Add target description for avx-avx512.
[deliverable/binutils-gdb.git] / gdb / i386-tdep.c
1 /* Intel 386 target-dependent stuff.
2
3 Copyright (C) 1988-2017 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "opcode/i386.h"
22 #include "arch-utils.h"
23 #include "command.h"
24 #include "dummy-frame.h"
25 #include "dwarf2-frame.h"
26 #include "doublest.h"
27 #include "frame.h"
28 #include "frame-base.h"
29 #include "frame-unwind.h"
30 #include "inferior.h"
31 #include "infrun.h"
32 #include "gdbcmd.h"
33 #include "gdbcore.h"
34 #include "gdbtypes.h"
35 #include "objfiles.h"
36 #include "osabi.h"
37 #include "regcache.h"
38 #include "reggroups.h"
39 #include "regset.h"
40 #include "symfile.h"
41 #include "symtab.h"
42 #include "target.h"
43 #include "value.h"
44 #include "dis-asm.h"
45 #include "disasm.h"
46 #include "remote.h"
47 #include "i386-tdep.h"
48 #include "i387-tdep.h"
49 #include "x86-xstate.h"
50
51 #include "record.h"
52 #include "record-full.h"
53 #include "features/i386/i386.c"
54 #include "features/i386/i386-avx.c"
55 #include "features/i386/i386-mpx.c"
56 #include "features/i386/i386-avx-mpx.c"
57 #include "features/i386/i386-avx-avx512.c"
58 #include "features/i386/i386-avx-mpx-avx512.c"
59 #include "features/i386/i386-mmx.c"
60
61 #include "ax.h"
62 #include "ax-gdb.h"
63
64 #include "stap-probe.h"
65 #include "user-regs.h"
66 #include "cli/cli-utils.h"
67 #include "expression.h"
68 #include "parser-defs.h"
69 #include <ctype.h>
70 #include <algorithm>
71
72 /* Register names. */
73
74 static const char *i386_register_names[] =
75 {
76 "eax", "ecx", "edx", "ebx",
77 "esp", "ebp", "esi", "edi",
78 "eip", "eflags", "cs", "ss",
79 "ds", "es", "fs", "gs",
80 "st0", "st1", "st2", "st3",
81 "st4", "st5", "st6", "st7",
82 "fctrl", "fstat", "ftag", "fiseg",
83 "fioff", "foseg", "fooff", "fop",
84 "xmm0", "xmm1", "xmm2", "xmm3",
85 "xmm4", "xmm5", "xmm6", "xmm7",
86 "mxcsr"
87 };
88
89 static const char *i386_zmm_names[] =
90 {
91 "zmm0", "zmm1", "zmm2", "zmm3",
92 "zmm4", "zmm5", "zmm6", "zmm7"
93 };
94
95 static const char *i386_zmmh_names[] =
96 {
97 "zmm0h", "zmm1h", "zmm2h", "zmm3h",
98 "zmm4h", "zmm5h", "zmm6h", "zmm7h"
99 };
100
101 static const char *i386_k_names[] =
102 {
103 "k0", "k1", "k2", "k3",
104 "k4", "k5", "k6", "k7"
105 };
106
107 static const char *i386_ymm_names[] =
108 {
109 "ymm0", "ymm1", "ymm2", "ymm3",
110 "ymm4", "ymm5", "ymm6", "ymm7",
111 };
112
113 static const char *i386_ymmh_names[] =
114 {
115 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
116 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
117 };
118
119 static const char *i386_mpx_names[] =
120 {
121 "bnd0raw", "bnd1raw", "bnd2raw", "bnd3raw", "bndcfgu", "bndstatus"
122 };
123
124 /* Register names for MPX pseudo-registers. */
125
126 static const char *i386_bnd_names[] =
127 {
128 "bnd0", "bnd1", "bnd2", "bnd3"
129 };
130
131 /* Register names for MMX pseudo-registers. */
132
133 static const char *i386_mmx_names[] =
134 {
135 "mm0", "mm1", "mm2", "mm3",
136 "mm4", "mm5", "mm6", "mm7"
137 };
138
139 /* Register names for byte pseudo-registers. */
140
141 static const char *i386_byte_names[] =
142 {
143 "al", "cl", "dl", "bl",
144 "ah", "ch", "dh", "bh"
145 };
146
147 /* Register names for word pseudo-registers. */
148
149 static const char *i386_word_names[] =
150 {
151 "ax", "cx", "dx", "bx",
152 "", "bp", "si", "di"
153 };
154
155 /* Constant used for reading/writing pseudo registers. In 64-bit mode, we have
156 16 lower ZMM regs that extend corresponding xmm/ymm registers. In addition,
157 we have 16 upper ZMM regs that have to be handled differently. */
158
159 const int num_lower_zmm_regs = 16;
160
161 /* MMX register? */
162
163 static int
164 i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
165 {
166 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
167 int mm0_regnum = tdep->mm0_regnum;
168
169 if (mm0_regnum < 0)
170 return 0;
171
172 regnum -= mm0_regnum;
173 return regnum >= 0 && regnum < tdep->num_mmx_regs;
174 }
175
176 /* Byte register? */
177
178 int
179 i386_byte_regnum_p (struct gdbarch *gdbarch, int regnum)
180 {
181 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
182
183 regnum -= tdep->al_regnum;
184 return regnum >= 0 && regnum < tdep->num_byte_regs;
185 }
186
187 /* Word register? */
188
189 int
190 i386_word_regnum_p (struct gdbarch *gdbarch, int regnum)
191 {
192 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
193
194 regnum -= tdep->ax_regnum;
195 return regnum >= 0 && regnum < tdep->num_word_regs;
196 }
197
198 /* Dword register? */
199
200 int
201 i386_dword_regnum_p (struct gdbarch *gdbarch, int regnum)
202 {
203 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
204 int eax_regnum = tdep->eax_regnum;
205
206 if (eax_regnum < 0)
207 return 0;
208
209 regnum -= eax_regnum;
210 return regnum >= 0 && regnum < tdep->num_dword_regs;
211 }
212
213 /* AVX512 register? */
214
215 int
216 i386_zmmh_regnum_p (struct gdbarch *gdbarch, int regnum)
217 {
218 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
219 int zmm0h_regnum = tdep->zmm0h_regnum;
220
221 if (zmm0h_regnum < 0)
222 return 0;
223
224 regnum -= zmm0h_regnum;
225 return regnum >= 0 && regnum < tdep->num_zmm_regs;
226 }
227
228 int
229 i386_zmm_regnum_p (struct gdbarch *gdbarch, int regnum)
230 {
231 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
232 int zmm0_regnum = tdep->zmm0_regnum;
233
234 if (zmm0_regnum < 0)
235 return 0;
236
237 regnum -= zmm0_regnum;
238 return regnum >= 0 && regnum < tdep->num_zmm_regs;
239 }
240
241 int
242 i386_k_regnum_p (struct gdbarch *gdbarch, int regnum)
243 {
244 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
245 int k0_regnum = tdep->k0_regnum;
246
247 if (k0_regnum < 0)
248 return 0;
249
250 regnum -= k0_regnum;
251 return regnum >= 0 && regnum < I387_NUM_K_REGS;
252 }
253
254 static int
255 i386_ymmh_regnum_p (struct gdbarch *gdbarch, int regnum)
256 {
257 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
258 int ymm0h_regnum = tdep->ymm0h_regnum;
259
260 if (ymm0h_regnum < 0)
261 return 0;
262
263 regnum -= ymm0h_regnum;
264 return regnum >= 0 && regnum < tdep->num_ymm_regs;
265 }
266
267 /* AVX register? */
268
269 int
270 i386_ymm_regnum_p (struct gdbarch *gdbarch, int regnum)
271 {
272 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
273 int ymm0_regnum = tdep->ymm0_regnum;
274
275 if (ymm0_regnum < 0)
276 return 0;
277
278 regnum -= ymm0_regnum;
279 return regnum >= 0 && regnum < tdep->num_ymm_regs;
280 }
281
282 static int
283 i386_ymmh_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
284 {
285 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
286 int ymm16h_regnum = tdep->ymm16h_regnum;
287
288 if (ymm16h_regnum < 0)
289 return 0;
290
291 regnum -= ymm16h_regnum;
292 return regnum >= 0 && regnum < tdep->num_ymm_avx512_regs;
293 }
294
295 int
296 i386_ymm_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
297 {
298 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
299 int ymm16_regnum = tdep->ymm16_regnum;
300
301 if (ymm16_regnum < 0)
302 return 0;
303
304 regnum -= ymm16_regnum;
305 return regnum >= 0 && regnum < tdep->num_ymm_avx512_regs;
306 }
307
308 /* BND register? */
309
310 int
311 i386_bnd_regnum_p (struct gdbarch *gdbarch, int regnum)
312 {
313 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
314 int bnd0_regnum = tdep->bnd0_regnum;
315
316 if (bnd0_regnum < 0)
317 return 0;
318
319 regnum -= bnd0_regnum;
320 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
321 }
322
323 /* SSE register? */
324
325 int
326 i386_xmm_regnum_p (struct gdbarch *gdbarch, int regnum)
327 {
328 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
329 int num_xmm_regs = I387_NUM_XMM_REGS (tdep);
330
331 if (num_xmm_regs == 0)
332 return 0;
333
334 regnum -= I387_XMM0_REGNUM (tdep);
335 return regnum >= 0 && regnum < num_xmm_regs;
336 }
337
338 /* XMM_512 register? */
339
340 int
341 i386_xmm_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
342 {
343 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
344 int num_xmm_avx512_regs = I387_NUM_XMM_AVX512_REGS (tdep);
345
346 if (num_xmm_avx512_regs == 0)
347 return 0;
348
349 regnum -= I387_XMM16_REGNUM (tdep);
350 return regnum >= 0 && regnum < num_xmm_avx512_regs;
351 }
352
353 static int
354 i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
355 {
356 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
357
358 if (I387_NUM_XMM_REGS (tdep) == 0)
359 return 0;
360
361 return (regnum == I387_MXCSR_REGNUM (tdep));
362 }
363
364 /* FP register? */
365
366 int
367 i386_fp_regnum_p (struct gdbarch *gdbarch, int regnum)
368 {
369 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
370
371 if (I387_ST0_REGNUM (tdep) < 0)
372 return 0;
373
374 return (I387_ST0_REGNUM (tdep) <= regnum
375 && regnum < I387_FCTRL_REGNUM (tdep));
376 }
377
378 int
379 i386_fpc_regnum_p (struct gdbarch *gdbarch, int regnum)
380 {
381 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
382
383 if (I387_ST0_REGNUM (tdep) < 0)
384 return 0;
385
386 return (I387_FCTRL_REGNUM (tdep) <= regnum
387 && regnum < I387_XMM0_REGNUM (tdep));
388 }
389
390 /* BNDr (raw) register? */
391
392 static int
393 i386_bndr_regnum_p (struct gdbarch *gdbarch, int regnum)
394 {
395 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
396
397 if (I387_BND0R_REGNUM (tdep) < 0)
398 return 0;
399
400 regnum -= tdep->bnd0r_regnum;
401 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
402 }
403
404 /* BND control register? */
405
406 static int
407 i386_mpx_ctrl_regnum_p (struct gdbarch *gdbarch, int regnum)
408 {
409 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
410
411 if (I387_BNDCFGU_REGNUM (tdep) < 0)
412 return 0;
413
414 regnum -= I387_BNDCFGU_REGNUM (tdep);
415 return regnum >= 0 && regnum < I387_NUM_MPX_CTRL_REGS;
416 }
417
418 /* Return the name of register REGNUM, or the empty string if it is
419 an anonymous register. */
420
421 static const char *
422 i386_register_name (struct gdbarch *gdbarch, int regnum)
423 {
424 /* Hide the upper YMM registers. */
425 if (i386_ymmh_regnum_p (gdbarch, regnum))
426 return "";
427
428 /* Hide the upper YMM16-31 registers. */
429 if (i386_ymmh_avx512_regnum_p (gdbarch, regnum))
430 return "";
431
432 /* Hide the upper ZMM registers. */
433 if (i386_zmmh_regnum_p (gdbarch, regnum))
434 return "";
435
436 return tdesc_register_name (gdbarch, regnum);
437 }
438
439 /* Return the name of register REGNUM. */
440
441 const char *
442 i386_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
443 {
444 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
445 if (i386_bnd_regnum_p (gdbarch, regnum))
446 return i386_bnd_names[regnum - tdep->bnd0_regnum];
447 if (i386_mmx_regnum_p (gdbarch, regnum))
448 return i386_mmx_names[regnum - I387_MM0_REGNUM (tdep)];
449 else if (i386_ymm_regnum_p (gdbarch, regnum))
450 return i386_ymm_names[regnum - tdep->ymm0_regnum];
451 else if (i386_zmm_regnum_p (gdbarch, regnum))
452 return i386_zmm_names[regnum - tdep->zmm0_regnum];
453 else if (i386_byte_regnum_p (gdbarch, regnum))
454 return i386_byte_names[regnum - tdep->al_regnum];
455 else if (i386_word_regnum_p (gdbarch, regnum))
456 return i386_word_names[regnum - tdep->ax_regnum];
457
458 internal_error (__FILE__, __LINE__, _("invalid regnum"));
459 }
460
461 /* Convert a dbx register number REG to the appropriate register
462 number used by GDB. */
463
464 static int
465 i386_dbx_reg_to_regnum (struct gdbarch *gdbarch, int reg)
466 {
467 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
468
469 /* This implements what GCC calls the "default" register map
470 (dbx_register_map[]). */
471
472 if (reg >= 0 && reg <= 7)
473 {
474 /* General-purpose registers. The debug info calls %ebp
475 register 4, and %esp register 5. */
476 if (reg == 4)
477 return 5;
478 else if (reg == 5)
479 return 4;
480 else return reg;
481 }
482 else if (reg >= 12 && reg <= 19)
483 {
484 /* Floating-point registers. */
485 return reg - 12 + I387_ST0_REGNUM (tdep);
486 }
487 else if (reg >= 21 && reg <= 28)
488 {
489 /* SSE registers. */
490 int ymm0_regnum = tdep->ymm0_regnum;
491
492 if (ymm0_regnum >= 0
493 && i386_xmm_regnum_p (gdbarch, reg))
494 return reg - 21 + ymm0_regnum;
495 else
496 return reg - 21 + I387_XMM0_REGNUM (tdep);
497 }
498 else if (reg >= 29 && reg <= 36)
499 {
500 /* MMX registers. */
501 return reg - 29 + I387_MM0_REGNUM (tdep);
502 }
503
504 /* This will hopefully provoke a warning. */
505 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
506 }
507
508 /* Convert SVR4 DWARF register number REG to the appropriate register number
509 used by GDB. */
510
511 static int
512 i386_svr4_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
513 {
514 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
515
516 /* This implements the GCC register map that tries to be compatible
517 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
518
519 /* The SVR4 register numbering includes %eip and %eflags, and
520 numbers the floating point registers differently. */
521 if (reg >= 0 && reg <= 9)
522 {
523 /* General-purpose registers. */
524 return reg;
525 }
526 else if (reg >= 11 && reg <= 18)
527 {
528 /* Floating-point registers. */
529 return reg - 11 + I387_ST0_REGNUM (tdep);
530 }
531 else if (reg >= 21 && reg <= 36)
532 {
533 /* The SSE and MMX registers have the same numbers as with dbx. */
534 return i386_dbx_reg_to_regnum (gdbarch, reg);
535 }
536
537 switch (reg)
538 {
539 case 37: return I387_FCTRL_REGNUM (tdep);
540 case 38: return I387_FSTAT_REGNUM (tdep);
541 case 39: return I387_MXCSR_REGNUM (tdep);
542 case 40: return I386_ES_REGNUM;
543 case 41: return I386_CS_REGNUM;
544 case 42: return I386_SS_REGNUM;
545 case 43: return I386_DS_REGNUM;
546 case 44: return I386_FS_REGNUM;
547 case 45: return I386_GS_REGNUM;
548 }
549
550 return -1;
551 }
552
553 /* Wrapper on i386_svr4_dwarf_reg_to_regnum to return
554 num_regs + num_pseudo_regs for other debug formats. */
555
556 static int
557 i386_svr4_reg_to_regnum (struct gdbarch *gdbarch, int reg)
558 {
559 int regnum = i386_svr4_dwarf_reg_to_regnum (gdbarch, reg);
560
561 if (regnum == -1)
562 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
563 return regnum;
564 }
565
566 \f
567
568 /* This is the variable that is set with "set disassembly-flavor", and
569 its legitimate values. */
570 static const char att_flavor[] = "att";
571 static const char intel_flavor[] = "intel";
572 static const char *const valid_flavors[] =
573 {
574 att_flavor,
575 intel_flavor,
576 NULL
577 };
578 static const char *disassembly_flavor = att_flavor;
579 \f
580
581 /* Use the program counter to determine the contents and size of a
582 breakpoint instruction. Return a pointer to a string of bytes that
583 encode a breakpoint instruction, store the length of the string in
584 *LEN and optionally adjust *PC to point to the correct memory
585 location for inserting the breakpoint.
586
587 On the i386 we have a single breakpoint that fits in a single byte
588 and can be inserted anywhere.
589
590 This function is 64-bit safe. */
591
592 constexpr gdb_byte i386_break_insn[] = { 0xcc }; /* int 3 */
593
594 typedef BP_MANIPULATION (i386_break_insn) i386_breakpoint;
595
596 \f
597 /* Displaced instruction handling. */
598
599 /* Skip the legacy instruction prefixes in INSN.
600 Not all prefixes are valid for any particular insn
601 but we needn't care, the insn will fault if it's invalid.
602 The result is a pointer to the first opcode byte,
603 or NULL if we run off the end of the buffer. */
604
605 static gdb_byte *
606 i386_skip_prefixes (gdb_byte *insn, size_t max_len)
607 {
608 gdb_byte *end = insn + max_len;
609
610 while (insn < end)
611 {
612 switch (*insn)
613 {
614 case DATA_PREFIX_OPCODE:
615 case ADDR_PREFIX_OPCODE:
616 case CS_PREFIX_OPCODE:
617 case DS_PREFIX_OPCODE:
618 case ES_PREFIX_OPCODE:
619 case FS_PREFIX_OPCODE:
620 case GS_PREFIX_OPCODE:
621 case SS_PREFIX_OPCODE:
622 case LOCK_PREFIX_OPCODE:
623 case REPE_PREFIX_OPCODE:
624 case REPNE_PREFIX_OPCODE:
625 ++insn;
626 continue;
627 default:
628 return insn;
629 }
630 }
631
632 return NULL;
633 }
634
635 static int
636 i386_absolute_jmp_p (const gdb_byte *insn)
637 {
638 /* jmp far (absolute address in operand). */
639 if (insn[0] == 0xea)
640 return 1;
641
642 if (insn[0] == 0xff)
643 {
644 /* jump near, absolute indirect (/4). */
645 if ((insn[1] & 0x38) == 0x20)
646 return 1;
647
648 /* jump far, absolute indirect (/5). */
649 if ((insn[1] & 0x38) == 0x28)
650 return 1;
651 }
652
653 return 0;
654 }
655
656 /* Return non-zero if INSN is a jump, zero otherwise. */
657
658 static int
659 i386_jmp_p (const gdb_byte *insn)
660 {
661 /* jump short, relative. */
662 if (insn[0] == 0xeb)
663 return 1;
664
665 /* jump near, relative. */
666 if (insn[0] == 0xe9)
667 return 1;
668
669 return i386_absolute_jmp_p (insn);
670 }
671
672 static int
673 i386_absolute_call_p (const gdb_byte *insn)
674 {
675 /* call far, absolute. */
676 if (insn[0] == 0x9a)
677 return 1;
678
679 if (insn[0] == 0xff)
680 {
681 /* Call near, absolute indirect (/2). */
682 if ((insn[1] & 0x38) == 0x10)
683 return 1;
684
685 /* Call far, absolute indirect (/3). */
686 if ((insn[1] & 0x38) == 0x18)
687 return 1;
688 }
689
690 return 0;
691 }
692
693 static int
694 i386_ret_p (const gdb_byte *insn)
695 {
696 switch (insn[0])
697 {
698 case 0xc2: /* ret near, pop N bytes. */
699 case 0xc3: /* ret near */
700 case 0xca: /* ret far, pop N bytes. */
701 case 0xcb: /* ret far */
702 case 0xcf: /* iret */
703 return 1;
704
705 default:
706 return 0;
707 }
708 }
709
710 static int
711 i386_call_p (const gdb_byte *insn)
712 {
713 if (i386_absolute_call_p (insn))
714 return 1;
715
716 /* call near, relative. */
717 if (insn[0] == 0xe8)
718 return 1;
719
720 return 0;
721 }
722
723 /* Return non-zero if INSN is a system call, and set *LENGTHP to its
724 length in bytes. Otherwise, return zero. */
725
726 static int
727 i386_syscall_p (const gdb_byte *insn, int *lengthp)
728 {
729 /* Is it 'int $0x80'? */
730 if ((insn[0] == 0xcd && insn[1] == 0x80)
731 /* Or is it 'sysenter'? */
732 || (insn[0] == 0x0f && insn[1] == 0x34)
733 /* Or is it 'syscall'? */
734 || (insn[0] == 0x0f && insn[1] == 0x05))
735 {
736 *lengthp = 2;
737 return 1;
738 }
739
740 return 0;
741 }
742
743 /* The gdbarch insn_is_call method. */
744
745 static int
746 i386_insn_is_call (struct gdbarch *gdbarch, CORE_ADDR addr)
747 {
748 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
749
750 read_code (addr, buf, I386_MAX_INSN_LEN);
751 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
752
753 return i386_call_p (insn);
754 }
755
756 /* The gdbarch insn_is_ret method. */
757
758 static int
759 i386_insn_is_ret (struct gdbarch *gdbarch, CORE_ADDR addr)
760 {
761 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
762
763 read_code (addr, buf, I386_MAX_INSN_LEN);
764 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
765
766 return i386_ret_p (insn);
767 }
768
769 /* The gdbarch insn_is_jump method. */
770
771 static int
772 i386_insn_is_jump (struct gdbarch *gdbarch, CORE_ADDR addr)
773 {
774 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
775
776 read_code (addr, buf, I386_MAX_INSN_LEN);
777 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
778
779 return i386_jmp_p (insn);
780 }
781
782 /* Some kernels may run one past a syscall insn, so we have to cope.
783 Otherwise this is just simple_displaced_step_copy_insn. */
784
785 struct displaced_step_closure *
786 i386_displaced_step_copy_insn (struct gdbarch *gdbarch,
787 CORE_ADDR from, CORE_ADDR to,
788 struct regcache *regs)
789 {
790 size_t len = gdbarch_max_insn_length (gdbarch);
791 gdb_byte *buf = (gdb_byte *) xmalloc (len);
792
793 read_memory (from, buf, len);
794
795 /* GDB may get control back after the insn after the syscall.
796 Presumably this is a kernel bug.
797 If this is a syscall, make sure there's a nop afterwards. */
798 {
799 int syscall_length;
800 gdb_byte *insn;
801
802 insn = i386_skip_prefixes (buf, len);
803 if (insn != NULL && i386_syscall_p (insn, &syscall_length))
804 insn[syscall_length] = NOP_OPCODE;
805 }
806
807 write_memory (to, buf, len);
808
809 if (debug_displaced)
810 {
811 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
812 paddress (gdbarch, from), paddress (gdbarch, to));
813 displaced_step_dump_bytes (gdb_stdlog, buf, len);
814 }
815
816 return (struct displaced_step_closure *) buf;
817 }
818
819 /* Fix up the state of registers and memory after having single-stepped
820 a displaced instruction. */
821
822 void
823 i386_displaced_step_fixup (struct gdbarch *gdbarch,
824 struct displaced_step_closure *closure,
825 CORE_ADDR from, CORE_ADDR to,
826 struct regcache *regs)
827 {
828 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
829
830 /* The offset we applied to the instruction's address.
831 This could well be negative (when viewed as a signed 32-bit
832 value), but ULONGEST won't reflect that, so take care when
833 applying it. */
834 ULONGEST insn_offset = to - from;
835
836 /* Since we use simple_displaced_step_copy_insn, our closure is a
837 copy of the instruction. */
838 gdb_byte *insn = (gdb_byte *) closure;
839 /* The start of the insn, needed in case we see some prefixes. */
840 gdb_byte *insn_start = insn;
841
842 if (debug_displaced)
843 fprintf_unfiltered (gdb_stdlog,
844 "displaced: fixup (%s, %s), "
845 "insn = 0x%02x 0x%02x ...\n",
846 paddress (gdbarch, from), paddress (gdbarch, to),
847 insn[0], insn[1]);
848
849 /* The list of issues to contend with here is taken from
850 resume_execution in arch/i386/kernel/kprobes.c, Linux 2.6.20.
851 Yay for Free Software! */
852
853 /* Relocate the %eip, if necessary. */
854
855 /* The instruction recognizers we use assume any leading prefixes
856 have been skipped. */
857 {
858 /* This is the size of the buffer in closure. */
859 size_t max_insn_len = gdbarch_max_insn_length (gdbarch);
860 gdb_byte *opcode = i386_skip_prefixes (insn, max_insn_len);
861 /* If there are too many prefixes, just ignore the insn.
862 It will fault when run. */
863 if (opcode != NULL)
864 insn = opcode;
865 }
866
867 /* Except in the case of absolute or indirect jump or call
868 instructions, or a return instruction, the new eip is relative to
869 the displaced instruction; make it relative. Well, signal
870 handler returns don't need relocation either, but we use the
871 value of %eip to recognize those; see below. */
872 if (! i386_absolute_jmp_p (insn)
873 && ! i386_absolute_call_p (insn)
874 && ! i386_ret_p (insn))
875 {
876 ULONGEST orig_eip;
877 int insn_len;
878
879 regcache_cooked_read_unsigned (regs, I386_EIP_REGNUM, &orig_eip);
880
881 /* A signal trampoline system call changes the %eip, resuming
882 execution of the main program after the signal handler has
883 returned. That makes them like 'return' instructions; we
884 shouldn't relocate %eip.
885
886 But most system calls don't, and we do need to relocate %eip.
887
888 Our heuristic for distinguishing these cases: if stepping
889 over the system call instruction left control directly after
890 the instruction, the we relocate --- control almost certainly
891 doesn't belong in the displaced copy. Otherwise, we assume
892 the instruction has put control where it belongs, and leave
893 it unrelocated. Goodness help us if there are PC-relative
894 system calls. */
895 if (i386_syscall_p (insn, &insn_len)
896 && orig_eip != to + (insn - insn_start) + insn_len
897 /* GDB can get control back after the insn after the syscall.
898 Presumably this is a kernel bug.
899 i386_displaced_step_copy_insn ensures its a nop,
900 we add one to the length for it. */
901 && orig_eip != to + (insn - insn_start) + insn_len + 1)
902 {
903 if (debug_displaced)
904 fprintf_unfiltered (gdb_stdlog,
905 "displaced: syscall changed %%eip; "
906 "not relocating\n");
907 }
908 else
909 {
910 ULONGEST eip = (orig_eip - insn_offset) & 0xffffffffUL;
911
912 /* If we just stepped over a breakpoint insn, we don't backup
913 the pc on purpose; this is to match behaviour without
914 stepping. */
915
916 regcache_cooked_write_unsigned (regs, I386_EIP_REGNUM, eip);
917
918 if (debug_displaced)
919 fprintf_unfiltered (gdb_stdlog,
920 "displaced: "
921 "relocated %%eip from %s to %s\n",
922 paddress (gdbarch, orig_eip),
923 paddress (gdbarch, eip));
924 }
925 }
926
927 /* If the instruction was PUSHFL, then the TF bit will be set in the
928 pushed value, and should be cleared. We'll leave this for later,
929 since GDB already messes up the TF flag when stepping over a
930 pushfl. */
931
932 /* If the instruction was a call, the return address now atop the
933 stack is the address following the copied instruction. We need
934 to make it the address following the original instruction. */
935 if (i386_call_p (insn))
936 {
937 ULONGEST esp;
938 ULONGEST retaddr;
939 const ULONGEST retaddr_len = 4;
940
941 regcache_cooked_read_unsigned (regs, I386_ESP_REGNUM, &esp);
942 retaddr = read_memory_unsigned_integer (esp, retaddr_len, byte_order);
943 retaddr = (retaddr - insn_offset) & 0xffffffffUL;
944 write_memory_unsigned_integer (esp, retaddr_len, byte_order, retaddr);
945
946 if (debug_displaced)
947 fprintf_unfiltered (gdb_stdlog,
948 "displaced: relocated return addr at %s to %s\n",
949 paddress (gdbarch, esp),
950 paddress (gdbarch, retaddr));
951 }
952 }
953
954 static void
955 append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
956 {
957 target_write_memory (*to, buf, len);
958 *to += len;
959 }
960
961 static void
962 i386_relocate_instruction (struct gdbarch *gdbarch,
963 CORE_ADDR *to, CORE_ADDR oldloc)
964 {
965 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
966 gdb_byte buf[I386_MAX_INSN_LEN];
967 int offset = 0, rel32, newrel;
968 int insn_length;
969 gdb_byte *insn = buf;
970
971 read_memory (oldloc, buf, I386_MAX_INSN_LEN);
972
973 insn_length = gdb_buffered_insn_length (gdbarch, insn,
974 I386_MAX_INSN_LEN, oldloc);
975
976 /* Get past the prefixes. */
977 insn = i386_skip_prefixes (insn, I386_MAX_INSN_LEN);
978
979 /* Adjust calls with 32-bit relative addresses as push/jump, with
980 the address pushed being the location where the original call in
981 the user program would return to. */
982 if (insn[0] == 0xe8)
983 {
984 gdb_byte push_buf[16];
985 unsigned int ret_addr;
986
987 /* Where "ret" in the original code will return to. */
988 ret_addr = oldloc + insn_length;
989 push_buf[0] = 0x68; /* pushq $... */
990 store_unsigned_integer (&push_buf[1], 4, byte_order, ret_addr);
991 /* Push the push. */
992 append_insns (to, 5, push_buf);
993
994 /* Convert the relative call to a relative jump. */
995 insn[0] = 0xe9;
996
997 /* Adjust the destination offset. */
998 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
999 newrel = (oldloc - *to) + rel32;
1000 store_signed_integer (insn + 1, 4, byte_order, newrel);
1001
1002 if (debug_displaced)
1003 fprintf_unfiltered (gdb_stdlog,
1004 "Adjusted insn rel32=%s at %s to"
1005 " rel32=%s at %s\n",
1006 hex_string (rel32), paddress (gdbarch, oldloc),
1007 hex_string (newrel), paddress (gdbarch, *to));
1008
1009 /* Write the adjusted jump into its displaced location. */
1010 append_insns (to, 5, insn);
1011 return;
1012 }
1013
1014 /* Adjust jumps with 32-bit relative addresses. Calls are already
1015 handled above. */
1016 if (insn[0] == 0xe9)
1017 offset = 1;
1018 /* Adjust conditional jumps. */
1019 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
1020 offset = 2;
1021
1022 if (offset)
1023 {
1024 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
1025 newrel = (oldloc - *to) + rel32;
1026 store_signed_integer (insn + offset, 4, byte_order, newrel);
1027 if (debug_displaced)
1028 fprintf_unfiltered (gdb_stdlog,
1029 "Adjusted insn rel32=%s at %s to"
1030 " rel32=%s at %s\n",
1031 hex_string (rel32), paddress (gdbarch, oldloc),
1032 hex_string (newrel), paddress (gdbarch, *to));
1033 }
1034
1035 /* Write the adjusted instructions into their displaced
1036 location. */
1037 append_insns (to, insn_length, buf);
1038 }
1039
1040 \f
1041 #ifdef I386_REGNO_TO_SYMMETRY
1042 #error "The Sequent Symmetry is no longer supported."
