2012-07-20 Pedro Alves <palves@redhat.com>
[deliverable/binutils-gdb.git] / gdb / i386-tdep.c
1 /* Intel 386 target-dependent stuff.
2
3 Copyright (C) 1988-2012 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "opcode/i386.h"
22 #include "arch-utils.h"
23 #include "command.h"
24 #include "dummy-frame.h"
25 #include "dwarf2-frame.h"
26 #include "doublest.h"
27 #include "frame.h"
28 #include "frame-base.h"
29 #include "frame-unwind.h"
30 #include "inferior.h"
31 #include "gdbcmd.h"
32 #include "gdbcore.h"
33 #include "gdbtypes.h"
34 #include "objfiles.h"
35 #include "osabi.h"
36 #include "regcache.h"
37 #include "reggroups.h"
38 #include "regset.h"
39 #include "symfile.h"
40 #include "symtab.h"
41 #include "target.h"
42 #include "value.h"
43 #include "dis-asm.h"
44 #include "disasm.h"
45 #include "remote.h"
46 #include "exceptions.h"
47 #include "gdb_assert.h"
48 #include "gdb_string.h"
49
50 #include "i386-tdep.h"
51 #include "i387-tdep.h"
52 #include "i386-xstate.h"
53
54 #include "record.h"
55 #include <stdint.h>
56
57 #include "features/i386/i386.c"
58 #include "features/i386/i386-avx.c"
59 #include "features/i386/i386-mmx.c"
60
61 #include "ax.h"
62 #include "ax-gdb.h"
63
64 #include "stap-probe.h"
65 #include "user-regs.h"
66 #include "cli/cli-utils.h"
67 #include "expression.h"
68 #include "parser-defs.h"
69 #include <ctype.h>
70
71 /* Register names. */
72
73 static const char *i386_register_names[] =
74 {
75 "eax", "ecx", "edx", "ebx",
76 "esp", "ebp", "esi", "edi",
77 "eip", "eflags", "cs", "ss",
78 "ds", "es", "fs", "gs",
79 "st0", "st1", "st2", "st3",
80 "st4", "st5", "st6", "st7",
81 "fctrl", "fstat", "ftag", "fiseg",
82 "fioff", "foseg", "fooff", "fop",
83 "xmm0", "xmm1", "xmm2", "xmm3",
84 "xmm4", "xmm5", "xmm6", "xmm7",
85 "mxcsr"
86 };
87
88 static const char *i386_ymm_names[] =
89 {
90 "ymm0", "ymm1", "ymm2", "ymm3",
91 "ymm4", "ymm5", "ymm6", "ymm7",
92 };
93
94 static const char *i386_ymmh_names[] =
95 {
96 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
97 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
98 };
99
100 /* Register names for MMX pseudo-registers. */
101
102 static const char *i386_mmx_names[] =
103 {
104 "mm0", "mm1", "mm2", "mm3",
105 "mm4", "mm5", "mm6", "mm7"
106 };
107
108 /* Register names for byte pseudo-registers. */
109
110 static const char *i386_byte_names[] =
111 {
112 "al", "cl", "dl", "bl",
113 "ah", "ch", "dh", "bh"
114 };
115
116 /* Register names for word pseudo-registers. */
117
118 static const char *i386_word_names[] =
119 {
120 "ax", "cx", "dx", "bx",
121 "", "bp", "si", "di"
122 };
123
124 /* MMX register? */
125
126 static int
127 i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
128 {
129 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
130 int mm0_regnum = tdep->mm0_regnum;
131
132 if (mm0_regnum < 0)
133 return 0;
134
135 regnum -= mm0_regnum;
136 return regnum >= 0 && regnum < tdep->num_mmx_regs;
137 }
138
139 /* Byte register? */
140
141 int
142 i386_byte_regnum_p (struct gdbarch *gdbarch, int regnum)
143 {
144 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
145
146 regnum -= tdep->al_regnum;
147 return regnum >= 0 && regnum < tdep->num_byte_regs;
148 }
149
150 /* Word register? */
151
152 int
153 i386_word_regnum_p (struct gdbarch *gdbarch, int regnum)
154 {
155 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
156
157 regnum -= tdep->ax_regnum;
158 return regnum >= 0 && regnum < tdep->num_word_regs;
159 }
160
161 /* Dword register? */
162
163 int
164 i386_dword_regnum_p (struct gdbarch *gdbarch, int regnum)
165 {
166 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
167 int eax_regnum = tdep->eax_regnum;
168
169 if (eax_regnum < 0)
170 return 0;
171
172 regnum -= eax_regnum;
173 return regnum >= 0 && regnum < tdep->num_dword_regs;
174 }
175
176 static int
177 i386_ymmh_regnum_p (struct gdbarch *gdbarch, int regnum)
178 {
179 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
180 int ymm0h_regnum = tdep->ymm0h_regnum;
181
182 if (ymm0h_regnum < 0)
183 return 0;
184
185 regnum -= ymm0h_regnum;
186 return regnum >= 0 && regnum < tdep->num_ymm_regs;
187 }
188
189 /* AVX register? */
190
191 int
192 i386_ymm_regnum_p (struct gdbarch *gdbarch, int regnum)
193 {
194 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
195 int ymm0_regnum = tdep->ymm0_regnum;
196
197 if (ymm0_regnum < 0)
198 return 0;
199
200 regnum -= ymm0_regnum;
201 return regnum >= 0 && regnum < tdep->num_ymm_regs;
202 }
203
204 /* SSE register? */
205
206 int
207 i386_xmm_regnum_p (struct gdbarch *gdbarch, int regnum)
208 {
209 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
210 int num_xmm_regs = I387_NUM_XMM_REGS (tdep);
211
212 if (num_xmm_regs == 0)
213 return 0;
214
215 regnum -= I387_XMM0_REGNUM (tdep);
216 return regnum >= 0 && regnum < num_xmm_regs;
217 }
218
219 static int
220 i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
221 {
222 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
223
224 if (I387_NUM_XMM_REGS (tdep) == 0)
225 return 0;
226
227 return (regnum == I387_MXCSR_REGNUM (tdep));
228 }
229
230 /* FP register? */
231
232 int
233 i386_fp_regnum_p (struct gdbarch *gdbarch, int regnum)
234 {
235 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
236
237 if (I387_ST0_REGNUM (tdep) < 0)
238 return 0;
239
240 return (I387_ST0_REGNUM (tdep) <= regnum
241 && regnum < I387_FCTRL_REGNUM (tdep));
242 }
243
244 int
245 i386_fpc_regnum_p (struct gdbarch *gdbarch, int regnum)
246 {
247 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
248
249 if (I387_ST0_REGNUM (tdep) < 0)
250 return 0;
251
252 return (I387_FCTRL_REGNUM (tdep) <= regnum
253 && regnum < I387_XMM0_REGNUM (tdep));
254 }
255
256 /* Return the name of register REGNUM, or the empty string if it is
257 an anonymous register. */
258
259 static const char *
260 i386_register_name (struct gdbarch *gdbarch, int regnum)
261 {
262 /* Hide the upper YMM registers. */
263 if (i386_ymmh_regnum_p (gdbarch, regnum))
264 return "";
265
266 return tdesc_register_name (gdbarch, regnum);
267 }
268
269 /* Return the name of register REGNUM. */
270
271 const char *
272 i386_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
273 {
274 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
275 if (i386_mmx_regnum_p (gdbarch, regnum))
276 return i386_mmx_names[regnum - I387_MM0_REGNUM (tdep)];
277 else if (i386_ymm_regnum_p (gdbarch, regnum))
278 return i386_ymm_names[regnum - tdep->ymm0_regnum];
279 else if (i386_byte_regnum_p (gdbarch, regnum))
280 return i386_byte_names[regnum - tdep->al_regnum];
281 else if (i386_word_regnum_p (gdbarch, regnum))
282 return i386_word_names[regnum - tdep->ax_regnum];
283
284 internal_error (__FILE__, __LINE__, _("invalid regnum"));
285 }
286
287 /* Convert a dbx register number REG to the appropriate register
288 number used by GDB. */
289
290 static int
291 i386_dbx_reg_to_regnum (struct gdbarch *gdbarch, int reg)
292 {
293 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
294
295 /* This implements what GCC calls the "default" register map
296 (dbx_register_map[]). */
297
298 if (reg >= 0 && reg <= 7)
299 {
300 /* General-purpose registers. The debug info calls %ebp
301 register 4, and %esp register 5. */
302 if (reg == 4)
303 return 5;
304 else if (reg == 5)
305 return 4;
306 else return reg;
307 }
308 else if (reg >= 12 && reg <= 19)
309 {
310 /* Floating-point registers. */
311 return reg - 12 + I387_ST0_REGNUM (tdep);
312 }
313 else if (reg >= 21 && reg <= 28)
314 {
315 /* SSE registers. */
316 int ymm0_regnum = tdep->ymm0_regnum;
317
318 if (ymm0_regnum >= 0
319 && i386_xmm_regnum_p (gdbarch, reg))
320 return reg - 21 + ymm0_regnum;
321 else
322 return reg - 21 + I387_XMM0_REGNUM (tdep);
323 }
324 else if (reg >= 29 && reg <= 36)
325 {
326 /* MMX registers. */
327 return reg - 29 + I387_MM0_REGNUM (tdep);
328 }
329
330 /* This will hopefully provoke a warning. */
331 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
332 }
333
334 /* Convert SVR4 register number REG to the appropriate register number
335 used by GDB. */
336
337 static int
338 i386_svr4_reg_to_regnum (struct gdbarch *gdbarch, int reg)
339 {
340 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
341
342 /* This implements the GCC register map that tries to be compatible
343 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
344
345 /* The SVR4 register numbering includes %eip and %eflags, and
346 numbers the floating point registers differently. */
347 if (reg >= 0 && reg <= 9)
348 {
349 /* General-purpose registers. */
350 return reg;
351 }
352 else if (reg >= 11 && reg <= 18)
353 {
354 /* Floating-point registers. */
355 return reg - 11 + I387_ST0_REGNUM (tdep);
356 }
357 else if (reg >= 21 && reg <= 36)
358 {
359 /* The SSE and MMX registers have the same numbers as with dbx. */
360 return i386_dbx_reg_to_regnum (gdbarch, reg);
361 }
362
363 switch (reg)
364 {
365 case 37: return I387_FCTRL_REGNUM (tdep);
366 case 38: return I387_FSTAT_REGNUM (tdep);
367 case 39: return I387_MXCSR_REGNUM (tdep);
368 case 40: return I386_ES_REGNUM;
369 case 41: return I386_CS_REGNUM;
370 case 42: return I386_SS_REGNUM;
371 case 43: return I386_DS_REGNUM;
372 case 44: return I386_FS_REGNUM;
373 case 45: return I386_GS_REGNUM;
374 }
375
376 /* This will hopefully provoke a warning. */
377 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
378 }
379
380 \f
381
382 /* This is the variable that is set with "set disassembly-flavor", and
383 its legitimate values. */
384 static const char att_flavor[] = "att";
385 static const char intel_flavor[] = "intel";
386 static const char *const valid_flavors[] =
387 {
388 att_flavor,
389 intel_flavor,
390 NULL
391 };
392 static const char *disassembly_flavor = att_flavor;
393 \f
394
395 /* Use the program counter to determine the contents and size of a
396 breakpoint instruction. Return a pointer to a string of bytes that
397 encode a breakpoint instruction, store the length of the string in
398 *LEN and optionally adjust *PC to point to the correct memory
399 location for inserting the breakpoint.
400
401 On the i386 we have a single breakpoint that fits in a single byte
402 and can be inserted anywhere.
403
404 This function is 64-bit safe. */
405
406 static const gdb_byte *
407 i386_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
408 {
409 static gdb_byte break_insn[] = { 0xcc }; /* int 3 */
410
411 *len = sizeof (break_insn);
412 return break_insn;
413 }
414 \f
415 /* Displaced instruction handling. */
416
417 /* Skip the legacy instruction prefixes in INSN.
418 Not all prefixes are valid for any particular insn
419 but we needn't care, the insn will fault if it's invalid.
420 The result is a pointer to the first opcode byte,
421 or NULL if we run off the end of the buffer. */
422
423 static gdb_byte *
424 i386_skip_prefixes (gdb_byte *insn, size_t max_len)
425 {
426 gdb_byte *end = insn + max_len;
427
428 while (insn < end)
429 {
430 switch (*insn)
431 {
432 case DATA_PREFIX_OPCODE:
433 case ADDR_PREFIX_OPCODE:
434 case CS_PREFIX_OPCODE:
435 case DS_PREFIX_OPCODE:
436 case ES_PREFIX_OPCODE:
437 case FS_PREFIX_OPCODE:
438 case GS_PREFIX_OPCODE:
439 case SS_PREFIX_OPCODE:
440 case LOCK_PREFIX_OPCODE:
441 case REPE_PREFIX_OPCODE:
442 case REPNE_PREFIX_OPCODE:
443 ++insn;
444 continue;
445 default:
446 return insn;
447 }
448 }
449
450 return NULL;
451 }
452
453 static int
454 i386_absolute_jmp_p (const gdb_byte *insn)
455 {
456 /* jmp far (absolute address in operand). */
457 if (insn[0] == 0xea)
458 return 1;
459
460 if (insn[0] == 0xff)
461 {
462 /* jump near, absolute indirect (/4). */
463 if ((insn[1] & 0x38) == 0x20)
464 return 1;
465
466 /* jump far, absolute indirect (/5). */
467 if ((insn[1] & 0x38) == 0x28)
468 return 1;
469 }
470
471 return 0;
472 }
473
474 static int
475 i386_absolute_call_p (const gdb_byte *insn)
476 {
477 /* call far, absolute. */
478 if (insn[0] == 0x9a)
479 return 1;
480
481 if (insn[0] == 0xff)
482 {
483 /* Call near, absolute indirect (/2). */
484 if ((insn[1] & 0x38) == 0x10)
485 return 1;
486
487 /* Call far, absolute indirect (/3). */
488 if ((insn[1] & 0x38) == 0x18)
489 return 1;
490 }
491
492 return 0;
493 }
494
495 static int
496 i386_ret_p (const gdb_byte *insn)
497 {
498 switch (insn[0])
499 {
500 case 0xc2: /* ret near, pop N bytes. */
501 case 0xc3: /* ret near */
502 case 0xca: /* ret far, pop N bytes. */
503 case 0xcb: /* ret far */
504 case 0xcf: /* iret */
505 return 1;
506
507 default:
508 return 0;
509 }
510 }
511
512 static int
513 i386_call_p (const gdb_byte *insn)
514 {
515 if (i386_absolute_call_p (insn))
516 return 1;
517
518 /* call near, relative. */
519 if (insn[0] == 0xe8)
520 return 1;
521
522 return 0;
523 }
524
525 /* Return non-zero if INSN is a system call, and set *LENGTHP to its
526 length in bytes. Otherwise, return zero. */
527
528 static int
529 i386_syscall_p (const gdb_byte *insn, int *lengthp)
530 {
531 /* Is it 'int $0x80'? */
532 if ((insn[0] == 0xcd && insn[1] == 0x80)
533 /* Or is it 'sysenter'? */
534 || (insn[0] == 0x0f && insn[1] == 0x34)
535 /* Or is it 'syscall'? */
536 || (insn[0] == 0x0f && insn[1] == 0x05))
537 {
538 *lengthp = 2;
539 return 1;
540 }
541
542 return 0;
543 }
544
545 /* Some kernels may run one past a syscall insn, so we have to cope.
546 Otherwise this is just simple_displaced_step_copy_insn. */
547
548 struct displaced_step_closure *
549 i386_displaced_step_copy_insn (struct gdbarch *gdbarch,
550 CORE_ADDR from, CORE_ADDR to,
551 struct regcache *regs)
552 {
553 size_t len = gdbarch_max_insn_length (gdbarch);
554 gdb_byte *buf = xmalloc (len);
555
556 read_memory (from, buf, len);
557
558 /* GDB may get control back after the insn after the syscall.
559 Presumably this is a kernel bug.
560 If this is a syscall, make sure there's a nop afterwards. */
561 {
562 int syscall_length;
563 gdb_byte *insn;
564
565 insn = i386_skip_prefixes (buf, len);
566 if (insn != NULL && i386_syscall_p (insn, &syscall_length))
567 insn[syscall_length] = NOP_OPCODE;
568 }
569
570 write_memory (to, buf, len);
571
572 if (debug_displaced)
573 {
574 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
575 paddress (gdbarch, from), paddress (gdbarch, to));
576 displaced_step_dump_bytes (gdb_stdlog, buf, len);
577 }
578
579 return (struct displaced_step_closure *) buf;
580 }
581
582 /* Fix up the state of registers and memory after having single-stepped
583 a displaced instruction. */
584
585 void
586 i386_displaced_step_fixup (struct gdbarch *gdbarch,
587 struct displaced_step_closure *closure,
588 CORE_ADDR from, CORE_ADDR to,
589 struct regcache *regs)
590 {
591 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
592
593 /* The offset we applied to the instruction's address.
594 This could well be negative (when viewed as a signed 32-bit
595 value), but ULONGEST won't reflect that, so take care when
596 applying it. */
597 ULONGEST insn_offset = to - from;
598
599 /* Since we use simple_displaced_step_copy_insn, our closure is a
600 copy of the instruction. */
601 gdb_byte *insn = (gdb_byte *) closure;
602 /* The start of the insn, needed in case we see some prefixes. */
603 gdb_byte *insn_start = insn;
604
605 if (debug_displaced)
606 fprintf_unfiltered (gdb_stdlog,
607 "displaced: fixup (%s, %s), "
608 "insn = 0x%02x 0x%02x ...\n",
609 paddress (gdbarch, from), paddress (gdbarch, to),
610 insn[0], insn[1]);
611
612 /* The list of issues to contend with here is taken from
613 resume_execution in arch/i386/kernel/kprobes.c, Linux 2.6.20.
614 Yay for Free Software! */
615
616 /* Relocate the %eip, if necessary. */
617
618 /* The instruction recognizers we use assume any leading prefixes
619 have been skipped. */
620 {
621 /* This is the size of the buffer in closure. */
622 size_t max_insn_len = gdbarch_max_insn_length (gdbarch);
623 gdb_byte *opcode = i386_skip_prefixes (insn, max_insn_len);
624 /* If there are too many prefixes, just ignore the insn.
625 It will fault when run. */
626 if (opcode != NULL)
627 insn = opcode;
628 }
629
630 /* Except in the case of absolute or indirect jump or call
631 instructions, or a return instruction, the new eip is relative to
632 the displaced instruction; make it relative. Well, signal
633 handler returns don't need relocation either, but we use the
634 value of %eip to recognize those; see below. */
635 if (! i386_absolute_jmp_p (insn)
636 && ! i386_absolute_call_p (insn)
637 && ! i386_ret_p (insn))
638 {
639 ULONGEST orig_eip;
640 int insn_len;
641
642 regcache_cooked_read_unsigned (regs, I386_EIP_REGNUM, &orig_eip);
643
644 /* A signal trampoline system call changes the %eip, resuming
645 execution of the main program after the signal handler has
646 returned. That makes them like 'return' instructions; we
647 shouldn't relocate %eip.
648
649 But most system calls don't, and we do need to relocate %eip.
650
651 Our heuristic for distinguishing these cases: if stepping
652 over the system call instruction left control directly after
653 the instruction, the we relocate --- control almost certainly
654 doesn't belong in the displaced copy. Otherwise, we assume
655 the instruction has put control where it belongs, and leave
656 it unrelocated. Goodness help us if there are PC-relative
657 system calls. */
658 if (i386_syscall_p (insn, &insn_len)
659 && orig_eip != to + (insn - insn_start) + insn_len
660 /* GDB can get control back after the insn after the syscall.
661 Presumably this is a kernel bug.
662 i386_displaced_step_copy_insn ensures its a nop,
663 we add one to the length for it. */
664 && orig_eip != to + (insn - insn_start) + insn_len + 1)
665 {
666 if (debug_displaced)
667 fprintf_unfiltered (gdb_stdlog,
668 "displaced: syscall changed %%eip; "
669 "not relocating\n");
670 }
671 else
672 {
673 ULONGEST eip = (orig_eip - insn_offset) & 0xffffffffUL;
674
675 /* If we just stepped over a breakpoint insn, we don't backup
676 the pc on purpose; this is to match behaviour without
677 stepping. */
678
679 regcache_cooked_write_unsigned (regs, I386_EIP_REGNUM, eip);
680
681 if (debug_displaced)
682 fprintf_unfiltered (gdb_stdlog,
683 "displaced: "
684 "relocated %%eip from %s to %s\n",
685 paddress (gdbarch, orig_eip),
686 paddress (gdbarch, eip));
687 }
688 }
689
690 /* If the instruction was PUSHFL, then the TF bit will be set in the
691 pushed value, and should be cleared. We'll leave this for later,
692 since GDB already messes up the TF flag when stepping over a
693 pushfl. */
694
695 /* If the instruction was a call, the return address now atop the
696 stack is the address following the copied instruction. We need
697 to make it the address following the original instruction. */
698 if (i386_call_p (insn))
699 {
700 ULONGEST esp;
701 ULONGEST retaddr;
702 const ULONGEST retaddr_len = 4;
703
704 regcache_cooked_read_unsigned (regs, I386_ESP_REGNUM, &esp);
705 retaddr = read_memory_unsigned_integer (esp, retaddr_len, byte_order);
706 retaddr = (retaddr - insn_offset) & 0xffffffffUL;
707 write_memory_unsigned_integer (esp, retaddr_len, byte_order, retaddr);
708
709 if (debug_displaced)
710 fprintf_unfiltered (gdb_stdlog,
711 "displaced: relocated return addr at %s to %s\n",
712 paddress (gdbarch, esp),
713 paddress (gdbarch, retaddr));
714 }
715 }
716
717 static void
718 append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
719 {
720 target_write_memory (*to, buf, len);
721 *to += len;
722 }
723
724 static void
725 i386_relocate_instruction (struct gdbarch *gdbarch,
726 CORE_ADDR *to, CORE_ADDR oldloc)
727 {
728 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
729 gdb_byte buf[I386_MAX_INSN_LEN];
730 int offset = 0, rel32, newrel;
731 int insn_length;
732 gdb_byte *insn = buf;
733
734 read_memory (oldloc, buf, I386_MAX_INSN_LEN);
735
736 insn_length = gdb_buffered_insn_length (gdbarch, insn,
737 I386_MAX_INSN_LEN, oldloc);
738
739 /* Get past the prefixes. */
740 insn = i386_skip_prefixes (insn, I386_MAX_INSN_LEN);
741
742 /* Adjust calls with 32-bit relative addresses as push/jump, with
743 the address pushed being the location where the original call in
744 the user program would return to. */
745 if (insn[0] == 0xe8)
746 {
747 gdb_byte push_buf[16];
748 unsigned int ret_addr;
749
750 /* Where "ret" in the original code will return to. */
751 ret_addr = oldloc + insn_length;
752 push_buf[0] = 0x68; /* pushq $... */
753 memcpy (&push_buf[1], &ret_addr, 4);
754 /* Push the push. */
755 append_insns (to, 5, push_buf);
756
757 /* Convert the relative call to a relative jump. */
758 insn[0] = 0xe9;
759
760 /* Adjust the destination offset. */
761 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
762 newrel = (oldloc - *to) + rel32;
763 store_signed_integer (insn + 1, 4, byte_order, newrel);
764
765 if (debug_displaced)
766 fprintf_unfiltered (gdb_stdlog,
767 "Adjusted insn rel32=%s at %s to"
768 " rel32=%s at %s\n",
769 hex_string (rel32), paddress (gdbarch, oldloc),
770 hex_string (newrel), paddress (gdbarch, *to));
771
772 /* Write the adjusted jump into its displaced location. */
773 append_insns (to, 5, insn);
774 return;
775 }
776
777 /* Adjust jumps with 32-bit relative addresses. Calls are already
778 handled above. */
779 if (insn[0] == 0xe9)
780 offset = 1;
781 /* Adjust conditional jumps. */
782 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
783 offset = 2;
784
785 if (offset)
786 {
787 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
788 newrel = (oldloc - *to) + rel32;
789 store_signed_integer (insn + offset, 4, byte_order, newrel);
790 if (debug_displaced)
791 fprintf_unfiltered (gdb_stdlog,
792 "Adjusted insn rel32=%s at %s to"
793 " rel32=%s at %s\n",
794 hex_string (rel32), paddress (gdbarch, oldloc),
795 hex_string (newrel), paddress (gdbarch, *to));
796 }
797
798 /* Write the adjusted instructions into their displaced
799 location. */
800 append_insns (to, insn_length, buf);
801 }
802
803 \f
804 #ifdef I386_REGNO_TO_SYMMETRY
805 #error "The Sequent Symmetry is no longer supported."
806 #endif
807
808 /* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
809 and %esp "belong" to the calling function. Therefore these
810 registers should be saved if they're going to be modified. */
811
812 /* The maximum number of saved registers. This should include all
813 registers mentioned above, and %eip. */
814 #define I386_NUM_SAVED_REGS I386_NUM_GREGS
815
816 struct i386_frame_cache
817 {
818 /* Base address. */
819 CORE_ADDR base;
820 int base_p;
821 LONGEST sp_offset;
822 CORE_ADDR pc;
823
824 /* Saved registers. */
825 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
826 CORE_ADDR saved_sp;
827 int saved_sp_reg;
828 int pc_in_eax;
829
830 /* Stack space reserved for local variables. */
831 long locals;
832 };
833
834 /* Allocate and initialize a frame cache. */
835
836 static struct i386_frame_cache *
837 i386_alloc_frame_cache (void)
838 {
839 struct i386_frame_cache *cache;
840 int i;
841
842 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
843
844 /* Base address. */
845 cache->base_p = 0;
846 cache->base = 0;
847 cache->sp_offset = -4;
848 cache->pc = 0;
849
850 /* Saved registers. We initialize these to -1 since zero is a valid
851 offset (that's where %ebp is supposed to be stored). */
852 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
853 cache->saved_regs[i] = -1;
854 cache->saved_sp = 0;
855 cache->saved_sp_reg = -1;
856 cache->pc_in_eax = 0;
857
858 /* Frameless until proven otherwise. */
859 cache->locals = -1;
860
861 return cache;
862 }
863
864 /* If the instruction at PC is a jump, return the address of its
865 target. Otherwise, return PC. */
866
867 static CORE_ADDR
868 i386_follow_jump (struct gdbarch *gdbarch, CORE_ADDR pc)
869 {
870 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
871 gdb_byte op;
872 long delta = 0;
873 int data16 = 0;
874
875 if (target_read_memory (pc, &op, 1))
876 return pc;
877
878 if (op == 0x66)
879 {
880 data16 = 1;
881 op = read_memory_unsigned_integer (pc + 1, 1, byte_order);
882 }
883
884 switch (op)
885 {
886 case 0xe9:
887 /* Relative jump: if data16 == 0, disp32, else disp16. */
888 if (data16)
889 {
890 delta = read_memory_integer (pc + 2, 2, byte_order);
891
892 /* Include the size of the jmp instruction (including the
893 0x66 prefix). */
894 delta += 4;
895 }
896 else
897 {
898 delta = read_memory_integer (pc + 1, 4, byte_order);
899
900 /* Include the size of the jmp instruction. */
901 delta += 5;
902 }
903 break;
904 case 0xeb:
905 /* Relative jump, disp8 (ignore data16). */
906 delta = read_memory_integer (pc + data16 + 1, 1, byte_order);
907
908 delta += data16 + 2;
909 break;
910 }
911
912 return pc + delta;
913 }
914
915 /* Check whether PC points at a prologue for a function returning a
916 structure or union. If so, it updates CACHE and returns the
917 address of the first instruction after the code sequence that
918 removes the "hidden" argument from the stack or CURRENT_PC,
919 whichever is smaller. Otherwise, return PC. */
920
921 static CORE_ADDR
922 i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
923 struct i386_frame_cache *cache)
924 {
925 /* Functions that return a structure or union start with:
926
927 popl %eax 0x58
928 xchgl %eax, (%esp) 0x87 0x04 0x24
929 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
930
931 (the System V compiler puts out the second `xchg' instruction,
932 and the assembler doesn't try to optimize it, so the 'sib' form
933 gets generated). This sequence is used to get the address of the
934 return buffer for a function that returns a structure. */
935 static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
936 static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
937 gdb_byte buf[4];
938 gdb_byte op;
939
940 if (current_pc <= pc)
941 return pc;
942
943 if (target_read_memory (pc, &op, 1))
944 return pc;
945
946 if (op != 0x58) /* popl %eax */
947 return pc;
948
949 if (target_read_memory (pc + 1, buf, 4))
950 return pc;
951
952 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
953 return pc;
954
955 if (current_pc == pc)
956 {
957 cache->sp_offset += 4;
958 return current_pc;
959 }
960
961 if (current_pc == pc + 1)
962 {
963 cache->pc_in_eax = 1;
964 return current_pc;
965 }
966
967 if (buf[1] == proto1[1])
968 return pc + 4;
969 else
970 return pc + 5;
971 }
972
973 static CORE_ADDR
974 i386_skip_probe (CORE_ADDR pc)
975 {
976 /* A function may start with
977
978 pushl constant
979 call _probe
980 addl $4, %esp
981
982 followed by
983
984 pushl %ebp
985
986 etc. */
987 gdb_byte buf[8];
988 gdb_byte op;
989
990 if (target_read_memory (pc, &op, 1))
991 return pc;
992
993 if (op == 0x68 || op == 0x6a)
994 {
995 int delta;
996
997 /* Skip past the `pushl' instruction; it has either a one-byte or a
998 four-byte operand, depending on the opcode. */
999 if (op == 0x68)
1000 delta = 5;
1001 else
1002 delta = 2;
1003
1004 /* Read the following 8 bytes, which should be `call _probe' (6
1005 bytes) followed by `addl $4,%esp' (2 bytes). */
1006 read_memory (pc + delta, buf, sizeof (buf));
1007 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
1008 pc += delta + sizeof (buf);
1009 }
1010
1011 return pc;
1012 }
1013
1014 /* GCC 4.1 and later, can put code in the prologue to realign the
1015 stack pointer. Check whether PC points to such code, and update
1016 CACHE accordingly. Return the first instruction after the code
1017 sequence or CURRENT_PC, whichever is smaller. If we don't
1018 recognize the code, return PC. */
1019
1020 static CORE_ADDR
1021 i386_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1022 struct i386_frame_cache *cache)
1023 {
1024 /* There are 2 code sequences to re-align stack before the frame
1025 gets set up:
1026
1027 1. Use a caller-saved saved register:
1028
1029 leal 4(%esp), %reg
1030 andl $-XXX, %esp
1031 pushl -4(%reg)
1032
1033 2. Use a callee-saved saved register:
1034
1035 pushl %reg
1036 leal 8(%esp), %reg
1037 andl $-XXX, %esp
1038 pushl -4(%reg)
1039
1040 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
1041
1042 0x83 0xe4 0xf0 andl $-16, %esp
1043 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
1044 */
1045
1046 gdb_byte buf[14];
1047 int reg;
1048 int offset, offset_and;
1049 static int regnums[8] = {
1050 I386_EAX_REGNUM, /* %eax */
1051 I386_ECX_REGNUM, /* %ecx */
1052 I386_EDX_REGNUM, /* %edx */
1053 I386_EBX_REGNUM, /* %ebx */
1054 I386_ESP_REGNUM, /* %esp */
1055 I386_EBP_REGNUM, /* %ebp */
1056 I386_ESI_REGNUM, /* %esi */
1057 I386_EDI_REGNUM /* %edi */
1058 };
1059
1060 if (target_read_memory (pc, buf, sizeof buf))
1061 return pc;
1062
1063 /* Check caller-saved saved register. The first instruction has
1064 to be "leal 4(%esp), %reg". */
1065 if (buf[0] == 0x8d && buf[2] == 0x24 && buf[3] == 0x4)
1066 {
1067 /* MOD must be binary 10 and R/M must be binary 100. */
1068 if ((buf[1] & 0xc7) != 0x44)
1069 return pc;
1070
1071 /* REG has register number. */
1072 reg = (buf[1] >> 3) & 7;
1073 offset = 4;
1074 }
1075 else
1076 {
1077 /* Check callee-saved saved register. The first instruction
1078 has to be "pushl %reg". */
1079 if ((buf[0] & 0xf8) != 0x50)
1080 return pc;
1081
1082 /* Get register. */
1083 reg = buf[0] & 0x7;
1084
1085 /* The next instruction has to be "leal 8(%esp), %reg". */
1086 if (buf[1] != 0x8d || buf[3] != 0x24 || buf[4] != 0x8)
1087 return pc;
1088
1089 /* MOD must be binary 10 and R/M must be binary 100. */
1090 if ((buf[2] & 0xc7) != 0x44)
1091 return pc;
1092
1093 /* REG has register number. Registers in pushl and leal have to
1094 be the same. */
1095 if (reg != ((buf[2] >> 3) & 7))
1096 return pc;
1097
1098 offset = 5;
1099 }
1100
1101 /* Rigister can't be %esp nor %ebp. */
1102 if (reg == 4 || reg == 5)
1103 return pc;
1104
1105 /* The next instruction has to be "andl $-XXX, %esp". */
1106 if (buf[offset + 1] != 0xe4
1107 || (buf[offset] != 0x81 && buf[offset] != 0x83))
1108 return pc;
1109
1110 offset_and = offset;
1111 offset += buf[offset] == 0x81 ? 6 : 3;
1112
1113 /* The next instruction has to be "pushl -4(%reg)". 8bit -4 is
1114 0xfc. REG must be binary 110 and MOD must be binary 01. */
1115 if (buf[offset] != 0xff
1116 || buf[offset + 2] != 0xfc
1117 || (buf[offset + 1] & 0xf8) != 0x70)
1118 return pc;
1119
1120 /* R/M has register. Registers in leal and pushl have to be the
1121 same. */
1122 if (reg != (buf[offset + 1] & 7))
1123 return pc;
1124
1125 if (current_pc > pc + offset_and)
1126 cache->saved_sp_reg = regnums[reg];
1127
1128 return min (pc + offset + 3, current_pc);
1129 }
1130
1131 /* Maximum instruction length we need to handle. */
1132 #define I386_MAX_MATCHED_INSN_LEN 6
1133
1134 /* Instruction description. */
1135 struct i386_insn
1136 {
1137 size_t len;
1138 gdb_byte insn[I386_MAX_MATCHED_INSN_LEN];
1139 gdb_byte mask[I386_MAX_MATCHED_INSN_LEN];
1140 };
1141
1142 /* Return whether instruction at PC matches PATTERN. */
1143
1144 static int
1145 i386_match_pattern (CORE_ADDR pc, struct i386_insn pattern)
1146 {
1147 gdb_byte op;
1148
1149 if (target_read_memory (pc, &op, 1))
1150 return 0;
1151
1152 if ((op & pattern.mask[0]) == pattern.insn[0])
1153 {
1154 gdb_byte buf[I386_MAX_MATCHED_INSN_LEN - 1];
1155 int insn_matched = 1;
1156 size_t i;
1157
1158 gdb_assert (pattern.len > 1);
1159 gdb_assert (pattern.len <= I386_MAX_MATCHED_INSN_LEN);
1160
1161 if (target_read_memory (pc + 1, buf, pattern.len - 1))
1162 return 0;
1163
1164 for (i = 1; i < pattern.len; i++)
1165 {
1166 if ((buf[i - 1] & pattern.mask[i]) != pattern.insn[i])
1167 insn_matched = 0;
1168 }
1169 return insn_matched;
1170 }
1171 return 0;
1172 }
1173
1174 /* Search for the instruction at PC in the list INSN_PATTERNS. Return
1175 the first instruction description that matches. Otherwise, return
1176 NULL. */
1177
1178 static struct i386_insn *
1179 i386_match_insn (CORE_ADDR pc, struct i386_insn *insn_patterns)
1180 {
1181 struct i386_insn *pattern;
1182
1183 for (pattern = insn_patterns; pattern->len > 0; pattern++)
1184 {
1185 if (i386_match_pattern (pc, *pattern))
1186 return pattern;
1187 }
1188
1189 return NULL;
1190 }
1191
1192 /* Return whether PC points inside a sequence of instructions that
1193 matches INSN_PATTERNS. */
1194
1195 static int
1196 i386_match_insn_block (CORE_ADDR pc, struct i386_insn *insn_patterns)
1197 {
1198 CORE_ADDR current_pc;
1199 int ix, i;
1200 struct i386_insn *insn;
1201
1202 insn = i386_match_insn (pc, insn_patterns);
1203 if (insn == NULL)
1204 return 0;
1205
1206 current_pc = pc;
1207 ix = insn - insn_patterns;
1208 for (i = ix - 1; i >= 0; i--)
1209 {
1210 current_pc -= insn_patterns[i].len;
1211
1212 if (!i386_match_pattern (current_pc, insn_patterns[i]))
1213 return 0;
1214 }
1215
1216 current_pc = pc + insn->len;
1217 for (insn = insn_patterns + ix + 1; insn->len > 0; insn++)
1218 {
1219 if (!i386_match_pattern (current_pc, *insn))
1220 return 0;
1221
1222 current_pc += insn->len;
1223 }
1224
1225 return 1;
1226 }
1227
1228 /* Some special instructions that might be migrated by GCC into the
1229 part of the prologue that sets up the new stack frame. Because the
1230 stack frame hasn't been setup yet, no registers have been saved
1231 yet, and only the scratch registers %eax, %ecx and %edx can be
1232 touched. */
1233
1234 struct i386_insn i386_frame_setup_skip_insns[] =
1235 {
1236 /* Check for `movb imm8, r' and `movl imm32, r'.
