Fix for PR tdep/16397: SystemTap SDT probe support for x86 doesn't work with "triplet...
[deliverable/binutils-gdb.git] / gdb / i386-tdep.c
1 /* Intel 386 target-dependent stuff.
2
3 Copyright (C) 1988-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "opcode/i386.h"
22 #include "arch-utils.h"
23 #include "command.h"
24 #include "dummy-frame.h"
25 #include "dwarf2-frame.h"
26 #include "doublest.h"
27 #include "frame.h"
28 #include "frame-base.h"
29 #include "frame-unwind.h"
30 #include "inferior.h"
31 #include "gdbcmd.h"
32 #include "gdbcore.h"
33 #include "gdbtypes.h"
34 #include "objfiles.h"
35 #include "osabi.h"
36 #include "regcache.h"
37 #include "reggroups.h"
38 #include "regset.h"
39 #include "symfile.h"
40 #include "symtab.h"
41 #include "target.h"
42 #include "value.h"
43 #include "dis-asm.h"
44 #include "disasm.h"
45 #include "remote.h"
46 #include "exceptions.h"
47 #include "gdb_assert.h"
48 #include <string.h>
49
50 #include "i386-tdep.h"
51 #include "i387-tdep.h"
52 #include "i386-xstate.h"
53
54 #include "record.h"
55 #include "record-full.h"
56 #include <stdint.h>
57
58 #include "features/i386/i386.c"
59 #include "features/i386/i386-avx.c"
60 #include "features/i386/i386-mpx.c"
61 #include "features/i386/i386-mmx.c"
62
63 #include "ax.h"
64 #include "ax-gdb.h"
65
66 #include "stap-probe.h"
67 #include "user-regs.h"
68 #include "cli/cli-utils.h"
69 #include "expression.h"
70 #include "parser-defs.h"
71 #include <ctype.h>
72
73 /* Register names. */
74
75 static const char *i386_register_names[] =
76 {
77 "eax", "ecx", "edx", "ebx",
78 "esp", "ebp", "esi", "edi",
79 "eip", "eflags", "cs", "ss",
80 "ds", "es", "fs", "gs",
81 "st0", "st1", "st2", "st3",
82 "st4", "st5", "st6", "st7",
83 "fctrl", "fstat", "ftag", "fiseg",
84 "fioff", "foseg", "fooff", "fop",
85 "xmm0", "xmm1", "xmm2", "xmm3",
86 "xmm4", "xmm5", "xmm6", "xmm7",
87 "mxcsr"
88 };
89
90 static const char *i386_ymm_names[] =
91 {
92 "ymm0", "ymm1", "ymm2", "ymm3",
93 "ymm4", "ymm5", "ymm6", "ymm7",
94 };
95
96 static const char *i386_ymmh_names[] =
97 {
98 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
99 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
100 };
101
102 static const char *i386_mpx_names[] =
103 {
104 "bnd0raw", "bnd1raw", "bnd2raw", "bnd3raw", "bndcfgu", "bndstatus"
105 };
106
107 /* Register names for MPX pseudo-registers. */
108
109 static const char *i386_bnd_names[] =
110 {
111 "bnd0", "bnd1", "bnd2", "bnd3"
112 };
113
114 /* Register names for MMX pseudo-registers. */
115
116 static const char *i386_mmx_names[] =
117 {
118 "mm0", "mm1", "mm2", "mm3",
119 "mm4", "mm5", "mm6", "mm7"
120 };
121
122 /* Register names for byte pseudo-registers. */
123
124 static const char *i386_byte_names[] =
125 {
126 "al", "cl", "dl", "bl",
127 "ah", "ch", "dh", "bh"
128 };
129
130 /* Register names for word pseudo-registers. */
131
132 static const char *i386_word_names[] =
133 {
134 "ax", "cx", "dx", "bx",
135 "", "bp", "si", "di"
136 };
137
138 /* MMX register? */
139
140 static int
141 i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
142 {
143 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
144 int mm0_regnum = tdep->mm0_regnum;
145
146 if (mm0_regnum < 0)
147 return 0;
148
149 regnum -= mm0_regnum;
150 return regnum >= 0 && regnum < tdep->num_mmx_regs;
151 }
152
153 /* Byte register? */
154
155 int
156 i386_byte_regnum_p (struct gdbarch *gdbarch, int regnum)
157 {
158 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
159
160 regnum -= tdep->al_regnum;
161 return regnum >= 0 && regnum < tdep->num_byte_regs;
162 }
163
164 /* Word register? */
165
166 int
167 i386_word_regnum_p (struct gdbarch *gdbarch, int regnum)
168 {
169 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
170
171 regnum -= tdep->ax_regnum;
172 return regnum >= 0 && regnum < tdep->num_word_regs;
173 }
174
175 /* Dword register? */
176
177 int
178 i386_dword_regnum_p (struct gdbarch *gdbarch, int regnum)
179 {
180 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
181 int eax_regnum = tdep->eax_regnum;
182
183 if (eax_regnum < 0)
184 return 0;
185
186 regnum -= eax_regnum;
187 return regnum >= 0 && regnum < tdep->num_dword_regs;
188 }
189
190 static int
191 i386_ymmh_regnum_p (struct gdbarch *gdbarch, int regnum)
192 {
193 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
194 int ymm0h_regnum = tdep->ymm0h_regnum;
195
196 if (ymm0h_regnum < 0)
197 return 0;
198
199 regnum -= ymm0h_regnum;
200 return regnum >= 0 && regnum < tdep->num_ymm_regs;
201 }
202
203 /* AVX register? */
204
205 int
206 i386_ymm_regnum_p (struct gdbarch *gdbarch, int regnum)
207 {
208 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
209 int ymm0_regnum = tdep->ymm0_regnum;
210
211 if (ymm0_regnum < 0)
212 return 0;
213
214 regnum -= ymm0_regnum;
215 return regnum >= 0 && regnum < tdep->num_ymm_regs;
216 }
217
218 /* BND register? */
219
220 int
221 i386_bnd_regnum_p (struct gdbarch *gdbarch, int regnum)
222 {
223 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
224 int bnd0_regnum = tdep->bnd0_regnum;
225
226 if (bnd0_regnum < 0)
227 return 0;
228
229 regnum -= bnd0_regnum;
230 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
231 }
232
233 /* SSE register? */
234
235 int
236 i386_xmm_regnum_p (struct gdbarch *gdbarch, int regnum)
237 {
238 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
239 int num_xmm_regs = I387_NUM_XMM_REGS (tdep);
240
241 if (num_xmm_regs == 0)
242 return 0;
243
244 regnum -= I387_XMM0_REGNUM (tdep);
245 return regnum >= 0 && regnum < num_xmm_regs;
246 }
247
248 static int
249 i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
250 {
251 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
252
253 if (I387_NUM_XMM_REGS (tdep) == 0)
254 return 0;
255
256 return (regnum == I387_MXCSR_REGNUM (tdep));
257 }
258
259 /* FP register? */
260
261 int
262 i386_fp_regnum_p (struct gdbarch *gdbarch, int regnum)
263 {
264 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
265
266 if (I387_ST0_REGNUM (tdep) < 0)
267 return 0;
268
269 return (I387_ST0_REGNUM (tdep) <= regnum
270 && regnum < I387_FCTRL_REGNUM (tdep));
271 }
272
273 int
274 i386_fpc_regnum_p (struct gdbarch *gdbarch, int regnum)
275 {
276 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
277
278 if (I387_ST0_REGNUM (tdep) < 0)
279 return 0;
280
281 return (I387_FCTRL_REGNUM (tdep) <= regnum
282 && regnum < I387_XMM0_REGNUM (tdep));
283 }
284
285 /* BNDr (raw) register? */
286
287 static int
288 i386_bndr_regnum_p (struct gdbarch *gdbarch, int regnum)
289 {
290 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
291
292 if (I387_BND0R_REGNUM (tdep) < 0)
293 return 0;
294
295 regnum -= tdep->bnd0r_regnum;
296 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
297 }
298
299 /* BND control register? */
300
301 static int
302 i386_mpx_ctrl_regnum_p (struct gdbarch *gdbarch, int regnum)
303 {
304 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
305
306 if (I387_BNDCFGU_REGNUM (tdep) < 0)
307 return 0;
308
309 regnum -= I387_BNDCFGU_REGNUM (tdep);
310 return regnum >= 0 && regnum < I387_NUM_MPX_CTRL_REGS;
311 }
312
313 /* Return the name of register REGNUM, or the empty string if it is
314 an anonymous register. */
315
316 static const char *
317 i386_register_name (struct gdbarch *gdbarch, int regnum)
318 {
319 /* Hide the upper YMM registers. */
320 if (i386_ymmh_regnum_p (gdbarch, regnum))
321 return "";
322
323 return tdesc_register_name (gdbarch, regnum);
324 }
325
326 /* Return the name of register REGNUM. */
327
328 const char *
329 i386_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
330 {
331 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
332 if (i386_bnd_regnum_p (gdbarch, regnum))
333 return i386_bnd_names[regnum - tdep->bnd0_regnum];
334 if (i386_mmx_regnum_p (gdbarch, regnum))
335 return i386_mmx_names[regnum - I387_MM0_REGNUM (tdep)];
336 else if (i386_ymm_regnum_p (gdbarch, regnum))
337 return i386_ymm_names[regnum - tdep->ymm0_regnum];
338 else if (i386_byte_regnum_p (gdbarch, regnum))
339 return i386_byte_names[regnum - tdep->al_regnum];
340 else if (i386_word_regnum_p (gdbarch, regnum))
341 return i386_word_names[regnum - tdep->ax_regnum];
342
343 internal_error (__FILE__, __LINE__, _("invalid regnum"));
344 }
345
346 /* Convert a dbx register number REG to the appropriate register
347 number used by GDB. */
348
349 static int
350 i386_dbx_reg_to_regnum (struct gdbarch *gdbarch, int reg)
351 {
352 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
353
354 /* This implements what GCC calls the "default" register map
355 (dbx_register_map[]). */
356
357 if (reg >= 0 && reg <= 7)
358 {
359 /* General-purpose registers. The debug info calls %ebp
360 register 4, and %esp register 5. */
361 if (reg == 4)
362 return 5;
363 else if (reg == 5)
364 return 4;
365 else return reg;
366 }
367 else if (reg >= 12 && reg <= 19)
368 {
369 /* Floating-point registers. */
370 return reg - 12 + I387_ST0_REGNUM (tdep);
371 }
372 else if (reg >= 21 && reg <= 28)
373 {
374 /* SSE registers. */
375 int ymm0_regnum = tdep->ymm0_regnum;
376
377 if (ymm0_regnum >= 0
378 && i386_xmm_regnum_p (gdbarch, reg))
379 return reg - 21 + ymm0_regnum;
380 else
381 return reg - 21 + I387_XMM0_REGNUM (tdep);
382 }
383 else if (reg >= 29 && reg <= 36)
384 {
385 /* MMX registers. */
386 return reg - 29 + I387_MM0_REGNUM (tdep);
387 }
388
389 /* This will hopefully provoke a warning. */
390 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
391 }
392
393 /* Convert SVR4 register number REG to the appropriate register number
394 used by GDB. */
395
396 static int
397 i386_svr4_reg_to_regnum (struct gdbarch *gdbarch, int reg)
398 {
399 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
400
401 /* This implements the GCC register map that tries to be compatible
402 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
403
404 /* The SVR4 register numbering includes %eip and %eflags, and
405 numbers the floating point registers differently. */
406 if (reg >= 0 && reg <= 9)
407 {
408 /* General-purpose registers. */
409 return reg;
410 }
411 else if (reg >= 11 && reg <= 18)
412 {
413 /* Floating-point registers. */
414 return reg - 11 + I387_ST0_REGNUM (tdep);
415 }
416 else if (reg >= 21 && reg <= 36)
417 {
418 /* The SSE and MMX registers have the same numbers as with dbx. */
419 return i386_dbx_reg_to_regnum (gdbarch, reg);
420 }
421
422 switch (reg)
423 {
424 case 37: return I387_FCTRL_REGNUM (tdep);
425 case 38: return I387_FSTAT_REGNUM (tdep);
426 case 39: return I387_MXCSR_REGNUM (tdep);
427 case 40: return I386_ES_REGNUM;
428 case 41: return I386_CS_REGNUM;
429 case 42: return I386_SS_REGNUM;
430 case 43: return I386_DS_REGNUM;
431 case 44: return I386_FS_REGNUM;
432 case 45: return I386_GS_REGNUM;
433 }
434
435 /* This will hopefully provoke a warning. */
436 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
437 }
438
439 \f
440
441 /* This is the variable that is set with "set disassembly-flavor", and
442 its legitimate values. */
443 static const char att_flavor[] = "att";
444 static const char intel_flavor[] = "intel";
445 static const char *const valid_flavors[] =
446 {
447 att_flavor,
448 intel_flavor,
449 NULL
450 };
451 static const char *disassembly_flavor = att_flavor;
452 \f
453
454 /* Use the program counter to determine the contents and size of a
455 breakpoint instruction. Return a pointer to a string of bytes that
456 encode a breakpoint instruction, store the length of the string in
457 *LEN and optionally adjust *PC to point to the correct memory
458 location for inserting the breakpoint.
459
460 On the i386 we have a single breakpoint that fits in a single byte
461 and can be inserted anywhere.
462
463 This function is 64-bit safe. */
464
465 static const gdb_byte *
466 i386_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
467 {
468 static gdb_byte break_insn[] = { 0xcc }; /* int 3 */
469
470 *len = sizeof (break_insn);
471 return break_insn;
472 }
473 \f
474 /* Displaced instruction handling. */
475
476 /* Skip the legacy instruction prefixes in INSN.
477 Not all prefixes are valid for any particular insn
478 but we needn't care, the insn will fault if it's invalid.
479 The result is a pointer to the first opcode byte,
480 or NULL if we run off the end of the buffer. */
481
482 static gdb_byte *
483 i386_skip_prefixes (gdb_byte *insn, size_t max_len)
484 {
485 gdb_byte *end = insn + max_len;
486
487 while (insn < end)
488 {
489 switch (*insn)
490 {
491 case DATA_PREFIX_OPCODE:
492 case ADDR_PREFIX_OPCODE:
493 case CS_PREFIX_OPCODE:
494 case DS_PREFIX_OPCODE:
495 case ES_PREFIX_OPCODE:
496 case FS_PREFIX_OPCODE:
497 case GS_PREFIX_OPCODE:
498 case SS_PREFIX_OPCODE:
499 case LOCK_PREFIX_OPCODE:
500 case REPE_PREFIX_OPCODE:
501 case REPNE_PREFIX_OPCODE:
502 ++insn;
503 continue;
504 default:
505 return insn;
506 }
507 }
508
509 return NULL;
510 }
511
512 static int
513 i386_absolute_jmp_p (const gdb_byte *insn)
514 {
515 /* jmp far (absolute address in operand). */
516 if (insn[0] == 0xea)
517 return 1;
518
519 if (insn[0] == 0xff)
520 {
521 /* jump near, absolute indirect (/4). */
522 if ((insn[1] & 0x38) == 0x20)
523 return 1;
524
525 /* jump far, absolute indirect (/5). */
526 if ((insn[1] & 0x38) == 0x28)
527 return 1;
528 }
529
530 return 0;
531 }
532
533 /* Return non-zero if INSN is a jump, zero otherwise. */
534
535 static int
536 i386_jmp_p (const gdb_byte *insn)
537 {
538 /* jump short, relative. */
539 if (insn[0] == 0xeb)
540 return 1;
541
542 /* jump near, relative. */
543 if (insn[0] == 0xe9)
544 return 1;
545
546 return i386_absolute_jmp_p (insn);
547 }
548
549 static int
550 i386_absolute_call_p (const gdb_byte *insn)
551 {
552 /* call far, absolute. */
553 if (insn[0] == 0x9a)
554 return 1;
555
556 if (insn[0] == 0xff)
557 {
558 /* Call near, absolute indirect (/2). */
559 if ((insn[1] & 0x38) == 0x10)
560 return 1;
561
562 /* Call far, absolute indirect (/3). */
563 if ((insn[1] & 0x38) == 0x18)
564 return 1;
565 }
566
567 return 0;
568 }
569
570 static int
571 i386_ret_p (const gdb_byte *insn)
572 {
573 switch (insn[0])
574 {
575 case 0xc2: /* ret near, pop N bytes. */
576 case 0xc3: /* ret near */
577 case 0xca: /* ret far, pop N bytes. */
578 case 0xcb: /* ret far */
579 case 0xcf: /* iret */
580 return 1;
581
582 default:
583 return 0;
584 }
585 }
586
587 static int
588 i386_call_p (const gdb_byte *insn)
589 {
590 if (i386_absolute_call_p (insn))
591 return 1;
592
593 /* call near, relative. */
594 if (insn[0] == 0xe8)
595 return 1;
596
597 return 0;
598 }
599
600 /* Return non-zero if INSN is a system call, and set *LENGTHP to its
601 length in bytes. Otherwise, return zero. */
602
603 static int
604 i386_syscall_p (const gdb_byte *insn, int *lengthp)
605 {
606 /* Is it 'int $0x80'? */
607 if ((insn[0] == 0xcd && insn[1] == 0x80)
608 /* Or is it 'sysenter'? */
609 || (insn[0] == 0x0f && insn[1] == 0x34)
610 /* Or is it 'syscall'? */
611 || (insn[0] == 0x0f && insn[1] == 0x05))
612 {
613 *lengthp = 2;
614 return 1;
615 }
616
617 return 0;
618 }
619
620 /* The gdbarch insn_is_call method. */
621
622 static int
623 i386_insn_is_call (struct gdbarch *gdbarch, CORE_ADDR addr)
624 {
625 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
626
627 read_code (addr, buf, I386_MAX_INSN_LEN);
628 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
629
630 return i386_call_p (insn);
631 }
632
633 /* The gdbarch insn_is_ret method. */
634
635 static int
636 i386_insn_is_ret (struct gdbarch *gdbarch, CORE_ADDR addr)
637 {
638 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
639
640 read_code (addr, buf, I386_MAX_INSN_LEN);
641 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
642
643 return i386_ret_p (insn);
644 }
645
646 /* The gdbarch insn_is_jump method. */
647
648 static int
649 i386_insn_is_jump (struct gdbarch *gdbarch, CORE_ADDR addr)
650 {
651 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
652
653 read_code (addr, buf, I386_MAX_INSN_LEN);
654 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
655
656 return i386_jmp_p (insn);
657 }
658
659 /* Some kernels may run one past a syscall insn, so we have to cope.
660 Otherwise this is just simple_displaced_step_copy_insn. */
661
662 struct displaced_step_closure *
663 i386_displaced_step_copy_insn (struct gdbarch *gdbarch,
664 CORE_ADDR from, CORE_ADDR to,
665 struct regcache *regs)
666 {
667 size_t len = gdbarch_max_insn_length (gdbarch);
668 gdb_byte *buf = xmalloc (len);
669
670 read_memory (from, buf, len);
671
672 /* GDB may get control back after the insn after the syscall.
673 Presumably this is a kernel bug.
674 If this is a syscall, make sure there's a nop afterwards. */
675 {
676 int syscall_length;
677 gdb_byte *insn;
678
679 insn = i386_skip_prefixes (buf, len);
680 if (insn != NULL && i386_syscall_p (insn, &syscall_length))
681 insn[syscall_length] = NOP_OPCODE;
682 }
683
684 write_memory (to, buf, len);
685
686 if (debug_displaced)
687 {
688 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
689 paddress (gdbarch, from), paddress (gdbarch, to));
690 displaced_step_dump_bytes (gdb_stdlog, buf, len);
691 }
692
693 return (struct displaced_step_closure *) buf;
694 }
695
696 /* Fix up the state of registers and memory after having single-stepped
697 a displaced instruction. */
698
699 void
700 i386_displaced_step_fixup (struct gdbarch *gdbarch,
701 struct displaced_step_closure *closure,
702 CORE_ADDR from, CORE_ADDR to,
703 struct regcache *regs)
704 {
705 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
706
707 /* The offset we applied to the instruction's address.
708 This could well be negative (when viewed as a signed 32-bit
709 value), but ULONGEST won't reflect that, so take care when
710 applying it. */
711 ULONGEST insn_offset = to - from;
712
713 /* Since we use simple_displaced_step_copy_insn, our closure is a
714 copy of the instruction. */
715 gdb_byte *insn = (gdb_byte *) closure;
716 /* The start of the insn, needed in case we see some prefixes. */
717 gdb_byte *insn_start = insn;
718
719 if (debug_displaced)
720 fprintf_unfiltered (gdb_stdlog,
721 "displaced: fixup (%s, %s), "
722 "insn = 0x%02x 0x%02x ...\n",
723 paddress (gdbarch, from), paddress (gdbarch, to),
724 insn[0], insn[1]);
725
726 /* The list of issues to contend with here is taken from
727 resume_execution in arch/i386/kernel/kprobes.c, Linux 2.6.20.
728 Yay for Free Software! */
729
730 /* Relocate the %eip, if necessary. */
731
732 /* The instruction recognizers we use assume any leading prefixes
733 have been skipped. */
734 {
735 /* This is the size of the buffer in closure. */
736 size_t max_insn_len = gdbarch_max_insn_length (gdbarch);
737 gdb_byte *opcode = i386_skip_prefixes (insn, max_insn_len);
738 /* If there are too many prefixes, just ignore the insn.
739 It will fault when run. */
740 if (opcode != NULL)
741 insn = opcode;
742 }
743
744 /* Except in the case of absolute or indirect jump or call
745 instructions, or a return instruction, the new eip is relative to
746 the displaced instruction; make it relative. Well, signal
747 handler returns don't need relocation either, but we use the
748 value of %eip to recognize those; see below. */
749 if (! i386_absolute_jmp_p (insn)
750 && ! i386_absolute_call_p (insn)
751 && ! i386_ret_p (insn))
752 {
753 ULONGEST orig_eip;
754 int insn_len;
755
756 regcache_cooked_read_unsigned (regs, I386_EIP_REGNUM, &orig_eip);
757
758 /* A signal trampoline system call changes the %eip, resuming
759 execution of the main program after the signal handler has
760 returned. That makes them like 'return' instructions; we
761 shouldn't relocate %eip.
762
763 But most system calls don't, and we do need to relocate %eip.
764
765 Our heuristic for distinguishing these cases: if stepping
766 over the system call instruction left control directly after
767 the instruction, the we relocate --- control almost certainly
768 doesn't belong in the displaced copy. Otherwise, we assume
769 the instruction has put control where it belongs, and leave
770 it unrelocated. Goodness help us if there are PC-relative
771 system calls. */
772 if (i386_syscall_p (insn, &insn_len)
773 && orig_eip != to + (insn - insn_start) + insn_len
774 /* GDB can get control back after the insn after the syscall.
775 Presumably this is a kernel bug.
776 i386_displaced_step_copy_insn ensures its a nop,
777 we add one to the length for it. */
778 && orig_eip != to + (insn - insn_start) + insn_len + 1)
779 {
780 if (debug_displaced)
781 fprintf_unfiltered (gdb_stdlog,
782 "displaced: syscall changed %%eip; "
783 "not relocating\n");
784 }
785 else
786 {
787 ULONGEST eip = (orig_eip - insn_offset) & 0xffffffffUL;
788
789 /* If we just stepped over a breakpoint insn, we don't backup
790 the pc on purpose; this is to match behaviour without
791 stepping. */
792
793 regcache_cooked_write_unsigned (regs, I386_EIP_REGNUM, eip);
794
795 if (debug_displaced)
796 fprintf_unfiltered (gdb_stdlog,
797 "displaced: "
798 "relocated %%eip from %s to %s\n",
799 paddress (gdbarch, orig_eip),
800 paddress (gdbarch, eip));
801 }
802 }
803
804 /* If the instruction was PUSHFL, then the TF bit will be set in the
805 pushed value, and should be cleared. We'll leave this for later,
806 since GDB already messes up the TF flag when stepping over a
807 pushfl. */
808
809 /* If the instruction was a call, the return address now atop the
810 stack is the address following the copied instruction. We need
811 to make it the address following the original instruction. */
812 if (i386_call_p (insn))
813 {
814 ULONGEST esp;
815 ULONGEST retaddr;
816 const ULONGEST retaddr_len = 4;
817
818 regcache_cooked_read_unsigned (regs, I386_ESP_REGNUM, &esp);
819 retaddr = read_memory_unsigned_integer (esp, retaddr_len, byte_order);
820 retaddr = (retaddr - insn_offset) & 0xffffffffUL;
821 write_memory_unsigned_integer (esp, retaddr_len, byte_order, retaddr);
822
823 if (debug_displaced)
824 fprintf_unfiltered (gdb_stdlog,
825 "displaced: relocated return addr at %s to %s\n",
826 paddress (gdbarch, esp),
827 paddress (gdbarch, retaddr));
828 }
829 }
830
831 static void
832 append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
833 {
834 target_write_memory (*to, buf, len);
835 *to += len;
836 }
837
838 static void
839 i386_relocate_instruction (struct gdbarch *gdbarch,
840 CORE_ADDR *to, CORE_ADDR oldloc)
841 {
842 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
843 gdb_byte buf[I386_MAX_INSN_LEN];
844 int offset = 0, rel32, newrel;
845 int insn_length;
846 gdb_byte *insn = buf;
847
848 read_memory (oldloc, buf, I386_MAX_INSN_LEN);
849
850 insn_length = gdb_buffered_insn_length (gdbarch, insn,
851 I386_MAX_INSN_LEN, oldloc);
852
853 /* Get past the prefixes. */
854 insn = i386_skip_prefixes (insn, I386_MAX_INSN_LEN);
855
856 /* Adjust calls with 32-bit relative addresses as push/jump, with
857 the address pushed being the location where the original call in
858 the user program would return to. */
859 if (insn[0] == 0xe8)
860 {
861 gdb_byte push_buf[16];
862 unsigned int ret_addr;
863
864 /* Where "ret" in the original code will return to. */
865 ret_addr = oldloc + insn_length;
866 push_buf[0] = 0x68; /* pushq $... */
867 store_unsigned_integer (&push_buf[1], 4, byte_order, ret_addr);
868 /* Push the push. */
869 append_insns (to, 5, push_buf);
870
871 /* Convert the relative call to a relative jump. */
872 insn[0] = 0xe9;
873
874 /* Adjust the destination offset. */
875 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
876 newrel = (oldloc - *to) + rel32;
877 store_signed_integer (insn + 1, 4, byte_order, newrel);
878
879 if (debug_displaced)
880 fprintf_unfiltered (gdb_stdlog,
881 "Adjusted insn rel32=%s at %s to"
882 " rel32=%s at %s\n",
883 hex_string (rel32), paddress (gdbarch, oldloc),
884 hex_string (newrel), paddress (gdbarch, *to));
885
886 /* Write the adjusted jump into its displaced location. */
887 append_insns (to, 5, insn);
888 return;
889 }
890
891 /* Adjust jumps with 32-bit relative addresses. Calls are already
892 handled above. */
893 if (insn[0] == 0xe9)
894 offset = 1;
895 /* Adjust conditional jumps. */
896 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
897 offset = 2;
898
899 if (offset)
900 {
901 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
902 newrel = (oldloc - *to) + rel32;
903 store_signed_integer (insn + offset, 4, byte_order, newrel);
904 if (debug_displaced)
905 fprintf_unfiltered (gdb_stdlog,
906 "Adjusted insn rel32=%s at %s to"
907 " rel32=%s at %s\n",
908 hex_string (rel32), paddress (gdbarch, oldloc),
909 hex_string (newrel), paddress (gdbarch, *to));
910 }
911
912 /* Write the adjusted instructions into their displaced
913 location. */
914 append_insns (to, insn_length, buf);
915 }
916
917 \f
918 #ifdef I386_REGNO_TO_SYMMETRY
919 #error "The Sequent Symmetry is no longer supported."
