* amd64-tdep.c (amd64_get_longjmp_target): New.
[deliverable/binutils-gdb.git] / gdb / i386-tdep.c
1 /* Intel 386 target-dependent stuff.
2
3 Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "command.h"
25 #include "dummy-frame.h"
26 #include "dwarf2-frame.h"
27 #include "doublest.h"
28 #include "frame.h"
29 #include "frame-base.h"
30 #include "frame-unwind.h"
31 #include "inferior.h"
32 #include "gdbcmd.h"
33 #include "gdbcore.h"
34 #include "gdbtypes.h"
35 #include "objfiles.h"
36 #include "osabi.h"
37 #include "regcache.h"
38 #include "reggroups.h"
39 #include "regset.h"
40 #include "symfile.h"
41 #include "symtab.h"
42 #include "target.h"
43 #include "value.h"
44 #include "dis-asm.h"
45
46 #include "gdb_assert.h"
47 #include "gdb_string.h"
48
49 #include "i386-tdep.h"
50 #include "i387-tdep.h"
51
52 /* Register names. */
53
54 static char *i386_register_names[] =
55 {
56 "eax", "ecx", "edx", "ebx",
57 "esp", "ebp", "esi", "edi",
58 "eip", "eflags", "cs", "ss",
59 "ds", "es", "fs", "gs",
60 "st0", "st1", "st2", "st3",
61 "st4", "st5", "st6", "st7",
62 "fctrl", "fstat", "ftag", "fiseg",
63 "fioff", "foseg", "fooff", "fop",
64 "xmm0", "xmm1", "xmm2", "xmm3",
65 "xmm4", "xmm5", "xmm6", "xmm7",
66 "mxcsr"
67 };
68
69 static const int i386_num_register_names = ARRAY_SIZE (i386_register_names);
70
71 /* Register names for MMX pseudo-registers. */
72
73 static char *i386_mmx_names[] =
74 {
75 "mm0", "mm1", "mm2", "mm3",
76 "mm4", "mm5", "mm6", "mm7"
77 };
78
79 static const int i386_num_mmx_regs = ARRAY_SIZE (i386_mmx_names);
80
81 static int
82 i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
83 {
84 int mm0_regnum = gdbarch_tdep (gdbarch)->mm0_regnum;
85
86 if (mm0_regnum < 0)
87 return 0;
88
89 return (regnum >= mm0_regnum && regnum < mm0_regnum + i386_num_mmx_regs);
90 }
91
92 /* SSE register? */
93
94 static int
95 i386_sse_regnum_p (struct gdbarch *gdbarch, int regnum)
96 {
97 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
98
99 if (I387_NUM_XMM_REGS (tdep) == 0)
100 return 0;
101
102 return (I387_XMM0_REGNUM (tdep) <= regnum
103 && regnum < I387_MXCSR_REGNUM (tdep));
104 }
105
106 static int
107 i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
108 {
109 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
110
111 if (I387_NUM_XMM_REGS (tdep) == 0)
112 return 0;
113
114 return (regnum == I387_MXCSR_REGNUM (tdep));
115 }
116
117 /* FP register? */
118
119 int
120 i386_fp_regnum_p (struct gdbarch *gdbarch, int regnum)
121 {
122 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
123
124 if (I387_ST0_REGNUM (tdep) < 0)
125 return 0;
126
127 return (I387_ST0_REGNUM (tdep) <= regnum
128 && regnum < I387_FCTRL_REGNUM (tdep));
129 }
130
131 int
132 i386_fpc_regnum_p (struct gdbarch *gdbarch, int regnum)
133 {
134 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
135
136 if (I387_ST0_REGNUM (tdep) < 0)
137 return 0;
138
139 return (I387_FCTRL_REGNUM (tdep) <= regnum
140 && regnum < I387_XMM0_REGNUM (tdep));
141 }
142
143 /* Return the name of register REGNUM. */
144
145 const char *
146 i386_register_name (struct gdbarch *gdbarch, int regnum)
147 {
148 if (i386_mmx_regnum_p (gdbarch, regnum))
149 return i386_mmx_names[regnum - I387_MM0_REGNUM (gdbarch_tdep (gdbarch))];
150
151 if (regnum >= 0 && regnum < i386_num_register_names)
152 return i386_register_names[regnum];
153
154 return NULL;
155 }
156
157 /* Convert a dbx register number REG to the appropriate register
158 number used by GDB. */
159
160 static int
161 i386_dbx_reg_to_regnum (struct gdbarch *gdbarch, int reg)
162 {
163 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
164
165 /* This implements what GCC calls the "default" register map
166 (dbx_register_map[]). */
167
168 if (reg >= 0 && reg <= 7)
169 {
170 /* General-purpose registers. The debug info calls %ebp
171 register 4, and %esp register 5. */
172 if (reg == 4)
173 return 5;
174 else if (reg == 5)
175 return 4;
176 else return reg;
177 }
178 else if (reg >= 12 && reg <= 19)
179 {
180 /* Floating-point registers. */
181 return reg - 12 + I387_ST0_REGNUM (tdep);
182 }
183 else if (reg >= 21 && reg <= 28)
184 {
185 /* SSE registers. */
186 return reg - 21 + I387_XMM0_REGNUM (tdep);
187 }
188 else if (reg >= 29 && reg <= 36)
189 {
190 /* MMX registers. */
191 return reg - 29 + I387_MM0_REGNUM (tdep);
192 }
193
194 /* This will hopefully provoke a warning. */
195 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
196 }
197
198 /* Convert SVR4 register number REG to the appropriate register number
199 used by GDB. */
200
201 static int
202 i386_svr4_reg_to_regnum (struct gdbarch *gdbarch, int reg)
203 {
204 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
205
206 /* This implements the GCC register map that tries to be compatible
207 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
208
209 /* The SVR4 register numbering includes %eip and %eflags, and
210 numbers the floating point registers differently. */
211 if (reg >= 0 && reg <= 9)
212 {
213 /* General-purpose registers. */
214 return reg;
215 }
216 else if (reg >= 11 && reg <= 18)
217 {
218 /* Floating-point registers. */
219 return reg - 11 + I387_ST0_REGNUM (tdep);
220 }
221 else if (reg >= 21 && reg <= 36)
222 {
223 /* The SSE and MMX registers have the same numbers as with dbx. */
224 return i386_dbx_reg_to_regnum (gdbarch, reg);
225 }
226
227 switch (reg)
228 {
229 case 37: return I387_FCTRL_REGNUM (tdep);
230 case 38: return I387_FSTAT_REGNUM (tdep);
231 case 39: return I387_MXCSR_REGNUM (tdep);
232 case 40: return I386_ES_REGNUM;
233 case 41: return I386_CS_REGNUM;
234 case 42: return I386_SS_REGNUM;
235 case 43: return I386_DS_REGNUM;
236 case 44: return I386_FS_REGNUM;
237 case 45: return I386_GS_REGNUM;
238 }
239
240 /* This will hopefully provoke a warning. */
241 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
242 }
243
244 \f
245
246 /* This is the variable that is set with "set disassembly-flavor", and
247 its legitimate values. */
248 static const char att_flavor[] = "att";
249 static const char intel_flavor[] = "intel";
250 static const char *valid_flavors[] =
251 {
252 att_flavor,
253 intel_flavor,
254 NULL
255 };
256 static const char *disassembly_flavor = att_flavor;
257 \f
258
259 /* Use the program counter to determine the contents and size of a
260 breakpoint instruction. Return a pointer to a string of bytes that
261 encode a breakpoint instruction, store the length of the string in
262 *LEN and optionally adjust *PC to point to the correct memory
263 location for inserting the breakpoint.
264
265 On the i386 we have a single breakpoint that fits in a single byte
266 and can be inserted anywhere.
267
268 This function is 64-bit safe. */
269
270 static const gdb_byte *
271 i386_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
272 {
273 static gdb_byte break_insn[] = { 0xcc }; /* int 3 */
274
275 *len = sizeof (break_insn);
276 return break_insn;
277 }
278 \f
279 #ifdef I386_REGNO_TO_SYMMETRY
280 #error "The Sequent Symmetry is no longer supported."
