Rename record_ prefixes in record-full.h into record_full_.
[deliverable/binutils-gdb.git] / gdb / i386-tdep.c
1 /* Intel 386 target-dependent stuff.
2
3 Copyright (C) 1988-2013 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "opcode/i386.h"
22 #include "arch-utils.h"
23 #include "command.h"
24 #include "dummy-frame.h"
25 #include "dwarf2-frame.h"
26 #include "doublest.h"
27 #include "frame.h"
28 #include "frame-base.h"
29 #include "frame-unwind.h"
30 #include "inferior.h"
31 #include "gdbcmd.h"
32 #include "gdbcore.h"
33 #include "gdbtypes.h"
34 #include "objfiles.h"
35 #include "osabi.h"
36 #include "regcache.h"
37 #include "reggroups.h"
38 #include "regset.h"
39 #include "symfile.h"
40 #include "symtab.h"
41 #include "target.h"
42 #include "value.h"
43 #include "dis-asm.h"
44 #include "disasm.h"
45 #include "remote.h"
46 #include "exceptions.h"
47 #include "gdb_assert.h"
48 #include "gdb_string.h"
49
50 #include "i386-tdep.h"
51 #include "i387-tdep.h"
52 #include "i386-xstate.h"
53
54 #include "record.h"
55 #include "record-full.h"
56 #include <stdint.h>
57
58 #include "features/i386/i386.c"
59 #include "features/i386/i386-avx.c"
60 #include "features/i386/i386-mmx.c"
61
62 #include "ax.h"
63 #include "ax-gdb.h"
64
65 #include "stap-probe.h"
66 #include "user-regs.h"
67 #include "cli/cli-utils.h"
68 #include "expression.h"
69 #include "parser-defs.h"
70 #include <ctype.h>
71
72 /* Register names. */
73
74 static const char *i386_register_names[] =
75 {
76 "eax", "ecx", "edx", "ebx",
77 "esp", "ebp", "esi", "edi",
78 "eip", "eflags", "cs", "ss",
79 "ds", "es", "fs", "gs",
80 "st0", "st1", "st2", "st3",
81 "st4", "st5", "st6", "st7",
82 "fctrl", "fstat", "ftag", "fiseg",
83 "fioff", "foseg", "fooff", "fop",
84 "xmm0", "xmm1", "xmm2", "xmm3",
85 "xmm4", "xmm5", "xmm6", "xmm7",
86 "mxcsr"
87 };
88
89 static const char *i386_ymm_names[] =
90 {
91 "ymm0", "ymm1", "ymm2", "ymm3",
92 "ymm4", "ymm5", "ymm6", "ymm7",
93 };
94
95 static const char *i386_ymmh_names[] =
96 {
97 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
98 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
99 };
100
101 /* Register names for MMX pseudo-registers. */
102
103 static const char *i386_mmx_names[] =
104 {
105 "mm0", "mm1", "mm2", "mm3",
106 "mm4", "mm5", "mm6", "mm7"
107 };
108
109 /* Register names for byte pseudo-registers. */
110
111 static const char *i386_byte_names[] =
112 {
113 "al", "cl", "dl", "bl",
114 "ah", "ch", "dh", "bh"
115 };
116
117 /* Register names for word pseudo-registers. */
118
119 static const char *i386_word_names[] =
120 {
121 "ax", "cx", "dx", "bx",
122 "", "bp", "si", "di"
123 };
124
125 /* MMX register? */
126
127 static int
128 i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
129 {
130 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
131 int mm0_regnum = tdep->mm0_regnum;
132
133 if (mm0_regnum < 0)
134 return 0;
135
136 regnum -= mm0_regnum;
137 return regnum >= 0 && regnum < tdep->num_mmx_regs;
138 }
139
140 /* Byte register? */
141
142 int
143 i386_byte_regnum_p (struct gdbarch *gdbarch, int regnum)
144 {
145 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
146
147 regnum -= tdep->al_regnum;
148 return regnum >= 0 && regnum < tdep->num_byte_regs;
149 }
150
151 /* Word register? */
152
153 int
154 i386_word_regnum_p (struct gdbarch *gdbarch, int regnum)
155 {
156 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
157
158 regnum -= tdep->ax_regnum;
159 return regnum >= 0 && regnum < tdep->num_word_regs;
160 }
161
162 /* Dword register? */
163
164 int
165 i386_dword_regnum_p (struct gdbarch *gdbarch, int regnum)
166 {
167 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
168 int eax_regnum = tdep->eax_regnum;
169
170 if (eax_regnum < 0)
171 return 0;
172
173 regnum -= eax_regnum;
174 return regnum >= 0 && regnum < tdep->num_dword_regs;
175 }
176
177 static int
178 i386_ymmh_regnum_p (struct gdbarch *gdbarch, int regnum)
179 {
180 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
181 int ymm0h_regnum = tdep->ymm0h_regnum;
182
183 if (ymm0h_regnum < 0)
184 return 0;
185
186 regnum -= ymm0h_regnum;
187 return regnum >= 0 && regnum < tdep->num_ymm_regs;
188 }
189
190 /* AVX register? */
191
192 int
193 i386_ymm_regnum_p (struct gdbarch *gdbarch, int regnum)
194 {
195 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
196 int ymm0_regnum = tdep->ymm0_regnum;
197
198 if (ymm0_regnum < 0)
199 return 0;
200
201 regnum -= ymm0_regnum;
202 return regnum >= 0 && regnum < tdep->num_ymm_regs;
203 }
204
205 /* SSE register? */
206
207 int
208 i386_xmm_regnum_p (struct gdbarch *gdbarch, int regnum)
209 {
210 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
211 int num_xmm_regs = I387_NUM_XMM_REGS (tdep);
212
213 if (num_xmm_regs == 0)
214 return 0;
215
216 regnum -= I387_XMM0_REGNUM (tdep);
217 return regnum >= 0 && regnum < num_xmm_regs;
218 }
219
220 static int
221 i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
222 {
223 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
224
225 if (I387_NUM_XMM_REGS (tdep) == 0)
226 return 0;
227
228 return (regnum == I387_MXCSR_REGNUM (tdep));
229 }
230
231 /* FP register? */
232
233 int
234 i386_fp_regnum_p (struct gdbarch *gdbarch, int regnum)
235 {
236 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
237
238 if (I387_ST0_REGNUM (tdep) < 0)
239 return 0;
240
241 return (I387_ST0_REGNUM (tdep) <= regnum
242 && regnum < I387_FCTRL_REGNUM (tdep));
243 }
244
245 int
246 i386_fpc_regnum_p (struct gdbarch *gdbarch, int regnum)
247 {
248 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
249
250 if (I387_ST0_REGNUM (tdep) < 0)
251 return 0;
252
253 return (I387_FCTRL_REGNUM (tdep) <= regnum
254 && regnum < I387_XMM0_REGNUM (tdep));
255 }
256
257 /* Return the name of register REGNUM, or the empty string if it is
258 an anonymous register. */
259
260 static const char *
261 i386_register_name (struct gdbarch *gdbarch, int regnum)
262 {
263 /* Hide the upper YMM registers. */
264 if (i386_ymmh_regnum_p (gdbarch, regnum))
265 return "";
266
267 return tdesc_register_name (gdbarch, regnum);
268 }
269
270 /* Return the name of register REGNUM. */
271
272 const char *
273 i386_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
274 {
275 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
276 if (i386_mmx_regnum_p (gdbarch, regnum))
277 return i386_mmx_names[regnum - I387_MM0_REGNUM (tdep)];
278 else if (i386_ymm_regnum_p (gdbarch, regnum))
279 return i386_ymm_names[regnum - tdep->ymm0_regnum];
280 else if (i386_byte_regnum_p (gdbarch, regnum))
281 return i386_byte_names[regnum - tdep->al_regnum];
282 else if (i386_word_regnum_p (gdbarch, regnum))
283 return i386_word_names[regnum - tdep->ax_regnum];
284
285 internal_error (__FILE__, __LINE__, _("invalid regnum"));
286 }
287
288 /* Convert a dbx register number REG to the appropriate register
289 number used by GDB. */
290
291 static int
292 i386_dbx_reg_to_regnum (struct gdbarch *gdbarch, int reg)
293 {
294 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
295
296 /* This implements what GCC calls the "default" register map
297 (dbx_register_map[]). */
298
299 if (reg >= 0 && reg <= 7)
300 {
301 /* General-purpose registers. The debug info calls %ebp
302 register 4, and %esp register 5. */
303 if (reg == 4)
304 return 5;
305 else if (reg == 5)
306 return 4;
307 else return reg;
308 }
309 else if (reg >= 12 && reg <= 19)
310 {
311 /* Floating-point registers. */
312 return reg - 12 + I387_ST0_REGNUM (tdep);
313 }
314 else if (reg >= 21 && reg <= 28)
315 {
316 /* SSE registers. */
317 int ymm0_regnum = tdep->ymm0_regnum;
318
319 if (ymm0_regnum >= 0
320 && i386_xmm_regnum_p (gdbarch, reg))
321 return reg - 21 + ymm0_regnum;
322 else
323 return reg - 21 + I387_XMM0_REGNUM (tdep);
324 }
325 else if (reg >= 29 && reg <= 36)
326 {
327 /* MMX registers. */
328 return reg - 29 + I387_MM0_REGNUM (tdep);
329 }
330
331 /* This will hopefully provoke a warning. */
332 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
333 }
334
335 /* Convert SVR4 register number REG to the appropriate register number
336 used by GDB. */
337
338 static int
339 i386_svr4_reg_to_regnum (struct gdbarch *gdbarch, int reg)
340 {
341 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
342
343 /* This implements the GCC register map that tries to be compatible
344 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
345
346 /* The SVR4 register numbering includes %eip and %eflags, and
347 numbers the floating point registers differently. */
348 if (reg >= 0 && reg <= 9)
349 {
350 /* General-purpose registers. */
351 return reg;
352 }
353 else if (reg >= 11 && reg <= 18)
354 {
355 /* Floating-point registers. */
356 return reg - 11 + I387_ST0_REGNUM (tdep);
357 }
358 else if (reg >= 21 && reg <= 36)
359 {
360 /* The SSE and MMX registers have the same numbers as with dbx. */
361 return i386_dbx_reg_to_regnum (gdbarch, reg);
362 }
363
364 switch (reg)
365 {
366 case 37: return I387_FCTRL_REGNUM (tdep);
367 case 38: return I387_FSTAT_REGNUM (tdep);
368 case 39: return I387_MXCSR_REGNUM (tdep);
369 case 40: return I386_ES_REGNUM;
370 case 41: return I386_CS_REGNUM;
371 case 42: return I386_SS_REGNUM;
372 case 43: return I386_DS_REGNUM;
373 case 44: return I386_FS_REGNUM;
374 case 45: return I386_GS_REGNUM;
375 }
376
377 /* This will hopefully provoke a warning. */
378 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
379 }
380
381 \f
382
383 /* This is the variable that is set with "set disassembly-flavor", and
384 its legitimate values. */
385 static const char att_flavor[] = "att";
386 static const char intel_flavor[] = "intel";
387 static const char *const valid_flavors[] =
388 {
389 att_flavor,
390 intel_flavor,
391 NULL
392 };
393 static const char *disassembly_flavor = att_flavor;
394 \f
395
396 /* Use the program counter to determine the contents and size of a
397 breakpoint instruction. Return a pointer to a string of bytes that
398 encode a breakpoint instruction, store the length of the string in
399 *LEN and optionally adjust *PC to point to the correct memory
400 location for inserting the breakpoint.
401
402 On the i386 we have a single breakpoint that fits in a single byte
403 and can be inserted anywhere.
404
405 This function is 64-bit safe. */
406
407 static const gdb_byte *
408 i386_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
409 {
410 static gdb_byte break_insn[] = { 0xcc }; /* int 3 */
411
412 *len = sizeof (break_insn);
413 return break_insn;
414 }
415 \f
416 /* Displaced instruction handling. */
417
418 /* Skip the legacy instruction prefixes in INSN.
419 Not all prefixes are valid for any particular insn
420 but we needn't care, the insn will fault if it's invalid.
421 The result is a pointer to the first opcode byte,
422 or NULL if we run off the end of the buffer. */
423
424 static gdb_byte *
425 i386_skip_prefixes (gdb_byte *insn, size_t max_len)
426 {
427 gdb_byte *end = insn + max_len;
428
429 while (insn < end)
430 {
431 switch (*insn)
432 {
433 case DATA_PREFIX_OPCODE:
434 case ADDR_PREFIX_OPCODE:
435 case CS_PREFIX_OPCODE:
436 case DS_PREFIX_OPCODE:
437 case ES_PREFIX_OPCODE:
438 case FS_PREFIX_OPCODE:
439 case GS_PREFIX_OPCODE:
440 case SS_PREFIX_OPCODE:
441 case LOCK_PREFIX_OPCODE:
442 case REPE_PREFIX_OPCODE:
443 case REPNE_PREFIX_OPCODE:
444 ++insn;
445 continue;
446 default:
447 return insn;
448 }
449 }
450
451 return NULL;
452 }
453
454 static int
455 i386_absolute_jmp_p (const gdb_byte *insn)
456 {
457 /* jmp far (absolute address in operand). */
458 if (insn[0] == 0xea)
459 return 1;
460
461 if (insn[0] == 0xff)
462 {
463 /* jump near, absolute indirect (/4). */
464 if ((insn[1] & 0x38) == 0x20)
465 return 1;
466
467 /* jump far, absolute indirect (/5). */
468 if ((insn[1] & 0x38) == 0x28)
469 return 1;
470 }
471
472 return 0;
473 }
474
475 static int
476 i386_absolute_call_p (const gdb_byte *insn)
477 {
478 /* call far, absolute. */
479 if (insn[0] == 0x9a)
480 return 1;
481
482 if (insn[0] == 0xff)
483 {
484 /* Call near, absolute indirect (/2). */
485 if ((insn[1] & 0x38) == 0x10)
486 return 1;
487
488 /* Call far, absolute indirect (/3). */
489 if ((insn[1] & 0x38) == 0x18)
490 return 1;
491 }
492
493 return 0;
494 }
495
496 static int
497 i386_ret_p (const gdb_byte *insn)
498 {
499 switch (insn[0])
500 {
501 case 0xc2: /* ret near, pop N bytes. */
502 case 0xc3: /* ret near */
503 case 0xca: /* ret far, pop N bytes. */
504 case 0xcb: /* ret far */
505 case 0xcf: /* iret */
506 return 1;
507
508 default:
509 return 0;
510 }
511 }
512
513 static int
514 i386_call_p (const gdb_byte *insn)
515 {
516 if (i386_absolute_call_p (insn))
517 return 1;
518
519 /* call near, relative. */
520 if (insn[0] == 0xe8)
521 return 1;
522
523 return 0;
524 }
525
526 /* Return non-zero if INSN is a system call, and set *LENGTHP to its
527 length in bytes. Otherwise, return zero. */
528
529 static int
530 i386_syscall_p (const gdb_byte *insn, int *lengthp)
531 {
532 /* Is it 'int $0x80'? */
533 if ((insn[0] == 0xcd && insn[1] == 0x80)
534 /* Or is it 'sysenter'? */
535 || (insn[0] == 0x0f && insn[1] == 0x34)
536 /* Or is it 'syscall'? */
537 || (insn[0] == 0x0f && insn[1] == 0x05))
538 {
539 *lengthp = 2;
540 return 1;
541 }
542
543 return 0;
544 }
545
546 /* Some kernels may run one past a syscall insn, so we have to cope.
547 Otherwise this is just simple_displaced_step_copy_insn. */
548
549 struct displaced_step_closure *
550 i386_displaced_step_copy_insn (struct gdbarch *gdbarch,
551 CORE_ADDR from, CORE_ADDR to,
552 struct regcache *regs)
553 {
554 size_t len = gdbarch_max_insn_length (gdbarch);
555 gdb_byte *buf = xmalloc (len);
556
557 read_memory (from, buf, len);
558
559 /* GDB may get control back after the insn after the syscall.
560 Presumably this is a kernel bug.
561 If this is a syscall, make sure there's a nop afterwards. */
562 {
563 int syscall_length;
564 gdb_byte *insn;
565
566 insn = i386_skip_prefixes (buf, len);
567 if (insn != NULL && i386_syscall_p (insn, &syscall_length))
568 insn[syscall_length] = NOP_OPCODE;
569 }
570
571 write_memory (to, buf, len);
572
573 if (debug_displaced)
574 {
575 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
576 paddress (gdbarch, from), paddress (gdbarch, to));
577 displaced_step_dump_bytes (gdb_stdlog, buf, len);
578 }
579
580 return (struct displaced_step_closure *) buf;
581 }
582
583 /* Fix up the state of registers and memory after having single-stepped
584 a displaced instruction. */
585
586 void
587 i386_displaced_step_fixup (struct gdbarch *gdbarch,
588 struct displaced_step_closure *closure,
589 CORE_ADDR from, CORE_ADDR to,
590 struct regcache *regs)
591 {
592 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
593
594 /* The offset we applied to the instruction's address.
595 This could well be negative (when viewed as a signed 32-bit
596 value), but ULONGEST won't reflect that, so take care when
597 applying it. */
598 ULONGEST insn_offset = to - from;
599
600 /* Since we use simple_displaced_step_copy_insn, our closure is a
601 copy of the instruction. */
602 gdb_byte *insn = (gdb_byte *) closure;
603 /* The start of the insn, needed in case we see some prefixes. */
604 gdb_byte *insn_start = insn;
605
606 if (debug_displaced)
607 fprintf_unfiltered (gdb_stdlog,
608 "displaced: fixup (%s, %s), "
609 "insn = 0x%02x 0x%02x ...\n",
610 paddress (gdbarch, from), paddress (gdbarch, to),
611 insn[0], insn[1]);
612
613 /* The list of issues to contend with here is taken from
614 resume_execution in arch/i386/kernel/kprobes.c, Linux 2.6.20.
615 Yay for Free Software! */
616
617 /* Relocate the %eip, if necessary. */
618
619 /* The instruction recognizers we use assume any leading prefixes
620 have been skipped. */
621 {
622 /* This is the size of the buffer in closure. */
623 size_t max_insn_len = gdbarch_max_insn_length (gdbarch);
624 gdb_byte *opcode = i386_skip_prefixes (insn, max_insn_len);
625 /* If there are too many prefixes, just ignore the insn.
626 It will fault when run. */
627 if (opcode != NULL)
628 insn = opcode;
629 }
630
631 /* Except in the case of absolute or indirect jump or call
632 instructions, or a return instruction, the new eip is relative to
633 the displaced instruction; make it relative. Well, signal
634 handler returns don't need relocation either, but we use the
635 value of %eip to recognize those; see below. */
636 if (! i386_absolute_jmp_p (insn)
637 && ! i386_absolute_call_p (insn)
638 && ! i386_ret_p (insn))
639 {
640 ULONGEST orig_eip;
641 int insn_len;
642
643 regcache_cooked_read_unsigned (regs, I386_EIP_REGNUM, &orig_eip);
644
645 /* A signal trampoline system call changes the %eip, resuming
646 execution of the main program after the signal handler has
647 returned. That makes them like 'return' instructions; we
648 shouldn't relocate %eip.
649
650 But most system calls don't, and we do need to relocate %eip.
651
652 Our heuristic for distinguishing these cases: if stepping
653 over the system call instruction left control directly after
654 the instruction, the we relocate --- control almost certainly
655 doesn't belong in the displaced copy. Otherwise, we assume
656 the instruction has put control where it belongs, and leave
657 it unrelocated. Goodness help us if there are PC-relative
658 system calls. */
659 if (i386_syscall_p (insn, &insn_len)
660 && orig_eip != to + (insn - insn_start) + insn_len
661 /* GDB can get control back after the insn after the syscall.
662 Presumably this is a kernel bug.
663 i386_displaced_step_copy_insn ensures its a nop,
664 we add one to the length for it. */
665 && orig_eip != to + (insn - insn_start) + insn_len + 1)
666 {
667 if (debug_displaced)
668 fprintf_unfiltered (gdb_stdlog,
669 "displaced: syscall changed %%eip; "
670 "not relocating\n");
671 }
672 else
673 {
674 ULONGEST eip = (orig_eip - insn_offset) & 0xffffffffUL;
675
676 /* If we just stepped over a breakpoint insn, we don't backup
677 the pc on purpose; this is to match behaviour without
678 stepping. */
679
680 regcache_cooked_write_unsigned (regs, I386_EIP_REGNUM, eip);
681
682 if (debug_displaced)
683 fprintf_unfiltered (gdb_stdlog,
684 "displaced: "
685 "relocated %%eip from %s to %s\n",
686 paddress (gdbarch, orig_eip),
687 paddress (gdbarch, eip));
688 }
689 }
690
691 /* If the instruction was PUSHFL, then the TF bit will be set in the
692 pushed value, and should be cleared. We'll leave this for later,
693 since GDB already messes up the TF flag when stepping over a
694 pushfl. */
695
696 /* If the instruction was a call, the return address now atop the
697 stack is the address following the copied instruction. We need
698 to make it the address following the original instruction. */
699 if (i386_call_p (insn))
700 {
701 ULONGEST esp;
702 ULONGEST retaddr;
703 const ULONGEST retaddr_len = 4;
704
705 regcache_cooked_read_unsigned (regs, I386_ESP_REGNUM, &esp);
706 retaddr = read_memory_unsigned_integer (esp, retaddr_len, byte_order);
707 retaddr = (retaddr - insn_offset) & 0xffffffffUL;
708 write_memory_unsigned_integer (esp, retaddr_len, byte_order, retaddr);
709
710 if (debug_displaced)
711 fprintf_unfiltered (gdb_stdlog,
712 "displaced: relocated return addr at %s to %s\n",
713 paddress (gdbarch, esp),
714 paddress (gdbarch, retaddr));
715 }
716 }
717
718 static void
719 append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
720 {
721 target_write_memory (*to, buf, len);
722 *to += len;
723 }
724
725 static void
726 i386_relocate_instruction (struct gdbarch *gdbarch,
727 CORE_ADDR *to, CORE_ADDR oldloc)
728 {
729 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
730 gdb_byte buf[I386_MAX_INSN_LEN];
731 int offset = 0, rel32, newrel;
732 int insn_length;
733 gdb_byte *insn = buf;
734
735 read_memory (oldloc, buf, I386_MAX_INSN_LEN);
736
737 insn_length = gdb_buffered_insn_length (gdbarch, insn,
738 I386_MAX_INSN_LEN, oldloc);
739
740 /* Get past the prefixes. */
741 insn = i386_skip_prefixes (insn, I386_MAX_INSN_LEN);
742
743 /* Adjust calls with 32-bit relative addresses as push/jump, with
744 the address pushed being the location where the original call in
745 the user program would return to. */
746 if (insn[0] == 0xe8)
747 {
748 gdb_byte push_buf[16];
749 unsigned int ret_addr;
750
751 /* Where "ret" in the original code will return to. */
752 ret_addr = oldloc + insn_length;
753 push_buf[0] = 0x68; /* pushq $... */
754 store_unsigned_integer (&push_buf[1], 4, byte_order, ret_addr);
755 /* Push the push. */
756 append_insns (to, 5, push_buf);
757
758 /* Convert the relative call to a relative jump. */
759 insn[0] = 0xe9;
760
761 /* Adjust the destination offset. */
762 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
763 newrel = (oldloc - *to) + rel32;
764 store_signed_integer (insn + 1, 4, byte_order, newrel);
765
766 if (debug_displaced)
767 fprintf_unfiltered (gdb_stdlog,
768 "Adjusted insn rel32=%s at %s to"
769 " rel32=%s at %s\n",
770 hex_string (rel32), paddress (gdbarch, oldloc),
771 hex_string (newrel), paddress (gdbarch, *to));
772
773 /* Write the adjusted jump into its displaced location. */
774 append_insns (to, 5, insn);
775 return;
776 }
777
778 /* Adjust jumps with 32-bit relative addresses. Calls are already
779 handled above. */
780 if (insn[0] == 0xe9)
781 offset = 1;
782 /* Adjust conditional jumps. */
783 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
784 offset = 2;
785
786 if (offset)
787 {
788 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
789 newrel = (oldloc - *to) + rel32;
790 store_signed_integer (insn + offset, 4, byte_order, newrel);
791 if (debug_displaced)
792 fprintf_unfiltered (gdb_stdlog,
793 "Adjusted insn rel32=%s at %s to"
794 " rel32=%s at %s\n",
795 hex_string (rel32), paddress (gdbarch, oldloc),
796 hex_string (newrel), paddress (gdbarch, *to));
797 }
798
799 /* Write the adjusted instructions into their displaced
800 location. */
801 append_insns (to, insn_length, buf);
802 }
803
804 \f
805 #ifdef I386_REGNO_TO_SYMMETRY
806 #error "The Sequent Symmetry is no longer supported."
807 #endif
808
809 /* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
810 and %esp "belong" to the calling function. Therefore these
811 registers should be saved if they're going to be modified. */
812
813 /* The maximum number of saved registers. This should include all
814 registers mentioned above, and %eip. */
815 #define I386_NUM_SAVED_REGS I386_NUM_GREGS
816
817 struct i386_frame_cache
818 {
819 /* Base address. */
820 CORE_ADDR base;
821 int base_p;
822 LONGEST sp_offset;
823 CORE_ADDR pc;
824
825 /* Saved registers. */
826 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
827 CORE_ADDR saved_sp;
828 int saved_sp_reg;
829 int pc_in_eax;
830
831 /* Stack space reserved for local variables. */
832 long locals;
833 };
834
835 /* Allocate and initialize a frame cache. */
836
837 static struct i386_frame_cache *
838 i386_alloc_frame_cache (void)
839 {
840 struct i386_frame_cache *cache;
841 int i;
842
843 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
844
845 /* Base address. */
846 cache->base_p = 0;
847 cache->base = 0;
848 cache->sp_offset = -4;
849 cache->pc = 0;
850
851 /* Saved registers. We initialize these to -1 since zero is a valid
852 offset (that's where %ebp is supposed to be stored). */
853 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
854 cache->saved_regs[i] = -1;
855 cache->saved_sp = 0;
856 cache->saved_sp_reg = -1;
857 cache->pc_in_eax = 0;
858
859 /* Frameless until proven otherwise. */
860 cache->locals = -1;
861
862 return cache;
863 }
864
865 /* If the instruction at PC is a jump, return the address of its
866 target. Otherwise, return PC. */
867
868 static CORE_ADDR
869 i386_follow_jump (struct gdbarch *gdbarch, CORE_ADDR pc)
870 {
871 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
872 gdb_byte op;
873 long delta = 0;
874 int data16 = 0;
875
876 if (target_read_memory (pc, &op, 1))
877 return pc;
878
879 if (op == 0x66)
880 {
881 data16 = 1;
882 op = read_memory_unsigned_integer (pc + 1, 1, byte_order);
883 }
884
885 switch (op)
886 {
887 case 0xe9:
888 /* Relative jump: if data16 == 0, disp32, else disp16. */
889 if (data16)
890 {
891 delta = read_memory_integer (pc + 2, 2, byte_order);
892
893 /* Include the size of the jmp instruction (including the
894 0x66 prefix). */
895 delta += 4;
896 }
897 else
898 {
899 delta = read_memory_integer (pc + 1, 4, byte_order);
900
901 /* Include the size of the jmp instruction. */
902 delta += 5;
903 }
904 break;
905 case 0xeb:
906 /* Relative jump, disp8 (ignore data16). */
907 delta = read_memory_integer (pc + data16 + 1, 1, byte_order);
908
909 delta += data16 + 2;
910 break;
911 }
912
913 return pc + delta;
914 }
915
916 /* Check whether PC points at a prologue for a function returning a
917 structure or union. If so, it updates CACHE and returns the
918 address of the first instruction after the code sequence that
919 removes the "hidden" argument from the stack or CURRENT_PC,
920 whichever is smaller. Otherwise, return PC. */
921
922 static CORE_ADDR
923 i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
924 struct i386_frame_cache *cache)
925 {
926 /* Functions that return a structure or union start with:
927
928 popl %eax 0x58
929 xchgl %eax, (%esp) 0x87 0x04 0x24
930 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
931
932 (the System V compiler puts out the second `xchg' instruction,
933 and the assembler doesn't try to optimize it, so the 'sib' form
934 gets generated). This sequence is used to get the address of the
935 return buffer for a function that returns a structure. */
936 static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
937 static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
938 gdb_byte buf[4];
939 gdb_byte op;
940
941 if (current_pc <= pc)
942 return pc;
943
944 if (target_read_memory (pc, &op, 1))
945 return pc;
946
947 if (op != 0x58) /* popl %eax */
948 return pc;
949
950 if (target_read_memory (pc + 1, buf, 4))
951 return pc;
952
953 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
954 return pc;
955
956 if (current_pc == pc)
957 {
958 cache->sp_offset += 4;
959 return current_pc;
960 }
961
962 if (current_pc == pc + 1)
963 {
964 cache->pc_in_eax = 1;
965 return current_pc;
966 }
967
968 if (buf[1] == proto1[1])
969 return pc + 4;
970 else
971 return pc + 5;
972 }
973
974 static CORE_ADDR
975 i386_skip_probe (CORE_ADDR pc)
976 {
977 /* A function may start with
978
979 pushl constant
980 call _probe
981 addl $4, %esp
982
983 followed by
984
985 pushl %ebp
986
987 etc. */
988 gdb_byte buf[8];
989 gdb_byte op;
990
991 if (target_read_memory (pc, &op, 1))
992 return pc;
993
994 if (op == 0x68 || op == 0x6a)
995 {
996 int delta;
997
998 /* Skip past the `pushl' instruction; it has either a one-byte or a
999 four-byte operand, depending on the opcode. */
1000 if (op == 0x68)
1001 delta = 5;
1002 else
1003 delta = 2;
1004
1005 /* Read the following 8 bytes, which should be `call _probe' (6
1006 bytes) followed by `addl $4,%esp' (2 bytes). */
1007 read_memory (pc + delta, buf, sizeof (buf));
1008 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
1009 pc += delta + sizeof (buf);
1010 }
1011
1012 return pc;
1013 }
1014
1015 /* GCC 4.1 and later, can put code in the prologue to realign the
1016 stack pointer. Check whether PC points to such code, and update
1017 CACHE accordingly. Return the first instruction after the code
1018 sequence or CURRENT_PC, whichever is smaller. If we don't
1019 recognize the code, return PC. */
1020
1021 static CORE_ADDR
1022 i386_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1023 struct i386_frame_cache *cache)
1024 {
1025 /* There are 2 code sequences to re-align stack before the frame
1026 gets set up:
1027
1028 1. Use a caller-saved saved register:
1029
1030 leal 4(%esp), %reg
1031 andl $-XXX, %esp
1032 pushl -4(%reg)
1033
1034 2. Use a callee-saved saved register:
1035
1036 pushl %reg
1037 leal 8(%esp), %reg
1038 andl $-XXX, %esp
1039 pushl -4(%reg)
1040
1041 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
1042
1043 0x83 0xe4 0xf0 andl $-16, %esp
1044 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
1045 */
1046
1047 gdb_byte buf[14];
1048 int reg;
1049 int offset, offset_and;
1050 static int regnums[8] = {
1051 I386_EAX_REGNUM, /* %eax */
1052 I386_ECX_REGNUM, /* %ecx */
1053 I386_EDX_REGNUM, /* %edx */
1054 I386_EBX_REGNUM, /* %ebx */
1055 I386_ESP_REGNUM, /* %esp */
1056 I386_EBP_REGNUM, /* %ebp */
1057 I386_ESI_REGNUM, /* %esi */
1058 I386_EDI_REGNUM /* %edi */
1059 };
1060
1061 if (target_read_memory (pc, buf, sizeof buf))
1062 return pc;
1063
1064 /* Check caller-saved saved register. The first instruction has
1065 to be "leal 4(%esp), %reg". */
1066 if (buf[0] == 0x8d && buf[2] == 0x24 && buf[3] == 0x4)
1067 {
1068 /* MOD must be binary 10 and R/M must be binary 100. */
1069 if ((buf[1] & 0xc7) != 0x44)
1070 return pc;
1071
1072 /* REG has register number. */
1073 reg = (buf[1] >> 3) & 7;
1074 offset = 4;
1075 }
1076 else
1077 {
1078 /* Check callee-saved saved register. The first instruction
1079 has to be "pushl %reg". */
1080 if ((buf[0] & 0xf8) != 0x50)
1081 return pc;
1082
1083 /* Get register. */
1084 reg = buf[0] & 0x7;
1085
1086 /* The next instruction has to be "leal 8(%esp), %reg". */
1087 if (buf[1] != 0x8d || buf[3] != 0x24 || buf[4] != 0x8)
1088 return pc;
1089
1090 /* MOD must be binary 10 and R/M must be binary 100. */
1091 if ((buf[2] & 0xc7) != 0x44)
1092 return pc;
1093
1094 /* REG has register number. Registers in pushl and leal have to
1095 be the same. */
1096 if (reg != ((buf[2] >> 3) & 7))
1097 return pc;
1098
1099 offset = 5;
1100 }
1101
1102 /* Rigister can't be %esp nor %ebp. */
1103 if (reg == 4 || reg == 5)
1104 return pc;
1105
1106 /* The next instruction has to be "andl $-XXX, %esp". */
1107 if (buf[offset + 1] != 0xe4
1108 || (buf[offset] != 0x81 && buf[offset] != 0x83))
1109 return pc;
1110
1111 offset_and = offset;
1112 offset += buf[offset] == 0x81 ? 6 : 3;
1113
1114 /* The next instruction has to be "pushl -4(%reg)". 8bit -4 is
1115 0xfc. REG must be binary 110 and MOD must be binary 01. */
1116 if (buf[offset] != 0xff
1117 || buf[offset + 2] != 0xfc
1118 || (buf[offset + 1] & 0xf8) != 0x70)
1119 return pc;
1120
1121 /* R/M has register. Registers in leal and pushl have to be the
1122 same. */
1123 if (reg != (buf[offset + 1] & 7))
1124 return pc;
1125
1126 if (current_pc > pc + offset_and)
1127 cache->saved_sp_reg = regnums[reg];
1128
1129 return min (pc + offset + 3, current_pc);
1130 }
1131
1132 /* Maximum instruction length we need to handle. */
1133 #define I386_MAX_MATCHED_INSN_LEN 6
1134
1135 /* Instruction description. */
1136 struct i386_insn
1137 {
1138 size_t len;
1139 gdb_byte insn[I386_MAX_MATCHED_INSN_LEN];
1140 gdb_byte mask[I386_MAX_MATCHED_INSN_LEN];
1141 };
1142
1143 /* Return whether instruction at PC matches PATTERN. */
1144
1145 static int
1146 i386_match_pattern (CORE_ADDR pc, struct i386_insn pattern)
1147 {
1148 gdb_byte op;
1149
1150 if (target_read_memory (pc, &op, 1))
1151 return 0;
1152
1153 if ((op & pattern.mask[0]) == pattern.insn[0])
1154 {
1155 gdb_byte buf[I386_MAX_MATCHED_INSN_LEN - 1];
1156 int insn_matched = 1;
1157 size_t i;
1158
1159 gdb_assert (pattern.len > 1);
1160 gdb_assert (pattern.len <= I386_MAX_MATCHED_INSN_LEN);
1161
1162 if (target_read_memory (pc + 1, buf, pattern.len - 1))
1163 return 0;
1164
1165 for (i = 1; i < pattern.len; i++)
1166 {
1167 if ((buf[i - 1] & pattern.mask[i]) != pattern.insn[i])
1168 insn_matched = 0;
1169 }
1170 return insn_matched;
1171 }
1172 return 0;
1173 }
1174
1175 /* Search for the instruction at PC in the list INSN_PATTERNS. Return
1176 the first instruction description that matches. Otherwise, return
1177 NULL. */
1178
1179 static struct i386_insn *
1180 i386_match_insn (CORE_ADDR pc, struct i386_insn *insn_patterns)
1181 {
1182 struct i386_insn *pattern;
1183
1184 for (pattern = insn_patterns; pattern->len > 0; pattern++)
1185 {
1186 if (i386_match_pattern (pc, *pattern))
1187 return pattern;
1188 }
1189
1190 return NULL;
1191 }
1192
1193 /* Return whether PC points inside a sequence of instructions that
1194 matches INSN_PATTERNS. */
1195
1196 static int
1197 i386_match_insn_block (CORE_ADDR pc, struct i386_insn *insn_patterns)
1198 {
1199 CORE_ADDR current_pc;
1200 int ix, i;
1201 struct i386_insn *insn;
1202
1203 insn = i386_match_insn (pc, insn_patterns);
1204 if (insn == NULL)
1205 return 0;
1206
1207 current_pc = pc;
1208 ix = insn - insn_patterns;
1209 for (i = ix - 1; i >= 0; i--)
1210 {
1211 current_pc -= insn_patterns[i].len;
1212
1213 if (!i386_match_pattern (current_pc, insn_patterns[i]))
1214 return 0;
1215 }
1216
1217 current_pc = pc + insn->len;
1218 for (insn = insn_patterns + ix + 1; insn->len > 0; insn++)
1219 {
1220 if (!i386_match_pattern (current_pc, *insn))
1221 return 0;
1222
1223 current_pc += insn->len;
1224 }
1225
1226 return 1;
1227 }
1228
1229 /* Some special instructions that might be migrated by GCC into the
1230 part of the prologue that sets up the new stack frame. Because the
1231 stack frame hasn't been setup yet, no registers have been saved
1232 yet, and only the scratch registers %eax, %ecx and %edx can be
1233 touched. */
1234
1235 struct i386_insn i386_frame_setup_skip_insns[] =
1236 {
1237 /* Check for `movb imm8, r' and `movl imm32, r'.
