gdb/
[deliverable/binutils-gdb.git] / gdb / i386-tdep.c
1 /* Intel 386 target-dependent stuff.
2
3 Copyright (C) 1988-2012 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "opcode/i386.h"
22 #include "arch-utils.h"
23 #include "command.h"
24 #include "dummy-frame.h"
25 #include "dwarf2-frame.h"
26 #include "doublest.h"
27 #include "frame.h"
28 #include "frame-base.h"
29 #include "frame-unwind.h"
30 #include "inferior.h"
31 #include "gdbcmd.h"
32 #include "gdbcore.h"
33 #include "gdbtypes.h"
34 #include "objfiles.h"
35 #include "osabi.h"
36 #include "regcache.h"
37 #include "reggroups.h"
38 #include "regset.h"
39 #include "symfile.h"
40 #include "symtab.h"
41 #include "target.h"
42 #include "value.h"
43 #include "dis-asm.h"
44 #include "disasm.h"
45 #include "remote.h"
46 #include "exceptions.h"
47 #include "gdb_assert.h"
48 #include "gdb_string.h"
49
50 #include "i386-tdep.h"
51 #include "i387-tdep.h"
52 #include "i386-xstate.h"
53
54 #include "record.h"
55 #include <stdint.h>
56
57 #include "features/i386/i386.c"
58 #include "features/i386/i386-avx.c"
59 #include "features/i386/i386-mmx.c"
60
61 #include "ax.h"
62 #include "ax-gdb.h"
63
64 #include "stap-probe.h"
65 #include "user-regs.h"
66 #include "cli/cli-utils.h"
67 #include "expression.h"
68 #include "parser-defs.h"
69 #include <ctype.h>
70
71 /* Register names. */
72
73 static const char *i386_register_names[] =
74 {
75 "eax", "ecx", "edx", "ebx",
76 "esp", "ebp", "esi", "edi",
77 "eip", "eflags", "cs", "ss",
78 "ds", "es", "fs", "gs",
79 "st0", "st1", "st2", "st3",
80 "st4", "st5", "st6", "st7",
81 "fctrl", "fstat", "ftag", "fiseg",
82 "fioff", "foseg", "fooff", "fop",
83 "xmm0", "xmm1", "xmm2", "xmm3",
84 "xmm4", "xmm5", "xmm6", "xmm7",
85 "mxcsr"
86 };
87
88 static const char *i386_ymm_names[] =
89 {
90 "ymm0", "ymm1", "ymm2", "ymm3",
91 "ymm4", "ymm5", "ymm6", "ymm7",
92 };
93
94 static const char *i386_ymmh_names[] =
95 {
96 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
97 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
98 };
99
100 /* Register names for MMX pseudo-registers. */
101
102 static const char *i386_mmx_names[] =
103 {
104 "mm0", "mm1", "mm2", "mm3",
105 "mm4", "mm5", "mm6", "mm7"
106 };
107
108 /* Register names for byte pseudo-registers. */
109
110 static const char *i386_byte_names[] =
111 {
112 "al", "cl", "dl", "bl",
113 "ah", "ch", "dh", "bh"
114 };
115
116 /* Register names for word pseudo-registers. */
117
118 static const char *i386_word_names[] =
119 {
120 "ax", "cx", "dx", "bx",
121 "", "bp", "si", "di"
122 };
123
124 /* MMX register? */
125
126 static int
127 i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
128 {
129 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
130 int mm0_regnum = tdep->mm0_regnum;
131
132 if (mm0_regnum < 0)
133 return 0;
134
135 regnum -= mm0_regnum;
136 return regnum >= 0 && regnum < tdep->num_mmx_regs;
137 }
138
139 /* Byte register? */
140
141 int
142 i386_byte_regnum_p (struct gdbarch *gdbarch, int regnum)
143 {
144 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
145
146 regnum -= tdep->al_regnum;
147 return regnum >= 0 && regnum < tdep->num_byte_regs;
148 }
149
150 /* Word register? */
151
152 int
153 i386_word_regnum_p (struct gdbarch *gdbarch, int regnum)
154 {
155 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
156
157 regnum -= tdep->ax_regnum;
158 return regnum >= 0 && regnum < tdep->num_word_regs;
159 }
160
161 /* Dword register? */
162
163 int
164 i386_dword_regnum_p (struct gdbarch *gdbarch, int regnum)
165 {
166 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
167 int eax_regnum = tdep->eax_regnum;
168
169 if (eax_regnum < 0)
170 return 0;
171
172 regnum -= eax_regnum;
173 return regnum >= 0 && regnum < tdep->num_dword_regs;
174 }
175
176 static int
177 i386_ymmh_regnum_p (struct gdbarch *gdbarch, int regnum)
178 {
179 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
180 int ymm0h_regnum = tdep->ymm0h_regnum;
181
182 if (ymm0h_regnum < 0)
183 return 0;
184
185 regnum -= ymm0h_regnum;
186 return regnum >= 0 && regnum < tdep->num_ymm_regs;
187 }
188
189 /* AVX register? */
190
191 int
192 i386_ymm_regnum_p (struct gdbarch *gdbarch, int regnum)
193 {
194 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
195 int ymm0_regnum = tdep->ymm0_regnum;
196
197 if (ymm0_regnum < 0)
198 return 0;
199
200 regnum -= ymm0_regnum;
201 return regnum >= 0 && regnum < tdep->num_ymm_regs;
202 }
203
204 /* SSE register? */
205
206 int
207 i386_xmm_regnum_p (struct gdbarch *gdbarch, int regnum)
208 {
209 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
210 int num_xmm_regs = I387_NUM_XMM_REGS (tdep);
211
212 if (num_xmm_regs == 0)
213 return 0;
214
215 regnum -= I387_XMM0_REGNUM (tdep);
216 return regnum >= 0 && regnum < num_xmm_regs;
217 }
218
219 static int
220 i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
221 {
222 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
223
224 if (I387_NUM_XMM_REGS (tdep) == 0)
225 return 0;
226
227 return (regnum == I387_MXCSR_REGNUM (tdep));
228 }
229
230 /* FP register? */
231
232 int
233 i386_fp_regnum_p (struct gdbarch *gdbarch, int regnum)
234 {
235 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
236
237 if (I387_ST0_REGNUM (tdep) < 0)
238 return 0;
239
240 return (I387_ST0_REGNUM (tdep) <= regnum
241 && regnum < I387_FCTRL_REGNUM (tdep));
242 }
243
244 int
245 i386_fpc_regnum_p (struct gdbarch *gdbarch, int regnum)
246 {
247 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
248
249 if (I387_ST0_REGNUM (tdep) < 0)
250 return 0;
251
252 return (I387_FCTRL_REGNUM (tdep) <= regnum
253 && regnum < I387_XMM0_REGNUM (tdep));
254 }
255
256 /* Return the name of register REGNUM, or the empty string if it is
257 an anonymous register. */
258
259 static const char *
260 i386_register_name (struct gdbarch *gdbarch, int regnum)
261 {
262 /* Hide the upper YMM registers. */
263 if (i386_ymmh_regnum_p (gdbarch, regnum))
264 return "";
265
266 return tdesc_register_name (gdbarch, regnum);
267 }
268
269 /* Return the name of register REGNUM. */
270
271 const char *
272 i386_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
273 {
274 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
275 if (i386_mmx_regnum_p (gdbarch, regnum))
276 return i386_mmx_names[regnum - I387_MM0_REGNUM (tdep)];
277 else if (i386_ymm_regnum_p (gdbarch, regnum))
278 return i386_ymm_names[regnum - tdep->ymm0_regnum];
279 else if (i386_byte_regnum_p (gdbarch, regnum))
280 return i386_byte_names[regnum - tdep->al_regnum];
281 else if (i386_word_regnum_p (gdbarch, regnum))
282 return i386_word_names[regnum - tdep->ax_regnum];
283
284 internal_error (__FILE__, __LINE__, _("invalid regnum"));
285 }
286
287 /* Convert a dbx register number REG to the appropriate register
288 number used by GDB. */
289
290 static int
291 i386_dbx_reg_to_regnum (struct gdbarch *gdbarch, int reg)
292 {
293 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
294
295 /* This implements what GCC calls the "default" register map
296 (dbx_register_map[]). */
297
298 if (reg >= 0 && reg <= 7)
299 {
300 /* General-purpose registers. The debug info calls %ebp
301 register 4, and %esp register 5. */
302 if (reg == 4)
303 return 5;
304 else if (reg == 5)
305 return 4;
306 else return reg;
307 }
308 else if (reg >= 12 && reg <= 19)
309 {
310 /* Floating-point registers. */
311 return reg - 12 + I387_ST0_REGNUM (tdep);
312 }
313 else if (reg >= 21 && reg <= 28)
314 {
315 /* SSE registers. */
316 int ymm0_regnum = tdep->ymm0_regnum;
317
318 if (ymm0_regnum >= 0
319 && i386_xmm_regnum_p (gdbarch, reg))
320 return reg - 21 + ymm0_regnum;
321 else
322 return reg - 21 + I387_XMM0_REGNUM (tdep);
323 }
324 else if (reg >= 29 && reg <= 36)
325 {
326 /* MMX registers. */
327 return reg - 29 + I387_MM0_REGNUM (tdep);
328 }
329
330 /* This will hopefully provoke a warning. */
331 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
332 }
333
334 /* Convert SVR4 register number REG to the appropriate register number
335 used by GDB. */
336
337 static int
338 i386_svr4_reg_to_regnum (struct gdbarch *gdbarch, int reg)
339 {
340 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
341
342 /* This implements the GCC register map that tries to be compatible
343 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
344
345 /* The SVR4 register numbering includes %eip and %eflags, and
346 numbers the floating point registers differently. */
347 if (reg >= 0 && reg <= 9)
348 {
349 /* General-purpose registers. */
350 return reg;
351 }
352 else if (reg >= 11 && reg <= 18)
353 {
354 /* Floating-point registers. */
355 return reg - 11 + I387_ST0_REGNUM (tdep);
356 }
357 else if (reg >= 21 && reg <= 36)
358 {
359 /* The SSE and MMX registers have the same numbers as with dbx. */
360 return i386_dbx_reg_to_regnum (gdbarch, reg);
361 }
362
363 switch (reg)
364 {
365 case 37: return I387_FCTRL_REGNUM (tdep);
366 case 38: return I387_FSTAT_REGNUM (tdep);
367 case 39: return I387_MXCSR_REGNUM (tdep);
368 case 40: return I386_ES_REGNUM;
369 case 41: return I386_CS_REGNUM;
370 case 42: return I386_SS_REGNUM;
371 case 43: return I386_DS_REGNUM;
372 case 44: return I386_FS_REGNUM;
373 case 45: return I386_GS_REGNUM;
374 }
375
376 /* This will hopefully provoke a warning. */
377 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
378 }
379
380 \f
381
382 /* This is the variable that is set with "set disassembly-flavor", and
383 its legitimate values. */
384 static const char att_flavor[] = "att";
385 static const char intel_flavor[] = "intel";
386 static const char *const valid_flavors[] =
387 {
388 att_flavor,
389 intel_flavor,
390 NULL
391 };
392 static const char *disassembly_flavor = att_flavor;
393 \f
394
395 /* Use the program counter to determine the contents and size of a
396 breakpoint instruction. Return a pointer to a string of bytes that
397 encode a breakpoint instruction, store the length of the string in
398 *LEN and optionally adjust *PC to point to the correct memory
399 location for inserting the breakpoint.
400
401 On the i386 we have a single breakpoint that fits in a single byte
402 and can be inserted anywhere.
403
404 This function is 64-bit safe. */
405
406 static const gdb_byte *
407 i386_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
408 {
409 static gdb_byte break_insn[] = { 0xcc }; /* int 3 */
410
411 *len = sizeof (break_insn);
412 return break_insn;
413 }
414 \f
415 /* Displaced instruction handling. */
416
417 /* Skip the legacy instruction prefixes in INSN.
418 Not all prefixes are valid for any particular insn
419 but we needn't care, the insn will fault if it's invalid.
420 The result is a pointer to the first opcode byte,
421 or NULL if we run off the end of the buffer. */
422
423 static gdb_byte *
424 i386_skip_prefixes (gdb_byte *insn, size_t max_len)
425 {
426 gdb_byte *end = insn + max_len;
427
428 while (insn < end)
429 {
430 switch (*insn)
431 {
432 case DATA_PREFIX_OPCODE:
433 case ADDR_PREFIX_OPCODE:
434 case CS_PREFIX_OPCODE:
435 case DS_PREFIX_OPCODE:
436 case ES_PREFIX_OPCODE:
437 case FS_PREFIX_OPCODE:
438 case GS_PREFIX_OPCODE:
439 case SS_PREFIX_OPCODE:
440 case LOCK_PREFIX_OPCODE:
441 case REPE_PREFIX_OPCODE:
442 case REPNE_PREFIX_OPCODE:
443 ++insn;
444 continue;
445 default:
446 return insn;
447 }
448 }
449
450 return NULL;
451 }
452
453 static int
454 i386_absolute_jmp_p (const gdb_byte *insn)
455 {
456 /* jmp far (absolute address in operand). */
457 if (insn[0] == 0xea)
458 return 1;
459
460 if (insn[0] == 0xff)
461 {
462 /* jump near, absolute indirect (/4). */
463 if ((insn[1] & 0x38) == 0x20)
464 return 1;
465
466 /* jump far, absolute indirect (/5). */
467 if ((insn[1] & 0x38) == 0x28)
468 return 1;
469 }
470
471 return 0;
472 }
473
474 static int
475 i386_absolute_call_p (const gdb_byte *insn)
476 {
477 /* call far, absolute. */
478 if (insn[0] == 0x9a)
479 return 1;
480
481 if (insn[0] == 0xff)
482 {
483 /* Call near, absolute indirect (/2). */
484 if ((insn[1] & 0x38) == 0x10)
485 return 1;
486
487 /* Call far, absolute indirect (/3). */
488 if ((insn[1] & 0x38) == 0x18)
489 return 1;
490 }
491
492 return 0;
493 }
494
495 static int
496 i386_ret_p (const gdb_byte *insn)
497 {
498 switch (insn[0])
499 {
500 case 0xc2: /* ret near, pop N bytes. */
501 case 0xc3: /* ret near */
502 case 0xca: /* ret far, pop N bytes. */
503 case 0xcb: /* ret far */
504 case 0xcf: /* iret */
505 return 1;
506
507 default:
508 return 0;
509 }
510 }
511
512 static int
513 i386_call_p (const gdb_byte *insn)
514 {
515 if (i386_absolute_call_p (insn))
516 return 1;
517
518 /* call near, relative. */
519 if (insn[0] == 0xe8)
520 return 1;
521
522 return 0;
523 }
524
525 /* Return non-zero if INSN is a system call, and set *LENGTHP to its
526 length in bytes. Otherwise, return zero. */
527
528 static int
529 i386_syscall_p (const gdb_byte *insn, int *lengthp)
530 {
531 /* Is it 'int $0x80'? */
532 if ((insn[0] == 0xcd && insn[1] == 0x80)
533 /* Or is it 'sysenter'? */
534 || (insn[0] == 0x0f && insn[1] == 0x34)
535 /* Or is it 'syscall'? */
536 || (insn[0] == 0x0f && insn[1] == 0x05))
537 {
538 *lengthp = 2;
539 return 1;
540 }
541
542 return 0;
543 }
544
545 /* Some kernels may run one past a syscall insn, so we have to cope.
546 Otherwise this is just simple_displaced_step_copy_insn. */
547
548 struct displaced_step_closure *
549 i386_displaced_step_copy_insn (struct gdbarch *gdbarch,
550 CORE_ADDR from, CORE_ADDR to,
551 struct regcache *regs)
552 {
553 size_t len = gdbarch_max_insn_length (gdbarch);
554 gdb_byte *buf = xmalloc (len);
555
556 read_memory (from, buf, len);
557
558 /* GDB may get control back after the insn after the syscall.
559 Presumably this is a kernel bug.
560 If this is a syscall, make sure there's a nop afterwards. */
561 {
562 int syscall_length;
563 gdb_byte *insn;
564
565 insn = i386_skip_prefixes (buf, len);
566 if (insn != NULL && i386_syscall_p (insn, &syscall_length))
567 insn[syscall_length] = NOP_OPCODE;
568 }
569
570 write_memory (to, buf, len);
571
572 if (debug_displaced)
573 {
574 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
575 paddress (gdbarch, from), paddress (gdbarch, to));
576 displaced_step_dump_bytes (gdb_stdlog, buf, len);
577 }
578
579 return (struct displaced_step_closure *) buf;
580 }
581
582 /* Fix up the state of registers and memory after having single-stepped
583 a displaced instruction. */
584
585 void
586 i386_displaced_step_fixup (struct gdbarch *gdbarch,
587 struct displaced_step_closure *closure,
588 CORE_ADDR from, CORE_ADDR to,
589 struct regcache *regs)
590 {
591 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
592
593 /* The offset we applied to the instruction's address.
594 This could well be negative (when viewed as a signed 32-bit
595 value), but ULONGEST won't reflect that, so take care when
596 applying it. */
597 ULONGEST insn_offset = to - from;
598
599 /* Since we use simple_displaced_step_copy_insn, our closure is a
600 copy of the instruction. */
601 gdb_byte *insn = (gdb_byte *) closure;
602 /* The start of the insn, needed in case we see some prefixes. */
603 gdb_byte *insn_start = insn;
604
605 if (debug_displaced)
606 fprintf_unfiltered (gdb_stdlog,
607 "displaced: fixup (%s, %s), "
608 "insn = 0x%02x 0x%02x ...\n",
609 paddress (gdbarch, from), paddress (gdbarch, to),
610 insn[0], insn[1]);
611
612 /* The list of issues to contend with here is taken from
613 resume_execution in arch/i386/kernel/kprobes.c, Linux 2.6.20.
614 Yay for Free Software! */
615
616 /* Relocate the %eip, if necessary. */
617
618 /* The instruction recognizers we use assume any leading prefixes
619 have been skipped. */
620 {
621 /* This is the size of the buffer in closure. */
622 size_t max_insn_len = gdbarch_max_insn_length (gdbarch);
623 gdb_byte *opcode = i386_skip_prefixes (insn, max_insn_len);
624 /* If there are too many prefixes, just ignore the insn.
625 It will fault when run. */
626 if (opcode != NULL)
627 insn = opcode;
628 }
629
630 /* Except in the case of absolute or indirect jump or call
631 instructions, or a return instruction, the new eip is relative to
632 the displaced instruction; make it relative. Well, signal
633 handler returns don't need relocation either, but we use the
634 value of %eip to recognize those; see below. */
635 if (! i386_absolute_jmp_p (insn)
636 && ! i386_absolute_call_p (insn)
637 && ! i386_ret_p (insn))
638 {
639 ULONGEST orig_eip;
640 int insn_len;
641
642 regcache_cooked_read_unsigned (regs, I386_EIP_REGNUM, &orig_eip);
643
644 /* A signal trampoline system call changes the %eip, resuming
645 execution of the main program after the signal handler has
646 returned. That makes them like 'return' instructions; we
647 shouldn't relocate %eip.
648
649 But most system calls don't, and we do need to relocate %eip.
650
651 Our heuristic for distinguishing these cases: if stepping
652 over the system call instruction left control directly after
653 the instruction, the we relocate --- control almost certainly
654 doesn't belong in the displaced copy. Otherwise, we assume
655 the instruction has put control where it belongs, and leave
656 it unrelocated. Goodness help us if there are PC-relative
657 system calls. */
658 if (i386_syscall_p (insn, &insn_len)
659 && orig_eip != to + (insn - insn_start) + insn_len
660 /* GDB can get control back after the insn after the syscall.
661 Presumably this is a kernel bug.
662 i386_displaced_step_copy_insn ensures its a nop,
663 we add one to the length for it. */
664 && orig_eip != to + (insn - insn_start) + insn_len + 1)
665 {
666 if (debug_displaced)
667 fprintf_unfiltered (gdb_stdlog,
668 "displaced: syscall changed %%eip; "
669 "not relocating\n");
670 }
671 else
672 {
673 ULONGEST eip = (orig_eip - insn_offset) & 0xffffffffUL;
674
675 /* If we just stepped over a breakpoint insn, we don't backup
676 the pc on purpose; this is to match behaviour without
677 stepping. */
678
679 regcache_cooked_write_unsigned (regs, I386_EIP_REGNUM, eip);
680
681 if (debug_displaced)
682 fprintf_unfiltered (gdb_stdlog,
683 "displaced: "
684 "relocated %%eip from %s to %s\n",
685 paddress (gdbarch, orig_eip),
686 paddress (gdbarch, eip));
687 }
688 }
689
690 /* If the instruction was PUSHFL, then the TF bit will be set in the
691 pushed value, and should be cleared. We'll leave this for later,
692 since GDB already messes up the TF flag when stepping over a
693 pushfl. */
694
695 /* If the instruction was a call, the return address now atop the
696 stack is the address following the copied instruction. We need
697 to make it the address following the original instruction. */
698 if (i386_call_p (insn))
699 {
700 ULONGEST esp;
701 ULONGEST retaddr;
702 const ULONGEST retaddr_len = 4;
703
704 regcache_cooked_read_unsigned (regs, I386_ESP_REGNUM, &esp);
705 retaddr = read_memory_unsigned_integer (esp, retaddr_len, byte_order);
706 retaddr = (retaddr - insn_offset) & 0xffffffffUL;
707 write_memory_unsigned_integer (esp, retaddr_len, byte_order, retaddr);
708
709 if (debug_displaced)
710 fprintf_unfiltered (gdb_stdlog,
711 "displaced: relocated return addr at %s to %s\n",
712 paddress (gdbarch, esp),
713 paddress (gdbarch, retaddr));
714 }
715 }
716
717 static void
718 append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
719 {
720 target_write_memory (*to, buf, len);
721 *to += len;
722 }
723
724 static void
725 i386_relocate_instruction (struct gdbarch *gdbarch,
726 CORE_ADDR *to, CORE_ADDR oldloc)
727 {
728 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
729 gdb_byte buf[I386_MAX_INSN_LEN];
730 int offset = 0, rel32, newrel;
731 int insn_length;
732 gdb_byte *insn = buf;
733
734 read_memory (oldloc, buf, I386_MAX_INSN_LEN);
735
736 insn_length = gdb_buffered_insn_length (gdbarch, insn,
737 I386_MAX_INSN_LEN, oldloc);
738
739 /* Get past the prefixes. */
740 insn = i386_skip_prefixes (insn, I386_MAX_INSN_LEN);
741
742 /* Adjust calls with 32-bit relative addresses as push/jump, with
743 the address pushed being the location where the original call in
744 the user program would return to. */
745 if (insn[0] == 0xe8)
746 {
747 gdb_byte push_buf[16];
748 unsigned int ret_addr;
749
750 /* Where "ret" in the original code will return to. */
751 ret_addr = oldloc + insn_length;
752 push_buf[0] = 0x68; /* pushq $... */
753 store_unsigned_integer (&push_buf[1], 4, byte_order, ret_addr);
754 /* Push the push. */
755 append_insns (to, 5, push_buf);
756
757 /* Convert the relative call to a relative jump. */
758 insn[0] = 0xe9;
759
760 /* Adjust the destination offset. */
761 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
762 newrel = (oldloc - *to) + rel32;
763 store_signed_integer (insn + 1, 4, byte_order, newrel);
764
765 if (debug_displaced)
766 fprintf_unfiltered (gdb_stdlog,
767 "Adjusted insn rel32=%s at %s to"
768 " rel32=%s at %s\n",
769 hex_string (rel32), paddress (gdbarch, oldloc),
770 hex_string (newrel), paddress (gdbarch, *to));
771
772 /* Write the adjusted jump into its displaced location. */
773 append_insns (to, 5, insn);
774 return;
775 }
776
777 /* Adjust jumps with 32-bit relative addresses. Calls are already
778 handled above. */
779 if (insn[0] == 0xe9)
780 offset = 1;
781 /* Adjust conditional jumps. */
782 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
783 offset = 2;
784
785 if (offset)
786 {
787 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
788 newrel = (oldloc - *to) + rel32;
789 store_signed_integer (insn + offset, 4, byte_order, newrel);
790 if (debug_displaced)
791 fprintf_unfiltered (gdb_stdlog,
792 "Adjusted insn rel32=%s at %s to"
793 " rel32=%s at %s\n",
794 hex_string (rel32), paddress (gdbarch, oldloc),
795 hex_string (newrel), paddress (gdbarch, *to));
796 }
797
798 /* Write the adjusted instructions into their displaced
799 location. */
800 append_insns (to, insn_length, buf);
801 }
802
803 \f
804 #ifdef I386_REGNO_TO_SYMMETRY
805 #error "The Sequent Symmetry is no longer supported."
806 #endif
807
808 /* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
809 and %esp "belong" to the calling function. Therefore these
810 registers should be saved if they're going to be modified. */
811
812 /* The maximum number of saved registers. This should include all
813 registers mentioned above, and %eip. */
814 #define I386_NUM_SAVED_REGS I386_NUM_GREGS
815
816 struct i386_frame_cache
817 {
818 /* Base address. */
819 CORE_ADDR base;
820 int base_p;
821 LONGEST sp_offset;
822 CORE_ADDR pc;
823
824 /* Saved registers. */
825 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
826 CORE_ADDR saved_sp;
827 int saved_sp_reg;
828 int pc_in_eax;
829
830 /* Stack space reserved for local variables. */
831 long locals;
832 };
833
834 /* Allocate and initialize a frame cache. */
835
836 static struct i386_frame_cache *
837 i386_alloc_frame_cache (void)
838 {
839 struct i386_frame_cache *cache;
840 int i;
841
842 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
843
844 /* Base address. */
845 cache->base_p = 0;
846 cache->base = 0;
847 cache->sp_offset = -4;
848 cache->pc = 0;
849
850 /* Saved registers. We initialize these to -1 since zero is a valid
851 offset (that's where %ebp is supposed to be stored). */
852 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
853 cache->saved_regs[i] = -1;
854 cache->saved_sp = 0;
855 cache->saved_sp_reg = -1;
856 cache->pc_in_eax = 0;
857
858 /* Frameless until proven otherwise. */
859 cache->locals = -1;
860
861 return cache;
862 }
863
864 /* If the instruction at PC is a jump, return the address of its
865 target. Otherwise, return PC. */
866
867 static CORE_ADDR
868 i386_follow_jump (struct gdbarch *gdbarch, CORE_ADDR pc)
869 {
870 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
871 gdb_byte op;
872 long delta = 0;
873 int data16 = 0;
874
875 if (target_read_memory (pc, &op, 1))
876 return pc;
877
878 if (op == 0x66)
879 {
880 data16 = 1;
881 op = read_memory_unsigned_integer (pc + 1, 1, byte_order);
882 }
883
884 switch (op)
885 {
886 case 0xe9:
887 /* Relative jump: if data16 == 0, disp32, else disp16. */
888 if (data16)
889 {
890 delta = read_memory_integer (pc + 2, 2, byte_order);
891
892 /* Include the size of the jmp instruction (including the
893 0x66 prefix). */
894 delta += 4;
895 }
896 else
897 {
898 delta = read_memory_integer (pc + 1, 4, byte_order);
899
900 /* Include the size of the jmp instruction. */
901 delta += 5;
902 }
903 break;
904 case 0xeb:
905 /* Relative jump, disp8 (ignore data16). */
906 delta = read_memory_integer (pc + data16 + 1, 1, byte_order);
907
908 delta += data16 + 2;
909 break;
910 }
911
912 return pc + delta;
913 }
914
915 /* Check whether PC points at a prologue for a function returning a
916 structure or union. If so, it updates CACHE and returns the
917 address of the first instruction after the code sequence that
918 removes the "hidden" argument from the stack or CURRENT_PC,
919 whichever is smaller. Otherwise, return PC. */
920
921 static CORE_ADDR
922 i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
923 struct i386_frame_cache *cache)
924 {
925 /* Functions that return a structure or union start with:
926
927 popl %eax 0x58
928 xchgl %eax, (%esp) 0x87 0x04 0x24
929 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
930
931 (the System V compiler puts out the second `xchg' instruction,
932 and the assembler doesn't try to optimize it, so the 'sib' form
933 gets generated). This sequence is used to get the address of the
934 return buffer for a function that returns a structure. */
935 static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
936 static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
937 gdb_byte buf[4];
938 gdb_byte op;
939
940 if (current_pc <= pc)
941 return pc;
942
943 if (target_read_memory (pc, &op, 1))
944 return pc;
945
946 if (op != 0x58) /* popl %eax */
947 return pc;
948
949 if (target_read_memory (pc + 1, buf, 4))
950 return pc;
951
952 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
953 return pc;
954
955 if (current_pc == pc)
956 {
957 cache->sp_offset += 4;
958 return current_pc;
959 }
960
961 if (current_pc == pc + 1)
962 {
963 cache->pc_in_eax = 1;
964 return current_pc;
965 }
966
967 if (buf[1] == proto1[1])
968 return pc + 4;
969 else
970 return pc + 5;
971 }
972
973 static CORE_ADDR
974 i386_skip_probe (CORE_ADDR pc)
975 {
976 /* A function may start with
977
978 pushl constant
979 call _probe
980 addl $4, %esp
981
982 followed by
983
984 pushl %ebp
985
986 etc. */
987 gdb_byte buf[8];
988 gdb_byte op;
989
990 if (target_read_memory (pc, &op, 1))
991 return pc;
992
993 if (op == 0x68 || op == 0x6a)
994 {
995 int delta;
996
997 /* Skip past the `pushl' instruction; it has either a one-byte or a
998 four-byte operand, depending on the opcode. */
999 if (op == 0x68)
1000 delta = 5;
1001 else
1002 delta = 2;
1003
1004 /* Read the following 8 bytes, which should be `call _probe' (6
1005 bytes) followed by `addl $4,%esp' (2 bytes). */
1006 read_memory (pc + delta, buf, sizeof (buf));
1007 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
1008 pc += delta + sizeof (buf);
1009 }
1010
1011 return pc;
1012 }
1013
1014 /* GCC 4.1 and later, can put code in the prologue to realign the
1015 stack pointer. Check whether PC points to such code, and update
1016 CACHE accordingly. Return the first instruction after the code
1017 sequence or CURRENT_PC, whichever is smaller. If we don't
1018 recognize the code, return PC. */
1019
1020 static CORE_ADDR
1021 i386_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1022 struct i386_frame_cache *cache)
1023 {
1024 /* There are 2 code sequences to re-align stack before the frame
1025 gets set up:
1026
1027 1. Use a caller-saved saved register:
1028
1029 leal 4(%esp), %reg
1030 andl $-XXX, %esp
1031 pushl -4(%reg)
1032
1033 2. Use a callee-saved saved register:
1034
1035 pushl %reg
1036 leal 8(%esp), %reg
1037 andl $-XXX, %esp
1038 pushl -4(%reg)
1039
1040 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
1041
1042 0x83 0xe4 0xf0 andl $-16, %esp
1043 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
1044 */
1045
1046 gdb_byte buf[14];
1047 int reg;
1048 int offset, offset_and;
1049 static int regnums[8] = {
1050 I386_EAX_REGNUM, /* %eax */
1051 I386_ECX_REGNUM, /* %ecx */
1052 I386_EDX_REGNUM, /* %edx */
1053 I386_EBX_REGNUM, /* %ebx */
1054 I386_ESP_REGNUM, /* %esp */
1055 I386_EBP_REGNUM, /* %ebp */
1056 I386_ESI_REGNUM, /* %esi */
1057 I386_EDI_REGNUM /* %edi */
1058 };
1059
1060 if (target_read_memory (pc, buf, sizeof buf))
1061 return pc;
1062
1063 /* Check caller-saved saved register. The first instruction has
1064 to be "leal 4(%esp), %reg". */
1065 if (buf[0] == 0x8d && buf[2] == 0x24 && buf[3] == 0x4)
1066 {
1067 /* MOD must be binary 10 and R/M must be binary 100. */
1068 if ((buf[1] & 0xc7) != 0x44)
1069 return pc;
1070
1071 /* REG has register number. */
1072 reg = (buf[1] >> 3) & 7;
1073 offset = 4;
1074 }
1075 else
1076 {
1077 /* Check callee-saved saved register. The first instruction
1078 has to be "pushl %reg". */
1079 if ((buf[0] & 0xf8) != 0x50)
1080 return pc;
1081
1082 /* Get register. */
1083 reg = buf[0] & 0x7;
1084
1085 /* The next instruction has to be "leal 8(%esp), %reg". */
1086 if (buf[1] != 0x8d || buf[3] != 0x24 || buf[4] != 0x8)
1087 return pc;
1088
1089 /* MOD must be binary 10 and R/M must be binary 100. */
1090 if ((buf[2] & 0xc7) != 0x44)
1091 return pc;
1092
1093 /* REG has register number. Registers in pushl and leal have to
1094 be the same. */
1095 if (reg != ((buf[2] >> 3) & 7))
1096 return pc;
1097
1098 offset = 5;
1099 }
1100
1101 /* Rigister can't be %esp nor %ebp. */
1102 if (reg == 4 || reg == 5)
1103 return pc;
1104
1105 /* The next instruction has to be "andl $-XXX, %esp". */
1106 if (buf[offset + 1] != 0xe4
1107 || (buf[offset] != 0x81 && buf[offset] != 0x83))
1108 return pc;
1109
1110 offset_and = offset;
1111 offset += buf[offset] == 0x81 ? 6 : 3;
1112
1113 /* The next instruction has to be "pushl -4(%reg)". 8bit -4 is
1114 0xfc. REG must be binary 110 and MOD must be binary 01. */
1115 if (buf[offset] != 0xff
1116 || buf[offset + 2] != 0xfc
1117 || (buf[offset + 1] & 0xf8) != 0x70)
1118 return pc;
1119
1120 /* R/M has register. Registers in leal and pushl have to be the
1121 same. */
1122 if (reg != (buf[offset + 1] & 7))
1123 return pc;
1124
1125 if (current_pc > pc + offset_and)
1126 cache->saved_sp_reg = regnums[reg];
1127
1128 return min (pc + offset + 3, current_pc);
1129 }
1130
1131 /* Maximum instruction length we need to handle. */
1132 #define I386_MAX_MATCHED_INSN_LEN 6
1133
1134 /* Instruction description. */
1135 struct i386_insn
1136 {
1137 size_t len;
1138 gdb_byte insn[I386_MAX_MATCHED_INSN_LEN];
1139 gdb_byte mask[I386_MAX_MATCHED_INSN_LEN];
1140 };
1141
1142 /* Return whether instruction at PC matches PATTERN. */
1143
1144 static int
1145 i386_match_pattern (CORE_ADDR pc, struct i386_insn pattern)
1146 {
1147 gdb_byte op;
1148
1149 if (target_read_memory (pc, &op, 1))
1150 return 0;
1151
1152 if ((op & pattern.mask[0]) == pattern.insn[0])
1153 {
1154 gdb_byte buf[I386_MAX_MATCHED_INSN_LEN - 1];
1155 int insn_matched = 1;
1156 size_t i;
1157
1158 gdb_assert (pattern.len > 1);
1159 gdb_assert (pattern.len <= I386_MAX_MATCHED_INSN_LEN);
1160
1161 if (target_read_memory (pc + 1, buf, pattern.len - 1))
1162 return 0;
1163
1164 for (i = 1; i < pattern.len; i++)
1165 {
1166 if ((buf[i - 1] & pattern.mask[i]) != pattern.insn[i])
1167 insn_matched = 0;
1168 }
1169 return insn_matched;
1170 }
1171 return 0;
1172 }
1173
1174 /* Search for the instruction at PC in the list INSN_PATTERNS. Return
1175 the first instruction description that matches. Otherwise, return
1176 NULL. */
1177
1178 static struct i386_insn *
1179 i386_match_insn (CORE_ADDR pc, struct i386_insn *insn_patterns)
1180 {
1181 struct i386_insn *pattern;
1182
1183 for (pattern = insn_patterns; pattern->len > 0; pattern++)
1184 {
1185 if (i386_match_pattern (pc, *pattern))
1186 return pattern;
1187 }
1188
1189 return NULL;
1190 }
1191
1192 /* Return whether PC points inside a sequence of instructions that
1193 matches INSN_PATTERNS. */
1194
1195 static int
1196 i386_match_insn_block (CORE_ADDR pc, struct i386_insn *insn_patterns)
1197 {
1198 CORE_ADDR current_pc;
1199 int ix, i;
1200 struct i386_insn *insn;
1201
1202 insn = i386_match_insn (pc, insn_patterns);
1203 if (insn == NULL)
1204 return 0;
1205
1206 current_pc = pc;
1207 ix = insn - insn_patterns;
1208 for (i = ix - 1; i >= 0; i--)
1209 {
1210 current_pc -= insn_patterns[i].len;
1211
1212 if (!i386_match_pattern (current_pc, insn_patterns[i]))
1213 return 0;
1214 }
1215
1216 current_pc = pc + insn->len;
1217 for (insn = insn_patterns + ix + 1; insn->len > 0; insn++)
1218 {
1219 if (!i386_match_pattern (current_pc, *insn))
1220 return 0;
1221
1222 current_pc += insn->len;
1223 }
1224
1225 return 1;
1226 }
1227
1228 /* Some special instructions that might be migrated by GCC into the
1229 part of the prologue that sets up the new stack frame. Because the
1230 stack frame hasn't been setup yet, no registers have been saved
1231 yet, and only the scratch registers %eax, %ecx and %edx can be
1232 touched. */
1233
1234 struct i386_insn i386_frame_setup_skip_insns[] =
1235 {
1236 /* Check for `movb imm8, r' and `movl imm32, r'.