281 #endif
282
283 /* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
284 and %esp "belong" to the calling function. Therefore these
285 registers should be saved if they're going to be modified. */
286
287 /* The maximum number of saved registers. This should include all
288 registers mentioned above, and %eip. */
289 #define I386_NUM_SAVED_REGS I386_NUM_GREGS
290
291 struct i386_frame_cache
292 {
293 /* Base address. */
294 CORE_ADDR base;
295 LONGEST sp_offset;
296 CORE_ADDR pc;
297
298 /* Saved registers. */
299 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
300 CORE_ADDR saved_sp;
301 int stack_align;
302 int pc_in_eax;
303
304 /* Stack space reserved for local variables. */
305 long locals;
306 };
307
308 /* Allocate and initialize a frame cache. */
309
310 static struct i386_frame_cache *
311 i386_alloc_frame_cache (void)
312 {
313 struct i386_frame_cache *cache;
314 int i;
315
316 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
317
318 /* Base address. */
319 cache->base = 0;
320 cache->sp_offset = -4;
321 cache->pc = 0;
322
323 /* Saved registers. We initialize these to -1 since zero is a valid
324 offset (that's where %ebp is supposed to be stored). */
325 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
326 cache->saved_regs[i] = -1;
327 cache->saved_sp = 0;
328 cache->stack_align = 0;
329 cache->pc_in_eax = 0;
330
331 /* Frameless until proven otherwise. */
332 cache->locals = -1;
333
334 return cache;
335 }
336
337 /* If the instruction at PC is a jump, return the address of its
338 target. Otherwise, return PC. */
339
340 static CORE_ADDR
341 i386_follow_jump (CORE_ADDR pc)
342 {
343 gdb_byte op;
344 long delta = 0;
345 int data16 = 0;
346
347 target_read_memory (pc, &op, 1);
348 if (op == 0x66)
349 {
350 data16 = 1;
351 op = read_memory_unsigned_integer (pc + 1, 1);
352 }
353
354 switch (op)
355 {
356 case 0xe9:
357 /* Relative jump: if data16 == 0, disp32, else disp16. */
358 if (data16)
359 {
360 delta = read_memory_integer (pc + 2, 2);
361
362 /* Include the size of the jmp instruction (including the
363 0x66 prefix). */
364 delta += 4;
365 }
366 else
367 {
368 delta = read_memory_integer (pc + 1, 4);
369
370 /* Include the size of the jmp instruction. */
371 delta += 5;
372 }
373 break;
374 case 0xeb:
375 /* Relative jump, disp8 (ignore data16). */
376 delta = read_memory_integer (pc + data16 + 1, 1);
377
378 delta += data16 + 2;
379 break;
380 }
381
382 return pc + delta;
383 }
384
385 /* Check whether PC points at a prologue for a function returning a
386 structure or union. If so, it updates CACHE and returns the
387 address of the first instruction after the code sequence that
388 removes the "hidden" argument from the stack or CURRENT_PC,
389 whichever is smaller. Otherwise, return PC. */
390
391 static CORE_ADDR
392 i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
393 struct i386_frame_cache *cache)
394 {
395 /* Functions that return a structure or union start with:
396
397 popl %eax 0x58
398 xchgl %eax, (%esp) 0x87 0x04 0x24
399 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
400
401 (the System V compiler puts out the second `xchg' instruction,
402 and the assembler doesn't try to optimize it, so the 'sib' form
403 gets generated). This sequence is used to get the address of the
404 return buffer for a function that returns a structure. */
405 static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
406 static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
407 gdb_byte buf[4];
408 gdb_byte op;
409
410 if (current_pc <= pc)
411 return pc;
412
413 target_read_memory (pc, &op, 1);
414
415 if (op != 0x58) /* popl %eax */
416 return pc;
417
418 target_read_memory (pc + 1, buf, 4);
419 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
420 return pc;
421
422 if (current_pc == pc)
423 {
424 cache->sp_offset += 4;
425 return current_pc;
426 }
427
428 if (current_pc == pc + 1)
429 {
430 cache->pc_in_eax = 1;
431 return current_pc;
432 }
433
434 if (buf[1] == proto1[1])
435 return pc + 4;
436 else
437 return pc + 5;
438 }
439
440 static CORE_ADDR
441 i386_skip_probe (CORE_ADDR pc)
442 {
443 /* A function may start with
444
445 pushl constant
446 call _probe
447 addl $4, %esp
448
449 followed by
450
451 pushl %ebp
452
453 etc. */
454 gdb_byte buf[8];
455 gdb_byte op;
456
457 target_read_memory (pc, &op, 1);
458
459 if (op == 0x68 || op == 0x6a)
460 {
461 int delta;
462
463 /* Skip past the `pushl' instruction; it has either a one-byte or a
464 four-byte operand, depending on the opcode. */
465 if (op == 0x68)
466 delta = 5;
467 else
468 delta = 2;
469
470 /* Read the following 8 bytes, which should be `call _probe' (6
471 bytes) followed by `addl $4,%esp' (2 bytes). */
472 read_memory (pc + delta, buf, sizeof (buf));
473 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
474 pc += delta + sizeof (buf);
475 }
476
477 return pc;
478 }
479
480 /* GCC 4.1 and later, can put code in the prologue to realign the
481 stack pointer. Check whether PC points to such code, and update
482 CACHE accordingly. Return the first instruction after the code
483 sequence or CURRENT_PC, whichever is smaller. If we don't
484 recognize the code, return PC. */
485
486 static CORE_ADDR
487 i386_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
488 struct i386_frame_cache *cache)
489 {
490 /* The register used by the compiler to perform the stack re-alignment
491 is, in order of preference, either %ecx, %edx, or %eax. GCC should
492 never use %ebx as it always treats it as callee-saved, whereas
493 the compiler can only use caller-saved registers. */
494 static const gdb_byte insns_ecx[10] = {
495 0x8d, 0x4c, 0x24, 0x04, /* leal 4(%esp), %ecx */
496 0x83, 0xe4, 0xf0, /* andl $-16, %esp */
497 0xff, 0x71, 0xfc /* pushl -4(%ecx) */
498 };
499 static const gdb_byte insns_edx[10] = {
500 0x8d, 0x54, 0x24, 0x04, /* leal 4(%esp), %edx */
501 0x83, 0xe4, 0xf0, /* andl $-16, %esp */
502 0xff, 0x72, 0xfc /* pushl -4(%edx) */
503 };
504 static const gdb_byte insns_eax[10] = {
505 0x8d, 0x44, 0x24, 0x04, /* leal 4(%esp), %eax */
506 0x83, 0xe4, 0xf0, /* andl $-16, %esp */
507 0xff, 0x70, 0xfc /* pushl -4(%eax) */
508 };
509 gdb_byte buf[10];
510
511 if (target_read_memory (pc, buf, sizeof buf)
512 || (memcmp (buf, insns_ecx, sizeof buf) != 0
513 && memcmp (buf, insns_edx, sizeof buf) != 0
514 && memcmp (buf, insns_eax, sizeof buf) != 0))
515 return pc;
516
517 if (current_pc > pc + 4)
518 cache->stack_align = 1;
519
520 return min (pc + 10, current_pc);
521 }
522
523 /* Maximum instruction length we need to handle. */
524 #define I386_MAX_INSN_LEN 6
525
526 /* Instruction description. */
527 struct i386_insn
528 {
529 size_t len;
530 gdb_byte insn[I386_MAX_INSN_LEN];
531 gdb_byte mask[I386_MAX_INSN_LEN];
532 };
533
534 /* Search for the instruction at PC in the list SKIP_INSNS. Return
535 the first instruction description that matches. Otherwise, return
536 NULL. */
537
538 static struct i386_insn *
539 i386_match_insn (CORE_ADDR pc, struct i386_insn *skip_insns)
540 {
541 struct i386_insn *insn;
542 gdb_byte op;
543
544 target_read_memory (pc, &op, 1);
545
546 for (insn = skip_insns; insn->len > 0; insn++)
547 {
548 if ((op & insn->mask[0]) == insn->insn[0])
549 {
550 gdb_byte buf[I386_MAX_INSN_LEN - 1];
551 int insn_matched = 1;
552 size_t i;
553
554 gdb_assert (insn->len > 1);
555 gdb_assert (insn->len <= I386_MAX_INSN_LEN);
556
557 target_read_memory (pc + 1, buf, insn->len - 1);
558 for (i = 1; i < insn->len; i++)
559 {
560 if ((buf[i - 1] & insn->mask[i]) != insn->insn[i])
561 insn_matched = 0;
562 }
563
564 if (insn_matched)
565 return insn;
566 }
567 }
568
569 return NULL;
570 }
571
572 /* Some special instructions that might be migrated by GCC into the
573 part of the prologue that sets up the new stack frame. Because the
574 stack frame hasn't been setup yet, no registers have been saved
575 yet, and only the scratch registers %eax, %ecx and %edx can be
576 touched. */
577
578 struct i386_insn i386_frame_setup_skip_insns[] =
579 {
580 /* Check for `movb imm8, r' and `movl imm32, r'.
581
582 ??? Should we handle 16-bit operand-sizes here? */
583
584 /* `movb imm8, %al' and `movb imm8, %ah' */
585 /* `movb imm8, %cl' and `movb imm8, %ch' */
586 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
587 /* `movb imm8, %dl' and `movb imm8, %dh' */
588 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
589 /* `movl imm32, %eax' and `movl imm32, %ecx' */
590 { 5, { 0xb8 }, { 0xfe } },
591 /* `movl imm32, %edx' */
592 { 5, { 0xba }, { 0xff } },
593
594 /* Check for `mov imm32, r32'. Note that there is an alternative
595 encoding for `mov m32, %eax'.
596
597 ??? Should we handle SIB adressing here?
598 ??? Should we handle 16-bit operand-sizes here? */
599
600 /* `movl m32, %eax' */
601 { 5, { 0xa1 }, { 0xff } },
602 /* `movl m32, %eax' and `mov; m32, %ecx' */
603 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
604 /* `movl m32, %edx' */
605 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
606
607 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
608 Because of the symmetry, there are actually two ways to encode
609 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
610 opcode bytes 0x31 and 0x33 for `xorl'. */
611
612 /* `subl %eax, %eax' */
613 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
614 /* `subl %ecx, %ecx' */
615 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
616 /* `subl %edx, %edx' */
617 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
618 /* `xorl %eax, %eax' */
619 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
620 /* `xorl %ecx, %ecx' */
621 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
622 /* `xorl %edx, %edx' */
623 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
624 { 0 }
625 };
626
627
628 /* Check whether PC points to a no-op instruction. */
629 static CORE_ADDR
630 i386_skip_noop (CORE_ADDR pc)
631 {
632 gdb_byte op;
633 int check = 1;
634
635 target_read_memory (pc, &op, 1);
636
637 while (check)
638 {
639 check = 0;
640 /* Ignore `nop' instruction. */
641 if (op == 0x90)
642 {
643 pc += 1;
644 target_read_memory (pc, &op, 1);
645 check = 1;
646 }
647 /* Ignore no-op instruction `mov %edi, %edi'.
648 Microsoft system dlls often start with
649 a `mov %edi,%edi' instruction.
650 The 5 bytes before the function start are
651 filled with `nop' instructions.
652 This pattern can be used for hot-patching:
653 The `mov %edi, %edi' instruction can be replaced by a
654 near jump to the location of the 5 `nop' instructions
655 which can be replaced by a 32-bit jump to anywhere
656 in the 32-bit address space. */
657
658 else if (op == 0x8b)
659 {
660 target_read_memory (pc + 1, &op, 1);
661 if (op == 0xff)
662 {
663 pc += 2;
664 target_read_memory (pc, &op, 1);
665 check = 1;
666 }
667 }
668 }
669 return pc;
670 }
671
672 /* Check whether PC points at a code that sets up a new stack frame.
673 If so, it updates CACHE and returns the address of the first
674 instruction after the sequence that sets up the frame or LIMIT,
675 whichever is smaller. If we don't recognize the code, return PC. */
676
677 static CORE_ADDR
678 i386_analyze_frame_setup (CORE_ADDR pc, CORE_ADDR limit,
679 struct i386_frame_cache *cache)
680 {
681 struct i386_insn *insn;
682 gdb_byte op;
683 int skip = 0;
684
685 if (limit <= pc)
686 return limit;
687
688 target_read_memory (pc, &op, 1);
689
690 if (op == 0x55) /* pushl %ebp */
691 {
692 /* Take into account that we've executed the `pushl %ebp' that
693 starts this instruction sequence. */
694 cache->saved_regs[I386_EBP_REGNUM] = 0;
695 cache->sp_offset += 4;
696 pc++;
697
698 /* If that's all, return now. */
699 if (limit <= pc)
700 return limit;
701
702 /* Check for some special instructions that might be migrated by
703 GCC into the prologue and skip them. At this point in the
704 prologue, code should only touch the scratch registers %eax,
705 %ecx and %edx, so while the number of posibilities is sheer,
706 it is limited.
