Do not increment of decrement enums
[deliverable/binutils-gdb.git] / gdb / i386-tdep.c
1 /* Intel 386 target-dependent stuff.
2
3 Copyright (C) 1988-2015 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "opcode/i386.h"
22 #include "arch-utils.h"
23 #include "command.h"
24 #include "dummy-frame.h"
25 #include "dwarf2-frame.h"
26 #include "doublest.h"
27 #include "frame.h"
28 #include "frame-base.h"
29 #include "frame-unwind.h"
30 #include "inferior.h"
31 #include "infrun.h"
32 #include "gdbcmd.h"
33 #include "gdbcore.h"
34 #include "gdbtypes.h"
35 #include "objfiles.h"
36 #include "osabi.h"
37 #include "regcache.h"
38 #include "reggroups.h"
39 #include "regset.h"
40 #include "symfile.h"
41 #include "symtab.h"
42 #include "target.h"
43 #include "value.h"
44 #include "dis-asm.h"
45 #include "disasm.h"
46 #include "remote.h"
47 #include "i386-tdep.h"
48 #include "i387-tdep.h"
49 #include "x86-xstate.h"
50
51 #include "record.h"
52 #include "record-full.h"
53 #include <stdint.h>
54
55 #include "features/i386/i386.c"
56 #include "features/i386/i386-avx.c"
57 #include "features/i386/i386-mpx.c"
58 #include "features/i386/i386-avx512.c"
59 #include "features/i386/i386-mmx.c"
60
61 #include "ax.h"
62 #include "ax-gdb.h"
63
64 #include "stap-probe.h"
65 #include "user-regs.h"
66 #include "cli/cli-utils.h"
67 #include "expression.h"
68 #include "parser-defs.h"
69 #include <ctype.h>
70
71 /* Register names. */
72
73 static const char *i386_register_names[] =
74 {
75 "eax", "ecx", "edx", "ebx",
76 "esp", "ebp", "esi", "edi",
77 "eip", "eflags", "cs", "ss",
78 "ds", "es", "fs", "gs",
79 "st0", "st1", "st2", "st3",
80 "st4", "st5", "st6", "st7",
81 "fctrl", "fstat", "ftag", "fiseg",
82 "fioff", "foseg", "fooff", "fop",
83 "xmm0", "xmm1", "xmm2", "xmm3",
84 "xmm4", "xmm5", "xmm6", "xmm7",
85 "mxcsr"
86 };
87
88 static const char *i386_zmm_names[] =
89 {
90 "zmm0", "zmm1", "zmm2", "zmm3",
91 "zmm4", "zmm5", "zmm6", "zmm7"
92 };
93
94 static const char *i386_zmmh_names[] =
95 {
96 "zmm0h", "zmm1h", "zmm2h", "zmm3h",
97 "zmm4h", "zmm5h", "zmm6h", "zmm7h"
98 };
99
100 static const char *i386_k_names[] =
101 {
102 "k0", "k1", "k2", "k3",
103 "k4", "k5", "k6", "k7"
104 };
105
106 static const char *i386_ymm_names[] =
107 {
108 "ymm0", "ymm1", "ymm2", "ymm3",
109 "ymm4", "ymm5", "ymm6", "ymm7",
110 };
111
112 static const char *i386_ymmh_names[] =
113 {
114 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
115 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
116 };
117
118 static const char *i386_mpx_names[] =
119 {
120 "bnd0raw", "bnd1raw", "bnd2raw", "bnd3raw", "bndcfgu", "bndstatus"
121 };
122
123 /* Register names for MPX pseudo-registers. */
124
125 static const char *i386_bnd_names[] =
126 {
127 "bnd0", "bnd1", "bnd2", "bnd3"
128 };
129
130 /* Register names for MMX pseudo-registers. */
131
132 static const char *i386_mmx_names[] =
133 {
134 "mm0", "mm1", "mm2", "mm3",
135 "mm4", "mm5", "mm6", "mm7"
136 };
137
138 /* Register names for byte pseudo-registers. */
139
140 static const char *i386_byte_names[] =
141 {
142 "al", "cl", "dl", "bl",
143 "ah", "ch", "dh", "bh"
144 };
145
146 /* Register names for word pseudo-registers. */
147
148 static const char *i386_word_names[] =
149 {
150 "ax", "cx", "dx", "bx",
151 "", "bp", "si", "di"
152 };
153
154 /* Constant used for reading/writing pseudo registers. In 64-bit mode, we have
155 16 lower ZMM regs that extend corresponding xmm/ymm registers. In addition,
156 we have 16 upper ZMM regs that have to be handled differently. */
157
158 const int num_lower_zmm_regs = 16;
159
160 /* MMX register? */
161
162 static int
163 i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
164 {
165 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
166 int mm0_regnum = tdep->mm0_regnum;
167
168 if (mm0_regnum < 0)
169 return 0;
170
171 regnum -= mm0_regnum;
172 return regnum >= 0 && regnum < tdep->num_mmx_regs;
173 }
174
175 /* Byte register? */
176
177 int
178 i386_byte_regnum_p (struct gdbarch *gdbarch, int regnum)
179 {
180 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
181
182 regnum -= tdep->al_regnum;
183 return regnum >= 0 && regnum < tdep->num_byte_regs;
184 }
185
186 /* Word register? */
187
188 int
189 i386_word_regnum_p (struct gdbarch *gdbarch, int regnum)
190 {
191 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
192
193 regnum -= tdep->ax_regnum;
194 return regnum >= 0 && regnum < tdep->num_word_regs;
195 }
196
197 /* Dword register? */
198
199 int
200 i386_dword_regnum_p (struct gdbarch *gdbarch, int regnum)
201 {
202 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
203 int eax_regnum = tdep->eax_regnum;
204
205 if (eax_regnum < 0)
206 return 0;
207
208 regnum -= eax_regnum;
209 return regnum >= 0 && regnum < tdep->num_dword_regs;
210 }
211
212 /* AVX512 register? */
213
214 int
215 i386_zmmh_regnum_p (struct gdbarch *gdbarch, int regnum)
216 {
217 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
218 int zmm0h_regnum = tdep->zmm0h_regnum;
219
220 if (zmm0h_regnum < 0)
221 return 0;
222
223 regnum -= zmm0h_regnum;
224 return regnum >= 0 && regnum < tdep->num_zmm_regs;
225 }
226
227 int
228 i386_zmm_regnum_p (struct gdbarch *gdbarch, int regnum)
229 {
230 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
231 int zmm0_regnum = tdep->zmm0_regnum;
232
233 if (zmm0_regnum < 0)
234 return 0;
235
236 regnum -= zmm0_regnum;
237 return regnum >= 0 && regnum < tdep->num_zmm_regs;
238 }
239
240 int
241 i386_k_regnum_p (struct gdbarch *gdbarch, int regnum)
242 {
243 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
244 int k0_regnum = tdep->k0_regnum;
245
246 if (k0_regnum < 0)
247 return 0;
248
249 regnum -= k0_regnum;
250 return regnum >= 0 && regnum < I387_NUM_K_REGS;
251 }
252
253 static int
254 i386_ymmh_regnum_p (struct gdbarch *gdbarch, int regnum)
255 {
256 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
257 int ymm0h_regnum = tdep->ymm0h_regnum;
258
259 if (ymm0h_regnum < 0)
260 return 0;
261
262 regnum -= ymm0h_regnum;
263 return regnum >= 0 && regnum < tdep->num_ymm_regs;
264 }
265
266 /* AVX register? */
267
268 int
269 i386_ymm_regnum_p (struct gdbarch *gdbarch, int regnum)
270 {
271 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
272 int ymm0_regnum = tdep->ymm0_regnum;
273
274 if (ymm0_regnum < 0)
275 return 0;
276
277 regnum -= ymm0_regnum;
278 return regnum >= 0 && regnum < tdep->num_ymm_regs;
279 }
280
281 static int
282 i386_ymmh_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
283 {
284 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
285 int ymm16h_regnum = tdep->ymm16h_regnum;
286
287 if (ymm16h_regnum < 0)
288 return 0;
289
290 regnum -= ymm16h_regnum;
291 return regnum >= 0 && regnum < tdep->num_ymm_avx512_regs;
292 }
293
294 int
295 i386_ymm_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
296 {
297 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
298 int ymm16_regnum = tdep->ymm16_regnum;
299
300 if (ymm16_regnum < 0)
301 return 0;
302
303 regnum -= ymm16_regnum;
304 return regnum >= 0 && regnum < tdep->num_ymm_avx512_regs;
305 }
306
307 /* BND register? */
308
309 int
310 i386_bnd_regnum_p (struct gdbarch *gdbarch, int regnum)
311 {
312 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
313 int bnd0_regnum = tdep->bnd0_regnum;
314
315 if (bnd0_regnum < 0)
316 return 0;
317
318 regnum -= bnd0_regnum;
319 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
320 }
321
322 /* SSE register? */
323
324 int
325 i386_xmm_regnum_p (struct gdbarch *gdbarch, int regnum)
326 {
327 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
328 int num_xmm_regs = I387_NUM_XMM_REGS (tdep);
329
330 if (num_xmm_regs == 0)
331 return 0;
332
333 regnum -= I387_XMM0_REGNUM (tdep);
334 return regnum >= 0 && regnum < num_xmm_regs;
335 }
336
337 /* XMM_512 register? */
338
339 int
340 i386_xmm_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
341 {
342 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
343 int num_xmm_avx512_regs = I387_NUM_XMM_AVX512_REGS (tdep);
344
345 if (num_xmm_avx512_regs == 0)
346 return 0;
347
348 regnum -= I387_XMM16_REGNUM (tdep);
349 return regnum >= 0 && regnum < num_xmm_avx512_regs;
350 }
351
352 static int
353 i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
354 {
355 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
356
357 if (I387_NUM_XMM_REGS (tdep) == 0)
358 return 0;
359
360 return (regnum == I387_MXCSR_REGNUM (tdep));
361 }
362
363 /* FP register? */
364
365 int
366 i386_fp_regnum_p (struct gdbarch *gdbarch, int regnum)
367 {
368 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
369
370 if (I387_ST0_REGNUM (tdep) < 0)
371 return 0;
372
373 return (I387_ST0_REGNUM (tdep) <= regnum
374 && regnum < I387_FCTRL_REGNUM (tdep));
375 }
376
377 int
378 i386_fpc_regnum_p (struct gdbarch *gdbarch, int regnum)
379 {
380 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
381
382 if (I387_ST0_REGNUM (tdep) < 0)
383 return 0;
384
385 return (I387_FCTRL_REGNUM (tdep) <= regnum
386 && regnum < I387_XMM0_REGNUM (tdep));
387 }
388
389 /* BNDr (raw) register? */
390
391 static int
392 i386_bndr_regnum_p (struct gdbarch *gdbarch, int regnum)
393 {
394 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
395
396 if (I387_BND0R_REGNUM (tdep) < 0)
397 return 0;
398
399 regnum -= tdep->bnd0r_regnum;
400 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
401 }
402
403 /* BND control register? */
404
405 static int
406 i386_mpx_ctrl_regnum_p (struct gdbarch *gdbarch, int regnum)
407 {
408 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
409
410 if (I387_BNDCFGU_REGNUM (tdep) < 0)
411 return 0;
412
413 regnum -= I387_BNDCFGU_REGNUM (tdep);
414 return regnum >= 0 && regnum < I387_NUM_MPX_CTRL_REGS;
415 }
416
417 /* Return the name of register REGNUM, or the empty string if it is
418 an anonymous register. */
419
420 static const char *
421 i386_register_name (struct gdbarch *gdbarch, int regnum)
422 {
423 /* Hide the upper YMM registers. */
424 if (i386_ymmh_regnum_p (gdbarch, regnum))
425 return "";
426
427 /* Hide the upper YMM16-31 registers. */
428 if (i386_ymmh_avx512_regnum_p (gdbarch, regnum))
429 return "";
430
431 /* Hide the upper ZMM registers. */
432 if (i386_zmmh_regnum_p (gdbarch, regnum))
433 return "";
434
435 return tdesc_register_name (gdbarch, regnum);
436 }
437
438 /* Return the name of register REGNUM. */
439
440 const char *
441 i386_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
442 {
443 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
444 if (i386_bnd_regnum_p (gdbarch, regnum))
445 return i386_bnd_names[regnum - tdep->bnd0_regnum];
446 if (i386_mmx_regnum_p (gdbarch, regnum))
447 return i386_mmx_names[regnum - I387_MM0_REGNUM (tdep)];
448 else if (i386_ymm_regnum_p (gdbarch, regnum))
449 return i386_ymm_names[regnum - tdep->ymm0_regnum];
450 else if (i386_zmm_regnum_p (gdbarch, regnum))
451 return i386_zmm_names[regnum - tdep->zmm0_regnum];
452 else if (i386_byte_regnum_p (gdbarch, regnum))
453 return i386_byte_names[regnum - tdep->al_regnum];
454 else if (i386_word_regnum_p (gdbarch, regnum))
455 return i386_word_names[regnum - tdep->ax_regnum];
456
457 internal_error (__FILE__, __LINE__, _("invalid regnum"));
458 }
459
460 /* Convert a dbx register number REG to the appropriate register
461 number used by GDB. */
462
463 static int
464 i386_dbx_reg_to_regnum (struct gdbarch *gdbarch, int reg)
465 {
466 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
467
468 /* This implements what GCC calls the "default" register map
469 (dbx_register_map[]). */
470
471 if (reg >= 0 && reg <= 7)
472 {
473 /* General-purpose registers. The debug info calls %ebp
474 register 4, and %esp register 5. */
475 if (reg == 4)
476 return 5;
477 else if (reg == 5)
478 return 4;
479 else return reg;
480 }
481 else if (reg >= 12 && reg <= 19)
482 {
483 /* Floating-point registers. */
484 return reg - 12 + I387_ST0_REGNUM (tdep);
485 }
486 else if (reg >= 21 && reg <= 28)
487 {
488 /* SSE registers. */
489 int ymm0_regnum = tdep->ymm0_regnum;
490
491 if (ymm0_regnum >= 0
492 && i386_xmm_regnum_p (gdbarch, reg))
493 return reg - 21 + ymm0_regnum;
494 else
495 return reg - 21 + I387_XMM0_REGNUM (tdep);
496 }
497 else if (reg >= 29 && reg <= 36)
498 {
499 /* MMX registers. */
500 return reg - 29 + I387_MM0_REGNUM (tdep);
501 }
502
503 /* This will hopefully provoke a warning. */
504 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
505 }
506
507 /* Convert SVR4 register number REG to the appropriate register number
508 used by GDB. */
509
510 static int
511 i386_svr4_reg_to_regnum (struct gdbarch *gdbarch, int reg)
512 {
513 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
514
515 /* This implements the GCC register map that tries to be compatible
516 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
517
518 /* The SVR4 register numbering includes %eip and %eflags, and
519 numbers the floating point registers differently. */
520 if (reg >= 0 && reg <= 9)
521 {
522 /* General-purpose registers. */
523 return reg;
524 }
525 else if (reg >= 11 && reg <= 18)
526 {
527 /* Floating-point registers. */
528 return reg - 11 + I387_ST0_REGNUM (tdep);
529 }
530 else if (reg >= 21 && reg <= 36)
531 {
532 /* The SSE and MMX registers have the same numbers as with dbx. */
533 return i386_dbx_reg_to_regnum (gdbarch, reg);
534 }
535
536 switch (reg)
537 {
538 case 37: return I387_FCTRL_REGNUM (tdep);
539 case 38: return I387_FSTAT_REGNUM (tdep);
540 case 39: return I387_MXCSR_REGNUM (tdep);
541 case 40: return I386_ES_REGNUM;
542 case 41: return I386_CS_REGNUM;
543 case 42: return I386_SS_REGNUM;
544 case 43: return I386_DS_REGNUM;
545 case 44: return I386_FS_REGNUM;
546 case 45: return I386_GS_REGNUM;
547 }
548
549 /* This will hopefully provoke a warning. */
550 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
551 }
552
553 \f
554
555 /* This is the variable that is set with "set disassembly-flavor", and
556 its legitimate values. */
557 static const char att_flavor[] = "att";
558 static const char intel_flavor[] = "intel";
559 static const char *const valid_flavors[] =
560 {
561 att_flavor,
562 intel_flavor,
563 NULL
564 };
565 static const char *disassembly_flavor = att_flavor;
566 \f
567
568 /* Use the program counter to determine the contents and size of a
569 breakpoint instruction. Return a pointer to a string of bytes that
570 encode a breakpoint instruction, store the length of the string in
571 *LEN and optionally adjust *PC to point to the correct memory
572 location for inserting the breakpoint.
573
574 On the i386 we have a single breakpoint that fits in a single byte
575 and can be inserted anywhere.
576
577 This function is 64-bit safe. */
578
579 static const gdb_byte *
580 i386_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
581 {
582 static gdb_byte break_insn[] = { 0xcc }; /* int 3 */
583
584 *len = sizeof (break_insn);
585 return break_insn;
586 }
587 \f
588 /* Displaced instruction handling. */
589
590 /* Skip the legacy instruction prefixes in INSN.
591 Not all prefixes are valid for any particular insn
592 but we needn't care, the insn will fault if it's invalid.
593 The result is a pointer to the first opcode byte,
594 or NULL if we run off the end of the buffer. */
595
596 static gdb_byte *
597 i386_skip_prefixes (gdb_byte *insn, size_t max_len)
598 {
599 gdb_byte *end = insn + max_len;
600
601 while (insn < end)
602 {
603 switch (*insn)
604 {
605 case DATA_PREFIX_OPCODE:
606 case ADDR_PREFIX_OPCODE:
607 case CS_PREFIX_OPCODE:
608 case DS_PREFIX_OPCODE:
609 case ES_PREFIX_OPCODE:
610 case FS_PREFIX_OPCODE:
611 case GS_PREFIX_OPCODE:
612 case SS_PREFIX_OPCODE:
613 case LOCK_PREFIX_OPCODE:
614 case REPE_PREFIX_OPCODE:
615 case REPNE_PREFIX_OPCODE:
616 ++insn;
617 continue;
618 default:
619 return insn;
620 }
621 }
622
623 return NULL;
624 }
625
626 static int
627 i386_absolute_jmp_p (const gdb_byte *insn)
628 {
629 /* jmp far (absolute address in operand). */
630 if (insn[0] == 0xea)
631 return 1;
632
633 if (insn[0] == 0xff)
634 {
635 /* jump near, absolute indirect (/4). */
636 if ((insn[1] & 0x38) == 0x20)
637 return 1;
638
639 /* jump far, absolute indirect (/5). */
640 if ((insn[1] & 0x38) == 0x28)
641 return 1;
642 }
643
644 return 0;
645 }
646
647 /* Return non-zero if INSN is a jump, zero otherwise. */
648
649 static int
650 i386_jmp_p (const gdb_byte *insn)
651 {
652 /* jump short, relative. */
653 if (insn[0] == 0xeb)
654 return 1;
655
656 /* jump near, relative. */
657 if (insn[0] == 0xe9)
658 return 1;
659
660 return i386_absolute_jmp_p (insn);
661 }
662
663 static int
664 i386_absolute_call_p (const gdb_byte *insn)
665 {
666 /* call far, absolute. */
667 if (insn[0] == 0x9a)
668 return 1;
669
670 if (insn[0] == 0xff)
671 {
672 /* Call near, absolute indirect (/2). */
673 if ((insn[1] & 0x38) == 0x10)
674 return 1;
675
676 /* Call far, absolute indirect (/3). */
677 if ((insn[1] & 0x38) == 0x18)
678 return 1;
679 }
680
681 return 0;
682 }
683
684 static int
685 i386_ret_p (const gdb_byte *insn)
686 {
687 switch (insn[0])
688 {
689 case 0xc2: /* ret near, pop N bytes. */
690 case 0xc3: /* ret near */
691 case 0xca: /* ret far, pop N bytes. */
692 case 0xcb: /* ret far */
693 case 0xcf: /* iret */
694 return 1;
695
696 default:
697 return 0;
698 }
699 }
700
701 static int
702 i386_call_p (const gdb_byte *insn)
703 {
704 if (i386_absolute_call_p (insn))
705 return 1;
706
707 /* call near, relative. */
708 if (insn[0] == 0xe8)
709 return 1;
710
711 return 0;
712 }
713
714 /* Return non-zero if INSN is a system call, and set *LENGTHP to its
715 length in bytes. Otherwise, return zero. */
716
717 static int
718 i386_syscall_p (const gdb_byte *insn, int *lengthp)
719 {
720 /* Is it 'int $0x80'? */
721 if ((insn[0] == 0xcd && insn[1] == 0x80)
722 /* Or is it 'sysenter'? */
723 || (insn[0] == 0x0f && insn[1] == 0x34)
724 /* Or is it 'syscall'? */
725 || (insn[0] == 0x0f && insn[1] == 0x05))
726 {
727 *lengthp = 2;
728 return 1;
729 }
730
731 return 0;
732 }
733
734 /* The gdbarch insn_is_call method. */
735
736 static int
737 i386_insn_is_call (struct gdbarch *gdbarch, CORE_ADDR addr)
738 {
739 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
740
741 read_code (addr, buf, I386_MAX_INSN_LEN);
742 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
743
744 return i386_call_p (insn);
745 }
746
747 /* The gdbarch insn_is_ret method. */
748
749 static int
750 i386_insn_is_ret (struct gdbarch *gdbarch, CORE_ADDR addr)
751 {
752 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
753
754 read_code (addr, buf, I386_MAX_INSN_LEN);
755 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
756
757 return i386_ret_p (insn);
758 }
759
760 /* The gdbarch insn_is_jump method. */
761
762 static int
763 i386_insn_is_jump (struct gdbarch *gdbarch, CORE_ADDR addr)
764 {
765 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
766
767 read_code (addr, buf, I386_MAX_INSN_LEN);
768 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
769
770 return i386_jmp_p (insn);
771 }
772
773 /* Some kernels may run one past a syscall insn, so we have to cope.