1237
1238 ??? Should we handle 16-bit operand-sizes here? */
1239
1240 /* `movb imm8, %al' and `movb imm8, %ah' */
1241 /* `movb imm8, %cl' and `movb imm8, %ch' */
1242 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
1243 /* `movb imm8, %dl' and `movb imm8, %dh' */
1244 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
1245 /* `movl imm32, %eax' and `movl imm32, %ecx' */
1246 { 5, { 0xb8 }, { 0xfe } },
1247 /* `movl imm32, %edx' */
1248 { 5, { 0xba }, { 0xff } },
1249
1250 /* Check for `mov imm32, r32'. Note that there is an alternative
1251 encoding for `mov m32, %eax'.
1252
1253 ??? Should we handle SIB adressing here?
1254 ??? Should we handle 16-bit operand-sizes here? */
1255
1256 /* `movl m32, %eax' */
1257 { 5, { 0xa1 }, { 0xff } },
1258 /* `movl m32, %eax' and `mov; m32, %ecx' */
1259 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
1260 /* `movl m32, %edx' */
1261 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
1262
1263 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
1264 Because of the symmetry, there are actually two ways to encode
1265 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
1266 opcode bytes 0x31 and 0x33 for `xorl'. */
1267
1268 /* `subl %eax, %eax' */
1269 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
1270 /* `subl %ecx, %ecx' */
1271 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
1272 /* `subl %edx, %edx' */
1273 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
1274 /* `xorl %eax, %eax' */
1275 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
1276 /* `xorl %ecx, %ecx' */
1277 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
1278 /* `xorl %edx, %edx' */
1279 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
1280 { 0 }
1281 };
1282
1283
1284 /* Check whether PC points to a no-op instruction. */
1285 static CORE_ADDR
1286 i386_skip_noop (CORE_ADDR pc)
1287 {
1288 gdb_byte op;
1289 int check = 1;
1290
1291 if (target_read_memory (pc, &op, 1))
1292 return pc;
1293
1294 while (check)
1295 {
1296 check = 0;
1297 /* Ignore `nop' instruction. */
1298 if (op == 0x90)
1299 {
1300 pc += 1;
1301 if (target_read_memory (pc, &op, 1))
1302 return pc;
1303 check = 1;
1304 }
1305 /* Ignore no-op instruction `mov %edi, %edi'.
1306 Microsoft system dlls often start with
1307 a `mov %edi,%edi' instruction.
1308 The 5 bytes before the function start are
1309 filled with `nop' instructions.
1310 This pattern can be used for hot-patching:
1311 The `mov %edi, %edi' instruction can be replaced by a
1312 near jump to the location of the 5 `nop' instructions
1313 which can be replaced by a 32-bit jump to anywhere
1314 in the 32-bit address space. */
1315
1316 else if (op == 0x8b)
1317 {
1318 if (target_read_memory (pc + 1, &op, 1))
1319 return pc;
1320
1321 if (op == 0xff)
1322 {
1323 pc += 2;
1324 if (target_read_memory (pc, &op, 1))
1325 return pc;
1326
1327 check = 1;
1328 }
1329 }
1330 }
1331 return pc;
1332 }
1333
1334 /* Check whether PC points at a code that sets up a new stack frame.
1335 If so, it updates CACHE and returns the address of the first
1336 instruction after the sequence that sets up the frame or LIMIT,
1337 whichever is smaller. If we don't recognize the code, return PC. */
1338
1339 static CORE_ADDR
1340 i386_analyze_frame_setup (struct gdbarch *gdbarch,
1341 CORE_ADDR pc, CORE_ADDR limit,
1342 struct i386_frame_cache *cache)
1343 {
1344 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1345 struct i386_insn *insn;
1346 gdb_byte op;
1347 int skip = 0;
1348
1349 if (limit <= pc)
1350 return limit;
1351
1352 if (target_read_memory (pc, &op, 1))
1353 return pc;
1354
1355 if (op == 0x55) /* pushl %ebp */
1356 {
1357 /* Take into account that we've executed the `pushl %ebp' that
1358 starts this instruction sequence. */
1359 cache->saved_regs[I386_EBP_REGNUM] = 0;
1360 cache->sp_offset += 4;
1361 pc++;
1362
1363 /* If that's all, return now. */
1364 if (limit <= pc)
1365 return limit;
1366
1367 /* Check for some special instructions that might be migrated by
1368 GCC into the prologue and skip them. At this point in the
1369 prologue, code should only touch the scratch registers %eax,
1370 %ecx and %edx, so while the number of posibilities is sheer,
1371 it is limited.
1372
1373 Make sure we only skip these instructions if we later see the
1374 `movl %esp, %ebp' that actually sets up the frame. */
1375 while (pc + skip < limit)
1376 {
1377 insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
1378 if (insn == NULL)
1379 break;
1380
1381 skip += insn->len;
1382 }
1383
1384 /* If that's all, return now. */
1385 if (limit <= pc + skip)
1386 return limit;
1387
1388 if (target_read_memory (pc + skip, &op, 1))
1389 return pc + skip;
1390
1391 /* The i386 prologue looks like
1392
1393 push %ebp
1394 mov %esp,%ebp
1395 sub $0x10,%esp
1396
1397 and a different prologue can be generated for atom.
1398
1399 push %ebp
1400 lea (%esp),%ebp
1401 lea -0x10(%esp),%esp
1402
1403 We handle both of them here. */
1404
1405 switch (op)
1406 {
1407 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
1408 case 0x8b:
1409 if (read_memory_unsigned_integer (pc + skip + 1, 1, byte_order)
1410 != 0xec)
1411 return pc;
1412 pc += (skip + 2);
1413 break;
1414 case 0x89:
1415 if (read_memory_unsigned_integer (pc + skip + 1, 1, byte_order)
1416 != 0xe5)
1417 return pc;
1418 pc += (skip + 2);
1419 break;
1420 case 0x8d: /* Check for 'lea (%ebp), %ebp'. */
1421 if (read_memory_unsigned_integer (pc + skip + 1, 2, byte_order)
1422 != 0x242c)
1423 return pc;
1424 pc += (skip + 3);
1425 break;
1426 default:
1427 return pc;
1428 }
1429
1430 /* OK, we actually have a frame. We just don't know how large
1431 it is yet. Set its size to zero. We'll adjust it if
1432 necessary. We also now commit to skipping the special
1433 instructions mentioned before. */
1434 cache->locals = 0;
1435
1436 /* If that's all, return now. */
1437 if (limit <= pc)
1438 return limit;
1439
1440 /* Check for stack adjustment
1441
1442 subl $XXX, %esp
1443 or
1444 lea -XXX(%esp),%esp
1445
1446 NOTE: You can't subtract a 16-bit immediate from a 32-bit
1447 reg, so we don't have to worry about a data16 prefix. */
1448 if (target_read_memory (pc, &op, 1))
1449 return pc;
1450 if (op == 0x83)
1451 {
1452 /* `subl' with 8-bit immediate. */
1453 if (read_memory_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1454 /* Some instruction starting with 0x83 other than `subl'. */
1455 return pc;
1456
1457 /* `subl' with signed 8-bit immediate (though it wouldn't
1458 make sense to be negative). */
1459 cache->locals = read_memory_integer (pc + 2, 1, byte_order);
1460 return pc + 3;
1461 }
1462 else if (op == 0x81)
1463 {
1464 /* Maybe it is `subl' with a 32-bit immediate. */
1465 if (read_memory_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1466 /* Some instruction starting with 0x81 other than `subl'. */
1467 return pc;
1468
1469 /* It is `subl' with a 32-bit immediate. */
1470 cache->locals = read_memory_integer (pc + 2, 4, byte_order);
1471 return pc + 6;
1472 }
1473 else if (op == 0x8d)
1474 {
1475 /* The ModR/M byte is 0x64. */
1476 if (read_memory_unsigned_integer (pc + 1, 1, byte_order) != 0x64)
1477 return pc;
1478 /* 'lea' with 8-bit displacement. */
1479 cache->locals = -1 * read_memory_integer (pc + 3, 1, byte_order);
1480 return pc + 4;
1481 }
1482 else
1483 {
1484 /* Some instruction other than `subl' nor 'lea'. */
1485 return pc;
1486 }
1487 }
1488 else if (op == 0xc8) /* enter */
1489 {
1490 cache->locals = read_memory_unsigned_integer (pc + 1, 2, byte_order);
1491 return pc + 4;
1492 }
1493
1494 return pc;
1495 }
1496
1497 /* Check whether PC points at code that saves registers on the stack.
1498 If so, it updates CACHE and returns the address of the first
1499 instruction after the register saves or CURRENT_PC, whichever is
1500 smaller. Otherwise, return PC. */
1501
1502 static CORE_ADDR
1503 i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
1504 struct i386_frame_cache *cache)
1505 {
1506 CORE_ADDR offset = 0;
1507 gdb_byte op;
1508 int i;
1509
1510 if (cache->locals > 0)
1511 offset -= cache->locals;
1512 for (i = 0; i < 8 && pc < current_pc; i++)
1513 {
1514 if (target_read_memory (pc, &op, 1))
1515 return pc;
1516 if (op < 0x50 || op > 0x57)
1517 break;
1518
1519 offset -= 4;
1520 cache->saved_regs[op - 0x50] = offset;
1521 cache->sp_offset += 4;
1522 pc++;
1523 }
1524
1525 return pc;
1526 }
1527
1528 /* Do a full analysis of the prologue at PC and update CACHE
1529 accordingly. Bail out early if CURRENT_PC is reached. Return the
1530 address where the analysis stopped.
1531
1532 We handle these cases:
1533
1534 The startup sequence can be at the start of the function, or the
1535 function can start with a branch to startup code at the end.
1536
1537 %ebp can be set up with either the 'enter' instruction, or "pushl
1538 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
1539 once used in the System V compiler).
1540
1541 Local space is allocated just below the saved %ebp by either the
1542 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
1543 16-bit unsigned argument for space to allocate, and the 'addl'
1544 instruction could have either a signed byte, or 32-bit immediate.
1545
1546 Next, the registers used by this function are pushed. With the
1547 System V compiler they will always be in the order: %edi, %esi,
1548 %ebx (and sometimes a harmless bug causes it to also save but not
1549 restore %eax); however, the code below is willing to see the pushes
1550 in any order, and will handle up to 8 of them.
1551
1552 If the setup sequence is at the end of the function, then the next
1553 instruction will be a branch back to the start. */
1554
1555 static CORE_ADDR
1556 i386_analyze_prologue (struct gdbarch *gdbarch,
1557 CORE_ADDR pc, CORE_ADDR current_pc,
1558 struct i386_frame_cache *cache)
1559 {
1560 pc = i386_skip_noop (pc);
1561 pc = i386_follow_jump (gdbarch, pc);
1562 pc = i386_analyze_struct_return (pc, current_pc, cache);
1563 pc = i386_skip_probe (pc);
1564 pc = i386_analyze_stack_align (pc, current_pc, cache);
1565 pc = i386_analyze_frame_setup (gdbarch, pc, current_pc, cache);
1566 return i386_analyze_register_saves (pc, current_pc, cache);
1567 }
1568
1569 /* Return PC of first real instruction. */
1570
1571 static CORE_ADDR
1572 i386_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
1573 {
1574 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1575
1576 static gdb_byte pic_pat[6] =
1577 {
1578 0xe8, 0, 0, 0, 0, /* call 0x0 */
1579 0x5b, /* popl %ebx */
1580 };
1581 struct i386_frame_cache cache;
1582 CORE_ADDR pc;
1583 gdb_byte op;
1584 int i;
1585 CORE_ADDR func_addr;
1586
1587 if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
1588 {
1589 CORE_ADDR post_prologue_pc
1590 = skip_prologue_using_sal (gdbarch, func_addr);
1591 struct symtab *s = find_pc_symtab (func_addr);
1592
1593 /* Clang always emits a line note before the prologue and another
1594 one after. We trust clang to emit usable line notes. */
1595 if (post_prologue_pc
1596 && (s != NULL
1597 && s->producer != NULL
1598 && strncmp (s->producer, "clang ", sizeof ("clang ") - 1) == 0))
1599 return max (start_pc, post_prologue_pc);
1600 }
1601
1602 cache.locals = -1;
1603 pc = i386_analyze_prologue (gdbarch, start_pc, 0xffffffff, &cache);
1604 if (cache.locals < 0)
1605 return start_pc;
1606
1607 /* Found valid frame setup. */
1608
1609 /* The native cc on SVR4 in -K PIC mode inserts the following code
1610 to get the address of the global offset table (GOT) into register
1611 %ebx:
1612
1613 call 0x0
1614 popl %ebx
1615 movl %ebx,x(%ebp) (optional)
1616 addl y,%ebx
1617
1618 This code is with the rest of the prologue (at the end of the
1619 function), so we have to skip it to get to the first real
1620 instruction at the start of the function. */
1621
1622 for (i = 0; i < 6; i++)
1623 {
1624 if (target_read_memory (pc + i, &op, 1))
1625 return pc;
1626
1627 if (pic_pat[i] != op)
1628 break;
1629 }
1630 if (i == 6)
1631 {
1632 int delta = 6;
1633
1634 if (target_read_memory (pc + delta, &op, 1))
1635 return pc;
1636
1637 if (op == 0x89) /* movl %ebx, x(%ebp) */
1638 {
1639 op = read_memory_unsigned_integer (pc + delta + 1, 1, byte_order);
1640
1641 if (op == 0x5d) /* One byte offset from %ebp. */
1642 delta += 3;
1643 else if (op == 0x9d) /* Four byte offset from %ebp. */
1644 delta += 6;
1645 else /* Unexpected instruction. */
1646 delta = 0;
1647
1648 if (target_read_memory (pc + delta, &op, 1))
1649 return pc;
1650 }
1651
1652 /* addl y,%ebx */
1653 if (delta > 0 && op == 0x81
1654 && read_memory_unsigned_integer (pc + delta + 1, 1, byte_order)
1655 == 0xc3)
1656 {
1657 pc += delta + 6;
1658 }
1659 }
1660
1661 /* If the function starts with a branch (to startup code at the end)
1662 the last instruction should bring us back to the first
1663 instruction of the real code. */
1664 if (i386_follow_jump (gdbarch, start_pc) != start_pc)
1665 pc = i386_follow_jump (gdbarch, pc);
1666
1667 return pc;
1668 }
1669
1670 /* Check that the code pointed to by PC corresponds to a call to
1671 __main, skip it if so. Return PC otherwise. */
1672
1673 CORE_ADDR
1674 i386_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1675 {
1676 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1677 gdb_byte op;
1678
1679 if (target_read_memory (pc, &op, 1))
1680 return pc;
1681 if (op == 0xe8)
1682 {
1683 gdb_byte buf[4];
1684
1685 if (target_read_memory (pc + 1, buf, sizeof buf) == 0)
1686 {
1687 /* Make sure address is computed correctly as a 32bit
1688 integer even if CORE_ADDR is 64 bit wide. */
1689 struct minimal_symbol *s;
1690 CORE_ADDR call_dest;
1691
1692 call_dest = pc + 5 + extract_signed_integer (buf, 4, byte_order);
1693 call_dest = call_dest & 0xffffffffU;
1694 s = lookup_minimal_symbol_by_pc (call_dest);
1695 if (s != NULL
1696 && SYMBOL_LINKAGE_NAME (s) != NULL
1697 && strcmp (SYMBOL_LINKAGE_NAME (s), "__main") == 0)
1698 pc += 5;
1699 }
1700 }
1701
1702 return pc;
1703 }
1704
1705 /* This function is 64-bit safe. */
1706
1707 static CORE_ADDR
1708 i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1709 {
1710 gdb_byte buf[8];
1711
1712 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
1713 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
1714 }
1715 \f
1716
1717 /* Normal frames. */
1718
1719 static void
1720 i386_frame_cache_1 (struct frame_info *this_frame,
1721 struct i386_frame_cache *cache)
1722 {
1723 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1724 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1725 gdb_byte buf[4];
1726 int i;
1727
1728 cache->pc = get_frame_func (this_frame);
1729
1730 /* In principle, for normal frames, %ebp holds the frame pointer,
1731 which holds the base address for the current stack frame.
1732 However, for functions that don't need it, the frame pointer is
1733 optional. For these "frameless" functions the frame pointer is
1734 actually the frame pointer of the calling frame. Signal
1735 trampolines are just a special case of a "frameless" function.
1736 They (usually) share their frame pointer with the frame that was
1737 in progress when the signal occurred. */
1738
1739 get_frame_register (this_frame, I386_EBP_REGNUM, buf);
1740 cache->base = extract_unsigned_integer (buf, 4, byte_order);
1741 if (cache->base == 0)
1742 {
1743 cache->base_p = 1;
1744 return;
1745 }
1746
1747 /* For normal frames, %eip is stored at 4(%ebp). */
1748 cache->saved_regs[I386_EIP_REGNUM] = 4;
1749
1750 if (cache->pc != 0)
1751 i386_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
1752 cache);
1753
1754 if (cache->locals < 0)
1755 {
1756 /* We didn't find a valid frame, which means that CACHE->base
1757 currently holds the frame pointer for our calling frame. If
1758 we're at the start of a function, or somewhere half-way its
1759 prologue, the function's frame probably hasn't been fully
1760 setup yet. Try to reconstruct the base address for the stack
1761 frame by looking at the stack pointer. For truly "frameless"
1762 functions this might work too. */
1763
1764 if (cache->saved_sp_reg != -1)
1765 {
1766 /* Saved stack pointer has been saved. */
1767 get_frame_register (this_frame, cache->saved_sp_reg, buf);
1768 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
1769
1770 /* We're halfway aligning the stack. */
1771 cache->base = ((cache->saved_sp - 4) & 0xfffffff0) - 4;
1772 cache->saved_regs[I386_EIP_REGNUM] = cache->saved_sp - 4;
1773
1774 /* This will be added back below. */
1775 cache->saved_regs[I386_EIP_REGNUM] -= cache->base;
1776 }
1777 else if (cache->pc != 0
1778 || target_read_memory (get_frame_pc (this_frame), buf, 1))
1779 {
1780 /* We're in a known function, but did not find a frame
1781 setup. Assume that the function does not use %ebp.
1782 Alternatively, we may have jumped to an invalid
1783 address; in that case there is definitely no new
1784 frame in %ebp. */
1785 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
1786 cache->base = extract_unsigned_integer (buf, 4, byte_order)
1787 + cache->sp_offset;
1788 }
1789 else
1790 /* We're in an unknown function. We could not find the start
1791 of the function to analyze the prologue; our best option is
1792 to assume a typical frame layout with the caller's %ebp
1793 saved. */
1794 cache->saved_regs[I386_EBP_REGNUM] = 0;
1795 }
1796
1797 if (cache->saved_sp_reg != -1)
1798 {
1799 /* Saved stack pointer has been saved (but the SAVED_SP_REG
1800 register may be unavailable). */
1801 if (cache->saved_sp == 0
1802 && deprecated_frame_register_read (this_frame,
1803 cache->saved_sp_reg, buf))
1804 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
1805 }
1806 /* Now that we have the base address for the stack frame we can
1807 calculate the value of %esp in the calling frame. */
1808 else if (cache->saved_sp == 0)
1809 cache->saved_sp = cache->base + 8;
1810
1811 /* Adjust all the saved registers such that they contain addresses
1812 instead of offsets. */
1813 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
1814 if (cache->saved_regs[i] != -1)
1815 cache->saved_regs[i] += cache->base;
1816
1817 cache->base_p = 1;
1818 }
1819
1820 static struct i386_frame_cache *
1821 i386_frame_cache (struct frame_info *this_frame, void **this_cache)
1822 {
1823 volatile struct gdb_exception ex;
1824 struct i386_frame_cache *cache;
1825
1826 if (*this_cache)
1827 return *this_cache;
1828
1829 cache = i386_alloc_frame_cache ();
1830 *this_cache = cache;
1831
1832 TRY_CATCH (ex, RETURN_MASK_ERROR)
1833 {
1834 i386_frame_cache_1 (this_frame, cache);
1835 }
1836 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
1837 throw_exception (ex);
1838
1839 return cache;
1840 }
1841
1842 static void
1843 i386_frame_this_id (struct frame_info *this_frame, void **this_cache,
1844 struct frame_id *this_id)
1845 {
1846 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
1847
1848 /* This marks the outermost frame. */
1849 if (cache->base == 0)
1850 return;
1851
1852 /* See the end of i386_push_dummy_call. */
1853 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
1854 }
1855
1856 static enum unwind_stop_reason
1857 i386_frame_unwind_stop_reason (struct frame_info *this_frame,
1858 void **this_cache)
1859 {
1860 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
1861
1862 if (!cache->base_p)
1863 return UNWIND_UNAVAILABLE;
1864
1865 /* This marks the outermost frame. */
1866 if (cache->base == 0)
1867 return UNWIND_OUTERMOST;
1868
1869 return UNWIND_NO_REASON;
1870 }
1871
1872 static struct value *
1873 i386_frame_prev_register (struct frame_info *this_frame, void **this_cache,
1874 int regnum)
1875 {
1876 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
1877
1878 gdb_assert (regnum >= 0);
1879
1880 /* The System V ABI says that:
1881
1882 "The flags register contains the system flags, such as the
1883 direction flag and the carry flag. The direction flag must be
1884 set to the forward (that is, zero) direction before entry and
1885 upon exit from a function. Other user flags have no specified
1886 role in the standard calling sequence and are not preserved."
1887
1888 To guarantee the "upon exit" part of that statement we fake a
1889 saved flags register that has its direction flag cleared.
1890
1891 Note that GCC doesn't seem to rely on the fact that the direction
1892 flag is cleared after a function return; it always explicitly
1893 clears the flag before operations where it matters.
