2004-09-29 Andrew Cagney <cagney@gnu.org>
[deliverable/binutils-gdb.git] / gdb / i386-tdep.c
1 /* Intel 386 target-dependent stuff.
2
3 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software
5 Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
23
24 #include "defs.h"
25 #include "arch-utils.h"
26 #include "command.h"
27 #include "dummy-frame.h"
28 #include "dwarf2-frame.h"
29 #include "doublest.h"
30 #include "floatformat.h"
31 #include "frame.h"
32 #include "frame-base.h"
33 #include "frame-unwind.h"
34 #include "inferior.h"
35 #include "gdbcmd.h"
36 #include "gdbcore.h"
37 #include "objfiles.h"
38 #include "osabi.h"
39 #include "regcache.h"
40 #include "reggroups.h"
41 #include "regset.h"
42 #include "symfile.h"
43 #include "symtab.h"
44 #include "target.h"
45 #include "value.h"
46 #include "dis-asm.h"
47
48 #include "gdb_assert.h"
49 #include "gdb_string.h"
50
51 #include "i386-tdep.h"
52 #include "i387-tdep.h"
53
54 /* Register names. */
55
56 static char *i386_register_names[] =
57 {
58 "eax", "ecx", "edx", "ebx",
59 "esp", "ebp", "esi", "edi",
60 "eip", "eflags", "cs", "ss",
61 "ds", "es", "fs", "gs",
62 "st0", "st1", "st2", "st3",
63 "st4", "st5", "st6", "st7",
64 "fctrl", "fstat", "ftag", "fiseg",
65 "fioff", "foseg", "fooff", "fop",
66 "xmm0", "xmm1", "xmm2", "xmm3",
67 "xmm4", "xmm5", "xmm6", "xmm7",
68 "mxcsr"
69 };
70
71 static const int i386_num_register_names = ARRAY_SIZE (i386_register_names);
72
73 /* Register names for MMX pseudo-registers. */
74
75 static char *i386_mmx_names[] =
76 {
77 "mm0", "mm1", "mm2", "mm3",
78 "mm4", "mm5", "mm6", "mm7"
79 };
80
81 static const int i386_num_mmx_regs = ARRAY_SIZE (i386_mmx_names);
82
83 static int
84 i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
85 {
86 int mm0_regnum = gdbarch_tdep (gdbarch)->mm0_regnum;
87
88 if (mm0_regnum < 0)
89 return 0;
90
91 return (regnum >= mm0_regnum && regnum < mm0_regnum + i386_num_mmx_regs);
92 }
93
94 /* SSE register? */
95
96 static int
97 i386_sse_regnum_p (struct gdbarch *gdbarch, int regnum)
98 {
99 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
100
101 #define I387_ST0_REGNUM tdep->st0_regnum
102 #define I387_NUM_XMM_REGS tdep->num_xmm_regs
103
104 if (I387_NUM_XMM_REGS == 0)
105 return 0;
106
107 return (I387_XMM0_REGNUM <= regnum && regnum < I387_MXCSR_REGNUM);
108
109 #undef I387_ST0_REGNUM
110 #undef I387_NUM_XMM_REGS
111 }
112
113 static int
114 i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
115 {
116 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
117
118 #define I387_ST0_REGNUM tdep->st0_regnum
119 #define I387_NUM_XMM_REGS tdep->num_xmm_regs
120
121 if (I387_NUM_XMM_REGS == 0)
122 return 0;
123
124 return (regnum == I387_MXCSR_REGNUM);
125
126 #undef I387_ST0_REGNUM
127 #undef I387_NUM_XMM_REGS
128 }
129
130 #define I387_ST0_REGNUM (gdbarch_tdep (current_gdbarch)->st0_regnum)
131 #define I387_MM0_REGNUM (gdbarch_tdep (current_gdbarch)->mm0_regnum)
132 #define I387_NUM_XMM_REGS (gdbarch_tdep (current_gdbarch)->num_xmm_regs)
133
134 /* FP register? */
135
136 int
137 i386_fp_regnum_p (int regnum)
138 {
139 if (I387_ST0_REGNUM < 0)
140 return 0;
141
142 return (I387_ST0_REGNUM <= regnum && regnum < I387_FCTRL_REGNUM);
143 }
144
145 int
146 i386_fpc_regnum_p (int regnum)
147 {
148 if (I387_ST0_REGNUM < 0)
149 return 0;
150
151 return (I387_FCTRL_REGNUM <= regnum && regnum < I387_XMM0_REGNUM);
152 }
153
154 /* Return the name of register REGNUM. */
155
156 const char *
157 i386_register_name (int regnum)
158 {
159 if (i386_mmx_regnum_p (current_gdbarch, regnum))
160 return i386_mmx_names[regnum - I387_MM0_REGNUM];
161
162 if (regnum >= 0 && regnum < i386_num_register_names)
163 return i386_register_names[regnum];
164
165 return NULL;
166 }
167
168 /* Convert a dbx register number REG to the appropriate register
169 number used by GDB. */
170
171 static int
172 i386_dbx_reg_to_regnum (int reg)
173 {
174 /* This implements what GCC calls the "default" register map
175 (dbx_register_map[]). */
176
177 if (reg >= 0 && reg <= 7)
178 {
179 /* General-purpose registers. The debug info calls %ebp
180 register 4, and %esp register 5. */
181 if (reg == 4)
182 return 5;
183 else if (reg == 5)
184 return 4;
185 else return reg;
186 }
187 else if (reg >= 12 && reg <= 19)
188 {
189 /* Floating-point registers. */
190 return reg - 12 + I387_ST0_REGNUM;
191 }
192 else if (reg >= 21 && reg <= 28)
193 {
194 /* SSE registers. */
195 return reg - 21 + I387_XMM0_REGNUM;
196 }
197 else if (reg >= 29 && reg <= 36)
198 {
199 /* MMX registers. */
200 return reg - 29 + I387_MM0_REGNUM;
201 }
202
203 /* This will hopefully provoke a warning. */
204 return NUM_REGS + NUM_PSEUDO_REGS;
205 }
206
207 /* Convert SVR4 register number REG to the appropriate register number
208 used by GDB. */
209
210 static int
211 i386_svr4_reg_to_regnum (int reg)
212 {
213 /* This implements the GCC register map that tries to be compatible
214 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
215
216 /* The SVR4 register numbering includes %eip and %eflags, and
217 numbers the floating point registers differently. */
218 if (reg >= 0 && reg <= 9)
219 {
220 /* General-purpose registers. */
221 return reg;
222 }
223 else if (reg >= 11 && reg <= 18)
224 {
225 /* Floating-point registers. */
226 return reg - 11 + I387_ST0_REGNUM;
227 }
228 else if (reg >= 21)
229 {
230 /* The SSE and MMX registers have the same numbers as with dbx. */
231 return i386_dbx_reg_to_regnum (reg);
232 }
233
234 /* This will hopefully provoke a warning. */
235 return NUM_REGS + NUM_PSEUDO_REGS;
236 }
237
238 #undef I387_ST0_REGNUM
239 #undef I387_MM0_REGNUM
240 #undef I387_NUM_XMM_REGS
241 \f
242
243 /* This is the variable that is set with "set disassembly-flavor", and
244 its legitimate values. */
245 static const char att_flavor[] = "att";
246 static const char intel_flavor[] = "intel";
247 static const char *valid_flavors[] =
248 {
249 att_flavor,
250 intel_flavor,
251 NULL
252 };
253 static const char *disassembly_flavor = att_flavor;
254 \f
255
256 /* Use the program counter to determine the contents and size of a
257 breakpoint instruction. Return a pointer to a string of bytes that
258 encode a breakpoint instruction, store the length of the string in
259 *LEN and optionally adjust *PC to point to the correct memory
260 location for inserting the breakpoint.
261
262 On the i386 we have a single breakpoint that fits in a single byte
263 and can be inserted anywhere.
264
265 This function is 64-bit safe. */
266
267 static const unsigned char *
268 i386_breakpoint_from_pc (CORE_ADDR *pc, int *len)
269 {
270 static unsigned char break_insn[] = { 0xcc }; /* int 3 */
271
272 *len = sizeof (break_insn);
273 return break_insn;
274 }
275 \f
276 #ifdef I386_REGNO_TO_SYMMETRY
277 #error "The Sequent Symmetry is no longer supported."