1043 #endif
1044
1045 /* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
1046 and %esp "belong" to the calling function. Therefore these
1047 registers should be saved if they're going to be modified. */
1048
1049 /* The maximum number of saved registers. This should include all
1050 registers mentioned above, and %eip. */
1051 #define I386_NUM_SAVED_REGS I386_NUM_GREGS
1052
1053 struct i386_frame_cache
1054 {
1055 /* Base address. */
1056 CORE_ADDR base;
1057 int base_p;
1058 LONGEST sp_offset;
1059 CORE_ADDR pc;
1060
1061 /* Saved registers. */
1062 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
1063 CORE_ADDR saved_sp;
1064 int saved_sp_reg;
1065 int pc_in_eax;
1066
1067 /* Stack space reserved for local variables. */
1068 long locals;
1069 };
1070
1071 /* Allocate and initialize a frame cache. */
1072
1073 static struct i386_frame_cache *
1074 i386_alloc_frame_cache (void)
1075 {
1076 struct i386_frame_cache *cache;
1077 int i;
1078
1079 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
1080
1081 /* Base address. */
1082 cache->base_p = 0;
1083 cache->base = 0;
1084 cache->sp_offset = -4;
1085 cache->pc = 0;
1086
1087 /* Saved registers. We initialize these to -1 since zero is a valid
1088 offset (that's where %ebp is supposed to be stored). */
1089 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
1090 cache->saved_regs[i] = -1;
1091 cache->saved_sp = 0;
1092 cache->saved_sp_reg = -1;
1093 cache->pc_in_eax = 0;
1094
1095 /* Frameless until proven otherwise. */
1096 cache->locals = -1;
1097
1098 return cache;
1099 }
1100
1101 /* If the instruction at PC is a jump, return the address of its
1102 target. Otherwise, return PC. */
1103
1104 static CORE_ADDR
1105 i386_follow_jump (struct gdbarch *gdbarch, CORE_ADDR pc)
1106 {
1107 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1108 gdb_byte op;
1109 long delta = 0;
1110 int data16 = 0;
1111
1112 if (target_read_code (pc, &op, 1))
1113 return pc;
1114
1115 if (op == 0x66)
1116 {
1117 data16 = 1;
1118
1119 op = read_code_unsigned_integer (pc + 1, 1, byte_order);
1120 }
1121
1122 switch (op)
1123 {
1124 case 0xe9:
1125 /* Relative jump: if data16 == 0, disp32, else disp16. */
1126 if (data16)
1127 {
1128 delta = read_memory_integer (pc + 2, 2, byte_order);
1129
1130 /* Include the size of the jmp instruction (including the
1131 0x66 prefix). */
1132 delta += 4;
1133 }
1134 else
1135 {
1136 delta = read_memory_integer (pc + 1, 4, byte_order);
1137
1138 /* Include the size of the jmp instruction. */
1139 delta += 5;
1140 }
1141 break;
1142 case 0xeb:
1143 /* Relative jump, disp8 (ignore data16). */
1144 delta = read_memory_integer (pc + data16 + 1, 1, byte_order);
1145
1146 delta += data16 + 2;
1147 break;
1148 }
1149
1150 return pc + delta;
1151 }
1152
1153 /* Check whether PC points at a prologue for a function returning a
1154 structure or union. If so, it updates CACHE and returns the
1155 address of the first instruction after the code sequence that
1156 removes the "hidden" argument from the stack or CURRENT_PC,
1157 whichever is smaller. Otherwise, return PC. */
1158
1159 static CORE_ADDR
1160 i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
1161 struct i386_frame_cache *cache)
1162 {
1163 /* Functions that return a structure or union start with:
1164
1165 popl %eax 0x58
1166 xchgl %eax, (%esp) 0x87 0x04 0x24
1167 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
1168
1169 (the System V compiler puts out the second `xchg' instruction,
1170 and the assembler doesn't try to optimize it, so the 'sib' form
1171 gets generated). This sequence is used to get the address of the
1172 return buffer for a function that returns a structure. */
1173 static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
1174 static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
1175 gdb_byte buf[4];
1176 gdb_byte op;
1177
1178 if (current_pc <= pc)
1179 return pc;
1180
1181 if (target_read_code (pc, &op, 1))
1182 return pc;
1183
1184 if (op != 0x58) /* popl %eax */
1185 return pc;
1186
1187 if (target_read_code (pc + 1, buf, 4))
1188 return pc;
1189
1190 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
1191 return pc;
1192
1193 if (current_pc == pc)
1194 {
1195 cache->sp_offset += 4;
1196 return current_pc;
1197 }
1198
1199 if (current_pc == pc + 1)
1200 {
1201 cache->pc_in_eax = 1;
1202 return current_pc;
1203 }
1204
1205 if (buf[1] == proto1[1])
1206 return pc + 4;
1207 else
1208 return pc + 5;
1209 }
1210
1211 static CORE_ADDR
1212 i386_skip_probe (CORE_ADDR pc)
1213 {
1214 /* A function may start with
1215
1216 pushl constant
1217 call _probe
1218 addl $4, %esp
1219
1220 followed by
1221
1222 pushl %ebp
1223
1224 etc. */
1225 gdb_byte buf[8];
1226 gdb_byte op;
1227
1228 if (target_read_code (pc, &op, 1))
1229 return pc;
1230
1231 if (op == 0x68 || op == 0x6a)
1232 {
1233 int delta;
1234
1235 /* Skip past the `pushl' instruction; it has either a one-byte or a
1236 four-byte operand, depending on the opcode. */
1237 if (op == 0x68)
1238 delta = 5;
1239 else
1240 delta = 2;
1241
1242 /* Read the following 8 bytes, which should be `call _probe' (6
1243 bytes) followed by `addl $4,%esp' (2 bytes). */
1244 read_memory (pc + delta, buf, sizeof (buf));
1245 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
1246 pc += delta + sizeof (buf);
1247 }
1248
1249 return pc;
1250 }
1251
1252 /* GCC 4.1 and later, can put code in the prologue to realign the
1253 stack pointer. Check whether PC points to such code, and update
1254 CACHE accordingly. Return the first instruction after the code
1255 sequence or CURRENT_PC, whichever is smaller. If we don't
1256 recognize the code, return PC. */
1257
1258 static CORE_ADDR
1259 i386_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1260 struct i386_frame_cache *cache)
1261 {
1262 /* There are 2 code sequences to re-align stack before the frame
1263 gets set up:
1264
1265 1. Use a caller-saved saved register:
1266
1267 leal 4(%esp), %reg
1268 andl $-XXX, %esp
1269 pushl -4(%reg)
1270
1271 2. Use a callee-saved saved register:
1272
1273 pushl %reg
1274 leal 8(%esp), %reg
1275 andl $-XXX, %esp
1276 pushl -4(%reg)
1277
1278 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
1279
1280 0x83 0xe4 0xf0 andl $-16, %esp
1281 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
1282 */
1283
1284 gdb_byte buf[14];
1285 int reg;
1286 int offset, offset_and;
1287 static int regnums[8] = {
1288 I386_EAX_REGNUM, /* %eax */
1289 I386_ECX_REGNUM, /* %ecx */
1290 I386_EDX_REGNUM, /* %edx */
1291 I386_EBX_REGNUM, /* %ebx */
1292 I386_ESP_REGNUM, /* %esp */
1293 I386_EBP_REGNUM, /* %ebp */
1294 I386_ESI_REGNUM, /* %esi */
1295 I386_EDI_REGNUM /* %edi */
1296 };
1297
1298 if (target_read_code (pc, buf, sizeof buf))
1299 return pc;
1300
1301 /* Check caller-saved saved register. The first instruction has
1302 to be "leal 4(%esp), %reg". */
1303 if (buf[0] == 0x8d && buf[2] == 0x24 && buf[3] == 0x4)
1304 {
1305 /* MOD must be binary 10 and R/M must be binary 100. */
1306 if ((buf[1] & 0xc7) != 0x44)
1307 return pc;
1308
1309 /* REG has register number. */
1310 reg = (buf[1] >> 3) & 7;
1311 offset = 4;
1312 }
1313 else
1314 {
1315 /* Check callee-saved saved register. The first instruction
1316 has to be "pushl %reg". */
1317 if ((buf[0] & 0xf8) != 0x50)
1318 return pc;
1319
1320 /* Get register. */
1321 reg = buf[0] & 0x7;
1322
1323 /* The next instruction has to be "leal 8(%esp), %reg". */
1324 if (buf[1] != 0x8d || buf[3] != 0x24 || buf[4] != 0x8)
1325 return pc;
1326
1327 /* MOD must be binary 10 and R/M must be binary 100. */
1328 if ((buf[2] & 0xc7) != 0x44)
1329 return pc;
1330
1331 /* REG has register number. Registers in pushl and leal have to
1332 be the same. */
1333 if (reg != ((buf[2] >> 3) & 7))
1334 return pc;
1335
1336 offset = 5;
1337 }
1338
1339 /* Rigister can't be %esp nor %ebp. */
1340 if (reg == 4 || reg == 5)
1341 return pc;
1342
1343 /* The next instruction has to be "andl $-XXX, %esp". */
1344 if (buf[offset + 1] != 0xe4
1345 || (buf[offset] != 0x81 && buf[offset] != 0x83))
1346 return pc;
1347
1348 offset_and = offset;
1349 offset += buf[offset] == 0x81 ? 6 : 3;
1350
1351 /* The next instruction has to be "pushl -4(%reg)". 8bit -4 is
1352 0xfc. REG must be binary 110 and MOD must be binary 01. */
1353 if (buf[offset] != 0xff
1354 || buf[offset + 2] != 0xfc
1355 || (buf[offset + 1] & 0xf8) != 0x70)
1356 return pc;
1357
1358 /* R/M has register. Registers in leal and pushl have to be the
1359 same. */
1360 if (reg != (buf[offset + 1] & 7))
1361 return pc;
1362
1363 if (current_pc > pc + offset_and)
1364 cache->saved_sp_reg = regnums[reg];
1365
1366 return std::min (pc + offset + 3, current_pc);
1367 }
1368
1369 /* Maximum instruction length we need to handle. */
1370 #define I386_MAX_MATCHED_INSN_LEN 6
1371
1372 /* Instruction description. */
1373 struct i386_insn
1374 {
1375 size_t len;
1376 gdb_byte insn[I386_MAX_MATCHED_INSN_LEN];
1377 gdb_byte mask[I386_MAX_MATCHED_INSN_LEN];
1378 };
1379
1380 /* Return whether instruction at PC matches PATTERN. */
1381
1382 static int
1383 i386_match_pattern (CORE_ADDR pc, struct i386_insn pattern)
1384 {
1385 gdb_byte op;
1386
1387 if (target_read_code (pc, &op, 1))
1388 return 0;
1389
1390 if ((op & pattern.mask[0]) == pattern.insn[0])
1391 {
1392 gdb_byte buf[I386_MAX_MATCHED_INSN_LEN - 1];
1393 int insn_matched = 1;
1394 size_t i;
1395
1396 gdb_assert (pattern.len > 1);
1397 gdb_assert (pattern.len <= I386_MAX_MATCHED_INSN_LEN);
1398
1399 if (target_read_code (pc + 1, buf, pattern.len - 1))
1400 return 0;
1401
1402 for (i = 1; i < pattern.len; i++)
1403 {
1404 if ((buf[i - 1] & pattern.mask[i]) != pattern.insn[i])
1405 insn_matched = 0;
1406 }
1407 return insn_matched;
1408 }
1409 return 0;
1410 }
1411
1412 /* Search for the instruction at PC in the list INSN_PATTERNS. Return
1413 the first instruction description that matches. Otherwise, return
1414 NULL. */
1415
1416 static struct i386_insn *
1417 i386_match_insn (CORE_ADDR pc, struct i386_insn *insn_patterns)
1418 {
1419 struct i386_insn *pattern;
1420
1421 for (pattern = insn_patterns; pattern->len > 0; pattern++)
1422 {
1423 if (i386_match_pattern (pc, *pattern))
1424 return pattern;
1425 }
1426
1427 return NULL;
1428 }
1429
1430 /* Return whether PC points inside a sequence of instructions that
1431 matches INSN_PATTERNS. */
1432
1433 static int
1434 i386_match_insn_block (CORE_ADDR pc, struct i386_insn *insn_patterns)
1435 {
1436 CORE_ADDR current_pc;
1437 int ix, i;
1438 struct i386_insn *insn;
1439
1440 insn = i386_match_insn (pc, insn_patterns);
1441 if (insn == NULL)
1442 return 0;
1443
1444 current_pc = pc;
1445 ix = insn - insn_patterns;
1446 for (i = ix - 1; i >= 0; i--)
1447 {
1448 current_pc -= insn_patterns[i].len;
1449
1450 if (!i386_match_pattern (current_pc, insn_patterns[i]))
1451 return 0;
1452 }
1453
1454 current_pc = pc + insn->len;
1455 for (insn = insn_patterns + ix + 1; insn->len > 0; insn++)
1456 {
1457 if (!i386_match_pattern (current_pc, *insn))
1458 return 0;
1459
1460 current_pc += insn->len;
1461 }
1462
1463 return 1;
1464 }
1465
1466 /* Some special instructions that might be migrated by GCC into the
1467 part of the prologue that sets up the new stack frame. Because the
1468 stack frame hasn't been setup yet, no registers have been saved
1469 yet, and only the scratch registers %eax, %ecx and %edx can be
1470 touched. */
1471
1472 struct i386_insn i386_frame_setup_skip_insns[] =
1473 {
1474 /* Check for `movb imm8, r' and `movl imm32, r'.
1475
1476 ??? Should we handle 16-bit operand-sizes here? */
1477
1478 /* `movb imm8, %al' and `movb imm8, %ah' */
1479 /* `movb imm8, %cl' and `movb imm8, %ch' */
1480 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
1481 /* `movb imm8, %dl' and `movb imm8, %dh' */
1482 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
1483 /* `movl imm32, %eax' and `movl imm32, %ecx' */
1484 { 5, { 0xb8 }, { 0xfe } },
1485 /* `movl imm32, %edx' */
1486 { 5, { 0xba }, { 0xff } },
1487
1488 /* Check for `mov imm32, r32'. Note that there is an alternative
1489 encoding for `mov m32, %eax'.
1490
1491 ??? Should we handle SIB adressing here?
1492 ??? Should we handle 16-bit operand-sizes here? */
1493
1494 /* `movl m32, %eax' */
1495 { 5, { 0xa1 }, { 0xff } },
1496 /* `movl m32, %eax' and `mov; m32, %ecx' */
1497 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
1498 /* `movl m32, %edx' */
1499 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
1500
1501 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
1502 Because of the symmetry, there are actually two ways to encode
1503 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
1504 opcode bytes 0x31 and 0x33 for `xorl'. */
1505
1506 /* `subl %eax, %eax' */
1507 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
1508 /* `subl %ecx, %ecx' */
1509 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
1510 /* `subl %edx, %edx' */
1511 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
1512 /* `xorl %eax, %eax' */
1513 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
1514 /* `xorl %ecx, %ecx' */
1515 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
1516 /* `xorl %edx, %edx' */
1517 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
1518 { 0 }
1519 };
1520
1521
1522 /* Check whether PC points to a no-op instruction. */
1523 static CORE_ADDR
1524 i386_skip_noop (CORE_ADDR pc)
1525 {
1526 gdb_byte op;
1527 int check = 1;
1528
1529 if (target_read_code (pc, &op, 1))
1530 return pc;
1531
1532 while (check)
1533 {
1534 check = 0;
1535 /* Ignore `nop' instruction. */
1536 if (op == 0x90)
1537 {
1538 pc += 1;
1539 if (target_read_code (pc, &op, 1))
1540 return pc;
1541 check = 1;
1542 }
1543 /* Ignore no-op instruction `mov %edi, %edi'.
1544 Microsoft system dlls often start with
1545 a `mov %edi,%edi' instruction.
1546 The 5 bytes before the function start are
1547 filled with `nop' instructions.
1548 This pattern can be used for hot-patching:
1549 The `mov %edi, %edi' instruction can be replaced by a
1550 near jump to the location of the 5 `nop' instructions
1551 which can be replaced by a 32-bit jump to anywhere
1552 in the 32-bit address space. */
1553
1554 else if (op == 0x8b)
1555 {
1556 if (target_read_code (pc + 1, &op, 1))
1557 return pc;
1558
1559 if (op == 0xff)
1560 {
1561 pc += 2;
1562 if (target_read_code (pc, &op, 1))
1563 return pc;
1564
1565 check = 1;
1566 }
1567 }
1568 }
1569 return pc;
1570 }
1571
1572 /* Check whether PC points at a code that sets up a new stack frame.
1573 If so, it updates CACHE and returns the address of the first
1574 instruction after the sequence that sets up the frame or LIMIT,
1575 whichever is smaller. If we don't recognize the code, return PC. */
1576
1577 static CORE_ADDR
1578 i386_analyze_frame_setup (struct gdbarch *gdbarch,
1579 CORE_ADDR pc, CORE_ADDR limit,
1580 struct i386_frame_cache *cache)
1581 {
1582 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1583 struct i386_insn *insn;
1584 gdb_byte op;
1585 int skip = 0;
1586
1587 if (limit <= pc)
1588 return limit;
1589
1590 if (target_read_code (pc, &op, 1))
1591 return pc;
1592
1593 if (op == 0x55) /* pushl %ebp */
1594 {
1595 /* Take into account that we've executed the `pushl %ebp' that
1596 starts this instruction sequence. */
1597 cache->saved_regs[I386_EBP_REGNUM] = 0;
1598 cache->sp_offset += 4;
1599 pc++;
1600
1601 /* If that's all, return now. */
1602 if (limit <= pc)
1603 return limit;
1604
1605 /* Check for some special instructions that might be migrated by
1606 GCC into the prologue and skip them. At this point in the
1607 prologue, code should only touch the scratch registers %eax,
1608 %ecx and %edx, so while the number of posibilities is sheer,
1609 it is limited.
1610
1611 Make sure we only skip these instructions if we later see the
1612 `movl %esp, %ebp' that actually sets up the frame. */
1613 while (pc + skip < limit)
1614 {
1615 insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
1616 if (insn == NULL)
1617 break;
1618
1619 skip += insn->len;
1620 }
1621
1622 /* If that's all, return now. */
1623 if (limit <= pc + skip)
1624 return limit;
1625
1626 if (target_read_code (pc + skip, &op, 1))
1627 return pc + skip;
1628
1629 /* The i386 prologue looks like
1630
1631 push %ebp
1632 mov %esp,%ebp
1633 sub $0x10,%esp
1634
1635 and a different prologue can be generated for atom.
1636
1637 push %ebp
1638 lea (%esp),%ebp
1639 lea -0x10(%esp),%esp
1640
1641 We handle both of them here. */
1642
1643 switch (op)
1644 {
1645 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
1646 case 0x8b:
1647 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
1648 != 0xec)
1649 return pc;
1650 pc += (skip + 2);
1651 break;
1652 case 0x89:
1653 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
1654 != 0xe5)
1655 return pc;
1656 pc += (skip + 2);
1657 break;
1658 case 0x8d: /* Check for 'lea (%ebp), %ebp'. */
1659 if (read_code_unsigned_integer (pc + skip + 1, 2, byte_order)
1660 != 0x242c)
1661 return pc;
1662 pc += (skip + 3);
1663 break;
1664 default:
1665 return pc;
1666 }
1667
1668 /* OK, we actually have a frame. We just don't know how large
1669 it is yet. Set its size to zero. We'll adjust it if
1670 necessary. We also now commit to skipping the special
1671 instructions mentioned before. */
1672 cache->locals = 0;
1673
1674 /* If that's all, return now. */
1675 if (limit <= pc)
1676 return limit;
1677
1678 /* Check for stack adjustment
1679
1680 subl $XXX, %esp
1681 or
1682 lea -XXX(%esp),%esp
1683
1684 NOTE: You can't subtract a 16-bit immediate from a 32-bit
1685 reg, so we don't have to worry about a data16 prefix. */
1686 if (target_read_code (pc, &op, 1))
1687 return pc;
1688 if (op == 0x83)
1689 {
1690 /* `subl' with 8-bit immediate. */
1691 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1692 /* Some instruction starting with 0x83 other than `subl'. */
1693 return pc;
1694
1695 /* `subl' with signed 8-bit immediate (though it wouldn't
1696 make sense to be negative). */
1697 cache->locals = read_code_integer (pc + 2, 1, byte_order);
1698 return pc + 3;
1699 }
1700 else if (op == 0x81)
1701 {
1702 /* Maybe it is `subl' with a 32-bit immediate. */
1703 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1704 /* Some instruction starting with 0x81 other than `subl'. */
1705 return pc;
1706
1707 /* It is `subl' with a 32-bit immediate. */
1708 cache->locals = read_code_integer (pc + 2, 4, byte_order);
1709 return pc + 6;
1710 }
1711 else if (op == 0x8d)
1712 {
1713 /* The ModR/M byte is 0x64. */
1714 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0x64)
1715 return pc;
1716 /* 'lea' with 8-bit displacement. */
1717 cache->locals = -1 * read_code_integer (pc + 3, 1, byte_order);
1718 return pc + 4;
1719 }
1720 else
1721 {
1722 /* Some instruction other than `subl' nor 'lea'. */
1723 return pc;
1724 }
1725 }
1726 else if (op == 0xc8) /* enter */
1727 {
1728 cache->locals = read_code_unsigned_integer (pc + 1, 2, byte_order);
1729 return pc + 4;
1730 }
1731
1732 return pc;
1733 }
1734
1735 /* Check whether PC points at code that saves registers on the stack.
1736 If so, it updates CACHE and returns the address of the first
1737 instruction after the register saves or CURRENT_PC, whichever is
1738 smaller. Otherwise, return PC. */
1739
1740 static CORE_ADDR
1741 i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
1742 struct i386_frame_cache *cache)
1743 {
1744 CORE_ADDR offset = 0;
1745 gdb_byte op;
1746 int i;
1747
1748 if (cache->locals > 0)
1749 offset -= cache->locals;
1750 for (i = 0; i < 8 && pc < current_pc; i++)
1751 {
1752 if (target_read_code (pc, &op, 1))
1753 return pc;
1754 if (op < 0x50 || op > 0x57)
1755 break;
1756
1757 offset -= 4;
1758 cache->saved_regs[op - 0x50] = offset;
1759 cache->sp_offset += 4;
1760 pc++;
1761 }
1762
1763 return pc;
1764 }
1765
1766 /* Do a full analysis of the prologue at PC and update CACHE
1767 accordingly. Bail out early if CURRENT_PC is reached. Return the
1768 address where the analysis stopped.
1769
1770 We handle these cases:
1771
1772 The startup sequence can be at the start of the function, or the
1773 function can start with a branch to startup code at the end.
1774
1775 %ebp can be set up with either the 'enter' instruction, or "pushl
1776 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
1777 once used in the System V compiler).
1778
1779 Local space is allocated just below the saved %ebp by either the
1780 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
1781 16-bit unsigned argument for space to allocate, and the 'addl'
1782 instruction could have either a signed byte, or 32-bit immediate.
1783
1784 Next, the registers used by this function are pushed. With the
1785 System V compiler they will always be in the order: %edi, %esi,
1786 %ebx (and sometimes a harmless bug causes it to also save but not
1787 restore %eax); however, the code below is willing to see the pushes
1788 in any order, and will handle up to 8 of them.
1789
1790 If the setup sequence is at the end of the function, then the next
1791 instruction will be a branch back to the start. */
1792
1793 static CORE_ADDR
1794 i386_analyze_prologue (struct gdbarch *gdbarch,
1795 CORE_ADDR pc, CORE_ADDR current_pc,
1796 struct i386_frame_cache *cache)
1797 {
1798 pc = i386_skip_noop (pc);
1799 pc = i386_follow_jump (gdbarch, pc);
1800 pc = i386_analyze_struct_return (pc, current_pc, cache);
1801 pc = i386_skip_probe (pc);
1802 pc = i386_analyze_stack_align (pc, current_pc, cache);
1803 pc = i386_analyze_frame_setup (gdbarch, pc, current_pc, cache);
1804 return i386_analyze_register_saves (pc, current_pc, cache);
1805 }
1806
1807 /* Return PC of first real instruction. */
1808
1809 static CORE_ADDR
1810 i386_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
1811 {
1812 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1813
1814 static gdb_byte pic_pat[6] =
1815 {
1816 0xe8, 0, 0, 0, 0, /* call 0x0 */
1817 0x5b, /* popl %ebx */
1818 };
1819 struct i386_frame_cache cache;
1820 CORE_ADDR pc;
1821 gdb_byte op;
1822 int i;
1823 CORE_ADDR func_addr;
1824
1825 if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
1826 {
1827 CORE_ADDR post_prologue_pc
1828 = skip_prologue_using_sal (gdbarch, func_addr);
1829 struct compunit_symtab *cust = find_pc_compunit_symtab (func_addr);
1830
1831 /* Clang always emits a line note before the prologue and another
1832 one after. We trust clang to emit usable line notes. */
1833 if (post_prologue_pc
1834 && (cust != NULL
1835 && COMPUNIT_PRODUCER (cust) != NULL
1836 && startswith (COMPUNIT_PRODUCER (cust), "clang ")))
1837 return std::max (start_pc, post_prologue_pc);
1838 }
1839
1840 cache.locals = -1;
1841 pc = i386_analyze_prologue (gdbarch, start_pc, 0xffffffff, &cache);
1842 if (cache.locals < 0)
1843 return start_pc;
1844
1845 /* Found valid frame setup. */
1846
1847 /* The native cc on SVR4 in -K PIC mode inserts the following code
1848 to get the address of the global offset table (GOT) into register
1849 %ebx:
1850
1851 call 0x0
1852 popl %ebx
1853 movl %ebx,x(%ebp) (optional)
1854 addl y,%ebx
1855
1856 This code is with the rest of the prologue (at the end of the
1857 function), so we have to skip it to get to the first real
1858 instruction at the start of the function. */
1859
1860 for (i = 0; i < 6; i++)
1861 {
1862 if (target_read_code (pc + i, &op, 1))
1863 return pc;
1864
1865 if (pic_pat[i] != op)
1866 break;
1867 }
1868 if (i == 6)
1869 {
1870 int delta = 6;
1871
1872 if (target_read_code (pc + delta, &op, 1))
1873 return pc;
1874
1875 if (op == 0x89) /* movl %ebx, x(%ebp) */
1876 {
1877 op = read_code_unsigned_integer (pc + delta + 1, 1, byte_order);
1878
1879 if (op == 0x5d) /* One byte offset from %ebp. */
1880 delta += 3;
1881 else if (op == 0x9d) /* Four byte offset from %ebp. */
1882 delta += 6;
1883 else /* Unexpected instruction. */
1884 delta = 0;
1885
1886 if (target_read_code (pc + delta, &op, 1))
1887 return pc;
1888 }
1889
1890 /* addl y,%ebx */
1891 if (delta > 0 && op == 0x81
1892 && read_code_unsigned_integer (pc + delta + 1, 1, byte_order)
1893 == 0xc3)
1894 {
1895 pc += delta + 6;
1896 }
1897 }
1898
1899 /* If the function starts with a branch (to startup code at the end)
1900 the last instruction should bring us back to the first
1901 instruction of the real code. */
1902 if (i386_follow_jump (gdbarch, start_pc) != start_pc)
1903 pc = i386_follow_jump (gdbarch, pc);
1904
1905 return pc;
1906 }
1907
1908 /* Check that the code pointed to by PC corresponds to a call to
1909 __main, skip it if so. Return PC otherwise. */
1910
1911 CORE_ADDR
1912 i386_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1913 {
1914 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1915 gdb_byte op;
1916
1917 if (target_read_code (pc, &op, 1))
1918 return pc;
1919 if (op == 0xe8)
1920 {
1921 gdb_byte buf[4];
1922
1923 if (target_read_code (pc + 1, buf, sizeof buf) == 0)
1924 {
1925 /* Make sure address is computed correctly as a 32bit
1926 integer even if CORE_ADDR is 64 bit wide. */
1927 struct bound_minimal_symbol s;
1928 CORE_ADDR call_dest;
1929
1930 call_dest = pc + 5 + extract_signed_integer (buf, 4, byte_order);
1931 call_dest = call_dest & 0xffffffffU;
1932 s = lookup_minimal_symbol_by_pc (call_dest);
1933 if (s.minsym != NULL
1934 && MSYMBOL_LINKAGE_NAME (s.minsym) != NULL
1935 && strcmp (MSYMBOL_LINKAGE_NAME (s.minsym), "__main") == 0)
1936 pc += 5;
1937 }
1938 }
1939
1940 return pc;
1941 }
1942
1943 /* This function is 64-bit safe. */
1944
1945 static CORE_ADDR
1946 i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1947 {
1948 gdb_byte buf[8];
1949
1950 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
1951 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
1952 }
1953 \f
1954
1955 /* Normal frames. */
1956
1957 static void
1958 i386_frame_cache_1 (struct frame_info *this_frame,
1959 struct i386_frame_cache *cache)
1960 {
1961 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1962 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1963 gdb_byte buf[4];
1964 int i;
1965
1966 cache->pc = get_frame_func (this_frame);
1967
1968 /* In principle, for normal frames, %ebp holds the frame pointer,
1969 which holds the base address for the current stack frame.
1970 However, for functions that don't need it, the frame pointer is
1971 optional. For these "frameless" functions the frame pointer is
1972 actually the frame pointer of the calling frame. Signal
1973 trampolines are just a special case of a "frameless" function.
1974 They (usually) share their frame pointer with the frame that was
1975 in progress when the signal occurred. */
1976
1977 get_frame_register (this_frame, I386_EBP_REGNUM, buf);
1978 cache->base = extract_unsigned_integer (buf, 4, byte_order);
1979 if (cache->base == 0)
1980 {
1981 cache->base_p = 1;
1982 return;
1983 }
1984
1985 /* For normal frames, %eip is stored at 4(%ebp). */
1986 cache->saved_regs[I386_EIP_REGNUM] = 4;
1987
1988 if (cache->pc != 0)
1989 i386_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
1990 cache);
1991
1992 if (cache->locals < 0)
1993 {
1994 /* We didn't find a valid frame, which means that CACHE->base
1995 currently holds the frame pointer for our calling frame. If
1996 we're at the start of a function, or somewhere half-way its
1997 prologue, the function's frame probably hasn't been fully
1998 setup yet. Try to reconstruct the base address for the stack
1999 frame by looking at the stack pointer. For truly "frameless"
2000 functions this might work too. */
2001
2002 if (cache->saved_sp_reg != -1)
2003 {
2004 /* Saved stack pointer has been saved. */
2005 get_frame_register (this_frame, cache->saved_sp_reg, buf);
2006 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
2007
2008 /* We're halfway aligning the stack. */
2009 cache->base = ((cache->saved_sp - 4) & 0xfffffff0) - 4;
2010 cache->saved_regs[I386_EIP_REGNUM] = cache->saved_sp - 4;
2011
2012 /* This will be added back below. */
2013 cache->saved_regs[I386_EIP_REGNUM] -= cache->base;
2014 }
2015 else if (cache->pc != 0
2016 || target_read_code (get_frame_pc (this_frame), buf, 1))
2017 {
2018 /* We're in a known function, but did not find a frame
2019 setup. Assume that the function does not use %ebp.
2020 Alternatively, we may have jumped to an invalid
2021 address; in that case there is definitely no new
2022 frame in %ebp. */
2023 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2024 cache->base = extract_unsigned_integer (buf, 4, byte_order)
2025 + cache->sp_offset;
2026 }
2027 else
2028 /* We're in an unknown function. We could not find the start
2029 of the function to analyze the prologue; our best option is
2030 to assume a typical frame layout with the caller's %ebp
2031 saved. */
2032 cache->saved_regs[I386_EBP_REGNUM] = 0;
2033 }
2034
2035 if (cache->saved_sp_reg != -1)
2036 {
2037 /* Saved stack pointer has been saved (but the SAVED_SP_REG
2038 register may be unavailable). */
2039 if (cache->saved_sp == 0
2040 && deprecated_frame_register_read (this_frame,
2041 cache->saved_sp_reg, buf))
2042 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
2043 }
2044 /* Now that we have the base address for the stack frame we can
2045 calculate the value of %esp in the calling frame. */
2046 else if (cache->saved_sp == 0)
2047 cache->saved_sp = cache->base + 8;
2048
2049 /* Adjust all the saved registers such that they contain addresses
2050 instead of offsets. */
2051 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
2052 if (cache->saved_regs[i] != -1)
2053 cache->saved_regs[i] += cache->base;
2054
2055 cache->base_p = 1;
2056 }
2057
2058 static struct i386_frame_cache *
2059 i386_frame_cache (struct frame_info *this_frame, void **this_cache)
2060 {
2061 struct i386_frame_cache *cache;
2062
2063 if (*this_cache)
2064 return (struct i386_frame_cache *) *this_cache;
2065
2066 cache = i386_alloc_frame_cache ();
2067 *this_cache = cache;
2068
2069 TRY
2070 {
2071 i386_frame_cache_1 (this_frame, cache);
2072 }
2073 CATCH (ex, RETURN_MASK_ERROR)
2074 {
2075 if (ex.error != NOT_AVAILABLE_ERROR)
2076 throw_exception (ex);
2077 }
2078 END_CATCH
2079
2080 return cache;
2081 }
2082
2083 static void
2084 i386_frame_this_id (struct frame_info *this_frame, void **this_cache,
2085 struct frame_id *this_id)
2086 {
2087 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2088
2089 if (!cache->base_p)
2090 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2091 else if (cache->base == 0)
2092 {
2093 /* This marks the outermost frame. */
2094 }
2095 else
2096 {
2097 /* See the end of i386_push_dummy_call. */
2098 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2099 }
2100 }
2101
2102 static enum unwind_stop_reason
2103 i386_frame_unwind_stop_reason (struct frame_info *this_frame,
2104 void **this_cache)
2105 {
2106 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2107
2108 if (!cache->base_p)
2109 return UNWIND_UNAVAILABLE;
2110
2111 /* This marks the outermost frame. */
2112 if (cache->base == 0)
2113 return UNWIND_OUTERMOST;
2114
2115 return UNWIND_NO_REASON;
2116 }
2117
2118 static struct value *
2119 i386_frame_prev_register (struct frame_info *this_frame, void **this_cache,
2120 int regnum)
2121 {
2122 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2123
2124 gdb_assert (regnum >= 0);
2125
2126 /* The System V ABI says that:
2127
2128 "The flags register contains the system flags, such as the
2129 direction flag and the carry flag. The direction flag must be
2130 set to the forward (that is, zero) direction before entry and
2131 upon exit from a function. Other user flags have no specified
2132 role in the standard calling sequence and are not preserved."
2133
2134 To guarantee the "upon exit" part of that statement we fake a
2135 saved flags register that has its direction flag cleared.
2136
2137 Note that GCC doesn't seem to rely on the fact that the direction
2138 flag is cleared after a function return; it always explicitly
2139 clears the flag before operations where it matters.
2140
2141 FIXME: kettenis/20030316: I'm not quite sure whether this is the
2142 right thing to do. The way we fake the flags register here makes
2143 it impossible to change it. */
2144
2145 if (regnum == I386_EFLAGS_REGNUM)
2146 {
2147 ULONGEST val;
2148
2149 val = get_frame_register_unsigned (this_frame, regnum);
2150 val &= ~(1 << 10);
2151 return frame_unwind_got_constant (this_frame, regnum, val);
2152 }
2153
2154 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
2155 return frame_unwind_got_register (this_frame, regnum, I386_EAX_REGNUM);
2156
2157 if (regnum == I386_ESP_REGNUM
2158 && (cache->saved_sp != 0 || cache->saved_sp_reg != -1))
2159 {
2160 /* If the SP has been saved, but we don't know where, then this
2161 means that SAVED_SP_REG register was found unavailable back
2162 when we built the cache. */
2163 if (cache->saved_sp == 0)
2164 return frame_unwind_got_register (this_frame, regnum,
2165 cache->saved_sp_reg);
2166 else
2167 return frame_unwind_got_constant (this_frame, regnum,
2168 cache->saved_sp);
2169 }
2170
2171 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
2172 return frame_unwind_got_memory (this_frame, regnum,
2173 cache->saved_regs[regnum]);
2174
2175 return frame_unwind_got_register (this_frame, regnum, regnum);
2176 }
2177
2178 static const struct frame_unwind i386_frame_unwind =
2179 {
2180 NORMAL_FRAME,
2181 i386_frame_unwind_stop_reason,
2182 i386_frame_this_id,
2183 i386_frame_prev_register,
2184 NULL,
2185 default_frame_sniffer
2186 };
2187
2188 /* Normal frames, but in a function epilogue. */
2189
2190 /* Implement the stack_frame_destroyed_p gdbarch method.
