PR 21352: Add testsuite for "tsave -r" command
[deliverable/binutils-gdb.git] / gdb / i386-tdep.c
1 /* Intel 386 target-dependent stuff.
2
3 Copyright (C) 1988-2017 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "opcode/i386.h"
22 #include "arch-utils.h"
23 #include "command.h"
24 #include "dummy-frame.h"
25 #include "dwarf2-frame.h"
26 #include "doublest.h"
27 #include "frame.h"
28 #include "frame-base.h"
29 #include "frame-unwind.h"
30 #include "inferior.h"
31 #include "infrun.h"
32 #include "gdbcmd.h"
33 #include "gdbcore.h"
34 #include "gdbtypes.h"
35 #include "objfiles.h"
36 #include "osabi.h"
37 #include "regcache.h"
38 #include "reggroups.h"
39 #include "regset.h"
40 #include "symfile.h"
41 #include "symtab.h"
42 #include "target.h"
43 #include "value.h"
44 #include "dis-asm.h"
45 #include "disasm.h"
46 #include "remote.h"
47 #include "i386-tdep.h"
48 #include "i387-tdep.h"
49 #include "x86-xstate.h"
50
51 #include "record.h"
52 #include "record-full.h"
53 #include "features/i386/i386.c"
54 #include "features/i386/i386-avx.c"
55 #include "features/i386/i386-mpx.c"
56 #include "features/i386/i386-avx-mpx.c"
57 #include "features/i386/i386-avx-avx512.c"
58 #include "features/i386/i386-avx-mpx-avx512-pku.c"
59 #include "features/i386/i386-mmx.c"
60
61 #include "ax.h"
62 #include "ax-gdb.h"
63
64 #include "stap-probe.h"
65 #include "user-regs.h"
66 #include "cli/cli-utils.h"
67 #include "expression.h"
68 #include "parser-defs.h"
69 #include <ctype.h>
70 #include <algorithm>
71
72 /* Register names. */
73
74 static const char *i386_register_names[] =
75 {
76 "eax", "ecx", "edx", "ebx",
77 "esp", "ebp", "esi", "edi",
78 "eip", "eflags", "cs", "ss",
79 "ds", "es", "fs", "gs",
80 "st0", "st1", "st2", "st3",
81 "st4", "st5", "st6", "st7",
82 "fctrl", "fstat", "ftag", "fiseg",
83 "fioff", "foseg", "fooff", "fop",
84 "xmm0", "xmm1", "xmm2", "xmm3",
85 "xmm4", "xmm5", "xmm6", "xmm7",
86 "mxcsr"
87 };
88
89 static const char *i386_zmm_names[] =
90 {
91 "zmm0", "zmm1", "zmm2", "zmm3",
92 "zmm4", "zmm5", "zmm6", "zmm7"
93 };
94
95 static const char *i386_zmmh_names[] =
96 {
97 "zmm0h", "zmm1h", "zmm2h", "zmm3h",
98 "zmm4h", "zmm5h", "zmm6h", "zmm7h"
99 };
100
101 static const char *i386_k_names[] =
102 {
103 "k0", "k1", "k2", "k3",
104 "k4", "k5", "k6", "k7"
105 };
106
107 static const char *i386_ymm_names[] =
108 {
109 "ymm0", "ymm1", "ymm2", "ymm3",
110 "ymm4", "ymm5", "ymm6", "ymm7",
111 };
112
113 static const char *i386_ymmh_names[] =
114 {
115 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
116 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
117 };
118
119 static const char *i386_mpx_names[] =
120 {
121 "bnd0raw", "bnd1raw", "bnd2raw", "bnd3raw", "bndcfgu", "bndstatus"
122 };
123
124 static const char* i386_pkeys_names[] =
125 {
126 "pkru"
127 };
128
129 /* Register names for MPX pseudo-registers. */
130
131 static const char *i386_bnd_names[] =
132 {
133 "bnd0", "bnd1", "bnd2", "bnd3"
134 };
135
136 /* Register names for MMX pseudo-registers. */
137
138 static const char *i386_mmx_names[] =
139 {
140 "mm0", "mm1", "mm2", "mm3",
141 "mm4", "mm5", "mm6", "mm7"
142 };
143
144 /* Register names for byte pseudo-registers. */
145
146 static const char *i386_byte_names[] =
147 {
148 "al", "cl", "dl", "bl",
149 "ah", "ch", "dh", "bh"
150 };
151
152 /* Register names for word pseudo-registers. */
153
154 static const char *i386_word_names[] =
155 {
156 "ax", "cx", "dx", "bx",
157 "", "bp", "si", "di"
158 };
159
160 /* Constant used for reading/writing pseudo registers. In 64-bit mode, we have
161 16 lower ZMM regs that extend corresponding xmm/ymm registers. In addition,
162 we have 16 upper ZMM regs that have to be handled differently. */
163
164 const int num_lower_zmm_regs = 16;
165
166 /* MMX register? */
167
168 static int
169 i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
170 {
171 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
172 int mm0_regnum = tdep->mm0_regnum;
173
174 if (mm0_regnum < 0)
175 return 0;
176
177 regnum -= mm0_regnum;
178 return regnum >= 0 && regnum < tdep->num_mmx_regs;
179 }
180
181 /* Byte register? */
182
183 int
184 i386_byte_regnum_p (struct gdbarch *gdbarch, int regnum)
185 {
186 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
187
188 regnum -= tdep->al_regnum;
189 return regnum >= 0 && regnum < tdep->num_byte_regs;
190 }
191
192 /* Word register? */
193
194 int
195 i386_word_regnum_p (struct gdbarch *gdbarch, int regnum)
196 {
197 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
198
199 regnum -= tdep->ax_regnum;
200 return regnum >= 0 && regnum < tdep->num_word_regs;
201 }
202
203 /* Dword register? */
204
205 int
206 i386_dword_regnum_p (struct gdbarch *gdbarch, int regnum)
207 {
208 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
209 int eax_regnum = tdep->eax_regnum;
210
211 if (eax_regnum < 0)
212 return 0;
213
214 regnum -= eax_regnum;
215 return regnum >= 0 && regnum < tdep->num_dword_regs;
216 }
217
218 /* AVX512 register? */
219
220 int
221 i386_zmmh_regnum_p (struct gdbarch *gdbarch, int regnum)
222 {
223 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
224 int zmm0h_regnum = tdep->zmm0h_regnum;
225
226 if (zmm0h_regnum < 0)
227 return 0;
228
229 regnum -= zmm0h_regnum;
230 return regnum >= 0 && regnum < tdep->num_zmm_regs;
231 }
232
233 int
234 i386_zmm_regnum_p (struct gdbarch *gdbarch, int regnum)
235 {
236 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
237 int zmm0_regnum = tdep->zmm0_regnum;
238
239 if (zmm0_regnum < 0)
240 return 0;
241
242 regnum -= zmm0_regnum;
243 return regnum >= 0 && regnum < tdep->num_zmm_regs;
244 }
245
246 int
247 i386_k_regnum_p (struct gdbarch *gdbarch, int regnum)
248 {
249 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
250 int k0_regnum = tdep->k0_regnum;
251
252 if (k0_regnum < 0)
253 return 0;
254
255 regnum -= k0_regnum;
256 return regnum >= 0 && regnum < I387_NUM_K_REGS;
257 }
258
259 static int
260 i386_ymmh_regnum_p (struct gdbarch *gdbarch, int regnum)
261 {
262 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
263 int ymm0h_regnum = tdep->ymm0h_regnum;
264
265 if (ymm0h_regnum < 0)
266 return 0;
267
268 regnum -= ymm0h_regnum;
269 return regnum >= 0 && regnum < tdep->num_ymm_regs;
270 }
271
272 /* AVX register? */
273
274 int
275 i386_ymm_regnum_p (struct gdbarch *gdbarch, int regnum)
276 {
277 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
278 int ymm0_regnum = tdep->ymm0_regnum;
279
280 if (ymm0_regnum < 0)
281 return 0;
282
283 regnum -= ymm0_regnum;
284 return regnum >= 0 && regnum < tdep->num_ymm_regs;
285 }
286
287 static int
288 i386_ymmh_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
289 {
290 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
291 int ymm16h_regnum = tdep->ymm16h_regnum;
292
293 if (ymm16h_regnum < 0)
294 return 0;
295
296 regnum -= ymm16h_regnum;
297 return regnum >= 0 && regnum < tdep->num_ymm_avx512_regs;
298 }
299
300 int
301 i386_ymm_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
302 {
303 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
304 int ymm16_regnum = tdep->ymm16_regnum;
305
306 if (ymm16_regnum < 0)
307 return 0;
308
309 regnum -= ymm16_regnum;
310 return regnum >= 0 && regnum < tdep->num_ymm_avx512_regs;
311 }
312
313 /* BND register? */
314
315 int
316 i386_bnd_regnum_p (struct gdbarch *gdbarch, int regnum)
317 {
318 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
319 int bnd0_regnum = tdep->bnd0_regnum;
320
321 if (bnd0_regnum < 0)
322 return 0;
323
324 regnum -= bnd0_regnum;
325 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
326 }
327
328 /* SSE register? */
329
330 int
331 i386_xmm_regnum_p (struct gdbarch *gdbarch, int regnum)
332 {
333 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
334 int num_xmm_regs = I387_NUM_XMM_REGS (tdep);
335
336 if (num_xmm_regs == 0)
337 return 0;
338
339 regnum -= I387_XMM0_REGNUM (tdep);
340 return regnum >= 0 && regnum < num_xmm_regs;
341 }
342
343 /* XMM_512 register? */
344
345 int
346 i386_xmm_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
347 {
348 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
349 int num_xmm_avx512_regs = I387_NUM_XMM_AVX512_REGS (tdep);
350
351 if (num_xmm_avx512_regs == 0)
352 return 0;
353
354 regnum -= I387_XMM16_REGNUM (tdep);
355 return regnum >= 0 && regnum < num_xmm_avx512_regs;
356 }
357
358 static int
359 i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
360 {
361 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
362
363 if (I387_NUM_XMM_REGS (tdep) == 0)
364 return 0;
365
366 return (regnum == I387_MXCSR_REGNUM (tdep));
367 }
368
369 /* FP register? */
370
371 int
372 i386_fp_regnum_p (struct gdbarch *gdbarch, int regnum)
373 {
374 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
375
376 if (I387_ST0_REGNUM (tdep) < 0)
377 return 0;
378
379 return (I387_ST0_REGNUM (tdep) <= regnum
380 && regnum < I387_FCTRL_REGNUM (tdep));
381 }
382
383 int
384 i386_fpc_regnum_p (struct gdbarch *gdbarch, int regnum)
385 {
386 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
387
388 if (I387_ST0_REGNUM (tdep) < 0)
389 return 0;
390
391 return (I387_FCTRL_REGNUM (tdep) <= regnum
392 && regnum < I387_XMM0_REGNUM (tdep));
393 }
394
395 /* BNDr (raw) register? */
396
397 static int
398 i386_bndr_regnum_p (struct gdbarch *gdbarch, int regnum)
399 {
400 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
401
402 if (I387_BND0R_REGNUM (tdep) < 0)
403 return 0;
404
405 regnum -= tdep->bnd0r_regnum;
406 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
407 }
408
409 /* BND control register? */
410
411 static int
412 i386_mpx_ctrl_regnum_p (struct gdbarch *gdbarch, int regnum)
413 {
414 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
415
416 if (I387_BNDCFGU_REGNUM (tdep) < 0)
417 return 0;
418
419 regnum -= I387_BNDCFGU_REGNUM (tdep);
420 return regnum >= 0 && regnum < I387_NUM_MPX_CTRL_REGS;
421 }
422
423 /* PKRU register? */
424
425 bool
426 i386_pkru_regnum_p (struct gdbarch *gdbarch, int regnum)
427 {
428 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
429 int pkru_regnum = tdep->pkru_regnum;
430
431 if (pkru_regnum < 0)
432 return false;
433
434 regnum -= pkru_regnum;
435 return regnum >= 0 && regnum < I387_NUM_PKEYS_REGS;
436 }
437
438 /* Return the name of register REGNUM, or the empty string if it is
439 an anonymous register. */
440
441 static const char *
442 i386_register_name (struct gdbarch *gdbarch, int regnum)
443 {
444 /* Hide the upper YMM registers. */
445 if (i386_ymmh_regnum_p (gdbarch, regnum))
446 return "";
447
448 /* Hide the upper YMM16-31 registers. */
449 if (i386_ymmh_avx512_regnum_p (gdbarch, regnum))
450 return "";
451
452 /* Hide the upper ZMM registers. */
453 if (i386_zmmh_regnum_p (gdbarch, regnum))
454 return "";
455
456 return tdesc_register_name (gdbarch, regnum);
457 }
458
459 /* Return the name of register REGNUM. */
460
461 const char *
462 i386_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
463 {
464 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
465 if (i386_bnd_regnum_p (gdbarch, regnum))
466 return i386_bnd_names[regnum - tdep->bnd0_regnum];
467 if (i386_mmx_regnum_p (gdbarch, regnum))
468 return i386_mmx_names[regnum - I387_MM0_REGNUM (tdep)];
469 else if (i386_ymm_regnum_p (gdbarch, regnum))
470 return i386_ymm_names[regnum - tdep->ymm0_regnum];
471 else if (i386_zmm_regnum_p (gdbarch, regnum))
472 return i386_zmm_names[regnum - tdep->zmm0_regnum];
473 else if (i386_byte_regnum_p (gdbarch, regnum))
474 return i386_byte_names[regnum - tdep->al_regnum];
475 else if (i386_word_regnum_p (gdbarch, regnum))
476 return i386_word_names[regnum - tdep->ax_regnum];
477
478 internal_error (__FILE__, __LINE__, _("invalid regnum"));
479 }
480
481 /* Convert a dbx register number REG to the appropriate register
482 number used by GDB. */
483
484 static int
485 i386_dbx_reg_to_regnum (struct gdbarch *gdbarch, int reg)
486 {
487 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
488
489 /* This implements what GCC calls the "default" register map
490 (dbx_register_map[]). */
491
492 if (reg >= 0 && reg <= 7)
493 {
494 /* General-purpose registers. The debug info calls %ebp
495 register 4, and %esp register 5. */
496 if (reg == 4)
497 return 5;
498 else if (reg == 5)
499 return 4;
500 else return reg;
501 }
502 else if (reg >= 12 && reg <= 19)
503 {
504 /* Floating-point registers. */
505 return reg - 12 + I387_ST0_REGNUM (tdep);
506 }
507 else if (reg >= 21 && reg <= 28)
508 {
509 /* SSE registers. */
510 int ymm0_regnum = tdep->ymm0_regnum;
511
512 if (ymm0_regnum >= 0
513 && i386_xmm_regnum_p (gdbarch, reg))
514 return reg - 21 + ymm0_regnum;
515 else
516 return reg - 21 + I387_XMM0_REGNUM (tdep);
517 }
518 else if (reg >= 29 && reg <= 36)
519 {
520 /* MMX registers. */
521 return reg - 29 + I387_MM0_REGNUM (tdep);
522 }
523
524 /* This will hopefully provoke a warning. */
525 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
526 }
527
528 /* Convert SVR4 DWARF register number REG to the appropriate register number
529 used by GDB. */
530
531 static int
532 i386_svr4_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
533 {
534 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
535
536 /* This implements the GCC register map that tries to be compatible
537 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
538
539 /* The SVR4 register numbering includes %eip and %eflags, and
540 numbers the floating point registers differently. */
541 if (reg >= 0 && reg <= 9)
542 {
543 /* General-purpose registers. */
544 return reg;
545 }
546 else if (reg >= 11 && reg <= 18)
547 {
548 /* Floating-point registers. */
549 return reg - 11 + I387_ST0_REGNUM (tdep);
550 }
551 else if (reg >= 21 && reg <= 36)
552 {
553 /* The SSE and MMX registers have the same numbers as with dbx. */
554 return i386_dbx_reg_to_regnum (gdbarch, reg);
555 }
556
557 switch (reg)
558 {
559 case 37: return I387_FCTRL_REGNUM (tdep);
560 case 38: return I387_FSTAT_REGNUM (tdep);
561 case 39: return I387_MXCSR_REGNUM (tdep);
562 case 40: return I386_ES_REGNUM;
563 case 41: return I386_CS_REGNUM;
564 case 42: return I386_SS_REGNUM;
565 case 43: return I386_DS_REGNUM;
566 case 44: return I386_FS_REGNUM;
567 case 45: return I386_GS_REGNUM;
568 }
569
570 return -1;
571 }
572
573 /* Wrapper on i386_svr4_dwarf_reg_to_regnum to return
574 num_regs + num_pseudo_regs for other debug formats. */
575
576 static int
577 i386_svr4_reg_to_regnum (struct gdbarch *gdbarch, int reg)
578 {
579 int regnum = i386_svr4_dwarf_reg_to_regnum (gdbarch, reg);
580
581 if (regnum == -1)
582 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
583 return regnum;
584 }
585
586 \f
587
588 /* This is the variable that is set with "set disassembly-flavor", and
589 its legitimate values. */
590 static const char att_flavor[] = "att";
591 static const char intel_flavor[] = "intel";
592 static const char *const valid_flavors[] =
593 {
594 att_flavor,
595 intel_flavor,
596 NULL
597 };
598 static const char *disassembly_flavor = att_flavor;
599 \f
600
601 /* Use the program counter to determine the contents and size of a
602 breakpoint instruction. Return a pointer to a string of bytes that
603 encode a breakpoint instruction, store the length of the string in
604 *LEN and optionally adjust *PC to point to the correct memory
605 location for inserting the breakpoint.
606
607 On the i386 we have a single breakpoint that fits in a single byte
608 and can be inserted anywhere.
609
610 This function is 64-bit safe. */
611
612 constexpr gdb_byte i386_break_insn[] = { 0xcc }; /* int 3 */
613
614 typedef BP_MANIPULATION (i386_break_insn) i386_breakpoint;
615
616 \f
617 /* Displaced instruction handling. */
618
619 /* Skip the legacy instruction prefixes in INSN.
620 Not all prefixes are valid for any particular insn
621 but we needn't care, the insn will fault if it's invalid.
622 The result is a pointer to the first opcode byte,
623 or NULL if we run off the end of the buffer. */
624
625 static gdb_byte *
626 i386_skip_prefixes (gdb_byte *insn, size_t max_len)
627 {
628 gdb_byte *end = insn + max_len;
629
630 while (insn < end)
631 {
632 switch (*insn)
633 {
634 case DATA_PREFIX_OPCODE:
635 case ADDR_PREFIX_OPCODE:
636 case CS_PREFIX_OPCODE:
637 case DS_PREFIX_OPCODE:
638 case ES_PREFIX_OPCODE:
639 case FS_PREFIX_OPCODE:
640 case GS_PREFIX_OPCODE:
641 case SS_PREFIX_OPCODE:
642 case LOCK_PREFIX_OPCODE:
643 case REPE_PREFIX_OPCODE:
644 case REPNE_PREFIX_OPCODE:
645 ++insn;
646 continue;
647 default:
648 return insn;
649 }
650 }
651
652 return NULL;
653 }
654
655 static int
656 i386_absolute_jmp_p (const gdb_byte *insn)
657 {
658 /* jmp far (absolute address in operand). */
659 if (insn[0] == 0xea)
660 return 1;
661
662 if (insn[0] == 0xff)
663 {
664 /* jump near, absolute indirect (/4). */
665 if ((insn[1] & 0x38) == 0x20)
666 return 1;
667
668 /* jump far, absolute indirect (/5). */
669 if ((insn[1] & 0x38) == 0x28)
670 return 1;
671 }
672
673 return 0;
674 }
675
676 /* Return non-zero if INSN is a jump, zero otherwise. */
677
678 static int
679 i386_jmp_p (const gdb_byte *insn)
680 {
681 /* jump short, relative. */
682 if (insn[0] == 0xeb)
683 return 1;
684
685 /* jump near, relative. */
686 if (insn[0] == 0xe9)
687 return 1;
688
689 return i386_absolute_jmp_p (insn);
690 }
691
692 static int
693 i386_absolute_call_p (const gdb_byte *insn)
694 {
695 /* call far, absolute. */
696 if (insn[0] == 0x9a)
697 return 1;
698
699 if (insn[0] == 0xff)
700 {
701 /* Call near, absolute indirect (/2). */
702 if ((insn[1] & 0x38) == 0x10)
703 return 1;
704
705 /* Call far, absolute indirect (/3). */
706 if ((insn[1] & 0x38) == 0x18)
707 return 1;
708 }
709
710 return 0;
711 }
712
713 static int
714 i386_ret_p (const gdb_byte *insn)
715 {
716 switch (insn[0])
717 {
718 case 0xc2: /* ret near, pop N bytes. */
719 case 0xc3: /* ret near */
720 case 0xca: /* ret far, pop N bytes. */
721 case 0xcb: /* ret far */
722 case 0xcf: /* iret */
723 return 1;
724
725 default:
726 return 0;
727 }
728 }
729
730 static int
731 i386_call_p (const gdb_byte *insn)
732 {
733 if (i386_absolute_call_p (insn))
734 return 1;
735
736 /* call near, relative. */
737 if (insn[0] == 0xe8)
738 return 1;
739
740 return 0;
741 }
742
743 /* Return non-zero if INSN is a system call, and set *LENGTHP to its
744 length in bytes. Otherwise, return zero. */
745
746 static int
747 i386_syscall_p (const gdb_byte *insn, int *lengthp)
748 {
749 /* Is it 'int $0x80'? */
750 if ((insn[0] == 0xcd && insn[1] == 0x80)
751 /* Or is it 'sysenter'? */
752 || (insn[0] == 0x0f && insn[1] == 0x34)
753 /* Or is it 'syscall'? */
754 || (insn[0] == 0x0f && insn[1] == 0x05))
755 {
756 *lengthp = 2;
757 return 1;
758 }
759
760 return 0;
761 }
762
763 /* The gdbarch insn_is_call method. */
764
765 static int
766 i386_insn_is_call (struct gdbarch *gdbarch, CORE_ADDR addr)
767 {
768 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
769
770 read_code (addr, buf, I386_MAX_INSN_LEN);
771 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
772
773 return i386_call_p (insn);
774 }
775
776 /* The gdbarch insn_is_ret method. */
777
778 static int
779 i386_insn_is_ret (struct gdbarch *gdbarch, CORE_ADDR addr)
780 {
781 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
782
783 read_code (addr, buf, I386_MAX_INSN_LEN);
784 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
785
786 return i386_ret_p (insn);
787 }
788
789 /* The gdbarch insn_is_jump method. */
790
791 static int
792 i386_insn_is_jump (struct gdbarch *gdbarch, CORE_ADDR addr)
793 {
794 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
795
796 read_code (addr, buf, I386_MAX_INSN_LEN);
797 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
798
799 return i386_jmp_p (insn);
800 }
801
802 /* Some kernels may run one past a syscall insn, so we have to cope.
803 Otherwise this is just simple_displaced_step_copy_insn. */
804
805 struct displaced_step_closure *
806 i386_displaced_step_copy_insn (struct gdbarch *gdbarch,
807 CORE_ADDR from, CORE_ADDR to,
808 struct regcache *regs)
809 {
810 size_t len = gdbarch_max_insn_length (gdbarch);
811 gdb_byte *buf = (gdb_byte *) xmalloc (len);
812
813 read_memory (from, buf, len);
814
815 /* GDB may get control back after the insn after the syscall.
816 Presumably this is a kernel bug.
817 If this is a syscall, make sure there's a nop afterwards. */
818 {
819 int syscall_length;
820 gdb_byte *insn;
821
822 insn = i386_skip_prefixes (buf, len);
823 if (insn != NULL && i386_syscall_p (insn, &syscall_length))
824 insn[syscall_length] = NOP_OPCODE;
825 }
826
827 write_memory (to, buf, len);
828
829 if (debug_displaced)
830 {
831 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
832 paddress (gdbarch, from), paddress (gdbarch, to));
833 displaced_step_dump_bytes (gdb_stdlog, buf, len);
834 }
835
836 return (struct displaced_step_closure *) buf;
837 }
838
839 /* Fix up the state of registers and memory after having single-stepped
840 a displaced instruction. */
841
842 void
843 i386_displaced_step_fixup (struct gdbarch *gdbarch,
844 struct displaced_step_closure *closure,
845 CORE_ADDR from, CORE_ADDR to,
846 struct regcache *regs)
847 {
848 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
849
850 /* The offset we applied to the instruction's address.
851 This could well be negative (when viewed as a signed 32-bit
852 value), but ULONGEST won't reflect that, so take care when
853 applying it. */
854 ULONGEST insn_offset = to - from;
855
856 /* Since we use simple_displaced_step_copy_insn, our closure is a
857 copy of the instruction. */
858 gdb_byte *insn = (gdb_byte *) closure;
859 /* The start of the insn, needed in case we see some prefixes. */
860 gdb_byte *insn_start = insn;
861
862 if (debug_displaced)
863 fprintf_unfiltered (gdb_stdlog,
864 "displaced: fixup (%s, %s), "
865 "insn = 0x%02x 0x%02x ...\n",
866 paddress (gdbarch, from), paddress (gdbarch, to),
867 insn[0], insn[1]);
868
869 /* The list of issues to contend with here is taken from
870 resume_execution in arch/i386/kernel/kprobes.c, Linux 2.6.20.
871 Yay for Free Software! */
872
873 /* Relocate the %eip, if necessary. */
874
875 /* The instruction recognizers we use assume any leading prefixes
876 have been skipped. */
877 {
878 /* This is the size of the buffer in closure. */
879 size_t max_insn_len = gdbarch_max_insn_length (gdbarch);
880 gdb_byte *opcode = i386_skip_prefixes (insn, max_insn_len);
881 /* If there are too many prefixes, just ignore the insn.
882 It will fault when run. */
883 if (opcode != NULL)
884 insn = opcode;
885 }
886
887 /* Except in the case of absolute or indirect jump or call
888 instructions, or a return instruction, the new eip is relative to
889 the displaced instruction; make it relative. Well, signal
890 handler returns don't need relocation either, but we use the
891 value of %eip to recognize those; see below. */
892 if (! i386_absolute_jmp_p (insn)
893 && ! i386_absolute_call_p (insn)
894 && ! i386_ret_p (insn))
895 {
896 ULONGEST orig_eip;
897 int insn_len;
898
899 regcache_cooked_read_unsigned (regs, I386_EIP_REGNUM, &orig_eip);
900
901 /* A signal trampoline system call changes the %eip, resuming
902 execution of the main program after the signal handler has
903 returned. That makes them like 'return' instructions; we
904 shouldn't relocate %eip.
905
906 But most system calls don't, and we do need to relocate %eip.
907
908 Our heuristic for distinguishing these cases: if stepping
909 over the system call instruction left control directly after
910 the instruction, the we relocate --- control almost certainly
911 doesn't belong in the displaced copy. Otherwise, we assume
912 the instruction has put control where it belongs, and leave
913 it unrelocated. Goodness help us if there are PC-relative
914 system calls. */
915 if (i386_syscall_p (insn, &insn_len)
916 && orig_eip != to + (insn - insn_start) + insn_len
917 /* GDB can get control back after the insn after the syscall.
918 Presumably this is a kernel bug.
919 i386_displaced_step_copy_insn ensures its a nop,
920 we add one to the length for it. */
921 && orig_eip != to + (insn - insn_start) + insn_len + 1)
922 {
923 if (debug_displaced)
924 fprintf_unfiltered (gdb_stdlog,
925 "displaced: syscall changed %%eip; "
926 "not relocating\n");
927 }
928 else
929 {
930 ULONGEST eip = (orig_eip - insn_offset) & 0xffffffffUL;
931
932 /* If we just stepped over a breakpoint insn, we don't backup
933 the pc on purpose; this is to match behaviour without
934 stepping. */
935
936 regcache_cooked_write_unsigned (regs, I386_EIP_REGNUM, eip);
937
938 if (debug_displaced)
939 fprintf_unfiltered (gdb_stdlog,
940 "displaced: "
941 "relocated %%eip from %s to %s\n",
942 paddress (gdbarch, orig_eip),
943 paddress (gdbarch, eip));
944 }
945 }
946
947 /* If the instruction was PUSHFL, then the TF bit will be set in the
948 pushed value, and should be cleared. We'll leave this for later,
949 since GDB already messes up the TF flag when stepping over a
950 pushfl. */
951
952 /* If the instruction was a call, the return address now atop the
953 stack is the address following the copied instruction. We need
954 to make it the address following the original instruction. */
955 if (i386_call_p (insn))
956 {
957 ULONGEST esp;
958 ULONGEST retaddr;
959 const ULONGEST retaddr_len = 4;
960
961 regcache_cooked_read_unsigned (regs, I386_ESP_REGNUM, &esp);
962 retaddr = read_memory_unsigned_integer (esp, retaddr_len, byte_order);
963 retaddr = (retaddr - insn_offset) & 0xffffffffUL;
964 write_memory_unsigned_integer (esp, retaddr_len, byte_order, retaddr);
965
966 if (debug_displaced)
967 fprintf_unfiltered (gdb_stdlog,
968 "displaced: relocated return addr at %s to %s\n",
969 paddress (gdbarch, esp),
970 paddress (gdbarch, retaddr));
971 }
972 }
973
974 static void
975 append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
976 {
977 target_write_memory (*to, buf, len);
978 *to += len;
979 }
980
981 static void
982 i386_relocate_instruction (struct gdbarch *gdbarch,
983 CORE_ADDR *to, CORE_ADDR oldloc)
984 {
985 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
986 gdb_byte buf[I386_MAX_INSN_LEN];
987 int offset = 0, rel32, newrel;
988 int insn_length;
989 gdb_byte *insn = buf;
990
991 read_memory (oldloc, buf, I386_MAX_INSN_LEN);
992
993 insn_length = gdb_buffered_insn_length (gdbarch, insn,
994 I386_MAX_INSN_LEN, oldloc);
995
996 /* Get past the prefixes. */
997 insn = i386_skip_prefixes (insn, I386_MAX_INSN_LEN);
998
999 /* Adjust calls with 32-bit relative addresses as push/jump, with
1000 the address pushed being the location where the original call in
1001 the user program would return to. */
1002 if (insn[0] == 0xe8)
1003 {
1004 gdb_byte push_buf[16];
1005 unsigned int ret_addr;
1006
1007 /* Where "ret" in the original code will return to. */
1008 ret_addr = oldloc + insn_length;
1009 push_buf[0] = 0x68; /* pushq $... */
1010 store_unsigned_integer (&push_buf[1], 4, byte_order, ret_addr);
1011 /* Push the push. */
1012 append_insns (to, 5, push_buf);
1013
1014 /* Convert the relative call to a relative jump. */
1015 insn[0] = 0xe9;
1016
1017 /* Adjust the destination offset. */
1018 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
1019 newrel = (oldloc - *to) + rel32;
1020 store_signed_integer (insn + 1, 4, byte_order, newrel);
1021
1022 if (debug_displaced)
1023 fprintf_unfiltered (gdb_stdlog,
1024 "Adjusted insn rel32=%s at %s to"
1025 " rel32=%s at %s\n",
1026 hex_string (rel32), paddress (gdbarch, oldloc),
1027 hex_string (newrel), paddress (gdbarch, *to));
1028
1029 /* Write the adjusted jump into its displaced location. */
1030 append_insns (to, 5, insn);
1031 return;
1032 }
1033
1034 /* Adjust jumps with 32-bit relative addresses. Calls are already
1035 handled above. */
1036 if (insn[0] == 0xe9)
1037 offset = 1;
1038 /* Adjust conditional jumps. */
1039 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
1040 offset = 2;
1041
1042 if (offset)
1043 {
1044 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
1045 newrel = (oldloc - *to) + rel32;
1046 store_signed_integer (insn + offset, 4, byte_order, newrel);
1047 if (debug_displaced)
1048 fprintf_unfiltered (gdb_stdlog,
1049 "Adjusted insn rel32=%s at %s to"
1050 " rel32=%s at %s\n",
1051 hex_string (rel32), paddress (gdbarch, oldloc),
1052 hex_string (newrel), paddress (gdbarch, *to));
1053 }
1054
1055 /* Write the adjusted instructions into their displaced
1056 location. */
1057 append_insns (to, insn_length, buf);
1058 }
1059
1060 \f
1061 #ifdef I386_REGNO_TO_SYMMETRY
1062 #error "The Sequent Symmetry is no longer supported."