1237
1238 ??? Should we handle 16-bit operand-sizes here? */
1239
1240 /* `movb imm8, %al' and `movb imm8, %ah' */
1241 /* `movb imm8, %cl' and `movb imm8, %ch' */
1242 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
1243 /* `movb imm8, %dl' and `movb imm8, %dh' */
1244 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
1245 /* `movl imm32, %eax' and `movl imm32, %ecx' */
1246 { 5, { 0xb8 }, { 0xfe } },
1247 /* `movl imm32, %edx' */
1248 { 5, { 0xba }, { 0xff } },
1249
1250 /* Check for `mov imm32, r32'. Note that there is an alternative
1251 encoding for `mov m32, %eax'.
1252
1253 ??? Should we handle SIB adressing here?
1254 ??? Should we handle 16-bit operand-sizes here? */
1255
1256 /* `movl m32, %eax' */
1257 { 5, { 0xa1 }, { 0xff } },
1258 /* `movl m32, %eax' and `mov; m32, %ecx' */
1259 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
1260 /* `movl m32, %edx' */
1261 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
1262
1263 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
1264 Because of the symmetry, there are actually two ways to encode
1265 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
1266 opcode bytes 0x31 and 0x33 for `xorl'. */
1267
1268 /* `subl %eax, %eax' */
1269 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
1270 /* `subl %ecx, %ecx' */
1271 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
1272 /* `subl %edx, %edx' */
1273 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
1274 /* `xorl %eax, %eax' */
1275 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
1276 /* `xorl %ecx, %ecx' */
1277 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
1278 /* `xorl %edx, %edx' */
1279 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
1280 { 0 }
1281 };
1282
1283
1284 /* Check whether PC points to a no-op instruction. */
1285 static CORE_ADDR
1286 i386_skip_noop (CORE_ADDR pc)
1287 {
1288 gdb_byte op;
1289 int check = 1;
1290
1291 if (target_read_memory (pc, &op, 1))
1292 return pc;
1293
1294 while (check)
1295 {
1296 check = 0;
1297 /* Ignore `nop' instruction. */
1298 if (op == 0x90)
1299 {
1300 pc += 1;
1301 if (target_read_memory (pc, &op, 1))
1302 return pc;
1303 check = 1;
1304 }
1305 /* Ignore no-op instruction `mov %edi, %edi'.
1306 Microsoft system dlls often start with
1307 a `mov %edi,%edi' instruction.
1308 The 5 bytes before the function start are
1309 filled with `nop' instructions.
1310 This pattern can be used for hot-patching:
1311 The `mov %edi, %edi' instruction can be replaced by a
1312 near jump to the location of the 5 `nop' instructions
1313 which can be replaced by a 32-bit jump to anywhere
1314 in the 32-bit address space. */
1315
1316 else if (op == 0x8b)
1317 {
1318 if (target_read_memory (pc + 1, &op, 1))
1319 return pc;
1320
1321 if (op == 0xff)
1322 {
1323 pc += 2;
1324 if (target_read_memory (pc, &op, 1))
1325 return pc;
1326
1327 check = 1;
1328 }
1329 }
1330 }
1331 return pc;
1332 }
1333
1334 /* Check whether PC points at a code that sets up a new stack frame.
1335 If so, it updates CACHE and returns the address of the first
1336 instruction after the sequence that sets up the frame or LIMIT,
1337 whichever is smaller. If we don't recognize the code, return PC. */
1338
1339 static CORE_ADDR
1340 i386_analyze_frame_setup (struct gdbarch *gdbarch,
1341 CORE_ADDR pc, CORE_ADDR limit,
1342 struct i386_frame_cache *cache)
1343 {
1344 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1345 struct i386_insn *insn;
1346 gdb_byte op;
1347 int skip = 0;
1348
1349 if (limit <= pc)
1350 return limit;
1351
1352 if (target_read_memory (pc, &op, 1))
1353 return pc;
1354
1355 if (op == 0x55) /* pushl %ebp */
1356 {
1357 /* Take into account that we've executed the `pushl %ebp' that
1358 starts this instruction sequence. */
1359 cache->saved_regs[I386_EBP_REGNUM] = 0;
1360 cache->sp_offset += 4;
1361 pc++;
1362
1363 /* If that's all, return now. */
1364 if (limit <= pc)
1365 return limit;
1366
1367 /* Check for some special instructions that might be migrated by
1368 GCC into the prologue and skip them. At this point in the
1369 prologue, code should only touch the scratch registers %eax,
1370 %ecx and %edx, so while the number of posibilities is sheer,
1371 it is limited.
1372
1373 Make sure we only skip these instructions if we later see the
1374 `movl %esp, %ebp' that actually sets up the frame. */
1375 while (pc + skip < limit)
1376 {
1377 insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
1378 if (insn == NULL)
1379 break;
1380
1381 skip += insn->len;
1382 }
1383
1384 /* If that's all, return now. */
1385 if (limit <= pc + skip)
1386 return limit;
1387
1388 if (target_read_memory (pc + skip, &op, 1))
1389 return pc + skip;
1390
1391 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
1392 switch (op)
1393 {
1394 case 0x8b:
1395 if (read_memory_unsigned_integer (pc + skip + 1, 1, byte_order)
1396 != 0xec)
1397 return pc;
1398 break;
1399 case 0x89:
1400 if (read_memory_unsigned_integer (pc + skip + 1, 1, byte_order)
1401 != 0xe5)
1402 return pc;
1403 break;
1404 default:
1405 return pc;
1406 }
1407
1408 /* OK, we actually have a frame. We just don't know how large
1409 it is yet. Set its size to zero. We'll adjust it if
1410 necessary. We also now commit to skipping the special
1411 instructions mentioned before. */
1412 cache->locals = 0;
1413 pc += (skip + 2);
1414
1415 /* If that's all, return now. */
1416 if (limit <= pc)
1417 return limit;
1418
1419 /* Check for stack adjustment
1420
1421 subl $XXX, %esp
1422
1423 NOTE: You can't subtract a 16-bit immediate from a 32-bit
1424 reg, so we don't have to worry about a data16 prefix. */
1425 if (target_read_memory (pc, &op, 1))
1426 return pc;
1427 if (op == 0x83)
1428 {
1429 /* `subl' with 8-bit immediate. */
1430 if (read_memory_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1431 /* Some instruction starting with 0x83 other than `subl'. */
1432 return pc;
1433
1434 /* `subl' with signed 8-bit immediate (though it wouldn't
1435 make sense to be negative). */
1436 cache->locals = read_memory_integer (pc + 2, 1, byte_order);
1437 return pc + 3;
1438 }
1439 else if (op == 0x81)
1440 {
1441 /* Maybe it is `subl' with a 32-bit immediate. */
1442 if (read_memory_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1443 /* Some instruction starting with 0x81 other than `subl'. */
1444 return pc;
1445
1446 /* It is `subl' with a 32-bit immediate. */
1447 cache->locals = read_memory_integer (pc + 2, 4, byte_order);
1448 return pc + 6;
1449 }
1450 else
1451 {
1452 /* Some instruction other than `subl'. */
1453 return pc;
1454 }
1455 }
1456 else if (op == 0xc8) /* enter */
1457 {
1458 cache->locals = read_memory_unsigned_integer (pc + 1, 2, byte_order);
1459 return pc + 4;
1460 }
1461
1462 return pc;
1463 }
1464
1465 /* Check whether PC points at code that saves registers on the stack.
1466 If so, it updates CACHE and returns the address of the first
1467 instruction after the register saves or CURRENT_PC, whichever is
1468 smaller. Otherwise, return PC. */
1469
1470 static CORE_ADDR
1471 i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
1472 struct i386_frame_cache *cache)
1473 {
1474 CORE_ADDR offset = 0;
1475 gdb_byte op;
1476 int i;
1477
1478 if (cache->locals > 0)
1479 offset -= cache->locals;
1480 for (i = 0; i < 8 && pc < current_pc; i++)
1481 {
1482 if (target_read_memory (pc, &op, 1))
1483 return pc;
1484 if (op < 0x50 || op > 0x57)
1485 break;
1486
1487 offset -= 4;
1488 cache->saved_regs[op - 0x50] = offset;
1489 cache->sp_offset += 4;
1490 pc++;
1491 }
1492
1493 return pc;
1494 }
1495
1496 /* Do a full analysis of the prologue at PC and update CACHE
1497 accordingly. Bail out early if CURRENT_PC is reached. Return the
1498 address where the analysis stopped.
1499
1500 We handle these cases:
1501
1502 The startup sequence can be at the start of the function, or the
1503 function can start with a branch to startup code at the end.
1504
1505 %ebp can be set up with either the 'enter' instruction, or "pushl
1506 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
1507 once used in the System V compiler).
1508
1509 Local space is allocated just below the saved %ebp by either the
1510 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
1511 16-bit unsigned argument for space to allocate, and the 'addl'
1512 instruction could have either a signed byte, or 32-bit immediate.
1513
1514 Next, the registers used by this function are pushed. With the
1515 System V compiler they will always be in the order: %edi, %esi,
1516 %ebx (and sometimes a harmless bug causes it to also save but not
1517 restore %eax); however, the code below is willing to see the pushes
1518 in any order, and will handle up to 8 of them.
1519
1520 If the setup sequence is at the end of the function, then the next
1521 instruction will be a branch back to the start. */
1522
1523 static CORE_ADDR
1524 i386_analyze_prologue (struct gdbarch *gdbarch,
1525 CORE_ADDR pc, CORE_ADDR current_pc,
1526 struct i386_frame_cache *cache)
1527 {
1528 pc = i386_skip_noop (pc);
1529 pc = i386_follow_jump (gdbarch, pc);
1530 pc = i386_analyze_struct_return (pc, current_pc, cache);
1531 pc = i386_skip_probe (pc);
1532 pc = i386_analyze_stack_align (pc, current_pc, cache);
1533 pc = i386_analyze_frame_setup (gdbarch, pc, current_pc, cache);
1534 return i386_analyze_register_saves (pc, current_pc, cache);
1535 }
1536
1537 /* Return PC of first real instruction. */
1538
1539 static CORE_ADDR
1540 i386_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
1541 {
1542 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1543
1544 static gdb_byte pic_pat[6] =
1545 {
1546 0xe8, 0, 0, 0, 0, /* call 0x0 */
1547 0x5b, /* popl %ebx */
1548 };
1549 struct i386_frame_cache cache;
1550 CORE_ADDR pc;
1551 gdb_byte op;
1552 int i;
1553
1554 cache.locals = -1;
1555 pc = i386_analyze_prologue (gdbarch, start_pc, 0xffffffff, &cache);
1556 if (cache.locals < 0)
1557 return start_pc;
1558
1559 /* Found valid frame setup. */
1560
1561 /* The native cc on SVR4 in -K PIC mode inserts the following code
1562 to get the address of the global offset table (GOT) into register
1563 %ebx:
1564
1565 call 0x0
1566 popl %ebx
1567 movl %ebx,x(%ebp) (optional)
1568 addl y,%ebx
1569
1570 This code is with the rest of the prologue (at the end of the
1571 function), so we have to skip it to get to the first real
1572 instruction at the start of the function. */
1573
1574 for (i = 0; i < 6; i++)
1575 {
1576 if (target_read_memory (pc + i, &op, 1))
1577 return pc;
1578
1579 if (pic_pat[i] != op)
1580 break;
1581 }
1582 if (i == 6)
1583 {
1584 int delta = 6;
1585
1586 if (target_read_memory (pc + delta, &op, 1))
1587 return pc;
1588
1589 if (op == 0x89) /* movl %ebx, x(%ebp) */
1590 {
1591 op = read_memory_unsigned_integer (pc + delta + 1, 1, byte_order);
1592
1593 if (op == 0x5d) /* One byte offset from %ebp. */
1594 delta += 3;
1595 else if (op == 0x9d) /* Four byte offset from %ebp. */
1596 delta += 6;
1597 else /* Unexpected instruction. */
1598 delta = 0;
1599
1600 if (target_read_memory (pc + delta, &op, 1))
1601 return pc;
1602 }
1603
1604 /* addl y,%ebx */
1605 if (delta > 0 && op == 0x81
1606 && read_memory_unsigned_integer (pc + delta + 1, 1, byte_order)
1607 == 0xc3)
1608 {
1609 pc += delta + 6;
1610 }
1611 }
1612
1613 /* If the function starts with a branch (to startup code at the end)
1614 the last instruction should bring us back to the first
1615 instruction of the real code. */
1616 if (i386_follow_jump (gdbarch, start_pc) != start_pc)
1617 pc = i386_follow_jump (gdbarch, pc);
1618
1619 return pc;
1620 }
1621
1622 /* Check that the code pointed to by PC corresponds to a call to
1623 __main, skip it if so. Return PC otherwise. */
1624
1625 CORE_ADDR
1626 i386_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1627 {
1628 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1629 gdb_byte op;
1630
1631 if (target_read_memory (pc, &op, 1))
1632 return pc;
1633 if (op == 0xe8)
1634 {
1635 gdb_byte buf[4];
1636
1637 if (target_read_memory (pc + 1, buf, sizeof buf) == 0)
1638 {
1639 /* Make sure address is computed correctly as a 32bit
1640 integer even if CORE_ADDR is 64 bit wide. */
1641 struct minimal_symbol *s;
1642 CORE_ADDR call_dest;
1643
1644 call_dest = pc + 5 + extract_signed_integer (buf, 4, byte_order);
1645 call_dest = call_dest & 0xffffffffU;
1646 s = lookup_minimal_symbol_by_pc (call_dest);
1647 if (s != NULL
1648 && SYMBOL_LINKAGE_NAME (s) != NULL
1649 && strcmp (SYMBOL_LINKAGE_NAME (s), "__main") == 0)
1650 pc += 5;
1651 }
1652 }
1653
1654 return pc;
1655 }
1656
1657 /* This function is 64-bit safe. */
1658
1659 static CORE_ADDR
1660 i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1661 {
1662 gdb_byte buf[8];
1663
1664 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
1665 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
1666 }
1667 \f
1668
1669 /* Normal frames. */
1670
1671 static void
1672 i386_frame_cache_1 (struct frame_info *this_frame,
1673 struct i386_frame_cache *cache)
1674 {
1675 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1676 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1677 gdb_byte buf[4];
1678 int i;
1679
1680 cache->pc = get_frame_func (this_frame);
1681
1682 /* In principle, for normal frames, %ebp holds the frame pointer,
1683 which holds the base address for the current stack frame.
1684 However, for functions that don't need it, the frame pointer is
1685 optional. For these "frameless" functions the frame pointer is
1686 actually the frame pointer of the calling frame. Signal
1687 trampolines are just a special case of a "frameless" function.
1688 They (usually) share their frame pointer with the frame that was
1689 in progress when the signal occurred. */
1690
1691 get_frame_register (this_frame, I386_EBP_REGNUM, buf);
1692 cache->base = extract_unsigned_integer (buf, 4, byte_order);
1693 if (cache->base == 0)
1694 {
1695 cache->base_p = 1;
1696 return;
1697 }
1698
1699 /* For normal frames, %eip is stored at 4(%ebp). */
1700 cache->saved_regs[I386_EIP_REGNUM] = 4;
1701
1702 if (cache->pc != 0)
1703 i386_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
1704 cache);
1705
1706 if (cache->locals < 0)
1707 {
1708 /* We didn't find a valid frame, which means that CACHE->base
1709 currently holds the frame pointer for our calling frame. If
1710 we're at the start of a function, or somewhere half-way its
1711 prologue, the function's frame probably hasn't been fully
1712 setup yet. Try to reconstruct the base address for the stack
1713 frame by looking at the stack pointer. For truly "frameless"
1714 functions this might work too. */
1715
1716 if (cache->saved_sp_reg != -1)
1717 {
1718 /* Saved stack pointer has been saved. */
1719 get_frame_register (this_frame, cache->saved_sp_reg, buf);
1720 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
1721
1722 /* We're halfway aligning the stack. */
1723 cache->base = ((cache->saved_sp - 4) & 0xfffffff0) - 4;
1724 cache->saved_regs[I386_EIP_REGNUM] = cache->saved_sp - 4;
1725
1726 /* This will be added back below. */
1727 cache->saved_regs[I386_EIP_REGNUM] -= cache->base;
1728 }
1729 else if (cache->pc != 0
1730 || target_read_memory (get_frame_pc (this_frame), buf, 1))
1731 {
1732 /* We're in a known function, but did not find a frame
1733 setup. Assume that the function does not use %ebp.
1734 Alternatively, we may have jumped to an invalid
1735 address; in that case there is definitely no new
1736 frame in %ebp. */
1737 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
1738 cache->base = extract_unsigned_integer (buf, 4, byte_order)
1739 + cache->sp_offset;
1740 }
1741 else
1742 /* We're in an unknown function. We could not find the start
1743 of the function to analyze the prologue; our best option is
1744 to assume a typical frame layout with the caller's %ebp
1745 saved. */
1746 cache->saved_regs[I386_EBP_REGNUM] = 0;
1747 }
1748
1749 if (cache->saved_sp_reg != -1)
1750 {
1751 /* Saved stack pointer has been saved (but the SAVED_SP_REG
1752 register may be unavailable). */
1753 if (cache->saved_sp == 0
1754 && frame_register_read (this_frame, cache->saved_sp_reg, buf))
1755 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
1756 }
1757 /* Now that we have the base address for the stack frame we can
1758 calculate the value of %esp in the calling frame. */
1759 else if (cache->saved_sp == 0)
1760 cache->saved_sp = cache->base + 8;
1761
1762 /* Adjust all the saved registers such that they contain addresses
1763 instead of offsets. */
1764 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
1765 if (cache->saved_regs[i] != -1)
1766 cache->saved_regs[i] += cache->base;
1767
1768 cache->base_p = 1;
1769 }
1770
1771 static struct i386_frame_cache *
1772 i386_frame_cache (struct frame_info *this_frame, void **this_cache)
1773 {
1774 volatile struct gdb_exception ex;
1775 struct i386_frame_cache *cache;
1776
1777 if (*this_cache)
1778 return *this_cache;
1779
1780 cache = i386_alloc_frame_cache ();
1781 *this_cache = cache;
1782
1783 TRY_CATCH (ex, RETURN_MASK_ERROR)
1784 {
1785 i386_frame_cache_1 (this_frame, cache);
1786 }
1787 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
1788 throw_exception (ex);
1789
1790 return cache;
1791 }
1792
1793 static void
1794 i386_frame_this_id (struct frame_info *this_frame, void **this_cache,
1795 struct frame_id *this_id)
1796 {
1797 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
1798
1799 /* This marks the outermost frame. */
1800 if (cache->base == 0)
1801 return;
1802
1803 /* See the end of i386_push_dummy_call. */
1804 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
1805 }
1806
1807 static enum unwind_stop_reason
1808 i386_frame_unwind_stop_reason (struct frame_info *this_frame,
1809 void **this_cache)
1810 {
1811 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
1812
1813 if (!cache->base_p)
1814 return UNWIND_UNAVAILABLE;
1815
1816 /* This marks the outermost frame. */
1817 if (cache->base == 0)
1818 return UNWIND_OUTERMOST;
1819
1820 return UNWIND_NO_REASON;
1821 }
1822
1823 static struct value *
1824 i386_frame_prev_register (struct frame_info *this_frame, void **this_cache,
1825 int regnum)
1826 {
1827 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
1828
1829 gdb_assert (regnum >= 0);
1830
1831 /* The System V ABI says that:
1832
1833 "The flags register contains the system flags, such as the
1834 direction flag and the carry flag. The direction flag must be
1835 set to the forward (that is, zero) direction before entry and
1836 upon exit from a function. Other user flags have no specified
1837 role in the standard calling sequence and are not preserved."
1838
1839 To guarantee the "upon exit" part of that statement we fake a
1840 saved flags register that has its direction flag cleared.
1841
1842 Note that GCC doesn't seem to rely on the fact that the direction
1843 flag is cleared after a function return; it always explicitly
1844 clears the flag before operations where it matters.
