Remove `expout*' globals from parser-defs.h
[deliverable/binutils-gdb.git] / gdb / i386-tdep.c
1 /* Intel 386 target-dependent stuff.
2
3 Copyright (C) 1988-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "opcode/i386.h"
22 #include "arch-utils.h"
23 #include "command.h"
24 #include "dummy-frame.h"
25 #include "dwarf2-frame.h"
26 #include "doublest.h"
27 #include "frame.h"
28 #include "frame-base.h"
29 #include "frame-unwind.h"
30 #include "inferior.h"
31 #include "gdbcmd.h"
32 #include "gdbcore.h"
33 #include "gdbtypes.h"
34 #include "objfiles.h"
35 #include "osabi.h"
36 #include "regcache.h"
37 #include "reggroups.h"
38 #include "regset.h"
39 #include "symfile.h"
40 #include "symtab.h"
41 #include "target.h"
42 #include "value.h"
43 #include "dis-asm.h"
44 #include "disasm.h"
45 #include "remote.h"
46 #include "exceptions.h"
47 #include "gdb_assert.h"
48 #include <string.h>
49
50 #include "i386-tdep.h"
51 #include "i387-tdep.h"
52 #include "i386-xstate.h"
53
54 #include "record.h"
55 #include "record-full.h"
56 #include <stdint.h>
57
58 #include "features/i386/i386.c"
59 #include "features/i386/i386-avx.c"
60 #include "features/i386/i386-mpx.c"
61 #include "features/i386/i386-mmx.c"
62
63 #include "ax.h"
64 #include "ax-gdb.h"
65
66 #include "stap-probe.h"
67 #include "user-regs.h"
68 #include "cli/cli-utils.h"
69 #include "expression.h"
70 #include "parser-defs.h"
71 #include <ctype.h>
72
73 /* Register names. */
74
75 static const char *i386_register_names[] =
76 {
77 "eax", "ecx", "edx", "ebx",
78 "esp", "ebp", "esi", "edi",
79 "eip", "eflags", "cs", "ss",
80 "ds", "es", "fs", "gs",
81 "st0", "st1", "st2", "st3",
82 "st4", "st5", "st6", "st7",
83 "fctrl", "fstat", "ftag", "fiseg",
84 "fioff", "foseg", "fooff", "fop",
85 "xmm0", "xmm1", "xmm2", "xmm3",
86 "xmm4", "xmm5", "xmm6", "xmm7",
87 "mxcsr"
88 };
89
90 static const char *i386_ymm_names[] =
91 {
92 "ymm0", "ymm1", "ymm2", "ymm3",
93 "ymm4", "ymm5", "ymm6", "ymm7",
94 };
95
96 static const char *i386_ymmh_names[] =
97 {
98 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
99 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
100 };
101
102 static const char *i386_mpx_names[] =
103 {
104 "bnd0raw", "bnd1raw", "bnd2raw", "bnd3raw", "bndcfgu", "bndstatus"
105 };
106
107 /* Register names for MPX pseudo-registers. */
108
109 static const char *i386_bnd_names[] =
110 {
111 "bnd0", "bnd1", "bnd2", "bnd3"
112 };
113
114 /* Register names for MMX pseudo-registers. */
115
116 static const char *i386_mmx_names[] =
117 {
118 "mm0", "mm1", "mm2", "mm3",
119 "mm4", "mm5", "mm6", "mm7"
120 };
121
122 /* Register names for byte pseudo-registers. */
123
124 static const char *i386_byte_names[] =
125 {
126 "al", "cl", "dl", "bl",
127 "ah", "ch", "dh", "bh"
128 };
129
130 /* Register names for word pseudo-registers. */
131
132 static const char *i386_word_names[] =
133 {
134 "ax", "cx", "dx", "bx",
135 "", "bp", "si", "di"
136 };
137
138 /* MMX register? */
139
140 static int
141 i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
142 {
143 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
144 int mm0_regnum = tdep->mm0_regnum;
145
146 if (mm0_regnum < 0)
147 return 0;
148
149 regnum -= mm0_regnum;
150 return regnum >= 0 && regnum < tdep->num_mmx_regs;
151 }
152
153 /* Byte register? */
154
155 int
156 i386_byte_regnum_p (struct gdbarch *gdbarch, int regnum)
157 {
158 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
159
160 regnum -= tdep->al_regnum;
161 return regnum >= 0 && regnum < tdep->num_byte_regs;
162 }
163
164 /* Word register? */
165
166 int
167 i386_word_regnum_p (struct gdbarch *gdbarch, int regnum)
168 {
169 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
170
171 regnum -= tdep->ax_regnum;
172 return regnum >= 0 && regnum < tdep->num_word_regs;
173 }
174
175 /* Dword register? */
176
177 int
178 i386_dword_regnum_p (struct gdbarch *gdbarch, int regnum)
179 {
180 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
181 int eax_regnum = tdep->eax_regnum;
182
183 if (eax_regnum < 0)
184 return 0;
185
186 regnum -= eax_regnum;
187 return regnum >= 0 && regnum < tdep->num_dword_regs;
188 }
189
190 static int
191 i386_ymmh_regnum_p (struct gdbarch *gdbarch, int regnum)
192 {
193 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
194 int ymm0h_regnum = tdep->ymm0h_regnum;
195
196 if (ymm0h_regnum < 0)
197 return 0;
198
199 regnum -= ymm0h_regnum;
200 return regnum >= 0 && regnum < tdep->num_ymm_regs;
201 }
202
203 /* AVX register? */
204
205 int
206 i386_ymm_regnum_p (struct gdbarch *gdbarch, int regnum)
207 {
208 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
209 int ymm0_regnum = tdep->ymm0_regnum;
210
211 if (ymm0_regnum < 0)
212 return 0;
213
214 regnum -= ymm0_regnum;
215 return regnum >= 0 && regnum < tdep->num_ymm_regs;
216 }
217
218 /* BND register? */
219
220 int
221 i386_bnd_regnum_p (struct gdbarch *gdbarch, int regnum)
222 {
223 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
224 int bnd0_regnum = tdep->bnd0_regnum;
225
226 if (bnd0_regnum < 0)
227 return 0;
228
229 regnum -= bnd0_regnum;
230 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
231 }
232
233 /* SSE register? */
234
235 int
236 i386_xmm_regnum_p (struct gdbarch *gdbarch, int regnum)
237 {
238 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
239 int num_xmm_regs = I387_NUM_XMM_REGS (tdep);
240
241 if (num_xmm_regs == 0)
242 return 0;
243
244 regnum -= I387_XMM0_REGNUM (tdep);
245 return regnum >= 0 && regnum < num_xmm_regs;
246 }
247
248 static int
249 i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
250 {
251 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
252
253 if (I387_NUM_XMM_REGS (tdep) == 0)
254 return 0;
255
256 return (regnum == I387_MXCSR_REGNUM (tdep));
257 }
258
259 /* FP register? */
260
261 int
262 i386_fp_regnum_p (struct gdbarch *gdbarch, int regnum)
263 {
264 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
265
266 if (I387_ST0_REGNUM (tdep) < 0)
267 return 0;
268
269 return (I387_ST0_REGNUM (tdep) <= regnum
270 && regnum < I387_FCTRL_REGNUM (tdep));
271 }
272
273 int
274 i386_fpc_regnum_p (struct gdbarch *gdbarch, int regnum)
275 {
276 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
277
278 if (I387_ST0_REGNUM (tdep) < 0)
279 return 0;
280
281 return (I387_FCTRL_REGNUM (tdep) <= regnum
282 && regnum < I387_XMM0_REGNUM (tdep));
283 }
284
285 /* BNDr (raw) register? */
286
287 static int
288 i386_bndr_regnum_p (struct gdbarch *gdbarch, int regnum)
289 {
290 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
291
292 if (I387_BND0R_REGNUM (tdep) < 0)
293 return 0;
294
295 regnum -= tdep->bnd0r_regnum;
296 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
297 }
298
299 /* BND control register? */
300
301 static int
302 i386_mpx_ctrl_regnum_p (struct gdbarch *gdbarch, int regnum)
303 {
304 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
305
306 if (I387_BNDCFGU_REGNUM (tdep) < 0)
307 return 0;
308
309 regnum -= I387_BNDCFGU_REGNUM (tdep);
310 return regnum >= 0 && regnum < I387_NUM_MPX_CTRL_REGS;
311 }
312
313 /* Return the name of register REGNUM, or the empty string if it is
314 an anonymous register. */
315
316 static const char *
317 i386_register_name (struct gdbarch *gdbarch, int regnum)
318 {
319 /* Hide the upper YMM registers. */
320 if (i386_ymmh_regnum_p (gdbarch, regnum))
321 return "";
322
323 return tdesc_register_name (gdbarch, regnum);
324 }
325
326 /* Return the name of register REGNUM. */
327
328 const char *
329 i386_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
330 {
331 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
332 if (i386_bnd_regnum_p (gdbarch, regnum))
333 return i386_bnd_names[regnum - tdep->bnd0_regnum];
334 if (i386_mmx_regnum_p (gdbarch, regnum))
335 return i386_mmx_names[regnum - I387_MM0_REGNUM (tdep)];
336 else if (i386_ymm_regnum_p (gdbarch, regnum))
337 return i386_ymm_names[regnum - tdep->ymm0_regnum];
338 else if (i386_byte_regnum_p (gdbarch, regnum))
339 return i386_byte_names[regnum - tdep->al_regnum];
340 else if (i386_word_regnum_p (gdbarch, regnum))
341 return i386_word_names[regnum - tdep->ax_regnum];
342
343 internal_error (__FILE__, __LINE__, _("invalid regnum"));
344 }
345
346 /* Convert a dbx register number REG to the appropriate register
347 number used by GDB. */
348
349 static int
350 i386_dbx_reg_to_regnum (struct gdbarch *gdbarch, int reg)
351 {
352 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
353
354 /* This implements what GCC calls the "default" register map
355 (dbx_register_map[]). */
356
357 if (reg >= 0 && reg <= 7)
358 {
359 /* General-purpose registers. The debug info calls %ebp
360 register 4, and %esp register 5. */
361 if (reg == 4)
362 return 5;
363 else if (reg == 5)
364 return 4;
365 else return reg;
366 }
367 else if (reg >= 12 && reg <= 19)
368 {
369 /* Floating-point registers. */
370 return reg - 12 + I387_ST0_REGNUM (tdep);
371 }
372 else if (reg >= 21 && reg <= 28)
373 {
374 /* SSE registers. */
375 int ymm0_regnum = tdep->ymm0_regnum;
376
377 if (ymm0_regnum >= 0
378 && i386_xmm_regnum_p (gdbarch, reg))
379 return reg - 21 + ymm0_regnum;
380 else
381 return reg - 21 + I387_XMM0_REGNUM (tdep);
382 }
383 else if (reg >= 29 && reg <= 36)
384 {
385 /* MMX registers. */
386 return reg - 29 + I387_MM0_REGNUM (tdep);
387 }
388
389 /* This will hopefully provoke a warning. */
390 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
391 }
392
393 /* Convert SVR4 register number REG to the appropriate register number
394 used by GDB. */
395
396 static int
397 i386_svr4_reg_to_regnum (struct gdbarch *gdbarch, int reg)
398 {
399 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
400
401 /* This implements the GCC register map that tries to be compatible
402 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
403
404 /* The SVR4 register numbering includes %eip and %eflags, and
405 numbers the floating point registers differently. */
406 if (reg >= 0 && reg <= 9)
407 {
408 /* General-purpose registers. */
409 return reg;
410 }
411 else if (reg >= 11 && reg <= 18)
412 {
413 /* Floating-point registers. */
414 return reg - 11 + I387_ST0_REGNUM (tdep);
415 }
416 else if (reg >= 21 && reg <= 36)
417 {
418 /* The SSE and MMX registers have the same numbers as with dbx. */
419 return i386_dbx_reg_to_regnum (gdbarch, reg);
420 }
421
422 switch (reg)
423 {
424 case 37: return I387_FCTRL_REGNUM (tdep);
425 case 38: return I387_FSTAT_REGNUM (tdep);
426 case 39: return I387_MXCSR_REGNUM (tdep);
427 case 40: return I386_ES_REGNUM;
428 case 41: return I386_CS_REGNUM;
429 case 42: return I386_SS_REGNUM;
430 case 43: return I386_DS_REGNUM;
431 case 44: return I386_FS_REGNUM;
432 case 45: return I386_GS_REGNUM;
433 }
434
435 /* This will hopefully provoke a warning. */
436 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
437 }
438
439 \f
440
441 /* This is the variable that is set with "set disassembly-flavor", and
442 its legitimate values. */
443 static const char att_flavor[] = "att";
444 static const char intel_flavor[] = "intel";
445 static const char *const valid_flavors[] =
446 {
447 att_flavor,
448 intel_flavor,
449 NULL
450 };
451 static const char *disassembly_flavor = att_flavor;
452 \f
453
454 /* Use the program counter to determine the contents and size of a
455 breakpoint instruction. Return a pointer to a string of bytes that
456 encode a breakpoint instruction, store the length of the string in
457 *LEN and optionally adjust *PC to point to the correct memory
458 location for inserting the breakpoint.
459
460 On the i386 we have a single breakpoint that fits in a single byte
461 and can be inserted anywhere.
462
463 This function is 64-bit safe. */
464
465 static const gdb_byte *
466 i386_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
467 {
468 static gdb_byte break_insn[] = { 0xcc }; /* int 3 */
469
470 *len = sizeof (break_insn);
471 return break_insn;
472 }
473 \f
474 /* Displaced instruction handling. */
475
476 /* Skip the legacy instruction prefixes in INSN.
477 Not all prefixes are valid for any particular insn
478 but we needn't care, the insn will fault if it's invalid.
479 The result is a pointer to the first opcode byte,
480 or NULL if we run off the end of the buffer. */
481
482 static gdb_byte *
483 i386_skip_prefixes (gdb_byte *insn, size_t max_len)
484 {
485 gdb_byte *end = insn + max_len;
486
487 while (insn < end)
488 {
489 switch (*insn)
490 {
491 case DATA_PREFIX_OPCODE:
492 case ADDR_PREFIX_OPCODE:
493 case CS_PREFIX_OPCODE:
494 case DS_PREFIX_OPCODE:
495 case ES_PREFIX_OPCODE:
496 case FS_PREFIX_OPCODE:
497 case GS_PREFIX_OPCODE:
498 case SS_PREFIX_OPCODE:
499 case LOCK_PREFIX_OPCODE:
500 case REPE_PREFIX_OPCODE:
501 case REPNE_PREFIX_OPCODE:
502 ++insn;
503 continue;
504 default:
505 return insn;
506 }
507 }
508
509 return NULL;
510 }
511
512 static int
513 i386_absolute_jmp_p (const gdb_byte *insn)
514 {
515 /* jmp far (absolute address in operand). */
516 if (insn[0] == 0xea)
517 return 1;
518
519 if (insn[0] == 0xff)
520 {
521 /* jump near, absolute indirect (/4). */
522 if ((insn[1] & 0x38) == 0x20)
523 return 1;
524
525 /* jump far, absolute indirect (/5). */
526 if ((insn[1] & 0x38) == 0x28)
527 return 1;
528 }
529
530 return 0;
531 }
532
533 /* Return non-zero if INSN is a jump, zero otherwise. */
534
535 static int
536 i386_jmp_p (const gdb_byte *insn)
537 {
538 /* jump short, relative. */
539 if (insn[0] == 0xeb)
540 return 1;
541
542 /* jump near, relative. */
543 if (insn[0] == 0xe9)
544 return 1;
545
546 return i386_absolute_jmp_p (insn);
547 }
548
549 static int
550 i386_absolute_call_p (const gdb_byte *insn)
551 {
552 /* call far, absolute. */
553 if (insn[0] == 0x9a)
554 return 1;
555
556 if (insn[0] == 0xff)
557 {
558 /* Call near, absolute indirect (/2). */
559 if ((insn[1] & 0x38) == 0x10)
560 return 1;
561
562 /* Call far, absolute indirect (/3). */
563 if ((insn[1] & 0x38) == 0x18)
564 return 1;
565 }
566
567 return 0;
568 }
569
570 static int
571 i386_ret_p (const gdb_byte *insn)
572 {
573 switch (insn[0])
574 {
575 case 0xc2: /* ret near, pop N bytes. */
576 case 0xc3: /* ret near */
577 case 0xca: /* ret far, pop N bytes. */
578 case 0xcb: /* ret far */
579 case 0xcf: /* iret */
580 return 1;
581
582 default:
583 return 0;
584 }
585 }
586
587 static int
588 i386_call_p (const gdb_byte *insn)
589 {
590 if (i386_absolute_call_p (insn))
591 return 1;
592
593 /* call near, relative. */
594 if (insn[0] == 0xe8)
595 return 1;
596
597 return 0;
598 }
599
600 /* Return non-zero if INSN is a system call, and set *LENGTHP to its
601 length in bytes. Otherwise, return zero. */
602
603 static int
604 i386_syscall_p (const gdb_byte *insn, int *lengthp)
605 {
606 /* Is it 'int $0x80'? */
607 if ((insn[0] == 0xcd && insn[1] == 0x80)
608 /* Or is it 'sysenter'? */
609 || (insn[0] == 0x0f && insn[1] == 0x34)
610 /* Or is it 'syscall'? */
611 || (insn[0] == 0x0f && insn[1] == 0x05))
612 {
613 *lengthp = 2;
614 return 1;
615 }
616
617 return 0;
618 }
619
620 /* The gdbarch insn_is_call method. */
621
622 static int
623 i386_insn_is_call (struct gdbarch *gdbarch, CORE_ADDR addr)
624 {
625 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
626
627 read_code (addr, buf, I386_MAX_INSN_LEN);
628 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
629
630 return i386_call_p (insn);
631 }
632
633 /* The gdbarch insn_is_ret method. */
634
635 static int
636 i386_insn_is_ret (struct gdbarch *gdbarch, CORE_ADDR addr)
637 {
638 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
639
640 read_code (addr, buf, I386_MAX_INSN_LEN);
641 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
642
643 return i386_ret_p (insn);
644 }
645
646 /* The gdbarch insn_is_jump method. */
647
648 static int
649 i386_insn_is_jump (struct gdbarch *gdbarch, CORE_ADDR addr)
650 {
651 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
652
653 read_code (addr, buf, I386_MAX_INSN_LEN);
654 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
655
656 return i386_jmp_p (insn);
657 }
658
659 /* Some kernels may run one past a syscall insn, so we have to cope.
660 Otherwise this is just simple_displaced_step_copy_insn. */
661
662 struct displaced_step_closure *
663 i386_displaced_step_copy_insn (struct gdbarch *gdbarch,
664 CORE_ADDR from, CORE_ADDR to,
665 struct regcache *regs)
666 {
667 size_t len = gdbarch_max_insn_length (gdbarch);
668 gdb_byte *buf = xmalloc (len);
669
670 read_memory (from, buf, len);
671
672 /* GDB may get control back after the insn after the syscall.
673 Presumably this is a kernel bug.
674 If this is a syscall, make sure there's a nop afterwards. */
675 {
676 int syscall_length;
677 gdb_byte *insn;
678
679 insn = i386_skip_prefixes (buf, len);
680 if (insn != NULL && i386_syscall_p (insn, &syscall_length))
681 insn[syscall_length] = NOP_OPCODE;
682 }
683
684 write_memory (to, buf, len);
685
686 if (debug_displaced)
687 {
688 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
689 paddress (gdbarch, from), paddress (gdbarch, to));
690 displaced_step_dump_bytes (gdb_stdlog, buf, len);
691 }
692
693 return (struct displaced_step_closure *) buf;
694 }
695
696 /* Fix up the state of registers and memory after having single-stepped
697 a displaced instruction. */
698
699 void
700 i386_displaced_step_fixup (struct gdbarch *gdbarch,
701 struct displaced_step_closure *closure,
702 CORE_ADDR from, CORE_ADDR to,
703 struct regcache *regs)
704 {
705 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
706
707 /* The offset we applied to the instruction's address.
708 This could well be negative (when viewed as a signed 32-bit
709 value), but ULONGEST won't reflect that, so take care when
710 applying it. */
711 ULONGEST insn_offset = to - from;
712
713 /* Since we use simple_displaced_step_copy_insn, our closure is a
714 copy of the instruction. */
715 gdb_byte *insn = (gdb_byte *) closure;
716 /* The start of the insn, needed in case we see some prefixes. */
717 gdb_byte *insn_start = insn;
718
719 if (debug_displaced)
720 fprintf_unfiltered (gdb_stdlog,
721 "displaced: fixup (%s, %s), "
722 "insn = 0x%02x 0x%02x ...\n",
723 paddress (gdbarch, from), paddress (gdbarch, to),
724 insn[0], insn[1]);
725
726 /* The list of issues to contend with here is taken from
727 resume_execution in arch/i386/kernel/kprobes.c, Linux 2.6.20.
728 Yay for Free Software! */
729
730 /* Relocate the %eip, if necessary. */
731
732 /* The instruction recognizers we use assume any leading prefixes
733 have been skipped. */
734 {
735 /* This is the size of the buffer in closure. */
736 size_t max_insn_len = gdbarch_max_insn_length (gdbarch);
737 gdb_byte *opcode = i386_skip_prefixes (insn, max_insn_len);
738 /* If there are too many prefixes, just ignore the insn.
739 It will fault when run. */
740 if (opcode != NULL)
741 insn = opcode;
742 }
743
744 /* Except in the case of absolute or indirect jump or call
745 instructions, or a return instruction, the new eip is relative to
746 the displaced instruction; make it relative. Well, signal
747 handler returns don't need relocation either, but we use the
748 value of %eip to recognize those; see below. */
749 if (! i386_absolute_jmp_p (insn)
750 && ! i386_absolute_call_p (insn)
751 && ! i386_ret_p (insn))
752 {
753 ULONGEST orig_eip;
754 int insn_len;
755
756 regcache_cooked_read_unsigned (regs, I386_EIP_REGNUM, &orig_eip);
757
758 /* A signal trampoline system call changes the %eip, resuming
759 execution of the main program after the signal handler has
760 returned. That makes them like 'return' instructions; we
761 shouldn't relocate %eip.
762
763 But most system calls don't, and we do need to relocate %eip.
764
765 Our heuristic for distinguishing these cases: if stepping
766 over the system call instruction left control directly after
767 the instruction, the we relocate --- control almost certainly
768 doesn't belong in the displaced copy. Otherwise, we assume
769 the instruction has put control where it belongs, and leave
770 it unrelocated. Goodness help us if there are PC-relative
771 system calls. */
772 if (i386_syscall_p (insn, &insn_len)
773 && orig_eip != to + (insn - insn_start) + insn_len
774 /* GDB can get control back after the insn after the syscall.
775 Presumably this is a kernel bug.
776 i386_displaced_step_copy_insn ensures its a nop,
777 we add one to the length for it. */
778 && orig_eip != to + (insn - insn_start) + insn_len + 1)
779 {
780 if (debug_displaced)
781 fprintf_unfiltered (gdb_stdlog,
782 "displaced: syscall changed %%eip; "
783 "not relocating\n");
784 }
785 else
786 {
787 ULONGEST eip = (orig_eip - insn_offset) & 0xffffffffUL;
788
789 /* If we just stepped over a breakpoint insn, we don't backup
790 the pc on purpose; this is to match behaviour without
791 stepping. */
792
793 regcache_cooked_write_unsigned (regs, I386_EIP_REGNUM, eip);
794
795 if (debug_displaced)
796 fprintf_unfiltered (gdb_stdlog,
797 "displaced: "
798 "relocated %%eip from %s to %s\n",
799 paddress (gdbarch, orig_eip),
800 paddress (gdbarch, eip));
801 }
802 }
803
804 /* If the instruction was PUSHFL, then the TF bit will be set in the
805 pushed value, and should be cleared. We'll leave this for later,
806 since GDB already messes up the TF flag when stepping over a
807 pushfl. */
808
809 /* If the instruction was a call, the return address now atop the
810 stack is the address following the copied instruction. We need
811 to make it the address following the original instruction. */
812 if (i386_call_p (insn))
813 {
814 ULONGEST esp;
815 ULONGEST retaddr;
816 const ULONGEST retaddr_len = 4;
817
818 regcache_cooked_read_unsigned (regs, I386_ESP_REGNUM, &esp);
819 retaddr = read_memory_unsigned_integer (esp, retaddr_len, byte_order);
820 retaddr = (retaddr - insn_offset) & 0xffffffffUL;
821 write_memory_unsigned_integer (esp, retaddr_len, byte_order, retaddr);
822
823 if (debug_displaced)
824 fprintf_unfiltered (gdb_stdlog,
825 "displaced: relocated return addr at %s to %s\n",
826 paddress (gdbarch, esp),
827 paddress (gdbarch, retaddr));
828 }
829 }
830
831 static void
832 append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
833 {
834 target_write_memory (*to, buf, len);
835 *to += len;
836 }
837
838 static void
839 i386_relocate_instruction (struct gdbarch *gdbarch,
840 CORE_ADDR *to, CORE_ADDR oldloc)
841 {
842 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
843 gdb_byte buf[I386_MAX_INSN_LEN];
844 int offset = 0, rel32, newrel;
845 int insn_length;
846 gdb_byte *insn = buf;
847
848 read_memory (oldloc, buf, I386_MAX_INSN_LEN);
849
850 insn_length = gdb_buffered_insn_length (gdbarch, insn,
851 I386_MAX_INSN_LEN, oldloc);
852
853 /* Get past the prefixes. */
854 insn = i386_skip_prefixes (insn, I386_MAX_INSN_LEN);
855
856 /* Adjust calls with 32-bit relative addresses as push/jump, with
857 the address pushed being the location where the original call in
858 the user program would return to. */
859 if (insn[0] == 0xe8)
860 {
861 gdb_byte push_buf[16];
862 unsigned int ret_addr;
863
864 /* Where "ret" in the original code will return to. */
865 ret_addr = oldloc + insn_length;
866 push_buf[0] = 0x68; /* pushq $... */
867 store_unsigned_integer (&push_buf[1], 4, byte_order, ret_addr);
868 /* Push the push. */
869 append_insns (to, 5, push_buf);
870
871 /* Convert the relative call to a relative jump. */
872 insn[0] = 0xe9;
873
874 /* Adjust the destination offset. */
875 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
876 newrel = (oldloc - *to) + rel32;
877 store_signed_integer (insn + 1, 4, byte_order, newrel);
878
879 if (debug_displaced)
880 fprintf_unfiltered (gdb_stdlog,
881 "Adjusted insn rel32=%s at %s to"
882 " rel32=%s at %s\n",
883 hex_string (rel32), paddress (gdbarch, oldloc),
884 hex_string (newrel), paddress (gdbarch, *to));
885
886 /* Write the adjusted jump into its displaced location. */
887 append_insns (to, 5, insn);
888 return;
889 }
890
891 /* Adjust jumps with 32-bit relative addresses. Calls are already
892 handled above. */
893 if (insn[0] == 0xe9)
894 offset = 1;
895 /* Adjust conditional jumps. */
896 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
897 offset = 2;
898
899 if (offset)
900 {
901 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
902 newrel = (oldloc - *to) + rel32;
903 store_signed_integer (insn + offset, 4, byte_order, newrel);
904 if (debug_displaced)
905 fprintf_unfiltered (gdb_stdlog,
906 "Adjusted insn rel32=%s at %s to"
907 " rel32=%s at %s\n",
908 hex_string (rel32), paddress (gdbarch, oldloc),
909 hex_string (newrel), paddress (gdbarch, *to));
910 }
911
912 /* Write the adjusted instructions into their displaced
913 location. */
914 append_insns (to, insn_length, buf);
915 }
916
917 \f
918 #ifdef I386_REGNO_TO_SYMMETRY
919 #error "The Sequent Symmetry is no longer supported."