278 #endif
279
280 /* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
281 and %esp "belong" to the calling function. Therefore these
282 registers should be saved if they're going to be modified. */
283
284 /* The maximum number of saved registers. This should include all
285 registers mentioned above, and %eip. */
286 #define I386_NUM_SAVED_REGS I386_NUM_GREGS
287
288 struct i386_frame_cache
289 {
290 /* Base address. */
291 CORE_ADDR base;
292 CORE_ADDR sp_offset;
293 CORE_ADDR pc;
294
295 /* Saved registers. */
296 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
297 CORE_ADDR saved_sp;
298 int pc_in_eax;
299
300 /* Stack space reserved for local variables. */
301 long locals;
302 };
303
304 /* Allocate and initialize a frame cache. */
305
306 static struct i386_frame_cache *
307 i386_alloc_frame_cache (void)
308 {
309 struct i386_frame_cache *cache;
310 int i;
311
312 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
313
314 /* Base address. */
315 cache->base = 0;
316 cache->sp_offset = -4;
317 cache->pc = 0;
318
319 /* Saved registers. We initialize these to -1 since zero is a valid
320 offset (that's where %ebp is supposed to be stored). */
321 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
322 cache->saved_regs[i] = -1;
323 cache->saved_sp = 0;
324 cache->pc_in_eax = 0;
325
326 /* Frameless until proven otherwise. */
327 cache->locals = -1;
328
329 return cache;
330 }
331
332 /* If the instruction at PC is a jump, return the address of its
333 target. Otherwise, return PC. */
334
335 static CORE_ADDR
336 i386_follow_jump (CORE_ADDR pc)
337 {
338 unsigned char op;
339 long delta = 0;
340 int data16 = 0;
341
342 op = read_memory_unsigned_integer (pc, 1);
343 if (op == 0x66)
344 {
345 data16 = 1;
346 op = read_memory_unsigned_integer (pc + 1, 1);
347 }
348
349 switch (op)
350 {
351 case 0xe9:
352 /* Relative jump: if data16 == 0, disp32, else disp16. */
353 if (data16)
354 {
355 delta = read_memory_integer (pc + 2, 2);
356
357 /* Include the size of the jmp instruction (including the
358 0x66 prefix). */
359 delta += 4;
360 }
361 else
362 {
363 delta = read_memory_integer (pc + 1, 4);
364
365 /* Include the size of the jmp instruction. */
366 delta += 5;
367 }
368 break;
369 case 0xeb:
370 /* Relative jump, disp8 (ignore data16). */
371 delta = read_memory_integer (pc + data16 + 1, 1);
372
373 delta += data16 + 2;
374 break;
375 }
376
377 return pc + delta;
378 }
379
380 /* Check whether PC points at a prologue for a function returning a
381 structure or union. If so, it updates CACHE and returns the
382 address of the first instruction after the code sequence that
383 removes the "hidden" argument from the stack or CURRENT_PC,
384 whichever is smaller. Otherwise, return PC. */
385
386 static CORE_ADDR
387 i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
388 struct i386_frame_cache *cache)
389 {
390 /* Functions that return a structure or union start with:
391
392 popl %eax 0x58
393 xchgl %eax, (%esp) 0x87 0x04 0x24
394 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
395
396 (the System V compiler puts out the second `xchg' instruction,
397 and the assembler doesn't try to optimize it, so the 'sib' form
398 gets generated). This sequence is used to get the address of the
399 return buffer for a function that returns a structure. */
400 static unsigned char proto1[3] = { 0x87, 0x04, 0x24 };
401 static unsigned char proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
402 unsigned char buf[4];
403 unsigned char op;
404
405 if (current_pc <= pc)
406 return pc;
407
408 op = read_memory_unsigned_integer (pc, 1);
409
410 if (op != 0x58) /* popl %eax */
411 return pc;
412
413 read_memory (pc + 1, buf, 4);
414 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
415 return pc;
416
417 if (current_pc == pc)
418 {
419 cache->sp_offset += 4;
420 return current_pc;
421 }
422
423 if (current_pc == pc + 1)
424 {
425 cache->pc_in_eax = 1;
426 return current_pc;
427 }
428
429 if (buf[1] == proto1[1])
430 return pc + 4;
431 else
432 return pc + 5;
433 }
434
435 static CORE_ADDR
436 i386_skip_probe (CORE_ADDR pc)
437 {
438 /* A function may start with
439
440 pushl constant
441 call _probe
442 addl $4, %esp
443
444 followed by
445
446 pushl %ebp
447
448 etc. */
449 unsigned char buf[8];
450 unsigned char op;
451
452 op = read_memory_unsigned_integer (pc, 1);
453
454 if (op == 0x68 || op == 0x6a)
455 {
456 int delta;
457
458 /* Skip past the `pushl' instruction; it has either a one-byte or a
459 four-byte operand, depending on the opcode. */
460 if (op == 0x68)
461 delta = 5;
462 else
463 delta = 2;
464
465 /* Read the following 8 bytes, which should be `call _probe' (6
466 bytes) followed by `addl $4,%esp' (2 bytes). */
467 read_memory (pc + delta, buf, sizeof (buf));
468 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
469 pc += delta + sizeof (buf);
470 }
471
472 return pc;
473 }
474
475 /* Maximum instruction length we need to handle. */
476 #define I386_MAX_INSN_LEN 6
477
478 /* Instruction description. */
479 struct i386_insn
480 {
481 size_t len;
482 unsigned char insn[I386_MAX_INSN_LEN];
483 unsigned char mask[I386_MAX_INSN_LEN];
484 };
485
486 /* Search for the instruction at PC in the list SKIP_INSNS. Return
487 the first instruction description that matches. Otherwise, return
488 NULL. */
489
490 static struct i386_insn *
491 i386_match_insn (CORE_ADDR pc, struct i386_insn *skip_insns)
492 {
493 struct i386_insn *insn;
494 unsigned char op;
495
496 op = read_memory_unsigned_integer (pc, 1);
497
498 for (insn = skip_insns; insn->len > 0; insn++)
499 {
500 if ((op & insn->mask[0]) == insn->insn[0])
501 {
502 unsigned char buf[I386_MAX_INSN_LEN - 1];
503 size_t i;
504
505 gdb_assert (insn->len > 1);
506 gdb_assert (insn->len <= I386_MAX_INSN_LEN);
507
508 read_memory (pc + 1, buf, insn->len - 1);
509 for (i = 1; i < insn->len; i++)
510 {
511 if ((buf[i - 1] & insn->mask[i]) != insn->insn[i])
512 break;
513
514 return insn;
515 }
516 }
517 }
518
519 return NULL;
520 }
521
522 /* Some special instructions that might be migrated by GCC into the
523 part of the prologue that sets up the new stack frame. Because the
524 stack frame hasn't been setup yet, no registers have been saved
525 yet, and only the scratch registers %eax, %ecx and %edx can be
526 touched. */
527
528 struct i386_insn i386_frame_setup_skip_insns[] =
529 {
530 /* Check for `movb imm8, r' and `movl imm32, r'.
531
532 ??? Should we handle 16-bit operand-sizes here? */
533
534 /* `movb imm8, %al' and `movb imm8, %ah' */
535 /* `movb imm8, %cl' and `movb imm8, %ch' */
536 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
537 /* `movb imm8, %dl' and `movb imm8, %dh' */
538 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
539 /* `movl imm32, %eax' and `movl imm32, %ecx' */
540 { 5, { 0xb8 }, { 0xfe } },
541 /* `movl imm32, %edx' */
542 { 5, { 0xba }, { 0xff } },
543
544 /* Check for `mov imm32, r32'. Note that there is an alternative
545 encoding for `mov m32, %eax'.
546
547 ??? Should we handle SIB adressing here?
548 ??? Should we handle 16-bit operand-sizes here? */
549
550 /* `movl m32, %eax' */
551 { 5, { 0xa1 }, { 0xff } },
552 /* `movl m32, %eax' and `mov; m32, %ecx' */
553 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
554 /* `movl m32, %edx' */
555 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
556
557 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
558 Because of the symmetry, there are actually two ways to encode
559 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
560 opcode bytes 0x31 and 0x33 for `xorl'. */
561
562 /* `subl %eax, %eax' */
563 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
564 /* `subl %ecx, %ecx' */
565 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
566 /* `subl %edx, %edx' */
567 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
568 /* `xorl %eax, %eax' */
569 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
570 /* `xorl %ecx, %ecx' */
571 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
572 /* `xorl %edx, %edx' */
573 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
574 { 0 }
575 };
576
577 /* Check whether PC points at a code that sets up a new stack frame.
578 If so, it updates CACHE and returns the address of the first
579 instruction after the sequence that sets up the frame or LIMIT,
580 whichever is smaller. If we don't recognize the code, return PC. */
581
582 static CORE_ADDR
583 i386_analyze_frame_setup (CORE_ADDR pc, CORE_ADDR limit,
584 struct i386_frame_cache *cache)
585 {
586 struct i386_insn *insn;
587 unsigned char op;
588 int skip = 0;
589
590 if (limit <= pc)
591 return limit;
592
593 op = read_memory_unsigned_integer (pc, 1);
594
595 if (op == 0x55) /* pushl %ebp */
596 {
597 /* Take into account that we've executed the `pushl %ebp' that
598 starts this instruction sequence. */
599 cache->saved_regs[I386_EBP_REGNUM] = 0;
600 cache->sp_offset += 4;
601 pc++;
602
603 /* If that's all, return now. */
604 if (limit <= pc)
605 return limit;
606
607 /* Check for some special instructions that might be migrated by
608 GCC into the prologue and skip them. At this point in the
609 prologue, code should only touch the scratch registers %eax,
610 %ecx and %edx, so while the number of posibilities is sheer,
611 it is limited.