1845
1846 FIXME: kettenis/20030316: I'm not quite sure whether this is the
1847 right thing to do. The way we fake the flags register here makes
1848 it impossible to change it. */
1849
1850 if (regnum == I386_EFLAGS_REGNUM)
1851 {
1852 ULONGEST val;
1853
1854 val = get_frame_register_unsigned (this_frame, regnum);
1855 val &= ~(1 << 10);
1856 return frame_unwind_got_constant (this_frame, regnum, val);
1857 }
1858
1859 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
1860 return frame_unwind_got_register (this_frame, regnum, I386_EAX_REGNUM);
1861
1862 if (regnum == I386_ESP_REGNUM
1863 && (cache->saved_sp != 0 || cache->saved_sp_reg != -1))
1864 {
1865 /* If the SP has been saved, but we don't know where, then this
1866 means that SAVED_SP_REG register was found unavailable back
1867 when we built the cache. */
1868 if (cache->saved_sp == 0)
1869 return frame_unwind_got_register (this_frame, regnum,
1870 cache->saved_sp_reg);
1871 else
1872 return frame_unwind_got_constant (this_frame, regnum,
1873 cache->saved_sp);
1874 }
1875
1876 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
1877 return frame_unwind_got_memory (this_frame, regnum,
1878 cache->saved_regs[regnum]);
1879
1880 return frame_unwind_got_register (this_frame, regnum, regnum);
1881 }
1882
1883 static const struct frame_unwind i386_frame_unwind =
1884 {
1885 NORMAL_FRAME,
1886 i386_frame_unwind_stop_reason,
1887 i386_frame_this_id,
1888 i386_frame_prev_register,
1889 NULL,
1890 default_frame_sniffer
1891 };
1892
1893 /* Normal frames, but in a function epilogue. */
1894
1895 /* The epilogue is defined here as the 'ret' instruction, which will
1896 follow any instruction such as 'leave' or 'pop %ebp' that destroys
1897 the function's stack frame. */
1898
1899 static int
1900 i386_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
1901 {
1902 gdb_byte insn;
1903 struct symtab *symtab;
1904
1905 symtab = find_pc_symtab (pc);
1906 if (symtab && symtab->epilogue_unwind_valid)
1907 return 0;
1908
1909 if (target_read_memory (pc, &insn, 1))
1910 return 0; /* Can't read memory at pc. */
1911
1912 if (insn != 0xc3) /* 'ret' instruction. */
1913 return 0;
1914
1915 return 1;
1916 }
1917
1918 static int
1919 i386_epilogue_frame_sniffer (const struct frame_unwind *self,
1920 struct frame_info *this_frame,
1921 void **this_prologue_cache)
1922 {
1923 if (frame_relative_level (this_frame) == 0)
1924 return i386_in_function_epilogue_p (get_frame_arch (this_frame),
1925 get_frame_pc (this_frame));
1926 else
1927 return 0;
1928 }
1929
1930 static struct i386_frame_cache *
1931 i386_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
1932 {
1933 volatile struct gdb_exception ex;
1934 struct i386_frame_cache *cache;
1935 CORE_ADDR sp;
1936
1937 if (*this_cache)
1938 return *this_cache;
1939
1940 cache = i386_alloc_frame_cache ();
1941 *this_cache = cache;
1942
1943 TRY_CATCH (ex, RETURN_MASK_ERROR)
1944 {
1945 cache->pc = get_frame_func (this_frame);
1946
1947 /* At this point the stack looks as if we just entered the
1948 function, with the return address at the top of the
1949 stack. */
1950 sp = get_frame_register_unsigned (this_frame, I386_ESP_REGNUM);
1951 cache->base = sp + cache->sp_offset;
1952 cache->saved_sp = cache->base + 8;
1953 cache->saved_regs[I386_EIP_REGNUM] = cache->base + 4;
1954
1955 cache->base_p = 1;
1956 }
1957 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
1958 throw_exception (ex);
1959
1960 return cache;
1961 }
1962
1963 static enum unwind_stop_reason
1964 i386_epilogue_frame_unwind_stop_reason (struct frame_info *this_frame,
1965 void **this_cache)
1966 {
1967 struct i386_frame_cache *cache =
1968 i386_epilogue_frame_cache (this_frame, this_cache);
1969
1970 if (!cache->base_p)
1971 return UNWIND_UNAVAILABLE;
1972
1973 return UNWIND_NO_REASON;
1974 }
1975
1976 static void
1977 i386_epilogue_frame_this_id (struct frame_info *this_frame,
1978 void **this_cache,
1979 struct frame_id *this_id)
1980 {
1981 struct i386_frame_cache *cache =
1982 i386_epilogue_frame_cache (this_frame, this_cache);
1983
1984 if (!cache->base_p)
1985 return;
1986
1987 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
1988 }
1989
1990 static struct value *
1991 i386_epilogue_frame_prev_register (struct frame_info *this_frame,
1992 void **this_cache, int regnum)
1993 {
1994 /* Make sure we've initialized the cache. */
1995 i386_epilogue_frame_cache (this_frame, this_cache);
1996
1997 return i386_frame_prev_register (this_frame, this_cache, regnum);
1998 }
1999
2000 static const struct frame_unwind i386_epilogue_frame_unwind =
2001 {
2002 NORMAL_FRAME,
2003 i386_epilogue_frame_unwind_stop_reason,
2004 i386_epilogue_frame_this_id,
2005 i386_epilogue_frame_prev_register,
2006 NULL,
2007 i386_epilogue_frame_sniffer
2008 };
2009 \f
2010
2011 /* Stack-based trampolines. */
2012
2013 /* These trampolines are used on cross x86 targets, when taking the
2014 address of a nested function. When executing these trampolines,
2015 no stack frame is set up, so we are in a similar situation as in
2016 epilogues and i386_epilogue_frame_this_id can be re-used. */
2017
2018 /* Static chain passed in register. */
2019
2020 struct i386_insn i386_tramp_chain_in_reg_insns[] =
2021 {
2022 /* `movl imm32, %eax' and `movl imm32, %ecx' */
2023 { 5, { 0xb8 }, { 0xfe } },
2024
2025 /* `jmp imm32' */
2026 { 5, { 0xe9 }, { 0xff } },
2027
2028 {0}
2029 };
2030
2031 /* Static chain passed on stack (when regparm=3). */
2032
2033 struct i386_insn i386_tramp_chain_on_stack_insns[] =
2034 {
2035 /* `push imm32' */
2036 { 5, { 0x68 }, { 0xff } },
2037
2038 /* `jmp imm32' */
2039 { 5, { 0xe9 }, { 0xff } },
2040
2041 {0}
2042 };
2043
2044 /* Return whether PC points inside a stack trampoline. */
2045
2046 static int
2047 i386_in_stack_tramp_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2048 {
2049 gdb_byte insn;
2050 const char *name;
2051
2052 /* A stack trampoline is detected if no name is associated
2053 to the current pc and if it points inside a trampoline
2054 sequence. */
2055
2056 find_pc_partial_function (pc, &name, NULL, NULL);
2057 if (name)
2058 return 0;
2059
2060 if (target_read_memory (pc, &insn, 1))
2061 return 0;
2062
2063 if (!i386_match_insn_block (pc, i386_tramp_chain_in_reg_insns)
2064 && !i386_match_insn_block (pc, i386_tramp_chain_on_stack_insns))
2065 return 0;
2066
2067 return 1;
2068 }
2069
2070 static int
2071 i386_stack_tramp_frame_sniffer (const struct frame_unwind *self,
2072 struct frame_info *this_frame,
2073 void **this_cache)
2074 {
2075 if (frame_relative_level (this_frame) == 0)
2076 return i386_in_stack_tramp_p (get_frame_arch (this_frame),
2077 get_frame_pc (this_frame));
2078 else
2079 return 0;
2080 }
2081
2082 static const struct frame_unwind i386_stack_tramp_frame_unwind =
2083 {
2084 NORMAL_FRAME,
2085 i386_epilogue_frame_unwind_stop_reason,
2086 i386_epilogue_frame_this_id,
2087 i386_epilogue_frame_prev_register,
2088 NULL,
2089 i386_stack_tramp_frame_sniffer
2090 };
2091 \f
2092 /* Generate a bytecode expression to get the value of the saved PC. */
2093
2094 static void
2095 i386_gen_return_address (struct gdbarch *gdbarch,
2096 struct agent_expr *ax, struct axs_value *value,
2097 CORE_ADDR scope)
2098 {
2099 /* The following sequence assumes the traditional use of the base
2100 register. */
2101 ax_reg (ax, I386_EBP_REGNUM);
2102 ax_const_l (ax, 4);
2103 ax_simple (ax, aop_add);
2104 value->type = register_type (gdbarch, I386_EIP_REGNUM);
2105 value->kind = axs_lvalue_memory;
2106 }
2107 \f
2108
2109 /* Signal trampolines. */
2110
2111 static struct i386_frame_cache *
2112 i386_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
2113 {
2114 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2115 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2116 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2117 volatile struct gdb_exception ex;
2118 struct i386_frame_cache *cache;
2119 CORE_ADDR addr;
2120 gdb_byte buf[4];
2121
2122 if (*this_cache)
2123 return *this_cache;
2124
2125 cache = i386_alloc_frame_cache ();
2126
2127 TRY_CATCH (ex, RETURN_MASK_ERROR)
2128 {
2129 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2130 cache->base = extract_unsigned_integer (buf, 4, byte_order) - 4;
2131
2132 addr = tdep->sigcontext_addr (this_frame);
2133 if (tdep->sc_reg_offset)
2134 {
2135 int i;
2136
2137 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
2138
2139 for (i = 0; i < tdep->sc_num_regs; i++)
2140 if (tdep->sc_reg_offset[i] != -1)
2141 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
2142 }
2143 else
2144 {
2145 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
2146 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
2147 }
2148
2149 cache->base_p = 1;
2150 }
2151 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
2152 throw_exception (ex);
2153
2154 *this_cache = cache;
2155 return cache;
2156 }
2157
2158 static enum unwind_stop_reason
2159 i386_sigtramp_frame_unwind_stop_reason (struct frame_info *this_frame,
2160 void **this_cache)
2161 {
2162 struct i386_frame_cache *cache =
2163 i386_sigtramp_frame_cache (this_frame, this_cache);
2164
2165 if (!cache->base_p)
2166 return UNWIND_UNAVAILABLE;
2167
2168 return UNWIND_NO_REASON;
2169 }
2170
2171 static void
2172 i386_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache,
2173 struct frame_id *this_id)
2174 {
2175 struct i386_frame_cache *cache =
2176 i386_sigtramp_frame_cache (this_frame, this_cache);
2177
2178 if (!cache->base_p)
2179 return;
2180
2181 /* See the end of i386_push_dummy_call. */
2182 (*this_id) = frame_id_build (cache->base + 8, get_frame_pc (this_frame));
2183 }
2184
2185 static struct value *
2186 i386_sigtramp_frame_prev_register (struct frame_info *this_frame,
2187 void **this_cache, int regnum)
2188 {
2189 /* Make sure we've initialized the cache. */
2190 i386_sigtramp_frame_cache (this_frame, this_cache);
2191
2192 return i386_frame_prev_register (this_frame, this_cache, regnum);
2193 }
2194
2195 static int
2196 i386_sigtramp_frame_sniffer (const struct frame_unwind *self,
2197 struct frame_info *this_frame,
2198 void **this_prologue_cache)
2199 {
2200 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
2201
2202 /* We shouldn't even bother if we don't have a sigcontext_addr
2203 handler. */
2204 if (tdep->sigcontext_addr == NULL)
2205 return 0;
2206
2207 if (tdep->sigtramp_p != NULL)
2208 {
2209 if (tdep->sigtramp_p (this_frame))
2210 return 1;
2211 }
2212
2213 if (tdep->sigtramp_start != 0)
2214 {
2215 CORE_ADDR pc = get_frame_pc (this_frame);
2216
2217 gdb_assert (tdep->sigtramp_end != 0);
2218 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
2219 return 1;
2220 }
2221
2222 return 0;
2223 }
2224
2225 static const struct frame_unwind i386_sigtramp_frame_unwind =
2226 {
2227 SIGTRAMP_FRAME,
2228 i386_sigtramp_frame_unwind_stop_reason,
2229 i386_sigtramp_frame_this_id,
2230 i386_sigtramp_frame_prev_register,
2231 NULL,
2232 i386_sigtramp_frame_sniffer
2233 };
2234 \f
2235
2236 static CORE_ADDR
2237 i386_frame_base_address (struct frame_info *this_frame, void **this_cache)
2238 {
2239 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2240
2241 return cache->base;
2242 }
2243
2244 static const struct frame_base i386_frame_base =
2245 {
2246 &i386_frame_unwind,
2247 i386_frame_base_address,
2248 i386_frame_base_address,
2249 i386_frame_base_address
2250 };
2251
2252 static struct frame_id
2253 i386_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2254 {
2255 CORE_ADDR fp;
2256
2257 fp = get_frame_register_unsigned (this_frame, I386_EBP_REGNUM);
2258
2259 /* See the end of i386_push_dummy_call. */
2260 return frame_id_build (fp + 8, get_frame_pc (this_frame));
2261 }
2262
2263 /* _Decimal128 function return values need 16-byte alignment on the
2264 stack. */
2265
2266 static CORE_ADDR
2267 i386_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2268 {
2269 return sp & -(CORE_ADDR)16;
2270 }
2271 \f
2272
2273 /* Figure out where the longjmp will land. Slurp the args out of the
2274 stack. We expect the first arg to be a pointer to the jmp_buf
2275 structure from which we extract the address that we will land at.
2276 This address is copied into PC. This routine returns non-zero on
2277 success. */
2278
2279 static int
2280 i386_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
2281 {
2282 gdb_byte buf[4];
2283 CORE_ADDR sp, jb_addr;
2284 struct gdbarch *gdbarch = get_frame_arch (frame);
2285 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2286 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
2287
2288 /* If JB_PC_OFFSET is -1, we have no way to find out where the
2289 longjmp will land. */
2290 if (jb_pc_offset == -1)
2291 return 0;
2292
2293 get_frame_register (frame, I386_ESP_REGNUM, buf);
2294 sp = extract_unsigned_integer (buf, 4, byte_order);
2295 if (target_read_memory (sp + 4, buf, 4))
2296 return 0;
2297
2298 jb_addr = extract_unsigned_integer (buf, 4, byte_order);
2299 if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
2300 return 0;
2301
2302 *pc = extract_unsigned_integer (buf, 4, byte_order);
2303 return 1;
2304 }
2305 \f
2306
2307 /* Check whether TYPE must be 16-byte-aligned when passed as a
2308 function argument. 16-byte vectors, _Decimal128 and structures or
2309 unions containing such types must be 16-byte-aligned; other
2310 arguments are 4-byte-aligned. */
2311
2312 static int
2313 i386_16_byte_align_p (struct type *type)
2314 {
2315 type = check_typedef (type);
2316 if ((TYPE_CODE (type) == TYPE_CODE_DECFLOAT
2317 || (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type)))
2318 && TYPE_LENGTH (type) == 16)
2319 return 1;
2320 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2321 return i386_16_byte_align_p (TYPE_TARGET_TYPE (type));
2322 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2323 || TYPE_CODE (type) == TYPE_CODE_UNION)
2324 {
2325 int i;
2326 for (i = 0; i < TYPE_NFIELDS (type); i++)
2327 {
2328 if (i386_16_byte_align_p (TYPE_FIELD_TYPE (type, i)))
2329 return 1;
2330 }
2331 }
2332 return 0;
2333 }
2334
2335 /* Implementation for set_gdbarch_push_dummy_code. */
2336
2337 static CORE_ADDR
2338 i386_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, CORE_ADDR funaddr,
2339 struct value **args, int nargs, struct type *value_type,
2340 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
2341 struct regcache *regcache)
2342 {
2343 /* Use 0xcc breakpoint - 1 byte. */
2344 *bp_addr = sp - 1;
2345 *real_pc = funaddr;
2346
2347 /* Keep the stack aligned. */
2348 return sp - 16;
2349 }
2350
2351 static CORE_ADDR
2352 i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2353 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2354 struct value **args, CORE_ADDR sp, int struct_return,
2355 CORE_ADDR struct_addr)
2356 {
2357 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2358 gdb_byte buf[4];
2359 int i;
2360 int write_pass;
2361 int args_space = 0;
2362
2363 /* Determine the total space required for arguments and struct
2364 return address in a first pass (allowing for 16-byte-aligned
2365 arguments), then push arguments in a second pass. */
2366
2367 for (write_pass = 0; write_pass < 2; write_pass++)
2368 {
2369 int args_space_used = 0;
2370
2371 if (struct_return)
2372 {
2373 if (write_pass)
2374 {
2375 /* Push value address. */
2376 store_unsigned_integer (buf, 4, byte_order, struct_addr);
2377 write_memory (sp, buf, 4);
2378 args_space_used += 4;
2379 }
2380 else
2381 args_space += 4;
2382 }
2383
2384 for (i = 0; i < nargs; i++)
2385 {
2386 int len = TYPE_LENGTH (value_enclosing_type (args[i]));
2387
2388 if (write_pass)
2389 {
2390 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2391 args_space_used = align_up (args_space_used, 16);
2392
2393 write_memory (sp + args_space_used,
2394 value_contents_all (args[i]), len);
2395 /* The System V ABI says that:
2396
2397 "An argument's size is increased, if necessary, to make it a
2398 multiple of [32-bit] words. This may require tail padding,
2399 depending on the size of the argument."
2400
2401 This makes sure the stack stays word-aligned. */
2402 args_space_used += align_up (len, 4);
2403 }
2404 else
2405 {
2406 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2407 args_space = align_up (args_space, 16);
2408 args_space += align_up (len, 4);
2409 }
2410 }
2411
2412 if (!write_pass)
2413 {
2414 sp -= args_space;
2415
2416 /* The original System V ABI only requires word alignment,
2417 but modern incarnations need 16-byte alignment in order
2418 to support SSE. Since wasting a few bytes here isn't
2419 harmful we unconditionally enforce 16-byte alignment. */
2420 sp &= ~0xf;
2421 }
2422 }
2423
2424 /* Store return address. */
2425 sp -= 4;
2426 store_unsigned_integer (buf, 4, byte_order, bp_addr);
2427 write_memory (sp, buf, 4);
2428
2429 /* Finally, update the stack pointer... */
2430 store_unsigned_integer (buf, 4, byte_order, sp);
2431 regcache_cooked_write (regcache, I386_ESP_REGNUM, buf);
2432
2433 /* ...and fake a frame pointer. */
2434 regcache_cooked_write (regcache, I386_EBP_REGNUM, buf);
2435
2436 /* MarkK wrote: This "+ 8" is all over the place:
2437 (i386_frame_this_id, i386_sigtramp_frame_this_id,
2438 i386_dummy_id). It's there, since all frame unwinders for
2439 a given target have to agree (within a certain margin) on the
2440 definition of the stack address of a frame. Otherwise frame id
2441 comparison might not work correctly. Since DWARF2/GCC uses the
2442 stack address *before* the function call as a frame's CFA. On
2443 the i386, when %ebp is used as a frame pointer, the offset
2444 between the contents %ebp and the CFA as defined by GCC. */
2445 return sp + 8;
2446 }
2447
2448 /* These registers are used for returning integers (and on some
2449 targets also for returning `struct' and `union' values when their
2450 size and alignment match an integer type). */
2451 #define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
2452 #define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
2453
2454 /* Read, for architecture GDBARCH, a function return value of TYPE
2455 from REGCACHE, and copy that into VALBUF. */
2456
2457 static void
2458 i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
2459 struct regcache *regcache, gdb_byte *valbuf)
2460 {
2461 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2462 int len = TYPE_LENGTH (type);
2463 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2464
2465 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2466 {
2467 if (tdep->st0_regnum < 0)
2468 {
2469 warning (_("Cannot find floating-point return value."));
2470 memset (valbuf, 0, len);
2471 return;
2472 }
2473
2474 /* Floating-point return values can be found in %st(0). Convert
2475 its contents to the desired type. This is probably not
2476 exactly how it would happen on the target itself, but it is
2477 the best we can do. */
2478 regcache_raw_read (regcache, I386_ST0_REGNUM, buf);
2479 convert_typed_floating (buf, i387_ext_type (gdbarch), valbuf, type);
2480 }
2481 else
2482 {
2483 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2484 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2485
2486 if (len <= low_size)
2487 {
2488 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
2489 memcpy (valbuf, buf, len);
2490 }
2491 else if (len <= (low_size + high_size))
2492 {
2493 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
2494 memcpy (valbuf, buf, low_size);
2495 regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
2496 memcpy (valbuf + low_size, buf, len - low_size);
2497 }
2498 else
2499 internal_error (__FILE__, __LINE__,
2500 _("Cannot extract return value of %d bytes long."),
2501 len);
2502 }
2503 }
2504
2505 /* Write, for architecture GDBARCH, a function return value of TYPE
2506 from VALBUF into REGCACHE. */
2507
2508 static void
2509 i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
2510 struct regcache *regcache, const gdb_byte *valbuf)
2511 {
2512 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2513 int len = TYPE_LENGTH (type);
2514
2515 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2516 {
2517 ULONGEST fstat;
2518 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2519
2520 if (tdep->st0_regnum < 0)
2521 {
2522 warning (_("Cannot set floating-point return value."));
2523 return;
2524 }
2525
2526 /* Returning floating-point values is a bit tricky. Apart from
2527 storing the return value in %st(0), we have to simulate the
2528 state of the FPU at function return point. */
2529
2530 /* Convert the value found in VALBUF to the extended
2531 floating-point format used by the FPU. This is probably
2532 not exactly how it would happen on the target itself, but
2533 it is the best we can do. */
2534 convert_typed_floating (valbuf, type, buf, i387_ext_type (gdbarch));
2535 regcache_raw_write (regcache, I386_ST0_REGNUM, buf);
2536
2537 /* Set the top of the floating-point register stack to 7. The
2538 actual value doesn't really matter, but 7 is what a normal
2539 function return would end up with if the program started out
2540 with a freshly initialized FPU. */
2541 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
2542 fstat |= (7 << 11);
2543 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM (tdep), fstat);
2544
2545 /* Mark %st(1) through %st(7) as empty. Since we set the top of
2546 the floating-point register stack to 7, the appropriate value
2547 for the tag word is 0x3fff. */
2548 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM (tdep), 0x3fff);
2549 }
2550 else
2551 {
2552 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2553 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2554
2555 if (len <= low_size)
2556 regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
2557 else if (len <= (low_size + high_size))
2558 {
2559 regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
2560 regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
2561 len - low_size, valbuf + low_size);
2562 }
2563 else
2564 internal_error (__FILE__, __LINE__,
2565 _("Cannot store return value of %d bytes long."), len);
2566 }
2567 }
2568 \f
2569
2570 /* This is the variable that is set with "set struct-convention", and
2571 its legitimate values. */
2572 static const char default_struct_convention[] = "default";
2573 static const char pcc_struct_convention[] = "pcc";
2574 static const char reg_struct_convention[] = "reg";
2575 static const char *const valid_conventions[] =
2576 {
2577 default_struct_convention,
2578 pcc_struct_convention,
2579 reg_struct_convention,
2580 NULL
2581 };
2582 static const char *struct_convention = default_struct_convention;
2583
2584 /* Return non-zero if TYPE, which is assumed to be a structure,
2585 a union type, or an array type, should be returned in registers
2586 for architecture GDBARCH. */
2587
2588 static int
2589 i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
2590 {
2591 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2592 enum type_code code = TYPE_CODE (type);
2593 int len = TYPE_LENGTH (type);
2594
2595 gdb_assert (code == TYPE_CODE_STRUCT
2596 || code == TYPE_CODE_UNION
2597 || code == TYPE_CODE_ARRAY);
2598
2599 if (struct_convention == pcc_struct_convention
2600 || (struct_convention == default_struct_convention
2601 && tdep->struct_return == pcc_struct_return))
2602 return 0;
2603
2604 /* Structures consisting of a single `float', `double' or 'long
2605 double' member are returned in %st(0). */
2606 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2607 {
2608 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
2609 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2610 return (len == 4 || len == 8 || len == 12);
2611 }
2612
2613 return (len == 1 || len == 2 || len == 4 || len == 8);
2614 }
2615
2616 /* Determine, for architecture GDBARCH, how a return value of TYPE
2617 should be returned. If it is supposed to be returned in registers,
2618 and READBUF is non-zero, read the appropriate value from REGCACHE,
2619 and copy it into READBUF. If WRITEBUF is non-zero, write the value
2620 from WRITEBUF into REGCACHE. */
2621
2622 static enum return_value_convention
2623 i386_return_value (struct gdbarch *gdbarch, struct value *function,
2624 struct type *type, struct regcache *regcache,
2625 gdb_byte *readbuf, const gdb_byte *writebuf)
2626 {
2627 enum type_code code = TYPE_CODE (type);
2628
2629 if (((code == TYPE_CODE_STRUCT
2630 || code == TYPE_CODE_UNION
2631 || code == TYPE_CODE_ARRAY)
2632 && !i386_reg_struct_return_p (gdbarch, type))
2633 /* 128-bit decimal float uses the struct return convention. */
2634 || (code == TYPE_CODE_DECFLOAT && TYPE_LENGTH (type) == 16))
2635 {
2636 /* The System V ABI says that:
2637
2638 "A function that returns a structure or union also sets %eax
2639 to the value of the original address of the caller's area
2640 before it returns. Thus when the caller receives control
2641 again, the address of the returned object resides in register
2642 %eax and can be used to access the object."
2643
2644 So the ABI guarantees that we can always find the return
2645 value just after the function has returned. */
2646
2647 /* Note that the ABI doesn't mention functions returning arrays,
2648 which is something possible in certain languages such as Ada.
2649 In this case, the value is returned as if it was wrapped in
2650 a record, so the convention applied to records also applies
2651 to arrays. */
2652
2653 if (readbuf)
2654 {
2655 ULONGEST addr;
2656
2657 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
2658 read_memory (addr, readbuf, TYPE_LENGTH (type));
2659 }
2660
2661 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
2662 }
2663
2664 /* This special case is for structures consisting of a single
2665 `float', `double' or 'long double' member. These structures are
2666 returned in %st(0). For these structures, we call ourselves
2667 recursively, changing TYPE into the type of the first member of
2668 the structure. Since that should work for all structures that
2669 have only one member, we don't bother to check the member's type
2670 here. */
2671 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2672 {
2673 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
2674 return i386_return_value (gdbarch, function, type, regcache,
2675 readbuf, writebuf);
2676 }
2677
2678 if (readbuf)
2679 i386_extract_return_value (gdbarch, type, regcache, readbuf);
2680 if (writebuf)
2681 i386_store_return_value (gdbarch, type, regcache, writebuf);
2682
2683 return RETURN_VALUE_REGISTER_CONVENTION;
2684 }
2685 \f
2686
2687 struct type *
2688 i387_ext_type (struct gdbarch *gdbarch)
2689 {
2690 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2691
2692 if (!tdep->i387_ext_type)
2693 {
2694 tdep->i387_ext_type = tdesc_find_type (gdbarch, "i387_ext");
2695 gdb_assert (tdep->i387_ext_type != NULL);
2696 }
2697
2698 return tdep->i387_ext_type;
2699 }
2700
2701 /* Construct vector type for pseudo YMM registers. We can't use
2702 tdesc_find_type since YMM isn't described in target description. */
2703
2704 static struct type *
2705 i386_ymm_type (struct gdbarch *gdbarch)
2706 {
2707 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2708
2709 if (!tdep->i386_ymm_type)
2710 {
2711 const struct builtin_type *bt = builtin_type (gdbarch);
2712
2713 /* The type we're building is this: */
2714 #if 0
2715 union __gdb_builtin_type_vec256i
2716 {
2717 int128_t uint128[2];
2718 int64_t v2_int64[4];
2719 int32_t v4_int32[8];
2720 int16_t v8_int16[16];
2721 int8_t v16_int8[32];
2722 double v2_double[4];
2723 float v4_float[8];
2724 };
2725 #endif
2726
2727 struct type *t;
2728
2729 t = arch_composite_type (gdbarch,
2730 "__gdb_builtin_type_vec256i", TYPE_CODE_UNION);
2731 append_composite_type_field (t, "v8_float",
2732 init_vector_type (bt->builtin_float, 8));
2733 append_composite_type_field (t, "v4_double",
2734 init_vector_type (bt->builtin_double, 4));
2735 append_composite_type_field (t, "v32_int8",
2736 init_vector_type (bt->builtin_int8, 32));
2737 append_composite_type_field (t, "v16_int16",
2738 init_vector_type (bt->builtin_int16, 16));
2739 append_composite_type_field (t, "v8_int32",
2740 init_vector_type (bt->builtin_int32, 8));
2741 append_composite_type_field (t, "v4_int64",
2742 init_vector_type (bt->builtin_int64, 4));
2743 append_composite_type_field (t, "v2_int128",
2744 init_vector_type (bt->builtin_int128, 2));
2745
2746 TYPE_VECTOR (t) = 1;
2747 TYPE_NAME (t) = "builtin_type_vec256i";
2748 tdep->i386_ymm_type = t;
2749 }
2750
2751 return tdep->i386_ymm_type;
2752 }
2753
2754 /* Construct vector type for MMX registers. */
2755 static struct type *
2756 i386_mmx_type (struct gdbarch *gdbarch)
2757 {
2758 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2759
2760 if (!tdep->i386_mmx_type)
2761 {
2762 const struct builtin_type *bt = builtin_type (gdbarch);
2763
2764 /* The type we're building is this: */
2765 #if 0
2766 union __gdb_builtin_type_vec64i
2767 {
2768 int64_t uint64;
2769 int32_t v2_int32[2];
2770 int16_t v4_int16[4];
2771 int8_t v8_int8[8];
2772 };
2773 #endif
2774
2775 struct type *t;
2776
2777 t = arch_composite_type (gdbarch,
2778 "__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
2779
2780 append_composite_type_field (t, "uint64", bt->builtin_int64);
2781 append_composite_type_field (t, "v2_int32",
2782 init_vector_type (bt->builtin_int32, 2));
2783 append_composite_type_field (t, "v4_int16",
2784 init_vector_type (bt->builtin_int16, 4));
2785 append_composite_type_field (t, "v8_int8",
2786 init_vector_type (bt->builtin_int8, 8));
2787
2788 TYPE_VECTOR (t) = 1;
2789 TYPE_NAME (t) = "builtin_type_vec64i";
2790 tdep->i386_mmx_type = t;
2791 }
2792
2793 return tdep->i386_mmx_type;
2794 }
2795
2796 /* Return the GDB type object for the "standard" data type of data in
2797 register REGNUM. */
2798
2799 struct type *
2800 i386_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
2801 {
2802 if (i386_mmx_regnum_p (gdbarch, regnum))
2803 return i386_mmx_type (gdbarch);
2804 else if (i386_ymm_regnum_p (gdbarch, regnum))
2805 return i386_ymm_type (gdbarch);
2806 else
2807 {
2808 const struct builtin_type *bt = builtin_type (gdbarch);
2809 if (i386_byte_regnum_p (gdbarch, regnum))
2810 return bt->builtin_int8;
2811 else if (i386_word_regnum_p (gdbarch, regnum))
2812 return bt->builtin_int16;
2813 else if (i386_dword_regnum_p (gdbarch, regnum))
2814 return bt->builtin_int32;
2815 }
2816
2817 internal_error (__FILE__, __LINE__, _("invalid regnum"));
2818 }
2819
2820 /* Map a cooked register onto a raw register or memory. For the i386,
2821 the MMX registers need to be mapped onto floating point registers. */
2822
2823 static int
2824 i386_mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
2825 {
2826 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
2827 int mmxreg, fpreg;
2828 ULONGEST fstat;
2829 int tos;
2830
2831 mmxreg = regnum - tdep->mm0_regnum;
2832 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
2833 tos = (fstat >> 11) & 0x7;
2834 fpreg = (mmxreg + tos) % 8;
2835
2836 return (I387_ST0_REGNUM (tdep) + fpreg);
2837 }
2838
2839 /* A helper function for us by i386_pseudo_register_read_value and