1238
1239 ??? Should we handle 16-bit operand-sizes here? */
1240
1241 /* `movb imm8, %al' and `movb imm8, %ah' */
1242 /* `movb imm8, %cl' and `movb imm8, %ch' */
1243 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
1244 /* `movb imm8, %dl' and `movb imm8, %dh' */
1245 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
1246 /* `movl imm32, %eax' and `movl imm32, %ecx' */
1247 { 5, { 0xb8 }, { 0xfe } },
1248 /* `movl imm32, %edx' */
1249 { 5, { 0xba }, { 0xff } },
1250
1251 /* Check for `mov imm32, r32'. Note that there is an alternative
1252 encoding for `mov m32, %eax'.
1253
1254 ??? Should we handle SIB adressing here?
1255 ??? Should we handle 16-bit operand-sizes here? */
1256
1257 /* `movl m32, %eax' */
1258 { 5, { 0xa1 }, { 0xff } },
1259 /* `movl m32, %eax' and `mov; m32, %ecx' */
1260 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
1261 /* `movl m32, %edx' */
1262 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
1263
1264 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
1265 Because of the symmetry, there are actually two ways to encode
1266 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
1267 opcode bytes 0x31 and 0x33 for `xorl'. */
1268
1269 /* `subl %eax, %eax' */
1270 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
1271 /* `subl %ecx, %ecx' */
1272 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
1273 /* `subl %edx, %edx' */
1274 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
1275 /* `xorl %eax, %eax' */
1276 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
1277 /* `xorl %ecx, %ecx' */
1278 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
1279 /* `xorl %edx, %edx' */
1280 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
1281 { 0 }
1282 };
1283
1284
1285 /* Check whether PC points to a no-op instruction. */
1286 static CORE_ADDR
1287 i386_skip_noop (CORE_ADDR pc)
1288 {
1289 gdb_byte op;
1290 int check = 1;
1291
1292 if (target_read_memory (pc, &op, 1))
1293 return pc;
1294
1295 while (check)
1296 {
1297 check = 0;
1298 /* Ignore `nop' instruction. */
1299 if (op == 0x90)
1300 {
1301 pc += 1;
1302 if (target_read_memory (pc, &op, 1))
1303 return pc;
1304 check = 1;
1305 }
1306 /* Ignore no-op instruction `mov %edi, %edi'.
1307 Microsoft system dlls often start with
1308 a `mov %edi,%edi' instruction.
1309 The 5 bytes before the function start are
1310 filled with `nop' instructions.
1311 This pattern can be used for hot-patching:
1312 The `mov %edi, %edi' instruction can be replaced by a
1313 near jump to the location of the 5 `nop' instructions
1314 which can be replaced by a 32-bit jump to anywhere
1315 in the 32-bit address space. */
1316
1317 else if (op == 0x8b)
1318 {
1319 if (target_read_memory (pc + 1, &op, 1))
1320 return pc;
1321
1322 if (op == 0xff)
1323 {
1324 pc += 2;
1325 if (target_read_memory (pc, &op, 1))
1326 return pc;
1327
1328 check = 1;
1329 }
1330 }
1331 }
1332 return pc;
1333 }
1334
1335 /* Check whether PC points at a code that sets up a new stack frame.
1336 If so, it updates CACHE and returns the address of the first
1337 instruction after the sequence that sets up the frame or LIMIT,
1338 whichever is smaller. If we don't recognize the code, return PC. */
1339
1340 static CORE_ADDR
1341 i386_analyze_frame_setup (struct gdbarch *gdbarch,
1342 CORE_ADDR pc, CORE_ADDR limit,
1343 struct i386_frame_cache *cache)
1344 {
1345 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1346 struct i386_insn *insn;
1347 gdb_byte op;
1348 int skip = 0;
1349
1350 if (limit <= pc)
1351 return limit;
1352
1353 if (target_read_memory (pc, &op, 1))
1354 return pc;
1355
1356 if (op == 0x55) /* pushl %ebp */
1357 {
1358 /* Take into account that we've executed the `pushl %ebp' that
1359 starts this instruction sequence. */
1360 cache->saved_regs[I386_EBP_REGNUM] = 0;
1361 cache->sp_offset += 4;
1362 pc++;
1363
1364 /* If that's all, return now. */
1365 if (limit <= pc)
1366 return limit;
1367
1368 /* Check for some special instructions that might be migrated by
1369 GCC into the prologue and skip them. At this point in the
1370 prologue, code should only touch the scratch registers %eax,
1371 %ecx and %edx, so while the number of posibilities is sheer,
1372 it is limited.
1373
1374 Make sure we only skip these instructions if we later see the
1375 `movl %esp, %ebp' that actually sets up the frame. */
1376 while (pc + skip < limit)
1377 {
1378 insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
1379 if (insn == NULL)
1380 break;
1381
1382 skip += insn->len;
1383 }
1384
1385 /* If that's all, return now. */
1386 if (limit <= pc + skip)
1387 return limit;
1388
1389 if (target_read_memory (pc + skip, &op, 1))
1390 return pc + skip;
1391
1392 /* The i386 prologue looks like
1393
1394 push %ebp
1395 mov %esp,%ebp
1396 sub $0x10,%esp
1397
1398 and a different prologue can be generated for atom.
1399
1400 push %ebp
1401 lea (%esp),%ebp
1402 lea -0x10(%esp),%esp
1403
1404 We handle both of them here. */
1405
1406 switch (op)
1407 {
1408 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
1409 case 0x8b:
1410 if (read_memory_unsigned_integer (pc + skip + 1, 1, byte_order)
1411 != 0xec)
1412 return pc;
1413 pc += (skip + 2);
1414 break;
1415 case 0x89:
1416 if (read_memory_unsigned_integer (pc + skip + 1, 1, byte_order)
1417 != 0xe5)
1418 return pc;
1419 pc += (skip + 2);
1420 break;
1421 case 0x8d: /* Check for 'lea (%ebp), %ebp'. */
1422 if (read_memory_unsigned_integer (pc + skip + 1, 2, byte_order)
1423 != 0x242c)
1424 return pc;
1425 pc += (skip + 3);
1426 break;
1427 default:
1428 return pc;
1429 }
1430
1431 /* OK, we actually have a frame. We just don't know how large
1432 it is yet. Set its size to zero. We'll adjust it if
1433 necessary. We also now commit to skipping the special
1434 instructions mentioned before. */
1435 cache->locals = 0;
1436
1437 /* If that's all, return now. */
1438 if (limit <= pc)
1439 return limit;
1440
1441 /* Check for stack adjustment
1442
1443 subl $XXX, %esp
1444 or
1445 lea -XXX(%esp),%esp
1446
1447 NOTE: You can't subtract a 16-bit immediate from a 32-bit
1448 reg, so we don't have to worry about a data16 prefix. */
1449 if (target_read_memory (pc, &op, 1))
1450 return pc;
1451 if (op == 0x83)
1452 {
1453 /* `subl' with 8-bit immediate. */
1454 if (read_memory_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1455 /* Some instruction starting with 0x83 other than `subl'. */
1456 return pc;
1457
1458 /* `subl' with signed 8-bit immediate (though it wouldn't
1459 make sense to be negative). */
1460 cache->locals = read_memory_integer (pc + 2, 1, byte_order);
1461 return pc + 3;
1462 }
1463 else if (op == 0x81)
1464 {
1465 /* Maybe it is `subl' with a 32-bit immediate. */
1466 if (read_memory_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1467 /* Some instruction starting with 0x81 other than `subl'. */
1468 return pc;
1469
1470 /* It is `subl' with a 32-bit immediate. */
1471 cache->locals = read_memory_integer (pc + 2, 4, byte_order);
1472 return pc + 6;
1473 }
1474 else if (op == 0x8d)
1475 {
1476 /* The ModR/M byte is 0x64. */
1477 if (read_memory_unsigned_integer (pc + 1, 1, byte_order) != 0x64)
1478 return pc;
1479 /* 'lea' with 8-bit displacement. */
1480 cache->locals = -1 * read_memory_integer (pc + 3, 1, byte_order);
1481 return pc + 4;
1482 }
1483 else
1484 {
1485 /* Some instruction other than `subl' nor 'lea'. */
1486 return pc;
1487 }
1488 }
1489 else if (op == 0xc8) /* enter */
1490 {
1491 cache->locals = read_memory_unsigned_integer (pc + 1, 2, byte_order);
1492 return pc + 4;
1493 }
1494
1495 return pc;
1496 }
1497
1498 /* Check whether PC points at code that saves registers on the stack.
1499 If so, it updates CACHE and returns the address of the first
1500 instruction after the register saves or CURRENT_PC, whichever is
1501 smaller. Otherwise, return PC. */
1502
1503 static CORE_ADDR
1504 i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
1505 struct i386_frame_cache *cache)
1506 {
1507 CORE_ADDR offset = 0;
1508 gdb_byte op;
1509 int i;
1510
1511 if (cache->locals > 0)
1512 offset -= cache->locals;
1513 for (i = 0; i < 8 && pc < current_pc; i++)
1514 {
1515 if (target_read_memory (pc, &op, 1))
1516 return pc;
1517 if (op < 0x50 || op > 0x57)
1518 break;
1519
1520 offset -= 4;
1521 cache->saved_regs[op - 0x50] = offset;
1522 cache->sp_offset += 4;
1523 pc++;
1524 }
1525
1526 return pc;
1527 }
1528
1529 /* Do a full analysis of the prologue at PC and update CACHE
1530 accordingly. Bail out early if CURRENT_PC is reached. Return the
1531 address where the analysis stopped.
1532
1533 We handle these cases:
1534
1535 The startup sequence can be at the start of the function, or the
1536 function can start with a branch to startup code at the end.
1537
1538 %ebp can be set up with either the 'enter' instruction, or "pushl
1539 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
1540 once used in the System V compiler).
1541
1542 Local space is allocated just below the saved %ebp by either the
1543 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
1544 16-bit unsigned argument for space to allocate, and the 'addl'
1545 instruction could have either a signed byte, or 32-bit immediate.
1546
1547 Next, the registers used by this function are pushed. With the
1548 System V compiler they will always be in the order: %edi, %esi,
1549 %ebx (and sometimes a harmless bug causes it to also save but not
1550 restore %eax); however, the code below is willing to see the pushes
1551 in any order, and will handle up to 8 of them.
1552
1553 If the setup sequence is at the end of the function, then the next
1554 instruction will be a branch back to the start. */
1555
1556 static CORE_ADDR
1557 i386_analyze_prologue (struct gdbarch *gdbarch,
1558 CORE_ADDR pc, CORE_ADDR current_pc,
1559 struct i386_frame_cache *cache)
1560 {
1561 pc = i386_skip_noop (pc);
1562 pc = i386_follow_jump (gdbarch, pc);
1563 pc = i386_analyze_struct_return (pc, current_pc, cache);
1564 pc = i386_skip_probe (pc);
1565 pc = i386_analyze_stack_align (pc, current_pc, cache);
1566 pc = i386_analyze_frame_setup (gdbarch, pc, current_pc, cache);
1567 return i386_analyze_register_saves (pc, current_pc, cache);
1568 }
1569
1570 /* Return PC of first real instruction. */
1571
1572 static CORE_ADDR
1573 i386_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
1574 {
1575 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1576
1577 static gdb_byte pic_pat[6] =
1578 {
1579 0xe8, 0, 0, 0, 0, /* call 0x0 */
1580 0x5b, /* popl %ebx */
1581 };
1582 struct i386_frame_cache cache;
1583 CORE_ADDR pc;
1584 gdb_byte op;
1585 int i;
1586 CORE_ADDR func_addr;
1587
1588 if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
1589 {
1590 CORE_ADDR post_prologue_pc
1591 = skip_prologue_using_sal (gdbarch, func_addr);
1592 struct symtab *s = find_pc_symtab (func_addr);
1593
1594 /* Clang always emits a line note before the prologue and another
1595 one after. We trust clang to emit usable line notes. */
1596 if (post_prologue_pc
1597 && (s != NULL
1598 && s->producer != NULL
1599 && strncmp (s->producer, "clang ", sizeof ("clang ") - 1) == 0))
1600 return max (start_pc, post_prologue_pc);
1601 }
1602
1603 cache.locals = -1;
1604 pc = i386_analyze_prologue (gdbarch, start_pc, 0xffffffff, &cache);
1605 if (cache.locals < 0)
1606 return start_pc;
1607
1608 /* Found valid frame setup. */
1609
1610 /* The native cc on SVR4 in -K PIC mode inserts the following code
1611 to get the address of the global offset table (GOT) into register
1612 %ebx:
1613
1614 call 0x0
1615 popl %ebx
1616 movl %ebx,x(%ebp) (optional)
1617 addl y,%ebx
1618
1619 This code is with the rest of the prologue (at the end of the
1620 function), so we have to skip it to get to the first real
1621 instruction at the start of the function. */
1622
1623 for (i = 0; i < 6; i++)
1624 {
1625 if (target_read_memory (pc + i, &op, 1))
1626 return pc;
1627
1628 if (pic_pat[i] != op)
1629 break;
1630 }
1631 if (i == 6)
1632 {
1633 int delta = 6;
1634
1635 if (target_read_memory (pc + delta, &op, 1))
1636 return pc;
1637
1638 if (op == 0x89) /* movl %ebx, x(%ebp) */
1639 {
1640 op = read_memory_unsigned_integer (pc + delta + 1, 1, byte_order);
1641
1642 if (op == 0x5d) /* One byte offset from %ebp. */
1643 delta += 3;
1644 else if (op == 0x9d) /* Four byte offset from %ebp. */
1645 delta += 6;
1646 else /* Unexpected instruction. */
1647 delta = 0;
1648
1649 if (target_read_memory (pc + delta, &op, 1))
1650 return pc;
1651 }
1652
1653 /* addl y,%ebx */
1654 if (delta > 0 && op == 0x81
1655 && read_memory_unsigned_integer (pc + delta + 1, 1, byte_order)
1656 == 0xc3)
1657 {
1658 pc += delta + 6;
1659 }
1660 }
1661
1662 /* If the function starts with a branch (to startup code at the end)
1663 the last instruction should bring us back to the first
1664 instruction of the real code. */
1665 if (i386_follow_jump (gdbarch, start_pc) != start_pc)
1666 pc = i386_follow_jump (gdbarch, pc);
1667
1668 return pc;
1669 }
1670
1671 /* Check that the code pointed to by PC corresponds to a call to
1672 __main, skip it if so. Return PC otherwise. */
1673
1674 CORE_ADDR
1675 i386_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1676 {
1677 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1678 gdb_byte op;
1679
1680 if (target_read_memory (pc, &op, 1))
1681 return pc;
1682 if (op == 0xe8)
1683 {
1684 gdb_byte buf[4];
1685
1686 if (target_read_memory (pc + 1, buf, sizeof buf) == 0)
1687 {
1688 /* Make sure address is computed correctly as a 32bit
1689 integer even if CORE_ADDR is 64 bit wide. */
1690 struct minimal_symbol *s;
1691 CORE_ADDR call_dest;
1692
1693 call_dest = pc + 5 + extract_signed_integer (buf, 4, byte_order);
1694 call_dest = call_dest & 0xffffffffU;
1695 s = lookup_minimal_symbol_by_pc (call_dest);
1696 if (s != NULL
1697 && SYMBOL_LINKAGE_NAME (s) != NULL
1698 && strcmp (SYMBOL_LINKAGE_NAME (s), "__main") == 0)
1699 pc += 5;
1700 }
1701 }
1702
1703 return pc;
1704 }
1705
1706 /* This function is 64-bit safe. */
1707
1708 static CORE_ADDR
1709 i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1710 {
1711 gdb_byte buf[8];
1712
1713 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
1714 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
1715 }
1716 \f
1717
1718 /* Normal frames. */
1719
1720 static void
1721 i386_frame_cache_1 (struct frame_info *this_frame,
1722 struct i386_frame_cache *cache)
1723 {
1724 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1725 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1726 gdb_byte buf[4];
1727 int i;
1728
1729 cache->pc = get_frame_func (this_frame);
1730
1731 /* In principle, for normal frames, %ebp holds the frame pointer,
1732 which holds the base address for the current stack frame.
1733 However, for functions that don't need it, the frame pointer is
1734 optional. For these "frameless" functions the frame pointer is
1735 actually the frame pointer of the calling frame. Signal
1736 trampolines are just a special case of a "frameless" function.
1737 They (usually) share their frame pointer with the frame that was
1738 in progress when the signal occurred. */
1739
1740 get_frame_register (this_frame, I386_EBP_REGNUM, buf);
1741 cache->base = extract_unsigned_integer (buf, 4, byte_order);
1742 if (cache->base == 0)
1743 {
1744 cache->base_p = 1;
1745 return;
1746 }
1747
1748 /* For normal frames, %eip is stored at 4(%ebp). */
1749 cache->saved_regs[I386_EIP_REGNUM] = 4;
1750
1751 if (cache->pc != 0)
1752 i386_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
1753 cache);
1754
1755 if (cache->locals < 0)
1756 {
1757 /* We didn't find a valid frame, which means that CACHE->base
1758 currently holds the frame pointer for our calling frame. If
1759 we're at the start of a function, or somewhere half-way its
1760 prologue, the function's frame probably hasn't been fully
1761 setup yet. Try to reconstruct the base address for the stack
1762 frame by looking at the stack pointer. For truly "frameless"
1763 functions this might work too. */
1764
1765 if (cache->saved_sp_reg != -1)
1766 {
1767 /* Saved stack pointer has been saved. */
1768 get_frame_register (this_frame, cache->saved_sp_reg, buf);
1769 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
1770
1771 /* We're halfway aligning the stack. */
1772 cache->base = ((cache->saved_sp - 4) & 0xfffffff0) - 4;
1773 cache->saved_regs[I386_EIP_REGNUM] = cache->saved_sp - 4;
1774
1775 /* This will be added back below. */
1776 cache->saved_regs[I386_EIP_REGNUM] -= cache->base;
1777 }
1778 else if (cache->pc != 0
1779 || target_read_memory (get_frame_pc (this_frame), buf, 1))
1780 {
1781 /* We're in a known function, but did not find a frame
1782 setup. Assume that the function does not use %ebp.
1783 Alternatively, we may have jumped to an invalid
1784 address; in that case there is definitely no new
1785 frame in %ebp. */
1786 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
1787 cache->base = extract_unsigned_integer (buf, 4, byte_order)
1788 + cache->sp_offset;
1789 }
1790 else
1791 /* We're in an unknown function. We could not find the start
1792 of the function to analyze the prologue; our best option is
1793 to assume a typical frame layout with the caller's %ebp
1794 saved. */
1795 cache->saved_regs[I386_EBP_REGNUM] = 0;
1796 }
1797
1798 if (cache->saved_sp_reg != -1)
1799 {
1800 /* Saved stack pointer has been saved (but the SAVED_SP_REG
1801 register may be unavailable). */
1802 if (cache->saved_sp == 0
1803 && deprecated_frame_register_read (this_frame,
1804 cache->saved_sp_reg, buf))
1805 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
1806 }
1807 /* Now that we have the base address for the stack frame we can
1808 calculate the value of %esp in the calling frame. */
1809 else if (cache->saved_sp == 0)
1810 cache->saved_sp = cache->base + 8;
1811
1812 /* Adjust all the saved registers such that they contain addresses
1813 instead of offsets. */
1814 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
1815 if (cache->saved_regs[i] != -1)
1816 cache->saved_regs[i] += cache->base;
1817
1818 cache->base_p = 1;
1819 }
1820
1821 static struct i386_frame_cache *
1822 i386_frame_cache (struct frame_info *this_frame, void **this_cache)
1823 {
1824 volatile struct gdb_exception ex;
1825 struct i386_frame_cache *cache;
1826
1827 if (*this_cache)
1828 return *this_cache;
1829
1830 cache = i386_alloc_frame_cache ();
1831 *this_cache = cache;
1832
1833 TRY_CATCH (ex, RETURN_MASK_ERROR)
1834 {
1835 i386_frame_cache_1 (this_frame, cache);
1836 }
1837 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
1838 throw_exception (ex);
1839
1840 return cache;
1841 }
1842
1843 static void
1844 i386_frame_this_id (struct frame_info *this_frame, void **this_cache,
1845 struct frame_id *this_id)
1846 {
1847 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
1848
1849 /* This marks the outermost frame. */
1850 if (cache->base == 0)
1851 return;
1852
1853 /* See the end of i386_push_dummy_call. */
1854 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
1855 }
1856
1857 static enum unwind_stop_reason
1858 i386_frame_unwind_stop_reason (struct frame_info *this_frame,
1859 void **this_cache)
1860 {
1861 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
1862
1863 if (!cache->base_p)
1864 return UNWIND_UNAVAILABLE;
1865
1866 /* This marks the outermost frame. */
1867 if (cache->base == 0)
1868 return UNWIND_OUTERMOST;
1869
1870 return UNWIND_NO_REASON;
1871 }
1872
1873 static struct value *
1874 i386_frame_prev_register (struct frame_info *this_frame, void **this_cache,
1875 int regnum)
1876 {
1877 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
1878
1879 gdb_assert (regnum >= 0);
1880
1881 /* The System V ABI says that:
1882
1883 "The flags register contains the system flags, such as the
1884 direction flag and the carry flag. The direction flag must be
1885 set to the forward (that is, zero) direction before entry and
1886 upon exit from a function. Other user flags have no specified
1887 role in the standard calling sequence and are not preserved."
1888
1889 To guarantee the "upon exit" part of that statement we fake a
1890 saved flags register that has its direction flag cleared.
1891
1892 Note that GCC doesn't seem to rely on the fact that the direction
1893 flag is cleared after a function return; it always explicitly
1894 clears the flag before operations where it matters.