2191
2192 The epilogue is defined here as the 'ret' instruction, which will
2193 follow any instruction such as 'leave' or 'pop %ebp' that destroys
2194 the function's stack frame. */
2195
2196 static int
2197 i386_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2198 {
2199 gdb_byte insn;
2200 struct compunit_symtab *cust;
2201
2202 cust = find_pc_compunit_symtab (pc);
2203 if (cust != NULL && COMPUNIT_EPILOGUE_UNWIND_VALID (cust))
2204 return 0;
2205
2206 if (target_read_memory (pc, &insn, 1))
2207 return 0; /* Can't read memory at pc. */
2208
2209 if (insn != 0xc3) /* 'ret' instruction. */
2210 return 0;
2211
2212 return 1;
2213 }
2214
2215 static int
2216 i386_epilogue_frame_sniffer (const struct frame_unwind *self,
2217 struct frame_info *this_frame,
2218 void **this_prologue_cache)
2219 {
2220 if (frame_relative_level (this_frame) == 0)
2221 return i386_stack_frame_destroyed_p (get_frame_arch (this_frame),
2222 get_frame_pc (this_frame));
2223 else
2224 return 0;
2225 }
2226
2227 static struct i386_frame_cache *
2228 i386_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
2229 {
2230 struct i386_frame_cache *cache;
2231 CORE_ADDR sp;
2232
2233 if (*this_cache)
2234 return (struct i386_frame_cache *) *this_cache;
2235
2236 cache = i386_alloc_frame_cache ();
2237 *this_cache = cache;
2238
2239 TRY
2240 {
2241 cache->pc = get_frame_func (this_frame);
2242
2243 /* At this point the stack looks as if we just entered the
2244 function, with the return address at the top of the
2245 stack. */
2246 sp = get_frame_register_unsigned (this_frame, I386_ESP_REGNUM);
2247 cache->base = sp + cache->sp_offset;
2248 cache->saved_sp = cache->base + 8;
2249 cache->saved_regs[I386_EIP_REGNUM] = cache->base + 4;
2250
2251 cache->base_p = 1;
2252 }
2253 CATCH (ex, RETURN_MASK_ERROR)
2254 {
2255 if (ex.error != NOT_AVAILABLE_ERROR)
2256 throw_exception (ex);
2257 }
2258 END_CATCH
2259
2260 return cache;
2261 }
2262
2263 static enum unwind_stop_reason
2264 i386_epilogue_frame_unwind_stop_reason (struct frame_info *this_frame,
2265 void **this_cache)
2266 {
2267 struct i386_frame_cache *cache =
2268 i386_epilogue_frame_cache (this_frame, this_cache);
2269
2270 if (!cache->base_p)
2271 return UNWIND_UNAVAILABLE;
2272
2273 return UNWIND_NO_REASON;
2274 }
2275
2276 static void
2277 i386_epilogue_frame_this_id (struct frame_info *this_frame,
2278 void **this_cache,
2279 struct frame_id *this_id)
2280 {
2281 struct i386_frame_cache *cache =
2282 i386_epilogue_frame_cache (this_frame, this_cache);
2283
2284 if (!cache->base_p)
2285 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2286 else
2287 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2288 }
2289
2290 static struct value *
2291 i386_epilogue_frame_prev_register (struct frame_info *this_frame,
2292 void **this_cache, int regnum)
2293 {
2294 /* Make sure we've initialized the cache. */
2295 i386_epilogue_frame_cache (this_frame, this_cache);
2296
2297 return i386_frame_prev_register (this_frame, this_cache, regnum);
2298 }
2299
2300 static const struct frame_unwind i386_epilogue_frame_unwind =
2301 {
2302 NORMAL_FRAME,
2303 i386_epilogue_frame_unwind_stop_reason,
2304 i386_epilogue_frame_this_id,
2305 i386_epilogue_frame_prev_register,
2306 NULL,
2307 i386_epilogue_frame_sniffer
2308 };
2309 \f
2310
2311 /* Stack-based trampolines. */
2312
2313 /* These trampolines are used on cross x86 targets, when taking the
2314 address of a nested function. When executing these trampolines,
2315 no stack frame is set up, so we are in a similar situation as in
2316 epilogues and i386_epilogue_frame_this_id can be re-used. */
2317
2318 /* Static chain passed in register. */
2319
2320 struct i386_insn i386_tramp_chain_in_reg_insns[] =
2321 {
2322 /* `movl imm32, %eax' and `movl imm32, %ecx' */
2323 { 5, { 0xb8 }, { 0xfe } },
2324
2325 /* `jmp imm32' */
2326 { 5, { 0xe9 }, { 0xff } },
2327
2328 {0}
2329 };
2330
2331 /* Static chain passed on stack (when regparm=3). */
2332
2333 struct i386_insn i386_tramp_chain_on_stack_insns[] =
2334 {
2335 /* `push imm32' */
2336 { 5, { 0x68 }, { 0xff } },
2337
2338 /* `jmp imm32' */
2339 { 5, { 0xe9 }, { 0xff } },
2340
2341 {0}
2342 };
2343
2344 /* Return whether PC points inside a stack trampoline. */
2345
2346 static int
2347 i386_in_stack_tramp_p (CORE_ADDR pc)
2348 {
2349 gdb_byte insn;
2350 const char *name;
2351
2352 /* A stack trampoline is detected if no name is associated
2353 to the current pc and if it points inside a trampoline
2354 sequence. */
2355
2356 find_pc_partial_function (pc, &name, NULL, NULL);
2357 if (name)
2358 return 0;
2359
2360 if (target_read_memory (pc, &insn, 1))
2361 return 0;
2362
2363 if (!i386_match_insn_block (pc, i386_tramp_chain_in_reg_insns)
2364 && !i386_match_insn_block (pc, i386_tramp_chain_on_stack_insns))
2365 return 0;
2366
2367 return 1;
2368 }
2369
2370 static int
2371 i386_stack_tramp_frame_sniffer (const struct frame_unwind *self,
2372 struct frame_info *this_frame,
2373 void **this_cache)
2374 {
2375 if (frame_relative_level (this_frame) == 0)
2376 return i386_in_stack_tramp_p (get_frame_pc (this_frame));
2377 else
2378 return 0;
2379 }
2380
2381 static const struct frame_unwind i386_stack_tramp_frame_unwind =
2382 {
2383 NORMAL_FRAME,
2384 i386_epilogue_frame_unwind_stop_reason,
2385 i386_epilogue_frame_this_id,
2386 i386_epilogue_frame_prev_register,
2387 NULL,
2388 i386_stack_tramp_frame_sniffer
2389 };
2390 \f
2391 /* Generate a bytecode expression to get the value of the saved PC. */
2392
2393 static void
2394 i386_gen_return_address (struct gdbarch *gdbarch,
2395 struct agent_expr *ax, struct axs_value *value,
2396 CORE_ADDR scope)
2397 {
2398 /* The following sequence assumes the traditional use of the base
2399 register. */
2400 ax_reg (ax, I386_EBP_REGNUM);
2401 ax_const_l (ax, 4);
2402 ax_simple (ax, aop_add);
2403 value->type = register_type (gdbarch, I386_EIP_REGNUM);
2404 value->kind = axs_lvalue_memory;
2405 }
2406 \f
2407
2408 /* Signal trampolines. */
2409
2410 static struct i386_frame_cache *
2411 i386_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
2412 {
2413 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2414 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2415 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2416 struct i386_frame_cache *cache;
2417 CORE_ADDR addr;
2418 gdb_byte buf[4];
2419
2420 if (*this_cache)
2421 return (struct i386_frame_cache *) *this_cache;
2422
2423 cache = i386_alloc_frame_cache ();
2424
2425 TRY
2426 {
2427 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2428 cache->base = extract_unsigned_integer (buf, 4, byte_order) - 4;
2429
2430 addr = tdep->sigcontext_addr (this_frame);
2431 if (tdep->sc_reg_offset)
2432 {
2433 int i;
2434
2435 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
2436
2437 for (i = 0; i < tdep->sc_num_regs; i++)
2438 if (tdep->sc_reg_offset[i] != -1)
2439 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
2440 }
2441 else
2442 {
2443 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
2444 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
2445 }
2446
2447 cache->base_p = 1;
2448 }
2449 CATCH (ex, RETURN_MASK_ERROR)
2450 {
2451 if (ex.error != NOT_AVAILABLE_ERROR)
2452 throw_exception (ex);
2453 }
2454 END_CATCH
2455
2456 *this_cache = cache;
2457 return cache;
2458 }
2459
2460 static enum unwind_stop_reason
2461 i386_sigtramp_frame_unwind_stop_reason (struct frame_info *this_frame,
2462 void **this_cache)
2463 {
2464 struct i386_frame_cache *cache =
2465 i386_sigtramp_frame_cache (this_frame, this_cache);
2466
2467 if (!cache->base_p)
2468 return UNWIND_UNAVAILABLE;
2469
2470 return UNWIND_NO_REASON;
2471 }
2472
2473 static void
2474 i386_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache,
2475 struct frame_id *this_id)
2476 {
2477 struct i386_frame_cache *cache =
2478 i386_sigtramp_frame_cache (this_frame, this_cache);
2479
2480 if (!cache->base_p)
2481 (*this_id) = frame_id_build_unavailable_stack (get_frame_pc (this_frame));
2482 else
2483 {
2484 /* See the end of i386_push_dummy_call. */
2485 (*this_id) = frame_id_build (cache->base + 8, get_frame_pc (this_frame));
2486 }
2487 }
2488
2489 static struct value *
2490 i386_sigtramp_frame_prev_register (struct frame_info *this_frame,
2491 void **this_cache, int regnum)
2492 {
2493 /* Make sure we've initialized the cache. */
2494 i386_sigtramp_frame_cache (this_frame, this_cache);
2495
2496 return i386_frame_prev_register (this_frame, this_cache, regnum);
2497 }
2498
2499 static int
2500 i386_sigtramp_frame_sniffer (const struct frame_unwind *self,
2501 struct frame_info *this_frame,
2502 void **this_prologue_cache)
2503 {
2504 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
2505
2506 /* We shouldn't even bother if we don't have a sigcontext_addr
2507 handler. */
2508 if (tdep->sigcontext_addr == NULL)
2509 return 0;
2510
2511 if (tdep->sigtramp_p != NULL)
2512 {
2513 if (tdep->sigtramp_p (this_frame))
2514 return 1;
2515 }
2516
2517 if (tdep->sigtramp_start != 0)
2518 {
2519 CORE_ADDR pc = get_frame_pc (this_frame);
2520
2521 gdb_assert (tdep->sigtramp_end != 0);
2522 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
2523 return 1;
2524 }
2525
2526 return 0;
2527 }
2528
2529 static const struct frame_unwind i386_sigtramp_frame_unwind =
2530 {
2531 SIGTRAMP_FRAME,
2532 i386_sigtramp_frame_unwind_stop_reason,
2533 i386_sigtramp_frame_this_id,
2534 i386_sigtramp_frame_prev_register,
2535 NULL,
2536 i386_sigtramp_frame_sniffer
2537 };
2538 \f
2539
2540 static CORE_ADDR
2541 i386_frame_base_address (struct frame_info *this_frame, void **this_cache)
2542 {
2543 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2544
2545 return cache->base;
2546 }
2547
2548 static const struct frame_base i386_frame_base =
2549 {
2550 &i386_frame_unwind,
2551 i386_frame_base_address,
2552 i386_frame_base_address,
2553 i386_frame_base_address
2554 };
2555
2556 static struct frame_id
2557 i386_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2558 {
2559 CORE_ADDR fp;
2560
2561 fp = get_frame_register_unsigned (this_frame, I386_EBP_REGNUM);
2562
2563 /* See the end of i386_push_dummy_call. */
2564 return frame_id_build (fp + 8, get_frame_pc (this_frame));
2565 }
2566
2567 /* _Decimal128 function return values need 16-byte alignment on the
2568 stack. */
2569
2570 static CORE_ADDR
2571 i386_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2572 {
2573 return sp & -(CORE_ADDR)16;
2574 }
2575 \f
2576
2577 /* Figure out where the longjmp will land. Slurp the args out of the
2578 stack. We expect the first arg to be a pointer to the jmp_buf
2579 structure from which we extract the address that we will land at.
2580 This address is copied into PC. This routine returns non-zero on
2581 success. */
2582
2583 static int
2584 i386_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
2585 {
2586 gdb_byte buf[4];
2587 CORE_ADDR sp, jb_addr;
2588 struct gdbarch *gdbarch = get_frame_arch (frame);
2589 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2590 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
2591
2592 /* If JB_PC_OFFSET is -1, we have no way to find out where the
2593 longjmp will land. */
2594 if (jb_pc_offset == -1)
2595 return 0;
2596
2597 get_frame_register (frame, I386_ESP_REGNUM, buf);
2598 sp = extract_unsigned_integer (buf, 4, byte_order);
2599 if (target_read_memory (sp + 4, buf, 4))
2600 return 0;
2601
2602 jb_addr = extract_unsigned_integer (buf, 4, byte_order);
2603 if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
2604 return 0;
2605
2606 *pc = extract_unsigned_integer (buf, 4, byte_order);
2607 return 1;
2608 }
2609 \f
2610
2611 /* Check whether TYPE must be 16-byte-aligned when passed as a
2612 function argument. 16-byte vectors, _Decimal128 and structures or
2613 unions containing such types must be 16-byte-aligned; other
2614 arguments are 4-byte-aligned. */
2615
2616 static int
2617 i386_16_byte_align_p (struct type *type)
2618 {
2619 type = check_typedef (type);
2620 if ((TYPE_CODE (type) == TYPE_CODE_DECFLOAT
2621 || (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type)))
2622 && TYPE_LENGTH (type) == 16)
2623 return 1;
2624 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2625 return i386_16_byte_align_p (TYPE_TARGET_TYPE (type));
2626 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2627 || TYPE_CODE (type) == TYPE_CODE_UNION)
2628 {
2629 int i;
2630 for (i = 0; i < TYPE_NFIELDS (type); i++)
2631 {
2632 if (i386_16_byte_align_p (TYPE_FIELD_TYPE (type, i)))
2633 return 1;
2634 }
2635 }
2636 return 0;
2637 }
2638
2639 /* Implementation for set_gdbarch_push_dummy_code. */
2640
2641 static CORE_ADDR
2642 i386_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, CORE_ADDR funaddr,
2643 struct value **args, int nargs, struct type *value_type,
2644 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
2645 struct regcache *regcache)
2646 {
2647 /* Use 0xcc breakpoint - 1 byte. */
2648 *bp_addr = sp - 1;
2649 *real_pc = funaddr;
2650
2651 /* Keep the stack aligned. */
2652 return sp - 16;
2653 }
2654
2655 static CORE_ADDR
2656 i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2657 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2658 struct value **args, CORE_ADDR sp, int struct_return,
2659 CORE_ADDR struct_addr)
2660 {
2661 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2662 gdb_byte buf[4];
2663 int i;
2664 int write_pass;
2665 int args_space = 0;
2666
2667 /* Determine the total space required for arguments and struct
2668 return address in a first pass (allowing for 16-byte-aligned
2669 arguments), then push arguments in a second pass. */
2670
2671 for (write_pass = 0; write_pass < 2; write_pass++)
2672 {
2673 int args_space_used = 0;
2674
2675 if (struct_return)
2676 {
2677 if (write_pass)
2678 {
2679 /* Push value address. */
2680 store_unsigned_integer (buf, 4, byte_order, struct_addr);
2681 write_memory (sp, buf, 4);
2682 args_space_used += 4;
2683 }
2684 else
2685 args_space += 4;
2686 }
2687
2688 for (i = 0; i < nargs; i++)
2689 {
2690 int len = TYPE_LENGTH (value_enclosing_type (args[i]));
2691
2692 if (write_pass)
2693 {
2694 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2695 args_space_used = align_up (args_space_used, 16);
2696
2697 write_memory (sp + args_space_used,
2698 value_contents_all (args[i]), len);
2699 /* The System V ABI says that:
2700
2701 "An argument's size is increased, if necessary, to make it a
2702 multiple of [32-bit] words. This may require tail padding,
2703 depending on the size of the argument."
2704
2705 This makes sure the stack stays word-aligned. */
2706 args_space_used += align_up (len, 4);
2707 }
2708 else
2709 {
2710 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2711 args_space = align_up (args_space, 16);
2712 args_space += align_up (len, 4);
2713 }
2714 }
2715
2716 if (!write_pass)
2717 {
2718 sp -= args_space;
2719
2720 /* The original System V ABI only requires word alignment,
2721 but modern incarnations need 16-byte alignment in order
2722 to support SSE. Since wasting a few bytes here isn't
2723 harmful we unconditionally enforce 16-byte alignment. */
2724 sp &= ~0xf;
2725 }
2726 }
2727
2728 /* Store return address. */
2729 sp -= 4;
2730 store_unsigned_integer (buf, 4, byte_order, bp_addr);
2731 write_memory (sp, buf, 4);
2732
2733 /* Finally, update the stack pointer... */
2734 store_unsigned_integer (buf, 4, byte_order, sp);
2735 regcache_cooked_write (regcache, I386_ESP_REGNUM, buf);
2736
2737 /* ...and fake a frame pointer. */
2738 regcache_cooked_write (regcache, I386_EBP_REGNUM, buf);
2739
2740 /* MarkK wrote: This "+ 8" is all over the place:
2741 (i386_frame_this_id, i386_sigtramp_frame_this_id,
2742 i386_dummy_id). It's there, since all frame unwinders for
2743 a given target have to agree (within a certain margin) on the
2744 definition of the stack address of a frame. Otherwise frame id
2745 comparison might not work correctly. Since DWARF2/GCC uses the
2746 stack address *before* the function call as a frame's CFA. On
2747 the i386, when %ebp is used as a frame pointer, the offset
2748 between the contents %ebp and the CFA as defined by GCC. */
2749 return sp + 8;
2750 }
2751
2752 /* These registers are used for returning integers (and on some
2753 targets also for returning `struct' and `union' values when their
2754 size and alignment match an integer type). */
2755 #define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
2756 #define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
2757
2758 /* Read, for architecture GDBARCH, a function return value of TYPE
2759 from REGCACHE, and copy that into VALBUF. */
2760
2761 static void
2762 i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
2763 struct regcache *regcache, gdb_byte *valbuf)
2764 {
2765 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2766 int len = TYPE_LENGTH (type);
2767 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2768
2769 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2770 {
2771 if (tdep->st0_regnum < 0)
2772 {
2773 warning (_("Cannot find floating-point return value."));
2774 memset (valbuf, 0, len);
2775 return;
2776 }
2777
2778 /* Floating-point return values can be found in %st(0). Convert
2779 its contents to the desired type. This is probably not
2780 exactly how it would happen on the target itself, but it is
2781 the best we can do. */
2782 regcache_raw_read (regcache, I386_ST0_REGNUM, buf);
2783 convert_typed_floating (buf, i387_ext_type (gdbarch), valbuf, type);
2784 }
2785 else
2786 {
2787 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2788 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2789
2790 if (len <= low_size)
2791 {
2792 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
2793 memcpy (valbuf, buf, len);
2794 }
2795 else if (len <= (low_size + high_size))
2796 {
2797 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
2798 memcpy (valbuf, buf, low_size);
2799 regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
2800 memcpy (valbuf + low_size, buf, len - low_size);
2801 }
2802 else
2803 internal_error (__FILE__, __LINE__,
2804 _("Cannot extract return value of %d bytes long."),
2805 len);
2806 }
2807 }
2808
2809 /* Write, for architecture GDBARCH, a function return value of TYPE
2810 from VALBUF into REGCACHE. */
2811
2812 static void
2813 i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
2814 struct regcache *regcache, const gdb_byte *valbuf)
2815 {
2816 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2817 int len = TYPE_LENGTH (type);
2818
2819 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2820 {
2821 ULONGEST fstat;
2822 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2823
2824 if (tdep->st0_regnum < 0)
2825 {
2826 warning (_("Cannot set floating-point return value."));
2827 return;
2828 }
2829
2830 /* Returning floating-point values is a bit tricky. Apart from
2831 storing the return value in %st(0), we have to simulate the
2832 state of the FPU at function return point. */
2833
2834 /* Convert the value found in VALBUF to the extended
2835 floating-point format used by the FPU. This is probably
2836 not exactly how it would happen on the target itself, but
2837 it is the best we can do. */
2838 convert_typed_floating (valbuf, type, buf, i387_ext_type (gdbarch));
2839 regcache_raw_write (regcache, I386_ST0_REGNUM, buf);
2840
2841 /* Set the top of the floating-point register stack to 7. The
2842 actual value doesn't really matter, but 7 is what a normal
2843 function return would end up with if the program started out
2844 with a freshly initialized FPU. */
2845 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
2846 fstat |= (7 << 11);
2847 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM (tdep), fstat);
2848
2849 /* Mark %st(1) through %st(7) as empty. Since we set the top of
2850 the floating-point register stack to 7, the appropriate value
2851 for the tag word is 0x3fff. */
2852 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM (tdep), 0x3fff);
2853 }
2854 else
2855 {
2856 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2857 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2858
2859 if (len <= low_size)
2860 regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
2861 else if (len <= (low_size + high_size))
2862 {
2863 regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
2864 regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
2865 len - low_size, valbuf + low_size);
2866 }
2867 else
2868 internal_error (__FILE__, __LINE__,
2869 _("Cannot store return value of %d bytes long."), len);
2870 }
2871 }
2872 \f
2873
2874 /* This is the variable that is set with "set struct-convention", and
2875 its legitimate values. */
2876 static const char default_struct_convention[] = "default";
2877 static const char pcc_struct_convention[] = "pcc";
2878 static const char reg_struct_convention[] = "reg";
2879 static const char *const valid_conventions[] =
2880 {
2881 default_struct_convention,
2882 pcc_struct_convention,
2883 reg_struct_convention,
2884 NULL
2885 };
2886 static const char *struct_convention = default_struct_convention;
2887
2888 /* Return non-zero if TYPE, which is assumed to be a structure,
2889 a union type, or an array type, should be returned in registers
2890 for architecture GDBARCH. */
2891
2892 static int
2893 i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
2894 {
2895 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2896 enum type_code code = TYPE_CODE (type);
2897 int len = TYPE_LENGTH (type);
2898
2899 gdb_assert (code == TYPE_CODE_STRUCT
2900 || code == TYPE_CODE_UNION
2901 || code == TYPE_CODE_ARRAY);
2902
2903 if (struct_convention == pcc_struct_convention
2904 || (struct_convention == default_struct_convention
2905 && tdep->struct_return == pcc_struct_return))
2906 return 0;
2907
2908 /* Structures consisting of a single `float', `double' or 'long
2909 double' member are returned in %st(0). */
2910 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2911 {
2912 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
2913 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2914 return (len == 4 || len == 8 || len == 12);
2915 }
2916
2917 return (len == 1 || len == 2 || len == 4 || len == 8);
2918 }
2919
2920 /* Determine, for architecture GDBARCH, how a return value of TYPE
2921 should be returned. If it is supposed to be returned in registers,
2922 and READBUF is non-zero, read the appropriate value from REGCACHE,
2923 and copy it into READBUF. If WRITEBUF is non-zero, write the value
2924 from WRITEBUF into REGCACHE. */
2925
2926 static enum return_value_convention
2927 i386_return_value (struct gdbarch *gdbarch, struct value *function,
2928 struct type *type, struct regcache *regcache,
2929 gdb_byte *readbuf, const gdb_byte *writebuf)
2930 {
2931 enum type_code code = TYPE_CODE (type);
2932
2933 if (((code == TYPE_CODE_STRUCT
2934 || code == TYPE_CODE_UNION
2935 || code == TYPE_CODE_ARRAY)
2936 && !i386_reg_struct_return_p (gdbarch, type))
2937 /* Complex double and long double uses the struct return covention. */
2938 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 16)
2939 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 24)
2940 /* 128-bit decimal float uses the struct return convention. */
2941 || (code == TYPE_CODE_DECFLOAT && TYPE_LENGTH (type) == 16))
2942 {
2943 /* The System V ABI says that:
2944
2945 "A function that returns a structure or union also sets %eax
2946 to the value of the original address of the caller's area
2947 before it returns. Thus when the caller receives control
2948 again, the address of the returned object resides in register
2949 %eax and can be used to access the object."
2950
2951 So the ABI guarantees that we can always find the return
2952 value just after the function has returned. */
2953
2954 /* Note that the ABI doesn't mention functions returning arrays,
2955 which is something possible in certain languages such as Ada.
2956 In this case, the value is returned as if it was wrapped in
2957 a record, so the convention applied to records also applies
2958 to arrays. */
2959
2960 if (readbuf)
2961 {
2962 ULONGEST addr;
2963
2964 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
2965 read_memory (addr, readbuf, TYPE_LENGTH (type));
2966 }
2967
2968 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
2969 }
2970
2971 /* This special case is for structures consisting of a single
2972 `float', `double' or 'long double' member. These structures are
2973 returned in %st(0). For these structures, we call ourselves
2974 recursively, changing TYPE into the type of the first member of
2975 the structure. Since that should work for all structures that
2976 have only one member, we don't bother to check the member's type
2977 here. */
2978 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2979 {
2980 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
2981 return i386_return_value (gdbarch, function, type, regcache,
2982 readbuf, writebuf);
2983 }
2984
2985 if (readbuf)
2986 i386_extract_return_value (gdbarch, type, regcache, readbuf);
2987 if (writebuf)
2988 i386_store_return_value (gdbarch, type, regcache, writebuf);
2989
2990 return RETURN_VALUE_REGISTER_CONVENTION;
2991 }
2992 \f
2993
2994 struct type *
2995 i387_ext_type (struct gdbarch *gdbarch)
2996 {
2997 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2998
2999 if (!tdep->i387_ext_type)
3000 {
3001 tdep->i387_ext_type = tdesc_find_type (gdbarch, "i387_ext");
3002 gdb_assert (tdep->i387_ext_type != NULL);
3003 }
3004
3005 return tdep->i387_ext_type;
3006 }
3007
3008 /* Construct type for pseudo BND registers. We can't use
3009 tdesc_find_type since a complement of one value has to be used
3010 to describe the upper bound. */
3011
3012 static struct type *
3013 i386_bnd_type (struct gdbarch *gdbarch)
3014 {
3015 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3016
3017
3018 if (!tdep->i386_bnd_type)
3019 {
3020 struct type *t;
3021 const struct builtin_type *bt = builtin_type (gdbarch);
3022
3023 /* The type we're building is described bellow: */
3024 #if 0
3025 struct __bound128
3026 {
3027 void *lbound;
3028 void *ubound; /* One complement of raw ubound field. */
3029 };
3030 #endif
3031
3032 t = arch_composite_type (gdbarch,
3033 "__gdb_builtin_type_bound128", TYPE_CODE_STRUCT);
3034
3035 append_composite_type_field (t, "lbound", bt->builtin_data_ptr);
3036 append_composite_type_field (t, "ubound", bt->builtin_data_ptr);
3037
3038 TYPE_NAME (t) = "builtin_type_bound128";
3039 tdep->i386_bnd_type = t;
3040 }
3041
3042 return tdep->i386_bnd_type;
3043 }
3044
3045 /* Construct vector type for pseudo ZMM registers. We can't use
3046 tdesc_find_type since ZMM isn't described in target description. */
3047
3048 static struct type *
3049 i386_zmm_type (struct gdbarch *gdbarch)
3050 {
3051 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3052
3053 if (!tdep->i386_zmm_type)
3054 {
3055 const struct builtin_type *bt = builtin_type (gdbarch);
3056
3057 /* The type we're building is this: */
3058 #if 0
3059 union __gdb_builtin_type_vec512i
3060 {
3061 int128_t uint128[4];
3062 int64_t v4_int64[8];
3063 int32_t v8_int32[16];
3064 int16_t v16_int16[32];
3065 int8_t v32_int8[64];
3066 double v4_double[8];
3067 float v8_float[16];
3068 };
3069 #endif
3070
3071 struct type *t;
3072
3073 t = arch_composite_type (gdbarch,
3074 "__gdb_builtin_type_vec512i", TYPE_CODE_UNION);
3075 append_composite_type_field (t, "v16_float",
3076 init_vector_type (bt->builtin_float, 16));
3077 append_composite_type_field (t, "v8_double",
3078 init_vector_type (bt->builtin_double, 8));
3079 append_composite_type_field (t, "v64_int8",
3080 init_vector_type (bt->builtin_int8, 64));
3081 append_composite_type_field (t, "v32_int16",
3082 init_vector_type (bt->builtin_int16, 32));
3083 append_composite_type_field (t, "v16_int32",
3084 init_vector_type (bt->builtin_int32, 16));
3085 append_composite_type_field (t, "v8_int64",
3086 init_vector_type (bt->builtin_int64, 8));
3087 append_composite_type_field (t, "v4_int128",
3088 init_vector_type (bt->builtin_int128, 4));
3089
3090 TYPE_VECTOR (t) = 1;
3091 TYPE_NAME (t) = "builtin_type_vec512i";
3092 tdep->i386_zmm_type = t;
3093 }
3094
3095 return tdep->i386_zmm_type;
3096 }
3097
3098 /* Construct vector type for pseudo YMM registers. We can't use
3099 tdesc_find_type since YMM isn't described in target description. */
3100
3101 static struct type *
3102 i386_ymm_type (struct gdbarch *gdbarch)
3103 {
3104 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3105
3106 if (!tdep->i386_ymm_type)
3107 {
3108 const struct builtin_type *bt = builtin_type (gdbarch);
3109
3110 /* The type we're building is this: */
3111 #if 0
3112 union __gdb_builtin_type_vec256i
3113 {
3114 int128_t uint128[2];
3115 int64_t v2_int64[4];
3116 int32_t v4_int32[8];
3117 int16_t v8_int16[16];
3118 int8_t v16_int8[32];
3119 double v2_double[4];
3120 float v4_float[8];
3121 };
3122 #endif
3123
3124 struct type *t;
3125
3126 t = arch_composite_type (gdbarch,
3127 "__gdb_builtin_type_vec256i", TYPE_CODE_UNION);
3128 append_composite_type_field (t, "v8_float",
3129 init_vector_type (bt->builtin_float, 8));
3130 append_composite_type_field (t, "v4_double",
3131 init_vector_type (bt->builtin_double, 4));
3132 append_composite_type_field (t, "v32_int8",
3133 init_vector_type (bt->builtin_int8, 32));
3134 append_composite_type_field (t, "v16_int16",
3135 init_vector_type (bt->builtin_int16, 16));
3136 append_composite_type_field (t, "v8_int32",
3137 init_vector_type (bt->builtin_int32, 8));
3138 append_composite_type_field (t, "v4_int64",
3139 init_vector_type (bt->builtin_int64, 4));
3140 append_composite_type_field (t, "v2_int128",
3141 init_vector_type (bt->builtin_int128, 2));
3142
3143 TYPE_VECTOR (t) = 1;
3144 TYPE_NAME (t) = "builtin_type_vec256i";
3145 tdep->i386_ymm_type = t;
3146 }
3147
3148 return tdep->i386_ymm_type;
3149 }
3150
3151 /* Construct vector type for MMX registers. */
3152 static struct type *
3153 i386_mmx_type (struct gdbarch *gdbarch)
3154 {
3155 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3156
3157 if (!tdep->i386_mmx_type)
3158 {
3159 const struct builtin_type *bt = builtin_type (gdbarch);
3160
3161 /* The type we're building is this: */
3162 #if 0
3163 union __gdb_builtin_type_vec64i
3164 {
3165 int64_t uint64;
3166 int32_t v2_int32[2];
3167 int16_t v4_int16[4];
3168 int8_t v8_int8[8];
3169 };
3170 #endif
3171
3172 struct type *t;
3173
3174 t = arch_composite_type (gdbarch,
3175 "__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
3176
3177 append_composite_type_field (t, "uint64", bt->builtin_int64);
3178 append_composite_type_field (t, "v2_int32",
3179 init_vector_type (bt->builtin_int32, 2));
3180 append_composite_type_field (t, "v4_int16",
3181 init_vector_type (bt->builtin_int16, 4));
3182 append_composite_type_field (t, "v8_int8",
3183 init_vector_type (bt->builtin_int8, 8));
3184
3185 TYPE_VECTOR (t) = 1;
3186 TYPE_NAME (t) = "builtin_type_vec64i";
3187 tdep->i386_mmx_type = t;
3188 }
3189
3190 return tdep->i386_mmx_type;
3191 }
3192
3193 /* Return the GDB type object for the "standard" data type of data in
3194 register REGNUM. */
3195
3196 struct type *
3197 i386_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
3198 {
3199 if (i386_bnd_regnum_p (gdbarch, regnum))
3200 return i386_bnd_type (gdbarch);
3201 if (i386_mmx_regnum_p (gdbarch, regnum))
3202 return i386_mmx_type (gdbarch);
3203 else if (i386_ymm_regnum_p (gdbarch, regnum))
3204 return i386_ymm_type (gdbarch);
3205 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3206 return i386_ymm_type (gdbarch);
3207 else if (i386_zmm_regnum_p (gdbarch, regnum))
3208 return i386_zmm_type (gdbarch);
3209 else
3210 {
3211 const struct builtin_type *bt = builtin_type (gdbarch);
3212 if (i386_byte_regnum_p (gdbarch, regnum))
3213 return bt->builtin_int8;
3214 else if (i386_word_regnum_p (gdbarch, regnum))
3215 return bt->builtin_int16;
3216 else if (i386_dword_regnum_p (gdbarch, regnum))
3217 return bt->builtin_int32;
3218 else if (i386_k_regnum_p (gdbarch, regnum))
3219 return bt->builtin_int64;
3220 }
3221
3222 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3223 }
3224
3225 /* Map a cooked register onto a raw register or memory. For the i386,
3226 the MMX registers need to be mapped onto floating point registers. */
3227
3228 static int
3229 i386_mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
3230 {
3231 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
3232 int mmxreg, fpreg;
3233 ULONGEST fstat;
3234 int tos;
3235
3236 mmxreg = regnum - tdep->mm0_regnum;
3237 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
3238 tos = (fstat >> 11) & 0x7;
3239 fpreg = (mmxreg + tos) % 8;
3240
3241 return (I387_ST0_REGNUM (tdep) + fpreg);
3242 }
3243
3244 /* A helper function for us by i386_pseudo_register_read_value and
3245 amd64_pseudo_register_read_value. It does all the work but reads
3246 the data into an already-allocated value. */
3247
3248 void
3249 i386_pseudo_register_read_into_value (struct gdbarch *gdbarch,
3250 struct regcache *regcache,
3251 int regnum,
3252 struct value *result_value)
3253 {
3254 gdb_byte raw_buf[MAX_REGISTER_SIZE];
3255 enum register_status status;
3256 gdb_byte *buf = value_contents_raw (result_value);
3257
3258 if (i386_mmx_regnum_p (gdbarch, regnum))
3259 {
3260 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3261
3262 /* Extract (always little endian). */
3263 status = regcache_raw_read (regcache, fpnum, raw_buf);
3264 if (status != REG_VALID)
3265 mark_value_bytes_unavailable (result_value, 0,
3266 TYPE_LENGTH (value_type (result_value)));
3267 else
3268 memcpy (buf, raw_buf, register_size (gdbarch, regnum));
3269 }
3270 else
3271 {
3272 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3273 if (i386_bnd_regnum_p (gdbarch, regnum))
3274 {
3275 regnum -= tdep->bnd0_regnum;
3276
3277 /* Extract (always little endian). Read lower 128bits. */
3278 status = regcache_raw_read (regcache,
3279 I387_BND0R_REGNUM (tdep) + regnum,
3280 raw_buf);
3281 if (status != REG_VALID)
3282 mark_value_bytes_unavailable (result_value, 0, 16);
3283 else
3284 {
3285 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3286 LONGEST upper, lower;
3287 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
3288
3289 lower = extract_unsigned_integer (raw_buf, 8, byte_order);
3290 upper = extract_unsigned_integer (raw_buf + 8, 8, byte_order);
3291 upper = ~upper;
3292
3293 memcpy (buf, &lower, size);
3294 memcpy (buf + size, &upper, size);
3295 }
3296 }
3297 else if (i386_k_regnum_p (gdbarch, regnum))
3298 {
3299 regnum -= tdep->k0_regnum;
3300
3301 /* Extract (always little endian). */
3302 status = regcache_raw_read (regcache,
3303 tdep->k0_regnum + regnum,
3304 raw_buf);
3305 if (status != REG_VALID)
3306 mark_value_bytes_unavailable (result_value, 0, 8);
3307 else
3308 memcpy (buf, raw_buf, 8);
3309 }
3310 else if (i386_zmm_regnum_p (gdbarch, regnum))
3311 {
3312 regnum -= tdep->zmm0_regnum;
3313
3314 if (regnum < num_lower_zmm_regs)
3315 {
3316 /* Extract (always little endian). Read lower 128bits. */
3317 status = regcache_raw_read (regcache,
3318 I387_XMM0_REGNUM (tdep) + regnum,
3319 raw_buf);
3320 if (status != REG_VALID)
3321 mark_value_bytes_unavailable (result_value, 0, 16);
3322 else
3323 memcpy (buf, raw_buf, 16);
3324
3325 /* Extract (always little endian). Read upper 128bits. */
3326 status = regcache_raw_read (regcache,
3327 tdep->ymm0h_regnum + regnum,
3328 raw_buf);
3329 if (status != REG_VALID)
3330 mark_value_bytes_unavailable (result_value, 16, 16);
3331 else
3332 memcpy (buf + 16, raw_buf, 16);
3333 }
3334 else
3335 {
3336 /* Extract (always little endian). Read lower 128bits. */
3337 status = regcache_raw_read (regcache,
3338 I387_XMM16_REGNUM (tdep) + regnum
3339 - num_lower_zmm_regs,
3340 raw_buf);
3341 if (status != REG_VALID)
3342 mark_value_bytes_unavailable (result_value, 0, 16);
3343 else
3344 memcpy (buf, raw_buf, 16);
3345
3346 /* Extract (always little endian). Read upper 128bits. */
3347 status = regcache_raw_read (regcache,
3348 I387_YMM16H_REGNUM (tdep) + regnum
3349 - num_lower_zmm_regs,
3350 raw_buf);
3351 if (status != REG_VALID)
3352 mark_value_bytes_unavailable (result_value, 16, 16);
3353 else
3354 memcpy (buf + 16, raw_buf, 16);
3355 }
3356
3357 /* Read upper 256bits. */
3358 status = regcache_raw_read (regcache,
3359 tdep->zmm0h_regnum + regnum,
3360 raw_buf);
3361 if (status != REG_VALID)
3362 mark_value_bytes_unavailable (result_value, 32, 32);
3363 else
3364 memcpy (buf + 32, raw_buf, 32);
3365 }
3366 else if (i386_ymm_regnum_p (gdbarch, regnum))
3367 {
3368 regnum -= tdep->ymm0_regnum;
3369
3370 /* Extract (always little endian). Read lower 128bits. */
3371 status = regcache_raw_read (regcache,
3372 I387_XMM0_REGNUM (tdep) + regnum,
3373 raw_buf);
3374 if (status != REG_VALID)
3375 mark_value_bytes_unavailable (result_value, 0, 16);
3376 else
3377 memcpy (buf, raw_buf, 16);
3378 /* Read upper 128bits. */
3379 status = regcache_raw_read (regcache,
3380 tdep->ymm0h_regnum + regnum,
3381 raw_buf);
3382 if (status != REG_VALID)
3383 mark_value_bytes_unavailable (result_value, 16, 32);
3384 else
3385 memcpy (buf + 16, raw_buf, 16);
3386 }
3387 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3388 {