612
613 Make sure we only skip these instructions if we later see the
614 `movl %esp, %ebp' that actually sets up the frame. */
615 while (pc + skip < limit)
616 {
617 insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
618 if (insn == NULL)
619 break;
620
621 skip += insn->len;
622 }
623
624 /* If that's all, return now. */
625 if (limit <= pc + skip)
626 return limit;
627
628 op = read_memory_unsigned_integer (pc + skip, 1);
629
630 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
631 switch (op)
632 {
633 case 0x8b:
634 if (read_memory_unsigned_integer (pc + skip + 1, 1) != 0xec)
635 return pc;
636 break;
637 case 0x89:
638 if (read_memory_unsigned_integer (pc + skip + 1, 1) != 0xe5)
639 return pc;
640 break;
641 default:
642 return pc;
643 }
644
645 /* OK, we actually have a frame. We just don't know how large
646 it is yet. Set its size to zero. We'll adjust it if
647 necessary. We also now commit to skipping the special
648 instructions mentioned before. */
649 cache->locals = 0;
650 pc += (skip + 2);
651
652 /* If that's all, return now. */
653 if (limit <= pc)
654 return limit;
655
656 /* Check for stack adjustment
657
658 subl $XXX, %esp
659
660 NOTE: You can't subtract a 16-bit immediate from a 32-bit
661 reg, so we don't have to worry about a data16 prefix. */
662 op = read_memory_unsigned_integer (pc, 1);
663 if (op == 0x83)
664 {
665 /* `subl' with 8-bit immediate. */
666 if (read_memory_unsigned_integer (pc + 1, 1) != 0xec)
667 /* Some instruction starting with 0x83 other than `subl'. */
668 return pc;
669
670 /* `subl' with signed 8-bit immediate (though it wouldn't
671 make sense to be negative). */
672 cache->locals = read_memory_integer (pc + 2, 1);
673 return pc + 3;
674 }
675 else if (op == 0x81)
676 {
677 /* Maybe it is `subl' with a 32-bit immediate. */
678 if (read_memory_unsigned_integer (pc + 1, 1) != 0xec)
679 /* Some instruction starting with 0x81 other than `subl'. */
680 return pc;
681
682 /* It is `subl' with a 32-bit immediate. */
683 cache->locals = read_memory_integer (pc + 2, 4);
684 return pc + 6;
685 }
686 else
687 {
688 /* Some instruction other than `subl'. */
689 return pc;
690 }
691 }
692 else if (op == 0xc8) /* enter */
693 {
694 cache->locals = read_memory_unsigned_integer (pc + 1, 2);
695 return pc + 4;
696 }
697
698 return pc;
699 }
700
701 /* Check whether PC points at code that saves registers on the stack.
702 If so, it updates CACHE and returns the address of the first
703 instruction after the register saves or CURRENT_PC, whichever is
704 smaller. Otherwise, return PC. */
705
706 static CORE_ADDR
707 i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
708 struct i386_frame_cache *cache)
709 {
710 CORE_ADDR offset = 0;
711 unsigned char op;
712 int i;
713
714 if (cache->locals > 0)
715 offset -= cache->locals;
716 for (i = 0; i < 8 && pc < current_pc; i++)
717 {
718 op = read_memory_unsigned_integer (pc, 1);
719 if (op < 0x50 || op > 0x57)
720 break;
721
722 offset -= 4;
723 cache->saved_regs[op - 0x50] = offset;
724 cache->sp_offset += 4;
725 pc++;
726 }
727
728 return pc;
729 }
730
731 /* Do a full analysis of the prologue at PC and update CACHE
732 accordingly. Bail out early if CURRENT_PC is reached. Return the
733 address where the analysis stopped.
734
735 We handle these cases:
736
737 The startup sequence can be at the start of the function, or the
738 function can start with a branch to startup code at the end.
739
740 %ebp can be set up with either the 'enter' instruction, or "pushl
741 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
742 once used in the System V compiler).
743
744 Local space is allocated just below the saved %ebp by either the
745 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
746 16-bit unsigned argument for space to allocate, and the 'addl'
747 instruction could have either a signed byte, or 32-bit immediate.
748
749 Next, the registers used by this function are pushed. With the
750 System V compiler they will always be in the order: %edi, %esi,
751 %ebx (and sometimes a harmless bug causes it to also save but not
752 restore %eax); however, the code below is willing to see the pushes
753 in any order, and will handle up to 8 of them.
754
755 If the setup sequence is at the end of the function, then the next
756 instruction will be a branch back to the start. */
757
758 static CORE_ADDR
759 i386_analyze_prologue (CORE_ADDR pc, CORE_ADDR current_pc,
760 struct i386_frame_cache *cache)
761 {
762 pc = i386_follow_jump (pc);
763 pc = i386_analyze_struct_return (pc, current_pc, cache);
764 pc = i386_skip_probe (pc);
765 pc = i386_analyze_frame_setup (pc, current_pc, cache);
766 return i386_analyze_register_saves (pc, current_pc, cache);
767 }
768
769 /* Return PC of first real instruction. */
770
771 static CORE_ADDR
772 i386_skip_prologue (CORE_ADDR start_pc)
773 {
774 static unsigned char pic_pat[6] =
775 {
776 0xe8, 0, 0, 0, 0, /* call 0x0 */
777 0x5b, /* popl %ebx */
778 };
779 struct i386_frame_cache cache;
780 CORE_ADDR pc;
781 unsigned char op;
782 int i;
783
784 cache.locals = -1;
785 pc = i386_analyze_prologue (start_pc, 0xffffffff, &cache);
786 if (cache.locals < 0)
787 return start_pc;
788
789 /* Found valid frame setup. */
790
791 /* The native cc on SVR4 in -K PIC mode inserts the following code
792 to get the address of the global offset table (GOT) into register
793 %ebx:
794
795 call 0x0
796 popl %ebx
797 movl %ebx,x(%ebp) (optional)
798 addl y,%ebx
799
800 This code is with the rest of the prologue (at the end of the
801 function), so we have to skip it to get to the first real
802 instruction at the start of the function. */
803
804 for (i = 0; i < 6; i++)
805 {
806 op = read_memory_unsigned_integer (pc + i, 1);
807 if (pic_pat[i] != op)
808 break;
809 }
810 if (i == 6)
811 {
812 int delta = 6;
813
814 op = read_memory_unsigned_integer (pc + delta, 1);
815
816 if (op == 0x89) /* movl %ebx, x(%ebp) */
817 {
818 op = read_memory_unsigned_integer (pc + delta + 1, 1);
819
820 if (op == 0x5d) /* One byte offset from %ebp. */
821 delta += 3;
822 else if (op == 0x9d) /* Four byte offset from %ebp. */
823 delta += 6;
824 else /* Unexpected instruction. */
825 delta = 0;
826
827 op = read_memory_unsigned_integer (pc + delta, 1);
828 }
829
830 /* addl y,%ebx */
831 if (delta > 0 && op == 0x81
832 && read_memory_unsigned_integer (pc + delta + 1, 1) == 0xc3);
833 {
834 pc += delta + 6;
835 }
836 }
837
838 /* If the function starts with a branch (to startup code at the end)
839 the last instruction should bring us back to the first
840 instruction of the real code. */
841 if (i386_follow_jump (start_pc) != start_pc)
842 pc = i386_follow_jump (pc);
843
844 return pc;
845 }
846
847 /* This function is 64-bit safe. */
848
849 static CORE_ADDR
850 i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
851 {
852 char buf[8];
853
854 frame_unwind_register (next_frame, PC_REGNUM, buf);
855 return extract_typed_address (buf, builtin_type_void_func_ptr);
856 }
857 \f
858
859 /* Normal frames. */
860
861 static struct i386_frame_cache *
862 i386_frame_cache (struct frame_info *next_frame, void **this_cache)
863 {
864 struct i386_frame_cache *cache;
865 char buf[4];
866 int i;
867
868 if (*this_cache)
869 return *this_cache;
870
871 cache = i386_alloc_frame_cache ();
872 *this_cache = cache;
873
874 /* In principle, for normal frames, %ebp holds the frame pointer,
875 which holds the base address for the current stack frame.
876 However, for functions that don't need it, the frame pointer is
877 optional. For these "frameless" functions the frame pointer is
878 actually the frame pointer of the calling frame. Signal
879 trampolines are just a special case of a "frameless" function.
880 They (usually) share their frame pointer with the frame that was
881 in progress when the signal occurred. */
882
883 frame_unwind_register (next_frame, I386_EBP_REGNUM, buf);
884 cache->base = extract_unsigned_integer (buf, 4);
885 if (cache->base == 0)
886 return cache;
887
888 /* For normal frames, %eip is stored at 4(%ebp). */
889 cache->saved_regs[I386_EIP_REGNUM] = 4;
890
891 cache->pc = frame_func_unwind (next_frame);
892 if (cache->pc != 0)
893 i386_analyze_prologue (cache->pc, frame_pc_unwind (next_frame), cache);
894
895 if (cache->locals < 0)
896 {
897 /* We didn't find a valid frame, which means that CACHE->base
898 currently holds the frame pointer for our calling frame. If
899 we're at the start of a function, or somewhere half-way its
900 prologue, the function's frame probably hasn't been fully
901 setup yet. Try to reconstruct the base address for the stack
902 frame by looking at the stack pointer. For truly "frameless"
903 functions this might work too. */
904
905 frame_unwind_register (next_frame, I386_ESP_REGNUM, buf);
906 cache->base = extract_unsigned_integer (buf, 4) + cache->sp_offset;
907 }
908
909 /* Now that we have the base address for the stack frame we can
910 calculate the value of %esp in the calling frame. */
911 cache->saved_sp = cache->base + 8;
912
913 /* Adjust all the saved registers such that they contain addresses
914 instead of offsets. */
915 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
916 if (cache->saved_regs[i] != -1)
917 cache->saved_regs[i] += cache->base;
918
919 return cache;
920 }
921
922 static void
923 i386_frame_this_id (struct frame_info *next_frame, void **this_cache,
924 struct frame_id *this_id)
925 {
926 struct i386_frame_cache *cache = i386_frame_cache (next_frame, this_cache);
927
928 /* This marks the outermost frame. */
929 if (cache->base == 0)
930 return;
931
932 /* See the end of i386_push_dummy_call. */
933 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
934 }
935
936 static void
937 i386_frame_prev_register (struct frame_info *next_frame, void **this_cache,
938 int regnum, int *optimizedp,
939 enum lval_type *lvalp, CORE_ADDR *addrp,
940 int *realnump, void *valuep)
941 {
942 struct i386_frame_cache *cache = i386_frame_cache (next_frame, this_cache);
943
944 gdb_assert (regnum >= 0);
945
946 /* The System V ABI says that:
947
948 "The flags register contains the system flags, such as the
949 direction flag and the carry flag. The direction flag must be
950 set to the forward (that is, zero) direction before entry and
951 upon exit from a function. Other user flags have no specified
952 role in the standard calling sequence and are not preserved."