1894
1895 FIXME: kettenis/20030316: I'm not quite sure whether this is the
1896 right thing to do. The way we fake the flags register here makes
1897 it impossible to change it. */
1898
1899 if (regnum == I386_EFLAGS_REGNUM)
1900 {
1901 ULONGEST val;
1902
1903 val = get_frame_register_unsigned (this_frame, regnum);
1904 val &= ~(1 << 10);
1905 return frame_unwind_got_constant (this_frame, regnum, val);
1906 }
1907
1908 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
1909 return frame_unwind_got_register (this_frame, regnum, I386_EAX_REGNUM);
1910
1911 if (regnum == I386_ESP_REGNUM
1912 && (cache->saved_sp != 0 || cache->saved_sp_reg != -1))
1913 {
1914 /* If the SP has been saved, but we don't know where, then this
1915 means that SAVED_SP_REG register was found unavailable back
1916 when we built the cache. */
1917 if (cache->saved_sp == 0)
1918 return frame_unwind_got_register (this_frame, regnum,
1919 cache->saved_sp_reg);
1920 else
1921 return frame_unwind_got_constant (this_frame, regnum,
1922 cache->saved_sp);
1923 }
1924
1925 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
1926 return frame_unwind_got_memory (this_frame, regnum,
1927 cache->saved_regs[regnum]);
1928
1929 return frame_unwind_got_register (this_frame, regnum, regnum);
1930 }
1931
1932 static const struct frame_unwind i386_frame_unwind =
1933 {
1934 NORMAL_FRAME,
1935 i386_frame_unwind_stop_reason,
1936 i386_frame_this_id,
1937 i386_frame_prev_register,
1938 NULL,
1939 default_frame_sniffer
1940 };
1941
1942 /* Normal frames, but in a function epilogue. */
1943
1944 /* The epilogue is defined here as the 'ret' instruction, which will
1945 follow any instruction such as 'leave' or 'pop %ebp' that destroys
1946 the function's stack frame. */
1947
1948 static int
1949 i386_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
1950 {
1951 gdb_byte insn;
1952 struct symtab *symtab;
1953
1954 symtab = find_pc_symtab (pc);
1955 if (symtab && symtab->epilogue_unwind_valid)
1956 return 0;
1957
1958 if (target_read_memory (pc, &insn, 1))
1959 return 0; /* Can't read memory at pc. */
1960
1961 if (insn != 0xc3) /* 'ret' instruction. */
1962 return 0;
1963
1964 return 1;
1965 }
1966
1967 static int
1968 i386_epilogue_frame_sniffer (const struct frame_unwind *self,
1969 struct frame_info *this_frame,
1970 void **this_prologue_cache)
1971 {
1972 if (frame_relative_level (this_frame) == 0)
1973 return i386_in_function_epilogue_p (get_frame_arch (this_frame),
1974 get_frame_pc (this_frame));
1975 else
1976 return 0;
1977 }
1978
1979 static struct i386_frame_cache *
1980 i386_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
1981 {
1982 volatile struct gdb_exception ex;
1983 struct i386_frame_cache *cache;
1984 CORE_ADDR sp;
1985
1986 if (*this_cache)
1987 return *this_cache;
1988
1989 cache = i386_alloc_frame_cache ();
1990 *this_cache = cache;
1991
1992 TRY_CATCH (ex, RETURN_MASK_ERROR)
1993 {
1994 cache->pc = get_frame_func (this_frame);
1995
1996 /* At this point the stack looks as if we just entered the
1997 function, with the return address at the top of the
1998 stack. */
1999 sp = get_frame_register_unsigned (this_frame, I386_ESP_REGNUM);
2000 cache->base = sp + cache->sp_offset;
2001 cache->saved_sp = cache->base + 8;
2002 cache->saved_regs[I386_EIP_REGNUM] = cache->base + 4;
2003
2004 cache->base_p = 1;
2005 }
2006 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
2007 throw_exception (ex);
2008
2009 return cache;
2010 }
2011
2012 static enum unwind_stop_reason
2013 i386_epilogue_frame_unwind_stop_reason (struct frame_info *this_frame,
2014 void **this_cache)
2015 {
2016 struct i386_frame_cache *cache =
2017 i386_epilogue_frame_cache (this_frame, this_cache);
2018
2019 if (!cache->base_p)
2020 return UNWIND_UNAVAILABLE;
2021
2022 return UNWIND_NO_REASON;
2023 }
2024
2025 static void
2026 i386_epilogue_frame_this_id (struct frame_info *this_frame,
2027 void **this_cache,
2028 struct frame_id *this_id)
2029 {
2030 struct i386_frame_cache *cache =
2031 i386_epilogue_frame_cache (this_frame, this_cache);
2032
2033 if (!cache->base_p)
2034 return;
2035
2036 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2037 }
2038
2039 static struct value *
2040 i386_epilogue_frame_prev_register (struct frame_info *this_frame,
2041 void **this_cache, int regnum)
2042 {
2043 /* Make sure we've initialized the cache. */
2044 i386_epilogue_frame_cache (this_frame, this_cache);
2045
2046 return i386_frame_prev_register (this_frame, this_cache, regnum);
2047 }
2048
2049 static const struct frame_unwind i386_epilogue_frame_unwind =
2050 {
2051 NORMAL_FRAME,
2052 i386_epilogue_frame_unwind_stop_reason,
2053 i386_epilogue_frame_this_id,
2054 i386_epilogue_frame_prev_register,
2055 NULL,
2056 i386_epilogue_frame_sniffer
2057 };
2058 \f
2059
2060 /* Stack-based trampolines. */
2061
2062 /* These trampolines are used on cross x86 targets, when taking the
2063 address of a nested function. When executing these trampolines,
2064 no stack frame is set up, so we are in a similar situation as in
2065 epilogues and i386_epilogue_frame_this_id can be re-used. */
2066
2067 /* Static chain passed in register. */
2068
2069 struct i386_insn i386_tramp_chain_in_reg_insns[] =
2070 {
2071 /* `movl imm32, %eax' and `movl imm32, %ecx' */
2072 { 5, { 0xb8 }, { 0xfe } },
2073
2074 /* `jmp imm32' */
2075 { 5, { 0xe9 }, { 0xff } },
2076
2077 {0}
2078 };
2079
2080 /* Static chain passed on stack (when regparm=3). */
2081
2082 struct i386_insn i386_tramp_chain_on_stack_insns[] =
2083 {
2084 /* `push imm32' */
2085 { 5, { 0x68 }, { 0xff } },
2086
2087 /* `jmp imm32' */
2088 { 5, { 0xe9 }, { 0xff } },
2089
2090 {0}
2091 };
2092
2093 /* Return whether PC points inside a stack trampoline. */
2094
2095 static int
2096 i386_in_stack_tramp_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2097 {
2098 gdb_byte insn;
2099 const char *name;
2100
2101 /* A stack trampoline is detected if no name is associated
2102 to the current pc and if it points inside a trampoline
2103 sequence. */
2104
2105 find_pc_partial_function (pc, &name, NULL, NULL);
2106 if (name)
2107 return 0;
2108
2109 if (target_read_memory (pc, &insn, 1))
2110 return 0;
2111
2112 if (!i386_match_insn_block (pc, i386_tramp_chain_in_reg_insns)
2113 && !i386_match_insn_block (pc, i386_tramp_chain_on_stack_insns))
2114 return 0;
2115
2116 return 1;
2117 }
2118
2119 static int
2120 i386_stack_tramp_frame_sniffer (const struct frame_unwind *self,
2121 struct frame_info *this_frame,
2122 void **this_cache)
2123 {
2124 if (frame_relative_level (this_frame) == 0)
2125 return i386_in_stack_tramp_p (get_frame_arch (this_frame),
2126 get_frame_pc (this_frame));
2127 else
2128 return 0;
2129 }
2130
2131 static const struct frame_unwind i386_stack_tramp_frame_unwind =
2132 {
2133 NORMAL_FRAME,
2134 i386_epilogue_frame_unwind_stop_reason,
2135 i386_epilogue_frame_this_id,
2136 i386_epilogue_frame_prev_register,
2137 NULL,
2138 i386_stack_tramp_frame_sniffer
2139 };
2140 \f
2141 /* Generate a bytecode expression to get the value of the saved PC. */
2142
2143 static void
2144 i386_gen_return_address (struct gdbarch *gdbarch,
2145 struct agent_expr *ax, struct axs_value *value,
2146 CORE_ADDR scope)
2147 {
2148 /* The following sequence assumes the traditional use of the base
2149 register. */
2150 ax_reg (ax, I386_EBP_REGNUM);
2151 ax_const_l (ax, 4);
2152 ax_simple (ax, aop_add);
2153 value->type = register_type (gdbarch, I386_EIP_REGNUM);
2154 value->kind = axs_lvalue_memory;
2155 }
2156 \f
2157
2158 /* Signal trampolines. */
2159
2160 static struct i386_frame_cache *
2161 i386_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
2162 {
2163 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2164 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2165 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2166 volatile struct gdb_exception ex;
2167 struct i386_frame_cache *cache;
2168 CORE_ADDR addr;
2169 gdb_byte buf[4];
2170
2171 if (*this_cache)
2172 return *this_cache;
2173
2174 cache = i386_alloc_frame_cache ();
2175
2176 TRY_CATCH (ex, RETURN_MASK_ERROR)
2177 {
2178 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2179 cache->base = extract_unsigned_integer (buf, 4, byte_order) - 4;
2180
2181 addr = tdep->sigcontext_addr (this_frame);
2182 if (tdep->sc_reg_offset)
2183 {
2184 int i;
2185
2186 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
2187
2188 for (i = 0; i < tdep->sc_num_regs; i++)
2189 if (tdep->sc_reg_offset[i] != -1)
2190 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
2191 }
2192 else
2193 {
2194 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
2195 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
2196 }
2197
2198 cache->base_p = 1;
2199 }
2200 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
2201 throw_exception (ex);
2202
2203 *this_cache = cache;
2204 return cache;
2205 }
2206
2207 static enum unwind_stop_reason
2208 i386_sigtramp_frame_unwind_stop_reason (struct frame_info *this_frame,
2209 void **this_cache)
2210 {
2211 struct i386_frame_cache *cache =
2212 i386_sigtramp_frame_cache (this_frame, this_cache);
2213
2214 if (!cache->base_p)
2215 return UNWIND_UNAVAILABLE;
2216
2217 return UNWIND_NO_REASON;
2218 }
2219
2220 static void
2221 i386_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache,
2222 struct frame_id *this_id)
2223 {
2224 struct i386_frame_cache *cache =
2225 i386_sigtramp_frame_cache (this_frame, this_cache);
2226
2227 if (!cache->base_p)
2228 return;
2229
2230 /* See the end of i386_push_dummy_call. */
2231 (*this_id) = frame_id_build (cache->base + 8, get_frame_pc (this_frame));
2232 }
2233
2234 static struct value *
2235 i386_sigtramp_frame_prev_register (struct frame_info *this_frame,
2236 void **this_cache, int regnum)
2237 {
2238 /* Make sure we've initialized the cache. */
2239 i386_sigtramp_frame_cache (this_frame, this_cache);
2240
2241 return i386_frame_prev_register (this_frame, this_cache, regnum);
2242 }
2243
2244 static int
2245 i386_sigtramp_frame_sniffer (const struct frame_unwind *self,
2246 struct frame_info *this_frame,
2247 void **this_prologue_cache)
2248 {
2249 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
2250
2251 /* We shouldn't even bother if we don't have a sigcontext_addr
2252 handler. */
2253 if (tdep->sigcontext_addr == NULL)
2254 return 0;
2255
2256 if (tdep->sigtramp_p != NULL)
2257 {
2258 if (tdep->sigtramp_p (this_frame))
2259 return 1;
2260 }
2261
2262 if (tdep->sigtramp_start != 0)
2263 {
2264 CORE_ADDR pc = get_frame_pc (this_frame);
2265
2266 gdb_assert (tdep->sigtramp_end != 0);
2267 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
2268 return 1;
2269 }
2270
2271 return 0;
2272 }
2273
2274 static const struct frame_unwind i386_sigtramp_frame_unwind =
2275 {
2276 SIGTRAMP_FRAME,
2277 i386_sigtramp_frame_unwind_stop_reason,
2278 i386_sigtramp_frame_this_id,
2279 i386_sigtramp_frame_prev_register,
2280 NULL,
2281 i386_sigtramp_frame_sniffer
2282 };
2283 \f
2284
2285 static CORE_ADDR
2286 i386_frame_base_address (struct frame_info *this_frame, void **this_cache)
2287 {
2288 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2289
2290 return cache->base;
2291 }
2292
2293 static const struct frame_base i386_frame_base =
2294 {
2295 &i386_frame_unwind,
2296 i386_frame_base_address,
2297 i386_frame_base_address,
2298 i386_frame_base_address
2299 };
2300
2301 static struct frame_id
2302 i386_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2303 {
2304 CORE_ADDR fp;
2305
2306 fp = get_frame_register_unsigned (this_frame, I386_EBP_REGNUM);
2307
2308 /* See the end of i386_push_dummy_call. */
2309 return frame_id_build (fp + 8, get_frame_pc (this_frame));
2310 }
2311
2312 /* _Decimal128 function return values need 16-byte alignment on the
2313 stack. */
2314
2315 static CORE_ADDR
2316 i386_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2317 {
2318 return sp & -(CORE_ADDR)16;
2319 }
2320 \f
2321
2322 /* Figure out where the longjmp will land. Slurp the args out of the
2323 stack. We expect the first arg to be a pointer to the jmp_buf
2324 structure from which we extract the address that we will land at.
2325 This address is copied into PC. This routine returns non-zero on
2326 success. */
2327
2328 static int
2329 i386_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
2330 {
2331 gdb_byte buf[4];
2332 CORE_ADDR sp, jb_addr;
2333 struct gdbarch *gdbarch = get_frame_arch (frame);
2334 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2335 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
2336
2337 /* If JB_PC_OFFSET is -1, we have no way to find out where the
2338 longjmp will land. */
2339 if (jb_pc_offset == -1)
2340 return 0;
2341
2342 get_frame_register (frame, I386_ESP_REGNUM, buf);
2343 sp = extract_unsigned_integer (buf, 4, byte_order);
2344 if (target_read_memory (sp + 4, buf, 4))
2345 return 0;
2346
2347 jb_addr = extract_unsigned_integer (buf, 4, byte_order);
2348 if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
2349 return 0;
2350
2351 *pc = extract_unsigned_integer (buf, 4, byte_order);
2352 return 1;
2353 }
2354 \f
2355
2356 /* Check whether TYPE must be 16-byte-aligned when passed as a
2357 function argument. 16-byte vectors, _Decimal128 and structures or
2358 unions containing such types must be 16-byte-aligned; other
2359 arguments are 4-byte-aligned. */
2360
2361 static int
2362 i386_16_byte_align_p (struct type *type)
2363 {
2364 type = check_typedef (type);
2365 if ((TYPE_CODE (type) == TYPE_CODE_DECFLOAT
2366 || (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type)))
2367 && TYPE_LENGTH (type) == 16)
2368 return 1;
2369 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2370 return i386_16_byte_align_p (TYPE_TARGET_TYPE (type));
2371 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2372 || TYPE_CODE (type) == TYPE_CODE_UNION)
2373 {
2374 int i;
2375 for (i = 0; i < TYPE_NFIELDS (type); i++)
2376 {
2377 if (i386_16_byte_align_p (TYPE_FIELD_TYPE (type, i)))
2378 return 1;
2379 }
2380 }
2381 return 0;
2382 }
2383
2384 /* Implementation for set_gdbarch_push_dummy_code. */
2385
2386 static CORE_ADDR
2387 i386_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, CORE_ADDR funaddr,
2388 struct value **args, int nargs, struct type *value_type,
2389 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
2390 struct regcache *regcache)
2391 {
2392 /* Use 0xcc breakpoint - 1 byte. */
2393 *bp_addr = sp - 1;
2394 *real_pc = funaddr;
2395
2396 /* Keep the stack aligned. */
2397 return sp - 16;
2398 }
2399
2400 static CORE_ADDR
2401 i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2402 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2403 struct value **args, CORE_ADDR sp, int struct_return,
2404 CORE_ADDR struct_addr)
2405 {
2406 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2407 gdb_byte buf[4];
2408 int i;
2409 int write_pass;
2410 int args_space = 0;
2411
2412 /* Determine the total space required for arguments and struct
2413 return address in a first pass (allowing for 16-byte-aligned
2414 arguments), then push arguments in a second pass. */
2415
2416 for (write_pass = 0; write_pass < 2; write_pass++)
2417 {
2418 int args_space_used = 0;
2419
2420 if (struct_return)
2421 {
2422 if (write_pass)
2423 {
2424 /* Push value address. */
2425 store_unsigned_integer (buf, 4, byte_order, struct_addr);
2426 write_memory (sp, buf, 4);
2427 args_space_used += 4;
2428 }
2429 else
2430 args_space += 4;
2431 }
2432
2433 for (i = 0; i < nargs; i++)
2434 {
2435 int len = TYPE_LENGTH (value_enclosing_type (args[i]));
2436
2437 if (write_pass)
2438 {
2439 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2440 args_space_used = align_up (args_space_used, 16);
2441
2442 write_memory (sp + args_space_used,
2443 value_contents_all (args[i]), len);
2444 /* The System V ABI says that:
2445
2446 "An argument's size is increased, if necessary, to make it a
2447 multiple of [32-bit] words. This may require tail padding,
2448 depending on the size of the argument."
2449
2450 This makes sure the stack stays word-aligned. */
2451 args_space_used += align_up (len, 4);
2452 }
2453 else
2454 {
2455 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2456 args_space = align_up (args_space, 16);
2457 args_space += align_up (len, 4);
2458 }
2459 }
2460
2461 if (!write_pass)
2462 {
2463 sp -= args_space;
2464
2465 /* The original System V ABI only requires word alignment,
2466 but modern incarnations need 16-byte alignment in order
2467 to support SSE. Since wasting a few bytes here isn't
2468 harmful we unconditionally enforce 16-byte alignment. */
2469 sp &= ~0xf;
2470 }
2471 }
2472
2473 /* Store return address. */
2474 sp -= 4;
2475 store_unsigned_integer (buf, 4, byte_order, bp_addr);
2476 write_memory (sp, buf, 4);
2477
2478 /* Finally, update the stack pointer... */
2479 store_unsigned_integer (buf, 4, byte_order, sp);
2480 regcache_cooked_write (regcache, I386_ESP_REGNUM, buf);
2481
2482 /* ...and fake a frame pointer. */
2483 regcache_cooked_write (regcache, I386_EBP_REGNUM, buf);
2484
2485 /* MarkK wrote: This "+ 8" is all over the place:
2486 (i386_frame_this_id, i386_sigtramp_frame_this_id,
2487 i386_dummy_id). It's there, since all frame unwinders for
2488 a given target have to agree (within a certain margin) on the
2489 definition of the stack address of a frame. Otherwise frame id
2490 comparison might not work correctly. Since DWARF2/GCC uses the
2491 stack address *before* the function call as a frame's CFA. On
2492 the i386, when %ebp is used as a frame pointer, the offset
2493 between the contents %ebp and the CFA as defined by GCC. */
2494 return sp + 8;
2495 }
2496
2497 /* These registers are used for returning integers (and on some
2498 targets also for returning `struct' and `union' values when their
2499 size and alignment match an integer type). */
2500 #define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
2501 #define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
2502
2503 /* Read, for architecture GDBARCH, a function return value of TYPE
2504 from REGCACHE, and copy that into VALBUF. */
2505
2506 static void
2507 i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
2508 struct regcache *regcache, gdb_byte *valbuf)
2509 {
2510 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2511 int len = TYPE_LENGTH (type);
2512 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2513
2514 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2515 {
2516 if (tdep->st0_regnum < 0)
2517 {
2518 warning (_("Cannot find floating-point return value."));
2519 memset (valbuf, 0, len);
2520 return;
2521 }
2522
2523 /* Floating-point return values can be found in %st(0). Convert
2524 its contents to the desired type. This is probably not
2525 exactly how it would happen on the target itself, but it is
2526 the best we can do. */
2527 regcache_raw_read (regcache, I386_ST0_REGNUM, buf);
2528 convert_typed_floating (buf, i387_ext_type (gdbarch), valbuf, type);
2529 }
2530 else
2531 {
2532 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2533 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2534
2535 if (len <= low_size)
2536 {
2537 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
2538 memcpy (valbuf, buf, len);
2539 }
2540 else if (len <= (low_size + high_size))
2541 {
2542 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
2543 memcpy (valbuf, buf, low_size);
2544 regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
2545 memcpy (valbuf + low_size, buf, len - low_size);
2546 }
2547 else
2548 internal_error (__FILE__, __LINE__,
2549 _("Cannot extract return value of %d bytes long."),
2550 len);
2551 }
2552 }
2553
2554 /* Write, for architecture GDBARCH, a function return value of TYPE
2555 from VALBUF into REGCACHE. */
2556
2557 static void
2558 i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
2559 struct regcache *regcache, const gdb_byte *valbuf)
2560 {
2561 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2562 int len = TYPE_LENGTH (type);
2563
2564 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2565 {
2566 ULONGEST fstat;
2567 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2568
2569 if (tdep->st0_regnum < 0)
2570 {
2571 warning (_("Cannot set floating-point return value."));
2572 return;
2573 }
2574
2575 /* Returning floating-point values is a bit tricky. Apart from
2576 storing the return value in %st(0), we have to simulate the
2577 state of the FPU at function return point. */
2578
2579 /* Convert the value found in VALBUF to the extended
2580 floating-point format used by the FPU. This is probably
2581 not exactly how it would happen on the target itself, but
2582 it is the best we can do. */
2583 convert_typed_floating (valbuf, type, buf, i387_ext_type (gdbarch));
2584 regcache_raw_write (regcache, I386_ST0_REGNUM, buf);
2585
2586 /* Set the top of the floating-point register stack to 7. The
2587 actual value doesn't really matter, but 7 is what a normal
2588 function return would end up with if the program started out
2589 with a freshly initialized FPU. */
2590 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
2591 fstat |= (7 << 11);
2592 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM (tdep), fstat);
2593
2594 /* Mark %st(1) through %st(7) as empty. Since we set the top of
2595 the floating-point register stack to 7, the appropriate value
2596 for the tag word is 0x3fff. */
2597 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM (tdep), 0x3fff);
2598 }
2599 else
2600 {
2601 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2602 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2603
2604 if (len <= low_size)
2605 regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
2606 else if (len <= (low_size + high_size))
2607 {
2608 regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
2609 regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
2610 len - low_size, valbuf + low_size);
2611 }
2612 else
2613 internal_error (__FILE__, __LINE__,
2614 _("Cannot store return value of %d bytes long."), len);
2615 }
2616 }
2617 \f
2618
2619 /* This is the variable that is set with "set struct-convention", and
2620 its legitimate values. */
2621 static const char default_struct_convention[] = "default";
2622 static const char pcc_struct_convention[] = "pcc";
2623 static const char reg_struct_convention[] = "reg";
2624 static const char *const valid_conventions[] =
2625 {
2626 default_struct_convention,
2627 pcc_struct_convention,
2628 reg_struct_convention,
2629 NULL
2630 };
2631 static const char *struct_convention = default_struct_convention;
2632
2633 /* Return non-zero if TYPE, which is assumed to be a structure,
2634 a union type, or an array type, should be returned in registers
2635 for architecture GDBARCH. */
2636
2637 static int
2638 i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
2639 {
2640 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2641 enum type_code code = TYPE_CODE (type);
2642 int len = TYPE_LENGTH (type);
2643
2644 gdb_assert (code == TYPE_CODE_STRUCT
2645 || code == TYPE_CODE_UNION
2646 || code == TYPE_CODE_ARRAY);
2647
2648 if (struct_convention == pcc_struct_convention
2649 || (struct_convention == default_struct_convention
2650 && tdep->struct_return == pcc_struct_return))
2651 return 0;
2652
2653 /* Structures consisting of a single `float', `double' or 'long
2654 double' member are returned in %st(0). */
2655 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2656 {
2657 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
2658 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2659 return (len == 4 || len == 8 || len == 12);
2660 }
2661
2662 return (len == 1 || len == 2 || len == 4 || len == 8);
2663 }
2664
2665 /* Determine, for architecture GDBARCH, how a return value of TYPE
2666 should be returned. If it is supposed to be returned in registers,
2667 and READBUF is non-zero, read the appropriate value from REGCACHE,
2668 and copy it into READBUF. If WRITEBUF is non-zero, write the value
2669 from WRITEBUF into REGCACHE. */
2670
2671 static enum return_value_convention
2672 i386_return_value (struct gdbarch *gdbarch, struct value *function,
2673 struct type *type, struct regcache *regcache,
2674 gdb_byte *readbuf, const gdb_byte *writebuf)
2675 {
2676 enum type_code code = TYPE_CODE (type);
2677
2678 if (((code == TYPE_CODE_STRUCT
2679 || code == TYPE_CODE_UNION
2680 || code == TYPE_CODE_ARRAY)
2681 && !i386_reg_struct_return_p (gdbarch, type))
2682 /* Complex double and long double uses the struct return covention. */
2683 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 16)
2684 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 24)
2685 /* 128-bit decimal float uses the struct return convention. */
2686 || (code == TYPE_CODE_DECFLOAT && TYPE_LENGTH (type) == 16))
2687 {
2688 /* The System V ABI says that:
2689
2690 "A function that returns a structure or union also sets %eax
2691 to the value of the original address of the caller's area
2692 before it returns. Thus when the caller receives control
2693 again, the address of the returned object resides in register
2694 %eax and can be used to access the object."
2695
2696 So the ABI guarantees that we can always find the return
2697 value just after the function has returned. */
2698
2699 /* Note that the ABI doesn't mention functions returning arrays,
2700 which is something possible in certain languages such as Ada.
2701 In this case, the value is returned as if it was wrapped in
2702 a record, so the convention applied to records also applies
2703 to arrays. */
2704
2705 if (readbuf)
2706 {
2707 ULONGEST addr;
2708
2709 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
2710 read_memory (addr, readbuf, TYPE_LENGTH (type));
2711 }
2712
2713 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
2714 }
2715
2716 /* This special case is for structures consisting of a single
2717 `float', `double' or 'long double' member. These structures are
2718 returned in %st(0). For these structures, we call ourselves
2719 recursively, changing TYPE into the type of the first member of
2720 the structure. Since that should work for all structures that
2721 have only one member, we don't bother to check the member's type
2722 here. */
2723 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2724 {
2725 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
2726 return i386_return_value (gdbarch, function, type, regcache,
2727 readbuf, writebuf);
2728 }
2729
2730 if (readbuf)
2731 i386_extract_return_value (gdbarch, type, regcache, readbuf);
2732 if (writebuf)
2733 i386_store_return_value (gdbarch, type, regcache, writebuf);
2734
2735 return RETURN_VALUE_REGISTER_CONVENTION;
2736 }
2737 \f
2738
2739 struct type *
2740 i387_ext_type (struct gdbarch *gdbarch)
2741 {
2742 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2743
2744 if (!tdep->i387_ext_type)
2745 {
2746 tdep->i387_ext_type = tdesc_find_type (gdbarch, "i387_ext");
2747 gdb_assert (tdep->i387_ext_type != NULL);
2748 }
2749
2750 return tdep->i387_ext_type;
2751 }
2752
2753 /* Construct vector type for pseudo YMM registers. We can't use
2754 tdesc_find_type since YMM isn't described in target description. */
2755
2756 static struct type *
2757 i386_ymm_type (struct gdbarch *gdbarch)
2758 {
2759 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2760
2761 if (!tdep->i386_ymm_type)
2762 {
2763 const struct builtin_type *bt = builtin_type (gdbarch);
2764
2765 /* The type we're building is this: */
2766 #if 0
2767 union __gdb_builtin_type_vec256i
2768 {
2769 int128_t uint128[2];
2770 int64_t v2_int64[4];
2771 int32_t v4_int32[8];
2772 int16_t v8_int16[16];
2773 int8_t v16_int8[32];
2774 double v2_double[4];
2775 float v4_float[8];
2776 };
2777 #endif
2778
2779 struct type *t;
2780
2781 t = arch_composite_type (gdbarch,
2782 "__gdb_builtin_type_vec256i", TYPE_CODE_UNION);
2783 append_composite_type_field (t, "v8_float",
2784 init_vector_type (bt->builtin_float, 8));
2785 append_composite_type_field (t, "v4_double",
2786 init_vector_type (bt->builtin_double, 4));
2787 append_composite_type_field (t, "v32_int8",
2788 init_vector_type (bt->builtin_int8, 32));
2789 append_composite_type_field (t, "v16_int16",
2790 init_vector_type (bt->builtin_int16, 16));
2791 append_composite_type_field (t, "v8_int32",
2792 init_vector_type (bt->builtin_int32, 8));
2793 append_composite_type_field (t, "v4_int64",
2794 init_vector_type (bt->builtin_int64, 4));
2795 append_composite_type_field (t, "v2_int128",
2796 init_vector_type (bt->builtin_int128, 2));
2797
2798 TYPE_VECTOR (t) = 1;
2799 TYPE_NAME (t) = "builtin_type_vec256i";
2800 tdep->i386_ymm_type = t;
2801 }
2802
2803 return tdep->i386_ymm_type;
2804 }
2805
2806 /* Construct vector type for MMX registers. */
2807 static struct type *
2808 i386_mmx_type (struct gdbarch *gdbarch)
2809 {
2810 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2811
2812 if (!tdep->i386_mmx_type)
2813 {
2814 const struct builtin_type *bt = builtin_type (gdbarch);
2815
2816 /* The type we're building is this: */
2817 #if 0
2818 union __gdb_builtin_type_vec64i
2819 {
2820 int64_t uint64;
2821 int32_t v2_int32[2];
2822 int16_t v4_int16[4];
2823 int8_t v8_int8[8];
2824 };
2825 #endif
2826
2827 struct type *t;
2828
2829 t = arch_composite_type (gdbarch,
2830 "__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
2831
2832 append_composite_type_field (t, "uint64", bt->builtin_int64);
2833 append_composite_type_field (t, "v2_int32",
2834 init_vector_type (bt->builtin_int32, 2));
2835 append_composite_type_field (t, "v4_int16",
2836 init_vector_type (bt->builtin_int16, 4));
2837 append_composite_type_field (t, "v8_int8",
2838 init_vector_type (bt->builtin_int8, 8));
2839
2840 TYPE_VECTOR (t) = 1;
2841 TYPE_NAME (t) = "builtin_type_vec64i";
2842 tdep->i386_mmx_type = t;
2843 }
2844
2845 return tdep->i386_mmx_type;
2846 }
2847
2848 /* Return the GDB type object for the "standard" data type of data in
2849 register REGNUM. */
2850
2851 struct type *
2852 i386_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
2853 {
2854 if (i386_mmx_regnum_p (gdbarch, regnum))
2855 return i386_mmx_type (gdbarch);
2856 else if (i386_ymm_regnum_p (gdbarch, regnum))
2857 return i386_ymm_type (gdbarch);
2858 else
2859 {
2860 const struct builtin_type *bt = builtin_type (gdbarch);
2861 if (i386_byte_regnum_p (gdbarch, regnum))
2862 return bt->builtin_int8;
2863 else if (i386_word_regnum_p (gdbarch, regnum))
2864 return bt->builtin_int16;
2865 else if (i386_dword_regnum_p (gdbarch, regnum))
2866 return bt->builtin_int32;
2867 }
2868
2869 internal_error (__FILE__, __LINE__, _("invalid regnum"));
2870 }
2871
2872 /* Map a cooked register onto a raw register or memory. For the i386,
2873 the MMX registers need to be mapped onto floating point registers. */
2874
2875 static int
2876 i386_mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
2877 {