3389 regnum -= tdep->ymm16_regnum;
3390 /* Extract (always little endian). Read lower 128bits. */
3391 status = regcache_raw_read (regcache,
3392 I387_XMM16_REGNUM (tdep) + regnum,
3393 raw_buf);
3394 if (status != REG_VALID)
3395 mark_value_bytes_unavailable (result_value, 0, 16);
3396 else
3397 memcpy (buf, raw_buf, 16);
3398 /* Read upper 128bits. */
3399 status = regcache_raw_read (regcache,
3400 tdep->ymm16h_regnum + regnum,
3401 raw_buf);
3402 if (status != REG_VALID)
3403 mark_value_bytes_unavailable (result_value, 16, 16);
3404 else
3405 memcpy (buf + 16, raw_buf, 16);
3406 }
3407 else if (i386_word_regnum_p (gdbarch, regnum))
3408 {
3409 int gpnum = regnum - tdep->ax_regnum;
3410
3411 /* Extract (always little endian). */
3412 status = regcache_raw_read (regcache, gpnum, raw_buf);
3413 if (status != REG_VALID)
3414 mark_value_bytes_unavailable (result_value, 0,
3415 TYPE_LENGTH (value_type (result_value)));
3416 else
3417 memcpy (buf, raw_buf, 2);
3418 }
3419 else if (i386_byte_regnum_p (gdbarch, regnum))
3420 {
3421 int gpnum = regnum - tdep->al_regnum;
3422
3423 /* Extract (always little endian). We read both lower and
3424 upper registers. */
3425 status = regcache_raw_read (regcache, gpnum % 4, raw_buf);
3426 if (status != REG_VALID)
3427 mark_value_bytes_unavailable (result_value, 0,
3428 TYPE_LENGTH (value_type (result_value)));
3429 else if (gpnum >= 4)
3430 memcpy (buf, raw_buf + 1, 1);
3431 else
3432 memcpy (buf, raw_buf, 1);
3433 }
3434 else
3435 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3436 }
3437 }
3438
3439 static struct value *
3440 i386_pseudo_register_read_value (struct gdbarch *gdbarch,
3441 struct regcache *regcache,
3442 int regnum)
3443 {
3444 struct value *result;
3445
3446 result = allocate_value (register_type (gdbarch, regnum));
3447 VALUE_LVAL (result) = lval_register;
3448 VALUE_REGNUM (result) = regnum;
3449
3450 i386_pseudo_register_read_into_value (gdbarch, regcache, regnum, result);
3451
3452 return result;
3453 }
3454
3455 void
3456 i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
3457 int regnum, const gdb_byte *buf)
3458 {
3459 gdb_byte raw_buf[MAX_REGISTER_SIZE];
3460
3461 if (i386_mmx_regnum_p (gdbarch, regnum))
3462 {
3463 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3464
3465 /* Read ... */
3466 regcache_raw_read (regcache, fpnum, raw_buf);
3467 /* ... Modify ... (always little endian). */
3468 memcpy (raw_buf, buf, register_size (gdbarch, regnum));
3469 /* ... Write. */
3470 regcache_raw_write (regcache, fpnum, raw_buf);
3471 }
3472 else
3473 {
3474 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3475
3476 if (i386_bnd_regnum_p (gdbarch, regnum))
3477 {
3478 ULONGEST upper, lower;
3479 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
3480 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3481
3482 /* New values from input value. */
3483 regnum -= tdep->bnd0_regnum;
3484 lower = extract_unsigned_integer (buf, size, byte_order);
3485 upper = extract_unsigned_integer (buf + size, size, byte_order);
3486
3487 /* Fetching register buffer. */
3488 regcache_raw_read (regcache,
3489 I387_BND0R_REGNUM (tdep) + regnum,
3490 raw_buf);
3491
3492 upper = ~upper;
3493
3494 /* Set register bits. */
3495 memcpy (raw_buf, &lower, 8);
3496 memcpy (raw_buf + 8, &upper, 8);
3497
3498
3499 regcache_raw_write (regcache,
3500 I387_BND0R_REGNUM (tdep) + regnum,
3501 raw_buf);
3502 }
3503 else if (i386_k_regnum_p (gdbarch, regnum))
3504 {
3505 regnum -= tdep->k0_regnum;
3506
3507 regcache_raw_write (regcache,
3508 tdep->k0_regnum + regnum,
3509 buf);
3510 }
3511 else if (i386_zmm_regnum_p (gdbarch, regnum))
3512 {
3513 regnum -= tdep->zmm0_regnum;
3514
3515 if (regnum < num_lower_zmm_regs)
3516 {
3517 /* Write lower 128bits. */
3518 regcache_raw_write (regcache,
3519 I387_XMM0_REGNUM (tdep) + regnum,
3520 buf);
3521 /* Write upper 128bits. */
3522 regcache_raw_write (regcache,
3523 I387_YMM0_REGNUM (tdep) + regnum,
3524 buf + 16);
3525 }
3526 else
3527 {
3528 /* Write lower 128bits. */
3529 regcache_raw_write (regcache,
3530 I387_XMM16_REGNUM (tdep) + regnum
3531 - num_lower_zmm_regs,
3532 buf);
3533 /* Write upper 128bits. */
3534 regcache_raw_write (regcache,
3535 I387_YMM16H_REGNUM (tdep) + regnum
3536 - num_lower_zmm_regs,
3537 buf + 16);
3538 }
3539 /* Write upper 256bits. */
3540 regcache_raw_write (regcache,
3541 tdep->zmm0h_regnum + regnum,
3542 buf + 32);
3543 }
3544 else if (i386_ymm_regnum_p (gdbarch, regnum))
3545 {
3546 regnum -= tdep->ymm0_regnum;
3547
3548 /* ... Write lower 128bits. */
3549 regcache_raw_write (regcache,
3550 I387_XMM0_REGNUM (tdep) + regnum,
3551 buf);
3552 /* ... Write upper 128bits. */
3553 regcache_raw_write (regcache,
3554 tdep->ymm0h_regnum + regnum,
3555 buf + 16);
3556 }
3557 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3558 {
3559 regnum -= tdep->ymm16_regnum;
3560
3561 /* ... Write lower 128bits. */
3562 regcache_raw_write (regcache,
3563 I387_XMM16_REGNUM (tdep) + regnum,
3564 buf);
3565 /* ... Write upper 128bits. */
3566 regcache_raw_write (regcache,
3567 tdep->ymm16h_regnum + regnum,
3568 buf + 16);
3569 }
3570 else if (i386_word_regnum_p (gdbarch, regnum))
3571 {
3572 int gpnum = regnum - tdep->ax_regnum;
3573
3574 /* Read ... */
3575 regcache_raw_read (regcache, gpnum, raw_buf);
3576 /* ... Modify ... (always little endian). */
3577 memcpy (raw_buf, buf, 2);
3578 /* ... Write. */
3579 regcache_raw_write (regcache, gpnum, raw_buf);
3580 }
3581 else if (i386_byte_regnum_p (gdbarch, regnum))
3582 {
3583 int gpnum = regnum - tdep->al_regnum;
3584
3585 /* Read ... We read both lower and upper registers. */
3586 regcache_raw_read (regcache, gpnum % 4, raw_buf);
3587 /* ... Modify ... (always little endian). */
3588 if (gpnum >= 4)
3589 memcpy (raw_buf + 1, buf, 1);
3590 else
3591 memcpy (raw_buf, buf, 1);
3592 /* ... Write. */
3593 regcache_raw_write (regcache, gpnum % 4, raw_buf);
3594 }
3595 else
3596 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3597 }
3598 }
3599
3600 /* Implement the 'ax_pseudo_register_collect' gdbarch method. */
3601
3602 int
3603 i386_ax_pseudo_register_collect (struct gdbarch *gdbarch,
3604 struct agent_expr *ax, int regnum)
3605 {
3606 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3607
3608 if (i386_mmx_regnum_p (gdbarch, regnum))
3609 {
3610 /* MMX to FPU register mapping depends on current TOS. Let's just
3611 not care and collect everything... */
3612 int i;
3613
3614 ax_reg_mask (ax, I387_FSTAT_REGNUM (tdep));
3615 for (i = 0; i < 8; i++)
3616 ax_reg_mask (ax, I387_ST0_REGNUM (tdep) + i);
3617 return 0;
3618 }
3619 else if (i386_bnd_regnum_p (gdbarch, regnum))
3620 {
3621 regnum -= tdep->bnd0_regnum;
3622 ax_reg_mask (ax, I387_BND0R_REGNUM (tdep) + regnum);
3623 return 0;
3624 }
3625 else if (i386_k_regnum_p (gdbarch, regnum))
3626 {
3627 regnum -= tdep->k0_regnum;
3628 ax_reg_mask (ax, tdep->k0_regnum + regnum);
3629 return 0;
3630 }
3631 else if (i386_zmm_regnum_p (gdbarch, regnum))
3632 {
3633 regnum -= tdep->zmm0_regnum;
3634 if (regnum < num_lower_zmm_regs)
3635 {
3636 ax_reg_mask (ax, I387_XMM0_REGNUM (tdep) + regnum);
3637 ax_reg_mask (ax, tdep->ymm0h_regnum + regnum);
3638 }
3639 else
3640 {
3641 ax_reg_mask (ax, I387_XMM16_REGNUM (tdep) + regnum
3642 - num_lower_zmm_regs);
3643 ax_reg_mask (ax, I387_YMM16H_REGNUM (tdep) + regnum
3644 - num_lower_zmm_regs);
3645 }
3646 ax_reg_mask (ax, tdep->zmm0h_regnum + regnum);
3647 return 0;
3648 }
3649 else if (i386_ymm_regnum_p (gdbarch, regnum))
3650 {
3651 regnum -= tdep->ymm0_regnum;
3652 ax_reg_mask (ax, I387_XMM0_REGNUM (tdep) + regnum);
3653 ax_reg_mask (ax, tdep->ymm0h_regnum + regnum);
3654 return 0;
3655 }
3656 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3657 {
3658 regnum -= tdep->ymm16_regnum;
3659 ax_reg_mask (ax, I387_XMM16_REGNUM (tdep) + regnum);
3660 ax_reg_mask (ax, tdep->ymm16h_regnum + regnum);
3661 return 0;
3662 }
3663 else if (i386_word_regnum_p (gdbarch, regnum))
3664 {
3665 int gpnum = regnum - tdep->ax_regnum;
3666
3667 ax_reg_mask (ax, gpnum);
3668 return 0;
3669 }
3670 else if (i386_byte_regnum_p (gdbarch, regnum))
3671 {
3672 int gpnum = regnum - tdep->al_regnum;
3673
3674 ax_reg_mask (ax, gpnum % 4);
3675 return 0;
3676 }
3677 else
3678 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3679 return 1;
3680 }
3681 \f
3682
3683 /* Return the register number of the register allocated by GCC after
3684 REGNUM, or -1 if there is no such register. */
3685
3686 static int
3687 i386_next_regnum (int regnum)
3688 {
3689 /* GCC allocates the registers in the order:
3690
3691 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
3692
3693 Since storing a variable in %esp doesn't make any sense we return
3694 -1 for %ebp and for %esp itself. */
3695 static int next_regnum[] =
3696 {
3697 I386_EDX_REGNUM, /* Slot for %eax. */
3698 I386_EBX_REGNUM, /* Slot for %ecx. */
3699 I386_ECX_REGNUM, /* Slot for %edx. */
3700 I386_ESI_REGNUM, /* Slot for %ebx. */
3701 -1, -1, /* Slots for %esp and %ebp. */
3702 I386_EDI_REGNUM, /* Slot for %esi. */
3703 I386_EBP_REGNUM /* Slot for %edi. */
3704 };
3705
3706 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
3707 return next_regnum[regnum];
3708
3709 return -1;
3710 }
3711
3712 /* Return nonzero if a value of type TYPE stored in register REGNUM
3713 needs any special handling. */
3714
3715 static int
3716 i386_convert_register_p (struct gdbarch *gdbarch,
3717 int regnum, struct type *type)
3718 {
3719 int len = TYPE_LENGTH (type);
3720
3721 /* Values may be spread across multiple registers. Most debugging
3722 formats aren't expressive enough to specify the locations, so
3723 some heuristics is involved. Right now we only handle types that
3724 have a length that is a multiple of the word size, since GCC
3725 doesn't seem to put any other types into registers. */
3726 if (len > 4 && len % 4 == 0)
3727 {
3728 int last_regnum = regnum;
3729
3730 while (len > 4)
3731 {
3732 last_regnum = i386_next_regnum (last_regnum);
3733 len -= 4;
3734 }
3735
3736 if (last_regnum != -1)
3737 return 1;
3738 }
3739
3740 return i387_convert_register_p (gdbarch, regnum, type);
3741 }
3742
3743 /* Read a value of type TYPE from register REGNUM in frame FRAME, and
3744 return its contents in TO. */
3745
3746 static int
3747 i386_register_to_value (struct frame_info *frame, int regnum,
3748 struct type *type, gdb_byte *to,
3749 int *optimizedp, int *unavailablep)
3750 {
3751 struct gdbarch *gdbarch = get_frame_arch (frame);
3752 int len = TYPE_LENGTH (type);
3753
3754 if (i386_fp_regnum_p (gdbarch, regnum))
3755 return i387_register_to_value (frame, regnum, type, to,
3756 optimizedp, unavailablep);
3757
3758 /* Read a value spread across multiple registers. */
3759
3760 gdb_assert (len > 4 && len % 4 == 0);
3761
3762 while (len > 0)
3763 {
3764 gdb_assert (regnum != -1);
3765 gdb_assert (register_size (gdbarch, regnum) == 4);
3766
3767 if (!get_frame_register_bytes (frame, regnum, 0,
3768 register_size (gdbarch, regnum),
3769 to, optimizedp, unavailablep))
3770 return 0;
3771
3772 regnum = i386_next_regnum (regnum);
3773 len -= 4;
3774 to += 4;
3775 }
3776
3777 *optimizedp = *unavailablep = 0;
3778 return 1;
3779 }
3780
3781 /* Write the contents FROM of a value of type TYPE into register
3782 REGNUM in frame FRAME. */
3783
3784 static void
3785 i386_value_to_register (struct frame_info *frame, int regnum,
3786 struct type *type, const gdb_byte *from)
3787 {
3788 int len = TYPE_LENGTH (type);
3789
3790 if (i386_fp_regnum_p (get_frame_arch (frame), regnum))
3791 {
3792 i387_value_to_register (frame, regnum, type, from);
3793 return;
3794 }
3795
3796 /* Write a value spread across multiple registers. */
3797
3798 gdb_assert (len > 4 && len % 4 == 0);
3799
3800 while (len > 0)
3801 {
3802 gdb_assert (regnum != -1);
3803 gdb_assert (register_size (get_frame_arch (frame), regnum) == 4);
3804
3805 put_frame_register (frame, regnum, from);
3806 regnum = i386_next_regnum (regnum);
3807 len -= 4;
3808 from += 4;
3809 }
3810 }
3811 \f
3812 /* Supply register REGNUM from the buffer specified by GREGS and LEN
3813 in the general-purpose register set REGSET to register cache
3814 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3815
3816 void
3817 i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
3818 int regnum, const void *gregs, size_t len)
3819 {
3820 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3821 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3822 const gdb_byte *regs = (const gdb_byte *) gregs;
3823 int i;
3824
3825 gdb_assert (len >= tdep->sizeof_gregset);
3826
3827 for (i = 0; i < tdep->gregset_num_regs; i++)
3828 {
3829 if ((regnum == i || regnum == -1)
3830 && tdep->gregset_reg_offset[i] != -1)
3831 regcache_raw_supply (regcache, i, regs + tdep->gregset_reg_offset[i]);
3832 }
3833 }
3834
3835 /* Collect register REGNUM from the register cache REGCACHE and store
3836 it in the buffer specified by GREGS and LEN as described by the
3837 general-purpose register set REGSET. If REGNUM is -1, do this for
3838 all registers in REGSET. */
3839
3840 static void
3841 i386_collect_gregset (const struct regset *regset,
3842 const struct regcache *regcache,
3843 int regnum, void *gregs, size_t len)
3844 {
3845 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3846 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3847 gdb_byte *regs = (gdb_byte *) gregs;
3848 int i;
3849
3850 gdb_assert (len >= tdep->sizeof_gregset);
3851
3852 for (i = 0; i < tdep->gregset_num_regs; i++)
3853 {
3854 if ((regnum == i || regnum == -1)
3855 && tdep->gregset_reg_offset[i] != -1)
3856 regcache_raw_collect (regcache, i, regs + tdep->gregset_reg_offset[i]);
3857 }
3858 }
3859
3860 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
3861 in the floating-point register set REGSET to register cache
3862 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3863
3864 static void
3865 i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
3866 int regnum, const void *fpregs, size_t len)
3867 {
3868 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3869 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3870
3871 if (len == I387_SIZEOF_FXSAVE)
3872 {
3873 i387_supply_fxsave (regcache, regnum, fpregs);
3874 return;
3875 }
3876
3877 gdb_assert (len >= tdep->sizeof_fpregset);
3878 i387_supply_fsave (regcache, regnum, fpregs);
3879 }
3880
3881 /* Collect register REGNUM from the register cache REGCACHE and store
3882 it in the buffer specified by FPREGS and LEN as described by the
3883 floating-point register set REGSET. If REGNUM is -1, do this for
3884 all registers in REGSET. */
3885
3886 static void
3887 i386_collect_fpregset (const struct regset *regset,
3888 const struct regcache *regcache,
3889 int regnum, void *fpregs, size_t len)
3890 {
3891 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3892 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3893
3894 if (len == I387_SIZEOF_FXSAVE)
3895 {
3896 i387_collect_fxsave (regcache, regnum, fpregs);
3897 return;
3898 }
3899
3900 gdb_assert (len >= tdep->sizeof_fpregset);
3901 i387_collect_fsave (regcache, regnum, fpregs);
3902 }
3903
3904 /* Register set definitions. */
3905
3906 const struct regset i386_gregset =
3907 {
3908 NULL, i386_supply_gregset, i386_collect_gregset
3909 };
3910
3911 const struct regset i386_fpregset =
3912 {
3913 NULL, i386_supply_fpregset, i386_collect_fpregset
3914 };
3915
3916 /* Default iterator over core file register note sections. */
3917
3918 void
3919 i386_iterate_over_regset_sections (struct gdbarch *gdbarch,
3920 iterate_over_regset_sections_cb *cb,
3921 void *cb_data,
3922 const struct regcache *regcache)
3923 {
3924 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3925
3926 cb (".reg", tdep->sizeof_gregset, &i386_gregset, NULL, cb_data);
3927 if (tdep->sizeof_fpregset)
3928 cb (".reg2", tdep->sizeof_fpregset, tdep->fpregset, NULL, cb_data);
3929 }
3930 \f
3931
3932 /* Stuff for WIN32 PE style DLL's but is pretty generic really. */
3933
3934 CORE_ADDR
3935 i386_pe_skip_trampoline_code (struct frame_info *frame,
3936 CORE_ADDR pc, char *name)
3937 {
3938 struct gdbarch *gdbarch = get_frame_arch (frame);
3939 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3940
3941 /* jmp *(dest) */
3942 if (pc && read_memory_unsigned_integer (pc, 2, byte_order) == 0x25ff)
3943 {
3944 unsigned long indirect =
3945 read_memory_unsigned_integer (pc + 2, 4, byte_order);
3946 struct minimal_symbol *indsym =
3947 indirect ? lookup_minimal_symbol_by_pc (indirect).minsym : 0;
3948 const char *symname = indsym ? MSYMBOL_LINKAGE_NAME (indsym) : 0;
3949
3950 if (symname)
3951 {
3952 if (startswith (symname, "__imp_")
3953 || startswith (symname, "_imp_"))
3954 return name ? 1 :
3955 read_memory_unsigned_integer (indirect, 4, byte_order);
3956 }
3957 }
3958 return 0; /* Not a trampoline. */
3959 }
3960 \f
3961
3962 /* Return whether the THIS_FRAME corresponds to a sigtramp
3963 routine. */
3964
3965 int
3966 i386_sigtramp_p (struct frame_info *this_frame)
3967 {
3968 CORE_ADDR pc = get_frame_pc (this_frame);
3969 const char *name;
3970
3971 find_pc_partial_function (pc, &name, NULL, NULL);
3972 return (name && strcmp ("_sigtramp", name) == 0);
3973 }
3974 \f
3975
3976 /* We have two flavours of disassembly. The machinery on this page
3977 deals with switching between those. */
3978
3979 static int
3980 i386_print_insn (bfd_vma pc, struct disassemble_info *info)
3981 {
3982 gdb_assert (disassembly_flavor == att_flavor
3983 || disassembly_flavor == intel_flavor);
3984
3985 /* FIXME: kettenis/20020915: Until disassembler_options is properly
3986 constified, cast to prevent a compiler warning. */
3987 info->disassembler_options = (char *) disassembly_flavor;
3988
3989 return print_insn_i386 (pc, info);
3990 }
3991 \f
3992
3993 /* There are a few i386 architecture variants that differ only
3994 slightly from the generic i386 target. For now, we don't give them
3995 their own source file, but include them here. As a consequence,
3996 they'll always be included. */
3997
3998 /* System V Release 4 (SVR4). */
3999
4000 /* Return whether THIS_FRAME corresponds to a SVR4 sigtramp
4001 routine. */
4002
4003 static int
4004 i386_svr4_sigtramp_p (struct frame_info *this_frame)
4005 {
4006 CORE_ADDR pc = get_frame_pc (this_frame);
4007 const char *name;
4008
4009 /* The origin of these symbols is currently unknown. */
4010 find_pc_partial_function (pc, &name, NULL, NULL);
4011 return (name && (strcmp ("_sigreturn", name) == 0
4012 || strcmp ("sigvechandler", name) == 0));
4013 }
4014
4015 /* Assuming THIS_FRAME is for a SVR4 sigtramp routine, return the
4016 address of the associated sigcontext (ucontext) structure. */
4017
4018 static CORE_ADDR
4019 i386_svr4_sigcontext_addr (struct frame_info *this_frame)
4020 {
4021 struct gdbarch *gdbarch = get_frame_arch (this_frame);
4022 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4023 gdb_byte buf[4];
4024 CORE_ADDR sp;
4025
4026 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
4027 sp = extract_unsigned_integer (buf, 4, byte_order);
4028
4029 return read_memory_unsigned_integer (sp + 8, 4, byte_order);
4030 }
4031
4032 \f
4033
4034 /* Implementation of `gdbarch_stap_is_single_operand', as defined in
4035 gdbarch.h. */
4036
4037 int
4038 i386_stap_is_single_operand (struct gdbarch *gdbarch, const char *s)
4039 {
4040 return (*s == '$' /* Literal number. */
4041 || (isdigit (*s) && s[1] == '(' && s[2] == '%') /* Displacement. */
4042 || (*s == '(' && s[1] == '%') /* Register indirection. */
4043 || (*s == '%' && isalpha (s[1]))); /* Register access. */
4044 }
4045
4046 /* Helper function for i386_stap_parse_special_token.
4047
4048 This function parses operands of the form `-8+3+1(%rbp)', which
4049 must be interpreted as `*(-8 + 3 - 1 + (void *) $eax)'.
4050
4051 Return 1 if the operand was parsed successfully, zero
4052 otherwise. */
4053
4054 static int
4055 i386_stap_parse_special_token_triplet (struct gdbarch *gdbarch,
4056 struct stap_parse_info *p)
4057 {
4058 const char *s = p->arg;
4059
4060 if (isdigit (*s) || *s == '-' || *s == '+')
4061 {
4062 int got_minus[3];
4063 int i;
4064 long displacements[3];
4065 const char *start;
4066 char *regname;
4067 int len;
4068 struct stoken str;
4069 char *endp;
4070
4071 got_minus[0] = 0;
4072 if (*s == '+')
4073 ++s;
4074 else if (*s == '-')
4075 {
4076 ++s;
4077 got_minus[0] = 1;
4078 }
4079
4080 if (!isdigit ((unsigned char) *s))
4081 return 0;
4082
4083 displacements[0] = strtol (s, &endp, 10);
4084 s = endp;
4085
4086 if (*s != '+' && *s != '-')
4087 {
4088 /* We are not dealing with a triplet. */
4089 return 0;
4090 }
4091
4092 got_minus[1] = 0;
4093 if (*s == '+')
4094 ++s;
4095 else
4096 {
4097 ++s;
4098 got_minus[1] = 1;
4099 }
4100
4101 if (!isdigit ((unsigned char) *s))
4102 return 0;
4103
4104 displacements[1] = strtol (s, &endp, 10);
4105 s = endp;
4106
4107 if (*s != '+' && *s != '-')
4108 {
4109 /* We are not dealing with a triplet. */
4110 return 0;
4111 }
4112
4113 got_minus[2] = 0;
4114 if (*s == '+')
4115 ++s;
4116 else
4117 {
4118 ++s;
4119 got_minus[2] = 1;
4120 }
4121
4122 if (!isdigit ((unsigned char) *s))
4123 return 0;
4124
4125 displacements[2] = strtol (s, &endp, 10);
4126 s = endp;
4127
4128 if (*s != '(' || s[1] != '%')
4129 return 0;
4130
4131 s += 2;
4132 start = s;
4133
4134 while (isalnum (*s))
4135 ++s;
4136
4137 if (*s++ != ')')
4138 return 0;
4139
4140 len = s - start - 1;
4141 regname = (char *) alloca (len + 1);
4142
4143 strncpy (regname, start, len);
4144 regname[len] = '\0';
4145
4146 if (user_reg_map_name_to_regnum (gdbarch, regname, len) == -1)
4147 error (_("Invalid register name `%s' on expression `%s'."),
4148 regname, p->saved_arg);
4149
4150 for (i = 0; i < 3; i++)
4151 {
4152 write_exp_elt_opcode (&p->pstate, OP_LONG);
4153 write_exp_elt_type
4154 (&p->pstate, builtin_type (gdbarch)->builtin_long);
4155 write_exp_elt_longcst (&p->pstate, displacements[i]);
4156 write_exp_elt_opcode (&p->pstate, OP_LONG);
4157 if (got_minus[i])
4158 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
4159 }
4160
4161 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4162 str.ptr = regname;
4163 str.length = len;
4164 write_exp_string (&p->pstate, str);
4165 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4166
4167 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4168 write_exp_elt_type (&p->pstate,
4169 builtin_type (gdbarch)->builtin_data_ptr);
4170 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4171
4172 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4173 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4174 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4175
4176 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4177 write_exp_elt_type (&p->pstate,
4178 lookup_pointer_type (p->arg_type));
4179 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4180
4181 write_exp_elt_opcode (&p->pstate, UNOP_IND);
4182
4183 p->arg = s;
4184
4185 return 1;
4186 }
4187
4188 return 0;
4189 }
4190
4191 /* Helper function for i386_stap_parse_special_token.
4192
4193 This function parses operands of the form `register base +
4194 (register index * size) + offset', as represented in
4195 `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4196
4197 Return 1 if the operand was parsed successfully, zero
4198 otherwise. */
4199
4200 static int
4201 i386_stap_parse_special_token_three_arg_disp (struct gdbarch *gdbarch,
4202 struct stap_parse_info *p)
4203 {
4204 const char *s = p->arg;
4205
4206 if (isdigit (*s) || *s == '(' || *s == '-' || *s == '+')
4207 {
4208 int offset_minus = 0;
4209 long offset = 0;
4210 int size_minus = 0;
4211 long size = 0;
4212 const char *start;
4213 char *base;
4214 int len_base;
4215 char *index;
4216 int len_index;
4217 struct stoken base_token, index_token;
4218
4219 if (*s == '+')
4220 ++s;
4221 else if (*s == '-')
4222 {
4223 ++s;
4224 offset_minus = 1;
4225 }
4226
4227 if (offset_minus && !isdigit (*s))
4228 return 0;
4229
4230 if (isdigit (*s))
4231 {
4232 char *endp;
4233
4234 offset = strtol (s, &endp, 10);
4235 s = endp;
4236 }
4237
4238 if (*s != '(' || s[1] != '%')
4239 return 0;
4240
4241 s += 2;
4242 start = s;
4243
4244 while (isalnum (*s))
4245 ++s;
4246
4247 if (*s != ',' || s[1] != '%')
4248 return 0;
4249
4250 len_base = s - start;
4251 base = (char *) alloca (len_base + 1);
4252 strncpy (base, start, len_base);
4253 base[len_base] = '\0';
4254
4255 if (user_reg_map_name_to_regnum (gdbarch, base, len_base) == -1)
4256 error (_("Invalid register name `%s' on expression `%s'."),
4257 base, p->saved_arg);
4258
4259 s += 2;
4260 start = s;
4261
4262 while (isalnum (*s))
4263 ++s;
4264
4265 len_index = s - start;
4266 index = (char *) alloca (len_index + 1);
4267 strncpy (index, start, len_index);
4268 index[len_index] = '\0';
4269
4270 if (user_reg_map_name_to_regnum (gdbarch, index, len_index) == -1)
4271 error (_("Invalid register name `%s' on expression `%s'."),
4272 index, p->saved_arg);
4273
4274 if (*s != ',' && *s != ')')
4275 return 0;
4276
4277 if (*s == ',')
4278 {
4279 char *endp;
4280
4281 ++s;
4282 if (*s == '+')
4283 ++s;
4284 else if (*s == '-')
4285 {
4286 ++s;
4287 size_minus = 1;
4288 }
4289
4290 size = strtol (s, &endp, 10);
4291 s = endp;
4292
4293 if (*s != ')')
4294 return 0;
4295 }
4296
4297 ++s;
4298
4299 if (offset)
4300 {
4301 write_exp_elt_opcode (&p->pstate, OP_LONG);
4302 write_exp_elt_type (&p->pstate,
4303 builtin_type (gdbarch)->builtin_long);
4304 write_exp_elt_longcst (&p->pstate, offset);
4305 write_exp_elt_opcode (&p->pstate, OP_LONG);
4306 if (offset_minus)
4307 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
4308 }
4309
4310 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4311 base_token.ptr = base;
4312 base_token.length = len_base;
4313 write_exp_string (&p->pstate, base_token);
4314 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4315
4316 if (offset)
4317 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4318
4319 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4320 index_token.ptr = index;
4321 index_token.length = len_index;
4322 write_exp_string (&p->pstate, index_token);
4323 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4324
4325 if (size)
4326 {
4327 write_exp_elt_opcode (&p->pstate, OP_LONG);
4328 write_exp_elt_type (&p->pstate,
4329 builtin_type (gdbarch)->builtin_long);
4330 write_exp_elt_longcst (&p->pstate, size);
4331 write_exp_elt_opcode (&p->pstate, OP_LONG);
4332 if (size_minus)
4333 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
4334 write_exp_elt_opcode (&p->pstate, BINOP_MUL);
4335 }
4336
4337 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4338
4339 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4340 write_exp_elt_type (&p->pstate,
4341 lookup_pointer_type (p->arg_type));
4342 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4343
4344 write_exp_elt_opcode (&p->pstate, UNOP_IND);
4345
4346 p->arg = s;
4347
4348 return 1;
4349 }
4350
4351 return 0;
4352 }
4353
4354 /* Implementation of `gdbarch_stap_parse_special_token', as defined in
4355 gdbarch.h. */
4356
4357 int
4358 i386_stap_parse_special_token (struct gdbarch *gdbarch,
4359 struct stap_parse_info *p)
4360 {
4361 /* In order to parse special tokens, we use a state-machine that go
4362 through every known token and try to get a match. */
4363 enum
4364 {
4365 TRIPLET,
4366 THREE_ARG_DISPLACEMENT,
4367 DONE
4368 };
4369 int current_state;
4370
4371 current_state = TRIPLET;
4372
4373 /* The special tokens to be parsed here are:
4374
4375 - `register base + (register index * size) + offset', as represented
4376 in `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4377
4378 - Operands of the form `-8+3+1(%rbp)', which must be interpreted as
4379 `*(-8 + 3 - 1 + (void *) $eax)'. */
4380
4381 while (current_state != DONE)
4382 {
4383 switch (current_state)
4384 {
4385 case TRIPLET:
4386 if (i386_stap_parse_special_token_triplet (gdbarch, p))
4387 return 1;
4388 break;
4389
4390 case THREE_ARG_DISPLACEMENT:
4391 if (i386_stap_parse_special_token_three_arg_disp (gdbarch, p))
4392 return 1;
4393 break;
4394 }
4395
4396 /* Advancing to the next state. */
4397 ++current_state;
4398 }
4399
4400 return 0;
4401 }
4402
4403 \f
4404
4405 /* gdbarch gnu_triplet_regexp method. Both arches are acceptable as GDB always
4406 also supplies -m64 or -m32 by gdbarch_gcc_target_options. */
4407
4408 static const char *
4409 i386_gnu_triplet_regexp (struct gdbarch *gdbarch)
4410 {
4411 return "(x86_64|i.86)";
4412 }
4413
4414 \f
4415
4416 /* Generic ELF. */
4417
4418 void
4419 i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4420 {
4421 static const char *const stap_integer_prefixes[] = { "$", NULL };
4422 static const char *const stap_register_prefixes[] = { "%", NULL };
4423 static const char *const stap_register_indirection_prefixes[] = { "(",
4424 NULL };
4425 static const char *const stap_register_indirection_suffixes[] = { ")",
4426 NULL };
4427
4428 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
4429 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
4430
4431 /* Registering SystemTap handlers. */
4432 set_gdbarch_stap_integer_prefixes (gdbarch, stap_integer_prefixes);
4433 set_gdbarch_stap_register_prefixes (gdbarch, stap_register_prefixes);
4434 set_gdbarch_stap_register_indirection_prefixes (gdbarch,
4435 stap_register_indirection_prefixes);
4436 set_gdbarch_stap_register_indirection_suffixes (gdbarch,
4437 stap_register_indirection_suffixes);
4438 set_gdbarch_stap_is_single_operand (gdbarch,
4439 i386_stap_is_single_operand);
4440 set_gdbarch_stap_parse_special_token (gdbarch,
4441 i386_stap_parse_special_token);
4442
4443 set_gdbarch_gnu_triplet_regexp (gdbarch, i386_gnu_triplet_regexp);
4444 }
4445
4446 /* System V Release 4 (SVR4). */
4447
4448 void
4449 i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4450 {
4451 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4452
4453 /* System V Release 4 uses ELF. */
4454 i386_elf_init_abi (info, gdbarch);
4455
4456 /* System V Release 4 has shared libraries. */
4457 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
4458
4459 tdep->sigtramp_p = i386_svr4_sigtramp_p;
4460 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
4461 tdep->sc_pc_offset = 36 + 14 * 4;
4462 tdep->sc_sp_offset = 36 + 17 * 4;
4463
4464 tdep->jb_pc_offset = 20;
4465 }
4466
4467 /* DJGPP. */
4468
4469 static void
4470 i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4471 {
4472 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4473
4474 /* DJGPP doesn't have any special frames for signal handlers. */
4475 tdep->sigtramp_p = NULL;
4476
4477 tdep->jb_pc_offset = 36;
4478
4479 /* DJGPP does not support the SSE registers. */
4480 if (! tdesc_has_registers (info.target_desc))
4481 tdep->tdesc = tdesc_i386_mmx;
4482
4483 /* Native compiler is GCC, which uses the SVR4 register numbering
4484 even in COFF and STABS. See the comment in i386_gdbarch_init,
4485 before the calls to set_gdbarch_stab_reg_to_regnum and
4486 set_gdbarch_sdb_reg_to_regnum. */
4487 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
4488 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
4489
4490 set_gdbarch_has_dos_based_file_system (gdbarch, 1);
4491
4492 set_gdbarch_gnu_triplet_regexp (gdbarch, i386_gnu_triplet_regexp);
4493 }
4494 \f
4495
4496 /* i386 register groups. In addition to the normal groups, add "mmx"
4497 and "sse". */
4498
4499 static struct reggroup *i386_sse_reggroup;
4500 static struct reggroup *i386_mmx_reggroup;
4501
4502 static void
4503 i386_init_reggroups (void)
4504 {
4505 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
4506 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
4507 }
4508
4509 static void
4510 i386_add_reggroups (struct gdbarch *gdbarch)
4511 {
4512 reggroup_add (gdbarch, i386_sse_reggroup);
4513 reggroup_add (gdbarch, i386_mmx_reggroup);
4514 reggroup_add (gdbarch, general_reggroup);
4515 reggroup_add (gdbarch, float_reggroup);
4516 reggroup_add (gdbarch, all_reggroup);
4517 reggroup_add (gdbarch, save_reggroup);
4518 reggroup_add (gdbarch, restore_reggroup);
4519 reggroup_add (gdbarch, vector_reggroup);
4520 reggroup_add (gdbarch, system_reggroup);
4521 }
4522
4523 int
4524 i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
4525 struct reggroup *group)
4526 {
4527 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4528 int fp_regnum_p, mmx_regnum_p, xmm_regnum_p, mxcsr_regnum_p,
4529 ymm_regnum_p, ymmh_regnum_p, ymm_avx512_regnum_p, ymmh_avx512_regnum_p,
4530 bndr_regnum_p, bnd_regnum_p, k_regnum_p, zmm_regnum_p, zmmh_regnum_p,
4531 zmm_avx512_regnum_p, mpx_ctrl_regnum_p, xmm_avx512_regnum_p,
4532 avx512_p, avx_p, sse_p;
4533
4534 /* Don't include pseudo registers, except for MMX, in any register
4535 groups. */
4536 if (i386_byte_regnum_p (gdbarch, regnum))
4537 return 0;
4538
4539 if (i386_word_regnum_p (gdbarch, regnum))
4540 return 0;
4541
4542 if (i386_dword_regnum_p (gdbarch, regnum))
4543 return 0;
4544
4545 mmx_regnum_p = i386_mmx_regnum_p (gdbarch, regnum);
4546 if (group == i386_mmx_reggroup)
4547 return mmx_regnum_p;
4548
4549 xmm_regnum_p = i386_xmm_regnum_p (gdbarch, regnum);
4550 xmm_avx512_regnum_p = i386_xmm_avx512_regnum_p (gdbarch, regnum);
4551 mxcsr_regnum_p = i386_mxcsr_regnum_p (gdbarch, regnum);
4552 if (group == i386_sse_reggroup)
4553 return xmm_regnum_p || xmm_avx512_regnum_p || mxcsr_regnum_p;
4554
4555 ymm_regnum_p = i386_ymm_regnum_p (gdbarch, regnum);
4556 ymm_avx512_regnum_p = i386_ymm_avx512_regnum_p (gdbarch, regnum);
4557 zmm_regnum_p = i386_zmm_regnum_p (gdbarch, regnum);
4558
4559 avx512_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
4560 == X86_XSTATE_AVX_AVX512_MASK);
4561 avx_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
4562 == X86_XSTATE_AVX_MASK) && !avx512_p;
4563 sse_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
4564 == X86_XSTATE_SSE_MASK) && !avx512_p && ! avx_p;
4565
4566 if (group == vector_reggroup)
4567 return (mmx_regnum_p
4568 || (zmm_regnum_p && avx512_p)
4569 || ((ymm_regnum_p || ymm_avx512_regnum_p) && avx_p)
4570 || ((xmm_regnum_p || xmm_avx512_regnum_p) && sse_p)
4571 || mxcsr_regnum_p);
4572
4573 fp_regnum_p = (i386_fp_regnum_p (gdbarch, regnum)
4574 || i386_fpc_regnum_p (gdbarch, regnum));
4575 if (group == float_reggroup)
4576 return fp_regnum_p;
4577
4578 /* For "info reg all", don't include upper YMM registers nor XMM
4579 registers when AVX is supported. */
4580 ymmh_regnum_p = i386_ymmh_regnum_p (gdbarch, regnum);
4581 ymmh_avx512_regnum_p = i386_ymmh_avx512_regnum_p (gdbarch, regnum);
4582 zmmh_regnum_p = i386_zmmh_regnum_p (gdbarch, regnum);
4583 if (group == all_reggroup
4584 && (((xmm_regnum_p || xmm_avx512_regnum_p) && !sse_p)
4585 || ((ymm_regnum_p || ymm_avx512_regnum_p) && !avx_p)
4586 || ymmh_regnum_p
4587 || ymmh_avx512_regnum_p
4588 || zmmh_regnum_p))
4589 return 0;
4590
4591 bnd_regnum_p = i386_bnd_regnum_p (gdbarch, regnum);
4592 if (group == all_reggroup
4593 && ((bnd_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4594 return bnd_regnum_p;
4595
4596 bndr_regnum_p = i386_bndr_regnum_p (gdbarch, regnum);
4597 if (group == all_reggroup
4598 && ((bndr_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4599 return 0;
4600
4601 mpx_ctrl_regnum_p = i386_mpx_ctrl_regnum_p (gdbarch, regnum);
4602 if (group == all_reggroup
4603 && ((mpx_ctrl_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4604 return mpx_ctrl_regnum_p;
4605
4606 if (group == general_reggroup)
4607 return (!fp_regnum_p
4608 && !mmx_regnum_p
4609 && !mxcsr_regnum_p
4610 && !xmm_regnum_p
4611 && !xmm_avx512_regnum_p
4612 && !ymm_regnum_p
4613 && !ymmh_regnum_p
4614 && !ymm_avx512_regnum_p
4615 && !ymmh_avx512_regnum_p
4616 && !bndr_regnum_p
4617 && !bnd_regnum_p
4618 && !mpx_ctrl_regnum_p
4619 && !zmm_regnum_p
4620 && !zmmh_regnum_p);
4621
4622 return default_register_reggroup_p (gdbarch, regnum, group);
4623 }
4624 \f
4625
4626 /* Get the ARGIth function argument for the current function. */
4627
4628 static CORE_ADDR
4629 i386_fetch_pointer_argument (struct frame_info *frame, int argi,
4630 struct type *type)
4631 {
4632 struct gdbarch *gdbarch = get_frame_arch (frame);
4633 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4634 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
4635 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4, byte_order);
4636 }
4637
4638 #define PREFIX_REPZ 0x01
4639 #define PREFIX_REPNZ 0x02
4640 #define PREFIX_LOCK 0x04
4641 #define PREFIX_DATA 0x08
4642 #define PREFIX_ADDR 0x10
4643
4644 /* operand size */
4645 enum
4646 {
4647 OT_BYTE = 0,
4648 OT_WORD,
4649 OT_LONG,
4650 OT_QUAD,
4651 OT_DQUAD,
4652 };
4653
4654 /* i386 arith/logic operations */
4655 enum
4656 {
4657 OP_ADDL,
4658 OP_ORL,
4659 OP_ADCL,
4660 OP_SBBL,
4661 OP_ANDL,
4662 OP_SUBL,
4663 OP_XORL,
4664 OP_CMPL,
4665 };
4666
4667 struct i386_record_s
4668 {
4669 struct gdbarch *gdbarch;
4670 struct regcache *regcache;
4671 CORE_ADDR orig_addr;
4672 CORE_ADDR addr;
4673 int aflag;
4674 int dflag;
4675 int override;
4676 uint8_t modrm;
4677 uint8_t mod, reg, rm;
4678 int ot;
4679 uint8_t rex_x;
4680 uint8_t rex_b;
4681 int rip_offset;
4682 int popl_esp_hack;
4683 const int *regmap;
4684 };
4685
4686 /* Parse the "modrm" part of the memory address irp->addr points at.