707
708 Make sure we only skip these instructions if we later see the
709 `movl %esp, %ebp' that actually sets up the frame. */
710 while (pc + skip < limit)
711 {
712 insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
713 if (insn == NULL)
714 break;
715
716 skip += insn->len;
717 }
718
719 /* If that's all, return now. */
720 if (limit <= pc + skip)
721 return limit;
722
723 target_read_memory (pc + skip, &op, 1);
724
725 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
726 switch (op)
727 {
728 case 0x8b:
729 if (read_memory_unsigned_integer (pc + skip + 1, 1) != 0xec)
730 return pc;
731 break;
732 case 0x89:
733 if (read_memory_unsigned_integer (pc + skip + 1, 1) != 0xe5)
734 return pc;
735 break;
736 default:
737 return pc;
738 }
739
740 /* OK, we actually have a frame. We just don't know how large
741 it is yet. Set its size to zero. We'll adjust it if
742 necessary. We also now commit to skipping the special
743 instructions mentioned before. */
744 cache->locals = 0;
745 pc += (skip + 2);
746
747 /* If that's all, return now. */
748 if (limit <= pc)
749 return limit;
750
751 /* Check for stack adjustment
752
753 subl $XXX, %esp
754
755 NOTE: You can't subtract a 16-bit immediate from a 32-bit
756 reg, so we don't have to worry about a data16 prefix. */
757 target_read_memory (pc, &op, 1);
758 if (op == 0x83)
759 {
760 /* `subl' with 8-bit immediate. */
761 if (read_memory_unsigned_integer (pc + 1, 1) != 0xec)
762 /* Some instruction starting with 0x83 other than `subl'. */
763 return pc;
764
765 /* `subl' with signed 8-bit immediate (though it wouldn't
766 make sense to be negative). */
767 cache->locals = read_memory_integer (pc + 2, 1);
768 return pc + 3;
769 }
770 else if (op == 0x81)
771 {
772 /* Maybe it is `subl' with a 32-bit immediate. */
773 if (read_memory_unsigned_integer (pc + 1, 1) != 0xec)
774 /* Some instruction starting with 0x81 other than `subl'. */
775 return pc;
776
777 /* It is `subl' with a 32-bit immediate. */
778 cache->locals = read_memory_integer (pc + 2, 4);
779 return pc + 6;
780 }
781 else
782 {
783 /* Some instruction other than `subl'. */
784 return pc;
785 }
786 }
787 else if (op == 0xc8) /* enter */
788 {
789 cache->locals = read_memory_unsigned_integer (pc + 1, 2);
790 return pc + 4;
791 }
792
793 return pc;
794 }
795
796 /* Check whether PC points at code that saves registers on the stack.
797 If so, it updates CACHE and returns the address of the first
798 instruction after the register saves or CURRENT_PC, whichever is
799 smaller. Otherwise, return PC. */
800
801 static CORE_ADDR
802 i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
803 struct i386_frame_cache *cache)
804 {
805 CORE_ADDR offset = 0;
806 gdb_byte op;
807 int i;
808
809 if (cache->locals > 0)
810 offset -= cache->locals;
811 for (i = 0; i < 8 && pc < current_pc; i++)
812 {
813 target_read_memory (pc, &op, 1);
814 if (op < 0x50 || op > 0x57)
815 break;
816
817 offset -= 4;
818 cache->saved_regs[op - 0x50] = offset;
819 cache->sp_offset += 4;
820 pc++;
821 }
822
823 return pc;
824 }
825
826 /* Do a full analysis of the prologue at PC and update CACHE
827 accordingly. Bail out early if CURRENT_PC is reached. Return the
828 address where the analysis stopped.
829
830 We handle these cases:
831
832 The startup sequence can be at the start of the function, or the
833 function can start with a branch to startup code at the end.
834
835 %ebp can be set up with either the 'enter' instruction, or "pushl
836 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
837 once used in the System V compiler).
838
839 Local space is allocated just below the saved %ebp by either the
840 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
841 16-bit unsigned argument for space to allocate, and the 'addl'
842 instruction could have either a signed byte, or 32-bit immediate.
843
844 Next, the registers used by this function are pushed. With the
845 System V compiler they will always be in the order: %edi, %esi,
846 %ebx (and sometimes a harmless bug causes it to also save but not
847 restore %eax); however, the code below is willing to see the pushes
848 in any order, and will handle up to 8 of them.
849
850 If the setup sequence is at the end of the function, then the next
851 instruction will be a branch back to the start. */
852
853 static CORE_ADDR
854 i386_analyze_prologue (CORE_ADDR pc, CORE_ADDR current_pc,
855 struct i386_frame_cache *cache)
856 {
857 pc = i386_skip_noop (pc);
858 pc = i386_follow_jump (pc);
859 pc = i386_analyze_struct_return (pc, current_pc, cache);
860 pc = i386_skip_probe (pc);
861 pc = i386_analyze_stack_align (pc, current_pc, cache);
862 pc = i386_analyze_frame_setup (pc, current_pc, cache);
863 return i386_analyze_register_saves (pc, current_pc, cache);
864 }
865
866 /* Return PC of first real instruction. */
867
868 static CORE_ADDR
869 i386_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
870 {
871 static gdb_byte pic_pat[6] =
872 {
873 0xe8, 0, 0, 0, 0, /* call 0x0 */
874 0x5b, /* popl %ebx */
875 };
876 struct i386_frame_cache cache;
877 CORE_ADDR pc;
878 gdb_byte op;
879 int i;
880
881 cache.locals = -1;
882 pc = i386_analyze_prologue (start_pc, 0xffffffff, &cache);
883 if (cache.locals < 0)
884 return start_pc;
885
886 /* Found valid frame setup. */
887
888 /* The native cc on SVR4 in -K PIC mode inserts the following code
889 to get the address of the global offset table (GOT) into register
890 %ebx:
891
892 call 0x0
893 popl %ebx
894 movl %ebx,x(%ebp) (optional)
895 addl y,%ebx
896
897 This code is with the rest of the prologue (at the end of the
898 function), so we have to skip it to get to the first real
899 instruction at the start of the function. */
900
901 for (i = 0; i < 6; i++)
902 {
903 target_read_memory (pc + i, &op, 1);
904 if (pic_pat[i] != op)
905 break;
906 }
907 if (i == 6)
908 {
909 int delta = 6;
910
911 target_read_memory (pc + delta, &op, 1);
912
913 if (op == 0x89) /* movl %ebx, x(%ebp) */
914 {
915 op = read_memory_unsigned_integer (pc + delta + 1, 1);
916
917 if (op == 0x5d) /* One byte offset from %ebp. */
918 delta += 3;
919 else if (op == 0x9d) /* Four byte offset from %ebp. */
920 delta += 6;
921 else /* Unexpected instruction. */
922 delta = 0;
923
924 target_read_memory (pc + delta, &op, 1);
925 }
926
927 /* addl y,%ebx */
928 if (delta > 0 && op == 0x81
929 && read_memory_unsigned_integer (pc + delta + 1, 1) == 0xc3)
930 {
931 pc += delta + 6;
932 }
933 }
934
935 /* If the function starts with a branch (to startup code at the end)
936 the last instruction should bring us back to the first
937 instruction of the real code. */
938 if (i386_follow_jump (start_pc) != start_pc)
939 pc = i386_follow_jump (pc);
940
941 return pc;
942 }
943
944 /* This function is 64-bit safe. */
945
946 static CORE_ADDR
947 i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
948 {
949 gdb_byte buf[8];
950
951 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
952 return extract_typed_address (buf, builtin_type_void_func_ptr);
953 }
954 \f
955
956 /* Normal frames. */
957
958 static struct i386_frame_cache *
959 i386_frame_cache (struct frame_info *next_frame, void **this_cache)
960 {
961 struct i386_frame_cache *cache;
962 gdb_byte buf[4];
963 int i;
964
965 if (*this_cache)
966 return *this_cache;
967
968 cache = i386_alloc_frame_cache ();
969 *this_cache = cache;
970
971 /* In principle, for normal frames, %ebp holds the frame pointer,
972 which holds the base address for the current stack frame.
973 However, for functions that don't need it, the frame pointer is
974 optional. For these "frameless" functions the frame pointer is
975 actually the frame pointer of the calling frame. Signal
976 trampolines are just a special case of a "frameless" function.
977 They (usually) share their frame pointer with the frame that was
978 in progress when the signal occurred. */
979
980 frame_unwind_register (next_frame, I386_EBP_REGNUM, buf);
981 cache->base = extract_unsigned_integer (buf, 4);
982 if (cache->base == 0)
983 return cache;
984
985 /* For normal frames, %eip is stored at 4(%ebp). */
986 cache->saved_regs[I386_EIP_REGNUM] = 4;
987
988 cache->pc = frame_func_unwind (next_frame, NORMAL_FRAME);
989 if (cache->pc != 0)
990 i386_analyze_prologue (cache->pc, frame_pc_unwind (next_frame), cache);
991
992 if (cache->stack_align)
993 {
994 /* Saved stack pointer has been saved in %ecx. */
995 frame_unwind_register (next_frame, I386_ECX_REGNUM, buf);
996 cache->saved_sp = extract_unsigned_integer(buf, 4);
997 }
998
999 if (cache->locals < 0)
1000 {
1001 /* We didn't find a valid frame, which means that CACHE->base
1002 currently holds the frame pointer for our calling frame. If
1003 we're at the start of a function, or somewhere half-way its
1004 prologue, the function's frame probably hasn't been fully
1005 setup yet. Try to reconstruct the base address for the stack
1006 frame by looking at the stack pointer. For truly "frameless"
1007 functions this might work too. */
1008
1009 if (cache->stack_align)
1010 {
1011 /* We're halfway aligning the stack. */
1012 cache->base = ((cache->saved_sp - 4) & 0xfffffff0) - 4;
1013 cache->saved_regs[I386_EIP_REGNUM] = cache->saved_sp - 4;
1014
1015 /* This will be added back below. */
1016 cache->saved_regs[I386_EIP_REGNUM] -= cache->base;
1017 }
1018 else
1019 {
1020 frame_unwind_register (next_frame, I386_ESP_REGNUM, buf);
1021 cache->base = extract_unsigned_integer (buf, 4) + cache->sp_offset;
1022 }
1023 }
1024
1025 /* Now that we have the base address for the stack frame we can
1026 calculate the value of %esp in the calling frame. */
1027 if (cache->saved_sp == 0)
1028 cache->saved_sp = cache->base + 8;
1029
1030 /* Adjust all the saved registers such that they contain addresses
1031 instead of offsets. */
1032 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
1033 if (cache->saved_regs[i] != -1)
1034 cache->saved_regs[i] += cache->base;
1035
1036 return cache;
1037 }
1038
1039 static void
1040 i386_frame_this_id (struct frame_info *next_frame, void **this_cache,
1041 struct frame_id *this_id)
1042 {
1043 struct i386_frame_cache *cache = i386_frame_cache (next_frame, this_cache);
1044
1045 /* This marks the outermost frame. */
1046 if (cache->base == 0)
1047 return;
1048
1049 /* See the end of i386_push_dummy_call. */
1050 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
1051 }
1052
1053 static void
1054 i386_frame_prev_register (struct frame_info *next_frame, void **this_cache,
1055 int regnum, int *optimizedp,
1056 enum lval_type *lvalp, CORE_ADDR *addrp,
1057 int *realnump, gdb_byte *valuep)
1058 {
1059 struct i386_frame_cache *cache = i386_frame_cache (next_frame, this_cache);
1060
1061 gdb_assert (regnum >= 0);
1062
1063 /* The System V ABI says that:
1064
1065 "The flags register contains the system flags, such as the
1066 direction flag and the carry flag. The direction flag must be
1067 set to the forward (that is, zero) direction before entry and
1068 upon exit from a function. Other user flags have no specified
1069 role in the standard calling sequence and are not preserved."