774 Otherwise this is just simple_displaced_step_copy_insn. */
775
776 struct displaced_step_closure *
777 i386_displaced_step_copy_insn (struct gdbarch *gdbarch,
778 CORE_ADDR from, CORE_ADDR to,
779 struct regcache *regs)
780 {
781 size_t len = gdbarch_max_insn_length (gdbarch);
782 gdb_byte *buf = xmalloc (len);
783
784 read_memory (from, buf, len);
785
786 /* GDB may get control back after the insn after the syscall.
787 Presumably this is a kernel bug.
788 If this is a syscall, make sure there's a nop afterwards. */
789 {
790 int syscall_length;
791 gdb_byte *insn;
792
793 insn = i386_skip_prefixes (buf, len);
794 if (insn != NULL && i386_syscall_p (insn, &syscall_length))
795 insn[syscall_length] = NOP_OPCODE;
796 }
797
798 write_memory (to, buf, len);
799
800 if (debug_displaced)
801 {
802 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
803 paddress (gdbarch, from), paddress (gdbarch, to));
804 displaced_step_dump_bytes (gdb_stdlog, buf, len);
805 }
806
807 return (struct displaced_step_closure *) buf;
808 }
809
810 /* Fix up the state of registers and memory after having single-stepped
811 a displaced instruction. */
812
813 void
814 i386_displaced_step_fixup (struct gdbarch *gdbarch,
815 struct displaced_step_closure *closure,
816 CORE_ADDR from, CORE_ADDR to,
817 struct regcache *regs)
818 {
819 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
820
821 /* The offset we applied to the instruction's address.
822 This could well be negative (when viewed as a signed 32-bit
823 value), but ULONGEST won't reflect that, so take care when
824 applying it. */
825 ULONGEST insn_offset = to - from;
826
827 /* Since we use simple_displaced_step_copy_insn, our closure is a
828 copy of the instruction. */
829 gdb_byte *insn = (gdb_byte *) closure;
830 /* The start of the insn, needed in case we see some prefixes. */
831 gdb_byte *insn_start = insn;
832
833 if (debug_displaced)
834 fprintf_unfiltered (gdb_stdlog,
835 "displaced: fixup (%s, %s), "
836 "insn = 0x%02x 0x%02x ...\n",
837 paddress (gdbarch, from), paddress (gdbarch, to),
838 insn[0], insn[1]);
839
840 /* The list of issues to contend with here is taken from
841 resume_execution in arch/i386/kernel/kprobes.c, Linux 2.6.20.
842 Yay for Free Software! */
843
844 /* Relocate the %eip, if necessary. */
845
846 /* The instruction recognizers we use assume any leading prefixes
847 have been skipped. */
848 {
849 /* This is the size of the buffer in closure. */
850 size_t max_insn_len = gdbarch_max_insn_length (gdbarch);
851 gdb_byte *opcode = i386_skip_prefixes (insn, max_insn_len);
852 /* If there are too many prefixes, just ignore the insn.
853 It will fault when run. */
854 if (opcode != NULL)
855 insn = opcode;
856 }
857
858 /* Except in the case of absolute or indirect jump or call
859 instructions, or a return instruction, the new eip is relative to
860 the displaced instruction; make it relative. Well, signal
861 handler returns don't need relocation either, but we use the
862 value of %eip to recognize those; see below. */
863 if (! i386_absolute_jmp_p (insn)
864 && ! i386_absolute_call_p (insn)
865 && ! i386_ret_p (insn))
866 {
867 ULONGEST orig_eip;
868 int insn_len;
869
870 regcache_cooked_read_unsigned (regs, I386_EIP_REGNUM, &orig_eip);
871
872 /* A signal trampoline system call changes the %eip, resuming
873 execution of the main program after the signal handler has
874 returned. That makes them like 'return' instructions; we
875 shouldn't relocate %eip.
876
877 But most system calls don't, and we do need to relocate %eip.
878
879 Our heuristic for distinguishing these cases: if stepping
880 over the system call instruction left control directly after
881 the instruction, the we relocate --- control almost certainly
882 doesn't belong in the displaced copy. Otherwise, we assume
883 the instruction has put control where it belongs, and leave
884 it unrelocated. Goodness help us if there are PC-relative
885 system calls. */
886 if (i386_syscall_p (insn, &insn_len)
887 && orig_eip != to + (insn - insn_start) + insn_len
888 /* GDB can get control back after the insn after the syscall.
889 Presumably this is a kernel bug.
890 i386_displaced_step_copy_insn ensures its a nop,
891 we add one to the length for it. */
892 && orig_eip != to + (insn - insn_start) + insn_len + 1)
893 {
894 if (debug_displaced)
895 fprintf_unfiltered (gdb_stdlog,
896 "displaced: syscall changed %%eip; "
897 "not relocating\n");
898 }
899 else
900 {
901 ULONGEST eip = (orig_eip - insn_offset) & 0xffffffffUL;
902
903 /* If we just stepped over a breakpoint insn, we don't backup
904 the pc on purpose; this is to match behaviour without
905 stepping. */
906
907 regcache_cooked_write_unsigned (regs, I386_EIP_REGNUM, eip);
908
909 if (debug_displaced)
910 fprintf_unfiltered (gdb_stdlog,
911 "displaced: "
912 "relocated %%eip from %s to %s\n",
913 paddress (gdbarch, orig_eip),
914 paddress (gdbarch, eip));
915 }
916 }
917
918 /* If the instruction was PUSHFL, then the TF bit will be set in the
919 pushed value, and should be cleared. We'll leave this for later,
920 since GDB already messes up the TF flag when stepping over a
921 pushfl. */
922
923 /* If the instruction was a call, the return address now atop the
924 stack is the address following the copied instruction. We need
925 to make it the address following the original instruction. */
926 if (i386_call_p (insn))
927 {
928 ULONGEST esp;
929 ULONGEST retaddr;
930 const ULONGEST retaddr_len = 4;
931
932 regcache_cooked_read_unsigned (regs, I386_ESP_REGNUM, &esp);
933 retaddr = read_memory_unsigned_integer (esp, retaddr_len, byte_order);
934 retaddr = (retaddr - insn_offset) & 0xffffffffUL;
935 write_memory_unsigned_integer (esp, retaddr_len, byte_order, retaddr);
936
937 if (debug_displaced)
938 fprintf_unfiltered (gdb_stdlog,
939 "displaced: relocated return addr at %s to %s\n",
940 paddress (gdbarch, esp),
941 paddress (gdbarch, retaddr));
942 }
943 }
944
945 static void
946 append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
947 {
948 target_write_memory (*to, buf, len);
949 *to += len;
950 }
951
952 static void
953 i386_relocate_instruction (struct gdbarch *gdbarch,
954 CORE_ADDR *to, CORE_ADDR oldloc)
955 {
956 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
957 gdb_byte buf[I386_MAX_INSN_LEN];
958 int offset = 0, rel32, newrel;
959 int insn_length;
960 gdb_byte *insn = buf;
961
962 read_memory (oldloc, buf, I386_MAX_INSN_LEN);
963
964 insn_length = gdb_buffered_insn_length (gdbarch, insn,
965 I386_MAX_INSN_LEN, oldloc);
966
967 /* Get past the prefixes. */
968 insn = i386_skip_prefixes (insn, I386_MAX_INSN_LEN);
969
970 /* Adjust calls with 32-bit relative addresses as push/jump, with
971 the address pushed being the location where the original call in
972 the user program would return to. */
973 if (insn[0] == 0xe8)
974 {
975 gdb_byte push_buf[16];
976 unsigned int ret_addr;
977
978 /* Where "ret" in the original code will return to. */
979 ret_addr = oldloc + insn_length;
980 push_buf[0] = 0x68; /* pushq $... */
981 store_unsigned_integer (&push_buf[1], 4, byte_order, ret_addr);
982 /* Push the push. */
983 append_insns (to, 5, push_buf);
984
985 /* Convert the relative call to a relative jump. */
986 insn[0] = 0xe9;
987
988 /* Adjust the destination offset. */
989 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
990 newrel = (oldloc - *to) + rel32;
991 store_signed_integer (insn + 1, 4, byte_order, newrel);
992
993 if (debug_displaced)
994 fprintf_unfiltered (gdb_stdlog,
995 "Adjusted insn rel32=%s at %s to"
996 " rel32=%s at %s\n",
997 hex_string (rel32), paddress (gdbarch, oldloc),
998 hex_string (newrel), paddress (gdbarch, *to));
999
1000 /* Write the adjusted jump into its displaced location. */
1001 append_insns (to, 5, insn);
1002 return;
1003 }
1004
1005 /* Adjust jumps with 32-bit relative addresses. Calls are already
1006 handled above. */
1007 if (insn[0] == 0xe9)
1008 offset = 1;
1009 /* Adjust conditional jumps. */
1010 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
1011 offset = 2;
1012
1013 if (offset)
1014 {
1015 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
1016 newrel = (oldloc - *to) + rel32;
1017 store_signed_integer (insn + offset, 4, byte_order, newrel);
1018 if (debug_displaced)
1019 fprintf_unfiltered (gdb_stdlog,
1020 "Adjusted insn rel32=%s at %s to"
1021 " rel32=%s at %s\n",
1022 hex_string (rel32), paddress (gdbarch, oldloc),
1023 hex_string (newrel), paddress (gdbarch, *to));
1024 }
1025
1026 /* Write the adjusted instructions into their displaced
1027 location. */
1028 append_insns (to, insn_length, buf);
1029 }
1030
1031 \f
1032 #ifdef I386_REGNO_TO_SYMMETRY
1033 #error "The Sequent Symmetry is no longer supported."
1034 #endif
1035
1036 /* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
1037 and %esp "belong" to the calling function. Therefore these
1038 registers should be saved if they're going to be modified. */
1039
1040 /* The maximum number of saved registers. This should include all
1041 registers mentioned above, and %eip. */
1042 #define I386_NUM_SAVED_REGS I386_NUM_GREGS
1043
1044 struct i386_frame_cache
1045 {
1046 /* Base address. */
1047 CORE_ADDR base;
1048 int base_p;
1049 LONGEST sp_offset;
1050 CORE_ADDR pc;
1051
1052 /* Saved registers. */
1053 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
1054 CORE_ADDR saved_sp;
1055 int saved_sp_reg;
1056 int pc_in_eax;
1057
1058 /* Stack space reserved for local variables. */
1059 long locals;
1060 };
1061
1062 /* Allocate and initialize a frame cache. */
1063
1064 static struct i386_frame_cache *
1065 i386_alloc_frame_cache (void)
1066 {
1067 struct i386_frame_cache *cache;
1068 int i;
1069
1070 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
1071
1072 /* Base address. */
1073 cache->base_p = 0;
1074 cache->base = 0;
1075 cache->sp_offset = -4;
1076 cache->pc = 0;
1077
1078 /* Saved registers. We initialize these to -1 since zero is a valid
1079 offset (that's where %ebp is supposed to be stored). */
1080 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
1081 cache->saved_regs[i] = -1;
1082 cache->saved_sp = 0;
1083 cache->saved_sp_reg = -1;
1084 cache->pc_in_eax = 0;
1085
1086 /* Frameless until proven otherwise. */
1087 cache->locals = -1;
1088
1089 return cache;
1090 }
1091
1092 /* If the instruction at PC is a jump, return the address of its
1093 target. Otherwise, return PC. */
1094
1095 static CORE_ADDR
1096 i386_follow_jump (struct gdbarch *gdbarch, CORE_ADDR pc)
1097 {
1098 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1099 gdb_byte op;
1100 long delta = 0;
1101 int data16 = 0;
1102
1103 if (target_read_code (pc, &op, 1))
1104 return pc;
1105
1106 if (op == 0x66)
1107 {
1108 data16 = 1;
1109
1110 op = read_code_unsigned_integer (pc + 1, 1, byte_order);
1111 }
1112
1113 switch (op)
1114 {
1115 case 0xe9:
1116 /* Relative jump: if data16 == 0, disp32, else disp16. */
1117 if (data16)
1118 {
1119 delta = read_memory_integer (pc + 2, 2, byte_order);
1120
1121 /* Include the size of the jmp instruction (including the
1122 0x66 prefix). */
1123 delta += 4;
1124 }
1125 else
1126 {
1127 delta = read_memory_integer (pc + 1, 4, byte_order);
1128
1129 /* Include the size of the jmp instruction. */
1130 delta += 5;
1131 }
1132 break;
1133 case 0xeb:
1134 /* Relative jump, disp8 (ignore data16). */
1135 delta = read_memory_integer (pc + data16 + 1, 1, byte_order);
1136
1137 delta += data16 + 2;
1138 break;
1139 }
1140
1141 return pc + delta;
1142 }
1143
1144 /* Check whether PC points at a prologue for a function returning a
1145 structure or union. If so, it updates CACHE and returns the
1146 address of the first instruction after the code sequence that
1147 removes the "hidden" argument from the stack or CURRENT_PC,
1148 whichever is smaller. Otherwise, return PC. */
1149
1150 static CORE_ADDR
1151 i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
1152 struct i386_frame_cache *cache)
1153 {
1154 /* Functions that return a structure or union start with:
1155
1156 popl %eax 0x58
1157 xchgl %eax, (%esp) 0x87 0x04 0x24
1158 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
1159
1160 (the System V compiler puts out the second `xchg' instruction,
1161 and the assembler doesn't try to optimize it, so the 'sib' form
1162 gets generated). This sequence is used to get the address of the
1163 return buffer for a function that returns a structure. */
1164 static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
1165 static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
1166 gdb_byte buf[4];
1167 gdb_byte op;
1168
1169 if (current_pc <= pc)
1170 return pc;
1171
1172 if (target_read_code (pc, &op, 1))
1173 return pc;
1174
1175 if (op != 0x58) /* popl %eax */
1176 return pc;
1177
1178 if (target_read_code (pc + 1, buf, 4))
1179 return pc;
1180
1181 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
1182 return pc;
1183
1184 if (current_pc == pc)
1185 {
1186 cache->sp_offset += 4;
1187 return current_pc;
1188 }
1189
1190 if (current_pc == pc + 1)
1191 {
1192 cache->pc_in_eax = 1;
1193 return current_pc;
1194 }
1195
1196 if (buf[1] == proto1[1])
1197 return pc + 4;
1198 else
1199 return pc + 5;
1200 }
1201
1202 static CORE_ADDR
1203 i386_skip_probe (CORE_ADDR pc)
1204 {
1205 /* A function may start with
1206
1207 pushl constant
1208 call _probe
1209 addl $4, %esp
1210
1211 followed by
1212
1213 pushl %ebp
1214
1215 etc. */
1216 gdb_byte buf[8];
1217 gdb_byte op;
1218
1219 if (target_read_code (pc, &op, 1))
1220 return pc;
1221
1222 if (op == 0x68 || op == 0x6a)
1223 {
1224 int delta;
1225
1226 /* Skip past the `pushl' instruction; it has either a one-byte or a
1227 four-byte operand, depending on the opcode. */
1228 if (op == 0x68)
1229 delta = 5;
1230 else
1231 delta = 2;
1232
1233 /* Read the following 8 bytes, which should be `call _probe' (6
1234 bytes) followed by `addl $4,%esp' (2 bytes). */
1235 read_memory (pc + delta, buf, sizeof (buf));
1236 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
1237 pc += delta + sizeof (buf);
1238 }
1239
1240 return pc;
1241 }
1242
1243 /* GCC 4.1 and later, can put code in the prologue to realign the
1244 stack pointer. Check whether PC points to such code, and update
1245 CACHE accordingly. Return the first instruction after the code
1246 sequence or CURRENT_PC, whichever is smaller. If we don't
1247 recognize the code, return PC. */
1248
1249 static CORE_ADDR
1250 i386_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1251 struct i386_frame_cache *cache)
1252 {
1253 /* There are 2 code sequences to re-align stack before the frame
1254 gets set up:
1255
1256 1. Use a caller-saved saved register:
1257
1258 leal 4(%esp), %reg
1259 andl $-XXX, %esp
1260 pushl -4(%reg)
1261
1262 2. Use a callee-saved saved register:
1263
1264 pushl %reg
1265 leal 8(%esp), %reg
1266 andl $-XXX, %esp
1267 pushl -4(%reg)
1268
1269 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
1270
1271 0x83 0xe4 0xf0 andl $-16, %esp
1272 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
1273 */
1274
1275 gdb_byte buf[14];
1276 int reg;
1277 int offset, offset_and;
1278 static int regnums[8] = {
1279 I386_EAX_REGNUM, /* %eax */
1280 I386_ECX_REGNUM, /* %ecx */
1281 I386_EDX_REGNUM, /* %edx */
1282 I386_EBX_REGNUM, /* %ebx */
1283 I386_ESP_REGNUM, /* %esp */
1284 I386_EBP_REGNUM, /* %ebp */
1285 I386_ESI_REGNUM, /* %esi */
1286 I386_EDI_REGNUM /* %edi */
1287 };
1288
1289 if (target_read_code (pc, buf, sizeof buf))
1290 return pc;
1291
1292 /* Check caller-saved saved register. The first instruction has
1293 to be "leal 4(%esp), %reg". */
1294 if (buf[0] == 0x8d && buf[2] == 0x24 && buf[3] == 0x4)
1295 {
1296 /* MOD must be binary 10 and R/M must be binary 100. */
1297 if ((buf[1] & 0xc7) != 0x44)
1298 return pc;
1299
1300 /* REG has register number. */
1301 reg = (buf[1] >> 3) & 7;
1302 offset = 4;
1303 }
1304 else
1305 {
1306 /* Check callee-saved saved register. The first instruction
1307 has to be "pushl %reg". */
1308 if ((buf[0] & 0xf8) != 0x50)
1309 return pc;
1310
1311 /* Get register. */
1312 reg = buf[0] & 0x7;
1313
1314 /* The next instruction has to be "leal 8(%esp), %reg". */
1315 if (buf[1] != 0x8d || buf[3] != 0x24 || buf[4] != 0x8)
1316 return pc;
1317
1318 /* MOD must be binary 10 and R/M must be binary 100. */
1319 if ((buf[2] & 0xc7) != 0x44)
1320 return pc;
1321
1322 /* REG has register number. Registers in pushl and leal have to
1323 be the same. */
1324 if (reg != ((buf[2] >> 3) & 7))
1325 return pc;
1326
1327 offset = 5;
1328 }
1329
1330 /* Rigister can't be %esp nor %ebp. */
1331 if (reg == 4 || reg == 5)
1332 return pc;
1333
1334 /* The next instruction has to be "andl $-XXX, %esp". */
1335 if (buf[offset + 1] != 0xe4
1336 || (buf[offset] != 0x81 && buf[offset] != 0x83))
1337 return pc;
1338
1339 offset_and = offset;
1340 offset += buf[offset] == 0x81 ? 6 : 3;
1341
1342 /* The next instruction has to be "pushl -4(%reg)". 8bit -4 is
1343 0xfc. REG must be binary 110 and MOD must be binary 01. */
1344 if (buf[offset] != 0xff
1345 || buf[offset + 2] != 0xfc
1346 || (buf[offset + 1] & 0xf8) != 0x70)
1347 return pc;
1348
1349 /* R/M has register. Registers in leal and pushl have to be the
1350 same. */
1351 if (reg != (buf[offset + 1] & 7))
1352 return pc;
1353
1354 if (current_pc > pc + offset_and)
1355 cache->saved_sp_reg = regnums[reg];
1356
1357 return min (pc + offset + 3, current_pc);
1358 }
1359
1360 /* Maximum instruction length we need to handle. */
1361 #define I386_MAX_MATCHED_INSN_LEN 6
1362
1363 /* Instruction description. */
1364 struct i386_insn
1365 {
1366 size_t len;
1367 gdb_byte insn[I386_MAX_MATCHED_INSN_LEN];
1368 gdb_byte mask[I386_MAX_MATCHED_INSN_LEN];
1369 };
1370
1371 /* Return whether instruction at PC matches PATTERN. */
1372
1373 static int
1374 i386_match_pattern (CORE_ADDR pc, struct i386_insn pattern)
1375 {
1376 gdb_byte op;
1377
1378 if (target_read_code (pc, &op, 1))
1379 return 0;
1380
1381 if ((op & pattern.mask[0]) == pattern.insn[0])
1382 {
1383 gdb_byte buf[I386_MAX_MATCHED_INSN_LEN - 1];
1384 int insn_matched = 1;
1385 size_t i;
1386
1387 gdb_assert (pattern.len > 1);
1388 gdb_assert (pattern.len <= I386_MAX_MATCHED_INSN_LEN);
1389
1390 if (target_read_code (pc + 1, buf, pattern.len - 1))
1391 return 0;
1392
1393 for (i = 1; i < pattern.len; i++)
1394 {
1395 if ((buf[i - 1] & pattern.mask[i]) != pattern.insn[i])
1396 insn_matched = 0;
1397 }
1398 return insn_matched;
1399 }
1400 return 0;
1401 }
1402
1403 /* Search for the instruction at PC in the list INSN_PATTERNS. Return
1404 the first instruction description that matches. Otherwise, return
1405 NULL. */
1406
1407 static struct i386_insn *
1408 i386_match_insn (CORE_ADDR pc, struct i386_insn *insn_patterns)
1409 {
1410 struct i386_insn *pattern;
1411
1412 for (pattern = insn_patterns; pattern->len > 0; pattern++)
1413 {
1414 if (i386_match_pattern (pc, *pattern))
1415 return pattern;
1416 }
1417
1418 return NULL;
1419 }
1420
1421 /* Return whether PC points inside a sequence of instructions that
1422 matches INSN_PATTERNS. */
1423
1424 static int
1425 i386_match_insn_block (CORE_ADDR pc, struct i386_insn *insn_patterns)
1426 {
1427 CORE_ADDR current_pc;
1428 int ix, i;
1429 struct i386_insn *insn;
1430
1431 insn = i386_match_insn (pc, insn_patterns);
1432 if (insn == NULL)
1433 return 0;
1434
1435 current_pc = pc;
1436 ix = insn - insn_patterns;
1437 for (i = ix - 1; i >= 0; i--)
1438 {
1439 current_pc -= insn_patterns[i].len;
1440
1441 if (!i386_match_pattern (current_pc, insn_patterns[i]))
1442 return 0;
1443 }
1444
1445 current_pc = pc + insn->len;
1446 for (insn = insn_patterns + ix + 1; insn->len > 0; insn++)
1447 {
1448 if (!i386_match_pattern (current_pc, *insn))
1449 return 0;
1450
1451 current_pc += insn->len;
1452 }
1453
1454 return 1;
1455 }
1456
1457 /* Some special instructions that might be migrated by GCC into the
1458 part of the prologue that sets up the new stack frame. Because the
1459 stack frame hasn't been setup yet, no registers have been saved
1460 yet, and only the scratch registers %eax, %ecx and %edx can be
1461 touched. */
1462
1463 struct i386_insn i386_frame_setup_skip_insns[] =
1464 {
1465 /* Check for `movb imm8, r' and `movl imm32, r'.
