Extend SystemTap SDT probe argument parser
[deliverable/binutils-gdb.git] / gdb / i386-tdep.c
1 /* Intel 386 target-dependent stuff.
2
3 Copyright (C) 1988-2013 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "opcode/i386.h"
22 #include "arch-utils.h"
23 #include "command.h"
24 #include "dummy-frame.h"
25 #include "dwarf2-frame.h"
26 #include "doublest.h"
27 #include "frame.h"
28 #include "frame-base.h"
29 #include "frame-unwind.h"
30 #include "inferior.h"
31 #include "gdbcmd.h"
32 #include "gdbcore.h"
33 #include "gdbtypes.h"
34 #include "objfiles.h"
35 #include "osabi.h"
36 #include "regcache.h"
37 #include "reggroups.h"
38 #include "regset.h"
39 #include "symfile.h"
40 #include "symtab.h"
41 #include "target.h"
42 #include "value.h"
43 #include "dis-asm.h"
44 #include "disasm.h"
45 #include "remote.h"
46 #include "exceptions.h"
47 #include "gdb_assert.h"
48 #include <string.h>
49
50 #include "i386-tdep.h"
51 #include "i387-tdep.h"
52 #include "i386-xstate.h"
53
54 #include "record.h"
55 #include "record-full.h"
56 #include <stdint.h>
57
58 #include "features/i386/i386.c"
59 #include "features/i386/i386-avx.c"
60 #include "features/i386/i386-mpx.c"
61 #include "features/i386/i386-mmx.c"
62
63 #include "ax.h"
64 #include "ax-gdb.h"
65
66 #include "stap-probe.h"
67 #include "user-regs.h"
68 #include "cli/cli-utils.h"
69 #include "expression.h"
70 #include "parser-defs.h"
71 #include <ctype.h>
72
73 /* Register names. */
74
75 static const char *i386_register_names[] =
76 {
77 "eax", "ecx", "edx", "ebx",
78 "esp", "ebp", "esi", "edi",
79 "eip", "eflags", "cs", "ss",
80 "ds", "es", "fs", "gs",
81 "st0", "st1", "st2", "st3",
82 "st4", "st5", "st6", "st7",
83 "fctrl", "fstat", "ftag", "fiseg",
84 "fioff", "foseg", "fooff", "fop",
85 "xmm0", "xmm1", "xmm2", "xmm3",
86 "xmm4", "xmm5", "xmm6", "xmm7",
87 "mxcsr"
88 };
89
90 static const char *i386_ymm_names[] =
91 {
92 "ymm0", "ymm1", "ymm2", "ymm3",
93 "ymm4", "ymm5", "ymm6", "ymm7",
94 };
95
96 static const char *i386_ymmh_names[] =
97 {
98 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
99 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
100 };
101
102 static const char *i386_mpx_names[] =
103 {
104 "bnd0raw", "bnd1raw", "bnd2raw", "bnd3raw", "bndcfgu", "bndstatus"
105 };
106
107 /* Register names for MPX pseudo-registers. */
108
109 static const char *i386_bnd_names[] =
110 {
111 "bnd0", "bnd1", "bnd2", "bnd3"
112 };
113
114 /* Register names for MMX pseudo-registers. */
115
116 static const char *i386_mmx_names[] =
117 {
118 "mm0", "mm1", "mm2", "mm3",
119 "mm4", "mm5", "mm6", "mm7"
120 };
121
122 /* Register names for byte pseudo-registers. */
123
124 static const char *i386_byte_names[] =
125 {
126 "al", "cl", "dl", "bl",
127 "ah", "ch", "dh", "bh"
128 };
129
130 /* Register names for word pseudo-registers. */
131
132 static const char *i386_word_names[] =
133 {
134 "ax", "cx", "dx", "bx",
135 "", "bp", "si", "di"
136 };
137
138 /* MMX register? */
139
140 static int
141 i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
142 {
143 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
144 int mm0_regnum = tdep->mm0_regnum;
145
146 if (mm0_regnum < 0)
147 return 0;
148
149 regnum -= mm0_regnum;
150 return regnum >= 0 && regnum < tdep->num_mmx_regs;
151 }
152
153 /* Byte register? */
154
155 int
156 i386_byte_regnum_p (struct gdbarch *gdbarch, int regnum)
157 {
158 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
159
160 regnum -= tdep->al_regnum;
161 return regnum >= 0 && regnum < tdep->num_byte_regs;
162 }
163
164 /* Word register? */
165
166 int
167 i386_word_regnum_p (struct gdbarch *gdbarch, int regnum)
168 {
169 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
170
171 regnum -= tdep->ax_regnum;
172 return regnum >= 0 && regnum < tdep->num_word_regs;
173 }
174
175 /* Dword register? */
176
177 int
178 i386_dword_regnum_p (struct gdbarch *gdbarch, int regnum)
179 {
180 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
181 int eax_regnum = tdep->eax_regnum;
182
183 if (eax_regnum < 0)
184 return 0;
185
186 regnum -= eax_regnum;
187 return regnum >= 0 && regnum < tdep->num_dword_regs;
188 }
189
190 static int
191 i386_ymmh_regnum_p (struct gdbarch *gdbarch, int regnum)
192 {
193 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
194 int ymm0h_regnum = tdep->ymm0h_regnum;
195
196 if (ymm0h_regnum < 0)
197 return 0;
198
199 regnum -= ymm0h_regnum;
200 return regnum >= 0 && regnum < tdep->num_ymm_regs;
201 }
202
203 /* AVX register? */
204
205 int
206 i386_ymm_regnum_p (struct gdbarch *gdbarch, int regnum)
207 {
208 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
209 int ymm0_regnum = tdep->ymm0_regnum;
210
211 if (ymm0_regnum < 0)
212 return 0;
213
214 regnum -= ymm0_regnum;
215 return regnum >= 0 && regnum < tdep->num_ymm_regs;
216 }
217
218 /* BND register? */
219
220 int
221 i386_bnd_regnum_p (struct gdbarch *gdbarch, int regnum)
222 {
223 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
224 int bnd0_regnum = tdep->bnd0_regnum;
225
226 if (bnd0_regnum < 0)
227 return 0;
228
229 regnum -= bnd0_regnum;
230 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
231 }
232
233 /* SSE register? */
234
235 int
236 i386_xmm_regnum_p (struct gdbarch *gdbarch, int regnum)
237 {
238 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
239 int num_xmm_regs = I387_NUM_XMM_REGS (tdep);
240
241 if (num_xmm_regs == 0)
242 return 0;
243
244 regnum -= I387_XMM0_REGNUM (tdep);
245 return regnum >= 0 && regnum < num_xmm_regs;
246 }
247
248 static int
249 i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
250 {
251 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
252
253 if (I387_NUM_XMM_REGS (tdep) == 0)
254 return 0;
255
256 return (regnum == I387_MXCSR_REGNUM (tdep));
257 }
258
259 /* FP register? */
260
261 int
262 i386_fp_regnum_p (struct gdbarch *gdbarch, int regnum)
263 {
264 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
265
266 if (I387_ST0_REGNUM (tdep) < 0)
267 return 0;
268
269 return (I387_ST0_REGNUM (tdep) <= regnum
270 && regnum < I387_FCTRL_REGNUM (tdep));
271 }
272
273 int
274 i386_fpc_regnum_p (struct gdbarch *gdbarch, int regnum)
275 {
276 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
277
278 if (I387_ST0_REGNUM (tdep) < 0)
279 return 0;
280
281 return (I387_FCTRL_REGNUM (tdep) <= regnum
282 && regnum < I387_XMM0_REGNUM (tdep));
283 }
284
285 /* BNDr (raw) register? */
286
287 static int
288 i386_bndr_regnum_p (struct gdbarch *gdbarch, int regnum)
289 {
290 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
291
292 if (I387_BND0R_REGNUM (tdep) < 0)
293 return 0;
294
295 regnum -= tdep->bnd0r_regnum;
296 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
297 }
298
299 /* BND control register? */
300
301 static int
302 i386_mpx_ctrl_regnum_p (struct gdbarch *gdbarch, int regnum)
303 {
304 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
305
306 if (I387_BNDCFGU_REGNUM (tdep) < 0)
307 return 0;
308
309 regnum -= I387_BNDCFGU_REGNUM (tdep);
310 return regnum >= 0 && regnum < I387_NUM_MPX_CTRL_REGS;
311 }
312
313 /* Return the name of register REGNUM, or the empty string if it is
314 an anonymous register. */
315
316 static const char *
317 i386_register_name (struct gdbarch *gdbarch, int regnum)
318 {
319 /* Hide the upper YMM registers. */
320 if (i386_ymmh_regnum_p (gdbarch, regnum))
321 return "";
322
323 return tdesc_register_name (gdbarch, regnum);
324 }
325
326 /* Return the name of register REGNUM. */
327
328 const char *
329 i386_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
330 {
331 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
332 if (i386_bnd_regnum_p (gdbarch, regnum))
333 return i386_bnd_names[regnum - tdep->bnd0_regnum];
334 if (i386_mmx_regnum_p (gdbarch, regnum))
335 return i386_mmx_names[regnum - I387_MM0_REGNUM (tdep)];
336 else if (i386_ymm_regnum_p (gdbarch, regnum))
337 return i386_ymm_names[regnum - tdep->ymm0_regnum];
338 else if (i386_byte_regnum_p (gdbarch, regnum))
339 return i386_byte_names[regnum - tdep->al_regnum];
340 else if (i386_word_regnum_p (gdbarch, regnum))
341 return i386_word_names[regnum - tdep->ax_regnum];
342
343 internal_error (__FILE__, __LINE__, _("invalid regnum"));
344 }
345
346 /* Convert a dbx register number REG to the appropriate register
347 number used by GDB. */
348
349 static int
350 i386_dbx_reg_to_regnum (struct gdbarch *gdbarch, int reg)
351 {
352 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
353
354 /* This implements what GCC calls the "default" register map
355 (dbx_register_map[]). */
356
357 if (reg >= 0 && reg <= 7)
358 {
359 /* General-purpose registers. The debug info calls %ebp
360 register 4, and %esp register 5. */
361 if (reg == 4)
362 return 5;
363 else if (reg == 5)
364 return 4;
365 else return reg;
366 }
367 else if (reg >= 12 && reg <= 19)
368 {
369 /* Floating-point registers. */
370 return reg - 12 + I387_ST0_REGNUM (tdep);
371 }
372 else if (reg >= 21 && reg <= 28)
373 {
374 /* SSE registers. */
375 int ymm0_regnum = tdep->ymm0_regnum;
376
377 if (ymm0_regnum >= 0
378 && i386_xmm_regnum_p (gdbarch, reg))
379 return reg - 21 + ymm0_regnum;
380 else
381 return reg - 21 + I387_XMM0_REGNUM (tdep);
382 }
383 else if (reg >= 29 && reg <= 36)
384 {
385 /* MMX registers. */
386 return reg - 29 + I387_MM0_REGNUM (tdep);
387 }
388
389 /* This will hopefully provoke a warning. */
390 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
391 }
392
393 /* Convert SVR4 register number REG to the appropriate register number
394 used by GDB. */
395
396 static int
397 i386_svr4_reg_to_regnum (struct gdbarch *gdbarch, int reg)
398 {
399 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
400
401 /* This implements the GCC register map that tries to be compatible
402 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
403
404 /* The SVR4 register numbering includes %eip and %eflags, and
405 numbers the floating point registers differently. */
406 if (reg >= 0 && reg <= 9)
407 {
408 /* General-purpose registers. */
409 return reg;
410 }
411 else if (reg >= 11 && reg <= 18)
412 {
413 /* Floating-point registers. */
414 return reg - 11 + I387_ST0_REGNUM (tdep);
415 }
416 else if (reg >= 21 && reg <= 36)
417 {
418 /* The SSE and MMX registers have the same numbers as with dbx. */
419 return i386_dbx_reg_to_regnum (gdbarch, reg);
420 }
421
422 switch (reg)
423 {
424 case 37: return I387_FCTRL_REGNUM (tdep);
425 case 38: return I387_FSTAT_REGNUM (tdep);
426 case 39: return I387_MXCSR_REGNUM (tdep);
427 case 40: return I386_ES_REGNUM;
428 case 41: return I386_CS_REGNUM;
429 case 42: return I386_SS_REGNUM;
430 case 43: return I386_DS_REGNUM;
431 case 44: return I386_FS_REGNUM;
432 case 45: return I386_GS_REGNUM;
433 }
434
435 /* This will hopefully provoke a warning. */
436 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
437 }
438
439 \f
440
441 /* This is the variable that is set with "set disassembly-flavor", and
442 its legitimate values. */
443 static const char att_flavor[] = "att";
444 static const char intel_flavor[] = "intel";
445 static const char *const valid_flavors[] =
446 {
447 att_flavor,
448 intel_flavor,
449 NULL
450 };
451 static const char *disassembly_flavor = att_flavor;
452 \f
453
454 /* Use the program counter to determine the contents and size of a
455 breakpoint instruction. Return a pointer to a string of bytes that
456 encode a breakpoint instruction, store the length of the string in
457 *LEN and optionally adjust *PC to point to the correct memory
458 location for inserting the breakpoint.
459
460 On the i386 we have a single breakpoint that fits in a single byte
461 and can be inserted anywhere.
462
463 This function is 64-bit safe. */
464
465 static const gdb_byte *
466 i386_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
467 {
468 static gdb_byte break_insn[] = { 0xcc }; /* int 3 */
469
470 *len = sizeof (break_insn);
471 return break_insn;
472 }
473 \f
474 /* Displaced instruction handling. */
475
476 /* Skip the legacy instruction prefixes in INSN.
477 Not all prefixes are valid for any particular insn
478 but we needn't care, the insn will fault if it's invalid.
479 The result is a pointer to the first opcode byte,
480 or NULL if we run off the end of the buffer. */
481
482 static gdb_byte *
483 i386_skip_prefixes (gdb_byte *insn, size_t max_len)
484 {
485 gdb_byte *end = insn + max_len;
486
487 while (insn < end)
488 {
489 switch (*insn)
490 {
491 case DATA_PREFIX_OPCODE:
492 case ADDR_PREFIX_OPCODE:
493 case CS_PREFIX_OPCODE:
494 case DS_PREFIX_OPCODE:
495 case ES_PREFIX_OPCODE:
496 case FS_PREFIX_OPCODE:
497 case GS_PREFIX_OPCODE:
498 case SS_PREFIX_OPCODE:
499 case LOCK_PREFIX_OPCODE:
500 case REPE_PREFIX_OPCODE:
501 case REPNE_PREFIX_OPCODE:
502 ++insn;
503 continue;
504 default:
505 return insn;
506 }
507 }
508
509 return NULL;
510 }
511
512 static int
513 i386_absolute_jmp_p (const gdb_byte *insn)
514 {
515 /* jmp far (absolute address in operand). */
516 if (insn[0] == 0xea)
517 return 1;
518
519 if (insn[0] == 0xff)
520 {
521 /* jump near, absolute indirect (/4). */
522 if ((insn[1] & 0x38) == 0x20)
523 return 1;
524
525 /* jump far, absolute indirect (/5). */
526 if ((insn[1] & 0x38) == 0x28)
527 return 1;
528 }
529
530 return 0;
531 }
532
533 static int
534 i386_absolute_call_p (const gdb_byte *insn)
535 {
536 /* call far, absolute. */
537 if (insn[0] == 0x9a)
538 return 1;
539
540 if (insn[0] == 0xff)
541 {
542 /* Call near, absolute indirect (/2). */
543 if ((insn[1] & 0x38) == 0x10)
544 return 1;
545
546 /* Call far, absolute indirect (/3). */
547 if ((insn[1] & 0x38) == 0x18)
548 return 1;
549 }
550
551 return 0;
552 }
553
554 static int
555 i386_ret_p (const gdb_byte *insn)
556 {
557 switch (insn[0])
558 {
559 case 0xc2: /* ret near, pop N bytes. */
560 case 0xc3: /* ret near */
561 case 0xca: /* ret far, pop N bytes. */
562 case 0xcb: /* ret far */
563 case 0xcf: /* iret */
564 return 1;
565
566 default:
567 return 0;
568 }
569 }
570
571 static int
572 i386_call_p (const gdb_byte *insn)
573 {
574 if (i386_absolute_call_p (insn))
575 return 1;
576
577 /* call near, relative. */
578 if (insn[0] == 0xe8)
579 return 1;
580
581 return 0;
582 }
583
584 /* Return non-zero if INSN is a system call, and set *LENGTHP to its
585 length in bytes. Otherwise, return zero. */
586
587 static int
588 i386_syscall_p (const gdb_byte *insn, int *lengthp)
589 {
590 /* Is it 'int $0x80'? */
591 if ((insn[0] == 0xcd && insn[1] == 0x80)
592 /* Or is it 'sysenter'? */
593 || (insn[0] == 0x0f && insn[1] == 0x34)
594 /* Or is it 'syscall'? */
595 || (insn[0] == 0x0f && insn[1] == 0x05))
596 {
597 *lengthp = 2;
598 return 1;
599 }
600
601 return 0;
602 }
603
604 /* Some kernels may run one past a syscall insn, so we have to cope.
605 Otherwise this is just simple_displaced_step_copy_insn. */
606
607 struct displaced_step_closure *
608 i386_displaced_step_copy_insn (struct gdbarch *gdbarch,
609 CORE_ADDR from, CORE_ADDR to,
610 struct regcache *regs)
611 {
612 size_t len = gdbarch_max_insn_length (gdbarch);
613 gdb_byte *buf = xmalloc (len);
614
615 read_memory (from, buf, len);
616
617 /* GDB may get control back after the insn after the syscall.
618 Presumably this is a kernel bug.
619 If this is a syscall, make sure there's a nop afterwards. */
620 {
621 int syscall_length;
622 gdb_byte *insn;
623
624 insn = i386_skip_prefixes (buf, len);
625 if (insn != NULL && i386_syscall_p (insn, &syscall_length))
626 insn[syscall_length] = NOP_OPCODE;
627 }
628
629 write_memory (to, buf, len);
630
631 if (debug_displaced)
632 {
633 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
634 paddress (gdbarch, from), paddress (gdbarch, to));
635 displaced_step_dump_bytes (gdb_stdlog, buf, len);
636 }
637
638 return (struct displaced_step_closure *) buf;
639 }
640
641 /* Fix up the state of registers and memory after having single-stepped
642 a displaced instruction. */
643
644 void
645 i386_displaced_step_fixup (struct gdbarch *gdbarch,
646 struct displaced_step_closure *closure,
647 CORE_ADDR from, CORE_ADDR to,
648 struct regcache *regs)
649 {
650 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
651
652 /* The offset we applied to the instruction's address.
653 This could well be negative (when viewed as a signed 32-bit
654 value), but ULONGEST won't reflect that, so take care when
655 applying it. */
656 ULONGEST insn_offset = to - from;
657
658 /* Since we use simple_displaced_step_copy_insn, our closure is a
659 copy of the instruction. */
660 gdb_byte *insn = (gdb_byte *) closure;
661 /* The start of the insn, needed in case we see some prefixes. */
662 gdb_byte *insn_start = insn;
663
664 if (debug_displaced)
665 fprintf_unfiltered (gdb_stdlog,
666 "displaced: fixup (%s, %s), "
667 "insn = 0x%02x 0x%02x ...\n",
668 paddress (gdbarch, from), paddress (gdbarch, to),
669 insn[0], insn[1]);
670
671 /* The list of issues to contend with here is taken from
672 resume_execution in arch/i386/kernel/kprobes.c, Linux 2.6.20.
673 Yay for Free Software! */
674
675 /* Relocate the %eip, if necessary. */
676
677 /* The instruction recognizers we use assume any leading prefixes
678 have been skipped. */
679 {
680 /* This is the size of the buffer in closure. */
681 size_t max_insn_len = gdbarch_max_insn_length (gdbarch);
682 gdb_byte *opcode = i386_skip_prefixes (insn, max_insn_len);
683 /* If there are too many prefixes, just ignore the insn.
684 It will fault when run. */
685 if (opcode != NULL)
686 insn = opcode;
687 }
688
689 /* Except in the case of absolute or indirect jump or call
690 instructions, or a return instruction, the new eip is relative to
691 the displaced instruction; make it relative. Well, signal
692 handler returns don't need relocation either, but we use the
693 value of %eip to recognize those; see below. */
694 if (! i386_absolute_jmp_p (insn)
695 && ! i386_absolute_call_p (insn)
696 && ! i386_ret_p (insn))
697 {
698 ULONGEST orig_eip;
699 int insn_len;
700
701 regcache_cooked_read_unsigned (regs, I386_EIP_REGNUM, &orig_eip);
702
703 /* A signal trampoline system call changes the %eip, resuming
704 execution of the main program after the signal handler has
705 returned. That makes them like 'return' instructions; we
706 shouldn't relocate %eip.
707
708 But most system calls don't, and we do need to relocate %eip.
709
710 Our heuristic for distinguishing these cases: if stepping
711 over the system call instruction left control directly after
712 the instruction, the we relocate --- control almost certainly
713 doesn't belong in the displaced copy. Otherwise, we assume
714 the instruction has put control where it belongs, and leave
715 it unrelocated. Goodness help us if there are PC-relative
716 system calls. */
717 if (i386_syscall_p (insn, &insn_len)
718 && orig_eip != to + (insn - insn_start) + insn_len
719 /* GDB can get control back after the insn after the syscall.
720 Presumably this is a kernel bug.
721 i386_displaced_step_copy_insn ensures its a nop,
722 we add one to the length for it. */
723 && orig_eip != to + (insn - insn_start) + insn_len + 1)
724 {
725 if (debug_displaced)
726 fprintf_unfiltered (gdb_stdlog,
727 "displaced: syscall changed %%eip; "
728 "not relocating\n");
729 }
730 else
731 {
732 ULONGEST eip = (orig_eip - insn_offset) & 0xffffffffUL;
733
734 /* If we just stepped over a breakpoint insn, we don't backup
735 the pc on purpose; this is to match behaviour without
736 stepping. */
737
738 regcache_cooked_write_unsigned (regs, I386_EIP_REGNUM, eip);
739
740 if (debug_displaced)
741 fprintf_unfiltered (gdb_stdlog,
742 "displaced: "
743 "relocated %%eip from %s to %s\n",
744 paddress (gdbarch, orig_eip),
745 paddress (gdbarch, eip));
746 }
747 }
748
749 /* If the instruction was PUSHFL, then the TF bit will be set in the
750 pushed value, and should be cleared. We'll leave this for later,
751 since GDB already messes up the TF flag when stepping over a
752 pushfl. */
753
754 /* If the instruction was a call, the return address now atop the
755 stack is the address following the copied instruction. We need
756 to make it the address following the original instruction. */
757 if (i386_call_p (insn))
758 {
759 ULONGEST esp;
760 ULONGEST retaddr;
761 const ULONGEST retaddr_len = 4;
762
763 regcache_cooked_read_unsigned (regs, I386_ESP_REGNUM, &esp);
764 retaddr = read_memory_unsigned_integer (esp, retaddr_len, byte_order);
765 retaddr = (retaddr - insn_offset) & 0xffffffffUL;
766 write_memory_unsigned_integer (esp, retaddr_len, byte_order, retaddr);
767
768 if (debug_displaced)
769 fprintf_unfiltered (gdb_stdlog,
770 "displaced: relocated return addr at %s to %s\n",
771 paddress (gdbarch, esp),
772 paddress (gdbarch, retaddr));
773 }
774 }
775
776 static void
777 append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
778 {
779 target_write_memory (*to, buf, len);
780 *to += len;
781 }
782
783 static void
784 i386_relocate_instruction (struct gdbarch *gdbarch,
785 CORE_ADDR *to, CORE_ADDR oldloc)
786 {
787 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
788 gdb_byte buf[I386_MAX_INSN_LEN];
789 int offset = 0, rel32, newrel;
790 int insn_length;
791 gdb_byte *insn = buf;
792
793 read_memory (oldloc, buf, I386_MAX_INSN_LEN);
794
795 insn_length = gdb_buffered_insn_length (gdbarch, insn,
796 I386_MAX_INSN_LEN, oldloc);
797
798 /* Get past the prefixes. */
799 insn = i386_skip_prefixes (insn, I386_MAX_INSN_LEN);
800
801 /* Adjust calls with 32-bit relative addresses as push/jump, with
802 the address pushed being the location where the original call in
803 the user program would return to. */
804 if (insn[0] == 0xe8)
805 {
806 gdb_byte push_buf[16];
807 unsigned int ret_addr;
808
809 /* Where "ret" in the original code will return to. */
810 ret_addr = oldloc + insn_length;
811 push_buf[0] = 0x68; /* pushq $... */
812 store_unsigned_integer (&push_buf[1], 4, byte_order, ret_addr);
813 /* Push the push. */
814 append_insns (to, 5, push_buf);
815
816 /* Convert the relative call to a relative jump. */
817 insn[0] = 0xe9;
818
819 /* Adjust the destination offset. */
820 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
821 newrel = (oldloc - *to) + rel32;
822 store_signed_integer (insn + 1, 4, byte_order, newrel);
823
824 if (debug_displaced)
825 fprintf_unfiltered (gdb_stdlog,
826 "Adjusted insn rel32=%s at %s to"
827 " rel32=%s at %s\n",
828 hex_string (rel32), paddress (gdbarch, oldloc),
829 hex_string (newrel), paddress (gdbarch, *to));
830
831 /* Write the adjusted jump into its displaced location. */
832 append_insns (to, 5, insn);
833 return;
834 }
835
836 /* Adjust jumps with 32-bit relative addresses. Calls are already
837 handled above. */
838 if (insn[0] == 0xe9)
839 offset = 1;
840 /* Adjust conditional jumps. */
841 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
842 offset = 2;
843
844 if (offset)
845 {
846 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
847 newrel = (oldloc - *to) + rel32;
848 store_signed_integer (insn + offset, 4, byte_order, newrel);
849 if (debug_displaced)
850 fprintf_unfiltered (gdb_stdlog,
851 "Adjusted insn rel32=%s at %s to"
852 " rel32=%s at %s\n",
853 hex_string (rel32), paddress (gdbarch, oldloc),
854 hex_string (newrel), paddress (gdbarch, *to));
855 }
856
857 /* Write the adjusted instructions into their displaced
858 location. */
859 append_insns (to, insn_length, buf);
860 }
861
862 \f
863 #ifdef I386_REGNO_TO_SYMMETRY
864 #error "The Sequent Symmetry is no longer supported."