1070
1071 To guarantee the "upon exit" part of that statement we fake a
1072 saved flags register that has its direction flag cleared.
1073
1074 Note that GCC doesn't seem to rely on the fact that the direction
1075 flag is cleared after a function return; it always explicitly
1076 clears the flag before operations where it matters.
1077
1078 FIXME: kettenis/20030316: I'm not quite sure whether this is the
1079 right thing to do. The way we fake the flags register here makes
1080 it impossible to change it. */
1081
1082 if (regnum == I386_EFLAGS_REGNUM)
1083 {
1084 *optimizedp = 0;
1085 *lvalp = not_lval;
1086 *addrp = 0;
1087 *realnump = -1;
1088 if (valuep)
1089 {
1090 ULONGEST val;
1091
1092 /* Clear the direction flag. */
1093 val = frame_unwind_register_unsigned (next_frame,
1094 I386_EFLAGS_REGNUM);
1095 val &= ~(1 << 10);
1096 store_unsigned_integer (valuep, 4, val);
1097 }
1098
1099 return;
1100 }
1101
1102 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
1103 {
1104 *optimizedp = 0;
1105 *lvalp = lval_register;
1106 *addrp = 0;
1107 *realnump = I386_EAX_REGNUM;
1108 if (valuep)
1109 frame_unwind_register (next_frame, (*realnump), valuep);
1110 return;
1111 }
1112
1113 if (regnum == I386_ESP_REGNUM && cache->saved_sp)
1114 {
1115 *optimizedp = 0;
1116 *lvalp = not_lval;
1117 *addrp = 0;
1118 *realnump = -1;
1119 if (valuep)
1120 {
1121 /* Store the value. */
1122 store_unsigned_integer (valuep, 4, cache->saved_sp);
1123 }
1124 return;
1125 }
1126
1127 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
1128 {
1129 *optimizedp = 0;
1130 *lvalp = lval_memory;
1131 *addrp = cache->saved_regs[regnum];
1132 *realnump = -1;
1133 if (valuep)
1134 {
1135 /* Read the value in from memory. */
1136 read_memory (*addrp, valuep,
1137 register_size (get_frame_arch (next_frame), regnum));
1138 }
1139 return;
1140 }
1141
1142 *optimizedp = 0;
1143 *lvalp = lval_register;
1144 *addrp = 0;
1145 *realnump = regnum;
1146 if (valuep)
1147 frame_unwind_register (next_frame, (*realnump), valuep);
1148 }
1149
1150 static const struct frame_unwind i386_frame_unwind =
1151 {
1152 NORMAL_FRAME,
1153 i386_frame_this_id,
1154 i386_frame_prev_register
1155 };
1156
1157 static const struct frame_unwind *
1158 i386_frame_sniffer (struct frame_info *next_frame)
1159 {
1160 return &i386_frame_unwind;
1161 }
1162 \f
1163
1164 /* Signal trampolines. */
1165
1166 static struct i386_frame_cache *
1167 i386_sigtramp_frame_cache (struct frame_info *next_frame, void **this_cache)
1168 {
1169 struct i386_frame_cache *cache;
1170 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (next_frame));
1171 CORE_ADDR addr;
1172 gdb_byte buf[4];
1173
1174 if (*this_cache)
1175 return *this_cache;
1176
1177 cache = i386_alloc_frame_cache ();
1178
1179 frame_unwind_register (next_frame, I386_ESP_REGNUM, buf);
1180 cache->base = extract_unsigned_integer (buf, 4) - 4;
1181
1182 addr = tdep->sigcontext_addr (next_frame);
1183 if (tdep->sc_reg_offset)
1184 {
1185 int i;
1186
1187 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
1188
1189 for (i = 0; i < tdep->sc_num_regs; i++)
1190 if (tdep->sc_reg_offset[i] != -1)
1191 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
1192 }
1193 else
1194 {
1195 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
1196 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
1197 }
1198
1199 *this_cache = cache;
1200 return cache;
1201 }
1202
1203 static void
1204 i386_sigtramp_frame_this_id (struct frame_info *next_frame, void **this_cache,
1205 struct frame_id *this_id)
1206 {
1207 struct i386_frame_cache *cache =
1208 i386_sigtramp_frame_cache (next_frame, this_cache);
1209
1210 /* See the end of i386_push_dummy_call. */
1211 (*this_id) = frame_id_build (cache->base + 8, frame_pc_unwind (next_frame));
1212 }
1213
1214 static void
1215 i386_sigtramp_frame_prev_register (struct frame_info *next_frame,
1216 void **this_cache,
1217 int regnum, int *optimizedp,
1218 enum lval_type *lvalp, CORE_ADDR *addrp,
1219 int *realnump, gdb_byte *valuep)
1220 {
1221 /* Make sure we've initialized the cache. */
1222 i386_sigtramp_frame_cache (next_frame, this_cache);
1223
1224 i386_frame_prev_register (next_frame, this_cache, regnum,
1225 optimizedp, lvalp, addrp, realnump, valuep);
1226 }
1227
1228 static const struct frame_unwind i386_sigtramp_frame_unwind =
1229 {
1230 SIGTRAMP_FRAME,
1231 i386_sigtramp_frame_this_id,
1232 i386_sigtramp_frame_prev_register
1233 };
1234
1235 static const struct frame_unwind *
1236 i386_sigtramp_frame_sniffer (struct frame_info *next_frame)
1237 {
1238 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (next_frame));
1239
1240 /* We shouldn't even bother if we don't have a sigcontext_addr
1241 handler. */
1242 if (tdep->sigcontext_addr == NULL)
1243 return NULL;
1244
1245 if (tdep->sigtramp_p != NULL)
1246 {
1247 if (tdep->sigtramp_p (next_frame))
1248 return &i386_sigtramp_frame_unwind;
1249 }
1250
1251 if (tdep->sigtramp_start != 0)
1252 {
1253 CORE_ADDR pc = frame_pc_unwind (next_frame);
1254
1255 gdb_assert (tdep->sigtramp_end != 0);
1256 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
1257 return &i386_sigtramp_frame_unwind;
1258 }
1259
1260 return NULL;
1261 }
1262 \f
1263
1264 static CORE_ADDR
1265 i386_frame_base_address (struct frame_info *next_frame, void **this_cache)
1266 {
1267 struct i386_frame_cache *cache = i386_frame_cache (next_frame, this_cache);
1268
1269 return cache->base;
1270 }
1271
1272 static const struct frame_base i386_frame_base =
1273 {
1274 &i386_frame_unwind,
1275 i386_frame_base_address,
1276 i386_frame_base_address,
1277 i386_frame_base_address
1278 };
1279
1280 static struct frame_id
1281 i386_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
1282 {
1283 gdb_byte buf[4];
1284 CORE_ADDR fp;
1285
1286 frame_unwind_register (next_frame, I386_EBP_REGNUM, buf);
1287 fp = extract_unsigned_integer (buf, 4);
1288
1289 /* See the end of i386_push_dummy_call. */
1290 return frame_id_build (fp + 8, frame_pc_unwind (next_frame));
1291 }
1292 \f
1293
1294 /* Figure out where the longjmp will land. Slurp the args out of the
1295 stack. We expect the first arg to be a pointer to the jmp_buf
1296 structure from which we extract the address that we will land at.
1297 This address is copied into PC. This routine returns non-zero on
1298 success. */
1299
1300 static int
1301 i386_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
1302 {
1303 gdb_byte buf[4];
1304 CORE_ADDR sp, jb_addr;
1305 struct gdbarch *gdbarch = get_frame_arch (frame);
1306 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
1307
1308 /* If JB_PC_OFFSET is -1, we have no way to find out where the
1309 longjmp will land. */
1310 if (jb_pc_offset == -1)
1311 return 0;
1312
1313 get_frame_register (frame, I386_ESP_REGNUM, buf);
1314 sp = extract_unsigned_integer (buf, 4);
1315 if (target_read_memory (sp + 4, buf, 4))
1316 return 0;
1317
1318 jb_addr = extract_unsigned_integer (buf, 4);
1319 if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
1320 return 0;
1321
1322 *pc = extract_unsigned_integer (buf, 4);
1323 return 1;
1324 }
1325 \f
1326
1327 static CORE_ADDR
1328 i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1329 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
1330 struct value **args, CORE_ADDR sp, int struct_return,
1331 CORE_ADDR struct_addr)
1332 {
1333 gdb_byte buf[4];
1334 int i;
1335
1336 /* Push arguments in reverse order. */
1337 for (i = nargs - 1; i >= 0; i--)
1338 {
1339 int len = TYPE_LENGTH (value_enclosing_type (args[i]));
1340
1341 /* The System V ABI says that:
1342
1343 "An argument's size is increased, if necessary, to make it a
1344 multiple of [32-bit] words. This may require tail padding,
1345 depending on the size of the argument."