1466
1467 ??? Should we handle 16-bit operand-sizes here? */
1468
1469 /* `movb imm8, %al' and `movb imm8, %ah' */
1470 /* `movb imm8, %cl' and `movb imm8, %ch' */
1471 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
1472 /* `movb imm8, %dl' and `movb imm8, %dh' */
1473 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
1474 /* `movl imm32, %eax' and `movl imm32, %ecx' */
1475 { 5, { 0xb8 }, { 0xfe } },
1476 /* `movl imm32, %edx' */
1477 { 5, { 0xba }, { 0xff } },
1478
1479 /* Check for `mov imm32, r32'. Note that there is an alternative
1480 encoding for `mov m32, %eax'.
1481
1482 ??? Should we handle SIB adressing here?
1483 ??? Should we handle 16-bit operand-sizes here? */
1484
1485 /* `movl m32, %eax' */
1486 { 5, { 0xa1 }, { 0xff } },
1487 /* `movl m32, %eax' and `mov; m32, %ecx' */
1488 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
1489 /* `movl m32, %edx' */
1490 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
1491
1492 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
1493 Because of the symmetry, there are actually two ways to encode
1494 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
1495 opcode bytes 0x31 and 0x33 for `xorl'. */
1496
1497 /* `subl %eax, %eax' */
1498 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
1499 /* `subl %ecx, %ecx' */
1500 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
1501 /* `subl %edx, %edx' */
1502 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
1503 /* `xorl %eax, %eax' */
1504 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
1505 /* `xorl %ecx, %ecx' */
1506 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
1507 /* `xorl %edx, %edx' */
1508 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
1509 { 0 }
1510 };
1511
1512
1513 /* Check whether PC points to a no-op instruction. */
1514 static CORE_ADDR
1515 i386_skip_noop (CORE_ADDR pc)
1516 {
1517 gdb_byte op;
1518 int check = 1;
1519
1520 if (target_read_code (pc, &op, 1))
1521 return pc;
1522
1523 while (check)
1524 {
1525 check = 0;
1526 /* Ignore `nop' instruction. */
1527 if (op == 0x90)
1528 {
1529 pc += 1;
1530 if (target_read_code (pc, &op, 1))
1531 return pc;
1532 check = 1;
1533 }
1534 /* Ignore no-op instruction `mov %edi, %edi'.
1535 Microsoft system dlls often start with
1536 a `mov %edi,%edi' instruction.
1537 The 5 bytes before the function start are
1538 filled with `nop' instructions.
1539 This pattern can be used for hot-patching:
1540 The `mov %edi, %edi' instruction can be replaced by a
1541 near jump to the location of the 5 `nop' instructions
1542 which can be replaced by a 32-bit jump to anywhere
1543 in the 32-bit address space. */
1544
1545 else if (op == 0x8b)
1546 {
1547 if (target_read_code (pc + 1, &op, 1))
1548 return pc;
1549
1550 if (op == 0xff)
1551 {
1552 pc += 2;
1553 if (target_read_code (pc, &op, 1))
1554 return pc;
1555
1556 check = 1;
1557 }
1558 }
1559 }
1560 return pc;
1561 }
1562
1563 /* Check whether PC points at a code that sets up a new stack frame.
1564 If so, it updates CACHE and returns the address of the first
1565 instruction after the sequence that sets up the frame or LIMIT,
1566 whichever is smaller. If we don't recognize the code, return PC. */
1567
1568 static CORE_ADDR
1569 i386_analyze_frame_setup (struct gdbarch *gdbarch,
1570 CORE_ADDR pc, CORE_ADDR limit,
1571 struct i386_frame_cache *cache)
1572 {
1573 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1574 struct i386_insn *insn;
1575 gdb_byte op;
1576 int skip = 0;
1577
1578 if (limit <= pc)
1579 return limit;
1580
1581 if (target_read_code (pc, &op, 1))
1582 return pc;
1583
1584 if (op == 0x55) /* pushl %ebp */
1585 {
1586 /* Take into account that we've executed the `pushl %ebp' that
1587 starts this instruction sequence. */
1588 cache->saved_regs[I386_EBP_REGNUM] = 0;
1589 cache->sp_offset += 4;
1590 pc++;
1591
1592 /* If that's all, return now. */
1593 if (limit <= pc)
1594 return limit;
1595
1596 /* Check for some special instructions that might be migrated by
1597 GCC into the prologue and skip them. At this point in the
1598 prologue, code should only touch the scratch registers %eax,
1599 %ecx and %edx, so while the number of posibilities is sheer,
1600 it is limited.
1601
1602 Make sure we only skip these instructions if we later see the
1603 `movl %esp, %ebp' that actually sets up the frame. */
1604 while (pc + skip < limit)
1605 {
1606 insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
1607 if (insn == NULL)
1608 break;
1609
1610 skip += insn->len;
1611 }
1612
1613 /* If that's all, return now. */
1614 if (limit <= pc + skip)
1615 return limit;
1616
1617 if (target_read_code (pc + skip, &op, 1))
1618 return pc + skip;
1619
1620 /* The i386 prologue looks like
1621
1622 push %ebp
1623 mov %esp,%ebp
1624 sub $0x10,%esp
1625
1626 and a different prologue can be generated for atom.
1627
1628 push %ebp
1629 lea (%esp),%ebp
1630 lea -0x10(%esp),%esp
1631
1632 We handle both of them here. */
1633
1634 switch (op)
1635 {
1636 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
1637 case 0x8b:
1638 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
1639 != 0xec)
1640 return pc;
1641 pc += (skip + 2);
1642 break;
1643 case 0x89:
1644 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
1645 != 0xe5)
1646 return pc;
1647 pc += (skip + 2);
1648 break;
1649 case 0x8d: /* Check for 'lea (%ebp), %ebp'. */
1650 if (read_code_unsigned_integer (pc + skip + 1, 2, byte_order)
1651 != 0x242c)
1652 return pc;
1653 pc += (skip + 3);
1654 break;
1655 default:
1656 return pc;
1657 }
1658
1659 /* OK, we actually have a frame. We just don't know how large
1660 it is yet. Set its size to zero. We'll adjust it if
1661 necessary. We also now commit to skipping the special
1662 instructions mentioned before. */
1663 cache->locals = 0;
1664
1665 /* If that's all, return now. */
1666 if (limit <= pc)
1667 return limit;
1668
1669 /* Check for stack adjustment
1670
1671 subl $XXX, %esp
1672 or
1673 lea -XXX(%esp),%esp
1674
1675 NOTE: You can't subtract a 16-bit immediate from a 32-bit
1676 reg, so we don't have to worry about a data16 prefix. */
1677 if (target_read_code (pc, &op, 1))
1678 return pc;
1679 if (op == 0x83)
1680 {
1681 /* `subl' with 8-bit immediate. */
1682 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1683 /* Some instruction starting with 0x83 other than `subl'. */
1684 return pc;
1685
1686 /* `subl' with signed 8-bit immediate (though it wouldn't
1687 make sense to be negative). */
1688 cache->locals = read_code_integer (pc + 2, 1, byte_order);
1689 return pc + 3;
1690 }
1691 else if (op == 0x81)
1692 {
1693 /* Maybe it is `subl' with a 32-bit immediate. */
1694 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1695 /* Some instruction starting with 0x81 other than `subl'. */
1696 return pc;
1697
1698 /* It is `subl' with a 32-bit immediate. */
1699 cache->locals = read_code_integer (pc + 2, 4, byte_order);
1700 return pc + 6;
1701 }
1702 else if (op == 0x8d)
1703 {
1704 /* The ModR/M byte is 0x64. */
1705 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0x64)
1706 return pc;
1707 /* 'lea' with 8-bit displacement. */
1708 cache->locals = -1 * read_code_integer (pc + 3, 1, byte_order);
1709 return pc + 4;
1710 }
1711 else
1712 {
1713 /* Some instruction other than `subl' nor 'lea'. */
1714 return pc;
1715 }
1716 }
1717 else if (op == 0xc8) /* enter */
1718 {
1719 cache->locals = read_code_unsigned_integer (pc + 1, 2, byte_order);
1720 return pc + 4;
1721 }
1722
1723 return pc;
1724 }
1725
1726 /* Check whether PC points at code that saves registers on the stack.
1727 If so, it updates CACHE and returns the address of the first
1728 instruction after the register saves or CURRENT_PC, whichever is
1729 smaller. Otherwise, return PC. */
1730
1731 static CORE_ADDR
1732 i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
1733 struct i386_frame_cache *cache)
1734 {
1735 CORE_ADDR offset = 0;
1736 gdb_byte op;
1737 int i;
1738
1739 if (cache->locals > 0)
1740 offset -= cache->locals;
1741 for (i = 0; i < 8 && pc < current_pc; i++)
1742 {
1743 if (target_read_code (pc, &op, 1))
1744 return pc;
1745 if (op < 0x50 || op > 0x57)
1746 break;
1747
1748 offset -= 4;
1749 cache->saved_regs[op - 0x50] = offset;
1750 cache->sp_offset += 4;
1751 pc++;
1752 }
1753
1754 return pc;
1755 }
1756
1757 /* Do a full analysis of the prologue at PC and update CACHE
1758 accordingly. Bail out early if CURRENT_PC is reached. Return the
1759 address where the analysis stopped.
1760
1761 We handle these cases:
1762
1763 The startup sequence can be at the start of the function, or the
1764 function can start with a branch to startup code at the end.
1765
1766 %ebp can be set up with either the 'enter' instruction, or "pushl
1767 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
1768 once used in the System V compiler).
1769
1770 Local space is allocated just below the saved %ebp by either the
1771 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
1772 16-bit unsigned argument for space to allocate, and the 'addl'
1773 instruction could have either a signed byte, or 32-bit immediate.
1774
1775 Next, the registers used by this function are pushed. With the
1776 System V compiler they will always be in the order: %edi, %esi,
1777 %ebx (and sometimes a harmless bug causes it to also save but not
1778 restore %eax); however, the code below is willing to see the pushes
1779 in any order, and will handle up to 8 of them.
1780
1781 If the setup sequence is at the end of the function, then the next
1782 instruction will be a branch back to the start. */
1783
1784 static CORE_ADDR
1785 i386_analyze_prologue (struct gdbarch *gdbarch,
1786 CORE_ADDR pc, CORE_ADDR current_pc,
1787 struct i386_frame_cache *cache)
1788 {
1789 pc = i386_skip_noop (pc);
1790 pc = i386_follow_jump (gdbarch, pc);
1791 pc = i386_analyze_struct_return (pc, current_pc, cache);
1792 pc = i386_skip_probe (pc);
1793 pc = i386_analyze_stack_align (pc, current_pc, cache);
1794 pc = i386_analyze_frame_setup (gdbarch, pc, current_pc, cache);
1795 return i386_analyze_register_saves (pc, current_pc, cache);
1796 }
1797
1798 /* Return PC of first real instruction. */
1799
1800 static CORE_ADDR
1801 i386_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
1802 {
1803 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1804
1805 static gdb_byte pic_pat[6] =
1806 {
1807 0xe8, 0, 0, 0, 0, /* call 0x0 */
1808 0x5b, /* popl %ebx */
1809 };
1810 struct i386_frame_cache cache;
1811 CORE_ADDR pc;
1812 gdb_byte op;
1813 int i;
1814 CORE_ADDR func_addr;
1815
1816 if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
1817 {
1818 CORE_ADDR post_prologue_pc
1819 = skip_prologue_using_sal (gdbarch, func_addr);
1820 struct compunit_symtab *cust = find_pc_compunit_symtab (func_addr);
1821
1822 /* Clang always emits a line note before the prologue and another
1823 one after. We trust clang to emit usable line notes. */
1824 if (post_prologue_pc
1825 && (cust != NULL
1826 && COMPUNIT_PRODUCER (cust) != NULL
1827 && strncmp (COMPUNIT_PRODUCER (cust), "clang ",
1828 sizeof ("clang ") - 1) == 0))
1829 return max (start_pc, post_prologue_pc);
1830 }
1831
1832 cache.locals = -1;
1833 pc = i386_analyze_prologue (gdbarch, start_pc, 0xffffffff, &cache);
1834 if (cache.locals < 0)
1835 return start_pc;
1836
1837 /* Found valid frame setup. */
1838
1839 /* The native cc on SVR4 in -K PIC mode inserts the following code
1840 to get the address of the global offset table (GOT) into register
1841 %ebx:
1842
1843 call 0x0
1844 popl %ebx
1845 movl %ebx,x(%ebp) (optional)
1846 addl y,%ebx
1847
1848 This code is with the rest of the prologue (at the end of the
1849 function), so we have to skip it to get to the first real
1850 instruction at the start of the function. */
1851
1852 for (i = 0; i < 6; i++)
1853 {
1854 if (target_read_code (pc + i, &op, 1))
1855 return pc;
1856
1857 if (pic_pat[i] != op)
1858 break;
1859 }
1860 if (i == 6)
1861 {
1862 int delta = 6;
1863
1864 if (target_read_code (pc + delta, &op, 1))
1865 return pc;
1866
1867 if (op == 0x89) /* movl %ebx, x(%ebp) */
1868 {
1869 op = read_code_unsigned_integer (pc + delta + 1, 1, byte_order);
1870
1871 if (op == 0x5d) /* One byte offset from %ebp. */
1872 delta += 3;
1873 else if (op == 0x9d) /* Four byte offset from %ebp. */
1874 delta += 6;
1875 else /* Unexpected instruction. */
1876 delta = 0;
1877
1878 if (target_read_code (pc + delta, &op, 1))
1879 return pc;
1880 }
1881
1882 /* addl y,%ebx */
1883 if (delta > 0 && op == 0x81
1884 && read_code_unsigned_integer (pc + delta + 1, 1, byte_order)
1885 == 0xc3)
1886 {
1887 pc += delta + 6;
1888 }
1889 }
1890
1891 /* If the function starts with a branch (to startup code at the end)
1892 the last instruction should bring us back to the first
1893 instruction of the real code. */
1894 if (i386_follow_jump (gdbarch, start_pc) != start_pc)
1895 pc = i386_follow_jump (gdbarch, pc);
1896
1897 return pc;
1898 }
1899
1900 /* Check that the code pointed to by PC corresponds to a call to
1901 __main, skip it if so. Return PC otherwise. */
1902
1903 CORE_ADDR
1904 i386_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1905 {
1906 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1907 gdb_byte op;
1908
1909 if (target_read_code (pc, &op, 1))
1910 return pc;
1911 if (op == 0xe8)
1912 {
1913 gdb_byte buf[4];
1914
1915 if (target_read_code (pc + 1, buf, sizeof buf) == 0)
1916 {
1917 /* Make sure address is computed correctly as a 32bit
1918 integer even if CORE_ADDR is 64 bit wide. */
1919 struct bound_minimal_symbol s;
1920 CORE_ADDR call_dest;
1921
1922 call_dest = pc + 5 + extract_signed_integer (buf, 4, byte_order);
1923 call_dest = call_dest & 0xffffffffU;
1924 s = lookup_minimal_symbol_by_pc (call_dest);
1925 if (s.minsym != NULL
1926 && MSYMBOL_LINKAGE_NAME (s.minsym) != NULL
1927 && strcmp (MSYMBOL_LINKAGE_NAME (s.minsym), "__main") == 0)
1928 pc += 5;
1929 }
1930 }
1931
1932 return pc;
1933 }
1934
1935 /* This function is 64-bit safe. */
1936
1937 static CORE_ADDR
1938 i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1939 {
1940 gdb_byte buf[8];
1941
1942 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
1943 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
1944 }
1945 \f
1946
1947 /* Normal frames. */
1948
1949 static void
1950 i386_frame_cache_1 (struct frame_info *this_frame,
1951 struct i386_frame_cache *cache)
1952 {
1953 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1954 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1955 gdb_byte buf[4];
1956 int i;
1957
1958 cache->pc = get_frame_func (this_frame);
1959
1960 /* In principle, for normal frames, %ebp holds the frame pointer,
1961 which holds the base address for the current stack frame.
1962 However, for functions that don't need it, the frame pointer is
1963 optional. For these "frameless" functions the frame pointer is
1964 actually the frame pointer of the calling frame. Signal
1965 trampolines are just a special case of a "frameless" function.
1966 They (usually) share their frame pointer with the frame that was
1967 in progress when the signal occurred. */
1968
1969 get_frame_register (this_frame, I386_EBP_REGNUM, buf);
1970 cache->base = extract_unsigned_integer (buf, 4, byte_order);
1971 if (cache->base == 0)
1972 {
1973 cache->base_p = 1;
1974 return;
1975 }
1976
1977 /* For normal frames, %eip is stored at 4(%ebp). */
1978 cache->saved_regs[I386_EIP_REGNUM] = 4;
1979
1980 if (cache->pc != 0)
1981 i386_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
1982 cache);
1983
1984 if (cache->locals < 0)
1985 {
1986 /* We didn't find a valid frame, which means that CACHE->base
1987 currently holds the frame pointer for our calling frame. If
1988 we're at the start of a function, or somewhere half-way its
1989 prologue, the function's frame probably hasn't been fully
1990 setup yet. Try to reconstruct the base address for the stack
1991 frame by looking at the stack pointer. For truly "frameless"
1992 functions this might work too. */
1993
1994 if (cache->saved_sp_reg != -1)
1995 {
1996 /* Saved stack pointer has been saved. */
1997 get_frame_register (this_frame, cache->saved_sp_reg, buf);
1998 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
1999
2000 /* We're halfway aligning the stack. */
2001 cache->base = ((cache->saved_sp - 4) & 0xfffffff0) - 4;
2002 cache->saved_regs[I386_EIP_REGNUM] = cache->saved_sp - 4;
2003
2004 /* This will be added back below. */
2005 cache->saved_regs[I386_EIP_REGNUM] -= cache->base;
2006 }
2007 else if (cache->pc != 0
2008 || target_read_code (get_frame_pc (this_frame), buf, 1))
2009 {
2010 /* We're in a known function, but did not find a frame
2011 setup. Assume that the function does not use %ebp.