2840 amd64_pseudo_register_read_value. It does all the work but reads
2841 the data into an already-allocated value. */
2842
2843 void
2844 i386_pseudo_register_read_into_value (struct gdbarch *gdbarch,
2845 struct regcache *regcache,
2846 int regnum,
2847 struct value *result_value)
2848 {
2849 gdb_byte raw_buf[MAX_REGISTER_SIZE];
2850 enum register_status status;
2851 gdb_byte *buf = value_contents_raw (result_value);
2852
2853 if (i386_mmx_regnum_p (gdbarch, regnum))
2854 {
2855 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
2856
2857 /* Extract (always little endian). */
2858 status = regcache_raw_read (regcache, fpnum, raw_buf);
2859 if (status != REG_VALID)
2860 mark_value_bytes_unavailable (result_value, 0,
2861 TYPE_LENGTH (value_type (result_value)));
2862 else
2863 memcpy (buf, raw_buf, register_size (gdbarch, regnum));
2864 }
2865 else
2866 {
2867 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2868
2869 if (i386_ymm_regnum_p (gdbarch, regnum))
2870 {
2871 regnum -= tdep->ymm0_regnum;
2872
2873 /* Extract (always little endian). Read lower 128bits. */
2874 status = regcache_raw_read (regcache,
2875 I387_XMM0_REGNUM (tdep) + regnum,
2876 raw_buf);
2877 if (status != REG_VALID)
2878 mark_value_bytes_unavailable (result_value, 0, 16);
2879 else
2880 memcpy (buf, raw_buf, 16);
2881 /* Read upper 128bits. */
2882 status = regcache_raw_read (regcache,
2883 tdep->ymm0h_regnum + regnum,
2884 raw_buf);
2885 if (status != REG_VALID)
2886 mark_value_bytes_unavailable (result_value, 16, 32);
2887 else
2888 memcpy (buf + 16, raw_buf, 16);
2889 }
2890 else if (i386_word_regnum_p (gdbarch, regnum))
2891 {
2892 int gpnum = regnum - tdep->ax_regnum;
2893
2894 /* Extract (always little endian). */
2895 status = regcache_raw_read (regcache, gpnum, raw_buf);
2896 if (status != REG_VALID)
2897 mark_value_bytes_unavailable (result_value, 0,
2898 TYPE_LENGTH (value_type (result_value)));
2899 else
2900 memcpy (buf, raw_buf, 2);
2901 }
2902 else if (i386_byte_regnum_p (gdbarch, regnum))
2903 {
2904 /* Check byte pseudo registers last since this function will
2905 be called from amd64_pseudo_register_read, which handles
2906 byte pseudo registers differently. */
2907 int gpnum = regnum - tdep->al_regnum;
2908
2909 /* Extract (always little endian). We read both lower and
2910 upper registers. */
2911 status = regcache_raw_read (regcache, gpnum % 4, raw_buf);
2912 if (status != REG_VALID)
2913 mark_value_bytes_unavailable (result_value, 0,
2914 TYPE_LENGTH (value_type (result_value)));
2915 else if (gpnum >= 4)
2916 memcpy (buf, raw_buf + 1, 1);
2917 else
2918 memcpy (buf, raw_buf, 1);
2919 }
2920 else
2921 internal_error (__FILE__, __LINE__, _("invalid regnum"));
2922 }
2923 }
2924
2925 static struct value *
2926 i386_pseudo_register_read_value (struct gdbarch *gdbarch,
2927 struct regcache *regcache,
2928 int regnum)
2929 {
2930 struct value *result;
2931
2932 result = allocate_value (register_type (gdbarch, regnum));
2933 VALUE_LVAL (result) = lval_register;
2934 VALUE_REGNUM (result) = regnum;
2935
2936 i386_pseudo_register_read_into_value (gdbarch, regcache, regnum, result);
2937
2938 return result;
2939 }
2940
2941 void
2942 i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2943 int regnum, const gdb_byte *buf)
2944 {
2945 gdb_byte raw_buf[MAX_REGISTER_SIZE];
2946
2947 if (i386_mmx_regnum_p (gdbarch, regnum))
2948 {
2949 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
2950
2951 /* Read ... */
2952 regcache_raw_read (regcache, fpnum, raw_buf);
2953 /* ... Modify ... (always little endian). */
2954 memcpy (raw_buf, buf, register_size (gdbarch, regnum));
2955 /* ... Write. */
2956 regcache_raw_write (regcache, fpnum, raw_buf);
2957 }
2958 else
2959 {
2960 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2961
2962 if (i386_ymm_regnum_p (gdbarch, regnum))
2963 {
2964 regnum -= tdep->ymm0_regnum;
2965
2966 /* ... Write lower 128bits. */
2967 regcache_raw_write (regcache,
2968 I387_XMM0_REGNUM (tdep) + regnum,
2969 buf);
2970 /* ... Write upper 128bits. */
2971 regcache_raw_write (regcache,
2972 tdep->ymm0h_regnum + regnum,
2973 buf + 16);
2974 }
2975 else if (i386_word_regnum_p (gdbarch, regnum))
2976 {
2977 int gpnum = regnum - tdep->ax_regnum;
2978
2979 /* Read ... */
2980 regcache_raw_read (regcache, gpnum, raw_buf);
2981 /* ... Modify ... (always little endian). */
2982 memcpy (raw_buf, buf, 2);
2983 /* ... Write. */
2984 regcache_raw_write (regcache, gpnum, raw_buf);
2985 }
2986 else if (i386_byte_regnum_p (gdbarch, regnum))
2987 {
2988 /* Check byte pseudo registers last since this function will
2989 be called from amd64_pseudo_register_read, which handles
2990 byte pseudo registers differently. */
2991 int gpnum = regnum - tdep->al_regnum;
2992
2993 /* Read ... We read both lower and upper registers. */
2994 regcache_raw_read (regcache, gpnum % 4, raw_buf);
2995 /* ... Modify ... (always little endian). */
2996 if (gpnum >= 4)
2997 memcpy (raw_buf + 1, buf, 1);
2998 else
2999 memcpy (raw_buf, buf, 1);
3000 /* ... Write. */
3001 regcache_raw_write (regcache, gpnum % 4, raw_buf);
3002 }
3003 else
3004 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3005 }
3006 }
3007 \f
3008
3009 /* Return the register number of the register allocated by GCC after
3010 REGNUM, or -1 if there is no such register. */
3011
3012 static int
3013 i386_next_regnum (int regnum)
3014 {
3015 /* GCC allocates the registers in the order:
3016
3017 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
3018
3019 Since storing a variable in %esp doesn't make any sense we return
3020 -1 for %ebp and for %esp itself. */
3021 static int next_regnum[] =
3022 {
3023 I386_EDX_REGNUM, /* Slot for %eax. */
3024 I386_EBX_REGNUM, /* Slot for %ecx. */
3025 I386_ECX_REGNUM, /* Slot for %edx. */
3026 I386_ESI_REGNUM, /* Slot for %ebx. */
3027 -1, -1, /* Slots for %esp and %ebp. */
3028 I386_EDI_REGNUM, /* Slot for %esi. */
3029 I386_EBP_REGNUM /* Slot for %edi. */
3030 };
3031
3032 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
3033 return next_regnum[regnum];
3034
3035 return -1;
3036 }
3037
3038 /* Return nonzero if a value of type TYPE stored in register REGNUM
3039 needs any special handling. */
3040
3041 static int
3042 i386_convert_register_p (struct gdbarch *gdbarch,
3043 int regnum, struct type *type)
3044 {
3045 int len = TYPE_LENGTH (type);
3046
3047 /* Values may be spread across multiple registers. Most debugging
3048 formats aren't expressive enough to specify the locations, so
3049 some heuristics is involved. Right now we only handle types that
3050 have a length that is a multiple of the word size, since GCC
3051 doesn't seem to put any other types into registers. */
3052 if (len > 4 && len % 4 == 0)
3053 {
3054 int last_regnum = regnum;
3055
3056 while (len > 4)
3057 {
3058 last_regnum = i386_next_regnum (last_regnum);
3059 len -= 4;
3060 }
3061
3062 if (last_regnum != -1)
3063 return 1;
3064 }
3065
3066 return i387_convert_register_p (gdbarch, regnum, type);
3067 }
3068
3069 /* Read a value of type TYPE from register REGNUM in frame FRAME, and
3070 return its contents in TO. */
3071
3072 static int
3073 i386_register_to_value (struct frame_info *frame, int regnum,
3074 struct type *type, gdb_byte *to,
3075 int *optimizedp, int *unavailablep)
3076 {
3077 struct gdbarch *gdbarch = get_frame_arch (frame);
3078 int len = TYPE_LENGTH (type);
3079
3080 if (i386_fp_regnum_p (gdbarch, regnum))
3081 return i387_register_to_value (frame, regnum, type, to,
3082 optimizedp, unavailablep);
3083
3084 /* Read a value spread across multiple registers. */
3085
3086 gdb_assert (len > 4 && len % 4 == 0);
3087
3088 while (len > 0)
3089 {
3090 gdb_assert (regnum != -1);
3091 gdb_assert (register_size (gdbarch, regnum) == 4);
3092
3093 if (!get_frame_register_bytes (frame, regnum, 0,
3094 register_size (gdbarch, regnum),
3095 to, optimizedp, unavailablep))
3096 return 0;
3097
3098 regnum = i386_next_regnum (regnum);
3099 len -= 4;
3100 to += 4;
3101 }
3102
3103 *optimizedp = *unavailablep = 0;
3104 return 1;
3105 }
3106
3107 /* Write the contents FROM of a value of type TYPE into register
3108 REGNUM in frame FRAME. */
3109
3110 static void
3111 i386_value_to_register (struct frame_info *frame, int regnum,
3112 struct type *type, const gdb_byte *from)
3113 {
3114 int len = TYPE_LENGTH (type);
3115
3116 if (i386_fp_regnum_p (get_frame_arch (frame), regnum))
3117 {
3118 i387_value_to_register (frame, regnum, type, from);
3119 return;
3120 }
3121
3122 /* Write a value spread across multiple registers. */
3123
3124 gdb_assert (len > 4 && len % 4 == 0);
3125
3126 while (len > 0)
3127 {
3128 gdb_assert (regnum != -1);
3129 gdb_assert (register_size (get_frame_arch (frame), regnum) == 4);
3130
3131 put_frame_register (frame, regnum, from);
3132 regnum = i386_next_regnum (regnum);
3133 len -= 4;
3134 from += 4;
3135 }
3136 }
3137 \f
3138 /* Supply register REGNUM from the buffer specified by GREGS and LEN
3139 in the general-purpose register set REGSET to register cache
3140 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3141
3142 void
3143 i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
3144 int regnum, const void *gregs, size_t len)
3145 {
3146 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
3147 const gdb_byte *regs = gregs;
3148 int i;
3149
3150 gdb_assert (len == tdep->sizeof_gregset);
3151
3152 for (i = 0; i < tdep->gregset_num_regs; i++)
3153 {
3154 if ((regnum == i || regnum == -1)
3155 && tdep->gregset_reg_offset[i] != -1)
3156 regcache_raw_supply (regcache, i, regs + tdep->gregset_reg_offset[i]);
3157 }
3158 }
3159
3160 /* Collect register REGNUM from the register cache REGCACHE and store
3161 it in the buffer specified by GREGS and LEN as described by the
3162 general-purpose register set REGSET. If REGNUM is -1, do this for
3163 all registers in REGSET. */
3164
3165 void
3166 i386_collect_gregset (const struct regset *regset,
3167 const struct regcache *regcache,
3168 int regnum, void *gregs, size_t len)
3169 {
3170 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
3171 gdb_byte *regs = gregs;
3172 int i;
3173
3174 gdb_assert (len == tdep->sizeof_gregset);
3175
3176 for (i = 0; i < tdep->gregset_num_regs; i++)
3177 {
3178 if ((regnum == i || regnum == -1)
3179 && tdep->gregset_reg_offset[i] != -1)
3180 regcache_raw_collect (regcache, i, regs + tdep->gregset_reg_offset[i]);
3181 }
3182 }
3183
3184 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
3185 in the floating-point register set REGSET to register cache
3186 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3187
3188 static void
3189 i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
3190 int regnum, const void *fpregs, size_t len)
3191 {
3192 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
3193
3194 if (len == I387_SIZEOF_FXSAVE)
3195 {
3196 i387_supply_fxsave (regcache, regnum, fpregs);
3197 return;
3198 }
3199
3200 gdb_assert (len == tdep->sizeof_fpregset);
3201 i387_supply_fsave (regcache, regnum, fpregs);
3202 }
3203
3204 /* Collect register REGNUM from the register cache REGCACHE and store
3205 it in the buffer specified by FPREGS and LEN as described by the
3206 floating-point register set REGSET. If REGNUM is -1, do this for
3207 all registers in REGSET. */
3208
3209 static void
3210 i386_collect_fpregset (const struct regset *regset,
3211 const struct regcache *regcache,
3212 int regnum, void *fpregs, size_t len)
3213 {
3214 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
3215
3216 if (len == I387_SIZEOF_FXSAVE)
3217 {
3218 i387_collect_fxsave (regcache, regnum, fpregs);
3219 return;
3220 }
3221
3222 gdb_assert (len == tdep->sizeof_fpregset);
3223 i387_collect_fsave (regcache, regnum, fpregs);
3224 }
3225
3226 /* Similar to i386_supply_fpregset, but use XSAVE extended state. */
3227
3228 static void
3229 i386_supply_xstateregset (const struct regset *regset,
3230 struct regcache *regcache, int regnum,
3231 const void *xstateregs, size_t len)
3232 {
3233 i387_supply_xsave (regcache, regnum, xstateregs);
3234 }
3235
3236 /* Similar to i386_collect_fpregset , but use XSAVE extended state. */
3237
3238 static void
3239 i386_collect_xstateregset (const struct regset *regset,
3240 const struct regcache *regcache,
3241 int regnum, void *xstateregs, size_t len)
3242 {
3243 i387_collect_xsave (regcache, regnum, xstateregs, 1);
3244 }
3245
3246 /* Return the appropriate register set for the core section identified
3247 by SECT_NAME and SECT_SIZE. */
3248
3249 const struct regset *
3250 i386_regset_from_core_section (struct gdbarch *gdbarch,
3251 const char *sect_name, size_t sect_size)
3252 {
3253 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3254
3255 if (strcmp (sect_name, ".reg") == 0 && sect_size == tdep->sizeof_gregset)
3256 {
3257 if (tdep->gregset == NULL)
3258 tdep->gregset = regset_alloc (gdbarch, i386_supply_gregset,
3259 i386_collect_gregset);
3260 return tdep->gregset;
3261 }
3262
3263 if ((strcmp (sect_name, ".reg2") == 0 && sect_size == tdep->sizeof_fpregset)
3264 || (strcmp (sect_name, ".reg-xfp") == 0
3265 && sect_size == I387_SIZEOF_FXSAVE))
3266 {
3267 if (tdep->fpregset == NULL)
3268 tdep->fpregset = regset_alloc (gdbarch, i386_supply_fpregset,
3269 i386_collect_fpregset);
3270 return tdep->fpregset;
3271 }
3272
3273 if (strcmp (sect_name, ".reg-xstate") == 0)
3274 {
3275 if (tdep->xstateregset == NULL)
3276 tdep->xstateregset = regset_alloc (gdbarch,
3277 i386_supply_xstateregset,
3278 i386_collect_xstateregset);
3279
3280 return tdep->xstateregset;
3281 }
3282
3283 return NULL;
3284 }
3285 \f
3286
3287 /* Stuff for WIN32 PE style DLL's but is pretty generic really. */
3288
3289 CORE_ADDR
3290 i386_pe_skip_trampoline_code (struct frame_info *frame,
3291 CORE_ADDR pc, char *name)
3292 {
3293 struct gdbarch *gdbarch = get_frame_arch (frame);
3294 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3295
3296 /* jmp *(dest) */
3297 if (pc && read_memory_unsigned_integer (pc, 2, byte_order) == 0x25ff)
3298 {
3299 unsigned long indirect =
3300 read_memory_unsigned_integer (pc + 2, 4, byte_order);
3301 struct minimal_symbol *indsym =
3302 indirect ? lookup_minimal_symbol_by_pc (indirect) : 0;
3303 const char *symname = indsym ? SYMBOL_LINKAGE_NAME (indsym) : 0;
3304
3305 if (symname)
3306 {
3307 if (strncmp (symname, "__imp_", 6) == 0
3308 || strncmp (symname, "_imp_", 5) == 0)
3309 return name ? 1 :
3310 read_memory_unsigned_integer (indirect, 4, byte_order);
3311 }
3312 }
3313 return 0; /* Not a trampoline. */
3314 }
3315 \f
3316
3317 /* Return whether the THIS_FRAME corresponds to a sigtramp
3318 routine. */
3319
3320 int
3321 i386_sigtramp_p (struct frame_info *this_frame)
3322 {
3323 CORE_ADDR pc = get_frame_pc (this_frame);
3324 const char *name;
3325
3326 find_pc_partial_function (pc, &name, NULL, NULL);
3327 return (name && strcmp ("_sigtramp", name) == 0);
3328 }
3329 \f
3330
3331 /* We have two flavours of disassembly. The machinery on this page
3332 deals with switching between those. */
3333
3334 static int
3335 i386_print_insn (bfd_vma pc, struct disassemble_info *info)
3336 {
3337 gdb_assert (disassembly_flavor == att_flavor
3338 || disassembly_flavor == intel_flavor);
3339
3340 /* FIXME: kettenis/20020915: Until disassembler_options is properly
3341 constified, cast to prevent a compiler warning. */
3342 info->disassembler_options = (char *) disassembly_flavor;
3343
3344 return print_insn_i386 (pc, info);
3345 }
3346 \f
3347
3348 /* There are a few i386 architecture variants that differ only
3349 slightly from the generic i386 target. For now, we don't give them
3350 their own source file, but include them here. As a consequence,
3351 they'll always be included. */
3352
3353 /* System V Release 4 (SVR4). */
3354
3355 /* Return whether THIS_FRAME corresponds to a SVR4 sigtramp
3356 routine. */
3357
3358 static int
3359 i386_svr4_sigtramp_p (struct frame_info *this_frame)
3360 {
3361 CORE_ADDR pc = get_frame_pc (this_frame);
3362 const char *name;
3363
3364 /* UnixWare uses _sigacthandler. The origin of the other symbols is
3365 currently unknown. */
3366 find_pc_partial_function (pc, &name, NULL, NULL);
3367 return (name && (strcmp ("_sigreturn", name) == 0
3368 || strcmp ("_sigacthandler", name) == 0
3369 || strcmp ("sigvechandler", name) == 0));
3370 }
3371
3372 /* Assuming THIS_FRAME is for a SVR4 sigtramp routine, return the
3373 address of the associated sigcontext (ucontext) structure. */
3374
3375 static CORE_ADDR
3376 i386_svr4_sigcontext_addr (struct frame_info *this_frame)
3377 {
3378 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3379 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3380 gdb_byte buf[4];
3381 CORE_ADDR sp;
3382
3383 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
3384 sp = extract_unsigned_integer (buf, 4, byte_order);
3385
3386 return read_memory_unsigned_integer (sp + 8, 4, byte_order);
3387 }
3388
3389 \f
3390
3391 /* Implementation of `gdbarch_stap_is_single_operand', as defined in
3392 gdbarch.h. */
3393
3394 int
3395 i386_stap_is_single_operand (struct gdbarch *gdbarch, const char *s)
3396 {
3397 return (*s == '$' /* Literal number. */
3398 || (isdigit (*s) && s[1] == '(' && s[2] == '%') /* Displacement. */
3399 || (*s == '(' && s[1] == '%') /* Register indirection. */
3400 || (*s == '%' && isalpha (s[1]))); /* Register access. */
3401 }
3402
3403 /* Implementation of `gdbarch_stap_parse_special_token', as defined in
3404 gdbarch.h. */
3405
3406 int
3407 i386_stap_parse_special_token (struct gdbarch *gdbarch,
3408 struct stap_parse_info *p)
3409 {
3410 /* In order to parse special tokens, we use a state-machine that go
3411 through every known token and try to get a match. */
3412 enum
3413 {
3414 TRIPLET,
3415 THREE_ARG_DISPLACEMENT,
3416 DONE
3417 } current_state;
3418
3419 current_state = TRIPLET;
3420
3421 /* The special tokens to be parsed here are:
3422
3423 - `register base + (register index * size) + offset', as represented
3424 in `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
3425
3426 - Operands of the form `-8+3+1(%rbp)', which must be interpreted as
3427 `*(-8 + 3 - 1 + (void *) $eax)'. */
3428
3429 while (current_state != DONE)
3430 {
3431 const char *s = p->arg;
3432
3433 switch (current_state)
3434 {
3435 case TRIPLET:
3436 {
3437 if (isdigit (*s) || *s == '-' || *s == '+')
3438 {
3439 int got_minus[3];
3440 int i;
3441 long displacements[3];
3442 const char *start;
3443 char *regname;
3444 int len;
3445 struct stoken str;
3446
3447 got_minus[0] = 0;
3448 if (*s == '+')
3449 ++s;
3450 else if (*s == '-')
3451 {
3452 ++s;
3453 got_minus[0] = 1;
3454 }
3455
3456 displacements[0] = strtol (s, (char **) &s, 10);
3457
3458 if (*s != '+' && *s != '-')
3459 {
3460 /* We are not dealing with a triplet. */
3461 break;
3462 }
3463
3464 got_minus[1] = 0;
3465 if (*s == '+')
3466 ++s;
3467 else
3468 {
3469 ++s;
3470 got_minus[1] = 1;
3471 }
3472
3473 displacements[1] = strtol (s, (char **) &s, 10);
3474
3475 if (*s != '+' && *s != '-')
3476 {
3477 /* We are not dealing with a triplet. */
3478 break;
3479 }
3480
3481 got_minus[2] = 0;
3482 if (*s == '+')
3483 ++s;
3484 else
3485 {
3486 ++s;
3487 got_minus[2] = 1;
3488 }
3489
3490 displacements[2] = strtol (s, (char **) &s, 10);
3491
3492 if (*s != '(' || s[1] != '%')
3493 break;
3494
3495 s += 2;
3496 start = s;
3497
3498 while (isalnum (*s))
3499 ++s;
3500
3501 if (*s++ != ')')
3502 break;
3503
3504 len = s - start;
3505 regname = alloca (len + 1);
3506
3507 strncpy (regname, start, len);
3508 regname[len] = '\0';
3509
3510 if (user_reg_map_name_to_regnum (gdbarch,
3511 regname, len) == -1)
3512 error (_("Invalid register name `%s' "
3513 "on expression `%s'."),
3514 regname, p->saved_arg);
3515
3516 for (i = 0; i < 3; i++)
3517 {
3518 write_exp_elt_opcode (OP_LONG);
3519 write_exp_elt_type
3520 (builtin_type (gdbarch)->builtin_long);
3521 write_exp_elt_longcst (displacements[i]);
3522 write_exp_elt_opcode (OP_LONG);
3523 if (got_minus[i])
3524 write_exp_elt_opcode (UNOP_NEG);
3525 }
3526
3527 write_exp_elt_opcode (OP_REGISTER);
3528 str.ptr = regname;
3529 str.length = len;
3530 write_exp_string (str);
3531 write_exp_elt_opcode (OP_REGISTER);
3532
3533 write_exp_elt_opcode (UNOP_CAST);
3534 write_exp_elt_type (builtin_type (gdbarch)->builtin_data_ptr);
3535 write_exp_elt_opcode (UNOP_CAST);
3536
3537 write_exp_elt_opcode (BINOP_ADD);
3538 write_exp_elt_opcode (BINOP_ADD);
3539 write_exp_elt_opcode (BINOP_ADD);
3540
3541 write_exp_elt_opcode (UNOP_CAST);
3542 write_exp_elt_type (lookup_pointer_type (p->arg_type));
3543 write_exp_elt_opcode (UNOP_CAST);
3544
3545 write_exp_elt_opcode (UNOP_IND);
3546
3547 p->arg = s;
3548
3549 return 1;
3550 }
3551 break;
3552 }
3553 case THREE_ARG_DISPLACEMENT:
3554 {
3555 if (isdigit (*s) || *s == '(' || *s == '-' || *s == '+')
3556 {
3557 int offset_minus = 0;
3558 long offset = 0;
3559 int size_minus = 0;
3560 long size = 0;
3561 const char *start;
3562 char *base;
3563 int len_base;
3564 char *index;
3565 int len_index;
3566 struct stoken base_token, index_token;
3567
3568 if (*s == '+')
3569 ++s;
3570 else if (*s == '-')
3571 {
3572 ++s;
3573 offset_minus = 1;
3574 }
3575
3576 if (offset_minus && !isdigit (*s))
3577 break;
3578
3579 if (isdigit (*s))
3580 offset = strtol (s, (char **) &s, 10);
3581
3582 if (*s != '(' || s[1] != '%')
3583 break;
3584
3585 s += 2;
3586 start = s;
3587
3588 while (isalnum (*s))
3589 ++s;
3590
3591 if (*s != ',' || s[1] != '%')
3592 break;
3593
3594 len_base = s - start;
3595 base = alloca (len_base + 1);
3596 strncpy (base, start, len_base);
3597 base[len_base] = '\0';
3598
3599 if (user_reg_map_name_to_regnum (gdbarch,
3600 base, len_base) == -1)
3601 error (_("Invalid register name `%s' "
3602 "on expression `%s'."),
3603 base, p->saved_arg);
3604
3605 s += 2;
3606 start = s;
3607
3608 while (isalnum (*s))
3609 ++s;
3610
3611 len_index = s - start;
3612 index = alloca (len_index + 1);
3613 strncpy (index, start, len_index);
3614 index[len_index] = '\0';
3615
3616 if (user_reg_map_name_to_regnum (gdbarch,
3617 index, len_index) == -1)
3618 error (_("Invalid register name `%s' "
3619 "on expression `%s'."),
3620 index, p->saved_arg);
3621
3622 if (*s != ',' && *s != ')')
3623 break;
3624
3625 if (*s == ',')
3626 {
3627 ++s;
3628 if (*s == '+')
3629 ++s;
3630 else if (*s == '-')
3631 {
3632 ++s;
3633 size_minus = 1;
3634 }
3635
3636 size = strtol (s, (char **) &s, 10);
3637
3638 if (*s != ')')
3639 break;
3640 }
3641
3642 ++s;
3643
3644 if (offset)
3645 {
3646 write_exp_elt_opcode (OP_LONG);
3647 write_exp_elt_type
3648 (builtin_type (gdbarch)->builtin_long);
3649 write_exp_elt_longcst (offset);
3650 write_exp_elt_opcode (OP_LONG);
3651 if (offset_minus)
3652 write_exp_elt_opcode (UNOP_NEG);
3653 }
3654
3655 write_exp_elt_opcode (OP_REGISTER);
3656 base_token.ptr = base;
3657 base_token.length = len_base;
3658 write_exp_string (base_token);
3659 write_exp_elt_opcode (OP_REGISTER);
3660
3661 if (offset)
3662 write_exp_elt_opcode (BINOP_ADD);
3663
3664 write_exp_elt_opcode (OP_REGISTER);
3665 index_token.ptr = index;
3666 index_token.length = len_index;
3667 write_exp_string (index_token);
3668 write_exp_elt_opcode (OP_REGISTER);
3669
3670 if (size)
3671 {
3672 write_exp_elt_opcode (OP_LONG);
3673 write_exp_elt_type
3674 (builtin_type (gdbarch)->builtin_long);
3675 write_exp_elt_longcst (size);
3676 write_exp_elt_opcode (OP_LONG);
3677 if (size_minus)
3678 write_exp_elt_opcode (UNOP_NEG);
3679 write_exp_elt_opcode (BINOP_MUL);
3680 }
3681
3682 write_exp_elt_opcode (BINOP_ADD);
3683
3684 write_exp_elt_opcode (UNOP_CAST);
3685 write_exp_elt_type (lookup_pointer_type (p->arg_type));
3686 write_exp_elt_opcode (UNOP_CAST);
3687
3688 write_exp_elt_opcode (UNOP_IND);
3689
3690 p->arg = s;
3691
3692 return 1;
3693 }
3694 break;
3695 }
3696 }
3697
3698 /* Advancing to the next state. */
3699 ++current_state;
3700 }
3701
3702 return 0;
3703 }
3704
3705 \f
3706
3707 /* Generic ELF. */
3708
3709 void
3710 i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3711 {
3712 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
3713 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
3714
3715 /* Registering SystemTap handlers. */
3716 set_gdbarch_stap_integer_prefix (gdbarch, "$");
3717 set_gdbarch_stap_register_prefix (gdbarch, "%");
3718 set_gdbarch_stap_register_indirection_prefix (gdbarch, "(");
3719 set_gdbarch_stap_register_indirection_suffix (gdbarch, ")");
3720 set_gdbarch_stap_is_single_operand (gdbarch,
3721 i386_stap_is_single_operand);
3722 set_gdbarch_stap_parse_special_token (gdbarch,
3723 i386_stap_parse_special_token);
3724 }
3725
3726 /* System V Release 4 (SVR4). */
3727
3728 void
3729 i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3730 {
3731 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3732
3733 /* System V Release 4 uses ELF. */
3734 i386_elf_init_abi (info, gdbarch);
3735
3736 /* System V Release 4 has shared libraries. */
3737 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
3738
3739 tdep->sigtramp_p = i386_svr4_sigtramp_p;
3740 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
3741 tdep->sc_pc_offset = 36 + 14 * 4;
3742 tdep->sc_sp_offset = 36 + 17 * 4;
3743
3744 tdep->jb_pc_offset = 20;
3745 }
3746
3747 /* DJGPP. */
3748
3749 static void
3750 i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3751 {
3752 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3753
3754 /* DJGPP doesn't have any special frames for signal handlers. */
3755 tdep->sigtramp_p = NULL;
3756
3757 tdep->jb_pc_offset = 36;
3758
3759 /* DJGPP does not support the SSE registers. */
3760 if (! tdesc_has_registers (info.target_desc))
3761 tdep->tdesc = tdesc_i386_mmx;
3762
3763 /* Native compiler is GCC, which uses the SVR4 register numbering
3764 even in COFF and STABS. See the comment in i386_gdbarch_init,
3765 before the calls to set_gdbarch_stab_reg_to_regnum and
3766 set_gdbarch_sdb_reg_to_regnum. */
3767 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
3768 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
3769
3770 set_gdbarch_has_dos_based_file_system (gdbarch, 1);
3771 }
3772 \f
3773
3774 /* i386 register groups. In addition to the normal groups, add "mmx"
3775 and "sse". */
3776
3777 static struct reggroup *i386_sse_reggroup;
3778 static struct reggroup *i386_mmx_reggroup;
3779
3780 static void
3781 i386_init_reggroups (void)
3782 {
3783 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
3784 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
3785 }
3786
3787 static void
3788 i386_add_reggroups (struct gdbarch *gdbarch)
3789 {
3790 reggroup_add (gdbarch, i386_sse_reggroup);
3791 reggroup_add (gdbarch, i386_mmx_reggroup);
3792 reggroup_add (gdbarch, general_reggroup);
3793 reggroup_add (gdbarch, float_reggroup);
3794 reggroup_add (gdbarch, all_reggroup);
3795 reggroup_add (gdbarch, save_reggroup);
3796 reggroup_add (gdbarch, restore_reggroup);
3797 reggroup_add (gdbarch, vector_reggroup);
3798 reggroup_add (gdbarch, system_reggroup);
3799 }
3800
3801 int
3802 i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
3803 struct reggroup *group)
3804 {
3805 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3806 int fp_regnum_p, mmx_regnum_p, xmm_regnum_p, mxcsr_regnum_p,
3807 ymm_regnum_p, ymmh_regnum_p;
3808
3809 /* Don't include pseudo registers, except for MMX, in any register
3810 groups. */
3811 if (i386_byte_regnum_p (gdbarch, regnum))
3812 return 0;
3813
3814 if (i386_word_regnum_p (gdbarch, regnum))
3815 return 0;
3816
3817 if (i386_dword_regnum_p (gdbarch, regnum))
3818 return 0;
3819
3820 mmx_regnum_p = i386_mmx_regnum_p (gdbarch, regnum);
3821 if (group == i386_mmx_reggroup)
3822 return mmx_regnum_p;
3823
3824 xmm_regnum_p = i386_xmm_regnum_p (gdbarch, regnum);
3825 mxcsr_regnum_p = i386_mxcsr_regnum_p (gdbarch, regnum);
3826 if (group == i386_sse_reggroup)
3827 return xmm_regnum_p || mxcsr_regnum_p;
3828
3829 ymm_regnum_p = i386_ymm_regnum_p (gdbarch, regnum);
3830 if (group == vector_reggroup)
3831 return (mmx_regnum_p
3832 || ymm_regnum_p
3833 || mxcsr_regnum_p
3834 || (xmm_regnum_p
3835 && ((tdep->xcr0 & I386_XSTATE_AVX_MASK)
3836 == I386_XSTATE_SSE_MASK)));
3837
3838 fp_regnum_p = (i386_fp_regnum_p (gdbarch, regnum)
3839 || i386_fpc_regnum_p (gdbarch, regnum));
3840 if (group == float_reggroup)
3841 return fp_regnum_p;
3842
3843 /* For "info reg all", don't include upper YMM registers nor XMM
3844 registers when AVX is supported. */
3845 ymmh_regnum_p = i386_ymmh_regnum_p (gdbarch, regnum);
3846 if (group == all_reggroup
3847 && ((xmm_regnum_p
3848 && (tdep->xcr0 & I386_XSTATE_AVX))
3849 || ymmh_regnum_p))
3850 return 0;
3851
3852 if (group == general_reggroup)
3853 return (!fp_regnum_p
3854 && !mmx_regnum_p
3855 && !mxcsr_regnum_p
3856 && !xmm_regnum_p
3857 && !ymm_regnum_p
3858 && !ymmh_regnum_p);
3859
3860 return default_register_reggroup_p (gdbarch, regnum, group);
3861 }
3862 \f
3863
3864 /* Get the ARGIth function argument for the current function. */
3865
3866 static CORE_ADDR
3867 i386_fetch_pointer_argument (struct frame_info *frame, int argi,
3868 struct type *type)
3869 {
3870 struct gdbarch *gdbarch = get_frame_arch (frame);
3871 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3872 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
3873 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4, byte_order);
3874 }
3875
3876 static void
3877 i386_skip_permanent_breakpoint (struct regcache *regcache)
3878 {
3879 CORE_ADDR current_pc = regcache_read_pc (regcache);
3880
3881 /* On i386, breakpoint is exactly 1 byte long, so we just
3882 adjust the PC in the regcache. */
3883 current_pc += 1;
3884 regcache_write_pc (regcache, current_pc);
3885 }
3886
3887
3888 #define PREFIX_REPZ 0x01
3889 #define PREFIX_REPNZ 0x02
3890 #define PREFIX_LOCK 0x04
3891 #define PREFIX_DATA 0x08
3892 #define PREFIX_ADDR 0x10
3893
3894 /* operand size */
3895 enum
3896 {
3897 OT_BYTE = 0,
3898 OT_WORD,
3899 OT_LONG,
3900 OT_QUAD,
3901 OT_DQUAD,
3902 };
3903
3904 /* i386 arith/logic operations */
3905 enum
3906 {
3907 OP_ADDL,
3908 OP_ORL,
3909 OP_ADCL,
3910 OP_SBBL,
3911 OP_ANDL,
3912 OP_SUBL,
3913 OP_XORL,
3914 OP_CMPL,
3915 };
3916
3917 struct i386_record_s
3918 {
3919 struct gdbarch *gdbarch;
3920 struct regcache *regcache;
3921 CORE_ADDR orig_addr;
3922 CORE_ADDR addr;
3923 int aflag;
3924 int dflag;
3925 int override;
3926 uint8_t modrm;
3927 uint8_t mod, reg, rm;
3928 int ot;
3929 uint8_t rex_x;
3930 uint8_t rex_b;
3931 int rip_offset;
3932 int popl_esp_hack;
3933 const int *regmap;
3934 };
3935
3936 /* Parse "modrm" part in current memory address that irp->addr point to
3937 Return -1 if something wrong. */
3938
3939 static int
3940 i386_record_modrm (struct i386_record_s *irp)
3941 {
3942 struct gdbarch *gdbarch = irp->gdbarch;
3943
3944 if (record_read_memory (gdbarch, irp->addr, &irp->modrm, 1))
3945 return -1;
3946
3947 irp->addr++;
3948 irp->mod = (irp->modrm >> 6) & 3;
3949 irp->reg = (irp->modrm >> 3) & 7;
3950 irp->rm = irp->modrm & 7;
3951
3952 return 0;
3953 }
3954
3955 /* Get the memory address that current instruction write to and set it to
3956 the argument "addr".
