Convert stap probes to create operations
[deliverable/binutils-gdb.git] / gdb / i386-tdep.c
1 /* Intel 386 target-dependent stuff.
2
3 Copyright (C) 1988-2021 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "opcode/i386.h"
22 #include "arch-utils.h"
23 #include "command.h"
24 #include "dummy-frame.h"
25 #include "dwarf2/frame.h"
26 #include "frame.h"
27 #include "frame-base.h"
28 #include "frame-unwind.h"
29 #include "inferior.h"
30 #include "infrun.h"
31 #include "gdbcmd.h"
32 #include "gdbcore.h"
33 #include "gdbtypes.h"
34 #include "objfiles.h"
35 #include "osabi.h"
36 #include "regcache.h"
37 #include "reggroups.h"
38 #include "regset.h"
39 #include "symfile.h"
40 #include "symtab.h"
41 #include "target.h"
42 #include "target-float.h"
43 #include "value.h"
44 #include "dis-asm.h"
45 #include "disasm.h"
46 #include "remote.h"
47 #include "i386-tdep.h"
48 #include "i387-tdep.h"
49 #include "gdbsupport/x86-xstate.h"
50 #include "x86-tdep.h"
51 #include "expop.h"
52
53 #include "record.h"
54 #include "record-full.h"
55 #include "target-descriptions.h"
56 #include "arch/i386.h"
57
58 #include "ax.h"
59 #include "ax-gdb.h"
60
61 #include "stap-probe.h"
62 #include "user-regs.h"
63 #include "cli/cli-utils.h"
64 #include "expression.h"
65 #include "parser-defs.h"
66 #include <ctype.h>
67 #include <algorithm>
68 #include <unordered_set>
69 #include "producer.h"
70
71 /* Register names. */
72
73 static const char * const i386_register_names[] =
74 {
75 "eax", "ecx", "edx", "ebx",
76 "esp", "ebp", "esi", "edi",
77 "eip", "eflags", "cs", "ss",
78 "ds", "es", "fs", "gs",
79 "st0", "st1", "st2", "st3",
80 "st4", "st5", "st6", "st7",
81 "fctrl", "fstat", "ftag", "fiseg",
82 "fioff", "foseg", "fooff", "fop",
83 "xmm0", "xmm1", "xmm2", "xmm3",
84 "xmm4", "xmm5", "xmm6", "xmm7",
85 "mxcsr"
86 };
87
88 static const char * const i386_zmm_names[] =
89 {
90 "zmm0", "zmm1", "zmm2", "zmm3",
91 "zmm4", "zmm5", "zmm6", "zmm7"
92 };
93
94 static const char * const i386_zmmh_names[] =
95 {
96 "zmm0h", "zmm1h", "zmm2h", "zmm3h",
97 "zmm4h", "zmm5h", "zmm6h", "zmm7h"
98 };
99
100 static const char * const i386_k_names[] =
101 {
102 "k0", "k1", "k2", "k3",
103 "k4", "k5", "k6", "k7"
104 };
105
106 static const char * const i386_ymm_names[] =
107 {
108 "ymm0", "ymm1", "ymm2", "ymm3",
109 "ymm4", "ymm5", "ymm6", "ymm7",
110 };
111
112 static const char * const i386_ymmh_names[] =
113 {
114 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
115 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
116 };
117
118 static const char * const i386_mpx_names[] =
119 {
120 "bnd0raw", "bnd1raw", "bnd2raw", "bnd3raw", "bndcfgu", "bndstatus"
121 };
122
123 static const char * const i386_pkeys_names[] =
124 {
125 "pkru"
126 };
127
128 /* Register names for MPX pseudo-registers. */
129
130 static const char * const i386_bnd_names[] =
131 {
132 "bnd0", "bnd1", "bnd2", "bnd3"
133 };
134
135 /* Register names for MMX pseudo-registers. */
136
137 static const char * const i386_mmx_names[] =
138 {
139 "mm0", "mm1", "mm2", "mm3",
140 "mm4", "mm5", "mm6", "mm7"
141 };
142
143 /* Register names for byte pseudo-registers. */
144
145 static const char * const i386_byte_names[] =
146 {
147 "al", "cl", "dl", "bl",
148 "ah", "ch", "dh", "bh"
149 };
150
151 /* Register names for word pseudo-registers. */
152
153 static const char * const i386_word_names[] =
154 {
155 "ax", "cx", "dx", "bx",
156 "", "bp", "si", "di"
157 };
158
159 /* Constant used for reading/writing pseudo registers. In 64-bit mode, we have
160 16 lower ZMM regs that extend corresponding xmm/ymm registers. In addition,
161 we have 16 upper ZMM regs that have to be handled differently. */
162
163 const int num_lower_zmm_regs = 16;
164
165 /* MMX register? */
166
167 static int
168 i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
169 {
170 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
171 int mm0_regnum = tdep->mm0_regnum;
172
173 if (mm0_regnum < 0)
174 return 0;
175
176 regnum -= mm0_regnum;
177 return regnum >= 0 && regnum < tdep->num_mmx_regs;
178 }
179
180 /* Byte register? */
181
182 int
183 i386_byte_regnum_p (struct gdbarch *gdbarch, int regnum)
184 {
185 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
186
187 regnum -= tdep->al_regnum;
188 return regnum >= 0 && regnum < tdep->num_byte_regs;
189 }
190
191 /* Word register? */
192
193 int
194 i386_word_regnum_p (struct gdbarch *gdbarch, int regnum)
195 {
196 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
197
198 regnum -= tdep->ax_regnum;
199 return regnum >= 0 && regnum < tdep->num_word_regs;
200 }
201
202 /* Dword register? */
203
204 int
205 i386_dword_regnum_p (struct gdbarch *gdbarch, int regnum)
206 {
207 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
208 int eax_regnum = tdep->eax_regnum;
209
210 if (eax_regnum < 0)
211 return 0;
212
213 regnum -= eax_regnum;
214 return regnum >= 0 && regnum < tdep->num_dword_regs;
215 }
216
217 /* AVX512 register? */
218
219 int
220 i386_zmmh_regnum_p (struct gdbarch *gdbarch, int regnum)
221 {
222 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
223 int zmm0h_regnum = tdep->zmm0h_regnum;
224
225 if (zmm0h_regnum < 0)
226 return 0;
227
228 regnum -= zmm0h_regnum;
229 return regnum >= 0 && regnum < tdep->num_zmm_regs;
230 }
231
232 int
233 i386_zmm_regnum_p (struct gdbarch *gdbarch, int regnum)
234 {
235 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
236 int zmm0_regnum = tdep->zmm0_regnum;
237
238 if (zmm0_regnum < 0)
239 return 0;
240
241 regnum -= zmm0_regnum;
242 return regnum >= 0 && regnum < tdep->num_zmm_regs;
243 }
244
245 int
246 i386_k_regnum_p (struct gdbarch *gdbarch, int regnum)
247 {
248 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
249 int k0_regnum = tdep->k0_regnum;
250
251 if (k0_regnum < 0)
252 return 0;
253
254 regnum -= k0_regnum;
255 return regnum >= 0 && regnum < I387_NUM_K_REGS;
256 }
257
258 static int
259 i386_ymmh_regnum_p (struct gdbarch *gdbarch, int regnum)
260 {
261 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
262 int ymm0h_regnum = tdep->ymm0h_regnum;
263
264 if (ymm0h_regnum < 0)
265 return 0;
266
267 regnum -= ymm0h_regnum;
268 return regnum >= 0 && regnum < tdep->num_ymm_regs;
269 }
270
271 /* AVX register? */
272
273 int
274 i386_ymm_regnum_p (struct gdbarch *gdbarch, int regnum)
275 {
276 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
277 int ymm0_regnum = tdep->ymm0_regnum;
278
279 if (ymm0_regnum < 0)
280 return 0;
281
282 regnum -= ymm0_regnum;
283 return regnum >= 0 && regnum < tdep->num_ymm_regs;
284 }
285
286 static int
287 i386_ymmh_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
288 {
289 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
290 int ymm16h_regnum = tdep->ymm16h_regnum;
291
292 if (ymm16h_regnum < 0)
293 return 0;
294
295 regnum -= ymm16h_regnum;
296 return regnum >= 0 && regnum < tdep->num_ymm_avx512_regs;
297 }
298
299 int
300 i386_ymm_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
301 {
302 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
303 int ymm16_regnum = tdep->ymm16_regnum;
304
305 if (ymm16_regnum < 0)
306 return 0;
307
308 regnum -= ymm16_regnum;
309 return regnum >= 0 && regnum < tdep->num_ymm_avx512_regs;
310 }
311
312 /* BND register? */
313
314 int
315 i386_bnd_regnum_p (struct gdbarch *gdbarch, int regnum)
316 {
317 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
318 int bnd0_regnum = tdep->bnd0_regnum;
319
320 if (bnd0_regnum < 0)
321 return 0;
322
323 regnum -= bnd0_regnum;
324 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
325 }
326
327 /* SSE register? */
328
329 int
330 i386_xmm_regnum_p (struct gdbarch *gdbarch, int regnum)
331 {
332 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
333 int num_xmm_regs = I387_NUM_XMM_REGS (tdep);
334
335 if (num_xmm_regs == 0)
336 return 0;
337
338 regnum -= I387_XMM0_REGNUM (tdep);
339 return regnum >= 0 && regnum < num_xmm_regs;
340 }
341
342 /* XMM_512 register? */
343
344 int
345 i386_xmm_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
346 {
347 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
348 int num_xmm_avx512_regs = I387_NUM_XMM_AVX512_REGS (tdep);
349
350 if (num_xmm_avx512_regs == 0)
351 return 0;
352
353 regnum -= I387_XMM16_REGNUM (tdep);
354 return regnum >= 0 && regnum < num_xmm_avx512_regs;
355 }
356
357 static int
358 i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
359 {
360 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
361
362 if (I387_NUM_XMM_REGS (tdep) == 0)
363 return 0;
364
365 return (regnum == I387_MXCSR_REGNUM (tdep));
366 }
367
368 /* FP register? */
369
370 int
371 i386_fp_regnum_p (struct gdbarch *gdbarch, int regnum)
372 {
373 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
374
375 if (I387_ST0_REGNUM (tdep) < 0)
376 return 0;
377
378 return (I387_ST0_REGNUM (tdep) <= regnum
379 && regnum < I387_FCTRL_REGNUM (tdep));
380 }
381
382 int
383 i386_fpc_regnum_p (struct gdbarch *gdbarch, int regnum)
384 {
385 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
386
387 if (I387_ST0_REGNUM (tdep) < 0)
388 return 0;
389
390 return (I387_FCTRL_REGNUM (tdep) <= regnum
391 && regnum < I387_XMM0_REGNUM (tdep));
392 }
393
394 /* BNDr (raw) register? */
395
396 static int
397 i386_bndr_regnum_p (struct gdbarch *gdbarch, int regnum)
398 {
399 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
400
401 if (I387_BND0R_REGNUM (tdep) < 0)
402 return 0;
403
404 regnum -= tdep->bnd0r_regnum;
405 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
406 }
407
408 /* BND control register? */
409
410 static int
411 i386_mpx_ctrl_regnum_p (struct gdbarch *gdbarch, int regnum)
412 {
413 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
414
415 if (I387_BNDCFGU_REGNUM (tdep) < 0)
416 return 0;
417
418 regnum -= I387_BNDCFGU_REGNUM (tdep);
419 return regnum >= 0 && regnum < I387_NUM_MPX_CTRL_REGS;
420 }
421
422 /* PKRU register? */
423
424 bool
425 i386_pkru_regnum_p (struct gdbarch *gdbarch, int regnum)
426 {
427 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
428 int pkru_regnum = tdep->pkru_regnum;
429
430 if (pkru_regnum < 0)
431 return false;
432
433 regnum -= pkru_regnum;
434 return regnum >= 0 && regnum < I387_NUM_PKEYS_REGS;
435 }
436
437 /* Return the name of register REGNUM, or the empty string if it is
438 an anonymous register. */
439
440 static const char *
441 i386_register_name (struct gdbarch *gdbarch, int regnum)
442 {
443 /* Hide the upper YMM registers. */
444 if (i386_ymmh_regnum_p (gdbarch, regnum))
445 return "";
446
447 /* Hide the upper YMM16-31 registers. */
448 if (i386_ymmh_avx512_regnum_p (gdbarch, regnum))
449 return "";
450
451 /* Hide the upper ZMM registers. */
452 if (i386_zmmh_regnum_p (gdbarch, regnum))
453 return "";
454
455 return tdesc_register_name (gdbarch, regnum);
456 }
457
458 /* Return the name of register REGNUM. */
459
460 const char *
461 i386_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
462 {
463 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
464 if (i386_bnd_regnum_p (gdbarch, regnum))
465 return i386_bnd_names[regnum - tdep->bnd0_regnum];
466 if (i386_mmx_regnum_p (gdbarch, regnum))
467 return i386_mmx_names[regnum - I387_MM0_REGNUM (tdep)];
468 else if (i386_ymm_regnum_p (gdbarch, regnum))
469 return i386_ymm_names[regnum - tdep->ymm0_regnum];
470 else if (i386_zmm_regnum_p (gdbarch, regnum))
471 return i386_zmm_names[regnum - tdep->zmm0_regnum];
472 else if (i386_byte_regnum_p (gdbarch, regnum))
473 return i386_byte_names[regnum - tdep->al_regnum];
474 else if (i386_word_regnum_p (gdbarch, regnum))
475 return i386_word_names[regnum - tdep->ax_regnum];
476
477 internal_error (__FILE__, __LINE__, _("invalid regnum"));
478 }
479
480 /* Convert a dbx register number REG to the appropriate register
481 number used by GDB. */
482
483 static int
484 i386_dbx_reg_to_regnum (struct gdbarch *gdbarch, int reg)
485 {
486 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
487
488 /* This implements what GCC calls the "default" register map
489 (dbx_register_map[]). */
490
491 if (reg >= 0 && reg <= 7)
492 {
493 /* General-purpose registers. The debug info calls %ebp
494 register 4, and %esp register 5. */
495 if (reg == 4)
496 return 5;
497 else if (reg == 5)
498 return 4;
499 else return reg;
500 }
501 else if (reg >= 12 && reg <= 19)
502 {
503 /* Floating-point registers. */
504 return reg - 12 + I387_ST0_REGNUM (tdep);
505 }
506 else if (reg >= 21 && reg <= 28)
507 {
508 /* SSE registers. */
509 int ymm0_regnum = tdep->ymm0_regnum;
510
511 if (ymm0_regnum >= 0
512 && i386_xmm_regnum_p (gdbarch, reg))
513 return reg - 21 + ymm0_regnum;
514 else
515 return reg - 21 + I387_XMM0_REGNUM (tdep);
516 }
517 else if (reg >= 29 && reg <= 36)
518 {
519 /* MMX registers. */
520 return reg - 29 + I387_MM0_REGNUM (tdep);
521 }
522
523 /* This will hopefully provoke a warning. */
524 return gdbarch_num_cooked_regs (gdbarch);
525 }
526
527 /* Convert SVR4 DWARF register number REG to the appropriate register number
528 used by GDB. */
529
530 static int
531 i386_svr4_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
532 {
533 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
534
535 /* This implements the GCC register map that tries to be compatible
536 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
537
538 /* The SVR4 register numbering includes %eip and %eflags, and
539 numbers the floating point registers differently. */
540 if (reg >= 0 && reg <= 9)
541 {
542 /* General-purpose registers. */
543 return reg;
544 }
545 else if (reg >= 11 && reg <= 18)
546 {
547 /* Floating-point registers. */
548 return reg - 11 + I387_ST0_REGNUM (tdep);
549 }
550 else if (reg >= 21 && reg <= 36)
551 {
552 /* The SSE and MMX registers have the same numbers as with dbx. */
553 return i386_dbx_reg_to_regnum (gdbarch, reg);
554 }
555
556 switch (reg)
557 {
558 case 37: return I387_FCTRL_REGNUM (tdep);
559 case 38: return I387_FSTAT_REGNUM (tdep);
560 case 39: return I387_MXCSR_REGNUM (tdep);
561 case 40: return I386_ES_REGNUM;
562 case 41: return I386_CS_REGNUM;
563 case 42: return I386_SS_REGNUM;
564 case 43: return I386_DS_REGNUM;
565 case 44: return I386_FS_REGNUM;
566 case 45: return I386_GS_REGNUM;
567 }
568
569 return -1;
570 }
571
572 /* Wrapper on i386_svr4_dwarf_reg_to_regnum to return
573 num_regs + num_pseudo_regs for other debug formats. */
574
575 int
576 i386_svr4_reg_to_regnum (struct gdbarch *gdbarch, int reg)
577 {
578 int regnum = i386_svr4_dwarf_reg_to_regnum (gdbarch, reg);
579
580 if (regnum == -1)
581 return gdbarch_num_cooked_regs (gdbarch);
582 return regnum;
583 }
584
585 \f
586
587 /* This is the variable that is set with "set disassembly-flavor", and
588 its legitimate values. */
589 static const char att_flavor[] = "att";
590 static const char intel_flavor[] = "intel";
591 static const char *const valid_flavors[] =
592 {
593 att_flavor,
594 intel_flavor,
595 NULL
596 };
597 static const char *disassembly_flavor = att_flavor;
598 \f
599
600 /* Use the program counter to determine the contents and size of a
601 breakpoint instruction. Return a pointer to a string of bytes that
602 encode a breakpoint instruction, store the length of the string in
603 *LEN and optionally adjust *PC to point to the correct memory
604 location for inserting the breakpoint.
605
606 On the i386 we have a single breakpoint that fits in a single byte
607 and can be inserted anywhere.
608
609 This function is 64-bit safe. */
610
611 constexpr gdb_byte i386_break_insn[] = { 0xcc }; /* int 3 */
612
613 typedef BP_MANIPULATION (i386_break_insn) i386_breakpoint;
614
615 \f
616 /* Displaced instruction handling. */
617
618 /* Skip the legacy instruction prefixes in INSN.
619 Not all prefixes are valid for any particular insn
620 but we needn't care, the insn will fault if it's invalid.
621 The result is a pointer to the first opcode byte,
622 or NULL if we run off the end of the buffer. */
623
624 static gdb_byte *
625 i386_skip_prefixes (gdb_byte *insn, size_t max_len)
626 {
627 gdb_byte *end = insn + max_len;
628
629 while (insn < end)
630 {
631 switch (*insn)
632 {
633 case DATA_PREFIX_OPCODE:
634 case ADDR_PREFIX_OPCODE:
635 case CS_PREFIX_OPCODE:
636 case DS_PREFIX_OPCODE:
637 case ES_PREFIX_OPCODE:
638 case FS_PREFIX_OPCODE:
639 case GS_PREFIX_OPCODE:
640 case SS_PREFIX_OPCODE:
641 case LOCK_PREFIX_OPCODE:
642 case REPE_PREFIX_OPCODE:
643 case REPNE_PREFIX_OPCODE:
644 ++insn;
645 continue;
646 default:
647 return insn;
648 }
649 }
650
651 return NULL;
652 }
653
654 static int
655 i386_absolute_jmp_p (const gdb_byte *insn)
656 {
657 /* jmp far (absolute address in operand). */
658 if (insn[0] == 0xea)
659 return 1;
660
661 if (insn[0] == 0xff)
662 {
663 /* jump near, absolute indirect (/4). */
664 if ((insn[1] & 0x38) == 0x20)
665 return 1;
666
667 /* jump far, absolute indirect (/5). */
668 if ((insn[1] & 0x38) == 0x28)
669 return 1;
670 }
671
672 return 0;
673 }
674
675 /* Return non-zero if INSN is a jump, zero otherwise. */
676
677 static int
678 i386_jmp_p (const gdb_byte *insn)
679 {
680 /* jump short, relative. */
681 if (insn[0] == 0xeb)
682 return 1;
683
684 /* jump near, relative. */
685 if (insn[0] == 0xe9)
686 return 1;
687
688 return i386_absolute_jmp_p (insn);
689 }
690
691 static int
692 i386_absolute_call_p (const gdb_byte *insn)
693 {
694 /* call far, absolute. */
695 if (insn[0] == 0x9a)
696 return 1;
697
698 if (insn[0] == 0xff)
699 {
700 /* Call near, absolute indirect (/2). */
701 if ((insn[1] & 0x38) == 0x10)
702 return 1;
703
704 /* Call far, absolute indirect (/3). */
705 if ((insn[1] & 0x38) == 0x18)
706 return 1;
707 }
708
709 return 0;
710 }
711
712 static int
713 i386_ret_p (const gdb_byte *insn)
714 {
715 switch (insn[0])
716 {
717 case 0xc2: /* ret near, pop N bytes. */
718 case 0xc3: /* ret near */
719 case 0xca: /* ret far, pop N bytes. */
720 case 0xcb: /* ret far */
721 case 0xcf: /* iret */
722 return 1;
723
724 default:
725 return 0;
726 }
727 }
728
729 static int
730 i386_call_p (const gdb_byte *insn)
731 {
732 if (i386_absolute_call_p (insn))
733 return 1;
734
735 /* call near, relative. */
736 if (insn[0] == 0xe8)
737 return 1;
738
739 return 0;
740 }
741
742 /* Return non-zero if INSN is a system call, and set *LENGTHP to its
743 length in bytes. Otherwise, return zero. */
744
745 static int
746 i386_syscall_p (const gdb_byte *insn, int *lengthp)
747 {
748 /* Is it 'int $0x80'? */
749 if ((insn[0] == 0xcd && insn[1] == 0x80)
750 /* Or is it 'sysenter'? */
751 || (insn[0] == 0x0f && insn[1] == 0x34)
752 /* Or is it 'syscall'? */
753 || (insn[0] == 0x0f && insn[1] == 0x05))
754 {
755 *lengthp = 2;
756 return 1;
757 }
758
759 return 0;
760 }
761
762 /* The gdbarch insn_is_call method. */
763
764 static int
765 i386_insn_is_call (struct gdbarch *gdbarch, CORE_ADDR addr)
766 {
767 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
768
769 read_code (addr, buf, I386_MAX_INSN_LEN);
770 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
771
772 return i386_call_p (insn);
773 }
774
775 /* The gdbarch insn_is_ret method. */
776
777 static int
778 i386_insn_is_ret (struct gdbarch *gdbarch, CORE_ADDR addr)
779 {
780 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
781
782 read_code (addr, buf, I386_MAX_INSN_LEN);
783 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
784
785 return i386_ret_p (insn);
786 }
787
788 /* The gdbarch insn_is_jump method. */
789
790 static int
791 i386_insn_is_jump (struct gdbarch *gdbarch, CORE_ADDR addr)
792 {
793 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
794
795 read_code (addr, buf, I386_MAX_INSN_LEN);
796 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
797
798 return i386_jmp_p (insn);
799 }
800
801 /* Some kernels may run one past a syscall insn, so we have to cope. */
802
803 displaced_step_copy_insn_closure_up
804 i386_displaced_step_copy_insn (struct gdbarch *gdbarch,
805 CORE_ADDR from, CORE_ADDR to,
806 struct regcache *regs)
807 {
808 size_t len = gdbarch_max_insn_length (gdbarch);
809 std::unique_ptr<i386_displaced_step_copy_insn_closure> closure
810 (new i386_displaced_step_copy_insn_closure (len));
811 gdb_byte *buf = closure->buf.data ();
812
813 read_memory (from, buf, len);
814
815 /* GDB may get control back after the insn after the syscall.
816 Presumably this is a kernel bug.
817 If this is a syscall, make sure there's a nop afterwards. */
818 {
819 int syscall_length;
820 gdb_byte *insn;
821
822 insn = i386_skip_prefixes (buf, len);
823 if (insn != NULL && i386_syscall_p (insn, &syscall_length))
824 insn[syscall_length] = NOP_OPCODE;
825 }
826
827 write_memory (to, buf, len);
828
829 displaced_debug_printf ("%s->%s: %s",
830 paddress (gdbarch, from), paddress (gdbarch, to),
831 displaced_step_dump_bytes (buf, len).c_str ());
832
833 /* This is a work around for a problem with g++ 4.8. */
834 return displaced_step_copy_insn_closure_up (closure.release ());
835 }
836
837 /* Fix up the state of registers and memory after having single-stepped
838 a displaced instruction. */
839
840 void
841 i386_displaced_step_fixup (struct gdbarch *gdbarch,
842 struct displaced_step_copy_insn_closure *closure_,
843 CORE_ADDR from, CORE_ADDR to,
844 struct regcache *regs)
845 {
846 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
847
848 /* The offset we applied to the instruction's address.
849 This could well be negative (when viewed as a signed 32-bit
850 value), but ULONGEST won't reflect that, so take care when
851 applying it. */
852 ULONGEST insn_offset = to - from;
853
854 i386_displaced_step_copy_insn_closure *closure
855 = (i386_displaced_step_copy_insn_closure *) closure_;
856 gdb_byte *insn = closure->buf.data ();
857 /* The start of the insn, needed in case we see some prefixes. */
858 gdb_byte *insn_start = insn;
859
860 displaced_debug_printf ("fixup (%s, %s), insn = 0x%02x 0x%02x ...",
861 paddress (gdbarch, from), paddress (gdbarch, to),
862 insn[0], insn[1]);
863
864 /* The list of issues to contend with here is taken from
865 resume_execution in arch/i386/kernel/kprobes.c, Linux 2.6.20.
866 Yay for Free Software! */
867
868 /* Relocate the %eip, if necessary. */
869
870 /* The instruction recognizers we use assume any leading prefixes
871 have been skipped. */
872 {
873 /* This is the size of the buffer in closure. */
874 size_t max_insn_len = gdbarch_max_insn_length (gdbarch);
875 gdb_byte *opcode = i386_skip_prefixes (insn, max_insn_len);
876 /* If there are too many prefixes, just ignore the insn.
877 It will fault when run. */
878 if (opcode != NULL)
879 insn = opcode;
880 }
881
882 /* Except in the case of absolute or indirect jump or call
883 instructions, or a return instruction, the new eip is relative to
884 the displaced instruction; make it relative. Well, signal
885 handler returns don't need relocation either, but we use the
886 value of %eip to recognize those; see below. */
887 if (! i386_absolute_jmp_p (insn)
888 && ! i386_absolute_call_p (insn)
889 && ! i386_ret_p (insn))
890 {
891 ULONGEST orig_eip;
892 int insn_len;
893
894 regcache_cooked_read_unsigned (regs, I386_EIP_REGNUM, &orig_eip);
895
896 /* A signal trampoline system call changes the %eip, resuming
897 execution of the main program after the signal handler has
898 returned. That makes them like 'return' instructions; we
899 shouldn't relocate %eip.
900
901 But most system calls don't, and we do need to relocate %eip.
902
903 Our heuristic for distinguishing these cases: if stepping
904 over the system call instruction left control directly after
905 the instruction, the we relocate --- control almost certainly
906 doesn't belong in the displaced copy. Otherwise, we assume
907 the instruction has put control where it belongs, and leave
908 it unrelocated. Goodness help us if there are PC-relative
909 system calls. */
910 if (i386_syscall_p (insn, &insn_len)
911 && orig_eip != to + (insn - insn_start) + insn_len
912 /* GDB can get control back after the insn after the syscall.
913 Presumably this is a kernel bug.
914 i386_displaced_step_copy_insn ensures its a nop,
915 we add one to the length for it. */
916 && orig_eip != to + (insn - insn_start) + insn_len + 1)
917 displaced_debug_printf ("syscall changed %%eip; not relocating");
918 else
919 {
920 ULONGEST eip = (orig_eip - insn_offset) & 0xffffffffUL;
921
922 /* If we just stepped over a breakpoint insn, we don't backup
923 the pc on purpose; this is to match behaviour without
924 stepping. */
925
926 regcache_cooked_write_unsigned (regs, I386_EIP_REGNUM, eip);
927
928 displaced_debug_printf ("relocated %%eip from %s to %s",
929 paddress (gdbarch, orig_eip),
930 paddress (gdbarch, eip));
931 }
932 }
933
934 /* If the instruction was PUSHFL, then the TF bit will be set in the
935 pushed value, and should be cleared. We'll leave this for later,
936 since GDB already messes up the TF flag when stepping over a
937 pushfl. */
938
939 /* If the instruction was a call, the return address now atop the
940 stack is the address following the copied instruction. We need
941 to make it the address following the original instruction. */
942 if (i386_call_p (insn))
943 {
944 ULONGEST esp;
945 ULONGEST retaddr;
946 const ULONGEST retaddr_len = 4;
947
948 regcache_cooked_read_unsigned (regs, I386_ESP_REGNUM, &esp);
949 retaddr = read_memory_unsigned_integer (esp, retaddr_len, byte_order);
950 retaddr = (retaddr - insn_offset) & 0xffffffffUL;
951 write_memory_unsigned_integer (esp, retaddr_len, byte_order, retaddr);
952
953 displaced_debug_printf ("relocated return addr at %s to %s",
954 paddress (gdbarch, esp),
955 paddress (gdbarch, retaddr));
956 }
957 }
958
959 static void
960 append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
961 {
962 target_write_memory (*to, buf, len);
963 *to += len;
964 }
965
966 static void
967 i386_relocate_instruction (struct gdbarch *gdbarch,
968 CORE_ADDR *to, CORE_ADDR oldloc)
969 {
970 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
971 gdb_byte buf[I386_MAX_INSN_LEN];
972 int offset = 0, rel32, newrel;
973 int insn_length;
974 gdb_byte *insn = buf;
975
976 read_memory (oldloc, buf, I386_MAX_INSN_LEN);
977
978 insn_length = gdb_buffered_insn_length (gdbarch, insn,
979 I386_MAX_INSN_LEN, oldloc);
980
981 /* Get past the prefixes. */
982 insn = i386_skip_prefixes (insn, I386_MAX_INSN_LEN);
983
984 /* Adjust calls with 32-bit relative addresses as push/jump, with
985 the address pushed being the location where the original call in
986 the user program would return to. */
987 if (insn[0] == 0xe8)
988 {
989 gdb_byte push_buf[16];
990 unsigned int ret_addr;
991
992 /* Where "ret" in the original code will return to. */
993 ret_addr = oldloc + insn_length;
994 push_buf[0] = 0x68; /* pushq $... */
995 store_unsigned_integer (&push_buf[1], 4, byte_order, ret_addr);
996 /* Push the push. */
997 append_insns (to, 5, push_buf);
998
999 /* Convert the relative call to a relative jump. */
1000 insn[0] = 0xe9;
1001
1002 /* Adjust the destination offset. */
1003 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
1004 newrel = (oldloc - *to) + rel32;
1005 store_signed_integer (insn + 1, 4, byte_order, newrel);
1006
1007 displaced_debug_printf ("adjusted insn rel32=%s at %s to rel32=%s at %s",
1008 hex_string (rel32), paddress (gdbarch, oldloc),
1009 hex_string (newrel), paddress (gdbarch, *to));
1010
1011 /* Write the adjusted jump into its displaced location. */
1012 append_insns (to, 5, insn);
1013 return;
1014 }
1015
1016 /* Adjust jumps with 32-bit relative addresses. Calls are already
1017 handled above. */
1018 if (insn[0] == 0xe9)
1019 offset = 1;
1020 /* Adjust conditional jumps. */
1021 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
1022 offset = 2;
1023
1024 if (offset)
1025 {
1026 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
1027 newrel = (oldloc - *to) + rel32;
1028 store_signed_integer (insn + offset, 4, byte_order, newrel);
1029 displaced_debug_printf ("adjusted insn rel32=%s at %s to rel32=%s at %s",
1030 hex_string (rel32), paddress (gdbarch, oldloc),
1031 hex_string (newrel), paddress (gdbarch, *to));
1032 }
1033
1034 /* Write the adjusted instructions into their displaced
1035 location. */
1036 append_insns (to, insn_length, buf);
1037 }
1038
1039 \f
1040 #ifdef I386_REGNO_TO_SYMMETRY
1041 #error "The Sequent Symmetry is no longer supported."