2012 Alternatively, we may have jumped to an invalid
2013 address; in that case there is definitely no new
2014 frame in %ebp. */
2015 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2016 cache->base = extract_unsigned_integer (buf, 4, byte_order)
2017 + cache->sp_offset;
2018 }
2019 else
2020 /* We're in an unknown function. We could not find the start
2021 of the function to analyze the prologue; our best option is
2022 to assume a typical frame layout with the caller's %ebp
2023 saved. */
2024 cache->saved_regs[I386_EBP_REGNUM] = 0;
2025 }
2026
2027 if (cache->saved_sp_reg != -1)
2028 {
2029 /* Saved stack pointer has been saved (but the SAVED_SP_REG
2030 register may be unavailable). */
2031 if (cache->saved_sp == 0
2032 && deprecated_frame_register_read (this_frame,
2033 cache->saved_sp_reg, buf))
2034 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
2035 }
2036 /* Now that we have the base address for the stack frame we can
2037 calculate the value of %esp in the calling frame. */
2038 else if (cache->saved_sp == 0)
2039 cache->saved_sp = cache->base + 8;
2040
2041 /* Adjust all the saved registers such that they contain addresses
2042 instead of offsets. */
2043 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
2044 if (cache->saved_regs[i] != -1)
2045 cache->saved_regs[i] += cache->base;
2046
2047 cache->base_p = 1;
2048 }
2049
2050 static struct i386_frame_cache *
2051 i386_frame_cache (struct frame_info *this_frame, void **this_cache)
2052 {
2053 volatile struct gdb_exception ex;
2054 struct i386_frame_cache *cache;
2055
2056 if (*this_cache)
2057 return *this_cache;
2058
2059 cache = i386_alloc_frame_cache ();
2060 *this_cache = cache;
2061
2062 TRY_CATCH (ex, RETURN_MASK_ERROR)
2063 {
2064 i386_frame_cache_1 (this_frame, cache);
2065 }
2066 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
2067 throw_exception (ex);
2068
2069 return cache;
2070 }
2071
2072 static void
2073 i386_frame_this_id (struct frame_info *this_frame, void **this_cache,
2074 struct frame_id *this_id)
2075 {
2076 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2077
2078 if (!cache->base_p)
2079 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2080 else if (cache->base == 0)
2081 {
2082 /* This marks the outermost frame. */
2083 }
2084 else
2085 {
2086 /* See the end of i386_push_dummy_call. */
2087 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2088 }
2089 }
2090
2091 static enum unwind_stop_reason
2092 i386_frame_unwind_stop_reason (struct frame_info *this_frame,
2093 void **this_cache)
2094 {
2095 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2096
2097 if (!cache->base_p)
2098 return UNWIND_UNAVAILABLE;
2099
2100 /* This marks the outermost frame. */
2101 if (cache->base == 0)
2102 return UNWIND_OUTERMOST;
2103
2104 return UNWIND_NO_REASON;
2105 }
2106
2107 static struct value *
2108 i386_frame_prev_register (struct frame_info *this_frame, void **this_cache,
2109 int regnum)
2110 {
2111 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2112
2113 gdb_assert (regnum >= 0);
2114
2115 /* The System V ABI says that:
2116
2117 "The flags register contains the system flags, such as the
2118 direction flag and the carry flag. The direction flag must be
2119 set to the forward (that is, zero) direction before entry and
2120 upon exit from a function. Other user flags have no specified
2121 role in the standard calling sequence and are not preserved."
2122
2123 To guarantee the "upon exit" part of that statement we fake a
2124 saved flags register that has its direction flag cleared.
2125
2126 Note that GCC doesn't seem to rely on the fact that the direction
2127 flag is cleared after a function return; it always explicitly
2128 clears the flag before operations where it matters.
2129
2130 FIXME: kettenis/20030316: I'm not quite sure whether this is the
2131 right thing to do. The way we fake the flags register here makes
2132 it impossible to change it. */
2133
2134 if (regnum == I386_EFLAGS_REGNUM)
2135 {
2136 ULONGEST val;
2137
2138 val = get_frame_register_unsigned (this_frame, regnum);
2139 val &= ~(1 << 10);
2140 return frame_unwind_got_constant (this_frame, regnum, val);
2141 }
2142
2143 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
2144 return frame_unwind_got_register (this_frame, regnum, I386_EAX_REGNUM);
2145
2146 if (regnum == I386_ESP_REGNUM
2147 && (cache->saved_sp != 0 || cache->saved_sp_reg != -1))
2148 {
2149 /* If the SP has been saved, but we don't know where, then this
2150 means that SAVED_SP_REG register was found unavailable back
2151 when we built the cache. */
2152 if (cache->saved_sp == 0)
2153 return frame_unwind_got_register (this_frame, regnum,
2154 cache->saved_sp_reg);
2155 else
2156 return frame_unwind_got_constant (this_frame, regnum,
2157 cache->saved_sp);
2158 }
2159
2160 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
2161 return frame_unwind_got_memory (this_frame, regnum,
2162 cache->saved_regs[regnum]);
2163
2164 return frame_unwind_got_register (this_frame, regnum, regnum);
2165 }
2166
2167 static const struct frame_unwind i386_frame_unwind =
2168 {
2169 NORMAL_FRAME,
2170 i386_frame_unwind_stop_reason,
2171 i386_frame_this_id,
2172 i386_frame_prev_register,
2173 NULL,
2174 default_frame_sniffer
2175 };
2176
2177 /* Normal frames, but in a function epilogue. */
2178
2179 /* The epilogue is defined here as the 'ret' instruction, which will
2180 follow any instruction such as 'leave' or 'pop %ebp' that destroys
2181 the function's stack frame. */
2182
2183 static int
2184 i386_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2185 {
2186 gdb_byte insn;
2187 struct compunit_symtab *cust;
2188
2189 cust = find_pc_compunit_symtab (pc);
2190 if (cust != NULL && COMPUNIT_EPILOGUE_UNWIND_VALID (cust))
2191 return 0;
2192
2193 if (target_read_memory (pc, &insn, 1))
2194 return 0; /* Can't read memory at pc. */
2195
2196 if (insn != 0xc3) /* 'ret' instruction. */
2197 return 0;
2198
2199 return 1;
2200 }
2201
2202 static int
2203 i386_epilogue_frame_sniffer (const struct frame_unwind *self,
2204 struct frame_info *this_frame,
2205 void **this_prologue_cache)
2206 {
2207 if (frame_relative_level (this_frame) == 0)
2208 return i386_in_function_epilogue_p (get_frame_arch (this_frame),
2209 get_frame_pc (this_frame));
2210 else
2211 return 0;
2212 }
2213
2214 static struct i386_frame_cache *
2215 i386_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
2216 {
2217 volatile struct gdb_exception ex;
2218 struct i386_frame_cache *cache;
2219 CORE_ADDR sp;
2220
2221 if (*this_cache)
2222 return *this_cache;
2223
2224 cache = i386_alloc_frame_cache ();
2225 *this_cache = cache;
2226
2227 TRY_CATCH (ex, RETURN_MASK_ERROR)
2228 {
2229 cache->pc = get_frame_func (this_frame);
2230
2231 /* At this point the stack looks as if we just entered the
2232 function, with the return address at the top of the
2233 stack. */
2234 sp = get_frame_register_unsigned (this_frame, I386_ESP_REGNUM);
2235 cache->base = sp + cache->sp_offset;
2236 cache->saved_sp = cache->base + 8;
2237 cache->saved_regs[I386_EIP_REGNUM] = cache->base + 4;
2238
2239 cache->base_p = 1;
2240 }
2241 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
2242 throw_exception (ex);
2243
2244 return cache;
2245 }
2246
2247 static enum unwind_stop_reason
2248 i386_epilogue_frame_unwind_stop_reason (struct frame_info *this_frame,
2249 void **this_cache)
2250 {
2251 struct i386_frame_cache *cache =
2252 i386_epilogue_frame_cache (this_frame, this_cache);
2253
2254 if (!cache->base_p)
2255 return UNWIND_UNAVAILABLE;
2256
2257 return UNWIND_NO_REASON;
2258 }
2259
2260 static void
2261 i386_epilogue_frame_this_id (struct frame_info *this_frame,
2262 void **this_cache,
2263 struct frame_id *this_id)
2264 {
2265 struct i386_frame_cache *cache =
2266 i386_epilogue_frame_cache (this_frame, this_cache);
2267
2268 if (!cache->base_p)
2269 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2270 else
2271 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2272 }
2273
2274 static struct value *
2275 i386_epilogue_frame_prev_register (struct frame_info *this_frame,
2276 void **this_cache, int regnum)
2277 {
2278 /* Make sure we've initialized the cache. */
2279 i386_epilogue_frame_cache (this_frame, this_cache);
2280
2281 return i386_frame_prev_register (this_frame, this_cache, regnum);
2282 }
2283
2284 static const struct frame_unwind i386_epilogue_frame_unwind =
2285 {
2286 NORMAL_FRAME,
2287 i386_epilogue_frame_unwind_stop_reason,
2288 i386_epilogue_frame_this_id,
2289 i386_epilogue_frame_prev_register,
2290 NULL,
2291 i386_epilogue_frame_sniffer
2292 };
2293 \f
2294
2295 /* Stack-based trampolines. */
2296
2297 /* These trampolines are used on cross x86 targets, when taking the
2298 address of a nested function. When executing these trampolines,
2299 no stack frame is set up, so we are in a similar situation as in
2300 epilogues and i386_epilogue_frame_this_id can be re-used. */
2301
2302 /* Static chain passed in register. */
2303
2304 struct i386_insn i386_tramp_chain_in_reg_insns[] =
2305 {
2306 /* `movl imm32, %eax' and `movl imm32, %ecx' */
2307 { 5, { 0xb8 }, { 0xfe } },
2308
2309 /* `jmp imm32' */
2310 { 5, { 0xe9 }, { 0xff } },
2311
2312 {0}
2313 };
2314
2315 /* Static chain passed on stack (when regparm=3). */
2316
2317 struct i386_insn i386_tramp_chain_on_stack_insns[] =
2318 {
2319 /* `push imm32' */
2320 { 5, { 0x68 }, { 0xff } },
2321
2322 /* `jmp imm32' */
2323 { 5, { 0xe9 }, { 0xff } },
2324
2325 {0}
2326 };
2327
2328 /* Return whether PC points inside a stack trampoline. */
2329
2330 static int
2331 i386_in_stack_tramp_p (CORE_ADDR pc)
2332 {
2333 gdb_byte insn;
2334 const char *name;
2335
2336 /* A stack trampoline is detected if no name is associated
2337 to the current pc and if it points inside a trampoline
2338 sequence. */
2339
2340 find_pc_partial_function (pc, &name, NULL, NULL);
2341 if (name)
2342 return 0;
2343
2344 if (target_read_memory (pc, &insn, 1))
2345 return 0;
2346
2347 if (!i386_match_insn_block (pc, i386_tramp_chain_in_reg_insns)
2348 && !i386_match_insn_block (pc, i386_tramp_chain_on_stack_insns))
2349 return 0;
2350
2351 return 1;
2352 }
2353
2354 static int
2355 i386_stack_tramp_frame_sniffer (const struct frame_unwind *self,
2356 struct frame_info *this_frame,
2357 void **this_cache)
2358 {
2359 if (frame_relative_level (this_frame) == 0)
2360 return i386_in_stack_tramp_p (get_frame_pc (this_frame));
2361 else
2362 return 0;
2363 }
2364
2365 static const struct frame_unwind i386_stack_tramp_frame_unwind =
2366 {
2367 NORMAL_FRAME,
2368 i386_epilogue_frame_unwind_stop_reason,
2369 i386_epilogue_frame_this_id,
2370 i386_epilogue_frame_prev_register,
2371 NULL,
2372 i386_stack_tramp_frame_sniffer
2373 };
2374 \f
2375 /* Generate a bytecode expression to get the value of the saved PC. */
2376
2377 static void
2378 i386_gen_return_address (struct gdbarch *gdbarch,
2379 struct agent_expr *ax, struct axs_value *value,
2380 CORE_ADDR scope)
2381 {
2382 /* The following sequence assumes the traditional use of the base
2383 register. */
2384 ax_reg (ax, I386_EBP_REGNUM);
2385 ax_const_l (ax, 4);
2386 ax_simple (ax, aop_add);
2387 value->type = register_type (gdbarch, I386_EIP_REGNUM);
2388 value->kind = axs_lvalue_memory;
2389 }
2390 \f
2391
2392 /* Signal trampolines. */
2393
2394 static struct i386_frame_cache *
2395 i386_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
2396 {
2397 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2398 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2399 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2400 volatile struct gdb_exception ex;
2401 struct i386_frame_cache *cache;
2402 CORE_ADDR addr;
2403 gdb_byte buf[4];
2404
2405 if (*this_cache)
2406 return *this_cache;
2407
2408 cache = i386_alloc_frame_cache ();
2409
2410 TRY_CATCH (ex, RETURN_MASK_ERROR)
2411 {
2412 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2413 cache->base = extract_unsigned_integer (buf, 4, byte_order) - 4;
2414
2415 addr = tdep->sigcontext_addr (this_frame);
2416 if (tdep->sc_reg_offset)
2417 {
2418 int i;
2419
2420 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
2421
2422 for (i = 0; i < tdep->sc_num_regs; i++)
2423 if (tdep->sc_reg_offset[i] != -1)
2424 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
2425 }
2426 else
2427 {
2428 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
2429 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
2430 }
2431
2432 cache->base_p = 1;
2433 }
2434 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
2435 throw_exception (ex);
2436
2437 *this_cache = cache;
2438 return cache;
2439 }
2440
2441 static enum unwind_stop_reason
2442 i386_sigtramp_frame_unwind_stop_reason (struct frame_info *this_frame,
2443 void **this_cache)
2444 {
2445 struct i386_frame_cache *cache =
2446 i386_sigtramp_frame_cache (this_frame, this_cache);
2447
2448 if (!cache->base_p)
2449 return UNWIND_UNAVAILABLE;
2450
2451 return UNWIND_NO_REASON;
2452 }
2453
2454 static void
2455 i386_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache,
2456 struct frame_id *this_id)
2457 {
2458 struct i386_frame_cache *cache =
2459 i386_sigtramp_frame_cache (this_frame, this_cache);
2460
2461 if (!cache->base_p)
2462 (*this_id) = frame_id_build_unavailable_stack (get_frame_pc (this_frame));
2463 else
2464 {
2465 /* See the end of i386_push_dummy_call. */
2466 (*this_id) = frame_id_build (cache->base + 8, get_frame_pc (this_frame));
2467 }
2468 }
2469
2470 static struct value *
2471 i386_sigtramp_frame_prev_register (struct frame_info *this_frame,
2472 void **this_cache, int regnum)
2473 {
2474 /* Make sure we've initialized the cache. */
2475 i386_sigtramp_frame_cache (this_frame, this_cache);
2476
2477 return i386_frame_prev_register (this_frame, this_cache, regnum);
2478 }
2479
2480 static int
2481 i386_sigtramp_frame_sniffer (const struct frame_unwind *self,
2482 struct frame_info *this_frame,
2483 void **this_prologue_cache)
2484 {
2485 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
2486
2487 /* We shouldn't even bother if we don't have a sigcontext_addr
2488 handler. */
2489 if (tdep->sigcontext_addr == NULL)
2490 return 0;
2491
2492 if (tdep->sigtramp_p != NULL)
2493 {
2494 if (tdep->sigtramp_p (this_frame))
2495 return 1;
2496 }
2497
2498 if (tdep->sigtramp_start != 0)
2499 {
2500 CORE_ADDR pc = get_frame_pc (this_frame);
2501
2502 gdb_assert (tdep->sigtramp_end != 0);
2503 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
2504 return 1;
2505 }
2506
2507 return 0;
2508 }
2509
2510 static const struct frame_unwind i386_sigtramp_frame_unwind =
2511 {
2512 SIGTRAMP_FRAME,
2513 i386_sigtramp_frame_unwind_stop_reason,
2514 i386_sigtramp_frame_this_id,
2515 i386_sigtramp_frame_prev_register,
2516 NULL,
2517 i386_sigtramp_frame_sniffer
2518 };
2519 \f
2520
2521 static CORE_ADDR
2522 i386_frame_base_address (struct frame_info *this_frame, void **this_cache)
2523 {
2524 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2525
2526 return cache->base;
2527 }
2528
2529 static const struct frame_base i386_frame_base =
2530 {
2531 &i386_frame_unwind,
2532 i386_frame_base_address,
2533 i386_frame_base_address,
2534 i386_frame_base_address
2535 };
2536
2537 static struct frame_id
2538 i386_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2539 {
2540 CORE_ADDR fp;
2541
2542 fp = get_frame_register_unsigned (this_frame, I386_EBP_REGNUM);
2543
2544 /* See the end of i386_push_dummy_call. */
2545 return frame_id_build (fp + 8, get_frame_pc (this_frame));
2546 }
2547
2548 /* _Decimal128 function return values need 16-byte alignment on the
2549 stack. */
2550
2551 static CORE_ADDR
2552 i386_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2553 {
2554 return sp & -(CORE_ADDR)16;
2555 }
2556 \f
2557
2558 /* Figure out where the longjmp will land. Slurp the args out of the
2559 stack. We expect the first arg to be a pointer to the jmp_buf
2560 structure from which we extract the address that we will land at.
2561 This address is copied into PC. This routine returns non-zero on
2562 success. */
2563
2564 static int
2565 i386_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
2566 {
2567 gdb_byte buf[4];
2568 CORE_ADDR sp, jb_addr;
2569 struct gdbarch *gdbarch = get_frame_arch (frame);
2570 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2571 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
2572
2573 /* If JB_PC_OFFSET is -1, we have no way to find out where the
2574 longjmp will land. */
2575 if (jb_pc_offset == -1)
2576 return 0;
2577
2578 get_frame_register (frame, I386_ESP_REGNUM, buf);
2579 sp = extract_unsigned_integer (buf, 4, byte_order);
2580 if (target_read_memory (sp + 4, buf, 4))
2581 return 0;
2582
2583 jb_addr = extract_unsigned_integer (buf, 4, byte_order);
2584 if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
2585 return 0;
2586
2587 *pc = extract_unsigned_integer (buf, 4, byte_order);
2588 return 1;
2589 }
2590 \f
2591
2592 /* Check whether TYPE must be 16-byte-aligned when passed as a
2593 function argument. 16-byte vectors, _Decimal128 and structures or
2594 unions containing such types must be 16-byte-aligned; other
2595 arguments are 4-byte-aligned. */
2596
2597 static int
2598 i386_16_byte_align_p (struct type *type)
2599 {
2600 type = check_typedef (type);
2601 if ((TYPE_CODE (type) == TYPE_CODE_DECFLOAT
2602 || (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type)))
2603 && TYPE_LENGTH (type) == 16)
2604 return 1;
2605 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2606 return i386_16_byte_align_p (TYPE_TARGET_TYPE (type));
2607 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2608 || TYPE_CODE (type) == TYPE_CODE_UNION)
2609 {
2610 int i;
2611 for (i = 0; i < TYPE_NFIELDS (type); i++)
2612 {
2613 if (i386_16_byte_align_p (TYPE_FIELD_TYPE (type, i)))
2614 return 1;
2615 }
2616 }
2617 return 0;
2618 }
2619
2620 /* Implementation for set_gdbarch_push_dummy_code. */
2621
2622 static CORE_ADDR
2623 i386_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, CORE_ADDR funaddr,
2624 struct value **args, int nargs, struct type *value_type,
2625 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
2626 struct regcache *regcache)
2627 {
2628 /* Use 0xcc breakpoint - 1 byte. */
2629 *bp_addr = sp - 1;
2630 *real_pc = funaddr;
2631
2632 /* Keep the stack aligned. */
2633 return sp - 16;
2634 }
2635
2636 static CORE_ADDR
2637 i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2638 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2639 struct value **args, CORE_ADDR sp, int struct_return,
2640 CORE_ADDR struct_addr)
2641 {
2642 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2643 gdb_byte buf[4];
2644 int i;
2645 int write_pass;
2646 int args_space = 0;
2647
2648 /* Determine the total space required for arguments and struct
2649 return address in a first pass (allowing for 16-byte-aligned
2650 arguments), then push arguments in a second pass. */
2651
2652 for (write_pass = 0; write_pass < 2; write_pass++)
2653 {
2654 int args_space_used = 0;
2655
2656 if (struct_return)
2657 {
2658 if (write_pass)
2659 {
2660 /* Push value address. */
2661 store_unsigned_integer (buf, 4, byte_order, struct_addr);
2662 write_memory (sp, buf, 4);
2663 args_space_used += 4;
2664 }
2665 else
2666 args_space += 4;
2667 }
2668
2669 for (i = 0; i < nargs; i++)
2670 {
2671 int len = TYPE_LENGTH (value_enclosing_type (args[i]));
2672
2673 if (write_pass)
2674 {
2675 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2676 args_space_used = align_up (args_space_used, 16);
2677
2678 write_memory (sp + args_space_used,
2679 value_contents_all (args[i]), len);
2680 /* The System V ABI says that:
2681
2682 "An argument's size is increased, if necessary, to make it a
2683 multiple of [32-bit] words. This may require tail padding,
2684 depending on the size of the argument."