1063 #endif
1064
1065 /* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
1066 and %esp "belong" to the calling function. Therefore these
1067 registers should be saved if they're going to be modified. */
1068
1069 /* The maximum number of saved registers. This should include all
1070 registers mentioned above, and %eip. */
1071 #define I386_NUM_SAVED_REGS I386_NUM_GREGS
1072
1073 struct i386_frame_cache
1074 {
1075 /* Base address. */
1076 CORE_ADDR base;
1077 int base_p;
1078 LONGEST sp_offset;
1079 CORE_ADDR pc;
1080
1081 /* Saved registers. */
1082 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
1083 CORE_ADDR saved_sp;
1084 int saved_sp_reg;
1085 int pc_in_eax;
1086
1087 /* Stack space reserved for local variables. */
1088 long locals;
1089 };
1090
1091 /* Allocate and initialize a frame cache. */
1092
1093 static struct i386_frame_cache *
1094 i386_alloc_frame_cache (void)
1095 {
1096 struct i386_frame_cache *cache;
1097 int i;
1098
1099 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
1100
1101 /* Base address. */
1102 cache->base_p = 0;
1103 cache->base = 0;
1104 cache->sp_offset = -4;
1105 cache->pc = 0;
1106
1107 /* Saved registers. We initialize these to -1 since zero is a valid
1108 offset (that's where %ebp is supposed to be stored). */
1109 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
1110 cache->saved_regs[i] = -1;
1111 cache->saved_sp = 0;
1112 cache->saved_sp_reg = -1;
1113 cache->pc_in_eax = 0;
1114
1115 /* Frameless until proven otherwise. */
1116 cache->locals = -1;
1117
1118 return cache;
1119 }
1120
1121 /* If the instruction at PC is a jump, return the address of its
1122 target. Otherwise, return PC. */
1123
1124 static CORE_ADDR
1125 i386_follow_jump (struct gdbarch *gdbarch, CORE_ADDR pc)
1126 {
1127 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1128 gdb_byte op;
1129 long delta = 0;
1130 int data16 = 0;
1131
1132 if (target_read_code (pc, &op, 1))
1133 return pc;
1134
1135 if (op == 0x66)
1136 {
1137 data16 = 1;
1138
1139 op = read_code_unsigned_integer (pc + 1, 1, byte_order);
1140 }
1141
1142 switch (op)
1143 {
1144 case 0xe9:
1145 /* Relative jump: if data16 == 0, disp32, else disp16. */
1146 if (data16)
1147 {
1148 delta = read_memory_integer (pc + 2, 2, byte_order);
1149
1150 /* Include the size of the jmp instruction (including the
1151 0x66 prefix). */
1152 delta += 4;
1153 }
1154 else
1155 {
1156 delta = read_memory_integer (pc + 1, 4, byte_order);
1157
1158 /* Include the size of the jmp instruction. */
1159 delta += 5;
1160 }
1161 break;
1162 case 0xeb:
1163 /* Relative jump, disp8 (ignore data16). */
1164 delta = read_memory_integer (pc + data16 + 1, 1, byte_order);
1165
1166 delta += data16 + 2;
1167 break;
1168 }
1169
1170 return pc + delta;
1171 }
1172
1173 /* Check whether PC points at a prologue for a function returning a
1174 structure or union. If so, it updates CACHE and returns the
1175 address of the first instruction after the code sequence that
1176 removes the "hidden" argument from the stack or CURRENT_PC,
1177 whichever is smaller. Otherwise, return PC. */
1178
1179 static CORE_ADDR
1180 i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
1181 struct i386_frame_cache *cache)
1182 {
1183 /* Functions that return a structure or union start with:
1184
1185 popl %eax 0x58
1186 xchgl %eax, (%esp) 0x87 0x04 0x24
1187 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
1188
1189 (the System V compiler puts out the second `xchg' instruction,
1190 and the assembler doesn't try to optimize it, so the 'sib' form
1191 gets generated). This sequence is used to get the address of the
1192 return buffer for a function that returns a structure. */
1193 static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
1194 static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
1195 gdb_byte buf[4];
1196 gdb_byte op;
1197
1198 if (current_pc <= pc)
1199 return pc;
1200
1201 if (target_read_code (pc, &op, 1))
1202 return pc;
1203
1204 if (op != 0x58) /* popl %eax */
1205 return pc;
1206
1207 if (target_read_code (pc + 1, buf, 4))
1208 return pc;
1209
1210 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
1211 return pc;
1212
1213 if (current_pc == pc)
1214 {
1215 cache->sp_offset += 4;
1216 return current_pc;
1217 }
1218
1219 if (current_pc == pc + 1)
1220 {
1221 cache->pc_in_eax = 1;
1222 return current_pc;
1223 }
1224
1225 if (buf[1] == proto1[1])
1226 return pc + 4;
1227 else
1228 return pc + 5;
1229 }
1230
1231 static CORE_ADDR
1232 i386_skip_probe (CORE_ADDR pc)
1233 {
1234 /* A function may start with
1235
1236 pushl constant
1237 call _probe
1238 addl $4, %esp
1239
1240 followed by
1241
1242 pushl %ebp
1243
1244 etc. */
1245 gdb_byte buf[8];
1246 gdb_byte op;
1247
1248 if (target_read_code (pc, &op, 1))
1249 return pc;
1250
1251 if (op == 0x68 || op == 0x6a)
1252 {
1253 int delta;
1254
1255 /* Skip past the `pushl' instruction; it has either a one-byte or a
1256 four-byte operand, depending on the opcode. */
1257 if (op == 0x68)
1258 delta = 5;
1259 else
1260 delta = 2;
1261
1262 /* Read the following 8 bytes, which should be `call _probe' (6
1263 bytes) followed by `addl $4,%esp' (2 bytes). */
1264 read_memory (pc + delta, buf, sizeof (buf));
1265 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
1266 pc += delta + sizeof (buf);
1267 }
1268
1269 return pc;
1270 }
1271
1272 /* GCC 4.1 and later, can put code in the prologue to realign the
1273 stack pointer. Check whether PC points to such code, and update
1274 CACHE accordingly. Return the first instruction after the code
1275 sequence or CURRENT_PC, whichever is smaller. If we don't
1276 recognize the code, return PC. */
1277
1278 static CORE_ADDR
1279 i386_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1280 struct i386_frame_cache *cache)
1281 {
1282 /* There are 2 code sequences to re-align stack before the frame
1283 gets set up:
1284
1285 1. Use a caller-saved saved register:
1286
1287 leal 4(%esp), %reg
1288 andl $-XXX, %esp
1289 pushl -4(%reg)
1290
1291 2. Use a callee-saved saved register:
1292
1293 pushl %reg
1294 leal 8(%esp), %reg
1295 andl $-XXX, %esp
1296 pushl -4(%reg)
1297
1298 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
1299
1300 0x83 0xe4 0xf0 andl $-16, %esp
1301 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
1302 */
1303
1304 gdb_byte buf[14];
1305 int reg;
1306 int offset, offset_and;
1307 static int regnums[8] = {
1308 I386_EAX_REGNUM, /* %eax */
1309 I386_ECX_REGNUM, /* %ecx */
1310 I386_EDX_REGNUM, /* %edx */
1311 I386_EBX_REGNUM, /* %ebx */
1312 I386_ESP_REGNUM, /* %esp */
1313 I386_EBP_REGNUM, /* %ebp */
1314 I386_ESI_REGNUM, /* %esi */
1315 I386_EDI_REGNUM /* %edi */
1316 };
1317
1318 if (target_read_code (pc, buf, sizeof buf))
1319 return pc;
1320
1321 /* Check caller-saved saved register. The first instruction has
1322 to be "leal 4(%esp), %reg". */
1323 if (buf[0] == 0x8d && buf[2] == 0x24 && buf[3] == 0x4)
1324 {
1325 /* MOD must be binary 10 and R/M must be binary 100. */
1326 if ((buf[1] & 0xc7) != 0x44)
1327 return pc;
1328
1329 /* REG has register number. */
1330 reg = (buf[1] >> 3) & 7;
1331 offset = 4;
1332 }
1333 else
1334 {
1335 /* Check callee-saved saved register. The first instruction
1336 has to be "pushl %reg". */
1337 if ((buf[0] & 0xf8) != 0x50)
1338 return pc;
1339
1340 /* Get register. */
1341 reg = buf[0] & 0x7;
1342
1343 /* The next instruction has to be "leal 8(%esp), %reg". */
1344 if (buf[1] != 0x8d || buf[3] != 0x24 || buf[4] != 0x8)
1345 return pc;
1346
1347 /* MOD must be binary 10 and R/M must be binary 100. */
1348 if ((buf[2] & 0xc7) != 0x44)
1349 return pc;
1350
1351 /* REG has register number. Registers in pushl and leal have to
1352 be the same. */
1353 if (reg != ((buf[2] >> 3) & 7))
1354 return pc;
1355
1356 offset = 5;
1357 }
1358
1359 /* Rigister can't be %esp nor %ebp. */
1360 if (reg == 4 || reg == 5)
1361 return pc;
1362
1363 /* The next instruction has to be "andl $-XXX, %esp". */
1364 if (buf[offset + 1] != 0xe4
1365 || (buf[offset] != 0x81 && buf[offset] != 0x83))
1366 return pc;
1367
1368 offset_and = offset;
1369 offset += buf[offset] == 0x81 ? 6 : 3;
1370
1371 /* The next instruction has to be "pushl -4(%reg)". 8bit -4 is
1372 0xfc. REG must be binary 110 and MOD must be binary 01. */
1373 if (buf[offset] != 0xff
1374 || buf[offset + 2] != 0xfc
1375 || (buf[offset + 1] & 0xf8) != 0x70)
1376 return pc;
1377
1378 /* R/M has register. Registers in leal and pushl have to be the
1379 same. */
1380 if (reg != (buf[offset + 1] & 7))
1381 return pc;
1382
1383 if (current_pc > pc + offset_and)
1384 cache->saved_sp_reg = regnums[reg];
1385
1386 return std::min (pc + offset + 3, current_pc);
1387 }
1388
1389 /* Maximum instruction length we need to handle. */
1390 #define I386_MAX_MATCHED_INSN_LEN 6
1391
1392 /* Instruction description. */
1393 struct i386_insn
1394 {
1395 size_t len;
1396 gdb_byte insn[I386_MAX_MATCHED_INSN_LEN];
1397 gdb_byte mask[I386_MAX_MATCHED_INSN_LEN];
1398 };
1399
1400 /* Return whether instruction at PC matches PATTERN. */
1401
1402 static int
1403 i386_match_pattern (CORE_ADDR pc, struct i386_insn pattern)
1404 {
1405 gdb_byte op;
1406
1407 if (target_read_code (pc, &op, 1))
1408 return 0;
1409
1410 if ((op & pattern.mask[0]) == pattern.insn[0])
1411 {
1412 gdb_byte buf[I386_MAX_MATCHED_INSN_LEN - 1];
1413 int insn_matched = 1;
1414 size_t i;
1415
1416 gdb_assert (pattern.len > 1);
1417 gdb_assert (pattern.len <= I386_MAX_MATCHED_INSN_LEN);
1418
1419 if (target_read_code (pc + 1, buf, pattern.len - 1))
1420 return 0;
1421
1422 for (i = 1; i < pattern.len; i++)
1423 {
1424 if ((buf[i - 1] & pattern.mask[i]) != pattern.insn[i])
1425 insn_matched = 0;
1426 }
1427 return insn_matched;
1428 }
1429 return 0;
1430 }
1431
1432 /* Search for the instruction at PC in the list INSN_PATTERNS. Return
1433 the first instruction description that matches. Otherwise, return
1434 NULL. */
1435
1436 static struct i386_insn *
1437 i386_match_insn (CORE_ADDR pc, struct i386_insn *insn_patterns)
1438 {
1439 struct i386_insn *pattern;
1440
1441 for (pattern = insn_patterns; pattern->len > 0; pattern++)
1442 {
1443 if (i386_match_pattern (pc, *pattern))
1444 return pattern;
1445 }
1446
1447 return NULL;
1448 }
1449
1450 /* Return whether PC points inside a sequence of instructions that
1451 matches INSN_PATTERNS. */
1452
1453 static int
1454 i386_match_insn_block (CORE_ADDR pc, struct i386_insn *insn_patterns)
1455 {
1456 CORE_ADDR current_pc;
1457 int ix, i;
1458 struct i386_insn *insn;
1459
1460 insn = i386_match_insn (pc, insn_patterns);
1461 if (insn == NULL)
1462 return 0;
1463
1464 current_pc = pc;
1465 ix = insn - insn_patterns;
1466 for (i = ix - 1; i >= 0; i--)
1467 {
1468 current_pc -= insn_patterns[i].len;
1469
1470 if (!i386_match_pattern (current_pc, insn_patterns[i]))
1471 return 0;
1472 }
1473
1474 current_pc = pc + insn->len;
1475 for (insn = insn_patterns + ix + 1; insn->len > 0; insn++)
1476 {
1477 if (!i386_match_pattern (current_pc, *insn))
1478 return 0;
1479
1480 current_pc += insn->len;
1481 }
1482
1483 return 1;
1484 }
1485
1486 /* Some special instructions that might be migrated by GCC into the
1487 part of the prologue that sets up the new stack frame. Because the
1488 stack frame hasn't been setup yet, no registers have been saved
1489 yet, and only the scratch registers %eax, %ecx and %edx can be
1490 touched. */
1491
1492 struct i386_insn i386_frame_setup_skip_insns[] =
1493 {
1494 /* Check for `movb imm8, r' and `movl imm32, r'.
1495
1496 ??? Should we handle 16-bit operand-sizes here? */
1497
1498 /* `movb imm8, %al' and `movb imm8, %ah' */
1499 /* `movb imm8, %cl' and `movb imm8, %ch' */
1500 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
1501 /* `movb imm8, %dl' and `movb imm8, %dh' */
1502 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
1503 /* `movl imm32, %eax' and `movl imm32, %ecx' */
1504 { 5, { 0xb8 }, { 0xfe } },
1505 /* `movl imm32, %edx' */
1506 { 5, { 0xba }, { 0xff } },
1507
1508 /* Check for `mov imm32, r32'. Note that there is an alternative
1509 encoding for `mov m32, %eax'.
1510
1511 ??? Should we handle SIB adressing here?
1512 ??? Should we handle 16-bit operand-sizes here? */
1513
1514 /* `movl m32, %eax' */
1515 { 5, { 0xa1 }, { 0xff } },
1516 /* `movl m32, %eax' and `mov; m32, %ecx' */
1517 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
1518 /* `movl m32, %edx' */
1519 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
1520
1521 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
1522 Because of the symmetry, there are actually two ways to encode
1523 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
1524 opcode bytes 0x31 and 0x33 for `xorl'. */
1525
1526 /* `subl %eax, %eax' */
1527 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
1528 /* `subl %ecx, %ecx' */
1529 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
1530 /* `subl %edx, %edx' */
1531 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
1532 /* `xorl %eax, %eax' */
1533 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
1534 /* `xorl %ecx, %ecx' */
1535 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
1536 /* `xorl %edx, %edx' */
1537 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
1538 { 0 }
1539 };
1540
1541
1542 /* Check whether PC points to a no-op instruction. */
1543 static CORE_ADDR
1544 i386_skip_noop (CORE_ADDR pc)
1545 {
1546 gdb_byte op;
1547 int check = 1;
1548
1549 if (target_read_code (pc, &op, 1))
1550 return pc;
1551
1552 while (check)
1553 {
1554 check = 0;
1555 /* Ignore `nop' instruction. */
1556 if (op == 0x90)
1557 {
1558 pc += 1;
1559 if (target_read_code (pc, &op, 1))
1560 return pc;
1561 check = 1;
1562 }
1563 /* Ignore no-op instruction `mov %edi, %edi'.
1564 Microsoft system dlls often start with
1565 a `mov %edi,%edi' instruction.
1566 The 5 bytes before the function start are
1567 filled with `nop' instructions.
1568 This pattern can be used for hot-patching:
1569 The `mov %edi, %edi' instruction can be replaced by a
1570 near jump to the location of the 5 `nop' instructions
1571 which can be replaced by a 32-bit jump to anywhere
1572 in the 32-bit address space. */
1573
1574 else if (op == 0x8b)
1575 {
1576 if (target_read_code (pc + 1, &op, 1))
1577 return pc;
1578
1579 if (op == 0xff)
1580 {
1581 pc += 2;
1582 if (target_read_code (pc, &op, 1))
1583 return pc;
1584
1585 check = 1;
1586 }
1587 }
1588 }
1589 return pc;
1590 }
1591
1592 /* Check whether PC points at a code that sets up a new stack frame.
1593 If so, it updates CACHE and returns the address of the first
1594 instruction after the sequence that sets up the frame or LIMIT,
1595 whichever is smaller. If we don't recognize the code, return PC. */
1596
1597 static CORE_ADDR
1598 i386_analyze_frame_setup (struct gdbarch *gdbarch,
1599 CORE_ADDR pc, CORE_ADDR limit,
1600 struct i386_frame_cache *cache)
1601 {
1602 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1603 struct i386_insn *insn;
1604 gdb_byte op;
1605 int skip = 0;
1606
1607 if (limit <= pc)
1608 return limit;
1609
1610 if (target_read_code (pc, &op, 1))
1611 return pc;
1612
1613 if (op == 0x55) /* pushl %ebp */
1614 {
1615 /* Take into account that we've executed the `pushl %ebp' that
1616 starts this instruction sequence. */
1617 cache->saved_regs[I386_EBP_REGNUM] = 0;
1618 cache->sp_offset += 4;
1619 pc++;
1620
1621 /* If that's all, return now. */
1622 if (limit <= pc)
1623 return limit;
1624
1625 /* Check for some special instructions that might be migrated by
1626 GCC into the prologue and skip them. At this point in the
1627 prologue, code should only touch the scratch registers %eax,
1628 %ecx and %edx, so while the number of posibilities is sheer,
1629 it is limited.
1630
1631 Make sure we only skip these instructions if we later see the
1632 `movl %esp, %ebp' that actually sets up the frame. */
1633 while (pc + skip < limit)
1634 {
1635 insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
1636 if (insn == NULL)
1637 break;
1638
1639 skip += insn->len;
1640 }
1641
1642 /* If that's all, return now. */
1643 if (limit <= pc + skip)
1644 return limit;
1645
1646 if (target_read_code (pc + skip, &op, 1))
1647 return pc + skip;
1648
1649 /* The i386 prologue looks like
1650
1651 push %ebp
1652 mov %esp,%ebp
1653 sub $0x10,%esp
1654
1655 and a different prologue can be generated for atom.
1656
1657 push %ebp
1658 lea (%esp),%ebp
1659 lea -0x10(%esp),%esp
1660
1661 We handle both of them here. */
1662
1663 switch (op)
1664 {
1665 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
1666 case 0x8b:
1667 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
1668 != 0xec)
1669 return pc;
1670 pc += (skip + 2);
1671 break;
1672 case 0x89:
1673 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
1674 != 0xe5)
1675 return pc;
1676 pc += (skip + 2);
1677 break;
1678 case 0x8d: /* Check for 'lea (%ebp), %ebp'. */
1679 if (read_code_unsigned_integer (pc + skip + 1, 2, byte_order)
1680 != 0x242c)
1681 return pc;
1682 pc += (skip + 3);
1683 break;
1684 default:
1685 return pc;
1686 }
1687
1688 /* OK, we actually have a frame. We just don't know how large
1689 it is yet. Set its size to zero. We'll adjust it if
1690 necessary. We also now commit to skipping the special
1691 instructions mentioned before. */
1692 cache->locals = 0;
1693
1694 /* If that's all, return now. */
1695 if (limit <= pc)
1696 return limit;
1697
1698 /* Check for stack adjustment
1699
1700 subl $XXX, %esp
1701 or
1702 lea -XXX(%esp),%esp
1703
1704 NOTE: You can't subtract a 16-bit immediate from a 32-bit
1705 reg, so we don't have to worry about a data16 prefix. */
1706 if (target_read_code (pc, &op, 1))
1707 return pc;
1708 if (op == 0x83)
1709 {
1710 /* `subl' with 8-bit immediate. */
1711 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1712 /* Some instruction starting with 0x83 other than `subl'. */
1713 return pc;
1714
1715 /* `subl' with signed 8-bit immediate (though it wouldn't
1716 make sense to be negative). */
1717 cache->locals = read_code_integer (pc + 2, 1, byte_order);
1718 return pc + 3;
1719 }
1720 else if (op == 0x81)
1721 {
1722 /* Maybe it is `subl' with a 32-bit immediate. */
1723 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1724 /* Some instruction starting with 0x81 other than `subl'. */
1725 return pc;
1726
1727 /* It is `subl' with a 32-bit immediate. */
1728 cache->locals = read_code_integer (pc + 2, 4, byte_order);
1729 return pc + 6;
1730 }
1731 else if (op == 0x8d)
1732 {
1733 /* The ModR/M byte is 0x64. */
1734 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0x64)
1735 return pc;
1736 /* 'lea' with 8-bit displacement. */
1737 cache->locals = -1 * read_code_integer (pc + 3, 1, byte_order);
1738 return pc + 4;
1739 }
1740 else
1741 {
1742 /* Some instruction other than `subl' nor 'lea'. */
1743 return pc;
1744 }
1745 }
1746 else if (op == 0xc8) /* enter */
1747 {
1748 cache->locals = read_code_unsigned_integer (pc + 1, 2, byte_order);
1749 return pc + 4;
1750 }
1751
1752 return pc;
1753 }
1754
1755 /* Check whether PC points at code that saves registers on the stack.
1756 If so, it updates CACHE and returns the address of the first
1757 instruction after the register saves or CURRENT_PC, whichever is
1758 smaller. Otherwise, return PC. */
1759
1760 static CORE_ADDR
1761 i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
1762 struct i386_frame_cache *cache)
1763 {
1764 CORE_ADDR offset = 0;
1765 gdb_byte op;
1766 int i;
1767
1768 if (cache->locals > 0)
1769 offset -= cache->locals;
1770 for (i = 0; i < 8 && pc < current_pc; i++)
1771 {
1772 if (target_read_code (pc, &op, 1))
1773 return pc;
1774 if (op < 0x50 || op > 0x57)
1775 break;
1776
1777 offset -= 4;
1778 cache->saved_regs[op - 0x50] = offset;
1779 cache->sp_offset += 4;
1780 pc++;
1781 }
1782
1783 return pc;
1784 }
1785
1786 /* Do a full analysis of the prologue at PC and update CACHE
1787 accordingly. Bail out early if CURRENT_PC is reached. Return the
1788 address where the analysis stopped.
1789
1790 We handle these cases:
1791
1792 The startup sequence can be at the start of the function, or the
1793 function can start with a branch to startup code at the end.
1794
1795 %ebp can be set up with either the 'enter' instruction, or "pushl
1796 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
1797 once used in the System V compiler).
1798
1799 Local space is allocated just below the saved %ebp by either the
1800 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
1801 16-bit unsigned argument for space to allocate, and the 'addl'
1802 instruction could have either a signed byte, or 32-bit immediate.
1803
1804 Next, the registers used by this function are pushed. With the
1805 System V compiler they will always be in the order: %edi, %esi,
1806 %ebx (and sometimes a harmless bug causes it to also save but not
1807 restore %eax); however, the code below is willing to see the pushes
1808 in any order, and will handle up to 8 of them.
1809
1810 If the setup sequence is at the end of the function, then the next
1811 instruction will be a branch back to the start. */
1812
1813 static CORE_ADDR
1814 i386_analyze_prologue (struct gdbarch *gdbarch,
1815 CORE_ADDR pc, CORE_ADDR current_pc,
1816 struct i386_frame_cache *cache)
1817 {
1818 pc = i386_skip_noop (pc);
1819 pc = i386_follow_jump (gdbarch, pc);
1820 pc = i386_analyze_struct_return (pc, current_pc, cache);
1821 pc = i386_skip_probe (pc);
1822 pc = i386_analyze_stack_align (pc, current_pc, cache);
1823 pc = i386_analyze_frame_setup (gdbarch, pc, current_pc, cache);
1824 return i386_analyze_register_saves (pc, current_pc, cache);
1825 }
1826
1827 /* Return PC of first real instruction. */
1828
1829 static CORE_ADDR
1830 i386_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
1831 {
1832 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1833
1834 static gdb_byte pic_pat[6] =
1835 {
1836 0xe8, 0, 0, 0, 0, /* call 0x0 */
1837 0x5b, /* popl %ebx */
1838 };
1839 struct i386_frame_cache cache;
1840 CORE_ADDR pc;
1841 gdb_byte op;
1842 int i;
1843 CORE_ADDR func_addr;
1844
1845 if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
1846 {
1847 CORE_ADDR post_prologue_pc
1848 = skip_prologue_using_sal (gdbarch, func_addr);
1849 struct compunit_symtab *cust = find_pc_compunit_symtab (func_addr);
1850
1851 /* Clang always emits a line note before the prologue and another
1852 one after. We trust clang to emit usable line notes. */
1853 if (post_prologue_pc
1854 && (cust != NULL
1855 && COMPUNIT_PRODUCER (cust) != NULL
1856 && startswith (COMPUNIT_PRODUCER (cust), "clang ")))
1857 return std::max (start_pc, post_prologue_pc);
1858 }
1859
1860 cache.locals = -1;
1861 pc = i386_analyze_prologue (gdbarch, start_pc, 0xffffffff, &cache);
1862 if (cache.locals < 0)
1863 return start_pc;
1864
1865 /* Found valid frame setup. */
1866
1867 /* The native cc on SVR4 in -K PIC mode inserts the following code
1868 to get the address of the global offset table (GOT) into register
1869 %ebx:
1870
1871 call 0x0
1872 popl %ebx
1873 movl %ebx,x(%ebp) (optional)
1874 addl y,%ebx
1875
1876 This code is with the rest of the prologue (at the end of the
1877 function), so we have to skip it to get to the first real
1878 instruction at the start of the function. */
1879
1880 for (i = 0; i < 6; i++)
1881 {
1882 if (target_read_code (pc + i, &op, 1))
1883 return pc;
1884
1885 if (pic_pat[i] != op)
1886 break;
1887 }
1888 if (i == 6)
1889 {
1890 int delta = 6;
1891
1892 if (target_read_code (pc + delta, &op, 1))
1893 return pc;
1894
1895 if (op == 0x89) /* movl %ebx, x(%ebp) */
1896 {
1897 op = read_code_unsigned_integer (pc + delta + 1, 1, byte_order);
1898
1899 if (op == 0x5d) /* One byte offset from %ebp. */
1900 delta += 3;
1901 else if (op == 0x9d) /* Four byte offset from %ebp. */
1902 delta += 6;
1903 else /* Unexpected instruction. */
1904 delta = 0;
1905
1906 if (target_read_code (pc + delta, &op, 1))
1907 return pc;
1908 }
1909
1910 /* addl y,%ebx */
1911 if (delta > 0 && op == 0x81
1912 && read_code_unsigned_integer (pc + delta + 1, 1, byte_order)
1913 == 0xc3)
1914 {
1915 pc += delta + 6;
1916 }
1917 }
1918
1919 /* If the function starts with a branch (to startup code at the end)
1920 the last instruction should bring us back to the first
1921 instruction of the real code. */
1922 if (i386_follow_jump (gdbarch, start_pc) != start_pc)
1923 pc = i386_follow_jump (gdbarch, pc);
1924
1925 return pc;
1926 }
1927
1928 /* Check that the code pointed to by PC corresponds to a call to
1929 __main, skip it if so. Return PC otherwise. */
1930
1931 CORE_ADDR
1932 i386_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1933 {
1934 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1935 gdb_byte op;
1936
1937 if (target_read_code (pc, &op, 1))
1938 return pc;
1939 if (op == 0xe8)
1940 {
1941 gdb_byte buf[4];
1942
1943 if (target_read_code (pc + 1, buf, sizeof buf) == 0)
1944 {
1945 /* Make sure address is computed correctly as a 32bit
1946 integer even if CORE_ADDR is 64 bit wide. */
1947 struct bound_minimal_symbol s;
1948 CORE_ADDR call_dest;
1949
1950 call_dest = pc + 5 + extract_signed_integer (buf, 4, byte_order);
1951 call_dest = call_dest & 0xffffffffU;
1952 s = lookup_minimal_symbol_by_pc (call_dest);
1953 if (s.minsym != NULL
1954 && MSYMBOL_LINKAGE_NAME (s.minsym) != NULL
1955 && strcmp (MSYMBOL_LINKAGE_NAME (s.minsym), "__main") == 0)
1956 pc += 5;
1957 }
1958 }
1959
1960 return pc;
1961 }
1962
1963 /* This function is 64-bit safe. */
1964
1965 static CORE_ADDR
1966 i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1967 {
1968 gdb_byte buf[8];
1969
1970 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
1971 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
1972 }
1973 \f
1974
1975 /* Normal frames. */
1976
1977 static void
1978 i386_frame_cache_1 (struct frame_info *this_frame,
1979 struct i386_frame_cache *cache)
1980 {
1981 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1982 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1983 gdb_byte buf[4];
1984 int i;
1985
1986 cache->pc = get_frame_func (this_frame);
1987
1988 /* In principle, for normal frames, %ebp holds the frame pointer,
1989 which holds the base address for the current stack frame.
1990 However, for functions that don't need it, the frame pointer is
1991 optional. For these "frameless" functions the frame pointer is
1992 actually the frame pointer of the calling frame. Signal
1993 trampolines are just a special case of a "frameless" function.
1994 They (usually) share their frame pointer with the frame that was
1995 in progress when the signal occurred. */
1996
1997 get_frame_register (this_frame, I386_EBP_REGNUM, buf);
1998 cache->base = extract_unsigned_integer (buf, 4, byte_order);
1999 if (cache->base == 0)
2000 {
2001 cache->base_p = 1;
2002 return;
2003 }
2004
2005 /* For normal frames, %eip is stored at 4(%ebp). */
2006 cache->saved_regs[I386_EIP_REGNUM] = 4;
2007
2008 if (cache->pc != 0)
2009 i386_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
2010 cache);
2011
2012 if (cache->locals < 0)
2013 {
2014 /* We didn't find a valid frame, which means that CACHE->base
2015 currently holds the frame pointer for our calling frame. If
2016 we're at the start of a function, or somewhere half-way its
2017 prologue, the function's frame probably hasn't been fully
2018 setup yet. Try to reconstruct the base address for the stack
2019 frame by looking at the stack pointer. For truly "frameless"
2020 functions this might work too. */
2021
2022 if (cache->saved_sp_reg != -1)
2023 {
2024 /* Saved stack pointer has been saved. */
2025 get_frame_register (this_frame, cache->saved_sp_reg, buf);
2026 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
2027
2028 /* We're halfway aligning the stack. */
2029 cache->base = ((cache->saved_sp - 4) & 0xfffffff0) - 4;
2030 cache->saved_regs[I386_EIP_REGNUM] = cache->saved_sp - 4;
2031
2032 /* This will be added back below. */
2033 cache->saved_regs[I386_EIP_REGNUM] -= cache->base;
2034 }
2035 else if (cache->pc != 0
2036 || target_read_code (get_frame_pc (this_frame), buf, 1))
2037 {
2038 /* We're in a known function, but did not find a frame
2039 setup. Assume that the function does not use %ebp.
2040 Alternatively, we may have jumped to an invalid
2041 address; in that case there is definitely no new
2042 frame in %ebp. */
2043 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2044 cache->base = extract_unsigned_integer (buf, 4, byte_order)
2045 + cache->sp_offset;
2046 }
2047 else
2048 /* We're in an unknown function. We could not find the start
2049 of the function to analyze the prologue; our best option is
2050 to assume a typical frame layout with the caller's %ebp
2051 saved. */
2052 cache->saved_regs[I386_EBP_REGNUM] = 0;
2053 }
2054
2055 if (cache->saved_sp_reg != -1)
2056 {
2057 /* Saved stack pointer has been saved (but the SAVED_SP_REG
2058 register may be unavailable). */
2059 if (cache->saved_sp == 0
2060 && deprecated_frame_register_read (this_frame,
2061 cache->saved_sp_reg, buf))
2062 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
2063 }
2064 /* Now that we have the base address for the stack frame we can
2065 calculate the value of %esp in the calling frame. */
2066 else if (cache->saved_sp == 0)
2067 cache->saved_sp = cache->base + 8;
2068
2069 /* Adjust all the saved registers such that they contain addresses
2070 instead of offsets. */
2071 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
2072 if (cache->saved_regs[i] != -1)
2073 cache->saved_regs[i] += cache->base;
2074
2075 cache->base_p = 1;
2076 }
2077
2078 static struct i386_frame_cache *
2079 i386_frame_cache (struct frame_info *this_frame, void **this_cache)
2080 {
2081 struct i386_frame_cache *cache;
2082
2083 if (*this_cache)
2084 return (struct i386_frame_cache *) *this_cache;
2085
2086 cache = i386_alloc_frame_cache ();
2087 *this_cache = cache;
2088
2089 TRY
2090 {
2091 i386_frame_cache_1 (this_frame, cache);
2092 }
2093 CATCH (ex, RETURN_MASK_ERROR)
2094 {
2095 if (ex.error != NOT_AVAILABLE_ERROR)
2096 throw_exception (ex);
2097 }
2098 END_CATCH
2099
2100 return cache;
2101 }
2102
2103 static void
2104 i386_frame_this_id (struct frame_info *this_frame, void **this_cache,
2105 struct frame_id *this_id)
2106 {
2107 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2108
2109 if (!cache->base_p)
2110 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2111 else if (cache->base == 0)
2112 {
2113 /* This marks the outermost frame. */
2114 }
2115 else
2116 {
2117 /* See the end of i386_push_dummy_call. */
2118 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2119 }
2120 }
2121
2122 static enum unwind_stop_reason
2123 i386_frame_unwind_stop_reason (struct frame_info *this_frame,
2124 void **this_cache)
2125 {
2126 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2127
2128 if (!cache->base_p)
2129 return UNWIND_UNAVAILABLE;
2130
2131 /* This marks the outermost frame. */
2132 if (cache->base == 0)
2133 return UNWIND_OUTERMOST;
2134
2135 return UNWIND_NO_REASON;
2136 }
2137
2138 static struct value *
2139 i386_frame_prev_register (struct frame_info *this_frame, void **this_cache,
2140 int regnum)
2141 {
2142 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2143
2144 gdb_assert (regnum >= 0);
2145
2146 /* The System V ABI says that:
2147
2148 "The flags register contains the system flags, such as the
2149 direction flag and the carry flag. The direction flag must be
2150 set to the forward (that is, zero) direction before entry and
2151 upon exit from a function. Other user flags have no specified
2152 role in the standard calling sequence and are not preserved."
2153
2154 To guarantee the "upon exit" part of that statement we fake a
2155 saved flags register that has its direction flag cleared.
2156
2157 Note that GCC doesn't seem to rely on the fact that the direction
2158 flag is cleared after a function return; it always explicitly
2159 clears the flag before operations where it matters.
2160
2161 FIXME: kettenis/20030316: I'm not quite sure whether this is the
2162 right thing to do. The way we fake the flags register here makes
2163 it impossible to change it. */
2164
2165 if (regnum == I386_EFLAGS_REGNUM)
2166 {
2167 ULONGEST val;
2168
2169 val = get_frame_register_unsigned (this_frame, regnum);
2170 val &= ~(1 << 10);
2171 return frame_unwind_got_constant (this_frame, regnum, val);
2172 }
2173
2174 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
2175 return frame_unwind_got_register (this_frame, regnum, I386_EAX_REGNUM);
2176
2177 if (regnum == I386_ESP_REGNUM
2178 && (cache->saved_sp != 0 || cache->saved_sp_reg != -1))
2179 {
2180 /* If the SP has been saved, but we don't know where, then this
2181 means that SAVED_SP_REG register was found unavailable back
2182 when we built the cache. */
2183 if (cache->saved_sp == 0)
2184 return frame_unwind_got_register (this_frame, regnum,
2185 cache->saved_sp_reg);
2186 else
2187 return frame_unwind_got_constant (this_frame, regnum,
2188 cache->saved_sp);
2189 }
2190
2191 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
2192 return frame_unwind_got_memory (this_frame, regnum,
2193 cache->saved_regs[regnum]);
2194
2195 return frame_unwind_got_register (this_frame, regnum, regnum);
2196 }
2197
2198 static const struct frame_unwind i386_frame_unwind =
2199 {
2200 NORMAL_FRAME,
2201 i386_frame_unwind_stop_reason,
2202 i386_frame_this_id,
2203 i386_frame_prev_register,
2204 NULL,
2205 default_frame_sniffer
2206 };
2207
2208 /* Normal frames, but in a function epilogue. */
2209
2210 /* Implement the stack_frame_destroyed_p gdbarch method.