953
954 To guarantee the "upon exit" part of that statement we fake a
955 saved flags register that has its direction flag cleared.
956
957 Note that GCC doesn't seem to rely on the fact that the direction
958 flag is cleared after a function return; it always explicitly
959 clears the flag before operations where it matters.
960
961 FIXME: kettenis/20030316: I'm not quite sure whether this is the
962 right thing to do. The way we fake the flags register here makes
963 it impossible to change it. */
964
965 if (regnum == I386_EFLAGS_REGNUM)
966 {
967 *optimizedp = 0;
968 *lvalp = not_lval;
969 *addrp = 0;
970 *realnump = -1;
971 if (valuep)
972 {
973 ULONGEST val;
974
975 /* Clear the direction flag. */
976 val = frame_unwind_register_unsigned (next_frame,
977 I386_EFLAGS_REGNUM);
978 val &= ~(1 << 10);
979 store_unsigned_integer (valuep, 4, val);
980 }
981
982 return;
983 }
984
985 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
986 {
987 frame_register_unwind (next_frame, I386_EAX_REGNUM,
988 optimizedp, lvalp, addrp, realnump, valuep);
989 return;
990 }
991
992 if (regnum == I386_ESP_REGNUM && cache->saved_sp)
993 {
994 *optimizedp = 0;
995 *lvalp = not_lval;
996 *addrp = 0;
997 *realnump = -1;
998 if (valuep)
999 {
1000 /* Store the value. */
1001 store_unsigned_integer (valuep, 4, cache->saved_sp);
1002 }
1003 return;
1004 }
1005
1006 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
1007 {
1008 *optimizedp = 0;
1009 *lvalp = lval_memory;
1010 *addrp = cache->saved_regs[regnum];
1011 *realnump = -1;
1012 if (valuep)
1013 {
1014 /* Read the value in from memory. */
1015 read_memory (*addrp, valuep,
1016 register_size (current_gdbarch, regnum));
1017 }
1018 return;
1019 }
1020
1021 frame_register_unwind (next_frame, regnum,
1022 optimizedp, lvalp, addrp, realnump, valuep);
1023 }
1024
1025 static const struct frame_unwind i386_frame_unwind =
1026 {
1027 NORMAL_FRAME,
1028 i386_frame_this_id,
1029 i386_frame_prev_register
1030 };
1031
1032 static const struct frame_unwind *
1033 i386_frame_sniffer (struct frame_info *next_frame)
1034 {
1035 return &i386_frame_unwind;
1036 }
1037 \f
1038
1039 /* Signal trampolines. */
1040
1041 static struct i386_frame_cache *
1042 i386_sigtramp_frame_cache (struct frame_info *next_frame, void **this_cache)
1043 {
1044 struct i386_frame_cache *cache;
1045 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1046 CORE_ADDR addr;
1047 char buf[4];
1048
1049 if (*this_cache)
1050 return *this_cache;
1051
1052 cache = i386_alloc_frame_cache ();
1053
1054 frame_unwind_register (next_frame, I386_ESP_REGNUM, buf);
1055 cache->base = extract_unsigned_integer (buf, 4) - 4;
1056
1057 addr = tdep->sigcontext_addr (next_frame);
1058 if (tdep->sc_reg_offset)
1059 {
1060 int i;
1061
1062 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
1063
1064 for (i = 0; i < tdep->sc_num_regs; i++)
1065 if (tdep->sc_reg_offset[i] != -1)
1066 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
1067 }
1068 else
1069 {
1070 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
1071 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
1072 }
1073
1074 *this_cache = cache;
1075 return cache;
1076 }
1077
1078 static void
1079 i386_sigtramp_frame_this_id (struct frame_info *next_frame, void **this_cache,
1080 struct frame_id *this_id)
1081 {
1082 struct i386_frame_cache *cache =
1083 i386_sigtramp_frame_cache (next_frame, this_cache);
1084
1085 /* See the end of i386_push_dummy_call. */
1086 (*this_id) = frame_id_build (cache->base + 8, frame_pc_unwind (next_frame));
1087 }
1088
1089 static void
1090 i386_sigtramp_frame_prev_register (struct frame_info *next_frame,
1091 void **this_cache,
1092 int regnum, int *optimizedp,
1093 enum lval_type *lvalp, CORE_ADDR *addrp,
1094 int *realnump, void *valuep)
1095 {
1096 /* Make sure we've initialized the cache. */
1097 i386_sigtramp_frame_cache (next_frame, this_cache);
1098
1099 i386_frame_prev_register (next_frame, this_cache, regnum,
1100 optimizedp, lvalp, addrp, realnump, valuep);
1101 }
1102
1103 static const struct frame_unwind i386_sigtramp_frame_unwind =
1104 {
1105 SIGTRAMP_FRAME,
1106 i386_sigtramp_frame_this_id,
1107 i386_sigtramp_frame_prev_register
1108 };
1109
1110 static const struct frame_unwind *
1111 i386_sigtramp_frame_sniffer (struct frame_info *next_frame)
1112 {
1113 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (next_frame));
1114
1115 /* We shouldn't even bother if we don't have a sigcontext_addr
1116 handler. */
1117 if (tdep->sigcontext_addr == NULL)
1118 return NULL;
1119
1120 if (tdep->sigtramp_p != NULL)
1121 {
1122 if (tdep->sigtramp_p (next_frame))
1123 return &i386_sigtramp_frame_unwind;
1124 }
1125
1126 if (tdep->sigtramp_start != 0)
1127 {
1128 CORE_ADDR pc = frame_pc_unwind (next_frame);
1129
1130 gdb_assert (tdep->sigtramp_end != 0);
1131 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
1132 return &i386_sigtramp_frame_unwind;
1133 }
1134
1135 return NULL;
1136 }
1137 \f
1138
1139 static CORE_ADDR
1140 i386_frame_base_address (struct frame_info *next_frame, void **this_cache)
1141 {
1142 struct i386_frame_cache *cache = i386_frame_cache (next_frame, this_cache);
1143
1144 return cache->base;
1145 }
1146
1147 static const struct frame_base i386_frame_base =
1148 {
1149 &i386_frame_unwind,
1150 i386_frame_base_address,
1151 i386_frame_base_address,
1152 i386_frame_base_address
1153 };
1154
1155 static struct frame_id
1156 i386_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
1157 {
1158 char buf[4];
1159 CORE_ADDR fp;
1160
1161 frame_unwind_register (next_frame, I386_EBP_REGNUM, buf);
1162 fp = extract_unsigned_integer (buf, 4);
1163
1164 /* See the end of i386_push_dummy_call. */
1165 return frame_id_build (fp + 8, frame_pc_unwind (next_frame));
1166 }
1167 \f
1168
1169 /* Figure out where the longjmp will land. Slurp the args out of the
1170 stack. We expect the first arg to be a pointer to the jmp_buf
1171 structure from which we extract the address that we will land at.
1172 This address is copied into PC. This routine returns non-zero on
1173 success.
1174
1175 This function is 64-bit safe. */
1176
1177 static int
1178 i386_get_longjmp_target (CORE_ADDR *pc)
1179 {
1180 char buf[8];
1181 CORE_ADDR sp, jb_addr;
1182 int jb_pc_offset = gdbarch_tdep (current_gdbarch)->jb_pc_offset;
1183 int len = TYPE_LENGTH (builtin_type_void_func_ptr);
1184
1185 /* If JB_PC_OFFSET is -1, we have no way to find out where the
1186 longjmp will land. */
1187 if (jb_pc_offset == -1)
1188 return 0;
1189
1190 /* Don't use I386_ESP_REGNUM here, since this function is also used
1191 for AMD64. */
1192 regcache_cooked_read (current_regcache, SP_REGNUM, buf);
1193 sp = extract_typed_address (buf, builtin_type_void_data_ptr);
1194 if (target_read_memory (sp + len, buf, len))
1195 return 0;
1196
1197 jb_addr = extract_typed_address (buf, builtin_type_void_data_ptr);
1198 if (target_read_memory (jb_addr + jb_pc_offset, buf, len))
1199 return 0;
1200
1201 *pc = extract_typed_address (buf, builtin_type_void_func_ptr);
1202 return 1;
1203 }
1204 \f
1205
1206 static CORE_ADDR
1207 i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1208 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
1209 struct value **args, CORE_ADDR sp, int struct_return,
1210 CORE_ADDR struct_addr)
1211 {
1212 char buf[4];
1213 int i;
1214
1215 /* Push arguments in reverse order. */
1216 for (i = nargs - 1; i >= 0; i--)
1217 {
1218 int len = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (args[i]));
1219
1220 /* The System V ABI says that:
1221
1222 "An argument's size is increased, if necessary, to make it a
1223 multiple of [32-bit] words. This may require tail padding,
1224 depending on the size of the argument."