920 #endif
921
922 /* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
923 and %esp "belong" to the calling function. Therefore these
924 registers should be saved if they're going to be modified. */
925
926 /* The maximum number of saved registers. This should include all
927 registers mentioned above, and %eip. */
928 #define I386_NUM_SAVED_REGS I386_NUM_GREGS
929
930 struct i386_frame_cache
931 {
932 /* Base address. */
933 CORE_ADDR base;
934 int base_p;
935 LONGEST sp_offset;
936 CORE_ADDR pc;
937
938 /* Saved registers. */
939 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
940 CORE_ADDR saved_sp;
941 int saved_sp_reg;
942 int pc_in_eax;
943
944 /* Stack space reserved for local variables. */
945 long locals;
946 };
947
948 /* Allocate and initialize a frame cache. */
949
950 static struct i386_frame_cache *
951 i386_alloc_frame_cache (void)
952 {
953 struct i386_frame_cache *cache;
954 int i;
955
956 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
957
958 /* Base address. */
959 cache->base_p = 0;
960 cache->base = 0;
961 cache->sp_offset = -4;
962 cache->pc = 0;
963
964 /* Saved registers. We initialize these to -1 since zero is a valid
965 offset (that's where %ebp is supposed to be stored). */
966 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
967 cache->saved_regs[i] = -1;
968 cache->saved_sp = 0;
969 cache->saved_sp_reg = -1;
970 cache->pc_in_eax = 0;
971
972 /* Frameless until proven otherwise. */
973 cache->locals = -1;
974
975 return cache;
976 }
977
978 /* If the instruction at PC is a jump, return the address of its
979 target. Otherwise, return PC. */
980
981 static CORE_ADDR
982 i386_follow_jump (struct gdbarch *gdbarch, CORE_ADDR pc)
983 {
984 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
985 gdb_byte op;
986 long delta = 0;
987 int data16 = 0;
988
989 if (target_read_code (pc, &op, 1))
990 return pc;
991
992 if (op == 0x66)
993 {
994 data16 = 1;
995
996 op = read_code_unsigned_integer (pc + 1, 1, byte_order);
997 }
998
999 switch (op)
1000 {
1001 case 0xe9:
1002 /* Relative jump: if data16 == 0, disp32, else disp16. */
1003 if (data16)
1004 {
1005 delta = read_memory_integer (pc + 2, 2, byte_order);
1006
1007 /* Include the size of the jmp instruction (including the
1008 0x66 prefix). */
1009 delta += 4;
1010 }
1011 else
1012 {
1013 delta = read_memory_integer (pc + 1, 4, byte_order);
1014
1015 /* Include the size of the jmp instruction. */
1016 delta += 5;
1017 }
1018 break;
1019 case 0xeb:
1020 /* Relative jump, disp8 (ignore data16). */
1021 delta = read_memory_integer (pc + data16 + 1, 1, byte_order);
1022
1023 delta += data16 + 2;
1024 break;
1025 }
1026
1027 return pc + delta;
1028 }
1029
1030 /* Check whether PC points at a prologue for a function returning a
1031 structure or union. If so, it updates CACHE and returns the
1032 address of the first instruction after the code sequence that
1033 removes the "hidden" argument from the stack or CURRENT_PC,
1034 whichever is smaller. Otherwise, return PC. */
1035
1036 static CORE_ADDR
1037 i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
1038 struct i386_frame_cache *cache)
1039 {
1040 /* Functions that return a structure or union start with:
1041
1042 popl %eax 0x58
1043 xchgl %eax, (%esp) 0x87 0x04 0x24
1044 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
1045
1046 (the System V compiler puts out the second `xchg' instruction,
1047 and the assembler doesn't try to optimize it, so the 'sib' form
1048 gets generated). This sequence is used to get the address of the
1049 return buffer for a function that returns a structure. */
1050 static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
1051 static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
1052 gdb_byte buf[4];
1053 gdb_byte op;
1054
1055 if (current_pc <= pc)
1056 return pc;
1057
1058 if (target_read_code (pc, &op, 1))
1059 return pc;
1060
1061 if (op != 0x58) /* popl %eax */
1062 return pc;
1063
1064 if (target_read_code (pc + 1, buf, 4))
1065 return pc;
1066
1067 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
1068 return pc;
1069
1070 if (current_pc == pc)
1071 {
1072 cache->sp_offset += 4;
1073 return current_pc;
1074 }
1075
1076 if (current_pc == pc + 1)
1077 {
1078 cache->pc_in_eax = 1;
1079 return current_pc;
1080 }
1081
1082 if (buf[1] == proto1[1])
1083 return pc + 4;
1084 else
1085 return pc + 5;
1086 }
1087
1088 static CORE_ADDR
1089 i386_skip_probe (CORE_ADDR pc)
1090 {
1091 /* A function may start with
1092
1093 pushl constant
1094 call _probe
1095 addl $4, %esp
1096
1097 followed by
1098
1099 pushl %ebp
1100
1101 etc. */
1102 gdb_byte buf[8];
1103 gdb_byte op;
1104
1105 if (target_read_code (pc, &op, 1))
1106 return pc;
1107
1108 if (op == 0x68 || op == 0x6a)
1109 {
1110 int delta;
1111
1112 /* Skip past the `pushl' instruction; it has either a one-byte or a
1113 four-byte operand, depending on the opcode. */
1114 if (op == 0x68)
1115 delta = 5;
1116 else
1117 delta = 2;
1118
1119 /* Read the following 8 bytes, which should be `call _probe' (6
1120 bytes) followed by `addl $4,%esp' (2 bytes). */
1121 read_memory (pc + delta, buf, sizeof (buf));
1122 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
1123 pc += delta + sizeof (buf);
1124 }
1125
1126 return pc;
1127 }
1128
1129 /* GCC 4.1 and later, can put code in the prologue to realign the
1130 stack pointer. Check whether PC points to such code, and update
1131 CACHE accordingly. Return the first instruction after the code
1132 sequence or CURRENT_PC, whichever is smaller. If we don't
1133 recognize the code, return PC. */
1134
1135 static CORE_ADDR
1136 i386_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1137 struct i386_frame_cache *cache)
1138 {
1139 /* There are 2 code sequences to re-align stack before the frame
1140 gets set up:
1141
1142 1. Use a caller-saved saved register:
1143
1144 leal 4(%esp), %reg
1145 andl $-XXX, %esp
1146 pushl -4(%reg)
1147
1148 2. Use a callee-saved saved register:
1149
1150 pushl %reg
1151 leal 8(%esp), %reg
1152 andl $-XXX, %esp
1153 pushl -4(%reg)
1154
1155 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
1156
1157 0x83 0xe4 0xf0 andl $-16, %esp
1158 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
1159 */
1160
1161 gdb_byte buf[14];
1162 int reg;
1163 int offset, offset_and;
1164 static int regnums[8] = {
1165 I386_EAX_REGNUM, /* %eax */
1166 I386_ECX_REGNUM, /* %ecx */
1167 I386_EDX_REGNUM, /* %edx */
1168 I386_EBX_REGNUM, /* %ebx */
1169 I386_ESP_REGNUM, /* %esp */
1170 I386_EBP_REGNUM, /* %ebp */
1171 I386_ESI_REGNUM, /* %esi */
1172 I386_EDI_REGNUM /* %edi */
1173 };
1174
1175 if (target_read_code (pc, buf, sizeof buf))
1176 return pc;
1177
1178 /* Check caller-saved saved register. The first instruction has
1179 to be "leal 4(%esp), %reg". */
1180 if (buf[0] == 0x8d && buf[2] == 0x24 && buf[3] == 0x4)
1181 {
1182 /* MOD must be binary 10 and R/M must be binary 100. */
1183 if ((buf[1] & 0xc7) != 0x44)
1184 return pc;
1185
1186 /* REG has register number. */
1187 reg = (buf[1] >> 3) & 7;
1188 offset = 4;
1189 }
1190 else
1191 {
1192 /* Check callee-saved saved register. The first instruction
1193 has to be "pushl %reg". */
1194 if ((buf[0] & 0xf8) != 0x50)
1195 return pc;
1196
1197 /* Get register. */
1198 reg = buf[0] & 0x7;
1199
1200 /* The next instruction has to be "leal 8(%esp), %reg". */
1201 if (buf[1] != 0x8d || buf[3] != 0x24 || buf[4] != 0x8)
1202 return pc;
1203
1204 /* MOD must be binary 10 and R/M must be binary 100. */
1205 if ((buf[2] & 0xc7) != 0x44)
1206 return pc;
1207
1208 /* REG has register number. Registers in pushl and leal have to
1209 be the same. */
1210 if (reg != ((buf[2] >> 3) & 7))
1211 return pc;
1212
1213 offset = 5;
1214 }
1215
1216 /* Rigister can't be %esp nor %ebp. */
1217 if (reg == 4 || reg == 5)
1218 return pc;
1219
1220 /* The next instruction has to be "andl $-XXX, %esp". */
1221 if (buf[offset + 1] != 0xe4
1222 || (buf[offset] != 0x81 && buf[offset] != 0x83))
1223 return pc;
1224
1225 offset_and = offset;
1226 offset += buf[offset] == 0x81 ? 6 : 3;
1227
1228 /* The next instruction has to be "pushl -4(%reg)". 8bit -4 is
1229 0xfc. REG must be binary 110 and MOD must be binary 01. */
1230 if (buf[offset] != 0xff
1231 || buf[offset + 2] != 0xfc
1232 || (buf[offset + 1] & 0xf8) != 0x70)
1233 return pc;
1234
1235 /* R/M has register. Registers in leal and pushl have to be the
1236 same. */
1237 if (reg != (buf[offset + 1] & 7))
1238 return pc;
1239
1240 if (current_pc > pc + offset_and)
1241 cache->saved_sp_reg = regnums[reg];
1242
1243 return min (pc + offset + 3, current_pc);
1244 }
1245
1246 /* Maximum instruction length we need to handle. */
1247 #define I386_MAX_MATCHED_INSN_LEN 6
1248
1249 /* Instruction description. */
1250 struct i386_insn
1251 {
1252 size_t len;
1253 gdb_byte insn[I386_MAX_MATCHED_INSN_LEN];
1254 gdb_byte mask[I386_MAX_MATCHED_INSN_LEN];
1255 };
1256
1257 /* Return whether instruction at PC matches PATTERN. */
1258
1259 static int
1260 i386_match_pattern (CORE_ADDR pc, struct i386_insn pattern)
1261 {
1262 gdb_byte op;
1263
1264 if (target_read_code (pc, &op, 1))
1265 return 0;
1266
1267 if ((op & pattern.mask[0]) == pattern.insn[0])
1268 {
1269 gdb_byte buf[I386_MAX_MATCHED_INSN_LEN - 1];
1270 int insn_matched = 1;
1271 size_t i;
1272
1273 gdb_assert (pattern.len > 1);
1274 gdb_assert (pattern.len <= I386_MAX_MATCHED_INSN_LEN);
1275
1276 if (target_read_code (pc + 1, buf, pattern.len - 1))
1277 return 0;
1278
1279 for (i = 1; i < pattern.len; i++)
1280 {
1281 if ((buf[i - 1] & pattern.mask[i]) != pattern.insn[i])
1282 insn_matched = 0;
1283 }
1284 return insn_matched;
1285 }
1286 return 0;
1287 }
1288
1289 /* Search for the instruction at PC in the list INSN_PATTERNS. Return
1290 the first instruction description that matches. Otherwise, return
1291 NULL. */
1292
1293 static struct i386_insn *
1294 i386_match_insn (CORE_ADDR pc, struct i386_insn *insn_patterns)
1295 {
1296 struct i386_insn *pattern;
1297
1298 for (pattern = insn_patterns; pattern->len > 0; pattern++)
1299 {
1300 if (i386_match_pattern (pc, *pattern))
1301 return pattern;
1302 }
1303
1304 return NULL;
1305 }
1306
1307 /* Return whether PC points inside a sequence of instructions that
1308 matches INSN_PATTERNS. */
1309
1310 static int
1311 i386_match_insn_block (CORE_ADDR pc, struct i386_insn *insn_patterns)
1312 {
1313 CORE_ADDR current_pc;
1314 int ix, i;
1315 struct i386_insn *insn;
1316
1317 insn = i386_match_insn (pc, insn_patterns);
1318 if (insn == NULL)
1319 return 0;
1320
1321 current_pc = pc;
1322 ix = insn - insn_patterns;
1323 for (i = ix - 1; i >= 0; i--)
1324 {
1325 current_pc -= insn_patterns[i].len;
1326
1327 if (!i386_match_pattern (current_pc, insn_patterns[i]))
1328 return 0;
1329 }
1330
1331 current_pc = pc + insn->len;
1332 for (insn = insn_patterns + ix + 1; insn->len > 0; insn++)
1333 {
1334 if (!i386_match_pattern (current_pc, *insn))
1335 return 0;
1336
1337 current_pc += insn->len;
1338 }
1339
1340 return 1;
1341 }
1342
1343 /* Some special instructions that might be migrated by GCC into the
1344 part of the prologue that sets up the new stack frame. Because the
1345 stack frame hasn't been setup yet, no registers have been saved
1346 yet, and only the scratch registers %eax, %ecx and %edx can be
1347 touched. */
1348
1349 struct i386_insn i386_frame_setup_skip_insns[] =
1350 {
1351 /* Check for `movb imm8, r' and `movl imm32, r'.
1352
1353 ??? Should we handle 16-bit operand-sizes here? */
1354
1355 /* `movb imm8, %al' and `movb imm8, %ah' */
1356 /* `movb imm8, %cl' and `movb imm8, %ch' */
1357 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
1358 /* `movb imm8, %dl' and `movb imm8, %dh' */
1359 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
1360 /* `movl imm32, %eax' and `movl imm32, %ecx' */
1361 { 5, { 0xb8 }, { 0xfe } },
1362 /* `movl imm32, %edx' */
1363 { 5, { 0xba }, { 0xff } },
1364
1365 /* Check for `mov imm32, r32'. Note that there is an alternative
1366 encoding for `mov m32, %eax'.
1367
1368 ??? Should we handle SIB adressing here?
1369 ??? Should we handle 16-bit operand-sizes here? */
1370
1371 /* `movl m32, %eax' */
1372 { 5, { 0xa1 }, { 0xff } },
1373 /* `movl m32, %eax' and `mov; m32, %ecx' */
1374 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
1375 /* `movl m32, %edx' */
1376 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
1377
1378 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
1379 Because of the symmetry, there are actually two ways to encode
1380 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
1381 opcode bytes 0x31 and 0x33 for `xorl'. */
1382
1383 /* `subl %eax, %eax' */
1384 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
1385 /* `subl %ecx, %ecx' */
1386 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
1387 /* `subl %edx, %edx' */
1388 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
1389 /* `xorl %eax, %eax' */
1390 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
1391 /* `xorl %ecx, %ecx' */
1392 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
1393 /* `xorl %edx, %edx' */
1394 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
1395 { 0 }
1396 };
1397
1398
1399 /* Check whether PC points to a no-op instruction. */
1400 static CORE_ADDR
1401 i386_skip_noop (CORE_ADDR pc)
1402 {
1403 gdb_byte op;
1404 int check = 1;
1405
1406 if (target_read_code (pc, &op, 1))
1407 return pc;
1408
1409 while (check)
1410 {
1411 check = 0;
1412 /* Ignore `nop' instruction. */
1413 if (op == 0x90)
1414 {
1415 pc += 1;
1416 if (target_read_code (pc, &op, 1))
1417 return pc;
1418 check = 1;
1419 }
1420 /* Ignore no-op instruction `mov %edi, %edi'.
1421 Microsoft system dlls often start with
1422 a `mov %edi,%edi' instruction.
1423 The 5 bytes before the function start are
1424 filled with `nop' instructions.
1425 This pattern can be used for hot-patching:
1426 The `mov %edi, %edi' instruction can be replaced by a
1427 near jump to the location of the 5 `nop' instructions
1428 which can be replaced by a 32-bit jump to anywhere
1429 in the 32-bit address space. */
1430
1431 else if (op == 0x8b)
1432 {
1433 if (target_read_code (pc + 1, &op, 1))
1434 return pc;
1435
1436 if (op == 0xff)
1437 {
1438 pc += 2;
1439 if (target_read_code (pc, &op, 1))
1440 return pc;
1441
1442 check = 1;
1443 }
1444 }
1445 }
1446 return pc;
1447 }
1448
1449 /* Check whether PC points at a code that sets up a new stack frame.
1450 If so, it updates CACHE and returns the address of the first
1451 instruction after the sequence that sets up the frame or LIMIT,
1452 whichever is smaller. If we don't recognize the code, return PC. */
1453
1454 static CORE_ADDR
1455 i386_analyze_frame_setup (struct gdbarch *gdbarch,
1456 CORE_ADDR pc, CORE_ADDR limit,
1457 struct i386_frame_cache *cache)
1458 {
1459 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1460 struct i386_insn *insn;
1461 gdb_byte op;
1462 int skip = 0;
1463
1464 if (limit <= pc)
1465 return limit;
1466
1467 if (target_read_code (pc, &op, 1))
1468 return pc;
1469
1470 if (op == 0x55) /* pushl %ebp */
1471 {
1472 /* Take into account that we've executed the `pushl %ebp' that
1473 starts this instruction sequence. */
1474 cache->saved_regs[I386_EBP_REGNUM] = 0;
1475 cache->sp_offset += 4;
1476 pc++;
1477
1478 /* If that's all, return now. */
1479 if (limit <= pc)
1480 return limit;
1481
1482 /* Check for some special instructions that might be migrated by
1483 GCC into the prologue and skip them. At this point in the
1484 prologue, code should only touch the scratch registers %eax,
1485 %ecx and %edx, so while the number of posibilities is sheer,
1486 it is limited.
1487
1488 Make sure we only skip these instructions if we later see the
1489 `movl %esp, %ebp' that actually sets up the frame. */
1490 while (pc + skip < limit)
1491 {
1492 insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
1493 if (insn == NULL)
1494 break;
1495
1496 skip += insn->len;
1497 }
1498
1499 /* If that's all, return now. */
1500 if (limit <= pc + skip)
1501 return limit;
1502
1503 if (target_read_code (pc + skip, &op, 1))
1504 return pc + skip;
1505
1506 /* The i386 prologue looks like
1507
1508 push %ebp
1509 mov %esp,%ebp
1510 sub $0x10,%esp
1511
1512 and a different prologue can be generated for atom.
1513
1514 push %ebp
1515 lea (%esp),%ebp
1516 lea -0x10(%esp),%esp
1517
1518 We handle both of them here. */
1519
1520 switch (op)
1521 {
1522 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
1523 case 0x8b:
1524 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
1525 != 0xec)
1526 return pc;
1527 pc += (skip + 2);
1528 break;
1529 case 0x89:
1530 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
1531 != 0xe5)
1532 return pc;
1533 pc += (skip + 2);
1534 break;
1535 case 0x8d: /* Check for 'lea (%ebp), %ebp'. */
1536 if (read_code_unsigned_integer (pc + skip + 1, 2, byte_order)
1537 != 0x242c)
1538 return pc;
1539 pc += (skip + 3);
1540 break;
1541 default:
1542 return pc;
1543 }
1544
1545 /* OK, we actually have a frame. We just don't know how large
1546 it is yet. Set its size to zero. We'll adjust it if
1547 necessary. We also now commit to skipping the special
1548 instructions mentioned before. */
1549 cache->locals = 0;
1550
1551 /* If that's all, return now. */
1552 if (limit <= pc)
1553 return limit;
1554
1555 /* Check for stack adjustment
1556
1557 subl $XXX, %esp
1558 or
1559 lea -XXX(%esp),%esp
1560
1561 NOTE: You can't subtract a 16-bit immediate from a 32-bit
1562 reg, so we don't have to worry about a data16 prefix. */
1563 if (target_read_code (pc, &op, 1))
1564 return pc;
1565 if (op == 0x83)
1566 {
1567 /* `subl' with 8-bit immediate. */
1568 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1569 /* Some instruction starting with 0x83 other than `subl'. */
1570 return pc;
1571
1572 /* `subl' with signed 8-bit immediate (though it wouldn't
1573 make sense to be negative). */
1574 cache->locals = read_code_integer (pc + 2, 1, byte_order);
1575 return pc + 3;
1576 }
1577 else if (op == 0x81)
1578 {
1579 /* Maybe it is `subl' with a 32-bit immediate. */
1580 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1581 /* Some instruction starting with 0x81 other than `subl'. */
1582 return pc;
1583
1584 /* It is `subl' with a 32-bit immediate. */
1585 cache->locals = read_code_integer (pc + 2, 4, byte_order);
1586 return pc + 6;
1587 }
1588 else if (op == 0x8d)
1589 {
1590 /* The ModR/M byte is 0x64. */
1591 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0x64)
1592 return pc;
1593 /* 'lea' with 8-bit displacement. */
1594 cache->locals = -1 * read_code_integer (pc + 3, 1, byte_order);
1595 return pc + 4;
1596 }
1597 else
1598 {
1599 /* Some instruction other than `subl' nor 'lea'. */
1600 return pc;
1601 }
1602 }
1603 else if (op == 0xc8) /* enter */
1604 {
1605 cache->locals = read_code_unsigned_integer (pc + 1, 2, byte_order);
1606 return pc + 4;
1607 }
1608
1609 return pc;
1610 }
1611
1612 /* Check whether PC points at code that saves registers on the stack.
1613 If so, it updates CACHE and returns the address of the first
1614 instruction after the register saves or CURRENT_PC, whichever is
1615 smaller. Otherwise, return PC. */
1616
1617 static CORE_ADDR
1618 i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
1619 struct i386_frame_cache *cache)
1620 {
1621 CORE_ADDR offset = 0;
1622 gdb_byte op;
1623 int i;
1624
1625 if (cache->locals > 0)
1626 offset -= cache->locals;
1627 for (i = 0; i < 8 && pc < current_pc; i++)
1628 {
1629 if (target_read_code (pc, &op, 1))
1630 return pc;
1631 if (op < 0x50 || op > 0x57)
1632 break;
1633
1634 offset -= 4;
1635 cache->saved_regs[op - 0x50] = offset;
1636 cache->sp_offset += 4;
1637 pc++;
1638 }
1639
1640 return pc;
1641 }
1642
1643 /* Do a full analysis of the prologue at PC and update CACHE
1644 accordingly. Bail out early if CURRENT_PC is reached. Return the
1645 address where the analysis stopped.
1646
1647 We handle these cases:
1648
1649 The startup sequence can be at the start of the function, or the
1650 function can start with a branch to startup code at the end.
1651
1652 %ebp can be set up with either the 'enter' instruction, or "pushl
1653 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
1654 once used in the System V compiler).
1655
1656 Local space is allocated just below the saved %ebp by either the
1657 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
1658 16-bit unsigned argument for space to allocate, and the 'addl'
1659 instruction could have either a signed byte, or 32-bit immediate.
1660
1661 Next, the registers used by this function are pushed. With the
1662 System V compiler they will always be in the order: %edi, %esi,
1663 %ebx (and sometimes a harmless bug causes it to also save but not
1664 restore %eax); however, the code below is willing to see the pushes
1665 in any order, and will handle up to 8 of them.
1666
1667 If the setup sequence is at the end of the function, then the next
1668 instruction will be a branch back to the start. */
1669
1670 static CORE_ADDR
1671 i386_analyze_prologue (struct gdbarch *gdbarch,
1672 CORE_ADDR pc, CORE_ADDR current_pc,
1673 struct i386_frame_cache *cache)
1674 {
1675 pc = i386_skip_noop (pc);
1676 pc = i386_follow_jump (gdbarch, pc);
1677 pc = i386_analyze_struct_return (pc, current_pc, cache);
1678 pc = i386_skip_probe (pc);
1679 pc = i386_analyze_stack_align (pc, current_pc, cache);
1680 pc = i386_analyze_frame_setup (gdbarch, pc, current_pc, cache);
1681 return i386_analyze_register_saves (pc, current_pc, cache);
1682 }
1683
1684 /* Return PC of first real instruction. */
1685
1686 static CORE_ADDR
1687 i386_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
1688 {
1689 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1690
1691 static gdb_byte pic_pat[6] =
1692 {
1693 0xe8, 0, 0, 0, 0, /* call 0x0 */
1694 0x5b, /* popl %ebx */
1695 };
1696 struct i386_frame_cache cache;
1697 CORE_ADDR pc;
1698 gdb_byte op;
1699 int i;
1700 CORE_ADDR func_addr;
1701
1702 if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
1703 {
1704 CORE_ADDR post_prologue_pc
1705 = skip_prologue_using_sal (gdbarch, func_addr);
1706 struct symtab *s = find_pc_symtab (func_addr);
1707
1708 /* Clang always emits a line note before the prologue and another
1709 one after. We trust clang to emit usable line notes. */
1710 if (post_prologue_pc
1711 && (s != NULL
1712 && s->producer != NULL
1713 && strncmp (s->producer, "clang ", sizeof ("clang ") - 1) == 0))
1714 return max (start_pc, post_prologue_pc);
1715 }
1716
1717 cache.locals = -1;
1718 pc = i386_analyze_prologue (gdbarch, start_pc, 0xffffffff, &cache);
1719 if (cache.locals < 0)
1720 return start_pc;
1721
1722 /* Found valid frame setup. */
1723
1724 /* The native cc on SVR4 in -K PIC mode inserts the following code
1725 to get the address of the global offset table (GOT) into register
1726 %ebx:
1727
1728 call 0x0
1729 popl %ebx
1730 movl %ebx,x(%ebp) (optional)
1731 addl y,%ebx
1732
1733 This code is with the rest of the prologue (at the end of the
1734 function), so we have to skip it to get to the first real
1735 instruction at the start of the function. */
1736
1737 for (i = 0; i < 6; i++)
1738 {
1739 if (target_read_code (pc + i, &op, 1))
1740 return pc;
1741
1742 if (pic_pat[i] != op)
1743 break;
1744 }
1745 if (i == 6)
1746 {
1747 int delta = 6;
1748
1749 if (target_read_code (pc + delta, &op, 1))
1750 return pc;
1751
1752 if (op == 0x89) /* movl %ebx, x(%ebp) */
1753 {
1754 op = read_code_unsigned_integer (pc + delta + 1, 1, byte_order);
1755
1756 if (op == 0x5d) /* One byte offset from %ebp. */
1757 delta += 3;
1758 else if (op == 0x9d) /* Four byte offset from %ebp. */
1759 delta += 6;
1760 else /* Unexpected instruction. */
1761 delta = 0;
1762
1763 if (target_read_code (pc + delta, &op, 1))
1764 return pc;
1765 }
1766
1767 /* addl y,%ebx */
1768 if (delta > 0 && op == 0x81
1769 && read_code_unsigned_integer (pc + delta + 1, 1, byte_order)
1770 == 0xc3)
1771 {
1772 pc += delta + 6;
1773 }
1774 }
1775
1776 /* If the function starts with a branch (to startup code at the end)
1777 the last instruction should bring us back to the first
1778 instruction of the real code. */
1779 if (i386_follow_jump (gdbarch, start_pc) != start_pc)
1780 pc = i386_follow_jump (gdbarch, pc);
1781
1782 return pc;
1783 }
1784
1785 /* Check that the code pointed to by PC corresponds to a call to
1786 __main, skip it if so. Return PC otherwise. */
1787
1788 CORE_ADDR
1789 i386_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1790 {
1791 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1792 gdb_byte op;
1793
1794 if (target_read_code (pc, &op, 1))
1795 return pc;
1796 if (op == 0xe8)
1797 {
1798 gdb_byte buf[4];
1799
1800 if (target_read_code (pc + 1, buf, sizeof buf) == 0)
1801 {
1802 /* Make sure address is computed correctly as a 32bit
1803 integer even if CORE_ADDR is 64 bit wide. */
1804 struct bound_minimal_symbol s;
1805 CORE_ADDR call_dest;
1806
1807 call_dest = pc + 5 + extract_signed_integer (buf, 4, byte_order);
1808 call_dest = call_dest & 0xffffffffU;
1809 s = lookup_minimal_symbol_by_pc (call_dest);
1810 if (s.minsym != NULL
1811 && MSYMBOL_LINKAGE_NAME (s.minsym) != NULL
1812 && strcmp (MSYMBOL_LINKAGE_NAME (s.minsym), "__main") == 0)
1813 pc += 5;
1814 }
1815 }
1816
1817 return pc;
1818 }
1819
1820 /* This function is 64-bit safe. */
1821
1822 static CORE_ADDR
1823 i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1824 {
1825 gdb_byte buf[8];
1826
1827 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
1828 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
1829 }
1830 \f
1831
1832 /* Normal frames. */
1833
1834 static void
1835 i386_frame_cache_1 (struct frame_info *this_frame,
1836 struct i386_frame_cache *cache)
1837 {
1838 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1839 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1840 gdb_byte buf[4];
1841 int i;
1842
1843 cache->pc = get_frame_func (this_frame);
1844
1845 /* In principle, for normal frames, %ebp holds the frame pointer,
1846 which holds the base address for the current stack frame.
1847 However, for functions that don't need it, the frame pointer is
1848 optional. For these "frameless" functions the frame pointer is
1849 actually the frame pointer of the calling frame. Signal
1850 trampolines are just a special case of a "frameless" function.
1851 They (usually) share their frame pointer with the frame that was
1852 in progress when the signal occurred. */
1853
1854 get_frame_register (this_frame, I386_EBP_REGNUM, buf);
1855 cache->base = extract_unsigned_integer (buf, 4, byte_order);
1856 if (cache->base == 0)
1857 {
1858 cache->base_p = 1;
1859 return;
1860 }
1861
1862 /* For normal frames, %eip is stored at 4(%ebp). */
1863 cache->saved_regs[I386_EIP_REGNUM] = 4;
1864
1865 if (cache->pc != 0)
1866 i386_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
1867 cache);
1868
1869 if (cache->locals < 0)
1870 {
1871 /* We didn't find a valid frame, which means that CACHE->base
1872 currently holds the frame pointer for our calling frame. If
1873 we're at the start of a function, or somewhere half-way its
1874 prologue, the function's frame probably hasn't been fully
1875 setup yet. Try to reconstruct the base address for the stack
1876 frame by looking at the stack pointer. For truly "frameless"
1877 functions this might work too. */
1878
1879 if (cache->saved_sp_reg != -1)
1880 {
1881 /* Saved stack pointer has been saved. */
1882 get_frame_register (this_frame, cache->saved_sp_reg, buf);
1883 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
1884
1885 /* We're halfway aligning the stack. */
1886 cache->base = ((cache->saved_sp - 4) & 0xfffffff0) - 4;
1887 cache->saved_regs[I386_EIP_REGNUM] = cache->saved_sp - 4;
1888
1889 /* This will be added back below. */
1890 cache->saved_regs[I386_EIP_REGNUM] -= cache->base;
1891 }
1892 else if (cache->pc != 0
1893 || target_read_code (get_frame_pc (this_frame), buf, 1))
1894 {
1895 /* We're in a known function, but did not find a frame
1896 setup. Assume that the function does not use %ebp.
1897 Alternatively, we may have jumped to an invalid
1898 address; in that case there is definitely no new
1899 frame in %ebp. */
1900 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
1901 cache->base = extract_unsigned_integer (buf, 4, byte_order)
1902 + cache->sp_offset;
1903 }
1904 else
1905 /* We're in an unknown function. We could not find the start
1906 of the function to analyze the prologue; our best option is
1907 to assume a typical frame layout with the caller's %ebp
1908 saved. */
1909 cache->saved_regs[I386_EBP_REGNUM] = 0;
1910 }
1911
1912 if (cache->saved_sp_reg != -1)
1913 {
1914 /* Saved stack pointer has been saved (but the SAVED_SP_REG
1915 register may be unavailable). */
1916 if (cache->saved_sp == 0
1917 && deprecated_frame_register_read (this_frame,
1918 cache->saved_sp_reg, buf))
1919 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
1920 }
1921 /* Now that we have the base address for the stack frame we can
1922 calculate the value of %esp in the calling frame. */
1923 else if (cache->saved_sp == 0)
1924 cache->saved_sp = cache->base + 8;
1925
1926 /* Adjust all the saved registers such that they contain addresses
1927 instead of offsets. */
1928 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
1929 if (cache->saved_regs[i] != -1)
1930 cache->saved_regs[i] += cache->base;
1931
1932 cache->base_p = 1;
1933 }
1934
1935 static struct i386_frame_cache *
1936 i386_frame_cache (struct frame_info *this_frame, void **this_cache)
1937 {
1938 volatile struct gdb_exception ex;
1939 struct i386_frame_cache *cache;
1940
1941 if (*this_cache)
1942 return *this_cache;
1943
1944 cache = i386_alloc_frame_cache ();
1945 *this_cache = cache;
1946
1947 TRY_CATCH (ex, RETURN_MASK_ERROR)
1948 {
1949 i386_frame_cache_1 (this_frame, cache);
1950 }
1951 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
1952 throw_exception (ex);
1953
1954 return cache;
1955 }
1956
1957 static void
1958 i386_frame_this_id (struct frame_info *this_frame, void **this_cache,
1959 struct frame_id *this_id)
1960 {
1961 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
1962
1963 if (!cache->base_p)
1964 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
1965 else if (cache->base == 0)
1966 {
1967 /* This marks the outermost frame. */
1968 }
1969 else
1970 {
1971 /* See the end of i386_push_dummy_call. */
1972 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
1973 }
1974 }
1975
1976 static enum unwind_stop_reason
1977 i386_frame_unwind_stop_reason (struct frame_info *this_frame,
1978 void **this_cache)
1979 {
1980 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
1981
1982 if (!cache->base_p)
1983 return UNWIND_UNAVAILABLE;
1984
1985 /* This marks the outermost frame. */
1986 if (cache->base == 0)
1987 return UNWIND_OUTERMOST;
1988
1989 return UNWIND_NO_REASON;
1990 }
1991
1992 static struct value *
1993 i386_frame_prev_register (struct frame_info *this_frame, void **this_cache,
1994 int regnum)
1995 {
1996 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
1997
1998 gdb_assert (regnum >= 0);
1999
2000 /* The System V ABI says that:
2001
2002 "The flags register contains the system flags, such as the
2003 direction flag and the carry flag. The direction flag must be
2004 set to the forward (that is, zero) direction before entry and
2005 upon exit from a function. Other user flags have no specified
2006 role in the standard calling sequence and are not preserved."
2007
2008 To guarantee the "upon exit" part of that statement we fake a
2009 saved flags register that has its direction flag cleared.
2010
2011 Note that GCC doesn't seem to rely on the fact that the direction
2012 flag is cleared after a function return; it always explicitly
2013 clears the flag before operations where it matters.
