2010-03-07 Michael Snyder <msnyder@vmware.com>
[deliverable/binutils-gdb.git] / gdb / i386-tdep.c
1 /* Intel 386 target-dependent stuff.
2
3 Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
5 2010 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "opcode/i386.h"
24 #include "arch-utils.h"
25 #include "command.h"
26 #include "dummy-frame.h"
27 #include "dwarf2-frame.h"
28 #include "doublest.h"
29 #include "frame.h"
30 #include "frame-base.h"
31 #include "frame-unwind.h"
32 #include "inferior.h"
33 #include "gdbcmd.h"
34 #include "gdbcore.h"
35 #include "gdbtypes.h"
36 #include "objfiles.h"
37 #include "osabi.h"
38 #include "regcache.h"
39 #include "reggroups.h"
40 #include "regset.h"
41 #include "symfile.h"
42 #include "symtab.h"
43 #include "target.h"
44 #include "value.h"
45 #include "dis-asm.h"
46 #include "disasm.h"
47
48 #include "gdb_assert.h"
49 #include "gdb_string.h"
50
51 #include "i386-tdep.h"
52 #include "i387-tdep.h"
53
54 #include "record.h"
55 #include <stdint.h>
56
57 #include "features/i386/i386.c"
58
59 /* Register names. */
60
61 static const char *i386_register_names[] =
62 {
63 "eax", "ecx", "edx", "ebx",
64 "esp", "ebp", "esi", "edi",
65 "eip", "eflags", "cs", "ss",
66 "ds", "es", "fs", "gs",
67 "st0", "st1", "st2", "st3",
68 "st4", "st5", "st6", "st7",
69 "fctrl", "fstat", "ftag", "fiseg",
70 "fioff", "foseg", "fooff", "fop",
71 "xmm0", "xmm1", "xmm2", "xmm3",
72 "xmm4", "xmm5", "xmm6", "xmm7",
73 "mxcsr"
74 };
75
76 /* Register names for MMX pseudo-registers. */
77
78 static const char *i386_mmx_names[] =
79 {
80 "mm0", "mm1", "mm2", "mm3",
81 "mm4", "mm5", "mm6", "mm7"
82 };
83
84 /* Register names for byte pseudo-registers. */
85
86 static const char *i386_byte_names[] =
87 {
88 "al", "cl", "dl", "bl",
89 "ah", "ch", "dh", "bh"
90 };
91
92 /* Register names for word pseudo-registers. */
93
94 static const char *i386_word_names[] =
95 {
96 "ax", "cx", "dx", "bx",
97 "sp", "bp", "si", "di"
98 };
99
100 /* MMX register? */
101
102 static int
103 i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
104 {
105 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
106 int mm0_regnum = tdep->mm0_regnum;
107
108 if (mm0_regnum < 0)
109 return 0;
110
111 regnum -= mm0_regnum;
112 return regnum >= 0 && regnum < tdep->num_mmx_regs;
113 }
114
115 /* Byte register? */
116
117 int
118 i386_byte_regnum_p (struct gdbarch *gdbarch, int regnum)
119 {
120 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
121
122 regnum -= tdep->al_regnum;
123 return regnum >= 0 && regnum < tdep->num_byte_regs;
124 }
125
126 /* Word register? */
127
128 int
129 i386_word_regnum_p (struct gdbarch *gdbarch, int regnum)
130 {
131 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
132
133 regnum -= tdep->ax_regnum;
134 return regnum >= 0 && regnum < tdep->num_word_regs;
135 }
136
137 /* Dword register? */
138
139 int
140 i386_dword_regnum_p (struct gdbarch *gdbarch, int regnum)
141 {
142 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
143 int eax_regnum = tdep->eax_regnum;
144
145 if (eax_regnum < 0)
146 return 0;
147
148 regnum -= eax_regnum;
149 return regnum >= 0 && regnum < tdep->num_dword_regs;
150 }
151
152 /* SSE register? */
153
154 static int
155 i386_sse_regnum_p (struct gdbarch *gdbarch, int regnum)
156 {
157 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
158
159 if (I387_NUM_XMM_REGS (tdep) == 0)
160 return 0;
161
162 return (I387_XMM0_REGNUM (tdep) <= regnum
163 && regnum < I387_MXCSR_REGNUM (tdep));
164 }
165
166 static int
167 i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
168 {
169 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
170
171 if (I387_NUM_XMM_REGS (tdep) == 0)
172 return 0;
173
174 return (regnum == I387_MXCSR_REGNUM (tdep));
175 }
176
177 /* FP register? */
178
179 int
180 i386_fp_regnum_p (struct gdbarch *gdbarch, int regnum)
181 {
182 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
183
184 if (I387_ST0_REGNUM (tdep) < 0)
185 return 0;
186
187 return (I387_ST0_REGNUM (tdep) <= regnum
188 && regnum < I387_FCTRL_REGNUM (tdep));
189 }
190
191 int
192 i386_fpc_regnum_p (struct gdbarch *gdbarch, int regnum)
193 {
194 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
195
196 if (I387_ST0_REGNUM (tdep) < 0)
197 return 0;
198
199 return (I387_FCTRL_REGNUM (tdep) <= regnum
200 && regnum < I387_XMM0_REGNUM (tdep));
201 }
202
203 /* Return the name of register REGNUM. */
204
205 const char *
206 i386_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
207 {
208 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
209 if (i386_mmx_regnum_p (gdbarch, regnum))
210 return i386_mmx_names[regnum - I387_MM0_REGNUM (tdep)];
211 else if (i386_byte_regnum_p (gdbarch, regnum))
212 return i386_byte_names[regnum - tdep->al_regnum];
213 else if (i386_word_regnum_p (gdbarch, regnum))
214 return i386_word_names[regnum - tdep->ax_regnum];
215
216 internal_error (__FILE__, __LINE__, _("invalid regnum"));
217 }
218
219 /* Convert a dbx register number REG to the appropriate register
220 number used by GDB. */
221
222 static int
223 i386_dbx_reg_to_regnum (struct gdbarch *gdbarch, int reg)
224 {
225 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
226
227 /* This implements what GCC calls the "default" register map
228 (dbx_register_map[]). */
229
230 if (reg >= 0 && reg <= 7)
231 {
232 /* General-purpose registers. The debug info calls %ebp
233 register 4, and %esp register 5. */
234 if (reg == 4)
235 return 5;
236 else if (reg == 5)
237 return 4;
238 else return reg;
239 }
240 else if (reg >= 12 && reg <= 19)
241 {
242 /* Floating-point registers. */
243 return reg - 12 + I387_ST0_REGNUM (tdep);
244 }
245 else if (reg >= 21 && reg <= 28)
246 {
247 /* SSE registers. */
248 return reg - 21 + I387_XMM0_REGNUM (tdep);
249 }
250 else if (reg >= 29 && reg <= 36)
251 {
252 /* MMX registers. */
253 return reg - 29 + I387_MM0_REGNUM (tdep);
254 }
255
256 /* This will hopefully provoke a warning. */
257 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
258 }
259
260 /* Convert SVR4 register number REG to the appropriate register number
261 used by GDB. */
262
263 static int
264 i386_svr4_reg_to_regnum (struct gdbarch *gdbarch, int reg)
265 {
266 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
267
268 /* This implements the GCC register map that tries to be compatible
269 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
270
271 /* The SVR4 register numbering includes %eip and %eflags, and
272 numbers the floating point registers differently. */
273 if (reg >= 0 && reg <= 9)
274 {
275 /* General-purpose registers. */
276 return reg;
277 }
278 else if (reg >= 11 && reg <= 18)
279 {
280 /* Floating-point registers. */
281 return reg - 11 + I387_ST0_REGNUM (tdep);
282 }
283 else if (reg >= 21 && reg <= 36)
284 {
285 /* The SSE and MMX registers have the same numbers as with dbx. */
286 return i386_dbx_reg_to_regnum (gdbarch, reg);
287 }
288
289 switch (reg)
290 {
291 case 37: return I387_FCTRL_REGNUM (tdep);
292 case 38: return I387_FSTAT_REGNUM (tdep);
293 case 39: return I387_MXCSR_REGNUM (tdep);
294 case 40: return I386_ES_REGNUM;
295 case 41: return I386_CS_REGNUM;
296 case 42: return I386_SS_REGNUM;
297 case 43: return I386_DS_REGNUM;
298 case 44: return I386_FS_REGNUM;
299 case 45: return I386_GS_REGNUM;
300 }
301
302 /* This will hopefully provoke a warning. */
303 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
304 }
305
306 \f
307
308 /* This is the variable that is set with "set disassembly-flavor", and
309 its legitimate values. */
310 static const char att_flavor[] = "att";
311 static const char intel_flavor[] = "intel";
312 static const char *valid_flavors[] =
313 {
314 att_flavor,
315 intel_flavor,
316 NULL
317 };
318 static const char *disassembly_flavor = att_flavor;
319 \f
320
321 /* Use the program counter to determine the contents and size of a
322 breakpoint instruction. Return a pointer to a string of bytes that
323 encode a breakpoint instruction, store the length of the string in
324 *LEN and optionally adjust *PC to point to the correct memory
325 location for inserting the breakpoint.
326
327 On the i386 we have a single breakpoint that fits in a single byte
328 and can be inserted anywhere.
329
330 This function is 64-bit safe. */
331
332 static const gdb_byte *
333 i386_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
334 {
335 static gdb_byte break_insn[] = { 0xcc }; /* int 3 */
336
337 *len = sizeof (break_insn);
338 return break_insn;
339 }
340 \f
341 /* Displaced instruction handling. */
342
343 /* Skip the legacy instruction prefixes in INSN.
344 Not all prefixes are valid for any particular insn
345 but we needn't care, the insn will fault if it's invalid.
346 The result is a pointer to the first opcode byte,
347 or NULL if we run off the end of the buffer. */
348
349 static gdb_byte *
350 i386_skip_prefixes (gdb_byte *insn, size_t max_len)
351 {
352 gdb_byte *end = insn + max_len;
353
354 while (insn < end)
355 {
356 switch (*insn)
357 {
358 case DATA_PREFIX_OPCODE:
359 case ADDR_PREFIX_OPCODE:
360 case CS_PREFIX_OPCODE:
361 case DS_PREFIX_OPCODE:
362 case ES_PREFIX_OPCODE:
363 case FS_PREFIX_OPCODE:
364 case GS_PREFIX_OPCODE:
365 case SS_PREFIX_OPCODE:
366 case LOCK_PREFIX_OPCODE:
367 case REPE_PREFIX_OPCODE:
368 case REPNE_PREFIX_OPCODE:
369 ++insn;
370 continue;
371 default:
372 return insn;
373 }
374 }
375
376 return NULL;
377 }
378
379 static int
380 i386_absolute_jmp_p (const gdb_byte *insn)
381 {
382 /* jmp far (absolute address in operand) */
383 if (insn[0] == 0xea)
384 return 1;
385
386 if (insn[0] == 0xff)
387 {
388 /* jump near, absolute indirect (/4) */
389 if ((insn[1] & 0x38) == 0x20)
390 return 1;
391
392 /* jump far, absolute indirect (/5) */
393 if ((insn[1] & 0x38) == 0x28)
394 return 1;
395 }
396
397 return 0;
398 }
399
400 static int
401 i386_absolute_call_p (const gdb_byte *insn)
402 {
403 /* call far, absolute */
404 if (insn[0] == 0x9a)
405 return 1;
406
407 if (insn[0] == 0xff)
408 {
409 /* Call near, absolute indirect (/2) */
410 if ((insn[1] & 0x38) == 0x10)
411 return 1;
412
413 /* Call far, absolute indirect (/3) */
414 if ((insn[1] & 0x38) == 0x18)
415 return 1;
416 }
417
418 return 0;
419 }
420
421 static int
422 i386_ret_p (const gdb_byte *insn)
423 {
424 switch (insn[0])
425 {
426 case 0xc2: /* ret near, pop N bytes */
427 case 0xc3: /* ret near */
428 case 0xca: /* ret far, pop N bytes */
429 case 0xcb: /* ret far */
430 case 0xcf: /* iret */
431 return 1;
432
433 default:
434 return 0;
435 }
436 }
437
438 static int
439 i386_call_p (const gdb_byte *insn)
440 {
441 if (i386_absolute_call_p (insn))
442 return 1;
443
444 /* call near, relative */
445 if (insn[0] == 0xe8)
446 return 1;
447
448 return 0;
449 }
450
451 /* Return non-zero if INSN is a system call, and set *LENGTHP to its
452 length in bytes. Otherwise, return zero. */
453
454 static int
455 i386_syscall_p (const gdb_byte *insn, ULONGEST *lengthp)
456 {
457 if (insn[0] == 0xcd)
458 {
459 *lengthp = 2;
460 return 1;
461 }
462
463 return 0;
464 }
465
466 /* Fix up the state of registers and memory after having single-stepped
467 a displaced instruction. */
468
469 void
470 i386_displaced_step_fixup (struct gdbarch *gdbarch,
471 struct displaced_step_closure *closure,
472 CORE_ADDR from, CORE_ADDR to,
473 struct regcache *regs)
474 {
475 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
476
477 /* The offset we applied to the instruction's address.
478 This could well be negative (when viewed as a signed 32-bit
479 value), but ULONGEST won't reflect that, so take care when
480 applying it. */
481 ULONGEST insn_offset = to - from;
482
483 /* Since we use simple_displaced_step_copy_insn, our closure is a
484 copy of the instruction. */
485 gdb_byte *insn = (gdb_byte *) closure;
486 /* The start of the insn, needed in case we see some prefixes. */
487 gdb_byte *insn_start = insn;
488
489 if (debug_displaced)
490 fprintf_unfiltered (gdb_stdlog,
491 "displaced: fixup (%s, %s), "
492 "insn = 0x%02x 0x%02x ...\n",
493 paddress (gdbarch, from), paddress (gdbarch, to),
494 insn[0], insn[1]);
495
496 /* The list of issues to contend with here is taken from
497 resume_execution in arch/i386/kernel/kprobes.c, Linux 2.6.20.
498 Yay for Free Software! */
499
500 /* Relocate the %eip, if necessary. */
501
502 /* The instruction recognizers we use assume any leading prefixes
503 have been skipped. */
504 {
505 /* This is the size of the buffer in closure. */
506 size_t max_insn_len = gdbarch_max_insn_length (gdbarch);
507 gdb_byte *opcode = i386_skip_prefixes (insn, max_insn_len);
508 /* If there are too many prefixes, just ignore the insn.
509 It will fault when run. */
510 if (opcode != NULL)
511 insn = opcode;
512 }
513
514 /* Except in the case of absolute or indirect jump or call
515 instructions, or a return instruction, the new eip is relative to
516 the displaced instruction; make it relative. Well, signal
517 handler returns don't need relocation either, but we use the
518 value of %eip to recognize those; see below. */
519 if (! i386_absolute_jmp_p (insn)
520 && ! i386_absolute_call_p (insn)
521 && ! i386_ret_p (insn))
522 {
523 ULONGEST orig_eip;
524 ULONGEST insn_len;
525
526 regcache_cooked_read_unsigned (regs, I386_EIP_REGNUM, &orig_eip);
527
528 /* A signal trampoline system call changes the %eip, resuming
529 execution of the main program after the signal handler has
530 returned. That makes them like 'return' instructions; we
531 shouldn't relocate %eip.
532
533 But most system calls don't, and we do need to relocate %eip.
534
535 Our heuristic for distinguishing these cases: if stepping
536 over the system call instruction left control directly after
537 the instruction, the we relocate --- control almost certainly
538 doesn't belong in the displaced copy. Otherwise, we assume
539 the instruction has put control where it belongs, and leave
540 it unrelocated. Goodness help us if there are PC-relative
541 system calls. */
542 if (i386_syscall_p (insn, &insn_len)
543 && orig_eip != to + (insn - insn_start) + insn_len)
544 {
545 if (debug_displaced)
546 fprintf_unfiltered (gdb_stdlog,
547 "displaced: syscall changed %%eip; "
548 "not relocating\n");
549 }
550 else
551 {
552 ULONGEST eip = (orig_eip - insn_offset) & 0xffffffffUL;
553
554 /* If we just stepped over a breakpoint insn, we don't backup
555 the pc on purpose; this is to match behaviour without
556 stepping. */
557
558 regcache_cooked_write_unsigned (regs, I386_EIP_REGNUM, eip);
559
560 if (debug_displaced)
561 fprintf_unfiltered (gdb_stdlog,
562 "displaced: "
563 "relocated %%eip from %s to %s\n",
564 paddress (gdbarch, orig_eip),
565 paddress (gdbarch, eip));
566 }
567 }
568
569 /* If the instruction was PUSHFL, then the TF bit will be set in the
570 pushed value, and should be cleared. We'll leave this for later,
571 since GDB already messes up the TF flag when stepping over a
572 pushfl. */
573
574 /* If the instruction was a call, the return address now atop the
575 stack is the address following the copied instruction. We need
576 to make it the address following the original instruction. */
577 if (i386_call_p (insn))
578 {
579 ULONGEST esp;
580 ULONGEST retaddr;
581 const ULONGEST retaddr_len = 4;
582
583 regcache_cooked_read_unsigned (regs, I386_ESP_REGNUM, &esp);
584 retaddr = read_memory_unsigned_integer (esp, retaddr_len, byte_order);
585 retaddr = (retaddr - insn_offset) & 0xffffffffUL;
586 write_memory_unsigned_integer (esp, retaddr_len, byte_order, retaddr);
587
588 if (debug_displaced)
589 fprintf_unfiltered (gdb_stdlog,
590 "displaced: relocated return addr at %s to %s\n",
591 paddress (gdbarch, esp),
592 paddress (gdbarch, retaddr));
593 }
594 }
595 \f
596 #ifdef I386_REGNO_TO_SYMMETRY
597 #error "The Sequent Symmetry is no longer supported."
598 #endif
599
600 /* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
601 and %esp "belong" to the calling function. Therefore these
602 registers should be saved if they're going to be modified. */
603
604 /* The maximum number of saved registers. This should include all
605 registers mentioned above, and %eip. */
606 #define I386_NUM_SAVED_REGS I386_NUM_GREGS
607
608 struct i386_frame_cache
609 {
610 /* Base address. */
611 CORE_ADDR base;
612 LONGEST sp_offset;
613 CORE_ADDR pc;
614
615 /* Saved registers. */
616 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
617 CORE_ADDR saved_sp;
618 int saved_sp_reg;
619 int pc_in_eax;
620
621 /* Stack space reserved for local variables. */
622 long locals;
623 };
624
625 /* Allocate and initialize a frame cache. */
626
627 static struct i386_frame_cache *
628 i386_alloc_frame_cache (void)
629 {
630 struct i386_frame_cache *cache;
631 int i;
632
633 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
634
635 /* Base address. */
636 cache->base = 0;
637 cache->sp_offset = -4;
638 cache->pc = 0;
639
640 /* Saved registers. We initialize these to -1 since zero is a valid
641 offset (that's where %ebp is supposed to be stored). */
642 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
643 cache->saved_regs[i] = -1;
644 cache->saved_sp = 0;
645 cache->saved_sp_reg = -1;
646 cache->pc_in_eax = 0;
647
648 /* Frameless until proven otherwise. */
649 cache->locals = -1;
650
651 return cache;
652 }
653
654 /* If the instruction at PC is a jump, return the address of its
655 target. Otherwise, return PC. */
656
657 static CORE_ADDR
658 i386_follow_jump (struct gdbarch *gdbarch, CORE_ADDR pc)
659 {
660 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
661 gdb_byte op;
662 long delta = 0;
663 int data16 = 0;
664
665 target_read_memory (pc, &op, 1);
666 if (op == 0x66)
667 {
668 data16 = 1;
669 op = read_memory_unsigned_integer (pc + 1, 1, byte_order);
670 }
671
672 switch (op)
673 {
674 case 0xe9:
675 /* Relative jump: if data16 == 0, disp32, else disp16. */
676 if (data16)
677 {
678 delta = read_memory_integer (pc + 2, 2, byte_order);
679
680 /* Include the size of the jmp instruction (including the
681 0x66 prefix). */
682 delta += 4;
683 }
684 else
685 {
686 delta = read_memory_integer (pc + 1, 4, byte_order);
687
688 /* Include the size of the jmp instruction. */
689 delta += 5;
690 }
691 break;
692 case 0xeb:
693 /* Relative jump, disp8 (ignore data16). */
694 delta = read_memory_integer (pc + data16 + 1, 1, byte_order);
695
696 delta += data16 + 2;
697 break;
698 }
699
700 return pc + delta;
701 }
702
703 /* Check whether PC points at a prologue for a function returning a
704 structure or union. If so, it updates CACHE and returns the
705 address of the first instruction after the code sequence that
706 removes the "hidden" argument from the stack or CURRENT_PC,
707 whichever is smaller. Otherwise, return PC. */
708
709 static CORE_ADDR
710 i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
711 struct i386_frame_cache *cache)
712 {
713 /* Functions that return a structure or union start with:
714
715 popl %eax 0x58
716 xchgl %eax, (%esp) 0x87 0x04 0x24
717 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
718
719 (the System V compiler puts out the second `xchg' instruction,
720 and the assembler doesn't try to optimize it, so the 'sib' form
721 gets generated). This sequence is used to get the address of the
722 return buffer for a function that returns a structure. */
723 static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
724 static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
725 gdb_byte buf[4];
726 gdb_byte op;
727
728 if (current_pc <= pc)
729 return pc;
730
731 target_read_memory (pc, &op, 1);
732
733 if (op != 0x58) /* popl %eax */
734 return pc;
735
736 target_read_memory (pc + 1, buf, 4);
737 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
738 return pc;
739
740 if (current_pc == pc)
741 {
742 cache->sp_offset += 4;
743 return current_pc;
744 }
745
746 if (current_pc == pc + 1)
747 {
748 cache->pc_in_eax = 1;
749 return current_pc;
750 }
751
752 if (buf[1] == proto1[1])
753 return pc + 4;
754 else
755 return pc + 5;
756 }
757
758 static CORE_ADDR
759 i386_skip_probe (CORE_ADDR pc)
760 {
761 /* A function may start with
762
763 pushl constant
764 call _probe
765 addl $4, %esp
766
767 followed by
768
769 pushl %ebp
770
771 etc. */
772 gdb_byte buf[8];
773 gdb_byte op;
774
775 target_read_memory (pc, &op, 1);
776
777 if (op == 0x68 || op == 0x6a)
778 {
779 int delta;
780
781 /* Skip past the `pushl' instruction; it has either a one-byte or a
782 four-byte operand, depending on the opcode. */
783 if (op == 0x68)
784 delta = 5;
785 else
786 delta = 2;
787
788 /* Read the following 8 bytes, which should be `call _probe' (6
789 bytes) followed by `addl $4,%esp' (2 bytes). */
790 read_memory (pc + delta, buf, sizeof (buf));
791 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
792 pc += delta + sizeof (buf);
793 }
794
795 return pc;
796 }
797
798 /* GCC 4.1 and later, can put code in the prologue to realign the
799 stack pointer. Check whether PC points to such code, and update
800 CACHE accordingly. Return the first instruction after the code
801 sequence or CURRENT_PC, whichever is smaller. If we don't
802 recognize the code, return PC. */
803
804 static CORE_ADDR
805 i386_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
806 struct i386_frame_cache *cache)
807 {
808 /* There are 2 code sequences to re-align stack before the frame
809 gets set up:
810
811 1. Use a caller-saved saved register:
812
813 leal 4(%esp), %reg
814 andl $-XXX, %esp
815 pushl -4(%reg)
816
817 2. Use a callee-saved saved register:
818
819 pushl %reg
820 leal 8(%esp), %reg
821 andl $-XXX, %esp
822 pushl -4(%reg)
823
824 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
825
826 0x83 0xe4 0xf0 andl $-16, %esp
827 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
828 */
829
830 gdb_byte buf[14];
831 int reg;
832 int offset, offset_and;
833 static int regnums[8] = {
834 I386_EAX_REGNUM, /* %eax */
835 I386_ECX_REGNUM, /* %ecx */
836 I386_EDX_REGNUM, /* %edx */
837 I386_EBX_REGNUM, /* %ebx */
838 I386_ESP_REGNUM, /* %esp */
839 I386_EBP_REGNUM, /* %ebp */
840 I386_ESI_REGNUM, /* %esi */
841 I386_EDI_REGNUM /* %edi */
842 };
843
844 if (target_read_memory (pc, buf, sizeof buf))
845 return pc;
846
847 /* Check caller-saved saved register. The first instruction has
848 to be "leal 4(%esp), %reg". */
849 if (buf[0] == 0x8d && buf[2] == 0x24 && buf[3] == 0x4)
850 {
851 /* MOD must be binary 10 and R/M must be binary 100. */
852 if ((buf[1] & 0xc7) != 0x44)
853 return pc;
854
855 /* REG has register number. */
856 reg = (buf[1] >> 3) & 7;
857 offset = 4;
858 }
859 else
860 {
861 /* Check callee-saved saved register. The first instruction
862 has to be "pushl %reg". */
863 if ((buf[0] & 0xf8) != 0x50)
864 return pc;
865
866 /* Get register. */
867 reg = buf[0] & 0x7;
868
869 /* The next instruction has to be "leal 8(%esp), %reg". */
870 if (buf[1] != 0x8d || buf[3] != 0x24 || buf[4] != 0x8)
871 return pc;
872
873 /* MOD must be binary 10 and R/M must be binary 100. */
874 if ((buf[2] & 0xc7) != 0x44)
875 return pc;
876
877 /* REG has register number. Registers in pushl and leal have to
878 be the same. */
879 if (reg != ((buf[2] >> 3) & 7))
880 return pc;
881
882 offset = 5;
883 }
884
885 /* Rigister can't be %esp nor %ebp. */
886 if (reg == 4 || reg == 5)
887 return pc;
888
889 /* The next instruction has to be "andl $-XXX, %esp". */
890 if (buf[offset + 1] != 0xe4
891 || (buf[offset] != 0x81 && buf[offset] != 0x83))
892 return pc;
893
894 offset_and = offset;
895 offset += buf[offset] == 0x81 ? 6 : 3;
896
897 /* The next instruction has to be "pushl -4(%reg)". 8bit -4 is
898 0xfc. REG must be binary 110 and MOD must be binary 01. */
899 if (buf[offset] != 0xff
900 || buf[offset + 2] != 0xfc
901 || (buf[offset + 1] & 0xf8) != 0x70)
902 return pc;
903
904 /* R/M has register. Registers in leal and pushl have to be the
905 same. */
906 if (reg != (buf[offset + 1] & 7))
907 return pc;
908
909 if (current_pc > pc + offset_and)
910 cache->saved_sp_reg = regnums[reg];
911
912 return min (pc + offset + 3, current_pc);
913 }
914
915 /* Maximum instruction length we need to handle. */
916 #define I386_MAX_MATCHED_INSN_LEN 6
917
918 /* Instruction description. */
919 struct i386_insn
920 {
921 size_t len;
922 gdb_byte insn[I386_MAX_MATCHED_INSN_LEN];
923 gdb_byte mask[I386_MAX_MATCHED_INSN_LEN];
924 };
925
926 /* Search for the instruction at PC in the list SKIP_INSNS. Return
927 the first instruction description that matches. Otherwise, return
928 NULL. */
929
930 static struct i386_insn *
931 i386_match_insn (CORE_ADDR pc, struct i386_insn *skip_insns)
932 {
933 struct i386_insn *insn;
934 gdb_byte op;
935
936 target_read_memory (pc, &op, 1);
937
938 for (insn = skip_insns; insn->len > 0; insn++)
939 {
940 if ((op & insn->mask[0]) == insn->insn[0])
941 {
942 gdb_byte buf[I386_MAX_MATCHED_INSN_LEN - 1];
943 int insn_matched = 1;
944 size_t i;
945
946 gdb_assert (insn->len > 1);
947 gdb_assert (insn->len <= I386_MAX_MATCHED_INSN_LEN);
948
949 target_read_memory (pc + 1, buf, insn->len - 1);
950 for (i = 1; i < insn->len; i++)
951 {
952 if ((buf[i - 1] & insn->mask[i]) != insn->insn[i])
953 insn_matched = 0;
954 }
955
956 if (insn_matched)
957 return insn;
958 }
959 }
960
961 return NULL;
962 }
963
964 /* Some special instructions that might be migrated by GCC into the
965 part of the prologue that sets up the new stack frame. Because the
966 stack frame hasn't been setup yet, no registers have been saved
967 yet, and only the scratch registers %eax, %ecx and %edx can be
968 touched. */
969
970 struct i386_insn i386_frame_setup_skip_insns[] =
971 {
972 /* Check for `movb imm8, r' and `movl imm32, r'.