1225
1226 This makes sure the stack says word-aligned. */
1227 sp -= (len + 3) & ~3;
1228 write_memory (sp, VALUE_CONTENTS_ALL (args[i]), len);
1229 }
1230
1231 /* Push value address. */
1232 if (struct_return)
1233 {
1234 sp -= 4;
1235 store_unsigned_integer (buf, 4, struct_addr);
1236 write_memory (sp, buf, 4);
1237 }
1238
1239 /* Store return address. */
1240 sp -= 4;
1241 store_unsigned_integer (buf, 4, bp_addr);
1242 write_memory (sp, buf, 4);
1243
1244 /* Finally, update the stack pointer... */
1245 store_unsigned_integer (buf, 4, sp);
1246 regcache_cooked_write (regcache, I386_ESP_REGNUM, buf);
1247
1248 /* ...and fake a frame pointer. */
1249 regcache_cooked_write (regcache, I386_EBP_REGNUM, buf);
1250
1251 /* MarkK wrote: This "+ 8" is all over the place:
1252 (i386_frame_this_id, i386_sigtramp_frame_this_id,
1253 i386_unwind_dummy_id). It's there, since all frame unwinders for
1254 a given target have to agree (within a certain margin) on the
1255 definition of the stack address of a frame. Otherwise
1256 frame_id_inner() won't work correctly. Since DWARF2/GCC uses the
1257 stack address *before* the function call as a frame's CFA. On
1258 the i386, when %ebp is used as a frame pointer, the offset
1259 between the contents %ebp and the CFA as defined by GCC. */
1260 return sp + 8;
1261 }
1262
1263 /* These registers are used for returning integers (and on some
1264 targets also for returning `struct' and `union' values when their
1265 size and alignment match an integer type). */
1266 #define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
1267 #define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
1268
1269 /* Read, for architecture GDBARCH, a function return value of TYPE
1270 from REGCACHE, and copy that into VALBUF. */
1271
1272 static void
1273 i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
1274 struct regcache *regcache, void *valbuf)
1275 {
1276 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1277 int len = TYPE_LENGTH (type);
1278 char buf[I386_MAX_REGISTER_SIZE];
1279
1280 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1281 {
1282 if (tdep->st0_regnum < 0)
1283 {
1284 warning ("Cannot find floating-point return value.");
1285 memset (valbuf, 0, len);
1286 return;
1287 }
1288
1289 /* Floating-point return values can be found in %st(0). Convert
1290 its contents to the desired type. This is probably not
1291 exactly how it would happen on the target itself, but it is
1292 the best we can do. */
1293 regcache_raw_read (regcache, I386_ST0_REGNUM, buf);
1294 convert_typed_floating (buf, builtin_type_i387_ext, valbuf, type);
1295 }
1296 else
1297 {
1298 int low_size = register_size (current_gdbarch, LOW_RETURN_REGNUM);
1299 int high_size = register_size (current_gdbarch, HIGH_RETURN_REGNUM);
1300
1301 if (len <= low_size)
1302 {
1303 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
1304 memcpy (valbuf, buf, len);
1305 }
1306 else if (len <= (low_size + high_size))
1307 {
1308 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
1309 memcpy (valbuf, buf, low_size);
1310 regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
1311 memcpy ((char *) valbuf + low_size, buf, len - low_size);
1312 }
1313 else
1314 internal_error (__FILE__, __LINE__,
1315 "Cannot extract return value of %d bytes long.", len);
1316 }
1317 }
1318
1319 /* Write, for architecture GDBARCH, a function return value of TYPE
1320 from VALBUF into REGCACHE. */
1321
1322 static void
1323 i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
1324 struct regcache *regcache, const void *valbuf)
1325 {
1326 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1327 int len = TYPE_LENGTH (type);
1328
1329 /* Define I387_ST0_REGNUM such that we use the proper definitions
1330 for the architecture. */
1331 #define I387_ST0_REGNUM I386_ST0_REGNUM
1332
1333 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1334 {
1335 ULONGEST fstat;
1336 char buf[I386_MAX_REGISTER_SIZE];
1337
1338 if (tdep->st0_regnum < 0)
1339 {
1340 warning ("Cannot set floating-point return value.");
1341 return;
1342 }
1343
1344 /* Returning floating-point values is a bit tricky. Apart from
1345 storing the return value in %st(0), we have to simulate the
1346 state of the FPU at function return point. */
1347
1348 /* Convert the value found in VALBUF to the extended
1349 floating-point format used by the FPU. This is probably
1350 not exactly how it would happen on the target itself, but
1351 it is the best we can do. */
1352 convert_typed_floating (valbuf, type, buf, builtin_type_i387_ext);
1353 regcache_raw_write (regcache, I386_ST0_REGNUM, buf);
1354
1355 /* Set the top of the floating-point register stack to 7. The
1356 actual value doesn't really matter, but 7 is what a normal
1357 function return would end up with if the program started out
1358 with a freshly initialized FPU. */
1359 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM, &fstat);
1360 fstat |= (7 << 11);
1361 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM, fstat);
1362
1363 /* Mark %st(1) through %st(7) as empty. Since we set the top of
1364 the floating-point register stack to 7, the appropriate value
1365 for the tag word is 0x3fff. */
1366 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM, 0x3fff);
1367 }
1368 else
1369 {
1370 int low_size = register_size (current_gdbarch, LOW_RETURN_REGNUM);
1371 int high_size = register_size (current_gdbarch, HIGH_RETURN_REGNUM);
1372
1373 if (len <= low_size)
1374 regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
1375 else if (len <= (low_size + high_size))
1376 {
1377 regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
1378 regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
1379 len - low_size, (char *) valbuf + low_size);
1380 }
1381 else
1382 internal_error (__FILE__, __LINE__,
1383 "Cannot store return value of %d bytes long.", len);
1384 }
1385
1386 #undef I387_ST0_REGNUM
1387 }
1388 \f
1389
1390 /* This is the variable that is set with "set struct-convention", and
1391 its legitimate values. */
1392 static const char default_struct_convention[] = "default";
1393 static const char pcc_struct_convention[] = "pcc";
1394 static const char reg_struct_convention[] = "reg";
1395 static const char *valid_conventions[] =
1396 {
1397 default_struct_convention,
1398 pcc_struct_convention,
1399 reg_struct_convention,
1400 NULL
1401 };
1402 static const char *struct_convention = default_struct_convention;
1403
1404 /* Return non-zero if TYPE, which is assumed to be a structure or
1405 union type, should be returned in registers for architecture
1406 GDBARCH. */
1407
1408 static int
1409 i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
1410 {
1411 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1412 enum type_code code = TYPE_CODE (type);
1413 int len = TYPE_LENGTH (type);
1414
1415 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
1416
1417 if (struct_convention == pcc_struct_convention
1418 || (struct_convention == default_struct_convention
1419 && tdep->struct_return == pcc_struct_return))
1420 return 0;
1421
1422 return (len == 1 || len == 2 || len == 4 || len == 8);
1423 }
1424
1425 /* Determine, for architecture GDBARCH, how a return value of TYPE
1426 should be returned. If it is supposed to be returned in registers,
1427 and READBUF is non-zero, read the appropriate value from REGCACHE,
1428 and copy it into READBUF. If WRITEBUF is non-zero, write the value
1429 from WRITEBUF into REGCACHE. */
1430
1431 static enum return_value_convention
1432 i386_return_value (struct gdbarch *gdbarch, struct type *type,
1433 struct regcache *regcache, void *readbuf,
1434 const void *writebuf)
1435 {
1436 enum type_code code = TYPE_CODE (type);
1437
1438 if ((code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION)
1439 && !i386_reg_struct_return_p (gdbarch, type))
1440 {
1441 /* The System V ABI says that:
1442
1443 "A function that returns a structure or union also sets %eax
1444 to the value of the original address of the caller's area
1445 before it returns. Thus when the caller receives control
1446 again, the address of the returned object resides in register
1447 %eax and can be used to access the object."
1448
1449 So the ABI guarantees that we can always find the return
1450 value just after the function has returned. */
1451
1452 if (readbuf)
1453 {
1454 ULONGEST addr;
1455
1456 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
1457 read_memory (addr, readbuf, TYPE_LENGTH (type));
1458 }
1459
1460 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
1461 }
1462
1463 /* This special case is for structures consisting of a single
1464 `float' or `double' member. These structures are returned in
1465 %st(0). For these structures, we call ourselves recursively,
1466 changing TYPE into the type of the first member of the structure.