3957 Return -1 if something wrong. */
3958
3959 static int
3960 i386_record_lea_modrm_addr (struct i386_record_s *irp, uint64_t *addr)
3961 {
3962 struct gdbarch *gdbarch = irp->gdbarch;
3963 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3964 gdb_byte buf[4];
3965 ULONGEST offset64;
3966
3967 *addr = 0;
3968 if (irp->aflag)
3969 {
3970 /* 32 bits */
3971 int havesib = 0;
3972 uint8_t scale = 0;
3973 uint8_t byte;
3974 uint8_t index = 0;
3975 uint8_t base = irp->rm;
3976
3977 if (base == 4)
3978 {
3979 havesib = 1;
3980 if (record_read_memory (gdbarch, irp->addr, &byte, 1))
3981 return -1;
3982 irp->addr++;
3983 scale = (byte >> 6) & 3;
3984 index = ((byte >> 3) & 7) | irp->rex_x;
3985 base = (byte & 7);
3986 }
3987 base |= irp->rex_b;
3988
3989 switch (irp->mod)
3990 {
3991 case 0:
3992 if ((base & 7) == 5)
3993 {
3994 base = 0xff;
3995 if (record_read_memory (gdbarch, irp->addr, buf, 4))
3996 return -1;
3997 irp->addr += 4;
3998 *addr = extract_signed_integer (buf, 4, byte_order);
3999 if (irp->regmap[X86_RECORD_R8_REGNUM] && !havesib)
4000 *addr += irp->addr + irp->rip_offset;
4001 }
4002 break;
4003 case 1:
4004 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4005 return -1;
4006 irp->addr++;
4007 *addr = (int8_t) buf[0];
4008 break;
4009 case 2:
4010 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4011 return -1;
4012 *addr = extract_signed_integer (buf, 4, byte_order);
4013 irp->addr += 4;
4014 break;
4015 }
4016
4017 offset64 = 0;
4018 if (base != 0xff)
4019 {
4020 if (base == 4 && irp->popl_esp_hack)
4021 *addr += irp->popl_esp_hack;
4022 regcache_raw_read_unsigned (irp->regcache, irp->regmap[base],
4023 &offset64);
4024 }
4025 if (irp->aflag == 2)
4026 {
4027 *addr += offset64;
4028 }
4029 else
4030 *addr = (uint32_t) (offset64 + *addr);
4031
4032 if (havesib && (index != 4 || scale != 0))
4033 {
4034 regcache_raw_read_unsigned (irp->regcache, irp->regmap[index],
4035 &offset64);
4036 if (irp->aflag == 2)
4037 *addr += offset64 << scale;
4038 else
4039 *addr = (uint32_t) (*addr + (offset64 << scale));
4040 }
4041 }
4042 else
4043 {
4044 /* 16 bits */
4045 switch (irp->mod)
4046 {
4047 case 0:
4048 if (irp->rm == 6)
4049 {
4050 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4051 return -1;
4052 irp->addr += 2;
4053 *addr = extract_signed_integer (buf, 2, byte_order);
4054 irp->rm = 0;
4055 goto no_rm;
4056 }
4057 break;
4058 case 1:
4059 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4060 return -1;
4061 irp->addr++;
4062 *addr = (int8_t) buf[0];
4063 break;
4064 case 2:
4065 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4066 return -1;
4067 irp->addr += 2;
4068 *addr = extract_signed_integer (buf, 2, byte_order);
4069 break;
4070 }
4071
4072 switch (irp->rm)
4073 {
4074 case 0:
4075 regcache_raw_read_unsigned (irp->regcache,
4076 irp->regmap[X86_RECORD_REBX_REGNUM],
4077 &offset64);
4078 *addr = (uint32_t) (*addr + offset64);
4079 regcache_raw_read_unsigned (irp->regcache,
4080 irp->regmap[X86_RECORD_RESI_REGNUM],
4081 &offset64);
4082 *addr = (uint32_t) (*addr + offset64);
4083 break;
4084 case 1:
4085 regcache_raw_read_unsigned (irp->regcache,
4086 irp->regmap[X86_RECORD_REBX_REGNUM],
4087 &offset64);
4088 *addr = (uint32_t) (*addr + offset64);
4089 regcache_raw_read_unsigned (irp->regcache,
4090 irp->regmap[X86_RECORD_REDI_REGNUM],
4091 &offset64);
4092 *addr = (uint32_t) (*addr + offset64);
4093 break;
4094 case 2:
4095 regcache_raw_read_unsigned (irp->regcache,
4096 irp->regmap[X86_RECORD_REBP_REGNUM],
4097 &offset64);
4098 *addr = (uint32_t) (*addr + offset64);
4099 regcache_raw_read_unsigned (irp->regcache,
4100 irp->regmap[X86_RECORD_RESI_REGNUM],
4101 &offset64);
4102 *addr = (uint32_t) (*addr + offset64);
4103 break;
4104 case 3:
4105 regcache_raw_read_unsigned (irp->regcache,
4106 irp->regmap[X86_RECORD_REBP_REGNUM],
4107 &offset64);
4108 *addr = (uint32_t) (*addr + offset64);
4109 regcache_raw_read_unsigned (irp->regcache,
4110 irp->regmap[X86_RECORD_REDI_REGNUM],
4111 &offset64);
4112 *addr = (uint32_t) (*addr + offset64);
4113 break;
4114 case 4:
4115 regcache_raw_read_unsigned (irp->regcache,
4116 irp->regmap[X86_RECORD_RESI_REGNUM],
4117 &offset64);
4118 *addr = (uint32_t) (*addr + offset64);
4119 break;
4120 case 5:
4121 regcache_raw_read_unsigned (irp->regcache,
4122 irp->regmap[X86_RECORD_REDI_REGNUM],
4123 &offset64);
4124 *addr = (uint32_t) (*addr + offset64);
4125 break;
4126 case 6:
4127 regcache_raw_read_unsigned (irp->regcache,
4128 irp->regmap[X86_RECORD_REBP_REGNUM],
4129 &offset64);
4130 *addr = (uint32_t) (*addr + offset64);
4131 break;
4132 case 7:
4133 regcache_raw_read_unsigned (irp->regcache,
4134 irp->regmap[X86_RECORD_REBX_REGNUM],
4135 &offset64);
4136 *addr = (uint32_t) (*addr + offset64);
4137 break;
4138 }
4139 *addr &= 0xffff;
4140 }
4141
4142 no_rm:
4143 return 0;
4144 }
4145
4146 /* Record the value of the memory that willbe changed in current instruction
4147 to "record_arch_list".
4148 Return -1 if something wrong. */
4149
4150 static int
4151 i386_record_lea_modrm (struct i386_record_s *irp)
4152 {
4153 struct gdbarch *gdbarch = irp->gdbarch;
4154 uint64_t addr;
4155
4156 if (irp->override >= 0)
4157 {
4158 if (record_memory_query)
4159 {
4160 int q;
4161
4162 target_terminal_ours ();
4163 q = yquery (_("\
4164 Process record ignores the memory change of instruction at address %s\n\
4165 because it can't get the value of the segment register.\n\
4166 Do you want to stop the program?"),
4167 paddress (gdbarch, irp->orig_addr));
4168 target_terminal_inferior ();
4169 if (q)
4170 return -1;
4171 }
4172
4173 return 0;
4174 }
4175
4176 if (i386_record_lea_modrm_addr (irp, &addr))
4177 return -1;
4178
4179 if (record_arch_list_add_mem (addr, 1 << irp->ot))
4180 return -1;
4181
4182 return 0;
4183 }
4184
4185 /* Record the push operation to "record_arch_list".
4186 Return -1 if something wrong. */
4187
4188 static int
4189 i386_record_push (struct i386_record_s *irp, int size)
4190 {
4191 ULONGEST addr;
4192
4193 if (record_arch_list_add_reg (irp->regcache,
4194 irp->regmap[X86_RECORD_RESP_REGNUM]))
4195 return -1;
4196 regcache_raw_read_unsigned (irp->regcache,
4197 irp->regmap[X86_RECORD_RESP_REGNUM],
4198 &addr);
4199 if (record_arch_list_add_mem ((CORE_ADDR) addr - size, size))
4200 return -1;
4201
4202 return 0;
4203 }
4204
4205
4206 /* Defines contents to record. */
4207 #define I386_SAVE_FPU_REGS 0xfffd
4208 #define I386_SAVE_FPU_ENV 0xfffe
4209 #define I386_SAVE_FPU_ENV_REG_STACK 0xffff
4210
4211 /* Record the value of floating point registers which will be changed
4212 by the current instruction to "record_arch_list". Return -1 if
4213 something is wrong. */
4214
4215 static int i386_record_floats (struct gdbarch *gdbarch,
4216 struct i386_record_s *ir,
4217 uint32_t iregnum)
4218 {
4219 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4220 int i;
4221
4222 /* Oza: Because of floating point insn push/pop of fpu stack is going to
4223 happen. Currently we store st0-st7 registers, but we need not store all
4224 registers all the time, in future we use ftag register and record only
4225 those who are not marked as an empty. */
4226
4227 if (I386_SAVE_FPU_REGS == iregnum)
4228 {
4229 for (i = I387_ST0_REGNUM (tdep); i <= I387_ST0_REGNUM (tdep) + 7; i++)
4230 {
4231 if (record_arch_list_add_reg (ir->regcache, i))
4232 return -1;
4233 }
4234 }
4235 else if (I386_SAVE_FPU_ENV == iregnum)
4236 {
4237 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4238 {
4239 if (record_arch_list_add_reg (ir->regcache, i))
4240 return -1;
4241 }
4242 }
4243 else if (I386_SAVE_FPU_ENV_REG_STACK == iregnum)
4244 {
4245 for (i = I387_ST0_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4246 {
4247 if (record_arch_list_add_reg (ir->regcache, i))
4248 return -1;
4249 }
4250 }
4251 else if ((iregnum >= I387_ST0_REGNUM (tdep)) &&
4252 (iregnum <= I387_FOP_REGNUM (tdep)))
4253 {
4254 if (record_arch_list_add_reg (ir->regcache,iregnum))
4255 return -1;
4256 }
4257 else
4258 {
4259 /* Parameter error. */
4260 return -1;
4261 }
4262 if(I386_SAVE_FPU_ENV != iregnum)
4263 {
4264 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4265 {
4266 if (record_arch_list_add_reg (ir->regcache, i))
4267 return -1;
4268 }
4269 }
4270 return 0;
4271 }
4272
4273 /* Parse the current instruction and record the values of the registers and
4274 memory that will be changed in current instruction to "record_arch_list".
4275 Return -1 if something wrong. */
4276
4277 #define I386_RECORD_ARCH_LIST_ADD_REG(regnum) \
4278 record_arch_list_add_reg (ir.regcache, ir.regmap[(regnum)])
4279
4280 int
4281 i386_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
4282 CORE_ADDR input_addr)
4283 {
4284 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4285 int prefixes = 0;
4286 int regnum = 0;
4287 uint32_t opcode;
4288 uint8_t opcode8;
4289 ULONGEST addr;
4290 gdb_byte buf[MAX_REGISTER_SIZE];
4291 struct i386_record_s ir;
4292 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4293 int rex = 0;
4294 uint8_t rex_w = -1;
4295 uint8_t rex_r = 0;
4296
4297 memset (&ir, 0, sizeof (struct i386_record_s));
4298 ir.regcache = regcache;
4299 ir.addr = input_addr;
4300 ir.orig_addr = input_addr;
4301 ir.aflag = 1;
4302 ir.dflag = 1;
4303 ir.override = -1;
4304 ir.popl_esp_hack = 0;
4305 ir.regmap = tdep->record_regmap;
4306 ir.gdbarch = gdbarch;
4307
4308 if (record_debug > 1)
4309 fprintf_unfiltered (gdb_stdlog, "Process record: i386_process_record "
4310 "addr = %s\n",
4311 paddress (gdbarch, ir.addr));
4312
4313 /* prefixes */
4314 while (1)
4315 {
4316 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
4317 return -1;
4318 ir.addr++;
4319 switch (opcode8) /* Instruction prefixes */
4320 {
4321 case REPE_PREFIX_OPCODE:
4322 prefixes |= PREFIX_REPZ;
4323 break;
4324 case REPNE_PREFIX_OPCODE:
4325 prefixes |= PREFIX_REPNZ;
4326 break;
4327 case LOCK_PREFIX_OPCODE:
4328 prefixes |= PREFIX_LOCK;
4329 break;
4330 case CS_PREFIX_OPCODE:
4331 ir.override = X86_RECORD_CS_REGNUM;
4332 break;
4333 case SS_PREFIX_OPCODE:
4334 ir.override = X86_RECORD_SS_REGNUM;
4335 break;
4336 case DS_PREFIX_OPCODE:
4337 ir.override = X86_RECORD_DS_REGNUM;
4338 break;
4339 case ES_PREFIX_OPCODE:
4340 ir.override = X86_RECORD_ES_REGNUM;
4341 break;
4342 case FS_PREFIX_OPCODE:
4343 ir.override = X86_RECORD_FS_REGNUM;
4344 break;
4345 case GS_PREFIX_OPCODE:
4346 ir.override = X86_RECORD_GS_REGNUM;
4347 break;
4348 case DATA_PREFIX_OPCODE:
4349 prefixes |= PREFIX_DATA;
4350 break;
4351 case ADDR_PREFIX_OPCODE:
4352 prefixes |= PREFIX_ADDR;
4353 break;
4354 case 0x40: /* i386 inc %eax */
4355 case 0x41: /* i386 inc %ecx */
4356 case 0x42: /* i386 inc %edx */
4357 case 0x43: /* i386 inc %ebx */
4358 case 0x44: /* i386 inc %esp */
4359 case 0x45: /* i386 inc %ebp */
4360 case 0x46: /* i386 inc %esi */
4361 case 0x47: /* i386 inc %edi */
4362 case 0x48: /* i386 dec %eax */
4363 case 0x49: /* i386 dec %ecx */
4364 case 0x4a: /* i386 dec %edx */
4365 case 0x4b: /* i386 dec %ebx */
4366 case 0x4c: /* i386 dec %esp */
4367 case 0x4d: /* i386 dec %ebp */
4368 case 0x4e: /* i386 dec %esi */
4369 case 0x4f: /* i386 dec %edi */
4370 if (ir.regmap[X86_RECORD_R8_REGNUM]) /* 64 bit target */
4371 {
4372 /* REX */
4373 rex = 1;
4374 rex_w = (opcode8 >> 3) & 1;
4375 rex_r = (opcode8 & 0x4) << 1;
4376 ir.rex_x = (opcode8 & 0x2) << 2;
4377 ir.rex_b = (opcode8 & 0x1) << 3;
4378 }
4379 else /* 32 bit target */
4380 goto out_prefixes;
4381 break;
4382 default:
4383 goto out_prefixes;
4384 break;
4385 }
4386 }
4387 out_prefixes:
4388 if (ir.regmap[X86_RECORD_R8_REGNUM] && rex_w == 1)
4389 {
4390 ir.dflag = 2;
4391 }
4392 else
4393 {
4394 if (prefixes & PREFIX_DATA)
4395 ir.dflag ^= 1;
4396 }
4397 if (prefixes & PREFIX_ADDR)
4398 ir.aflag ^= 1;
4399 else if (ir.regmap[X86_RECORD_R8_REGNUM])
4400 ir.aflag = 2;
4401
4402 /* Now check op code. */
4403 opcode = (uint32_t) opcode8;
4404 reswitch:
4405 switch (opcode)
4406 {
4407 case 0x0f:
4408 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
4409 return -1;
4410 ir.addr++;
4411 opcode = (uint32_t) opcode8 | 0x0f00;
4412 goto reswitch;
4413 break;
4414
4415 case 0x00: /* arith & logic */
4416 case 0x01:
4417 case 0x02:
4418 case 0x03:
4419 case 0x04:
4420 case 0x05:
4421 case 0x08:
4422 case 0x09:
4423 case 0x0a:
4424 case 0x0b:
4425 case 0x0c:
4426 case 0x0d:
4427 case 0x10:
4428 case 0x11:
4429 case 0x12:
4430 case 0x13:
4431 case 0x14:
4432 case 0x15:
4433 case 0x18:
4434 case 0x19:
4435 case 0x1a:
4436 case 0x1b:
4437 case 0x1c:
4438 case 0x1d:
4439 case 0x20:
4440 case 0x21:
4441 case 0x22:
4442 case 0x23:
4443 case 0x24:
4444 case 0x25:
4445 case 0x28:
4446 case 0x29:
4447 case 0x2a:
4448 case 0x2b:
4449 case 0x2c:
4450 case 0x2d:
4451 case 0x30:
4452 case 0x31:
4453 case 0x32:
4454 case 0x33:
4455 case 0x34:
4456 case 0x35:
4457 case 0x38:
4458 case 0x39:
4459 case 0x3a:
4460 case 0x3b:
4461 case 0x3c:
4462 case 0x3d:
4463 if (((opcode >> 3) & 7) != OP_CMPL)
4464 {
4465 if ((opcode & 1) == 0)
4466 ir.ot = OT_BYTE;
4467 else
4468 ir.ot = ir.dflag + OT_WORD;
4469
4470 switch ((opcode >> 1) & 3)
4471 {
4472 case 0: /* OP Ev, Gv */
4473 if (i386_record_modrm (&ir))
4474 return -1;
4475 if (ir.mod != 3)
4476 {
4477 if (i386_record_lea_modrm (&ir))
4478 return -1;
4479 }
4480 else
4481 {
4482 ir.rm |= ir.rex_b;
4483 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4484 ir.rm &= 0x3;
4485 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
4486 }
4487 break;
4488 case 1: /* OP Gv, Ev */
4489 if (i386_record_modrm (&ir))
4490 return -1;
4491 ir.reg |= rex_r;
4492 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4493 ir.reg &= 0x3;
4494 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4495 break;
4496 case 2: /* OP A, Iv */
4497 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4498 break;
4499 }
4500 }
4501 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4502 break;
4503
4504 case 0x80: /* GRP1 */
4505 case 0x81:
4506 case 0x82:
4507 case 0x83:
4508 if (i386_record_modrm (&ir))
4509 return -1;
4510
4511 if (ir.reg != OP_CMPL)
4512 {
4513 if ((opcode & 1) == 0)
4514 ir.ot = OT_BYTE;
4515 else
4516 ir.ot = ir.dflag + OT_WORD;
4517
4518 if (ir.mod != 3)
4519 {
4520 if (opcode == 0x83)
4521 ir.rip_offset = 1;
4522 else
4523 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
4524 if (i386_record_lea_modrm (&ir))
4525 return -1;
4526 }
4527 else
4528 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
4529 }
4530 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4531 break;
4532
4533 case 0x40: /* inc */
4534 case 0x41:
4535 case 0x42:
4536 case 0x43:
4537 case 0x44:
4538 case 0x45:
4539 case 0x46:
4540 case 0x47:
4541
4542 case 0x48: /* dec */
4543 case 0x49:
4544 case 0x4a:
4545 case 0x4b:
4546 case 0x4c:
4547 case 0x4d:
4548 case 0x4e:
4549 case 0x4f:
4550
4551 I386_RECORD_ARCH_LIST_ADD_REG (opcode & 7);
4552 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4553 break;
4554
4555 case 0xf6: /* GRP3 */
4556 case 0xf7:
4557 if ((opcode & 1) == 0)
4558 ir.ot = OT_BYTE;
4559 else
4560 ir.ot = ir.dflag + OT_WORD;
4561 if (i386_record_modrm (&ir))
4562 return -1;
4563
4564 if (ir.mod != 3 && ir.reg == 0)
4565 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
4566
4567 switch (ir.reg)
4568 {
4569 case 0: /* test */
4570 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4571 break;
4572 case 2: /* not */
4573 case 3: /* neg */
4574 if (ir.mod != 3)
4575 {
4576 if (i386_record_lea_modrm (&ir))
4577 return -1;
4578 }
4579 else
4580 {
4581 ir.rm |= ir.rex_b;
4582 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4583 ir.rm &= 0x3;
4584 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
4585 }
4586 if (ir.reg == 3) /* neg */
4587 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4588 break;
4589 case 4: /* mul */
4590 case 5: /* imul */
4591 case 6: /* div */
4592 case 7: /* idiv */
4593 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4594 if (ir.ot != OT_BYTE)
4595 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
4596 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4597 break;
4598 default:
4599 ir.addr -= 2;
4600 opcode = opcode << 8 | ir.modrm;
4601 goto no_support;
4602 break;
4603 }
4604 break;
4605
4606 case 0xfe: /* GRP4 */
4607 case 0xff: /* GRP5 */
4608 if (i386_record_modrm (&ir))
4609 return -1;
4610 if (ir.reg >= 2 && opcode == 0xfe)
4611 {
4612 ir.addr -= 2;
4613 opcode = opcode << 8 | ir.modrm;
4614 goto no_support;
4615 }
4616 switch (ir.reg)
4617 {
4618 case 0: /* inc */
4619 case 1: /* dec */
4620 if ((opcode & 1) == 0)
4621 ir.ot = OT_BYTE;
4622 else
4623 ir.ot = ir.dflag + OT_WORD;
4624 if (ir.mod != 3)
4625 {
4626 if (i386_record_lea_modrm (&ir))
4627 return -1;
4628 }
4629 else
4630 {
4631 ir.rm |= ir.rex_b;
4632 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4633 ir.rm &= 0x3;
4634 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
4635 }
4636 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4637 break;
4638 case 2: /* call */
4639 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4640 ir.dflag = 2;
4641 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4642 return -1;
4643 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4644 break;
4645 case 3: /* lcall */
4646 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
4647 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4648 return -1;
4649 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4650 break;
4651 case 4: /* jmp */
4652 case 5: /* ljmp */
4653 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4654 break;
4655 case 6: /* push */
4656 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4657 ir.dflag = 2;
4658 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4659 return -1;
4660 break;
4661 default:
4662 ir.addr -= 2;
4663 opcode = opcode << 8 | ir.modrm;
4664 goto no_support;
4665 break;
4666 }
4667 break;
4668
4669 case 0x84: /* test */
4670 case 0x85:
4671 case 0xa8:
4672 case 0xa9:
4673 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4674 break;
4675
4676 case 0x98: /* CWDE/CBW */
4677 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4678 break;
4679
4680 case 0x99: /* CDQ/CWD */
4681 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4682 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
4683 break;
4684
4685 case 0x0faf: /* imul */
4686 case 0x69:
4687 case 0x6b:
4688 ir.ot = ir.dflag + OT_WORD;
4689 if (i386_record_modrm (&ir))
4690 return -1;
4691 if (opcode == 0x69)
4692 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
4693 else if (opcode == 0x6b)
4694 ir.rip_offset = 1;
4695 ir.reg |= rex_r;
4696 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4697 ir.reg &= 0x3;
4698 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4699 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4700 break;
4701
4702 case 0x0fc0: /* xadd */
4703 case 0x0fc1:
4704 if ((opcode & 1) == 0)
4705 ir.ot = OT_BYTE;
4706 else
4707 ir.ot = ir.dflag + OT_WORD;
4708 if (i386_record_modrm (&ir))
4709 return -1;
4710 ir.reg |= rex_r;
4711 if (ir.mod == 3)
4712 {
4713 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4714 ir.reg &= 0x3;
4715 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4716 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4717 ir.rm &= 0x3;
4718 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
4719 }
4720 else
4721 {
4722 if (i386_record_lea_modrm (&ir))
4723 return -1;
4724 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4725 ir.reg &= 0x3;
4726 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4727 }
4728 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4729 break;
4730
4731 case 0x0fb0: /* cmpxchg */
4732 case 0x0fb1:
4733 if ((opcode & 1) == 0)
4734 ir.ot = OT_BYTE;
4735 else
4736 ir.ot = ir.dflag + OT_WORD;
4737 if (i386_record_modrm (&ir))
4738 return -1;
4739 if (ir.mod == 3)
4740 {
4741 ir.reg |= rex_r;
4742 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4743 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4744 ir.reg &= 0x3;
4745 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4746 }
4747 else
4748 {
4749 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4750 if (i386_record_lea_modrm (&ir))
4751 return -1;
4752 }
4753 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4754 break;
4755
4756 case 0x0fc7: /* cmpxchg8b */
4757 if (i386_record_modrm (&ir))
4758 return -1;
4759 if (ir.mod == 3)
4760 {
4761 ir.addr -= 2;
4762 opcode = opcode << 8 | ir.modrm;
4763 goto no_support;
4764 }
4765 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4766 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
4767 if (i386_record_lea_modrm (&ir))
4768 return -1;
4769 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4770 break;
4771
4772 case 0x50: /* push */
4773 case 0x51:
4774 case 0x52:
4775 case 0x53:
4776 case 0x54:
4777 case 0x55:
4778 case 0x56:
4779 case 0x57:
4780 case 0x68:
4781 case 0x6a:
4782 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4783 ir.dflag = 2;
4784 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4785 return -1;
4786 break;
4787
4788 case 0x06: /* push es */
4789 case 0x0e: /* push cs */
4790 case 0x16: /* push ss */
4791 case 0x1e: /* push ds */
4792 if (ir.regmap[X86_RECORD_R8_REGNUM])
4793 {
4794 ir.addr -= 1;
4795 goto no_support;
4796 }
4797 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4798 return -1;
4799 break;
4800
4801 case 0x0fa0: /* push fs */
4802 case 0x0fa8: /* push gs */
4803 if (ir.regmap[X86_RECORD_R8_REGNUM])
4804 {
4805 ir.addr -= 2;
4806 goto no_support;
4807 }
4808 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4809 return -1;
4810 break;
4811
4812 case 0x60: /* pusha */
4813 if (ir.regmap[X86_RECORD_R8_REGNUM])
4814 {
4815 ir.addr -= 1;
4816 goto no_support;
4817 }
4818 if (i386_record_push (&ir, 1 << (ir.dflag + 4)))
4819 return -1;
4820 break;
4821
4822 case 0x58: /* pop */
4823 case 0x59:
4824 case 0x5a:
4825 case 0x5b:
4826 case 0x5c:
4827 case 0x5d:
4828 case 0x5e:
4829 case 0x5f:
4830 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4831 I386_RECORD_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
4832 break;
4833
4834 case 0x61: /* popa */
4835 if (ir.regmap[X86_RECORD_R8_REGNUM])
4836 {
4837 ir.addr -= 1;
4838 goto no_support;
4839 }
4840 for (regnum = X86_RECORD_REAX_REGNUM;
4841 regnum <= X86_RECORD_REDI_REGNUM;
4842 regnum++)
4843 I386_RECORD_ARCH_LIST_ADD_REG (regnum);
4844 break;
4845
4846 case 0x8f: /* pop */
4847 if (ir.regmap[X86_RECORD_R8_REGNUM])
4848 ir.ot = ir.dflag ? OT_QUAD : OT_WORD;
4849 else
4850 ir.ot = ir.dflag + OT_WORD;
4851 if (i386_record_modrm (&ir))
4852 return -1;
4853 if (ir.mod == 3)
4854 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
4855 else
4856 {
4857 ir.popl_esp_hack = 1 << ir.ot;
4858 if (i386_record_lea_modrm (&ir))
4859 return -1;
4860 }
4861 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4862 break;
4863
4864 case 0xc8: /* enter */
4865 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
4866 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4867 ir.dflag = 2;
4868 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4869 return -1;
4870 break;
4871
4872 case 0xc9: /* leave */
4873 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4874 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
4875 break;
4876
4877 case 0x07: /* pop es */
4878 if (ir.regmap[X86_RECORD_R8_REGNUM])
4879 {
4880 ir.addr -= 1;
4881 goto no_support;
4882 }
4883 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4884 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_ES_REGNUM);
4885 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4886 break;
4887
4888 case 0x17: /* pop ss */
4889 if (ir.regmap[X86_RECORD_R8_REGNUM])
4890 {
4891 ir.addr -= 1;
4892 goto no_support;
4893 }
4894 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4895 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_SS_REGNUM);
4896 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4897 break;
4898
4899 case 0x1f: /* pop ds */
4900 if (ir.regmap[X86_RECORD_R8_REGNUM])
4901 {
4902 ir.addr -= 1;
4903 goto no_support;
4904 }
4905 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4906 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_DS_REGNUM);
4907 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4908 break;
4909
4910 case 0x0fa1: /* pop fs */
4911 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4912 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_FS_REGNUM);
4913 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4914 break;
4915
4916 case 0x0fa9: /* pop gs */
4917 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4918 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
4919 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4920 break;
4921
4922 case 0x88: /* mov */
4923 case 0x89:
4924 case 0xc6:
4925 case 0xc7:
4926 if ((opcode & 1) == 0)
4927 ir.ot = OT_BYTE;
4928 else
4929 ir.ot = ir.dflag + OT_WORD;
4930
4931 if (i386_record_modrm (&ir))
4932 return -1;
4933
4934 if (ir.mod != 3)
4935 {
4936 if (opcode == 0xc6 || opcode == 0xc7)
4937 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
4938 if (i386_record_lea_modrm (&ir))
4939 return -1;
4940 }
4941 else
4942 {
4943 if (opcode == 0xc6 || opcode == 0xc7)
4944 ir.rm |= ir.rex_b;
4945 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4946 ir.rm &= 0x3;
4947 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
4948 }
4949 break;
4950
4951 case 0x8a: /* mov */
4952 case 0x8b:
4953 if ((opcode & 1) == 0)
4954 ir.ot = OT_BYTE;
4955 else
4956 ir.ot = ir.dflag + OT_WORD;
4957 if (i386_record_modrm (&ir))
4958 return -1;
4959 ir.reg |= rex_r;
4960 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4961 ir.reg &= 0x3;
4962 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4963 break;
4964
4965 case 0x8c: /* mov seg */