1895
1896 FIXME: kettenis/20030316: I'm not quite sure whether this is the
1897 right thing to do. The way we fake the flags register here makes
1898 it impossible to change it. */
1899
1900 if (regnum == I386_EFLAGS_REGNUM)
1901 {
1902 ULONGEST val;
1903
1904 val = get_frame_register_unsigned (this_frame, regnum);
1905 val &= ~(1 << 10);
1906 return frame_unwind_got_constant (this_frame, regnum, val);
1907 }
1908
1909 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
1910 return frame_unwind_got_register (this_frame, regnum, I386_EAX_REGNUM);
1911
1912 if (regnum == I386_ESP_REGNUM
1913 && (cache->saved_sp != 0 || cache->saved_sp_reg != -1))
1914 {
1915 /* If the SP has been saved, but we don't know where, then this
1916 means that SAVED_SP_REG register was found unavailable back
1917 when we built the cache. */
1918 if (cache->saved_sp == 0)
1919 return frame_unwind_got_register (this_frame, regnum,
1920 cache->saved_sp_reg);
1921 else
1922 return frame_unwind_got_constant (this_frame, regnum,
1923 cache->saved_sp);
1924 }
1925
1926 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
1927 return frame_unwind_got_memory (this_frame, regnum,
1928 cache->saved_regs[regnum]);
1929
1930 return frame_unwind_got_register (this_frame, regnum, regnum);
1931 }
1932
1933 static const struct frame_unwind i386_frame_unwind =
1934 {
1935 NORMAL_FRAME,
1936 i386_frame_unwind_stop_reason,
1937 i386_frame_this_id,
1938 i386_frame_prev_register,
1939 NULL,
1940 default_frame_sniffer
1941 };
1942
1943 /* Normal frames, but in a function epilogue. */
1944
1945 /* The epilogue is defined here as the 'ret' instruction, which will
1946 follow any instruction such as 'leave' or 'pop %ebp' that destroys
1947 the function's stack frame. */
1948
1949 static int
1950 i386_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
1951 {
1952 gdb_byte insn;
1953 struct symtab *symtab;
1954
1955 symtab = find_pc_symtab (pc);
1956 if (symtab && symtab->epilogue_unwind_valid)
1957 return 0;
1958
1959 if (target_read_memory (pc, &insn, 1))
1960 return 0; /* Can't read memory at pc. */
1961
1962 if (insn != 0xc3) /* 'ret' instruction. */
1963 return 0;
1964
1965 return 1;
1966 }
1967
1968 static int
1969 i386_epilogue_frame_sniffer (const struct frame_unwind *self,
1970 struct frame_info *this_frame,
1971 void **this_prologue_cache)
1972 {
1973 if (frame_relative_level (this_frame) == 0)
1974 return i386_in_function_epilogue_p (get_frame_arch (this_frame),
1975 get_frame_pc (this_frame));
1976 else
1977 return 0;
1978 }
1979
1980 static struct i386_frame_cache *
1981 i386_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
1982 {
1983 volatile struct gdb_exception ex;
1984 struct i386_frame_cache *cache;
1985 CORE_ADDR sp;
1986
1987 if (*this_cache)
1988 return *this_cache;
1989
1990 cache = i386_alloc_frame_cache ();
1991 *this_cache = cache;
1992
1993 TRY_CATCH (ex, RETURN_MASK_ERROR)
1994 {
1995 cache->pc = get_frame_func (this_frame);
1996
1997 /* At this point the stack looks as if we just entered the
1998 function, with the return address at the top of the
1999 stack. */
2000 sp = get_frame_register_unsigned (this_frame, I386_ESP_REGNUM);
2001 cache->base = sp + cache->sp_offset;
2002 cache->saved_sp = cache->base + 8;
2003 cache->saved_regs[I386_EIP_REGNUM] = cache->base + 4;
2004
2005 cache->base_p = 1;
2006 }
2007 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
2008 throw_exception (ex);
2009
2010 return cache;
2011 }
2012
2013 static enum unwind_stop_reason
2014 i386_epilogue_frame_unwind_stop_reason (struct frame_info *this_frame,
2015 void **this_cache)
2016 {
2017 struct i386_frame_cache *cache =
2018 i386_epilogue_frame_cache (this_frame, this_cache);
2019
2020 if (!cache->base_p)
2021 return UNWIND_UNAVAILABLE;
2022
2023 return UNWIND_NO_REASON;
2024 }
2025
2026 static void
2027 i386_epilogue_frame_this_id (struct frame_info *this_frame,
2028 void **this_cache,
2029 struct frame_id *this_id)
2030 {
2031 struct i386_frame_cache *cache =
2032 i386_epilogue_frame_cache (this_frame, this_cache);
2033
2034 if (!cache->base_p)
2035 return;
2036
2037 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2038 }
2039
2040 static struct value *
2041 i386_epilogue_frame_prev_register (struct frame_info *this_frame,
2042 void **this_cache, int regnum)
2043 {
2044 /* Make sure we've initialized the cache. */
2045 i386_epilogue_frame_cache (this_frame, this_cache);
2046
2047 return i386_frame_prev_register (this_frame, this_cache, regnum);
2048 }
2049
2050 static const struct frame_unwind i386_epilogue_frame_unwind =
2051 {
2052 NORMAL_FRAME,
2053 i386_epilogue_frame_unwind_stop_reason,
2054 i386_epilogue_frame_this_id,
2055 i386_epilogue_frame_prev_register,
2056 NULL,
2057 i386_epilogue_frame_sniffer
2058 };
2059 \f
2060
2061 /* Stack-based trampolines. */
2062
2063 /* These trampolines are used on cross x86 targets, when taking the
2064 address of a nested function. When executing these trampolines,
2065 no stack frame is set up, so we are in a similar situation as in
2066 epilogues and i386_epilogue_frame_this_id can be re-used. */
2067
2068 /* Static chain passed in register. */
2069
2070 struct i386_insn i386_tramp_chain_in_reg_insns[] =
2071 {
2072 /* `movl imm32, %eax' and `movl imm32, %ecx' */
2073 { 5, { 0xb8 }, { 0xfe } },
2074
2075 /* `jmp imm32' */
2076 { 5, { 0xe9 }, { 0xff } },
2077
2078 {0}
2079 };
2080
2081 /* Static chain passed on stack (when regparm=3). */
2082
2083 struct i386_insn i386_tramp_chain_on_stack_insns[] =
2084 {
2085 /* `push imm32' */
2086 { 5, { 0x68 }, { 0xff } },
2087
2088 /* `jmp imm32' */
2089 { 5, { 0xe9 }, { 0xff } },
2090
2091 {0}
2092 };
2093
2094 /* Return whether PC points inside a stack trampoline. */
2095
2096 static int
2097 i386_in_stack_tramp_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2098 {
2099 gdb_byte insn;
2100 const char *name;
2101
2102 /* A stack trampoline is detected if no name is associated
2103 to the current pc and if it points inside a trampoline
2104 sequence. */
2105
2106 find_pc_partial_function (pc, &name, NULL, NULL);
2107 if (name)
2108 return 0;
2109
2110 if (target_read_memory (pc, &insn, 1))
2111 return 0;
2112
2113 if (!i386_match_insn_block (pc, i386_tramp_chain_in_reg_insns)
2114 && !i386_match_insn_block (pc, i386_tramp_chain_on_stack_insns))
2115 return 0;
2116
2117 return 1;
2118 }
2119
2120 static int
2121 i386_stack_tramp_frame_sniffer (const struct frame_unwind *self,
2122 struct frame_info *this_frame,
2123 void **this_cache)
2124 {
2125 if (frame_relative_level (this_frame) == 0)
2126 return i386_in_stack_tramp_p (get_frame_arch (this_frame),
2127 get_frame_pc (this_frame));
2128 else
2129 return 0;
2130 }
2131
2132 static const struct frame_unwind i386_stack_tramp_frame_unwind =
2133 {
2134 NORMAL_FRAME,
2135 i386_epilogue_frame_unwind_stop_reason,
2136 i386_epilogue_frame_this_id,
2137 i386_epilogue_frame_prev_register,
2138 NULL,
2139 i386_stack_tramp_frame_sniffer
2140 };
2141 \f
2142 /* Generate a bytecode expression to get the value of the saved PC. */
2143
2144 static void
2145 i386_gen_return_address (struct gdbarch *gdbarch,
2146 struct agent_expr *ax, struct axs_value *value,
2147 CORE_ADDR scope)
2148 {
2149 /* The following sequence assumes the traditional use of the base
2150 register. */
2151 ax_reg (ax, I386_EBP_REGNUM);
2152 ax_const_l (ax, 4);
2153 ax_simple (ax, aop_add);
2154 value->type = register_type (gdbarch, I386_EIP_REGNUM);
2155 value->kind = axs_lvalue_memory;
2156 }
2157 \f
2158
2159 /* Signal trampolines. */
2160
2161 static struct i386_frame_cache *
2162 i386_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
2163 {
2164 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2165 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2166 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2167 volatile struct gdb_exception ex;
2168 struct i386_frame_cache *cache;
2169 CORE_ADDR addr;
2170 gdb_byte buf[4];
2171
2172 if (*this_cache)
2173 return *this_cache;
2174
2175 cache = i386_alloc_frame_cache ();
2176
2177 TRY_CATCH (ex, RETURN_MASK_ERROR)
2178 {
2179 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2180 cache->base = extract_unsigned_integer (buf, 4, byte_order) - 4;
2181
2182 addr = tdep->sigcontext_addr (this_frame);
2183 if (tdep->sc_reg_offset)
2184 {
2185 int i;
2186
2187 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
2188
2189 for (i = 0; i < tdep->sc_num_regs; i++)
2190 if (tdep->sc_reg_offset[i] != -1)
2191 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
2192 }
2193 else
2194 {
2195 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
2196 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
2197 }
2198
2199 cache->base_p = 1;
2200 }
2201 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
2202 throw_exception (ex);
2203
2204 *this_cache = cache;
2205 return cache;
2206 }
2207
2208 static enum unwind_stop_reason
2209 i386_sigtramp_frame_unwind_stop_reason (struct frame_info *this_frame,
2210 void **this_cache)
2211 {
2212 struct i386_frame_cache *cache =
2213 i386_sigtramp_frame_cache (this_frame, this_cache);
2214
2215 if (!cache->base_p)
2216 return UNWIND_UNAVAILABLE;
2217
2218 return UNWIND_NO_REASON;
2219 }
2220
2221 static void
2222 i386_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache,
2223 struct frame_id *this_id)
2224 {
2225 struct i386_frame_cache *cache =
2226 i386_sigtramp_frame_cache (this_frame, this_cache);
2227
2228 if (!cache->base_p)
2229 return;
2230
2231 /* See the end of i386_push_dummy_call. */
2232 (*this_id) = frame_id_build (cache->base + 8, get_frame_pc (this_frame));
2233 }
2234
2235 static struct value *
2236 i386_sigtramp_frame_prev_register (struct frame_info *this_frame,
2237 void **this_cache, int regnum)
2238 {
2239 /* Make sure we've initialized the cache. */
2240 i386_sigtramp_frame_cache (this_frame, this_cache);
2241
2242 return i386_frame_prev_register (this_frame, this_cache, regnum);
2243 }
2244
2245 static int
2246 i386_sigtramp_frame_sniffer (const struct frame_unwind *self,
2247 struct frame_info *this_frame,
2248 void **this_prologue_cache)
2249 {
2250 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
2251
2252 /* We shouldn't even bother if we don't have a sigcontext_addr
2253 handler. */
2254 if (tdep->sigcontext_addr == NULL)
2255 return 0;
2256
2257 if (tdep->sigtramp_p != NULL)
2258 {
2259 if (tdep->sigtramp_p (this_frame))
2260 return 1;
2261 }
2262
2263 if (tdep->sigtramp_start != 0)
2264 {
2265 CORE_ADDR pc = get_frame_pc (this_frame);
2266
2267 gdb_assert (tdep->sigtramp_end != 0);
2268 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
2269 return 1;
2270 }
2271
2272 return 0;
2273 }
2274
2275 static const struct frame_unwind i386_sigtramp_frame_unwind =
2276 {
2277 SIGTRAMP_FRAME,
2278 i386_sigtramp_frame_unwind_stop_reason,
2279 i386_sigtramp_frame_this_id,
2280 i386_sigtramp_frame_prev_register,
2281 NULL,
2282 i386_sigtramp_frame_sniffer
2283 };
2284 \f
2285
2286 static CORE_ADDR
2287 i386_frame_base_address (struct frame_info *this_frame, void **this_cache)
2288 {
2289 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2290
2291 return cache->base;
2292 }
2293
2294 static const struct frame_base i386_frame_base =
2295 {
2296 &i386_frame_unwind,
2297 i386_frame_base_address,
2298 i386_frame_base_address,
2299 i386_frame_base_address
2300 };
2301
2302 static struct frame_id
2303 i386_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2304 {
2305 CORE_ADDR fp;
2306
2307 fp = get_frame_register_unsigned (this_frame, I386_EBP_REGNUM);
2308
2309 /* See the end of i386_push_dummy_call. */
2310 return frame_id_build (fp + 8, get_frame_pc (this_frame));
2311 }
2312
2313 /* _Decimal128 function return values need 16-byte alignment on the
2314 stack. */
2315
2316 static CORE_ADDR
2317 i386_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2318 {
2319 return sp & -(CORE_ADDR)16;
2320 }
2321 \f
2322
2323 /* Figure out where the longjmp will land. Slurp the args out of the
2324 stack. We expect the first arg to be a pointer to the jmp_buf
2325 structure from which we extract the address that we will land at.
2326 This address is copied into PC. This routine returns non-zero on
2327 success. */
2328
2329 static int
2330 i386_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
2331 {
2332 gdb_byte buf[4];
2333 CORE_ADDR sp, jb_addr;
2334 struct gdbarch *gdbarch = get_frame_arch (frame);
2335 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2336 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
2337
2338 /* If JB_PC_OFFSET is -1, we have no way to find out where the
2339 longjmp will land. */
2340 if (jb_pc_offset == -1)
2341 return 0;
2342
2343 get_frame_register (frame, I386_ESP_REGNUM, buf);
2344 sp = extract_unsigned_integer (buf, 4, byte_order);
2345 if (target_read_memory (sp + 4, buf, 4))
2346 return 0;
2347
2348 jb_addr = extract_unsigned_integer (buf, 4, byte_order);
2349 if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
2350 return 0;
2351
2352 *pc = extract_unsigned_integer (buf, 4, byte_order);
2353 return 1;
2354 }
2355 \f
2356
2357 /* Check whether TYPE must be 16-byte-aligned when passed as a
2358 function argument. 16-byte vectors, _Decimal128 and structures or
2359 unions containing such types must be 16-byte-aligned; other
2360 arguments are 4-byte-aligned. */
2361
2362 static int
2363 i386_16_byte_align_p (struct type *type)
2364 {
2365 type = check_typedef (type);
2366 if ((TYPE_CODE (type) == TYPE_CODE_DECFLOAT
2367 || (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type)))
2368 && TYPE_LENGTH (type) == 16)
2369 return 1;
2370 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2371 return i386_16_byte_align_p (TYPE_TARGET_TYPE (type));
2372 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2373 || TYPE_CODE (type) == TYPE_CODE_UNION)
2374 {
2375 int i;
2376 for (i = 0; i < TYPE_NFIELDS (type); i++)
2377 {
2378 if (i386_16_byte_align_p (TYPE_FIELD_TYPE (type, i)))
2379 return 1;
2380 }
2381 }
2382 return 0;
2383 }
2384
2385 /* Implementation for set_gdbarch_push_dummy_code. */
2386
2387 static CORE_ADDR
2388 i386_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, CORE_ADDR funaddr,
2389 struct value **args, int nargs, struct type *value_type,
2390 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
2391 struct regcache *regcache)
2392 {
2393 /* Use 0xcc breakpoint - 1 byte. */
2394 *bp_addr = sp - 1;
2395 *real_pc = funaddr;
2396
2397 /* Keep the stack aligned. */
2398 return sp - 16;
2399 }
2400
2401 static CORE_ADDR
2402 i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2403 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2404 struct value **args, CORE_ADDR sp, int struct_return,
2405 CORE_ADDR struct_addr)
2406 {
2407 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2408 gdb_byte buf[4];
2409 int i;
2410 int write_pass;
2411 int args_space = 0;
2412
2413 /* Determine the total space required for arguments and struct
2414 return address in a first pass (allowing for 16-byte-aligned
2415 arguments), then push arguments in a second pass. */
2416
2417 for (write_pass = 0; write_pass < 2; write_pass++)
2418 {
2419 int args_space_used = 0;
2420
2421 if (struct_return)
2422 {
2423 if (write_pass)
2424 {
2425 /* Push value address. */
2426 store_unsigned_integer (buf, 4, byte_order, struct_addr);
2427 write_memory (sp, buf, 4);
2428 args_space_used += 4;
2429 }
2430 else
2431 args_space += 4;
2432 }
2433
2434 for (i = 0; i < nargs; i++)
2435 {
2436 int len = TYPE_LENGTH (value_enclosing_type (args[i]));
2437
2438 if (write_pass)
2439 {
2440 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2441 args_space_used = align_up (args_space_used, 16);
2442
2443 write_memory (sp + args_space_used,
2444 value_contents_all (args[i]), len);
2445 /* The System V ABI says that:
2446
2447 "An argument's size is increased, if necessary, to make it a
2448 multiple of [32-bit] words. This may require tail padding,
2449 depending on the size of the argument."
2450
2451 This makes sure the stack stays word-aligned. */
2452 args_space_used += align_up (len, 4);
2453 }
2454 else
2455 {
2456 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2457 args_space = align_up (args_space, 16);
2458 args_space += align_up (len, 4);
2459 }
2460 }
2461
2462 if (!write_pass)
2463 {
2464 sp -= args_space;
2465
2466 /* The original System V ABI only requires word alignment,
2467 but modern incarnations need 16-byte alignment in order
2468 to support SSE. Since wasting a few bytes here isn't
2469 harmful we unconditionally enforce 16-byte alignment. */
2470 sp &= ~0xf;
2471 }
2472 }
2473
2474 /* Store return address. */
2475 sp -= 4;
2476 store_unsigned_integer (buf, 4, byte_order, bp_addr);
2477 write_memory (sp, buf, 4);
2478
2479 /* Finally, update the stack pointer... */
2480 store_unsigned_integer (buf, 4, byte_order, sp);
2481 regcache_cooked_write (regcache, I386_ESP_REGNUM, buf);
2482
2483 /* ...and fake a frame pointer. */
2484 regcache_cooked_write (regcache, I386_EBP_REGNUM, buf);
2485
2486 /* MarkK wrote: This "+ 8" is all over the place:
2487 (i386_frame_this_id, i386_sigtramp_frame_this_id,
2488 i386_dummy_id). It's there, since all frame unwinders for
2489 a given target have to agree (within a certain margin) on the
2490 definition of the stack address of a frame. Otherwise frame id
2491 comparison might not work correctly. Since DWARF2/GCC uses the
2492 stack address *before* the function call as a frame's CFA. On
2493 the i386, when %ebp is used as a frame pointer, the offset
2494 between the contents %ebp and the CFA as defined by GCC. */
2495 return sp + 8;
2496 }
2497
2498 /* These registers are used for returning integers (and on some
2499 targets also for returning `struct' and `union' values when their
2500 size and alignment match an integer type). */
2501 #define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
2502 #define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
2503
2504 /* Read, for architecture GDBARCH, a function return value of TYPE
2505 from REGCACHE, and copy that into VALBUF. */
2506
2507 static void
2508 i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
2509 struct regcache *regcache, gdb_byte *valbuf)
2510 {
2511 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2512 int len = TYPE_LENGTH (type);
2513 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2514
2515 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2516 {
2517 if (tdep->st0_regnum < 0)
2518 {
2519 warning (_("Cannot find floating-point return value."));
2520 memset (valbuf, 0, len);
2521 return;
2522 }
2523
2524 /* Floating-point return values can be found in %st(0). Convert
2525 its contents to the desired type. This is probably not
2526 exactly how it would happen on the target itself, but it is
2527 the best we can do. */
2528 regcache_raw_read (regcache, I386_ST0_REGNUM, buf);
2529 convert_typed_floating (buf, i387_ext_type (gdbarch), valbuf, type);
2530 }
2531 else
2532 {
2533 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2534 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2535
2536 if (len <= low_size)
2537 {
2538 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
2539 memcpy (valbuf, buf, len);
2540 }
2541 else if (len <= (low_size + high_size))
2542 {
2543 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
2544 memcpy (valbuf, buf, low_size);
2545 regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
2546 memcpy (valbuf + low_size, buf, len - low_size);
2547 }
2548 else
2549 internal_error (__FILE__, __LINE__,
2550 _("Cannot extract return value of %d bytes long."),
2551 len);
2552 }
2553 }
2554
2555 /* Write, for architecture GDBARCH, a function return value of TYPE
2556 from VALBUF into REGCACHE. */
2557
2558 static void
2559 i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
2560 struct regcache *regcache, const gdb_byte *valbuf)
2561 {
2562 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2563 int len = TYPE_LENGTH (type);
2564
2565 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2566 {
2567 ULONGEST fstat;
2568 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2569
2570 if (tdep->st0_regnum < 0)
2571 {
2572 warning (_("Cannot set floating-point return value."));
2573 return;
2574 }
2575
2576 /* Returning floating-point values is a bit tricky. Apart from
2577 storing the return value in %st(0), we have to simulate the
2578 state of the FPU at function return point. */
2579
2580 /* Convert the value found in VALBUF to the extended
2581 floating-point format used by the FPU. This is probably
2582 not exactly how it would happen on the target itself, but
2583 it is the best we can do. */
2584 convert_typed_floating (valbuf, type, buf, i387_ext_type (gdbarch));
2585 regcache_raw_write (regcache, I386_ST0_REGNUM, buf);
2586
2587 /* Set the top of the floating-point register stack to 7. The
2588 actual value doesn't really matter, but 7 is what a normal
2589 function return would end up with if the program started out
2590 with a freshly initialized FPU. */
2591 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
2592 fstat |= (7 << 11);
2593 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM (tdep), fstat);
2594
2595 /* Mark %st(1) through %st(7) as empty. Since we set the top of
2596 the floating-point register stack to 7, the appropriate value
2597 for the tag word is 0x3fff. */
2598 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM (tdep), 0x3fff);
2599 }
2600 else
2601 {
2602 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2603 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2604
2605 if (len <= low_size)
2606 regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
2607 else if (len <= (low_size + high_size))
2608 {
2609 regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
2610 regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
2611 len - low_size, valbuf + low_size);
2612 }
2613 else
2614 internal_error (__FILE__, __LINE__,
2615 _("Cannot store return value of %d bytes long."), len);
2616 }
2617 }
2618 \f
2619
2620 /* This is the variable that is set with "set struct-convention", and
2621 its legitimate values. */
2622 static const char default_struct_convention[] = "default";
2623 static const char pcc_struct_convention[] = "pcc";
2624 static const char reg_struct_convention[] = "reg";
2625 static const char *const valid_conventions[] =
2626 {
2627 default_struct_convention,
2628 pcc_struct_convention,
2629 reg_struct_convention,
2630 NULL
2631 };
2632 static const char *struct_convention = default_struct_convention;
2633
2634 /* Return non-zero if TYPE, which is assumed to be a structure,
2635 a union type, or an array type, should be returned in registers
2636 for architecture GDBARCH. */
2637
2638 static int
2639 i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
2640 {
2641 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2642 enum type_code code = TYPE_CODE (type);
2643 int len = TYPE_LENGTH (type);
2644
2645 gdb_assert (code == TYPE_CODE_STRUCT
2646 || code == TYPE_CODE_UNION
2647 || code == TYPE_CODE_ARRAY);
2648
2649 if (struct_convention == pcc_struct_convention
2650 || (struct_convention == default_struct_convention
2651 && tdep->struct_return == pcc_struct_return))
2652 return 0;
2653
2654 /* Structures consisting of a single `float', `double' or 'long
2655 double' member are returned in %st(0). */
2656 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2657 {
2658 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
2659 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2660 return (len == 4 || len == 8 || len == 12);
2661 }
2662
2663 return (len == 1 || len == 2 || len == 4 || len == 8);
2664 }
2665
2666 /* Determine, for architecture GDBARCH, how a return value of TYPE
2667 should be returned. If it is supposed to be returned in registers,
2668 and READBUF is non-zero, read the appropriate value from REGCACHE,
2669 and copy it into READBUF. If WRITEBUF is non-zero, write the value
2670 from WRITEBUF into REGCACHE. */
2671
2672 static enum return_value_convention
2673 i386_return_value (struct gdbarch *gdbarch, struct value *function,
2674 struct type *type, struct regcache *regcache,
2675 gdb_byte *readbuf, const gdb_byte *writebuf)
2676 {
2677 enum type_code code = TYPE_CODE (type);
2678
2679 if (((code == TYPE_CODE_STRUCT
2680 || code == TYPE_CODE_UNION
2681 || code == TYPE_CODE_ARRAY)
2682 && !i386_reg_struct_return_p (gdbarch, type))
2683 /* Complex double and long double uses the struct return covention. */
2684 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 16)
2685 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 24)
2686 /* 128-bit decimal float uses the struct return convention. */
2687 || (code == TYPE_CODE_DECFLOAT && TYPE_LENGTH (type) == 16))
2688 {
2689 /* The System V ABI says that:
2690
2691 "A function that returns a structure or union also sets %eax
2692 to the value of the original address of the caller's area
2693 before it returns. Thus when the caller receives control
2694 again, the address of the returned object resides in register
2695 %eax and can be used to access the object."
2696
2697 So the ABI guarantees that we can always find the return
2698 value just after the function has returned. */
2699
2700 /* Note that the ABI doesn't mention functions returning arrays,
2701 which is something possible in certain languages such as Ada.
2702 In this case, the value is returned as if it was wrapped in
2703 a record, so the convention applied to records also applies
2704 to arrays. */
2705
2706 if (readbuf)
2707 {
2708 ULONGEST addr;
2709
2710 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
2711 read_memory (addr, readbuf, TYPE_LENGTH (type));
2712 }
2713
2714 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
2715 }
2716
2717 /* This special case is for structures consisting of a single
2718 `float', `double' or 'long double' member. These structures are
2719 returned in %st(0). For these structures, we call ourselves
2720 recursively, changing TYPE into the type of the first member of
2721 the structure. Since that should work for all structures that
2722 have only one member, we don't bother to check the member's type
2723 here. */
2724 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2725 {
2726 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
2727 return i386_return_value (gdbarch, function, type, regcache,
2728 readbuf, writebuf);
2729 }
2730
2731 if (readbuf)
2732 i386_extract_return_value (gdbarch, type, regcache, readbuf);
2733 if (writebuf)
2734 i386_store_return_value (gdbarch, type, regcache, writebuf);
2735
2736 return RETURN_VALUE_REGISTER_CONVENTION;
2737 }
2738 \f
2739
2740 struct type *
2741 i387_ext_type (struct gdbarch *gdbarch)
2742 {
2743 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2744
2745 if (!tdep->i387_ext_type)
2746 {
2747 tdep->i387_ext_type = tdesc_find_type (gdbarch, "i387_ext");
2748 gdb_assert (tdep->i387_ext_type != NULL);
2749 }
2750
2751 return tdep->i387_ext_type;
2752 }
2753
2754 /* Construct vector type for pseudo YMM registers. We can't use
2755 tdesc_find_type since YMM isn't described in target description. */
2756
2757 static struct type *
2758 i386_ymm_type (struct gdbarch *gdbarch)
2759 {
2760 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2761
2762 if (!tdep->i386_ymm_type)
2763 {
2764 const struct builtin_type *bt = builtin_type (gdbarch);
2765
2766 /* The type we're building is this: */
2767 #if 0
2768 union __gdb_builtin_type_vec256i
2769 {
2770 int128_t uint128[2];
2771 int64_t v2_int64[4];
2772 int32_t v4_int32[8];
2773 int16_t v8_int16[16];
2774 int8_t v16_int8[32];
2775 double v2_double[4];
2776 float v4_float[8];
2777 };
2778 #endif
2779
2780 struct type *t;
2781
2782 t = arch_composite_type (gdbarch,
2783 "__gdb_builtin_type_vec256i", TYPE_CODE_UNION);
2784 append_composite_type_field (t, "v8_float",
2785 init_vector_type (bt->builtin_float, 8));
2786 append_composite_type_field (t, "v4_double",
2787 init_vector_type (bt->builtin_double, 4));
2788 append_composite_type_field (t, "v32_int8",
2789 init_vector_type (bt->builtin_int8, 32));
2790 append_composite_type_field (t, "v16_int16",
2791 init_vector_type (bt->builtin_int16, 16));
2792 append_composite_type_field (t, "v8_int32",
2793 init_vector_type (bt->builtin_int32, 8));
2794 append_composite_type_field (t, "v4_int64",
2795 init_vector_type (bt->builtin_int64, 4));
2796 append_composite_type_field (t, "v2_int128",
2797 init_vector_type (bt->builtin_int128, 2));
2798
2799 TYPE_VECTOR (t) = 1;
2800 TYPE_NAME (t) = "builtin_type_vec256i";
2801 tdep->i386_ymm_type = t;
2802 }
2803
2804 return tdep->i386_ymm_type;
2805 }
2806
2807 /* Construct vector type for MMX registers. */
2808 static struct type *
2809 i386_mmx_type (struct gdbarch *gdbarch)
2810 {
2811 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2812
2813 if (!tdep->i386_mmx_type)
2814 {
2815 const struct builtin_type *bt = builtin_type (gdbarch);
2816
2817 /* The type we're building is this: */
2818 #if 0
2819 union __gdb_builtin_type_vec64i
2820 {
2821 int64_t uint64;
2822 int32_t v2_int32[2];
2823 int16_t v4_int16[4];
2824 int8_t v8_int8[8];
2825 };
2826 #endif
2827
2828 struct type *t;
2829
2830 t = arch_composite_type (gdbarch,
2831 "__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
2832
2833 append_composite_type_field (t, "uint64", bt->builtin_int64);
2834 append_composite_type_field (t, "v2_int32",
2835 init_vector_type (bt->builtin_int32, 2));
2836 append_composite_type_field (t, "v4_int16",
2837 init_vector_type (bt->builtin_int16, 4));
2838 append_composite_type_field (t, "v8_int8",
2839 init_vector_type (bt->builtin_int8, 8));
2840
2841 TYPE_VECTOR (t) = 1;
2842 TYPE_NAME (t) = "builtin_type_vec64i";
2843 tdep->i386_mmx_type = t;
2844 }
2845
2846 return tdep->i386_mmx_type;
2847 }
2848
2849 /* Return the GDB type object for the "standard" data type of data in
2850 register REGNUM. */
2851
2852 struct type *
2853 i386_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
2854 {
2855 if (i386_mmx_regnum_p (gdbarch, regnum))
2856 return i386_mmx_type (gdbarch);
2857 else if (i386_ymm_regnum_p (gdbarch, regnum))
2858 return i386_ymm_type (gdbarch);
2859 else
2860 {
2861 const struct builtin_type *bt = builtin_type (gdbarch);
2862 if (i386_byte_regnum_p (gdbarch, regnum))
2863 return bt->builtin_int8;
2864 else if (i386_word_regnum_p (gdbarch, regnum))
2865 return bt->builtin_int16;
2866 else if (i386_dword_regnum_p (gdbarch, regnum))
2867 return bt->builtin_int32;
2868 }
2869
2870 internal_error (__FILE__, __LINE__, _("invalid regnum"));
2871 }
2872
2873 /* Map a cooked register onto a raw register or memory. For the i386,
2874 the MMX registers need to be mapped onto floating point registers. */
2875
2876 static int
2877 i386_mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
2878 {