2014
2015 FIXME: kettenis/20030316: I'm not quite sure whether this is the
2016 right thing to do. The way we fake the flags register here makes
2017 it impossible to change it. */
2018
2019 if (regnum == I386_EFLAGS_REGNUM)
2020 {
2021 ULONGEST val;
2022
2023 val = get_frame_register_unsigned (this_frame, regnum);
2024 val &= ~(1 << 10);
2025 return frame_unwind_got_constant (this_frame, regnum, val);
2026 }
2027
2028 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
2029 return frame_unwind_got_register (this_frame, regnum, I386_EAX_REGNUM);
2030
2031 if (regnum == I386_ESP_REGNUM
2032 && (cache->saved_sp != 0 || cache->saved_sp_reg != -1))
2033 {
2034 /* If the SP has been saved, but we don't know where, then this
2035 means that SAVED_SP_REG register was found unavailable back
2036 when we built the cache. */
2037 if (cache->saved_sp == 0)
2038 return frame_unwind_got_register (this_frame, regnum,
2039 cache->saved_sp_reg);
2040 else
2041 return frame_unwind_got_constant (this_frame, regnum,
2042 cache->saved_sp);
2043 }
2044
2045 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
2046 return frame_unwind_got_memory (this_frame, regnum,
2047 cache->saved_regs[regnum]);
2048
2049 return frame_unwind_got_register (this_frame, regnum, regnum);
2050 }
2051
2052 static const struct frame_unwind i386_frame_unwind =
2053 {
2054 NORMAL_FRAME,
2055 i386_frame_unwind_stop_reason,
2056 i386_frame_this_id,
2057 i386_frame_prev_register,
2058 NULL,
2059 default_frame_sniffer
2060 };
2061
2062 /* Normal frames, but in a function epilogue. */
2063
2064 /* The epilogue is defined here as the 'ret' instruction, which will
2065 follow any instruction such as 'leave' or 'pop %ebp' that destroys
2066 the function's stack frame. */
2067
2068 static int
2069 i386_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2070 {
2071 gdb_byte insn;
2072 struct symtab *symtab;
2073
2074 symtab = find_pc_symtab (pc);
2075 if (symtab && symtab->epilogue_unwind_valid)
2076 return 0;
2077
2078 if (target_read_memory (pc, &insn, 1))
2079 return 0; /* Can't read memory at pc. */
2080
2081 if (insn != 0xc3) /* 'ret' instruction. */
2082 return 0;
2083
2084 return 1;
2085 }
2086
2087 static int
2088 i386_epilogue_frame_sniffer (const struct frame_unwind *self,
2089 struct frame_info *this_frame,
2090 void **this_prologue_cache)
2091 {
2092 if (frame_relative_level (this_frame) == 0)
2093 return i386_in_function_epilogue_p (get_frame_arch (this_frame),
2094 get_frame_pc (this_frame));
2095 else
2096 return 0;
2097 }
2098
2099 static struct i386_frame_cache *
2100 i386_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
2101 {
2102 volatile struct gdb_exception ex;
2103 struct i386_frame_cache *cache;
2104 CORE_ADDR sp;
2105
2106 if (*this_cache)
2107 return *this_cache;
2108
2109 cache = i386_alloc_frame_cache ();
2110 *this_cache = cache;
2111
2112 TRY_CATCH (ex, RETURN_MASK_ERROR)
2113 {
2114 cache->pc = get_frame_func (this_frame);
2115
2116 /* At this point the stack looks as if we just entered the
2117 function, with the return address at the top of the
2118 stack. */
2119 sp = get_frame_register_unsigned (this_frame, I386_ESP_REGNUM);
2120 cache->base = sp + cache->sp_offset;
2121 cache->saved_sp = cache->base + 8;
2122 cache->saved_regs[I386_EIP_REGNUM] = cache->base + 4;
2123
2124 cache->base_p = 1;
2125 }
2126 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
2127 throw_exception (ex);
2128
2129 return cache;
2130 }
2131
2132 static enum unwind_stop_reason
2133 i386_epilogue_frame_unwind_stop_reason (struct frame_info *this_frame,
2134 void **this_cache)
2135 {
2136 struct i386_frame_cache *cache =
2137 i386_epilogue_frame_cache (this_frame, this_cache);
2138
2139 if (!cache->base_p)
2140 return UNWIND_UNAVAILABLE;
2141
2142 return UNWIND_NO_REASON;
2143 }
2144
2145 static void
2146 i386_epilogue_frame_this_id (struct frame_info *this_frame,
2147 void **this_cache,
2148 struct frame_id *this_id)
2149 {
2150 struct i386_frame_cache *cache =
2151 i386_epilogue_frame_cache (this_frame, this_cache);
2152
2153 if (!cache->base_p)
2154 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2155 else
2156 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2157 }
2158
2159 static struct value *
2160 i386_epilogue_frame_prev_register (struct frame_info *this_frame,
2161 void **this_cache, int regnum)
2162 {
2163 /* Make sure we've initialized the cache. */
2164 i386_epilogue_frame_cache (this_frame, this_cache);
2165
2166 return i386_frame_prev_register (this_frame, this_cache, regnum);
2167 }
2168
2169 static const struct frame_unwind i386_epilogue_frame_unwind =
2170 {
2171 NORMAL_FRAME,
2172 i386_epilogue_frame_unwind_stop_reason,
2173 i386_epilogue_frame_this_id,
2174 i386_epilogue_frame_prev_register,
2175 NULL,
2176 i386_epilogue_frame_sniffer
2177 };
2178 \f
2179
2180 /* Stack-based trampolines. */
2181
2182 /* These trampolines are used on cross x86 targets, when taking the
2183 address of a nested function. When executing these trampolines,
2184 no stack frame is set up, so we are in a similar situation as in
2185 epilogues and i386_epilogue_frame_this_id can be re-used. */
2186
2187 /* Static chain passed in register. */
2188
2189 struct i386_insn i386_tramp_chain_in_reg_insns[] =
2190 {
2191 /* `movl imm32, %eax' and `movl imm32, %ecx' */
2192 { 5, { 0xb8 }, { 0xfe } },
2193
2194 /* `jmp imm32' */
2195 { 5, { 0xe9 }, { 0xff } },
2196
2197 {0}
2198 };
2199
2200 /* Static chain passed on stack (when regparm=3). */
2201
2202 struct i386_insn i386_tramp_chain_on_stack_insns[] =
2203 {
2204 /* `push imm32' */
2205 { 5, { 0x68 }, { 0xff } },
2206
2207 /* `jmp imm32' */
2208 { 5, { 0xe9 }, { 0xff } },
2209
2210 {0}
2211 };
2212
2213 /* Return whether PC points inside a stack trampoline. */
2214
2215 static int
2216 i386_in_stack_tramp_p (CORE_ADDR pc)
2217 {
2218 gdb_byte insn;
2219 const char *name;
2220
2221 /* A stack trampoline is detected if no name is associated
2222 to the current pc and if it points inside a trampoline
2223 sequence. */
2224
2225 find_pc_partial_function (pc, &name, NULL, NULL);
2226 if (name)
2227 return 0;
2228
2229 if (target_read_memory (pc, &insn, 1))
2230 return 0;
2231
2232 if (!i386_match_insn_block (pc, i386_tramp_chain_in_reg_insns)
2233 && !i386_match_insn_block (pc, i386_tramp_chain_on_stack_insns))
2234 return 0;
2235
2236 return 1;
2237 }
2238
2239 static int
2240 i386_stack_tramp_frame_sniffer (const struct frame_unwind *self,
2241 struct frame_info *this_frame,
2242 void **this_cache)
2243 {
2244 if (frame_relative_level (this_frame) == 0)
2245 return i386_in_stack_tramp_p (get_frame_pc (this_frame));
2246 else
2247 return 0;
2248 }
2249
2250 static const struct frame_unwind i386_stack_tramp_frame_unwind =
2251 {
2252 NORMAL_FRAME,
2253 i386_epilogue_frame_unwind_stop_reason,
2254 i386_epilogue_frame_this_id,
2255 i386_epilogue_frame_prev_register,
2256 NULL,
2257 i386_stack_tramp_frame_sniffer
2258 };
2259 \f
2260 /* Generate a bytecode expression to get the value of the saved PC. */
2261
2262 static void
2263 i386_gen_return_address (struct gdbarch *gdbarch,
2264 struct agent_expr *ax, struct axs_value *value,
2265 CORE_ADDR scope)
2266 {
2267 /* The following sequence assumes the traditional use of the base
2268 register. */
2269 ax_reg (ax, I386_EBP_REGNUM);
2270 ax_const_l (ax, 4);
2271 ax_simple (ax, aop_add);
2272 value->type = register_type (gdbarch, I386_EIP_REGNUM);
2273 value->kind = axs_lvalue_memory;
2274 }
2275 \f
2276
2277 /* Signal trampolines. */
2278
2279 static struct i386_frame_cache *
2280 i386_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
2281 {
2282 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2283 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2284 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2285 volatile struct gdb_exception ex;
2286 struct i386_frame_cache *cache;
2287 CORE_ADDR addr;
2288 gdb_byte buf[4];
2289
2290 if (*this_cache)
2291 return *this_cache;
2292
2293 cache = i386_alloc_frame_cache ();
2294
2295 TRY_CATCH (ex, RETURN_MASK_ERROR)
2296 {
2297 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2298 cache->base = extract_unsigned_integer (buf, 4, byte_order) - 4;
2299
2300 addr = tdep->sigcontext_addr (this_frame);
2301 if (tdep->sc_reg_offset)
2302 {
2303 int i;
2304
2305 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
2306
2307 for (i = 0; i < tdep->sc_num_regs; i++)
2308 if (tdep->sc_reg_offset[i] != -1)
2309 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
2310 }
2311 else
2312 {
2313 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
2314 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
2315 }
2316
2317 cache->base_p = 1;
2318 }
2319 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
2320 throw_exception (ex);
2321
2322 *this_cache = cache;
2323 return cache;
2324 }
2325
2326 static enum unwind_stop_reason
2327 i386_sigtramp_frame_unwind_stop_reason (struct frame_info *this_frame,
2328 void **this_cache)
2329 {
2330 struct i386_frame_cache *cache =
2331 i386_sigtramp_frame_cache (this_frame, this_cache);
2332
2333 if (!cache->base_p)
2334 return UNWIND_UNAVAILABLE;
2335
2336 return UNWIND_NO_REASON;
2337 }
2338
2339 static void
2340 i386_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache,
2341 struct frame_id *this_id)
2342 {
2343 struct i386_frame_cache *cache =
2344 i386_sigtramp_frame_cache (this_frame, this_cache);
2345
2346 if (!cache->base_p)
2347 (*this_id) = frame_id_build_unavailable_stack (get_frame_pc (this_frame));
2348 else
2349 {
2350 /* See the end of i386_push_dummy_call. */
2351 (*this_id) = frame_id_build (cache->base + 8, get_frame_pc (this_frame));
2352 }
2353 }
2354
2355 static struct value *
2356 i386_sigtramp_frame_prev_register (struct frame_info *this_frame,
2357 void **this_cache, int regnum)
2358 {
2359 /* Make sure we've initialized the cache. */
2360 i386_sigtramp_frame_cache (this_frame, this_cache);
2361
2362 return i386_frame_prev_register (this_frame, this_cache, regnum);
2363 }
2364
2365 static int
2366 i386_sigtramp_frame_sniffer (const struct frame_unwind *self,
2367 struct frame_info *this_frame,
2368 void **this_prologue_cache)
2369 {
2370 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
2371
2372 /* We shouldn't even bother if we don't have a sigcontext_addr
2373 handler. */
2374 if (tdep->sigcontext_addr == NULL)
2375 return 0;
2376
2377 if (tdep->sigtramp_p != NULL)
2378 {
2379 if (tdep->sigtramp_p (this_frame))
2380 return 1;
2381 }
2382
2383 if (tdep->sigtramp_start != 0)
2384 {
2385 CORE_ADDR pc = get_frame_pc (this_frame);
2386
2387 gdb_assert (tdep->sigtramp_end != 0);
2388 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
2389 return 1;
2390 }
2391
2392 return 0;
2393 }
2394
2395 static const struct frame_unwind i386_sigtramp_frame_unwind =
2396 {
2397 SIGTRAMP_FRAME,
2398 i386_sigtramp_frame_unwind_stop_reason,
2399 i386_sigtramp_frame_this_id,
2400 i386_sigtramp_frame_prev_register,
2401 NULL,
2402 i386_sigtramp_frame_sniffer
2403 };
2404 \f
2405
2406 static CORE_ADDR
2407 i386_frame_base_address (struct frame_info *this_frame, void **this_cache)
2408 {
2409 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2410
2411 return cache->base;
2412 }
2413
2414 static const struct frame_base i386_frame_base =
2415 {
2416 &i386_frame_unwind,
2417 i386_frame_base_address,
2418 i386_frame_base_address,
2419 i386_frame_base_address
2420 };
2421
2422 static struct frame_id
2423 i386_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2424 {
2425 CORE_ADDR fp;
2426
2427 fp = get_frame_register_unsigned (this_frame, I386_EBP_REGNUM);
2428
2429 /* See the end of i386_push_dummy_call. */
2430 return frame_id_build (fp + 8, get_frame_pc (this_frame));
2431 }
2432
2433 /* _Decimal128 function return values need 16-byte alignment on the
2434 stack. */
2435
2436 static CORE_ADDR
2437 i386_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2438 {
2439 return sp & -(CORE_ADDR)16;
2440 }
2441 \f
2442
2443 /* Figure out where the longjmp will land. Slurp the args out of the
2444 stack. We expect the first arg to be a pointer to the jmp_buf
2445 structure from which we extract the address that we will land at.
2446 This address is copied into PC. This routine returns non-zero on
2447 success. */
2448
2449 static int
2450 i386_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
2451 {
2452 gdb_byte buf[4];
2453 CORE_ADDR sp, jb_addr;
2454 struct gdbarch *gdbarch = get_frame_arch (frame);
2455 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2456 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
2457
2458 /* If JB_PC_OFFSET is -1, we have no way to find out where the
2459 longjmp will land. */
2460 if (jb_pc_offset == -1)
2461 return 0;
2462
2463 get_frame_register (frame, I386_ESP_REGNUM, buf);
2464 sp = extract_unsigned_integer (buf, 4, byte_order);
2465 if (target_read_memory (sp + 4, buf, 4))
2466 return 0;
2467
2468 jb_addr = extract_unsigned_integer (buf, 4, byte_order);
2469 if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
2470 return 0;
2471
2472 *pc = extract_unsigned_integer (buf, 4, byte_order);
2473 return 1;
2474 }
2475 \f
2476
2477 /* Check whether TYPE must be 16-byte-aligned when passed as a
2478 function argument. 16-byte vectors, _Decimal128 and structures or
2479 unions containing such types must be 16-byte-aligned; other
2480 arguments are 4-byte-aligned. */
2481
2482 static int
2483 i386_16_byte_align_p (struct type *type)
2484 {
2485 type = check_typedef (type);
2486 if ((TYPE_CODE (type) == TYPE_CODE_DECFLOAT
2487 || (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type)))
2488 && TYPE_LENGTH (type) == 16)
2489 return 1;
2490 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2491 return i386_16_byte_align_p (TYPE_TARGET_TYPE (type));
2492 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2493 || TYPE_CODE (type) == TYPE_CODE_UNION)
2494 {
2495 int i;
2496 for (i = 0; i < TYPE_NFIELDS (type); i++)
2497 {
2498 if (i386_16_byte_align_p (TYPE_FIELD_TYPE (type, i)))
2499 return 1;
2500 }
2501 }
2502 return 0;
2503 }
2504
2505 /* Implementation for set_gdbarch_push_dummy_code. */
2506
2507 static CORE_ADDR
2508 i386_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, CORE_ADDR funaddr,
2509 struct value **args, int nargs, struct type *value_type,
2510 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
2511 struct regcache *regcache)
2512 {
2513 /* Use 0xcc breakpoint - 1 byte. */
2514 *bp_addr = sp - 1;
2515 *real_pc = funaddr;
2516
2517 /* Keep the stack aligned. */
2518 return sp - 16;
2519 }
2520
2521 static CORE_ADDR
2522 i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2523 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2524 struct value **args, CORE_ADDR sp, int struct_return,
2525 CORE_ADDR struct_addr)
2526 {
2527 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2528 gdb_byte buf[4];
2529 int i;
2530 int write_pass;
2531 int args_space = 0;
2532
2533 /* Determine the total space required for arguments and struct
2534 return address in a first pass (allowing for 16-byte-aligned
2535 arguments), then push arguments in a second pass. */
2536
2537 for (write_pass = 0; write_pass < 2; write_pass++)
2538 {
2539 int args_space_used = 0;
2540
2541 if (struct_return)
2542 {
2543 if (write_pass)
2544 {
2545 /* Push value address. */
2546 store_unsigned_integer (buf, 4, byte_order, struct_addr);
2547 write_memory (sp, buf, 4);
2548 args_space_used += 4;
2549 }
2550 else
2551 args_space += 4;
2552 }
2553
2554 for (i = 0; i < nargs; i++)
2555 {
2556 int len = TYPE_LENGTH (value_enclosing_type (args[i]));
2557
2558 if (write_pass)
2559 {
2560 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2561 args_space_used = align_up (args_space_used, 16);
2562
2563 write_memory (sp + args_space_used,
2564 value_contents_all (args[i]), len);
2565 /* The System V ABI says that:
2566
2567 "An argument's size is increased, if necessary, to make it a
2568 multiple of [32-bit] words. This may require tail padding,
2569 depending on the size of the argument."
2570
2571 This makes sure the stack stays word-aligned. */
2572 args_space_used += align_up (len, 4);
2573 }
2574 else
2575 {
2576 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2577 args_space = align_up (args_space, 16);
2578 args_space += align_up (len, 4);
2579 }
2580 }
2581
2582 if (!write_pass)
2583 {
2584 sp -= args_space;
2585
2586 /* The original System V ABI only requires word alignment,
2587 but modern incarnations need 16-byte alignment in order
2588 to support SSE. Since wasting a few bytes here isn't
2589 harmful we unconditionally enforce 16-byte alignment. */
2590 sp &= ~0xf;
2591 }
2592 }
2593
2594 /* Store return address. */
2595 sp -= 4;
2596 store_unsigned_integer (buf, 4, byte_order, bp_addr);
2597 write_memory (sp, buf, 4);
2598
2599 /* Finally, update the stack pointer... */
2600 store_unsigned_integer (buf, 4, byte_order, sp);
2601 regcache_cooked_write (regcache, I386_ESP_REGNUM, buf);
2602
2603 /* ...and fake a frame pointer. */
2604 regcache_cooked_write (regcache, I386_EBP_REGNUM, buf);
2605
2606 /* MarkK wrote: This "+ 8" is all over the place:
2607 (i386_frame_this_id, i386_sigtramp_frame_this_id,
2608 i386_dummy_id). It's there, since all frame unwinders for
2609 a given target have to agree (within a certain margin) on the
2610 definition of the stack address of a frame. Otherwise frame id
2611 comparison might not work correctly. Since DWARF2/GCC uses the
2612 stack address *before* the function call as a frame's CFA. On
2613 the i386, when %ebp is used as a frame pointer, the offset
2614 between the contents %ebp and the CFA as defined by GCC. */
2615 return sp + 8;
2616 }
2617
2618 /* These registers are used for returning integers (and on some
2619 targets also for returning `struct' and `union' values when their
2620 size and alignment match an integer type). */
2621 #define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
2622 #define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
2623
2624 /* Read, for architecture GDBARCH, a function return value of TYPE
2625 from REGCACHE, and copy that into VALBUF. */
2626
2627 static void
2628 i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
2629 struct regcache *regcache, gdb_byte *valbuf)
2630 {
2631 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2632 int len = TYPE_LENGTH (type);
2633 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2634
2635 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2636 {
2637 if (tdep->st0_regnum < 0)
2638 {
2639 warning (_("Cannot find floating-point return value."));
2640 memset (valbuf, 0, len);
2641 return;
2642 }
2643
2644 /* Floating-point return values can be found in %st(0). Convert
2645 its contents to the desired type. This is probably not
2646 exactly how it would happen on the target itself, but it is
2647 the best we can do. */
2648 regcache_raw_read (regcache, I386_ST0_REGNUM, buf);
2649 convert_typed_floating (buf, i387_ext_type (gdbarch), valbuf, type);
2650 }
2651 else
2652 {
2653 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2654 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2655
2656 if (len <= low_size)
2657 {
2658 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
2659 memcpy (valbuf, buf, len);
2660 }
2661 else if (len <= (low_size + high_size))
2662 {
2663 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
2664 memcpy (valbuf, buf, low_size);
2665 regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
2666 memcpy (valbuf + low_size, buf, len - low_size);
2667 }
2668 else
2669 internal_error (__FILE__, __LINE__,
2670 _("Cannot extract return value of %d bytes long."),
2671 len);
2672 }
2673 }
2674
2675 /* Write, for architecture GDBARCH, a function return value of TYPE
2676 from VALBUF into REGCACHE. */
2677
2678 static void
2679 i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
2680 struct regcache *regcache, const gdb_byte *valbuf)
2681 {
2682 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2683 int len = TYPE_LENGTH (type);
2684
2685 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2686 {
2687 ULONGEST fstat;
2688 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2689
2690 if (tdep->st0_regnum < 0)
2691 {
2692 warning (_("Cannot set floating-point return value."));
2693 return;
2694 }
2695
2696 /* Returning floating-point values is a bit tricky. Apart from
2697 storing the return value in %st(0), we have to simulate the
2698 state of the FPU at function return point. */
2699
2700 /* Convert the value found in VALBUF to the extended
2701 floating-point format used by the FPU. This is probably
2702 not exactly how it would happen on the target itself, but
2703 it is the best we can do. */
2704 convert_typed_floating (valbuf, type, buf, i387_ext_type (gdbarch));
2705 regcache_raw_write (regcache, I386_ST0_REGNUM, buf);
2706
2707 /* Set the top of the floating-point register stack to 7. The
2708 actual value doesn't really matter, but 7 is what a normal
2709 function return would end up with if the program started out
2710 with a freshly initialized FPU. */
2711 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
2712 fstat |= (7 << 11);
2713 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM (tdep), fstat);
2714
2715 /* Mark %st(1) through %st(7) as empty. Since we set the top of
2716 the floating-point register stack to 7, the appropriate value
2717 for the tag word is 0x3fff. */
2718 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM (tdep), 0x3fff);
2719 }
2720 else
2721 {
2722 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2723 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2724
2725 if (len <= low_size)
2726 regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
2727 else if (len <= (low_size + high_size))
2728 {
2729 regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
2730 regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
2731 len - low_size, valbuf + low_size);
2732 }
2733 else
2734 internal_error (__FILE__, __LINE__,
2735 _("Cannot store return value of %d bytes long."), len);
2736 }
2737 }
2738 \f
2739
2740 /* This is the variable that is set with "set struct-convention", and
2741 its legitimate values. */
2742 static const char default_struct_convention[] = "default";
2743 static const char pcc_struct_convention[] = "pcc";
2744 static const char reg_struct_convention[] = "reg";
2745 static const char *const valid_conventions[] =
2746 {
2747 default_struct_convention,
2748 pcc_struct_convention,
2749 reg_struct_convention,
2750 NULL
2751 };
2752 static const char *struct_convention = default_struct_convention;
2753
2754 /* Return non-zero if TYPE, which is assumed to be a structure,
2755 a union type, or an array type, should be returned in registers
2756 for architecture GDBARCH. */
2757
2758 static int
2759 i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
2760 {
2761 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2762 enum type_code code = TYPE_CODE (type);
2763 int len = TYPE_LENGTH (type);
2764
2765 gdb_assert (code == TYPE_CODE_STRUCT
2766 || code == TYPE_CODE_UNION
2767 || code == TYPE_CODE_ARRAY);
2768
2769 if (struct_convention == pcc_struct_convention
2770 || (struct_convention == default_struct_convention
2771 && tdep->struct_return == pcc_struct_return))
2772 return 0;
2773
2774 /* Structures consisting of a single `float', `double' or 'long
2775 double' member are returned in %st(0). */
2776 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2777 {
2778 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
2779 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2780 return (len == 4 || len == 8 || len == 12);
2781 }
2782
2783 return (len == 1 || len == 2 || len == 4 || len == 8);
2784 }
2785
2786 /* Determine, for architecture GDBARCH, how a return value of TYPE
2787 should be returned. If it is supposed to be returned in registers,
2788 and READBUF is non-zero, read the appropriate value from REGCACHE,
2789 and copy it into READBUF. If WRITEBUF is non-zero, write the value
2790 from WRITEBUF into REGCACHE. */
2791
2792 static enum return_value_convention
2793 i386_return_value (struct gdbarch *gdbarch, struct value *function,
2794 struct type *type, struct regcache *regcache,
2795 gdb_byte *readbuf, const gdb_byte *writebuf)
2796 {
2797 enum type_code code = TYPE_CODE (type);
2798
2799 if (((code == TYPE_CODE_STRUCT
2800 || code == TYPE_CODE_UNION
2801 || code == TYPE_CODE_ARRAY)
2802 && !i386_reg_struct_return_p (gdbarch, type))
2803 /* Complex double and long double uses the struct return covention. */
2804 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 16)
2805 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 24)
2806 /* 128-bit decimal float uses the struct return convention. */
2807 || (code == TYPE_CODE_DECFLOAT && TYPE_LENGTH (type) == 16))
2808 {
2809 /* The System V ABI says that:
2810
2811 "A function that returns a structure or union also sets %eax
2812 to the value of the original address of the caller's area
2813 before it returns. Thus when the caller receives control
2814 again, the address of the returned object resides in register
2815 %eax and can be used to access the object."
2816
2817 So the ABI guarantees that we can always find the return
2818 value just after the function has returned. */
2819
2820 /* Note that the ABI doesn't mention functions returning arrays,
2821 which is something possible in certain languages such as Ada.
2822 In this case, the value is returned as if it was wrapped in
2823 a record, so the convention applied to records also applies
2824 to arrays. */
2825
2826 if (readbuf)
2827 {
2828 ULONGEST addr;
2829
2830 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
2831 read_memory (addr, readbuf, TYPE_LENGTH (type));
2832 }
2833
2834 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
2835 }
2836
2837 /* This special case is for structures consisting of a single
2838 `float', `double' or 'long double' member. These structures are
2839 returned in %st(0). For these structures, we call ourselves
2840 recursively, changing TYPE into the type of the first member of
2841 the structure. Since that should work for all structures that
2842 have only one member, we don't bother to check the member's type
2843 here. */
2844 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2845 {
2846 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
2847 return i386_return_value (gdbarch, function, type, regcache,
2848 readbuf, writebuf);
2849 }
2850
2851 if (readbuf)
2852 i386_extract_return_value (gdbarch, type, regcache, readbuf);
2853 if (writebuf)
2854 i386_store_return_value (gdbarch, type, regcache, writebuf);
2855
2856 return RETURN_VALUE_REGISTER_CONVENTION;
2857 }
2858 \f
2859
2860 struct type *
2861 i387_ext_type (struct gdbarch *gdbarch)
2862 {
2863 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2864
2865 if (!tdep->i387_ext_type)
2866 {
2867 tdep->i387_ext_type = tdesc_find_type (gdbarch, "i387_ext");
2868 gdb_assert (tdep->i387_ext_type != NULL);
2869 }
2870
2871 return tdep->i387_ext_type;
2872 }
2873
2874 /* Construct type for pseudo BND registers. We can't use
2875 tdesc_find_type since a complement of one value has to be used
2876 to describe the upper bound. */
2877
2878 static struct type *
2879 i386_bnd_type (struct gdbarch *gdbarch)
2880 {
2881 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2882
2883
2884 if (!tdep->i386_bnd_type)
2885 {
2886 struct type *t, *bound_t;
2887 const struct builtin_type *bt = builtin_type (gdbarch);
2888
2889 /* The type we're building is described bellow: */
2890 #if 0
2891 struct __bound128
2892 {
2893 void *lbound;
2894 void *ubound; /* One complement of raw ubound field. */
2895 };
2896 #endif
2897
2898 t = arch_composite_type (gdbarch,
2899 "__gdb_builtin_type_bound128", TYPE_CODE_STRUCT);
2900
2901 append_composite_type_field (t, "lbound", bt->builtin_data_ptr);
2902 append_composite_type_field (t, "ubound", bt->builtin_data_ptr);
2903
2904 TYPE_NAME (t) = "builtin_type_bound128";
2905 tdep->i386_bnd_type = t;
2906 }
2907
2908 return tdep->i386_bnd_type;
2909 }
2910
2911 /* Construct vector type for pseudo YMM registers. We can't use
2912 tdesc_find_type since YMM isn't described in target description. */
2913
2914 static struct type *
2915 i386_ymm_type (struct gdbarch *gdbarch)
2916 {
2917 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2918
2919 if (!tdep->i386_ymm_type)
2920 {
2921 const struct builtin_type *bt = builtin_type (gdbarch);
2922
2923 /* The type we're building is this: */
2924 #if 0
2925 union __gdb_builtin_type_vec256i
2926 {
2927 int128_t uint128[2];
2928 int64_t v2_int64[4];
2929 int32_t v4_int32[8];
2930 int16_t v8_int16[16];
2931 int8_t v16_int8[32];
2932 double v2_double[4];
2933 float v4_float[8];
2934 };
2935 #endif
2936
2937 struct type *t;
2938
2939 t = arch_composite_type (gdbarch,
2940 "__gdb_builtin_type_vec256i", TYPE_CODE_UNION);
2941 append_composite_type_field (t, "v8_float",
2942 init_vector_type (bt->builtin_float, 8));
2943 append_composite_type_field (t, "v4_double",
2944 init_vector_type (bt->builtin_double, 4));
2945 append_composite_type_field (t, "v32_int8",
2946 init_vector_type (bt->builtin_int8, 32));
2947 append_composite_type_field (t, "v16_int16",
2948 init_vector_type (bt->builtin_int16, 16));
2949 append_composite_type_field (t, "v8_int32",
2950 init_vector_type (bt->builtin_int32, 8));
2951 append_composite_type_field (t, "v4_int64",
2952 init_vector_type (bt->builtin_int64, 4));
2953 append_composite_type_field (t, "v2_int128",
2954 init_vector_type (bt->builtin_int128, 2));
2955
2956 TYPE_VECTOR (t) = 1;
2957 TYPE_NAME (t) = "builtin_type_vec256i";
2958 tdep->i386_ymm_type = t;
2959 }
2960
2961 return tdep->i386_ymm_type;
2962 }
2963
2964 /* Construct vector type for MMX registers. */
2965 static struct type *
2966 i386_mmx_type (struct gdbarch *gdbarch)
2967 {
2968 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2969
2970 if (!tdep->i386_mmx_type)
2971 {
2972 const struct builtin_type *bt = builtin_type (gdbarch);
2973
2974 /* The type we're building is this: */
2975 #if 0
2976 union __gdb_builtin_type_vec64i
2977 {
2978 int64_t uint64;
2979 int32_t v2_int32[2];
2980 int16_t v4_int16[4];
2981 int8_t v8_int8[8];
2982 };
2983 #endif
2984
2985 struct type *t;
2986
2987 t = arch_composite_type (gdbarch,
2988 "__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
2989
2990 append_composite_type_field (t, "uint64", bt->builtin_int64);
2991 append_composite_type_field (t, "v2_int32",
2992 init_vector_type (bt->builtin_int32, 2));
2993 append_composite_type_field (t, "v4_int16",
2994 init_vector_type (bt->builtin_int16, 4));
2995 append_composite_type_field (t, "v8_int8",
2996 init_vector_type (bt->builtin_int8, 8));
2997
2998 TYPE_VECTOR (t) = 1;
2999 TYPE_NAME (t) = "builtin_type_vec64i";
3000 tdep->i386_mmx_type = t;
3001 }
3002
3003 return tdep->i386_mmx_type;
3004 }
3005
3006 /* Return the GDB type object for the "standard" data type of data in
3007 register REGNUM. */
3008
3009 struct type *
3010 i386_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
3011 {
3012 if (i386_bnd_regnum_p (gdbarch, regnum))
3013 return i386_bnd_type (gdbarch);
3014 if (i386_mmx_regnum_p (gdbarch, regnum))
3015 return i386_mmx_type (gdbarch);
3016 else if (i386_ymm_regnum_p (gdbarch, regnum))
3017 return i386_ymm_type (gdbarch);
3018 else
3019 {
3020 const struct builtin_type *bt = builtin_type (gdbarch);
3021 if (i386_byte_regnum_p (gdbarch, regnum))
3022 return bt->builtin_int8;
3023 else if (i386_word_regnum_p (gdbarch, regnum))
3024 return bt->builtin_int16;
3025 else if (i386_dword_regnum_p (gdbarch, regnum))
3026 return bt->builtin_int32;
3027 }
3028
3029 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3030 }
3031
3032 /* Map a cooked register onto a raw register or memory. For the i386,
3033 the MMX registers need to be mapped onto floating point registers. */
3034
3035 static int
3036 i386_mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
3037 {
3038 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
3039 int mmxreg, fpreg;
3040 ULONGEST fstat;
3041 int tos;
3042
3043 mmxreg = regnum - tdep->mm0_regnum;
3044 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
3045 tos = (fstat >> 11) & 0x7;
3046 fpreg = (mmxreg + tos) % 8;
3047
3048 return (I387_ST0_REGNUM (tdep) + fpreg);
3049 }
3050
3051 /* A helper function for us by i386_pseudo_register_read_value and
3052 amd64_pseudo_register_read_value. It does all the work but reads
3053 the data into an already-allocated value. */
3054
3055 void
3056 i386_pseudo_register_read_into_value (struct gdbarch *gdbarch,
3057 struct regcache *regcache,
3058 int regnum,
3059 struct value *result_value)
3060 {
3061 gdb_byte raw_buf[MAX_REGISTER_SIZE];
3062 enum register_status status;
3063 gdb_byte *buf = value_contents_raw (result_value);
3064
3065 if (i386_mmx_regnum_p (gdbarch, regnum))
3066 {
3067 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3068
3069 /* Extract (always little endian). */
3070 status = regcache_raw_read (regcache, fpnum, raw_buf);
3071 if (status != REG_VALID)
3072 mark_value_bytes_unavailable (result_value, 0,
3073 TYPE_LENGTH (value_type (result_value)));
3074 else
3075 memcpy (buf, raw_buf, register_size (gdbarch, regnum));
3076 }
3077 else
3078 {
3079 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3080 if (i386_bnd_regnum_p (gdbarch, regnum))
3081 {
3082 regnum -= tdep->bnd0_regnum;
3083
3084 /* Extract (always little endian). Read lower 128bits. */
3085 status = regcache_raw_read (regcache,
3086 I387_BND0R_REGNUM (tdep) + regnum,
3087 raw_buf);
3088 if (status != REG_VALID)
3089 mark_value_bytes_unavailable (result_value, 0, 16);
3090 else
3091 {
3092 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3093 LONGEST upper, lower;