973
974 ??? Should we handle 16-bit operand-sizes here? */
975
976 /* `movb imm8, %al' and `movb imm8, %ah' */
977 /* `movb imm8, %cl' and `movb imm8, %ch' */
978 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
979 /* `movb imm8, %dl' and `movb imm8, %dh' */
980 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
981 /* `movl imm32, %eax' and `movl imm32, %ecx' */
982 { 5, { 0xb8 }, { 0xfe } },
983 /* `movl imm32, %edx' */
984 { 5, { 0xba }, { 0xff } },
985
986 /* Check for `mov imm32, r32'. Note that there is an alternative
987 encoding for `mov m32, %eax'.
988
989 ??? Should we handle SIB adressing here?
990 ??? Should we handle 16-bit operand-sizes here? */
991
992 /* `movl m32, %eax' */
993 { 5, { 0xa1 }, { 0xff } },
994 /* `movl m32, %eax' and `mov; m32, %ecx' */
995 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
996 /* `movl m32, %edx' */
997 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
998
999 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
1000 Because of the symmetry, there are actually two ways to encode
1001 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
1002 opcode bytes 0x31 and 0x33 for `xorl'. */
1003
1004 /* `subl %eax, %eax' */
1005 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
1006 /* `subl %ecx, %ecx' */
1007 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
1008 /* `subl %edx, %edx' */
1009 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
1010 /* `xorl %eax, %eax' */
1011 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
1012 /* `xorl %ecx, %ecx' */
1013 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
1014 /* `xorl %edx, %edx' */
1015 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
1016 { 0 }
1017 };
1018
1019
1020 /* Check whether PC points to a no-op instruction. */
1021 static CORE_ADDR
1022 i386_skip_noop (CORE_ADDR pc)
1023 {
1024 gdb_byte op;
1025 int check = 1;
1026
1027 target_read_memory (pc, &op, 1);
1028
1029 while (check)
1030 {
1031 check = 0;
1032 /* Ignore `nop' instruction. */
1033 if (op == 0x90)
1034 {
1035 pc += 1;
1036 target_read_memory (pc, &op, 1);
1037 check = 1;
1038 }
1039 /* Ignore no-op instruction `mov %edi, %edi'.
1040 Microsoft system dlls often start with
1041 a `mov %edi,%edi' instruction.
1042 The 5 bytes before the function start are
1043 filled with `nop' instructions.
1044 This pattern can be used for hot-patching:
1045 The `mov %edi, %edi' instruction can be replaced by a
1046 near jump to the location of the 5 `nop' instructions
1047 which can be replaced by a 32-bit jump to anywhere
1048 in the 32-bit address space. */
1049
1050 else if (op == 0x8b)
1051 {
1052 target_read_memory (pc + 1, &op, 1);
1053 if (op == 0xff)
1054 {
1055 pc += 2;
1056 target_read_memory (pc, &op, 1);
1057 check = 1;
1058 }
1059 }
1060 }
1061 return pc;
1062 }
1063
1064 /* Check whether PC points at a code that sets up a new stack frame.
1065 If so, it updates CACHE and returns the address of the first
1066 instruction after the sequence that sets up the frame or LIMIT,
1067 whichever is smaller. If we don't recognize the code, return PC. */
1068
1069 static CORE_ADDR
1070 i386_analyze_frame_setup (struct gdbarch *gdbarch,
1071 CORE_ADDR pc, CORE_ADDR limit,
1072 struct i386_frame_cache *cache)
1073 {
1074 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1075 struct i386_insn *insn;
1076 gdb_byte op;
1077 int skip = 0;
1078
1079 if (limit <= pc)
1080 return limit;
1081
1082 target_read_memory (pc, &op, 1);
1083
1084 if (op == 0x55) /* pushl %ebp */
1085 {
1086 /* Take into account that we've executed the `pushl %ebp' that
1087 starts this instruction sequence. */
1088 cache->saved_regs[I386_EBP_REGNUM] = 0;
1089 cache->sp_offset += 4;
1090 pc++;
1091
1092 /* If that's all, return now. */
1093 if (limit <= pc)
1094 return limit;
1095
1096 /* Check for some special instructions that might be migrated by
1097 GCC into the prologue and skip them. At this point in the
1098 prologue, code should only touch the scratch registers %eax,
1099 %ecx and %edx, so while the number of posibilities is sheer,
1100 it is limited.
1101
1102 Make sure we only skip these instructions if we later see the
1103 `movl %esp, %ebp' that actually sets up the frame. */
1104 while (pc + skip < limit)
1105 {
1106 insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
1107 if (insn == NULL)
1108 break;
1109
1110 skip += insn->len;
1111 }
1112
1113 /* If that's all, return now. */
1114 if (limit <= pc + skip)
1115 return limit;
1116
1117 target_read_memory (pc + skip, &op, 1);
1118
1119 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
1120 switch (op)
1121 {
1122 case 0x8b:
1123 if (read_memory_unsigned_integer (pc + skip + 1, 1, byte_order)
1124 != 0xec)
1125 return pc;
1126 break;
1127 case 0x89:
1128 if (read_memory_unsigned_integer (pc + skip + 1, 1, byte_order)
1129 != 0xe5)
1130 return pc;
1131 break;
1132 default:
1133 return pc;
1134 }
1135
1136 /* OK, we actually have a frame. We just don't know how large
1137 it is yet. Set its size to zero. We'll adjust it if
1138 necessary. We also now commit to skipping the special
1139 instructions mentioned before. */
1140 cache->locals = 0;
1141 pc += (skip + 2);
1142
1143 /* If that's all, return now. */
1144 if (limit <= pc)
1145 return limit;
1146
1147 /* Check for stack adjustment
1148
1149 subl $XXX, %esp
1150
1151 NOTE: You can't subtract a 16-bit immediate from a 32-bit
1152 reg, so we don't have to worry about a data16 prefix. */
1153 target_read_memory (pc, &op, 1);
1154 if (op == 0x83)
1155 {
1156 /* `subl' with 8-bit immediate. */
1157 if (read_memory_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1158 /* Some instruction starting with 0x83 other than `subl'. */
1159 return pc;
1160
1161 /* `subl' with signed 8-bit immediate (though it wouldn't
1162 make sense to be negative). */
1163 cache->locals = read_memory_integer (pc + 2, 1, byte_order);
1164 return pc + 3;
1165 }
1166 else if (op == 0x81)
1167 {
1168 /* Maybe it is `subl' with a 32-bit immediate. */
1169 if (read_memory_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1170 /* Some instruction starting with 0x81 other than `subl'. */
1171 return pc;
1172
1173 /* It is `subl' with a 32-bit immediate. */
1174 cache->locals = read_memory_integer (pc + 2, 4, byte_order);
1175 return pc + 6;
1176 }
1177 else
1178 {
1179 /* Some instruction other than `subl'. */
1180 return pc;
1181 }
1182 }
1183 else if (op == 0xc8) /* enter */
1184 {
1185 cache->locals = read_memory_unsigned_integer (pc + 1, 2, byte_order);
1186 return pc + 4;
1187 }
1188
1189 return pc;
1190 }
1191
1192 /* Check whether PC points at code that saves registers on the stack.
1193 If so, it updates CACHE and returns the address of the first
1194 instruction after the register saves or CURRENT_PC, whichever is
1195 smaller. Otherwise, return PC. */
1196
1197 static CORE_ADDR
1198 i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
1199 struct i386_frame_cache *cache)
1200 {
1201 CORE_ADDR offset = 0;
1202 gdb_byte op;
1203 int i;
1204
1205 if (cache->locals > 0)
1206 offset -= cache->locals;
1207 for (i = 0; i < 8 && pc < current_pc; i++)
1208 {
1209 target_read_memory (pc, &op, 1);
1210 if (op < 0x50 || op > 0x57)
1211 break;
1212
1213 offset -= 4;
1214 cache->saved_regs[op - 0x50] = offset;
1215 cache->sp_offset += 4;
1216 pc++;
1217 }
1218
1219 return pc;
1220 }
1221
1222 /* Do a full analysis of the prologue at PC and update CACHE
1223 accordingly. Bail out early if CURRENT_PC is reached. Return the
1224 address where the analysis stopped.
1225
1226 We handle these cases:
1227
1228 The startup sequence can be at the start of the function, or the
1229 function can start with a branch to startup code at the end.
1230
1231 %ebp can be set up with either the 'enter' instruction, or "pushl
1232 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
1233 once used in the System V compiler).
1234
1235 Local space is allocated just below the saved %ebp by either the
1236 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
1237 16-bit unsigned argument for space to allocate, and the 'addl'
1238 instruction could have either a signed byte, or 32-bit immediate.
1239
1240 Next, the registers used by this function are pushed. With the
1241 System V compiler they will always be in the order: %edi, %esi,
1242 %ebx (and sometimes a harmless bug causes it to also save but not
1243 restore %eax); however, the code below is willing to see the pushes
1244 in any order, and will handle up to 8 of them.
1245
1246 If the setup sequence is at the end of the function, then the next
1247 instruction will be a branch back to the start. */
1248
1249 static CORE_ADDR
1250 i386_analyze_prologue (struct gdbarch *gdbarch,
1251 CORE_ADDR pc, CORE_ADDR current_pc,
1252 struct i386_frame_cache *cache)
1253 {
1254 pc = i386_skip_noop (pc);
1255 pc = i386_follow_jump (gdbarch, pc);
1256 pc = i386_analyze_struct_return (pc, current_pc, cache);
1257 pc = i386_skip_probe (pc);
1258 pc = i386_analyze_stack_align (pc, current_pc, cache);
1259 pc = i386_analyze_frame_setup (gdbarch, pc, current_pc, cache);
1260 return i386_analyze_register_saves (pc, current_pc, cache);
1261 }
1262
1263 /* Return PC of first real instruction. */
1264
1265 static CORE_ADDR
1266 i386_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
1267 {
1268 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1269
1270 static gdb_byte pic_pat[6] =
1271 {
1272 0xe8, 0, 0, 0, 0, /* call 0x0 */
1273 0x5b, /* popl %ebx */
1274 };
1275 struct i386_frame_cache cache;
1276 CORE_ADDR pc;
1277 gdb_byte op;
1278 int i;
1279
1280 cache.locals = -1;
1281 pc = i386_analyze_prologue (gdbarch, start_pc, 0xffffffff, &cache);
1282 if (cache.locals < 0)
1283 return start_pc;
1284
1285 /* Found valid frame setup. */
1286
1287 /* The native cc on SVR4 in -K PIC mode inserts the following code
1288 to get the address of the global offset table (GOT) into register
1289 %ebx:
1290
1291 call 0x0
1292 popl %ebx
1293 movl %ebx,x(%ebp) (optional)
1294 addl y,%ebx
1295
1296 This code is with the rest of the prologue (at the end of the
1297 function), so we have to skip it to get to the first real
1298 instruction at the start of the function. */
1299
1300 for (i = 0; i < 6; i++)
1301 {
1302 target_read_memory (pc + i, &op, 1);
1303 if (pic_pat[i] != op)
1304 break;
1305 }
1306 if (i == 6)
1307 {
1308 int delta = 6;
1309
1310 target_read_memory (pc + delta, &op, 1);
1311
1312 if (op == 0x89) /* movl %ebx, x(%ebp) */
1313 {
1314 op = read_memory_unsigned_integer (pc + delta + 1, 1, byte_order);
1315
1316 if (op == 0x5d) /* One byte offset from %ebp. */
1317 delta += 3;
1318 else if (op == 0x9d) /* Four byte offset from %ebp. */
1319 delta += 6;
1320 else /* Unexpected instruction. */
1321 delta = 0;
1322
1323 target_read_memory (pc + delta, &op, 1);
1324 }
1325
1326 /* addl y,%ebx */
1327 if (delta > 0 && op == 0x81
1328 && read_memory_unsigned_integer (pc + delta + 1, 1, byte_order)
1329 == 0xc3)
1330 {
1331 pc += delta + 6;
1332 }
1333 }
1334
1335 /* If the function starts with a branch (to startup code at the end)
1336 the last instruction should bring us back to the first
1337 instruction of the real code. */
1338 if (i386_follow_jump (gdbarch, start_pc) != start_pc)
1339 pc = i386_follow_jump (gdbarch, pc);
1340
1341 return pc;
1342 }
1343
1344 /* Check that the code pointed to by PC corresponds to a call to
1345 __main, skip it if so. Return PC otherwise. */
1346
1347 CORE_ADDR
1348 i386_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1349 {
1350 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1351 gdb_byte op;
1352
1353 target_read_memory (pc, &op, 1);
1354 if (op == 0xe8)
1355 {
1356 gdb_byte buf[4];
1357
1358 if (target_read_memory (pc + 1, buf, sizeof buf) == 0)
1359 {
1360 /* Make sure address is computed correctly as a 32bit
1361 integer even if CORE_ADDR is 64 bit wide. */
1362 struct minimal_symbol *s;
1363 CORE_ADDR call_dest;
1364
1365 call_dest = pc + 5 + extract_signed_integer (buf, 4, byte_order);
1366 call_dest = call_dest & 0xffffffffU;
1367 s = lookup_minimal_symbol_by_pc (call_dest);
1368 if (s != NULL
1369 && SYMBOL_LINKAGE_NAME (s) != NULL
1370 && strcmp (SYMBOL_LINKAGE_NAME (s), "__main") == 0)
1371 pc += 5;
1372 }
1373 }
1374
1375 return pc;
1376 }
1377
1378 /* This function is 64-bit safe. */
1379
1380 static CORE_ADDR
1381 i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1382 {
1383 gdb_byte buf[8];
1384
1385 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
1386 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
1387 }
1388 \f
1389
1390 /* Normal frames. */
1391
1392 static struct i386_frame_cache *
1393 i386_frame_cache (struct frame_info *this_frame, void **this_cache)
1394 {
1395 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1396 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1397 struct i386_frame_cache *cache;
1398 gdb_byte buf[4];
1399 int i;
1400
1401 if (*this_cache)
1402 return *this_cache;
1403
1404 cache = i386_alloc_frame_cache ();
1405 *this_cache = cache;
1406
1407 /* In principle, for normal frames, %ebp holds the frame pointer,
1408 which holds the base address for the current stack frame.
1409 However, for functions that don't need it, the frame pointer is
1410 optional. For these "frameless" functions the frame pointer is
1411 actually the frame pointer of the calling frame. Signal
1412 trampolines are just a special case of a "frameless" function.
1413 They (usually) share their frame pointer with the frame that was
1414 in progress when the signal occurred. */
1415
1416 get_frame_register (this_frame, I386_EBP_REGNUM, buf);
1417 cache->base = extract_unsigned_integer (buf, 4, byte_order);
1418 if (cache->base == 0)
1419 return cache;
1420
1421 /* For normal frames, %eip is stored at 4(%ebp). */
1422 cache->saved_regs[I386_EIP_REGNUM] = 4;
1423
1424 cache->pc = get_frame_func (this_frame);
1425 if (cache->pc != 0)
1426 i386_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
1427 cache);
1428
1429 if (cache->saved_sp_reg != -1)
1430 {
1431 /* Saved stack pointer has been saved. */
1432 get_frame_register (this_frame, cache->saved_sp_reg, buf);
1433 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
1434 }
1435
1436 if (cache->locals < 0)
1437 {
1438 /* We didn't find a valid frame, which means that CACHE->base
1439 currently holds the frame pointer for our calling frame. If
1440 we're at the start of a function, or somewhere half-way its
1441 prologue, the function's frame probably hasn't been fully
1442 setup yet. Try to reconstruct the base address for the stack
1443 frame by looking at the stack pointer. For truly "frameless"
1444 functions this might work too. */
1445
1446 if (cache->saved_sp_reg != -1)
1447 {
1448 /* We're halfway aligning the stack. */
1449 cache->base = ((cache->saved_sp - 4) & 0xfffffff0) - 4;
1450 cache->saved_regs[I386_EIP_REGNUM] = cache->saved_sp - 4;
1451
1452 /* This will be added back below. */
1453 cache->saved_regs[I386_EIP_REGNUM] -= cache->base;
1454 }
1455 else if (cache->pc != 0
1456 || target_read_memory (get_frame_pc (this_frame), buf, 1))
1457 {
1458 /* We're in a known function, but did not find a frame
1459 setup. Assume that the function does not use %ebp.
1460 Alternatively, we may have jumped to an invalid
1461 address; in that case there is definitely no new
1462 frame in %ebp. */
1463 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
1464 cache->base = extract_unsigned_integer (buf, 4, byte_order)
1465 + cache->sp_offset;
1466 }
1467 else
1468 /* We're in an unknown function. We could not find the start
1469 of the function to analyze the prologue; our best option is
1470 to assume a typical frame layout with the caller's %ebp
1471 saved. */
1472 cache->saved_regs[I386_EBP_REGNUM] = 0;
1473 }
1474
1475 /* Now that we have the base address for the stack frame we can
1476 calculate the value of %esp in the calling frame. */
1477 if (cache->saved_sp == 0)
1478 cache->saved_sp = cache->base + 8;
1479
1480 /* Adjust all the saved registers such that they contain addresses
1481 instead of offsets. */
1482 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
1483 if (cache->saved_regs[i] != -1)
1484 cache->saved_regs[i] += cache->base;
1485
1486 return cache;
1487 }
1488
1489 static void
1490 i386_frame_this_id (struct frame_info *this_frame, void **this_cache,
1491 struct frame_id *this_id)
1492 {
1493 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
1494
1495 /* This marks the outermost frame. */
1496 if (cache->base == 0)
1497 return;
1498
1499 /* See the end of i386_push_dummy_call. */
1500 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
1501 }
1502
1503 static struct value *
1504 i386_frame_prev_register (struct frame_info *this_frame, void **this_cache,
1505 int regnum)
1506 {
1507 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
1508
1509 gdb_assert (regnum >= 0);
1510
1511 /* The System V ABI says that:
1512
1513 "The flags register contains the system flags, such as the
1514 direction flag and the carry flag. The direction flag must be
1515 set to the forward (that is, zero) direction before entry and
1516 upon exit from a function. Other user flags have no specified
1517 role in the standard calling sequence and are not preserved."
1518
1519 To guarantee the "upon exit" part of that statement we fake a
1520 saved flags register that has its direction flag cleared.