1346
1347 This makes sure the stack stays word-aligned. */
1348 sp -= (len + 3) & ~3;
1349 write_memory (sp, value_contents_all (args[i]), len);
1350 }
1351
1352 /* Push value address. */
1353 if (struct_return)
1354 {
1355 sp -= 4;
1356 store_unsigned_integer (buf, 4, struct_addr);
1357 write_memory (sp, buf, 4);
1358 }
1359
1360 /* Store return address. */
1361 sp -= 4;
1362 store_unsigned_integer (buf, 4, bp_addr);
1363 write_memory (sp, buf, 4);
1364
1365 /* Finally, update the stack pointer... */
1366 store_unsigned_integer (buf, 4, sp);
1367 regcache_cooked_write (regcache, I386_ESP_REGNUM, buf);
1368
1369 /* ...and fake a frame pointer. */
1370 regcache_cooked_write (regcache, I386_EBP_REGNUM, buf);
1371
1372 /* MarkK wrote: This "+ 8" is all over the place:
1373 (i386_frame_this_id, i386_sigtramp_frame_this_id,
1374 i386_unwind_dummy_id). It's there, since all frame unwinders for
1375 a given target have to agree (within a certain margin) on the
1376 definition of the stack address of a frame. Otherwise
1377 frame_id_inner() won't work correctly. Since DWARF2/GCC uses the
1378 stack address *before* the function call as a frame's CFA. On
1379 the i386, when %ebp is used as a frame pointer, the offset
1380 between the contents %ebp and the CFA as defined by GCC. */
1381 return sp + 8;
1382 }
1383
1384 /* These registers are used for returning integers (and on some
1385 targets also for returning `struct' and `union' values when their
1386 size and alignment match an integer type). */
1387 #define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
1388 #define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
1389
1390 /* Read, for architecture GDBARCH, a function return value of TYPE
1391 from REGCACHE, and copy that into VALBUF. */
1392
1393 static void
1394 i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
1395 struct regcache *regcache, gdb_byte *valbuf)
1396 {
1397 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1398 int len = TYPE_LENGTH (type);
1399 gdb_byte buf[I386_MAX_REGISTER_SIZE];
1400
1401 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1402 {
1403 if (tdep->st0_regnum < 0)
1404 {
1405 warning (_("Cannot find floating-point return value."));
1406 memset (valbuf, 0, len);
1407 return;
1408 }
1409
1410 /* Floating-point return values can be found in %st(0). Convert
1411 its contents to the desired type. This is probably not
1412 exactly how it would happen on the target itself, but it is
1413 the best we can do. */
1414 regcache_raw_read (regcache, I386_ST0_REGNUM, buf);
1415 convert_typed_floating (buf, builtin_type_i387_ext, valbuf, type);
1416 }
1417 else
1418 {
1419 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
1420 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
1421
1422 if (len <= low_size)
1423 {
1424 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
1425 memcpy (valbuf, buf, len);
1426 }
1427 else if (len <= (low_size + high_size))
1428 {
1429 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
1430 memcpy (valbuf, buf, low_size);
1431 regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
1432 memcpy (valbuf + low_size, buf, len - low_size);
1433 }
1434 else
1435 internal_error (__FILE__, __LINE__,
1436 _("Cannot extract return value of %d bytes long."), len);
1437 }
1438 }
1439
1440 /* Write, for architecture GDBARCH, a function return value of TYPE
1441 from VALBUF into REGCACHE. */
1442
1443 static void
1444 i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
1445 struct regcache *regcache, const gdb_byte *valbuf)
1446 {
1447 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1448 int len = TYPE_LENGTH (type);
1449
1450 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1451 {
1452 ULONGEST fstat;
1453 gdb_byte buf[I386_MAX_REGISTER_SIZE];
1454
1455 if (tdep->st0_regnum < 0)
1456 {
1457 warning (_("Cannot set floating-point return value."));
1458 return;
1459 }
1460
1461 /* Returning floating-point values is a bit tricky. Apart from
1462 storing the return value in %st(0), we have to simulate the
1463 state of the FPU at function return point. */
1464
1465 /* Convert the value found in VALBUF to the extended
1466 floating-point format used by the FPU. This is probably
1467 not exactly how it would happen on the target itself, but
1468 it is the best we can do. */
1469 convert_typed_floating (valbuf, type, buf, builtin_type_i387_ext);
1470 regcache_raw_write (regcache, I386_ST0_REGNUM, buf);
1471
1472 /* Set the top of the floating-point register stack to 7. The
1473 actual value doesn't really matter, but 7 is what a normal
1474 function return would end up with if the program started out
1475 with a freshly initialized FPU. */
1476 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
1477 fstat |= (7 << 11);
1478 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM (tdep), fstat);
1479
1480 /* Mark %st(1) through %st(7) as empty. Since we set the top of
1481 the floating-point register stack to 7, the appropriate value
1482 for the tag word is 0x3fff. */
1483 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM (tdep), 0x3fff);
1484 }
1485 else
1486 {
1487 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
1488 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
1489
1490 if (len <= low_size)
1491 regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
1492 else if (len <= (low_size + high_size))
1493 {
1494 regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
1495 regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
1496 len - low_size, valbuf + low_size);
1497 }
1498 else
1499 internal_error (__FILE__, __LINE__,
1500 _("Cannot store return value of %d bytes long."), len);
1501 }
1502 }
1503 \f
1504
1505 /* This is the variable that is set with "set struct-convention", and
1506 its legitimate values. */
1507 static const char default_struct_convention[] = "default";
1508 static const char pcc_struct_convention[] = "pcc";
1509 static const char reg_struct_convention[] = "reg";
1510 static const char *valid_conventions[] =
1511 {
1512 default_struct_convention,
1513 pcc_struct_convention,
1514 reg_struct_convention,
1515 NULL
1516 };
1517 static const char *struct_convention = default_struct_convention;
1518
1519 /* Return non-zero if TYPE, which is assumed to be a structure,
1520 a union type, or an array type, should be returned in registers
1521 for architecture GDBARCH. */
1522
1523 static int
1524 i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
1525 {
1526 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1527 enum type_code code = TYPE_CODE (type);
1528 int len = TYPE_LENGTH (type);
1529
1530 gdb_assert (code == TYPE_CODE_STRUCT
1531 || code == TYPE_CODE_UNION
1532 || code == TYPE_CODE_ARRAY);
1533
1534 if (struct_convention == pcc_struct_convention
1535 || (struct_convention == default_struct_convention
1536 && tdep->struct_return == pcc_struct_return))
1537 return 0;
1538
1539 /* Structures consisting of a single `float', `double' or 'long
1540 double' member are returned in %st(0). */
1541 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
1542 {
1543 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
1544 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1545 return (len == 4 || len == 8 || len == 12);
1546 }
1547
1548 return (len == 1 || len == 2 || len == 4 || len == 8);
1549 }
1550
1551 /* Determine, for architecture GDBARCH, how a return value of TYPE
1552 should be returned. If it is supposed to be returned in registers,
1553 and READBUF is non-zero, read the appropriate value from REGCACHE,
1554 and copy it into READBUF. If WRITEBUF is non-zero, write the value
1555 from WRITEBUF into REGCACHE. */
1556
1557 static enum return_value_convention
1558 i386_return_value (struct gdbarch *gdbarch, struct type *func_type,
1559 struct type *type, struct regcache *regcache,
1560 gdb_byte *readbuf, const gdb_byte *writebuf)
1561 {
1562 enum type_code code = TYPE_CODE (type);
1563
1564 if (((code == TYPE_CODE_STRUCT
1565 || code == TYPE_CODE_UNION
1566 || code == TYPE_CODE_ARRAY)
1567 && !i386_reg_struct_return_p (gdbarch, type))
1568 /* 128-bit decimal float uses the struct return convention. */
1569 || (code == TYPE_CODE_DECFLOAT && TYPE_LENGTH (type) == 16))
1570 {
1571 /* The System V ABI says that:
1572
1573 "A function that returns a structure or union also sets %eax
1574 to the value of the original address of the caller's area
1575 before it returns. Thus when the caller receives control
1576 again, the address of the returned object resides in register
1577 %eax and can be used to access the object."
1578
1579 So the ABI guarantees that we can always find the return
1580 value just after the function has returned. */
1581
1582 /* Note that the ABI doesn't mention functions returning arrays,
1583 which is something possible in certain languages such as Ada.