2211
2212 The epilogue is defined here as the 'ret' instruction, which will
2213 follow any instruction such as 'leave' or 'pop %ebp' that destroys
2214 the function's stack frame. */
2215
2216 static int
2217 i386_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2218 {
2219 gdb_byte insn;
2220 struct compunit_symtab *cust;
2221
2222 cust = find_pc_compunit_symtab (pc);
2223 if (cust != NULL && COMPUNIT_EPILOGUE_UNWIND_VALID (cust))
2224 return 0;
2225
2226 if (target_read_memory (pc, &insn, 1))
2227 return 0; /* Can't read memory at pc. */
2228
2229 if (insn != 0xc3) /* 'ret' instruction. */
2230 return 0;
2231
2232 return 1;
2233 }
2234
2235 static int
2236 i386_epilogue_frame_sniffer (const struct frame_unwind *self,
2237 struct frame_info *this_frame,
2238 void **this_prologue_cache)
2239 {
2240 if (frame_relative_level (this_frame) == 0)
2241 return i386_stack_frame_destroyed_p (get_frame_arch (this_frame),
2242 get_frame_pc (this_frame));
2243 else
2244 return 0;
2245 }
2246
2247 static struct i386_frame_cache *
2248 i386_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
2249 {
2250 struct i386_frame_cache *cache;
2251 CORE_ADDR sp;
2252
2253 if (*this_cache)
2254 return (struct i386_frame_cache *) *this_cache;
2255
2256 cache = i386_alloc_frame_cache ();
2257 *this_cache = cache;
2258
2259 TRY
2260 {
2261 cache->pc = get_frame_func (this_frame);
2262
2263 /* At this point the stack looks as if we just entered the
2264 function, with the return address at the top of the
2265 stack. */
2266 sp = get_frame_register_unsigned (this_frame, I386_ESP_REGNUM);
2267 cache->base = sp + cache->sp_offset;
2268 cache->saved_sp = cache->base + 8;
2269 cache->saved_regs[I386_EIP_REGNUM] = cache->base + 4;
2270
2271 cache->base_p = 1;
2272 }
2273 CATCH (ex, RETURN_MASK_ERROR)
2274 {
2275 if (ex.error != NOT_AVAILABLE_ERROR)
2276 throw_exception (ex);
2277 }
2278 END_CATCH
2279
2280 return cache;
2281 }
2282
2283 static enum unwind_stop_reason
2284 i386_epilogue_frame_unwind_stop_reason (struct frame_info *this_frame,
2285 void **this_cache)
2286 {
2287 struct i386_frame_cache *cache =
2288 i386_epilogue_frame_cache (this_frame, this_cache);
2289
2290 if (!cache->base_p)
2291 return UNWIND_UNAVAILABLE;
2292
2293 return UNWIND_NO_REASON;
2294 }
2295
2296 static void
2297 i386_epilogue_frame_this_id (struct frame_info *this_frame,
2298 void **this_cache,
2299 struct frame_id *this_id)
2300 {
2301 struct i386_frame_cache *cache =
2302 i386_epilogue_frame_cache (this_frame, this_cache);
2303
2304 if (!cache->base_p)
2305 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2306 else
2307 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2308 }
2309
2310 static struct value *
2311 i386_epilogue_frame_prev_register (struct frame_info *this_frame,
2312 void **this_cache, int regnum)
2313 {
2314 /* Make sure we've initialized the cache. */
2315 i386_epilogue_frame_cache (this_frame, this_cache);
2316
2317 return i386_frame_prev_register (this_frame, this_cache, regnum);
2318 }
2319
2320 static const struct frame_unwind i386_epilogue_frame_unwind =
2321 {
2322 NORMAL_FRAME,
2323 i386_epilogue_frame_unwind_stop_reason,
2324 i386_epilogue_frame_this_id,
2325 i386_epilogue_frame_prev_register,
2326 NULL,
2327 i386_epilogue_frame_sniffer
2328 };
2329 \f
2330
2331 /* Stack-based trampolines. */
2332
2333 /* These trampolines are used on cross x86 targets, when taking the
2334 address of a nested function. When executing these trampolines,
2335 no stack frame is set up, so we are in a similar situation as in
2336 epilogues and i386_epilogue_frame_this_id can be re-used. */
2337
2338 /* Static chain passed in register. */
2339
2340 struct i386_insn i386_tramp_chain_in_reg_insns[] =
2341 {
2342 /* `movl imm32, %eax' and `movl imm32, %ecx' */
2343 { 5, { 0xb8 }, { 0xfe } },
2344
2345 /* `jmp imm32' */
2346 { 5, { 0xe9 }, { 0xff } },
2347
2348 {0}
2349 };
2350
2351 /* Static chain passed on stack (when regparm=3). */
2352
2353 struct i386_insn i386_tramp_chain_on_stack_insns[] =
2354 {
2355 /* `push imm32' */
2356 { 5, { 0x68 }, { 0xff } },
2357
2358 /* `jmp imm32' */
2359 { 5, { 0xe9 }, { 0xff } },
2360
2361 {0}
2362 };
2363
2364 /* Return whether PC points inside a stack trampoline. */
2365
2366 static int
2367 i386_in_stack_tramp_p (CORE_ADDR pc)
2368 {
2369 gdb_byte insn;
2370 const char *name;
2371
2372 /* A stack trampoline is detected if no name is associated
2373 to the current pc and if it points inside a trampoline
2374 sequence. */
2375
2376 find_pc_partial_function (pc, &name, NULL, NULL);
2377 if (name)
2378 return 0;
2379
2380 if (target_read_memory (pc, &insn, 1))
2381 return 0;
2382
2383 if (!i386_match_insn_block (pc, i386_tramp_chain_in_reg_insns)
2384 && !i386_match_insn_block (pc, i386_tramp_chain_on_stack_insns))
2385 return 0;
2386
2387 return 1;
2388 }
2389
2390 static int
2391 i386_stack_tramp_frame_sniffer (const struct frame_unwind *self,
2392 struct frame_info *this_frame,
2393 void **this_cache)
2394 {
2395 if (frame_relative_level (this_frame) == 0)
2396 return i386_in_stack_tramp_p (get_frame_pc (this_frame));
2397 else
2398 return 0;
2399 }
2400
2401 static const struct frame_unwind i386_stack_tramp_frame_unwind =
2402 {
2403 NORMAL_FRAME,
2404 i386_epilogue_frame_unwind_stop_reason,
2405 i386_epilogue_frame_this_id,
2406 i386_epilogue_frame_prev_register,
2407 NULL,
2408 i386_stack_tramp_frame_sniffer
2409 };
2410 \f
2411 /* Generate a bytecode expression to get the value of the saved PC. */
2412
2413 static void
2414 i386_gen_return_address (struct gdbarch *gdbarch,
2415 struct agent_expr *ax, struct axs_value *value,
2416 CORE_ADDR scope)
2417 {
2418 /* The following sequence assumes the traditional use of the base
2419 register. */
2420 ax_reg (ax, I386_EBP_REGNUM);
2421 ax_const_l (ax, 4);
2422 ax_simple (ax, aop_add);
2423 value->type = register_type (gdbarch, I386_EIP_REGNUM);
2424 value->kind = axs_lvalue_memory;
2425 }
2426 \f
2427
2428 /* Signal trampolines. */
2429
2430 static struct i386_frame_cache *
2431 i386_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
2432 {
2433 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2434 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2435 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2436 struct i386_frame_cache *cache;
2437 CORE_ADDR addr;
2438 gdb_byte buf[4];
2439
2440 if (*this_cache)
2441 return (struct i386_frame_cache *) *this_cache;
2442
2443 cache = i386_alloc_frame_cache ();
2444
2445 TRY
2446 {
2447 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2448 cache->base = extract_unsigned_integer (buf, 4, byte_order) - 4;
2449
2450 addr = tdep->sigcontext_addr (this_frame);
2451 if (tdep->sc_reg_offset)
2452 {
2453 int i;
2454
2455 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
2456
2457 for (i = 0; i < tdep->sc_num_regs; i++)
2458 if (tdep->sc_reg_offset[i] != -1)
2459 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
2460 }
2461 else
2462 {
2463 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
2464 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
2465 }
2466
2467 cache->base_p = 1;
2468 }
2469 CATCH (ex, RETURN_MASK_ERROR)
2470 {
2471 if (ex.error != NOT_AVAILABLE_ERROR)
2472 throw_exception (ex);
2473 }
2474 END_CATCH
2475
2476 *this_cache = cache;
2477 return cache;
2478 }
2479
2480 static enum unwind_stop_reason
2481 i386_sigtramp_frame_unwind_stop_reason (struct frame_info *this_frame,
2482 void **this_cache)
2483 {
2484 struct i386_frame_cache *cache =
2485 i386_sigtramp_frame_cache (this_frame, this_cache);
2486
2487 if (!cache->base_p)
2488 return UNWIND_UNAVAILABLE;
2489
2490 return UNWIND_NO_REASON;
2491 }
2492
2493 static void
2494 i386_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache,
2495 struct frame_id *this_id)
2496 {
2497 struct i386_frame_cache *cache =
2498 i386_sigtramp_frame_cache (this_frame, this_cache);
2499
2500 if (!cache->base_p)
2501 (*this_id) = frame_id_build_unavailable_stack (get_frame_pc (this_frame));
2502 else
2503 {
2504 /* See the end of i386_push_dummy_call. */
2505 (*this_id) = frame_id_build (cache->base + 8, get_frame_pc (this_frame));
2506 }
2507 }
2508
2509 static struct value *
2510 i386_sigtramp_frame_prev_register (struct frame_info *this_frame,
2511 void **this_cache, int regnum)
2512 {
2513 /* Make sure we've initialized the cache. */
2514 i386_sigtramp_frame_cache (this_frame, this_cache);
2515
2516 return i386_frame_prev_register (this_frame, this_cache, regnum);
2517 }
2518
2519 static int
2520 i386_sigtramp_frame_sniffer (const struct frame_unwind *self,
2521 struct frame_info *this_frame,
2522 void **this_prologue_cache)
2523 {
2524 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
2525
2526 /* We shouldn't even bother if we don't have a sigcontext_addr
2527 handler. */
2528 if (tdep->sigcontext_addr == NULL)
2529 return 0;
2530
2531 if (tdep->sigtramp_p != NULL)
2532 {
2533 if (tdep->sigtramp_p (this_frame))
2534 return 1;
2535 }
2536
2537 if (tdep->sigtramp_start != 0)
2538 {
2539 CORE_ADDR pc = get_frame_pc (this_frame);
2540
2541 gdb_assert (tdep->sigtramp_end != 0);
2542 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
2543 return 1;
2544 }
2545
2546 return 0;
2547 }
2548
2549 static const struct frame_unwind i386_sigtramp_frame_unwind =
2550 {
2551 SIGTRAMP_FRAME,
2552 i386_sigtramp_frame_unwind_stop_reason,
2553 i386_sigtramp_frame_this_id,
2554 i386_sigtramp_frame_prev_register,
2555 NULL,
2556 i386_sigtramp_frame_sniffer
2557 };
2558 \f
2559
2560 static CORE_ADDR
2561 i386_frame_base_address (struct frame_info *this_frame, void **this_cache)
2562 {
2563 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2564
2565 return cache->base;
2566 }
2567
2568 static const struct frame_base i386_frame_base =
2569 {
2570 &i386_frame_unwind,
2571 i386_frame_base_address,
2572 i386_frame_base_address,
2573 i386_frame_base_address
2574 };
2575
2576 static struct frame_id
2577 i386_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2578 {
2579 CORE_ADDR fp;
2580
2581 fp = get_frame_register_unsigned (this_frame, I386_EBP_REGNUM);
2582
2583 /* See the end of i386_push_dummy_call. */
2584 return frame_id_build (fp + 8, get_frame_pc (this_frame));
2585 }
2586
2587 /* _Decimal128 function return values need 16-byte alignment on the
2588 stack. */
2589
2590 static CORE_ADDR
2591 i386_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2592 {
2593 return sp & -(CORE_ADDR)16;
2594 }
2595 \f
2596
2597 /* Figure out where the longjmp will land. Slurp the args out of the
2598 stack. We expect the first arg to be a pointer to the jmp_buf
2599 structure from which we extract the address that we will land at.
2600 This address is copied into PC. This routine returns non-zero on
2601 success. */
2602
2603 static int
2604 i386_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
2605 {
2606 gdb_byte buf[4];
2607 CORE_ADDR sp, jb_addr;
2608 struct gdbarch *gdbarch = get_frame_arch (frame);
2609 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2610 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
2611
2612 /* If JB_PC_OFFSET is -1, we have no way to find out where the
2613 longjmp will land. */
2614 if (jb_pc_offset == -1)
2615 return 0;
2616
2617 get_frame_register (frame, I386_ESP_REGNUM, buf);
2618 sp = extract_unsigned_integer (buf, 4, byte_order);
2619 if (target_read_memory (sp + 4, buf, 4))
2620 return 0;
2621
2622 jb_addr = extract_unsigned_integer (buf, 4, byte_order);
2623 if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
2624 return 0;
2625
2626 *pc = extract_unsigned_integer (buf, 4, byte_order);
2627 return 1;
2628 }
2629 \f
2630
2631 /* Check whether TYPE must be 16-byte-aligned when passed as a
2632 function argument. 16-byte vectors, _Decimal128 and structures or
2633 unions containing such types must be 16-byte-aligned; other
2634 arguments are 4-byte-aligned. */
2635
2636 static int
2637 i386_16_byte_align_p (struct type *type)
2638 {
2639 type = check_typedef (type);
2640 if ((TYPE_CODE (type) == TYPE_CODE_DECFLOAT
2641 || (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type)))
2642 && TYPE_LENGTH (type) == 16)
2643 return 1;
2644 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2645 return i386_16_byte_align_p (TYPE_TARGET_TYPE (type));
2646 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2647 || TYPE_CODE (type) == TYPE_CODE_UNION)
2648 {
2649 int i;
2650 for (i = 0; i < TYPE_NFIELDS (type); i++)
2651 {
2652 if (i386_16_byte_align_p (TYPE_FIELD_TYPE (type, i)))
2653 return 1;
2654 }
2655 }
2656 return 0;
2657 }
2658
2659 /* Implementation for set_gdbarch_push_dummy_code. */
2660
2661 static CORE_ADDR
2662 i386_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, CORE_ADDR funaddr,
2663 struct value **args, int nargs, struct type *value_type,
2664 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
2665 struct regcache *regcache)
2666 {
2667 /* Use 0xcc breakpoint - 1 byte. */
2668 *bp_addr = sp - 1;
2669 *real_pc = funaddr;
2670
2671 /* Keep the stack aligned. */
2672 return sp - 16;
2673 }
2674
2675 static CORE_ADDR
2676 i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2677 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2678 struct value **args, CORE_ADDR sp, int struct_return,
2679 CORE_ADDR struct_addr)
2680 {
2681 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2682 gdb_byte buf[4];
2683 int i;
2684 int write_pass;
2685 int args_space = 0;
2686
2687 /* BND registers can be in arbitrary values at the moment of the
2688 inferior call. This can cause boundary violations that are not
2689 due to a real bug or even desired by the user. The best to be done
2690 is set the BND registers to allow access to the whole memory, INIT
2691 state, before pushing the inferior call. */
2692 i387_reset_bnd_regs (gdbarch, regcache);
2693
2694 /* Determine the total space required for arguments and struct
2695 return address in a first pass (allowing for 16-byte-aligned
2696 arguments), then push arguments in a second pass. */
2697
2698 for (write_pass = 0; write_pass < 2; write_pass++)
2699 {
2700 int args_space_used = 0;
2701
2702 if (struct_return)
2703 {
2704 if (write_pass)
2705 {
2706 /* Push value address. */
2707 store_unsigned_integer (buf, 4, byte_order, struct_addr);
2708 write_memory (sp, buf, 4);
2709 args_space_used += 4;
2710 }
2711 else
2712 args_space += 4;
2713 }
2714
2715 for (i = 0; i < nargs; i++)
2716 {
2717 int len = TYPE_LENGTH (value_enclosing_type (args[i]));
2718
2719 if (write_pass)
2720 {
2721 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2722 args_space_used = align_up (args_space_used, 16);
2723
2724 write_memory (sp + args_space_used,
2725 value_contents_all (args[i]), len);
2726 /* The System V ABI says that:
2727
2728 "An argument's size is increased, if necessary, to make it a
2729 multiple of [32-bit] words. This may require tail padding,
2730 depending on the size of the argument."
2731
2732 This makes sure the stack stays word-aligned. */
2733 args_space_used += align_up (len, 4);
2734 }
2735 else
2736 {
2737 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2738 args_space = align_up (args_space, 16);
2739 args_space += align_up (len, 4);
2740 }
2741 }
2742
2743 if (!write_pass)
2744 {
2745 sp -= args_space;
2746
2747 /* The original System V ABI only requires word alignment,
2748 but modern incarnations need 16-byte alignment in order
2749 to support SSE. Since wasting a few bytes here isn't
2750 harmful we unconditionally enforce 16-byte alignment. */
2751 sp &= ~0xf;
2752 }
2753 }
2754
2755 /* Store return address. */
2756 sp -= 4;
2757 store_unsigned_integer (buf, 4, byte_order, bp_addr);
2758 write_memory (sp, buf, 4);
2759
2760 /* Finally, update the stack pointer... */
2761 store_unsigned_integer (buf, 4, byte_order, sp);
2762 regcache_cooked_write (regcache, I386_ESP_REGNUM, buf);
2763
2764 /* ...and fake a frame pointer. */
2765 regcache_cooked_write (regcache, I386_EBP_REGNUM, buf);
2766
2767 /* MarkK wrote: This "+ 8" is all over the place:
2768 (i386_frame_this_id, i386_sigtramp_frame_this_id,
2769 i386_dummy_id). It's there, since all frame unwinders for
2770 a given target have to agree (within a certain margin) on the
2771 definition of the stack address of a frame. Otherwise frame id
2772 comparison might not work correctly. Since DWARF2/GCC uses the
2773 stack address *before* the function call as a frame's CFA. On
2774 the i386, when %ebp is used as a frame pointer, the offset
2775 between the contents %ebp and the CFA as defined by GCC. */
2776 return sp + 8;
2777 }
2778
2779 /* These registers are used for returning integers (and on some
2780 targets also for returning `struct' and `union' values when their
2781 size and alignment match an integer type). */
2782 #define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
2783 #define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
2784
2785 /* Read, for architecture GDBARCH, a function return value of TYPE
2786 from REGCACHE, and copy that into VALBUF. */
2787
2788 static void
2789 i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
2790 struct regcache *regcache, gdb_byte *valbuf)
2791 {
2792 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2793 int len = TYPE_LENGTH (type);
2794 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2795
2796 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2797 {
2798 if (tdep->st0_regnum < 0)
2799 {
2800 warning (_("Cannot find floating-point return value."));
2801 memset (valbuf, 0, len);
2802 return;
2803 }
2804
2805 /* Floating-point return values can be found in %st(0). Convert
2806 its contents to the desired type. This is probably not
2807 exactly how it would happen on the target itself, but it is
2808 the best we can do. */
2809 regcache_raw_read (regcache, I386_ST0_REGNUM, buf);
2810 convert_typed_floating (buf, i387_ext_type (gdbarch), valbuf, type);
2811 }
2812 else
2813 {
2814 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2815 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2816
2817 if (len <= low_size)
2818 {
2819 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
2820 memcpy (valbuf, buf, len);
2821 }
2822 else if (len <= (low_size + high_size))
2823 {
2824 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
2825 memcpy (valbuf, buf, low_size);
2826 regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
2827 memcpy (valbuf + low_size, buf, len - low_size);
2828 }
2829 else
2830 internal_error (__FILE__, __LINE__,
2831 _("Cannot extract return value of %d bytes long."),
2832 len);
2833 }
2834 }
2835
2836 /* Write, for architecture GDBARCH, a function return value of TYPE
2837 from VALBUF into REGCACHE. */
2838
2839 static void
2840 i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
2841 struct regcache *regcache, const gdb_byte *valbuf)
2842 {
2843 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2844 int len = TYPE_LENGTH (type);
2845
2846 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2847 {
2848 ULONGEST fstat;
2849 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2850
2851 if (tdep->st0_regnum < 0)
2852 {
2853 warning (_("Cannot set floating-point return value."));
2854 return;
2855 }
2856
2857 /* Returning floating-point values is a bit tricky. Apart from
2858 storing the return value in %st(0), we have to simulate the
2859 state of the FPU at function return point. */
2860
2861 /* Convert the value found in VALBUF to the extended
2862 floating-point format used by the FPU. This is probably
2863 not exactly how it would happen on the target itself, but
2864 it is the best we can do. */
2865 convert_typed_floating (valbuf, type, buf, i387_ext_type (gdbarch));
2866 regcache_raw_write (regcache, I386_ST0_REGNUM, buf);
2867
2868 /* Set the top of the floating-point register stack to 7. The
2869 actual value doesn't really matter, but 7 is what a normal
2870 function return would end up with if the program started out
2871 with a freshly initialized FPU. */
2872 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
2873 fstat |= (7 << 11);
2874 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM (tdep), fstat);
2875
2876 /* Mark %st(1) through %st(7) as empty. Since we set the top of
2877 the floating-point register stack to 7, the appropriate value
2878 for the tag word is 0x3fff. */
2879 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM (tdep), 0x3fff);
2880 }
2881 else
2882 {
2883 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2884 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2885
2886 if (len <= low_size)
2887 regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
2888 else if (len <= (low_size + high_size))
2889 {
2890 regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
2891 regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
2892 len - low_size, valbuf + low_size);
2893 }
2894 else
2895 internal_error (__FILE__, __LINE__,
2896 _("Cannot store return value of %d bytes long."), len);
2897 }
2898 }
2899 \f
2900
2901 /* This is the variable that is set with "set struct-convention", and
2902 its legitimate values. */
2903 static const char default_struct_convention[] = "default";
2904 static const char pcc_struct_convention[] = "pcc";
2905 static const char reg_struct_convention[] = "reg";
2906 static const char *const valid_conventions[] =
2907 {
2908 default_struct_convention,
2909 pcc_struct_convention,
2910 reg_struct_convention,
2911 NULL
2912 };
2913 static const char *struct_convention = default_struct_convention;
2914
2915 /* Return non-zero if TYPE, which is assumed to be a structure,
2916 a union type, or an array type, should be returned in registers
2917 for architecture GDBARCH. */
2918
2919 static int
2920 i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
2921 {
2922 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2923 enum type_code code = TYPE_CODE (type);
2924 int len = TYPE_LENGTH (type);
2925
2926 gdb_assert (code == TYPE_CODE_STRUCT
2927 || code == TYPE_CODE_UNION
2928 || code == TYPE_CODE_ARRAY);
2929
2930 if (struct_convention == pcc_struct_convention
2931 || (struct_convention == default_struct_convention
2932 && tdep->struct_return == pcc_struct_return))
2933 return 0;
2934
2935 /* Structures consisting of a single `float', `double' or 'long
2936 double' member are returned in %st(0). */
2937 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2938 {
2939 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
2940 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2941 return (len == 4 || len == 8 || len == 12);
2942 }
2943
2944 return (len == 1 || len == 2 || len == 4 || len == 8);
2945 }
2946
2947 /* Determine, for architecture GDBARCH, how a return value of TYPE
2948 should be returned. If it is supposed to be returned in registers,
2949 and READBUF is non-zero, read the appropriate value from REGCACHE,
2950 and copy it into READBUF. If WRITEBUF is non-zero, write the value
2951 from WRITEBUF into REGCACHE. */
2952
2953 static enum return_value_convention
2954 i386_return_value (struct gdbarch *gdbarch, struct value *function,
2955 struct type *type, struct regcache *regcache,
2956 gdb_byte *readbuf, const gdb_byte *writebuf)
2957 {
2958 enum type_code code = TYPE_CODE (type);
2959
2960 if (((code == TYPE_CODE_STRUCT
2961 || code == TYPE_CODE_UNION
2962 || code == TYPE_CODE_ARRAY)
2963 && !i386_reg_struct_return_p (gdbarch, type))
2964 /* Complex double and long double uses the struct return covention. */
2965 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 16)
2966 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 24)
2967 /* 128-bit decimal float uses the struct return convention. */
2968 || (code == TYPE_CODE_DECFLOAT && TYPE_LENGTH (type) == 16))
2969 {
2970 /* The System V ABI says that:
2971
2972 "A function that returns a structure or union also sets %eax
2973 to the value of the original address of the caller's area
2974 before it returns. Thus when the caller receives control
2975 again, the address of the returned object resides in register
2976 %eax and can be used to access the object."
2977
2978 So the ABI guarantees that we can always find the return
2979 value just after the function has returned. */
2980
2981 /* Note that the ABI doesn't mention functions returning arrays,
2982 which is something possible in certain languages such as Ada.
2983 In this case, the value is returned as if it was wrapped in
2984 a record, so the convention applied to records also applies
2985 to arrays. */
2986
2987 if (readbuf)
2988 {
2989 ULONGEST addr;
2990
2991 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
2992 read_memory (addr, readbuf, TYPE_LENGTH (type));
2993 }
2994
2995 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
2996 }
2997
2998 /* This special case is for structures consisting of a single
2999 `float', `double' or 'long double' member. These structures are
3000 returned in %st(0). For these structures, we call ourselves
3001 recursively, changing TYPE into the type of the first member of
3002 the structure. Since that should work for all structures that
3003 have only one member, we don't bother to check the member's type
3004 here. */
3005 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
3006 {
3007 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
3008 return i386_return_value (gdbarch, function, type, regcache,
3009 readbuf, writebuf);
3010 }
3011
3012 if (readbuf)
3013 i386_extract_return_value (gdbarch, type, regcache, readbuf);
3014 if (writebuf)
3015 i386_store_return_value (gdbarch, type, regcache, writebuf);
3016
3017 return RETURN_VALUE_REGISTER_CONVENTION;
3018 }
3019 \f
3020
3021 struct type *
3022 i387_ext_type (struct gdbarch *gdbarch)
3023 {
3024 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3025
3026 if (!tdep->i387_ext_type)
3027 {
3028 tdep->i387_ext_type = tdesc_find_type (gdbarch, "i387_ext");
3029 gdb_assert (tdep->i387_ext_type != NULL);
3030 }
3031
3032 return tdep->i387_ext_type;
3033 }
3034
3035 /* Construct type for pseudo BND registers. We can't use
3036 tdesc_find_type since a complement of one value has to be used
3037 to describe the upper bound. */
3038
3039 static struct type *
3040 i386_bnd_type (struct gdbarch *gdbarch)
3041 {
3042 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3043
3044
3045 if (!tdep->i386_bnd_type)
3046 {
3047 struct type *t;
3048 const struct builtin_type *bt = builtin_type (gdbarch);
3049
3050 /* The type we're building is described bellow: */
3051 #if 0
3052 struct __bound128
3053 {
3054 void *lbound;
3055 void *ubound; /* One complement of raw ubound field. */
3056 };
3057 #endif
3058
3059 t = arch_composite_type (gdbarch,
3060 "__gdb_builtin_type_bound128", TYPE_CODE_STRUCT);
3061
3062 append_composite_type_field (t, "lbound", bt->builtin_data_ptr);
3063 append_composite_type_field (t, "ubound", bt->builtin_data_ptr);
3064
3065 TYPE_NAME (t) = "builtin_type_bound128";
3066 tdep->i386_bnd_type = t;
3067 }
3068
3069 return tdep->i386_bnd_type;
3070 }
3071
3072 /* Construct vector type for pseudo ZMM registers. We can't use
3073 tdesc_find_type since ZMM isn't described in target description. */
3074
3075 static struct type *
3076 i386_zmm_type (struct gdbarch *gdbarch)
3077 {
3078 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3079
3080 if (!tdep->i386_zmm_type)
3081 {
3082 const struct builtin_type *bt = builtin_type (gdbarch);
3083
3084 /* The type we're building is this: */
3085 #if 0
3086 union __gdb_builtin_type_vec512i
3087 {
3088 int128_t uint128[4];
3089 int64_t v4_int64[8];
3090 int32_t v8_int32[16];
3091 int16_t v16_int16[32];
3092 int8_t v32_int8[64];
3093 double v4_double[8];
3094 float v8_float[16];
3095 };
3096 #endif
3097
3098 struct type *t;
3099
3100 t = arch_composite_type (gdbarch,
3101 "__gdb_builtin_type_vec512i", TYPE_CODE_UNION);
3102 append_composite_type_field (t, "v16_float",
3103 init_vector_type (bt->builtin_float, 16));
3104 append_composite_type_field (t, "v8_double",
3105 init_vector_type (bt->builtin_double, 8));
3106 append_composite_type_field (t, "v64_int8",
3107 init_vector_type (bt->builtin_int8, 64));
3108 append_composite_type_field (t, "v32_int16",
3109 init_vector_type (bt->builtin_int16, 32));
3110 append_composite_type_field (t, "v16_int32",
3111 init_vector_type (bt->builtin_int32, 16));
3112 append_composite_type_field (t, "v8_int64",
3113 init_vector_type (bt->builtin_int64, 8));
3114 append_composite_type_field (t, "v4_int128",
3115 init_vector_type (bt->builtin_int128, 4));
3116
3117 TYPE_VECTOR (t) = 1;
3118 TYPE_NAME (t) = "builtin_type_vec512i";
3119 tdep->i386_zmm_type = t;
3120 }
3121
3122 return tdep->i386_zmm_type;
3123 }
3124
3125 /* Construct vector type for pseudo YMM registers. We can't use
3126 tdesc_find_type since YMM isn't described in target description. */
3127
3128 static struct type *
3129 i386_ymm_type (struct gdbarch *gdbarch)
3130 {
3131 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3132
3133 if (!tdep->i386_ymm_type)
3134 {
3135 const struct builtin_type *bt = builtin_type (gdbarch);
3136
3137 /* The type we're building is this: */
3138 #if 0
3139 union __gdb_builtin_type_vec256i
3140 {
3141 int128_t uint128[2];
3142 int64_t v2_int64[4];
3143 int32_t v4_int32[8];
3144 int16_t v8_int16[16];
3145 int8_t v16_int8[32];
3146 double v2_double[4];
3147 float v4_float[8];
3148 };
3149 #endif
3150
3151 struct type *t;
3152
3153 t = arch_composite_type (gdbarch,
3154 "__gdb_builtin_type_vec256i", TYPE_CODE_UNION);
3155 append_composite_type_field (t, "v8_float",
3156 init_vector_type (bt->builtin_float, 8));
3157 append_composite_type_field (t, "v4_double",
3158 init_vector_type (bt->builtin_double, 4));
3159 append_composite_type_field (t, "v32_int8",
3160 init_vector_type (bt->builtin_int8, 32));
3161 append_composite_type_field (t, "v16_int16",
3162 init_vector_type (bt->builtin_int16, 16));
3163 append_composite_type_field (t, "v8_int32",
3164 init_vector_type (bt->builtin_int32, 8));
3165 append_composite_type_field (t, "v4_int64",
3166 init_vector_type (bt->builtin_int64, 4));
3167 append_composite_type_field (t, "v2_int128",
3168 init_vector_type (bt->builtin_int128, 2));
3169
3170 TYPE_VECTOR (t) = 1;
3171 TYPE_NAME (t) = "builtin_type_vec256i";
3172 tdep->i386_ymm_type = t;
3173 }
3174
3175 return tdep->i386_ymm_type;
3176 }
3177
3178 /* Construct vector type for MMX registers. */
3179 static struct type *
3180 i386_mmx_type (struct gdbarch *gdbarch)
3181 {
3182 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3183
3184 if (!tdep->i386_mmx_type)
3185 {
3186 const struct builtin_type *bt = builtin_type (gdbarch);
3187
3188 /* The type we're building is this: */
3189 #if 0
3190 union __gdb_builtin_type_vec64i
3191 {
3192 int64_t uint64;
3193 int32_t v2_int32[2];
3194 int16_t v4_int16[4];
3195 int8_t v8_int8[8];
3196 };
3197 #endif
3198
3199 struct type *t;
3200
3201 t = arch_composite_type (gdbarch,
3202 "__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
3203
3204 append_composite_type_field (t, "uint64", bt->builtin_int64);
3205 append_composite_type_field (t, "v2_int32",
3206 init_vector_type (bt->builtin_int32, 2));
3207 append_composite_type_field (t, "v4_int16",
3208 init_vector_type (bt->builtin_int16, 4));
3209 append_composite_type_field (t, "v8_int8",
3210 init_vector_type (bt->builtin_int8, 8));
3211
3212 TYPE_VECTOR (t) = 1;
3213 TYPE_NAME (t) = "builtin_type_vec64i";
3214 tdep->i386_mmx_type = t;
3215 }
3216
3217 return tdep->i386_mmx_type;
3218 }
3219
3220 /* Return the GDB type object for the "standard" data type of data in
3221 register REGNUM. */
3222
3223 struct type *
3224 i386_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
3225 {
3226 if (i386_bnd_regnum_p (gdbarch, regnum))
3227 return i386_bnd_type (gdbarch);
3228 if (i386_mmx_regnum_p (gdbarch, regnum))
3229 return i386_mmx_type (gdbarch);
3230 else if (i386_ymm_regnum_p (gdbarch, regnum))
3231 return i386_ymm_type (gdbarch);
3232 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3233 return i386_ymm_type (gdbarch);
3234 else if (i386_zmm_regnum_p (gdbarch, regnum))
3235 return i386_zmm_type (gdbarch);
3236 else
3237 {
3238 const struct builtin_type *bt = builtin_type (gdbarch);
3239 if (i386_byte_regnum_p (gdbarch, regnum))
3240 return bt->builtin_int8;
3241 else if (i386_word_regnum_p (gdbarch, regnum))
3242 return bt->builtin_int16;
3243 else if (i386_dword_regnum_p (gdbarch, regnum))
3244 return bt->builtin_int32;
3245 else if (i386_k_regnum_p (gdbarch, regnum))
3246 return bt->builtin_int64;
3247 }
3248
3249 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3250 }
3251
3252 /* Map a cooked register onto a raw register or memory. For the i386,
3253 the MMX registers need to be mapped onto floating point registers. */
3254
3255 static int
3256 i386_mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
3257 {
3258 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
3259 int mmxreg, fpreg;
3260 ULONGEST fstat;
3261 int tos;
3262
3263 mmxreg = regnum - tdep->mm0_regnum;
3264 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
3265 tos = (fstat >> 11) & 0x7;
3266 fpreg = (mmxreg + tos) % 8;
3267
3268 return (I387_ST0_REGNUM (tdep) + fpreg);
3269 }
3270
3271 /* A helper function for us by i386_pseudo_register_read_value and
3272 amd64_pseudo_register_read_value. It does all the work but reads
3273 the data into an already-allocated value. */
3274
3275 void
3276 i386_pseudo_register_read_into_value (struct gdbarch *gdbarch,
3277 struct regcache *regcache,
3278 int regnum,
3279 struct value *result_value)
3280 {
3281 gdb_byte raw_buf[I386_MAX_REGISTER_SIZE];
3282 enum register_status status;
3283 gdb_byte *buf = value_contents_raw (result_value);
3284
3285 if (i386_mmx_regnum_p (gdbarch, regnum))
3286 {
3287 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3288
3289 /* Extract (always little endian). */
3290 status = regcache_raw_read (regcache, fpnum, raw_buf);
3291 if (status != REG_VALID)
3292 mark_value_bytes_unavailable (result_value, 0,
3293 TYPE_LENGTH (value_type (result_value)));
3294 else
3295 memcpy (buf, raw_buf, register_size (gdbarch, regnum));
3296 }
3297 else
3298 {
3299 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3300 if (i386_bnd_regnum_p (gdbarch, regnum))
3301 {
3302 regnum -= tdep->bnd0_regnum;
3303
3304 /* Extract (always little endian). Read lower 128bits. */
3305 status = regcache_raw_read (regcache,
3306 I387_BND0R_REGNUM (tdep) + regnum,
3307 raw_buf);
3308 if (status != REG_VALID)
3309 mark_value_bytes_unavailable (result_value, 0, 16);
3310 else
3311 {
3312 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3313 LONGEST upper, lower;
3314 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
3315
3316 lower = extract_unsigned_integer (raw_buf, 8, byte_order);
3317 upper = extract_unsigned_integer (raw_buf + 8, 8, byte_order);
3318 upper = ~upper;
3319
3320 memcpy (buf, &lower, size);
3321 memcpy (buf + size, &upper, size);
3322 }
3323 }
3324 else if (i386_k_regnum_p (gdbarch, regnum))
3325 {
3326 regnum -= tdep->k0_regnum;
3327
3328 /* Extract (always little endian). */
3329 status = regcache_raw_read (regcache,
3330 tdep->k0_regnum + regnum,
3331 raw_buf);
3332 if (status != REG_VALID)
3333 mark_value_bytes_unavailable (result_value, 0, 8);
3334 else
3335 memcpy (buf, raw_buf, 8);
3336 }
3337 else if (i386_zmm_regnum_p (gdbarch, regnum))
3338 {
3339 regnum -= tdep->zmm0_regnum;
3340
3341 if (regnum < num_lower_zmm_regs)
3342 {
3343 /* Extract (always little endian). Read lower 128bits. */
3344 status = regcache_raw_read (regcache,
3345 I387_XMM0_REGNUM (tdep) + regnum,
3346 raw_buf);
3347 if (status != REG_VALID)
3348 mark_value_bytes_unavailable (result_value, 0, 16);
3349 else
3350 memcpy (buf, raw_buf, 16);
3351
3352 /* Extract (always little endian). Read upper 128bits. */
3353 status = regcache_raw_read (regcache,
3354 tdep->ymm0h_regnum + regnum,
3355 raw_buf);
3356 if (status != REG_VALID)
3357 mark_value_bytes_unavailable (result_value, 16, 16);
3358 else
3359 memcpy (buf + 16, raw_buf, 16);
3360 }
3361 else
3362 {
3363 /* Extract (always little endian). Read lower 128bits. */
3364 status = regcache_raw_read (regcache,
3365 I387_XMM16_REGNUM (tdep) + regnum
3366 - num_lower_zmm_regs,
3367 raw_buf);
3368 if (status != REG_VALID)
3369 mark_value_bytes_unavailable (result_value, 0, 16);
3370 else
3371 memcpy (buf, raw_buf, 16);
3372
3373 /* Extract (always little endian). Read upper 128bits. */
3374 status = regcache_raw_read (regcache,
3375 I387_YMM16H_REGNUM (tdep) + regnum
3376 - num_lower_zmm_regs,
3377 raw_buf);
3378 if (status != REG_VALID)
3379 mark_value_bytes_unavailable (result_value, 16, 16);
3380 else
3381 memcpy (buf + 16, raw_buf, 16);
3382 }
3383
3384 /* Read upper 256bits. */
3385 status = regcache_raw_read (regcache,
3386 tdep->zmm0h_regnum + regnum,
3387 raw_buf);
3388 if (status != REG_VALID)
3389 mark_value_bytes_unavailable (result_value, 32, 32);
3390 else
3391 memcpy (buf + 32, raw_buf, 32);
3392 }
3393 else if (i386_ymm_regnum_p (gdbarch, regnum))
3394 {
3395 regnum -= tdep->ymm0_regnum;
3396
3397 /* Extract (always little endian). Read lower 128bits. */
3398 status = regcache_raw_read (regcache,
3399 I387_XMM0_REGNUM (tdep) + regnum,
3400 raw_buf);
3401 if (status != REG_VALID)
3402 mark_value_bytes_unavailable (result_value, 0, 16);
3403 else
3404 memcpy (buf, raw_buf, 16);
3405 /* Read upper 128bits. */
3406 status = regcache_raw_read (regcache,
3407 tdep->ymm0h_regnum + regnum,
3408 raw_buf);
3409 if (status != REG_VALID)