1467 Since that should work for all structures that have only one
1468 member, we don't bother to check the member's type here. */
1469 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
1470 {
1471 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
1472 return i386_return_value (gdbarch, type, regcache, readbuf, writebuf);
1473 }
1474
1475 if (readbuf)
1476 i386_extract_return_value (gdbarch, type, regcache, readbuf);
1477 if (writebuf)
1478 i386_store_return_value (gdbarch, type, regcache, writebuf);
1479
1480 return RETURN_VALUE_REGISTER_CONVENTION;
1481 }
1482 \f
1483
1484 /* Return the GDB type object for the "standard" data type of data in
1485 register REGNUM. Perhaps %esi and %edi should go here, but
1486 potentially they could be used for things other than address. */
1487
1488 static struct type *
1489 i386_register_type (struct gdbarch *gdbarch, int regnum)
1490 {
1491 if (regnum == I386_EIP_REGNUM
1492 || regnum == I386_EBP_REGNUM || regnum == I386_ESP_REGNUM)
1493 return lookup_pointer_type (builtin_type_void);
1494
1495 if (i386_fp_regnum_p (regnum))
1496 return builtin_type_i387_ext;
1497
1498 if (i386_sse_regnum_p (gdbarch, regnum))
1499 return builtin_type_vec128i;
1500
1501 if (i386_mmx_regnum_p (gdbarch, regnum))
1502 return builtin_type_vec64i;
1503
1504 return builtin_type_int;
1505 }
1506
1507 /* Map a cooked register onto a raw register or memory. For the i386,
1508 the MMX registers need to be mapped onto floating point registers. */
1509
1510 static int
1511 i386_mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
1512 {
1513 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
1514 int mmxreg, fpreg;
1515 ULONGEST fstat;
1516 int tos;
1517
1518 /* Define I387_ST0_REGNUM such that we use the proper definitions
1519 for REGCACHE's architecture. */
1520 #define I387_ST0_REGNUM tdep->st0_regnum
1521
1522 mmxreg = regnum - tdep->mm0_regnum;
1523 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM, &fstat);
1524 tos = (fstat >> 11) & 0x7;
1525 fpreg = (mmxreg + tos) % 8;
1526
1527 return (I387_ST0_REGNUM + fpreg);
1528
1529 #undef I387_ST0_REGNUM
1530 }
1531
1532 static void
1533 i386_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
1534 int regnum, void *buf)
1535 {
1536 if (i386_mmx_regnum_p (gdbarch, regnum))
1537 {
1538 char mmx_buf[MAX_REGISTER_SIZE];
1539 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
1540
1541 /* Extract (always little endian). */
1542 regcache_raw_read (regcache, fpnum, mmx_buf);
1543 memcpy (buf, mmx_buf, register_size (gdbarch, regnum));
1544 }
1545 else
1546 regcache_raw_read (regcache, regnum, buf);
1547 }
1548
1549 static void
1550 i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
1551 int regnum, const void *buf)
1552 {
1553 if (i386_mmx_regnum_p (gdbarch, regnum))
1554 {
1555 char mmx_buf[MAX_REGISTER_SIZE];
1556 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
1557
1558 /* Read ... */
1559 regcache_raw_read (regcache, fpnum, mmx_buf);
1560 /* ... Modify ... (always little endian). */
1561 memcpy (mmx_buf, buf, register_size (gdbarch, regnum));
1562 /* ... Write. */
1563 regcache_raw_write (regcache, fpnum, mmx_buf);
1564 }
1565 else
1566 regcache_raw_write (regcache, regnum, buf);
1567 }
1568 \f
1569
1570 /* Return the register number of the register allocated by GCC after
1571 REGNUM, or -1 if there is no such register. */
1572
1573 static int
1574 i386_next_regnum (int regnum)
1575 {
1576 /* GCC allocates the registers in the order:
1577
1578 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
1579
1580 Since storing a variable in %esp doesn't make any sense we return
1581 -1 for %ebp and for %esp itself. */
1582 static int next_regnum[] =
1583 {
1584 I386_EDX_REGNUM, /* Slot for %eax. */
1585 I386_EBX_REGNUM, /* Slot for %ecx. */
1586 I386_ECX_REGNUM, /* Slot for %edx. */
1587 I386_ESI_REGNUM, /* Slot for %ebx. */
1588 -1, -1, /* Slots for %esp and %ebp. */
1589 I386_EDI_REGNUM, /* Slot for %esi. */
1590 I386_EBP_REGNUM /* Slot for %edi. */
1591 };
1592
1593 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
1594 return next_regnum[regnum];
1595
1596 return -1;
1597 }
1598
1599 /* Return nonzero if a value of type TYPE stored in register REGNUM
1600 needs any special handling. */
1601
1602 static int
1603 i386_convert_register_p (int regnum, struct type *type)
1604 {
1605 int len = TYPE_LENGTH (type);
1606
1607 /* Values may be spread across multiple registers. Most debugging
1608 formats aren't expressive enough to specify the locations, so
1609 some heuristics is involved. Right now we only handle types that
1610 have a length that is a multiple of the word size, since GCC
1611 doesn't seem to put any other types into registers. */
1612 if (len > 4 && len % 4 == 0)
1613 {
1614 int last_regnum = regnum;
1615
1616 while (len > 4)
1617 {
1618 last_regnum = i386_next_regnum (last_regnum);
1619 len -= 4;
1620 }
1621
1622 if (last_regnum != -1)
1623 return 1;
1624 }
1625
1626 return i386_fp_regnum_p (regnum);
1627 }
1628
1629 /* Read a value of type TYPE from register REGNUM in frame FRAME, and
1630 return its contents in TO. */
1631
1632 static void
1633 i386_register_to_value (struct frame_info *frame, int regnum,
1634 struct type *type, void *to)
1635 {
1636 int len = TYPE_LENGTH (type);
1637 char *buf = to;
1638
1639 /* FIXME: kettenis/20030609: What should we do if REGNUM isn't
1640 available in FRAME (i.e. if it wasn't saved)? */
1641
1642 if (i386_fp_regnum_p (regnum))
1643 {
1644 i387_register_to_value (frame, regnum, type, to);
1645 return;
1646 }
1647
1648 /* Read a value spread across multiple registers. */
1649
1650 gdb_assert (len > 4 && len % 4 == 0);
1651
1652 while (len > 0)
1653 {
1654 gdb_assert (regnum != -1);
1655 gdb_assert (register_size (current_gdbarch, regnum) == 4);
1656
1657 get_frame_register (frame, regnum, buf);
1658 regnum = i386_next_regnum (regnum);
1659 len -= 4;
1660 buf += 4;
1661 }
1662 }
1663
1664 /* Write the contents FROM of a value of type TYPE into register
1665 REGNUM in frame FRAME. */
1666
1667 static void
1668 i386_value_to_register (struct frame_info *frame, int regnum,
1669 struct type *type, const void *from)
1670 {
1671 int len = TYPE_LENGTH (type);
1672 const char *buf = from;
1673
1674 if (i386_fp_regnum_p (regnum))
1675 {
1676 i387_value_to_register (frame, regnum, type, from);
1677 return;
1678 }
1679
1680 /* Write a value spread across multiple registers. */
1681
1682 gdb_assert (len > 4 && len % 4 == 0);
1683
1684 while (len > 0)
1685 {
1686 gdb_assert (regnum != -1);
1687 gdb_assert (register_size (current_gdbarch, regnum) == 4);
1688
1689 put_frame_register (frame, regnum, buf);
1690 regnum = i386_next_regnum (regnum);
1691 len -= 4;
1692 buf += 4;
1693 }
1694 }
1695 \f
1696 /* Supply register REGNUM from the buffer specified by GREGS and LEN
1697 in the general-purpose register set REGSET to register cache
1698 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
1699
1700 void
1701 i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
1702 int regnum, const void *gregs, size_t len)
1703 {
1704 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
1705 const char *regs = gregs;
1706 int i;
1707
1708 gdb_assert (len == tdep->sizeof_gregset);
1709
1710 for (i = 0; i < tdep->gregset_num_regs; i++)
1711 {
1712 if ((regnum == i || regnum == -1)
1713 && tdep->gregset_reg_offset[i] != -1)
1714 regcache_raw_supply (regcache, i, regs + tdep->gregset_reg_offset[i]);
1715 }
1716 }
1717
1718 /* Collect register REGNUM from the register cache REGCACHE and store
1719 it in the buffer specified by GREGS and LEN as described by the
1720 general-purpose register set REGSET. If REGNUM is -1, do this for
1721 all registers in REGSET. */
1722
1723 void
1724 i386_collect_gregset (const struct regset *regset,
1725 const struct regcache *regcache,
1726 int regnum, void *gregs, size_t len)
1727 {
1728 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
1729 char *regs = gregs;
1730 int i;
1731
1732 gdb_assert (len == tdep->sizeof_gregset);
1733
1734 for (i = 0; i < tdep->gregset_num_regs; i++)
1735 {
1736 if ((regnum == i || regnum == -1)
1737 && tdep->gregset_reg_offset[i] != -1)
1738 regcache_raw_collect (regcache, i, regs + tdep->gregset_reg_offset[i]);
1739 }
1740 }
1741
1742 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
1743 in the floating-point register set REGSET to register cache
1744 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
1745
1746 static void
1747 i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
1748 int regnum, const void *fpregs, size_t len)
1749 {
1750 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
1751
1752 if (len == I387_SIZEOF_FXSAVE)
1753 {
1754 i387_supply_fxsave (regcache, regnum, fpregs);
1755 return;
1756 }
1757
1758 gdb_assert (len == tdep->sizeof_fpregset);
1759 i387_supply_fsave (regcache, regnum, fpregs);
1760 }
1761
1762 /* Collect register REGNUM from the register cache REGCACHE and store
1763 it in the buffer specified by FPREGS and LEN as described by the
1764 floating-point register set REGSET. If REGNUM is -1, do this for
1765 all registers in REGSET. */
1766
1767 static void
1768 i386_collect_fpregset (const struct regset *regset,
1769 const struct regcache *regcache,
1770 int regnum, void *fpregs, size_t len)
1771 {
1772 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
1773
1774 if (len == I387_SIZEOF_FXSAVE)
1775 {
1776 i387_collect_fxsave (regcache, regnum, fpregs);
1777 return;
1778 }
1779
1780 gdb_assert (len == tdep->sizeof_fpregset);
1781 i387_collect_fsave (regcache, regnum, fpregs);
1782 }
1783
1784 /* Return the appropriate register set for the core section identified