1042 #endif
1043
1044 /* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
1045 and %esp "belong" to the calling function. Therefore these
1046 registers should be saved if they're going to be modified. */
1047
1048 /* The maximum number of saved registers. This should include all
1049 registers mentioned above, and %eip. */
1050 #define I386_NUM_SAVED_REGS I386_NUM_GREGS
1051
1052 struct i386_frame_cache
1053 {
1054 /* Base address. */
1055 CORE_ADDR base;
1056 int base_p;
1057 LONGEST sp_offset;
1058 CORE_ADDR pc;
1059
1060 /* Saved registers. */
1061 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
1062 CORE_ADDR saved_sp;
1063 int saved_sp_reg;
1064 int pc_in_eax;
1065
1066 /* Stack space reserved for local variables. */
1067 long locals;
1068 };
1069
1070 /* Allocate and initialize a frame cache. */
1071
1072 static struct i386_frame_cache *
1073 i386_alloc_frame_cache (void)
1074 {
1075 struct i386_frame_cache *cache;
1076 int i;
1077
1078 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
1079
1080 /* Base address. */
1081 cache->base_p = 0;
1082 cache->base = 0;
1083 cache->sp_offset = -4;
1084 cache->pc = 0;
1085
1086 /* Saved registers. We initialize these to -1 since zero is a valid
1087 offset (that's where %ebp is supposed to be stored). */
1088 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
1089 cache->saved_regs[i] = -1;
1090 cache->saved_sp = 0;
1091 cache->saved_sp_reg = -1;
1092 cache->pc_in_eax = 0;
1093
1094 /* Frameless until proven otherwise. */
1095 cache->locals = -1;
1096
1097 return cache;
1098 }
1099
1100 /* If the instruction at PC is a jump, return the address of its
1101 target. Otherwise, return PC. */
1102
1103 static CORE_ADDR
1104 i386_follow_jump (struct gdbarch *gdbarch, CORE_ADDR pc)
1105 {
1106 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1107 gdb_byte op;
1108 long delta = 0;
1109 int data16 = 0;
1110
1111 if (target_read_code (pc, &op, 1))
1112 return pc;
1113
1114 if (op == 0x66)
1115 {
1116 data16 = 1;
1117
1118 op = read_code_unsigned_integer (pc + 1, 1, byte_order);
1119 }
1120
1121 switch (op)
1122 {
1123 case 0xe9:
1124 /* Relative jump: if data16 == 0, disp32, else disp16. */
1125 if (data16)
1126 {
1127 delta = read_memory_integer (pc + 2, 2, byte_order);
1128
1129 /* Include the size of the jmp instruction (including the
1130 0x66 prefix). */
1131 delta += 4;
1132 }
1133 else
1134 {
1135 delta = read_memory_integer (pc + 1, 4, byte_order);
1136
1137 /* Include the size of the jmp instruction. */
1138 delta += 5;
1139 }
1140 break;
1141 case 0xeb:
1142 /* Relative jump, disp8 (ignore data16). */
1143 delta = read_memory_integer (pc + data16 + 1, 1, byte_order);
1144
1145 delta += data16 + 2;
1146 break;
1147 }
1148
1149 return pc + delta;
1150 }
1151
1152 /* Check whether PC points at a prologue for a function returning a
1153 structure or union. If so, it updates CACHE and returns the
1154 address of the first instruction after the code sequence that
1155 removes the "hidden" argument from the stack or CURRENT_PC,
1156 whichever is smaller. Otherwise, return PC. */
1157
1158 static CORE_ADDR
1159 i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
1160 struct i386_frame_cache *cache)
1161 {
1162 /* Functions that return a structure or union start with:
1163
1164 popl %eax 0x58
1165 xchgl %eax, (%esp) 0x87 0x04 0x24
1166 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
1167
1168 (the System V compiler puts out the second `xchg' instruction,
1169 and the assembler doesn't try to optimize it, so the 'sib' form
1170 gets generated). This sequence is used to get the address of the
1171 return buffer for a function that returns a structure. */
1172 static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
1173 static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
1174 gdb_byte buf[4];
1175 gdb_byte op;
1176
1177 if (current_pc <= pc)
1178 return pc;
1179
1180 if (target_read_code (pc, &op, 1))
1181 return pc;
1182
1183 if (op != 0x58) /* popl %eax */
1184 return pc;
1185
1186 if (target_read_code (pc + 1, buf, 4))
1187 return pc;
1188
1189 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
1190 return pc;
1191
1192 if (current_pc == pc)
1193 {
1194 cache->sp_offset += 4;
1195 return current_pc;
1196 }
1197
1198 if (current_pc == pc + 1)
1199 {
1200 cache->pc_in_eax = 1;
1201 return current_pc;
1202 }
1203
1204 if (buf[1] == proto1[1])
1205 return pc + 4;
1206 else
1207 return pc + 5;
1208 }
1209
1210 static CORE_ADDR
1211 i386_skip_probe (CORE_ADDR pc)
1212 {
1213 /* A function may start with
1214
1215 pushl constant
1216 call _probe
1217 addl $4, %esp
1218
1219 followed by
1220
1221 pushl %ebp
1222
1223 etc. */
1224 gdb_byte buf[8];
1225 gdb_byte op;
1226
1227 if (target_read_code (pc, &op, 1))
1228 return pc;
1229
1230 if (op == 0x68 || op == 0x6a)
1231 {
1232 int delta;
1233
1234 /* Skip past the `pushl' instruction; it has either a one-byte or a
1235 four-byte operand, depending on the opcode. */
1236 if (op == 0x68)
1237 delta = 5;
1238 else
1239 delta = 2;
1240
1241 /* Read the following 8 bytes, which should be `call _probe' (6
1242 bytes) followed by `addl $4,%esp' (2 bytes). */
1243 read_memory (pc + delta, buf, sizeof (buf));
1244 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
1245 pc += delta + sizeof (buf);
1246 }
1247
1248 return pc;
1249 }
1250
1251 /* GCC 4.1 and later, can put code in the prologue to realign the
1252 stack pointer. Check whether PC points to such code, and update
1253 CACHE accordingly. Return the first instruction after the code
1254 sequence or CURRENT_PC, whichever is smaller. If we don't
1255 recognize the code, return PC. */
1256
1257 static CORE_ADDR
1258 i386_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1259 struct i386_frame_cache *cache)
1260 {
1261 /* There are 2 code sequences to re-align stack before the frame
1262 gets set up:
1263
1264 1. Use a caller-saved saved register:
1265
1266 leal 4(%esp), %reg
1267 andl $-XXX, %esp
1268 pushl -4(%reg)
1269
1270 2. Use a callee-saved saved register:
1271
1272 pushl %reg
1273 leal 8(%esp), %reg
1274 andl $-XXX, %esp
1275 pushl -4(%reg)
1276
1277 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
1278
1279 0x83 0xe4 0xf0 andl $-16, %esp
1280 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
1281 */
1282
1283 gdb_byte buf[14];
1284 int reg;
1285 int offset, offset_and;
1286 static int regnums[8] = {
1287 I386_EAX_REGNUM, /* %eax */
1288 I386_ECX_REGNUM, /* %ecx */
1289 I386_EDX_REGNUM, /* %edx */
1290 I386_EBX_REGNUM, /* %ebx */
1291 I386_ESP_REGNUM, /* %esp */
1292 I386_EBP_REGNUM, /* %ebp */
1293 I386_ESI_REGNUM, /* %esi */
1294 I386_EDI_REGNUM /* %edi */
1295 };
1296
1297 if (target_read_code (pc, buf, sizeof buf))
1298 return pc;
1299
1300 /* Check caller-saved saved register. The first instruction has
1301 to be "leal 4(%esp), %reg". */
1302 if (buf[0] == 0x8d && buf[2] == 0x24 && buf[3] == 0x4)
1303 {
1304 /* MOD must be binary 10 and R/M must be binary 100. */
1305 if ((buf[1] & 0xc7) != 0x44)
1306 return pc;
1307
1308 /* REG has register number. */
1309 reg = (buf[1] >> 3) & 7;
1310 offset = 4;
1311 }
1312 else
1313 {
1314 /* Check callee-saved saved register. The first instruction
1315 has to be "pushl %reg". */
1316 if ((buf[0] & 0xf8) != 0x50)
1317 return pc;
1318
1319 /* Get register. */
1320 reg = buf[0] & 0x7;
1321
1322 /* The next instruction has to be "leal 8(%esp), %reg". */
1323 if (buf[1] != 0x8d || buf[3] != 0x24 || buf[4] != 0x8)
1324 return pc;
1325
1326 /* MOD must be binary 10 and R/M must be binary 100. */
1327 if ((buf[2] & 0xc7) != 0x44)
1328 return pc;
1329
1330 /* REG has register number. Registers in pushl and leal have to
1331 be the same. */
1332 if (reg != ((buf[2] >> 3) & 7))
1333 return pc;
1334
1335 offset = 5;
1336 }
1337
1338 /* Rigister can't be %esp nor %ebp. */
1339 if (reg == 4 || reg == 5)
1340 return pc;
1341
1342 /* The next instruction has to be "andl $-XXX, %esp". */
1343 if (buf[offset + 1] != 0xe4
1344 || (buf[offset] != 0x81 && buf[offset] != 0x83))
1345 return pc;
1346
1347 offset_and = offset;
1348 offset += buf[offset] == 0x81 ? 6 : 3;
1349
1350 /* The next instruction has to be "pushl -4(%reg)". 8bit -4 is
1351 0xfc. REG must be binary 110 and MOD must be binary 01. */
1352 if (buf[offset] != 0xff
1353 || buf[offset + 2] != 0xfc
1354 || (buf[offset + 1] & 0xf8) != 0x70)
1355 return pc;
1356
1357 /* R/M has register. Registers in leal and pushl have to be the
1358 same. */
1359 if (reg != (buf[offset + 1] & 7))
1360 return pc;
1361
1362 if (current_pc > pc + offset_and)
1363 cache->saved_sp_reg = regnums[reg];
1364
1365 return std::min (pc + offset + 3, current_pc);
1366 }
1367
1368 /* Maximum instruction length we need to handle. */
1369 #define I386_MAX_MATCHED_INSN_LEN 6
1370
1371 /* Instruction description. */
1372 struct i386_insn
1373 {
1374 size_t len;
1375 gdb_byte insn[I386_MAX_MATCHED_INSN_LEN];
1376 gdb_byte mask[I386_MAX_MATCHED_INSN_LEN];
1377 };
1378
1379 /* Return whether instruction at PC matches PATTERN. */
1380
1381 static int
1382 i386_match_pattern (CORE_ADDR pc, struct i386_insn pattern)
1383 {
1384 gdb_byte op;
1385
1386 if (target_read_code (pc, &op, 1))
1387 return 0;
1388
1389 if ((op & pattern.mask[0]) == pattern.insn[0])
1390 {
1391 gdb_byte buf[I386_MAX_MATCHED_INSN_LEN - 1];
1392 int insn_matched = 1;
1393 size_t i;
1394
1395 gdb_assert (pattern.len > 1);
1396 gdb_assert (pattern.len <= I386_MAX_MATCHED_INSN_LEN);
1397
1398 if (target_read_code (pc + 1, buf, pattern.len - 1))
1399 return 0;
1400
1401 for (i = 1; i < pattern.len; i++)
1402 {
1403 if ((buf[i - 1] & pattern.mask[i]) != pattern.insn[i])
1404 insn_matched = 0;
1405 }
1406 return insn_matched;
1407 }
1408 return 0;
1409 }
1410
1411 /* Search for the instruction at PC in the list INSN_PATTERNS. Return
1412 the first instruction description that matches. Otherwise, return
1413 NULL. */
1414
1415 static struct i386_insn *
1416 i386_match_insn (CORE_ADDR pc, struct i386_insn *insn_patterns)
1417 {
1418 struct i386_insn *pattern;
1419
1420 for (pattern = insn_patterns; pattern->len > 0; pattern++)
1421 {
1422 if (i386_match_pattern (pc, *pattern))
1423 return pattern;
1424 }
1425
1426 return NULL;
1427 }
1428
1429 /* Return whether PC points inside a sequence of instructions that
1430 matches INSN_PATTERNS. */
1431
1432 static int
1433 i386_match_insn_block (CORE_ADDR pc, struct i386_insn *insn_patterns)
1434 {
1435 CORE_ADDR current_pc;
1436 int ix, i;
1437 struct i386_insn *insn;
1438
1439 insn = i386_match_insn (pc, insn_patterns);
1440 if (insn == NULL)
1441 return 0;
1442
1443 current_pc = pc;
1444 ix = insn - insn_patterns;
1445 for (i = ix - 1; i >= 0; i--)
1446 {
1447 current_pc -= insn_patterns[i].len;
1448
1449 if (!i386_match_pattern (current_pc, insn_patterns[i]))
1450 return 0;
1451 }
1452
1453 current_pc = pc + insn->len;
1454 for (insn = insn_patterns + ix + 1; insn->len > 0; insn++)
1455 {
1456 if (!i386_match_pattern (current_pc, *insn))
1457 return 0;
1458
1459 current_pc += insn->len;
1460 }
1461
1462 return 1;
1463 }
1464
1465 /* Some special instructions that might be migrated by GCC into the
1466 part of the prologue that sets up the new stack frame. Because the
1467 stack frame hasn't been setup yet, no registers have been saved
1468 yet, and only the scratch registers %eax, %ecx and %edx can be
1469 touched. */
1470
1471 static i386_insn i386_frame_setup_skip_insns[] =
1472 {
1473 /* Check for `movb imm8, r' and `movl imm32, r'.
1474
1475 ??? Should we handle 16-bit operand-sizes here? */
1476
1477 /* `movb imm8, %al' and `movb imm8, %ah' */
1478 /* `movb imm8, %cl' and `movb imm8, %ch' */
1479 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
1480 /* `movb imm8, %dl' and `movb imm8, %dh' */
1481 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
1482 /* `movl imm32, %eax' and `movl imm32, %ecx' */
1483 { 5, { 0xb8 }, { 0xfe } },
1484 /* `movl imm32, %edx' */
1485 { 5, { 0xba }, { 0xff } },
1486
1487 /* Check for `mov imm32, r32'. Note that there is an alternative
1488 encoding for `mov m32, %eax'.
1489
1490 ??? Should we handle SIB addressing here?
1491 ??? Should we handle 16-bit operand-sizes here? */
1492
1493 /* `movl m32, %eax' */
1494 { 5, { 0xa1 }, { 0xff } },
1495 /* `movl m32, %eax' and `mov; m32, %ecx' */
1496 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
1497 /* `movl m32, %edx' */
1498 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
1499
1500 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
1501 Because of the symmetry, there are actually two ways to encode
1502 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
1503 opcode bytes 0x31 and 0x33 for `xorl'. */
1504
1505 /* `subl %eax, %eax' */
1506 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
1507 /* `subl %ecx, %ecx' */
1508 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
1509 /* `subl %edx, %edx' */
1510 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
1511 /* `xorl %eax, %eax' */
1512 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
1513 /* `xorl %ecx, %ecx' */
1514 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
1515 /* `xorl %edx, %edx' */
1516 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
1517 { 0 }
1518 };
1519
1520 /* Check whether PC points to an endbr32 instruction. */
1521 static CORE_ADDR
1522 i386_skip_endbr (CORE_ADDR pc)
1523 {
1524 static const gdb_byte endbr32[] = { 0xf3, 0x0f, 0x1e, 0xfb };
1525
1526 gdb_byte buf[sizeof (endbr32)];
1527
1528 /* Stop there if we can't read the code */
1529 if (target_read_code (pc, buf, sizeof (endbr32)))
1530 return pc;
1531
1532 /* If the instruction isn't an endbr32, stop */
1533 if (memcmp (buf, endbr32, sizeof (endbr32)) != 0)
1534 return pc;
1535
1536 return pc + sizeof (endbr32);
1537 }
1538
1539 /* Check whether PC points to a no-op instruction. */
1540 static CORE_ADDR
1541 i386_skip_noop (CORE_ADDR pc)
1542 {
1543 gdb_byte op;
1544 int check = 1;
1545
1546 if (target_read_code (pc, &op, 1))
1547 return pc;
1548
1549 while (check)
1550 {
1551 check = 0;
1552 /* Ignore `nop' instruction. */
1553 if (op == 0x90)
1554 {
1555 pc += 1;
1556 if (target_read_code (pc, &op, 1))
1557 return pc;
1558 check = 1;
1559 }
1560 /* Ignore no-op instruction `mov %edi, %edi'.
1561 Microsoft system dlls often start with
1562 a `mov %edi,%edi' instruction.
1563 The 5 bytes before the function start are
1564 filled with `nop' instructions.
1565 This pattern can be used for hot-patching:
1566 The `mov %edi, %edi' instruction can be replaced by a
1567 near jump to the location of the 5 `nop' instructions
1568 which can be replaced by a 32-bit jump to anywhere
1569 in the 32-bit address space. */
1570
1571 else if (op == 0x8b)
1572 {
1573 if (target_read_code (pc + 1, &op, 1))
1574 return pc;
1575
1576 if (op == 0xff)
1577 {
1578 pc += 2;
1579 if (target_read_code (pc, &op, 1))
1580 return pc;
1581
1582 check = 1;
1583 }
1584 }
1585 }
1586 return pc;
1587 }
1588
1589 /* Check whether PC points at a code that sets up a new stack frame.
1590 If so, it updates CACHE and returns the address of the first
1591 instruction after the sequence that sets up the frame or LIMIT,
1592 whichever is smaller. If we don't recognize the code, return PC. */
1593
1594 static CORE_ADDR
1595 i386_analyze_frame_setup (struct gdbarch *gdbarch,
1596 CORE_ADDR pc, CORE_ADDR limit,
1597 struct i386_frame_cache *cache)
1598 {
1599 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1600 struct i386_insn *insn;
1601 gdb_byte op;
1602 int skip = 0;
1603
1604 if (limit <= pc)
1605 return limit;
1606
1607 if (target_read_code (pc, &op, 1))
1608 return pc;
1609
1610 if (op == 0x55) /* pushl %ebp */
1611 {
1612 /* Take into account that we've executed the `pushl %ebp' that
1613 starts this instruction sequence. */
1614 cache->saved_regs[I386_EBP_REGNUM] = 0;
1615 cache->sp_offset += 4;
1616 pc++;
1617
1618 /* If that's all, return now. */
1619 if (limit <= pc)
1620 return limit;
1621
1622 /* Check for some special instructions that might be migrated by
1623 GCC into the prologue and skip them. At this point in the
1624 prologue, code should only touch the scratch registers %eax,
1625 %ecx and %edx, so while the number of possibilities is sheer,
1626 it is limited.
1627
1628 Make sure we only skip these instructions if we later see the
1629 `movl %esp, %ebp' that actually sets up the frame. */
1630 while (pc + skip < limit)
1631 {
1632 insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
1633 if (insn == NULL)
1634 break;
1635
1636 skip += insn->len;
1637 }
1638
1639 /* If that's all, return now. */
1640 if (limit <= pc + skip)
1641 return limit;
1642
1643 if (target_read_code (pc + skip, &op, 1))
1644 return pc + skip;
1645
1646 /* The i386 prologue looks like
1647
1648 push %ebp
1649 mov %esp,%ebp
1650 sub $0x10,%esp
1651
1652 and a different prologue can be generated for atom.
1653
1654 push %ebp
1655 lea (%esp),%ebp
1656 lea -0x10(%esp),%esp
1657
1658 We handle both of them here. */
1659
1660 switch (op)
1661 {
1662 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
1663 case 0x8b:
1664 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
1665 != 0xec)
1666 return pc;
1667 pc += (skip + 2);
1668 break;
1669 case 0x89:
1670 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
1671 != 0xe5)
1672 return pc;
1673 pc += (skip + 2);
1674 break;
1675 case 0x8d: /* Check for 'lea (%ebp), %ebp'. */
1676 if (read_code_unsigned_integer (pc + skip + 1, 2, byte_order)
1677 != 0x242c)
1678 return pc;
1679 pc += (skip + 3);
1680 break;
1681 default:
1682 return pc;
1683 }
1684
1685 /* OK, we actually have a frame. We just don't know how large
1686 it is yet. Set its size to zero. We'll adjust it if
1687 necessary. We also now commit to skipping the special
1688 instructions mentioned before. */
1689 cache->locals = 0;
1690
1691 /* If that's all, return now. */
1692 if (limit <= pc)
1693 return limit;
1694
1695 /* Check for stack adjustment
1696
1697 subl $XXX, %esp
1698 or
1699 lea -XXX(%esp),%esp
1700
1701 NOTE: You can't subtract a 16-bit immediate from a 32-bit
1702 reg, so we don't have to worry about a data16 prefix. */
1703 if (target_read_code (pc, &op, 1))
1704 return pc;
1705 if (op == 0x83)
1706 {
1707 /* `subl' with 8-bit immediate. */
1708 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1709 /* Some instruction starting with 0x83 other than `subl'. */
1710 return pc;
1711
1712 /* `subl' with signed 8-bit immediate (though it wouldn't
1713 make sense to be negative). */
1714 cache->locals = read_code_integer (pc + 2, 1, byte_order);
1715 return pc + 3;
1716 }
1717 else if (op == 0x81)
1718 {
1719 /* Maybe it is `subl' with a 32-bit immediate. */
1720 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1721 /* Some instruction starting with 0x81 other than `subl'. */
1722 return pc;
1723
1724 /* It is `subl' with a 32-bit immediate. */
1725 cache->locals = read_code_integer (pc + 2, 4, byte_order);
1726 return pc + 6;
1727 }
1728 else if (op == 0x8d)
1729 {
1730 /* The ModR/M byte is 0x64. */
1731 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0x64)
1732 return pc;
1733 /* 'lea' with 8-bit displacement. */
1734 cache->locals = -1 * read_code_integer (pc + 3, 1, byte_order);
1735 return pc + 4;
1736 }
1737 else
1738 {
1739 /* Some instruction other than `subl' nor 'lea'. */
1740 return pc;
1741 }
1742 }
1743 else if (op == 0xc8) /* enter */
1744 {
1745 cache->locals = read_code_unsigned_integer (pc + 1, 2, byte_order);
1746 return pc + 4;
1747 }
1748
1749 return pc;
1750 }
1751
1752 /* Check whether PC points at code that saves registers on the stack.
1753 If so, it updates CACHE and returns the address of the first
1754 instruction after the register saves or CURRENT_PC, whichever is
1755 smaller. Otherwise, return PC. */
1756
1757 static CORE_ADDR
1758 i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
1759 struct i386_frame_cache *cache)
1760 {
1761 CORE_ADDR offset = 0;
1762 gdb_byte op;
1763 int i;
1764
1765 if (cache->locals > 0)
1766 offset -= cache->locals;
1767 for (i = 0; i < 8 && pc < current_pc; i++)
1768 {
1769 if (target_read_code (pc, &op, 1))
1770 return pc;
1771 if (op < 0x50 || op > 0x57)
1772 break;
1773
1774 offset -= 4;
1775 cache->saved_regs[op - 0x50] = offset;
1776 cache->sp_offset += 4;
1777 pc++;
1778 }
1779
1780 return pc;
1781 }
1782
1783 /* Do a full analysis of the prologue at PC and update CACHE
1784 accordingly. Bail out early if CURRENT_PC is reached. Return the
1785 address where the analysis stopped.
1786
1787 We handle these cases:
1788
1789 The startup sequence can be at the start of the function, or the
1790 function can start with a branch to startup code at the end.
1791
1792 %ebp can be set up with either the 'enter' instruction, or "pushl
1793 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
1794 once used in the System V compiler).
1795
1796 Local space is allocated just below the saved %ebp by either the
1797 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
1798 16-bit unsigned argument for space to allocate, and the 'addl'
1799 instruction could have either a signed byte, or 32-bit immediate.
1800
1801 Next, the registers used by this function are pushed. With the
1802 System V compiler they will always be in the order: %edi, %esi,
1803 %ebx (and sometimes a harmless bug causes it to also save but not
1804 restore %eax); however, the code below is willing to see the pushes
1805 in any order, and will handle up to 8 of them.
1806
1807 If the setup sequence is at the end of the function, then the next
1808 instruction will be a branch back to the start. */
1809
1810 static CORE_ADDR
1811 i386_analyze_prologue (struct gdbarch *gdbarch,
1812 CORE_ADDR pc, CORE_ADDR current_pc,
1813 struct i386_frame_cache *cache)
1814 {
1815 pc = i386_skip_endbr (pc);
1816 pc = i386_skip_noop (pc);
1817 pc = i386_follow_jump (gdbarch, pc);
1818 pc = i386_analyze_struct_return (pc, current_pc, cache);
1819 pc = i386_skip_probe (pc);
1820 pc = i386_analyze_stack_align (pc, current_pc, cache);
1821 pc = i386_analyze_frame_setup (gdbarch, pc, current_pc, cache);
1822 return i386_analyze_register_saves (pc, current_pc, cache);
1823 }
1824
1825 /* Return PC of first real instruction. */
1826
1827 static CORE_ADDR
1828 i386_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
1829 {
1830 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1831
1832 static gdb_byte pic_pat[6] =
1833 {
1834 0xe8, 0, 0, 0, 0, /* call 0x0 */
1835 0x5b, /* popl %ebx */
1836 };
1837 struct i386_frame_cache cache;
1838 CORE_ADDR pc;
1839 gdb_byte op;
1840 int i;
1841 CORE_ADDR func_addr;
1842
1843 if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
1844 {
1845 CORE_ADDR post_prologue_pc
1846 = skip_prologue_using_sal (gdbarch, func_addr);
1847 struct compunit_symtab *cust = find_pc_compunit_symtab (func_addr);
1848
1849 /* LLVM backend (Clang/Flang) always emits a line note before the
1850 prologue and another one after. We trust clang to emit usable
1851 line notes. */
1852 if (post_prologue_pc
1853 && (cust != NULL
1854 && COMPUNIT_PRODUCER (cust) != NULL
1855 && producer_is_llvm (COMPUNIT_PRODUCER (cust))))
1856 return std::max (start_pc, post_prologue_pc);
1857 }
1858
1859 cache.locals = -1;
1860 pc = i386_analyze_prologue (gdbarch, start_pc, 0xffffffff, &cache);
1861 if (cache.locals < 0)
1862 return start_pc;
1863
1864 /* Found valid frame setup. */
1865
1866 /* The native cc on SVR4 in -K PIC mode inserts the following code
1867 to get the address of the global offset table (GOT) into register
1868 %ebx:
1869
1870 call 0x0
1871 popl %ebx
1872 movl %ebx,x(%ebp) (optional)
1873 addl y,%ebx
1874
1875 This code is with the rest of the prologue (at the end of the
1876 function), so we have to skip it to get to the first real
1877 instruction at the start of the function. */
1878
1879 for (i = 0; i < 6; i++)
1880 {
1881 if (target_read_code (pc + i, &op, 1))
1882 return pc;
1883
1884 if (pic_pat[i] != op)
1885 break;
1886 }
1887 if (i == 6)
1888 {
1889 int delta = 6;
1890
1891 if (target_read_code (pc + delta, &op, 1))
1892 return pc;
1893
1894 if (op == 0x89) /* movl %ebx, x(%ebp) */
1895 {
1896 op = read_code_unsigned_integer (pc + delta + 1, 1, byte_order);
1897
1898 if (op == 0x5d) /* One byte offset from %ebp. */
1899 delta += 3;
1900 else if (op == 0x9d) /* Four byte offset from %ebp. */
1901 delta += 6;
1902 else /* Unexpected instruction. */
1903 delta = 0;
1904
1905 if (target_read_code (pc + delta, &op, 1))
1906 return pc;
1907 }
1908
1909 /* addl y,%ebx */
1910 if (delta > 0 && op == 0x81
1911 && read_code_unsigned_integer (pc + delta + 1, 1, byte_order)
1912 == 0xc3)
1913 {
1914 pc += delta + 6;
1915 }
1916 }
1917
1918 /* If the function starts with a branch (to startup code at the end)
1919 the last instruction should bring us back to the first
1920 instruction of the real code. */
1921 if (i386_follow_jump (gdbarch, start_pc) != start_pc)
1922 pc = i386_follow_jump (gdbarch, pc);
1923
1924 return pc;
1925 }
1926
1927 /* Check that the code pointed to by PC corresponds to a call to
1928 __main, skip it if so. Return PC otherwise. */
1929
1930 CORE_ADDR
1931 i386_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1932 {
1933 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1934 gdb_byte op;
1935
1936 if (target_read_code (pc, &op, 1))
1937 return pc;
1938 if (op == 0xe8)
1939 {
1940 gdb_byte buf[4];
1941
1942 if (target_read_code (pc + 1, buf, sizeof buf) == 0)
1943 {
1944 /* Make sure address is computed correctly as a 32bit
1945 integer even if CORE_ADDR is 64 bit wide. */
1946 struct bound_minimal_symbol s;
1947 CORE_ADDR call_dest;
1948
1949 call_dest = pc + 5 + extract_signed_integer (buf, 4, byte_order);
1950 call_dest = call_dest & 0xffffffffU;
1951 s = lookup_minimal_symbol_by_pc (call_dest);
1952 if (s.minsym != NULL
1953 && s.minsym->linkage_name () != NULL
1954 && strcmp (s.minsym->linkage_name (), "__main") == 0)
1955 pc += 5;
1956 }
1957 }
1958
1959 return pc;
1960 }
1961
1962 /* This function is 64-bit safe. */
1963
1964 static CORE_ADDR
1965 i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1966 {
1967 gdb_byte buf[8];
1968
1969 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
1970 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
1971 }
1972 \f
1973
1974 /* Normal frames. */
1975
1976 static void
1977 i386_frame_cache_1 (struct frame_info *this_frame,
1978 struct i386_frame_cache *cache)
1979 {
1980 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1981 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1982 gdb_byte buf[4];
1983 int i;
1984
1985 cache->pc = get_frame_func (this_frame);
1986
1987 /* In principle, for normal frames, %ebp holds the frame pointer,
1988 which holds the base address for the current stack frame.
1989 However, for functions that don't need it, the frame pointer is
1990 optional. For these "frameless" functions the frame pointer is
1991 actually the frame pointer of the calling frame. Signal
1992 trampolines are just a special case of a "frameless" function.
1993 They (usually) share their frame pointer with the frame that was
1994 in progress when the signal occurred. */
1995
1996 get_frame_register (this_frame, I386_EBP_REGNUM, buf);
1997 cache->base = extract_unsigned_integer (buf, 4, byte_order);
1998 if (cache->base == 0)
1999 {
2000 cache->base_p = 1;
2001 return;
2002 }
2003
2004 /* For normal frames, %eip is stored at 4(%ebp). */
2005 cache->saved_regs[I386_EIP_REGNUM] = 4;
2006
2007 if (cache->pc != 0)
2008 i386_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
2009 cache);
2010
2011 if (cache->locals < 0)
2012 {
2013 /* We didn't find a valid frame, which means that CACHE->base
2014 currently holds the frame pointer for our calling frame. If
2015 we're at the start of a function, or somewhere half-way its
2016 prologue, the function's frame probably hasn't been fully
2017 setup yet. Try to reconstruct the base address for the stack
2018 frame by looking at the stack pointer. For truly "frameless"
2019 functions this might work too. */
2020
2021 if (cache->saved_sp_reg != -1)
2022 {
2023 /* Saved stack pointer has been saved. */
2024 get_frame_register (this_frame, cache->saved_sp_reg, buf);
2025 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
2026
2027 /* We're halfway aligning the stack. */
2028 cache->base = ((cache->saved_sp - 4) & 0xfffffff0) - 4;
2029 cache->saved_regs[I386_EIP_REGNUM] = cache->saved_sp - 4;
2030
2031 /* This will be added back below. */
2032 cache->saved_regs[I386_EIP_REGNUM] -= cache->base;
2033 }
2034 else if (cache->pc != 0
2035 || target_read_code (get_frame_pc (this_frame), buf, 1))
2036 {
2037 /* We're in a known function, but did not find a frame
2038 setup. Assume that the function does not use %ebp.
2039 Alternatively, we may have jumped to an invalid
2040 address; in that case there is definitely no new
2041 frame in %ebp. */
2042 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2043 cache->base = extract_unsigned_integer (buf, 4, byte_order)
2044 + cache->sp_offset;
2045 }
2046 else
2047 /* We're in an unknown function. We could not find the start
2048 of the function to analyze the prologue; our best option is
2049 to assume a typical frame layout with the caller's %ebp
2050 saved. */
2051 cache->saved_regs[I386_EBP_REGNUM] = 0;
2052 }
2053
2054 if (cache->saved_sp_reg != -1)
2055 {
2056 /* Saved stack pointer has been saved (but the SAVED_SP_REG
2057 register may be unavailable). */
2058 if (cache->saved_sp == 0
2059 && deprecated_frame_register_read (this_frame,
2060 cache->saved_sp_reg, buf))
2061 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
2062 }
2063 /* Now that we have the base address for the stack frame we can
2064 calculate the value of %esp in the calling frame. */
2065 else if (cache->saved_sp == 0)
2066 cache->saved_sp = cache->base + 8;
2067
2068 /* Adjust all the saved registers such that they contain addresses
2069 instead of offsets. */
2070 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
2071 if (cache->saved_regs[i] != -1)
2072 cache->saved_regs[i] += cache->base;
2073
2074 cache->base_p = 1;
2075 }
2076
2077 static struct i386_frame_cache *
2078 i386_frame_cache (struct frame_info *this_frame, void **this_cache)
2079 {
2080 struct i386_frame_cache *cache;
2081
2082 if (*this_cache)
2083 return (struct i386_frame_cache *) *this_cache;
2084
2085 cache = i386_alloc_frame_cache ();
2086 *this_cache = cache;
2087
2088 try
2089 {
2090 i386_frame_cache_1 (this_frame, cache);
2091 }
2092 catch (const gdb_exception_error &ex)
2093 {
2094 if (ex.error != NOT_AVAILABLE_ERROR)
2095 throw;
2096 }
2097
2098 return cache;
2099 }
2100
2101 static void
2102 i386_frame_this_id (struct frame_info *this_frame, void **this_cache,
2103 struct frame_id *this_id)
2104 {
2105 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2106
2107 if (!cache->base_p)
2108 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2109 else if (cache->base == 0)
2110 {
2111 /* This marks the outermost frame. */
2112 }
2113 else
2114 {
2115 /* See the end of i386_push_dummy_call. */
2116 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2117 }
2118 }
2119
2120 static enum unwind_stop_reason
2121 i386_frame_unwind_stop_reason (struct frame_info *this_frame,
2122 void **this_cache)
2123 {
2124 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2125
2126 if (!cache->base_p)
2127 return UNWIND_UNAVAILABLE;
2128
2129 /* This marks the outermost frame. */
2130 if (cache->base == 0)
2131 return UNWIND_OUTERMOST;
2132
2133 return UNWIND_NO_REASON;
2134 }
2135
2136 static struct value *
2137 i386_frame_prev_register (struct frame_info *this_frame, void **this_cache,
2138 int regnum)
2139 {
2140 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2141
2142 gdb_assert (regnum >= 0);
2143
2144 /* The System V ABI says that:
2145
2146 "The flags register contains the system flags, such as the
2147 direction flag and the carry flag. The direction flag must be
2148 set to the forward (that is, zero) direction before entry and
2149 upon exit from a function. Other user flags have no specified
2150 role in the standard calling sequence and are not preserved."
2151
2152 To guarantee the "upon exit" part of that statement we fake a
2153 saved flags register that has its direction flag cleared.
2154
2155 Note that GCC doesn't seem to rely on the fact that the direction
2156 flag is cleared after a function return; it always explicitly
2157 clears the flag before operations where it matters.
2158
2159 FIXME: kettenis/20030316: I'm not quite sure whether this is the
2160 right thing to do. The way we fake the flags register here makes
2161 it impossible to change it. */
2162
2163 if (regnum == I386_EFLAGS_REGNUM)
2164 {
2165 ULONGEST val;
2166
2167 val = get_frame_register_unsigned (this_frame, regnum);
2168 val &= ~(1 << 10);
2169 return frame_unwind_got_constant (this_frame, regnum, val);
2170 }
2171
2172 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
2173 return frame_unwind_got_register (this_frame, regnum, I386_EAX_REGNUM);
2174
2175 if (regnum == I386_ESP_REGNUM
2176 && (cache->saved_sp != 0 || cache->saved_sp_reg != -1))
2177 {
2178 /* If the SP has been saved, but we don't know where, then this
2179 means that SAVED_SP_REG register was found unavailable back
2180 when we built the cache. */
2181 if (cache->saved_sp == 0)
2182 return frame_unwind_got_register (this_frame, regnum,
2183 cache->saved_sp_reg);
2184 else
2185 return frame_unwind_got_constant (this_frame, regnum,
2186 cache->saved_sp);
2187 }
2188
2189 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
2190 return frame_unwind_got_memory (this_frame, regnum,
2191 cache->saved_regs[regnum]);
2192
2193 return frame_unwind_got_register (this_frame, regnum, regnum);
2194 }
2195
2196 static const struct frame_unwind i386_frame_unwind =
2197 {
2198 NORMAL_FRAME,
2199 i386_frame_unwind_stop_reason,
2200 i386_frame_this_id,
2201 i386_frame_prev_register,
2202 NULL,
2203 default_frame_sniffer
2204 };
2205
2206 /* Normal frames, but in a function epilogue. */
2207
2208 /* Implement the stack_frame_destroyed_p gdbarch method.