3410 mark_value_bytes_unavailable (result_value, 16, 32);
3411 else
3412 memcpy (buf + 16, raw_buf, 16);
3413 }
3414 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3415 {
3416 regnum -= tdep->ymm16_regnum;
3417 /* Extract (always little endian). Read lower 128bits. */
3418 status = regcache_raw_read (regcache,
3419 I387_XMM16_REGNUM (tdep) + regnum,
3420 raw_buf);
3421 if (status != REG_VALID)
3422 mark_value_bytes_unavailable (result_value, 0, 16);
3423 else
3424 memcpy (buf, raw_buf, 16);
3425 /* Read upper 128bits. */
3426 status = regcache_raw_read (regcache,
3427 tdep->ymm16h_regnum + regnum,
3428 raw_buf);
3429 if (status != REG_VALID)
3430 mark_value_bytes_unavailable (result_value, 16, 16);
3431 else
3432 memcpy (buf + 16, raw_buf, 16);
3433 }
3434 else if (i386_word_regnum_p (gdbarch, regnum))
3435 {
3436 int gpnum = regnum - tdep->ax_regnum;
3437
3438 /* Extract (always little endian). */
3439 status = regcache_raw_read (regcache, gpnum, raw_buf);
3440 if (status != REG_VALID)
3441 mark_value_bytes_unavailable (result_value, 0,
3442 TYPE_LENGTH (value_type (result_value)));
3443 else
3444 memcpy (buf, raw_buf, 2);
3445 }
3446 else if (i386_byte_regnum_p (gdbarch, regnum))
3447 {
3448 int gpnum = regnum - tdep->al_regnum;
3449
3450 /* Extract (always little endian). We read both lower and
3451 upper registers. */
3452 status = regcache_raw_read (regcache, gpnum % 4, raw_buf);
3453 if (status != REG_VALID)
3454 mark_value_bytes_unavailable (result_value, 0,
3455 TYPE_LENGTH (value_type (result_value)));
3456 else if (gpnum >= 4)
3457 memcpy (buf, raw_buf + 1, 1);
3458 else
3459 memcpy (buf, raw_buf, 1);
3460 }
3461 else
3462 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3463 }
3464 }
3465
3466 static struct value *
3467 i386_pseudo_register_read_value (struct gdbarch *gdbarch,
3468 struct regcache *regcache,
3469 int regnum)
3470 {
3471 struct value *result;
3472
3473 result = allocate_value (register_type (gdbarch, regnum));
3474 VALUE_LVAL (result) = lval_register;
3475 VALUE_REGNUM (result) = regnum;
3476
3477 i386_pseudo_register_read_into_value (gdbarch, regcache, regnum, result);
3478
3479 return result;
3480 }
3481
3482 void
3483 i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
3484 int regnum, const gdb_byte *buf)
3485 {
3486 gdb_byte raw_buf[I386_MAX_REGISTER_SIZE];
3487
3488 if (i386_mmx_regnum_p (gdbarch, regnum))
3489 {
3490 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3491
3492 /* Read ... */
3493 regcache_raw_read (regcache, fpnum, raw_buf);
3494 /* ... Modify ... (always little endian). */
3495 memcpy (raw_buf, buf, register_size (gdbarch, regnum));
3496 /* ... Write. */
3497 regcache_raw_write (regcache, fpnum, raw_buf);
3498 }
3499 else
3500 {
3501 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3502
3503 if (i386_bnd_regnum_p (gdbarch, regnum))
3504 {
3505 ULONGEST upper, lower;
3506 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
3507 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3508
3509 /* New values from input value. */
3510 regnum -= tdep->bnd0_regnum;
3511 lower = extract_unsigned_integer (buf, size, byte_order);
3512 upper = extract_unsigned_integer (buf + size, size, byte_order);
3513
3514 /* Fetching register buffer. */
3515 regcache_raw_read (regcache,
3516 I387_BND0R_REGNUM (tdep) + regnum,
3517 raw_buf);
3518
3519 upper = ~upper;
3520
3521 /* Set register bits. */
3522 memcpy (raw_buf, &lower, 8);
3523 memcpy (raw_buf + 8, &upper, 8);
3524
3525
3526 regcache_raw_write (regcache,
3527 I387_BND0R_REGNUM (tdep) + regnum,
3528 raw_buf);
3529 }
3530 else if (i386_k_regnum_p (gdbarch, regnum))
3531 {
3532 regnum -= tdep->k0_regnum;
3533
3534 regcache_raw_write (regcache,
3535 tdep->k0_regnum + regnum,
3536 buf);
3537 }
3538 else if (i386_zmm_regnum_p (gdbarch, regnum))
3539 {
3540 regnum -= tdep->zmm0_regnum;
3541
3542 if (regnum < num_lower_zmm_regs)
3543 {
3544 /* Write lower 128bits. */
3545 regcache_raw_write (regcache,
3546 I387_XMM0_REGNUM (tdep) + regnum,
3547 buf);
3548 /* Write upper 128bits. */
3549 regcache_raw_write (regcache,
3550 I387_YMM0_REGNUM (tdep) + regnum,
3551 buf + 16);
3552 }
3553 else
3554 {
3555 /* Write lower 128bits. */
3556 regcache_raw_write (regcache,
3557 I387_XMM16_REGNUM (tdep) + regnum
3558 - num_lower_zmm_regs,
3559 buf);
3560 /* Write upper 128bits. */
3561 regcache_raw_write (regcache,
3562 I387_YMM16H_REGNUM (tdep) + regnum
3563 - num_lower_zmm_regs,
3564 buf + 16);
3565 }
3566 /* Write upper 256bits. */
3567 regcache_raw_write (regcache,
3568 tdep->zmm0h_regnum + regnum,
3569 buf + 32);
3570 }
3571 else if (i386_ymm_regnum_p (gdbarch, regnum))
3572 {
3573 regnum -= tdep->ymm0_regnum;
3574
3575 /* ... Write lower 128bits. */
3576 regcache_raw_write (regcache,
3577 I387_XMM0_REGNUM (tdep) + regnum,
3578 buf);
3579 /* ... Write upper 128bits. */
3580 regcache_raw_write (regcache,
3581 tdep->ymm0h_regnum + regnum,
3582 buf + 16);
3583 }
3584 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3585 {
3586 regnum -= tdep->ymm16_regnum;
3587
3588 /* ... Write lower 128bits. */
3589 regcache_raw_write (regcache,
3590 I387_XMM16_REGNUM (tdep) + regnum,
3591 buf);
3592 /* ... Write upper 128bits. */
3593 regcache_raw_write (regcache,
3594 tdep->ymm16h_regnum + regnum,
3595 buf + 16);
3596 }
3597 else if (i386_word_regnum_p (gdbarch, regnum))
3598 {
3599 int gpnum = regnum - tdep->ax_regnum;
3600
3601 /* Read ... */
3602 regcache_raw_read (regcache, gpnum, raw_buf);
3603 /* ... Modify ... (always little endian). */
3604 memcpy (raw_buf, buf, 2);
3605 /* ... Write. */
3606 regcache_raw_write (regcache, gpnum, raw_buf);
3607 }
3608 else if (i386_byte_regnum_p (gdbarch, regnum))
3609 {
3610 int gpnum = regnum - tdep->al_regnum;
3611
3612 /* Read ... We read both lower and upper registers. */
3613 regcache_raw_read (regcache, gpnum % 4, raw_buf);
3614 /* ... Modify ... (always little endian). */
3615 if (gpnum >= 4)
3616 memcpy (raw_buf + 1, buf, 1);
3617 else
3618 memcpy (raw_buf, buf, 1);
3619 /* ... Write. */
3620 regcache_raw_write (regcache, gpnum % 4, raw_buf);
3621 }
3622 else
3623 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3624 }
3625 }
3626
3627 /* Implement the 'ax_pseudo_register_collect' gdbarch method. */
3628
3629 int
3630 i386_ax_pseudo_register_collect (struct gdbarch *gdbarch,
3631 struct agent_expr *ax, int regnum)
3632 {
3633 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3634
3635 if (i386_mmx_regnum_p (gdbarch, regnum))
3636 {
3637 /* MMX to FPU register mapping depends on current TOS. Let's just
3638 not care and collect everything... */
3639 int i;
3640
3641 ax_reg_mask (ax, I387_FSTAT_REGNUM (tdep));
3642 for (i = 0; i < 8; i++)
3643 ax_reg_mask (ax, I387_ST0_REGNUM (tdep) + i);
3644 return 0;
3645 }
3646 else if (i386_bnd_regnum_p (gdbarch, regnum))
3647 {
3648 regnum -= tdep->bnd0_regnum;
3649 ax_reg_mask (ax, I387_BND0R_REGNUM (tdep) + regnum);
3650 return 0;
3651 }
3652 else if (i386_k_regnum_p (gdbarch, regnum))
3653 {
3654 regnum -= tdep->k0_regnum;
3655 ax_reg_mask (ax, tdep->k0_regnum + regnum);
3656 return 0;
3657 }
3658 else if (i386_zmm_regnum_p (gdbarch, regnum))
3659 {
3660 regnum -= tdep->zmm0_regnum;
3661 if (regnum < num_lower_zmm_regs)
3662 {
3663 ax_reg_mask (ax, I387_XMM0_REGNUM (tdep) + regnum);
3664 ax_reg_mask (ax, tdep->ymm0h_regnum + regnum);
3665 }
3666 else
3667 {
3668 ax_reg_mask (ax, I387_XMM16_REGNUM (tdep) + regnum
3669 - num_lower_zmm_regs);
3670 ax_reg_mask (ax, I387_YMM16H_REGNUM (tdep) + regnum
3671 - num_lower_zmm_regs);
3672 }
3673 ax_reg_mask (ax, tdep->zmm0h_regnum + regnum);
3674 return 0;
3675 }
3676 else if (i386_ymm_regnum_p (gdbarch, regnum))
3677 {
3678 regnum -= tdep->ymm0_regnum;
3679 ax_reg_mask (ax, I387_XMM0_REGNUM (tdep) + regnum);
3680 ax_reg_mask (ax, tdep->ymm0h_regnum + regnum);
3681 return 0;
3682 }
3683 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3684 {
3685 regnum -= tdep->ymm16_regnum;
3686 ax_reg_mask (ax, I387_XMM16_REGNUM (tdep) + regnum);
3687 ax_reg_mask (ax, tdep->ymm16h_regnum + regnum);
3688 return 0;
3689 }
3690 else if (i386_word_regnum_p (gdbarch, regnum))
3691 {
3692 int gpnum = regnum - tdep->ax_regnum;
3693
3694 ax_reg_mask (ax, gpnum);
3695 return 0;
3696 }
3697 else if (i386_byte_regnum_p (gdbarch, regnum))
3698 {
3699 int gpnum = regnum - tdep->al_regnum;
3700
3701 ax_reg_mask (ax, gpnum % 4);
3702 return 0;
3703 }
3704 else
3705 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3706 return 1;
3707 }
3708 \f
3709
3710 /* Return the register number of the register allocated by GCC after
3711 REGNUM, or -1 if there is no such register. */
3712
3713 static int
3714 i386_next_regnum (int regnum)
3715 {
3716 /* GCC allocates the registers in the order:
3717
3718 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
3719
3720 Since storing a variable in %esp doesn't make any sense we return
3721 -1 for %ebp and for %esp itself. */
3722 static int next_regnum[] =
3723 {
3724 I386_EDX_REGNUM, /* Slot for %eax. */
3725 I386_EBX_REGNUM, /* Slot for %ecx. */
3726 I386_ECX_REGNUM, /* Slot for %edx. */
3727 I386_ESI_REGNUM, /* Slot for %ebx. */
3728 -1, -1, /* Slots for %esp and %ebp. */
3729 I386_EDI_REGNUM, /* Slot for %esi. */
3730 I386_EBP_REGNUM /* Slot for %edi. */
3731 };
3732
3733 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
3734 return next_regnum[regnum];
3735
3736 return -1;
3737 }
3738
3739 /* Return nonzero if a value of type TYPE stored in register REGNUM
3740 needs any special handling. */
3741
3742 static int
3743 i386_convert_register_p (struct gdbarch *gdbarch,
3744 int regnum, struct type *type)
3745 {
3746 int len = TYPE_LENGTH (type);
3747
3748 /* Values may be spread across multiple registers. Most debugging
3749 formats aren't expressive enough to specify the locations, so
3750 some heuristics is involved. Right now we only handle types that
3751 have a length that is a multiple of the word size, since GCC
3752 doesn't seem to put any other types into registers. */
3753 if (len > 4 && len % 4 == 0)
3754 {
3755 int last_regnum = regnum;
3756
3757 while (len > 4)
3758 {
3759 last_regnum = i386_next_regnum (last_regnum);
3760 len -= 4;
3761 }
3762
3763 if (last_regnum != -1)
3764 return 1;
3765 }
3766
3767 return i387_convert_register_p (gdbarch, regnum, type);
3768 }
3769
3770 /* Read a value of type TYPE from register REGNUM in frame FRAME, and
3771 return its contents in TO. */
3772
3773 static int
3774 i386_register_to_value (struct frame_info *frame, int regnum,
3775 struct type *type, gdb_byte *to,
3776 int *optimizedp, int *unavailablep)
3777 {
3778 struct gdbarch *gdbarch = get_frame_arch (frame);
3779 int len = TYPE_LENGTH (type);
3780
3781 if (i386_fp_regnum_p (gdbarch, regnum))
3782 return i387_register_to_value (frame, regnum, type, to,
3783 optimizedp, unavailablep);
3784
3785 /* Read a value spread across multiple registers. */
3786
3787 gdb_assert (len > 4 && len % 4 == 0);
3788
3789 while (len > 0)
3790 {
3791 gdb_assert (regnum != -1);
3792 gdb_assert (register_size (gdbarch, regnum) == 4);
3793
3794 if (!get_frame_register_bytes (frame, regnum, 0,
3795 register_size (gdbarch, regnum),
3796 to, optimizedp, unavailablep))
3797 return 0;
3798
3799 regnum = i386_next_regnum (regnum);
3800 len -= 4;
3801 to += 4;
3802 }
3803
3804 *optimizedp = *unavailablep = 0;
3805 return 1;
3806 }
3807
3808 /* Write the contents FROM of a value of type TYPE into register
3809 REGNUM in frame FRAME. */
3810
3811 static void
3812 i386_value_to_register (struct frame_info *frame, int regnum,
3813 struct type *type, const gdb_byte *from)
3814 {
3815 int len = TYPE_LENGTH (type);
3816
3817 if (i386_fp_regnum_p (get_frame_arch (frame), regnum))
3818 {
3819 i387_value_to_register (frame, regnum, type, from);
3820 return;
3821 }
3822
3823 /* Write a value spread across multiple registers. */
3824
3825 gdb_assert (len > 4 && len % 4 == 0);
3826
3827 while (len > 0)
3828 {
3829 gdb_assert (regnum != -1);
3830 gdb_assert (register_size (get_frame_arch (frame), regnum) == 4);
3831
3832 put_frame_register (frame, regnum, from);
3833 regnum = i386_next_regnum (regnum);
3834 len -= 4;
3835 from += 4;
3836 }
3837 }
3838 \f
3839 /* Supply register REGNUM from the buffer specified by GREGS and LEN
3840 in the general-purpose register set REGSET to register cache
3841 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3842
3843 void
3844 i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
3845 int regnum, const void *gregs, size_t len)
3846 {
3847 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3848 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3849 const gdb_byte *regs = (const gdb_byte *) gregs;
3850 int i;
3851
3852 gdb_assert (len >= tdep->sizeof_gregset);
3853
3854 for (i = 0; i < tdep->gregset_num_regs; i++)
3855 {
3856 if ((regnum == i || regnum == -1)
3857 && tdep->gregset_reg_offset[i] != -1)
3858 regcache_raw_supply (regcache, i, regs + tdep->gregset_reg_offset[i]);
3859 }
3860 }
3861
3862 /* Collect register REGNUM from the register cache REGCACHE and store
3863 it in the buffer specified by GREGS and LEN as described by the
3864 general-purpose register set REGSET. If REGNUM is -1, do this for
3865 all registers in REGSET. */
3866
3867 static void
3868 i386_collect_gregset (const struct regset *regset,
3869 const struct regcache *regcache,
3870 int regnum, void *gregs, size_t len)
3871 {
3872 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3873 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3874 gdb_byte *regs = (gdb_byte *) gregs;
3875 int i;
3876
3877 gdb_assert (len >= tdep->sizeof_gregset);
3878
3879 for (i = 0; i < tdep->gregset_num_regs; i++)
3880 {
3881 if ((regnum == i || regnum == -1)
3882 && tdep->gregset_reg_offset[i] != -1)
3883 regcache_raw_collect (regcache, i, regs + tdep->gregset_reg_offset[i]);
3884 }
3885 }
3886
3887 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
3888 in the floating-point register set REGSET to register cache
3889 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3890
3891 static void
3892 i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
3893 int regnum, const void *fpregs, size_t len)
3894 {
3895 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3896 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3897
3898 if (len == I387_SIZEOF_FXSAVE)
3899 {
3900 i387_supply_fxsave (regcache, regnum, fpregs);
3901 return;
3902 }
3903
3904 gdb_assert (len >= tdep->sizeof_fpregset);
3905 i387_supply_fsave (regcache, regnum, fpregs);
3906 }
3907
3908 /* Collect register REGNUM from the register cache REGCACHE and store
3909 it in the buffer specified by FPREGS and LEN as described by the
3910 floating-point register set REGSET. If REGNUM is -1, do this for
3911 all registers in REGSET. */
3912
3913 static void
3914 i386_collect_fpregset (const struct regset *regset,
3915 const struct regcache *regcache,
3916 int regnum, void *fpregs, size_t len)
3917 {
3918 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3919 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3920
3921 if (len == I387_SIZEOF_FXSAVE)
3922 {
3923 i387_collect_fxsave (regcache, regnum, fpregs);
3924 return;
3925 }
3926
3927 gdb_assert (len >= tdep->sizeof_fpregset);
3928 i387_collect_fsave (regcache, regnum, fpregs);
3929 }
3930
3931 /* Register set definitions. */
3932
3933 const struct regset i386_gregset =
3934 {
3935 NULL, i386_supply_gregset, i386_collect_gregset
3936 };
3937
3938 const struct regset i386_fpregset =
3939 {
3940 NULL, i386_supply_fpregset, i386_collect_fpregset
3941 };
3942
3943 /* Default iterator over core file register note sections. */
3944
3945 void
3946 i386_iterate_over_regset_sections (struct gdbarch *gdbarch,
3947 iterate_over_regset_sections_cb *cb,
3948 void *cb_data,
3949 const struct regcache *regcache)
3950 {
3951 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3952
3953 cb (".reg", tdep->sizeof_gregset, &i386_gregset, NULL, cb_data);
3954 if (tdep->sizeof_fpregset)
3955 cb (".reg2", tdep->sizeof_fpregset, tdep->fpregset, NULL, cb_data);
3956 }
3957 \f
3958
3959 /* Stuff for WIN32 PE style DLL's but is pretty generic really. */
3960
3961 CORE_ADDR
3962 i386_pe_skip_trampoline_code (struct frame_info *frame,
3963 CORE_ADDR pc, char *name)
3964 {
3965 struct gdbarch *gdbarch = get_frame_arch (frame);
3966 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3967
3968 /* jmp *(dest) */
3969 if (pc && read_memory_unsigned_integer (pc, 2, byte_order) == 0x25ff)
3970 {
3971 unsigned long indirect =
3972 read_memory_unsigned_integer (pc + 2, 4, byte_order);
3973 struct minimal_symbol *indsym =
3974 indirect ? lookup_minimal_symbol_by_pc (indirect).minsym : 0;
3975 const char *symname = indsym ? MSYMBOL_LINKAGE_NAME (indsym) : 0;
3976
3977 if (symname)
3978 {
3979 if (startswith (symname, "__imp_")
3980 || startswith (symname, "_imp_"))
3981 return name ? 1 :
3982 read_memory_unsigned_integer (indirect, 4, byte_order);
3983 }
3984 }
3985 return 0; /* Not a trampoline. */
3986 }
3987 \f
3988
3989 /* Return whether the THIS_FRAME corresponds to a sigtramp
3990 routine. */
3991
3992 int
3993 i386_sigtramp_p (struct frame_info *this_frame)
3994 {
3995 CORE_ADDR pc = get_frame_pc (this_frame);
3996 const char *name;
3997
3998 find_pc_partial_function (pc, &name, NULL, NULL);
3999 return (name && strcmp ("_sigtramp", name) == 0);
4000 }
4001 \f
4002
4003 /* We have two flavours of disassembly. The machinery on this page
4004 deals with switching between those. */
4005
4006 static int
4007 i386_print_insn (bfd_vma pc, struct disassemble_info *info)
4008 {
4009 gdb_assert (disassembly_flavor == att_flavor
4010 || disassembly_flavor == intel_flavor);
4011
4012 /* FIXME: kettenis/20020915: Until disassembler_options is properly
4013 constified, cast to prevent a compiler warning. */
4014 info->disassembler_options = (char *) disassembly_flavor;
4015
4016 return print_insn_i386 (pc, info);
4017 }
4018 \f
4019
4020 /* There are a few i386 architecture variants that differ only
4021 slightly from the generic i386 target. For now, we don't give them
4022 their own source file, but include them here. As a consequence,
4023 they'll always be included. */
4024
4025 /* System V Release 4 (SVR4). */
4026
4027 /* Return whether THIS_FRAME corresponds to a SVR4 sigtramp
4028 routine. */
4029
4030 static int
4031 i386_svr4_sigtramp_p (struct frame_info *this_frame)
4032 {
4033 CORE_ADDR pc = get_frame_pc (this_frame);
4034 const char *name;
4035
4036 /* The origin of these symbols is currently unknown. */
4037 find_pc_partial_function (pc, &name, NULL, NULL);
4038 return (name && (strcmp ("_sigreturn", name) == 0
4039 || strcmp ("sigvechandler", name) == 0));
4040 }
4041
4042 /* Assuming THIS_FRAME is for a SVR4 sigtramp routine, return the
4043 address of the associated sigcontext (ucontext) structure. */
4044
4045 static CORE_ADDR
4046 i386_svr4_sigcontext_addr (struct frame_info *this_frame)
4047 {
4048 struct gdbarch *gdbarch = get_frame_arch (this_frame);
4049 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4050 gdb_byte buf[4];
4051 CORE_ADDR sp;
4052
4053 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
4054 sp = extract_unsigned_integer (buf, 4, byte_order);
4055
4056 return read_memory_unsigned_integer (sp + 8, 4, byte_order);
4057 }
4058
4059 \f
4060
4061 /* Implementation of `gdbarch_stap_is_single_operand', as defined in
4062 gdbarch.h. */
4063
4064 int
4065 i386_stap_is_single_operand (struct gdbarch *gdbarch, const char *s)
4066 {
4067 return (*s == '$' /* Literal number. */
4068 || (isdigit (*s) && s[1] == '(' && s[2] == '%') /* Displacement. */
4069 || (*s == '(' && s[1] == '%') /* Register indirection. */
4070 || (*s == '%' && isalpha (s[1]))); /* Register access. */
4071 }
4072
4073 /* Helper function for i386_stap_parse_special_token.
4074
4075 This function parses operands of the form `-8+3+1(%rbp)', which
4076 must be interpreted as `*(-8 + 3 - 1 + (void *) $eax)'.
4077
4078 Return 1 if the operand was parsed successfully, zero
4079 otherwise. */
4080
4081 static int
4082 i386_stap_parse_special_token_triplet (struct gdbarch *gdbarch,
4083 struct stap_parse_info *p)
4084 {
4085 const char *s = p->arg;
4086
4087 if (isdigit (*s) || *s == '-' || *s == '+')
4088 {
4089 int got_minus[3];
4090 int i;
4091 long displacements[3];
4092 const char *start;
4093 char *regname;
4094 int len;
4095 struct stoken str;
4096 char *endp;
4097
4098 got_minus[0] = 0;
4099 if (*s == '+')
4100 ++s;
4101 else if (*s == '-')
4102 {
4103 ++s;
4104 got_minus[0] = 1;
4105 }
4106
4107 if (!isdigit ((unsigned char) *s))
4108 return 0;
4109
4110 displacements[0] = strtol (s, &endp, 10);
4111 s = endp;
4112
4113 if (*s != '+' && *s != '-')
4114 {
4115 /* We are not dealing with a triplet. */
4116 return 0;
4117 }
4118
4119 got_minus[1] = 0;
4120 if (*s == '+')
4121 ++s;
4122 else
4123 {
4124 ++s;
4125 got_minus[1] = 1;
4126 }
4127
4128 if (!isdigit ((unsigned char) *s))
4129 return 0;
4130
4131 displacements[1] = strtol (s, &endp, 10);
4132 s = endp;
4133
4134 if (*s != '+' && *s != '-')
4135 {
4136 /* We are not dealing with a triplet. */
4137 return 0;
4138 }
4139
4140 got_minus[2] = 0;
4141 if (*s == '+')
4142 ++s;
4143 else
4144 {
4145 ++s;
4146 got_minus[2] = 1;
4147 }
4148
4149 if (!isdigit ((unsigned char) *s))
4150 return 0;
4151
4152 displacements[2] = strtol (s, &endp, 10);
4153 s = endp;
4154
4155 if (*s != '(' || s[1] != '%')
4156 return 0;
4157
4158 s += 2;
4159 start = s;
4160
4161 while (isalnum (*s))
4162 ++s;
4163
4164 if (*s++ != ')')
4165 return 0;
4166
4167 len = s - start - 1;
4168 regname = (char *) alloca (len + 1);
4169
4170 strncpy (regname, start, len);
4171 regname[len] = '\0';
4172
4173 if (user_reg_map_name_to_regnum (gdbarch, regname, len) == -1)
4174 error (_("Invalid register name `%s' on expression `%s'."),
4175 regname, p->saved_arg);
4176
4177 for (i = 0; i < 3; i++)
4178 {
4179 write_exp_elt_opcode (&p->pstate, OP_LONG);
4180 write_exp_elt_type
4181 (&p->pstate, builtin_type (gdbarch)->builtin_long);
4182 write_exp_elt_longcst (&p->pstate, displacements[i]);
4183 write_exp_elt_opcode (&p->pstate, OP_LONG);
4184 if (got_minus[i])
4185 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
4186 }
4187
4188 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4189 str.ptr = regname;
4190 str.length = len;
4191 write_exp_string (&p->pstate, str);
4192 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4193
4194 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4195 write_exp_elt_type (&p->pstate,
4196 builtin_type (gdbarch)->builtin_data_ptr);
4197 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4198
4199 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4200 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4201 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4202
4203 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4204 write_exp_elt_type (&p->pstate,
4205 lookup_pointer_type (p->arg_type));
4206 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4207
4208 write_exp_elt_opcode (&p->pstate, UNOP_IND);
4209
4210 p->arg = s;
4211
4212 return 1;
4213 }
4214
4215 return 0;
4216 }
4217
4218 /* Helper function for i386_stap_parse_special_token.
4219
4220 This function parses operands of the form `register base +
4221 (register index * size) + offset', as represented in
4222 `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4223
4224 Return 1 if the operand was parsed successfully, zero
4225 otherwise. */
4226
4227 static int
4228 i386_stap_parse_special_token_three_arg_disp (struct gdbarch *gdbarch,
4229 struct stap_parse_info *p)
4230 {
4231 const char *s = p->arg;
4232
4233 if (isdigit (*s) || *s == '(' || *s == '-' || *s == '+')
4234 {
4235 int offset_minus = 0;
4236 long offset = 0;
4237 int size_minus = 0;
4238 long size = 0;
4239 const char *start;
4240 char *base;
4241 int len_base;
4242 char *index;
4243 int len_index;
4244 struct stoken base_token, index_token;
4245
4246 if (*s == '+')
4247 ++s;
4248 else if (*s == '-')
4249 {
4250 ++s;
4251 offset_minus = 1;
4252 }
4253
4254 if (offset_minus && !isdigit (*s))
4255 return 0;
4256
4257 if (isdigit (*s))
4258 {
4259 char *endp;
4260
4261 offset = strtol (s, &endp, 10);
4262 s = endp;
4263 }
4264
4265 if (*s != '(' || s[1] != '%')
4266 return 0;
4267
4268 s += 2;
4269 start = s;
4270
4271 while (isalnum (*s))
4272 ++s;
4273
4274 if (*s != ',' || s[1] != '%')
4275 return 0;
4276
4277 len_base = s - start;
4278 base = (char *) alloca (len_base + 1);
4279 strncpy (base, start, len_base);
4280 base[len_base] = '\0';
4281
4282 if (user_reg_map_name_to_regnum (gdbarch, base, len_base) == -1)
4283 error (_("Invalid register name `%s' on expression `%s'."),
4284 base, p->saved_arg);
4285
4286 s += 2;
4287 start = s;
4288
4289 while (isalnum (*s))
4290 ++s;
4291
4292 len_index = s - start;
4293 index = (char *) alloca (len_index + 1);
4294 strncpy (index, start, len_index);
4295 index[len_index] = '\0';
4296
4297 if (user_reg_map_name_to_regnum (gdbarch, index, len_index) == -1)
4298 error (_("Invalid register name `%s' on expression `%s'."),
4299 index, p->saved_arg);
4300
4301 if (*s != ',' && *s != ')')
4302 return 0;
4303
4304 if (*s == ',')
4305 {
4306 char *endp;
4307
4308 ++s;
4309 if (*s == '+')
4310 ++s;
4311 else if (*s == '-')
4312 {
4313 ++s;
4314 size_minus = 1;
4315 }
4316
4317 size = strtol (s, &endp, 10);
4318 s = endp;
4319
4320 if (*s != ')')
4321 return 0;
4322 }
4323
4324 ++s;
4325
4326 if (offset)
4327 {
4328 write_exp_elt_opcode (&p->pstate, OP_LONG);
4329 write_exp_elt_type (&p->pstate,
4330 builtin_type (gdbarch)->builtin_long);
4331 write_exp_elt_longcst (&p->pstate, offset);
4332 write_exp_elt_opcode (&p->pstate, OP_LONG);
4333 if (offset_minus)
4334 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
4335 }
4336
4337 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4338 base_token.ptr = base;
4339 base_token.length = len_base;
4340 write_exp_string (&p->pstate, base_token);
4341 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4342
4343 if (offset)
4344 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4345
4346 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4347 index_token.ptr = index;
4348 index_token.length = len_index;
4349 write_exp_string (&p->pstate, index_token);
4350 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4351
4352 if (size)
4353 {
4354 write_exp_elt_opcode (&p->pstate, OP_LONG);
4355 write_exp_elt_type (&p->pstate,
4356 builtin_type (gdbarch)->builtin_long);
4357 write_exp_elt_longcst (&p->pstate, size);
4358 write_exp_elt_opcode (&p->pstate, OP_LONG);
4359 if (size_minus)
4360 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
4361 write_exp_elt_opcode (&p->pstate, BINOP_MUL);
4362 }
4363
4364 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4365
4366 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4367 write_exp_elt_type (&p->pstate,
4368 lookup_pointer_type (p->arg_type));
4369 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4370
4371 write_exp_elt_opcode (&p->pstate, UNOP_IND);
4372
4373 p->arg = s;
4374
4375 return 1;
4376 }
4377
4378 return 0;
4379 }
4380
4381 /* Implementation of `gdbarch_stap_parse_special_token', as defined in
4382 gdbarch.h. */
4383
4384 int
4385 i386_stap_parse_special_token (struct gdbarch *gdbarch,
4386 struct stap_parse_info *p)
4387 {
4388 /* In order to parse special tokens, we use a state-machine that go
4389 through every known token and try to get a match. */
4390 enum
4391 {
4392 TRIPLET,
4393 THREE_ARG_DISPLACEMENT,
4394 DONE
4395 };
4396 int current_state;
4397
4398 current_state = TRIPLET;
4399
4400 /* The special tokens to be parsed here are:
4401
4402 - `register base + (register index * size) + offset', as represented
4403 in `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4404
4405 - Operands of the form `-8+3+1(%rbp)', which must be interpreted as
4406 `*(-8 + 3 - 1 + (void *) $eax)'. */
4407
4408 while (current_state != DONE)
4409 {
4410 switch (current_state)
4411 {
4412 case TRIPLET:
4413 if (i386_stap_parse_special_token_triplet (gdbarch, p))
4414 return 1;
4415 break;
4416
4417 case THREE_ARG_DISPLACEMENT:
4418 if (i386_stap_parse_special_token_three_arg_disp (gdbarch, p))
4419 return 1;
4420 break;
4421 }
4422
4423 /* Advancing to the next state. */
4424 ++current_state;
4425 }
4426
4427 return 0;
4428 }
4429
4430 \f
4431
4432 /* gdbarch gnu_triplet_regexp method. Both arches are acceptable as GDB always
4433 also supplies -m64 or -m32 by gdbarch_gcc_target_options. */
4434
4435 static const char *
4436 i386_gnu_triplet_regexp (struct gdbarch *gdbarch)
4437 {
4438 return "(x86_64|i.86)";
4439 }
4440
4441 \f
4442
4443 /* Generic ELF. */
4444
4445 void
4446 i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4447 {
4448 static const char *const stap_integer_prefixes[] = { "$", NULL };
4449 static const char *const stap_register_prefixes[] = { "%", NULL };
4450 static const char *const stap_register_indirection_prefixes[] = { "(",
4451 NULL };
4452 static const char *const stap_register_indirection_suffixes[] = { ")",
4453 NULL };
4454
4455 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
4456 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
4457
4458 /* Registering SystemTap handlers. */
4459 set_gdbarch_stap_integer_prefixes (gdbarch, stap_integer_prefixes);
4460 set_gdbarch_stap_register_prefixes (gdbarch, stap_register_prefixes);
4461 set_gdbarch_stap_register_indirection_prefixes (gdbarch,
4462 stap_register_indirection_prefixes);
4463 set_gdbarch_stap_register_indirection_suffixes (gdbarch,
4464 stap_register_indirection_suffixes);
4465 set_gdbarch_stap_is_single_operand (gdbarch,
4466 i386_stap_is_single_operand);
4467 set_gdbarch_stap_parse_special_token (gdbarch,
4468 i386_stap_parse_special_token);
4469
4470 set_gdbarch_gnu_triplet_regexp (gdbarch, i386_gnu_triplet_regexp);
4471 }
4472
4473 /* System V Release 4 (SVR4). */
4474
4475 void
4476 i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4477 {
4478 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4479
4480 /* System V Release 4 uses ELF. */
4481 i386_elf_init_abi (info, gdbarch);
4482
4483 /* System V Release 4 has shared libraries. */
4484 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
4485
4486 tdep->sigtramp_p = i386_svr4_sigtramp_p;
4487 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
4488 tdep->sc_pc_offset = 36 + 14 * 4;
4489 tdep->sc_sp_offset = 36 + 17 * 4;
4490
4491 tdep->jb_pc_offset = 20;
4492 }
4493
4494 /* DJGPP. */
4495
4496 static void
4497 i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4498 {
4499 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4500
4501 /* DJGPP doesn't have any special frames for signal handlers. */
4502 tdep->sigtramp_p = NULL;
4503
4504 tdep->jb_pc_offset = 36;
4505
4506 /* DJGPP does not support the SSE registers. */
4507 if (! tdesc_has_registers (info.target_desc))
4508 tdep->tdesc = tdesc_i386_mmx;
4509
4510 /* Native compiler is GCC, which uses the SVR4 register numbering
4511 even in COFF and STABS. See the comment in i386_gdbarch_init,
4512 before the calls to set_gdbarch_stab_reg_to_regnum and
4513 set_gdbarch_sdb_reg_to_regnum. */
4514 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
4515 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
4516
4517 set_gdbarch_has_dos_based_file_system (gdbarch, 1);
4518
4519 set_gdbarch_gnu_triplet_regexp (gdbarch, i386_gnu_triplet_regexp);
4520 }
4521 \f
4522
4523 /* i386 register groups. In addition to the normal groups, add "mmx"
4524 and "sse". */
4525
4526 static struct reggroup *i386_sse_reggroup;
4527 static struct reggroup *i386_mmx_reggroup;
4528
4529 static void
4530 i386_init_reggroups (void)
4531 {
4532 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
4533 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
4534 }
4535
4536 static void
4537 i386_add_reggroups (struct gdbarch *gdbarch)
4538 {
4539 reggroup_add (gdbarch, i386_sse_reggroup);
4540 reggroup_add (gdbarch, i386_mmx_reggroup);
4541 reggroup_add (gdbarch, general_reggroup);
4542 reggroup_add (gdbarch, float_reggroup);
4543 reggroup_add (gdbarch, all_reggroup);
4544 reggroup_add (gdbarch, save_reggroup);
4545 reggroup_add (gdbarch, restore_reggroup);
4546 reggroup_add (gdbarch, vector_reggroup);
4547 reggroup_add (gdbarch, system_reggroup);
4548 }
4549
4550 int
4551 i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
4552 struct reggroup *group)
4553 {
4554 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4555 int fp_regnum_p, mmx_regnum_p, xmm_regnum_p, mxcsr_regnum_p,
4556 ymm_regnum_p, ymmh_regnum_p, ymm_avx512_regnum_p, ymmh_avx512_regnum_p,
4557 bndr_regnum_p, bnd_regnum_p, k_regnum_p, zmm_regnum_p, zmmh_regnum_p,
4558 zmm_avx512_regnum_p, mpx_ctrl_regnum_p, xmm_avx512_regnum_p,
4559 avx512_p, avx_p, sse_p, pkru_regnum_p;
4560
4561 /* Don't include pseudo registers, except for MMX, in any register
4562 groups. */
4563 if (i386_byte_regnum_p (gdbarch, regnum))
4564 return 0;
4565
4566 if (i386_word_regnum_p (gdbarch, regnum))
4567 return 0;
4568
4569 if (i386_dword_regnum_p (gdbarch, regnum))
4570 return 0;
4571
4572 mmx_regnum_p = i386_mmx_regnum_p (gdbarch, regnum);
4573 if (group == i386_mmx_reggroup)
4574 return mmx_regnum_p;
4575
4576 pkru_regnum_p = i386_pkru_regnum_p(gdbarch, regnum);
4577 xmm_regnum_p = i386_xmm_regnum_p (gdbarch, regnum);
4578 xmm_avx512_regnum_p = i386_xmm_avx512_regnum_p (gdbarch, regnum);
4579 mxcsr_regnum_p = i386_mxcsr_regnum_p (gdbarch, regnum);
4580 if (group == i386_sse_reggroup)
4581 return xmm_regnum_p || xmm_avx512_regnum_p || mxcsr_regnum_p;
4582
4583 ymm_regnum_p = i386_ymm_regnum_p (gdbarch, regnum);
4584 ymm_avx512_regnum_p = i386_ymm_avx512_regnum_p (gdbarch, regnum);
4585 zmm_regnum_p = i386_zmm_regnum_p (gdbarch, regnum);
4586
4587 avx512_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
4588 == X86_XSTATE_AVX_AVX512_MASK);
4589 avx_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
4590 == X86_XSTATE_AVX_MASK) && !avx512_p;
4591 sse_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
4592 == X86_XSTATE_SSE_MASK) && !avx512_p && ! avx_p;
4593
4594 if (group == vector_reggroup)
4595 return (mmx_regnum_p
4596 || (zmm_regnum_p && avx512_p)
4597 || ((ymm_regnum_p || ymm_avx512_regnum_p) && avx_p)
4598 || ((xmm_regnum_p || xmm_avx512_regnum_p) && sse_p)
4599 || mxcsr_regnum_p);
4600
4601 fp_regnum_p = (i386_fp_regnum_p (gdbarch, regnum)
4602 || i386_fpc_regnum_p (gdbarch, regnum));
4603 if (group == float_reggroup)
4604 return fp_regnum_p;
4605
4606 /* For "info reg all", don't include upper YMM registers nor XMM
4607 registers when AVX is supported. */
4608 ymmh_regnum_p = i386_ymmh_regnum_p (gdbarch, regnum);
4609 ymmh_avx512_regnum_p = i386_ymmh_avx512_regnum_p (gdbarch, regnum);
4610 zmmh_regnum_p = i386_zmmh_regnum_p (gdbarch, regnum);
4611 if (group == all_reggroup
4612 && (((xmm_regnum_p || xmm_avx512_regnum_p) && !sse_p)
4613 || ((ymm_regnum_p || ymm_avx512_regnum_p) && !avx_p)
4614 || ymmh_regnum_p
4615 || ymmh_avx512_regnum_p
4616 || zmmh_regnum_p))
4617 return 0;
4618
4619 bnd_regnum_p = i386_bnd_regnum_p (gdbarch, regnum);
4620 if (group == all_reggroup
4621 && ((bnd_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4622 return bnd_regnum_p;
4623
4624 bndr_regnum_p = i386_bndr_regnum_p (gdbarch, regnum);
4625 if (group == all_reggroup
4626 && ((bndr_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4627 return 0;
4628
4629 mpx_ctrl_regnum_p = i386_mpx_ctrl_regnum_p (gdbarch, regnum);
4630 if (group == all_reggroup
4631 && ((mpx_ctrl_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4632 return mpx_ctrl_regnum_p;
4633
4634 if (group == general_reggroup)
4635 return (!fp_regnum_p
4636 && !mmx_regnum_p
4637 && !mxcsr_regnum_p
4638 && !xmm_regnum_p
4639 && !xmm_avx512_regnum_p
4640 && !ymm_regnum_p
4641 && !ymmh_regnum_p
4642 && !ymm_avx512_regnum_p
4643 && !ymmh_avx512_regnum_p
4644 && !bndr_regnum_p
4645 && !bnd_regnum_p
4646 && !mpx_ctrl_regnum_p
4647 && !zmm_regnum_p
4648 && !zmmh_regnum_p
4649 && !pkru_regnum_p);
4650
4651 return default_register_reggroup_p (gdbarch, regnum, group);
4652 }
4653 \f
4654
4655 /* Get the ARGIth function argument for the current function. */
4656
4657 static CORE_ADDR
4658 i386_fetch_pointer_argument (struct frame_info *frame, int argi,
4659 struct type *type)
4660 {
4661 struct gdbarch *gdbarch = get_frame_arch (frame);
4662 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4663 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
4664 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4, byte_order);
4665 }
4666
4667 #define PREFIX_REPZ 0x01
4668 #define PREFIX_REPNZ 0x02
4669 #define PREFIX_LOCK 0x04
4670 #define PREFIX_DATA 0x08
4671 #define PREFIX_ADDR 0x10
4672
4673 /* operand size */
4674 enum
4675 {
4676 OT_BYTE = 0,
4677 OT_WORD,
4678 OT_LONG,
4679 OT_QUAD,
4680 OT_DQUAD,
4681 };
4682
4683 /* i386 arith/logic operations */
4684 enum
4685 {
4686 OP_ADDL,
4687 OP_ORL,
4688 OP_ADCL,
4689 OP_SBBL,
4690 OP_ANDL,
4691 OP_SUBL,
4692 OP_XORL,
4693 OP_CMPL,
4694 };
4695
4696 struct i386_record_s
4697 {
4698 struct gdbarch *gdbarch;
4699 struct regcache *regcache;
4700 CORE_ADDR orig_addr;
4701 CORE_ADDR addr;
4702 int aflag;
4703 int dflag;
4704 int override;
4705 uint8_t modrm;
4706 uint8_t mod, reg, rm;
4707 int ot;
4708 uint8_t rex_x;
4709 uint8_t rex_b;
4710 int rip_offset;
4711 int popl_esp_hack;
4712 const int *regmap;
4713 };
4714
4715 /* Parse the "modrm" part of the memory address irp->addr points at.