1521
1522 Note that GCC doesn't seem to rely on the fact that the direction
1523 flag is cleared after a function return; it always explicitly
1524 clears the flag before operations where it matters.
1525
1526 FIXME: kettenis/20030316: I'm not quite sure whether this is the
1527 right thing to do. The way we fake the flags register here makes
1528 it impossible to change it. */
1529
1530 if (regnum == I386_EFLAGS_REGNUM)
1531 {
1532 ULONGEST val;
1533
1534 val = get_frame_register_unsigned (this_frame, regnum);
1535 val &= ~(1 << 10);
1536 return frame_unwind_got_constant (this_frame, regnum, val);
1537 }
1538
1539 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
1540 return frame_unwind_got_register (this_frame, regnum, I386_EAX_REGNUM);
1541
1542 if (regnum == I386_ESP_REGNUM && cache->saved_sp)
1543 return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
1544
1545 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
1546 return frame_unwind_got_memory (this_frame, regnum,
1547 cache->saved_regs[regnum]);
1548
1549 return frame_unwind_got_register (this_frame, regnum, regnum);
1550 }
1551
1552 static const struct frame_unwind i386_frame_unwind =
1553 {
1554 NORMAL_FRAME,
1555 i386_frame_this_id,
1556 i386_frame_prev_register,
1557 NULL,
1558 default_frame_sniffer
1559 };
1560
1561 /* Normal frames, but in a function epilogue. */
1562
1563 /* The epilogue is defined here as the 'ret' instruction, which will
1564 follow any instruction such as 'leave' or 'pop %ebp' that destroys
1565 the function's stack frame. */
1566
1567 static int
1568 i386_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
1569 {
1570 gdb_byte insn;
1571
1572 if (target_read_memory (pc, &insn, 1))
1573 return 0; /* Can't read memory at pc. */
1574
1575 if (insn != 0xc3) /* 'ret' instruction. */
1576 return 0;
1577
1578 return 1;
1579 }
1580
1581 static int
1582 i386_epilogue_frame_sniffer (const struct frame_unwind *self,
1583 struct frame_info *this_frame,
1584 void **this_prologue_cache)
1585 {
1586 if (frame_relative_level (this_frame) == 0)
1587 return i386_in_function_epilogue_p (get_frame_arch (this_frame),
1588 get_frame_pc (this_frame));
1589 else
1590 return 0;
1591 }
1592
1593 static struct i386_frame_cache *
1594 i386_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
1595 {
1596 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1597 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1598 struct i386_frame_cache *cache;
1599 gdb_byte buf[4];
1600
1601 if (*this_cache)
1602 return *this_cache;
1603
1604 cache = i386_alloc_frame_cache ();
1605 *this_cache = cache;
1606
1607 /* Cache base will be %esp plus cache->sp_offset (-4). */
1608 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
1609 cache->base = extract_unsigned_integer (buf, 4,
1610 byte_order) + cache->sp_offset;
1611
1612 /* Cache pc will be the frame func. */
1613 cache->pc = get_frame_pc (this_frame);
1614
1615 /* The saved %esp will be at cache->base plus 8. */
1616 cache->saved_sp = cache->base + 8;
1617
1618 /* The saved %eip will be at cache->base plus 4. */
1619 cache->saved_regs[I386_EIP_REGNUM] = cache->base + 4;
1620
1621 return cache;
1622 }
1623
1624 static void
1625 i386_epilogue_frame_this_id (struct frame_info *this_frame,
1626 void **this_cache,
1627 struct frame_id *this_id)
1628 {
1629 struct i386_frame_cache *cache = i386_epilogue_frame_cache (this_frame,
1630 this_cache);
1631
1632 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
1633 }
1634
1635 static const struct frame_unwind i386_epilogue_frame_unwind =
1636 {
1637 NORMAL_FRAME,
1638 i386_epilogue_frame_this_id,
1639 i386_frame_prev_register,
1640 NULL,
1641 i386_epilogue_frame_sniffer
1642 };
1643 \f
1644
1645 /* Signal trampolines. */
1646
1647 static struct i386_frame_cache *
1648 i386_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
1649 {
1650 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1651 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1652 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1653 struct i386_frame_cache *cache;
1654 CORE_ADDR addr;
1655 gdb_byte buf[4];
1656
1657 if (*this_cache)
1658 return *this_cache;
1659
1660 cache = i386_alloc_frame_cache ();
1661
1662 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
1663 cache->base = extract_unsigned_integer (buf, 4, byte_order) - 4;
1664
1665 addr = tdep->sigcontext_addr (this_frame);
1666 if (tdep->sc_reg_offset)
1667 {
1668 int i;
1669
1670 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
1671
1672 for (i = 0; i < tdep->sc_num_regs; i++)
1673 if (tdep->sc_reg_offset[i] != -1)
1674 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
1675 }
1676 else
1677 {
1678 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
1679 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
1680 }
1681
1682 *this_cache = cache;
1683 return cache;
1684 }
1685
1686 static void
1687 i386_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache,
1688 struct frame_id *this_id)
1689 {
1690 struct i386_frame_cache *cache =
1691 i386_sigtramp_frame_cache (this_frame, this_cache);
1692
1693 /* See the end of i386_push_dummy_call. */
1694 (*this_id) = frame_id_build (cache->base + 8, get_frame_pc (this_frame));
1695 }
1696
1697 static struct value *
1698 i386_sigtramp_frame_prev_register (struct frame_info *this_frame,
1699 void **this_cache, int regnum)
1700 {
1701 /* Make sure we've initialized the cache. */
1702 i386_sigtramp_frame_cache (this_frame, this_cache);
1703
1704 return i386_frame_prev_register (this_frame, this_cache, regnum);
1705 }
1706
1707 static int
1708 i386_sigtramp_frame_sniffer (const struct frame_unwind *self,
1709 struct frame_info *this_frame,
1710 void **this_prologue_cache)
1711 {
1712 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
1713
1714 /* We shouldn't even bother if we don't have a sigcontext_addr
1715 handler. */
1716 if (tdep->sigcontext_addr == NULL)
1717 return 0;
1718
1719 if (tdep->sigtramp_p != NULL)
1720 {
1721 if (tdep->sigtramp_p (this_frame))
1722 return 1;
1723 }
1724
1725 if (tdep->sigtramp_start != 0)
1726 {
1727 CORE_ADDR pc = get_frame_pc (this_frame);
1728
1729 gdb_assert (tdep->sigtramp_end != 0);
1730 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
1731 return 1;
1732 }
1733
1734 return 0;
1735 }
1736
1737 static const struct frame_unwind i386_sigtramp_frame_unwind =
1738 {
1739 SIGTRAMP_FRAME,
1740 i386_sigtramp_frame_this_id,
1741 i386_sigtramp_frame_prev_register,
1742 NULL,
1743 i386_sigtramp_frame_sniffer
1744 };
1745 \f
1746
1747 static CORE_ADDR
1748 i386_frame_base_address (struct frame_info *this_frame, void **this_cache)
1749 {
1750 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
1751
1752 return cache->base;
1753 }
1754
1755 static const struct frame_base i386_frame_base =
1756 {
1757 &i386_frame_unwind,
1758 i386_frame_base_address,
1759 i386_frame_base_address,
1760 i386_frame_base_address
1761 };
1762
1763 static struct frame_id
1764 i386_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1765 {
1766 CORE_ADDR fp;
1767
1768 fp = get_frame_register_unsigned (this_frame, I386_EBP_REGNUM);
1769
1770 /* See the end of i386_push_dummy_call. */
1771 return frame_id_build (fp + 8, get_frame_pc (this_frame));
1772 }
1773 \f
1774
1775 /* Figure out where the longjmp will land. Slurp the args out of the
1776 stack. We expect the first arg to be a pointer to the jmp_buf
1777 structure from which we extract the address that we will land at.
1778 This address is copied into PC. This routine returns non-zero on
1779 success. */
1780
1781 static int
1782 i386_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
1783 {
1784 gdb_byte buf[4];
1785 CORE_ADDR sp, jb_addr;
1786 struct gdbarch *gdbarch = get_frame_arch (frame);
1787 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1788 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
1789
1790 /* If JB_PC_OFFSET is -1, we have no way to find out where the
1791 longjmp will land. */
1792 if (jb_pc_offset == -1)
1793 return 0;
1794
1795 get_frame_register (frame, I386_ESP_REGNUM, buf);
1796 sp = extract_unsigned_integer (buf, 4, byte_order);
1797 if (target_read_memory (sp + 4, buf, 4))
1798 return 0;
1799
1800 jb_addr = extract_unsigned_integer (buf, 4, byte_order);
1801 if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
1802 return 0;
1803
1804 *pc = extract_unsigned_integer (buf, 4, byte_order);
1805 return 1;
1806 }
1807 \f
1808
1809 /* Check whether TYPE must be 16-byte-aligned when passed as a
1810 function argument. 16-byte vectors, _Decimal128 and structures or
1811 unions containing such types must be 16-byte-aligned; other
1812 arguments are 4-byte-aligned. */
1813
1814 static int
1815 i386_16_byte_align_p (struct type *type)
1816 {
1817 type = check_typedef (type);
1818 if ((TYPE_CODE (type) == TYPE_CODE_DECFLOAT
1819 || (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type)))
1820 && TYPE_LENGTH (type) == 16)
1821 return 1;
1822 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
1823 return i386_16_byte_align_p (TYPE_TARGET_TYPE (type));
1824 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
1825 || TYPE_CODE (type) == TYPE_CODE_UNION)
1826 {
1827 int i;
1828 for (i = 0; i < TYPE_NFIELDS (type); i++)
1829 {
1830 if (i386_16_byte_align_p (TYPE_FIELD_TYPE (type, i)))
1831 return 1;
1832 }
1833 }
1834 return 0;
1835 }
1836
1837 static CORE_ADDR
1838 i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1839 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
1840 struct value **args, CORE_ADDR sp, int struct_return,
1841 CORE_ADDR struct_addr)
1842 {
1843 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1844 gdb_byte buf[4];
1845 int i;
1846 int write_pass;
1847 int args_space = 0;
1848
1849 /* Determine the total space required for arguments and struct
1850 return address in a first pass (allowing for 16-byte-aligned
1851 arguments), then push arguments in a second pass. */
1852
1853 for (write_pass = 0; write_pass < 2; write_pass++)
1854 {
1855 int args_space_used = 0;
1856 int have_16_byte_aligned_arg = 0;
1857
1858 if (struct_return)
1859 {
1860 if (write_pass)
1861 {
1862 /* Push value address. */
1863 store_unsigned_integer (buf, 4, byte_order, struct_addr);
1864 write_memory (sp, buf, 4);
1865 args_space_used += 4;
1866 }
1867 else
1868 args_space += 4;
1869 }
1870
1871 for (i = 0; i < nargs; i++)
1872 {
1873 int len = TYPE_LENGTH (value_enclosing_type (args[i]));
1874
1875 if (write_pass)
1876 {
1877 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
1878 args_space_used = align_up (args_space_used, 16);
1879
1880 write_memory (sp + args_space_used,
1881 value_contents_all (args[i]), len);
1882 /* The System V ABI says that:
1883
1884 "An argument's size is increased, if necessary, to make it a
1885 multiple of [32-bit] words. This may require tail padding,
1886 depending on the size of the argument."
1887
1888 This makes sure the stack stays word-aligned. */
1889 args_space_used += align_up (len, 4);
1890 }
1891 else
1892 {
1893 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
1894 {
1895 args_space = align_up (args_space, 16);
1896 have_16_byte_aligned_arg = 1;
1897 }
1898 args_space += align_up (len, 4);
1899 }
1900 }
1901
1902 if (!write_pass)
1903 {
1904 if (have_16_byte_aligned_arg)
1905 args_space = align_up (args_space, 16);
1906 sp -= args_space;
1907 }
1908 }
1909
1910 /* Store return address. */
1911 sp -= 4;
1912 store_unsigned_integer (buf, 4, byte_order, bp_addr);
1913 write_memory (sp, buf, 4);
1914
1915 /* Finally, update the stack pointer... */
1916 store_unsigned_integer (buf, 4, byte_order, sp);
1917 regcache_cooked_write (regcache, I386_ESP_REGNUM, buf);
1918
1919 /* ...and fake a frame pointer. */
1920 regcache_cooked_write (regcache, I386_EBP_REGNUM, buf);
1921
1922 /* MarkK wrote: This "+ 8" is all over the place:
1923 (i386_frame_this_id, i386_sigtramp_frame_this_id,
1924 i386_dummy_id). It's there, since all frame unwinders for
1925 a given target have to agree (within a certain margin) on the
1926 definition of the stack address of a frame. Otherwise frame id
1927 comparison might not work correctly. Since DWARF2/GCC uses the
1928 stack address *before* the function call as a frame's CFA. On
1929 the i386, when %ebp is used as a frame pointer, the offset
1930 between the contents %ebp and the CFA as defined by GCC. */
1931 return sp + 8;
1932 }
1933
1934 /* These registers are used for returning integers (and on some
1935 targets also for returning `struct' and `union' values when their
1936 size and alignment match an integer type). */
1937 #define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
1938 #define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
1939
1940 /* Read, for architecture GDBARCH, a function return value of TYPE
1941 from REGCACHE, and copy that into VALBUF. */
1942
1943 static void
1944 i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
1945 struct regcache *regcache, gdb_byte *valbuf)
1946 {
1947 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1948 int len = TYPE_LENGTH (type);
1949 gdb_byte buf[I386_MAX_REGISTER_SIZE];
1950
1951 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1952 {
1953 if (tdep->st0_regnum < 0)
1954 {
1955 warning (_("Cannot find floating-point return value."));
1956 memset (valbuf, 0, len);
1957 return;
1958 }
1959
1960 /* Floating-point return values can be found in %st(0). Convert
1961 its contents to the desired type. This is probably not
1962 exactly how it would happen on the target itself, but it is
1963 the best we can do. */
1964 regcache_raw_read (regcache, I386_ST0_REGNUM, buf);
1965 convert_typed_floating (buf, i387_ext_type (gdbarch), valbuf, type);
1966 }
1967 else
1968 {
1969 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
1970 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
1971
1972 if (len <= low_size)
1973 {
1974 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
1975 memcpy (valbuf, buf, len);
1976 }
1977 else if (len <= (low_size + high_size))
1978 {
1979 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
1980 memcpy (valbuf, buf, low_size);
1981 regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
1982 memcpy (valbuf + low_size, buf, len - low_size);
1983 }
1984 else
1985 internal_error (__FILE__, __LINE__,
1986 _("Cannot extract return value of %d bytes long."), len);
1987 }
1988 }
1989
1990 /* Write, for architecture GDBARCH, a function return value of TYPE
1991 from VALBUF into REGCACHE. */
1992
1993 static void
1994 i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
1995 struct regcache *regcache, const gdb_byte *valbuf)
1996 {
1997 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1998 int len = TYPE_LENGTH (type);
1999
2000 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2001 {
2002 ULONGEST fstat;
2003 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2004
2005 if (tdep->st0_regnum < 0)
2006 {
2007 warning (_("Cannot set floating-point return value."));
2008 return;
2009 }
2010
2011 /* Returning floating-point values is a bit tricky. Apart from
2012 storing the return value in %st(0), we have to simulate the
2013 state of the FPU at function return point. */
2014
2015 /* Convert the value found in VALBUF to the extended
2016 floating-point format used by the FPU. This is probably
2017 not exactly how it would happen on the target itself, but
2018 it is the best we can do. */
2019 convert_typed_floating (valbuf, type, buf, i387_ext_type (gdbarch));
2020 regcache_raw_write (regcache, I386_ST0_REGNUM, buf);
2021
2022 /* Set the top of the floating-point register stack to 7. The
2023 actual value doesn't really matter, but 7 is what a normal
2024 function return would end up with if the program started out
2025 with a freshly initialized FPU. */
2026 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
2027 fstat |= (7 << 11);
2028 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM (tdep), fstat);
2029
2030 /* Mark %st(1) through %st(7) as empty. Since we set the top of
2031 the floating-point register stack to 7, the appropriate value
2032 for the tag word is 0x3fff. */
2033 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM (tdep), 0x3fff);
2034 }
2035 else
2036 {
2037 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2038 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2039
2040 if (len <= low_size)
2041 regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
2042 else if (len <= (low_size + high_size))
2043 {
2044 regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
2045 regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
2046 len - low_size, valbuf + low_size);
2047 }
2048 else
2049 internal_error (__FILE__, __LINE__,
2050 _("Cannot store return value of %d bytes long."), len);
2051 }
2052 }
2053 \f
2054
2055 /* This is the variable that is set with "set struct-convention", and
2056 its legitimate values. */
2057 static const char default_struct_convention[] = "default";
2058 static const char pcc_struct_convention[] = "pcc";
2059 static const char reg_struct_convention[] = "reg";
2060 static const char *valid_conventions[] =
2061 {
2062 default_struct_convention,
2063 pcc_struct_convention,
2064 reg_struct_convention,
2065 NULL
2066 };
2067 static const char *struct_convention = default_struct_convention;
2068
2069 /* Return non-zero if TYPE, which is assumed to be a structure,
2070 a union type, or an array type, should be returned in registers
2071 for architecture GDBARCH. */
2072
2073 static int
2074 i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
2075 {
2076 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2077 enum type_code code = TYPE_CODE (type);
2078 int len = TYPE_LENGTH (type);
2079
2080 gdb_assert (code == TYPE_CODE_STRUCT
2081 || code == TYPE_CODE_UNION
2082 || code == TYPE_CODE_ARRAY);
2083
2084 if (struct_convention == pcc_struct_convention
2085 || (struct_convention == default_struct_convention
2086 && tdep->struct_return == pcc_struct_return))
2087 return 0;
2088
2089 /* Structures consisting of a single `float', `double' or 'long
2090 double' member are returned in %st(0). */
2091 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2092 {
2093 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
2094 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2095 return (len == 4 || len == 8 || len == 12);
2096 }
2097
2098 return (len == 1 || len == 2 || len == 4 || len == 8);
2099 }
2100
2101 /* Determine, for architecture GDBARCH, how a return value of TYPE
2102 should be returned. If it is supposed to be returned in registers,
2103 and READBUF is non-zero, read the appropriate value from REGCACHE,
2104 and copy it into READBUF. If WRITEBUF is non-zero, write the value
2105 from WRITEBUF into REGCACHE. */
2106
2107 static enum return_value_convention
2108 i386_return_value (struct gdbarch *gdbarch, struct type *func_type,
2109 struct type *type, struct regcache *regcache,
2110 gdb_byte *readbuf, const gdb_byte *writebuf)
2111 {
2112 enum type_code code = TYPE_CODE (type);
2113
2114 if (((code == TYPE_CODE_STRUCT
2115 || code == TYPE_CODE_UNION
2116 || code == TYPE_CODE_ARRAY)
2117 && !i386_reg_struct_return_p (gdbarch, type))
2118 /* 128-bit decimal float uses the struct return convention. */
2119 || (code == TYPE_CODE_DECFLOAT && TYPE_LENGTH (type) == 16))
2120 {
2121 /* The System V ABI says that:
2122
2123 "A function that returns a structure or union also sets %eax
2124 to the value of the original address of the caller's area
2125 before it returns. Thus when the caller receives control
2126 again, the address of the returned object resides in register
2127 %eax and can be used to access the object."
2128
2129 So the ABI guarantees that we can always find the return
2130 value just after the function has returned. */
2131
2132 /* Note that the ABI doesn't mention functions returning arrays,
2133 which is something possible in certain languages such as Ada.