1584 In this case, the value is returned as if it was wrapped in
1585 a record, so the convention applied to records also applies
1586 to arrays. */
1587
1588 if (readbuf)
1589 {
1590 ULONGEST addr;
1591
1592 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
1593 read_memory (addr, readbuf, TYPE_LENGTH (type));
1594 }
1595
1596 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
1597 }
1598
1599 /* This special case is for structures consisting of a single
1600 `float', `double' or 'long double' member. These structures are
1601 returned in %st(0). For these structures, we call ourselves
1602 recursively, changing TYPE into the type of the first member of
1603 the structure. Since that should work for all structures that
1604 have only one member, we don't bother to check the member's type
1605 here. */
1606 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
1607 {
1608 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
1609 return i386_return_value (gdbarch, func_type, type, regcache,
1610 readbuf, writebuf);
1611 }
1612
1613 if (readbuf)
1614 i386_extract_return_value (gdbarch, type, regcache, readbuf);
1615 if (writebuf)
1616 i386_store_return_value (gdbarch, type, regcache, writebuf);
1617
1618 return RETURN_VALUE_REGISTER_CONVENTION;
1619 }
1620 \f
1621
1622 /* Type for %eflags. */
1623 struct type *i386_eflags_type;
1624
1625 /* Type for %mxcsr. */
1626 struct type *i386_mxcsr_type;
1627
1628 /* Construct types for ISA-specific registers. */
1629 static void
1630 i386_init_types (void)
1631 {
1632 struct type *type;
1633
1634 type = init_flags_type ("builtin_type_i386_eflags", 4);
1635 append_flags_type_flag (type, 0, "CF");
1636 append_flags_type_flag (type, 1, NULL);
1637 append_flags_type_flag (type, 2, "PF");
1638 append_flags_type_flag (type, 4, "AF");
1639 append_flags_type_flag (type, 6, "ZF");
1640 append_flags_type_flag (type, 7, "SF");
1641 append_flags_type_flag (type, 8, "TF");
1642 append_flags_type_flag (type, 9, "IF");
1643 append_flags_type_flag (type, 10, "DF");
1644 append_flags_type_flag (type, 11, "OF");
1645 append_flags_type_flag (type, 14, "NT");
1646 append_flags_type_flag (type, 16, "RF");
1647 append_flags_type_flag (type, 17, "VM");
1648 append_flags_type_flag (type, 18, "AC");
1649 append_flags_type_flag (type, 19, "VIF");
1650 append_flags_type_flag (type, 20, "VIP");
1651 append_flags_type_flag (type, 21, "ID");
1652 i386_eflags_type = type;
1653
1654 type = init_flags_type ("builtin_type_i386_mxcsr", 4);
1655 append_flags_type_flag (type, 0, "IE");
1656 append_flags_type_flag (type, 1, "DE");
1657 append_flags_type_flag (type, 2, "ZE");
1658 append_flags_type_flag (type, 3, "OE");
1659 append_flags_type_flag (type, 4, "UE");
1660 append_flags_type_flag (type, 5, "PE");
1661 append_flags_type_flag (type, 6, "DAZ");
1662 append_flags_type_flag (type, 7, "IM");
1663 append_flags_type_flag (type, 8, "DM");
1664 append_flags_type_flag (type, 9, "ZM");
1665 append_flags_type_flag (type, 10, "OM");
1666 append_flags_type_flag (type, 11, "UM");
1667 append_flags_type_flag (type, 12, "PM");
1668 append_flags_type_flag (type, 15, "FZ");
1669 i386_mxcsr_type = type;
1670 }
1671
1672 /* Construct vector type for MMX registers. */
1673 struct type *
1674 i386_mmx_type (struct gdbarch *gdbarch)
1675 {
1676 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1677
1678 if (!tdep->i386_mmx_type)
1679 {
1680 /* The type we're building is this: */
1681 #if 0
1682 union __gdb_builtin_type_vec64i
1683 {
1684 int64_t uint64;
1685 int32_t v2_int32[2];
1686 int16_t v4_int16[4];
1687 int8_t v8_int8[8];
1688 };
1689 #endif
1690
1691 struct type *t;
1692
1693 t = init_composite_type ("__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
1694 append_composite_type_field (t, "uint64", builtin_type_int64);
1695 append_composite_type_field (t, "v2_int32",
1696 init_vector_type (builtin_type_int32, 2));
1697 append_composite_type_field (t, "v4_int16",
1698 init_vector_type (builtin_type_int16, 4));
1699 append_composite_type_field (t, "v8_int8",
1700 init_vector_type (builtin_type_int8, 8));
1701
1702 TYPE_FLAGS (t) |= TYPE_FLAG_VECTOR;
1703 TYPE_NAME (t) = "builtin_type_vec64i";
1704 tdep->i386_mmx_type = t;
1705 }
1706
1707 return tdep->i386_mmx_type;
1708 }
1709
1710 struct type *
1711 i386_sse_type (struct gdbarch *gdbarch)
1712 {
1713 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1714
1715 if (!tdep->i386_sse_type)
1716 {
1717 /* The type we're building is this: */
1718 #if 0
1719 union __gdb_builtin_type_vec128i
1720 {
1721 int128_t uint128;
1722 int64_t v2_int64[2];
1723 int32_t v4_int32[4];
1724 int16_t v8_int16[8];
1725 int8_t v16_int8[16];
1726 double v2_double[2];
1727 float v4_float[4];
1728 };
1729 #endif
1730
1731 struct type *t;
1732
1733 t = init_composite_type ("__gdb_builtin_type_vec128i", TYPE_CODE_UNION);
1734 append_composite_type_field (t, "v4_float",
1735 init_vector_type (builtin_type_float, 4));
1736 append_composite_type_field (t, "v2_double",
1737 init_vector_type (builtin_type_double, 2));
1738 append_composite_type_field (t, "v16_int8",
1739 init_vector_type (builtin_type_int8, 16));
1740 append_composite_type_field (t, "v8_int16",
1741 init_vector_type (builtin_type_int16, 8));
1742 append_composite_type_field (t, "v4_int32",
1743 init_vector_type (builtin_type_int32, 4));
1744 append_composite_type_field (t, "v2_int64",
1745 init_vector_type (builtin_type_int64, 2));
1746 append_composite_type_field (t, "uint128", builtin_type_int128);
1747
1748 TYPE_FLAGS (t) |= TYPE_FLAG_VECTOR;
1749 TYPE_NAME (t) = "builtin_type_vec128i";
1750 tdep->i386_sse_type = t;
1751 }
1752
1753 return tdep->i386_sse_type;
1754 }
1755
1756 /* Return the GDB type object for the "standard" data type of data in
1757 register REGNUM. Perhaps %esi and %edi should go here, but
1758 potentially they could be used for things other than address. */
1759
1760 static struct type *
1761 i386_register_type (struct gdbarch *gdbarch, int regnum)
1762 {
1763 if (regnum == I386_EIP_REGNUM)
1764 return builtin_type_void_func_ptr;
1765
1766 if (regnum == I386_EFLAGS_REGNUM)
1767 return i386_eflags_type;
1768
1769 if (regnum == I386_EBP_REGNUM || regnum == I386_ESP_REGNUM)
1770 return builtin_type_void_data_ptr;
1771
1772 if (i386_fp_regnum_p (gdbarch, regnum))
1773 return builtin_type_i387_ext;
1774
1775 if (i386_mmx_regnum_p (gdbarch, regnum))
1776 return i386_mmx_type (gdbarch);
1777
1778 if (i386_sse_regnum_p (gdbarch, regnum))
1779 return i386_sse_type (gdbarch);
1780
1781 if (regnum == I387_MXCSR_REGNUM (gdbarch_tdep (gdbarch)))
1782 return i386_mxcsr_type;
1783
1784 return builtin_type_int;
1785 }
1786
1787 /* Map a cooked register onto a raw register or memory. For the i386,
1788 the MMX registers need to be mapped onto floating point registers. */
1789
1790 static int
1791 i386_mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
1792 {
1793 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
1794 int mmxreg, fpreg;
1795 ULONGEST fstat;
1796 int tos;
1797
1798 mmxreg = regnum - tdep->mm0_regnum;
1799 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
1800 tos = (fstat >> 11) & 0x7;
1801 fpreg = (mmxreg + tos) % 8;
1802
1803 return (I387_ST0_REGNUM (tdep) + fpreg);
1804 }
1805
1806 static void
1807 i386_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
1808 int regnum, gdb_byte *buf)
1809 {
1810 if (i386_mmx_regnum_p (gdbarch, regnum))
1811 {
1812 gdb_byte mmx_buf[MAX_REGISTER_SIZE];
1813 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
1814
1815 /* Extract (always little endian). */
1816 regcache_raw_read (regcache, fpnum, mmx_buf);
1817 memcpy (buf, mmx_buf, register_size (gdbarch, regnum));
1818 }
1819 else
1820 regcache_raw_read (regcache, regnum, buf);
1821 }
1822
1823 static void
1824 i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
1825 int regnum, const gdb_byte *buf)
1826 {
1827 if (i386_mmx_regnum_p (gdbarch, regnum))
1828 {
1829 gdb_byte mmx_buf[MAX_REGISTER_SIZE];
1830 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
1831
1832 /* Read ... */
1833 regcache_raw_read (regcache, fpnum, mmx_buf);
1834 /* ... Modify ... (always little endian). */
1835 memcpy (mmx_buf, buf, register_size (gdbarch, regnum));
1836 /* ... Write. */
1837 regcache_raw_write (regcache, fpnum, mmx_buf);
1838 }
1839 else
1840 regcache_raw_write (regcache, regnum, buf);
1841 }
1842 \f
1843
1844 /* Return the register number of the register allocated by GCC after
1845 REGNUM, or -1 if there is no such register. */
1846
1847 static int
1848 i386_next_regnum (int regnum)
1849 {
1850 /* GCC allocates the registers in the order:
1851
1852 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
1853
1854 Since storing a variable in %esp doesn't make any sense we return
1855 -1 for %ebp and for %esp itself. */
1856 static int next_regnum[] =
1857 {
1858 I386_EDX_REGNUM, /* Slot for %eax. */
1859 I386_EBX_REGNUM, /* Slot for %ecx. */
1860 I386_ECX_REGNUM, /* Slot for %edx. */
1861 I386_ESI_REGNUM, /* Slot for %ebx. */
1862 -1, -1, /* Slots for %esp and %ebp. */
1863 I386_EDI_REGNUM, /* Slot for %esi. */
1864 I386_EBP_REGNUM /* Slot for %edi. */
1865 };
1866
1867 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
1868 return next_regnum[regnum];
1869
1870 return -1;
1871 }
1872
1873 /* Return nonzero if a value of type TYPE stored in register REGNUM
1874 needs any special handling. */
1875
1876 static int
1877 i386_convert_register_p (struct gdbarch *gdbarch, int regnum, struct type *type)
1878 {
1879 int len = TYPE_LENGTH (type);
1880
1881 /* Values may be spread across multiple registers. Most debugging
1882 formats aren't expressive enough to specify the locations, so
1883 some heuristics is involved. Right now we only handle types that
1884 have a length that is a multiple of the word size, since GCC
1885 doesn't seem to put any other types into registers. */
1886 if (len > 4 && len % 4 == 0)
1887 {
1888 int last_regnum = regnum;
1889
1890 while (len > 4)
1891 {
1892 last_regnum = i386_next_regnum (last_regnum);
1893 len -= 4;
1894 }
1895
1896 if (last_regnum != -1)
1897 return 1;
1898 }
1899
1900 return i387_convert_register_p (gdbarch, regnum, type);
1901 }
1902
1903 /* Read a value of type TYPE from register REGNUM in frame FRAME, and
1904 return its contents in TO. */
1905
1906 static void
1907 i386_register_to_value (struct frame_info *frame, int regnum,
1908 struct type *type, gdb_byte *to)
1909 {
1910 struct gdbarch *gdbarch = get_frame_arch (frame);
1911 int len = TYPE_LENGTH (type);
1912
1913 /* FIXME: kettenis/20030609: What should we do if REGNUM isn't
1914 available in FRAME (i.e. if it wasn't saved)? */
1915
1916 if (i386_fp_regnum_p (gdbarch, regnum))
1917 {
1918 i387_register_to_value (frame, regnum, type, to);
1919 return;
1920 }
1921
1922 /* Read a value spread across multiple registers. */
1923
1924 gdb_assert (len > 4 && len % 4 == 0);
1925
1926 while (len > 0)
1927 {
1928 gdb_assert (regnum != -1);
1929 gdb_assert (register_size (gdbarch, regnum) == 4);
1930
1931 get_frame_register (frame, regnum, to);
1932 regnum = i386_next_regnum (regnum);
1933 len -= 4;
1934 to += 4;
1935 }
1936 }
1937
1938 /* Write the contents FROM of a value of type TYPE into register
1939 REGNUM in frame FRAME. */
1940
1941 static void
1942 i386_value_to_register (struct frame_info *frame, int regnum,
1943 struct type *type, const gdb_byte *from)
1944 {
1945 int len = TYPE_LENGTH (type);
1946
1947 if (i386_fp_regnum_p (get_frame_arch (frame), regnum))
1948 {
1949 i387_value_to_register (frame, regnum, type, from);
1950 return;
1951 }
1952
1953 /* Write a value spread across multiple registers. */
1954
1955 gdb_assert (len > 4 && len % 4 == 0);