4716 Returns -1 if something goes wrong, 0 otherwise. */
4717
4718 static int
4719 i386_record_modrm (struct i386_record_s *irp)
4720 {
4721 struct gdbarch *gdbarch = irp->gdbarch;
4722
4723 if (record_read_memory (gdbarch, irp->addr, &irp->modrm, 1))
4724 return -1;
4725
4726 irp->addr++;
4727 irp->mod = (irp->modrm >> 6) & 3;
4728 irp->reg = (irp->modrm >> 3) & 7;
4729 irp->rm = irp->modrm & 7;
4730
4731 return 0;
4732 }
4733
4734 /* Extract the memory address that the current instruction writes to,
4735 and return it in *ADDR. Return -1 if something goes wrong. */
4736
4737 static int
4738 i386_record_lea_modrm_addr (struct i386_record_s *irp, uint64_t *addr)
4739 {
4740 struct gdbarch *gdbarch = irp->gdbarch;
4741 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4742 gdb_byte buf[4];
4743 ULONGEST offset64;
4744
4745 *addr = 0;
4746 if (irp->aflag || irp->regmap[X86_RECORD_R8_REGNUM])
4747 {
4748 /* 32/64 bits */
4749 int havesib = 0;
4750 uint8_t scale = 0;
4751 uint8_t byte;
4752 uint8_t index = 0;
4753 uint8_t base = irp->rm;
4754
4755 if (base == 4)
4756 {
4757 havesib = 1;
4758 if (record_read_memory (gdbarch, irp->addr, &byte, 1))
4759 return -1;
4760 irp->addr++;
4761 scale = (byte >> 6) & 3;
4762 index = ((byte >> 3) & 7) | irp->rex_x;
4763 base = (byte & 7);
4764 }
4765 base |= irp->rex_b;
4766
4767 switch (irp->mod)
4768 {
4769 case 0:
4770 if ((base & 7) == 5)
4771 {
4772 base = 0xff;
4773 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4774 return -1;
4775 irp->addr += 4;
4776 *addr = extract_signed_integer (buf, 4, byte_order);
4777 if (irp->regmap[X86_RECORD_R8_REGNUM] && !havesib)
4778 *addr += irp->addr + irp->rip_offset;
4779 }
4780 break;
4781 case 1:
4782 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4783 return -1;
4784 irp->addr++;
4785 *addr = (int8_t) buf[0];
4786 break;
4787 case 2:
4788 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4789 return -1;
4790 *addr = extract_signed_integer (buf, 4, byte_order);
4791 irp->addr += 4;
4792 break;
4793 }
4794
4795 offset64 = 0;
4796 if (base != 0xff)
4797 {
4798 if (base == 4 && irp->popl_esp_hack)
4799 *addr += irp->popl_esp_hack;
4800 regcache_raw_read_unsigned (irp->regcache, irp->regmap[base],
4801 &offset64);
4802 }
4803 if (irp->aflag == 2)
4804 {
4805 *addr += offset64;
4806 }
4807 else
4808 *addr = (uint32_t) (offset64 + *addr);
4809
4810 if (havesib && (index != 4 || scale != 0))
4811 {
4812 regcache_raw_read_unsigned (irp->regcache, irp->regmap[index],
4813 &offset64);
4814 if (irp->aflag == 2)
4815 *addr += offset64 << scale;
4816 else
4817 *addr = (uint32_t) (*addr + (offset64 << scale));
4818 }
4819
4820 if (!irp->aflag)
4821 {
4822 /* Since we are in 64-bit mode with ADDR32 prefix, zero-extend
4823 address from 32-bit to 64-bit. */
4824 *addr = (uint32_t) *addr;
4825 }
4826 }
4827 else
4828 {
4829 /* 16 bits */
4830 switch (irp->mod)
4831 {
4832 case 0:
4833 if (irp->rm == 6)
4834 {
4835 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4836 return -1;
4837 irp->addr += 2;
4838 *addr = extract_signed_integer (buf, 2, byte_order);
4839 irp->rm = 0;
4840 goto no_rm;
4841 }
4842 break;
4843 case 1:
4844 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4845 return -1;
4846 irp->addr++;
4847 *addr = (int8_t) buf[0];
4848 break;
4849 case 2:
4850 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4851 return -1;
4852 irp->addr += 2;
4853 *addr = extract_signed_integer (buf, 2, byte_order);
4854 break;
4855 }
4856
4857 switch (irp->rm)
4858 {
4859 case 0:
4860 regcache_raw_read_unsigned (irp->regcache,
4861 irp->regmap[X86_RECORD_REBX_REGNUM],
4862 &offset64);
4863 *addr = (uint32_t) (*addr + offset64);
4864 regcache_raw_read_unsigned (irp->regcache,
4865 irp->regmap[X86_RECORD_RESI_REGNUM],
4866 &offset64);
4867 *addr = (uint32_t) (*addr + offset64);
4868 break;
4869 case 1:
4870 regcache_raw_read_unsigned (irp->regcache,
4871 irp->regmap[X86_RECORD_REBX_REGNUM],
4872 &offset64);
4873 *addr = (uint32_t) (*addr + offset64);
4874 regcache_raw_read_unsigned (irp->regcache,
4875 irp->regmap[X86_RECORD_REDI_REGNUM],
4876 &offset64);
4877 *addr = (uint32_t) (*addr + offset64);
4878 break;
4879 case 2:
4880 regcache_raw_read_unsigned (irp->regcache,
4881 irp->regmap[X86_RECORD_REBP_REGNUM],
4882 &offset64);
4883 *addr = (uint32_t) (*addr + offset64);
4884 regcache_raw_read_unsigned (irp->regcache,
4885 irp->regmap[X86_RECORD_RESI_REGNUM],
4886 &offset64);
4887 *addr = (uint32_t) (*addr + offset64);
4888 break;
4889 case 3:
4890 regcache_raw_read_unsigned (irp->regcache,
4891 irp->regmap[X86_RECORD_REBP_REGNUM],
4892 &offset64);
4893 *addr = (uint32_t) (*addr + offset64);
4894 regcache_raw_read_unsigned (irp->regcache,
4895 irp->regmap[X86_RECORD_REDI_REGNUM],
4896 &offset64);
4897 *addr = (uint32_t) (*addr + offset64);
4898 break;
4899 case 4:
4900 regcache_raw_read_unsigned (irp->regcache,
4901 irp->regmap[X86_RECORD_RESI_REGNUM],
4902 &offset64);
4903 *addr = (uint32_t) (*addr + offset64);
4904 break;
4905 case 5:
4906 regcache_raw_read_unsigned (irp->regcache,
4907 irp->regmap[X86_RECORD_REDI_REGNUM],
4908 &offset64);
4909 *addr = (uint32_t) (*addr + offset64);
4910 break;
4911 case 6:
4912 regcache_raw_read_unsigned (irp->regcache,
4913 irp->regmap[X86_RECORD_REBP_REGNUM],
4914 &offset64);
4915 *addr = (uint32_t) (*addr + offset64);
4916 break;
4917 case 7:
4918 regcache_raw_read_unsigned (irp->regcache,
4919 irp->regmap[X86_RECORD_REBX_REGNUM],
4920 &offset64);
4921 *addr = (uint32_t) (*addr + offset64);
4922 break;
4923 }
4924 *addr &= 0xffff;
4925 }
4926
4927 no_rm:
4928 return 0;
4929 }
4930
4931 /* Record the address and contents of the memory that will be changed
4932 by the current instruction. Return -1 if something goes wrong, 0
4933 otherwise. */
4934
4935 static int
4936 i386_record_lea_modrm (struct i386_record_s *irp)
4937 {
4938 struct gdbarch *gdbarch = irp->gdbarch;
4939 uint64_t addr;
4940
4941 if (irp->override >= 0)
4942 {
4943 if (record_full_memory_query)
4944 {
4945 if (yquery (_("\
4946 Process record ignores the memory change of instruction at address %s\n\
4947 because it can't get the value of the segment register.\n\
4948 Do you want to stop the program?"),
4949 paddress (gdbarch, irp->orig_addr)))
4950 return -1;
4951 }
4952
4953 return 0;
4954 }
4955
4956 if (i386_record_lea_modrm_addr (irp, &addr))
4957 return -1;
4958
4959 if (record_full_arch_list_add_mem (addr, 1 << irp->ot))
4960 return -1;
4961
4962 return 0;
4963 }
4964
4965 /* Record the effects of a push operation. Return -1 if something
4966 goes wrong, 0 otherwise. */
4967
4968 static int
4969 i386_record_push (struct i386_record_s *irp, int size)
4970 {
4971 ULONGEST addr;
4972
4973 if (record_full_arch_list_add_reg (irp->regcache,
4974 irp->regmap[X86_RECORD_RESP_REGNUM]))
4975 return -1;
4976 regcache_raw_read_unsigned (irp->regcache,
4977 irp->regmap[X86_RECORD_RESP_REGNUM],
4978 &addr);
4979 if (record_full_arch_list_add_mem ((CORE_ADDR) addr - size, size))
4980 return -1;
4981
4982 return 0;
4983 }
4984
4985
4986 /* Defines contents to record. */
4987 #define I386_SAVE_FPU_REGS 0xfffd
4988 #define I386_SAVE_FPU_ENV 0xfffe
4989 #define I386_SAVE_FPU_ENV_REG_STACK 0xffff
4990
4991 /* Record the values of the floating point registers which will be
4992 changed by the current instruction. Returns -1 if something is
4993 wrong, 0 otherwise. */
4994
4995 static int i386_record_floats (struct gdbarch *gdbarch,
4996 struct i386_record_s *ir,
4997 uint32_t iregnum)
4998 {
4999 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5000 int i;
5001
5002 /* Oza: Because of floating point insn push/pop of fpu stack is going to
5003 happen. Currently we store st0-st7 registers, but we need not store all
5004 registers all the time, in future we use ftag register and record only
5005 those who are not marked as an empty. */
5006
5007 if (I386_SAVE_FPU_REGS == iregnum)
5008 {
5009 for (i = I387_ST0_REGNUM (tdep); i <= I387_ST0_REGNUM (tdep) + 7; i++)
5010 {
5011 if (record_full_arch_list_add_reg (ir->regcache, i))
5012 return -1;
5013 }
5014 }
5015 else if (I386_SAVE_FPU_ENV == iregnum)
5016 {
5017 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
5018 {
5019 if (record_full_arch_list_add_reg (ir->regcache, i))
5020 return -1;
5021 }
5022 }
5023 else if (I386_SAVE_FPU_ENV_REG_STACK == iregnum)
5024 {
5025 for (i = I387_ST0_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
5026 {
5027 if (record_full_arch_list_add_reg (ir->regcache, i))
5028 return -1;
5029 }
5030 }
5031 else if ((iregnum >= I387_ST0_REGNUM (tdep)) &&
5032 (iregnum <= I387_FOP_REGNUM (tdep)))
5033 {
5034 if (record_full_arch_list_add_reg (ir->regcache,iregnum))
5035 return -1;
5036 }
5037 else
5038 {
5039 /* Parameter error. */
5040 return -1;
5041 }
5042 if(I386_SAVE_FPU_ENV != iregnum)
5043 {
5044 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
5045 {
5046 if (record_full_arch_list_add_reg (ir->regcache, i))
5047 return -1;
5048 }
5049 }
5050 return 0;
5051 }
5052
5053 /* Parse the current instruction, and record the values of the
5054 registers and memory that will be changed by the current
5055 instruction. Returns -1 if something goes wrong, 0 otherwise. */
5056
5057 #define I386_RECORD_FULL_ARCH_LIST_ADD_REG(regnum) \
5058 record_full_arch_list_add_reg (ir.regcache, ir.regmap[(regnum)])
5059
5060 int
5061 i386_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
5062 CORE_ADDR input_addr)
5063 {
5064 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
5065 int prefixes = 0;
5066 int regnum = 0;
5067 uint32_t opcode;
5068 uint8_t opcode8;
5069 ULONGEST addr;
5070 gdb_byte buf[I386_MAX_REGISTER_SIZE];
5071 struct i386_record_s ir;
5072 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5073 uint8_t rex_w = -1;
5074 uint8_t rex_r = 0;
5075
5076 memset (&ir, 0, sizeof (struct i386_record_s));
5077 ir.regcache = regcache;
5078 ir.addr = input_addr;
5079 ir.orig_addr = input_addr;
5080 ir.aflag = 1;
5081 ir.dflag = 1;
5082 ir.override = -1;
5083 ir.popl_esp_hack = 0;
5084 ir.regmap = tdep->record_regmap;
5085 ir.gdbarch = gdbarch;
5086
5087 if (record_debug > 1)
5088 fprintf_unfiltered (gdb_stdlog, "Process record: i386_process_record "
5089 "addr = %s\n",
5090 paddress (gdbarch, ir.addr));
5091
5092 /* prefixes */
5093 while (1)
5094 {
5095 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
5096 return -1;
5097 ir.addr++;
5098 switch (opcode8) /* Instruction prefixes */
5099 {
5100 case REPE_PREFIX_OPCODE:
5101 prefixes |= PREFIX_REPZ;
5102 break;
5103 case REPNE_PREFIX_OPCODE:
5104 prefixes |= PREFIX_REPNZ;
5105 break;
5106 case LOCK_PREFIX_OPCODE:
5107 prefixes |= PREFIX_LOCK;
5108 break;
5109 case CS_PREFIX_OPCODE:
5110 ir.override = X86_RECORD_CS_REGNUM;
5111 break;
5112 case SS_PREFIX_OPCODE:
5113 ir.override = X86_RECORD_SS_REGNUM;
5114 break;
5115 case DS_PREFIX_OPCODE:
5116 ir.override = X86_RECORD_DS_REGNUM;
5117 break;
5118 case ES_PREFIX_OPCODE:
5119 ir.override = X86_RECORD_ES_REGNUM;
5120 break;
5121 case FS_PREFIX_OPCODE:
5122 ir.override = X86_RECORD_FS_REGNUM;
5123 break;
5124 case GS_PREFIX_OPCODE:
5125 ir.override = X86_RECORD_GS_REGNUM;
5126 break;
5127 case DATA_PREFIX_OPCODE:
5128 prefixes |= PREFIX_DATA;
5129 break;
5130 case ADDR_PREFIX_OPCODE:
5131 prefixes |= PREFIX_ADDR;
5132 break;
5133 case 0x40: /* i386 inc %eax */
5134 case 0x41: /* i386 inc %ecx */
5135 case 0x42: /* i386 inc %edx */
5136 case 0x43: /* i386 inc %ebx */
5137 case 0x44: /* i386 inc %esp */
5138 case 0x45: /* i386 inc %ebp */
5139 case 0x46: /* i386 inc %esi */
5140 case 0x47: /* i386 inc %edi */
5141 case 0x48: /* i386 dec %eax */
5142 case 0x49: /* i386 dec %ecx */
5143 case 0x4a: /* i386 dec %edx */
5144 case 0x4b: /* i386 dec %ebx */
5145 case 0x4c: /* i386 dec %esp */
5146 case 0x4d: /* i386 dec %ebp */
5147 case 0x4e: /* i386 dec %esi */
5148 case 0x4f: /* i386 dec %edi */
5149 if (ir.regmap[X86_RECORD_R8_REGNUM]) /* 64 bit target */
5150 {
5151 /* REX */
5152 rex_w = (opcode8 >> 3) & 1;
5153 rex_r = (opcode8 & 0x4) << 1;
5154 ir.rex_x = (opcode8 & 0x2) << 2;
5155 ir.rex_b = (opcode8 & 0x1) << 3;
5156 }
5157 else /* 32 bit target */
5158 goto out_prefixes;
5159 break;
5160 default:
5161 goto out_prefixes;
5162 break;
5163 }
5164 }
5165 out_prefixes:
5166 if (ir.regmap[X86_RECORD_R8_REGNUM] && rex_w == 1)
5167 {
5168 ir.dflag = 2;
5169 }
5170 else
5171 {
5172 if (prefixes & PREFIX_DATA)
5173 ir.dflag ^= 1;
5174 }
5175 if (prefixes & PREFIX_ADDR)
5176 ir.aflag ^= 1;
5177 else if (ir.regmap[X86_RECORD_R8_REGNUM])
5178 ir.aflag = 2;
5179
5180 /* Now check op code. */
5181 opcode = (uint32_t) opcode8;
5182 reswitch:
5183 switch (opcode)
5184 {
5185 case 0x0f:
5186 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
5187 return -1;
5188 ir.addr++;
5189 opcode = (uint32_t) opcode8 | 0x0f00;
5190 goto reswitch;
5191 break;
5192
5193 case 0x00: /* arith & logic */
5194 case 0x01:
5195 case 0x02:
5196 case 0x03:
5197 case 0x04:
5198 case 0x05:
5199 case 0x08:
5200 case 0x09:
5201 case 0x0a:
5202 case 0x0b:
5203 case 0x0c:
5204 case 0x0d:
5205 case 0x10:
5206 case 0x11:
5207 case 0x12:
5208 case 0x13:
5209 case 0x14:
5210 case 0x15:
5211 case 0x18:
5212 case 0x19:
5213 case 0x1a:
5214 case 0x1b:
5215 case 0x1c:
5216 case 0x1d:
5217 case 0x20:
5218 case 0x21:
5219 case 0x22:
5220 case 0x23:
5221 case 0x24:
5222 case 0x25:
5223 case 0x28:
5224 case 0x29:
5225 case 0x2a:
5226 case 0x2b:
5227 case 0x2c:
5228 case 0x2d:
5229 case 0x30:
5230 case 0x31:
5231 case 0x32:
5232 case 0x33:
5233 case 0x34:
5234 case 0x35:
5235 case 0x38:
5236 case 0x39:
5237 case 0x3a:
5238 case 0x3b:
5239 case 0x3c:
5240 case 0x3d:
5241 if (((opcode >> 3) & 7) != OP_CMPL)
5242 {
5243 if ((opcode & 1) == 0)
5244 ir.ot = OT_BYTE;
5245 else
5246 ir.ot = ir.dflag + OT_WORD;
5247
5248 switch ((opcode >> 1) & 3)
5249 {
5250 case 0: /* OP Ev, Gv */
5251 if (i386_record_modrm (&ir))
5252 return -1;
5253 if (ir.mod != 3)
5254 {
5255 if (i386_record_lea_modrm (&ir))
5256 return -1;
5257 }
5258 else
5259 {
5260 ir.rm |= ir.rex_b;
5261 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5262 ir.rm &= 0x3;
5263 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5264 }
5265 break;
5266 case 1: /* OP Gv, Ev */
5267 if (i386_record_modrm (&ir))
5268 return -1;
5269 ir.reg |= rex_r;
5270 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5271 ir.reg &= 0x3;
5272 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5273 break;
5274 case 2: /* OP A, Iv */
5275 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5276 break;
5277 }
5278 }
5279 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5280 break;
5281
5282 case 0x80: /* GRP1 */
5283 case 0x81:
5284 case 0x82:
5285 case 0x83:
5286 if (i386_record_modrm (&ir))
5287 return -1;
5288
5289 if (ir.reg != OP_CMPL)
5290 {
5291 if ((opcode & 1) == 0)
5292 ir.ot = OT_BYTE;
5293 else
5294 ir.ot = ir.dflag + OT_WORD;
5295
5296 if (ir.mod != 3)
5297 {
5298 if (opcode == 0x83)
5299 ir.rip_offset = 1;
5300 else
5301 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5302 if (i386_record_lea_modrm (&ir))
5303 return -1;
5304 }
5305 else
5306 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5307 }
5308 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5309 break;
5310
5311 case 0x40: /* inc */
5312 case 0x41:
5313 case 0x42:
5314 case 0x43:
5315 case 0x44:
5316 case 0x45:
5317 case 0x46:
5318 case 0x47:
5319
5320 case 0x48: /* dec */
5321 case 0x49:
5322 case 0x4a:
5323 case 0x4b:
5324 case 0x4c:
5325 case 0x4d:
5326 case 0x4e:
5327 case 0x4f:
5328
5329 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 7);
5330 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5331 break;
5332
5333 case 0xf6: /* GRP3 */
5334 case 0xf7:
5335 if ((opcode & 1) == 0)
5336 ir.ot = OT_BYTE;
5337 else
5338 ir.ot = ir.dflag + OT_WORD;
5339 if (i386_record_modrm (&ir))
5340 return -1;
5341
5342 if (ir.mod != 3 && ir.reg == 0)
5343 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5344
5345 switch (ir.reg)
5346 {
5347 case 0: /* test */
5348 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5349 break;
5350 case 2: /* not */
5351 case 3: /* neg */
5352 if (ir.mod != 3)
5353 {
5354 if (i386_record_lea_modrm (&ir))
5355 return -1;
5356 }
5357 else
5358 {
5359 ir.rm |= ir.rex_b;
5360 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5361 ir.rm &= 0x3;
5362 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5363 }
5364 if (ir.reg == 3) /* neg */
5365 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5366 break;
5367 case 4: /* mul */
5368 case 5: /* imul */
5369 case 6: /* div */
5370 case 7: /* idiv */
5371 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5372 if (ir.ot != OT_BYTE)
5373 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5374 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5375 break;
5376 default:
5377 ir.addr -= 2;
5378 opcode = opcode << 8 | ir.modrm;
5379 goto no_support;
5380 break;
5381 }
5382 break;
5383
5384 case 0xfe: /* GRP4 */
5385 case 0xff: /* GRP5 */
5386 if (i386_record_modrm (&ir))
5387 return -1;
5388 if (ir.reg >= 2 && opcode == 0xfe)
5389 {
5390 ir.addr -= 2;
5391 opcode = opcode << 8 | ir.modrm;
5392 goto no_support;
5393 }
5394 switch (ir.reg)
5395 {
5396 case 0: /* inc */
5397 case 1: /* dec */
5398 if ((opcode & 1) == 0)
5399 ir.ot = OT_BYTE;
5400 else
5401 ir.ot = ir.dflag + OT_WORD;
5402 if (ir.mod != 3)
5403 {
5404 if (i386_record_lea_modrm (&ir))
5405 return -1;
5406 }
5407 else
5408 {
5409 ir.rm |= ir.rex_b;
5410 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5411 ir.rm &= 0x3;
5412 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5413 }
5414 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5415 break;
5416 case 2: /* call */
5417 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5418 ir.dflag = 2;
5419 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5420 return -1;
5421 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5422 break;
5423 case 3: /* lcall */
5424 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
5425 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5426 return -1;
5427 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5428 break;
5429 case 4: /* jmp */
5430 case 5: /* ljmp */
5431 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5432 break;
5433 case 6: /* push */
5434 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5435 ir.dflag = 2;
5436 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5437 return -1;
5438 break;
5439 default:
5440 ir.addr -= 2;
5441 opcode = opcode << 8 | ir.modrm;
5442 goto no_support;
5443 break;
5444 }
5445 break;
5446
5447 case 0x84: /* test */
5448 case 0x85:
5449 case 0xa8:
5450 case 0xa9:
5451 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5452 break;
5453
5454 case 0x98: /* CWDE/CBW */
5455 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5456 break;
5457
5458 case 0x99: /* CDQ/CWD */
5459 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5460 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5461 break;
5462
5463 case 0x0faf: /* imul */
5464 case 0x69:
5465 case 0x6b:
5466 ir.ot = ir.dflag + OT_WORD;
5467 if (i386_record_modrm (&ir))
5468 return -1;
5469 if (opcode == 0x69)
5470 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5471 else if (opcode == 0x6b)
5472 ir.rip_offset = 1;
5473 ir.reg |= rex_r;
5474 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5475 ir.reg &= 0x3;
5476 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5477 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5478 break;
5479
5480 case 0x0fc0: /* xadd */
5481 case 0x0fc1:
5482 if ((opcode & 1) == 0)
5483 ir.ot = OT_BYTE;
5484 else
5485 ir.ot = ir.dflag + OT_WORD;
5486 if (i386_record_modrm (&ir))
5487 return -1;
5488 ir.reg |= rex_r;
5489 if (ir.mod == 3)
5490 {
5491 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5492 ir.reg &= 0x3;
5493 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5494 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5495 ir.rm &= 0x3;
5496 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5497 }
5498 else
5499 {
5500 if (i386_record_lea_modrm (&ir))
5501 return -1;
5502 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5503 ir.reg &= 0x3;
5504 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5505 }
5506 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5507 break;
5508
5509 case 0x0fb0: /* cmpxchg */
5510 case 0x0fb1:
5511 if ((opcode & 1) == 0)
5512 ir.ot = OT_BYTE;
5513 else
5514 ir.ot = ir.dflag + OT_WORD;
5515 if (i386_record_modrm (&ir))
5516 return -1;
5517 if (ir.mod == 3)
5518 {
5519 ir.reg |= rex_r;
5520 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5521 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5522 ir.reg &= 0x3;
5523 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5524 }
5525 else
5526 {
5527 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5528 if (i386_record_lea_modrm (&ir))
5529 return -1;
5530 }
5531 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5532 break;
5533
5534 case 0x0fc7: /* cmpxchg8b / rdrand / rdseed */
5535 if (i386_record_modrm (&ir))
5536 return -1;
5537 if (ir.mod == 3)
5538 {
5539 /* rdrand and rdseed use the 3 bits of the REG field of ModR/M as
5540 an extended opcode. rdrand has bits 110 (/6) and rdseed
5541 has bits 111 (/7). */
5542 if (ir.reg == 6 || ir.reg == 7)
5543 {
5544 /* The storage register is described by the 3 R/M bits, but the
5545 REX.B prefix may be used to give access to registers
5546 R8~R15. In this case ir.rex_b + R/M will give us the register
5547 in the range R8~R15.