2878 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
2879 int mmxreg, fpreg;
2880 ULONGEST fstat;
2881 int tos;
2882
2883 mmxreg = regnum - tdep->mm0_regnum;
2884 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
2885 tos = (fstat >> 11) & 0x7;
2886 fpreg = (mmxreg + tos) % 8;
2887
2888 return (I387_ST0_REGNUM (tdep) + fpreg);
2889 }
2890
2891 /* A helper function for us by i386_pseudo_register_read_value and
2892 amd64_pseudo_register_read_value. It does all the work but reads
2893 the data into an already-allocated value. */
2894
2895 void
2896 i386_pseudo_register_read_into_value (struct gdbarch *gdbarch,
2897 struct regcache *regcache,
2898 int regnum,
2899 struct value *result_value)
2900 {
2901 gdb_byte raw_buf[MAX_REGISTER_SIZE];
2902 enum register_status status;
2903 gdb_byte *buf = value_contents_raw (result_value);
2904
2905 if (i386_mmx_regnum_p (gdbarch, regnum))
2906 {
2907 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
2908
2909 /* Extract (always little endian). */
2910 status = regcache_raw_read (regcache, fpnum, raw_buf);
2911 if (status != REG_VALID)
2912 mark_value_bytes_unavailable (result_value, 0,
2913 TYPE_LENGTH (value_type (result_value)));
2914 else
2915 memcpy (buf, raw_buf, register_size (gdbarch, regnum));
2916 }
2917 else
2918 {
2919 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2920
2921 if (i386_ymm_regnum_p (gdbarch, regnum))
2922 {
2923 regnum -= tdep->ymm0_regnum;
2924
2925 /* Extract (always little endian). Read lower 128bits. */
2926 status = regcache_raw_read (regcache,
2927 I387_XMM0_REGNUM (tdep) + regnum,
2928 raw_buf);
2929 if (status != REG_VALID)
2930 mark_value_bytes_unavailable (result_value, 0, 16);
2931 else
2932 memcpy (buf, raw_buf, 16);
2933 /* Read upper 128bits. */
2934 status = regcache_raw_read (regcache,
2935 tdep->ymm0h_regnum + regnum,
2936 raw_buf);
2937 if (status != REG_VALID)
2938 mark_value_bytes_unavailable (result_value, 16, 32);
2939 else
2940 memcpy (buf + 16, raw_buf, 16);
2941 }
2942 else if (i386_word_regnum_p (gdbarch, regnum))
2943 {
2944 int gpnum = regnum - tdep->ax_regnum;
2945
2946 /* Extract (always little endian). */
2947 status = regcache_raw_read (regcache, gpnum, raw_buf);
2948 if (status != REG_VALID)
2949 mark_value_bytes_unavailable (result_value, 0,
2950 TYPE_LENGTH (value_type (result_value)));
2951 else
2952 memcpy (buf, raw_buf, 2);
2953 }
2954 else if (i386_byte_regnum_p (gdbarch, regnum))
2955 {
2956 /* Check byte pseudo registers last since this function will
2957 be called from amd64_pseudo_register_read, which handles
2958 byte pseudo registers differently. */
2959 int gpnum = regnum - tdep->al_regnum;
2960
2961 /* Extract (always little endian). We read both lower and
2962 upper registers. */
2963 status = regcache_raw_read (regcache, gpnum % 4, raw_buf);
2964 if (status != REG_VALID)
2965 mark_value_bytes_unavailable (result_value, 0,
2966 TYPE_LENGTH (value_type (result_value)));
2967 else if (gpnum >= 4)
2968 memcpy (buf, raw_buf + 1, 1);
2969 else
2970 memcpy (buf, raw_buf, 1);
2971 }
2972 else
2973 internal_error (__FILE__, __LINE__, _("invalid regnum"));
2974 }
2975 }
2976
2977 static struct value *
2978 i386_pseudo_register_read_value (struct gdbarch *gdbarch,
2979 struct regcache *regcache,
2980 int regnum)
2981 {
2982 struct value *result;
2983
2984 result = allocate_value (register_type (gdbarch, regnum));
2985 VALUE_LVAL (result) = lval_register;
2986 VALUE_REGNUM (result) = regnum;
2987
2988 i386_pseudo_register_read_into_value (gdbarch, regcache, regnum, result);
2989
2990 return result;
2991 }
2992
2993 void
2994 i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2995 int regnum, const gdb_byte *buf)
2996 {
2997 gdb_byte raw_buf[MAX_REGISTER_SIZE];
2998
2999 if (i386_mmx_regnum_p (gdbarch, regnum))
3000 {
3001 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3002
3003 /* Read ... */
3004 regcache_raw_read (regcache, fpnum, raw_buf);
3005 /* ... Modify ... (always little endian). */
3006 memcpy (raw_buf, buf, register_size (gdbarch, regnum));
3007 /* ... Write. */
3008 regcache_raw_write (regcache, fpnum, raw_buf);
3009 }
3010 else
3011 {
3012 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3013
3014 if (i386_ymm_regnum_p (gdbarch, regnum))
3015 {
3016 regnum -= tdep->ymm0_regnum;
3017
3018 /* ... Write lower 128bits. */
3019 regcache_raw_write (regcache,
3020 I387_XMM0_REGNUM (tdep) + regnum,
3021 buf);
3022 /* ... Write upper 128bits. */
3023 regcache_raw_write (regcache,
3024 tdep->ymm0h_regnum + regnum,
3025 buf + 16);
3026 }
3027 else if (i386_word_regnum_p (gdbarch, regnum))
3028 {
3029 int gpnum = regnum - tdep->ax_regnum;
3030
3031 /* Read ... */
3032 regcache_raw_read (regcache, gpnum, raw_buf);
3033 /* ... Modify ... (always little endian). */
3034 memcpy (raw_buf, buf, 2);
3035 /* ... Write. */
3036 regcache_raw_write (regcache, gpnum, raw_buf);
3037 }
3038 else if (i386_byte_regnum_p (gdbarch, regnum))
3039 {
3040 /* Check byte pseudo registers last since this function will
3041 be called from amd64_pseudo_register_read, which handles
3042 byte pseudo registers differently. */
3043 int gpnum = regnum - tdep->al_regnum;
3044
3045 /* Read ... We read both lower and upper registers. */
3046 regcache_raw_read (regcache, gpnum % 4, raw_buf);
3047 /* ... Modify ... (always little endian). */
3048 if (gpnum >= 4)
3049 memcpy (raw_buf + 1, buf, 1);
3050 else
3051 memcpy (raw_buf, buf, 1);
3052 /* ... Write. */
3053 regcache_raw_write (regcache, gpnum % 4, raw_buf);
3054 }
3055 else
3056 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3057 }
3058 }
3059 \f
3060
3061 /* Return the register number of the register allocated by GCC after
3062 REGNUM, or -1 if there is no such register. */
3063
3064 static int
3065 i386_next_regnum (int regnum)
3066 {
3067 /* GCC allocates the registers in the order:
3068
3069 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
3070
3071 Since storing a variable in %esp doesn't make any sense we return
3072 -1 for %ebp and for %esp itself. */
3073 static int next_regnum[] =
3074 {
3075 I386_EDX_REGNUM, /* Slot for %eax. */
3076 I386_EBX_REGNUM, /* Slot for %ecx. */
3077 I386_ECX_REGNUM, /* Slot for %edx. */
3078 I386_ESI_REGNUM, /* Slot for %ebx. */
3079 -1, -1, /* Slots for %esp and %ebp. */
3080 I386_EDI_REGNUM, /* Slot for %esi. */
3081 I386_EBP_REGNUM /* Slot for %edi. */
3082 };
3083
3084 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
3085 return next_regnum[regnum];
3086
3087 return -1;
3088 }
3089
3090 /* Return nonzero if a value of type TYPE stored in register REGNUM
3091 needs any special handling. */
3092
3093 static int
3094 i386_convert_register_p (struct gdbarch *gdbarch,
3095 int regnum, struct type *type)
3096 {
3097 int len = TYPE_LENGTH (type);
3098
3099 /* Values may be spread across multiple registers. Most debugging
3100 formats aren't expressive enough to specify the locations, so
3101 some heuristics is involved. Right now we only handle types that
3102 have a length that is a multiple of the word size, since GCC
3103 doesn't seem to put any other types into registers. */
3104 if (len > 4 && len % 4 == 0)
3105 {
3106 int last_regnum = regnum;
3107
3108 while (len > 4)
3109 {
3110 last_regnum = i386_next_regnum (last_regnum);
3111 len -= 4;
3112 }
3113
3114 if (last_regnum != -1)
3115 return 1;
3116 }
3117
3118 return i387_convert_register_p (gdbarch, regnum, type);
3119 }
3120
3121 /* Read a value of type TYPE from register REGNUM in frame FRAME, and
3122 return its contents in TO. */
3123
3124 static int
3125 i386_register_to_value (struct frame_info *frame, int regnum,
3126 struct type *type, gdb_byte *to,
3127 int *optimizedp, int *unavailablep)
3128 {
3129 struct gdbarch *gdbarch = get_frame_arch (frame);
3130 int len = TYPE_LENGTH (type);
3131
3132 if (i386_fp_regnum_p (gdbarch, regnum))
3133 return i387_register_to_value (frame, regnum, type, to,
3134 optimizedp, unavailablep);
3135
3136 /* Read a value spread across multiple registers. */
3137
3138 gdb_assert (len > 4 && len % 4 == 0);
3139
3140 while (len > 0)
3141 {
3142 gdb_assert (regnum != -1);
3143 gdb_assert (register_size (gdbarch, regnum) == 4);
3144
3145 if (!get_frame_register_bytes (frame, regnum, 0,
3146 register_size (gdbarch, regnum),
3147 to, optimizedp, unavailablep))
3148 return 0;
3149
3150 regnum = i386_next_regnum (regnum);
3151 len -= 4;
3152 to += 4;
3153 }
3154
3155 *optimizedp = *unavailablep = 0;
3156 return 1;
3157 }
3158
3159 /* Write the contents FROM of a value of type TYPE into register
3160 REGNUM in frame FRAME. */
3161
3162 static void
3163 i386_value_to_register (struct frame_info *frame, int regnum,
3164 struct type *type, const gdb_byte *from)
3165 {
3166 int len = TYPE_LENGTH (type);
3167
3168 if (i386_fp_regnum_p (get_frame_arch (frame), regnum))
3169 {
3170 i387_value_to_register (frame, regnum, type, from);
3171 return;
3172 }
3173
3174 /* Write a value spread across multiple registers. */
3175
3176 gdb_assert (len > 4 && len % 4 == 0);
3177
3178 while (len > 0)
3179 {
3180 gdb_assert (regnum != -1);
3181 gdb_assert (register_size (get_frame_arch (frame), regnum) == 4);
3182
3183 put_frame_register (frame, regnum, from);
3184 regnum = i386_next_regnum (regnum);
3185 len -= 4;
3186 from += 4;
3187 }
3188 }
3189 \f
3190 /* Supply register REGNUM from the buffer specified by GREGS and LEN
3191 in the general-purpose register set REGSET to register cache
3192 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3193
3194 void
3195 i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
3196 int regnum, const void *gregs, size_t len)
3197 {
3198 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
3199 const gdb_byte *regs = gregs;
3200 int i;
3201
3202 gdb_assert (len == tdep->sizeof_gregset);
3203
3204 for (i = 0; i < tdep->gregset_num_regs; i++)
3205 {
3206 if ((regnum == i || regnum == -1)
3207 && tdep->gregset_reg_offset[i] != -1)
3208 regcache_raw_supply (regcache, i, regs + tdep->gregset_reg_offset[i]);
3209 }
3210 }
3211
3212 /* Collect register REGNUM from the register cache REGCACHE and store
3213 it in the buffer specified by GREGS and LEN as described by the
3214 general-purpose register set REGSET. If REGNUM is -1, do this for
3215 all registers in REGSET. */
3216
3217 void
3218 i386_collect_gregset (const struct regset *regset,
3219 const struct regcache *regcache,
3220 int regnum, void *gregs, size_t len)
3221 {
3222 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
3223 gdb_byte *regs = gregs;
3224 int i;
3225
3226 gdb_assert (len == tdep->sizeof_gregset);
3227
3228 for (i = 0; i < tdep->gregset_num_regs; i++)
3229 {
3230 if ((regnum == i || regnum == -1)
3231 && tdep->gregset_reg_offset[i] != -1)
3232 regcache_raw_collect (regcache, i, regs + tdep->gregset_reg_offset[i]);
3233 }
3234 }
3235
3236 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
3237 in the floating-point register set REGSET to register cache
3238 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3239
3240 static void
3241 i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
3242 int regnum, const void *fpregs, size_t len)
3243 {
3244 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
3245
3246 if (len == I387_SIZEOF_FXSAVE)
3247 {
3248 i387_supply_fxsave (regcache, regnum, fpregs);
3249 return;
3250 }
3251
3252 gdb_assert (len == tdep->sizeof_fpregset);
3253 i387_supply_fsave (regcache, regnum, fpregs);
3254 }
3255
3256 /* Collect register REGNUM from the register cache REGCACHE and store
3257 it in the buffer specified by FPREGS and LEN as described by the
3258 floating-point register set REGSET. If REGNUM is -1, do this for
3259 all registers in REGSET. */
3260
3261 static void
3262 i386_collect_fpregset (const struct regset *regset,
3263 const struct regcache *regcache,
3264 int regnum, void *fpregs, size_t len)
3265 {
3266 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
3267
3268 if (len == I387_SIZEOF_FXSAVE)
3269 {
3270 i387_collect_fxsave (regcache, regnum, fpregs);
3271 return;
3272 }
3273
3274 gdb_assert (len == tdep->sizeof_fpregset);
3275 i387_collect_fsave (regcache, regnum, fpregs);
3276 }
3277
3278 /* Similar to i386_supply_fpregset, but use XSAVE extended state. */
3279
3280 static void
3281 i386_supply_xstateregset (const struct regset *regset,
3282 struct regcache *regcache, int regnum,
3283 const void *xstateregs, size_t len)
3284 {
3285 i387_supply_xsave (regcache, regnum, xstateregs);
3286 }
3287
3288 /* Similar to i386_collect_fpregset , but use XSAVE extended state. */
3289
3290 static void
3291 i386_collect_xstateregset (const struct regset *regset,
3292 const struct regcache *regcache,
3293 int regnum, void *xstateregs, size_t len)
3294 {
3295 i387_collect_xsave (regcache, regnum, xstateregs, 1);
3296 }
3297
3298 /* Return the appropriate register set for the core section identified
3299 by SECT_NAME and SECT_SIZE. */
3300
3301 const struct regset *
3302 i386_regset_from_core_section (struct gdbarch *gdbarch,
3303 const char *sect_name, size_t sect_size)
3304 {
3305 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3306
3307 if (strcmp (sect_name, ".reg") == 0 && sect_size == tdep->sizeof_gregset)
3308 {
3309 if (tdep->gregset == NULL)
3310 tdep->gregset = regset_alloc (gdbarch, i386_supply_gregset,
3311 i386_collect_gregset);
3312 return tdep->gregset;
3313 }
3314
3315 if ((strcmp (sect_name, ".reg2") == 0 && sect_size == tdep->sizeof_fpregset)
3316 || (strcmp (sect_name, ".reg-xfp") == 0
3317 && sect_size == I387_SIZEOF_FXSAVE))
3318 {
3319 if (tdep->fpregset == NULL)
3320 tdep->fpregset = regset_alloc (gdbarch, i386_supply_fpregset,
3321 i386_collect_fpregset);
3322 return tdep->fpregset;
3323 }
3324
3325 if (strcmp (sect_name, ".reg-xstate") == 0)
3326 {
3327 if (tdep->xstateregset == NULL)
3328 tdep->xstateregset = regset_alloc (gdbarch,
3329 i386_supply_xstateregset,
3330 i386_collect_xstateregset);
3331
3332 return tdep->xstateregset;
3333 }
3334
3335 return NULL;
3336 }
3337 \f
3338
3339 /* Stuff for WIN32 PE style DLL's but is pretty generic really. */
3340
3341 CORE_ADDR
3342 i386_pe_skip_trampoline_code (struct frame_info *frame,
3343 CORE_ADDR pc, char *name)
3344 {
3345 struct gdbarch *gdbarch = get_frame_arch (frame);
3346 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3347
3348 /* jmp *(dest) */
3349 if (pc && read_memory_unsigned_integer (pc, 2, byte_order) == 0x25ff)
3350 {
3351 unsigned long indirect =
3352 read_memory_unsigned_integer (pc + 2, 4, byte_order);
3353 struct minimal_symbol *indsym =
3354 indirect ? lookup_minimal_symbol_by_pc (indirect) : 0;
3355 const char *symname = indsym ? SYMBOL_LINKAGE_NAME (indsym) : 0;
3356
3357 if (symname)
3358 {
3359 if (strncmp (symname, "__imp_", 6) == 0
3360 || strncmp (symname, "_imp_", 5) == 0)
3361 return name ? 1 :
3362 read_memory_unsigned_integer (indirect, 4, byte_order);
3363 }
3364 }
3365 return 0; /* Not a trampoline. */
3366 }
3367 \f
3368
3369 /* Return whether the THIS_FRAME corresponds to a sigtramp
3370 routine. */
3371
3372 int
3373 i386_sigtramp_p (struct frame_info *this_frame)
3374 {
3375 CORE_ADDR pc = get_frame_pc (this_frame);
3376 const char *name;
3377
3378 find_pc_partial_function (pc, &name, NULL, NULL);
3379 return (name && strcmp ("_sigtramp", name) == 0);
3380 }
3381 \f
3382
3383 /* We have two flavours of disassembly. The machinery on this page
3384 deals with switching between those. */
3385
3386 static int
3387 i386_print_insn (bfd_vma pc, struct disassemble_info *info)
3388 {
3389 gdb_assert (disassembly_flavor == att_flavor
3390 || disassembly_flavor == intel_flavor);
3391
3392 /* FIXME: kettenis/20020915: Until disassembler_options is properly
3393 constified, cast to prevent a compiler warning. */
3394 info->disassembler_options = (char *) disassembly_flavor;
3395
3396 return print_insn_i386 (pc, info);
3397 }
3398 \f
3399
3400 /* There are a few i386 architecture variants that differ only
3401 slightly from the generic i386 target. For now, we don't give them
3402 their own source file, but include them here. As a consequence,
3403 they'll always be included. */
3404
3405 /* System V Release 4 (SVR4). */
3406
3407 /* Return whether THIS_FRAME corresponds to a SVR4 sigtramp
3408 routine. */
3409
3410 static int
3411 i386_svr4_sigtramp_p (struct frame_info *this_frame)
3412 {
3413 CORE_ADDR pc = get_frame_pc (this_frame);
3414 const char *name;
3415
3416 /* The origin of these symbols is currently unknown. */
3417 find_pc_partial_function (pc, &name, NULL, NULL);
3418 return (name && (strcmp ("_sigreturn", name) == 0
3419 || strcmp ("sigvechandler", name) == 0));
3420 }
3421
3422 /* Assuming THIS_FRAME is for a SVR4 sigtramp routine, return the
3423 address of the associated sigcontext (ucontext) structure. */
3424
3425 static CORE_ADDR
3426 i386_svr4_sigcontext_addr (struct frame_info *this_frame)
3427 {
3428 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3429 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3430 gdb_byte buf[4];
3431 CORE_ADDR sp;
3432
3433 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
3434 sp = extract_unsigned_integer (buf, 4, byte_order);
3435
3436 return read_memory_unsigned_integer (sp + 8, 4, byte_order);
3437 }
3438
3439 \f
3440
3441 /* Implementation of `gdbarch_stap_is_single_operand', as defined in
3442 gdbarch.h. */
3443
3444 int
3445 i386_stap_is_single_operand (struct gdbarch *gdbarch, const char *s)
3446 {
3447 return (*s == '$' /* Literal number. */
3448 || (isdigit (*s) && s[1] == '(' && s[2] == '%') /* Displacement. */
3449 || (*s == '(' && s[1] == '%') /* Register indirection. */
3450 || (*s == '%' && isalpha (s[1]))); /* Register access. */
3451 }
3452
3453 /* Implementation of `gdbarch_stap_parse_special_token', as defined in
3454 gdbarch.h. */
3455
3456 int
3457 i386_stap_parse_special_token (struct gdbarch *gdbarch,
3458 struct stap_parse_info *p)
3459 {
3460 /* In order to parse special tokens, we use a state-machine that go
3461 through every known token and try to get a match. */
3462 enum
3463 {
3464 TRIPLET,
3465 THREE_ARG_DISPLACEMENT,
3466 DONE
3467 } current_state;
3468
3469 current_state = TRIPLET;
3470
3471 /* The special tokens to be parsed here are:
3472
3473 - `register base + (register index * size) + offset', as represented
3474 in `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
3475
3476 - Operands of the form `-8+3+1(%rbp)', which must be interpreted as
3477 `*(-8 + 3 - 1 + (void *) $eax)'. */
3478
3479 while (current_state != DONE)
3480 {
3481 const char *s = p->arg;
3482
3483 switch (current_state)
3484 {
3485 case TRIPLET:
3486 {
3487 if (isdigit (*s) || *s == '-' || *s == '+')
3488 {
3489 int got_minus[3];
3490 int i;
3491 long displacements[3];
3492 const char *start;
3493 char *regname;
3494 int len;
3495 struct stoken str;
3496
3497 got_minus[0] = 0;
3498 if (*s == '+')
3499 ++s;
3500 else if (*s == '-')
3501 {
3502 ++s;
3503 got_minus[0] = 1;
3504 }
3505
3506 displacements[0] = strtol (s, (char **) &s, 10);
3507
3508 if (*s != '+' && *s != '-')
3509 {
3510 /* We are not dealing with a triplet. */
3511 break;
3512 }
3513
3514 got_minus[1] = 0;
3515 if (*s == '+')
3516 ++s;
3517 else
3518 {
3519 ++s;
3520 got_minus[1] = 1;
3521 }
3522
3523 displacements[1] = strtol (s, (char **) &s, 10);
3524
3525 if (*s != '+' && *s != '-')
3526 {
3527 /* We are not dealing with a triplet. */
3528 break;
3529 }
3530
3531 got_minus[2] = 0;
3532 if (*s == '+')
3533 ++s;
3534 else
3535 {
3536 ++s;
3537 got_minus[2] = 1;
3538 }
3539
3540 displacements[2] = strtol (s, (char **) &s, 10);
3541
3542 if (*s != '(' || s[1] != '%')
3543 break;
3544
3545 s += 2;
3546 start = s;
3547
3548 while (isalnum (*s))
3549 ++s;
3550
3551 if (*s++ != ')')
3552 break;
3553
3554 len = s - start;
3555 regname = alloca (len + 1);
3556
3557 strncpy (regname, start, len);
3558 regname[len] = '\0';
3559
3560 if (user_reg_map_name_to_regnum (gdbarch,
3561 regname, len) == -1)
3562 error (_("Invalid register name `%s' "
3563 "on expression `%s'."),
3564 regname, p->saved_arg);
3565
3566 for (i = 0; i < 3; i++)
3567 {
3568 write_exp_elt_opcode (OP_LONG);
3569 write_exp_elt_type
3570 (builtin_type (gdbarch)->builtin_long);
3571 write_exp_elt_longcst (displacements[i]);
3572 write_exp_elt_opcode (OP_LONG);
3573 if (got_minus[i])
3574 write_exp_elt_opcode (UNOP_NEG);
3575 }
3576
3577 write_exp_elt_opcode (OP_REGISTER);
3578 str.ptr = regname;
3579 str.length = len;
3580 write_exp_string (str);
3581 write_exp_elt_opcode (OP_REGISTER);
3582
3583 write_exp_elt_opcode (UNOP_CAST);
3584 write_exp_elt_type (builtin_type (gdbarch)->builtin_data_ptr);
3585 write_exp_elt_opcode (UNOP_CAST);
3586
3587 write_exp_elt_opcode (BINOP_ADD);
3588 write_exp_elt_opcode (BINOP_ADD);
3589 write_exp_elt_opcode (BINOP_ADD);
3590
3591 write_exp_elt_opcode (UNOP_CAST);
3592 write_exp_elt_type (lookup_pointer_type (p->arg_type));
3593 write_exp_elt_opcode (UNOP_CAST);
3594
3595 write_exp_elt_opcode (UNOP_IND);
3596
3597 p->arg = s;
3598
3599 return 1;
3600 }
3601 break;
3602 }
3603 case THREE_ARG_DISPLACEMENT:
3604 {
3605 if (isdigit (*s) || *s == '(' || *s == '-' || *s == '+')
3606 {
3607 int offset_minus = 0;
3608 long offset = 0;
3609 int size_minus = 0;
3610 long size = 0;
3611 const char *start;
3612 char *base;
3613 int len_base;
3614 char *index;
3615 int len_index;
3616 struct stoken base_token, index_token;
3617
3618 if (*s == '+')
3619 ++s;
3620 else if (*s == '-')
3621 {
3622 ++s;
3623 offset_minus = 1;
3624 }
3625
3626 if (offset_minus && !isdigit (*s))
3627 break;
3628
3629 if (isdigit (*s))
3630 offset = strtol (s, (char **) &s, 10);
3631
3632 if (*s != '(' || s[1] != '%')
3633 break;
3634
3635 s += 2;
3636 start = s;
3637
3638 while (isalnum (*s))
3639 ++s;
3640
3641 if (*s != ',' || s[1] != '%')
3642 break;
3643
3644 len_base = s - start;
3645 base = alloca (len_base + 1);
3646 strncpy (base, start, len_base);
3647 base[len_base] = '\0';
3648
3649 if (user_reg_map_name_to_regnum (gdbarch,
3650 base, len_base) == -1)
3651 error (_("Invalid register name `%s' "
3652 "on expression `%s'."),
3653 base, p->saved_arg);
3654
3655 s += 2;
3656 start = s;
3657
3658 while (isalnum (*s))
3659 ++s;
3660
3661 len_index = s - start;
3662 index = alloca (len_index + 1);
3663 strncpy (index, start, len_index);
3664 index[len_index] = '\0';
3665
3666 if (user_reg_map_name_to_regnum (gdbarch,
3667 index, len_index) == -1)
3668 error (_("Invalid register name `%s' "
3669 "on expression `%s'."),
3670 index, p->saved_arg);
3671
3672 if (*s != ',' && *s != ')')
3673 break;
3674
3675 if (*s == ',')
3676 {
3677 ++s;
3678 if (*s == '+')
3679 ++s;
3680 else if (*s == '-')
3681 {
3682 ++s;
3683 size_minus = 1;
3684 }
3685
3686 size = strtol (s, (char **) &s, 10);
3687
3688 if (*s != ')')
3689 break;
3690 }
3691
3692 ++s;
3693
3694 if (offset)
3695 {
3696 write_exp_elt_opcode (OP_LONG);
3697 write_exp_elt_type
3698 (builtin_type (gdbarch)->builtin_long);
3699 write_exp_elt_longcst (offset);
3700 write_exp_elt_opcode (OP_LONG);
3701 if (offset_minus)
3702 write_exp_elt_opcode (UNOP_NEG);
3703 }
3704
3705 write_exp_elt_opcode (OP_REGISTER);
3706 base_token.ptr = base;
3707 base_token.length = len_base;
3708 write_exp_string (base_token);
3709 write_exp_elt_opcode (OP_REGISTER);
3710
3711 if (offset)
3712 write_exp_elt_opcode (BINOP_ADD);
3713
3714 write_exp_elt_opcode (OP_REGISTER);
3715 index_token.ptr = index;
3716 index_token.length = len_index;
3717 write_exp_string (index_token);
3718 write_exp_elt_opcode (OP_REGISTER);
3719
3720 if (size)
3721 {
3722 write_exp_elt_opcode (OP_LONG);
3723 write_exp_elt_type
3724 (builtin_type (gdbarch)->builtin_long);
3725 write_exp_elt_longcst (size);
3726 write_exp_elt_opcode (OP_LONG);
3727 if (size_minus)
3728 write_exp_elt_opcode (UNOP_NEG);
3729 write_exp_elt_opcode (BINOP_MUL);
3730 }
3731
3732 write_exp_elt_opcode (BINOP_ADD);
3733
3734 write_exp_elt_opcode (UNOP_CAST);
3735 write_exp_elt_type (lookup_pointer_type (p->arg_type));
3736 write_exp_elt_opcode (UNOP_CAST);
3737
3738 write_exp_elt_opcode (UNOP_IND);
3739
3740 p->arg = s;
3741
3742 return 1;
3743 }
3744 break;
3745 }
3746 }
3747
3748 /* Advancing to the next state. */
3749 ++current_state;
3750 }
3751
3752 return 0;
3753 }
3754
3755 \f
3756
3757 /* Generic ELF. */
3758
3759 void
3760 i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3761 {
3762 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
3763 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
3764
3765 /* Registering SystemTap handlers. */
3766 set_gdbarch_stap_integer_prefix (gdbarch, "$");
3767 set_gdbarch_stap_register_prefix (gdbarch, "%");
3768 set_gdbarch_stap_register_indirection_prefix (gdbarch, "(");
3769 set_gdbarch_stap_register_indirection_suffix (gdbarch, ")");
3770 set_gdbarch_stap_is_single_operand (gdbarch,
3771 i386_stap_is_single_operand);
3772 set_gdbarch_stap_parse_special_token (gdbarch,
3773 i386_stap_parse_special_token);
3774 }
3775
3776 /* System V Release 4 (SVR4). */
3777
3778 void
3779 i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3780 {
3781 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3782
3783 /* System V Release 4 uses ELF. */
3784 i386_elf_init_abi (info, gdbarch);
3785
3786 /* System V Release 4 has shared libraries. */
3787 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
3788
3789 tdep->sigtramp_p = i386_svr4_sigtramp_p;
3790 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
3791 tdep->sc_pc_offset = 36 + 14 * 4;
3792 tdep->sc_sp_offset = 36 + 17 * 4;
3793
3794 tdep->jb_pc_offset = 20;
3795 }
3796
3797 /* DJGPP. */
3798
3799 static void
3800 i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3801 {
3802 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3803
3804 /* DJGPP doesn't have any special frames for signal handlers. */
3805 tdep->sigtramp_p = NULL;
3806
3807 tdep->jb_pc_offset = 36;
3808
3809 /* DJGPP does not support the SSE registers. */
3810 if (! tdesc_has_registers (info.target_desc))
3811 tdep->tdesc = tdesc_i386_mmx;
3812
3813 /* Native compiler is GCC, which uses the SVR4 register numbering
3814 even in COFF and STABS. See the comment in i386_gdbarch_init,
3815 before the calls to set_gdbarch_stab_reg_to_regnum and
3816 set_gdbarch_sdb_reg_to_regnum. */
3817 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
3818 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
3819
3820 set_gdbarch_has_dos_based_file_system (gdbarch, 1);
3821 }
3822 \f
3823
3824 /* i386 register groups. In addition to the normal groups, add "mmx"
3825 and "sse". */
3826
3827 static struct reggroup *i386_sse_reggroup;
3828 static struct reggroup *i386_mmx_reggroup;
3829
3830 static void
3831 i386_init_reggroups (void)
3832 {
3833 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
3834 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
3835 }
3836
3837 static void
3838 i386_add_reggroups (struct gdbarch *gdbarch)
3839 {
3840 reggroup_add (gdbarch, i386_sse_reggroup);
3841 reggroup_add (gdbarch, i386_mmx_reggroup);
3842 reggroup_add (gdbarch, general_reggroup);
3843 reggroup_add (gdbarch, float_reggroup);
3844 reggroup_add (gdbarch, all_reggroup);
3845 reggroup_add (gdbarch, save_reggroup);
3846 reggroup_add (gdbarch, restore_reggroup);
3847 reggroup_add (gdbarch, vector_reggroup);
3848 reggroup_add (gdbarch, system_reggroup);
3849 }
3850
3851 int
3852 i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
3853 struct reggroup *group)
3854 {
3855 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3856 int fp_regnum_p, mmx_regnum_p, xmm_regnum_p, mxcsr_regnum_p,
3857 ymm_regnum_p, ymmh_regnum_p;
3858
3859 /* Don't include pseudo registers, except for MMX, in any register
3860 groups. */
3861 if (i386_byte_regnum_p (gdbarch, regnum))
3862 return 0;
3863
3864 if (i386_word_regnum_p (gdbarch, regnum))
3865 return 0;
3866
3867 if (i386_dword_regnum_p (gdbarch, regnum))
3868 return 0;
3869
3870 mmx_regnum_p = i386_mmx_regnum_p (gdbarch, regnum);
3871 if (group == i386_mmx_reggroup)
3872 return mmx_regnum_p;
3873
3874 xmm_regnum_p = i386_xmm_regnum_p (gdbarch, regnum);
3875 mxcsr_regnum_p = i386_mxcsr_regnum_p (gdbarch, regnum);
3876 if (group == i386_sse_reggroup)
3877 return xmm_regnum_p || mxcsr_regnum_p;
3878
3879 ymm_regnum_p = i386_ymm_regnum_p (gdbarch, regnum);
3880 if (group == vector_reggroup)
3881 return (mmx_regnum_p
3882 || ymm_regnum_p
3883 || mxcsr_regnum_p
3884 || (xmm_regnum_p
3885 && ((tdep->xcr0 & I386_XSTATE_AVX_MASK)
3886 == I386_XSTATE_SSE_MASK)));
3887
3888 fp_regnum_p = (i386_fp_regnum_p (gdbarch, regnum)
3889 || i386_fpc_regnum_p (gdbarch, regnum));
3890 if (group == float_reggroup)
3891 return fp_regnum_p;
3892
3893 /* For "info reg all", don't include upper YMM registers nor XMM
3894 registers when AVX is supported. */
3895 ymmh_regnum_p = i386_ymmh_regnum_p (gdbarch, regnum);
3896 if (group == all_reggroup
3897 && ((xmm_regnum_p
3898 && (tdep->xcr0 & I386_XSTATE_AVX))
3899 || ymmh_regnum_p))
3900 return 0;
3901
3902 if (group == general_reggroup)
3903 return (!fp_regnum_p
3904 && !mmx_regnum_p
3905 && !mxcsr_regnum_p
3906 && !xmm_regnum_p
3907 && !ymm_regnum_p
3908 && !ymmh_regnum_p);
3909
3910 return default_register_reggroup_p (gdbarch, regnum, group);
3911 }
3912 \f
3913
3914 /* Get the ARGIth function argument for the current function. */
3915
3916 static CORE_ADDR
3917 i386_fetch_pointer_argument (struct frame_info *frame, int argi,
3918 struct type *type)
3919 {
3920 struct gdbarch *gdbarch = get_frame_arch (frame);
3921 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3922 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
3923 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4, byte_order);
3924 }
3925
3926 static void
3927 i386_skip_permanent_breakpoint (struct regcache *regcache)
3928 {
3929 CORE_ADDR current_pc = regcache_read_pc (regcache);
3930
3931 /* On i386, breakpoint is exactly 1 byte long, so we just
3932 adjust the PC in the regcache. */
3933 current_pc += 1;
3934 regcache_write_pc (regcache, current_pc);
3935 }
3936
3937
3938 #define PREFIX_REPZ 0x01
3939 #define PREFIX_REPNZ 0x02
3940 #define PREFIX_LOCK 0x04
3941 #define PREFIX_DATA 0x08
3942 #define PREFIX_ADDR 0x10
3943
3944 /* operand size */
3945 enum
3946 {
3947 OT_BYTE = 0,
3948 OT_WORD,
3949 OT_LONG,
3950 OT_QUAD,
3951 OT_DQUAD,
3952 };
3953
3954 /* i386 arith/logic operations */
3955 enum
3956 {
3957 OP_ADDL,
3958 OP_ORL,
3959 OP_ADCL,
3960 OP_SBBL,
3961 OP_ANDL,
3962 OP_SUBL,
3963 OP_XORL,
3964 OP_CMPL,
3965 };
3966
3967 struct i386_record_s
3968 {
3969 struct gdbarch *gdbarch;
3970 struct regcache *regcache;
3971 CORE_ADDR orig_addr;
3972 CORE_ADDR addr;
3973 int aflag;
3974 int dflag;
3975 int override;
3976 uint8_t modrm;
3977 uint8_t mod, reg, rm;
3978 int ot;
3979 uint8_t rex_x;
3980 uint8_t rex_b;
3981 int rip_offset;
3982 int popl_esp_hack;
3983 const int *regmap;
3984 };
3985
3986 /* Parse the "modrm" part of the memory address irp->addr points at.