865 #endif
866
867 /* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
868 and %esp "belong" to the calling function. Therefore these
869 registers should be saved if they're going to be modified. */
870
871 /* The maximum number of saved registers. This should include all
872 registers mentioned above, and %eip. */
873 #define I386_NUM_SAVED_REGS I386_NUM_GREGS
874
875 struct i386_frame_cache
876 {
877 /* Base address. */
878 CORE_ADDR base;
879 int base_p;
880 LONGEST sp_offset;
881 CORE_ADDR pc;
882
883 /* Saved registers. */
884 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
885 CORE_ADDR saved_sp;
886 int saved_sp_reg;
887 int pc_in_eax;
888
889 /* Stack space reserved for local variables. */
890 long locals;
891 };
892
893 /* Allocate and initialize a frame cache. */
894
895 static struct i386_frame_cache *
896 i386_alloc_frame_cache (void)
897 {
898 struct i386_frame_cache *cache;
899 int i;
900
901 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
902
903 /* Base address. */
904 cache->base_p = 0;
905 cache->base = 0;
906 cache->sp_offset = -4;
907 cache->pc = 0;
908
909 /* Saved registers. We initialize these to -1 since zero is a valid
910 offset (that's where %ebp is supposed to be stored). */
911 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
912 cache->saved_regs[i] = -1;
913 cache->saved_sp = 0;
914 cache->saved_sp_reg = -1;
915 cache->pc_in_eax = 0;
916
917 /* Frameless until proven otherwise. */
918 cache->locals = -1;
919
920 return cache;
921 }
922
923 /* If the instruction at PC is a jump, return the address of its
924 target. Otherwise, return PC. */
925
926 static CORE_ADDR
927 i386_follow_jump (struct gdbarch *gdbarch, CORE_ADDR pc)
928 {
929 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
930 gdb_byte op;
931 long delta = 0;
932 int data16 = 0;
933
934 if (target_read_code (pc, &op, 1))
935 return pc;
936
937 if (op == 0x66)
938 {
939 data16 = 1;
940
941 op = read_code_unsigned_integer (pc + 1, 1, byte_order);
942 }
943
944 switch (op)
945 {
946 case 0xe9:
947 /* Relative jump: if data16 == 0, disp32, else disp16. */
948 if (data16)
949 {
950 delta = read_memory_integer (pc + 2, 2, byte_order);
951
952 /* Include the size of the jmp instruction (including the
953 0x66 prefix). */
954 delta += 4;
955 }
956 else
957 {
958 delta = read_memory_integer (pc + 1, 4, byte_order);
959
960 /* Include the size of the jmp instruction. */
961 delta += 5;
962 }
963 break;
964 case 0xeb:
965 /* Relative jump, disp8 (ignore data16). */
966 delta = read_memory_integer (pc + data16 + 1, 1, byte_order);
967
968 delta += data16 + 2;
969 break;
970 }
971
972 return pc + delta;
973 }
974
975 /* Check whether PC points at a prologue for a function returning a
976 structure or union. If so, it updates CACHE and returns the
977 address of the first instruction after the code sequence that
978 removes the "hidden" argument from the stack or CURRENT_PC,
979 whichever is smaller. Otherwise, return PC. */
980
981 static CORE_ADDR
982 i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
983 struct i386_frame_cache *cache)
984 {
985 /* Functions that return a structure or union start with:
986
987 popl %eax 0x58
988 xchgl %eax, (%esp) 0x87 0x04 0x24
989 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
990
991 (the System V compiler puts out the second `xchg' instruction,
992 and the assembler doesn't try to optimize it, so the 'sib' form
993 gets generated). This sequence is used to get the address of the
994 return buffer for a function that returns a structure. */
995 static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
996 static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
997 gdb_byte buf[4];
998 gdb_byte op;
999
1000 if (current_pc <= pc)
1001 return pc;
1002
1003 if (target_read_code (pc, &op, 1))
1004 return pc;
1005
1006 if (op != 0x58) /* popl %eax */
1007 return pc;
1008
1009 if (target_read_code (pc + 1, buf, 4))
1010 return pc;
1011
1012 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
1013 return pc;
1014
1015 if (current_pc == pc)
1016 {
1017 cache->sp_offset += 4;
1018 return current_pc;
1019 }
1020
1021 if (current_pc == pc + 1)
1022 {
1023 cache->pc_in_eax = 1;
1024 return current_pc;
1025 }
1026
1027 if (buf[1] == proto1[1])
1028 return pc + 4;
1029 else
1030 return pc + 5;
1031 }
1032
1033 static CORE_ADDR
1034 i386_skip_probe (CORE_ADDR pc)
1035 {
1036 /* A function may start with
1037
1038 pushl constant
1039 call _probe
1040 addl $4, %esp
1041
1042 followed by
1043
1044 pushl %ebp
1045
1046 etc. */
1047 gdb_byte buf[8];
1048 gdb_byte op;
1049
1050 if (target_read_code (pc, &op, 1))
1051 return pc;
1052
1053 if (op == 0x68 || op == 0x6a)
1054 {
1055 int delta;
1056
1057 /* Skip past the `pushl' instruction; it has either a one-byte or a
1058 four-byte operand, depending on the opcode. */
1059 if (op == 0x68)
1060 delta = 5;
1061 else
1062 delta = 2;
1063
1064 /* Read the following 8 bytes, which should be `call _probe' (6
1065 bytes) followed by `addl $4,%esp' (2 bytes). */
1066 read_memory (pc + delta, buf, sizeof (buf));
1067 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
1068 pc += delta + sizeof (buf);
1069 }
1070
1071 return pc;
1072 }
1073
1074 /* GCC 4.1 and later, can put code in the prologue to realign the
1075 stack pointer. Check whether PC points to such code, and update
1076 CACHE accordingly. Return the first instruction after the code
1077 sequence or CURRENT_PC, whichever is smaller. If we don't
1078 recognize the code, return PC. */
1079
1080 static CORE_ADDR
1081 i386_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1082 struct i386_frame_cache *cache)
1083 {
1084 /* There are 2 code sequences to re-align stack before the frame
1085 gets set up:
1086
1087 1. Use a caller-saved saved register:
1088
1089 leal 4(%esp), %reg
1090 andl $-XXX, %esp
1091 pushl -4(%reg)
1092
1093 2. Use a callee-saved saved register:
1094
1095 pushl %reg
1096 leal 8(%esp), %reg
1097 andl $-XXX, %esp
1098 pushl -4(%reg)
1099
1100 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
1101
1102 0x83 0xe4 0xf0 andl $-16, %esp
1103 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
1104 */
1105
1106 gdb_byte buf[14];
1107 int reg;
1108 int offset, offset_and;
1109 static int regnums[8] = {
1110 I386_EAX_REGNUM, /* %eax */
1111 I386_ECX_REGNUM, /* %ecx */
1112 I386_EDX_REGNUM, /* %edx */
1113 I386_EBX_REGNUM, /* %ebx */
1114 I386_ESP_REGNUM, /* %esp */
1115 I386_EBP_REGNUM, /* %ebp */
1116 I386_ESI_REGNUM, /* %esi */
1117 I386_EDI_REGNUM /* %edi */
1118 };
1119
1120 if (target_read_code (pc, buf, sizeof buf))
1121 return pc;
1122
1123 /* Check caller-saved saved register. The first instruction has
1124 to be "leal 4(%esp), %reg". */
1125 if (buf[0] == 0x8d && buf[2] == 0x24 && buf[3] == 0x4)
1126 {
1127 /* MOD must be binary 10 and R/M must be binary 100. */
1128 if ((buf[1] & 0xc7) != 0x44)
1129 return pc;
1130
1131 /* REG has register number. */
1132 reg = (buf[1] >> 3) & 7;
1133 offset = 4;
1134 }
1135 else
1136 {
1137 /* Check callee-saved saved register. The first instruction
1138 has to be "pushl %reg". */
1139 if ((buf[0] & 0xf8) != 0x50)
1140 return pc;
1141
1142 /* Get register. */
1143 reg = buf[0] & 0x7;
1144
1145 /* The next instruction has to be "leal 8(%esp), %reg". */
1146 if (buf[1] != 0x8d || buf[3] != 0x24 || buf[4] != 0x8)
1147 return pc;
1148
1149 /* MOD must be binary 10 and R/M must be binary 100. */
1150 if ((buf[2] & 0xc7) != 0x44)
1151 return pc;
1152
1153 /* REG has register number. Registers in pushl and leal have to
1154 be the same. */
1155 if (reg != ((buf[2] >> 3) & 7))
1156 return pc;
1157
1158 offset = 5;
1159 }
1160
1161 /* Rigister can't be %esp nor %ebp. */
1162 if (reg == 4 || reg == 5)
1163 return pc;
1164
1165 /* The next instruction has to be "andl $-XXX, %esp". */
1166 if (buf[offset + 1] != 0xe4
1167 || (buf[offset] != 0x81 && buf[offset] != 0x83))
1168 return pc;
1169
1170 offset_and = offset;
1171 offset += buf[offset] == 0x81 ? 6 : 3;
1172
1173 /* The next instruction has to be "pushl -4(%reg)". 8bit -4 is
1174 0xfc. REG must be binary 110 and MOD must be binary 01. */
1175 if (buf[offset] != 0xff
1176 || buf[offset + 2] != 0xfc
1177 || (buf[offset + 1] & 0xf8) != 0x70)
1178 return pc;
1179
1180 /* R/M has register. Registers in leal and pushl have to be the
1181 same. */
1182 if (reg != (buf[offset + 1] & 7))
1183 return pc;
1184
1185 if (current_pc > pc + offset_and)
1186 cache->saved_sp_reg = regnums[reg];
1187
1188 return min (pc + offset + 3, current_pc);
1189 }
1190
1191 /* Maximum instruction length we need to handle. */
1192 #define I386_MAX_MATCHED_INSN_LEN 6
1193
1194 /* Instruction description. */
1195 struct i386_insn
1196 {
1197 size_t len;
1198 gdb_byte insn[I386_MAX_MATCHED_INSN_LEN];
1199 gdb_byte mask[I386_MAX_MATCHED_INSN_LEN];
1200 };
1201
1202 /* Return whether instruction at PC matches PATTERN. */
1203
1204 static int
1205 i386_match_pattern (CORE_ADDR pc, struct i386_insn pattern)
1206 {
1207 gdb_byte op;
1208
1209 if (target_read_code (pc, &op, 1))
1210 return 0;
1211
1212 if ((op & pattern.mask[0]) == pattern.insn[0])
1213 {
1214 gdb_byte buf[I386_MAX_MATCHED_INSN_LEN - 1];
1215 int insn_matched = 1;
1216 size_t i;
1217
1218 gdb_assert (pattern.len > 1);
1219 gdb_assert (pattern.len <= I386_MAX_MATCHED_INSN_LEN);
1220
1221 if (target_read_code (pc + 1, buf, pattern.len - 1))
1222 return 0;
1223
1224 for (i = 1; i < pattern.len; i++)
1225 {
1226 if ((buf[i - 1] & pattern.mask[i]) != pattern.insn[i])
1227 insn_matched = 0;
1228 }
1229 return insn_matched;
1230 }
1231 return 0;
1232 }
1233
1234 /* Search for the instruction at PC in the list INSN_PATTERNS. Return
1235 the first instruction description that matches. Otherwise, return
1236 NULL. */
1237
1238 static struct i386_insn *
1239 i386_match_insn (CORE_ADDR pc, struct i386_insn *insn_patterns)
1240 {
1241 struct i386_insn *pattern;
1242
1243 for (pattern = insn_patterns; pattern->len > 0; pattern++)
1244 {
1245 if (i386_match_pattern (pc, *pattern))
1246 return pattern;
1247 }
1248
1249 return NULL;
1250 }
1251
1252 /* Return whether PC points inside a sequence of instructions that
1253 matches INSN_PATTERNS. */
1254
1255 static int
1256 i386_match_insn_block (CORE_ADDR pc, struct i386_insn *insn_patterns)
1257 {
1258 CORE_ADDR current_pc;
1259 int ix, i;
1260 struct i386_insn *insn;
1261
1262 insn = i386_match_insn (pc, insn_patterns);
1263 if (insn == NULL)
1264 return 0;
1265
1266 current_pc = pc;
1267 ix = insn - insn_patterns;
1268 for (i = ix - 1; i >= 0; i--)
1269 {
1270 current_pc -= insn_patterns[i].len;
1271
1272 if (!i386_match_pattern (current_pc, insn_patterns[i]))
1273 return 0;
1274 }
1275
1276 current_pc = pc + insn->len;
1277 for (insn = insn_patterns + ix + 1; insn->len > 0; insn++)
1278 {
1279 if (!i386_match_pattern (current_pc, *insn))
1280 return 0;
1281
1282 current_pc += insn->len;
1283 }
1284
1285 return 1;
1286 }
1287
1288 /* Some special instructions that might be migrated by GCC into the
1289 part of the prologue that sets up the new stack frame. Because the
1290 stack frame hasn't been setup yet, no registers have been saved
1291 yet, and only the scratch registers %eax, %ecx and %edx can be
1292 touched. */
1293
1294 struct i386_insn i386_frame_setup_skip_insns[] =
1295 {
1296 /* Check for `movb imm8, r' and `movl imm32, r'.
1297
1298 ??? Should we handle 16-bit operand-sizes here? */
1299
1300 /* `movb imm8, %al' and `movb imm8, %ah' */
1301 /* `movb imm8, %cl' and `movb imm8, %ch' */
1302 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
1303 /* `movb imm8, %dl' and `movb imm8, %dh' */
1304 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
1305 /* `movl imm32, %eax' and `movl imm32, %ecx' */
1306 { 5, { 0xb8 }, { 0xfe } },
1307 /* `movl imm32, %edx' */
1308 { 5, { 0xba }, { 0xff } },
1309
1310 /* Check for `mov imm32, r32'. Note that there is an alternative
1311 encoding for `mov m32, %eax'.
1312
1313 ??? Should we handle SIB adressing here?
1314 ??? Should we handle 16-bit operand-sizes here? */
1315
1316 /* `movl m32, %eax' */
1317 { 5, { 0xa1 }, { 0xff } },
1318 /* `movl m32, %eax' and `mov; m32, %ecx' */
1319 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
1320 /* `movl m32, %edx' */
1321 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
1322
1323 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
1324 Because of the symmetry, there are actually two ways to encode
1325 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
1326 opcode bytes 0x31 and 0x33 for `xorl'. */
1327
1328 /* `subl %eax, %eax' */
1329 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
1330 /* `subl %ecx, %ecx' */
1331 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
1332 /* `subl %edx, %edx' */
1333 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
1334 /* `xorl %eax, %eax' */
1335 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
1336 /* `xorl %ecx, %ecx' */
1337 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
1338 /* `xorl %edx, %edx' */
1339 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
1340 { 0 }
1341 };
1342
1343
1344 /* Check whether PC points to a no-op instruction. */
1345 static CORE_ADDR
1346 i386_skip_noop (CORE_ADDR pc)
1347 {
1348 gdb_byte op;
1349 int check = 1;
1350
1351 if (target_read_code (pc, &op, 1))
1352 return pc;
1353
1354 while (check)
1355 {
1356 check = 0;
1357 /* Ignore `nop' instruction. */
1358 if (op == 0x90)
1359 {
1360 pc += 1;
1361 if (target_read_code (pc, &op, 1))
1362 return pc;
1363 check = 1;
1364 }
1365 /* Ignore no-op instruction `mov %edi, %edi'.
1366 Microsoft system dlls often start with
1367 a `mov %edi,%edi' instruction.
1368 The 5 bytes before the function start are
1369 filled with `nop' instructions.
1370 This pattern can be used for hot-patching:
1371 The `mov %edi, %edi' instruction can be replaced by a
1372 near jump to the location of the 5 `nop' instructions
1373 which can be replaced by a 32-bit jump to anywhere
1374 in the 32-bit address space. */
1375
1376 else if (op == 0x8b)
1377 {
1378 if (target_read_code (pc + 1, &op, 1))
1379 return pc;
1380
1381 if (op == 0xff)
1382 {
1383 pc += 2;
1384 if (target_read_code (pc, &op, 1))
1385 return pc;
1386
1387 check = 1;
1388 }
1389 }
1390 }
1391 return pc;
1392 }
1393
1394 /* Check whether PC points at a code that sets up a new stack frame.
1395 If so, it updates CACHE and returns the address of the first
1396 instruction after the sequence that sets up the frame or LIMIT,
1397 whichever is smaller. If we don't recognize the code, return PC. */
1398
1399 static CORE_ADDR
1400 i386_analyze_frame_setup (struct gdbarch *gdbarch,
1401 CORE_ADDR pc, CORE_ADDR limit,
1402 struct i386_frame_cache *cache)
1403 {
1404 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1405 struct i386_insn *insn;
1406 gdb_byte op;
1407 int skip = 0;
1408
1409 if (limit <= pc)
1410 return limit;
1411
1412 if (target_read_code (pc, &op, 1))
1413 return pc;
1414
1415 if (op == 0x55) /* pushl %ebp */
1416 {
1417 /* Take into account that we've executed the `pushl %ebp' that
1418 starts this instruction sequence. */
1419 cache->saved_regs[I386_EBP_REGNUM] = 0;
1420 cache->sp_offset += 4;
1421 pc++;
1422
1423 /* If that's all, return now. */
1424 if (limit <= pc)
1425 return limit;
1426
1427 /* Check for some special instructions that might be migrated by
1428 GCC into the prologue and skip them. At this point in the
1429 prologue, code should only touch the scratch registers %eax,
1430 %ecx and %edx, so while the number of posibilities is sheer,
1431 it is limited.
1432
1433 Make sure we only skip these instructions if we later see the
1434 `movl %esp, %ebp' that actually sets up the frame. */
1435 while (pc + skip < limit)
1436 {
1437 insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
1438 if (insn == NULL)
1439 break;
1440
1441 skip += insn->len;
1442 }
1443
1444 /* If that's all, return now. */
1445 if (limit <= pc + skip)
1446 return limit;
1447
1448 if (target_read_code (pc + skip, &op, 1))
1449 return pc + skip;
1450
1451 /* The i386 prologue looks like
1452
1453 push %ebp
1454 mov %esp,%ebp
1455 sub $0x10,%esp
1456
1457 and a different prologue can be generated for atom.
1458
1459 push %ebp
1460 lea (%esp),%ebp
1461 lea -0x10(%esp),%esp
1462
1463 We handle both of them here. */
1464
1465 switch (op)
1466 {
1467 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
1468 case 0x8b:
1469 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
1470 != 0xec)
1471 return pc;
1472 pc += (skip + 2);
1473 break;
1474 case 0x89:
1475 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
1476 != 0xe5)
1477 return pc;
1478 pc += (skip + 2);
1479 break;
1480 case 0x8d: /* Check for 'lea (%ebp), %ebp'. */
1481 if (read_code_unsigned_integer (pc + skip + 1, 2, byte_order)
1482 != 0x242c)
1483 return pc;
1484 pc += (skip + 3);
1485 break;
1486 default:
1487 return pc;
1488 }
1489
1490 /* OK, we actually have a frame. We just don't know how large
1491 it is yet. Set its size to zero. We'll adjust it if
1492 necessary. We also now commit to skipping the special
1493 instructions mentioned before. */
1494 cache->locals = 0;
1495
1496 /* If that's all, return now. */
1497 if (limit <= pc)
1498 return limit;
1499
1500 /* Check for stack adjustment
1501
1502 subl $XXX, %esp
1503 or
1504 lea -XXX(%esp),%esp
1505
1506 NOTE: You can't subtract a 16-bit immediate from a 32-bit
1507 reg, so we don't have to worry about a data16 prefix. */
1508 if (target_read_code (pc, &op, 1))
1509 return pc;
1510 if (op == 0x83)
1511 {
1512 /* `subl' with 8-bit immediate. */
1513 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1514 /* Some instruction starting with 0x83 other than `subl'. */
1515 return pc;
1516
1517 /* `subl' with signed 8-bit immediate (though it wouldn't
1518 make sense to be negative). */
1519 cache->locals = read_code_integer (pc + 2, 1, byte_order);
1520 return pc + 3;
1521 }
1522 else if (op == 0x81)
1523 {
1524 /* Maybe it is `subl' with a 32-bit immediate. */
1525 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1526 /* Some instruction starting with 0x81 other than `subl'. */
1527 return pc;
1528
1529 /* It is `subl' with a 32-bit immediate. */
1530 cache->locals = read_code_integer (pc + 2, 4, byte_order);
1531 return pc + 6;
1532 }
1533 else if (op == 0x8d)
1534 {
1535 /* The ModR/M byte is 0x64. */
1536 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0x64)
1537 return pc;
1538 /* 'lea' with 8-bit displacement. */
1539 cache->locals = -1 * read_code_integer (pc + 3, 1, byte_order);
1540 return pc + 4;
1541 }
1542 else
1543 {
1544 /* Some instruction other than `subl' nor 'lea'. */
1545 return pc;
1546 }
1547 }
1548 else if (op == 0xc8) /* enter */
1549 {
1550 cache->locals = read_code_unsigned_integer (pc + 1, 2, byte_order);
1551 return pc + 4;
1552 }
1553
1554 return pc;
1555 }
1556
1557 /* Check whether PC points at code that saves registers on the stack.
1558 If so, it updates CACHE and returns the address of the first
1559 instruction after the register saves or CURRENT_PC, whichever is
1560 smaller. Otherwise, return PC. */
1561
1562 static CORE_ADDR
1563 i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
1564 struct i386_frame_cache *cache)
1565 {
1566 CORE_ADDR offset = 0;
1567 gdb_byte op;
1568 int i;
1569
1570 if (cache->locals > 0)
1571 offset -= cache->locals;
1572 for (i = 0; i < 8 && pc < current_pc; i++)
1573 {
1574 if (target_read_code (pc, &op, 1))
1575 return pc;
1576 if (op < 0x50 || op > 0x57)
1577 break;
1578
1579 offset -= 4;
1580 cache->saved_regs[op - 0x50] = offset;
1581 cache->sp_offset += 4;
1582 pc++;
1583 }
1584
1585 return pc;
1586 }
1587
1588 /* Do a full analysis of the prologue at PC and update CACHE
1589 accordingly. Bail out early if CURRENT_PC is reached. Return the
1590 address where the analysis stopped.
1591
1592 We handle these cases:
1593
1594 The startup sequence can be at the start of the function, or the
1595 function can start with a branch to startup code at the end.
1596
1597 %ebp can be set up with either the 'enter' instruction, or "pushl
1598 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
1599 once used in the System V compiler).
1600
1601 Local space is allocated just below the saved %ebp by either the
1602 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
1603 16-bit unsigned argument for space to allocate, and the 'addl'
1604 instruction could have either a signed byte, or 32-bit immediate.
1605
1606 Next, the registers used by this function are pushed. With the
1607 System V compiler they will always be in the order: %edi, %esi,
1608 %ebx (and sometimes a harmless bug causes it to also save but not
1609 restore %eax); however, the code below is willing to see the pushes
1610 in any order, and will handle up to 8 of them.
1611
1612 If the setup sequence is at the end of the function, then the next
1613 instruction will be a branch back to the start. */
1614
1615 static CORE_ADDR
1616 i386_analyze_prologue (struct gdbarch *gdbarch,
1617 CORE_ADDR pc, CORE_ADDR current_pc,
1618 struct i386_frame_cache *cache)
1619 {
1620 pc = i386_skip_noop (pc);
1621 pc = i386_follow_jump (gdbarch, pc);
1622 pc = i386_analyze_struct_return (pc, current_pc, cache);
1623 pc = i386_skip_probe (pc);
1624 pc = i386_analyze_stack_align (pc, current_pc, cache);
1625 pc = i386_analyze_frame_setup (gdbarch, pc, current_pc, cache);
1626 return i386_analyze_register_saves (pc, current_pc, cache);
1627 }
1628
1629 /* Return PC of first real instruction. */
1630
1631 static CORE_ADDR
1632 i386_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
1633 {
1634 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1635
1636 static gdb_byte pic_pat[6] =
1637 {
1638 0xe8, 0, 0, 0, 0, /* call 0x0 */
1639 0x5b, /* popl %ebx */
1640 };
1641 struct i386_frame_cache cache;
1642 CORE_ADDR pc;
1643 gdb_byte op;
1644 int i;
1645 CORE_ADDR func_addr;
1646
1647 if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
1648 {
1649 CORE_ADDR post_prologue_pc
1650 = skip_prologue_using_sal (gdbarch, func_addr);
1651 struct symtab *s = find_pc_symtab (func_addr);
1652
1653 /* Clang always emits a line note before the prologue and another
1654 one after. We trust clang to emit usable line notes. */
1655 if (post_prologue_pc
1656 && (s != NULL
1657 && s->producer != NULL
1658 && strncmp (s->producer, "clang ", sizeof ("clang ") - 1) == 0))
1659 return max (start_pc, post_prologue_pc);
1660 }
1661
1662 cache.locals = -1;
1663 pc = i386_analyze_prologue (gdbarch, start_pc, 0xffffffff, &cache);
1664 if (cache.locals < 0)
1665 return start_pc;
1666
1667 /* Found valid frame setup. */
1668
1669 /* The native cc on SVR4 in -K PIC mode inserts the following code
1670 to get the address of the global offset table (GOT) into register
1671 %ebx:
1672
1673 call 0x0
1674 popl %ebx
1675 movl %ebx,x(%ebp) (optional)
1676 addl y,%ebx
1677
1678 This code is with the rest of the prologue (at the end of the
1679 function), so we have to skip it to get to the first real
1680 instruction at the start of the function. */
1681
1682 for (i = 0; i < 6; i++)
1683 {
1684 if (target_read_code (pc + i, &op, 1))
1685 return pc;
1686
1687 if (pic_pat[i] != op)
1688 break;
1689 }
1690 if (i == 6)
1691 {
1692 int delta = 6;
1693
1694 if (target_read_code (pc + delta, &op, 1))
1695 return pc;
1696
1697 if (op == 0x89) /* movl %ebx, x(%ebp) */
1698 {
1699 op = read_code_unsigned_integer (pc + delta + 1, 1, byte_order);
1700
1701 if (op == 0x5d) /* One byte offset from %ebp. */
1702 delta += 3;
1703 else if (op == 0x9d) /* Four byte offset from %ebp. */
1704 delta += 6;
1705 else /* Unexpected instruction. */
1706 delta = 0;
1707
1708 if (target_read_code (pc + delta, &op, 1))
1709 return pc;
1710 }
1711
1712 /* addl y,%ebx */
1713 if (delta > 0 && op == 0x81
1714 && read_code_unsigned_integer (pc + delta + 1, 1, byte_order)
1715 == 0xc3)
1716 {
1717 pc += delta + 6;
1718 }
1719 }
1720
1721 /* If the function starts with a branch (to startup code at the end)
1722 the last instruction should bring us back to the first
1723 instruction of the real code. */
1724 if (i386_follow_jump (gdbarch, start_pc) != start_pc)
1725 pc = i386_follow_jump (gdbarch, pc);
1726
1727 return pc;
1728 }
1729
1730 /* Check that the code pointed to by PC corresponds to a call to
1731 __main, skip it if so. Return PC otherwise. */
1732
1733 CORE_ADDR
1734 i386_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1735 {
1736 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1737 gdb_byte op;
1738
1739 if (target_read_code (pc, &op, 1))
1740 return pc;
1741 if (op == 0xe8)
1742 {
1743 gdb_byte buf[4];
1744
1745 if (target_read_code (pc + 1, buf, sizeof buf) == 0)
1746 {
1747 /* Make sure address is computed correctly as a 32bit
1748 integer even if CORE_ADDR is 64 bit wide. */
1749 struct bound_minimal_symbol s;
1750 CORE_ADDR call_dest;
1751
1752 call_dest = pc + 5 + extract_signed_integer (buf, 4, byte_order);
1753 call_dest = call_dest & 0xffffffffU;
1754 s = lookup_minimal_symbol_by_pc (call_dest);
1755 if (s.minsym != NULL
1756 && SYMBOL_LINKAGE_NAME (s.minsym) != NULL
1757 && strcmp (SYMBOL_LINKAGE_NAME (s.minsym), "__main") == 0)
1758 pc += 5;
1759 }
1760 }
1761
1762 return pc;
1763 }
1764
1765 /* This function is 64-bit safe. */
1766
1767 static CORE_ADDR
1768 i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1769 {
1770 gdb_byte buf[8];
1771
1772 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
1773 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
1774 }
1775 \f
1776
1777 /* Normal frames. */
1778
1779 static void
1780 i386_frame_cache_1 (struct frame_info *this_frame,
1781 struct i386_frame_cache *cache)
1782 {
1783 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1784 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1785 gdb_byte buf[4];
1786 int i;
1787
1788 cache->pc = get_frame_func (this_frame);
1789
1790 /* In principle, for normal frames, %ebp holds the frame pointer,
1791 which holds the base address for the current stack frame.
1792 However, for functions that don't need it, the frame pointer is
1793 optional. For these "frameless" functions the frame pointer is
1794 actually the frame pointer of the calling frame. Signal
1795 trampolines are just a special case of a "frameless" function.
1796 They (usually) share their frame pointer with the frame that was
1797 in progress when the signal occurred. */
1798
1799 get_frame_register (this_frame, I386_EBP_REGNUM, buf);
1800 cache->base = extract_unsigned_integer (buf, 4, byte_order);
1801 if (cache->base == 0)
1802 {
1803 cache->base_p = 1;
1804 return;
1805 }
1806
1807 /* For normal frames, %eip is stored at 4(%ebp). */
1808 cache->saved_regs[I386_EIP_REGNUM] = 4;
1809
1810 if (cache->pc != 0)
1811 i386_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
1812 cache);
1813
1814 if (cache->locals < 0)
1815 {
1816 /* We didn't find a valid frame, which means that CACHE->base
1817 currently holds the frame pointer for our calling frame. If
1818 we're at the start of a function, or somewhere half-way its
1819 prologue, the function's frame probably hasn't been fully
1820 setup yet. Try to reconstruct the base address for the stack
1821 frame by looking at the stack pointer. For truly "frameless"
1822 functions this might work too. */
1823
1824 if (cache->saved_sp_reg != -1)
1825 {
1826 /* Saved stack pointer has been saved. */
1827 get_frame_register (this_frame, cache->saved_sp_reg, buf);
1828 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
1829
1830 /* We're halfway aligning the stack. */
1831 cache->base = ((cache->saved_sp - 4) & 0xfffffff0) - 4;
1832 cache->saved_regs[I386_EIP_REGNUM] = cache->saved_sp - 4;
1833
1834 /* This will be added back below. */
1835 cache->saved_regs[I386_EIP_REGNUM] -= cache->base;
1836 }
1837 else if (cache->pc != 0
1838 || target_read_code (get_frame_pc (this_frame), buf, 1))
1839 {
1840 /* We're in a known function, but did not find a frame
1841 setup. Assume that the function does not use %ebp.
1842 Alternatively, we may have jumped to an invalid
1843 address; in that case there is definitely no new
1844 frame in %ebp. */
1845 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
1846 cache->base = extract_unsigned_integer (buf, 4, byte_order)
1847 + cache->sp_offset;
1848 }
1849 else
1850 /* We're in an unknown function. We could not find the start
1851 of the function to analyze the prologue; our best option is
1852 to assume a typical frame layout with the caller's %ebp
1853 saved. */
1854 cache->saved_regs[I386_EBP_REGNUM] = 0;
1855 }
1856
1857 if (cache->saved_sp_reg != -1)
1858 {
1859 /* Saved stack pointer has been saved (but the SAVED_SP_REG
1860 register may be unavailable). */
1861 if (cache->saved_sp == 0
1862 && deprecated_frame_register_read (this_frame,
1863 cache->saved_sp_reg, buf))
1864 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
1865 }
1866 /* Now that we have the base address for the stack frame we can
1867 calculate the value of %esp in the calling frame. */
1868 else if (cache->saved_sp == 0)
1869 cache->saved_sp = cache->base + 8;
1870
1871 /* Adjust all the saved registers such that they contain addresses
1872 instead of offsets. */
1873 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
1874 if (cache->saved_regs[i] != -1)
1875 cache->saved_regs[i] += cache->base;
1876
1877 cache->base_p = 1;
1878 }
1879
1880 static struct i386_frame_cache *
1881 i386_frame_cache (struct frame_info *this_frame, void **this_cache)
1882 {
1883 volatile struct gdb_exception ex;
1884 struct i386_frame_cache *cache;
1885
1886 if (*this_cache)
1887 return *this_cache;
1888
1889 cache = i386_alloc_frame_cache ();
1890 *this_cache = cache;
1891
1892 TRY_CATCH (ex, RETURN_MASK_ERROR)
1893 {
1894 i386_frame_cache_1 (this_frame, cache);
1895 }
1896 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
1897 throw_exception (ex);
1898
1899 return cache;
1900 }
1901
1902 static void
1903 i386_frame_this_id (struct frame_info *this_frame, void **this_cache,
1904 struct frame_id *this_id)
1905 {
1906 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
1907
1908 if (!cache->base_p)
1909 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
1910 else if (cache->base == 0)
1911 {
1912 /* This marks the outermost frame. */
1913 }
1914 else
1915 {
1916 /* See the end of i386_push_dummy_call. */
1917 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
1918 }
1919 }
1920
1921 static enum unwind_stop_reason
1922 i386_frame_unwind_stop_reason (struct frame_info *this_frame,
1923 void **this_cache)
1924 {
1925 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
1926
1927 if (!cache->base_p)
1928 return UNWIND_UNAVAILABLE;
1929
1930 /* This marks the outermost frame. */
1931 if (cache->base == 0)
1932 return UNWIND_OUTERMOST;
1933
1934 return UNWIND_NO_REASON;
1935 }
1936
1937 static struct value *
1938 i386_frame_prev_register (struct frame_info *this_frame, void **this_cache,
1939 int regnum)
1940 {
1941 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
1942
1943 gdb_assert (regnum >= 0);
1944
1945 /* The System V ABI says that:
1946
1947 "The flags register contains the system flags, such as the
1948 direction flag and the carry flag. The direction flag must be
1949 set to the forward (that is, zero) direction before entry and
1950 upon exit from a function. Other user flags have no specified
1951 role in the standard calling sequence and are not preserved."
1952
1953 To guarantee the "upon exit" part of that statement we fake a
1954 saved flags register that has its direction flag cleared.
1955
1956 Note that GCC doesn't seem to rely on the fact that the direction
1957 flag is cleared after a function return; it always explicitly
1958 clears the flag before operations where it matters.