5548
5549 REX.W may also be used to access 64-bit registers, but we
5550 already record entire registers and not just partial bits
5551 of them. */
5552 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rex_b + ir.rm);
5553 /* These instructions also set conditional bits. */
5554 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5555 break;
5556 }
5557 else
5558 {
5559 /* We don't handle this particular instruction yet. */
5560 ir.addr -= 2;
5561 opcode = opcode << 8 | ir.modrm;
5562 goto no_support;
5563 }
5564 }
5565 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5566 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5567 if (i386_record_lea_modrm (&ir))
5568 return -1;
5569 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5570 break;
5571
5572 case 0x50: /* push */
5573 case 0x51:
5574 case 0x52:
5575 case 0x53:
5576 case 0x54:
5577 case 0x55:
5578 case 0x56:
5579 case 0x57:
5580 case 0x68:
5581 case 0x6a:
5582 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5583 ir.dflag = 2;
5584 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5585 return -1;
5586 break;
5587
5588 case 0x06: /* push es */
5589 case 0x0e: /* push cs */
5590 case 0x16: /* push ss */
5591 case 0x1e: /* push ds */
5592 if (ir.regmap[X86_RECORD_R8_REGNUM])
5593 {
5594 ir.addr -= 1;
5595 goto no_support;
5596 }
5597 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5598 return -1;
5599 break;
5600
5601 case 0x0fa0: /* push fs */
5602 case 0x0fa8: /* push gs */
5603 if (ir.regmap[X86_RECORD_R8_REGNUM])
5604 {
5605 ir.addr -= 2;
5606 goto no_support;
5607 }
5608 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5609 return -1;
5610 break;
5611
5612 case 0x60: /* pusha */
5613 if (ir.regmap[X86_RECORD_R8_REGNUM])
5614 {
5615 ir.addr -= 1;
5616 goto no_support;
5617 }
5618 if (i386_record_push (&ir, 1 << (ir.dflag + 4)))
5619 return -1;
5620 break;
5621
5622 case 0x58: /* pop */
5623 case 0x59:
5624 case 0x5a:
5625 case 0x5b:
5626 case 0x5c:
5627 case 0x5d:
5628 case 0x5e:
5629 case 0x5f:
5630 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5631 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
5632 break;
5633
5634 case 0x61: /* popa */
5635 if (ir.regmap[X86_RECORD_R8_REGNUM])
5636 {
5637 ir.addr -= 1;
5638 goto no_support;
5639 }
5640 for (regnum = X86_RECORD_REAX_REGNUM;
5641 regnum <= X86_RECORD_REDI_REGNUM;
5642 regnum++)
5643 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5644 break;
5645
5646 case 0x8f: /* pop */
5647 if (ir.regmap[X86_RECORD_R8_REGNUM])
5648 ir.ot = ir.dflag ? OT_QUAD : OT_WORD;
5649 else
5650 ir.ot = ir.dflag + OT_WORD;
5651 if (i386_record_modrm (&ir))
5652 return -1;
5653 if (ir.mod == 3)
5654 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5655 else
5656 {
5657 ir.popl_esp_hack = 1 << ir.ot;
5658 if (i386_record_lea_modrm (&ir))
5659 return -1;
5660 }
5661 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5662 break;
5663
5664 case 0xc8: /* enter */
5665 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
5666 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5667 ir.dflag = 2;
5668 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5669 return -1;
5670 break;
5671
5672 case 0xc9: /* leave */
5673 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5674 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
5675 break;
5676
5677 case 0x07: /* pop es */
5678 if (ir.regmap[X86_RECORD_R8_REGNUM])
5679 {
5680 ir.addr -= 1;
5681 goto no_support;
5682 }
5683 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5684 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_ES_REGNUM);
5685 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5686 break;
5687
5688 case 0x17: /* pop ss */
5689 if (ir.regmap[X86_RECORD_R8_REGNUM])
5690 {
5691 ir.addr -= 1;
5692 goto no_support;
5693 }
5694 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5695 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_SS_REGNUM);
5696 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5697 break;
5698
5699 case 0x1f: /* pop ds */
5700 if (ir.regmap[X86_RECORD_R8_REGNUM])
5701 {
5702 ir.addr -= 1;
5703 goto no_support;
5704 }
5705 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5706 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_DS_REGNUM);
5707 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5708 break;
5709
5710 case 0x0fa1: /* pop fs */
5711 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5712 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_FS_REGNUM);
5713 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5714 break;
5715
5716 case 0x0fa9: /* pop gs */
5717 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5718 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
5719 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5720 break;
5721
5722 case 0x88: /* mov */
5723 case 0x89:
5724 case 0xc6:
5725 case 0xc7:
5726 if ((opcode & 1) == 0)
5727 ir.ot = OT_BYTE;
5728 else
5729 ir.ot = ir.dflag + OT_WORD;
5730
5731 if (i386_record_modrm (&ir))
5732 return -1;
5733
5734 if (ir.mod != 3)
5735 {
5736 if (opcode == 0xc6 || opcode == 0xc7)
5737 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5738 if (i386_record_lea_modrm (&ir))
5739 return -1;
5740 }
5741 else
5742 {
5743 if (opcode == 0xc6 || opcode == 0xc7)
5744 ir.rm |= ir.rex_b;
5745 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5746 ir.rm &= 0x3;
5747 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5748 }
5749 break;
5750
5751 case 0x8a: /* mov */
5752 case 0x8b:
5753 if ((opcode & 1) == 0)
5754 ir.ot = OT_BYTE;
5755 else
5756 ir.ot = ir.dflag + OT_WORD;
5757 if (i386_record_modrm (&ir))
5758 return -1;
5759 ir.reg |= rex_r;
5760 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5761 ir.reg &= 0x3;
5762 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5763 break;
5764
5765 case 0x8c: /* mov seg */
5766 if (i386_record_modrm (&ir))
5767 return -1;
5768 if (ir.reg > 5)
5769 {
5770 ir.addr -= 2;
5771 opcode = opcode << 8 | ir.modrm;
5772 goto no_support;
5773 }
5774
5775 if (ir.mod == 3)
5776 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5777 else
5778 {
5779 ir.ot = OT_WORD;
5780 if (i386_record_lea_modrm (&ir))
5781 return -1;
5782 }
5783 break;
5784
5785 case 0x8e: /* mov seg */
5786 if (i386_record_modrm (&ir))
5787 return -1;
5788 switch (ir.reg)
5789 {
5790 case 0:
5791 regnum = X86_RECORD_ES_REGNUM;
5792 break;
5793 case 2:
5794 regnum = X86_RECORD_SS_REGNUM;
5795 break;
5796 case 3:
5797 regnum = X86_RECORD_DS_REGNUM;
5798 break;
5799 case 4:
5800 regnum = X86_RECORD_FS_REGNUM;
5801 break;
5802 case 5:
5803 regnum = X86_RECORD_GS_REGNUM;
5804 break;
5805 default:
5806 ir.addr -= 2;
5807 opcode = opcode << 8 | ir.modrm;
5808 goto no_support;
5809 break;
5810 }
5811 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5812 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5813 break;
5814
5815 case 0x0fb6: /* movzbS */
5816 case 0x0fb7: /* movzwS */
5817 case 0x0fbe: /* movsbS */
5818 case 0x0fbf: /* movswS */
5819 if (i386_record_modrm (&ir))
5820 return -1;
5821 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5822 break;
5823
5824 case 0x8d: /* lea */
5825 if (i386_record_modrm (&ir))
5826 return -1;
5827 if (ir.mod == 3)
5828 {
5829 ir.addr -= 2;
5830 opcode = opcode << 8 | ir.modrm;
5831 goto no_support;
5832 }
5833 ir.ot = ir.dflag;
5834 ir.reg |= rex_r;
5835 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5836 ir.reg &= 0x3;
5837 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5838 break;
5839
5840 case 0xa0: /* mov EAX */
5841 case 0xa1:
5842
5843 case 0xd7: /* xlat */
5844 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5845 break;
5846
5847 case 0xa2: /* mov EAX */
5848 case 0xa3:
5849 if (ir.override >= 0)
5850 {
5851 if (record_full_memory_query)
5852 {
5853 if (yquery (_("\
5854 Process record ignores the memory change of instruction at address %s\n\
5855 because it can't get the value of the segment register.\n\
5856 Do you want to stop the program?"),
5857 paddress (gdbarch, ir.orig_addr)))
5858 return -1;
5859 }
5860 }
5861 else
5862 {
5863 if ((opcode & 1) == 0)
5864 ir.ot = OT_BYTE;
5865 else
5866 ir.ot = ir.dflag + OT_WORD;
5867 if (ir.aflag == 2)
5868 {
5869 if (record_read_memory (gdbarch, ir.addr, buf, 8))
5870 return -1;
5871 ir.addr += 8;
5872 addr = extract_unsigned_integer (buf, 8, byte_order);
5873 }
5874 else if (ir.aflag)
5875 {
5876 if (record_read_memory (gdbarch, ir.addr, buf, 4))
5877 return -1;
5878 ir.addr += 4;
5879 addr = extract_unsigned_integer (buf, 4, byte_order);
5880 }
5881 else
5882 {
5883 if (record_read_memory (gdbarch, ir.addr, buf, 2))
5884 return -1;
5885 ir.addr += 2;
5886 addr = extract_unsigned_integer (buf, 2, byte_order);
5887 }
5888 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
5889 return -1;
5890 }
5891 break;
5892
5893 case 0xb0: /* mov R, Ib */
5894 case 0xb1:
5895 case 0xb2:
5896 case 0xb3:
5897 case 0xb4:
5898 case 0xb5:
5899 case 0xb6:
5900 case 0xb7:
5901 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((ir.regmap[X86_RECORD_R8_REGNUM])
5902 ? ((opcode & 0x7) | ir.rex_b)
5903 : ((opcode & 0x7) & 0x3));
5904 break;
5905
5906 case 0xb8: /* mov R, Iv */
5907 case 0xb9:
5908 case 0xba:
5909 case 0xbb:
5910 case 0xbc:
5911 case 0xbd:
5912 case 0xbe:
5913 case 0xbf:
5914 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
5915 break;
5916
5917 case 0x91: /* xchg R, EAX */
5918 case 0x92:
5919 case 0x93:
5920 case 0x94:
5921 case 0x95:
5922 case 0x96:
5923 case 0x97:
5924 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5925 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 0x7);
5926 break;
5927
5928 case 0x86: /* xchg Ev, Gv */
5929 case 0x87:
5930 if ((opcode & 1) == 0)
5931 ir.ot = OT_BYTE;
5932 else
5933 ir.ot = ir.dflag + OT_WORD;
5934 if (i386_record_modrm (&ir))
5935 return -1;
5936 if (ir.mod == 3)
5937 {
5938 ir.rm |= ir.rex_b;
5939 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5940 ir.rm &= 0x3;
5941 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5942 }
5943 else
5944 {
5945 if (i386_record_lea_modrm (&ir))
5946 return -1;
5947 }
5948 ir.reg |= rex_r;
5949 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5950 ir.reg &= 0x3;
5951 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5952 break;
5953
5954 case 0xc4: /* les Gv */
5955 case 0xc5: /* lds Gv */
5956 if (ir.regmap[X86_RECORD_R8_REGNUM])
5957 {
5958 ir.addr -= 1;
5959 goto no_support;
5960 }
5961 /* FALLTHROUGH */
5962 case 0x0fb2: /* lss Gv */
5963 case 0x0fb4: /* lfs Gv */
5964 case 0x0fb5: /* lgs Gv */
5965 if (i386_record_modrm (&ir))
5966 return -1;
5967 if (ir.mod == 3)
5968 {
5969 if (opcode > 0xff)
5970 ir.addr -= 3;
5971 else
5972 ir.addr -= 2;
5973 opcode = opcode << 8 | ir.modrm;
5974 goto no_support;
5975 }
5976 switch (opcode)
5977 {
5978 case 0xc4: /* les Gv */
5979 regnum = X86_RECORD_ES_REGNUM;
5980 break;
5981 case 0xc5: /* lds Gv */
5982 regnum = X86_RECORD_DS_REGNUM;
5983 break;
5984 case 0x0fb2: /* lss Gv */
5985 regnum = X86_RECORD_SS_REGNUM;
5986 break;
5987 case 0x0fb4: /* lfs Gv */
5988 regnum = X86_RECORD_FS_REGNUM;
5989 break;
5990 case 0x0fb5: /* lgs Gv */
5991 regnum = X86_RECORD_GS_REGNUM;
5992 break;
5993 }
5994 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5995 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5996 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5997 break;
5998
5999 case 0xc0: /* shifts */
6000 case 0xc1:
6001 case 0xd0:
6002 case 0xd1:
6003 case 0xd2:
6004 case 0xd3:
6005 if ((opcode & 1) == 0)
6006 ir.ot = OT_BYTE;
6007 else
6008 ir.ot = ir.dflag + OT_WORD;
6009 if (i386_record_modrm (&ir))
6010 return -1;
6011 if (ir.mod != 3 && (opcode == 0xd2 || opcode == 0xd3))
6012 {
6013 if (i386_record_lea_modrm (&ir))
6014 return -1;
6015 }
6016 else
6017 {
6018 ir.rm |= ir.rex_b;
6019 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
6020 ir.rm &= 0x3;
6021 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
6022 }
6023 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6024 break;
6025
6026 case 0x0fa4:
6027 case 0x0fa5:
6028 case 0x0fac:
6029 case 0x0fad:
6030 if (i386_record_modrm (&ir))
6031 return -1;
6032 if (ir.mod == 3)
6033 {
6034 if (record_full_arch_list_add_reg (ir.regcache, ir.rm))
6035 return -1;
6036 }
6037 else
6038 {
6039 if (i386_record_lea_modrm (&ir))
6040 return -1;
6041 }
6042 break;
6043
6044 case 0xd8: /* Floats. */
6045 case 0xd9:
6046 case 0xda:
6047 case 0xdb:
6048 case 0xdc:
6049 case 0xdd:
6050 case 0xde:
6051 case 0xdf:
6052 if (i386_record_modrm (&ir))
6053 return -1;
6054 ir.reg |= ((opcode & 7) << 3);
6055 if (ir.mod != 3)
6056 {
6057 /* Memory. */
6058 uint64_t addr64;
6059
6060 if (i386_record_lea_modrm_addr (&ir, &addr64))
6061 return -1;
6062 switch (ir.reg)
6063 {
6064 case 0x02:
6065 case 0x12:
6066 case 0x22:
6067 case 0x32:
6068 /* For fcom, ficom nothing to do. */
6069 break;
6070 case 0x03:
6071 case 0x13:
6072 case 0x23:
6073 case 0x33:
6074 /* For fcomp, ficomp pop FPU stack, store all. */
6075 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6076 return -1;
6077 break;
6078 case 0x00:
6079 case 0x01:
6080 case 0x04:
6081 case 0x05:
6082 case 0x06:
6083 case 0x07:
6084 case 0x10:
6085 case 0x11:
6086 case 0x14:
6087 case 0x15:
6088 case 0x16:
6089 case 0x17:
6090 case 0x20:
6091 case 0x21:
6092 case 0x24:
6093 case 0x25:
6094 case 0x26:
6095 case 0x27:
6096 case 0x30:
6097 case 0x31:
6098 case 0x34:
6099 case 0x35:
6100 case 0x36:
6101 case 0x37:
6102 /* For fadd, fmul, fsub, fsubr, fdiv, fdivr, fiadd, fimul,
6103 fisub, fisubr, fidiv, fidivr, modR/M.reg is an extension
6104 of code, always affects st(0) register. */
6105 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
6106 return -1;
6107 break;
6108 case 0x08:
6109 case 0x0a:
6110 case 0x0b:
6111 case 0x18:
6112 case 0x19:
6113 case 0x1a:
6114 case 0x1b:
6115 case 0x1d:
6116 case 0x28:
6117 case 0x29:
6118 case 0x2a:
6119 case 0x2b:
6120 case 0x38:
6121 case 0x39:
6122 case 0x3a:
6123 case 0x3b:
6124 case 0x3c:
6125 case 0x3d:
6126 switch (ir.reg & 7)
6127 {
6128 case 0:
6129 /* Handling fld, fild. */
6130 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6131 return -1;
6132 break;
6133 case 1:
6134 switch (ir.reg >> 4)
6135 {
6136 case 0:
6137 if (record_full_arch_list_add_mem (addr64, 4))
6138 return -1;
6139 break;
6140 case 2:
6141 if (record_full_arch_list_add_mem (addr64, 8))
6142 return -1;
6143 break;
6144 case 3:
6145 break;
6146 default:
6147 if (record_full_arch_list_add_mem (addr64, 2))
6148 return -1;
6149 break;
6150 }
6151 break;
6152 default:
6153 switch (ir.reg >> 4)
6154 {
6155 case 0:
6156 if (record_full_arch_list_add_mem (addr64, 4))
6157 return -1;
6158 if (3 == (ir.reg & 7))
6159 {
6160 /* For fstp m32fp. */
6161 if (i386_record_floats (gdbarch, &ir,
6162 I386_SAVE_FPU_REGS))
6163 return -1;
6164 }
6165 break;
6166 case 1:
6167 if (record_full_arch_list_add_mem (addr64, 4))
6168 return -1;
6169 if ((3 == (ir.reg & 7))
6170 || (5 == (ir.reg & 7))
6171 || (7 == (ir.reg & 7)))
6172 {
6173 /* For fstp insn. */
6174 if (i386_record_floats (gdbarch, &ir,
6175 I386_SAVE_FPU_REGS))
6176 return -1;
6177 }
6178 break;
6179 case 2:
6180 if (record_full_arch_list_add_mem (addr64, 8))
6181 return -1;
6182 if (3 == (ir.reg & 7))
6183 {
6184 /* For fstp m64fp. */
6185 if (i386_record_floats (gdbarch, &ir,
6186 I386_SAVE_FPU_REGS))
6187 return -1;
6188 }
6189 break;
6190 case 3:
6191 if ((3 <= (ir.reg & 7)) && (6 <= (ir.reg & 7)))
6192 {
6193 /* For fistp, fbld, fild, fbstp. */
6194 if (i386_record_floats (gdbarch, &ir,
6195 I386_SAVE_FPU_REGS))
6196 return -1;
6197 }
6198 /* Fall through */
6199 default:
6200 if (record_full_arch_list_add_mem (addr64, 2))
6201 return -1;
6202 break;
6203 }
6204 break;
6205 }
6206 break;
6207 case 0x0c:
6208 /* Insn fldenv. */
6209 if (i386_record_floats (gdbarch, &ir,
6210 I386_SAVE_FPU_ENV_REG_STACK))
6211 return -1;
6212 break;
6213 case 0x0d:
6214 /* Insn fldcw. */
6215 if (i386_record_floats (gdbarch, &ir, I387_FCTRL_REGNUM (tdep)))
6216 return -1;
6217 break;
6218 case 0x2c:
6219 /* Insn frstor. */
6220 if (i386_record_floats (gdbarch, &ir,
6221 I386_SAVE_FPU_ENV_REG_STACK))
6222 return -1;
6223 break;
6224 case 0x0e:
6225 if (ir.dflag)
6226 {
6227 if (record_full_arch_list_add_mem (addr64, 28))
6228 return -1;
6229 }
6230 else
6231 {
6232 if (record_full_arch_list_add_mem (addr64, 14))
6233 return -1;
6234 }
6235 break;
6236 case 0x0f:
6237 case 0x2f:
6238 if (record_full_arch_list_add_mem (addr64, 2))
6239 return -1;
6240 /* Insn fstp, fbstp. */
6241 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6242 return -1;
6243 break;
6244 case 0x1f:
6245 case 0x3e:
6246 if (record_full_arch_list_add_mem (addr64, 10))
6247 return -1;
6248 break;
6249 case 0x2e:
6250 if (ir.dflag)
6251 {
6252 if (record_full_arch_list_add_mem (addr64, 28))
6253 return -1;
6254 addr64 += 28;
6255 }
6256 else
6257 {
6258 if (record_full_arch_list_add_mem (addr64, 14))
6259 return -1;
6260 addr64 += 14;
6261 }
6262 if (record_full_arch_list_add_mem (addr64, 80))
6263 return -1;
6264 /* Insn fsave. */
6265 if (i386_record_floats (gdbarch, &ir,
6266 I386_SAVE_FPU_ENV_REG_STACK))
6267 return -1;
6268 break;
6269 case 0x3f:
6270 if (record_full_arch_list_add_mem (addr64, 8))
6271 return -1;
6272 /* Insn fistp. */
6273 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6274 return -1;
6275 break;
6276 default:
6277 ir.addr -= 2;
6278 opcode = opcode << 8 | ir.modrm;
6279 goto no_support;
6280 break;
6281 }
6282 }
6283 /* Opcode is an extension of modR/M byte. */
6284 else
6285 {
6286 switch (opcode)
6287 {
6288 case 0xd8:
6289 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
6290 return -1;
6291 break;
6292 case 0xd9:
6293 if (0x0c == (ir.modrm >> 4))
6294 {
6295 if ((ir.modrm & 0x0f) <= 7)
6296 {
6297 if (i386_record_floats (gdbarch, &ir,
6298 I386_SAVE_FPU_REGS))
6299 return -1;
6300 }
6301 else
6302 {
6303 if (i386_record_floats (gdbarch, &ir,
6304 I387_ST0_REGNUM (tdep)))
6305 return -1;
6306 /* If only st(0) is changing, then we have already
6307 recorded. */
6308 if ((ir.modrm & 0x0f) - 0x08)
6309 {
6310 if (i386_record_floats (gdbarch, &ir,
6311 I387_ST0_REGNUM (tdep) +
6312 ((ir.modrm & 0x0f) - 0x08)))
6313 return -1;
6314 }
6315 }
6316 }
6317 else
6318 {
6319 switch (ir.modrm)
6320 {
6321 case 0xe0:
6322 case 0xe1:
6323 case 0xf0:
6324 case 0xf5:
6325 case 0xf8:
6326 case 0xfa:
6327 case 0xfc:
6328 case 0xfe:
6329 case 0xff:
6330 if (i386_record_floats (gdbarch, &ir,
6331 I387_ST0_REGNUM (tdep)))
6332 return -1;
6333 break;
6334 case 0xf1:
6335 case 0xf2:
6336 case 0xf3:
6337 case 0xf4:
6338 case 0xf6:
6339 case 0xf7:
6340 case 0xe8:
6341 case 0xe9:
6342 case 0xea:
6343 case 0xeb:
6344 case 0xec:
6345 case 0xed:
6346 case 0xee:
6347 case 0xf9:
6348 case 0xfb:
6349 if (i386_record_floats (gdbarch, &ir,
6350 I386_SAVE_FPU_REGS))
6351 return -1;
6352 break;
6353 case 0xfd:
6354 if (i386_record_floats (gdbarch, &ir,
6355 I387_ST0_REGNUM (tdep)))
6356 return -1;
6357 if (i386_record_floats (gdbarch, &ir,
6358 I387_ST0_REGNUM (tdep) + 1))
6359 return -1;
6360 break;
6361 }
6362 }
6363 break;
6364 case 0xda:
6365 if (0xe9 == ir.modrm)
6366 {
6367 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6368 return -1;
6369 }
6370 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
6371 {
6372 if (i386_record_floats (gdbarch, &ir,
6373 I387_ST0_REGNUM (tdep)))
6374 return -1;
6375 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
6376 {
6377 if (i386_record_floats (gdbarch, &ir,
6378 I387_ST0_REGNUM (tdep) +
6379 (ir.modrm & 0x0f)))
6380 return -1;
6381 }
6382 else if ((ir.modrm & 0x0f) - 0x08)
6383 {
6384 if (i386_record_floats (gdbarch, &ir,
6385 I387_ST0_REGNUM (tdep) +
6386 ((ir.modrm & 0x0f) - 0x08)))
6387 return -1;
6388 }
6389 }
6390 break;
6391 case 0xdb:
6392 if (0xe3 == ir.modrm)
6393 {
6394 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_ENV))
6395 return -1;
6396 }
6397 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
6398 {
6399 if (i386_record_floats (gdbarch, &ir,
6400 I387_ST0_REGNUM (tdep)))
6401 return -1;
6402 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
6403 {
6404 if (i386_record_floats (gdbarch, &ir,
6405 I387_ST0_REGNUM (tdep) +
6406 (ir.modrm & 0x0f)))
6407 return -1;
6408 }
6409 else if ((ir.modrm & 0x0f) - 0x08)
6410 {
6411 if (i386_record_floats (gdbarch, &ir,
6412 I387_ST0_REGNUM (tdep) +
6413 ((ir.modrm & 0x0f) - 0x08)))
6414 return -1;
6415 }
6416 }
6417 break;
6418 case 0xdc:
6419 if ((0x0c == ir.modrm >> 4)
6420 || (0x0d == ir.modrm >> 4)
6421 || (0x0f == ir.modrm >> 4))
6422 {
6423 if ((ir.modrm & 0x0f) <= 7)
6424 {
6425 if (i386_record_floats (gdbarch, &ir,
6426 I387_ST0_REGNUM (tdep) +
6427 (ir.modrm & 0x0f)))
6428 return -1;
6429 }
6430 else
6431 {
6432 if (i386_record_floats (gdbarch, &ir,
6433 I387_ST0_REGNUM (tdep) +
6434 ((ir.modrm & 0x0f) - 0x08)))
6435 return -1;
6436 }
6437 }
6438 break;
6439 case 0xdd:
6440 if (0x0c == ir.modrm >> 4)
6441 {
6442 if (i386_record_floats (gdbarch, &ir,
6443 I387_FTAG_REGNUM (tdep)))
6444 return -1;
6445 }
6446 else if ((0x0d == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
6447 {
6448 if ((ir.modrm & 0x0f) <= 7)
6449 {
6450 if (i386_record_floats (gdbarch, &ir,
6451 I387_ST0_REGNUM (tdep) +
6452 (ir.modrm & 0x0f)))
6453 return -1;
6454 }
6455 else
6456 {
6457 if (i386_record_floats (gdbarch, &ir,
6458 I386_SAVE_FPU_REGS))
6459 return -1;
6460 }
6461 }
6462 break;
6463 case 0xde:
6464 if ((0x0c == ir.modrm >> 4)
6465 || (0x0e == ir.modrm >> 4)
6466 || (0x0f == ir.modrm >> 4)
6467 || (0xd9 == ir.modrm))
6468 {
6469 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6470 return -1;
6471 }
6472 break;
6473 case 0xdf:
6474 if (0xe0 == ir.modrm)
6475 {
6476 if (record_full_arch_list_add_reg (ir.regcache,
6477 I386_EAX_REGNUM))
6478 return -1;
6479 }
6480 else if ((0x0f == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
6481 {
6482 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6483 return -1;
6484 }
6485 break;
6486 }
6487 }
6488 break;
6489 /* string ops */
6490 case 0xa4: /* movsS */
6491 case 0xa5:
6492 case 0xaa: /* stosS */
6493 case 0xab:
6494 case 0x6c: /* insS */
6495 case 0x6d:
6496 regcache_raw_read_unsigned (ir.regcache,
6497 ir.regmap[X86_RECORD_RECX_REGNUM],
6498 &addr);
6499 if (addr)
6500 {
6501 ULONGEST es, ds;
6502
6503 if ((opcode & 1) == 0)
6504 ir.ot = OT_BYTE;
6505 else
6506 ir.ot = ir.dflag + OT_WORD;
6507 regcache_raw_read_unsigned (ir.regcache,
6508 ir.regmap[X86_RECORD_REDI_REGNUM],
6509 &addr);
6510
6511 regcache_raw_read_unsigned (ir.regcache,
6512 ir.regmap[X86_RECORD_ES_REGNUM],
6513 &es);
6514 regcache_raw_read_unsigned (ir.regcache,
6515 ir.regmap[X86_RECORD_DS_REGNUM],
6516 &ds);
6517 if (ir.aflag && (es != ds))
6518 {
6519 /* addr += ((uint32_t) read_register (I386_ES_REGNUM)) << 4; */
6520 if (record_full_memory_query)
6521 {
6522 if (yquery (_("\
6523 Process record ignores the memory change of instruction at address %s\n\
6524 because it can't get the value of the segment register.\n\
6525 Do you want to stop the program?"),
6526 paddress (gdbarch, ir.orig_addr)))
6527 return -1;
6528 }
6529 }
6530 else
6531 {
6532 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
6533 return -1;
6534 }
6535
6536 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6537 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6538 if (opcode == 0xa4 || opcode == 0xa5)
6539 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6540 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6541 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6542 }
6543 break;
6544
6545 case 0xa6: /* cmpsS */
6546 case 0xa7:
6547 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6548 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6549 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6550 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6551 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6552 break;
6553
6554 case 0xac: /* lodsS */
6555 case 0xad:
6556 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6557 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6558 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6559 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6560 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6561 break;
6562
6563 case 0xae: /* scasS */
6564 case 0xaf:
6565 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6566 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6567 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6568 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6569 break;
6570
6571 case 0x6e: /* outsS */
6572 case 0x6f:
6573 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6574 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6575 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6576 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6577 break;
6578
6579 case 0xe4: /* port I/O */
6580 case 0xe5:
6581 case 0xec:
6582 case 0xed:
6583 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6584 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6585 break;
6586
6587 case 0xe6:
6588 case 0xe7:
6589 case 0xee:
6590 case 0xef:
6591 break;
6592
6593 /* control */
6594 case 0xc2: /* ret im */
6595 case 0xc3: /* ret */
6596 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6597 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6598 break;
6599
6600 case 0xca: /* lret im */
6601 case 0xcb: /* lret */
6602 case 0xcf: /* iret */
6603 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
6604 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6605 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6606 break;
6607
6608 case 0xe8: /* call im */
6609 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6610 ir.dflag = 2;
6611 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6612 return -1;
6613 break;
6614
6615 case 0x9a: /* lcall im */
6616 if (ir.regmap[X86_RECORD_R8_REGNUM])
6617 {
6618 ir.addr -= 1;
6619 goto no_support;
6620 }
6621 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
6622 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6623 return -1;
6624 break;
6625
6626 case 0xe9: /* jmp im */
6627 case 0xea: /* ljmp im */
6628 case 0xeb: /* jmp Jb */
6629 case 0x70: /* jcc Jb */
6630 case 0x71:
6631 case 0x72:
6632 case 0x73:
6633 case 0x74:
6634 case 0x75:
6635 case 0x76:
6636 case 0x77:
6637 case 0x78:
6638 case 0x79:
6639 case 0x7a:
6640 case 0x7b:
6641 case 0x7c:
6642 case 0x7d:
6643 case 0x7e:
6644 case 0x7f:
6645 case 0x0f80: /* jcc Jv */
6646 case 0x0f81:
6647 case 0x0f82:
6648 case 0x0f83:
6649 case 0x0f84:
6650 case 0x0f85:
6651 case 0x0f86:
6652 case 0x0f87:
6653 case 0x0f88:
6654 case 0x0f89:
6655 case 0x0f8a:
6656 case 0x0f8b:
6657 case 0x0f8c:
6658 case 0x0f8d:
6659 case 0x0f8e:
6660 case 0x0f8f:
6661 break;
6662
6663 case 0x0f90: /* setcc Gv */
6664 case 0x0f91:
6665 case 0x0f92:
6666 case 0x0f93:
6667 case 0x0f94:
6668 case 0x0f95:
6669 case 0x0f96:
6670 case 0x0f97:
6671 case 0x0f98:
6672 case 0x0f99:
6673 case 0x0f9a:
6674 case 0x0f9b:
6675 case 0x0f9c:
6676 case 0x0f9d:
6677 case 0x0f9e:
6678 case 0x0f9f:
6679 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6680 ir.ot = OT_BYTE;
6681 if (i386_record_modrm (&ir))
6682 return -1;
6683 if (ir.mod == 3)
6684 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rex_b ? (ir.rm | ir.rex_b)
6685 : (ir.rm & 0x3));
6686 else
6687 {
6688 if (i386_record_lea_modrm (&ir))
6689 return -1;
6690 }
6691 break;
6692
6693 case 0x0f40: /* cmov Gv, Ev */
6694 case 0x0f41:
6695 case 0x0f42:
6696 case 0x0f43:
6697 case 0x0f44:
6698 case 0x0f45:
6699 case 0x0f46:
6700 case 0x0f47:
6701 case 0x0f48:
6702 case 0x0f49:
6703 case 0x0f4a:
6704 case 0x0f4b:
6705 case 0x0f4c:
6706 case 0x0f4d:
6707 case 0x0f4e:
6708 case 0x0f4f:
6709 if (i386_record_modrm (&ir))
6710 return -1;
6711 ir.reg |= rex_r;
6712 if (ir.dflag == OT_BYTE)
6713 ir.reg &= 0x3;
6714 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
6715 break;
6716
6717 /* flags */
6718 case 0x9c: /* pushf */
6719 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6720 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6721 ir.dflag = 2;
6722 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6723 return -1;
6724 break;
6725
6726 case 0x9d: /* popf */
6727 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6728 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6729 break;
6730
6731 case 0x9e: /* sahf */
6732 if (ir.regmap[X86_RECORD_R8_REGNUM])
6733 {
6734 ir.addr -= 1;
6735 goto no_support;
6736 }
6737 /* FALLTHROUGH */
6738 case 0xf5: /* cmc */
6739 case 0xf8: /* clc */
6740 case 0xf9: /* stc */
6741 case 0xfc: /* cld */
6742 case 0xfd: /* std */
6743 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6744 break;
6745
6746 case 0x9f: /* lahf */
6747 if (ir.regmap[X86_RECORD_R8_REGNUM])
6748 {
6749 ir.addr -= 1;
6750 goto no_support;
6751 }
6752 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6753 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6754 break;
6755
6756 /* bit operations */
6757 case 0x0fba: /* bt/bts/btr/btc Gv, im */
6758 ir.ot = ir.dflag + OT_WORD;
6759 if (i386_record_modrm (&ir))
6760 return -1;
6761 if (ir.reg < 4)
6762 {
6763 ir.addr -= 2;
6764 opcode = opcode << 8 | ir.modrm;
6765 goto no_support;
6766 }
6767 if (ir.reg != 4)
6768 {
6769 if (ir.mod == 3)
6770 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6771 else
6772 {
6773 if (i386_record_lea_modrm (&ir))
6774 return -1;
6775 }
6776 }
6777 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6778 break;
6779
6780 case 0x0fa3: /* bt Gv, Ev */
6781 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6782 break;
6783
6784 case 0x0fab: /* bts */
6785 case 0x0fb3: /* btr */
6786 case 0x0fbb: /* btc */
6787 ir.ot = ir.dflag + OT_WORD;
6788 if (i386_record_modrm (&ir))
6789 return -1;
6790 if (ir.mod == 3)
6791 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6792 else
6793 {
6794 uint64_t addr64;
6795 if (i386_record_lea_modrm_addr (&ir, &addr64))
6796 return -1;
6797 regcache_raw_read_unsigned (ir.regcache,
6798 ir.regmap[ir.reg | rex_r],
6799 &addr);
6800 switch (ir.dflag)
6801 {
6802 case 0:
6803 addr64 += ((int16_t) addr >> 4) << 4;
6804 break;
6805 case 1:
6806 addr64 += ((int32_t) addr >> 5) << 5;
6807 break;
6808 case 2:
6809 addr64 += ((int64_t) addr >> 6) << 6;
6810 break;
6811 }
6812 if (record_full_arch_list_add_mem (addr64, 1 << ir.ot))
6813 return -1;
6814 if (i386_record_lea_modrm (&ir))
6815 return -1;
6816 }
6817 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6818 break;
6819
6820 case 0x0fbc: /* bsf */
6821 case 0x0fbd: /* bsr */
6822 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6823 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6824 break;
6825
6826 /* bcd */
6827 case 0x27: /* daa */
6828 case 0x2f: /* das */
6829 case 0x37: /* aaa */
6830 case 0x3f: /* aas */
6831 case 0xd4: /* aam */
6832 case 0xd5: /* aad */
6833 if (ir.regmap[X86_RECORD_R8_REGNUM])
6834 {
6835 ir.addr -= 1;
6836 goto no_support;
6837 }
6838 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6839 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6840 break;
6841
6842 /* misc */
6843 case 0x90: /* nop */
6844 if (prefixes & PREFIX_LOCK)
6845 {
6846 ir.addr -= 1;
6847 goto no_support;
6848 }
6849 break;
6850
6851 case 0x9b: /* fwait */
6852 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
6853 return -1;
6854 opcode = (uint32_t) opcode8;
6855 ir.addr++;
6856 goto reswitch;
6857 break;
6858
6859 /* XXX */
6860 case 0xcc: /* int3 */
6861 printf_unfiltered (_("Process record does not support instruction "
6862 "int3.\n"));
6863 ir.addr -= 1;
6864 goto no_support;
6865 break;
6866
6867 /* XXX */
6868 case 0xcd: /* int */
6869 {
6870 int ret;
6871 uint8_t interrupt;
6872 if (record_read_memory (gdbarch, ir.addr, &interrupt, 1))
6873 return -1;
6874 ir.addr++;
6875 if (interrupt != 0x80
6876 || tdep->i386_intx80_record == NULL)
6877 {
6878 printf_unfiltered (_("Process record does not support "
6879 "instruction int 0x%02x.\n"),
6880 interrupt);
6881 ir.addr -= 2;
6882 goto no_support;
6883 }
6884 ret = tdep->i386_intx80_record (ir.regcache);
6885 if (ret)
6886 return ret;
6887 }
6888 break;
6889
6890 /* XXX */
6891 case 0xce: /* into */
6892 printf_unfiltered (_("Process record does not support "
6893 "instruction into.\n"));
6894 ir.addr -= 1;
6895 goto no_support;
6896 break;
6897
6898 case 0xfa: /* cli */
6899 case 0xfb: /* sti */
6900 break;
6901
6902 case 0x62: /* bound */
6903 printf_unfiltered (_("Process record does not support "
6904 "instruction bound.\n"));
6905 ir.addr -= 1;
6906 goto no_support;
6907 break;
6908
6909 case 0x0fc8: /* bswap reg */
6910 case 0x0fc9:
6911 case 0x0fca:
6912 case 0x0fcb:
6913 case 0x0fcc:
6914 case 0x0fcd:
6915 case 0x0fce:
6916 case 0x0fcf:
6917 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 7) | ir.rex_b);
6918 break;
6919
6920 case 0xd6: /* salc */
6921 if (ir.regmap[X86_RECORD_R8_REGNUM])
6922 {
6923 ir.addr -= 1;
6924 goto no_support;
6925 }
6926 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6927 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6928 break;
6929
6930 case 0xe0: /* loopnz */
6931 case 0xe1: /* loopz */
6932 case 0xe2: /* loop */
6933 case 0xe3: /* jecxz */
6934 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6935 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6936 break;
6937
6938 case 0x0f30: /* wrmsr */
6939 printf_unfiltered (_("Process record does not support "
6940 "instruction wrmsr.\n"));
6941 ir.addr -= 2;
6942 goto no_support;
6943 break;
6944
6945 case 0x0f32: /* rdmsr */
6946 printf_unfiltered (_("Process record does not support "
6947 "instruction rdmsr.\n"));
6948 ir.addr -= 2;
6949 goto no_support;
6950 break;
6951
6952 case 0x0f31: /* rdtsc */