2209
2210 The epilogue is defined here as the 'ret' instruction, which will
2211 follow any instruction such as 'leave' or 'pop %ebp' that destroys
2212 the function's stack frame. */
2213
2214 static int
2215 i386_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2216 {
2217 gdb_byte insn;
2218 struct compunit_symtab *cust;
2219
2220 cust = find_pc_compunit_symtab (pc);
2221 if (cust != NULL && COMPUNIT_EPILOGUE_UNWIND_VALID (cust))
2222 return 0;
2223
2224 if (target_read_memory (pc, &insn, 1))
2225 return 0; /* Can't read memory at pc. */
2226
2227 if (insn != 0xc3) /* 'ret' instruction. */
2228 return 0;
2229
2230 return 1;
2231 }
2232
2233 static int
2234 i386_epilogue_frame_sniffer (const struct frame_unwind *self,
2235 struct frame_info *this_frame,
2236 void **this_prologue_cache)
2237 {
2238 if (frame_relative_level (this_frame) == 0)
2239 return i386_stack_frame_destroyed_p (get_frame_arch (this_frame),
2240 get_frame_pc (this_frame));
2241 else
2242 return 0;
2243 }
2244
2245 static struct i386_frame_cache *
2246 i386_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
2247 {
2248 struct i386_frame_cache *cache;
2249 CORE_ADDR sp;
2250
2251 if (*this_cache)
2252 return (struct i386_frame_cache *) *this_cache;
2253
2254 cache = i386_alloc_frame_cache ();
2255 *this_cache = cache;
2256
2257 try
2258 {
2259 cache->pc = get_frame_func (this_frame);
2260
2261 /* At this point the stack looks as if we just entered the
2262 function, with the return address at the top of the
2263 stack. */
2264 sp = get_frame_register_unsigned (this_frame, I386_ESP_REGNUM);
2265 cache->base = sp + cache->sp_offset;
2266 cache->saved_sp = cache->base + 8;
2267 cache->saved_regs[I386_EIP_REGNUM] = cache->base + 4;
2268
2269 cache->base_p = 1;
2270 }
2271 catch (const gdb_exception_error &ex)
2272 {
2273 if (ex.error != NOT_AVAILABLE_ERROR)
2274 throw;
2275 }
2276
2277 return cache;
2278 }
2279
2280 static enum unwind_stop_reason
2281 i386_epilogue_frame_unwind_stop_reason (struct frame_info *this_frame,
2282 void **this_cache)
2283 {
2284 struct i386_frame_cache *cache =
2285 i386_epilogue_frame_cache (this_frame, this_cache);
2286
2287 if (!cache->base_p)
2288 return UNWIND_UNAVAILABLE;
2289
2290 return UNWIND_NO_REASON;
2291 }
2292
2293 static void
2294 i386_epilogue_frame_this_id (struct frame_info *this_frame,
2295 void **this_cache,
2296 struct frame_id *this_id)
2297 {
2298 struct i386_frame_cache *cache =
2299 i386_epilogue_frame_cache (this_frame, this_cache);
2300
2301 if (!cache->base_p)
2302 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2303 else
2304 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2305 }
2306
2307 static struct value *
2308 i386_epilogue_frame_prev_register (struct frame_info *this_frame,
2309 void **this_cache, int regnum)
2310 {
2311 /* Make sure we've initialized the cache. */
2312 i386_epilogue_frame_cache (this_frame, this_cache);
2313
2314 return i386_frame_prev_register (this_frame, this_cache, regnum);
2315 }
2316
2317 static const struct frame_unwind i386_epilogue_frame_unwind =
2318 {
2319 NORMAL_FRAME,
2320 i386_epilogue_frame_unwind_stop_reason,
2321 i386_epilogue_frame_this_id,
2322 i386_epilogue_frame_prev_register,
2323 NULL,
2324 i386_epilogue_frame_sniffer
2325 };
2326 \f
2327
2328 /* Stack-based trampolines. */
2329
2330 /* These trampolines are used on cross x86 targets, when taking the
2331 address of a nested function. When executing these trampolines,
2332 no stack frame is set up, so we are in a similar situation as in
2333 epilogues and i386_epilogue_frame_this_id can be re-used. */
2334
2335 /* Static chain passed in register. */
2336
2337 static i386_insn i386_tramp_chain_in_reg_insns[] =
2338 {
2339 /* `movl imm32, %eax' and `movl imm32, %ecx' */
2340 { 5, { 0xb8 }, { 0xfe } },
2341
2342 /* `jmp imm32' */
2343 { 5, { 0xe9 }, { 0xff } },
2344
2345 {0}
2346 };
2347
2348 /* Static chain passed on stack (when regparm=3). */
2349
2350 static i386_insn i386_tramp_chain_on_stack_insns[] =
2351 {
2352 /* `push imm32' */
2353 { 5, { 0x68 }, { 0xff } },
2354
2355 /* `jmp imm32' */
2356 { 5, { 0xe9 }, { 0xff } },
2357
2358 {0}
2359 };
2360
2361 /* Return whether PC points inside a stack trampoline. */
2362
2363 static int
2364 i386_in_stack_tramp_p (CORE_ADDR pc)
2365 {
2366 gdb_byte insn;
2367 const char *name;
2368
2369 /* A stack trampoline is detected if no name is associated
2370 to the current pc and if it points inside a trampoline
2371 sequence. */
2372
2373 find_pc_partial_function (pc, &name, NULL, NULL);
2374 if (name)
2375 return 0;
2376
2377 if (target_read_memory (pc, &insn, 1))
2378 return 0;
2379
2380 if (!i386_match_insn_block (pc, i386_tramp_chain_in_reg_insns)
2381 && !i386_match_insn_block (pc, i386_tramp_chain_on_stack_insns))
2382 return 0;
2383
2384 return 1;
2385 }
2386
2387 static int
2388 i386_stack_tramp_frame_sniffer (const struct frame_unwind *self,
2389 struct frame_info *this_frame,
2390 void **this_cache)
2391 {
2392 if (frame_relative_level (this_frame) == 0)
2393 return i386_in_stack_tramp_p (get_frame_pc (this_frame));
2394 else
2395 return 0;
2396 }
2397
2398 static const struct frame_unwind i386_stack_tramp_frame_unwind =
2399 {
2400 NORMAL_FRAME,
2401 i386_epilogue_frame_unwind_stop_reason,
2402 i386_epilogue_frame_this_id,
2403 i386_epilogue_frame_prev_register,
2404 NULL,
2405 i386_stack_tramp_frame_sniffer
2406 };
2407 \f
2408 /* Generate a bytecode expression to get the value of the saved PC. */
2409
2410 static void
2411 i386_gen_return_address (struct gdbarch *gdbarch,
2412 struct agent_expr *ax, struct axs_value *value,
2413 CORE_ADDR scope)
2414 {
2415 /* The following sequence assumes the traditional use of the base
2416 register. */
2417 ax_reg (ax, I386_EBP_REGNUM);
2418 ax_const_l (ax, 4);
2419 ax_simple (ax, aop_add);
2420 value->type = register_type (gdbarch, I386_EIP_REGNUM);
2421 value->kind = axs_lvalue_memory;
2422 }
2423 \f
2424
2425 /* Signal trampolines. */
2426
2427 static struct i386_frame_cache *
2428 i386_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
2429 {
2430 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2431 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2432 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2433 struct i386_frame_cache *cache;
2434 CORE_ADDR addr;
2435 gdb_byte buf[4];
2436
2437 if (*this_cache)
2438 return (struct i386_frame_cache *) *this_cache;
2439
2440 cache = i386_alloc_frame_cache ();
2441
2442 try
2443 {
2444 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2445 cache->base = extract_unsigned_integer (buf, 4, byte_order) - 4;
2446
2447 addr = tdep->sigcontext_addr (this_frame);
2448 if (tdep->sc_reg_offset)
2449 {
2450 int i;
2451
2452 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
2453
2454 for (i = 0; i < tdep->sc_num_regs; i++)
2455 if (tdep->sc_reg_offset[i] != -1)
2456 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
2457 }
2458 else
2459 {
2460 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
2461 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
2462 }
2463
2464 cache->base_p = 1;
2465 }
2466 catch (const gdb_exception_error &ex)
2467 {
2468 if (ex.error != NOT_AVAILABLE_ERROR)
2469 throw;
2470 }
2471
2472 *this_cache = cache;
2473 return cache;
2474 }
2475
2476 static enum unwind_stop_reason
2477 i386_sigtramp_frame_unwind_stop_reason (struct frame_info *this_frame,
2478 void **this_cache)
2479 {
2480 struct i386_frame_cache *cache =
2481 i386_sigtramp_frame_cache (this_frame, this_cache);
2482
2483 if (!cache->base_p)
2484 return UNWIND_UNAVAILABLE;
2485
2486 return UNWIND_NO_REASON;
2487 }
2488
2489 static void
2490 i386_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache,
2491 struct frame_id *this_id)
2492 {
2493 struct i386_frame_cache *cache =
2494 i386_sigtramp_frame_cache (this_frame, this_cache);
2495
2496 if (!cache->base_p)
2497 (*this_id) = frame_id_build_unavailable_stack (get_frame_pc (this_frame));
2498 else
2499 {
2500 /* See the end of i386_push_dummy_call. */
2501 (*this_id) = frame_id_build (cache->base + 8, get_frame_pc (this_frame));
2502 }
2503 }
2504
2505 static struct value *
2506 i386_sigtramp_frame_prev_register (struct frame_info *this_frame,
2507 void **this_cache, int regnum)
2508 {
2509 /* Make sure we've initialized the cache. */
2510 i386_sigtramp_frame_cache (this_frame, this_cache);
2511
2512 return i386_frame_prev_register (this_frame, this_cache, regnum);
2513 }
2514
2515 static int
2516 i386_sigtramp_frame_sniffer (const struct frame_unwind *self,
2517 struct frame_info *this_frame,
2518 void **this_prologue_cache)
2519 {
2520 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
2521
2522 /* We shouldn't even bother if we don't have a sigcontext_addr
2523 handler. */
2524 if (tdep->sigcontext_addr == NULL)
2525 return 0;
2526
2527 if (tdep->sigtramp_p != NULL)
2528 {
2529 if (tdep->sigtramp_p (this_frame))
2530 return 1;
2531 }
2532
2533 if (tdep->sigtramp_start != 0)
2534 {
2535 CORE_ADDR pc = get_frame_pc (this_frame);
2536
2537 gdb_assert (tdep->sigtramp_end != 0);
2538 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
2539 return 1;
2540 }
2541
2542 return 0;
2543 }
2544
2545 static const struct frame_unwind i386_sigtramp_frame_unwind =
2546 {
2547 SIGTRAMP_FRAME,
2548 i386_sigtramp_frame_unwind_stop_reason,
2549 i386_sigtramp_frame_this_id,
2550 i386_sigtramp_frame_prev_register,
2551 NULL,
2552 i386_sigtramp_frame_sniffer
2553 };
2554 \f
2555
2556 static CORE_ADDR
2557 i386_frame_base_address (struct frame_info *this_frame, void **this_cache)
2558 {
2559 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2560
2561 return cache->base;
2562 }
2563
2564 static const struct frame_base i386_frame_base =
2565 {
2566 &i386_frame_unwind,
2567 i386_frame_base_address,
2568 i386_frame_base_address,
2569 i386_frame_base_address
2570 };
2571
2572 static struct frame_id
2573 i386_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2574 {
2575 CORE_ADDR fp;
2576
2577 fp = get_frame_register_unsigned (this_frame, I386_EBP_REGNUM);
2578
2579 /* See the end of i386_push_dummy_call. */
2580 return frame_id_build (fp + 8, get_frame_pc (this_frame));
2581 }
2582
2583 /* _Decimal128 function return values need 16-byte alignment on the
2584 stack. */
2585
2586 static CORE_ADDR
2587 i386_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2588 {
2589 return sp & -(CORE_ADDR)16;
2590 }
2591 \f
2592
2593 /* Figure out where the longjmp will land. Slurp the args out of the
2594 stack. We expect the first arg to be a pointer to the jmp_buf
2595 structure from which we extract the address that we will land at.
2596 This address is copied into PC. This routine returns non-zero on
2597 success. */
2598
2599 static int
2600 i386_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
2601 {
2602 gdb_byte buf[4];
2603 CORE_ADDR sp, jb_addr;
2604 struct gdbarch *gdbarch = get_frame_arch (frame);
2605 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2606 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
2607
2608 /* If JB_PC_OFFSET is -1, we have no way to find out where the
2609 longjmp will land. */
2610 if (jb_pc_offset == -1)
2611 return 0;
2612
2613 get_frame_register (frame, I386_ESP_REGNUM, buf);
2614 sp = extract_unsigned_integer (buf, 4, byte_order);
2615 if (target_read_memory (sp + 4, buf, 4))
2616 return 0;
2617
2618 jb_addr = extract_unsigned_integer (buf, 4, byte_order);
2619 if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
2620 return 0;
2621
2622 *pc = extract_unsigned_integer (buf, 4, byte_order);
2623 return 1;
2624 }
2625 \f
2626
2627 /* Check whether TYPE must be 16-byte-aligned when passed as a
2628 function argument. 16-byte vectors, _Decimal128 and structures or
2629 unions containing such types must be 16-byte-aligned; other
2630 arguments are 4-byte-aligned. */
2631
2632 static int
2633 i386_16_byte_align_p (struct type *type)
2634 {
2635 type = check_typedef (type);
2636 if ((type->code () == TYPE_CODE_DECFLOAT
2637 || (type->code () == TYPE_CODE_ARRAY && type->is_vector ()))
2638 && TYPE_LENGTH (type) == 16)
2639 return 1;
2640 if (type->code () == TYPE_CODE_ARRAY)
2641 return i386_16_byte_align_p (TYPE_TARGET_TYPE (type));
2642 if (type->code () == TYPE_CODE_STRUCT
2643 || type->code () == TYPE_CODE_UNION)
2644 {
2645 int i;
2646 for (i = 0; i < type->num_fields (); i++)
2647 {
2648 if (field_is_static (&type->field (i)))
2649 continue;
2650 if (i386_16_byte_align_p (type->field (i).type ()))
2651 return 1;
2652 }
2653 }
2654 return 0;
2655 }
2656
2657 /* Implementation for set_gdbarch_push_dummy_code. */
2658
2659 static CORE_ADDR
2660 i386_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, CORE_ADDR funaddr,
2661 struct value **args, int nargs, struct type *value_type,
2662 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
2663 struct regcache *regcache)
2664 {
2665 /* Use 0xcc breakpoint - 1 byte. */
2666 *bp_addr = sp - 1;
2667 *real_pc = funaddr;
2668
2669 /* Keep the stack aligned. */
2670 return sp - 16;
2671 }
2672
2673 /* The "push_dummy_call" gdbarch method, optionally with the thiscall
2674 calling convention. */
2675
2676 CORE_ADDR
2677 i386_thiscall_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2678 struct regcache *regcache, CORE_ADDR bp_addr,
2679 int nargs, struct value **args, CORE_ADDR sp,
2680 function_call_return_method return_method,
2681 CORE_ADDR struct_addr, bool thiscall)
2682 {
2683 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2684 gdb_byte buf[4];
2685 int i;
2686 int write_pass;
2687 int args_space = 0;
2688
2689 /* BND registers can be in arbitrary values at the moment of the
2690 inferior call. This can cause boundary violations that are not
2691 due to a real bug or even desired by the user. The best to be done
2692 is set the BND registers to allow access to the whole memory, INIT
2693 state, before pushing the inferior call. */
2694 i387_reset_bnd_regs (gdbarch, regcache);
2695
2696 /* Determine the total space required for arguments and struct
2697 return address in a first pass (allowing for 16-byte-aligned
2698 arguments), then push arguments in a second pass. */
2699
2700 for (write_pass = 0; write_pass < 2; write_pass++)
2701 {
2702 int args_space_used = 0;
2703
2704 if (return_method == return_method_struct)
2705 {
2706 if (write_pass)
2707 {
2708 /* Push value address. */
2709 store_unsigned_integer (buf, 4, byte_order, struct_addr);
2710 write_memory (sp, buf, 4);
2711 args_space_used += 4;
2712 }
2713 else
2714 args_space += 4;
2715 }
2716
2717 for (i = thiscall ? 1 : 0; i < nargs; i++)
2718 {
2719 int len = TYPE_LENGTH (value_enclosing_type (args[i]));
2720
2721 if (write_pass)
2722 {
2723 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2724 args_space_used = align_up (args_space_used, 16);
2725
2726 write_memory (sp + args_space_used,
2727 value_contents_all (args[i]), len);
2728 /* The System V ABI says that:
2729
2730 "An argument's size is increased, if necessary, to make it a
2731 multiple of [32-bit] words. This may require tail padding,
2732 depending on the size of the argument."
2733
2734 This makes sure the stack stays word-aligned. */
2735 args_space_used += align_up (len, 4);
2736 }
2737 else
2738 {
2739 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2740 args_space = align_up (args_space, 16);
2741 args_space += align_up (len, 4);
2742 }
2743 }
2744
2745 if (!write_pass)
2746 {
2747 sp -= args_space;
2748
2749 /* The original System V ABI only requires word alignment,
2750 but modern incarnations need 16-byte alignment in order
2751 to support SSE. Since wasting a few bytes here isn't
2752 harmful we unconditionally enforce 16-byte alignment. */
2753 sp &= ~0xf;
2754 }
2755 }
2756
2757 /* Store return address. */
2758 sp -= 4;
2759 store_unsigned_integer (buf, 4, byte_order, bp_addr);
2760 write_memory (sp, buf, 4);
2761
2762 /* Finally, update the stack pointer... */
2763 store_unsigned_integer (buf, 4, byte_order, sp);
2764 regcache->cooked_write (I386_ESP_REGNUM, buf);
2765
2766 /* ...and fake a frame pointer. */
2767 regcache->cooked_write (I386_EBP_REGNUM, buf);
2768
2769 /* The 'this' pointer needs to be in ECX. */
2770 if (thiscall)
2771 regcache->cooked_write (I386_ECX_REGNUM, value_contents_all (args[0]));
2772
2773 /* MarkK wrote: This "+ 8" is all over the place:
2774 (i386_frame_this_id, i386_sigtramp_frame_this_id,
2775 i386_dummy_id). It's there, since all frame unwinders for
2776 a given target have to agree (within a certain margin) on the
2777 definition of the stack address of a frame. Otherwise frame id
2778 comparison might not work correctly. Since DWARF2/GCC uses the
2779 stack address *before* the function call as a frame's CFA. On
2780 the i386, when %ebp is used as a frame pointer, the offset
2781 between the contents %ebp and the CFA as defined by GCC. */
2782 return sp + 8;
2783 }
2784
2785 /* Implement the "push_dummy_call" gdbarch method. */
2786
2787 static CORE_ADDR
2788 i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2789 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2790 struct value **args, CORE_ADDR sp,
2791 function_call_return_method return_method,
2792 CORE_ADDR struct_addr)
2793 {
2794 return i386_thiscall_push_dummy_call (gdbarch, function, regcache, bp_addr,
2795 nargs, args, sp, return_method,
2796 struct_addr, false);
2797 }
2798
2799 /* These registers are used for returning integers (and on some
2800 targets also for returning `struct' and `union' values when their
2801 size and alignment match an integer type). */
2802 #define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
2803 #define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
2804
2805 /* Read, for architecture GDBARCH, a function return value of TYPE
2806 from REGCACHE, and copy that into VALBUF. */
2807
2808 static void
2809 i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
2810 struct regcache *regcache, gdb_byte *valbuf)
2811 {
2812 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2813 int len = TYPE_LENGTH (type);
2814 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2815
2816 if (type->code () == TYPE_CODE_FLT)
2817 {
2818 if (tdep->st0_regnum < 0)
2819 {
2820 warning (_("Cannot find floating-point return value."));
2821 memset (valbuf, 0, len);
2822 return;
2823 }
2824
2825 /* Floating-point return values can be found in %st(0). Convert
2826 its contents to the desired type. This is probably not
2827 exactly how it would happen on the target itself, but it is
2828 the best we can do. */
2829 regcache->raw_read (I386_ST0_REGNUM, buf);
2830 target_float_convert (buf, i387_ext_type (gdbarch), valbuf, type);
2831 }
2832 else
2833 {
2834 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2835 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2836
2837 if (len <= low_size)
2838 {
2839 regcache->raw_read (LOW_RETURN_REGNUM, buf);
2840 memcpy (valbuf, buf, len);
2841 }
2842 else if (len <= (low_size + high_size))
2843 {
2844 regcache->raw_read (LOW_RETURN_REGNUM, buf);
2845 memcpy (valbuf, buf, low_size);
2846 regcache->raw_read (HIGH_RETURN_REGNUM, buf);
2847 memcpy (valbuf + low_size, buf, len - low_size);
2848 }
2849 else
2850 internal_error (__FILE__, __LINE__,
2851 _("Cannot extract return value of %d bytes long."),
2852 len);
2853 }
2854 }
2855
2856 /* Write, for architecture GDBARCH, a function return value of TYPE
2857 from VALBUF into REGCACHE. */
2858
2859 static void
2860 i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
2861 struct regcache *regcache, const gdb_byte *valbuf)
2862 {
2863 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2864 int len = TYPE_LENGTH (type);
2865
2866 if (type->code () == TYPE_CODE_FLT)
2867 {
2868 ULONGEST fstat;
2869 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2870
2871 if (tdep->st0_regnum < 0)
2872 {
2873 warning (_("Cannot set floating-point return value."));
2874 return;
2875 }
2876
2877 /* Returning floating-point values is a bit tricky. Apart from
2878 storing the return value in %st(0), we have to simulate the
2879 state of the FPU at function return point. */
2880
2881 /* Convert the value found in VALBUF to the extended
2882 floating-point format used by the FPU. This is probably
2883 not exactly how it would happen on the target itself, but
2884 it is the best we can do. */
2885 target_float_convert (valbuf, type, buf, i387_ext_type (gdbarch));
2886 regcache->raw_write (I386_ST0_REGNUM, buf);
2887
2888 /* Set the top of the floating-point register stack to 7. The
2889 actual value doesn't really matter, but 7 is what a normal
2890 function return would end up with if the program started out
2891 with a freshly initialized FPU. */
2892 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
2893 fstat |= (7 << 11);
2894 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM (tdep), fstat);
2895
2896 /* Mark %st(1) through %st(7) as empty. Since we set the top of
2897 the floating-point register stack to 7, the appropriate value
2898 for the tag word is 0x3fff. */
2899 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM (tdep), 0x3fff);
2900 }
2901 else
2902 {
2903 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2904 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2905
2906 if (len <= low_size)
2907 regcache->raw_write_part (LOW_RETURN_REGNUM, 0, len, valbuf);
2908 else if (len <= (low_size + high_size))
2909 {
2910 regcache->raw_write (LOW_RETURN_REGNUM, valbuf);
2911 regcache->raw_write_part (HIGH_RETURN_REGNUM, 0, len - low_size,
2912 valbuf + low_size);
2913 }
2914 else
2915 internal_error (__FILE__, __LINE__,
2916 _("Cannot store return value of %d bytes long."), len);
2917 }
2918 }
2919 \f
2920
2921 /* This is the variable that is set with "set struct-convention", and
2922 its legitimate values. */
2923 static const char default_struct_convention[] = "default";
2924 static const char pcc_struct_convention[] = "pcc";
2925 static const char reg_struct_convention[] = "reg";
2926 static const char *const valid_conventions[] =
2927 {
2928 default_struct_convention,
2929 pcc_struct_convention,
2930 reg_struct_convention,
2931 NULL
2932 };
2933 static const char *struct_convention = default_struct_convention;
2934
2935 /* Return non-zero if TYPE, which is assumed to be a structure,
2936 a union type, or an array type, should be returned in registers
2937 for architecture GDBARCH. */
2938
2939 static int
2940 i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
2941 {
2942 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2943 enum type_code code = type->code ();
2944 int len = TYPE_LENGTH (type);
2945
2946 gdb_assert (code == TYPE_CODE_STRUCT
2947 || code == TYPE_CODE_UNION
2948 || code == TYPE_CODE_ARRAY);
2949
2950 if (struct_convention == pcc_struct_convention
2951 || (struct_convention == default_struct_convention
2952 && tdep->struct_return == pcc_struct_return))
2953 return 0;
2954
2955 /* Structures consisting of a single `float', `double' or 'long
2956 double' member are returned in %st(0). */
2957 if (code == TYPE_CODE_STRUCT && type->num_fields () == 1)
2958 {
2959 type = check_typedef (type->field (0).type ());
2960 if (type->code () == TYPE_CODE_FLT)
2961 return (len == 4 || len == 8 || len == 12);
2962 }
2963
2964 return (len == 1 || len == 2 || len == 4 || len == 8);
2965 }
2966
2967 /* Determine, for architecture GDBARCH, how a return value of TYPE
2968 should be returned. If it is supposed to be returned in registers,
2969 and READBUF is non-zero, read the appropriate value from REGCACHE,
2970 and copy it into READBUF. If WRITEBUF is non-zero, write the value
2971 from WRITEBUF into REGCACHE. */
2972
2973 static enum return_value_convention
2974 i386_return_value (struct gdbarch *gdbarch, struct value *function,
2975 struct type *type, struct regcache *regcache,
2976 gdb_byte *readbuf, const gdb_byte *writebuf)
2977 {
2978 enum type_code code = type->code ();
2979
2980 if (((code == TYPE_CODE_STRUCT
2981 || code == TYPE_CODE_UNION
2982 || code == TYPE_CODE_ARRAY)
2983 && !i386_reg_struct_return_p (gdbarch, type))
2984 /* Complex double and long double uses the struct return convention. */
2985 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 16)
2986 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 24)
2987 /* 128-bit decimal float uses the struct return convention. */
2988 || (code == TYPE_CODE_DECFLOAT && TYPE_LENGTH (type) == 16))
2989 {
2990 /* The System V ABI says that:
2991
2992 "A function that returns a structure or union also sets %eax
2993 to the value of the original address of the caller's area
2994 before it returns. Thus when the caller receives control
2995 again, the address of the returned object resides in register
2996 %eax and can be used to access the object."
2997
2998 So the ABI guarantees that we can always find the return
2999 value just after the function has returned. */
3000
3001 /* Note that the ABI doesn't mention functions returning arrays,
3002 which is something possible in certain languages such as Ada.
3003 In this case, the value is returned as if it was wrapped in
3004 a record, so the convention applied to records also applies
3005 to arrays. */
3006
3007 if (readbuf)
3008 {
3009 ULONGEST addr;
3010
3011 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
3012 read_memory (addr, readbuf, TYPE_LENGTH (type));
3013 }
3014
3015 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
3016 }
3017
3018 /* This special case is for structures consisting of a single
3019 `float', `double' or 'long double' member. These structures are
3020 returned in %st(0). For these structures, we call ourselves
3021 recursively, changing TYPE into the type of the first member of
3022 the structure. Since that should work for all structures that
3023 have only one member, we don't bother to check the member's type
3024 here. */
3025 if (code == TYPE_CODE_STRUCT && type->num_fields () == 1)
3026 {
3027 type = check_typedef (type->field (0).type ());
3028 return i386_return_value (gdbarch, function, type, regcache,
3029 readbuf, writebuf);
3030 }
3031
3032 if (readbuf)
3033 i386_extract_return_value (gdbarch, type, regcache, readbuf);
3034 if (writebuf)
3035 i386_store_return_value (gdbarch, type, regcache, writebuf);
3036
3037 return RETURN_VALUE_REGISTER_CONVENTION;
3038 }
3039 \f
3040
3041 struct type *
3042 i387_ext_type (struct gdbarch *gdbarch)
3043 {
3044 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3045
3046 if (!tdep->i387_ext_type)
3047 {
3048 tdep->i387_ext_type = tdesc_find_type (gdbarch, "i387_ext");
3049 gdb_assert (tdep->i387_ext_type != NULL);
3050 }
3051
3052 return tdep->i387_ext_type;
3053 }
3054
3055 /* Construct type for pseudo BND registers. We can't use
3056 tdesc_find_type since a complement of one value has to be used
3057 to describe the upper bound. */
3058
3059 static struct type *
3060 i386_bnd_type (struct gdbarch *gdbarch)
3061 {
3062 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3063
3064
3065 if (!tdep->i386_bnd_type)
3066 {
3067 struct type *t;
3068 const struct builtin_type *bt = builtin_type (gdbarch);
3069
3070 /* The type we're building is described bellow: */
3071 #if 0
3072 struct __bound128
3073 {
3074 void *lbound;
3075 void *ubound; /* One complement of raw ubound field. */
3076 };
3077 #endif
3078
3079 t = arch_composite_type (gdbarch,
3080 "__gdb_builtin_type_bound128", TYPE_CODE_STRUCT);
3081
3082 append_composite_type_field (t, "lbound", bt->builtin_data_ptr);
3083 append_composite_type_field (t, "ubound", bt->builtin_data_ptr);
3084
3085 t->set_name ("builtin_type_bound128");
3086 tdep->i386_bnd_type = t;
3087 }
3088
3089 return tdep->i386_bnd_type;
3090 }
3091
3092 /* Construct vector type for pseudo ZMM registers. We can't use
3093 tdesc_find_type since ZMM isn't described in target description. */
3094
3095 static struct type *
3096 i386_zmm_type (struct gdbarch *gdbarch)
3097 {
3098 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3099
3100 if (!tdep->i386_zmm_type)
3101 {
3102 const struct builtin_type *bt = builtin_type (gdbarch);
3103
3104 /* The type we're building is this: */
3105 #if 0
3106 union __gdb_builtin_type_vec512i
3107 {
3108 int128_t v4_int128[4];
3109 int64_t v8_int64[8];
3110 int32_t v16_int32[16];
3111 int16_t v32_int16[32];
3112 int8_t v64_int8[64];
3113 double v8_double[8];
3114 float v16_float[16];
3115 bfloat16_t v32_bfloat16[32];
3116 };
3117 #endif
3118
3119 struct type *t;
3120
3121 t = arch_composite_type (gdbarch,
3122 "__gdb_builtin_type_vec512i", TYPE_CODE_UNION);
3123 append_composite_type_field (t, "v32_bfloat16",
3124 init_vector_type (bt->builtin_bfloat16, 32));
3125 append_composite_type_field (t, "v16_float",
3126 init_vector_type (bt->builtin_float, 16));
3127 append_composite_type_field (t, "v8_double",
3128 init_vector_type (bt->builtin_double, 8));
3129 append_composite_type_field (t, "v64_int8",
3130 init_vector_type (bt->builtin_int8, 64));
3131 append_composite_type_field (t, "v32_int16",
3132 init_vector_type (bt->builtin_int16, 32));
3133 append_composite_type_field (t, "v16_int32",
3134 init_vector_type (bt->builtin_int32, 16));
3135 append_composite_type_field (t, "v8_int64",
3136 init_vector_type (bt->builtin_int64, 8));
3137 append_composite_type_field (t, "v4_int128",
3138 init_vector_type (bt->builtin_int128, 4));
3139
3140 t->set_is_vector (true);
3141 t->set_name ("builtin_type_vec512i");
3142 tdep->i386_zmm_type = t;
3143 }
3144
3145 return tdep->i386_zmm_type;
3146 }
3147
3148 /* Construct vector type for pseudo YMM registers. We can't use
3149 tdesc_find_type since YMM isn't described in target description. */
3150
3151 static struct type *
3152 i386_ymm_type (struct gdbarch *gdbarch)
3153 {
3154 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3155
3156 if (!tdep->i386_ymm_type)
3157 {
3158 const struct builtin_type *bt = builtin_type (gdbarch);
3159
3160 /* The type we're building is this: */
3161 #if 0
3162 union __gdb_builtin_type_vec256i
3163 {
3164 int128_t v2_int128[2];
3165 int64_t v4_int64[4];
3166 int32_t v8_int32[8];
3167 int16_t v16_int16[16];
3168 int8_t v32_int8[32];
3169 double v4_double[4];
3170 float v8_float[8];
3171 bfloat16_t v16_bfloat16[16];
3172 };
3173 #endif
3174
3175 struct type *t;
3176
3177 t = arch_composite_type (gdbarch,
3178 "__gdb_builtin_type_vec256i", TYPE_CODE_UNION);
3179 append_composite_type_field (t, "v16_bfloat16",
3180 init_vector_type (bt->builtin_bfloat16, 16));
3181 append_composite_type_field (t, "v8_float",
3182 init_vector_type (bt->builtin_float, 8));
3183 append_composite_type_field (t, "v4_double",
3184 init_vector_type (bt->builtin_double, 4));
3185 append_composite_type_field (t, "v32_int8",
3186 init_vector_type (bt->builtin_int8, 32));
3187 append_composite_type_field (t, "v16_int16",
3188 init_vector_type (bt->builtin_int16, 16));
3189 append_composite_type_field (t, "v8_int32",
3190 init_vector_type (bt->builtin_int32, 8));
3191 append_composite_type_field (t, "v4_int64",
3192 init_vector_type (bt->builtin_int64, 4));
3193 append_composite_type_field (t, "v2_int128",
3194 init_vector_type (bt->builtin_int128, 2));
3195
3196 t->set_is_vector (true);
3197 t->set_name ("builtin_type_vec256i");
3198 tdep->i386_ymm_type = t;
3199 }
3200
3201 return tdep->i386_ymm_type;
3202 }
3203
3204 /* Construct vector type for MMX registers. */
3205 static struct type *
3206 i386_mmx_type (struct gdbarch *gdbarch)
3207 {
3208 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3209
3210 if (!tdep->i386_mmx_type)
3211 {
3212 const struct builtin_type *bt = builtin_type (gdbarch);
3213
3214 /* The type we're building is this: */
3215 #if 0
3216 union __gdb_builtin_type_vec64i
3217 {
3218 int64_t uint64;
3219 int32_t v2_int32[2];
3220 int16_t v4_int16[4];
3221 int8_t v8_int8[8];
3222 };
3223 #endif
3224
3225 struct type *t;
3226
3227 t = arch_composite_type (gdbarch,
3228 "__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
3229
3230 append_composite_type_field (t, "uint64", bt->builtin_int64);
3231 append_composite_type_field (t, "v2_int32",
3232 init_vector_type (bt->builtin_int32, 2));
3233 append_composite_type_field (t, "v4_int16",
3234 init_vector_type (bt->builtin_int16, 4));
3235 append_composite_type_field (t, "v8_int8",
3236 init_vector_type (bt->builtin_int8, 8));
3237
3238 t->set_is_vector (true);
3239 t->set_name ("builtin_type_vec64i");
3240 tdep->i386_mmx_type = t;
3241 }
3242
3243 return tdep->i386_mmx_type;
3244 }
3245
3246 /* Return the GDB type object for the "standard" data type of data in
3247 register REGNUM. */
3248
3249 struct type *
3250 i386_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
3251 {
3252 if (i386_bnd_regnum_p (gdbarch, regnum))
3253 return i386_bnd_type (gdbarch);
3254 if (i386_mmx_regnum_p (gdbarch, regnum))
3255 return i386_mmx_type (gdbarch);
3256 else if (i386_ymm_regnum_p (gdbarch, regnum))
3257 return i386_ymm_type (gdbarch);
3258 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3259 return i386_ymm_type (gdbarch);
3260 else if (i386_zmm_regnum_p (gdbarch, regnum))
3261 return i386_zmm_type (gdbarch);
3262 else
3263 {
3264 const struct builtin_type *bt = builtin_type (gdbarch);
3265 if (i386_byte_regnum_p (gdbarch, regnum))
3266 return bt->builtin_int8;
3267 else if (i386_word_regnum_p (gdbarch, regnum))
3268 return bt->builtin_int16;
3269 else if (i386_dword_regnum_p (gdbarch, regnum))
3270 return bt->builtin_int32;
3271 else if (i386_k_regnum_p (gdbarch, regnum))
3272 return bt->builtin_int64;
3273 }
3274
3275 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3276 }
3277
3278 /* Map a cooked register onto a raw register or memory. For the i386,
3279 the MMX registers need to be mapped onto floating point registers. */
3280
3281 static int
3282 i386_mmx_regnum_to_fp_regnum (readable_regcache *regcache, int regnum)
3283 {
3284 struct gdbarch_tdep *tdep = gdbarch_tdep (regcache->arch ());
3285 int mmxreg, fpreg;
3286 ULONGEST fstat;
3287 int tos;
3288
3289 mmxreg = regnum - tdep->mm0_regnum;
3290 regcache->raw_read (I387_FSTAT_REGNUM (tdep), &fstat);
3291 tos = (fstat >> 11) & 0x7;
3292 fpreg = (mmxreg + tos) % 8;
3293
3294 return (I387_ST0_REGNUM (tdep) + fpreg);
3295 }
3296
3297 /* A helper function for us by i386_pseudo_register_read_value and
3298 amd64_pseudo_register_read_value. It does all the work but reads
3299 the data into an already-allocated value. */
3300
3301 void
3302 i386_pseudo_register_read_into_value (struct gdbarch *gdbarch,
3303 readable_regcache *regcache,
3304 int regnum,
3305 struct value *result_value)
3306 {
3307 gdb_byte raw_buf[I386_MAX_REGISTER_SIZE];
3308 enum register_status status;
3309 gdb_byte *buf = value_contents_raw (result_value);
3310
3311 if (i386_mmx_regnum_p (gdbarch, regnum))
3312 {
3313 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3314
3315 /* Extract (always little endian). */
3316 status = regcache->raw_read (fpnum, raw_buf);
3317 if (status != REG_VALID)
3318 mark_value_bytes_unavailable (result_value, 0,
3319 TYPE_LENGTH (value_type (result_value)));
3320 else
3321 memcpy (buf, raw_buf, register_size (gdbarch, regnum));
3322 }
3323 else
3324 {
3325 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3326 if (i386_bnd_regnum_p (gdbarch, regnum))
3327 {
3328 regnum -= tdep->bnd0_regnum;
3329
3330 /* Extract (always little endian). Read lower 128bits. */
3331 status = regcache->raw_read (I387_BND0R_REGNUM (tdep) + regnum,
3332 raw_buf);
3333 if (status != REG_VALID)
3334 mark_value_bytes_unavailable (result_value, 0, 16);
3335 else
3336 {
3337 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3338 LONGEST upper, lower;
3339 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
3340
3341 lower = extract_unsigned_integer (raw_buf, 8, byte_order);
3342 upper = extract_unsigned_integer (raw_buf + 8, 8, byte_order);
3343 upper = ~upper;
3344
3345 memcpy (buf, &lower, size);
3346 memcpy (buf + size, &upper, size);
3347 }
3348 }
3349 else if (i386_k_regnum_p (gdbarch, regnum))
3350 {
3351 regnum -= tdep->k0_regnum;
3352
3353 /* Extract (always little endian). */
3354 status = regcache->raw_read (tdep->k0_regnum + regnum, raw_buf);
3355 if (status != REG_VALID)
3356 mark_value_bytes_unavailable (result_value, 0, 8);
3357 else
3358 memcpy (buf, raw_buf, 8);
3359 }
3360 else if (i386_zmm_regnum_p (gdbarch, regnum))
3361 {
3362 regnum -= tdep->zmm0_regnum;
3363
3364 if (regnum < num_lower_zmm_regs)
3365 {
3366 /* Extract (always little endian). Read lower 128bits. */
3367 status = regcache->raw_read (I387_XMM0_REGNUM (tdep) + regnum,
3368 raw_buf);
3369 if (status != REG_VALID)
3370 mark_value_bytes_unavailable (result_value, 0, 16);
3371 else
3372 memcpy (buf, raw_buf, 16);
3373
3374 /* Extract (always little endian). Read upper 128bits. */
3375 status = regcache->raw_read (tdep->ymm0h_regnum + regnum,
3376 raw_buf);
3377 if (status != REG_VALID)
3378 mark_value_bytes_unavailable (result_value, 16, 16);
3379 else
3380 memcpy (buf + 16, raw_buf, 16);
3381 }
3382 else
3383 {
3384 /* Extract (always little endian). Read lower 128bits. */
3385 status = regcache->raw_read (I387_XMM16_REGNUM (tdep) + regnum
3386 - num_lower_zmm_regs,
3387 raw_buf);
3388 if (status != REG_VALID)