2685
2686 This makes sure the stack stays word-aligned. */
2687 args_space_used += align_up (len, 4);
2688 }
2689 else
2690 {
2691 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2692 args_space = align_up (args_space, 16);
2693 args_space += align_up (len, 4);
2694 }
2695 }
2696
2697 if (!write_pass)
2698 {
2699 sp -= args_space;
2700
2701 /* The original System V ABI only requires word alignment,
2702 but modern incarnations need 16-byte alignment in order
2703 to support SSE. Since wasting a few bytes here isn't
2704 harmful we unconditionally enforce 16-byte alignment. */
2705 sp &= ~0xf;
2706 }
2707 }
2708
2709 /* Store return address. */
2710 sp -= 4;
2711 store_unsigned_integer (buf, 4, byte_order, bp_addr);
2712 write_memory (sp, buf, 4);
2713
2714 /* Finally, update the stack pointer... */
2715 store_unsigned_integer (buf, 4, byte_order, sp);
2716 regcache_cooked_write (regcache, I386_ESP_REGNUM, buf);
2717
2718 /* ...and fake a frame pointer. */
2719 regcache_cooked_write (regcache, I386_EBP_REGNUM, buf);
2720
2721 /* MarkK wrote: This "+ 8" is all over the place:
2722 (i386_frame_this_id, i386_sigtramp_frame_this_id,
2723 i386_dummy_id). It's there, since all frame unwinders for
2724 a given target have to agree (within a certain margin) on the
2725 definition of the stack address of a frame. Otherwise frame id
2726 comparison might not work correctly. Since DWARF2/GCC uses the
2727 stack address *before* the function call as a frame's CFA. On
2728 the i386, when %ebp is used as a frame pointer, the offset
2729 between the contents %ebp and the CFA as defined by GCC. */
2730 return sp + 8;
2731 }
2732
2733 /* These registers are used for returning integers (and on some
2734 targets also for returning `struct' and `union' values when their
2735 size and alignment match an integer type). */
2736 #define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
2737 #define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
2738
2739 /* Read, for architecture GDBARCH, a function return value of TYPE
2740 from REGCACHE, and copy that into VALBUF. */
2741
2742 static void
2743 i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
2744 struct regcache *regcache, gdb_byte *valbuf)
2745 {
2746 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2747 int len = TYPE_LENGTH (type);
2748 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2749
2750 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2751 {
2752 if (tdep->st0_regnum < 0)
2753 {
2754 warning (_("Cannot find floating-point return value."));
2755 memset (valbuf, 0, len);
2756 return;
2757 }
2758
2759 /* Floating-point return values can be found in %st(0). Convert
2760 its contents to the desired type. This is probably not
2761 exactly how it would happen on the target itself, but it is
2762 the best we can do. */
2763 regcache_raw_read (regcache, I386_ST0_REGNUM, buf);
2764 convert_typed_floating (buf, i387_ext_type (gdbarch), valbuf, type);
2765 }
2766 else
2767 {
2768 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2769 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2770
2771 if (len <= low_size)
2772 {
2773 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
2774 memcpy (valbuf, buf, len);
2775 }
2776 else if (len <= (low_size + high_size))
2777 {
2778 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
2779 memcpy (valbuf, buf, low_size);
2780 regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
2781 memcpy (valbuf + low_size, buf, len - low_size);
2782 }
2783 else
2784 internal_error (__FILE__, __LINE__,
2785 _("Cannot extract return value of %d bytes long."),
2786 len);
2787 }
2788 }
2789
2790 /* Write, for architecture GDBARCH, a function return value of TYPE
2791 from VALBUF into REGCACHE. */
2792
2793 static void
2794 i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
2795 struct regcache *regcache, const gdb_byte *valbuf)
2796 {
2797 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2798 int len = TYPE_LENGTH (type);
2799
2800 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2801 {
2802 ULONGEST fstat;
2803 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2804
2805 if (tdep->st0_regnum < 0)
2806 {
2807 warning (_("Cannot set floating-point return value."));
2808 return;
2809 }
2810
2811 /* Returning floating-point values is a bit tricky. Apart from
2812 storing the return value in %st(0), we have to simulate the
2813 state of the FPU at function return point. */
2814
2815 /* Convert the value found in VALBUF to the extended
2816 floating-point format used by the FPU. This is probably
2817 not exactly how it would happen on the target itself, but
2818 it is the best we can do. */
2819 convert_typed_floating (valbuf, type, buf, i387_ext_type (gdbarch));
2820 regcache_raw_write (regcache, I386_ST0_REGNUM, buf);
2821
2822 /* Set the top of the floating-point register stack to 7. The
2823 actual value doesn't really matter, but 7 is what a normal
2824 function return would end up with if the program started out
2825 with a freshly initialized FPU. */
2826 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
2827 fstat |= (7 << 11);
2828 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM (tdep), fstat);
2829
2830 /* Mark %st(1) through %st(7) as empty. Since we set the top of
2831 the floating-point register stack to 7, the appropriate value
2832 for the tag word is 0x3fff. */
2833 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM (tdep), 0x3fff);
2834 }
2835 else
2836 {
2837 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2838 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2839
2840 if (len <= low_size)
2841 regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
2842 else if (len <= (low_size + high_size))
2843 {
2844 regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
2845 regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
2846 len - low_size, valbuf + low_size);
2847 }
2848 else
2849 internal_error (__FILE__, __LINE__,
2850 _("Cannot store return value of %d bytes long."), len);
2851 }
2852 }
2853 \f
2854
2855 /* This is the variable that is set with "set struct-convention", and
2856 its legitimate values. */
2857 static const char default_struct_convention[] = "default";
2858 static const char pcc_struct_convention[] = "pcc";
2859 static const char reg_struct_convention[] = "reg";
2860 static const char *const valid_conventions[] =
2861 {
2862 default_struct_convention,
2863 pcc_struct_convention,
2864 reg_struct_convention,
2865 NULL
2866 };
2867 static const char *struct_convention = default_struct_convention;
2868
2869 /* Return non-zero if TYPE, which is assumed to be a structure,
2870 a union type, or an array type, should be returned in registers
2871 for architecture GDBARCH. */
2872
2873 static int
2874 i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
2875 {
2876 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2877 enum type_code code = TYPE_CODE (type);
2878 int len = TYPE_LENGTH (type);
2879
2880 gdb_assert (code == TYPE_CODE_STRUCT
2881 || code == TYPE_CODE_UNION
2882 || code == TYPE_CODE_ARRAY);
2883
2884 if (struct_convention == pcc_struct_convention
2885 || (struct_convention == default_struct_convention
2886 && tdep->struct_return == pcc_struct_return))
2887 return 0;
2888
2889 /* Structures consisting of a single `float', `double' or 'long
2890 double' member are returned in %st(0). */
2891 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2892 {
2893 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
2894 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2895 return (len == 4 || len == 8 || len == 12);
2896 }
2897
2898 return (len == 1 || len == 2 || len == 4 || len == 8);
2899 }
2900
2901 /* Determine, for architecture GDBARCH, how a return value of TYPE
2902 should be returned. If it is supposed to be returned in registers,
2903 and READBUF is non-zero, read the appropriate value from REGCACHE,
2904 and copy it into READBUF. If WRITEBUF is non-zero, write the value
2905 from WRITEBUF into REGCACHE. */
2906
2907 static enum return_value_convention
2908 i386_return_value (struct gdbarch *gdbarch, struct value *function,
2909 struct type *type, struct regcache *regcache,
2910 gdb_byte *readbuf, const gdb_byte *writebuf)
2911 {
2912 enum type_code code = TYPE_CODE (type);
2913
2914 if (((code == TYPE_CODE_STRUCT
2915 || code == TYPE_CODE_UNION
2916 || code == TYPE_CODE_ARRAY)
2917 && !i386_reg_struct_return_p (gdbarch, type))
2918 /* Complex double and long double uses the struct return covention. */
2919 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 16)
2920 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 24)
2921 /* 128-bit decimal float uses the struct return convention. */
2922 || (code == TYPE_CODE_DECFLOAT && TYPE_LENGTH (type) == 16))
2923 {
2924 /* The System V ABI says that:
2925
2926 "A function that returns a structure or union also sets %eax
2927 to the value of the original address of the caller's area
2928 before it returns. Thus when the caller receives control
2929 again, the address of the returned object resides in register
2930 %eax and can be used to access the object."
2931
2932 So the ABI guarantees that we can always find the return
2933 value just after the function has returned. */
2934
2935 /* Note that the ABI doesn't mention functions returning arrays,
2936 which is something possible in certain languages such as Ada.
2937 In this case, the value is returned as if it was wrapped in
2938 a record, so the convention applied to records also applies
2939 to arrays. */
2940
2941 if (readbuf)
2942 {
2943 ULONGEST addr;
2944
2945 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
2946 read_memory (addr, readbuf, TYPE_LENGTH (type));
2947 }
2948
2949 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
2950 }
2951
2952 /* This special case is for structures consisting of a single
2953 `float', `double' or 'long double' member. These structures are
2954 returned in %st(0). For these structures, we call ourselves
2955 recursively, changing TYPE into the type of the first member of
2956 the structure. Since that should work for all structures that
2957 have only one member, we don't bother to check the member's type
2958 here. */
2959 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2960 {
2961 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
2962 return i386_return_value (gdbarch, function, type, regcache,
2963 readbuf, writebuf);
2964 }
2965
2966 if (readbuf)
2967 i386_extract_return_value (gdbarch, type, regcache, readbuf);
2968 if (writebuf)
2969 i386_store_return_value (gdbarch, type, regcache, writebuf);
2970
2971 return RETURN_VALUE_REGISTER_CONVENTION;
2972 }
2973 \f
2974
2975 struct type *
2976 i387_ext_type (struct gdbarch *gdbarch)
2977 {
2978 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2979
2980 if (!tdep->i387_ext_type)
2981 {
2982 tdep->i387_ext_type = tdesc_find_type (gdbarch, "i387_ext");
2983 gdb_assert (tdep->i387_ext_type != NULL);
2984 }
2985
2986 return tdep->i387_ext_type;
2987 }
2988
2989 /* Construct type for pseudo BND registers. We can't use
2990 tdesc_find_type since a complement of one value has to be used
2991 to describe the upper bound. */
2992
2993 static struct type *
2994 i386_bnd_type (struct gdbarch *gdbarch)
2995 {
2996 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2997
2998
2999 if (!tdep->i386_bnd_type)
3000 {
3001 struct type *t, *bound_t;
3002 const struct builtin_type *bt = builtin_type (gdbarch);
3003
3004 /* The type we're building is described bellow: */
3005 #if 0
3006 struct __bound128
3007 {
3008 void *lbound;
3009 void *ubound; /* One complement of raw ubound field. */
3010 };
3011 #endif
3012
3013 t = arch_composite_type (gdbarch,
3014 "__gdb_builtin_type_bound128", TYPE_CODE_STRUCT);
3015
3016 append_composite_type_field (t, "lbound", bt->builtin_data_ptr);
3017 append_composite_type_field (t, "ubound", bt->builtin_data_ptr);
3018
3019 TYPE_NAME (t) = "builtin_type_bound128";
3020 tdep->i386_bnd_type = t;
3021 }
3022
3023 return tdep->i386_bnd_type;
3024 }
3025
3026 /* Construct vector type for pseudo ZMM registers. We can't use
3027 tdesc_find_type since ZMM isn't described in target description. */
3028
3029 static struct type *
3030 i386_zmm_type (struct gdbarch *gdbarch)
3031 {
3032 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3033
3034 if (!tdep->i386_zmm_type)
3035 {
3036 const struct builtin_type *bt = builtin_type (gdbarch);
3037
3038 /* The type we're building is this: */
3039 #if 0
3040 union __gdb_builtin_type_vec512i
3041 {
3042 int128_t uint128[4];
3043 int64_t v4_int64[8];
3044 int32_t v8_int32[16];
3045 int16_t v16_int16[32];
3046 int8_t v32_int8[64];
3047 double v4_double[8];
3048 float v8_float[16];
3049 };
3050 #endif
3051
3052 struct type *t;
3053
3054 t = arch_composite_type (gdbarch,
3055 "__gdb_builtin_type_vec512i", TYPE_CODE_UNION);
3056 append_composite_type_field (t, "v16_float",
3057 init_vector_type (bt->builtin_float, 16));
3058 append_composite_type_field (t, "v8_double",
3059 init_vector_type (bt->builtin_double, 8));
3060 append_composite_type_field (t, "v64_int8",
3061 init_vector_type (bt->builtin_int8, 64));
3062 append_composite_type_field (t, "v32_int16",
3063 init_vector_type (bt->builtin_int16, 32));
3064 append_composite_type_field (t, "v16_int32",
3065 init_vector_type (bt->builtin_int32, 16));
3066 append_composite_type_field (t, "v8_int64",
3067 init_vector_type (bt->builtin_int64, 8));
3068 append_composite_type_field (t, "v4_int128",
3069 init_vector_type (bt->builtin_int128, 4));
3070
3071 TYPE_VECTOR (t) = 1;
3072 TYPE_NAME (t) = "builtin_type_vec512i";
3073 tdep->i386_zmm_type = t;
3074 }
3075
3076 return tdep->i386_zmm_type;
3077 }
3078
3079 /* Construct vector type for pseudo YMM registers. We can't use
3080 tdesc_find_type since YMM isn't described in target description. */
3081
3082 static struct type *
3083 i386_ymm_type (struct gdbarch *gdbarch)
3084 {
3085 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3086
3087 if (!tdep->i386_ymm_type)
3088 {
3089 const struct builtin_type *bt = builtin_type (gdbarch);
3090
3091 /* The type we're building is this: */
3092 #if 0
3093 union __gdb_builtin_type_vec256i
3094 {
3095 int128_t uint128[2];
3096 int64_t v2_int64[4];
3097 int32_t v4_int32[8];
3098 int16_t v8_int16[16];
3099 int8_t v16_int8[32];
3100 double v2_double[4];
3101 float v4_float[8];
3102 };
3103 #endif
3104
3105 struct type *t;
3106
3107 t = arch_composite_type (gdbarch,
3108 "__gdb_builtin_type_vec256i", TYPE_CODE_UNION);
3109 append_composite_type_field (t, "v8_float",
3110 init_vector_type (bt->builtin_float, 8));
3111 append_composite_type_field (t, "v4_double",
3112 init_vector_type (bt->builtin_double, 4));
3113 append_composite_type_field (t, "v32_int8",
3114 init_vector_type (bt->builtin_int8, 32));
3115 append_composite_type_field (t, "v16_int16",
3116 init_vector_type (bt->builtin_int16, 16));
3117 append_composite_type_field (t, "v8_int32",
3118 init_vector_type (bt->builtin_int32, 8));
3119 append_composite_type_field (t, "v4_int64",
3120 init_vector_type (bt->builtin_int64, 4));
3121 append_composite_type_field (t, "v2_int128",
3122 init_vector_type (bt->builtin_int128, 2));
3123
3124 TYPE_VECTOR (t) = 1;
3125 TYPE_NAME (t) = "builtin_type_vec256i";
3126 tdep->i386_ymm_type = t;
3127 }
3128
3129 return tdep->i386_ymm_type;
3130 }
3131
3132 /* Construct vector type for MMX registers. */
3133 static struct type *
3134 i386_mmx_type (struct gdbarch *gdbarch)
3135 {
3136 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3137
3138 if (!tdep->i386_mmx_type)
3139 {
3140 const struct builtin_type *bt = builtin_type (gdbarch);
3141
3142 /* The type we're building is this: */
3143 #if 0
3144 union __gdb_builtin_type_vec64i
3145 {
3146 int64_t uint64;
3147 int32_t v2_int32[2];
3148 int16_t v4_int16[4];
3149 int8_t v8_int8[8];
3150 };
3151 #endif
3152
3153 struct type *t;
3154
3155 t = arch_composite_type (gdbarch,
3156 "__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
3157
3158 append_composite_type_field (t, "uint64", bt->builtin_int64);
3159 append_composite_type_field (t, "v2_int32",
3160 init_vector_type (bt->builtin_int32, 2));
3161 append_composite_type_field (t, "v4_int16",
3162 init_vector_type (bt->builtin_int16, 4));
3163 append_composite_type_field (t, "v8_int8",
3164 init_vector_type (bt->builtin_int8, 8));
3165
3166 TYPE_VECTOR (t) = 1;
3167 TYPE_NAME (t) = "builtin_type_vec64i";
3168 tdep->i386_mmx_type = t;
3169 }
3170
3171 return tdep->i386_mmx_type;
3172 }
3173
3174 /* Return the GDB type object for the "standard" data type of data in
3175 register REGNUM. */
3176
3177 struct type *
3178 i386_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
3179 {
3180 if (i386_bnd_regnum_p (gdbarch, regnum))
3181 return i386_bnd_type (gdbarch);
3182 if (i386_mmx_regnum_p (gdbarch, regnum))
3183 return i386_mmx_type (gdbarch);
3184 else if (i386_ymm_regnum_p (gdbarch, regnum))
3185 return i386_ymm_type (gdbarch);
3186 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3187 return i386_ymm_type (gdbarch);
3188 else if (i386_zmm_regnum_p (gdbarch, regnum))
3189 return i386_zmm_type (gdbarch);
3190 else
3191 {
3192 const struct builtin_type *bt = builtin_type (gdbarch);
3193 if (i386_byte_regnum_p (gdbarch, regnum))
3194 return bt->builtin_int8;
3195 else if (i386_word_regnum_p (gdbarch, regnum))
3196 return bt->builtin_int16;
3197 else if (i386_dword_regnum_p (gdbarch, regnum))
3198 return bt->builtin_int32;
3199 else if (i386_k_regnum_p (gdbarch, regnum))
3200 return bt->builtin_int64;
3201 }
3202
3203 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3204 }
3205
3206 /* Map a cooked register onto a raw register or memory. For the i386,
3207 the MMX registers need to be mapped onto floating point registers. */
3208
3209 static int
3210 i386_mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
3211 {
3212 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
3213 int mmxreg, fpreg;
3214 ULONGEST fstat;
3215 int tos;
3216
3217 mmxreg = regnum - tdep->mm0_regnum;
3218 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
3219 tos = (fstat >> 11) & 0x7;
3220 fpreg = (mmxreg + tos) % 8;
3221
3222 return (I387_ST0_REGNUM (tdep) + fpreg);
3223 }
3224
3225 /* A helper function for us by i386_pseudo_register_read_value and
3226 amd64_pseudo_register_read_value. It does all the work but reads
3227 the data into an already-allocated value. */
3228
3229 void
3230 i386_pseudo_register_read_into_value (struct gdbarch *gdbarch,
3231 struct regcache *regcache,
3232 int regnum,
3233 struct value *result_value)
3234 {
3235 gdb_byte raw_buf[MAX_REGISTER_SIZE];
3236 enum register_status status;
3237 gdb_byte *buf = value_contents_raw (result_value);
3238
3239 if (i386_mmx_regnum_p (gdbarch, regnum))
3240 {
3241 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3242
3243 /* Extract (always little endian). */
3244 status = regcache_raw_read (regcache, fpnum, raw_buf);
3245 if (status != REG_VALID)
3246 mark_value_bytes_unavailable (result_value, 0,
3247 TYPE_LENGTH (value_type (result_value)));
3248 else
3249 memcpy (buf, raw_buf, register_size (gdbarch, regnum));
3250 }
3251 else
3252 {
3253 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3254 if (i386_bnd_regnum_p (gdbarch, regnum))
3255 {
3256 regnum -= tdep->bnd0_regnum;
3257
3258 /* Extract (always little endian). Read lower 128bits. */
3259 status = regcache_raw_read (regcache,
3260 I387_BND0R_REGNUM (tdep) + regnum,
3261 raw_buf);
3262 if (status != REG_VALID)
3263 mark_value_bytes_unavailable (result_value, 0, 16);
3264 else
3265 {
3266 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3267 LONGEST upper, lower;
3268 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
3269
3270 lower = extract_unsigned_integer (raw_buf, 8, byte_order);
3271 upper = extract_unsigned_integer (raw_buf + 8, 8, byte_order);
3272 upper = ~upper;
3273
3274 memcpy (buf, &lower, size);
3275 memcpy (buf + size, &upper, size);
3276 }
3277 }
3278 else if (i386_k_regnum_p (gdbarch, regnum))
3279 {
3280 regnum -= tdep->k0_regnum;
3281
3282 /* Extract (always little endian). */
3283 status = regcache_raw_read (regcache,