6953 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6954 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6955 break;
6956
6957 case 0x0f34: /* sysenter */
6958 {
6959 int ret;
6960 if (ir.regmap[X86_RECORD_R8_REGNUM])
6961 {
6962 ir.addr -= 2;
6963 goto no_support;
6964 }
6965 if (tdep->i386_sysenter_record == NULL)
6966 {
6967 printf_unfiltered (_("Process record does not support "
6968 "instruction sysenter.\n"));
6969 ir.addr -= 2;
6970 goto no_support;
6971 }
6972 ret = tdep->i386_sysenter_record (ir.regcache);
6973 if (ret)
6974 return ret;
6975 }
6976 break;
6977
6978 case 0x0f35: /* sysexit */
6979 printf_unfiltered (_("Process record does not support "
6980 "instruction sysexit.\n"));
6981 ir.addr -= 2;
6982 goto no_support;
6983 break;
6984
6985 case 0x0f05: /* syscall */
6986 {
6987 int ret;
6988 if (tdep->i386_syscall_record == NULL)
6989 {
6990 printf_unfiltered (_("Process record does not support "
6991 "instruction syscall.\n"));
6992 ir.addr -= 2;
6993 goto no_support;
6994 }
6995 ret = tdep->i386_syscall_record (ir.regcache);
6996 if (ret)
6997 return ret;
6998 }
6999 break;
7000
7001 case 0x0f07: /* sysret */
7002 printf_unfiltered (_("Process record does not support "
7003 "instruction sysret.\n"));
7004 ir.addr -= 2;
7005 goto no_support;
7006 break;
7007
7008 case 0x0fa2: /* cpuid */
7009 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7010 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
7011 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7012 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
7013 break;
7014
7015 case 0xf4: /* hlt */
7016 printf_unfiltered (_("Process record does not support "
7017 "instruction hlt.\n"));
7018 ir.addr -= 1;
7019 goto no_support;
7020 break;
7021
7022 case 0x0f00:
7023 if (i386_record_modrm (&ir))
7024 return -1;
7025 switch (ir.reg)
7026 {
7027 case 0: /* sldt */
7028 case 1: /* str */
7029 if (ir.mod == 3)
7030 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7031 else
7032 {
7033 ir.ot = OT_WORD;
7034 if (i386_record_lea_modrm (&ir))
7035 return -1;
7036 }
7037 break;
7038 case 2: /* lldt */
7039 case 3: /* ltr */
7040 break;
7041 case 4: /* verr */
7042 case 5: /* verw */
7043 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7044 break;
7045 default:
7046 ir.addr -= 3;
7047 opcode = opcode << 8 | ir.modrm;
7048 goto no_support;
7049 break;
7050 }
7051 break;
7052
7053 case 0x0f01:
7054 if (i386_record_modrm (&ir))
7055 return -1;
7056 switch (ir.reg)
7057 {
7058 case 0: /* sgdt */
7059 {
7060 uint64_t addr64;
7061
7062 if (ir.mod == 3)
7063 {
7064 ir.addr -= 3;
7065 opcode = opcode << 8 | ir.modrm;
7066 goto no_support;
7067 }
7068 if (ir.override >= 0)
7069 {
7070 if (record_full_memory_query)
7071 {
7072 if (yquery (_("\
7073 Process record ignores the memory change of instruction at address %s\n\
7074 because it can't get the value of the segment register.\n\
7075 Do you want to stop the program?"),
7076 paddress (gdbarch, ir.orig_addr)))
7077 return -1;
7078 }
7079 }
7080 else
7081 {
7082 if (i386_record_lea_modrm_addr (&ir, &addr64))
7083 return -1;
7084 if (record_full_arch_list_add_mem (addr64, 2))
7085 return -1;
7086 addr64 += 2;
7087 if (ir.regmap[X86_RECORD_R8_REGNUM])
7088 {
7089 if (record_full_arch_list_add_mem (addr64, 8))
7090 return -1;
7091 }
7092 else
7093 {
7094 if (record_full_arch_list_add_mem (addr64, 4))
7095 return -1;
7096 }
7097 }
7098 }
7099 break;
7100 case 1:
7101 if (ir.mod == 3)
7102 {
7103 switch (ir.rm)
7104 {
7105 case 0: /* monitor */
7106 break;
7107 case 1: /* mwait */
7108 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7109 break;
7110 default:
7111 ir.addr -= 3;
7112 opcode = opcode << 8 | ir.modrm;
7113 goto no_support;
7114 break;
7115 }
7116 }
7117 else
7118 {
7119 /* sidt */
7120 if (ir.override >= 0)
7121 {
7122 if (record_full_memory_query)
7123 {
7124 if (yquery (_("\
7125 Process record ignores the memory change of instruction at address %s\n\
7126 because it can't get the value of the segment register.\n\
7127 Do you want to stop the program?"),
7128 paddress (gdbarch, ir.orig_addr)))
7129 return -1;
7130 }
7131 }
7132 else
7133 {
7134 uint64_t addr64;
7135
7136 if (i386_record_lea_modrm_addr (&ir, &addr64))
7137 return -1;
7138 if (record_full_arch_list_add_mem (addr64, 2))
7139 return -1;
7140 addr64 += 2;
7141 if (ir.regmap[X86_RECORD_R8_REGNUM])
7142 {
7143 if (record_full_arch_list_add_mem (addr64, 8))
7144 return -1;
7145 }
7146 else
7147 {
7148 if (record_full_arch_list_add_mem (addr64, 4))
7149 return -1;
7150 }
7151 }
7152 }
7153 break;
7154 case 2: /* lgdt */
7155 if (ir.mod == 3)
7156 {
7157 /* xgetbv */
7158 if (ir.rm == 0)
7159 {
7160 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7161 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7162 break;
7163 }
7164 /* xsetbv */
7165 else if (ir.rm == 1)
7166 break;
7167 }
7168 case 3: /* lidt */
7169 if (ir.mod == 3)
7170 {
7171 ir.addr -= 3;
7172 opcode = opcode << 8 | ir.modrm;
7173 goto no_support;
7174 }
7175 break;
7176 case 4: /* smsw */
7177 if (ir.mod == 3)
7178 {
7179 if (record_full_arch_list_add_reg (ir.regcache, ir.rm | ir.rex_b))
7180 return -1;
7181 }
7182 else
7183 {
7184 ir.ot = OT_WORD;
7185 if (i386_record_lea_modrm (&ir))
7186 return -1;
7187 }
7188 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7189 break;
7190 case 6: /* lmsw */
7191 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7192 break;
7193 case 7: /* invlpg */
7194 if (ir.mod == 3)
7195 {
7196 if (ir.rm == 0 && ir.regmap[X86_RECORD_R8_REGNUM])
7197 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
7198 else
7199 {
7200 ir.addr -= 3;
7201 opcode = opcode << 8 | ir.modrm;
7202 goto no_support;
7203 }
7204 }
7205 else
7206 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7207 break;
7208 default:
7209 ir.addr -= 3;
7210 opcode = opcode << 8 | ir.modrm;
7211 goto no_support;
7212 break;
7213 }
7214 break;
7215
7216 case 0x0f08: /* invd */
7217 case 0x0f09: /* wbinvd */
7218 break;
7219
7220 case 0x63: /* arpl */
7221 if (i386_record_modrm (&ir))
7222 return -1;
7223 if (ir.mod == 3 || ir.regmap[X86_RECORD_R8_REGNUM])
7224 {
7225 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.regmap[X86_RECORD_R8_REGNUM]
7226 ? (ir.reg | rex_r) : ir.rm);
7227 }
7228 else
7229 {
7230 ir.ot = ir.dflag ? OT_LONG : OT_WORD;
7231 if (i386_record_lea_modrm (&ir))
7232 return -1;
7233 }
7234 if (!ir.regmap[X86_RECORD_R8_REGNUM])
7235 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7236 break;
7237
7238 case 0x0f02: /* lar */
7239 case 0x0f03: /* lsl */
7240 if (i386_record_modrm (&ir))
7241 return -1;
7242 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7243 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7244 break;
7245
7246 case 0x0f18:
7247 if (i386_record_modrm (&ir))
7248 return -1;
7249 if (ir.mod == 3 && ir.reg == 3)
7250 {
7251 ir.addr -= 3;
7252 opcode = opcode << 8 | ir.modrm;
7253 goto no_support;
7254 }
7255 break;
7256
7257 case 0x0f19:
7258 case 0x0f1a:
7259 case 0x0f1b:
7260 case 0x0f1c:
7261 case 0x0f1d:
7262 case 0x0f1e:
7263 case 0x0f1f:
7264 /* nop (multi byte) */
7265 break;
7266
7267 case 0x0f20: /* mov reg, crN */
7268 case 0x0f22: /* mov crN, reg */
7269 if (i386_record_modrm (&ir))
7270 return -1;
7271 if ((ir.modrm & 0xc0) != 0xc0)
7272 {
7273 ir.addr -= 3;
7274 opcode = opcode << 8 | ir.modrm;
7275 goto no_support;
7276 }
7277 switch (ir.reg)
7278 {
7279 case 0:
7280 case 2:
7281 case 3:
7282 case 4:
7283 case 8:
7284 if (opcode & 2)
7285 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7286 else
7287 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7288 break;
7289 default:
7290 ir.addr -= 3;
7291 opcode = opcode << 8 | ir.modrm;
7292 goto no_support;
7293 break;
7294 }
7295 break;
7296
7297 case 0x0f21: /* mov reg, drN */
7298 case 0x0f23: /* mov drN, reg */
7299 if (i386_record_modrm (&ir))
7300 return -1;
7301 if ((ir.modrm & 0xc0) != 0xc0 || ir.reg == 4
7302 || ir.reg == 5 || ir.reg >= 8)
7303 {
7304 ir.addr -= 3;
7305 opcode = opcode << 8 | ir.modrm;
7306 goto no_support;
7307 }
7308 if (opcode & 2)
7309 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7310 else
7311 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7312 break;
7313
7314 case 0x0f06: /* clts */
7315 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7316 break;
7317
7318 /* MMX 3DNow! SSE SSE2 SSE3 SSSE3 SSE4 */
7319
7320 case 0x0f0d: /* 3DNow! prefetch */
7321 break;
7322
7323 case 0x0f0e: /* 3DNow! femms */
7324 case 0x0f77: /* emms */
7325 if (i386_fpc_regnum_p (gdbarch, I387_FTAG_REGNUM(tdep)))
7326 goto no_support;
7327 record_full_arch_list_add_reg (ir.regcache, I387_FTAG_REGNUM(tdep));
7328 break;
7329
7330 case 0x0f0f: /* 3DNow! data */
7331 if (i386_record_modrm (&ir))
7332 return -1;
7333 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
7334 return -1;
7335 ir.addr++;
7336 switch (opcode8)
7337 {
7338 case 0x0c: /* 3DNow! pi2fw */
7339 case 0x0d: /* 3DNow! pi2fd */
7340 case 0x1c: /* 3DNow! pf2iw */
7341 case 0x1d: /* 3DNow! pf2id */
7342 case 0x8a: /* 3DNow! pfnacc */
7343 case 0x8e: /* 3DNow! pfpnacc */
7344 case 0x90: /* 3DNow! pfcmpge */
7345 case 0x94: /* 3DNow! pfmin */
7346 case 0x96: /* 3DNow! pfrcp */
7347 case 0x97: /* 3DNow! pfrsqrt */
7348 case 0x9a: /* 3DNow! pfsub */
7349 case 0x9e: /* 3DNow! pfadd */
7350 case 0xa0: /* 3DNow! pfcmpgt */
7351 case 0xa4: /* 3DNow! pfmax */
7352 case 0xa6: /* 3DNow! pfrcpit1 */
7353 case 0xa7: /* 3DNow! pfrsqit1 */
7354 case 0xaa: /* 3DNow! pfsubr */
7355 case 0xae: /* 3DNow! pfacc */
7356 case 0xb0: /* 3DNow! pfcmpeq */
7357 case 0xb4: /* 3DNow! pfmul */
7358 case 0xb6: /* 3DNow! pfrcpit2 */
7359 case 0xb7: /* 3DNow! pmulhrw */
7360 case 0xbb: /* 3DNow! pswapd */
7361 case 0xbf: /* 3DNow! pavgusb */
7362 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7363 goto no_support_3dnow_data;
7364 record_full_arch_list_add_reg (ir.regcache, ir.reg);
7365 break;
7366
7367 default:
7368 no_support_3dnow_data:
7369 opcode = (opcode << 8) | opcode8;
7370 goto no_support;
7371 break;
7372 }
7373 break;
7374
7375 case 0x0faa: /* rsm */
7376 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7377 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7378 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
7379 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7380 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
7381 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
7382 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
7383 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
7384 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
7385 break;
7386
7387 case 0x0fae:
7388 if (i386_record_modrm (&ir))
7389 return -1;
7390 switch(ir.reg)
7391 {
7392 case 0: /* fxsave */
7393 {
7394 uint64_t tmpu64;
7395
7396 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7397 if (i386_record_lea_modrm_addr (&ir, &tmpu64))
7398 return -1;
7399 if (record_full_arch_list_add_mem (tmpu64, 512))
7400 return -1;
7401 }
7402 break;
7403
7404 case 1: /* fxrstor */
7405 {
7406 int i;
7407
7408 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7409
7410 for (i = I387_MM0_REGNUM (tdep);
7411 i386_mmx_regnum_p (gdbarch, i); i++)
7412 record_full_arch_list_add_reg (ir.regcache, i);
7413
7414 for (i = I387_XMM0_REGNUM (tdep);
7415 i386_xmm_regnum_p (gdbarch, i); i++)
7416 record_full_arch_list_add_reg (ir.regcache, i);
7417
7418 if (i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
7419 record_full_arch_list_add_reg (ir.regcache,
7420 I387_MXCSR_REGNUM(tdep));
7421
7422 for (i = I387_ST0_REGNUM (tdep);
7423 i386_fp_regnum_p (gdbarch, i); i++)
7424 record_full_arch_list_add_reg (ir.regcache, i);
7425
7426 for (i = I387_FCTRL_REGNUM (tdep);
7427 i386_fpc_regnum_p (gdbarch, i); i++)
7428 record_full_arch_list_add_reg (ir.regcache, i);
7429 }
7430 break;
7431
7432 case 2: /* ldmxcsr */
7433 if (!i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
7434 goto no_support;
7435 record_full_arch_list_add_reg (ir.regcache, I387_MXCSR_REGNUM(tdep));
7436 break;
7437
7438 case 3: /* stmxcsr */
7439 ir.ot = OT_LONG;
7440 if (i386_record_lea_modrm (&ir))
7441 return -1;
7442 break;
7443
7444 case 5: /* lfence */
7445 case 6: /* mfence */
7446 case 7: /* sfence clflush */
7447 break;
7448
7449 default:
7450 opcode = (opcode << 8) | ir.modrm;
7451 goto no_support;
7452 break;
7453 }
7454 break;
7455
7456 case 0x0fc3: /* movnti */
7457 ir.ot = (ir.dflag == 2) ? OT_QUAD : OT_LONG;
7458 if (i386_record_modrm (&ir))
7459 return -1;
7460 if (ir.mod == 3)
7461 goto no_support;
7462 ir.reg |= rex_r;
7463 if (i386_record_lea_modrm (&ir))
7464 return -1;
7465 break;
7466
7467 /* Add prefix to opcode. */
7468 case 0x0f10:
7469 case 0x0f11:
7470 case 0x0f12:
7471 case 0x0f13:
7472 case 0x0f14:
7473 case 0x0f15:
7474 case 0x0f16:
7475 case 0x0f17:
7476 case 0x0f28:
7477 case 0x0f29:
7478 case 0x0f2a:
7479 case 0x0f2b:
7480 case 0x0f2c:
7481 case 0x0f2d:
7482 case 0x0f2e:
7483 case 0x0f2f:
7484 case 0x0f38:
7485 case 0x0f39:
7486 case 0x0f3a:
7487 case 0x0f50:
7488 case 0x0f51:
7489 case 0x0f52:
7490 case 0x0f53:
7491 case 0x0f54:
7492 case 0x0f55:
7493 case 0x0f56:
7494 case 0x0f57:
7495 case 0x0f58:
7496 case 0x0f59:
7497 case 0x0f5a:
7498 case 0x0f5b:
7499 case 0x0f5c:
7500 case 0x0f5d:
7501 case 0x0f5e:
7502 case 0x0f5f:
7503 case 0x0f60:
7504 case 0x0f61:
7505 case 0x0f62:
7506 case 0x0f63:
7507 case 0x0f64:
7508 case 0x0f65:
7509 case 0x0f66:
7510 case 0x0f67:
7511 case 0x0f68:
7512 case 0x0f69:
7513 case 0x0f6a:
7514 case 0x0f6b:
7515 case 0x0f6c:
7516 case 0x0f6d:
7517 case 0x0f6e:
7518 case 0x0f6f:
7519 case 0x0f70:
7520 case 0x0f71:
7521 case 0x0f72:
7522 case 0x0f73:
7523 case 0x0f74:
7524 case 0x0f75:
7525 case 0x0f76:
7526 case 0x0f7c:
7527 case 0x0f7d:
7528 case 0x0f7e:
7529 case 0x0f7f:
7530 case 0x0fb8:
7531 case 0x0fc2:
7532 case 0x0fc4:
7533 case 0x0fc5:
7534 case 0x0fc6:
7535 case 0x0fd0:
7536 case 0x0fd1:
7537 case 0x0fd2:
7538 case 0x0fd3:
7539 case 0x0fd4:
7540 case 0x0fd5:
7541 case 0x0fd6:
7542 case 0x0fd7:
7543 case 0x0fd8:
7544 case 0x0fd9:
7545 case 0x0fda:
7546 case 0x0fdb:
7547 case 0x0fdc:
7548 case 0x0fdd:
7549 case 0x0fde:
7550 case 0x0fdf:
7551 case 0x0fe0:
7552 case 0x0fe1:
7553 case 0x0fe2:
7554 case 0x0fe3:
7555 case 0x0fe4:
7556 case 0x0fe5:
7557 case 0x0fe6:
7558 case 0x0fe7:
7559 case 0x0fe8:
7560 case 0x0fe9:
7561 case 0x0fea:
7562 case 0x0feb:
7563 case 0x0fec:
7564 case 0x0fed:
7565 case 0x0fee:
7566 case 0x0fef:
7567 case 0x0ff0:
7568 case 0x0ff1:
7569 case 0x0ff2:
7570 case 0x0ff3:
7571 case 0x0ff4:
7572 case 0x0ff5:
7573 case 0x0ff6:
7574 case 0x0ff7:
7575 case 0x0ff8:
7576 case 0x0ff9:
7577 case 0x0ffa:
7578 case 0x0ffb:
7579 case 0x0ffc:
7580 case 0x0ffd:
7581 case 0x0ffe:
7582 /* Mask out PREFIX_ADDR. */
7583 switch ((prefixes & ~PREFIX_ADDR))
7584 {
7585 case PREFIX_REPNZ:
7586 opcode |= 0xf20000;
7587 break;
7588 case PREFIX_DATA:
7589 opcode |= 0x660000;
7590 break;
7591 case PREFIX_REPZ:
7592 opcode |= 0xf30000;
7593 break;
7594 }
7595 reswitch_prefix_add:
7596 switch (opcode)
7597 {
7598 case 0x0f38:
7599 case 0x660f38:
7600 case 0xf20f38:
7601 case 0x0f3a:
7602 case 0x660f3a:
7603 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
7604 return -1;
7605 ir.addr++;
7606 opcode = (uint32_t) opcode8 | opcode << 8;
7607 goto reswitch_prefix_add;
7608 break;
7609
7610 case 0x0f10: /* movups */
7611 case 0x660f10: /* movupd */
7612 case 0xf30f10: /* movss */
7613 case 0xf20f10: /* movsd */
7614 case 0x0f12: /* movlps */
7615 case 0x660f12: /* movlpd */
7616 case 0xf30f12: /* movsldup */
7617 case 0xf20f12: /* movddup */
7618 case 0x0f14: /* unpcklps */
7619 case 0x660f14: /* unpcklpd */
7620 case 0x0f15: /* unpckhps */
7621 case 0x660f15: /* unpckhpd */
7622 case 0x0f16: /* movhps */
7623 case 0x660f16: /* movhpd */
7624 case 0xf30f16: /* movshdup */
7625 case 0x0f28: /* movaps */
7626 case 0x660f28: /* movapd */
7627 case 0x0f2a: /* cvtpi2ps */
7628 case 0x660f2a: /* cvtpi2pd */
7629 case 0xf30f2a: /* cvtsi2ss */
7630 case 0xf20f2a: /* cvtsi2sd */
7631 case 0x0f2c: /* cvttps2pi */
7632 case 0x660f2c: /* cvttpd2pi */
7633 case 0x0f2d: /* cvtps2pi */
7634 case 0x660f2d: /* cvtpd2pi */
7635 case 0x660f3800: /* pshufb */
7636 case 0x660f3801: /* phaddw */
7637 case 0x660f3802: /* phaddd */
7638 case 0x660f3803: /* phaddsw */
7639 case 0x660f3804: /* pmaddubsw */
7640 case 0x660f3805: /* phsubw */
7641 case 0x660f3806: /* phsubd */
7642 case 0x660f3807: /* phsubsw */
7643 case 0x660f3808: /* psignb */
7644 case 0x660f3809: /* psignw */
7645 case 0x660f380a: /* psignd */
7646 case 0x660f380b: /* pmulhrsw */
7647 case 0x660f3810: /* pblendvb */
7648 case 0x660f3814: /* blendvps */
7649 case 0x660f3815: /* blendvpd */
7650 case 0x660f381c: /* pabsb */
7651 case 0x660f381d: /* pabsw */
7652 case 0x660f381e: /* pabsd */
7653 case 0x660f3820: /* pmovsxbw */
7654 case 0x660f3821: /* pmovsxbd */
7655 case 0x660f3822: /* pmovsxbq */
7656 case 0x660f3823: /* pmovsxwd */
7657 case 0x660f3824: /* pmovsxwq */
7658 case 0x660f3825: /* pmovsxdq */
7659 case 0x660f3828: /* pmuldq */
7660 case 0x660f3829: /* pcmpeqq */
7661 case 0x660f382a: /* movntdqa */
7662 case 0x660f3a08: /* roundps */
7663 case 0x660f3a09: /* roundpd */
7664 case 0x660f3a0a: /* roundss */
7665 case 0x660f3a0b: /* roundsd */
7666 case 0x660f3a0c: /* blendps */
7667 case 0x660f3a0d: /* blendpd */
7668 case 0x660f3a0e: /* pblendw */
7669 case 0x660f3a0f: /* palignr */
7670 case 0x660f3a20: /* pinsrb */
7671 case 0x660f3a21: /* insertps */
7672 case 0x660f3a22: /* pinsrd pinsrq */
7673 case 0x660f3a40: /* dpps */
7674 case 0x660f3a41: /* dppd */
7675 case 0x660f3a42: /* mpsadbw */
7676 case 0x660f3a60: /* pcmpestrm */
7677 case 0x660f3a61: /* pcmpestri */
7678 case 0x660f3a62: /* pcmpistrm */
7679 case 0x660f3a63: /* pcmpistri */
7680 case 0x0f51: /* sqrtps */
7681 case 0x660f51: /* sqrtpd */
7682 case 0xf20f51: /* sqrtsd */
7683 case 0xf30f51: /* sqrtss */
7684 case 0x0f52: /* rsqrtps */
7685 case 0xf30f52: /* rsqrtss */
7686 case 0x0f53: /* rcpps */
7687 case 0xf30f53: /* rcpss */
7688 case 0x0f54: /* andps */
7689 case 0x660f54: /* andpd */
7690 case 0x0f55: /* andnps */
7691 case 0x660f55: /* andnpd */
7692 case 0x0f56: /* orps */
7693 case 0x660f56: /* orpd */
7694 case 0x0f57: /* xorps */
7695 case 0x660f57: /* xorpd */
7696 case 0x0f58: /* addps */
7697 case 0x660f58: /* addpd */
7698 case 0xf20f58: /* addsd */
7699 case 0xf30f58: /* addss */
7700 case 0x0f59: /* mulps */
7701 case 0x660f59: /* mulpd */
7702 case 0xf20f59: /* mulsd */
7703 case 0xf30f59: /* mulss */
7704 case 0x0f5a: /* cvtps2pd */
7705 case 0x660f5a: /* cvtpd2ps */
7706 case 0xf20f5a: /* cvtsd2ss */
7707 case 0xf30f5a: /* cvtss2sd */
7708 case 0x0f5b: /* cvtdq2ps */
7709 case 0x660f5b: /* cvtps2dq */
7710 case 0xf30f5b: /* cvttps2dq */
7711 case 0x0f5c: /* subps */
7712 case 0x660f5c: /* subpd */
7713 case 0xf20f5c: /* subsd */
7714 case 0xf30f5c: /* subss */
7715 case 0x0f5d: /* minps */
7716 case 0x660f5d: /* minpd */
7717 case 0xf20f5d: /* minsd */
7718 case 0xf30f5d: /* minss */
7719 case 0x0f5e: /* divps */
7720 case 0x660f5e: /* divpd */
7721 case 0xf20f5e: /* divsd */
7722 case 0xf30f5e: /* divss */
7723 case 0x0f5f: /* maxps */
7724 case 0x660f5f: /* maxpd */
7725 case 0xf20f5f: /* maxsd */
7726 case 0xf30f5f: /* maxss */
7727 case 0x660f60: /* punpcklbw */
7728 case 0x660f61: /* punpcklwd */
7729 case 0x660f62: /* punpckldq */
7730 case 0x660f63: /* packsswb */
7731 case 0x660f64: /* pcmpgtb */
7732 case 0x660f65: /* pcmpgtw */
7733 case 0x660f66: /* pcmpgtd */
7734 case 0x660f67: /* packuswb */
7735 case 0x660f68: /* punpckhbw */
7736 case 0x660f69: /* punpckhwd */
7737 case 0x660f6a: /* punpckhdq */
7738 case 0x660f6b: /* packssdw */
7739 case 0x660f6c: /* punpcklqdq */
7740 case 0x660f6d: /* punpckhqdq */
7741 case 0x660f6e: /* movd */
7742 case 0x660f6f: /* movdqa */
7743 case 0xf30f6f: /* movdqu */
7744 case 0x660f70: /* pshufd */
7745 case 0xf20f70: /* pshuflw */
7746 case 0xf30f70: /* pshufhw */
7747 case 0x660f74: /* pcmpeqb */
7748 case 0x660f75: /* pcmpeqw */
7749 case 0x660f76: /* pcmpeqd */
7750 case 0x660f7c: /* haddpd */
7751 case 0xf20f7c: /* haddps */
7752 case 0x660f7d: /* hsubpd */
7753 case 0xf20f7d: /* hsubps */
7754 case 0xf30f7e: /* movq */
7755 case 0x0fc2: /* cmpps */
7756 case 0x660fc2: /* cmppd */
7757 case 0xf20fc2: /* cmpsd */
7758 case 0xf30fc2: /* cmpss */
7759 case 0x660fc4: /* pinsrw */
7760 case 0x0fc6: /* shufps */
7761 case 0x660fc6: /* shufpd */
7762 case 0x660fd0: /* addsubpd */
7763 case 0xf20fd0: /* addsubps */
7764 case 0x660fd1: /* psrlw */
7765 case 0x660fd2: /* psrld */
7766 case 0x660fd3: /* psrlq */
7767 case 0x660fd4: /* paddq */
7768 case 0x660fd5: /* pmullw */
7769 case 0xf30fd6: /* movq2dq */
7770 case 0x660fd8: /* psubusb */
7771 case 0x660fd9: /* psubusw */
7772 case 0x660fda: /* pminub */
7773 case 0x660fdb: /* pand */
7774 case 0x660fdc: /* paddusb */
7775 case 0x660fdd: /* paddusw */
7776 case 0x660fde: /* pmaxub */
7777 case 0x660fdf: /* pandn */
7778 case 0x660fe0: /* pavgb */
7779 case 0x660fe1: /* psraw */
7780 case 0x660fe2: /* psrad */
7781 case 0x660fe3: /* pavgw */
7782 case 0x660fe4: /* pmulhuw */
7783 case 0x660fe5: /* pmulhw */
7784 case 0x660fe6: /* cvttpd2dq */
7785 case 0xf20fe6: /* cvtpd2dq */
7786 case 0xf30fe6: /* cvtdq2pd */
7787 case 0x660fe8: /* psubsb */
7788 case 0x660fe9: /* psubsw */
7789 case 0x660fea: /* pminsw */
7790 case 0x660feb: /* por */
7791 case 0x660fec: /* paddsb */
7792 case 0x660fed: /* paddsw */
7793 case 0x660fee: /* pmaxsw */
7794 case 0x660fef: /* pxor */
7795 case 0xf20ff0: /* lddqu */
7796 case 0x660ff1: /* psllw */
7797 case 0x660ff2: /* pslld */
7798 case 0x660ff3: /* psllq */
7799 case 0x660ff4: /* pmuludq */
7800 case 0x660ff5: /* pmaddwd */
7801 case 0x660ff6: /* psadbw */
7802 case 0x660ff8: /* psubb */
7803 case 0x660ff9: /* psubw */
7804 case 0x660ffa: /* psubd */
7805 case 0x660ffb: /* psubq */
7806 case 0x660ffc: /* paddb */
7807 case 0x660ffd: /* paddw */
7808 case 0x660ffe: /* paddd */
7809 if (i386_record_modrm (&ir))
7810 return -1;
7811 ir.reg |= rex_r;
7812 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.reg))
7813 goto no_support;
7814 record_full_arch_list_add_reg (ir.regcache,
7815 I387_XMM0_REGNUM (tdep) + ir.reg);
7816 if ((opcode & 0xfffffffc) == 0x660f3a60)
7817 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7818 break;
7819
7820 case 0x0f11: /* movups */
7821 case 0x660f11: /* movupd */
7822 case 0xf30f11: /* movss */
7823 case 0xf20f11: /* movsd */
7824 case 0x0f13: /* movlps */
7825 case 0x660f13: /* movlpd */
7826 case 0x0f17: /* movhps */
7827 case 0x660f17: /* movhpd */
7828 case 0x0f29: /* movaps */
7829 case 0x660f29: /* movapd */
7830 case 0x660f3a14: /* pextrb */
7831 case 0x660f3a15: /* pextrw */
7832 case 0x660f3a16: /* pextrd pextrq */
7833 case 0x660f3a17: /* extractps */
7834 case 0x660f7f: /* movdqa */
7835 case 0xf30f7f: /* movdqu */
7836 if (i386_record_modrm (&ir))
7837 return -1;
7838 if (ir.mod == 3)
7839 {
7840 if (opcode == 0x0f13 || opcode == 0x660f13
7841 || opcode == 0x0f17 || opcode == 0x660f17)
7842 goto no_support;
7843 ir.rm |= ir.rex_b;
7844 if (!i386_xmm_regnum_p (gdbarch,
7845 I387_XMM0_REGNUM (tdep) + ir.rm))
7846 goto no_support;
7847 record_full_arch_list_add_reg (ir.regcache,
7848 I387_XMM0_REGNUM (tdep) + ir.rm);
7849 }
7850 else
7851 {
7852 switch (opcode)
7853 {
7854 case 0x660f3a14:
7855 ir.ot = OT_BYTE;
7856 break;
7857 case 0x660f3a15:
7858 ir.ot = OT_WORD;
7859 break;
7860 case 0x660f3a16:
7861 ir.ot = OT_LONG;
7862 break;
7863 case 0x660f3a17:
7864 ir.ot = OT_QUAD;
7865 break;
7866 default:
7867 ir.ot = OT_DQUAD;
7868 break;
7869 }
7870 if (i386_record_lea_modrm (&ir))
7871 return -1;
7872 }
7873 break;
7874
7875 case 0x0f2b: /* movntps */
7876 case 0x660f2b: /* movntpd */
7877 case 0x0fe7: /* movntq */
7878 case 0x660fe7: /* movntdq */
7879 if (ir.mod == 3)
7880 goto no_support;
7881 if (opcode == 0x0fe7)
7882 ir.ot = OT_QUAD;
7883 else
7884 ir.ot = OT_DQUAD;
7885 if (i386_record_lea_modrm (&ir))
7886 return -1;
7887 break;
7888
7889 case 0xf30f2c: /* cvttss2si */
7890 case 0xf20f2c: /* cvttsd2si */
7891 case 0xf30f2d: /* cvtss2si */
7892 case 0xf20f2d: /* cvtsd2si */
7893 case 0xf20f38f0: /* crc32 */
7894 case 0xf20f38f1: /* crc32 */
7895 case 0x0f50: /* movmskps */
7896 case 0x660f50: /* movmskpd */
7897 case 0x0fc5: /* pextrw */
7898 case 0x660fc5: /* pextrw */
7899 case 0x0fd7: /* pmovmskb */
7900 case 0x660fd7: /* pmovmskb */
7901 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7902 break;
7903
7904 case 0x0f3800: /* pshufb */
7905 case 0x0f3801: /* phaddw */
7906 case 0x0f3802: /* phaddd */
7907 case 0x0f3803: /* phaddsw */
7908 case 0x0f3804: /* pmaddubsw */
7909 case 0x0f3805: /* phsubw */
7910 case 0x0f3806: /* phsubd */
7911 case 0x0f3807: /* phsubsw */
7912 case 0x0f3808: /* psignb */
7913 case 0x0f3809: /* psignw */
7914 case 0x0f380a: /* psignd */
7915 case 0x0f380b: /* pmulhrsw */
7916 case 0x0f381c: /* pabsb */
7917 case 0x0f381d: /* pabsw */
7918 case 0x0f381e: /* pabsd */
7919 case 0x0f382b: /* packusdw */
7920 case 0x0f3830: /* pmovzxbw */
7921 case 0x0f3831: /* pmovzxbd */
7922 case 0x0f3832: /* pmovzxbq */
7923 case 0x0f3833: /* pmovzxwd */
7924 case 0x0f3834: /* pmovzxwq */
7925 case 0x0f3835: /* pmovzxdq */
7926 case 0x0f3837: /* pcmpgtq */
7927 case 0x0f3838: /* pminsb */
7928 case 0x0f3839: /* pminsd */
7929 case 0x0f383a: /* pminuw */
7930 case 0x0f383b: /* pminud */
7931 case 0x0f383c: /* pmaxsb */
7932 case 0x0f383d: /* pmaxsd */
7933 case 0x0f383e: /* pmaxuw */
7934 case 0x0f383f: /* pmaxud */
7935 case 0x0f3840: /* pmulld */
7936 case 0x0f3841: /* phminposuw */
7937 case 0x0f3a0f: /* palignr */
7938 case 0x0f60: /* punpcklbw */
7939 case 0x0f61: /* punpcklwd */
7940 case 0x0f62: /* punpckldq */
7941 case 0x0f63: /* packsswb */
7942 case 0x0f64: /* pcmpgtb */
7943 case 0x0f65: /* pcmpgtw */
7944 case 0x0f66: /* pcmpgtd */
7945 case 0x0f67: /* packuswb */
7946 case 0x0f68: /* punpckhbw */
7947 case 0x0f69: /* punpckhwd */
7948 case 0x0f6a: /* punpckhdq */
7949 case 0x0f6b: /* packssdw */
7950 case 0x0f6e: /* movd */
7951 case 0x0f6f: /* movq */
7952 case 0x0f70: /* pshufw */
7953 case 0x0f74: /* pcmpeqb */
7954 case 0x0f75: /* pcmpeqw */
7955 case 0x0f76: /* pcmpeqd */
7956 case 0x0fc4: /* pinsrw */
7957 case 0x0fd1: /* psrlw */
7958 case 0x0fd2: /* psrld */
7959 case 0x0fd3: /* psrlq */
7960 case 0x0fd4: /* paddq */
7961 case 0x0fd5: /* pmullw */
7962 case 0xf20fd6: /* movdq2q */
7963 case 0x0fd8: /* psubusb */
7964 case 0x0fd9: /* psubusw */
7965 case 0x0fda: /* pminub */
7966 case 0x0fdb: /* pand */
7967 case 0x0fdc: /* paddusb */
7968 case 0x0fdd: /* paddusw */
7969 case 0x0fde: /* pmaxub */
7970 case 0x0fdf: /* pandn */
7971 case 0x0fe0: /* pavgb */
7972 case 0x0fe1: /* psraw */
7973 case 0x0fe2: /* psrad */
7974 case 0x0fe3: /* pavgw */
7975 case 0x0fe4: /* pmulhuw */
7976 case 0x0fe5: /* pmulhw */
7977 case 0x0fe8: /* psubsb */
7978 case 0x0fe9: /* psubsw */
7979 case 0x0fea: /* pminsw */
7980 case 0x0feb: /* por */
7981 case 0x0fec: /* paddsb */
7982 case 0x0fed: /* paddsw */
7983 case 0x0fee: /* pmaxsw */
7984 case 0x0fef: /* pxor */
7985 case 0x0ff1: /* psllw */
7986 case 0x0ff2: /* pslld */
7987 case 0x0ff3: /* psllq */
7988 case 0x0ff4: /* pmuludq */
7989 case 0x0ff5: /* pmaddwd */
7990 case 0x0ff6: /* psadbw */
7991 case 0x0ff8: /* psubb */
7992 case 0x0ff9: /* psubw */
7993 case 0x0ffa: /* psubd */
7994 case 0x0ffb: /* psubq */
7995 case 0x0ffc: /* paddb */
7996 case 0x0ffd: /* paddw */
7997 case 0x0ffe: /* paddd */
7998 if (i386_record_modrm (&ir))
7999 return -1;
8000 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
8001 goto no_support;
8002 record_full_arch_list_add_reg (ir.regcache,
8003 I387_MM0_REGNUM (tdep) + ir.reg);
8004 break;
8005
8006 case 0x0f71: /* psllw */
8007 case 0x0f72: /* pslld */
8008 case 0x0f73: /* psllq */
8009 if (i386_record_modrm (&ir))
8010 return -1;
8011 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
8012 goto no_support;
8013 record_full_arch_list_add_reg (ir.regcache,
8014 I387_MM0_REGNUM (tdep) + ir.rm);
8015 break;
8016
8017 case 0x660f71: /* psllw */
8018 case 0x660f72: /* pslld */
8019 case 0x660f73: /* psllq */
8020 if (i386_record_modrm (&ir))
8021 return -1;
8022 ir.rm |= ir.rex_b;
8023 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.rm))
8024 goto no_support;
8025 record_full_arch_list_add_reg (ir.regcache,
8026 I387_XMM0_REGNUM (tdep) + ir.rm);
8027 break;
8028
8029 case 0x0f7e: /* movd */
8030 case 0x660f7e: /* movd */
8031 if (i386_record_modrm (&ir))
8032 return -1;
8033 if (ir.mod == 3)
8034 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
8035 else
8036 {
8037 if (ir.dflag == 2)
8038 ir.ot = OT_QUAD;
8039 else
8040 ir.ot = OT_LONG;
8041 if (i386_record_lea_modrm (&ir))
8042 return -1;
8043 }
8044 break;
8045
8046 case 0x0f7f: /* movq */
8047 if (i386_record_modrm (&ir))
8048 return -1;
8049 if (ir.mod == 3)
8050 {
8051 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
8052 goto no_support;
8053 record_full_arch_list_add_reg (ir.regcache,
8054 I387_MM0_REGNUM (tdep) + ir.rm);
8055 }
8056 else
8057 {
8058 ir.ot = OT_QUAD;
8059 if (i386_record_lea_modrm (&ir))
8060 return -1;
8061 }
8062 break;
8063
8064 case 0xf30fb8: /* popcnt */
8065 if (i386_record_modrm (&ir))
8066 return -1;
8067 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
8068 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
8069 break;
8070
8071 case 0x660fd6: /* movq */
8072 if (i386_record_modrm (&ir))
8073 return -1;
8074 if (ir.mod == 3)
8075 {
8076 ir.rm |= ir.rex_b;
8077 if (!i386_xmm_regnum_p (gdbarch,
8078 I387_XMM0_REGNUM (tdep) + ir.rm))
8079 goto no_support;
8080 record_full_arch_list_add_reg (ir.regcache,
8081 I387_XMM0_REGNUM (tdep) + ir.rm);
8082 }
8083 else
8084 {
8085 ir.ot = OT_QUAD;
8086 if (i386_record_lea_modrm (&ir))
8087 return -1;
8088 }
8089 break;
8090
8091 case 0x660f3817: /* ptest */
8092 case 0x0f2e: /* ucomiss */
8093 case 0x660f2e: /* ucomisd */
8094 case 0x0f2f: /* comiss */
8095 case 0x660f2f: /* comisd */
8096 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
8097 break;
8098
8099 case 0x0ff7: /* maskmovq */
8100 regcache_raw_read_unsigned (ir.regcache,
8101 ir.regmap[X86_RECORD_REDI_REGNUM],
8102 &addr);
8103 if (record_full_arch_list_add_mem (addr, 64))
8104 return -1;
8105 break;
8106
8107 case 0x660ff7: /* maskmovdqu */
8108 regcache_raw_read_unsigned (ir.regcache,
8109 ir.regmap[X86_RECORD_REDI_REGNUM],
8110 &addr);
8111 if (record_full_arch_list_add_mem (addr, 128))
8112 return -1;
8113 break;
8114
8115 default:
8116 goto no_support;
8117 break;
8118 }
8119 break;
8120
8121 default:
8122 goto no_support;
8123 break;
8124 }
8125
8126 /* In the future, maybe still need to deal with need_dasm. */
8127 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REIP_REGNUM);
8128 if (record_full_arch_list_add_end ())
8129 return -1;
8130
8131 return 0;
8132
8133 no_support:
8134 printf_unfiltered (_("Process record does not support instruction 0x%02x "
8135 "at address %s.\n"),
8136 (unsigned int) (opcode),
8137 paddress (gdbarch, ir.orig_addr));
8138 return -1;
8139 }
8140
8141 static const int i386_record_regmap[] =
8142 {
8143 I386_EAX_REGNUM, I386_ECX_REGNUM, I386_EDX_REGNUM, I386_EBX_REGNUM,
8144 I386_ESP_REGNUM, I386_EBP_REGNUM, I386_ESI_REGNUM, I386_EDI_REGNUM,
8145 0, 0, 0, 0, 0, 0, 0, 0,
8146 I386_EIP_REGNUM, I386_EFLAGS_REGNUM, I386_CS_REGNUM, I386_SS_REGNUM,
8147 I386_DS_REGNUM, I386_ES_REGNUM, I386_FS_REGNUM, I386_GS_REGNUM
8148 };
8149
8150 /* Check that the given address appears suitable for a fast
8151 tracepoint, which on x86-64 means that we need an instruction of at
8152 least 5 bytes, so that we can overwrite it with a 4-byte-offset
8153 jump and not have to worry about program jumps to an address in the
8154 middle of the tracepoint jump. On x86, it may be possible to use
8155 4-byte jumps with a 2-byte offset to a trampoline located in the
8156 bottom 64 KiB of memory. Returns 1 if OK, and writes a size
8157 of instruction to replace, and 0 if not, plus an explanatory
8158 string. */
8159
8160 static int
8161 i386_fast_tracepoint_valid_at (struct gdbarch *gdbarch, CORE_ADDR addr,
8162 char **msg)
8163 {
8164 int len, jumplen;
8165
8166 /* Ask the target for the minimum instruction length supported. */
8167 jumplen = target_get_min_fast_tracepoint_insn_len ();
8168
8169 if (jumplen < 0)
8170 {
8171 /* If the target does not support the get_min_fast_tracepoint_insn_len
8172 operation, assume that fast tracepoints will always be implemented
8173 using 4-byte relative jumps on both x86 and x86-64. */
8174 jumplen = 5;
8175 }
8176 else if (jumplen == 0)
8177 {
8178 /* If the target does support get_min_fast_tracepoint_insn_len but
8179 returns zero, then the IPA has not loaded yet. In this case,
8180 we optimistically assume that truncated 2-byte relative jumps
8181 will be available on x86, and compensate later if this assumption
8182 turns out to be incorrect. On x86-64 architectures, 4-byte relative
8183 jumps will always be used. */
8184 jumplen = (register_size (gdbarch, 0) == 8) ? 5 : 4;
8185 }
8186
8187 /* Check for fit. */
8188 len = gdb_insn_length (gdbarch, addr);
8189
8190 if (len < jumplen)
8191 {
8192 /* Return a bit of target-specific detail to add to the caller's
8193 generic failure message. */
8194 if (msg)
8195 *msg = xstrprintf (_("; instruction is only %d bytes long, "
8196 "need at least %d bytes for the jump"),
8197 len, jumplen);
8198 return 0;
8199 }
8200 else
8201 {
8202 if (msg)
8203 *msg = NULL;
8204 return 1;
8205 }
8206 }
8207
8208 /* Return a floating-point format for a floating-point variable of
8209 length LEN in bits. If non-NULL, NAME is the name of its type.