1785 by SECT_NAME and SECT_SIZE. */
1786
1787 const struct regset *
1788 i386_regset_from_core_section (struct gdbarch *gdbarch,
1789 const char *sect_name, size_t sect_size)
1790 {
1791 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1792
1793 if (strcmp (sect_name, ".reg") == 0 && sect_size == tdep->sizeof_gregset)
1794 {
1795 if (tdep->gregset == NULL)
1796 tdep->gregset = regset_alloc (gdbarch, i386_supply_gregset,
1797 i386_collect_gregset);
1798 return tdep->gregset;
1799 }
1800
1801 if ((strcmp (sect_name, ".reg2") == 0 && sect_size == tdep->sizeof_fpregset)
1802 || (strcmp (sect_name, ".reg-xfp") == 0
1803 && sect_size == I387_SIZEOF_FXSAVE))
1804 {
1805 if (tdep->fpregset == NULL)
1806 tdep->fpregset = regset_alloc (gdbarch, i386_supply_fpregset,
1807 i386_collect_fpregset);
1808 return tdep->fpregset;
1809 }
1810
1811 return NULL;
1812 }
1813 \f
1814
1815 #ifdef STATIC_TRANSFORM_NAME
1816 /* SunPRO encodes the static variables. This is not related to C++
1817 mangling, it is done for C too. */
1818
1819 char *
1820 sunpro_static_transform_name (char *name)
1821 {
1822 char *p;
1823 if (IS_STATIC_TRANSFORM_NAME (name))
1824 {
1825 /* For file-local statics there will be a period, a bunch of
1826 junk (the contents of which match a string given in the
1827 N_OPT), a period and the name. For function-local statics
1828 there will be a bunch of junk (which seems to change the
1829 second character from 'A' to 'B'), a period, the name of the
1830 function, and the name. So just skip everything before the
1831 last period. */
1832 p = strrchr (name, '.');
1833 if (p != NULL)
1834 name = p + 1;
1835 }
1836 return name;
1837 }
1838 #endif /* STATIC_TRANSFORM_NAME */
1839 \f
1840
1841 /* Stuff for WIN32 PE style DLL's but is pretty generic really. */
1842
1843 CORE_ADDR
1844 i386_pe_skip_trampoline_code (CORE_ADDR pc, char *name)
1845 {
1846 if (pc && read_memory_unsigned_integer (pc, 2) == 0x25ff) /* jmp *(dest) */
1847 {
1848 unsigned long indirect = read_memory_unsigned_integer (pc + 2, 4);
1849 struct minimal_symbol *indsym =
1850 indirect ? lookup_minimal_symbol_by_pc (indirect) : 0;
1851 char *symname = indsym ? SYMBOL_LINKAGE_NAME (indsym) : 0;
1852
1853 if (symname)
1854 {
1855 if (strncmp (symname, "__imp_", 6) == 0
1856 || strncmp (symname, "_imp_", 5) == 0)
1857 return name ? 1 : read_memory_unsigned_integer (indirect, 4);
1858 }
1859 }
1860 return 0; /* Not a trampoline. */
1861 }
1862 \f
1863
1864 /* Return whether the frame preceding NEXT_FRAME corresponds to a
1865 sigtramp routine. */
1866
1867 static int
1868 i386_sigtramp_p (struct frame_info *next_frame)
1869 {
1870 CORE_ADDR pc = frame_pc_unwind (next_frame);
1871 char *name;
1872
1873 find_pc_partial_function (pc, &name, NULL, NULL);
1874 return (name && strcmp ("_sigtramp", name) == 0);
1875 }
1876 \f
1877
1878 /* We have two flavours of disassembly. The machinery on this page
1879 deals with switching between those. */
1880
1881 static int
1882 i386_print_insn (bfd_vma pc, struct disassemble_info *info)
1883 {
1884 gdb_assert (disassembly_flavor == att_flavor
1885 || disassembly_flavor == intel_flavor);
1886
1887 /* FIXME: kettenis/20020915: Until disassembler_options is properly
1888 constified, cast to prevent a compiler warning. */
1889 info->disassembler_options = (char *) disassembly_flavor;
1890 info->mach = gdbarch_bfd_arch_info (current_gdbarch)->mach;
1891
1892 return print_insn_i386 (pc, info);
1893 }
1894 \f
1895
1896 /* There are a few i386 architecture variants that differ only
1897 slightly from the generic i386 target. For now, we don't give them
1898 their own source file, but include them here. As a consequence,
1899 they'll always be included. */
1900
1901 /* System V Release 4 (SVR4). */
1902
1903 /* Return whether the frame preceding NEXT_FRAME corresponds to a SVR4
1904 sigtramp routine. */
1905
1906 static int
1907 i386_svr4_sigtramp_p (struct frame_info *next_frame)
1908 {
1909 CORE_ADDR pc = frame_pc_unwind (next_frame);
1910 char *name;
1911
1912 /* UnixWare uses _sigacthandler. The origin of the other symbols is
1913 currently unknown. */
1914 find_pc_partial_function (pc, &name, NULL, NULL);
1915 return (name && (strcmp ("_sigreturn", name) == 0
1916 || strcmp ("_sigacthandler", name) == 0
1917 || strcmp ("sigvechandler", name) == 0));
1918 }
1919
1920 /* Assuming NEXT_FRAME is for a frame following a SVR4 sigtramp
1921 routine, return the address of the associated sigcontext (ucontext)
1922 structure. */
1923
1924 static CORE_ADDR
1925 i386_svr4_sigcontext_addr (struct frame_info *next_frame)
1926 {
1927 char buf[4];
1928 CORE_ADDR sp;
1929
1930 frame_unwind_register (next_frame, I386_ESP_REGNUM, buf);
1931 sp = extract_unsigned_integer (buf, 4);
1932
1933 return read_memory_unsigned_integer (sp + 8, 4);
1934 }
1935 \f
1936
1937 /* Generic ELF. */
1938
1939 void
1940 i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1941 {
1942 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
1943 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
1944 }
1945
1946 /* System V Release 4 (SVR4). */
1947
1948 void
1949 i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1950 {
1951 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1952
1953 /* System V Release 4 uses ELF. */
1954 i386_elf_init_abi (info, gdbarch);
1955
1956 /* System V Release 4 has shared libraries. */
1957 set_gdbarch_in_solib_call_trampoline (gdbarch, in_plt_section);
1958 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
1959
1960 tdep->sigtramp_p = i386_svr4_sigtramp_p;
1961 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
1962 tdep->sc_pc_offset = 36 + 14 * 4;
1963 tdep->sc_sp_offset = 36 + 17 * 4;
1964
1965 tdep->jb_pc_offset = 20;
1966 }
1967
1968 /* DJGPP. */
1969
1970 static void
1971 i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1972 {
1973 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1974
1975 /* DJGPP doesn't have any special frames for signal handlers. */
1976 tdep->sigtramp_p = NULL;
1977
1978 tdep->jb_pc_offset = 36;
1979 }
1980
1981 /* NetWare. */
1982
1983 static void
1984 i386_nw_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1985 {
1986 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1987
1988 tdep->jb_pc_offset = 24;
1989 }
1990 \f
1991
1992 /* i386 register groups. In addition to the normal groups, add "mmx"
1993 and "sse". */
1994
1995 static struct reggroup *i386_sse_reggroup;
1996 static struct reggroup *i386_mmx_reggroup;
1997
1998 static void
1999 i386_init_reggroups (void)
2000 {
2001 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
2002 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
2003 }
2004
2005 static void
2006 i386_add_reggroups (struct gdbarch *gdbarch)
2007 {
2008 reggroup_add (gdbarch, i386_sse_reggroup);
2009 reggroup_add (gdbarch, i386_mmx_reggroup);
2010 reggroup_add (gdbarch, general_reggroup);
2011 reggroup_add (gdbarch, float_reggroup);
2012 reggroup_add (gdbarch, all_reggroup);
2013 reggroup_add (gdbarch, save_reggroup);
2014 reggroup_add (gdbarch, restore_reggroup);
2015 reggroup_add (gdbarch, vector_reggroup);
2016 reggroup_add (gdbarch, system_reggroup);
2017 }
2018
2019 int
2020 i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
2021 struct reggroup *group)
2022 {
2023 int sse_regnum_p = (i386_sse_regnum_p (gdbarch, regnum)
2024 || i386_mxcsr_regnum_p (gdbarch, regnum));
2025 int fp_regnum_p = (i386_fp_regnum_p (regnum)
2026 || i386_fpc_regnum_p (regnum));
2027 int mmx_regnum_p = (i386_mmx_regnum_p (gdbarch, regnum));
2028
2029 if (group == i386_mmx_reggroup)
2030 return mmx_regnum_p;
2031 if (group == i386_sse_reggroup)
2032 return sse_regnum_p;
2033 if (group == vector_reggroup)
2034 return (mmx_regnum_p || sse_regnum_p);
2035 if (group == float_reggroup)
2036 return fp_regnum_p;
2037 if (group == general_reggroup)
2038 return (!fp_regnum_p && !mmx_regnum_p && !sse_regnum_p);
2039
2040 return default_register_reggroup_p (gdbarch, regnum, group);
2041 }
2042 \f
2043
2044 /* Get the ARGIth function argument for the current function. */
2045
2046 static CORE_ADDR
2047 i386_fetch_pointer_argument (struct frame_info *frame, int argi,
2048 struct type *type)
2049 {
2050 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
2051 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4);
2052 }
2053
2054 \f
2055 static struct gdbarch *
2056 i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2057 {
2058 struct gdbarch_tdep *tdep;
2059 struct gdbarch *gdbarch;
2060
2061 /* If there is already a candidate, use it. */
2062 arches = gdbarch_list_lookup_by_info (arches, &info);
2063 if (arches != NULL)
2064 return arches->gdbarch;
2065
2066 /* Allocate space for the new architecture. */
2067 tdep = XMALLOC (struct gdbarch_tdep);
2068 gdbarch = gdbarch_alloc (&info, tdep);
2069
2070 /* General-purpose registers. */
2071 tdep->gregset = NULL;
2072 tdep->gregset_reg_offset = NULL;
2073 tdep->gregset_num_regs = I386_NUM_GREGS;
2074 tdep->sizeof_gregset = 0;
2075
2076 /* Floating-point registers. */
2077 tdep->fpregset = NULL;
2078 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
2079
2080 /* The default settings include the FPU registers, the MMX registers
2081 and the SSE registers. This can be overridden for a specific ABI
2082 by adjusting the members `st0_regnum', `mm0_regnum' and
2083 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
2084 will show up in the output of "info all-registers". Ideally we
2085 should try to autodetect whether they are available, such that we
2086 can prevent "info all-registers" from displaying registers that
2087 aren't available.