3389 mark_value_bytes_unavailable (result_value, 0, 16);
3390 else
3391 memcpy (buf, raw_buf, 16);
3392
3393 /* Extract (always little endian). Read upper 128bits. */
3394 status = regcache->raw_read (I387_YMM16H_REGNUM (tdep) + regnum
3395 - num_lower_zmm_regs,
3396 raw_buf);
3397 if (status != REG_VALID)
3398 mark_value_bytes_unavailable (result_value, 16, 16);
3399 else
3400 memcpy (buf + 16, raw_buf, 16);
3401 }
3402
3403 /* Read upper 256bits. */
3404 status = regcache->raw_read (tdep->zmm0h_regnum + regnum,
3405 raw_buf);
3406 if (status != REG_VALID)
3407 mark_value_bytes_unavailable (result_value, 32, 32);
3408 else
3409 memcpy (buf + 32, raw_buf, 32);
3410 }
3411 else if (i386_ymm_regnum_p (gdbarch, regnum))
3412 {
3413 regnum -= tdep->ymm0_regnum;
3414
3415 /* Extract (always little endian). Read lower 128bits. */
3416 status = regcache->raw_read (I387_XMM0_REGNUM (tdep) + regnum,
3417 raw_buf);
3418 if (status != REG_VALID)
3419 mark_value_bytes_unavailable (result_value, 0, 16);
3420 else
3421 memcpy (buf, raw_buf, 16);
3422 /* Read upper 128bits. */
3423 status = regcache->raw_read (tdep->ymm0h_regnum + regnum,
3424 raw_buf);
3425 if (status != REG_VALID)
3426 mark_value_bytes_unavailable (result_value, 16, 32);
3427 else
3428 memcpy (buf + 16, raw_buf, 16);
3429 }
3430 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3431 {
3432 regnum -= tdep->ymm16_regnum;
3433 /* Extract (always little endian). Read lower 128bits. */
3434 status = regcache->raw_read (I387_XMM16_REGNUM (tdep) + regnum,
3435 raw_buf);
3436 if (status != REG_VALID)
3437 mark_value_bytes_unavailable (result_value, 0, 16);
3438 else
3439 memcpy (buf, raw_buf, 16);
3440 /* Read upper 128bits. */
3441 status = regcache->raw_read (tdep->ymm16h_regnum + regnum,
3442 raw_buf);
3443 if (status != REG_VALID)
3444 mark_value_bytes_unavailable (result_value, 16, 16);
3445 else
3446 memcpy (buf + 16, raw_buf, 16);
3447 }
3448 else if (i386_word_regnum_p (gdbarch, regnum))
3449 {
3450 int gpnum = regnum - tdep->ax_regnum;
3451
3452 /* Extract (always little endian). */
3453 status = regcache->raw_read (gpnum, raw_buf);
3454 if (status != REG_VALID)
3455 mark_value_bytes_unavailable (result_value, 0,
3456 TYPE_LENGTH (value_type (result_value)));
3457 else
3458 memcpy (buf, raw_buf, 2);
3459 }
3460 else if (i386_byte_regnum_p (gdbarch, regnum))
3461 {
3462 int gpnum = regnum - tdep->al_regnum;
3463
3464 /* Extract (always little endian). We read both lower and
3465 upper registers. */
3466 status = regcache->raw_read (gpnum % 4, raw_buf);
3467 if (status != REG_VALID)
3468 mark_value_bytes_unavailable (result_value, 0,
3469 TYPE_LENGTH (value_type (result_value)));
3470 else if (gpnum >= 4)
3471 memcpy (buf, raw_buf + 1, 1);
3472 else
3473 memcpy (buf, raw_buf, 1);
3474 }
3475 else
3476 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3477 }
3478 }
3479
3480 static struct value *
3481 i386_pseudo_register_read_value (struct gdbarch *gdbarch,
3482 readable_regcache *regcache,
3483 int regnum)
3484 {
3485 struct value *result;
3486
3487 result = allocate_value (register_type (gdbarch, regnum));
3488 VALUE_LVAL (result) = lval_register;
3489 VALUE_REGNUM (result) = regnum;
3490
3491 i386_pseudo_register_read_into_value (gdbarch, regcache, regnum, result);
3492
3493 return result;
3494 }
3495
3496 void
3497 i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
3498 int regnum, const gdb_byte *buf)
3499 {
3500 gdb_byte raw_buf[I386_MAX_REGISTER_SIZE];
3501
3502 if (i386_mmx_regnum_p (gdbarch, regnum))
3503 {
3504 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3505
3506 /* Read ... */
3507 regcache->raw_read (fpnum, raw_buf);
3508 /* ... Modify ... (always little endian). */
3509 memcpy (raw_buf, buf, register_size (gdbarch, regnum));
3510 /* ... Write. */
3511 regcache->raw_write (fpnum, raw_buf);
3512 }
3513 else
3514 {
3515 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3516
3517 if (i386_bnd_regnum_p (gdbarch, regnum))
3518 {
3519 ULONGEST upper, lower;
3520 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
3521 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3522
3523 /* New values from input value. */
3524 regnum -= tdep->bnd0_regnum;
3525 lower = extract_unsigned_integer (buf, size, byte_order);
3526 upper = extract_unsigned_integer (buf + size, size, byte_order);
3527
3528 /* Fetching register buffer. */
3529 regcache->raw_read (I387_BND0R_REGNUM (tdep) + regnum,
3530 raw_buf);
3531
3532 upper = ~upper;
3533
3534 /* Set register bits. */
3535 memcpy (raw_buf, &lower, 8);
3536 memcpy (raw_buf + 8, &upper, 8);
3537
3538 regcache->raw_write (I387_BND0R_REGNUM (tdep) + regnum, raw_buf);
3539 }
3540 else if (i386_k_regnum_p (gdbarch, regnum))
3541 {
3542 regnum -= tdep->k0_regnum;
3543
3544 regcache->raw_write (tdep->k0_regnum + regnum, buf);
3545 }
3546 else if (i386_zmm_regnum_p (gdbarch, regnum))
3547 {
3548 regnum -= tdep->zmm0_regnum;
3549
3550 if (regnum < num_lower_zmm_regs)
3551 {
3552 /* Write lower 128bits. */
3553 regcache->raw_write (I387_XMM0_REGNUM (tdep) + regnum, buf);
3554 /* Write upper 128bits. */
3555 regcache->raw_write (I387_YMM0_REGNUM (tdep) + regnum, buf + 16);
3556 }
3557 else
3558 {
3559 /* Write lower 128bits. */
3560 regcache->raw_write (I387_XMM16_REGNUM (tdep) + regnum
3561 - num_lower_zmm_regs, buf);
3562 /* Write upper 128bits. */
3563 regcache->raw_write (I387_YMM16H_REGNUM (tdep) + regnum
3564 - num_lower_zmm_regs, buf + 16);
3565 }
3566 /* Write upper 256bits. */
3567 regcache->raw_write (tdep->zmm0h_regnum + regnum, buf + 32);
3568 }
3569 else if (i386_ymm_regnum_p (gdbarch, regnum))
3570 {
3571 regnum -= tdep->ymm0_regnum;
3572
3573 /* ... Write lower 128bits. */
3574 regcache->raw_write (I387_XMM0_REGNUM (tdep) + regnum, buf);
3575 /* ... Write upper 128bits. */
3576 regcache->raw_write (tdep->ymm0h_regnum + regnum, buf + 16);
3577 }
3578 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3579 {
3580 regnum -= tdep->ymm16_regnum;
3581
3582 /* ... Write lower 128bits. */
3583 regcache->raw_write (I387_XMM16_REGNUM (tdep) + regnum, buf);
3584 /* ... Write upper 128bits. */
3585 regcache->raw_write (tdep->ymm16h_regnum + regnum, buf + 16);
3586 }
3587 else if (i386_word_regnum_p (gdbarch, regnum))
3588 {
3589 int gpnum = regnum - tdep->ax_regnum;
3590
3591 /* Read ... */
3592 regcache->raw_read (gpnum, raw_buf);
3593 /* ... Modify ... (always little endian). */
3594 memcpy (raw_buf, buf, 2);
3595 /* ... Write. */
3596 regcache->raw_write (gpnum, raw_buf);
3597 }
3598 else if (i386_byte_regnum_p (gdbarch, regnum))
3599 {
3600 int gpnum = regnum - tdep->al_regnum;
3601
3602 /* Read ... We read both lower and upper registers. */
3603 regcache->raw_read (gpnum % 4, raw_buf);
3604 /* ... Modify ... (always little endian). */
3605 if (gpnum >= 4)
3606 memcpy (raw_buf + 1, buf, 1);
3607 else
3608 memcpy (raw_buf, buf, 1);
3609 /* ... Write. */
3610 regcache->raw_write (gpnum % 4, raw_buf);
3611 }
3612 else
3613 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3614 }
3615 }
3616
3617 /* Implement the 'ax_pseudo_register_collect' gdbarch method. */
3618
3619 int
3620 i386_ax_pseudo_register_collect (struct gdbarch *gdbarch,
3621 struct agent_expr *ax, int regnum)
3622 {
3623 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3624
3625 if (i386_mmx_regnum_p (gdbarch, regnum))
3626 {
3627 /* MMX to FPU register mapping depends on current TOS. Let's just
3628 not care and collect everything... */
3629 int i;
3630
3631 ax_reg_mask (ax, I387_FSTAT_REGNUM (tdep));
3632 for (i = 0; i < 8; i++)
3633 ax_reg_mask (ax, I387_ST0_REGNUM (tdep) + i);
3634 return 0;
3635 }
3636 else if (i386_bnd_regnum_p (gdbarch, regnum))
3637 {
3638 regnum -= tdep->bnd0_regnum;
3639 ax_reg_mask (ax, I387_BND0R_REGNUM (tdep) + regnum);
3640 return 0;
3641 }
3642 else if (i386_k_regnum_p (gdbarch, regnum))
3643 {
3644 regnum -= tdep->k0_regnum;
3645 ax_reg_mask (ax, tdep->k0_regnum + regnum);
3646 return 0;
3647 }
3648 else if (i386_zmm_regnum_p (gdbarch, regnum))
3649 {
3650 regnum -= tdep->zmm0_regnum;
3651 if (regnum < num_lower_zmm_regs)
3652 {
3653 ax_reg_mask (ax, I387_XMM0_REGNUM (tdep) + regnum);
3654 ax_reg_mask (ax, tdep->ymm0h_regnum + regnum);
3655 }
3656 else
3657 {
3658 ax_reg_mask (ax, I387_XMM16_REGNUM (tdep) + regnum
3659 - num_lower_zmm_regs);
3660 ax_reg_mask (ax, I387_YMM16H_REGNUM (tdep) + regnum
3661 - num_lower_zmm_regs);
3662 }
3663 ax_reg_mask (ax, tdep->zmm0h_regnum + regnum);
3664 return 0;
3665 }
3666 else if (i386_ymm_regnum_p (gdbarch, regnum))
3667 {
3668 regnum -= tdep->ymm0_regnum;
3669 ax_reg_mask (ax, I387_XMM0_REGNUM (tdep) + regnum);
3670 ax_reg_mask (ax, tdep->ymm0h_regnum + regnum);
3671 return 0;
3672 }
3673 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3674 {
3675 regnum -= tdep->ymm16_regnum;
3676 ax_reg_mask (ax, I387_XMM16_REGNUM (tdep) + regnum);
3677 ax_reg_mask (ax, tdep->ymm16h_regnum + regnum);
3678 return 0;
3679 }
3680 else if (i386_word_regnum_p (gdbarch, regnum))
3681 {
3682 int gpnum = regnum - tdep->ax_regnum;
3683
3684 ax_reg_mask (ax, gpnum);
3685 return 0;
3686 }
3687 else if (i386_byte_regnum_p (gdbarch, regnum))
3688 {
3689 int gpnum = regnum - tdep->al_regnum;
3690
3691 ax_reg_mask (ax, gpnum % 4);
3692 return 0;
3693 }
3694 else
3695 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3696 return 1;
3697 }
3698 \f
3699
3700 /* Return the register number of the register allocated by GCC after
3701 REGNUM, or -1 if there is no such register. */
3702
3703 static int
3704 i386_next_regnum (int regnum)
3705 {
3706 /* GCC allocates the registers in the order:
3707
3708 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
3709
3710 Since storing a variable in %esp doesn't make any sense we return
3711 -1 for %ebp and for %esp itself. */
3712 static int next_regnum[] =
3713 {
3714 I386_EDX_REGNUM, /* Slot for %eax. */
3715 I386_EBX_REGNUM, /* Slot for %ecx. */
3716 I386_ECX_REGNUM, /* Slot for %edx. */
3717 I386_ESI_REGNUM, /* Slot for %ebx. */
3718 -1, -1, /* Slots for %esp and %ebp. */
3719 I386_EDI_REGNUM, /* Slot for %esi. */
3720 I386_EBP_REGNUM /* Slot for %edi. */
3721 };
3722
3723 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
3724 return next_regnum[regnum];
3725
3726 return -1;
3727 }
3728
3729 /* Return nonzero if a value of type TYPE stored in register REGNUM
3730 needs any special handling. */
3731
3732 static int
3733 i386_convert_register_p (struct gdbarch *gdbarch,
3734 int regnum, struct type *type)
3735 {
3736 int len = TYPE_LENGTH (type);
3737
3738 /* Values may be spread across multiple registers. Most debugging
3739 formats aren't expressive enough to specify the locations, so
3740 some heuristics is involved. Right now we only handle types that
3741 have a length that is a multiple of the word size, since GCC
3742 doesn't seem to put any other types into registers. */
3743 if (len > 4 && len % 4 == 0)
3744 {
3745 int last_regnum = regnum;
3746
3747 while (len > 4)
3748 {
3749 last_regnum = i386_next_regnum (last_regnum);
3750 len -= 4;
3751 }
3752
3753 if (last_regnum != -1)
3754 return 1;
3755 }
3756
3757 return i387_convert_register_p (gdbarch, regnum, type);
3758 }
3759
3760 /* Read a value of type TYPE from register REGNUM in frame FRAME, and
3761 return its contents in TO. */
3762
3763 static int
3764 i386_register_to_value (struct frame_info *frame, int regnum,
3765 struct type *type, gdb_byte *to,
3766 int *optimizedp, int *unavailablep)
3767 {
3768 struct gdbarch *gdbarch = get_frame_arch (frame);
3769 int len = TYPE_LENGTH (type);
3770
3771 if (i386_fp_regnum_p (gdbarch, regnum))
3772 return i387_register_to_value (frame, regnum, type, to,
3773 optimizedp, unavailablep);
3774
3775 /* Read a value spread across multiple registers. */
3776
3777 gdb_assert (len > 4 && len % 4 == 0);
3778
3779 while (len > 0)
3780 {
3781 gdb_assert (regnum != -1);
3782 gdb_assert (register_size (gdbarch, regnum) == 4);
3783
3784 if (!get_frame_register_bytes (frame, regnum, 0,
3785 gdb::make_array_view (to,
3786 register_size (gdbarch,
3787 regnum)),
3788 optimizedp, unavailablep))
3789 return 0;
3790
3791 regnum = i386_next_regnum (regnum);
3792 len -= 4;
3793 to += 4;
3794 }
3795
3796 *optimizedp = *unavailablep = 0;
3797 return 1;
3798 }
3799
3800 /* Write the contents FROM of a value of type TYPE into register
3801 REGNUM in frame FRAME. */
3802
3803 static void
3804 i386_value_to_register (struct frame_info *frame, int regnum,
3805 struct type *type, const gdb_byte *from)
3806 {
3807 int len = TYPE_LENGTH (type);
3808
3809 if (i386_fp_regnum_p (get_frame_arch (frame), regnum))
3810 {
3811 i387_value_to_register (frame, regnum, type, from);
3812 return;
3813 }
3814
3815 /* Write a value spread across multiple registers. */
3816
3817 gdb_assert (len > 4 && len % 4 == 0);
3818
3819 while (len > 0)
3820 {
3821 gdb_assert (regnum != -1);
3822 gdb_assert (register_size (get_frame_arch (frame), regnum) == 4);
3823
3824 put_frame_register (frame, regnum, from);
3825 regnum = i386_next_regnum (regnum);
3826 len -= 4;
3827 from += 4;
3828 }
3829 }
3830 \f
3831 /* Supply register REGNUM from the buffer specified by GREGS and LEN
3832 in the general-purpose register set REGSET to register cache
3833 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3834
3835 void
3836 i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
3837 int regnum, const void *gregs, size_t len)
3838 {
3839 struct gdbarch *gdbarch = regcache->arch ();
3840 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3841 const gdb_byte *regs = (const gdb_byte *) gregs;
3842 int i;
3843
3844 gdb_assert (len >= tdep->sizeof_gregset);
3845
3846 for (i = 0; i < tdep->gregset_num_regs; i++)
3847 {
3848 if ((regnum == i || regnum == -1)
3849 && tdep->gregset_reg_offset[i] != -1)
3850 regcache->raw_supply (i, regs + tdep->gregset_reg_offset[i]);
3851 }
3852 }
3853
3854 /* Collect register REGNUM from the register cache REGCACHE and store
3855 it in the buffer specified by GREGS and LEN as described by the
3856 general-purpose register set REGSET. If REGNUM is -1, do this for
3857 all registers in REGSET. */
3858
3859 static void
3860 i386_collect_gregset (const struct regset *regset,
3861 const struct regcache *regcache,
3862 int regnum, void *gregs, size_t len)
3863 {
3864 struct gdbarch *gdbarch = regcache->arch ();
3865 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3866 gdb_byte *regs = (gdb_byte *) gregs;
3867 int i;
3868
3869 gdb_assert (len >= tdep->sizeof_gregset);
3870
3871 for (i = 0; i < tdep->gregset_num_regs; i++)
3872 {
3873 if ((regnum == i || regnum == -1)
3874 && tdep->gregset_reg_offset[i] != -1)
3875 regcache->raw_collect (i, regs + tdep->gregset_reg_offset[i]);
3876 }
3877 }
3878
3879 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
3880 in the floating-point register set REGSET to register cache
3881 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3882
3883 static void
3884 i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
3885 int regnum, const void *fpregs, size_t len)
3886 {
3887 struct gdbarch *gdbarch = regcache->arch ();
3888 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3889
3890 if (len == I387_SIZEOF_FXSAVE)
3891 {
3892 i387_supply_fxsave (regcache, regnum, fpregs);
3893 return;
3894 }
3895
3896 gdb_assert (len >= tdep->sizeof_fpregset);
3897 i387_supply_fsave (regcache, regnum, fpregs);
3898 }
3899
3900 /* Collect register REGNUM from the register cache REGCACHE and store
3901 it in the buffer specified by FPREGS and LEN as described by the
3902 floating-point register set REGSET. If REGNUM is -1, do this for
3903 all registers in REGSET. */
3904
3905 static void
3906 i386_collect_fpregset (const struct regset *regset,
3907 const struct regcache *regcache,
3908 int regnum, void *fpregs, size_t len)
3909 {
3910 struct gdbarch *gdbarch = regcache->arch ();
3911 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3912
3913 if (len == I387_SIZEOF_FXSAVE)
3914 {
3915 i387_collect_fxsave (regcache, regnum, fpregs);
3916 return;
3917 }
3918
3919 gdb_assert (len >= tdep->sizeof_fpregset);
3920 i387_collect_fsave (regcache, regnum, fpregs);
3921 }
3922
3923 /* Register set definitions. */
3924
3925 const struct regset i386_gregset =
3926 {
3927 NULL, i386_supply_gregset, i386_collect_gregset
3928 };
3929
3930 const struct regset i386_fpregset =
3931 {
3932 NULL, i386_supply_fpregset, i386_collect_fpregset
3933 };
3934
3935 /* Default iterator over core file register note sections. */
3936
3937 void
3938 i386_iterate_over_regset_sections (struct gdbarch *gdbarch,
3939 iterate_over_regset_sections_cb *cb,
3940 void *cb_data,
3941 const struct regcache *regcache)
3942 {
3943 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3944
3945 cb (".reg", tdep->sizeof_gregset, tdep->sizeof_gregset, &i386_gregset, NULL,
3946 cb_data);
3947 if (tdep->sizeof_fpregset)
3948 cb (".reg2", tdep->sizeof_fpregset, tdep->sizeof_fpregset, tdep->fpregset,
3949 NULL, cb_data);
3950 }
3951 \f
3952
3953 /* Stuff for WIN32 PE style DLL's but is pretty generic really. */
3954
3955 CORE_ADDR
3956 i386_pe_skip_trampoline_code (struct frame_info *frame,
3957 CORE_ADDR pc, char *name)
3958 {
3959 struct gdbarch *gdbarch = get_frame_arch (frame);
3960 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3961
3962 /* jmp *(dest) */
3963 if (pc && read_memory_unsigned_integer (pc, 2, byte_order) == 0x25ff)
3964 {
3965 unsigned long indirect =
3966 read_memory_unsigned_integer (pc + 2, 4, byte_order);
3967 struct minimal_symbol *indsym =
3968 indirect ? lookup_minimal_symbol_by_pc (indirect).minsym : 0;
3969 const char *symname = indsym ? indsym->linkage_name () : 0;
3970
3971 if (symname)
3972 {
3973 if (startswith (symname, "__imp_")
3974 || startswith (symname, "_imp_"))
3975 return name ? 1 :
3976 read_memory_unsigned_integer (indirect, 4, byte_order);
3977 }
3978 }
3979 return 0; /* Not a trampoline. */
3980 }
3981 \f
3982
3983 /* Return whether the THIS_FRAME corresponds to a sigtramp
3984 routine. */
3985
3986 int
3987 i386_sigtramp_p (struct frame_info *this_frame)
3988 {
3989 CORE_ADDR pc = get_frame_pc (this_frame);
3990 const char *name;
3991
3992 find_pc_partial_function (pc, &name, NULL, NULL);
3993 return (name && strcmp ("_sigtramp", name) == 0);
3994 }
3995 \f
3996
3997 /* We have two flavours of disassembly. The machinery on this page
3998 deals with switching between those. */
3999
4000 static int
4001 i386_print_insn (bfd_vma pc, struct disassemble_info *info)
4002 {
4003 gdb_assert (disassembly_flavor == att_flavor
4004 || disassembly_flavor == intel_flavor);
4005
4006 info->disassembler_options = disassembly_flavor;
4007
4008 return default_print_insn (pc, info);
4009 }
4010 \f
4011
4012 /* There are a few i386 architecture variants that differ only
4013 slightly from the generic i386 target. For now, we don't give them
4014 their own source file, but include them here. As a consequence,
4015 they'll always be included. */
4016
4017 /* System V Release 4 (SVR4). */
4018
4019 /* Return whether THIS_FRAME corresponds to a SVR4 sigtramp
4020 routine. */
4021
4022 static int
4023 i386_svr4_sigtramp_p (struct frame_info *this_frame)
4024 {
4025 CORE_ADDR pc = get_frame_pc (this_frame);
4026 const char *name;
4027
4028 /* The origin of these symbols is currently unknown. */
4029 find_pc_partial_function (pc, &name, NULL, NULL);
4030 return (name && (strcmp ("_sigreturn", name) == 0
4031 || strcmp ("sigvechandler", name) == 0));
4032 }
4033
4034 /* Assuming THIS_FRAME is for a SVR4 sigtramp routine, return the
4035 address of the associated sigcontext (ucontext) structure. */
4036
4037 static CORE_ADDR
4038 i386_svr4_sigcontext_addr (struct frame_info *this_frame)
4039 {
4040 struct gdbarch *gdbarch = get_frame_arch (this_frame);
4041 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4042 gdb_byte buf[4];
4043 CORE_ADDR sp;
4044
4045 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
4046 sp = extract_unsigned_integer (buf, 4, byte_order);
4047
4048 return read_memory_unsigned_integer (sp + 8, 4, byte_order);
4049 }
4050
4051 \f
4052
4053 /* Implementation of `gdbarch_stap_is_single_operand', as defined in
4054 gdbarch.h. */
4055
4056 int
4057 i386_stap_is_single_operand (struct gdbarch *gdbarch, const char *s)
4058 {
4059 return (*s == '$' /* Literal number. */
4060 || (isdigit (*s) && s[1] == '(' && s[2] == '%') /* Displacement. */
4061 || (*s == '(' && s[1] == '%') /* Register indirection. */
4062 || (*s == '%' && isalpha (s[1]))); /* Register access. */
4063 }
4064
4065 /* Helper function for i386_stap_parse_special_token.
4066
4067 This function parses operands of the form `-8+3+1(%rbp)', which
4068 must be interpreted as `*(-8 + 3 - 1 + (void *) $eax)'.
4069
4070 Return true if the operand was parsed successfully, false
4071 otherwise. */
4072
4073 static expr::operation_up
4074 i386_stap_parse_special_token_triplet (struct gdbarch *gdbarch,
4075 struct stap_parse_info *p)
4076 {
4077 const char *s = p->arg;
4078
4079 if (isdigit (*s) || *s == '-' || *s == '+')
4080 {
4081 bool got_minus[3];
4082 int i;
4083 long displacements[3];
4084 const char *start;
4085 int len;
4086 char *endp;
4087
4088 got_minus[0] = false;
4089 if (*s == '+')
4090 ++s;
4091 else if (*s == '-')
4092 {
4093 ++s;
4094 got_minus[0] = true;
4095 }
4096
4097 if (!isdigit ((unsigned char) *s))
4098 return {};
4099
4100 displacements[0] = strtol (s, &endp, 10);
4101 s = endp;
4102
4103 if (*s != '+' && *s != '-')
4104 {
4105 /* We are not dealing with a triplet. */
4106 return {};
4107 }
4108
4109 got_minus[1] = false;
4110 if (*s == '+')
4111 ++s;
4112 else
4113 {
4114 ++s;
4115 got_minus[1] = true;
4116 }
4117
4118 if (!isdigit ((unsigned char) *s))
4119 return {};
4120
4121 displacements[1] = strtol (s, &endp, 10);
4122 s = endp;
4123
4124 if (*s != '+' && *s != '-')
4125 {
4126 /* We are not dealing with a triplet. */
4127 return {};
4128 }
4129
4130 got_minus[2] = false;
4131 if (*s == '+')
4132 ++s;
4133 else
4134 {
4135 ++s;
4136 got_minus[2] = true;
4137 }
4138
4139 if (!isdigit ((unsigned char) *s))
4140 return {};
4141
4142 displacements[2] = strtol (s, &endp, 10);
4143 s = endp;
4144
4145 if (*s != '(' || s[1] != '%')
4146 return {};
4147
4148 s += 2;
4149 start = s;
4150
4151 while (isalnum (*s))
4152 ++s;
4153
4154 if (*s++ != ')')
4155 return {};
4156
4157 len = s - start - 1;
4158 std::string regname (start, len);
4159
4160 if (user_reg_map_name_to_regnum (gdbarch, regname.c_str (), len) == -1)
4161 error (_("Invalid register name `%s' on expression `%s'."),
4162 regname.c_str (), p->saved_arg);
4163
4164 LONGEST value = 0;
4165 for (i = 0; i < 3; i++)
4166 {
4167 LONGEST this_val = displacements[i];
4168 if (got_minus[i])
4169 this_val = -this_val;
4170 value += this_val;
4171 }
4172
4173 p->arg = s;
4174
4175 using namespace expr;
4176
4177 struct type *long_type = builtin_type (gdbarch)->builtin_long;
4178 operation_up offset
4179 = make_operation<long_const_operation> (long_type, value);
4180
4181 operation_up reg
4182 = make_operation<register_operation> (std::move (regname));
4183 struct type *void_ptr = builtin_type (gdbarch)->builtin_data_ptr;
4184 reg = make_operation<unop_cast_operation> (std::move (reg), void_ptr);
4185
4186 operation_up sum
4187 = make_operation<add_operation> (std::move (reg), std::move (offset));
4188 struct type *arg_ptr_type = lookup_pointer_type (p->arg_type);
4189 sum = make_operation<unop_cast_operation> (std::move (sum),
4190 arg_ptr_type);
4191 return make_operation<unop_ind_operation> (std::move (sum));
4192 }
4193
4194 return {};
4195 }
4196
4197 /* Helper function for i386_stap_parse_special_token.
4198
4199 This function parses operands of the form `register base +
4200 (register index * size) + offset', as represented in
4201 `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4202
4203 Return true if the operand was parsed successfully, false
4204 otherwise. */
4205
4206 static expr::operation_up
4207 i386_stap_parse_special_token_three_arg_disp (struct gdbarch *gdbarch,
4208 struct stap_parse_info *p)
4209 {
4210 const char *s = p->arg;
4211
4212 if (isdigit (*s) || *s == '(' || *s == '-' || *s == '+')
4213 {
4214 bool offset_minus = false;
4215 long offset = 0;
4216 bool size_minus = false;
4217 long size = 0;
4218 const char *start;
4219 int len_base;
4220 int len_index;
4221
4222 if (*s == '+')
4223 ++s;
4224 else if (*s == '-')
4225 {
4226 ++s;
4227 offset_minus = true;
4228 }
4229
4230 if (offset_minus && !isdigit (*s))
4231 return {};
4232
4233 if (isdigit (*s))
4234 {
4235 char *endp;
4236
4237 offset = strtol (s, &endp, 10);
4238 s = endp;
4239 }
4240
4241 if (*s != '(' || s[1] != '%')
4242 return {};
4243
4244 s += 2;
4245 start = s;
4246
4247 while (isalnum (*s))
4248 ++s;
4249
4250 if (*s != ',' || s[1] != '%')
4251 return {};
4252
4253 len_base = s - start;
4254 std::string base (start, len_base);
4255
4256 if (user_reg_map_name_to_regnum (gdbarch, base.c_str (), len_base) == -1)
4257 error (_("Invalid register name `%s' on expression `%s'."),
4258 base.c_str (), p->saved_arg);
4259
4260 s += 2;
4261 start = s;
4262
4263 while (isalnum (*s))
4264 ++s;
4265
4266 len_index = s - start;
4267 std::string index (start, len_index);
4268
4269 if (user_reg_map_name_to_regnum (gdbarch, index.c_str (),
4270 len_index) == -1)
4271 error (_("Invalid register name `%s' on expression `%s'."),
4272 index.c_str (), p->saved_arg);
4273
4274 if (*s != ',' && *s != ')')
4275 return {};
4276
4277 if (*s == ',')
4278 {
4279 char *endp;
4280
4281 ++s;
4282 if (*s == '+')
4283 ++s;
4284 else if (*s == '-')
4285 {
4286 ++s;
4287 size_minus = true;
4288 }
4289
4290 size = strtol (s, &endp, 10);
4291 s = endp;
4292
4293 if (*s != ')')
4294 return {};
4295 }
4296
4297 ++s;
4298 p->arg = s;
4299
4300 using namespace expr;
4301
4302 struct type *long_type = builtin_type (gdbarch)->builtin_long;
4303 operation_up reg = make_operation<register_operation> (std::move (base));
4304
4305 if (offset != 0)
4306 {
4307 if (offset_minus)
4308 offset = -offset;
4309 operation_up value
4310 = make_operation<long_const_operation> (long_type, offset);
4311 reg = make_operation<add_operation> (std::move (reg),
4312 std::move (value));
4313 }
4314
4315 operation_up ind_reg
4316 = make_operation<register_operation> (std::move (index));
4317
4318 if (size != 0)
4319 {
4320 if (size_minus)
4321 size = -size;
4322 operation_up value
4323 = make_operation<long_const_operation> (long_type, size);
4324 ind_reg = make_operation<mul_operation> (std::move (ind_reg),
4325 std::move (value));
4326 }
4327
4328 operation_up sum
4329 = make_operation<add_operation> (std::move (reg),
4330 std::move (ind_reg));
4331
4332 struct type *arg_ptr_type = lookup_pointer_type (p->arg_type);
4333 sum = make_operation<unop_cast_operation> (std::move (sum),
4334 arg_ptr_type);
4335 return make_operation<unop_ind_operation> (std::move (sum));
4336 }
4337
4338 return {};
4339 }
4340
4341 /* Implementation of `gdbarch_stap_parse_special_token', as defined in
4342 gdbarch.h. */
4343
4344 expr::operation_up
4345 i386_stap_parse_special_token (struct gdbarch *gdbarch,
4346 struct stap_parse_info *p)
4347 {
4348 /* The special tokens to be parsed here are:
4349
4350 - `register base + (register index * size) + offset', as represented
4351 in `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4352
4353 - Operands of the form `-8+3+1(%rbp)', which must be interpreted as
4354 `*(-8 + 3 - 1 + (void *) $eax)'. */
4355
4356 expr::operation_up result
4357 = i386_stap_parse_special_token_triplet (gdbarch, p);
4358
4359 if (result == nullptr)
4360 result = i386_stap_parse_special_token_three_arg_disp (gdbarch, p);
4361
4362 return result;
4363 }
4364
4365 /* Implementation of 'gdbarch_stap_adjust_register', as defined in
4366 gdbarch.h. */
4367
4368 static std::string
4369 i386_stap_adjust_register (struct gdbarch *gdbarch, struct stap_parse_info *p,
4370 const std::string &regname, int regnum)
4371 {
4372 static const std::unordered_set<std::string> reg_assoc
4373 = { "ax", "bx", "cx", "dx",
4374 "si", "di", "bp", "sp" };
4375
4376 /* If we are dealing with a register whose size is less than the size
4377 specified by the "[-]N@" prefix, and it is one of the registers that
4378 we know has an extended variant available, then use the extended
4379 version of the register instead. */
4380 if (register_size (gdbarch, regnum) < TYPE_LENGTH (p->arg_type)
4381 && reg_assoc.find (regname) != reg_assoc.end ())
4382 return "e" + regname;
4383
4384 /* Otherwise, just use the requested register. */
4385 return regname;
4386 }
4387
4388 \f
4389
4390 /* gdbarch gnu_triplet_regexp method. Both arches are acceptable as GDB always
4391 also supplies -m64 or -m32 by gdbarch_gcc_target_options. */
4392
4393 static const char *
4394 i386_gnu_triplet_regexp (struct gdbarch *gdbarch)
4395 {
4396 return "(x86_64|i.86)";
4397 }
4398
4399 \f
4400
4401 /* Implement the "in_indirect_branch_thunk" gdbarch function. */
4402
4403 static bool
4404 i386_in_indirect_branch_thunk (struct gdbarch *gdbarch, CORE_ADDR pc)
4405 {
4406 return x86_in_indirect_branch_thunk (pc, i386_register_names,
4407 I386_EAX_REGNUM, I386_EIP_REGNUM);
4408 }
4409
4410 /* Generic ELF. */
4411
4412 void
4413 i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4414 {
4415 static const char *const stap_integer_prefixes[] = { "$", NULL };
4416 static const char *const stap_register_prefixes[] = { "%", NULL };
4417 static const char *const stap_register_indirection_prefixes[] = { "(",
4418 NULL };
4419 static const char *const stap_register_indirection_suffixes[] = { ")",
4420 NULL };
4421
4422 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
4423 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
4424
4425 /* Registering SystemTap handlers. */
4426 set_gdbarch_stap_integer_prefixes (gdbarch, stap_integer_prefixes);
4427 set_gdbarch_stap_register_prefixes (gdbarch, stap_register_prefixes);
4428 set_gdbarch_stap_register_indirection_prefixes (gdbarch,
4429 stap_register_indirection_prefixes);
4430 set_gdbarch_stap_register_indirection_suffixes (gdbarch,
4431 stap_register_indirection_suffixes);
4432 set_gdbarch_stap_is_single_operand (gdbarch,
4433 i386_stap_is_single_operand);
4434 set_gdbarch_stap_parse_special_token (gdbarch,
4435 i386_stap_parse_special_token);
4436 set_gdbarch_stap_adjust_register (gdbarch,
4437 i386_stap_adjust_register);
4438
4439 set_gdbarch_in_indirect_branch_thunk (gdbarch,
4440 i386_in_indirect_branch_thunk);
4441 }
4442
4443 /* System V Release 4 (SVR4). */
4444
4445 void
4446 i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4447 {
4448 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4449
4450 /* System V Release 4 uses ELF. */
4451 i386_elf_init_abi (info, gdbarch);
4452
4453 /* System V Release 4 has shared libraries. */
4454 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
4455
4456 tdep->sigtramp_p = i386_svr4_sigtramp_p;
4457 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
4458 tdep->sc_pc_offset = 36 + 14 * 4;
4459 tdep->sc_sp_offset = 36 + 17 * 4;
4460
4461 tdep->jb_pc_offset = 20;
4462 }
4463
4464 \f
4465
4466 /* i386 register groups. In addition to the normal groups, add "mmx"
4467 and "sse". */
4468
4469 static struct reggroup *i386_sse_reggroup;
4470 static struct reggroup *i386_mmx_reggroup;
4471
4472 static void
4473 i386_init_reggroups (void)
4474 {
4475 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
4476 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
4477 }
4478
4479 static void
4480 i386_add_reggroups (struct gdbarch *gdbarch)
4481 {
4482 reggroup_add (gdbarch, i386_sse_reggroup);
4483 reggroup_add (gdbarch, i386_mmx_reggroup);
4484 reggroup_add (gdbarch, general_reggroup);
4485 reggroup_add (gdbarch, float_reggroup);
4486 reggroup_add (gdbarch, all_reggroup);
4487 reggroup_add (gdbarch, save_reggroup);
4488 reggroup_add (gdbarch, restore_reggroup);
4489 reggroup_add (gdbarch, vector_reggroup);
4490 reggroup_add (gdbarch, system_reggroup);
4491 }
4492
4493 int
4494 i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
4495 struct reggroup *group)
4496 {
4497 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4498 int fp_regnum_p, mmx_regnum_p, xmm_regnum_p, mxcsr_regnum_p,
4499 ymm_regnum_p, ymmh_regnum_p, ymm_avx512_regnum_p, ymmh_avx512_regnum_p,
4500 bndr_regnum_p, bnd_regnum_p, zmm_regnum_p, zmmh_regnum_p,
4501 mpx_ctrl_regnum_p, xmm_avx512_regnum_p,
4502 avx512_p, avx_p, sse_p, pkru_regnum_p;
4503
4504 /* Don't include pseudo registers, except for MMX, in any register
4505 groups. */
4506 if (i386_byte_regnum_p (gdbarch, regnum))
4507 return 0;
4508
4509 if (i386_word_regnum_p (gdbarch, regnum))
4510 return 0;
4511
4512 if (i386_dword_regnum_p (gdbarch, regnum))
4513 return 0;
4514
4515 mmx_regnum_p = i386_mmx_regnum_p (gdbarch, regnum);
4516 if (group == i386_mmx_reggroup)
4517 return mmx_regnum_p;
4518
4519 pkru_regnum_p = i386_pkru_regnum_p(gdbarch, regnum);
4520 xmm_regnum_p = i386_xmm_regnum_p (gdbarch, regnum);
4521 xmm_avx512_regnum_p = i386_xmm_avx512_regnum_p (gdbarch, regnum);
4522 mxcsr_regnum_p = i386_mxcsr_regnum_p (gdbarch, regnum);
4523 if (group == i386_sse_reggroup)
4524 return xmm_regnum_p || xmm_avx512_regnum_p || mxcsr_regnum_p;
4525
4526 ymm_regnum_p = i386_ymm_regnum_p (gdbarch, regnum);
4527 ymm_avx512_regnum_p = i386_ymm_avx512_regnum_p (gdbarch, regnum);
4528 zmm_regnum_p = i386_zmm_regnum_p (gdbarch, regnum);
4529
4530 avx512_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
4531 == X86_XSTATE_AVX_AVX512_MASK);
4532 avx_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
4533 == X86_XSTATE_AVX_MASK) && !avx512_p;
4534 sse_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
4535 == X86_XSTATE_SSE_MASK) && !avx512_p && ! avx_p;
4536
4537 if (group == vector_reggroup)
4538 return (mmx_regnum_p
4539 || (zmm_regnum_p && avx512_p)
4540 || ((ymm_regnum_p || ymm_avx512_regnum_p) && avx_p)
4541 || ((xmm_regnum_p || xmm_avx512_regnum_p) && sse_p)
4542 || mxcsr_regnum_p);
4543
4544 fp_regnum_p = (i386_fp_regnum_p (gdbarch, regnum)
4545 || i386_fpc_regnum_p (gdbarch, regnum));
4546 if (group == float_reggroup)
4547 return fp_regnum_p;
4548
4549 /* For "info reg all", don't include upper YMM registers nor XMM
4550 registers when AVX is supported. */
4551 ymmh_regnum_p = i386_ymmh_regnum_p (gdbarch, regnum);
4552 ymmh_avx512_regnum_p = i386_ymmh_avx512_regnum_p (gdbarch, regnum);
4553 zmmh_regnum_p = i386_zmmh_regnum_p (gdbarch, regnum);
4554 if (group == all_reggroup
4555 && (((xmm_regnum_p || xmm_avx512_regnum_p) && !sse_p)
4556 || ((ymm_regnum_p || ymm_avx512_regnum_p) && !avx_p)
4557 || ymmh_regnum_p
4558 || ymmh_avx512_regnum_p
4559 || zmmh_regnum_p))
4560 return 0;
4561
4562 bnd_regnum_p = i386_bnd_regnum_p (gdbarch, regnum);
4563 if (group == all_reggroup
4564 && ((bnd_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4565 return bnd_regnum_p;
4566
4567 bndr_regnum_p = i386_bndr_regnum_p (gdbarch, regnum);
4568 if (group == all_reggroup
4569 && ((bndr_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4570 return 0;
4571
4572 mpx_ctrl_regnum_p = i386_mpx_ctrl_regnum_p (gdbarch, regnum);
4573 if (group == all_reggroup
4574 && ((mpx_ctrl_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4575 return mpx_ctrl_regnum_p;
4576
4577 if (group == general_reggroup)
4578 return (!fp_regnum_p
4579 && !mmx_regnum_p
4580 && !mxcsr_regnum_p
4581 && !xmm_regnum_p
4582 && !xmm_avx512_regnum_p
4583 && !ymm_regnum_p
4584 && !ymmh_regnum_p
4585 && !ymm_avx512_regnum_p
4586 && !ymmh_avx512_regnum_p
4587 && !bndr_regnum_p
4588 && !bnd_regnum_p
4589 && !mpx_ctrl_regnum_p
4590 && !zmm_regnum_p
4591 && !zmmh_regnum_p
4592 && !pkru_regnum_p);
4593
4594 return default_register_reggroup_p (gdbarch, regnum, group);
4595 }
4596 \f
4597
4598 /* Get the ARGIth function argument for the current function. */
4599
4600 static CORE_ADDR
4601 i386_fetch_pointer_argument (struct frame_info *frame, int argi,
4602 struct type *type)
4603 {
4604 struct gdbarch *gdbarch = get_frame_arch (frame);
4605 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4606 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
4607 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4, byte_order);
4608 }
4609
4610 #define PREFIX_REPZ 0x01
4611 #define PREFIX_REPNZ 0x02
4612 #define PREFIX_LOCK 0x04
4613 #define PREFIX_DATA 0x08
4614 #define PREFIX_ADDR 0x10
4615
4616 /* operand size */
4617 enum
4618 {
4619 OT_BYTE = 0,
4620 OT_WORD,
4621 OT_LONG,
4622 OT_QUAD,
4623 OT_DQUAD,
4624 };
4625
4626 /* i386 arith/logic operations */
4627 enum
4628 {
4629 OP_ADDL,
4630 OP_ORL,
4631 OP_ADCL,
4632 OP_SBBL,
4633 OP_ANDL,
4634 OP_SUBL,
4635 OP_XORL,
4636 OP_CMPL,
4637 };
4638
4639 struct i386_record_s
4640 {
4641 struct gdbarch *gdbarch;
4642 struct regcache *regcache;
4643 CORE_ADDR orig_addr;
4644 CORE_ADDR addr;
4645 int aflag;
4646 int dflag;
4647 int override;
4648 uint8_t modrm;
4649 uint8_t mod, reg, rm;
4650 int ot;
4651 uint8_t rex_x;
4652 uint8_t rex_b;
4653 int rip_offset;
4654 int popl_esp_hack;
4655 const int *regmap;
4656 };
4657
4658 /* Parse the "modrm" part of the memory address irp->addr points at.