2134 In this case, the value is returned as if it was wrapped in
2135 a record, so the convention applied to records also applies
2136 to arrays. */
2137
2138 if (readbuf)
2139 {
2140 ULONGEST addr;
2141
2142 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
2143 read_memory (addr, readbuf, TYPE_LENGTH (type));
2144 }
2145
2146 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
2147 }
2148
2149 /* This special case is for structures consisting of a single
2150 `float', `double' or 'long double' member. These structures are
2151 returned in %st(0). For these structures, we call ourselves
2152 recursively, changing TYPE into the type of the first member of
2153 the structure. Since that should work for all structures that
2154 have only one member, we don't bother to check the member's type
2155 here. */
2156 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2157 {
2158 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
2159 return i386_return_value (gdbarch, func_type, type, regcache,
2160 readbuf, writebuf);
2161 }
2162
2163 if (readbuf)
2164 i386_extract_return_value (gdbarch, type, regcache, readbuf);
2165 if (writebuf)
2166 i386_store_return_value (gdbarch, type, regcache, writebuf);
2167
2168 return RETURN_VALUE_REGISTER_CONVENTION;
2169 }
2170 \f
2171
2172 struct type *
2173 i387_ext_type (struct gdbarch *gdbarch)
2174 {
2175 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2176
2177 if (!tdep->i387_ext_type)
2178 {
2179 tdep->i387_ext_type = tdesc_find_type (gdbarch, "i387_ext");
2180 gdb_assert (tdep->i387_ext_type != NULL);
2181 }
2182
2183 return tdep->i387_ext_type;
2184 }
2185
2186 /* Construct vector type for MMX registers. */
2187 static struct type *
2188 i386_mmx_type (struct gdbarch *gdbarch)
2189 {
2190 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2191
2192 if (!tdep->i386_mmx_type)
2193 {
2194 const struct builtin_type *bt = builtin_type (gdbarch);
2195
2196 /* The type we're building is this: */
2197 #if 0
2198 union __gdb_builtin_type_vec64i
2199 {
2200 int64_t uint64;
2201 int32_t v2_int32[2];
2202 int16_t v4_int16[4];
2203 int8_t v8_int8[8];
2204 };
2205 #endif
2206
2207 struct type *t;
2208
2209 t = arch_composite_type (gdbarch,
2210 "__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
2211
2212 append_composite_type_field (t, "uint64", bt->builtin_int64);
2213 append_composite_type_field (t, "v2_int32",
2214 init_vector_type (bt->builtin_int32, 2));
2215 append_composite_type_field (t, "v4_int16",
2216 init_vector_type (bt->builtin_int16, 4));
2217 append_composite_type_field (t, "v8_int8",
2218 init_vector_type (bt->builtin_int8, 8));
2219
2220 TYPE_VECTOR (t) = 1;
2221 TYPE_NAME (t) = "builtin_type_vec64i";
2222 tdep->i386_mmx_type = t;
2223 }
2224
2225 return tdep->i386_mmx_type;
2226 }
2227
2228 /* Return the GDB type object for the "standard" data type of data in
2229 register REGNUM. */
2230
2231 static struct type *
2232 i386_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
2233 {
2234 if (i386_mmx_regnum_p (gdbarch, regnum))
2235 return i386_mmx_type (gdbarch);
2236 else
2237 {
2238 const struct builtin_type *bt = builtin_type (gdbarch);
2239 if (i386_byte_regnum_p (gdbarch, regnum))
2240 return bt->builtin_int8;
2241 else if (i386_word_regnum_p (gdbarch, regnum))
2242 return bt->builtin_int16;
2243 else if (i386_dword_regnum_p (gdbarch, regnum))
2244 return bt->builtin_int32;
2245 }
2246
2247 internal_error (__FILE__, __LINE__, _("invalid regnum"));
2248 }
2249
2250 /* Map a cooked register onto a raw register or memory. For the i386,
2251 the MMX registers need to be mapped onto floating point registers. */
2252
2253 static int
2254 i386_mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
2255 {
2256 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
2257 int mmxreg, fpreg;
2258 ULONGEST fstat;
2259 int tos;
2260
2261 mmxreg = regnum - tdep->mm0_regnum;
2262 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
2263 tos = (fstat >> 11) & 0x7;
2264 fpreg = (mmxreg + tos) % 8;
2265
2266 return (I387_ST0_REGNUM (tdep) + fpreg);
2267 }
2268
2269 void
2270 i386_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2271 int regnum, gdb_byte *buf)
2272 {
2273 gdb_byte raw_buf[MAX_REGISTER_SIZE];
2274
2275 if (i386_mmx_regnum_p (gdbarch, regnum))
2276 {
2277 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
2278
2279 /* Extract (always little endian). */
2280 regcache_raw_read (regcache, fpnum, raw_buf);
2281 memcpy (buf, raw_buf, register_size (gdbarch, regnum));
2282 }
2283 else
2284 {
2285 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2286
2287 if (i386_word_regnum_p (gdbarch, regnum))
2288 {
2289 int gpnum = regnum - tdep->ax_regnum;
2290
2291 /* Extract (always little endian). */
2292 regcache_raw_read (regcache, gpnum, raw_buf);
2293 memcpy (buf, raw_buf, 2);
2294 }
2295 else if (i386_byte_regnum_p (gdbarch, regnum))
2296 {
2297 /* Check byte pseudo registers last since this function will
2298 be called from amd64_pseudo_register_read, which handles
2299 byte pseudo registers differently. */
2300 int gpnum = regnum - tdep->al_regnum;
2301
2302 /* Extract (always little endian). We read both lower and
2303 upper registers. */
2304 regcache_raw_read (regcache, gpnum % 4, raw_buf);
2305 if (gpnum >= 4)
2306 memcpy (buf, raw_buf + 1, 1);
2307 else
2308 memcpy (buf, raw_buf, 1);
2309 }
2310 else
2311 internal_error (__FILE__, __LINE__, _("invalid regnum"));
2312 }
2313 }
2314
2315 void
2316 i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2317 int regnum, const gdb_byte *buf)
2318 {
2319 gdb_byte raw_buf[MAX_REGISTER_SIZE];
2320
2321 if (i386_mmx_regnum_p (gdbarch, regnum))
2322 {
2323 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
2324
2325 /* Read ... */
2326 regcache_raw_read (regcache, fpnum, raw_buf);
2327 /* ... Modify ... (always little endian). */
2328 memcpy (raw_buf, buf, register_size (gdbarch, regnum));
2329 /* ... Write. */
2330 regcache_raw_write (regcache, fpnum, raw_buf);
2331 }
2332 else
2333 {
2334 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2335
2336 if (i386_word_regnum_p (gdbarch, regnum))
2337 {
2338 int gpnum = regnum - tdep->ax_regnum;
2339
2340 /* Read ... */
2341 regcache_raw_read (regcache, gpnum, raw_buf);
2342 /* ... Modify ... (always little endian). */
2343 memcpy (raw_buf, buf, 2);
2344 /* ... Write. */
2345 regcache_raw_write (regcache, gpnum, raw_buf);
2346 }
2347 else if (i386_byte_regnum_p (gdbarch, regnum))
2348 {
2349 /* Check byte pseudo registers last since this function will
2350 be called from amd64_pseudo_register_read, which handles
2351 byte pseudo registers differently. */
2352 int gpnum = regnum - tdep->al_regnum;
2353
2354 /* Read ... We read both lower and upper registers. */
2355 regcache_raw_read (regcache, gpnum % 4, raw_buf);
2356 /* ... Modify ... (always little endian). */
2357 if (gpnum >= 4)
2358 memcpy (raw_buf + 1, buf, 1);
2359 else
2360 memcpy (raw_buf, buf, 1);
2361 /* ... Write. */
2362 regcache_raw_write (regcache, gpnum % 4, raw_buf);
2363 }
2364 else
2365 internal_error (__FILE__, __LINE__, _("invalid regnum"));
2366 }
2367 }
2368 \f
2369
2370 /* Return the register number of the register allocated by GCC after
2371 REGNUM, or -1 if there is no such register. */
2372
2373 static int
2374 i386_next_regnum (int regnum)
2375 {
2376 /* GCC allocates the registers in the order:
2377
2378 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
2379
2380 Since storing a variable in %esp doesn't make any sense we return
2381 -1 for %ebp and for %esp itself. */
2382 static int next_regnum[] =
2383 {
2384 I386_EDX_REGNUM, /* Slot for %eax. */
2385 I386_EBX_REGNUM, /* Slot for %ecx. */
2386 I386_ECX_REGNUM, /* Slot for %edx. */
2387 I386_ESI_REGNUM, /* Slot for %ebx. */
2388 -1, -1, /* Slots for %esp and %ebp. */
2389 I386_EDI_REGNUM, /* Slot for %esi. */
2390 I386_EBP_REGNUM /* Slot for %edi. */
2391 };
2392
2393 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
2394 return next_regnum[regnum];
2395
2396 return -1;
2397 }
2398
2399 /* Return nonzero if a value of type TYPE stored in register REGNUM
2400 needs any special handling. */
2401
2402 static int
2403 i386_convert_register_p (struct gdbarch *gdbarch, int regnum, struct type *type)
2404 {
2405 int len = TYPE_LENGTH (type);
2406
2407 /* Values may be spread across multiple registers. Most debugging
2408 formats aren't expressive enough to specify the locations, so
2409 some heuristics is involved. Right now we only handle types that
2410 have a length that is a multiple of the word size, since GCC
2411 doesn't seem to put any other types into registers. */
2412 if (len > 4 && len % 4 == 0)
2413 {
2414 int last_regnum = regnum;
2415
2416 while (len > 4)
2417 {
2418 last_regnum = i386_next_regnum (last_regnum);
2419 len -= 4;
2420 }
2421
2422 if (last_regnum != -1)
2423 return 1;
2424 }
2425
2426 return i387_convert_register_p (gdbarch, regnum, type);
2427 }
2428
2429 /* Read a value of type TYPE from register REGNUM in frame FRAME, and
2430 return its contents in TO. */
2431
2432 static void
2433 i386_register_to_value (struct frame_info *frame, int regnum,
2434 struct type *type, gdb_byte *to)
2435 {
2436 struct gdbarch *gdbarch = get_frame_arch (frame);
2437 int len = TYPE_LENGTH (type);
2438
2439 /* FIXME: kettenis/20030609: What should we do if REGNUM isn't
2440 available in FRAME (i.e. if it wasn't saved)? */
2441
2442 if (i386_fp_regnum_p (gdbarch, regnum))
2443 {
2444 i387_register_to_value (frame, regnum, type, to);
2445 return;
2446 }
2447
2448 /* Read a value spread across multiple registers. */
2449
2450 gdb_assert (len > 4 && len % 4 == 0);
2451
2452 while (len > 0)
2453 {
2454 gdb_assert (regnum != -1);
2455 gdb_assert (register_size (gdbarch, regnum) == 4);
2456
2457 get_frame_register (frame, regnum, to);
2458 regnum = i386_next_regnum (regnum);
2459 len -= 4;
2460 to += 4;
2461 }
2462 }
2463
2464 /* Write the contents FROM of a value of type TYPE into register
2465 REGNUM in frame FRAME. */
2466
2467 static void
2468 i386_value_to_register (struct frame_info *frame, int regnum,
2469 struct type *type, const gdb_byte *from)
2470 {
2471 int len = TYPE_LENGTH (type);
2472
2473 if (i386_fp_regnum_p (get_frame_arch (frame), regnum))
2474 {
2475 i387_value_to_register (frame, regnum, type, from);
2476 return;
2477 }
2478
2479 /* Write a value spread across multiple registers. */
2480
2481 gdb_assert (len > 4 && len % 4 == 0);
2482
2483 while (len > 0)
2484 {
2485 gdb_assert (regnum != -1);
2486 gdb_assert (register_size (get_frame_arch (frame), regnum) == 4);
2487
2488 put_frame_register (frame, regnum, from);
2489 regnum = i386_next_regnum (regnum);
2490 len -= 4;
2491 from += 4;
2492 }
2493 }
2494 \f
2495 /* Supply register REGNUM from the buffer specified by GREGS and LEN
2496 in the general-purpose register set REGSET to register cache
2497 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
2498
2499 void
2500 i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
2501 int regnum, const void *gregs, size_t len)
2502 {
2503 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
2504 const gdb_byte *regs = gregs;
2505 int i;
2506
2507 gdb_assert (len == tdep->sizeof_gregset);
2508
2509 for (i = 0; i < tdep->gregset_num_regs; i++)
2510 {
2511 if ((regnum == i || regnum == -1)
2512 && tdep->gregset_reg_offset[i] != -1)
2513 regcache_raw_supply (regcache, i, regs + tdep->gregset_reg_offset[i]);
2514 }
2515 }
2516
2517 /* Collect register REGNUM from the register cache REGCACHE and store
2518 it in the buffer specified by GREGS and LEN as described by the
2519 general-purpose register set REGSET. If REGNUM is -1, do this for
2520 all registers in REGSET. */
2521
2522 void
2523 i386_collect_gregset (const struct regset *regset,
2524 const struct regcache *regcache,
2525 int regnum, void *gregs, size_t len)
2526 {
2527 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
2528 gdb_byte *regs = gregs;
2529 int i;
2530
2531 gdb_assert (len == tdep->sizeof_gregset);
2532
2533 for (i = 0; i < tdep->gregset_num_regs; i++)
2534 {
2535 if ((regnum == i || regnum == -1)
2536 && tdep->gregset_reg_offset[i] != -1)
2537 regcache_raw_collect (regcache, i, regs + tdep->gregset_reg_offset[i]);
2538 }
2539 }
2540
2541 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
2542 in the floating-point register set REGSET to register cache
2543 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
2544
2545 static void
2546 i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
2547 int regnum, const void *fpregs, size_t len)
2548 {
2549 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
2550
2551 if (len == I387_SIZEOF_FXSAVE)
2552 {
2553 i387_supply_fxsave (regcache, regnum, fpregs);
2554 return;
2555 }
2556
2557 gdb_assert (len == tdep->sizeof_fpregset);
2558 i387_supply_fsave (regcache, regnum, fpregs);
2559 }
2560
2561 /* Collect register REGNUM from the register cache REGCACHE and store
2562 it in the buffer specified by FPREGS and LEN as described by the
2563 floating-point register set REGSET. If REGNUM is -1, do this for
2564 all registers in REGSET. */
2565
2566 static void
2567 i386_collect_fpregset (const struct regset *regset,
2568 const struct regcache *regcache,
2569 int regnum, void *fpregs, size_t len)
2570 {
2571 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
2572
2573 if (len == I387_SIZEOF_FXSAVE)
2574 {
2575 i387_collect_fxsave (regcache, regnum, fpregs);
2576 return;
2577 }
2578
2579 gdb_assert (len == tdep->sizeof_fpregset);
2580 i387_collect_fsave (regcache, regnum, fpregs);
2581 }
2582
2583 /* Return the appropriate register set for the core section identified
2584 by SECT_NAME and SECT_SIZE. */
2585
2586 const struct regset *
2587 i386_regset_from_core_section (struct gdbarch *gdbarch,
2588 const char *sect_name, size_t sect_size)
2589 {
2590 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2591
2592 if (strcmp (sect_name, ".reg") == 0 && sect_size == tdep->sizeof_gregset)
2593 {
2594 if (tdep->gregset == NULL)
2595 tdep->gregset = regset_alloc (gdbarch, i386_supply_gregset,
2596 i386_collect_gregset);
2597 return tdep->gregset;
2598 }
2599
2600 if ((strcmp (sect_name, ".reg2") == 0 && sect_size == tdep->sizeof_fpregset)
2601 || (strcmp (sect_name, ".reg-xfp") == 0
2602 && sect_size == I387_SIZEOF_FXSAVE))
2603 {
2604 if (tdep->fpregset == NULL)
2605 tdep->fpregset = regset_alloc (gdbarch, i386_supply_fpregset,
2606 i386_collect_fpregset);
2607 return tdep->fpregset;
2608 }
2609
2610 return NULL;
2611 }
2612 \f
2613
2614 /* Stuff for WIN32 PE style DLL's but is pretty generic really. */
2615
2616 CORE_ADDR
2617 i386_pe_skip_trampoline_code (struct frame_info *frame,
2618 CORE_ADDR pc, char *name)
2619 {
2620 struct gdbarch *gdbarch = get_frame_arch (frame);
2621 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2622
2623 /* jmp *(dest) */
2624 if (pc && read_memory_unsigned_integer (pc, 2, byte_order) == 0x25ff)
2625 {
2626 unsigned long indirect =
2627 read_memory_unsigned_integer (pc + 2, 4, byte_order);
2628 struct minimal_symbol *indsym =
2629 indirect ? lookup_minimal_symbol_by_pc (indirect) : 0;
2630 char *symname = indsym ? SYMBOL_LINKAGE_NAME (indsym) : 0;
2631
2632 if (symname)
2633 {
2634 if (strncmp (symname, "__imp_", 6) == 0
2635 || strncmp (symname, "_imp_", 5) == 0)
2636 return name ? 1 :
2637 read_memory_unsigned_integer (indirect, 4, byte_order);
2638 }
2639 }
2640 return 0; /* Not a trampoline. */
2641 }
2642 \f
2643
2644 /* Return whether the THIS_FRAME corresponds to a sigtramp
2645 routine. */
2646
2647 int
2648 i386_sigtramp_p (struct frame_info *this_frame)
2649 {
2650 CORE_ADDR pc = get_frame_pc (this_frame);
2651 char *name;
2652
2653 find_pc_partial_function (pc, &name, NULL, NULL);
2654 return (name && strcmp ("_sigtramp", name) == 0);
2655 }
2656 \f
2657
2658 /* We have two flavours of disassembly. The machinery on this page
2659 deals with switching between those. */
2660
2661 static int
2662 i386_print_insn (bfd_vma pc, struct disassemble_info *info)
2663 {
2664 gdb_assert (disassembly_flavor == att_flavor
2665 || disassembly_flavor == intel_flavor);
2666
2667 /* FIXME: kettenis/20020915: Until disassembler_options is properly
2668 constified, cast to prevent a compiler warning. */
2669 info->disassembler_options = (char *) disassembly_flavor;
2670
2671 return print_insn_i386 (pc, info);
2672 }
2673 \f
2674
2675 /* There are a few i386 architecture variants that differ only
2676 slightly from the generic i386 target. For now, we don't give them
2677 their own source file, but include them here. As a consequence,
2678 they'll always be included. */
2679
2680 /* System V Release 4 (SVR4). */
2681
2682 /* Return whether THIS_FRAME corresponds to a SVR4 sigtramp
2683 routine. */
2684
2685 static int
2686 i386_svr4_sigtramp_p (struct frame_info *this_frame)
2687 {
2688 CORE_ADDR pc = get_frame_pc (this_frame);
2689 char *name;
2690
2691 /* UnixWare uses _sigacthandler. The origin of the other symbols is
2692 currently unknown. */
2693 find_pc_partial_function (pc, &name, NULL, NULL);
2694 return (name && (strcmp ("_sigreturn", name) == 0
2695 || strcmp ("_sigacthandler", name) == 0
2696 || strcmp ("sigvechandler", name) == 0));
2697 }
2698
2699 /* Assuming THIS_FRAME is for a SVR4 sigtramp routine, return the
2700 address of the associated sigcontext (ucontext) structure. */
2701
2702 static CORE_ADDR
2703 i386_svr4_sigcontext_addr (struct frame_info *this_frame)
2704 {
2705 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2706 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2707 gdb_byte buf[4];
2708 CORE_ADDR sp;
2709
2710 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2711 sp = extract_unsigned_integer (buf, 4, byte_order);
2712
2713 return read_memory_unsigned_integer (sp + 8, 4, byte_order);
2714 }
2715 \f
2716
2717 /* Generic ELF. */
2718
2719 void
2720 i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2721 {
2722 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
2723 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
2724 }
2725
2726 /* System V Release 4 (SVR4). */
2727
2728 void
2729 i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2730 {
2731 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2732
2733 /* System V Release 4 uses ELF. */
2734 i386_elf_init_abi (info, gdbarch);
2735
2736 /* System V Release 4 has shared libraries. */
2737 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
2738
2739 tdep->sigtramp_p = i386_svr4_sigtramp_p;
2740 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
2741 tdep->sc_pc_offset = 36 + 14 * 4;
2742 tdep->sc_sp_offset = 36 + 17 * 4;
2743
2744 tdep->jb_pc_offset = 20;
2745 }
2746
2747 /* DJGPP. */
2748
2749 static void
2750 i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2751 {
2752 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2753
2754 /* DJGPP doesn't have any special frames for signal handlers. */
2755 tdep->sigtramp_p = NULL;
2756
2757 tdep->jb_pc_offset = 36;
2758
2759 /* DJGPP does not support the SSE registers. */
2760 tdep->num_xmm_regs = 0;
2761 set_gdbarch_num_regs (gdbarch, I386_NUM_GREGS + I387_NUM_REGS);
2762
2763 /* Native compiler is GCC, which uses the SVR4 register numbering
2764 even in COFF and STABS. See the comment in i386_gdbarch_init,
2765 before the calls to set_gdbarch_stab_reg_to_regnum and
2766 set_gdbarch_sdb_reg_to_regnum. */
2767 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
2768 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
2769 }
2770 \f
2771
2772 /* i386 register groups. In addition to the normal groups, add "mmx"
2773 and "sse". */
2774
2775 static struct reggroup *i386_sse_reggroup;
2776 static struct reggroup *i386_mmx_reggroup;
2777
2778 static void
2779 i386_init_reggroups (void)
2780 {
2781 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
2782 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
2783 }
2784
2785 static void
2786 i386_add_reggroups (struct gdbarch *gdbarch)
2787 {
2788 reggroup_add (gdbarch, i386_sse_reggroup);
2789 reggroup_add (gdbarch, i386_mmx_reggroup);
2790 reggroup_add (gdbarch, general_reggroup);
2791 reggroup_add (gdbarch, float_reggroup);
2792 reggroup_add (gdbarch, all_reggroup);
2793 reggroup_add (gdbarch, save_reggroup);
2794 reggroup_add (gdbarch, restore_reggroup);
2795 reggroup_add (gdbarch, vector_reggroup);
2796 reggroup_add (gdbarch, system_reggroup);
2797 }
2798
2799 int
2800 i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
2801 struct reggroup *group)
2802 {
2803 int sse_regnum_p, fp_regnum_p, mmx_regnum_p, byte_regnum_p,
2804 word_regnum_p, dword_regnum_p;
2805
2806 /* Don't include pseudo registers, except for MMX, in any register
2807 groups. */
2808 byte_regnum_p = i386_byte_regnum_p (gdbarch, regnum);
2809 if (byte_regnum_p)
2810 return 0;
2811
2812 word_regnum_p = i386_word_regnum_p (gdbarch, regnum);
2813 if (word_regnum_p)
2814 return 0;
2815
2816 dword_regnum_p = i386_dword_regnum_p (gdbarch, regnum);
2817 if (dword_regnum_p)
2818 return 0;
2819
2820 mmx_regnum_p = i386_mmx_regnum_p (gdbarch, regnum);
2821 if (group == i386_mmx_reggroup)
2822 return mmx_regnum_p;
2823
2824 sse_regnum_p = (i386_sse_regnum_p (gdbarch, regnum)
2825 || i386_mxcsr_regnum_p (gdbarch, regnum));
2826 if (group == i386_sse_reggroup)
2827 return sse_regnum_p;
2828 if (group == vector_reggroup)
2829 return mmx_regnum_p || sse_regnum_p;
2830
2831 fp_regnum_p = (i386_fp_regnum_p (gdbarch, regnum)
2832 || i386_fpc_regnum_p (gdbarch, regnum));
2833 if (group == float_reggroup)
2834 return fp_regnum_p;
2835
2836 if (group == general_reggroup)
2837 return (!fp_regnum_p
2838 && !mmx_regnum_p
2839 && !sse_regnum_p
2840 && !byte_regnum_p
2841 && !word_regnum_p
2842 && !dword_regnum_p);
2843
2844 return default_register_reggroup_p (gdbarch, regnum, group);
2845 }
2846 \f
2847
2848 /* Get the ARGIth function argument for the current function. */
2849
2850 static CORE_ADDR
2851 i386_fetch_pointer_argument (struct frame_info *frame, int argi,
2852 struct type *type)
2853 {
2854 struct gdbarch *gdbarch = get_frame_arch (frame);
2855 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2856 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
2857 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4, byte_order);
2858 }
2859
2860 static void
2861 i386_skip_permanent_breakpoint (struct regcache *regcache)
2862 {
2863 CORE_ADDR current_pc = regcache_read_pc (regcache);
2864
2865 /* On i386, breakpoint is exactly 1 byte long, so we just
2866 adjust the PC in the regcache. */
2867 current_pc += 1;
2868 regcache_write_pc (regcache, current_pc);
2869 }
2870
2871
2872 #define PREFIX_REPZ 0x01
2873 #define PREFIX_REPNZ 0x02
2874 #define PREFIX_LOCK 0x04
2875 #define PREFIX_DATA 0x08
2876 #define PREFIX_ADDR 0x10
2877
2878 /* operand size */
2879 enum
2880 {
2881 OT_BYTE = 0,
2882 OT_WORD,
2883 OT_LONG,
2884 OT_QUAD,
2885 };
2886
2887 /* i386 arith/logic operations */
2888 enum
2889 {
2890 OP_ADDL,
2891 OP_ORL,
2892 OP_ADCL,
2893 OP_SBBL,
2894 OP_ANDL,
2895 OP_SUBL,
2896 OP_XORL,
2897 OP_CMPL,
2898 };
2899
2900 struct i386_record_s
2901 {
2902 struct gdbarch *gdbarch;
2903 struct regcache *regcache;
2904 CORE_ADDR orig_addr;
2905 CORE_ADDR addr;
2906 int aflag;
2907 int dflag;
2908 int override;
2909 uint8_t modrm;
2910 uint8_t mod, reg, rm;
2911 int ot;
2912 uint8_t rex_x;
2913 uint8_t rex_b;
2914 int rip_offset;
2915 int popl_esp_hack;
2916 const int *regmap;
2917 };
2918
2919 /* Parse "modrm" part in current memory address that irp->addr point to
2920 Return -1 if something wrong. */
2921
2922 static int
2923 i386_record_modrm (struct i386_record_s *irp)
2924 {
2925 struct gdbarch *gdbarch = irp->gdbarch;
2926
2927 if (target_read_memory (irp->addr, &irp->modrm, 1))
2928 {
2929 if (record_debug)
2930 printf_unfiltered (_("Process record: error reading memory at "
2931 "addr %s len = 1.\n"),
2932 paddress (gdbarch, irp->addr));
2933 return -1;
2934 }
2935 irp->addr++;
2936 irp->mod = (irp->modrm >> 6) & 3;
2937 irp->reg = (irp->modrm >> 3) & 7;
2938 irp->rm = irp->modrm & 7;
2939
2940 return 0;
2941 }
2942
2943 /* Get the memory address that current instruction write to and set it to
2944 the argument "addr".