3094 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
3095
3096 lower = extract_unsigned_integer (raw_buf, 8, byte_order);
3097 upper = extract_unsigned_integer (raw_buf + 8, 8, byte_order);
3098 upper = ~upper;
3099
3100 memcpy (buf, &lower, size);
3101 memcpy (buf + size, &upper, size);
3102 }
3103 }
3104 else if (i386_ymm_regnum_p (gdbarch, regnum))
3105 {
3106 regnum -= tdep->ymm0_regnum;
3107
3108 /* Extract (always little endian). Read lower 128bits. */
3109 status = regcache_raw_read (regcache,
3110 I387_XMM0_REGNUM (tdep) + regnum,
3111 raw_buf);
3112 if (status != REG_VALID)
3113 mark_value_bytes_unavailable (result_value, 0, 16);
3114 else
3115 memcpy (buf, raw_buf, 16);
3116 /* Read upper 128bits. */
3117 status = regcache_raw_read (regcache,
3118 tdep->ymm0h_regnum + regnum,
3119 raw_buf);
3120 if (status != REG_VALID)
3121 mark_value_bytes_unavailable (result_value, 16, 32);
3122 else
3123 memcpy (buf + 16, raw_buf, 16);
3124 }
3125 else if (i386_word_regnum_p (gdbarch, regnum))
3126 {
3127 int gpnum = regnum - tdep->ax_regnum;
3128
3129 /* Extract (always little endian). */
3130 status = regcache_raw_read (regcache, gpnum, raw_buf);
3131 if (status != REG_VALID)
3132 mark_value_bytes_unavailable (result_value, 0,
3133 TYPE_LENGTH (value_type (result_value)));
3134 else
3135 memcpy (buf, raw_buf, 2);
3136 }
3137 else if (i386_byte_regnum_p (gdbarch, regnum))
3138 {
3139 /* Check byte pseudo registers last since this function will
3140 be called from amd64_pseudo_register_read, which handles
3141 byte pseudo registers differently. */
3142 int gpnum = regnum - tdep->al_regnum;
3143
3144 /* Extract (always little endian). We read both lower and
3145 upper registers. */
3146 status = regcache_raw_read (regcache, gpnum % 4, raw_buf);
3147 if (status != REG_VALID)
3148 mark_value_bytes_unavailable (result_value, 0,
3149 TYPE_LENGTH (value_type (result_value)));
3150 else if (gpnum >= 4)
3151 memcpy (buf, raw_buf + 1, 1);
3152 else
3153 memcpy (buf, raw_buf, 1);
3154 }
3155 else
3156 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3157 }
3158 }
3159
3160 static struct value *
3161 i386_pseudo_register_read_value (struct gdbarch *gdbarch,
3162 struct regcache *regcache,
3163 int regnum)
3164 {
3165 struct value *result;
3166
3167 result = allocate_value (register_type (gdbarch, regnum));
3168 VALUE_LVAL (result) = lval_register;
3169 VALUE_REGNUM (result) = regnum;
3170
3171 i386_pseudo_register_read_into_value (gdbarch, regcache, regnum, result);
3172
3173 return result;
3174 }
3175
3176 void
3177 i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
3178 int regnum, const gdb_byte *buf)
3179 {
3180 gdb_byte raw_buf[MAX_REGISTER_SIZE];
3181
3182 if (i386_mmx_regnum_p (gdbarch, regnum))
3183 {
3184 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3185
3186 /* Read ... */
3187 regcache_raw_read (regcache, fpnum, raw_buf);
3188 /* ... Modify ... (always little endian). */
3189 memcpy (raw_buf, buf, register_size (gdbarch, regnum));
3190 /* ... Write. */
3191 regcache_raw_write (regcache, fpnum, raw_buf);
3192 }
3193 else
3194 {
3195 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3196
3197 if (i386_bnd_regnum_p (gdbarch, regnum))
3198 {
3199 ULONGEST upper, lower;
3200 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
3201 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3202
3203 /* New values from input value. */
3204 regnum -= tdep->bnd0_regnum;
3205 lower = extract_unsigned_integer (buf, size, byte_order);
3206 upper = extract_unsigned_integer (buf + size, size, byte_order);
3207
3208 /* Fetching register buffer. */
3209 regcache_raw_read (regcache,
3210 I387_BND0R_REGNUM (tdep) + regnum,
3211 raw_buf);
3212
3213 upper = ~upper;
3214
3215 /* Set register bits. */
3216 memcpy (raw_buf, &lower, 8);
3217 memcpy (raw_buf + 8, &upper, 8);
3218
3219
3220 regcache_raw_write (regcache,
3221 I387_BND0R_REGNUM (tdep) + regnum,
3222 raw_buf);
3223 }
3224 else if (i386_ymm_regnum_p (gdbarch, regnum))
3225 {
3226 regnum -= tdep->ymm0_regnum;
3227
3228 /* ... Write lower 128bits. */
3229 regcache_raw_write (regcache,
3230 I387_XMM0_REGNUM (tdep) + regnum,
3231 buf);
3232 /* ... Write upper 128bits. */
3233 regcache_raw_write (regcache,
3234 tdep->ymm0h_regnum + regnum,
3235 buf + 16);
3236 }
3237 else if (i386_word_regnum_p (gdbarch, regnum))
3238 {
3239 int gpnum = regnum - tdep->ax_regnum;
3240
3241 /* Read ... */
3242 regcache_raw_read (regcache, gpnum, raw_buf);
3243 /* ... Modify ... (always little endian). */
3244 memcpy (raw_buf, buf, 2);
3245 /* ... Write. */
3246 regcache_raw_write (regcache, gpnum, raw_buf);
3247 }
3248 else if (i386_byte_regnum_p (gdbarch, regnum))
3249 {
3250 /* Check byte pseudo registers last since this function will
3251 be called from amd64_pseudo_register_read, which handles
3252 byte pseudo registers differently. */
3253 int gpnum = regnum - tdep->al_regnum;
3254
3255 /* Read ... We read both lower and upper registers. */
3256 regcache_raw_read (regcache, gpnum % 4, raw_buf);
3257 /* ... Modify ... (always little endian). */
3258 if (gpnum >= 4)
3259 memcpy (raw_buf + 1, buf, 1);
3260 else
3261 memcpy (raw_buf, buf, 1);
3262 /* ... Write. */
3263 regcache_raw_write (regcache, gpnum % 4, raw_buf);
3264 }
3265 else
3266 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3267 }
3268 }
3269 \f
3270
3271 /* Return the register number of the register allocated by GCC after
3272 REGNUM, or -1 if there is no such register. */
3273
3274 static int
3275 i386_next_regnum (int regnum)
3276 {
3277 /* GCC allocates the registers in the order:
3278
3279 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
3280
3281 Since storing a variable in %esp doesn't make any sense we return
3282 -1 for %ebp and for %esp itself. */
3283 static int next_regnum[] =
3284 {
3285 I386_EDX_REGNUM, /* Slot for %eax. */
3286 I386_EBX_REGNUM, /* Slot for %ecx. */
3287 I386_ECX_REGNUM, /* Slot for %edx. */
3288 I386_ESI_REGNUM, /* Slot for %ebx. */
3289 -1, -1, /* Slots for %esp and %ebp. */
3290 I386_EDI_REGNUM, /* Slot for %esi. */
3291 I386_EBP_REGNUM /* Slot for %edi. */
3292 };
3293
3294 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
3295 return next_regnum[regnum];
3296
3297 return -1;
3298 }
3299
3300 /* Return nonzero if a value of type TYPE stored in register REGNUM
3301 needs any special handling. */
3302
3303 static int
3304 i386_convert_register_p (struct gdbarch *gdbarch,
3305 int regnum, struct type *type)
3306 {
3307 int len = TYPE_LENGTH (type);
3308
3309 /* Values may be spread across multiple registers. Most debugging
3310 formats aren't expressive enough to specify the locations, so
3311 some heuristics is involved. Right now we only handle types that
3312 have a length that is a multiple of the word size, since GCC
3313 doesn't seem to put any other types into registers. */
3314 if (len > 4 && len % 4 == 0)
3315 {
3316 int last_regnum = regnum;
3317
3318 while (len > 4)
3319 {
3320 last_regnum = i386_next_regnum (last_regnum);
3321 len -= 4;
3322 }
3323
3324 if (last_regnum != -1)
3325 return 1;
3326 }
3327
3328 return i387_convert_register_p (gdbarch, regnum, type);
3329 }
3330
3331 /* Read a value of type TYPE from register REGNUM in frame FRAME, and
3332 return its contents in TO. */
3333
3334 static int
3335 i386_register_to_value (struct frame_info *frame, int regnum,
3336 struct type *type, gdb_byte *to,
3337 int *optimizedp, int *unavailablep)
3338 {
3339 struct gdbarch *gdbarch = get_frame_arch (frame);
3340 int len = TYPE_LENGTH (type);
3341
3342 if (i386_fp_regnum_p (gdbarch, regnum))
3343 return i387_register_to_value (frame, regnum, type, to,
3344 optimizedp, unavailablep);
3345
3346 /* Read a value spread across multiple registers. */
3347
3348 gdb_assert (len > 4 && len % 4 == 0);
3349
3350 while (len > 0)
3351 {
3352 gdb_assert (regnum != -1);
3353 gdb_assert (register_size (gdbarch, regnum) == 4);
3354
3355 if (!get_frame_register_bytes (frame, regnum, 0,
3356 register_size (gdbarch, regnum),
3357 to, optimizedp, unavailablep))
3358 return 0;
3359
3360 regnum = i386_next_regnum (regnum);
3361 len -= 4;
3362 to += 4;
3363 }
3364
3365 *optimizedp = *unavailablep = 0;
3366 return 1;
3367 }
3368
3369 /* Write the contents FROM of a value of type TYPE into register
3370 REGNUM in frame FRAME. */
3371
3372 static void
3373 i386_value_to_register (struct frame_info *frame, int regnum,
3374 struct type *type, const gdb_byte *from)
3375 {
3376 int len = TYPE_LENGTH (type);
3377
3378 if (i386_fp_regnum_p (get_frame_arch (frame), regnum))
3379 {
3380 i387_value_to_register (frame, regnum, type, from);
3381 return;
3382 }
3383
3384 /* Write a value spread across multiple registers. */
3385
3386 gdb_assert (len > 4 && len % 4 == 0);
3387
3388 while (len > 0)
3389 {
3390 gdb_assert (regnum != -1);
3391 gdb_assert (register_size (get_frame_arch (frame), regnum) == 4);
3392
3393 put_frame_register (frame, regnum, from);
3394 regnum = i386_next_regnum (regnum);
3395 len -= 4;
3396 from += 4;
3397 }
3398 }
3399 \f
3400 /* Supply register REGNUM from the buffer specified by GREGS and LEN
3401 in the general-purpose register set REGSET to register cache
3402 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3403
3404 void
3405 i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
3406 int regnum, const void *gregs, size_t len)
3407 {
3408 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
3409 const gdb_byte *regs = gregs;
3410 int i;
3411
3412 gdb_assert (len == tdep->sizeof_gregset);
3413
3414 for (i = 0; i < tdep->gregset_num_regs; i++)
3415 {
3416 if ((regnum == i || regnum == -1)
3417 && tdep->gregset_reg_offset[i] != -1)
3418 regcache_raw_supply (regcache, i, regs + tdep->gregset_reg_offset[i]);
3419 }
3420 }
3421
3422 /* Collect register REGNUM from the register cache REGCACHE and store
3423 it in the buffer specified by GREGS and LEN as described by the
3424 general-purpose register set REGSET. If REGNUM is -1, do this for
3425 all registers in REGSET. */
3426
3427 void
3428 i386_collect_gregset (const struct regset *regset,
3429 const struct regcache *regcache,
3430 int regnum, void *gregs, size_t len)
3431 {
3432 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
3433 gdb_byte *regs = gregs;
3434 int i;
3435
3436 gdb_assert (len == tdep->sizeof_gregset);
3437
3438 for (i = 0; i < tdep->gregset_num_regs; i++)
3439 {
3440 if ((regnum == i || regnum == -1)
3441 && tdep->gregset_reg_offset[i] != -1)
3442 regcache_raw_collect (regcache, i, regs + tdep->gregset_reg_offset[i]);
3443 }
3444 }
3445
3446 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
3447 in the floating-point register set REGSET to register cache
3448 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3449
3450 static void
3451 i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
3452 int regnum, const void *fpregs, size_t len)
3453 {
3454 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
3455
3456 if (len == I387_SIZEOF_FXSAVE)
3457 {
3458 i387_supply_fxsave (regcache, regnum, fpregs);
3459 return;
3460 }
3461
3462 gdb_assert (len == tdep->sizeof_fpregset);
3463 i387_supply_fsave (regcache, regnum, fpregs);
3464 }
3465
3466 /* Collect register REGNUM from the register cache REGCACHE and store
3467 it in the buffer specified by FPREGS and LEN as described by the
3468 floating-point register set REGSET. If REGNUM is -1, do this for
3469 all registers in REGSET. */
3470
3471 static void
3472 i386_collect_fpregset (const struct regset *regset,
3473 const struct regcache *regcache,
3474 int regnum, void *fpregs, size_t len)
3475 {
3476 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
3477
3478 if (len == I387_SIZEOF_FXSAVE)
3479 {
3480 i387_collect_fxsave (regcache, regnum, fpregs);
3481 return;
3482 }
3483
3484 gdb_assert (len == tdep->sizeof_fpregset);
3485 i387_collect_fsave (regcache, regnum, fpregs);
3486 }
3487
3488 /* Similar to i386_supply_fpregset, but use XSAVE extended state. */
3489
3490 static void
3491 i386_supply_xstateregset (const struct regset *regset,
3492 struct regcache *regcache, int regnum,
3493 const void *xstateregs, size_t len)
3494 {
3495 i387_supply_xsave (regcache, regnum, xstateregs);
3496 }
3497
3498 /* Similar to i386_collect_fpregset , but use XSAVE extended state. */
3499
3500 static void
3501 i386_collect_xstateregset (const struct regset *regset,
3502 const struct regcache *regcache,
3503 int regnum, void *xstateregs, size_t len)
3504 {
3505 i387_collect_xsave (regcache, regnum, xstateregs, 1);
3506 }
3507
3508 /* Return the appropriate register set for the core section identified
3509 by SECT_NAME and SECT_SIZE. */
3510
3511 const struct regset *
3512 i386_regset_from_core_section (struct gdbarch *gdbarch,
3513 const char *sect_name, size_t sect_size)
3514 {
3515 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3516
3517 if (strcmp (sect_name, ".reg") == 0 && sect_size == tdep->sizeof_gregset)
3518 {
3519 if (tdep->gregset == NULL)
3520 tdep->gregset = regset_alloc (gdbarch, i386_supply_gregset,
3521 i386_collect_gregset);
3522 return tdep->gregset;
3523 }
3524
3525 if ((strcmp (sect_name, ".reg2") == 0 && sect_size == tdep->sizeof_fpregset)
3526 || (strcmp (sect_name, ".reg-xfp") == 0
3527 && sect_size == I387_SIZEOF_FXSAVE))
3528 {
3529 if (tdep->fpregset == NULL)
3530 tdep->fpregset = regset_alloc (gdbarch, i386_supply_fpregset,
3531 i386_collect_fpregset);
3532 return tdep->fpregset;
3533 }
3534
3535 if (strcmp (sect_name, ".reg-xstate") == 0)
3536 {
3537 if (tdep->xstateregset == NULL)
3538 tdep->xstateregset = regset_alloc (gdbarch,
3539 i386_supply_xstateregset,
3540 i386_collect_xstateregset);
3541
3542 return tdep->xstateregset;
3543 }
3544
3545 return NULL;
3546 }
3547 \f
3548
3549 /* Stuff for WIN32 PE style DLL's but is pretty generic really. */
3550
3551 CORE_ADDR
3552 i386_pe_skip_trampoline_code (struct frame_info *frame,
3553 CORE_ADDR pc, char *name)
3554 {
3555 struct gdbarch *gdbarch = get_frame_arch (frame);
3556 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3557
3558 /* jmp *(dest) */
3559 if (pc && read_memory_unsigned_integer (pc, 2, byte_order) == 0x25ff)
3560 {
3561 unsigned long indirect =
3562 read_memory_unsigned_integer (pc + 2, 4, byte_order);
3563 struct minimal_symbol *indsym =
3564 indirect ? lookup_minimal_symbol_by_pc (indirect).minsym : 0;
3565 const char *symname = indsym ? MSYMBOL_LINKAGE_NAME (indsym) : 0;
3566
3567 if (symname)
3568 {
3569 if (strncmp (symname, "__imp_", 6) == 0
3570 || strncmp (symname, "_imp_", 5) == 0)
3571 return name ? 1 :
3572 read_memory_unsigned_integer (indirect, 4, byte_order);
3573 }
3574 }
3575 return 0; /* Not a trampoline. */
3576 }
3577 \f
3578
3579 /* Return whether the THIS_FRAME corresponds to a sigtramp
3580 routine. */
3581
3582 int
3583 i386_sigtramp_p (struct frame_info *this_frame)
3584 {
3585 CORE_ADDR pc = get_frame_pc (this_frame);
3586 const char *name;
3587
3588 find_pc_partial_function (pc, &name, NULL, NULL);
3589 return (name && strcmp ("_sigtramp", name) == 0);
3590 }
3591 \f
3592
3593 /* We have two flavours of disassembly. The machinery on this page
3594 deals with switching between those. */
3595
3596 static int
3597 i386_print_insn (bfd_vma pc, struct disassemble_info *info)
3598 {
3599 gdb_assert (disassembly_flavor == att_flavor
3600 || disassembly_flavor == intel_flavor);
3601
3602 /* FIXME: kettenis/20020915: Until disassembler_options is properly
3603 constified, cast to prevent a compiler warning. */
3604 info->disassembler_options = (char *) disassembly_flavor;
3605
3606 return print_insn_i386 (pc, info);
3607 }
3608 \f
3609
3610 /* There are a few i386 architecture variants that differ only
3611 slightly from the generic i386 target. For now, we don't give them
3612 their own source file, but include them here. As a consequence,
3613 they'll always be included. */
3614
3615 /* System V Release 4 (SVR4). */
3616
3617 /* Return whether THIS_FRAME corresponds to a SVR4 sigtramp
3618 routine. */
3619
3620 static int
3621 i386_svr4_sigtramp_p (struct frame_info *this_frame)
3622 {
3623 CORE_ADDR pc = get_frame_pc (this_frame);
3624 const char *name;
3625
3626 /* The origin of these symbols is currently unknown. */
3627 find_pc_partial_function (pc, &name, NULL, NULL);
3628 return (name && (strcmp ("_sigreturn", name) == 0
3629 || strcmp ("sigvechandler", name) == 0));
3630 }
3631
3632 /* Assuming THIS_FRAME is for a SVR4 sigtramp routine, return the
3633 address of the associated sigcontext (ucontext) structure. */
3634
3635 static CORE_ADDR
3636 i386_svr4_sigcontext_addr (struct frame_info *this_frame)
3637 {
3638 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3639 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3640 gdb_byte buf[4];
3641 CORE_ADDR sp;
3642
3643 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
3644 sp = extract_unsigned_integer (buf, 4, byte_order);
3645
3646 return read_memory_unsigned_integer (sp + 8, 4, byte_order);
3647 }
3648
3649 \f
3650
3651 /* Implementation of `gdbarch_stap_is_single_operand', as defined in
3652 gdbarch.h. */
3653
3654 int
3655 i386_stap_is_single_operand (struct gdbarch *gdbarch, const char *s)
3656 {
3657 return (*s == '$' /* Literal number. */
3658 || (isdigit (*s) && s[1] == '(' && s[2] == '%') /* Displacement. */
3659 || (*s == '(' && s[1] == '%') /* Register indirection. */
3660 || (*s == '%' && isalpha (s[1]))); /* Register access. */
3661 }
3662
3663 /* Helper function for i386_stap_parse_special_token.
3664
3665 This function parses operands of the form `-8+3+1(%rbp)', which
3666 must be interpreted as `*(-8 + 3 - 1 + (void *) $eax)'.
3667
3668 Return 1 if the operand was parsed successfully, zero
3669 otherwise. */
3670
3671 static int
3672 i386_stap_parse_special_token_triplet (struct gdbarch *gdbarch,
3673 struct stap_parse_info *p)
3674 {
3675 const char *s = p->arg;
3676
3677 if (isdigit (*s) || *s == '-' || *s == '+')
3678 {
3679 int got_minus[3];
3680 int i;
3681 long displacements[3];
3682 const char *start;
3683 char *regname;
3684 int len;
3685 struct stoken str;
3686 char *endp;
3687
3688 got_minus[0] = 0;
3689 if (*s == '+')
3690 ++s;
3691 else if (*s == '-')
3692 {
3693 ++s;
3694 got_minus[0] = 1;
3695 }
3696
3697 if (!isdigit ((unsigned char) *s))
3698 return 0;
3699
3700 displacements[0] = strtol (s, &endp, 10);
3701 s = endp;
3702
3703 if (*s != '+' && *s != '-')
3704 {
3705 /* We are not dealing with a triplet. */
3706 return 0;
3707 }
3708
3709 got_minus[1] = 0;
3710 if (*s == '+')
3711 ++s;
3712 else
3713 {
3714 ++s;
3715 got_minus[1] = 1;
3716 }
3717
3718 if (!isdigit ((unsigned char) *s))
3719 return 0;
3720
3721 displacements[1] = strtol (s, &endp, 10);
3722 s = endp;
3723
3724 if (*s != '+' && *s != '-')
3725 {
3726 /* We are not dealing with a triplet. */
3727 return 0;
3728 }
3729
3730 got_minus[2] = 0;
3731 if (*s == '+')
3732 ++s;
3733 else
3734 {
3735 ++s;
3736 got_minus[2] = 1;
3737 }
3738
3739 if (!isdigit ((unsigned char) *s))
3740 return 0;
3741
3742 displacements[2] = strtol (s, &endp, 10);
3743 s = endp;
3744
3745 if (*s != '(' || s[1] != '%')
3746 return 0;
3747
3748 s += 2;
3749 start = s;
3750
3751 while (isalnum (*s))
3752 ++s;
3753
3754 if (*s++ != ')')
3755 return 0;
3756
3757 len = s - start - 1;
3758 regname = alloca (len + 1);
3759
3760 strncpy (regname, start, len);
3761 regname[len] = '\0';
3762
3763 if (user_reg_map_name_to_regnum (gdbarch, regname, len) == -1)
3764 error (_("Invalid register name `%s' on expression `%s'."),
3765 regname, p->saved_arg);
3766
3767 for (i = 0; i < 3; i++)
3768 {
3769 write_exp_elt_opcode (&p->pstate, OP_LONG);
3770 write_exp_elt_type
3771 (&p->pstate, builtin_type (gdbarch)->builtin_long);
3772 write_exp_elt_longcst (&p->pstate, displacements[i]);
3773 write_exp_elt_opcode (&p->pstate, OP_LONG);
3774 if (got_minus[i])
3775 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
3776 }
3777
3778 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
3779 str.ptr = regname;
3780 str.length = len;
3781 write_exp_string (&p->pstate, str);
3782 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
3783
3784 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
3785 write_exp_elt_type (&p->pstate,
3786 builtin_type (gdbarch)->builtin_data_ptr);
3787 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
3788
3789 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
3790 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
3791 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
3792
3793 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
3794 write_exp_elt_type (&p->pstate,
3795 lookup_pointer_type (p->arg_type));
3796 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
3797
3798 write_exp_elt_opcode (&p->pstate, UNOP_IND);
3799
3800 p->arg = s;
3801
3802 return 1;
3803 }
3804
3805 return 0;
3806 }
3807
3808 /* Helper function for i386_stap_parse_special_token.
3809
3810 This function parses operands of the form `register base +
3811 (register index * size) + offset', as represented in
3812 `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
3813
3814 Return 1 if the operand was parsed successfully, zero
3815 otherwise. */
3816
3817 static int
3818 i386_stap_parse_special_token_three_arg_disp (struct gdbarch *gdbarch,
3819 struct stap_parse_info *p)
3820 {
3821 const char *s = p->arg;
3822
3823 if (isdigit (*s) || *s == '(' || *s == '-' || *s == '+')
3824 {
3825 int offset_minus = 0;
3826 long offset = 0;
3827 int size_minus = 0;
3828 long size = 0;
3829 const char *start;
3830 char *base;
3831 int len_base;
3832 char *index;
3833 int len_index;
3834 struct stoken base_token, index_token;
3835
3836 if (*s == '+')
3837 ++s;
3838 else if (*s == '-')
3839 {
3840 ++s;
3841 offset_minus = 1;
3842 }
3843
3844 if (offset_minus && !isdigit (*s))
3845 return 0;
3846
3847 if (isdigit (*s))
3848 {
3849 char *endp;
3850
3851 offset = strtol (s, &endp, 10);
3852 s = endp;
3853 }
3854
3855 if (*s != '(' || s[1] != '%')
3856 return 0;
3857
3858 s += 2;
3859 start = s;
3860
3861 while (isalnum (*s))
3862 ++s;
3863
3864 if (*s != ',' || s[1] != '%')
3865 return 0;
3866
3867 len_base = s - start;
3868 base = alloca (len_base + 1);
3869 strncpy (base, start, len_base);
3870 base[len_base] = '\0';
3871
3872 if (user_reg_map_name_to_regnum (gdbarch, base, len_base) == -1)
3873 error (_("Invalid register name `%s' on expression `%s'."),
3874 base, p->saved_arg);
3875
3876 s += 2;
3877 start = s;
3878
3879 while (isalnum (*s))
3880 ++s;
3881
3882 len_index = s - start;
3883 index = alloca (len_index + 1);
3884 strncpy (index, start, len_index);
3885 index[len_index] = '\0';
3886
3887 if (user_reg_map_name_to_regnum (gdbarch, index, len_index) == -1)
3888 error (_("Invalid register name `%s' on expression `%s'."),
3889 index, p->saved_arg);
3890
3891 if (*s != ',' && *s != ')')
3892 return 0;
3893
3894 if (*s == ',')
3895 {
3896 char *endp;
3897
3898 ++s;
3899 if (*s == '+')
3900 ++s;
3901 else if (*s == '-')
3902 {
3903 ++s;
3904 size_minus = 1;
3905 }
3906
3907 size = strtol (s, &endp, 10);
3908 s = endp;
3909
3910 if (*s != ')')
3911 return 0;
3912 }
3913
3914 ++s;
3915
3916 if (offset)
3917 {
3918 write_exp_elt_opcode (&p->pstate, OP_LONG);
3919 write_exp_elt_type (&p->pstate,
3920 builtin_type (gdbarch)->builtin_long);
3921 write_exp_elt_longcst (&p->pstate, offset);
3922 write_exp_elt_opcode (&p->pstate, OP_LONG);
3923 if (offset_minus)
3924 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
3925 }
3926
3927 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
3928 base_token.ptr = base;
3929 base_token.length = len_base;
3930 write_exp_string (&p->pstate, base_token);
3931 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
3932
3933 if (offset)
3934 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
3935
3936 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
3937 index_token.ptr = index;
3938 index_token.length = len_index;
3939 write_exp_string (&p->pstate, index_token);
3940 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
3941
3942 if (size)
3943 {
3944 write_exp_elt_opcode (&p->pstate, OP_LONG);
3945 write_exp_elt_type (&p->pstate,
3946 builtin_type (gdbarch)->builtin_long);
3947 write_exp_elt_longcst (&p->pstate, size);
3948 write_exp_elt_opcode (&p->pstate, OP_LONG);
3949 if (size_minus)
3950 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
3951 write_exp_elt_opcode (&p->pstate, BINOP_MUL);
3952 }
3953
3954 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
3955
3956 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
3957 write_exp_elt_type (&p->pstate,
3958 lookup_pointer_type (p->arg_type));
3959 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
3960
3961 write_exp_elt_opcode (&p->pstate, UNOP_IND);
3962
3963 p->arg = s;
3964
3965 return 1;
3966 }
3967
3968 return 0;
3969 }
3970
3971 /* Implementation of `gdbarch_stap_parse_special_token', as defined in
3972 gdbarch.h. */
3973
3974 int
3975 i386_stap_parse_special_token (struct gdbarch *gdbarch,
3976 struct stap_parse_info *p)
3977 {
3978 /* In order to parse special tokens, we use a state-machine that go
3979 through every known token and try to get a match. */
3980 enum
3981 {
3982 TRIPLET,
3983 THREE_ARG_DISPLACEMENT,
3984 DONE
3985 } current_state;
3986
3987 current_state = TRIPLET;
3988
3989 /* The special tokens to be parsed here are:
3990
3991 - `register base + (register index * size) + offset', as represented
3992 in `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
3993
3994 - Operands of the form `-8+3+1(%rbp)', which must be interpreted as
3995 `*(-8 + 3 - 1 + (void *) $eax)'. */
3996
3997 while (current_state != DONE)
3998 {
3999 switch (current_state)
4000 {
4001 case TRIPLET:
4002 if (i386_stap_parse_special_token_triplet (gdbarch, p))
4003 return 1;
4004 break;
4005
4006 case THREE_ARG_DISPLACEMENT:
4007 if (i386_stap_parse_special_token_three_arg_disp (gdbarch, p))
4008 return 1;
4009 break;
4010 }
4011
4012 /* Advancing to the next state. */
4013 ++current_state;
4014 }
4015
4016 return 0;
4017 }
4018
4019 \f
4020
4021 /* Generic ELF. */
4022
4023 void
4024 i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4025 {
4026 static const char *const stap_integer_prefixes[] = { "$", NULL };
4027 static const char *const stap_register_prefixes[] = { "%", NULL };
4028 static const char *const stap_register_indirection_prefixes[] = { "(",
4029 NULL };
4030 static const char *const stap_register_indirection_suffixes[] = { ")",
4031 NULL };
4032
4033 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
4034 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
4035
4036 /* Registering SystemTap handlers. */
4037 set_gdbarch_stap_integer_prefixes (gdbarch, stap_integer_prefixes);
4038 set_gdbarch_stap_register_prefixes (gdbarch, stap_register_prefixes);
4039 set_gdbarch_stap_register_indirection_prefixes (gdbarch,
4040 stap_register_indirection_prefixes);
4041 set_gdbarch_stap_register_indirection_suffixes (gdbarch,
4042 stap_register_indirection_suffixes);
4043 set_gdbarch_stap_is_single_operand (gdbarch,
4044 i386_stap_is_single_operand);
4045 set_gdbarch_stap_parse_special_token (gdbarch,
4046 i386_stap_parse_special_token);
4047 }
4048
4049 /* System V Release 4 (SVR4). */
4050
4051 void
4052 i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4053 {
4054 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4055
4056 /* System V Release 4 uses ELF. */
4057 i386_elf_init_abi (info, gdbarch);
4058
4059 /* System V Release 4 has shared libraries. */
4060 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
4061
4062 tdep->sigtramp_p = i386_svr4_sigtramp_p;
4063 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
4064 tdep->sc_pc_offset = 36 + 14 * 4;
4065 tdep->sc_sp_offset = 36 + 17 * 4;
4066
4067 tdep->jb_pc_offset = 20;
4068 }
4069
4070 /* DJGPP. */
4071
4072 static void
4073 i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4074 {
4075 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4076
4077 /* DJGPP doesn't have any special frames for signal handlers. */
4078 tdep->sigtramp_p = NULL;
4079
4080 tdep->jb_pc_offset = 36;
4081
4082 /* DJGPP does not support the SSE registers. */
4083 if (! tdesc_has_registers (info.target_desc))
4084 tdep->tdesc = tdesc_i386_mmx;
4085
4086 /* Native compiler is GCC, which uses the SVR4 register numbering
4087 even in COFF and STABS. See the comment in i386_gdbarch_init,
4088 before the calls to set_gdbarch_stab_reg_to_regnum and
4089 set_gdbarch_sdb_reg_to_regnum. */
4090 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
4091 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
4092
4093 set_gdbarch_has_dos_based_file_system (gdbarch, 1);
4094 }
4095 \f
4096
4097 /* i386 register groups. In addition to the normal groups, add "mmx"
4098 and "sse". */
4099
4100 static struct reggroup *i386_sse_reggroup;
4101 static struct reggroup *i386_mmx_reggroup;
4102
4103 static void
4104 i386_init_reggroups (void)
4105 {
4106 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
4107 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
4108 }
4109
4110 static void
4111 i386_add_reggroups (struct gdbarch *gdbarch)
4112 {
4113 reggroup_add (gdbarch, i386_sse_reggroup);
4114 reggroup_add (gdbarch, i386_mmx_reggroup);
4115 reggroup_add (gdbarch, general_reggroup);
4116 reggroup_add (gdbarch, float_reggroup);
4117 reggroup_add (gdbarch, all_reggroup);
4118 reggroup_add (gdbarch, save_reggroup);
4119 reggroup_add (gdbarch, restore_reggroup);
4120 reggroup_add (gdbarch, vector_reggroup);
4121 reggroup_add (gdbarch, system_reggroup);
4122 }
4123
4124 int
4125 i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
4126 struct reggroup *group)
4127 {
4128 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4129 int fp_regnum_p, mmx_regnum_p, xmm_regnum_p, mxcsr_regnum_p,
4130 ymm_regnum_p, ymmh_regnum_p, bndr_regnum_p, bnd_regnum_p,
4131 mpx_ctrl_regnum_p;
4132
4133 /* Don't include pseudo registers, except for MMX, in any register
4134 groups. */
4135 if (i386_byte_regnum_p (gdbarch, regnum))
4136 return 0;
4137
4138 if (i386_word_regnum_p (gdbarch, regnum))
4139 return 0;
4140
4141 if (i386_dword_regnum_p (gdbarch, regnum))
4142 return 0;
4143
4144 mmx_regnum_p = i386_mmx_regnum_p (gdbarch, regnum);
4145 if (group == i386_mmx_reggroup)
4146 return mmx_regnum_p;
4147
4148 xmm_regnum_p = i386_xmm_regnum_p (gdbarch, regnum);
4149 mxcsr_regnum_p = i386_mxcsr_regnum_p (gdbarch, regnum);
4150 if (group == i386_sse_reggroup)
4151 return xmm_regnum_p || mxcsr_regnum_p;
4152
4153 ymm_regnum_p = i386_ymm_regnum_p (gdbarch, regnum);
4154 if (group == vector_reggroup)
4155 return (mmx_regnum_p
4156 || ymm_regnum_p
4157 || mxcsr_regnum_p
4158 || (xmm_regnum_p
4159 && ((tdep->xcr0 & I386_XSTATE_AVX_MASK)
4160 == I386_XSTATE_SSE_MASK)));
4161
4162 fp_regnum_p = (i386_fp_regnum_p (gdbarch, regnum)
4163 || i386_fpc_regnum_p (gdbarch, regnum));
4164 if (group == float_reggroup)
4165 return fp_regnum_p;
4166
4167 /* For "info reg all", don't include upper YMM registers nor XMM
4168 registers when AVX is supported. */
4169 ymmh_regnum_p = i386_ymmh_regnum_p (gdbarch, regnum);
4170 if (group == all_reggroup
4171 && ((xmm_regnum_p
4172 && (tdep->xcr0 & I386_XSTATE_AVX))
4173 || ymmh_regnum_p))
4174 return 0;
4175
4176 bnd_regnum_p = i386_bnd_regnum_p (gdbarch, regnum);
4177 if (group == all_reggroup
4178 && ((bnd_regnum_p && (tdep->xcr0 & I386_XSTATE_MPX_MASK))))
4179 return bnd_regnum_p;
4180
4181 bndr_regnum_p = i386_bndr_regnum_p (gdbarch, regnum);
4182 if (group == all_reggroup
4183 && ((bndr_regnum_p && (tdep->xcr0 & I386_XSTATE_MPX_MASK))))
4184 return 0;
4185
4186 mpx_ctrl_regnum_p = i386_mpx_ctrl_regnum_p (gdbarch, regnum);
4187 if (group == all_reggroup
4188 && ((mpx_ctrl_regnum_p && (tdep->xcr0 & I386_XSTATE_MPX_MASK))))
4189 return mpx_ctrl_regnum_p;
4190
4191 if (group == general_reggroup)
4192 return (!fp_regnum_p
4193 && !mmx_regnum_p
4194 && !mxcsr_regnum_p
4195 && !xmm_regnum_p
4196 && !ymm_regnum_p
4197 && !ymmh_regnum_p
4198 && !bndr_regnum_p
4199 && !bnd_regnum_p
4200 && !mpx_ctrl_regnum_p);
4201
4202 return default_register_reggroup_p (gdbarch, regnum, group);
4203 }
4204 \f
4205
4206 /* Get the ARGIth function argument for the current function. */
4207
4208 static CORE_ADDR
4209 i386_fetch_pointer_argument (struct frame_info *frame, int argi,
4210 struct type *type)
4211 {
4212 struct gdbarch *gdbarch = get_frame_arch (frame);
4213 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4214 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
4215 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4, byte_order);
4216 }
4217
4218 static void
4219 i386_skip_permanent_breakpoint (struct regcache *regcache)
4220 {
4221 CORE_ADDR current_pc = regcache_read_pc (regcache);
4222
4223 /* On i386, breakpoint is exactly 1 byte long, so we just
4224 adjust the PC in the regcache. */
4225 current_pc += 1;
4226 regcache_write_pc (regcache, current_pc);
4227 }
4228
4229
4230 #define PREFIX_REPZ 0x01
4231 #define PREFIX_REPNZ 0x02
4232 #define PREFIX_LOCK 0x04
4233 #define PREFIX_DATA 0x08
4234 #define PREFIX_ADDR 0x10
4235
4236 /* operand size */
4237 enum
4238 {
4239 OT_BYTE = 0,
4240 OT_WORD,
4241 OT_LONG,
4242 OT_QUAD,
4243 OT_DQUAD,
4244 };
4245
4246 /* i386 arith/logic operations */
4247 enum
4248 {
4249 OP_ADDL,
4250 OP_ORL,
4251 OP_ADCL,
4252 OP_SBBL,
4253 OP_ANDL,
4254 OP_SUBL,
4255 OP_XORL,
4256 OP_CMPL,
4257 };
4258
4259 struct i386_record_s
4260 {
4261 struct gdbarch *gdbarch;
4262 struct regcache *regcache;
4263 CORE_ADDR orig_addr;
4264 CORE_ADDR addr;
4265 int aflag;
4266 int dflag;
4267 int override;
4268 uint8_t modrm;
4269 uint8_t mod, reg, rm;
4270 int ot;
4271 uint8_t rex_x;
4272 uint8_t rex_b;
4273 int rip_offset;
4274 int popl_esp_hack;
4275 const int *regmap;
4276 };
4277
4278 /* Parse the "modrm" part of the memory address irp->addr points at.