3284 tdep->k0_regnum + regnum,
3285 raw_buf);
3286 if (status != REG_VALID)
3287 mark_value_bytes_unavailable (result_value, 0, 8);
3288 else
3289 memcpy (buf, raw_buf, 8);
3290 }
3291 else if (i386_zmm_regnum_p (gdbarch, regnum))
3292 {
3293 regnum -= tdep->zmm0_regnum;
3294
3295 if (regnum < num_lower_zmm_regs)
3296 {
3297 /* Extract (always little endian). Read lower 128bits. */
3298 status = regcache_raw_read (regcache,
3299 I387_XMM0_REGNUM (tdep) + regnum,
3300 raw_buf);
3301 if (status != REG_VALID)
3302 mark_value_bytes_unavailable (result_value, 0, 16);
3303 else
3304 memcpy (buf, raw_buf, 16);
3305
3306 /* Extract (always little endian). Read upper 128bits. */
3307 status = regcache_raw_read (regcache,
3308 tdep->ymm0h_regnum + regnum,
3309 raw_buf);
3310 if (status != REG_VALID)
3311 mark_value_bytes_unavailable (result_value, 16, 16);
3312 else
3313 memcpy (buf + 16, raw_buf, 16);
3314 }
3315 else
3316 {
3317 /* Extract (always little endian). Read lower 128bits. */
3318 status = regcache_raw_read (regcache,
3319 I387_XMM16_REGNUM (tdep) + regnum
3320 - num_lower_zmm_regs,
3321 raw_buf);
3322 if (status != REG_VALID)
3323 mark_value_bytes_unavailable (result_value, 0, 16);
3324 else
3325 memcpy (buf, raw_buf, 16);
3326
3327 /* Extract (always little endian). Read upper 128bits. */
3328 status = regcache_raw_read (regcache,
3329 I387_YMM16H_REGNUM (tdep) + regnum
3330 - num_lower_zmm_regs,
3331 raw_buf);
3332 if (status != REG_VALID)
3333 mark_value_bytes_unavailable (result_value, 16, 16);
3334 else
3335 memcpy (buf + 16, raw_buf, 16);
3336 }
3337
3338 /* Read upper 256bits. */
3339 status = regcache_raw_read (regcache,
3340 tdep->zmm0h_regnum + regnum,
3341 raw_buf);
3342 if (status != REG_VALID)
3343 mark_value_bytes_unavailable (result_value, 32, 32);
3344 else
3345 memcpy (buf + 32, raw_buf, 32);
3346 }
3347 else if (i386_ymm_regnum_p (gdbarch, regnum))
3348 {
3349 regnum -= tdep->ymm0_regnum;
3350
3351 /* Extract (always little endian). Read lower 128bits. */
3352 status = regcache_raw_read (regcache,
3353 I387_XMM0_REGNUM (tdep) + regnum,
3354 raw_buf);
3355 if (status != REG_VALID)
3356 mark_value_bytes_unavailable (result_value, 0, 16);
3357 else
3358 memcpy (buf, raw_buf, 16);
3359 /* Read upper 128bits. */
3360 status = regcache_raw_read (regcache,
3361 tdep->ymm0h_regnum + regnum,
3362 raw_buf);
3363 if (status != REG_VALID)
3364 mark_value_bytes_unavailable (result_value, 16, 32);
3365 else
3366 memcpy (buf + 16, raw_buf, 16);
3367 }
3368 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3369 {
3370 regnum -= tdep->ymm16_regnum;
3371 /* Extract (always little endian). Read lower 128bits. */
3372 status = regcache_raw_read (regcache,
3373 I387_XMM16_REGNUM (tdep) + regnum,
3374 raw_buf);
3375 if (status != REG_VALID)
3376 mark_value_bytes_unavailable (result_value, 0, 16);
3377 else
3378 memcpy (buf, raw_buf, 16);
3379 /* Read upper 128bits. */
3380 status = regcache_raw_read (regcache,
3381 tdep->ymm16h_regnum + regnum,
3382 raw_buf);
3383 if (status != REG_VALID)
3384 mark_value_bytes_unavailable (result_value, 16, 16);
3385 else
3386 memcpy (buf + 16, raw_buf, 16);
3387 }
3388 else if (i386_word_regnum_p (gdbarch, regnum))
3389 {
3390 int gpnum = regnum - tdep->ax_regnum;
3391
3392 /* Extract (always little endian). */
3393 status = regcache_raw_read (regcache, gpnum, raw_buf);
3394 if (status != REG_VALID)
3395 mark_value_bytes_unavailable (result_value, 0,
3396 TYPE_LENGTH (value_type (result_value)));
3397 else
3398 memcpy (buf, raw_buf, 2);
3399 }
3400 else if (i386_byte_regnum_p (gdbarch, regnum))
3401 {
3402 /* Check byte pseudo registers last since this function will
3403 be called from amd64_pseudo_register_read, which handles
3404 byte pseudo registers differently. */
3405 int gpnum = regnum - tdep->al_regnum;
3406
3407 /* Extract (always little endian). We read both lower and
3408 upper registers. */
3409 status = regcache_raw_read (regcache, gpnum % 4, raw_buf);
3410 if (status != REG_VALID)
3411 mark_value_bytes_unavailable (result_value, 0,
3412 TYPE_LENGTH (value_type (result_value)));
3413 else if (gpnum >= 4)
3414 memcpy (buf, raw_buf + 1, 1);
3415 else
3416 memcpy (buf, raw_buf, 1);
3417 }
3418 else
3419 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3420 }
3421 }
3422
3423 static struct value *
3424 i386_pseudo_register_read_value (struct gdbarch *gdbarch,
3425 struct regcache *regcache,
3426 int regnum)
3427 {
3428 struct value *result;
3429
3430 result = allocate_value (register_type (gdbarch, regnum));
3431 VALUE_LVAL (result) = lval_register;
3432 VALUE_REGNUM (result) = regnum;
3433
3434 i386_pseudo_register_read_into_value (gdbarch, regcache, regnum, result);
3435
3436 return result;
3437 }
3438
3439 void
3440 i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
3441 int regnum, const gdb_byte *buf)
3442 {
3443 gdb_byte raw_buf[MAX_REGISTER_SIZE];
3444
3445 if (i386_mmx_regnum_p (gdbarch, regnum))
3446 {
3447 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3448
3449 /* Read ... */
3450 regcache_raw_read (regcache, fpnum, raw_buf);
3451 /* ... Modify ... (always little endian). */
3452 memcpy (raw_buf, buf, register_size (gdbarch, regnum));
3453 /* ... Write. */
3454 regcache_raw_write (regcache, fpnum, raw_buf);
3455 }
3456 else
3457 {
3458 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3459
3460 if (i386_bnd_regnum_p (gdbarch, regnum))
3461 {
3462 ULONGEST upper, lower;
3463 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
3464 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3465
3466 /* New values from input value. */
3467 regnum -= tdep->bnd0_regnum;
3468 lower = extract_unsigned_integer (buf, size, byte_order);
3469 upper = extract_unsigned_integer (buf + size, size, byte_order);
3470
3471 /* Fetching register buffer. */
3472 regcache_raw_read (regcache,
3473 I387_BND0R_REGNUM (tdep) + regnum,
3474 raw_buf);
3475
3476 upper = ~upper;
3477
3478 /* Set register bits. */
3479 memcpy (raw_buf, &lower, 8);
3480 memcpy (raw_buf + 8, &upper, 8);
3481
3482
3483 regcache_raw_write (regcache,
3484 I387_BND0R_REGNUM (tdep) + regnum,
3485 raw_buf);
3486 }
3487 else if (i386_k_regnum_p (gdbarch, regnum))
3488 {
3489 regnum -= tdep->k0_regnum;
3490
3491 regcache_raw_write (regcache,
3492 tdep->k0_regnum + regnum,
3493 buf);
3494 }
3495 else if (i386_zmm_regnum_p (gdbarch, regnum))
3496 {
3497 regnum -= tdep->zmm0_regnum;
3498
3499 if (regnum < num_lower_zmm_regs)
3500 {
3501 /* Write lower 128bits. */
3502 regcache_raw_write (regcache,
3503 I387_XMM0_REGNUM (tdep) + regnum,
3504 buf);
3505 /* Write upper 128bits. */
3506 regcache_raw_write (regcache,
3507 I387_YMM0_REGNUM (tdep) + regnum,
3508 buf + 16);
3509 }
3510 else
3511 {
3512 /* Write lower 128bits. */
3513 regcache_raw_write (regcache,
3514 I387_XMM16_REGNUM (tdep) + regnum
3515 - num_lower_zmm_regs,
3516 buf);
3517 /* Write upper 128bits. */
3518 regcache_raw_write (regcache,
3519 I387_YMM16H_REGNUM (tdep) + regnum
3520 - num_lower_zmm_regs,
3521 buf + 16);
3522 }
3523 /* Write upper 256bits. */
3524 regcache_raw_write (regcache,
3525 tdep->zmm0h_regnum + regnum,
3526 buf + 32);
3527 }
3528 else if (i386_ymm_regnum_p (gdbarch, regnum))
3529 {
3530 regnum -= tdep->ymm0_regnum;
3531
3532 /* ... Write lower 128bits. */
3533 regcache_raw_write (regcache,
3534 I387_XMM0_REGNUM (tdep) + regnum,
3535 buf);
3536 /* ... Write upper 128bits. */
3537 regcache_raw_write (regcache,
3538 tdep->ymm0h_regnum + regnum,
3539 buf + 16);
3540 }
3541 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3542 {
3543 regnum -= tdep->ymm16_regnum;
3544
3545 /* ... Write lower 128bits. */
3546 regcache_raw_write (regcache,
3547 I387_XMM16_REGNUM (tdep) + regnum,
3548 buf);
3549 /* ... Write upper 128bits. */
3550 regcache_raw_write (regcache,
3551 tdep->ymm16h_regnum + regnum,
3552 buf + 16);
3553 }
3554 else if (i386_word_regnum_p (gdbarch, regnum))
3555 {
3556 int gpnum = regnum - tdep->ax_regnum;
3557
3558 /* Read ... */
3559 regcache_raw_read (regcache, gpnum, raw_buf);
3560 /* ... Modify ... (always little endian). */
3561 memcpy (raw_buf, buf, 2);
3562 /* ... Write. */
3563 regcache_raw_write (regcache, gpnum, raw_buf);
3564 }
3565 else if (i386_byte_regnum_p (gdbarch, regnum))
3566 {
3567 /* Check byte pseudo registers last since this function will
3568 be called from amd64_pseudo_register_read, which handles
3569 byte pseudo registers differently. */
3570 int gpnum = regnum - tdep->al_regnum;
3571
3572 /* Read ... We read both lower and upper registers. */
3573 regcache_raw_read (regcache, gpnum % 4, raw_buf);
3574 /* ... Modify ... (always little endian). */
3575 if (gpnum >= 4)
3576 memcpy (raw_buf + 1, buf, 1);
3577 else
3578 memcpy (raw_buf, buf, 1);
3579 /* ... Write. */
3580 regcache_raw_write (regcache, gpnum % 4, raw_buf);
3581 }
3582 else
3583 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3584 }
3585 }
3586 \f
3587
3588 /* Return the register number of the register allocated by GCC after
3589 REGNUM, or -1 if there is no such register. */
3590
3591 static int
3592 i386_next_regnum (int regnum)
3593 {
3594 /* GCC allocates the registers in the order:
3595
3596 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
3597
3598 Since storing a variable in %esp doesn't make any sense we return
3599 -1 for %ebp and for %esp itself. */
3600 static int next_regnum[] =
3601 {
3602 I386_EDX_REGNUM, /* Slot for %eax. */
3603 I386_EBX_REGNUM, /* Slot for %ecx. */
3604 I386_ECX_REGNUM, /* Slot for %edx. */
3605 I386_ESI_REGNUM, /* Slot for %ebx. */
3606 -1, -1, /* Slots for %esp and %ebp. */
3607 I386_EDI_REGNUM, /* Slot for %esi. */
3608 I386_EBP_REGNUM /* Slot for %edi. */
3609 };
3610
3611 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
3612 return next_regnum[regnum];
3613
3614 return -1;
3615 }
3616
3617 /* Return nonzero if a value of type TYPE stored in register REGNUM
3618 needs any special handling. */
3619
3620 static int
3621 i386_convert_register_p (struct gdbarch *gdbarch,
3622 int regnum, struct type *type)
3623 {
3624 int len = TYPE_LENGTH (type);
3625
3626 /* Values may be spread across multiple registers. Most debugging
3627 formats aren't expressive enough to specify the locations, so
3628 some heuristics is involved. Right now we only handle types that
3629 have a length that is a multiple of the word size, since GCC
3630 doesn't seem to put any other types into registers. */
3631 if (len > 4 && len % 4 == 0)
3632 {
3633 int last_regnum = regnum;
3634
3635 while (len > 4)
3636 {
3637 last_regnum = i386_next_regnum (last_regnum);
3638 len -= 4;
3639 }
3640
3641 if (last_regnum != -1)
3642 return 1;
3643 }
3644
3645 return i387_convert_register_p (gdbarch, regnum, type);
3646 }
3647
3648 /* Read a value of type TYPE from register REGNUM in frame FRAME, and
3649 return its contents in TO. */
3650
3651 static int
3652 i386_register_to_value (struct frame_info *frame, int regnum,
3653 struct type *type, gdb_byte *to,
3654 int *optimizedp, int *unavailablep)
3655 {
3656 struct gdbarch *gdbarch = get_frame_arch (frame);
3657 int len = TYPE_LENGTH (type);
3658
3659 if (i386_fp_regnum_p (gdbarch, regnum))
3660 return i387_register_to_value (frame, regnum, type, to,
3661 optimizedp, unavailablep);
3662
3663 /* Read a value spread across multiple registers. */
3664
3665 gdb_assert (len > 4 && len % 4 == 0);
3666
3667 while (len > 0)
3668 {
3669 gdb_assert (regnum != -1);
3670 gdb_assert (register_size (gdbarch, regnum) == 4);
3671
3672 if (!get_frame_register_bytes (frame, regnum, 0,
3673 register_size (gdbarch, regnum),
3674 to, optimizedp, unavailablep))
3675 return 0;
3676
3677 regnum = i386_next_regnum (regnum);
3678 len -= 4;
3679 to += 4;
3680 }
3681
3682 *optimizedp = *unavailablep = 0;
3683 return 1;
3684 }
3685
3686 /* Write the contents FROM of a value of type TYPE into register
3687 REGNUM in frame FRAME. */
3688
3689 static void
3690 i386_value_to_register (struct frame_info *frame, int regnum,
3691 struct type *type, const gdb_byte *from)
3692 {
3693 int len = TYPE_LENGTH (type);
3694
3695 if (i386_fp_regnum_p (get_frame_arch (frame), regnum))
3696 {
3697 i387_value_to_register (frame, regnum, type, from);
3698 return;
3699 }
3700
3701 /* Write a value spread across multiple registers. */
3702
3703 gdb_assert (len > 4 && len % 4 == 0);
3704
3705 while (len > 0)
3706 {
3707 gdb_assert (regnum != -1);
3708 gdb_assert (register_size (get_frame_arch (frame), regnum) == 4);
3709
3710 put_frame_register (frame, regnum, from);
3711 regnum = i386_next_regnum (regnum);
3712 len -= 4;
3713 from += 4;
3714 }
3715 }
3716 \f
3717 /* Supply register REGNUM from the buffer specified by GREGS and LEN
3718 in the general-purpose register set REGSET to register cache
3719 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3720
3721 void
3722 i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
3723 int regnum, const void *gregs, size_t len)
3724 {
3725 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3726 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3727 const gdb_byte *regs = gregs;
3728 int i;
3729
3730 gdb_assert (len >= tdep->sizeof_gregset);
3731
3732 for (i = 0; i < tdep->gregset_num_regs; i++)
3733 {
3734 if ((regnum == i || regnum == -1)
3735 && tdep->gregset_reg_offset[i] != -1)
3736 regcache_raw_supply (regcache, i, regs + tdep->gregset_reg_offset[i]);
3737 }
3738 }
3739
3740 /* Collect register REGNUM from the register cache REGCACHE and store
3741 it in the buffer specified by GREGS and LEN as described by the
3742 general-purpose register set REGSET. If REGNUM is -1, do this for
3743 all registers in REGSET. */
3744
3745 static void
3746 i386_collect_gregset (const struct regset *regset,
3747 const struct regcache *regcache,
3748 int regnum, void *gregs, size_t len)
3749 {
3750 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3751 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3752 gdb_byte *regs = gregs;
3753 int i;
3754
3755 gdb_assert (len >= tdep->sizeof_gregset);
3756
3757 for (i = 0; i < tdep->gregset_num_regs; i++)
3758 {
3759 if ((regnum == i || regnum == -1)
3760 && tdep->gregset_reg_offset[i] != -1)
3761 regcache_raw_collect (regcache, i, regs + tdep->gregset_reg_offset[i]);
3762 }
3763 }
3764
3765 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
3766 in the floating-point register set REGSET to register cache
3767 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3768
3769 static void
3770 i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
3771 int regnum, const void *fpregs, size_t len)
3772 {
3773 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3774 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3775
3776 if (len == I387_SIZEOF_FXSAVE)
3777 {
3778 i387_supply_fxsave (regcache, regnum, fpregs);
3779 return;
3780 }
3781
3782 gdb_assert (len >= tdep->sizeof_fpregset);
3783 i387_supply_fsave (regcache, regnum, fpregs);
3784 }
3785
3786 /* Collect register REGNUM from the register cache REGCACHE and store
3787 it in the buffer specified by FPREGS and LEN as described by the
3788 floating-point register set REGSET. If REGNUM is -1, do this for
3789 all registers in REGSET. */
3790
3791 static void
3792 i386_collect_fpregset (const struct regset *regset,
3793 const struct regcache *regcache,
3794 int regnum, void *fpregs, size_t len)
3795 {
3796 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3797 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3798
3799 if (len == I387_SIZEOF_FXSAVE)
3800 {
3801 i387_collect_fxsave (regcache, regnum, fpregs);
3802 return;
3803 }
3804
3805 gdb_assert (len >= tdep->sizeof_fpregset);
3806 i387_collect_fsave (regcache, regnum, fpregs);
3807 }
3808
3809 /* Register set definitions. */
3810
3811 const struct regset i386_gregset =
3812 {
3813 NULL, i386_supply_gregset, i386_collect_gregset
3814 };
3815
3816 const struct regset i386_fpregset =
3817 {
3818 NULL, i386_supply_fpregset, i386_collect_fpregset
3819 };
3820
3821 /* Default iterator over core file register note sections. */
3822
3823 void
3824 i386_iterate_over_regset_sections (struct gdbarch *gdbarch,
3825 iterate_over_regset_sections_cb *cb,
3826 void *cb_data,
3827 const struct regcache *regcache)
3828 {
3829 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3830
3831 cb (".reg", tdep->sizeof_gregset, &i386_gregset, NULL, cb_data);
3832 if (tdep->sizeof_fpregset)
3833 cb (".reg2", tdep->sizeof_fpregset, tdep->fpregset, NULL, cb_data);
3834 }
3835 \f
3836
3837 /* Stuff for WIN32 PE style DLL's but is pretty generic really. */
3838
3839 CORE_ADDR
3840 i386_pe_skip_trampoline_code (struct frame_info *frame,
3841 CORE_ADDR pc, char *name)
3842 {
3843 struct gdbarch *gdbarch = get_frame_arch (frame);
3844 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3845
3846 /* jmp *(dest) */
3847 if (pc && read_memory_unsigned_integer (pc, 2, byte_order) == 0x25ff)
3848 {
3849 unsigned long indirect =
3850 read_memory_unsigned_integer (pc + 2, 4, byte_order);
3851 struct minimal_symbol *indsym =
3852 indirect ? lookup_minimal_symbol_by_pc (indirect).minsym : 0;
3853 const char *symname = indsym ? MSYMBOL_LINKAGE_NAME (indsym) : 0;
3854
3855 if (symname)
3856 {
3857 if (strncmp (symname, "__imp_", 6) == 0
3858 || strncmp (symname, "_imp_", 5) == 0)
3859 return name ? 1 :
3860 read_memory_unsigned_integer (indirect, 4, byte_order);
3861 }
3862 }
3863 return 0; /* Not a trampoline. */
3864 }
3865 \f
3866
3867 /* Return whether the THIS_FRAME corresponds to a sigtramp
3868 routine. */
3869
3870 int
3871 i386_sigtramp_p (struct frame_info *this_frame)
3872 {
3873 CORE_ADDR pc = get_frame_pc (this_frame);
3874 const char *name;
3875
3876 find_pc_partial_function (pc, &name, NULL, NULL);
3877 return (name && strcmp ("_sigtramp", name) == 0);
3878 }
3879 \f
3880
3881 /* We have two flavours of disassembly. The machinery on this page
3882 deals with switching between those. */
3883
3884 static int
3885 i386_print_insn (bfd_vma pc, struct disassemble_info *info)
3886 {
3887 gdb_assert (disassembly_flavor == att_flavor
3888 || disassembly_flavor == intel_flavor);
3889
3890 /* FIXME: kettenis/20020915: Until disassembler_options is properly
3891 constified, cast to prevent a compiler warning. */
3892 info->disassembler_options = (char *) disassembly_flavor;
3893
3894 return print_insn_i386 (pc, info);
3895 }
3896 \f
3897
3898 /* There are a few i386 architecture variants that differ only
3899 slightly from the generic i386 target. For now, we don't give them
3900 their own source file, but include them here. As a consequence,
3901 they'll always be included. */
3902
3903 /* System V Release 4 (SVR4). */
3904
3905 /* Return whether THIS_FRAME corresponds to a SVR4 sigtramp
3906 routine. */
3907
3908 static int
3909 i386_svr4_sigtramp_p (struct frame_info *this_frame)
3910 {
3911 CORE_ADDR pc = get_frame_pc (this_frame);
3912 const char *name;
3913
3914 /* The origin of these symbols is currently unknown. */
3915 find_pc_partial_function (pc, &name, NULL, NULL);
3916 return (name && (strcmp ("_sigreturn", name) == 0
3917 || strcmp ("sigvechandler", name) == 0));
3918 }
3919
3920 /* Assuming THIS_FRAME is for a SVR4 sigtramp routine, return the
3921 address of the associated sigcontext (ucontext) structure. */
3922
3923 static CORE_ADDR
3924 i386_svr4_sigcontext_addr (struct frame_info *this_frame)
3925 {
3926 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3927 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3928 gdb_byte buf[4];
3929 CORE_ADDR sp;
3930
3931 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
3932 sp = extract_unsigned_integer (buf, 4, byte_order);
3933
3934 return read_memory_unsigned_integer (sp + 8, 4, byte_order);
3935 }
3936
3937 \f
3938
3939 /* Implementation of `gdbarch_stap_is_single_operand', as defined in
3940 gdbarch.h. */
3941
3942 int
3943 i386_stap_is_single_operand (struct gdbarch *gdbarch, const char *s)
3944 {
3945 return (*s == '$' /* Literal number. */
3946 || (isdigit (*s) && s[1] == '(' && s[2] == '%') /* Displacement. */
3947 || (*s == '(' && s[1] == '%') /* Register indirection. */
3948 || (*s == '%' && isalpha (s[1]))); /* Register access. */
3949 }
3950
3951 /* Helper function for i386_stap_parse_special_token.