1956
1957 while (len > 0)
1958 {
1959 gdb_assert (regnum != -1);
1960 gdb_assert (register_size (get_frame_arch (frame), regnum) == 4);
1961
1962 put_frame_register (frame, regnum, from);
1963 regnum = i386_next_regnum (regnum);
1964 len -= 4;
1965 from += 4;
1966 }
1967 }
1968 \f
1969 /* Supply register REGNUM from the buffer specified by GREGS and LEN
1970 in the general-purpose register set REGSET to register cache
1971 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
1972
1973 void
1974 i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
1975 int regnum, const void *gregs, size_t len)
1976 {
1977 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
1978 const gdb_byte *regs = gregs;
1979 int i;
1980
1981 gdb_assert (len == tdep->sizeof_gregset);
1982
1983 for (i = 0; i < tdep->gregset_num_regs; i++)
1984 {
1985 if ((regnum == i || regnum == -1)
1986 && tdep->gregset_reg_offset[i] != -1)
1987 regcache_raw_supply (regcache, i, regs + tdep->gregset_reg_offset[i]);
1988 }
1989 }
1990
1991 /* Collect register REGNUM from the register cache REGCACHE and store
1992 it in the buffer specified by GREGS and LEN as described by the
1993 general-purpose register set REGSET. If REGNUM is -1, do this for
1994 all registers in REGSET. */
1995
1996 void
1997 i386_collect_gregset (const struct regset *regset,
1998 const struct regcache *regcache,
1999 int regnum, void *gregs, size_t len)
2000 {
2001 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
2002 gdb_byte *regs = gregs;
2003 int i;
2004
2005 gdb_assert (len == tdep->sizeof_gregset);
2006
2007 for (i = 0; i < tdep->gregset_num_regs; i++)
2008 {
2009 if ((regnum == i || regnum == -1)
2010 && tdep->gregset_reg_offset[i] != -1)
2011 regcache_raw_collect (regcache, i, regs + tdep->gregset_reg_offset[i]);
2012 }
2013 }
2014
2015 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
2016 in the floating-point register set REGSET to register cache
2017 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
2018
2019 static void
2020 i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
2021 int regnum, const void *fpregs, size_t len)
2022 {
2023 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
2024
2025 if (len == I387_SIZEOF_FXSAVE)
2026 {
2027 i387_supply_fxsave (regcache, regnum, fpregs);
2028 return;
2029 }
2030
2031 gdb_assert (len == tdep->sizeof_fpregset);
2032 i387_supply_fsave (regcache, regnum, fpregs);
2033 }
2034
2035 /* Collect register REGNUM from the register cache REGCACHE and store
2036 it in the buffer specified by FPREGS and LEN as described by the
2037 floating-point register set REGSET. If REGNUM is -1, do this for
2038 all registers in REGSET. */
2039
2040 static void
2041 i386_collect_fpregset (const struct regset *regset,
2042 const struct regcache *regcache,
2043 int regnum, void *fpregs, size_t len)
2044 {
2045 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
2046
2047 if (len == I387_SIZEOF_FXSAVE)
2048 {
2049 i387_collect_fxsave (regcache, regnum, fpregs);
2050 return;
2051 }
2052
2053 gdb_assert (len == tdep->sizeof_fpregset);
2054 i387_collect_fsave (regcache, regnum, fpregs);
2055 }
2056
2057 /* Return the appropriate register set for the core section identified
2058 by SECT_NAME and SECT_SIZE. */
2059
2060 const struct regset *
2061 i386_regset_from_core_section (struct gdbarch *gdbarch,
2062 const char *sect_name, size_t sect_size)
2063 {
2064 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2065
2066 if (strcmp (sect_name, ".reg") == 0 && sect_size == tdep->sizeof_gregset)
2067 {
2068 if (tdep->gregset == NULL)
2069 tdep->gregset = regset_alloc (gdbarch, i386_supply_gregset,
2070 i386_collect_gregset);
2071 return tdep->gregset;
2072 }
2073
2074 if ((strcmp (sect_name, ".reg2") == 0 && sect_size == tdep->sizeof_fpregset)
2075 || (strcmp (sect_name, ".reg-xfp") == 0
2076 && sect_size == I387_SIZEOF_FXSAVE))
2077 {
2078 if (tdep->fpregset == NULL)
2079 tdep->fpregset = regset_alloc (gdbarch, i386_supply_fpregset,
2080 i386_collect_fpregset);
2081 return tdep->fpregset;
2082 }
2083
2084 return NULL;
2085 }
2086 \f
2087
2088 /* Stuff for WIN32 PE style DLL's but is pretty generic really. */
2089
2090 CORE_ADDR
2091 i386_pe_skip_trampoline_code (CORE_ADDR pc, char *name)
2092 {
2093 if (pc && read_memory_unsigned_integer (pc, 2) == 0x25ff) /* jmp *(dest) */
2094 {
2095 unsigned long indirect = read_memory_unsigned_integer (pc + 2, 4);
2096 struct minimal_symbol *indsym =
2097 indirect ? lookup_minimal_symbol_by_pc (indirect) : 0;
2098 char *symname = indsym ? SYMBOL_LINKAGE_NAME (indsym) : 0;
2099
2100 if (symname)
2101 {
2102 if (strncmp (symname, "__imp_", 6) == 0
2103 || strncmp (symname, "_imp_", 5) == 0)
2104 return name ? 1 : read_memory_unsigned_integer (indirect, 4);
2105 }
2106 }
2107 return 0; /* Not a trampoline. */
2108 }
2109 \f
2110
2111 /* Return whether the frame preceding NEXT_FRAME corresponds to a
2112 sigtramp routine. */
2113
2114 static int
2115 i386_sigtramp_p (struct frame_info *next_frame)
2116 {
2117 CORE_ADDR pc = frame_pc_unwind (next_frame);
2118 char *name;
2119
2120 find_pc_partial_function (pc, &name, NULL, NULL);
2121 return (name && strcmp ("_sigtramp", name) == 0);
2122 }
2123 \f
2124
2125 /* We have two flavours of disassembly. The machinery on this page
2126 deals with switching between those. */
2127
2128 static int
2129 i386_print_insn (bfd_vma pc, struct disassemble_info *info)
2130 {
2131 gdb_assert (disassembly_flavor == att_flavor
2132 || disassembly_flavor == intel_flavor);
2133
2134 /* FIXME: kettenis/20020915: Until disassembler_options is properly
2135 constified, cast to prevent a compiler warning. */
2136 info->disassembler_options = (char *) disassembly_flavor;
2137
2138 return print_insn_i386 (pc, info);
2139 }
2140 \f
2141
2142 /* There are a few i386 architecture variants that differ only
2143 slightly from the generic i386 target. For now, we don't give them
2144 their own source file, but include them here. As a consequence,
2145 they'll always be included. */
2146
2147 /* System V Release 4 (SVR4). */
2148
2149 /* Return whether the frame preceding NEXT_FRAME corresponds to a SVR4
2150 sigtramp routine. */
2151
2152 static int
2153 i386_svr4_sigtramp_p (struct frame_info *next_frame)
2154 {
2155 CORE_ADDR pc = frame_pc_unwind (next_frame);
2156 char *name;
2157
2158 /* UnixWare uses _sigacthandler. The origin of the other symbols is
2159 currently unknown. */
2160 find_pc_partial_function (pc, &name, NULL, NULL);
2161 return (name && (strcmp ("_sigreturn", name) == 0
2162 || strcmp ("_sigacthandler", name) == 0
2163 || strcmp ("sigvechandler", name) == 0));
2164 }
2165
2166 /* Assuming NEXT_FRAME is for a frame following a SVR4 sigtramp
2167 routine, return the address of the associated sigcontext (ucontext)
2168 structure. */
2169
2170 static CORE_ADDR
2171 i386_svr4_sigcontext_addr (struct frame_info *next_frame)
2172 {
2173 gdb_byte buf[4];
2174 CORE_ADDR sp;
2175
2176 frame_unwind_register (next_frame, I386_ESP_REGNUM, buf);
2177 sp = extract_unsigned_integer (buf, 4);
2178
2179 return read_memory_unsigned_integer (sp + 8, 4);
2180 }
2181 \f
2182
2183 /* Generic ELF. */
2184
2185 void
2186 i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2187 {
2188 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
2189 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
2190 }
2191
2192 /* System V Release 4 (SVR4). */
2193
2194 void
2195 i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2196 {
2197 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2198
2199 /* System V Release 4 uses ELF. */
2200 i386_elf_init_abi (info, gdbarch);
2201
2202 /* System V Release 4 has shared libraries. */
2203 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
2204
2205 tdep->sigtramp_p = i386_svr4_sigtramp_p;
2206 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
2207 tdep->sc_pc_offset = 36 + 14 * 4;
2208 tdep->sc_sp_offset = 36 + 17 * 4;
2209
2210 tdep->jb_pc_offset = 20;
2211 }
2212
2213 /* DJGPP. */
2214
2215 static void
2216 i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2217 {
2218 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2219
2220 /* DJGPP doesn't have any special frames for signal handlers. */
2221 tdep->sigtramp_p = NULL;
2222
2223 tdep->jb_pc_offset = 36;
2224 }
2225 \f
2226
2227 /* i386 register groups. In addition to the normal groups, add "mmx"
2228 and "sse". */
2229
2230 static struct reggroup *i386_sse_reggroup;
2231 static struct reggroup *i386_mmx_reggroup;
2232
2233 static void
2234 i386_init_reggroups (void)
2235 {
2236 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
2237 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
2238 }
2239
2240 static void
2241 i386_add_reggroups (struct gdbarch *gdbarch)
2242 {
2243 reggroup_add (gdbarch, i386_sse_reggroup);
2244 reggroup_add (gdbarch, i386_mmx_reggroup);
2245 reggroup_add (gdbarch, general_reggroup);
2246 reggroup_add (gdbarch, float_reggroup);
2247 reggroup_add (gdbarch, all_reggroup);
2248 reggroup_add (gdbarch, save_reggroup);
2249 reggroup_add (gdbarch, restore_reggroup);
2250 reggroup_add (gdbarch, vector_reggroup);
2251 reggroup_add (gdbarch, system_reggroup);
2252 }
2253
2254 int
2255 i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
2256 struct reggroup *group)
2257 {
2258 int sse_regnum_p = (i386_sse_regnum_p (gdbarch, regnum)
2259 || i386_mxcsr_regnum_p (gdbarch, regnum));
2260 int fp_regnum_p = (i386_fp_regnum_p (gdbarch, regnum)
2261 || i386_fpc_regnum_p (gdbarch, regnum));
2262 int mmx_regnum_p = (i386_mmx_regnum_p (gdbarch, regnum));
2263
2264 if (group == i386_mmx_reggroup)
2265 return mmx_regnum_p;
2266 if (group == i386_sse_reggroup)
2267 return sse_regnum_p;
2268 if (group == vector_reggroup)
2269 return (mmx_regnum_p || sse_regnum_p);
2270 if (group == float_reggroup)
2271 return fp_regnum_p;
2272 if (group == general_reggroup)
2273 return (!fp_regnum_p && !mmx_regnum_p && !sse_regnum_p);
2274
2275 return default_register_reggroup_p (gdbarch, regnum, group);
2276 }
2277 \f
2278
2279 /* Get the ARGIth function argument for the current function. */
2280
2281 static CORE_ADDR
2282 i386_fetch_pointer_argument (struct frame_info *frame, int argi,
2283 struct type *type)
2284 {
2285 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
2286 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4);
2287 }
2288
2289 \f
2290 static struct gdbarch *
2291 i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2292 {
2293 struct gdbarch_tdep *tdep;
2294 struct gdbarch *gdbarch;
2295
2296 /* If there is already a candidate, use it. */
2297 arches = gdbarch_list_lookup_by_info (arches, &info);
2298 if (arches != NULL)
2299 return arches->gdbarch;
2300
2301 /* Allocate space for the new architecture. */
2302 tdep = XCALLOC (1, struct gdbarch_tdep);
2303 gdbarch = gdbarch_alloc (&info, tdep);
2304
2305 /* General-purpose registers. */
2306 tdep->gregset = NULL;
2307 tdep->gregset_reg_offset = NULL;
2308 tdep->gregset_num_regs = I386_NUM_GREGS;
2309 tdep->sizeof_gregset = 0;
2310
2311 /* Floating-point registers. */
2312 tdep->fpregset = NULL;
2313 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
2314
2315 /* The default settings include the FPU registers, the MMX registers
2316 and the SSE registers. This can be overridden for a specific ABI
2317 by adjusting the members `st0_regnum', `mm0_regnum' and
2318 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
2319 will show up in the output of "info all-registers". Ideally we
2320 should try to autodetect whether they are available, such that we
2321 can prevent "info all-registers" from displaying registers that
2322 aren't available.