4966 if (i386_record_modrm (&ir))
4967 return -1;
4968 if (ir.reg > 5)
4969 {
4970 ir.addr -= 2;
4971 opcode = opcode << 8 | ir.modrm;
4972 goto no_support;
4973 }
4974
4975 if (ir.mod == 3)
4976 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
4977 else
4978 {
4979 ir.ot = OT_WORD;
4980 if (i386_record_lea_modrm (&ir))
4981 return -1;
4982 }
4983 break;
4984
4985 case 0x8e: /* mov seg */
4986 if (i386_record_modrm (&ir))
4987 return -1;
4988 switch (ir.reg)
4989 {
4990 case 0:
4991 regnum = X86_RECORD_ES_REGNUM;
4992 break;
4993 case 2:
4994 regnum = X86_RECORD_SS_REGNUM;
4995 break;
4996 case 3:
4997 regnum = X86_RECORD_DS_REGNUM;
4998 break;
4999 case 4:
5000 regnum = X86_RECORD_FS_REGNUM;
5001 break;
5002 case 5:
5003 regnum = X86_RECORD_GS_REGNUM;
5004 break;
5005 default:
5006 ir.addr -= 2;
5007 opcode = opcode << 8 | ir.modrm;
5008 goto no_support;
5009 break;
5010 }
5011 I386_RECORD_ARCH_LIST_ADD_REG (regnum);
5012 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5013 break;
5014
5015 case 0x0fb6: /* movzbS */
5016 case 0x0fb7: /* movzwS */
5017 case 0x0fbe: /* movsbS */
5018 case 0x0fbf: /* movswS */
5019 if (i386_record_modrm (&ir))
5020 return -1;
5021 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5022 break;
5023
5024 case 0x8d: /* lea */
5025 if (i386_record_modrm (&ir))
5026 return -1;
5027 if (ir.mod == 3)
5028 {
5029 ir.addr -= 2;
5030 opcode = opcode << 8 | ir.modrm;
5031 goto no_support;
5032 }
5033 ir.ot = ir.dflag;
5034 ir.reg |= rex_r;
5035 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5036 ir.reg &= 0x3;
5037 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
5038 break;
5039
5040 case 0xa0: /* mov EAX */
5041 case 0xa1:
5042
5043 case 0xd7: /* xlat */
5044 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5045 break;
5046
5047 case 0xa2: /* mov EAX */
5048 case 0xa3:
5049 if (ir.override >= 0)
5050 {
5051 if (record_memory_query)
5052 {
5053 int q;
5054
5055 target_terminal_ours ();
5056 q = yquery (_("\
5057 Process record ignores the memory change of instruction at address %s\n\
5058 because it can't get the value of the segment register.\n\
5059 Do you want to stop the program?"),
5060 paddress (gdbarch, ir.orig_addr));
5061 target_terminal_inferior ();
5062 if (q)
5063 return -1;
5064 }
5065 }
5066 else
5067 {
5068 if ((opcode & 1) == 0)
5069 ir.ot = OT_BYTE;
5070 else
5071 ir.ot = ir.dflag + OT_WORD;
5072 if (ir.aflag == 2)
5073 {
5074 if (record_read_memory (gdbarch, ir.addr, buf, 8))
5075 return -1;
5076 ir.addr += 8;
5077 addr = extract_unsigned_integer (buf, 8, byte_order);
5078 }
5079 else if (ir.aflag)
5080 {
5081 if (record_read_memory (gdbarch, ir.addr, buf, 4))
5082 return -1;
5083 ir.addr += 4;
5084 addr = extract_unsigned_integer (buf, 4, byte_order);
5085 }
5086 else
5087 {
5088 if (record_read_memory (gdbarch, ir.addr, buf, 2))
5089 return -1;
5090 ir.addr += 2;
5091 addr = extract_unsigned_integer (buf, 2, byte_order);
5092 }
5093 if (record_arch_list_add_mem (addr, 1 << ir.ot))
5094 return -1;
5095 }
5096 break;
5097
5098 case 0xb0: /* mov R, Ib */
5099 case 0xb1:
5100 case 0xb2:
5101 case 0xb3:
5102 case 0xb4:
5103 case 0xb5:
5104 case 0xb6:
5105 case 0xb7:
5106 I386_RECORD_ARCH_LIST_ADD_REG ((ir.regmap[X86_RECORD_R8_REGNUM])
5107 ? ((opcode & 0x7) | ir.rex_b)
5108 : ((opcode & 0x7) & 0x3));
5109 break;
5110
5111 case 0xb8: /* mov R, Iv */
5112 case 0xb9:
5113 case 0xba:
5114 case 0xbb:
5115 case 0xbc:
5116 case 0xbd:
5117 case 0xbe:
5118 case 0xbf:
5119 I386_RECORD_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
5120 break;
5121
5122 case 0x91: /* xchg R, EAX */
5123 case 0x92:
5124 case 0x93:
5125 case 0x94:
5126 case 0x95:
5127 case 0x96:
5128 case 0x97:
5129 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5130 I386_RECORD_ARCH_LIST_ADD_REG (opcode & 0x7);
5131 break;
5132
5133 case 0x86: /* xchg Ev, Gv */
5134 case 0x87:
5135 if ((opcode & 1) == 0)
5136 ir.ot = OT_BYTE;
5137 else
5138 ir.ot = ir.dflag + OT_WORD;
5139 if (i386_record_modrm (&ir))
5140 return -1;
5141 if (ir.mod == 3)
5142 {
5143 ir.rm |= ir.rex_b;
5144 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5145 ir.rm &= 0x3;
5146 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
5147 }
5148 else
5149 {
5150 if (i386_record_lea_modrm (&ir))
5151 return -1;
5152 }
5153 ir.reg |= rex_r;
5154 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5155 ir.reg &= 0x3;
5156 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
5157 break;
5158
5159 case 0xc4: /* les Gv */
5160 case 0xc5: /* lds Gv */
5161 if (ir.regmap[X86_RECORD_R8_REGNUM])
5162 {
5163 ir.addr -= 1;
5164 goto no_support;
5165 }
5166 /* FALLTHROUGH */
5167 case 0x0fb2: /* lss Gv */
5168 case 0x0fb4: /* lfs Gv */
5169 case 0x0fb5: /* lgs Gv */
5170 if (i386_record_modrm (&ir))
5171 return -1;
5172 if (ir.mod == 3)
5173 {
5174 if (opcode > 0xff)
5175 ir.addr -= 3;
5176 else
5177 ir.addr -= 2;
5178 opcode = opcode << 8 | ir.modrm;
5179 goto no_support;
5180 }
5181 switch (opcode)
5182 {
5183 case 0xc4: /* les Gv */
5184 regnum = X86_RECORD_ES_REGNUM;
5185 break;
5186 case 0xc5: /* lds Gv */
5187 regnum = X86_RECORD_DS_REGNUM;
5188 break;
5189 case 0x0fb2: /* lss Gv */
5190 regnum = X86_RECORD_SS_REGNUM;
5191 break;
5192 case 0x0fb4: /* lfs Gv */
5193 regnum = X86_RECORD_FS_REGNUM;
5194 break;
5195 case 0x0fb5: /* lgs Gv */
5196 regnum = X86_RECORD_GS_REGNUM;
5197 break;
5198 }
5199 I386_RECORD_ARCH_LIST_ADD_REG (regnum);
5200 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5201 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5202 break;
5203
5204 case 0xc0: /* shifts */
5205 case 0xc1:
5206 case 0xd0:
5207 case 0xd1:
5208 case 0xd2:
5209 case 0xd3:
5210 if ((opcode & 1) == 0)
5211 ir.ot = OT_BYTE;
5212 else
5213 ir.ot = ir.dflag + OT_WORD;
5214 if (i386_record_modrm (&ir))
5215 return -1;
5216 if (ir.mod != 3 && (opcode == 0xd2 || opcode == 0xd3))
5217 {
5218 if (i386_record_lea_modrm (&ir))
5219 return -1;
5220 }
5221 else
5222 {
5223 ir.rm |= ir.rex_b;
5224 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5225 ir.rm &= 0x3;
5226 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
5227 }
5228 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5229 break;
5230
5231 case 0x0fa4:
5232 case 0x0fa5:
5233 case 0x0fac:
5234 case 0x0fad:
5235 if (i386_record_modrm (&ir))
5236 return -1;
5237 if (ir.mod == 3)
5238 {
5239 if (record_arch_list_add_reg (ir.regcache, ir.rm))
5240 return -1;
5241 }
5242 else
5243 {
5244 if (i386_record_lea_modrm (&ir))
5245 return -1;
5246 }
5247 break;
5248
5249 case 0xd8: /* Floats. */
5250 case 0xd9:
5251 case 0xda:
5252 case 0xdb:
5253 case 0xdc:
5254 case 0xdd:
5255 case 0xde:
5256 case 0xdf:
5257 if (i386_record_modrm (&ir))
5258 return -1;
5259 ir.reg |= ((opcode & 7) << 3);
5260 if (ir.mod != 3)
5261 {
5262 /* Memory. */
5263 uint64_t addr64;
5264
5265 if (i386_record_lea_modrm_addr (&ir, &addr64))
5266 return -1;
5267 switch (ir.reg)
5268 {
5269 case 0x02:
5270 case 0x12:
5271 case 0x22:
5272 case 0x32:
5273 /* For fcom, ficom nothing to do. */
5274 break;
5275 case 0x03:
5276 case 0x13:
5277 case 0x23:
5278 case 0x33:
5279 /* For fcomp, ficomp pop FPU stack, store all. */
5280 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5281 return -1;
5282 break;
5283 case 0x00:
5284 case 0x01:
5285 case 0x04:
5286 case 0x05:
5287 case 0x06:
5288 case 0x07:
5289 case 0x10:
5290 case 0x11:
5291 case 0x14:
5292 case 0x15:
5293 case 0x16:
5294 case 0x17:
5295 case 0x20:
5296 case 0x21:
5297 case 0x24:
5298 case 0x25:
5299 case 0x26:
5300 case 0x27:
5301 case 0x30:
5302 case 0x31:
5303 case 0x34:
5304 case 0x35:
5305 case 0x36:
5306 case 0x37:
5307 /* For fadd, fmul, fsub, fsubr, fdiv, fdivr, fiadd, fimul,
5308 fisub, fisubr, fidiv, fidivr, modR/M.reg is an extension
5309 of code, always affects st(0) register. */
5310 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
5311 return -1;
5312 break;
5313 case 0x08:
5314 case 0x0a:
5315 case 0x0b:
5316 case 0x18:
5317 case 0x19:
5318 case 0x1a:
5319 case 0x1b:
5320 case 0x1d:
5321 case 0x28:
5322 case 0x29:
5323 case 0x2a:
5324 case 0x2b:
5325 case 0x38:
5326 case 0x39:
5327 case 0x3a:
5328 case 0x3b:
5329 case 0x3c:
5330 case 0x3d:
5331 switch (ir.reg & 7)
5332 {
5333 case 0:
5334 /* Handling fld, fild. */
5335 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5336 return -1;
5337 break;
5338 case 1:
5339 switch (ir.reg >> 4)
5340 {
5341 case 0:
5342 if (record_arch_list_add_mem (addr64, 4))
5343 return -1;
5344 break;
5345 case 2:
5346 if (record_arch_list_add_mem (addr64, 8))
5347 return -1;
5348 break;
5349 case 3:
5350 break;
5351 default:
5352 if (record_arch_list_add_mem (addr64, 2))
5353 return -1;
5354 break;
5355 }
5356 break;
5357 default:
5358 switch (ir.reg >> 4)
5359 {
5360 case 0:
5361 if (record_arch_list_add_mem (addr64, 4))
5362 return -1;
5363 if (3 == (ir.reg & 7))
5364 {
5365 /* For fstp m32fp. */
5366 if (i386_record_floats (gdbarch, &ir,
5367 I386_SAVE_FPU_REGS))
5368 return -1;
5369 }
5370 break;
5371 case 1:
5372 if (record_arch_list_add_mem (addr64, 4))
5373 return -1;
5374 if ((3 == (ir.reg & 7))
5375 || (5 == (ir.reg & 7))
5376 || (7 == (ir.reg & 7)))
5377 {
5378 /* For fstp insn. */
5379 if (i386_record_floats (gdbarch, &ir,
5380 I386_SAVE_FPU_REGS))
5381 return -1;
5382 }
5383 break;
5384 case 2:
5385 if (record_arch_list_add_mem (addr64, 8))
5386 return -1;
5387 if (3 == (ir.reg & 7))
5388 {
5389 /* For fstp m64fp. */
5390 if (i386_record_floats (gdbarch, &ir,
5391 I386_SAVE_FPU_REGS))
5392 return -1;
5393 }
5394 break;
5395 case 3:
5396 if ((3 <= (ir.reg & 7)) && (6 <= (ir.reg & 7)))
5397 {
5398 /* For fistp, fbld, fild, fbstp. */
5399 if (i386_record_floats (gdbarch, &ir,
5400 I386_SAVE_FPU_REGS))
5401 return -1;
5402 }
5403 /* Fall through */
5404 default:
5405 if (record_arch_list_add_mem (addr64, 2))
5406 return -1;
5407 break;
5408 }
5409 break;
5410 }
5411 break;
5412 case 0x0c:
5413 /* Insn fldenv. */
5414 if (i386_record_floats (gdbarch, &ir,
5415 I386_SAVE_FPU_ENV_REG_STACK))
5416 return -1;
5417 break;
5418 case 0x0d:
5419 /* Insn fldcw. */
5420 if (i386_record_floats (gdbarch, &ir, I387_FCTRL_REGNUM (tdep)))
5421 return -1;
5422 break;
5423 case 0x2c:
5424 /* Insn frstor. */
5425 if (i386_record_floats (gdbarch, &ir,
5426 I386_SAVE_FPU_ENV_REG_STACK))
5427 return -1;
5428 break;
5429 case 0x0e:
5430 if (ir.dflag)
5431 {
5432 if (record_arch_list_add_mem (addr64, 28))
5433 return -1;
5434 }
5435 else
5436 {
5437 if (record_arch_list_add_mem (addr64, 14))
5438 return -1;
5439 }
5440 break;
5441 case 0x0f:
5442 case 0x2f:
5443 if (record_arch_list_add_mem (addr64, 2))
5444 return -1;
5445 /* Insn fstp, fbstp. */
5446 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5447 return -1;
5448 break;
5449 case 0x1f:
5450 case 0x3e:
5451 if (record_arch_list_add_mem (addr64, 10))
5452 return -1;
5453 break;
5454 case 0x2e:
5455 if (ir.dflag)
5456 {
5457 if (record_arch_list_add_mem (addr64, 28))
5458 return -1;
5459 addr64 += 28;
5460 }
5461 else
5462 {
5463 if (record_arch_list_add_mem (addr64, 14))
5464 return -1;
5465 addr64 += 14;
5466 }
5467 if (record_arch_list_add_mem (addr64, 80))
5468 return -1;
5469 /* Insn fsave. */
5470 if (i386_record_floats (gdbarch, &ir,
5471 I386_SAVE_FPU_ENV_REG_STACK))
5472 return -1;
5473 break;
5474 case 0x3f:
5475 if (record_arch_list_add_mem (addr64, 8))
5476 return -1;
5477 /* Insn fistp. */
5478 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5479 return -1;
5480 break;
5481 default:
5482 ir.addr -= 2;
5483 opcode = opcode << 8 | ir.modrm;
5484 goto no_support;
5485 break;
5486 }
5487 }
5488 /* Opcode is an extension of modR/M byte. */
5489 else
5490 {
5491 switch (opcode)
5492 {
5493 case 0xd8:
5494 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
5495 return -1;
5496 break;
5497 case 0xd9:
5498 if (0x0c == (ir.modrm >> 4))
5499 {
5500 if ((ir.modrm & 0x0f) <= 7)
5501 {
5502 if (i386_record_floats (gdbarch, &ir,
5503 I386_SAVE_FPU_REGS))
5504 return -1;
5505 }
5506 else
5507 {
5508 if (i386_record_floats (gdbarch, &ir,
5509 I387_ST0_REGNUM (tdep)))
5510 return -1;
5511 /* If only st(0) is changing, then we have already
5512 recorded. */
5513 if ((ir.modrm & 0x0f) - 0x08)
5514 {
5515 if (i386_record_floats (gdbarch, &ir,
5516 I387_ST0_REGNUM (tdep) +
5517 ((ir.modrm & 0x0f) - 0x08)))
5518 return -1;
5519 }
5520 }
5521 }
5522 else
5523 {
5524 switch (ir.modrm)
5525 {
5526 case 0xe0:
5527 case 0xe1:
5528 case 0xf0:
5529 case 0xf5:
5530 case 0xf8:
5531 case 0xfa:
5532 case 0xfc:
5533 case 0xfe:
5534 case 0xff:
5535 if (i386_record_floats (gdbarch, &ir,
5536 I387_ST0_REGNUM (tdep)))
5537 return -1;
5538 break;
5539 case 0xf1:
5540 case 0xf2:
5541 case 0xf3:
5542 case 0xf4:
5543 case 0xf6:
5544 case 0xf7:
5545 case 0xe8:
5546 case 0xe9:
5547 case 0xea:
5548 case 0xeb:
5549 case 0xec:
5550 case 0xed:
5551 case 0xee:
5552 case 0xf9:
5553 case 0xfb:
5554 if (i386_record_floats (gdbarch, &ir,
5555 I386_SAVE_FPU_REGS))
5556 return -1;
5557 break;
5558 case 0xfd:
5559 if (i386_record_floats (gdbarch, &ir,
5560 I387_ST0_REGNUM (tdep)))
5561 return -1;
5562 if (i386_record_floats (gdbarch, &ir,
5563 I387_ST0_REGNUM (tdep) + 1))
5564 return -1;
5565 break;
5566 }
5567 }
5568 break;
5569 case 0xda:
5570 if (0xe9 == ir.modrm)
5571 {
5572 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5573 return -1;
5574 }
5575 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
5576 {
5577 if (i386_record_floats (gdbarch, &ir,
5578 I387_ST0_REGNUM (tdep)))
5579 return -1;
5580 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
5581 {
5582 if (i386_record_floats (gdbarch, &ir,
5583 I387_ST0_REGNUM (tdep) +
5584 (ir.modrm & 0x0f)))
5585 return -1;
5586 }
5587 else if ((ir.modrm & 0x0f) - 0x08)
5588 {
5589 if (i386_record_floats (gdbarch, &ir,
5590 I387_ST0_REGNUM (tdep) +
5591 ((ir.modrm & 0x0f) - 0x08)))
5592 return -1;
5593 }
5594 }
5595 break;
5596 case 0xdb:
5597 if (0xe3 == ir.modrm)
5598 {
5599 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_ENV))
5600 return -1;
5601 }
5602 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
5603 {
5604 if (i386_record_floats (gdbarch, &ir,
5605 I387_ST0_REGNUM (tdep)))
5606 return -1;
5607 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
5608 {
5609 if (i386_record_floats (gdbarch, &ir,
5610 I387_ST0_REGNUM (tdep) +
5611 (ir.modrm & 0x0f)))
5612 return -1;
5613 }
5614 else if ((ir.modrm & 0x0f) - 0x08)
5615 {
5616 if (i386_record_floats (gdbarch, &ir,
5617 I387_ST0_REGNUM (tdep) +
5618 ((ir.modrm & 0x0f) - 0x08)))
5619 return -1;
5620 }
5621 }
5622 break;
5623 case 0xdc:
5624 if ((0x0c == ir.modrm >> 4)
5625 || (0x0d == ir.modrm >> 4)
5626 || (0x0f == ir.modrm >> 4))
5627 {
5628 if ((ir.modrm & 0x0f) <= 7)
5629 {
5630 if (i386_record_floats (gdbarch, &ir,
5631 I387_ST0_REGNUM (tdep) +
5632 (ir.modrm & 0x0f)))
5633 return -1;
5634 }
5635 else
5636 {
5637 if (i386_record_floats (gdbarch, &ir,
5638 I387_ST0_REGNUM (tdep) +
5639 ((ir.modrm & 0x0f) - 0x08)))
5640 return -1;
5641 }
5642 }
5643 break;
5644 case 0xdd:
5645 if (0x0c == ir.modrm >> 4)
5646 {
5647 if (i386_record_floats (gdbarch, &ir,
5648 I387_FTAG_REGNUM (tdep)))
5649 return -1;
5650 }
5651 else if ((0x0d == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
5652 {
5653 if ((ir.modrm & 0x0f) <= 7)
5654 {
5655 if (i386_record_floats (gdbarch, &ir,
5656 I387_ST0_REGNUM (tdep) +
5657 (ir.modrm & 0x0f)))
5658 return -1;
5659 }
5660 else
5661 {
5662 if (i386_record_floats (gdbarch, &ir,
5663 I386_SAVE_FPU_REGS))
5664 return -1;
5665 }
5666 }
5667 break;
5668 case 0xde:
5669 if ((0x0c == ir.modrm >> 4)
5670 || (0x0e == ir.modrm >> 4)
5671 || (0x0f == ir.modrm >> 4)
5672 || (0xd9 == ir.modrm))
5673 {
5674 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5675 return -1;
5676 }
5677 break;
5678 case 0xdf:
5679 if (0xe0 == ir.modrm)
5680 {
5681 if (record_arch_list_add_reg (ir.regcache, I386_EAX_REGNUM))
5682 return -1;
5683 }
5684 else if ((0x0f == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
5685 {
5686 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5687 return -1;
5688 }
5689 break;
5690 }
5691 }
5692 break;
5693 /* string ops */
5694 case 0xa4: /* movsS */
5695 case 0xa5:
5696 case 0xaa: /* stosS */
5697 case 0xab:
5698 case 0x6c: /* insS */
5699 case 0x6d:
5700 regcache_raw_read_unsigned (ir.regcache,
5701 ir.regmap[X86_RECORD_RECX_REGNUM],
5702 &addr);
5703 if (addr)
5704 {
5705 ULONGEST es, ds;
5706
5707 if ((opcode & 1) == 0)
5708 ir.ot = OT_BYTE;
5709 else
5710 ir.ot = ir.dflag + OT_WORD;
5711 regcache_raw_read_unsigned (ir.regcache,
5712 ir.regmap[X86_RECORD_REDI_REGNUM],
5713 &addr);
5714
5715 regcache_raw_read_unsigned (ir.regcache,
5716 ir.regmap[X86_RECORD_ES_REGNUM],
5717 &es);
5718 regcache_raw_read_unsigned (ir.regcache,
5719 ir.regmap[X86_RECORD_DS_REGNUM],
5720 &ds);
5721 if (ir.aflag && (es != ds))
5722 {
5723 /* addr += ((uint32_t) read_register (I386_ES_REGNUM)) << 4; */
5724 if (record_memory_query)
5725 {
5726 int q;
5727
5728 target_terminal_ours ();
5729 q = yquery (_("\
5730 Process record ignores the memory change of instruction at address %s\n\
5731 because it can't get the value of the segment register.\n\
5732 Do you want to stop the program?"),
5733 paddress (gdbarch, ir.orig_addr));
5734 target_terminal_inferior ();
5735 if (q)
5736 return -1;
5737 }
5738 }
5739 else
5740 {
5741 if (record_arch_list_add_mem (addr, 1 << ir.ot))
5742 return -1;
5743 }
5744
5745 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
5746 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5747 if (opcode == 0xa4 || opcode == 0xa5)
5748 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
5749 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
5750 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5751 }
5752 break;
5753
5754 case 0xa6: /* cmpsS */
5755 case 0xa7:
5756 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
5757 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
5758 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
5759 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5760 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5761 break;
5762
5763 case 0xac: /* lodsS */
5764 case 0xad:
5765 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5766 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
5767 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
5768 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5769 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5770 break;
5771
5772 case 0xae: /* scasS */
5773 case 0xaf:
5774 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
5775 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
5776 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5777 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5778 break;
5779
5780 case 0x6e: /* outsS */
5781 case 0x6f:
5782 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
5783 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
5784 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5785 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5786 break;
5787
5788 case 0xe4: /* port I/O */
5789 case 0xe5:
5790 case 0xec:
5791 case 0xed:
5792 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5793 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5794 break;
5795
5796 case 0xe6:
5797 case 0xe7:
5798 case 0xee:
5799 case 0xef:
5800 break;
5801
5802 /* control */
5803 case 0xc2: /* ret im */
5804 case 0xc3: /* ret */
5805 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5806 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5807 break;
5808
5809 case 0xca: /* lret im */
5810 case 0xcb: /* lret */
5811 case 0xcf: /* iret */
5812 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
5813 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5814 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5815 break;
5816
5817 case 0xe8: /* call im */
5818 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5819 ir.dflag = 2;
5820 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5821 return -1;
5822 break;
5823
5824 case 0x9a: /* lcall im */
5825 if (ir.regmap[X86_RECORD_R8_REGNUM])
5826 {
5827 ir.addr -= 1;
5828 goto no_support;
5829 }
5830 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
5831 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5832 return -1;
5833 break;
5834
5835 case 0xe9: /* jmp im */
5836 case 0xea: /* ljmp im */
5837 case 0xeb: /* jmp Jb */
5838 case 0x70: /* jcc Jb */
5839 case 0x71:
5840 case 0x72:
5841 case 0x73:
5842 case 0x74:
5843 case 0x75:
5844 case 0x76:
5845 case 0x77:
5846 case 0x78:
5847 case 0x79:
5848 case 0x7a:
5849 case 0x7b:
5850 case 0x7c:
5851 case 0x7d:
5852 case 0x7e:
5853 case 0x7f:
5854 case 0x0f80: /* jcc Jv */
5855 case 0x0f81:
5856 case 0x0f82:
5857 case 0x0f83:
5858 case 0x0f84:
5859 case 0x0f85:
5860 case 0x0f86:
5861 case 0x0f87:
5862 case 0x0f88:
5863 case 0x0f89:
5864 case 0x0f8a:
5865 case 0x0f8b:
5866 case 0x0f8c:
5867 case 0x0f8d:
5868 case 0x0f8e:
5869 case 0x0f8f:
5870 break;
5871
5872 case 0x0f90: /* setcc Gv */
5873 case 0x0f91:
5874 case 0x0f92:
5875 case 0x0f93:
5876 case 0x0f94:
5877 case 0x0f95:
5878 case 0x0f96:
5879 case 0x0f97:
5880 case 0x0f98:
5881 case 0x0f99:
5882 case 0x0f9a:
5883 case 0x0f9b:
5884 case 0x0f9c:
5885 case 0x0f9d:
5886 case 0x0f9e:
5887 case 0x0f9f:
5888 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5889 ir.ot = OT_BYTE;
5890 if (i386_record_modrm (&ir))
5891 return -1;
5892 if (ir.mod == 3)
5893 I386_RECORD_ARCH_LIST_ADD_REG (ir.rex_b ? (ir.rm | ir.rex_b)
5894 : (ir.rm & 0x3));
5895 else
5896 {
5897 if (i386_record_lea_modrm (&ir))
5898 return -1;
5899 }
5900 break;
5901
5902 case 0x0f40: /* cmov Gv, Ev */
5903 case 0x0f41:
5904 case 0x0f42:
5905 case 0x0f43:
5906 case 0x0f44:
5907 case 0x0f45:
5908 case 0x0f46:
5909 case 0x0f47:
5910 case 0x0f48:
5911 case 0x0f49:
5912 case 0x0f4a:
5913 case 0x0f4b:
5914 case 0x0f4c:
5915 case 0x0f4d:
5916 case 0x0f4e:
5917 case 0x0f4f:
5918 if (i386_record_modrm (&ir))
5919 return -1;
5920 ir.reg |= rex_r;
5921 if (ir.dflag == OT_BYTE)
5922 ir.reg &= 0x3;
5923 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
5924 break;
5925
5926 /* flags */
5927 case 0x9c: /* pushf */
5928 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5929 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5930 ir.dflag = 2;
5931 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5932 return -1;
5933 break;
5934
5935 case 0x9d: /* popf */
5936 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5937 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5938 break;
5939
5940 case 0x9e: /* sahf */
5941 if (ir.regmap[X86_RECORD_R8_REGNUM])
5942 {
5943 ir.addr -= 1;
5944 goto no_support;
5945 }
5946 /* FALLTHROUGH */
5947 case 0xf5: /* cmc */
5948 case 0xf8: /* clc */
5949 case 0xf9: /* stc */
5950 case 0xfc: /* cld */
5951 case 0xfd: /* std */
5952 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5953 break;
5954
5955 case 0x9f: /* lahf */
5956 if (ir.regmap[X86_RECORD_R8_REGNUM])
5957 {
5958 ir.addr -= 1;
5959 goto no_support;
5960 }
5961 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5962 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5963 break;
5964
5965 /* bit operations */
5966 case 0x0fba: /* bt/bts/btr/btc Gv, im */
5967 ir.ot = ir.dflag + OT_WORD;
5968 if (i386_record_modrm (&ir))
5969 return -1;
5970 if (ir.reg < 4)
5971 {
5972 ir.addr -= 2;
5973 opcode = opcode << 8 | ir.modrm;
5974 goto no_support;
5975 }
5976 if (ir.reg != 4)
5977 {
5978 if (ir.mod == 3)
5979 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5980 else
5981 {
5982 if (i386_record_lea_modrm (&ir))
5983 return -1;
5984 }
5985 }
5986 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5987 break;
5988
5989 case 0x0fa3: /* bt Gv, Ev */
5990 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5991 break;
5992
5993 case 0x0fab: /* bts */
5994 case 0x0fb3: /* btr */
5995 case 0x0fbb: /* btc */
5996 ir.ot = ir.dflag + OT_WORD;
5997 if (i386_record_modrm (&ir))
5998 return -1;
5999 if (ir.mod == 3)
6000 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6001 else
6002 {
6003 uint64_t addr64;
6004 if (i386_record_lea_modrm_addr (&ir, &addr64))
6005 return -1;
6006 regcache_raw_read_unsigned (ir.regcache,
6007 ir.regmap[ir.reg | rex_r],
6008 &addr);
6009 switch (ir.dflag)
6010 {
6011 case 0:
6012 addr64 += ((int16_t) addr >> 4) << 4;
6013 break;
6014 case 1:
6015 addr64 += ((int32_t) addr >> 5) << 5;
6016 break;
6017 case 2:
6018 addr64 += ((int64_t) addr >> 6) << 6;
6019 break;
6020 }
6021 if (record_arch_list_add_mem (addr64, 1 << ir.ot))
6022 return -1;
6023 if (i386_record_lea_modrm (&ir))
6024 return -1;
6025 }
6026 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6027 break;
6028
6029 case 0x0fbc: /* bsf */
6030 case 0x0fbd: /* bsr */
6031 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6032 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6033 break;
6034
6035 /* bcd */
6036 case 0x27: /* daa */
6037 case 0x2f: /* das */
6038 case 0x37: /* aaa */
6039 case 0x3f: /* aas */
6040 case 0xd4: /* aam */
6041 case 0xd5: /* aad */
6042 if (ir.regmap[X86_RECORD_R8_REGNUM])
6043 {
6044 ir.addr -= 1;
6045 goto no_support;
6046 }
6047 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6048 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6049 break;
6050
6051 /* misc */
6052 case 0x90: /* nop */
6053 if (prefixes & PREFIX_LOCK)
6054 {
6055 ir.addr -= 1;
6056 goto no_support;
6057 }
6058 break;
6059
6060 case 0x9b: /* fwait */
6061 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
6062 return -1;
6063 opcode = (uint32_t) opcode8;
6064 ir.addr++;
6065 goto reswitch;
6066 break;
6067
6068 /* XXX */
6069 case 0xcc: /* int3 */
6070 printf_unfiltered (_("Process record does not support instruction "
6071 "int3.\n"));
6072 ir.addr -= 1;