4659 Returns -1 if something goes wrong, 0 otherwise. */
4660
4661 static int
4662 i386_record_modrm (struct i386_record_s *irp)
4663 {
4664 struct gdbarch *gdbarch = irp->gdbarch;
4665
4666 if (record_read_memory (gdbarch, irp->addr, &irp->modrm, 1))
4667 return -1;
4668
4669 irp->addr++;
4670 irp->mod = (irp->modrm >> 6) & 3;
4671 irp->reg = (irp->modrm >> 3) & 7;
4672 irp->rm = irp->modrm & 7;
4673
4674 return 0;
4675 }
4676
4677 /* Extract the memory address that the current instruction writes to,
4678 and return it in *ADDR. Return -1 if something goes wrong. */
4679
4680 static int
4681 i386_record_lea_modrm_addr (struct i386_record_s *irp, uint64_t *addr)
4682 {
4683 struct gdbarch *gdbarch = irp->gdbarch;
4684 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4685 gdb_byte buf[4];
4686 ULONGEST offset64;
4687
4688 *addr = 0;
4689 if (irp->aflag || irp->regmap[X86_RECORD_R8_REGNUM])
4690 {
4691 /* 32/64 bits */
4692 int havesib = 0;
4693 uint8_t scale = 0;
4694 uint8_t byte;
4695 uint8_t index = 0;
4696 uint8_t base = irp->rm;
4697
4698 if (base == 4)
4699 {
4700 havesib = 1;
4701 if (record_read_memory (gdbarch, irp->addr, &byte, 1))
4702 return -1;
4703 irp->addr++;
4704 scale = (byte >> 6) & 3;
4705 index = ((byte >> 3) & 7) | irp->rex_x;
4706 base = (byte & 7);
4707 }
4708 base |= irp->rex_b;
4709
4710 switch (irp->mod)
4711 {
4712 case 0:
4713 if ((base & 7) == 5)
4714 {
4715 base = 0xff;
4716 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4717 return -1;
4718 irp->addr += 4;
4719 *addr = extract_signed_integer (buf, 4, byte_order);
4720 if (irp->regmap[X86_RECORD_R8_REGNUM] && !havesib)
4721 *addr += irp->addr + irp->rip_offset;
4722 }
4723 break;
4724 case 1:
4725 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4726 return -1;
4727 irp->addr++;
4728 *addr = (int8_t) buf[0];
4729 break;
4730 case 2:
4731 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4732 return -1;
4733 *addr = extract_signed_integer (buf, 4, byte_order);
4734 irp->addr += 4;
4735 break;
4736 }
4737
4738 offset64 = 0;
4739 if (base != 0xff)
4740 {
4741 if (base == 4 && irp->popl_esp_hack)
4742 *addr += irp->popl_esp_hack;
4743 regcache_raw_read_unsigned (irp->regcache, irp->regmap[base],
4744 &offset64);
4745 }
4746 if (irp->aflag == 2)
4747 {
4748 *addr += offset64;
4749 }
4750 else
4751 *addr = (uint32_t) (offset64 + *addr);
4752
4753 if (havesib && (index != 4 || scale != 0))
4754 {
4755 regcache_raw_read_unsigned (irp->regcache, irp->regmap[index],
4756 &offset64);
4757 if (irp->aflag == 2)
4758 *addr += offset64 << scale;
4759 else
4760 *addr = (uint32_t) (*addr + (offset64 << scale));
4761 }
4762
4763 if (!irp->aflag)
4764 {
4765 /* Since we are in 64-bit mode with ADDR32 prefix, zero-extend
4766 address from 32-bit to 64-bit. */
4767 *addr = (uint32_t) *addr;
4768 }
4769 }
4770 else
4771 {
4772 /* 16 bits */
4773 switch (irp->mod)
4774 {
4775 case 0:
4776 if (irp->rm == 6)
4777 {
4778 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4779 return -1;
4780 irp->addr += 2;
4781 *addr = extract_signed_integer (buf, 2, byte_order);
4782 irp->rm = 0;
4783 goto no_rm;
4784 }
4785 break;
4786 case 1:
4787 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4788 return -1;
4789 irp->addr++;
4790 *addr = (int8_t) buf[0];
4791 break;
4792 case 2:
4793 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4794 return -1;
4795 irp->addr += 2;
4796 *addr = extract_signed_integer (buf, 2, byte_order);
4797 break;
4798 }
4799
4800 switch (irp->rm)
4801 {
4802 case 0:
4803 regcache_raw_read_unsigned (irp->regcache,
4804 irp->regmap[X86_RECORD_REBX_REGNUM],
4805 &offset64);
4806 *addr = (uint32_t) (*addr + offset64);
4807 regcache_raw_read_unsigned (irp->regcache,
4808 irp->regmap[X86_RECORD_RESI_REGNUM],
4809 &offset64);
4810 *addr = (uint32_t) (*addr + offset64);
4811 break;
4812 case 1:
4813 regcache_raw_read_unsigned (irp->regcache,
4814 irp->regmap[X86_RECORD_REBX_REGNUM],
4815 &offset64);
4816 *addr = (uint32_t) (*addr + offset64);
4817 regcache_raw_read_unsigned (irp->regcache,
4818 irp->regmap[X86_RECORD_REDI_REGNUM],
4819 &offset64);
4820 *addr = (uint32_t) (*addr + offset64);
4821 break;
4822 case 2:
4823 regcache_raw_read_unsigned (irp->regcache,
4824 irp->regmap[X86_RECORD_REBP_REGNUM],
4825 &offset64);
4826 *addr = (uint32_t) (*addr + offset64);
4827 regcache_raw_read_unsigned (irp->regcache,
4828 irp->regmap[X86_RECORD_RESI_REGNUM],
4829 &offset64);
4830 *addr = (uint32_t) (*addr + offset64);
4831 break;
4832 case 3:
4833 regcache_raw_read_unsigned (irp->regcache,
4834 irp->regmap[X86_RECORD_REBP_REGNUM],
4835 &offset64);
4836 *addr = (uint32_t) (*addr + offset64);
4837 regcache_raw_read_unsigned (irp->regcache,
4838 irp->regmap[X86_RECORD_REDI_REGNUM],
4839 &offset64);
4840 *addr = (uint32_t) (*addr + offset64);
4841 break;
4842 case 4:
4843 regcache_raw_read_unsigned (irp->regcache,
4844 irp->regmap[X86_RECORD_RESI_REGNUM],
4845 &offset64);
4846 *addr = (uint32_t) (*addr + offset64);
4847 break;
4848 case 5:
4849 regcache_raw_read_unsigned (irp->regcache,
4850 irp->regmap[X86_RECORD_REDI_REGNUM],
4851 &offset64);
4852 *addr = (uint32_t) (*addr + offset64);
4853 break;
4854 case 6:
4855 regcache_raw_read_unsigned (irp->regcache,
4856 irp->regmap[X86_RECORD_REBP_REGNUM],
4857 &offset64);
4858 *addr = (uint32_t) (*addr + offset64);
4859 break;
4860 case 7:
4861 regcache_raw_read_unsigned (irp->regcache,
4862 irp->regmap[X86_RECORD_REBX_REGNUM],
4863 &offset64);
4864 *addr = (uint32_t) (*addr + offset64);
4865 break;
4866 }
4867 *addr &= 0xffff;
4868 }
4869
4870 no_rm:
4871 return 0;
4872 }
4873
4874 /* Record the address and contents of the memory that will be changed
4875 by the current instruction. Return -1 if something goes wrong, 0
4876 otherwise. */
4877
4878 static int
4879 i386_record_lea_modrm (struct i386_record_s *irp)
4880 {
4881 struct gdbarch *gdbarch = irp->gdbarch;
4882 uint64_t addr;
4883
4884 if (irp->override >= 0)
4885 {
4886 if (record_full_memory_query)
4887 {
4888 if (yquery (_("\
4889 Process record ignores the memory change of instruction at address %s\n\
4890 because it can't get the value of the segment register.\n\
4891 Do you want to stop the program?"),
4892 paddress (gdbarch, irp->orig_addr)))
4893 return -1;
4894 }
4895
4896 return 0;
4897 }
4898
4899 if (i386_record_lea_modrm_addr (irp, &addr))
4900 return -1;
4901
4902 if (record_full_arch_list_add_mem (addr, 1 << irp->ot))
4903 return -1;
4904
4905 return 0;
4906 }
4907
4908 /* Record the effects of a push operation. Return -1 if something
4909 goes wrong, 0 otherwise. */
4910
4911 static int
4912 i386_record_push (struct i386_record_s *irp, int size)
4913 {
4914 ULONGEST addr;
4915
4916 if (record_full_arch_list_add_reg (irp->regcache,
4917 irp->regmap[X86_RECORD_RESP_REGNUM]))
4918 return -1;
4919 regcache_raw_read_unsigned (irp->regcache,
4920 irp->regmap[X86_RECORD_RESP_REGNUM],
4921 &addr);
4922 if (record_full_arch_list_add_mem ((CORE_ADDR) addr - size, size))
4923 return -1;
4924
4925 return 0;
4926 }
4927
4928
4929 /* Defines contents to record. */
4930 #define I386_SAVE_FPU_REGS 0xfffd
4931 #define I386_SAVE_FPU_ENV 0xfffe
4932 #define I386_SAVE_FPU_ENV_REG_STACK 0xffff
4933
4934 /* Record the values of the floating point registers which will be
4935 changed by the current instruction. Returns -1 if something is
4936 wrong, 0 otherwise. */
4937
4938 static int i386_record_floats (struct gdbarch *gdbarch,
4939 struct i386_record_s *ir,
4940 uint32_t iregnum)
4941 {
4942 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4943 int i;
4944
4945 /* Oza: Because of floating point insn push/pop of fpu stack is going to
4946 happen. Currently we store st0-st7 registers, but we need not store all
4947 registers all the time, in future we use ftag register and record only
4948 those who are not marked as an empty. */
4949
4950 if (I386_SAVE_FPU_REGS == iregnum)
4951 {
4952 for (i = I387_ST0_REGNUM (tdep); i <= I387_ST0_REGNUM (tdep) + 7; i++)
4953 {
4954 if (record_full_arch_list_add_reg (ir->regcache, i))
4955 return -1;
4956 }
4957 }
4958 else if (I386_SAVE_FPU_ENV == iregnum)
4959 {
4960 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4961 {
4962 if (record_full_arch_list_add_reg (ir->regcache, i))
4963 return -1;
4964 }
4965 }
4966 else if (I386_SAVE_FPU_ENV_REG_STACK == iregnum)
4967 {
4968 for (i = I387_ST0_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4969 {
4970 if (record_full_arch_list_add_reg (ir->regcache, i))
4971 return -1;
4972 }
4973 }
4974 else if ((iregnum >= I387_ST0_REGNUM (tdep)) &&
4975 (iregnum <= I387_FOP_REGNUM (tdep)))
4976 {
4977 if (record_full_arch_list_add_reg (ir->regcache,iregnum))
4978 return -1;
4979 }
4980 else
4981 {
4982 /* Parameter error. */
4983 return -1;
4984 }
4985 if(I386_SAVE_FPU_ENV != iregnum)
4986 {
4987 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4988 {
4989 if (record_full_arch_list_add_reg (ir->regcache, i))
4990 return -1;
4991 }
4992 }
4993 return 0;
4994 }
4995
4996 /* Parse the current instruction, and record the values of the
4997 registers and memory that will be changed by the current
4998 instruction. Returns -1 if something goes wrong, 0 otherwise. */
4999
5000 #define I386_RECORD_FULL_ARCH_LIST_ADD_REG(regnum) \
5001 record_full_arch_list_add_reg (ir.regcache, ir.regmap[(regnum)])
5002
5003 int
5004 i386_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
5005 CORE_ADDR input_addr)
5006 {
5007 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
5008 int prefixes = 0;
5009 int regnum = 0;
5010 uint32_t opcode;
5011 uint8_t opcode8;
5012 ULONGEST addr;
5013 gdb_byte buf[I386_MAX_REGISTER_SIZE];
5014 struct i386_record_s ir;
5015 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5016 uint8_t rex_w = -1;
5017 uint8_t rex_r = 0;
5018
5019 memset (&ir, 0, sizeof (struct i386_record_s));
5020 ir.regcache = regcache;
5021 ir.addr = input_addr;
5022 ir.orig_addr = input_addr;
5023 ir.aflag = 1;
5024 ir.dflag = 1;
5025 ir.override = -1;
5026 ir.popl_esp_hack = 0;
5027 ir.regmap = tdep->record_regmap;
5028 ir.gdbarch = gdbarch;
5029
5030 if (record_debug > 1)
5031 fprintf_unfiltered (gdb_stdlog, "Process record: i386_process_record "
5032 "addr = %s\n",
5033 paddress (gdbarch, ir.addr));
5034
5035 /* prefixes */
5036 while (1)
5037 {
5038 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
5039 return -1;
5040 ir.addr++;
5041 switch (opcode8) /* Instruction prefixes */
5042 {
5043 case REPE_PREFIX_OPCODE:
5044 prefixes |= PREFIX_REPZ;
5045 break;
5046 case REPNE_PREFIX_OPCODE:
5047 prefixes |= PREFIX_REPNZ;
5048 break;
5049 case LOCK_PREFIX_OPCODE:
5050 prefixes |= PREFIX_LOCK;
5051 break;
5052 case CS_PREFIX_OPCODE:
5053 ir.override = X86_RECORD_CS_REGNUM;
5054 break;
5055 case SS_PREFIX_OPCODE:
5056 ir.override = X86_RECORD_SS_REGNUM;
5057 break;
5058 case DS_PREFIX_OPCODE:
5059 ir.override = X86_RECORD_DS_REGNUM;
5060 break;
5061 case ES_PREFIX_OPCODE:
5062 ir.override = X86_RECORD_ES_REGNUM;
5063 break;
5064 case FS_PREFIX_OPCODE:
5065 ir.override = X86_RECORD_FS_REGNUM;
5066 break;
5067 case GS_PREFIX_OPCODE:
5068 ir.override = X86_RECORD_GS_REGNUM;
5069 break;
5070 case DATA_PREFIX_OPCODE:
5071 prefixes |= PREFIX_DATA;
5072 break;
5073 case ADDR_PREFIX_OPCODE:
5074 prefixes |= PREFIX_ADDR;
5075 break;
5076 case 0x40: /* i386 inc %eax */
5077 case 0x41: /* i386 inc %ecx */
5078 case 0x42: /* i386 inc %edx */
5079 case 0x43: /* i386 inc %ebx */
5080 case 0x44: /* i386 inc %esp */
5081 case 0x45: /* i386 inc %ebp */
5082 case 0x46: /* i386 inc %esi */
5083 case 0x47: /* i386 inc %edi */
5084 case 0x48: /* i386 dec %eax */
5085 case 0x49: /* i386 dec %ecx */
5086 case 0x4a: /* i386 dec %edx */
5087 case 0x4b: /* i386 dec %ebx */
5088 case 0x4c: /* i386 dec %esp */
5089 case 0x4d: /* i386 dec %ebp */
5090 case 0x4e: /* i386 dec %esi */
5091 case 0x4f: /* i386 dec %edi */
5092 if (ir.regmap[X86_RECORD_R8_REGNUM]) /* 64 bit target */
5093 {
5094 /* REX */
5095 rex_w = (opcode8 >> 3) & 1;
5096 rex_r = (opcode8 & 0x4) << 1;
5097 ir.rex_x = (opcode8 & 0x2) << 2;
5098 ir.rex_b = (opcode8 & 0x1) << 3;
5099 }
5100 else /* 32 bit target */
5101 goto out_prefixes;
5102 break;
5103 default:
5104 goto out_prefixes;
5105 break;
5106 }
5107 }
5108 out_prefixes:
5109 if (ir.regmap[X86_RECORD_R8_REGNUM] && rex_w == 1)
5110 {
5111 ir.dflag = 2;
5112 }
5113 else
5114 {
5115 if (prefixes & PREFIX_DATA)
5116 ir.dflag ^= 1;
5117 }
5118 if (prefixes & PREFIX_ADDR)
5119 ir.aflag ^= 1;
5120 else if (ir.regmap[X86_RECORD_R8_REGNUM])
5121 ir.aflag = 2;
5122
5123 /* Now check op code. */
5124 opcode = (uint32_t) opcode8;
5125 reswitch:
5126 switch (opcode)
5127 {
5128 case 0x0f:
5129 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
5130 return -1;
5131 ir.addr++;
5132 opcode = (uint32_t) opcode8 | 0x0f00;
5133 goto reswitch;
5134 break;
5135
5136 case 0x00: /* arith & logic */
5137 case 0x01:
5138 case 0x02:
5139 case 0x03:
5140 case 0x04:
5141 case 0x05:
5142 case 0x08:
5143 case 0x09:
5144 case 0x0a:
5145 case 0x0b:
5146 case 0x0c:
5147 case 0x0d:
5148 case 0x10:
5149 case 0x11:
5150 case 0x12:
5151 case 0x13:
5152 case 0x14:
5153 case 0x15:
5154 case 0x18:
5155 case 0x19:
5156 case 0x1a:
5157 case 0x1b:
5158 case 0x1c:
5159 case 0x1d:
5160 case 0x20:
5161 case 0x21:
5162 case 0x22:
5163 case 0x23:
5164 case 0x24:
5165 case 0x25:
5166 case 0x28:
5167 case 0x29:
5168 case 0x2a:
5169 case 0x2b:
5170 case 0x2c:
5171 case 0x2d:
5172 case 0x30:
5173 case 0x31:
5174 case 0x32:
5175 case 0x33:
5176 case 0x34:
5177 case 0x35:
5178 case 0x38:
5179 case 0x39:
5180 case 0x3a:
5181 case 0x3b:
5182 case 0x3c:
5183 case 0x3d:
5184 if (((opcode >> 3) & 7) != OP_CMPL)
5185 {
5186 if ((opcode & 1) == 0)
5187 ir.ot = OT_BYTE;
5188 else
5189 ir.ot = ir.dflag + OT_WORD;
5190
5191 switch ((opcode >> 1) & 3)
5192 {
5193 case 0: /* OP Ev, Gv */
5194 if (i386_record_modrm (&ir))
5195 return -1;
5196 if (ir.mod != 3)
5197 {
5198 if (i386_record_lea_modrm (&ir))
5199 return -1;
5200 }
5201 else
5202 {
5203 ir.rm |= ir.rex_b;
5204 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5205 ir.rm &= 0x3;
5206 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5207 }
5208 break;
5209 case 1: /* OP Gv, Ev */
5210 if (i386_record_modrm (&ir))
5211 return -1;
5212 ir.reg |= rex_r;
5213 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5214 ir.reg &= 0x3;
5215 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5216 break;
5217 case 2: /* OP A, Iv */
5218 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5219 break;
5220 }
5221 }
5222 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5223 break;
5224
5225 case 0x80: /* GRP1 */
5226 case 0x81:
5227 case 0x82:
5228 case 0x83:
5229 if (i386_record_modrm (&ir))
5230 return -1;
5231
5232 if (ir.reg != OP_CMPL)
5233 {
5234 if ((opcode & 1) == 0)
5235 ir.ot = OT_BYTE;
5236 else
5237 ir.ot = ir.dflag + OT_WORD;
5238
5239 if (ir.mod != 3)
5240 {
5241 if (opcode == 0x83)
5242 ir.rip_offset = 1;
5243 else
5244 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5245 if (i386_record_lea_modrm (&ir))
5246 return -1;
5247 }
5248 else
5249 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5250 }
5251 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5252 break;
5253
5254 case 0x40: /* inc */
5255 case 0x41:
5256 case 0x42:
5257 case 0x43:
5258 case 0x44:
5259 case 0x45:
5260 case 0x46:
5261 case 0x47:
5262
5263 case 0x48: /* dec */
5264 case 0x49:
5265 case 0x4a:
5266 case 0x4b:
5267 case 0x4c:
5268 case 0x4d:
5269 case 0x4e:
5270 case 0x4f:
5271
5272 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 7);
5273 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5274 break;
5275
5276 case 0xf6: /* GRP3 */
5277 case 0xf7:
5278 if ((opcode & 1) == 0)
5279 ir.ot = OT_BYTE;
5280 else
5281 ir.ot = ir.dflag + OT_WORD;
5282 if (i386_record_modrm (&ir))
5283 return -1;
5284
5285 if (ir.mod != 3 && ir.reg == 0)
5286 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5287
5288 switch (ir.reg)
5289 {
5290 case 0: /* test */
5291 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5292 break;
5293 case 2: /* not */
5294 case 3: /* neg */
5295 if (ir.mod != 3)
5296 {
5297 if (i386_record_lea_modrm (&ir))
5298 return -1;
5299 }
5300 else
5301 {
5302 ir.rm |= ir.rex_b;
5303 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5304 ir.rm &= 0x3;
5305 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5306 }
5307 if (ir.reg == 3) /* neg */
5308 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5309 break;
5310 case 4: /* mul */
5311 case 5: /* imul */
5312 case 6: /* div */
5313 case 7: /* idiv */
5314 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5315 if (ir.ot != OT_BYTE)
5316 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5317 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5318 break;
5319 default:
5320 ir.addr -= 2;
5321 opcode = opcode << 8 | ir.modrm;
5322 goto no_support;
5323 break;
5324 }
5325 break;
5326
5327 case 0xfe: /* GRP4 */
5328 case 0xff: /* GRP5 */
5329 if (i386_record_modrm (&ir))
5330 return -1;
5331 if (ir.reg >= 2 && opcode == 0xfe)
5332 {
5333 ir.addr -= 2;
5334 opcode = opcode << 8 | ir.modrm;
5335 goto no_support;
5336 }
5337 switch (ir.reg)
5338 {
5339 case 0: /* inc */
5340 case 1: /* dec */
5341 if ((opcode & 1) == 0)
5342 ir.ot = OT_BYTE;
5343 else
5344 ir.ot = ir.dflag + OT_WORD;
5345 if (ir.mod != 3)
5346 {
5347 if (i386_record_lea_modrm (&ir))
5348 return -1;
5349 }
5350 else
5351 {
5352 ir.rm |= ir.rex_b;
5353 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5354 ir.rm &= 0x3;
5355 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5356 }
5357 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5358 break;
5359 case 2: /* call */
5360 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5361 ir.dflag = 2;
5362 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5363 return -1;
5364 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5365 break;
5366 case 3: /* lcall */
5367 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
5368 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5369 return -1;
5370 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5371 break;
5372 case 4: /* jmp */
5373 case 5: /* ljmp */
5374 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5375 break;
5376 case 6: /* push */
5377 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5378 ir.dflag = 2;
5379 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5380 return -1;
5381 break;
5382 default:
5383 ir.addr -= 2;
5384 opcode = opcode << 8 | ir.modrm;
5385 goto no_support;
5386 break;
5387 }
5388 break;
5389
5390 case 0x84: /* test */
5391 case 0x85:
5392 case 0xa8:
5393 case 0xa9:
5394 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5395 break;
5396
5397 case 0x98: /* CWDE/CBW */
5398 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5399 break;
5400
5401 case 0x99: /* CDQ/CWD */
5402 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5403 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5404 break;
5405
5406 case 0x0faf: /* imul */
5407 case 0x69:
5408 case 0x6b:
5409 ir.ot = ir.dflag + OT_WORD;
5410 if (i386_record_modrm (&ir))
5411 return -1;
5412 if (opcode == 0x69)
5413 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5414 else if (opcode == 0x6b)
5415 ir.rip_offset = 1;
5416 ir.reg |= rex_r;
5417 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5418 ir.reg &= 0x3;
5419 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5420 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5421 break;
5422
5423 case 0x0fc0: /* xadd */
5424 case 0x0fc1:
5425 if ((opcode & 1) == 0)
5426 ir.ot = OT_BYTE;
5427 else
5428 ir.ot = ir.dflag + OT_WORD;
5429 if (i386_record_modrm (&ir))
5430 return -1;
5431 ir.reg |= rex_r;
5432 if (ir.mod == 3)
5433 {
5434 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5435 ir.reg &= 0x3;
5436 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5437 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5438 ir.rm &= 0x3;
5439 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5440 }
5441 else
5442 {
5443 if (i386_record_lea_modrm (&ir))
5444 return -1;
5445 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5446 ir.reg &= 0x3;
5447 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5448 }
5449 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5450 break;
5451
5452 case 0x0fb0: /* cmpxchg */
5453 case 0x0fb1:
5454 if ((opcode & 1) == 0)
5455 ir.ot = OT_BYTE;
5456 else
5457 ir.ot = ir.dflag + OT_WORD;
5458 if (i386_record_modrm (&ir))
5459 return -1;
5460 if (ir.mod == 3)
5461 {
5462 ir.reg |= rex_r;
5463 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5464 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5465 ir.reg &= 0x3;
5466 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5467 }
5468 else
5469 {
5470 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5471 if (i386_record_lea_modrm (&ir))
5472 return -1;
5473 }
5474 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5475 break;
5476
5477 case 0x0fc7: /* cmpxchg8b / rdrand / rdseed */
5478 if (i386_record_modrm (&ir))
5479 return -1;
5480 if (ir.mod == 3)
5481 {
5482 /* rdrand and rdseed use the 3 bits of the REG field of ModR/M as
5483 an extended opcode. rdrand has bits 110 (/6) and rdseed
5484 has bits 111 (/7). */
5485 if (ir.reg == 6 || ir.reg == 7)
5486 {
5487 /* The storage register is described by the 3 R/M bits, but the
5488 REX.B prefix may be used to give access to registers
5489 R8~R15. In this case ir.rex_b + R/M will give us the register
5490 in the range R8~R15.