2879 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
2880 int mmxreg, fpreg;
2881 ULONGEST fstat;
2882 int tos;
2883
2884 mmxreg = regnum - tdep->mm0_regnum;
2885 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
2886 tos = (fstat >> 11) & 0x7;
2887 fpreg = (mmxreg + tos) % 8;
2888
2889 return (I387_ST0_REGNUM (tdep) + fpreg);
2890 }
2891
2892 /* A helper function for us by i386_pseudo_register_read_value and
2893 amd64_pseudo_register_read_value. It does all the work but reads
2894 the data into an already-allocated value. */
2895
2896 void
2897 i386_pseudo_register_read_into_value (struct gdbarch *gdbarch,
2898 struct regcache *regcache,
2899 int regnum,
2900 struct value *result_value)
2901 {
2902 gdb_byte raw_buf[MAX_REGISTER_SIZE];
2903 enum register_status status;
2904 gdb_byte *buf = value_contents_raw (result_value);
2905
2906 if (i386_mmx_regnum_p (gdbarch, regnum))
2907 {
2908 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
2909
2910 /* Extract (always little endian). */
2911 status = regcache_raw_read (regcache, fpnum, raw_buf);
2912 if (status != REG_VALID)
2913 mark_value_bytes_unavailable (result_value, 0,
2914 TYPE_LENGTH (value_type (result_value)));
2915 else
2916 memcpy (buf, raw_buf, register_size (gdbarch, regnum));
2917 }
2918 else
2919 {
2920 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2921
2922 if (i386_ymm_regnum_p (gdbarch, regnum))
2923 {
2924 regnum -= tdep->ymm0_regnum;
2925
2926 /* Extract (always little endian). Read lower 128bits. */
2927 status = regcache_raw_read (regcache,
2928 I387_XMM0_REGNUM (tdep) + regnum,
2929 raw_buf);
2930 if (status != REG_VALID)
2931 mark_value_bytes_unavailable (result_value, 0, 16);
2932 else
2933 memcpy (buf, raw_buf, 16);
2934 /* Read upper 128bits. */
2935 status = regcache_raw_read (regcache,
2936 tdep->ymm0h_regnum + regnum,
2937 raw_buf);
2938 if (status != REG_VALID)
2939 mark_value_bytes_unavailable (result_value, 16, 32);
2940 else
2941 memcpy (buf + 16, raw_buf, 16);
2942 }
2943 else if (i386_word_regnum_p (gdbarch, regnum))
2944 {
2945 int gpnum = regnum - tdep->ax_regnum;
2946
2947 /* Extract (always little endian). */
2948 status = regcache_raw_read (regcache, gpnum, raw_buf);
2949 if (status != REG_VALID)
2950 mark_value_bytes_unavailable (result_value, 0,
2951 TYPE_LENGTH (value_type (result_value)));
2952 else
2953 memcpy (buf, raw_buf, 2);
2954 }
2955 else if (i386_byte_regnum_p (gdbarch, regnum))
2956 {
2957 /* Check byte pseudo registers last since this function will
2958 be called from amd64_pseudo_register_read, which handles
2959 byte pseudo registers differently. */
2960 int gpnum = regnum - tdep->al_regnum;
2961
2962 /* Extract (always little endian). We read both lower and
2963 upper registers. */
2964 status = regcache_raw_read (regcache, gpnum % 4, raw_buf);
2965 if (status != REG_VALID)
2966 mark_value_bytes_unavailable (result_value, 0,
2967 TYPE_LENGTH (value_type (result_value)));
2968 else if (gpnum >= 4)
2969 memcpy (buf, raw_buf + 1, 1);
2970 else
2971 memcpy (buf, raw_buf, 1);
2972 }
2973 else
2974 internal_error (__FILE__, __LINE__, _("invalid regnum"));
2975 }
2976 }
2977
2978 static struct value *
2979 i386_pseudo_register_read_value (struct gdbarch *gdbarch,
2980 struct regcache *regcache,
2981 int regnum)
2982 {
2983 struct value *result;
2984
2985 result = allocate_value (register_type (gdbarch, regnum));
2986 VALUE_LVAL (result) = lval_register;
2987 VALUE_REGNUM (result) = regnum;
2988
2989 i386_pseudo_register_read_into_value (gdbarch, regcache, regnum, result);
2990
2991 return result;
2992 }
2993
2994 void
2995 i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2996 int regnum, const gdb_byte *buf)
2997 {
2998 gdb_byte raw_buf[MAX_REGISTER_SIZE];
2999
3000 if (i386_mmx_regnum_p (gdbarch, regnum))
3001 {
3002 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3003
3004 /* Read ... */
3005 regcache_raw_read (regcache, fpnum, raw_buf);
3006 /* ... Modify ... (always little endian). */
3007 memcpy (raw_buf, buf, register_size (gdbarch, regnum));
3008 /* ... Write. */
3009 regcache_raw_write (regcache, fpnum, raw_buf);
3010 }
3011 else
3012 {
3013 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3014
3015 if (i386_ymm_regnum_p (gdbarch, regnum))
3016 {
3017 regnum -= tdep->ymm0_regnum;
3018
3019 /* ... Write lower 128bits. */
3020 regcache_raw_write (regcache,
3021 I387_XMM0_REGNUM (tdep) + regnum,
3022 buf);
3023 /* ... Write upper 128bits. */
3024 regcache_raw_write (regcache,
3025 tdep->ymm0h_regnum + regnum,
3026 buf + 16);
3027 }
3028 else if (i386_word_regnum_p (gdbarch, regnum))
3029 {
3030 int gpnum = regnum - tdep->ax_regnum;
3031
3032 /* Read ... */
3033 regcache_raw_read (regcache, gpnum, raw_buf);
3034 /* ... Modify ... (always little endian). */
3035 memcpy (raw_buf, buf, 2);
3036 /* ... Write. */
3037 regcache_raw_write (regcache, gpnum, raw_buf);
3038 }
3039 else if (i386_byte_regnum_p (gdbarch, regnum))
3040 {
3041 /* Check byte pseudo registers last since this function will
3042 be called from amd64_pseudo_register_read, which handles
3043 byte pseudo registers differently. */
3044 int gpnum = regnum - tdep->al_regnum;
3045
3046 /* Read ... We read both lower and upper registers. */
3047 regcache_raw_read (regcache, gpnum % 4, raw_buf);
3048 /* ... Modify ... (always little endian). */
3049 if (gpnum >= 4)
3050 memcpy (raw_buf + 1, buf, 1);
3051 else
3052 memcpy (raw_buf, buf, 1);
3053 /* ... Write. */
3054 regcache_raw_write (regcache, gpnum % 4, raw_buf);
3055 }
3056 else
3057 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3058 }
3059 }
3060 \f
3061
3062 /* Return the register number of the register allocated by GCC after
3063 REGNUM, or -1 if there is no such register. */
3064
3065 static int
3066 i386_next_regnum (int regnum)
3067 {
3068 /* GCC allocates the registers in the order:
3069
3070 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
3071
3072 Since storing a variable in %esp doesn't make any sense we return
3073 -1 for %ebp and for %esp itself. */
3074 static int next_regnum[] =
3075 {
3076 I386_EDX_REGNUM, /* Slot for %eax. */
3077 I386_EBX_REGNUM, /* Slot for %ecx. */
3078 I386_ECX_REGNUM, /* Slot for %edx. */
3079 I386_ESI_REGNUM, /* Slot for %ebx. */
3080 -1, -1, /* Slots for %esp and %ebp. */
3081 I386_EDI_REGNUM, /* Slot for %esi. */
3082 I386_EBP_REGNUM /* Slot for %edi. */
3083 };
3084
3085 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
3086 return next_regnum[regnum];
3087
3088 return -1;
3089 }
3090
3091 /* Return nonzero if a value of type TYPE stored in register REGNUM
3092 needs any special handling. */
3093
3094 static int
3095 i386_convert_register_p (struct gdbarch *gdbarch,
3096 int regnum, struct type *type)
3097 {
3098 int len = TYPE_LENGTH (type);
3099
3100 /* Values may be spread across multiple registers. Most debugging
3101 formats aren't expressive enough to specify the locations, so
3102 some heuristics is involved. Right now we only handle types that
3103 have a length that is a multiple of the word size, since GCC
3104 doesn't seem to put any other types into registers. */
3105 if (len > 4 && len % 4 == 0)
3106 {
3107 int last_regnum = regnum;
3108
3109 while (len > 4)
3110 {
3111 last_regnum = i386_next_regnum (last_regnum);
3112 len -= 4;
3113 }
3114
3115 if (last_regnum != -1)
3116 return 1;
3117 }
3118
3119 return i387_convert_register_p (gdbarch, regnum, type);
3120 }
3121
3122 /* Read a value of type TYPE from register REGNUM in frame FRAME, and
3123 return its contents in TO. */
3124
3125 static int
3126 i386_register_to_value (struct frame_info *frame, int regnum,
3127 struct type *type, gdb_byte *to,
3128 int *optimizedp, int *unavailablep)
3129 {
3130 struct gdbarch *gdbarch = get_frame_arch (frame);
3131 int len = TYPE_LENGTH (type);
3132
3133 if (i386_fp_regnum_p (gdbarch, regnum))
3134 return i387_register_to_value (frame, regnum, type, to,
3135 optimizedp, unavailablep);
3136
3137 /* Read a value spread across multiple registers. */
3138
3139 gdb_assert (len > 4 && len % 4 == 0);
3140
3141 while (len > 0)
3142 {
3143 gdb_assert (regnum != -1);
3144 gdb_assert (register_size (gdbarch, regnum) == 4);
3145
3146 if (!get_frame_register_bytes (frame, regnum, 0,
3147 register_size (gdbarch, regnum),
3148 to, optimizedp, unavailablep))
3149 return 0;
3150
3151 regnum = i386_next_regnum (regnum);
3152 len -= 4;
3153 to += 4;
3154 }
3155
3156 *optimizedp = *unavailablep = 0;
3157 return 1;
3158 }
3159
3160 /* Write the contents FROM of a value of type TYPE into register
3161 REGNUM in frame FRAME. */
3162
3163 static void
3164 i386_value_to_register (struct frame_info *frame, int regnum,
3165 struct type *type, const gdb_byte *from)
3166 {
3167 int len = TYPE_LENGTH (type);
3168
3169 if (i386_fp_regnum_p (get_frame_arch (frame), regnum))
3170 {
3171 i387_value_to_register (frame, regnum, type, from);
3172 return;
3173 }
3174
3175 /* Write a value spread across multiple registers. */
3176
3177 gdb_assert (len > 4 && len % 4 == 0);
3178
3179 while (len > 0)
3180 {
3181 gdb_assert (regnum != -1);
3182 gdb_assert (register_size (get_frame_arch (frame), regnum) == 4);
3183
3184 put_frame_register (frame, regnum, from);
3185 regnum = i386_next_regnum (regnum);
3186 len -= 4;
3187 from += 4;
3188 }
3189 }
3190 \f
3191 /* Supply register REGNUM from the buffer specified by GREGS and LEN
3192 in the general-purpose register set REGSET to register cache
3193 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3194
3195 void
3196 i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
3197 int regnum, const void *gregs, size_t len)
3198 {
3199 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
3200 const gdb_byte *regs = gregs;
3201 int i;
3202
3203 gdb_assert (len == tdep->sizeof_gregset);
3204
3205 for (i = 0; i < tdep->gregset_num_regs; i++)
3206 {
3207 if ((regnum == i || regnum == -1)
3208 && tdep->gregset_reg_offset[i] != -1)
3209 regcache_raw_supply (regcache, i, regs + tdep->gregset_reg_offset[i]);
3210 }
3211 }
3212
3213 /* Collect register REGNUM from the register cache REGCACHE and store
3214 it in the buffer specified by GREGS and LEN as described by the
3215 general-purpose register set REGSET. If REGNUM is -1, do this for
3216 all registers in REGSET. */
3217
3218 void
3219 i386_collect_gregset (const struct regset *regset,
3220 const struct regcache *regcache,
3221 int regnum, void *gregs, size_t len)
3222 {
3223 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
3224 gdb_byte *regs = gregs;
3225 int i;
3226
3227 gdb_assert (len == tdep->sizeof_gregset);
3228
3229 for (i = 0; i < tdep->gregset_num_regs; i++)
3230 {
3231 if ((regnum == i || regnum == -1)
3232 && tdep->gregset_reg_offset[i] != -1)
3233 regcache_raw_collect (regcache, i, regs + tdep->gregset_reg_offset[i]);
3234 }
3235 }
3236
3237 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
3238 in the floating-point register set REGSET to register cache
3239 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3240
3241 static void
3242 i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
3243 int regnum, const void *fpregs, size_t len)
3244 {
3245 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
3246
3247 if (len == I387_SIZEOF_FXSAVE)
3248 {
3249 i387_supply_fxsave (regcache, regnum, fpregs);
3250 return;
3251 }
3252
3253 gdb_assert (len == tdep->sizeof_fpregset);
3254 i387_supply_fsave (regcache, regnum, fpregs);
3255 }
3256
3257 /* Collect register REGNUM from the register cache REGCACHE and store
3258 it in the buffer specified by FPREGS and LEN as described by the
3259 floating-point register set REGSET. If REGNUM is -1, do this for
3260 all registers in REGSET. */
3261
3262 static void
3263 i386_collect_fpregset (const struct regset *regset,
3264 const struct regcache *regcache,
3265 int regnum, void *fpregs, size_t len)
3266 {
3267 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
3268
3269 if (len == I387_SIZEOF_FXSAVE)
3270 {
3271 i387_collect_fxsave (regcache, regnum, fpregs);
3272 return;
3273 }
3274
3275 gdb_assert (len == tdep->sizeof_fpregset);
3276 i387_collect_fsave (regcache, regnum, fpregs);
3277 }
3278
3279 /* Similar to i386_supply_fpregset, but use XSAVE extended state. */
3280
3281 static void
3282 i386_supply_xstateregset (const struct regset *regset,
3283 struct regcache *regcache, int regnum,
3284 const void *xstateregs, size_t len)
3285 {
3286 i387_supply_xsave (regcache, regnum, xstateregs);
3287 }
3288
3289 /* Similar to i386_collect_fpregset , but use XSAVE extended state. */
3290
3291 static void
3292 i386_collect_xstateregset (const struct regset *regset,
3293 const struct regcache *regcache,
3294 int regnum, void *xstateregs, size_t len)
3295 {
3296 i387_collect_xsave (regcache, regnum, xstateregs, 1);
3297 }
3298
3299 /* Return the appropriate register set for the core section identified
3300 by SECT_NAME and SECT_SIZE. */
3301
3302 const struct regset *
3303 i386_regset_from_core_section (struct gdbarch *gdbarch,
3304 const char *sect_name, size_t sect_size)
3305 {
3306 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3307
3308 if (strcmp (sect_name, ".reg") == 0 && sect_size == tdep->sizeof_gregset)
3309 {
3310 if (tdep->gregset == NULL)
3311 tdep->gregset = regset_alloc (gdbarch, i386_supply_gregset,
3312 i386_collect_gregset);
3313 return tdep->gregset;
3314 }
3315
3316 if ((strcmp (sect_name, ".reg2") == 0 && sect_size == tdep->sizeof_fpregset)
3317 || (strcmp (sect_name, ".reg-xfp") == 0
3318 && sect_size == I387_SIZEOF_FXSAVE))
3319 {
3320 if (tdep->fpregset == NULL)
3321 tdep->fpregset = regset_alloc (gdbarch, i386_supply_fpregset,
3322 i386_collect_fpregset);
3323 return tdep->fpregset;
3324 }
3325
3326 if (strcmp (sect_name, ".reg-xstate") == 0)
3327 {
3328 if (tdep->xstateregset == NULL)
3329 tdep->xstateregset = regset_alloc (gdbarch,
3330 i386_supply_xstateregset,
3331 i386_collect_xstateregset);
3332
3333 return tdep->xstateregset;
3334 }
3335
3336 return NULL;
3337 }
3338 \f
3339
3340 /* Stuff for WIN32 PE style DLL's but is pretty generic really. */
3341
3342 CORE_ADDR
3343 i386_pe_skip_trampoline_code (struct frame_info *frame,
3344 CORE_ADDR pc, char *name)
3345 {
3346 struct gdbarch *gdbarch = get_frame_arch (frame);
3347 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3348
3349 /* jmp *(dest) */
3350 if (pc && read_memory_unsigned_integer (pc, 2, byte_order) == 0x25ff)
3351 {
3352 unsigned long indirect =
3353 read_memory_unsigned_integer (pc + 2, 4, byte_order);
3354 struct minimal_symbol *indsym =
3355 indirect ? lookup_minimal_symbol_by_pc (indirect) : 0;
3356 const char *symname = indsym ? SYMBOL_LINKAGE_NAME (indsym) : 0;
3357
3358 if (symname)
3359 {
3360 if (strncmp (symname, "__imp_", 6) == 0
3361 || strncmp (symname, "_imp_", 5) == 0)
3362 return name ? 1 :
3363 read_memory_unsigned_integer (indirect, 4, byte_order);
3364 }
3365 }
3366 return 0; /* Not a trampoline. */
3367 }
3368 \f
3369
3370 /* Return whether the THIS_FRAME corresponds to a sigtramp
3371 routine. */
3372
3373 int
3374 i386_sigtramp_p (struct frame_info *this_frame)
3375 {
3376 CORE_ADDR pc = get_frame_pc (this_frame);
3377 const char *name;
3378
3379 find_pc_partial_function (pc, &name, NULL, NULL);
3380 return (name && strcmp ("_sigtramp", name) == 0);
3381 }
3382 \f
3383
3384 /* We have two flavours of disassembly. The machinery on this page
3385 deals with switching between those. */
3386
3387 static int
3388 i386_print_insn (bfd_vma pc, struct disassemble_info *info)
3389 {
3390 gdb_assert (disassembly_flavor == att_flavor
3391 || disassembly_flavor == intel_flavor);
3392
3393 /* FIXME: kettenis/20020915: Until disassembler_options is properly
3394 constified, cast to prevent a compiler warning. */
3395 info->disassembler_options = (char *) disassembly_flavor;
3396
3397 return print_insn_i386 (pc, info);
3398 }
3399 \f
3400
3401 /* There are a few i386 architecture variants that differ only
3402 slightly from the generic i386 target. For now, we don't give them
3403 their own source file, but include them here. As a consequence,
3404 they'll always be included. */
3405
3406 /* System V Release 4 (SVR4). */
3407
3408 /* Return whether THIS_FRAME corresponds to a SVR4 sigtramp
3409 routine. */
3410
3411 static int
3412 i386_svr4_sigtramp_p (struct frame_info *this_frame)
3413 {
3414 CORE_ADDR pc = get_frame_pc (this_frame);
3415 const char *name;
3416
3417 /* The origin of these symbols is currently unknown. */
3418 find_pc_partial_function (pc, &name, NULL, NULL);
3419 return (name && (strcmp ("_sigreturn", name) == 0
3420 || strcmp ("sigvechandler", name) == 0));
3421 }
3422
3423 /* Assuming THIS_FRAME is for a SVR4 sigtramp routine, return the
3424 address of the associated sigcontext (ucontext) structure. */
3425
3426 static CORE_ADDR
3427 i386_svr4_sigcontext_addr (struct frame_info *this_frame)
3428 {
3429 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3430 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3431 gdb_byte buf[4];
3432 CORE_ADDR sp;
3433
3434 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
3435 sp = extract_unsigned_integer (buf, 4, byte_order);
3436
3437 return read_memory_unsigned_integer (sp + 8, 4, byte_order);
3438 }
3439
3440 \f
3441
3442 /* Implementation of `gdbarch_stap_is_single_operand', as defined in
3443 gdbarch.h. */
3444
3445 int
3446 i386_stap_is_single_operand (struct gdbarch *gdbarch, const char *s)
3447 {
3448 return (*s == '$' /* Literal number. */
3449 || (isdigit (*s) && s[1] == '(' && s[2] == '%') /* Displacement. */
3450 || (*s == '(' && s[1] == '%') /* Register indirection. */
3451 || (*s == '%' && isalpha (s[1]))); /* Register access. */
3452 }
3453
3454 /* Implementation of `gdbarch_stap_parse_special_token', as defined in
3455 gdbarch.h. */
3456
3457 int
3458 i386_stap_parse_special_token (struct gdbarch *gdbarch,
3459 struct stap_parse_info *p)
3460 {
3461 /* In order to parse special tokens, we use a state-machine that go
3462 through every known token and try to get a match. */
3463 enum
3464 {
3465 TRIPLET,
3466 THREE_ARG_DISPLACEMENT,
3467 DONE
3468 } current_state;
3469
3470 current_state = TRIPLET;
3471
3472 /* The special tokens to be parsed here are:
3473
3474 - `register base + (register index * size) + offset', as represented
3475 in `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
3476
3477 - Operands of the form `-8+3+1(%rbp)', which must be interpreted as
3478 `*(-8 + 3 - 1 + (void *) $eax)'. */
3479
3480 while (current_state != DONE)
3481 {
3482 const char *s = p->arg;
3483
3484 switch (current_state)
3485 {
3486 case TRIPLET:
3487 {
3488 if (isdigit (*s) || *s == '-' || *s == '+')
3489 {
3490 int got_minus[3];
3491 int i;
3492 long displacements[3];
3493 const char *start;
3494 char *regname;
3495 int len;
3496 struct stoken str;
3497
3498 got_minus[0] = 0;
3499 if (*s == '+')
3500 ++s;
3501 else if (*s == '-')
3502 {
3503 ++s;
3504 got_minus[0] = 1;
3505 }
3506
3507 displacements[0] = strtol (s, (char **) &s, 10);
3508
3509 if (*s != '+' && *s != '-')
3510 {
3511 /* We are not dealing with a triplet. */
3512 break;
3513 }
3514
3515 got_minus[1] = 0;
3516 if (*s == '+')
3517 ++s;
3518 else
3519 {
3520 ++s;
3521 got_minus[1] = 1;
3522 }
3523
3524 displacements[1] = strtol (s, (char **) &s, 10);
3525
3526 if (*s != '+' && *s != '-')
3527 {
3528 /* We are not dealing with a triplet. */
3529 break;
3530 }
3531
3532 got_minus[2] = 0;
3533 if (*s == '+')
3534 ++s;
3535 else
3536 {
3537 ++s;
3538 got_minus[2] = 1;
3539 }
3540
3541 displacements[2] = strtol (s, (char **) &s, 10);
3542
3543 if (*s != '(' || s[1] != '%')
3544 break;
3545
3546 s += 2;
3547 start = s;
3548
3549 while (isalnum (*s))
3550 ++s;
3551
3552 if (*s++ != ')')
3553 break;
3554
3555 len = s - start;
3556 regname = alloca (len + 1);
3557
3558 strncpy (regname, start, len);
3559 regname[len] = '\0';
3560
3561 if (user_reg_map_name_to_regnum (gdbarch,
3562 regname, len) == -1)
3563 error (_("Invalid register name `%s' "
3564 "on expression `%s'."),
3565 regname, p->saved_arg);
3566
3567 for (i = 0; i < 3; i++)
3568 {
3569 write_exp_elt_opcode (OP_LONG);
3570 write_exp_elt_type
3571 (builtin_type (gdbarch)->builtin_long);
3572 write_exp_elt_longcst (displacements[i]);
3573 write_exp_elt_opcode (OP_LONG);
3574 if (got_minus[i])
3575 write_exp_elt_opcode (UNOP_NEG);
3576 }
3577
3578 write_exp_elt_opcode (OP_REGISTER);
3579 str.ptr = regname;
3580 str.length = len;
3581 write_exp_string (str);
3582 write_exp_elt_opcode (OP_REGISTER);
3583
3584 write_exp_elt_opcode (UNOP_CAST);
3585 write_exp_elt_type (builtin_type (gdbarch)->builtin_data_ptr);
3586 write_exp_elt_opcode (UNOP_CAST);
3587
3588 write_exp_elt_opcode (BINOP_ADD);
3589 write_exp_elt_opcode (BINOP_ADD);
3590 write_exp_elt_opcode (BINOP_ADD);
3591
3592 write_exp_elt_opcode (UNOP_CAST);
3593 write_exp_elt_type (lookup_pointer_type (p->arg_type));
3594 write_exp_elt_opcode (UNOP_CAST);
3595
3596 write_exp_elt_opcode (UNOP_IND);
3597
3598 p->arg = s;
3599
3600 return 1;
3601 }
3602 break;
3603 }
3604 case THREE_ARG_DISPLACEMENT:
3605 {
3606 if (isdigit (*s) || *s == '(' || *s == '-' || *s == '+')
3607 {
3608 int offset_minus = 0;
3609 long offset = 0;
3610 int size_minus = 0;
3611 long size = 0;
3612 const char *start;
3613 char *base;
3614 int len_base;
3615 char *index;
3616 int len_index;
3617 struct stoken base_token, index_token;
3618
3619 if (*s == '+')
3620 ++s;
3621 else if (*s == '-')
3622 {
3623 ++s;
3624 offset_minus = 1;
3625 }
3626
3627 if (offset_minus && !isdigit (*s))
3628 break;
3629
3630 if (isdigit (*s))
3631 offset = strtol (s, (char **) &s, 10);
3632
3633 if (*s != '(' || s[1] != '%')
3634 break;
3635
3636 s += 2;
3637 start = s;
3638
3639 while (isalnum (*s))
3640 ++s;
3641
3642 if (*s != ',' || s[1] != '%')
3643 break;
3644
3645 len_base = s - start;
3646 base = alloca (len_base + 1);
3647 strncpy (base, start, len_base);
3648 base[len_base] = '\0';
3649
3650 if (user_reg_map_name_to_regnum (gdbarch,
3651 base, len_base) == -1)
3652 error (_("Invalid register name `%s' "
3653 "on expression `%s'."),
3654 base, p->saved_arg);
3655
3656 s += 2;
3657 start = s;
3658
3659 while (isalnum (*s))
3660 ++s;
3661
3662 len_index = s - start;
3663 index = alloca (len_index + 1);
3664 strncpy (index, start, len_index);
3665 index[len_index] = '\0';
3666
3667 if (user_reg_map_name_to_regnum (gdbarch,
3668 index, len_index) == -1)
3669 error (_("Invalid register name `%s' "
3670 "on expression `%s'."),
3671 index, p->saved_arg);
3672
3673 if (*s != ',' && *s != ')')
3674 break;
3675
3676 if (*s == ',')
3677 {
3678 ++s;
3679 if (*s == '+')
3680 ++s;
3681 else if (*s == '-')
3682 {
3683 ++s;
3684 size_minus = 1;
3685 }
3686
3687 size = strtol (s, (char **) &s, 10);
3688
3689 if (*s != ')')
3690 break;
3691 }
3692
3693 ++s;
3694
3695 if (offset)
3696 {
3697 write_exp_elt_opcode (OP_LONG);
3698 write_exp_elt_type
3699 (builtin_type (gdbarch)->builtin_long);
3700 write_exp_elt_longcst (offset);
3701 write_exp_elt_opcode (OP_LONG);
3702 if (offset_minus)
3703 write_exp_elt_opcode (UNOP_NEG);
3704 }
3705
3706 write_exp_elt_opcode (OP_REGISTER);
3707 base_token.ptr = base;
3708 base_token.length = len_base;
3709 write_exp_string (base_token);
3710 write_exp_elt_opcode (OP_REGISTER);
3711
3712 if (offset)
3713 write_exp_elt_opcode (BINOP_ADD);
3714
3715 write_exp_elt_opcode (OP_REGISTER);
3716 index_token.ptr = index;
3717 index_token.length = len_index;
3718 write_exp_string (index_token);
3719 write_exp_elt_opcode (OP_REGISTER);
3720
3721 if (size)
3722 {
3723 write_exp_elt_opcode (OP_LONG);
3724 write_exp_elt_type
3725 (builtin_type (gdbarch)->builtin_long);
3726 write_exp_elt_longcst (size);
3727 write_exp_elt_opcode (OP_LONG);
3728 if (size_minus)
3729 write_exp_elt_opcode (UNOP_NEG);
3730 write_exp_elt_opcode (BINOP_MUL);
3731 }
3732
3733 write_exp_elt_opcode (BINOP_ADD);
3734
3735 write_exp_elt_opcode (UNOP_CAST);
3736 write_exp_elt_type (lookup_pointer_type (p->arg_type));
3737 write_exp_elt_opcode (UNOP_CAST);
3738
3739 write_exp_elt_opcode (UNOP_IND);
3740
3741 p->arg = s;
3742
3743 return 1;
3744 }
3745 break;
3746 }
3747 }
3748
3749 /* Advancing to the next state. */
3750 ++current_state;
3751 }
3752
3753 return 0;
3754 }
3755
3756 \f
3757
3758 /* Generic ELF. */
3759
3760 void
3761 i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3762 {
3763 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
3764 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
3765
3766 /* Registering SystemTap handlers. */
3767 set_gdbarch_stap_integer_prefix (gdbarch, "$");
3768 set_gdbarch_stap_register_prefix (gdbarch, "%");
3769 set_gdbarch_stap_register_indirection_prefix (gdbarch, "(");
3770 set_gdbarch_stap_register_indirection_suffix (gdbarch, ")");
3771 set_gdbarch_stap_is_single_operand (gdbarch,
3772 i386_stap_is_single_operand);
3773 set_gdbarch_stap_parse_special_token (gdbarch,
3774 i386_stap_parse_special_token);
3775 }
3776
3777 /* System V Release 4 (SVR4). */
3778
3779 void
3780 i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3781 {
3782 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3783
3784 /* System V Release 4 uses ELF. */
3785 i386_elf_init_abi (info, gdbarch);
3786
3787 /* System V Release 4 has shared libraries. */
3788 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
3789
3790 tdep->sigtramp_p = i386_svr4_sigtramp_p;
3791 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
3792 tdep->sc_pc_offset = 36 + 14 * 4;
3793 tdep->sc_sp_offset = 36 + 17 * 4;
3794
3795 tdep->jb_pc_offset = 20;
3796 }
3797
3798 /* DJGPP. */
3799
3800 static void
3801 i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3802 {
3803 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3804
3805 /* DJGPP doesn't have any special frames for signal handlers. */
3806 tdep->sigtramp_p = NULL;
3807
3808 tdep->jb_pc_offset = 36;
3809
3810 /* DJGPP does not support the SSE registers. */
3811 if (! tdesc_has_registers (info.target_desc))
3812 tdep->tdesc = tdesc_i386_mmx;
3813
3814 /* Native compiler is GCC, which uses the SVR4 register numbering
3815 even in COFF and STABS. See the comment in i386_gdbarch_init,
3816 before the calls to set_gdbarch_stab_reg_to_regnum and
3817 set_gdbarch_sdb_reg_to_regnum. */
3818 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
3819 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
3820
3821 set_gdbarch_has_dos_based_file_system (gdbarch, 1);
3822 }
3823 \f
3824
3825 /* i386 register groups. In addition to the normal groups, add "mmx"
3826 and "sse". */
3827
3828 static struct reggroup *i386_sse_reggroup;
3829 static struct reggroup *i386_mmx_reggroup;
3830
3831 static void
3832 i386_init_reggroups (void)
3833 {
3834 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
3835 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
3836 }
3837
3838 static void
3839 i386_add_reggroups (struct gdbarch *gdbarch)
3840 {
3841 reggroup_add (gdbarch, i386_sse_reggroup);
3842 reggroup_add (gdbarch, i386_mmx_reggroup);
3843 reggroup_add (gdbarch, general_reggroup);
3844 reggroup_add (gdbarch, float_reggroup);
3845 reggroup_add (gdbarch, all_reggroup);
3846 reggroup_add (gdbarch, save_reggroup);
3847 reggroup_add (gdbarch, restore_reggroup);
3848 reggroup_add (gdbarch, vector_reggroup);
3849 reggroup_add (gdbarch, system_reggroup);
3850 }
3851
3852 int
3853 i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
3854 struct reggroup *group)
3855 {
3856 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3857 int fp_regnum_p, mmx_regnum_p, xmm_regnum_p, mxcsr_regnum_p,
3858 ymm_regnum_p, ymmh_regnum_p;
3859
3860 /* Don't include pseudo registers, except for MMX, in any register
3861 groups. */
3862 if (i386_byte_regnum_p (gdbarch, regnum))
3863 return 0;
3864
3865 if (i386_word_regnum_p (gdbarch, regnum))
3866 return 0;
3867
3868 if (i386_dword_regnum_p (gdbarch, regnum))
3869 return 0;
3870
3871 mmx_regnum_p = i386_mmx_regnum_p (gdbarch, regnum);
3872 if (group == i386_mmx_reggroup)
3873 return mmx_regnum_p;
3874
3875 xmm_regnum_p = i386_xmm_regnum_p (gdbarch, regnum);
3876 mxcsr_regnum_p = i386_mxcsr_regnum_p (gdbarch, regnum);
3877 if (group == i386_sse_reggroup)
3878 return xmm_regnum_p || mxcsr_regnum_p;
3879
3880 ymm_regnum_p = i386_ymm_regnum_p (gdbarch, regnum);
3881 if (group == vector_reggroup)
3882 return (mmx_regnum_p
3883 || ymm_regnum_p
3884 || mxcsr_regnum_p
3885 || (xmm_regnum_p
3886 && ((tdep->xcr0 & I386_XSTATE_AVX_MASK)
3887 == I386_XSTATE_SSE_MASK)));
3888
3889 fp_regnum_p = (i386_fp_regnum_p (gdbarch, regnum)
3890 || i386_fpc_regnum_p (gdbarch, regnum));
3891 if (group == float_reggroup)
3892 return fp_regnum_p;
3893
3894 /* For "info reg all", don't include upper YMM registers nor XMM
3895 registers when AVX is supported. */
3896 ymmh_regnum_p = i386_ymmh_regnum_p (gdbarch, regnum);
3897 if (group == all_reggroup
3898 && ((xmm_regnum_p
3899 && (tdep->xcr0 & I386_XSTATE_AVX))
3900 || ymmh_regnum_p))
3901 return 0;
3902
3903 if (group == general_reggroup)
3904 return (!fp_regnum_p
3905 && !mmx_regnum_p
3906 && !mxcsr_regnum_p
3907 && !xmm_regnum_p
3908 && !ymm_regnum_p
3909 && !ymmh_regnum_p);
3910
3911 return default_register_reggroup_p (gdbarch, regnum, group);
3912 }
3913 \f
3914
3915 /* Get the ARGIth function argument for the current function. */
3916
3917 static CORE_ADDR
3918 i386_fetch_pointer_argument (struct frame_info *frame, int argi,
3919 struct type *type)
3920 {
3921 struct gdbarch *gdbarch = get_frame_arch (frame);
3922 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3923 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
3924 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4, byte_order);
3925 }
3926
3927 static void
3928 i386_skip_permanent_breakpoint (struct regcache *regcache)
3929 {
3930 CORE_ADDR current_pc = regcache_read_pc (regcache);
3931
3932 /* On i386, breakpoint is exactly 1 byte long, so we just
3933 adjust the PC in the regcache. */
3934 current_pc += 1;
3935 regcache_write_pc (regcache, current_pc);
3936 }
3937
3938
3939 #define PREFIX_REPZ 0x01
3940 #define PREFIX_REPNZ 0x02
3941 #define PREFIX_LOCK 0x04
3942 #define PREFIX_DATA 0x08
3943 #define PREFIX_ADDR 0x10
3944
3945 /* operand size */
3946 enum
3947 {
3948 OT_BYTE = 0,
3949 OT_WORD,
3950 OT_LONG,
3951 OT_QUAD,
3952 OT_DQUAD,
3953 };
3954
3955 /* i386 arith/logic operations */
3956 enum
3957 {
3958 OP_ADDL,
3959 OP_ORL,
3960 OP_ADCL,
3961 OP_SBBL,
3962 OP_ANDL,
3963 OP_SUBL,
3964 OP_XORL,
3965 OP_CMPL,
3966 };
3967
3968 struct i386_record_s
3969 {
3970 struct gdbarch *gdbarch;
3971 struct regcache *regcache;
3972 CORE_ADDR orig_addr;
3973 CORE_ADDR addr;
3974 int aflag;
3975 int dflag;
3976 int override;
3977 uint8_t modrm;
3978 uint8_t mod, reg, rm;
3979 int ot;
3980 uint8_t rex_x;
3981 uint8_t rex_b;
3982 int rip_offset;
3983 int popl_esp_hack;
3984 const int *regmap;
3985 };
3986
3987 /* Parse the "modrm" part of the memory address irp->addr points at.