2945 Return -1 if something wrong. */
2946
2947 static int
2948 i386_record_lea_modrm_addr (struct i386_record_s *irp, uint64_t *addr)
2949 {
2950 struct gdbarch *gdbarch = irp->gdbarch;
2951 uint8_t tmpu8;
2952 int16_t tmpi16;
2953 int32_t tmpi32;
2954 ULONGEST tmpulongest;
2955
2956 *addr = 0;
2957 if (irp->aflag)
2958 {
2959 /* 32 bits */
2960 int havesib = 0;
2961 uint8_t scale = 0;
2962 uint8_t index = 0;
2963 uint8_t base = irp->rm;
2964
2965 if (base == 4)
2966 {
2967 havesib = 1;
2968 if (target_read_memory (irp->addr, &tmpu8, 1))
2969 {
2970 if (record_debug)
2971 printf_unfiltered (_("Process record: error reading memory "
2972 "at addr %s len = 1.\n"),
2973 paddress (gdbarch, irp->addr));
2974 return -1;
2975 }
2976 irp->addr++;
2977 scale = (tmpu8 >> 6) & 3;
2978 index = ((tmpu8 >> 3) & 7) | irp->rex_x;
2979 base = (tmpu8 & 7);
2980 }
2981 base |= irp->rex_b;
2982
2983 switch (irp->mod)
2984 {
2985 case 0:
2986 if ((base & 7) == 5)
2987 {
2988 base = 0xff;
2989 if (target_read_memory (irp->addr, (gdb_byte *) &tmpi32, 4))
2990 {
2991 if (record_debug)
2992 printf_unfiltered (_("Process record: error reading "
2993 "memory at addr %s len = 4.\n"),
2994 paddress (gdbarch, irp->addr));
2995 return -1;
2996 }
2997 irp->addr += 4;
2998 *addr = tmpi32;
2999 if (irp->regmap[X86_RECORD_R8_REGNUM] && !havesib)
3000 *addr += irp->addr + irp->rip_offset;
3001 }
3002 else
3003 {
3004 *addr = 0;
3005 }
3006 break;
3007 case 1:
3008 if (target_read_memory (irp->addr, &tmpu8, 1))
3009 {
3010 if (record_debug)
3011 printf_unfiltered (_("Process record: error reading memory "
3012 "at addr %s len = 1.\n"),
3013 paddress (gdbarch, irp->addr));
3014 return -1;
3015 }
3016 irp->addr++;
3017 *addr = (int8_t) tmpu8;
3018 break;
3019 case 2:
3020 if (target_read_memory (irp->addr, (gdb_byte *) &tmpi32, 4))
3021 {
3022 if (record_debug)
3023 printf_unfiltered (_("Process record: error reading memory "
3024 "at addr %s len = 4.\n"),
3025 paddress (gdbarch, irp->addr));
3026 return -1;
3027 }
3028 *addr = tmpi32;
3029 irp->addr += 4;
3030 break;
3031 }
3032
3033 tmpulongest = 0;
3034 if (base != 0xff)
3035 {
3036 if (base == 4 && irp->popl_esp_hack)
3037 *addr += irp->popl_esp_hack;
3038 regcache_raw_read_unsigned (irp->regcache, irp->regmap[base],
3039 &tmpulongest);
3040 }
3041 if (irp->aflag == 2)
3042 {
3043 *addr += tmpulongest;
3044 }
3045 else
3046 *addr = (uint32_t) (tmpulongest + *addr);
3047
3048 if (havesib && (index != 4 || scale != 0))
3049 {
3050 regcache_raw_read_unsigned (irp->regcache, irp->regmap[index],
3051 &tmpulongest);
3052 if (irp->aflag == 2)
3053 *addr += tmpulongest << scale;
3054 else
3055 *addr = (uint32_t) (*addr + (tmpulongest << scale));
3056 }
3057 }
3058 else
3059 {
3060 /* 16 bits */
3061 switch (irp->mod)
3062 {
3063 case 0:
3064 if (irp->rm == 6)
3065 {
3066 if (target_read_memory
3067 (irp->addr, (gdb_byte *) &tmpi16, 2))
3068 {
3069 if (record_debug)
3070 printf_unfiltered (_("Process record: error reading "
3071 "memory at addr %s len = 2.\n"),
3072 paddress (gdbarch, irp->addr));
3073 return -1;
3074 }
3075 irp->addr += 2;
3076 *addr = tmpi16;
3077 irp->rm = 0;
3078 goto no_rm;
3079 }
3080 else
3081 {
3082 *addr = 0;
3083 }
3084 break;
3085 case 1:
3086 if (target_read_memory (irp->addr, &tmpu8, 1))
3087 {
3088 if (record_debug)
3089 printf_unfiltered (_("Process record: error reading memory "
3090 "at addr %s len = 1.\n"),
3091 paddress (gdbarch, irp->addr));
3092 return -1;
3093 }
3094 irp->addr++;
3095 *addr = (int8_t) tmpu8;
3096 break;
3097 case 2:
3098 if (target_read_memory (irp->addr, (gdb_byte *) &tmpi16, 2))
3099 {
3100 if (record_debug)
3101 printf_unfiltered (_("Process record: error reading memory "
3102 "at addr %s len = 2.\n"),
3103 paddress (gdbarch, irp->addr));
3104 return -1;
3105 }
3106 irp->addr += 2;
3107 *addr = tmpi16;
3108 break;
3109 }
3110
3111 switch (irp->rm)
3112 {
3113 case 0:
3114 regcache_raw_read_unsigned (irp->regcache,
3115 irp->regmap[X86_RECORD_REBX_REGNUM],
3116 &tmpulongest);
3117 *addr = (uint32_t) (*addr + tmpulongest);
3118 regcache_raw_read_unsigned (irp->regcache,
3119 irp->regmap[X86_RECORD_RESI_REGNUM],
3120 &tmpulongest);
3121 *addr = (uint32_t) (*addr + tmpulongest);
3122 break;
3123 case 1:
3124 regcache_raw_read_unsigned (irp->regcache,
3125 irp->regmap[X86_RECORD_REBX_REGNUM],
3126 &tmpulongest);
3127 *addr = (uint32_t) (*addr + tmpulongest);
3128 regcache_raw_read_unsigned (irp->regcache,
3129 irp->regmap[X86_RECORD_REDI_REGNUM],
3130 &tmpulongest);
3131 *addr = (uint32_t) (*addr + tmpulongest);
3132 break;
3133 case 2:
3134 regcache_raw_read_unsigned (irp->regcache,
3135 irp->regmap[X86_RECORD_REBP_REGNUM],
3136 &tmpulongest);
3137 *addr = (uint32_t) (*addr + tmpulongest);
3138 regcache_raw_read_unsigned (irp->regcache,
3139 irp->regmap[X86_RECORD_RESI_REGNUM],
3140 &tmpulongest);
3141 *addr = (uint32_t) (*addr + tmpulongest);
3142 break;
3143 case 3:
3144 regcache_raw_read_unsigned (irp->regcache,
3145 irp->regmap[X86_RECORD_REBP_REGNUM],
3146 &tmpulongest);
3147 *addr = (uint32_t) (*addr + tmpulongest);
3148 regcache_raw_read_unsigned (irp->regcache,
3149 irp->regmap[X86_RECORD_REDI_REGNUM],
3150 &tmpulongest);
3151 *addr = (uint32_t) (*addr + tmpulongest);
3152 break;
3153 case 4:
3154 regcache_raw_read_unsigned (irp->regcache,
3155 irp->regmap[X86_RECORD_RESI_REGNUM],
3156 &tmpulongest);
3157 *addr = (uint32_t) (*addr + tmpulongest);
3158 break;
3159 case 5:
3160 regcache_raw_read_unsigned (irp->regcache,
3161 irp->regmap[X86_RECORD_REDI_REGNUM],
3162 &tmpulongest);
3163 *addr = (uint32_t) (*addr + tmpulongest);
3164 break;
3165 case 6:
3166 regcache_raw_read_unsigned (irp->regcache,
3167 irp->regmap[X86_RECORD_REBP_REGNUM],
3168 &tmpulongest);
3169 *addr = (uint32_t) (*addr + tmpulongest);
3170 break;
3171 case 7:
3172 regcache_raw_read_unsigned (irp->regcache,
3173 irp->regmap[X86_RECORD_REBX_REGNUM],
3174 &tmpulongest);
3175 *addr = (uint32_t) (*addr + tmpulongest);
3176 break;
3177 }
3178 *addr &= 0xffff;
3179 }
3180
3181 no_rm:
3182 return 0;
3183 }
3184
3185 /* Record the value of the memory that willbe changed in current instruction
3186 to "record_arch_list".
3187 Return -1 if something wrong. */
3188
3189 static int
3190 i386_record_lea_modrm (struct i386_record_s *irp)
3191 {
3192 struct gdbarch *gdbarch = irp->gdbarch;
3193 uint64_t addr;
3194
3195 if (irp->override >= 0)
3196 {
3197 warning (_("Process record ignores the memory change "
3198 "of instruction at address %s because it "
3199 "can't get the value of the segment register."),
3200 paddress (gdbarch, irp->orig_addr));
3201 return 0;
3202 }
3203
3204 if (i386_record_lea_modrm_addr (irp, &addr))
3205 return -1;
3206
3207 if (record_arch_list_add_mem (addr, 1 << irp->ot))
3208 return -1;
3209
3210 return 0;
3211 }
3212
3213 /* Record the push operation to "record_arch_list".
3214 Return -1 if something wrong. */
3215
3216 static int
3217 i386_record_push (struct i386_record_s *irp, int size)
3218 {
3219 ULONGEST tmpulongest;
3220
3221 if (record_arch_list_add_reg (irp->regcache,
3222 irp->regmap[X86_RECORD_RESP_REGNUM]))
3223 return -1;
3224 regcache_raw_read_unsigned (irp->regcache,
3225 irp->regmap[X86_RECORD_RESP_REGNUM],
3226 &tmpulongest);
3227 if (record_arch_list_add_mem ((CORE_ADDR) tmpulongest - size, size))
3228 return -1;
3229
3230 return 0;
3231 }
3232
3233
3234 /* Defines contents to record. */
3235 #define I386_SAVE_FPU_REGS 0xfffd
3236 #define I386_SAVE_FPU_ENV 0xfffe
3237 #define I386_SAVE_FPU_ENV_REG_STACK 0xffff
3238
3239 /* Record the value of floating point registers which will be changed by the
3240 current instruction to "record_arch_list". Return -1 if something is wrong.
3241 */
3242
3243 static int i386_record_floats (struct gdbarch *gdbarch,
3244 struct i386_record_s *ir,
3245 uint32_t iregnum)
3246 {
3247 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3248 int i;
3249
3250 /* Oza: Because of floating point insn push/pop of fpu stack is going to
3251 happen. Currently we store st0-st7 registers, but we need not store all
3252 registers all the time, in future we use ftag register and record only
3253 those who are not marked as an empty. */
3254
3255 if (I386_SAVE_FPU_REGS == iregnum)
3256 {
3257 for (i = I387_ST0_REGNUM (tdep); i <= I387_ST0_REGNUM (tdep) + 7; i++)
3258 {
3259 if (record_arch_list_add_reg (ir->regcache, i))
3260 return -1;
3261 }
3262 }
3263 else if (I386_SAVE_FPU_ENV == iregnum)
3264 {
3265 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
3266 {
3267 if (record_arch_list_add_reg (ir->regcache, i))
3268 return -1;
3269 }
3270 }
3271 else if (I386_SAVE_FPU_ENV_REG_STACK == iregnum)
3272 {
3273 for (i = I387_ST0_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
3274 {
3275 if (record_arch_list_add_reg (ir->regcache, i))
3276 return -1;
3277 }
3278 }
3279 else if ((iregnum >= I387_ST0_REGNUM (tdep)) &&
3280 (iregnum <= I387_FOP_REGNUM (tdep)))
3281 {
3282 if (record_arch_list_add_reg (ir->regcache,iregnum))
3283 return -1;
3284 }
3285 else
3286 {
3287 /* Parameter error. */
3288 return -1;
3289 }
3290 if(I386_SAVE_FPU_ENV != iregnum)
3291 {
3292 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
3293 {
3294 if (record_arch_list_add_reg (ir->regcache, i))
3295 return -1;
3296 }
3297 }
3298 return 0;
3299 }
3300
3301 /* Parse the current instruction and record the values of the registers and
3302 memory that will be changed in current instruction to "record_arch_list".
3303 Return -1 if something wrong. */
3304
3305 #define I386_RECORD_ARCH_LIST_ADD_REG(regnum) \
3306 record_arch_list_add_reg (ir.regcache, ir.regmap[(regnum)])
3307
3308 int
3309 i386_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
3310 CORE_ADDR addr)
3311 {
3312 int prefixes = 0;
3313 int regnum;
3314 uint32_t opcode;
3315 uint8_t opcode8;
3316 uint16_t tmpu16;
3317 uint32_t tmpu32;
3318 ULONGEST tmpulongest;
3319 struct i386_record_s ir;
3320 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3321 int rex = 0;
3322 uint8_t rex_w = -1;
3323 uint8_t rex_r = 0;
3324
3325 memset (&ir, 0, sizeof (struct i386_record_s));
3326 ir.regcache = regcache;
3327 ir.addr = addr;
3328 ir.orig_addr = addr;
3329 ir.aflag = 1;
3330 ir.dflag = 1;
3331 ir.override = -1;
3332 ir.popl_esp_hack = 0;
3333 ir.regmap = gdbarch_tdep (gdbarch)->record_regmap;
3334 ir.gdbarch = gdbarch;
3335
3336 if (record_debug > 1)
3337 fprintf_unfiltered (gdb_stdlog, "Process record: i386_process_record "
3338 "addr = %s\n",
3339 paddress (gdbarch, ir.addr));
3340
3341 /* prefixes */
3342 while (1)
3343 {
3344 if (target_read_memory (ir.addr, &opcode8, 1))
3345 {
3346 if (record_debug)
3347 printf_unfiltered (_("Process record: error reading memory at "
3348 "addr %s len = 1.\n"),
3349 paddress (gdbarch, ir.addr));
3350 return -1;
3351 }
3352 ir.addr++;
3353 switch (opcode8) /* Instruction prefixes */
3354 {
3355 case REPE_PREFIX_OPCODE:
3356 prefixes |= PREFIX_REPZ;
3357 break;
3358 case REPNE_PREFIX_OPCODE:
3359 prefixes |= PREFIX_REPNZ;
3360 break;
3361 case LOCK_PREFIX_OPCODE:
3362 prefixes |= PREFIX_LOCK;
3363 break;
3364 case CS_PREFIX_OPCODE:
3365 ir.override = X86_RECORD_CS_REGNUM;
3366 break;
3367 case SS_PREFIX_OPCODE:
3368 ir.override = X86_RECORD_SS_REGNUM;
3369 break;
3370 case DS_PREFIX_OPCODE:
3371 ir.override = X86_RECORD_DS_REGNUM;
3372 break;
3373 case ES_PREFIX_OPCODE:
3374 ir.override = X86_RECORD_ES_REGNUM;
3375 break;
3376 case FS_PREFIX_OPCODE:
3377 ir.override = X86_RECORD_FS_REGNUM;
3378 break;
3379 case GS_PREFIX_OPCODE:
3380 ir.override = X86_RECORD_GS_REGNUM;
3381 break;
3382 case DATA_PREFIX_OPCODE:
3383 prefixes |= PREFIX_DATA;
3384 break;
3385 case ADDR_PREFIX_OPCODE:
3386 prefixes |= PREFIX_ADDR;
3387 break;
3388 case 0x40: /* i386 inc %eax */
3389 case 0x41: /* i386 inc %ecx */
3390 case 0x42: /* i386 inc %edx */
3391 case 0x43: /* i386 inc %ebx */
3392 case 0x44: /* i386 inc %esp */
3393 case 0x45: /* i386 inc %ebp */
3394 case 0x46: /* i386 inc %esi */
3395 case 0x47: /* i386 inc %edi */
3396 case 0x48: /* i386 dec %eax */
3397 case 0x49: /* i386 dec %ecx */
3398 case 0x4a: /* i386 dec %edx */
3399 case 0x4b: /* i386 dec %ebx */
3400 case 0x4c: /* i386 dec %esp */
3401 case 0x4d: /* i386 dec %ebp */
3402 case 0x4e: /* i386 dec %esi */
3403 case 0x4f: /* i386 dec %edi */
3404 if (ir.regmap[X86_RECORD_R8_REGNUM]) /* 64 bit target */
3405 {
3406 /* REX */
3407 rex = 1;
3408 rex_w = (opcode8 >> 3) & 1;
3409 rex_r = (opcode8 & 0x4) << 1;
3410 ir.rex_x = (opcode8 & 0x2) << 2;
3411 ir.rex_b = (opcode8 & 0x1) << 3;
3412 }
3413 else /* 32 bit target */
3414 goto out_prefixes;
3415 break;
3416 default:
3417 goto out_prefixes;
3418 break;
3419 }
3420 }
3421 out_prefixes:
3422 if (ir.regmap[X86_RECORD_R8_REGNUM] && rex_w == 1)
3423 {
3424 ir.dflag = 2;
3425 }
3426 else
3427 {
3428 if (prefixes & PREFIX_DATA)
3429 ir.dflag ^= 1;
3430 }
3431 if (prefixes & PREFIX_ADDR)
3432 ir.aflag ^= 1;
3433 else if (ir.regmap[X86_RECORD_R8_REGNUM])
3434 ir.aflag = 2;
3435
3436 /* now check op code */
3437 opcode = (uint32_t) opcode8;
3438 reswitch:
3439 switch (opcode)
3440 {
3441 case 0x0f:
3442 if (target_read_memory (ir.addr, &opcode8, 1))
3443 {
3444 if (record_debug)
3445 printf_unfiltered (_("Process record: error reading memory at "
3446 "addr %s len = 1.\n"),
3447 paddress (gdbarch, ir.addr));
3448 return -1;
3449 }
3450 ir.addr++;
3451 opcode = (uint16_t) opcode8 | 0x0f00;
3452 goto reswitch;
3453 break;
3454
3455 case 0x00: /* arith & logic */
3456 case 0x01:
3457 case 0x02:
3458 case 0x03:
3459 case 0x04:
3460 case 0x05:
3461 case 0x08:
3462 case 0x09:
3463 case 0x0a:
3464 case 0x0b:
3465 case 0x0c:
3466 case 0x0d:
3467 case 0x10:
3468 case 0x11:
3469 case 0x12:
3470 case 0x13:
3471 case 0x14:
3472 case 0x15:
3473 case 0x18:
3474 case 0x19:
3475 case 0x1a:
3476 case 0x1b:
3477 case 0x1c:
3478 case 0x1d:
3479 case 0x20:
3480 case 0x21:
3481 case 0x22:
3482 case 0x23:
3483 case 0x24:
3484 case 0x25:
3485 case 0x28:
3486 case 0x29:
3487 case 0x2a:
3488 case 0x2b:
3489 case 0x2c:
3490 case 0x2d:
3491 case 0x30:
3492 case 0x31:
3493 case 0x32:
3494 case 0x33:
3495 case 0x34:
3496 case 0x35:
3497 case 0x38:
3498 case 0x39:
3499 case 0x3a:
3500 case 0x3b:
3501 case 0x3c:
3502 case 0x3d:
3503 if (((opcode >> 3) & 7) != OP_CMPL)
3504 {
3505 if ((opcode & 1) == 0)
3506 ir.ot = OT_BYTE;
3507 else
3508 ir.ot = ir.dflag + OT_WORD;
3509
3510 switch ((opcode >> 1) & 3)
3511 {
3512 case 0: /* OP Ev, Gv */
3513 if (i386_record_modrm (&ir))
3514 return -1;
3515 if (ir.mod != 3)
3516 {
3517 if (i386_record_lea_modrm (&ir))
3518 return -1;
3519 }
3520 else
3521 {
3522 ir.rm |= ir.rex_b;
3523 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
3524 ir.rm &= 0x3;
3525 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
3526 }
3527 break;
3528 case 1: /* OP Gv, Ev */
3529 if (i386_record_modrm (&ir))
3530 return -1;
3531 ir.reg |= rex_r;
3532 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
3533 ir.reg &= 0x3;
3534 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
3535 break;
3536 case 2: /* OP A, Iv */
3537 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
3538 break;
3539 }
3540 }
3541 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
3542 break;
3543
3544 case 0x80: /* GRP1 */
3545 case 0x81:
3546 case 0x82:
3547 case 0x83:
3548 if (i386_record_modrm (&ir))
3549 return -1;
3550
3551 if (ir.reg != OP_CMPL)
3552 {
3553 if ((opcode & 1) == 0)
3554 ir.ot = OT_BYTE;
3555 else
3556 ir.ot = ir.dflag + OT_WORD;
3557
3558 if (ir.mod != 3)
3559 {
3560 if (opcode == 0x83)
3561 ir.rip_offset = 1;
3562 else
3563 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
3564 if (i386_record_lea_modrm (&ir))
3565 return -1;
3566 }
3567 else
3568 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
3569 }
3570 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
3571 break;
3572
3573 case 0x40: /* inc */
3574 case 0x41:
3575 case 0x42:
3576 case 0x43:
3577 case 0x44:
3578 case 0x45:
3579 case 0x46:
3580 case 0x47:
3581
3582 case 0x48: /* dec */
3583 case 0x49:
3584 case 0x4a:
3585 case 0x4b:
3586 case 0x4c:
3587 case 0x4d:
3588 case 0x4e:
3589 case 0x4f:
3590
3591 I386_RECORD_ARCH_LIST_ADD_REG (opcode & 7);
3592 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
3593 break;
3594
3595 case 0xf6: /* GRP3 */
3596 case 0xf7:
3597 if ((opcode & 1) == 0)
3598 ir.ot = OT_BYTE;
3599 else
3600 ir.ot = ir.dflag + OT_WORD;
3601 if (i386_record_modrm (&ir))
3602 return -1;
3603
3604 if (ir.mod != 3 && ir.reg == 0)
3605 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
3606
3607 switch (ir.reg)
3608 {
3609 case 0: /* test */
3610 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
3611 break;
3612 case 2: /* not */
3613 case 3: /* neg */
3614 if (ir.mod != 3)
3615 {
3616 if (i386_record_lea_modrm (&ir))
3617 return -1;
3618 }
3619 else
3620 {
3621 ir.rm |= ir.rex_b;
3622 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
3623 ir.rm &= 0x3;
3624 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
3625 }
3626 if (ir.reg == 3) /* neg */
3627 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
3628 break;
3629 case 4: /* mul */
3630 case 5: /* imul */
3631 case 6: /* div */
3632 case 7: /* idiv */
3633 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
3634 if (ir.ot != OT_BYTE)
3635 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
3636 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
3637 break;
3638 default:
3639 ir.addr -= 2;
3640 opcode = opcode << 8 | ir.modrm;
3641 goto no_support;
3642 break;
3643 }
3644 break;
3645
3646 case 0xfe: /* GRP4 */
3647 case 0xff: /* GRP5 */
3648 if (i386_record_modrm (&ir))
3649 return -1;
3650 if (ir.reg >= 2 && opcode == 0xfe)
3651 {
3652 ir.addr -= 2;
3653 opcode = opcode << 8 | ir.modrm;
3654 goto no_support;
3655 }
3656 switch (ir.reg)
3657 {
3658 case 0: /* inc */
3659 case 1: /* dec */
3660 if ((opcode & 1) == 0)
3661 ir.ot = OT_BYTE;
3662 else
3663 ir.ot = ir.dflag + OT_WORD;
3664 if (ir.mod != 3)
3665 {
3666 if (i386_record_lea_modrm (&ir))
3667 return -1;
3668 }
3669 else
3670 {
3671 ir.rm |= ir.rex_b;
3672 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
3673 ir.rm &= 0x3;
3674 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
3675 }
3676 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
3677 break;
3678 case 2: /* call */
3679 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
3680 ir.dflag = 2;
3681 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
3682 return -1;
3683 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
3684 break;
3685 case 3: /* lcall */
3686 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
3687 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
3688 return -1;
3689 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
3690 break;
3691 case 4: /* jmp */
3692 case 5: /* ljmp */
3693 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
3694 break;
3695 case 6: /* push */
3696 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
3697 ir.dflag = 2;
3698 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
3699 return -1;
3700 break;
3701 default:
3702 ir.addr -= 2;
3703 opcode = opcode << 8 | ir.modrm;
3704 goto no_support;
3705 break;
3706 }
3707 break;
3708
3709 case 0x84: /* test */
3710 case 0x85:
3711 case 0xa8:
3712 case 0xa9:
3713 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
3714 break;
3715
3716 case 0x98: /* CWDE/CBW */
3717 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
3718 break;
3719
3720 case 0x99: /* CDQ/CWD */
3721 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
3722 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
3723 break;
3724
3725 case 0x0faf: /* imul */
3726 case 0x69:
3727 case 0x6b:
3728 ir.ot = ir.dflag + OT_WORD;
3729 if (i386_record_modrm (&ir))
3730 return -1;
3731 if (opcode == 0x69)
3732 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
3733 else if (opcode == 0x6b)