5491
5492 REX.W may also be used to access 64-bit registers, but we
5493 already record entire registers and not just partial bits
5494 of them. */
5495 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rex_b + ir.rm);
5496 /* These instructions also set conditional bits. */
5497 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5498 break;
5499 }
5500 else
5501 {
5502 /* We don't handle this particular instruction yet. */
5503 ir.addr -= 2;
5504 opcode = opcode << 8 | ir.modrm;
5505 goto no_support;
5506 }
5507 }
5508 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5509 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5510 if (i386_record_lea_modrm (&ir))
5511 return -1;
5512 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5513 break;
5514
5515 case 0x50: /* push */
5516 case 0x51:
5517 case 0x52:
5518 case 0x53:
5519 case 0x54:
5520 case 0x55:
5521 case 0x56:
5522 case 0x57:
5523 case 0x68:
5524 case 0x6a:
5525 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5526 ir.dflag = 2;
5527 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5528 return -1;
5529 break;
5530
5531 case 0x06: /* push es */
5532 case 0x0e: /* push cs */
5533 case 0x16: /* push ss */
5534 case 0x1e: /* push ds */
5535 if (ir.regmap[X86_RECORD_R8_REGNUM])
5536 {
5537 ir.addr -= 1;
5538 goto no_support;
5539 }
5540 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5541 return -1;
5542 break;
5543
5544 case 0x0fa0: /* push fs */
5545 case 0x0fa8: /* push gs */
5546 if (ir.regmap[X86_RECORD_R8_REGNUM])
5547 {
5548 ir.addr -= 2;
5549 goto no_support;
5550 }
5551 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5552 return -1;
5553 break;
5554
5555 case 0x60: /* pusha */
5556 if (ir.regmap[X86_RECORD_R8_REGNUM])
5557 {
5558 ir.addr -= 1;
5559 goto no_support;
5560 }
5561 if (i386_record_push (&ir, 1 << (ir.dflag + 4)))
5562 return -1;
5563 break;
5564
5565 case 0x58: /* pop */
5566 case 0x59:
5567 case 0x5a:
5568 case 0x5b:
5569 case 0x5c:
5570 case 0x5d:
5571 case 0x5e:
5572 case 0x5f:
5573 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5574 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
5575 break;
5576
5577 case 0x61: /* popa */
5578 if (ir.regmap[X86_RECORD_R8_REGNUM])
5579 {
5580 ir.addr -= 1;
5581 goto no_support;
5582 }
5583 for (regnum = X86_RECORD_REAX_REGNUM;
5584 regnum <= X86_RECORD_REDI_REGNUM;
5585 regnum++)
5586 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5587 break;
5588
5589 case 0x8f: /* pop */
5590 if (ir.regmap[X86_RECORD_R8_REGNUM])
5591 ir.ot = ir.dflag ? OT_QUAD : OT_WORD;
5592 else
5593 ir.ot = ir.dflag + OT_WORD;
5594 if (i386_record_modrm (&ir))
5595 return -1;
5596 if (ir.mod == 3)
5597 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5598 else
5599 {
5600 ir.popl_esp_hack = 1 << ir.ot;
5601 if (i386_record_lea_modrm (&ir))
5602 return -1;
5603 }
5604 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5605 break;
5606
5607 case 0xc8: /* enter */
5608 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
5609 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5610 ir.dflag = 2;
5611 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5612 return -1;
5613 break;
5614
5615 case 0xc9: /* leave */
5616 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5617 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
5618 break;
5619
5620 case 0x07: /* pop es */
5621 if (ir.regmap[X86_RECORD_R8_REGNUM])
5622 {
5623 ir.addr -= 1;
5624 goto no_support;
5625 }
5626 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5627 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_ES_REGNUM);
5628 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5629 break;
5630
5631 case 0x17: /* pop ss */
5632 if (ir.regmap[X86_RECORD_R8_REGNUM])
5633 {
5634 ir.addr -= 1;
5635 goto no_support;
5636 }
5637 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5638 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_SS_REGNUM);
5639 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5640 break;
5641
5642 case 0x1f: /* pop ds */
5643 if (ir.regmap[X86_RECORD_R8_REGNUM])
5644 {
5645 ir.addr -= 1;
5646 goto no_support;
5647 }
5648 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5649 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_DS_REGNUM);
5650 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5651 break;
5652
5653 case 0x0fa1: /* pop fs */
5654 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5655 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_FS_REGNUM);
5656 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5657 break;
5658
5659 case 0x0fa9: /* pop gs */
5660 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5661 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
5662 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5663 break;
5664
5665 case 0x88: /* mov */
5666 case 0x89:
5667 case 0xc6:
5668 case 0xc7:
5669 if ((opcode & 1) == 0)
5670 ir.ot = OT_BYTE;
5671 else
5672 ir.ot = ir.dflag + OT_WORD;
5673
5674 if (i386_record_modrm (&ir))
5675 return -1;
5676
5677 if (ir.mod != 3)
5678 {
5679 if (opcode == 0xc6 || opcode == 0xc7)
5680 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5681 if (i386_record_lea_modrm (&ir))
5682 return -1;
5683 }
5684 else
5685 {
5686 if (opcode == 0xc6 || opcode == 0xc7)
5687 ir.rm |= ir.rex_b;
5688 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5689 ir.rm &= 0x3;
5690 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5691 }
5692 break;
5693
5694 case 0x8a: /* mov */
5695 case 0x8b:
5696 if ((opcode & 1) == 0)
5697 ir.ot = OT_BYTE;
5698 else
5699 ir.ot = ir.dflag + OT_WORD;
5700 if (i386_record_modrm (&ir))
5701 return -1;
5702 ir.reg |= rex_r;
5703 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5704 ir.reg &= 0x3;
5705 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5706 break;
5707
5708 case 0x8c: /* mov seg */
5709 if (i386_record_modrm (&ir))
5710 return -1;
5711 if (ir.reg > 5)
5712 {
5713 ir.addr -= 2;
5714 opcode = opcode << 8 | ir.modrm;
5715 goto no_support;
5716 }
5717
5718 if (ir.mod == 3)
5719 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5720 else
5721 {
5722 ir.ot = OT_WORD;
5723 if (i386_record_lea_modrm (&ir))
5724 return -1;
5725 }
5726 break;
5727
5728 case 0x8e: /* mov seg */
5729 if (i386_record_modrm (&ir))
5730 return -1;
5731 switch (ir.reg)
5732 {
5733 case 0:
5734 regnum = X86_RECORD_ES_REGNUM;
5735 break;
5736 case 2:
5737 regnum = X86_RECORD_SS_REGNUM;
5738 break;
5739 case 3:
5740 regnum = X86_RECORD_DS_REGNUM;
5741 break;
5742 case 4:
5743 regnum = X86_RECORD_FS_REGNUM;
5744 break;
5745 case 5:
5746 regnum = X86_RECORD_GS_REGNUM;
5747 break;
5748 default:
5749 ir.addr -= 2;
5750 opcode = opcode << 8 | ir.modrm;
5751 goto no_support;
5752 break;
5753 }
5754 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5755 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5756 break;
5757
5758 case 0x0fb6: /* movzbS */
5759 case 0x0fb7: /* movzwS */
5760 case 0x0fbe: /* movsbS */
5761 case 0x0fbf: /* movswS */
5762 if (i386_record_modrm (&ir))
5763 return -1;
5764 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5765 break;
5766
5767 case 0x8d: /* lea */
5768 if (i386_record_modrm (&ir))
5769 return -1;
5770 if (ir.mod == 3)
5771 {
5772 ir.addr -= 2;
5773 opcode = opcode << 8 | ir.modrm;
5774 goto no_support;
5775 }
5776 ir.ot = ir.dflag;
5777 ir.reg |= rex_r;
5778 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5779 ir.reg &= 0x3;
5780 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5781 break;
5782
5783 case 0xa0: /* mov EAX */
5784 case 0xa1:
5785
5786 case 0xd7: /* xlat */
5787 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5788 break;
5789
5790 case 0xa2: /* mov EAX */
5791 case 0xa3:
5792 if (ir.override >= 0)
5793 {
5794 if (record_full_memory_query)
5795 {
5796 if (yquery (_("\
5797 Process record ignores the memory change of instruction at address %s\n\
5798 because it can't get the value of the segment register.\n\
5799 Do you want to stop the program?"),
5800 paddress (gdbarch, ir.orig_addr)))
5801 return -1;
5802 }
5803 }
5804 else
5805 {
5806 if ((opcode & 1) == 0)
5807 ir.ot = OT_BYTE;
5808 else
5809 ir.ot = ir.dflag + OT_WORD;
5810 if (ir.aflag == 2)
5811 {
5812 if (record_read_memory (gdbarch, ir.addr, buf, 8))
5813 return -1;
5814 ir.addr += 8;
5815 addr = extract_unsigned_integer (buf, 8, byte_order);
5816 }
5817 else if (ir.aflag)
5818 {
5819 if (record_read_memory (gdbarch, ir.addr, buf, 4))
5820 return -1;
5821 ir.addr += 4;
5822 addr = extract_unsigned_integer (buf, 4, byte_order);
5823 }
5824 else
5825 {
5826 if (record_read_memory (gdbarch, ir.addr, buf, 2))
5827 return -1;
5828 ir.addr += 2;
5829 addr = extract_unsigned_integer (buf, 2, byte_order);
5830 }
5831 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
5832 return -1;
5833 }
5834 break;
5835
5836 case 0xb0: /* mov R, Ib */
5837 case 0xb1:
5838 case 0xb2:
5839 case 0xb3:
5840 case 0xb4:
5841 case 0xb5:
5842 case 0xb6:
5843 case 0xb7:
5844 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((ir.regmap[X86_RECORD_R8_REGNUM])
5845 ? ((opcode & 0x7) | ir.rex_b)
5846 : ((opcode & 0x7) & 0x3));
5847 break;
5848
5849 case 0xb8: /* mov R, Iv */
5850 case 0xb9:
5851 case 0xba:
5852 case 0xbb:
5853 case 0xbc:
5854 case 0xbd:
5855 case 0xbe:
5856 case 0xbf:
5857 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
5858 break;
5859
5860 case 0x91: /* xchg R, EAX */
5861 case 0x92:
5862 case 0x93:
5863 case 0x94:
5864 case 0x95:
5865 case 0x96:
5866 case 0x97:
5867 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5868 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 0x7);
5869 break;
5870
5871 case 0x86: /* xchg Ev, Gv */
5872 case 0x87:
5873 if ((opcode & 1) == 0)
5874 ir.ot = OT_BYTE;
5875 else
5876 ir.ot = ir.dflag + OT_WORD;
5877 if (i386_record_modrm (&ir))
5878 return -1;
5879 if (ir.mod == 3)
5880 {
5881 ir.rm |= ir.rex_b;
5882 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5883 ir.rm &= 0x3;
5884 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5885 }
5886 else
5887 {
5888 if (i386_record_lea_modrm (&ir))
5889 return -1;
5890 }
5891 ir.reg |= rex_r;
5892 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5893 ir.reg &= 0x3;
5894 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5895 break;
5896
5897 case 0xc4: /* les Gv */
5898 case 0xc5: /* lds Gv */
5899 if (ir.regmap[X86_RECORD_R8_REGNUM])
5900 {
5901 ir.addr -= 1;
5902 goto no_support;
5903 }
5904 /* FALLTHROUGH */
5905 case 0x0fb2: /* lss Gv */
5906 case 0x0fb4: /* lfs Gv */
5907 case 0x0fb5: /* lgs Gv */
5908 if (i386_record_modrm (&ir))
5909 return -1;
5910 if (ir.mod == 3)
5911 {
5912 if (opcode > 0xff)
5913 ir.addr -= 3;
5914 else
5915 ir.addr -= 2;
5916 opcode = opcode << 8 | ir.modrm;
5917 goto no_support;
5918 }
5919 switch (opcode)
5920 {
5921 case 0xc4: /* les Gv */
5922 regnum = X86_RECORD_ES_REGNUM;
5923 break;
5924 case 0xc5: /* lds Gv */
5925 regnum = X86_RECORD_DS_REGNUM;
5926 break;
5927 case 0x0fb2: /* lss Gv */
5928 regnum = X86_RECORD_SS_REGNUM;
5929 break;
5930 case 0x0fb4: /* lfs Gv */
5931 regnum = X86_RECORD_FS_REGNUM;
5932 break;
5933 case 0x0fb5: /* lgs Gv */
5934 regnum = X86_RECORD_GS_REGNUM;
5935 break;
5936 }
5937 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5938 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5939 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5940 break;
5941
5942 case 0xc0: /* shifts */
5943 case 0xc1:
5944 case 0xd0:
5945 case 0xd1:
5946 case 0xd2:
5947 case 0xd3:
5948 if ((opcode & 1) == 0)
5949 ir.ot = OT_BYTE;
5950 else
5951 ir.ot = ir.dflag + OT_WORD;
5952 if (i386_record_modrm (&ir))
5953 return -1;
5954 if (ir.mod != 3 && (opcode == 0xd2 || opcode == 0xd3))
5955 {
5956 if (i386_record_lea_modrm (&ir))
5957 return -1;
5958 }
5959 else
5960 {
5961 ir.rm |= ir.rex_b;
5962 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5963 ir.rm &= 0x3;
5964 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5965 }
5966 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5967 break;
5968
5969 case 0x0fa4:
5970 case 0x0fa5:
5971 case 0x0fac:
5972 case 0x0fad:
5973 if (i386_record_modrm (&ir))
5974 return -1;
5975 if (ir.mod == 3)
5976 {
5977 if (record_full_arch_list_add_reg (ir.regcache, ir.rm))
5978 return -1;
5979 }
5980 else
5981 {
5982 if (i386_record_lea_modrm (&ir))
5983 return -1;
5984 }
5985 break;
5986
5987 case 0xd8: /* Floats. */
5988 case 0xd9:
5989 case 0xda:
5990 case 0xdb:
5991 case 0xdc:
5992 case 0xdd:
5993 case 0xde:
5994 case 0xdf:
5995 if (i386_record_modrm (&ir))
5996 return -1;
5997 ir.reg |= ((opcode & 7) << 3);
5998 if (ir.mod != 3)
5999 {
6000 /* Memory. */
6001 uint64_t addr64;
6002
6003 if (i386_record_lea_modrm_addr (&ir, &addr64))
6004 return -1;
6005 switch (ir.reg)
6006 {
6007 case 0x02:
6008 case 0x12:
6009 case 0x22:
6010 case 0x32:
6011 /* For fcom, ficom nothing to do. */
6012 break;
6013 case 0x03:
6014 case 0x13:
6015 case 0x23:
6016 case 0x33:
6017 /* For fcomp, ficomp pop FPU stack, store all. */
6018 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6019 return -1;
6020 break;
6021 case 0x00:
6022 case 0x01:
6023 case 0x04:
6024 case 0x05:
6025 case 0x06:
6026 case 0x07:
6027 case 0x10:
6028 case 0x11:
6029 case 0x14:
6030 case 0x15:
6031 case 0x16:
6032 case 0x17:
6033 case 0x20:
6034 case 0x21:
6035 case 0x24:
6036 case 0x25:
6037 case 0x26:
6038 case 0x27:
6039 case 0x30:
6040 case 0x31:
6041 case 0x34:
6042 case 0x35:
6043 case 0x36:
6044 case 0x37:
6045 /* For fadd, fmul, fsub, fsubr, fdiv, fdivr, fiadd, fimul,
6046 fisub, fisubr, fidiv, fidivr, modR/M.reg is an extension
6047 of code, always affects st(0) register. */
6048 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
6049 return -1;
6050 break;
6051 case 0x08:
6052 case 0x0a:
6053 case 0x0b:
6054 case 0x18:
6055 case 0x19:
6056 case 0x1a:
6057 case 0x1b:
6058 case 0x1d:
6059 case 0x28:
6060 case 0x29:
6061 case 0x2a:
6062 case 0x2b:
6063 case 0x38:
6064 case 0x39:
6065 case 0x3a:
6066 case 0x3b:
6067 case 0x3c:
6068 case 0x3d:
6069 switch (ir.reg & 7)
6070 {
6071 case 0:
6072 /* Handling fld, fild. */
6073 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6074 return -1;
6075 break;
6076 case 1:
6077 switch (ir.reg >> 4)
6078 {
6079 case 0:
6080 if (record_full_arch_list_add_mem (addr64, 4))
6081 return -1;
6082 break;
6083 case 2:
6084 if (record_full_arch_list_add_mem (addr64, 8))
6085 return -1;
6086 break;
6087 case 3:
6088 break;
6089 default:
6090 if (record_full_arch_list_add_mem (addr64, 2))
6091 return -1;
6092 break;
6093 }
6094 break;
6095 default:
6096 switch (ir.reg >> 4)
6097 {
6098 case 0:
6099 if (record_full_arch_list_add_mem (addr64, 4))
6100 return -1;
6101 if (3 == (ir.reg & 7))
6102 {
6103 /* For fstp m32fp. */
6104 if (i386_record_floats (gdbarch, &ir,
6105 I386_SAVE_FPU_REGS))
6106 return -1;
6107 }
6108 break;
6109 case 1:
6110 if (record_full_arch_list_add_mem (addr64, 4))
6111 return -1;
6112 if ((3 == (ir.reg & 7))
6113 || (5 == (ir.reg & 7))
6114 || (7 == (ir.reg & 7)))
6115 {
6116 /* For fstp insn. */
6117 if (i386_record_floats (gdbarch, &ir,
6118 I386_SAVE_FPU_REGS))
6119 return -1;
6120 }
6121 break;
6122 case 2:
6123 if (record_full_arch_list_add_mem (addr64, 8))
6124 return -1;
6125 if (3 == (ir.reg & 7))
6126 {
6127 /* For fstp m64fp. */
6128 if (i386_record_floats (gdbarch, &ir,
6129 I386_SAVE_FPU_REGS))
6130 return -1;
6131 }
6132 break;
6133 case 3:
6134 if ((3 <= (ir.reg & 7)) && (6 <= (ir.reg & 7)))
6135 {
6136 /* For fistp, fbld, fild, fbstp. */
6137 if (i386_record_floats (gdbarch, &ir,
6138 I386_SAVE_FPU_REGS))
6139 return -1;
6140 }
6141 /* Fall through */
6142 default:
6143 if (record_full_arch_list_add_mem (addr64, 2))
6144 return -1;
6145 break;
6146 }
6147 break;
6148 }
6149 break;
6150 case 0x0c:
6151 /* Insn fldenv. */
6152 if (i386_record_floats (gdbarch, &ir,
6153 I386_SAVE_FPU_ENV_REG_STACK))
6154 return -1;
6155 break;
6156 case 0x0d:
6157 /* Insn fldcw. */
6158 if (i386_record_floats (gdbarch, &ir, I387_FCTRL_REGNUM (tdep)))
6159 return -1;
6160 break;
6161 case 0x2c:
6162 /* Insn frstor. */
6163 if (i386_record_floats (gdbarch, &ir,
6164 I386_SAVE_FPU_ENV_REG_STACK))
6165 return -1;
6166 break;
6167 case 0x0e:
6168 if (ir.dflag)
6169 {
6170 if (record_full_arch_list_add_mem (addr64, 28))
6171 return -1;
6172 }
6173 else
6174 {
6175 if (record_full_arch_list_add_mem (addr64, 14))
6176 return -1;
6177 }
6178 break;
6179 case 0x0f:
6180 case 0x2f:
6181 if (record_full_arch_list_add_mem (addr64, 2))
6182 return -1;
6183 /* Insn fstp, fbstp. */
6184 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6185 return -1;
6186 break;
6187 case 0x1f:
6188 case 0x3e:
6189 if (record_full_arch_list_add_mem (addr64, 10))
6190 return -1;
6191 break;
6192 case 0x2e:
6193 if (ir.dflag)
6194 {
6195 if (record_full_arch_list_add_mem (addr64, 28))
6196 return -1;
6197 addr64 += 28;
6198 }
6199 else
6200 {
6201 if (record_full_arch_list_add_mem (addr64, 14))
6202 return -1;
6203 addr64 += 14;
6204 }
6205 if (record_full_arch_list_add_mem (addr64, 80))
6206 return -1;
6207 /* Insn fsave. */
6208 if (i386_record_floats (gdbarch, &ir,
6209 I386_SAVE_FPU_ENV_REG_STACK))
6210 return -1;
6211 break;
6212 case 0x3f:
6213 if (record_full_arch_list_add_mem (addr64, 8))
6214 return -1;
6215 /* Insn fistp. */
6216 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6217 return -1;
6218 break;
6219 default:
6220 ir.addr -= 2;
6221 opcode = opcode << 8 | ir.modrm;
6222 goto no_support;
6223 break;
6224 }
6225 }
6226 /* Opcode is an extension of modR/M byte. */
6227 else
6228 {
6229 switch (opcode)
6230 {
6231 case 0xd8:
6232 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
6233 return -1;
6234 break;
6235 case 0xd9:
6236 if (0x0c == (ir.modrm >> 4))
6237 {
6238 if ((ir.modrm & 0x0f) <= 7)
6239 {
6240 if (i386_record_floats (gdbarch, &ir,
6241 I386_SAVE_FPU_REGS))
6242 return -1;
6243 }
6244 else
6245 {
6246 if (i386_record_floats (gdbarch, &ir,
6247 I387_ST0_REGNUM (tdep)))
6248 return -1;
6249 /* If only st(0) is changing, then we have already
6250 recorded. */
6251 if ((ir.modrm & 0x0f) - 0x08)
6252 {
6253 if (i386_record_floats (gdbarch, &ir,
6254 I387_ST0_REGNUM (tdep) +
6255 ((ir.modrm & 0x0f) - 0x08)))
6256 return -1;
6257 }
6258 }
6259 }
6260 else
6261 {
6262 switch (ir.modrm)
6263 {
6264 case 0xe0:
6265 case 0xe1:
6266 case 0xf0:
6267 case 0xf5:
6268 case 0xf8:
6269 case 0xfa:
6270 case 0xfc:
6271 case 0xfe:
6272 case 0xff:
6273 if (i386_record_floats (gdbarch, &ir,
6274 I387_ST0_REGNUM (tdep)))
6275 return -1;
6276 break;
6277 case 0xf1:
6278 case 0xf2:
6279 case 0xf3:
6280 case 0xf4:
6281 case 0xf6:
6282 case 0xf7:
6283 case 0xe8:
6284 case 0xe9:
6285 case 0xea:
6286 case 0xeb:
6287 case 0xec:
6288 case 0xed:
6289 case 0xee:
6290 case 0xf9:
6291 case 0xfb:
6292 if (i386_record_floats (gdbarch, &ir,
6293 I386_SAVE_FPU_REGS))
6294 return -1;
6295 break;
6296 case 0xfd:
6297 if (i386_record_floats (gdbarch, &ir,
6298 I387_ST0_REGNUM (tdep)))
6299 return -1;
6300 if (i386_record_floats (gdbarch, &ir,
6301 I387_ST0_REGNUM (tdep) + 1))
6302 return -1;
6303 break;
6304 }
6305 }
6306 break;
6307 case 0xda:
6308 if (0xe9 == ir.modrm)
6309 {
6310 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6311 return -1;
6312 }
6313 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
6314 {
6315 if (i386_record_floats (gdbarch, &ir,
6316 I387_ST0_REGNUM (tdep)))
6317 return -1;
6318 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
6319 {
6320 if (i386_record_floats (gdbarch, &ir,
6321 I387_ST0_REGNUM (tdep) +
6322 (ir.modrm & 0x0f)))
6323 return -1;
6324 }
6325 else if ((ir.modrm & 0x0f) - 0x08)
6326 {
6327 if (i386_record_floats (gdbarch, &ir,
6328 I387_ST0_REGNUM (tdep) +
6329 ((ir.modrm & 0x0f) - 0x08)))
6330 return -1;
6331 }
6332 }
6333 break;
6334 case 0xdb:
6335 if (0xe3 == ir.modrm)
6336 {
6337 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_ENV))
6338 return -1;
6339 }
6340 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
6341 {
6342 if (i386_record_floats (gdbarch, &ir,
6343 I387_ST0_REGNUM (tdep)))
6344 return -1;
6345 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
6346 {
6347 if (i386_record_floats (gdbarch, &ir,
6348 I387_ST0_REGNUM (tdep) +
6349 (ir.modrm & 0x0f)))
6350 return -1;
6351 }
6352 else if ((ir.modrm & 0x0f) - 0x08)
6353 {
6354 if (i386_record_floats (gdbarch, &ir,
6355 I387_ST0_REGNUM (tdep) +
6356 ((ir.modrm & 0x0f) - 0x08)))
6357 return -1;
6358 }
6359 }
6360 break;
6361 case 0xdc:
6362 if ((0x0c == ir.modrm >> 4)
6363 || (0x0d == ir.modrm >> 4)
6364 || (0x0f == ir.modrm >> 4))
6365 {
6366 if ((ir.modrm & 0x0f) <= 7)
6367 {
6368 if (i386_record_floats (gdbarch, &ir,
6369 I387_ST0_REGNUM (tdep) +
6370 (ir.modrm & 0x0f)))
6371 return -1;
6372 }
6373 else
6374 {
6375 if (i386_record_floats (gdbarch, &ir,
6376 I387_ST0_REGNUM (tdep) +
6377 ((ir.modrm & 0x0f) - 0x08)))
6378 return -1;
6379 }
6380 }
6381 break;
6382 case 0xdd:
6383 if (0x0c == ir.modrm >> 4)
6384 {
6385 if (i386_record_floats (gdbarch, &ir,
6386 I387_FTAG_REGNUM (tdep)))
6387 return -1;
6388 }
6389 else if ((0x0d == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
6390 {
6391 if ((ir.modrm & 0x0f) <= 7)
6392 {
6393 if (i386_record_floats (gdbarch, &ir,
6394 I387_ST0_REGNUM (tdep) +
6395 (ir.modrm & 0x0f)))
6396 return -1;
6397 }
6398 else
6399 {
6400 if (i386_record_floats (gdbarch, &ir,
6401 I386_SAVE_FPU_REGS))
6402 return -1;
6403 }
6404 }
6405 break;
6406 case 0xde:
6407 if ((0x0c == ir.modrm >> 4)
6408 || (0x0e == ir.modrm >> 4)
6409 || (0x0f == ir.modrm >> 4)
6410 || (0xd9 == ir.modrm))
6411 {
6412 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6413 return -1;
6414 }
6415 break;
6416 case 0xdf:
6417 if (0xe0 == ir.modrm)
6418 {
6419 if (record_full_arch_list_add_reg (ir.regcache,
6420 I386_EAX_REGNUM))
6421 return -1;
6422 }
6423 else if ((0x0f == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
6424 {
6425 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6426 return -1;
6427 }
6428 break;
6429 }
6430 }
6431 break;
6432 /* string ops */
6433 case 0xa4: /* movsS */
6434 case 0xa5:
6435 case 0xaa: /* stosS */
6436 case 0xab:
6437 case 0x6c: /* insS */
6438 case 0x6d:
6439 regcache_raw_read_unsigned (ir.regcache,
6440 ir.regmap[X86_RECORD_RECX_REGNUM],
6441 &addr);
6442 if (addr)
6443 {
6444 ULONGEST es, ds;
6445
6446 if ((opcode & 1) == 0)
6447 ir.ot = OT_BYTE;
6448 else
6449 ir.ot = ir.dflag + OT_WORD;
6450 regcache_raw_read_unsigned (ir.regcache,
6451 ir.regmap[X86_RECORD_REDI_REGNUM],
6452 &addr);
6453
6454 regcache_raw_read_unsigned (ir.regcache,
6455 ir.regmap[X86_RECORD_ES_REGNUM],
6456 &es);
6457 regcache_raw_read_unsigned (ir.regcache,
6458 ir.regmap[X86_RECORD_DS_REGNUM],
6459 &ds);
6460 if (ir.aflag && (es != ds))
6461 {
6462 /* addr += ((uint32_t) read_register (I386_ES_REGNUM)) << 4; */
6463 if (record_full_memory_query)
6464 {
6465 if (yquery (_("\
6466 Process record ignores the memory change of instruction at address %s\n\
6467 because it can't get the value of the segment register.\n\
6468 Do you want to stop the program?"),
6469 paddress (gdbarch, ir.orig_addr)))
6470 return -1;
6471 }
6472 }
6473 else
6474 {
6475 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
6476 return -1;
6477 }
6478
6479 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6480 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6481 if (opcode == 0xa4 || opcode == 0xa5)
6482 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6483 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6484 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6485 }
6486 break;
6487
6488 case 0xa6: /* cmpsS */
6489 case 0xa7:
6490 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6491 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6492 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6493 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6494 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6495 break;
6496
6497 case 0xac: /* lodsS */
6498 case 0xad:
6499 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6500 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6501 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6502 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6503 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6504 break;
6505
6506 case 0xae: /* scasS */
6507 case 0xaf:
6508 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6509 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6510 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6511 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6512 break;
6513
6514 case 0x6e: /* outsS */
6515 case 0x6f:
6516 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6517 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6518 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6519 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6520 break;
6521
6522 case 0xe4: /* port I/O */
6523 case 0xe5:
6524 case 0xec:
6525 case 0xed:
6526 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6527 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6528 break;
6529
6530 case 0xe6:
6531 case 0xe7:
6532 case 0xee:
6533 case 0xef:
6534 break;
6535
6536 /* control */
6537 case 0xc2: /* ret im */
6538 case 0xc3: /* ret */
6539 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6540 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6541 break;
6542
6543 case 0xca: /* lret im */
6544 case 0xcb: /* lret */
6545 case 0xcf: /* iret */
6546 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
6547 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6548 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6549 break;
6550
6551 case 0xe8: /* call im */
6552 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6553 ir.dflag = 2;
6554 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6555 return -1;
6556 break;
6557
6558 case 0x9a: /* lcall im */
6559 if (ir.regmap[X86_RECORD_R8_REGNUM])
6560 {
6561 ir.addr -= 1;
6562 goto no_support;
6563 }
6564 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
6565 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6566 return -1;
6567 break;
6568
6569 case 0xe9: /* jmp im */
6570 case 0xea: /* ljmp im */
6571 case 0xeb: /* jmp Jb */
6572 case 0x70: /* jcc Jb */
6573 case 0x71:
6574 case 0x72:
6575 case 0x73:
6576 case 0x74:
6577 case 0x75:
6578 case 0x76:
6579 case 0x77:
6580 case 0x78:
6581 case 0x79:
6582 case 0x7a:
6583 case 0x7b:
6584 case 0x7c:
6585 case 0x7d:
6586 case 0x7e:
6587 case 0x7f:
6588 case 0x0f80: /* jcc Jv */
6589 case 0x0f81:
6590 case 0x0f82:
6591 case 0x0f83:
6592 case 0x0f84:
6593 case 0x0f85:
6594 case 0x0f86:
6595 case 0x0f87:
6596 case 0x0f88:
6597 case 0x0f89:
6598 case 0x0f8a:
6599 case 0x0f8b:
6600 case 0x0f8c:
6601 case 0x0f8d:
6602 case 0x0f8e:
6603 case 0x0f8f:
6604 break;
6605
6606 case 0x0f90: /* setcc Gv */
6607 case 0x0f91:
6608 case 0x0f92:
6609 case 0x0f93:
6610 case 0x0f94:
6611 case 0x0f95:
6612 case 0x0f96:
6613 case 0x0f97:
6614 case 0x0f98:
6615 case 0x0f99:
6616 case 0x0f9a:
6617 case 0x0f9b:
6618 case 0x0f9c:
6619 case 0x0f9d:
6620 case 0x0f9e:
6621 case 0x0f9f:
6622 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6623 ir.ot = OT_BYTE;
6624 if (i386_record_modrm (&ir))
6625 return -1;
6626 if (ir.mod == 3)
6627 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rex_b ? (ir.rm | ir.rex_b)
6628 : (ir.rm & 0x3));
6629 else
6630 {
6631 if (i386_record_lea_modrm (&ir))
6632 return -1;
6633 }
6634 break;
6635
6636 case 0x0f40: /* cmov Gv, Ev */
6637 case 0x0f41:
6638 case 0x0f42:
6639 case 0x0f43:
6640 case 0x0f44:
6641 case 0x0f45:
6642 case 0x0f46:
6643 case 0x0f47:
6644 case 0x0f48:
6645 case 0x0f49:
6646 case 0x0f4a:
6647 case 0x0f4b:
6648 case 0x0f4c:
6649 case 0x0f4d:
6650 case 0x0f4e:
6651 case 0x0f4f:
6652 if (i386_record_modrm (&ir))
6653 return -1;
6654 ir.reg |= rex_r;
6655 if (ir.dflag == OT_BYTE)
6656 ir.reg &= 0x3;
6657 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
6658 break;
6659
6660 /* flags */
6661 case 0x9c: /* pushf */
6662 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6663 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6664 ir.dflag = 2;
6665 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6666 return -1;
6667 break;
6668
6669 case 0x9d: /* popf */
6670 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6671 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6672 break;
6673
6674 case 0x9e: /* sahf */
6675 if (ir.regmap[X86_RECORD_R8_REGNUM])
6676 {
6677 ir.addr -= 1;
6678 goto no_support;
6679 }
6680 /* FALLTHROUGH */
6681 case 0xf5: /* cmc */
6682 case 0xf8: /* clc */
6683 case 0xf9: /* stc */
6684 case 0xfc: /* cld */
6685 case 0xfd: /* std */
6686 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6687 break;
6688
6689 case 0x9f: /* lahf */
6690 if (ir.regmap[X86_RECORD_R8_REGNUM])
6691 {
6692 ir.addr -= 1;
6693 goto no_support;
6694 }
6695 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6696 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6697 break;
6698
6699 /* bit operations */
6700 case 0x0fba: /* bt/bts/btr/btc Gv, im */
6701 ir.ot = ir.dflag + OT_WORD;
6702 if (i386_record_modrm (&ir))
6703 return -1;
6704 if (ir.reg < 4)
6705 {
6706 ir.addr -= 2;
6707 opcode = opcode << 8 | ir.modrm;
6708 goto no_support;
6709 }
6710 if (ir.reg != 4)
6711 {
6712 if (ir.mod == 3)
6713 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6714 else
6715 {
6716 if (i386_record_lea_modrm (&ir))
6717 return -1;
6718 }
6719 }
6720 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6721 break;
6722
6723 case 0x0fa3: /* bt Gv, Ev */
6724 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6725 break;
6726
6727 case 0x0fab: /* bts */
6728 case 0x0fb3: /* btr */
6729 case 0x0fbb: /* btc */
6730 ir.ot = ir.dflag + OT_WORD;
6731 if (i386_record_modrm (&ir))
6732 return -1;
6733 if (ir.mod == 3)
6734 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6735 else
6736 {
6737 uint64_t addr64;
6738 if (i386_record_lea_modrm_addr (&ir, &addr64))
6739 return -1;
6740 regcache_raw_read_unsigned (ir.regcache,
6741 ir.regmap[ir.reg | rex_r],
6742 &addr);
6743 switch (ir.dflag)
6744 {
6745 case 0:
6746 addr64 += ((int16_t) addr >> 4) << 4;
6747 break;
6748 case 1:
6749 addr64 += ((int32_t) addr >> 5) << 5;
6750 break;
6751 case 2:
6752 addr64 += ((int64_t) addr >> 6) << 6;
6753 break;
6754 }
6755 if (record_full_arch_list_add_mem (addr64, 1 << ir.ot))
6756 return -1;
6757 if (i386_record_lea_modrm (&ir))
6758 return -1;
6759 }
6760 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6761 break;
6762
6763 case 0x0fbc: /* bsf */
6764 case 0x0fbd: /* bsr */
6765 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6766 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6767 break;
6768
6769 /* bcd */
6770 case 0x27: /* daa */
6771 case 0x2f: /* das */
6772 case 0x37: /* aaa */
6773 case 0x3f: /* aas */
6774 case 0xd4: /* aam */
6775 case 0xd5: /* aad */
6776 if (ir.regmap[X86_RECORD_R8_REGNUM])
6777 {
6778 ir.addr -= 1;
6779 goto no_support;
6780 }
6781 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6782 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6783 break;
6784
6785 /* misc */
6786 case 0x90: /* nop */
6787 if (prefixes & PREFIX_LOCK)
6788 {
6789 ir.addr -= 1;
6790 goto no_support;
6791 }
6792 break;
6793
6794 case 0x9b: /* fwait */
6795 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
6796 return -1;
6797 opcode = (uint32_t) opcode8;
6798 ir.addr++;
6799 goto reswitch;
6800 break;
6801
6802 /* XXX */
6803 case 0xcc: /* int3 */
6804 printf_unfiltered (_("Process record does not support instruction "
6805 "int3.\n"));
6806 ir.addr -= 1;
6807 goto no_support;
6808 break;
6809
6810 /* XXX */
6811 case 0xcd: /* int */
6812 {
6813 int ret;
6814 uint8_t interrupt;
6815 if (record_read_memory (gdbarch, ir.addr, &interrupt, 1))
6816 return -1;
6817 ir.addr++;
6818 if (interrupt != 0x80
6819 || tdep->i386_intx80_record == NULL)
6820 {
6821 printf_unfiltered (_("Process record does not support "
6822 "instruction int 0x%02x.\n"),
6823 interrupt);
6824 ir.addr -= 2;
6825 goto no_support;
6826 }
6827 ret = tdep->i386_intx80_record (ir.regcache);
6828 if (ret)
6829 return ret;
6830 }
6831 break;
6832
6833 /* XXX */
6834 case 0xce: /* into */
6835 printf_unfiltered (_("Process record does not support "
6836 "instruction into.\n"));
6837 ir.addr -= 1;
6838 goto no_support;
6839 break;
6840
6841 case 0xfa: /* cli */
6842 case 0xfb: /* sti */
6843 break;
6844
6845 case 0x62: /* bound */
6846 printf_unfiltered (_("Process record does not support "
6847 "instruction bound.\n"));
6848 ir.addr -= 1;
6849 goto no_support;
6850 break;
6851
6852 case 0x0fc8: /* bswap reg */
6853 case 0x0fc9:
6854 case 0x0fca:
6855 case 0x0fcb:
6856 case 0x0fcc:
6857 case 0x0fcd:
6858 case 0x0fce:
6859 case 0x0fcf:
6860 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 7) | ir.rex_b);
6861 break;
6862
6863 case 0xd6: /* salc */
6864 if (ir.regmap[X86_RECORD_R8_REGNUM])
6865 {
6866 ir.addr -= 1;
6867 goto no_support;
6868 }
6869 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6870 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6871 break;
6872
6873 case 0xe0: /* loopnz */
6874 case 0xe1: /* loopz */
6875 case 0xe2: /* loop */
6876 case 0xe3: /* jecxz */
6877 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6878 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6879 break;
6880
6881 case 0x0f30: /* wrmsr */
6882 printf_unfiltered (_("Process record does not support "
6883 "instruction wrmsr.\n"));
6884 ir.addr -= 2;
6885 goto no_support;
6886 break;
6887
6888 case 0x0f32: /* rdmsr */
6889 printf_unfiltered (_("Process record does not support "
6890 "instruction rdmsr.\n"));
6891 ir.addr -= 2;
6892 goto no_support;
6893 break;
6894
6895 case 0x0f31: /* rdtsc */