6073 goto no_support;
6074 break;
6075
6076 /* XXX */
6077 case 0xcd: /* int */
6078 {
6079 int ret;
6080 uint8_t interrupt;
6081 if (record_read_memory (gdbarch, ir.addr, &interrupt, 1))
6082 return -1;
6083 ir.addr++;
6084 if (interrupt != 0x80
6085 || tdep->i386_intx80_record == NULL)
6086 {
6087 printf_unfiltered (_("Process record does not support "
6088 "instruction int 0x%02x.\n"),
6089 interrupt);
6090 ir.addr -= 2;
6091 goto no_support;
6092 }
6093 ret = tdep->i386_intx80_record (ir.regcache);
6094 if (ret)
6095 return ret;
6096 }
6097 break;
6098
6099 /* XXX */
6100 case 0xce: /* into */
6101 printf_unfiltered (_("Process record does not support "
6102 "instruction into.\n"));
6103 ir.addr -= 1;
6104 goto no_support;
6105 break;
6106
6107 case 0xfa: /* cli */
6108 case 0xfb: /* sti */
6109 break;
6110
6111 case 0x62: /* bound */
6112 printf_unfiltered (_("Process record does not support "
6113 "instruction bound.\n"));
6114 ir.addr -= 1;
6115 goto no_support;
6116 break;
6117
6118 case 0x0fc8: /* bswap reg */
6119 case 0x0fc9:
6120 case 0x0fca:
6121 case 0x0fcb:
6122 case 0x0fcc:
6123 case 0x0fcd:
6124 case 0x0fce:
6125 case 0x0fcf:
6126 I386_RECORD_ARCH_LIST_ADD_REG ((opcode & 7) | ir.rex_b);
6127 break;
6128
6129 case 0xd6: /* salc */
6130 if (ir.regmap[X86_RECORD_R8_REGNUM])
6131 {
6132 ir.addr -= 1;
6133 goto no_support;
6134 }
6135 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6136 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6137 break;
6138
6139 case 0xe0: /* loopnz */
6140 case 0xe1: /* loopz */
6141 case 0xe2: /* loop */
6142 case 0xe3: /* jecxz */
6143 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6144 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6145 break;
6146
6147 case 0x0f30: /* wrmsr */
6148 printf_unfiltered (_("Process record does not support "
6149 "instruction wrmsr.\n"));
6150 ir.addr -= 2;
6151 goto no_support;
6152 break;
6153
6154 case 0x0f32: /* rdmsr */
6155 printf_unfiltered (_("Process record does not support "
6156 "instruction rdmsr.\n"));
6157 ir.addr -= 2;
6158 goto no_support;
6159 break;
6160
6161 case 0x0f31: /* rdtsc */
6162 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6163 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6164 break;
6165
6166 case 0x0f34: /* sysenter */
6167 {
6168 int ret;
6169 if (ir.regmap[X86_RECORD_R8_REGNUM])
6170 {
6171 ir.addr -= 2;
6172 goto no_support;
6173 }
6174 if (tdep->i386_sysenter_record == NULL)
6175 {
6176 printf_unfiltered (_("Process record does not support "
6177 "instruction sysenter.\n"));
6178 ir.addr -= 2;
6179 goto no_support;
6180 }
6181 ret = tdep->i386_sysenter_record (ir.regcache);
6182 if (ret)
6183 return ret;
6184 }
6185 break;
6186
6187 case 0x0f35: /* sysexit */
6188 printf_unfiltered (_("Process record does not support "
6189 "instruction sysexit.\n"));
6190 ir.addr -= 2;
6191 goto no_support;
6192 break;
6193
6194 case 0x0f05: /* syscall */
6195 {
6196 int ret;
6197 if (tdep->i386_syscall_record == NULL)
6198 {
6199 printf_unfiltered (_("Process record does not support "
6200 "instruction syscall.\n"));
6201 ir.addr -= 2;
6202 goto no_support;
6203 }
6204 ret = tdep->i386_syscall_record (ir.regcache);
6205 if (ret)
6206 return ret;
6207 }
6208 break;
6209
6210 case 0x0f07: /* sysret */
6211 printf_unfiltered (_("Process record does not support "
6212 "instruction sysret.\n"));
6213 ir.addr -= 2;
6214 goto no_support;
6215 break;
6216
6217 case 0x0fa2: /* cpuid */
6218 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6219 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6220 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6221 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
6222 break;
6223
6224 case 0xf4: /* hlt */
6225 printf_unfiltered (_("Process record does not support "
6226 "instruction hlt.\n"));
6227 ir.addr -= 1;
6228 goto no_support;
6229 break;
6230
6231 case 0x0f00:
6232 if (i386_record_modrm (&ir))
6233 return -1;
6234 switch (ir.reg)
6235 {
6236 case 0: /* sldt */
6237 case 1: /* str */
6238 if (ir.mod == 3)
6239 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6240 else
6241 {
6242 ir.ot = OT_WORD;
6243 if (i386_record_lea_modrm (&ir))
6244 return -1;
6245 }
6246 break;
6247 case 2: /* lldt */
6248 case 3: /* ltr */
6249 break;
6250 case 4: /* verr */
6251 case 5: /* verw */
6252 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6253 break;
6254 default:
6255 ir.addr -= 3;
6256 opcode = opcode << 8 | ir.modrm;
6257 goto no_support;
6258 break;
6259 }
6260 break;
6261
6262 case 0x0f01:
6263 if (i386_record_modrm (&ir))
6264 return -1;
6265 switch (ir.reg)
6266 {
6267 case 0: /* sgdt */
6268 {
6269 uint64_t addr64;
6270
6271 if (ir.mod == 3)
6272 {
6273 ir.addr -= 3;
6274 opcode = opcode << 8 | ir.modrm;
6275 goto no_support;
6276 }
6277 if (ir.override >= 0)
6278 {
6279 if (record_memory_query)
6280 {
6281 int q;
6282
6283 target_terminal_ours ();
6284 q = yquery (_("\
6285 Process record ignores the memory change of instruction at address %s\n\
6286 because it can't get the value of the segment register.\n\
6287 Do you want to stop the program?"),
6288 paddress (gdbarch, ir.orig_addr));
6289 target_terminal_inferior ();
6290 if (q)
6291 return -1;
6292 }
6293 }
6294 else
6295 {
6296 if (i386_record_lea_modrm_addr (&ir, &addr64))
6297 return -1;
6298 if (record_arch_list_add_mem (addr64, 2))
6299 return -1;
6300 addr64 += 2;
6301 if (ir.regmap[X86_RECORD_R8_REGNUM])
6302 {
6303 if (record_arch_list_add_mem (addr64, 8))
6304 return -1;
6305 }
6306 else
6307 {
6308 if (record_arch_list_add_mem (addr64, 4))
6309 return -1;
6310 }
6311 }
6312 }
6313 break;
6314 case 1:
6315 if (ir.mod == 3)
6316 {
6317 switch (ir.rm)
6318 {
6319 case 0: /* monitor */
6320 break;
6321 case 1: /* mwait */
6322 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6323 break;
6324 default:
6325 ir.addr -= 3;
6326 opcode = opcode << 8 | ir.modrm;
6327 goto no_support;
6328 break;
6329 }
6330 }
6331 else
6332 {
6333 /* sidt */
6334 if (ir.override >= 0)
6335 {
6336 if (record_memory_query)
6337 {
6338 int q;
6339
6340 target_terminal_ours ();
6341 q = yquery (_("\
6342 Process record ignores the memory change of instruction at address %s\n\
6343 because it can't get the value of the segment register.\n\
6344 Do you want to stop the program?"),
6345 paddress (gdbarch, ir.orig_addr));
6346 target_terminal_inferior ();
6347 if (q)
6348 return -1;
6349 }
6350 }
6351 else
6352 {
6353 uint64_t addr64;
6354
6355 if (i386_record_lea_modrm_addr (&ir, &addr64))
6356 return -1;
6357 if (record_arch_list_add_mem (addr64, 2))
6358 return -1;
6359 addr64 += 2;
6360 if (ir.regmap[X86_RECORD_R8_REGNUM])
6361 {
6362 if (record_arch_list_add_mem (addr64, 8))
6363 return -1;
6364 }
6365 else
6366 {
6367 if (record_arch_list_add_mem (addr64, 4))
6368 return -1;
6369 }
6370 }
6371 }
6372 break;
6373 case 2: /* lgdt */
6374 if (ir.mod == 3)
6375 {
6376 /* xgetbv */
6377 if (ir.rm == 0)
6378 {
6379 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6380 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6381 break;
6382 }
6383 /* xsetbv */
6384 else if (ir.rm == 1)
6385 break;
6386 }
6387 case 3: /* lidt */
6388 if (ir.mod == 3)
6389 {
6390 ir.addr -= 3;
6391 opcode = opcode << 8 | ir.modrm;
6392 goto no_support;
6393 }
6394 break;
6395 case 4: /* smsw */
6396 if (ir.mod == 3)
6397 {
6398 if (record_arch_list_add_reg (ir.regcache, ir.rm | ir.rex_b))
6399 return -1;
6400 }
6401 else
6402 {
6403 ir.ot = OT_WORD;
6404 if (i386_record_lea_modrm (&ir))
6405 return -1;
6406 }
6407 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6408 break;
6409 case 6: /* lmsw */
6410 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6411 break;
6412 case 7: /* invlpg */
6413 if (ir.mod == 3)
6414 {
6415 if (ir.rm == 0 && ir.regmap[X86_RECORD_R8_REGNUM])
6416 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
6417 else
6418 {
6419 ir.addr -= 3;
6420 opcode = opcode << 8 | ir.modrm;
6421 goto no_support;
6422 }
6423 }
6424 else
6425 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6426 break;
6427 default:
6428 ir.addr -= 3;
6429 opcode = opcode << 8 | ir.modrm;
6430 goto no_support;
6431 break;
6432 }
6433 break;
6434
6435 case 0x0f08: /* invd */
6436 case 0x0f09: /* wbinvd */
6437 break;
6438
6439 case 0x63: /* arpl */
6440 if (i386_record_modrm (&ir))
6441 return -1;
6442 if (ir.mod == 3 || ir.regmap[X86_RECORD_R8_REGNUM])
6443 {
6444 I386_RECORD_ARCH_LIST_ADD_REG (ir.regmap[X86_RECORD_R8_REGNUM]
6445 ? (ir.reg | rex_r) : ir.rm);
6446 }
6447 else
6448 {
6449 ir.ot = ir.dflag ? OT_LONG : OT_WORD;
6450 if (i386_record_lea_modrm (&ir))
6451 return -1;
6452 }
6453 if (!ir.regmap[X86_RECORD_R8_REGNUM])
6454 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6455 break;
6456
6457 case 0x0f02: /* lar */
6458 case 0x0f03: /* lsl */
6459 if (i386_record_modrm (&ir))
6460 return -1;
6461 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6462 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6463 break;
6464
6465 case 0x0f18:
6466 if (i386_record_modrm (&ir))
6467 return -1;
6468 if (ir.mod == 3 && ir.reg == 3)
6469 {
6470 ir.addr -= 3;
6471 opcode = opcode << 8 | ir.modrm;
6472 goto no_support;
6473 }
6474 break;
6475
6476 case 0x0f19:
6477 case 0x0f1a:
6478 case 0x0f1b:
6479 case 0x0f1c:
6480 case 0x0f1d:
6481 case 0x0f1e:
6482 case 0x0f1f:
6483 /* nop (multi byte) */
6484 break;
6485
6486 case 0x0f20: /* mov reg, crN */
6487 case 0x0f22: /* mov crN, reg */
6488 if (i386_record_modrm (&ir))
6489 return -1;
6490 if ((ir.modrm & 0xc0) != 0xc0)
6491 {
6492 ir.addr -= 3;
6493 opcode = opcode << 8 | ir.modrm;
6494 goto no_support;
6495 }
6496 switch (ir.reg)
6497 {
6498 case 0:
6499 case 2:
6500 case 3:
6501 case 4:
6502 case 8:
6503 if (opcode & 2)
6504 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6505 else
6506 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6507 break;
6508 default:
6509 ir.addr -= 3;
6510 opcode = opcode << 8 | ir.modrm;
6511 goto no_support;
6512 break;
6513 }
6514 break;
6515
6516 case 0x0f21: /* mov reg, drN */
6517 case 0x0f23: /* mov drN, reg */
6518 if (i386_record_modrm (&ir))
6519 return -1;
6520 if ((ir.modrm & 0xc0) != 0xc0 || ir.reg == 4
6521 || ir.reg == 5 || ir.reg >= 8)
6522 {
6523 ir.addr -= 3;
6524 opcode = opcode << 8 | ir.modrm;
6525 goto no_support;
6526 }
6527 if (opcode & 2)
6528 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6529 else
6530 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6531 break;
6532
6533 case 0x0f06: /* clts */
6534 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6535 break;
6536
6537 /* MMX 3DNow! SSE SSE2 SSE3 SSSE3 SSE4 */
6538
6539 case 0x0f0d: /* 3DNow! prefetch */
6540 break;
6541
6542 case 0x0f0e: /* 3DNow! femms */
6543 case 0x0f77: /* emms */
6544 if (i386_fpc_regnum_p (gdbarch, I387_FTAG_REGNUM(tdep)))
6545 goto no_support;
6546 record_arch_list_add_reg (ir.regcache, I387_FTAG_REGNUM(tdep));
6547 break;
6548
6549 case 0x0f0f: /* 3DNow! data */
6550 if (i386_record_modrm (&ir))
6551 return -1;
6552 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
6553 return -1;
6554 ir.addr++;
6555 switch (opcode8)
6556 {
6557 case 0x0c: /* 3DNow! pi2fw */
6558 case 0x0d: /* 3DNow! pi2fd */
6559 case 0x1c: /* 3DNow! pf2iw */
6560 case 0x1d: /* 3DNow! pf2id */
6561 case 0x8a: /* 3DNow! pfnacc */
6562 case 0x8e: /* 3DNow! pfpnacc */
6563 case 0x90: /* 3DNow! pfcmpge */
6564 case 0x94: /* 3DNow! pfmin */
6565 case 0x96: /* 3DNow! pfrcp */
6566 case 0x97: /* 3DNow! pfrsqrt */
6567 case 0x9a: /* 3DNow! pfsub */
6568 case 0x9e: /* 3DNow! pfadd */
6569 case 0xa0: /* 3DNow! pfcmpgt */
6570 case 0xa4: /* 3DNow! pfmax */
6571 case 0xa6: /* 3DNow! pfrcpit1 */
6572 case 0xa7: /* 3DNow! pfrsqit1 */
6573 case 0xaa: /* 3DNow! pfsubr */
6574 case 0xae: /* 3DNow! pfacc */
6575 case 0xb0: /* 3DNow! pfcmpeq */
6576 case 0xb4: /* 3DNow! pfmul */
6577 case 0xb6: /* 3DNow! pfrcpit2 */
6578 case 0xb7: /* 3DNow! pmulhrw */
6579 case 0xbb: /* 3DNow! pswapd */
6580 case 0xbf: /* 3DNow! pavgusb */
6581 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
6582 goto no_support_3dnow_data;
6583 record_arch_list_add_reg (ir.regcache, ir.reg);
6584 break;
6585
6586 default:
6587 no_support_3dnow_data:
6588 opcode = (opcode << 8) | opcode8;
6589 goto no_support;
6590 break;
6591 }
6592 break;
6593
6594 case 0x0faa: /* rsm */
6595 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6596 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6597 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6598 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6599 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
6600 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6601 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
6602 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6603 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6604 break;
6605
6606 case 0x0fae:
6607 if (i386_record_modrm (&ir))
6608 return -1;
6609 switch(ir.reg)
6610 {
6611 case 0: /* fxsave */
6612 {
6613 uint64_t tmpu64;
6614
6615 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6616 if (i386_record_lea_modrm_addr (&ir, &tmpu64))
6617 return -1;
6618 if (record_arch_list_add_mem (tmpu64, 512))
6619 return -1;
6620 }
6621 break;
6622
6623 case 1: /* fxrstor */
6624 {
6625 int i;
6626
6627 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6628
6629 for (i = I387_MM0_REGNUM (tdep);
6630 i386_mmx_regnum_p (gdbarch, i); i++)
6631 record_arch_list_add_reg (ir.regcache, i);
6632
6633 for (i = I387_XMM0_REGNUM (tdep);
6634 i386_xmm_regnum_p (gdbarch, i); i++)
6635 record_arch_list_add_reg (ir.regcache, i);
6636
6637 if (i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
6638 record_arch_list_add_reg (ir.regcache, I387_MXCSR_REGNUM(tdep));
6639
6640 for (i = I387_ST0_REGNUM (tdep);
6641 i386_fp_regnum_p (gdbarch, i); i++)
6642 record_arch_list_add_reg (ir.regcache, i);
6643
6644 for (i = I387_FCTRL_REGNUM (tdep);
6645 i386_fpc_regnum_p (gdbarch, i); i++)
6646 record_arch_list_add_reg (ir.regcache, i);
6647 }
6648 break;
6649
6650 case 2: /* ldmxcsr */
6651 if (!i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
6652 goto no_support;
6653 record_arch_list_add_reg (ir.regcache, I387_MXCSR_REGNUM(tdep));
6654 break;
6655
6656 case 3: /* stmxcsr */
6657 ir.ot = OT_LONG;
6658 if (i386_record_lea_modrm (&ir))
6659 return -1;
6660 break;
6661
6662 case 5: /* lfence */
6663 case 6: /* mfence */
6664 case 7: /* sfence clflush */
6665 break;
6666
6667 default:
6668 opcode = (opcode << 8) | ir.modrm;
6669 goto no_support;
6670 break;
6671 }
6672 break;
6673
6674 case 0x0fc3: /* movnti */
6675 ir.ot = (ir.dflag == 2) ? OT_QUAD : OT_LONG;
6676 if (i386_record_modrm (&ir))
6677 return -1;
6678 if (ir.mod == 3)
6679 goto no_support;
6680 ir.reg |= rex_r;
6681 if (i386_record_lea_modrm (&ir))
6682 return -1;
6683 break;
6684
6685 /* Add prefix to opcode. */
6686 case 0x0f10:
6687 case 0x0f11:
6688 case 0x0f12:
6689 case 0x0f13:
6690 case 0x0f14:
6691 case 0x0f15:
6692 case 0x0f16:
6693 case 0x0f17:
6694 case 0x0f28:
6695 case 0x0f29:
6696 case 0x0f2a:
6697 case 0x0f2b:
6698 case 0x0f2c:
6699 case 0x0f2d:
6700 case 0x0f2e:
6701 case 0x0f2f:
6702 case 0x0f38:
6703 case 0x0f39:
6704 case 0x0f3a:
6705 case 0x0f50:
6706 case 0x0f51:
6707 case 0x0f52:
6708 case 0x0f53:
6709 case 0x0f54:
6710 case 0x0f55:
6711 case 0x0f56:
6712 case 0x0f57:
6713 case 0x0f58:
6714 case 0x0f59:
6715 case 0x0f5a:
6716 case 0x0f5b:
6717 case 0x0f5c:
6718 case 0x0f5d:
6719 case 0x0f5e:
6720 case 0x0f5f:
6721 case 0x0f60:
6722 case 0x0f61:
6723 case 0x0f62:
6724 case 0x0f63:
6725 case 0x0f64:
6726 case 0x0f65:
6727 case 0x0f66:
6728 case 0x0f67:
6729 case 0x0f68:
6730 case 0x0f69:
6731 case 0x0f6a:
6732 case 0x0f6b:
6733 case 0x0f6c:
6734 case 0x0f6d:
6735 case 0x0f6e:
6736 case 0x0f6f:
6737 case 0x0f70:
6738 case 0x0f71:
6739 case 0x0f72:
6740 case 0x0f73:
6741 case 0x0f74:
6742 case 0x0f75:
6743 case 0x0f76:
6744 case 0x0f7c:
6745 case 0x0f7d:
6746 case 0x0f7e:
6747 case 0x0f7f:
6748 case 0x0fb8:
6749 case 0x0fc2:
6750 case 0x0fc4:
6751 case 0x0fc5:
6752 case 0x0fc6:
6753 case 0x0fd0:
6754 case 0x0fd1:
6755 case 0x0fd2:
6756 case 0x0fd3:
6757 case 0x0fd4:
6758 case 0x0fd5:
6759 case 0x0fd6:
6760 case 0x0fd7:
6761 case 0x0fd8:
6762 case 0x0fd9:
6763 case 0x0fda:
6764 case 0x0fdb:
6765 case 0x0fdc:
6766 case 0x0fdd:
6767 case 0x0fde:
6768 case 0x0fdf:
6769 case 0x0fe0:
6770 case 0x0fe1:
6771 case 0x0fe2:
6772 case 0x0fe3:
6773 case 0x0fe4:
6774 case 0x0fe5:
6775 case 0x0fe6:
6776 case 0x0fe7:
6777 case 0x0fe8:
6778 case 0x0fe9:
6779 case 0x0fea:
6780 case 0x0feb:
6781 case 0x0fec:
6782 case 0x0fed:
6783 case 0x0fee:
6784 case 0x0fef:
6785 case 0x0ff0:
6786 case 0x0ff1:
6787 case 0x0ff2:
6788 case 0x0ff3:
6789 case 0x0ff4:
6790 case 0x0ff5:
6791 case 0x0ff6:
6792 case 0x0ff7:
6793 case 0x0ff8:
6794 case 0x0ff9:
6795 case 0x0ffa:
6796 case 0x0ffb:
6797 case 0x0ffc:
6798 case 0x0ffd:
6799 case 0x0ffe:
6800 switch (prefixes)
6801 {
6802 case PREFIX_REPNZ:
6803 opcode |= 0xf20000;
6804 break;
6805 case PREFIX_DATA:
6806 opcode |= 0x660000;
6807 break;
6808 case PREFIX_REPZ:
6809 opcode |= 0xf30000;
6810 break;
6811 }
6812 reswitch_prefix_add:
6813 switch (opcode)
6814 {
6815 case 0x0f38:
6816 case 0x660f38:
6817 case 0xf20f38:
6818 case 0x0f3a:
6819 case 0x660f3a:
6820 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
6821 return -1;
6822 ir.addr++;
6823 opcode = (uint32_t) opcode8 | opcode << 8;
6824 goto reswitch_prefix_add;
6825 break;
6826
6827 case 0x0f10: /* movups */
6828 case 0x660f10: /* movupd */
6829 case 0xf30f10: /* movss */
6830 case 0xf20f10: /* movsd */
6831 case 0x0f12: /* movlps */
6832 case 0x660f12: /* movlpd */
6833 case 0xf30f12: /* movsldup */
6834 case 0xf20f12: /* movddup */
6835 case 0x0f14: /* unpcklps */
6836 case 0x660f14: /* unpcklpd */
6837 case 0x0f15: /* unpckhps */
6838 case 0x660f15: /* unpckhpd */
6839 case 0x0f16: /* movhps */
6840 case 0x660f16: /* movhpd */
6841 case 0xf30f16: /* movshdup */
6842 case 0x0f28: /* movaps */
6843 case 0x660f28: /* movapd */
6844 case 0x0f2a: /* cvtpi2ps */
6845 case 0x660f2a: /* cvtpi2pd */
6846 case 0xf30f2a: /* cvtsi2ss */
6847 case 0xf20f2a: /* cvtsi2sd */
6848 case 0x0f2c: /* cvttps2pi */
6849 case 0x660f2c: /* cvttpd2pi */
6850 case 0x0f2d: /* cvtps2pi */
6851 case 0x660f2d: /* cvtpd2pi */
6852 case 0x660f3800: /* pshufb */
6853 case 0x660f3801: /* phaddw */
6854 case 0x660f3802: /* phaddd */
6855 case 0x660f3803: /* phaddsw */
6856 case 0x660f3804: /* pmaddubsw */
6857 case 0x660f3805: /* phsubw */
6858 case 0x660f3806: /* phsubd */
6859 case 0x660f3807: /* phsubsw */
6860 case 0x660f3808: /* psignb */
6861 case 0x660f3809: /* psignw */
6862 case 0x660f380a: /* psignd */
6863 case 0x660f380b: /* pmulhrsw */
6864 case 0x660f3810: /* pblendvb */
6865 case 0x660f3814: /* blendvps */
6866 case 0x660f3815: /* blendvpd */
6867 case 0x660f381c: /* pabsb */
6868 case 0x660f381d: /* pabsw */
6869 case 0x660f381e: /* pabsd */
6870 case 0x660f3820: /* pmovsxbw */
6871 case 0x660f3821: /* pmovsxbd */
6872 case 0x660f3822: /* pmovsxbq */
6873 case 0x660f3823: /* pmovsxwd */
6874 case 0x660f3824: /* pmovsxwq */
6875 case 0x660f3825: /* pmovsxdq */
6876 case 0x660f3828: /* pmuldq */
6877 case 0x660f3829: /* pcmpeqq */
6878 case 0x660f382a: /* movntdqa */
6879 case 0x660f3a08: /* roundps */
6880 case 0x660f3a09: /* roundpd */
6881 case 0x660f3a0a: /* roundss */
6882 case 0x660f3a0b: /* roundsd */
6883 case 0x660f3a0c: /* blendps */
6884 case 0x660f3a0d: /* blendpd */
6885 case 0x660f3a0e: /* pblendw */
6886 case 0x660f3a0f: /* palignr */
6887 case 0x660f3a20: /* pinsrb */
6888 case 0x660f3a21: /* insertps */
6889 case 0x660f3a22: /* pinsrd pinsrq */
6890 case 0x660f3a40: /* dpps */
6891 case 0x660f3a41: /* dppd */
6892 case 0x660f3a42: /* mpsadbw */
6893 case 0x660f3a60: /* pcmpestrm */
6894 case 0x660f3a61: /* pcmpestri */
6895 case 0x660f3a62: /* pcmpistrm */
6896 case 0x660f3a63: /* pcmpistri */
6897 case 0x0f51: /* sqrtps */
6898 case 0x660f51: /* sqrtpd */
6899 case 0xf20f51: /* sqrtsd */
6900 case 0xf30f51: /* sqrtss */
6901 case 0x0f52: /* rsqrtps */
6902 case 0xf30f52: /* rsqrtss */
6903 case 0x0f53: /* rcpps */
6904 case 0xf30f53: /* rcpss */
6905 case 0x0f54: /* andps */
6906 case 0x660f54: /* andpd */
6907 case 0x0f55: /* andnps */
6908 case 0x660f55: /* andnpd */
6909 case 0x0f56: /* orps */
6910 case 0x660f56: /* orpd */
6911 case 0x0f57: /* xorps */
6912 case 0x660f57: /* xorpd */
6913 case 0x0f58: /* addps */
6914 case 0x660f58: /* addpd */
6915 case 0xf20f58: /* addsd */
6916 case 0xf30f58: /* addss */
6917 case 0x0f59: /* mulps */
6918 case 0x660f59: /* mulpd */
6919 case 0xf20f59: /* mulsd */
6920 case 0xf30f59: /* mulss */
6921 case 0x0f5a: /* cvtps2pd */
6922 case 0x660f5a: /* cvtpd2ps */
6923 case 0xf20f5a: /* cvtsd2ss */
6924 case 0xf30f5a: /* cvtss2sd */
6925 case 0x0f5b: /* cvtdq2ps */
6926 case 0x660f5b: /* cvtps2dq */
6927 case 0xf30f5b: /* cvttps2dq */
6928 case 0x0f5c: /* subps */
6929 case 0x660f5c: /* subpd */
6930 case 0xf20f5c: /* subsd */
6931 case 0xf30f5c: /* subss */
6932 case 0x0f5d: /* minps */
6933 case 0x660f5d: /* minpd */
6934 case 0xf20f5d: /* minsd */
6935 case 0xf30f5d: /* minss */
6936 case 0x0f5e: /* divps */
6937 case 0x660f5e: /* divpd */
6938 case 0xf20f5e: /* divsd */
6939 case 0xf30f5e: /* divss */
6940 case 0x0f5f: /* maxps */
6941 case 0x660f5f: /* maxpd */
6942 case 0xf20f5f: /* maxsd */
6943 case 0xf30f5f: /* maxss */
6944 case 0x660f60: /* punpcklbw */
6945 case 0x660f61: /* punpcklwd */
6946 case 0x660f62: /* punpckldq */
6947 case 0x660f63: /* packsswb */
6948 case 0x660f64: /* pcmpgtb */
6949 case 0x660f65: /* pcmpgtw */
6950 case 0x660f66: /* pcmpgtd */
6951 case 0x660f67: /* packuswb */
6952 case 0x660f68: /* punpckhbw */
6953 case 0x660f69: /* punpckhwd */
6954 case 0x660f6a: /* punpckhdq */
6955 case 0x660f6b: /* packssdw */
6956 case 0x660f6c: /* punpcklqdq */
6957 case 0x660f6d: /* punpckhqdq */
6958 case 0x660f6e: /* movd */
6959 case 0x660f6f: /* movdqa */
6960 case 0xf30f6f: /* movdqu */
6961 case 0x660f70: /* pshufd */
6962 case 0xf20f70: /* pshuflw */
6963 case 0xf30f70: /* pshufhw */
6964 case 0x660f74: /* pcmpeqb */
6965 case 0x660f75: /* pcmpeqw */
6966 case 0x660f76: /* pcmpeqd */
6967 case 0x660f7c: /* haddpd */
6968 case 0xf20f7c: /* haddps */
6969 case 0x660f7d: /* hsubpd */
6970 case 0xf20f7d: /* hsubps */
6971 case 0xf30f7e: /* movq */
6972 case 0x0fc2: /* cmpps */
6973 case 0x660fc2: /* cmppd */
6974 case 0xf20fc2: /* cmpsd */
6975 case 0xf30fc2: /* cmpss */
6976 case 0x660fc4: /* pinsrw */
6977 case 0x0fc6: /* shufps */
6978 case 0x660fc6: /* shufpd */
6979 case 0x660fd0: /* addsubpd */
6980 case 0xf20fd0: /* addsubps */
6981 case 0x660fd1: /* psrlw */
6982 case 0x660fd2: /* psrld */
6983 case 0x660fd3: /* psrlq */
6984 case 0x660fd4: /* paddq */
6985 case 0x660fd5: /* pmullw */
6986 case 0xf30fd6: /* movq2dq */
6987 case 0x660fd8: /* psubusb */
6988 case 0x660fd9: /* psubusw */
6989 case 0x660fda: /* pminub */
6990 case 0x660fdb: /* pand */
6991 case 0x660fdc: /* paddusb */
6992 case 0x660fdd: /* paddusw */
6993 case 0x660fde: /* pmaxub */
6994 case 0x660fdf: /* pandn */
6995 case 0x660fe0: /* pavgb */
6996 case 0x660fe1: /* psraw */
6997 case 0x660fe2: /* psrad */
6998 case 0x660fe3: /* pavgw */
6999 case 0x660fe4: /* pmulhuw */
7000 case 0x660fe5: /* pmulhw */
7001 case 0x660fe6: /* cvttpd2dq */
7002 case 0xf20fe6: /* cvtpd2dq */
7003 case 0xf30fe6: /* cvtdq2pd */
7004 case 0x660fe8: /* psubsb */
7005 case 0x660fe9: /* psubsw */
7006 case 0x660fea: /* pminsw */
7007 case 0x660feb: /* por */
7008 case 0x660fec: /* paddsb */
7009 case 0x660fed: /* paddsw */
7010 case 0x660fee: /* pmaxsw */
7011 case 0x660fef: /* pxor */
7012 case 0xf20ff0: /* lddqu */
7013 case 0x660ff1: /* psllw */
7014 case 0x660ff2: /* pslld */
7015 case 0x660ff3: /* psllq */
7016 case 0x660ff4: /* pmuludq */
7017 case 0x660ff5: /* pmaddwd */
7018 case 0x660ff6: /* psadbw */
7019 case 0x660ff8: /* psubb */
7020 case 0x660ff9: /* psubw */
7021 case 0x660ffa: /* psubd */
7022 case 0x660ffb: /* psubq */
7023 case 0x660ffc: /* paddb */
7024 case 0x660ffd: /* paddw */
7025 case 0x660ffe: /* paddd */
7026 if (i386_record_modrm (&ir))
7027 return -1;
7028 ir.reg |= rex_r;
7029 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.reg))
7030 goto no_support;
7031 record_arch_list_add_reg (ir.regcache,
7032 I387_XMM0_REGNUM (tdep) + ir.reg);
7033 if ((opcode & 0xfffffffc) == 0x660f3a60)
7034 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7035 break;
7036
7037 case 0x0f11: /* movups */
7038 case 0x660f11: /* movupd */
7039 case 0xf30f11: /* movss */
7040 case 0xf20f11: /* movsd */
7041 case 0x0f13: /* movlps */
7042 case 0x660f13: /* movlpd */
7043 case 0x0f17: /* movhps */
7044 case 0x660f17: /* movhpd */
7045 case 0x0f29: /* movaps */
7046 case 0x660f29: /* movapd */
7047 case 0x660f3a14: /* pextrb */
7048 case 0x660f3a15: /* pextrw */
7049 case 0x660f3a16: /* pextrd pextrq */
7050 case 0x660f3a17: /* extractps */
7051 case 0x660f7f: /* movdqa */
7052 case 0xf30f7f: /* movdqu */
7053 if (i386_record_modrm (&ir))
7054 return -1;
7055 if (ir.mod == 3)
7056 {
7057 if (opcode == 0x0f13 || opcode == 0x660f13
7058 || opcode == 0x0f17 || opcode == 0x660f17)
7059 goto no_support;
7060 ir.rm |= ir.rex_b;
7061 if (!i386_xmm_regnum_p (gdbarch,
7062 I387_XMM0_REGNUM (tdep) + ir.rm))
7063 goto no_support;
7064 record_arch_list_add_reg (ir.regcache,
7065 I387_XMM0_REGNUM (tdep) + ir.rm);
7066 }
7067 else
7068 {
7069 switch (opcode)
7070 {
7071 case 0x660f3a14:
7072 ir.ot = OT_BYTE;
7073 break;
7074 case 0x660f3a15:
7075 ir.ot = OT_WORD;
7076 break;
7077 case 0x660f3a16:
7078 ir.ot = OT_LONG;
7079 break;
7080 case 0x660f3a17:
7081 ir.ot = OT_QUAD;
7082 break;