1959
1960 FIXME: kettenis/20030316: I'm not quite sure whether this is the
1961 right thing to do. The way we fake the flags register here makes
1962 it impossible to change it. */
1963
1964 if (regnum == I386_EFLAGS_REGNUM)
1965 {
1966 ULONGEST val;
1967
1968 val = get_frame_register_unsigned (this_frame, regnum);
1969 val &= ~(1 << 10);
1970 return frame_unwind_got_constant (this_frame, regnum, val);
1971 }
1972
1973 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
1974 return frame_unwind_got_register (this_frame, regnum, I386_EAX_REGNUM);
1975
1976 if (regnum == I386_ESP_REGNUM
1977 && (cache->saved_sp != 0 || cache->saved_sp_reg != -1))
1978 {
1979 /* If the SP has been saved, but we don't know where, then this
1980 means that SAVED_SP_REG register was found unavailable back
1981 when we built the cache. */
1982 if (cache->saved_sp == 0)
1983 return frame_unwind_got_register (this_frame, regnum,
1984 cache->saved_sp_reg);
1985 else
1986 return frame_unwind_got_constant (this_frame, regnum,
1987 cache->saved_sp);
1988 }
1989
1990 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
1991 return frame_unwind_got_memory (this_frame, regnum,
1992 cache->saved_regs[regnum]);
1993
1994 return frame_unwind_got_register (this_frame, regnum, regnum);
1995 }
1996
1997 static const struct frame_unwind i386_frame_unwind =
1998 {
1999 NORMAL_FRAME,
2000 i386_frame_unwind_stop_reason,
2001 i386_frame_this_id,
2002 i386_frame_prev_register,
2003 NULL,
2004 default_frame_sniffer
2005 };
2006
2007 /* Normal frames, but in a function epilogue. */
2008
2009 /* The epilogue is defined here as the 'ret' instruction, which will
2010 follow any instruction such as 'leave' or 'pop %ebp' that destroys
2011 the function's stack frame. */
2012
2013 static int
2014 i386_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2015 {
2016 gdb_byte insn;
2017 struct symtab *symtab;
2018
2019 symtab = find_pc_symtab (pc);
2020 if (symtab && symtab->epilogue_unwind_valid)
2021 return 0;
2022
2023 if (target_read_memory (pc, &insn, 1))
2024 return 0; /* Can't read memory at pc. */
2025
2026 if (insn != 0xc3) /* 'ret' instruction. */
2027 return 0;
2028
2029 return 1;
2030 }
2031
2032 static int
2033 i386_epilogue_frame_sniffer (const struct frame_unwind *self,
2034 struct frame_info *this_frame,
2035 void **this_prologue_cache)
2036 {
2037 if (frame_relative_level (this_frame) == 0)
2038 return i386_in_function_epilogue_p (get_frame_arch (this_frame),
2039 get_frame_pc (this_frame));
2040 else
2041 return 0;
2042 }
2043
2044 static struct i386_frame_cache *
2045 i386_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
2046 {
2047 volatile struct gdb_exception ex;
2048 struct i386_frame_cache *cache;
2049 CORE_ADDR sp;
2050
2051 if (*this_cache)
2052 return *this_cache;
2053
2054 cache = i386_alloc_frame_cache ();
2055 *this_cache = cache;
2056
2057 TRY_CATCH (ex, RETURN_MASK_ERROR)
2058 {
2059 cache->pc = get_frame_func (this_frame);
2060
2061 /* At this point the stack looks as if we just entered the
2062 function, with the return address at the top of the
2063 stack. */
2064 sp = get_frame_register_unsigned (this_frame, I386_ESP_REGNUM);
2065 cache->base = sp + cache->sp_offset;
2066 cache->saved_sp = cache->base + 8;
2067 cache->saved_regs[I386_EIP_REGNUM] = cache->base + 4;
2068
2069 cache->base_p = 1;
2070 }
2071 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
2072 throw_exception (ex);
2073
2074 return cache;
2075 }
2076
2077 static enum unwind_stop_reason
2078 i386_epilogue_frame_unwind_stop_reason (struct frame_info *this_frame,
2079 void **this_cache)
2080 {
2081 struct i386_frame_cache *cache =
2082 i386_epilogue_frame_cache (this_frame, this_cache);
2083
2084 if (!cache->base_p)
2085 return UNWIND_UNAVAILABLE;
2086
2087 return UNWIND_NO_REASON;
2088 }
2089
2090 static void
2091 i386_epilogue_frame_this_id (struct frame_info *this_frame,
2092 void **this_cache,
2093 struct frame_id *this_id)
2094 {
2095 struct i386_frame_cache *cache =
2096 i386_epilogue_frame_cache (this_frame, this_cache);
2097
2098 if (!cache->base_p)
2099 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2100 else
2101 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2102 }
2103
2104 static struct value *
2105 i386_epilogue_frame_prev_register (struct frame_info *this_frame,
2106 void **this_cache, int regnum)
2107 {
2108 /* Make sure we've initialized the cache. */
2109 i386_epilogue_frame_cache (this_frame, this_cache);
2110
2111 return i386_frame_prev_register (this_frame, this_cache, regnum);
2112 }
2113
2114 static const struct frame_unwind i386_epilogue_frame_unwind =
2115 {
2116 NORMAL_FRAME,
2117 i386_epilogue_frame_unwind_stop_reason,
2118 i386_epilogue_frame_this_id,
2119 i386_epilogue_frame_prev_register,
2120 NULL,
2121 i386_epilogue_frame_sniffer
2122 };
2123 \f
2124
2125 /* Stack-based trampolines. */
2126
2127 /* These trampolines are used on cross x86 targets, when taking the
2128 address of a nested function. When executing these trampolines,
2129 no stack frame is set up, so we are in a similar situation as in
2130 epilogues and i386_epilogue_frame_this_id can be re-used. */
2131
2132 /* Static chain passed in register. */
2133
2134 struct i386_insn i386_tramp_chain_in_reg_insns[] =
2135 {
2136 /* `movl imm32, %eax' and `movl imm32, %ecx' */
2137 { 5, { 0xb8 }, { 0xfe } },
2138
2139 /* `jmp imm32' */
2140 { 5, { 0xe9 }, { 0xff } },
2141
2142 {0}
2143 };
2144
2145 /* Static chain passed on stack (when regparm=3). */
2146
2147 struct i386_insn i386_tramp_chain_on_stack_insns[] =
2148 {
2149 /* `push imm32' */
2150 { 5, { 0x68 }, { 0xff } },
2151
2152 /* `jmp imm32' */
2153 { 5, { 0xe9 }, { 0xff } },
2154
2155 {0}
2156 };
2157
2158 /* Return whether PC points inside a stack trampoline. */
2159
2160 static int
2161 i386_in_stack_tramp_p (CORE_ADDR pc)
2162 {
2163 gdb_byte insn;
2164 const char *name;
2165
2166 /* A stack trampoline is detected if no name is associated
2167 to the current pc and if it points inside a trampoline
2168 sequence. */
2169
2170 find_pc_partial_function (pc, &name, NULL, NULL);
2171 if (name)
2172 return 0;
2173
2174 if (target_read_memory (pc, &insn, 1))
2175 return 0;
2176
2177 if (!i386_match_insn_block (pc, i386_tramp_chain_in_reg_insns)
2178 && !i386_match_insn_block (pc, i386_tramp_chain_on_stack_insns))
2179 return 0;
2180
2181 return 1;
2182 }
2183
2184 static int
2185 i386_stack_tramp_frame_sniffer (const struct frame_unwind *self,
2186 struct frame_info *this_frame,
2187 void **this_cache)
2188 {
2189 if (frame_relative_level (this_frame) == 0)
2190 return i386_in_stack_tramp_p (get_frame_pc (this_frame));
2191 else
2192 return 0;
2193 }
2194
2195 static const struct frame_unwind i386_stack_tramp_frame_unwind =
2196 {
2197 NORMAL_FRAME,
2198 i386_epilogue_frame_unwind_stop_reason,
2199 i386_epilogue_frame_this_id,
2200 i386_epilogue_frame_prev_register,
2201 NULL,
2202 i386_stack_tramp_frame_sniffer
2203 };
2204 \f
2205 /* Generate a bytecode expression to get the value of the saved PC. */
2206
2207 static void
2208 i386_gen_return_address (struct gdbarch *gdbarch,
2209 struct agent_expr *ax, struct axs_value *value,
2210 CORE_ADDR scope)
2211 {
2212 /* The following sequence assumes the traditional use of the base
2213 register. */
2214 ax_reg (ax, I386_EBP_REGNUM);
2215 ax_const_l (ax, 4);
2216 ax_simple (ax, aop_add);
2217 value->type = register_type (gdbarch, I386_EIP_REGNUM);
2218 value->kind = axs_lvalue_memory;
2219 }
2220 \f
2221
2222 /* Signal trampolines. */
2223
2224 static struct i386_frame_cache *
2225 i386_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
2226 {
2227 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2228 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2229 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2230 volatile struct gdb_exception ex;
2231 struct i386_frame_cache *cache;
2232 CORE_ADDR addr;
2233 gdb_byte buf[4];
2234
2235 if (*this_cache)
2236 return *this_cache;
2237
2238 cache = i386_alloc_frame_cache ();
2239
2240 TRY_CATCH (ex, RETURN_MASK_ERROR)
2241 {
2242 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2243 cache->base = extract_unsigned_integer (buf, 4, byte_order) - 4;
2244
2245 addr = tdep->sigcontext_addr (this_frame);
2246 if (tdep->sc_reg_offset)
2247 {
2248 int i;
2249
2250 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
2251
2252 for (i = 0; i < tdep->sc_num_regs; i++)
2253 if (tdep->sc_reg_offset[i] != -1)
2254 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
2255 }
2256 else
2257 {
2258 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
2259 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
2260 }
2261
2262 cache->base_p = 1;
2263 }
2264 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
2265 throw_exception (ex);
2266
2267 *this_cache = cache;
2268 return cache;
2269 }
2270
2271 static enum unwind_stop_reason
2272 i386_sigtramp_frame_unwind_stop_reason (struct frame_info *this_frame,
2273 void **this_cache)
2274 {
2275 struct i386_frame_cache *cache =
2276 i386_sigtramp_frame_cache (this_frame, this_cache);
2277
2278 if (!cache->base_p)
2279 return UNWIND_UNAVAILABLE;
2280
2281 return UNWIND_NO_REASON;
2282 }
2283
2284 static void
2285 i386_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache,
2286 struct frame_id *this_id)
2287 {
2288 struct i386_frame_cache *cache =
2289 i386_sigtramp_frame_cache (this_frame, this_cache);
2290
2291 if (!cache->base_p)
2292 (*this_id) = frame_id_build_unavailable_stack (get_frame_pc (this_frame));
2293 else
2294 {
2295 /* See the end of i386_push_dummy_call. */
2296 (*this_id) = frame_id_build (cache->base + 8, get_frame_pc (this_frame));
2297 }
2298 }
2299
2300 static struct value *
2301 i386_sigtramp_frame_prev_register (struct frame_info *this_frame,
2302 void **this_cache, int regnum)
2303 {
2304 /* Make sure we've initialized the cache. */
2305 i386_sigtramp_frame_cache (this_frame, this_cache);
2306
2307 return i386_frame_prev_register (this_frame, this_cache, regnum);
2308 }
2309
2310 static int
2311 i386_sigtramp_frame_sniffer (const struct frame_unwind *self,
2312 struct frame_info *this_frame,
2313 void **this_prologue_cache)
2314 {
2315 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
2316
2317 /* We shouldn't even bother if we don't have a sigcontext_addr
2318 handler. */
2319 if (tdep->sigcontext_addr == NULL)
2320 return 0;
2321
2322 if (tdep->sigtramp_p != NULL)
2323 {
2324 if (tdep->sigtramp_p (this_frame))
2325 return 1;
2326 }
2327
2328 if (tdep->sigtramp_start != 0)
2329 {
2330 CORE_ADDR pc = get_frame_pc (this_frame);
2331
2332 gdb_assert (tdep->sigtramp_end != 0);
2333 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
2334 return 1;
2335 }
2336
2337 return 0;
2338 }
2339
2340 static const struct frame_unwind i386_sigtramp_frame_unwind =
2341 {
2342 SIGTRAMP_FRAME,
2343 i386_sigtramp_frame_unwind_stop_reason,
2344 i386_sigtramp_frame_this_id,
2345 i386_sigtramp_frame_prev_register,
2346 NULL,
2347 i386_sigtramp_frame_sniffer
2348 };
2349 \f
2350
2351 static CORE_ADDR
2352 i386_frame_base_address (struct frame_info *this_frame, void **this_cache)
2353 {
2354 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2355
2356 return cache->base;
2357 }
2358
2359 static const struct frame_base i386_frame_base =
2360 {
2361 &i386_frame_unwind,
2362 i386_frame_base_address,
2363 i386_frame_base_address,
2364 i386_frame_base_address
2365 };
2366
2367 static struct frame_id
2368 i386_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2369 {
2370 CORE_ADDR fp;
2371
2372 fp = get_frame_register_unsigned (this_frame, I386_EBP_REGNUM);
2373
2374 /* See the end of i386_push_dummy_call. */
2375 return frame_id_build (fp + 8, get_frame_pc (this_frame));
2376 }
2377
2378 /* _Decimal128 function return values need 16-byte alignment on the
2379 stack. */
2380
2381 static CORE_ADDR
2382 i386_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2383 {
2384 return sp & -(CORE_ADDR)16;
2385 }
2386 \f
2387
2388 /* Figure out where the longjmp will land. Slurp the args out of the
2389 stack. We expect the first arg to be a pointer to the jmp_buf
2390 structure from which we extract the address that we will land at.
2391 This address is copied into PC. This routine returns non-zero on
2392 success. */
2393
2394 static int
2395 i386_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
2396 {
2397 gdb_byte buf[4];
2398 CORE_ADDR sp, jb_addr;
2399 struct gdbarch *gdbarch = get_frame_arch (frame);
2400 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2401 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
2402
2403 /* If JB_PC_OFFSET is -1, we have no way to find out where the
2404 longjmp will land. */
2405 if (jb_pc_offset == -1)
2406 return 0;
2407
2408 get_frame_register (frame, I386_ESP_REGNUM, buf);
2409 sp = extract_unsigned_integer (buf, 4, byte_order);
2410 if (target_read_memory (sp + 4, buf, 4))
2411 return 0;
2412
2413 jb_addr = extract_unsigned_integer (buf, 4, byte_order);
2414 if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
2415 return 0;
2416
2417 *pc = extract_unsigned_integer (buf, 4, byte_order);
2418 return 1;
2419 }
2420 \f
2421
2422 /* Check whether TYPE must be 16-byte-aligned when passed as a
2423 function argument. 16-byte vectors, _Decimal128 and structures or
2424 unions containing such types must be 16-byte-aligned; other
2425 arguments are 4-byte-aligned. */
2426
2427 static int
2428 i386_16_byte_align_p (struct type *type)
2429 {
2430 type = check_typedef (type);
2431 if ((TYPE_CODE (type) == TYPE_CODE_DECFLOAT
2432 || (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type)))
2433 && TYPE_LENGTH (type) == 16)
2434 return 1;
2435 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2436 return i386_16_byte_align_p (TYPE_TARGET_TYPE (type));
2437 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2438 || TYPE_CODE (type) == TYPE_CODE_UNION)
2439 {
2440 int i;
2441 for (i = 0; i < TYPE_NFIELDS (type); i++)
2442 {
2443 if (i386_16_byte_align_p (TYPE_FIELD_TYPE (type, i)))
2444 return 1;
2445 }
2446 }
2447 return 0;
2448 }
2449
2450 /* Implementation for set_gdbarch_push_dummy_code. */
2451
2452 static CORE_ADDR
2453 i386_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, CORE_ADDR funaddr,
2454 struct value **args, int nargs, struct type *value_type,
2455 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
2456 struct regcache *regcache)
2457 {
2458 /* Use 0xcc breakpoint - 1 byte. */
2459 *bp_addr = sp - 1;
2460 *real_pc = funaddr;
2461
2462 /* Keep the stack aligned. */
2463 return sp - 16;
2464 }
2465
2466 static CORE_ADDR
2467 i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2468 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2469 struct value **args, CORE_ADDR sp, int struct_return,
2470 CORE_ADDR struct_addr)
2471 {
2472 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2473 gdb_byte buf[4];
2474 int i;
2475 int write_pass;
2476 int args_space = 0;
2477
2478 /* Determine the total space required for arguments and struct
2479 return address in a first pass (allowing for 16-byte-aligned
2480 arguments), then push arguments in a second pass. */
2481
2482 for (write_pass = 0; write_pass < 2; write_pass++)
2483 {
2484 int args_space_used = 0;
2485
2486 if (struct_return)
2487 {
2488 if (write_pass)
2489 {
2490 /* Push value address. */
2491 store_unsigned_integer (buf, 4, byte_order, struct_addr);
2492 write_memory (sp, buf, 4);
2493 args_space_used += 4;
2494 }
2495 else
2496 args_space += 4;
2497 }
2498
2499 for (i = 0; i < nargs; i++)
2500 {
2501 int len = TYPE_LENGTH (value_enclosing_type (args[i]));
2502
2503 if (write_pass)
2504 {
2505 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2506 args_space_used = align_up (args_space_used, 16);
2507
2508 write_memory (sp + args_space_used,
2509 value_contents_all (args[i]), len);
2510 /* The System V ABI says that:
2511
2512 "An argument's size is increased, if necessary, to make it a
2513 multiple of [32-bit] words. This may require tail padding,
2514 depending on the size of the argument."
2515
2516 This makes sure the stack stays word-aligned. */
2517 args_space_used += align_up (len, 4);
2518 }
2519 else
2520 {
2521 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2522 args_space = align_up (args_space, 16);
2523 args_space += align_up (len, 4);
2524 }
2525 }
2526
2527 if (!write_pass)
2528 {
2529 sp -= args_space;
2530
2531 /* The original System V ABI only requires word alignment,
2532 but modern incarnations need 16-byte alignment in order
2533 to support SSE. Since wasting a few bytes here isn't
2534 harmful we unconditionally enforce 16-byte alignment. */
2535 sp &= ~0xf;
2536 }
2537 }
2538
2539 /* Store return address. */
2540 sp -= 4;
2541 store_unsigned_integer (buf, 4, byte_order, bp_addr);
2542 write_memory (sp, buf, 4);
2543
2544 /* Finally, update the stack pointer... */
2545 store_unsigned_integer (buf, 4, byte_order, sp);
2546 regcache_cooked_write (regcache, I386_ESP_REGNUM, buf);
2547
2548 /* ...and fake a frame pointer. */
2549 regcache_cooked_write (regcache, I386_EBP_REGNUM, buf);
2550
2551 /* MarkK wrote: This "+ 8" is all over the place:
2552 (i386_frame_this_id, i386_sigtramp_frame_this_id,
2553 i386_dummy_id). It's there, since all frame unwinders for
2554 a given target have to agree (within a certain margin) on the
2555 definition of the stack address of a frame. Otherwise frame id
2556 comparison might not work correctly. Since DWARF2/GCC uses the
2557 stack address *before* the function call as a frame's CFA. On
2558 the i386, when %ebp is used as a frame pointer, the offset
2559 between the contents %ebp and the CFA as defined by GCC. */
2560 return sp + 8;
2561 }
2562
2563 /* These registers are used for returning integers (and on some
2564 targets also for returning `struct' and `union' values when their
2565 size and alignment match an integer type). */
2566 #define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
2567 #define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
2568
2569 /* Read, for architecture GDBARCH, a function return value of TYPE
2570 from REGCACHE, and copy that into VALBUF. */
2571
2572 static void
2573 i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
2574 struct regcache *regcache, gdb_byte *valbuf)
2575 {
2576 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2577 int len = TYPE_LENGTH (type);
2578 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2579
2580 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2581 {
2582 if (tdep->st0_regnum < 0)
2583 {
2584 warning (_("Cannot find floating-point return value."));
2585 memset (valbuf, 0, len);
2586 return;
2587 }
2588
2589 /* Floating-point return values can be found in %st(0). Convert
2590 its contents to the desired type. This is probably not
2591 exactly how it would happen on the target itself, but it is
2592 the best we can do. */
2593 regcache_raw_read (regcache, I386_ST0_REGNUM, buf);
2594 convert_typed_floating (buf, i387_ext_type (gdbarch), valbuf, type);
2595 }
2596 else
2597 {
2598 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2599 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2600
2601 if (len <= low_size)
2602 {
2603 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
2604 memcpy (valbuf, buf, len);
2605 }
2606 else if (len <= (low_size + high_size))
2607 {
2608 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
2609 memcpy (valbuf, buf, low_size);
2610 regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
2611 memcpy (valbuf + low_size, buf, len - low_size);
2612 }
2613 else
2614 internal_error (__FILE__, __LINE__,
2615 _("Cannot extract return value of %d bytes long."),
2616 len);
2617 }
2618 }
2619
2620 /* Write, for architecture GDBARCH, a function return value of TYPE
2621 from VALBUF into REGCACHE. */
2622
2623 static void
2624 i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
2625 struct regcache *regcache, const gdb_byte *valbuf)
2626 {
2627 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2628 int len = TYPE_LENGTH (type);
2629
2630 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2631 {
2632 ULONGEST fstat;
2633 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2634
2635 if (tdep->st0_regnum < 0)
2636 {
2637 warning (_("Cannot set floating-point return value."));
2638 return;
2639 }
2640
2641 /* Returning floating-point values is a bit tricky. Apart from
2642 storing the return value in %st(0), we have to simulate the
2643 state of the FPU at function return point. */
2644
2645 /* Convert the value found in VALBUF to the extended
2646 floating-point format used by the FPU. This is probably
2647 not exactly how it would happen on the target itself, but
2648 it is the best we can do. */
2649 convert_typed_floating (valbuf, type, buf, i387_ext_type (gdbarch));
2650 regcache_raw_write (regcache, I386_ST0_REGNUM, buf);
2651
2652 /* Set the top of the floating-point register stack to 7. The
2653 actual value doesn't really matter, but 7 is what a normal
2654 function return would end up with if the program started out
2655 with a freshly initialized FPU. */
2656 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
2657 fstat |= (7 << 11);
2658 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM (tdep), fstat);
2659
2660 /* Mark %st(1) through %st(7) as empty. Since we set the top of
2661 the floating-point register stack to 7, the appropriate value
2662 for the tag word is 0x3fff. */
2663 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM (tdep), 0x3fff);
2664 }
2665 else
2666 {
2667 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2668 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2669
2670 if (len <= low_size)
2671 regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
2672 else if (len <= (low_size + high_size))
2673 {
2674 regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
2675 regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
2676 len - low_size, valbuf + low_size);
2677 }
2678 else
2679 internal_error (__FILE__, __LINE__,
2680 _("Cannot store return value of %d bytes long."), len);
2681 }
2682 }
2683 \f
2684
2685 /* This is the variable that is set with "set struct-convention", and
2686 its legitimate values. */
2687 static const char default_struct_convention[] = "default";
2688 static const char pcc_struct_convention[] = "pcc";
2689 static const char reg_struct_convention[] = "reg";
2690 static const char *const valid_conventions[] =
2691 {
2692 default_struct_convention,
2693 pcc_struct_convention,
2694 reg_struct_convention,
2695 NULL
2696 };
2697 static const char *struct_convention = default_struct_convention;
2698
2699 /* Return non-zero if TYPE, which is assumed to be a structure,
2700 a union type, or an array type, should be returned in registers
2701 for architecture GDBARCH. */
2702
2703 static int
2704 i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
2705 {
2706 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2707 enum type_code code = TYPE_CODE (type);
2708 int len = TYPE_LENGTH (type);
2709
2710 gdb_assert (code == TYPE_CODE_STRUCT
2711 || code == TYPE_CODE_UNION
2712 || code == TYPE_CODE_ARRAY);
2713
2714 if (struct_convention == pcc_struct_convention
2715 || (struct_convention == default_struct_convention
2716 && tdep->struct_return == pcc_struct_return))
2717 return 0;
2718
2719 /* Structures consisting of a single `float', `double' or 'long
2720 double' member are returned in %st(0). */
2721 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2722 {
2723 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
2724 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2725 return (len == 4 || len == 8 || len == 12);
2726 }
2727
2728 return (len == 1 || len == 2 || len == 4 || len == 8);
2729 }
2730
2731 /* Determine, for architecture GDBARCH, how a return value of TYPE
2732 should be returned. If it is supposed to be returned in registers,
2733 and READBUF is non-zero, read the appropriate value from REGCACHE,
2734 and copy it into READBUF. If WRITEBUF is non-zero, write the value
2735 from WRITEBUF into REGCACHE. */
2736
2737 static enum return_value_convention
2738 i386_return_value (struct gdbarch *gdbarch, struct value *function,
2739 struct type *type, struct regcache *regcache,
2740 gdb_byte *readbuf, const gdb_byte *writebuf)
2741 {
2742 enum type_code code = TYPE_CODE (type);
2743
2744 if (((code == TYPE_CODE_STRUCT
2745 || code == TYPE_CODE_UNION
2746 || code == TYPE_CODE_ARRAY)
2747 && !i386_reg_struct_return_p (gdbarch, type))
2748 /* Complex double and long double uses the struct return covention. */
2749 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 16)
2750 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 24)
2751 /* 128-bit decimal float uses the struct return convention. */
2752 || (code == TYPE_CODE_DECFLOAT && TYPE_LENGTH (type) == 16))
2753 {
2754 /* The System V ABI says that:
2755
2756 "A function that returns a structure or union also sets %eax
2757 to the value of the original address of the caller's area
2758 before it returns. Thus when the caller receives control
2759 again, the address of the returned object resides in register
2760 %eax and can be used to access the object."
2761
2762 So the ABI guarantees that we can always find the return
2763 value just after the function has returned. */
2764
2765 /* Note that the ABI doesn't mention functions returning arrays,
2766 which is something possible in certain languages such as Ada.
2767 In this case, the value is returned as if it was wrapped in
2768 a record, so the convention applied to records also applies
2769 to arrays. */
2770
2771 if (readbuf)
2772 {
2773 ULONGEST addr;
2774
2775 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
2776 read_memory (addr, readbuf, TYPE_LENGTH (type));
2777 }
2778
2779 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
2780 }
2781
2782 /* This special case is for structures consisting of a single
2783 `float', `double' or 'long double' member. These structures are
2784 returned in %st(0). For these structures, we call ourselves
2785 recursively, changing TYPE into the type of the first member of
2786 the structure. Since that should work for all structures that
2787 have only one member, we don't bother to check the member's type
2788 here. */
2789 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2790 {
2791 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
2792 return i386_return_value (gdbarch, function, type, regcache,
2793 readbuf, writebuf);
2794 }
2795
2796 if (readbuf)
2797 i386_extract_return_value (gdbarch, type, regcache, readbuf);
2798 if (writebuf)
2799 i386_store_return_value (gdbarch, type, regcache, writebuf);
2800
2801 return RETURN_VALUE_REGISTER_CONVENTION;
2802 }
2803 \f
2804
2805 struct type *
2806 i387_ext_type (struct gdbarch *gdbarch)
2807 {
2808 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2809
2810 if (!tdep->i387_ext_type)
2811 {
2812 tdep->i387_ext_type = tdesc_find_type (gdbarch, "i387_ext");
2813 gdb_assert (tdep->i387_ext_type != NULL);
2814 }
2815
2816 return tdep->i387_ext_type;
2817 }
2818
2819 /* Construct type for pseudo BND registers. We can't use
2820 tdesc_find_type since a complement of one value has to be used
2821 to describe the upper bound. */
2822
2823 static struct type *
2824 i386_bnd_type (struct gdbarch *gdbarch)
2825 {
2826 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2827
2828
2829 if (!tdep->i386_bnd_type)
2830 {
2831 struct type *t, *bound_t;
2832 const struct builtin_type *bt = builtin_type (gdbarch);
2833
2834 /* The type we're building is described bellow: */
2835 #if 0
2836 struct __bound128
2837 {
2838 void *lbound;
2839 void *ubound; /* One complement of raw ubound field. */
2840 };
2841 #endif
2842
2843 t = arch_composite_type (gdbarch,
2844 "__gdb_builtin_type_bound128", TYPE_CODE_STRUCT);
2845
2846 append_composite_type_field (t, "lbound", bt->builtin_data_ptr);
2847 append_composite_type_field (t, "ubound", bt->builtin_data_ptr);
2848
2849 TYPE_NAME (t) = "builtin_type_bound128";
2850 tdep->i386_bnd_type = t;
2851 }
2852
2853 return tdep->i386_bnd_type;
2854 }
2855
2856 /* Construct vector type for pseudo YMM registers. We can't use
2857 tdesc_find_type since YMM isn't described in target description. */
2858
2859 static struct type *
2860 i386_ymm_type (struct gdbarch *gdbarch)
2861 {
2862 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2863
2864 if (!tdep->i386_ymm_type)
2865 {
2866 const struct builtin_type *bt = builtin_type (gdbarch);
2867
2868 /* The type we're building is this: */
2869 #if 0
2870 union __gdb_builtin_type_vec256i
2871 {
2872 int128_t uint128[2];
2873 int64_t v2_int64[4];
2874 int32_t v4_int32[8];
2875 int16_t v8_int16[16];
2876 int8_t v16_int8[32];
2877 double v2_double[4];
2878 float v4_float[8];
2879 };
2880 #endif
2881
2882 struct type *t;
2883
2884 t = arch_composite_type (gdbarch,
2885 "__gdb_builtin_type_vec256i", TYPE_CODE_UNION);
2886 append_composite_type_field (t, "v8_float",
2887 init_vector_type (bt->builtin_float, 8));
2888 append_composite_type_field (t, "v4_double",
2889 init_vector_type (bt->builtin_double, 4));
2890 append_composite_type_field (t, "v32_int8",
2891 init_vector_type (bt->builtin_int8, 32));
2892 append_composite_type_field (t, "v16_int16",
2893 init_vector_type (bt->builtin_int16, 16));
2894 append_composite_type_field (t, "v8_int32",
2895 init_vector_type (bt->builtin_int32, 8));
2896 append_composite_type_field (t, "v4_int64",
2897 init_vector_type (bt->builtin_int64, 4));
2898 append_composite_type_field (t, "v2_int128",
2899 init_vector_type (bt->builtin_int128, 2));
2900
2901 TYPE_VECTOR (t) = 1;
2902 TYPE_NAME (t) = "builtin_type_vec256i";
2903 tdep->i386_ymm_type = t;
2904 }
2905
2906 return tdep->i386_ymm_type;
2907 }
2908
2909 /* Construct vector type for MMX registers. */
2910 static struct type *
2911 i386_mmx_type (struct gdbarch *gdbarch)
2912 {
2913 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2914
2915 if (!tdep->i386_mmx_type)
2916 {
2917 const struct builtin_type *bt = builtin_type (gdbarch);
2918
2919 /* The type we're building is this: */
2920 #if 0
2921 union __gdb_builtin_type_vec64i
2922 {
2923 int64_t uint64;
2924 int32_t v2_int32[2];
2925 int16_t v4_int16[4];
2926 int8_t v8_int8[8];
2927 };
2928 #endif
2929
2930 struct type *t;
2931
2932 t = arch_composite_type (gdbarch,
2933 "__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
2934
2935 append_composite_type_field (t, "uint64", bt->builtin_int64);
2936 append_composite_type_field (t, "v2_int32",
2937 init_vector_type (bt->builtin_int32, 2));
2938 append_composite_type_field (t, "v4_int16",
2939 init_vector_type (bt->builtin_int16, 4));
2940 append_composite_type_field (t, "v8_int8",
2941 init_vector_type (bt->builtin_int8, 8));
2942
2943 TYPE_VECTOR (t) = 1;
2944 TYPE_NAME (t) = "builtin_type_vec64i";
2945 tdep->i386_mmx_type = t;
2946 }
2947
2948 return tdep->i386_mmx_type;
2949 }
2950
2951 /* Return the GDB type object for the "standard" data type of data in
2952 register REGNUM. */
2953
2954 struct type *
2955 i386_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
2956 {
2957 if (i386_bnd_regnum_p (gdbarch, regnum))
2958 return i386_bnd_type (gdbarch);
2959 if (i386_mmx_regnum_p (gdbarch, regnum))
2960 return i386_mmx_type (gdbarch);
2961 else if (i386_ymm_regnum_p (gdbarch, regnum))
2962 return i386_ymm_type (gdbarch);
2963 else
2964 {
2965 const struct builtin_type *bt = builtin_type (gdbarch);
2966 if (i386_byte_regnum_p (gdbarch, regnum))
2967 return bt->builtin_int8;
2968 else if (i386_word_regnum_p (gdbarch, regnum))
2969 return bt->builtin_int16;
2970 else if (i386_dword_regnum_p (gdbarch, regnum))
2971 return bt->builtin_int32;
2972 }
2973
2974 internal_error (__FILE__, __LINE__, _("invalid regnum"));
2975 }
2976
2977 /* Map a cooked register onto a raw register or memory. For the i386,
2978 the MMX registers need to be mapped onto floating point registers. */
2979
2980 static int
2981 i386_mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
2982 {
2983 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
2984 int mmxreg, fpreg;
2985 ULONGEST fstat;
2986 int tos;
2987
2988 mmxreg = regnum - tdep->mm0_regnum;
2989 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
2990 tos = (fstat >> 11) & 0x7;
2991 fpreg = (mmxreg + tos) % 8;
2992
2993 return (I387_ST0_REGNUM (tdep) + fpreg);
2994 }
2995
2996 /* A helper function for us by i386_pseudo_register_read_value and
2997 amd64_pseudo_register_read_value. It does all the work but reads
2998 the data into an already-allocated value. */
2999
3000 void
3001 i386_pseudo_register_read_into_value (struct gdbarch *gdbarch,
3002 struct regcache *regcache,
3003 int regnum,
3004 struct value *result_value)
3005 {
3006 gdb_byte raw_buf[MAX_REGISTER_SIZE];
3007 enum register_status status;
3008 gdb_byte *buf = value_contents_raw (result_value);