3988 Returns -1 if something goes wrong, 0 otherwise. */
3989
3990 static int
3991 i386_record_modrm (struct i386_record_s *irp)
3992 {
3993 struct gdbarch *gdbarch = irp->gdbarch;
3994
3995 if (record_read_memory (gdbarch, irp->addr, &irp->modrm, 1))
3996 return -1;
3997
3998 irp->addr++;
3999 irp->mod = (irp->modrm >> 6) & 3;
4000 irp->reg = (irp->modrm >> 3) & 7;
4001 irp->rm = irp->modrm & 7;
4002
4003 return 0;
4004 }
4005
4006 /* Extract the memory address that the current instruction writes to,
4007 and return it in *ADDR. Return -1 if something goes wrong. */
4008
4009 static int
4010 i386_record_lea_modrm_addr (struct i386_record_s *irp, uint64_t *addr)
4011 {
4012 struct gdbarch *gdbarch = irp->gdbarch;
4013 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4014 gdb_byte buf[4];
4015 ULONGEST offset64;
4016
4017 *addr = 0;
4018 if (irp->aflag)
4019 {
4020 /* 32 bits */
4021 int havesib = 0;
4022 uint8_t scale = 0;
4023 uint8_t byte;
4024 uint8_t index = 0;
4025 uint8_t base = irp->rm;
4026
4027 if (base == 4)
4028 {
4029 havesib = 1;
4030 if (record_read_memory (gdbarch, irp->addr, &byte, 1))
4031 return -1;
4032 irp->addr++;
4033 scale = (byte >> 6) & 3;
4034 index = ((byte >> 3) & 7) | irp->rex_x;
4035 base = (byte & 7);
4036 }
4037 base |= irp->rex_b;
4038
4039 switch (irp->mod)
4040 {
4041 case 0:
4042 if ((base & 7) == 5)
4043 {
4044 base = 0xff;
4045 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4046 return -1;
4047 irp->addr += 4;
4048 *addr = extract_signed_integer (buf, 4, byte_order);
4049 if (irp->regmap[X86_RECORD_R8_REGNUM] && !havesib)
4050 *addr += irp->addr + irp->rip_offset;
4051 }
4052 break;
4053 case 1:
4054 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4055 return -1;
4056 irp->addr++;
4057 *addr = (int8_t) buf[0];
4058 break;
4059 case 2:
4060 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4061 return -1;
4062 *addr = extract_signed_integer (buf, 4, byte_order);
4063 irp->addr += 4;
4064 break;
4065 }
4066
4067 offset64 = 0;
4068 if (base != 0xff)
4069 {
4070 if (base == 4 && irp->popl_esp_hack)
4071 *addr += irp->popl_esp_hack;
4072 regcache_raw_read_unsigned (irp->regcache, irp->regmap[base],
4073 &offset64);
4074 }
4075 if (irp->aflag == 2)
4076 {
4077 *addr += offset64;
4078 }
4079 else
4080 *addr = (uint32_t) (offset64 + *addr);
4081
4082 if (havesib && (index != 4 || scale != 0))
4083 {
4084 regcache_raw_read_unsigned (irp->regcache, irp->regmap[index],
4085 &offset64);
4086 if (irp->aflag == 2)
4087 *addr += offset64 << scale;
4088 else
4089 *addr = (uint32_t) (*addr + (offset64 << scale));
4090 }
4091 }
4092 else
4093 {
4094 /* 16 bits */
4095 switch (irp->mod)
4096 {
4097 case 0:
4098 if (irp->rm == 6)
4099 {
4100 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4101 return -1;
4102 irp->addr += 2;
4103 *addr = extract_signed_integer (buf, 2, byte_order);
4104 irp->rm = 0;
4105 goto no_rm;
4106 }
4107 break;
4108 case 1:
4109 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4110 return -1;
4111 irp->addr++;
4112 *addr = (int8_t) buf[0];
4113 break;
4114 case 2:
4115 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4116 return -1;
4117 irp->addr += 2;
4118 *addr = extract_signed_integer (buf, 2, byte_order);
4119 break;
4120 }
4121
4122 switch (irp->rm)
4123 {
4124 case 0:
4125 regcache_raw_read_unsigned (irp->regcache,
4126 irp->regmap[X86_RECORD_REBX_REGNUM],
4127 &offset64);
4128 *addr = (uint32_t) (*addr + offset64);
4129 regcache_raw_read_unsigned (irp->regcache,
4130 irp->regmap[X86_RECORD_RESI_REGNUM],
4131 &offset64);
4132 *addr = (uint32_t) (*addr + offset64);
4133 break;
4134 case 1:
4135 regcache_raw_read_unsigned (irp->regcache,
4136 irp->regmap[X86_RECORD_REBX_REGNUM],
4137 &offset64);
4138 *addr = (uint32_t) (*addr + offset64);
4139 regcache_raw_read_unsigned (irp->regcache,
4140 irp->regmap[X86_RECORD_REDI_REGNUM],
4141 &offset64);
4142 *addr = (uint32_t) (*addr + offset64);
4143 break;
4144 case 2:
4145 regcache_raw_read_unsigned (irp->regcache,
4146 irp->regmap[X86_RECORD_REBP_REGNUM],
4147 &offset64);
4148 *addr = (uint32_t) (*addr + offset64);
4149 regcache_raw_read_unsigned (irp->regcache,
4150 irp->regmap[X86_RECORD_RESI_REGNUM],
4151 &offset64);
4152 *addr = (uint32_t) (*addr + offset64);
4153 break;
4154 case 3:
4155 regcache_raw_read_unsigned (irp->regcache,
4156 irp->regmap[X86_RECORD_REBP_REGNUM],
4157 &offset64);
4158 *addr = (uint32_t) (*addr + offset64);
4159 regcache_raw_read_unsigned (irp->regcache,
4160 irp->regmap[X86_RECORD_REDI_REGNUM],
4161 &offset64);
4162 *addr = (uint32_t) (*addr + offset64);
4163 break;
4164 case 4:
4165 regcache_raw_read_unsigned (irp->regcache,
4166 irp->regmap[X86_RECORD_RESI_REGNUM],
4167 &offset64);
4168 *addr = (uint32_t) (*addr + offset64);
4169 break;
4170 case 5:
4171 regcache_raw_read_unsigned (irp->regcache,
4172 irp->regmap[X86_RECORD_REDI_REGNUM],
4173 &offset64);
4174 *addr = (uint32_t) (*addr + offset64);
4175 break;
4176 case 6:
4177 regcache_raw_read_unsigned (irp->regcache,
4178 irp->regmap[X86_RECORD_REBP_REGNUM],
4179 &offset64);
4180 *addr = (uint32_t) (*addr + offset64);
4181 break;
4182 case 7:
4183 regcache_raw_read_unsigned (irp->regcache,
4184 irp->regmap[X86_RECORD_REBX_REGNUM],
4185 &offset64);
4186 *addr = (uint32_t) (*addr + offset64);
4187 break;
4188 }
4189 *addr &= 0xffff;
4190 }
4191
4192 no_rm:
4193 return 0;
4194 }
4195
4196 /* Record the address and contents of the memory that will be changed
4197 by the current instruction. Return -1 if something goes wrong, 0
4198 otherwise. */
4199
4200 static int
4201 i386_record_lea_modrm (struct i386_record_s *irp)
4202 {
4203 struct gdbarch *gdbarch = irp->gdbarch;
4204 uint64_t addr;
4205
4206 if (irp->override >= 0)
4207 {
4208 if (record_full_memory_query)
4209 {
4210 int q;
4211
4212 target_terminal_ours ();
4213 q = yquery (_("\
4214 Process record ignores the memory change of instruction at address %s\n\
4215 because it can't get the value of the segment register.\n\
4216 Do you want to stop the program?"),
4217 paddress (gdbarch, irp->orig_addr));
4218 target_terminal_inferior ();
4219 if (q)
4220 return -1;
4221 }
4222
4223 return 0;
4224 }
4225
4226 if (i386_record_lea_modrm_addr (irp, &addr))
4227 return -1;
4228
4229 if (record_full_arch_list_add_mem (addr, 1 << irp->ot))
4230 return -1;
4231
4232 return 0;
4233 }
4234
4235 /* Record the effects of a push operation. Return -1 if something
4236 goes wrong, 0 otherwise. */
4237
4238 static int
4239 i386_record_push (struct i386_record_s *irp, int size)
4240 {
4241 ULONGEST addr;
4242
4243 if (record_full_arch_list_add_reg (irp->regcache,
4244 irp->regmap[X86_RECORD_RESP_REGNUM]))
4245 return -1;
4246 regcache_raw_read_unsigned (irp->regcache,
4247 irp->regmap[X86_RECORD_RESP_REGNUM],
4248 &addr);
4249 if (record_full_arch_list_add_mem ((CORE_ADDR) addr - size, size))
4250 return -1;
4251
4252 return 0;
4253 }
4254
4255
4256 /* Defines contents to record. */
4257 #define I386_SAVE_FPU_REGS 0xfffd
4258 #define I386_SAVE_FPU_ENV 0xfffe
4259 #define I386_SAVE_FPU_ENV_REG_STACK 0xffff
4260
4261 /* Record the values of the floating point registers which will be
4262 changed by the current instruction. Returns -1 if something is
4263 wrong, 0 otherwise. */
4264
4265 static int i386_record_floats (struct gdbarch *gdbarch,
4266 struct i386_record_s *ir,
4267 uint32_t iregnum)
4268 {
4269 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4270 int i;
4271
4272 /* Oza: Because of floating point insn push/pop of fpu stack is going to
4273 happen. Currently we store st0-st7 registers, but we need not store all
4274 registers all the time, in future we use ftag register and record only
4275 those who are not marked as an empty. */
4276
4277 if (I386_SAVE_FPU_REGS == iregnum)
4278 {
4279 for (i = I387_ST0_REGNUM (tdep); i <= I387_ST0_REGNUM (tdep) + 7; i++)
4280 {
4281 if (record_full_arch_list_add_reg (ir->regcache, i))
4282 return -1;
4283 }
4284 }
4285 else if (I386_SAVE_FPU_ENV == iregnum)
4286 {
4287 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4288 {
4289 if (record_full_arch_list_add_reg (ir->regcache, i))
4290 return -1;
4291 }
4292 }
4293 else if (I386_SAVE_FPU_ENV_REG_STACK == iregnum)
4294 {
4295 for (i = I387_ST0_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4296 {
4297 if (record_full_arch_list_add_reg (ir->regcache, i))
4298 return -1;
4299 }
4300 }
4301 else if ((iregnum >= I387_ST0_REGNUM (tdep)) &&
4302 (iregnum <= I387_FOP_REGNUM (tdep)))
4303 {
4304 if (record_full_arch_list_add_reg (ir->regcache,iregnum))
4305 return -1;
4306 }
4307 else
4308 {
4309 /* Parameter error. */
4310 return -1;
4311 }
4312 if(I386_SAVE_FPU_ENV != iregnum)
4313 {
4314 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4315 {
4316 if (record_full_arch_list_add_reg (ir->regcache, i))
4317 return -1;
4318 }
4319 }
4320 return 0;
4321 }
4322
4323 /* Parse the current instruction, and record the values of the
4324 registers and memory that will be changed by the current
4325 instruction. Returns -1 if something goes wrong, 0 otherwise. */
4326
4327 #define I386_RECORD_FULL_ARCH_LIST_ADD_REG(regnum) \
4328 record_full_arch_list_add_reg (ir.regcache, ir.regmap[(regnum)])
4329
4330 int
4331 i386_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
4332 CORE_ADDR input_addr)
4333 {
4334 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4335 int prefixes = 0;
4336 int regnum = 0;
4337 uint32_t opcode;
4338 uint8_t opcode8;
4339 ULONGEST addr;
4340 gdb_byte buf[MAX_REGISTER_SIZE];
4341 struct i386_record_s ir;
4342 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4343 uint8_t rex_w = -1;
4344 uint8_t rex_r = 0;
4345
4346 memset (&ir, 0, sizeof (struct i386_record_s));
4347 ir.regcache = regcache;
4348 ir.addr = input_addr;
4349 ir.orig_addr = input_addr;
4350 ir.aflag = 1;
4351 ir.dflag = 1;
4352 ir.override = -1;
4353 ir.popl_esp_hack = 0;
4354 ir.regmap = tdep->record_regmap;
4355 ir.gdbarch = gdbarch;
4356
4357 if (record_debug > 1)
4358 fprintf_unfiltered (gdb_stdlog, "Process record: i386_process_record "
4359 "addr = %s\n",
4360 paddress (gdbarch, ir.addr));
4361
4362 /* prefixes */
4363 while (1)
4364 {
4365 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
4366 return -1;
4367 ir.addr++;
4368 switch (opcode8) /* Instruction prefixes */
4369 {
4370 case REPE_PREFIX_OPCODE:
4371 prefixes |= PREFIX_REPZ;
4372 break;
4373 case REPNE_PREFIX_OPCODE:
4374 prefixes |= PREFIX_REPNZ;
4375 break;
4376 case LOCK_PREFIX_OPCODE:
4377 prefixes |= PREFIX_LOCK;
4378 break;
4379 case CS_PREFIX_OPCODE:
4380 ir.override = X86_RECORD_CS_REGNUM;
4381 break;
4382 case SS_PREFIX_OPCODE:
4383 ir.override = X86_RECORD_SS_REGNUM;
4384 break;
4385 case DS_PREFIX_OPCODE:
4386 ir.override = X86_RECORD_DS_REGNUM;
4387 break;
4388 case ES_PREFIX_OPCODE:
4389 ir.override = X86_RECORD_ES_REGNUM;
4390 break;
4391 case FS_PREFIX_OPCODE:
4392 ir.override = X86_RECORD_FS_REGNUM;
4393 break;
4394 case GS_PREFIX_OPCODE:
4395 ir.override = X86_RECORD_GS_REGNUM;
4396 break;
4397 case DATA_PREFIX_OPCODE:
4398 prefixes |= PREFIX_DATA;
4399 break;
4400 case ADDR_PREFIX_OPCODE:
4401 prefixes |= PREFIX_ADDR;
4402 break;
4403 case 0x40: /* i386 inc %eax */
4404 case 0x41: /* i386 inc %ecx */
4405 case 0x42: /* i386 inc %edx */
4406 case 0x43: /* i386 inc %ebx */
4407 case 0x44: /* i386 inc %esp */
4408 case 0x45: /* i386 inc %ebp */
4409 case 0x46: /* i386 inc %esi */
4410 case 0x47: /* i386 inc %edi */
4411 case 0x48: /* i386 dec %eax */
4412 case 0x49: /* i386 dec %ecx */
4413 case 0x4a: /* i386 dec %edx */
4414 case 0x4b: /* i386 dec %ebx */
4415 case 0x4c: /* i386 dec %esp */
4416 case 0x4d: /* i386 dec %ebp */
4417 case 0x4e: /* i386 dec %esi */
4418 case 0x4f: /* i386 dec %edi */
4419 if (ir.regmap[X86_RECORD_R8_REGNUM]) /* 64 bit target */
4420 {
4421 /* REX */
4422 rex_w = (opcode8 >> 3) & 1;
4423 rex_r = (opcode8 & 0x4) << 1;
4424 ir.rex_x = (opcode8 & 0x2) << 2;
4425 ir.rex_b = (opcode8 & 0x1) << 3;
4426 }
4427 else /* 32 bit target */
4428 goto out_prefixes;
4429 break;
4430 default:
4431 goto out_prefixes;
4432 break;
4433 }
4434 }
4435 out_prefixes:
4436 if (ir.regmap[X86_RECORD_R8_REGNUM] && rex_w == 1)
4437 {
4438 ir.dflag = 2;
4439 }
4440 else
4441 {
4442 if (prefixes & PREFIX_DATA)
4443 ir.dflag ^= 1;
4444 }
4445 if (prefixes & PREFIX_ADDR)
4446 ir.aflag ^= 1;
4447 else if (ir.regmap[X86_RECORD_R8_REGNUM])
4448 ir.aflag = 2;
4449
4450 /* Now check op code. */
4451 opcode = (uint32_t) opcode8;
4452 reswitch:
4453 switch (opcode)
4454 {
4455 case 0x0f:
4456 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
4457 return -1;
4458 ir.addr++;
4459 opcode = (uint32_t) opcode8 | 0x0f00;
4460 goto reswitch;
4461 break;
4462
4463 case 0x00: /* arith & logic */
4464 case 0x01:
4465 case 0x02:
4466 case 0x03:
4467 case 0x04:
4468 case 0x05:
4469 case 0x08:
4470 case 0x09:
4471 case 0x0a:
4472 case 0x0b:
4473 case 0x0c:
4474 case 0x0d:
4475 case 0x10:
4476 case 0x11:
4477 case 0x12:
4478 case 0x13:
4479 case 0x14:
4480 case 0x15:
4481 case 0x18:
4482 case 0x19:
4483 case 0x1a:
4484 case 0x1b:
4485 case 0x1c:
4486 case 0x1d:
4487 case 0x20:
4488 case 0x21:
4489 case 0x22:
4490 case 0x23:
4491 case 0x24:
4492 case 0x25:
4493 case 0x28:
4494 case 0x29:
4495 case 0x2a:
4496 case 0x2b:
4497 case 0x2c:
4498 case 0x2d:
4499 case 0x30:
4500 case 0x31:
4501 case 0x32:
4502 case 0x33:
4503 case 0x34:
4504 case 0x35:
4505 case 0x38:
4506 case 0x39:
4507 case 0x3a:
4508 case 0x3b:
4509 case 0x3c:
4510 case 0x3d:
4511 if (((opcode >> 3) & 7) != OP_CMPL)
4512 {
4513 if ((opcode & 1) == 0)
4514 ir.ot = OT_BYTE;
4515 else
4516 ir.ot = ir.dflag + OT_WORD;
4517
4518 switch ((opcode >> 1) & 3)
4519 {
4520 case 0: /* OP Ev, Gv */
4521 if (i386_record_modrm (&ir))
4522 return -1;
4523 if (ir.mod != 3)
4524 {
4525 if (i386_record_lea_modrm (&ir))
4526 return -1;
4527 }
4528 else
4529 {
4530 ir.rm |= ir.rex_b;
4531 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4532 ir.rm &= 0x3;
4533 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
4534 }
4535 break;
4536 case 1: /* OP Gv, Ev */
4537 if (i386_record_modrm (&ir))
4538 return -1;
4539 ir.reg |= rex_r;
4540 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4541 ir.reg &= 0x3;
4542 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
4543 break;
4544 case 2: /* OP A, Iv */
4545 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4546 break;
4547 }
4548 }
4549 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4550 break;
4551
4552 case 0x80: /* GRP1 */
4553 case 0x81:
4554 case 0x82:
4555 case 0x83:
4556 if (i386_record_modrm (&ir))
4557 return -1;
4558
4559 if (ir.reg != OP_CMPL)
4560 {
4561 if ((opcode & 1) == 0)
4562 ir.ot = OT_BYTE;
4563 else
4564 ir.ot = ir.dflag + OT_WORD;
4565
4566 if (ir.mod != 3)
4567 {
4568 if (opcode == 0x83)
4569 ir.rip_offset = 1;
4570 else
4571 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
4572 if (i386_record_lea_modrm (&ir))
4573 return -1;
4574 }
4575 else
4576 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
4577 }
4578 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4579 break;
4580
4581 case 0x40: /* inc */
4582 case 0x41:
4583 case 0x42:
4584 case 0x43:
4585 case 0x44:
4586 case 0x45:
4587 case 0x46:
4588 case 0x47:
4589
4590 case 0x48: /* dec */
4591 case 0x49:
4592 case 0x4a:
4593 case 0x4b:
4594 case 0x4c:
4595 case 0x4d:
4596 case 0x4e:
4597 case 0x4f:
4598
4599 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 7);
4600 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4601 break;
4602
4603 case 0xf6: /* GRP3 */
4604 case 0xf7:
4605 if ((opcode & 1) == 0)
4606 ir.ot = OT_BYTE;
4607 else
4608 ir.ot = ir.dflag + OT_WORD;
4609 if (i386_record_modrm (&ir))
4610 return -1;
4611
4612 if (ir.mod != 3 && ir.reg == 0)
4613 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
4614
4615 switch (ir.reg)
4616 {
4617 case 0: /* test */
4618 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4619 break;
4620 case 2: /* not */
4621 case 3: /* neg */
4622 if (ir.mod != 3)
4623 {
4624 if (i386_record_lea_modrm (&ir))
4625 return -1;
4626 }
4627 else
4628 {
4629 ir.rm |= ir.rex_b;
4630 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4631 ir.rm &= 0x3;
4632 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
4633 }
4634 if (ir.reg == 3) /* neg */
4635 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4636 break;
4637 case 4: /* mul */
4638 case 5: /* imul */
4639 case 6: /* div */
4640 case 7: /* idiv */
4641 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4642 if (ir.ot != OT_BYTE)
4643 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
4644 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4645 break;
4646 default:
4647 ir.addr -= 2;
4648 opcode = opcode << 8 | ir.modrm;
4649 goto no_support;
4650 break;
4651 }
4652 break;
4653
4654 case 0xfe: /* GRP4 */
4655 case 0xff: /* GRP5 */
4656 if (i386_record_modrm (&ir))
4657 return -1;
4658 if (ir.reg >= 2 && opcode == 0xfe)
4659 {
4660 ir.addr -= 2;
4661 opcode = opcode << 8 | ir.modrm;
4662 goto no_support;
4663 }
4664 switch (ir.reg)
4665 {
4666 case 0: /* inc */
4667 case 1: /* dec */
4668 if ((opcode & 1) == 0)
4669 ir.ot = OT_BYTE;
4670 else
4671 ir.ot = ir.dflag + OT_WORD;
4672 if (ir.mod != 3)
4673 {
4674 if (i386_record_lea_modrm (&ir))
4675 return -1;
4676 }
4677 else
4678 {
4679 ir.rm |= ir.rex_b;
4680 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4681 ir.rm &= 0x3;
4682 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
4683 }
4684 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4685 break;
4686 case 2: /* call */
4687 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4688 ir.dflag = 2;
4689 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4690 return -1;
4691 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4692 break;
4693 case 3: /* lcall */
4694 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
4695 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4696 return -1;
4697 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4698 break;
4699 case 4: /* jmp */
4700 case 5: /* ljmp */
4701 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4702 break;
4703 case 6: /* push */
4704 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4705 ir.dflag = 2;
4706 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4707 return -1;
4708 break;
4709 default:
4710 ir.addr -= 2;
4711 opcode = opcode << 8 | ir.modrm;
4712 goto no_support;
4713 break;
4714 }
4715 break;
4716
4717 case 0x84: /* test */
4718 case 0x85:
4719 case 0xa8:
4720 case 0xa9:
4721 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4722 break;
4723
4724 case 0x98: /* CWDE/CBW */
4725 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4726 break;
4727
4728 case 0x99: /* CDQ/CWD */
4729 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4730 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
4731 break;
4732
4733 case 0x0faf: /* imul */
4734 case 0x69:
4735 case 0x6b:
4736 ir.ot = ir.dflag + OT_WORD;
4737 if (i386_record_modrm (&ir))
4738 return -1;
4739 if (opcode == 0x69)
4740 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
4741 else if (opcode == 0x6b)
4742 ir.rip_offset = 1;
4743 ir.reg |= rex_r;
4744 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4745 ir.reg &= 0x3;
4746 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
4747 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4748 break;
4749
4750 case 0x0fc0: /* xadd */
4751 case 0x0fc1:
4752 if ((opcode & 1) == 0)
4753 ir.ot = OT_BYTE;
4754 else
4755 ir.ot = ir.dflag + OT_WORD;
4756 if (i386_record_modrm (&ir))
4757 return -1;
4758 ir.reg |= rex_r;
4759 if (ir.mod == 3)
4760 {
4761 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4762 ir.reg &= 0x3;
4763 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
4764 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4765 ir.rm &= 0x3;
4766 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
4767 }
4768 else
4769 {
4770 if (i386_record_lea_modrm (&ir))
4771 return -1;
4772 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4773 ir.reg &= 0x3;
4774 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
4775 }
4776 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4777 break;
4778
4779 case 0x0fb0: /* cmpxchg */
4780 case 0x0fb1:
4781 if ((opcode & 1) == 0)
4782 ir.ot = OT_BYTE;
4783 else
4784 ir.ot = ir.dflag + OT_WORD;
4785 if (i386_record_modrm (&ir))
4786 return -1;
4787 if (ir.mod == 3)
4788 {
4789 ir.reg |= rex_r;
4790 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4791 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4792 ir.reg &= 0x3;
4793 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
4794 }
4795 else
4796 {
4797 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4798 if (i386_record_lea_modrm (&ir))
4799 return -1;
4800 }
4801 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4802 break;
4803
4804 case 0x0fc7: /* cmpxchg8b */
4805 if (i386_record_modrm (&ir))
4806 return -1;
4807 if (ir.mod == 3)
4808 {
4809 ir.addr -= 2;
4810 opcode = opcode << 8 | ir.modrm;
4811 goto no_support;
4812 }
4813 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4814 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
4815 if (i386_record_lea_modrm (&ir))
4816 return -1;
4817 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4818 break;
4819
4820 case 0x50: /* push */
4821 case 0x51:
4822 case 0x52:
4823 case 0x53:
4824 case 0x54:
4825 case 0x55:
4826 case 0x56:
4827 case 0x57:
4828 case 0x68:
4829 case 0x6a:
4830 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4831 ir.dflag = 2;
4832 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4833 return -1;
4834 break;
4835
4836 case 0x06: /* push es */
4837 case 0x0e: /* push cs */
4838 case 0x16: /* push ss */
4839 case 0x1e: /* push ds */
4840 if (ir.regmap[X86_RECORD_R8_REGNUM])
4841 {
4842 ir.addr -= 1;
4843 goto no_support;
4844 }
4845 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4846 return -1;
4847 break;
4848
4849 case 0x0fa0: /* push fs */
4850 case 0x0fa8: /* push gs */
4851 if (ir.regmap[X86_RECORD_R8_REGNUM])
4852 {
4853 ir.addr -= 2;
4854 goto no_support;
4855 }
4856 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4857 return -1;
4858 break;
4859
4860 case 0x60: /* pusha */
4861 if (ir.regmap[X86_RECORD_R8_REGNUM])
4862 {
4863 ir.addr -= 1;
4864 goto no_support;
4865 }
4866 if (i386_record_push (&ir, 1 << (ir.dflag + 4)))
4867 return -1;
4868 break;
4869
4870 case 0x58: /* pop */
4871 case 0x59:
4872 case 0x5a:
4873 case 0x5b:
4874 case 0x5c:
4875 case 0x5d:
4876 case 0x5e:
4877 case 0x5f:
4878 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4879 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
4880 break;
4881
4882 case 0x61: /* popa */
4883 if (ir.regmap[X86_RECORD_R8_REGNUM])
4884 {
4885 ir.addr -= 1;
4886 goto no_support;
4887 }
4888 for (regnum = X86_RECORD_REAX_REGNUM;
4889 regnum <= X86_RECORD_REDI_REGNUM;
4890 regnum++)
4891 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
4892 break;
4893
4894 case 0x8f: /* pop */
4895 if (ir.regmap[X86_RECORD_R8_REGNUM])
4896 ir.ot = ir.dflag ? OT_QUAD : OT_WORD;
4897 else
4898 ir.ot = ir.dflag + OT_WORD;
4899 if (i386_record_modrm (&ir))
4900 return -1;
4901 if (ir.mod == 3)
4902 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
4903 else
4904 {
4905 ir.popl_esp_hack = 1 << ir.ot;
4906 if (i386_record_lea_modrm (&ir))
4907 return -1;
4908 }
4909 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4910 break;
4911
4912 case 0xc8: /* enter */
4913 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
4914 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4915 ir.dflag = 2;
4916 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4917 return -1;
4918 break;
4919
4920 case 0xc9: /* leave */
4921 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4922 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
4923 break;
4924
4925 case 0x07: /* pop es */
4926 if (ir.regmap[X86_RECORD_R8_REGNUM])
4927 {
4928 ir.addr -= 1;
4929 goto no_support;
4930 }
4931 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4932 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_ES_REGNUM);
4933 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4934 break;
4935
4936 case 0x17: /* pop ss */
4937 if (ir.regmap[X86_RECORD_R8_REGNUM])
4938 {
4939 ir.addr -= 1;
4940 goto no_support;
4941 }
4942 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4943 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_SS_REGNUM);
4944 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4945 break;
4946
4947 case 0x1f: /* pop ds */
4948 if (ir.regmap[X86_RECORD_R8_REGNUM])
4949 {
4950 ir.addr -= 1;
4951 goto no_support;
4952 }
4953 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4954 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_DS_REGNUM);
4955 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4956 break;
4957
4958 case 0x0fa1: /* pop fs */
4959 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4960 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_FS_REGNUM);
4961 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4962 break;
4963
4964 case 0x0fa9: /* pop gs */
4965 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4966 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
4967 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4968 break;
4969
4970 case 0x88: /* mov */
4971 case 0x89:
4972 case 0xc6:
4973 case 0xc7:
4974 if ((opcode & 1) == 0)
4975 ir.ot = OT_BYTE;
4976 else
4977 ir.ot = ir.dflag + OT_WORD;
4978
4979 if (i386_record_modrm (&ir))
4980 return -1;
4981
4982 if (ir.mod != 3)
4983 {
4984 if (opcode == 0xc6 || opcode == 0xc7)
4985 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
4986 if (i386_record_lea_modrm (&ir))
4987 return -1;
4988 }
4989 else
4990 {
4991 if (opcode == 0xc6 || opcode == 0xc7)
4992 ir.rm |= ir.rex_b;
4993 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4994 ir.rm &= 0x3;
4995 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