4279 Returns -1 if something goes wrong, 0 otherwise. */
4280
4281 static int
4282 i386_record_modrm (struct i386_record_s *irp)
4283 {
4284 struct gdbarch *gdbarch = irp->gdbarch;
4285
4286 if (record_read_memory (gdbarch, irp->addr, &irp->modrm, 1))
4287 return -1;
4288
4289 irp->addr++;
4290 irp->mod = (irp->modrm >> 6) & 3;
4291 irp->reg = (irp->modrm >> 3) & 7;
4292 irp->rm = irp->modrm & 7;
4293
4294 return 0;
4295 }
4296
4297 /* Extract the memory address that the current instruction writes to,
4298 and return it in *ADDR. Return -1 if something goes wrong. */
4299
4300 static int
4301 i386_record_lea_modrm_addr (struct i386_record_s *irp, uint64_t *addr)
4302 {
4303 struct gdbarch *gdbarch = irp->gdbarch;
4304 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4305 gdb_byte buf[4];
4306 ULONGEST offset64;
4307
4308 *addr = 0;
4309 if (irp->aflag || irp->regmap[X86_RECORD_R8_REGNUM])
4310 {
4311 /* 32/64 bits */
4312 int havesib = 0;
4313 uint8_t scale = 0;
4314 uint8_t byte;
4315 uint8_t index = 0;
4316 uint8_t base = irp->rm;
4317
4318 if (base == 4)
4319 {
4320 havesib = 1;
4321 if (record_read_memory (gdbarch, irp->addr, &byte, 1))
4322 return -1;
4323 irp->addr++;
4324 scale = (byte >> 6) & 3;
4325 index = ((byte >> 3) & 7) | irp->rex_x;
4326 base = (byte & 7);
4327 }
4328 base |= irp->rex_b;
4329
4330 switch (irp->mod)
4331 {
4332 case 0:
4333 if ((base & 7) == 5)
4334 {
4335 base = 0xff;
4336 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4337 return -1;
4338 irp->addr += 4;
4339 *addr = extract_signed_integer (buf, 4, byte_order);
4340 if (irp->regmap[X86_RECORD_R8_REGNUM] && !havesib)
4341 *addr += irp->addr + irp->rip_offset;
4342 }
4343 break;
4344 case 1:
4345 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4346 return -1;
4347 irp->addr++;
4348 *addr = (int8_t) buf[0];
4349 break;
4350 case 2:
4351 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4352 return -1;
4353 *addr = extract_signed_integer (buf, 4, byte_order);
4354 irp->addr += 4;
4355 break;
4356 }
4357
4358 offset64 = 0;
4359 if (base != 0xff)
4360 {
4361 if (base == 4 && irp->popl_esp_hack)
4362 *addr += irp->popl_esp_hack;
4363 regcache_raw_read_unsigned (irp->regcache, irp->regmap[base],
4364 &offset64);
4365 }
4366 if (irp->aflag == 2)
4367 {
4368 *addr += offset64;
4369 }
4370 else
4371 *addr = (uint32_t) (offset64 + *addr);
4372
4373 if (havesib && (index != 4 || scale != 0))
4374 {
4375 regcache_raw_read_unsigned (irp->regcache, irp->regmap[index],
4376 &offset64);
4377 if (irp->aflag == 2)
4378 *addr += offset64 << scale;
4379 else
4380 *addr = (uint32_t) (*addr + (offset64 << scale));
4381 }
4382
4383 if (!irp->aflag)
4384 {
4385 /* Since we are in 64-bit mode with ADDR32 prefix, zero-extend
4386 address from 32-bit to 64-bit. */
4387 *addr = (uint32_t) *addr;
4388 }
4389 }
4390 else
4391 {
4392 /* 16 bits */
4393 switch (irp->mod)
4394 {
4395 case 0:
4396 if (irp->rm == 6)
4397 {
4398 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4399 return -1;
4400 irp->addr += 2;
4401 *addr = extract_signed_integer (buf, 2, byte_order);
4402 irp->rm = 0;
4403 goto no_rm;
4404 }
4405 break;
4406 case 1:
4407 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4408 return -1;
4409 irp->addr++;
4410 *addr = (int8_t) buf[0];
4411 break;
4412 case 2:
4413 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4414 return -1;
4415 irp->addr += 2;
4416 *addr = extract_signed_integer (buf, 2, byte_order);
4417 break;
4418 }
4419
4420 switch (irp->rm)
4421 {
4422 case 0:
4423 regcache_raw_read_unsigned (irp->regcache,
4424 irp->regmap[X86_RECORD_REBX_REGNUM],
4425 &offset64);
4426 *addr = (uint32_t) (*addr + offset64);
4427 regcache_raw_read_unsigned (irp->regcache,
4428 irp->regmap[X86_RECORD_RESI_REGNUM],
4429 &offset64);
4430 *addr = (uint32_t) (*addr + offset64);
4431 break;
4432 case 1:
4433 regcache_raw_read_unsigned (irp->regcache,
4434 irp->regmap[X86_RECORD_REBX_REGNUM],
4435 &offset64);
4436 *addr = (uint32_t) (*addr + offset64);
4437 regcache_raw_read_unsigned (irp->regcache,
4438 irp->regmap[X86_RECORD_REDI_REGNUM],
4439 &offset64);
4440 *addr = (uint32_t) (*addr + offset64);
4441 break;
4442 case 2:
4443 regcache_raw_read_unsigned (irp->regcache,
4444 irp->regmap[X86_RECORD_REBP_REGNUM],
4445 &offset64);
4446 *addr = (uint32_t) (*addr + offset64);
4447 regcache_raw_read_unsigned (irp->regcache,
4448 irp->regmap[X86_RECORD_RESI_REGNUM],
4449 &offset64);
4450 *addr = (uint32_t) (*addr + offset64);
4451 break;
4452 case 3:
4453 regcache_raw_read_unsigned (irp->regcache,
4454 irp->regmap[X86_RECORD_REBP_REGNUM],
4455 &offset64);
4456 *addr = (uint32_t) (*addr + offset64);
4457 regcache_raw_read_unsigned (irp->regcache,
4458 irp->regmap[X86_RECORD_REDI_REGNUM],
4459 &offset64);
4460 *addr = (uint32_t) (*addr + offset64);
4461 break;
4462 case 4:
4463 regcache_raw_read_unsigned (irp->regcache,
4464 irp->regmap[X86_RECORD_RESI_REGNUM],
4465 &offset64);
4466 *addr = (uint32_t) (*addr + offset64);
4467 break;
4468 case 5:
4469 regcache_raw_read_unsigned (irp->regcache,
4470 irp->regmap[X86_RECORD_REDI_REGNUM],
4471 &offset64);
4472 *addr = (uint32_t) (*addr + offset64);
4473 break;
4474 case 6:
4475 regcache_raw_read_unsigned (irp->regcache,
4476 irp->regmap[X86_RECORD_REBP_REGNUM],
4477 &offset64);
4478 *addr = (uint32_t) (*addr + offset64);
4479 break;
4480 case 7:
4481 regcache_raw_read_unsigned (irp->regcache,
4482 irp->regmap[X86_RECORD_REBX_REGNUM],
4483 &offset64);
4484 *addr = (uint32_t) (*addr + offset64);
4485 break;
4486 }
4487 *addr &= 0xffff;
4488 }
4489
4490 no_rm:
4491 return 0;
4492 }
4493
4494 /* Record the address and contents of the memory that will be changed
4495 by the current instruction. Return -1 if something goes wrong, 0
4496 otherwise. */
4497
4498 static int
4499 i386_record_lea_modrm (struct i386_record_s *irp)
4500 {
4501 struct gdbarch *gdbarch = irp->gdbarch;
4502 uint64_t addr;
4503
4504 if (irp->override >= 0)
4505 {
4506 if (record_full_memory_query)
4507 {
4508 int q;
4509
4510 target_terminal_ours ();
4511 q = yquery (_("\
4512 Process record ignores the memory change of instruction at address %s\n\
4513 because it can't get the value of the segment register.\n\
4514 Do you want to stop the program?"),
4515 paddress (gdbarch, irp->orig_addr));
4516 target_terminal_inferior ();
4517 if (q)
4518 return -1;
4519 }
4520
4521 return 0;
4522 }
4523
4524 if (i386_record_lea_modrm_addr (irp, &addr))
4525 return -1;
4526
4527 if (record_full_arch_list_add_mem (addr, 1 << irp->ot))
4528 return -1;
4529
4530 return 0;
4531 }
4532
4533 /* Record the effects of a push operation. Return -1 if something
4534 goes wrong, 0 otherwise. */
4535
4536 static int
4537 i386_record_push (struct i386_record_s *irp, int size)
4538 {
4539 ULONGEST addr;
4540
4541 if (record_full_arch_list_add_reg (irp->regcache,
4542 irp->regmap[X86_RECORD_RESP_REGNUM]))
4543 return -1;
4544 regcache_raw_read_unsigned (irp->regcache,
4545 irp->regmap[X86_RECORD_RESP_REGNUM],
4546 &addr);
4547 if (record_full_arch_list_add_mem ((CORE_ADDR) addr - size, size))
4548 return -1;
4549
4550 return 0;
4551 }
4552
4553
4554 /* Defines contents to record. */
4555 #define I386_SAVE_FPU_REGS 0xfffd
4556 #define I386_SAVE_FPU_ENV 0xfffe
4557 #define I386_SAVE_FPU_ENV_REG_STACK 0xffff
4558
4559 /* Record the values of the floating point registers which will be
4560 changed by the current instruction. Returns -1 if something is
4561 wrong, 0 otherwise. */
4562
4563 static int i386_record_floats (struct gdbarch *gdbarch,
4564 struct i386_record_s *ir,
4565 uint32_t iregnum)
4566 {
4567 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4568 int i;
4569
4570 /* Oza: Because of floating point insn push/pop of fpu stack is going to
4571 happen. Currently we store st0-st7 registers, but we need not store all
4572 registers all the time, in future we use ftag register and record only
4573 those who are not marked as an empty. */
4574
4575 if (I386_SAVE_FPU_REGS == iregnum)
4576 {
4577 for (i = I387_ST0_REGNUM (tdep); i <= I387_ST0_REGNUM (tdep) + 7; i++)
4578 {
4579 if (record_full_arch_list_add_reg (ir->regcache, i))
4580 return -1;
4581 }
4582 }
4583 else if (I386_SAVE_FPU_ENV == iregnum)
4584 {
4585 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4586 {
4587 if (record_full_arch_list_add_reg (ir->regcache, i))
4588 return -1;
4589 }
4590 }
4591 else if (I386_SAVE_FPU_ENV_REG_STACK == iregnum)
4592 {
4593 for (i = I387_ST0_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4594 {
4595 if (record_full_arch_list_add_reg (ir->regcache, i))
4596 return -1;
4597 }
4598 }
4599 else if ((iregnum >= I387_ST0_REGNUM (tdep)) &&
4600 (iregnum <= I387_FOP_REGNUM (tdep)))
4601 {
4602 if (record_full_arch_list_add_reg (ir->regcache,iregnum))
4603 return -1;
4604 }
4605 else
4606 {
4607 /* Parameter error. */
4608 return -1;
4609 }
4610 if(I386_SAVE_FPU_ENV != iregnum)
4611 {
4612 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4613 {
4614 if (record_full_arch_list_add_reg (ir->regcache, i))
4615 return -1;
4616 }
4617 }
4618 return 0;
4619 }
4620
4621 /* Parse the current instruction, and record the values of the
4622 registers and memory that will be changed by the current
4623 instruction. Returns -1 if something goes wrong, 0 otherwise. */
4624
4625 #define I386_RECORD_FULL_ARCH_LIST_ADD_REG(regnum) \
4626 record_full_arch_list_add_reg (ir.regcache, ir.regmap[(regnum)])
4627
4628 int
4629 i386_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
4630 CORE_ADDR input_addr)
4631 {
4632 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4633 int prefixes = 0;
4634 int regnum = 0;
4635 uint32_t opcode;
4636 uint8_t opcode8;
4637 ULONGEST addr;
4638 gdb_byte buf[MAX_REGISTER_SIZE];
4639 struct i386_record_s ir;
4640 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4641 uint8_t rex_w = -1;
4642 uint8_t rex_r = 0;
4643
4644 memset (&ir, 0, sizeof (struct i386_record_s));
4645 ir.regcache = regcache;
4646 ir.addr = input_addr;
4647 ir.orig_addr = input_addr;
4648 ir.aflag = 1;
4649 ir.dflag = 1;
4650 ir.override = -1;
4651 ir.popl_esp_hack = 0;
4652 ir.regmap = tdep->record_regmap;
4653 ir.gdbarch = gdbarch;
4654
4655 if (record_debug > 1)
4656 fprintf_unfiltered (gdb_stdlog, "Process record: i386_process_record "
4657 "addr = %s\n",
4658 paddress (gdbarch, ir.addr));
4659
4660 /* prefixes */
4661 while (1)
4662 {
4663 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
4664 return -1;
4665 ir.addr++;
4666 switch (opcode8) /* Instruction prefixes */
4667 {
4668 case REPE_PREFIX_OPCODE:
4669 prefixes |= PREFIX_REPZ;
4670 break;
4671 case REPNE_PREFIX_OPCODE:
4672 prefixes |= PREFIX_REPNZ;
4673 break;
4674 case LOCK_PREFIX_OPCODE:
4675 prefixes |= PREFIX_LOCK;
4676 break;
4677 case CS_PREFIX_OPCODE:
4678 ir.override = X86_RECORD_CS_REGNUM;
4679 break;
4680 case SS_PREFIX_OPCODE:
4681 ir.override = X86_RECORD_SS_REGNUM;
4682 break;
4683 case DS_PREFIX_OPCODE:
4684 ir.override = X86_RECORD_DS_REGNUM;
4685 break;
4686 case ES_PREFIX_OPCODE:
4687 ir.override = X86_RECORD_ES_REGNUM;
4688 break;
4689 case FS_PREFIX_OPCODE:
4690 ir.override = X86_RECORD_FS_REGNUM;
4691 break;
4692 case GS_PREFIX_OPCODE:
4693 ir.override = X86_RECORD_GS_REGNUM;
4694 break;
4695 case DATA_PREFIX_OPCODE:
4696 prefixes |= PREFIX_DATA;
4697 break;
4698 case ADDR_PREFIX_OPCODE:
4699 prefixes |= PREFIX_ADDR;
4700 break;
4701 case 0x40: /* i386 inc %eax */
4702 case 0x41: /* i386 inc %ecx */
4703 case 0x42: /* i386 inc %edx */
4704 case 0x43: /* i386 inc %ebx */
4705 case 0x44: /* i386 inc %esp */
4706 case 0x45: /* i386 inc %ebp */
4707 case 0x46: /* i386 inc %esi */
4708 case 0x47: /* i386 inc %edi */
4709 case 0x48: /* i386 dec %eax */
4710 case 0x49: /* i386 dec %ecx */
4711 case 0x4a: /* i386 dec %edx */
4712 case 0x4b: /* i386 dec %ebx */
4713 case 0x4c: /* i386 dec %esp */
4714 case 0x4d: /* i386 dec %ebp */
4715 case 0x4e: /* i386 dec %esi */
4716 case 0x4f: /* i386 dec %edi */
4717 if (ir.regmap[X86_RECORD_R8_REGNUM]) /* 64 bit target */
4718 {
4719 /* REX */
4720 rex_w = (opcode8 >> 3) & 1;
4721 rex_r = (opcode8 & 0x4) << 1;
4722 ir.rex_x = (opcode8 & 0x2) << 2;
4723 ir.rex_b = (opcode8 & 0x1) << 3;
4724 }
4725 else /* 32 bit target */
4726 goto out_prefixes;
4727 break;
4728 default:
4729 goto out_prefixes;
4730 break;
4731 }
4732 }
4733 out_prefixes:
4734 if (ir.regmap[X86_RECORD_R8_REGNUM] && rex_w == 1)
4735 {
4736 ir.dflag = 2;
4737 }
4738 else
4739 {
4740 if (prefixes & PREFIX_DATA)
4741 ir.dflag ^= 1;
4742 }
4743 if (prefixes & PREFIX_ADDR)
4744 ir.aflag ^= 1;
4745 else if (ir.regmap[X86_RECORD_R8_REGNUM])
4746 ir.aflag = 2;
4747
4748 /* Now check op code. */
4749 opcode = (uint32_t) opcode8;
4750 reswitch:
4751 switch (opcode)
4752 {
4753 case 0x0f:
4754 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
4755 return -1;
4756 ir.addr++;
4757 opcode = (uint32_t) opcode8 | 0x0f00;
4758 goto reswitch;
4759 break;
4760
4761 case 0x00: /* arith & logic */
4762 case 0x01:
4763 case 0x02:
4764 case 0x03:
4765 case 0x04:
4766 case 0x05:
4767 case 0x08:
4768 case 0x09:
4769 case 0x0a:
4770 case 0x0b:
4771 case 0x0c:
4772 case 0x0d:
4773 case 0x10:
4774 case 0x11:
4775 case 0x12:
4776 case 0x13:
4777 case 0x14:
4778 case 0x15:
4779 case 0x18:
4780 case 0x19:
4781 case 0x1a:
4782 case 0x1b:
4783 case 0x1c:
4784 case 0x1d:
4785 case 0x20:
4786 case 0x21:
4787 case 0x22:
4788 case 0x23:
4789 case 0x24:
4790 case 0x25:
4791 case 0x28:
4792 case 0x29:
4793 case 0x2a:
4794 case 0x2b:
4795 case 0x2c:
4796 case 0x2d:
4797 case 0x30:
4798 case 0x31:
4799 case 0x32:
4800 case 0x33:
4801 case 0x34:
4802 case 0x35:
4803 case 0x38:
4804 case 0x39:
4805 case 0x3a:
4806 case 0x3b:
4807 case 0x3c:
4808 case 0x3d:
4809 if (((opcode >> 3) & 7) != OP_CMPL)
4810 {
4811 if ((opcode & 1) == 0)
4812 ir.ot = OT_BYTE;
4813 else
4814 ir.ot = ir.dflag + OT_WORD;
4815
4816 switch ((opcode >> 1) & 3)
4817 {
4818 case 0: /* OP Ev, Gv */
4819 if (i386_record_modrm (&ir))
4820 return -1;
4821 if (ir.mod != 3)
4822 {
4823 if (i386_record_lea_modrm (&ir))
4824 return -1;
4825 }
4826 else
4827 {
4828 ir.rm |= ir.rex_b;
4829 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4830 ir.rm &= 0x3;
4831 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
4832 }
4833 break;
4834 case 1: /* OP Gv, Ev */
4835 if (i386_record_modrm (&ir))
4836 return -1;
4837 ir.reg |= rex_r;
4838 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4839 ir.reg &= 0x3;
4840 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
4841 break;
4842 case 2: /* OP A, Iv */
4843 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4844 break;
4845 }
4846 }
4847 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4848 break;
4849
4850 case 0x80: /* GRP1 */
4851 case 0x81:
4852 case 0x82:
4853 case 0x83:
4854 if (i386_record_modrm (&ir))
4855 return -1;
4856
4857 if (ir.reg != OP_CMPL)
4858 {
4859 if ((opcode & 1) == 0)
4860 ir.ot = OT_BYTE;
4861 else
4862 ir.ot = ir.dflag + OT_WORD;
4863
4864 if (ir.mod != 3)
4865 {
4866 if (opcode == 0x83)
4867 ir.rip_offset = 1;
4868 else
4869 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
4870 if (i386_record_lea_modrm (&ir))
4871 return -1;
4872 }
4873 else
4874 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
4875 }
4876 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4877 break;
4878
4879 case 0x40: /* inc */
4880 case 0x41:
4881 case 0x42:
4882 case 0x43:
4883 case 0x44:
4884 case 0x45:
4885 case 0x46:
4886 case 0x47:
4887
4888 case 0x48: /* dec */
4889 case 0x49:
4890 case 0x4a:
4891 case 0x4b:
4892 case 0x4c:
4893 case 0x4d:
4894 case 0x4e:
4895 case 0x4f:
4896
4897 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 7);
4898 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4899 break;
4900
4901 case 0xf6: /* GRP3 */
4902 case 0xf7:
4903 if ((opcode & 1) == 0)
4904 ir.ot = OT_BYTE;
4905 else
4906 ir.ot = ir.dflag + OT_WORD;
4907 if (i386_record_modrm (&ir))
4908 return -1;
4909
4910 if (ir.mod != 3 && ir.reg == 0)
4911 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
4912
4913 switch (ir.reg)
4914 {
4915 case 0: /* test */
4916 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4917 break;
4918 case 2: /* not */
4919 case 3: /* neg */
4920 if (ir.mod != 3)
4921 {
4922 if (i386_record_lea_modrm (&ir))
4923 return -1;
4924 }
4925 else
4926 {
4927 ir.rm |= ir.rex_b;
4928 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4929 ir.rm &= 0x3;
4930 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
4931 }
4932 if (ir.reg == 3) /* neg */
4933 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4934 break;
4935 case 4: /* mul */
4936 case 5: /* imul */
4937 case 6: /* div */
4938 case 7: /* idiv */
4939 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4940 if (ir.ot != OT_BYTE)
4941 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
4942 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4943 break;
4944 default:
4945 ir.addr -= 2;
4946 opcode = opcode << 8 | ir.modrm;
4947 goto no_support;
4948 break;
4949 }
4950 break;
4951
4952 case 0xfe: /* GRP4 */
4953 case 0xff: /* GRP5 */
4954 if (i386_record_modrm (&ir))
4955 return -1;
4956 if (ir.reg >= 2 && opcode == 0xfe)
4957 {
4958 ir.addr -= 2;
4959 opcode = opcode << 8 | ir.modrm;
4960 goto no_support;
4961 }
4962 switch (ir.reg)
4963 {
4964 case 0: /* inc */
4965 case 1: /* dec */
4966 if ((opcode & 1) == 0)
4967 ir.ot = OT_BYTE;
4968 else
4969 ir.ot = ir.dflag + OT_WORD;
4970 if (ir.mod != 3)
4971 {
4972 if (i386_record_lea_modrm (&ir))
4973 return -1;
4974 }
4975 else
4976 {
4977 ir.rm |= ir.rex_b;
4978 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4979 ir.rm &= 0x3;
4980 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
4981 }
4982 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4983 break;
4984 case 2: /* call */
4985 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4986 ir.dflag = 2;
4987 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4988 return -1;
4989 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4990 break;
4991 case 3: /* lcall */
4992 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
4993 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4994 return -1;
4995 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4996 break;
4997 case 4: /* jmp */
4998 case 5: /* ljmp */
4999 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5000 break;
5001 case 6: /* push */
5002 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5003 ir.dflag = 2;
5004 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5005 return -1;
5006 break;
5007 default:
5008 ir.addr -= 2;
5009 opcode = opcode << 8 | ir.modrm;
5010 goto no_support;
5011 break;
5012 }
5013 break;
5014
5015 case 0x84: /* test */
5016 case 0x85:
5017 case 0xa8:
5018 case 0xa9:
5019 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5020 break;
5021
5022 case 0x98: /* CWDE/CBW */
5023 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5024 break;
5025
5026 case 0x99: /* CDQ/CWD */
5027 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5028 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5029 break;
5030
5031 case 0x0faf: /* imul */
5032 case 0x69:
5033 case 0x6b:
5034 ir.ot = ir.dflag + OT_WORD;
5035 if (i386_record_modrm (&ir))
5036 return -1;
5037 if (opcode == 0x69)
5038 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5039 else if (opcode == 0x6b)
5040 ir.rip_offset = 1;
5041 ir.reg |= rex_r;
5042 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5043 ir.reg &= 0x3;
5044 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5045 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5046 break;
5047
5048 case 0x0fc0: /* xadd */
5049 case 0x0fc1:
5050 if ((opcode & 1) == 0)
5051 ir.ot = OT_BYTE;
5052 else
5053 ir.ot = ir.dflag + OT_WORD;
5054 if (i386_record_modrm (&ir))
5055 return -1;
5056 ir.reg |= rex_r;
5057 if (ir.mod == 3)
5058 {
5059 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5060 ir.reg &= 0x3;
5061 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5062 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5063 ir.rm &= 0x3;
5064 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5065 }
5066 else
5067 {
5068 if (i386_record_lea_modrm (&ir))
5069 return -1;
5070 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5071 ir.reg &= 0x3;
5072 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5073 }
5074 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5075 break;
5076
5077 case 0x0fb0: /* cmpxchg */
5078 case 0x0fb1:
5079 if ((opcode & 1) == 0)
5080 ir.ot = OT_BYTE;
5081 else
5082 ir.ot = ir.dflag + OT_WORD;
5083 if (i386_record_modrm (&ir))
5084 return -1;
5085 if (ir.mod == 3)
5086 {
5087 ir.reg |= rex_r;
5088 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5089 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5090 ir.reg &= 0x3;
5091 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5092 }
5093 else
5094 {
5095 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5096 if (i386_record_lea_modrm (&ir))
5097 return -1;
5098 }
5099 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5100 break;
5101
5102 case 0x0fc7: /* cmpxchg8b */
5103 if (i386_record_modrm (&ir))
5104 return -1;
5105 if (ir.mod == 3)
5106 {
5107 ir.addr -= 2;
5108 opcode = opcode << 8 | ir.modrm;
5109 goto no_support;
5110 }
5111 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5112 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5113 if (i386_record_lea_modrm (&ir))
5114 return -1;
5115 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5116 break;
5117
5118 case 0x50: /* push */
5119 case 0x51:
5120 case 0x52:
5121 case 0x53:
5122 case 0x54:
5123 case 0x55:
5124 case 0x56:
5125 case 0x57:
5126 case 0x68:
5127 case 0x6a:
5128 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5129 ir.dflag = 2;
5130 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5131 return -1;
5132 break;
5133
5134 case 0x06: /* push es */
5135 case 0x0e: /* push cs */
5136 case 0x16: /* push ss */
5137 case 0x1e: /* push ds */
5138 if (ir.regmap[X86_RECORD_R8_REGNUM])
5139 {
5140 ir.addr -= 1;
5141 goto no_support;
5142 }
5143 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5144 return -1;
5145 break;
5146
5147 case 0x0fa0: /* push fs */
5148 case 0x0fa8: /* push gs */
5149 if (ir.regmap[X86_RECORD_R8_REGNUM])
5150 {
5151 ir.addr -= 2;
5152 goto no_support;
5153 }
5154 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5155 return -1;
5156 break;
5157
5158 case 0x60: /* pusha */
5159 if (ir.regmap[X86_RECORD_R8_REGNUM])
5160 {
5161 ir.addr -= 1;
5162 goto no_support;
5163 }
5164 if (i386_record_push (&ir, 1 << (ir.dflag + 4)))
5165 return -1;
5166 break;
5167
5168 case 0x58: /* pop */
5169 case 0x59:
5170 case 0x5a:
5171 case 0x5b:
5172 case 0x5c:
5173 case 0x5d:
5174 case 0x5e:
5175 case 0x5f:
5176 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5177 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
5178 break;
5179
5180 case 0x61: /* popa */
5181 if (ir.regmap[X86_RECORD_R8_REGNUM])
5182 {
5183 ir.addr -= 1;
5184 goto no_support;
5185 }
5186 for (regnum = X86_RECORD_REAX_REGNUM;
5187 regnum <= X86_RECORD_REDI_REGNUM;
5188 regnum++)
5189 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5190 break;
5191
5192 case 0x8f: /* pop */
5193 if (ir.regmap[X86_RECORD_R8_REGNUM])
5194 ir.ot = ir.dflag ? OT_QUAD : OT_WORD;
5195 else
5196 ir.ot = ir.dflag + OT_WORD;
5197 if (i386_record_modrm (&ir))
5198 return -1;
5199 if (ir.mod == 3)
5200 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5201 else
5202 {
5203 ir.popl_esp_hack = 1 << ir.ot;
5204 if (i386_record_lea_modrm (&ir))
5205 return -1;
5206 }
5207 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5208 break;
5209
5210 case 0xc8: /* enter */
5211 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
5212 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5213 ir.dflag = 2;
5214 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5215 return -1;
5216 break;
5217
5218 case 0xc9: /* leave */
5219 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5220 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
5221 break;
5222
5223 case 0x07: /* pop es */
5224 if (ir.regmap[X86_RECORD_R8_REGNUM])
5225 {
5226 ir.addr -= 1;
5227 goto no_support;
5228 }
5229 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5230 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_ES_REGNUM);
5231 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5232 break;
5233
5234 case 0x17: /* pop ss */
5235 if (ir.regmap[X86_RECORD_R8_REGNUM])
5236 {
5237 ir.addr -= 1;
5238 goto no_support;
5239 }
5240 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5241 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_SS_REGNUM);
5242 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5243 break;
5244
5245 case 0x1f: /* pop ds */
5246 if (ir.regmap[X86_RECORD_R8_REGNUM])
5247 {
5248 ir.addr -= 1;
5249 goto no_support;
5250 }
5251 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5252 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_DS_REGNUM);
5253 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5254 break;
5255
5256 case 0x0fa1: /* pop fs */
5257 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5258 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_FS_REGNUM);
5259 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5260 break;
5261
5262 case 0x0fa9: /* pop gs */
5263 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5264 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
5265 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5266 break;
5267
5268 case 0x88: /* mov */
5269 case 0x89:
5270 case 0xc6:
5271 case 0xc7:
5272 if ((opcode & 1) == 0)
5273 ir.ot = OT_BYTE;
5274 else
5275 ir.ot = ir.dflag + OT_WORD;
5276
5277 if (i386_record_modrm (&ir))
5278 return -1;
5279
5280 if (ir.mod != 3)
5281 {
5282 if (opcode == 0xc6 || opcode == 0xc7)
5283 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5284 if (i386_record_lea_modrm (&ir))
5285 return -1;
5286 }
5287 else
5288 {
5289 if (opcode == 0xc6 || opcode == 0xc7)
5290 ir.rm |= ir.rex_b;
5291 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5292 ir.rm &= 0x3;
5293 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5294 }
5295 break;
5296
5297 case 0x8a: /* mov */
5298 case 0x8b:
5299 if ((opcode & 1) == 0)
5300 ir.ot = OT_BYTE;
5301 else