3009
3010 if (i386_mmx_regnum_p (gdbarch, regnum))
3011 {
3012 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3013
3014 /* Extract (always little endian). */
3015 status = regcache_raw_read (regcache, fpnum, raw_buf);
3016 if (status != REG_VALID)
3017 mark_value_bytes_unavailable (result_value, 0,
3018 TYPE_LENGTH (value_type (result_value)));
3019 else
3020 memcpy (buf, raw_buf, register_size (gdbarch, regnum));
3021 }
3022 else
3023 {
3024 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3025 if (i386_bnd_regnum_p (gdbarch, regnum))
3026 {
3027 regnum -= tdep->bnd0_regnum;
3028
3029 /* Extract (always little endian). Read lower 128bits. */
3030 status = regcache_raw_read (regcache,
3031 I387_BND0R_REGNUM (tdep) + regnum,
3032 raw_buf);
3033 if (status != REG_VALID)
3034 mark_value_bytes_unavailable (result_value, 0, 16);
3035 else
3036 {
3037 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3038 LONGEST upper, lower;
3039 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
3040
3041 lower = extract_unsigned_integer (raw_buf, 8, byte_order);
3042 upper = extract_unsigned_integer (raw_buf + 8, 8, byte_order);
3043 upper = ~upper;
3044
3045 memcpy (buf, &lower, size);
3046 memcpy (buf + size, &upper, size);
3047 }
3048 }
3049 else if (i386_ymm_regnum_p (gdbarch, regnum))
3050 {
3051 regnum -= tdep->ymm0_regnum;
3052
3053 /* Extract (always little endian). Read lower 128bits. */
3054 status = regcache_raw_read (regcache,
3055 I387_XMM0_REGNUM (tdep) + regnum,
3056 raw_buf);
3057 if (status != REG_VALID)
3058 mark_value_bytes_unavailable (result_value, 0, 16);
3059 else
3060 memcpy (buf, raw_buf, 16);
3061 /* Read upper 128bits. */
3062 status = regcache_raw_read (regcache,
3063 tdep->ymm0h_regnum + regnum,
3064 raw_buf);
3065 if (status != REG_VALID)
3066 mark_value_bytes_unavailable (result_value, 16, 32);
3067 else
3068 memcpy (buf + 16, raw_buf, 16);
3069 }
3070 else if (i386_word_regnum_p (gdbarch, regnum))
3071 {
3072 int gpnum = regnum - tdep->ax_regnum;
3073
3074 /* Extract (always little endian). */
3075 status = regcache_raw_read (regcache, gpnum, raw_buf);
3076 if (status != REG_VALID)
3077 mark_value_bytes_unavailable (result_value, 0,
3078 TYPE_LENGTH (value_type (result_value)));
3079 else
3080 memcpy (buf, raw_buf, 2);
3081 }
3082 else if (i386_byte_regnum_p (gdbarch, regnum))
3083 {
3084 /* Check byte pseudo registers last since this function will
3085 be called from amd64_pseudo_register_read, which handles
3086 byte pseudo registers differently. */
3087 int gpnum = regnum - tdep->al_regnum;
3088
3089 /* Extract (always little endian). We read both lower and
3090 upper registers. */
3091 status = regcache_raw_read (regcache, gpnum % 4, raw_buf);
3092 if (status != REG_VALID)
3093 mark_value_bytes_unavailable (result_value, 0,
3094 TYPE_LENGTH (value_type (result_value)));
3095 else if (gpnum >= 4)
3096 memcpy (buf, raw_buf + 1, 1);
3097 else
3098 memcpy (buf, raw_buf, 1);
3099 }
3100 else
3101 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3102 }
3103 }
3104
3105 static struct value *
3106 i386_pseudo_register_read_value (struct gdbarch *gdbarch,
3107 struct regcache *regcache,
3108 int regnum)
3109 {
3110 struct value *result;
3111
3112 result = allocate_value (register_type (gdbarch, regnum));
3113 VALUE_LVAL (result) = lval_register;
3114 VALUE_REGNUM (result) = regnum;
3115
3116 i386_pseudo_register_read_into_value (gdbarch, regcache, regnum, result);
3117
3118 return result;
3119 }
3120
3121 void
3122 i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
3123 int regnum, const gdb_byte *buf)
3124 {
3125 gdb_byte raw_buf[MAX_REGISTER_SIZE];
3126
3127 if (i386_mmx_regnum_p (gdbarch, regnum))
3128 {
3129 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3130
3131 /* Read ... */
3132 regcache_raw_read (regcache, fpnum, raw_buf);
3133 /* ... Modify ... (always little endian). */
3134 memcpy (raw_buf, buf, register_size (gdbarch, regnum));
3135 /* ... Write. */
3136 regcache_raw_write (regcache, fpnum, raw_buf);
3137 }
3138 else
3139 {
3140 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3141
3142 if (i386_bnd_regnum_p (gdbarch, regnum))
3143 {
3144 ULONGEST upper, lower;
3145 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
3146 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3147
3148 /* New values from input value. */
3149 regnum -= tdep->bnd0_regnum;
3150 lower = extract_unsigned_integer (buf, size, byte_order);
3151 upper = extract_unsigned_integer (buf + size, size, byte_order);
3152
3153 /* Fetching register buffer. */
3154 regcache_raw_read (regcache,
3155 I387_BND0R_REGNUM (tdep) + regnum,
3156 raw_buf);
3157
3158 upper = ~upper;
3159
3160 /* Set register bits. */
3161 memcpy (raw_buf, &lower, 8);
3162 memcpy (raw_buf + 8, &upper, 8);
3163
3164
3165 regcache_raw_write (regcache,
3166 I387_BND0R_REGNUM (tdep) + regnum,
3167 raw_buf);
3168 }
3169 else if (i386_ymm_regnum_p (gdbarch, regnum))
3170 {
3171 regnum -= tdep->ymm0_regnum;
3172
3173 /* ... Write lower 128bits. */
3174 regcache_raw_write (regcache,
3175 I387_XMM0_REGNUM (tdep) + regnum,
3176 buf);
3177 /* ... Write upper 128bits. */
3178 regcache_raw_write (regcache,
3179 tdep->ymm0h_regnum + regnum,
3180 buf + 16);
3181 }
3182 else if (i386_word_regnum_p (gdbarch, regnum))
3183 {
3184 int gpnum = regnum - tdep->ax_regnum;
3185
3186 /* Read ... */
3187 regcache_raw_read (regcache, gpnum, raw_buf);
3188 /* ... Modify ... (always little endian). */
3189 memcpy (raw_buf, buf, 2);
3190 /* ... Write. */
3191 regcache_raw_write (regcache, gpnum, raw_buf);
3192 }
3193 else if (i386_byte_regnum_p (gdbarch, regnum))
3194 {
3195 /* Check byte pseudo registers last since this function will
3196 be called from amd64_pseudo_register_read, which handles
3197 byte pseudo registers differently. */
3198 int gpnum = regnum - tdep->al_regnum;
3199
3200 /* Read ... We read both lower and upper registers. */
3201 regcache_raw_read (regcache, gpnum % 4, raw_buf);
3202 /* ... Modify ... (always little endian). */
3203 if (gpnum >= 4)
3204 memcpy (raw_buf + 1, buf, 1);
3205 else
3206 memcpy (raw_buf, buf, 1);
3207 /* ... Write. */
3208 regcache_raw_write (regcache, gpnum % 4, raw_buf);
3209 }
3210 else
3211 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3212 }
3213 }
3214 \f
3215
3216 /* Return the register number of the register allocated by GCC after
3217 REGNUM, or -1 if there is no such register. */
3218
3219 static int
3220 i386_next_regnum (int regnum)
3221 {
3222 /* GCC allocates the registers in the order:
3223
3224 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
3225
3226 Since storing a variable in %esp doesn't make any sense we return
3227 -1 for %ebp and for %esp itself. */
3228 static int next_regnum[] =
3229 {
3230 I386_EDX_REGNUM, /* Slot for %eax. */
3231 I386_EBX_REGNUM, /* Slot for %ecx. */
3232 I386_ECX_REGNUM, /* Slot for %edx. */
3233 I386_ESI_REGNUM, /* Slot for %ebx. */
3234 -1, -1, /* Slots for %esp and %ebp. */
3235 I386_EDI_REGNUM, /* Slot for %esi. */
3236 I386_EBP_REGNUM /* Slot for %edi. */
3237 };
3238
3239 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
3240 return next_regnum[regnum];
3241
3242 return -1;
3243 }
3244
3245 /* Return nonzero if a value of type TYPE stored in register REGNUM
3246 needs any special handling. */
3247
3248 static int
3249 i386_convert_register_p (struct gdbarch *gdbarch,
3250 int regnum, struct type *type)
3251 {
3252 int len = TYPE_LENGTH (type);
3253
3254 /* Values may be spread across multiple registers. Most debugging
3255 formats aren't expressive enough to specify the locations, so
3256 some heuristics is involved. Right now we only handle types that
3257 have a length that is a multiple of the word size, since GCC
3258 doesn't seem to put any other types into registers. */
3259 if (len > 4 && len % 4 == 0)
3260 {
3261 int last_regnum = regnum;
3262
3263 while (len > 4)
3264 {
3265 last_regnum = i386_next_regnum (last_regnum);
3266 len -= 4;
3267 }
3268
3269 if (last_regnum != -1)
3270 return 1;
3271 }
3272
3273 return i387_convert_register_p (gdbarch, regnum, type);
3274 }
3275
3276 /* Read a value of type TYPE from register REGNUM in frame FRAME, and
3277 return its contents in TO. */
3278
3279 static int
3280 i386_register_to_value (struct frame_info *frame, int regnum,
3281 struct type *type, gdb_byte *to,
3282 int *optimizedp, int *unavailablep)
3283 {
3284 struct gdbarch *gdbarch = get_frame_arch (frame);
3285 int len = TYPE_LENGTH (type);
3286
3287 if (i386_fp_regnum_p (gdbarch, regnum))
3288 return i387_register_to_value (frame, regnum, type, to,
3289 optimizedp, unavailablep);
3290
3291 /* Read a value spread across multiple registers. */
3292
3293 gdb_assert (len > 4 && len % 4 == 0);
3294
3295 while (len > 0)
3296 {
3297 gdb_assert (regnum != -1);
3298 gdb_assert (register_size (gdbarch, regnum) == 4);
3299
3300 if (!get_frame_register_bytes (frame, regnum, 0,
3301 register_size (gdbarch, regnum),
3302 to, optimizedp, unavailablep))
3303 return 0;
3304
3305 regnum = i386_next_regnum (regnum);
3306 len -= 4;
3307 to += 4;
3308 }
3309
3310 *optimizedp = *unavailablep = 0;
3311 return 1;
3312 }
3313
3314 /* Write the contents FROM of a value of type TYPE into register
3315 REGNUM in frame FRAME. */
3316
3317 static void
3318 i386_value_to_register (struct frame_info *frame, int regnum,
3319 struct type *type, const gdb_byte *from)
3320 {
3321 int len = TYPE_LENGTH (type);
3322
3323 if (i386_fp_regnum_p (get_frame_arch (frame), regnum))
3324 {
3325 i387_value_to_register (frame, regnum, type, from);
3326 return;
3327 }
3328
3329 /* Write a value spread across multiple registers. */
3330
3331 gdb_assert (len > 4 && len % 4 == 0);
3332
3333 while (len > 0)
3334 {
3335 gdb_assert (regnum != -1);
3336 gdb_assert (register_size (get_frame_arch (frame), regnum) == 4);
3337
3338 put_frame_register (frame, regnum, from);
3339 regnum = i386_next_regnum (regnum);
3340 len -= 4;
3341 from += 4;
3342 }
3343 }
3344 \f
3345 /* Supply register REGNUM from the buffer specified by GREGS and LEN
3346 in the general-purpose register set REGSET to register cache
3347 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3348
3349 void
3350 i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
3351 int regnum, const void *gregs, size_t len)
3352 {
3353 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
3354 const gdb_byte *regs = gregs;
3355 int i;
3356
3357 gdb_assert (len == tdep->sizeof_gregset);
3358
3359 for (i = 0; i < tdep->gregset_num_regs; i++)
3360 {
3361 if ((regnum == i || regnum == -1)
3362 && tdep->gregset_reg_offset[i] != -1)
3363 regcache_raw_supply (regcache, i, regs + tdep->gregset_reg_offset[i]);
3364 }
3365 }
3366
3367 /* Collect register REGNUM from the register cache REGCACHE and store
3368 it in the buffer specified by GREGS and LEN as described by the
3369 general-purpose register set REGSET. If REGNUM is -1, do this for
3370 all registers in REGSET. */
3371
3372 void
3373 i386_collect_gregset (const struct regset *regset,
3374 const struct regcache *regcache,
3375 int regnum, void *gregs, size_t len)
3376 {
3377 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
3378 gdb_byte *regs = gregs;
3379 int i;
3380
3381 gdb_assert (len == tdep->sizeof_gregset);
3382
3383 for (i = 0; i < tdep->gregset_num_regs; i++)
3384 {
3385 if ((regnum == i || regnum == -1)
3386 && tdep->gregset_reg_offset[i] != -1)
3387 regcache_raw_collect (regcache, i, regs + tdep->gregset_reg_offset[i]);
3388 }
3389 }
3390
3391 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
3392 in the floating-point register set REGSET to register cache
3393 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3394
3395 static void
3396 i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
3397 int regnum, const void *fpregs, size_t len)
3398 {
3399 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
3400
3401 if (len == I387_SIZEOF_FXSAVE)
3402 {
3403 i387_supply_fxsave (regcache, regnum, fpregs);
3404 return;
3405 }
3406
3407 gdb_assert (len == tdep->sizeof_fpregset);
3408 i387_supply_fsave (regcache, regnum, fpregs);
3409 }
3410
3411 /* Collect register REGNUM from the register cache REGCACHE and store
3412 it in the buffer specified by FPREGS and LEN as described by the
3413 floating-point register set REGSET. If REGNUM is -1, do this for
3414 all registers in REGSET. */
3415
3416 static void
3417 i386_collect_fpregset (const struct regset *regset,
3418 const struct regcache *regcache,
3419 int regnum, void *fpregs, size_t len)
3420 {
3421 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
3422
3423 if (len == I387_SIZEOF_FXSAVE)
3424 {
3425 i387_collect_fxsave (regcache, regnum, fpregs);
3426 return;
3427 }
3428
3429 gdb_assert (len == tdep->sizeof_fpregset);
3430 i387_collect_fsave (regcache, regnum, fpregs);
3431 }
3432
3433 /* Similar to i386_supply_fpregset, but use XSAVE extended state. */
3434
3435 static void
3436 i386_supply_xstateregset (const struct regset *regset,
3437 struct regcache *regcache, int regnum,
3438 const void *xstateregs, size_t len)
3439 {
3440 i387_supply_xsave (regcache, regnum, xstateregs);
3441 }
3442
3443 /* Similar to i386_collect_fpregset , but use XSAVE extended state. */
3444
3445 static void
3446 i386_collect_xstateregset (const struct regset *regset,
3447 const struct regcache *regcache,
3448 int regnum, void *xstateregs, size_t len)
3449 {
3450 i387_collect_xsave (regcache, regnum, xstateregs, 1);
3451 }
3452
3453 /* Return the appropriate register set for the core section identified
3454 by SECT_NAME and SECT_SIZE. */
3455
3456 const struct regset *
3457 i386_regset_from_core_section (struct gdbarch *gdbarch,
3458 const char *sect_name, size_t sect_size)
3459 {
3460 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3461
3462 if (strcmp (sect_name, ".reg") == 0 && sect_size == tdep->sizeof_gregset)
3463 {
3464 if (tdep->gregset == NULL)
3465 tdep->gregset = regset_alloc (gdbarch, i386_supply_gregset,
3466 i386_collect_gregset);
3467 return tdep->gregset;
3468 }
3469
3470 if ((strcmp (sect_name, ".reg2") == 0 && sect_size == tdep->sizeof_fpregset)
3471 || (strcmp (sect_name, ".reg-xfp") == 0
3472 && sect_size == I387_SIZEOF_FXSAVE))
3473 {
3474 if (tdep->fpregset == NULL)
3475 tdep->fpregset = regset_alloc (gdbarch, i386_supply_fpregset,
3476 i386_collect_fpregset);
3477 return tdep->fpregset;
3478 }
3479
3480 if (strcmp (sect_name, ".reg-xstate") == 0)
3481 {
3482 if (tdep->xstateregset == NULL)
3483 tdep->xstateregset = regset_alloc (gdbarch,
3484 i386_supply_xstateregset,
3485 i386_collect_xstateregset);
3486
3487 return tdep->xstateregset;
3488 }
3489
3490 return NULL;
3491 }
3492 \f
3493
3494 /* Stuff for WIN32 PE style DLL's but is pretty generic really. */
3495
3496 CORE_ADDR
3497 i386_pe_skip_trampoline_code (struct frame_info *frame,
3498 CORE_ADDR pc, char *name)
3499 {
3500 struct gdbarch *gdbarch = get_frame_arch (frame);
3501 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3502
3503 /* jmp *(dest) */
3504 if (pc && read_memory_unsigned_integer (pc, 2, byte_order) == 0x25ff)
3505 {
3506 unsigned long indirect =
3507 read_memory_unsigned_integer (pc + 2, 4, byte_order);
3508 struct minimal_symbol *indsym =
3509 indirect ? lookup_minimal_symbol_by_pc (indirect).minsym : 0;
3510 const char *symname = indsym ? SYMBOL_LINKAGE_NAME (indsym) : 0;
3511
3512 if (symname)
3513 {
3514 if (strncmp (symname, "__imp_", 6) == 0
3515 || strncmp (symname, "_imp_", 5) == 0)
3516 return name ? 1 :
3517 read_memory_unsigned_integer (indirect, 4, byte_order);
3518 }
3519 }
3520 return 0; /* Not a trampoline. */
3521 }
3522 \f
3523
3524 /* Return whether the THIS_FRAME corresponds to a sigtramp
3525 routine. */
3526
3527 int
3528 i386_sigtramp_p (struct frame_info *this_frame)
3529 {
3530 CORE_ADDR pc = get_frame_pc (this_frame);
3531 const char *name;
3532
3533 find_pc_partial_function (pc, &name, NULL, NULL);
3534 return (name && strcmp ("_sigtramp", name) == 0);
3535 }
3536 \f
3537
3538 /* We have two flavours of disassembly. The machinery on this page
3539 deals with switching between those. */
3540
3541 static int
3542 i386_print_insn (bfd_vma pc, struct disassemble_info *info)
3543 {
3544 gdb_assert (disassembly_flavor == att_flavor
3545 || disassembly_flavor == intel_flavor);
3546
3547 /* FIXME: kettenis/20020915: Until disassembler_options is properly
3548 constified, cast to prevent a compiler warning. */
3549 info->disassembler_options = (char *) disassembly_flavor;
3550
3551 return print_insn_i386 (pc, info);
3552 }
3553 \f
3554
3555 /* There are a few i386 architecture variants that differ only
3556 slightly from the generic i386 target. For now, we don't give them
3557 their own source file, but include them here. As a consequence,
3558 they'll always be included. */
3559
3560 /* System V Release 4 (SVR4). */
3561
3562 /* Return whether THIS_FRAME corresponds to a SVR4 sigtramp
3563 routine. */
3564
3565 static int
3566 i386_svr4_sigtramp_p (struct frame_info *this_frame)
3567 {
3568 CORE_ADDR pc = get_frame_pc (this_frame);
3569 const char *name;
3570
3571 /* The origin of these symbols is currently unknown. */
3572 find_pc_partial_function (pc, &name, NULL, NULL);
3573 return (name && (strcmp ("_sigreturn", name) == 0
3574 || strcmp ("sigvechandler", name) == 0));
3575 }
3576
3577 /* Assuming THIS_FRAME is for a SVR4 sigtramp routine, return the
3578 address of the associated sigcontext (ucontext) structure. */
3579
3580 static CORE_ADDR
3581 i386_svr4_sigcontext_addr (struct frame_info *this_frame)
3582 {
3583 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3584 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3585 gdb_byte buf[4];
3586 CORE_ADDR sp;
3587
3588 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
3589 sp = extract_unsigned_integer (buf, 4, byte_order);
3590
3591 return read_memory_unsigned_integer (sp + 8, 4, byte_order);
3592 }
3593
3594 \f
3595
3596 /* Implementation of `gdbarch_stap_is_single_operand', as defined in
3597 gdbarch.h. */
3598
3599 int
3600 i386_stap_is_single_operand (struct gdbarch *gdbarch, const char *s)
3601 {
3602 return (*s == '$' /* Literal number. */
3603 || (isdigit (*s) && s[1] == '(' && s[2] == '%') /* Displacement. */
3604 || (*s == '(' && s[1] == '%') /* Register indirection. */
3605 || (*s == '%' && isalpha (s[1]))); /* Register access. */
3606 }
3607
3608 /* Implementation of `gdbarch_stap_parse_special_token', as defined in
3609 gdbarch.h. */
3610
3611 int
3612 i386_stap_parse_special_token (struct gdbarch *gdbarch,
3613 struct stap_parse_info *p)
3614 {
3615 /* In order to parse special tokens, we use a state-machine that go
3616 through every known token and try to get a match. */
3617 enum
3618 {
3619 TRIPLET,
3620 THREE_ARG_DISPLACEMENT,
3621 DONE
3622 } current_state;
3623
3624 current_state = TRIPLET;
3625
3626 /* The special tokens to be parsed here are:
3627
3628 - `register base + (register index * size) + offset', as represented
3629 in `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
3630
3631 - Operands of the form `-8+3+1(%rbp)', which must be interpreted as
3632 `*(-8 + 3 - 1 + (void *) $eax)'. */
3633
3634 while (current_state != DONE)
3635 {
3636 const char *s = p->arg;
3637
3638 switch (current_state)
3639 {
3640 case TRIPLET:
3641 {
3642 if (isdigit (*s) || *s == '-' || *s == '+')
3643 {
3644 int got_minus[3];
3645 int i;
3646 long displacements[3];
3647 const char *start;
3648 char *regname;
3649 int len;
3650 struct stoken str;
3651 char *endp;
3652
3653 got_minus[0] = 0;
3654 if (*s == '+')
3655 ++s;
3656 else if (*s == '-')
3657 {
3658 ++s;
3659 got_minus[0] = 1;
3660 }
3661
3662 displacements[0] = strtol (s, &endp, 10);
3663 s = endp;
3664
3665 if (*s != '+' && *s != '-')
3666 {
3667 /* We are not dealing with a triplet. */
3668 break;
3669 }
3670
3671 got_minus[1] = 0;
3672 if (*s == '+')
3673 ++s;
3674 else
3675 {
3676 ++s;
3677 got_minus[1] = 1;
3678 }
3679
3680 displacements[1] = strtol (s, &endp, 10);
3681 s = endp;
3682
3683 if (*s != '+' && *s != '-')
3684 {
3685 /* We are not dealing with a triplet. */
3686 break;
3687 }
3688
3689 got_minus[2] = 0;
3690 if (*s == '+')
3691 ++s;
3692 else
3693 {
3694 ++s;
3695 got_minus[2] = 1;
3696 }
3697
3698 displacements[2] = strtol (s, &endp, 10);
3699 s = endp;
3700
3701 if (*s != '(' || s[1] != '%')
3702 break;
3703
3704 s += 2;
3705 start = s;
3706
3707 while (isalnum (*s))
3708 ++s;
3709
3710 if (*s++ != ')')
3711 break;
3712
3713 len = s - start;
3714 regname = alloca (len + 1);
3715
3716 strncpy (regname, start, len);
3717 regname[len] = '\0';
3718
3719 if (user_reg_map_name_to_regnum (gdbarch,
3720 regname, len) == -1)
3721 error (_("Invalid register name `%s' "
3722 "on expression `%s'."),
3723 regname, p->saved_arg);
3724
3725 for (i = 0; i < 3; i++)
3726 {
3727 write_exp_elt_opcode (OP_LONG);
3728 write_exp_elt_type
3729 (builtin_type (gdbarch)->builtin_long);
3730 write_exp_elt_longcst (displacements[i]);
3731 write_exp_elt_opcode (OP_LONG);
3732 if (got_minus[i])
3733 write_exp_elt_opcode (UNOP_NEG);
3734 }
3735
3736 write_exp_elt_opcode (OP_REGISTER);
3737 str.ptr = regname;
3738 str.length = len;
3739 write_exp_string (str);
3740 write_exp_elt_opcode (OP_REGISTER);
3741
3742 write_exp_elt_opcode (UNOP_CAST);
3743 write_exp_elt_type (builtin_type (gdbarch)->builtin_data_ptr);
3744 write_exp_elt_opcode (UNOP_CAST);
3745
3746 write_exp_elt_opcode (BINOP_ADD);
3747 write_exp_elt_opcode (BINOP_ADD);
3748 write_exp_elt_opcode (BINOP_ADD);
3749
3750 write_exp_elt_opcode (UNOP_CAST);
3751 write_exp_elt_type (lookup_pointer_type (p->arg_type));
3752 write_exp_elt_opcode (UNOP_CAST);
3753
3754 write_exp_elt_opcode (UNOP_IND);
3755
3756 p->arg = s;
3757
3758 return 1;
3759 }
3760 break;
3761 }
3762 case THREE_ARG_DISPLACEMENT:
3763 {
3764 if (isdigit (*s) || *s == '(' || *s == '-' || *s == '+')
3765 {
3766 int offset_minus = 0;
3767 long offset = 0;
3768 int size_minus = 0;
3769 long size = 0;
3770 const char *start;
3771 char *base;
3772 int len_base;
3773 char *index;
3774 int len_index;
3775 struct stoken base_token, index_token;
3776
3777 if (*s == '+')
3778 ++s;
3779 else if (*s == '-')
3780 {
3781 ++s;
3782 offset_minus = 1;
3783 }
3784
3785 if (offset_minus && !isdigit (*s))
3786 break;
3787
3788 if (isdigit (*s))
3789 {
3790 char *endp;
3791
3792 offset = strtol (s, &endp, 10);
3793 s = endp;
3794 }
3795
3796 if (*s != '(' || s[1] != '%')
3797 break;
3798
3799 s += 2;
3800 start = s;
3801
3802 while (isalnum (*s))
3803 ++s;
3804
3805 if (*s != ',' || s[1] != '%')
3806 break;
3807
3808 len_base = s - start;
3809 base = alloca (len_base + 1);
3810 strncpy (base, start, len_base);
3811 base[len_base] = '\0';
3812
3813 if (user_reg_map_name_to_regnum (gdbarch,
3814 base, len_base) == -1)
3815 error (_("Invalid register name `%s' "
3816 "on expression `%s'."),
3817 base, p->saved_arg);
3818
3819 s += 2;
3820 start = s;
3821
3822 while (isalnum (*s))
3823 ++s;
3824
3825 len_index = s - start;
3826 index = alloca (len_index + 1);
3827 strncpy (index, start, len_index);
3828 index[len_index] = '\0';
3829
3830 if (user_reg_map_name_to_regnum (gdbarch,
3831 index, len_index) == -1)
3832 error (_("Invalid register name `%s' "
3833 "on expression `%s'."),
3834 index, p->saved_arg);
3835
3836 if (*s != ',' && *s != ')')
3837 break;
3838
3839 if (*s == ',')
3840 {
3841 char *endp;
3842
3843 ++s;
3844 if (*s == '+')
3845 ++s;
3846 else if (*s == '-')
3847 {
3848 ++s;
3849 size_minus = 1;
3850 }
3851
3852 size = strtol (s, &endp, 10);
3853 s = endp;
3854
3855 if (*s != ')')
3856 break;
3857 }
3858
3859 ++s;
3860
3861 if (offset)
3862 {
3863 write_exp_elt_opcode (OP_LONG);
3864 write_exp_elt_type
3865 (builtin_type (gdbarch)->builtin_long);
3866 write_exp_elt_longcst (offset);
3867 write_exp_elt_opcode (OP_LONG);
3868 if (offset_minus)
3869 write_exp_elt_opcode (UNOP_NEG);
3870 }
3871
3872 write_exp_elt_opcode (OP_REGISTER);
3873 base_token.ptr = base;
3874 base_token.length = len_base;
3875 write_exp_string (base_token);
3876 write_exp_elt_opcode (OP_REGISTER);
3877
3878 if (offset)
3879 write_exp_elt_opcode (BINOP_ADD);
3880
3881 write_exp_elt_opcode (OP_REGISTER);
3882 index_token.ptr = index;
3883 index_token.length = len_index;
3884 write_exp_string (index_token);
3885 write_exp_elt_opcode (OP_REGISTER);
3886
3887 if (size)
3888 {
3889 write_exp_elt_opcode (OP_LONG);
3890 write_exp_elt_type
3891 (builtin_type (gdbarch)->builtin_long);
3892 write_exp_elt_longcst (size);
3893 write_exp_elt_opcode (OP_LONG);
3894 if (size_minus)
3895 write_exp_elt_opcode (UNOP_NEG);
3896 write_exp_elt_opcode (BINOP_MUL);
3897 }
3898
3899 write_exp_elt_opcode (BINOP_ADD);
3900
3901 write_exp_elt_opcode (UNOP_CAST);
3902 write_exp_elt_type (lookup_pointer_type (p->arg_type));
3903 write_exp_elt_opcode (UNOP_CAST);
3904
3905 write_exp_elt_opcode (UNOP_IND);
3906
3907 p->arg = s;
3908
3909 return 1;
3910 }
3911 break;
3912 }
3913 }
3914
3915 /* Advancing to the next state. */
3916 ++current_state;
3917 }
3918
3919 return 0;
3920 }
3921
3922 \f
3923
3924 /* Generic ELF. */
3925
3926 void
3927 i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3928 {
3929 static const char *const stap_integer_prefixes[] = { "$", NULL };
3930 static const char *const stap_register_prefixes[] = { "%", NULL };
3931 static const char *const stap_register_indirection_prefixes[] = { "(",
3932 NULL };
3933 static const char *const stap_register_indirection_suffixes[] = { ")",
3934 NULL };
3935
3936 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
3937 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
3938
3939 /* Registering SystemTap handlers. */
3940 set_gdbarch_stap_integer_prefixes (gdbarch, stap_integer_prefixes);
3941 set_gdbarch_stap_register_prefixes (gdbarch, stap_register_prefixes);
3942 set_gdbarch_stap_register_indirection_prefixes (gdbarch,
3943 stap_register_indirection_prefixes);
3944 set_gdbarch_stap_register_indirection_suffixes (gdbarch,
3945 stap_register_indirection_suffixes);
3946 set_gdbarch_stap_is_single_operand (gdbarch,
3947 i386_stap_is_single_operand);
3948 set_gdbarch_stap_parse_special_token (gdbarch,
3949 i386_stap_parse_special_token);
3950 }
3951
3952 /* System V Release 4 (SVR4). */
3953
3954 void
3955 i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3956 {
3957 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3958
3959 /* System V Release 4 uses ELF. */
3960 i386_elf_init_abi (info, gdbarch);
3961
3962 /* System V Release 4 has shared libraries. */
3963 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
3964
3965 tdep->sigtramp_p = i386_svr4_sigtramp_p;
3966 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
3967 tdep->sc_pc_offset = 36 + 14 * 4;
3968 tdep->sc_sp_offset = 36 + 17 * 4;
3969
3970 tdep->jb_pc_offset = 20;
3971 }
3972
3973 /* DJGPP. */
3974
3975 static void
3976 i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3977 {
3978 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3979
3980 /* DJGPP doesn't have any special frames for signal handlers. */
3981 tdep->sigtramp_p = NULL;
3982
3983 tdep->jb_pc_offset = 36;
3984
3985 /* DJGPP does not support the SSE registers. */
3986 if (! tdesc_has_registers (info.target_desc))
3987 tdep->tdesc = tdesc_i386_mmx;
3988
3989 /* Native compiler is GCC, which uses the SVR4 register numbering
3990 even in COFF and STABS. See the comment in i386_gdbarch_init,
3991 before the calls to set_gdbarch_stab_reg_to_regnum and
3992 set_gdbarch_sdb_reg_to_regnum. */
3993 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
3994 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
3995
3996 set_gdbarch_has_dos_based_file_system (gdbarch, 1);
3997 }
3998 \f
3999
4000 /* i386 register groups. In addition to the normal groups, add "mmx"
4001 and "sse". */
4002
4003 static struct reggroup *i386_sse_reggroup;
4004 static struct reggroup *i386_mmx_reggroup;
4005
4006 static void
4007 i386_init_reggroups (void)
4008 {
4009 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
4010 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
4011 }
4012
4013 static void
4014 i386_add_reggroups (struct gdbarch *gdbarch)
4015 {
4016 reggroup_add (gdbarch, i386_sse_reggroup);
4017 reggroup_add (gdbarch, i386_mmx_reggroup);
4018 reggroup_add (gdbarch, general_reggroup);
4019 reggroup_add (gdbarch, float_reggroup);
4020 reggroup_add (gdbarch, all_reggroup);
4021 reggroup_add (gdbarch, save_reggroup);
4022 reggroup_add (gdbarch, restore_reggroup);
4023 reggroup_add (gdbarch, vector_reggroup);
4024 reggroup_add (gdbarch, system_reggroup);
4025 }
4026
4027 int
4028 i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
4029 struct reggroup *group)
4030 {
4031 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4032 int fp_regnum_p, mmx_regnum_p, xmm_regnum_p, mxcsr_regnum_p,
4033 ymm_regnum_p, ymmh_regnum_p, bndr_regnum_p, bnd_regnum_p,
4034 mpx_ctrl_regnum_p;
4035
4036 /* Don't include pseudo registers, except for MMX, in any register
4037 groups. */
4038 if (i386_byte_regnum_p (gdbarch, regnum))
4039 return 0;
4040
4041 if (i386_word_regnum_p (gdbarch, regnum))
4042 return 0;
4043
4044 if (i386_dword_regnum_p (gdbarch, regnum))
4045 return 0;
4046
4047 mmx_regnum_p = i386_mmx_regnum_p (gdbarch, regnum);
4048 if (group == i386_mmx_reggroup)
4049 return mmx_regnum_p;
4050
4051 xmm_regnum_p = i386_xmm_regnum_p (gdbarch, regnum);
4052 mxcsr_regnum_p = i386_mxcsr_regnum_p (gdbarch, regnum);
4053 if (group == i386_sse_reggroup)
4054 return xmm_regnum_p || mxcsr_regnum_p;
4055
4056 ymm_regnum_p = i386_ymm_regnum_p (gdbarch, regnum);
4057 if (group == vector_reggroup)
4058 return (mmx_regnum_p
4059 || ymm_regnum_p
4060 || mxcsr_regnum_p
4061 || (xmm_regnum_p
4062 && ((tdep->xcr0 & I386_XSTATE_AVX_MASK)
4063 == I386_XSTATE_SSE_MASK)));
4064
4065 fp_regnum_p = (i386_fp_regnum_p (gdbarch, regnum)
4066 || i386_fpc_regnum_p (gdbarch, regnum));
4067 if (group == float_reggroup)
4068 return fp_regnum_p;
4069
4070 /* For "info reg all", don't include upper YMM registers nor XMM
4071 registers when AVX is supported. */
4072 ymmh_regnum_p = i386_ymmh_regnum_p (gdbarch, regnum);
4073 if (group == all_reggroup
4074 && ((xmm_regnum_p
4075 && (tdep->xcr0 & I386_XSTATE_AVX))
4076 || ymmh_regnum_p))
4077 return 0;
4078
4079 bnd_regnum_p = i386_bnd_regnum_p (gdbarch, regnum);
4080 if (group == all_reggroup
4081 && ((bnd_regnum_p && (tdep->xcr0 & I386_XSTATE_MPX_MASK))))
4082 return bnd_regnum_p;
4083
4084 bndr_regnum_p = i386_bndr_regnum_p (gdbarch, regnum);
4085 if (group == all_reggroup
4086 && ((bndr_regnum_p && (tdep->xcr0 & I386_XSTATE_MPX_MASK))))
4087 return 0;
4088
4089 mpx_ctrl_regnum_p = i386_mpx_ctrl_regnum_p (gdbarch, regnum);
4090 if (group == all_reggroup
4091 && ((mpx_ctrl_regnum_p && (tdep->xcr0 & I386_XSTATE_MPX_MASK))))
4092 return mpx_ctrl_regnum_p;
4093
4094 if (group == general_reggroup)
4095 return (!fp_regnum_p
4096 && !mmx_regnum_p
4097 && !mxcsr_regnum_p
4098 && !xmm_regnum_p
4099 && !ymm_regnum_p
4100 && !ymmh_regnum_p
4101 && !bndr_regnum_p
4102 && !bnd_regnum_p
4103 && !mpx_ctrl_regnum_p);
4104
4105 return default_register_reggroup_p (gdbarch, regnum, group);
4106 }
4107 \f
4108
4109 /* Get the ARGIth function argument for the current function. */
4110
4111 static CORE_ADDR
4112 i386_fetch_pointer_argument (struct frame_info *frame, int argi,
4113 struct type *type)
4114 {
4115 struct gdbarch *gdbarch = get_frame_arch (frame);
4116 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4117 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
4118 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4, byte_order);
4119 }
4120
4121 static void
4122 i386_skip_permanent_breakpoint (struct regcache *regcache)
4123 {
4124 CORE_ADDR current_pc = regcache_read_pc (regcache);
4125
4126 /* On i386, breakpoint is exactly 1 byte long, so we just
4127 adjust the PC in the regcache. */
4128 current_pc += 1;
4129 regcache_write_pc (regcache, current_pc);
4130 }
4131
4132
4133 #define PREFIX_REPZ 0x01
4134 #define PREFIX_REPNZ 0x02
4135 #define PREFIX_LOCK 0x04
4136 #define PREFIX_DATA 0x08
4137 #define PREFIX_ADDR 0x10
4138
4139 /* operand size */
4140 enum
4141 {
4142 OT_BYTE = 0,
4143 OT_WORD,
4144 OT_LONG,
4145 OT_QUAD,
4146 OT_DQUAD,
4147 };
4148
4149 /* i386 arith/logic operations */
4150 enum
4151 {
4152 OP_ADDL,
4153 OP_ORL,
4154 OP_ADCL,
4155 OP_SBBL,
4156 OP_ANDL,
4157 OP_SUBL,
4158 OP_XORL,
4159 OP_CMPL,
4160 };
4161
4162 struct i386_record_s
4163 {
4164 struct gdbarch *gdbarch;
4165 struct regcache *regcache;
4166 CORE_ADDR orig_addr;
4167 CORE_ADDR addr;
4168 int aflag;
4169 int dflag;
4170 int override;
4171 uint8_t modrm;
4172 uint8_t mod, reg, rm;
4173 int ot;
4174 uint8_t rex_x;
4175 uint8_t rex_b;
4176 int rip_offset;
4177 int popl_esp_hack;
4178 const int *regmap;
4179 };
4180
4181 /* Parse the "modrm" part of the memory address irp->addr points at.