4687 Returns -1 if something goes wrong, 0 otherwise. */
4688
4689 static int
4690 i386_record_modrm (struct i386_record_s *irp)
4691 {
4692 struct gdbarch *gdbarch = irp->gdbarch;
4693
4694 if (record_read_memory (gdbarch, irp->addr, &irp->modrm, 1))
4695 return -1;
4696
4697 irp->addr++;
4698 irp->mod = (irp->modrm >> 6) & 3;
4699 irp->reg = (irp->modrm >> 3) & 7;
4700 irp->rm = irp->modrm & 7;
4701
4702 return 0;
4703 }
4704
4705 /* Extract the memory address that the current instruction writes to,
4706 and return it in *ADDR. Return -1 if something goes wrong. */
4707
4708 static int
4709 i386_record_lea_modrm_addr (struct i386_record_s *irp, uint64_t *addr)
4710 {
4711 struct gdbarch *gdbarch = irp->gdbarch;
4712 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4713 gdb_byte buf[4];
4714 ULONGEST offset64;
4715
4716 *addr = 0;
4717 if (irp->aflag || irp->regmap[X86_RECORD_R8_REGNUM])
4718 {
4719 /* 32/64 bits */
4720 int havesib = 0;
4721 uint8_t scale = 0;
4722 uint8_t byte;
4723 uint8_t index = 0;
4724 uint8_t base = irp->rm;
4725
4726 if (base == 4)
4727 {
4728 havesib = 1;
4729 if (record_read_memory (gdbarch, irp->addr, &byte, 1))
4730 return -1;
4731 irp->addr++;
4732 scale = (byte >> 6) & 3;
4733 index = ((byte >> 3) & 7) | irp->rex_x;
4734 base = (byte & 7);
4735 }
4736 base |= irp->rex_b;
4737
4738 switch (irp->mod)
4739 {
4740 case 0:
4741 if ((base & 7) == 5)
4742 {
4743 base = 0xff;
4744 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4745 return -1;
4746 irp->addr += 4;
4747 *addr = extract_signed_integer (buf, 4, byte_order);
4748 if (irp->regmap[X86_RECORD_R8_REGNUM] && !havesib)
4749 *addr += irp->addr + irp->rip_offset;
4750 }
4751 break;
4752 case 1:
4753 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4754 return -1;
4755 irp->addr++;
4756 *addr = (int8_t) buf[0];
4757 break;
4758 case 2:
4759 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4760 return -1;
4761 *addr = extract_signed_integer (buf, 4, byte_order);
4762 irp->addr += 4;
4763 break;
4764 }
4765
4766 offset64 = 0;
4767 if (base != 0xff)
4768 {
4769 if (base == 4 && irp->popl_esp_hack)
4770 *addr += irp->popl_esp_hack;
4771 regcache_raw_read_unsigned (irp->regcache, irp->regmap[base],
4772 &offset64);
4773 }
4774 if (irp->aflag == 2)
4775 {
4776 *addr += offset64;
4777 }
4778 else
4779 *addr = (uint32_t) (offset64 + *addr);
4780
4781 if (havesib && (index != 4 || scale != 0))
4782 {
4783 regcache_raw_read_unsigned (irp->regcache, irp->regmap[index],
4784 &offset64);
4785 if (irp->aflag == 2)
4786 *addr += offset64 << scale;
4787 else
4788 *addr = (uint32_t) (*addr + (offset64 << scale));
4789 }
4790
4791 if (!irp->aflag)
4792 {
4793 /* Since we are in 64-bit mode with ADDR32 prefix, zero-extend
4794 address from 32-bit to 64-bit. */
4795 *addr = (uint32_t) *addr;
4796 }
4797 }
4798 else
4799 {
4800 /* 16 bits */
4801 switch (irp->mod)
4802 {
4803 case 0:
4804 if (irp->rm == 6)
4805 {
4806 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4807 return -1;
4808 irp->addr += 2;
4809 *addr = extract_signed_integer (buf, 2, byte_order);
4810 irp->rm = 0;
4811 goto no_rm;
4812 }
4813 break;
4814 case 1:
4815 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4816 return -1;
4817 irp->addr++;
4818 *addr = (int8_t) buf[0];
4819 break;
4820 case 2:
4821 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4822 return -1;
4823 irp->addr += 2;
4824 *addr = extract_signed_integer (buf, 2, byte_order);
4825 break;
4826 }
4827
4828 switch (irp->rm)
4829 {
4830 case 0:
4831 regcache_raw_read_unsigned (irp->regcache,
4832 irp->regmap[X86_RECORD_REBX_REGNUM],
4833 &offset64);
4834 *addr = (uint32_t) (*addr + offset64);
4835 regcache_raw_read_unsigned (irp->regcache,
4836 irp->regmap[X86_RECORD_RESI_REGNUM],
4837 &offset64);
4838 *addr = (uint32_t) (*addr + offset64);
4839 break;
4840 case 1:
4841 regcache_raw_read_unsigned (irp->regcache,
4842 irp->regmap[X86_RECORD_REBX_REGNUM],
4843 &offset64);
4844 *addr = (uint32_t) (*addr + offset64);
4845 regcache_raw_read_unsigned (irp->regcache,
4846 irp->regmap[X86_RECORD_REDI_REGNUM],
4847 &offset64);
4848 *addr = (uint32_t) (*addr + offset64);
4849 break;
4850 case 2:
4851 regcache_raw_read_unsigned (irp->regcache,
4852 irp->regmap[X86_RECORD_REBP_REGNUM],
4853 &offset64);
4854 *addr = (uint32_t) (*addr + offset64);
4855 regcache_raw_read_unsigned (irp->regcache,
4856 irp->regmap[X86_RECORD_RESI_REGNUM],
4857 &offset64);
4858 *addr = (uint32_t) (*addr + offset64);
4859 break;
4860 case 3:
4861 regcache_raw_read_unsigned (irp->regcache,
4862 irp->regmap[X86_RECORD_REBP_REGNUM],
4863 &offset64);
4864 *addr = (uint32_t) (*addr + offset64);
4865 regcache_raw_read_unsigned (irp->regcache,
4866 irp->regmap[X86_RECORD_REDI_REGNUM],
4867 &offset64);
4868 *addr = (uint32_t) (*addr + offset64);
4869 break;
4870 case 4:
4871 regcache_raw_read_unsigned (irp->regcache,
4872 irp->regmap[X86_RECORD_RESI_REGNUM],
4873 &offset64);
4874 *addr = (uint32_t) (*addr + offset64);
4875 break;
4876 case 5:
4877 regcache_raw_read_unsigned (irp->regcache,
4878 irp->regmap[X86_RECORD_REDI_REGNUM],
4879 &offset64);
4880 *addr = (uint32_t) (*addr + offset64);
4881 break;
4882 case 6:
4883 regcache_raw_read_unsigned (irp->regcache,
4884 irp->regmap[X86_RECORD_REBP_REGNUM],
4885 &offset64);
4886 *addr = (uint32_t) (*addr + offset64);
4887 break;
4888 case 7:
4889 regcache_raw_read_unsigned (irp->regcache,
4890 irp->regmap[X86_RECORD_REBX_REGNUM],
4891 &offset64);
4892 *addr = (uint32_t) (*addr + offset64);
4893 break;
4894 }
4895 *addr &= 0xffff;
4896 }
4897
4898 no_rm:
4899 return 0;
4900 }
4901
4902 /* Record the address and contents of the memory that will be changed
4903 by the current instruction. Return -1 if something goes wrong, 0
4904 otherwise. */
4905
4906 static int
4907 i386_record_lea_modrm (struct i386_record_s *irp)
4908 {
4909 struct gdbarch *gdbarch = irp->gdbarch;
4910 uint64_t addr;
4911
4912 if (irp->override >= 0)
4913 {
4914 if (record_full_memory_query)
4915 {
4916 if (yquery (_("\
4917 Process record ignores the memory change of instruction at address %s\n\
4918 because it can't get the value of the segment register.\n\
4919 Do you want to stop the program?"),
4920 paddress (gdbarch, irp->orig_addr)))
4921 return -1;
4922 }
4923
4924 return 0;
4925 }
4926
4927 if (i386_record_lea_modrm_addr (irp, &addr))
4928 return -1;
4929
4930 if (record_full_arch_list_add_mem (addr, 1 << irp->ot))
4931 return -1;
4932
4933 return 0;
4934 }
4935
4936 /* Record the effects of a push operation. Return -1 if something
4937 goes wrong, 0 otherwise. */
4938
4939 static int
4940 i386_record_push (struct i386_record_s *irp, int size)
4941 {
4942 ULONGEST addr;
4943
4944 if (record_full_arch_list_add_reg (irp->regcache,
4945 irp->regmap[X86_RECORD_RESP_REGNUM]))
4946 return -1;
4947 regcache_raw_read_unsigned (irp->regcache,
4948 irp->regmap[X86_RECORD_RESP_REGNUM],
4949 &addr);
4950 if (record_full_arch_list_add_mem ((CORE_ADDR) addr - size, size))
4951 return -1;
4952
4953 return 0;
4954 }
4955
4956
4957 /* Defines contents to record. */
4958 #define I386_SAVE_FPU_REGS 0xfffd
4959 #define I386_SAVE_FPU_ENV 0xfffe
4960 #define I386_SAVE_FPU_ENV_REG_STACK 0xffff
4961
4962 /* Record the values of the floating point registers which will be
4963 changed by the current instruction. Returns -1 if something is
4964 wrong, 0 otherwise. */
4965
4966 static int i386_record_floats (struct gdbarch *gdbarch,
4967 struct i386_record_s *ir,
4968 uint32_t iregnum)
4969 {
4970 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4971 int i;
4972
4973 /* Oza: Because of floating point insn push/pop of fpu stack is going to
4974 happen. Currently we store st0-st7 registers, but we need not store all
4975 registers all the time, in future we use ftag register and record only
4976 those who are not marked as an empty. */
4977
4978 if (I386_SAVE_FPU_REGS == iregnum)
4979 {
4980 for (i = I387_ST0_REGNUM (tdep); i <= I387_ST0_REGNUM (tdep) + 7; i++)
4981 {
4982 if (record_full_arch_list_add_reg (ir->regcache, i))
4983 return -1;
4984 }
4985 }
4986 else if (I386_SAVE_FPU_ENV == iregnum)
4987 {
4988 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4989 {
4990 if (record_full_arch_list_add_reg (ir->regcache, i))
4991 return -1;
4992 }
4993 }
4994 else if (I386_SAVE_FPU_ENV_REG_STACK == iregnum)
4995 {
4996 for (i = I387_ST0_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4997 {
4998 if (record_full_arch_list_add_reg (ir->regcache, i))
4999 return -1;
5000 }
5001 }
5002 else if ((iregnum >= I387_ST0_REGNUM (tdep)) &&
5003 (iregnum <= I387_FOP_REGNUM (tdep)))
5004 {
5005 if (record_full_arch_list_add_reg (ir->regcache,iregnum))
5006 return -1;
5007 }
5008 else
5009 {
5010 /* Parameter error. */
5011 return -1;
5012 }
5013 if(I386_SAVE_FPU_ENV != iregnum)
5014 {
5015 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
5016 {
5017 if (record_full_arch_list_add_reg (ir->regcache, i))
5018 return -1;
5019 }
5020 }
5021 return 0;
5022 }
5023
5024 /* Parse the current instruction, and record the values of the
5025 registers and memory that will be changed by the current
5026 instruction. Returns -1 if something goes wrong, 0 otherwise. */
5027
5028 #define I386_RECORD_FULL_ARCH_LIST_ADD_REG(regnum) \
5029 record_full_arch_list_add_reg (ir.regcache, ir.regmap[(regnum)])
5030
5031 int
5032 i386_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
5033 CORE_ADDR input_addr)
5034 {
5035 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
5036 int prefixes = 0;
5037 int regnum = 0;
5038 uint32_t opcode;
5039 uint8_t opcode8;
5040 ULONGEST addr;
5041 gdb_byte buf[MAX_REGISTER_SIZE];
5042 struct i386_record_s ir;
5043 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5044 uint8_t rex_w = -1;
5045 uint8_t rex_r = 0;
5046
5047 memset (&ir, 0, sizeof (struct i386_record_s));
5048 ir.regcache = regcache;
5049 ir.addr = input_addr;
5050 ir.orig_addr = input_addr;
5051 ir.aflag = 1;
5052 ir.dflag = 1;
5053 ir.override = -1;
5054 ir.popl_esp_hack = 0;
5055 ir.regmap = tdep->record_regmap;
5056 ir.gdbarch = gdbarch;
5057
5058 if (record_debug > 1)
5059 fprintf_unfiltered (gdb_stdlog, "Process record: i386_process_record "
5060 "addr = %s\n",
5061 paddress (gdbarch, ir.addr));
5062
5063 /* prefixes */
5064 while (1)
5065 {
5066 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
5067 return -1;
5068 ir.addr++;
5069 switch (opcode8) /* Instruction prefixes */
5070 {
5071 case REPE_PREFIX_OPCODE:
5072 prefixes |= PREFIX_REPZ;
5073 break;
5074 case REPNE_PREFIX_OPCODE:
5075 prefixes |= PREFIX_REPNZ;
5076 break;
5077 case LOCK_PREFIX_OPCODE:
5078 prefixes |= PREFIX_LOCK;
5079 break;
5080 case CS_PREFIX_OPCODE:
5081 ir.override = X86_RECORD_CS_REGNUM;
5082 break;
5083 case SS_PREFIX_OPCODE:
5084 ir.override = X86_RECORD_SS_REGNUM;
5085 break;
5086 case DS_PREFIX_OPCODE:
5087 ir.override = X86_RECORD_DS_REGNUM;
5088 break;
5089 case ES_PREFIX_OPCODE:
5090 ir.override = X86_RECORD_ES_REGNUM;
5091 break;
5092 case FS_PREFIX_OPCODE:
5093 ir.override = X86_RECORD_FS_REGNUM;
5094 break;
5095 case GS_PREFIX_OPCODE:
5096 ir.override = X86_RECORD_GS_REGNUM;
5097 break;
5098 case DATA_PREFIX_OPCODE:
5099 prefixes |= PREFIX_DATA;
5100 break;
5101 case ADDR_PREFIX_OPCODE:
5102 prefixes |= PREFIX_ADDR;
5103 break;
5104 case 0x40: /* i386 inc %eax */
5105 case 0x41: /* i386 inc %ecx */
5106 case 0x42: /* i386 inc %edx */
5107 case 0x43: /* i386 inc %ebx */
5108 case 0x44: /* i386 inc %esp */
5109 case 0x45: /* i386 inc %ebp */
5110 case 0x46: /* i386 inc %esi */
5111 case 0x47: /* i386 inc %edi */
5112 case 0x48: /* i386 dec %eax */
5113 case 0x49: /* i386 dec %ecx */
5114 case 0x4a: /* i386 dec %edx */
5115 case 0x4b: /* i386 dec %ebx */
5116 case 0x4c: /* i386 dec %esp */
5117 case 0x4d: /* i386 dec %ebp */
5118 case 0x4e: /* i386 dec %esi */
5119 case 0x4f: /* i386 dec %edi */
5120 if (ir.regmap[X86_RECORD_R8_REGNUM]) /* 64 bit target */
5121 {
5122 /* REX */
5123 rex_w = (opcode8 >> 3) & 1;
5124 rex_r = (opcode8 & 0x4) << 1;
5125 ir.rex_x = (opcode8 & 0x2) << 2;
5126 ir.rex_b = (opcode8 & 0x1) << 3;
5127 }
5128 else /* 32 bit target */
5129 goto out_prefixes;
5130 break;
5131 default:
5132 goto out_prefixes;
5133 break;
5134 }
5135 }
5136 out_prefixes:
5137 if (ir.regmap[X86_RECORD_R8_REGNUM] && rex_w == 1)
5138 {
5139 ir.dflag = 2;
5140 }
5141 else
5142 {
5143 if (prefixes & PREFIX_DATA)
5144 ir.dflag ^= 1;
5145 }
5146 if (prefixes & PREFIX_ADDR)
5147 ir.aflag ^= 1;
5148 else if (ir.regmap[X86_RECORD_R8_REGNUM])
5149 ir.aflag = 2;
5150
5151 /* Now check op code. */
5152 opcode = (uint32_t) opcode8;
5153 reswitch:
5154 switch (opcode)
5155 {
5156 case 0x0f:
5157 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
5158 return -1;
5159 ir.addr++;
5160 opcode = (uint32_t) opcode8 | 0x0f00;
5161 goto reswitch;
5162 break;
5163
5164 case 0x00: /* arith & logic */
5165 case 0x01:
5166 case 0x02:
5167 case 0x03:
5168 case 0x04:
5169 case 0x05:
5170 case 0x08:
5171 case 0x09:
5172 case 0x0a:
5173 case 0x0b:
5174 case 0x0c:
5175 case 0x0d:
5176 case 0x10:
5177 case 0x11:
5178 case 0x12:
5179 case 0x13:
5180 case 0x14:
5181 case 0x15:
5182 case 0x18:
5183 case 0x19:
5184 case 0x1a:
5185 case 0x1b:
5186 case 0x1c:
5187 case 0x1d:
5188 case 0x20:
5189 case 0x21:
5190 case 0x22:
5191 case 0x23:
5192 case 0x24:
5193 case 0x25:
5194 case 0x28:
5195 case 0x29:
5196 case 0x2a:
5197 case 0x2b:
5198 case 0x2c:
5199 case 0x2d:
5200 case 0x30:
5201 case 0x31:
5202 case 0x32:
5203 case 0x33:
5204 case 0x34:
5205 case 0x35:
5206 case 0x38:
5207 case 0x39:
5208 case 0x3a:
5209 case 0x3b:
5210 case 0x3c:
5211 case 0x3d:
5212 if (((opcode >> 3) & 7) != OP_CMPL)
5213 {
5214 if ((opcode & 1) == 0)
5215 ir.ot = OT_BYTE;
5216 else
5217 ir.ot = ir.dflag + OT_WORD;
5218
5219 switch ((opcode >> 1) & 3)
5220 {
5221 case 0: /* OP Ev, Gv */
5222 if (i386_record_modrm (&ir))
5223 return -1;
5224 if (ir.mod != 3)
5225 {
5226 if (i386_record_lea_modrm (&ir))
5227 return -1;
5228 }
5229 else
5230 {
5231 ir.rm |= ir.rex_b;
5232 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5233 ir.rm &= 0x3;
5234 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5235 }
5236 break;
5237 case 1: /* OP Gv, Ev */
5238 if (i386_record_modrm (&ir))
5239 return -1;
5240 ir.reg |= rex_r;
5241 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5242 ir.reg &= 0x3;
5243 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5244 break;
5245 case 2: /* OP A, Iv */
5246 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5247 break;
5248 }
5249 }
5250 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5251 break;
5252
5253 case 0x80: /* GRP1 */
5254 case 0x81:
5255 case 0x82:
5256 case 0x83:
5257 if (i386_record_modrm (&ir))
5258 return -1;
5259
5260 if (ir.reg != OP_CMPL)
5261 {
5262 if ((opcode & 1) == 0)
5263 ir.ot = OT_BYTE;
5264 else
5265 ir.ot = ir.dflag + OT_WORD;
5266
5267 if (ir.mod != 3)
5268 {
5269 if (opcode == 0x83)
5270 ir.rip_offset = 1;
5271 else
5272 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5273 if (i386_record_lea_modrm (&ir))
5274 return -1;
5275 }
5276 else
5277 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5278 }
5279 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5280 break;
5281
5282 case 0x40: /* inc */
5283 case 0x41:
5284 case 0x42:
5285 case 0x43:
5286 case 0x44:
5287 case 0x45:
5288 case 0x46:
5289 case 0x47:
5290
5291 case 0x48: /* dec */
5292 case 0x49:
5293 case 0x4a:
5294 case 0x4b:
5295 case 0x4c:
5296 case 0x4d:
5297 case 0x4e:
5298 case 0x4f:
5299
5300 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 7);
5301 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5302 break;
5303
5304 case 0xf6: /* GRP3 */
5305 case 0xf7:
5306 if ((opcode & 1) == 0)
5307 ir.ot = OT_BYTE;
5308 else
5309 ir.ot = ir.dflag + OT_WORD;
5310 if (i386_record_modrm (&ir))
5311 return -1;
5312
5313 if (ir.mod != 3 && ir.reg == 0)
5314 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5315
5316 switch (ir.reg)
5317 {
5318 case 0: /* test */
5319 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5320 break;
5321 case 2: /* not */
5322 case 3: /* neg */
5323 if (ir.mod != 3)
5324 {
5325 if (i386_record_lea_modrm (&ir))
5326 return -1;
5327 }
5328 else
5329 {
5330 ir.rm |= ir.rex_b;
5331 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5332 ir.rm &= 0x3;
5333 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5334 }
5335 if (ir.reg == 3) /* neg */
5336 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5337 break;
5338 case 4: /* mul */
5339 case 5: /* imul */
5340 case 6: /* div */
5341 case 7: /* idiv */
5342 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5343 if (ir.ot != OT_BYTE)
5344 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5345 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5346 break;
5347 default:
5348 ir.addr -= 2;
5349 opcode = opcode << 8 | ir.modrm;
5350 goto no_support;
5351 break;
5352 }
5353 break;
5354
5355 case 0xfe: /* GRP4 */
5356 case 0xff: /* GRP5 */
5357 if (i386_record_modrm (&ir))
5358 return -1;
5359 if (ir.reg >= 2 && opcode == 0xfe)
5360 {
5361 ir.addr -= 2;
5362 opcode = opcode << 8 | ir.modrm;
5363 goto no_support;
5364 }
5365 switch (ir.reg)
5366 {
5367 case 0: /* inc */
5368 case 1: /* dec */
5369 if ((opcode & 1) == 0)
5370 ir.ot = OT_BYTE;
5371 else
5372 ir.ot = ir.dflag + OT_WORD;
5373 if (ir.mod != 3)
5374 {
5375 if (i386_record_lea_modrm (&ir))
5376 return -1;
5377 }
5378 else
5379 {
5380 ir.rm |= ir.rex_b;
5381 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5382 ir.rm &= 0x3;
5383 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5384 }
5385 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5386 break;
5387 case 2: /* call */
5388 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5389 ir.dflag = 2;
5390 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5391 return -1;
5392 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5393 break;
5394 case 3: /* lcall */
5395 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
5396 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5397 return -1;
5398 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5399 break;
5400 case 4: /* jmp */
5401 case 5: /* ljmp */
5402 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5403 break;
5404 case 6: /* push */
5405 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5406 ir.dflag = 2;
5407 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5408 return -1;
5409 break;
5410 default:
5411 ir.addr -= 2;
5412 opcode = opcode << 8 | ir.modrm;
5413 goto no_support;
5414 break;
5415 }
5416 break;
5417
5418 case 0x84: /* test */
5419 case 0x85:
5420 case 0xa8:
5421 case 0xa9:
5422 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5423 break;
5424
5425 case 0x98: /* CWDE/CBW */
5426 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5427 break;
5428
5429 case 0x99: /* CDQ/CWD */
5430 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5431 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5432 break;
5433
5434 case 0x0faf: /* imul */
5435 case 0x69:
5436 case 0x6b:
5437 ir.ot = ir.dflag + OT_WORD;
5438 if (i386_record_modrm (&ir))
5439 return -1;
5440 if (opcode == 0x69)
5441 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5442 else if (opcode == 0x6b)
5443 ir.rip_offset = 1;
5444 ir.reg |= rex_r;
5445 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5446 ir.reg &= 0x3;
5447 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5448 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5449 break;
5450
5451 case 0x0fc0: /* xadd */
5452 case 0x0fc1:
5453 if ((opcode & 1) == 0)
5454 ir.ot = OT_BYTE;
5455 else
5456 ir.ot = ir.dflag + OT_WORD;
5457 if (i386_record_modrm (&ir))
5458 return -1;
5459 ir.reg |= rex_r;
5460 if (ir.mod == 3)
5461 {
5462 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5463 ir.reg &= 0x3;
5464 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5465 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5466 ir.rm &= 0x3;
5467 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5468 }
5469 else
5470 {
5471 if (i386_record_lea_modrm (&ir))
5472 return -1;
5473 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5474 ir.reg &= 0x3;
5475 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5476 }
5477 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5478 break;
5479
5480 case 0x0fb0: /* cmpxchg */
5481 case 0x0fb1:
5482 if ((opcode & 1) == 0)
5483 ir.ot = OT_BYTE;
5484 else
5485 ir.ot = ir.dflag + OT_WORD;
5486 if (i386_record_modrm (&ir))
5487 return -1;
5488 if (ir.mod == 3)
5489 {
5490 ir.reg |= rex_r;
5491 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5492 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5493 ir.reg &= 0x3;
5494 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5495 }
5496 else
5497 {
5498 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5499 if (i386_record_lea_modrm (&ir))
5500 return -1;
5501 }
5502 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5503 break;
5504
5505 case 0x0fc7: /* cmpxchg8b / rdrand / rdseed */
5506 if (i386_record_modrm (&ir))
5507 return -1;
5508 if (ir.mod == 3)
5509 {
5510 /* rdrand and rdseed use the 3 bits of the REG field of ModR/M as
5511 an extended opcode. rdrand has bits 110 (/6) and rdseed
5512 has bits 111 (/7). */
5513 if (ir.reg == 6 || ir.reg == 7)
5514 {
5515 /* The storage register is described by the 3 R/M bits, but the
5516 REX.B prefix may be used to give access to registers
5517 R8~R15. In this case ir.rex_b + R/M will give us the register
5518 in the range R8~R15.