5302 ir.ot = ir.dflag + OT_WORD;
5303 if (i386_record_modrm (&ir))
5304 return -1;
5305 ir.reg |= rex_r;
5306 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5307 ir.reg &= 0x3;
5308 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5309 break;
5310
5311 case 0x8c: /* mov seg */
5312 if (i386_record_modrm (&ir))
5313 return -1;
5314 if (ir.reg > 5)
5315 {
5316 ir.addr -= 2;
5317 opcode = opcode << 8 | ir.modrm;
5318 goto no_support;
5319 }
5320
5321 if (ir.mod == 3)
5322 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5323 else
5324 {
5325 ir.ot = OT_WORD;
5326 if (i386_record_lea_modrm (&ir))
5327 return -1;
5328 }
5329 break;
5330
5331 case 0x8e: /* mov seg */
5332 if (i386_record_modrm (&ir))
5333 return -1;
5334 switch (ir.reg)
5335 {
5336 case 0:
5337 regnum = X86_RECORD_ES_REGNUM;
5338 break;
5339 case 2:
5340 regnum = X86_RECORD_SS_REGNUM;
5341 break;
5342 case 3:
5343 regnum = X86_RECORD_DS_REGNUM;
5344 break;
5345 case 4:
5346 regnum = X86_RECORD_FS_REGNUM;
5347 break;
5348 case 5:
5349 regnum = X86_RECORD_GS_REGNUM;
5350 break;
5351 default:
5352 ir.addr -= 2;
5353 opcode = opcode << 8 | ir.modrm;
5354 goto no_support;
5355 break;
5356 }
5357 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5358 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5359 break;
5360
5361 case 0x0fb6: /* movzbS */
5362 case 0x0fb7: /* movzwS */
5363 case 0x0fbe: /* movsbS */
5364 case 0x0fbf: /* movswS */
5365 if (i386_record_modrm (&ir))
5366 return -1;
5367 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5368 break;
5369
5370 case 0x8d: /* lea */
5371 if (i386_record_modrm (&ir))
5372 return -1;
5373 if (ir.mod == 3)
5374 {
5375 ir.addr -= 2;
5376 opcode = opcode << 8 | ir.modrm;
5377 goto no_support;
5378 }
5379 ir.ot = ir.dflag;
5380 ir.reg |= rex_r;
5381 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5382 ir.reg &= 0x3;
5383 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5384 break;
5385
5386 case 0xa0: /* mov EAX */
5387 case 0xa1:
5388
5389 case 0xd7: /* xlat */
5390 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5391 break;
5392
5393 case 0xa2: /* mov EAX */
5394 case 0xa3:
5395 if (ir.override >= 0)
5396 {
5397 if (record_full_memory_query)
5398 {
5399 int q;
5400
5401 target_terminal_ours ();
5402 q = yquery (_("\
5403 Process record ignores the memory change of instruction at address %s\n\
5404 because it can't get the value of the segment register.\n\
5405 Do you want to stop the program?"),
5406 paddress (gdbarch, ir.orig_addr));
5407 target_terminal_inferior ();
5408 if (q)
5409 return -1;
5410 }
5411 }
5412 else
5413 {
5414 if ((opcode & 1) == 0)
5415 ir.ot = OT_BYTE;
5416 else
5417 ir.ot = ir.dflag + OT_WORD;
5418 if (ir.aflag == 2)
5419 {
5420 if (record_read_memory (gdbarch, ir.addr, buf, 8))
5421 return -1;
5422 ir.addr += 8;
5423 addr = extract_unsigned_integer (buf, 8, byte_order);
5424 }
5425 else if (ir.aflag)
5426 {
5427 if (record_read_memory (gdbarch, ir.addr, buf, 4))
5428 return -1;
5429 ir.addr += 4;
5430 addr = extract_unsigned_integer (buf, 4, byte_order);
5431 }
5432 else
5433 {
5434 if (record_read_memory (gdbarch, ir.addr, buf, 2))
5435 return -1;
5436 ir.addr += 2;
5437 addr = extract_unsigned_integer (buf, 2, byte_order);
5438 }
5439 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
5440 return -1;
5441 }
5442 break;
5443
5444 case 0xb0: /* mov R, Ib */
5445 case 0xb1:
5446 case 0xb2:
5447 case 0xb3:
5448 case 0xb4:
5449 case 0xb5:
5450 case 0xb6:
5451 case 0xb7:
5452 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((ir.regmap[X86_RECORD_R8_REGNUM])
5453 ? ((opcode & 0x7) | ir.rex_b)
5454 : ((opcode & 0x7) & 0x3));
5455 break;
5456
5457 case 0xb8: /* mov R, Iv */
5458 case 0xb9:
5459 case 0xba:
5460 case 0xbb:
5461 case 0xbc:
5462 case 0xbd:
5463 case 0xbe:
5464 case 0xbf:
5465 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
5466 break;
5467
5468 case 0x91: /* xchg R, EAX */
5469 case 0x92:
5470 case 0x93:
5471 case 0x94:
5472 case 0x95:
5473 case 0x96:
5474 case 0x97:
5475 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5476 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 0x7);
5477 break;
5478
5479 case 0x86: /* xchg Ev, Gv */
5480 case 0x87:
5481 if ((opcode & 1) == 0)
5482 ir.ot = OT_BYTE;
5483 else
5484 ir.ot = ir.dflag + OT_WORD;
5485 if (i386_record_modrm (&ir))
5486 return -1;
5487 if (ir.mod == 3)
5488 {
5489 ir.rm |= ir.rex_b;
5490 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5491 ir.rm &= 0x3;
5492 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5493 }
5494 else
5495 {
5496 if (i386_record_lea_modrm (&ir))
5497 return -1;
5498 }
5499 ir.reg |= rex_r;
5500 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5501 ir.reg &= 0x3;
5502 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5503 break;
5504
5505 case 0xc4: /* les Gv */
5506 case 0xc5: /* lds Gv */
5507 if (ir.regmap[X86_RECORD_R8_REGNUM])
5508 {
5509 ir.addr -= 1;
5510 goto no_support;
5511 }
5512 /* FALLTHROUGH */
5513 case 0x0fb2: /* lss Gv */
5514 case 0x0fb4: /* lfs Gv */
5515 case 0x0fb5: /* lgs Gv */
5516 if (i386_record_modrm (&ir))
5517 return -1;
5518 if (ir.mod == 3)
5519 {
5520 if (opcode > 0xff)
5521 ir.addr -= 3;
5522 else
5523 ir.addr -= 2;
5524 opcode = opcode << 8 | ir.modrm;
5525 goto no_support;
5526 }
5527 switch (opcode)
5528 {
5529 case 0xc4: /* les Gv */
5530 regnum = X86_RECORD_ES_REGNUM;
5531 break;
5532 case 0xc5: /* lds Gv */
5533 regnum = X86_RECORD_DS_REGNUM;
5534 break;
5535 case 0x0fb2: /* lss Gv */
5536 regnum = X86_RECORD_SS_REGNUM;
5537 break;
5538 case 0x0fb4: /* lfs Gv */
5539 regnum = X86_RECORD_FS_REGNUM;
5540 break;
5541 case 0x0fb5: /* lgs Gv */
5542 regnum = X86_RECORD_GS_REGNUM;
5543 break;
5544 }
5545 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5546 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5547 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5548 break;
5549
5550 case 0xc0: /* shifts */
5551 case 0xc1:
5552 case 0xd0:
5553 case 0xd1:
5554 case 0xd2:
5555 case 0xd3:
5556 if ((opcode & 1) == 0)
5557 ir.ot = OT_BYTE;
5558 else
5559 ir.ot = ir.dflag + OT_WORD;
5560 if (i386_record_modrm (&ir))
5561 return -1;
5562 if (ir.mod != 3 && (opcode == 0xd2 || opcode == 0xd3))
5563 {
5564 if (i386_record_lea_modrm (&ir))
5565 return -1;
5566 }
5567 else
5568 {
5569 ir.rm |= ir.rex_b;
5570 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5571 ir.rm &= 0x3;
5572 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5573 }
5574 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5575 break;
5576
5577 case 0x0fa4:
5578 case 0x0fa5:
5579 case 0x0fac:
5580 case 0x0fad:
5581 if (i386_record_modrm (&ir))
5582 return -1;
5583 if (ir.mod == 3)
5584 {
5585 if (record_full_arch_list_add_reg (ir.regcache, ir.rm))
5586 return -1;
5587 }
5588 else
5589 {
5590 if (i386_record_lea_modrm (&ir))
5591 return -1;
5592 }
5593 break;
5594
5595 case 0xd8: /* Floats. */
5596 case 0xd9:
5597 case 0xda:
5598 case 0xdb:
5599 case 0xdc:
5600 case 0xdd:
5601 case 0xde:
5602 case 0xdf:
5603 if (i386_record_modrm (&ir))
5604 return -1;
5605 ir.reg |= ((opcode & 7) << 3);
5606 if (ir.mod != 3)
5607 {
5608 /* Memory. */
5609 uint64_t addr64;
5610
5611 if (i386_record_lea_modrm_addr (&ir, &addr64))
5612 return -1;
5613 switch (ir.reg)
5614 {
5615 case 0x02:
5616 case 0x12:
5617 case 0x22:
5618 case 0x32:
5619 /* For fcom, ficom nothing to do. */
5620 break;
5621 case 0x03:
5622 case 0x13:
5623 case 0x23:
5624 case 0x33:
5625 /* For fcomp, ficomp pop FPU stack, store all. */
5626 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5627 return -1;
5628 break;
5629 case 0x00:
5630 case 0x01:
5631 case 0x04:
5632 case 0x05:
5633 case 0x06:
5634 case 0x07:
5635 case 0x10:
5636 case 0x11:
5637 case 0x14:
5638 case 0x15:
5639 case 0x16:
5640 case 0x17:
5641 case 0x20:
5642 case 0x21:
5643 case 0x24:
5644 case 0x25:
5645 case 0x26:
5646 case 0x27:
5647 case 0x30:
5648 case 0x31:
5649 case 0x34:
5650 case 0x35:
5651 case 0x36:
5652 case 0x37:
5653 /* For fadd, fmul, fsub, fsubr, fdiv, fdivr, fiadd, fimul,
5654 fisub, fisubr, fidiv, fidivr, modR/M.reg is an extension
5655 of code, always affects st(0) register. */
5656 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
5657 return -1;
5658 break;
5659 case 0x08:
5660 case 0x0a:
5661 case 0x0b:
5662 case 0x18:
5663 case 0x19:
5664 case 0x1a:
5665 case 0x1b:
5666 case 0x1d:
5667 case 0x28:
5668 case 0x29:
5669 case 0x2a:
5670 case 0x2b:
5671 case 0x38:
5672 case 0x39:
5673 case 0x3a:
5674 case 0x3b:
5675 case 0x3c:
5676 case 0x3d:
5677 switch (ir.reg & 7)
5678 {
5679 case 0:
5680 /* Handling fld, fild. */
5681 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5682 return -1;
5683 break;
5684 case 1:
5685 switch (ir.reg >> 4)
5686 {
5687 case 0:
5688 if (record_full_arch_list_add_mem (addr64, 4))
5689 return -1;
5690 break;
5691 case 2:
5692 if (record_full_arch_list_add_mem (addr64, 8))
5693 return -1;
5694 break;
5695 case 3:
5696 break;
5697 default:
5698 if (record_full_arch_list_add_mem (addr64, 2))
5699 return -1;
5700 break;
5701 }
5702 break;
5703 default:
5704 switch (ir.reg >> 4)
5705 {
5706 case 0:
5707 if (record_full_arch_list_add_mem (addr64, 4))
5708 return -1;
5709 if (3 == (ir.reg & 7))
5710 {
5711 /* For fstp m32fp. */
5712 if (i386_record_floats (gdbarch, &ir,
5713 I386_SAVE_FPU_REGS))
5714 return -1;
5715 }
5716 break;
5717 case 1:
5718 if (record_full_arch_list_add_mem (addr64, 4))
5719 return -1;
5720 if ((3 == (ir.reg & 7))
5721 || (5 == (ir.reg & 7))
5722 || (7 == (ir.reg & 7)))
5723 {
5724 /* For fstp insn. */
5725 if (i386_record_floats (gdbarch, &ir,
5726 I386_SAVE_FPU_REGS))
5727 return -1;
5728 }
5729 break;
5730 case 2:
5731 if (record_full_arch_list_add_mem (addr64, 8))
5732 return -1;
5733 if (3 == (ir.reg & 7))
5734 {
5735 /* For fstp m64fp. */
5736 if (i386_record_floats (gdbarch, &ir,
5737 I386_SAVE_FPU_REGS))
5738 return -1;
5739 }
5740 break;
5741 case 3:
5742 if ((3 <= (ir.reg & 7)) && (6 <= (ir.reg & 7)))
5743 {
5744 /* For fistp, fbld, fild, fbstp. */
5745 if (i386_record_floats (gdbarch, &ir,
5746 I386_SAVE_FPU_REGS))
5747 return -1;
5748 }
5749 /* Fall through */
5750 default:
5751 if (record_full_arch_list_add_mem (addr64, 2))
5752 return -1;
5753 break;
5754 }
5755 break;
5756 }
5757 break;
5758 case 0x0c:
5759 /* Insn fldenv. */
5760 if (i386_record_floats (gdbarch, &ir,
5761 I386_SAVE_FPU_ENV_REG_STACK))
5762 return -1;
5763 break;
5764 case 0x0d:
5765 /* Insn fldcw. */
5766 if (i386_record_floats (gdbarch, &ir, I387_FCTRL_REGNUM (tdep)))
5767 return -1;
5768 break;
5769 case 0x2c:
5770 /* Insn frstor. */
5771 if (i386_record_floats (gdbarch, &ir,
5772 I386_SAVE_FPU_ENV_REG_STACK))
5773 return -1;
5774 break;
5775 case 0x0e:
5776 if (ir.dflag)
5777 {
5778 if (record_full_arch_list_add_mem (addr64, 28))
5779 return -1;
5780 }
5781 else
5782 {
5783 if (record_full_arch_list_add_mem (addr64, 14))
5784 return -1;
5785 }
5786 break;
5787 case 0x0f:
5788 case 0x2f:
5789 if (record_full_arch_list_add_mem (addr64, 2))
5790 return -1;
5791 /* Insn fstp, fbstp. */
5792 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5793 return -1;
5794 break;
5795 case 0x1f:
5796 case 0x3e:
5797 if (record_full_arch_list_add_mem (addr64, 10))
5798 return -1;
5799 break;
5800 case 0x2e:
5801 if (ir.dflag)
5802 {
5803 if (record_full_arch_list_add_mem (addr64, 28))
5804 return -1;
5805 addr64 += 28;
5806 }
5807 else
5808 {
5809 if (record_full_arch_list_add_mem (addr64, 14))
5810 return -1;
5811 addr64 += 14;
5812 }
5813 if (record_full_arch_list_add_mem (addr64, 80))
5814 return -1;
5815 /* Insn fsave. */
5816 if (i386_record_floats (gdbarch, &ir,
5817 I386_SAVE_FPU_ENV_REG_STACK))
5818 return -1;
5819 break;
5820 case 0x3f:
5821 if (record_full_arch_list_add_mem (addr64, 8))
5822 return -1;
5823 /* Insn fistp. */
5824 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5825 return -1;
5826 break;
5827 default:
5828 ir.addr -= 2;
5829 opcode = opcode << 8 | ir.modrm;
5830 goto no_support;
5831 break;
5832 }
5833 }
5834 /* Opcode is an extension of modR/M byte. */
5835 else
5836 {
5837 switch (opcode)
5838 {
5839 case 0xd8:
5840 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
5841 return -1;
5842 break;
5843 case 0xd9:
5844 if (0x0c == (ir.modrm >> 4))
5845 {
5846 if ((ir.modrm & 0x0f) <= 7)
5847 {
5848 if (i386_record_floats (gdbarch, &ir,
5849 I386_SAVE_FPU_REGS))
5850 return -1;
5851 }
5852 else
5853 {
5854 if (i386_record_floats (gdbarch, &ir,
5855 I387_ST0_REGNUM (tdep)))
5856 return -1;
5857 /* If only st(0) is changing, then we have already
5858 recorded. */
5859 if ((ir.modrm & 0x0f) - 0x08)
5860 {
5861 if (i386_record_floats (gdbarch, &ir,
5862 I387_ST0_REGNUM (tdep) +
5863 ((ir.modrm & 0x0f) - 0x08)))
5864 return -1;
5865 }
5866 }
5867 }
5868 else
5869 {
5870 switch (ir.modrm)
5871 {
5872 case 0xe0:
5873 case 0xe1:
5874 case 0xf0:
5875 case 0xf5:
5876 case 0xf8:
5877 case 0xfa:
5878 case 0xfc:
5879 case 0xfe:
5880 case 0xff:
5881 if (i386_record_floats (gdbarch, &ir,
5882 I387_ST0_REGNUM (tdep)))
5883 return -1;
5884 break;
5885 case 0xf1:
5886 case 0xf2:
5887 case 0xf3:
5888 case 0xf4:
5889 case 0xf6:
5890 case 0xf7:
5891 case 0xe8:
5892 case 0xe9:
5893 case 0xea:
5894 case 0xeb:
5895 case 0xec:
5896 case 0xed:
5897 case 0xee:
5898 case 0xf9:
5899 case 0xfb:
5900 if (i386_record_floats (gdbarch, &ir,
5901 I386_SAVE_FPU_REGS))
5902 return -1;
5903 break;
5904 case 0xfd:
5905 if (i386_record_floats (gdbarch, &ir,
5906 I387_ST0_REGNUM (tdep)))
5907 return -1;
5908 if (i386_record_floats (gdbarch, &ir,
5909 I387_ST0_REGNUM (tdep) + 1))
5910 return -1;
5911 break;
5912 }
5913 }
5914 break;
5915 case 0xda:
5916 if (0xe9 == ir.modrm)
5917 {
5918 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5919 return -1;
5920 }
5921 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
5922 {
5923 if (i386_record_floats (gdbarch, &ir,
5924 I387_ST0_REGNUM (tdep)))
5925 return -1;
5926 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
5927 {
5928 if (i386_record_floats (gdbarch, &ir,
5929 I387_ST0_REGNUM (tdep) +
5930 (ir.modrm & 0x0f)))
5931 return -1;
5932 }
5933 else if ((ir.modrm & 0x0f) - 0x08)
5934 {
5935 if (i386_record_floats (gdbarch, &ir,
5936 I387_ST0_REGNUM (tdep) +
5937 ((ir.modrm & 0x0f) - 0x08)))
5938 return -1;
5939 }
5940 }
5941 break;
5942 case 0xdb:
5943 if (0xe3 == ir.modrm)
5944 {
5945 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_ENV))
5946 return -1;
5947 }
5948 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
5949 {
5950 if (i386_record_floats (gdbarch, &ir,
5951 I387_ST0_REGNUM (tdep)))
5952 return -1;
5953 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
5954 {
5955 if (i386_record_floats (gdbarch, &ir,
5956 I387_ST0_REGNUM (tdep) +
5957 (ir.modrm & 0x0f)))
5958 return -1;
5959 }
5960 else if ((ir.modrm & 0x0f) - 0x08)
5961 {
5962 if (i386_record_floats (gdbarch, &ir,
5963 I387_ST0_REGNUM (tdep) +
5964 ((ir.modrm & 0x0f) - 0x08)))
5965 return -1;
5966 }
5967 }
5968 break;
5969 case 0xdc:
5970 if ((0x0c == ir.modrm >> 4)
5971 || (0x0d == ir.modrm >> 4)
5972 || (0x0f == ir.modrm >> 4))
5973 {
5974 if ((ir.modrm & 0x0f) <= 7)
5975 {
5976 if (i386_record_floats (gdbarch, &ir,
5977 I387_ST0_REGNUM (tdep) +
5978 (ir.modrm & 0x0f)))
5979 return -1;
5980 }
5981 else
5982 {
5983 if (i386_record_floats (gdbarch, &ir,
5984 I387_ST0_REGNUM (tdep) +
5985 ((ir.modrm & 0x0f) - 0x08)))
5986 return -1;
5987 }
5988 }
5989 break;
5990 case 0xdd:
5991 if (0x0c == ir.modrm >> 4)
5992 {
5993 if (i386_record_floats (gdbarch, &ir,
5994 I387_FTAG_REGNUM (tdep)))
5995 return -1;
5996 }
5997 else if ((0x0d == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
5998 {
5999 if ((ir.modrm & 0x0f) <= 7)
6000 {
6001 if (i386_record_floats (gdbarch, &ir,
6002 I387_ST0_REGNUM (tdep) +
6003 (ir.modrm & 0x0f)))
6004 return -1;
6005 }
6006 else
6007 {
6008 if (i386_record_floats (gdbarch, &ir,
6009 I386_SAVE_FPU_REGS))
6010 return -1;
6011 }
6012 }
6013 break;
6014 case 0xde:
6015 if ((0x0c == ir.modrm >> 4)
6016 || (0x0e == ir.modrm >> 4)
6017 || (0x0f == ir.modrm >> 4)
6018 || (0xd9 == ir.modrm))
6019 {
6020 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6021 return -1;
6022 }
6023 break;
6024 case 0xdf:
6025 if (0xe0 == ir.modrm)
6026 {
6027 if (record_full_arch_list_add_reg (ir.regcache,
6028 I386_EAX_REGNUM))
6029 return -1;
6030 }
6031 else if ((0x0f == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
6032 {
6033 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6034 return -1;
6035 }
6036 break;
6037 }
6038 }
6039 break;
6040 /* string ops */
6041 case 0xa4: /* movsS */
6042 case 0xa5:
6043 case 0xaa: /* stosS */
6044 case 0xab:
6045 case 0x6c: /* insS */
6046 case 0x6d:
6047 regcache_raw_read_unsigned (ir.regcache,
6048 ir.regmap[X86_RECORD_RECX_REGNUM],
6049 &addr);
6050 if (addr)
6051 {
6052 ULONGEST es, ds;
6053
6054 if ((opcode & 1) == 0)
6055 ir.ot = OT_BYTE;
6056 else
6057 ir.ot = ir.dflag + OT_WORD;
6058 regcache_raw_read_unsigned (ir.regcache,
6059 ir.regmap[X86_RECORD_REDI_REGNUM],
6060 &addr);
6061
6062 regcache_raw_read_unsigned (ir.regcache,
6063 ir.regmap[X86_RECORD_ES_REGNUM],
6064 &es);
6065 regcache_raw_read_unsigned (ir.regcache,
6066 ir.regmap[X86_RECORD_DS_REGNUM],
6067 &ds);
6068 if (ir.aflag && (es != ds))
6069 {
6070 /* addr += ((uint32_t) read_register (I386_ES_REGNUM)) << 4; */
6071 if (record_full_memory_query)
6072 {
6073 int q;
6074
6075 target_terminal_ours ();
6076 q = yquery (_("\
6077 Process record ignores the memory change of instruction at address %s\n\
6078 because it can't get the value of the segment register.\n\
6079 Do you want to stop the program?"),
6080 paddress (gdbarch, ir.orig_addr));
6081 target_terminal_inferior ();
6082 if (q)
6083 return -1;
6084 }
6085 }
6086 else
6087 {
6088 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
6089 return -1;
6090 }
6091
6092 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6093 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6094 if (opcode == 0xa4 || opcode == 0xa5)
6095 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6096 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6097 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6098 }
6099 break;
6100
6101 case 0xa6: /* cmpsS */
6102 case 0xa7:
6103 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6104 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6105 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6106 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6107 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6108 break;
6109
6110 case 0xac: /* lodsS */
6111 case 0xad:
6112 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6113 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6114 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6115 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6116 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6117 break;
6118
6119 case 0xae: /* scasS */
6120 case 0xaf:
6121 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6122 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6123 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6124 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6125 break;
6126
6127 case 0x6e: /* outsS */
6128 case 0x6f:
6129 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6130 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6131 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6132 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6133 break;
6134
6135 case 0xe4: /* port I/O */
6136 case 0xe5:
6137 case 0xec:
6138 case 0xed:
6139 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6140 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6141 break;
6142
6143 case 0xe6:
6144 case 0xe7:
6145 case 0xee:
6146 case 0xef:
6147 break;
6148
6149 /* control */
6150 case 0xc2: /* ret im */
6151 case 0xc3: /* ret */
6152 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6153 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6154 break;
6155
6156 case 0xca: /* lret im */
6157 case 0xcb: /* lret */
6158 case 0xcf: /* iret */
6159 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
6160 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6161 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6162 break;
6163
6164 case 0xe8: /* call im */
6165 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6166 ir.dflag = 2;
6167 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6168 return -1;
6169 break;
6170
6171 case 0x9a: /* lcall im */
6172 if (ir.regmap[X86_RECORD_R8_REGNUM])
6173 {
6174 ir.addr -= 1;
6175 goto no_support;
6176 }
6177 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
6178 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6179 return -1;
6180 break;
6181
6182 case 0xe9: /* jmp im */
6183 case 0xea: /* ljmp im */
6184 case 0xeb: /* jmp Jb */
6185 case 0x70: /* jcc Jb */
6186 case 0x71:
6187 case 0x72:
6188 case 0x73:
6189 case 0x74:
6190 case 0x75:
6191 case 0x76:
6192 case 0x77:
6193 case 0x78:
6194 case 0x79:
6195 case 0x7a:
6196 case 0x7b:
6197 case 0x7c:
6198 case 0x7d:
6199 case 0x7e:
6200 case 0x7f:
6201 case 0x0f80: /* jcc Jv */
6202 case 0x0f81:
6203 case 0x0f82:
6204 case 0x0f83:
6205 case 0x0f84:
6206 case 0x0f85:
6207 case 0x0f86:
6208 case 0x0f87:
6209 case 0x0f88:
6210 case 0x0f89:
6211 case 0x0f8a:
6212 case 0x0f8b:
6213 case 0x0f8c:
6214 case 0x0f8d:
6215 case 0x0f8e:
6216 case 0x0f8f:
6217 break;
6218
6219 case 0x0f90: /* setcc Gv */
6220 case 0x0f91:
6221 case 0x0f92:
6222 case 0x0f93:
6223 case 0x0f94:
6224 case 0x0f95:
6225 case 0x0f96:
6226 case 0x0f97:
6227 case 0x0f98:
6228 case 0x0f99:
6229 case 0x0f9a:
6230 case 0x0f9b:
6231 case 0x0f9c:
6232 case 0x0f9d:
6233 case 0x0f9e:
6234 case 0x0f9f:
6235 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6236 ir.ot = OT_BYTE;
6237 if (i386_record_modrm (&ir))
6238 return -1;
6239 if (ir.mod == 3)
6240 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rex_b ? (ir.rm | ir.rex_b)
6241 : (ir.rm & 0x3));
6242 else
6243 {
6244 if (i386_record_lea_modrm (&ir))
6245 return -1;
6246 }
6247 break;
6248
6249 case 0x0f40: /* cmov Gv, Ev */
6250 case 0x0f41:
6251 case 0x0f42:
6252 case 0x0f43:
6253 case 0x0f44:
6254 case 0x0f45:
6255 case 0x0f46:
6256 case 0x0f47:
6257 case 0x0f48:
6258 case 0x0f49:
6259 case 0x0f4a:
6260 case 0x0f4b:
6261 case 0x0f4c:
6262 case 0x0f4d:
6263 case 0x0f4e:
6264 case 0x0f4f:
6265 if (i386_record_modrm (&ir))
6266 return -1;
6267 ir.reg |= rex_r;
6268 if (ir.dflag == OT_BYTE)
6269 ir.reg &= 0x3;
6270 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
6271 break;
6272
6273 /* flags */
6274 case 0x9c: /* pushf */
6275 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6276 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6277 ir.dflag = 2;
6278 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6279 return -1;
6280 break;
6281
6282 case 0x9d: /* popf */
6283 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6284 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6285 break;
6286
6287 case 0x9e: /* sahf */
6288 if (ir.regmap[X86_RECORD_R8_REGNUM])
6289 {
6290 ir.addr -= 1;
6291 goto no_support;
6292 }
6293 /* FALLTHROUGH */
6294 case 0xf5: /* cmc */
6295 case 0xf8: /* clc */
6296 case 0xf9: /* stc */
6297 case 0xfc: /* cld */
6298 case 0xfd: /* std */
6299 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6300 break;
6301
6302 case 0x9f: /* lahf */
6303 if (ir.regmap[X86_RECORD_R8_REGNUM])
6304 {
6305 ir.addr -= 1;
6306 goto no_support;
6307 }
6308 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6309 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6310 break;
6311
6312 /* bit operations */
6313 case 0x0fba: /* bt/bts/btr/btc Gv, im */
6314 ir.ot = ir.dflag + OT_WORD;
6315 if (i386_record_modrm (&ir))
6316 return -1;
6317 if (ir.reg < 4)
6318 {
6319 ir.addr -= 2;
6320 opcode = opcode << 8 | ir.modrm;
6321 goto no_support;
6322 }
6323 if (ir.reg != 4)
6324 {
6325 if (ir.mod == 3)
6326 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6327 else
6328 {
6329 if (i386_record_lea_modrm (&ir))
6330 return -1;
6331 }
6332 }
6333 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6334 break;
6335
6336 case 0x0fa3: /* bt Gv, Ev */
6337 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6338 break;
6339
6340 case 0x0fab: /* bts */
6341 case 0x0fb3: /* btr */
6342 case 0x0fbb: /* btc */
6343 ir.ot = ir.dflag + OT_WORD;
6344 if (i386_record_modrm (&ir))
6345 return -1;
6346 if (ir.mod == 3)
6347 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6348 else
6349 {
6350 uint64_t addr64;
6351 if (i386_record_lea_modrm_addr (&ir, &addr64))
6352 return -1;
6353 regcache_raw_read_unsigned (ir.regcache,
6354 ir.regmap[ir.reg | rex_r],
6355 &addr);
6356 switch (ir.dflag)
6357 {
6358 case 0:
6359 addr64 += ((int16_t) addr >> 4) << 4;
6360 break;
6361 case 1:
6362 addr64 += ((int32_t) addr >> 5) << 5;
6363 break;
6364 case 2:
6365 addr64 += ((int64_t) addr >> 6) << 6;
6366 break;
6367 }
6368 if (record_full_arch_list_add_mem (addr64, 1 << ir.ot))
6369 return -1;
6370 if (i386_record_lea_modrm (&ir))
6371 return -1;
6372 }
6373 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6374 break;
6375
6376 case 0x0fbc: /* bsf */
6377 case 0x0fbd: /* bsr */
6378 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6379 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6380 break;
6381
6382 /* bcd */
6383 case 0x27: /* daa */
6384 case 0x2f: /* das */
6385 case 0x37: /* aaa */
6386 case 0x3f: /* aas */
6387 case 0xd4: /* aam */
6388 case 0xd5: /* aad */
6389 if (ir.regmap[X86_RECORD_R8_REGNUM])
6390 {
6391 ir.addr -= 1;
6392 goto no_support;
6393 }
6394 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6395 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6396 break;
6397
6398 /* misc */
6399 case 0x90: /* nop */
6400 if (prefixes & PREFIX_LOCK)
6401 {
6402 ir.addr -= 1;
6403 goto no_support;
6404 }
6405 break;
6406
6407 case 0x9b: /* fwait */
6408 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
6409 return -1;
6410 opcode = (uint32_t) opcode8;
6411 ir.addr++;
6412 goto reswitch;
6413 break;
6414
6415 /* XXX */
6416 case 0xcc: /* int3 */
6417 printf_unfiltered (_("Process record does not support instruction "
6418 "int3.\n"));
6419 ir.addr -= 1;
6420 goto no_support;
6421 break;
6422
6423 /* XXX */
6424 case 0xcd: /* int */