4182 Returns -1 if something goes wrong, 0 otherwise. */
4183
4184 static int
4185 i386_record_modrm (struct i386_record_s *irp)
4186 {
4187 struct gdbarch *gdbarch = irp->gdbarch;
4188
4189 if (record_read_memory (gdbarch, irp->addr, &irp->modrm, 1))
4190 return -1;
4191
4192 irp->addr++;
4193 irp->mod = (irp->modrm >> 6) & 3;
4194 irp->reg = (irp->modrm >> 3) & 7;
4195 irp->rm = irp->modrm & 7;
4196
4197 return 0;
4198 }
4199
4200 /* Extract the memory address that the current instruction writes to,
4201 and return it in *ADDR. Return -1 if something goes wrong. */
4202
4203 static int
4204 i386_record_lea_modrm_addr (struct i386_record_s *irp, uint64_t *addr)
4205 {
4206 struct gdbarch *gdbarch = irp->gdbarch;
4207 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4208 gdb_byte buf[4];
4209 ULONGEST offset64;
4210
4211 *addr = 0;
4212 if (irp->aflag)
4213 {
4214 /* 32 bits */
4215 int havesib = 0;
4216 uint8_t scale = 0;
4217 uint8_t byte;
4218 uint8_t index = 0;
4219 uint8_t base = irp->rm;
4220
4221 if (base == 4)
4222 {
4223 havesib = 1;
4224 if (record_read_memory (gdbarch, irp->addr, &byte, 1))
4225 return -1;
4226 irp->addr++;
4227 scale = (byte >> 6) & 3;
4228 index = ((byte >> 3) & 7) | irp->rex_x;
4229 base = (byte & 7);
4230 }
4231 base |= irp->rex_b;
4232
4233 switch (irp->mod)
4234 {
4235 case 0:
4236 if ((base & 7) == 5)
4237 {
4238 base = 0xff;
4239 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4240 return -1;
4241 irp->addr += 4;
4242 *addr = extract_signed_integer (buf, 4, byte_order);
4243 if (irp->regmap[X86_RECORD_R8_REGNUM] && !havesib)
4244 *addr += irp->addr + irp->rip_offset;
4245 }
4246 break;
4247 case 1:
4248 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4249 return -1;
4250 irp->addr++;
4251 *addr = (int8_t) buf[0];
4252 break;
4253 case 2:
4254 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4255 return -1;
4256 *addr = extract_signed_integer (buf, 4, byte_order);
4257 irp->addr += 4;
4258 break;
4259 }
4260
4261 offset64 = 0;
4262 if (base != 0xff)
4263 {
4264 if (base == 4 && irp->popl_esp_hack)
4265 *addr += irp->popl_esp_hack;
4266 regcache_raw_read_unsigned (irp->regcache, irp->regmap[base],
4267 &offset64);
4268 }
4269 if (irp->aflag == 2)
4270 {
4271 *addr += offset64;
4272 }
4273 else
4274 *addr = (uint32_t) (offset64 + *addr);
4275
4276 if (havesib && (index != 4 || scale != 0))
4277 {
4278 regcache_raw_read_unsigned (irp->regcache, irp->regmap[index],
4279 &offset64);
4280 if (irp->aflag == 2)
4281 *addr += offset64 << scale;
4282 else
4283 *addr = (uint32_t) (*addr + (offset64 << scale));
4284 }
4285 }
4286 else
4287 {
4288 /* 16 bits */
4289 switch (irp->mod)
4290 {
4291 case 0:
4292 if (irp->rm == 6)
4293 {
4294 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4295 return -1;
4296 irp->addr += 2;
4297 *addr = extract_signed_integer (buf, 2, byte_order);
4298 irp->rm = 0;
4299 goto no_rm;
4300 }
4301 break;
4302 case 1:
4303 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4304 return -1;
4305 irp->addr++;
4306 *addr = (int8_t) buf[0];
4307 break;
4308 case 2:
4309 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4310 return -1;
4311 irp->addr += 2;
4312 *addr = extract_signed_integer (buf, 2, byte_order);
4313 break;
4314 }
4315
4316 switch (irp->rm)
4317 {
4318 case 0:
4319 regcache_raw_read_unsigned (irp->regcache,
4320 irp->regmap[X86_RECORD_REBX_REGNUM],
4321 &offset64);
4322 *addr = (uint32_t) (*addr + offset64);
4323 regcache_raw_read_unsigned (irp->regcache,
4324 irp->regmap[X86_RECORD_RESI_REGNUM],
4325 &offset64);
4326 *addr = (uint32_t) (*addr + offset64);
4327 break;
4328 case 1:
4329 regcache_raw_read_unsigned (irp->regcache,
4330 irp->regmap[X86_RECORD_REBX_REGNUM],
4331 &offset64);
4332 *addr = (uint32_t) (*addr + offset64);
4333 regcache_raw_read_unsigned (irp->regcache,
4334 irp->regmap[X86_RECORD_REDI_REGNUM],
4335 &offset64);
4336 *addr = (uint32_t) (*addr + offset64);
4337 break;
4338 case 2:
4339 regcache_raw_read_unsigned (irp->regcache,
4340 irp->regmap[X86_RECORD_REBP_REGNUM],
4341 &offset64);
4342 *addr = (uint32_t) (*addr + offset64);
4343 regcache_raw_read_unsigned (irp->regcache,
4344 irp->regmap[X86_RECORD_RESI_REGNUM],
4345 &offset64);
4346 *addr = (uint32_t) (*addr + offset64);
4347 break;
4348 case 3:
4349 regcache_raw_read_unsigned (irp->regcache,
4350 irp->regmap[X86_RECORD_REBP_REGNUM],
4351 &offset64);
4352 *addr = (uint32_t) (*addr + offset64);
4353 regcache_raw_read_unsigned (irp->regcache,
4354 irp->regmap[X86_RECORD_REDI_REGNUM],
4355 &offset64);
4356 *addr = (uint32_t) (*addr + offset64);
4357 break;
4358 case 4:
4359 regcache_raw_read_unsigned (irp->regcache,
4360 irp->regmap[X86_RECORD_RESI_REGNUM],
4361 &offset64);
4362 *addr = (uint32_t) (*addr + offset64);
4363 break;
4364 case 5:
4365 regcache_raw_read_unsigned (irp->regcache,
4366 irp->regmap[X86_RECORD_REDI_REGNUM],
4367 &offset64);
4368 *addr = (uint32_t) (*addr + offset64);
4369 break;
4370 case 6:
4371 regcache_raw_read_unsigned (irp->regcache,
4372 irp->regmap[X86_RECORD_REBP_REGNUM],
4373 &offset64);
4374 *addr = (uint32_t) (*addr + offset64);
4375 break;
4376 case 7:
4377 regcache_raw_read_unsigned (irp->regcache,
4378 irp->regmap[X86_RECORD_REBX_REGNUM],
4379 &offset64);
4380 *addr = (uint32_t) (*addr + offset64);
4381 break;
4382 }
4383 *addr &= 0xffff;
4384 }
4385
4386 no_rm:
4387 return 0;
4388 }
4389
4390 /* Record the address and contents of the memory that will be changed
4391 by the current instruction. Return -1 if something goes wrong, 0
4392 otherwise. */
4393
4394 static int
4395 i386_record_lea_modrm (struct i386_record_s *irp)
4396 {
4397 struct gdbarch *gdbarch = irp->gdbarch;
4398 uint64_t addr;
4399
4400 if (irp->override >= 0)
4401 {
4402 if (record_full_memory_query)
4403 {
4404 int q;
4405
4406 target_terminal_ours ();
4407 q = yquery (_("\
4408 Process record ignores the memory change of instruction at address %s\n\
4409 because it can't get the value of the segment register.\n\
4410 Do you want to stop the program?"),
4411 paddress (gdbarch, irp->orig_addr));
4412 target_terminal_inferior ();
4413 if (q)
4414 return -1;
4415 }
4416
4417 return 0;
4418 }
4419
4420 if (i386_record_lea_modrm_addr (irp, &addr))
4421 return -1;
4422
4423 if (record_full_arch_list_add_mem (addr, 1 << irp->ot))
4424 return -1;
4425
4426 return 0;
4427 }
4428
4429 /* Record the effects of a push operation. Return -1 if something
4430 goes wrong, 0 otherwise. */
4431
4432 static int
4433 i386_record_push (struct i386_record_s *irp, int size)
4434 {
4435 ULONGEST addr;
4436
4437 if (record_full_arch_list_add_reg (irp->regcache,
4438 irp->regmap[X86_RECORD_RESP_REGNUM]))
4439 return -1;
4440 regcache_raw_read_unsigned (irp->regcache,
4441 irp->regmap[X86_RECORD_RESP_REGNUM],
4442 &addr);
4443 if (record_full_arch_list_add_mem ((CORE_ADDR) addr - size, size))
4444 return -1;
4445
4446 return 0;
4447 }
4448
4449
4450 /* Defines contents to record. */
4451 #define I386_SAVE_FPU_REGS 0xfffd
4452 #define I386_SAVE_FPU_ENV 0xfffe
4453 #define I386_SAVE_FPU_ENV_REG_STACK 0xffff
4454
4455 /* Record the values of the floating point registers which will be
4456 changed by the current instruction. Returns -1 if something is
4457 wrong, 0 otherwise. */
4458
4459 static int i386_record_floats (struct gdbarch *gdbarch,
4460 struct i386_record_s *ir,
4461 uint32_t iregnum)
4462 {
4463 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4464 int i;
4465
4466 /* Oza: Because of floating point insn push/pop of fpu stack is going to
4467 happen. Currently we store st0-st7 registers, but we need not store all
4468 registers all the time, in future we use ftag register and record only
4469 those who are not marked as an empty. */
4470
4471 if (I386_SAVE_FPU_REGS == iregnum)
4472 {
4473 for (i = I387_ST0_REGNUM (tdep); i <= I387_ST0_REGNUM (tdep) + 7; i++)
4474 {
4475 if (record_full_arch_list_add_reg (ir->regcache, i))
4476 return -1;
4477 }
4478 }
4479 else if (I386_SAVE_FPU_ENV == iregnum)
4480 {
4481 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4482 {
4483 if (record_full_arch_list_add_reg (ir->regcache, i))
4484 return -1;
4485 }
4486 }
4487 else if (I386_SAVE_FPU_ENV_REG_STACK == iregnum)
4488 {
4489 for (i = I387_ST0_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4490 {
4491 if (record_full_arch_list_add_reg (ir->regcache, i))
4492 return -1;
4493 }
4494 }
4495 else if ((iregnum >= I387_ST0_REGNUM (tdep)) &&
4496 (iregnum <= I387_FOP_REGNUM (tdep)))
4497 {
4498 if (record_full_arch_list_add_reg (ir->regcache,iregnum))
4499 return -1;
4500 }
4501 else
4502 {
4503 /* Parameter error. */
4504 return -1;
4505 }
4506 if(I386_SAVE_FPU_ENV != iregnum)
4507 {
4508 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4509 {
4510 if (record_full_arch_list_add_reg (ir->regcache, i))
4511 return -1;
4512 }
4513 }
4514 return 0;
4515 }
4516
4517 /* Parse the current instruction, and record the values of the
4518 registers and memory that will be changed by the current
4519 instruction. Returns -1 if something goes wrong, 0 otherwise. */
4520
4521 #define I386_RECORD_FULL_ARCH_LIST_ADD_REG(regnum) \
4522 record_full_arch_list_add_reg (ir.regcache, ir.regmap[(regnum)])
4523
4524 int
4525 i386_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
4526 CORE_ADDR input_addr)
4527 {
4528 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4529 int prefixes = 0;
4530 int regnum = 0;
4531 uint32_t opcode;
4532 uint8_t opcode8;
4533 ULONGEST addr;
4534 gdb_byte buf[MAX_REGISTER_SIZE];
4535 struct i386_record_s ir;
4536 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4537 uint8_t rex_w = -1;
4538 uint8_t rex_r = 0;
4539
4540 memset (&ir, 0, sizeof (struct i386_record_s));
4541 ir.regcache = regcache;
4542 ir.addr = input_addr;
4543 ir.orig_addr = input_addr;
4544 ir.aflag = 1;
4545 ir.dflag = 1;
4546 ir.override = -1;
4547 ir.popl_esp_hack = 0;
4548 ir.regmap = tdep->record_regmap;
4549 ir.gdbarch = gdbarch;
4550
4551 if (record_debug > 1)
4552 fprintf_unfiltered (gdb_stdlog, "Process record: i386_process_record "
4553 "addr = %s\n",
4554 paddress (gdbarch, ir.addr));
4555
4556 /* prefixes */
4557 while (1)
4558 {
4559 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
4560 return -1;
4561 ir.addr++;
4562 switch (opcode8) /* Instruction prefixes */
4563 {
4564 case REPE_PREFIX_OPCODE:
4565 prefixes |= PREFIX_REPZ;
4566 break;
4567 case REPNE_PREFIX_OPCODE:
4568 prefixes |= PREFIX_REPNZ;
4569 break;
4570 case LOCK_PREFIX_OPCODE:
4571 prefixes |= PREFIX_LOCK;
4572 break;
4573 case CS_PREFIX_OPCODE:
4574 ir.override = X86_RECORD_CS_REGNUM;
4575 break;
4576 case SS_PREFIX_OPCODE:
4577 ir.override = X86_RECORD_SS_REGNUM;
4578 break;
4579 case DS_PREFIX_OPCODE:
4580 ir.override = X86_RECORD_DS_REGNUM;
4581 break;
4582 case ES_PREFIX_OPCODE:
4583 ir.override = X86_RECORD_ES_REGNUM;
4584 break;
4585 case FS_PREFIX_OPCODE:
4586 ir.override = X86_RECORD_FS_REGNUM;
4587 break;
4588 case GS_PREFIX_OPCODE:
4589 ir.override = X86_RECORD_GS_REGNUM;
4590 break;
4591 case DATA_PREFIX_OPCODE:
4592 prefixes |= PREFIX_DATA;
4593 break;
4594 case ADDR_PREFIX_OPCODE:
4595 prefixes |= PREFIX_ADDR;
4596 break;
4597 case 0x40: /* i386 inc %eax */
4598 case 0x41: /* i386 inc %ecx */
4599 case 0x42: /* i386 inc %edx */
4600 case 0x43: /* i386 inc %ebx */
4601 case 0x44: /* i386 inc %esp */
4602 case 0x45: /* i386 inc %ebp */
4603 case 0x46: /* i386 inc %esi */
4604 case 0x47: /* i386 inc %edi */
4605 case 0x48: /* i386 dec %eax */
4606 case 0x49: /* i386 dec %ecx */
4607 case 0x4a: /* i386 dec %edx */
4608 case 0x4b: /* i386 dec %ebx */
4609 case 0x4c: /* i386 dec %esp */
4610 case 0x4d: /* i386 dec %ebp */
4611 case 0x4e: /* i386 dec %esi */
4612 case 0x4f: /* i386 dec %edi */
4613 if (ir.regmap[X86_RECORD_R8_REGNUM]) /* 64 bit target */
4614 {
4615 /* REX */
4616 rex_w = (opcode8 >> 3) & 1;
4617 rex_r = (opcode8 & 0x4) << 1;
4618 ir.rex_x = (opcode8 & 0x2) << 2;
4619 ir.rex_b = (opcode8 & 0x1) << 3;
4620 }
4621 else /* 32 bit target */
4622 goto out_prefixes;
4623 break;
4624 default:
4625 goto out_prefixes;
4626 break;
4627 }
4628 }
4629 out_prefixes:
4630 if (ir.regmap[X86_RECORD_R8_REGNUM] && rex_w == 1)
4631 {
4632 ir.dflag = 2;
4633 }
4634 else
4635 {
4636 if (prefixes & PREFIX_DATA)
4637 ir.dflag ^= 1;
4638 }
4639 if (prefixes & PREFIX_ADDR)
4640 ir.aflag ^= 1;
4641 else if (ir.regmap[X86_RECORD_R8_REGNUM])
4642 ir.aflag = 2;
4643
4644 /* Now check op code. */
4645 opcode = (uint32_t) opcode8;
4646 reswitch:
4647 switch (opcode)
4648 {
4649 case 0x0f:
4650 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
4651 return -1;
4652 ir.addr++;
4653 opcode = (uint32_t) opcode8 | 0x0f00;
4654 goto reswitch;
4655 break;
4656
4657 case 0x00: /* arith & logic */
4658 case 0x01:
4659 case 0x02:
4660 case 0x03:
4661 case 0x04:
4662 case 0x05:
4663 case 0x08:
4664 case 0x09:
4665 case 0x0a:
4666 case 0x0b:
4667 case 0x0c:
4668 case 0x0d:
4669 case 0x10:
4670 case 0x11:
4671 case 0x12:
4672 case 0x13:
4673 case 0x14:
4674 case 0x15:
4675 case 0x18:
4676 case 0x19:
4677 case 0x1a:
4678 case 0x1b:
4679 case 0x1c:
4680 case 0x1d:
4681 case 0x20:
4682 case 0x21:
4683 case 0x22:
4684 case 0x23:
4685 case 0x24:
4686 case 0x25:
4687 case 0x28:
4688 case 0x29:
4689 case 0x2a:
4690 case 0x2b:
4691 case 0x2c:
4692 case 0x2d:
4693 case 0x30:
4694 case 0x31:
4695 case 0x32:
4696 case 0x33:
4697 case 0x34:
4698 case 0x35:
4699 case 0x38:
4700 case 0x39:
4701 case 0x3a:
4702 case 0x3b:
4703 case 0x3c:
4704 case 0x3d:
4705 if (((opcode >> 3) & 7) != OP_CMPL)
4706 {
4707 if ((opcode & 1) == 0)
4708 ir.ot = OT_BYTE;
4709 else
4710 ir.ot = ir.dflag + OT_WORD;
4711
4712 switch ((opcode >> 1) & 3)
4713 {
4714 case 0: /* OP Ev, Gv */
4715 if (i386_record_modrm (&ir))
4716 return -1;
4717 if (ir.mod != 3)
4718 {
4719 if (i386_record_lea_modrm (&ir))
4720 return -1;
4721 }
4722 else
4723 {
4724 ir.rm |= ir.rex_b;
4725 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4726 ir.rm &= 0x3;
4727 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
4728 }
4729 break;
4730 case 1: /* OP Gv, Ev */
4731 if (i386_record_modrm (&ir))
4732 return -1;
4733 ir.reg |= rex_r;
4734 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4735 ir.reg &= 0x3;
4736 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
4737 break;
4738 case 2: /* OP A, Iv */
4739 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4740 break;
4741 }
4742 }
4743 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4744 break;
4745
4746 case 0x80: /* GRP1 */
4747 case 0x81:
4748 case 0x82:
4749 case 0x83:
4750 if (i386_record_modrm (&ir))
4751 return -1;
4752
4753 if (ir.reg != OP_CMPL)
4754 {
4755 if ((opcode & 1) == 0)
4756 ir.ot = OT_BYTE;
4757 else
4758 ir.ot = ir.dflag + OT_WORD;
4759
4760 if (ir.mod != 3)
4761 {
4762 if (opcode == 0x83)
4763 ir.rip_offset = 1;
4764 else
4765 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
4766 if (i386_record_lea_modrm (&ir))
4767 return -1;
4768 }
4769 else
4770 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
4771 }
4772 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4773 break;
4774
4775 case 0x40: /* inc */
4776 case 0x41:
4777 case 0x42:
4778 case 0x43:
4779 case 0x44:
4780 case 0x45:
4781 case 0x46:
4782 case 0x47:
4783
4784 case 0x48: /* dec */
4785 case 0x49:
4786 case 0x4a:
4787 case 0x4b:
4788 case 0x4c:
4789 case 0x4d:
4790 case 0x4e:
4791 case 0x4f:
4792
4793 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 7);
4794 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4795 break;
4796
4797 case 0xf6: /* GRP3 */
4798 case 0xf7:
4799 if ((opcode & 1) == 0)
4800 ir.ot = OT_BYTE;
4801 else
4802 ir.ot = ir.dflag + OT_WORD;
4803 if (i386_record_modrm (&ir))
4804 return -1;
4805
4806 if (ir.mod != 3 && ir.reg == 0)
4807 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
4808
4809 switch (ir.reg)
4810 {
4811 case 0: /* test */
4812 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4813 break;
4814 case 2: /* not */
4815 case 3: /* neg */
4816 if (ir.mod != 3)
4817 {
4818 if (i386_record_lea_modrm (&ir))
4819 return -1;
4820 }
4821 else
4822 {
4823 ir.rm |= ir.rex_b;
4824 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4825 ir.rm &= 0x3;
4826 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
4827 }
4828 if (ir.reg == 3) /* neg */
4829 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4830 break;
4831 case 4: /* mul */
4832 case 5: /* imul */
4833 case 6: /* div */
4834 case 7: /* idiv */
4835 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4836 if (ir.ot != OT_BYTE)
4837 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
4838 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4839 break;
4840 default:
4841 ir.addr -= 2;
4842 opcode = opcode << 8 | ir.modrm;
4843 goto no_support;
4844 break;
4845 }
4846 break;
4847
4848 case 0xfe: /* GRP4 */
4849 case 0xff: /* GRP5 */
4850 if (i386_record_modrm (&ir))
4851 return -1;
4852 if (ir.reg >= 2 && opcode == 0xfe)
4853 {
4854 ir.addr -= 2;
4855 opcode = opcode << 8 | ir.modrm;
4856 goto no_support;
4857 }
4858 switch (ir.reg)
4859 {
4860 case 0: /* inc */
4861 case 1: /* dec */
4862 if ((opcode & 1) == 0)
4863 ir.ot = OT_BYTE;
4864 else
4865 ir.ot = ir.dflag + OT_WORD;
4866 if (ir.mod != 3)
4867 {
4868 if (i386_record_lea_modrm (&ir))
4869 return -1;
4870 }
4871 else
4872 {
4873 ir.rm |= ir.rex_b;
4874 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4875 ir.rm &= 0x3;
4876 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
4877 }
4878 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4879 break;
4880 case 2: /* call */
4881 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4882 ir.dflag = 2;
4883 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4884 return -1;
4885 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4886 break;
4887 case 3: /* lcall */
4888 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
4889 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4890 return -1;
4891 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4892 break;
4893 case 4: /* jmp */
4894 case 5: /* ljmp */
4895 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4896 break;
4897 case 6: /* push */
4898 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4899 ir.dflag = 2;
4900 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4901 return -1;
4902 break;
4903 default:
4904 ir.addr -= 2;
4905 opcode = opcode << 8 | ir.modrm;
4906 goto no_support;
4907 break;
4908 }
4909 break;
4910
4911 case 0x84: /* test */
4912 case 0x85:
4913 case 0xa8:
4914 case 0xa9:
4915 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4916 break;
4917
4918 case 0x98: /* CWDE/CBW */
4919 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4920 break;
4921
4922 case 0x99: /* CDQ/CWD */
4923 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4924 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
4925 break;
4926
4927 case 0x0faf: /* imul */
4928 case 0x69:
4929 case 0x6b:
4930 ir.ot = ir.dflag + OT_WORD;
4931 if (i386_record_modrm (&ir))
4932 return -1;
4933 if (opcode == 0x69)
4934 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
4935 else if (opcode == 0x6b)
4936 ir.rip_offset = 1;
4937 ir.reg |= rex_r;
4938 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4939 ir.reg &= 0x3;
4940 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
4941 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4942 break;
4943
4944 case 0x0fc0: /* xadd */
4945 case 0x0fc1:
4946 if ((opcode & 1) == 0)
4947 ir.ot = OT_BYTE;
4948 else
4949 ir.ot = ir.dflag + OT_WORD;
4950 if (i386_record_modrm (&ir))
4951 return -1;
4952 ir.reg |= rex_r;
4953 if (ir.mod == 3)
4954 {
4955 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4956 ir.reg &= 0x3;
4957 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
4958 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4959 ir.rm &= 0x3;
4960 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
4961 }
4962 else
4963 {
4964 if (i386_record_lea_modrm (&ir))
4965 return -1;
4966 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4967 ir.reg &= 0x3;
4968 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
4969 }
4970 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4971 break;
4972
4973 case 0x0fb0: /* cmpxchg */
4974 case 0x0fb1:
4975 if ((opcode & 1) == 0)
4976 ir.ot = OT_BYTE;
4977 else
4978 ir.ot = ir.dflag + OT_WORD;
4979 if (i386_record_modrm (&ir))
4980 return -1;
4981 if (ir.mod == 3)
4982 {
4983 ir.reg |= rex_r;
4984 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4985 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4986 ir.reg &= 0x3;
4987 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
4988 }
4989 else
4990 {
4991 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4992 if (i386_record_lea_modrm (&ir))
4993 return -1;
4994 }
4995 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4996 break;
4997
4998 case 0x0fc7: /* cmpxchg8b */
4999 if (i386_record_modrm (&ir))
5000 return -1;
5001 if (ir.mod == 3)
5002 {
5003 ir.addr -= 2;
5004 opcode = opcode << 8 | ir.modrm;
5005 goto no_support;
5006 }
5007 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5008 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5009 if (i386_record_lea_modrm (&ir))
5010 return -1;
5011 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5012 break;
5013
5014 case 0x50: /* push */
5015 case 0x51:
5016 case 0x52:
5017 case 0x53:
5018 case 0x54:
5019 case 0x55:
5020 case 0x56:
5021 case 0x57:
5022 case 0x68:
5023 case 0x6a:
5024 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5025 ir.dflag = 2;
5026 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5027 return -1;
5028 break;
5029
5030 case 0x06: /* push es */
5031 case 0x0e: /* push cs */
5032 case 0x16: /* push ss */
5033 case 0x1e: /* push ds */
5034 if (ir.regmap[X86_RECORD_R8_REGNUM])
5035 {
5036 ir.addr -= 1;
5037 goto no_support;
5038 }
5039 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5040 return -1;
5041 break;
5042
5043 case 0x0fa0: /* push fs */
5044 case 0x0fa8: /* push gs */
5045 if (ir.regmap[X86_RECORD_R8_REGNUM])
5046 {
5047 ir.addr -= 2;
5048 goto no_support;
5049 }
5050 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5051 return -1;
5052 break;
5053
5054 case 0x60: /* pusha */
5055 if (ir.regmap[X86_RECORD_R8_REGNUM])
5056 {
5057 ir.addr -= 1;
5058 goto no_support;
5059 }
5060 if (i386_record_push (&ir, 1 << (ir.dflag + 4)))
5061 return -1;
5062 break;
5063
5064 case 0x58: /* pop */
5065 case 0x59:
5066 case 0x5a:
5067 case 0x5b:
5068 case 0x5c:
5069 case 0x5d:
5070 case 0x5e:
5071 case 0x5f:
5072 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5073 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
5074 break;
5075
5076 case 0x61: /* popa */
5077 if (ir.regmap[X86_RECORD_R8_REGNUM])
5078 {
5079 ir.addr -= 1;
5080 goto no_support;
5081 }
5082 for (regnum = X86_RECORD_REAX_REGNUM;
5083 regnum <= X86_RECORD_REDI_REGNUM;
5084 regnum++)
5085 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5086 break;
5087
5088 case 0x8f: /* pop */
5089 if (ir.regmap[X86_RECORD_R8_REGNUM])
5090 ir.ot = ir.dflag ? OT_QUAD : OT_WORD;
5091 else
5092 ir.ot = ir.dflag + OT_WORD;
5093 if (i386_record_modrm (&ir))
5094 return -1;
5095 if (ir.mod == 3)
5096 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5097 else
5098 {
5099 ir.popl_esp_hack = 1 << ir.ot;
5100 if (i386_record_lea_modrm (&ir))
5101 return -1;
5102 }
5103 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5104 break;
5105
5106 case 0xc8: /* enter */
5107 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
5108 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5109 ir.dflag = 2;
5110 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5111 return -1;
5112 break;
5113
5114 case 0xc9: /* leave */
5115 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5116 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
5117 break;
5118
5119 case 0x07: /* pop es */
5120 if (ir.regmap[X86_RECORD_R8_REGNUM])
5121 {
5122 ir.addr -= 1;
5123 goto no_support;
5124 }
5125 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5126 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_ES_REGNUM);
5127 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5128 break;
5129
5130 case 0x17: /* pop ss */
5131 if (ir.regmap[X86_RECORD_R8_REGNUM])
5132 {
5133 ir.addr -= 1;
5134 goto no_support;
5135 }
5136 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5137 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_SS_REGNUM);
5138 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5139 break;
5140
5141 case 0x1f: /* pop ds */
5142 if (ir.regmap[X86_RECORD_R8_REGNUM])
5143 {
5144 ir.addr -= 1;
5145 goto no_support;
5146 }
5147 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5148 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_DS_REGNUM);
5149 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5150 break;
5151
5152 case 0x0fa1: /* pop fs */
5153 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5154 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_FS_REGNUM);
5155 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5156 break;
5157
5158 case 0x0fa9: /* pop gs */
5159 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5160 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
5161 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5162 break;
5163
5164 case 0x88: /* mov */
5165 case 0x89:
5166 case 0xc6:
5167 case 0xc7:
5168 if ((opcode & 1) == 0)
5169 ir.ot = OT_BYTE;
5170 else
5171 ir.ot = ir.dflag + OT_WORD;
5172
5173 if (i386_record_modrm (&ir))
5174 return -1;
5175
5176 if (ir.mod != 3)
5177 {
5178 if (opcode == 0xc6 || opcode == 0xc7)
5179 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5180 if (i386_record_lea_modrm (&ir))
5181 return -1;
5182 }
5183 else
5184 {
5185 if (opcode == 0xc6 || opcode == 0xc7)
5186 ir.rm |= ir.rex_b;
5187 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5188 ir.rm &= 0x3;
5189 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5190 }
5191 break;
5192
5193 case 0x8a: /* mov */
5194 case 0x8b:
5195 if ((opcode & 1) == 0)
5196 ir.ot = OT_BYTE;
5197 else
5198 ir.ot = ir.dflag + OT_WORD;
5199 if (i386_record_modrm (&ir))
5200 return -1;
5201 ir.reg |= rex_r;
