return -1;
7300 if (ir.mod == 3)
7301 {
7302 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
7303 goto no_support;
7304 record_arch_list_add_reg (ir.regcache,
7305 I387_MM0_REGNUM (tdep) + ir.rm);
7306 }
7307 else
7308 {
7309 ir.ot = OT_QUAD;
7310 if (i386_record_lea_modrm (&ir))
7311 return -1;
7312 }
7313 break;
7314
7315 case 0xf30fb8: /* popcnt */
7316 if (i386_record_modrm (&ir))
7317 return -1;
7318 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
7319 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7320 break;
7321
7322 case 0x660fd6: /* movq */
7323 if (i386_record_modrm (&ir))
7324 return -1;
7325 if (ir.mod == 3)
7326 {
7327 ir.rm |= ir.rex_b;
7328 if (!i386_xmm_regnum_p (gdbarch,
7329 I387_XMM0_REGNUM (tdep) + ir.rm))
7330 goto no_support;
7331 record_arch_list_add_reg (ir.regcache,
7332 I387_XMM0_REGNUM (tdep) + ir.rm);
7333 }
7334 else
7335 {
7336 ir.ot = OT_QUAD;
7337 if (i386_record_lea_modrm (&ir))
7338 return -1;
7339 }
7340 break;
7341
7342 case 0x660f3817: /* ptest */
7343 case 0x0f2e: /* ucomiss */
7344 case 0x660f2e: /* ucomisd */
7345 case 0x0f2f: /* comiss */
7346 case 0x660f2f: /* comisd */
7347 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7348 break;
7349
7350 case 0x0ff7: /* maskmovq */
7351 regcache_raw_read_unsigned (ir.regcache,
7352 ir.regmap[X86_RECORD_REDI_REGNUM],
7353 &addr);
7354 if (record_arch_list_add_mem (addr, 64))
7355 return -1;
7356 break;
7357
7358 case 0x660ff7: /* maskmovdqu */
7359 regcache_raw_read_unsigned (ir.regcache,
7360 ir.regmap[X86_RECORD_REDI_REGNUM],
7361 &addr);
7362 if (record_arch_list_add_mem (addr, 128))
7363 return -1;
7364 break;
7365
7366 default:
7367 goto no_support;
7368 break;
7369 }
7370 break;
7371
7372 default:
7373 goto no_support;
7374 break;
7375 }
7376
7377 /* In the future, maybe still need to deal with need_dasm. */
7378 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REIP_REGNUM);
7379 if (record_arch_list_add_end ())
7380 return -1;
7381
7382 return 0;
7383
7384 no_support:
7385 printf_unfiltered (_("Process record does not support instruction 0x%02x "
7386 "at address %s.\n"),
7387 (unsigned int) (opcode),
7388 paddress (gdbarch, ir.orig_addr));
7389 return -1;
7390 }
7391
7392 static const int i386_record_regmap[] =
7393 {
7394 I386_EAX_REGNUM, I386_ECX_REGNUM, I386_EDX_REGNUM, I386_EBX_REGNUM,
7395 I386_ESP_REGNUM, I386_EBP_REGNUM, I386_ESI_REGNUM, I386_EDI_REGNUM,
7396 0, 0, 0, 0, 0, 0, 0, 0,
7397 I386_EIP_REGNUM, I386_EFLAGS_REGNUM, I386_CS_REGNUM, I386_SS_REGNUM,
7398 I386_DS_REGNUM, I386_ES_REGNUM, I386_FS_REGNUM, I386_GS_REGNUM
7399 };
7400
7401 /* Check that the given address appears suitable for a fast
7402 tracepoint, which on x86-64 means that we need an instruction of at
7403 least 5 bytes, so that we can overwrite it with a 4-byte-offset
7404 jump and not have to worry about program jumps to an address in the
7405 middle of the tracepoint jump. On x86, it may be possible to use
7406 4-byte jumps with a 2-byte offset to a trampoline located in the
7407 bottom 64 KiB of memory. Returns 1 if OK, and writes a size
7408 of instruction to replace, and 0 if not, plus an explanatory
7409 string. */
7410
7411 static int
7412 i386_fast_tracepoint_valid_at (struct gdbarch *gdbarch,
7413 CORE_ADDR addr, int *isize, char **msg)
7414 {
7415 int len, jumplen;
7416 static struct ui_file *gdb_null = NULL;
7417
7418 /* Ask the target for the minimum instruction length supported. */
7419 jumplen = target_get_min_fast_tracepoint_insn_len ();
7420
7421 if (jumplen < 0)
7422 {
7423 /* If the target does not support the get_min_fast_tracepoint_insn_len