920 #endif
921
922 /* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
923 and %esp "belong" to the calling function. Therefore these
924 registers should be saved if they're going to be modified. */
925
926 /* The maximum number of saved registers. This should include all
927 registers mentioned above, and %eip. */
928 #define I386_NUM_SAVED_REGS I386_NUM_GREGS
929
930 struct i386_frame_cache
931 {
932 /* Base address. */
933 CORE_ADDR base;
934 int base_p;
935 LONGEST sp_offset;
936 CORE_ADDR pc;
937
938 /* Saved registers. */
939 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
940 CORE_ADDR saved_sp;
941 int saved_sp_reg;
942 int pc_in_eax;
943
944 /* Stack space reserved for local variables. */
945 long locals;
946 };
947
948 /* Allocate and initialize a frame cache. */
949
950 static struct i386_frame_cache *
951 i386_alloc_frame_cache (void)
952 {
953 struct i386_frame_cache *cache;
954 int i;
955
956 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
957
958 /* Base address. */
959 cache->base_p = 0;
960 cache->base = 0;
961 cache->sp_offset = -4;
962 cache->pc = 0;
963
964 /* Saved registers. We initialize these to -1 since zero is a valid
965 offset (that's where %ebp is supposed to be stored). */
966 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
967 cache->saved_regs[i] = -1;
968 cache->saved_sp = 0;
969 cache->saved_sp_reg = -1;
970 cache->pc_in_eax = 0;
971
972 /* Frameless until proven otherwise. */
973 cache->locals = -1;
974
975 return cache;
976 }
977
978 /* If the instruction at PC is a jump, return the address of its
979 target. Otherwise, return PC. */
980
981 static CORE_ADDR
982 i386_follow_jump (struct gdbarch *gdbarch, CORE_ADDR pc)
983 {
984 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
985 gdb_byte op;
986 long delta = 0;
987 int data16 = 0;
988
989 if (target_read_code (pc, &op, 1))
990 return pc;
991
992 if (op == 0x66)
993 {
994 data16 = 1;
995
996 op = read_code_unsigned_integer (pc + 1, 1, byte_order);
997 }
998
999 switch (op)
1000 {
1001 case 0xe9:
1002 /* Relative jump: if data16 == 0, disp32, else disp16. */
1003 if (data16)
1004 {
1005 delta = read_memory_integer (pc + 2, 2, byte_order);
1006
1007 /* Include the size of the jmp instruction (including the
1008 0x66 prefix). */
1009 delta += 4;
1010 }
1011 else
1012 {
1013 delta = read_memory_integer (pc + 1, 4, byte_order);
1014
1015 /* Include the size of the jmp instruction. */
1016 delta += 5;
1017 }
1018 break;
1019 case 0xeb:
1020 /* Relative jump, disp8 (ignore data16). */
1021 delta = read_memory_integer (pc + data16 + 1, 1, byte_order);
1022
1023 delta += data16 + 2;
1024 break;
1025 }
1026
1027 return pc + delta;
1028 }
1029
1030 /* Check whether PC points at a prologue for a function returning a
1031 structure or union. If so, it updates CACHE and returns the
1032 address of the first instruction after the code sequence that
1033 removes the "hidden" argument from the stack or CURRENT_PC,
1034 whichever is smaller. Otherwise, return PC. */
1035
1036 static CORE_ADDR
1037 i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
1038 struct i386_frame_cache *cache)
1039 {
1040 /* Functions that return a structure or union start with:
1041
1042 popl %eax 0x58
1043 xchgl %eax, (%esp) 0x87 0x04 0x24
1044 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
1045
1046 (the System V compiler puts out the second `xchg' instruction,
1047 and the assembler doesn't try to optimize it, so the 'sib' form
1048 gets generated). This sequence is used to get the address of the
1049 return buffer for a function that returns a structure. */
1050 static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
1051 static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
1052 gdb_byte buf[4];
1053 gdb_byte op;
1054
1055 if (current_pc <= pc)
1056 return pc;
1057
1058 if (target_read_code (pc, &op, 1))
1059 return pc;
1060
1061 if (op != 0x58) /* popl %eax */
1062 return pc;
1063
1064 if (target_read_code (pc + 1, buf, 4))
1065 return pc;
1066
1067 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
1068 return pc;
1069
1070 if (current_pc == pc)
1071 {
1072 cache->sp_offset += 4;
1073 return current_pc;
1074 }
1075
1076 if (current_pc == pc + 1)
1077 {
1078 cache->pc_in_eax = 1;
1079 return current_pc;
1080 }
1081
1082 if (buf[1] == proto1[1])
1083 return pc + 4;
1084 else
1085 return pc + 5;
1086 }
1087
1088 static CORE_ADDR
1089 i386_skip_probe (CORE_ADDR pc)
1090 {
1091 /* A function may start with
1092
1093 pushl constant
1094 call _probe
1095 addl $4, %esp
1096
1097 followed by
1098
1099 pushl %ebp
1100
1101 etc. */
1102 gdb_byte buf[8];
1103 gdb_byte op;
1104
1105 if (target_read_code (pc, &op, 1))
1106 return pc;
1107
1108 if (op == 0x68 || op == 0x6a)
1109 {
1110 int delta;
1111
1112 /* Skip past the `pushl' instruction; it has either a one-byte or a
1113 four-byte operand, depending on the opcode. */
1114 if (op == 0x68)
1115 delta = 5;
1116 else
1117 delta = 2;
1118
1119 /* Read the following 8 bytes, which should be `call _probe' (6
1120 bytes) followed by `addl $4,%esp' (2 bytes). */
1121 read_memory (pc + delta, buf, sizeof (buf));
1122 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
1123 pc += delta + sizeof (buf);
1124 }
1125
1126 return pc;
1127 }
1128
1129 /* GCC 4.1 and later, can put code in the prologue to realign the
1130 stack pointer. Check whether PC points to such code, and update
1131 CACHE accordingly. Return the first instruction after the code
1132 sequence or CURRENT_PC, whichever is smaller. If we don't
1133 recognize the code, return PC. */
1134
1135 static CORE_ADDR
1136 i386_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1137 struct i386_frame_cache *cache)
1138 {
1139 /* There are 2 code sequences to re-align stack before the frame
1140 gets set up:
1141
1142 1. Use a caller-saved saved register:
1143
1144 leal 4(%esp), %reg
1145 andl $-XXX, %esp
1146 pushl -4(%reg)
1147
1148 2. Use a callee-saved saved register:
1149
1150 pushl %reg
1151 leal 8(%esp), %reg
1152 andl $-XXX, %esp
1153 pushl -4(%reg)
1154
1155 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
1156
1157 0x83 0xe4 0xf0 andl $-16, %esp
1158 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
1159 */
1160
1161 gdb_byte buf[14];
1162 int reg;
1163 int offset, offset_and;
1164 static int regnums[8] = {
1165 I386_EAX_REGNUM, /* %eax */
1166 I386_ECX_REGNUM, /* %ecx */
1167 I386_EDX_REGNUM, /* %edx */
1168 I386_EBX_REGNUM, /* %ebx */
1169 I386_ESP_REGNUM, /* %esp */
1170 I386_EBP_REGNUM, /* %ebp */
1171 I386_ESI_REGNUM, /* %esi */
1172 I386_EDI_REGNUM /* %edi */
1173 };
1174
1175 if (target_read_code (pc, buf, sizeof buf))
1176 return pc;
1177
1178 /* Check caller-saved saved register. The first instruction has
1179 to be "leal 4(%esp), %reg". */
1180 if (buf[0] == 0x8d && buf[2] == 0x24 && buf[3] == 0x4)
1181 {
1182 /* MOD must be binary 10 and R/M must be binary 100. */
1183 if ((buf[1] & 0xc7) != 0x44)
1184 return pc;
1185
1186 /* REG has register number. */
1187 reg = (buf[1] >> 3) & 7;
1188 offset = 4;
1189 }
1190 else
1191 {
1192 /* Check callee-saved saved register. The first instruction
1193 has to be "pushl %reg". */
1194 if ((buf[0] & 0xf8) != 0x50)
1195 return pc;
1196
1197 /* Get register. */
1198 reg = buf[0] & 0x7;
1199
1200 /* The next instruction has to be "leal 8(%esp), %reg". */
1201 if (buf[1] != 0x8d || buf[3] != 0x24 || buf[4] != 0x8)
1202 return pc;
1203
1204 /* MOD must be binary 10 and R/M must be binary 100. */
1205 if ((buf[2] & 0xc7) != 0x44)
1206 return pc;
1207
1208 /* REG has register number. Registers in pushl and leal have to
1209 be the same. */
1210 if (reg != ((buf[2] >> 3) & 7))
1211 return pc;
1212
1213 offset = 5;
1214 }
1215
1216 /* Rigister can't be %esp nor %ebp. */
1217 if (reg == 4 || reg == 5)
1218 return pc;
1219
1220 /* The next instruction has to be "andl $-XXX, %esp". */
1221 if (buf[offset + 1] != 0xe4
1222 || (buf[offset] != 0x81 && buf[offset] != 0x83))
1223 return pc;
1224
1225 offset_and = offset;
1226 offset += buf[offset] == 0x81 ? 6 : 3;
1227
1228 /* The next instruction has to be "pushl -4(%reg)". 8bit -4 is
1229 0xfc. REG must be binary 110 and MOD must be binary 01. */
1230 if (buf[offset] != 0xff
1231 || buf[offset + 2] != 0xfc
1232 || (buf[offset + 1] & 0xf8) != 0x70)
1233 return pc;
1234
1235 /* R/M has register. Registers in leal and pushl have to be the
1236 same. */
1237 if (reg != (buf[offset + 1] & 7))
1238 return pc;
1239
1240 if (current_pc > pc + offset_and)
1241 cache->saved_sp_reg = regnums[reg];
1242
1243 return min (pc + offset + 3, current_pc);
1244 }
1245
1246 /* Maximum instruction length we need to handle. */
1247 #define I386_MAX_MATCHED_INSN_LEN 6
1248
1249 /* Instruction description. */
1250 struct i386_insn
1251 {
1252 size_t len;
1253 gdb_byte insn[I386_MAX_MATCHED_INSN_LEN];
1254 gdb_byte mask[I386_MAX_MATCHED_INSN_LEN];
1255 };
1256
1257 /* Return whether instruction at PC matches PATTERN. */
1258
1259 static int
1260 i386_match_pattern (CORE_ADDR pc, struct i386_insn pattern)
1261 {
1262 gdb_byte op;
1263
1264 if (target_read_code (pc, &op, 1))
1265 return 0;
1266
1267 if ((op & pattern.mask[0]) == pattern.insn[0])
1268 {
1269 gdb_byte buf[I386_MAX_MATCHED_INSN_LEN - 1];
1270 int insn_matched = 1;
1271 size_t i;
1272
1273 gdb_assert (pattern.len > 1);
1274 gdb_assert (pattern.len <= I386_MAX_MATCHED_INSN_LEN);
1275
1276 if (target_read_code (pc + 1, buf, pattern.len - 1))
1277 return 0;
1278
1279 for (i = 1; i < pattern.len; i++)
1280 {
1281 if ((buf[i - 1] & pattern.mask[i]) != pattern.insn[i])
1282 insn_matched = 0;
1283 }
1284 return insn_matched;
1285 }
1286 return 0;
1287 }
1288
1289 /* Search for the instruction at PC in the list INSN_PATTERNS. Return
1290 the first instruction description that matches. Otherwise, return
1291 NULL. */
1292
1293 static struct i386_insn *
1294 i386_match_insn (CORE_ADDR pc, struct i386_insn *insn_patterns)
1295 {
1296 struct i386_insn *pattern;
1297
1298 for (pattern = insn_patterns; pattern->len > 0; pattern++)
1299 {
1300 if (i386_match_pattern (pc, *pattern))
1301 return pattern;
1302 }
1303
1304 return NULL;
1305 }
1306
1307 /* Return whether PC points inside a sequence of instructions that
1308 matches INSN_PATTERNS. */
1309
1310 static int
1311 i386_match_insn_block (CORE_ADDR pc, struct i386_insn *insn_patterns)
1312 {
1313 CORE_ADDR current_pc;
1314 int ix, i;
1315 struct i386_insn *insn;
1316
1317 insn = i386_match_insn (pc, insn_patterns);
1318 if (insn == NULL)
1319 return 0;
1320
1321 current_pc = pc;
1322 ix = insn - insn_patterns;
1323 for (i = ix - 1; i >= 0; i--)
1324 {
1325 current_pc -= insn_patterns[i].len;
1326
1327 if (!i386_match_pattern (current_pc, insn_patterns[i]))
1328 return 0;
1329 }
1330
1331 current_pc = pc + insn->len;
1332 for (insn = insn_patterns + ix + 1; insn->len > 0; insn++)
1333 {
1334 if (!i386_match_pattern (current_pc, *insn))
1335 return 0;
1336
1337 current_pc += insn->len;
1338 }
1339
1340 return 1;
1341 }
1342
1343 /* Some special instructions that might be migrated by GCC into the
1344 part of the prologue that sets up the new stack frame. Because the
1345 stack frame hasn't been setup yet, no registers have been saved
1346 yet, and only the scratch registers %eax, %ecx and %edx can be
1347 touched. */
1348
1349 struct i386_insn i386_frame_setup_skip_insns[] =
1350 {
1351 /* Check for `movb imm8, r' and `movl imm32, r'.
1352
1353 ??? Should we handle 16-bit operand-sizes here? */
1354
1355 /* `movb imm8, %al' and `movb imm8, %ah' */
1356 /* `movb imm8, %cl' and `movb imm8, %ch' */
1357 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
1358 /* `movb imm8, %dl' and `movb imm8, %dh' */
1359 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
1360 /* `movl imm32, %eax' and `movl imm32, %ecx' */
1361 { 5, { 0xb8 }, { 0xfe } },
1362 /* `movl imm32, %edx' */
1363 { 5, { 0xba }, { 0xff } },
1364
1365 /* Check for `mov imm32, r32'. Note that there is an alternative
1366 encoding for `mov m32, %eax'.
1367
1368 ??? Should we handle SIB adressing here?
1369 ??? Should we handle 16-bit operand-sizes here? */
1370
1371 /* `movl m32, %eax' */
1372 { 5, { 0xa1 }, { 0xff } },
1373 /* `movl m32, %eax' and `mov; m32, %ecx' */
1374 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
1375 /* `movl m32, %edx' */
1376 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
1377
1378 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
1379 Because of the symmetry, there are actually two ways to encode
1380 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
1381 opcode bytes 0x31 and 0x33 for `xorl'. */
1382
1383 /* `subl %eax, %eax' */
1384 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
1385 /* `subl %ecx, %ecx' */
1386 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
1387 /* `subl %edx, %edx' */
1388 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
1389 /* `xorl %eax, %eax' */
1390 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
1391 /* `xorl %ecx, %ecx' */
1392 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
1393 /* `xorl %edx, %edx' */
1394 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
1395 { 0 }
1396 };
1397
1398
1399 /* Check whether PC points to a no-op instruction. */
1400 static CORE_ADDR
1401 i386_skip_noop (CORE_ADDR pc)
1402 {
1403 gdb_byte op;
1404 int check = 1;
1405
1406 if (target_read_code (pc, &op, 1))
1407 return pc;
1408
1409 while (check)
1410 {
1411 check = 0;
1412 /* Ignore `nop' instruction. */
1413 if (op == 0x90)
1414 {
1415 pc += 1;
1416 if (target_read_code (pc, &op, 1))
1417 return pc;
1418 check = 1;
1419 }
1420 /* Ignore no-op instruction `mov %edi, %edi'.
1421 Microsoft system dlls often start with
1422 a `mov %edi,%edi' instruction.
1423 The 5 bytes before the function start are
1424 filled with `nop' instructions.
1425 This pattern can be used for hot-patching:
1426 The `mov %edi, %edi' instruction can be replaced by a
1427 near jump to the location of the 5 `nop' instructions
1428 which can be replaced by a 32-bit jump to anywhere
1429 in the 32-bit address space. */
1430
1431 else if (op == 0x8b)
1432 {
1433 if (target_read_code (pc + 1, &op, 1))
1434 return pc;
1435
1436 if (op == 0xff)
1437 {
1438 pc += 2;
1439 if (target_read_code (pc, &op, 1))
1440 return pc;
1441
1442 check = 1;
1443 }
1444 }
1445 }
1446 return pc;
1447 }
1448
1449 /* Check whether PC points at a code that sets up a new stack frame.
1450 If so, it updates CACHE and returns the address of the first
1451 instruction after the sequence that sets up the frame or LIMIT,
1452 whichever is smaller. If we don't recognize the code, return PC. */
1453
1454 static CORE_ADDR
1455 i386_analyze_frame_setup (struct gdbarch *gdbarch,
1456 CORE_ADDR pc, CORE_ADDR limit,
1457 struct i386_frame_cache *cache)
1458 {
1459 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1460 struct i386_insn *insn;
1461 gdb_byte op;
1462 int skip = 0;
1463
1464 if (limit <= pc)
1465 return limit;
1466
1467 if (target_read_code (pc, &op, 1))
1468 return pc;
1469
1470 if (op == 0x55) /* pushl %ebp */
1471 {
1472 /* Take into account that we've executed the `pushl %ebp' that
1473 starts this instruction sequence. */
1474 cache->saved_regs[I386_EBP_REGNUM] = 0;
1475 cache->sp_offset += 4;
1476 pc++;
1477
1478 /* If that's all, return now. */
1479 if (limit <= pc)
1480 return limit;
1481
1482 /* Check for some special instructions that might be migrated by
1483 GCC into the prologue and skip them. At this point in the
1484 prologue, code should only touch the scratch registers %eax,
1485 %ecx and %edx, so while the number of posibilities is sheer,
1486 it is limited.
1487
1488 Make sure we only skip these instructions if we later see the
1489 `movl %esp, %ebp' that actually sets up the frame. */
1490 while (pc + skip < limit)
1491 {
1492 insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
1493 if (insn == NULL)
1494 break;
1495
1496 skip += insn->len;
1497 }
1498
1499 /* If that's all, return now. */
1500 if (limit <= pc + skip)
1501 return limit;
1502
1503 if (target_read_code (pc + skip, &op, 1))
1504 return pc + skip;
1505
1506 /* The i386 prologue looks like
1507
1508 push %ebp
1509 mov %esp,%ebp
1510 sub $0x10,%esp
1511
1512 and a different prologue can be generated for atom.
1513
1514 push %ebp
1515 lea (%esp),%ebp
1516 lea -0x10(%esp),%esp
1517
1518 We handle both of them here. */
1519
1520 switch (op)
1521 {
1522 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
1523 case 0x8b:
1524 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
1525 != 0xec)
1526 return pc;
1527 pc += (skip + 2);
1528 break;
1529 case 0x89:
1530 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
1531 != 0xe5)
1532 return pc;
1533 pc += (skip + 2);
1534 break;
1535 case 0x8d: /* Check for 'lea (%ebp), %ebp'. */
1536 if (read_code_unsigned_integer (pc + skip + 1, 2, byte_order)
1537 != 0x242c)
1538 return pc;
1539 pc += (skip + 3);
1540 break;
1541 default:
1542 return pc;
1543 }
1544
1545 /* OK, we actually have a frame. We just don't know how large
1546 it is yet. Set its size to zero. We'll adjust it if
1547 necessary. We also now commit to skipping the special
1548 instructions mentioned before. */
1549 cache->locals = 0;
1550
1551 /* If that's all, return now. */
1552 if (limit <= pc)
1553 return limit;
1554
1555 /* Check for stack adjustment
1556
1557 subl $XXX, %esp
1558 or
1559 lea -XXX(%esp),%esp
1560
1561 NOTE: You can't subtract a 16-bit immediate from a 32-bit
1562 reg, so we don't have to worry about a data16 prefix. */
1563 if (target_read_code (pc, &op, 1))
1564 return pc;
1565 if (op == 0x83)
1566 {
1567 /* `subl' with 8-bit immediate. */
1568 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1569 /* Some instruction starting with 0x83 other than `subl'. */
1570 return pc;
1571
1572 /* `subl' with signed 8-bit immediate (though it wouldn't
1573 make sense to be negative). */
1574 cache->locals = read_code_integer (pc + 2, 1, byte_order);
1575 return pc + 3;
1576 }
1577 else if (op == 0x81)
1578 {
1579 /* Maybe it is `subl' with a 32-bit immediate. */
1580 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1581 /* Some instruction starting with 0x81 other than `subl'. */
1582 return pc;
1583
1584 /* It is `subl' with a 32-bit immediate. */
1585 cache->locals = read_code_integer (pc + 2, 4, byte_order);
1586 return pc + 6;
1587 }
1588 else if (op == 0x8d)
1589 {
1590 /* The ModR/M byte is 0x64. */
1591 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0x64)
1592 return pc;
1593 /* 'lea' with 8-bit displacement. */
1594 cache->locals = -1 * read_code_integer (pc + 3, 1, byte_order);
1595 return pc + 4;
1596 }
1597 else
1598 {
1599 /* Some instruction other than `subl' nor 'lea'. */
1600 return pc;
1601 }
1602 }
1603 else if (op == 0xc8) /* enter */
1604 {
1605 cache->locals = read_code_unsigned_integer (pc + 1, 2, byte_order);
1606 return pc + 4;
1607 }
1608
1609 return pc;
1610 }
1611
1612 /* Check whether PC points at code that saves registers on the stack.
1613 If so, it updates CACHE and returns the address of the first
1614 instruction after the register saves or CURRENT_PC, whichever is
1615 smaller. Otherwise, return PC. */
1616
1617 static CORE_ADDR
1618 i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
1619 struct i386_frame_cache *cache)
1620 {
1621 CORE_ADDR offset = 0;
1622 gdb_byte op;
1623 int i;
1624
1625 if (cache->locals > 0)
1626 offset -= cache->locals;
1627 for (i = 0; i < 8 && pc < current_pc; i++)
1628 {
1629 if (target_read_code (pc, &op, 1))
1630 return pc;
1631 if (op < 0x50 || op > 0x57)
1632 break;
1633
1634 offset -= 4;
1635 cache->saved_regs[op - 0x50] = offset;
1636 cache->sp_offset += 4;
1637 pc++;
1638 }
1639
1640 return pc;
1641 }
1642
1643 /* Do a full analysis of the prologue at PC and update CACHE
1644 accordingly. Bail out early if CURRENT_PC is reached. Return the
1645 address where the analysis stopped.
1646
1647 We handle these cases:
1648
1649 The startup sequence can be at the start of the function, or the
1650 function can start with a branch to startup code at the end.
1651
1652 %ebp can be set up with either the 'enter' instruction, or "pushl
1653 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
1654 once used in the System V compiler).
1655
1656 Local space is allocated just below the saved %ebp by either the
1657 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
1658 16-bit unsigned argument for space to allocate, and the 'addl'
1659 instruction could have either a signed byte, or 32-bit immediate.
1660
1661 Next, the registers used by this function are pushed. With the
1662 System V compiler they will always be in the order: %edi, %esi,
1663 %ebx (and sometimes a harmless bug causes it to also save but not
1664 restore %eax); however, the code below is willing to see the pushes
1665 in any order, and will handle up to 8 of them.
1666
1667 If the setup sequence is at the end of the function, then the next
1668 instruction will be a branch back to the start. */
1669
1670 static CORE_ADDR
1671 i386_analyze_prologue (struct gdbarch *gdbarch,
1672 CORE_ADDR pc, CORE_ADDR current_pc,
1673 struct i386_frame_cache *cache)
1674 {
1675 pc = i386_skip_noop (pc);
1676 pc = i386_follow_jump (gdbarch, pc);
1677 pc = i386_analyze_struct_return (pc, current_pc, cache);
1678 pc = i386_skip_probe (pc);
1679 pc = i386_analyze_stack_align (pc, current_pc, cache);
1680 pc = i386_analyze_frame_setup (gdbarch, pc, current_pc, cache);
1681 return i386_analyze_register_saves (pc, current_pc, cache);
1682 }
1683
1684 /* Return PC of first real instruction. */
1685
1686 static CORE_ADDR
1687 i386_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
1688 {
1689 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1690
1691 static gdb_byte pic_pat[6] =
1692 {
1693 0xe8, 0, 0, 0, 0, /* call 0x0 */
1694 0x5b, /* popl %ebx */
1695 };
1696 struct i386_frame_cache cache;
1697 CORE_ADDR pc;
1698 gdb_byte op;
1699 int i;
1700 CORE_ADDR func_addr;
1701
1702 if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
1703 {
1704 CORE_ADDR post_prologue_pc
1705 = skip_prologue_using_sal (gdbarch, func_addr);
1706 struct symtab *s = find_pc_symtab (func_addr);
1707
1708 /* Clang always emits a line note before the prologue and another
1709 one after. We trust clang to emit usable line notes. */
1710 if (post_prologue_pc
1711 && (s != NULL
1712 && s->producer != NULL
1713 && strncmp (s->producer, "clang ", sizeof ("clang ") - 1) == 0))
1714 return max (start_pc, post_prologue_pc);
1715 }
1716
1717 cache.locals = -1;
1718 pc = i386_analyze_prologue (gdbarch, start_pc, 0xffffffff, &cache);
1719 if (cache.locals < 0)
1720 return start_pc;
1721
1722 /* Found valid frame setup. */
1723
1724 /* The native cc on SVR4 in -K PIC mode inserts the following code
1725 to get the address of the global offset table (GOT) into register
1726 %ebx:
1727
1728 call 0x0
1729 popl %ebx
1730 movl %ebx,x(%ebp) (optional)
1731 addl y,%ebx
1732
1733 This code is with the rest of the prologue (at the end of the
1734 function), so we have to skip it to get to the first real
1735 instruction at the start of the function. */
1736
1737 for (i = 0; i < 6; i++)
1738 {
1739 if (target_read_code (pc + i, &op, 1))
1740 return pc;
1741
1742 if (pic_pat[i] != op)
1743 break;
1744 }
1745 if (i == 6)
1746 {
1747 int delta = 6;
1748
1749 if (target_read_code (pc + delta, &op, 1))
1750 return pc;
1751
1752 if (op == 0x89) /* movl %ebx, x(%ebp) */
1753 {
1754 op = read_code_unsigned_integer (pc + delta + 1, 1, byte_order);
1755
1756 if (op == 0x5d) /* One byte offset from %ebp. */
1757 delta += 3;
1758 else if (op == 0x9d) /* Four byte offset from %ebp. */
1759 delta += 6;
1760 else /* Unexpected instruction. */
1761 delta = 0;
1762
1763 if (target_read_code (pc + delta, &op, 1))
1764 return pc;
1765 }
1766
1767 /* addl y,%ebx */
1768 if (delta > 0 && op == 0x81
1769 && read_code_unsigned_integer (pc + delta + 1, 1, byte_order)
1770 == 0xc3)
1771 {
1772 pc += delta + 6;
1773 }
1774 }
1775
1776 /* If the function starts with a branch (to startup code at the end)
1777 the last instruction should bring us back to the first
1778 instruction of the real code. */
1779 if (i386_follow_jump (gdbarch, start_pc) != start_pc)
1780 pc = i386_follow_jump (gdbarch, pc);
1781
1782 return pc;
1783 }
1784
1785 /* Check that the code pointed to by PC corresponds to a call to
1786 __main, skip it if so. Return PC otherwise. */
1787
1788 CORE_ADDR
1789 i386_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1790 {
1791 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1792 gdb_byte op;
1793
1794 if (target_read_code (pc, &op, 1))
1795 return pc;
1796 if (op == 0xe8)
1797 {
1798 gdb_byte buf[4];
1799
1800 if (target_read_code (pc + 1, buf, sizeof buf) == 0)
1801 {
1802 /* Make sure address is computed correctly as a 32bit
1803 integer even if CORE_ADDR is 64 bit wide. */
1804 struct bound_minimal_symbol s;
1805 CORE_ADDR call_dest;
1806
1807 call_dest = pc + 5 + extract_signed_integer (buf, 4, byte_order);
1808 call_dest = call_dest & 0xffffffffU;
1809 s = lookup_minimal_symbol_by_pc (call_dest);
1810 if (s.minsym != NULL
1811 && SYMBOL_LINKAGE_NAME (s.minsym) != NULL
1812 && strcmp (SYMBOL_LINKAGE_NAME (s.minsym), "__main") == 0)
1813 pc += 5;
1814 }
1815 }
1816
1817 return pc;
1818 }
1819
1820 /* This function is 64-bit safe. */
1821
1822 static CORE_ADDR
1823 i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1824 {
1825 gdb_byte buf[8];
1826
1827 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
1828 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
1829 }
1830 \f
1831
1832 /* Normal frames. */
1833
1834 static void
1835 i386_frame_cache_1 (struct frame_info *this_frame,
1836 struct i386_frame_cache *cache)
1837 {
1838 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1839 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1840 gdb_byte buf[4];
1841 int i;
1842
1843 cache->pc = get_frame_func (this_frame);
1844
1845 /* In principle, for normal frames, %ebp holds the frame pointer,
1846 which holds the base address for the current stack frame.
1847 However, for functions that don't need it, the frame pointer is
1848 optional. For these "frameless" functions the frame pointer is
1849 actually the frame pointer of the calling frame. Signal
1850 trampolines are just a special case of a "frameless" function.
1851 They (usually) share their frame pointer with the frame that was
1852 in progress when the signal occurred. */
1853
1854 get_frame_register (this_frame, I386_EBP_REGNUM, buf);
1855 cache->base = extract_unsigned_integer (buf, 4, byte_order);
1856 if (cache->base == 0)
1857 {
1858 cache->base_p = 1;
1859 return;
1860 }
1861
1862 /* For normal frames, %eip is stored at 4(%ebp). */
1863 cache->saved_regs[I386_EIP_REGNUM] = 4;
1864
1865 if (cache->pc != 0)
1866 i386_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
1867 cache);
1868
1869 if (cache->locals < 0)
1870 {
1871 /* We didn't find a valid frame, which means that CACHE->base
1872 currently holds the frame pointer for our calling frame. If
1873 we're at the start of a function, or somewhere half-way its
1874 prologue, the function's frame probably hasn't been fully
1875 setup yet. Try to reconstruct the base address for the stack
1876 frame by looking at the stack pointer. For truly "frameless"
1877 functions this might work too. */
1878
1879 if (cache->saved_sp_reg != -1)
1880 {
1881 /* Saved stack pointer has been saved. */
1882 get_frame_register (this_frame, cache->saved_sp_reg, buf);
1883 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
1884
1885 /* We're halfway aligning the stack. */
1886 cache->base = ((cache->saved_sp - 4) & 0xfffffff0) - 4;
1887 cache->saved_regs[I386_EIP_REGNUM] = cache->saved_sp - 4;
1888
1889 /* This will be added back below. */
1890 cache->saved_regs[I386_EIP_REGNUM] -= cache->base;
1891 }
1892 else if (cache->pc != 0
1893 || target_read_code (get_frame_pc (this_frame), buf, 1))
1894 {
1895 /* We're in a known function, but did not find a frame
1896 setup. Assume that the function does not use %ebp.
1897 Alternatively, we may have jumped to an invalid
1898 address; in that case there is definitely no new
1899 frame in %ebp. */
1900 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
1901 cache->base = extract_unsigned_integer (buf, 4, byte_order)
1902 + cache->sp_offset;
1903 }
1904 else
1905 /* We're in an unknown function. We could not find the start
1906 of the function to analyze the prologue; our best option is
1907 to assume a typical frame layout with the caller's %ebp
1908 saved. */
1909 cache->saved_regs[I386_EBP_REGNUM] = 0;
1910 }
1911
1912 if (cache->saved_sp_reg != -1)
1913 {
1914 /* Saved stack pointer has been saved (but the SAVED_SP_REG
1915 register may be unavailable). */
1916 if (cache->saved_sp == 0
1917 && deprecated_frame_register_read (this_frame,
1918 cache->saved_sp_reg, buf))
1919 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
1920 }
1921 /* Now that we have the base address for the stack frame we can
1922 calculate the value of %esp in the calling frame. */
1923 else if (cache->saved_sp == 0)
1924 cache->saved_sp = cache->base + 8;
1925
1926 /* Adjust all the saved registers such that they contain addresses
1927 instead of offsets. */
1928 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
1929 if (cache->saved_regs[i] != -1)
1930 cache->saved_regs[i] += cache->base;
1931
1932 cache->base_p = 1;
1933 }
1934
1935 static struct i386_frame_cache *
1936 i386_frame_cache (struct frame_info *this_frame, void **this_cache)
1937 {
1938 volatile struct gdb_exception ex;
1939 struct i386_frame_cache *cache;
1940
1941 if (*this_cache)
1942 return *this_cache;
1943
1944 cache = i386_alloc_frame_cache ();
1945 *this_cache = cache;
1946
1947 TRY_CATCH (ex, RETURN_MASK_ERROR)
1948 {
1949 i386_frame_cache_1 (this_frame, cache);
1950 }
1951 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
1952 throw_exception (ex);
1953
1954 return cache;
1955 }
1956
1957 static void
1958 i386_frame_this_id (struct frame_info *this_frame, void **this_cache,
1959 struct frame_id *this_id)
1960 {
1961 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
1962
1963 if (!cache->base_p)
1964 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
1965 else if (cache->base == 0)
1966 {
1967 /* This marks the outermost frame. */
1968 }
1969 else
1970 {
1971 /* See the end of i386_push_dummy_call. */
1972 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
1973 }
1974 }
1975
1976 static enum unwind_stop_reason
1977 i386_frame_unwind_stop_reason (struct frame_info *this_frame,
1978 void **this_cache)
1979 {
1980 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
1981
1982 if (!cache->base_p)
1983 return UNWIND_UNAVAILABLE;
1984
1985 /* This marks the outermost frame. */
1986 if (cache->base == 0)
1987 return UNWIND_OUTERMOST;
1988
1989 return UNWIND_NO_REASON;
1990 }
1991
1992 static struct value *
1993 i386_frame_prev_register (struct frame_info *this_frame, void **this_cache,
1994 int regnum)
1995 {
1996 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
1997
1998 gdb_assert (regnum >= 0);
1999
2000 /* The System V ABI says that:
2001
2002 "The flags register contains the system flags, such as the
2003 direction flag and the carry flag. The direction flag must be
2004 set to the forward (that is, zero) direction before entry and
2005 upon exit from a function. Other user flags have no specified
2006 role in the standard calling sequence and are not preserved."
2007
2008 To guarantee the "upon exit" part of that statement we fake a
2009 saved flags register that has its direction flag cleared.
2010
2011 Note that GCC doesn't seem to rely on the fact that the direction
2012 flag is cleared after a function return; it always explicitly
2013 clears the flag before operations where it matters.