2323
2324 NOTE: kevinb/2003-07-13: ... if it's a choice between printing
2325 [the SSE registers] always (even when they don't exist) or never
2326 showing them to the user (even when they do exist), I prefer the
2327 former over the latter. */
2328
2329 tdep->st0_regnum = I386_ST0_REGNUM;
2330
2331 /* The MMX registers are implemented as pseudo-registers. Put off
2332 calculating the register number for %mm0 until we know the number
2333 of raw registers. */
2334 tdep->mm0_regnum = 0;
2335
2336 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
2337 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
2338
2339 tdep->jb_pc_offset = -1;
2340 tdep->struct_return = pcc_struct_return;
2341 tdep->sigtramp_start = 0;
2342 tdep->sigtramp_end = 0;
2343 tdep->sigtramp_p = i386_sigtramp_p;
2344 tdep->sigcontext_addr = NULL;
2345 tdep->sc_reg_offset = NULL;
2346 tdep->sc_pc_offset = -1;
2347 tdep->sc_sp_offset = -1;
2348
2349 /* The format used for `long double' on almost all i386 targets is
2350 the i387 extended floating-point format. In fact, of all targets
2351 in the GCC 2.95 tree, only OSF/1 does it different, and insists
2352 on having a `long double' that's not `long' at all. */
2353 set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext);
2354
2355 /* Although the i387 extended floating-point has only 80 significant
2356 bits, a `long double' actually takes up 96, probably to enforce
2357 alignment. */
2358 set_gdbarch_long_double_bit (gdbarch, 96);
2359
2360 /* The default ABI includes general-purpose registers,
2361 floating-point registers, and the SSE registers. */
2362 set_gdbarch_num_regs (gdbarch, I386_SSE_NUM_REGS);
2363 set_gdbarch_register_name (gdbarch, i386_register_name);
2364 set_gdbarch_register_type (gdbarch, i386_register_type);
2365
2366 /* Register numbers of various important registers. */
2367 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
2368 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
2369 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
2370 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
2371
2372 /* NOTE: kettenis/20040418: GCC does have two possible register
2373 numbering schemes on the i386: dbx and SVR4. These schemes
2374 differ in how they number %ebp, %esp, %eflags, and the
2375 floating-point registers, and are implemented by the arrays
2376 dbx_register_map[] and svr4_dbx_register_map in
2377 gcc/config/i386.c. GCC also defines a third numbering scheme in
2378 gcc/config/i386.c, which it designates as the "default" register
2379 map used in 64bit mode. This last register numbering scheme is
2380 implemented in dbx64_register_map, and is used for AMD64; see
2381 amd64-tdep.c.
2382
2383 Currently, each GCC i386 target always uses the same register
2384 numbering scheme across all its supported debugging formats
2385 i.e. SDB (COFF), stabs and DWARF 2. This is because
2386 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
2387 DBX_REGISTER_NUMBER macro which is defined by each target's
2388 respective config header in a manner independent of the requested
2389 output debugging format.
2390
2391 This does not match the arrangement below, which presumes that
2392 the SDB and stabs numbering schemes differ from the DWARF and
2393 DWARF 2 ones. The reason for this arrangement is that it is
2394 likely to get the numbering scheme for the target's
2395 default/native debug format right. For targets where GCC is the
2396 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
2397 targets where the native toolchain uses a different numbering
2398 scheme for a particular debug format (stabs-in-ELF on Solaris)
2399 the defaults below will have to be overridden, like
2400 i386_elf_init_abi() does. */
2401
2402 /* Use the dbx register numbering scheme for stabs and COFF. */
2403 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
2404 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
2405
2406 /* Use the SVR4 register numbering scheme for DWARF and DWARF 2. */
2407 set_gdbarch_dwarf_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
2408 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
2409
2410 /* We don't set gdbarch_stab_reg_to_regnum, since ECOFF doesn't seem to
2411 be in use on any of the supported i386 targets. */
2412
2413 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
2414
2415 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
2416
2417 /* Call dummy code. */
2418 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
2419
2420 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
2421 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
2422 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
2423
2424 set_gdbarch_return_value (gdbarch, i386_return_value);
2425
2426 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
2427
2428 /* Stack grows downward. */
2429 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2430
2431 set_gdbarch_breakpoint_from_pc (gdbarch, i386_breakpoint_from_pc);
2432 set_gdbarch_decr_pc_after_break (gdbarch, 1);
2433
2434 set_gdbarch_frame_args_skip (gdbarch, 8);
2435
2436 /* Wire in the MMX registers. */
2437 set_gdbarch_num_pseudo_regs (gdbarch, i386_num_mmx_regs);
2438 set_gdbarch_pseudo_register_read (gdbarch, i386_pseudo_register_read);
2439 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
2440
2441 set_gdbarch_print_insn (gdbarch, i386_print_insn);
2442
2443 set_gdbarch_unwind_dummy_id (gdbarch, i386_unwind_dummy_id);
2444
2445 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
2446
2447 /* Add the i386 register groups. */
2448 i386_add_reggroups (gdbarch);
2449 set_gdbarch_register_reggroup_p (gdbarch, i386_register_reggroup_p);
2450
2451 /* Helper for function argument information. */
2452 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
2453
2454 /* Hook in the DWARF CFI frame unwinder. */
2455 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
2456
2457 frame_base_set_default (gdbarch, &i386_frame_base);
2458
2459 /* Hook in ABI-specific overrides, if they have been registered. */
2460 gdbarch_init_osabi (info, gdbarch);
2461
2462 frame_unwind_append_sniffer (gdbarch, i386_sigtramp_frame_sniffer);
2463 frame_unwind_append_sniffer (gdbarch, i386_frame_sniffer);
2464
2465 /* If we have a register mapping, enable the generic core file
2466 support, unless it has already been enabled. */
2467 if (tdep->gregset_reg_offset
2468 && !gdbarch_regset_from_core_section_p (gdbarch))
2469 set_gdbarch_regset_from_core_section (gdbarch,
2470 i386_regset_from_core_section);
2471
2472 /* Unless support for MMX has been disabled, make %mm0 the first
2473 pseudo-register. */
2474 if (tdep->mm0_regnum == 0)
2475 tdep->mm0_regnum = gdbarch_num_regs (gdbarch);
2476
2477 return gdbarch;
2478 }
2479
2480 static enum gdb_osabi
2481 i386_coff_osabi_sniffer (bfd *abfd)
2482 {
2483 if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
2484 || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
2485 return GDB_OSABI_GO32;
2486
2487 return GDB_OSABI_UNKNOWN;
2488 }
2489 \f
2490
2491 /* Provide a prototype to silence -Wmissing-prototypes. */
2492 void _initialize_i386_tdep (void);
2493
2494 void
2495 _initialize_i386_tdep (void)
2496 {
2497 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
2498
2499 /* Add the variable that controls the disassembly flavor. */
2500 add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
2501 &disassembly_flavor, _("\
2502 Set the disassembly flavor."), _("\
2503 Show the disassembly flavor."), _("\
2504 The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
2505 NULL,
2506 NULL, /* FIXME: i18n: */
2507 &setlist, &showlist);
2508
2509 /* Add the variable that controls the convention for returning
2510 structs. */
2511 add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
2512 &struct_convention, _("\
2513 Set the convention for returning small structs."), _("\
2514 Show the convention for returning small structs."), _("\
2515 Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
2516 is \"default\"."),
2517 NULL,
2518 NULL, /* FIXME: i18n: */
2519 &setlist, &showlist);
2520
2521 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
2522 i386_coff_osabi_sniffer);
2523
2524 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
2525 i386_svr4_init_abi);
2526 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_GO32,
2527 i386_go32_init_abi);
2528
2529 /* Initialize the i386-specific register groups & types. */
2530 i386_init_reggroups ();
2531 i386_init_types();
2532 }
This page took 0.085726 seconds and 5 git commands to generate.