3987 Returns -1 if something goes wrong, 0 otherwise. */
3988
3989 static int
3990 i386_record_modrm (struct i386_record_s *irp)
3991 {
3992 struct gdbarch *gdbarch = irp->gdbarch;
3993
3994 if (record_read_memory (gdbarch, irp->addr, &irp->modrm, 1))
3995 return -1;
3996
3997 irp->addr++;
3998 irp->mod = (irp->modrm >> 6) & 3;
3999 irp->reg = (irp->modrm >> 3) & 7;
4000 irp->rm = irp->modrm & 7;
4001
4002 return 0;
4003 }
4004
4005 /* Extract the memory address that the current instruction writes to,
4006 and return it in *ADDR. Return -1 if something goes wrong. */
4007
4008 static int
4009 i386_record_lea_modrm_addr (struct i386_record_s *irp, uint64_t *addr)
4010 {
4011 struct gdbarch *gdbarch = irp->gdbarch;
4012 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4013 gdb_byte buf[4];
4014 ULONGEST offset64;
4015
4016 *addr = 0;
4017 if (irp->aflag)
4018 {
4019 /* 32 bits */
4020 int havesib = 0;
4021 uint8_t scale = 0;
4022 uint8_t byte;
4023 uint8_t index = 0;
4024 uint8_t base = irp->rm;
4025
4026 if (base == 4)
4027 {
4028 havesib = 1;
4029 if (record_read_memory (gdbarch, irp->addr, &byte, 1))
4030 return -1;
4031 irp->addr++;
4032 scale = (byte >> 6) & 3;
4033 index = ((byte >> 3) & 7) | irp->rex_x;
4034 base = (byte & 7);
4035 }
4036 base |= irp->rex_b;
4037
4038 switch (irp->mod)
4039 {
4040 case 0:
4041 if ((base & 7) == 5)
4042 {
4043 base = 0xff;
4044 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4045 return -1;
4046 irp->addr += 4;
4047 *addr = extract_signed_integer (buf, 4, byte_order);
4048 if (irp->regmap[X86_RECORD_R8_REGNUM] && !havesib)
4049 *addr += irp->addr + irp->rip_offset;
4050 }
4051 break;
4052 case 1:
4053 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4054 return -1;
4055 irp->addr++;
4056 *addr = (int8_t) buf[0];
4057 break;
4058 case 2:
4059 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4060 return -1;
4061 *addr = extract_signed_integer (buf, 4, byte_order);
4062 irp->addr += 4;
4063 break;
4064 }
4065
4066 offset64 = 0;
4067 if (base != 0xff)
4068 {
4069 if (base == 4 && irp->popl_esp_hack)
4070 *addr += irp->popl_esp_hack;
4071 regcache_raw_read_unsigned (irp->regcache, irp->regmap[base],
4072 &offset64);
4073 }
4074 if (irp->aflag == 2)
4075 {
4076 *addr += offset64;
4077 }
4078 else
4079 *addr = (uint32_t) (offset64 + *addr);
4080
4081 if (havesib && (index != 4 || scale != 0))
4082 {
4083 regcache_raw_read_unsigned (irp->regcache, irp->regmap[index],
4084 &offset64);
4085 if (irp->aflag == 2)
4086 *addr += offset64 << scale;
4087 else
4088 *addr = (uint32_t) (*addr + (offset64 << scale));
4089 }
4090 }
4091 else
4092 {
4093 /* 16 bits */
4094 switch (irp->mod)
4095 {
4096 case 0:
4097 if (irp->rm == 6)
4098 {
4099 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4100 return -1;
4101 irp->addr += 2;
4102 *addr = extract_signed_integer (buf, 2, byte_order);
4103 irp->rm = 0;
4104 goto no_rm;
4105 }
4106 break;
4107 case 1:
4108 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4109 return -1;
4110 irp->addr++;
4111 *addr = (int8_t) buf[0];
4112 break;
4113 case 2:
4114 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4115 return -1;
4116 irp->addr += 2;
4117 *addr = extract_signed_integer (buf, 2, byte_order);
4118 break;
4119 }
4120
4121 switch (irp->rm)
4122 {
4123 case 0:
4124 regcache_raw_read_unsigned (irp->regcache,
4125 irp->regmap[X86_RECORD_REBX_REGNUM],
4126 &offset64);
4127 *addr = (uint32_t) (*addr + offset64);
4128 regcache_raw_read_unsigned (irp->regcache,
4129 irp->regmap[X86_RECORD_RESI_REGNUM],
4130 &offset64);
4131 *addr = (uint32_t) (*addr + offset64);
4132 break;
4133 case 1:
4134 regcache_raw_read_unsigned (irp->regcache,
4135 irp->regmap[X86_RECORD_REBX_REGNUM],
4136 &offset64);
4137 *addr = (uint32_t) (*addr + offset64);
4138 regcache_raw_read_unsigned (irp->regcache,
4139 irp->regmap[X86_RECORD_REDI_REGNUM],
4140 &offset64);
4141 *addr = (uint32_t) (*addr + offset64);
4142 break;
4143 case 2:
4144 regcache_raw_read_unsigned (irp->regcache,
4145 irp->regmap[X86_RECORD_REBP_REGNUM],
4146 &offset64);
4147 *addr = (uint32_t) (*addr + offset64);
4148 regcache_raw_read_unsigned (irp->regcache,
4149 irp->regmap[X86_RECORD_RESI_REGNUM],
4150 &offset64);
4151 *addr = (uint32_t) (*addr + offset64);
4152 break;
4153 case 3:
4154 regcache_raw_read_unsigned (irp->regcache,
4155 irp->regmap[X86_RECORD_REBP_REGNUM],
4156 &offset64);
4157 *addr = (uint32_t) (*addr + offset64);
4158 regcache_raw_read_unsigned (irp->regcache,
4159 irp->regmap[X86_RECORD_REDI_REGNUM],
4160 &offset64);
4161 *addr = (uint32_t) (*addr + offset64);
4162 break;
4163 case 4:
4164 regcache_raw_read_unsigned (irp->regcache,
4165 irp->regmap[X86_RECORD_RESI_REGNUM],
4166 &offset64);
4167 *addr = (uint32_t) (*addr + offset64);
4168 break;
4169 case 5:
4170 regcache_raw_read_unsigned (irp->regcache,
4171 irp->regmap[X86_RECORD_REDI_REGNUM],
4172 &offset64);
4173 *addr = (uint32_t) (*addr + offset64);
4174 break;
4175 case 6:
4176 regcache_raw_read_unsigned (irp->regcache,
4177 irp->regmap[X86_RECORD_REBP_REGNUM],
4178 &offset64);
4179 *addr = (uint32_t) (*addr + offset64);
4180 break;
4181 case 7:
4182 regcache_raw_read_unsigned (irp->regcache,
4183 irp->regmap[X86_RECORD_REBX_REGNUM],
4184 &offset64);
4185 *addr = (uint32_t) (*addr + offset64);
4186 break;
4187 }
4188 *addr &= 0xffff;
4189 }
4190
4191 no_rm:
4192 return 0;
4193 }
4194
4195 /* Record the address and contents of the memory that will be changed
4196 by the current instruction. Return -1 if something goes wrong, 0
4197 otherwise. */
4198
4199 static int
4200 i386_record_lea_modrm (struct i386_record_s *irp)
4201 {
4202 struct gdbarch *gdbarch = irp->gdbarch;
4203 uint64_t addr;
4204
4205 if (irp->override >= 0)
4206 {
4207 if (record_memory_query)
4208 {
4209 int q;
4210
4211 target_terminal_ours ();
4212 q = yquery (_("\
4213 Process record ignores the memory change of instruction at address %s\n\
4214 because it can't get the value of the segment register.\n\
4215 Do you want to stop the program?"),
4216 paddress (gdbarch, irp->orig_addr));
4217 target_terminal_inferior ();
4218 if (q)
4219 return -1;
4220 }
4221
4222 return 0;
4223 }
4224
4225 if (i386_record_lea_modrm_addr (irp, &addr))
4226 return -1;
4227
4228 if (record_arch_list_add_mem (addr, 1 << irp->ot))
4229 return -1;
4230
4231 return 0;
4232 }
4233
4234 /* Record the effects of a push operation. Return -1 if something
4235 goes wrong, 0 otherwise. */
4236
4237 static int
4238 i386_record_push (struct i386_record_s *irp, int size)
4239 {
4240 ULONGEST addr;
4241
4242 if (record_arch_list_add_reg (irp->regcache,
4243 irp->regmap[X86_RECORD_RESP_REGNUM]))
4244 return -1;
4245 regcache_raw_read_unsigned (irp->regcache,
4246 irp->regmap[X86_RECORD_RESP_REGNUM],
4247 &addr);
4248 if (record_arch_list_add_mem ((CORE_ADDR) addr - size, size))
4249 return -1;
4250
4251 return 0;
4252 }
4253
4254
4255 /* Defines contents to record. */
4256 #define I386_SAVE_FPU_REGS 0xfffd
4257 #define I386_SAVE_FPU_ENV 0xfffe
4258 #define I386_SAVE_FPU_ENV_REG_STACK 0xffff
4259
4260 /* Record the values of the floating point registers which will be
4261 changed by the current instruction. Returns -1 if something is
4262 wrong, 0 otherwise. */
4263
4264 static int i386_record_floats (struct gdbarch *gdbarch,
4265 struct i386_record_s *ir,
4266 uint32_t iregnum)
4267 {
4268 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4269 int i;
4270
4271 /* Oza: Because of floating point insn push/pop of fpu stack is going to
4272 happen. Currently we store st0-st7 registers, but we need not store all
4273 registers all the time, in future we use ftag register and record only
4274 those who are not marked as an empty. */
4275
4276 if (I386_SAVE_FPU_REGS == iregnum)
4277 {
4278 for (i = I387_ST0_REGNUM (tdep); i <= I387_ST0_REGNUM (tdep) + 7; i++)
4279 {
4280 if (record_arch_list_add_reg (ir->regcache, i))
4281 return -1;
4282 }
4283 }
4284 else if (I386_SAVE_FPU_ENV == iregnum)
4285 {
4286 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4287 {
4288 if (record_arch_list_add_reg (ir->regcache, i))
4289 return -1;
4290 }
4291 }
4292 else if (I386_SAVE_FPU_ENV_REG_STACK == iregnum)
4293 {
4294 for (i = I387_ST0_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4295 {
4296 if (record_arch_list_add_reg (ir->regcache, i))
4297 return -1;
4298 }
4299 }
4300 else if ((iregnum >= I387_ST0_REGNUM (tdep)) &&
4301 (iregnum <= I387_FOP_REGNUM (tdep)))
4302 {
4303 if (record_arch_list_add_reg (ir->regcache,iregnum))
4304 return -1;
4305 }
4306 else
4307 {
4308 /* Parameter error. */
4309 return -1;
4310 }
4311 if(I386_SAVE_FPU_ENV != iregnum)
4312 {
4313 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4314 {
4315 if (record_arch_list_add_reg (ir->regcache, i))
4316 return -1;
4317 }
4318 }
4319 return 0;
4320 }
4321
4322 /* Parse the current instruction, and record the values of the
4323 registers and memory that will be changed by the current
4324 instruction. Returns -1 if something goes wrong, 0 otherwise. */
4325
4326 #define I386_RECORD_ARCH_LIST_ADD_REG(regnum) \
4327 record_arch_list_add_reg (ir.regcache, ir.regmap[(regnum)])
4328
4329 int
4330 i386_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
4331 CORE_ADDR input_addr)
4332 {
4333 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4334 int prefixes = 0;
4335 int regnum = 0;
4336 uint32_t opcode;
4337 uint8_t opcode8;
4338 ULONGEST addr;
4339 gdb_byte buf[MAX_REGISTER_SIZE];
4340 struct i386_record_s ir;
4341 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4342 int rex = 0;
4343 uint8_t rex_w = -1;
4344 uint8_t rex_r = 0;
4345
4346 memset (&ir, 0, sizeof (struct i386_record_s));
4347 ir.regcache = regcache;
4348 ir.addr = input_addr;
4349 ir.orig_addr = input_addr;
4350 ir.aflag = 1;
4351 ir.dflag = 1;
4352 ir.override = -1;
4353 ir.popl_esp_hack = 0;
4354 ir.regmap = tdep->record_regmap;
4355 ir.gdbarch = gdbarch;
4356
4357 if (record_debug > 1)
4358 fprintf_unfiltered (gdb_stdlog, "Process record: i386_process_record "
4359 "addr = %s\n",
4360 paddress (gdbarch, ir.addr));
4361
4362 /* prefixes */
4363 while (1)
4364 {
4365 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
4366 return -1;
4367 ir.addr++;
4368 switch (opcode8) /* Instruction prefixes */
4369 {
4370 case REPE_PREFIX_OPCODE:
4371 prefixes |= PREFIX_REPZ;
4372 break;
4373 case REPNE_PREFIX_OPCODE:
4374 prefixes |= PREFIX_REPNZ;
4375 break;
4376 case LOCK_PREFIX_OPCODE:
4377 prefixes |= PREFIX_LOCK;
4378 break;
4379 case CS_PREFIX_OPCODE:
4380 ir.override = X86_RECORD_CS_REGNUM;
4381 break;
4382 case SS_PREFIX_OPCODE:
4383 ir.override = X86_RECORD_SS_REGNUM;
4384 break;
4385 case DS_PREFIX_OPCODE:
4386 ir.override = X86_RECORD_DS_REGNUM;
4387 break;
4388 case ES_PREFIX_OPCODE:
4389 ir.override = X86_RECORD_ES_REGNUM;
4390 break;
4391 case FS_PREFIX_OPCODE:
4392 ir.override = X86_RECORD_FS_REGNUM;
4393 break;
4394 case GS_PREFIX_OPCODE:
4395 ir.override = X86_RECORD_GS_REGNUM;
4396 break;
4397 case DATA_PREFIX_OPCODE:
4398 prefixes |= PREFIX_DATA;
4399 break;
4400 case ADDR_PREFIX_OPCODE:
4401 prefixes |= PREFIX_ADDR;
4402 break;
4403 case 0x40: /* i386 inc %eax */
4404 case 0x41: /* i386 inc %ecx */
4405 case 0x42: /* i386 inc %edx */
4406 case 0x43: /* i386 inc %ebx */
4407 case 0x44: /* i386 inc %esp */
4408 case 0x45: /* i386 inc %ebp */
4409 case 0x46: /* i386 inc %esi */
4410 case 0x47: /* i386 inc %edi */
4411 case 0x48: /* i386 dec %eax */
4412 case 0x49: /* i386 dec %ecx */
4413 case 0x4a: /* i386 dec %edx */
4414 case 0x4b: /* i386 dec %ebx */
4415 case 0x4c: /* i386 dec %esp */
4416 case 0x4d: /* i386 dec %ebp */
4417 case 0x4e: /* i386 dec %esi */
4418 case 0x4f: /* i386 dec %edi */
4419 if (ir.regmap[X86_RECORD_R8_REGNUM]) /* 64 bit target */
4420 {
4421 /* REX */
4422 rex = 1;
4423 rex_w = (opcode8 >> 3) & 1;
4424 rex_r = (opcode8 & 0x4) << 1;
4425 ir.rex_x = (opcode8 & 0x2) << 2;
4426 ir.rex_b = (opcode8 & 0x1) << 3;
4427 }
4428 else /* 32 bit target */
4429 goto out_prefixes;
4430 break;
4431 default:
4432 goto out_prefixes;
4433 break;
4434 }
4435 }
4436 out_prefixes:
4437 if (ir.regmap[X86_RECORD_R8_REGNUM] && rex_w == 1)
4438 {
4439 ir.dflag = 2;
4440 }
4441 else
4442 {
4443 if (prefixes & PREFIX_DATA)
4444 ir.dflag ^= 1;
4445 }
4446 if (prefixes & PREFIX_ADDR)
4447 ir.aflag ^= 1;
4448 else if (ir.regmap[X86_RECORD_R8_REGNUM])
4449 ir.aflag = 2;
4450
4451 /* Now check op code. */
4452 opcode = (uint32_t) opcode8;
4453 reswitch:
4454 switch (opcode)
4455 {
4456 case 0x0f:
4457 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
4458 return -1;
4459 ir.addr++;
4460 opcode = (uint32_t) opcode8 | 0x0f00;
4461 goto reswitch;
4462 break;
4463
4464 case 0x00: /* arith & logic */
4465 case 0x01:
4466 case 0x02:
4467 case 0x03:
4468 case 0x04:
4469 case 0x05:
4470 case 0x08:
4471 case 0x09:
4472 case 0x0a:
4473 case 0x0b:
4474 case 0x0c:
4475 case 0x0d:
4476 case 0x10:
4477 case 0x11:
4478 case 0x12:
4479 case 0x13:
4480 case 0x14:
4481 case 0x15:
4482 case 0x18:
4483 case 0x19:
4484 case 0x1a:
4485 case 0x1b:
4486 case 0x1c:
4487 case 0x1d:
4488 case 0x20:
4489 case 0x21:
4490 case 0x22:
4491 case 0x23:
4492 case 0x24:
4493 case 0x25:
4494 case 0x28:
4495 case 0x29:
4496 case 0x2a:
4497 case 0x2b:
4498 case 0x2c:
4499 case 0x2d:
4500 case 0x30:
4501 case 0x31:
4502 case 0x32:
4503 case 0x33:
4504 case 0x34:
4505 case 0x35:
4506 case 0x38:
4507 case 0x39:
4508 case 0x3a:
4509 case 0x3b:
4510 case 0x3c:
4511 case 0x3d:
4512 if (((opcode >> 3) & 7) != OP_CMPL)
4513 {
4514 if ((opcode & 1) == 0)
4515 ir.ot = OT_BYTE;
4516 else
4517 ir.ot = ir.dflag + OT_WORD;
4518
4519 switch ((opcode >> 1) & 3)
4520 {
4521 case 0: /* OP Ev, Gv */
4522 if (i386_record_modrm (&ir))
4523 return -1;
4524 if (ir.mod != 3)
4525 {
4526 if (i386_record_lea_modrm (&ir))
4527 return -1;
4528 }
4529 else
4530 {
4531 ir.rm |= ir.rex_b;
4532 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4533 ir.rm &= 0x3;
4534 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
4535 }
4536 break;
4537 case 1: /* OP Gv, Ev */
4538 if (i386_record_modrm (&ir))
4539 return -1;
4540 ir.reg |= rex_r;
4541 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4542 ir.reg &= 0x3;
4543 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4544 break;
4545 case 2: /* OP A, Iv */
4546 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4547 break;
4548 }
4549 }
4550 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4551 break;
4552
4553 case 0x80: /* GRP1 */
4554 case 0x81:
4555 case 0x82:
4556 case 0x83:
4557 if (i386_record_modrm (&ir))
4558 return -1;
4559
4560 if (ir.reg != OP_CMPL)
4561 {
4562 if ((opcode & 1) == 0)
4563 ir.ot = OT_BYTE;
4564 else
4565 ir.ot = ir.dflag + OT_WORD;
4566
4567 if (ir.mod != 3)
4568 {
4569 if (opcode == 0x83)
4570 ir.rip_offset = 1;
4571 else
4572 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
4573 if (i386_record_lea_modrm (&ir))
4574 return -1;
4575 }
4576 else
4577 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
4578 }
4579 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4580 break;
4581
4582 case 0x40: /* inc */
4583 case 0x41:
4584 case 0x42:
4585 case 0x43:
4586 case 0x44:
4587 case 0x45:
4588 case 0x46:
4589 case 0x47:
4590
4591 case 0x48: /* dec */
4592 case 0x49:
4593 case 0x4a:
4594 case 0x4b:
4595 case 0x4c:
4596 case 0x4d:
4597 case 0x4e:
4598 case 0x4f:
4599
4600 I386_RECORD_ARCH_LIST_ADD_REG (opcode & 7);
4601 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4602 break;
4603
4604 case 0xf6: /* GRP3 */
4605 case 0xf7:
4606 if ((opcode & 1) == 0)
4607 ir.ot = OT_BYTE;
4608 else
4609 ir.ot = ir.dflag + OT_WORD;
4610 if (i386_record_modrm (&ir))
4611 return -1;
4612
4613 if (ir.mod != 3 && ir.reg == 0)
4614 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
4615
4616 switch (ir.reg)
4617 {
4618 case 0: /* test */
4619 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4620 break;
4621 case 2: /* not */
4622 case 3: /* neg */
4623 if (ir.mod != 3)
4624 {
4625 if (i386_record_lea_modrm (&ir))
4626 return -1;
4627 }
4628 else
4629 {
4630 ir.rm |= ir.rex_b;
4631 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4632 ir.rm &= 0x3;
4633 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
4634 }
4635 if (ir.reg == 3) /* neg */
4636 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4637 break;
4638 case 4: /* mul */
4639 case 5: /* imul */
4640 case 6: /* div */
4641 case 7: /* idiv */
4642 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4643 if (ir.ot != OT_BYTE)
4644 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
4645 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4646 break;
4647 default:
4648 ir.addr -= 2;
4649 opcode = opcode << 8 | ir.modrm;
4650 goto no_support;
4651 break;
4652 }
4653 break;
4654
4655 case 0xfe: /* GRP4 */
4656 case 0xff: /* GRP5 */
4657 if (i386_record_modrm (&ir))
4658 return -1;
4659 if (ir.reg >= 2 && opcode == 0xfe)
4660 {
4661 ir.addr -= 2;
4662 opcode = opcode << 8 | ir.modrm;
4663 goto no_support;
4664 }
4665 switch (ir.reg)
4666 {
4667 case 0: /* inc */
4668 case 1: /* dec */
4669 if ((opcode & 1) == 0)
4670 ir.ot = OT_BYTE;
4671 else
4672 ir.ot = ir.dflag + OT_WORD;
4673 if (ir.mod != 3)
4674 {
4675 if (i386_record_lea_modrm (&ir))
4676 return -1;
4677 }
4678 else
4679 {
4680 ir.rm |= ir.rex_b;
4681 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4682 ir.rm &= 0x3;
4683 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
4684 }
4685 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4686 break;
4687 case 2: /* call */
4688 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4689 ir.dflag = 2;
4690 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4691 return -1;
4692 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4693 break;
4694 case 3: /* lcall */
4695 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
4696 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4697 return -1;
4698 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4699 break;
4700 case 4: /* jmp */
4701 case 5: /* ljmp */
4702 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4703 break;
4704 case 6: /* push */
4705 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4706 ir.dflag = 2;
4707 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4708 return -1;
4709 break;
4710 default:
4711 ir.addr -= 2;
4712 opcode = opcode << 8 | ir.modrm;
4713 goto no_support;
4714 break;
4715 }
4716 break;
4717
4718 case 0x84: /* test */
4719 case 0x85:
4720 case 0xa8:
4721 case 0xa9:
4722 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4723 break;
4724
4725 case 0x98: /* CWDE/CBW */
4726 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4727 break;
4728
4729 case 0x99: /* CDQ/CWD */
4730 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4731 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
4732 break;
4733
4734 case 0x0faf: /* imul */
4735 case 0x69:
4736 case 0x6b:
4737 ir.ot = ir.dflag + OT_WORD;
4738 if (i386_record_modrm (&ir))
4739 return -1;
4740 if (opcode == 0x69)
4741 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
4742 else if (opcode == 0x6b)
4743 ir.rip_offset = 1;
4744 ir.reg |= rex_r;
4745 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4746 ir.reg &= 0x3;
4747 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4748 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4749 break;
4750
4751 case 0x0fc0: /* xadd */
4752 case 0x0fc1:
4753 if ((opcode & 1) == 0)
4754 ir.ot = OT_BYTE;
4755 else
4756 ir.ot = ir.dflag + OT_WORD;
4757 if (i386_record_modrm (&ir))
4758 return -1;
4759 ir.reg |= rex_r;
4760 if (ir.mod == 3)
4761 {
4762 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4763 ir.reg &= 0x3;
4764 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4765 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4766 ir.rm &= 0x3;
4767 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
4768 }
4769 else
4770 {
4771 if (i386_record_lea_modrm (&ir))
4772 return -1;
4773 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4774 ir.reg &= 0x3;
4775 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4776 }
4777 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4778 break;
4779
4780 case 0x0fb0: /* cmpxchg */
4781 case 0x0fb1:
4782 if ((opcode & 1) == 0)
4783 ir.ot = OT_BYTE;
4784 else
4785 ir.ot = ir.dflag + OT_WORD;
4786 if (i386_record_modrm (&ir))
4787 return -1;
4788 if (ir.mod == 3)
4789 {
4790 ir.reg |= rex_r;
4791 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4792 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4793 ir.reg &= 0x3;
4794 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4795 }
4796 else
4797 {
4798 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4799 if (i386_record_lea_modrm (&ir))
4800 return -1;
4801 }
4802 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4803 break;
4804
4805 case 0x0fc7: /* cmpxchg8b */
4806 if (i386_record_modrm (&ir))
4807 return -1;
4808 if (ir.mod == 3)
4809 {
4810 ir.addr -= 2;
4811 opcode = opcode << 8 | ir.modrm;
4812 goto no_support;
4813 }
4814 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4815 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
4816 if (i386_record_lea_modrm (&ir))
4817 return -1;
4818 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4819 break;
4820
4821 case 0x50: /* push */
4822 case 0x51:
4823 case 0x52:
4824 case 0x53:
4825 case 0x54:
4826 case 0x55:
4827 case 0x56:
4828 case 0x57:
4829 case 0x68:
4830 case 0x6a:
4831 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4832 ir.dflag = 2;
4833 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4834 return -1;
4835 break;
4836
4837 case 0x06: /* push es */
4838 case 0x0e: /* push cs */
4839 case 0x16: /* push ss */
4840 case 0x1e: /* push ds */
4841 if (ir.regmap[X86_RECORD_R8_REGNUM])
4842 {
4843 ir.addr -= 1;
4844 goto no_support;
4845 }
4846 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4847 return -1;
4848 break;
4849
4850 case 0x0fa0: /* push fs */
4851 case 0x0fa8: /* push gs */
4852 if (ir.regmap[X86_RECORD_R8_REGNUM])
4853 {
4854 ir.addr -= 2;
4855 goto no_support;
4856 }
4857 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4858 return -1;
4859 break;
4860
4861 case 0x60: /* pusha */
4862 if (ir.regmap[X86_RECORD_R8_REGNUM])
4863 {
4864 ir.addr -= 1;
4865 goto no_support;
4866 }
4867 if (i386_record_push (&ir, 1 << (ir.dflag + 4)))
4868 return -1;
4869 break;
4870
4871 case 0x58: /* pop */
4872 case 0x59:
4873 case 0x5a:
4874 case 0x5b:
4875 case 0x5c:
4876 case 0x5d:
4877 case 0x5e:
4878 case 0x5f:
4879 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4880 I386_RECORD_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
4881 break;
4882
4883 case 0x61: /* popa */
4884 if (ir.regmap[X86_RECORD_R8_REGNUM])
4885 {
4886 ir.addr -= 1;
4887 goto no_support;
4888 }
4889 for (regnum = X86_RECORD_REAX_REGNUM;
4890 regnum <= X86_RECORD_REDI_REGNUM;
4891 regnum++)
4892 I386_RECORD_ARCH_LIST_ADD_REG (regnum);
4893 break;
4894
4895 case 0x8f: /* pop */
4896 if (ir.regmap[X86_RECORD_R8_REGNUM])
4897 ir.ot = ir.dflag ? OT_QUAD : OT_WORD;
4898 else
4899 ir.ot = ir.dflag + OT_WORD;
4900 if (i386_record_modrm (&ir))
4901 return -1;
4902 if (ir.mod == 3)
4903 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
4904 else
4905 {
4906 ir.popl_esp_hack = 1 << ir.ot;
4907 if (i386_record_lea_modrm (&ir))
4908 return -1;
4909 }
4910 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4911 break;
4912
4913 case 0xc8: /* enter */
4914 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
4915 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4916 ir.dflag = 2;
4917 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4918 return -1;
4919 break;
4920
4921 case 0xc9: /* leave */
4922 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4923 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
4924 break;
4925
4926 case 0x07: /* pop es */
4927 if (ir.regmap[X86_RECORD_R8_REGNUM])
4928 {
4929 ir.addr -= 1;
4930 goto no_support;
4931 }
4932 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4933 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_ES_REGNUM);
4934 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4935 break;
4936
4937 case 0x17: /* pop ss */
4938 if (ir.regmap[X86_RECORD_R8_REGNUM])
4939 {
4940 ir.addr -= 1;
4941 goto no_support;
4942 }
4943 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4944 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_SS_REGNUM);
4945 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4946 break;
4947
4948 case 0x1f: /* pop ds */
4949 if (ir.regmap[X86_RECORD_R8_REGNUM])
4950 {
4951 ir.addr -= 1;
4952 goto no_support;
4953 }
4954 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4955 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_DS_REGNUM);
4956 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4957 break;
4958
4959 case 0x0fa1: /* pop fs */
4960 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4961 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_FS_REGNUM);
4962 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4963 break;
4964
4965 case 0x0fa9: /* pop gs */
4966 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4967 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
4968 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4969 break;
4970
4971 case 0x88: /* mov */
4972 case 0x89:
4973 case 0xc6:
4974 case 0xc7:
4975 if ((opcode & 1) == 0)
4976 ir.ot = OT_BYTE;
4977 else
4978 ir.ot = ir.dflag + OT_WORD;
4979
4980 if (i386_record_modrm (&ir))
4981 return -1;
4982
4983 if (ir.mod != 3)
4984 {
4985 if (opcode == 0xc6 || opcode == 0xc7)
4986 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
4987 if (i386_record_lea_modrm (&ir))
4988 return -1;
4989 }
4990 else
4991 {
4992 if (opcode == 0xc6 || opcode == 0xc7)
4993 ir.rm |= ir.rex_b;
4994 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4995 ir.rm &= 0x3;