2014
2015 FIXME: kettenis/20030316: I'm not quite sure whether this is the
2016 right thing to do. The way we fake the flags register here makes
2017 it impossible to change it. */
2018
2019 if (regnum == I386_EFLAGS_REGNUM)
2020 {
2021 ULONGEST val;
2022
2023 val = get_frame_register_unsigned (this_frame, regnum);
2024 val &= ~(1 << 10);
2025 return frame_unwind_got_constant (this_frame, regnum, val);
2026 }
2027
2028 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
2029 return frame_unwind_got_register (this_frame, regnum, I386_EAX_REGNUM);
2030
2031 if (regnum == I386_ESP_REGNUM
2032 && (cache->saved_sp != 0 || cache->saved_sp_reg != -1))
2033 {
2034 /* If the SP has been saved, but we don't know where, then this
2035 means that SAVED_SP_REG register was found unavailable back
2036 when we built the cache. */
2037 if (cache->saved_sp == 0)
2038 return frame_unwind_got_register (this_frame, regnum,
2039 cache->saved_sp_reg);
2040 else
2041 return frame_unwind_got_constant (this_frame, regnum,
2042 cache->saved_sp);
2043 }
2044
2045 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
2046 return frame_unwind_got_memory (this_frame, regnum,
2047 cache->saved_regs[regnum]);
2048
2049 return frame_unwind_got_register (this_frame, regnum, regnum);
2050 }
2051
2052 static const struct frame_unwind i386_frame_unwind =
2053 {
2054 NORMAL_FRAME,
2055 i386_frame_unwind_stop_reason,
2056 i386_frame_this_id,
2057 i386_frame_prev_register,
2058 NULL,
2059 default_frame_sniffer
2060 };
2061
2062 /* Normal frames, but in a function epilogue. */
2063
2064 /* The epilogue is defined here as the 'ret' instruction, which will
2065 follow any instruction such as 'leave' or 'pop %ebp' that destroys
2066 the function's stack frame. */
2067
2068 static int
2069 i386_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2070 {
2071 gdb_byte insn;
2072 struct symtab *symtab;
2073
2074 symtab = find_pc_symtab (pc);
2075 if (symtab && symtab->epilogue_unwind_valid)
2076 return 0;
2077
2078 if (target_read_memory (pc, &insn, 1))
2079 return 0; /* Can't read memory at pc. */
2080
2081 if (insn != 0xc3) /* 'ret' instruction. */
2082 return 0;
2083
2084 return 1;
2085 }
2086
2087 static int
2088 i386_epilogue_frame_sniffer (const struct frame_unwind *self,
2089 struct frame_info *this_frame,
2090 void **this_prologue_cache)
2091 {
2092 if (frame_relative_level (this_frame) == 0)
2093 return i386_in_function_epilogue_p (get_frame_arch (this_frame),
2094 get_frame_pc (this_frame));
2095 else
2096 return 0;
2097 }
2098
2099 static struct i386_frame_cache *
2100 i386_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
2101 {
2102 volatile struct gdb_exception ex;
2103 struct i386_frame_cache *cache;
2104 CORE_ADDR sp;
2105
2106 if (*this_cache)
2107 return *this_cache;
2108
2109 cache = i386_alloc_frame_cache ();
2110 *this_cache = cache;
2111
2112 TRY_CATCH (ex, RETURN_MASK_ERROR)
2113 {
2114 cache->pc = get_frame_func (this_frame);
2115
2116 /* At this point the stack looks as if we just entered the
2117 function, with the return address at the top of the
2118 stack. */
2119 sp = get_frame_register_unsigned (this_frame, I386_ESP_REGNUM);
2120 cache->base = sp + cache->sp_offset;
2121 cache->saved_sp = cache->base + 8;
2122 cache->saved_regs[I386_EIP_REGNUM] = cache->base + 4;
2123
2124 cache->base_p = 1;
2125 }
2126 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
2127 throw_exception (ex);
2128
2129 return cache;
2130 }
2131
2132 static enum unwind_stop_reason
2133 i386_epilogue_frame_unwind_stop_reason (struct frame_info *this_frame,
2134 void **this_cache)
2135 {
2136 struct i386_frame_cache *cache =
2137 i386_epilogue_frame_cache (this_frame, this_cache);
2138
2139 if (!cache->base_p)
2140 return UNWIND_UNAVAILABLE;
2141
2142 return UNWIND_NO_REASON;
2143 }
2144
2145 static void
2146 i386_epilogue_frame_this_id (struct frame_info *this_frame,
2147 void **this_cache,
2148 struct frame_id *this_id)
2149 {
2150 struct i386_frame_cache *cache =
2151 i386_epilogue_frame_cache (this_frame, this_cache);
2152
2153 if (!cache->base_p)
2154 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2155 else
2156 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2157 }
2158
2159 static struct value *
2160 i386_epilogue_frame_prev_register (struct frame_info *this_frame,
2161 void **this_cache, int regnum)
2162 {
2163 /* Make sure we've initialized the cache. */
2164 i386_epilogue_frame_cache (this_frame, this_cache);
2165
2166 return i386_frame_prev_register (this_frame, this_cache, regnum);
2167 }
2168
2169 static const struct frame_unwind i386_epilogue_frame_unwind =
2170 {
2171 NORMAL_FRAME,
2172 i386_epilogue_frame_unwind_stop_reason,
2173 i386_epilogue_frame_this_id,
2174 i386_epilogue_frame_prev_register,
2175 NULL,
2176 i386_epilogue_frame_sniffer
2177 };
2178 \f
2179
2180 /* Stack-based trampolines. */
2181
2182 /* These trampolines are used on cross x86 targets, when taking the
2183 address of a nested function. When executing these trampolines,
2184 no stack frame is set up, so we are in a similar situation as in
2185 epilogues and i386_epilogue_frame_this_id can be re-used. */
2186
2187 /* Static chain passed in register. */
2188
2189 struct i386_insn i386_tramp_chain_in_reg_insns[] =
2190 {
2191 /* `movl imm32, %eax' and `movl imm32, %ecx' */
2192 { 5, { 0xb8 }, { 0xfe } },
2193
2194 /* `jmp imm32' */
2195 { 5, { 0xe9 }, { 0xff } },
2196
2197 {0}
2198 };
2199
2200 /* Static chain passed on stack (when regparm=3). */
2201
2202 struct i386_insn i386_tramp_chain_on_stack_insns[] =
2203 {
2204 /* `push imm32' */
2205 { 5, { 0x68 }, { 0xff } },
2206
2207 /* `jmp imm32' */
2208 { 5, { 0xe9 }, { 0xff } },
2209
2210 {0}
2211 };
2212
2213 /* Return whether PC points inside a stack trampoline. */
2214
2215 static int
2216 i386_in_stack_tramp_p (CORE_ADDR pc)
2217 {
2218 gdb_byte insn;
2219 const char *name;
2220
2221 /* A stack trampoline is detected if no name is associated
2222 to the current pc and if it points inside a trampoline
2223 sequence. */
2224
2225 find_pc_partial_function (pc, &name, NULL, NULL);
2226 if (name)
2227 return 0;
2228
2229 if (target_read_memory (pc, &insn, 1))
2230 return 0;
2231
2232 if (!i386_match_insn_block (pc, i386_tramp_chain_in_reg_insns)
2233 && !i386_match_insn_block (pc, i386_tramp_chain_on_stack_insns))
2234 return 0;
2235
2236 return 1;
2237 }
2238
2239 static int
2240 i386_stack_tramp_frame_sniffer (const struct frame_unwind *self,
2241 struct frame_info *this_frame,
2242 void **this_cache)
2243 {
2244 if (frame_relative_level (this_frame) == 0)
2245 return i386_in_stack_tramp_p (get_frame_pc (this_frame));
2246 else
2247 return 0;
2248 }
2249
2250 static const struct frame_unwind i386_stack_tramp_frame_unwind =
2251 {
2252 NORMAL_FRAME,
2253 i386_epilogue_frame_unwind_stop_reason,
2254 i386_epilogue_frame_this_id,
2255 i386_epilogue_frame_prev_register,
2256 NULL,
2257 i386_stack_tramp_frame_sniffer
2258 };
2259 \f
2260 /* Generate a bytecode expression to get the value of the saved PC. */
2261
2262 static void
2263 i386_gen_return_address (struct gdbarch *gdbarch,
2264 struct agent_expr *ax, struct axs_value *value,
2265 CORE_ADDR scope)
2266 {
2267 /* The following sequence assumes the traditional use of the base
2268 register. */
2269 ax_reg (ax, I386_EBP_REGNUM);
2270 ax_const_l (ax, 4);
2271 ax_simple (ax, aop_add);
2272 value->type = register_type (gdbarch, I386_EIP_REGNUM);
2273 value->kind = axs_lvalue_memory;
2274 }
2275 \f
2276
2277 /* Signal trampolines. */
2278
2279 static struct i386_frame_cache *
2280 i386_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
2281 {
2282 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2283 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2284 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2285 volatile struct gdb_exception ex;
2286 struct i386_frame_cache *cache;
2287 CORE_ADDR addr;
2288 gdb_byte buf[4];
2289
2290 if (*this_cache)
2291 return *this_cache;
2292
2293 cache = i386_alloc_frame_cache ();
2294
2295 TRY_CATCH (ex, RETURN_MASK_ERROR)
2296 {
2297 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2298 cache->base = extract_unsigned_integer (buf, 4, byte_order) - 4;
2299
2300 addr = tdep->sigcontext_addr (this_frame);
2301 if (tdep->sc_reg_offset)
2302 {
2303 int i;
2304
2305 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
2306
2307 for (i = 0; i < tdep->sc_num_regs; i++)
2308 if (tdep->sc_reg_offset[i] != -1)
2309 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
2310 }
2311 else
2312 {
2313 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
2314 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
2315 }
2316
2317 cache->base_p = 1;
2318 }
2319 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
2320 throw_exception (ex);
2321
2322 *this_cache = cache;
2323 return cache;
2324 }
2325
2326 static enum unwind_stop_reason
2327 i386_sigtramp_frame_unwind_stop_reason (struct frame_info *this_frame,
2328 void **this_cache)
2329 {
2330 struct i386_frame_cache *cache =
2331 i386_sigtramp_frame_cache (this_frame, this_cache);
2332
2333 if (!cache->base_p)
2334 return UNWIND_UNAVAILABLE;
2335
2336 return UNWIND_NO_REASON;
2337 }
2338
2339 static void
2340 i386_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache,
2341 struct frame_id *this_id)
2342 {
2343 struct i386_frame_cache *cache =
2344 i386_sigtramp_frame_cache (this_frame, this_cache);
2345
2346 if (!cache->base_p)
2347 (*this_id) = frame_id_build_unavailable_stack (get_frame_pc (this_frame));
2348 else
2349 {
2350 /* See the end of i386_push_dummy_call. */
2351 (*this_id) = frame_id_build (cache->base + 8, get_frame_pc (this_frame));
2352 }
2353 }
2354
2355 static struct value *
2356 i386_sigtramp_frame_prev_register (struct frame_info *this_frame,
2357 void **this_cache, int regnum)
2358 {
2359 /* Make sure we've initialized the cache. */
2360 i386_sigtramp_frame_cache (this_frame, this_cache);
2361
2362 return i386_frame_prev_register (this_frame, this_cache, regnum);
2363 }
2364
2365 static int
2366 i386_sigtramp_frame_sniffer (const struct frame_unwind *self,
2367 struct frame_info *this_frame,
2368 void **this_prologue_cache)
2369 {
2370 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
2371
2372 /* We shouldn't even bother if we don't have a sigcontext_addr
2373 handler. */
2374 if (tdep->sigcontext_addr == NULL)
2375 return 0;
2376
2377 if (tdep->sigtramp_p != NULL)
2378 {
2379 if (tdep->sigtramp_p (this_frame))
2380 return 1;
2381 }
2382
2383 if (tdep->sigtramp_start != 0)
2384 {
2385 CORE_ADDR pc = get_frame_pc (this_frame);
2386
2387 gdb_assert (tdep->sigtramp_end != 0);
2388 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
2389 return 1;
2390 }
2391
2392 return 0;
2393 }
2394
2395 static const struct frame_unwind i386_sigtramp_frame_unwind =
2396 {
2397 SIGTRAMP_FRAME,
2398 i386_sigtramp_frame_unwind_stop_reason,
2399 i386_sigtramp_frame_this_id,
2400 i386_sigtramp_frame_prev_register,
2401 NULL,
2402 i386_sigtramp_frame_sniffer
2403 };
2404 \f
2405
2406 static CORE_ADDR
2407 i386_frame_base_address (struct frame_info *this_frame, void **this_cache)
2408 {
2409 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2410
2411 return cache->base;
2412 }
2413
2414 static const struct frame_base i386_frame_base =
2415 {
2416 &i386_frame_unwind,
2417 i386_frame_base_address,
2418 i386_frame_base_address,
2419 i386_frame_base_address
2420 };
2421
2422 static struct frame_id
2423 i386_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2424 {
2425 CORE_ADDR fp;
2426
2427 fp = get_frame_register_unsigned (this_frame, I386_EBP_REGNUM);
2428
2429 /* See the end of i386_push_dummy_call. */
2430 return frame_id_build (fp + 8, get_frame_pc (this_frame));
2431 }
2432
2433 /* _Decimal128 function return values need 16-byte alignment on the
2434 stack. */
2435
2436 static CORE_ADDR
2437 i386_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2438 {
2439 return sp & -(CORE_ADDR)16;
2440 }
2441 \f
2442
2443 /* Figure out where the longjmp will land. Slurp the args out of the
2444 stack. We expect the first arg to be a pointer to the jmp_buf
2445 structure from which we extract the address that we will land at.
2446 This address is copied into PC. This routine returns non-zero on
2447 success. */
2448
2449 static int
2450 i386_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
2451 {
2452 gdb_byte buf[4];
2453 CORE_ADDR sp, jb_addr;
2454 struct gdbarch *gdbarch = get_frame_arch (frame);
2455 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2456 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
2457
2458 /* If JB_PC_OFFSET is -1, we have no way to find out where the
2459 longjmp will land. */
2460 if (jb_pc_offset == -1)
2461 return 0;
2462
2463 get_frame_register (frame, I386_ESP_REGNUM, buf);
2464 sp = extract_unsigned_integer (buf, 4, byte_order);
2465 if (target_read_memory (sp + 4, buf, 4))
2466 return 0;
2467
2468 jb_addr = extract_unsigned_integer (buf, 4, byte_order);
2469 if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
2470 return 0;
2471
2472 *pc = extract_unsigned_integer (buf, 4, byte_order);
2473 return 1;
2474 }
2475 \f
2476
2477 /* Check whether TYPE must be 16-byte-aligned when passed as a
2478 function argument. 16-byte vectors, _Decimal128 and structures or
2479 unions containing such types must be 16-byte-aligned; other
2480 arguments are 4-byte-aligned. */
2481
2482 static int
2483 i386_16_byte_align_p (struct type *type)
2484 {
2485 type = check_typedef (type);
2486 if ((TYPE_CODE (type) == TYPE_CODE_DECFLOAT
2487 || (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type)))
2488 && TYPE_LENGTH (type) == 16)
2489 return 1;
2490 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2491 return i386_16_byte_align_p (TYPE_TARGET_TYPE (type));
2492 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2493 || TYPE_CODE (type) == TYPE_CODE_UNION)
2494 {
2495 int i;
2496 for (i = 0; i < TYPE_NFIELDS (type); i++)
2497 {
2498 if (i386_16_byte_align_p (TYPE_FIELD_TYPE (type, i)))
2499 return 1;
2500 }
2501 }
2502 return 0;
2503 }
2504
2505 /* Implementation for set_gdbarch_push_dummy_code. */
2506
2507 static CORE_ADDR
2508 i386_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, CORE_ADDR funaddr,
2509 struct value **args, int nargs, struct type *value_type,
2510 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
2511 struct regcache *regcache)
2512 {
2513 /* Use 0xcc breakpoint - 1 byte. */
2514 *bp_addr = sp - 1;
2515 *real_pc = funaddr;
2516
2517 /* Keep the stack aligned. */
2518 return sp - 16;
2519 }
2520
2521 static CORE_ADDR
2522 i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2523 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2524 struct value **args, CORE_ADDR sp, int struct_return,
2525 CORE_ADDR struct_addr)
2526 {
2527 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2528 gdb_byte buf[4];
2529 int i;
2530 int write_pass;
2531 int args_space = 0;
2532
2533 /* Determine the total space required for arguments and struct
2534 return address in a first pass (allowing for 16-byte-aligned
2535 arguments), then push arguments in a second pass. */
2536
2537 for (write_pass = 0; write_pass < 2; write_pass++)
2538 {
2539 int args_space_used = 0;
2540
2541 if (struct_return)
2542 {
2543 if (write_pass)
2544 {
2545 /* Push value address. */
2546 store_unsigned_integer (buf, 4, byte_order, struct_addr);
2547 write_memory (sp, buf, 4);
2548 args_space_used += 4;
2549 }
2550 else
2551 args_space += 4;
2552 }
2553
2554 for (i = 0; i < nargs; i++)
2555 {
2556 int len = TYPE_LENGTH (value_enclosing_type (args[i]));
2557
2558 if (write_pass)
2559 {
2560 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2561 args_space_used = align_up (args_space_used, 16);
2562
2563 write_memory (sp + args_space_used,
2564 value_contents_all (args[i]), len);
2565 /* The System V ABI says that:
2566
2567 "An argument's size is increased, if necessary, to make it a
2568 multiple of [32-bit] words. This may require tail padding,
2569 depending on the size of the argument."
2570
2571 This makes sure the stack stays word-aligned. */
2572 args_space_used += align_up (len, 4);
2573 }
2574 else
2575 {
2576 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2577 args_space = align_up (args_space, 16);
2578 args_space += align_up (len, 4);
2579 }
2580 }
2581
2582 if (!write_pass)
2583 {
2584 sp -= args_space;
2585
2586 /* The original System V ABI only requires word alignment,
2587 but modern incarnations need 16-byte alignment in order
2588 to support SSE. Since wasting a few bytes here isn't
2589 harmful we unconditionally enforce 16-byte alignment. */
2590 sp &= ~0xf;
2591 }
2592 }
2593
2594 /* Store return address. */
2595 sp -= 4;
2596 store_unsigned_integer (buf, 4, byte_order, bp_addr);
2597 write_memory (sp, buf, 4);
2598
2599 /* Finally, update the stack pointer... */
2600 store_unsigned_integer (buf, 4, byte_order, sp);
2601 regcache_cooked_write (regcache, I386_ESP_REGNUM, buf);
2602
2603 /* ...and fake a frame pointer. */
2604 regcache_cooked_write (regcache, I386_EBP_REGNUM, buf);
2605
2606 /* MarkK wrote: This "+ 8" is all over the place:
2607 (i386_frame_this_id, i386_sigtramp_frame_this_id,
2608 i386_dummy_id). It's there, since all frame unwinders for
2609 a given target have to agree (within a certain margin) on the
2610 definition of the stack address of a frame. Otherwise frame id
2611 comparison might not work correctly. Since DWARF2/GCC uses the
2612 stack address *before* the function call as a frame's CFA. On
2613 the i386, when %ebp is used as a frame pointer, the offset
2614 between the contents %ebp and the CFA as defined by GCC. */
2615 return sp + 8;
2616 }
2617
2618 /* These registers are used for returning integers (and on some
2619 targets also for returning `struct' and `union' values when their
2620 size and alignment match an integer type). */
2621 #define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
2622 #define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
2623
2624 /* Read, for architecture GDBARCH, a function return value of TYPE
2625 from REGCACHE, and copy that into VALBUF. */
2626
2627 static void
2628 i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
2629 struct regcache *regcache, gdb_byte *valbuf)
2630 {
2631 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2632 int len = TYPE_LENGTH (type);
2633 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2634
2635 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2636 {
2637 if (tdep->st0_regnum < 0)
2638 {
2639 warning (_("Cannot find floating-point return value."));
2640 memset (valbuf, 0, len);
2641 return;
2642 }
2643
2644 /* Floating-point return values can be found in %st(0). Convert
2645 its contents to the desired type. This is probably not
2646 exactly how it would happen on the target itself, but it is
2647 the best we can do. */
2648 regcache_raw_read (regcache, I386_ST0_REGNUM, buf);
2649 convert_typed_floating (buf, i387_ext_type (gdbarch), valbuf, type);
2650 }
2651 else
2652 {
2653 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2654 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2655
2656 if (len <= low_size)
2657 {
2658 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
2659 memcpy (valbuf, buf, len);
2660 }
2661 else if (len <= (low_size + high_size))
2662 {
2663 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
2664 memcpy (valbuf, buf, low_size);
2665 regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
2666 memcpy (valbuf + low_size, buf, len - low_size);
2667 }
2668 else
2669 internal_error (__FILE__, __LINE__,
2670 _("Cannot extract return value of %d bytes long."),
2671 len);
2672 }
2673 }
2674
2675 /* Write, for architecture GDBARCH, a function return value of TYPE
2676 from VALBUF into REGCACHE. */
2677
2678 static void
2679 i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
2680 struct regcache *regcache, const gdb_byte *valbuf)
2681 {
2682 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2683 int len = TYPE_LENGTH (type);
2684
2685 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2686 {
2687 ULONGEST fstat;
2688 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2689
2690 if (tdep->st0_regnum < 0)
2691 {
2692 warning (_("Cannot set floating-point return value."));
2693 return;
2694 }
2695
2696 /* Returning floating-point values is a bit tricky. Apart from
2697 storing the return value in %st(0), we have to simulate the
2698 state of the FPU at function return point. */
2699
2700 /* Convert the value found in VALBUF to the extended
2701 floating-point format used by the FPU. This is probably
2702 not exactly how it would happen on the target itself, but
2703 it is the best we can do. */
2704 convert_typed_floating (valbuf, type, buf, i387_ext_type (gdbarch));
2705 regcache_raw_write (regcache, I386_ST0_REGNUM, buf);
2706
2707 /* Set the top of the floating-point register stack to 7. The
2708 actual value doesn't really matter, but 7 is what a normal
2709 function return would end up with if the program started out
2710 with a freshly initialized FPU. */
2711 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
2712 fstat |= (7 << 11);
2713 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM (tdep), fstat);
2714
2715 /* Mark %st(1) through %st(7) as empty. Since we set the top of
2716 the floating-point register stack to 7, the appropriate value
2717 for the tag word is 0x3fff. */
2718 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM (tdep), 0x3fff);
2719 }
2720 else
2721 {
2722 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2723 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2724
2725 if (len <= low_size)
2726 regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
2727 else if (len <= (low_size + high_size))
2728 {
2729 regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
2730 regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
2731 len - low_size, valbuf + low_size);
2732 }
2733 else
2734 internal_error (__FILE__, __LINE__,
2735 _("Cannot store return value of %d bytes long."), len);
2736 }
2737 }
2738 \f
2739
2740 /* This is the variable that is set with "set struct-convention", and
2741 its legitimate values. */
2742 static const char default_struct_convention[] = "default";
2743 static const char pcc_struct_convention[] = "pcc";
2744 static const char reg_struct_convention[] = "reg";
2745 static const char *const valid_conventions[] =
2746 {
2747 default_struct_convention,
2748 pcc_struct_convention,
2749 reg_struct_convention,
2750 NULL
2751 };
2752 static const char *struct_convention = default_struct_convention;
2753
2754 /* Return non-zero if TYPE, which is assumed to be a structure,
2755 a union type, or an array type, should be returned in registers
2756 for architecture GDBARCH. */
2757
2758 static int
2759 i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
2760 {
2761 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2762 enum type_code code = TYPE_CODE (type);
2763 int len = TYPE_LENGTH (type);
2764
2765 gdb_assert (code == TYPE_CODE_STRUCT
2766 || code == TYPE_CODE_UNION
2767 || code == TYPE_CODE_ARRAY);
2768
2769 if (struct_convention == pcc_struct_convention
2770 || (struct_convention == default_struct_convention
2771 && tdep->struct_return == pcc_struct_return))
2772 return 0;
2773
2774 /* Structures consisting of a single `float', `double' or 'long
2775 double' member are returned in %st(0). */
2776 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2777 {
2778 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
2779 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2780 return (len == 4 || len == 8 || len == 12);
2781 }
2782
2783 return (len == 1 || len == 2 || len == 4 || len == 8);
2784 }
2785
2786 /* Determine, for architecture GDBARCH, how a return value of TYPE
2787 should be returned. If it is supposed to be returned in registers,
2788 and READBUF is non-zero, read the appropriate value from REGCACHE,
2789 and copy it into READBUF. If WRITEBUF is non-zero, write the value
2790 from WRITEBUF into REGCACHE. */
2791
2792 static enum return_value_convention
2793 i386_return_value (struct gdbarch *gdbarch, struct value *function,
2794 struct type *type, struct regcache *regcache,
2795 gdb_byte *readbuf, const gdb_byte *writebuf)
2796 {
2797 enum type_code code = TYPE_CODE (type);
2798
2799 if (((code == TYPE_CODE_STRUCT
2800 || code == TYPE_CODE_UNION
2801 || code == TYPE_CODE_ARRAY)
2802 && !i386_reg_struct_return_p (gdbarch, type))
2803 /* Complex double and long double uses the struct return covention. */
2804 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 16)
2805 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 24)
2806 /* 128-bit decimal float uses the struct return convention. */
2807 || (code == TYPE_CODE_DECFLOAT && TYPE_LENGTH (type) == 16))
2808 {
2809 /* The System V ABI says that:
2810
2811 "A function that returns a structure or union also sets %eax
2812 to the value of the original address of the caller's area
2813 before it returns. Thus when the caller receives control
2814 again, the address of the returned object resides in register
2815 %eax and can be used to access the object."
2816
2817 So the ABI guarantees that we can always find the return
2818 value just after the function has returned. */
2819
2820 /* Note that the ABI doesn't mention functions returning arrays,
2821 which is something possible in certain languages such as Ada.
2822 In this case, the value is returned as if it was wrapped in
2823 a record, so the convention applied to records also applies
2824 to arrays. */
2825
2826 if (readbuf)
2827 {
2828 ULONGEST addr;
2829
2830 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
2831 read_memory (addr, readbuf, TYPE_LENGTH (type));
2832 }
2833
2834 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
2835 }
2836
2837 /* This special case is for structures consisting of a single
2838 `float', `double' or 'long double' member. These structures are
2839 returned in %st(0). For these structures, we call ourselves
2840 recursively, changing TYPE into the type of the first member of
2841 the structure. Since that should work for all structures that
2842 have only one member, we don't bother to check the member's type
2843 here. */
2844 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2845 {
2846 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
2847 return i386_return_value (gdbarch, function, type, regcache,
2848 readbuf, writebuf);
2849 }
2850
2851 if (readbuf)
2852 i386_extract_return_value (gdbarch, type, regcache, readbuf);
2853 if (writebuf)
2854 i386_store_return_value (gdbarch, type, regcache, writebuf);
2855
2856 return RETURN_VALUE_REGISTER_CONVENTION;
2857 }
2858 \f
2859
2860 struct type *
2861 i387_ext_type (struct gdbarch *gdbarch)
2862 {
2863 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2864
2865 if (!tdep->i387_ext_type)
2866 {
2867 tdep->i387_ext_type = tdesc_find_type (gdbarch, "i387_ext");
2868 gdb_assert (tdep->i387_ext_type != NULL);
2869 }
2870
2871 return tdep->i387_ext_type;
2872 }
2873
2874 /* Construct type for pseudo BND registers. We can't use
2875 tdesc_find_type since a complement of one value has to be used
2876 to describe the upper bound. */
2877
2878 static struct type *
2879 i386_bnd_type (struct gdbarch *gdbarch)
2880 {
2881 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2882
2883
2884 if (!tdep->i386_bnd_type)
2885 {
2886 struct type *t, *bound_t;
2887 const struct builtin_type *bt = builtin_type (gdbarch);
2888
2889 /* The type we're building is described bellow: */
2890 #if 0
2891 struct __bound128
2892 {
2893 void *lbound;
2894 void *ubound; /* One complement of raw ubound field. */
2895 };
2896 #endif
2897
2898 t = arch_composite_type (gdbarch,
2899 "__gdb_builtin_type_bound128", TYPE_CODE_STRUCT);
2900
2901 append_composite_type_field (t, "lbound", bt->builtin_data_ptr);
2902 append_composite_type_field (t, "ubound", bt->builtin_data_ptr);
2903
2904 TYPE_NAME (t) = "builtin_type_bound128";
2905 tdep->i386_bnd_type = t;
2906 }
2907
2908 return tdep->i386_bnd_type;
2909 }
2910
2911 /* Construct vector type for pseudo YMM registers. We can't use
2912 tdesc_find_type since YMM isn't described in target description. */
2913
2914 static struct type *
2915 i386_ymm_type (struct gdbarch *gdbarch)
2916 {
2917 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2918
2919 if (!tdep->i386_ymm_type)
2920 {
2921 const struct builtin_type *bt = builtin_type (gdbarch);
2922
2923 /* The type we're building is this: */
2924 #if 0
2925 union __gdb_builtin_type_vec256i
2926 {
2927 int128_t uint128[2];
2928 int64_t v2_int64[4];
2929 int32_t v4_int32[8];
2930 int16_t v8_int16[16];
2931 int8_t v16_int8[32];
2932 double v2_double[4];
2933 float v4_float[8];
2934 };
2935 #endif
2936
2937 struct type *t;
2938
2939 t = arch_composite_type (gdbarch,
2940 "__gdb_builtin_type_vec256i", TYPE_CODE_UNION);
2941 append_composite_type_field (t, "v8_float",
2942 init_vector_type (bt->builtin_float, 8));
2943 append_composite_type_field (t, "v4_double",
2944 init_vector_type (bt->builtin_double, 4));
2945 append_composite_type_field (t, "v32_int8",
2946 init_vector_type (bt->builtin_int8, 32));
2947 append_composite_type_field (t, "v16_int16",
2948 init_vector_type (bt->builtin_int16, 16));
2949 append_composite_type_field (t, "v8_int32",
2950 init_vector_type (bt->builtin_int32, 8));
2951 append_composite_type_field (t, "v4_int64",
2952 init_vector_type (bt->builtin_int64, 4));
2953 append_composite_type_field (t, "v2_int128",
2954 init_vector_type (bt->builtin_int128, 2));
2955
2956 TYPE_VECTOR (t) = 1;
2957 TYPE_NAME (t) = "builtin_type_vec256i";
2958 tdep->i386_ymm_type = t;
2959 }
2960
2961 return tdep->i386_ymm_type;
2962 }
2963
2964 /* Construct vector type for MMX registers. */
2965 static struct type *
2966 i386_mmx_type (struct gdbarch *gdbarch)
2967 {
2968 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2969
2970 if (!tdep->i386_mmx_type)
2971 {
2972 const struct builtin_type *bt = builtin_type (gdbarch);
2973
2974 /* The type we're building is this: */
2975 #if 0
2976 union __gdb_builtin_type_vec64i
2977 {
2978 int64_t uint64;
2979 int32_t v2_int32[2];
2980 int16_t v4_int16[4];
2981 int8_t v8_int8[8];
2982 };
2983 #endif
2984
2985 struct type *t;
2986
2987 t = arch_composite_type (gdbarch,
2988 "__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
2989
2990 append_composite_type_field (t, "uint64", bt->builtin_int64);
2991 append_composite_type_field (t, "v2_int32",
2992 init_vector_type (bt->builtin_int32, 2));
2993 append_composite_type_field (t, "v4_int16",
2994 init_vector_type (bt->builtin_int16, 4));
2995 append_composite_type_field (t, "v8_int8",
2996 init_vector_type (bt->builtin_int8, 8));
2997
2998 TYPE_VECTOR (t) = 1;
2999 TYPE_NAME (t) = "builtin_type_vec64i";
3000 tdep->i386_mmx_type = t;
3001 }
3002
3003 return tdep->i386_mmx_type;
3004 }
3005
3006 /* Return the GDB type object for the "standard" data type of data in
3007 register REGNUM. */
3008
3009 struct type *
3010 i386_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
3011 {
3012 if (i386_bnd_regnum_p (gdbarch, regnum))
3013 return i386_bnd_type (gdbarch);
3014 if (i386_mmx_regnum_p (gdbarch, regnum))
3015 return i386_mmx_type (gdbarch);
3016 else if (i386_ymm_regnum_p (gdbarch, regnum))
3017 return i386_ymm_type (gdbarch);
3018 else
3019 {
3020 const struct builtin_type *bt = builtin_type (gdbarch);
3021 if (i386_byte_regnum_p (gdbarch, regnum))
3022 return bt->builtin_int8;
3023 else if (i386_word_regnum_p (gdbarch, regnum))
3024 return bt->builtin_int16;
3025 else if (i386_dword_regnum_p (gdbarch, regnum))
3026 return bt->builtin_int32;
3027 }
3028
3029 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3030 }
3031
3032 /* Map a cooked register onto a raw register or memory. For the i386,
3033 the MMX registers need to be mapped onto floating point registers. */
3034
3035 static int
3036 i386_mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
3037 {
3038 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
3039 int mmxreg, fpreg;
3040 ULONGEST fstat;
3041 int tos;
3042
3043 mmxreg = regnum - tdep->mm0_regnum;
3044 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
3045 tos = (fstat >> 11) & 0x7;
3046 fpreg = (mmxreg + tos) % 8;
3047
3048 return (I387_ST0_REGNUM (tdep) + fpreg);
3049 }
3050
3051 /* A helper function for us by i386_pseudo_register_read_value and
3052 amd64_pseudo_register_read_value. It does all the work but reads
3053 the data into an already-allocated value. */
3054
3055 void
3056 i386_pseudo_register_read_into_value (struct gdbarch *gdbarch,
3057 struct regcache *regcache,
3058 int regnum,
3059 struct value *result_value)
3060 {
3061 gdb_byte raw_buf[MAX_REGISTER_SIZE];
3062 enum register_status status;
3063 gdb_byte *buf = value_contents_raw (result_value);
3064
3065 if (i386_mmx_regnum_p (gdbarch, regnum))
3066 {
3067 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3068
3069 /* Extract (always little endian). */
3070 status = regcache_raw_read (regcache, fpnum, raw_buf);
3071 if (status != REG_VALID)
3072 mark_value_bytes_unavailable (result_value, 0,
3073 TYPE_LENGTH (value_type (result_value)));
3074 else
3075 memcpy (buf, raw_buf, register_size (gdbarch, regnum));
3076 }
3077 else
3078 {
3079 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3080 if (i386_bnd_regnum_p (gdbarch, regnum))
3081 {
3082 regnum -= tdep->bnd0_regnum;
3083