6896 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6897 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6898 break;
6899
6900 case 0x0f34: /* sysenter */
6901 {
6902 int ret;
6903 if (ir.regmap[X86_RECORD_R8_REGNUM])
6904 {
6905 ir.addr -= 2;
6906 goto no_support;
6907 }
6908 if (tdep->i386_sysenter_record == NULL)
6909 {
6910 printf_unfiltered (_("Process record does not support "
6911 "instruction sysenter.\n"));
6912 ir.addr -= 2;
6913 goto no_support;
6914 }
6915 ret = tdep->i386_sysenter_record (ir.regcache);
6916 if (ret)
6917 return ret;
6918 }
6919 break;
6920
6921 case 0x0f35: /* sysexit */
6922 printf_unfiltered (_("Process record does not support "
6923 "instruction sysexit.\n"));
6924 ir.addr -= 2;
6925 goto no_support;
6926 break;
6927
6928 case 0x0f05: /* syscall */
6929 {
6930 int ret;
6931 if (tdep->i386_syscall_record == NULL)
6932 {
6933 printf_unfiltered (_("Process record does not support "
6934 "instruction syscall.\n"));
6935 ir.addr -= 2;
6936 goto no_support;
6937 }
6938 ret = tdep->i386_syscall_record (ir.regcache);
6939 if (ret)
6940 return ret;
6941 }
6942 break;
6943
6944 case 0x0f07: /* sysret */
6945 printf_unfiltered (_("Process record does not support "
6946 "instruction sysret.\n"));
6947 ir.addr -= 2;
6948 goto no_support;
6949 break;
6950
6951 case 0x0fa2: /* cpuid */
6952 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6953 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6954 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6955 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
6956 break;
6957
6958 case 0xf4: /* hlt */
6959 printf_unfiltered (_("Process record does not support "
6960 "instruction hlt.\n"));
6961 ir.addr -= 1;
6962 goto no_support;
6963 break;
6964
6965 case 0x0f00:
6966 if (i386_record_modrm (&ir))
6967 return -1;
6968 switch (ir.reg)
6969 {
6970 case 0: /* sldt */
6971 case 1: /* str */
6972 if (ir.mod == 3)
6973 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6974 else
6975 {
6976 ir.ot = OT_WORD;
6977 if (i386_record_lea_modrm (&ir))
6978 return -1;
6979 }
6980 break;
6981 case 2: /* lldt */
6982 case 3: /* ltr */
6983 break;
6984 case 4: /* verr */
6985 case 5: /* verw */
6986 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6987 break;
6988 default:
6989 ir.addr -= 3;
6990 opcode = opcode << 8 | ir.modrm;
6991 goto no_support;
6992 break;
6993 }
6994 break;
6995
6996 case 0x0f01:
6997 if (i386_record_modrm (&ir))
6998 return -1;
6999 switch (ir.reg)
7000 {
7001 case 0: /* sgdt */
7002 {
7003 uint64_t addr64;
7004
7005 if (ir.mod == 3)
7006 {
7007 ir.addr -= 3;
7008 opcode = opcode << 8 | ir.modrm;
7009 goto no_support;
7010 }
7011 if (ir.override >= 0)
7012 {
7013 if (record_full_memory_query)
7014 {
7015 if (yquery (_("\
7016 Process record ignores the memory change of instruction at address %s\n\
7017 because it can't get the value of the segment register.\n\
7018 Do you want to stop the program?"),
7019 paddress (gdbarch, ir.orig_addr)))
7020 return -1;
7021 }
7022 }
7023 else
7024 {
7025 if (i386_record_lea_modrm_addr (&ir, &addr64))
7026 return -1;
7027 if (record_full_arch_list_add_mem (addr64, 2))
7028 return -1;
7029 addr64 += 2;
7030 if (ir.regmap[X86_RECORD_R8_REGNUM])
7031 {
7032 if (record_full_arch_list_add_mem (addr64, 8))
7033 return -1;
7034 }
7035 else
7036 {
7037 if (record_full_arch_list_add_mem (addr64, 4))
7038 return -1;
7039 }
7040 }
7041 }
7042 break;
7043 case 1:
7044 if (ir.mod == 3)
7045 {
7046 switch (ir.rm)
7047 {
7048 case 0: /* monitor */
7049 break;
7050 case 1: /* mwait */
7051 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7052 break;
7053 default:
7054 ir.addr -= 3;
7055 opcode = opcode << 8 | ir.modrm;
7056 goto no_support;
7057 break;
7058 }
7059 }
7060 else
7061 {
7062 /* sidt */
7063 if (ir.override >= 0)
7064 {
7065 if (record_full_memory_query)
7066 {
7067 if (yquery (_("\
7068 Process record ignores the memory change of instruction at address %s\n\
7069 because it can't get the value of the segment register.\n\
7070 Do you want to stop the program?"),
7071 paddress (gdbarch, ir.orig_addr)))
7072 return -1;
7073 }
7074 }
7075 else
7076 {
7077 uint64_t addr64;
7078
7079 if (i386_record_lea_modrm_addr (&ir, &addr64))
7080 return -1;
7081 if (record_full_arch_list_add_mem (addr64, 2))
7082 return -1;
7083 addr64 += 2;
7084 if (ir.regmap[X86_RECORD_R8_REGNUM])
7085 {
7086 if (record_full_arch_list_add_mem (addr64, 8))
7087 return -1;
7088 }
7089 else
7090 {
7091 if (record_full_arch_list_add_mem (addr64, 4))
7092 return -1;
7093 }
7094 }
7095 }
7096 break;
7097 case 2: /* lgdt */
7098 if (ir.mod == 3)
7099 {
7100 /* xgetbv */
7101 if (ir.rm == 0)
7102 {
7103 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7104 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7105 break;
7106 }
7107 /* xsetbv */
7108 else if (ir.rm == 1)
7109 break;
7110 }
7111 /* Fall through. */
7112 case 3: /* lidt */
7113 if (ir.mod == 3)
7114 {
7115 ir.addr -= 3;
7116 opcode = opcode << 8 | ir.modrm;
7117 goto no_support;
7118 }
7119 break;
7120 case 4: /* smsw */
7121 if (ir.mod == 3)
7122 {
7123 if (record_full_arch_list_add_reg (ir.regcache, ir.rm | ir.rex_b))
7124 return -1;
7125 }
7126 else
7127 {
7128 ir.ot = OT_WORD;
7129 if (i386_record_lea_modrm (&ir))
7130 return -1;
7131 }
7132 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7133 break;
7134 case 6: /* lmsw */
7135 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7136 break;
7137 case 7: /* invlpg */
7138 if (ir.mod == 3)
7139 {
7140 if (ir.rm == 0 && ir.regmap[X86_RECORD_R8_REGNUM])
7141 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
7142 else
7143 {
7144 ir.addr -= 3;
7145 opcode = opcode << 8 | ir.modrm;
7146 goto no_support;
7147 }
7148 }
7149 else
7150 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7151 break;
7152 default:
7153 ir.addr -= 3;
7154 opcode = opcode << 8 | ir.modrm;
7155 goto no_support;
7156 break;
7157 }
7158 break;
7159
7160 case 0x0f08: /* invd */
7161 case 0x0f09: /* wbinvd */
7162 break;
7163
7164 case 0x63: /* arpl */
7165 if (i386_record_modrm (&ir))
7166 return -1;
7167 if (ir.mod == 3 || ir.regmap[X86_RECORD_R8_REGNUM])
7168 {
7169 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.regmap[X86_RECORD_R8_REGNUM]
7170 ? (ir.reg | rex_r) : ir.rm);
7171 }
7172 else
7173 {
7174 ir.ot = ir.dflag ? OT_LONG : OT_WORD;
7175 if (i386_record_lea_modrm (&ir))
7176 return -1;
7177 }
7178 if (!ir.regmap[X86_RECORD_R8_REGNUM])
7179 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7180 break;
7181
7182 case 0x0f02: /* lar */
7183 case 0x0f03: /* lsl */
7184 if (i386_record_modrm (&ir))
7185 return -1;
7186 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7187 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7188 break;
7189
7190 case 0x0f18:
7191 if (i386_record_modrm (&ir))
7192 return -1;
7193 if (ir.mod == 3 && ir.reg == 3)
7194 {
7195 ir.addr -= 3;
7196 opcode = opcode << 8 | ir.modrm;
7197 goto no_support;
7198 }
7199 break;
7200
7201 case 0x0f19:
7202 case 0x0f1a:
7203 case 0x0f1b:
7204 case 0x0f1c:
7205 case 0x0f1d:
7206 case 0x0f1e:
7207 case 0x0f1f:
7208 /* nop (multi byte) */
7209 break;
7210
7211 case 0x0f20: /* mov reg, crN */
7212 case 0x0f22: /* mov crN, reg */
7213 if (i386_record_modrm (&ir))
7214 return -1;
7215 if ((ir.modrm & 0xc0) != 0xc0)
7216 {
7217 ir.addr -= 3;
7218 opcode = opcode << 8 | ir.modrm;
7219 goto no_support;
7220 }
7221 switch (ir.reg)
7222 {
7223 case 0:
7224 case 2:
7225 case 3:
7226 case 4:
7227 case 8:
7228 if (opcode & 2)
7229 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7230 else
7231 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7232 break;
7233 default:
7234 ir.addr -= 3;
7235 opcode = opcode << 8 | ir.modrm;
7236 goto no_support;
7237 break;
7238 }
7239 break;
7240
7241 case 0x0f21: /* mov reg, drN */
7242 case 0x0f23: /* mov drN, reg */
7243 if (i386_record_modrm (&ir))
7244 return -1;
7245 if ((ir.modrm & 0xc0) != 0xc0 || ir.reg == 4
7246 || ir.reg == 5 || ir.reg >= 8)
7247 {
7248 ir.addr -= 3;
7249 opcode = opcode << 8 | ir.modrm;
7250 goto no_support;
7251 }
7252 if (opcode & 2)
7253 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7254 else
7255 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7256 break;
7257
7258 case 0x0f06: /* clts */
7259 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7260 break;
7261
7262 /* MMX 3DNow! SSE SSE2 SSE3 SSSE3 SSE4 */
7263
7264 case 0x0f0d: /* 3DNow! prefetch */
7265 break;
7266
7267 case 0x0f0e: /* 3DNow! femms */
7268 case 0x0f77: /* emms */
7269 if (i386_fpc_regnum_p (gdbarch, I387_FTAG_REGNUM(tdep)))
7270 goto no_support;
7271 record_full_arch_list_add_reg (ir.regcache, I387_FTAG_REGNUM(tdep));
7272 break;
7273
7274 case 0x0f0f: /* 3DNow! data */
7275 if (i386_record_modrm (&ir))
7276 return -1;
7277 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
7278 return -1;
7279 ir.addr++;
7280 switch (opcode8)
7281 {
7282 case 0x0c: /* 3DNow! pi2fw */
7283 case 0x0d: /* 3DNow! pi2fd */
7284 case 0x1c: /* 3DNow! pf2iw */
7285 case 0x1d: /* 3DNow! pf2id */
7286 case 0x8a: /* 3DNow! pfnacc */
7287 case 0x8e: /* 3DNow! pfpnacc */
7288 case 0x90: /* 3DNow! pfcmpge */
7289 case 0x94: /* 3DNow! pfmin */
7290 case 0x96: /* 3DNow! pfrcp */
7291 case 0x97: /* 3DNow! pfrsqrt */
7292 case 0x9a: /* 3DNow! pfsub */
7293 case 0x9e: /* 3DNow! pfadd */
7294 case 0xa0: /* 3DNow! pfcmpgt */
7295 case 0xa4: /* 3DNow! pfmax */
7296 case 0xa6: /* 3DNow! pfrcpit1 */
7297 case 0xa7: /* 3DNow! pfrsqit1 */
7298 case 0xaa: /* 3DNow! pfsubr */
7299 case 0xae: /* 3DNow! pfacc */
7300 case 0xb0: /* 3DNow! pfcmpeq */
7301 case 0xb4: /* 3DNow! pfmul */
7302 case 0xb6: /* 3DNow! pfrcpit2 */
7303 case 0xb7: /* 3DNow! pmulhrw */
7304 case 0xbb: /* 3DNow! pswapd */
7305 case 0xbf: /* 3DNow! pavgusb */
7306 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7307 goto no_support_3dnow_data;
7308 record_full_arch_list_add_reg (ir.regcache, ir.reg);
7309 break;
7310
7311 default:
7312 no_support_3dnow_data:
7313 opcode = (opcode << 8) | opcode8;
7314 goto no_support;
7315 break;
7316 }
7317 break;
7318
7319 case 0x0faa: /* rsm */
7320 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7321 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7322 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
7323 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7324 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
7325 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
7326 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
7327 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
7328 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
7329 break;
7330
7331 case 0x0fae:
7332 if (i386_record_modrm (&ir))
7333 return -1;
7334 switch(ir.reg)
7335 {
7336 case 0: /* fxsave */
7337 {
7338 uint64_t tmpu64;
7339
7340 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7341 if (i386_record_lea_modrm_addr (&ir, &tmpu64))
7342 return -1;
7343 if (record_full_arch_list_add_mem (tmpu64, 512))
7344 return -1;
7345 }
7346 break;
7347
7348 case 1: /* fxrstor */
7349 {
7350 int i;
7351
7352 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7353
7354 for (i = I387_MM0_REGNUM (tdep);
7355 i386_mmx_regnum_p (gdbarch, i); i++)
7356 record_full_arch_list_add_reg (ir.regcache, i);
7357
7358 for (i = I387_XMM0_REGNUM (tdep);
7359 i386_xmm_regnum_p (gdbarch, i); i++)
7360 record_full_arch_list_add_reg (ir.regcache, i);
7361
7362 if (i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
7363 record_full_arch_list_add_reg (ir.regcache,
7364 I387_MXCSR_REGNUM(tdep));
7365
7366 for (i = I387_ST0_REGNUM (tdep);
7367 i386_fp_regnum_p (gdbarch, i); i++)
7368 record_full_arch_list_add_reg (ir.regcache, i);
7369
7370 for (i = I387_FCTRL_REGNUM (tdep);
7371 i386_fpc_regnum_p (gdbarch, i); i++)
7372 record_full_arch_list_add_reg (ir.regcache, i);
7373 }
7374 break;
7375
7376 case 2: /* ldmxcsr */
7377 if (!i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
7378 goto no_support;
7379 record_full_arch_list_add_reg (ir.regcache, I387_MXCSR_REGNUM(tdep));
7380 break;
7381
7382 case 3: /* stmxcsr */
7383 ir.ot = OT_LONG;
7384 if (i386_record_lea_modrm (&ir))
7385 return -1;
7386 break;
7387
7388 case 5: /* lfence */
7389 case 6: /* mfence */
7390 case 7: /* sfence clflush */
7391 break;
7392
7393 default:
7394 opcode = (opcode << 8) | ir.modrm;
7395 goto no_support;
7396 break;
7397 }
7398 break;
7399
7400 case 0x0fc3: /* movnti */
7401 ir.ot = (ir.dflag == 2) ? OT_QUAD : OT_LONG;
7402 if (i386_record_modrm (&ir))
7403 return -1;
7404 if (ir.mod == 3)
7405 goto no_support;
7406 ir.reg |= rex_r;
7407 if (i386_record_lea_modrm (&ir))
7408 return -1;
7409 break;
7410
7411 /* Add prefix to opcode. */
7412 case 0x0f10:
7413 case 0x0f11:
7414 case 0x0f12:
7415 case 0x0f13:
7416 case 0x0f14:
7417 case 0x0f15:
7418 case 0x0f16:
7419 case 0x0f17:
7420 case 0x0f28:
7421 case 0x0f29:
7422 case 0x0f2a:
7423 case 0x0f2b:
7424 case 0x0f2c:
7425 case 0x0f2d:
7426 case 0x0f2e:
7427 case 0x0f2f:
7428 case 0x0f38:
7429 case 0x0f39:
7430 case 0x0f3a:
7431 case 0x0f50:
7432 case 0x0f51:
7433 case 0x0f52:
7434 case 0x0f53:
7435 case 0x0f54:
7436 case 0x0f55:
7437 case 0x0f56:
7438 case 0x0f57:
7439 case 0x0f58:
7440 case 0x0f59:
7441 case 0x0f5a:
7442 case 0x0f5b:
7443 case 0x0f5c:
7444 case 0x0f5d:
7445 case 0x0f5e:
7446 case 0x0f5f:
7447 case 0x0f60:
7448 case 0x0f61:
7449 case 0x0f62:
7450 case 0x0f63:
7451 case 0x0f64:
7452 case 0x0f65:
7453 case 0x0f66:
7454 case 0x0f67:
7455 case 0x0f68:
7456 case 0x0f69:
7457 case 0x0f6a:
7458 case 0x0f6b:
7459 case 0x0f6c:
7460 case 0x0f6d:
7461 case 0x0f6e:
7462 case 0x0f6f:
7463 case 0x0f70:
7464 case 0x0f71:
7465 case 0x0f72:
7466 case 0x0f73:
7467 case 0x0f74:
7468 case 0x0f75:
7469 case 0x0f76:
7470 case 0x0f7c:
7471 case 0x0f7d:
7472 case 0x0f7e:
7473 case 0x0f7f:
7474 case 0x0fb8:
7475 case 0x0fc2:
7476 case 0x0fc4:
7477 case 0x0fc5:
7478 case 0x0fc6:
7479 case 0x0fd0:
7480 case 0x0fd1:
7481 case 0x0fd2:
7482 case 0x0fd3:
7483 case 0x0fd4:
7484 case 0x0fd5:
7485 case 0x0fd6:
7486 case 0x0fd7:
7487 case 0x0fd8:
7488 case 0x0fd9:
7489 case 0x0fda:
7490 case 0x0fdb:
7491 case 0x0fdc:
7492 case 0x0fdd:
7493 case 0x0fde:
7494 case 0x0fdf:
7495 case 0x0fe0:
7496 case 0x0fe1:
7497 case 0x0fe2:
7498 case 0x0fe3:
7499 case 0x0fe4:
7500 case 0x0fe5:
7501 case 0x0fe6:
7502 case 0x0fe7:
7503 case 0x0fe8:
7504 case 0x0fe9:
7505 case 0x0fea:
7506 case 0x0feb:
7507 case 0x0fec:
7508 case 0x0fed:
7509 case 0x0fee:
7510 case 0x0fef:
7511 case 0x0ff0:
7512 case 0x0ff1:
7513 case 0x0ff2:
7514 case 0x0ff3:
7515 case 0x0ff4:
7516 case 0x0ff5:
7517 case 0x0ff6:
7518 case 0x0ff7:
7519 case 0x0ff8:
7520 case 0x0ff9:
7521 case 0x0ffa:
7522 case 0x0ffb:
7523 case 0x0ffc:
7524 case 0x0ffd:
7525 case 0x0ffe:
7526 /* Mask out PREFIX_ADDR. */
7527 switch ((prefixes & ~PREFIX_ADDR))
7528 {
7529 case PREFIX_REPNZ:
7530 opcode |= 0xf20000;
7531 break;
7532 case PREFIX_DATA:
7533 opcode |= 0x660000;
7534 break;
7535 case PREFIX_REPZ:
7536 opcode |= 0xf30000;
7537 break;
7538 }
7539 reswitch_prefix_add:
7540 switch (opcode)
7541 {
7542 case 0x0f38:
7543 case 0x660f38:
7544 case 0xf20f38:
7545 case 0x0f3a:
7546 case 0x660f3a:
7547 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
7548 return -1;
7549 ir.addr++;
7550 opcode = (uint32_t) opcode8 | opcode << 8;
7551 goto reswitch_prefix_add;
7552 break;
7553
7554 case 0x0f10: /* movups */
7555 case 0x660f10: /* movupd */
7556 case 0xf30f10: /* movss */
7557 case 0xf20f10: /* movsd */
7558 case 0x0f12: /* movlps */
7559 case 0x660f12: /* movlpd */
7560 case 0xf30f12: /* movsldup */
7561 case 0xf20f12: /* movddup */
7562 case 0x0f14: /* unpcklps */
7563 case 0x660f14: /* unpcklpd */
7564 case 0x0f15: /* unpckhps */
7565 case 0x660f15: /* unpckhpd */
7566 case 0x0f16: /* movhps */
7567 case 0x660f16: /* movhpd */
7568 case 0xf30f16: /* movshdup */
7569 case 0x0f28: /* movaps */
7570 case 0x660f28: /* movapd */
7571 case 0x0f2a: /* cvtpi2ps */
7572 case 0x660f2a: /* cvtpi2pd */
7573 case 0xf30f2a: /* cvtsi2ss */
7574 case 0xf20f2a: /* cvtsi2sd */
7575 case 0x0f2c: /* cvttps2pi */
7576 case 0x660f2c: /* cvttpd2pi */
7577 case 0x0f2d: /* cvtps2pi */
7578 case 0x660f2d: /* cvtpd2pi */
7579 case 0x660f3800: /* pshufb */
7580 case 0x660f3801: /* phaddw */
7581 case 0x660f3802: /* phaddd */
7582 case 0x660f3803: /* phaddsw */
7583 case 0x660f3804: /* pmaddubsw */
7584 case 0x660f3805: /* phsubw */
7585 case 0x660f3806: /* phsubd */
7586 case 0x660f3807: /* phsubsw */
7587 case 0x660f3808: /* psignb */
7588 case 0x660f3809: /* psignw */
7589 case 0x660f380a: /* psignd */
7590 case 0x660f380b: /* pmulhrsw */
7591 case 0x660f3810: /* pblendvb */
7592 case 0x660f3814: /* blendvps */
7593 case 0x660f3815: /* blendvpd */
7594 case 0x660f381c: /* pabsb */
7595 case 0x660f381d: /* pabsw */
7596 case 0x660f381e: /* pabsd */
7597 case 0x660f3820: /* pmovsxbw */
7598 case 0x660f3821: /* pmovsxbd */
7599 case 0x660f3822: /* pmovsxbq */
7600 case 0x660f3823: /* pmovsxwd */
7601 case 0x660f3824: /* pmovsxwq */
7602 case 0x660f3825: /* pmovsxdq */
7603 case 0x660f3828: /* pmuldq */
7604 case 0x660f3829: /* pcmpeqq */
7605 case 0x660f382a: /* movntdqa */
7606 case 0x660f3a08: /* roundps */
7607 case 0x660f3a09: /* roundpd */
7608 case 0x660f3a0a: /* roundss */
7609 case 0x660f3a0b: /* roundsd */
7610 case 0x660f3a0c: /* blendps */
7611 case 0x660f3a0d: /* blendpd */
7612 case 0x660f3a0e: /* pblendw */
7613 case 0x660f3a0f: /* palignr */
7614 case 0x660f3a20: /* pinsrb */
7615 case 0x660f3a21: /* insertps */
7616 case 0x660f3a22: /* pinsrd pinsrq */
7617 case 0x660f3a40: /* dpps */
7618 case 0x660f3a41: /* dppd */
7619 case 0x660f3a42: /* mpsadbw */
7620 case 0x660f3a60: /* pcmpestrm */
7621 case 0x660f3a61: /* pcmpestri */
7622 case 0x660f3a62: /* pcmpistrm */
7623 case 0x660f3a63: /* pcmpistri */
7624 case 0x0f51: /* sqrtps */
7625 case 0x660f51: /* sqrtpd */
7626 case 0xf20f51: /* sqrtsd */
7627 case 0xf30f51: /* sqrtss */
7628 case 0x0f52: /* rsqrtps */
7629 case 0xf30f52: /* rsqrtss */
7630 case 0x0f53: /* rcpps */
7631 case 0xf30f53: /* rcpss */
7632 case 0x0f54: /* andps */
7633 case 0x660f54: /* andpd */
7634 case 0x0f55: /* andnps */
7635 case 0x660f55: /* andnpd */
7636 case 0x0f56: /* orps */
7637 case 0x660f56: /* orpd */
7638 case 0x0f57: /* xorps */
7639 case 0x660f57: /* xorpd */
7640 case 0x0f58: /* addps */
7641 case 0x660f58: /* addpd */
7642 case 0xf20f58: /* addsd */
7643 case 0xf30f58: /* addss */
7644 case 0x0f59: /* mulps */
7645 case 0x660f59: /* mulpd */
7646 case 0xf20f59: /* mulsd */
7647 case 0xf30f59: /* mulss */
7648 case 0x0f5a: /* cvtps2pd */
7649 case 0x660f5a: /* cvtpd2ps */
7650 case 0xf20f5a: /* cvtsd2ss */
7651 case 0xf30f5a: /* cvtss2sd */
7652 case 0x0f5b: /* cvtdq2ps */
7653 case 0x660f5b: /* cvtps2dq */
7654 case 0xf30f5b: /* cvttps2dq */
7655 case 0x0f5c: /* subps */
7656 case 0x660f5c: /* subpd */
7657 case 0xf20f5c: /* subsd */
7658 case 0xf30f5c: /* subss */
7659 case 0x0f5d: /* minps */
7660 case 0x660f5d: /* minpd */
7661 case 0xf20f5d: /* minsd */
7662 case 0xf30f5d: /* minss */
7663 case 0x0f5e: /* divps */
7664 case 0x660f5e: /* divpd */
7665 case 0xf20f5e: /* divsd */
7666 case 0xf30f5e: /* divss */
7667 case 0x0f5f: /* maxps */
7668 case 0x660f5f: /* maxpd */
7669 case 0xf20f5f: /* maxsd */
7670 case 0xf30f5f: /* maxss */
7671 case 0x660f60: /* punpcklbw */
7672 case 0x660f61: /* punpcklwd */
7673 case 0x660f62: /* punpckldq */
7674 case 0x660f63: /* packsswb */
7675 case 0x660f64: /* pcmpgtb */
7676 case 0x660f65: /* pcmpgtw */
7677 case 0x660f66: /* pcmpgtd */
7678 case 0x660f67: /* packuswb */
7679 case 0x660f68: /* punpckhbw */
7680 case 0x660f69: /* punpckhwd */
7681 case 0x660f6a: /* punpckhdq */
7682 case 0x660f6b: /* packssdw */
7683 case 0x660f6c: /* punpcklqdq */
7684 case 0x660f6d: /* punpckhqdq */
7685 case 0x660f6e: /* movd */
7686 case 0x660f6f: /* movdqa */
7687 case 0xf30f6f: /* movdqu */
7688 case 0x660f70: /* pshufd */
7689 case 0xf20f70: /* pshuflw */
7690 case 0xf30f70: /* pshufhw */
7691 case 0x660f74: /* pcmpeqb */
7692 case 0x660f75: /* pcmpeqw */
7693 case 0x660f76: /* pcmpeqd */
7694 case 0x660f7c: /* haddpd */
7695 case 0xf20f7c: /* haddps */
7696 case 0x660f7d: /* hsubpd */
7697 case 0xf20f7d: /* hsubps */
7698 case 0xf30f7e: /* movq */
7699 case 0x0fc2: /* cmpps */
7700 case 0x660fc2: /* cmppd */
7701 case 0xf20fc2: /* cmpsd */
7702 case 0xf30fc2: /* cmpss */
7703 case 0x660fc4: /* pinsrw */
7704 case 0x0fc6: /* shufps */
7705 case 0x660fc6: /* shufpd */
7706 case 0x660fd0: /* addsubpd */
7707 case 0xf20fd0: /* addsubps */
7708 case 0x660fd1: /* psrlw */
7709 case 0x660fd2: /* psrld */
7710 case 0x660fd3: /* psrlq */
7711 case 0x660fd4: /* paddq */
7712 case 0x660fd5: /* pmullw */
7713 case 0xf30fd6: /* movq2dq */
7714 case 0x660fd8: /* psubusb */
7715 case 0x660fd9: /* psubusw */
7716 case 0x660fda: /* pminub */
7717 case 0x660fdb: /* pand */
7718 case 0x660fdc: /* paddusb */
7719 case 0x660fdd: /* paddusw */
7720 case 0x660fde: /* pmaxub */
7721 case 0x660fdf: /* pandn */
7722 case 0x660fe0: /* pavgb */
7723 case 0x660fe1: /* psraw */
7724 case 0x660fe2: /* psrad */
7725 case 0x660fe3: /* pavgw */
7726 case 0x660fe4: /* pmulhuw */
7727 case 0x660fe5: /* pmulhw */
7728 case 0x660fe6: /* cvttpd2dq */
7729 case 0xf20fe6: /* cvtpd2dq */
7730 case 0xf30fe6: /* cvtdq2pd */
7731 case 0x660fe8: /* psubsb */
7732 case 0x660fe9: /* psubsw */
7733 case 0x660fea: /* pminsw */
7734 case 0x660feb: /* por */
7735 case 0x660fec: /* paddsb */
7736 case 0x660fed: /* paddsw */
7737 case 0x660fee: /* pmaxsw */
7738 case 0x660fef: /* pxor */
7739 case 0xf20ff0: /* lddqu */
7740 case 0x660ff1: /* psllw */
7741 case 0x660ff2: /* pslld */
7742 case 0x660ff3: /* psllq */
7743 case 0x660ff4: /* pmuludq */
7744 case 0x660ff5: /* pmaddwd */
7745 case 0x660ff6: /* psadbw */
7746 case 0x660ff8: /* psubb */
7747 case 0x660ff9: /* psubw */
7748 case 0x660ffa: /* psubd */
7749 case 0x660ffb: /* psubq */
7750 case 0x660ffc: /* paddb */
7751 case 0x660ffd: /* paddw */
7752 case 0x660ffe: /* paddd */
7753 if (i386_record_modrm (&ir))
7754 return -1;
7755 ir.reg |= rex_r;
7756 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.reg))
7757 goto no_support;
7758 record_full_arch_list_add_reg (ir.regcache,
7759 I387_XMM0_REGNUM (tdep) + ir.reg);
7760 if ((opcode & 0xfffffffc) == 0x660f3a60)
7761 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7762 break;
7763
7764 case 0x0f11: /* movups */
7765 case 0x660f11: /* movupd */
7766 case 0xf30f11: /* movss */
7767 case 0xf20f11: /* movsd */
7768 case 0x0f13: /* movlps */
7769 case 0x660f13: /* movlpd */
7770 case 0x0f17: /* movhps */
7771 case 0x660f17: /* movhpd */
7772 case 0x0f29: /* movaps */
7773 case 0x660f29: /* movapd */
7774 case 0x660f3a14: /* pextrb */
7775 case 0x660f3a15: /* pextrw */
7776 case 0x660f3a16: /* pextrd pextrq */
7777 case 0x660f3a17: /* extractps */
7778 case 0x660f7f: /* movdqa */
7779 case 0xf30f7f: /* movdqu */
7780 if (i386_record_modrm (&ir))
7781 return -1;
7782 if (ir.mod == 3)
7783 {
7784 if (opcode == 0x0f13 || opcode == 0x660f13
7785 || opcode == 0x0f17 || opcode == 0x660f17)
7786 goto no_support;
7787 ir.rm |= ir.rex_b;
7788 if (!i386_xmm_regnum_p (gdbarch,
7789 I387_XMM0_REGNUM (tdep) + ir.rm))
7790 goto no_support;
7791 record_full_arch_list_add_reg (ir.regcache,
7792 I387_XMM0_REGNUM (tdep) + ir.rm);
7793 }
7794 else
7795 {
7796 switch (opcode)
7797 {
7798 case 0x660f3a14:
7799 ir.ot = OT_BYTE;
7800 break;
7801 case 0x660f3a15:
7802 ir.ot = OT_WORD;
7803 break;
7804 case 0x660f3a16:
7805 ir.ot = OT_LONG;
7806 break;
7807 case 0x660f3a17:
7808 ir.ot = OT_QUAD;
7809 break;
7810 default:
7811 ir.ot = OT_DQUAD;
7812 break;
7813 }
7814 if (i386_record_lea_modrm (&ir))
7815 return -1;
7816 }
7817 break;
7818
7819 case 0x0f2b: /* movntps */
7820 case 0x660f2b: /* movntpd */
7821 case 0x0fe7: /* movntq */
7822 case 0x660fe7: /* movntdq */
7823 if (ir.mod == 3)
7824 goto no_support;
7825 if (opcode == 0x0fe7)
7826 ir.ot = OT_QUAD;
7827 else
7828 ir.ot = OT_DQUAD;
7829 if (i386_record_lea_modrm (&ir))
7830 return -1;
7831 break;
7832
7833 case 0xf30f2c: /* cvttss2si */
7834 case 0xf20f2c: /* cvttsd2si */
7835 case 0xf30f2d: /* cvtss2si */
7836 case 0xf20f2d: /* cvtsd2si */
7837 case 0xf20f38f0: /* crc32 */
7838 case 0xf20f38f1: /* crc32 */
7839 case 0x0f50: /* movmskps */
7840 case 0x660f50: /* movmskpd */
7841 case 0x0fc5: /* pextrw */
7842 case 0x660fc5: /* pextrw */
7843 case 0x0fd7: /* pmovmskb */
7844 case 0x660fd7: /* pmovmskb */
7845 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7846 break;
7847
7848 case 0x0f3800: /* pshufb */
7849 case 0x0f3801: /* phaddw */
7850 case 0x0f3802: /* phaddd */
7851 case 0x0f3803: /* phaddsw */
7852 case 0x0f3804: /* pmaddubsw */
7853 case 0x0f3805: /* phsubw */
7854 case 0x0f3806: /* phsubd */
7855 case 0x0f3807: /* phsubsw */
7856 case 0x0f3808: /* psignb */
7857 case 0x0f3809: /* psignw */
7858 case 0x0f380a: /* psignd */
7859 case 0x0f380b: /* pmulhrsw */
7860 case 0x0f381c: /* pabsb */
7861 case 0x0f381d: /* pabsw */
7862 case 0x0f381e: /* pabsd */
7863 case 0x0f382b: /* packusdw */
7864 case 0x0f3830: /* pmovzxbw */
7865 case 0x0f3831: /* pmovzxbd */
7866 case 0x0f3832: /* pmovzxbq */
7867 case 0x0f3833: /* pmovzxwd */
7868 case 0x0f3834: /* pmovzxwq */
7869 case 0x0f3835: /* pmovzxdq */
7870 case 0x0f3837: /* pcmpgtq */
7871 case 0x0f3838: /* pminsb */
7872 case 0x0f3839: /* pminsd */
7873 case 0x0f383a: /* pminuw */
7874 case 0x0f383b: /* pminud */
7875 case 0x0f383c: /* pmaxsb */
7876 case 0x0f383d: /* pmaxsd */
7877 case 0x0f383e: /* pmaxuw */
7878 case 0x0f383f: /* pmaxud */
7879 case 0x0f3840: /* pmulld */
7880 case 0x0f3841: /* phminposuw */
7881 case 0x0f3a0f: /* palignr */
7882 case 0x0f60: /* punpcklbw */
7883 case 0x0f61: /* punpcklwd */
7884 case 0x0f62: /* punpckldq */
7885 case 0x0f63: /* packsswb */
7886 case 0x0f64: /* pcmpgtb */
7887 case 0x0f65: /* pcmpgtw */
7888 case 0x0f66: /* pcmpgtd */
7889 case 0x0f67: /* packuswb */
7890 case 0x0f68: /* punpckhbw */
7891 case 0x0f69: /* punpckhwd */
7892 case 0x0f6a: /* punpckhdq */
7893 case 0x0f6b: /* packssdw */
7894 case 0x0f6e: /* movd */
7895 case 0x0f6f: /* movq */
7896 case 0x0f70: /* pshufw */
7897 case 0x0f74: /* pcmpeqb */
7898 case 0x0f75: /* pcmpeqw */
7899 case 0x0f76: /* pcmpeqd */
7900 case 0x0fc4: /* pinsrw */
7901 case 0x0fd1: /* psrlw */
7902 case 0x0fd2: /* psrld */
7903 case 0x0fd3: /* psrlq */
7904 case 0x0fd4: /* paddq */
7905 case 0x0fd5: /* pmullw */
7906 case 0xf20fd6: /* movdq2q */
7907 case 0x0fd8: /* psubusb */
7908 case 0x0fd9: /* psubusw */
7909 case 0x0fda: /* pminub */
7910 case 0x0fdb: /* pand */
7911 case 0x0fdc: /* paddusb */
7912 case 0x0fdd: /* paddusw */
7913 case 0x0fde: /* pmaxub */
7914 case 0x0fdf: /* pandn */
7915 case 0x0fe0: /* pavgb */
7916 case 0x0fe1: /* psraw */
7917 case 0x0fe2: /* psrad */
7918 case 0x0fe3: /* pavgw */
7919 case 0x0fe4: /* pmulhuw */
7920 case 0x0fe5: /* pmulhw */
7921 case 0x0fe8: /* psubsb */
7922 case 0x0fe9: /* psubsw */
7923 case 0x0fea: /* pminsw */
7924 case 0x0feb: /* por */
7925 case 0x0fec: /* paddsb */
7926 case 0x0fed: /* paddsw */
7927 case 0x0fee: /* pmaxsw */
7928 case 0x0fef: /* pxor */
7929 case 0x0ff1: /* psllw */
7930 case 0x0ff2: /* pslld */
7931 case 0x0ff3: /* psllq */
7932 case 0x0ff4: /* pmuludq */
7933 case 0x0ff5: /* pmaddwd */
7934 case 0x0ff6: /* psadbw */
7935 case 0x0ff8: /* psubb */
7936 case 0x0ff9: /* psubw */
7937 case 0x0ffa: /* psubd */
7938 case 0x0ffb: /* psubq */
7939 case 0x0ffc: /* paddb */
7940 case 0x0ffd: /* paddw */
7941 case 0x0ffe: /* paddd */
7942 if (i386_record_modrm (&ir))
7943 return -1;
7944 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7945 goto no_support;
7946 record_full_arch_list_add_reg (ir.regcache,
7947 I387_MM0_REGNUM (tdep) + ir.reg);
7948 break;
7949
7950 case 0x0f71: /* psllw */
7951 case 0x0f72: /* pslld */
7952 case 0x0f73: /* psllq */
7953 if (i386_record_modrm (&ir))
7954 return -1;
7955 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
7956 goto no_support;
7957 record_full_arch_list_add_reg (ir.regcache,
7958 I387_MM0_REGNUM (tdep) + ir.rm);
7959 break;
7960
7961 case 0x660f71: /* psllw */
7962 case 0x660f72: /* pslld */
7963 case 0x660f73: /* psllq */
7964 if (i386_record_modrm (&ir))
7965 return -1;
7966 ir.rm |= ir.rex_b;
7967 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.rm))
7968 goto no_support;
7969 record_full_arch_list_add_reg (ir.regcache,
7970 I387_XMM0_REGNUM (tdep) + ir.rm);
7971 break;
7972
7973 case 0x0f7e: /* movd */
7974 case 0x660f7e: /* movd */
7975 if (i386_record_modrm (&ir))
7976 return -1;
7977 if (ir.mod == 3)
7978 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7979 else
7980 {
7981 if (ir.dflag == 2)
7982 ir.ot = OT_QUAD;
7983 else
7984 ir.ot = OT_LONG;
7985 if (i386_record_lea_modrm (&ir))
7986 return -1;
7987 }
7988 break;
7989
7990 case 0x0f7f: /* movq */
7991 if (i386_record_modrm (&ir))
7992 return -1;
7993 if (ir.mod == 3)
7994 {
7995 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
7996 goto no_support;
7997 record_full_arch_list_add_reg (ir.regcache,
7998 I387_MM0_REGNUM (tdep) + ir.rm);
7999 }
8000 else
8001 {
8002 ir.ot = OT_QUAD;
8003 if (i386_record_lea_modrm (&ir))
8004 return -1;
8005 }
8006 break;
8007
8008 case 0xf30fb8: /* popcnt */
8009 if (i386_record_modrm (&ir))
8010 return -1;
8011 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
8012 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
8013 break;
8014
8015 case 0x660fd6: /* movq */
8016 if (i386_record_modrm (&ir))
8017 return -1;
8018 if (ir.mod == 3)
8019 {
8020 ir.rm |= ir.rex_b;
8021 if (!i386_xmm_regnum_p (gdbarch,
8022 I387_XMM0_REGNUM (tdep) + ir.rm))
8023 goto no_support;
8024 record_full_arch_list_add_reg (ir.regcache,
8025 I387_XMM0_REGNUM (tdep) + ir.rm);
8026 }
8027 else
8028 {
8029 ir.ot = OT_QUAD;
8030 if (i386_record_lea_modrm (&ir))
8031 return -1;
8032 }
8033 break;
8034
8035 case 0x660f3817: /* ptest */
8036 case 0x0f2e: /* ucomiss */
8037 case 0x660f2e: /* ucomisd */
8038 case 0x0f2f: /* comiss */
8039 case 0x660f2f: /* comisd */
8040 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
8041 break;
8042
8043 case 0x0ff7: /* maskmovq */
8044 regcache_raw_read_unsigned (ir.regcache,
8045 ir.regmap[X86_RECORD_REDI_REGNUM],
8046 &addr);
8047 if (record_full_arch_list_add_mem (addr, 64))
8048 return -1;
8049 break;
8050
8051 case 0x660ff7: /* maskmovdqu */
8052 regcache_raw_read_unsigned (ir.regcache,
8053 ir.regmap[X86_RECORD_REDI_REGNUM],
8054 &addr);
8055 if (record_full_arch_list_add_mem (addr, 128))
8056 return -1;
8057 break;
8058
8059 default:
8060 goto no_support;
8061 break;
8062 }
8063 break;
8064
8065 default:
8066 goto no_support;
8067 break;
8068 }
8069
8070 /* In the future, maybe still need to deal with need_dasm. */
8071 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REIP_REGNUM);
8072 if (record_full_arch_list_add_end ())
8073 return -1;
8074
8075 return 0;
8076
8077 no_support:
8078 printf_unfiltered (_("Process record does not support instruction 0x%02x "
8079 "at address %s.\n"),
8080 (unsigned int) (opcode),
8081 paddress (gdbarch, ir.orig_addr));
8082 return -1;
8083 }
8084
8085 static const int i386_record_regmap[] =
8086 {
8087 I386_EAX_REGNUM, I386_ECX_REGNUM, I386_EDX_REGNUM, I386_EBX_REGNUM,
8088 I386_ESP_REGNUM, I386_EBP_REGNUM, I386_ESI_REGNUM, I386_EDI_REGNUM,
8089 0, 0, 0, 0, 0, 0, 0, 0,
8090 I386_EIP_REGNUM, I386_EFLAGS_REGNUM, I386_CS_REGNUM, I386_SS_REGNUM,
8091 I386_DS_REGNUM, I386_ES_REGNUM, I386_FS_REGNUM, I386_GS_REGNUM
8092 };
8093
8094 /* Check that the given address appears suitable for a fast
8095 tracepoint, which on x86-64 means that we need an instruction of at
8096 least 5 bytes, so that we can overwrite it with a 4-byte-offset
8097 jump and not have to worry about program jumps to an address in the
8098 middle of the tracepoint jump. On x86, it may be possible to use
8099 4-byte jumps with a 2-byte offset to a trampoline located in the
8100 bottom 64 KiB of memory. Returns 1 if OK, and writes a size
8101 of instruction to replace, and 0 if not, plus an explanatory
8102 string. */
8103
8104 static int
8105 i386_fast_tracepoint_valid_at (struct gdbarch *gdbarch, CORE_ADDR addr,
8106 std::string *msg)
8107 {
8108 int len, jumplen;
8109
8110 /* Ask the target for the minimum instruction length supported. */
8111 jumplen = target_get_min_fast_tracepoint_insn_len ();
8112
8113 if (jumplen < 0)
8114 {
8115 /* If the target does not support the get_min_fast_tracepoint_insn_len
8116 operation, assume that fast tracepoints will always be implemented
8117 using 4-byte relative jumps on both x86 and x86-64. */
8118 jumplen = 5;
8119 }
8120 else if (jumplen == 0)
8121 {
8122 /* If the target does support get_min_fast_tracepoint_insn_len but
8123 returns zero, then the IPA has not loaded yet. In this case,
8124 we optimistically assume that truncated 2-byte relative jumps
8125 will be available on x86, and compensate later if this assumption
8126 turns out to be incorrect. On x86-64 architectures, 4-byte relative
8127 jumps will always be used. */
8128 jumplen = (register_size (gdbarch, 0) == 8) ? 5 : 4;
8129 }
8130
8131 /* Check for fit. */
8132 len = gdb_insn_length (gdbarch, addr);
8133
8134 if (len < jumplen)
8135 {
8136 /* Return a bit of target-specific detail to add to the caller's
8137 generic failure message. */
8138 if (msg)
8139 *msg = string_printf (_("; instruction is only %d bytes long, "
8140 "need at least %d bytes for the jump"),
8141 len, jumplen);
8142 return 0;
8143 }
8144 else
8145 {
8146 if (msg)
8147 msg->clear ();
8148 return 1;
8149 }
8150 }
8151
8152 /* Return a floating-point format for a floating-point variable of
8153 length LEN in bits. If non-NULL, NAME is the name of its type.