4996 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
4997 }
4998 break;
4999
5000 case 0x8a: /* mov */
5001 case 0x8b:
5002 if ((opcode & 1) == 0)
5003 ir.ot = OT_BYTE;
5004 else
5005 ir.ot = ir.dflag + OT_WORD;
5006 if (i386_record_modrm (&ir))
5007 return -1;
5008 ir.reg |= rex_r;
5009 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5010 ir.reg &= 0x3;
5011 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
5012 break;
5013
5014 case 0x8c: /* mov seg */
5015 if (i386_record_modrm (&ir))
5016 return -1;
5017 if (ir.reg > 5)
5018 {
5019 ir.addr -= 2;
5020 opcode = opcode << 8 | ir.modrm;
5021 goto no_support;
5022 }
5023
5024 if (ir.mod == 3)
5025 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
5026 else
5027 {
5028 ir.ot = OT_WORD;
5029 if (i386_record_lea_modrm (&ir))
5030 return -1;
5031 }
5032 break;
5033
5034 case 0x8e: /* mov seg */
5035 if (i386_record_modrm (&ir))
5036 return -1;
5037 switch (ir.reg)
5038 {
5039 case 0:
5040 regnum = X86_RECORD_ES_REGNUM;
5041 break;
5042 case 2:
5043 regnum = X86_RECORD_SS_REGNUM;
5044 break;
5045 case 3:
5046 regnum = X86_RECORD_DS_REGNUM;
5047 break;
5048 case 4:
5049 regnum = X86_RECORD_FS_REGNUM;
5050 break;
5051 case 5:
5052 regnum = X86_RECORD_GS_REGNUM;
5053 break;
5054 default:
5055 ir.addr -= 2;
5056 opcode = opcode << 8 | ir.modrm;
5057 goto no_support;
5058 break;
5059 }
5060 I386_RECORD_ARCH_LIST_ADD_REG (regnum);
5061 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5062 break;
5063
5064 case 0x0fb6: /* movzbS */
5065 case 0x0fb7: /* movzwS */
5066 case 0x0fbe: /* movsbS */
5067 case 0x0fbf: /* movswS */
5068 if (i386_record_modrm (&ir))
5069 return -1;
5070 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5071 break;
5072
5073 case 0x8d: /* lea */
5074 if (i386_record_modrm (&ir))
5075 return -1;
5076 if (ir.mod == 3)
5077 {
5078 ir.addr -= 2;
5079 opcode = opcode << 8 | ir.modrm;
5080 goto no_support;
5081 }
5082 ir.ot = ir.dflag;
5083 ir.reg |= rex_r;
5084 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5085 ir.reg &= 0x3;
5086 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
5087 break;
5088
5089 case 0xa0: /* mov EAX */
5090 case 0xa1:
5091
5092 case 0xd7: /* xlat */
5093 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5094 break;
5095
5096 case 0xa2: /* mov EAX */
5097 case 0xa3:
5098 if (ir.override >= 0)
5099 {
5100 if (record_memory_query)
5101 {
5102 int q;
5103
5104 target_terminal_ours ();
5105 q = yquery (_("\
5106 Process record ignores the memory change of instruction at address %s\n\
5107 because it can't get the value of the segment register.\n\
5108 Do you want to stop the program?"),
5109 paddress (gdbarch, ir.orig_addr));
5110 target_terminal_inferior ();
5111 if (q)
5112 return -1;
5113 }
5114 }
5115 else
5116 {
5117 if ((opcode & 1) == 0)
5118 ir.ot = OT_BYTE;
5119 else
5120 ir.ot = ir.dflag + OT_WORD;
5121 if (ir.aflag == 2)
5122 {
5123 if (record_read_memory (gdbarch, ir.addr, buf, 8))
5124 return -1;
5125 ir.addr += 8;
5126 addr = extract_unsigned_integer (buf, 8, byte_order);
5127 }
5128 else if (ir.aflag)
5129 {
5130 if (record_read_memory (gdbarch, ir.addr, buf, 4))
5131 return -1;
5132 ir.addr += 4;
5133 addr = extract_unsigned_integer (buf, 4, byte_order);
5134 }
5135 else
5136 {
5137 if (record_read_memory (gdbarch, ir.addr, buf, 2))
5138 return -1;
5139 ir.addr += 2;
5140 addr = extract_unsigned_integer (buf, 2, byte_order);
5141 }
5142 if (record_arch_list_add_mem (addr, 1 << ir.ot))
5143 return -1;
5144 }
5145 break;
5146
5147 case 0xb0: /* mov R, Ib */
5148 case 0xb1:
5149 case 0xb2:
5150 case 0xb3:
5151 case 0xb4:
5152 case 0xb5:
5153 case 0xb6:
5154 case 0xb7:
5155 I386_RECORD_ARCH_LIST_ADD_REG ((ir.regmap[X86_RECORD_R8_REGNUM])
5156 ? ((opcode & 0x7) | ir.rex_b)
5157 : ((opcode & 0x7) & 0x3));
5158 break;
5159
5160 case 0xb8: /* mov R, Iv */
5161 case 0xb9:
5162 case 0xba:
5163 case 0xbb:
5164 case 0xbc:
5165 case 0xbd:
5166 case 0xbe:
5167 case 0xbf:
5168 I386_RECORD_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
5169 break;
5170
5171 case 0x91: /* xchg R, EAX */
5172 case 0x92:
5173 case 0x93:
5174 case 0x94:
5175 case 0x95:
5176 case 0x96:
5177 case 0x97:
5178 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5179 I386_RECORD_ARCH_LIST_ADD_REG (opcode & 0x7);
5180 break;
5181
5182 case 0x86: /* xchg Ev, Gv */
5183 case 0x87:
5184 if ((opcode & 1) == 0)
5185 ir.ot = OT_BYTE;
5186 else
5187 ir.ot = ir.dflag + OT_WORD;
5188 if (i386_record_modrm (&ir))
5189 return -1;
5190 if (ir.mod == 3)
5191 {
5192 ir.rm |= ir.rex_b;
5193 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5194 ir.rm &= 0x3;
5195 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
5196 }
5197 else
5198 {
5199 if (i386_record_lea_modrm (&ir))
5200 return -1;
5201 }
5202 ir.reg |= rex_r;
5203 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5204 ir.reg &= 0x3;
5205 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
5206 break;
5207
5208 case 0xc4: /* les Gv */
5209 case 0xc5: /* lds Gv */
5210 if (ir.regmap[X86_RECORD_R8_REGNUM])
5211 {
5212 ir.addr -= 1;
5213 goto no_support;
5214 }
5215 /* FALLTHROUGH */
5216 case 0x0fb2: /* lss Gv */
5217 case 0x0fb4: /* lfs Gv */
5218 case 0x0fb5: /* lgs Gv */
5219 if (i386_record_modrm (&ir))
5220 return -1;
5221 if (ir.mod == 3)
5222 {
5223 if (opcode > 0xff)
5224 ir.addr -= 3;
5225 else
5226 ir.addr -= 2;
5227 opcode = opcode << 8 | ir.modrm;
5228 goto no_support;
5229 }
5230 switch (opcode)
5231 {
5232 case 0xc4: /* les Gv */
5233 regnum = X86_RECORD_ES_REGNUM;
5234 break;
5235 case 0xc5: /* lds Gv */
5236 regnum = X86_RECORD_DS_REGNUM;
5237 break;
5238 case 0x0fb2: /* lss Gv */
5239 regnum = X86_RECORD_SS_REGNUM;
5240 break;
5241 case 0x0fb4: /* lfs Gv */
5242 regnum = X86_RECORD_FS_REGNUM;
5243 break;
5244 case 0x0fb5: /* lgs Gv */
5245 regnum = X86_RECORD_GS_REGNUM;
5246 break;
5247 }
5248 I386_RECORD_ARCH_LIST_ADD_REG (regnum);
5249 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5250 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5251 break;
5252
5253 case 0xc0: /* shifts */
5254 case 0xc1:
5255 case 0xd0:
5256 case 0xd1:
5257 case 0xd2:
5258 case 0xd3:
5259 if ((opcode & 1) == 0)
5260 ir.ot = OT_BYTE;
5261 else
5262 ir.ot = ir.dflag + OT_WORD;
5263 if (i386_record_modrm (&ir))
5264 return -1;
5265 if (ir.mod != 3 && (opcode == 0xd2 || opcode == 0xd3))
5266 {
5267 if (i386_record_lea_modrm (&ir))
5268 return -1;
5269 }
5270 else
5271 {
5272 ir.rm |= ir.rex_b;
5273 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5274 ir.rm &= 0x3;
5275 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
5276 }
5277 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5278 break;
5279
5280 case 0x0fa4:
5281 case 0x0fa5:
5282 case 0x0fac:
5283 case 0x0fad:
5284 if (i386_record_modrm (&ir))
5285 return -1;
5286 if (ir.mod == 3)
5287 {
5288 if (record_arch_list_add_reg (ir.regcache, ir.rm))
5289 return -1;
5290 }
5291 else
5292 {
5293 if (i386_record_lea_modrm (&ir))
5294 return -1;
5295 }
5296 break;
5297
5298 case 0xd8: /* Floats. */
5299 case 0xd9:
5300 case 0xda:
5301 case 0xdb:
5302 case 0xdc:
5303 case 0xdd:
5304 case 0xde:
5305 case 0xdf:
5306 if (i386_record_modrm (&ir))
5307 return -1;
5308 ir.reg |= ((opcode & 7) << 3);
5309 if (ir.mod != 3)
5310 {
5311 /* Memory. */
5312 uint64_t addr64;
5313
5314 if (i386_record_lea_modrm_addr (&ir, &addr64))
5315 return -1;
5316 switch (ir.reg)
5317 {
5318 case 0x02:
5319 case 0x12:
5320 case 0x22:
5321 case 0x32:
5322 /* For fcom, ficom nothing to do. */
5323 break;
5324 case 0x03:
5325 case 0x13:
5326 case 0x23:
5327 case 0x33:
5328 /* For fcomp, ficomp pop FPU stack, store all. */
5329 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5330 return -1;
5331 break;
5332 case 0x00:
5333 case 0x01:
5334 case 0x04:
5335 case 0x05:
5336 case 0x06:
5337 case 0x07:
5338 case 0x10:
5339 case 0x11:
5340 case 0x14:
5341 case 0x15:
5342 case 0x16:
5343 case 0x17:
5344 case 0x20:
5345 case 0x21:
5346 case 0x24:
5347 case 0x25:
5348 case 0x26:
5349 case 0x27:
5350 case 0x30:
5351 case 0x31:
5352 case 0x34:
5353 case 0x35:
5354 case 0x36:
5355 case 0x37:
5356 /* For fadd, fmul, fsub, fsubr, fdiv, fdivr, fiadd, fimul,
5357 fisub, fisubr, fidiv, fidivr, modR/M.reg is an extension
5358 of code, always affects st(0) register. */
5359 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
5360 return -1;
5361 break;
5362 case 0x08:
5363 case 0x0a:
5364 case 0x0b:
5365 case 0x18:
5366 case 0x19:
5367 case 0x1a:
5368 case 0x1b:
5369 case 0x1d:
5370 case 0x28:
5371 case 0x29:
5372 case 0x2a:
5373 case 0x2b:
5374 case 0x38:
5375 case 0x39:
5376 case 0x3a:
5377 case 0x3b:
5378 case 0x3c:
5379 case 0x3d:
5380 switch (ir.reg & 7)
5381 {
5382 case 0:
5383 /* Handling fld, fild. */
5384 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5385 return -1;
5386 break;
5387 case 1:
5388 switch (ir.reg >> 4)
5389 {
5390 case 0:
5391 if (record_arch_list_add_mem (addr64, 4))
5392 return -1;
5393 break;
5394 case 2:
5395 if (record_arch_list_add_mem (addr64, 8))
5396 return -1;
5397 break;
5398 case 3:
5399 break;
5400 default:
5401 if (record_arch_list_add_mem (addr64, 2))
5402 return -1;
5403 break;
5404 }
5405 break;
5406 default:
5407 switch (ir.reg >> 4)
5408 {
5409 case 0:
5410 if (record_arch_list_add_mem (addr64, 4))
5411 return -1;
5412 if (3 == (ir.reg & 7))
5413 {
5414 /* For fstp m32fp. */
5415 if (i386_record_floats (gdbarch, &ir,
5416 I386_SAVE_FPU_REGS))
5417 return -1;
5418 }
5419 break;
5420 case 1:
5421 if (record_arch_list_add_mem (addr64, 4))
5422 return -1;
5423 if ((3 == (ir.reg & 7))
5424 || (5 == (ir.reg & 7))
5425 || (7 == (ir.reg & 7)))
5426 {
5427 /* For fstp insn. */
5428 if (i386_record_floats (gdbarch, &ir,
5429 I386_SAVE_FPU_REGS))
5430 return -1;
5431 }
5432 break;
5433 case 2:
5434 if (record_arch_list_add_mem (addr64, 8))
5435 return -1;
5436 if (3 == (ir.reg & 7))
5437 {
5438 /* For fstp m64fp. */
5439 if (i386_record_floats (gdbarch, &ir,
5440 I386_SAVE_FPU_REGS))
5441 return -1;
5442 }
5443 break;
5444 case 3:
5445 if ((3 <= (ir.reg & 7)) && (6 <= (ir.reg & 7)))
5446 {
5447 /* For fistp, fbld, fild, fbstp. */
5448 if (i386_record_floats (gdbarch, &ir,
5449 I386_SAVE_FPU_REGS))
5450 return -1;
5451 }
5452 /* Fall through */
5453 default:
5454 if (record_arch_list_add_mem (addr64, 2))
5455 return -1;
5456 break;
5457 }
5458 break;
5459 }
5460 break;
5461 case 0x0c:
5462 /* Insn fldenv. */
5463 if (i386_record_floats (gdbarch, &ir,
5464 I386_SAVE_FPU_ENV_REG_STACK))
5465 return -1;
5466 break;
5467 case 0x0d:
5468 /* Insn fldcw. */
5469 if (i386_record_floats (gdbarch, &ir, I387_FCTRL_REGNUM (tdep)))
5470 return -1;
5471 break;
5472 case 0x2c:
5473 /* Insn frstor. */
5474 if (i386_record_floats (gdbarch, &ir,
5475 I386_SAVE_FPU_ENV_REG_STACK))
5476 return -1;
5477 break;
5478 case 0x0e:
5479 if (ir.dflag)
5480 {
5481 if (record_arch_list_add_mem (addr64, 28))
5482 return -1;
5483 }
5484 else
5485 {
5486 if (record_arch_list_add_mem (addr64, 14))
5487 return -1;
5488 }
5489 break;
5490 case 0x0f:
5491 case 0x2f:
5492 if (record_arch_list_add_mem (addr64, 2))
5493 return -1;
5494 /* Insn fstp, fbstp. */
5495 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5496 return -1;
5497 break;
5498 case 0x1f:
5499 case 0x3e:
5500 if (record_arch_list_add_mem (addr64, 10))
5501 return -1;
5502 break;
5503 case 0x2e:
5504 if (ir.dflag)
5505 {
5506 if (record_arch_list_add_mem (addr64, 28))
5507 return -1;
5508 addr64 += 28;
5509 }
5510 else
5511 {
5512 if (record_arch_list_add_mem (addr64, 14))
5513 return -1;
5514 addr64 += 14;
5515 }
5516 if (record_arch_list_add_mem (addr64, 80))
5517 return -1;
5518 /* Insn fsave. */
5519 if (i386_record_floats (gdbarch, &ir,
5520 I386_SAVE_FPU_ENV_REG_STACK))
5521 return -1;
5522 break;
5523 case 0x3f:
5524 if (record_arch_list_add_mem (addr64, 8))
5525 return -1;
5526 /* Insn fistp. */
5527 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5528 return -1;
5529 break;
5530 default:
5531 ir.addr -= 2;
5532 opcode = opcode << 8 | ir.modrm;
5533 goto no_support;
5534 break;
5535 }
5536 }
5537 /* Opcode is an extension of modR/M byte. */
5538 else
5539 {
5540 switch (opcode)
5541 {
5542 case 0xd8:
5543 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
5544 return -1;
5545 break;
5546 case 0xd9:
5547 if (0x0c == (ir.modrm >> 4))
5548 {
5549 if ((ir.modrm & 0x0f) <= 7)
5550 {
5551 if (i386_record_floats (gdbarch, &ir,
5552 I386_SAVE_FPU_REGS))
5553 return -1;
5554 }
5555 else
5556 {
5557 if (i386_record_floats (gdbarch, &ir,
5558 I387_ST0_REGNUM (tdep)))
5559 return -1;
5560 /* If only st(0) is changing, then we have already
5561 recorded. */
5562 if ((ir.modrm & 0x0f) - 0x08)
5563 {
5564 if (i386_record_floats (gdbarch, &ir,
5565 I387_ST0_REGNUM (tdep) +
5566 ((ir.modrm & 0x0f) - 0x08)))
5567 return -1;
5568 }
5569 }
5570 }
5571 else
5572 {
5573 switch (ir.modrm)
5574 {
5575 case 0xe0:
5576 case 0xe1:
5577 case 0xf0:
5578 case 0xf5:
5579 case 0xf8:
5580 case 0xfa:
5581 case 0xfc:
5582 case 0xfe:
5583 case 0xff:
5584 if (i386_record_floats (gdbarch, &ir,
5585 I387_ST0_REGNUM (tdep)))
5586 return -1;
5587 break;
5588 case 0xf1:
5589 case 0xf2:
5590 case 0xf3:
5591 case 0xf4:
5592 case 0xf6:
5593 case 0xf7:
5594 case 0xe8:
5595 case 0xe9:
5596 case 0xea:
5597 case 0xeb:
5598 case 0xec:
5599 case 0xed:
5600 case 0xee:
5601 case 0xf9:
5602 case 0xfb:
5603 if (i386_record_floats (gdbarch, &ir,
5604 I386_SAVE_FPU_REGS))
5605 return -1;
5606 break;
5607 case 0xfd:
5608 if (i386_record_floats (gdbarch, &ir,
5609 I387_ST0_REGNUM (tdep)))
5610 return -1;
5611 if (i386_record_floats (gdbarch, &ir,
5612 I387_ST0_REGNUM (tdep) + 1))
5613 return -1;
5614 break;
5615 }
5616 }
5617 break;
5618 case 0xda:
5619 if (0xe9 == ir.modrm)
5620 {
5621 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5622 return -1;
5623 }
5624 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
5625 {
5626 if (i386_record_floats (gdbarch, &ir,
5627 I387_ST0_REGNUM (tdep)))
5628 return -1;
5629 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
5630 {
5631 if (i386_record_floats (gdbarch, &ir,
5632 I387_ST0_REGNUM (tdep) +
5633 (ir.modrm & 0x0f)))
5634 return -1;
5635 }
5636 else if ((ir.modrm & 0x0f) - 0x08)
5637 {
5638 if (i386_record_floats (gdbarch, &ir,
5639 I387_ST0_REGNUM (tdep) +
5640 ((ir.modrm & 0x0f) - 0x08)))
5641 return -1;
5642 }
5643 }
5644 break;
5645 case 0xdb:
5646 if (0xe3 == ir.modrm)
5647 {
5648 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_ENV))
5649 return -1;
5650 }
5651 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
5652 {
5653 if (i386_record_floats (gdbarch, &ir,
5654 I387_ST0_REGNUM (tdep)))
5655 return -1;
5656 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
5657 {
5658 if (i386_record_floats (gdbarch, &ir,
5659 I387_ST0_REGNUM (tdep) +
5660 (ir.modrm & 0x0f)))
5661 return -1;
5662 }
5663 else if ((ir.modrm & 0x0f) - 0x08)
5664 {
5665 if (i386_record_floats (gdbarch, &ir,
5666 I387_ST0_REGNUM (tdep) +
5667 ((ir.modrm & 0x0f) - 0x08)))
5668 return -1;
5669 }
5670 }
5671 break;
5672 case 0xdc:
5673 if ((0x0c == ir.modrm >> 4)
5674 || (0x0d == ir.modrm >> 4)
5675 || (0x0f == ir.modrm >> 4))
5676 {
5677 if ((ir.modrm & 0x0f) <= 7)
5678 {
5679 if (i386_record_floats (gdbarch, &ir,
5680 I387_ST0_REGNUM (tdep) +
5681 (ir.modrm & 0x0f)))
5682 return -1;
5683 }
5684 else
5685 {
5686 if (i386_record_floats (gdbarch, &ir,
5687 I387_ST0_REGNUM (tdep) +
5688 ((ir.modrm & 0x0f) - 0x08)))
5689 return -1;
5690 }
5691 }
5692 break;
5693 case 0xdd:
5694 if (0x0c == ir.modrm >> 4)
5695 {
5696 if (i386_record_floats (gdbarch, &ir,
5697 I387_FTAG_REGNUM (tdep)))
5698 return -1;
5699 }
5700 else if ((0x0d == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
5701 {
5702 if ((ir.modrm & 0x0f) <= 7)
5703 {
5704 if (i386_record_floats (gdbarch, &ir,
5705 I387_ST0_REGNUM (tdep) +
5706 (ir.modrm & 0x0f)))
5707 return -1;
5708 }
5709 else
5710 {
5711 if (i386_record_floats (gdbarch, &ir,
5712 I386_SAVE_FPU_REGS))
5713 return -1;
5714 }
5715 }
5716 break;
5717 case 0xde:
5718 if ((0x0c == ir.modrm >> 4)
5719 || (0x0e == ir.modrm >> 4)
5720 || (0x0f == ir.modrm >> 4)
5721 || (0xd9 == ir.modrm))
5722 {
5723 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5724 return -1;
5725 }
5726 break;
5727 case 0xdf:
5728 if (0xe0 == ir.modrm)
5729 {
5730 if (record_arch_list_add_reg (ir.regcache, I386_EAX_REGNUM))
5731 return -1;
5732 }
5733 else if ((0x0f == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
5734 {
5735 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5736 return -1;
5737 }
5738 break;
5739 }
5740 }
5741 break;
5742 /* string ops */
5743 case 0xa4: /* movsS */
5744 case 0xa5:
5745 case 0xaa: /* stosS */
5746 case 0xab:
5747 case 0x6c: /* insS */
5748 case 0x6d:
5749 regcache_raw_read_unsigned (ir.regcache,
5750 ir.regmap[X86_RECORD_RECX_REGNUM],
5751 &addr);
5752 if (addr)
5753 {
5754 ULONGEST es, ds;
5755
5756 if ((opcode & 1) == 0)
5757 ir.ot = OT_BYTE;
5758 else
5759 ir.ot = ir.dflag + OT_WORD;
5760 regcache_raw_read_unsigned (ir.regcache,
5761 ir.regmap[X86_RECORD_REDI_REGNUM],
5762 &addr);
5763
5764 regcache_raw_read_unsigned (ir.regcache,
5765 ir.regmap[X86_RECORD_ES_REGNUM],
5766 &es);
5767 regcache_raw_read_unsigned (ir.regcache,
5768 ir.regmap[X86_RECORD_DS_REGNUM],
5769 &ds);
5770 if (ir.aflag && (es != ds))
5771 {
5772 /* addr += ((uint32_t) read_register (I386_ES_REGNUM)) << 4; */
5773 if (record_memory_query)
5774 {
5775 int q;
5776
5777 target_terminal_ours ();
5778 q = yquery (_("\
5779 Process record ignores the memory change of instruction at address %s\n\
5780 because it can't get the value of the segment register.\n\
5781 Do you want to stop the program?"),
5782 paddress (gdbarch, ir.orig_addr));
5783 target_terminal_inferior ();
5784 if (q)
5785 return -1;
5786 }
5787 }
5788 else
5789 {
5790 if (record_arch_list_add_mem (addr, 1 << ir.ot))
5791 return -1;
5792 }
5793
5794 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
5795 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5796 if (opcode == 0xa4 || opcode == 0xa5)
5797 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
5798 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
5799 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5800 }
5801 break;
5802
5803 case 0xa6: /* cmpsS */
5804 case 0xa7:
5805 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
5806 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
5807 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
5808 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5809 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5810 break;
5811
5812 case 0xac: /* lodsS */
5813 case 0xad:
5814 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5815 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
5816 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
5817 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5818 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5819 break;
5820
5821 case 0xae: /* scasS */
5822 case 0xaf:
5823 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
5824 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
5825 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5826 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5827 break;
5828
5829 case 0x6e: /* outsS */
5830 case 0x6f:
5831 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
5832 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
5833 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5834 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5835 break;
5836
5837 case 0xe4: /* port I/O */
5838 case 0xe5:
5839 case 0xec:
5840 case 0xed:
5841 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5842 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5843 break;
5844
5845 case 0xe6:
5846 case 0xe7:
5847 case 0xee:
5848 case 0xef:
5849 break;
5850
5851 /* control */
5852 case 0xc2: /* ret im */
5853 case 0xc3: /* ret */
5854 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5855 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5856 break;
5857
5858 case 0xca: /* lret im */
5859 case 0xcb: /* lret */
5860 case 0xcf: /* iret */
5861 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
5862 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5863 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5864 break;
5865
5866 case 0xe8: /* call im */
5867 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5868 ir.dflag = 2;
5869 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5870 return -1;
5871 break;
5872
5873 case 0x9a: /* lcall im */
5874 if (ir.regmap[X86_RECORD_R8_REGNUM])
5875 {
5876 ir.addr -= 1;
5877 goto no_support;
5878 }
5879 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
5880 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5881 return -1;
5882 break;
5883
5884 case 0xe9: /* jmp im */
5885 case 0xea: /* ljmp im */
5886 case 0xeb: /* jmp Jb */
5887 case 0x70: /* jcc Jb */
5888 case 0x71:
5889 case 0x72:
5890 case 0x73:
5891 case 0x74:
5892 case 0x75:
5893 case 0x76:
5894 case 0x77:
5895 case 0x78:
5896 case 0x79:
5897 case 0x7a:
5898 case 0x7b:
5899 case 0x7c:
5900 case 0x7d:
5901 case 0x7e:
5902 case 0x7f:
5903 case 0x0f80: /* jcc Jv */
5904 case 0x0f81:
5905 case 0x0f82:
5906 case 0x0f83:
5907 case 0x0f84:
5908 case 0x0f85:
5909 case 0x0f86:
5910 case 0x0f87:
5911 case 0x0f88:
5912 case 0x0f89:
5913 case 0x0f8a:
5914 case 0x0f8b:
5915 case 0x0f8c:
5916 case 0x0f8d:
5917 case 0x0f8e:
5918 case 0x0f8f:
5919 break;
5920
5921 case 0x0f90: /* setcc Gv */
5922 case 0x0f91:
5923 case 0x0f92:
5924 case 0x0f93:
5925 case 0x0f94:
5926 case 0x0f95:
5927 case 0x0f96:
5928 case 0x0f97:
5929 case 0x0f98:
5930 case 0x0f99:
5931 case 0x0f9a:
5932 case 0x0f9b:
5933 case 0x0f9c:
5934 case 0x0f9d:
5935 case 0x0f9e:
5936 case 0x0f9f:
5937 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5938 ir.ot = OT_BYTE;
5939 if (i386_record_modrm (&ir))
5940 return -1;
5941 if (ir.mod == 3)
5942 I386_RECORD_ARCH_LIST_ADD_REG (ir.rex_b ? (ir.rm | ir.rex_b)
5943 : (ir.rm & 0x3));
5944 else
5945 {
5946 if (i386_record_lea_modrm (&ir))
5947 return -1;
5948 }
5949 break;
5950
5951 case 0x0f40: /* cmov Gv, Ev */
5952 case 0x0f41:
5953 case 0x0f42:
5954 case 0x0f43:
5955 case 0x0f44:
5956 case 0x0f45:
5957 case 0x0f46:
5958 case 0x0f47:
5959 case 0x0f48:
5960 case 0x0f49:
5961 case 0x0f4a:
5962 case 0x0f4b:
5963 case 0x0f4c:
5964 case 0x0f4d:
5965 case 0x0f4e:
5966 case 0x0f4f:
5967 if (i386_record_modrm (&ir))
5968 return -1;
5969 ir.reg |= rex_r;
5970 if (ir.dflag == OT_BYTE)
5971 ir.reg &= 0x3;
5972 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
5973 break;
5974
5975 /* flags */
5976 case 0x9c: /* pushf */
5977 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5978 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5979 ir.dflag = 2;
5980 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5981 return -1;
5982 break;
5983
5984 case 0x9d: /* popf */
5985 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5986 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5987 break;
5988
5989 case 0x9e: /* sahf */
5990 if (ir.regmap[X86_RECORD_R8_REGNUM])
5991 {
5992 ir.addr -= 1;
5993 goto no_support;
5994 }
5995 /* FALLTHROUGH */
5996 case 0xf5: /* cmc */
5997 case 0xf8: /* clc */
5998 case 0xf9: /* stc */
5999 case 0xfc: /* cld */
6000 case 0xfd: /* std */
6001 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6002 break;
6003
6004 case 0x9f: /* lahf */
6005 if (ir.regmap[X86_RECORD_R8_REGNUM])
6006 {
6007 ir.addr -= 1;
6008 goto no_support;
6009 }
6010 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6011 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6012 break;
6013
6014 /* bit operations */
6015 case 0x0fba: /* bt/bts/btr/btc Gv, im */
6016 ir.ot = ir.dflag + OT_WORD;
6017 if (i386_record_modrm (&ir))
6018 return -1;
6019 if (ir.reg < 4)
6020 {
6021 ir.addr -= 2;
6022 opcode = opcode << 8 | ir.modrm;
6023 goto no_support;
6024 }
6025 if (ir.reg != 4)
6026 {
6027 if (ir.mod == 3)
6028 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6029 else
6030 {
6031 if (i386_record_lea_modrm (&ir))
6032 return -1;
6033 }
6034 }
6035 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6036 break;
6037
6038 case 0x0fa3: /* bt Gv, Ev */
6039 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6040 break;
6041
6042 case 0x0fab: /* bts */
6043 case 0x0fb3: /* btr */
6044 case 0x0fbb: /* btc */
6045 ir.ot = ir.dflag + OT_WORD;
6046 if (i386_record_modrm (&ir))
6047 return -1;
6048 if (ir.mod == 3)
6049 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6050 else
6051 {
6052 uint64_t addr64;
6053 if (i386_record_lea_modrm_addr (&ir, &addr64))
6054 return -1;
6055 regcache_raw_read_unsigned (ir.regcache,
6056 ir.regmap[ir.reg | rex_r],
6057 &addr);
6058 switch (ir.dflag)
6059 {
6060 case 0:
6061 addr64 += ((int16_t) addr >> 4) << 4;
6062 break;
6063 case 1:
6064 addr64 += ((int32_t) addr >> 5) << 5;
6065 break;
6066 case 2:
6067 addr64 += ((int64_t) addr >> 6) << 6;
6068 break;
6069 }
6070 if (record_arch_list_add_mem (addr64, 1 << ir.ot))
6071 return -1;
6072 if (i386_record_lea_modrm (&ir))
6073 return -1;
6074 }
6075 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6076 break;
6077
6078 case 0x0fbc: /* bsf */
6079 case 0x0fbd: /* bsr */
6080 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6081 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6082 break;
6083
6084 /* bcd */
6085 case 0x27: /* daa */
6086 case 0x2f: /* das */
6087 case 0x37: /* aaa */
6088 case 0x3f: /* aas */
6089 case 0xd4: /* aam */
6090 case 0xd5: /* aad */
6091 if (ir.regmap[X86_RECORD_R8_REGNUM])
6092 {
6093 ir.addr -= 1;
6094 goto no_support;
6095 }
6096 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6097 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6098 break;
6099
6100 /* misc */
6101 case 0x90: /* nop */