3084 /* Extract (always little endian). Read lower 128bits. */
3085 status = regcache_raw_read (regcache,
3086 I387_BND0R_REGNUM (tdep) + regnum,
3087 raw_buf);
3088 if (status != REG_VALID)
3089 mark_value_bytes_unavailable (result_value, 0, 16);
3090 else
3091 {
3092 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3093 LONGEST upper, lower;
3094 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
3095
3096 lower = extract_unsigned_integer (raw_buf, 8, byte_order);
3097 upper = extract_unsigned_integer (raw_buf + 8, 8, byte_order);
3098 upper = ~upper;
3099
3100 memcpy (buf, &lower, size);
3101 memcpy (buf + size, &upper, size);
3102 }
3103 }
3104 else if (i386_ymm_regnum_p (gdbarch, regnum))
3105 {
3106 regnum -= tdep->ymm0_regnum;
3107
3108 /* Extract (always little endian). Read lower 128bits. */
3109 status = regcache_raw_read (regcache,
3110 I387_XMM0_REGNUM (tdep) + regnum,
3111 raw_buf);
3112 if (status != REG_VALID)
3113 mark_value_bytes_unavailable (result_value, 0, 16);
3114 else
3115 memcpy (buf, raw_buf, 16);
3116 /* Read upper 128bits. */
3117 status = regcache_raw_read (regcache,
3118 tdep->ymm0h_regnum + regnum,
3119 raw_buf);
3120 if (status != REG_VALID)
3121 mark_value_bytes_unavailable (result_value, 16, 32);
3122 else
3123 memcpy (buf + 16, raw_buf, 16);
3124 }
3125 else if (i386_word_regnum_p (gdbarch, regnum))
3126 {
3127 int gpnum = regnum - tdep->ax_regnum;
3128
3129 /* Extract (always little endian). */
3130 status = regcache_raw_read (regcache, gpnum, raw_buf);
3131 if (status != REG_VALID)
3132 mark_value_bytes_unavailable (result_value, 0,
3133 TYPE_LENGTH (value_type (result_value)));
3134 else
3135 memcpy (buf, raw_buf, 2);
3136 }
3137 else if (i386_byte_regnum_p (gdbarch, regnum))
3138 {
3139 /* Check byte pseudo registers last since this function will
3140 be called from amd64_pseudo_register_read, which handles
3141 byte pseudo registers differently. */
3142 int gpnum = regnum - tdep->al_regnum;
3143
3144 /* Extract (always little endian). We read both lower and
3145 upper registers. */
3146 status = regcache_raw_read (regcache, gpnum % 4, raw_buf);
3147 if (status != REG_VALID)
3148 mark_value_bytes_unavailable (result_value, 0,
3149 TYPE_LENGTH (value_type (result_value)));
3150 else if (gpnum >= 4)
3151 memcpy (buf, raw_buf + 1, 1);
3152 else
3153 memcpy (buf, raw_buf, 1);
3154 }
3155 else
3156 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3157 }
3158 }
3159
3160 static struct value *
3161 i386_pseudo_register_read_value (struct gdbarch *gdbarch,
3162 struct regcache *regcache,
3163 int regnum)
3164 {
3165 struct value *result;
3166
3167 result = allocate_value (register_type (gdbarch, regnum));
3168 VALUE_LVAL (result) = lval_register;
3169 VALUE_REGNUM (result) = regnum;
3170
3171 i386_pseudo_register_read_into_value (gdbarch, regcache, regnum, result);
3172
3173 return result;
3174 }
3175
3176 void
3177 i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
3178 int regnum, const gdb_byte *buf)
3179 {
3180 gdb_byte raw_buf[MAX_REGISTER_SIZE];
3181
3182 if (i386_mmx_regnum_p (gdbarch, regnum))
3183 {
3184 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3185
3186 /* Read ... */
3187 regcache_raw_read (regcache, fpnum, raw_buf);
3188 /* ... Modify ... (always little endian). */
3189 memcpy (raw_buf, buf, register_size (gdbarch, regnum));
3190 /* ... Write. */
3191 regcache_raw_write (regcache, fpnum, raw_buf);
3192 }
3193 else
3194 {
3195 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3196
3197 if (i386_bnd_regnum_p (gdbarch, regnum))
3198 {
3199 ULONGEST upper, lower;
3200 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
3201 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3202
3203 /* New values from input value. */
3204 regnum -= tdep->bnd0_regnum;
3205 lower = extract_unsigned_integer (buf, size, byte_order);
3206 upper = extract_unsigned_integer (buf + size, size, byte_order);
3207
3208 /* Fetching register buffer. */
3209 regcache_raw_read (regcache,
3210 I387_BND0R_REGNUM (tdep) + regnum,
3211 raw_buf);
3212
3213 upper = ~upper;
3214
3215 /* Set register bits. */
3216 memcpy (raw_buf, &lower, 8);
3217 memcpy (raw_buf + 8, &upper, 8);
3218
3219
3220 regcache_raw_write (regcache,
3221 I387_BND0R_REGNUM (tdep) + regnum,
3222 raw_buf);
3223 }
3224 else if (i386_ymm_regnum_p (gdbarch, regnum))
3225 {
3226 regnum -= tdep->ymm0_regnum;
3227
3228 /* ... Write lower 128bits. */
3229 regcache_raw_write (regcache,
3230 I387_XMM0_REGNUM (tdep) + regnum,
3231 buf);
3232 /* ... Write upper 128bits. */
3233 regcache_raw_write (regcache,
3234 tdep->ymm0h_regnum + regnum,
3235 buf + 16);
3236 }
3237 else if (i386_word_regnum_p (gdbarch, regnum))
3238 {
3239 int gpnum = regnum - tdep->ax_regnum;
3240
3241 /* Read ... */
3242 regcache_raw_read (regcache, gpnum, raw_buf);
3243 /* ... Modify ... (always little endian). */
3244 memcpy (raw_buf, buf, 2);
3245 /* ... Write. */
3246 regcache_raw_write (regcache, gpnum, raw_buf);
3247 }
3248 else if (i386_byte_regnum_p (gdbarch, regnum))
3249 {
3250 /* Check byte pseudo registers last since this function will
3251 be called from amd64_pseudo_register_read, which handles
3252 byte pseudo registers differently. */
3253 int gpnum = regnum - tdep->al_regnum;
3254
3255 /* Read ... We read both lower and upper registers. */
3256 regcache_raw_read (regcache, gpnum % 4, raw_buf);
3257 /* ... Modify ... (always little endian). */
3258 if (gpnum >= 4)
3259 memcpy (raw_buf + 1, buf, 1);
3260 else
3261 memcpy (raw_buf, buf, 1);
3262 /* ... Write. */
3263 regcache_raw_write (regcache, gpnum % 4, raw_buf);
3264 }
3265 else
3266 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3267 }
3268 }
3269 \f
3270
3271 /* Return the register number of the register allocated by GCC after
3272 REGNUM, or -1 if there is no such register. */
3273
3274 static int
3275 i386_next_regnum (int regnum)
3276 {
3277 /* GCC allocates the registers in the order:
3278
3279 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
3280
3281 Since storing a variable in %esp doesn't make any sense we return
3282 -1 for %ebp and for %esp itself. */
3283 static int next_regnum[] =
3284 {
3285 I386_EDX_REGNUM, /* Slot for %eax. */
3286 I386_EBX_REGNUM, /* Slot for %ecx. */
3287 I386_ECX_REGNUM, /* Slot for %edx. */
3288 I386_ESI_REGNUM, /* Slot for %ebx. */
3289 -1, -1, /* Slots for %esp and %ebp. */
3290 I386_EDI_REGNUM, /* Slot for %esi. */
3291 I386_EBP_REGNUM /* Slot for %edi. */
3292 };
3293
3294 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
3295 return next_regnum[regnum];
3296
3297 return -1;
3298 }
3299
3300 /* Return nonzero if a value of type TYPE stored in register REGNUM
3301 needs any special handling. */
3302
3303 static int
3304 i386_convert_register_p (struct gdbarch *gdbarch,
3305 int regnum, struct type *type)
3306 {
3307 int len = TYPE_LENGTH (type);
3308
3309 /* Values may be spread across multiple registers. Most debugging
3310 formats aren't expressive enough to specify the locations, so
3311 some heuristics is involved. Right now we only handle types that
3312 have a length that is a multiple of the word size, since GCC
3313 doesn't seem to put any other types into registers. */
3314 if (len > 4 && len % 4 == 0)
3315 {
3316 int last_regnum = regnum;
3317
3318 while (len > 4)
3319 {
3320 last_regnum = i386_next_regnum (last_regnum);
3321 len -= 4;
3322 }
3323
3324 if (last_regnum != -1)
3325 return 1;
3326 }
3327
3328 return i387_convert_register_p (gdbarch, regnum, type);
3329 }
3330
3331 /* Read a value of type TYPE from register REGNUM in frame FRAME, and
3332 return its contents in TO. */
3333
3334 static int
3335 i386_register_to_value (struct frame_info *frame, int regnum,
3336 struct type *type, gdb_byte *to,
3337 int *optimizedp, int *unavailablep)
3338 {
3339 struct gdbarch *gdbarch = get_frame_arch (frame);
3340 int len = TYPE_LENGTH (type);
3341
3342 if (i386_fp_regnum_p (gdbarch, regnum))
3343 return i387_register_to_value (frame, regnum, type, to,
3344 optimizedp, unavailablep);
3345
3346 /* Read a value spread across multiple registers. */
3347
3348 gdb_assert (len > 4 && len % 4 == 0);
3349
3350 while (len > 0)
3351 {
3352 gdb_assert (regnum != -1);
3353 gdb_assert (register_size (gdbarch, regnum) == 4);
3354
3355 if (!get_frame_register_bytes (frame, regnum, 0,
3356 register_size (gdbarch, regnum),
3357 to, optimizedp, unavailablep))
3358 return 0;
3359
3360 regnum = i386_next_regnum (regnum);
3361 len -= 4;
3362 to += 4;
3363 }
3364
3365 *optimizedp = *unavailablep = 0;
3366 return 1;
3367 }
3368
3369 /* Write the contents FROM of a value of type TYPE into register
3370 REGNUM in frame FRAME. */
3371
3372 static void
3373 i386_value_to_register (struct frame_info *frame, int regnum,
3374 struct type *type, const gdb_byte *from)
3375 {
3376 int len = TYPE_LENGTH (type);
3377
3378 if (i386_fp_regnum_p (get_frame_arch (frame), regnum))
3379 {
3380 i387_value_to_register (frame, regnum, type, from);
3381 return;
3382 }
3383
3384 /* Write a value spread across multiple registers. */
3385
3386 gdb_assert (len > 4 && len % 4 == 0);
3387
3388 while (len > 0)
3389 {
3390 gdb_assert (regnum != -1);
3391 gdb_assert (register_size (get_frame_arch (frame), regnum) == 4);
3392
3393 put_frame_register (frame, regnum, from);
3394 regnum = i386_next_regnum (regnum);
3395 len -= 4;
3396 from += 4;
3397 }
3398 }
3399 \f
3400 /* Supply register REGNUM from the buffer specified by GREGS and LEN
3401 in the general-purpose register set REGSET to register cache
3402 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3403
3404 void
3405 i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
3406 int regnum, const void *gregs, size_t len)
3407 {
3408 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
3409 const gdb_byte *regs = gregs;
3410 int i;
3411
3412 gdb_assert (len == tdep->sizeof_gregset);
3413
3414 for (i = 0; i < tdep->gregset_num_regs; i++)
3415 {
3416 if ((regnum == i || regnum == -1)
3417 && tdep->gregset_reg_offset[i] != -1)
3418 regcache_raw_supply (regcache, i, regs + tdep->gregset_reg_offset[i]);
3419 }
3420 }
3421
3422 /* Collect register REGNUM from the register cache REGCACHE and store
3423 it in the buffer specified by GREGS and LEN as described by the
3424 general-purpose register set REGSET. If REGNUM is -1, do this for
3425 all registers in REGSET. */
3426
3427 void
3428 i386_collect_gregset (const struct regset *regset,
3429 const struct regcache *regcache,
3430 int regnum, void *gregs, size_t len)
3431 {
3432 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
3433 gdb_byte *regs = gregs;
3434 int i;
3435
3436 gdb_assert (len == tdep->sizeof_gregset);
3437
3438 for (i = 0; i < tdep->gregset_num_regs; i++)
3439 {
3440 if ((regnum == i || regnum == -1)
3441 && tdep->gregset_reg_offset[i] != -1)
3442 regcache_raw_collect (regcache, i, regs + tdep->gregset_reg_offset[i]);
3443 }
3444 }
3445
3446 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
3447 in the floating-point register set REGSET to register cache
3448 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3449
3450 static void
3451 i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
3452 int regnum, const void *fpregs, size_t len)
3453 {
3454 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
3455
3456 if (len == I387_SIZEOF_FXSAVE)
3457 {
3458 i387_supply_fxsave (regcache, regnum, fpregs);
3459 return;
3460 }
3461
3462 gdb_assert (len == tdep->sizeof_fpregset);
3463 i387_supply_fsave (regcache, regnum, fpregs);
3464 }
3465
3466 /* Collect register REGNUM from the register cache REGCACHE and store
3467 it in the buffer specified by FPREGS and LEN as described by the
3468 floating-point register set REGSET. If REGNUM is -1, do this for
3469 all registers in REGSET. */
3470
3471 static void
3472 i386_collect_fpregset (const struct regset *regset,
3473 const struct regcache *regcache,
3474 int regnum, void *fpregs, size_t len)
3475 {
3476 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
3477
3478 if (len == I387_SIZEOF_FXSAVE)
3479 {
3480 i387_collect_fxsave (regcache, regnum, fpregs);
3481 return;
3482 }
3483
3484 gdb_assert (len == tdep->sizeof_fpregset);
3485 i387_collect_fsave (regcache, regnum, fpregs);
3486 }
3487
3488 /* Similar to i386_supply_fpregset, but use XSAVE extended state. */
3489
3490 static void
3491 i386_supply_xstateregset (const struct regset *regset,
3492 struct regcache *regcache, int regnum,
3493 const void *xstateregs, size_t len)
3494 {
3495 i387_supply_xsave (regcache, regnum, xstateregs);
3496 }
3497
3498 /* Similar to i386_collect_fpregset , but use XSAVE extended state. */
3499
3500 static void
3501 i386_collect_xstateregset (const struct regset *regset,
3502 const struct regcache *regcache,
3503 int regnum, void *xstateregs, size_t len)
3504 {
3505 i387_collect_xsave (regcache, regnum, xstateregs, 1);
3506 }
3507
3508 /* Return the appropriate register set for the core section identified
3509 by SECT_NAME and SECT_SIZE. */
3510
3511 const struct regset *
3512 i386_regset_from_core_section (struct gdbarch *gdbarch,
3513 const char *sect_name, size_t sect_size)
3514 {
3515 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3516
3517 if (strcmp (sect_name, ".reg") == 0 && sect_size == tdep->sizeof_gregset)
3518 {
3519 if (tdep->gregset == NULL)
3520 tdep->gregset = regset_alloc (gdbarch, i386_supply_gregset,
3521 i386_collect_gregset);
3522 return tdep->gregset;
3523 }
3524
3525 if ((strcmp (sect_name, ".reg2") == 0 && sect_size == tdep->sizeof_fpregset)
3526 || (strcmp (sect_name, ".reg-xfp") == 0
3527 && sect_size == I387_SIZEOF_FXSAVE))
3528 {
3529 if (tdep->fpregset == NULL)
3530 tdep->fpregset = regset_alloc (gdbarch, i386_supply_fpregset,
3531 i386_collect_fpregset);
3532 return tdep->fpregset;
3533 }
3534
3535 if (strcmp (sect_name, ".reg-xstate") == 0)
3536 {
3537 if (tdep->xstateregset == NULL)
3538 tdep->xstateregset = regset_alloc (gdbarch,
3539 i386_supply_xstateregset,
3540 i386_collect_xstateregset);
3541
3542 return tdep->xstateregset;
3543 }
3544
3545 return NULL;
3546 }
3547 \f
3548
3549 /* Stuff for WIN32 PE style DLL's but is pretty generic really. */
3550
3551 CORE_ADDR
3552 i386_pe_skip_trampoline_code (struct frame_info *frame,
3553 CORE_ADDR pc, char *name)
3554 {
3555 struct gdbarch *gdbarch = get_frame_arch (frame);
3556 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3557
3558 /* jmp *(dest) */
3559 if (pc && read_memory_unsigned_integer (pc, 2, byte_order) == 0x25ff)
3560 {
3561 unsigned long indirect =
3562 read_memory_unsigned_integer (pc + 2, 4, byte_order);
3563 struct minimal_symbol *indsym =
3564 indirect ? lookup_minimal_symbol_by_pc (indirect).minsym : 0;
3565 const char *symname = indsym ? SYMBOL_LINKAGE_NAME (indsym) : 0;
3566
3567 if (symname)
3568 {
3569 if (strncmp (symname, "__imp_", 6) == 0
3570 || strncmp (symname, "_imp_", 5) == 0)
3571 return name ? 1 :
3572 read_memory_unsigned_integer (indirect, 4, byte_order);
3573 }
3574 }
3575 return 0; /* Not a trampoline. */
3576 }
3577 \f
3578
3579 /* Return whether the THIS_FRAME corresponds to a sigtramp
3580 routine. */
3581
3582 int
3583 i386_sigtramp_p (struct frame_info *this_frame)
3584 {
3585 CORE_ADDR pc = get_frame_pc (this_frame);
3586 const char *name;
3587
3588 find_pc_partial_function (pc, &name, NULL, NULL);
3589 return (name && strcmp ("_sigtramp", name) == 0);
3590 }
3591 \f
3592
3593 /* We have two flavours of disassembly. The machinery on this page
3594 deals with switching between those. */
3595
3596 static int
3597 i386_print_insn (bfd_vma pc, struct disassemble_info *info)
3598 {
3599 gdb_assert (disassembly_flavor == att_flavor
3600 || disassembly_flavor == intel_flavor);
3601
3602 /* FIXME: kettenis/20020915: Until disassembler_options is properly
3603 constified, cast to prevent a compiler warning. */
3604 info->disassembler_options = (char *) disassembly_flavor;
3605
3606 return print_insn_i386 (pc, info);
3607 }
3608 \f
3609
3610 /* There are a few i386 architecture variants that differ only
3611 slightly from the generic i386 target. For now, we don't give them
3612 their own source file, but include them here. As a consequence,
3613 they'll always be included. */
3614
3615 /* System V Release 4 (SVR4). */
3616
3617 /* Return whether THIS_FRAME corresponds to a SVR4 sigtramp
3618 routine. */
3619
3620 static int
3621 i386_svr4_sigtramp_p (struct frame_info *this_frame)
3622 {
3623 CORE_ADDR pc = get_frame_pc (this_frame);
3624 const char *name;
3625
3626 /* The origin of these symbols is currently unknown. */
3627 find_pc_partial_function (pc, &name, NULL, NULL);
3628 return (name && (strcmp ("_sigreturn", name) == 0
3629 || strcmp ("sigvechandler", name) == 0));
3630 }
3631
3632 /* Assuming THIS_FRAME is for a SVR4 sigtramp routine, return the
3633 address of the associated sigcontext (ucontext) structure. */
3634
3635 static CORE_ADDR
3636 i386_svr4_sigcontext_addr (struct frame_info *this_frame)
3637 {
3638 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3639 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3640 gdb_byte buf[4];
3641 CORE_ADDR sp;
3642
3643 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
3644 sp = extract_unsigned_integer (buf, 4, byte_order);
3645
3646 return read_memory_unsigned_integer (sp + 8, 4, byte_order);
3647 }
3648
3649 \f
3650
3651 /* Implementation of `gdbarch_stap_is_single_operand', as defined in
3652 gdbarch.h. */
3653
3654 int
3655 i386_stap_is_single_operand (struct gdbarch *gdbarch, const char *s)
3656 {
3657 return (*s == '$' /* Literal number. */
3658 || (isdigit (*s) && s[1] == '(' && s[2] == '%') /* Displacement. */
3659 || (*s == '(' && s[1] == '%') /* Register indirection. */
3660 || (*s == '%' && isalpha (s[1]))); /* Register access. */
3661 }
3662
3663 /* Helper function for i386_stap_parse_special_token.
3664
3665 This function parses operands of the form `-8+3+1(%rbp)', which
3666 must be interpreted as `*(-8 + 3 - 1 + (void *) $eax)'.
3667
3668 Return 1 if the operand was parsed successfully, zero
3669 otherwise. */
3670
3671 static int
3672 i386_stap_parse_special_token_triplet (struct gdbarch *gdbarch,
3673 struct stap_parse_info *p)
3674 {
3675 const char *s = p->arg;
3676
3677 if (isdigit (*s) || *s == '-' || *s == '+')
3678 {
3679 int got_minus[3];
3680 int i;
3681 long displacements[3];
3682 const char *start;
3683 char *regname;
3684 int len;
3685 struct stoken str;
3686 char *endp;
3687
3688 got_minus[0] = 0;
3689 if (*s == '+')
3690 ++s;
3691 else if (*s == '-')
3692 {
3693 ++s;
3694 got_minus[0] = 1;
3695 }
3696
3697 if (!isdigit ((unsigned char) *s))
3698 return 0;
3699
3700 displacements[0] = strtol (s, &endp, 10);
3701 s = endp;
3702
3703 if (*s != '+' && *s != '-')
3704 {
3705 /* We are not dealing with a triplet. */
3706 return 0;
3707 }
3708
3709 got_minus[1] = 0;
3710 if (*s == '+')
3711 ++s;
3712 else
3713 {
3714 ++s;
3715 got_minus[1] = 1;
3716 }
3717
3718 if (!isdigit ((unsigned char) *s))
3719 return 0;
3720
3721 displacements[1] = strtol (s, &endp, 10);
3722 s = endp;
3723
3724 if (*s != '+' && *s != '-')
3725 {
3726 /* We are not dealing with a triplet. */
3727 return 0;
3728 }
3729
3730 got_minus[2] = 0;
3731 if (*s == '+')
3732 ++s;
3733 else
3734 {
3735 ++s;
3736 got_minus[2] = 1;
3737 }
3738
3739 if (!isdigit ((unsigned char) *s))
3740 return 0;
3741
3742 displacements[2] = strtol (s, &endp, 10);
3743 s = endp;
3744
3745 if (*s != '(' || s[1] != '%')
3746 return 0;
3747
3748 s += 2;
3749 start = s;
3750
3751 while (isalnum (*s))
3752 ++s;
3753
3754 if (*s++ != ')')
3755 return 0;
3756
3757 len = s - start - 1;
3758 regname = alloca (len + 1);
3759
3760 strncpy (regname, start, len);
3761 regname[len] = '\0';
3762
3763 if (user_reg_map_name_to_regnum (gdbarch, regname, len) == -1)
3764 error (_("Invalid register name `%s' on expression `%s'."),
3765 regname, p->saved_arg);
3766
3767 for (i = 0; i < 3; i++)
3768 {
3769 write_exp_elt_opcode (OP_LONG);
3770 write_exp_elt_type (builtin_type (gdbarch)->builtin_long);
3771 write_exp_elt_longcst (displacements[i]);
3772 write_exp_elt_opcode (OP_LONG);
3773 if (got_minus[i])
3774 write_exp_elt_opcode (UNOP_NEG);
3775 }
3776
3777 write_exp_elt_opcode (OP_REGISTER);
3778 str.ptr = regname;
3779 str.length = len;
3780 write_exp_string (str);
3781 write_exp_elt_opcode (OP_REGISTER);
3782
3783 write_exp_elt_opcode (UNOP_CAST);
3784 write_exp_elt_type (builtin_type (gdbarch)->builtin_data_ptr);
3785 write_exp_elt_opcode (UNOP_CAST);
3786
3787 write_exp_elt_opcode (BINOP_ADD);
3788 write_exp_elt_opcode (BINOP_ADD);
3789 write_exp_elt_opcode (BINOP_ADD);
3790
3791 write_exp_elt_opcode (UNOP_CAST);
3792 write_exp_elt_type (lookup_pointer_type (p->arg_type));
3793 write_exp_elt_opcode (UNOP_CAST);
3794
3795 write_exp_elt_opcode (UNOP_IND);
3796
3797 p->arg = s;
3798
3799 return 1;
3800 }
3801
3802 return 0;
3803 }
3804
3805 /* Helper function for i386_stap_parse_special_token.
3806
3807 This function parses operands of the form `register base +
3808 (register index * size) + offset', as represented in
3809 `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
3810
3811 Return 1 if the operand was parsed successfully, zero
3812 otherwise. */
3813
3814 static int
3815 i386_stap_parse_special_token_three_arg_disp (struct gdbarch *gdbarch,
3816 struct stap_parse_info *p)
3817 {
3818 const char *s = p->arg;
3819
3820 if (isdigit (*s) || *s == '(' || *s == '-' || *s == '+')
3821 {
3822 int offset_minus = 0;
3823 long offset = 0;
3824 int size_minus = 0;
3825 long size = 0;
3826 const char *start;
3827 char *base;
3828 int len_base;
3829 char *index;
3830 int len_index;
3831 struct stoken base_token, index_token;
3832
3833 if (*s == '+')
3834 ++s;
3835 else if (*s == '-')
3836 {
3837 ++s;
3838 offset_minus = 1;
3839 }
3840
3841 if (offset_minus && !isdigit (*s))
3842 return 0;
3843
3844 if (isdigit (*s))
3845 {
3846 char *endp;
3847
3848 offset = strtol (s, &endp, 10);
3849 s = endp;
3850 }
3851
3852 if (*s != '(' || s[1] != '%')
3853 return 0;
3854
3855 s += 2;
3856 start = s;
3857
3858 while (isalnum (*s))
3859 ++s;
3860
3861 if (*s != ',' || s[1] != '%')
3862 return 0;
3863
3864 len_base = s - start;
3865 base = alloca (len_base + 1);
3866 strncpy (base, start, len_base);
3867 base[len_base] = '\0';
3868
3869 if (user_reg_map_name_to_regnum (gdbarch, base, len_base) == -1)
3870 error (_("Invalid register name `%s' on expression `%s'."),
3871 base, p->saved_arg);
3872
3873 s += 2;
3874 start = s;
3875
3876 while (isalnum (*s))
3877 ++s;
3878
3879 len_index = s - start;
3880 index = alloca (len_index + 1);
3881 strncpy (index, start, len_index);
3882 index[len_index] = '\0';
3883
3884 if (user_reg_map_name_to_regnum (gdbarch, index, len_index) == -1)
3885 error (_("Invalid register name `%s' on expression `%s'."),
3886 index, p->saved_arg);
3887
3888 if (*s != ',' && *s != ')')
3889 return 0;
3890
3891 if (*s == ',')
3892 {
3893 char *endp;
3894
3895 ++s;
3896 if (*s == '+')
3897 ++s;
3898 else if (*s == '-')
3899 {
3900 ++s;
3901 size_minus = 1;
3902 }
3903
3904 size = strtol (s, &endp, 10);
3905 s = endp;
3906
3907 if (*s != ')')
3908 return 0;
3909 }
3910
3911 ++s;
3912
3913 if (offset)
3914 {
3915 write_exp_elt_opcode (OP_LONG);
3916 write_exp_elt_type (builtin_type (gdbarch)->builtin_long);
3917 write_exp_elt_longcst (offset);
3918 write_exp_elt_opcode (OP_LONG);
3919 if (offset_minus)
3920 write_exp_elt_opcode (UNOP_NEG);
3921 }
3922
3923 write_exp_elt_opcode (OP_REGISTER);
3924 base_token.ptr = base;
3925 base_token.length = len_base;
3926 write_exp_string (base_token);
3927 write_exp_elt_opcode (OP_REGISTER);
3928
3929 if (offset)
3930 write_exp_elt_opcode (BINOP_ADD);
3931
3932 write_exp_elt_opcode (OP_REGISTER);
3933 index_token.ptr = index;
3934 index_token.length = len_index;
3935 write_exp_string (index_token);
3936 write_exp_elt_opcode (OP_REGISTER);
3937
3938 if (size)
3939 {
3940 write_exp_elt_opcode (OP_LONG);
3941 write_exp_elt_type (builtin_type (gdbarch)->builtin_long);
3942 write_exp_elt_longcst (size);
3943 write_exp_elt_opcode (OP_LONG);
3944 if (size_minus)
3945 write_exp_elt_opcode (UNOP_NEG);
3946 write_exp_elt_opcode (BINOP_MUL);
3947 }
3948
3949 write_exp_elt_opcode (BINOP_ADD);
3950
3951 write_exp_elt_opcode (UNOP_CAST);
3952 write_exp_elt_type (lookup_pointer_type (p->arg_type));
3953 write_exp_elt_opcode (UNOP_CAST);
3954
3955 write_exp_elt_opcode (UNOP_IND);
3956
3957 p->arg = s;
3958
3959 return 1;
3960 }
3961
3962 return 0;
3963 }
3964
3965 /* Implementation of `gdbarch_stap_parse_special_token', as defined in
3966 gdbarch.h. */
3967
3968 int
3969 i386_stap_parse_special_token (struct gdbarch *gdbarch,
3970 struct stap_parse_info *p)
3971 {
3972 /* In order to parse special tokens, we use a state-machine that go
3973 through every known token and try to get a match. */
3974 enum
3975 {
3976 TRIPLET,
3977 THREE_ARG_DISPLACEMENT,
3978 DONE
3979 } current_state;
3980
3981 current_state = TRIPLET;
3982
3983 /* The special tokens to be parsed here are:
3984
3985 - `register base + (register index * size) + offset', as represented
3986 in `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
3987
3988 - Operands of the form `-8+3+1(%rbp)', which must be interpreted as
3989 `*(-8 + 3 - 1 + (void *) $eax)'. */
3990
3991 while (current_state != DONE)
3992 {
3993 switch (current_state)
3994 {
3995 case TRIPLET:
3996 if (i386_stap_parse_special_token_triplet (gdbarch, p))
3997 return 1;
3998 break;
3999
4000 case THREE_ARG_DISPLACEMENT:
4001 if (i386_stap_parse_special_token_three_arg_disp (gdbarch, p))
4002 return 1;
4003 break;
4004 }
4005
4006 /* Advancing to the next state. */
4007 ++current_state;
4008 }
4009
4010 return 0;
4011 }
4012
4013 \f
4014
4015 /* Generic ELF. */
4016
4017 void
4018 i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4019 {
4020 static const char *const stap_integer_prefixes[] = { "$", NULL };
4021 static const char *const stap_register_prefixes[] = { "%", NULL };
4022 static const char *const stap_register_indirection_prefixes[] = { "(",
4023 NULL };
4024 static const char *const stap_register_indirection_suffixes[] = { ")",
4025 NULL };
4026
4027 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
4028 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
4029
4030 /* Registering SystemTap handlers. */
4031 set_gdbarch_stap_integer_prefixes (gdbarch, stap_integer_prefixes);
4032 set_gdbarch_stap_register_prefixes (gdbarch, stap_register_prefixes);
4033 set_gdbarch_stap_register_indirection_prefixes (gdbarch,
4034 stap_register_indirection_prefixes);
4035 set_gdbarch_stap_register_indirection_suffixes (gdbarch,
4036 stap_register_indirection_suffixes);
4037 set_gdbarch_stap_is_single_operand (gdbarch,
4038 i386_stap_is_single_operand);
4039 set_gdbarch_stap_parse_special_token (gdbarch,
4040 i386_stap_parse_special_token);
4041 }
4042
4043 /* System V Release 4 (SVR4). */
4044
4045 void
4046 i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4047 {
4048 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4049
4050 /* System V Release 4 uses ELF. */
4051 i386_elf_init_abi (info, gdbarch);
4052
4053 /* System V Release 4 has shared libraries. */
4054 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
4055
4056 tdep->sigtramp_p = i386_svr4_sigtramp_p;
4057 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
4058 tdep->sc_pc_offset = 36 + 14 * 4;
4059 tdep->sc_sp_offset = 36 + 17 * 4;
4060
4061 tdep->jb_pc_offset = 20;
4062 }
4063
4064 /* DJGPP. */
4065
4066 static void
4067 i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4068 {
4069 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4070
4071 /* DJGPP doesn't have any special frames for signal handlers. */
4072 tdep->sigtramp_p = NULL;
4073
4074 tdep->jb_pc_offset = 36;
4075
4076 /* DJGPP does not support the SSE registers. */
4077 if (! tdesc_has_registers (info.target_desc))
4078 tdep->tdesc = tdesc_i386_mmx;
4079
4080 /* Native compiler is GCC, which uses the SVR4 register numbering
4081 even in COFF and STABS. See the comment in i386_gdbarch_init,
4082 before the calls to set_gdbarch_stab_reg_to_regnum and
4083 set_gdbarch_sdb_reg_to_regnum. */
4084 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
4085 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
4086
4087 set_gdbarch_has_dos_based_file_system (gdbarch, 1);
4088 }
4089 \f
4090
4091 /* i386 register groups. In addition to the normal groups, add "mmx"
4092 and "sse". */
4093
4094 static struct reggroup *i386_sse_reggroup;
4095 static struct reggroup *i386_mmx_reggroup;
4096
4097 static void
4098 i386_init_reggroups (void)
4099 {
4100 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
4101 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
4102 }
4103
4104 static void
4105 i386_add_reggroups (struct gdbarch *gdbarch)
4106 {
4107 reggroup_add (gdbarch, i386_sse_reggroup);
4108 reggroup_add (gdbarch, i386_mmx_reggroup);
4109 reggroup_add (gdbarch, general_reggroup);
4110 reggroup_add (gdbarch, float_reggroup);
4111 reggroup_add (gdbarch, all_reggroup);
4112 reggroup_add (gdbarch, save_reggroup);
4113 reggroup_add (gdbarch, restore_reggroup);
4114 reggroup_add (gdbarch, vector_reggroup);
4115 reggroup_add (gdbarch, system_reggroup);
4116 }
4117
4118 int
4119 i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
4120 struct reggroup *group)
4121 {
4122 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4123 int fp_regnum_p, mmx_regnum_p, xmm_regnum_p, mxcsr_regnum_p,
4124 ymm_regnum_p, ymmh_regnum_p, bndr_regnum_p, bnd_regnum_p,
4125 mpx_ctrl_regnum_p;
4126
4127 /* Don't include pseudo registers, except for MMX, in any register
4128 groups. */
4129 if (i386_byte_regnum_p (gdbarch, regnum))
4130 return 0;
4131
4132 if (i386_word_regnum_p (gdbarch, regnum))
4133 return 0;
4134
4135 if (i386_dword_regnum_p (gdbarch, regnum))
4136 return 0;
4137
4138 mmx_regnum_p = i386_mmx_regnum_p (gdbarch, regnum);
4139 if (group == i386_mmx_reggroup)
4140 return mmx_regnum_p;
4141
4142 xmm_regnum_p = i386_xmm_regnum_p (gdbarch, regnum);
4143 mxcsr_regnum_p = i386_mxcsr_regnum_p (gdbarch, regnum);
4144 if (group == i386_sse_reggroup)
4145 return xmm_regnum_p || mxcsr_regnum_p;
4146
4147 ymm_regnum_p = i386_ymm_regnum_p (gdbarch, regnum);
4148 if (group == vector_reggroup)
4149 return (mmx_regnum_p
4150 || ymm_regnum_p
4151 || mxcsr_regnum_p
4152 || (xmm_regnum_p
4153 && ((tdep->xcr0 & I386_XSTATE_AVX_MASK)
4154 == I386_XSTATE_SSE_MASK)));
4155
4156 fp_regnum_p = (i386_fp_regnum_p (gdbarch, regnum)
4157 || i386_fpc_regnum_p (gdbarch, regnum));
4158 if (group == float_reggroup)
4159 return fp_regnum_p;
4160
4161 /* For "info reg all", don't include upper YMM registers nor XMM
4162 registers when AVX is supported. */
4163 ymmh_regnum_p = i386_ymmh_regnum_p (gdbarch, regnum);
4164 if (group == all_reggroup
4165 && ((xmm_regnum_p
4166 && (tdep->xcr0 & I386_XSTATE_AVX))
4167 || ymmh_regnum_p))
4168 return 0;
4169
4170 bnd_regnum_p = i386_bnd_regnum_p (gdbarch, regnum);
4171 if (group == all_reggroup
4172 && ((bnd_regnum_p && (tdep->xcr0 & I386_XSTATE_MPX_MASK))))
4173 return bnd_regnum_p;
4174
4175 bndr_regnum_p = i386_bndr_regnum_p (gdbarch, regnum);
4176 if (group == all_reggroup
4177 && ((bndr_regnum_p && (tdep->xcr0 & I386_XSTATE_MPX_MASK))))
4178 return 0;
4179
4180 mpx_ctrl_regnum_p = i386_mpx_ctrl_regnum_p (gdbarch, regnum);
4181 if (group == all_reggroup
4182 && ((mpx_ctrl_regnum_p && (tdep->xcr0 & I386_XSTATE_MPX_MASK))))
4183 return mpx_ctrl_regnum_p;
4184
4185 if (group == general_reggroup)
4186 return (!fp_regnum_p
4187 && !mmx_regnum_p
4188 && !mxcsr_regnum_p
4189 && !xmm_regnum_p
4190 && !ymm_regnum_p
4191 && !ymmh_regnum_p
4192 && !bndr_regnum_p
4193 && !bnd_regnum_p
4194 && !mpx_ctrl_regnum_p);
4195
4196 return default_register_reggroup_p (gdbarch, regnum, group);
4197 }
4198 \f
4199
4200 /* Get the ARGIth function argument for the current function. */
4201
4202 static CORE_ADDR
4203 i386_fetch_pointer_argument (struct frame_info *frame, int argi,
4204 struct type *type)
4205 {
4206 struct gdbarch *gdbarch = get_frame_arch (frame);
4207 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4208 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
4209 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4, byte_order);
4210 }
4211
4212 static void
4213 i386_skip_permanent_breakpoint (struct regcache *regcache)
4214 {
4215 CORE_ADDR current_pc = regcache_read_pc (regcache);
4216
4217 /* On i386, breakpoint is exactly 1 byte long, so we just
4218 adjust the PC in the regcache. */
4219 current_pc += 1;
4220 regcache_write_pc (regcache, current_pc);
4221 }
4222
4223
4224 #define PREFIX_REPZ 0x01
4225 #define PREFIX_REPNZ 0x02
4226 #define PREFIX_LOCK 0x04
4227 #define PREFIX_DATA 0x08
4228 #define PREFIX_ADDR 0x10
4229
4230 /* operand size */
4231 enum
4232 {
4233 OT_BYTE = 0,
4234 OT_WORD,
4235 OT_LONG,
4236 OT_QUAD,
4237 OT_DQUAD,
4238 };
4239
4240 /* i386 arith/logic operations */
4241 enum
4242 {
4243 OP_ADDL,
4244 OP_ORL,
4245 OP_ADCL,
4246 OP_SBBL,
4247 OP_ANDL,
4248 OP_SUBL,
4249 OP_XORL,
4250 OP_CMPL,
4251 };
4252
4253 struct i386_record_s
4254 {
4255 struct gdbarch *gdbarch;
4256 struct regcache *regcache;
4257 CORE_ADDR orig_addr;
4258 CORE_ADDR addr;
4259 int aflag;
4260 int dflag;
4261 int override;
4262 uint8_t modrm;
4263 uint8_t mod, reg, rm;
4264 int ot;
4265 uint8_t rex_x;
4266 uint8_t rex_b;
4267 int rip_offset;
4268 int popl_esp_hack;
4269 const int *regmap;
4270 };
4271
4272 /* Parse the "modrm" part of the memory address irp->addr points at.