7424 operation, assume that fast tracepoints will always be implemented
7425 using 4-byte relative jumps on both x86 and x86-64. */
7426 jumplen = 5;
7427 }
7428 else if (jumplen == 0)
7429 {
7430 /* If the target does support get_min_fast_tracepoint_insn_len but
7431 returns zero, then the IPA has not loaded yet. In this case,
7432 we optimistically assume that truncated 2-byte relative jumps
7433 will be available on x86, and compensate later if this assumption
7434 turns out to be incorrect. On x86-64 architectures, 4-byte relative
7435 jumps will always be used. */
7436 jumplen = (register_size (gdbarch, 0) == 8) ? 5 : 4;
7437 }
7438
7439 /* Dummy file descriptor for the disassembler. */
7440 if (!gdb_null)
7441 gdb_null = ui_file_new ();
7442
7443 /* Check for fit. */
7444 len = gdb_print_insn (gdbarch, addr, gdb_null, NULL);
7445 if (isize)
7446 *isize = len;
7447
7448 if (len < jumplen)
7449 {
7450 /* Return a bit of target-specific detail to add to the caller's
7451 generic failure message. */
7452 if (msg)
7453 *msg = xstrprintf (_("; instruction is only %d bytes long, "
7454 "need at least %d bytes for the jump"),
7455 len, jumplen);
7456 return 0;
7457 }
7458 else
7459 {
7460 if (msg)
7461 *msg = NULL;
7462 return 1;
7463 }
7464 }
7465
7466 static int
7467 i386_validate_tdesc_p (struct gdbarch_tdep *tdep,
7468 struct tdesc_arch_data *tdesc_data)
7469 {
7470 const struct target_desc *tdesc = tdep->tdesc;
7471 const struct tdesc_feature *feature_core;
7472 const struct tdesc_feature *feature_sse, *feature_avx;
7473 int i, num_regs, valid_p;
7474
7475 if (! tdesc_has_registers (tdesc))
7476 return 0;
7477
7478 /* Get core registers. */
7479 feature_core = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.core");
7480 if (feature_core == NULL)
7481 return 0;
7482
7483 /* Get SSE registers. */
7484 feature_sse = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.sse");
7485
7486 /* Try AVX registers. */
7487 feature_avx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx");
7488
7489 valid_p = 1;
7490
7491 /* The XCR0 bits. */
7492 if (feature_avx)
7493 {
7494 /* AVX register description requires SSE register description. */
7495 if (!feature_sse)
7496 return 0;
7497
7498 tdep->xcr0 = I386_XSTATE_AVX_MASK;
7499
7500 /* It may have been set by OSABI initialization function. */
7501 if (tdep->num_ymm_regs == 0)
7502 {
7503 tdep->ymmh_register_names = i386_ymmh_names;
7504 tdep->num_ymm_regs = 8;
7505 tdep->ymm0h_regnum = I386_YMM0H_REGNUM;
7506 }
7507
7508 for (i = 0; i < tdep->num_ymm_regs; i++)
7509 valid_p &= tdesc_numbered_register (feature_avx, tdesc_data,
7510 tdep->ymm0h_regnum + i,
7511 tdep->ymmh_register_names[i]);
7512 }
7513 else if (feature_sse)
7514 tdep->xcr0 = I386_XSTATE_SSE_MASK;
7515 else
7516 {
7517 tdep->xcr0 = I386_XSTATE_X87_MASK;
7518 tdep->num_xmm_regs = 0;
7519 }
7520
7521 num_regs = tdep->num_core_regs;
7522 for (i = 0; i < num_regs; i++)
7523 valid_p &= tdesc_numbered_register (feature_core, tdesc_data, i,
7524 tdep->register_names[i]);
7525
7526 if (feature_sse)
7527 {
7528 /* Need to include %mxcsr, so add one. */
7529 num_regs += tdep->num_xmm_regs + 1;
7530 for (; i < num_regs; i++)
7531 valid_p &= tdesc_numbered_register (feature_sse, tdesc_data, i,
7532 tdep->register_names[i]);
7533 }
7534
7535 return valid_p;
7536 }
7537
7538 \f
7539 static struct gdbarch *
7540 i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
7541 {
7542 struct gdbarch_tdep *tdep;
7543 struct gdbarch *gdbarch;
7544 struct tdesc_arch_data *tdesc_data;