6102 if (prefixes & PREFIX_LOCK)
6103 {
6104 ir.addr -= 1;
6105 goto no_support;
6106 }
6107 break;
6108
6109 case 0x9b: /* fwait */
6110 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
6111 return -1;
6112 opcode = (uint32_t) opcode8;
6113 ir.addr++;
6114 goto reswitch;
6115 break;
6116
6117 /* XXX */
6118 case 0xcc: /* int3 */
6119 printf_unfiltered (_("Process record does not support instruction "
6120 "int3.\n"));
6121 ir.addr -= 1;
6122 goto no_support;
6123 break;
6124
6125 /* XXX */
6126 case 0xcd: /* int */
6127 {
6128 int ret;
6129 uint8_t interrupt;
6130 if (record_read_memory (gdbarch, ir.addr, &interrupt, 1))
6131 return -1;
6132 ir.addr++;
6133 if (interrupt != 0x80
6134 || tdep->i386_intx80_record == NULL)
6135 {
6136 printf_unfiltered (_("Process record does not support "
6137 "instruction int 0x%02x.\n"),
6138 interrupt);
6139 ir.addr -= 2;
6140 goto no_support;
6141 }
6142 ret = tdep->i386_intx80_record (ir.regcache);
6143 if (ret)
6144 return ret;
6145 }
6146 break;
6147
6148 /* XXX */
6149 case 0xce: /* into */
6150 printf_unfiltered (_("Process record does not support "
6151 "instruction into.\n"));
6152 ir.addr -= 1;
6153 goto no_support;
6154 break;
6155
6156 case 0xfa: /* cli */
6157 case 0xfb: /* sti */
6158 break;
6159
6160 case 0x62: /* bound */
6161 printf_unfiltered (_("Process record does not support "
6162 "instruction bound.\n"));
6163 ir.addr -= 1;
6164 goto no_support;
6165 break;
6166
6167 case 0x0fc8: /* bswap reg */
6168 case 0x0fc9:
6169 case 0x0fca:
6170 case 0x0fcb:
6171 case 0x0fcc:
6172 case 0x0fcd:
6173 case 0x0fce:
6174 case 0x0fcf:
6175 I386_RECORD_ARCH_LIST_ADD_REG ((opcode & 7) | ir.rex_b);
6176 break;
6177
6178 case 0xd6: /* salc */
6179 if (ir.regmap[X86_RECORD_R8_REGNUM])
6180 {
6181 ir.addr -= 1;
6182 goto no_support;
6183 }
6184 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6185 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6186 break;
6187
6188 case 0xe0: /* loopnz */
6189 case 0xe1: /* loopz */
6190 case 0xe2: /* loop */
6191 case 0xe3: /* jecxz */
6192 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6193 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6194 break;
6195
6196 case 0x0f30: /* wrmsr */
6197 printf_unfiltered (_("Process record does not support "
6198 "instruction wrmsr.\n"));
6199 ir.addr -= 2;
6200 goto no_support;
6201 break;
6202
6203 case 0x0f32: /* rdmsr */
6204 printf_unfiltered (_("Process record does not support "
6205 "instruction rdmsr.\n"));
6206 ir.addr -= 2;
6207 goto no_support;
6208 break;
6209
6210 case 0x0f31: /* rdtsc */
6211 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6212 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6213 break;
6214
6215 case 0x0f34: /* sysenter */
6216 {
6217 int ret;
6218 if (ir.regmap[X86_RECORD_R8_REGNUM])
6219 {
6220 ir.addr -= 2;
6221 goto no_support;
6222 }
6223 if (tdep->i386_sysenter_record == NULL)
6224 {
6225 printf_unfiltered (_("Process record does not support "
6226 "instruction sysenter.\n"));
6227 ir.addr -= 2;
6228 goto no_support;
6229 }
6230 ret = tdep->i386_sysenter_record (ir.regcache);
6231 if (ret)
6232 return ret;
6233 }
6234 break;
6235
6236 case 0x0f35: /* sysexit */
6237 printf_unfiltered (_("Process record does not support "
6238 "instruction sysexit.\n"));
6239 ir.addr -= 2;
6240 goto no_support;
6241 break;
6242
6243 case 0x0f05: /* syscall */
6244 {
6245 int ret;
6246 if (tdep->i386_syscall_record == NULL)
6247 {
6248 printf_unfiltered (_("Process record does not support "
6249 "instruction syscall.\n"));
6250 ir.addr -= 2;
6251 goto no_support;
6252 }
6253 ret = tdep->i386_syscall_record (ir.regcache);
6254 if (ret)
6255 return ret;
6256 }
6257 break;
6258
6259 case 0x0f07: /* sysret */
6260 printf_unfiltered (_("Process record does not support "
6261 "instruction sysret.\n"));
6262 ir.addr -= 2;
6263 goto no_support;
6264 break;
6265
6266 case 0x0fa2: /* cpuid */
6267 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6268 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6269 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6270 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
6271 break;
6272
6273 case 0xf4: /* hlt */
6274 printf_unfiltered (_("Process record does not support "
6275 "instruction hlt.\n"));
6276 ir.addr -= 1;
6277 goto no_support;
6278 break;
6279
6280 case 0x0f00:
6281 if (i386_record_modrm (&ir))
6282 return -1;
6283 switch (ir.reg)
6284 {
6285 case 0: /* sldt */
6286 case 1: /* str */
6287 if (ir.mod == 3)
6288 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6289 else
6290 {
6291 ir.ot = OT_WORD;
6292 if (i386_record_lea_modrm (&ir))
6293 return -1;
6294 }
6295 break;
6296 case 2: /* lldt */
6297 case 3: /* ltr */
6298 break;
6299 case 4: /* verr */
6300 case 5: /* verw */
6301 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6302 break;
6303 default:
6304 ir.addr -= 3;
6305 opcode = opcode << 8 | ir.modrm;
6306 goto no_support;
6307 break;
6308 }
6309 break;
6310
6311 case 0x0f01:
6312 if (i386_record_modrm (&ir))
6313 return -1;
6314 switch (ir.reg)
6315 {
6316 case 0: /* sgdt */
6317 {
6318 uint64_t addr64;
6319
6320 if (ir.mod == 3)
6321 {
6322 ir.addr -= 3;
6323 opcode = opcode << 8 | ir.modrm;
6324 goto no_support;
6325 }
6326 if (ir.override >= 0)
6327 {
6328 if (record_memory_query)
6329 {
6330 int q;
6331
6332 target_terminal_ours ();
6333 q = yquery (_("\
6334 Process record ignores the memory change of instruction at address %s\n\
6335 because it can't get the value of the segment register.\n\
6336 Do you want to stop the program?"),
6337 paddress (gdbarch, ir.orig_addr));
6338 target_terminal_inferior ();
6339 if (q)
6340 return -1;
6341 }
6342 }
6343 else
6344 {
6345 if (i386_record_lea_modrm_addr (&ir, &addr64))
6346 return -1;
6347 if (record_arch_list_add_mem (addr64, 2))
6348 return -1;
6349 addr64 += 2;
6350 if (ir.regmap[X86_RECORD_R8_REGNUM])
6351 {
6352 if (record_arch_list_add_mem (addr64, 8))
6353 return -1;
6354 }
6355 else
6356 {
6357 if (record_arch_list_add_mem (addr64, 4))
6358 return -1;
6359 }
6360 }
6361 }
6362 break;
6363 case 1:
6364 if (ir.mod == 3)
6365 {
6366 switch (ir.rm)
6367 {
6368 case 0: /* monitor */
6369 break;
6370 case 1: /* mwait */
6371 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6372 break;
6373 default:
6374 ir.addr -= 3;
6375 opcode = opcode << 8 | ir.modrm;
6376 goto no_support;
6377 break;
6378 }
6379 }
6380 else
6381 {
6382 /* sidt */
6383 if (ir.override >= 0)
6384 {
6385 if (record_memory_query)
6386 {
6387 int q;
6388
6389 target_terminal_ours ();
6390 q = yquery (_("\
6391 Process record ignores the memory change of instruction at address %s\n\
6392 because it can't get the value of the segment register.\n\
6393 Do you want to stop the program?"),
6394 paddress (gdbarch, ir.orig_addr));
6395 target_terminal_inferior ();
6396 if (q)
6397 return -1;
6398 }
6399 }
6400 else
6401 {
6402 uint64_t addr64;
6403
6404 if (i386_record_lea_modrm_addr (&ir, &addr64))
6405 return -1;
6406 if (record_arch_list_add_mem (addr64, 2))
6407 return -1;
6408 addr64 += 2;
6409 if (ir.regmap[X86_RECORD_R8_REGNUM])
6410 {
6411 if (record_arch_list_add_mem (addr64, 8))
6412 return -1;
6413 }
6414 else
6415 {
6416 if (record_arch_list_add_mem (addr64, 4))
6417 return -1;
6418 }
6419 }
6420 }
6421 break;
6422 case 2: /* lgdt */
6423 if (ir.mod == 3)
6424 {
6425 /* xgetbv */
6426 if (ir.rm == 0)
6427 {
6428 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6429 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6430 break;
6431 }
6432 /* xsetbv */
6433 else if (ir.rm == 1)
6434 break;
6435 }
6436 case 3: /* lidt */
6437 if (ir.mod == 3)
6438 {
6439 ir.addr -= 3;
6440 opcode = opcode << 8 | ir.modrm;
6441 goto no_support;
6442 }
6443 break;
6444 case 4: /* smsw */
6445 if (ir.mod == 3)
6446 {
6447 if (record_arch_list_add_reg (ir.regcache, ir.rm | ir.rex_b))
6448 return -1;
6449 }
6450 else
6451 {
6452 ir.ot = OT_WORD;
6453 if (i386_record_lea_modrm (&ir))
6454 return -1;
6455 }
6456 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6457 break;
6458 case 6: /* lmsw */
6459 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6460 break;
6461 case 7: /* invlpg */
6462 if (ir.mod == 3)
6463 {
6464 if (ir.rm == 0 && ir.regmap[X86_RECORD_R8_REGNUM])
6465 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
6466 else
6467 {
6468 ir.addr -= 3;
6469 opcode = opcode << 8 | ir.modrm;
6470 goto no_support;
6471 }
6472 }
6473 else
6474 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6475 break;
6476 default:
6477 ir.addr -= 3;
6478 opcode = opcode << 8 | ir.modrm;
6479 goto no_support;
6480 break;
6481 }
6482 break;
6483
6484 case 0x0f08: /* invd */
6485 case 0x0f09: /* wbinvd */
6486 break;
6487
6488 case 0x63: /* arpl */
6489 if (i386_record_modrm (&ir))
6490 return -1;
6491 if (ir.mod == 3 || ir.regmap[X86_RECORD_R8_REGNUM])
6492 {
6493 I386_RECORD_ARCH_LIST_ADD_REG (ir.regmap[X86_RECORD_R8_REGNUM]
6494 ? (ir.reg | rex_r) : ir.rm);
6495 }
6496 else
6497 {
6498 ir.ot = ir.dflag ? OT_LONG : OT_WORD;
6499 if (i386_record_lea_modrm (&ir))
6500 return -1;
6501 }
6502 if (!ir.regmap[X86_RECORD_R8_REGNUM])
6503 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6504 break;
6505
6506 case 0x0f02: /* lar */
6507 case 0x0f03: /* lsl */
6508 if (i386_record_modrm (&ir))
6509 return -1;
6510 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6511 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6512 break;
6513
6514 case 0x0f18:
6515 if (i386_record_modrm (&ir))
6516 return -1;
6517 if (ir.mod == 3 && ir.reg == 3)
6518 {
6519 ir.addr -= 3;
6520 opcode = opcode << 8 | ir.modrm;
6521 goto no_support;
6522 }
6523 break;
6524
6525 case 0x0f19:
6526 case 0x0f1a:
6527 case 0x0f1b:
6528 case 0x0f1c:
6529 case 0x0f1d:
6530 case 0x0f1e:
6531 case 0x0f1f:
6532 /* nop (multi byte) */
6533 break;
6534
6535 case 0x0f20: /* mov reg, crN */
6536 case 0x0f22: /* mov crN, reg */
6537 if (i386_record_modrm (&ir))
6538 return -1;
6539 if ((ir.modrm & 0xc0) != 0xc0)
6540 {
6541 ir.addr -= 3;
6542 opcode = opcode << 8 | ir.modrm;
6543 goto no_support;
6544 }
6545 switch (ir.reg)
6546 {
6547 case 0:
6548 case 2:
6549 case 3:
6550 case 4:
6551 case 8:
6552 if (opcode & 2)
6553 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6554 else
6555 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6556 break;
6557 default:
6558 ir.addr -= 3;
6559 opcode = opcode << 8 | ir.modrm;
6560 goto no_support;
6561 break;
6562 }
6563 break;
6564
6565 case 0x0f21: /* mov reg, drN */
6566 case 0x0f23: /* mov drN, reg */
6567 if (i386_record_modrm (&ir))
6568 return -1;
6569 if ((ir.modrm & 0xc0) != 0xc0 || ir.reg == 4
6570 || ir.reg == 5 || ir.reg >= 8)
6571 {
6572 ir.addr -= 3;
6573 opcode = opcode << 8 | ir.modrm;
6574 goto no_support;
6575 }
6576 if (opcode & 2)
6577 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6578 else
6579 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6580 break;
6581
6582 case 0x0f06: /* clts */
6583 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6584 break;
6585
6586 /* MMX 3DNow! SSE SSE2 SSE3 SSSE3 SSE4 */
6587
6588 case 0x0f0d: /* 3DNow! prefetch */
6589 break;
6590
6591 case 0x0f0e: /* 3DNow! femms */
6592 case 0x0f77: /* emms */
6593 if (i386_fpc_regnum_p (gdbarch, I387_FTAG_REGNUM(tdep)))
6594 goto no_support;
6595 record_arch_list_add_reg (ir.regcache, I387_FTAG_REGNUM(tdep));
6596 break;
6597
6598 case 0x0f0f: /* 3DNow! data */
6599 if (i386_record_modrm (&ir))
6600 return -1;
6601 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
6602 return -1;
6603 ir.addr++;
6604 switch (opcode8)
6605 {
6606 case 0x0c: /* 3DNow! pi2fw */
6607 case 0x0d: /* 3DNow! pi2fd */
6608 case 0x1c: /* 3DNow! pf2iw */
6609 case 0x1d: /* 3DNow! pf2id */
6610 case 0x8a: /* 3DNow! pfnacc */
6611 case 0x8e: /* 3DNow! pfpnacc */
6612 case 0x90: /* 3DNow! pfcmpge */
6613 case 0x94: /* 3DNow! pfmin */
6614 case 0x96: /* 3DNow! pfrcp */
6615 case 0x97: /* 3DNow! pfrsqrt */
6616 case 0x9a: /* 3DNow! pfsub */
6617 case 0x9e: /* 3DNow! pfadd */
6618 case 0xa0: /* 3DNow! pfcmpgt */
6619 case 0xa4: /* 3DNow! pfmax */
6620 case 0xa6: /* 3DNow! pfrcpit1 */
6621 case 0xa7: /* 3DNow! pfrsqit1 */
6622 case 0xaa: /* 3DNow! pfsubr */
6623 case 0xae: /* 3DNow! pfacc */
6624 case 0xb0: /* 3DNow! pfcmpeq */
6625 case 0xb4: /* 3DNow! pfmul */
6626 case 0xb6: /* 3DNow! pfrcpit2 */
6627 case 0xb7: /* 3DNow! pmulhrw */
6628 case 0xbb: /* 3DNow! pswapd */
6629 case 0xbf: /* 3DNow! pavgusb */
6630 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
6631 goto no_support_3dnow_data;
6632 record_arch_list_add_reg (ir.regcache, ir.reg);
6633 break;
6634
6635 default:
6636 no_support_3dnow_data:
6637 opcode = (opcode << 8) | opcode8;
6638 goto no_support;
6639 break;
6640 }
6641 break;
6642
6643 case 0x0faa: /* rsm */
6644 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6645 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6646 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6647 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6648 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
6649 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6650 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
6651 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6652 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6653 break;
6654
6655 case 0x0fae:
6656 if (i386_record_modrm (&ir))
6657 return -1;
6658 switch(ir.reg)
6659 {
6660 case 0: /* fxsave */
6661 {
6662 uint64_t tmpu64;
6663
6664 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6665 if (i386_record_lea_modrm_addr (&ir, &tmpu64))
6666 return -1;
6667 if (record_arch_list_add_mem (tmpu64, 512))
6668 return -1;
6669 }
6670 break;
6671
6672 case 1: /* fxrstor */
6673 {
6674 int i;
6675
6676 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6677
6678 for (i = I387_MM0_REGNUM (tdep);
6679 i386_mmx_regnum_p (gdbarch, i); i++)
6680 record_arch_list_add_reg (ir.regcache, i);
6681
6682 for (i = I387_XMM0_REGNUM (tdep);
6683 i386_xmm_regnum_p (gdbarch, i); i++)
6684 record_arch_list_add_reg (ir.regcache, i);
6685
6686 if (i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
6687 record_arch_list_add_reg (ir.regcache, I387_MXCSR_REGNUM(tdep));
6688
6689 for (i = I387_ST0_REGNUM (tdep);
6690 i386_fp_regnum_p (gdbarch, i); i++)
6691 record_arch_list_add_reg (ir.regcache, i);
6692
6693 for (i = I387_FCTRL_REGNUM (tdep);
6694 i386_fpc_regnum_p (gdbarch, i); i++)
6695 record_arch_list_add_reg (ir.regcache, i);
6696 }
6697 break;
6698
6699 case 2: /* ldmxcsr */
6700 if (!i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
6701 goto no_support;
6702 record_arch_list_add_reg (ir.regcache, I387_MXCSR_REGNUM(tdep));
6703 break;
6704
6705 case 3: /* stmxcsr */
6706 ir.ot = OT_LONG;
6707 if (i386_record_lea_modrm (&ir))
6708 return -1;
6709 break;
6710
6711 case 5: /* lfence */
6712 case 6: /* mfence */
6713 case 7: /* sfence clflush */
6714 break;
6715
6716 default:
6717 opcode = (opcode << 8) | ir.modrm;
6718 goto no_support;
6719 break;
6720 }
6721 break;
6722
6723 case 0x0fc3: /* movnti */
6724 ir.ot = (ir.dflag == 2) ? OT_QUAD : OT_LONG;
6725 if (i386_record_modrm (&ir))
6726 return -1;
6727 if (ir.mod == 3)
6728 goto no_support;
6729 ir.reg |= rex_r;
6730 if (i386_record_lea_modrm (&ir))
6731 return -1;
6732 break;
6733
6734 /* Add prefix to opcode. */
6735 case 0x0f10:
6736 case 0x0f11:
6737 case 0x0f12:
6738 case 0x0f13:
6739 case 0x0f14:
6740 case 0x0f15:
6741 case 0x0f16:
6742 case 0x0f17:
6743 case 0x0f28:
6744 case 0x0f29:
6745 case 0x0f2a:
6746 case 0x0f2b:
6747 case 0x0f2c:
6748 case 0x0f2d:
6749 case 0x0f2e:
6750 case 0x0f2f:
6751 case 0x0f38:
6752 case 0x0f39:
6753 case 0x0f3a:
6754 case 0x0f50:
6755 case 0x0f51:
6756 case 0x0f52:
6757 case 0x0f53:
6758 case 0x0f54:
6759 case 0x0f55:
6760 case 0x0f56:
6761 case 0x0f57:
6762 case 0x0f58:
6763 case 0x0f59:
6764 case 0x0f5a:
6765 case 0x0f5b:
6766 case 0x0f5c:
6767 case 0x0f5d:
6768 case 0x0f5e:
6769 case 0x0f5f:
6770 case 0x0f60:
6771 case 0x0f61:
6772 case 0x0f62:
6773 case 0x0f63:
6774 case 0x0f64:
6775 case 0x0f65:
6776 case 0x0f66:
6777 case 0x0f67:
6778 case 0x0f68:
6779 case 0x0f69:
6780 case 0x0f6a:
6781 case 0x0f6b:
6782 case 0x0f6c:
6783 case 0x0f6d:
6784 case 0x0f6e:
6785 case 0x0f6f:
6786 case 0x0f70:
6787 case 0x0f71:
6788 case 0x0f72:
6789 case 0x0f73:
6790 case 0x0f74:
6791 case 0x0f75:
6792 case 0x0f76:
6793 case 0x0f7c:
6794 case 0x0f7d:
6795 case 0x0f7e:
6796 case 0x0f7f:
6797 case 0x0fb8:
6798 case 0x0fc2:
6799 case 0x0fc4:
6800 case 0x0fc5:
6801 case 0x0fc6:
6802 case 0x0fd0:
6803 case 0x0fd1:
6804 case 0x0fd2:
6805 case 0x0fd3:
6806 case 0x0fd4:
6807 case 0x0fd5:
6808 case 0x0fd6:
6809 case 0x0fd7:
6810 case 0x0fd8:
6811 case 0x0fd9:
6812 case 0x0fda:
6813 case 0x0fdb:
6814 case 0x0fdc:
6815 case 0x0fdd:
6816 case 0x0fde:
6817 case 0x0fdf:
6818 case 0x0fe0:
6819 case 0x0fe1:
6820 case 0x0fe2:
6821 case 0x0fe3:
6822 case 0x0fe4:
6823 case 0x0fe5:
6824 case 0x0fe6:
6825 case 0x0fe7:
6826 case 0x0fe8:
6827 case 0x0fe9:
6828 case 0x0fea:
6829 case 0x0feb:
6830 case 0x0fec:
6831 case 0x0fed:
6832 case 0x0fee:
6833 case 0x0fef:
6834 case 0x0ff0:
6835 case 0x0ff1:
6836 case 0x0ff2:
6837 case 0x0ff3:
6838 case 0x0ff4:
6839 case 0x0ff5:
6840 case 0x0ff6:
6841 case 0x0ff7:
6842 case 0x0ff8:
6843 case 0x0ff9:
6844 case 0x0ffa:
6845 case 0x0ffb:
6846 case 0x0ffc:
6847 case 0x0ffd:
6848 case 0x0ffe:
6849 switch (prefixes)
6850 {
6851 case PREFIX_REPNZ:
6852 opcode |= 0xf20000;
6853 break;
6854 case PREFIX_DATA:
6855 opcode |= 0x660000;
6856 break;
6857 case PREFIX_REPZ:
6858 opcode |= 0xf30000;
6859 break;
6860 }
6861 reswitch_prefix_add:
6862 switch (opcode)
6863 {
6864 case 0x0f38:
6865 case 0x660f38:
6866 case 0xf20f38:
6867 case 0x0f3a:
6868 case 0x660f3a:
6869 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
6870 return -1;
6871 ir.addr++;
6872 opcode = (uint32_t) opcode8 | opcode << 8;
6873 goto reswitch_prefix_add;
6874 break;
6875
6876 case 0x0f10: /* movups */
6877 case 0x660f10: /* movupd */
6878 case 0xf30f10: /* movss */
6879 case 0xf20f10: /* movsd */
6880 case 0x0f12: /* movlps */
6881 case 0x660f12: /* movlpd */
6882 case 0xf30f12: /* movsldup */
6883 case 0xf20f12: /* movddup */
6884 case 0x0f14: /* unpcklps */
6885 case 0x660f14: /* unpcklpd */
6886 case 0x0f15: /* unpckhps */
6887 case 0x660f15: /* unpckhpd */
6888 case 0x0f16: /* movhps */
6889 case 0x660f16: /* movhpd */
6890 case 0xf30f16: /* movshdup */
6891 case 0x0f28: /* movaps */
6892 case 0x660f28: /* movapd */
6893 case 0x0f2a: /* cvtpi2ps */
6894 case 0x660f2a: /* cvtpi2pd */
6895 case 0xf30f2a: /* cvtsi2ss */
6896 case 0xf20f2a: /* cvtsi2sd */
6897 case 0x0f2c: /* cvttps2pi */
6898 case 0x660f2c: /* cvttpd2pi */
6899 case 0x0f2d: /* cvtps2pi */
6900 case 0x660f2d: /* cvtpd2pi */
6901 case 0x660f3800: /* pshufb */
6902 case 0x660f3801: /* phaddw */
6903 case 0x660f3802: /* phaddd */
6904 case 0x660f3803: /* phaddsw */
6905 case 0x660f3804: /* pmaddubsw */
6906 case 0x660f3805: /* phsubw */
6907 case 0x660f3806: /* phsubd */
6908 case 0x660f3807: /* phsubsw */
6909 case 0x660f3808: /* psignb */
6910 case 0x660f3809: /* psignw */
6911 case 0x660f380a: /* psignd */
6912 case 0x660f380b: /* pmulhrsw */
6913 case 0x660f3810: /* pblendvb */
6914 case 0x660f3814: /* blendvps */
6915 case 0x660f3815: /* blendvpd */
6916 case 0x660f381c: /* pabsb */
6917 case 0x660f381d: /* pabsw */
6918 case 0x660f381e: /* pabsd */
6919 case 0x660f3820: /* pmovsxbw */
6920 case 0x660f3821: /* pmovsxbd */
6921 case 0x660f3822: /* pmovsxbq */
6922 case 0x660f3823: /* pmovsxwd */
6923 case 0x660f3824: /* pmovsxwq */
6924 case 0x660f3825: /* pmovsxdq */
6925 case 0x660f3828: /* pmuldq */
6926 case 0x660f3829: /* pcmpeqq */
6927 case 0x660f382a: /* movntdqa */
6928 case 0x660f3a08: /* roundps */
6929 case 0x660f3a09: /* roundpd */
6930 case 0x660f3a0a: /* roundss */
6931 case 0x660f3a0b: /* roundsd */
6932 case 0x660f3a0c: /* blendps */
6933 case 0x660f3a0d: /* blendpd */
6934 case 0x660f3a0e: /* pblendw */
6935 case 0x660f3a0f: /* palignr */
6936 case 0x660f3a20: /* pinsrb */
6937 case 0x660f3a21: /* insertps */
6938 case 0x660f3a22: /* pinsrd pinsrq */
6939 case 0x660f3a40: /* dpps */
6940 case 0x660f3a41: /* dppd */
6941 case 0x660f3a42: /* mpsadbw */
6942 case 0x660f3a60: /* pcmpestrm */
6943 case 0x660f3a61: /* pcmpestri */
6944 case 0x660f3a62: /* pcmpistrm */
6945 case 0x660f3a63: /* pcmpistri */
6946 case 0x0f51: /* sqrtps */
6947 case 0x660f51: /* sqrtpd */
6948 case 0xf20f51: /* sqrtsd */
6949 case 0xf30f51: /* sqrtss */
6950 case 0x0f52: /* rsqrtps */
6951 case 0xf30f52: /* rsqrtss */
6952 case 0x0f53: /* rcpps */
6953 case 0xf30f53: /* rcpss */
6954 case 0x0f54: /* andps */
6955 case 0x660f54: /* andpd */
6956 case 0x0f55: /* andnps */
6957 case 0x660f55: /* andnpd */
6958 case 0x0f56: /* orps */
6959 case 0x660f56: /* orpd */
6960 case 0x0f57: /* xorps */
6961 case 0x660f57: /* xorpd */
6962 case 0x0f58: /* addps */
6963 case 0x660f58: /* addpd */
6964 case 0xf20f58: /* addsd */
6965 case 0xf30f58: /* addss */
6966 case 0x0f59: /* mulps */
6967 case 0x660f59: /* mulpd */
6968 case 0xf20f59: /* mulsd */
6969 case 0xf30f59: /* mulss */
6970 case 0x0f5a: /* cvtps2pd */
6971 case 0x660f5a: /* cvtpd2ps */
6972 case 0xf20f5a: /* cvtsd2ss */
6973 case 0xf30f5a: /* cvtss2sd */
6974 case 0x0f5b: /* cvtdq2ps */
6975 case 0x660f5b: /* cvtps2dq */
6976 case 0xf30f5b: /* cvttps2dq */
6977 case 0x0f5c: /* subps */
6978 case 0x660f5c: /* subpd */
6979 case 0xf20f5c: /* subsd */
6980 case 0xf30f5c: /* subss */
6981 case 0x0f5d: /* minps */
6982 case 0x660f5d: /* minpd */
6983 case 0xf20f5d: /* minsd */
6984 case 0xf30f5d: /* minss */
6985 case 0x0f5e: /* divps */
6986 case 0x660f5e: /* divpd */
6987 case 0xf20f5e: /* divsd */
6988 case 0xf30f5e: /* divss */
6989 case 0x0f5f: /* maxps */
6990 case 0x660f5f: /* maxpd */
6991 case 0xf20f5f: /* maxsd */
6992 case 0xf30f5f: /* maxss */
6993 case 0x660f60: /* punpcklbw */
6994 case 0x660f61: /* punpcklwd */
6995 case 0x660f62: /* punpckldq */
6996 case 0x660f63: /* packsswb */
6997 case 0x660f64: /* pcmpgtb */
6998 case 0x660f65: /* pcmpgtw */
6999 case 0x660f66: /* pcmpgtd */
7000 case 0x660f67: /* packuswb */
7001 case 0x660f68: /* punpckhbw */
7002 case 0x660f69: /* punpckhwd */
7003 case 0x660f6a: /* punpckhdq */
7004 case 0x660f6b: /* packssdw */
7005 case 0x660f6c: /* punpcklqdq */
7006 case 0x660f6d: /* punpckhqdq */
7007 case 0x660f6e: /* movd */
7008 case 0x660f6f: /* movdqa */
7009 case 0xf30f6f: /* movdqu */
7010 case 0x660f70: /* pshufd */
7011 case 0xf20f70: /* pshuflw */
7012 case 0xf30f70: /* pshufhw */
7013 case 0x660f74: /* pcmpeqb */
7014 case 0x660f75: /* pcmpeqw */
7015 case 0x660f76: /* pcmpeqd */
7016 case 0x660f7c: /* haddpd */
7017 case 0xf20f7c: /* haddps */
7018 case 0x660f7d: /* hsubpd */
7019 case 0xf20f7d: /* hsubps */
7020 case 0xf30f7e: /* movq */
7021 case 0x0fc2: /* cmpps */
7022 case 0x660fc2: /* cmppd */
7023 case 0xf20fc2: /* cmpsd */
7024 case 0xf30fc2: /* cmpss */
7025 case 0x660fc4: /* pinsrw */
7026 case 0x0fc6: /* shufps */
7027 case 0x660fc6: /* shufpd */
7028 case 0x660fd0: /* addsubpd */
7029 case 0xf20fd0: /* addsubps */
7030 case 0x660fd1: /* psrlw */
7031 case 0x660fd2: /* psrld */
7032 case 0x660fd3: /* psrlq */
7033 case 0x660fd4: /* paddq */
7034 case 0x660fd5: /* pmullw */
7035 case 0xf30fd6: /* movq2dq */
7036 case 0x660fd8: /* psubusb */
7037 case 0x660fd9: /* psubusw */
7038 case 0x660fda: /* pminub */
7039 case 0x660fdb: /* pand */
7040 case 0x660fdc: /* paddusb */
7041 case 0x660fdd: /* paddusw */
7042 case 0x660fde: /* pmaxub */
7043 case 0x660fdf: /* pandn */
7044 case 0x660fe0: /* pavgb */
7045 case 0x660fe1: /* psraw */
7046 case 0x660fe2: /* psrad */
7047 case 0x660fe3: /* pavgw */
7048 case 0x660fe4: /* pmulhuw */
7049 case 0x660fe5: /* pmulhw */
7050 case 0x660fe6: /* cvttpd2dq */
7051 case 0xf20fe6: /* cvtpd2dq */
7052 case 0xf30fe6: /* cvtdq2pd */
7053 case 0x660fe8: /* psubsb */
7054 case 0x660fe9: /* psubsw */
7055 case 0x660fea: /* pminsw */
7056 case 0x660feb: /* por */
7057 case 0x660fec: /* paddsb */
7058 case 0x660fed: /* paddsw */
7059 case 0x660fee: /* pmaxsw */
7060 case 0x660fef: /* pxor */
7061 case 0xf20ff0: /* lddqu */
7062 case 0x660ff1: /* psllw */
7063 case 0x660ff2: /* pslld */
7064 case 0x660ff3: /* psllq */
7065 case 0x660ff4: /* pmuludq */
7066 case 0x660ff5: /* pmaddwd */
7067 case 0x660ff6: /* psadbw */
7068 case 0x660ff8: /* psubb */
7069 case 0x660ff9: /* psubw */
7070 case 0x660ffa: /* psubd */
7071 case 0x660ffb: /* psubq */
7072 case 0x660ffc: /* paddb */
7073 case 0x660ffd: /* paddw */
7074 case 0x660ffe: /* paddd */
7075 if (i386_record_modrm (&ir))
7076 return -1;
7077 ir.reg |= rex_r;
7078 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.reg))
7079 goto no_support;
7080 record_arch_list_add_reg (ir.regcache,
7081 I387_XMM0_REGNUM (tdep) + ir.reg);
7082 if ((opcode & 0xfffffffc) == 0x660f3a60)
7083 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7084 break;
7085
7086 case 0x0f11: /* movups */
7087 case 0x660f11: /* movupd */
7088 case 0xf30f11: /* movss */
7089 case 0xf20f11: /* movsd */
7090 case 0x0f13: /* movlps */
7091 case 0x660f13: /* movlpd */
7092 case 0x0f17: /* movhps */
7093 case 0x660f17: /* movhpd */
7094 case 0x0f29: /* movaps */
7095 case 0x660f29: /* movapd */
7096 case 0x660f3a14: /* pextrb */
7097 case 0x660f3a15: /* pextrw */
7098 case 0x660f3a16: /* pextrd pextrq */
7099 case 0x660f3a17: /* extractps */
7100 case 0x660f7f: /* movdqa */
7101 case 0xf30f7f: /* movdqu */
7102 if (i386_record_modrm (&ir))
7103 return -1;
7104 if (ir.mod == 3)
7105 {
7106 if (opcode == 0x0f13 || opcode == 0x660f13
7107 || opcode == 0x0f17 || opcode == 0x660f17)
7108 goto no_support;
7109 ir.rm |= ir.rex_b;
7110 if (!i386_xmm_regnum_p (gdbarch,
7111 I387_XMM0_REGNUM (tdep) + ir.rm))