2088
2089 NOTE: kevinb/2003-07-13: ... if it's a choice between printing
2090 [the SSE registers] always (even when they don't exist) or never
2091 showing them to the user (even when they do exist), I prefer the
2092 former over the latter. */
2093
2094 tdep->st0_regnum = I386_ST0_REGNUM;
2095
2096 /* The MMX registers are implemented as pseudo-registers. Put off
2097 calculating the register number for %mm0 until we know the number
2098 of raw registers. */
2099 tdep->mm0_regnum = 0;
2100
2101 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
2102 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
2103
2104 tdep->jb_pc_offset = -1;
2105 tdep->struct_return = pcc_struct_return;
2106 tdep->sigtramp_start = 0;
2107 tdep->sigtramp_end = 0;
2108 tdep->sigtramp_p = i386_sigtramp_p;
2109 tdep->sigcontext_addr = NULL;
2110 tdep->sc_reg_offset = NULL;
2111 tdep->sc_pc_offset = -1;
2112 tdep->sc_sp_offset = -1;
2113
2114 /* The format used for `long double' on almost all i386 targets is
2115 the i387 extended floating-point format. In fact, of all targets
2116 in the GCC 2.95 tree, only OSF/1 does it different, and insists
2117 on having a `long double' that's not `long' at all. */
2118 set_gdbarch_long_double_format (gdbarch, &floatformat_i387_ext);
2119
2120 /* Although the i387 extended floating-point has only 80 significant
2121 bits, a `long double' actually takes up 96, probably to enforce
2122 alignment. */
2123 set_gdbarch_long_double_bit (gdbarch, 96);
2124
2125 /* The default ABI includes general-purpose registers,
2126 floating-point registers, and the SSE registers. */
2127 set_gdbarch_num_regs (gdbarch, I386_SSE_NUM_REGS);
2128 set_gdbarch_register_name (gdbarch, i386_register_name);
2129 set_gdbarch_register_type (gdbarch, i386_register_type);
2130
2131 /* Register numbers of various important registers. */
2132 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
2133 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
2134 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
2135 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
2136
2137 /* NOTE: kettenis/20040418: GCC does have two possible register
2138 numbering schemes on the i386: dbx and SVR4. These schemes
2139 differ in how they number %ebp, %esp, %eflags, and the
2140 floating-point registers, and are implemented by the arrays
2141 dbx_register_map[] and svr4_dbx_register_map in
2142 gcc/config/i386.c. GCC also defines a third numbering scheme in
2143 gcc/config/i386.c, which it designates as the "default" register
2144 map used in 64bit mode. This last register numbering scheme is
2145 implemented in dbx64_register_map, and is used for AMD64; see
2146 amd64-tdep.c.
2147
2148 Currently, each GCC i386 target always uses the same register
2149 numbering scheme across all its supported debugging formats
2150 i.e. SDB (COFF), stabs and DWARF 2. This is because
2151 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
2152 DBX_REGISTER_NUMBER macro which is defined by each target's
2153 respective config header in a manner independent of the requested
2154 output debugging format.
2155
2156 This does not match the arrangement below, which presumes that
2157 the SDB and stabs numbering schemes differ from the DWARF and
2158 DWARF 2 ones. The reason for this arrangement is that it is
2159 likely to get the numbering scheme for the target's
2160 default/native debug format right. For targets where GCC is the
2161 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
2162 targets where the native toolchain uses a different numbering
2163 scheme for a particular debug format (stabs-in-ELF on Solaris)
2164 the defaults below will have to be overridden, like
2165 i386_elf_init_abi() does. */
2166
2167 /* Use the dbx register numbering scheme for stabs and COFF. */
2168 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
2169 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
2170
2171 /* Use the SVR4 register numbering scheme for DWARF and DWARF 2. */
2172 set_gdbarch_dwarf_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
2173 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
2174
2175 /* We don't define ECOFF_REG_TO_REGNUM, since ECOFF doesn't seem to
2176 be in use on any of the supported i386 targets. */
2177
2178 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
2179
2180 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
2181
2182 /* Call dummy code. */
2183 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
2184
2185 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
2186 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
2187 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
2188
2189 set_gdbarch_return_value (gdbarch, i386_return_value);
2190
2191 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
2192
2193 /* Stack grows downward. */
2194 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2195
2196 set_gdbarch_breakpoint_from_pc (gdbarch, i386_breakpoint_from_pc);
2197 set_gdbarch_decr_pc_after_break (gdbarch, 1);
2198
2199 set_gdbarch_frame_args_skip (gdbarch, 8);
2200
2201 /* Wire in the MMX registers. */
2202 set_gdbarch_num_pseudo_regs (gdbarch, i386_num_mmx_regs);
2203 set_gdbarch_pseudo_register_read (gdbarch, i386_pseudo_register_read);
2204 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
2205
2206 set_gdbarch_print_insn (gdbarch, i386_print_insn);
2207
2208 set_gdbarch_unwind_dummy_id (gdbarch, i386_unwind_dummy_id);
2209
2210 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
2211
2212 /* Add the i386 register groups. */
2213 i386_add_reggroups (gdbarch);
2214 set_gdbarch_register_reggroup_p (gdbarch, i386_register_reggroup_p);
2215
2216 /* Helper for function argument information. */
2217 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
2218
2219 /* Hook in the DWARF CFI frame unwinder. */
2220 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
2221
2222 frame_base_set_default (gdbarch, &i386_frame_base);
2223
2224 /* Hook in ABI-specific overrides, if they have been registered. */
2225 gdbarch_init_osabi (info, gdbarch);
2226
2227 frame_unwind_append_sniffer (gdbarch, i386_sigtramp_frame_sniffer);
2228 frame_unwind_append_sniffer (gdbarch, i386_frame_sniffer);
2229
2230 /* If we have a register mapping, enable the generic core file
2231 support, unless it has already been enabled. */
2232 if (tdep->gregset_reg_offset
2233 && !gdbarch_regset_from_core_section_p (gdbarch))
2234 set_gdbarch_regset_from_core_section (gdbarch,
2235 i386_regset_from_core_section);
2236
2237 /* Unless support for MMX has been disabled, make %mm0 the first
2238 pseudo-register. */
2239 if (tdep->mm0_regnum == 0)
2240 tdep->mm0_regnum = gdbarch_num_regs (gdbarch);
2241
2242 return gdbarch;
2243 }
2244
2245 static enum gdb_osabi
2246 i386_coff_osabi_sniffer (bfd *abfd)
2247 {
2248 if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
2249 || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
2250 return GDB_OSABI_GO32;
2251
2252 return GDB_OSABI_UNKNOWN;
2253 }
2254
2255 static enum gdb_osabi
2256 i386_nlm_osabi_sniffer (bfd *abfd)
2257 {
2258 return GDB_OSABI_NETWARE;
2259 }
2260 \f
2261
2262 /* Provide a prototype to silence -Wmissing-prototypes. */
2263 void _initialize_i386_tdep (void);
2264
2265 void
2266 _initialize_i386_tdep (void)
2267 {
2268 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
2269
2270 /* Add the variable that controls the disassembly flavor. */
2271 {
2272 struct cmd_list_element *new_cmd;
2273
2274 new_cmd = add_set_enum_cmd ("disassembly-flavor", no_class,
2275 valid_flavors,
2276 &disassembly_flavor,
2277 "\
2278 Set the disassembly flavor, the valid values are \"att\" and \"intel\", \
2279 and the default value is \"att\".",
2280 &setlist);
2281 deprecated_add_show_from_set (new_cmd, &showlist);
2282 }
2283
2284 /* Add the variable that controls the convention for returning
2285 structs. */
2286 {
2287 struct cmd_list_element *new_cmd;
2288
2289 new_cmd = add_set_enum_cmd ("struct-convention", no_class,
2290 valid_conventions,
2291 &struct_convention, "\
2292 Set the convention for returning small structs, valid values \
2293 are \"default\", \"pcc\" and \"reg\", and the default value is \"default\".",
2294 &setlist);
2295 deprecated_add_show_from_set (new_cmd, &showlist);
2296 }
2297
2298 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
2299 i386_coff_osabi_sniffer);
2300 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_nlm_flavour,
2301 i386_nlm_osabi_sniffer);
2302
2303 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
2304 i386_svr4_init_abi);
2305 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_GO32,
2306 i386_go32_init_abi);
2307 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_NETWARE,
2308 i386_nw_init_abi);
2309
2310 /* Initialize the i386 specific register groups. */
2311 i386_init_reggroups ();
2312 }
This page took 0.091392 seconds and 4 git commands to generate.