7545 const struct target_desc *tdesc;
7546 int mm0_regnum;
7547 int ymm0_regnum;
7548
7549 /* If there is already a candidate, use it. */
7550 arches = gdbarch_list_lookup_by_info (arches, &info);
7551 if (arches != NULL)
7552 return arches->gdbarch;
7553
7554 /* Allocate space for the new architecture. */
7555 tdep = XCALLOC (1, struct gdbarch_tdep);
7556 gdbarch = gdbarch_alloc (&info, tdep);
7557
7558 /* General-purpose registers. */
7559 tdep->gregset = NULL;
7560 tdep->gregset_reg_offset = NULL;
7561 tdep->gregset_num_regs = I386_NUM_GREGS;
7562 tdep->sizeof_gregset = 0;
7563
7564 /* Floating-point registers. */
7565 tdep->fpregset = NULL;
7566 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
7567
7568 tdep->xstateregset = NULL;
7569
7570 /* The default settings include the FPU registers, the MMX registers
7571 and the SSE registers. This can be overridden for a specific ABI
7572 by adjusting the members `st0_regnum', `mm0_regnum' and
7573 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
7574 will show up in the output of "info all-registers". */
7575
7576 tdep->st0_regnum = I386_ST0_REGNUM;
7577
7578 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
7579 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
7580
7581 tdep->jb_pc_offset = -1;
7582 tdep->struct_return = pcc_struct_return;
7583 tdep->sigtramp_start = 0;
7584 tdep->sigtramp_end = 0;
7585 tdep->sigtramp_p = i386_sigtramp_p;
7586 tdep->sigcontext_addr = NULL;
7587 tdep->sc_reg_offset = NULL;
7588 tdep->sc_pc_offset = -1;
7589 tdep->sc_sp_offset = -1;
7590
7591 tdep->xsave_xcr0_offset = -1;
7592
7593 tdep->record_regmap = i386_record_regmap;
7594
7595 set_gdbarch_long_long_align_bit (gdbarch, 32);
7596
7597 /* The format used for `long double' on almost all i386 targets is
7598 the i387 extended floating-point format. In fact, of all targets
7599 in the GCC 2.95 tree, only OSF/1 does it different, and insists
7600 on having a `long double' that's not `long' at all. */
7601 set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext);
7602
7603 /* Although the i387 extended floating-point has only 80 significant
7604 bits, a `long double' actually takes up 96, probably to enforce
7605 alignment. */
7606 set_gdbarch_long_double_bit (gdbarch, 96);
7607
7608 /* Register numbers of various important registers. */
7609 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
7610 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
7611 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
7612 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
7613
7614 /* NOTE: kettenis/20040418: GCC does have two possible register
7615 numbering schemes on the i386: dbx and SVR4. These schemes
7616 differ in how they number %ebp, %esp, %eflags, and the
7617 floating-point registers, and are implemented by the arrays
7618 dbx_register_map[] and svr4_dbx_register_map in
7619 gcc/config/i386.c. GCC also defines a third numbering scheme in
7620 gcc/config/i386.c, which it designates as the "default" register
7621 map used in 64bit mode. This last register numbering scheme is
7622 implemented in dbx64_register_map, and is used for AMD64; see
7623 amd64-tdep.c.
7624
7625 Currently, each GCC i386 target always uses the same register
7626 numbering scheme across all its supported debugging formats
7627 i.e. SDB (COFF), stabs and DWARF 2. This is because
7628 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
7629 DBX_REGISTER_NUMBER macro which is defined by each target's
7630 respective config header in a manner independent of the requested
7631 output debugging format.