4273 Returns -1 if something goes wrong, 0 otherwise. */
4274
4275 static int
4276 i386_record_modrm (struct i386_record_s *irp)
4277 {
4278 struct gdbarch *gdbarch = irp->gdbarch;
4279
4280 if (record_read_memory (gdbarch, irp->addr, &irp->modrm, 1))
4281 return -1;
4282
4283 irp->addr++;
4284 irp->mod = (irp->modrm >> 6) & 3;
4285 irp->reg = (irp->modrm >> 3) & 7;
4286 irp->rm = irp->modrm & 7;
4287
4288 return 0;
4289 }
4290
4291 /* Extract the memory address that the current instruction writes to,
4292 and return it in *ADDR. Return -1 if something goes wrong. */
4293
4294 static int
4295 i386_record_lea_modrm_addr (struct i386_record_s *irp, uint64_t *addr)
4296 {
4297 struct gdbarch *gdbarch = irp->gdbarch;
4298 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4299 gdb_byte buf[4];
4300 ULONGEST offset64;
4301
4302 *addr = 0;
4303 if (irp->aflag || irp->regmap[X86_RECORD_R8_REGNUM])
4304 {
4305 /* 32/64 bits */
4306 int havesib = 0;
4307 uint8_t scale = 0;
4308 uint8_t byte;
4309 uint8_t index = 0;
4310 uint8_t base = irp->rm;
4311
4312 if (base == 4)
4313 {
4314 havesib = 1;
4315 if (record_read_memory (gdbarch, irp->addr, &byte, 1))
4316 return -1;
4317 irp->addr++;
4318 scale = (byte >> 6) & 3;
4319 index = ((byte >> 3) & 7) | irp->rex_x;
4320 base = (byte & 7);
4321 }
4322 base |= irp->rex_b;
4323
4324 switch (irp->mod)
4325 {
4326 case 0:
4327 if ((base & 7) == 5)
4328 {
4329 base = 0xff;
4330 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4331 return -1;
4332 irp->addr += 4;
4333 *addr = extract_signed_integer (buf, 4, byte_order);
4334 if (irp->regmap[X86_RECORD_R8_REGNUM] && !havesib)
4335 *addr += irp->addr + irp->rip_offset;
4336 }
4337 break;
4338 case 1:
4339 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4340 return -1;
4341 irp->addr++;
4342 *addr = (int8_t) buf[0];
4343 break;
4344 case 2:
4345 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4346 return -1;
4347 *addr = extract_signed_integer (buf, 4, byte_order);
4348 irp->addr += 4;
4349 break;
4350 }
4351
4352 offset64 = 0;
4353 if (base != 0xff)
4354 {
4355 if (base == 4 && irp->popl_esp_hack)
4356 *addr += irp->popl_esp_hack;
4357 regcache_raw_read_unsigned (irp->regcache, irp->regmap[base],
4358 &offset64);
4359 }
4360 if (irp->aflag == 2)
4361 {
4362 *addr += offset64;
4363 }
4364 else
4365 *addr = (uint32_t) (offset64 + *addr);
4366
4367 if (havesib && (index != 4 || scale != 0))
4368 {
4369 regcache_raw_read_unsigned (irp->regcache, irp->regmap[index],
4370 &offset64);
4371 if (irp->aflag == 2)
4372 *addr += offset64 << scale;
4373 else
4374 *addr = (uint32_t) (*addr + (offset64 << scale));
4375 }
4376
4377 if (!irp->aflag)
4378 {
4379 /* Since we are in 64-bit mode with ADDR32 prefix, zero-extend
4380 address from 32-bit to 64-bit. */
4381 *addr = (uint32_t) *addr;
4382 }
4383 }
4384 else
4385 {
4386 /* 16 bits */
4387 switch (irp->mod)
4388 {
4389 case 0:
4390 if (irp->rm == 6)
4391 {
4392 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4393 return -1;
4394 irp->addr += 2;
4395 *addr = extract_signed_integer (buf, 2, byte_order);
4396 irp->rm = 0;
4397 goto no_rm;
4398 }
4399 break;
4400 case 1:
4401 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4402 return -1;
4403 irp->addr++;
4404 *addr = (int8_t) buf[0];
4405 break;
4406 case 2:
4407 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4408 return -1;
4409 irp->addr += 2;
4410 *addr = extract_signed_integer (buf, 2, byte_order);
4411 break;
4412 }
4413
4414 switch (irp->rm)
4415 {
4416 case 0:
4417 regcache_raw_read_unsigned (irp->regcache,
4418 irp->regmap[X86_RECORD_REBX_REGNUM],
4419 &offset64);
4420 *addr = (uint32_t) (*addr + offset64);
4421 regcache_raw_read_unsigned (irp->regcache,
4422 irp->regmap[X86_RECORD_RESI_REGNUM],
4423 &offset64);
4424 *addr = (uint32_t) (*addr + offset64);
4425 break;
4426 case 1:
4427 regcache_raw_read_unsigned (irp->regcache,
4428 irp->regmap[X86_RECORD_REBX_REGNUM],
4429 &offset64);
4430 *addr = (uint32_t) (*addr + offset64);
4431 regcache_raw_read_unsigned (irp->regcache,
4432 irp->regmap[X86_RECORD_REDI_REGNUM],
4433 &offset64);
4434 *addr = (uint32_t) (*addr + offset64);
4435 break;
4436 case 2:
4437 regcache_raw_read_unsigned (irp->regcache,
4438 irp->regmap[X86_RECORD_REBP_REGNUM],
4439 &offset64);
4440 *addr = (uint32_t) (*addr + offset64);
4441 regcache_raw_read_unsigned (irp->regcache,
4442 irp->regmap[X86_RECORD_RESI_REGNUM],
4443 &offset64);
4444 *addr = (uint32_t) (*addr + offset64);
4445 break;
4446 case 3:
4447 regcache_raw_read_unsigned (irp->regcache,
4448 irp->regmap[X86_RECORD_REBP_REGNUM],
4449 &offset64);
4450 *addr = (uint32_t) (*addr + offset64);
4451 regcache_raw_read_unsigned (irp->regcache,
4452 irp->regmap[X86_RECORD_REDI_REGNUM],
4453 &offset64);
4454 *addr = (uint32_t) (*addr + offset64);
4455 break;
4456 case 4:
4457 regcache_raw_read_unsigned (irp->regcache,
4458 irp->regmap[X86_RECORD_RESI_REGNUM],
4459 &offset64);
4460 *addr = (uint32_t) (*addr + offset64);
4461 break;
4462 case 5:
4463 regcache_raw_read_unsigned (irp->regcache,
4464 irp->regmap[X86_RECORD_REDI_REGNUM],
4465 &offset64);
4466 *addr = (uint32_t) (*addr + offset64);
4467 break;
4468 case 6:
4469 regcache_raw_read_unsigned (irp->regcache,
4470 irp->regmap[X86_RECORD_REBP_REGNUM],
4471 &offset64);
4472 *addr = (uint32_t) (*addr + offset64);
4473 break;
4474 case 7:
4475 regcache_raw_read_unsigned (irp->regcache,
4476 irp->regmap[X86_RECORD_REBX_REGNUM],
4477 &offset64);
4478 *addr = (uint32_t) (*addr + offset64);
4479 break;
4480 }
4481 *addr &= 0xffff;
4482 }
4483
4484 no_rm:
4485 return 0;
4486 }
4487
4488 /* Record the address and contents of the memory that will be changed
4489 by the current instruction. Return -1 if something goes wrong, 0
4490 otherwise. */
4491
4492 static int
4493 i386_record_lea_modrm (struct i386_record_s *irp)
4494 {
4495 struct gdbarch *gdbarch = irp->gdbarch;
4496 uint64_t addr;
4497
4498 if (irp->override >= 0)
4499 {
4500 if (record_full_memory_query)
4501 {
4502 int q;
4503
4504 target_terminal_ours ();
4505 q = yquery (_("\
4506 Process record ignores the memory change of instruction at address %s\n\
4507 because it can't get the value of the segment register.\n\
4508 Do you want to stop the program?"),
4509 paddress (gdbarch, irp->orig_addr));
4510 target_terminal_inferior ();
4511 if (q)
4512 return -1;
4513 }
4514
4515 return 0;
4516 }
4517
4518 if (i386_record_lea_modrm_addr (irp, &addr))
4519 return -1;
4520
4521 if (record_full_arch_list_add_mem (addr, 1 << irp->ot))
4522 return -1;
4523
4524 return 0;
4525 }
4526
4527 /* Record the effects of a push operation. Return -1 if something
4528 goes wrong, 0 otherwise. */
4529
4530 static int
4531 i386_record_push (struct i386_record_s *irp, int size)
4532 {
4533 ULONGEST addr;
4534
4535 if (record_full_arch_list_add_reg (irp->regcache,
4536 irp->regmap[X86_RECORD_RESP_REGNUM]))
4537 return -1;
4538 regcache_raw_read_unsigned (irp->regcache,
4539 irp->regmap[X86_RECORD_RESP_REGNUM],
4540 &addr);
4541 if (record_full_arch_list_add_mem ((CORE_ADDR) addr - size, size))
4542 return -1;
4543
4544 return 0;
4545 }
4546
4547
4548 /* Defines contents to record. */
4549 #define I386_SAVE_FPU_REGS 0xfffd
4550 #define I386_SAVE_FPU_ENV 0xfffe
4551 #define I386_SAVE_FPU_ENV_REG_STACK 0xffff
4552
4553 /* Record the values of the floating point registers which will be
4554 changed by the current instruction. Returns -1 if something is
4555 wrong, 0 otherwise. */
4556
4557 static int i386_record_floats (struct gdbarch *gdbarch,
4558 struct i386_record_s *ir,
4559 uint32_t iregnum)
4560 {
4561 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4562 int i;
4563
4564 /* Oza: Because of floating point insn push/pop of fpu stack is going to
4565 happen. Currently we store st0-st7 registers, but we need not store all
4566 registers all the time, in future we use ftag register and record only
4567 those who are not marked as an empty. */
4568
4569 if (I386_SAVE_FPU_REGS == iregnum)
4570 {
4571 for (i = I387_ST0_REGNUM (tdep); i <= I387_ST0_REGNUM (tdep) + 7; i++)
4572 {
4573 if (record_full_arch_list_add_reg (ir->regcache, i))
4574 return -1;
4575 }
4576 }
4577 else if (I386_SAVE_FPU_ENV == iregnum)
4578 {
4579 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4580 {
4581 if (record_full_arch_list_add_reg (ir->regcache, i))
4582 return -1;
4583 }
4584 }
4585 else if (I386_SAVE_FPU_ENV_REG_STACK == iregnum)
4586 {
4587 for (i = I387_ST0_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4588 {
4589 if (record_full_arch_list_add_reg (ir->regcache, i))
4590 return -1;
4591 }
4592 }
4593 else if ((iregnum >= I387_ST0_REGNUM (tdep)) &&
4594 (iregnum <= I387_FOP_REGNUM (tdep)))
4595 {
4596 if (record_full_arch_list_add_reg (ir->regcache,iregnum))
4597 return -1;
4598 }
4599 else
4600 {
4601 /* Parameter error. */
4602 return -1;
4603 }
4604 if(I386_SAVE_FPU_ENV != iregnum)
4605 {
4606 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4607 {
4608 if (record_full_arch_list_add_reg (ir->regcache, i))
4609 return -1;
4610 }
4611 }
4612 return 0;
4613 }
4614
4615 /* Parse the current instruction, and record the values of the
4616 registers and memory that will be changed by the current
4617 instruction. Returns -1 if something goes wrong, 0 otherwise. */
4618
4619 #define I386_RECORD_FULL_ARCH_LIST_ADD_REG(regnum) \
4620 record_full_arch_list_add_reg (ir.regcache, ir.regmap[(regnum)])
4621
4622 int
4623 i386_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
4624 CORE_ADDR input_addr)
4625 {
4626 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4627 int prefixes = 0;
4628 int regnum = 0;
4629 uint32_t opcode;
4630 uint8_t opcode8;
4631 ULONGEST addr;
4632 gdb_byte buf[MAX_REGISTER_SIZE];
4633 struct i386_record_s ir;
4634 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4635 uint8_t rex_w = -1;
4636 uint8_t rex_r = 0;
4637
4638 memset (&ir, 0, sizeof (struct i386_record_s));
4639 ir.regcache = regcache;
4640 ir.addr = input_addr;
4641 ir.orig_addr = input_addr;
4642 ir.aflag = 1;
4643 ir.dflag = 1;
4644 ir.override = -1;
4645 ir.popl_esp_hack = 0;
4646 ir.regmap = tdep->record_regmap;
4647 ir.gdbarch = gdbarch;
4648
4649 if (record_debug > 1)
4650 fprintf_unfiltered (gdb_stdlog, "Process record: i386_process_record "
4651 "addr = %s\n",
4652 paddress (gdbarch, ir.addr));
4653
4654 /* prefixes */
4655 while (1)
4656 {
4657 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
4658 return -1;
4659 ir.addr++;
4660 switch (opcode8) /* Instruction prefixes */
4661 {
4662 case REPE_PREFIX_OPCODE:
4663 prefixes |= PREFIX_REPZ;
4664 break;
4665 case REPNE_PREFIX_OPCODE:
4666 prefixes |= PREFIX_REPNZ;
4667 break;
4668 case LOCK_PREFIX_OPCODE:
4669 prefixes |= PREFIX_LOCK;
4670 break;
4671 case CS_PREFIX_OPCODE:
4672 ir.override = X86_RECORD_CS_REGNUM;
4673 break;
4674 case SS_PREFIX_OPCODE:
4675 ir.override = X86_RECORD_SS_REGNUM;
4676 break;
4677 case DS_PREFIX_OPCODE:
4678 ir.override = X86_RECORD_DS_REGNUM;
4679 break;
4680 case ES_PREFIX_OPCODE:
4681 ir.override = X86_RECORD_ES_REGNUM;
4682 break;
4683 case FS_PREFIX_OPCODE:
4684 ir.override = X86_RECORD_FS_REGNUM;
4685 break;
4686 case GS_PREFIX_OPCODE:
4687 ir.override = X86_RECORD_GS_REGNUM;
4688 break;
4689 case DATA_PREFIX_OPCODE:
4690 prefixes |= PREFIX_DATA;
4691 break;
4692 case ADDR_PREFIX_OPCODE:
4693 prefixes |= PREFIX_ADDR;
4694 break;
4695 case 0x40: /* i386 inc %eax */
4696 case 0x41: /* i386 inc %ecx */
4697 case 0x42: /* i386 inc %edx */
4698 case 0x43: /* i386 inc %ebx */
4699 case 0x44: /* i386 inc %esp */
4700 case 0x45: /* i386 inc %ebp */
4701 case 0x46: /* i386 inc %esi */
4702 case 0x47: /* i386 inc %edi */
4703 case 0x48: /* i386 dec %eax */
4704 case 0x49: /* i386 dec %ecx */
4705 case 0x4a: /* i386 dec %edx */
4706 case 0x4b: /* i386 dec %ebx */
4707 case 0x4c: /* i386 dec %esp */
4708 case 0x4d: /* i386 dec %ebp */
4709 case 0x4e: /* i386 dec %esi */
4710 case 0x4f: /* i386 dec %edi */
4711 if (ir.regmap[X86_RECORD_R8_REGNUM]) /* 64 bit target */
4712 {
4713 /* REX */
4714 rex_w = (opcode8 >> 3) & 1;
4715 rex_r = (opcode8 & 0x4) << 1;
4716 ir.rex_x = (opcode8 & 0x2) << 2;
4717 ir.rex_b = (opcode8 & 0x1) << 3;
4718 }
4719 else /* 32 bit target */
4720 goto out_prefixes;
4721 break;
4722 default:
4723 goto out_prefixes;
4724 break;
4725 }
4726 }
4727 out_prefixes:
4728 if (ir.regmap[X86_RECORD_R8_REGNUM] && rex_w == 1)
4729 {
4730 ir.dflag = 2;
4731 }
4732 else
4733 {
4734 if (prefixes & PREFIX_DATA)
4735 ir.dflag ^= 1;
4736 }
4737 if (prefixes & PREFIX_ADDR)
4738 ir.aflag ^= 1;
4739 else if (ir.regmap[X86_RECORD_R8_REGNUM])
4740 ir.aflag = 2;
4741
4742 /* Now check op code. */
4743 opcode = (uint32_t) opcode8;
4744 reswitch:
4745 switch (opcode)
4746 {
4747 case 0x0f:
4748 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
4749 return -1;
4750 ir.addr++;
4751 opcode = (uint32_t) opcode8 | 0x0f00;
4752 goto reswitch;
4753 break;
4754
4755 case 0x00: /* arith & logic */
4756 case 0x01:
4757 case 0x02:
4758 case 0x03:
4759 case 0x04:
4760 case 0x05:
4761 case 0x08:
4762 case 0x09:
4763 case 0x0a:
4764 case 0x0b:
4765 case 0x0c:
4766 case 0x0d:
4767 case 0x10:
4768 case 0x11:
4769 case 0x12:
4770 case 0x13:
4771 case 0x14:
4772 case 0x15:
4773 case 0x18:
4774 case 0x19:
4775 case 0x1a:
4776 case 0x1b:
4777 case 0x1c:
4778 case 0x1d:
4779 case 0x20:
4780 case 0x21:
4781 case 0x22:
4782 case 0x23:
4783 case 0x24:
4784 case 0x25:
4785 case 0x28:
4786 case 0x29:
4787 case 0x2a:
4788 case 0x2b:
4789 case 0x2c:
4790 case 0x2d:
4791 case 0x30:
4792 case 0x31:
4793 case 0x32:
4794 case 0x33:
4795 case 0x34:
4796 case 0x35:
4797 case 0x38:
4798 case 0x39:
4799 case 0x3a:
4800 case 0x3b:
4801 case 0x3c:
4802 case 0x3d:
4803 if (((opcode >> 3) & 7) != OP_CMPL)
4804 {
4805 if ((opcode & 1) == 0)
4806 ir.ot = OT_BYTE;
4807 else
4808 ir.ot = ir.dflag + OT_WORD;
4809
4810 switch ((opcode >> 1) & 3)
4811 {
4812 case 0: /* OP Ev, Gv */
4813 if (i386_record_modrm (&ir))
4814 return -1;
4815 if (ir.mod != 3)
4816 {
4817 if (i386_record_lea_modrm (&ir))
4818 return -1;
4819 }
4820 else
4821 {
4822 ir.rm |= ir.rex_b;
4823 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4824 ir.rm &= 0x3;
4825 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
4826 }
4827 break;
4828 case 1: /* OP Gv, Ev */
4829 if (i386_record_modrm (&ir))
4830 return -1;
4831 ir.reg |= rex_r;
4832 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4833 ir.reg &= 0x3;
4834 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
4835 break;
4836 case 2: /* OP A, Iv */
4837 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4838 break;
4839 }
4840 }
4841 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4842 break;
4843
4844 case 0x80: /* GRP1 */
4845 case 0x81:
4846 case 0x82:
4847 case 0x83:
4848 if (i386_record_modrm (&ir))
4849 return -1;
4850
4851 if (ir.reg != OP_CMPL)
4852 {
4853 if ((opcode & 1) == 0)
4854 ir.ot = OT_BYTE;
4855 else
4856 ir.ot = ir.dflag + OT_WORD;
4857
4858 if (ir.mod != 3)
4859 {
4860 if (opcode == 0x83)
4861 ir.rip_offset = 1;
4862 else
4863 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
4864 if (i386_record_lea_modrm (&ir))
4865 return -1;
4866 }
4867 else
4868 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
4869 }
4870 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4871 break;
4872
4873 case 0x40: /* inc */
4874 case 0x41:
4875 case 0x42:
4876 case 0x43:
4877 case 0x44:
4878 case 0x45:
4879 case 0x46:
4880 case 0x47:
4881
4882 case 0x48: /* dec */
4883 case 0x49:
4884 case 0x4a:
4885 case 0x4b:
4886 case 0x4c:
4887 case 0x4d:
4888 case 0x4e:
4889 case 0x4f:
4890
4891 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 7);
4892 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4893 break;
4894
4895 case 0xf6: /* GRP3 */
4896 case 0xf7:
4897 if ((opcode & 1) == 0)
4898 ir.ot = OT_BYTE;
4899 else
4900 ir.ot = ir.dflag + OT_WORD;
4901 if (i386_record_modrm (&ir))
4902 return -1;
4903
4904 if (ir.mod != 3 && ir.reg == 0)
4905 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
4906
4907 switch (ir.reg)
4908 {
4909 case 0: /* test */
4910 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4911 break;
4912 case 2: /* not */
4913 case 3: /* neg */
4914 if (ir.mod != 3)
4915 {
4916 if (i386_record_lea_modrm (&ir))
4917 return -1;
4918 }
4919 else
4920 {
4921 ir.rm |= ir.rex_b;
4922 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4923 ir.rm &= 0x3;
4924 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
4925 }
4926 if (ir.reg == 3) /* neg */
4927 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4928 break;
4929 case 4: /* mul */
4930 case 5: /* imul */
4931 case 6: /* div */
4932 case 7: /* idiv */
4933 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4934 if (ir.ot != OT_BYTE)
4935 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
4936 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4937 break;
4938 default:
4939 ir.addr -= 2;
4940 opcode = opcode << 8 | ir.modrm;
4941 goto no_support;
4942 break;
4943 }
4944 break;
4945
4946 case 0xfe: /* GRP4 */
4947 case 0xff: /* GRP5 */
4948 if (i386_record_modrm (&ir))
4949 return -1;
4950 if (ir.reg >= 2 && opcode == 0xfe)
4951 {
4952 ir.addr -= 2;
4953 opcode = opcode << 8 | ir.modrm;
4954 goto no_support;
4955 }
4956 switch (ir.reg)
4957 {
4958 case 0: /* inc */
4959 case 1: /* dec */
4960 if ((opcode & 1) == 0)
4961 ir.ot = OT_BYTE;
4962 else
4963 ir.ot = ir.dflag + OT_WORD;
4964 if (ir.mod != 3)
4965 {
4966 if (i386_record_lea_modrm (&ir))
4967 return -1;
4968 }
4969 else
4970 {
4971 ir.rm |= ir.rex_b;
4972 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4973 ir.rm &= 0x3;
4974 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
4975 }
4976 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4977 break;
4978 case 2: /* call */
4979 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4980 ir.dflag = 2;
4981 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4982 return -1;
4983 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4984 break;
4985 case 3: /* lcall */
4986 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
4987 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4988 return -1;
4989 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4990 break;
4991 case 4: /* jmp */
4992 case 5: /* ljmp */
4993 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4994 break;
4995 case 6: /* push */
4996 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4997 ir.dflag = 2;
4998 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4999 return -1;
5000 break;
5001 default:
5002 ir.addr -= 2;
5003 opcode = opcode << 8 | ir.modrm;
5004 goto no_support;
5005 break;
5006 }
5007 break;
5008
5009 case 0x84: /* test */
5010 case 0x85:
5011 case 0xa8:
5012 case 0xa9:
5013 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5014 break;
5015
5016 case 0x98: /* CWDE/CBW */
5017 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5018 break;
5019
5020 case 0x99: /* CDQ/CWD */
5021 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5022 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5023 break;
5024
5025 case 0x0faf: /* imul */
5026 case 0x69:
5027 case 0x6b:
5028 ir.ot = ir.dflag + OT_WORD;
5029 if (i386_record_modrm (&ir))
5030 return -1;
5031 if (opcode == 0x69)
5032 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5033 else if (opcode == 0x6b)
5034 ir.rip_offset = 1;
5035 ir.reg |= rex_r;
5036 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5037 ir.reg &= 0x3;
5038 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5039 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5040 break;
5041
5042 case 0x0fc0: /* xadd */
5043 case 0x0fc1:
5044 if ((opcode & 1) == 0)
5045 ir.ot = OT_BYTE;
5046 else
5047 ir.ot = ir.dflag + OT_WORD;
5048 if (i386_record_modrm (&ir))
5049 return -1;
5050 ir.reg |= rex_r;
5051 if (ir.mod == 3)
5052 {
5053 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5054 ir.reg &= 0x3;
5055 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5056 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5057 ir.rm &= 0x3;
5058 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5059 }
5060 else
5061 {
5062 if (i386_record_lea_modrm (&ir))
5063 return -1;
5064 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5065 ir.reg &= 0x3;
5066 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5067 }
5068 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5069 break;
5070
5071 case 0x0fb0: /* cmpxchg */
5072 case 0x0fb1:
5073 if ((opcode & 1) == 0)
5074 ir.ot = OT_BYTE;
5075 else
5076 ir.ot = ir.dflag + OT_WORD;
5077 if (i386_record_modrm (&ir))
5078 return -1;
5079 if (ir.mod == 3)
5080 {
5081 ir.reg |= rex_r;
5082 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5083 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5084 ir.reg &= 0x3;
5085 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5086 }
5087 else
5088 {
5089 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5090 if (i386_record_lea_modrm (&ir))
5091 return -1;
5092 }
5093 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5094 break;
5095
5096 case 0x0fc7: /* cmpxchg8b */
5097 if (i386_record_modrm (&ir))
5098 return -1;
5099 if (ir.mod == 3)
5100 {
5101 ir.addr -= 2;
5102 opcode = opcode << 8 | ir.modrm;
5103 goto no_support;
5104 }
5105 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5106 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5107 if (i386_record_lea_modrm (&ir))
5108 return -1;
5109 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5110 break;
5111
5112 case 0x50: /* push */
5113 case 0x51:
5114 case 0x52:
5115 case 0x53:
5116 case 0x54:
5117 case 0x55:
5118 case 0x56:
5119 case 0x57:
5120 case 0x68:
5121 case 0x6a:
5122 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5123 ir.dflag = 2;
5124 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5125 return -1;
5126 break;
5127
5128 case 0x06: /* push es */
5129 case 0x0e: /* push cs */
5130 case 0x16: /* push ss */
5131 case 0x1e: /* push ds */
5132 if (ir.regmap[X86_RECORD_R8_REGNUM])
5133 {
5134 ir.addr -= 1;
5135 goto no_support;
5136 }
5137 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5138 return -1;
5139 break;
5140
5141 case 0x0fa0: /* push fs */
5142 case 0x0fa8: /* push gs */
5143 if (ir.regmap[X86_RECORD_R8_REGNUM])
5144 {
5145 ir.addr -= 2;
5146 goto no_support;
5147 }
5148 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5149 return -1;
5150 break;
5151
5152 case 0x60: /* pusha */
5153 if (ir.regmap[X86_RECORD_R8_REGNUM])
5154 {
5155 ir.addr -= 1;
5156 goto no_support;
5157 }
5158 if (i386_record_push (&ir, 1 << (ir.dflag + 4)))
5159 return -1;
5160 break;
5161
5162 case 0x58: /* pop */
5163 case 0x59:
5164 case 0x5a:
5165 case 0x5b:
5166 case 0x5c:
5167 case 0x5d:
5168 case 0x5e:
5169 case 0x5f:
5170 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5171 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
5172 break;
5173
5174 case 0x61: /* popa */
5175 if (ir.regmap[X86_RECORD_R8_REGNUM])
5176 {
5177 ir.addr -= 1;
5178 goto no_support;
5179 }
5180 for (regnum = X86_RECORD_REAX_REGNUM;
5181 regnum <= X86_RECORD_REDI_REGNUM;
5182 regnum++)
5183 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5184 break;
5185
5186 case 0x8f: /* pop */
5187 if (ir.regmap[X86_RECORD_R8_REGNUM])
5188 ir.ot = ir.dflag ? OT_QUAD : OT_WORD;
5189 else
5190 ir.ot = ir.dflag + OT_WORD;
5191 if (i386_record_modrm (&ir))
5192 return -1;
5193 if (ir.mod == 3)
5194 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5195 else
5196 {
5197 ir.popl_esp_hack = 1 << ir.ot;
5198 if (i386_record_lea_modrm (&ir))
5199 return -1;
5200 }
5201 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5202 break;
5203
5204 case 0xc8: /* enter */
5205 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
5206 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5207 ir.dflag = 2;
5208 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5209 return -1;
5210 break;
5211
5212 case 0xc9: /* leave */
5213 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5214 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
5215 break;
5216
5217 case 0x07: /* pop es */
5218 if (ir.regmap[X86_RECORD_R8_REGNUM])
5219 {
5220 ir.addr -= 1;
5221 goto no_support;
5222 }
5223 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5224 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_ES_REGNUM);
5225 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5226 break;
5227
5228 case 0x17: /* pop ss */
5229 if (ir.regmap[X86_RECORD_R8_REGNUM])
5230 {
5231 ir.addr -= 1;
5232 goto no_support;
5233 }
5234 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5235 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_SS_REGNUM);
5236 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5237 break;
5238
5239 case 0x1f: /* pop ds */
5240 if (ir.regmap[X86_RECORD_R8_REGNUM])
5241 {
5242 ir.addr -= 1;
5243 goto no_support;
5244 }
5245 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5246 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_DS_REGNUM);
5247 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5248 break;
5249
5250 case 0x0fa1: /* pop fs */
5251 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5252 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_FS_REGNUM);
5253 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5254 break;
5255
5256 case 0x0fa9: /* pop gs */
5257 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5258 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
5259 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5260 break;
5261
5262 case 0x88: /* mov */
5263 case 0x89:
5264 case 0xc6:
5265 case 0xc7:
5266 if ((opcode & 1) == 0)
5267 ir.ot = OT_BYTE;
5268 else
5269 ir.ot = ir.dflag + OT_WORD;
5270
5271 if (i386_record_modrm (&ir))
5272 return -1;
5273
5274 if (ir.mod != 3)
5275 {
5276 if (opcode == 0xc6 || opcode == 0xc7)
5277 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5278 if (i386_record_lea_modrm (&ir))
5279 return -1;
5280 }
5281 else
5282 {
5283 if (opcode == 0xc6 || opcode == 0xc7)
5284 ir.rm |= ir.rex_b;
5285 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5286 ir.rm &= 0x3;
5287 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5288 }
5289 break;
5290
5291 case 0x8a: /* mov */
5292 case 0x8b:
5293 if ((opcode & 1) == 0)
5294 ir.ot = OT_BYTE;
5295 else