3734 ir.rip_offset = 1;
3735 ir.reg |= rex_r;
3736 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
3737 ir.reg &= 0x3;
3738 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
3739 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
3740 break;
3741
3742 case 0x0fc0: /* xadd */
3743 case 0x0fc1:
3744 if ((opcode & 1) == 0)
3745 ir.ot = OT_BYTE;
3746 else
3747 ir.ot = ir.dflag + OT_WORD;
3748 if (i386_record_modrm (&ir))
3749 return -1;
3750 ir.reg |= rex_r;
3751 if (ir.mod == 3)
3752 {
3753 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
3754 ir.reg &= 0x3;
3755 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
3756 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
3757 ir.rm &= 0x3;
3758 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
3759 }
3760 else
3761 {
3762 if (i386_record_lea_modrm (&ir))
3763 return -1;
3764 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
3765 ir.reg &= 0x3;
3766 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
3767 }
3768 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
3769 break;
3770
3771 case 0x0fb0: /* cmpxchg */
3772 case 0x0fb1:
3773 if ((opcode & 1) == 0)
3774 ir.ot = OT_BYTE;
3775 else
3776 ir.ot = ir.dflag + OT_WORD;
3777 if (i386_record_modrm (&ir))
3778 return -1;
3779 if (ir.mod == 3)
3780 {
3781 ir.reg |= rex_r;
3782 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
3783 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
3784 ir.reg &= 0x3;
3785 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
3786 }
3787 else
3788 {
3789 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
3790 if (i386_record_lea_modrm (&ir))
3791 return -1;
3792 }
3793 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
3794 break;
3795
3796 case 0x0fc7: /* cmpxchg8b */
3797 if (i386_record_modrm (&ir))
3798 return -1;
3799 if (ir.mod == 3)
3800 {
3801 ir.addr -= 2;
3802 opcode = opcode << 8 | ir.modrm;
3803 goto no_support;
3804 }
3805 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
3806 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
3807 if (i386_record_lea_modrm (&ir))
3808 return -1;
3809 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
3810 break;
3811
3812 case 0x50: /* push */
3813 case 0x51:
3814 case 0x52:
3815 case 0x53:
3816 case 0x54:
3817 case 0x55:
3818 case 0x56:
3819 case 0x57:
3820 case 0x68:
3821 case 0x6a:
3822 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
3823 ir.dflag = 2;
3824 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
3825 return -1;
3826 break;
3827
3828 case 0x06: /* push es */
3829 case 0x0e: /* push cs */
3830 case 0x16: /* push ss */
3831 case 0x1e: /* push ds */
3832 if (ir.regmap[X86_RECORD_R8_REGNUM])
3833 {
3834 ir.addr -= 1;
3835 goto no_support;
3836 }
3837 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
3838 return -1;
3839 break;
3840
3841 case 0x0fa0: /* push fs */
3842 case 0x0fa8: /* push gs */
3843 if (ir.regmap[X86_RECORD_R8_REGNUM])
3844 {
3845 ir.addr -= 2;
3846 goto no_support;
3847 }
3848 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
3849 return -1;
3850 break;
3851
3852 case 0x60: /* pusha */
3853 if (ir.regmap[X86_RECORD_R8_REGNUM])
3854 {
3855 ir.addr -= 1;
3856 goto no_support;
3857 }
3858 if (i386_record_push (&ir, 1 << (ir.dflag + 4)))
3859 return -1;
3860 break;
3861
3862 case 0x58: /* pop */
3863 case 0x59:
3864 case 0x5a:
3865 case 0x5b:
3866 case 0x5c:
3867 case 0x5d:
3868 case 0x5e:
3869 case 0x5f:
3870 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
3871 I386_RECORD_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
3872 break;
3873
3874 case 0x61: /* popa */
3875 if (ir.regmap[X86_RECORD_R8_REGNUM])
3876 {
3877 ir.addr -= 1;
3878 goto no_support;
3879 }
3880 for (regnum = X86_RECORD_REAX_REGNUM;
3881 regnum <= X86_RECORD_REDI_REGNUM;
3882 regnum++)
3883 I386_RECORD_ARCH_LIST_ADD_REG (regnum);
3884 break;
3885
3886 case 0x8f: /* pop */
3887 if (ir.regmap[X86_RECORD_R8_REGNUM])
3888 ir.ot = ir.dflag ? OT_QUAD : OT_WORD;
3889 else
3890 ir.ot = ir.dflag + OT_WORD;
3891 if (i386_record_modrm (&ir))
3892 return -1;
3893 if (ir.mod == 3)
3894 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
3895 else
3896 {
3897 ir.popl_esp_hack = 1 << ir.ot;
3898 if (i386_record_lea_modrm (&ir))
3899 return -1;
3900 }
3901 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
3902 break;
3903
3904 case 0xc8: /* enter */
3905 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
3906 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
3907 ir.dflag = 2;
3908 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
3909 return -1;
3910 break;
3911
3912 case 0xc9: /* leave */
3913 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
3914 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
3915 break;
3916
3917 case 0x07: /* pop es */
3918 if (ir.regmap[X86_RECORD_R8_REGNUM])
3919 {
3920 ir.addr -= 1;
3921 goto no_support;
3922 }
3923 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
3924 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_ES_REGNUM);
3925 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
3926 break;
3927
3928 case 0x17: /* pop ss */
3929 if (ir.regmap[X86_RECORD_R8_REGNUM])
3930 {
3931 ir.addr -= 1;
3932 goto no_support;
3933 }
3934 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
3935 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_SS_REGNUM);
3936 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
3937 break;
3938
3939 case 0x1f: /* pop ds */
3940 if (ir.regmap[X86_RECORD_R8_REGNUM])
3941 {
3942 ir.addr -= 1;
3943 goto no_support;
3944 }
3945 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
3946 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_DS_REGNUM);
3947 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
3948 break;
3949
3950 case 0x0fa1: /* pop fs */
3951 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
3952 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_FS_REGNUM);
3953 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
3954 break;
3955
3956 case 0x0fa9: /* pop gs */
3957 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
3958 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
3959 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
3960 break;
3961
3962 case 0x88: /* mov */
3963 case 0x89:
3964 case 0xc6:
3965 case 0xc7:
3966 if ((opcode & 1) == 0)
3967 ir.ot = OT_BYTE;
3968 else
3969 ir.ot = ir.dflag + OT_WORD;
3970
3971 if (i386_record_modrm (&ir))
3972 return -1;
3973
3974 if (ir.mod != 3)
3975 {
3976 if (opcode == 0xc6 || opcode == 0xc7)
3977 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
3978 if (i386_record_lea_modrm (&ir))
3979 return -1;
3980 }
3981 else
3982 {
3983 if (opcode == 0xc6 || opcode == 0xc7)
3984 ir.rm |= ir.rex_b;
3985 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
3986 ir.rm &= 0x3;
3987 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
3988 }
3989 break;
3990
3991 case 0x8a: /* mov */
3992 case 0x8b:
3993 if ((opcode & 1) == 0)
3994 ir.ot = OT_BYTE;
3995 else
3996 ir.ot = ir.dflag + OT_WORD;
3997 if (i386_record_modrm (&ir))
3998 return -1;
3999 ir.reg |= rex_r;
4000 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4001 ir.reg &= 0x3;
4002 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4003 break;
4004
4005 case 0x8c: /* mov seg */
4006 if (i386_record_modrm (&ir))
4007 return -1;
4008 if (ir.reg > 5)
4009 {
4010 ir.addr -= 2;
4011 opcode = opcode << 8 | ir.modrm;
4012 goto no_support;
4013 }
4014
4015 if (ir.mod == 3)
4016 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
4017 else
4018 {
4019 ir.ot = OT_WORD;
4020 if (i386_record_lea_modrm (&ir))
4021 return -1;
4022 }
4023 break;
4024
4025 case 0x8e: /* mov seg */
4026 if (i386_record_modrm (&ir))
4027 return -1;
4028 switch (ir.reg)
4029 {
4030 case 0:
4031 regnum = X86_RECORD_ES_REGNUM;
4032 break;
4033 case 2:
4034 regnum = X86_RECORD_SS_REGNUM;
4035 break;
4036 case 3:
4037 regnum = X86_RECORD_DS_REGNUM;
4038 break;
4039 case 4:
4040 regnum = X86_RECORD_FS_REGNUM;
4041 break;
4042 case 5:
4043 regnum = X86_RECORD_GS_REGNUM;
4044 break;
4045 default:
4046 ir.addr -= 2;
4047 opcode = opcode << 8 | ir.modrm;
4048 goto no_support;
4049 break;
4050 }
4051 I386_RECORD_ARCH_LIST_ADD_REG (regnum);
4052 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4053 break;
4054
4055 case 0x0fb6: /* movzbS */
4056 case 0x0fb7: /* movzwS */
4057 case 0x0fbe: /* movsbS */
4058 case 0x0fbf: /* movswS */
4059 if (i386_record_modrm (&ir))
4060 return -1;
4061 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
4062 break;
4063
4064 case 0x8d: /* lea */
4065 if (i386_record_modrm (&ir))
4066 return -1;
4067 if (ir.mod == 3)
4068 {
4069 ir.addr -= 2;
4070 opcode = opcode << 8 | ir.modrm;
4071 goto no_support;
4072 }
4073 ir.ot = ir.dflag;
4074 ir.reg |= rex_r;
4075 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4076 ir.reg &= 0x3;
4077 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4078 break;
4079
4080 case 0xa0: /* mov EAX */
4081 case 0xa1:
4082
4083 case 0xd7: /* xlat */
4084 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4085 break;
4086
4087 case 0xa2: /* mov EAX */
4088 case 0xa3:
4089 if (ir.override >= 0)
4090 {
4091 warning (_("Process record ignores the memory change "
4092 "of instruction at address %s because "
4093 "it can't get the value of the segment "
4094 "register."),
4095 paddress (gdbarch, ir.orig_addr));
4096 }
4097 else
4098 {
4099 if ((opcode & 1) == 0)
4100 ir.ot = OT_BYTE;
4101 else
4102 ir.ot = ir.dflag + OT_WORD;
4103 if (ir.aflag == 2)
4104 {
4105 if (target_read_memory (ir.addr, (gdb_byte *) &addr, 8))
4106 {
4107 if (record_debug)
4108 printf_unfiltered (_("Process record: error reading "
4109 "memory at addr 0x%s len = 8.\n"),
4110 paddress (gdbarch, ir.addr));
4111 return -1;
4112 }
4113 ir.addr += 8;
4114 }
4115 else if (ir.aflag)
4116 {
4117 if (target_read_memory (ir.addr, (gdb_byte *) &tmpu32, 4))
4118 {
4119 if (record_debug)
4120 printf_unfiltered (_("Process record: error reading "
4121 "memory at addr 0x%s len = 4.\n"),
4122 paddress (gdbarch, ir.addr));
4123 return -1;
4124 }
4125 ir.addr += 4;
4126 addr = tmpu32;
4127 }
4128 else
4129 {
4130 if (target_read_memory (ir.addr, (gdb_byte *) &tmpu16, 2))
4131 {
4132 if (record_debug)
4133 printf_unfiltered (_("Process record: error reading "
4134 "memory at addr 0x%s len = 2.\n"),
4135 paddress (gdbarch, ir.addr));
4136 return -1;
4137 }
4138 ir.addr += 2;
4139 addr = tmpu16;
4140 }
4141 if (record_arch_list_add_mem (addr, 1 << ir.ot))
4142 return -1;
4143 }
4144 break;
4145
4146 case 0xb0: /* mov R, Ib */
4147 case 0xb1:
4148 case 0xb2:
4149 case 0xb3:
4150 case 0xb4:
4151 case 0xb5:
4152 case 0xb6:
4153 case 0xb7:
4154 I386_RECORD_ARCH_LIST_ADD_REG ((ir.regmap[X86_RECORD_R8_REGNUM])
4155 ? ((opcode & 0x7) | ir.rex_b)
4156 : ((opcode & 0x7) & 0x3));
4157 break;
4158
4159 case 0xb8: /* mov R, Iv */
4160 case 0xb9:
4161 case 0xba:
4162 case 0xbb:
4163 case 0xbc:
4164 case 0xbd:
4165 case 0xbe:
4166 case 0xbf:
4167 I386_RECORD_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
4168 break;
4169
4170 case 0x91: /* xchg R, EAX */
4171 case 0x92:
4172 case 0x93:
4173 case 0x94:
4174 case 0x95:
4175 case 0x96:
4176 case 0x97:
4177 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4178 I386_RECORD_ARCH_LIST_ADD_REG (opcode & 0x7);
4179 break;
4180
4181 case 0x86: /* xchg Ev, Gv */
4182 case 0x87:
4183 if ((opcode & 1) == 0)
4184 ir.ot = OT_BYTE;
4185 else
4186 ir.ot = ir.dflag + OT_WORD;
4187 if (i386_record_modrm (&ir))
4188 return -1;
4189 if (ir.mod == 3)
4190 {
4191 ir.rm |= ir.rex_b;
4192 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4193 ir.rm &= 0x3;
4194 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
4195 }
4196 else
4197 {
4198 if (i386_record_lea_modrm (&ir))
4199 return -1;
4200 }
4201 ir.reg |= rex_r;
4202 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4203 ir.reg &= 0x3;
4204 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4205 break;
4206
4207 case 0xc4: /* les Gv */
4208 case 0xc5: /* lds Gv */
4209 if (ir.regmap[X86_RECORD_R8_REGNUM])
4210 {
4211 ir.addr -= 1;
4212 goto no_support;
4213 }
4214 case 0x0fb2: /* lss Gv */
4215 case 0x0fb4: /* lfs Gv */
4216 case 0x0fb5: /* lgs Gv */
4217 if (i386_record_modrm (&ir))
4218 return -1;
4219 if (ir.mod == 3)
4220 {
4221 if (opcode > 0xff)
4222 ir.addr -= 3;
4223 else
4224 ir.addr -= 2;
4225 opcode = opcode << 8 | ir.modrm;
4226 goto no_support;
4227 }
4228 switch (opcode)
4229 {
4230 case 0xc4: /* les Gv */
4231 regnum = X86_RECORD_ES_REGNUM;
4232 break;
4233 case 0xc5: /* lds Gv */
4234 regnum = X86_RECORD_DS_REGNUM;
4235 break;
4236 case 0x0fb2: /* lss Gv */
4237 regnum = X86_RECORD_SS_REGNUM;
4238 break;
4239 case 0x0fb4: /* lfs Gv */
4240 regnum = X86_RECORD_FS_REGNUM;
4241 break;
4242 case 0x0fb5: /* lgs Gv */
4243 regnum = X86_RECORD_GS_REGNUM;
4244 break;
4245 }
4246 I386_RECORD_ARCH_LIST_ADD_REG (regnum);
4247 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
4248 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4249 break;
4250
4251 case 0xc0: /* shifts */
4252 case 0xc1:
4253 case 0xd0:
4254 case 0xd1:
4255 case 0xd2:
4256 case 0xd3:
4257 if ((opcode & 1) == 0)
4258 ir.ot = OT_BYTE;
4259 else
4260 ir.ot = ir.dflag + OT_WORD;
4261 if (i386_record_modrm (&ir))
4262 return -1;
4263 if (ir.mod != 3 && (opcode == 0xd2 || opcode == 0xd3))
4264 {
4265 if (i386_record_lea_modrm (&ir))
4266 return -1;
4267 }
4268 else
4269 {
4270 ir.rm |= ir.rex_b;
4271 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4272 ir.rm &= 0x3;
4273 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
4274 }
4275 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4276 break;
4277
4278 case 0x0fa4:
4279 case 0x0fa5:
4280 case 0x0fac:
4281 case 0x0fad:
4282 if (i386_record_modrm (&ir))
4283 return -1;
4284 if (ir.mod == 3)
4285 {
4286 if (record_arch_list_add_reg (ir.regcache, ir.rm))
4287 return -1;
4288 }
4289 else
4290 {
4291 if (i386_record_lea_modrm (&ir))
4292 return -1;
4293 }
4294 break;
4295
4296 case 0xd8: /* Floats. */
4297 case 0xd9:
4298 case 0xda:
4299 case 0xdb:
4300 case 0xdc:
4301 case 0xdd:
4302 case 0xde:
4303 case 0xdf:
4304 if (i386_record_modrm (&ir))
4305 return -1;
4306 ir.reg |= ((opcode & 7) << 3);
4307 if (ir.mod != 3)
4308 {
4309 /* Memory. */
4310 uint64_t tmpu64;
4311
4312 if (i386_record_lea_modrm_addr (&ir, &tmpu64))
4313 return -1;
4314 switch (ir.reg)
4315 {
4316 case 0x02:
4317 case 0x12:
4318 case 0x22:
4319 case 0x32:
4320 /* For fcom, ficom nothing to do. */
4321 break;
4322 case 0x03:
4323 case 0x13:
4324 case 0x23:
4325 case 0x33:
4326 /* For fcomp, ficomp pop FPU stack, store all. */
4327 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
4328 return -1;
4329 break;
4330 case 0x00:
4331 case 0x01:
4332 case 0x04:
4333 case 0x05:
4334 case 0x06:
4335 case 0x07:
4336 case 0x10:
4337 case 0x11:
4338 case 0x14:
4339 case 0x15:
4340 case 0x16:
4341 case 0x17:
4342 case 0x20:
4343 case 0x21:
4344 case 0x24:
4345 case 0x25:
4346 case 0x26:
4347 case 0x27:
4348 case 0x30:
4349 case 0x31:
4350 case 0x34:
4351 case 0x35:
4352 case 0x36:
4353 case 0x37:
4354 /* For fadd, fmul, fsub, fsubr, fdiv, fdivr, fiadd, fimul,
4355 fisub, fisubr, fidiv, fidivr, modR/M.reg is an extension
4356 of code, always affects st(0) register. */
4357 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
4358 return -1;
4359 break;
4360 case 0x08:
4361 case 0x0a:
4362 case 0x0b:
4363 case 0x18:
4364 case 0x19:
4365 case 0x1a:
4366 case 0x1b:
4367 case 0x1d:
4368 case 0x28:
4369 case 0x29:
4370 case 0x2a:
4371 case 0x2b:
4372 case 0x38:
4373 case 0x39:
4374 case 0x3a:
4375 case 0x3b:
4376 case 0x3c:
4377 case 0x3d:
4378 switch (ir.reg & 7)
4379 {
4380 case 0:
4381 /* Handling fld, fild. */
4382 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
4383 return -1;
4384 break;
4385 case 1:
4386 switch (ir.reg >> 4)
4387 {
4388 case 0:
4389 if (record_arch_list_add_mem (tmpu64, 4))
4390 return -1;
4391 break;
4392 case 2:
4393 if (record_arch_list_add_mem (tmpu64, 8))
4394 return -1;
4395 break;
4396 case 3:
4397 break;
4398 default:
4399 if (record_arch_list_add_mem (tmpu64, 2))
4400 return -1;
4401 break;
4402 }
4403 break;
4404 default:
4405 switch (ir.reg >> 4)
4406 {
4407 case 0:
4408 if (record_arch_list_add_mem (tmpu64, 4))
4409 return -1;
4410 if (3 == (ir.reg & 7))
4411 {
4412 /* For fstp m32fp. */
4413 if (i386_record_floats (gdbarch, &ir,
4414 I386_SAVE_FPU_REGS))
4415 return -1;
4416 }
4417 break;
4418 case 1:
4419 if (record_arch_list_add_mem (tmpu64, 4))
4420 return -1;
4421 if ((3 == (ir.reg & 7))
4422 || (5 == (ir.reg & 7))
4423 || (7 == (ir.reg & 7)))
4424 {
4425 /* For fstp insn. */
4426 if (i386_record_floats (gdbarch, &ir,
4427 I386_SAVE_FPU_REGS))
4428 return -1;
4429 }
4430 break;
4431 case 2:
4432 if (record_arch_list_add_mem (tmpu64, 8))
4433 return -1;
4434 if (3 == (ir.reg & 7))
4435 {
4436 /* For fstp m64fp. */
4437 if (i386_record_floats (gdbarch, &ir,
4438 I386_SAVE_FPU_REGS))
4439 return -1;
4440 }
4441 break;
4442 case 3:
4443 if ((3 <= (ir.reg & 7)) && (6 <= (ir.reg & 7)))
4444 {
4445 /* For fistp, fbld, fild, fbstp. */
4446 if (i386_record_floats (gdbarch, &ir,
4447 I386_SAVE_FPU_REGS))
4448 return -1;
4449 }
4450 /* Fall through */
4451 default:
4452 if (record_arch_list_add_mem (tmpu64, 2))
4453 return -1;
4454 break;
4455 }
4456 break;
4457 }
4458 break;
4459 case 0x0c:
4460 /* Insn fldenv. */
4461 if (i386_record_floats (gdbarch, &ir,
4462 I386_SAVE_FPU_ENV_REG_STACK))
4463 return -1;
4464 break;
4465 case 0x0d:
4466 /* Insn fldcw. */
4467 if (i386_record_floats (gdbarch, &ir, I387_FCTRL_REGNUM (tdep)))
4468 return -1;
4469 break;
4470 case 0x2c:
4471 /* Insn frstor. */
4472 if (i386_record_floats (gdbarch, &ir,
4473 I386_SAVE_FPU_ENV_REG_STACK))
4474 return -1;
4475 break;
4476 case 0x0e:
4477 if (ir.dflag)
4478 {
4479 if (record_arch_list_add_mem (tmpu64, 28))
4480 return -1;
4481 }
4482 else
4483 {
4484 if (record_arch_list_add_mem (tmpu64, 14))
4485 return -1;
4486 }
4487 break;
4488 case 0x0f:
4489 case 0x2f:
4490 if (record_arch_list_add_mem (tmpu64, 2))
4491 return -1;
4492 /* Insn fstp, fbstp. */
4493 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
4494 return -1;
4495 break;
4496 case 0x1f:
4497 case 0x3e:
4498 if (record_arch_list_add_mem (tmpu64, 10))
4499 return -1;
4500 break;
4501 case 0x2e:
4502 if (ir.dflag)
4503 {
4504 if (record_arch_list_add_mem (tmpu64, 28))
4505 return -1;
4506 tmpu64 += 28;
4507 }
4508 else
4509 {
4510 if (record_arch_list_add_mem (tmpu64, 14))
4511 return -1;
4512 tmpu64 += 14;
4513 }
4514 if (record_arch_list_add_mem (tmpu64, 80))
4515 return -1;
4516 /* Insn fsave. */
4517 if (i386_record_floats (gdbarch, &ir,
4518 I386_SAVE_FPU_ENV_REG_STACK))
4519 return -1;
4520 break;
4521 case 0x3f:
4522 if (record_arch_list_add_mem (tmpu64, 8))
4523 return -1;
4524 /* Insn fistp. */
4525 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
4526 return -1;
4527 break;
4528 default:
4529 ir.addr -= 2;
4530 opcode = opcode << 8 | ir.modrm;
4531 goto no_support;
4532 break;
4533 }
4534 }
4535 /* Opcode is an extension of modR/M byte. */
4536 else
4537 {
4538 switch (opcode)
4539 {
4540 case 0xd8:
4541 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
4542 return -1;
4543 break;
4544 case 0xd9:
4545 if (0x0c == (ir.modrm >> 4))
4546 {
4547 if ((ir.modrm & 0x0f) <= 7)
4548 {
4549 if (i386_record_floats (gdbarch, &ir,
4550 I386_SAVE_FPU_REGS))
4551 return -1;
4552 }
4553 else
4554 {
4555 if (i386_record_floats (gdbarch, &ir,
4556 I387_ST0_REGNUM (tdep)))
4557 return -1;
4558 /* If only st(0) is changing, then we have already
4559 recorded. */
4560 if ((ir.modrm & 0x0f) - 0x08)
4561 {
4562 if (i386_record_floats (gdbarch, &ir,
4563 I387_ST0_REGNUM (tdep) +
4564 ((ir.modrm & 0x0f) - 0x08)))
4565 return -1;
4566 }
4567 }
4568 }
4569 else
4570 {
4571 switch (ir.modrm)