8154 If no suitable type is found, return NULL. */
8155
8156 static const struct floatformat **
8157 i386_floatformat_for_type (struct gdbarch *gdbarch,
8158 const char *name, int len)
8159 {
8160 if (len == 128 && name)
8161 if (strcmp (name, "__float128") == 0
8162 || strcmp (name, "_Float128") == 0
8163 || strcmp (name, "complex _Float128") == 0
8164 || strcmp (name, "complex(kind=16)") == 0
8165 || strcmp (name, "quad complex") == 0
8166 || strcmp (name, "real(kind=16)") == 0
8167 || strcmp (name, "real*16") == 0)
8168 return floatformats_ia64_quad;
8169
8170 return default_floatformat_for_type (gdbarch, name, len);
8171 }
8172
8173 static int
8174 i386_validate_tdesc_p (struct gdbarch_tdep *tdep,
8175 struct tdesc_arch_data *tdesc_data)
8176 {
8177 const struct target_desc *tdesc = tdep->tdesc;
8178 const struct tdesc_feature *feature_core;
8179
8180 const struct tdesc_feature *feature_sse, *feature_avx, *feature_mpx,
8181 *feature_avx512, *feature_pkeys, *feature_segments;
8182 int i, num_regs, valid_p;
8183
8184 if (! tdesc_has_registers (tdesc))
8185 return 0;
8186
8187 /* Get core registers. */
8188 feature_core = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.core");
8189 if (feature_core == NULL)
8190 return 0;
8191
8192 /* Get SSE registers. */
8193 feature_sse = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.sse");
8194
8195 /* Try AVX registers. */
8196 feature_avx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx");
8197
8198 /* Try MPX registers. */
8199 feature_mpx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx");
8200
8201 /* Try AVX512 registers. */
8202 feature_avx512 = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx512");
8203
8204 /* Try segment base registers. */
8205 feature_segments = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.segments");
8206
8207 /* Try PKEYS */
8208 feature_pkeys = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.pkeys");
8209
8210 valid_p = 1;
8211
8212 /* The XCR0 bits. */
8213 if (feature_avx512)
8214 {
8215 /* AVX512 register description requires AVX register description. */
8216 if (!feature_avx)
8217 return 0;
8218
8219 tdep->xcr0 = X86_XSTATE_AVX_AVX512_MASK;
8220
8221 /* It may have been set by OSABI initialization function. */
8222 if (tdep->k0_regnum < 0)
8223 {
8224 tdep->k_register_names = i386_k_names;
8225 tdep->k0_regnum = I386_K0_REGNUM;
8226 }
8227
8228 for (i = 0; i < I387_NUM_K_REGS; i++)
8229 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8230 tdep->k0_regnum + i,
8231 i386_k_names[i]);
8232
8233 if (tdep->num_zmm_regs == 0)
8234 {
8235 tdep->zmmh_register_names = i386_zmmh_names;
8236 tdep->num_zmm_regs = 8;
8237 tdep->zmm0h_regnum = I386_ZMM0H_REGNUM;
8238 }
8239
8240 for (i = 0; i < tdep->num_zmm_regs; i++)
8241 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8242 tdep->zmm0h_regnum + i,
8243 tdep->zmmh_register_names[i]);
8244
8245 for (i = 0; i < tdep->num_xmm_avx512_regs; i++)
8246 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8247 tdep->xmm16_regnum + i,
8248 tdep->xmm_avx512_register_names[i]);
8249
8250 for (i = 0; i < tdep->num_ymm_avx512_regs; i++)
8251 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8252 tdep->ymm16h_regnum + i,
8253 tdep->ymm16h_register_names[i]);
8254 }
8255 if (feature_avx)
8256 {
8257 /* AVX register description requires SSE register description. */
8258 if (!feature_sse)
8259 return 0;
8260
8261 if (!feature_avx512)
8262 tdep->xcr0 = X86_XSTATE_AVX_MASK;
8263
8264 /* It may have been set by OSABI initialization function. */
8265 if (tdep->num_ymm_regs == 0)
8266 {
8267 tdep->ymmh_register_names = i386_ymmh_names;
8268 tdep->num_ymm_regs = 8;
8269 tdep->ymm0h_regnum = I386_YMM0H_REGNUM;
8270 }
8271
8272 for (i = 0; i < tdep->num_ymm_regs; i++)
8273 valid_p &= tdesc_numbered_register (feature_avx, tdesc_data,
8274 tdep->ymm0h_regnum + i,
8275 tdep->ymmh_register_names[i]);
8276 }
8277 else if (feature_sse)
8278 tdep->xcr0 = X86_XSTATE_SSE_MASK;
8279 else
8280 {
8281 tdep->xcr0 = X86_XSTATE_X87_MASK;
8282 tdep->num_xmm_regs = 0;
8283 }
8284
8285 num_regs = tdep->num_core_regs;
8286 for (i = 0; i < num_regs; i++)
8287 valid_p &= tdesc_numbered_register (feature_core, tdesc_data, i,
8288 tdep->register_names[i]);
8289
8290 if (feature_sse)
8291 {
8292 /* Need to include %mxcsr, so add one. */
8293 num_regs += tdep->num_xmm_regs + 1;
8294 for (; i < num_regs; i++)
8295 valid_p &= tdesc_numbered_register (feature_sse, tdesc_data, i,
8296 tdep->register_names[i]);
8297 }
8298
8299 if (feature_mpx)
8300 {
8301 tdep->xcr0 |= X86_XSTATE_MPX_MASK;
8302
8303 if (tdep->bnd0r_regnum < 0)
8304 {
8305 tdep->mpx_register_names = i386_mpx_names;
8306 tdep->bnd0r_regnum = I386_BND0R_REGNUM;
8307 tdep->bndcfgu_regnum = I386_BNDCFGU_REGNUM;
8308 }
8309
8310 for (i = 0; i < I387_NUM_MPX_REGS; i++)
8311 valid_p &= tdesc_numbered_register (feature_mpx, tdesc_data,
8312 I387_BND0R_REGNUM (tdep) + i,
8313 tdep->mpx_register_names[i]);
8314 }
8315
8316 if (feature_segments)
8317 {
8318 if (tdep->fsbase_regnum < 0)
8319 tdep->fsbase_regnum = I386_FSBASE_REGNUM;
8320 valid_p &= tdesc_numbered_register (feature_segments, tdesc_data,
8321 tdep->fsbase_regnum, "fs_base");
8322 valid_p &= tdesc_numbered_register (feature_segments, tdesc_data,
8323 tdep->fsbase_regnum + 1, "gs_base");
8324 }
8325
8326 if (feature_pkeys)
8327 {
8328 tdep->xcr0 |= X86_XSTATE_PKRU;
8329 if (tdep->pkru_regnum < 0)
8330 {
8331 tdep->pkeys_register_names = i386_pkeys_names;
8332 tdep->pkru_regnum = I386_PKRU_REGNUM;
8333 tdep->num_pkeys_regs = 1;
8334 }
8335
8336 for (i = 0; i < I387_NUM_PKEYS_REGS; i++)
8337 valid_p &= tdesc_numbered_register (feature_pkeys, tdesc_data,
8338 I387_PKRU_REGNUM (tdep) + i,
8339 tdep->pkeys_register_names[i]);
8340 }
8341
8342 return valid_p;
8343 }
8344
8345 \f
8346
8347 /* Implement the type_align gdbarch function. */
8348
8349 static ULONGEST
8350 i386_type_align (struct gdbarch *gdbarch, struct type *type)
8351 {
8352 type = check_typedef (type);
8353
8354 if (gdbarch_ptr_bit (gdbarch) == 32)
8355 {
8356 if ((type->code () == TYPE_CODE_INT
8357 || type->code () == TYPE_CODE_FLT)
8358 && TYPE_LENGTH (type) > 4)
8359 return 4;
8360
8361 /* Handle x86's funny long double. */
8362 if (type->code () == TYPE_CODE_FLT
8363 && gdbarch_long_double_bit (gdbarch) == TYPE_LENGTH (type) * 8)
8364 return 4;
8365 }
8366
8367 return 0;
8368 }
8369
8370 \f
8371 /* Note: This is called for both i386 and amd64. */
8372
8373 static struct gdbarch *
8374 i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
8375 {
8376 struct gdbarch_tdep *tdep;
8377 struct gdbarch *gdbarch;
8378 const struct target_desc *tdesc;
8379 int mm0_regnum;
8380 int ymm0_regnum;
8381 int bnd0_regnum;
8382 int num_bnd_cooked;
8383
8384 /* If there is already a candidate, use it. */
8385 arches = gdbarch_list_lookup_by_info (arches, &info);
8386 if (arches != NULL)
8387 return arches->gdbarch;
8388
8389 /* Allocate space for the new architecture. Assume i386 for now. */
8390 tdep = XCNEW (struct gdbarch_tdep);
8391 gdbarch = gdbarch_alloc (&info, tdep);
8392
8393 /* General-purpose registers. */
8394 tdep->gregset_reg_offset = NULL;
8395 tdep->gregset_num_regs = I386_NUM_GREGS;
8396 tdep->sizeof_gregset = 0;
8397
8398 /* Floating-point registers. */
8399 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
8400 tdep->fpregset = &i386_fpregset;
8401
8402 /* The default settings include the FPU registers, the MMX registers
8403 and the SSE registers. This can be overridden for a specific ABI
8404 by adjusting the members `st0_regnum', `mm0_regnum' and
8405 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
8406 will show up in the output of "info all-registers". */
8407
8408 tdep->st0_regnum = I386_ST0_REGNUM;
8409
8410 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
8411 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
8412
8413 tdep->jb_pc_offset = -1;
8414 tdep->struct_return = pcc_struct_return;
8415 tdep->sigtramp_start = 0;
8416 tdep->sigtramp_end = 0;
8417 tdep->sigtramp_p = i386_sigtramp_p;
8418 tdep->sigcontext_addr = NULL;
8419 tdep->sc_reg_offset = NULL;
8420 tdep->sc_pc_offset = -1;
8421 tdep->sc_sp_offset = -1;
8422
8423 tdep->xsave_xcr0_offset = -1;
8424
8425 tdep->record_regmap = i386_record_regmap;
8426
8427 set_gdbarch_type_align (gdbarch, i386_type_align);
8428
8429 /* The format used for `long double' on almost all i386 targets is
8430 the i387 extended floating-point format. In fact, of all targets
8431 in the GCC 2.95 tree, only OSF/1 does it different, and insists
8432 on having a `long double' that's not `long' at all. */
8433 set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext);
8434
8435 /* Although the i387 extended floating-point has only 80 significant
8436 bits, a `long double' actually takes up 96, probably to enforce
8437 alignment. */
8438 set_gdbarch_long_double_bit (gdbarch, 96);
8439
8440 /* Support of bfloat16 format. */
8441 set_gdbarch_bfloat16_format (gdbarch, floatformats_bfloat16);
8442
8443 /* Support for floating-point data type variants. */
8444 set_gdbarch_floatformat_for_type (gdbarch, i386_floatformat_for_type);
8445
8446 /* Register numbers of various important registers. */
8447 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
8448 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
8449 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
8450 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
8451
8452 /* NOTE: kettenis/20040418: GCC does have two possible register
8453 numbering schemes on the i386: dbx and SVR4. These schemes
8454 differ in how they number %ebp, %esp, %eflags, and the
8455 floating-point registers, and are implemented by the arrays
8456 dbx_register_map[] and svr4_dbx_register_map in
8457 gcc/config/i386.c. GCC also defines a third numbering scheme in
8458 gcc/config/i386.c, which it designates as the "default" register
8459 map used in 64bit mode. This last register numbering scheme is
8460 implemented in dbx64_register_map, and is used for AMD64; see
8461 amd64-tdep.c.
8462
8463 Currently, each GCC i386 target always uses the same register
8464 numbering scheme across all its supported debugging formats
8465 i.e. SDB (COFF), stabs and DWARF 2. This is because
8466 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
8467 DBX_REGISTER_NUMBER macro which is defined by each target's
8468 respective config header in a manner independent of the requested
8469 output debugging format.
8470
8471 This does not match the arrangement below, which presumes that
8472 the SDB and stabs numbering schemes differ from the DWARF and
8473 DWARF 2 ones. The reason for this arrangement is that it is
8474 likely to get the numbering scheme for the target's
8475 default/native debug format right. For targets where GCC is the
8476 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
8477 targets where the native toolchain uses a different numbering
8478 scheme for a particular debug format (stabs-in-ELF on Solaris)
8479 the defaults below will have to be overridden, like
8480 i386_elf_init_abi() does. */
8481
8482 /* Use the dbx register numbering scheme for stabs and COFF. */
8483 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
8484 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
8485
8486 /* Use the SVR4 register numbering scheme for DWARF 2. */
8487 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_dwarf_reg_to_regnum);
8488
8489 /* We don't set gdbarch_stab_reg_to_regnum, since ECOFF doesn't seem to
8490 be in use on any of the supported i386 targets. */
8491
8492 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
8493
8494 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
8495
8496 /* Call dummy code. */
8497 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
8498 set_gdbarch_push_dummy_code (gdbarch, i386_push_dummy_code);
8499 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
8500 set_gdbarch_frame_align (gdbarch, i386_frame_align);
8501
8502 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
8503 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
8504 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
8505
8506 set_gdbarch_return_value (gdbarch, i386_return_value);
8507
8508 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
8509
8510 /* Stack grows downward. */
8511 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
8512
8513 set_gdbarch_breakpoint_kind_from_pc (gdbarch, i386_breakpoint::kind_from_pc);
8514 set_gdbarch_sw_breakpoint_from_kind (gdbarch, i386_breakpoint::bp_from_kind);
8515
8516 set_gdbarch_decr_pc_after_break (gdbarch, 1);
8517 set_gdbarch_max_insn_length (gdbarch, I386_MAX_INSN_LEN);
8518
8519 set_gdbarch_frame_args_skip (gdbarch, 8);
8520
8521 set_gdbarch_print_insn (gdbarch, i386_print_insn);
8522
8523 set_gdbarch_dummy_id (gdbarch, i386_dummy_id);
8524
8525 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
8526
8527 /* Add the i386 register groups. */
8528 i386_add_reggroups (gdbarch);
8529 tdep->register_reggroup_p = i386_register_reggroup_p;
8530
8531 /* Helper for function argument information. */
8532 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
8533
8534 /* Hook the function epilogue frame unwinder. This unwinder is
8535 appended to the list first, so that it supercedes the DWARF
8536 unwinder in function epilogues (where the DWARF unwinder
8537 currently fails). */
8538 frame_unwind_append_unwinder (gdbarch, &i386_epilogue_frame_unwind);
8539
8540 /* Hook in the DWARF CFI frame unwinder. This unwinder is appended
8541 to the list before the prologue-based unwinders, so that DWARF
8542 CFI info will be used if it is available. */
8543 dwarf2_append_unwinders (gdbarch);
8544
8545 frame_base_set_default (gdbarch, &i386_frame_base);
8546
8547 /* Pseudo registers may be changed by amd64_init_abi. */
8548 set_gdbarch_pseudo_register_read_value (gdbarch,
8549 i386_pseudo_register_read_value);
8550 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
8551 set_gdbarch_ax_pseudo_register_collect (gdbarch,
8552 i386_ax_pseudo_register_collect);
8553
8554 set_tdesc_pseudo_register_type (gdbarch, i386_pseudo_register_type);
8555 set_tdesc_pseudo_register_name (gdbarch, i386_pseudo_register_name);
8556
8557 /* Override the normal target description method to make the AVX
8558 upper halves anonymous. */
8559 set_gdbarch_register_name (gdbarch, i386_register_name);
8560
8561 /* Even though the default ABI only includes general-purpose registers,
8562 floating-point registers and the SSE registers, we have to leave a
8563 gap for the upper AVX, MPX and AVX512 registers. */
8564 set_gdbarch_num_regs (gdbarch, I386_NUM_REGS);
8565
8566 set_gdbarch_gnu_triplet_regexp (gdbarch, i386_gnu_triplet_regexp);
8567
8568 /* Get the x86 target description from INFO. */
8569 tdesc = info.target_desc;
8570 if (! tdesc_has_registers (tdesc))
8571 tdesc = i386_target_description (X86_XSTATE_SSE_MASK, false);
8572 tdep->tdesc = tdesc;
8573
8574 tdep->num_core_regs = I386_NUM_GREGS + I387_NUM_REGS;
8575 tdep->register_names = i386_register_names;
8576
8577 /* No upper YMM registers. */
8578 tdep->ymmh_register_names = NULL;
8579 tdep->ymm0h_regnum = -1;
8580
8581 /* No upper ZMM registers. */
8582 tdep->zmmh_register_names = NULL;
8583 tdep->zmm0h_regnum = -1;
8584
8585 /* No high XMM registers. */
8586 tdep->xmm_avx512_register_names = NULL;
8587 tdep->xmm16_regnum = -1;
8588
8589 /* No upper YMM16-31 registers. */
8590 tdep->ymm16h_register_names = NULL;
8591 tdep->ymm16h_regnum = -1;
8592
8593 tdep->num_byte_regs = 8;
8594 tdep->num_word_regs = 8;
8595 tdep->num_dword_regs = 0;
8596 tdep->num_mmx_regs = 8;
8597 tdep->num_ymm_regs = 0;
8598
8599 /* No MPX registers. */
8600 tdep->bnd0r_regnum = -1;
8601 tdep->bndcfgu_regnum = -1;
8602
8603 /* No AVX512 registers. */
8604 tdep->k0_regnum = -1;
8605 tdep->num_zmm_regs = 0;
8606 tdep->num_ymm_avx512_regs = 0;
8607 tdep->num_xmm_avx512_regs = 0;
8608
8609 /* No PKEYS registers */
8610 tdep->pkru_regnum = -1;
8611 tdep->num_pkeys_regs = 0;
8612
8613 /* No segment base registers. */
8614 tdep->fsbase_regnum = -1;
8615
8616 tdesc_arch_data_up tdesc_data = tdesc_data_alloc ();
8617
8618 set_gdbarch_relocate_instruction (gdbarch, i386_relocate_instruction);
8619
8620 set_gdbarch_gen_return_address (gdbarch, i386_gen_return_address);
8621
8622 set_gdbarch_insn_is_call (gdbarch, i386_insn_is_call);
8623 set_gdbarch_insn_is_ret (gdbarch, i386_insn_is_ret);
8624 set_gdbarch_insn_is_jump (gdbarch, i386_insn_is_jump);
8625
8626 /* Hook in ABI-specific overrides, if they have been registered.
8627 Note: If INFO specifies a 64 bit arch, this is where we turn
8628 a 32-bit i386 into a 64-bit amd64. */
8629 info.tdesc_data = tdesc_data.get ();
8630 gdbarch_init_osabi (info, gdbarch);
8631
8632 if (!i386_validate_tdesc_p (tdep, tdesc_data.get ()))
8633 {
8634 xfree (tdep);
8635 gdbarch_free (gdbarch);
8636 return NULL;
8637 }
8638
8639 num_bnd_cooked = (tdep->bnd0r_regnum > 0 ? I387_NUM_BND_REGS : 0);
8640
8641 /* Wire in pseudo registers. Number of pseudo registers may be
8642 changed. */
8643 set_gdbarch_num_pseudo_regs (gdbarch, (tdep->num_byte_regs
8644 + tdep->num_word_regs
8645 + tdep->num_dword_regs
8646 + tdep->num_mmx_regs
8647 + tdep->num_ymm_regs
8648 + num_bnd_cooked
8649 + tdep->num_ymm_avx512_regs
8650 + tdep->num_zmm_regs));
8651
8652 /* Target description may be changed. */
8653 tdesc = tdep->tdesc;
8654
8655 tdesc_use_registers (gdbarch, tdesc, std::move (tdesc_data));
8656
8657 /* Override gdbarch_register_reggroup_p set in tdesc_use_registers. */
8658 set_gdbarch_register_reggroup_p (gdbarch, tdep->register_reggroup_p);
8659
8660 /* Make %al the first pseudo-register. */
8661 tdep->al_regnum = gdbarch_num_regs (gdbarch);
8662 tdep->ax_regnum = tdep->al_regnum + tdep->num_byte_regs;
8663
8664 ymm0_regnum = tdep->ax_regnum + tdep->num_word_regs;
8665 if (tdep->num_dword_regs)
8666 {
8667 /* Support dword pseudo-register if it hasn't been disabled. */
8668 tdep->eax_regnum = ymm0_regnum;
8669 ymm0_regnum += tdep->num_dword_regs;
8670 }
8671 else
8672 tdep->eax_regnum = -1;
8673
8674 mm0_regnum = ymm0_regnum;
8675 if (tdep->num_ymm_regs)
8676 {
8677 /* Support YMM pseudo-register if it is available. */
8678 tdep->ymm0_regnum = ymm0_regnum;
8679 mm0_regnum += tdep->num_ymm_regs;
8680 }
8681 else
8682 tdep->ymm0_regnum = -1;
8683
8684 if (tdep->num_ymm_avx512_regs)
8685 {
8686 /* Support YMM16-31 pseudo registers if available. */
8687 tdep->ymm16_regnum = mm0_regnum;
8688 mm0_regnum += tdep->num_ymm_avx512_regs;
8689 }
8690 else
8691 tdep->ymm16_regnum = -1;
8692
8693 if (tdep->num_zmm_regs)
8694 {
8695 /* Support ZMM pseudo-register if it is available. */
8696 tdep->zmm0_regnum = mm0_regnum;
8697 mm0_regnum += tdep->num_zmm_regs;
8698 }
8699 else
8700 tdep->zmm0_regnum = -1;
8701
8702 bnd0_regnum = mm0_regnum;
8703 if (tdep->num_mmx_regs != 0)
8704 {
8705 /* Support MMX pseudo-register if MMX hasn't been disabled. */
8706 tdep->mm0_regnum = mm0_regnum;
8707 bnd0_regnum += tdep->num_mmx_regs;
8708 }
8709 else
8710 tdep->mm0_regnum = -1;
8711
8712 if (tdep->bnd0r_regnum > 0)
8713 tdep->bnd0_regnum = bnd0_regnum;
8714 else
8715 tdep-> bnd0_regnum = -1;
8716
8717 /* Hook in the legacy prologue-based unwinders last (fallback). */
8718 frame_unwind_append_unwinder (gdbarch, &i386_stack_tramp_frame_unwind);
8719 frame_unwind_append_unwinder (gdbarch, &i386_sigtramp_frame_unwind);
8720 frame_unwind_append_unwinder (gdbarch, &i386_frame_unwind);
8721
8722 /* If we have a register mapping, enable the generic core file
8723 support, unless it has already been enabled. */
8724 if (tdep->gregset_reg_offset
8725 && !gdbarch_iterate_over_regset_sections_p (gdbarch))
8726 set_gdbarch_iterate_over_regset_sections
8727 (gdbarch, i386_iterate_over_regset_sections);
8728
8729 set_gdbarch_fast_tracepoint_valid_at (gdbarch,
8730 i386_fast_tracepoint_valid_at);
8731
8732 return gdbarch;
8733 }
8734
8735 \f
8736
8737 /* Return the target description for a specified XSAVE feature mask. */
8738
8739 const struct target_desc *
8740 i386_target_description (uint64_t xcr0, bool segments)
8741 {
8742 static target_desc *i386_tdescs \
8743 [2/*SSE*/][2/*AVX*/][2/*MPX*/][2/*AVX512*/][2/*PKRU*/][2/*segments*/] = {};
8744 target_desc **tdesc;
8745
8746 tdesc = &i386_tdescs[(xcr0 & X86_XSTATE_SSE) ? 1 : 0]
8747 [(xcr0 & X86_XSTATE_AVX) ? 1 : 0]
8748 [(xcr0 & X86_XSTATE_MPX) ? 1 : 0]
8749 [(xcr0 & X86_XSTATE_AVX512) ? 1 : 0]
8750 [(xcr0 & X86_XSTATE_PKRU) ? 1 : 0]
8751 [segments ? 1 : 0];
8752
8753 if (*tdesc == NULL)
8754 *tdesc = i386_create_target_description (xcr0, false, segments);
8755
8756 return *tdesc;
8757 }
8758
8759 #define MPX_BASE_MASK (~(ULONGEST) 0xfff)
8760
8761 /* Find the bound directory base address. */
8762
8763 static unsigned long
8764 i386_mpx_bd_base (void)
8765 {
8766 struct regcache *rcache;
8767 struct gdbarch_tdep *tdep;
8768 ULONGEST ret;
8769 enum register_status regstatus;
8770
8771 rcache = get_current_regcache ();
8772 tdep = gdbarch_tdep (rcache->arch ());
8773
8774 regstatus = regcache_raw_read_unsigned (rcache, tdep->bndcfgu_regnum, &ret);
8775
8776 if (regstatus != REG_VALID)
8777 error (_("BNDCFGU register invalid, read status %d."), regstatus);
8778
8779 return ret & MPX_BASE_MASK;
8780 }
8781
8782 int
8783 i386_mpx_enabled (void)
8784 {
8785 const struct gdbarch_tdep *tdep = gdbarch_tdep (get_current_arch ());
8786 const struct target_desc *tdesc = tdep->tdesc;
8787
8788 return (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx") != NULL);
8789 }
8790
8791 #define MPX_BD_MASK 0xfffffff00000ULL /* select bits [47:20] */
8792 #define MPX_BT_MASK 0x0000000ffff8 /* select bits [19:3] */
8793 #define MPX_BD_MASK_32 0xfffff000 /* select bits [31:12] */
8794 #define MPX_BT_MASK_32 0x00000ffc /* select bits [11:2] */
8795
8796 /* Find the bound table entry given the pointer location and the base
8797 address of the table. */
8798
8799 static CORE_ADDR
8800 i386_mpx_get_bt_entry (CORE_ADDR ptr, CORE_ADDR bd_base)
8801 {
8802 CORE_ADDR offset1;
8803 CORE_ADDR offset2;
8804 CORE_ADDR mpx_bd_mask, bd_ptr_r_shift, bd_ptr_l_shift;
8805 CORE_ADDR bt_mask, bt_select_r_shift, bt_select_l_shift;
8806 CORE_ADDR bd_entry_addr;
8807 CORE_ADDR bt_addr;
8808 CORE_ADDR bd_entry;
8809 struct gdbarch *gdbarch = get_current_arch ();
8810 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8811
8812
8813 if (gdbarch_ptr_bit (gdbarch) == 64)
8814 {
8815 mpx_bd_mask = (CORE_ADDR) MPX_BD_MASK;
8816 bd_ptr_r_shift = 20;
8817 bd_ptr_l_shift = 3;
8818 bt_select_r_shift = 3;
8819 bt_select_l_shift = 5;
8820 bt_mask = (CORE_ADDR) MPX_BT_MASK;
8821
8822 if ( sizeof (CORE_ADDR) == 4)
8823 error (_("bound table examination not supported\
8824 for 64-bit process with 32-bit GDB"));
8825 }
8826 else
8827 {
8828 mpx_bd_mask = MPX_BD_MASK_32;
8829 bd_ptr_r_shift = 12;
8830 bd_ptr_l_shift = 2;
8831 bt_select_r_shift = 2;
8832 bt_select_l_shift = 4;
8833 bt_mask = MPX_BT_MASK_32;
8834 }
8835
8836 offset1 = ((ptr & mpx_bd_mask) >> bd_ptr_r_shift) << bd_ptr_l_shift;
8837 bd_entry_addr = bd_base + offset1;
8838 bd_entry = read_memory_typed_address (bd_entry_addr, data_ptr_type);
8839
8840 if ((bd_entry & 0x1) == 0)
8841 error (_("Invalid bounds directory entry at %s."),
8842 paddress (get_current_arch (), bd_entry_addr));
8843
8844 /* Clearing status bit. */
8845 bd_entry--;
8846 bt_addr = bd_entry & ~bt_select_r_shift;
8847 offset2 = ((ptr & bt_mask) >> bt_select_r_shift) << bt_select_l_shift;
8848
8849 return bt_addr + offset2;
8850 }
8851
8852 /* Print routine for the mpx bounds. */
8853
8854 static void
8855 i386_mpx_print_bounds (const CORE_ADDR bt_entry[4])
8856 {
8857 struct ui_out *uiout = current_uiout;
8858 LONGEST size;
8859 struct gdbarch *gdbarch = get_current_arch ();
8860 CORE_ADDR onecompl = ~((CORE_ADDR) 0);
8861 int bounds_in_map = ((~bt_entry[1] == 0 && bt_entry[0] == onecompl) ? 1 : 0);
8862
8863 if (bounds_in_map == 1)
8864 {
8865 uiout->text ("Null bounds on map:");
8866 uiout->text (" pointer value = ");
8867 uiout->field_core_addr ("pointer-value", gdbarch, bt_entry[2]);
8868 uiout->text (".");
8869 uiout->text ("\n");
8870 }
8871 else
8872 {
8873 uiout->text ("{lbound = ");
8874 uiout->field_core_addr ("lower-bound", gdbarch, bt_entry[0]);
8875 uiout->text (", ubound = ");
8876
8877 /* The upper bound is stored in 1's complement. */
8878 uiout->field_core_addr ("upper-bound", gdbarch, ~bt_entry[1]);
8879 uiout->text ("}: pointer value = ");
8880 uiout->field_core_addr ("pointer-value", gdbarch, bt_entry[2]);
8881
8882 if (gdbarch_ptr_bit (gdbarch) == 64)
8883 size = ( (~(int64_t) bt_entry[1]) - (int64_t) bt_entry[0]);
8884 else
8885 size = ( ~((int32_t) bt_entry[1]) - (int32_t) bt_entry[0]);
8886
8887 /* In case the bounds are 0x0 and 0xffff... the difference will be -1.
8888 -1 represents in this sense full memory access, and there is no need
8889 one to the size. */
8890
8891 size = (size > -1 ? size + 1 : size);
8892 uiout->text (", size = ");
8893 uiout->field_string ("size", plongest (size));
8894
8895 uiout->text (", metadata = ");
8896 uiout->field_core_addr ("metadata", gdbarch, bt_entry[3]);
8897 uiout->text ("\n");
8898 }
8899 }
8900
8901 /* Implement the command "show mpx bound". */
8902
8903 static void
8904 i386_mpx_info_bounds (const char *args, int from_tty)
8905 {
8906 CORE_ADDR bd_base = 0;
8907 CORE_ADDR addr;
8908 CORE_ADDR bt_entry_addr = 0;
8909 CORE_ADDR bt_entry[4];
8910 int i;
8911 struct gdbarch *gdbarch = get_current_arch ();
8912 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8913
8914 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_i386
8915 || !i386_mpx_enabled ())
8916 {
8917 printf_unfiltered (_("Intel Memory Protection Extensions not "
8918 "supported on this target.\n"));
8919 return;
8920 }
8921
8922 if (args == NULL)
8923 {
8924 printf_unfiltered (_("Address of pointer variable expected.\n"));
8925 return;
8926 }
8927
8928 addr = parse_and_eval_address (args);
8929
8930 bd_base = i386_mpx_bd_base ();
8931 bt_entry_addr = i386_mpx_get_bt_entry (addr, bd_base);
8932
8933 memset (bt_entry, 0, sizeof (bt_entry));
8934
8935 for (i = 0; i < 4; i++)
8936 bt_entry[i] = read_memory_typed_address (bt_entry_addr
8937 + i * TYPE_LENGTH (data_ptr_type),
8938 data_ptr_type);
8939
8940 i386_mpx_print_bounds (bt_entry);
8941 }
8942
8943 /* Implement the command "set mpx bound". */
8944
8945 static void
8946 i386_mpx_set_bounds (const char *args, int from_tty)
8947 {
8948 CORE_ADDR bd_base = 0;
8949 CORE_ADDR addr, lower, upper;
8950 CORE_ADDR bt_entry_addr = 0;
8951 CORE_ADDR bt_entry[2];
8952 const char *input = args;
8953 int i;
8954 struct gdbarch *gdbarch = get_current_arch ();
8955 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
8956 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8957
8958 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_i386
8959 || !i386_mpx_enabled ())
8960 error (_("Intel Memory Protection Extensions not supported\
8961 on this target."));
8962
8963 if (args == NULL)
8964 error (_("Pointer value expected."));
8965
8966 addr = value_as_address (parse_to_comma_and_eval (&input));
8967
8968 if (input[0] == ',')
8969 ++input;
8970 if (input[0] == '\0')
8971 error (_("wrong number of arguments: missing lower and upper bound."));
8972 lower = value_as_address (parse_to_comma_and_eval (&input));
8973
8974 if (input[0] == ',')
8975 ++input;
8976 if (input[0] == '\0')
8977 error (_("Wrong number of arguments; Missing upper bound."));
8978 upper = value_as_address (parse_to_comma_and_eval (&input));
8979
8980 bd_base = i386_mpx_bd_base ();
8981 bt_entry_addr = i386_mpx_get_bt_entry (addr, bd_base);
8982 for (i = 0; i < 2; i++)
8983 bt_entry[i] = read_memory_typed_address (bt_entry_addr
8984 + i * TYPE_LENGTH (data_ptr_type),
8985 data_ptr_type);
8986 bt_entry[0] = (uint64_t) lower;
8987 bt_entry[1] = ~(uint64_t) upper;
8988
8989 for (i = 0; i < 2; i++)
8990 write_memory_unsigned_integer (bt_entry_addr
8991 + i * TYPE_LENGTH (data_ptr_type),
8992 TYPE_LENGTH (data_ptr_type), byte_order,
8993 bt_entry[i]);
8994 }
8995
8996 static struct cmd_list_element *mpx_set_cmdlist, *mpx_show_cmdlist;
8997
8998 void _initialize_i386_tdep ();
8999 void
9000 _initialize_i386_tdep ()
9001 {
9002 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
9003
9004 /* Add the variable that controls the disassembly flavor. */
9005 add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
9006 &disassembly_flavor, _("\
9007 Set the disassembly flavor."), _("\
9008 Show the disassembly flavor."), _("\
9009 The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
9010 NULL,
9011 NULL, /* FIXME: i18n: */
9012 &setlist, &showlist);
9013
9014 /* Add the variable that controls the convention for returning
9015 structs. */
9016 add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
9017 &struct_convention, _("\
9018 Set the convention for returning small structs."), _("\
9019 Show the convention for returning small structs."), _("\
9020 Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
9021 is \"default\"."),
9022 NULL,
9023 NULL, /* FIXME: i18n: */
9024 &setlist, &showlist);
9025
9026 /* Add "mpx" prefix for the set commands. */
9027
9028 add_basic_prefix_cmd ("mpx", class_support, _("\
9029 Set Intel Memory Protection Extensions specific variables."),
9030 &mpx_set_cmdlist, "set mpx ",
9031 0 /* allow-unknown */, &setlist);
9032
9033 /* Add "mpx" prefix for the show commands. */
9034
9035 add_show_prefix_cmd ("mpx", class_support, _("\
9036 Show Intel Memory Protection Extensions specific variables."),
9037 &mpx_show_cmdlist, "show mpx ",
9038 0 /* allow-unknown */, &showlist);
9039
9040 /* Add "bound" command for the show mpx commands list. */
9041
9042 add_cmd ("bound", no_class, i386_mpx_info_bounds,
9043 "Show the memory bounds for a given array/pointer storage\
9044 in the bound table.",
9045 &mpx_show_cmdlist);
9046
9047 /* Add "bound" command for the set mpx commands list. */
9048
9049 add_cmd ("bound", no_class, i386_mpx_set_bounds,
9050 "Set the memory bounds for a given array/pointer storage\
9051 in the bound table.",
9052 &mpx_set_cmdlist);
9053
9054 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
9055 i386_svr4_init_abi);
9056
9057 /* Initialize the i386-specific register groups. */
9058 i386_init_reggroups ();
9059
9060 /* Tell remote stub that we support XML target description. */
9061 register_remote_support_xml ("i386");
9062 }
This page took 0.20885 seconds and 5 git commands to generate.