5296 ir.ot = ir.dflag + OT_WORD;
5297 if (i386_record_modrm (&ir))
5298 return -1;
5299 ir.reg |= rex_r;
5300 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5301 ir.reg &= 0x3;
5302 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5303 break;
5304
5305 case 0x8c: /* mov seg */
5306 if (i386_record_modrm (&ir))
5307 return -1;
5308 if (ir.reg > 5)
5309 {
5310 ir.addr -= 2;
5311 opcode = opcode << 8 | ir.modrm;
5312 goto no_support;
5313 }
5314
5315 if (ir.mod == 3)
5316 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5317 else
5318 {
5319 ir.ot = OT_WORD;
5320 if (i386_record_lea_modrm (&ir))
5321 return -1;
5322 }
5323 break;
5324
5325 case 0x8e: /* mov seg */
5326 if (i386_record_modrm (&ir))
5327 return -1;
5328 switch (ir.reg)
5329 {
5330 case 0:
5331 regnum = X86_RECORD_ES_REGNUM;
5332 break;
5333 case 2:
5334 regnum = X86_RECORD_SS_REGNUM;
5335 break;
5336 case 3:
5337 regnum = X86_RECORD_DS_REGNUM;
5338 break;
5339 case 4:
5340 regnum = X86_RECORD_FS_REGNUM;
5341 break;
5342 case 5:
5343 regnum = X86_RECORD_GS_REGNUM;
5344 break;
5345 default:
5346 ir.addr -= 2;
5347 opcode = opcode << 8 | ir.modrm;
5348 goto no_support;
5349 break;
5350 }
5351 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5352 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5353 break;
5354
5355 case 0x0fb6: /* movzbS */
5356 case 0x0fb7: /* movzwS */
5357 case 0x0fbe: /* movsbS */
5358 case 0x0fbf: /* movswS */
5359 if (i386_record_modrm (&ir))
5360 return -1;
5361 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5362 break;
5363
5364 case 0x8d: /* lea */
5365 if (i386_record_modrm (&ir))
5366 return -1;
5367 if (ir.mod == 3)
5368 {
5369 ir.addr -= 2;
5370 opcode = opcode << 8 | ir.modrm;
5371 goto no_support;
5372 }
5373 ir.ot = ir.dflag;
5374 ir.reg |= rex_r;
5375 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5376 ir.reg &= 0x3;
5377 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5378 break;
5379
5380 case 0xa0: /* mov EAX */
5381 case 0xa1:
5382
5383 case 0xd7: /* xlat */
5384 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5385 break;
5386
5387 case 0xa2: /* mov EAX */
5388 case 0xa3:
5389 if (ir.override >= 0)
5390 {
5391 if (record_full_memory_query)
5392 {
5393 int q;
5394
5395 target_terminal_ours ();
5396 q = yquery (_("\
5397 Process record ignores the memory change of instruction at address %s\n\
5398 because it can't get the value of the segment register.\n\
5399 Do you want to stop the program?"),
5400 paddress (gdbarch, ir.orig_addr));
5401 target_terminal_inferior ();
5402 if (q)
5403 return -1;
5404 }
5405 }
5406 else
5407 {
5408 if ((opcode & 1) == 0)
5409 ir.ot = OT_BYTE;
5410 else
5411 ir.ot = ir.dflag + OT_WORD;
5412 if (ir.aflag == 2)
5413 {
5414 if (record_read_memory (gdbarch, ir.addr, buf, 8))
5415 return -1;
5416 ir.addr += 8;
5417 addr = extract_unsigned_integer (buf, 8, byte_order);
5418 }
5419 else if (ir.aflag)
5420 {
5421 if (record_read_memory (gdbarch, ir.addr, buf, 4))
5422 return -1;
5423 ir.addr += 4;
5424 addr = extract_unsigned_integer (buf, 4, byte_order);
5425 }
5426 else
5427 {
5428 if (record_read_memory (gdbarch, ir.addr, buf, 2))
5429 return -1;
5430 ir.addr += 2;
5431 addr = extract_unsigned_integer (buf, 2, byte_order);
5432 }
5433 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
5434 return -1;
5435 }
5436 break;
5437
5438 case 0xb0: /* mov R, Ib */
5439 case 0xb1:
5440 case 0xb2:
5441 case 0xb3:
5442 case 0xb4:
5443 case 0xb5:
5444 case 0xb6:
5445 case 0xb7:
5446 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((ir.regmap[X86_RECORD_R8_REGNUM])
5447 ? ((opcode & 0x7) | ir.rex_b)
5448 : ((opcode & 0x7) & 0x3));
5449 break;
5450
5451 case 0xb8: /* mov R, Iv */
5452 case 0xb9:
5453 case 0xba:
5454 case 0xbb:
5455 case 0xbc:
5456 case 0xbd:
5457 case 0xbe:
5458 case 0xbf:
5459 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
5460 break;
5461
5462 case 0x91: /* xchg R, EAX */
5463 case 0x92:
5464 case 0x93:
5465 case 0x94:
5466 case 0x95:
5467 case 0x96:
5468 case 0x97:
5469 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5470 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 0x7);
5471 break;
5472
5473 case 0x86: /* xchg Ev, Gv */
5474 case 0x87:
5475 if ((opcode & 1) == 0)
5476 ir.ot = OT_BYTE;
5477 else
5478 ir.ot = ir.dflag + OT_WORD;
5479 if (i386_record_modrm (&ir))
5480 return -1;
5481 if (ir.mod == 3)
5482 {
5483 ir.rm |= ir.rex_b;
5484 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5485 ir.rm &= 0x3;
5486 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5487 }
5488 else
5489 {
5490 if (i386_record_lea_modrm (&ir))
5491 return -1;
5492 }
5493 ir.reg |= rex_r;
5494 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5495 ir.reg &= 0x3;
5496 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5497 break;
5498
5499 case 0xc4: /* les Gv */
5500 case 0xc5: /* lds Gv */
5501 if (ir.regmap[X86_RECORD_R8_REGNUM])
5502 {
5503 ir.addr -= 1;
5504 goto no_support;
5505 }
5506 /* FALLTHROUGH */
5507 case 0x0fb2: /* lss Gv */
5508 case 0x0fb4: /* lfs Gv */
5509 case 0x0fb5: /* lgs Gv */
5510 if (i386_record_modrm (&ir))
5511 return -1;
5512 if (ir.mod == 3)
5513 {
5514 if (opcode > 0xff)
5515 ir.addr -= 3;
5516 else
5517 ir.addr -= 2;
5518 opcode = opcode << 8 | ir.modrm;
5519 goto no_support;
5520 }
5521 switch (opcode)
5522 {
5523 case 0xc4: /* les Gv */
5524 regnum = X86_RECORD_ES_REGNUM;
5525 break;
5526 case 0xc5: /* lds Gv */
5527 regnum = X86_RECORD_DS_REGNUM;
5528 break;
5529 case 0x0fb2: /* lss Gv */
5530 regnum = X86_RECORD_SS_REGNUM;
5531 break;
5532 case 0x0fb4: /* lfs Gv */
5533 regnum = X86_RECORD_FS_REGNUM;
5534 break;
5535 case 0x0fb5: /* lgs Gv */
5536 regnum = X86_RECORD_GS_REGNUM;
5537 break;
5538 }
5539 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5540 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5541 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5542 break;
5543
5544 case 0xc0: /* shifts */
5545 case 0xc1:
5546 case 0xd0:
5547 case 0xd1:
5548 case 0xd2:
5549 case 0xd3:
5550 if ((opcode & 1) == 0)
5551 ir.ot = OT_BYTE;
5552 else
5553 ir.ot = ir.dflag + OT_WORD;
5554 if (i386_record_modrm (&ir))
5555 return -1;
5556 if (ir.mod != 3 && (opcode == 0xd2 || opcode == 0xd3))
5557 {
5558 if (i386_record_lea_modrm (&ir))
5559 return -1;
5560 }
5561 else
5562 {
5563 ir.rm |= ir.rex_b;
5564 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5565 ir.rm &= 0x3;
5566 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5567 }
5568 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5569 break;
5570
5571 case 0x0fa4:
5572 case 0x0fa5:
5573 case 0x0fac:
5574 case 0x0fad:
5575 if (i386_record_modrm (&ir))
5576 return -1;
5577 if (ir.mod == 3)
5578 {
5579 if (record_full_arch_list_add_reg (ir.regcache, ir.rm))
5580 return -1;
5581 }
5582 else
5583 {
5584 if (i386_record_lea_modrm (&ir))
5585 return -1;
5586 }
5587 break;
5588
5589 case 0xd8: /* Floats. */
5590 case 0xd9:
5591 case 0xda:
5592 case 0xdb:
5593 case 0xdc:
5594 case 0xdd:
5595 case 0xde:
5596 case 0xdf:
5597 if (i386_record_modrm (&ir))
5598 return -1;
5599 ir.reg |= ((opcode & 7) << 3);
5600 if (ir.mod != 3)
5601 {
5602 /* Memory. */
5603 uint64_t addr64;
5604
5605 if (i386_record_lea_modrm_addr (&ir, &addr64))
5606 return -1;
5607 switch (ir.reg)
5608 {
5609 case 0x02:
5610 case 0x12:
5611 case 0x22:
5612 case 0x32:
5613 /* For fcom, ficom nothing to do. */
5614 break;
5615 case 0x03:
5616 case 0x13:
5617 case 0x23:
5618 case 0x33:
5619 /* For fcomp, ficomp pop FPU stack, store all. */
5620 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5621 return -1;
5622 break;
5623 case 0x00:
5624 case 0x01:
5625 case 0x04:
5626 case 0x05:
5627 case 0x06:
5628 case 0x07:
5629 case 0x10:
5630 case 0x11:
5631 case 0x14:
5632 case 0x15:
5633 case 0x16:
5634 case 0x17:
5635 case 0x20:
5636 case 0x21:
5637 case 0x24:
5638 case 0x25:
5639 case 0x26:
5640 case 0x27:
5641 case 0x30:
5642 case 0x31:
5643 case 0x34:
5644 case 0x35:
5645 case 0x36:
5646 case 0x37:
5647 /* For fadd, fmul, fsub, fsubr, fdiv, fdivr, fiadd, fimul,
5648 fisub, fisubr, fidiv, fidivr, modR/M.reg is an extension
5649 of code, always affects st(0) register. */
5650 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
5651 return -1;
5652 break;
5653 case 0x08:
5654 case 0x0a:
5655 case 0x0b:
5656 case 0x18:
5657 case 0x19:
5658 case 0x1a:
5659 case 0x1b:
5660 case 0x1d:
5661 case 0x28:
5662 case 0x29:
5663 case 0x2a:
5664 case 0x2b:
5665 case 0x38:
5666 case 0x39:
5667 case 0x3a:
5668 case 0x3b:
5669 case 0x3c:
5670 case 0x3d:
5671 switch (ir.reg & 7)
5672 {
5673 case 0:
5674 /* Handling fld, fild. */
5675 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5676 return -1;
5677 break;
5678 case 1:
5679 switch (ir.reg >> 4)
5680 {
5681 case 0:
5682 if (record_full_arch_list_add_mem (addr64, 4))
5683 return -1;
5684 break;
5685 case 2:
5686 if (record_full_arch_list_add_mem (addr64, 8))
5687 return -1;
5688 break;
5689 case 3:
5690 break;
5691 default:
5692 if (record_full_arch_list_add_mem (addr64, 2))
5693 return -1;
5694 break;
5695 }
5696 break;
5697 default:
5698 switch (ir.reg >> 4)
5699 {
5700 case 0:
5701 if (record_full_arch_list_add_mem (addr64, 4))
5702 return -1;
5703 if (3 == (ir.reg & 7))
5704 {
5705 /* For fstp m32fp. */
5706 if (i386_record_floats (gdbarch, &ir,
5707 I386_SAVE_FPU_REGS))
5708 return -1;
5709 }
5710 break;
5711 case 1:
5712 if (record_full_arch_list_add_mem (addr64, 4))
5713 return -1;
5714 if ((3 == (ir.reg & 7))
5715 || (5 == (ir.reg & 7))
5716 || (7 == (ir.reg & 7)))
5717 {
5718 /* For fstp insn. */
5719 if (i386_record_floats (gdbarch, &ir,
5720 I386_SAVE_FPU_REGS))
5721 return -1;
5722 }
5723 break;
5724 case 2:
5725 if (record_full_arch_list_add_mem (addr64, 8))
5726 return -1;
5727 if (3 == (ir.reg & 7))
5728 {
5729 /* For fstp m64fp. */
5730 if (i386_record_floats (gdbarch, &ir,
5731 I386_SAVE_FPU_REGS))
5732 return -1;
5733 }
5734 break;
5735 case 3:
5736 if ((3 <= (ir.reg & 7)) && (6 <= (ir.reg & 7)))
5737 {
5738 /* For fistp, fbld, fild, fbstp. */
5739 if (i386_record_floats (gdbarch, &ir,
5740 I386_SAVE_FPU_REGS))
5741 return -1;
5742 }
5743 /* Fall through */
5744 default:
5745 if (record_full_arch_list_add_mem (addr64, 2))
5746 return -1;
5747 break;
5748 }
5749 break;
5750 }
5751 break;
5752 case 0x0c:
5753 /* Insn fldenv. */
5754 if (i386_record_floats (gdbarch, &ir,
5755 I386_SAVE_FPU_ENV_REG_STACK))
5756 return -1;
5757 break;
5758 case 0x0d:
5759 /* Insn fldcw. */
5760 if (i386_record_floats (gdbarch, &ir, I387_FCTRL_REGNUM (tdep)))
5761 return -1;
5762 break;
5763 case 0x2c:
5764 /* Insn frstor. */
5765 if (i386_record_floats (gdbarch, &ir,
5766 I386_SAVE_FPU_ENV_REG_STACK))
5767 return -1;
5768 break;
5769 case 0x0e:
5770 if (ir.dflag)
5771 {
5772 if (record_full_arch_list_add_mem (addr64, 28))
5773 return -1;
5774 }
5775 else
5776 {
5777 if (record_full_arch_list_add_mem (addr64, 14))
5778 return -1;
5779 }
5780 break;
5781 case 0x0f:
5782 case 0x2f:
5783 if (record_full_arch_list_add_mem (addr64, 2))
5784 return -1;
5785 /* Insn fstp, fbstp. */
5786 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5787 return -1;
5788 break;
5789 case 0x1f:
5790 case 0x3e:
5791 if (record_full_arch_list_add_mem (addr64, 10))
5792 return -1;
5793 break;
5794 case 0x2e:
5795 if (ir.dflag)
5796 {
5797 if (record_full_arch_list_add_mem (addr64, 28))
5798 return -1;
5799 addr64 += 28;
5800 }
5801 else
5802 {
5803 if (record_full_arch_list_add_mem (addr64, 14))
5804 return -1;
5805 addr64 += 14;
5806 }
5807 if (record_full_arch_list_add_mem (addr64, 80))
5808 return -1;
5809 /* Insn fsave. */
5810 if (i386_record_floats (gdbarch, &ir,
5811 I386_SAVE_FPU_ENV_REG_STACK))
5812 return -1;
5813 break;
5814 case 0x3f:
5815 if (record_full_arch_list_add_mem (addr64, 8))
5816 return -1;
5817 /* Insn fistp. */
5818 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5819 return -1;
5820 break;
5821 default:
5822 ir.addr -= 2;
5823 opcode = opcode << 8 | ir.modrm;
5824 goto no_support;
5825 break;
5826 }
5827 }
5828 /* Opcode is an extension of modR/M byte. */
5829 else
5830 {
5831 switch (opcode)
5832 {
5833 case 0xd8:
5834 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
5835 return -1;
5836 break;
5837 case 0xd9:
5838 if (0x0c == (ir.modrm >> 4))
5839 {
5840 if ((ir.modrm & 0x0f) <= 7)
5841 {
5842 if (i386_record_floats (gdbarch, &ir,
5843 I386_SAVE_FPU_REGS))
5844 return -1;
5845 }
5846 else
5847 {
5848 if (i386_record_floats (gdbarch, &ir,
5849 I387_ST0_REGNUM (tdep)))
5850 return -1;
5851 /* If only st(0) is changing, then we have already
5852 recorded. */
5853 if ((ir.modrm & 0x0f) - 0x08)
5854 {
5855 if (i386_record_floats (gdbarch, &ir,
5856 I387_ST0_REGNUM (tdep) +
5857 ((ir.modrm & 0x0f) - 0x08)))
5858 return -1;
5859 }
5860 }
5861 }
5862 else
5863 {
5864 switch (ir.modrm)
5865 {
5866 case 0xe0:
5867 case 0xe1:
5868 case 0xf0:
5869 case 0xf5:
5870 case 0xf8:
5871 case 0xfa:
5872 case 0xfc:
5873 case 0xfe:
5874 case 0xff:
5875 if (i386_record_floats (gdbarch, &ir,
5876 I387_ST0_REGNUM (tdep)))
5877 return -1;
5878 break;
5879 case 0xf1:
5880 case 0xf2:
5881 case 0xf3:
5882 case 0xf4:
5883 case 0xf6:
5884 case 0xf7:
5885 case 0xe8:
5886 case 0xe9:
5887 case 0xea:
5888 case 0xeb:
5889 case 0xec:
5890 case 0xed:
5891 case 0xee:
5892 case 0xf9:
5893 case 0xfb:
5894 if (i386_record_floats (gdbarch, &ir,
5895 I386_SAVE_FPU_REGS))
5896 return -1;
5897 break;
5898 case 0xfd:
5899 if (i386_record_floats (gdbarch, &ir,
5900 I387_ST0_REGNUM (tdep)))
5901 return -1;
5902 if (i386_record_floats (gdbarch, &ir,
5903 I387_ST0_REGNUM (tdep) + 1))
5904 return -1;
5905 break;
5906 }
5907 }
5908 break;
5909 case 0xda:
5910 if (0xe9 == ir.modrm)
5911 {
5912 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5913 return -1;
5914 }
5915 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
5916 {
5917 if (i386_record_floats (gdbarch, &ir,
5918 I387_ST0_REGNUM (tdep)))
5919 return -1;
5920 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
5921 {
5922 if (i386_record_floats (gdbarch, &ir,
5923 I387_ST0_REGNUM (tdep) +
5924 (ir.modrm & 0x0f)))
5925 return -1;
5926 }
5927 else if ((ir.modrm & 0x0f) - 0x08)
5928 {
5929 if (i386_record_floats (gdbarch, &ir,
5930 I387_ST0_REGNUM (tdep) +
5931 ((ir.modrm & 0x0f) - 0x08)))
5932 return -1;
5933 }
5934 }
5935 break;
5936 case 0xdb:
5937 if (0xe3 == ir.modrm)
5938 {
5939 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_ENV))
5940 return -1;
5941 }
5942 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
5943 {
5944 if (i386_record_floats (gdbarch, &ir,
5945 I387_ST0_REGNUM (tdep)))
5946 return -1;
5947 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
5948 {
5949 if (i386_record_floats (gdbarch, &ir,
5950 I387_ST0_REGNUM (tdep) +
5951 (ir.modrm & 0x0f)))
5952 return -1;
5953 }
5954 else if ((ir.modrm & 0x0f) - 0x08)
5955 {
5956 if (i386_record_floats (gdbarch, &ir,
5957 I387_ST0_REGNUM (tdep) +
5958 ((ir.modrm & 0x0f) - 0x08)))
5959 return -1;
5960 }
5961 }
5962 break;
5963 case 0xdc:
5964 if ((0x0c == ir.modrm >> 4)
5965 || (0x0d == ir.modrm >> 4)
5966 || (0x0f == ir.modrm >> 4))
5967 {
5968 if ((ir.modrm & 0x0f) <= 7)
5969 {
5970 if (i386_record_floats (gdbarch, &ir,
5971 I387_ST0_REGNUM (tdep) +
5972 (ir.modrm & 0x0f)))
5973 return -1;
5974 }
5975 else
5976 {
5977 if (i386_record_floats (gdbarch, &ir,
5978 I387_ST0_REGNUM (tdep) +
5979 ((ir.modrm & 0x0f) - 0x08)))
5980 return -1;
5981 }
5982 }
5983 break;
5984 case 0xdd:
5985 if (0x0c == ir.modrm >> 4)
5986 {
5987 if (i386_record_floats (gdbarch, &ir,
5988 I387_FTAG_REGNUM (tdep)))
5989 return -1;
5990 }
5991 else if ((0x0d == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
5992 {
5993 if ((ir.modrm & 0x0f) <= 7)
5994 {
5995 if (i386_record_floats (gdbarch, &ir,
5996 I387_ST0_REGNUM (tdep) +
5997 (ir.modrm & 0x0f)))
5998 return -1;
5999 }
6000 else
6001 {
6002 if (i386_record_floats (gdbarch, &ir,
6003 I386_SAVE_FPU_REGS))
6004 return -1;
6005 }
6006 }
6007 break;
6008 case 0xde:
6009 if ((0x0c == ir.modrm >> 4)
6010 || (0x0e == ir.modrm >> 4)
6011 || (0x0f == ir.modrm >> 4)
6012 || (0xd9 == ir.modrm))
6013 {
6014 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6015 return -1;
6016 }
6017 break;
6018 case 0xdf:
6019 if (0xe0 == ir.modrm)
6020 {
6021 if (record_full_arch_list_add_reg (ir.regcache,
6022 I386_EAX_REGNUM))
6023 return -1;
6024 }
6025 else if ((0x0f == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
6026 {
6027 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6028 return -1;
6029 }
6030 break;
6031 }
6032 }
6033 break;
6034 /* string ops */
6035 case 0xa4: /* movsS */
6036 case 0xa5:
6037 case 0xaa: /* stosS */
6038 case 0xab:
6039 case 0x6c: /* insS */
6040 case 0x6d:
6041 regcache_raw_read_unsigned (ir.regcache,
6042 ir.regmap[X86_RECORD_RECX_REGNUM],
6043 &addr);
6044 if (addr)
6045 {
6046 ULONGEST es, ds;
6047
6048 if ((opcode & 1) == 0)
6049 ir.ot = OT_BYTE;
6050 else
6051 ir.ot = ir.dflag + OT_WORD;
6052 regcache_raw_read_unsigned (ir.regcache,
6053 ir.regmap[X86_RECORD_REDI_REGNUM],
6054 &addr);
6055
6056 regcache_raw_read_unsigned (ir.regcache,
6057 ir.regmap[X86_RECORD_ES_REGNUM],
6058 &es);
6059 regcache_raw_read_unsigned (ir.regcache,
6060 ir.regmap[X86_RECORD_DS_REGNUM],
6061 &ds);
6062 if (ir.aflag && (es != ds))
6063 {
6064 /* addr += ((uint32_t) read_register (I386_ES_REGNUM)) << 4; */
6065 if (record_full_memory_query)
6066 {
6067 int q;
6068
6069 target_terminal_ours ();
6070 q = yquery (_("\
6071 Process record ignores the memory change of instruction at address %s\n\
6072 because it can't get the value of the segment register.\n\
6073 Do you want to stop the program?"),
6074 paddress (gdbarch, ir.orig_addr));
6075 target_terminal_inferior ();
6076 if (q)
6077 return -1;
6078 }
6079 }
6080 else
6081 {
6082 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
6083 return -1;
6084 }
6085
6086 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6087 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6088 if (opcode == 0xa4 || opcode == 0xa5)
6089 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6090 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6091 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6092 }
6093 break;
6094
6095 case 0xa6: /* cmpsS */
6096 case 0xa7:
6097 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6098 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6099 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6100 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6101 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6102 break;
6103
6104 case 0xac: /* lodsS */
6105 case 0xad:
6106 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6107 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6108 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6109 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6110 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6111 break;
6112
6113 case 0xae: /* scasS */
6114 case 0xaf:
6115 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6116 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6117 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6118 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6119 break;
6120
6121 case 0x6e: /* outsS */
6122 case 0x6f:
6123 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6124 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6125 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6126 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6127 break;
6128
6129 case 0xe4: /* port I/O */
6130 case 0xe5:
6131 case 0xec:
6132 case 0xed:
6133 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6134 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6135 break;
6136
6137 case 0xe6:
6138 case 0xe7:
6139 case 0xee:
6140 case 0xef:
6141 break;
6142
6143 /* control */
6144 case 0xc2: /* ret im */
6145 case 0xc3: /* ret */
6146 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6147 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6148 break;
6149
6150 case 0xca: /* lret im */
6151 case 0xcb: /* lret */
6152 case 0xcf: /* iret */
6153 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
6154 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6155 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6156 break;
6157
6158 case 0xe8: /* call im */
6159 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6160 ir.dflag = 2;
6161 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6162 return -1;
6163 break;
6164
6165 case 0x9a: /* lcall im */
6166 if (ir.regmap[X86_RECORD_R8_REGNUM])
6167 {
6168 ir.addr -= 1;
6169 goto no_support;
6170 }
6171 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
6172 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6173 return -1;
6174 break;
6175
6176 case 0xe9: /* jmp im */
6177 case 0xea: /* ljmp im */
6178 case 0xeb: /* jmp Jb */
6179 case 0x70: /* jcc Jb */
6180 case 0x71:
6181 case 0x72:
6182 case 0x73:
6183 case 0x74:
6184 case 0x75:
6185 case 0x76:
6186 case 0x77:
6187 case 0x78:
6188 case 0x79:
6189 case 0x7a:
6190 case 0x7b:
6191 case 0x7c:
6192 case 0x7d:
6193 case 0x7e:
6194 case 0x7f:
6195 case 0x0f80: /* jcc Jv */
6196 case 0x0f81:
6197 case 0x0f82:
6198 case 0x0f83:
6199 case 0x0f84:
6200 case 0x0f85:
6201 case 0x0f86:
6202 case 0x0f87:
6203 case 0x0f88:
6204 case 0x0f89:
6205 case 0x0f8a:
6206 case 0x0f8b:
6207 case 0x0f8c:
6208 case 0x0f8d:
6209 case 0x0f8e:
6210 case 0x0f8f:
6211 break;
6212
6213 case 0x0f90: /* setcc Gv */
6214 case 0x0f91:
6215 case 0x0f92:
6216 case 0x0f93:
6217 case 0x0f94:
6218 case 0x0f95:
6219 case 0x0f96:
6220 case 0x0f97:
6221 case 0x0f98:
6222 case 0x0f99:
6223 case 0x0f9a:
6224 case 0x0f9b:
6225 case 0x0f9c:
6226 case 0x0f9d:
6227 case 0x0f9e:
6228 case 0x0f9f:
6229 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6230 ir.ot = OT_BYTE;
6231 if (i386_record_modrm (&ir))
6232 return -1;
6233 if (ir.mod == 3)
6234 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rex_b ? (ir.rm | ir.rex_b)
6235 : (ir.rm & 0x3));
6236 else
6237 {
6238 if (i386_record_lea_modrm (&ir))
6239 return -1;
6240 }
6241 break;
6242
6243 case 0x0f40: /* cmov Gv, Ev */
6244 case 0x0f41:
6245 case 0x0f42:
6246 case 0x0f43:
6247 case 0x0f44:
6248 case 0x0f45:
6249 case 0x0f46:
6250 case 0x0f47:
6251 case 0x0f48:
6252 case 0x0f49:
6253 case 0x0f4a:
6254 case 0x0f4b:
6255 case 0x0f4c:
6256 case 0x0f4d:
6257 case 0x0f4e:
6258 case 0x0f4f:
6259 if (i386_record_modrm (&ir))
6260 return -1;
6261 ir.reg |= rex_r;
6262 if (ir.dflag == OT_BYTE)
6263 ir.reg &= 0x3;
6264 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
6265 break;
6266
6267 /* flags */
6268 case 0x9c: /* pushf */
6269 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6270 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6271 ir.dflag = 2;
6272 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6273 return -1;
6274 break;
6275
6276 case 0x9d: /* popf */
6277 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6278 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6279 break;
6280
6281 case 0x9e: /* sahf */
6282 if (ir.regmap[X86_RECORD_R8_REGNUM])
6283 {
6284 ir.addr -= 1;
6285 goto no_support;
6286 }
6287 /* FALLTHROUGH */
6288 case 0xf5: /* cmc */
6289 case 0xf8: /* clc */
6290 case 0xf9: /* stc */
6291 case 0xfc: /* cld */
6292 case 0xfd: /* std */
6293 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6294 break;
6295
6296 case 0x9f: /* lahf */
6297 if (ir.regmap[X86_RECORD_R8_REGNUM])
6298 {
6299 ir.addr -= 1;
6300 goto no_support;
6301 }
6302 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6303 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6304 break;
6305
6306 /* bit operations */
6307 case 0x0fba: /* bt/bts/btr/btc Gv, im */
6308 ir.ot = ir.dflag + OT_WORD;
6309 if (i386_record_modrm (&ir))
6310 return -1;
6311 if (ir.reg < 4)
6312 {
6313 ir.addr -= 2;
6314 opcode = opcode << 8 | ir.modrm;
6315 goto no_support;
6316 }
6317 if (ir.reg != 4)
6318 {
6319 if (ir.mod == 3)
6320 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6321 else
6322 {
6323 if (i386_record_lea_modrm (&ir))
6324 return -1;
6325 }
6326 }
6327 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6328 break;
6329
6330 case 0x0fa3: /* bt Gv, Ev */
6331 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6332 break;
6333
6334 case 0x0fab: /* bts */
6335 case 0x0fb3: /* btr */
6336 case 0x0fbb: /* btc */
6337 ir.ot = ir.dflag + OT_WORD;
6338 if (i386_record_modrm (&ir))
6339 return -1;
6340 if (ir.mod == 3)
6341 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6342 else
6343 {
6344 uint64_t addr64;
6345 if (i386_record_lea_modrm_addr (&ir, &addr64))
6346 return -1;
6347 regcache_raw_read_unsigned (ir.regcache,
6348 ir.regmap[ir.reg | rex_r],
6349 &addr);
6350 switch (ir.dflag)
6351 {
6352 case 0:
6353 addr64 += ((int16_t) addr >> 4) << 4;
6354 break;
6355 case 1:
6356 addr64 += ((int32_t) addr >> 5) << 5;
6357 break;
6358 case 2:
6359 addr64 += ((int64_t) addr >> 6) << 6;
6360 break;
6361 }
6362 if (record_full_arch_list_add_mem (addr64, 1 << ir.ot))
6363 return -1;
6364 if (i386_record_lea_modrm (&ir))
6365 return -1;
6366 }
6367 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6368 break;
6369
6370 case 0x0fbc: /* bsf */
6371 case 0x0fbd: /* bsr */
6372 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6373 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6374 break;
6375
6376 /* bcd */
6377 case 0x27: /* daa */
6378 case 0x2f: /* das */
6379 case 0x37: /* aaa */
6380 case 0x3f: /* aas */
6381 case 0xd4: /* aam */
6382 case 0xd5: /* aad */
6383 if (ir.regmap[X86_RECORD_R8_REGNUM])
6384 {
6385 ir.addr -= 1;
6386 goto no_support;
6387 }
6388 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6389 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6390 break;
6391
6392 /* misc */
6393 case 0x90: /* nop */
6394 if (prefixes & PREFIX_LOCK)
6395 {
6396 ir.addr -= 1;
6397 goto no_support;
6398 }
6399 break;
6400
6401 case 0x9b: /* fwait */
6402 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
6403 return -1;
6404 opcode = (uint32_t) opcode8;
6405 ir.addr++;
6406 goto reswitch;
6407 break;
6408
6409 /* XXX */
6410 case 0xcc: /* int3 */
6411 printf_unfiltered (_("Process record does not support instruction "
6412 "int3.\n"));
6413 ir.addr -= 1;
6414 goto no_support;
6415 break;
6416
6417 /* XXX */
6418 case 0xcd: /* int */