5519
5520 REX.W may also be used to access 64-bit registers, but we
5521 already record entire registers and not just partial bits
5522 of them. */
5523 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rex_b + ir.rm);
5524 /* These instructions also set conditional bits. */
5525 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5526 break;
5527 }
5528 else
5529 {
5530 /* We don't handle this particular instruction yet. */
5531 ir.addr -= 2;
5532 opcode = opcode << 8 | ir.modrm;
5533 goto no_support;
5534 }
5535 }
5536 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5537 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5538 if (i386_record_lea_modrm (&ir))
5539 return -1;
5540 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5541 break;
5542
5543 case 0x50: /* push */
5544 case 0x51:
5545 case 0x52:
5546 case 0x53:
5547 case 0x54:
5548 case 0x55:
5549 case 0x56:
5550 case 0x57:
5551 case 0x68:
5552 case 0x6a:
5553 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5554 ir.dflag = 2;
5555 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5556 return -1;
5557 break;
5558
5559 case 0x06: /* push es */
5560 case 0x0e: /* push cs */
5561 case 0x16: /* push ss */
5562 case 0x1e: /* push ds */
5563 if (ir.regmap[X86_RECORD_R8_REGNUM])
5564 {
5565 ir.addr -= 1;
5566 goto no_support;
5567 }
5568 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5569 return -1;
5570 break;
5571
5572 case 0x0fa0: /* push fs */
5573 case 0x0fa8: /* push gs */
5574 if (ir.regmap[X86_RECORD_R8_REGNUM])
5575 {
5576 ir.addr -= 2;
5577 goto no_support;
5578 }
5579 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5580 return -1;
5581 break;
5582
5583 case 0x60: /* pusha */
5584 if (ir.regmap[X86_RECORD_R8_REGNUM])
5585 {
5586 ir.addr -= 1;
5587 goto no_support;
5588 }
5589 if (i386_record_push (&ir, 1 << (ir.dflag + 4)))
5590 return -1;
5591 break;
5592
5593 case 0x58: /* pop */
5594 case 0x59:
5595 case 0x5a:
5596 case 0x5b:
5597 case 0x5c:
5598 case 0x5d:
5599 case 0x5e:
5600 case 0x5f:
5601 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5602 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
5603 break;
5604
5605 case 0x61: /* popa */
5606 if (ir.regmap[X86_RECORD_R8_REGNUM])
5607 {
5608 ir.addr -= 1;
5609 goto no_support;
5610 }
5611 for (regnum = X86_RECORD_REAX_REGNUM;
5612 regnum <= X86_RECORD_REDI_REGNUM;
5613 regnum++)
5614 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5615 break;
5616
5617 case 0x8f: /* pop */
5618 if (ir.regmap[X86_RECORD_R8_REGNUM])
5619 ir.ot = ir.dflag ? OT_QUAD : OT_WORD;
5620 else
5621 ir.ot = ir.dflag + OT_WORD;
5622 if (i386_record_modrm (&ir))
5623 return -1;
5624 if (ir.mod == 3)
5625 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5626 else
5627 {
5628 ir.popl_esp_hack = 1 << ir.ot;
5629 if (i386_record_lea_modrm (&ir))
5630 return -1;
5631 }
5632 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5633 break;
5634
5635 case 0xc8: /* enter */
5636 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
5637 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5638 ir.dflag = 2;
5639 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5640 return -1;
5641 break;
5642
5643 case 0xc9: /* leave */
5644 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5645 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
5646 break;
5647
5648 case 0x07: /* pop es */
5649 if (ir.regmap[X86_RECORD_R8_REGNUM])
5650 {
5651 ir.addr -= 1;
5652 goto no_support;
5653 }
5654 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5655 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_ES_REGNUM);
5656 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5657 break;
5658
5659 case 0x17: /* pop ss */
5660 if (ir.regmap[X86_RECORD_R8_REGNUM])
5661 {
5662 ir.addr -= 1;
5663 goto no_support;
5664 }
5665 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5666 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_SS_REGNUM);
5667 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5668 break;
5669
5670 case 0x1f: /* pop ds */
5671 if (ir.regmap[X86_RECORD_R8_REGNUM])
5672 {
5673 ir.addr -= 1;
5674 goto no_support;
5675 }
5676 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5677 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_DS_REGNUM);
5678 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5679 break;
5680
5681 case 0x0fa1: /* pop fs */
5682 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5683 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_FS_REGNUM);
5684 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5685 break;
5686
5687 case 0x0fa9: /* pop gs */
5688 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5689 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
5690 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5691 break;
5692
5693 case 0x88: /* mov */
5694 case 0x89:
5695 case 0xc6:
5696 case 0xc7:
5697 if ((opcode & 1) == 0)
5698 ir.ot = OT_BYTE;
5699 else
5700 ir.ot = ir.dflag + OT_WORD;
5701
5702 if (i386_record_modrm (&ir))
5703 return -1;
5704
5705 if (ir.mod != 3)
5706 {
5707 if (opcode == 0xc6 || opcode == 0xc7)
5708 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5709 if (i386_record_lea_modrm (&ir))
5710 return -1;
5711 }
5712 else
5713 {
5714 if (opcode == 0xc6 || opcode == 0xc7)
5715 ir.rm |= ir.rex_b;
5716 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5717 ir.rm &= 0x3;
5718 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5719 }
5720 break;
5721
5722 case 0x8a: /* mov */
5723 case 0x8b:
5724 if ((opcode & 1) == 0)
5725 ir.ot = OT_BYTE;
5726 else
5727 ir.ot = ir.dflag + OT_WORD;
5728 if (i386_record_modrm (&ir))
5729 return -1;
5730 ir.reg |= rex_r;
5731 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5732 ir.reg &= 0x3;
5733 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5734 break;
5735
5736 case 0x8c: /* mov seg */
5737 if (i386_record_modrm (&ir))
5738 return -1;
5739 if (ir.reg > 5)
5740 {
5741 ir.addr -= 2;
5742 opcode = opcode << 8 | ir.modrm;
5743 goto no_support;
5744 }
5745
5746 if (ir.mod == 3)
5747 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5748 else
5749 {
5750 ir.ot = OT_WORD;
5751 if (i386_record_lea_modrm (&ir))
5752 return -1;
5753 }
5754 break;
5755
5756 case 0x8e: /* mov seg */
5757 if (i386_record_modrm (&ir))
5758 return -1;
5759 switch (ir.reg)
5760 {
5761 case 0:
5762 regnum = X86_RECORD_ES_REGNUM;
5763 break;
5764 case 2:
5765 regnum = X86_RECORD_SS_REGNUM;
5766 break;
5767 case 3:
5768 regnum = X86_RECORD_DS_REGNUM;
5769 break;
5770 case 4:
5771 regnum = X86_RECORD_FS_REGNUM;
5772 break;
5773 case 5:
5774 regnum = X86_RECORD_GS_REGNUM;
5775 break;
5776 default:
5777 ir.addr -= 2;
5778 opcode = opcode << 8 | ir.modrm;
5779 goto no_support;
5780 break;
5781 }
5782 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5783 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5784 break;
5785
5786 case 0x0fb6: /* movzbS */
5787 case 0x0fb7: /* movzwS */
5788 case 0x0fbe: /* movsbS */
5789 case 0x0fbf: /* movswS */
5790 if (i386_record_modrm (&ir))
5791 return -1;
5792 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5793 break;
5794
5795 case 0x8d: /* lea */
5796 if (i386_record_modrm (&ir))
5797 return -1;
5798 if (ir.mod == 3)
5799 {
5800 ir.addr -= 2;
5801 opcode = opcode << 8 | ir.modrm;
5802 goto no_support;
5803 }
5804 ir.ot = ir.dflag;
5805 ir.reg |= rex_r;
5806 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5807 ir.reg &= 0x3;
5808 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5809 break;
5810
5811 case 0xa0: /* mov EAX */
5812 case 0xa1:
5813
5814 case 0xd7: /* xlat */
5815 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5816 break;
5817
5818 case 0xa2: /* mov EAX */
5819 case 0xa3:
5820 if (ir.override >= 0)
5821 {
5822 if (record_full_memory_query)
5823 {
5824 if (yquery (_("\
5825 Process record ignores the memory change of instruction at address %s\n\
5826 because it can't get the value of the segment register.\n\
5827 Do you want to stop the program?"),
5828 paddress (gdbarch, ir.orig_addr)))
5829 return -1;
5830 }
5831 }
5832 else
5833 {
5834 if ((opcode & 1) == 0)
5835 ir.ot = OT_BYTE;
5836 else
5837 ir.ot = ir.dflag + OT_WORD;
5838 if (ir.aflag == 2)
5839 {
5840 if (record_read_memory (gdbarch, ir.addr, buf, 8))
5841 return -1;
5842 ir.addr += 8;
5843 addr = extract_unsigned_integer (buf, 8, byte_order);
5844 }
5845 else if (ir.aflag)
5846 {
5847 if (record_read_memory (gdbarch, ir.addr, buf, 4))
5848 return -1;
5849 ir.addr += 4;
5850 addr = extract_unsigned_integer (buf, 4, byte_order);
5851 }
5852 else
5853 {
5854 if (record_read_memory (gdbarch, ir.addr, buf, 2))
5855 return -1;
5856 ir.addr += 2;
5857 addr = extract_unsigned_integer (buf, 2, byte_order);
5858 }
5859 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
5860 return -1;
5861 }
5862 break;
5863
5864 case 0xb0: /* mov R, Ib */
5865 case 0xb1:
5866 case 0xb2:
5867 case 0xb3:
5868 case 0xb4:
5869 case 0xb5:
5870 case 0xb6:
5871 case 0xb7:
5872 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((ir.regmap[X86_RECORD_R8_REGNUM])
5873 ? ((opcode & 0x7) | ir.rex_b)
5874 : ((opcode & 0x7) & 0x3));
5875 break;
5876
5877 case 0xb8: /* mov R, Iv */
5878 case 0xb9:
5879 case 0xba:
5880 case 0xbb:
5881 case 0xbc:
5882 case 0xbd:
5883 case 0xbe:
5884 case 0xbf:
5885 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
5886 break;
5887
5888 case 0x91: /* xchg R, EAX */
5889 case 0x92:
5890 case 0x93:
5891 case 0x94:
5892 case 0x95:
5893 case 0x96:
5894 case 0x97:
5895 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5896 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 0x7);
5897 break;
5898
5899 case 0x86: /* xchg Ev, Gv */
5900 case 0x87:
5901 if ((opcode & 1) == 0)
5902 ir.ot = OT_BYTE;
5903 else
5904 ir.ot = ir.dflag + OT_WORD;
5905 if (i386_record_modrm (&ir))
5906 return -1;
5907 if (ir.mod == 3)
5908 {
5909 ir.rm |= ir.rex_b;
5910 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5911 ir.rm &= 0x3;
5912 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5913 }
5914 else
5915 {
5916 if (i386_record_lea_modrm (&ir))
5917 return -1;
5918 }
5919 ir.reg |= rex_r;
5920 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5921 ir.reg &= 0x3;
5922 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5923 break;
5924
5925 case 0xc4: /* les Gv */
5926 case 0xc5: /* lds Gv */
5927 if (ir.regmap[X86_RECORD_R8_REGNUM])
5928 {
5929 ir.addr -= 1;
5930 goto no_support;
5931 }
5932 /* FALLTHROUGH */
5933 case 0x0fb2: /* lss Gv */
5934 case 0x0fb4: /* lfs Gv */
5935 case 0x0fb5: /* lgs Gv */
5936 if (i386_record_modrm (&ir))
5937 return -1;
5938 if (ir.mod == 3)
5939 {
5940 if (opcode > 0xff)
5941 ir.addr -= 3;
5942 else
5943 ir.addr -= 2;
5944 opcode = opcode << 8 | ir.modrm;
5945 goto no_support;
5946 }
5947 switch (opcode)
5948 {
5949 case 0xc4: /* les Gv */
5950 regnum = X86_RECORD_ES_REGNUM;
5951 break;
5952 case 0xc5: /* lds Gv */
5953 regnum = X86_RECORD_DS_REGNUM;
5954 break;
5955 case 0x0fb2: /* lss Gv */
5956 regnum = X86_RECORD_SS_REGNUM;
5957 break;
5958 case 0x0fb4: /* lfs Gv */
5959 regnum = X86_RECORD_FS_REGNUM;
5960 break;
5961 case 0x0fb5: /* lgs Gv */
5962 regnum = X86_RECORD_GS_REGNUM;
5963 break;
5964 }
5965 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5966 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5967 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5968 break;
5969
5970 case 0xc0: /* shifts */
5971 case 0xc1:
5972 case 0xd0:
5973 case 0xd1:
5974 case 0xd2:
5975 case 0xd3:
5976 if ((opcode & 1) == 0)
5977 ir.ot = OT_BYTE;
5978 else
5979 ir.ot = ir.dflag + OT_WORD;
5980 if (i386_record_modrm (&ir))
5981 return -1;
5982 if (ir.mod != 3 && (opcode == 0xd2 || opcode == 0xd3))
5983 {
5984 if (i386_record_lea_modrm (&ir))
5985 return -1;
5986 }
5987 else
5988 {
5989 ir.rm |= ir.rex_b;
5990 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5991 ir.rm &= 0x3;
5992 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5993 }
5994 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5995 break;
5996
5997 case 0x0fa4:
5998 case 0x0fa5:
5999 case 0x0fac:
6000 case 0x0fad:
6001 if (i386_record_modrm (&ir))
6002 return -1;
6003 if (ir.mod == 3)
6004 {
6005 if (record_full_arch_list_add_reg (ir.regcache, ir.rm))
6006 return -1;
6007 }
6008 else
6009 {
6010 if (i386_record_lea_modrm (&ir))
6011 return -1;
6012 }
6013 break;
6014
6015 case 0xd8: /* Floats. */
6016 case 0xd9:
6017 case 0xda:
6018 case 0xdb:
6019 case 0xdc:
6020 case 0xdd:
6021 case 0xde:
6022 case 0xdf:
6023 if (i386_record_modrm (&ir))
6024 return -1;
6025 ir.reg |= ((opcode & 7) << 3);
6026 if (ir.mod != 3)
6027 {
6028 /* Memory. */
6029 uint64_t addr64;
6030
6031 if (i386_record_lea_modrm_addr (&ir, &addr64))
6032 return -1;
6033 switch (ir.reg)
6034 {
6035 case 0x02:
6036 case 0x12:
6037 case 0x22:
6038 case 0x32:
6039 /* For fcom, ficom nothing to do. */
6040 break;
6041 case 0x03:
6042 case 0x13:
6043 case 0x23:
6044 case 0x33:
6045 /* For fcomp, ficomp pop FPU stack, store all. */
6046 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6047 return -1;
6048 break;
6049 case 0x00:
6050 case 0x01:
6051 case 0x04:
6052 case 0x05:
6053 case 0x06:
6054 case 0x07:
6055 case 0x10:
6056 case 0x11:
6057 case 0x14:
6058 case 0x15:
6059 case 0x16:
6060 case 0x17:
6061 case 0x20:
6062 case 0x21:
6063 case 0x24:
6064 case 0x25:
6065 case 0x26:
6066 case 0x27:
6067 case 0x30:
6068 case 0x31:
6069 case 0x34:
6070 case 0x35:
6071 case 0x36:
6072 case 0x37:
6073 /* For fadd, fmul, fsub, fsubr, fdiv, fdivr, fiadd, fimul,
6074 fisub, fisubr, fidiv, fidivr, modR/M.reg is an extension
6075 of code, always affects st(0) register. */
6076 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
6077 return -1;
6078 break;
6079 case 0x08:
6080 case 0x0a:
6081 case 0x0b:
6082 case 0x18:
6083 case 0x19:
6084 case 0x1a:
6085 case 0x1b:
6086 case 0x1d:
6087 case 0x28:
6088 case 0x29:
6089 case 0x2a:
6090 case 0x2b:
6091 case 0x38:
6092 case 0x39:
6093 case 0x3a:
6094 case 0x3b:
6095 case 0x3c:
6096 case 0x3d:
6097 switch (ir.reg & 7)
6098 {
6099 case 0:
6100 /* Handling fld, fild. */
6101 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6102 return -1;
6103 break;
6104 case 1:
6105 switch (ir.reg >> 4)
6106 {
6107 case 0:
6108 if (record_full_arch_list_add_mem (addr64, 4))
6109 return -1;
6110 break;
6111 case 2:
6112 if (record_full_arch_list_add_mem (addr64, 8))
6113 return -1;
6114 break;
6115 case 3:
6116 break;
6117 default:
6118 if (record_full_arch_list_add_mem (addr64, 2))
6119 return -1;
6120 break;
6121 }
6122 break;
6123 default:
6124 switch (ir.reg >> 4)
6125 {
6126 case 0:
6127 if (record_full_arch_list_add_mem (addr64, 4))
6128 return -1;
6129 if (3 == (ir.reg & 7))
6130 {
6131 /* For fstp m32fp. */
6132 if (i386_record_floats (gdbarch, &ir,
6133 I386_SAVE_FPU_REGS))
6134 return -1;
6135 }
6136 break;
6137 case 1:
6138 if (record_full_arch_list_add_mem (addr64, 4))
6139 return -1;
6140 if ((3 == (ir.reg & 7))
6141 || (5 == (ir.reg & 7))
6142 || (7 == (ir.reg & 7)))
6143 {
6144 /* For fstp insn. */
6145 if (i386_record_floats (gdbarch, &ir,
6146 I386_SAVE_FPU_REGS))
6147 return -1;
6148 }
6149 break;
6150 case 2:
6151 if (record_full_arch_list_add_mem (addr64, 8))
6152 return -1;
6153 if (3 == (ir.reg & 7))
6154 {
6155 /* For fstp m64fp. */
6156 if (i386_record_floats (gdbarch, &ir,
6157 I386_SAVE_FPU_REGS))
6158 return -1;
6159 }
6160 break;
6161 case 3:
6162 if ((3 <= (ir.reg & 7)) && (6 <= (ir.reg & 7)))
6163 {
6164 /* For fistp, fbld, fild, fbstp. */
6165 if (i386_record_floats (gdbarch, &ir,
6166 I386_SAVE_FPU_REGS))
6167 return -1;
6168 }
6169 /* Fall through */
6170 default:
6171 if (record_full_arch_list_add_mem (addr64, 2))
6172 return -1;
6173 break;
6174 }
6175 break;
6176 }
6177 break;
6178 case 0x0c:
6179 /* Insn fldenv. */
6180 if (i386_record_floats (gdbarch, &ir,
6181 I386_SAVE_FPU_ENV_REG_STACK))
6182 return -1;
6183 break;
6184 case 0x0d:
6185 /* Insn fldcw. */
6186 if (i386_record_floats (gdbarch, &ir, I387_FCTRL_REGNUM (tdep)))
6187 return -1;
6188 break;
6189 case 0x2c:
6190 /* Insn frstor. */
6191 if (i386_record_floats (gdbarch, &ir,
6192 I386_SAVE_FPU_ENV_REG_STACK))
6193 return -1;
6194 break;
6195 case 0x0e:
6196 if (ir.dflag)
6197 {
6198 if (record_full_arch_list_add_mem (addr64, 28))
6199 return -1;
6200 }
6201 else
6202 {
6203 if (record_full_arch_list_add_mem (addr64, 14))
6204 return -1;
6205 }
6206 break;
6207 case 0x0f:
6208 case 0x2f:
6209 if (record_full_arch_list_add_mem (addr64, 2))
6210 return -1;
6211 /* Insn fstp, fbstp. */
6212 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6213 return -1;
6214 break;
6215 case 0x1f:
6216 case 0x3e:
6217 if (record_full_arch_list_add_mem (addr64, 10))
6218 return -1;
6219 break;
6220 case 0x2e:
6221 if (ir.dflag)
6222 {
6223 if (record_full_arch_list_add_mem (addr64, 28))
6224 return -1;
6225 addr64 += 28;
6226 }
6227 else
6228 {
6229 if (record_full_arch_list_add_mem (addr64, 14))
6230 return -1;
6231 addr64 += 14;
6232 }
6233 if (record_full_arch_list_add_mem (addr64, 80))
6234 return -1;
6235 /* Insn fsave. */
6236 if (i386_record_floats (gdbarch, &ir,
6237 I386_SAVE_FPU_ENV_REG_STACK))
6238 return -1;
6239 break;
6240 case 0x3f:
6241 if (record_full_arch_list_add_mem (addr64, 8))
6242 return -1;
6243 /* Insn fistp. */
6244 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6245 return -1;
6246 break;
6247 default:
6248 ir.addr -= 2;
6249 opcode = opcode << 8 | ir.modrm;
6250 goto no_support;
6251 break;
6252 }
6253 }
6254 /* Opcode is an extension of modR/M byte. */
6255 else
6256 {
6257 switch (opcode)
6258 {
6259 case 0xd8:
6260 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
6261 return -1;
6262 break;
6263 case 0xd9:
6264 if (0x0c == (ir.modrm >> 4))
6265 {
6266 if ((ir.modrm & 0x0f) <= 7)
6267 {
6268 if (i386_record_floats (gdbarch, &ir,
6269 I386_SAVE_FPU_REGS))
6270 return -1;
6271 }
6272 else
6273 {
6274 if (i386_record_floats (gdbarch, &ir,
6275 I387_ST0_REGNUM (tdep)))
6276 return -1;
6277 /* If only st(0) is changing, then we have already
6278 recorded. */
6279 if ((ir.modrm & 0x0f) - 0x08)
6280 {
6281 if (i386_record_floats (gdbarch, &ir,
6282 I387_ST0_REGNUM (tdep) +
6283 ((ir.modrm & 0x0f) - 0x08)))
6284 return -1;
6285 }
6286 }
6287 }
6288 else
6289 {
6290 switch (ir.modrm)
6291 {
6292 case 0xe0:
6293 case 0xe1:
6294 case 0xf0:
6295 case 0xf5:
6296 case 0xf8:
6297 case 0xfa:
6298 case 0xfc:
6299 case 0xfe:
6300 case 0xff:
6301 if (i386_record_floats (gdbarch, &ir,
6302 I387_ST0_REGNUM (tdep)))
6303 return -1;
6304 break;
6305 case 0xf1:
6306 case 0xf2:
6307 case 0xf3:
6308 case 0xf4:
6309 case 0xf6:
6310 case 0xf7:
6311 case 0xe8:
6312 case 0xe9:
6313 case 0xea:
6314 case 0xeb:
6315 case 0xec:
6316 case 0xed:
6317 case 0xee:
6318 case 0xf9:
6319 case 0xfb:
6320 if (i386_record_floats (gdbarch, &ir,
6321 I386_SAVE_FPU_REGS))
6322 return -1;
6323 break;
6324 case 0xfd:
6325 if (i386_record_floats (gdbarch, &ir,
6326 I387_ST0_REGNUM (tdep)))
6327 return -1;
6328 if (i386_record_floats (gdbarch, &ir,
6329 I387_ST0_REGNUM (tdep) + 1))
6330 return -1;
6331 break;
6332 }
6333 }
6334 break;
6335 case 0xda:
6336 if (0xe9 == ir.modrm)
6337 {
6338 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6339 return -1;
6340 }
6341 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
6342 {
6343 if (i386_record_floats (gdbarch, &ir,
6344 I387_ST0_REGNUM (tdep)))
6345 return -1;
6346 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
6347 {
6348 if (i386_record_floats (gdbarch, &ir,
6349 I387_ST0_REGNUM (tdep) +
6350 (ir.modrm & 0x0f)))
6351 return -1;
6352 }
6353 else if ((ir.modrm & 0x0f) - 0x08)
6354 {
6355 if (i386_record_floats (gdbarch, &ir,
6356 I387_ST0_REGNUM (tdep) +
6357 ((ir.modrm & 0x0f) - 0x08)))
6358 return -1;
6359 }
6360 }
6361 break;
6362 case 0xdb:
6363 if (0xe3 == ir.modrm)
6364 {
6365 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_ENV))
6366 return -1;
6367 }
6368 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
6369 {
6370 if (i386_record_floats (gdbarch, &ir,
6371 I387_ST0_REGNUM (tdep)))
6372 return -1;
6373 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
6374 {
6375 if (i386_record_floats (gdbarch, &ir,
6376 I387_ST0_REGNUM (tdep) +
6377 (ir.modrm & 0x0f)))
6378 return -1;
6379 }
6380 else if ((ir.modrm & 0x0f) - 0x08)
6381 {
6382 if (i386_record_floats (gdbarch, &ir,
6383 I387_ST0_REGNUM (tdep) +
6384 ((ir.modrm & 0x0f) - 0x08)))
6385 return -1;
6386 }
6387 }
6388 break;
6389 case 0xdc:
6390 if ((0x0c == ir.modrm >> 4)
6391 || (0x0d == ir.modrm >> 4)
6392 || (0x0f == ir.modrm >> 4))
6393 {
6394 if ((ir.modrm & 0x0f) <= 7)
6395 {
6396 if (i386_record_floats (gdbarch, &ir,
6397 I387_ST0_REGNUM (tdep) +
6398 (ir.modrm & 0x0f)))
6399 return -1;
6400 }
6401 else
6402 {
6403 if (i386_record_floats (gdbarch, &ir,
6404 I387_ST0_REGNUM (tdep) +
6405 ((ir.modrm & 0x0f) - 0x08)))
6406 return -1;
6407 }
6408 }
6409 break;
6410 case 0xdd:
6411 if (0x0c == ir.modrm >> 4)
6412 {
6413 if (i386_record_floats (gdbarch, &ir,
6414 I387_FTAG_REGNUM (tdep)))
6415 return -1;
6416 }
6417 else if ((0x0d == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
6418 {
6419 if ((ir.modrm & 0x0f) <= 7)
6420 {
6421 if (i386_record_floats (gdbarch, &ir,
6422 I387_ST0_REGNUM (tdep) +
6423 (ir.modrm & 0x0f)))
6424 return -1;
6425 }
6426 else
6427 {
6428 if (i386_record_floats (gdbarch, &ir,
6429 I386_SAVE_FPU_REGS))
6430 return -1;
6431 }
6432 }
6433 break;
6434 case 0xde:
6435 if ((0x0c == ir.modrm >> 4)
6436 || (0x0e == ir.modrm >> 4)
6437 || (0x0f == ir.modrm >> 4)
6438 || (0xd9 == ir.modrm))
6439 {
6440 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6441 return -1;
6442 }
6443 break;
6444 case 0xdf:
6445 if (0xe0 == ir.modrm)
6446 {
6447 if (record_full_arch_list_add_reg (ir.regcache,
6448 I386_EAX_REGNUM))
6449 return -1;
6450 }
6451 else if ((0x0f == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
6452 {
6453 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6454 return -1;
6455 }
6456 break;
6457 }
6458 }
6459 break;
6460 /* string ops */
6461 case 0xa4: /* movsS */
6462 case 0xa5:
6463 case 0xaa: /* stosS */
6464 case 0xab:
6465 case 0x6c: /* insS */
6466 case 0x6d:
6467 regcache_raw_read_unsigned (ir.regcache,
6468 ir.regmap[X86_RECORD_RECX_REGNUM],
6469 &addr);
6470 if (addr)
6471 {
6472 ULONGEST es, ds;
6473
6474 if ((opcode & 1) == 0)
6475 ir.ot = OT_BYTE;
6476 else
6477 ir.ot = ir.dflag + OT_WORD;
6478 regcache_raw_read_unsigned (ir.regcache,
6479 ir.regmap[X86_RECORD_REDI_REGNUM],
6480 &addr);
6481
6482 regcache_raw_read_unsigned (ir.regcache,
6483 ir.regmap[X86_RECORD_ES_REGNUM],
6484 &es);
6485 regcache_raw_read_unsigned (ir.regcache,
6486 ir.regmap[X86_RECORD_DS_REGNUM],
6487 &ds);
6488 if (ir.aflag && (es != ds))
6489 {
6490 /* addr += ((uint32_t) read_register (I386_ES_REGNUM)) << 4; */
6491 if (record_full_memory_query)
6492 {
6493 if (yquery (_("\
6494 Process record ignores the memory change of instruction at address %s\n\
6495 because it can't get the value of the segment register.\n\
6496 Do you want to stop the program?"),
6497 paddress (gdbarch, ir.orig_addr)))
6498 return -1;
6499 }
6500 }
6501 else
6502 {
6503 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
6504 return -1;
6505 }
6506
6507 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6508 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6509 if (opcode == 0xa4 || opcode == 0xa5)
6510 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6511 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6512 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6513 }
6514 break;
6515
6516 case 0xa6: /* cmpsS */
6517 case 0xa7:
6518 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6519 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6520 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6521 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6522 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6523 break;
6524
6525 case 0xac: /* lodsS */
6526 case 0xad:
6527 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6528 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6529 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6530 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6531 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6532 break;
6533
6534 case 0xae: /* scasS */
6535 case 0xaf:
6536 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6537 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6538 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6539 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6540 break;
6541
6542 case 0x6e: /* outsS */
6543 case 0x6f:
6544 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6545 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6546 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6547 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6548 break;
6549
6550 case 0xe4: /* port I/O */
6551 case 0xe5:
6552 case 0xec:
6553 case 0xed:
6554 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6555 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6556 break;
6557
6558 case 0xe6:
6559 case 0xe7:
6560 case 0xee:
6561 case 0xef:
6562 break;
6563
6564 /* control */
6565 case 0xc2: /* ret im */
6566 case 0xc3: /* ret */
6567 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6568 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6569 break;
6570
6571 case 0xca: /* lret im */
6572 case 0xcb: /* lret */
6573 case 0xcf: /* iret */
6574 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
6575 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6576 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6577 break;
6578
6579 case 0xe8: /* call im */
6580 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6581 ir.dflag = 2;
6582 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6583 return -1;
6584 break;
6585
6586 case 0x9a: /* lcall im */
6587 if (ir.regmap[X86_RECORD_R8_REGNUM])
6588 {
6589 ir.addr -= 1;
6590 goto no_support;
6591 }
6592 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
6593 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6594 return -1;
6595 break;
6596
6597 case 0xe9: /* jmp im */
6598 case 0xea: /* ljmp im */
6599 case 0xeb: /* jmp Jb */
6600 case 0x70: /* jcc Jb */
6601 case 0x71:
6602 case 0x72:
6603 case 0x73:
6604 case 0x74:
6605 case 0x75:
6606 case 0x76:
6607 case 0x77:
6608 case 0x78:
6609 case 0x79:
6610 case 0x7a:
6611 case 0x7b:
6612 case 0x7c:
6613 case 0x7d:
6614 case 0x7e:
6615 case 0x7f:
6616 case 0x0f80: /* jcc Jv */
6617 case 0x0f81:
6618 case 0x0f82:
6619 case 0x0f83:
6620 case 0x0f84:
6621 case 0x0f85:
6622 case 0x0f86:
6623 case 0x0f87:
6624 case 0x0f88:
6625 case 0x0f89:
6626 case 0x0f8a:
6627 case 0x0f8b:
6628 case 0x0f8c:
6629 case 0x0f8d:
6630 case 0x0f8e:
6631 case 0x0f8f:
6632 break;
6633
6634 case 0x0f90: /* setcc Gv */
6635 case 0x0f91:
6636 case 0x0f92:
6637 case 0x0f93:
6638 case 0x0f94:
6639 case 0x0f95:
6640 case 0x0f96:
6641 case 0x0f97:
6642 case 0x0f98:
6643 case 0x0f99:
6644 case 0x0f9a:
6645 case 0x0f9b:
6646 case 0x0f9c:
6647 case 0x0f9d:
6648 case 0x0f9e:
6649 case 0x0f9f:
6650 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6651 ir.ot = OT_BYTE;
6652 if (i386_record_modrm (&ir))
6653 return -1;
6654 if (ir.mod == 3)
6655 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rex_b ? (ir.rm | ir.rex_b)
6656 : (ir.rm & 0x3));
6657 else
6658 {
6659 if (i386_record_lea_modrm (&ir))
6660 return -1;
6661 }
6662 break;
6663
6664 case 0x0f40: /* cmov Gv, Ev */
6665 case 0x0f41:
6666 case 0x0f42:
6667 case 0x0f43:
6668 case 0x0f44:
6669 case 0x0f45:
6670 case 0x0f46:
6671 case 0x0f47:
6672 case 0x0f48:
6673 case 0x0f49:
6674 case 0x0f4a:
6675 case 0x0f4b:
6676 case 0x0f4c:
6677 case 0x0f4d:
6678 case 0x0f4e:
6679 case 0x0f4f:
6680 if (i386_record_modrm (&ir))
6681 return -1;
6682 ir.reg |= rex_r;
6683 if (ir.dflag == OT_BYTE)
6684 ir.reg &= 0x3;
6685 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
6686 break;
6687
6688 /* flags */
6689 case 0x9c: /* pushf */
6690 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6691 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6692 ir.dflag = 2;
6693 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6694 return -1;
6695 break;
6696
6697 case 0x9d: /* popf */
6698 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6699 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6700 break;
6701
6702 case 0x9e: /* sahf */
6703 if (ir.regmap[X86_RECORD_R8_REGNUM])
6704 {
6705 ir.addr -= 1;
6706 goto no_support;
6707 }
6708 /* FALLTHROUGH */
6709 case 0xf5: /* cmc */
6710 case 0xf8: /* clc */
6711 case 0xf9: /* stc */
6712 case 0xfc: /* cld */
6713 case 0xfd: /* std */
6714 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6715 break;
6716
6717 case 0x9f: /* lahf */
6718 if (ir.regmap[X86_RECORD_R8_REGNUM])
6719 {
6720 ir.addr -= 1;
6721 goto no_support;
6722 }
6723 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6724 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6725 break;
6726
6727 /* bit operations */
6728 case 0x0fba: /* bt/bts/btr/btc Gv, im */
6729 ir.ot = ir.dflag + OT_WORD;
6730 if (i386_record_modrm (&ir))
6731 return -1;
6732 if (ir.reg < 4)
6733 {
6734 ir.addr -= 2;
6735 opcode = opcode << 8 | ir.modrm;
6736 goto no_support;
6737 }
6738 if (ir.reg != 4)
6739 {
6740 if (ir.mod == 3)
6741 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6742 else
6743 {
6744 if (i386_record_lea_modrm (&ir))
6745 return -1;
6746 }
6747 }
6748 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6749 break;
6750
6751 case 0x0fa3: /* bt Gv, Ev */
6752 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6753 break;
6754
6755 case 0x0fab: /* bts */
6756 case 0x0fb3: /* btr */
6757 case 0x0fbb: /* btc */
6758 ir.ot = ir.dflag + OT_WORD;
6759 if (i386_record_modrm (&ir))
6760 return -1;
6761 if (ir.mod == 3)
6762 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6763 else
6764 {
6765 uint64_t addr64;
6766 if (i386_record_lea_modrm_addr (&ir, &addr64))
6767 return -1;
6768 regcache_raw_read_unsigned (ir.regcache,
6769 ir.regmap[ir.reg | rex_r],
6770 &addr);
6771 switch (ir.dflag)
6772 {
6773 case 0:
6774 addr64 += ((int16_t) addr >> 4) << 4;
6775 break;
6776 case 1:
6777 addr64 += ((int32_t) addr >> 5) << 5;
6778 break;
6779 case 2:
6780 addr64 += ((int64_t) addr >> 6) << 6;
6781 break;
6782 }
6783 if (record_full_arch_list_add_mem (addr64, 1 << ir.ot))
6784 return -1;
6785 if (i386_record_lea_modrm (&ir))
6786 return -1;
6787 }
6788 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6789 break;
6790
6791 case 0x0fbc: /* bsf */
6792 case 0x0fbd: /* bsr */
6793 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6794 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6795 break;
6796
6797 /* bcd */
6798 case 0x27: /* daa */
6799 case 0x2f: /* das */
6800 case 0x37: /* aaa */
6801 case 0x3f: /* aas */
6802 case 0xd4: /* aam */
6803 case 0xd5: /* aad */
6804 if (ir.regmap[X86_RECORD_R8_REGNUM])
6805 {
6806 ir.addr -= 1;
6807 goto no_support;
6808 }
6809 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6810 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6811 break;
6812
6813 /* misc */
6814 case 0x90: /* nop */
6815 if (prefixes & PREFIX_LOCK)
6816 {
6817 ir.addr -= 1;
6818 goto no_support;
6819 }
6820 break;
6821
6822 case 0x9b: /* fwait */
6823 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
6824 return -1;
6825 opcode = (uint32_t) opcode8;
6826 ir.addr++;
6827 goto reswitch;
6828 break;
6829
6830 /* XXX */
6831 case 0xcc: /* int3 */
6832 printf_unfiltered (_("Process record does not support instruction "
6833 "int3.\n"));
6834 ir.addr -= 1;
6835 goto no_support;
6836 break;
6837
6838 /* XXX */
6839 case 0xcd: /* int */
6840 {
6841 int ret;
6842 uint8_t interrupt;
6843 if (record_read_memory (gdbarch, ir.addr, &interrupt, 1))
6844 return -1;
6845 ir.addr++;
6846 if (interrupt != 0x80
6847 || tdep->i386_intx80_record == NULL)
6848 {
6849 printf_unfiltered (_("Process record does not support "
6850 "instruction int 0x%02x.\n"),
6851 interrupt);
6852 ir.addr -= 2;
6853 goto no_support;
6854 }
6855 ret = tdep->i386_intx80_record (ir.regcache);
6856 if (ret)
6857 return ret;
6858 }
6859 break;
6860
6861 /* XXX */
6862 case 0xce: /* into */
6863 printf_unfiltered (_("Process record does not support "
6864 "instruction into.\n"));
6865 ir.addr -= 1;
6866 goto no_support;
6867 break;
6868
6869 case 0xfa: /* cli */
6870 case 0xfb: /* sti */
6871 break;
6872
6873 case 0x62: /* bound */
6874 printf_unfiltered (_("Process record does not support "
6875 "instruction bound.\n"));
6876 ir.addr -= 1;
6877 goto no_support;
6878 break;
6879
6880 case 0x0fc8: /* bswap reg */
6881 case 0x0fc9:
6882 case 0x0fca:
6883 case 0x0fcb:
6884 case 0x0fcc:
6885 case 0x0fcd:
6886 case 0x0fce:
6887 case 0x0fcf:
6888 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 7) | ir.rex_b);
6889 break;
6890
6891 case 0xd6: /* salc */
6892 if (ir.regmap[X86_RECORD_R8_REGNUM])
6893 {
6894 ir.addr -= 1;
6895 goto no_support;
6896 }
6897 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6898 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6899 break;
6900
6901 case 0xe0: /* loopnz */
6902 case 0xe1: /* loopz */
6903 case 0xe2: /* loop */
6904 case 0xe3: /* jecxz */
6905 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6906 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6907 break;
6908
6909 case 0x0f30: /* wrmsr */
6910 printf_unfiltered (_("Process record does not support "
6911 "instruction wrmsr.\n"));
6912 ir.addr -= 2;
6913 goto no_support;
6914 break;
6915
6916 case 0x0f32: /* rdmsr */
6917 printf_unfiltered (_("Process record does not support "
6918 "instruction rdmsr.\n"));
6919 ir.addr -= 2;
6920 goto no_support;
6921 break;
6922
6923 case 0x0f31: /* rdtsc */