5202 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5203 ir.reg &= 0x3;
5204 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5205 break;
5206
5207 case 0x8c: /* mov seg */
5208 if (i386_record_modrm (&ir))
5209 return -1;
5210 if (ir.reg > 5)
5211 {
5212 ir.addr -= 2;
5213 opcode = opcode << 8 | ir.modrm;
5214 goto no_support;
5215 }
5216
5217 if (ir.mod == 3)
5218 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5219 else
5220 {
5221 ir.ot = OT_WORD;
5222 if (i386_record_lea_modrm (&ir))
5223 return -1;
5224 }
5225 break;
5226
5227 case 0x8e: /* mov seg */
5228 if (i386_record_modrm (&ir))
5229 return -1;
5230 switch (ir.reg)
5231 {
5232 case 0:
5233 regnum = X86_RECORD_ES_REGNUM;
5234 break;
5235 case 2:
5236 regnum = X86_RECORD_SS_REGNUM;
5237 break;
5238 case 3:
5239 regnum = X86_RECORD_DS_REGNUM;
5240 break;
5241 case 4:
5242 regnum = X86_RECORD_FS_REGNUM;
5243 break;
5244 case 5:
5245 regnum = X86_RECORD_GS_REGNUM;
5246 break;
5247 default:
5248 ir.addr -= 2;
5249 opcode = opcode << 8 | ir.modrm;
5250 goto no_support;
5251 break;
5252 }
5253 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5254 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5255 break;
5256
5257 case 0x0fb6: /* movzbS */
5258 case 0x0fb7: /* movzwS */
5259 case 0x0fbe: /* movsbS */
5260 case 0x0fbf: /* movswS */
5261 if (i386_record_modrm (&ir))
5262 return -1;
5263 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5264 break;
5265
5266 case 0x8d: /* lea */
5267 if (i386_record_modrm (&ir))
5268 return -1;
5269 if (ir.mod == 3)
5270 {
5271 ir.addr -= 2;
5272 opcode = opcode << 8 | ir.modrm;
5273 goto no_support;
5274 }
5275 ir.ot = ir.dflag;
5276 ir.reg |= rex_r;
5277 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5278 ir.reg &= 0x3;
5279 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5280 break;
5281
5282 case 0xa0: /* mov EAX */
5283 case 0xa1:
5284
5285 case 0xd7: /* xlat */
5286 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5287 break;
5288
5289 case 0xa2: /* mov EAX */
5290 case 0xa3:
5291 if (ir.override >= 0)
5292 {
5293 if (record_full_memory_query)
5294 {
5295 int q;
5296
5297 target_terminal_ours ();
5298 q = yquery (_("\
5299 Process record ignores the memory change of instruction at address %s\n\
5300 because it can't get the value of the segment register.\n\
5301 Do you want to stop the program?"),
5302 paddress (gdbarch, ir.orig_addr));
5303 target_terminal_inferior ();
5304 if (q)
5305 return -1;
5306 }
5307 }
5308 else
5309 {
5310 if ((opcode & 1) == 0)
5311 ir.ot = OT_BYTE;
5312 else
5313 ir.ot = ir.dflag + OT_WORD;
5314 if (ir.aflag == 2)
5315 {
5316 if (record_read_memory (gdbarch, ir.addr, buf, 8))
5317 return -1;
5318 ir.addr += 8;
5319 addr = extract_unsigned_integer (buf, 8, byte_order);
5320 }
5321 else if (ir.aflag)
5322 {
5323 if (record_read_memory (gdbarch, ir.addr, buf, 4))
5324 return -1;
5325 ir.addr += 4;
5326 addr = extract_unsigned_integer (buf, 4, byte_order);
5327 }
5328 else
5329 {
5330 if (record_read_memory (gdbarch, ir.addr, buf, 2))
5331 return -1;
5332 ir.addr += 2;
5333 addr = extract_unsigned_integer (buf, 2, byte_order);
5334 }
5335 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
5336 return -1;
5337 }
5338 break;
5339
5340 case 0xb0: /* mov R, Ib */
5341 case 0xb1:
5342 case 0xb2:
5343 case 0xb3:
5344 case 0xb4:
5345 case 0xb5:
5346 case 0xb6:
5347 case 0xb7:
5348 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((ir.regmap[X86_RECORD_R8_REGNUM])
5349 ? ((opcode & 0x7) | ir.rex_b)
5350 : ((opcode & 0x7) & 0x3));
5351 break;
5352
5353 case 0xb8: /* mov R, Iv */
5354 case 0xb9:
5355 case 0xba:
5356 case 0xbb:
5357 case 0xbc:
5358 case 0xbd:
5359 case 0xbe:
5360 case 0xbf:
5361 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
5362 break;
5363
5364 case 0x91: /* xchg R, EAX */
5365 case 0x92:
5366 case 0x93:
5367 case 0x94:
5368 case 0x95:
5369 case 0x96:
5370 case 0x97:
5371 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5372 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 0x7);
5373 break;
5374
5375 case 0x86: /* xchg Ev, Gv */
5376 case 0x87:
5377 if ((opcode & 1) == 0)
5378 ir.ot = OT_BYTE;
5379 else
5380 ir.ot = ir.dflag + OT_WORD;
5381 if (i386_record_modrm (&ir))
5382 return -1;
5383 if (ir.mod == 3)
5384 {
5385 ir.rm |= ir.rex_b;
5386 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5387 ir.rm &= 0x3;
5388 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5389 }
5390 else
5391 {
5392 if (i386_record_lea_modrm (&ir))
5393 return -1;
5394 }
5395 ir.reg |= rex_r;
5396 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5397 ir.reg &= 0x3;
5398 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5399 break;
5400
5401 case 0xc4: /* les Gv */
5402 case 0xc5: /* lds Gv */
5403 if (ir.regmap[X86_RECORD_R8_REGNUM])
5404 {
5405 ir.addr -= 1;
5406 goto no_support;
5407 }
5408 /* FALLTHROUGH */
5409 case 0x0fb2: /* lss Gv */
5410 case 0x0fb4: /* lfs Gv */
5411 case 0x0fb5: /* lgs Gv */
5412 if (i386_record_modrm (&ir))
5413 return -1;
5414 if (ir.mod == 3)
5415 {
5416 if (opcode > 0xff)
5417 ir.addr -= 3;
5418 else
5419 ir.addr -= 2;
5420 opcode = opcode << 8 | ir.modrm;
5421 goto no_support;
5422 }
5423 switch (opcode)
5424 {
5425 case 0xc4: /* les Gv */
5426 regnum = X86_RECORD_ES_REGNUM;
5427 break;
5428 case 0xc5: /* lds Gv */
5429 regnum = X86_RECORD_DS_REGNUM;
5430 break;
5431 case 0x0fb2: /* lss Gv */
5432 regnum = X86_RECORD_SS_REGNUM;
5433 break;
5434 case 0x0fb4: /* lfs Gv */
5435 regnum = X86_RECORD_FS_REGNUM;
5436 break;
5437 case 0x0fb5: /* lgs Gv */
5438 regnum = X86_RECORD_GS_REGNUM;
5439 break;
5440 }
5441 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5442 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5443 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5444 break;
5445
5446 case 0xc0: /* shifts */
5447 case 0xc1:
5448 case 0xd0:
5449 case 0xd1:
5450 case 0xd2:
5451 case 0xd3:
5452 if ((opcode & 1) == 0)
5453 ir.ot = OT_BYTE;
5454 else
5455 ir.ot = ir.dflag + OT_WORD;
5456 if (i386_record_modrm (&ir))
5457 return -1;
5458 if (ir.mod != 3 && (opcode == 0xd2 || opcode == 0xd3))
5459 {
5460 if (i386_record_lea_modrm (&ir))
5461 return -1;
5462 }
5463 else
5464 {
5465 ir.rm |= ir.rex_b;
5466 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5467 ir.rm &= 0x3;
5468 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5469 }
5470 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5471 break;
5472
5473 case 0x0fa4:
5474 case 0x0fa5:
5475 case 0x0fac:
5476 case 0x0fad:
5477 if (i386_record_modrm (&ir))
5478 return -1;
5479 if (ir.mod == 3)
5480 {
5481 if (record_full_arch_list_add_reg (ir.regcache, ir.rm))
5482 return -1;
5483 }
5484 else
5485 {
5486 if (i386_record_lea_modrm (&ir))
5487 return -1;
5488 }
5489 break;
5490
5491 case 0xd8: /* Floats. */
5492 case 0xd9:
5493 case 0xda:
5494 case 0xdb:
5495 case 0xdc:
5496 case 0xdd:
5497 case 0xde:
5498 case 0xdf:
5499 if (i386_record_modrm (&ir))
5500 return -1;
5501 ir.reg |= ((opcode & 7) << 3);
5502 if (ir.mod != 3)
5503 {
5504 /* Memory. */
5505 uint64_t addr64;
5506
5507 if (i386_record_lea_modrm_addr (&ir, &addr64))
5508 return -1;
5509 switch (ir.reg)
5510 {
5511 case 0x02:
5512 case 0x12:
5513 case 0x22:
5514 case 0x32:
5515 /* For fcom, ficom nothing to do. */
5516 break;
5517 case 0x03:
5518 case 0x13:
5519 case 0x23:
5520 case 0x33:
5521 /* For fcomp, ficomp pop FPU stack, store all. */
5522 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5523 return -1;
5524 break;
5525 case 0x00:
5526 case 0x01:
5527 case 0x04:
5528 case 0x05:
5529 case 0x06:
5530 case 0x07:
5531 case 0x10:
5532 case 0x11:
5533 case 0x14:
5534 case 0x15:
5535 case 0x16:
5536 case 0x17:
5537 case 0x20:
5538 case 0x21:
5539 case 0x24:
5540 case 0x25:
5541 case 0x26:
5542 case 0x27:
5543 case 0x30:
5544 case 0x31:
5545 case 0x34:
5546 case 0x35:
5547 case 0x36:
5548 case 0x37:
5549 /* For fadd, fmul, fsub, fsubr, fdiv, fdivr, fiadd, fimul,
5550 fisub, fisubr, fidiv, fidivr, modR/M.reg is an extension
5551 of code, always affects st(0) register. */
5552 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
5553 return -1;
5554 break;
5555 case 0x08:
5556 case 0x0a:
5557 case 0x0b:
5558 case 0x18:
5559 case 0x19:
5560 case 0x1a:
5561 case 0x1b:
5562 case 0x1d:
5563 case 0x28:
5564 case 0x29:
5565 case 0x2a:
5566 case 0x2b:
5567 case 0x38:
5568 case 0x39:
5569 case 0x3a:
5570 case 0x3b:
5571 case 0x3c:
5572 case 0x3d:
5573 switch (ir.reg & 7)
5574 {
5575 case 0:
5576 /* Handling fld, fild. */
5577 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5578 return -1;
5579 break;
5580 case 1:
5581 switch (ir.reg >> 4)
5582 {
5583 case 0:
5584 if (record_full_arch_list_add_mem (addr64, 4))
5585 return -1;
5586 break;
5587 case 2:
5588 if (record_full_arch_list_add_mem (addr64, 8))
5589 return -1;
5590 break;
5591 case 3:
5592 break;
5593 default:
5594 if (record_full_arch_list_add_mem (addr64, 2))
5595 return -1;
5596 break;
5597 }
5598 break;
5599 default:
5600 switch (ir.reg >> 4)
5601 {
5602 case 0:
5603 if (record_full_arch_list_add_mem (addr64, 4))
5604 return -1;
5605 if (3 == (ir.reg & 7))
5606 {
5607 /* For fstp m32fp. */
5608 if (i386_record_floats (gdbarch, &ir,
5609 I386_SAVE_FPU_REGS))
5610 return -1;
5611 }
5612 break;
5613 case 1:
5614 if (record_full_arch_list_add_mem (addr64, 4))
5615 return -1;
5616 if ((3 == (ir.reg & 7))
5617 || (5 == (ir.reg & 7))
5618 || (7 == (ir.reg & 7)))
5619 {
5620 /* For fstp insn. */
5621 if (i386_record_floats (gdbarch, &ir,
5622 I386_SAVE_FPU_REGS))
5623 return -1;
5624 }
5625 break;
5626 case 2:
5627 if (record_full_arch_list_add_mem (addr64, 8))
5628 return -1;
5629 if (3 == (ir.reg & 7))
5630 {
5631 /* For fstp m64fp. */
5632 if (i386_record_floats (gdbarch, &ir,
5633 I386_SAVE_FPU_REGS))
5634 return -1;
5635 }
5636 break;
5637 case 3:
5638 if ((3 <= (ir.reg & 7)) && (6 <= (ir.reg & 7)))
5639 {
5640 /* For fistp, fbld, fild, fbstp. */
5641 if (i386_record_floats (gdbarch, &ir,
5642 I386_SAVE_FPU_REGS))
5643 return -1;
5644 }
5645 /* Fall through */
5646 default:
5647 if (record_full_arch_list_add_mem (addr64, 2))
5648 return -1;
5649 break;
5650 }
5651 break;
5652 }
5653 break;
5654 case 0x0c:
5655 /* Insn fldenv. */
5656 if (i386_record_floats (gdbarch, &ir,
5657 I386_SAVE_FPU_ENV_REG_STACK))
5658 return -1;
5659 break;
5660 case 0x0d:
5661 /* Insn fldcw. */
5662 if (i386_record_floats (gdbarch, &ir, I387_FCTRL_REGNUM (tdep)))
5663 return -1;
5664 break;
5665 case 0x2c:
5666 /* Insn frstor. */
5667 if (i386_record_floats (gdbarch, &ir,
5668 I386_SAVE_FPU_ENV_REG_STACK))
5669 return -1;
5670 break;
5671 case 0x0e:
5672 if (ir.dflag)
5673 {
5674 if (record_full_arch_list_add_mem (addr64, 28))
5675 return -1;
5676 }
5677 else
5678 {
5679 if (record_full_arch_list_add_mem (addr64, 14))
5680 return -1;
5681 }
5682 break;
5683 case 0x0f:
5684 case 0x2f:
5685 if (record_full_arch_list_add_mem (addr64, 2))
5686 return -1;
5687 /* Insn fstp, fbstp. */
5688 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5689 return -1;
5690 break;
5691 case 0x1f:
5692 case 0x3e:
5693 if (record_full_arch_list_add_mem (addr64, 10))
5694 return -1;
5695 break;
5696 case 0x2e:
5697 if (ir.dflag)
5698 {
5699 if (record_full_arch_list_add_mem (addr64, 28))
5700 return -1;
5701 addr64 += 28;
5702 }
5703 else
5704 {
5705 if (record_full_arch_list_add_mem (addr64, 14))
5706 return -1;
5707 addr64 += 14;
5708 }
5709 if (record_full_arch_list_add_mem (addr64, 80))
5710 return -1;
5711 /* Insn fsave. */
5712 if (i386_record_floats (gdbarch, &ir,
5713 I386_SAVE_FPU_ENV_REG_STACK))
5714 return -1;
5715 break;
5716 case 0x3f:
5717 if (record_full_arch_list_add_mem (addr64, 8))
5718 return -1;
5719 /* Insn fistp. */
5720 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5721 return -1;
5722 break;
5723 default:
5724 ir.addr -= 2;
5725 opcode = opcode << 8 | ir.modrm;
5726 goto no_support;
5727 break;
5728 }
5729 }
5730 /* Opcode is an extension of modR/M byte. */
5731 else
5732 {
5733 switch (opcode)
5734 {
5735 case 0xd8:
5736 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
5737 return -1;
5738 break;
5739 case 0xd9:
5740 if (0x0c == (ir.modrm >> 4))
5741 {
5742 if ((ir.modrm & 0x0f) <= 7)
5743 {
5744 if (i386_record_floats (gdbarch, &ir,
5745 I386_SAVE_FPU_REGS))
5746 return -1;
5747 }
5748 else
5749 {
5750 if (i386_record_floats (gdbarch, &ir,
5751 I387_ST0_REGNUM (tdep)))
5752 return -1;
5753 /* If only st(0) is changing, then we have already
5754 recorded. */
5755 if ((ir.modrm & 0x0f) - 0x08)
5756 {
5757 if (i386_record_floats (gdbarch, &ir,
5758 I387_ST0_REGNUM (tdep) +
5759 ((ir.modrm & 0x0f) - 0x08)))
5760 return -1;
5761 }
5762 }
5763 }
5764 else
5765 {
5766 switch (ir.modrm)
5767 {
5768 case 0xe0:
5769 case 0xe1:
5770 case 0xf0:
5771 case 0xf5:
5772 case 0xf8:
5773 case 0xfa:
5774 case 0xfc:
5775 case 0xfe:
5776 case 0xff:
5777 if (i386_record_floats (gdbarch, &ir,
5778 I387_ST0_REGNUM (tdep)))
5779 return -1;
5780 break;
5781 case 0xf1:
5782 case 0xf2:
5783 case 0xf3:
5784 case 0xf4:
5785 case 0xf6:
5786 case 0xf7:
5787 case 0xe8:
5788 case 0xe9:
5789 case 0xea:
5790 case 0xeb:
5791 case 0xec:
5792 case 0xed:
5793 case 0xee:
5794 case 0xf9:
5795 case 0xfb:
5796 if (i386_record_floats (gdbarch, &ir,
5797 I386_SAVE_FPU_REGS))
5798 return -1;
5799 break;
5800 case 0xfd:
5801 if (i386_record_floats (gdbarch, &ir,
5802 I387_ST0_REGNUM (tdep)))
5803 return -1;
5804 if (i386_record_floats (gdbarch, &ir,
5805 I387_ST0_REGNUM (tdep) + 1))
5806 return -1;
5807 break;
5808 }
5809 }
5810 break;
5811 case 0xda:
5812 if (0xe9 == ir.modrm)
5813 {
5814 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5815 return -1;
5816 }
5817 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
5818 {
5819 if (i386_record_floats (gdbarch, &ir,
5820 I387_ST0_REGNUM (tdep)))
5821 return -1;
5822 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
5823 {
5824 if (i386_record_floats (gdbarch, &ir,
5825 I387_ST0_REGNUM (tdep) +
5826 (ir.modrm & 0x0f)))
5827 return -1;
5828 }
5829 else if ((ir.modrm & 0x0f) - 0x08)
5830 {
5831 if (i386_record_floats (gdbarch, &ir,
5832 I387_ST0_REGNUM (tdep) +
5833 ((ir.modrm & 0x0f) - 0x08)))
5834 return -1;
5835 }
5836 }
5837 break;
5838 case 0xdb:
5839 if (0xe3 == ir.modrm)
5840 {
5841 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_ENV))
5842 return -1;
5843 }
5844 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
5845 {
5846 if (i386_record_floats (gdbarch, &ir,
5847 I387_ST0_REGNUM (tdep)))
5848 return -1;
5849 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
5850 {
5851 if (i386_record_floats (gdbarch, &ir,
5852 I387_ST0_REGNUM (tdep) +
5853 (ir.modrm & 0x0f)))
5854 return -1;
5855 }
5856 else if ((ir.modrm & 0x0f) - 0x08)
5857 {
5858 if (i386_record_floats (gdbarch, &ir,
5859 I387_ST0_REGNUM (tdep) +
5860 ((ir.modrm & 0x0f) - 0x08)))
5861 return -1;
5862 }
5863 }
5864 break;
5865 case 0xdc:
5866 if ((0x0c == ir.modrm >> 4)
5867 || (0x0d == ir.modrm >> 4)
5868 || (0x0f == ir.modrm >> 4))
5869 {
5870 if ((ir.modrm & 0x0f) <= 7)
5871 {
5872 if (i386_record_floats (gdbarch, &ir,
5873 I387_ST0_REGNUM (tdep) +
5874 (ir.modrm & 0x0f)))
5875 return -1;
5876 }
5877 else
5878 {
5879 if (i386_record_floats (gdbarch, &ir,
5880 I387_ST0_REGNUM (tdep) +
5881 ((ir.modrm & 0x0f) - 0x08)))
5882 return -1;
5883 }
5884 }
5885 break;
5886 case 0xdd:
5887 if (0x0c == ir.modrm >> 4)
5888 {
5889 if (i386_record_floats (gdbarch, &ir,
5890 I387_FTAG_REGNUM (tdep)))
5891 return -1;
5892 }
5893 else if ((0x0d == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
5894 {
5895 if ((ir.modrm & 0x0f) <= 7)
5896 {
5897 if (i386_record_floats (gdbarch, &ir,
5898 I387_ST0_REGNUM (tdep) +
5899 (ir.modrm & 0x0f)))
5900 return -1;
5901 }
5902 else
5903 {
5904 if (i386_record_floats (gdbarch, &ir,
5905 I386_SAVE_FPU_REGS))
5906 return -1;
5907 }
5908 }
5909 break;
5910 case 0xde:
5911 if ((0x0c == ir.modrm >> 4)
5912 || (0x0e == ir.modrm >> 4)
5913 || (0x0f == ir.modrm >> 4)
5914 || (0xd9 == ir.modrm))
5915 {
5916 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5917 return -1;
5918 }
5919 break;
5920 case 0xdf:
5921 if (0xe0 == ir.modrm)
5922 {
5923 if (record_full_arch_list_add_reg (ir.regcache,
5924 I386_EAX_REGNUM))
5925 return -1;
5926 }
5927 else if ((0x0f == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
5928 {
5929 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5930 return -1;
5931 }
5932 break;
5933 }
5934 }
5935 break;
5936 /* string ops */
5937 case 0xa4: /* movsS */
5938 case 0xa5:
5939 case 0xaa: /* stosS */
5940 case 0xab:
5941 case 0x6c: /* insS */
5942 case 0x6d:
5943 regcache_raw_read_unsigned (ir.regcache,
5944 ir.regmap[X86_RECORD_RECX_REGNUM],
5945 &addr);
5946 if (addr)
5947 {
5948 ULONGEST es, ds;
5949
5950 if ((opcode & 1) == 0)
5951 ir.ot = OT_BYTE;
5952 else
5953 ir.ot = ir.dflag + OT_WORD;
5954 regcache_raw_read_unsigned (ir.regcache,
5955 ir.regmap[X86_RECORD_REDI_REGNUM],
5956 &addr);
5957
5958 regcache_raw_read_unsigned (ir.regcache,
5959 ir.regmap[X86_RECORD_ES_REGNUM],
5960 &es);
5961 regcache_raw_read_unsigned (ir.regcache,
5962 ir.regmap[X86_RECORD_DS_REGNUM],
5963 &ds);
5964 if (ir.aflag && (es != ds))
5965 {
5966 /* addr += ((uint32_t) read_register (I386_ES_REGNUM)) << 4; */
5967 if (record_full_memory_query)
5968 {
5969 int q;
5970
5971 target_terminal_ours ();
5972 q = yquery (_("\
5973 Process record ignores the memory change of instruction at address %s\n\
5974 because it can't get the value of the segment register.\n\
5975 Do you want to stop the program?"),
5976 paddress (gdbarch, ir.orig_addr));
5977 target_terminal_inferior ();
5978 if (q)
5979 return -1;
5980 }
5981 }
5982 else
5983 {
5984 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
5985 return -1;
5986 }
5987
5988 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
5989 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5990 if (opcode == 0xa4 || opcode == 0xa5)
5991 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
5992 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
5993 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5994 }
5995 break;
5996
5997 case 0xa6: /* cmpsS */
5998 case 0xa7:
5999 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6000 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6001 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6002 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6003 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6004 break;
6005
6006 case 0xac: /* lodsS */
6007 case 0xad:
6008 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6009 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6010 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6011 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6012 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6013 break;
6014
6015 case 0xae: /* scasS */
6016 case 0xaf:
6017 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6018 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6019 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6020 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6021 break;
6022
6023 case 0x6e: /* outsS */
6024 case 0x6f:
6025 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6026 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6027 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6028 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6029 break;
6030
6031 case 0xe4: /* port I/O */
6032 case 0xe5:
6033 case 0xec:
6034 case 0xed:
6035 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6036 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6037 break;
6038
6039 case 0xe6:
6040 case 0xe7:
6041 case 0xee:
6042 case 0xef:
6043 break;
6044
6045 /* control */
6046 case 0xc2: /* ret im */
6047 case 0xc3: /* ret */
6048 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6049 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6050 break;
6051
6052 case 0xca: /* lret im */
6053 case 0xcb: /* lret */
6054 case 0xcf: /* iret */
6055 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
6056 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6057 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6058 break;
6059
6060 case 0xe8: /* call im */
6061 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6062 ir.dflag = 2;
6063 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6064 return -1;
6065 break;
6066
6067 case 0x9a: /* lcall im */
6068 if (ir.regmap[X86_RECORD_R8_REGNUM])
6069 {
6070 ir.addr -= 1;
6071 goto no_support;
6072 }
6073 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
6074 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6075 return -1;
6076 break;
6077
6078 case 0xe9: /* jmp im */
6079 case 0xea: /* ljmp im */
6080 case 0xeb: /* jmp Jb */
6081 case 0x70: /* jcc Jb */
6082 case 0x71:
6083 case 0x72:
6084 case 0x73:
6085 case 0x74:
6086 case 0x75:
6087 case 0x76:
6088 case 0x77:
6089 case 0x78:
6090 case 0x79:
6091 case 0x7a:
6092 case 0x7b:
6093 case 0x7c:
6094 case 0x7d:
6095 case 0x7e:
6096 case 0x7f:
6097 case 0x0f80: /* jcc Jv */
6098 case 0x0f81:
6099 case 0x0f82:
6100 case 0x0f83:
6101 case 0x0f84:
6102 case 0x0f85:
6103 case 0x0f86:
6104 case 0x0f87:
6105 case 0x0f88:
6106 case 0x0f89:
6107 case 0x0f8a:
6108 case 0x0f8b:
6109 case 0x0f8c:
6110 case 0x0f8d:
6111 case 0x0f8e:
6112 case 0x0f8f:
6113 break;
6114
6115 case 0x0f90: /* setcc Gv */
6116 case 0x0f91:
6117 case 0x0f92:
6118 case 0x0f93:
6119 case 0x0f94:
6120 case 0x0f95:
6121 case 0x0f96:
6122 case 0x0f97:
6123 case 0x0f98:
6124 case 0x0f99:
6125 case 0x0f9a:
6126 case 0x0f9b:
6127 case 0x0f9c:
6128 case 0x0f9d:
6129 case 0x0f9e:
6130 case 0x0f9f:
6131 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6132 ir.ot = OT_BYTE;
6133 if (i386_record_modrm (&ir))
6134 return -1;
6135 if (ir.mod == 3)
6136 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rex_b ? (ir.rm | ir.rex_b)
6137 : (ir.rm & 0x3));
6138 else
6139 {
6140 if (i386_record_lea_modrm (&ir))
6141 return -1;
6142 }
6143 break;
6144
6145 case 0x0f40: /* cmov Gv, Ev */
6146 case 0x0f41:
6147 case 0x0f42:
6148 case 0x0f43:
6149 case 0x0f44:
6150 case 0x0f45:
6151 case 0x0f46:
6152 case 0x0f47:
6153 case 0x0f48:
6154 case 0x0f49:
6155 case 0x0f4a:
6156 case 0x0f4b:
6157 case 0x0f4c:
6158 case 0x0f4d:
6159 case 0x0f4e:
6160 case 0x0f4f:
6161 if (i386_record_modrm (&ir))
6162 return -1;
6163 ir.reg |= rex_r;
6164 if (ir.dflag == OT_BYTE)
6165 ir.reg &= 0x3;
6166 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
6167 break;
6168
6169 /* flags */
6170 case 0x9c: /* pushf */
6171 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6172 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6173 ir.dflag = 2;
6174 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6175 return -1;
6176 break;
6177
6178 case 0x9d: /* popf */
6179 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6180 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6181 break;
6182
6183 case 0x9e: /* sahf */
6184 if (ir.regmap[X86_RECORD_R8_REGNUM])
6185 {
6186 ir.addr -= 1;
6187 goto no_support;
6188 }
6189 /* FALLTHROUGH */
6190 case 0xf5: /* cmc */
6191 case 0xf8: /* clc */
6192 case 0xf9: /* stc */
6193 case 0xfc: /* cld */
6194 case 0xfd: /* std */
6195 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6196 break;
6197
6198 case 0x9f: /* lahf */
6199 if (ir.regmap[X86_RECORD_R8_REGNUM])
6200 {
6201 ir.addr -= 1;
6202 goto no_support;
6203 }
6204 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6205 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6206 break;
6207
6208 /* bit operations */
6209 case 0x0fba: /* bt/bts/btr/btc Gv, im */
6210 ir.ot = ir.dflag + OT_WORD;
6211 if (i386_record_modrm (&ir))
6212 return -1;
6213 if (ir.reg < 4)
6214 {
6215 ir.addr -= 2;
6216 opcode = opcode << 8 | ir.modrm;
6217 goto no_support;
6218 }
6219 if (ir.reg != 4)
6220 {
6221 if (ir.mod == 3)
6222 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6223 else
6224 {
6225 if (i386_record_lea_modrm (&ir))
6226 return -1;
6227 }
6228 }
6229 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6230 break;
6231
6232 case 0x0fa3: /* bt Gv, Ev */
6233 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6234 break;
6235
6236 case 0x0fab: /* bts */
6237 case 0x0fb3: /* btr */
6238 case 0x0fbb: /* btc */
6239 ir.ot = ir.dflag + OT_WORD;
6240 if (i386_record_modrm (&ir))
6241 return -1;
6242 if (ir.mod == 3)
6243 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6244 else
6245 {
6246 uint64_t addr64;
6247 if (i386_record_lea_modrm_addr (&ir, &addr64))
6248 return -1;
6249 regcache_raw_read_unsigned (ir.regcache,
6250 ir.regmap[ir.reg | rex_r],
6251 &addr);
6252 switch (ir.dflag)
6253 {
6254 case 0:
6255 addr64 += ((int16_t) addr >> 4) << 4;
6256 break;
6257 case 1:
6258 addr64 += ((int32_t) addr >> 5) << 5;
6259 break;
6260 case 2:
6261 addr64 += ((int64_t) addr >> 6) << 6;
6262 break;
6263 }
6264 if (record_full_arch_list_add_mem (addr64, 1 << ir.ot))
6265 return -1;
6266 if (i386_record_lea_modrm (&ir))
6267 return -1;
6268 }
6269 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6270 break;
6271
6272 case 0x0fbc: /* bsf */
6273 case 0x0fbd: /* bsr */
6274 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6275 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6276 break;
6277
6278 /* bcd */
6279 case 0x27: /* daa */
6280 case 0x2f: /* das */
6281 case 0x37: /* aaa */
6282 case 0x3f: /* aas */
6283 case 0xd4: /* aam */
6284 case 0xd5: /* aad */
6285 if (ir.regmap[X86_RECORD_R8_REGNUM])
6286 {
6287 ir.addr -= 1;
6288 goto no_support;
6289 }
6290 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6291 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6292 break;
6293
6294 /* misc */
6295 case 0x90: /* nop */
6296 if (prefixes & PREFIX_LOCK)
6297 {
6298 ir.addr -= 1;
6299 goto no_support;
6300 }
6301 break;
6302
6303 case 0x9b: /* fwait */
6304 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
6305 return -1;
6306 opcode = (uint32_t) opcode8;
6307 ir.addr++;
6308 goto reswitch;
6309 break;
6310
6311 /* XXX */
6312 case 0xcc: /* int3 */
6313 printf_unfiltered (_("Process record does not support instruction "
6314 "int3.\n"));
6315 ir.addr -= 1;
6316 goto no_support;
6317 break;
6318
6319 /* XXX */