6419 {
6420 int ret;
6421 uint8_t interrupt;
6422 if (record_read_memory (gdbarch, ir.addr, &interrupt, 1))
6423 return -1;
6424 ir.addr++;
6425 if (interrupt != 0x80
6426 || tdep->i386_intx80_record == NULL)
6427 {
6428 printf_unfiltered (_("Process record does not support "
6429 "instruction int 0x%02x.\n"),
6430 interrupt);
6431 ir.addr -= 2;
6432 goto no_support;
6433 }
6434 ret = tdep->i386_intx80_record (ir.regcache);
6435 if (ret)
6436 return ret;
6437 }
6438 break;
6439
6440 /* XXX */
6441 case 0xce: /* into */
6442 printf_unfiltered (_("Process record does not support "
6443 "instruction into.\n"));
6444 ir.addr -= 1;
6445 goto no_support;
6446 break;
6447
6448 case 0xfa: /* cli */
6449 case 0xfb: /* sti */
6450 break;
6451
6452 case 0x62: /* bound */
6453 printf_unfiltered (_("Process record does not support "
6454 "instruction bound.\n"));
6455 ir.addr -= 1;
6456 goto no_support;
6457 break;
6458
6459 case 0x0fc8: /* bswap reg */
6460 case 0x0fc9:
6461 case 0x0fca:
6462 case 0x0fcb:
6463 case 0x0fcc:
6464 case 0x0fcd:
6465 case 0x0fce:
6466 case 0x0fcf:
6467 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 7) | ir.rex_b);
6468 break;
6469
6470 case 0xd6: /* salc */
6471 if (ir.regmap[X86_RECORD_R8_REGNUM])
6472 {
6473 ir.addr -= 1;
6474 goto no_support;
6475 }
6476 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6477 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6478 break;
6479
6480 case 0xe0: /* loopnz */
6481 case 0xe1: /* loopz */
6482 case 0xe2: /* loop */
6483 case 0xe3: /* jecxz */
6484 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6485 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6486 break;
6487
6488 case 0x0f30: /* wrmsr */
6489 printf_unfiltered (_("Process record does not support "
6490 "instruction wrmsr.\n"));
6491 ir.addr -= 2;
6492 goto no_support;
6493 break;
6494
6495 case 0x0f32: /* rdmsr */
6496 printf_unfiltered (_("Process record does not support "
6497 "instruction rdmsr.\n"));
6498 ir.addr -= 2;
6499 goto no_support;
6500 break;
6501
6502 case 0x0f31: /* rdtsc */
6503 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6504 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6505 break;
6506
6507 case 0x0f34: /* sysenter */
6508 {
6509 int ret;
6510 if (ir.regmap[X86_RECORD_R8_REGNUM])
6511 {
6512 ir.addr -= 2;
6513 goto no_support;
6514 }
6515 if (tdep->i386_sysenter_record == NULL)
6516 {
6517 printf_unfiltered (_("Process record does not support "
6518 "instruction sysenter.\n"));
6519 ir.addr -= 2;
6520 goto no_support;
6521 }
6522 ret = tdep->i386_sysenter_record (ir.regcache);
6523 if (ret)
6524 return ret;
6525 }
6526 break;
6527
6528 case 0x0f35: /* sysexit */
6529 printf_unfiltered (_("Process record does not support "
6530 "instruction sysexit.\n"));
6531 ir.addr -= 2;
6532 goto no_support;
6533 break;
6534
6535 case 0x0f05: /* syscall */
6536 {
6537 int ret;
6538 if (tdep->i386_syscall_record == NULL)
6539 {
6540 printf_unfiltered (_("Process record does not support "
6541 "instruction syscall.\n"));
6542 ir.addr -= 2;
6543 goto no_support;
6544 }
6545 ret = tdep->i386_syscall_record (ir.regcache);
6546 if (ret)
6547 return ret;
6548 }
6549 break;
6550
6551 case 0x0f07: /* sysret */
6552 printf_unfiltered (_("Process record does not support "
6553 "instruction sysret.\n"));
6554 ir.addr -= 2;
6555 goto no_support;
6556 break;
6557
6558 case 0x0fa2: /* cpuid */
6559 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6560 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6561 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6562 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
6563 break;
6564
6565 case 0xf4: /* hlt */
6566 printf_unfiltered (_("Process record does not support "
6567 "instruction hlt.\n"));
6568 ir.addr -= 1;
6569 goto no_support;
6570 break;
6571
6572 case 0x0f00:
6573 if (i386_record_modrm (&ir))
6574 return -1;
6575 switch (ir.reg)
6576 {
6577 case 0: /* sldt */
6578 case 1: /* str */
6579 if (ir.mod == 3)
6580 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6581 else
6582 {
6583 ir.ot = OT_WORD;
6584 if (i386_record_lea_modrm (&ir))
6585 return -1;
6586 }
6587 break;
6588 case 2: /* lldt */
6589 case 3: /* ltr */
6590 break;
6591 case 4: /* verr */
6592 case 5: /* verw */
6593 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6594 break;
6595 default:
6596 ir.addr -= 3;
6597 opcode = opcode << 8 | ir.modrm;
6598 goto no_support;
6599 break;
6600 }
6601 break;
6602
6603 case 0x0f01:
6604 if (i386_record_modrm (&ir))
6605 return -1;
6606 switch (ir.reg)
6607 {
6608 case 0: /* sgdt */
6609 {
6610 uint64_t addr64;
6611
6612 if (ir.mod == 3)
6613 {
6614 ir.addr -= 3;
6615 opcode = opcode << 8 | ir.modrm;
6616 goto no_support;
6617 }
6618 if (ir.override >= 0)
6619 {
6620 if (record_full_memory_query)
6621 {
6622 int q;
6623
6624 target_terminal_ours ();
6625 q = yquery (_("\
6626 Process record ignores the memory change of instruction at address %s\n\
6627 because it can't get the value of the segment register.\n\
6628 Do you want to stop the program?"),
6629 paddress (gdbarch, ir.orig_addr));
6630 target_terminal_inferior ();
6631 if (q)
6632 return -1;
6633 }
6634 }
6635 else
6636 {
6637 if (i386_record_lea_modrm_addr (&ir, &addr64))
6638 return -1;
6639 if (record_full_arch_list_add_mem (addr64, 2))
6640 return -1;
6641 addr64 += 2;
6642 if (ir.regmap[X86_RECORD_R8_REGNUM])
6643 {
6644 if (record_full_arch_list_add_mem (addr64, 8))
6645 return -1;
6646 }
6647 else
6648 {
6649 if (record_full_arch_list_add_mem (addr64, 4))
6650 return -1;
6651 }
6652 }
6653 }
6654 break;
6655 case 1:
6656 if (ir.mod == 3)
6657 {
6658 switch (ir.rm)
6659 {
6660 case 0: /* monitor */
6661 break;
6662 case 1: /* mwait */
6663 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6664 break;
6665 default:
6666 ir.addr -= 3;
6667 opcode = opcode << 8 | ir.modrm;
6668 goto no_support;
6669 break;
6670 }
6671 }
6672 else
6673 {
6674 /* sidt */
6675 if (ir.override >= 0)
6676 {
6677 if (record_full_memory_query)
6678 {
6679 int q;
6680
6681 target_terminal_ours ();
6682 q = yquery (_("\
6683 Process record ignores the memory change of instruction at address %s\n\
6684 because it can't get the value of the segment register.\n\
6685 Do you want to stop the program?"),
6686 paddress (gdbarch, ir.orig_addr));
6687 target_terminal_inferior ();
6688 if (q)
6689 return -1;
6690 }
6691 }
6692 else
6693 {
6694 uint64_t addr64;
6695
6696 if (i386_record_lea_modrm_addr (&ir, &addr64))
6697 return -1;
6698 if (record_full_arch_list_add_mem (addr64, 2))
6699 return -1;
6700 addr64 += 2;
6701 if (ir.regmap[X86_RECORD_R8_REGNUM])
6702 {
6703 if (record_full_arch_list_add_mem (addr64, 8))
6704 return -1;
6705 }
6706 else
6707 {
6708 if (record_full_arch_list_add_mem (addr64, 4))
6709 return -1;
6710 }
6711 }
6712 }
6713 break;
6714 case 2: /* lgdt */
6715 if (ir.mod == 3)
6716 {
6717 /* xgetbv */
6718 if (ir.rm == 0)
6719 {
6720 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6721 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6722 break;
6723 }
6724 /* xsetbv */
6725 else if (ir.rm == 1)
6726 break;
6727 }
6728 case 3: /* lidt */
6729 if (ir.mod == 3)
6730 {
6731 ir.addr -= 3;
6732 opcode = opcode << 8 | ir.modrm;
6733 goto no_support;
6734 }
6735 break;
6736 case 4: /* smsw */
6737 if (ir.mod == 3)
6738 {
6739 if (record_full_arch_list_add_reg (ir.regcache, ir.rm | ir.rex_b))
6740 return -1;
6741 }
6742 else
6743 {
6744 ir.ot = OT_WORD;
6745 if (i386_record_lea_modrm (&ir))
6746 return -1;
6747 }
6748 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6749 break;
6750 case 6: /* lmsw */
6751 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6752 break;
6753 case 7: /* invlpg */
6754 if (ir.mod == 3)
6755 {
6756 if (ir.rm == 0 && ir.regmap[X86_RECORD_R8_REGNUM])
6757 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
6758 else
6759 {
6760 ir.addr -= 3;
6761 opcode = opcode << 8 | ir.modrm;
6762 goto no_support;
6763 }
6764 }
6765 else
6766 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6767 break;
6768 default:
6769 ir.addr -= 3;
6770 opcode = opcode << 8 | ir.modrm;
6771 goto no_support;
6772 break;
6773 }
6774 break;
6775
6776 case 0x0f08: /* invd */
6777 case 0x0f09: /* wbinvd */
6778 break;
6779
6780 case 0x63: /* arpl */
6781 if (i386_record_modrm (&ir))
6782 return -1;
6783 if (ir.mod == 3 || ir.regmap[X86_RECORD_R8_REGNUM])
6784 {
6785 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.regmap[X86_RECORD_R8_REGNUM]
6786 ? (ir.reg | rex_r) : ir.rm);
6787 }
6788 else
6789 {
6790 ir.ot = ir.dflag ? OT_LONG : OT_WORD;
6791 if (i386_record_lea_modrm (&ir))
6792 return -1;
6793 }
6794 if (!ir.regmap[X86_RECORD_R8_REGNUM])
6795 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6796 break;
6797
6798 case 0x0f02: /* lar */
6799 case 0x0f03: /* lsl */
6800 if (i386_record_modrm (&ir))
6801 return -1;
6802 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6803 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6804 break;
6805
6806 case 0x0f18:
6807 if (i386_record_modrm (&ir))
6808 return -1;
6809 if (ir.mod == 3 && ir.reg == 3)
6810 {
6811 ir.addr -= 3;
6812 opcode = opcode << 8 | ir.modrm;
6813 goto no_support;
6814 }
6815 break;
6816
6817 case 0x0f19:
6818 case 0x0f1a:
6819 case 0x0f1b:
6820 case 0x0f1c:
6821 case 0x0f1d:
6822 case 0x0f1e:
6823 case 0x0f1f:
6824 /* nop (multi byte) */
6825 break;
6826
6827 case 0x0f20: /* mov reg, crN */
6828 case 0x0f22: /* mov crN, reg */
6829 if (i386_record_modrm (&ir))
6830 return -1;
6831 if ((ir.modrm & 0xc0) != 0xc0)
6832 {
6833 ir.addr -= 3;
6834 opcode = opcode << 8 | ir.modrm;
6835 goto no_support;
6836 }
6837 switch (ir.reg)
6838 {
6839 case 0:
6840 case 2:
6841 case 3:
6842 case 4:
6843 case 8:
6844 if (opcode & 2)
6845 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6846 else
6847 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6848 break;
6849 default:
6850 ir.addr -= 3;
6851 opcode = opcode << 8 | ir.modrm;
6852 goto no_support;
6853 break;
6854 }
6855 break;
6856
6857 case 0x0f21: /* mov reg, drN */
6858 case 0x0f23: /* mov drN, reg */
6859 if (i386_record_modrm (&ir))
6860 return -1;
6861 if ((ir.modrm & 0xc0) != 0xc0 || ir.reg == 4
6862 || ir.reg == 5 || ir.reg >= 8)
6863 {
6864 ir.addr -= 3;
6865 opcode = opcode << 8 | ir.modrm;
6866 goto no_support;
6867 }
6868 if (opcode & 2)
6869 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6870 else
6871 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6872 break;
6873
6874 case 0x0f06: /* clts */
6875 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6876 break;
6877
6878 /* MMX 3DNow! SSE SSE2 SSE3 SSSE3 SSE4 */
6879
6880 case 0x0f0d: /* 3DNow! prefetch */
6881 break;
6882
6883 case 0x0f0e: /* 3DNow! femms */
6884 case 0x0f77: /* emms */
6885 if (i386_fpc_regnum_p (gdbarch, I387_FTAG_REGNUM(tdep)))
6886 goto no_support;
6887 record_full_arch_list_add_reg (ir.regcache, I387_FTAG_REGNUM(tdep));
6888 break;
6889
6890 case 0x0f0f: /* 3DNow! data */
6891 if (i386_record_modrm (&ir))
6892 return -1;
6893 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
6894 return -1;
6895 ir.addr++;
6896 switch (opcode8)
6897 {
6898 case 0x0c: /* 3DNow! pi2fw */
6899 case 0x0d: /* 3DNow! pi2fd */
6900 case 0x1c: /* 3DNow! pf2iw */
6901 case 0x1d: /* 3DNow! pf2id */
6902 case 0x8a: /* 3DNow! pfnacc */
6903 case 0x8e: /* 3DNow! pfpnacc */
6904 case 0x90: /* 3DNow! pfcmpge */
6905 case 0x94: /* 3DNow! pfmin */
6906 case 0x96: /* 3DNow! pfrcp */
6907 case 0x97: /* 3DNow! pfrsqrt */
6908 case 0x9a: /* 3DNow! pfsub */
6909 case 0x9e: /* 3DNow! pfadd */
6910 case 0xa0: /* 3DNow! pfcmpgt */
6911 case 0xa4: /* 3DNow! pfmax */
6912 case 0xa6: /* 3DNow! pfrcpit1 */
6913 case 0xa7: /* 3DNow! pfrsqit1 */
6914 case 0xaa: /* 3DNow! pfsubr */
6915 case 0xae: /* 3DNow! pfacc */
6916 case 0xb0: /* 3DNow! pfcmpeq */
6917 case 0xb4: /* 3DNow! pfmul */
6918 case 0xb6: /* 3DNow! pfrcpit2 */
6919 case 0xb7: /* 3DNow! pmulhrw */
6920 case 0xbb: /* 3DNow! pswapd */
6921 case 0xbf: /* 3DNow! pavgusb */
6922 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
6923 goto no_support_3dnow_data;
6924 record_full_arch_list_add_reg (ir.regcache, ir.reg);
6925 break;
6926
6927 default:
6928 no_support_3dnow_data:
6929 opcode = (opcode << 8) | opcode8;
6930 goto no_support;
6931 break;
6932 }
6933 break;
6934
6935 case 0x0faa: /* rsm */
6936 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6937 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6938 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6939 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6940 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
6941 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6942 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
6943 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6944 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6945 break;
6946
6947 case 0x0fae:
6948 if (i386_record_modrm (&ir))
6949 return -1;
6950 switch(ir.reg)
6951 {
6952 case 0: /* fxsave */
6953 {
6954 uint64_t tmpu64;
6955
6956 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6957 if (i386_record_lea_modrm_addr (&ir, &tmpu64))
6958 return -1;
6959 if (record_full_arch_list_add_mem (tmpu64, 512))
6960 return -1;
6961 }
6962 break;
6963
6964 case 1: /* fxrstor */
6965 {
6966 int i;
6967
6968 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6969
6970 for (i = I387_MM0_REGNUM (tdep);
6971 i386_mmx_regnum_p (gdbarch, i); i++)
6972 record_full_arch_list_add_reg (ir.regcache, i);
6973
6974 for (i = I387_XMM0_REGNUM (tdep);
6975 i386_xmm_regnum_p (gdbarch, i); i++)
6976 record_full_arch_list_add_reg (ir.regcache, i);
6977
6978 if (i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
6979 record_full_arch_list_add_reg (ir.regcache,
6980 I387_MXCSR_REGNUM(tdep));
6981
6982 for (i = I387_ST0_REGNUM (tdep);
6983 i386_fp_regnum_p (gdbarch, i); i++)
6984 record_full_arch_list_add_reg (ir.regcache, i);
6985
6986 for (i = I387_FCTRL_REGNUM (tdep);
6987 i386_fpc_regnum_p (gdbarch, i); i++)
6988 record_full_arch_list_add_reg (ir.regcache, i);
6989 }
6990 break;
6991
6992 case 2: /* ldmxcsr */
6993 if (!i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
6994 goto no_support;
6995 record_full_arch_list_add_reg (ir.regcache, I387_MXCSR_REGNUM(tdep));
6996 break;
6997
6998 case 3: /* stmxcsr */
6999 ir.ot = OT_LONG;
7000 if (i386_record_lea_modrm (&ir))
7001 return -1;
7002 break;
7003
7004 case 5: /* lfence */
7005 case 6: /* mfence */
7006 case 7: /* sfence clflush */
7007 break;
7008
7009 default:
7010 opcode = (opcode << 8) | ir.modrm;
7011 goto no_support;
7012 break;
7013 }
7014 break;
7015
7016 case 0x0fc3: /* movnti */
7017 ir.ot = (ir.dflag == 2) ? OT_QUAD : OT_LONG;
7018 if (i386_record_modrm (&ir))
7019 return -1;
7020 if (ir.mod == 3)
7021 goto no_support;
7022 ir.reg |= rex_r;
7023 if (i386_record_lea_modrm (&ir))
7024 return -1;
7025 break;
7026
7027 /* Add prefix to opcode. */
7028 case 0x0f10:
7029 case 0x0f11:
7030 case 0x0f12:
7031 case 0x0f13:
7032 case 0x0f14:
7033 case 0x0f15:
7034 case 0x0f16:
7035 case 0x0f17:
7036 case 0x0f28:
7037 case 0x0f29:
7038 case 0x0f2a:
7039 case 0x0f2b:
7040 case 0x0f2c:
7041 case 0x0f2d:
7042 case 0x0f2e:
7043 case 0x0f2f:
7044 case 0x0f38:
7045 case 0x0f39:
7046 case 0x0f3a:
7047 case 0x0f50:
7048 case 0x0f51:
7049 case 0x0f52:
7050 case 0x0f53:
7051 case 0x0f54:
7052 case 0x0f55:
7053 case 0x0f56:
7054 case 0x0f57:
7055 case 0x0f58:
7056 case 0x0f59:
7057 case 0x0f5a:
7058 case 0x0f5b:
7059 case 0x0f5c:
7060 case 0x0f5d:
7061 case 0x0f5e:
7062 case 0x0f5f:
7063 case 0x0f60:
7064 case 0x0f61:
7065 case 0x0f62:
7066 case 0x0f63:
7067 case 0x0f64:
7068 case 0x0f65:
7069 case 0x0f66:
7070 case 0x0f67:
7071 case 0x0f68:
7072 case 0x0f69:
7073 case 0x0f6a:
7074 case 0x0f6b:
7075 case 0x0f6c:
7076 case 0x0f6d:
7077 case 0x0f6e:
7078 case 0x0f6f:
7079 case 0x0f70:
7080 case 0x0f71:
7081 case 0x0f72:
7082 case 0x0f73:
7083 case 0x0f74:
7084 case 0x0f75:
7085 case 0x0f76:
7086 case 0x0f7c:
7087 case 0x0f7d:
7088 case 0x0f7e:
7089 case 0x0f7f:
7090 case 0x0fb8:
7091 case 0x0fc2:
7092 case 0x0fc4:
7093 case 0x0fc5:
7094 case 0x0fc6:
7095 case 0x0fd0:
7096 case 0x0fd1:
7097 case 0x0fd2:
7098 case 0x0fd3:
7099 case 0x0fd4:
7100 case 0x0fd5:
7101 case 0x0fd6:
7102 case 0x0fd7:
7103 case 0x0fd8:
7104 case 0x0fd9:
7105 case 0x0fda:
7106 case 0x0fdb:
7107 case 0x0fdc:
7108 case 0x0fdd:
7109 case 0x0fde:
7110 case 0x0fdf:
7111 case 0x0fe0:
7112 case 0x0fe1:
7113 case 0x0fe2:
7114 case 0x0fe3:
7115 case 0x0fe4:
7116 case 0x0fe5:
7117 case 0x0fe6:
7118 case 0x0fe7:
7119 case 0x0fe8:
7120 case 0x0fe9:
7121 case 0x0fea:
7122 case 0x0feb:
7123 case 0x0fec:
7124 case 0x0fed:
7125 case 0x0fee:
7126 case 0x0fef:
7127 case 0x0ff0:
7128 case 0x0ff1:
7129 case 0x0ff2:
7130 case 0x0ff3:
7131 case 0x0ff4:
7132 case 0x0ff5:
7133 case 0x0ff6:
7134 case 0x0ff7:
7135 case 0x0ff8:
7136 case 0x0ff9:
7137 case 0x0ffa:
7138 case 0x0ffb:
7139 case 0x0ffc:
7140 case 0x0ffd:
7141 case 0x0ffe:
7142 /* Mask out PREFIX_ADDR. */
7143 switch ((prefixes & ~PREFIX_ADDR))
7144 {
7145 case PREFIX_REPNZ:
7146 opcode |= 0xf20000;
7147 break;
7148 case PREFIX_DATA:
7149 opcode |= 0x660000;
7150 break;
7151 case PREFIX_REPZ:
7152 opcode |= 0xf30000;
7153 break;
7154 }
7155 reswitch_prefix_add:
7156 switch (opcode)
7157 {
7158 case 0x0f38:
7159 case 0x660f38:
7160 case 0xf20f38:
7161 case 0x0f3a:
7162 case 0x660f3a:
7163 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
7164 return -1;
7165 ir.addr++;
7166 opcode = (uint32_t) opcode8 | opcode << 8;
7167 goto reswitch_prefix_add;
7168 break;
7169
7170 case 0x0f10: /* movups */
7171 case 0x660f10: /* movupd */
7172 case 0xf30f10: /* movss */
7173 case 0xf20f10: /* movsd */
7174 case 0x0f12: /* movlps */
7175 case 0x660f12: /* movlpd */
7176 case 0xf30f12: /* movsldup */
7177 case 0xf20f12: /* movddup */
7178 case 0x0f14: /* unpcklps */
7179 case 0x660f14: /* unpcklpd */
7180 case 0x0f15: /* unpckhps */
7181 case 0x660f15: /* unpckhpd */
7182 case 0x0f16: /* movhps */
7183 case 0x660f16: /* movhpd */
7184 case 0xf30f16: /* movshdup */
7185 case 0x0f28: /* movaps */
7186 case 0x660f28: /* movapd */
7187 case 0x0f2a: /* cvtpi2ps */
7188 case 0x660f2a: /* cvtpi2pd */
7189 case 0xf30f2a: /* cvtsi2ss */
7190 case 0xf20f2a: /* cvtsi2sd */
7191 case 0x0f2c: /* cvttps2pi */
7192 case 0x660f2c: /* cvttpd2pi */
7193 case 0x0f2d: /* cvtps2pi */
7194 case 0x660f2d: /* cvtpd2pi */
7195 case 0x660f3800: /* pshufb */
7196 case 0x660f3801: /* phaddw */
7197 case 0x660f3802: /* phaddd */
7198 case 0x660f3803: /* phaddsw */
7199 case 0x660f3804: /* pmaddubsw */
7200 case 0x660f3805: /* phsubw */
7201 case 0x660f3806: /* phsubd */
7202 case 0x660f3807: /* phsubsw */
7203 case 0x660f3808: /* psignb */
7204 case 0x660f3809: /* psignw */
7205 case 0x660f380a: /* psignd */
7206 case 0x660f380b: /* pmulhrsw */
7207 case 0x660f3810: /* pblendvb */
7208 case 0x660f3814: /* blendvps */
7209 case 0x660f3815: /* blendvpd */
7210 case 0x660f381c: /* pabsb */
7211 case 0x660f381d: /* pabsw */
7212 case 0x660f381e: /* pabsd */
7213 case 0x660f3820: /* pmovsxbw */
7214 case 0x660f3821: /* pmovsxbd */
7215 case 0x660f3822: /* pmovsxbq */
7216 case 0x660f3823: /* pmovsxwd */
7217 case 0x660f3824: /* pmovsxwq */
7218 case 0x660f3825: /* pmovsxdq */
7219 case 0x660f3828: /* pmuldq */
7220 case 0x660f3829: /* pcmpeqq */
7221 case 0x660f382a: /* movntdqa */
7222 case 0x660f3a08: /* roundps */
7223 case 0x660f3a09: /* roundpd */
7224 case 0x660f3a0a: /* roundss */
7225 case 0x660f3a0b: /* roundsd */
7226 case 0x660f3a0c: /* blendps */
7227 case 0x660f3a0d: /* blendpd */
7228 case 0x660f3a0e: /* pblendw */
7229 case 0x660f3a0f: /* palignr */
7230 case 0x660f3a20: /* pinsrb */
7231 case 0x660f3a21: /* insertps */
7232 case 0x660f3a22: /* pinsrd pinsrq */
7233 case 0x660f3a40: /* dpps */
7234 case 0x660f3a41: /* dppd */
7235 case 0x660f3a42: /* mpsadbw */
7236 case 0x660f3a60: /* pcmpestrm */
7237 case 0x660f3a61: /* pcmpestri */
7238 case 0x660f3a62: /* pcmpistrm */
7239 case 0x660f3a63: /* pcmpistri */
7240 case 0x0f51: /* sqrtps */
7241 case 0x660f51: /* sqrtpd */
7242 case 0xf20f51: /* sqrtsd */
7243 case 0xf30f51: /* sqrtss */
7244 case 0x0f52: /* rsqrtps */
7245 case 0xf30f52: /* rsqrtss */
7246 case 0x0f53: /* rcpps */
7247 case 0xf30f53: /* rcpss */
7248 case 0x0f54: /* andps */
7249 case 0x660f54: /* andpd */
7250 case 0x0f55: /* andnps */
7251 case 0x660f55: /* andnpd */
7252 case 0x0f56: /* orps */
7253 case 0x660f56: /* orpd */
7254 case 0x0f57: /* xorps */
7255 case 0x660f57: /* xorpd */
7256 case 0x0f58: /* addps */
7257 case 0x660f58: /* addpd */
7258 case 0xf20f58: /* addsd */
7259 case 0xf30f58: /* addss */
7260 case 0x0f59: /* mulps */
7261 case 0x660f59: /* mulpd */
7262 case 0xf20f59: /* mulsd */
7263 case 0xf30f59: /* mulss */
7264 case 0x0f5a: /* cvtps2pd */
7265 case 0x660f5a: /* cvtpd2ps */
7266 case 0xf20f5a: /* cvtsd2ss */
7267 case 0xf30f5a: /* cvtss2sd */
7268 case 0x0f5b: /* cvtdq2ps */
7269 case 0x660f5b: /* cvtps2dq */
7270 case 0xf30f5b: /* cvttps2dq */
7271 case 0x0f5c: /* subps */
7272 case 0x660f5c: /* subpd */
7273 case 0xf20f5c: /* subsd */
7274 case 0xf30f5c: /* subss */
7275 case 0x0f5d: /* minps */
7276 case 0x660f5d: /* minpd */
7277 case 0xf20f5d: /* minsd */
7278 case 0xf30f5d: /* minss */
7279 case 0x0f5e: /* divps */
7280 case 0x660f5e: /* divpd */
7281 case 0xf20f5e: /* divsd */
7282 case 0xf30f5e: /* divss */
7283 case 0x0f5f: /* maxps */
7284 case 0x660f5f: /* maxpd */
7285 case 0xf20f5f: /* maxsd */
7286 case 0xf30f5f: /* maxss */
7287 case 0x660f60: /* punpcklbw */
7288 case 0x660f61: /* punpcklwd */
7289 case 0x660f62: /* punpckldq */
7290 case 0x660f63: /* packsswb */
7291 case 0x660f64: /* pcmpgtb */
7292 case 0x660f65: /* pcmpgtw */
7293 case 0x660f66: /* pcmpgtd */
7294 case 0x660f67: /* packuswb */
7295 case 0x660f68: /* punpckhbw */
7296 case 0x660f69: /* punpckhwd */
7297 case 0x660f6a: /* punpckhdq */
7298 case 0x660f6b: /* packssdw */
7299 case 0x660f6c: /* punpcklqdq */
7300 case 0x660f6d: /* punpckhqdq */
7301 case 0x660f6e: /* movd */
7302 case 0x660f6f: /* movdqa */
7303 case 0xf30f6f: /* movdqu */
7304 case 0x660f70: /* pshufd */
7305 case 0xf20f70: /* pshuflw */
7306 case 0xf30f70: /* pshufhw */
7307 case 0x660f74: /* pcmpeqb */
7308 case 0x660f75: /* pcmpeqw */
7309 case 0x660f76: /* pcmpeqd */
7310 case 0x660f7c: /* haddpd */
7311 case 0xf20f7c: /* haddps */
7312 case 0x660f7d: /* hsubpd */
7313 case 0xf20f7d: /* hsubps */
7314 case 0xf30f7e: /* movq */
7315 case 0x0fc2: /* cmpps */
7316 case 0x660fc2: /* cmppd */
7317 case 0xf20fc2: /* cmpsd */
7318 case 0xf30fc2: /* cmpss */
7319 case 0x660fc4: /* pinsrw */
7320 case 0x0fc6: /* shufps */
7321 case 0x660fc6: /* shufpd */
7322 case 0x660fd0: /* addsubpd */
7323 case 0xf20fd0: /* addsubps */
7324 case 0x660fd1: /* psrlw */
7325 case 0x660fd2: /* psrld */
7326 case 0x660fd3: /* psrlq */
7327 case 0x660fd4: /* paddq */
7328 case 0x660fd5: /* pmullw */
7329 case 0xf30fd6: /* movq2dq */
7330 case 0x660fd8: /* psubusb */
7331 case 0x660fd9: /* psubusw */
7332 case 0x660fda: /* pminub */
7333 case 0x660fdb: /* pand */
7334 case 0x660fdc: /* paddusb */
7335 case 0x660fdd: /* paddusw */
7336 case 0x660fde: /* pmaxub */
7337 case 0x660fdf: /* pandn */
7338 case 0x660fe0: /* pavgb */
7339 case 0x660fe1: /* psraw */
7340 case 0x660fe2: /* psrad */
7341 case 0x660fe3: /* pavgw */
7342 case 0x660fe4: /* pmulhuw */
7343 case 0x660fe5: /* pmulhw */
7344 case 0x660fe6: /* cvttpd2dq */
7345 case 0xf20fe6: /* cvtpd2dq */
7346 case 0xf30fe6: /* cvtdq2pd */
7347 case 0x660fe8: /* psubsb */
7348 case 0x660fe9: /* psubsw */
7349 case 0x660fea: /* pminsw */
7350 case 0x660feb: /* por */
7351 case 0x660fec: /* paddsb */
7352 case 0x660fed: /* paddsw */
7353 case 0x660fee: /* pmaxsw */
7354 case 0x660fef: /* pxor */
7355 case 0xf20ff0: /* lddqu */
7356 case 0x660ff1: /* psllw */
7357 case 0x660ff2: /* pslld */
7358 case 0x660ff3: /* psllq */
7359 case 0x660ff4: /* pmuludq */
7360 case 0x660ff5: /* pmaddwd */
7361 case 0x660ff6: /* psadbw */
7362 case 0x660ff8: /* psubb */
7363 case 0x660ff9: /* psubw */
7364 case 0x660ffa: /* psubd */
7365 case 0x660ffb: /* psubq */
7366 case 0x660ffc: /* paddb */
7367 case 0x660ffd: /* paddw */
7368 case 0x660ffe: /* paddd */
7369 if (i386_record_modrm (&ir))
7370 return -1;
7371 ir.reg |= rex_r;
7372 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.reg))
7373 goto no_support;
7374 record_full_arch_list_add_reg (ir.regcache,
7375 I387_XMM0_REGNUM (tdep) + ir.reg);
7376 if ((opcode & 0xfffffffc) == 0x660f3a60)
7377 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7378 break;
7379
7380 case 0x0f11: /* movups */
7381 case 0x660f11: /* movupd */
7382 case 0xf30f11: /* movss */
7383 case 0xf20f11: /* movsd */
7384 case 0x0f13: /* movlps */
7385 case 0x660f13: /* movlpd */
7386 case 0x0f17: /* movhps */
7387 case 0x660f17: /* movhpd */
7388 case 0x0f29: /* movaps */
7389 case 0x660f29: /* movapd */
7390 case 0x660f3a14: /* pextrb */
7391 case 0x660f3a15: /* pextrw */
7392 case 0x660f3a16: /* pextrd pextrq */
7393 case 0x660f3a17: /* extractps */
7394 case 0x660f7f: /* movdqa */
7395 case 0xf30f7f: /* movdqu */
7396 if (i386_record_modrm (&ir))
7397 return -1;
7398 if (ir.mod == 3)
7399 {
7400 if (opcode == 0x0f13 || opcode == 0x660f13
7401 || opcode == 0x0f17 || opcode == 0x660f17)
7402 goto no_support;
7403 ir.rm |= ir.rex_b;
7404 if (!i386_xmm_regnum_p (gdbarch,
7405 I387_XMM0_REGNUM (tdep) + ir.rm))
7406 goto no_support;
7407 record_full_arch_list_add_reg (ir.regcache,
7408 I387_XMM0_REGNUM (tdep) + ir.rm);
7409 }
7410 else
7411 {
7412 switch (opcode)
7413 {
7414 case 0x660f3a14:
7415 ir.ot = OT_BYTE;
7416 break;
7417 case 0x660f3a15:
7418 ir.ot = OT_WORD;
7419 break;
7420 case 0x660f3a16:
7421 ir.ot = OT_LONG;
7422 break;
7423 case 0x660f3a17:
7424 ir.ot = OT_QUAD;
7425 break;
7426 default:
7427 ir.ot = OT_DQUAD;
7428 break;
7429 }
7430 if (i386_record_lea_modrm (&ir))
7431 return -1;
7432 }
7433 break;
7434
7435 case 0x0f2b: /* movntps */
7436 case 0x660f2b: /* movntpd */
7437 case 0x0fe7: /* movntq */
7438 case 0x660fe7: /* movntdq */
7439 if (ir.mod == 3)
7440 goto no_support;
7441 if (opcode == 0x0fe7)
7442 ir.ot = OT_QUAD;
7443 else
7444 ir.ot = OT_DQUAD;
7445 if (i386_record_lea_modrm (&ir))