6425 {
6426 int ret;
6427 uint8_t interrupt;
6428 if (record_read_memory (gdbarch, ir.addr, &interrupt, 1))
6429 return -1;
6430 ir.addr++;
6431 if (interrupt != 0x80
6432 || tdep->i386_intx80_record == NULL)
6433 {
6434 printf_unfiltered (_("Process record does not support "
6435 "instruction int 0x%02x.\n"),
6436 interrupt);
6437 ir.addr -= 2;
6438 goto no_support;
6439 }
6440 ret = tdep->i386_intx80_record (ir.regcache);
6441 if (ret)
6442 return ret;
6443 }
6444 break;
6445
6446 /* XXX */
6447 case 0xce: /* into */
6448 printf_unfiltered (_("Process record does not support "
6449 "instruction into.\n"));
6450 ir.addr -= 1;
6451 goto no_support;
6452 break;
6453
6454 case 0xfa: /* cli */
6455 case 0xfb: /* sti */
6456 break;
6457
6458 case 0x62: /* bound */
6459 printf_unfiltered (_("Process record does not support "
6460 "instruction bound.\n"));
6461 ir.addr -= 1;
6462 goto no_support;
6463 break;
6464
6465 case 0x0fc8: /* bswap reg */
6466 case 0x0fc9:
6467 case 0x0fca:
6468 case 0x0fcb:
6469 case 0x0fcc:
6470 case 0x0fcd:
6471 case 0x0fce:
6472 case 0x0fcf:
6473 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 7) | ir.rex_b);
6474 break;
6475
6476 case 0xd6: /* salc */
6477 if (ir.regmap[X86_RECORD_R8_REGNUM])
6478 {
6479 ir.addr -= 1;
6480 goto no_support;
6481 }
6482 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6483 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6484 break;
6485
6486 case 0xe0: /* loopnz */
6487 case 0xe1: /* loopz */
6488 case 0xe2: /* loop */
6489 case 0xe3: /* jecxz */
6490 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6491 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6492 break;
6493
6494 case 0x0f30: /* wrmsr */
6495 printf_unfiltered (_("Process record does not support "
6496 "instruction wrmsr.\n"));
6497 ir.addr -= 2;
6498 goto no_support;
6499 break;
6500
6501 case 0x0f32: /* rdmsr */
6502 printf_unfiltered (_("Process record does not support "
6503 "instruction rdmsr.\n"));
6504 ir.addr -= 2;
6505 goto no_support;
6506 break;
6507
6508 case 0x0f31: /* rdtsc */
6509 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6510 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6511 break;
6512
6513 case 0x0f34: /* sysenter */
6514 {
6515 int ret;
6516 if (ir.regmap[X86_RECORD_R8_REGNUM])
6517 {
6518 ir.addr -= 2;
6519 goto no_support;
6520 }
6521 if (tdep->i386_sysenter_record == NULL)
6522 {
6523 printf_unfiltered (_("Process record does not support "
6524 "instruction sysenter.\n"));
6525 ir.addr -= 2;
6526 goto no_support;
6527 }
6528 ret = tdep->i386_sysenter_record (ir.regcache);
6529 if (ret)
6530 return ret;
6531 }
6532 break;
6533
6534 case 0x0f35: /* sysexit */
6535 printf_unfiltered (_("Process record does not support "
6536 "instruction sysexit.\n"));
6537 ir.addr -= 2;
6538 goto no_support;
6539 break;
6540
6541 case 0x0f05: /* syscall */
6542 {
6543 int ret;
6544 if (tdep->i386_syscall_record == NULL)
6545 {
6546 printf_unfiltered (_("Process record does not support "
6547 "instruction syscall.\n"));
6548 ir.addr -= 2;
6549 goto no_support;
6550 }
6551 ret = tdep->i386_syscall_record (ir.regcache);
6552 if (ret)
6553 return ret;
6554 }
6555 break;
6556
6557 case 0x0f07: /* sysret */
6558 printf_unfiltered (_("Process record does not support "
6559 "instruction sysret.\n"));
6560 ir.addr -= 2;
6561 goto no_support;
6562 break;
6563
6564 case 0x0fa2: /* cpuid */
6565 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6566 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6567 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6568 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
6569 break;
6570
6571 case 0xf4: /* hlt */
6572 printf_unfiltered (_("Process record does not support "
6573 "instruction hlt.\n"));
6574 ir.addr -= 1;
6575 goto no_support;
6576 break;
6577
6578 case 0x0f00:
6579 if (i386_record_modrm (&ir))
6580 return -1;
6581 switch (ir.reg)
6582 {
6583 case 0: /* sldt */
6584 case 1: /* str */
6585 if (ir.mod == 3)
6586 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6587 else
6588 {
6589 ir.ot = OT_WORD;
6590 if (i386_record_lea_modrm (&ir))
6591 return -1;
6592 }
6593 break;
6594 case 2: /* lldt */
6595 case 3: /* ltr */
6596 break;
6597 case 4: /* verr */
6598 case 5: /* verw */
6599 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6600 break;
6601 default:
6602 ir.addr -= 3;
6603 opcode = opcode << 8 | ir.modrm;
6604 goto no_support;
6605 break;
6606 }
6607 break;
6608
6609 case 0x0f01:
6610 if (i386_record_modrm (&ir))
6611 return -1;
6612 switch (ir.reg)
6613 {
6614 case 0: /* sgdt */
6615 {
6616 uint64_t addr64;
6617
6618 if (ir.mod == 3)
6619 {
6620 ir.addr -= 3;
6621 opcode = opcode << 8 | ir.modrm;
6622 goto no_support;
6623 }
6624 if (ir.override >= 0)
6625 {
6626 if (record_full_memory_query)
6627 {
6628 int q;
6629
6630 target_terminal_ours ();
6631 q = yquery (_("\
6632 Process record ignores the memory change of instruction at address %s\n\
6633 because it can't get the value of the segment register.\n\
6634 Do you want to stop the program?"),
6635 paddress (gdbarch, ir.orig_addr));
6636 target_terminal_inferior ();
6637 if (q)
6638 return -1;
6639 }
6640 }
6641 else
6642 {
6643 if (i386_record_lea_modrm_addr (&ir, &addr64))
6644 return -1;
6645 if (record_full_arch_list_add_mem (addr64, 2))
6646 return -1;
6647 addr64 += 2;
6648 if (ir.regmap[X86_RECORD_R8_REGNUM])
6649 {
6650 if (record_full_arch_list_add_mem (addr64, 8))
6651 return -1;
6652 }
6653 else
6654 {
6655 if (record_full_arch_list_add_mem (addr64, 4))
6656 return -1;
6657 }
6658 }
6659 }
6660 break;
6661 case 1:
6662 if (ir.mod == 3)
6663 {
6664 switch (ir.rm)
6665 {
6666 case 0: /* monitor */
6667 break;
6668 case 1: /* mwait */
6669 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6670 break;
6671 default:
6672 ir.addr -= 3;
6673 opcode = opcode << 8 | ir.modrm;
6674 goto no_support;
6675 break;
6676 }
6677 }
6678 else
6679 {
6680 /* sidt */
6681 if (ir.override >= 0)
6682 {
6683 if (record_full_memory_query)
6684 {
6685 int q;
6686
6687 target_terminal_ours ();
6688 q = yquery (_("\
6689 Process record ignores the memory change of instruction at address %s\n\
6690 because it can't get the value of the segment register.\n\
6691 Do you want to stop the program?"),
6692 paddress (gdbarch, ir.orig_addr));
6693 target_terminal_inferior ();
6694 if (q)
6695 return -1;
6696 }
6697 }
6698 else
6699 {
6700 uint64_t addr64;
6701
6702 if (i386_record_lea_modrm_addr (&ir, &addr64))
6703 return -1;
6704 if (record_full_arch_list_add_mem (addr64, 2))
6705 return -1;
6706 addr64 += 2;
6707 if (ir.regmap[X86_RECORD_R8_REGNUM])
6708 {
6709 if (record_full_arch_list_add_mem (addr64, 8))
6710 return -1;
6711 }
6712 else
6713 {
6714 if (record_full_arch_list_add_mem (addr64, 4))
6715 return -1;
6716 }
6717 }
6718 }
6719 break;
6720 case 2: /* lgdt */
6721 if (ir.mod == 3)
6722 {
6723 /* xgetbv */
6724 if (ir.rm == 0)
6725 {
6726 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6727 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6728 break;
6729 }
6730 /* xsetbv */
6731 else if (ir.rm == 1)
6732 break;
6733 }
6734 case 3: /* lidt */
6735 if (ir.mod == 3)
6736 {
6737 ir.addr -= 3;
6738 opcode = opcode << 8 | ir.modrm;
6739 goto no_support;
6740 }
6741 break;
6742 case 4: /* smsw */
6743 if (ir.mod == 3)
6744 {
6745 if (record_full_arch_list_add_reg (ir.regcache, ir.rm | ir.rex_b))
6746 return -1;
6747 }
6748 else
6749 {
6750 ir.ot = OT_WORD;
6751 if (i386_record_lea_modrm (&ir))
6752 return -1;
6753 }
6754 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6755 break;
6756 case 6: /* lmsw */
6757 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6758 break;
6759 case 7: /* invlpg */
6760 if (ir.mod == 3)
6761 {
6762 if (ir.rm == 0 && ir.regmap[X86_RECORD_R8_REGNUM])
6763 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
6764 else
6765 {
6766 ir.addr -= 3;
6767 opcode = opcode << 8 | ir.modrm;
6768 goto no_support;
6769 }
6770 }
6771 else
6772 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6773 break;
6774 default:
6775 ir.addr -= 3;
6776 opcode = opcode << 8 | ir.modrm;
6777 goto no_support;
6778 break;
6779 }
6780 break;
6781
6782 case 0x0f08: /* invd */
6783 case 0x0f09: /* wbinvd */
6784 break;
6785
6786 case 0x63: /* arpl */
6787 if (i386_record_modrm (&ir))
6788 return -1;
6789 if (ir.mod == 3 || ir.regmap[X86_RECORD_R8_REGNUM])
6790 {
6791 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.regmap[X86_RECORD_R8_REGNUM]
6792 ? (ir.reg | rex_r) : ir.rm);
6793 }
6794 else
6795 {
6796 ir.ot = ir.dflag ? OT_LONG : OT_WORD;
6797 if (i386_record_lea_modrm (&ir))
6798 return -1;
6799 }
6800 if (!ir.regmap[X86_RECORD_R8_REGNUM])
6801 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6802 break;
6803
6804 case 0x0f02: /* lar */
6805 case 0x0f03: /* lsl */
6806 if (i386_record_modrm (&ir))
6807 return -1;
6808 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6809 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6810 break;
6811
6812 case 0x0f18:
6813 if (i386_record_modrm (&ir))
6814 return -1;
6815 if (ir.mod == 3 && ir.reg == 3)
6816 {
6817 ir.addr -= 3;
6818 opcode = opcode << 8 | ir.modrm;
6819 goto no_support;
6820 }
6821 break;
6822
6823 case 0x0f19:
6824 case 0x0f1a:
6825 case 0x0f1b:
6826 case 0x0f1c:
6827 case 0x0f1d:
6828 case 0x0f1e:
6829 case 0x0f1f:
6830 /* nop (multi byte) */
6831 break;
6832
6833 case 0x0f20: /* mov reg, crN */
6834 case 0x0f22: /* mov crN, reg */
6835 if (i386_record_modrm (&ir))
6836 return -1;
6837 if ((ir.modrm & 0xc0) != 0xc0)
6838 {
6839 ir.addr -= 3;
6840 opcode = opcode << 8 | ir.modrm;
6841 goto no_support;
6842 }
6843 switch (ir.reg)
6844 {
6845 case 0:
6846 case 2:
6847 case 3:
6848 case 4:
6849 case 8:
6850 if (opcode & 2)
6851 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6852 else
6853 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6854 break;
6855 default:
6856 ir.addr -= 3;
6857 opcode = opcode << 8 | ir.modrm;
6858 goto no_support;
6859 break;
6860 }
6861 break;
6862
6863 case 0x0f21: /* mov reg, drN */
6864 case 0x0f23: /* mov drN, reg */
6865 if (i386_record_modrm (&ir))
6866 return -1;
6867 if ((ir.modrm & 0xc0) != 0xc0 || ir.reg == 4
6868 || ir.reg == 5 || ir.reg >= 8)
6869 {
6870 ir.addr -= 3;
6871 opcode = opcode << 8 | ir.modrm;
6872 goto no_support;
6873 }
6874 if (opcode & 2)
6875 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6876 else
6877 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6878 break;
6879
6880 case 0x0f06: /* clts */
6881 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6882 break;
6883
6884 /* MMX 3DNow! SSE SSE2 SSE3 SSSE3 SSE4 */
6885
6886 case 0x0f0d: /* 3DNow! prefetch */
6887 break;
6888
6889 case 0x0f0e: /* 3DNow! femms */
6890 case 0x0f77: /* emms */
6891 if (i386_fpc_regnum_p (gdbarch, I387_FTAG_REGNUM(tdep)))
6892 goto no_support;
6893 record_full_arch_list_add_reg (ir.regcache, I387_FTAG_REGNUM(tdep));
6894 break;
6895
6896 case 0x0f0f: /* 3DNow! data */
6897 if (i386_record_modrm (&ir))
6898 return -1;
6899 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
6900 return -1;
6901 ir.addr++;
6902 switch (opcode8)
6903 {
6904 case 0x0c: /* 3DNow! pi2fw */
6905 case 0x0d: /* 3DNow! pi2fd */
6906 case 0x1c: /* 3DNow! pf2iw */
6907 case 0x1d: /* 3DNow! pf2id */
6908 case 0x8a: /* 3DNow! pfnacc */
6909 case 0x8e: /* 3DNow! pfpnacc */
6910 case 0x90: /* 3DNow! pfcmpge */
6911 case 0x94: /* 3DNow! pfmin */
6912 case 0x96: /* 3DNow! pfrcp */
6913 case 0x97: /* 3DNow! pfrsqrt */
6914 case 0x9a: /* 3DNow! pfsub */
6915 case 0x9e: /* 3DNow! pfadd */
6916 case 0xa0: /* 3DNow! pfcmpgt */
6917 case 0xa4: /* 3DNow! pfmax */
6918 case 0xa6: /* 3DNow! pfrcpit1 */
6919 case 0xa7: /* 3DNow! pfrsqit1 */
6920 case 0xaa: /* 3DNow! pfsubr */
6921 case 0xae: /* 3DNow! pfacc */
6922 case 0xb0: /* 3DNow! pfcmpeq */
6923 case 0xb4: /* 3DNow! pfmul */
6924 case 0xb6: /* 3DNow! pfrcpit2 */
6925 case 0xb7: /* 3DNow! pmulhrw */
6926 case 0xbb: /* 3DNow! pswapd */
6927 case 0xbf: /* 3DNow! pavgusb */
6928 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
6929 goto no_support_3dnow_data;
6930 record_full_arch_list_add_reg (ir.regcache, ir.reg);
6931 break;
6932
6933 default:
6934 no_support_3dnow_data:
6935 opcode = (opcode << 8) | opcode8;
6936 goto no_support;
6937 break;
6938 }
6939 break;
6940
6941 case 0x0faa: /* rsm */
6942 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6943 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6944 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6945 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6946 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
6947 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6948 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
6949 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6950 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6951 break;
6952
6953 case 0x0fae:
6954 if (i386_record_modrm (&ir))
6955 return -1;
6956 switch(ir.reg)
6957 {
6958 case 0: /* fxsave */
6959 {
6960 uint64_t tmpu64;
6961
6962 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6963 if (i386_record_lea_modrm_addr (&ir, &tmpu64))
6964 return -1;
6965 if (record_full_arch_list_add_mem (tmpu64, 512))
6966 return -1;
6967 }
6968 break;
6969
6970 case 1: /* fxrstor */
6971 {
6972 int i;
6973
6974 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6975
6976 for (i = I387_MM0_REGNUM (tdep);
6977 i386_mmx_regnum_p (gdbarch, i); i++)
6978 record_full_arch_list_add_reg (ir.regcache, i);
6979
6980 for (i = I387_XMM0_REGNUM (tdep);
6981 i386_xmm_regnum_p (gdbarch, i); i++)
6982 record_full_arch_list_add_reg (ir.regcache, i);
6983
6984 if (i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
6985 record_full_arch_list_add_reg (ir.regcache,
6986 I387_MXCSR_REGNUM(tdep));
6987
6988 for (i = I387_ST0_REGNUM (tdep);
6989 i386_fp_regnum_p (gdbarch, i); i++)
6990 record_full_arch_list_add_reg (ir.regcache, i);
6991
6992 for (i = I387_FCTRL_REGNUM (tdep);
6993 i386_fpc_regnum_p (gdbarch, i); i++)
6994 record_full_arch_list_add_reg (ir.regcache, i);
6995 }
6996 break;
6997
6998 case 2: /* ldmxcsr */
6999 if (!i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
7000 goto no_support;
7001 record_full_arch_list_add_reg (ir.regcache, I387_MXCSR_REGNUM(tdep));
7002 break;
7003
7004 case 3: /* stmxcsr */
7005 ir.ot = OT_LONG;
7006 if (i386_record_lea_modrm (&ir))
7007 return -1;
7008 break;
7009
7010 case 5: /* lfence */
7011 case 6: /* mfence */
7012 case 7: /* sfence clflush */
7013 break;
7014
7015 default:
7016 opcode = (opcode << 8) | ir.modrm;
7017 goto no_support;
7018 break;
7019 }
7020 break;
7021
7022 case 0x0fc3: /* movnti */
7023 ir.ot = (ir.dflag == 2) ? OT_QUAD : OT_LONG;
7024 if (i386_record_modrm (&ir))
7025 return -1;
7026 if (ir.mod == 3)
7027 goto no_support;
7028 ir.reg |= rex_r;
7029 if (i386_record_lea_modrm (&ir))
7030 return -1;
7031 break;
7032
7033 /* Add prefix to opcode. */
7034 case 0x0f10:
7035 case 0x0f11:
7036 case 0x0f12:
7037 case 0x0f13:
7038 case 0x0f14:
7039 case 0x0f15:
7040 case 0x0f16:
7041 case 0x0f17:
7042 case 0x0f28:
7043 case 0x0f29:
7044 case 0x0f2a:
7045 case 0x0f2b:
7046 case 0x0f2c:
7047 case 0x0f2d:
7048 case 0x0f2e:
7049 case 0x0f2f:
7050 case 0x0f38:
7051 case 0x0f39:
7052 case 0x0f3a:
7053 case 0x0f50:
7054 case 0x0f51:
7055 case 0x0f52:
7056 case 0x0f53:
7057 case 0x0f54:
7058 case 0x0f55:
7059 case 0x0f56:
7060 case 0x0f57:
7061 case 0x0f58:
7062 case 0x0f59:
7063 case 0x0f5a:
7064 case 0x0f5b:
7065 case 0x0f5c:
7066 case 0x0f5d:
7067 case 0x0f5e:
7068 case 0x0f5f:
7069 case 0x0f60:
7070 case 0x0f61:
7071 case 0x0f62:
7072 case 0x0f63:
7073 case 0x0f64:
7074 case 0x0f65:
7075 case 0x0f66:
7076 case 0x0f67:
7077 case 0x0f68:
7078 case 0x0f69:
7079 case 0x0f6a:
7080 case 0x0f6b:
7081 case 0x0f6c:
7082 case 0x0f6d:
7083 case 0x0f6e:
7084 case 0x0f6f:
7085 case 0x0f70:
7086 case 0x0f71:
7087 case 0x0f72:
7088 case 0x0f73:
7089 case 0x0f74:
7090 case 0x0f75:
7091 case 0x0f76:
7092 case 0x0f7c:
7093 case 0x0f7d:
7094 case 0x0f7e:
7095 case 0x0f7f:
7096 case 0x0fb8:
7097 case 0x0fc2:
7098 case 0x0fc4:
7099 case 0x0fc5:
7100 case 0x0fc6:
7101 case 0x0fd0:
7102 case 0x0fd1:
7103 case 0x0fd2:
7104 case 0x0fd3:
7105 case 0x0fd4:
7106 case 0x0fd5:
7107 case 0x0fd6:
7108 case 0x0fd7:
7109 case 0x0fd8:
7110 case 0x0fd9:
7111 case 0x0fda:
7112 case 0x0fdb:
7113 case 0x0fdc:
7114 case 0x0fdd:
7115 case 0x0fde:
7116 case 0x0fdf:
7117 case 0x0fe0:
7118 case 0x0fe1:
7119 case 0x0fe2:
7120 case 0x0fe3:
7121 case 0x0fe4:
7122 case 0x0fe5:
7123 case 0x0fe6:
7124 case 0x0fe7:
7125 case 0x0fe8:
7126 case 0x0fe9:
7127 case 0x0fea:
7128 case 0x0feb:
7129 case 0x0fec:
7130 case 0x0fed:
7131 case 0x0fee:
7132 case 0x0fef:
7133 case 0x0ff0:
7134 case 0x0ff1:
7135 case 0x0ff2:
7136 case 0x0ff3:
7137 case 0x0ff4:
7138 case 0x0ff5:
7139 case 0x0ff6:
7140 case 0x0ff7:
7141 case 0x0ff8:
7142 case 0x0ff9:
7143 case 0x0ffa:
7144 case 0x0ffb:
7145 case 0x0ffc:
7146 case 0x0ffd:
7147 case 0x0ffe:
7148 /* Mask out PREFIX_ADDR. */
7149 switch ((prefixes & ~PREFIX_ADDR))
7150 {
7151 case PREFIX_REPNZ:
7152 opcode |= 0xf20000;
7153 break;
7154 case PREFIX_DATA:
7155 opcode |= 0x660000;
7156 break;
7157 case PREFIX_REPZ:
7158 opcode |= 0xf30000;
7159 break;
7160 }
7161 reswitch_prefix_add:
7162 switch (opcode)
7163 {
7164 case 0x0f38:
7165 case 0x660f38:
7166 case 0xf20f38:
7167 case 0x0f3a:
7168 case 0x660f3a:
7169 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
7170 return -1;
7171 ir.addr++;
7172 opcode = (uint32_t) opcode8 | opcode << 8;
7173 goto reswitch_prefix_add;
7174 break;
7175
7176 case 0x0f10: /* movups */
7177 case 0x660f10: /* movupd */
7178 case 0xf30f10: /* movss */
7179 case 0xf20f10: /* movsd */
7180 case 0x0f12: /* movlps */
7181 case 0x660f12: /* movlpd */
7182 case 0xf30f12: /* movsldup */
7183 case 0xf20f12: /* movddup */
7184 case 0x0f14: /* unpcklps */
7185 case 0x660f14: /* unpcklpd */
7186 case 0x0f15: /* unpckhps */
7187 case 0x660f15: /* unpckhpd */
7188 case 0x0f16: /* movhps */
7189 case 0x660f16: /* movhpd */
7190 case 0xf30f16: /* movshdup */
7191 case 0x0f28: /* movaps */
7192 case 0x660f28: /* movapd */
7193 case 0x0f2a: /* cvtpi2ps */
7194 case 0x660f2a: /* cvtpi2pd */
7195 case 0xf30f2a: /* cvtsi2ss */
7196 case 0xf20f2a: /* cvtsi2sd */
7197 case 0x0f2c: /* cvttps2pi */
7198 case 0x660f2c: /* cvttpd2pi */
7199 case 0x0f2d: /* cvtps2pi */
7200 case 0x660f2d: /* cvtpd2pi */
7201 case 0x660f3800: /* pshufb */
7202 case 0x660f3801: /* phaddw */
7203 case 0x660f3802: /* phaddd */
7204 case 0x660f3803: /* phaddsw */
7205 case 0x660f3804: /* pmaddubsw */
7206 case 0x660f3805: /* phsubw */
7207 case 0x660f3806: /* phsubd */
7208 case 0x660f3807: /* phsubsw */
7209 case 0x660f3808: /* psignb */
7210 case 0x660f3809: /* psignw */
7211 case 0x660f380a: /* psignd */
7212 case 0x660f380b: /* pmulhrsw */
7213 case 0x660f3810: /* pblendvb */
7214 case 0x660f3814: /* blendvps */
7215 case 0x660f3815: /* blendvpd */
7216 case 0x660f381c: /* pabsb */
7217 case 0x660f381d: /* pabsw */
7218 case 0x660f381e: /* pabsd */
7219 case 0x660f3820: /* pmovsxbw */
7220 case 0x660f3821: /* pmovsxbd */
7221 case 0x660f3822: /* pmovsxbq */
7222 case 0x660f3823: /* pmovsxwd */
7223 case 0x660f3824: /* pmovsxwq */
7224 case 0x660f3825: /* pmovsxdq */
7225 case 0x660f3828: /* pmuldq */
7226 case 0x660f3829: /* pcmpeqq */
7227 case 0x660f382a: /* movntdqa */
7228 case 0x660f3a08: /* roundps */
7229 case 0x660f3a09: /* roundpd */
7230 case 0x660f3a0a: /* roundss */
7231 case 0x660f3a0b: /* roundsd */
7232 case 0x660f3a0c: /* blendps */
7233 case 0x660f3a0d: /* blendpd */
7234 case 0x660f3a0e: /* pblendw */
7235 case 0x660f3a0f: /* palignr */
7236 case 0x660f3a20: /* pinsrb */
7237 case 0x660f3a21: /* insertps */
7238 case 0x660f3a22: /* pinsrd pinsrq */
7239 case 0x660f3a40: /* dpps */
7240 case 0x660f3a41: /* dppd */
7241 case 0x660f3a42: /* mpsadbw */
7242 case 0x660f3a60: /* pcmpestrm */
7243 case 0x660f3a61: /* pcmpestri */
7244 case 0x660f3a62: /* pcmpistrm */
7245 case 0x660f3a63: /* pcmpistri */
7246 case 0x0f51: /* sqrtps */
7247 case 0x660f51: /* sqrtpd */
7248 case 0xf20f51: /* sqrtsd */
7249 case 0xf30f51: /* sqrtss */
7250 case 0x0f52: /* rsqrtps */
7251 case 0xf30f52: /* rsqrtss */
7252 case 0x0f53: /* rcpps */
7253 case 0xf30f53: /* rcpss */
7254 case 0x0f54: /* andps */
7255 case 0x660f54: /* andpd */
7256 case 0x0f55: /* andnps */
7257 case 0x660f55: /* andnpd */
7258 case 0x0f56: /* orps */
7259 case 0x660f56: /* orpd */
7260 case 0x0f57: /* xorps */
7261 case 0x660f57: /* xorpd */
7262 case 0x0f58: /* addps */
7263 case 0x660f58: /* addpd */
7264 case 0xf20f58: /* addsd */
7265 case 0xf30f58: /* addss */
7266 case 0x0f59: /* mulps */
7267 case 0x660f59: /* mulpd */
7268 case 0xf20f59: /* mulsd */
7269 case 0xf30f59: /* mulss */
7270 case 0x0f5a: /* cvtps2pd */
7271 case 0x660f5a: /* cvtpd2ps */
7272 case 0xf20f5a: /* cvtsd2ss */
7273 case 0xf30f5a: /* cvtss2sd */
7274 case 0x0f5b: /* cvtdq2ps */
7275 case 0x660f5b: /* cvtps2dq */
7276 case 0xf30f5b: /* cvttps2dq */
7277 case 0x0f5c: /* subps */
7278 case 0x660f5c: /* subpd */
7279 case 0xf20f5c: /* subsd */
7280 case 0xf30f5c: /* subss */
7281 case 0x0f5d: /* minps */
7282 case 0x660f5d: /* minpd */
7283 case 0xf20f5d: /* minsd */
7284 case 0xf30f5d: /* minss */
7285 case 0x0f5e: /* divps */
7286 case 0x660f5e: /* divpd */
7287 case 0xf20f5e: /* divsd */
7288 case 0xf30f5e: /* divss */
7289 case 0x0f5f: /* maxps */
7290 case 0x660f5f: /* maxpd */
7291 case 0xf20f5f: /* maxsd */
7292 case 0xf30f5f: /* maxss */
7293 case 0x660f60: /* punpcklbw */
7294 case 0x660f61: /* punpcklwd */
7295 case 0x660f62: /* punpckldq */
7296 case 0x660f63: /* packsswb */
7297 case 0x660f64: /* pcmpgtb */
7298 case 0x660f65: /* pcmpgtw */
7299 case 0x660f66: /* pcmpgtd */
7300 case 0x660f67: /* packuswb */
7301 case 0x660f68: /* punpckhbw */
7302 case 0x660f69: /* punpckhwd */
7303 case 0x660f6a: /* punpckhdq */
7304 case 0x660f6b: /* packssdw */
7305 case 0x660f6c: /* punpcklqdq */
7306 case 0x660f6d: /* punpckhqdq */
7307 case 0x660f6e: /* movd */
7308 case 0x660f6f: /* movdqa */
7309 case 0xf30f6f: /* movdqu */
7310 case 0x660f70: /* pshufd */
7311 case 0xf20f70: /* pshuflw */
7312 case 0xf30f70: /* pshufhw */
7313 case 0x660f74: /* pcmpeqb */
7314 case 0x660f75: /* pcmpeqw */
7315 case 0x660f76: /* pcmpeqd */
7316 case 0x660f7c: /* haddpd */
7317 case 0xf20f7c: /* haddps */
7318 case 0x660f7d: /* hsubpd */
7319 case 0xf20f7d: /* hsubps */
7320 case 0xf30f7e: /* movq */
7321 case 0x0fc2: /* cmpps */
7322 case 0x660fc2: /* cmppd */
7323 case 0xf20fc2: /* cmpsd */
7324 case 0xf30fc2: /* cmpss */
7325 case 0x660fc4: /* pinsrw */
7326 case 0x0fc6: /* shufps */
7327 case 0x660fc6: /* shufpd */
7328 case 0x660fd0: /* addsubpd */
7329 case 0xf20fd0: /* addsubps */
7330 case 0x660fd1: /* psrlw */
7331 case 0x660fd2: /* psrld */
7332 case 0x660fd3: /* psrlq */
7333 case 0x660fd4: /* paddq */
7334 case 0x660fd5: /* pmullw */
7335 case 0xf30fd6: /* movq2dq */
7336 case 0x660fd8: /* psubusb */
7337 case 0x660fd9: /* psubusw */
7338 case 0x660fda: /* pminub */
7339 case 0x660fdb: /* pand */
7340 case 0x660fdc: /* paddusb */
7341 case 0x660fdd: /* paddusw */
7342 case 0x660fde: /* pmaxub */
7343 case 0x660fdf: /* pandn */
7344 case 0x660fe0: /* pavgb */
7345 case 0x660fe1: /* psraw */
7346 case 0x660fe2: /* psrad */
7347 case 0x660fe3: /* pavgw */
7348 case 0x660fe4: /* pmulhuw */
7349 case 0x660fe5: /* pmulhw */
7350 case 0x660fe6: /* cvttpd2dq */
7351 case 0xf20fe6: /* cvtpd2dq */
7352 case 0xf30fe6: /* cvtdq2pd */
7353 case 0x660fe8: /* psubsb */
7354 case 0x660fe9: /* psubsw */
7355 case 0x660fea: /* pminsw */
7356 case 0x660feb: /* por */
7357 case 0x660fec: /* paddsb */
7358 case 0x660fed: /* paddsw */
7359 case 0x660fee: /* pmaxsw */
7360 case 0x660fef: /* pxor */
7361 case 0xf20ff0: /* lddqu */
7362 case 0x660ff1: /* psllw */
7363 case 0x660ff2: /* pslld */
7364 case 0x660ff3: /* psllq */
7365 case 0x660ff4: /* pmuludq */
7366 case 0x660ff5: /* pmaddwd */
7367 case 0x660ff6: /* psadbw */
7368 case 0x660ff8: /* psubb */
7369 case 0x660ff9: /* psubw */
7370 case 0x660ffa: /* psubd */
7371 case 0x660ffb: /* psubq */
7372 case 0x660ffc: /* paddb */
7373 case 0x660ffd: /* paddw */
7374 case 0x660ffe: /* paddd */
7375 if (i386_record_modrm (&ir))
7376 return -1;
7377 ir.reg |= rex_r;
7378 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.reg))
7379 goto no_support;
7380 record_full_arch_list_add_reg (ir.regcache,
7381 I387_XMM0_REGNUM (tdep) + ir.reg);
7382 if ((opcode & 0xfffffffc) == 0x660f3a60)
7383 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7384 break;
7385
7386 case 0x0f11: /* movups */
7387 case 0x660f11: /* movupd */
7388 case 0xf30f11: /* movss */
7389 case 0xf20f11: /* movsd */
7390 case 0x0f13: /* movlps */
7391 case 0x660f13: /* movlpd */
7392 case 0x0f17: /* movhps */
7393 case 0x660f17: /* movhpd */
7394 case 0x0f29: /* movaps */
7395 case 0x660f29: /* movapd */
7396 case 0x660f3a14: /* pextrb */
7397 case 0x660f3a15: /* pextrw */
7398 case 0x660f3a16: /* pextrd pextrq */
7399 case 0x660f3a17: /* extractps */
7400 case 0x660f7f: /* movdqa */
7401 case 0xf30f7f: /* movdqu */
7402 if (i386_record_modrm (&ir))
7403 return -1;
7404 if (ir.mod == 3)
7405 {
7406 if (opcode == 0x0f13 || opcode == 0x660f13
7407 || opcode == 0x0f17 || opcode == 0x660f17)
7408 goto no_support;
7409 ir.rm |= ir.rex_b;
7410 if (!i386_xmm_regnum_p (gdbarch,
7411 I387_XMM0_REGNUM (tdep) + ir.rm))
7412 goto no_support;
7413 record_full_arch_list_add_reg (ir.regcache,
7414 I387_XMM0_REGNUM (tdep) + ir.rm);
7415 }
7416 else
7417 {
7418 switch (opcode)
7419 {
7420 case 0x660f3a14:
7421 ir.ot = OT_BYTE;
7422 break;
7423 case 0x660f3a15:
7424 ir.ot = OT_WORD;
7425 break;
7426 case 0x660f3a16:
7427 ir.ot = OT_LONG;
7428 break;
7429 case 0x660f3a17:
7430 ir.ot = OT_QUAD;
7431 break;
7432 default:
7433 ir.ot = OT_DQUAD;
7434 break;
7435 }
7436 if (i386_record_lea_modrm (&ir))
7437 return -1;
7438 }
7439 break;
7440
7441 case 0x0f2b: /* movntps */
7442 case 0x660f2b: /* movntpd */
7443 case 0x0fe7: /* movntq */
7444 case 0x660fe7: /* movntdq */
7445 if (ir.mod == 3)
7446 goto no_support;
7447 if (opcode == 0x0fe7)
7448 ir.ot = OT_QUAD;
7449 else
7450 ir.ot = OT_DQUAD;
7451 if (i386_record_lea_modrm (&ir))