8210 If no suitable type is found, return NULL. */
8211
8212 const struct floatformat **
8213 i386_floatformat_for_type (struct gdbarch *gdbarch,
8214 const char *name, int len)
8215 {
8216 if (len == 128 && name)
8217 if (strcmp (name, "__float128") == 0
8218 || strcmp (name, "_Float128") == 0
8219 || strcmp (name, "complex _Float128") == 0)
8220 return floatformats_ia64_quad;
8221
8222 return default_floatformat_for_type (gdbarch, name, len);
8223 }
8224
8225 static int
8226 i386_validate_tdesc_p (struct gdbarch_tdep *tdep,
8227 struct tdesc_arch_data *tdesc_data)
8228 {
8229 const struct target_desc *tdesc = tdep->tdesc;
8230 const struct tdesc_feature *feature_core;
8231
8232 const struct tdesc_feature *feature_sse, *feature_avx, *feature_mpx,
8233 *feature_avx512, *feature_pkeys;
8234 int i, num_regs, valid_p;
8235
8236 if (! tdesc_has_registers (tdesc))
8237 return 0;
8238
8239 /* Get core registers. */
8240 feature_core = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.core");
8241 if (feature_core == NULL)
8242 return 0;
8243
8244 /* Get SSE registers. */
8245 feature_sse = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.sse");
8246
8247 /* Try AVX registers. */
8248 feature_avx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx");
8249
8250 /* Try MPX registers. */
8251 feature_mpx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx");
8252
8253 /* Try AVX512 registers. */
8254 feature_avx512 = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx512");
8255
8256 /* Try PKEYS */
8257 feature_pkeys = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.pkeys");
8258
8259 valid_p = 1;
8260
8261 /* The XCR0 bits. */
8262 if (feature_avx512)
8263 {
8264 /* AVX512 register description requires AVX register description. */
8265 if (!feature_avx)
8266 return 0;
8267
8268 tdep->xcr0 = X86_XSTATE_AVX_AVX512_MASK;
8269
8270 /* It may have been set by OSABI initialization function. */
8271 if (tdep->k0_regnum < 0)
8272 {
8273 tdep->k_register_names = i386_k_names;
8274 tdep->k0_regnum = I386_K0_REGNUM;
8275 }
8276
8277 for (i = 0; i < I387_NUM_K_REGS; i++)
8278 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8279 tdep->k0_regnum + i,
8280 i386_k_names[i]);
8281
8282 if (tdep->num_zmm_regs == 0)
8283 {
8284 tdep->zmmh_register_names = i386_zmmh_names;
8285 tdep->num_zmm_regs = 8;
8286 tdep->zmm0h_regnum = I386_ZMM0H_REGNUM;
8287 }
8288
8289 for (i = 0; i < tdep->num_zmm_regs; i++)
8290 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8291 tdep->zmm0h_regnum + i,
8292 tdep->zmmh_register_names[i]);
8293
8294 for (i = 0; i < tdep->num_xmm_avx512_regs; i++)
8295 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8296 tdep->xmm16_regnum + i,
8297 tdep->xmm_avx512_register_names[i]);
8298
8299 for (i = 0; i < tdep->num_ymm_avx512_regs; i++)
8300 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8301 tdep->ymm16h_regnum + i,
8302 tdep->ymm16h_register_names[i]);
8303 }
8304 if (feature_avx)
8305 {
8306 /* AVX register description requires SSE register description. */
8307 if (!feature_sse)
8308 return 0;
8309
8310 if (!feature_avx512)
8311 tdep->xcr0 = X86_XSTATE_AVX_MASK;
8312
8313 /* It may have been set by OSABI initialization function. */
8314 if (tdep->num_ymm_regs == 0)
8315 {
8316 tdep->ymmh_register_names = i386_ymmh_names;
8317 tdep->num_ymm_regs = 8;
8318 tdep->ymm0h_regnum = I386_YMM0H_REGNUM;
8319 }
8320
8321 for (i = 0; i < tdep->num_ymm_regs; i++)
8322 valid_p &= tdesc_numbered_register (feature_avx, tdesc_data,
8323 tdep->ymm0h_regnum + i,
8324 tdep->ymmh_register_names[i]);
8325 }
8326 else if (feature_sse)
8327 tdep->xcr0 = X86_XSTATE_SSE_MASK;
8328 else
8329 {
8330 tdep->xcr0 = X86_XSTATE_X87_MASK;
8331 tdep->num_xmm_regs = 0;
8332 }
8333
8334 num_regs = tdep->num_core_regs;
8335 for (i = 0; i < num_regs; i++)
8336 valid_p &= tdesc_numbered_register (feature_core, tdesc_data, i,
8337 tdep->register_names[i]);
8338
8339 if (feature_sse)
8340 {
8341 /* Need to include %mxcsr, so add one. */
8342 num_regs += tdep->num_xmm_regs + 1;
8343 for (; i < num_regs; i++)
8344 valid_p &= tdesc_numbered_register (feature_sse, tdesc_data, i,
8345 tdep->register_names[i]);
8346 }
8347
8348 if (feature_mpx)
8349 {
8350 tdep->xcr0 |= X86_XSTATE_MPX_MASK;
8351
8352 if (tdep->bnd0r_regnum < 0)
8353 {
8354 tdep->mpx_register_names = i386_mpx_names;
8355 tdep->bnd0r_regnum = I386_BND0R_REGNUM;
8356 tdep->bndcfgu_regnum = I386_BNDCFGU_REGNUM;
8357 }
8358
8359 for (i = 0; i < I387_NUM_MPX_REGS; i++)
8360 valid_p &= tdesc_numbered_register (feature_mpx, tdesc_data,
8361 I387_BND0R_REGNUM (tdep) + i,
8362 tdep->mpx_register_names[i]);
8363 }
8364
8365 if (feature_pkeys)
8366 {
8367 tdep->xcr0 |= X86_XSTATE_PKRU;
8368 if (tdep->pkru_regnum < 0)
8369 {
8370 tdep->pkeys_register_names = i386_pkeys_names;
8371 tdep->pkru_regnum = I386_PKRU_REGNUM;
8372 tdep->num_pkeys_regs = 1;
8373 }
8374
8375 for (i = 0; i < I387_NUM_PKEYS_REGS; i++)
8376 valid_p &= tdesc_numbered_register (feature_pkeys, tdesc_data,
8377 I387_PKRU_REGNUM (tdep) + i,
8378 tdep->pkeys_register_names[i]);
8379 }
8380
8381 return valid_p;
8382 }
8383
8384 \f
8385 /* Note: This is called for both i386 and amd64. */
8386
8387 static struct gdbarch *
8388 i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
8389 {
8390 struct gdbarch_tdep *tdep;
8391 struct gdbarch *gdbarch;
8392 struct tdesc_arch_data *tdesc_data;
8393 const struct target_desc *tdesc;
8394 int mm0_regnum;
8395 int ymm0_regnum;
8396 int bnd0_regnum;
8397 int num_bnd_cooked;
8398
8399 /* If there is already a candidate, use it. */
8400 arches = gdbarch_list_lookup_by_info (arches, &info);
8401 if (arches != NULL)
8402 return arches->gdbarch;
8403
8404 /* Allocate space for the new architecture. Assume i386 for now. */
8405 tdep = XCNEW (struct gdbarch_tdep);
8406 gdbarch = gdbarch_alloc (&info, tdep);
8407
8408 /* General-purpose registers. */
8409 tdep->gregset_reg_offset = NULL;
8410 tdep->gregset_num_regs = I386_NUM_GREGS;
8411 tdep->sizeof_gregset = 0;
8412
8413 /* Floating-point registers. */
8414 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
8415 tdep->fpregset = &i386_fpregset;
8416
8417 /* The default settings include the FPU registers, the MMX registers
8418 and the SSE registers. This can be overridden for a specific ABI
8419 by adjusting the members `st0_regnum', `mm0_regnum' and
8420 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
8421 will show up in the output of "info all-registers". */
8422
8423 tdep->st0_regnum = I386_ST0_REGNUM;
8424
8425 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
8426 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
8427
8428 tdep->jb_pc_offset = -1;
8429 tdep->struct_return = pcc_struct_return;
8430 tdep->sigtramp_start = 0;
8431 tdep->sigtramp_end = 0;
8432 tdep->sigtramp_p = i386_sigtramp_p;
8433 tdep->sigcontext_addr = NULL;
8434 tdep->sc_reg_offset = NULL;
8435 tdep->sc_pc_offset = -1;
8436 tdep->sc_sp_offset = -1;
8437
8438 tdep->xsave_xcr0_offset = -1;
8439
8440 tdep->record_regmap = i386_record_regmap;
8441
8442 set_gdbarch_long_long_align_bit (gdbarch, 32);
8443
8444 /* The format used for `long double' on almost all i386 targets is
8445 the i387 extended floating-point format. In fact, of all targets
8446 in the GCC 2.95 tree, only OSF/1 does it different, and insists
8447 on having a `long double' that's not `long' at all. */
8448 set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext);
8449
8450 /* Although the i387 extended floating-point has only 80 significant
8451 bits, a `long double' actually takes up 96, probably to enforce
8452 alignment. */
8453 set_gdbarch_long_double_bit (gdbarch, 96);
8454
8455 /* Support for floating-point data type variants. */
8456 set_gdbarch_floatformat_for_type (gdbarch, i386_floatformat_for_type);
8457
8458 /* Register numbers of various important registers. */
8459 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
8460 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
8461 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
8462 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
8463
8464 /* NOTE: kettenis/20040418: GCC does have two possible register
8465 numbering schemes on the i386: dbx and SVR4. These schemes
8466 differ in how they number %ebp, %esp, %eflags, and the
8467 floating-point registers, and are implemented by the arrays
8468 dbx_register_map[] and svr4_dbx_register_map in
8469 gcc/config/i386.c. GCC also defines a third numbering scheme in
8470 gcc/config/i386.c, which it designates as the "default" register
8471 map used in 64bit mode. This last register numbering scheme is
8472 implemented in dbx64_register_map, and is used for AMD64; see
8473 amd64-tdep.c.
8474
8475 Currently, each GCC i386 target always uses the same register
8476 numbering scheme across all its supported debugging formats
8477 i.e. SDB (COFF), stabs and DWARF 2. This is because
8478 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
8479 DBX_REGISTER_NUMBER macro which is defined by each target's
8480 respective config header in a manner independent of the requested
8481 output debugging format.
8482
8483 This does not match the arrangement below, which presumes that
8484 the SDB and stabs numbering schemes differ from the DWARF and
8485 DWARF 2 ones. The reason for this arrangement is that it is
8486 likely to get the numbering scheme for the target's
8487 default/native debug format right. For targets where GCC is the
8488 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
8489 targets where the native toolchain uses a different numbering
8490 scheme for a particular debug format (stabs-in-ELF on Solaris)
8491 the defaults below will have to be overridden, like
8492 i386_elf_init_abi() does. */
8493
8494 /* Use the dbx register numbering scheme for stabs and COFF. */
8495 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
8496 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
8497
8498 /* Use the SVR4 register numbering scheme for DWARF 2. */
8499 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_dwarf_reg_to_regnum);
8500
8501 /* We don't set gdbarch_stab_reg_to_regnum, since ECOFF doesn't seem to
8502 be in use on any of the supported i386 targets. */
8503
8504 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
8505
8506 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
8507
8508 /* Call dummy code. */
8509 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
8510 set_gdbarch_push_dummy_code (gdbarch, i386_push_dummy_code);
8511 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
8512 set_gdbarch_frame_align (gdbarch, i386_frame_align);
8513
8514 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
8515 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
8516 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
8517
8518 set_gdbarch_return_value (gdbarch, i386_return_value);
8519
8520 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
8521
8522 /* Stack grows downward. */
8523 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
8524
8525 set_gdbarch_breakpoint_kind_from_pc (gdbarch, i386_breakpoint::kind_from_pc);
8526 set_gdbarch_sw_breakpoint_from_kind (gdbarch, i386_breakpoint::bp_from_kind);
8527
8528 set_gdbarch_decr_pc_after_break (gdbarch, 1);
8529 set_gdbarch_max_insn_length (gdbarch, I386_MAX_INSN_LEN);
8530
8531 set_gdbarch_frame_args_skip (gdbarch, 8);
8532
8533 set_gdbarch_print_insn (gdbarch, i386_print_insn);
8534
8535 set_gdbarch_dummy_id (gdbarch, i386_dummy_id);
8536
8537 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
8538
8539 /* Add the i386 register groups. */
8540 i386_add_reggroups (gdbarch);
8541 tdep->register_reggroup_p = i386_register_reggroup_p;
8542
8543 /* Helper for function argument information. */
8544 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
8545
8546 /* Hook the function epilogue frame unwinder. This unwinder is
8547 appended to the list first, so that it supercedes the DWARF
8548 unwinder in function epilogues (where the DWARF unwinder
8549 currently fails). */
8550 frame_unwind_append_unwinder (gdbarch, &i386_epilogue_frame_unwind);
8551
8552 /* Hook in the DWARF CFI frame unwinder. This unwinder is appended
8553 to the list before the prologue-based unwinders, so that DWARF
8554 CFI info will be used if it is available. */
8555 dwarf2_append_unwinders (gdbarch);
8556
8557 frame_base_set_default (gdbarch, &i386_frame_base);
8558
8559 /* Pseudo registers may be changed by amd64_init_abi. */
8560 set_gdbarch_pseudo_register_read_value (gdbarch,
8561 i386_pseudo_register_read_value);
8562 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
8563 set_gdbarch_ax_pseudo_register_collect (gdbarch,
8564 i386_ax_pseudo_register_collect);
8565
8566 set_tdesc_pseudo_register_type (gdbarch, i386_pseudo_register_type);
8567 set_tdesc_pseudo_register_name (gdbarch, i386_pseudo_register_name);
8568
8569 /* Override the normal target description method to make the AVX
8570 upper halves anonymous. */
8571 set_gdbarch_register_name (gdbarch, i386_register_name);
8572
8573 /* Even though the default ABI only includes general-purpose registers,
8574 floating-point registers and the SSE registers, we have to leave a
8575 gap for the upper AVX, MPX and AVX512 registers. */
8576 set_gdbarch_num_regs (gdbarch, I386_PKEYS_NUM_REGS);
8577
8578 set_gdbarch_gnu_triplet_regexp (gdbarch, i386_gnu_triplet_regexp);
8579
8580 /* Get the x86 target description from INFO. */
8581 tdesc = info.target_desc;
8582 if (! tdesc_has_registers (tdesc))
8583 tdesc = tdesc_i386;
8584 tdep->tdesc = tdesc;
8585
8586 tdep->num_core_regs = I386_NUM_GREGS + I387_NUM_REGS;
8587 tdep->register_names = i386_register_names;
8588
8589 /* No upper YMM registers. */
8590 tdep->ymmh_register_names = NULL;
8591 tdep->ymm0h_regnum = -1;
8592
8593 /* No upper ZMM registers. */
8594 tdep->zmmh_register_names = NULL;
8595 tdep->zmm0h_regnum = -1;
8596
8597 /* No high XMM registers. */
8598 tdep->xmm_avx512_register_names = NULL;
8599 tdep->xmm16_regnum = -1;
8600
8601 /* No upper YMM16-31 registers. */
8602 tdep->ymm16h_register_names = NULL;
8603 tdep->ymm16h_regnum = -1;
8604
8605 tdep->num_byte_regs = 8;
8606 tdep->num_word_regs = 8;
8607 tdep->num_dword_regs = 0;
8608 tdep->num_mmx_regs = 8;
8609 tdep->num_ymm_regs = 0;
8610
8611 /* No MPX registers. */
8612 tdep->bnd0r_regnum = -1;
8613 tdep->bndcfgu_regnum = -1;
8614
8615 /* No AVX512 registers. */
8616 tdep->k0_regnum = -1;
8617 tdep->num_zmm_regs = 0;
8618 tdep->num_ymm_avx512_regs = 0;
8619 tdep->num_xmm_avx512_regs = 0;
8620
8621 /* No PKEYS registers */
8622 tdep->pkru_regnum = -1;
8623 tdep->num_pkeys_regs = 0;
8624
8625 tdesc_data = tdesc_data_alloc ();
8626
8627 set_gdbarch_relocate_instruction (gdbarch, i386_relocate_instruction);
8628
8629 set_gdbarch_gen_return_address (gdbarch, i386_gen_return_address);
8630
8631 set_gdbarch_insn_is_call (gdbarch, i386_insn_is_call);
8632 set_gdbarch_insn_is_ret (gdbarch, i386_insn_is_ret);
8633 set_gdbarch_insn_is_jump (gdbarch, i386_insn_is_jump);
8634
8635 /* Hook in ABI-specific overrides, if they have been registered.
8636 Note: If INFO specifies a 64 bit arch, this is where we turn
8637 a 32-bit i386 into a 64-bit amd64. */
8638 info.tdep_info = tdesc_data;
8639 gdbarch_init_osabi (info, gdbarch);
8640
8641 if (!i386_validate_tdesc_p (tdep, tdesc_data))
8642 {
8643 tdesc_data_cleanup (tdesc_data);
8644 xfree (tdep);
8645 gdbarch_free (gdbarch);
8646 return NULL;
8647 }
8648
8649 num_bnd_cooked = (tdep->bnd0r_regnum > 0 ? I387_NUM_BND_REGS : 0);
8650
8651 /* Wire in pseudo registers. Number of pseudo registers may be
8652 changed. */
8653 set_gdbarch_num_pseudo_regs (gdbarch, (tdep->num_byte_regs
8654 + tdep->num_word_regs
8655 + tdep->num_dword_regs
8656 + tdep->num_mmx_regs
8657 + tdep->num_ymm_regs
8658 + num_bnd_cooked
8659 + tdep->num_ymm_avx512_regs
8660 + tdep->num_zmm_regs));
8661
8662 /* Target description may be changed. */
8663 tdesc = tdep->tdesc;
8664
8665 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
8666
8667 /* Override gdbarch_register_reggroup_p set in tdesc_use_registers. */
8668 set_gdbarch_register_reggroup_p (gdbarch, tdep->register_reggroup_p);
8669
8670 /* Make %al the first pseudo-register. */
8671 tdep->al_regnum = gdbarch_num_regs (gdbarch);
8672 tdep->ax_regnum = tdep->al_regnum + tdep->num_byte_regs;
8673
8674 ymm0_regnum = tdep->ax_regnum + tdep->num_word_regs;
8675 if (tdep->num_dword_regs)
8676 {
8677 /* Support dword pseudo-register if it hasn't been disabled. */
8678 tdep->eax_regnum = ymm0_regnum;
8679 ymm0_regnum += tdep->num_dword_regs;
8680 }
8681 else
8682 tdep->eax_regnum = -1;
8683
8684 mm0_regnum = ymm0_regnum;
8685 if (tdep->num_ymm_regs)
8686 {
8687 /* Support YMM pseudo-register if it is available. */
8688 tdep->ymm0_regnum = ymm0_regnum;
8689 mm0_regnum += tdep->num_ymm_regs;
8690 }
8691 else
8692 tdep->ymm0_regnum = -1;
8693
8694 if (tdep->num_ymm_avx512_regs)
8695 {
8696 /* Support YMM16-31 pseudo registers if available. */
8697 tdep->ymm16_regnum = mm0_regnum;
8698 mm0_regnum += tdep->num_ymm_avx512_regs;
8699 }
8700 else
8701 tdep->ymm16_regnum = -1;
8702
8703 if (tdep->num_zmm_regs)
8704 {
8705 /* Support ZMM pseudo-register if it is available. */
8706 tdep->zmm0_regnum = mm0_regnum;
8707 mm0_regnum += tdep->num_zmm_regs;
8708 }
8709 else
8710 tdep->zmm0_regnum = -1;
8711
8712 bnd0_regnum = mm0_regnum;
8713 if (tdep->num_mmx_regs != 0)
8714 {
8715 /* Support MMX pseudo-register if MMX hasn't been disabled. */
8716 tdep->mm0_regnum = mm0_regnum;
8717 bnd0_regnum += tdep->num_mmx_regs;
8718 }
8719 else
8720 tdep->mm0_regnum = -1;
8721
8722 if (tdep->bnd0r_regnum > 0)
8723 tdep->bnd0_regnum = bnd0_regnum;
8724 else
8725 tdep-> bnd0_regnum = -1;
8726
8727 /* Hook in the legacy prologue-based unwinders last (fallback). */
8728 frame_unwind_append_unwinder (gdbarch, &i386_stack_tramp_frame_unwind);
8729 frame_unwind_append_unwinder (gdbarch, &i386_sigtramp_frame_unwind);
8730 frame_unwind_append_unwinder (gdbarch, &i386_frame_unwind);
8731
8732 /* If we have a register mapping, enable the generic core file
8733 support, unless it has already been enabled. */
8734 if (tdep->gregset_reg_offset
8735 && !gdbarch_iterate_over_regset_sections_p (gdbarch))
8736 set_gdbarch_iterate_over_regset_sections
8737 (gdbarch, i386_iterate_over_regset_sections);
8738
8739 set_gdbarch_fast_tracepoint_valid_at (gdbarch,
8740 i386_fast_tracepoint_valid_at);
8741
8742 return gdbarch;
8743 }
8744
8745 static enum gdb_osabi
8746 i386_coff_osabi_sniffer (bfd *abfd)
8747 {
8748 if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
8749 || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
8750 return GDB_OSABI_GO32;
8751
8752 return GDB_OSABI_UNKNOWN;
8753 }
8754 \f
8755
8756 /* Return the target description for a specified XSAVE feature mask. */
8757
8758 const struct target_desc *
8759 i386_target_description (uint64_t xcr0)
8760 {
8761 switch (xcr0 & X86_XSTATE_ALL_MASK)
8762 {
8763 case X86_XSTATE_AVX_MPX_AVX512_PKU_MASK:
8764 return tdesc_i386_avx_mpx_avx512_pku;
8765 case X86_XSTATE_AVX_AVX512_MASK:
8766 return tdesc_i386_avx_avx512;
8767 case X86_XSTATE_AVX_MPX_MASK:
8768 return tdesc_i386_avx_mpx;
8769 case X86_XSTATE_MPX_MASK:
8770 return tdesc_i386_mpx;
8771 case X86_XSTATE_AVX_MASK:
8772 return tdesc_i386_avx;
8773 default:
8774 return tdesc_i386;
8775 }
8776 }
8777
8778 #define MPX_BASE_MASK (~(ULONGEST) 0xfff)
8779
8780 /* Find the bound directory base address. */
8781
8782 static unsigned long
8783 i386_mpx_bd_base (void)
8784 {
8785 struct regcache *rcache;
8786 struct gdbarch_tdep *tdep;
8787 ULONGEST ret;
8788 enum register_status regstatus;
8789
8790 rcache = get_current_regcache ();
8791 tdep = gdbarch_tdep (get_regcache_arch (rcache));
8792
8793 regstatus = regcache_raw_read_unsigned (rcache, tdep->bndcfgu_regnum, &ret);
8794
8795 if (regstatus != REG_VALID)
8796 error (_("BNDCFGU register invalid, read status %d."), regstatus);
8797
8798 return ret & MPX_BASE_MASK;
8799 }
8800
8801 int
8802 i386_mpx_enabled (void)
8803 {
8804 const struct gdbarch_tdep *tdep = gdbarch_tdep (get_current_arch ());
8805 const struct target_desc *tdesc = tdep->tdesc;
8806
8807 return (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx") != NULL);
8808 }
8809
8810 #define MPX_BD_MASK 0xfffffff00000ULL /* select bits [47:20] */
8811 #define MPX_BT_MASK 0x0000000ffff8 /* select bits [19:3] */
8812 #define MPX_BD_MASK_32 0xfffff000 /* select bits [31:12] */
8813 #define MPX_BT_MASK_32 0x00000ffc /* select bits [11:2] */
8814
8815 /* Find the bound table entry given the pointer location and the base
8816 address of the table. */
8817
8818 static CORE_ADDR
8819 i386_mpx_get_bt_entry (CORE_ADDR ptr, CORE_ADDR bd_base)
8820 {
8821 CORE_ADDR offset1;
8822 CORE_ADDR offset2;
8823 CORE_ADDR mpx_bd_mask, bd_ptr_r_shift, bd_ptr_l_shift;
8824 CORE_ADDR bt_mask, bt_select_r_shift, bt_select_l_shift;
8825 CORE_ADDR bd_entry_addr;
8826 CORE_ADDR bt_addr;
8827 CORE_ADDR bd_entry;
8828 struct gdbarch *gdbarch = get_current_arch ();
8829 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8830
8831
8832 if (gdbarch_ptr_bit (gdbarch) == 64)
8833 {
8834 mpx_bd_mask = (CORE_ADDR) MPX_BD_MASK;
8835 bd_ptr_r_shift = 20;
8836 bd_ptr_l_shift = 3;
8837 bt_select_r_shift = 3;
8838 bt_select_l_shift = 5;
8839 bt_mask = (CORE_ADDR) MPX_BT_MASK;
8840
8841 if ( sizeof (CORE_ADDR) == 4)
8842 error (_("bound table examination not supported\
8843 for 64-bit process with 32-bit GDB"));
8844 }
8845 else
8846 {
8847 mpx_bd_mask = MPX_BD_MASK_32;
8848 bd_ptr_r_shift = 12;
8849 bd_ptr_l_shift = 2;
8850 bt_select_r_shift = 2;
8851 bt_select_l_shift = 4;
8852 bt_mask = MPX_BT_MASK_32;
8853 }
8854
8855 offset1 = ((ptr & mpx_bd_mask) >> bd_ptr_r_shift) << bd_ptr_l_shift;
8856 bd_entry_addr = bd_base + offset1;
8857 bd_entry = read_memory_typed_address (bd_entry_addr, data_ptr_type);
8858
8859 if ((bd_entry & 0x1) == 0)
8860 error (_("Invalid bounds directory entry at %s."),
8861 paddress (get_current_arch (), bd_entry_addr));
8862
8863 /* Clearing status bit. */
8864 bd_entry--;
8865 bt_addr = bd_entry & ~bt_select_r_shift;
8866 offset2 = ((ptr & bt_mask) >> bt_select_r_shift) << bt_select_l_shift;
8867
8868 return bt_addr + offset2;
8869 }
8870
8871 /* Print routine for the mpx bounds. */
8872
8873 static void
8874 i386_mpx_print_bounds (const CORE_ADDR bt_entry[4])
8875 {
8876 struct ui_out *uiout = current_uiout;
8877 LONGEST size;
8878 struct gdbarch *gdbarch = get_current_arch ();
8879 CORE_ADDR onecompl = ~((CORE_ADDR) 0);
8880 int bounds_in_map = ((~bt_entry[1] == 0 && bt_entry[0] == onecompl) ? 1 : 0);
8881
8882 if (bounds_in_map == 1)
8883 {
8884 uiout->text ("Null bounds on map:");
8885 uiout->text (" pointer value = ");
8886 uiout->field_core_addr ("pointer-value", gdbarch, bt_entry[2]);
8887 uiout->text (".");
8888 uiout->text ("\n");
8889 }
8890 else
8891 {
8892 uiout->text ("{lbound = ");
8893 uiout->field_core_addr ("lower-bound", gdbarch, bt_entry[0]);
8894 uiout->text (", ubound = ");
8895
8896 /* The upper bound is stored in 1's complement. */
8897 uiout->field_core_addr ("upper-bound", gdbarch, ~bt_entry[1]);
8898 uiout->text ("}: pointer value = ");
8899 uiout->field_core_addr ("pointer-value", gdbarch, bt_entry[2]);
8900
8901 if (gdbarch_ptr_bit (gdbarch) == 64)
8902 size = ( (~(int64_t) bt_entry[1]) - (int64_t) bt_entry[0]);
8903 else
8904 size = ( ~((int32_t) bt_entry[1]) - (int32_t) bt_entry[0]);
8905
8906 /* In case the bounds are 0x0 and 0xffff... the difference will be -1.
8907 -1 represents in this sense full memory access, and there is no need
8908 one to the size. */
8909
8910 size = (size > -1 ? size + 1 : size);
8911 uiout->text (", size = ");
8912 uiout->field_fmt ("size", "%s", plongest (size));
8913
8914 uiout->text (", metadata = ");
8915 uiout->field_core_addr ("metadata", gdbarch, bt_entry[3]);
8916 uiout->text ("\n");
8917 }
8918 }
8919
8920 /* Implement the command "show mpx bound". */
8921
8922 static void
8923 i386_mpx_info_bounds (char *args, int from_tty)
8924 {
8925 CORE_ADDR bd_base = 0;
8926 CORE_ADDR addr;
8927 CORE_ADDR bt_entry_addr = 0;
8928 CORE_ADDR bt_entry[4];
8929 int i;
8930 struct gdbarch *gdbarch = get_current_arch ();
8931 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8932
8933 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_i386
8934 || !i386_mpx_enabled ())
8935 {
8936 printf_unfiltered (_("Intel Memory Protection Extensions not "
8937 "supported on this target.\n"));
8938 return;
8939 }
8940
8941 if (args == NULL)
8942 {
8943 printf_unfiltered (_("Address of pointer variable expected.\n"));
8944 return;
8945 }
8946
8947 addr = parse_and_eval_address (args);
8948
8949 bd_base = i386_mpx_bd_base ();
8950 bt_entry_addr = i386_mpx_get_bt_entry (addr, bd_base);
8951
8952 memset (bt_entry, 0, sizeof (bt_entry));
8953
8954 for (i = 0; i < 4; i++)
8955 bt_entry[i] = read_memory_typed_address (bt_entry_addr
8956 + i * TYPE_LENGTH (data_ptr_type),
8957 data_ptr_type);
8958
8959 i386_mpx_print_bounds (bt_entry);
8960 }
8961
8962 /* Implement the command "set mpx bound". */
8963
8964 static void
8965 i386_mpx_set_bounds (char *args, int from_tty)
8966 {
8967 CORE_ADDR bd_base = 0;
8968 CORE_ADDR addr, lower, upper;
8969 CORE_ADDR bt_entry_addr = 0;
8970 CORE_ADDR bt_entry[2];
8971 const char *input = args;
8972 int i;
8973 struct gdbarch *gdbarch = get_current_arch ();
8974 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
8975 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8976
8977 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_i386
8978 || !i386_mpx_enabled ())
8979 error (_("Intel Memory Protection Extensions not supported\
8980 on this target."));
8981
8982 if (args == NULL)
8983 error (_("Pointer value expected."));
8984
8985 addr = value_as_address (parse_to_comma_and_eval (&input));
8986
8987 if (input[0] == ',')
8988 ++input;
8989 if (input[0] == '\0')
8990 error (_("wrong number of arguments: missing lower and upper bound."));
8991 lower = value_as_address (parse_to_comma_and_eval (&input));
8992
8993 if (input[0] == ',')
8994 ++input;
8995 if (input[0] == '\0')
8996 error (_("Wrong number of arguments; Missing upper bound."));
8997 upper = value_as_address (parse_to_comma_and_eval (&input));
8998
8999 bd_base = i386_mpx_bd_base ();
9000 bt_entry_addr = i386_mpx_get_bt_entry (addr, bd_base);
9001 for (i = 0; i < 2; i++)
9002 bt_entry[i] = read_memory_typed_address (bt_entry_addr
9003 + i * TYPE_LENGTH (data_ptr_type),
9004 data_ptr_type);
9005 bt_entry[0] = (uint64_t) lower;
9006 bt_entry[1] = ~(uint64_t) upper;
9007
9008 for (i = 0; i < 2; i++)
9009 write_memory_unsigned_integer (bt_entry_addr
9010 + i * TYPE_LENGTH (data_ptr_type),
9011 TYPE_LENGTH (data_ptr_type), byte_order,
9012 bt_entry[i]);
9013 }
9014
9015 static struct cmd_list_element *mpx_set_cmdlist, *mpx_show_cmdlist;
9016
9017 /* Helper function for the CLI commands. */
9018
9019 static void
9020 set_mpx_cmd (char *args, int from_tty)
9021 {
9022 help_list (mpx_set_cmdlist, "set mpx ", all_commands, gdb_stdout);
9023 }
9024
9025 /* Helper function for the CLI commands. */
9026
9027 static void
9028 show_mpx_cmd (char *args, int from_tty)
9029 {
9030 cmd_show_list (mpx_show_cmdlist, from_tty, "");
9031 }
9032
9033 /* Provide a prototype to silence -Wmissing-prototypes. */
9034 void _initialize_i386_tdep (void);
9035
9036 void
9037 _initialize_i386_tdep (void)
9038 {
9039 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
9040
9041 /* Add the variable that controls the disassembly flavor. */
9042 add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
9043 &disassembly_flavor, _("\
9044 Set the disassembly flavor."), _("\
9045 Show the disassembly flavor."), _("\
9046 The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
9047 NULL,
9048 NULL, /* FIXME: i18n: */
9049 &setlist, &showlist);
9050
9051 /* Add the variable that controls the convention for returning
9052 structs. */
9053 add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
9054 &struct_convention, _("\
9055 Set the convention for returning small structs."), _("\
9056 Show the convention for returning small structs."), _("\
9057 Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
9058 is \"default\"."),
9059 NULL,
9060 NULL, /* FIXME: i18n: */
9061 &setlist, &showlist);
9062
9063 /* Add "mpx" prefix for the set commands. */
9064
9065 add_prefix_cmd ("mpx", class_support, set_mpx_cmd, _("\
9066 Set Intel Memory Protection Extensions specific variables."),
9067 &mpx_set_cmdlist, "set mpx ",
9068 0 /* allow-unknown */, &setlist);
9069
9070 /* Add "mpx" prefix for the show commands. */
9071
9072 add_prefix_cmd ("mpx", class_support, show_mpx_cmd, _("\
9073 Show Intel Memory Protection Extensions specific variables."),
9074 &mpx_show_cmdlist, "show mpx ",
9075 0 /* allow-unknown */, &showlist);
9076
9077 /* Add "bound" command for the show mpx commands list. */
9078
9079 add_cmd ("bound", no_class, i386_mpx_info_bounds,
9080 "Show the memory bounds for a given array/pointer storage\
9081 in the bound table.",
9082 &mpx_show_cmdlist);
9083
9084 /* Add "bound" command for the set mpx commands list. */
9085
9086 add_cmd ("bound", no_class, i386_mpx_set_bounds,
9087 "Set the memory bounds for a given array/pointer storage\
9088 in the bound table.",
9089 &mpx_set_cmdlist);
9090
9091 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
9092 i386_coff_osabi_sniffer);
9093
9094 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
9095 i386_svr4_init_abi);
9096 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_GO32,
9097 i386_go32_init_abi);
9098
9099 /* Initialize the i386-specific register groups. */
9100 i386_init_reggroups ();
9101
9102 /* Initialize the standard target descriptions. */
9103 initialize_tdesc_i386 ();
9104 initialize_tdesc_i386_mmx ();
9105 initialize_tdesc_i386_avx ();
9106 initialize_tdesc_i386_mpx ();
9107 initialize_tdesc_i386_avx_mpx ();
9108 initialize_tdesc_i386_avx_avx512 ();
9109 initialize_tdesc_i386_avx_mpx_avx512_pku ();
9110
9111 /* Tell remote stub that we support XML target description. */
9112 register_remote_support_xml ("i386");
9113 }
This page took 0.338096 seconds and 5 git commands to generate.