6924 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6925 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6926 break;
6927
6928 case 0x0f34: /* sysenter */
6929 {
6930 int ret;
6931 if (ir.regmap[X86_RECORD_R8_REGNUM])
6932 {
6933 ir.addr -= 2;
6934 goto no_support;
6935 }
6936 if (tdep->i386_sysenter_record == NULL)
6937 {
6938 printf_unfiltered (_("Process record does not support "
6939 "instruction sysenter.\n"));
6940 ir.addr -= 2;
6941 goto no_support;
6942 }
6943 ret = tdep->i386_sysenter_record (ir.regcache);
6944 if (ret)
6945 return ret;
6946 }
6947 break;
6948
6949 case 0x0f35: /* sysexit */
6950 printf_unfiltered (_("Process record does not support "
6951 "instruction sysexit.\n"));
6952 ir.addr -= 2;
6953 goto no_support;
6954 break;
6955
6956 case 0x0f05: /* syscall */
6957 {
6958 int ret;
6959 if (tdep->i386_syscall_record == NULL)
6960 {
6961 printf_unfiltered (_("Process record does not support "
6962 "instruction syscall.\n"));
6963 ir.addr -= 2;
6964 goto no_support;
6965 }
6966 ret = tdep->i386_syscall_record (ir.regcache);
6967 if (ret)
6968 return ret;
6969 }
6970 break;
6971
6972 case 0x0f07: /* sysret */
6973 printf_unfiltered (_("Process record does not support "
6974 "instruction sysret.\n"));
6975 ir.addr -= 2;
6976 goto no_support;
6977 break;
6978
6979 case 0x0fa2: /* cpuid */
6980 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6981 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6982 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6983 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
6984 break;
6985
6986 case 0xf4: /* hlt */
6987 printf_unfiltered (_("Process record does not support "
6988 "instruction hlt.\n"));
6989 ir.addr -= 1;
6990 goto no_support;
6991 break;
6992
6993 case 0x0f00:
6994 if (i386_record_modrm (&ir))
6995 return -1;
6996 switch (ir.reg)
6997 {
6998 case 0: /* sldt */
6999 case 1: /* str */
7000 if (ir.mod == 3)
7001 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7002 else
7003 {
7004 ir.ot = OT_WORD;
7005 if (i386_record_lea_modrm (&ir))
7006 return -1;
7007 }
7008 break;
7009 case 2: /* lldt */
7010 case 3: /* ltr */
7011 break;
7012 case 4: /* verr */
7013 case 5: /* verw */
7014 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7015 break;
7016 default:
7017 ir.addr -= 3;
7018 opcode = opcode << 8 | ir.modrm;
7019 goto no_support;
7020 break;
7021 }
7022 break;
7023
7024 case 0x0f01:
7025 if (i386_record_modrm (&ir))
7026 return -1;
7027 switch (ir.reg)
7028 {
7029 case 0: /* sgdt */
7030 {
7031 uint64_t addr64;
7032
7033 if (ir.mod == 3)
7034 {
7035 ir.addr -= 3;
7036 opcode = opcode << 8 | ir.modrm;
7037 goto no_support;
7038 }
7039 if (ir.override >= 0)
7040 {
7041 if (record_full_memory_query)
7042 {
7043 if (yquery (_("\
7044 Process record ignores the memory change of instruction at address %s\n\
7045 because it can't get the value of the segment register.\n\
7046 Do you want to stop the program?"),
7047 paddress (gdbarch, ir.orig_addr)))
7048 return -1;
7049 }
7050 }
7051 else
7052 {
7053 if (i386_record_lea_modrm_addr (&ir, &addr64))
7054 return -1;
7055 if (record_full_arch_list_add_mem (addr64, 2))
7056 return -1;
7057 addr64 += 2;
7058 if (ir.regmap[X86_RECORD_R8_REGNUM])
7059 {
7060 if (record_full_arch_list_add_mem (addr64, 8))
7061 return -1;
7062 }
7063 else
7064 {
7065 if (record_full_arch_list_add_mem (addr64, 4))
7066 return -1;
7067 }
7068 }
7069 }
7070 break;
7071 case 1:
7072 if (ir.mod == 3)
7073 {
7074 switch (ir.rm)
7075 {
7076 case 0: /* monitor */
7077 break;
7078 case 1: /* mwait */
7079 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7080 break;
7081 default:
7082 ir.addr -= 3;
7083 opcode = opcode << 8 | ir.modrm;
7084 goto no_support;
7085 break;
7086 }
7087 }
7088 else
7089 {
7090 /* sidt */
7091 if (ir.override >= 0)
7092 {
7093 if (record_full_memory_query)
7094 {
7095 if (yquery (_("\
7096 Process record ignores the memory change of instruction at address %s\n\
7097 because it can't get the value of the segment register.\n\
7098 Do you want to stop the program?"),
7099 paddress (gdbarch, ir.orig_addr)))
7100 return -1;
7101 }
7102 }
7103 else
7104 {
7105 uint64_t addr64;
7106
7107 if (i386_record_lea_modrm_addr (&ir, &addr64))
7108 return -1;
7109 if (record_full_arch_list_add_mem (addr64, 2))
7110 return -1;
7111 addr64 += 2;
7112 if (ir.regmap[X86_RECORD_R8_REGNUM])
7113 {
7114 if (record_full_arch_list_add_mem (addr64, 8))
7115 return -1;
7116 }
7117 else
7118 {
7119 if (record_full_arch_list_add_mem (addr64, 4))
7120 return -1;
7121 }
7122 }
7123 }
7124 break;
7125 case 2: /* lgdt */
7126 if (ir.mod == 3)
7127 {
7128 /* xgetbv */
7129 if (ir.rm == 0)
7130 {
7131 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7132 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7133 break;
7134 }
7135 /* xsetbv */
7136 else if (ir.rm == 1)
7137 break;
7138 }
7139 case 3: /* lidt */
7140 if (ir.mod == 3)
7141 {
7142 ir.addr -= 3;
7143 opcode = opcode << 8 | ir.modrm;
7144 goto no_support;
7145 }
7146 break;
7147 case 4: /* smsw */
7148 if (ir.mod == 3)
7149 {
7150 if (record_full_arch_list_add_reg (ir.regcache, ir.rm | ir.rex_b))
7151 return -1;
7152 }
7153 else
7154 {
7155 ir.ot = OT_WORD;
7156 if (i386_record_lea_modrm (&ir))
7157 return -1;
7158 }
7159 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7160 break;
7161 case 6: /* lmsw */
7162 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7163 break;
7164 case 7: /* invlpg */
7165 if (ir.mod == 3)
7166 {
7167 if (ir.rm == 0 && ir.regmap[X86_RECORD_R8_REGNUM])
7168 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
7169 else
7170 {
7171 ir.addr -= 3;
7172 opcode = opcode << 8 | ir.modrm;
7173 goto no_support;
7174 }
7175 }
7176 else
7177 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7178 break;
7179 default:
7180 ir.addr -= 3;
7181 opcode = opcode << 8 | ir.modrm;
7182 goto no_support;
7183 break;
7184 }
7185 break;
7186
7187 case 0x0f08: /* invd */
7188 case 0x0f09: /* wbinvd */
7189 break;
7190
7191 case 0x63: /* arpl */
7192 if (i386_record_modrm (&ir))
7193 return -1;
7194 if (ir.mod == 3 || ir.regmap[X86_RECORD_R8_REGNUM])
7195 {
7196 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.regmap[X86_RECORD_R8_REGNUM]
7197 ? (ir.reg | rex_r) : ir.rm);
7198 }
7199 else
7200 {
7201 ir.ot = ir.dflag ? OT_LONG : OT_WORD;
7202 if (i386_record_lea_modrm (&ir))
7203 return -1;
7204 }
7205 if (!ir.regmap[X86_RECORD_R8_REGNUM])
7206 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7207 break;
7208
7209 case 0x0f02: /* lar */
7210 case 0x0f03: /* lsl */
7211 if (i386_record_modrm (&ir))
7212 return -1;
7213 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7214 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7215 break;
7216
7217 case 0x0f18:
7218 if (i386_record_modrm (&ir))
7219 return -1;
7220 if (ir.mod == 3 && ir.reg == 3)
7221 {
7222 ir.addr -= 3;
7223 opcode = opcode << 8 | ir.modrm;
7224 goto no_support;
7225 }
7226 break;
7227
7228 case 0x0f19:
7229 case 0x0f1a:
7230 case 0x0f1b:
7231 case 0x0f1c:
7232 case 0x0f1d:
7233 case 0x0f1e:
7234 case 0x0f1f:
7235 /* nop (multi byte) */
7236 break;
7237
7238 case 0x0f20: /* mov reg, crN */
7239 case 0x0f22: /* mov crN, reg */
7240 if (i386_record_modrm (&ir))
7241 return -1;
7242 if ((ir.modrm & 0xc0) != 0xc0)
7243 {
7244 ir.addr -= 3;
7245 opcode = opcode << 8 | ir.modrm;
7246 goto no_support;
7247 }
7248 switch (ir.reg)
7249 {
7250 case 0:
7251 case 2:
7252 case 3:
7253 case 4:
7254 case 8:
7255 if (opcode & 2)
7256 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7257 else
7258 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7259 break;
7260 default:
7261 ir.addr -= 3;
7262 opcode = opcode << 8 | ir.modrm;
7263 goto no_support;
7264 break;
7265 }
7266 break;
7267
7268 case 0x0f21: /* mov reg, drN */
7269 case 0x0f23: /* mov drN, reg */
7270 if (i386_record_modrm (&ir))
7271 return -1;
7272 if ((ir.modrm & 0xc0) != 0xc0 || ir.reg == 4
7273 || ir.reg == 5 || ir.reg >= 8)
7274 {
7275 ir.addr -= 3;
7276 opcode = opcode << 8 | ir.modrm;
7277 goto no_support;
7278 }
7279 if (opcode & 2)
7280 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7281 else
7282 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7283 break;
7284
7285 case 0x0f06: /* clts */
7286 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7287 break;
7288
7289 /* MMX 3DNow! SSE SSE2 SSE3 SSSE3 SSE4 */
7290
7291 case 0x0f0d: /* 3DNow! prefetch */
7292 break;
7293
7294 case 0x0f0e: /* 3DNow! femms */
7295 case 0x0f77: /* emms */
7296 if (i386_fpc_regnum_p (gdbarch, I387_FTAG_REGNUM(tdep)))
7297 goto no_support;
7298 record_full_arch_list_add_reg (ir.regcache, I387_FTAG_REGNUM(tdep));
7299 break;
7300
7301 case 0x0f0f: /* 3DNow! data */
7302 if (i386_record_modrm (&ir))
7303 return -1;
7304 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
7305 return -1;
7306 ir.addr++;
7307 switch (opcode8)
7308 {
7309 case 0x0c: /* 3DNow! pi2fw */
7310 case 0x0d: /* 3DNow! pi2fd */
7311 case 0x1c: /* 3DNow! pf2iw */
7312 case 0x1d: /* 3DNow! pf2id */
7313 case 0x8a: /* 3DNow! pfnacc */
7314 case 0x8e: /* 3DNow! pfpnacc */
7315 case 0x90: /* 3DNow! pfcmpge */
7316 case 0x94: /* 3DNow! pfmin */
7317 case 0x96: /* 3DNow! pfrcp */
7318 case 0x97: /* 3DNow! pfrsqrt */
7319 case 0x9a: /* 3DNow! pfsub */
7320 case 0x9e: /* 3DNow! pfadd */
7321 case 0xa0: /* 3DNow! pfcmpgt */
7322 case 0xa4: /* 3DNow! pfmax */
7323 case 0xa6: /* 3DNow! pfrcpit1 */
7324 case 0xa7: /* 3DNow! pfrsqit1 */
7325 case 0xaa: /* 3DNow! pfsubr */
7326 case 0xae: /* 3DNow! pfacc */
7327 case 0xb0: /* 3DNow! pfcmpeq */
7328 case 0xb4: /* 3DNow! pfmul */
7329 case 0xb6: /* 3DNow! pfrcpit2 */
7330 case 0xb7: /* 3DNow! pmulhrw */
7331 case 0xbb: /* 3DNow! pswapd */
7332 case 0xbf: /* 3DNow! pavgusb */
7333 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7334 goto no_support_3dnow_data;
7335 record_full_arch_list_add_reg (ir.regcache, ir.reg);
7336 break;
7337
7338 default:
7339 no_support_3dnow_data:
7340 opcode = (opcode << 8) | opcode8;
7341 goto no_support;
7342 break;
7343 }
7344 break;
7345
7346 case 0x0faa: /* rsm */
7347 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7348 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7349 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
7350 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7351 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
7352 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
7353 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
7354 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
7355 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
7356 break;
7357
7358 case 0x0fae:
7359 if (i386_record_modrm (&ir))
7360 return -1;
7361 switch(ir.reg)
7362 {
7363 case 0: /* fxsave */
7364 {
7365 uint64_t tmpu64;
7366
7367 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7368 if (i386_record_lea_modrm_addr (&ir, &tmpu64))
7369 return -1;
7370 if (record_full_arch_list_add_mem (tmpu64, 512))
7371 return -1;
7372 }
7373 break;
7374
7375 case 1: /* fxrstor */
7376 {
7377 int i;
7378
7379 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7380
7381 for (i = I387_MM0_REGNUM (tdep);
7382 i386_mmx_regnum_p (gdbarch, i); i++)
7383 record_full_arch_list_add_reg (ir.regcache, i);
7384
7385 for (i = I387_XMM0_REGNUM (tdep);
7386 i386_xmm_regnum_p (gdbarch, i); i++)
7387 record_full_arch_list_add_reg (ir.regcache, i);
7388
7389 if (i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
7390 record_full_arch_list_add_reg (ir.regcache,
7391 I387_MXCSR_REGNUM(tdep));
7392
7393 for (i = I387_ST0_REGNUM (tdep);
7394 i386_fp_regnum_p (gdbarch, i); i++)
7395 record_full_arch_list_add_reg (ir.regcache, i);
7396
7397 for (i = I387_FCTRL_REGNUM (tdep);
7398 i386_fpc_regnum_p (gdbarch, i); i++)
7399 record_full_arch_list_add_reg (ir.regcache, i);
7400 }
7401 break;
7402
7403 case 2: /* ldmxcsr */
7404 if (!i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
7405 goto no_support;
7406 record_full_arch_list_add_reg (ir.regcache, I387_MXCSR_REGNUM(tdep));
7407 break;
7408
7409 case 3: /* stmxcsr */
7410 ir.ot = OT_LONG;
7411 if (i386_record_lea_modrm (&ir))
7412 return -1;
7413 break;
7414
7415 case 5: /* lfence */
7416 case 6: /* mfence */
7417 case 7: /* sfence clflush */
7418 break;
7419
7420 default:
7421 opcode = (opcode << 8) | ir.modrm;
7422 goto no_support;
7423 break;
7424 }
7425 break;
7426
7427 case 0x0fc3: /* movnti */
7428 ir.ot = (ir.dflag == 2) ? OT_QUAD : OT_LONG;
7429 if (i386_record_modrm (&ir))
7430 return -1;
7431 if (ir.mod == 3)
7432 goto no_support;
7433 ir.reg |= rex_r;
7434 if (i386_record_lea_modrm (&ir))
7435 return -1;
7436 break;
7437
7438 /* Add prefix to opcode. */
7439 case 0x0f10:
7440 case 0x0f11:
7441 case 0x0f12:
7442 case 0x0f13:
7443 case 0x0f14:
7444 case 0x0f15:
7445 case 0x0f16:
7446 case 0x0f17:
7447 case 0x0f28:
7448 case 0x0f29:
7449 case 0x0f2a:
7450 case 0x0f2b:
7451 case 0x0f2c:
7452 case 0x0f2d:
7453 case 0x0f2e:
7454 case 0x0f2f:
7455 case 0x0f38:
7456 case 0x0f39:
7457 case 0x0f3a:
7458 case 0x0f50:
7459 case 0x0f51:
7460 case 0x0f52:
7461 case 0x0f53:
7462 case 0x0f54:
7463 case 0x0f55:
7464 case 0x0f56:
7465 case 0x0f57:
7466 case 0x0f58:
7467 case 0x0f59:
7468 case 0x0f5a:
7469 case 0x0f5b:
7470 case 0x0f5c:
7471 case 0x0f5d:
7472 case 0x0f5e:
7473 case 0x0f5f:
7474 case 0x0f60:
7475 case 0x0f61:
7476 case 0x0f62:
7477 case 0x0f63:
7478 case 0x0f64:
7479 case 0x0f65:
7480 case 0x0f66:
7481 case 0x0f67:
7482 case 0x0f68:
7483 case 0x0f69:
7484 case 0x0f6a:
7485 case 0x0f6b:
7486 case 0x0f6c:
7487 case 0x0f6d:
7488 case 0x0f6e:
7489 case 0x0f6f:
7490 case 0x0f70:
7491 case 0x0f71:
7492 case 0x0f72:
7493 case 0x0f73:
7494 case 0x0f74:
7495 case 0x0f75:
7496 case 0x0f76:
7497 case 0x0f7c:
7498 case 0x0f7d:
7499 case 0x0f7e:
7500 case 0x0f7f:
7501 case 0x0fb8:
7502 case 0x0fc2:
7503 case 0x0fc4:
7504 case 0x0fc5:
7505 case 0x0fc6:
7506 case 0x0fd0:
7507 case 0x0fd1:
7508 case 0x0fd2:
7509 case 0x0fd3:
7510 case 0x0fd4:
7511 case 0x0fd5:
7512 case 0x0fd6:
7513 case 0x0fd7:
7514 case 0x0fd8:
7515 case 0x0fd9:
7516 case 0x0fda:
7517 case 0x0fdb:
7518 case 0x0fdc:
7519 case 0x0fdd:
7520 case 0x0fde:
7521 case 0x0fdf:
7522 case 0x0fe0:
7523 case 0x0fe1:
7524 case 0x0fe2:
7525 case 0x0fe3:
7526 case 0x0fe4:
7527 case 0x0fe5:
7528 case 0x0fe6:
7529 case 0x0fe7:
7530 case 0x0fe8:
7531 case 0x0fe9:
7532 case 0x0fea:
7533 case 0x0feb:
7534 case 0x0fec:
7535 case 0x0fed:
7536 case 0x0fee:
7537 case 0x0fef:
7538 case 0x0ff0:
7539 case 0x0ff1:
7540 case 0x0ff2:
7541 case 0x0ff3:
7542 case 0x0ff4:
7543 case 0x0ff5:
7544 case 0x0ff6:
7545 case 0x0ff7:
7546 case 0x0ff8:
7547 case 0x0ff9:
7548 case 0x0ffa:
7549 case 0x0ffb:
7550 case 0x0ffc:
7551 case 0x0ffd:
7552 case 0x0ffe:
7553 /* Mask out PREFIX_ADDR. */
7554 switch ((prefixes & ~PREFIX_ADDR))
7555 {
7556 case PREFIX_REPNZ:
7557 opcode |= 0xf20000;
7558 break;
7559 case PREFIX_DATA:
7560 opcode |= 0x660000;
7561 break;
7562 case PREFIX_REPZ:
7563 opcode |= 0xf30000;
7564 break;
7565 }
7566 reswitch_prefix_add:
7567 switch (opcode)
7568 {
7569 case 0x0f38:
7570 case 0x660f38:
7571 case 0xf20f38:
7572 case 0x0f3a:
7573 case 0x660f3a:
7574 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
7575 return -1;
7576 ir.addr++;
7577 opcode = (uint32_t) opcode8 | opcode << 8;
7578 goto reswitch_prefix_add;
7579 break;
7580
7581 case 0x0f10: /* movups */
7582 case 0x660f10: /* movupd */
7583 case 0xf30f10: /* movss */
7584 case 0xf20f10: /* movsd */
7585 case 0x0f12: /* movlps */
7586 case 0x660f12: /* movlpd */
7587 case 0xf30f12: /* movsldup */
7588 case 0xf20f12: /* movddup */
7589 case 0x0f14: /* unpcklps */
7590 case 0x660f14: /* unpcklpd */
7591 case 0x0f15: /* unpckhps */
7592 case 0x660f15: /* unpckhpd */
7593 case 0x0f16: /* movhps */
7594 case 0x660f16: /* movhpd */
7595 case 0xf30f16: /* movshdup */
7596 case 0x0f28: /* movaps */
7597 case 0x660f28: /* movapd */
7598 case 0x0f2a: /* cvtpi2ps */
7599 case 0x660f2a: /* cvtpi2pd */
7600 case 0xf30f2a: /* cvtsi2ss */
7601 case 0xf20f2a: /* cvtsi2sd */
7602 case 0x0f2c: /* cvttps2pi */
7603 case 0x660f2c: /* cvttpd2pi */
7604 case 0x0f2d: /* cvtps2pi */
7605 case 0x660f2d: /* cvtpd2pi */
7606 case 0x660f3800: /* pshufb */
7607 case 0x660f3801: /* phaddw */
7608 case 0x660f3802: /* phaddd */
7609 case 0x660f3803: /* phaddsw */
7610 case 0x660f3804: /* pmaddubsw */
7611 case 0x660f3805: /* phsubw */
7612 case 0x660f3806: /* phsubd */
7613 case 0x660f3807: /* phsubsw */
7614 case 0x660f3808: /* psignb */
7615 case 0x660f3809: /* psignw */
7616 case 0x660f380a: /* psignd */
7617 case 0x660f380b: /* pmulhrsw */
7618 case 0x660f3810: /* pblendvb */
7619 case 0x660f3814: /* blendvps */
7620 case 0x660f3815: /* blendvpd */
7621 case 0x660f381c: /* pabsb */
7622 case 0x660f381d: /* pabsw */
7623 case 0x660f381e: /* pabsd */
7624 case 0x660f3820: /* pmovsxbw */
7625 case 0x660f3821: /* pmovsxbd */
7626 case 0x660f3822: /* pmovsxbq */
7627 case 0x660f3823: /* pmovsxwd */
7628 case 0x660f3824: /* pmovsxwq */
7629 case 0x660f3825: /* pmovsxdq */
7630 case 0x660f3828: /* pmuldq */
7631 case 0x660f3829: /* pcmpeqq */
7632 case 0x660f382a: /* movntdqa */
7633 case 0x660f3a08: /* roundps */
7634 case 0x660f3a09: /* roundpd */
7635 case 0x660f3a0a: /* roundss */
7636 case 0x660f3a0b: /* roundsd */
7637 case 0x660f3a0c: /* blendps */
7638 case 0x660f3a0d: /* blendpd */
7639 case 0x660f3a0e: /* pblendw */
7640 case 0x660f3a0f: /* palignr */
7641 case 0x660f3a20: /* pinsrb */
7642 case 0x660f3a21: /* insertps */
7643 case 0x660f3a22: /* pinsrd pinsrq */
7644 case 0x660f3a40: /* dpps */
7645 case 0x660f3a41: /* dppd */
7646 case 0x660f3a42: /* mpsadbw */
7647 case 0x660f3a60: /* pcmpestrm */
7648 case 0x660f3a61: /* pcmpestri */
7649 case 0x660f3a62: /* pcmpistrm */
7650 case 0x660f3a63: /* pcmpistri */
7651 case 0x0f51: /* sqrtps */
7652 case 0x660f51: /* sqrtpd */
7653 case 0xf20f51: /* sqrtsd */
7654 case 0xf30f51: /* sqrtss */
7655 case 0x0f52: /* rsqrtps */
7656 case 0xf30f52: /* rsqrtss */
7657 case 0x0f53: /* rcpps */
7658 case 0xf30f53: /* rcpss */
7659 case 0x0f54: /* andps */
7660 case 0x660f54: /* andpd */
7661 case 0x0f55: /* andnps */
7662 case 0x660f55: /* andnpd */
7663 case 0x0f56: /* orps */
7664 case 0x660f56: /* orpd */
7665 case 0x0f57: /* xorps */
7666 case 0x660f57: /* xorpd */
7667 case 0x0f58: /* addps */
7668 case 0x660f58: /* addpd */
7669 case 0xf20f58: /* addsd */
7670 case 0xf30f58: /* addss */
7671 case 0x0f59: /* mulps */
7672 case 0x660f59: /* mulpd */
7673 case 0xf20f59: /* mulsd */
7674 case 0xf30f59: /* mulss */
7675 case 0x0f5a: /* cvtps2pd */
7676 case 0x660f5a: /* cvtpd2ps */
7677 case 0xf20f5a: /* cvtsd2ss */
7678 case 0xf30f5a: /* cvtss2sd */
7679 case 0x0f5b: /* cvtdq2ps */
7680 case 0x660f5b: /* cvtps2dq */
7681 case 0xf30f5b: /* cvttps2dq */
7682 case 0x0f5c: /* subps */
7683 case 0x660f5c: /* subpd */
7684 case 0xf20f5c: /* subsd */
7685 case 0xf30f5c: /* subss */
7686 case 0x0f5d: /* minps */
7687 case 0x660f5d: /* minpd */
7688 case 0xf20f5d: /* minsd */
7689 case 0xf30f5d: /* minss */
7690 case 0x0f5e: /* divps */
7691 case 0x660f5e: /* divpd */
7692 case 0xf20f5e: /* divsd */
7693 case 0xf30f5e: /* divss */
7694 case 0x0f5f: /* maxps */
7695 case 0x660f5f: /* maxpd */
7696 case 0xf20f5f: /* maxsd */
7697 case 0xf30f5f: /* maxss */
7698 case 0x660f60: /* punpcklbw */
7699 case 0x660f61: /* punpcklwd */
7700 case 0x660f62: /* punpckldq */
7701 case 0x660f63: /* packsswb */
7702 case 0x660f64: /* pcmpgtb */
7703 case 0x660f65: /* pcmpgtw */
7704 case 0x660f66: /* pcmpgtd */
7705 case 0x660f67: /* packuswb */
7706 case 0x660f68: /* punpckhbw */
7707 case 0x660f69: /* punpckhwd */
7708 case 0x660f6a: /* punpckhdq */
7709 case 0x660f6b: /* packssdw */
7710 case 0x660f6c: /* punpcklqdq */
7711 case 0x660f6d: /* punpckhqdq */
7712 case 0x660f6e: /* movd */
7713 case 0x660f6f: /* movdqa */
7714 case 0xf30f6f: /* movdqu */
7715 case 0x660f70: /* pshufd */
7716 case 0xf20f70: /* pshuflw */
7717 case 0xf30f70: /* pshufhw */
7718 case 0x660f74: /* pcmpeqb */
7719 case 0x660f75: /* pcmpeqw */
7720 case 0x660f76: /* pcmpeqd */
7721 case 0x660f7c: /* haddpd */
7722 case 0xf20f7c: /* haddps */
7723 case 0x660f7d: /* hsubpd */
7724 case 0xf20f7d: /* hsubps */
7725 case 0xf30f7e: /* movq */
7726 case 0x0fc2: /* cmpps */
7727 case 0x660fc2: /* cmppd */
7728 case 0xf20fc2: /* cmpsd */
7729 case 0xf30fc2: /* cmpss */
7730 case 0x660fc4: /* pinsrw */
7731 case 0x0fc6: /* shufps */
7732 case 0x660fc6: /* shufpd */
7733 case 0x660fd0: /* addsubpd */
7734 case 0xf20fd0: /* addsubps */
7735 case 0x660fd1: /* psrlw */
7736 case 0x660fd2: /* psrld */
7737 case 0x660fd3: /* psrlq */
7738 case 0x660fd4: /* paddq */
7739 case 0x660fd5: /* pmullw */
7740 case 0xf30fd6: /* movq2dq */
7741 case 0x660fd8: /* psubusb */
7742 case 0x660fd9: /* psubusw */
7743 case 0x660fda: /* pminub */
7744 case 0x660fdb: /* pand */
7745 case 0x660fdc: /* paddusb */
7746 case 0x660fdd: /* paddusw */
7747 case 0x660fde: /* pmaxub */
7748 case 0x660fdf: /* pandn */
7749 case 0x660fe0: /* pavgb */
7750 case 0x660fe1: /* psraw */
7751 case 0x660fe2: /* psrad */
7752 case 0x660fe3: /* pavgw */
7753 case 0x660fe4: /* pmulhuw */
7754 case 0x660fe5: /* pmulhw */
7755 case 0x660fe6: /* cvttpd2dq */
7756 case 0xf20fe6: /* cvtpd2dq */
7757 case 0xf30fe6: /* cvtdq2pd */
7758 case 0x660fe8: /* psubsb */
7759 case 0x660fe9: /* psubsw */
7760 case 0x660fea: /* pminsw */
7761 case 0x660feb: /* por */
7762 case 0x660fec: /* paddsb */
7763 case 0x660fed: /* paddsw */
7764 case 0x660fee: /* pmaxsw */
7765 case 0x660fef: /* pxor */
7766 case 0xf20ff0: /* lddqu */
7767 case 0x660ff1: /* psllw */
7768 case 0x660ff2: /* pslld */
7769 case 0x660ff3: /* psllq */
7770 case 0x660ff4: /* pmuludq */
7771 case 0x660ff5: /* pmaddwd */
7772 case 0x660ff6: /* psadbw */
7773 case 0x660ff8: /* psubb */
7774 case 0x660ff9: /* psubw */
7775 case 0x660ffa: /* psubd */
7776 case 0x660ffb: /* psubq */
7777 case 0x660ffc: /* paddb */
7778 case 0x660ffd: /* paddw */
7779 case 0x660ffe: /* paddd */
7780 if (i386_record_modrm (&ir))
7781 return -1;
7782 ir.reg |= rex_r;
7783 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.reg))
7784 goto no_support;
7785 record_full_arch_list_add_reg (ir.regcache,
7786 I387_XMM0_REGNUM (tdep) + ir.reg);
7787 if ((opcode & 0xfffffffc) == 0x660f3a60)
7788 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7789 break;
7790
7791 case 0x0f11: /* movups */
7792 case 0x660f11: /* movupd */
7793 case 0xf30f11: /* movss */
7794 case 0xf20f11: /* movsd */
7795 case 0x0f13: /* movlps */
7796 case 0x660f13: /* movlpd */
7797 case 0x0f17: /* movhps */
7798 case 0x660f17: /* movhpd */
7799 case 0x0f29: /* movaps */
7800 case 0x660f29: /* movapd */
7801 case 0x660f3a14: /* pextrb */
7802 case 0x660f3a15: /* pextrw */
7803 case 0x660f3a16: /* pextrd pextrq */
7804 case 0x660f3a17: /* extractps */
7805 case 0x660f7f: /* movdqa */
7806 case 0xf30f7f: /* movdqu */
7807 if (i386_record_modrm (&ir))
7808 return -1;
7809 if (ir.mod == 3)
7810 {
7811 if (opcode == 0x0f13 || opcode == 0x660f13
7812 || opcode == 0x0f17 || opcode == 0x660f17)
7813 goto no_support;
7814 ir.rm |= ir.rex_b;
7815 if (!i386_xmm_regnum_p (gdbarch,
7816 I387_XMM0_REGNUM (tdep) + ir.rm))
7817 goto no_support;
7818 record_full_arch_list_add_reg (ir.regcache,
7819 I387_XMM0_REGNUM (tdep) + ir.rm);
7820 }
7821 else
7822 {
7823 switch (opcode)
7824 {
7825 case 0x660f3a14:
7826 ir.ot = OT_BYTE;
7827 break;
7828 case 0x660f3a15:
7829 ir.ot = OT_WORD;
7830 break;
7831 case 0x660f3a16:
7832 ir.ot = OT_LONG;
7833 break;
7834 case 0x660f3a17:
7835 ir.ot = OT_QUAD;
7836 break;
7837 default:
7838 ir.ot = OT_DQUAD;
7839 break;
7840 }
7841 if (i386_record_lea_modrm (&ir))
7842 return -1;
7843 }
7844 break;
7845
7846 case 0x0f2b: /* movntps */
7847 case 0x660f2b: /* movntpd */
7848 case 0x0fe7: /* movntq */
7849 case 0x660fe7: /* movntdq */
7850 if (ir.mod == 3)
7851 goto no_support;
7852 if (opcode == 0x0fe7)
7853 ir.ot = OT_QUAD;
7854 else
7855 ir.ot = OT_DQUAD;
7856 if (i386_record_lea_modrm (&ir))
7857 return -1;
7858 break;
7859
7860 case 0xf30f2c: /* cvttss2si */
7861 case 0xf20f2c: /* cvttsd2si */
7862 case 0xf30f2d: /* cvtss2si */
7863 case 0xf20f2d: /* cvtsd2si */
7864 case 0xf20f38f0: /* crc32 */
7865 case 0xf20f38f1: /* crc32 */
7866 case 0x0f50: /* movmskps */
7867 case 0x660f50: /* movmskpd */
7868 case 0x0fc5: /* pextrw */
7869 case 0x660fc5: /* pextrw */
7870 case 0x0fd7: /* pmovmskb */
7871 case 0x660fd7: /* pmovmskb */
7872 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7873 break;
7874
7875 case 0x0f3800: /* pshufb */
7876 case 0x0f3801: /* phaddw */
7877 case 0x0f3802: /* phaddd */
7878 case 0x0f3803: /* phaddsw */
7879 case 0x0f3804: /* pmaddubsw */
7880 case 0x0f3805: /* phsubw */
7881 case 0x0f3806: /* phsubd */
7882 case 0x0f3807: /* phsubsw */
7883 case 0x0f3808: /* psignb */
7884 case 0x0f3809: /* psignw */
7885 case 0x0f380a: /* psignd */
7886 case 0x0f380b: /* pmulhrsw */
7887 case 0x0f381c: /* pabsb */
7888 case 0x0f381d: /* pabsw */
7889 case 0x0f381e: /* pabsd */
7890 case 0x0f382b: /* packusdw */
7891 case 0x0f3830: /* pmovzxbw */
7892 case 0x0f3831: /* pmovzxbd */
7893 case 0x0f3832: /* pmovzxbq */
7894 case 0x0f3833: /* pmovzxwd */
7895 case 0x0f3834: /* pmovzxwq */
7896 case 0x0f3835: /* pmovzxdq */
7897 case 0x0f3837: /* pcmpgtq */
7898 case 0x0f3838: /* pminsb */
7899 case 0x0f3839: /* pminsd */
7900 case 0x0f383a: /* pminuw */
7901 case 0x0f383b: /* pminud */
7902 case 0x0f383c: /* pmaxsb */
7903 case 0x0f383d: /* pmaxsd */
7904 case 0x0f383e: /* pmaxuw */
7905 case 0x0f383f: /* pmaxud */
7906 case 0x0f3840: /* pmulld */
7907 case 0x0f3841: /* phminposuw */
7908 case 0x0f3a0f: /* palignr */
7909 case 0x0f60: /* punpcklbw */
7910 case 0x0f61: /* punpcklwd */
7911 case 0x0f62: /* punpckldq */
7912 case 0x0f63: /* packsswb */
7913 case 0x0f64: /* pcmpgtb */
7914 case 0x0f65: /* pcmpgtw */
7915 case 0x0f66: /* pcmpgtd */
7916 case 0x0f67: /* packuswb */
7917 case 0x0f68: /* punpckhbw */
7918 case 0x0f69: /* punpckhwd */
7919 case 0x0f6a: /* punpckhdq */
7920 case 0x0f6b: /* packssdw */
7921 case 0x0f6e: /* movd */
7922 case 0x0f6f: /* movq */
7923 case 0x0f70: /* pshufw */
7924 case 0x0f74: /* pcmpeqb */
7925 case 0x0f75: /* pcmpeqw */
7926 case 0x0f76: /* pcmpeqd */
7927 case 0x0fc4: /* pinsrw */
7928 case 0x0fd1: /* psrlw */
7929 case 0x0fd2: /* psrld */
7930 case 0x0fd3: /* psrlq */
7931 case 0x0fd4: /* paddq */
7932 case 0x0fd5: /* pmullw */
7933 case 0xf20fd6: /* movdq2q */
7934 case 0x0fd8: /* psubusb */
7935 case 0x0fd9: /* psubusw */
7936 case 0x0fda: /* pminub */
7937 case 0x0fdb: /* pand */
7938 case 0x0fdc: /* paddusb */
7939 case 0x0fdd: /* paddusw */
7940 case 0x0fde: /* pmaxub */
7941 case 0x0fdf: /* pandn */
7942 case 0x0fe0: /* pavgb */
7943 case 0x0fe1: /* psraw */
7944 case 0x0fe2: /* psrad */
7945 case 0x0fe3: /* pavgw */
7946 case 0x0fe4: /* pmulhuw */
7947 case 0x0fe5: /* pmulhw */
7948 case 0x0fe8: /* psubsb */
7949 case 0x0fe9: /* psubsw */
7950 case 0x0fea: /* pminsw */
7951 case 0x0feb: /* por */
7952 case 0x0fec: /* paddsb */
7953 case 0x0fed: /* paddsw */
7954 case 0x0fee: /* pmaxsw */
7955 case 0x0fef: /* pxor */
7956 case 0x0ff1: /* psllw */
7957 case 0x0ff2: /* pslld */
7958 case 0x0ff3: /* psllq */
7959 case 0x0ff4: /* pmuludq */
7960 case 0x0ff5: /* pmaddwd */
7961 case 0x0ff6: /* psadbw */
7962 case 0x0ff8: /* psubb */
7963 case 0x0ff9: /* psubw */
7964 case 0x0ffa: /* psubd */
7965 case 0x0ffb: /* psubq */
7966 case 0x0ffc: /* paddb */
7967 case 0x0ffd: /* paddw */
7968 case 0x0ffe: /* paddd */
7969 if (i386_record_modrm (&ir))
7970 return -1;
7971 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7972 goto no_support;
7973 record_full_arch_list_add_reg (ir.regcache,
7974 I387_MM0_REGNUM (tdep) + ir.reg);
7975 break;
7976
7977 case 0x0f71: /* psllw */
7978 case 0x0f72: /* pslld */
7979 case 0x0f73: /* psllq */
7980 if (i386_record_modrm (&ir))
7981 return -1;
7982 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
7983 goto no_support;
7984 record_full_arch_list_add_reg (ir.regcache,
7985 I387_MM0_REGNUM (tdep) + ir.rm);
7986 break;
7987
7988 case 0x660f71: /* psllw */
7989 case 0x660f72: /* pslld */
7990 case 0x660f73: /* psllq */
7991 if (i386_record_modrm (&ir))
7992 return -1;
7993 ir.rm |= ir.rex_b;
7994 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.rm))
7995 goto no_support;
7996 record_full_arch_list_add_reg (ir.regcache,
7997 I387_XMM0_REGNUM (tdep) + ir.rm);
7998 break;
7999
8000 case 0x0f7e: /* movd */
8001 case 0x660f7e: /* movd */
8002 if (i386_record_modrm (&ir))
8003 return -1;
8004 if (ir.mod == 3)
8005 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
8006 else
8007 {
8008 if (ir.dflag == 2)
8009 ir.ot = OT_QUAD;
8010 else
8011 ir.ot = OT_LONG;
8012 if (i386_record_lea_modrm (&ir))
8013 return -1;
8014 }
8015 break;
8016
8017 case 0x0f7f: /* movq */
8018 if (i386_record_modrm (&ir))
8019 return -1;
8020 if (ir.mod == 3)
8021 {
8022 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
8023 goto no_support;
8024 record_full_arch_list_add_reg (ir.regcache,
8025 I387_MM0_REGNUM (tdep) + ir.rm);
8026 }
8027 else
8028 {
8029 ir.ot = OT_QUAD;
8030 if (i386_record_lea_modrm (&ir))
8031 return -1;
8032 }
8033 break;
8034
8035 case 0xf30fb8: /* popcnt */
8036 if (i386_record_modrm (&ir))
8037 return -1;
8038 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
8039 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
8040 break;
8041
8042 case 0x660fd6: /* movq */
8043 if (i386_record_modrm (&ir))
8044 return -1;
8045 if (ir.mod == 3)
8046 {
8047 ir.rm |= ir.rex_b;
8048 if (!i386_xmm_regnum_p (gdbarch,
8049 I387_XMM0_REGNUM (tdep) + ir.rm))
8050 goto no_support;
8051 record_full_arch_list_add_reg (ir.regcache,
8052 I387_XMM0_REGNUM (tdep) + ir.rm);
8053 }
8054 else
8055 {
8056 ir.ot = OT_QUAD;
8057 if (i386_record_lea_modrm (&ir))
8058 return -1;
8059 }
8060 break;
8061
8062 case 0x660f3817: /* ptest */
8063 case 0x0f2e: /* ucomiss */
8064 case 0x660f2e: /* ucomisd */
8065 case 0x0f2f: /* comiss */
8066 case 0x660f2f: /* comisd */
8067 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
8068 break;
8069
8070 case 0x0ff7: /* maskmovq */
8071 regcache_raw_read_unsigned (ir.regcache,
8072 ir.regmap[X86_RECORD_REDI_REGNUM],
8073 &addr);
8074 if (record_full_arch_list_add_mem (addr, 64))
8075 return -1;
8076 break;
8077
8078 case 0x660ff7: /* maskmovdqu */
8079 regcache_raw_read_unsigned (ir.regcache,
8080 ir.regmap[X86_RECORD_REDI_REGNUM],
8081 &addr);
8082 if (record_full_arch_list_add_mem (addr, 128))
8083 return -1;
8084 break;
8085
8086 default:
8087 goto no_support;
8088 break;
8089 }
8090 break;
8091
8092 default:
8093 goto no_support;
8094 break;
8095 }
8096
8097 /* In the future, maybe still need to deal with need_dasm. */
8098 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REIP_REGNUM);
8099 if (record_full_arch_list_add_end ())
8100 return -1;
8101
8102 return 0;
8103
8104 no_support:
8105 printf_unfiltered (_("Process record does not support instruction 0x%02x "
8106 "at address %s.\n"),
8107 (unsigned int) (opcode),
8108 paddress (gdbarch, ir.orig_addr));
8109 return -1;
8110 }
8111
8112 static const int i386_record_regmap[] =
8113 {
8114 I386_EAX_REGNUM, I386_ECX_REGNUM, I386_EDX_REGNUM, I386_EBX_REGNUM,
8115 I386_ESP_REGNUM, I386_EBP_REGNUM, I386_ESI_REGNUM, I386_EDI_REGNUM,
8116 0, 0, 0, 0, 0, 0, 0, 0,
8117 I386_EIP_REGNUM, I386_EFLAGS_REGNUM, I386_CS_REGNUM, I386_SS_REGNUM,
8118 I386_DS_REGNUM, I386_ES_REGNUM, I386_FS_REGNUM, I386_GS_REGNUM
8119 };
8120
8121 /* Check that the given address appears suitable for a fast
8122 tracepoint, which on x86-64 means that we need an instruction of at
8123 least 5 bytes, so that we can overwrite it with a 4-byte-offset
8124 jump and not have to worry about program jumps to an address in the
8125 middle of the tracepoint jump. On x86, it may be possible to use
8126 4-byte jumps with a 2-byte offset to a trampoline located in the
8127 bottom 64 KiB of memory. Returns 1 if OK, and writes a size
8128 of instruction to replace, and 0 if not, plus an explanatory
8129 string. */
8130
8131 static int
8132 i386_fast_tracepoint_valid_at (struct gdbarch *gdbarch, CORE_ADDR addr,
8133 char **msg)
8134 {
8135 int len, jumplen;
8136
8137 /* Ask the target for the minimum instruction length supported. */
8138 jumplen = target_get_min_fast_tracepoint_insn_len ();
8139
8140 if (jumplen < 0)
8141 {
8142 /* If the target does not support the get_min_fast_tracepoint_insn_len
8143 operation, assume that fast tracepoints will always be implemented
8144 using 4-byte relative jumps on both x86 and x86-64. */
8145 jumplen = 5;
8146 }
8147 else if (jumplen == 0)
8148 {
8149 /* If the target does support get_min_fast_tracepoint_insn_len but
8150 returns zero, then the IPA has not loaded yet. In this case,
8151 we optimistically assume that truncated 2-byte relative jumps
8152 will be available on x86, and compensate later if this assumption
8153 turns out to be incorrect. On x86-64 architectures, 4-byte relative
8154 jumps will always be used. */
8155 jumplen = (register_size (gdbarch, 0) == 8) ? 5 : 4;
8156 }
8157
8158 /* Check for fit. */
8159 len = gdb_insn_length (gdbarch, addr);
8160
8161 if (len < jumplen)
8162 {
8163 /* Return a bit of target-specific detail to add to the caller's
8164 generic failure message. */
8165 if (msg)
8166 *msg = xstrprintf (_("; instruction is only %d bytes long, "
8167 "need at least %d bytes for the jump"),
8168 len, jumplen);
8169 return 0;
8170 }
8171 else
8172 {
8173 if (msg)
8174 *msg = NULL;
8175 return 1;
8176 }
8177 }
8178
8179 /* Return a floating-point format for a floating-point variable of
8180 length LEN in bits. If non-NULL, NAME is the name of its type.