6320 case 0xcd: /* int */
6321 {
6322 int ret;
6323 uint8_t interrupt;
6324 if (record_read_memory (gdbarch, ir.addr, &interrupt, 1))
6325 return -1;
6326 ir.addr++;
6327 if (interrupt != 0x80
6328 || tdep->i386_intx80_record == NULL)
6329 {
6330 printf_unfiltered (_("Process record does not support "
6331 "instruction int 0x%02x.\n"),
6332 interrupt);
6333 ir.addr -= 2;
6334 goto no_support;
6335 }
6336 ret = tdep->i386_intx80_record (ir.regcache);
6337 if (ret)
6338 return ret;
6339 }
6340 break;
6341
6342 /* XXX */
6343 case 0xce: /* into */
6344 printf_unfiltered (_("Process record does not support "
6345 "instruction into.\n"));
6346 ir.addr -= 1;
6347 goto no_support;
6348 break;
6349
6350 case 0xfa: /* cli */
6351 case 0xfb: /* sti */
6352 break;
6353
6354 case 0x62: /* bound */
6355 printf_unfiltered (_("Process record does not support "
6356 "instruction bound.\n"));
6357 ir.addr -= 1;
6358 goto no_support;
6359 break;
6360
6361 case 0x0fc8: /* bswap reg */
6362 case 0x0fc9:
6363 case 0x0fca:
6364 case 0x0fcb:
6365 case 0x0fcc:
6366 case 0x0fcd:
6367 case 0x0fce:
6368 case 0x0fcf:
6369 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 7) | ir.rex_b);
6370 break;
6371
6372 case 0xd6: /* salc */
6373 if (ir.regmap[X86_RECORD_R8_REGNUM])
6374 {
6375 ir.addr -= 1;
6376 goto no_support;
6377 }
6378 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6379 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6380 break;
6381
6382 case 0xe0: /* loopnz */
6383 case 0xe1: /* loopz */
6384 case 0xe2: /* loop */
6385 case 0xe3: /* jecxz */
6386 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6387 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6388 break;
6389
6390 case 0x0f30: /* wrmsr */
6391 printf_unfiltered (_("Process record does not support "
6392 "instruction wrmsr.\n"));
6393 ir.addr -= 2;
6394 goto no_support;
6395 break;
6396
6397 case 0x0f32: /* rdmsr */
6398 printf_unfiltered (_("Process record does not support "
6399 "instruction rdmsr.\n"));
6400 ir.addr -= 2;
6401 goto no_support;
6402 break;
6403
6404 case 0x0f31: /* rdtsc */
6405 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6406 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6407 break;
6408
6409 case 0x0f34: /* sysenter */
6410 {
6411 int ret;
6412 if (ir.regmap[X86_RECORD_R8_REGNUM])
6413 {
6414 ir.addr -= 2;
6415 goto no_support;
6416 }
6417 if (tdep->i386_sysenter_record == NULL)
6418 {
6419 printf_unfiltered (_("Process record does not support "
6420 "instruction sysenter.\n"));
6421 ir.addr -= 2;
6422 goto no_support;
6423 }
6424 ret = tdep->i386_sysenter_record (ir.regcache);
6425 if (ret)
6426 return ret;
6427 }
6428 break;
6429
6430 case 0x0f35: /* sysexit */
6431 printf_unfiltered (_("Process record does not support "
6432 "instruction sysexit.\n"));
6433 ir.addr -= 2;
6434 goto no_support;
6435 break;
6436
6437 case 0x0f05: /* syscall */
6438 {
6439 int ret;
6440 if (tdep->i386_syscall_record == NULL)
6441 {
6442 printf_unfiltered (_("Process record does not support "
6443 "instruction syscall.\n"));
6444 ir.addr -= 2;
6445 goto no_support;
6446 }
6447 ret = tdep->i386_syscall_record (ir.regcache);
6448 if (ret)
6449 return ret;
6450 }
6451 break;
6452
6453 case 0x0f07: /* sysret */
6454 printf_unfiltered (_("Process record does not support "
6455 "instruction sysret.\n"));
6456 ir.addr -= 2;
6457 goto no_support;
6458 break;
6459
6460 case 0x0fa2: /* cpuid */
6461 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6462 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6463 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6464 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
6465 break;
6466
6467 case 0xf4: /* hlt */
6468 printf_unfiltered (_("Process record does not support "
6469 "instruction hlt.\n"));
6470 ir.addr -= 1;
6471 goto no_support;
6472 break;
6473
6474 case 0x0f00:
6475 if (i386_record_modrm (&ir))
6476 return -1;
6477 switch (ir.reg)
6478 {
6479 case 0: /* sldt */
6480 case 1: /* str */
6481 if (ir.mod == 3)
6482 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6483 else
6484 {
6485 ir.ot = OT_WORD;
6486 if (i386_record_lea_modrm (&ir))
6487 return -1;
6488 }
6489 break;
6490 case 2: /* lldt */
6491 case 3: /* ltr */
6492 break;
6493 case 4: /* verr */
6494 case 5: /* verw */
6495 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6496 break;
6497 default:
6498 ir.addr -= 3;
6499 opcode = opcode << 8 | ir.modrm;
6500 goto no_support;
6501 break;
6502 }
6503 break;
6504
6505 case 0x0f01:
6506 if (i386_record_modrm (&ir))
6507 return -1;
6508 switch (ir.reg)
6509 {
6510 case 0: /* sgdt */
6511 {
6512 uint64_t addr64;
6513
6514 if (ir.mod == 3)
6515 {
6516 ir.addr -= 3;
6517 opcode = opcode << 8 | ir.modrm;
6518 goto no_support;
6519 }
6520 if (ir.override >= 0)
6521 {
6522 if (record_full_memory_query)
6523 {
6524 int q;
6525
6526 target_terminal_ours ();
6527 q = yquery (_("\
6528 Process record ignores the memory change of instruction at address %s\n\
6529 because it can't get the value of the segment register.\n\
6530 Do you want to stop the program?"),
6531 paddress (gdbarch, ir.orig_addr));
6532 target_terminal_inferior ();
6533 if (q)
6534 return -1;
6535 }
6536 }
6537 else
6538 {
6539 if (i386_record_lea_modrm_addr (&ir, &addr64))
6540 return -1;
6541 if (record_full_arch_list_add_mem (addr64, 2))
6542 return -1;
6543 addr64 += 2;
6544 if (ir.regmap[X86_RECORD_R8_REGNUM])
6545 {
6546 if (record_full_arch_list_add_mem (addr64, 8))
6547 return -1;
6548 }
6549 else
6550 {
6551 if (record_full_arch_list_add_mem (addr64, 4))
6552 return -1;
6553 }
6554 }
6555 }
6556 break;
6557 case 1:
6558 if (ir.mod == 3)
6559 {
6560 switch (ir.rm)
6561 {
6562 case 0: /* monitor */
6563 break;
6564 case 1: /* mwait */
6565 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6566 break;
6567 default:
6568 ir.addr -= 3;
6569 opcode = opcode << 8 | ir.modrm;
6570 goto no_support;
6571 break;
6572 }
6573 }
6574 else
6575 {
6576 /* sidt */
6577 if (ir.override >= 0)
6578 {
6579 if (record_full_memory_query)
6580 {
6581 int q;
6582
6583 target_terminal_ours ();
6584 q = yquery (_("\
6585 Process record ignores the memory change of instruction at address %s\n\
6586 because it can't get the value of the segment register.\n\
6587 Do you want to stop the program?"),
6588 paddress (gdbarch, ir.orig_addr));
6589 target_terminal_inferior ();
6590 if (q)
6591 return -1;
6592 }
6593 }
6594 else
6595 {
6596 uint64_t addr64;
6597
6598 if (i386_record_lea_modrm_addr (&ir, &addr64))
6599 return -1;
6600 if (record_full_arch_list_add_mem (addr64, 2))
6601 return -1;
6602 addr64 += 2;
6603 if (ir.regmap[X86_RECORD_R8_REGNUM])
6604 {
6605 if (record_full_arch_list_add_mem (addr64, 8))
6606 return -1;
6607 }
6608 else
6609 {
6610 if (record_full_arch_list_add_mem (addr64, 4))
6611 return -1;
6612 }
6613 }
6614 }
6615 break;
6616 case 2: /* lgdt */
6617 if (ir.mod == 3)
6618 {
6619 /* xgetbv */
6620 if (ir.rm == 0)
6621 {
6622 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6623 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6624 break;
6625 }
6626 /* xsetbv */
6627 else if (ir.rm == 1)
6628 break;
6629 }
6630 case 3: /* lidt */
6631 if (ir.mod == 3)
6632 {
6633 ir.addr -= 3;
6634 opcode = opcode << 8 | ir.modrm;
6635 goto no_support;
6636 }
6637 break;
6638 case 4: /* smsw */
6639 if (ir.mod == 3)
6640 {
6641 if (record_full_arch_list_add_reg (ir.regcache, ir.rm | ir.rex_b))
6642 return -1;
6643 }
6644 else
6645 {
6646 ir.ot = OT_WORD;
6647 if (i386_record_lea_modrm (&ir))
6648 return -1;
6649 }
6650 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6651 break;
6652 case 6: /* lmsw */
6653 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6654 break;
6655 case 7: /* invlpg */
6656 if (ir.mod == 3)
6657 {
6658 if (ir.rm == 0 && ir.regmap[X86_RECORD_R8_REGNUM])
6659 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
6660 else
6661 {
6662 ir.addr -= 3;
6663 opcode = opcode << 8 | ir.modrm;
6664 goto no_support;
6665 }
6666 }
6667 else
6668 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6669 break;
6670 default:
6671 ir.addr -= 3;
6672 opcode = opcode << 8 | ir.modrm;
6673 goto no_support;
6674 break;
6675 }
6676 break;
6677
6678 case 0x0f08: /* invd */
6679 case 0x0f09: /* wbinvd */
6680 break;
6681
6682 case 0x63: /* arpl */
6683 if (i386_record_modrm (&ir))
6684 return -1;
6685 if (ir.mod == 3 || ir.regmap[X86_RECORD_R8_REGNUM])
6686 {
6687 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.regmap[X86_RECORD_R8_REGNUM]
6688 ? (ir.reg | rex_r) : ir.rm);
6689 }
6690 else
6691 {
6692 ir.ot = ir.dflag ? OT_LONG : OT_WORD;
6693 if (i386_record_lea_modrm (&ir))
6694 return -1;
6695 }
6696 if (!ir.regmap[X86_RECORD_R8_REGNUM])
6697 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6698 break;
6699
6700 case 0x0f02: /* lar */
6701 case 0x0f03: /* lsl */
6702 if (i386_record_modrm (&ir))
6703 return -1;
6704 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6705 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6706 break;
6707
6708 case 0x0f18:
6709 if (i386_record_modrm (&ir))
6710 return -1;
6711 if (ir.mod == 3 && ir.reg == 3)
6712 {
6713 ir.addr -= 3;
6714 opcode = opcode << 8 | ir.modrm;
6715 goto no_support;
6716 }
6717 break;
6718
6719 case 0x0f19:
6720 case 0x0f1a:
6721 case 0x0f1b:
6722 case 0x0f1c:
6723 case 0x0f1d:
6724 case 0x0f1e:
6725 case 0x0f1f:
6726 /* nop (multi byte) */
6727 break;
6728
6729 case 0x0f20: /* mov reg, crN */
6730 case 0x0f22: /* mov crN, reg */
6731 if (i386_record_modrm (&ir))
6732 return -1;
6733 if ((ir.modrm & 0xc0) != 0xc0)
6734 {
6735 ir.addr -= 3;
6736 opcode = opcode << 8 | ir.modrm;
6737 goto no_support;
6738 }
6739 switch (ir.reg)
6740 {
6741 case 0:
6742 case 2:
6743 case 3:
6744 case 4:
6745 case 8:
6746 if (opcode & 2)
6747 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6748 else
6749 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6750 break;
6751 default:
6752 ir.addr -= 3;
6753 opcode = opcode << 8 | ir.modrm;
6754 goto no_support;
6755 break;
6756 }
6757 break;
6758
6759 case 0x0f21: /* mov reg, drN */
6760 case 0x0f23: /* mov drN, reg */
6761 if (i386_record_modrm (&ir))
6762 return -1;
6763 if ((ir.modrm & 0xc0) != 0xc0 || ir.reg == 4
6764 || ir.reg == 5 || ir.reg >= 8)
6765 {
6766 ir.addr -= 3;
6767 opcode = opcode << 8 | ir.modrm;
6768 goto no_support;
6769 }
6770 if (opcode & 2)
6771 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6772 else
6773 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6774 break;
6775
6776 case 0x0f06: /* clts */
6777 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6778 break;
6779
6780 /* MMX 3DNow! SSE SSE2 SSE3 SSSE3 SSE4 */
6781
6782 case 0x0f0d: /* 3DNow! prefetch */
6783 break;
6784
6785 case 0x0f0e: /* 3DNow! femms */
6786 case 0x0f77: /* emms */
6787 if (i386_fpc_regnum_p (gdbarch, I387_FTAG_REGNUM(tdep)))
6788 goto no_support;
6789 record_full_arch_list_add_reg (ir.regcache, I387_FTAG_REGNUM(tdep));
6790 break;
6791
6792 case 0x0f0f: /* 3DNow! data */
6793 if (i386_record_modrm (&ir))
6794 return -1;
6795 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
6796 return -1;
6797 ir.addr++;
6798 switch (opcode8)
6799 {
6800 case 0x0c: /* 3DNow! pi2fw */
6801 case 0x0d: /* 3DNow! pi2fd */
6802 case 0x1c: /* 3DNow! pf2iw */
6803 case 0x1d: /* 3DNow! pf2id */
6804 case 0x8a: /* 3DNow! pfnacc */
6805 case 0x8e: /* 3DNow! pfpnacc */
6806 case 0x90: /* 3DNow! pfcmpge */
6807 case 0x94: /* 3DNow! pfmin */
6808 case 0x96: /* 3DNow! pfrcp */
6809 case 0x97: /* 3DNow! pfrsqrt */
6810 case 0x9a: /* 3DNow! pfsub */
6811 case 0x9e: /* 3DNow! pfadd */
6812 case 0xa0: /* 3DNow! pfcmpgt */
6813 case 0xa4: /* 3DNow! pfmax */
6814 case 0xa6: /* 3DNow! pfrcpit1 */
6815 case 0xa7: /* 3DNow! pfrsqit1 */
6816 case 0xaa: /* 3DNow! pfsubr */
6817 case 0xae: /* 3DNow! pfacc */
6818 case 0xb0: /* 3DNow! pfcmpeq */
6819 case 0xb4: /* 3DNow! pfmul */
6820 case 0xb6: /* 3DNow! pfrcpit2 */
6821 case 0xb7: /* 3DNow! pmulhrw */
6822 case 0xbb: /* 3DNow! pswapd */
6823 case 0xbf: /* 3DNow! pavgusb */
6824 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
6825 goto no_support_3dnow_data;
6826 record_full_arch_list_add_reg (ir.regcache, ir.reg);
6827 break;
6828
6829 default:
6830 no_support_3dnow_data:
6831 opcode = (opcode << 8) | opcode8;
6832 goto no_support;
6833 break;
6834 }
6835 break;
6836
6837 case 0x0faa: /* rsm */
6838 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6839 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6840 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6841 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6842 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
6843 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6844 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
6845 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6846 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6847 break;
6848
6849 case 0x0fae:
6850 if (i386_record_modrm (&ir))
6851 return -1;
6852 switch(ir.reg)
6853 {
6854 case 0: /* fxsave */
6855 {
6856 uint64_t tmpu64;
6857
6858 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6859 if (i386_record_lea_modrm_addr (&ir, &tmpu64))
6860 return -1;
6861 if (record_full_arch_list_add_mem (tmpu64, 512))
6862 return -1;
6863 }
6864 break;
6865
6866 case 1: /* fxrstor */
6867 {
6868 int i;
6869
6870 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6871
6872 for (i = I387_MM0_REGNUM (tdep);
6873 i386_mmx_regnum_p (gdbarch, i); i++)
6874 record_full_arch_list_add_reg (ir.regcache, i);
6875
6876 for (i = I387_XMM0_REGNUM (tdep);
6877 i386_xmm_regnum_p (gdbarch, i); i++)
6878 record_full_arch_list_add_reg (ir.regcache, i);
6879
6880 if (i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
6881 record_full_arch_list_add_reg (ir.regcache,
6882 I387_MXCSR_REGNUM(tdep));
6883
6884 for (i = I387_ST0_REGNUM (tdep);
6885 i386_fp_regnum_p (gdbarch, i); i++)
6886 record_full_arch_list_add_reg (ir.regcache, i);
6887
6888 for (i = I387_FCTRL_REGNUM (tdep);
6889 i386_fpc_regnum_p (gdbarch, i); i++)
6890 record_full_arch_list_add_reg (ir.regcache, i);
6891 }
6892 break;
6893
6894 case 2: /* ldmxcsr */
6895 if (!i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
6896 goto no_support;
6897 record_full_arch_list_add_reg (ir.regcache, I387_MXCSR_REGNUM(tdep));
6898 break;
6899
6900 case 3: /* stmxcsr */
6901 ir.ot = OT_LONG;
6902 if (i386_record_lea_modrm (&ir))
6903 return -1;
6904 break;
6905
6906 case 5: /* lfence */
6907 case 6: /* mfence */
6908 case 7: /* sfence clflush */
6909 break;
6910
6911 default:
6912 opcode = (opcode << 8) | ir.modrm;
6913 goto no_support;
6914 break;
6915 }
6916 break;
6917
6918 case 0x0fc3: /* movnti */
6919 ir.ot = (ir.dflag == 2) ? OT_QUAD : OT_LONG;
6920 if (i386_record_modrm (&ir))
6921 return -1;
6922 if (ir.mod == 3)
6923 goto no_support;
6924 ir.reg |= rex_r;
6925 if (i386_record_lea_modrm (&ir))
6926 return -1;
6927 break;
6928
6929 /* Add prefix to opcode. */
6930 case 0x0f10:
6931 case 0x0f11:
6932 case 0x0f12:
6933 case 0x0f13:
6934 case 0x0f14:
6935 case 0x0f15:
6936 case 0x0f16:
6937 case 0x0f17:
6938 case 0x0f28:
6939 case 0x0f29:
6940 case 0x0f2a:
6941 case 0x0f2b:
6942 case 0x0f2c:
6943 case 0x0f2d:
6944 case 0x0f2e:
6945 case 0x0f2f:
6946 case 0x0f38:
6947 case 0x0f39:
6948 case 0x0f3a:
6949 case 0x0f50:
6950 case 0x0f51:
6951 case 0x0f52:
6952 case 0x0f53:
6953 case 0x0f54:
6954 case 0x0f55:
6955 case 0x0f56:
6956 case 0x0f57:
6957 case 0x0f58:
6958 case 0x0f59:
6959 case 0x0f5a:
6960 case 0x0f5b:
6961 case 0x0f5c:
6962 case 0x0f5d:
6963 case 0x0f5e:
6964 case 0x0f5f:
6965 case 0x0f60:
6966 case 0x0f61:
6967 case 0x0f62:
6968 case 0x0f63:
6969 case 0x0f64:
6970 case 0x0f65:
6971 case 0x0f66:
6972 case 0x0f67:
6973 case 0x0f68:
6974 case 0x0f69:
6975 case 0x0f6a:
6976 case 0x0f6b:
6977 case 0x0f6c:
6978 case 0x0f6d:
6979 case 0x0f6e:
6980 case 0x0f6f:
6981 case 0x0f70:
6982 case 0x0f71:
6983 case 0x0f72:
6984 case 0x0f73:
6985 case 0x0f74:
6986 case 0x0f75:
6987 case 0x0f76:
6988 case 0x0f7c:
6989 case 0x0f7d:
6990 case 0x0f7e:
6991 case 0x0f7f:
6992 case 0x0fb8:
6993 case 0x0fc2:
6994 case 0x0fc4:
6995 case 0x0fc5:
6996 case 0x0fc6:
6997 case 0x0fd0:
6998 case 0x0fd1:
6999 case 0x0fd2:
7000 case 0x0fd3:
7001 case 0x0fd4:
7002 case 0x0fd5:
7003 case 0x0fd6:
7004 case 0x0fd7:
7005 case 0x0fd8:
7006 case 0x0fd9:
7007 case 0x0fda:
7008 case 0x0fdb:
7009 case 0x0fdc:
7010 case 0x0fdd:
7011 case 0x0fde:
7012 case 0x0fdf:
7013 case 0x0fe0:
7014 case 0x0fe1:
7015 case 0x0fe2:
7016 case 0x0fe3:
7017 case 0x0fe4:
7018 case 0x0fe5:
7019 case 0x0fe6:
7020 case 0x0fe7:
7021 case 0x0fe8:
7022 case 0x0fe9:
7023 case 0x0fea:
7024 case 0x0feb:
7025 case 0x0fec:
7026 case 0x0fed:
7027 case 0x0fee:
7028 case 0x0fef:
7029 case 0x0ff0:
7030 case 0x0ff1:
7031 case 0x0ff2:
7032 case 0x0ff3:
7033 case 0x0ff4:
7034 case 0x0ff5:
7035 case 0x0ff6:
7036 case 0x0ff7:
7037 case 0x0ff8:
7038 case 0x0ff9:
7039 case 0x0ffa:
7040 case 0x0ffb:
7041 case 0x0ffc:
7042 case 0x0ffd:
7043 case 0x0ffe:
7044 switch (prefixes)
7045 {
7046 case PREFIX_REPNZ:
7047 opcode |= 0xf20000;
7048 break;
7049 case PREFIX_DATA:
7050 opcode |= 0x660000;
7051 break;
7052 case PREFIX_REPZ:
7053 opcode |= 0xf30000;
7054 break;
7055 }
7056 reswitch_prefix_add:
7057 switch (opcode)
7058 {
7059 case 0x0f38:
7060 case 0x660f38:
7061 case 0xf20f38:
7062 case 0x0f3a:
7063 case 0x660f3a:
7064 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
7065 return -1;
7066 ir.addr++;
7067 opcode = (uint32_t) opcode8 | opcode << 8;
7068 goto reswitch_prefix_add;
7069 break;
7070
7071 case 0x0f10: /* movups */
7072 case 0x660f10: /* movupd */
7073 case 0xf30f10: /* movss */
7074 case 0xf20f10: /* movsd */
7075 case 0x0f12: /* movlps */
7076 case 0x660f12: /* movlpd */
7077 case 0xf30f12: /* movsldup */
7078 case 0xf20f12: /* movddup */
7079 case 0x0f14: /* unpcklps */
7080 case 0x660f14: /* unpcklpd */
7081 case 0x0f15: /* unpckhps */
7082 case 0x660f15: /* unpckhpd */
7083 case 0x0f16: /* movhps */
7084 case 0x660f16: /* movhpd */
7085 case 0xf30f16: /* movshdup */
7086 case 0x0f28: /* movaps */
7087 case 0x660f28: /* movapd */
7088 case 0x0f2a: /* cvtpi2ps */
7089 case 0x660f2a: /* cvtpi2pd */
7090 case 0xf30f2a: /* cvtsi2ss */
7091 case 0xf20f2a: /* cvtsi2sd */
7092 case 0x0f2c: /* cvttps2pi */
7093 case 0x660f2c: /* cvttpd2pi */
7094 case 0x0f2d: /* cvtps2pi */
7095 case 0x660f2d: /* cvtpd2pi */
7096 case 0x660f3800: /* pshufb */
7097 case 0x660f3801: /* phaddw */
7098 case 0x660f3802: /* phaddd */
7099 case 0x660f3803: /* phaddsw */
7100 case 0x660f3804: /* pmaddubsw */
7101 case 0x660f3805: /* phsubw */
7102 case 0x660f3806: /* phsubd */
7103 case 0x660f3807: /* phsubsw */
7104 case 0x660f3808: /* psignb */
7105 case 0x660f3809: /* psignw */
7106 case 0x660f380a: /* psignd */
7107 case 0x660f380b: /* pmulhrsw */
7108 case 0x660f3810: /* pblendvb */
7109 case 0x660f3814: /* blendvps */
7110 case 0x660f3815: /* blendvpd */
7111 case 0x660f381c: /* pabsb */
7112 case 0x660f381d: /* pabsw */
7113 case 0x660f381e: /* pabsd */
7114 case 0x660f3820: /* pmovsxbw */
7115 case 0x660f3821: /* pmovsxbd */
7116 case 0x660f3822: /* pmovsxbq */
7117 case 0x660f3823: /* pmovsxwd */
7118 case 0x660f3824: /* pmovsxwq */
7119 case 0x660f3825: /* pmovsxdq */
7120 case 0x660f3828: /* pmuldq */
7121 case 0x660f3829: /* pcmpeqq */
7122 case 0x660f382a: /* movntdqa */
7123 case 0x660f3a08: /* roundps */
7124 case 0x660f3a09: /* roundpd */
7125 case 0x660f3a0a: /* roundss */
7126 case 0x660f3a0b: /* roundsd */
7127 case 0x660f3a0c: /* blendps */
7128 case 0x660f3a0d: /* blendpd */
7129 case 0x660f3a0e: /* pblendw */
7130 case 0x660f3a0f: /* palignr */
7131 case 0x660f3a20: /* pinsrb */
7132 case 0x660f3a21: /* insertps */
7133 case 0x660f3a22: /* pinsrd pinsrq */
7134 case 0x660f3a40: /* dpps */
7135 case 0x660f3a41: /* dppd */
7136 case 0x660f3a42: /* mpsadbw */
7137 case 0x660f3a60: /* pcmpestrm */
7138 case 0x660f3a61: /* pcmpestri */
7139 case 0x660f3a62: /* pcmpistrm */
7140 case 0x660f3a63: /* pcmpistri */
7141 case 0x0f51: /* sqrtps */
7142 case 0x660f51: /* sqrtpd */
7143 case 0xf20f51: /* sqrtsd */
7144 case 0xf30f51: /* sqrtss */
7145 case 0x0f52: /* rsqrtps */
7146 case 0xf30f52: /* rsqrtss */
7147 case 0x0f53: /* rcpps */
7148 case 0xf30f53: /* rcpss */
7149 case 0x0f54: /* andps */
7150 case 0x660f54: /* andpd */
7151 case 0x0f55: /* andnps */
7152 case 0x660f55: /* andnpd */
7153 case 0x0f56: /* orps */
7154 case 0x660f56: /* orpd */
7155 case 0x0f57: /* xorps */
7156 case 0x660f57: /* xorpd */
7157 case 0x0f58: /* addps */
7158 case 0x660f58: /* addpd */
7159 case 0xf20f58: /* addsd */
7160 case 0xf30f58: /* addss */
7161 case 0x0f59: /* mulps */
7162 case 0x660f59: /* mulpd */
7163 case 0xf20f59: /* mulsd */
7164 case 0xf30f59: /* mulss */
7165 case 0x0f5a: /* cvtps2pd */
7166 case 0x660f5a: /* cvtpd2ps */
7167 case 0xf20f5a: /* cvtsd2ss */
7168 case 0xf30f5a: /* cvtss2sd */
7169 case 0x0f5b: /* cvtdq2ps */
7170 case 0x660f5b: /* cvtps2dq */
7171 case 0xf30f5b: /* cvttps2dq */
7172 case 0x0f5c: /* subps */
7173 case 0x660f5c: /* subpd */
7174 case 0xf20f5c: /* subsd */
7175 case 0xf30f5c: /* subss */
7176 case 0x0f5d: /* minps */
7177 case 0x660f5d: /* minpd */
7178 case 0xf20f5d: /* minsd */
7179 case 0xf30f5d: /* minss */
7180 case 0x0f5e: /* divps */
7181 case 0x660f5e: /* divpd */
7182 case 0xf20f5e: /* divsd */
7183 case 0xf30f5e: /* divss */
7184 case 0x0f5f: /* maxps */
7185 case 0x660f5f: /* maxpd */
7186 case 0xf20f5f: /* maxsd */
7187 case 0xf30f5f: /* maxss */
7188 case 0x660f60: /* punpcklbw */
7189 case 0x660f61: /* punpcklwd */
7190 case 0x660f62: /* punpckldq */
7191 case 0x660f63: /* packsswb */
7192 case 0x660f64: /* pcmpgtb */
7193 case 0x660f65: /* pcmpgtw */
7194 case 0x660f66: /* pcmpgtd */
7195 case 0x660f67: /* packuswb */
7196 case 0x660f68: /* punpckhbw */
7197 case 0x660f69: /* punpckhwd */
7198 case 0x660f6a: /* punpckhdq */
7199 case 0x660f6b: /* packssdw */
7200 case 0x660f6c: /* punpcklqdq */
7201 case 0x660f6d: /* punpckhqdq */
7202 case 0x660f6e: /* movd */
7203 case 0x660f6f: /* movdqa */
7204 case 0xf30f6f: /* movdqu */
7205 case 0x660f70: /* pshufd */
7206 case 0xf20f70: /* pshuflw */
7207 case 0xf30f70: /* pshufhw */
7208 case 0x660f74: /* pcmpeqb */
7209 case 0x660f75: /* pcmpeqw */
7210 case 0x660f76: /* pcmpeqd */
7211 case 0x660f7c: /* haddpd */
7212 case 0xf20f7c: /* haddps */
7213 case 0x660f7d: /* hsubpd */
7214 case 0xf20f7d: /* hsubps */
7215 case 0xf30f7e: /* movq */
7216 case 0x0fc2: /* cmpps */
7217 case 0x660fc2: /* cmppd */
7218 case 0xf20fc2: /* cmpsd */
7219 case 0xf30fc2: /* cmpss */
7220 case 0x660fc4: /* pinsrw */
7221 case 0x0fc6: /* shufps */
7222 case 0x660fc6: /* shufpd */
7223 case 0x660fd0: /* addsubpd */
7224 case 0xf20fd0: /* addsubps */
7225 case 0x660fd1: /* psrlw */
7226 case 0x660fd2: /* psrld */
7227 case 0x660fd3: /* psrlq */
7228 case 0x660fd4: /* paddq */
7229 case 0x660fd5: /* pmullw */
7230 case 0xf30fd6: /* movq2dq */
7231 case 0x660fd8: /* psubusb */
7232 case 0x660fd9: /* psubusw */
7233 case 0x660fda: /* pminub */
7234 case 0x660fdb: /* pand */
7235 case 0x660fdc: /* paddusb */
7236 case 0x660fdd: /* paddusw */
7237 case 0x660fde: /* pmaxub */
7238 case 0x660fdf: /* pandn */
7239 case 0x660fe0: /* pavgb */
7240 case 0x660fe1: /* psraw */
7241 case 0x660fe2: /* psrad */
7242 case 0x660fe3: /* pavgw */
7243 case 0x660fe4: /* pmulhuw */
7244 case 0x660fe5: /* pmulhw */
7245 case 0x660fe6: /* cvttpd2dq */
7246 case 0xf20fe6: /* cvtpd2dq */
7247 case 0xf30fe6: /* cvtdq2pd */
7248 case 0x660fe8: /* psubsb */
7249 case 0x660fe9: /* psubsw */
7250 case 0x660fea: /* pminsw */
7251 case 0x660feb: /* por */
7252 case 0x660fec: /* paddsb */
7253 case 0x660fed: /* paddsw */
7254 case 0x660fee: /* pmaxsw */
7255 case 0x660fef: /* pxor */
7256 case 0xf20ff0: /* lddqu */
7257 case 0x660ff1: /* psllw */
7258 case 0x660ff2: /* pslld */
7259 case 0x660ff3: /* psllq */
7260 case 0x660ff4: /* pmuludq */
7261 case 0x660ff5: /* pmaddwd */
7262 case 0x660ff6: /* psadbw */
7263 case 0x660ff8: /* psubb */
7264 case 0x660ff9: /* psubw */
7265 case 0x660ffa: /* psubd */
7266 case 0x660ffb: /* psubq */
7267 case 0x660ffc: /* paddb */
7268 case 0x660ffd: /* paddw */
7269 case 0x660ffe: /* paddd */
7270 if (i386_record_modrm (&ir))
7271 return -1;
7272 ir.reg |= rex_r;
7273 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.reg))
7274 goto no_support;
7275 record_full_arch_list_add_reg (ir.regcache,
7276 I387_XMM0_REGNUM (tdep) + ir.reg);
7277 if ((opcode & 0xfffffffc) == 0x660f3a60)
7278 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7279 break;
7280
7281 case 0x0f11: /* movups */
7282 case 0x660f11: /* movupd */
7283 case 0xf30f11: /* movss */
7284 case 0xf20f11: /* movsd */
7285 case 0x0f13: /* movlps */
7286 case 0x660f13: /* movlpd */
7287 case 0x0f17: /* movhps */
7288 case 0x660f17: /* movhpd */
7289 case 0x0f29: /* movaps */
7290 case 0x660f29: /* movapd */
7291 case 0x660f3a14: /* pextrb */
7292 case 0x660f3a15: /* pextrw */
7293 case 0x660f3a16: /* pextrd pextrq */
7294 case 0x660f3a17: /* extractps */
7295 case 0x660f7f: /* movdqa */
7296 case 0xf30f7f: /* movdqu */
7297 if (i386_record_modrm (&ir))
7298 return -1;
7299 if (ir.mod == 3)
7300 {
7301 if (opcode == 0x0f13 || opcode == 0x660f13
7302 || opcode == 0x0f17 || opcode == 0x660f17)
7303 goto no_support;
7304 ir.rm |= ir.rex_b;
7305 if (!i386_xmm_regnum_p (gdbarch,
7306 I387_XMM0_REGNUM (tdep) + ir.rm))
7307 goto no_support;
7308 record_full_arch_list_add_reg (ir.regcache,
7309 I387_XMM0_REGNUM (tdep) + ir.rm);
7310 }
7311 else
7312 {
7313 switch (opcode)
7314 {
7315 case 0x660f3a14:
7316 ir.ot = OT_BYTE;
7317 break;
7318 case 0x660f3a15:
7319 ir.ot = OT_WORD;
7320 break;
7321 case 0x660f3a16:
7322 ir.ot = OT_LONG;
7323 break;
7324 case 0x660f3a17:
7325 ir.ot = OT_QUAD;
7326 break;
7327 default:
7328 ir.ot = OT_DQUAD;
7329 break;
7330 }
7331 if (i386_record_lea_modrm (&ir))
7332 return -1;
7333 }
7334 break;
7335
7336 case 0x0f2b: /* movntps */
7337 case 0x660f2b: /* movntpd */
7338 case 0x0fe7: /* movntq */
7339 case 0x660fe7: /* movntdq */
7340 if (ir.mod == 3)
7341 goto no_support;
7342 if (opcode == 0x0fe7)
7343 ir.ot = OT_QUAD;