7112 goto no_support;
7113 record_arch_list_add_reg (ir.regcache,
7114 I387_XMM0_REGNUM (tdep) + ir.rm);
7115 }
7116 else
7117 {
7118 switch (opcode)
7119 {
7120 case 0x660f3a14:
7121 ir.ot = OT_BYTE;
7122 break;
7123 case 0x660f3a15:
7124 ir.ot = OT_WORD;
7125 break;
7126 case 0x660f3a16:
7127 ir.ot = OT_LONG;
7128 break;
7129 case 0x660f3a17:
7130 ir.ot = OT_QUAD;
7131 break;
7132 default:
7133 ir.ot = OT_DQUAD;
7134 break;
7135 }
7136 if (i386_record_lea_modrm (&ir))
7137 return -1;
7138 }
7139 break;
7140
7141 case 0x0f2b: /* movntps */
7142 case 0x660f2b: /* movntpd */
7143 case 0x0fe7: /* movntq */
7144 case 0x660fe7: /* movntdq */
7145 if (ir.mod == 3)
7146 goto no_support;
7147 if (opcode == 0x0fe7)
7148 ir.ot = OT_QUAD;
7149 else
7150 ir.ot = OT_DQUAD;
7151 if (i386_record_lea_modrm (&ir))
7152 return -1;
7153 break;
7154
7155 case 0xf30f2c: /* cvttss2si */
7156 case 0xf20f2c: /* cvttsd2si */
7157 case 0xf30f2d: /* cvtss2si */
7158 case 0xf20f2d: /* cvtsd2si */
7159 case 0xf20f38f0: /* crc32 */
7160 case 0xf20f38f1: /* crc32 */
7161 case 0x0f50: /* movmskps */
7162 case 0x660f50: /* movmskpd */
7163 case 0x0fc5: /* pextrw */
7164 case 0x660fc5: /* pextrw */
7165 case 0x0fd7: /* pmovmskb */
7166 case 0x660fd7: /* pmovmskb */
7167 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7168 break;
7169
7170 case 0x0f3800: /* pshufb */
7171 case 0x0f3801: /* phaddw */
7172 case 0x0f3802: /* phaddd */
7173 case 0x0f3803: /* phaddsw */
7174 case 0x0f3804: /* pmaddubsw */
7175 case 0x0f3805: /* phsubw */
7176 case 0x0f3806: /* phsubd */
7177 case 0x0f3807: /* phsubsw */
7178 case 0x0f3808: /* psignb */
7179 case 0x0f3809: /* psignw */
7180 case 0x0f380a: /* psignd */
7181 case 0x0f380b: /* pmulhrsw */
7182 case 0x0f381c: /* pabsb */
7183 case 0x0f381d: /* pabsw */
7184 case 0x0f381e: /* pabsd */
7185 case 0x0f382b: /* packusdw */
7186 case 0x0f3830: /* pmovzxbw */
7187 case 0x0f3831: /* pmovzxbd */
7188 case 0x0f3832: /* pmovzxbq */
7189 case 0x0f3833: /* pmovzxwd */
7190 case 0x0f3834: /* pmovzxwq */
7191 case 0x0f3835: /* pmovzxdq */
7192 case 0x0f3837: /* pcmpgtq */
7193 case 0x0f3838: /* pminsb */
7194 case 0x0f3839: /* pminsd */
7195 case 0x0f383a: /* pminuw */
7196 case 0x0f383b: /* pminud */
7197 case 0x0f383c: /* pmaxsb */
7198 case 0x0f383d: /* pmaxsd */
7199 case 0x0f383e: /* pmaxuw */
7200 case 0x0f383f: /* pmaxud */
7201 case 0x0f3840: /* pmulld */
7202 case 0x0f3841: /* phminposuw */
7203 case 0x0f3a0f: /* palignr */
7204 case 0x0f60: /* punpcklbw */
7205 case 0x0f61: /* punpcklwd */
7206 case 0x0f62: /* punpckldq */
7207 case 0x0f63: /* packsswb */
7208 case 0x0f64: /* pcmpgtb */
7209 case 0x0f65: /* pcmpgtw */
7210 case 0x0f66: /* pcmpgtd */
7211 case 0x0f67: /* packuswb */
7212 case 0x0f68: /* punpckhbw */
7213 case 0x0f69: /* punpckhwd */
7214 case 0x0f6a: /* punpckhdq */
7215 case 0x0f6b: /* packssdw */
7216 case 0x0f6e: /* movd */
7217 case 0x0f6f: /* movq */
7218 case 0x0f70: /* pshufw */
7219 case 0x0f74: /* pcmpeqb */
7220 case 0x0f75: /* pcmpeqw */
7221 case 0x0f76: /* pcmpeqd */
7222 case 0x0fc4: /* pinsrw */
7223 case 0x0fd1: /* psrlw */
7224 case 0x0fd2: /* psrld */
7225 case 0x0fd3: /* psrlq */
7226 case 0x0fd4: /* paddq */
7227 case 0x0fd5: /* pmullw */
7228 case 0xf20fd6: /* movdq2q */
7229 case 0x0fd8: /* psubusb */
7230 case 0x0fd9: /* psubusw */
7231 case 0x0fda: /* pminub */
7232 case 0x0fdb: /* pand */
7233 case 0x0fdc: /* paddusb */
7234 case 0x0fdd: /* paddusw */
7235 case 0x0fde: /* pmaxub */
7236 case 0x0fdf: /* pandn */
7237 case 0x0fe0: /* pavgb */
7238 case 0x0fe1: /* psraw */
7239 case 0x0fe2: /* psrad */
7240 case 0x0fe3: /* pavgw */
7241 case 0x0fe4: /* pmulhuw */
7242 case 0x0fe5: /* pmulhw */
7243 case 0x0fe8: /* psubsb */
7244 case 0x0fe9: /* psubsw */
7245 case 0x0fea: /* pminsw */
7246 case 0x0feb: /* por */
7247 case 0x0fec: /* paddsb */
7248 case 0x0fed: /* paddsw */
7249 case 0x0fee: /* pmaxsw */
7250 case 0x0fef: /* pxor */
7251 case 0x0ff1: /* psllw */
7252 case 0x0ff2: /* pslld */
7253 case 0x0ff3: /* psllq */
7254 case 0x0ff4: /* pmuludq */
7255 case 0x0ff5: /* pmaddwd */
7256 case 0x0ff6: /* psadbw */
7257 case 0x0ff8: /* psubb */
7258 case 0x0ff9: /* psubw */
7259 case 0x0ffa: /* psubd */
7260 case 0x0ffb: /* psubq */
7261 case 0x0ffc: /* paddb */
7262 case 0x0ffd: /* paddw */
7263 case 0x0ffe: /* paddd */
7264 if (i386_record_modrm (&ir))
7265 return -1;
7266 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7267 goto no_support;
7268 record_arch_list_add_reg (ir.regcache,
7269 I387_MM0_REGNUM (tdep) + ir.reg);
7270 break;
7271
7272 case 0x0f71: /* psllw */
7273 case 0x0f72: /* pslld */
7274 case 0x0f73: /* psllq */
7275 if (i386_record_modrm (&ir))
7276 return -1;
7277 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
7278 goto no_support;
7279 record_arch_list_add_reg (ir.regcache,
7280 I387_MM0_REGNUM (tdep) + ir.rm);
7281 break;
7282
7283 case 0x660f71: /* psllw */
7284 case 0x660f72: /* pslld */
7285 case 0x660f73: /* psllq */
7286 if (i386_record_modrm (&ir))
7287 return -1;
7288 ir.rm |= ir.rex_b;
7289 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.rm))
7290 goto no_support;
7291 record_arch_list_add_reg (ir.regcache,
7292 I387_XMM0_REGNUM (tdep) + ir.rm);
7293 break;
7294
7295 case 0x0f7e: /* movd */
7296 case 0x660f7e: /* movd */
7297 if (i386_record_modrm (&ir))
7298 return -1;
7299 if (ir.mod == 3)
7300 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7301 else
7302 {
7303 if (ir.dflag == 2)
7304 ir.ot = OT_QUAD;
7305 else
7306 ir.ot = OT_LONG;
7307 if (i386_record_lea_modrm (&ir))
7308 return -1;
7309 }
7310 break;
7311
7312 case 0x0f7f: /* movq */
7313 if (i386_record_modrm (&ir))
7314 return -1;
7315 if (ir.mod == 3)
7316 {
7317 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
7318 goto no_support;
7319 record_arch_list_add_reg (ir.regcache,
7320 I387_MM0_REGNUM (tdep) + ir.rm);
7321 }
7322 else
7323 {
7324 ir.ot = OT_QUAD;
7325 if (i386_record_lea_modrm (&ir))
7326 return -1;
7327 }
7328 break;
7329
7330 case 0xf30fb8: /* popcnt */
7331 if (i386_record_modrm (&ir))
7332 return -1;
7333 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
7334 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7335 break;
7336
7337 case 0x660fd6: /* movq */
7338 if (i386_record_modrm (&ir))
7339 return -1;
7340 if (ir.mod == 3)
7341 {
7342 ir.rm |= ir.rex_b;
7343 if (!i386_xmm_regnum_p (gdbarch,
7344 I387_XMM0_REGNUM (tdep) + ir.rm))
7345 goto no_support;
7346 record_arch_list_add_reg (ir.regcache,
7347 I387_XMM0_REGNUM (tdep) + ir.rm);
7348 }
7349 else
7350 {
7351 ir.ot = OT_QUAD;
7352 if (i386_record_lea_modrm (&ir))
7353 return -1;
7354 }
7355 break;
7356
7357 case 0x660f3817: /* ptest */
7358 case 0x0f2e: /* ucomiss */
7359 case 0x660f2e: /* ucomisd */
7360 case 0x0f2f: /* comiss */
7361 case 0x660f2f: /* comisd */
7362 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7363 break;
7364
7365 case 0x0ff7: /* maskmovq */
7366 regcache_raw_read_unsigned (ir.regcache,
7367 ir.regmap[X86_RECORD_REDI_REGNUM],
7368 &addr);
7369 if (record_arch_list_add_mem (addr, 64))
7370 return -1;
7371 break;
7372
7373 case 0x660ff7: /* maskmovdqu */
7374 regcache_raw_read_unsigned (ir.regcache,
7375 ir.regmap[X86_RECORD_REDI_REGNUM],
7376 &addr);
7377 if (record_arch_list_add_mem (addr, 128))
7378 return -1;
7379 break;
7380
7381 default:
7382 goto no_support;
7383 break;
7384 }
7385 break;
7386
7387 default:
7388 goto no_support;
7389 break;
7390 }
7391
7392 /* In the future, maybe still need to deal with need_dasm. */
7393 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REIP_REGNUM);
7394 if (record_arch_list_add_end ())
7395 return -1;
7396
7397 return 0;
7398
7399 no_support:
7400 printf_unfiltered (_("Process record does not support instruction 0x%02x "
7401 "at address %s.\n"),
7402 (unsigned int) (opcode),
7403 paddress (gdbarch, ir.orig_addr));
7404 return -1;
7405 }
7406
7407 static const int i386_record_regmap[] =
7408 {
7409 I386_EAX_REGNUM, I386_ECX_REGNUM, I386_EDX_REGNUM, I386_EBX_REGNUM,
7410 I386_ESP_REGNUM, I386_EBP_REGNUM, I386_ESI_REGNUM, I386_EDI_REGNUM,
7411 0, 0, 0, 0, 0, 0, 0, 0,
7412 I386_EIP_REGNUM, I386_EFLAGS_REGNUM, I386_CS_REGNUM, I386_SS_REGNUM,
7413 I386_DS_REGNUM, I386_ES_REGNUM, I386_FS_REGNUM, I386_GS_REGNUM
7414 };
7415
7416 /* Check that the given address appears suitable for a fast
7417 tracepoint, which on x86-64 means that we need an instruction of at
7418 least 5 bytes, so that we can overwrite it with a 4-byte-offset
7419 jump and not have to worry about program jumps to an address in the
7420 middle of the tracepoint jump. On x86, it may be possible to use
7421 4-byte jumps with a 2-byte offset to a trampoline located in the
7422 bottom 64 KiB of memory. Returns 1 if OK, and writes a size
7423 of instruction to replace, and 0 if not, plus an explanatory
7424 string. */
7425
7426 static int
7427 i386_fast_tracepoint_valid_at (struct gdbarch *gdbarch,
7428 CORE_ADDR addr, int *isize, char **msg)
7429 {
7430 int len, jumplen;
7431 static struct ui_file *gdb_null = NULL;
7432
7433 /* Ask the target for the minimum instruction length supported. */
7434 jumplen = target_get_min_fast_tracepoint_insn_len ();
7435
7436 if (jumplen < 0)
7437 {
7438 /* If the target does not support the get_min_fast_tracepoint_insn_len
7439 operation, assume that fast tracepoints will always be implemented
7440 using 4-byte relative jumps on both x86 and x86-64. */
7441 jumplen = 5;
7442 }
7443 else if (jumplen == 0)
7444 {
7445 /* If the target does support get_min_fast_tracepoint_insn_len but
7446 returns zero, then the IPA has not loaded yet. In this case,
7447 we optimistically assume that truncated 2-byte relative jumps
7448 will be available on x86, and compensate later if this assumption
7449 turns out to be incorrect. On x86-64 architectures, 4-byte relative
7450 jumps will always be used. */
7451 jumplen = (register_size (gdbarch, 0) == 8) ? 5 : 4;
7452 }
7453
7454 /* Dummy file descriptor for the disassembler. */
7455 if (!gdb_null)
7456 gdb_null = ui_file_new ();
7457
7458 /* Check for fit. */
7459 len = gdb_print_insn (gdbarch, addr, gdb_null, NULL);
7460 if (isize)
7461 *isize = len;
7462
7463 if (len < jumplen)
7464 {
7465 /* Return a bit of target-specific detail to add to the caller's
7466 generic failure message. */
7467 if (msg)
7468 *msg = xstrprintf (_("; instruction is only %d bytes long, "
7469 "need at least %d bytes for the jump"),
7470 len, jumplen);
7471 return 0;
7472 }
7473 else
7474 {
7475 if (msg)
7476 *msg = NULL;
7477 return 1;
7478 }
7479 }
7480
7481 static int
7482 i386_validate_tdesc_p (struct gdbarch_tdep *tdep,
7483 struct tdesc_arch_data *tdesc_data)
7484 {
7485 const struct target_desc *tdesc = tdep->tdesc;
7486 const struct tdesc_feature *feature_core;
7487 const struct tdesc_feature *feature_sse, *feature_avx;
7488 int i, num_regs, valid_p;
7489
7490 if (! tdesc_has_registers (tdesc))
7491 return 0;
7492
7493 /* Get core registers. */
7494 feature_core = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.core");
7495 if (feature_core == NULL)
7496 return 0;
7497
7498 /* Get SSE registers. */
7499 feature_sse = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.sse");
7500
7501 /* Try AVX registers. */
7502 feature_avx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx");
7503
7504 valid_p = 1;
7505
7506 /* The XCR0 bits. */
7507 if (feature_avx)
7508 {
7509 /* AVX register description requires SSE register description. */
7510 if (!feature_sse)
7511 return 0;
7512
7513 tdep->xcr0 = I386_XSTATE_AVX_MASK;
7514
7515 /* It may have been set by OSABI initialization function. */
7516 if (tdep->num_ymm_regs == 0)
7517 {
7518 tdep->ymmh_register_names = i386_ymmh_names;
7519 tdep->num_ymm_regs = 8;
7520 tdep->ymm0h_regnum = I386_YMM0H_REGNUM;
7521 }
7522
7523 for (i = 0; i < tdep->num_ymm_regs; i++)
7524 valid_p &= tdesc_numbered_register (feature_avx, tdesc_data,
7525 tdep->ymm0h_regnum + i,
7526 tdep->ymmh_register_names[i]);
7527 }
7528 else if (feature_sse)
7529 tdep->xcr0 = I386_XSTATE_SSE_MASK;
7530 else
7531 {
7532 tdep->xcr0 = I386_XSTATE_X87_MASK;
7533 tdep->num_xmm_regs = 0;
7534 }
7535
7536 num_regs = tdep->num_core_regs;
7537 for (i = 0; i < num_regs; i++)
7538 valid_p &= tdesc_numbered_register (feature_core, tdesc_data, i,
7539 tdep->register_names[i]);
7540
7541 if (feature_sse)
7542 {
7543 /* Need to include %mxcsr, so add one. */
7544 num_regs += tdep->num_xmm_regs + 1;
7545 for (; i < num_regs; i++)
7546 valid_p &= tdesc_numbered_register (feature_sse, tdesc_data, i,
7547 tdep->register_names[i]);
7548 }
7549
7550 return valid_p;
7551 }
7552
7553 \f
7554 static struct gdbarch *
7555 i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
7556 {
7557 struct gdbarch_tdep *tdep;
7558 struct gdbarch *gdbarch;
7559 struct tdesc_arch_data *tdesc_data;
7560 const struct target_desc *tdesc;
7561 int mm0_regnum;
7562 int ymm0_regnum;
7563
7564 /* If there is already a candidate, use it. */
7565 arches = gdbarch_list_lookup_by_info (arches, &info);
7566 if (arches != NULL)
7567 return arches->gdbarch;
7568
7569 /* Allocate space for the new architecture. */
7570 tdep = XCALLOC (1, struct gdbarch_tdep);
7571 gdbarch = gdbarch_alloc (&info, tdep);
7572
7573 /* General-purpose registers. */
7574 tdep->gregset = NULL;
7575 tdep->gregset_reg_offset = NULL;
7576 tdep->gregset_num_regs = I386_NUM_GREGS;
7577 tdep->sizeof_gregset = 0;
7578
7579 /* Floating-point registers. */
7580 tdep->fpregset = NULL;
7581 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
7582
7583 tdep->xstateregset = NULL;
7584
7585 /* The default settings include the FPU registers, the MMX registers
7586 and the SSE registers. This can be overridden for a specific ABI
7587 by adjusting the members `st0_regnum', `mm0_regnum' and
7588 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
7589 will show up in the output of "info all-registers". */
7590
7591 tdep->st0_regnum = I386_ST0_REGNUM;
7592
7593 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
7594 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
7595
7596 tdep->jb_pc_offset = -1;
7597 tdep->struct_return = pcc_struct_return;
7598 tdep->sigtramp_start = 0;
7599 tdep->sigtramp_end = 0;
7600 tdep->sigtramp_p = i386_sigtramp_p;
7601 tdep->sigcontext_addr = NULL;
7602 tdep->sc_reg_offset = NULL;
7603 tdep->sc_pc_offset = -1;
7604 tdep->sc_sp_offset = -1;
7605
7606 tdep->xsave_xcr0_offset = -1;
7607
7608 tdep->record_regmap = i386_record_regmap;
7609
7610 set_gdbarch_long_long_align_bit (gdbarch, 32);
7611
7612 /* The format used for `long double' on almost all i386 targets is
7613 the i387 extended floating-point format. In fact, of all targets
7614 in the GCC 2.95 tree, only OSF/1 does it different, and insists
7615 on having a `long double' that's not `long' at all. */
7616 set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext);
7617
7618 /* Although the i387 extended floating-point has only 80 significant
7619 bits, a `long double' actually takes up 96, probably to enforce
7620 alignment. */
7621 set_gdbarch_long_double_bit (gdbarch, 96);
7622
7623 /* Register numbers of various important registers. */
7624 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
7625 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
7626 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
7627 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
7628
7629 /* NOTE: kettenis/20040418: GCC does have two possible register
7630 numbering schemes on the i386: dbx and SVR4. These schemes
7631 differ in how they number %ebp, %esp, %eflags, and the
7632 floating-point registers, and are implemented by the arrays
7633 dbx_register_map[] and svr4_dbx_register_map in
7634 gcc/config/i386.c. GCC also defines a third numbering scheme in
7635 gcc/config/i386.c, which it designates as the "default" register
7636 map used in 64bit mode. This last register numbering scheme is
7637 implemented in dbx64_register_map, and is used for AMD64; see
7638 amd64-tdep.c.
7639
7640 Currently, each GCC i386 target always uses the same register
7641 numbering scheme across all its supported debugging formats
7642 i.e. SDB (COFF), stabs and DWARF 2. This is because
7643 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
7644 DBX_REGISTER_NUMBER macro which is defined by each target's
7645 respective config header in a manner independent of the requested
7646 output debugging format.
7647
7648 This does not match the arrangement below, which presumes that
7649 the SDB and stabs numbering schemes differ from the DWARF and
7650 DWARF 2 ones. The reason for this arrangement is that it is
7651 likely to get the numbering scheme for the target's
7652 default/native debug format right. For targets where GCC is the
7653 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
7654 targets where the native toolchain uses a different numbering
7655 scheme for a particular debug format (stabs-in-ELF on Solaris)
7656 the defaults below will have to be overridden, like
7657 i386_elf_init_abi() does. */
7658
7659 /* Use the dbx register numbering scheme for stabs and COFF. */
7660 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
7661 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
7662
7663 /* Use the SVR4 register numbering scheme for DWARF 2. */
7664 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
7665
7666 /* We don't set gdbarch_stab_reg_to_regnum, since ECOFF doesn't seem to
7667 be in use on any of the supported i386 targets. */
7668
7669 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
7670
7671 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
7672
7673 /* Call dummy code. */
7674 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
7675 set_gdbarch_push_dummy_code (gdbarch, i386_push_dummy_code);
7676 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
7677 set_gdbarch_frame_align (gdbarch, i386_frame_align);
7678
7679 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
7680 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
7681 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
7682
7683 set_gdbarch_return_value (gdbarch, i386_return_value);
7684
7685 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
7686
7687 /* Stack grows downward. */
7688 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
7689
7690 set_gdbarch_breakpoint_from_pc (gdbarch, i386_breakpoint_from_pc);
7691 set_gdbarch_decr_pc_after_break (gdbarch, 1);
7692 set_gdbarch_max_insn_length (gdbarch, I386_MAX_INSN_LEN);
7693
7694 set_gdbarch_frame_args_skip (gdbarch, 8);
7695
7696 set_gdbarch_print_insn (gdbarch, i386_print_insn);
7697
7698 set_gdbarch_dummy_id (gdbarch, i386_dummy_id);
7699
7700 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
7701
7702 /* Add the i386 register groups. */
7703 i386_add_reggroups (gdbarch);
7704 tdep->register_reggroup_p = i386_register_reggroup_p;
7705
7706 /* Helper for function argument information. */
7707 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
7708
7709 /* Hook the function epilogue frame unwinder. This unwinder is
7710 appended to the list first, so that it supercedes the DWARF
7711 unwinder in function epilogues (where the DWARF unwinder
7712 currently fails). */
7713 frame_unwind_append_unwinder (gdbarch, &i386_epilogue_frame_unwind);
7714
7715 /* Hook in the DWARF CFI frame unwinder. This unwinder is appended
7716 to the list before the prologue-based unwinders, so that DWARF
7717 CFI info will be used if it is available. */
7718 dwarf2_append_unwinders (gdbarch);
7719
7720 frame_base_set_default (gdbarch, &i386_frame_base);
7721
7722 /* Pseudo registers may be changed by amd64_init_abi. */
7723 set_gdbarch_pseudo_register_read_value (gdbarch,
7724 i386_pseudo_register_read_value);
7725 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
7726
7727 set_tdesc_pseudo_register_type (gdbarch, i386_pseudo_register_type);
7728 set_tdesc_pseudo_register_name (gdbarch, i386_pseudo_register_name);
7729
7730 /* Override the normal target description method to make the AVX
7731 upper halves anonymous. */
7732 set_gdbarch_register_name (gdbarch, i386_register_name);
7733
7734 /* Even though the default ABI only includes general-purpose registers,
7735 floating-point registers and the SSE registers, we have to leave a
7736 gap for the upper AVX registers. */
7737 set_gdbarch_num_regs (gdbarch, I386_AVX_NUM_REGS);
7738
7739 /* Get the x86 target description from INFO. */
7740 tdesc = info.target_desc;
7741 if (! tdesc_has_registers (tdesc))
7742 tdesc = tdesc_i386;
7743 tdep->tdesc = tdesc;
7744
7745 tdep->num_core_regs = I386_NUM_GREGS + I387_NUM_REGS;
7746 tdep->register_names = i386_register_names;
7747
7748 /* No upper YMM registers. */
7749 tdep->ymmh_register_names = NULL;
7750 tdep->ymm0h_regnum = -1;
7751
7752 tdep->num_byte_regs = 8;
7753 tdep->num_word_regs = 8;
7754 tdep->num_dword_regs = 0;
7755 tdep->num_mmx_regs = 8;
7756 tdep->num_ymm_regs = 0;
7757
7758 tdesc_data = tdesc_data_alloc ();
7759
7760 set_gdbarch_relocate_instruction (gdbarch, i386_relocate_instruction);
7761
7762 set_gdbarch_gen_return_address (gdbarch, i386_gen_return_address);
7763
7764 /* Hook in ABI-specific overrides, if they have been registered. */
7765 info.tdep_info = (void *) tdesc_data;
7766 gdbarch_init_osabi (info, gdbarch);
7767
7768 if (!i386_validate_tdesc_p (tdep, tdesc_data))
7769 {
7770 tdesc_data_cleanup (tdesc_data);
7771 xfree (tdep);
7772 gdbarch_free (gdbarch);
7773 return NULL;
7774 }
7775
7776 /* Wire in pseudo registers. Number of pseudo registers may be
7777 changed. */
7778 set_gdbarch_num_pseudo_regs (gdbarch, (tdep->num_byte_regs
7779 + tdep->num_word_regs
7780 + tdep->num_dword_regs
7781 + tdep->num_mmx_regs
7782 + tdep->num_ymm_regs));
7783
7784 /* Target description may be changed. */
7785 tdesc = tdep->tdesc;
7786
7787 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
7788
7789 /* Override gdbarch_register_reggroup_p set in tdesc_use_registers. */
7790 set_gdbarch_register_reggroup_p (gdbarch, tdep->register_reggroup_p);
7791
7792 /* Make %al the first pseudo-register. */
7793 tdep->al_regnum = gdbarch_num_regs (gdbarch);
7794 tdep->ax_regnum = tdep->al_regnum + tdep->num_byte_regs;
7795
7796 ymm0_regnum = tdep->ax_regnum + tdep->num_word_regs;
7797 if (tdep->num_dword_regs)
7798 {
7799 /* Support dword pseudo-register if it hasn't been disabled. */
7800 tdep->eax_regnum = ymm0_regnum;
7801 ymm0_regnum += tdep->num_dword_regs;
7802 }
7803 else
7804 tdep->eax_regnum = -1;
7805
7806 mm0_regnum = ymm0_regnum;
7807 if (tdep->num_ymm_regs)
7808 {
7809 /* Support YMM pseudo-register if it is available. */
7810 tdep->ymm0_regnum = ymm0_regnum;
7811 mm0_regnum += tdep->num_ymm_regs;
7812 }
7813 else
7814 tdep->ymm0_regnum = -1;
7815
7816 if (tdep->num_mmx_regs != 0)
7817 {
7818 /* Support MMX pseudo-register if MMX hasn't been disabled. */
7819 tdep->mm0_regnum = mm0_regnum;
7820 }
7821 else
7822 tdep->mm0_regnum = -1;
7823
7824 /* Hook in the legacy prologue-based unwinders last (fallback). */
7825 frame_unwind_append_unwinder (gdbarch, &i386_stack_tramp_frame_unwind);
7826 frame_unwind_append_unwinder (gdbarch, &i386_sigtramp_frame_unwind);
7827 frame_unwind_append_unwinder (gdbarch, &i386_frame_unwind);
7828
7829 /* If we have a register mapping, enable the generic core file
7830 support, unless it has already been enabled. */
7831 if (tdep->gregset_reg_offset
7832 && !gdbarch_regset_from_core_section_p (gdbarch))
7833 set_gdbarch_regset_from_core_section (gdbarch,
7834 i386_regset_from_core_section);
7835
7836 set_gdbarch_skip_permanent_breakpoint (gdbarch,
7837 i386_skip_permanent_breakpoint);
7838
7839 set_gdbarch_fast_tracepoint_valid_at (gdbarch,
7840 i386_fast_tracepoint_valid_at);
7841
7842 return gdbarch;
7843 }
7844
7845 static enum gdb_osabi
7846 i386_coff_osabi_sniffer (bfd *abfd)
7847 {
7848 if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
7849 || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
7850 return GDB_OSABI_GO32;
7851
7852 return GDB_OSABI_UNKNOWN;
7853 }
7854 \f
7855
7856 /* Provide a prototype to silence -Wmissing-prototypes. */
7857 void _initialize_i386_tdep (void);
7858
7859 void
7860 _initialize_i386_tdep (void)
7861 {
7862 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
7863
7864 /* Add the variable that controls the disassembly flavor. */
7865 add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
7866 &disassembly_flavor, _("\
7867 Set the disassembly flavor."), _("\
7868 Show the disassembly flavor."), _("\
7869 The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
7870 NULL,
7871 NULL, /* FIXME: i18n: */
7872 &setlist, &showlist);
7873
7874 /* Add the variable that controls the convention for returning
7875 structs. */
7876 add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
7877 &struct_convention, _("\
7878 Set the convention for returning small structs."), _("\
7879 Show the convention for returning small structs."), _("\
7880 Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
7881 is \"default\"."),
7882 NULL,
7883 NULL, /* FIXME: i18n: */
7884 &setlist, &showlist);
7885
7886 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
7887 i386_coff_osabi_sniffer);
7888
7889 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
7890 i386_svr4_init_abi);
7891 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_GO32,
7892 i386_go32_init_abi);
7893
7894 /* Initialize the i386-specific register groups. */
7895 i386_init_reggroups ();
7896
7897 /* Initialize the standard target descriptions. */
7898 initialize_tdesc_i386 ();
7899 initialize_tdesc_i386_mmx ();
7900 initialize_tdesc_i386_avx ();
7901
7902 /* Tell remote stub that we support XML target description. */
7903 register_remote_support_xml ("i386");
7904 }
This page took 0.194637 seconds and 5 git commands to generate.