3952
3953 This function parses operands of the form `-8+3+1(%rbp)', which
3954 must be interpreted as `*(-8 + 3 - 1 + (void *) $eax)'.
3955
3956 Return 1 if the operand was parsed successfully, zero
3957 otherwise. */
3958
3959 static int
3960 i386_stap_parse_special_token_triplet (struct gdbarch *gdbarch,
3961 struct stap_parse_info *p)
3962 {
3963 const char *s = p->arg;
3964
3965 if (isdigit (*s) || *s == '-' || *s == '+')
3966 {
3967 int got_minus[3];
3968 int i;
3969 long displacements[3];
3970 const char *start;
3971 char *regname;
3972 int len;
3973 struct stoken str;
3974 char *endp;
3975
3976 got_minus[0] = 0;
3977 if (*s == '+')
3978 ++s;
3979 else if (*s == '-')
3980 {
3981 ++s;
3982 got_minus[0] = 1;
3983 }
3984
3985 if (!isdigit ((unsigned char) *s))
3986 return 0;
3987
3988 displacements[0] = strtol (s, &endp, 10);
3989 s = endp;
3990
3991 if (*s != '+' && *s != '-')
3992 {
3993 /* We are not dealing with a triplet. */
3994 return 0;
3995 }
3996
3997 got_minus[1] = 0;
3998 if (*s == '+')
3999 ++s;
4000 else
4001 {
4002 ++s;
4003 got_minus[1] = 1;
4004 }
4005
4006 if (!isdigit ((unsigned char) *s))
4007 return 0;
4008
4009 displacements[1] = strtol (s, &endp, 10);
4010 s = endp;
4011
4012 if (*s != '+' && *s != '-')
4013 {
4014 /* We are not dealing with a triplet. */
4015 return 0;
4016 }
4017
4018 got_minus[2] = 0;
4019 if (*s == '+')
4020 ++s;
4021 else
4022 {
4023 ++s;
4024 got_minus[2] = 1;
4025 }
4026
4027 if (!isdigit ((unsigned char) *s))
4028 return 0;
4029
4030 displacements[2] = strtol (s, &endp, 10);
4031 s = endp;
4032
4033 if (*s != '(' || s[1] != '%')
4034 return 0;
4035
4036 s += 2;
4037 start = s;
4038
4039 while (isalnum (*s))
4040 ++s;
4041
4042 if (*s++ != ')')
4043 return 0;
4044
4045 len = s - start - 1;
4046 regname = alloca (len + 1);
4047
4048 strncpy (regname, start, len);
4049 regname[len] = '\0';
4050
4051 if (user_reg_map_name_to_regnum (gdbarch, regname, len) == -1)
4052 error (_("Invalid register name `%s' on expression `%s'."),
4053 regname, p->saved_arg);
4054
4055 for (i = 0; i < 3; i++)
4056 {
4057 write_exp_elt_opcode (&p->pstate, OP_LONG);
4058 write_exp_elt_type
4059 (&p->pstate, builtin_type (gdbarch)->builtin_long);
4060 write_exp_elt_longcst (&p->pstate, displacements[i]);
4061 write_exp_elt_opcode (&p->pstate, OP_LONG);
4062 if (got_minus[i])
4063 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
4064 }
4065
4066 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4067 str.ptr = regname;
4068 str.length = len;
4069 write_exp_string (&p->pstate, str);
4070 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4071
4072 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4073 write_exp_elt_type (&p->pstate,
4074 builtin_type (gdbarch)->builtin_data_ptr);
4075 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4076
4077 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4078 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4079 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4080
4081 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4082 write_exp_elt_type (&p->pstate,
4083 lookup_pointer_type (p->arg_type));
4084 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4085
4086 write_exp_elt_opcode (&p->pstate, UNOP_IND);
4087
4088 p->arg = s;
4089
4090 return 1;
4091 }
4092
4093 return 0;
4094 }
4095
4096 /* Helper function for i386_stap_parse_special_token.
4097
4098 This function parses operands of the form `register base +
4099 (register index * size) + offset', as represented in
4100 `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4101
4102 Return 1 if the operand was parsed successfully, zero
4103 otherwise. */
4104
4105 static int
4106 i386_stap_parse_special_token_three_arg_disp (struct gdbarch *gdbarch,
4107 struct stap_parse_info *p)
4108 {
4109 const char *s = p->arg;
4110
4111 if (isdigit (*s) || *s == '(' || *s == '-' || *s == '+')
4112 {
4113 int offset_minus = 0;
4114 long offset = 0;
4115 int size_minus = 0;
4116 long size = 0;
4117 const char *start;
4118 char *base;
4119 int len_base;
4120 char *index;
4121 int len_index;
4122 struct stoken base_token, index_token;
4123
4124 if (*s == '+')
4125 ++s;
4126 else if (*s == '-')
4127 {
4128 ++s;
4129 offset_minus = 1;
4130 }
4131
4132 if (offset_minus && !isdigit (*s))
4133 return 0;
4134
4135 if (isdigit (*s))
4136 {
4137 char *endp;
4138
4139 offset = strtol (s, &endp, 10);
4140 s = endp;
4141 }
4142
4143 if (*s != '(' || s[1] != '%')
4144 return 0;
4145
4146 s += 2;
4147 start = s;
4148
4149 while (isalnum (*s))
4150 ++s;
4151
4152 if (*s != ',' || s[1] != '%')
4153 return 0;
4154
4155 len_base = s - start;
4156 base = alloca (len_base + 1);
4157 strncpy (base, start, len_base);
4158 base[len_base] = '\0';
4159
4160 if (user_reg_map_name_to_regnum (gdbarch, base, len_base) == -1)
4161 error (_("Invalid register name `%s' on expression `%s'."),
4162 base, p->saved_arg);
4163
4164 s += 2;
4165 start = s;
4166
4167 while (isalnum (*s))
4168 ++s;
4169
4170 len_index = s - start;
4171 index = alloca (len_index + 1);
4172 strncpy (index, start, len_index);
4173 index[len_index] = '\0';
4174
4175 if (user_reg_map_name_to_regnum (gdbarch, index, len_index) == -1)
4176 error (_("Invalid register name `%s' on expression `%s'."),
4177 index, p->saved_arg);
4178
4179 if (*s != ',' && *s != ')')
4180 return 0;
4181
4182 if (*s == ',')
4183 {
4184 char *endp;
4185
4186 ++s;
4187 if (*s == '+')
4188 ++s;
4189 else if (*s == '-')
4190 {
4191 ++s;
4192 size_minus = 1;
4193 }
4194
4195 size = strtol (s, &endp, 10);
4196 s = endp;
4197
4198 if (*s != ')')
4199 return 0;
4200 }
4201
4202 ++s;
4203
4204 if (offset)
4205 {
4206 write_exp_elt_opcode (&p->pstate, OP_LONG);
4207 write_exp_elt_type (&p->pstate,
4208 builtin_type (gdbarch)->builtin_long);
4209 write_exp_elt_longcst (&p->pstate, offset);
4210 write_exp_elt_opcode (&p->pstate, OP_LONG);
4211 if (offset_minus)
4212 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
4213 }
4214
4215 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4216 base_token.ptr = base;
4217 base_token.length = len_base;
4218 write_exp_string (&p->pstate, base_token);
4219 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4220
4221 if (offset)
4222 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4223
4224 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4225 index_token.ptr = index;
4226 index_token.length = len_index;
4227 write_exp_string (&p->pstate, index_token);
4228 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4229
4230 if (size)
4231 {
4232 write_exp_elt_opcode (&p->pstate, OP_LONG);
4233 write_exp_elt_type (&p->pstate,
4234 builtin_type (gdbarch)->builtin_long);
4235 write_exp_elt_longcst (&p->pstate, size);
4236 write_exp_elt_opcode (&p->pstate, OP_LONG);
4237 if (size_minus)
4238 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
4239 write_exp_elt_opcode (&p->pstate, BINOP_MUL);
4240 }
4241
4242 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4243
4244 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4245 write_exp_elt_type (&p->pstate,
4246 lookup_pointer_type (p->arg_type));
4247 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4248
4249 write_exp_elt_opcode (&p->pstate, UNOP_IND);
4250
4251 p->arg = s;
4252
4253 return 1;
4254 }
4255
4256 return 0;
4257 }
4258
4259 /* Implementation of `gdbarch_stap_parse_special_token', as defined in
4260 gdbarch.h. */
4261
4262 int
4263 i386_stap_parse_special_token (struct gdbarch *gdbarch,
4264 struct stap_parse_info *p)
4265 {
4266 /* In order to parse special tokens, we use a state-machine that go
4267 through every known token and try to get a match. */
4268 enum
4269 {
4270 TRIPLET,
4271 THREE_ARG_DISPLACEMENT,
4272 DONE
4273 };
4274 int current_state;
4275
4276 current_state = TRIPLET;
4277
4278 /* The special tokens to be parsed here are:
4279
4280 - `register base + (register index * size) + offset', as represented
4281 in `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4282
4283 - Operands of the form `-8+3+1(%rbp)', which must be interpreted as
4284 `*(-8 + 3 - 1 + (void *) $eax)'. */
4285
4286 while (current_state != DONE)
4287 {
4288 switch (current_state)
4289 {
4290 case TRIPLET:
4291 if (i386_stap_parse_special_token_triplet (gdbarch, p))
4292 return 1;
4293 break;
4294
4295 case THREE_ARG_DISPLACEMENT:
4296 if (i386_stap_parse_special_token_three_arg_disp (gdbarch, p))
4297 return 1;
4298 break;
4299 }
4300
4301 /* Advancing to the next state. */
4302 ++current_state;
4303 }
4304
4305 return 0;
4306 }
4307
4308 \f
4309
4310 /* gdbarch gnu_triplet_regexp method. Both arches are acceptable as GDB always
4311 also supplies -m64 or -m32 by gdbarch_gcc_target_options. */
4312
4313 static const char *
4314 i386_gnu_triplet_regexp (struct gdbarch *gdbarch)
4315 {
4316 return "(x86_64|i.86)";
4317 }
4318
4319 \f
4320
4321 /* Generic ELF. */
4322
4323 void
4324 i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4325 {
4326 static const char *const stap_integer_prefixes[] = { "$", NULL };
4327 static const char *const stap_register_prefixes[] = { "%", NULL };
4328 static const char *const stap_register_indirection_prefixes[] = { "(",
4329 NULL };
4330 static const char *const stap_register_indirection_suffixes[] = { ")",
4331 NULL };
4332
4333 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
4334 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
4335
4336 /* Registering SystemTap handlers. */
4337 set_gdbarch_stap_integer_prefixes (gdbarch, stap_integer_prefixes);
4338 set_gdbarch_stap_register_prefixes (gdbarch, stap_register_prefixes);
4339 set_gdbarch_stap_register_indirection_prefixes (gdbarch,
4340 stap_register_indirection_prefixes);
4341 set_gdbarch_stap_register_indirection_suffixes (gdbarch,
4342 stap_register_indirection_suffixes);
4343 set_gdbarch_stap_is_single_operand (gdbarch,
4344 i386_stap_is_single_operand);
4345 set_gdbarch_stap_parse_special_token (gdbarch,
4346 i386_stap_parse_special_token);
4347
4348 set_gdbarch_gnu_triplet_regexp (gdbarch, i386_gnu_triplet_regexp);
4349 }
4350
4351 /* System V Release 4 (SVR4). */
4352
4353 void
4354 i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4355 {
4356 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4357
4358 /* System V Release 4 uses ELF. */
4359 i386_elf_init_abi (info, gdbarch);
4360
4361 /* System V Release 4 has shared libraries. */
4362 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
4363
4364 tdep->sigtramp_p = i386_svr4_sigtramp_p;
4365 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
4366 tdep->sc_pc_offset = 36 + 14 * 4;
4367 tdep->sc_sp_offset = 36 + 17 * 4;
4368
4369 tdep->jb_pc_offset = 20;
4370 }
4371
4372 /* DJGPP. */
4373
4374 static void
4375 i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4376 {
4377 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4378
4379 /* DJGPP doesn't have any special frames for signal handlers. */
4380 tdep->sigtramp_p = NULL;
4381
4382 tdep->jb_pc_offset = 36;
4383
4384 /* DJGPP does not support the SSE registers. */
4385 if (! tdesc_has_registers (info.target_desc))
4386 tdep->tdesc = tdesc_i386_mmx;
4387
4388 /* Native compiler is GCC, which uses the SVR4 register numbering
4389 even in COFF and STABS. See the comment in i386_gdbarch_init,
4390 before the calls to set_gdbarch_stab_reg_to_regnum and
4391 set_gdbarch_sdb_reg_to_regnum. */
4392 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
4393 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
4394
4395 set_gdbarch_has_dos_based_file_system (gdbarch, 1);
4396
4397 set_gdbarch_gnu_triplet_regexp (gdbarch, i386_gnu_triplet_regexp);
4398 }
4399 \f
4400
4401 /* i386 register groups. In addition to the normal groups, add "mmx"
4402 and "sse". */
4403
4404 static struct reggroup *i386_sse_reggroup;
4405 static struct reggroup *i386_mmx_reggroup;
4406
4407 static void
4408 i386_init_reggroups (void)
4409 {
4410 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
4411 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
4412 }
4413
4414 static void
4415 i386_add_reggroups (struct gdbarch *gdbarch)
4416 {
4417 reggroup_add (gdbarch, i386_sse_reggroup);
4418 reggroup_add (gdbarch, i386_mmx_reggroup);
4419 reggroup_add (gdbarch, general_reggroup);
4420 reggroup_add (gdbarch, float_reggroup);
4421 reggroup_add (gdbarch, all_reggroup);
4422 reggroup_add (gdbarch, save_reggroup);
4423 reggroup_add (gdbarch, restore_reggroup);
4424 reggroup_add (gdbarch, vector_reggroup);
4425 reggroup_add (gdbarch, system_reggroup);
4426 }
4427
4428 int
4429 i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
4430 struct reggroup *group)
4431 {
4432 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4433 int fp_regnum_p, mmx_regnum_p, xmm_regnum_p, mxcsr_regnum_p,
4434 ymm_regnum_p, ymmh_regnum_p, ymm_avx512_regnum_p, ymmh_avx512_regnum_p,
4435 bndr_regnum_p, bnd_regnum_p, k_regnum_p, zmm_regnum_p, zmmh_regnum_p,
4436 zmm_avx512_regnum_p, mpx_ctrl_regnum_p, xmm_avx512_regnum_p,
4437 avx512_p, avx_p, sse_p;
4438
4439 /* Don't include pseudo registers, except for MMX, in any register
4440 groups. */
4441 if (i386_byte_regnum_p (gdbarch, regnum))
4442 return 0;
4443
4444 if (i386_word_regnum_p (gdbarch, regnum))
4445 return 0;
4446
4447 if (i386_dword_regnum_p (gdbarch, regnum))
4448 return 0;
4449
4450 mmx_regnum_p = i386_mmx_regnum_p (gdbarch, regnum);
4451 if (group == i386_mmx_reggroup)
4452 return mmx_regnum_p;
4453
4454 xmm_regnum_p = i386_xmm_regnum_p (gdbarch, regnum);
4455 xmm_avx512_regnum_p = i386_xmm_avx512_regnum_p (gdbarch, regnum);
4456 mxcsr_regnum_p = i386_mxcsr_regnum_p (gdbarch, regnum);
4457 if (group == i386_sse_reggroup)
4458 return xmm_regnum_p || xmm_avx512_regnum_p || mxcsr_regnum_p;
4459
4460 ymm_regnum_p = i386_ymm_regnum_p (gdbarch, regnum);
4461 ymm_avx512_regnum_p = i386_ymm_avx512_regnum_p (gdbarch, regnum);
4462 zmm_regnum_p = i386_zmm_regnum_p (gdbarch, regnum);
4463
4464 avx512_p = ((tdep->xcr0 & X86_XSTATE_AVX512_MASK)
4465 == X86_XSTATE_AVX512_MASK);
4466 avx_p = ((tdep->xcr0 & X86_XSTATE_AVX512_MASK)
4467 == X86_XSTATE_AVX_MASK) && !avx512_p;
4468 sse_p = ((tdep->xcr0 & X86_XSTATE_AVX512_MASK)
4469 == X86_XSTATE_SSE_MASK) && !avx512_p && ! avx_p;
4470
4471 if (group == vector_reggroup)
4472 return (mmx_regnum_p
4473 || (zmm_regnum_p && avx512_p)
4474 || ((ymm_regnum_p || ymm_avx512_regnum_p) && avx_p)
4475 || ((xmm_regnum_p || xmm_avx512_regnum_p) && sse_p)
4476 || mxcsr_regnum_p);
4477
4478 fp_regnum_p = (i386_fp_regnum_p (gdbarch, regnum)
4479 || i386_fpc_regnum_p (gdbarch, regnum));
4480 if (group == float_reggroup)
4481 return fp_regnum_p;
4482
4483 /* For "info reg all", don't include upper YMM registers nor XMM
4484 registers when AVX is supported. */
4485 ymmh_regnum_p = i386_ymmh_regnum_p (gdbarch, regnum);
4486 ymmh_avx512_regnum_p = i386_ymmh_avx512_regnum_p (gdbarch, regnum);
4487 zmmh_regnum_p = i386_zmmh_regnum_p (gdbarch, regnum);
4488 if (group == all_reggroup
4489 && (((xmm_regnum_p || xmm_avx512_regnum_p) && !sse_p)
4490 || ((ymm_regnum_p || ymm_avx512_regnum_p) && !avx_p)
4491 || ymmh_regnum_p
4492 || ymmh_avx512_regnum_p
4493 || zmmh_regnum_p))
4494 return 0;
4495
4496 bnd_regnum_p = i386_bnd_regnum_p (gdbarch, regnum);
4497 if (group == all_reggroup
4498 && ((bnd_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4499 return bnd_regnum_p;
4500
4501 bndr_regnum_p = i386_bndr_regnum_p (gdbarch, regnum);
4502 if (group == all_reggroup
4503 && ((bndr_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4504 return 0;
4505
4506 mpx_ctrl_regnum_p = i386_mpx_ctrl_regnum_p (gdbarch, regnum);
4507 if (group == all_reggroup
4508 && ((mpx_ctrl_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4509 return mpx_ctrl_regnum_p;
4510
4511 if (group == general_reggroup)
4512 return (!fp_regnum_p
4513 && !mmx_regnum_p
4514 && !mxcsr_regnum_p
4515 && !xmm_regnum_p
4516 && !xmm_avx512_regnum_p
4517 && !ymm_regnum_p
4518 && !ymmh_regnum_p
4519 && !ymm_avx512_regnum_p
4520 && !ymmh_avx512_regnum_p
4521 && !bndr_regnum_p
4522 && !bnd_regnum_p
4523 && !mpx_ctrl_regnum_p
4524 && !zmm_regnum_p
4525 && !zmmh_regnum_p);
4526
4527 return default_register_reggroup_p (gdbarch, regnum, group);
4528 }
4529 \f
4530
4531 /* Get the ARGIth function argument for the current function. */
4532
4533 static CORE_ADDR
4534 i386_fetch_pointer_argument (struct frame_info *frame, int argi,
4535 struct type *type)
4536 {
4537 struct gdbarch *gdbarch = get_frame_arch (frame);
4538 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4539 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
4540 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4, byte_order);
4541 }
4542
4543 #define PREFIX_REPZ 0x01
4544 #define PREFIX_REPNZ 0x02
4545 #define PREFIX_LOCK 0x04
4546 #define PREFIX_DATA 0x08
4547 #define PREFIX_ADDR 0x10
4548
4549 /* operand size */
4550 enum
4551 {
4552 OT_BYTE = 0,
4553 OT_WORD,
4554 OT_LONG,
4555 OT_QUAD,
4556 OT_DQUAD,
4557 };
4558
4559 /* i386 arith/logic operations */
4560 enum
4561 {
4562 OP_ADDL,
4563 OP_ORL,
4564 OP_ADCL,
4565 OP_SBBL,
4566 OP_ANDL,
4567 OP_SUBL,
4568 OP_XORL,
4569 OP_CMPL,
4570 };
4571
4572 struct i386_record_s
4573 {
4574 struct gdbarch *gdbarch;
4575 struct regcache *regcache;
4576 CORE_ADDR orig_addr;
4577 CORE_ADDR addr;
4578 int aflag;
4579 int dflag;
4580 int override;
4581 uint8_t modrm;
4582 uint8_t mod, reg, rm;
4583 int ot;
4584 uint8_t rex_x;
4585 uint8_t rex_b;
4586 int rip_offset;
4587 int popl_esp_hack;
4588 const int *regmap;
4589 };
4590
4591 /* Parse the "modrm" part of the memory address irp->addr points at.