4572 {
4573 case 0xe0:
4574 case 0xe1:
4575 case 0xf0:
4576 case 0xf5:
4577 case 0xf8:
4578 case 0xfa:
4579 case 0xfc:
4580 case 0xfe:
4581 case 0xff:
4582 if (i386_record_floats (gdbarch, &ir,
4583 I387_ST0_REGNUM (tdep)))
4584 return -1;
4585 break;
4586 case 0xf1:
4587 case 0xf2:
4588 case 0xf3:
4589 case 0xf4:
4590 case 0xf6:
4591 case 0xf7:
4592 case 0xe8:
4593 case 0xe9:
4594 case 0xea:
4595 case 0xeb:
4596 case 0xec:
4597 case 0xed:
4598 case 0xee:
4599 case 0xf9:
4600 case 0xfb:
4601 if (i386_record_floats (gdbarch, &ir,
4602 I386_SAVE_FPU_REGS))
4603 return -1;
4604 break;
4605 case 0xfd:
4606 if (i386_record_floats (gdbarch, &ir,
4607 I387_ST0_REGNUM (tdep)))
4608 return -1;
4609 if (i386_record_floats (gdbarch, &ir,
4610 I387_ST0_REGNUM (tdep) + 1))
4611 return -1;
4612 break;
4613 }
4614 }
4615 break;
4616 case 0xda:
4617 if (0xe9 == ir.modrm)
4618 {
4619 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
4620 return -1;
4621 }
4622 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
4623 {
4624 if (i386_record_floats (gdbarch, &ir,
4625 I387_ST0_REGNUM (tdep)))
4626 return -1;
4627 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
4628 {
4629 if (i386_record_floats (gdbarch, &ir,
4630 I387_ST0_REGNUM (tdep) +
4631 (ir.modrm & 0x0f)))
4632 return -1;
4633 }
4634 else if ((ir.modrm & 0x0f) - 0x08)
4635 {
4636 if (i386_record_floats (gdbarch, &ir,
4637 I387_ST0_REGNUM (tdep) +
4638 ((ir.modrm & 0x0f) - 0x08)))
4639 return -1;
4640 }
4641 }
4642 break;
4643 case 0xdb:
4644 if (0xe3 == ir.modrm)
4645 {
4646 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_ENV))
4647 return -1;
4648 }
4649 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
4650 {
4651 if (i386_record_floats (gdbarch, &ir,
4652 I387_ST0_REGNUM (tdep)))
4653 return -1;
4654 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
4655 {
4656 if (i386_record_floats (gdbarch, &ir,
4657 I387_ST0_REGNUM (tdep) +
4658 (ir.modrm & 0x0f)))
4659 return -1;
4660 }
4661 else if ((ir.modrm & 0x0f) - 0x08)
4662 {
4663 if (i386_record_floats (gdbarch, &ir,
4664 I387_ST0_REGNUM (tdep) +
4665 ((ir.modrm & 0x0f) - 0x08)))
4666 return -1;
4667 }
4668 }
4669 break;
4670 case 0xdc:
4671 if ((0x0c == ir.modrm >> 4)
4672 || (0x0d == ir.modrm >> 4)
4673 || (0x0f == ir.modrm >> 4))
4674 {
4675 if ((ir.modrm & 0x0f) <= 7)
4676 {
4677 if (i386_record_floats (gdbarch, &ir,
4678 I387_ST0_REGNUM (tdep) +
4679 (ir.modrm & 0x0f)))
4680 return -1;
4681 }
4682 else
4683 {
4684 if (i386_record_floats (gdbarch, &ir,
4685 I387_ST0_REGNUM (tdep) +
4686 ((ir.modrm & 0x0f) - 0x08)))
4687 return -1;
4688 }
4689 }
4690 break;
4691 case 0xdd:
4692 if (0x0c == ir.modrm >> 4)
4693 {
4694 if (i386_record_floats (gdbarch, &ir,
4695 I387_FTAG_REGNUM (tdep)))
4696 return -1;
4697 }
4698 else if ((0x0d == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
4699 {
4700 if ((ir.modrm & 0x0f) <= 7)
4701 {
4702 if (i386_record_floats (gdbarch, &ir,
4703 I387_ST0_REGNUM (tdep) +
4704 (ir.modrm & 0x0f)))
4705 return -1;
4706 }
4707 else
4708 {
4709 if (i386_record_floats (gdbarch, &ir,
4710 I386_SAVE_FPU_REGS))
4711 return -1;
4712 }
4713 }
4714 break;
4715 case 0xde:
4716 if ((0x0c == ir.modrm >> 4)
4717 || (0x0e == ir.modrm >> 4)
4718 || (0x0f == ir.modrm >> 4)
4719 || (0xd9 == ir.modrm))
4720 {
4721 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
4722 return -1;
4723 }
4724 break;
4725 case 0xdf:
4726 if (0xe0 == ir.modrm)
4727 {
4728 if (record_arch_list_add_reg (ir.regcache, I386_EAX_REGNUM))
4729 return -1;
4730 }
4731 else if ((0x0f == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
4732 {
4733 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
4734 return -1;
4735 }
4736 break;
4737 }
4738 }
4739 break;
4740 /* string ops */
4741 case 0xa4: /* movsS */
4742 case 0xa5:
4743 case 0xaa: /* stosS */
4744 case 0xab:
4745 case 0x6c: /* insS */
4746 case 0x6d:
4747 regcache_raw_read_unsigned (ir.regcache,
4748 ir.regmap[X86_RECORD_RECX_REGNUM],
4749 &tmpulongest);
4750 if (tmpulongest)
4751 {
4752 ULONGEST es, ds;
4753
4754 if ((opcode & 1) == 0)
4755 ir.ot = OT_BYTE;
4756 else
4757 ir.ot = ir.dflag + OT_WORD;
4758 regcache_raw_read_unsigned (ir.regcache,
4759 ir.regmap[X86_RECORD_REDI_REGNUM],
4760 &tmpulongest);
4761
4762 regcache_raw_read_unsigned (ir.regcache,
4763 ir.regmap[X86_RECORD_ES_REGNUM],
4764 &es);
4765 regcache_raw_read_unsigned (ir.regcache,
4766 ir.regmap[X86_RECORD_DS_REGNUM],
4767 &ds);
4768 if (ir.aflag && (es != ds))
4769 {
4770 /* addr += ((uint32_t) read_register (I386_ES_REGNUM)) << 4; */
4771 warning (_("Process record ignores the memory "
4772 "change of instruction at address %s "
4773 "because it can't get the value of the "
4774 "ES segment register."),
4775 paddress (gdbarch, ir.orig_addr));
4776 }
4777 else
4778 {
4779 if (record_arch_list_add_mem (tmpulongest, 1 << ir.ot))
4780 return -1;
4781 }
4782
4783 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
4784 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
4785 if (opcode == 0xa4 || opcode == 0xa5)
4786 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
4787 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
4788 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4789 }
4790 break;
4791
4792 case 0xa6: /* cmpsS */
4793 case 0xa7:
4794 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
4795 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
4796 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
4797 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
4798 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4799 break;
4800
4801 case 0xac: /* lodsS */
4802 case 0xad:
4803 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4804 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
4805 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
4806 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
4807 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4808 break;
4809
4810 case 0xae: /* scasS */
4811 case 0xaf:
4812 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
4813 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
4814 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
4815 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4816 break;
4817
4818 case 0x6e: /* outsS */
4819 case 0x6f:
4820 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
4821 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
4822 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
4823 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4824 break;
4825
4826 case 0xe4: /* port I/O */
4827 case 0xe5:
4828 case 0xec:
4829 case 0xed:
4830 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4831 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4832 break;
4833
4834 case 0xe6:
4835 case 0xe7:
4836 case 0xee:
4837 case 0xef:
4838 break;
4839
4840 /* control */
4841 case 0xc2: /* ret im */
4842 case 0xc3: /* ret */
4843 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4844 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4845 break;
4846
4847 case 0xca: /* lret im */
4848 case 0xcb: /* lret */
4849 case 0xcf: /* iret */
4850 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
4851 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4852 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4853 break;
4854
4855 case 0xe8: /* call im */
4856 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4857 ir.dflag = 2;
4858 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4859 return -1;
4860 break;
4861
4862 case 0x9a: /* lcall im */
4863 if (ir.regmap[X86_RECORD_R8_REGNUM])
4864 {
4865 ir.addr -= 1;
4866 goto no_support;
4867 }
4868 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
4869 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4870 return -1;
4871 break;
4872
4873 case 0xe9: /* jmp im */
4874 case 0xea: /* ljmp im */
4875 case 0xeb: /* jmp Jb */
4876 case 0x70: /* jcc Jb */
4877 case 0x71:
4878 case 0x72:
4879 case 0x73:
4880 case 0x74:
4881 case 0x75:
4882 case 0x76:
4883 case 0x77:
4884 case 0x78:
4885 case 0x79:
4886 case 0x7a:
4887 case 0x7b:
4888 case 0x7c:
4889 case 0x7d:
4890 case 0x7e:
4891 case 0x7f:
4892 case 0x0f80: /* jcc Jv */
4893 case 0x0f81:
4894 case 0x0f82:
4895 case 0x0f83:
4896 case 0x0f84:
4897 case 0x0f85:
4898 case 0x0f86:
4899 case 0x0f87:
4900 case 0x0f88:
4901 case 0x0f89:
4902 case 0x0f8a:
4903 case 0x0f8b:
4904 case 0x0f8c:
4905 case 0x0f8d:
4906 case 0x0f8e:
4907 case 0x0f8f:
4908 break;
4909
4910 case 0x0f90: /* setcc Gv */
4911 case 0x0f91:
4912 case 0x0f92:
4913 case 0x0f93:
4914 case 0x0f94:
4915 case 0x0f95:
4916 case 0x0f96:
4917 case 0x0f97:
4918 case 0x0f98:
4919 case 0x0f99:
4920 case 0x0f9a:
4921 case 0x0f9b:
4922 case 0x0f9c:
4923 case 0x0f9d:
4924 case 0x0f9e:
4925 case 0x0f9f:
4926 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4927 ir.ot = OT_BYTE;
4928 if (i386_record_modrm (&ir))
4929 return -1;
4930 if (ir.mod == 3)
4931 I386_RECORD_ARCH_LIST_ADD_REG (ir.rex_b ? (ir.rm | ir.rex_b)
4932 : (ir.rm & 0x3));
4933 else
4934 {
4935 if (i386_record_lea_modrm (&ir))
4936 return -1;
4937 }
4938 break;
4939
4940 case 0x0f40: /* cmov Gv, Ev */
4941 case 0x0f41:
4942 case 0x0f42:
4943 case 0x0f43:
4944 case 0x0f44:
4945 case 0x0f45:
4946 case 0x0f46:
4947 case 0x0f47:
4948 case 0x0f48:
4949 case 0x0f49:
4950 case 0x0f4a:
4951 case 0x0f4b:
4952 case 0x0f4c:
4953 case 0x0f4d:
4954 case 0x0f4e:
4955 case 0x0f4f:
4956 if (i386_record_modrm (&ir))
4957 return -1;
4958 ir.reg |= rex_r;
4959 if (ir.dflag == OT_BYTE)
4960 ir.reg &= 0x3;
4961 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4962 break;
4963
4964 /* flags */
4965 case 0x9c: /* pushf */
4966 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4967 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4968 ir.dflag = 2;
4969 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4970 return -1;
4971 break;
4972
4973 case 0x9d: /* popf */
4974 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4975 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4976 break;
4977
4978 case 0x9e: /* sahf */
4979 if (ir.regmap[X86_RECORD_R8_REGNUM])
4980 {
4981 ir.addr -= 1;
4982 goto no_support;
4983 }
4984 case 0xf5: /* cmc */
4985 case 0xf8: /* clc */
4986 case 0xf9: /* stc */
4987 case 0xfc: /* cld */
4988 case 0xfd: /* std */
4989 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4990 break;
4991
4992 case 0x9f: /* lahf */
4993 if (ir.regmap[X86_RECORD_R8_REGNUM])
4994 {
4995 ir.addr -= 1;
4996 goto no_support;
4997 }
4998 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4999 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5000 break;
5001
5002 /* bit operations */
5003 case 0x0fba: /* bt/bts/btr/btc Gv, im */
5004 ir.ot = ir.dflag + OT_WORD;
5005 if (i386_record_modrm (&ir))
5006 return -1;
5007 if (ir.reg < 4)
5008 {
5009 ir.addr -= 2;
5010 opcode = opcode << 8 | ir.modrm;
5011 goto no_support;
5012 }
5013 if (ir.reg != 4)
5014 {
5015 if (ir.mod == 3)
5016 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5017 else
5018 {
5019 if (i386_record_lea_modrm (&ir))
5020 return -1;
5021 }
5022 }
5023 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5024 break;
5025
5026 case 0x0fa3: /* bt Gv, Ev */
5027 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5028 break;
5029
5030 case 0x0fab: /* bts */
5031 case 0x0fb3: /* btr */
5032 case 0x0fbb: /* btc */
5033 ir.ot = ir.dflag + OT_WORD;
5034 if (i386_record_modrm (&ir))
5035 return -1;
5036 if (ir.mod == 3)
5037 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5038 else
5039 {
5040 uint64_t tmpu64;
5041 if (i386_record_lea_modrm_addr (&ir, &tmpu64))
5042 return -1;
5043 regcache_raw_read_unsigned (ir.regcache,
5044 ir.regmap[ir.reg | rex_r],
5045 &tmpulongest);
5046 switch (ir.dflag)
5047 {
5048 case 0:
5049 tmpu64 += ((int16_t) tmpulongest >> 4) << 4;
5050 break;
5051 case 1:
5052 tmpu64 += ((int32_t) tmpulongest >> 5) << 5;
5053 break;
5054 case 2:
5055 tmpu64 += ((int64_t) tmpulongest >> 6) << 6;
5056 break;
5057 }
5058 if (record_arch_list_add_mem (tmpu64, 1 << ir.ot))
5059 return -1;
5060 if (i386_record_lea_modrm (&ir))
5061 return -1;
5062 }
5063 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5064 break;
5065
5066 case 0x0fbc: /* bsf */
5067 case 0x0fbd: /* bsr */
5068 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5069 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5070 break;
5071
5072 /* bcd */
5073 case 0x27: /* daa */
5074 case 0x2f: /* das */
5075 case 0x37: /* aaa */
5076 case 0x3f: /* aas */
5077 case 0xd4: /* aam */
5078 case 0xd5: /* aad */
5079 if (ir.regmap[X86_RECORD_R8_REGNUM])
5080 {
5081 ir.addr -= 1;
5082 goto no_support;
5083 }
5084 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5085 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5086 break;
5087
5088 /* misc */
5089 case 0x90: /* nop */
5090 if (prefixes & PREFIX_LOCK)
5091 {
5092 ir.addr -= 1;
5093 goto no_support;
5094 }
5095 break;
5096
5097 case 0x9b: /* fwait */
5098 if (target_read_memory (ir.addr, &opcode8, 1))
5099 {
5100 if (record_debug)
5101 printf_unfiltered (_("Process record: error reading memory at "
5102 "addr 0x%s len = 1.\n"),
5103 paddress (gdbarch, ir.addr));
5104 return -1;
5105 }
5106 opcode = (uint32_t) opcode8;
5107 ir.addr++;
5108 goto reswitch;
5109 break;
5110
5111 /* XXX */
5112 case 0xcc: /* int3 */
5113 printf_unfiltered (_("Process record doesn't support instruction "
5114 "int3.\n"));
5115 ir.addr -= 1;
5116 goto no_support;
5117 break;
5118
5119 /* XXX */
5120 case 0xcd: /* int */
5121 {
5122 int ret;
5123 uint8_t interrupt;
5124 if (target_read_memory (ir.addr, &interrupt, 1))
5125 {
5126 if (record_debug)
5127 printf_unfiltered (_("Process record: error reading memory "
5128 "at addr %s len = 1.\n"),
5129 paddress (gdbarch, ir.addr));
5130 return -1;
5131 }
5132 ir.addr++;
5133 if (interrupt != 0x80
5134 || gdbarch_tdep (gdbarch)->i386_intx80_record == NULL)
5135 {
5136 printf_unfiltered (_("Process record doesn't support "
5137 "instruction int 0x%02x.\n"),
5138 interrupt);
5139 ir.addr -= 2;
5140 goto no_support;
5141 }
5142 ret = gdbarch_tdep (gdbarch)->i386_intx80_record (ir.regcache);
5143 if (ret)
5144 return ret;
5145 }
5146 break;
5147
5148 /* XXX */
5149 case 0xce: /* into */
5150 printf_unfiltered (_("Process record doesn't support "
5151 "instruction into.\n"));
5152 ir.addr -= 1;
5153 goto no_support;
5154 break;
5155
5156 case 0xfa: /* cli */
5157 case 0xfb: /* sti */
5158 break;
5159
5160 case 0x62: /* bound */
5161 printf_unfiltered (_("Process record doesn't support "
5162 "instruction bound.\n"));
5163 ir.addr -= 1;
5164 goto no_support;
5165 break;
5166
5167 case 0x0fc8: /* bswap reg */
5168 case 0x0fc9:
5169 case 0x0fca:
5170 case 0x0fcb:
5171 case 0x0fcc:
5172 case 0x0fcd:
5173 case 0x0fce:
5174 case 0x0fcf:
5175 I386_RECORD_ARCH_LIST_ADD_REG ((opcode & 7) | ir.rex_b);
5176 break;
5177
5178 case 0xd6: /* salc */
5179 if (ir.regmap[X86_RECORD_R8_REGNUM])
5180 {
5181 ir.addr -= 1;
5182 goto no_support;
5183 }
5184 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5185 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5186 break;
5187
5188 case 0xe0: /* loopnz */
5189 case 0xe1: /* loopz */
5190 case 0xe2: /* loop */
5191 case 0xe3: /* jecxz */
5192 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5193 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5194 break;
5195
5196 case 0x0f30: /* wrmsr */
5197 printf_unfiltered (_("Process record doesn't support "
5198 "instruction wrmsr.\n"));
5199 ir.addr -= 2;
5200 goto no_support;
5201 break;
5202
5203 case 0x0f32: /* rdmsr */
5204 printf_unfiltered (_("Process record doesn't support "
5205 "instruction rdmsr.\n"));
5206 ir.addr -= 2;
5207 goto no_support;
5208 break;
5209
5210 case 0x0f31: /* rdtsc */
5211 printf_unfiltered (_("Process record doesn't support "
5212 "instruction rdtsc.\n"));
5213 ir.addr -= 2;
5214 goto no_support;
5215 break;
5216
5217 case 0x0f34: /* sysenter */
5218 {
5219 int ret;
5220 if (ir.regmap[X86_RECORD_R8_REGNUM])
5221 {
5222 ir.addr -= 2;
5223 goto no_support;
5224 }
5225 if (gdbarch_tdep (gdbarch)->i386_sysenter_record == NULL)
5226 {
5227 printf_unfiltered (_("Process record doesn't support "
5228 "instruction sysenter.\n"));
5229 ir.addr -= 2;
5230 goto no_support;
5231 }
5232 ret = gdbarch_tdep (gdbarch)->i386_sysenter_record (ir.regcache);
5233 if (ret)
5234 return ret;
5235 }
5236 break;
5237
5238 case 0x0f35: /* sysexit */
5239 printf_unfiltered (_("Process record doesn't support "
5240 "instruction sysexit.\n"));
5241 ir.addr -= 2;
5242 goto no_support;
5243 break;
5244
5245 case 0x0f05: /* syscall */
5246 {
5247 int ret;
5248 if (gdbarch_tdep (gdbarch)->i386_syscall_record == NULL)
5249 {
5250 printf_unfiltered (_("Process record doesn't support "
5251 "instruction syscall.\n"));
5252 ir.addr -= 2;
5253 goto no_support;
5254 }
5255 ret = gdbarch_tdep (gdbarch)->i386_syscall_record (ir.regcache);
5256 if (ret)
5257 return ret;
5258 }
5259 break;
5260
5261 case 0x0f07: /* sysret */
5262 printf_unfiltered (_("Process record doesn't support "
5263 "instruction sysret.\n"));
5264 ir.addr -= 2;
5265 goto no_support;
5266 break;
5267
5268 case 0x0fa2: /* cpuid */
5269 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5270 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5271 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5272 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
5273 break;
5274
5275 case 0xf4: /* hlt */
5276 printf_unfiltered (_("Process record doesn't support "
5277 "instruction hlt.\n"));
5278 ir.addr -= 1;
5279 goto no_support;
5280 break;
5281
5282 case 0x0f00:
5283 if (i386_record_modrm (&ir))
5284 return -1;
5285 switch (ir.reg)
5286 {
5287 case 0: /* sldt */
5288 case 1: /* str */
5289 if (ir.mod == 3)
5290 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5291 else
5292 {
5293 ir.ot = OT_WORD;
5294 if (i386_record_lea_modrm (&ir))
5295 return -1;
5296 }
5297 break;
5298 case 2: /* lldt */
5299 case 3: /* ltr */
5300 break;
5301 case 4: /* verr */
5302 case 5: /* verw */
5303 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5304 break;
5305 default:
5306 ir.addr -= 3;
5307 opcode = opcode << 8 | ir.modrm;
5308 goto no_support;
5309 break;
5310 }
5311 break;
5312
5313 case 0x0f01:
5314 if (i386_record_modrm (&ir))
5315 return -1;
5316 switch (ir.reg)
5317 {
5318 case 0: /* sgdt */
5319 {
5320 uint64_t tmpu64;
5321
5322 if (ir.mod == 3)
5323 {
5324 ir.addr -= 3;
5325 opcode = opcode << 8 | ir.modrm;
5326 goto no_support;
5327 }
5328 if (ir.override >= 0)
5329 {
5330 warning (_("Process record ignores the memory "
5331 "change of instruction at "
5332 "address %s because it can't get "
5333 "the value of the segment "
5334 "register."),
5335 paddress (gdbarch, ir.orig_addr));
5336 }
5337 else
5338 {
5339 if (i386_record_lea_modrm_addr (&ir, &tmpu64))
5340 return -1;
5341 if (record_arch_list_add_mem (tmpu64, 2))
5342 return -1;
5343 tmpu64 += 2;
5344 if (ir.regmap[X86_RECORD_R8_REGNUM])
5345 {
5346 if (record_arch_list_add_mem (tmpu64, 8))
5347 return -1;
5348 }
5349 else
5350 {
5351 if (record_arch_list_add_mem (tmpu64, 4))
5352 return -1;
5353 }
5354 }
5355 }
5356 break;
5357 case 1:
5358 if (ir.mod == 3)
5359 {
5360 switch (ir.rm)
5361 {
5362 case 0: /* monitor */
5363 break;
5364 case 1: /* mwait */
5365 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5366 break;
5367 default:
5368 ir.addr -= 3;
5369 opcode = opcode << 8 | ir.modrm;
5370 goto no_support;
5371 break;
5372 }
5373 }
5374 else
5375 {
5376 /* sidt */
5377 if (ir.override >= 0)
5378 {
5379 warning (_("Process record ignores the memory "
5380 "change of instruction at "
5381 "address %s because it can't get "
5382 "the value of the segment "
5383 "register."),
5384 paddress (gdbarch, ir.orig_addr));
5385 }
5386 else
5387 {
5388 uint64_t tmpu64;
5389