8181 If no suitable type is found, return NULL. */
8182
8183 const struct floatformat **
8184 i386_floatformat_for_type (struct gdbarch *gdbarch,
8185 const char *name, int len)
8186 {
8187 if (len == 128 && name)
8188 if (strcmp (name, "__float128") == 0
8189 || strcmp (name, "_Float128") == 0
8190 || strcmp (name, "complex _Float128") == 0)
8191 return floatformats_ia64_quad;
8192
8193 return default_floatformat_for_type (gdbarch, name, len);
8194 }
8195
8196 static int
8197 i386_validate_tdesc_p (struct gdbarch_tdep *tdep,
8198 struct tdesc_arch_data *tdesc_data)
8199 {
8200 const struct target_desc *tdesc = tdep->tdesc;
8201 const struct tdesc_feature *feature_core;
8202
8203 const struct tdesc_feature *feature_sse, *feature_avx, *feature_mpx,
8204 *feature_avx512;
8205 int i, num_regs, valid_p;
8206
8207 if (! tdesc_has_registers (tdesc))
8208 return 0;
8209
8210 /* Get core registers. */
8211 feature_core = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.core");
8212 if (feature_core == NULL)
8213 return 0;
8214
8215 /* Get SSE registers. */
8216 feature_sse = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.sse");
8217
8218 /* Try AVX registers. */
8219 feature_avx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx");
8220
8221 /* Try MPX registers. */
8222 feature_mpx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx");
8223
8224 /* Try AVX512 registers. */
8225 feature_avx512 = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx512");
8226
8227 valid_p = 1;
8228
8229 /* The XCR0 bits. */
8230 if (feature_avx512)
8231 {
8232 /* AVX512 register description requires AVX register description. */
8233 if (!feature_avx)
8234 return 0;
8235
8236 tdep->xcr0 = X86_XSTATE_AVX_AVX512_MASK;
8237
8238 /* It may have been set by OSABI initialization function. */
8239 if (tdep->k0_regnum < 0)
8240 {
8241 tdep->k_register_names = i386_k_names;
8242 tdep->k0_regnum = I386_K0_REGNUM;
8243 }
8244
8245 for (i = 0; i < I387_NUM_K_REGS; i++)
8246 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8247 tdep->k0_regnum + i,
8248 i386_k_names[i]);
8249
8250 if (tdep->num_zmm_regs == 0)
8251 {
8252 tdep->zmmh_register_names = i386_zmmh_names;
8253 tdep->num_zmm_regs = 8;
8254 tdep->zmm0h_regnum = I386_ZMM0H_REGNUM;
8255 }
8256
8257 for (i = 0; i < tdep->num_zmm_regs; i++)
8258 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8259 tdep->zmm0h_regnum + i,
8260 tdep->zmmh_register_names[i]);
8261
8262 for (i = 0; i < tdep->num_xmm_avx512_regs; i++)
8263 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8264 tdep->xmm16_regnum + i,
8265 tdep->xmm_avx512_register_names[i]);
8266
8267 for (i = 0; i < tdep->num_ymm_avx512_regs; i++)
8268 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8269 tdep->ymm16h_regnum + i,
8270 tdep->ymm16h_register_names[i]);
8271 }
8272 if (feature_avx)
8273 {
8274 /* AVX register description requires SSE register description. */
8275 if (!feature_sse)
8276 return 0;
8277
8278 if (!feature_avx512)
8279 tdep->xcr0 = X86_XSTATE_AVX_MASK;
8280
8281 /* It may have been set by OSABI initialization function. */
8282 if (tdep->num_ymm_regs == 0)
8283 {
8284 tdep->ymmh_register_names = i386_ymmh_names;
8285 tdep->num_ymm_regs = 8;
8286 tdep->ymm0h_regnum = I386_YMM0H_REGNUM;
8287 }
8288
8289 for (i = 0; i < tdep->num_ymm_regs; i++)
8290 valid_p &= tdesc_numbered_register (feature_avx, tdesc_data,
8291 tdep->ymm0h_regnum + i,
8292 tdep->ymmh_register_names[i]);
8293 }
8294 else if (feature_sse)
8295 tdep->xcr0 = X86_XSTATE_SSE_MASK;
8296 else
8297 {
8298 tdep->xcr0 = X86_XSTATE_X87_MASK;
8299 tdep->num_xmm_regs = 0;
8300 }
8301
8302 num_regs = tdep->num_core_regs;
8303 for (i = 0; i < num_regs; i++)
8304 valid_p &= tdesc_numbered_register (feature_core, tdesc_data, i,
8305 tdep->register_names[i]);
8306
8307 if (feature_sse)
8308 {
8309 /* Need to include %mxcsr, so add one. */
8310 num_regs += tdep->num_xmm_regs + 1;
8311 for (; i < num_regs; i++)
8312 valid_p &= tdesc_numbered_register (feature_sse, tdesc_data, i,
8313 tdep->register_names[i]);
8314 }
8315
8316 if (feature_mpx)
8317 {
8318 tdep->xcr0 |= X86_XSTATE_MPX_MASK;
8319
8320 if (tdep->bnd0r_regnum < 0)
8321 {
8322 tdep->mpx_register_names = i386_mpx_names;
8323 tdep->bnd0r_regnum = I386_BND0R_REGNUM;
8324 tdep->bndcfgu_regnum = I386_BNDCFGU_REGNUM;
8325 }
8326
8327 for (i = 0; i < I387_NUM_MPX_REGS; i++)
8328 valid_p &= tdesc_numbered_register (feature_mpx, tdesc_data,
8329 I387_BND0R_REGNUM (tdep) + i,
8330 tdep->mpx_register_names[i]);
8331 }
8332
8333 return valid_p;
8334 }
8335
8336 \f
8337 /* Note: This is called for both i386 and amd64. */
8338
8339 static struct gdbarch *
8340 i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
8341 {
8342 struct gdbarch_tdep *tdep;
8343 struct gdbarch *gdbarch;
8344 struct tdesc_arch_data *tdesc_data;
8345 const struct target_desc *tdesc;
8346 int mm0_regnum;
8347 int ymm0_regnum;
8348 int bnd0_regnum;
8349 int num_bnd_cooked;
8350
8351 /* If there is already a candidate, use it. */
8352 arches = gdbarch_list_lookup_by_info (arches, &info);
8353 if (arches != NULL)
8354 return arches->gdbarch;
8355
8356 /* Allocate space for the new architecture. Assume i386 for now. */
8357 tdep = XCNEW (struct gdbarch_tdep);
8358 gdbarch = gdbarch_alloc (&info, tdep);
8359
8360 /* General-purpose registers. */
8361 tdep->gregset_reg_offset = NULL;
8362 tdep->gregset_num_regs = I386_NUM_GREGS;
8363 tdep->sizeof_gregset = 0;
8364
8365 /* Floating-point registers. */
8366 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
8367 tdep->fpregset = &i386_fpregset;
8368
8369 /* The default settings include the FPU registers, the MMX registers
8370 and the SSE registers. This can be overridden for a specific ABI
8371 by adjusting the members `st0_regnum', `mm0_regnum' and
8372 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
8373 will show up in the output of "info all-registers". */
8374
8375 tdep->st0_regnum = I386_ST0_REGNUM;
8376
8377 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
8378 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
8379
8380 tdep->jb_pc_offset = -1;
8381 tdep->struct_return = pcc_struct_return;
8382 tdep->sigtramp_start = 0;
8383 tdep->sigtramp_end = 0;
8384 tdep->sigtramp_p = i386_sigtramp_p;
8385 tdep->sigcontext_addr = NULL;
8386 tdep->sc_reg_offset = NULL;
8387 tdep->sc_pc_offset = -1;
8388 tdep->sc_sp_offset = -1;
8389
8390 tdep->xsave_xcr0_offset = -1;
8391
8392 tdep->record_regmap = i386_record_regmap;
8393
8394 set_gdbarch_long_long_align_bit (gdbarch, 32);
8395
8396 /* The format used for `long double' on almost all i386 targets is
8397 the i387 extended floating-point format. In fact, of all targets
8398 in the GCC 2.95 tree, only OSF/1 does it different, and insists
8399 on having a `long double' that's not `long' at all. */
8400 set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext);
8401
8402 /* Although the i387 extended floating-point has only 80 significant
8403 bits, a `long double' actually takes up 96, probably to enforce
8404 alignment. */
8405 set_gdbarch_long_double_bit (gdbarch, 96);
8406
8407 /* Support for floating-point data type variants. */
8408 set_gdbarch_floatformat_for_type (gdbarch, i386_floatformat_for_type);
8409
8410 /* Register numbers of various important registers. */
8411 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
8412 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
8413 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
8414 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
8415
8416 /* NOTE: kettenis/20040418: GCC does have two possible register
8417 numbering schemes on the i386: dbx and SVR4. These schemes
8418 differ in how they number %ebp, %esp, %eflags, and the
8419 floating-point registers, and are implemented by the arrays
8420 dbx_register_map[] and svr4_dbx_register_map in
8421 gcc/config/i386.c. GCC also defines a third numbering scheme in
8422 gcc/config/i386.c, which it designates as the "default" register
8423 map used in 64bit mode. This last register numbering scheme is
8424 implemented in dbx64_register_map, and is used for AMD64; see
8425 amd64-tdep.c.
8426
8427 Currently, each GCC i386 target always uses the same register
8428 numbering scheme across all its supported debugging formats
8429 i.e. SDB (COFF), stabs and DWARF 2. This is because
8430 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
8431 DBX_REGISTER_NUMBER macro which is defined by each target's
8432 respective config header in a manner independent of the requested
8433 output debugging format.
8434
8435 This does not match the arrangement below, which presumes that
8436 the SDB and stabs numbering schemes differ from the DWARF and
8437 DWARF 2 ones. The reason for this arrangement is that it is
8438 likely to get the numbering scheme for the target's
8439 default/native debug format right. For targets where GCC is the
8440 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
8441 targets where the native toolchain uses a different numbering
8442 scheme for a particular debug format (stabs-in-ELF on Solaris)
8443 the defaults below will have to be overridden, like
8444 i386_elf_init_abi() does. */
8445
8446 /* Use the dbx register numbering scheme for stabs and COFF. */
8447 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
8448 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
8449
8450 /* Use the SVR4 register numbering scheme for DWARF 2. */
8451 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_dwarf_reg_to_regnum);
8452
8453 /* We don't set gdbarch_stab_reg_to_regnum, since ECOFF doesn't seem to
8454 be in use on any of the supported i386 targets. */
8455
8456 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
8457
8458 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
8459
8460 /* Call dummy code. */
8461 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
8462 set_gdbarch_push_dummy_code (gdbarch, i386_push_dummy_code);
8463 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
8464 set_gdbarch_frame_align (gdbarch, i386_frame_align);
8465
8466 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
8467 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
8468 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
8469
8470 set_gdbarch_return_value (gdbarch, i386_return_value);
8471
8472 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
8473
8474 /* Stack grows downward. */
8475 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
8476
8477 set_gdbarch_breakpoint_kind_from_pc (gdbarch, i386_breakpoint::kind_from_pc);
8478 set_gdbarch_sw_breakpoint_from_kind (gdbarch, i386_breakpoint::bp_from_kind);
8479
8480 set_gdbarch_decr_pc_after_break (gdbarch, 1);
8481 set_gdbarch_max_insn_length (gdbarch, I386_MAX_INSN_LEN);
8482
8483 set_gdbarch_frame_args_skip (gdbarch, 8);
8484
8485 set_gdbarch_print_insn (gdbarch, i386_print_insn);
8486
8487 set_gdbarch_dummy_id (gdbarch, i386_dummy_id);
8488
8489 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
8490
8491 /* Add the i386 register groups. */
8492 i386_add_reggroups (gdbarch);
8493 tdep->register_reggroup_p = i386_register_reggroup_p;
8494
8495 /* Helper for function argument information. */
8496 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
8497
8498 /* Hook the function epilogue frame unwinder. This unwinder is
8499 appended to the list first, so that it supercedes the DWARF
8500 unwinder in function epilogues (where the DWARF unwinder
8501 currently fails). */
8502 frame_unwind_append_unwinder (gdbarch, &i386_epilogue_frame_unwind);
8503
8504 /* Hook in the DWARF CFI frame unwinder. This unwinder is appended
8505 to the list before the prologue-based unwinders, so that DWARF
8506 CFI info will be used if it is available. */
8507 dwarf2_append_unwinders (gdbarch);
8508
8509 frame_base_set_default (gdbarch, &i386_frame_base);
8510
8511 /* Pseudo registers may be changed by amd64_init_abi. */
8512 set_gdbarch_pseudo_register_read_value (gdbarch,
8513 i386_pseudo_register_read_value);
8514 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
8515 set_gdbarch_ax_pseudo_register_collect (gdbarch,
8516 i386_ax_pseudo_register_collect);
8517
8518 set_tdesc_pseudo_register_type (gdbarch, i386_pseudo_register_type);
8519 set_tdesc_pseudo_register_name (gdbarch, i386_pseudo_register_name);
8520
8521 /* Override the normal target description method to make the AVX
8522 upper halves anonymous. */
8523 set_gdbarch_register_name (gdbarch, i386_register_name);
8524
8525 /* Even though the default ABI only includes general-purpose registers,
8526 floating-point registers and the SSE registers, we have to leave a
8527 gap for the upper AVX, MPX and AVX512 registers. */
8528 set_gdbarch_num_regs (gdbarch, I386_AVX512_NUM_REGS);
8529
8530 set_gdbarch_gnu_triplet_regexp (gdbarch, i386_gnu_triplet_regexp);
8531
8532 /* Get the x86 target description from INFO. */
8533 tdesc = info.target_desc;
8534 if (! tdesc_has_registers (tdesc))
8535 tdesc = tdesc_i386;
8536 tdep->tdesc = tdesc;
8537
8538 tdep->num_core_regs = I386_NUM_GREGS + I387_NUM_REGS;
8539 tdep->register_names = i386_register_names;
8540
8541 /* No upper YMM registers. */
8542 tdep->ymmh_register_names = NULL;
8543 tdep->ymm0h_regnum = -1;
8544
8545 /* No upper ZMM registers. */
8546 tdep->zmmh_register_names = NULL;
8547 tdep->zmm0h_regnum = -1;
8548
8549 /* No high XMM registers. */
8550 tdep->xmm_avx512_register_names = NULL;
8551 tdep->xmm16_regnum = -1;
8552
8553 /* No upper YMM16-31 registers. */
8554 tdep->ymm16h_register_names = NULL;
8555 tdep->ymm16h_regnum = -1;
8556
8557 tdep->num_byte_regs = 8;
8558 tdep->num_word_regs = 8;
8559 tdep->num_dword_regs = 0;
8560 tdep->num_mmx_regs = 8;
8561 tdep->num_ymm_regs = 0;
8562
8563 /* No MPX registers. */
8564 tdep->bnd0r_regnum = -1;
8565 tdep->bndcfgu_regnum = -1;
8566
8567 /* No AVX512 registers. */
8568 tdep->k0_regnum = -1;
8569 tdep->num_zmm_regs = 0;
8570 tdep->num_ymm_avx512_regs = 0;
8571 tdep->num_xmm_avx512_regs = 0;
8572
8573 tdesc_data = tdesc_data_alloc ();
8574
8575 set_gdbarch_relocate_instruction (gdbarch, i386_relocate_instruction);
8576
8577 set_gdbarch_gen_return_address (gdbarch, i386_gen_return_address);
8578
8579 set_gdbarch_insn_is_call (gdbarch, i386_insn_is_call);
8580 set_gdbarch_insn_is_ret (gdbarch, i386_insn_is_ret);
8581 set_gdbarch_insn_is_jump (gdbarch, i386_insn_is_jump);
8582
8583 /* Hook in ABI-specific overrides, if they have been registered.
8584 Note: If INFO specifies a 64 bit arch, this is where we turn
8585 a 32-bit i386 into a 64-bit amd64. */
8586 info.tdep_info = tdesc_data;
8587 gdbarch_init_osabi (info, gdbarch);
8588
8589 if (!i386_validate_tdesc_p (tdep, tdesc_data))
8590 {
8591 tdesc_data_cleanup (tdesc_data);
8592 xfree (tdep);
8593 gdbarch_free (gdbarch);
8594 return NULL;
8595 }
8596
8597 num_bnd_cooked = (tdep->bnd0r_regnum > 0 ? I387_NUM_BND_REGS : 0);
8598
8599 /* Wire in pseudo registers. Number of pseudo registers may be
8600 changed. */
8601 set_gdbarch_num_pseudo_regs (gdbarch, (tdep->num_byte_regs
8602 + tdep->num_word_regs
8603 + tdep->num_dword_regs
8604 + tdep->num_mmx_regs
8605 + tdep->num_ymm_regs
8606 + num_bnd_cooked
8607 + tdep->num_ymm_avx512_regs
8608 + tdep->num_zmm_regs));
8609
8610 /* Target description may be changed. */
8611 tdesc = tdep->tdesc;
8612
8613 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
8614
8615 /* Override gdbarch_register_reggroup_p set in tdesc_use_registers. */
8616 set_gdbarch_register_reggroup_p (gdbarch, tdep->register_reggroup_p);
8617
8618 /* Make %al the first pseudo-register. */
8619 tdep->al_regnum = gdbarch_num_regs (gdbarch);
8620 tdep->ax_regnum = tdep->al_regnum + tdep->num_byte_regs;
8621
8622 ymm0_regnum = tdep->ax_regnum + tdep->num_word_regs;
8623 if (tdep->num_dword_regs)
8624 {
8625 /* Support dword pseudo-register if it hasn't been disabled. */
8626 tdep->eax_regnum = ymm0_regnum;
8627 ymm0_regnum += tdep->num_dword_regs;
8628 }
8629 else
8630 tdep->eax_regnum = -1;
8631
8632 mm0_regnum = ymm0_regnum;
8633 if (tdep->num_ymm_regs)
8634 {
8635 /* Support YMM pseudo-register if it is available. */
8636 tdep->ymm0_regnum = ymm0_regnum;
8637 mm0_regnum += tdep->num_ymm_regs;
8638 }
8639 else
8640 tdep->ymm0_regnum = -1;
8641
8642 if (tdep->num_ymm_avx512_regs)
8643 {
8644 /* Support YMM16-31 pseudo registers if available. */
8645 tdep->ymm16_regnum = mm0_regnum;
8646 mm0_regnum += tdep->num_ymm_avx512_regs;
8647 }
8648 else
8649 tdep->ymm16_regnum = -1;
8650
8651 if (tdep->num_zmm_regs)
8652 {
8653 /* Support ZMM pseudo-register if it is available. */
8654 tdep->zmm0_regnum = mm0_regnum;
8655 mm0_regnum += tdep->num_zmm_regs;
8656 }
8657 else
8658 tdep->zmm0_regnum = -1;
8659
8660 bnd0_regnum = mm0_regnum;
8661 if (tdep->num_mmx_regs != 0)
8662 {
8663 /* Support MMX pseudo-register if MMX hasn't been disabled. */
8664 tdep->mm0_regnum = mm0_regnum;
8665 bnd0_regnum += tdep->num_mmx_regs;
8666 }
8667 else
8668 tdep->mm0_regnum = -1;
8669
8670 if (tdep->bnd0r_regnum > 0)
8671 tdep->bnd0_regnum = bnd0_regnum;
8672 else
8673 tdep-> bnd0_regnum = -1;
8674
8675 /* Hook in the legacy prologue-based unwinders last (fallback). */
8676 frame_unwind_append_unwinder (gdbarch, &i386_stack_tramp_frame_unwind);
8677 frame_unwind_append_unwinder (gdbarch, &i386_sigtramp_frame_unwind);
8678 frame_unwind_append_unwinder (gdbarch, &i386_frame_unwind);
8679
8680 /* If we have a register mapping, enable the generic core file
8681 support, unless it has already been enabled. */
8682 if (tdep->gregset_reg_offset
8683 && !gdbarch_iterate_over_regset_sections_p (gdbarch))
8684 set_gdbarch_iterate_over_regset_sections
8685 (gdbarch, i386_iterate_over_regset_sections);
8686
8687 set_gdbarch_fast_tracepoint_valid_at (gdbarch,
8688 i386_fast_tracepoint_valid_at);
8689
8690 return gdbarch;
8691 }
8692
8693 static enum gdb_osabi
8694 i386_coff_osabi_sniffer (bfd *abfd)
8695 {
8696 if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
8697 || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
8698 return GDB_OSABI_GO32;
8699
8700 return GDB_OSABI_UNKNOWN;
8701 }
8702 \f
8703
8704 /* Return the target description for a specified XSAVE feature mask. */
8705
8706 const struct target_desc *
8707 i386_target_description (uint64_t xcr0)
8708 {
8709 switch (xcr0 & X86_XSTATE_ALL_MASK)
8710 {
8711 case X86_XSTATE_AVX_MPX_AVX512_MASK:
8712 return tdesc_i386_avx_mpx_avx512;
8713 case X86_XSTATE_AVX_AVX512_MASK:
8714 return tdesc_i386_avx_avx512;
8715 case X86_XSTATE_AVX_MPX_MASK:
8716 return tdesc_i386_avx_mpx;
8717 case X86_XSTATE_MPX_MASK:
8718 return tdesc_i386_mpx;
8719 case X86_XSTATE_AVX_MASK:
8720 return tdesc_i386_avx;
8721 default:
8722 return tdesc_i386;
8723 }
8724 }
8725
8726 #define MPX_BASE_MASK (~(ULONGEST) 0xfff)
8727
8728 /* Find the bound directory base address. */
8729
8730 static unsigned long
8731 i386_mpx_bd_base (void)
8732 {
8733 struct regcache *rcache;
8734 struct gdbarch_tdep *tdep;
8735 ULONGEST ret;
8736 enum register_status regstatus;
8737
8738 rcache = get_current_regcache ();
8739 tdep = gdbarch_tdep (get_regcache_arch (rcache));
8740
8741 regstatus = regcache_raw_read_unsigned (rcache, tdep->bndcfgu_regnum, &ret);
8742
8743 if (regstatus != REG_VALID)
8744 error (_("BNDCFGU register invalid, read status %d."), regstatus);
8745
8746 return ret & MPX_BASE_MASK;
8747 }
8748
8749 int
8750 i386_mpx_enabled (void)
8751 {
8752 const struct gdbarch_tdep *tdep = gdbarch_tdep (get_current_arch ());
8753 const struct target_desc *tdesc = tdep->tdesc;
8754
8755 return (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx") != NULL);
8756 }
8757
8758 #define MPX_BD_MASK 0xfffffff00000ULL /* select bits [47:20] */
8759 #define MPX_BT_MASK 0x0000000ffff8 /* select bits [19:3] */
8760 #define MPX_BD_MASK_32 0xfffff000 /* select bits [31:12] */
8761 #define MPX_BT_MASK_32 0x00000ffc /* select bits [11:2] */
8762
8763 /* Find the bound table entry given the pointer location and the base
8764 address of the table. */
8765
8766 static CORE_ADDR
8767 i386_mpx_get_bt_entry (CORE_ADDR ptr, CORE_ADDR bd_base)
8768 {
8769 CORE_ADDR offset1;
8770 CORE_ADDR offset2;
8771 CORE_ADDR mpx_bd_mask, bd_ptr_r_shift, bd_ptr_l_shift;
8772 CORE_ADDR bt_mask, bt_select_r_shift, bt_select_l_shift;
8773 CORE_ADDR bd_entry_addr;
8774 CORE_ADDR bt_addr;
8775 CORE_ADDR bd_entry;
8776 struct gdbarch *gdbarch = get_current_arch ();
8777 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8778
8779
8780 if (gdbarch_ptr_bit (gdbarch) == 64)
8781 {
8782 mpx_bd_mask = (CORE_ADDR) MPX_BD_MASK;
8783 bd_ptr_r_shift = 20;
8784 bd_ptr_l_shift = 3;
8785 bt_select_r_shift = 3;
8786 bt_select_l_shift = 5;
8787 bt_mask = (CORE_ADDR) MPX_BT_MASK;
8788
8789 if ( sizeof (CORE_ADDR) == 4)
8790 error (_("bound table examination not supported\
8791 for 64-bit process with 32-bit GDB"));
8792 }
8793 else
8794 {
8795 mpx_bd_mask = MPX_BD_MASK_32;
8796 bd_ptr_r_shift = 12;
8797 bd_ptr_l_shift = 2;
8798 bt_select_r_shift = 2;
8799 bt_select_l_shift = 4;
8800 bt_mask = MPX_BT_MASK_32;
8801 }
8802
8803 offset1 = ((ptr & mpx_bd_mask) >> bd_ptr_r_shift) << bd_ptr_l_shift;
8804 bd_entry_addr = bd_base + offset1;
8805 bd_entry = read_memory_typed_address (bd_entry_addr, data_ptr_type);
8806
8807 if ((bd_entry & 0x1) == 0)
8808 error (_("Invalid bounds directory entry at %s."),
8809 paddress (get_current_arch (), bd_entry_addr));
8810
8811 /* Clearing status bit. */
8812 bd_entry--;
8813 bt_addr = bd_entry & ~bt_select_r_shift;
8814 offset2 = ((ptr & bt_mask) >> bt_select_r_shift) << bt_select_l_shift;
8815
8816 return bt_addr + offset2;
8817 }
8818
8819 /* Print routine for the mpx bounds. */
8820
8821 static void
8822 i386_mpx_print_bounds (const CORE_ADDR bt_entry[4])
8823 {
8824 struct ui_out *uiout = current_uiout;
8825 LONGEST size;
8826 struct gdbarch *gdbarch = get_current_arch ();
8827 CORE_ADDR onecompl = ~((CORE_ADDR) 0);
8828 int bounds_in_map = ((~bt_entry[1] == 0 && bt_entry[0] == onecompl) ? 1 : 0);
8829
8830 if (bounds_in_map == 1)
8831 {
8832 uiout->text ("Null bounds on map:");
8833 uiout->text (" pointer value = ");
8834 uiout->field_core_addr ("pointer-value", gdbarch, bt_entry[2]);
8835 uiout->text (".");
8836 uiout->text ("\n");
8837 }
8838 else
8839 {
8840 uiout->text ("{lbound = ");
8841 uiout->field_core_addr ("lower-bound", gdbarch, bt_entry[0]);
8842 uiout->text (", ubound = ");
8843
8844 /* The upper bound is stored in 1's complement. */
8845 uiout->field_core_addr ("upper-bound", gdbarch, ~bt_entry[1]);
8846 uiout->text ("}: pointer value = ");
8847 uiout->field_core_addr ("pointer-value", gdbarch, bt_entry[2]);
8848
8849 if (gdbarch_ptr_bit (gdbarch) == 64)
8850 size = ( (~(int64_t) bt_entry[1]) - (int64_t) bt_entry[0]);
8851 else
8852 size = ( ~((int32_t) bt_entry[1]) - (int32_t) bt_entry[0]);
8853
8854 /* In case the bounds are 0x0 and 0xffff... the difference will be -1.
8855 -1 represents in this sense full memory access, and there is no need
8856 one to the size. */
8857
8858 size = (size > -1 ? size + 1 : size);
8859 uiout->text (", size = ");
8860 uiout->field_fmt ("size", "%s", plongest (size));
8861
8862 uiout->text (", metadata = ");
8863 uiout->field_core_addr ("metadata", gdbarch, bt_entry[3]);
8864 uiout->text ("\n");
8865 }
8866 }
8867
8868 /* Implement the command "show mpx bound". */
8869
8870 static void
8871 i386_mpx_info_bounds (char *args, int from_tty)
8872 {
8873 CORE_ADDR bd_base = 0;
8874 CORE_ADDR addr;
8875 CORE_ADDR bt_entry_addr = 0;
8876 CORE_ADDR bt_entry[4];
8877 int i;
8878 struct gdbarch *gdbarch = get_current_arch ();
8879 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8880
8881 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_i386
8882 || !i386_mpx_enabled ())
8883 {
8884 printf_unfiltered (_("Intel Memory Protection Extensions not "
8885 "supported on this target.\n"));
8886 return;
8887 }
8888
8889 if (args == NULL)
8890 {
8891 printf_unfiltered (_("Address of pointer variable expected.\n"));
8892 return;
8893 }
8894
8895 addr = parse_and_eval_address (args);
8896
8897 bd_base = i386_mpx_bd_base ();
8898 bt_entry_addr = i386_mpx_get_bt_entry (addr, bd_base);
8899
8900 memset (bt_entry, 0, sizeof (bt_entry));
8901
8902 for (i = 0; i < 4; i++)
8903 bt_entry[i] = read_memory_typed_address (bt_entry_addr
8904 + i * TYPE_LENGTH (data_ptr_type),
8905 data_ptr_type);
8906
8907 i386_mpx_print_bounds (bt_entry);
8908 }
8909
8910 /* Implement the command "set mpx bound". */
8911
8912 static void
8913 i386_mpx_set_bounds (char *args, int from_tty)
8914 {
8915 CORE_ADDR bd_base = 0;
8916 CORE_ADDR addr, lower, upper;
8917 CORE_ADDR bt_entry_addr = 0;
8918 CORE_ADDR bt_entry[2];
8919 const char *input = args;
8920 int i;
8921 struct gdbarch *gdbarch = get_current_arch ();
8922 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
8923 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8924
8925 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_i386
8926 || !i386_mpx_enabled ())
8927 error (_("Intel Memory Protection Extensions not supported\
8928 on this target."));
8929
8930 if (args == NULL)
8931 error (_("Pointer value expected."));
8932
8933 addr = value_as_address (parse_to_comma_and_eval (&input));
8934
8935 if (input[0] == ',')
8936 ++input;
8937 if (input[0] == '\0')
8938 error (_("wrong number of arguments: missing lower and upper bound."));
8939 lower = value_as_address (parse_to_comma_and_eval (&input));
8940
8941 if (input[0] == ',')
8942 ++input;
8943 if (input[0] == '\0')
8944 error (_("Wrong number of arguments; Missing upper bound."));
8945 upper = value_as_address (parse_to_comma_and_eval (&input));
8946
8947 bd_base = i386_mpx_bd_base ();
8948 bt_entry_addr = i386_mpx_get_bt_entry (addr, bd_base);
8949 for (i = 0; i < 2; i++)
8950 bt_entry[i] = read_memory_typed_address (bt_entry_addr
8951 + i * TYPE_LENGTH (data_ptr_type),
8952 data_ptr_type);
8953 bt_entry[0] = (uint64_t) lower;
8954 bt_entry[1] = ~(uint64_t) upper;
8955
8956 for (i = 0; i < 2; i++)
8957 write_memory_unsigned_integer (bt_entry_addr
8958 + i * TYPE_LENGTH (data_ptr_type),
8959 TYPE_LENGTH (data_ptr_type), byte_order,
8960 bt_entry[i]);
8961 }
8962
8963 static struct cmd_list_element *mpx_set_cmdlist, *mpx_show_cmdlist;
8964
8965 /* Helper function for the CLI commands. */
8966
8967 static void
8968 set_mpx_cmd (char *args, int from_tty)
8969 {
8970 help_list (mpx_set_cmdlist, "set mpx ", all_commands, gdb_stdout);
8971 }
8972
8973 /* Helper function for the CLI commands. */
8974
8975 static void
8976 show_mpx_cmd (char *args, int from_tty)
8977 {
8978 cmd_show_list (mpx_show_cmdlist, from_tty, "");
8979 }
8980
8981 /* Provide a prototype to silence -Wmissing-prototypes. */
8982 void _initialize_i386_tdep (void);
8983
8984 void
8985 _initialize_i386_tdep (void)
8986 {
8987 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
8988
8989 /* Add the variable that controls the disassembly flavor. */
8990 add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
8991 &disassembly_flavor, _("\
8992 Set the disassembly flavor."), _("\
8993 Show the disassembly flavor."), _("\
8994 The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
8995 NULL,
8996 NULL, /* FIXME: i18n: */
8997 &setlist, &showlist);
8998
8999 /* Add the variable that controls the convention for returning
9000 structs. */
9001 add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
9002 &struct_convention, _("\
9003 Set the convention for returning small structs."), _("\
9004 Show the convention for returning small structs."), _("\
9005 Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
9006 is \"default\"."),
9007 NULL,
9008 NULL, /* FIXME: i18n: */
9009 &setlist, &showlist);
9010
9011 /* Add "mpx" prefix for the set commands. */
9012
9013 add_prefix_cmd ("mpx", class_support, set_mpx_cmd, _("\
9014 Set Intel Memory Protection Extensions specific variables."),
9015 &mpx_set_cmdlist, "set mpx ",
9016 0 /* allow-unknown */, &setlist);
9017
9018 /* Add "mpx" prefix for the show commands. */
9019
9020 add_prefix_cmd ("mpx", class_support, show_mpx_cmd, _("\
9021 Show Intel Memory Protection Extensions specific variables."),
9022 &mpx_show_cmdlist, "show mpx ",
9023 0 /* allow-unknown */, &showlist);
9024
9025 /* Add "bound" command for the show mpx commands list. */
9026
9027 add_cmd ("bound", no_class, i386_mpx_info_bounds,
9028 "Show the memory bounds for a given array/pointer storage\
9029 in the bound table.",
9030 &mpx_show_cmdlist);
9031
9032 /* Add "bound" command for the set mpx commands list. */
9033
9034 add_cmd ("bound", no_class, i386_mpx_set_bounds,
9035 "Set the memory bounds for a given array/pointer storage\
9036 in the bound table.",
9037 &mpx_set_cmdlist);
9038
9039 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
9040 i386_coff_osabi_sniffer);
9041
9042 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
9043 i386_svr4_init_abi);
9044 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_GO32,
9045 i386_go32_init_abi);
9046
9047 /* Initialize the i386-specific register groups. */
9048 i386_init_reggroups ();
9049
9050 /* Initialize the standard target descriptions. */
9051 initialize_tdesc_i386 ();
9052 initialize_tdesc_i386_mmx ();
9053 initialize_tdesc_i386_avx ();
9054 initialize_tdesc_i386_mpx ();
9055 initialize_tdesc_i386_avx_mpx ();
9056 initialize_tdesc_i386_avx_avx512 ();
9057 initialize_tdesc_i386_avx_mpx_avx512 ();
9058
9059 /* Tell remote stub that we support XML target description. */
9060 register_remote_support_xml ("i386");
9061 }
This page took 0.231565 seconds and 4 git commands to generate.