4996 }
4997 break;
4998
4999 case 0x8a: /* mov */
5000 case 0x8b:
5001 if ((opcode & 1) == 0)
5002 ir.ot = OT_BYTE;
5003 else
5004 ir.ot = ir.dflag + OT_WORD;
5005 if (i386_record_modrm (&ir))
5006 return -1;
5007 ir.reg |= rex_r;
5008 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5009 ir.reg &= 0x3;
5010 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5011 break;
5012
5013 case 0x8c: /* mov seg */
5014 if (i386_record_modrm (&ir))
5015 return -1;
5016 if (ir.reg > 5)
5017 {
5018 ir.addr -= 2;
5019 opcode = opcode << 8 | ir.modrm;
5020 goto no_support;
5021 }
5022
5023 if (ir.mod == 3)
5024 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5025 else
5026 {
5027 ir.ot = OT_WORD;
5028 if (i386_record_lea_modrm (&ir))
5029 return -1;
5030 }
5031 break;
5032
5033 case 0x8e: /* mov seg */
5034 if (i386_record_modrm (&ir))
5035 return -1;
5036 switch (ir.reg)
5037 {
5038 case 0:
5039 regnum = X86_RECORD_ES_REGNUM;
5040 break;
5041 case 2:
5042 regnum = X86_RECORD_SS_REGNUM;
5043 break;
5044 case 3:
5045 regnum = X86_RECORD_DS_REGNUM;
5046 break;
5047 case 4:
5048 regnum = X86_RECORD_FS_REGNUM;
5049 break;
5050 case 5:
5051 regnum = X86_RECORD_GS_REGNUM;
5052 break;
5053 default:
5054 ir.addr -= 2;
5055 opcode = opcode << 8 | ir.modrm;
5056 goto no_support;
5057 break;
5058 }
5059 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5060 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5061 break;
5062
5063 case 0x0fb6: /* movzbS */
5064 case 0x0fb7: /* movzwS */
5065 case 0x0fbe: /* movsbS */
5066 case 0x0fbf: /* movswS */
5067 if (i386_record_modrm (&ir))
5068 return -1;
5069 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5070 break;
5071
5072 case 0x8d: /* lea */
5073 if (i386_record_modrm (&ir))
5074 return -1;
5075 if (ir.mod == 3)
5076 {
5077 ir.addr -= 2;
5078 opcode = opcode << 8 | ir.modrm;
5079 goto no_support;
5080 }
5081 ir.ot = ir.dflag;
5082 ir.reg |= rex_r;
5083 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5084 ir.reg &= 0x3;
5085 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5086 break;
5087
5088 case 0xa0: /* mov EAX */
5089 case 0xa1:
5090
5091 case 0xd7: /* xlat */
5092 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5093 break;
5094
5095 case 0xa2: /* mov EAX */
5096 case 0xa3:
5097 if (ir.override >= 0)
5098 {
5099 if (record_full_memory_query)
5100 {
5101 int q;
5102
5103 target_terminal_ours ();
5104 q = yquery (_("\
5105 Process record ignores the memory change of instruction at address %s\n\
5106 because it can't get the value of the segment register.\n\
5107 Do you want to stop the program?"),
5108 paddress (gdbarch, ir.orig_addr));
5109 target_terminal_inferior ();
5110 if (q)
5111 return -1;
5112 }
5113 }
5114 else
5115 {
5116 if ((opcode & 1) == 0)
5117 ir.ot = OT_BYTE;
5118 else
5119 ir.ot = ir.dflag + OT_WORD;
5120 if (ir.aflag == 2)
5121 {
5122 if (record_read_memory (gdbarch, ir.addr, buf, 8))
5123 return -1;
5124 ir.addr += 8;
5125 addr = extract_unsigned_integer (buf, 8, byte_order);
5126 }
5127 else if (ir.aflag)
5128 {
5129 if (record_read_memory (gdbarch, ir.addr, buf, 4))
5130 return -1;
5131 ir.addr += 4;
5132 addr = extract_unsigned_integer (buf, 4, byte_order);
5133 }
5134 else
5135 {
5136 if (record_read_memory (gdbarch, ir.addr, buf, 2))
5137 return -1;
5138 ir.addr += 2;
5139 addr = extract_unsigned_integer (buf, 2, byte_order);
5140 }
5141 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
5142 return -1;
5143 }
5144 break;
5145
5146 case 0xb0: /* mov R, Ib */
5147 case 0xb1:
5148 case 0xb2:
5149 case 0xb3:
5150 case 0xb4:
5151 case 0xb5:
5152 case 0xb6:
5153 case 0xb7:
5154 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((ir.regmap[X86_RECORD_R8_REGNUM])
5155 ? ((opcode & 0x7) | ir.rex_b)
5156 : ((opcode & 0x7) & 0x3));
5157 break;
5158
5159 case 0xb8: /* mov R, Iv */
5160 case 0xb9:
5161 case 0xba:
5162 case 0xbb:
5163 case 0xbc:
5164 case 0xbd:
5165 case 0xbe:
5166 case 0xbf:
5167 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
5168 break;
5169
5170 case 0x91: /* xchg R, EAX */
5171 case 0x92:
5172 case 0x93:
5173 case 0x94:
5174 case 0x95:
5175 case 0x96:
5176 case 0x97:
5177 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5178 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 0x7);
5179 break;
5180
5181 case 0x86: /* xchg Ev, Gv */
5182 case 0x87:
5183 if ((opcode & 1) == 0)
5184 ir.ot = OT_BYTE;
5185 else
5186 ir.ot = ir.dflag + OT_WORD;
5187 if (i386_record_modrm (&ir))
5188 return -1;
5189 if (ir.mod == 3)
5190 {
5191 ir.rm |= ir.rex_b;
5192 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5193 ir.rm &= 0x3;
5194 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5195 }
5196 else
5197 {
5198 if (i386_record_lea_modrm (&ir))
5199 return -1;
5200 }
5201 ir.reg |= rex_r;
5202 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5203 ir.reg &= 0x3;
5204 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5205 break;
5206
5207 case 0xc4: /* les Gv */
5208 case 0xc5: /* lds Gv */
5209 if (ir.regmap[X86_RECORD_R8_REGNUM])
5210 {
5211 ir.addr -= 1;
5212 goto no_support;
5213 }
5214 /* FALLTHROUGH */
5215 case 0x0fb2: /* lss Gv */
5216 case 0x0fb4: /* lfs Gv */
5217 case 0x0fb5: /* lgs Gv */
5218 if (i386_record_modrm (&ir))
5219 return -1;
5220 if (ir.mod == 3)
5221 {
5222 if (opcode > 0xff)
5223 ir.addr -= 3;
5224 else
5225 ir.addr -= 2;
5226 opcode = opcode << 8 | ir.modrm;
5227 goto no_support;
5228 }
5229 switch (opcode)
5230 {
5231 case 0xc4: /* les Gv */
5232 regnum = X86_RECORD_ES_REGNUM;
5233 break;
5234 case 0xc5: /* lds Gv */
5235 regnum = X86_RECORD_DS_REGNUM;
5236 break;
5237 case 0x0fb2: /* lss Gv */
5238 regnum = X86_RECORD_SS_REGNUM;
5239 break;
5240 case 0x0fb4: /* lfs Gv */
5241 regnum = X86_RECORD_FS_REGNUM;
5242 break;
5243 case 0x0fb5: /* lgs Gv */
5244 regnum = X86_RECORD_GS_REGNUM;
5245 break;
5246 }
5247 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5248 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5249 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5250 break;
5251
5252 case 0xc0: /* shifts */
5253 case 0xc1:
5254 case 0xd0:
5255 case 0xd1:
5256 case 0xd2:
5257 case 0xd3:
5258 if ((opcode & 1) == 0)
5259 ir.ot = OT_BYTE;
5260 else
5261 ir.ot = ir.dflag + OT_WORD;
5262 if (i386_record_modrm (&ir))
5263 return -1;
5264 if (ir.mod != 3 && (opcode == 0xd2 || opcode == 0xd3))
5265 {
5266 if (i386_record_lea_modrm (&ir))
5267 return -1;
5268 }
5269 else
5270 {
5271 ir.rm |= ir.rex_b;
5272 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5273 ir.rm &= 0x3;
5274 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5275 }
5276 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5277 break;
5278
5279 case 0x0fa4:
5280 case 0x0fa5:
5281 case 0x0fac:
5282 case 0x0fad:
5283 if (i386_record_modrm (&ir))
5284 return -1;
5285 if (ir.mod == 3)
5286 {
5287 if (record_full_arch_list_add_reg (ir.regcache, ir.rm))
5288 return -1;
5289 }
5290 else
5291 {
5292 if (i386_record_lea_modrm (&ir))
5293 return -1;
5294 }
5295 break;
5296
5297 case 0xd8: /* Floats. */
5298 case 0xd9:
5299 case 0xda:
5300 case 0xdb:
5301 case 0xdc:
5302 case 0xdd:
5303 case 0xde:
5304 case 0xdf:
5305 if (i386_record_modrm (&ir))
5306 return -1;
5307 ir.reg |= ((opcode & 7) << 3);
5308 if (ir.mod != 3)
5309 {
5310 /* Memory. */
5311 uint64_t addr64;
5312
5313 if (i386_record_lea_modrm_addr (&ir, &addr64))
5314 return -1;
5315 switch (ir.reg)
5316 {
5317 case 0x02:
5318 case 0x12:
5319 case 0x22:
5320 case 0x32:
5321 /* For fcom, ficom nothing to do. */
5322 break;
5323 case 0x03:
5324 case 0x13:
5325 case 0x23:
5326 case 0x33:
5327 /* For fcomp, ficomp pop FPU stack, store all. */
5328 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5329 return -1;
5330 break;
5331 case 0x00:
5332 case 0x01:
5333 case 0x04:
5334 case 0x05:
5335 case 0x06:
5336 case 0x07:
5337 case 0x10:
5338 case 0x11:
5339 case 0x14:
5340 case 0x15:
5341 case 0x16:
5342 case 0x17:
5343 case 0x20:
5344 case 0x21:
5345 case 0x24:
5346 case 0x25:
5347 case 0x26:
5348 case 0x27:
5349 case 0x30:
5350 case 0x31:
5351 case 0x34:
5352 case 0x35:
5353 case 0x36:
5354 case 0x37:
5355 /* For fadd, fmul, fsub, fsubr, fdiv, fdivr, fiadd, fimul,
5356 fisub, fisubr, fidiv, fidivr, modR/M.reg is an extension
5357 of code, always affects st(0) register. */
5358 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
5359 return -1;
5360 break;
5361 case 0x08:
5362 case 0x0a:
5363 case 0x0b:
5364 case 0x18:
5365 case 0x19:
5366 case 0x1a:
5367 case 0x1b:
5368 case 0x1d:
5369 case 0x28:
5370 case 0x29:
5371 case 0x2a:
5372 case 0x2b:
5373 case 0x38:
5374 case 0x39:
5375 case 0x3a:
5376 case 0x3b:
5377 case 0x3c:
5378 case 0x3d:
5379 switch (ir.reg & 7)
5380 {
5381 case 0:
5382 /* Handling fld, fild. */
5383 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5384 return -1;
5385 break;
5386 case 1:
5387 switch (ir.reg >> 4)
5388 {
5389 case 0:
5390 if (record_full_arch_list_add_mem (addr64, 4))
5391 return -1;
5392 break;
5393 case 2:
5394 if (record_full_arch_list_add_mem (addr64, 8))
5395 return -1;
5396 break;
5397 case 3:
5398 break;
5399 default:
5400 if (record_full_arch_list_add_mem (addr64, 2))
5401 return -1;
5402 break;
5403 }
5404 break;
5405 default:
5406 switch (ir.reg >> 4)
5407 {
5408 case 0:
5409 if (record_full_arch_list_add_mem (addr64, 4))
5410 return -1;
5411 if (3 == (ir.reg & 7))
5412 {
5413 /* For fstp m32fp. */
5414 if (i386_record_floats (gdbarch, &ir,
5415 I386_SAVE_FPU_REGS))
5416 return -1;
5417 }
5418 break;
5419 case 1:
5420 if (record_full_arch_list_add_mem (addr64, 4))
5421 return -1;
5422 if ((3 == (ir.reg & 7))
5423 || (5 == (ir.reg & 7))
5424 || (7 == (ir.reg & 7)))
5425 {
5426 /* For fstp insn. */
5427 if (i386_record_floats (gdbarch, &ir,
5428 I386_SAVE_FPU_REGS))
5429 return -1;
5430 }
5431 break;
5432 case 2:
5433 if (record_full_arch_list_add_mem (addr64, 8))
5434 return -1;
5435 if (3 == (ir.reg & 7))
5436 {
5437 /* For fstp m64fp. */
5438 if (i386_record_floats (gdbarch, &ir,
5439 I386_SAVE_FPU_REGS))
5440 return -1;
5441 }
5442 break;
5443 case 3:
5444 if ((3 <= (ir.reg & 7)) && (6 <= (ir.reg & 7)))
5445 {
5446 /* For fistp, fbld, fild, fbstp. */
5447 if (i386_record_floats (gdbarch, &ir,
5448 I386_SAVE_FPU_REGS))
5449 return -1;
5450 }
5451 /* Fall through */
5452 default:
5453 if (record_full_arch_list_add_mem (addr64, 2))
5454 return -1;
5455 break;
5456 }
5457 break;
5458 }
5459 break;
5460 case 0x0c:
5461 /* Insn fldenv. */
5462 if (i386_record_floats (gdbarch, &ir,
5463 I386_SAVE_FPU_ENV_REG_STACK))
5464 return -1;
5465 break;
5466 case 0x0d:
5467 /* Insn fldcw. */
5468 if (i386_record_floats (gdbarch, &ir, I387_FCTRL_REGNUM (tdep)))
5469 return -1;
5470 break;
5471 case 0x2c:
5472 /* Insn frstor. */
5473 if (i386_record_floats (gdbarch, &ir,
5474 I386_SAVE_FPU_ENV_REG_STACK))
5475 return -1;
5476 break;
5477 case 0x0e:
5478 if (ir.dflag)
5479 {
5480 if (record_full_arch_list_add_mem (addr64, 28))
5481 return -1;
5482 }
5483 else
5484 {
5485 if (record_full_arch_list_add_mem (addr64, 14))
5486 return -1;
5487 }
5488 break;
5489 case 0x0f:
5490 case 0x2f:
5491 if (record_full_arch_list_add_mem (addr64, 2))
5492 return -1;
5493 /* Insn fstp, fbstp. */
5494 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5495 return -1;
5496 break;
5497 case 0x1f:
5498 case 0x3e:
5499 if (record_full_arch_list_add_mem (addr64, 10))
5500 return -1;
5501 break;
5502 case 0x2e:
5503 if (ir.dflag)
5504 {
5505 if (record_full_arch_list_add_mem (addr64, 28))
5506 return -1;
5507 addr64 += 28;
5508 }
5509 else
5510 {
5511 if (record_full_arch_list_add_mem (addr64, 14))
5512 return -1;
5513 addr64 += 14;
5514 }
5515 if (record_full_arch_list_add_mem (addr64, 80))
5516 return -1;
5517 /* Insn fsave. */
5518 if (i386_record_floats (gdbarch, &ir,
5519 I386_SAVE_FPU_ENV_REG_STACK))
5520 return -1;
5521 break;
5522 case 0x3f:
5523 if (record_full_arch_list_add_mem (addr64, 8))
5524 return -1;
5525 /* Insn fistp. */
5526 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5527 return -1;
5528 break;
5529 default:
5530 ir.addr -= 2;
5531 opcode = opcode << 8 | ir.modrm;
5532 goto no_support;
5533 break;
5534 }
5535 }
5536 /* Opcode is an extension of modR/M byte. */
5537 else
5538 {
5539 switch (opcode)
5540 {
5541 case 0xd8:
5542 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
5543 return -1;
5544 break;
5545 case 0xd9:
5546 if (0x0c == (ir.modrm >> 4))
5547 {
5548 if ((ir.modrm & 0x0f) <= 7)
5549 {
5550 if (i386_record_floats (gdbarch, &ir,
5551 I386_SAVE_FPU_REGS))
5552 return -1;
5553 }
5554 else
5555 {
5556 if (i386_record_floats (gdbarch, &ir,
5557 I387_ST0_REGNUM (tdep)))
5558 return -1;
5559 /* If only st(0) is changing, then we have already
5560 recorded. */
5561 if ((ir.modrm & 0x0f) - 0x08)
5562 {
5563 if (i386_record_floats (gdbarch, &ir,
5564 I387_ST0_REGNUM (tdep) +
5565 ((ir.modrm & 0x0f) - 0x08)))
5566 return -1;
5567 }
5568 }
5569 }
5570 else
5571 {
5572 switch (ir.modrm)
5573 {
5574 case 0xe0:
5575 case 0xe1:
5576 case 0xf0:
5577 case 0xf5:
5578 case 0xf8:
5579 case 0xfa:
5580 case 0xfc:
5581 case 0xfe:
5582 case 0xff:
5583 if (i386_record_floats (gdbarch, &ir,
5584 I387_ST0_REGNUM (tdep)))
5585 return -1;
5586 break;
5587 case 0xf1:
5588 case 0xf2:
5589 case 0xf3:
5590 case 0xf4:
5591 case 0xf6:
5592 case 0xf7:
5593 case 0xe8:
5594 case 0xe9:
5595 case 0xea:
5596 case 0xeb:
5597 case 0xec:
5598 case 0xed:
5599 case 0xee:
5600 case 0xf9:
5601 case 0xfb:
5602 if (i386_record_floats (gdbarch, &ir,
5603 I386_SAVE_FPU_REGS))
5604 return -1;
5605 break;
5606 case 0xfd:
5607 if (i386_record_floats (gdbarch, &ir,
5608 I387_ST0_REGNUM (tdep)))
5609 return -1;
5610 if (i386_record_floats (gdbarch, &ir,
5611 I387_ST0_REGNUM (tdep) + 1))
5612 return -1;
5613 break;
5614 }
5615 }
5616 break;
5617 case 0xda:
5618 if (0xe9 == ir.modrm)
5619 {
5620 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5621 return -1;
5622 }
5623 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
5624 {
5625 if (i386_record_floats (gdbarch, &ir,
5626 I387_ST0_REGNUM (tdep)))
5627 return -1;
5628 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
5629 {
5630 if (i386_record_floats (gdbarch, &ir,
5631 I387_ST0_REGNUM (tdep) +
5632 (ir.modrm & 0x0f)))
5633 return -1;
5634 }
5635 else if ((ir.modrm & 0x0f) - 0x08)
5636 {
5637 if (i386_record_floats (gdbarch, &ir,
5638 I387_ST0_REGNUM (tdep) +
5639 ((ir.modrm & 0x0f) - 0x08)))
5640 return -1;
5641 }
5642 }
5643 break;
5644 case 0xdb:
5645 if (0xe3 == ir.modrm)
5646 {
5647 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_ENV))
5648 return -1;
5649 }
5650 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
5651 {
5652 if (i386_record_floats (gdbarch, &ir,
5653 I387_ST0_REGNUM (tdep)))
5654 return -1;
5655 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
5656 {
5657 if (i386_record_floats (gdbarch, &ir,
5658 I387_ST0_REGNUM (tdep) +
5659 (ir.modrm & 0x0f)))
5660 return -1;
5661 }
5662 else if ((ir.modrm & 0x0f) - 0x08)
5663 {
5664 if (i386_record_floats (gdbarch, &ir,
5665 I387_ST0_REGNUM (tdep) +
5666 ((ir.modrm & 0x0f) - 0x08)))
5667 return -1;
5668 }
5669 }
5670 break;
5671 case 0xdc:
5672 if ((0x0c == ir.modrm >> 4)
5673 || (0x0d == ir.modrm >> 4)
5674 || (0x0f == ir.modrm >> 4))
5675 {
5676 if ((ir.modrm & 0x0f) <= 7)
5677 {
5678 if (i386_record_floats (gdbarch, &ir,
5679 I387_ST0_REGNUM (tdep) +
5680 (ir.modrm & 0x0f)))
5681 return -1;
5682 }
5683 else
5684 {
5685 if (i386_record_floats (gdbarch, &ir,
5686 I387_ST0_REGNUM (tdep) +
5687 ((ir.modrm & 0x0f) - 0x08)))
5688 return -1;
5689 }
5690 }
5691 break;
5692 case 0xdd:
5693 if (0x0c == ir.modrm >> 4)
5694 {
5695 if (i386_record_floats (gdbarch, &ir,
5696 I387_FTAG_REGNUM (tdep)))
5697 return -1;
5698 }
5699 else if ((0x0d == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
5700 {
5701 if ((ir.modrm & 0x0f) <= 7)
5702 {
5703 if (i386_record_floats (gdbarch, &ir,
5704 I387_ST0_REGNUM (tdep) +
5705 (ir.modrm & 0x0f)))
5706 return -1;
5707 }
5708 else
5709 {
5710 if (i386_record_floats (gdbarch, &ir,
5711 I386_SAVE_FPU_REGS))
5712 return -1;
5713 }
5714 }
5715 break;
5716 case 0xde:
5717 if ((0x0c == ir.modrm >> 4)
5718 || (0x0e == ir.modrm >> 4)
5719 || (0x0f == ir.modrm >> 4)
5720 || (0xd9 == ir.modrm))
5721 {
5722 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5723 return -1;
5724 }
5725 break;
5726 case 0xdf:
5727 if (0xe0 == ir.modrm)
5728 {
5729 if (record_full_arch_list_add_reg (ir.regcache,
5730 I386_EAX_REGNUM))
5731 return -1;
5732 }
5733 else if ((0x0f == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
5734 {
5735 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5736 return -1;
5737 }
5738 break;
5739 }
5740 }
5741 break;
5742 /* string ops */
5743 case 0xa4: /* movsS */
5744 case 0xa5:
5745 case 0xaa: /* stosS */
5746 case 0xab:
5747 case 0x6c: /* insS */
5748 case 0x6d:
5749 regcache_raw_read_unsigned (ir.regcache,
5750 ir.regmap[X86_RECORD_RECX_REGNUM],
5751 &addr);
5752 if (addr)
5753 {
5754 ULONGEST es, ds;
5755
5756 if ((opcode & 1) == 0)
5757 ir.ot = OT_BYTE;
5758 else
5759 ir.ot = ir.dflag + OT_WORD;
5760 regcache_raw_read_unsigned (ir.regcache,
5761 ir.regmap[X86_RECORD_REDI_REGNUM],
5762 &addr);
5763
5764 regcache_raw_read_unsigned (ir.regcache,
5765 ir.regmap[X86_RECORD_ES_REGNUM],
5766 &es);
5767 regcache_raw_read_unsigned (ir.regcache,
5768 ir.regmap[X86_RECORD_DS_REGNUM],
5769 &ds);
5770 if (ir.aflag && (es != ds))
5771 {
5772 /* addr += ((uint32_t) read_register (I386_ES_REGNUM)) << 4; */
5773 if (record_full_memory_query)
5774 {
5775 int q;
5776
5777 target_terminal_ours ();
5778 q = yquery (_("\
5779 Process record ignores the memory change of instruction at address %s\n\
5780 because it can't get the value of the segment register.\n\
5781 Do you want to stop the program?"),
5782 paddress (gdbarch, ir.orig_addr));
5783 target_terminal_inferior ();
5784 if (q)
5785 return -1;
5786 }
5787 }
5788 else
5789 {
5790 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
5791 return -1;
5792 }
5793
5794 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
5795 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5796 if (opcode == 0xa4 || opcode == 0xa5)
5797 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
5798 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
5799 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5800 }
5801 break;
5802
5803 case 0xa6: /* cmpsS */
5804 case 0xa7:
5805 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
5806 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
5807 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
5808 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5809 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5810 break;
5811
5812 case 0xac: /* lodsS */
5813 case 0xad:
5814 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5815 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
5816 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
5817 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5818 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5819 break;
5820
5821 case 0xae: /* scasS */
5822 case 0xaf:
5823 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
5824 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
5825 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5826 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5827 break;
5828
5829 case 0x6e: /* outsS */
5830 case 0x6f:
5831 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
5832 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
5833 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5834 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5835 break;
5836
5837 case 0xe4: /* port I/O */
5838 case 0xe5:
5839 case 0xec:
5840 case 0xed:
5841 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5842 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5843 break;
5844
5845 case 0xe6:
5846 case 0xe7:
5847 case 0xee:
5848 case 0xef:
5849 break;
5850
5851 /* control */
5852 case 0xc2: /* ret im */
5853 case 0xc3: /* ret */
5854 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5855 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5856 break;
5857
5858 case 0xca: /* lret im */
5859 case 0xcb: /* lret */
5860 case 0xcf: /* iret */
5861 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
5862 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5863 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5864 break;
5865
5866 case 0xe8: /* call im */
5867 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5868 ir.dflag = 2;
5869 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5870 return -1;
5871 break;
5872
5873 case 0x9a: /* lcall im */
5874 if (ir.regmap[X86_RECORD_R8_REGNUM])
5875 {
5876 ir.addr -= 1;
5877 goto no_support;
5878 }
5879 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
5880 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5881 return -1;
5882 break;
5883
5884 case 0xe9: /* jmp im */
5885 case 0xea: /* ljmp im */
5886 case 0xeb: /* jmp Jb */
5887 case 0x70: /* jcc Jb */
5888 case 0x71:
5889 case 0x72:
5890 case 0x73:
5891 case 0x74:
5892 case 0x75:
5893 case 0x76:
5894 case 0x77:
5895 case 0x78:
5896 case 0x79:
5897 case 0x7a:
5898 case 0x7b:
5899 case 0x7c:
5900 case 0x7d:
5901 case 0x7e:
5902 case 0x7f:
5903 case 0x0f80: /* jcc Jv */
5904 case 0x0f81:
5905 case 0x0f82:
5906 case 0x0f83:
5907 case 0x0f84:
5908 case 0x0f85:
5909 case 0x0f86:
5910 case 0x0f87:
5911 case 0x0f88:
5912 case 0x0f89:
5913 case 0x0f8a:
5914 case 0x0f8b:
5915 case 0x0f8c:
5916 case 0x0f8d:
5917 case 0x0f8e:
5918 case 0x0f8f:
5919 break;
5920
5921 case 0x0f90: /* setcc Gv */
5922 case 0x0f91:
5923 case 0x0f92:
5924 case 0x0f93:
5925 case 0x0f94:
5926 case 0x0f95:
5927 case 0x0f96:
5928 case 0x0f97:
5929 case 0x0f98:
5930 case 0x0f99:
5931 case 0x0f9a:
5932 case 0x0f9b:
5933 case 0x0f9c:
5934 case 0x0f9d:
5935 case 0x0f9e:
5936 case 0x0f9f:
5937 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5938 ir.ot = OT_BYTE;
5939 if (i386_record_modrm (&ir))
5940 return -1;
5941 if (ir.mod == 3)
5942 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rex_b ? (ir.rm | ir.rex_b)
5943 : (ir.rm & 0x3));
5944 else
5945 {
5946 if (i386_record_lea_modrm (&ir))
5947 return -1;
5948 }
5949 break;
5950
5951 case 0x0f40: /* cmov Gv, Ev */
5952 case 0x0f41:
5953 case 0x0f42:
5954 case 0x0f43:
5955 case 0x0f44:
5956 case 0x0f45:
5957 case 0x0f46:
5958 case 0x0f47:
5959 case 0x0f48:
5960 case 0x0f49:
5961 case 0x0f4a:
5962 case 0x0f4b:
5963 case 0x0f4c:
5964 case 0x0f4d:
5965 case 0x0f4e:
5966 case 0x0f4f:
5967 if (i386_record_modrm (&ir))
5968 return -1;
5969 ir.reg |= rex_r;
5970 if (ir.dflag == OT_BYTE)
5971 ir.reg &= 0x3;
5972 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5973 break;
5974
5975 /* flags */
5976 case 0x9c: /* pushf */
5977 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5978 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5979 ir.dflag = 2;
5980 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5981 return -1;
5982 break;
5983
5984 case 0x9d: /* popf */
5985 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5986 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5987 break;
5988
5989 case 0x9e: /* sahf */
5990 if (ir.regmap[X86_RECORD_R8_REGNUM])
5991 {
5992 ir.addr -= 1;
5993 goto no_support;
5994 }
5995 /* FALLTHROUGH */
5996 case 0xf5: /* cmc */
5997 case 0xf8: /* clc */
5998 case 0xf9: /* stc */
5999 case 0xfc: /* cld */
6000 case 0xfd: /* std */
6001 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6002 break;
6003
6004 case 0x9f: /* lahf */
6005 if (ir.regmap[X86_RECORD_R8_REGNUM])
6006 {
6007 ir.addr -= 1;
6008 goto no_support;
6009 }
6010 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6011 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6012 break;
6013
6014 /* bit operations */
6015 case 0x0fba: /* bt/bts/btr/btc Gv, im */
6016 ir.ot = ir.dflag + OT_WORD;
6017 if (i386_record_modrm (&ir))
6018 return -1;
6019 if (ir.reg < 4)
6020 {
6021 ir.addr -= 2;
6022 opcode = opcode << 8 | ir.modrm;
6023 goto no_support;
6024 }
6025 if (ir.reg != 4)
6026 {
6027 if (ir.mod == 3)
6028 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6029 else
6030 {
6031 if (i386_record_lea_modrm (&ir))
6032 return -1;
6033 }
6034 }
6035 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6036 break;
6037
6038 case 0x0fa3: /* bt Gv, Ev */
6039 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6040 break;
6041
6042 case 0x0fab: /* bts */
6043 case 0x0fb3: /* btr */
6044 case 0x0fbb: /* btc */
6045 ir.ot = ir.dflag + OT_WORD;
6046 if (i386_record_modrm (&ir))
6047 return -1;
6048 if (ir.mod == 3)
6049 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6050 else
6051 {
6052 uint64_t addr64;
6053 if (i386_record_lea_modrm_addr (&ir, &addr64))
6054 return -1;
6055 regcache_raw_read_unsigned (ir.regcache,
6056 ir.regmap[ir.reg | rex_r],
6057 &addr);
6058 switch (ir.dflag)
6059 {
6060 case 0:
6061 addr64 += ((int16_t) addr >> 4) << 4;
6062 break;
6063 case 1:
6064 addr64 += ((int32_t) addr >> 5) << 5;
6065 break;
6066 case 2:
6067 addr64 += ((int64_t) addr >> 6) << 6;
6068 break;
6069 }
6070 if (record_full_arch_list_add_mem (addr64, 1 << ir.ot))
6071 return -1;
6072 if (i386_record_lea_modrm (&ir))
6073 return -1;
6074 }
6075 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6076 break;
6077
6078 case 0x0fbc: /* bsf */
6079 case 0x0fbd: /* bsr */
6080 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6081 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6082 break;
6083
6084 /* bcd */
6085 case 0x27: /* daa */
6086 case 0x2f: /* das */
6087 case 0x37: /* aaa */
6088 case 0x3f: /* aas */
6089 case 0xd4: /* aam */
6090 case 0xd5: /* aad */
6091 if (ir.regmap[X86_RECORD_R8_REGNUM])
6092 {
6093 ir.addr -= 1;
6094 goto no_support;
6095 }
6096 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6097 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6098 break;
6099
6100 /* misc */