5390 if (i386_record_lea_modrm_addr (&ir, &tmpu64))
5391 return -1;
5392 if (record_arch_list_add_mem (tmpu64, 2))
5393 return -1;
5394 tmpu64 += 2;
5395 if (ir.regmap[X86_RECORD_R8_REGNUM])
5396 {
5397 if (record_arch_list_add_mem (tmpu64, 8))
5398 return -1;
5399 }
5400 else
5401 {
5402 if (record_arch_list_add_mem (tmpu64, 4))
5403 return -1;
5404 }
5405 }
5406 }
5407 break;
5408 case 2: /* lgdt */
5409 if (ir.mod == 3)
5410 {
5411 /* xgetbv */
5412 if (ir.rm == 0)
5413 {
5414 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5415 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5416 break;
5417 }
5418 /* xsetbv */
5419 else if (ir.rm == 1)
5420 break;
5421 }
5422 case 3: /* lidt */
5423 if (ir.mod == 3)
5424 {
5425 ir.addr -= 3;
5426 opcode = opcode << 8 | ir.modrm;
5427 goto no_support;
5428 }
5429 break;
5430 case 4: /* smsw */
5431 if (ir.mod == 3)
5432 {
5433 if (record_arch_list_add_reg (ir.regcache, ir.rm | ir.rex_b))
5434 return -1;
5435 }
5436 else
5437 {
5438 ir.ot = OT_WORD;
5439 if (i386_record_lea_modrm (&ir))
5440 return -1;
5441 }
5442 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5443 break;
5444 case 6: /* lmsw */
5445 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5446 break;
5447 case 7: /* invlpg */
5448 if (ir.mod == 3)
5449 {
5450 if (ir.rm == 0 && ir.regmap[X86_RECORD_R8_REGNUM])
5451 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
5452 else
5453 {
5454 ir.addr -= 3;
5455 opcode = opcode << 8 | ir.modrm;
5456 goto no_support;
5457 }
5458 }
5459 else
5460 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5461 break;
5462 default:
5463 ir.addr -= 3;
5464 opcode = opcode << 8 | ir.modrm;
5465 goto no_support;
5466 break;
5467 }
5468 break;
5469
5470 case 0x0f08: /* invd */
5471 case 0x0f09: /* wbinvd */
5472 break;
5473
5474 case 0x63: /* arpl */
5475 if (i386_record_modrm (&ir))
5476 return -1;
5477 if (ir.mod == 3 || ir.regmap[X86_RECORD_R8_REGNUM])
5478 {
5479 I386_RECORD_ARCH_LIST_ADD_REG (ir.regmap[X86_RECORD_R8_REGNUM]
5480 ? (ir.reg | rex_r) : ir.rm);
5481 }
5482 else
5483 {
5484 ir.ot = ir.dflag ? OT_LONG : OT_WORD;
5485 if (i386_record_lea_modrm (&ir))
5486 return -1;
5487 }
5488 if (!ir.regmap[X86_RECORD_R8_REGNUM])
5489 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5490 break;
5491
5492 case 0x0f02: /* lar */
5493 case 0x0f03: /* lsl */
5494 if (i386_record_modrm (&ir))
5495 return -1;
5496 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5497 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5498 break;
5499
5500 case 0x0f18:
5501 if (i386_record_modrm (&ir))
5502 return -1;
5503 if (ir.mod == 3 && ir.reg == 3)
5504 {
5505 ir.addr -= 3;
5506 opcode = opcode << 8 | ir.modrm;
5507 goto no_support;
5508 }
5509 break;
5510
5511 case 0x0f19:
5512 case 0x0f1a:
5513 case 0x0f1b:
5514 case 0x0f1c:
5515 case 0x0f1d:
5516 case 0x0f1e:
5517 case 0x0f1f:
5518 /* nop (multi byte) */
5519 break;
5520
5521 case 0x0f20: /* mov reg, crN */
5522 case 0x0f22: /* mov crN, reg */
5523 if (i386_record_modrm (&ir))
5524 return -1;
5525 if ((ir.modrm & 0xc0) != 0xc0)
5526 {
5527 ir.addr -= 3;
5528 opcode = opcode << 8 | ir.modrm;
5529 goto no_support;
5530 }
5531 switch (ir.reg)
5532 {
5533 case 0:
5534 case 2:
5535 case 3:
5536 case 4:
5537 case 8:
5538 if (opcode & 2)
5539 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5540 else
5541 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5542 break;
5543 default:
5544 ir.addr -= 3;
5545 opcode = opcode << 8 | ir.modrm;
5546 goto no_support;
5547 break;
5548 }
5549 break;
5550
5551 case 0x0f21: /* mov reg, drN */
5552 case 0x0f23: /* mov drN, reg */
5553 if (i386_record_modrm (&ir))
5554 return -1;
5555 if ((ir.modrm & 0xc0) != 0xc0 || ir.reg == 4
5556 || ir.reg == 5 || ir.reg >= 8)
5557 {
5558 ir.addr -= 3;
5559 opcode = opcode << 8 | ir.modrm;
5560 goto no_support;
5561 }
5562 if (opcode & 2)
5563 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5564 else
5565 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5566 break;
5567
5568 case 0x0f06: /* clts */
5569 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5570 break;
5571
5572 /* MMX/SSE/SSE2/PNI support */
5573 /* XXX */
5574
5575 default:
5576 if (opcode > 0xff)
5577 ir.addr -= 2;
5578 else
5579 ir.addr -= 1;
5580 goto no_support;
5581 break;
5582 }
5583
5584 /* In the future, maybe still need to deal with need_dasm. */
5585 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REIP_REGNUM);
5586 if (record_arch_list_add_end ())
5587 return -1;
5588
5589 return 0;
5590
5591 no_support:
5592 printf_unfiltered (_("Process record doesn't support instruction 0x%02x "
5593 "at address %s.\n"),
5594 (unsigned int) (opcode), paddress (gdbarch, ir.addr));
5595 return -1;
5596 }
5597
5598 static const int i386_record_regmap[] =
5599 {
5600 I386_EAX_REGNUM, I386_ECX_REGNUM, I386_EDX_REGNUM, I386_EBX_REGNUM,
5601 I386_ESP_REGNUM, I386_EBP_REGNUM, I386_ESI_REGNUM, I386_EDI_REGNUM,
5602 0, 0, 0, 0, 0, 0, 0, 0,
5603 I386_EIP_REGNUM, I386_EFLAGS_REGNUM, I386_CS_REGNUM, I386_SS_REGNUM,
5604 I386_DS_REGNUM, I386_ES_REGNUM, I386_FS_REGNUM, I386_GS_REGNUM
5605 };
5606
5607 /* Check that the given address appears suitable for a fast
5608 tracepoint, which on x86 means that we need an instruction of at
5609 least 5 bytes, so that we can overwrite it with a 4-byte-offset
5610 jump and not have to worry about program jumps to an address in the
5611 middle of the tracepoint jump. Returns 1 if OK, and writes a size
5612 of instruction to replace, and 0 if not, plus an explanatory
5613 string. */
5614
5615 static int
5616 i386_fast_tracepoint_valid_at (struct gdbarch *gdbarch,
5617 CORE_ADDR addr, int *isize, char **msg)
5618 {
5619 int len, jumplen;
5620 static struct ui_file *gdb_null = NULL;
5621
5622 /* This is based on the target agent using a 4-byte relative jump.
5623 Alternate future possibilities include 8-byte offset for x86-84,
5624 or 3-byte jumps if the program has trampoline space close by. */
5625 jumplen = 5;
5626
5627 /* Dummy file descriptor for the disassembler. */
5628 if (!gdb_null)
5629 gdb_null = ui_file_new ();
5630
5631 /* Check for fit. */
5632 len = gdb_print_insn (gdbarch, addr, gdb_null, NULL);
5633 if (len < jumplen)
5634 {
5635 /* Return a bit of target-specific detail to add to the caller's
5636 generic failure message. */
5637 if (msg)
5638 *msg = xstrprintf (_("; instruction is only %d bytes long, need at least %d bytes for the jump"),
5639 len, jumplen);
5640 return 0;
5641 }
5642
5643 if (isize)
5644 *isize = len;
5645 if (msg)
5646 *msg = NULL;
5647 return 1;
5648 }
5649
5650 static int
5651 i386_validate_tdesc_p (struct gdbarch_tdep *tdep,
5652 struct tdesc_arch_data *tdesc_data)
5653 {
5654 const struct target_desc *tdesc = tdep->tdesc;
5655 const struct tdesc_feature *feature_core, *feature_vector;
5656 int i, num_regs, valid_p;
5657
5658 if (! tdesc_has_registers (tdesc))
5659 return 0;
5660
5661 /* Get core registers. */
5662 feature_core = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.core");
5663
5664 /* Get SSE registers. */
5665 feature_vector = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.sse");
5666
5667 if (feature_core == NULL || feature_vector == NULL)
5668 return 0;
5669
5670 valid_p = 1;
5671
5672 num_regs = tdep->num_core_regs;
5673 for (i = 0; i < num_regs; i++)
5674 valid_p &= tdesc_numbered_register (feature_core, tdesc_data, i,
5675 tdep->register_names[i]);
5676
5677 /* Need to include %mxcsr, so add one. */
5678 num_regs += tdep->num_xmm_regs + 1;
5679 for (; i < num_regs; i++)
5680 valid_p &= tdesc_numbered_register (feature_vector, tdesc_data, i,
5681 tdep->register_names[i]);
5682
5683 return valid_p;
5684 }
5685
5686 \f
5687 static struct gdbarch *
5688 i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
5689 {
5690 struct gdbarch_tdep *tdep;
5691 struct gdbarch *gdbarch;
5692 struct tdesc_arch_data *tdesc_data;
5693 const struct target_desc *tdesc;
5694 int mm0_regnum;
5695
5696 /* If there is already a candidate, use it. */
5697 arches = gdbarch_list_lookup_by_info (arches, &info);
5698 if (arches != NULL)
5699 return arches->gdbarch;
5700
5701 /* Allocate space for the new architecture. */
5702 tdep = XCALLOC (1, struct gdbarch_tdep);
5703 gdbarch = gdbarch_alloc (&info, tdep);
5704
5705 /* General-purpose registers. */
5706 tdep->gregset = NULL;
5707 tdep->gregset_reg_offset = NULL;
5708 tdep->gregset_num_regs = I386_NUM_GREGS;
5709 tdep->sizeof_gregset = 0;
5710
5711 /* Floating-point registers. */
5712 tdep->fpregset = NULL;
5713 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
5714
5715 /* The default settings include the FPU registers, the MMX registers
5716 and the SSE registers. This can be overridden for a specific ABI
5717 by adjusting the members `st0_regnum', `mm0_regnum' and
5718 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
5719 will show up in the output of "info all-registers". Ideally we
5720 should try to autodetect whether they are available, such that we
5721 can prevent "info all-registers" from displaying registers that
5722 aren't available.
5723
5724 NOTE: kevinb/2003-07-13: ... if it's a choice between printing
5725 [the SSE registers] always (even when they don't exist) or never
5726 showing them to the user (even when they do exist), I prefer the
5727 former over the latter. */
5728
5729 tdep->st0_regnum = I386_ST0_REGNUM;
5730
5731 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
5732 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
5733
5734 tdep->jb_pc_offset = -1;
5735 tdep->struct_return = pcc_struct_return;
5736 tdep->sigtramp_start = 0;
5737 tdep->sigtramp_end = 0;
5738 tdep->sigtramp_p = i386_sigtramp_p;
5739 tdep->sigcontext_addr = NULL;
5740 tdep->sc_reg_offset = NULL;
5741 tdep->sc_pc_offset = -1;
5742 tdep->sc_sp_offset = -1;
5743
5744 tdep->record_regmap = i386_record_regmap;
5745
5746 /* The format used for `long double' on almost all i386 targets is
5747 the i387 extended floating-point format. In fact, of all targets
5748 in the GCC 2.95 tree, only OSF/1 does it different, and insists
5749 on having a `long double' that's not `long' at all. */
5750 set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext);
5751
5752 /* Although the i387 extended floating-point has only 80 significant
5753 bits, a `long double' actually takes up 96, probably to enforce
5754 alignment. */
5755 set_gdbarch_long_double_bit (gdbarch, 96);
5756
5757 /* Register numbers of various important registers. */
5758 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
5759 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
5760 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
5761 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
5762
5763 /* NOTE: kettenis/20040418: GCC does have two possible register
5764 numbering schemes on the i386: dbx and SVR4. These schemes
5765 differ in how they number %ebp, %esp, %eflags, and the
5766 floating-point registers, and are implemented by the arrays
5767 dbx_register_map[] and svr4_dbx_register_map in
5768 gcc/config/i386.c. GCC also defines a third numbering scheme in
5769 gcc/config/i386.c, which it designates as the "default" register
5770 map used in 64bit mode. This last register numbering scheme is
5771 implemented in dbx64_register_map, and is used for AMD64; see
5772 amd64-tdep.c.
5773
5774 Currently, each GCC i386 target always uses the same register
5775 numbering scheme across all its supported debugging formats
5776 i.e. SDB (COFF), stabs and DWARF 2. This is because
5777 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
5778 DBX_REGISTER_NUMBER macro which is defined by each target's
5779 respective config header in a manner independent of the requested
5780 output debugging format.
5781
5782 This does not match the arrangement below, which presumes that
5783 the SDB and stabs numbering schemes differ from the DWARF and
5784 DWARF 2 ones. The reason for this arrangement is that it is
5785 likely to get the numbering scheme for the target's
5786 default/native debug format right. For targets where GCC is the
5787 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
5788 targets where the native toolchain uses a different numbering
5789 scheme for a particular debug format (stabs-in-ELF on Solaris)
5790 the defaults below will have to be overridden, like
5791 i386_elf_init_abi() does. */
5792
5793 /* Use the dbx register numbering scheme for stabs and COFF. */
5794 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
5795 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
5796
5797 /* Use the SVR4 register numbering scheme for DWARF 2. */
5798 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
5799
5800 /* We don't set gdbarch_stab_reg_to_regnum, since ECOFF doesn't seem to
5801 be in use on any of the supported i386 targets. */
5802
5803 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
5804
5805 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
5806
5807 /* Call dummy code. */
5808 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
5809
5810 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
5811 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
5812 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
5813
5814 set_gdbarch_return_value (gdbarch, i386_return_value);
5815
5816 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
5817
5818 /* Stack grows downward. */
5819 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
5820
5821 set_gdbarch_breakpoint_from_pc (gdbarch, i386_breakpoint_from_pc);
5822 set_gdbarch_decr_pc_after_break (gdbarch, 1);
5823 set_gdbarch_max_insn_length (gdbarch, I386_MAX_INSN_LEN);
5824
5825 set_gdbarch_frame_args_skip (gdbarch, 8);
5826
5827 set_gdbarch_print_insn (gdbarch, i386_print_insn);
5828
5829 set_gdbarch_dummy_id (gdbarch, i386_dummy_id);
5830
5831 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
5832
5833 /* Add the i386 register groups. */
5834 i386_add_reggroups (gdbarch);
5835 tdep->register_reggroup_p = i386_register_reggroup_p;
5836
5837 /* Helper for function argument information. */
5838 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
5839
5840 /* Hook the function epilogue frame unwinder. This unwinder is
5841 appended to the list first, so that it supercedes the Dwarf
5842 unwinder in function epilogues (where the Dwarf unwinder
5843 currently fails). */
5844 frame_unwind_append_unwinder (gdbarch, &i386_epilogue_frame_unwind);
5845
5846 /* Hook in the DWARF CFI frame unwinder. This unwinder is appended
5847 to the list before the prologue-based unwinders, so that Dwarf
5848 CFI info will be used if it is available. */
5849 dwarf2_append_unwinders (gdbarch);
5850
5851 frame_base_set_default (gdbarch, &i386_frame_base);
5852
5853 /* Pseudo registers may be changed by amd64_init_abi. */
5854 set_gdbarch_pseudo_register_read (gdbarch, i386_pseudo_register_read);
5855 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
5856
5857 set_tdesc_pseudo_register_type (gdbarch, i386_pseudo_register_type);
5858 set_tdesc_pseudo_register_name (gdbarch, i386_pseudo_register_name);
5859
5860 /* The default ABI includes general-purpose registers,
5861 floating-point registers, and the SSE registers. */
5862 set_gdbarch_num_regs (gdbarch, I386_SSE_NUM_REGS);
5863
5864 /* Get the x86 target description from INFO. */
5865 tdesc = info.target_desc;
5866 if (! tdesc_has_registers (tdesc))
5867 tdesc = tdesc_i386;
5868 tdep->tdesc = tdesc;
5869
5870 tdep->num_core_regs = I386_NUM_GREGS + I387_NUM_REGS;
5871 tdep->register_names = i386_register_names;
5872
5873 tdep->num_byte_regs = 8;
5874 tdep->num_word_regs = 8;
5875 tdep->num_dword_regs = 0;
5876 tdep->num_mmx_regs = 8;
5877
5878 tdesc_data = tdesc_data_alloc ();
5879
5880 /* Hook in ABI-specific overrides, if they have been registered. */
5881 info.tdep_info = (void *) tdesc_data;
5882 gdbarch_init_osabi (info, gdbarch);
5883
5884 /* Wire in pseudo registers. Number of pseudo registers may be
5885 changed. */
5886 set_gdbarch_num_pseudo_regs (gdbarch, (tdep->num_byte_regs
5887 + tdep->num_word_regs
5888 + tdep->num_dword_regs
5889 + tdep->num_mmx_regs));
5890
5891 /* Target description may be changed. */
5892 tdesc = tdep->tdesc;
5893
5894 if (!i386_validate_tdesc_p (tdep, tdesc_data))
5895 {
5896 tdesc_data_cleanup (tdesc_data);
5897 xfree (tdep);
5898 gdbarch_free (gdbarch);
5899 return NULL;
5900 }
5901
5902 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
5903
5904 /* Override gdbarch_register_reggroup_p set in tdesc_use_registers. */
5905 set_gdbarch_register_reggroup_p (gdbarch, tdep->register_reggroup_p);
5906
5907 /* Make %al the first pseudo-register. */
5908 tdep->al_regnum = gdbarch_num_regs (gdbarch);
5909 tdep->ax_regnum = tdep->al_regnum + tdep->num_byte_regs;
5910
5911 mm0_regnum = tdep->ax_regnum + tdep->num_word_regs;
5912 if (tdep->num_dword_regs)
5913 {
5914 /* Support dword pseudo-registesr if it hasn't been disabled, */
5915 tdep->eax_regnum = mm0_regnum;
5916 mm0_regnum = tdep->eax_regnum + tdep->num_dword_regs;
5917 }
5918 else
5919 tdep->eax_regnum = -1;
5920
5921 if (tdep->num_mmx_regs != 0)
5922 {
5923 /* Support MMX pseudo-registesr if MMX hasn't been disabled, */
5924 tdep->mm0_regnum = mm0_regnum;
5925 }
5926 else
5927 tdep->mm0_regnum = -1;
5928
5929 /* Hook in the legacy prologue-based unwinders last (fallback). */
5930 frame_unwind_append_unwinder (gdbarch, &i386_sigtramp_frame_unwind);
5931 frame_unwind_append_unwinder (gdbarch, &i386_frame_unwind);
5932
5933 /* If we have a register mapping, enable the generic core file
5934 support, unless it has already been enabled. */
5935 if (tdep->gregset_reg_offset
5936 && !gdbarch_regset_from_core_section_p (gdbarch))
5937 set_gdbarch_regset_from_core_section (gdbarch,
5938 i386_regset_from_core_section);
5939
5940 set_gdbarch_skip_permanent_breakpoint (gdbarch,
5941 i386_skip_permanent_breakpoint);
5942
5943 set_gdbarch_fast_tracepoint_valid_at (gdbarch,
5944 i386_fast_tracepoint_valid_at);
5945
5946 return gdbarch;
5947 }
5948
5949 static enum gdb_osabi
5950 i386_coff_osabi_sniffer (bfd *abfd)
5951 {
5952 if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
5953 || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
5954 return GDB_OSABI_GO32;
5955
5956 return GDB_OSABI_UNKNOWN;
5957 }
5958 \f
5959
5960 /* Provide a prototype to silence -Wmissing-prototypes. */
5961 void _initialize_i386_tdep (void);
5962
5963 void
5964 _initialize_i386_tdep (void)
5965 {
5966 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
5967
5968 /* Add the variable that controls the disassembly flavor. */
5969 add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
5970 &disassembly_flavor, _("\
5971 Set the disassembly flavor."), _("\
5972 Show the disassembly flavor."), _("\
5973 The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
5974 NULL,
5975 NULL, /* FIXME: i18n: */
5976 &setlist, &showlist);
5977
5978 /* Add the variable that controls the convention for returning
5979 structs. */
5980 add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
5981 &struct_convention, _("\
5982 Set the convention for returning small structs."), _("\
5983 Show the convention for returning small structs."), _("\
5984 Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
5985 is \"default\"."),
5986 NULL,
5987 NULL, /* FIXME: i18n: */
5988 &setlist, &showlist);
5989
5990 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
5991 i386_coff_osabi_sniffer);
5992
5993 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
5994 i386_svr4_init_abi);
5995 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_GO32,
5996 i386_go32_init_abi);
5997
5998 /* Initialize the i386-specific register groups. */
5999 i386_init_reggroups ();
6000
6001 /* Initialize the standard target descriptions. */
6002 initialize_tdesc_i386 ();
6003 }
This page took 0.144669 seconds and 5 git commands to generate.