7446 return -1;
7447 break;
7448
7449 case 0xf30f2c: /* cvttss2si */
7450 case 0xf20f2c: /* cvttsd2si */
7451 case 0xf30f2d: /* cvtss2si */
7452 case 0xf20f2d: /* cvtsd2si */
7453 case 0xf20f38f0: /* crc32 */
7454 case 0xf20f38f1: /* crc32 */
7455 case 0x0f50: /* movmskps */
7456 case 0x660f50: /* movmskpd */
7457 case 0x0fc5: /* pextrw */
7458 case 0x660fc5: /* pextrw */
7459 case 0x0fd7: /* pmovmskb */
7460 case 0x660fd7: /* pmovmskb */
7461 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7462 break;
7463
7464 case 0x0f3800: /* pshufb */
7465 case 0x0f3801: /* phaddw */
7466 case 0x0f3802: /* phaddd */
7467 case 0x0f3803: /* phaddsw */
7468 case 0x0f3804: /* pmaddubsw */
7469 case 0x0f3805: /* phsubw */
7470 case 0x0f3806: /* phsubd */
7471 case 0x0f3807: /* phsubsw */
7472 case 0x0f3808: /* psignb */
7473 case 0x0f3809: /* psignw */
7474 case 0x0f380a: /* psignd */
7475 case 0x0f380b: /* pmulhrsw */
7476 case 0x0f381c: /* pabsb */
7477 case 0x0f381d: /* pabsw */
7478 case 0x0f381e: /* pabsd */
7479 case 0x0f382b: /* packusdw */
7480 case 0x0f3830: /* pmovzxbw */
7481 case 0x0f3831: /* pmovzxbd */
7482 case 0x0f3832: /* pmovzxbq */
7483 case 0x0f3833: /* pmovzxwd */
7484 case 0x0f3834: /* pmovzxwq */
7485 case 0x0f3835: /* pmovzxdq */
7486 case 0x0f3837: /* pcmpgtq */
7487 case 0x0f3838: /* pminsb */
7488 case 0x0f3839: /* pminsd */
7489 case 0x0f383a: /* pminuw */
7490 case 0x0f383b: /* pminud */
7491 case 0x0f383c: /* pmaxsb */
7492 case 0x0f383d: /* pmaxsd */
7493 case 0x0f383e: /* pmaxuw */
7494 case 0x0f383f: /* pmaxud */
7495 case 0x0f3840: /* pmulld */
7496 case 0x0f3841: /* phminposuw */
7497 case 0x0f3a0f: /* palignr */
7498 case 0x0f60: /* punpcklbw */
7499 case 0x0f61: /* punpcklwd */
7500 case 0x0f62: /* punpckldq */
7501 case 0x0f63: /* packsswb */
7502 case 0x0f64: /* pcmpgtb */
7503 case 0x0f65: /* pcmpgtw */
7504 case 0x0f66: /* pcmpgtd */
7505 case 0x0f67: /* packuswb */
7506 case 0x0f68: /* punpckhbw */
7507 case 0x0f69: /* punpckhwd */
7508 case 0x0f6a: /* punpckhdq */
7509 case 0x0f6b: /* packssdw */
7510 case 0x0f6e: /* movd */
7511 case 0x0f6f: /* movq */
7512 case 0x0f70: /* pshufw */
7513 case 0x0f74: /* pcmpeqb */
7514 case 0x0f75: /* pcmpeqw */
7515 case 0x0f76: /* pcmpeqd */
7516 case 0x0fc4: /* pinsrw */
7517 case 0x0fd1: /* psrlw */
7518 case 0x0fd2: /* psrld */
7519 case 0x0fd3: /* psrlq */
7520 case 0x0fd4: /* paddq */
7521 case 0x0fd5: /* pmullw */
7522 case 0xf20fd6: /* movdq2q */
7523 case 0x0fd8: /* psubusb */
7524 case 0x0fd9: /* psubusw */
7525 case 0x0fda: /* pminub */
7526 case 0x0fdb: /* pand */
7527 case 0x0fdc: /* paddusb */
7528 case 0x0fdd: /* paddusw */
7529 case 0x0fde: /* pmaxub */
7530 case 0x0fdf: /* pandn */
7531 case 0x0fe0: /* pavgb */
7532 case 0x0fe1: /* psraw */
7533 case 0x0fe2: /* psrad */
7534 case 0x0fe3: /* pavgw */
7535 case 0x0fe4: /* pmulhuw */
7536 case 0x0fe5: /* pmulhw */
7537 case 0x0fe8: /* psubsb */
7538 case 0x0fe9: /* psubsw */
7539 case 0x0fea: /* pminsw */
7540 case 0x0feb: /* por */
7541 case 0x0fec: /* paddsb */
7542 case 0x0fed: /* paddsw */
7543 case 0x0fee: /* pmaxsw */
7544 case 0x0fef: /* pxor */
7545 case 0x0ff1: /* psllw */
7546 case 0x0ff2: /* pslld */
7547 case 0x0ff3: /* psllq */
7548 case 0x0ff4: /* pmuludq */
7549 case 0x0ff5: /* pmaddwd */
7550 case 0x0ff6: /* psadbw */
7551 case 0x0ff8: /* psubb */
7552 case 0x0ff9: /* psubw */
7553 case 0x0ffa: /* psubd */
7554 case 0x0ffb: /* psubq */
7555 case 0x0ffc: /* paddb */
7556 case 0x0ffd: /* paddw */
7557 case 0x0ffe: /* paddd */
7558 if (i386_record_modrm (&ir))
7559 return -1;
7560 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7561 goto no_support;
7562 record_full_arch_list_add_reg (ir.regcache,
7563 I387_MM0_REGNUM (tdep) + ir.reg);
7564 break;
7565
7566 case 0x0f71: /* psllw */
7567 case 0x0f72: /* pslld */
7568 case 0x0f73: /* psllq */
7569 if (i386_record_modrm (&ir))
7570 return -1;
7571 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
7572 goto no_support;
7573 record_full_arch_list_add_reg (ir.regcache,
7574 I387_MM0_REGNUM (tdep) + ir.rm);
7575 break;
7576
7577 case 0x660f71: /* psllw */
7578 case 0x660f72: /* pslld */
7579 case 0x660f73: /* psllq */
7580 if (i386_record_modrm (&ir))
7581 return -1;
7582 ir.rm |= ir.rex_b;
7583 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.rm))
7584 goto no_support;
7585 record_full_arch_list_add_reg (ir.regcache,
7586 I387_XMM0_REGNUM (tdep) + ir.rm);
7587 break;
7588
7589 case 0x0f7e: /* movd */
7590 case 0x660f7e: /* movd */
7591 if (i386_record_modrm (&ir))
7592 return -1;
7593 if (ir.mod == 3)
7594 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7595 else
7596 {
7597 if (ir.dflag == 2)
7598 ir.ot = OT_QUAD;
7599 else
7600 ir.ot = OT_LONG;
7601 if (i386_record_lea_modrm (&ir))
7602 return -1;
7603 }
7604 break;
7605
7606 case 0x0f7f: /* movq */
7607 if (i386_record_modrm (&ir))
7608 return -1;
7609 if (ir.mod == 3)
7610 {
7611 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
7612 goto no_support;
7613 record_full_arch_list_add_reg (ir.regcache,
7614 I387_MM0_REGNUM (tdep) + ir.rm);
7615 }
7616 else
7617 {
7618 ir.ot = OT_QUAD;
7619 if (i386_record_lea_modrm (&ir))
7620 return -1;
7621 }
7622 break;
7623
7624 case 0xf30fb8: /* popcnt */
7625 if (i386_record_modrm (&ir))
7626 return -1;
7627 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
7628 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7629 break;
7630
7631 case 0x660fd6: /* movq */
7632 if (i386_record_modrm (&ir))
7633 return -1;
7634 if (ir.mod == 3)
7635 {
7636 ir.rm |= ir.rex_b;
7637 if (!i386_xmm_regnum_p (gdbarch,
7638 I387_XMM0_REGNUM (tdep) + ir.rm))
7639 goto no_support;
7640 record_full_arch_list_add_reg (ir.regcache,
7641 I387_XMM0_REGNUM (tdep) + ir.rm);
7642 }
7643 else
7644 {
7645 ir.ot = OT_QUAD;
7646 if (i386_record_lea_modrm (&ir))
7647 return -1;
7648 }
7649 break;
7650
7651 case 0x660f3817: /* ptest */
7652 case 0x0f2e: /* ucomiss */
7653 case 0x660f2e: /* ucomisd */
7654 case 0x0f2f: /* comiss */
7655 case 0x660f2f: /* comisd */
7656 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7657 break;
7658
7659 case 0x0ff7: /* maskmovq */
7660 regcache_raw_read_unsigned (ir.regcache,
7661 ir.regmap[X86_RECORD_REDI_REGNUM],
7662 &addr);
7663 if (record_full_arch_list_add_mem (addr, 64))
7664 return -1;
7665 break;
7666
7667 case 0x660ff7: /* maskmovdqu */
7668 regcache_raw_read_unsigned (ir.regcache,
7669 ir.regmap[X86_RECORD_REDI_REGNUM],
7670 &addr);
7671 if (record_full_arch_list_add_mem (addr, 128))
7672 return -1;
7673 break;
7674
7675 default:
7676 goto no_support;
7677 break;
7678 }
7679 break;
7680
7681 default:
7682 goto no_support;
7683 break;
7684 }
7685
7686 /* In the future, maybe still need to deal with need_dasm. */
7687 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REIP_REGNUM);
7688 if (record_full_arch_list_add_end ())
7689 return -1;
7690
7691 return 0;
7692
7693 no_support:
7694 printf_unfiltered (_("Process record does not support instruction 0x%02x "
7695 "at address %s.\n"),
7696 (unsigned int) (opcode),
7697 paddress (gdbarch, ir.orig_addr));
7698 return -1;
7699 }
7700
7701 static const int i386_record_regmap[] =
7702 {
7703 I386_EAX_REGNUM, I386_ECX_REGNUM, I386_EDX_REGNUM, I386_EBX_REGNUM,
7704 I386_ESP_REGNUM, I386_EBP_REGNUM, I386_ESI_REGNUM, I386_EDI_REGNUM,
7705 0, 0, 0, 0, 0, 0, 0, 0,
7706 I386_EIP_REGNUM, I386_EFLAGS_REGNUM, I386_CS_REGNUM, I386_SS_REGNUM,
7707 I386_DS_REGNUM, I386_ES_REGNUM, I386_FS_REGNUM, I386_GS_REGNUM
7708 };
7709
7710 /* Check that the given address appears suitable for a fast
7711 tracepoint, which on x86-64 means that we need an instruction of at
7712 least 5 bytes, so that we can overwrite it with a 4-byte-offset
7713 jump and not have to worry about program jumps to an address in the
7714 middle of the tracepoint jump. On x86, it may be possible to use
7715 4-byte jumps with a 2-byte offset to a trampoline located in the
7716 bottom 64 KiB of memory. Returns 1 if OK, and writes a size
7717 of instruction to replace, and 0 if not, plus an explanatory
7718 string. */
7719
7720 static int
7721 i386_fast_tracepoint_valid_at (struct gdbarch *gdbarch,
7722 CORE_ADDR addr, int *isize, char **msg)
7723 {
7724 int len, jumplen;
7725 static struct ui_file *gdb_null = NULL;
7726
7727 /* Ask the target for the minimum instruction length supported. */
7728 jumplen = target_get_min_fast_tracepoint_insn_len ();
7729
7730 if (jumplen < 0)
7731 {
7732 /* If the target does not support the get_min_fast_tracepoint_insn_len
7733 operation, assume that fast tracepoints will always be implemented
7734 using 4-byte relative jumps on both x86 and x86-64. */
7735 jumplen = 5;
7736 }
7737 else if (jumplen == 0)
7738 {
7739 /* If the target does support get_min_fast_tracepoint_insn_len but
7740 returns zero, then the IPA has not loaded yet. In this case,
7741 we optimistically assume that truncated 2-byte relative jumps
7742 will be available on x86, and compensate later if this assumption
7743 turns out to be incorrect. On x86-64 architectures, 4-byte relative
7744 jumps will always be used. */
7745 jumplen = (register_size (gdbarch, 0) == 8) ? 5 : 4;
7746 }
7747
7748 /* Dummy file descriptor for the disassembler. */
7749 if (!gdb_null)
7750 gdb_null = ui_file_new ();
7751
7752 /* Check for fit. */
7753 len = gdb_print_insn (gdbarch, addr, gdb_null, NULL);
7754 if (isize)
7755 *isize = len;
7756
7757 if (len < jumplen)
7758 {
7759 /* Return a bit of target-specific detail to add to the caller's
7760 generic failure message. */
7761 if (msg)
7762 *msg = xstrprintf (_("; instruction is only %d bytes long, "
7763 "need at least %d bytes for the jump"),
7764 len, jumplen);
7765 return 0;
7766 }
7767 else
7768 {
7769 if (msg)
7770 *msg = NULL;
7771 return 1;
7772 }
7773 }
7774
7775 static int
7776 i386_validate_tdesc_p (struct gdbarch_tdep *tdep,
7777 struct tdesc_arch_data *tdesc_data)
7778 {
7779 const struct target_desc *tdesc = tdep->tdesc;
7780 const struct tdesc_feature *feature_core;
7781 const struct tdesc_feature *feature_sse, *feature_avx, *feature_mpx;
7782 int i, num_regs, valid_p;
7783
7784 if (! tdesc_has_registers (tdesc))
7785 return 0;
7786
7787 /* Get core registers. */
7788 feature_core = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.core");
7789 if (feature_core == NULL)
7790 return 0;
7791
7792 /* Get SSE registers. */
7793 feature_sse = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.sse");
7794
7795 /* Try AVX registers. */
7796 feature_avx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx");
7797
7798 /* Try MPX registers. */
7799 feature_mpx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx");
7800
7801 valid_p = 1;
7802
7803 /* The XCR0 bits. */
7804 if (feature_avx)
7805 {
7806 /* AVX register description requires SSE register description. */
7807 if (!feature_sse)
7808 return 0;
7809
7810 tdep->xcr0 = I386_XSTATE_AVX_MASK;
7811
7812 /* It may have been set by OSABI initialization function. */
7813 if (tdep->num_ymm_regs == 0)
7814 {
7815 tdep->ymmh_register_names = i386_ymmh_names;
7816 tdep->num_ymm_regs = 8;
7817 tdep->ymm0h_regnum = I386_YMM0H_REGNUM;
7818 }
7819
7820 for (i = 0; i < tdep->num_ymm_regs; i++)
7821 valid_p &= tdesc_numbered_register (feature_avx, tdesc_data,
7822 tdep->ymm0h_regnum + i,
7823 tdep->ymmh_register_names[i]);
7824 }
7825 else if (feature_sse)
7826 tdep->xcr0 = I386_XSTATE_SSE_MASK;
7827 else
7828 {
7829 tdep->xcr0 = I386_XSTATE_X87_MASK;
7830 tdep->num_xmm_regs = 0;
7831 }
7832
7833 num_regs = tdep->num_core_regs;
7834 for (i = 0; i < num_regs; i++)
7835 valid_p &= tdesc_numbered_register (feature_core, tdesc_data, i,
7836 tdep->register_names[i]);
7837
7838 if (feature_sse)
7839 {
7840 /* Need to include %mxcsr, so add one. */
7841 num_regs += tdep->num_xmm_regs + 1;
7842 for (; i < num_regs; i++)
7843 valid_p &= tdesc_numbered_register (feature_sse, tdesc_data, i,
7844 tdep->register_names[i]);
7845 }
7846
7847 if (feature_mpx)
7848 {
7849 tdep->xcr0 = I386_XSTATE_MPX_MASK;
7850
7851 if (tdep->bnd0r_regnum < 0)
7852 {
7853 tdep->mpx_register_names = i386_mpx_names;
7854 tdep->bnd0r_regnum = I386_BND0R_REGNUM;
7855 tdep->bndcfgu_regnum = I386_BNDCFGU_REGNUM;
7856 }
7857
7858 for (i = 0; i < I387_NUM_MPX_REGS; i++)
7859 valid_p &= tdesc_numbered_register (feature_mpx, tdesc_data,
7860 I387_BND0R_REGNUM (tdep) + i,
7861 tdep->mpx_register_names[i]);
7862 }
7863
7864 return valid_p;
7865 }
7866
7867 \f
7868 static struct gdbarch *
7869 i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
7870 {
7871 struct gdbarch_tdep *tdep;
7872 struct gdbarch *gdbarch;
7873 struct tdesc_arch_data *tdesc_data;
7874 const struct target_desc *tdesc;
7875 int mm0_regnum;
7876 int ymm0_regnum;
7877 int bnd0_regnum;
7878 int num_bnd_cooked;
7879
7880 /* If there is already a candidate, use it. */
7881 arches = gdbarch_list_lookup_by_info (arches, &info);
7882 if (arches != NULL)
7883 return arches->gdbarch;
7884
7885 /* Allocate space for the new architecture. */
7886 tdep = XCNEW (struct gdbarch_tdep);
7887 gdbarch = gdbarch_alloc (&info, tdep);
7888
7889 /* General-purpose registers. */
7890 tdep->gregset = NULL;
7891 tdep->gregset_reg_offset = NULL;
7892 tdep->gregset_num_regs = I386_NUM_GREGS;
7893 tdep->sizeof_gregset = 0;
7894
7895 /* Floating-point registers. */
7896 tdep->fpregset = NULL;
7897 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
7898
7899 tdep->xstateregset = NULL;
7900
7901 /* The default settings include the FPU registers, the MMX registers
7902 and the SSE registers. This can be overridden for a specific ABI
7903 by adjusting the members `st0_regnum', `mm0_regnum' and
7904 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
7905 will show up in the output of "info all-registers". */
7906
7907 tdep->st0_regnum = I386_ST0_REGNUM;
7908
7909 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
7910 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
7911
7912 tdep->jb_pc_offset = -1;
7913 tdep->struct_return = pcc_struct_return;
7914 tdep->sigtramp_start = 0;
7915 tdep->sigtramp_end = 0;
7916 tdep->sigtramp_p = i386_sigtramp_p;
7917 tdep->sigcontext_addr = NULL;
7918 tdep->sc_reg_offset = NULL;
7919 tdep->sc_pc_offset = -1;
7920 tdep->sc_sp_offset = -1;
7921
7922 tdep->xsave_xcr0_offset = -1;
7923
7924 tdep->record_regmap = i386_record_regmap;
7925
7926 set_gdbarch_long_long_align_bit (gdbarch, 32);
7927
7928 /* The format used for `long double' on almost all i386 targets is
7929 the i387 extended floating-point format. In fact, of all targets
7930 in the GCC 2.95 tree, only OSF/1 does it different, and insists
7931 on having a `long double' that's not `long' at all. */
7932 set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext);
7933
7934 /* Although the i387 extended floating-point has only 80 significant
7935 bits, a `long double' actually takes up 96, probably to enforce
7936 alignment. */
7937 set_gdbarch_long_double_bit (gdbarch, 96);
7938
7939 /* Register numbers of various important registers. */
7940 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
7941 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
7942 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
7943 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
7944
7945 /* NOTE: kettenis/20040418: GCC does have two possible register
7946 numbering schemes on the i386: dbx and SVR4. These schemes
7947 differ in how they number %ebp, %esp, %eflags, and the
7948 floating-point registers, and are implemented by the arrays
7949 dbx_register_map[] and svr4_dbx_register_map in
7950 gcc/config/i386.c. GCC also defines a third numbering scheme in
7951 gcc/config/i386.c, which it designates as the "default" register
7952 map used in 64bit mode. This last register numbering scheme is
7953 implemented in dbx64_register_map, and is used for AMD64; see
7954 amd64-tdep.c.
7955
7956 Currently, each GCC i386 target always uses the same register
7957 numbering scheme across all its supported debugging formats
7958 i.e. SDB (COFF), stabs and DWARF 2. This is because
7959 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
7960 DBX_REGISTER_NUMBER macro which is defined by each target's
7961 respective config header in a manner independent of the requested
7962 output debugging format.
7963
7964 This does not match the arrangement below, which presumes that
7965 the SDB and stabs numbering schemes differ from the DWARF and
7966 DWARF 2 ones. The reason for this arrangement is that it is
7967 likely to get the numbering scheme for the target's
7968 default/native debug format right. For targets where GCC is the
7969 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
7970 targets where the native toolchain uses a different numbering
7971 scheme for a particular debug format (stabs-in-ELF on Solaris)
7972 the defaults below will have to be overridden, like
7973 i386_elf_init_abi() does. */
7974
7975 /* Use the dbx register numbering scheme for stabs and COFF. */
7976 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
7977 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
7978
7979 /* Use the SVR4 register numbering scheme for DWARF 2. */
7980 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
7981
7982 /* We don't set gdbarch_stab_reg_to_regnum, since ECOFF doesn't seem to
7983 be in use on any of the supported i386 targets. */
7984
7985 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
7986
7987 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
7988
7989 /* Call dummy code. */
7990 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
7991 set_gdbarch_push_dummy_code (gdbarch, i386_push_dummy_code);
7992 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
7993 set_gdbarch_frame_align (gdbarch, i386_frame_align);
7994
7995 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
7996 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
7997 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
7998
7999 set_gdbarch_return_value (gdbarch, i386_return_value);
8000
8001 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
8002
8003 /* Stack grows downward. */
8004 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
8005
8006 set_gdbarch_breakpoint_from_pc (gdbarch, i386_breakpoint_from_pc);
8007 set_gdbarch_decr_pc_after_break (gdbarch, 1);
8008 set_gdbarch_max_insn_length (gdbarch, I386_MAX_INSN_LEN);
8009
8010 set_gdbarch_frame_args_skip (gdbarch, 8);
8011
8012 set_gdbarch_print_insn (gdbarch, i386_print_insn);
8013
8014 set_gdbarch_dummy_id (gdbarch, i386_dummy_id);
8015
8016 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
8017
8018 /* Add the i386 register groups. */
8019 i386_add_reggroups (gdbarch);
8020 tdep->register_reggroup_p = i386_register_reggroup_p;
8021
8022 /* Helper for function argument information. */
8023 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
8024
8025 /* Hook the function epilogue frame unwinder. This unwinder is
8026 appended to the list first, so that it supercedes the DWARF
8027 unwinder in function epilogues (where the DWARF unwinder
8028 currently fails). */
8029 frame_unwind_append_unwinder (gdbarch, &i386_epilogue_frame_unwind);
8030
8031 /* Hook in the DWARF CFI frame unwinder. This unwinder is appended
8032 to the list before the prologue-based unwinders, so that DWARF
8033 CFI info will be used if it is available. */
8034 dwarf2_append_unwinders (gdbarch);
8035
8036 frame_base_set_default (gdbarch, &i386_frame_base);
8037
8038 /* Pseudo registers may be changed by amd64_init_abi. */
8039 set_gdbarch_pseudo_register_read_value (gdbarch,
8040 i386_pseudo_register_read_value);
8041 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
8042
8043 set_tdesc_pseudo_register_type (gdbarch, i386_pseudo_register_type);
8044 set_tdesc_pseudo_register_name (gdbarch, i386_pseudo_register_name);
8045
8046 /* Override the normal target description method to make the AVX
8047 upper halves anonymous. */
8048 set_gdbarch_register_name (gdbarch, i386_register_name);
8049
8050 /* Even though the default ABI only includes general-purpose registers,
8051 floating-point registers and the SSE registers, we have to leave a
8052 gap for the upper AVX registers and the MPX registers. */
8053 set_gdbarch_num_regs (gdbarch, I386_MPX_NUM_REGS);
8054
8055 /* Get the x86 target description from INFO. */
8056 tdesc = info.target_desc;
8057 if (! tdesc_has_registers (tdesc))
8058 tdesc = tdesc_i386;
8059 tdep->tdesc = tdesc;
8060
8061 tdep->num_core_regs = I386_NUM_GREGS + I387_NUM_REGS;
8062 tdep->register_names = i386_register_names;
8063
8064 /* No upper YMM registers. */
8065 tdep->ymmh_register_names = NULL;
8066 tdep->ymm0h_regnum = -1;
8067
8068 tdep->num_byte_regs = 8;
8069 tdep->num_word_regs = 8;
8070 tdep->num_dword_regs = 0;
8071 tdep->num_mmx_regs = 8;
8072 tdep->num_ymm_regs = 0;
8073
8074 /* No MPX registers. */
8075 tdep->bnd0r_regnum = -1;
8076 tdep->bndcfgu_regnum = -1;
8077
8078 tdesc_data = tdesc_data_alloc ();
8079
8080 set_gdbarch_relocate_instruction (gdbarch, i386_relocate_instruction);
8081
8082 set_gdbarch_gen_return_address (gdbarch, i386_gen_return_address);
8083
8084 set_gdbarch_insn_is_call (gdbarch, i386_insn_is_call);
8085 set_gdbarch_insn_is_ret (gdbarch, i386_insn_is_ret);
8086 set_gdbarch_insn_is_jump (gdbarch, i386_insn_is_jump);
8087
8088 /* Hook in ABI-specific overrides, if they have been registered. */
8089 info.tdep_info = (void *) tdesc_data;
8090 gdbarch_init_osabi (info, gdbarch);
8091
8092 if (!i386_validate_tdesc_p (tdep, tdesc_data))
8093 {
8094 tdesc_data_cleanup (tdesc_data);
8095 xfree (tdep);
8096 gdbarch_free (gdbarch);
8097 return NULL;
8098 }
8099
8100 num_bnd_cooked = (tdep->bnd0r_regnum > 0 ? I387_NUM_BND_REGS : 0);
8101
8102 /* Wire in pseudo registers. Number of pseudo registers may be
8103 changed. */
8104 set_gdbarch_num_pseudo_regs (gdbarch, (tdep->num_byte_regs
8105 + tdep->num_word_regs
8106 + tdep->num_dword_regs
8107 + tdep->num_mmx_regs
8108 + tdep->num_ymm_regs
8109 + num_bnd_cooked));
8110
8111 /* Target description may be changed. */
8112 tdesc = tdep->tdesc;
8113
8114 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
8115
8116 /* Override gdbarch_register_reggroup_p set in tdesc_use_registers. */
8117 set_gdbarch_register_reggroup_p (gdbarch, tdep->register_reggroup_p);
8118
8119 /* Make %al the first pseudo-register. */
8120 tdep->al_regnum = gdbarch_num_regs (gdbarch);
8121 tdep->ax_regnum = tdep->al_regnum + tdep->num_byte_regs;
8122
8123 ymm0_regnum = tdep->ax_regnum + tdep->num_word_regs;
8124 if (tdep->num_dword_regs)
8125 {
8126 /* Support dword pseudo-register if it hasn't been disabled. */
8127 tdep->eax_regnum = ymm0_regnum;
8128 ymm0_regnum += tdep->num_dword_regs;
8129 }
8130 else
8131 tdep->eax_regnum = -1;
8132
8133 mm0_regnum = ymm0_regnum;
8134 if (tdep->num_ymm_regs)
8135 {
8136 /* Support YMM pseudo-register if it is available. */
8137 tdep->ymm0_regnum = ymm0_regnum;
8138 mm0_regnum += tdep->num_ymm_regs;
8139 }
8140 else
8141 tdep->ymm0_regnum = -1;
8142
8143 bnd0_regnum = mm0_regnum;
8144 if (tdep->num_mmx_regs != 0)
8145 {
8146 /* Support MMX pseudo-register if MMX hasn't been disabled. */
8147 tdep->mm0_regnum = mm0_regnum;
8148 bnd0_regnum += tdep->num_mmx_regs;
8149 }
8150 else
8151 tdep->mm0_regnum = -1;
8152
8153 if (tdep->bnd0r_regnum > 0)
8154 tdep->bnd0_regnum = bnd0_regnum;
8155 else
8156 tdep-> bnd0_regnum = -1;
8157
8158 /* Hook in the legacy prologue-based unwinders last (fallback). */
8159 frame_unwind_append_unwinder (gdbarch, &i386_stack_tramp_frame_unwind);
8160 frame_unwind_append_unwinder (gdbarch, &i386_sigtramp_frame_unwind);
8161 frame_unwind_append_unwinder (gdbarch, &i386_frame_unwind);
8162
8163 /* If we have a register mapping, enable the generic core file
8164 support, unless it has already been enabled. */
8165 if (tdep->gregset_reg_offset
8166 && !gdbarch_regset_from_core_section_p (gdbarch))
8167 set_gdbarch_regset_from_core_section (gdbarch,
8168 i386_regset_from_core_section);
8169
8170 set_gdbarch_skip_permanent_breakpoint (gdbarch,
8171 i386_skip_permanent_breakpoint);
8172
8173 set_gdbarch_fast_tracepoint_valid_at (gdbarch,
8174 i386_fast_tracepoint_valid_at);
8175
8176 return gdbarch;
8177 }
8178
8179 static enum gdb_osabi
8180 i386_coff_osabi_sniffer (bfd *abfd)
8181 {
8182 if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
8183 || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
8184 return GDB_OSABI_GO32;
8185
8186 return GDB_OSABI_UNKNOWN;
8187 }
8188 \f
8189
8190 /* Provide a prototype to silence -Wmissing-prototypes. */
8191 void _initialize_i386_tdep (void);
8192
8193 void
8194 _initialize_i386_tdep (void)
8195 {
8196 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
8197
8198 /* Add the variable that controls the disassembly flavor. */
8199 add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
8200 &disassembly_flavor, _("\
8201 Set the disassembly flavor."), _("\
8202 Show the disassembly flavor."), _("\
8203 The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
8204 NULL,
8205 NULL, /* FIXME: i18n: */
8206 &setlist, &showlist);
8207
8208 /* Add the variable that controls the convention for returning
8209 structs. */
8210 add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
8211 &struct_convention, _("\
8212 Set the convention for returning small structs."), _("\
8213 Show the convention for returning small structs."), _("\
8214 Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
8215 is \"default\"."),
8216 NULL,
8217 NULL, /* FIXME: i18n: */
8218 &setlist, &showlist);
8219
8220 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
8221 i386_coff_osabi_sniffer);
8222
8223 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
8224 i386_svr4_init_abi);
8225 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_GO32,
8226 i386_go32_init_abi);
8227
8228 /* Initialize the i386-specific register groups. */
8229 i386_init_reggroups ();
8230
8231 /* Initialize the standard target descriptions. */
8232 initialize_tdesc_i386 ();
8233 initialize_tdesc_i386_mmx ();
8234 initialize_tdesc_i386_avx ();
8235 initialize_tdesc_i386_mpx ();
8236
8237 /* Tell remote stub that we support XML target description. */
8238 register_remote_support_xml ("i386");
8239 }
This page took 0.197159 seconds and 4 git commands to generate.