7632
7633 This does not match the arrangement below, which presumes that
7634 the SDB and stabs numbering schemes differ from the DWARF and
7635 DWARF 2 ones. The reason for this arrangement is that it is
7636 likely to get the numbering scheme for the target's
7637 default/native debug format right. For targets where GCC is the
7638 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
7639 targets where the native toolchain uses a different numbering
7640 scheme for a particular debug format (stabs-in-ELF on Solaris)
7641 the defaults below will have to be overridden, like
7642 i386_elf_init_abi() does. */
7643
7644 /* Use the dbx register numbering scheme for stabs and COFF. */
7645 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
7646 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
7647
7648 /* Use the SVR4 register numbering scheme for DWARF 2. */
7649 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
7650
7651 /* We don't set gdbarch_stab_reg_to_regnum, since ECOFF doesn't seem to
7652 be in use on any of the supported i386 targets. */
7653
7654 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
7655
7656 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
7657
7658 /* Call dummy code. */
7659 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
7660 set_gdbarch_push_dummy_code (gdbarch, i386_push_dummy_code);
7661 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
7662 set_gdbarch_frame_align (gdbarch, i386_frame_align);
7663
7664 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
7665 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
7666 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
7667
7668 set_gdbarch_return_value (gdbarch, i386_return_value);
7669
7670 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
7671
7672 /* Stack grows downward. */
7673 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
7674
7675 set_gdbarch_breakpoint_from_pc (gdbarch, i386_breakpoint_from_pc);
7676 set_gdbarch_decr_pc_after_break (gdbarch, 1);
7677 set_gdbarch_max_insn_length (gdbarch, I386_MAX_INSN_LEN);
7678
7679 set_gdbarch_frame_args_skip (gdbarch, 8);
7680
7681 set_gdbarch_print_insn (gdbarch, i386_print_insn);
7682
7683 set_gdbarch_dummy_id (gdbarch, i386_dummy_id);
7684
7685 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
7686
7687 /* Add the i386 register groups. */
7688 i386_add_reggroups (gdbarch);
7689 tdep->register_reggroup_p = i386_register_reggroup_p;
7690
7691 /* Helper for function argument information. */
7692 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
7693
7694 /* Hook the function epilogue frame unwinder. This unwinder is
7695 appended to the list first, so that it supercedes the DWARF
7696 unwinder in function epilogues (where the DWARF unwinder
7697 currently fails). */
7698 frame_unwind_append_unwinder (gdbarch, &i386_epilogue_frame_unwind);
7699
7700 /* Hook in the DWARF CFI frame unwinder. This unwinder is appended
7701 to the list before the prologue-based unwinders, so that DWARF
7702 CFI info will be used if it is available. */
7703 dwarf2_append_unwinders (gdbarch);
7704
7705 frame_base_set_default (gdbarch, &i386_frame_base);
7706
7707 /* Pseudo registers may be changed by amd64_init_abi. */
7708 set_gdbarch_pseudo_register_read_value (gdbarch,
7709 i386_pseudo_register_read_value);
7710 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
7711
7712 set_tdesc_pseudo_register_type (gdbarch, i386_pseudo_register_type);
7713 set_tdesc_pseudo_register_name (gdbarch, i386_pseudo_register_name);
7714
7715 /* Override the normal target description method to make the AVX
7716 upper halves anonymous. */
7717 set_gdbarch_register_name (gdbarch, i386_register_name);
7718
7719 /* Even though the default ABI only includes general-purpose registers,
7720 floating-point registers and the SSE registers, we have to leave a
7721 gap for the upper AVX registers. */
7722 set_gdbarch_num_regs (gdbarch, I386_AVX_NUM_REGS);
7723
7724 /* Get the x86 target description from INFO. */
7725 tdesc = info.target_desc;
7726 if (! tdesc_has_registers (tdesc))
7727 tdesc = tdesc_i386;
7728 tdep->tdesc = tdesc;
7729
7730 tdep->num_core_regs = I386_NUM_GREGS + I387_NUM_REGS;
7731 tdep->register_names = i386_register_names;
7732
7733 /* No upper YMM registers. */
7734 tdep->ymmh_register_names = NULL;
7735 tdep->ymm0h_regnum = -1;
7736
7737 tdep->num_byte_regs = 8;
7738 tdep->num_word_regs = 8;
7739 tdep->num_dword_regs = 0;
7740 tdep->num_mmx_regs = 8;
7741 tdep->num_ymm_regs = 0;
7742
7743 tdesc_data = tdesc_data_alloc ();
7744
7745 set_gdbarch_relocate_instruction (gdbarch, i386_relocate_instruction);
7746
7747 set_gdbarch_gen_return_address (gdbarch, i386_gen_return_address);