7344 else
7345 ir.ot = OT_DQUAD;
7346 if (i386_record_lea_modrm (&ir))
7347 return -1;
7348 break;
7349
7350 case 0xf30f2c: /* cvttss2si */
7351 case 0xf20f2c: /* cvttsd2si */
7352 case 0xf30f2d: /* cvtss2si */
7353 case 0xf20f2d: /* cvtsd2si */
7354 case 0xf20f38f0: /* crc32 */
7355 case 0xf20f38f1: /* crc32 */
7356 case 0x0f50: /* movmskps */
7357 case 0x660f50: /* movmskpd */
7358 case 0x0fc5: /* pextrw */
7359 case 0x660fc5: /* pextrw */
7360 case 0x0fd7: /* pmovmskb */
7361 case 0x660fd7: /* pmovmskb */
7362 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7363 break;
7364
7365 case 0x0f3800: /* pshufb */
7366 case 0x0f3801: /* phaddw */
7367 case 0x0f3802: /* phaddd */
7368 case 0x0f3803: /* phaddsw */
7369 case 0x0f3804: /* pmaddubsw */
7370 case 0x0f3805: /* phsubw */
7371 case 0x0f3806: /* phsubd */
7372 case 0x0f3807: /* phsubsw */
7373 case 0x0f3808: /* psignb */
7374 case 0x0f3809: /* psignw */
7375 case 0x0f380a: /* psignd */
7376 case 0x0f380b: /* pmulhrsw */
7377 case 0x0f381c: /* pabsb */
7378 case 0x0f381d: /* pabsw */
7379 case 0x0f381e: /* pabsd */
7380 case 0x0f382b: /* packusdw */
7381 case 0x0f3830: /* pmovzxbw */
7382 case 0x0f3831: /* pmovzxbd */
7383 case 0x0f3832: /* pmovzxbq */
7384 case 0x0f3833: /* pmovzxwd */
7385 case 0x0f3834: /* pmovzxwq */
7386 case 0x0f3835: /* pmovzxdq */
7387 case 0x0f3837: /* pcmpgtq */
7388 case 0x0f3838: /* pminsb */
7389 case 0x0f3839: /* pminsd */
7390 case 0x0f383a: /* pminuw */
7391 case 0x0f383b: /* pminud */
7392 case 0x0f383c: /* pmaxsb */
7393 case 0x0f383d: /* pmaxsd */
7394 case 0x0f383e: /* pmaxuw */
7395 case 0x0f383f: /* pmaxud */
7396 case 0x0f3840: /* pmulld */
7397 case 0x0f3841: /* phminposuw */
7398 case 0x0f3a0f: /* palignr */
7399 case 0x0f60: /* punpcklbw */
7400 case 0x0f61: /* punpcklwd */
7401 case 0x0f62: /* punpckldq */
7402 case 0x0f63: /* packsswb */
7403 case 0x0f64: /* pcmpgtb */
7404 case 0x0f65: /* pcmpgtw */
7405 case 0x0f66: /* pcmpgtd */
7406 case 0x0f67: /* packuswb */
7407 case 0x0f68: /* punpckhbw */
7408 case 0x0f69: /* punpckhwd */
7409 case 0x0f6a: /* punpckhdq */
7410 case 0x0f6b: /* packssdw */
7411 case 0x0f6e: /* movd */
7412 case 0x0f6f: /* movq */
7413 case 0x0f70: /* pshufw */
7414 case 0x0f74: /* pcmpeqb */
7415 case 0x0f75: /* pcmpeqw */
7416 case 0x0f76: /* pcmpeqd */
7417 case 0x0fc4: /* pinsrw */
7418 case 0x0fd1: /* psrlw */
7419 case 0x0fd2: /* psrld */
7420 case 0x0fd3: /* psrlq */
7421 case 0x0fd4: /* paddq */
7422 case 0x0fd5: /* pmullw */
7423 case 0xf20fd6: /* movdq2q */
7424 case 0x0fd8: /* psubusb */
7425 case 0x0fd9: /* psubusw */
7426 case 0x0fda: /* pminub */
7427 case 0x0fdb: /* pand */
7428 case 0x0fdc: /* paddusb */
7429 case 0x0fdd: /* paddusw */
7430 case 0x0fde: /* pmaxub */
7431 case 0x0fdf: /* pandn */
7432 case 0x0fe0: /* pavgb */
7433 case 0x0fe1: /* psraw */
7434 case 0x0fe2: /* psrad */
7435 case 0x0fe3: /* pavgw */
7436 case 0x0fe4: /* pmulhuw */
7437 case 0x0fe5: /* pmulhw */
7438 case 0x0fe8: /* psubsb */
7439 case 0x0fe9: /* psubsw */
7440 case 0x0fea: /* pminsw */
7441 case 0x0feb: /* por */
7442 case 0x0fec: /* paddsb */
7443 case 0x0fed: /* paddsw */
7444 case 0x0fee: /* pmaxsw */
7445 case 0x0fef: /* pxor */
7446 case 0x0ff1: /* psllw */
7447 case 0x0ff2: /* pslld */
7448 case 0x0ff3: /* psllq */
7449 case 0x0ff4: /* pmuludq */
7450 case 0x0ff5: /* pmaddwd */
7451 case 0x0ff6: /* psadbw */
7452 case 0x0ff8: /* psubb */
7453 case 0x0ff9: /* psubw */
7454 case 0x0ffa: /* psubd */
7455 case 0x0ffb: /* psubq */
7456 case 0x0ffc: /* paddb */
7457 case 0x0ffd: /* paddw */
7458 case 0x0ffe: /* paddd */
7459 if (i386_record_modrm (&ir))
7460 return -1;
7461 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7462 goto no_support;
7463 record_full_arch_list_add_reg (ir.regcache,
7464 I387_MM0_REGNUM (tdep) + ir.reg);
7465 break;
7466
7467 case 0x0f71: /* psllw */
7468 case 0x0f72: /* pslld */
7469 case 0x0f73: /* psllq */
7470 if (i386_record_modrm (&ir))
7471 return -1;
7472 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
7473 goto no_support;
7474 record_full_arch_list_add_reg (ir.regcache,
7475 I387_MM0_REGNUM (tdep) + ir.rm);
7476 break;
7477
7478 case 0x660f71: /* psllw */
7479 case 0x660f72: /* pslld */
7480 case 0x660f73: /* psllq */
7481 if (i386_record_modrm (&ir))
7482 return -1;
7483 ir.rm |= ir.rex_b;
7484 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.rm))
7485 goto no_support;
7486 record_full_arch_list_add_reg (ir.regcache,
7487 I387_XMM0_REGNUM (tdep) + ir.rm);
7488 break;
7489
7490 case 0x0f7e: /* movd */
7491 case 0x660f7e: /* movd */
7492 if (i386_record_modrm (&ir))
7493 return -1;
7494 if (ir.mod == 3)
7495 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7496 else
7497 {
7498 if (ir.dflag == 2)
7499 ir.ot = OT_QUAD;
7500 else
7501 ir.ot = OT_LONG;
7502 if (i386_record_lea_modrm (&ir))
7503 return -1;
7504 }
7505 break;
7506
7507 case 0x0f7f: /* movq */
7508 if (i386_record_modrm (&ir))
7509 return -1;
7510 if (ir.mod == 3)
7511 {
7512 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
7513 goto no_support;
7514 record_full_arch_list_add_reg (ir.regcache,
7515 I387_MM0_REGNUM (tdep) + ir.rm);
7516 }
7517 else
7518 {
7519 ir.ot = OT_QUAD;
7520 if (i386_record_lea_modrm (&ir))
7521 return -1;
7522 }
7523 break;
7524
7525 case 0xf30fb8: /* popcnt */
7526 if (i386_record_modrm (&ir))
7527 return -1;
7528 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
7529 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7530 break;
7531
7532 case 0x660fd6: /* movq */
7533 if (i386_record_modrm (&ir))
7534 return -1;
7535 if (ir.mod == 3)
7536 {
7537 ir.rm |= ir.rex_b;
7538 if (!i386_xmm_regnum_p (gdbarch,
7539 I387_XMM0_REGNUM (tdep) + ir.rm))
7540 goto no_support;
7541 record_full_arch_list_add_reg (ir.regcache,
7542 I387_XMM0_REGNUM (tdep) + ir.rm);
7543 }
7544 else
7545 {
7546 ir.ot = OT_QUAD;
7547 if (i386_record_lea_modrm (&ir))
7548 return -1;
7549 }
7550 break;
7551
7552 case 0x660f3817: /* ptest */
7553 case 0x0f2e: /* ucomiss */
7554 case 0x660f2e: /* ucomisd */
7555 case 0x0f2f: /* comiss */
7556 case 0x660f2f: /* comisd */
7557 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7558 break;
7559
7560 case 0x0ff7: /* maskmovq */
7561 regcache_raw_read_unsigned (ir.regcache,
7562 ir.regmap[X86_RECORD_REDI_REGNUM],
7563 &addr);
7564 if (record_full_arch_list_add_mem (addr, 64))
7565 return -1;
7566 break;
7567
7568 case 0x660ff7: /* maskmovdqu */
7569 regcache_raw_read_unsigned (ir.regcache,
7570 ir.regmap[X86_RECORD_REDI_REGNUM],
7571 &addr);
7572 if (record_full_arch_list_add_mem (addr, 128))
7573 return -1;
7574 break;
7575
7576 default:
7577 goto no_support;
7578 break;
7579 }
7580 break;
7581
7582 default:
7583 goto no_support;
7584 break;
7585 }
7586
7587 /* In the future, maybe still need to deal with need_dasm. */
7588 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REIP_REGNUM);
7589 if (record_full_arch_list_add_end ())
7590 return -1;
7591
7592 return 0;
7593
7594 no_support:
7595 printf_unfiltered (_("Process record does not support instruction 0x%02x "
7596 "at address %s.\n"),
7597 (unsigned int) (opcode),
7598 paddress (gdbarch, ir.orig_addr));
7599 return -1;
7600 }
7601
7602 static const int i386_record_regmap[] =
7603 {
7604 I386_EAX_REGNUM, I386_ECX_REGNUM, I386_EDX_REGNUM, I386_EBX_REGNUM,
7605 I386_ESP_REGNUM, I386_EBP_REGNUM, I386_ESI_REGNUM, I386_EDI_REGNUM,
7606 0, 0, 0, 0, 0, 0, 0, 0,
7607 I386_EIP_REGNUM, I386_EFLAGS_REGNUM, I386_CS_REGNUM, I386_SS_REGNUM,
7608 I386_DS_REGNUM, I386_ES_REGNUM, I386_FS_REGNUM, I386_GS_REGNUM
7609 };
7610
7611 /* Check that the given address appears suitable for a fast
7612 tracepoint, which on x86-64 means that we need an instruction of at
7613 least 5 bytes, so that we can overwrite it with a 4-byte-offset
7614 jump and not have to worry about program jumps to an address in the
7615 middle of the tracepoint jump. On x86, it may be possible to use
7616 4-byte jumps with a 2-byte offset to a trampoline located in the
7617 bottom 64 KiB of memory. Returns 1 if OK, and writes a size
7618 of instruction to replace, and 0 if not, plus an explanatory
7619 string. */
7620
7621 static int
7622 i386_fast_tracepoint_valid_at (struct gdbarch *gdbarch,
7623 CORE_ADDR addr, int *isize, char **msg)
7624 {
7625 int len, jumplen;
7626 static struct ui_file *gdb_null = NULL;
7627
7628 /* Ask the target for the minimum instruction length supported. */
7629 jumplen = target_get_min_fast_tracepoint_insn_len ();
7630
7631 if (jumplen < 0)
7632 {
7633 /* If the target does not support the get_min_fast_tracepoint_insn_len
7634 operation, assume that fast tracepoints will always be implemented
7635 using 4-byte relative jumps on both x86 and x86-64. */
7636 jumplen = 5;
7637 }
7638 else if (jumplen == 0)
7639 {
7640 /* If the target does support get_min_fast_tracepoint_insn_len but
7641 returns zero, then the IPA has not loaded yet. In this case,
7642 we optimistically assume that truncated 2-byte relative jumps
7643 will be available on x86, and compensate later if this assumption
7644 turns out to be incorrect. On x86-64 architectures, 4-byte relative
7645 jumps will always be used. */
7646 jumplen = (register_size (gdbarch, 0) == 8) ? 5 : 4;
7647 }
7648
7649 /* Dummy file descriptor for the disassembler. */
7650 if (!gdb_null)
7651 gdb_null = ui_file_new ();
7652
7653 /* Check for fit. */
7654 len = gdb_print_insn (gdbarch, addr, gdb_null, NULL);
7655 if (isize)
7656 *isize = len;
7657
7658 if (len < jumplen)
7659 {
7660 /* Return a bit of target-specific detail to add to the caller's
7661 generic failure message. */
7662 if (msg)
7663 *msg = xstrprintf (_("; instruction is only %d bytes long, "
7664 "need at least %d bytes for the jump"),
7665 len, jumplen);
7666 return 0;
7667 }
7668 else
7669 {
7670 if (msg)
7671 *msg = NULL;
7672 return 1;
7673 }
7674 }
7675
7676 static int
7677 i386_validate_tdesc_p (struct gdbarch_tdep *tdep,
7678 struct tdesc_arch_data *tdesc_data)
7679 {
7680 const struct target_desc *tdesc = tdep->tdesc;
7681 const struct tdesc_feature *feature_core;
7682 const struct tdesc_feature *feature_sse, *feature_avx, *feature_mpx;
7683 int i, num_regs, valid_p;
7684
7685 if (! tdesc_has_registers (tdesc))
7686 return 0;
7687
7688 /* Get core registers. */
7689 feature_core = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.core");
7690 if (feature_core == NULL)
7691 return 0;
7692
7693 /* Get SSE registers. */
7694 feature_sse = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.sse");
7695
7696 /* Try AVX registers. */
7697 feature_avx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx");
7698
7699 /* Try MPX registers. */
7700 feature_mpx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx");
7701
7702 valid_p = 1;
7703
7704 /* The XCR0 bits. */
7705 if (feature_avx)
7706 {
7707 /* AVX register description requires SSE register description. */
7708 if (!feature_sse)
7709 return 0;
7710
7711 tdep->xcr0 = I386_XSTATE_AVX_MASK;
7712
7713 /* It may have been set by OSABI initialization function. */
7714 if (tdep->num_ymm_regs == 0)
7715 {
7716 tdep->ymmh_register_names = i386_ymmh_names;
7717 tdep->num_ymm_regs = 8;
7718 tdep->ymm0h_regnum = I386_YMM0H_REGNUM;
7719 }
7720
7721 for (i = 0; i < tdep->num_ymm_regs; i++)
7722 valid_p &= tdesc_numbered_register (feature_avx, tdesc_data,
7723 tdep->ymm0h_regnum + i,
7724 tdep->ymmh_register_names[i]);
7725 }
7726 else if (feature_sse)
7727 tdep->xcr0 = I386_XSTATE_SSE_MASK;
7728 else
7729 {
7730 tdep->xcr0 = I386_XSTATE_X87_MASK;
7731 tdep->num_xmm_regs = 0;
7732 }
7733
7734 num_regs = tdep->num_core_regs;
7735 for (i = 0; i < num_regs; i++)
7736 valid_p &= tdesc_numbered_register (feature_core, tdesc_data, i,
7737 tdep->register_names[i]);
7738
7739 if (feature_sse)
7740 {
7741 /* Need to include %mxcsr, so add one. */
7742 num_regs += tdep->num_xmm_regs + 1;
7743 for (; i < num_regs; i++)
7744 valid_p &= tdesc_numbered_register (feature_sse, tdesc_data, i,
7745 tdep->register_names[i]);
7746 }
7747
7748 if (feature_mpx)
7749 {
7750 tdep->xcr0 = I386_XSTATE_MPX_MASK;
7751
7752 if (tdep->bnd0r_regnum < 0)
7753 {
7754 tdep->mpx_register_names = i386_mpx_names;
7755 tdep->bnd0r_regnum = I386_BND0R_REGNUM;
7756 tdep->bndcfgu_regnum = I386_BNDCFGU_REGNUM;
7757 }
7758
7759 for (i = 0; i < I387_NUM_MPX_REGS; i++)
7760 valid_p &= tdesc_numbered_register (feature_mpx, tdesc_data,
7761 I387_BND0R_REGNUM (tdep) + i,
7762 tdep->mpx_register_names[i]);
7763 }
7764
7765 return valid_p;
7766 }
7767
7768 \f
7769 static struct gdbarch *
7770 i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
7771 {
7772 struct gdbarch_tdep *tdep;
7773 struct gdbarch *gdbarch;
7774 struct tdesc_arch_data *tdesc_data;
7775 const struct target_desc *tdesc;
7776 int mm0_regnum;
7777 int ymm0_regnum;
7778 int bnd0_regnum;
7779 int num_bnd_cooked;
7780
7781 /* If there is already a candidate, use it. */
7782 arches = gdbarch_list_lookup_by_info (arches, &info);
7783 if (arches != NULL)
7784 return arches->gdbarch;
7785
7786 /* Allocate space for the new architecture. */
7787 tdep = XCALLOC (1, struct gdbarch_tdep);
7788 gdbarch = gdbarch_alloc (&info, tdep);
7789
7790 /* General-purpose registers. */
7791 tdep->gregset = NULL;
7792 tdep->gregset_reg_offset = NULL;
7793 tdep->gregset_num_regs = I386_NUM_GREGS;
7794 tdep->sizeof_gregset = 0;
7795
7796 /* Floating-point registers. */
7797 tdep->fpregset = NULL;
7798 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
7799
7800 tdep->xstateregset = NULL;
7801
7802 /* The default settings include the FPU registers, the MMX registers
7803 and the SSE registers. This can be overridden for a specific ABI
7804 by adjusting the members `st0_regnum', `mm0_regnum' and
7805 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
7806 will show up in the output of "info all-registers". */
7807
7808 tdep->st0_regnum = I386_ST0_REGNUM;
7809
7810 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
7811 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
7812
7813 tdep->jb_pc_offset = -1;
7814 tdep->struct_return = pcc_struct_return;
7815 tdep->sigtramp_start = 0;
7816 tdep->sigtramp_end = 0;
7817 tdep->sigtramp_p = i386_sigtramp_p;
7818 tdep->sigcontext_addr = NULL;
7819 tdep->sc_reg_offset = NULL;
7820 tdep->sc_pc_offset = -1;
7821 tdep->sc_sp_offset = -1;
7822
7823 tdep->xsave_xcr0_offset = -1;
7824
7825 tdep->record_regmap = i386_record_regmap;
7826
7827 set_gdbarch_long_long_align_bit (gdbarch, 32);
7828
7829 /* The format used for `long double' on almost all i386 targets is
7830 the i387 extended floating-point format. In fact, of all targets
7831 in the GCC 2.95 tree, only OSF/1 does it different, and insists
7832 on having a `long double' that's not `long' at all. */
7833 set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext);
7834
7835 /* Although the i387 extended floating-point has only 80 significant
7836 bits, a `long double' actually takes up 96, probably to enforce
7837 alignment. */
7838 set_gdbarch_long_double_bit (gdbarch, 96);
7839
7840 /* Register numbers of various important registers. */
7841 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
7842 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
7843 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
7844 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
7845
7846 /* NOTE: kettenis/20040418: GCC does have two possible register
7847 numbering schemes on the i386: dbx and SVR4. These schemes
7848 differ in how they number %ebp, %esp, %eflags, and the
7849 floating-point registers, and are implemented by the arrays
7850 dbx_register_map[] and svr4_dbx_register_map in
7851 gcc/config/i386.c. GCC also defines a third numbering scheme in
7852 gcc/config/i386.c, which it designates as the "default" register
7853 map used in 64bit mode. This last register numbering scheme is
7854 implemented in dbx64_register_map, and is used for AMD64; see
7855 amd64-tdep.c.
7856
7857 Currently, each GCC i386 target always uses the same register
7858 numbering scheme across all its supported debugging formats
7859 i.e. SDB (COFF), stabs and DWARF 2. This is because
7860 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
7861 DBX_REGISTER_NUMBER macro which is defined by each target's
7862 respective config header in a manner independent of the requested
7863 output debugging format.
7864
7865 This does not match the arrangement below, which presumes that
7866 the SDB and stabs numbering schemes differ from the DWARF and
7867 DWARF 2 ones. The reason for this arrangement is that it is
7868 likely to get the numbering scheme for the target's
7869 default/native debug format right. For targets where GCC is the
7870 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
7871 targets where the native toolchain uses a different numbering
7872 scheme for a particular debug format (stabs-in-ELF on Solaris)
7873 the defaults below will have to be overridden, like
7874 i386_elf_init_abi() does. */
7875
7876 /* Use the dbx register numbering scheme for stabs and COFF. */
7877 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
7878 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
7879
7880 /* Use the SVR4 register numbering scheme for DWARF 2. */
7881 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
7882
7883 /* We don't set gdbarch_stab_reg_to_regnum, since ECOFF doesn't seem to
7884 be in use on any of the supported i386 targets. */
7885
7886 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
7887
7888 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
7889
7890 /* Call dummy code. */
7891 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
7892 set_gdbarch_push_dummy_code (gdbarch, i386_push_dummy_code);
7893 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
7894 set_gdbarch_frame_align (gdbarch, i386_frame_align);
7895
7896 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
7897 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
7898 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
7899
7900 set_gdbarch_return_value (gdbarch, i386_return_value);
7901
7902 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
7903
7904 /* Stack grows downward. */
7905 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
7906
7907 set_gdbarch_breakpoint_from_pc (gdbarch, i386_breakpoint_from_pc);
7908 set_gdbarch_decr_pc_after_break (gdbarch, 1);
7909 set_gdbarch_max_insn_length (gdbarch, I386_MAX_INSN_LEN);
7910
7911 set_gdbarch_frame_args_skip (gdbarch, 8);
7912
7913 set_gdbarch_print_insn (gdbarch, i386_print_insn);
7914
7915 set_gdbarch_dummy_id (gdbarch, i386_dummy_id);
7916
7917 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
7918
7919 /* Add the i386 register groups. */
7920 i386_add_reggroups (gdbarch);
7921 tdep->register_reggroup_p = i386_register_reggroup_p;
7922
7923 /* Helper for function argument information. */
7924 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
7925
7926 /* Hook the function epilogue frame unwinder. This unwinder is
7927 appended to the list first, so that it supercedes the DWARF
7928 unwinder in function epilogues (where the DWARF unwinder
7929 currently fails). */
7930 frame_unwind_append_unwinder (gdbarch, &i386_epilogue_frame_unwind);
7931
7932 /* Hook in the DWARF CFI frame unwinder. This unwinder is appended
7933 to the list before the prologue-based unwinders, so that DWARF
7934 CFI info will be used if it is available. */
7935 dwarf2_append_unwinders (gdbarch);
7936
7937 frame_base_set_default (gdbarch, &i386_frame_base);
7938
7939 /* Pseudo registers may be changed by amd64_init_abi. */
7940 set_gdbarch_pseudo_register_read_value (gdbarch,
7941 i386_pseudo_register_read_value);
7942 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
7943
7944 set_tdesc_pseudo_register_type (gdbarch, i386_pseudo_register_type);
7945 set_tdesc_pseudo_register_name (gdbarch, i386_pseudo_register_name);
7946
7947 /* Override the normal target description method to make the AVX
7948 upper halves anonymous. */
7949 set_gdbarch_register_name (gdbarch, i386_register_name);
7950
7951 /* Even though the default ABI only includes general-purpose registers,
7952 floating-point registers and the SSE registers, we have to leave a
7953 gap for the upper AVX registers and the MPX registers. */
7954 set_gdbarch_num_regs (gdbarch, I386_MPX_NUM_REGS);
7955
7956 /* Get the x86 target description from INFO. */
7957 tdesc = info.target_desc;
7958 if (! tdesc_has_registers (tdesc))
7959 tdesc = tdesc_i386;
7960 tdep->tdesc = tdesc;
7961
7962 tdep->num_core_regs = I386_NUM_GREGS + I387_NUM_REGS;
7963 tdep->register_names = i386_register_names;
7964
7965 /* No upper YMM registers. */
7966 tdep->ymmh_register_names = NULL;
7967 tdep->ymm0h_regnum = -1;
7968
7969 tdep->num_byte_regs = 8;
7970 tdep->num_word_regs = 8;
7971 tdep->num_dword_regs = 0;
7972 tdep->num_mmx_regs = 8;
7973 tdep->num_ymm_regs = 0;
7974
7975 /* No MPX registers. */
7976 tdep->bnd0r_regnum = -1;
7977 tdep->bndcfgu_regnum = -1;
7978
7979 tdesc_data = tdesc_data_alloc ();
7980
7981 set_gdbarch_relocate_instruction (gdbarch, i386_relocate_instruction);
7982
7983 set_gdbarch_gen_return_address (gdbarch, i386_gen_return_address);
7984
7985 /* Hook in ABI-specific overrides, if they have been registered. */
7986 info.tdep_info = (void *) tdesc_data;
7987 gdbarch_init_osabi (info, gdbarch);
7988
7989 if (!i386_validate_tdesc_p (tdep, tdesc_data))
7990 {
7991 tdesc_data_cleanup (tdesc_data);
7992 xfree (tdep);
7993 gdbarch_free (gdbarch);
7994 return NULL;
7995 }
7996
7997 num_bnd_cooked = (tdep->bnd0r_regnum > 0 ? I387_NUM_BND_REGS : 0);
7998
7999 /* Wire in pseudo registers. Number of pseudo registers may be
8000 changed. */
8001 set_gdbarch_num_pseudo_regs (gdbarch, (tdep->num_byte_regs
8002 + tdep->num_word_regs
8003 + tdep->num_dword_regs
8004 + tdep->num_mmx_regs
8005 + tdep->num_ymm_regs
8006 + num_bnd_cooked));
8007
8008 /* Target description may be changed. */
8009 tdesc = tdep->tdesc;
8010
8011 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
8012
8013 /* Override gdbarch_register_reggroup_p set in tdesc_use_registers. */
8014 set_gdbarch_register_reggroup_p (gdbarch, tdep->register_reggroup_p);
8015
8016 /* Make %al the first pseudo-register. */
8017 tdep->al_regnum = gdbarch_num_regs (gdbarch);
8018 tdep->ax_regnum = tdep->al_regnum + tdep->num_byte_regs;
8019
8020 ymm0_regnum = tdep->ax_regnum + tdep->num_word_regs;
8021 if (tdep->num_dword_regs)
8022 {
8023 /* Support dword pseudo-register if it hasn't been disabled. */
8024 tdep->eax_regnum = ymm0_regnum;
8025 ymm0_regnum += tdep->num_dword_regs;
8026 }
8027 else
8028 tdep->eax_regnum = -1;
8029
8030 mm0_regnum = ymm0_regnum;
8031 if (tdep->num_ymm_regs)
8032 {
8033 /* Support YMM pseudo-register if it is available. */
8034 tdep->ymm0_regnum = ymm0_regnum;
8035 mm0_regnum += tdep->num_ymm_regs;
8036 }
8037 else
8038 tdep->ymm0_regnum = -1;
8039
8040 bnd0_regnum = mm0_regnum;
8041 if (tdep->num_mmx_regs != 0)
8042 {
8043 /* Support MMX pseudo-register if MMX hasn't been disabled. */
8044 tdep->mm0_regnum = mm0_regnum;
8045 bnd0_regnum += tdep->num_mmx_regs;
8046 }
8047 else
8048 tdep->mm0_regnum = -1;
8049
8050 if (tdep->bnd0r_regnum > 0)
8051 tdep->bnd0_regnum = bnd0_regnum;
8052 else
8053 tdep-> bnd0_regnum = -1;
8054
8055 /* Hook in the legacy prologue-based unwinders last (fallback). */
8056 frame_unwind_append_unwinder (gdbarch, &i386_stack_tramp_frame_unwind);
8057 frame_unwind_append_unwinder (gdbarch, &i386_sigtramp_frame_unwind);
8058 frame_unwind_append_unwinder (gdbarch, &i386_frame_unwind);
8059
8060 /* If we have a register mapping, enable the generic core file
8061 support, unless it has already been enabled. */
8062 if (tdep->gregset_reg_offset
8063 && !gdbarch_regset_from_core_section_p (gdbarch))
8064 set_gdbarch_regset_from_core_section (gdbarch,
8065 i386_regset_from_core_section);
8066
8067 set_gdbarch_skip_permanent_breakpoint (gdbarch,
8068 i386_skip_permanent_breakpoint);
8069
8070 set_gdbarch_fast_tracepoint_valid_at (gdbarch,
8071 i386_fast_tracepoint_valid_at);
8072
8073 return gdbarch;
8074 }
8075
8076 static enum gdb_osabi
8077 i386_coff_osabi_sniffer (bfd *abfd)
8078 {
8079 if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
8080 || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
8081 return GDB_OSABI_GO32;
8082
8083 return GDB_OSABI_UNKNOWN;
8084 }
8085 \f
8086
8087 /* Provide a prototype to silence -Wmissing-prototypes. */
8088 void _initialize_i386_tdep (void);
8089
8090 void
8091 _initialize_i386_tdep (void)
8092 {
8093 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
8094
8095 /* Add the variable that controls the disassembly flavor. */
8096 add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
8097 &disassembly_flavor, _("\
8098 Set the disassembly flavor."), _("\
8099 Show the disassembly flavor."), _("\
8100 The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
8101 NULL,
8102 NULL, /* FIXME: i18n: */
8103 &setlist, &showlist);
8104
8105 /* Add the variable that controls the convention for returning
8106 structs. */
8107 add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
8108 &struct_convention, _("\
8109 Set the convention for returning small structs."), _("\
8110 Show the convention for returning small structs."), _("\
8111 Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
8112 is \"default\"."),
8113 NULL,
8114 NULL, /* FIXME: i18n: */
8115 &setlist, &showlist);
8116
8117 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
8118 i386_coff_osabi_sniffer);
8119
8120 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
8121 i386_svr4_init_abi);
8122 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_GO32,
8123 i386_go32_init_abi);
8124
8125 /* Initialize the i386-specific register groups. */
8126 i386_init_reggroups ();
8127
8128 /* Initialize the standard target descriptions. */
8129 initialize_tdesc_i386 ();
8130 initialize_tdesc_i386_mmx ();
8131 initialize_tdesc_i386_avx ();
8132 initialize_tdesc_i386_mpx ();
8133
8134 /* Tell remote stub that we support XML target description. */
8135 register_remote_support_xml ("i386");
8136 }
This page took 0.21473 seconds and 5 git commands to generate.