6101 case 0x90: /* nop */
6102 if (prefixes & PREFIX_LOCK)
6103 {
6104 ir.addr -= 1;
6105 goto no_support;
6106 }
6107 break;
6108
6109 case 0x9b: /* fwait */
6110 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
6111 return -1;
6112 opcode = (uint32_t) opcode8;
6113 ir.addr++;
6114 goto reswitch;
6115 break;
6116
6117 /* XXX */
6118 case 0xcc: /* int3 */
6119 printf_unfiltered (_("Process record does not support instruction "
6120 "int3.\n"));
6121 ir.addr -= 1;
6122 goto no_support;
6123 break;
6124
6125 /* XXX */
6126 case 0xcd: /* int */
6127 {
6128 int ret;
6129 uint8_t interrupt;
6130 if (record_read_memory (gdbarch, ir.addr, &interrupt, 1))
6131 return -1;
6132 ir.addr++;
6133 if (interrupt != 0x80
6134 || tdep->i386_intx80_record == NULL)
6135 {
6136 printf_unfiltered (_("Process record does not support "
6137 "instruction int 0x%02x.\n"),
6138 interrupt);
6139 ir.addr -= 2;
6140 goto no_support;
6141 }
6142 ret = tdep->i386_intx80_record (ir.regcache);
6143 if (ret)
6144 return ret;
6145 }
6146 break;
6147
6148 /* XXX */
6149 case 0xce: /* into */
6150 printf_unfiltered (_("Process record does not support "
6151 "instruction into.\n"));
6152 ir.addr -= 1;
6153 goto no_support;
6154 break;
6155
6156 case 0xfa: /* cli */
6157 case 0xfb: /* sti */
6158 break;
6159
6160 case 0x62: /* bound */
6161 printf_unfiltered (_("Process record does not support "
6162 "instruction bound.\n"));
6163 ir.addr -= 1;
6164 goto no_support;
6165 break;
6166
6167 case 0x0fc8: /* bswap reg */
6168 case 0x0fc9:
6169 case 0x0fca:
6170 case 0x0fcb:
6171 case 0x0fcc:
6172 case 0x0fcd:
6173 case 0x0fce:
6174 case 0x0fcf:
6175 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 7) | ir.rex_b);
6176 break;
6177
6178 case 0xd6: /* salc */
6179 if (ir.regmap[X86_RECORD_R8_REGNUM])
6180 {
6181 ir.addr -= 1;
6182 goto no_support;
6183 }
6184 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6185 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6186 break;
6187
6188 case 0xe0: /* loopnz */
6189 case 0xe1: /* loopz */
6190 case 0xe2: /* loop */
6191 case 0xe3: /* jecxz */
6192 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6193 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6194 break;
6195
6196 case 0x0f30: /* wrmsr */
6197 printf_unfiltered (_("Process record does not support "
6198 "instruction wrmsr.\n"));
6199 ir.addr -= 2;
6200 goto no_support;
6201 break;
6202
6203 case 0x0f32: /* rdmsr */
6204 printf_unfiltered (_("Process record does not support "
6205 "instruction rdmsr.\n"));
6206 ir.addr -= 2;
6207 goto no_support;
6208 break;
6209
6210 case 0x0f31: /* rdtsc */
6211 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6212 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6213 break;
6214
6215 case 0x0f34: /* sysenter */
6216 {
6217 int ret;
6218 if (ir.regmap[X86_RECORD_R8_REGNUM])
6219 {
6220 ir.addr -= 2;
6221 goto no_support;
6222 }
6223 if (tdep->i386_sysenter_record == NULL)
6224 {
6225 printf_unfiltered (_("Process record does not support "
6226 "instruction sysenter.\n"));
6227 ir.addr -= 2;
6228 goto no_support;
6229 }
6230 ret = tdep->i386_sysenter_record (ir.regcache);
6231 if (ret)
6232 return ret;
6233 }
6234 break;
6235
6236 case 0x0f35: /* sysexit */
6237 printf_unfiltered (_("Process record does not support "
6238 "instruction sysexit.\n"));
6239 ir.addr -= 2;
6240 goto no_support;
6241 break;
6242
6243 case 0x0f05: /* syscall */
6244 {
6245 int ret;
6246 if (tdep->i386_syscall_record == NULL)
6247 {
6248 printf_unfiltered (_("Process record does not support "
6249 "instruction syscall.\n"));
6250 ir.addr -= 2;
6251 goto no_support;
6252 }
6253 ret = tdep->i386_syscall_record (ir.regcache);
6254 if (ret)
6255 return ret;
6256 }
6257 break;
6258
6259 case 0x0f07: /* sysret */
6260 printf_unfiltered (_("Process record does not support "
6261 "instruction sysret.\n"));
6262 ir.addr -= 2;
6263 goto no_support;
6264 break;
6265
6266 case 0x0fa2: /* cpuid */
6267 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6268 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6269 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6270 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
6271 break;
6272
6273 case 0xf4: /* hlt */
6274 printf_unfiltered (_("Process record does not support "
6275 "instruction hlt.\n"));
6276 ir.addr -= 1;
6277 goto no_support;
6278 break;
6279
6280 case 0x0f00:
6281 if (i386_record_modrm (&ir))
6282 return -1;
6283 switch (ir.reg)
6284 {
6285 case 0: /* sldt */
6286 case 1: /* str */
6287 if (ir.mod == 3)
6288 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6289 else
6290 {
6291 ir.ot = OT_WORD;
6292 if (i386_record_lea_modrm (&ir))
6293 return -1;
6294 }
6295 break;
6296 case 2: /* lldt */
6297 case 3: /* ltr */
6298 break;
6299 case 4: /* verr */
6300 case 5: /* verw */
6301 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6302 break;
6303 default:
6304 ir.addr -= 3;
6305 opcode = opcode << 8 | ir.modrm;
6306 goto no_support;
6307 break;
6308 }
6309 break;
6310
6311 case 0x0f01:
6312 if (i386_record_modrm (&ir))
6313 return -1;
6314 switch (ir.reg)
6315 {
6316 case 0: /* sgdt */
6317 {
6318 uint64_t addr64;
6319
6320 if (ir.mod == 3)
6321 {
6322 ir.addr -= 3;
6323 opcode = opcode << 8 | ir.modrm;
6324 goto no_support;
6325 }
6326 if (ir.override >= 0)
6327 {
6328 if (record_full_memory_query)
6329 {
6330 int q;
6331
6332 target_terminal_ours ();
6333 q = yquery (_("\
6334 Process record ignores the memory change of instruction at address %s\n\
6335 because it can't get the value of the segment register.\n\
6336 Do you want to stop the program?"),
6337 paddress (gdbarch, ir.orig_addr));
6338 target_terminal_inferior ();
6339 if (q)
6340 return -1;
6341 }
6342 }
6343 else
6344 {
6345 if (i386_record_lea_modrm_addr (&ir, &addr64))
6346 return -1;
6347 if (record_full_arch_list_add_mem (addr64, 2))
6348 return -1;
6349 addr64 += 2;
6350 if (ir.regmap[X86_RECORD_R8_REGNUM])
6351 {
6352 if (record_full_arch_list_add_mem (addr64, 8))
6353 return -1;
6354 }
6355 else
6356 {
6357 if (record_full_arch_list_add_mem (addr64, 4))
6358 return -1;
6359 }
6360 }
6361 }
6362 break;
6363 case 1:
6364 if (ir.mod == 3)
6365 {
6366 switch (ir.rm)
6367 {
6368 case 0: /* monitor */
6369 break;
6370 case 1: /* mwait */
6371 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6372 break;
6373 default:
6374 ir.addr -= 3;
6375 opcode = opcode << 8 | ir.modrm;
6376 goto no_support;
6377 break;
6378 }
6379 }
6380 else
6381 {
6382 /* sidt */
6383 if (ir.override >= 0)
6384 {
6385 if (record_full_memory_query)
6386 {
6387 int q;
6388
6389 target_terminal_ours ();
6390 q = yquery (_("\
6391 Process record ignores the memory change of instruction at address %s\n\
6392 because it can't get the value of the segment register.\n\
6393 Do you want to stop the program?"),
6394 paddress (gdbarch, ir.orig_addr));
6395 target_terminal_inferior ();
6396 if (q)
6397 return -1;
6398 }
6399 }
6400 else
6401 {
6402 uint64_t addr64;
6403
6404 if (i386_record_lea_modrm_addr (&ir, &addr64))
6405 return -1;
6406 if (record_full_arch_list_add_mem (addr64, 2))
6407 return -1;
6408 addr64 += 2;
6409 if (ir.regmap[X86_RECORD_R8_REGNUM])
6410 {
6411 if (record_full_arch_list_add_mem (addr64, 8))
6412 return -1;
6413 }
6414 else
6415 {
6416 if (record_full_arch_list_add_mem (addr64, 4))
6417 return -1;
6418 }
6419 }
6420 }
6421 break;
6422 case 2: /* lgdt */
6423 if (ir.mod == 3)
6424 {
6425 /* xgetbv */
6426 if (ir.rm == 0)
6427 {
6428 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6429 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6430 break;
6431 }
6432 /* xsetbv */
6433 else if (ir.rm == 1)
6434 break;
6435 }
6436 case 3: /* lidt */
6437 if (ir.mod == 3)
6438 {
6439 ir.addr -= 3;
6440 opcode = opcode << 8 | ir.modrm;
6441 goto no_support;
6442 }
6443 break;
6444 case 4: /* smsw */
6445 if (ir.mod == 3)
6446 {
6447 if (record_full_arch_list_add_reg (ir.regcache, ir.rm | ir.rex_b))
6448 return -1;
6449 }
6450 else
6451 {
6452 ir.ot = OT_WORD;
6453 if (i386_record_lea_modrm (&ir))
6454 return -1;
6455 }
6456 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6457 break;
6458 case 6: /* lmsw */
6459 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6460 break;
6461 case 7: /* invlpg */
6462 if (ir.mod == 3)
6463 {
6464 if (ir.rm == 0 && ir.regmap[X86_RECORD_R8_REGNUM])
6465 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
6466 else
6467 {
6468 ir.addr -= 3;
6469 opcode = opcode << 8 | ir.modrm;
6470 goto no_support;
6471 }
6472 }
6473 else
6474 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6475 break;
6476 default:
6477 ir.addr -= 3;
6478 opcode = opcode << 8 | ir.modrm;
6479 goto no_support;
6480 break;
6481 }
6482 break;
6483
6484 case 0x0f08: /* invd */
6485 case 0x0f09: /* wbinvd */
6486 break;
6487
6488 case 0x63: /* arpl */
6489 if (i386_record_modrm (&ir))
6490 return -1;
6491 if (ir.mod == 3 || ir.regmap[X86_RECORD_R8_REGNUM])
6492 {
6493 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.regmap[X86_RECORD_R8_REGNUM]
6494 ? (ir.reg | rex_r) : ir.rm);
6495 }
6496 else
6497 {
6498 ir.ot = ir.dflag ? OT_LONG : OT_WORD;
6499 if (i386_record_lea_modrm (&ir))
6500 return -1;
6501 }
6502 if (!ir.regmap[X86_RECORD_R8_REGNUM])
6503 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6504 break;
6505
6506 case 0x0f02: /* lar */
6507 case 0x0f03: /* lsl */
6508 if (i386_record_modrm (&ir))
6509 return -1;
6510 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6511 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6512 break;
6513
6514 case 0x0f18:
6515 if (i386_record_modrm (&ir))
6516 return -1;
6517 if (ir.mod == 3 && ir.reg == 3)
6518 {
6519 ir.addr -= 3;
6520 opcode = opcode << 8 | ir.modrm;
6521 goto no_support;
6522 }
6523 break;
6524
6525 case 0x0f19:
6526 case 0x0f1a:
6527 case 0x0f1b:
6528 case 0x0f1c:
6529 case 0x0f1d:
6530 case 0x0f1e:
6531 case 0x0f1f:
6532 /* nop (multi byte) */
6533 break;
6534
6535 case 0x0f20: /* mov reg, crN */
6536 case 0x0f22: /* mov crN, reg */
6537 if (i386_record_modrm (&ir))
6538 return -1;
6539 if ((ir.modrm & 0xc0) != 0xc0)
6540 {
6541 ir.addr -= 3;
6542 opcode = opcode << 8 | ir.modrm;
6543 goto no_support;
6544 }
6545 switch (ir.reg)
6546 {
6547 case 0:
6548 case 2:
6549 case 3:
6550 case 4:
6551 case 8:
6552 if (opcode & 2)
6553 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6554 else
6555 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6556 break;
6557 default:
6558 ir.addr -= 3;
6559 opcode = opcode << 8 | ir.modrm;
6560 goto no_support;
6561 break;
6562 }
6563 break;
6564
6565 case 0x0f21: /* mov reg, drN */
6566 case 0x0f23: /* mov drN, reg */
6567 if (i386_record_modrm (&ir))
6568 return -1;
6569 if ((ir.modrm & 0xc0) != 0xc0 || ir.reg == 4
6570 || ir.reg == 5 || ir.reg >= 8)
6571 {
6572 ir.addr -= 3;
6573 opcode = opcode << 8 | ir.modrm;
6574 goto no_support;
6575 }
6576 if (opcode & 2)
6577 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6578 else
6579 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6580 break;
6581
6582 case 0x0f06: /* clts */
6583 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6584 break;
6585
6586 /* MMX 3DNow! SSE SSE2 SSE3 SSSE3 SSE4 */
6587
6588 case 0x0f0d: /* 3DNow! prefetch */
6589 break;
6590
6591 case 0x0f0e: /* 3DNow! femms */
6592 case 0x0f77: /* emms */
6593 if (i386_fpc_regnum_p (gdbarch, I387_FTAG_REGNUM(tdep)))
6594 goto no_support;
6595 record_full_arch_list_add_reg (ir.regcache, I387_FTAG_REGNUM(tdep));
6596 break;
6597
6598 case 0x0f0f: /* 3DNow! data */
6599 if (i386_record_modrm (&ir))
6600 return -1;
6601 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
6602 return -1;
6603 ir.addr++;
6604 switch (opcode8)
6605 {
6606 case 0x0c: /* 3DNow! pi2fw */
6607 case 0x0d: /* 3DNow! pi2fd */
6608 case 0x1c: /* 3DNow! pf2iw */
6609 case 0x1d: /* 3DNow! pf2id */
6610 case 0x8a: /* 3DNow! pfnacc */
6611 case 0x8e: /* 3DNow! pfpnacc */
6612 case 0x90: /* 3DNow! pfcmpge */
6613 case 0x94: /* 3DNow! pfmin */
6614 case 0x96: /* 3DNow! pfrcp */
6615 case 0x97: /* 3DNow! pfrsqrt */
6616 case 0x9a: /* 3DNow! pfsub */
6617 case 0x9e: /* 3DNow! pfadd */
6618 case 0xa0: /* 3DNow! pfcmpgt */
6619 case 0xa4: /* 3DNow! pfmax */
6620 case 0xa6: /* 3DNow! pfrcpit1 */
6621 case 0xa7: /* 3DNow! pfrsqit1 */
6622 case 0xaa: /* 3DNow! pfsubr */
6623 case 0xae: /* 3DNow! pfacc */
6624 case 0xb0: /* 3DNow! pfcmpeq */
6625 case 0xb4: /* 3DNow! pfmul */
6626 case 0xb6: /* 3DNow! pfrcpit2 */
6627 case 0xb7: /* 3DNow! pmulhrw */
6628 case 0xbb: /* 3DNow! pswapd */
6629 case 0xbf: /* 3DNow! pavgusb */
6630 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
6631 goto no_support_3dnow_data;
6632 record_full_arch_list_add_reg (ir.regcache, ir.reg);
6633 break;
6634
6635 default:
6636 no_support_3dnow_data:
6637 opcode = (opcode << 8) | opcode8;
6638 goto no_support;
6639 break;
6640 }
6641 break;
6642
6643 case 0x0faa: /* rsm */
6644 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6645 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6646 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6647 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6648 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
6649 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6650 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
6651 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6652 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6653 break;
6654
6655 case 0x0fae:
6656 if (i386_record_modrm (&ir))
6657 return -1;
6658 switch(ir.reg)
6659 {
6660 case 0: /* fxsave */
6661 {
6662 uint64_t tmpu64;
6663
6664 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6665 if (i386_record_lea_modrm_addr (&ir, &tmpu64))
6666 return -1;
6667 if (record_full_arch_list_add_mem (tmpu64, 512))
6668 return -1;
6669 }
6670 break;
6671
6672 case 1: /* fxrstor */
6673 {
6674 int i;
6675
6676 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6677
6678 for (i = I387_MM0_REGNUM (tdep);
6679 i386_mmx_regnum_p (gdbarch, i); i++)
6680 record_full_arch_list_add_reg (ir.regcache, i);
6681
6682 for (i = I387_XMM0_REGNUM (tdep);
6683 i386_xmm_regnum_p (gdbarch, i); i++)
6684 record_full_arch_list_add_reg (ir.regcache, i);
6685
6686 if (i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
6687 record_full_arch_list_add_reg (ir.regcache,
6688 I387_MXCSR_REGNUM(tdep));
6689
6690 for (i = I387_ST0_REGNUM (tdep);
6691 i386_fp_regnum_p (gdbarch, i); i++)
6692 record_full_arch_list_add_reg (ir.regcache, i);
6693
6694 for (i = I387_FCTRL_REGNUM (tdep);
6695 i386_fpc_regnum_p (gdbarch, i); i++)
6696 record_full_arch_list_add_reg (ir.regcache, i);
6697 }
6698 break;
6699
6700 case 2: /* ldmxcsr */
6701 if (!i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
6702 goto no_support;
6703 record_full_arch_list_add_reg (ir.regcache, I387_MXCSR_REGNUM(tdep));
6704 break;
6705
6706 case 3: /* stmxcsr */
6707 ir.ot = OT_LONG;
6708 if (i386_record_lea_modrm (&ir))
6709 return -1;
6710 break;
6711
6712 case 5: /* lfence */
6713 case 6: /* mfence */
6714 case 7: /* sfence clflush */
6715 break;
6716
6717 default:
6718 opcode = (opcode << 8) | ir.modrm;
6719 goto no_support;
6720 break;
6721 }
6722 break;
6723
6724 case 0x0fc3: /* movnti */
6725 ir.ot = (ir.dflag == 2) ? OT_QUAD : OT_LONG;
6726 if (i386_record_modrm (&ir))
6727 return -1;
6728 if (ir.mod == 3)
6729 goto no_support;
6730 ir.reg |= rex_r;
6731 if (i386_record_lea_modrm (&ir))
6732 return -1;
6733 break;
6734
6735 /* Add prefix to opcode. */
6736 case 0x0f10:
6737 case 0x0f11:
6738 case 0x0f12:
6739 case 0x0f13:
6740 case 0x0f14:
6741 case 0x0f15:
6742 case 0x0f16:
6743 case 0x0f17:
6744 case 0x0f28:
6745 case 0x0f29:
6746 case 0x0f2a:
6747 case 0x0f2b:
6748 case 0x0f2c:
6749 case 0x0f2d:
6750 case 0x0f2e:
6751 case 0x0f2f:
6752 case 0x0f38:
6753 case 0x0f39:
6754 case 0x0f3a:
6755 case 0x0f50:
6756 case 0x0f51:
6757 case 0x0f52:
6758 case 0x0f53:
6759 case 0x0f54:
6760 case 0x0f55:
6761 case 0x0f56:
6762 case 0x0f57:
6763 case 0x0f58:
6764 case 0x0f59:
6765 case 0x0f5a:
6766 case 0x0f5b:
6767 case 0x0f5c:
6768 case 0x0f5d:
6769 case 0x0f5e:
6770 case 0x0f5f:
6771 case 0x0f60:
6772 case 0x0f61:
6773 case 0x0f62:
6774 case 0x0f63:
6775 case 0x0f64:
6776 case 0x0f65:
6777 case 0x0f66:
6778 case 0x0f67:
6779 case 0x0f68:
6780 case 0x0f69:
6781 case 0x0f6a:
6782 case 0x0f6b:
6783 case 0x0f6c:
6784 case 0x0f6d:
6785 case 0x0f6e:
6786 case 0x0f6f:
6787 case 0x0f70:
6788 case 0x0f71:
6789 case 0x0f72:
6790 case 0x0f73:
6791 case 0x0f74:
6792 case 0x0f75:
6793 case 0x0f76:
6794 case 0x0f7c:
6795 case 0x0f7d:
6796 case 0x0f7e:
6797 case 0x0f7f:
6798 case 0x0fb8:
6799 case 0x0fc2:
6800 case 0x0fc4:
6801 case 0x0fc5:
6802 case 0x0fc6:
6803 case 0x0fd0:
6804 case 0x0fd1:
6805 case 0x0fd2:
6806 case 0x0fd3:
6807 case 0x0fd4:
6808 case 0x0fd5:
6809 case 0x0fd6:
6810 case 0x0fd7:
6811 case 0x0fd8:
6812 case 0x0fd9:
6813 case 0x0fda:
6814 case 0x0fdb:
6815 case 0x0fdc:
6816 case 0x0fdd:
6817 case 0x0fde:
6818 case 0x0fdf:
6819 case 0x0fe0:
6820 case 0x0fe1:
6821 case 0x0fe2:
6822 case 0x0fe3:
6823 case 0x0fe4:
6824 case 0x0fe5:
6825 case 0x0fe6:
6826 case 0x0fe7:
6827 case 0x0fe8:
6828 case 0x0fe9:
6829 case 0x0fea:
6830 case 0x0feb:
6831 case 0x0fec:
6832 case 0x0fed:
6833 case 0x0fee:
6834 case 0x0fef:
6835 case 0x0ff0:
6836 case 0x0ff1:
6837 case 0x0ff2:
6838 case 0x0ff3:
6839 case 0x0ff4:
6840 case 0x0ff5:
6841 case 0x0ff6:
6842 case 0x0ff7:
6843 case 0x0ff8:
6844 case 0x0ff9:
6845 case 0x0ffa:
6846 case 0x0ffb:
6847 case 0x0ffc:
6848 case 0x0ffd:
6849 case 0x0ffe:
6850 switch (prefixes)
6851 {
6852 case PREFIX_REPNZ:
6853 opcode |= 0xf20000;
6854 break;
6855 case PREFIX_DATA:
6856 opcode |= 0x660000;
6857 break;
6858 case PREFIX_REPZ:
6859 opcode |= 0xf30000;
6860 break;
6861 }
6862 reswitch_prefix_add:
6863 switch (opcode)
6864 {
6865 case 0x0f38:
6866 case 0x660f38:
6867 case 0xf20f38:
6868 case 0x0f3a:
6869 case 0x660f3a:
6870 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
6871 return -1;
6872 ir.addr++;
6873 opcode = (uint32_t) opcode8 | opcode << 8;
6874 goto reswitch_prefix_add;
6875 break;
6876
6877 case 0x0f10: /* movups */
6878 case 0x660f10: /* movupd */
6879 case 0xf30f10: /* movss */
6880 case 0xf20f10: /* movsd */
6881 case 0x0f12: /* movlps */
6882 case 0x660f12: /* movlpd */
6883 case 0xf30f12: /* movsldup */
6884 case 0xf20f12: /* movddup */
6885 case 0x0f14: /* unpcklps */
6886 case 0x660f14: /* unpcklpd */
6887 case 0x0f15: /* unpckhps */
6888 case 0x660f15: /* unpckhpd */
6889 case 0x0f16: /* movhps */
6890 case 0x660f16: /* movhpd */
6891 case 0xf30f16: /* movshdup */
6892 case 0x0f28: /* movaps */
6893 case 0x660f28: /* movapd */
6894 case 0x0f2a: /* cvtpi2ps */
6895 case 0x660f2a: /* cvtpi2pd */
6896 case 0xf30f2a: /* cvtsi2ss */
6897 case 0xf20f2a: /* cvtsi2sd */
6898 case 0x0f2c: /* cvttps2pi */
6899 case 0x660f2c: /* cvttpd2pi */
6900 case 0x0f2d: /* cvtps2pi */
6901 case 0x660f2d: /* cvtpd2pi */
6902 case 0x660f3800: /* pshufb */
6903 case 0x660f3801: /* phaddw */
6904 case 0x660f3802: /* phaddd */
6905 case 0x660f3803: /* phaddsw */
6906 case 0x660f3804: /* pmaddubsw */
6907 case 0x660f3805: /* phsubw */
6908 case 0x660f3806: /* phsubd */
6909 case 0x660f3807: /* phsubsw */
6910 case 0x660f3808: /* psignb */
6911 case 0x660f3809: /* psignw */
6912 case 0x660f380a: /* psignd */
6913 case 0x660f380b: /* pmulhrsw */
6914 case 0x660f3810: /* pblendvb */
6915 case 0x660f3814: /* blendvps */
6916 case 0x660f3815: /* blendvpd */
6917 case 0x660f381c: /* pabsb */
6918 case 0x660f381d: /* pabsw */
6919 case 0x660f381e: /* pabsd */
6920 case 0x660f3820: /* pmovsxbw */
6921 case 0x660f3821: /* pmovsxbd */
6922 case 0x660f3822: /* pmovsxbq */
6923 case 0x660f3823: /* pmovsxwd */
6924 case 0x660f3824: /* pmovsxwq */
6925 case 0x660f3825: /* pmovsxdq */
6926 case 0x660f3828: /* pmuldq */
6927 case 0x660f3829: /* pcmpeqq */
6928 case 0x660f382a: /* movntdqa */
6929 case 0x660f3a08: /* roundps */
6930 case 0x660f3a09: /* roundpd */
6931 case 0x660f3a0a: /* roundss */
6932 case 0x660f3a0b: /* roundsd */
6933 case 0x660f3a0c: /* blendps */
6934 case 0x660f3a0d: /* blendpd */
6935 case 0x660f3a0e: /* pblendw */
6936 case 0x660f3a0f: /* palignr */
6937 case 0x660f3a20: /* pinsrb */
6938 case 0x660f3a21: /* insertps */
6939 case 0x660f3a22: /* pinsrd pinsrq */
6940 case 0x660f3a40: /* dpps */
6941 case 0x660f3a41: /* dppd */
6942 case 0x660f3a42: /* mpsadbw */
6943 case 0x660f3a60: /* pcmpestrm */
6944 case 0x660f3a61: /* pcmpestri */
6945 case 0x660f3a62: /* pcmpistrm */
6946 case 0x660f3a63: /* pcmpistri */
6947 case 0x0f51: /* sqrtps */
6948 case 0x660f51: /* sqrtpd */
6949 case 0xf20f51: /* sqrtsd */
6950 case 0xf30f51: /* sqrtss */
6951 case 0x0f52: /* rsqrtps */
6952 case 0xf30f52: /* rsqrtss */
6953 case 0x0f53: /* rcpps */
6954 case 0xf30f53: /* rcpss */
6955 case 0x0f54: /* andps */
6956 case 0x660f54: /* andpd */
6957 case 0x0f55: /* andnps */
6958 case 0x660f55: /* andnpd */
6959 case 0x0f56: /* orps */
6960 case 0x660f56: /* orpd */
6961 case 0x0f57: /* xorps */
6962 case 0x660f57: /* xorpd */
6963 case 0x0f58: /* addps */
6964 case 0x660f58: /* addpd */
6965 case 0xf20f58: /* addsd */
6966 case 0xf30f58: /* addss */
6967 case 0x0f59: /* mulps */
6968 case 0x660f59: /* mulpd */
6969 case 0xf20f59: /* mulsd */
6970 case 0xf30f59: /* mulss */
6971 case 0x0f5a: /* cvtps2pd */
6972 case 0x660f5a: /* cvtpd2ps */
6973 case 0xf20f5a: /* cvtsd2ss */
6974 case 0xf30f5a: /* cvtss2sd */
6975 case 0x0f5b: /* cvtdq2ps */
6976 case 0x660f5b: /* cvtps2dq */
6977 case 0xf30f5b: /* cvttps2dq */
6978 case 0x0f5c: /* subps */
6979 case 0x660f5c: /* subpd */
6980 case 0xf20f5c: /* subsd */
6981 case 0xf30f5c: /* subss */
6982 case 0x0f5d: /* minps */
6983 case 0x660f5d: /* minpd */
6984 case 0xf20f5d: /* minsd */
6985 case 0xf30f5d: /* minss */
6986 case 0x0f5e: /* divps */
6987 case 0x660f5e: /* divpd */
6988 case 0xf20f5e: /* divsd */
6989 case 0xf30f5e: /* divss */
6990 case 0x0f5f: /* maxps */
6991 case 0x660f5f: /* maxpd */
6992 case 0xf20f5f: /* maxsd */
6993 case 0xf30f5f: /* maxss */
6994 case 0x660f60: /* punpcklbw */
6995 case 0x660f61: /* punpcklwd */
6996 case 0x660f62: /* punpckldq */
6997 case 0x660f63: /* packsswb */
6998 case 0x660f64: /* pcmpgtb */
6999 case 0x660f65: /* pcmpgtw */
7000 case 0x660f66: /* pcmpgtd */
7001 case 0x660f67: /* packuswb */
7002 case 0x660f68: /* punpckhbw */
7003 case 0x660f69: /* punpckhwd */
7004 case 0x660f6a: /* punpckhdq */
7005 case 0x660f6b: /* packssdw */
7006 case 0x660f6c: /* punpcklqdq */
7007 case 0x660f6d: /* punpckhqdq */
7008 case 0x660f6e: /* movd */
7009 case 0x660f6f: /* movdqa */
7010 case 0xf30f6f: /* movdqu */
7011 case 0x660f70: /* pshufd */
7012 case 0xf20f70: /* pshuflw */
7013 case 0xf30f70: /* pshufhw */
7014 case 0x660f74: /* pcmpeqb */
7015 case 0x660f75: /* pcmpeqw */
7016 case 0x660f76: /* pcmpeqd */
7017 case 0x660f7c: /* haddpd */
7018 case 0xf20f7c: /* haddps */
7019 case 0x660f7d: /* hsubpd */
7020 case 0xf20f7d: /* hsubps */
7021 case 0xf30f7e: /* movq */
7022 case 0x0fc2: /* cmpps */
7023 case 0x660fc2: /* cmppd */
7024 case 0xf20fc2: /* cmpsd */
7025 case 0xf30fc2: /* cmpss */
7026 case 0x660fc4: /* pinsrw */
7027 case 0x0fc6: /* shufps */
7028 case 0x660fc6: /* shufpd */
7029 case 0x660fd0: /* addsubpd */
7030 case 0xf20fd0: /* addsubps */
7031 case 0x660fd1: /* psrlw */
7032 case 0x660fd2: /* psrld */
7033 case 0x660fd3: /* psrlq */
7034 case 0x660fd4: /* paddq */
7035 case 0x660fd5: /* pmullw */
7036 case 0xf30fd6: /* movq2dq */
7037 case 0x660fd8: /* psubusb */
7038 case 0x660fd9: /* psubusw */
7039 case 0x660fda: /* pminub */
7040 case 0x660fdb: /* pand */
7041 case 0x660fdc: /* paddusb */
7042 case 0x660fdd: /* paddusw */
7043 case 0x660fde: /* pmaxub */
7044 case 0x660fdf: /* pandn */
7045 case 0x660fe0: /* pavgb */
7046 case 0x660fe1: /* psraw */
7047 case 0x660fe2: /* psrad */
7048 case 0x660fe3: /* pavgw */
7049 case 0x660fe4: /* pmulhuw */
7050 case 0x660fe5: /* pmulhw */
7051 case 0x660fe6: /* cvttpd2dq */
7052 case 0xf20fe6: /* cvtpd2dq */
7053 case 0xf30fe6: /* cvtdq2pd */
7054 case 0x660fe8: /* psubsb */
7055 case 0x660fe9: /* psubsw */
7056 case 0x660fea: /* pminsw */
7057 case 0x660feb: /* por */
7058 case 0x660fec: /* paddsb */
7059 case 0x660fed: /* paddsw */
7060 case 0x660fee: /* pmaxsw */
7061 case 0x660fef: /* pxor */
7062 case 0xf20ff0: /* lddqu */
7063 case 0x660ff1: /* psllw */
7064 case 0x660ff2: /* pslld */
7065 case 0x660ff3: /* psllq */
7066 case 0x660ff4: /* pmuludq */
7067 case 0x660ff5: /* pmaddwd */
7068 case 0x660ff6: /* psadbw */
7069 case 0x660ff8: /* psubb */
7070 case 0x660ff9: /* psubw */
7071 case 0x660ffa: /* psubd */
7072 case 0x660ffb: /* psubq */
7073 case 0x660ffc: /* paddb */
7074 case 0x660ffd: /* paddw */
7075 case 0x660ffe: /* paddd */
7076 if (i386_record_modrm (&ir))
7077 return -1;
7078 ir.reg |= rex_r;
7079 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.reg))
7080 goto no_support;
7081 record_full_arch_list_add_reg (ir.regcache,
7082 I387_XMM0_REGNUM (tdep) + ir.reg);
7083 if ((opcode & 0xfffffffc) == 0x660f3a60)
7084 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7085 break;
7086
7087 case 0x0f11: /* movups */
7088 case 0x660f11: /* movupd */
7089 case 0xf30f11: /* movss */
7090 case 0xf20f11: /* movsd */
7091 case 0x0f13: /* movlps */
7092 case 0x660f13: /* movlpd */
7093 case 0x0f17: /* movhps */
7094 case 0x660f17: /* movhpd */
7095 case 0x0f29: /* movaps */
7096 case 0x660f29: /* movapd */
7097 case 0x660f3a14: /* pextrb */
7098 case 0x660f3a15: /* pextrw */
7099 case 0x660f3a16: /* pextrd pextrq */
7100 case 0x660f3a17: /* extractps */
7101 case 0x660f7f: /* movdqa */
7102 case 0xf30f7f: /* movdqu */
7103 if (i386_record_modrm (&ir))
7104 return -1;
7105 if (ir.mod == 3)
7106 {
7107 if (opcode == 0x0f13 || opcode == 0x660f13
7108 || opcode == 0x0f17 || opcode == 0x660f17)
7109 goto no_support;
7110 ir.rm |= ir.rex_b;