7452 return -1;
7453 break;
7454
7455 case 0xf30f2c: /* cvttss2si */
7456 case 0xf20f2c: /* cvttsd2si */
7457 case 0xf30f2d: /* cvtss2si */
7458 case 0xf20f2d: /* cvtsd2si */
7459 case 0xf20f38f0: /* crc32 */
7460 case 0xf20f38f1: /* crc32 */
7461 case 0x0f50: /* movmskps */
7462 case 0x660f50: /* movmskpd */
7463 case 0x0fc5: /* pextrw */
7464 case 0x660fc5: /* pextrw */
7465 case 0x0fd7: /* pmovmskb */
7466 case 0x660fd7: /* pmovmskb */
7467 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7468 break;
7469
7470 case 0x0f3800: /* pshufb */
7471 case 0x0f3801: /* phaddw */
7472 case 0x0f3802: /* phaddd */
7473 case 0x0f3803: /* phaddsw */
7474 case 0x0f3804: /* pmaddubsw */
7475 case 0x0f3805: /* phsubw */
7476 case 0x0f3806: /* phsubd */
7477 case 0x0f3807: /* phsubsw */
7478 case 0x0f3808: /* psignb */
7479 case 0x0f3809: /* psignw */
7480 case 0x0f380a: /* psignd */
7481 case 0x0f380b: /* pmulhrsw */
7482 case 0x0f381c: /* pabsb */
7483 case 0x0f381d: /* pabsw */
7484 case 0x0f381e: /* pabsd */
7485 case 0x0f382b: /* packusdw */
7486 case 0x0f3830: /* pmovzxbw */
7487 case 0x0f3831: /* pmovzxbd */
7488 case 0x0f3832: /* pmovzxbq */
7489 case 0x0f3833: /* pmovzxwd */
7490 case 0x0f3834: /* pmovzxwq */
7491 case 0x0f3835: /* pmovzxdq */
7492 case 0x0f3837: /* pcmpgtq */
7493 case 0x0f3838: /* pminsb */
7494 case 0x0f3839: /* pminsd */
7495 case 0x0f383a: /* pminuw */
7496 case 0x0f383b: /* pminud */
7497 case 0x0f383c: /* pmaxsb */
7498 case 0x0f383d: /* pmaxsd */
7499 case 0x0f383e: /* pmaxuw */
7500 case 0x0f383f: /* pmaxud */
7501 case 0x0f3840: /* pmulld */
7502 case 0x0f3841: /* phminposuw */
7503 case 0x0f3a0f: /* palignr */
7504 case 0x0f60: /* punpcklbw */
7505 case 0x0f61: /* punpcklwd */
7506 case 0x0f62: /* punpckldq */
7507 case 0x0f63: /* packsswb */
7508 case 0x0f64: /* pcmpgtb */
7509 case 0x0f65: /* pcmpgtw */
7510 case 0x0f66: /* pcmpgtd */
7511 case 0x0f67: /* packuswb */
7512 case 0x0f68: /* punpckhbw */
7513 case 0x0f69: /* punpckhwd */
7514 case 0x0f6a: /* punpckhdq */
7515 case 0x0f6b: /* packssdw */
7516 case 0x0f6e: /* movd */
7517 case 0x0f6f: /* movq */
7518 case 0x0f70: /* pshufw */
7519 case 0x0f74: /* pcmpeqb */
7520 case 0x0f75: /* pcmpeqw */
7521 case 0x0f76: /* pcmpeqd */
7522 case 0x0fc4: /* pinsrw */
7523 case 0x0fd1: /* psrlw */
7524 case 0x0fd2: /* psrld */
7525 case 0x0fd3: /* psrlq */
7526 case 0x0fd4: /* paddq */
7527 case 0x0fd5: /* pmullw */
7528 case 0xf20fd6: /* movdq2q */
7529 case 0x0fd8: /* psubusb */
7530 case 0x0fd9: /* psubusw */
7531 case 0x0fda: /* pminub */
7532 case 0x0fdb: /* pand */
7533 case 0x0fdc: /* paddusb */
7534 case 0x0fdd: /* paddusw */
7535 case 0x0fde: /* pmaxub */
7536 case 0x0fdf: /* pandn */
7537 case 0x0fe0: /* pavgb */
7538 case 0x0fe1: /* psraw */
7539 case 0x0fe2: /* psrad */
7540 case 0x0fe3: /* pavgw */
7541 case 0x0fe4: /* pmulhuw */
7542 case 0x0fe5: /* pmulhw */
7543 case 0x0fe8: /* psubsb */
7544 case 0x0fe9: /* psubsw */
7545 case 0x0fea: /* pminsw */
7546 case 0x0feb: /* por */
7547 case 0x0fec: /* paddsb */
7548 case 0x0fed: /* paddsw */
7549 case 0x0fee: /* pmaxsw */
7550 case 0x0fef: /* pxor */
7551 case 0x0ff1: /* psllw */
7552 case 0x0ff2: /* pslld */
7553 case 0x0ff3: /* psllq */
7554 case 0x0ff4: /* pmuludq */
7555 case 0x0ff5: /* pmaddwd */
7556 case 0x0ff6: /* psadbw */
7557 case 0x0ff8: /* psubb */
7558 case 0x0ff9: /* psubw */
7559 case 0x0ffa: /* psubd */
7560 case 0x0ffb: /* psubq */
7561 case 0x0ffc: /* paddb */
7562 case 0x0ffd: /* paddw */
7563 case 0x0ffe: /* paddd */
7564 if (i386_record_modrm (&ir))
7565 return -1;
7566 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7567 goto no_support;
7568 record_full_arch_list_add_reg (ir.regcache,
7569 I387_MM0_REGNUM (tdep) + ir.reg);
7570 break;
7571
7572 case 0x0f71: /* psllw */
7573 case 0x0f72: /* pslld */
7574 case 0x0f73: /* psllq */
7575 if (i386_record_modrm (&ir))
7576 return -1;
7577 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
7578 goto no_support;
7579 record_full_arch_list_add_reg (ir.regcache,
7580 I387_MM0_REGNUM (tdep) + ir.rm);
7581 break;
7582
7583 case 0x660f71: /* psllw */
7584 case 0x660f72: /* pslld */
7585 case 0x660f73: /* psllq */
7586 if (i386_record_modrm (&ir))
7587 return -1;
7588 ir.rm |= ir.rex_b;
7589 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.rm))
7590 goto no_support;
7591 record_full_arch_list_add_reg (ir.regcache,
7592 I387_XMM0_REGNUM (tdep) + ir.rm);
7593 break;
7594
7595 case 0x0f7e: /* movd */
7596 case 0x660f7e: /* movd */
7597 if (i386_record_modrm (&ir))
7598 return -1;
7599 if (ir.mod == 3)
7600 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7601 else
7602 {
7603 if (ir.dflag == 2)
7604 ir.ot = OT_QUAD;
7605 else
7606 ir.ot = OT_LONG;
7607 if (i386_record_lea_modrm (&ir))
7608 return -1;
7609 }
7610 break;
7611
7612 case 0x0f7f: /* movq */
7613 if (i386_record_modrm (&ir))
7614 return -1;
7615 if (ir.mod == 3)
7616 {
7617 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
7618 goto no_support;
7619 record_full_arch_list_add_reg (ir.regcache,
7620 I387_MM0_REGNUM (tdep) + ir.rm);
7621 }
7622 else
7623 {
7624 ir.ot = OT_QUAD;
7625 if (i386_record_lea_modrm (&ir))
7626 return -1;
7627 }
7628 break;
7629
7630 case 0xf30fb8: /* popcnt */
7631 if (i386_record_modrm (&ir))
7632 return -1;
7633 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
7634 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7635 break;
7636
7637 case 0x660fd6: /* movq */
7638 if (i386_record_modrm (&ir))
7639 return -1;
7640 if (ir.mod == 3)
7641 {
7642 ir.rm |= ir.rex_b;
7643 if (!i386_xmm_regnum_p (gdbarch,
7644 I387_XMM0_REGNUM (tdep) + ir.rm))
7645 goto no_support;
7646 record_full_arch_list_add_reg (ir.regcache,
7647 I387_XMM0_REGNUM (tdep) + ir.rm);
7648 }
7649 else
7650 {
7651 ir.ot = OT_QUAD;
7652 if (i386_record_lea_modrm (&ir))
7653 return -1;
7654 }
7655 break;
7656
7657 case 0x660f3817: /* ptest */
7658 case 0x0f2e: /* ucomiss */
7659 case 0x660f2e: /* ucomisd */
7660 case 0x0f2f: /* comiss */
7661 case 0x660f2f: /* comisd */
7662 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7663 break;
7664
7665 case 0x0ff7: /* maskmovq */
7666 regcache_raw_read_unsigned (ir.regcache,
7667 ir.regmap[X86_RECORD_REDI_REGNUM],
7668 &addr);
7669 if (record_full_arch_list_add_mem (addr, 64))
7670 return -1;
7671 break;
7672
7673 case 0x660ff7: /* maskmovdqu */
7674 regcache_raw_read_unsigned (ir.regcache,
7675 ir.regmap[X86_RECORD_REDI_REGNUM],
7676 &addr);
7677 if (record_full_arch_list_add_mem (addr, 128))
7678 return -1;
7679 break;
7680
7681 default:
7682 goto no_support;
7683 break;
7684 }
7685 break;
7686
7687 default:
7688 goto no_support;
7689 break;
7690 }
7691
7692 /* In the future, maybe still need to deal with need_dasm. */
7693 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REIP_REGNUM);
7694 if (record_full_arch_list_add_end ())
7695 return -1;
7696
7697 return 0;
7698
7699 no_support:
7700 printf_unfiltered (_("Process record does not support instruction 0x%02x "
7701 "at address %s.\n"),
7702 (unsigned int) (opcode),
7703 paddress (gdbarch, ir.orig_addr));
7704 return -1;
7705 }
7706
7707 static const int i386_record_regmap[] =
7708 {
7709 I386_EAX_REGNUM, I386_ECX_REGNUM, I386_EDX_REGNUM, I386_EBX_REGNUM,
7710 I386_ESP_REGNUM, I386_EBP_REGNUM, I386_ESI_REGNUM, I386_EDI_REGNUM,
7711 0, 0, 0, 0, 0, 0, 0, 0,
7712 I386_EIP_REGNUM, I386_EFLAGS_REGNUM, I386_CS_REGNUM, I386_SS_REGNUM,
7713 I386_DS_REGNUM, I386_ES_REGNUM, I386_FS_REGNUM, I386_GS_REGNUM
7714 };
7715
7716 /* Check that the given address appears suitable for a fast
7717 tracepoint, which on x86-64 means that we need an instruction of at
7718 least 5 bytes, so that we can overwrite it with a 4-byte-offset
7719 jump and not have to worry about program jumps to an address in the
7720 middle of the tracepoint jump. On x86, it may be possible to use
7721 4-byte jumps with a 2-byte offset to a trampoline located in the
7722 bottom 64 KiB of memory. Returns 1 if OK, and writes a size
7723 of instruction to replace, and 0 if not, plus an explanatory
7724 string. */
7725
7726 static int
7727 i386_fast_tracepoint_valid_at (struct gdbarch *gdbarch,
7728 CORE_ADDR addr, int *isize, char **msg)
7729 {
7730 int len, jumplen;
7731 static struct ui_file *gdb_null = NULL;
7732
7733 /* Ask the target for the minimum instruction length supported. */
7734 jumplen = target_get_min_fast_tracepoint_insn_len ();
7735
7736 if (jumplen < 0)
7737 {
7738 /* If the target does not support the get_min_fast_tracepoint_insn_len
7739 operation, assume that fast tracepoints will always be implemented
7740 using 4-byte relative jumps on both x86 and x86-64. */
7741 jumplen = 5;
7742 }
7743 else if (jumplen == 0)
7744 {
7745 /* If the target does support get_min_fast_tracepoint_insn_len but
7746 returns zero, then the IPA has not loaded yet. In this case,
7747 we optimistically assume that truncated 2-byte relative jumps
7748 will be available on x86, and compensate later if this assumption
7749 turns out to be incorrect. On x86-64 architectures, 4-byte relative
7750 jumps will always be used. */
7751 jumplen = (register_size (gdbarch, 0) == 8) ? 5 : 4;
7752 }
7753
7754 /* Dummy file descriptor for the disassembler. */
7755 if (!gdb_null)
7756 gdb_null = ui_file_new ();
7757
7758 /* Check for fit. */
7759 len = gdb_print_insn (gdbarch, addr, gdb_null, NULL);
7760 if (isize)
7761 *isize = len;
7762
7763 if (len < jumplen)
7764 {
7765 /* Return a bit of target-specific detail to add to the caller's
7766 generic failure message. */
7767 if (msg)
7768 *msg = xstrprintf (_("; instruction is only %d bytes long, "
7769 "need at least %d bytes for the jump"),
7770 len, jumplen);
7771 return 0;
7772 }
7773 else
7774 {
7775 if (msg)
7776 *msg = NULL;
7777 return 1;
7778 }
7779 }
7780
7781 static int
7782 i386_validate_tdesc_p (struct gdbarch_tdep *tdep,
7783 struct tdesc_arch_data *tdesc_data)
7784 {
7785 const struct target_desc *tdesc = tdep->tdesc;
7786 const struct tdesc_feature *feature_core;
7787 const struct tdesc_feature *feature_sse, *feature_avx, *feature_mpx;
7788 int i, num_regs, valid_p;
7789
7790 if (! tdesc_has_registers (tdesc))
7791 return 0;
7792
7793 /* Get core registers. */
7794 feature_core = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.core");
7795 if (feature_core == NULL)
7796 return 0;
7797
7798 /* Get SSE registers. */
7799 feature_sse = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.sse");
7800
7801 /* Try AVX registers. */
7802 feature_avx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx");
7803
7804 /* Try MPX registers. */
7805 feature_mpx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx");
7806
7807 valid_p = 1;
7808
7809 /* The XCR0 bits. */
7810 if (feature_avx)
7811 {
7812 /* AVX register description requires SSE register description. */
7813 if (!feature_sse)
7814 return 0;
7815
7816 tdep->xcr0 = I386_XSTATE_AVX_MASK;
7817
7818 /* It may have been set by OSABI initialization function. */
7819 if (tdep->num_ymm_regs == 0)
7820 {
7821 tdep->ymmh_register_names = i386_ymmh_names;
7822 tdep->num_ymm_regs = 8;
7823 tdep->ymm0h_regnum = I386_YMM0H_REGNUM;
7824 }
7825
7826 for (i = 0; i < tdep->num_ymm_regs; i++)
7827 valid_p &= tdesc_numbered_register (feature_avx, tdesc_data,
7828 tdep->ymm0h_regnum + i,
7829 tdep->ymmh_register_names[i]);
7830 }
7831 else if (feature_sse)
7832 tdep->xcr0 = I386_XSTATE_SSE_MASK;
7833 else
7834 {
7835 tdep->xcr0 = I386_XSTATE_X87_MASK;
7836 tdep->num_xmm_regs = 0;
7837 }
7838
7839 num_regs = tdep->num_core_regs;
7840 for (i = 0; i < num_regs; i++)
7841 valid_p &= tdesc_numbered_register (feature_core, tdesc_data, i,
7842 tdep->register_names[i]);
7843
7844 if (feature_sse)
7845 {
7846 /* Need to include %mxcsr, so add one. */
7847 num_regs += tdep->num_xmm_regs + 1;
7848 for (; i < num_regs; i++)
7849 valid_p &= tdesc_numbered_register (feature_sse, tdesc_data, i,
7850 tdep->register_names[i]);
7851 }
7852
7853 if (feature_mpx)
7854 {
7855 tdep->xcr0 = I386_XSTATE_MPX_MASK;
7856
7857 if (tdep->bnd0r_regnum < 0)
7858 {
7859 tdep->mpx_register_names = i386_mpx_names;
7860 tdep->bnd0r_regnum = I386_BND0R_REGNUM;
7861 tdep->bndcfgu_regnum = I386_BNDCFGU_REGNUM;
7862 }
7863
7864 for (i = 0; i < I387_NUM_MPX_REGS; i++)
7865 valid_p &= tdesc_numbered_register (feature_mpx, tdesc_data,
7866 I387_BND0R_REGNUM (tdep) + i,
7867 tdep->mpx_register_names[i]);
7868 }
7869
7870 return valid_p;
7871 }
7872
7873 \f
7874 static struct gdbarch *
7875 i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
7876 {
7877 struct gdbarch_tdep *tdep;
7878 struct gdbarch *gdbarch;
7879 struct tdesc_arch_data *tdesc_data;
7880 const struct target_desc *tdesc;
7881 int mm0_regnum;
7882 int ymm0_regnum;
7883 int bnd0_regnum;
7884 int num_bnd_cooked;
7885
7886 /* If there is already a candidate, use it. */
7887 arches = gdbarch_list_lookup_by_info (arches, &info);
7888 if (arches != NULL)
7889 return arches->gdbarch;
7890
7891 /* Allocate space for the new architecture. */
7892 tdep = XCNEW (struct gdbarch_tdep);
7893 gdbarch = gdbarch_alloc (&info, tdep);
7894
7895 /* General-purpose registers. */
7896 tdep->gregset = NULL;
7897 tdep->gregset_reg_offset = NULL;
7898 tdep->gregset_num_regs = I386_NUM_GREGS;
7899 tdep->sizeof_gregset = 0;
7900
7901 /* Floating-point registers. */
7902 tdep->fpregset = NULL;
7903 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
7904
7905 tdep->xstateregset = NULL;
7906
7907 /* The default settings include the FPU registers, the MMX registers
7908 and the SSE registers. This can be overridden for a specific ABI
7909 by adjusting the members `st0_regnum', `mm0_regnum' and
7910 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
7911 will show up in the output of "info all-registers". */
7912
7913 tdep->st0_regnum = I386_ST0_REGNUM;
7914
7915 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
7916 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
7917
7918 tdep->jb_pc_offset = -1;
7919 tdep->struct_return = pcc_struct_return;
7920 tdep->sigtramp_start = 0;
7921 tdep->sigtramp_end = 0;
7922 tdep->sigtramp_p = i386_sigtramp_p;
7923 tdep->sigcontext_addr = NULL;
7924 tdep->sc_reg_offset = NULL;
7925 tdep->sc_pc_offset = -1;
7926 tdep->sc_sp_offset = -1;
7927
7928 tdep->xsave_xcr0_offset = -1;
7929
7930 tdep->record_regmap = i386_record_regmap;
7931
7932 set_gdbarch_long_long_align_bit (gdbarch, 32);
7933
7934 /* The format used for `long double' on almost all i386 targets is
7935 the i387 extended floating-point format. In fact, of all targets
7936 in the GCC 2.95 tree, only OSF/1 does it different, and insists
7937 on having a `long double' that's not `long' at all. */
7938 set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext);
7939
7940 /* Although the i387 extended floating-point has only 80 significant
7941 bits, a `long double' actually takes up 96, probably to enforce
7942 alignment. */
7943 set_gdbarch_long_double_bit (gdbarch, 96);
7944
7945 /* Register numbers of various important registers. */
7946 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
7947 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
7948 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
7949 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
7950
7951 /* NOTE: kettenis/20040418: GCC does have two possible register
7952 numbering schemes on the i386: dbx and SVR4. These schemes
7953 differ in how they number %ebp, %esp, %eflags, and the
7954 floating-point registers, and are implemented by the arrays
7955 dbx_register_map[] and svr4_dbx_register_map in
7956 gcc/config/i386.c. GCC also defines a third numbering scheme in
7957 gcc/config/i386.c, which it designates as the "default" register
7958 map used in 64bit mode. This last register numbering scheme is
7959 implemented in dbx64_register_map, and is used for AMD64; see
7960 amd64-tdep.c.
7961
7962 Currently, each GCC i386 target always uses the same register
7963 numbering scheme across all its supported debugging formats
7964 i.e. SDB (COFF), stabs and DWARF 2. This is because
7965 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
7966 DBX_REGISTER_NUMBER macro which is defined by each target's
7967 respective config header in a manner independent of the requested
7968 output debugging format.
7969
7970 This does not match the arrangement below, which presumes that
7971 the SDB and stabs numbering schemes differ from the DWARF and
7972 DWARF 2 ones. The reason for this arrangement is that it is
7973 likely to get the numbering scheme for the target's
7974 default/native debug format right. For targets where GCC is the
7975 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
7976 targets where the native toolchain uses a different numbering
7977 scheme for a particular debug format (stabs-in-ELF on Solaris)
7978 the defaults below will have to be overridden, like
7979 i386_elf_init_abi() does. */
7980
7981 /* Use the dbx register numbering scheme for stabs and COFF. */
7982 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
7983 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
7984
7985 /* Use the SVR4 register numbering scheme for DWARF 2. */
7986 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
7987
7988 /* We don't set gdbarch_stab_reg_to_regnum, since ECOFF doesn't seem to
7989 be in use on any of the supported i386 targets. */
7990
7991 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
7992
7993 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
7994
7995 /* Call dummy code. */
7996 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
7997 set_gdbarch_push_dummy_code (gdbarch, i386_push_dummy_code);
7998 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
7999 set_gdbarch_frame_align (gdbarch, i386_frame_align);
8000
8001 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
8002 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
8003 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
8004
8005 set_gdbarch_return_value (gdbarch, i386_return_value);
8006
8007 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
8008
8009 /* Stack grows downward. */
8010 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
8011
8012 set_gdbarch_breakpoint_from_pc (gdbarch, i386_breakpoint_from_pc);
8013 set_gdbarch_decr_pc_after_break (gdbarch, 1);
8014 set_gdbarch_max_insn_length (gdbarch, I386_MAX_INSN_LEN);
8015
8016 set_gdbarch_frame_args_skip (gdbarch, 8);
8017
8018 set_gdbarch_print_insn (gdbarch, i386_print_insn);
8019
8020 set_gdbarch_dummy_id (gdbarch, i386_dummy_id);
8021
8022 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
8023
8024 /* Add the i386 register groups. */
8025 i386_add_reggroups (gdbarch);
8026 tdep->register_reggroup_p = i386_register_reggroup_p;
8027
8028 /* Helper for function argument information. */
8029 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
8030
8031 /* Hook the function epilogue frame unwinder. This unwinder is
8032 appended to the list first, so that it supercedes the DWARF
8033 unwinder in function epilogues (where the DWARF unwinder
8034 currently fails). */
8035 frame_unwind_append_unwinder (gdbarch, &i386_epilogue_frame_unwind);
8036
8037 /* Hook in the DWARF CFI frame unwinder. This unwinder is appended
8038 to the list before the prologue-based unwinders, so that DWARF
8039 CFI info will be used if it is available. */
8040 dwarf2_append_unwinders (gdbarch);
8041
8042 frame_base_set_default (gdbarch, &i386_frame_base);
8043
8044 /* Pseudo registers may be changed by amd64_init_abi. */
8045 set_gdbarch_pseudo_register_read_value (gdbarch,
8046 i386_pseudo_register_read_value);
8047 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
8048
8049 set_tdesc_pseudo_register_type (gdbarch, i386_pseudo_register_type);
8050 set_tdesc_pseudo_register_name (gdbarch, i386_pseudo_register_name);
8051
8052 /* Override the normal target description method to make the AVX
8053 upper halves anonymous. */
8054 set_gdbarch_register_name (gdbarch, i386_register_name);
8055
8056 /* Even though the default ABI only includes general-purpose registers,
8057 floating-point registers and the SSE registers, we have to leave a
8058 gap for the upper AVX registers and the MPX registers. */
8059 set_gdbarch_num_regs (gdbarch, I386_MPX_NUM_REGS);
8060
8061 /* Get the x86 target description from INFO. */
8062 tdesc = info.target_desc;
8063 if (! tdesc_has_registers (tdesc))
8064 tdesc = tdesc_i386;
8065 tdep->tdesc = tdesc;
8066
8067 tdep->num_core_regs = I386_NUM_GREGS + I387_NUM_REGS;
8068 tdep->register_names = i386_register_names;
8069
8070 /* No upper YMM registers. */
8071 tdep->ymmh_register_names = NULL;
8072 tdep->ymm0h_regnum = -1;
8073
8074 tdep->num_byte_regs = 8;
8075 tdep->num_word_regs = 8;
8076 tdep->num_dword_regs = 0;
8077 tdep->num_mmx_regs = 8;
8078 tdep->num_ymm_regs = 0;
8079
8080 /* No MPX registers. */
8081 tdep->bnd0r_regnum = -1;
8082 tdep->bndcfgu_regnum = -1;
8083
8084 tdesc_data = tdesc_data_alloc ();
8085
8086 set_gdbarch_relocate_instruction (gdbarch, i386_relocate_instruction);
8087
8088 set_gdbarch_gen_return_address (gdbarch, i386_gen_return_address);
8089
8090 set_gdbarch_insn_is_call (gdbarch, i386_insn_is_call);
8091 set_gdbarch_insn_is_ret (gdbarch, i386_insn_is_ret);
8092 set_gdbarch_insn_is_jump (gdbarch, i386_insn_is_jump);
8093
8094 /* Hook in ABI-specific overrides, if they have been registered. */
8095 info.tdep_info = (void *) tdesc_data;
8096 gdbarch_init_osabi (info, gdbarch);
8097
8098 if (!i386_validate_tdesc_p (tdep, tdesc_data))
8099 {
8100 tdesc_data_cleanup (tdesc_data);
8101 xfree (tdep);
8102 gdbarch_free (gdbarch);
8103 return NULL;
8104 }
8105
8106 num_bnd_cooked = (tdep->bnd0r_regnum > 0 ? I387_NUM_BND_REGS : 0);
8107
8108 /* Wire in pseudo registers. Number of pseudo registers may be
8109 changed. */
8110 set_gdbarch_num_pseudo_regs (gdbarch, (tdep->num_byte_regs
8111 + tdep->num_word_regs
8112 + tdep->num_dword_regs
8113 + tdep->num_mmx_regs
8114 + tdep->num_ymm_regs
8115 + num_bnd_cooked));
8116
8117 /* Target description may be changed. */
8118 tdesc = tdep->tdesc;
8119
8120 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
8121
8122 /* Override gdbarch_register_reggroup_p set in tdesc_use_registers. */
8123 set_gdbarch_register_reggroup_p (gdbarch, tdep->register_reggroup_p);
8124
8125 /* Make %al the first pseudo-register. */
8126 tdep->al_regnum = gdbarch_num_regs (gdbarch);
8127 tdep->ax_regnum = tdep->al_regnum + tdep->num_byte_regs;
8128
8129 ymm0_regnum = tdep->ax_regnum + tdep->num_word_regs;
8130 if (tdep->num_dword_regs)
8131 {
8132 /* Support dword pseudo-register if it hasn't been disabled. */
8133 tdep->eax_regnum = ymm0_regnum;
8134 ymm0_regnum += tdep->num_dword_regs;
8135 }
8136 else
8137 tdep->eax_regnum = -1;
8138
8139 mm0_regnum = ymm0_regnum;
8140 if (tdep->num_ymm_regs)
8141 {
8142 /* Support YMM pseudo-register if it is available. */
8143 tdep->ymm0_regnum = ymm0_regnum;
8144 mm0_regnum += tdep->num_ymm_regs;
8145 }
8146 else
8147 tdep->ymm0_regnum = -1;
8148
8149 bnd0_regnum = mm0_regnum;
8150 if (tdep->num_mmx_regs != 0)
8151 {
8152 /* Support MMX pseudo-register if MMX hasn't been disabled. */
8153 tdep->mm0_regnum = mm0_regnum;
8154 bnd0_regnum += tdep->num_mmx_regs;
8155 }
8156 else
8157 tdep->mm0_regnum = -1;
8158
8159 if (tdep->bnd0r_regnum > 0)
8160 tdep->bnd0_regnum = bnd0_regnum;
8161 else
8162 tdep-> bnd0_regnum = -1;
8163
8164 /* Hook in the legacy prologue-based unwinders last (fallback). */
8165 frame_unwind_append_unwinder (gdbarch, &i386_stack_tramp_frame_unwind);
8166 frame_unwind_append_unwinder (gdbarch, &i386_sigtramp_frame_unwind);
8167 frame_unwind_append_unwinder (gdbarch, &i386_frame_unwind);
8168
8169 /* If we have a register mapping, enable the generic core file
8170 support, unless it has already been enabled. */
8171 if (tdep->gregset_reg_offset
8172 && !gdbarch_regset_from_core_section_p (gdbarch))
8173 set_gdbarch_regset_from_core_section (gdbarch,
8174 i386_regset_from_core_section);
8175
8176 set_gdbarch_skip_permanent_breakpoint (gdbarch,
8177 i386_skip_permanent_breakpoint);
8178
8179 set_gdbarch_fast_tracepoint_valid_at (gdbarch,
8180 i386_fast_tracepoint_valid_at);
8181
8182 return gdbarch;
8183 }
8184
8185 static enum gdb_osabi
8186 i386_coff_osabi_sniffer (bfd *abfd)
8187 {
8188 if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
8189 || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
8190 return GDB_OSABI_GO32;
8191
8192 return GDB_OSABI_UNKNOWN;
8193 }
8194 \f
8195
8196 /* Provide a prototype to silence -Wmissing-prototypes. */
8197 void _initialize_i386_tdep (void);
8198
8199 void
8200 _initialize_i386_tdep (void)
8201 {
8202 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
8203
8204 /* Add the variable that controls the disassembly flavor. */
8205 add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
8206 &disassembly_flavor, _("\
8207 Set the disassembly flavor."), _("\
8208 Show the disassembly flavor."), _("\
8209 The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
8210 NULL,
8211 NULL, /* FIXME: i18n: */
8212 &setlist, &showlist);
8213
8214 /* Add the variable that controls the convention for returning
8215 structs. */
8216 add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
8217 &struct_convention, _("\
8218 Set the convention for returning small structs."), _("\
8219 Show the convention for returning small structs."), _("\
8220 Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
8221 is \"default\"."),
8222 NULL,
8223 NULL, /* FIXME: i18n: */
8224 &setlist, &showlist);
8225
8226 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
8227 i386_coff_osabi_sniffer);
8228
8229 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
8230 i386_svr4_init_abi);
8231 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_GO32,
8232 i386_go32_init_abi);
8233
8234 /* Initialize the i386-specific register groups. */
8235 i386_init_reggroups ();
8236
8237 /* Initialize the standard target descriptions. */
8238 initialize_tdesc_i386 ();
8239 initialize_tdesc_i386_mmx ();
8240 initialize_tdesc_i386_avx ();
8241 initialize_tdesc_i386_mpx ();
8242
8243 /* Tell remote stub that we support XML target description. */
8244 register_remote_support_xml ("i386");
8245 }
This page took 0.196523 seconds and 5 git commands to generate.