7083 default:
7084 ir.ot = OT_DQUAD;
7085 break;
7086 }
7087 if (i386_record_lea_modrm (&ir))
7088 return -1;
7089 }
7090 break;
7091
7092 case 0x0f2b: /* movntps */
7093 case 0x660f2b: /* movntpd */
7094 case 0x0fe7: /* movntq */
7095 case 0x660fe7: /* movntdq */
7096 if (ir.mod == 3)
7097 goto no_support;
7098 if (opcode == 0x0fe7)
7099 ir.ot = OT_QUAD;
7100 else
7101 ir.ot = OT_DQUAD;
7102 if (i386_record_lea_modrm (&ir))
7103 return -1;
7104 break;
7105
7106 case 0xf30f2c: /* cvttss2si */
7107 case 0xf20f2c: /* cvttsd2si */
7108 case 0xf30f2d: /* cvtss2si */
7109 case 0xf20f2d: /* cvtsd2si */
7110 case 0xf20f38f0: /* crc32 */
7111 case 0xf20f38f1: /* crc32 */
7112 case 0x0f50: /* movmskps */
7113 case 0x660f50: /* movmskpd */
7114 case 0x0fc5: /* pextrw */
7115 case 0x660fc5: /* pextrw */
7116 case 0x0fd7: /* pmovmskb */
7117 case 0x660fd7: /* pmovmskb */
7118 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7119 break;
7120
7121 case 0x0f3800: /* pshufb */
7122 case 0x0f3801: /* phaddw */
7123 case 0x0f3802: /* phaddd */
7124 case 0x0f3803: /* phaddsw */
7125 case 0x0f3804: /* pmaddubsw */
7126 case 0x0f3805: /* phsubw */
7127 case 0x0f3806: /* phsubd */
7128 case 0x0f3807: /* phsubsw */
7129 case 0x0f3808: /* psignb */
7130 case 0x0f3809: /* psignw */
7131 case 0x0f380a: /* psignd */
7132 case 0x0f380b: /* pmulhrsw */
7133 case 0x0f381c: /* pabsb */
7134 case 0x0f381d: /* pabsw */
7135 case 0x0f381e: /* pabsd */
7136 case 0x0f382b: /* packusdw */
7137 case 0x0f3830: /* pmovzxbw */
7138 case 0x0f3831: /* pmovzxbd */
7139 case 0x0f3832: /* pmovzxbq */
7140 case 0x0f3833: /* pmovzxwd */
7141 case 0x0f3834: /* pmovzxwq */
7142 case 0x0f3835: /* pmovzxdq */
7143 case 0x0f3837: /* pcmpgtq */
7144 case 0x0f3838: /* pminsb */
7145 case 0x0f3839: /* pminsd */
7146 case 0x0f383a: /* pminuw */
7147 case 0x0f383b: /* pminud */
7148 case 0x0f383c: /* pmaxsb */
7149 case 0x0f383d: /* pmaxsd */
7150 case 0x0f383e: /* pmaxuw */
7151 case 0x0f383f: /* pmaxud */
7152 case 0x0f3840: /* pmulld */
7153 case 0x0f3841: /* phminposuw */
7154 case 0x0f3a0f: /* palignr */
7155 case 0x0f60: /* punpcklbw */
7156 case 0x0f61: /* punpcklwd */
7157 case 0x0f62: /* punpckldq */
7158 case 0x0f63: /* packsswb */
7159 case 0x0f64: /* pcmpgtb */
7160 case 0x0f65: /* pcmpgtw */
7161 case 0x0f66: /* pcmpgtd */
7162 case 0x0f67: /* packuswb */
7163 case 0x0f68: /* punpckhbw */
7164 case 0x0f69: /* punpckhwd */
7165 case 0x0f6a: /* punpckhdq */
7166 case 0x0f6b: /* packssdw */
7167 case 0x0f6e: /* movd */
7168 case 0x0f6f: /* movq */
7169 case 0x0f70: /* pshufw */
7170 case 0x0f74: /* pcmpeqb */
7171 case 0x0f75: /* pcmpeqw */
7172 case 0x0f76: /* pcmpeqd */
7173 case 0x0fc4: /* pinsrw */
7174 case 0x0fd1: /* psrlw */
7175 case 0x0fd2: /* psrld */
7176 case 0x0fd3: /* psrlq */
7177 case 0x0fd4: /* paddq */
7178 case 0x0fd5: /* pmullw */
7179 case 0xf20fd6: /* movdq2q */
7180 case 0x0fd8: /* psubusb */
7181 case 0x0fd9: /* psubusw */
7182 case 0x0fda: /* pminub */
7183 case 0x0fdb: /* pand */
7184 case 0x0fdc: /* paddusb */
7185 case 0x0fdd: /* paddusw */
7186 case 0x0fde: /* pmaxub */
7187 case 0x0fdf: /* pandn */
7188 case 0x0fe0: /* pavgb */
7189 case 0x0fe1: /* psraw */
7190 case 0x0fe2: /* psrad */
7191 case 0x0fe3: /* pavgw */
7192 case 0x0fe4: /* pmulhuw */
7193 case 0x0fe5: /* pmulhw */
7194 case 0x0fe8: /* psubsb */
7195 case 0x0fe9: /* psubsw */
7196 case 0x0fea: /* pminsw */
7197 case 0x0feb: /* por */
7198 case 0x0fec: /* paddsb */
7199 case 0x0fed: /* paddsw */
7200 case 0x0fee: /* pmaxsw */
7201 case 0x0fef: /* pxor */
7202 case 0x0ff1: /* psllw */
7203 case 0x0ff2: /* pslld */
7204 case 0x0ff3: /* psllq */
7205 case 0x0ff4: /* pmuludq */
7206 case 0x0ff5: /* pmaddwd */
7207 case 0x0ff6: /* psadbw */
7208 case 0x0ff8: /* psubb */
7209 case 0x0ff9: /* psubw */
7210 case 0x0ffa: /* psubd */
7211 case 0x0ffb: /* psubq */
7212 case 0x0ffc: /* paddb */
7213 case 0x0ffd: /* paddw */
7214 case 0x0ffe: /* paddd */
7215 if (i386_record_modrm (&ir))
7216 return -1;
7217 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7218 goto no_support;
7219 record_arch_list_add_reg (ir.regcache,
7220 I387_MM0_REGNUM (tdep) + ir.reg);
7221 break;
7222
7223 case 0x0f71: /* psllw */
7224 case 0x0f72: /* pslld */
7225 case 0x0f73: /* psllq */
7226 if (i386_record_modrm (&ir))
7227 return -1;
7228 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
7229 goto no_support;
7230 record_arch_list_add_reg (ir.regcache,
7231 I387_MM0_REGNUM (tdep) + ir.rm);
7232 break;
7233
7234 case 0x660f71: /* psllw */
7235 case 0x660f72: /* pslld */
7236 case 0x660f73: /* psllq */
7237 if (i386_record_modrm (&ir))
7238 return -1;
7239 ir.rm |= ir.rex_b;
7240 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.rm))
7241 goto no_support;
7242 record_arch_list_add_reg (ir.regcache,
7243 I387_XMM0_REGNUM (tdep) + ir.rm);
7244 break;
7245
7246 case 0x0f7e: /* movd */
7247 case 0x660f7e: /* movd */
7248 if (i386_record_modrm (&ir))
7249 return -1;
7250 if (ir.mod == 3)
7251 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7252 else
7253 {
7254 if (ir.dflag == 2)
7255 ir.ot = OT_QUAD;
7256 else
7257 ir.ot = OT_LONG;
7258 if (i386_record_lea_modrm (&ir))
7259 return -1;
7260 }
7261 break;
7262
7263 case 0x0f7f: /* movq */
7264 if (i386_record_modrm (&ir))
7265 return -1;
7266 if (ir.mod == 3)
7267 {
7268 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
7269 goto no_support;
7270 record_arch_list_add_reg (ir.regcache,
7271 I387_MM0_REGNUM (tdep) + ir.rm);
7272 }
7273 else
7274 {
7275 ir.ot = OT_QUAD;
7276 if (i386_record_lea_modrm (&ir))
7277 return -1;
7278 }
7279 break;
7280
7281 case 0xf30fb8: /* popcnt */
7282 if (i386_record_modrm (&ir))
7283 return -1;
7284 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
7285 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7286 break;
7287
7288 case 0x660fd6: /* movq */
7289 if (i386_record_modrm (&ir))
7290 return -1;
7291 if (ir.mod == 3)
7292 {
7293 ir.rm |= ir.rex_b;
7294 if (!i386_xmm_regnum_p (gdbarch,
7295 I387_XMM0_REGNUM (tdep) + ir.rm))
7296 goto no_support;
7297 record_arch_list_add_reg (ir.regcache,
7298 I387_XMM0_REGNUM (tdep) + ir.rm);
7299 }
7300 else
7301 {
7302 ir.ot = OT_QUAD;
7303 if (i386_record_lea_modrm (&ir))
7304 return -1;
7305 }
7306 break;
7307
7308 case 0x660f3817: /* ptest */
7309 case 0x0f2e: /* ucomiss */
7310 case 0x660f2e: /* ucomisd */
7311 case 0x0f2f: /* comiss */
7312 case 0x660f2f: /* comisd */
7313 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7314 break;
7315
7316 case 0x0ff7: /* maskmovq */
7317 regcache_raw_read_unsigned (ir.regcache,
7318 ir.regmap[X86_RECORD_REDI_REGNUM],
7319 &addr);
7320 if (record_arch_list_add_mem (addr, 64))
7321 return -1;
7322 break;
7323
7324 case 0x660ff7: /* maskmovdqu */
7325 regcache_raw_read_unsigned (ir.regcache,
7326 ir.regmap[X86_RECORD_REDI_REGNUM],
7327 &addr);
7328 if (record_arch_list_add_mem (addr, 128))
7329 return -1;
7330 break;
7331
7332 default:
7333 goto no_support;
7334 break;
7335 }
7336 break;
7337
7338 default:
7339 goto no_support;
7340 break;
7341 }
7342
7343 /* In the future, maybe still need to deal with need_dasm. */
7344 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REIP_REGNUM);
7345 if (record_arch_list_add_end ())
7346 return -1;
7347
7348 return 0;
7349
7350 no_support:
7351 printf_unfiltered (_("Process record does not support instruction 0x%02x "
7352 "at address %s.\n"),
7353 (unsigned int) (opcode),
7354 paddress (gdbarch, ir.orig_addr));
7355 return -1;
7356 }
7357
7358 static const int i386_record_regmap[] =
7359 {
7360 I386_EAX_REGNUM, I386_ECX_REGNUM, I386_EDX_REGNUM, I386_EBX_REGNUM,
7361 I386_ESP_REGNUM, I386_EBP_REGNUM, I386_ESI_REGNUM, I386_EDI_REGNUM,
7362 0, 0, 0, 0, 0, 0, 0, 0,
7363 I386_EIP_REGNUM, I386_EFLAGS_REGNUM, I386_CS_REGNUM, I386_SS_REGNUM,
7364 I386_DS_REGNUM, I386_ES_REGNUM, I386_FS_REGNUM, I386_GS_REGNUM
7365 };
7366
7367 /* Check that the given address appears suitable for a fast
7368 tracepoint, which on x86-64 means that we need an instruction of at
7369 least 5 bytes, so that we can overwrite it with a 4-byte-offset
7370 jump and not have to worry about program jumps to an address in the
7371 middle of the tracepoint jump. On x86, it may be possible to use
7372 4-byte jumps with a 2-byte offset to a trampoline located in the
7373 bottom 64 KiB of memory. Returns 1 if OK, and writes a size
7374 of instruction to replace, and 0 if not, plus an explanatory
7375 string. */
7376
7377 static int
7378 i386_fast_tracepoint_valid_at (struct gdbarch *gdbarch,
7379 CORE_ADDR addr, int *isize, char **msg)
7380 {
7381 int len, jumplen;
7382 static struct ui_file *gdb_null = NULL;
7383
7384 /* Ask the target for the minimum instruction length supported. */
7385 jumplen = target_get_min_fast_tracepoint_insn_len ();
7386
7387 if (jumplen < 0)
7388 {
7389 /* If the target does not support the get_min_fast_tracepoint_insn_len
7390 operation, assume that fast tracepoints will always be implemented
7391 using 4-byte relative jumps on both x86 and x86-64. */
7392 jumplen = 5;
7393 }
7394 else if (jumplen == 0)
7395 {
7396 /* If the target does support get_min_fast_tracepoint_insn_len but
7397 returns zero, then the IPA has not loaded yet. In this case,
7398 we optimistically assume that truncated 2-byte relative jumps
7399 will be available on x86, and compensate later if this assumption
7400 turns out to be incorrect. On x86-64 architectures, 4-byte relative
7401 jumps will always be used. */
7402 jumplen = (register_size (gdbarch, 0) == 8) ? 5 : 4;
7403 }
7404
7405 /* Dummy file descriptor for the disassembler. */
7406 if (!gdb_null)
7407 gdb_null = ui_file_new ();
7408
7409 /* Check for fit. */
7410 len = gdb_print_insn (gdbarch, addr, gdb_null, NULL);
7411 if (isize)
7412 *isize = len;
7413
7414 if (len < jumplen)
7415 {
7416 /* Return a bit of target-specific detail to add to the caller's
7417 generic failure message. */
7418 if (msg)
7419 *msg = xstrprintf (_("; instruction is only %d bytes long, "
7420 "need at least %d bytes for the jump"),
7421 len, jumplen);
7422 return 0;
7423 }
7424 else
7425 {
7426 if (msg)
7427 *msg = NULL;
7428 return 1;
7429 }
7430 }
7431
7432 static int
7433 i386_validate_tdesc_p (struct gdbarch_tdep *tdep,
7434 struct tdesc_arch_data *tdesc_data)
7435 {
7436 const struct target_desc *tdesc = tdep->tdesc;
7437 const struct tdesc_feature *feature_core;
7438 const struct tdesc_feature *feature_sse, *feature_avx;
7439 int i, num_regs, valid_p;
7440
7441 if (! tdesc_has_registers (tdesc))
7442 return 0;
7443
7444 /* Get core registers. */
7445 feature_core = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.core");
7446 if (feature_core == NULL)
7447 return 0;
7448
7449 /* Get SSE registers. */
7450 feature_sse = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.sse");
7451
7452 /* Try AVX registers. */
7453 feature_avx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx");
7454
7455 valid_p = 1;
7456
7457 /* The XCR0 bits. */
7458 if (feature_avx)
7459 {
7460 /* AVX register description requires SSE register description. */
7461 if (!feature_sse)
7462 return 0;
7463
7464 tdep->xcr0 = I386_XSTATE_AVX_MASK;
7465
7466 /* It may have been set by OSABI initialization function. */
7467 if (tdep->num_ymm_regs == 0)
7468 {
7469 tdep->ymmh_register_names = i386_ymmh_names;
7470 tdep->num_ymm_regs = 8;
7471 tdep->ymm0h_regnum = I386_YMM0H_REGNUM;
7472 }
7473
7474 for (i = 0; i < tdep->num_ymm_regs; i++)
7475 valid_p &= tdesc_numbered_register (feature_avx, tdesc_data,
7476 tdep->ymm0h_regnum + i,
7477 tdep->ymmh_register_names[i]);
7478 }
7479 else if (feature_sse)
7480 tdep->xcr0 = I386_XSTATE_SSE_MASK;
7481 else
7482 {
7483 tdep->xcr0 = I386_XSTATE_X87_MASK;
7484 tdep->num_xmm_regs = 0;
7485 }
7486
7487 num_regs = tdep->num_core_regs;
7488 for (i = 0; i < num_regs; i++)
7489 valid_p &= tdesc_numbered_register (feature_core, tdesc_data, i,
7490 tdep->register_names[i]);
7491
7492 if (feature_sse)
7493 {
7494 /* Need to include %mxcsr, so add one. */
7495 num_regs += tdep->num_xmm_regs + 1;
7496 for (; i < num_regs; i++)
7497 valid_p &= tdesc_numbered_register (feature_sse, tdesc_data, i,
7498 tdep->register_names[i]);
7499 }
7500
7501 return valid_p;
7502 }
7503
7504 \f
7505 static struct gdbarch *
7506 i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
7507 {
7508 struct gdbarch_tdep *tdep;
7509 struct gdbarch *gdbarch;
7510 struct tdesc_arch_data *tdesc_data;
7511 const struct target_desc *tdesc;
7512 int mm0_regnum;
7513 int ymm0_regnum;
7514
7515 /* If there is already a candidate, use it. */
7516 arches = gdbarch_list_lookup_by_info (arches, &info);
7517 if (arches != NULL)
7518 return arches->gdbarch;
7519
7520 /* Allocate space for the new architecture. */
7521 tdep = XCALLOC (1, struct gdbarch_tdep);
7522 gdbarch = gdbarch_alloc (&info, tdep);
7523
7524 /* General-purpose registers. */
7525 tdep->gregset = NULL;
7526 tdep->gregset_reg_offset = NULL;
7527 tdep->gregset_num_regs = I386_NUM_GREGS;
7528 tdep->sizeof_gregset = 0;
7529
7530 /* Floating-point registers. */
7531 tdep->fpregset = NULL;
7532 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
7533
7534 tdep->xstateregset = NULL;
7535
7536 /* The default settings include the FPU registers, the MMX registers
7537 and the SSE registers. This can be overridden for a specific ABI
7538 by adjusting the members `st0_regnum', `mm0_regnum' and
7539 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
7540 will show up in the output of "info all-registers". */
7541
7542 tdep->st0_regnum = I386_ST0_REGNUM;
7543
7544 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
7545 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
7546
7547 tdep->jb_pc_offset = -1;
7548 tdep->struct_return = pcc_struct_return;
7549 tdep->sigtramp_start = 0;
7550 tdep->sigtramp_end = 0;
7551 tdep->sigtramp_p = i386_sigtramp_p;
7552 tdep->sigcontext_addr = NULL;
7553 tdep->sc_reg_offset = NULL;
7554 tdep->sc_pc_offset = -1;
7555 tdep->sc_sp_offset = -1;
7556
7557 tdep->xsave_xcr0_offset = -1;
7558
7559 tdep->record_regmap = i386_record_regmap;
7560
7561 set_gdbarch_long_long_align_bit (gdbarch, 32);
7562
7563 /* The format used for `long double' on almost all i386 targets is
7564 the i387 extended floating-point format. In fact, of all targets
7565 in the GCC 2.95 tree, only OSF/1 does it different, and insists
7566 on having a `long double' that's not `long' at all. */
7567 set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext);
7568
7569 /* Although the i387 extended floating-point has only 80 significant
7570 bits, a `long double' actually takes up 96, probably to enforce
7571 alignment. */
7572 set_gdbarch_long_double_bit (gdbarch, 96);
7573
7574 /* Register numbers of various important registers. */
7575 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
7576 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
7577 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
7578 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
7579
7580 /* NOTE: kettenis/20040418: GCC does have two possible register
7581 numbering schemes on the i386: dbx and SVR4. These schemes
7582 differ in how they number %ebp, %esp, %eflags, and the
7583 floating-point registers, and are implemented by the arrays
7584 dbx_register_map[] and svr4_dbx_register_map in
7585 gcc/config/i386.c. GCC also defines a third numbering scheme in
7586 gcc/config/i386.c, which it designates as the "default" register
7587 map used in 64bit mode. This last register numbering scheme is
7588 implemented in dbx64_register_map, and is used for AMD64; see
7589 amd64-tdep.c.
7590
7591 Currently, each GCC i386 target always uses the same register
7592 numbering scheme across all its supported debugging formats
7593 i.e. SDB (COFF), stabs and DWARF 2. This is because
7594 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
7595 DBX_REGISTER_NUMBER macro which is defined by each target's
7596 respective config header in a manner independent of the requested
7597 output debugging format.
7598
7599 This does not match the arrangement below, which presumes that
7600 the SDB and stabs numbering schemes differ from the DWARF and
7601 DWARF 2 ones. The reason for this arrangement is that it is
7602 likely to get the numbering scheme for the target's
7603 default/native debug format right. For targets where GCC is the
7604 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
7605 targets where the native toolchain uses a different numbering
7606 scheme for a particular debug format (stabs-in-ELF on Solaris)
7607 the defaults below will have to be overridden, like
7608 i386_elf_init_abi() does. */
7609
7610 /* Use the dbx register numbering scheme for stabs and COFF. */
7611 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
7612 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
7613
7614 /* Use the SVR4 register numbering scheme for DWARF 2. */
7615 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
7616
7617 /* We don't set gdbarch_stab_reg_to_regnum, since ECOFF doesn't seem to
7618 be in use on any of the supported i386 targets. */
7619
7620 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
7621
7622 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
7623
7624 /* Call dummy code. */
7625 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
7626 set_gdbarch_push_dummy_code (gdbarch, i386_push_dummy_code);
7627 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
7628 set_gdbarch_frame_align (gdbarch, i386_frame_align);
7629
7630 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
7631 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
7632 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
7633
7634 set_gdbarch_return_value (gdbarch, i386_return_value);
7635
7636 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
7637
7638 /* Stack grows downward. */
7639 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
7640
7641 set_gdbarch_breakpoint_from_pc (gdbarch, i386_breakpoint_from_pc);
7642 set_gdbarch_decr_pc_after_break (gdbarch, 1);
7643 set_gdbarch_max_insn_length (gdbarch, I386_MAX_INSN_LEN);
7644
7645 set_gdbarch_frame_args_skip (gdbarch, 8);
7646
7647 set_gdbarch_print_insn (gdbarch, i386_print_insn);
7648
7649 set_gdbarch_dummy_id (gdbarch, i386_dummy_id);
7650
7651 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
7652
7653 /* Add the i386 register groups. */
7654 i386_add_reggroups (gdbarch);
7655 tdep->register_reggroup_p = i386_register_reggroup_p;
7656
7657 /* Helper for function argument information. */
7658 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
7659
7660 /* Hook the function epilogue frame unwinder. This unwinder is
7661 appended to the list first, so that it supercedes the DWARF
7662 unwinder in function epilogues (where the DWARF unwinder
7663 currently fails). */
7664 frame_unwind_append_unwinder (gdbarch, &i386_epilogue_frame_unwind);
7665
7666 /* Hook in the DWARF CFI frame unwinder. This unwinder is appended
7667 to the list before the prologue-based unwinders, so that DWARF
7668 CFI info will be used if it is available. */
7669 dwarf2_append_unwinders (gdbarch);
7670
7671 frame_base_set_default (gdbarch, &i386_frame_base);
7672
7673 /* Pseudo registers may be changed by amd64_init_abi. */
7674 set_gdbarch_pseudo_register_read_value (gdbarch,
7675 i386_pseudo_register_read_value);
7676 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
7677
7678 set_tdesc_pseudo_register_type (gdbarch, i386_pseudo_register_type);
7679 set_tdesc_pseudo_register_name (gdbarch, i386_pseudo_register_name);
7680
7681 /* Override the normal target description method to make the AVX
7682 upper halves anonymous. */
7683 set_gdbarch_register_name (gdbarch, i386_register_name);
7684
7685 /* Even though the default ABI only includes general-purpose registers,
7686 floating-point registers and the SSE registers, we have to leave a
7687 gap for the upper AVX registers. */
7688 set_gdbarch_num_regs (gdbarch, I386_AVX_NUM_REGS);
7689
7690 /* Get the x86 target description from INFO. */
7691 tdesc = info.target_desc;
7692 if (! tdesc_has_registers (tdesc))
7693 tdesc = tdesc_i386;
7694 tdep->tdesc = tdesc;
7695
7696 tdep->num_core_regs = I386_NUM_GREGS + I387_NUM_REGS;
7697 tdep->register_names = i386_register_names;
7698
7699 /* No upper YMM registers. */
7700 tdep->ymmh_register_names = NULL;
7701 tdep->ymm0h_regnum = -1;
7702
7703 tdep->num_byte_regs = 8;
7704 tdep->num_word_regs = 8;
7705 tdep->num_dword_regs = 0;
7706 tdep->num_mmx_regs = 8;
7707 tdep->num_ymm_regs = 0;
7708
7709 tdep->sp_regnum_from_eax = -1;
7710 tdep->pc_regnum_from_eax = -1;
7711
7712 tdesc_data = tdesc_data_alloc ();
7713
7714 set_gdbarch_relocate_instruction (gdbarch, i386_relocate_instruction);
7715
7716 set_gdbarch_gen_return_address (gdbarch, i386_gen_return_address);
7717
7718 /* Hook in ABI-specific overrides, if they have been registered. */
7719 info.tdep_info = (void *) tdesc_data;
7720 gdbarch_init_osabi (info, gdbarch);
7721
7722 if (!i386_validate_tdesc_p (tdep, tdesc_data))
7723 {
7724 tdesc_data_cleanup (tdesc_data);
7725 xfree (tdep);
7726 gdbarch_free (gdbarch);
7727 return NULL;
7728 }
7729
7730 /* Wire in pseudo registers. Number of pseudo registers may be
7731 changed. */
7732 set_gdbarch_num_pseudo_regs (gdbarch, (tdep->num_byte_regs
7733 + tdep->num_word_regs
7734 + tdep->num_dword_regs
7735 + tdep->num_mmx_regs
7736 + tdep->num_ymm_regs));
7737
7738 /* Target description may be changed. */
7739 tdesc = tdep->tdesc;
7740
7741 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
7742
7743 /* Override gdbarch_register_reggroup_p set in tdesc_use_registers. */
7744 set_gdbarch_register_reggroup_p (gdbarch, tdep->register_reggroup_p);
7745
7746 /* Make %al the first pseudo-register. */
7747 tdep->al_regnum = gdbarch_num_regs (gdbarch);
7748 tdep->ax_regnum = tdep->al_regnum + tdep->num_byte_regs;
7749
7750 ymm0_regnum = tdep->ax_regnum + tdep->num_word_regs;
7751 if (tdep->num_dword_regs)
7752 {
7753 /* Support dword pseudo-register if it hasn't been disabled. */
7754 tdep->eax_regnum = ymm0_regnum;
7755 ymm0_regnum += tdep->num_dword_regs;
7756 if (tdep->sp_regnum_from_eax != -1)
7757 set_gdbarch_sp_regnum (gdbarch,
7758 (tdep->eax_regnum
7759 + tdep->sp_regnum_from_eax));
7760 if (tdep->pc_regnum_from_eax != -1)
7761 set_gdbarch_pc_regnum (gdbarch,
7762 (tdep->eax_regnum
7763 + tdep->pc_regnum_from_eax));
7764 }
7765 else
7766 tdep->eax_regnum = -1;
7767
7768 mm0_regnum = ymm0_regnum;
7769 if (tdep->num_ymm_regs)
7770 {
7771 /* Support YMM pseudo-register if it is available. */
7772 tdep->ymm0_regnum = ymm0_regnum;
7773 mm0_regnum += tdep->num_ymm_regs;
7774 }
7775 else
7776 tdep->ymm0_regnum = -1;
7777
7778 if (tdep->num_mmx_regs != 0)
7779 {
7780 /* Support MMX pseudo-register if MMX hasn't been disabled. */
7781 tdep->mm0_regnum = mm0_regnum;
7782 }
7783 else
7784 tdep->mm0_regnum = -1;
7785
7786 /* Hook in the legacy prologue-based unwinders last (fallback). */
7787 frame_unwind_append_unwinder (gdbarch, &i386_stack_tramp_frame_unwind);
7788 frame_unwind_append_unwinder (gdbarch, &i386_sigtramp_frame_unwind);
7789 frame_unwind_append_unwinder (gdbarch, &i386_frame_unwind);
7790
7791 /* If we have a register mapping, enable the generic core file
7792 support, unless it has already been enabled. */
7793 if (tdep->gregset_reg_offset
7794 && !gdbarch_regset_from_core_section_p (gdbarch))
7795 set_gdbarch_regset_from_core_section (gdbarch,
7796 i386_regset_from_core_section);
7797
7798 set_gdbarch_skip_permanent_breakpoint (gdbarch,
7799 i386_skip_permanent_breakpoint);
7800
7801 set_gdbarch_fast_tracepoint_valid_at (gdbarch,
7802 i386_fast_tracepoint_valid_at);
7803
7804 return gdbarch;
7805 }
7806
7807 static enum gdb_osabi
7808 i386_coff_osabi_sniffer (bfd *abfd)
7809 {
7810 if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
7811 || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
7812 return GDB_OSABI_GO32;
7813
7814 return GDB_OSABI_UNKNOWN;
7815 }
7816 \f
7817
7818 /* Provide a prototype to silence -Wmissing-prototypes. */
7819 void _initialize_i386_tdep (void);
7820
7821 void
7822 _initialize_i386_tdep (void)
7823 {
7824 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
7825
7826 /* Add the variable that controls the disassembly flavor. */
7827 add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
7828 &disassembly_flavor, _("\
7829 Set the disassembly flavor."), _("\
7830 Show the disassembly flavor."), _("\
7831 The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
7832 NULL,
7833 NULL, /* FIXME: i18n: */
7834 &setlist, &showlist);
7835
7836 /* Add the variable that controls the convention for returning
7837 structs. */
7838 add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
7839 &struct_convention, _("\
7840 Set the convention for returning small structs."), _("\
7841 Show the convention for returning small structs."), _("\
7842 Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
7843 is \"default\"."),
7844 NULL,
7845 NULL, /* FIXME: i18n: */
7846 &setlist, &showlist);
7847
7848 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
7849 i386_coff_osabi_sniffer);
7850
7851 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
7852 i386_svr4_init_abi);
7853 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_GO32,
7854 i386_go32_init_abi);
7855
7856 /* Initialize the i386-specific register groups. */
7857 i386_init_reggroups ();
7858
7859 /* Initialize the standard target descriptions. */
7860 initialize_tdesc_i386 ();
7861 initialize_tdesc_i386_mmx ();
7862 initialize_tdesc_i386_avx ();
7863
7864 /* Tell remote stub that we support XML target description. */
7865 register_remote_support_xml ("i386");
7866 }
This page took 0.181855 seconds and 5 git commands to generate.