7748
7749 /* Hook in ABI-specific overrides, if they have been registered. */
7750 info.tdep_info = (void *) tdesc_data;
7751 gdbarch_init_osabi (info, gdbarch);
7752
7753 if (!i386_validate_tdesc_p (tdep, tdesc_data))
7754 {
7755 tdesc_data_cleanup (tdesc_data);
7756 xfree (tdep);
7757 gdbarch_free (gdbarch);
7758 return NULL;
7759 }
7760
7761 /* Wire in pseudo registers. Number of pseudo registers may be
7762 changed. */
7763 set_gdbarch_num_pseudo_regs (gdbarch, (tdep->num_byte_regs
7764 + tdep->num_word_regs
7765 + tdep->num_dword_regs
7766 + tdep->num_mmx_regs
7767 + tdep->num_ymm_regs));
7768
7769 /* Target description may be changed. */
7770 tdesc = tdep->tdesc;
7771
7772 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
7773
7774 /* Override gdbarch_register_reggroup_p set in tdesc_use_registers. */
7775 set_gdbarch_register_reggroup_p (gdbarch, tdep->register_reggroup_p);
7776
7777 /* Make %al the first pseudo-register. */
7778 tdep->al_regnum = gdbarch_num_regs (gdbarch);
7779 tdep->ax_regnum = tdep->al_regnum + tdep->num_byte_regs;
7780
7781 ymm0_regnum = tdep->ax_regnum + tdep->num_word_regs;
7782 if (tdep->num_dword_regs)
7783 {
7784 /* Support dword pseudo-register if it hasn't been disabled. */
7785 tdep->eax_regnum = ymm0_regnum;
7786 ymm0_regnum += tdep->num_dword_regs;
7787 }
7788 else
7789 tdep->eax_regnum = -1;
7790
7791 mm0_regnum = ymm0_regnum;
7792 if (tdep->num_ymm_regs)
7793 {
7794 /* Support YMM pseudo-register if it is available. */
7795 tdep->ymm0_regnum = ymm0_regnum;
7796 mm0_regnum += tdep->num_ymm_regs;
7797 }
7798 else
7799 tdep->ymm0_regnum = -1;
7800
7801 if (tdep->num_mmx_regs != 0)
7802 {
7803 /* Support MMX pseudo-register if MMX hasn't been disabled. */
7804 tdep->mm0_regnum = mm0_regnum;
7805 }
7806 else
7807 tdep->mm0_regnum = -1;
7808
7809 /* Hook in the legacy prologue-based unwinders last (fallback). */
7810 frame_unwind_append_unwinder (gdbarch, &i386_stack_tramp_frame_unwind);
7811 frame_unwind_append_unwinder (gdbarch, &i386_sigtramp_frame_unwind);
7812 frame_unwind_append_unwinder (gdbarch, &i386_frame_unwind);
7813
7814 /* If we have a register mapping, enable the generic core file
7815 support, unless it has already been enabled. */
7816 if (tdep->gregset_reg_offset
7817 && !gdbarch_regset_from_core_section_p (gdbarch))
7818 set_gdbarch_regset_from_core_section (gdbarch,
7819 i386_regset_from_core_section);
7820
7821 set_gdbarch_skip_permanent_breakpoint (gdbarch,
7822 i386_skip_permanent_breakpoint);
7823
7824 set_gdbarch_fast_tracepoint_valid_at (gdbarch,
7825 i386_fast_tracepoint_valid_at);
7826
7827 return gdbarch;
7828 }
7829
7830 static enum gdb_osabi
7831 i386_coff_osabi_sniffer (bfd *abfd)
7832 {
7833 if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
7834 || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
7835 return GDB_OSABI_GO32;
7836
7837 return GDB_OSABI_UNKNOWN;
7838 }
7839 \f
7840
7841 /* Provide a prototype to silence -Wmissing-prototypes. */
7842 void _initialize_i386_tdep (void);
7843
7844 void
7845 _initialize_i386_tdep (void)
7846 {
7847 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
7848
7849 /* Add the variable that controls the disassembly flavor. */
7850 add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
7851 &disassembly_flavor, _("\
7852 Set the disassembly flavor."), _("\
7853 Show the disassembly flavor."), _("\
7854 The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
7855 NULL,
7856 NULL, /* FIXME: i18n: */
7857 &setlist, &showlist);
7858
7859 /* Add the variable that controls the convention for returning
7860 structs. */
7861 add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
7862 &struct_convention, _("\
7863 Set the convention for returning small structs."), _("\
7864 Show the convention for returning small structs."), _("\
7865 Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
7866 is \"default\"."),
7867 NULL,
7868 NULL, /* FIXME: i18n: */
7869 &setlist, &showlist);
7870
7871 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
7872 i386_coff_osabi_sniffer);
7873
7874 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
7875 i386_svr4_init_abi);
7876 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_GO32,
7877 i386_go32_init_abi);
7878
7879 /* Initialize the i386-specific register groups. */
7880 i386_init_reggroups ();
7881
7882 /* Initialize the standard target descriptions. */
7883 initialize_tdesc_i386 ();
7884 initialize_tdesc_i386_mmx ();
7885 initialize_tdesc_i386_avx ();
7886
7887 /* Tell remote stub that we support XML target description. */
7888 register_remote_support_xml ("i386");
7889 }
This page took 0.327266 seconds and 3 git commands to generate.