7111 if (!i386_xmm_regnum_p (gdbarch,
7112 I387_XMM0_REGNUM (tdep) + ir.rm))
7113 goto no_support;
7114 record_full_arch_list_add_reg (ir.regcache,
7115 I387_XMM0_REGNUM (tdep) + ir.rm);
7116 }
7117 else
7118 {
7119 switch (opcode)
7120 {
7121 case 0x660f3a14:
7122 ir.ot = OT_BYTE;
7123 break;
7124 case 0x660f3a15:
7125 ir.ot = OT_WORD;
7126 break;
7127 case 0x660f3a16:
7128 ir.ot = OT_LONG;
7129 break;
7130 case 0x660f3a17:
7131 ir.ot = OT_QUAD;
7132 break;
7133 default:
7134 ir.ot = OT_DQUAD;
7135 break;
7136 }
7137 if (i386_record_lea_modrm (&ir))
7138 return -1;
7139 }
7140 break;
7141
7142 case 0x0f2b: /* movntps */
7143 case 0x660f2b: /* movntpd */
7144 case 0x0fe7: /* movntq */
7145 case 0x660fe7: /* movntdq */
7146 if (ir.mod == 3)
7147 goto no_support;
7148 if (opcode == 0x0fe7)
7149 ir.ot = OT_QUAD;
7150 else
7151 ir.ot = OT_DQUAD;
7152 if (i386_record_lea_modrm (&ir))
7153 return -1;
7154 break;
7155
7156 case 0xf30f2c: /* cvttss2si */
7157 case 0xf20f2c: /* cvttsd2si */
7158 case 0xf30f2d: /* cvtss2si */
7159 case 0xf20f2d: /* cvtsd2si */
7160 case 0xf20f38f0: /* crc32 */
7161 case 0xf20f38f1: /* crc32 */
7162 case 0x0f50: /* movmskps */
7163 case 0x660f50: /* movmskpd */
7164 case 0x0fc5: /* pextrw */
7165 case 0x660fc5: /* pextrw */
7166 case 0x0fd7: /* pmovmskb */
7167 case 0x660fd7: /* pmovmskb */
7168 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7169 break;
7170
7171 case 0x0f3800: /* pshufb */
7172 case 0x0f3801: /* phaddw */
7173 case 0x0f3802: /* phaddd */
7174 case 0x0f3803: /* phaddsw */
7175 case 0x0f3804: /* pmaddubsw */
7176 case 0x0f3805: /* phsubw */
7177 case 0x0f3806: /* phsubd */
7178 case 0x0f3807: /* phsubsw */
7179 case 0x0f3808: /* psignb */
7180 case 0x0f3809: /* psignw */
7181 case 0x0f380a: /* psignd */
7182 case 0x0f380b: /* pmulhrsw */
7183 case 0x0f381c: /* pabsb */
7184 case 0x0f381d: /* pabsw */
7185 case 0x0f381e: /* pabsd */
7186 case 0x0f382b: /* packusdw */
7187 case 0x0f3830: /* pmovzxbw */
7188 case 0x0f3831: /* pmovzxbd */
7189 case 0x0f3832: /* pmovzxbq */
7190 case 0x0f3833: /* pmovzxwd */
7191 case 0x0f3834: /* pmovzxwq */
7192 case 0x0f3835: /* pmovzxdq */
7193 case 0x0f3837: /* pcmpgtq */
7194 case 0x0f3838: /* pminsb */
7195 case 0x0f3839: /* pminsd */
7196 case 0x0f383a: /* pminuw */
7197 case 0x0f383b: /* pminud */
7198 case 0x0f383c: /* pmaxsb */
7199 case 0x0f383d: /* pmaxsd */
7200 case 0x0f383e: /* pmaxuw */
7201 case 0x0f383f: /* pmaxud */
7202 case 0x0f3840: /* pmulld */
7203 case 0x0f3841: /* phminposuw */
7204 case 0x0f3a0f: /* palignr */
7205 case 0x0f60: /* punpcklbw */
7206 case 0x0f61: /* punpcklwd */
7207 case 0x0f62: /* punpckldq */
7208 case 0x0f63: /* packsswb */
7209 case 0x0f64: /* pcmpgtb */
7210 case 0x0f65: /* pcmpgtw */
7211 case 0x0f66: /* pcmpgtd */
7212 case 0x0f67: /* packuswb */
7213 case 0x0f68: /* punpckhbw */
7214 case 0x0f69: /* punpckhwd */
7215 case 0x0f6a: /* punpckhdq */
7216 case 0x0f6b: /* packssdw */
7217 case 0x0f6e: /* movd */
7218 case 0x0f6f: /* movq */
7219 case 0x0f70: /* pshufw */
7220 case 0x0f74: /* pcmpeqb */
7221 case 0x0f75: /* pcmpeqw */
7222 case 0x0f76: /* pcmpeqd */
7223 case 0x0fc4: /* pinsrw */
7224 case 0x0fd1: /* psrlw */
7225 case 0x0fd2: /* psrld */
7226 case 0x0fd3: /* psrlq */
7227 case 0x0fd4: /* paddq */
7228 case 0x0fd5: /* pmullw */
7229 case 0xf20fd6: /* movdq2q */
7230 case 0x0fd8: /* psubusb */
7231 case 0x0fd9: /* psubusw */
7232 case 0x0fda: /* pminub */
7233 case 0x0fdb: /* pand */
7234 case 0x0fdc: /* paddusb */
7235 case 0x0fdd: /* paddusw */
7236 case 0x0fde: /* pmaxub */
7237 case 0x0fdf: /* pandn */
7238 case 0x0fe0: /* pavgb */
7239 case 0x0fe1: /* psraw */
7240 case 0x0fe2: /* psrad */
7241 case 0x0fe3: /* pavgw */
7242 case 0x0fe4: /* pmulhuw */
7243 case 0x0fe5: /* pmulhw */
7244 case 0x0fe8: /* psubsb */
7245 case 0x0fe9: /* psubsw */
7246 case 0x0fea: /* pminsw */
7247 case 0x0feb: /* por */
7248 case 0x0fec: /* paddsb */
7249 case 0x0fed: /* paddsw */
7250 case 0x0fee: /* pmaxsw */
7251 case 0x0fef: /* pxor */
7252 case 0x0ff1: /* psllw */
7253 case 0x0ff2: /* pslld */
7254 case 0x0ff3: /* psllq */
7255 case 0x0ff4: /* pmuludq */
7256 case 0x0ff5: /* pmaddwd */
7257 case 0x0ff6: /* psadbw */
7258 case 0x0ff8: /* psubb */
7259 case 0x0ff9: /* psubw */
7260 case 0x0ffa: /* psubd */
7261 case 0x0ffb: /* psubq */
7262 case 0x0ffc: /* paddb */
7263 case 0x0ffd: /* paddw */
7264 case 0x0ffe: /* paddd */
7265 if (i386_record_modrm (&ir))
7266 return -1;
7267 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7268 goto no_support;
7269 record_full_arch_list_add_reg (ir.regcache,
7270 I387_MM0_REGNUM (tdep) + ir.reg);
7271 break;
7272
7273 case 0x0f71: /* psllw */
7274 case 0x0f72: /* pslld */
7275 case 0x0f73: /* psllq */
7276 if (i386_record_modrm (&ir))
7277 return -1;
7278 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
7279 goto no_support;
7280 record_full_arch_list_add_reg (ir.regcache,
7281 I387_MM0_REGNUM (tdep) + ir.rm);
7282 break;
7283
7284 case 0x660f71: /* psllw */
7285 case 0x660f72: /* pslld */
7286 case 0x660f73: /* psllq */
7287 if (i386_record_modrm (&ir))
7288 return -1;
7289 ir.rm |= ir.rex_b;
7290 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.rm))
7291 goto no_support;
7292 record_full_arch_list_add_reg (ir.regcache,
7293 I387_XMM0_REGNUM (tdep) + ir.rm);
7294 break;
7295
7296 case 0x0f7e: /* movd */
7297 case 0x660f7e: /* movd */
7298 if (i386_record_modrm (&ir))
7299 return -1;
7300 if (ir.mod == 3)
7301 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7302 else
7303 {
7304 if (ir.dflag == 2)
7305 ir.ot = OT_QUAD;
7306 else
7307 ir.ot = OT_LONG;
7308 if (i386_record_lea_modrm (&ir))
7309 return -1;
7310 }
7311 break;
7312
7313 case 0x0f7f: /* movq */
7314 if (i386_record_modrm (&ir))
7315 return -1;
7316 if (ir.mod == 3)
7317 {
7318 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
7319 goto no_support;
7320 record_full_arch_list_add_reg (ir.regcache,
7321 I387_MM0_REGNUM (tdep) + ir.rm);
7322 }
7323 else
7324 {
7325 ir.ot = OT_QUAD;
7326 if (i386_record_lea_modrm (&ir))
7327 return -1;
7328 }
7329 break;
7330
7331 case 0xf30fb8: /* popcnt */
7332 if (i386_record_modrm (&ir))
7333 return -1;
7334 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
7335 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7336 break;
7337
7338 case 0x660fd6: /* movq */
7339 if (i386_record_modrm (&ir))
7340 return -1;
7341 if (ir.mod == 3)
7342 {
7343 ir.rm |= ir.rex_b;
7344 if (!i386_xmm_regnum_p (gdbarch,
7345 I387_XMM0_REGNUM (tdep) + ir.rm))
7346 goto no_support;
7347 record_full_arch_list_add_reg (ir.regcache,
7348 I387_XMM0_REGNUM (tdep) + ir.rm);
7349 }
7350 else
7351 {
7352 ir.ot = OT_QUAD;
7353 if (i386_record_lea_modrm (&ir))
7354 return -1;
7355 }
7356 break;
7357
7358 case 0x660f3817: /* ptest */
7359 case 0x0f2e: /* ucomiss */
7360 case 0x660f2e: /* ucomisd */
7361 case 0x0f2f: /* comiss */
7362 case 0x660f2f: /* comisd */
7363 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7364 break;
7365
7366 case 0x0ff7: /* maskmovq */
7367 regcache_raw_read_unsigned (ir.regcache,
7368 ir.regmap[X86_RECORD_REDI_REGNUM],
7369 &addr);
7370 if (record_full_arch_list_add_mem (addr, 64))
7371 return -1;
7372 break;
7373
7374 case 0x660ff7: /* maskmovdqu */
7375 regcache_raw_read_unsigned (ir.regcache,
7376 ir.regmap[X86_RECORD_REDI_REGNUM],
7377 &addr);
7378 if (record_full_arch_list_add_mem (addr, 128))
7379 return -1;
7380 break;
7381
7382 default:
7383 goto no_support;
7384 break;
7385 }
7386 break;
7387
7388 default:
7389 goto no_support;
7390 break;
7391 }
7392
7393 /* In the future, maybe still need to deal with need_dasm. */
7394 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REIP_REGNUM);
7395 if (record_full_arch_list_add_end ())
7396 return -1;
7397
7398 return 0;
7399
7400 no_support:
7401 printf_unfiltered (_("Process record does not support instruction 0x%02x "
7402 "at address %s.\n"),
7403 (unsigned int) (opcode),
7404 paddress (gdbarch, ir.orig_addr));
7405 return -1;
7406 }
7407
7408 static const int i386_record_regmap[] =
7409 {
7410 I386_EAX_REGNUM, I386_ECX_REGNUM, I386_EDX_REGNUM, I386_EBX_REGNUM,
7411 I386_ESP_REGNUM, I386_EBP_REGNUM, I386_ESI_REGNUM, I386_EDI_REGNUM,
7412 0, 0, 0, 0, 0, 0, 0, 0,
7413 I386_EIP_REGNUM, I386_EFLAGS_REGNUM, I386_CS_REGNUM, I386_SS_REGNUM,
7414 I386_DS_REGNUM, I386_ES_REGNUM, I386_FS_REGNUM, I386_GS_REGNUM
7415 };
7416
7417 /* Check that the given address appears suitable for a fast
7418 tracepoint, which on x86-64 means that we need an instruction of at
7419 least 5 bytes, so that we can overwrite it with a 4-byte-offset
7420 jump and not have to worry about program jumps to an address in the
7421 middle of the tracepoint jump. On x86, it may be possible to use
7422 4-byte jumps with a 2-byte offset to a trampoline located in the
7423 bottom 64 KiB of memory. Returns 1 if OK, and writes a size
7424 of instruction to replace, and 0 if not, plus an explanatory
7425 string. */
7426
7427 static int
7428 i386_fast_tracepoint_valid_at (struct gdbarch *gdbarch,
7429 CORE_ADDR addr, int *isize, char **msg)
7430 {
7431 int len, jumplen;
7432 static struct ui_file *gdb_null = NULL;
7433
7434 /* Ask the target for the minimum instruction length supported. */
7435 jumplen = target_get_min_fast_tracepoint_insn_len ();
7436
7437 if (jumplen < 0)
7438 {
7439 /* If the target does not support the get_min_fast_tracepoint_insn_len
7440 operation, assume that fast tracepoints will always be implemented
7441 using 4-byte relative jumps on both x86 and x86-64. */
7442 jumplen = 5;
7443 }
7444 else if (jumplen == 0)
7445 {
7446 /* If the target does support get_min_fast_tracepoint_insn_len but
7447 returns zero, then the IPA has not loaded yet. In this case,
7448 we optimistically assume that truncated 2-byte relative jumps
7449 will be available on x86, and compensate later if this assumption
7450 turns out to be incorrect. On x86-64 architectures, 4-byte relative
7451 jumps will always be used. */
7452 jumplen = (register_size (gdbarch, 0) == 8) ? 5 : 4;
7453 }
7454
7455 /* Dummy file descriptor for the disassembler. */
7456 if (!gdb_null)
7457 gdb_null = ui_file_new ();
7458
7459 /* Check for fit. */
7460 len = gdb_print_insn (gdbarch, addr, gdb_null, NULL);
7461 if (isize)
7462 *isize = len;
7463
7464 if (len < jumplen)
7465 {
7466 /* Return a bit of target-specific detail to add to the caller's
7467 generic failure message. */
7468 if (msg)
7469 *msg = xstrprintf (_("; instruction is only %d bytes long, "
7470 "need at least %d bytes for the jump"),
7471 len, jumplen);
7472 return 0;
7473 }
7474 else
7475 {
7476 if (msg)
7477 *msg = NULL;
7478 return 1;
7479 }
7480 }
7481
7482 static int
7483 i386_validate_tdesc_p (struct gdbarch_tdep *tdep,
7484 struct tdesc_arch_data *tdesc_data)
7485 {
7486 const struct target_desc *tdesc = tdep->tdesc;
7487 const struct tdesc_feature *feature_core;
7488 const struct tdesc_feature *feature_sse, *feature_avx;
7489 int i, num_regs, valid_p;
7490
7491 if (! tdesc_has_registers (tdesc))
7492 return 0;
7493
7494 /* Get core registers. */
7495 feature_core = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.core");
7496 if (feature_core == NULL)
7497 return 0;
7498
7499 /* Get SSE registers. */
7500 feature_sse = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.sse");
7501
7502 /* Try AVX registers. */
7503 feature_avx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx");
7504
7505 valid_p = 1;
7506
7507 /* The XCR0 bits. */
7508 if (feature_avx)
7509 {
7510 /* AVX register description requires SSE register description. */
7511 if (!feature_sse)
7512 return 0;
7513
7514 tdep->xcr0 = I386_XSTATE_AVX_MASK;
7515
7516 /* It may have been set by OSABI initialization function. */
7517 if (tdep->num_ymm_regs == 0)
7518 {
7519 tdep->ymmh_register_names = i386_ymmh_names;
7520 tdep->num_ymm_regs = 8;
7521 tdep->ymm0h_regnum = I386_YMM0H_REGNUM;
7522 }
7523
7524 for (i = 0; i < tdep->num_ymm_regs; i++)
7525 valid_p &= tdesc_numbered_register (feature_avx, tdesc_data,
7526 tdep->ymm0h_regnum + i,
7527 tdep->ymmh_register_names[i]);
7528 }
7529 else if (feature_sse)
7530 tdep->xcr0 = I386_XSTATE_SSE_MASK;
7531 else
7532 {
7533 tdep->xcr0 = I386_XSTATE_X87_MASK;
7534 tdep->num_xmm_regs = 0;
7535 }
7536
7537 num_regs = tdep->num_core_regs;
7538 for (i = 0; i < num_regs; i++)
7539 valid_p &= tdesc_numbered_register (feature_core, tdesc_data, i,
7540 tdep->register_names[i]);
7541
7542 if (feature_sse)
7543 {
7544 /* Need to include %mxcsr, so add one. */
7545 num_regs += tdep->num_xmm_regs + 1;
7546 for (; i < num_regs; i++)
7547 valid_p &= tdesc_numbered_register (feature_sse, tdesc_data, i,
7548 tdep->register_names[i]);
7549 }
7550
7551 return valid_p;
7552 }
7553
7554 \f
7555 static struct gdbarch *
7556 i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
7557 {
7558 struct gdbarch_tdep *tdep;
7559 struct gdbarch *gdbarch;
7560 struct tdesc_arch_data *tdesc_data;
7561 const struct target_desc *tdesc;
7562 int mm0_regnum;
7563 int ymm0_regnum;
7564
7565 /* If there is already a candidate, use it. */
7566 arches = gdbarch_list_lookup_by_info (arches, &info);
7567 if (arches != NULL)
7568 return arches->gdbarch;
7569
7570 /* Allocate space for the new architecture. */
7571 tdep = XCALLOC (1, struct gdbarch_tdep);
7572 gdbarch = gdbarch_alloc (&info, tdep);
7573
7574 /* General-purpose registers. */
7575 tdep->gregset = NULL;
7576 tdep->gregset_reg_offset = NULL;
7577 tdep->gregset_num_regs = I386_NUM_GREGS;
7578 tdep->sizeof_gregset = 0;
7579
7580 /* Floating-point registers. */
7581 tdep->fpregset = NULL;
7582 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
7583
7584 tdep->xstateregset = NULL;
7585
7586 /* The default settings include the FPU registers, the MMX registers
7587 and the SSE registers. This can be overridden for a specific ABI
7588 by adjusting the members `st0_regnum', `mm0_regnum' and
7589 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
7590 will show up in the output of "info all-registers". */
7591
7592 tdep->st0_regnum = I386_ST0_REGNUM;
7593
7594 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
7595 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
7596
7597 tdep->jb_pc_offset = -1;
7598 tdep->struct_return = pcc_struct_return;
7599 tdep->sigtramp_start = 0;
7600 tdep->sigtramp_end = 0;
7601 tdep->sigtramp_p = i386_sigtramp_p;
7602 tdep->sigcontext_addr = NULL;
7603 tdep->sc_reg_offset = NULL;
7604 tdep->sc_pc_offset = -1;
7605 tdep->sc_sp_offset = -1;
7606
7607 tdep->xsave_xcr0_offset = -1;
7608
7609 tdep->record_regmap = i386_record_regmap;
7610
7611 set_gdbarch_long_long_align_bit (gdbarch, 32);
7612
7613 /* The format used for `long double' on almost all i386 targets is
7614 the i387 extended floating-point format. In fact, of all targets
7615 in the GCC 2.95 tree, only OSF/1 does it different, and insists
7616 on having a `long double' that's not `long' at all. */
7617 set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext);
7618
7619 /* Although the i387 extended floating-point has only 80 significant
7620 bits, a `long double' actually takes up 96, probably to enforce
7621 alignment. */
7622 set_gdbarch_long_double_bit (gdbarch, 96);
7623
7624 /* Register numbers of various important registers. */
7625 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
7626 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
7627 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
7628 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
7629
7630 /* NOTE: kettenis/20040418: GCC does have two possible register
7631 numbering schemes on the i386: dbx and SVR4. These schemes
7632 differ in how they number %ebp, %esp, %eflags, and the
7633 floating-point registers, and are implemented by the arrays
7634 dbx_register_map[] and svr4_dbx_register_map in
7635 gcc/config/i386.c. GCC also defines a third numbering scheme in
7636 gcc/config/i386.c, which it designates as the "default" register
7637 map used in 64bit mode. This last register numbering scheme is
7638 implemented in dbx64_register_map, and is used for AMD64; see
7639 amd64-tdep.c.
7640
7641 Currently, each GCC i386 target always uses the same register
7642 numbering scheme across all its supported debugging formats
7643 i.e. SDB (COFF), stabs and DWARF 2. This is because
7644 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
7645 DBX_REGISTER_NUMBER macro which is defined by each target's
7646 respective config header in a manner independent of the requested
7647 output debugging format.
7648
7649 This does not match the arrangement below, which presumes that
7650 the SDB and stabs numbering schemes differ from the DWARF and
7651 DWARF 2 ones. The reason for this arrangement is that it is
7652 likely to get the numbering scheme for the target's
7653 default/native debug format right. For targets where GCC is the
7654 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
7655 targets where the native toolchain uses a different numbering
7656 scheme for a particular debug format (stabs-in-ELF on Solaris)
7657 the defaults below will have to be overridden, like
7658 i386_elf_init_abi() does. */
7659
7660 /* Use the dbx register numbering scheme for stabs and COFF. */
7661 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
7662 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
7663
7664 /* Use the SVR4 register numbering scheme for DWARF 2. */
7665 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
7666
7667 /* We don't set gdbarch_stab_reg_to_regnum, since ECOFF doesn't seem to
7668 be in use on any of the supported i386 targets. */
7669
7670 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
7671
7672 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
7673
7674 /* Call dummy code. */
7675 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
7676 set_gdbarch_push_dummy_code (gdbarch, i386_push_dummy_code);
7677 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
7678 set_gdbarch_frame_align (gdbarch, i386_frame_align);
7679
7680 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
7681 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
7682 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
7683
7684 set_gdbarch_return_value (gdbarch, i386_return_value);
7685
7686 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
7687
7688 /* Stack grows downward. */
7689 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
7690
7691 set_gdbarch_breakpoint_from_pc (gdbarch, i386_breakpoint_from_pc);
7692 set_gdbarch_decr_pc_after_break (gdbarch, 1);
7693 set_gdbarch_max_insn_length (gdbarch, I386_MAX_INSN_LEN);
7694
7695 set_gdbarch_frame_args_skip (gdbarch, 8);
7696
7697 set_gdbarch_print_insn (gdbarch, i386_print_insn);
7698
7699 set_gdbarch_dummy_id (gdbarch, i386_dummy_id);
7700
7701 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
7702
7703 /* Add the i386 register groups. */
7704 i386_add_reggroups (gdbarch);
7705 tdep->register_reggroup_p = i386_register_reggroup_p;
7706
7707 /* Helper for function argument information. */
7708 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
7709
7710 /* Hook the function epilogue frame unwinder. This unwinder is
7711 appended to the list first, so that it supercedes the DWARF
7712 unwinder in function epilogues (where the DWARF unwinder
7713 currently fails). */
7714 frame_unwind_append_unwinder (gdbarch, &i386_epilogue_frame_unwind);
7715
7716 /* Hook in the DWARF CFI frame unwinder. This unwinder is appended
7717 to the list before the prologue-based unwinders, so that DWARF
7718 CFI info will be used if it is available. */
7719 dwarf2_append_unwinders (gdbarch);
7720
7721 frame_base_set_default (gdbarch, &i386_frame_base);
7722
7723 /* Pseudo registers may be changed by amd64_init_abi. */
7724 set_gdbarch_pseudo_register_read_value (gdbarch,
7725 i386_pseudo_register_read_value);
7726 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
7727
7728 set_tdesc_pseudo_register_type (gdbarch, i386_pseudo_register_type);
7729 set_tdesc_pseudo_register_name (gdbarch, i386_pseudo_register_name);
7730
7731 /* Override the normal target description method to make the AVX
7732 upper halves anonymous. */
7733 set_gdbarch_register_name (gdbarch, i386_register_name);
7734
7735 /* Even though the default ABI only includes general-purpose registers,
7736 floating-point registers and the SSE registers, we have to leave a
7737 gap for the upper AVX registers. */
7738 set_gdbarch_num_regs (gdbarch, I386_AVX_NUM_REGS);
7739
7740 /* Get the x86 target description from INFO. */
7741 tdesc = info.target_desc;
7742 if (! tdesc_has_registers (tdesc))
7743 tdesc = tdesc_i386;
7744 tdep->tdesc = tdesc;
7745
7746 tdep->num_core_regs = I386_NUM_GREGS + I387_NUM_REGS;
7747 tdep->register_names = i386_register_names;
7748
7749 /* No upper YMM registers. */
7750 tdep->ymmh_register_names = NULL;
7751 tdep->ymm0h_regnum = -1;
7752
7753 tdep->num_byte_regs = 8;
7754 tdep->num_word_regs = 8;
7755 tdep->num_dword_regs = 0;
7756 tdep->num_mmx_regs = 8;
7757 tdep->num_ymm_regs = 0;
7758
7759 tdesc_data = tdesc_data_alloc ();
7760
7761 set_gdbarch_relocate_instruction (gdbarch, i386_relocate_instruction);
7762
7763 set_gdbarch_gen_return_address (gdbarch, i386_gen_return_address);
7764
7765 /* Hook in ABI-specific overrides, if they have been registered. */
7766 info.tdep_info = (void *) tdesc_data;
7767 gdbarch_init_osabi (info, gdbarch);
7768
7769 if (!i386_validate_tdesc_p (tdep, tdesc_data))
7770 {
7771 tdesc_data_cleanup (tdesc_data);
7772 xfree (tdep);
7773 gdbarch_free (gdbarch);
7774 return NULL;
7775 }
7776
7777 /* Wire in pseudo registers. Number of pseudo registers may be
7778 changed. */
7779 set_gdbarch_num_pseudo_regs (gdbarch, (tdep->num_byte_regs
7780 + tdep->num_word_regs
7781 + tdep->num_dword_regs
7782 + tdep->num_mmx_regs
7783 + tdep->num_ymm_regs));
7784
7785 /* Target description may be changed. */
7786 tdesc = tdep->tdesc;
7787
7788 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
7789
7790 /* Override gdbarch_register_reggroup_p set in tdesc_use_registers. */
7791 set_gdbarch_register_reggroup_p (gdbarch, tdep->register_reggroup_p);
7792
7793 /* Make %al the first pseudo-register. */
7794 tdep->al_regnum = gdbarch_num_regs (gdbarch);
7795 tdep->ax_regnum = tdep->al_regnum + tdep->num_byte_regs;
7796
7797 ymm0_regnum = tdep->ax_regnum + tdep->num_word_regs;
7798 if (tdep->num_dword_regs)
7799 {
7800 /* Support dword pseudo-register if it hasn't been disabled. */
7801 tdep->eax_regnum = ymm0_regnum;
7802 ymm0_regnum += tdep->num_dword_regs;
7803 }
7804 else
7805 tdep->eax_regnum = -1;
7806
7807 mm0_regnum = ymm0_regnum;
7808 if (tdep->num_ymm_regs)
7809 {
7810 /* Support YMM pseudo-register if it is available. */
7811 tdep->ymm0_regnum = ymm0_regnum;
7812 mm0_regnum += tdep->num_ymm_regs;
7813 }
7814 else
7815 tdep->ymm0_regnum = -1;
7816
7817 if (tdep->num_mmx_regs != 0)
7818 {
7819 /* Support MMX pseudo-register if MMX hasn't been disabled. */
7820 tdep->mm0_regnum = mm0_regnum;
7821 }
7822 else
7823 tdep->mm0_regnum = -1;
7824
7825 /* Hook in the legacy prologue-based unwinders last (fallback). */
7826 frame_unwind_append_unwinder (gdbarch, &i386_stack_tramp_frame_unwind);
7827 frame_unwind_append_unwinder (gdbarch, &i386_sigtramp_frame_unwind);
7828 frame_unwind_append_unwinder (gdbarch, &i386_frame_unwind);
7829
7830 /* If we have a register mapping, enable the generic core file
7831 support, unless it has already been enabled. */
7832 if (tdep->gregset_reg_offset
7833 && !gdbarch_regset_from_core_section_p (gdbarch))
7834 set_gdbarch_regset_from_core_section (gdbarch,
7835 i386_regset_from_core_section);
7836
7837 set_gdbarch_skip_permanent_breakpoint (gdbarch,
7838 i386_skip_permanent_breakpoint);
7839
7840 set_gdbarch_fast_tracepoint_valid_at (gdbarch,
7841 i386_fast_tracepoint_valid_at);
7842
7843 return gdbarch;
7844 }
7845
7846 static enum gdb_osabi
7847 i386_coff_osabi_sniffer (bfd *abfd)
7848 {
7849 if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
7850 || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
7851 return GDB_OSABI_GO32;
7852
7853 return GDB_OSABI_UNKNOWN;
7854 }
7855 \f
7856
7857 /* Provide a prototype to silence -Wmissing-prototypes. */
7858 void _initialize_i386_tdep (void);
7859
7860 void
7861 _initialize_i386_tdep (void)
7862 {
7863 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
7864
7865 /* Add the variable that controls the disassembly flavor. */
7866 add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
7867 &disassembly_flavor, _("\
7868 Set the disassembly flavor."), _("\
7869 Show the disassembly flavor."), _("\
7870 The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
7871 NULL,
7872 NULL, /* FIXME: i18n: */
7873 &setlist, &showlist);
7874
7875 /* Add the variable that controls the convention for returning
7876 structs. */
7877 add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
7878 &struct_convention, _("\
7879 Set the convention for returning small structs."), _("\
7880 Show the convention for returning small structs."), _("\
7881 Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
7882 is \"default\"."),
7883 NULL,
7884 NULL, /* FIXME: i18n: */
7885 &setlist, &showlist);
7886
7887 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
7888 i386_coff_osabi_sniffer);
7889
7890 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
7891 i386_svr4_init_abi);
7892 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_GO32,
7893 i386_go32_init_abi);
7894
7895 /* Initialize the i386-specific register groups. */
7896 i386_init_reggroups ();
7897
7898 /* Initialize the standard target descriptions. */
7899 initialize_tdesc_i386 ();
7900 initialize_tdesc_i386_mmx ();
7901 initialize_tdesc_i386_avx ();
7902
7903 /* Tell remote stub that we support XML target description. */
7904 register_remote_support_xml ("i386");
7905 }
This page took 0.318206 seconds and 5 git commands to generate.