4592 Returns -1 if something goes wrong, 0 otherwise. */
4593
4594 static int
4595 i386_record_modrm (struct i386_record_s *irp)
4596 {
4597 struct gdbarch *gdbarch = irp->gdbarch;
4598
4599 if (record_read_memory (gdbarch, irp->addr, &irp->modrm, 1))
4600 return -1;
4601
4602 irp->addr++;
4603 irp->mod = (irp->modrm >> 6) & 3;
4604 irp->reg = (irp->modrm >> 3) & 7;
4605 irp->rm = irp->modrm & 7;
4606
4607 return 0;
4608 }
4609
4610 /* Extract the memory address that the current instruction writes to,
4611 and return it in *ADDR. Return -1 if something goes wrong. */
4612
4613 static int
4614 i386_record_lea_modrm_addr (struct i386_record_s *irp, uint64_t *addr)
4615 {
4616 struct gdbarch *gdbarch = irp->gdbarch;
4617 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4618 gdb_byte buf[4];
4619 ULONGEST offset64;
4620
4621 *addr = 0;
4622 if (irp->aflag || irp->regmap[X86_RECORD_R8_REGNUM])
4623 {
4624 /* 32/64 bits */
4625 int havesib = 0;
4626 uint8_t scale = 0;
4627 uint8_t byte;
4628 uint8_t index = 0;
4629 uint8_t base = irp->rm;
4630
4631 if (base == 4)
4632 {
4633 havesib = 1;
4634 if (record_read_memory (gdbarch, irp->addr, &byte, 1))
4635 return -1;
4636 irp->addr++;
4637 scale = (byte >> 6) & 3;
4638 index = ((byte >> 3) & 7) | irp->rex_x;
4639 base = (byte & 7);
4640 }
4641 base |= irp->rex_b;
4642
4643 switch (irp->mod)
4644 {
4645 case 0:
4646 if ((base & 7) == 5)
4647 {
4648 base = 0xff;
4649 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4650 return -1;
4651 irp->addr += 4;
4652 *addr = extract_signed_integer (buf, 4, byte_order);
4653 if (irp->regmap[X86_RECORD_R8_REGNUM] && !havesib)
4654 *addr += irp->addr + irp->rip_offset;
4655 }
4656 break;
4657 case 1:
4658 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4659 return -1;
4660 irp->addr++;
4661 *addr = (int8_t) buf[0];
4662 break;
4663 case 2:
4664 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4665 return -1;
4666 *addr = extract_signed_integer (buf, 4, byte_order);
4667 irp->addr += 4;
4668 break;
4669 }
4670
4671 offset64 = 0;
4672 if (base != 0xff)
4673 {
4674 if (base == 4 && irp->popl_esp_hack)
4675 *addr += irp->popl_esp_hack;
4676 regcache_raw_read_unsigned (irp->regcache, irp->regmap[base],
4677 &offset64);
4678 }
4679 if (irp->aflag == 2)
4680 {
4681 *addr += offset64;
4682 }
4683 else
4684 *addr = (uint32_t) (offset64 + *addr);
4685
4686 if (havesib && (index != 4 || scale != 0))
4687 {
4688 regcache_raw_read_unsigned (irp->regcache, irp->regmap[index],
4689 &offset64);
4690 if (irp->aflag == 2)
4691 *addr += offset64 << scale;
4692 else
4693 *addr = (uint32_t) (*addr + (offset64 << scale));
4694 }
4695
4696 if (!irp->aflag)
4697 {
4698 /* Since we are in 64-bit mode with ADDR32 prefix, zero-extend
4699 address from 32-bit to 64-bit. */
4700 *addr = (uint32_t) *addr;
4701 }
4702 }
4703 else
4704 {
4705 /* 16 bits */
4706 switch (irp->mod)
4707 {
4708 case 0:
4709 if (irp->rm == 6)
4710 {
4711 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4712 return -1;
4713 irp->addr += 2;
4714 *addr = extract_signed_integer (buf, 2, byte_order);
4715 irp->rm = 0;
4716 goto no_rm;
4717 }
4718 break;
4719 case 1:
4720 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4721 return -1;
4722 irp->addr++;
4723 *addr = (int8_t) buf[0];
4724 break;
4725 case 2:
4726 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4727 return -1;
4728 irp->addr += 2;
4729 *addr = extract_signed_integer (buf, 2, byte_order);
4730 break;
4731 }
4732
4733 switch (irp->rm)
4734 {
4735 case 0:
4736 regcache_raw_read_unsigned (irp->regcache,
4737 irp->regmap[X86_RECORD_REBX_REGNUM],
4738 &offset64);
4739 *addr = (uint32_t) (*addr + offset64);
4740 regcache_raw_read_unsigned (irp->regcache,
4741 irp->regmap[X86_RECORD_RESI_REGNUM],
4742 &offset64);
4743 *addr = (uint32_t) (*addr + offset64);
4744 break;
4745 case 1:
4746 regcache_raw_read_unsigned (irp->regcache,
4747 irp->regmap[X86_RECORD_REBX_REGNUM],
4748 &offset64);
4749 *addr = (uint32_t) (*addr + offset64);
4750 regcache_raw_read_unsigned (irp->regcache,
4751 irp->regmap[X86_RECORD_REDI_REGNUM],
4752 &offset64);
4753 *addr = (uint32_t) (*addr + offset64);
4754 break;
4755 case 2:
4756 regcache_raw_read_unsigned (irp->regcache,
4757 irp->regmap[X86_RECORD_REBP_REGNUM],
4758 &offset64);
4759 *addr = (uint32_t) (*addr + offset64);
4760 regcache_raw_read_unsigned (irp->regcache,
4761 irp->regmap[X86_RECORD_RESI_REGNUM],
4762 &offset64);
4763 *addr = (uint32_t) (*addr + offset64);
4764 break;
4765 case 3:
4766 regcache_raw_read_unsigned (irp->regcache,
4767 irp->regmap[X86_RECORD_REBP_REGNUM],
4768 &offset64);
4769 *addr = (uint32_t) (*addr + offset64);
4770 regcache_raw_read_unsigned (irp->regcache,
4771 irp->regmap[X86_RECORD_REDI_REGNUM],
4772 &offset64);
4773 *addr = (uint32_t) (*addr + offset64);
4774 break;
4775 case 4:
4776 regcache_raw_read_unsigned (irp->regcache,
4777 irp->regmap[X86_RECORD_RESI_REGNUM],
4778 &offset64);
4779 *addr = (uint32_t) (*addr + offset64);
4780 break;
4781 case 5:
4782 regcache_raw_read_unsigned (irp->regcache,
4783 irp->regmap[X86_RECORD_REDI_REGNUM],
4784 &offset64);
4785 *addr = (uint32_t) (*addr + offset64);
4786 break;
4787 case 6:
4788 regcache_raw_read_unsigned (irp->regcache,
4789 irp->regmap[X86_RECORD_REBP_REGNUM],
4790 &offset64);
4791 *addr = (uint32_t) (*addr + offset64);
4792 break;
4793 case 7:
4794 regcache_raw_read_unsigned (irp->regcache,
4795 irp->regmap[X86_RECORD_REBX_REGNUM],
4796 &offset64);
4797 *addr = (uint32_t) (*addr + offset64);
4798 break;
4799 }
4800 *addr &= 0xffff;
4801 }
4802
4803 no_rm:
4804 return 0;
4805 }
4806
4807 /* Record the address and contents of the memory that will be changed
4808 by the current instruction. Return -1 if something goes wrong, 0
4809 otherwise. */
4810
4811 static int
4812 i386_record_lea_modrm (struct i386_record_s *irp)
4813 {
4814 struct gdbarch *gdbarch = irp->gdbarch;
4815 uint64_t addr;
4816
4817 if (irp->override >= 0)
4818 {
4819 if (record_full_memory_query)
4820 {
4821 int q;
4822
4823 target_terminal_ours ();
4824 q = yquery (_("\
4825 Process record ignores the memory change of instruction at address %s\n\
4826 because it can't get the value of the segment register.\n\
4827 Do you want to stop the program?"),
4828 paddress (gdbarch, irp->orig_addr));
4829 target_terminal_inferior ();
4830 if (q)
4831 return -1;
4832 }
4833
4834 return 0;
4835 }
4836
4837 if (i386_record_lea_modrm_addr (irp, &addr))
4838 return -1;
4839
4840 if (record_full_arch_list_add_mem (addr, 1 << irp->ot))
4841 return -1;
4842
4843 return 0;
4844 }
4845
4846 /* Record the effects of a push operation. Return -1 if something
4847 goes wrong, 0 otherwise. */
4848
4849 static int
4850 i386_record_push (struct i386_record_s *irp, int size)
4851 {
4852 ULONGEST addr;
4853
4854 if (record_full_arch_list_add_reg (irp->regcache,
4855 irp->regmap[X86_RECORD_RESP_REGNUM]))
4856 return -1;
4857 regcache_raw_read_unsigned (irp->regcache,
4858 irp->regmap[X86_RECORD_RESP_REGNUM],
4859 &addr);
4860 if (record_full_arch_list_add_mem ((CORE_ADDR) addr - size, size))
4861 return -1;
4862
4863 return 0;
4864 }
4865
4866
4867 /* Defines contents to record. */
4868 #define I386_SAVE_FPU_REGS 0xfffd
4869 #define I386_SAVE_FPU_ENV 0xfffe
4870 #define I386_SAVE_FPU_ENV_REG_STACK 0xffff
4871
4872 /* Record the values of the floating point registers which will be
4873 changed by the current instruction. Returns -1 if something is
4874 wrong, 0 otherwise. */
4875
4876 static int i386_record_floats (struct gdbarch *gdbarch,
4877 struct i386_record_s *ir,
4878 uint32_t iregnum)
4879 {
4880 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4881 int i;
4882
4883 /* Oza: Because of floating point insn push/pop of fpu stack is going to
4884 happen. Currently we store st0-st7 registers, but we need not store all
4885 registers all the time, in future we use ftag register and record only
4886 those who are not marked as an empty. */
4887
4888 if (I386_SAVE_FPU_REGS == iregnum)
4889 {
4890 for (i = I387_ST0_REGNUM (tdep); i <= I387_ST0_REGNUM (tdep) + 7; i++)
4891 {
4892 if (record_full_arch_list_add_reg (ir->regcache, i))
4893 return -1;
4894 }
4895 }
4896 else if (I386_SAVE_FPU_ENV == iregnum)
4897 {
4898 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4899 {
4900 if (record_full_arch_list_add_reg (ir->regcache, i))
4901 return -1;
4902 }
4903 }
4904 else if (I386_SAVE_FPU_ENV_REG_STACK == iregnum)
4905 {
4906 for (i = I387_ST0_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4907 {
4908 if (record_full_arch_list_add_reg (ir->regcache, i))
4909 return -1;
4910 }
4911 }
4912 else if ((iregnum >= I387_ST0_REGNUM (tdep)) &&
4913 (iregnum <= I387_FOP_REGNUM (tdep)))
4914 {
4915 if (record_full_arch_list_add_reg (ir->regcache,iregnum))
4916 return -1;
4917 }
4918 else
4919 {
4920 /* Parameter error. */
4921 return -1;
4922 }
4923 if(I386_SAVE_FPU_ENV != iregnum)
4924 {
4925 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4926 {
4927 if (record_full_arch_list_add_reg (ir->regcache, i))
4928 return -1;
4929 }
4930 }
4931 return 0;
4932 }
4933
4934 /* Parse the current instruction, and record the values of the
4935 registers and memory that will be changed by the current
4936 instruction. Returns -1 if something goes wrong, 0 otherwise. */
4937
4938 #define I386_RECORD_FULL_ARCH_LIST_ADD_REG(regnum) \
4939 record_full_arch_list_add_reg (ir.regcache, ir.regmap[(regnum)])
4940
4941 int
4942 i386_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
4943 CORE_ADDR input_addr)
4944 {
4945 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4946 int prefixes = 0;
4947 int regnum = 0;
4948 uint32_t opcode;
4949 uint8_t opcode8;
4950 ULONGEST addr;
4951 gdb_byte buf[MAX_REGISTER_SIZE];
4952 struct i386_record_s ir;
4953 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4954 uint8_t rex_w = -1;
4955 uint8_t rex_r = 0;
4956
4957 memset (&ir, 0, sizeof (struct i386_record_s));
4958 ir.regcache = regcache;
4959 ir.addr = input_addr;
4960 ir.orig_addr = input_addr;
4961 ir.aflag = 1;
4962 ir.dflag = 1;
4963 ir.override = -1;
4964 ir.popl_esp_hack = 0;
4965 ir.regmap = tdep->record_regmap;
4966 ir.gdbarch = gdbarch;
4967
4968 if (record_debug > 1)
4969 fprintf_unfiltered (gdb_stdlog, "Process record: i386_process_record "
4970 "addr = %s\n",
4971 paddress (gdbarch, ir.addr));
4972
4973 /* prefixes */
4974 while (1)
4975 {
4976 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
4977 return -1;
4978 ir.addr++;
4979 switch (opcode8) /* Instruction prefixes */
4980 {
4981 case REPE_PREFIX_OPCODE:
4982 prefixes |= PREFIX_REPZ;
4983 break;
4984 case REPNE_PREFIX_OPCODE:
4985 prefixes |= PREFIX_REPNZ;
4986 break;
4987 case LOCK_PREFIX_OPCODE:
4988 prefixes |= PREFIX_LOCK;
4989 break;
4990 case CS_PREFIX_OPCODE:
4991 ir.override = X86_RECORD_CS_REGNUM;
4992 break;
4993 case SS_PREFIX_OPCODE:
4994 ir.override = X86_RECORD_SS_REGNUM;
4995 break;
4996 case DS_PREFIX_OPCODE:
4997 ir.override = X86_RECORD_DS_REGNUM;
4998 break;
4999 case ES_PREFIX_OPCODE:
5000 ir.override = X86_RECORD_ES_REGNUM;
5001 break;
5002 case FS_PREFIX_OPCODE:
5003 ir.override = X86_RECORD_FS_REGNUM;
5004 break;
5005 case GS_PREFIX_OPCODE:
5006 ir.override = X86_RECORD_GS_REGNUM;
5007 break;
5008 case DATA_PREFIX_OPCODE:
5009 prefixes |= PREFIX_DATA;
5010 break;
5011 case ADDR_PREFIX_OPCODE:
5012 prefixes |= PREFIX_ADDR;
5013 break;
5014 case 0x40: /* i386 inc %eax */
5015 case 0x41: /* i386 inc %ecx */
5016 case 0x42: /* i386 inc %edx */
5017 case 0x43: /* i386 inc %ebx */
5018 case 0x44: /* i386 inc %esp */
5019 case 0x45: /* i386 inc %ebp */
5020 case 0x46: /* i386 inc %esi */
5021 case 0x47: /* i386 inc %edi */
5022 case 0x48: /* i386 dec %eax */
5023 case 0x49: /* i386 dec %ecx */
5024 case 0x4a: /* i386 dec %edx */
5025 case 0x4b: /* i386 dec %ebx */
5026 case 0x4c: /* i386 dec %esp */
5027 case 0x4d: /* i386 dec %ebp */
5028 case 0x4e: /* i386 dec %esi */
5029 case 0x4f: /* i386 dec %edi */
5030 if (ir.regmap[X86_RECORD_R8_REGNUM]) /* 64 bit target */
5031 {
5032 /* REX */
5033 rex_w = (opcode8 >> 3) & 1;
5034 rex_r = (opcode8 & 0x4) << 1;
5035 ir.rex_x = (opcode8 & 0x2) << 2;
5036 ir.rex_b = (opcode8 & 0x1) << 3;
5037 }
5038 else /* 32 bit target */
5039 goto out_prefixes;
5040 break;
5041 default:
5042 goto out_prefixes;
5043 break;
5044 }
5045 }
5046 out_prefixes:
5047 if (ir.regmap[X86_RECORD_R8_REGNUM] && rex_w == 1)
5048 {
5049 ir.dflag = 2;
5050 }
5051 else
5052 {
5053 if (prefixes & PREFIX_DATA)
5054 ir.dflag ^= 1;
5055 }
5056 if (prefixes & PREFIX_ADDR)
5057 ir.aflag ^= 1;
5058 else if (ir.regmap[X86_RECORD_R8_REGNUM])
5059 ir.aflag = 2;
5060
5061 /* Now check op code. */
5062 opcode = (uint32_t) opcode8;
5063 reswitch:
5064 switch (opcode)
5065 {
5066 case 0x0f:
5067 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
5068 return -1;
5069 ir.addr++;
5070 opcode = (uint32_t) opcode8 | 0x0f00;
5071 goto reswitch;
5072 break;
5073
5074 case 0x00: /* arith & logic */
5075 case 0x01:
5076 case 0x02:
5077 case 0x03:
5078 case 0x04:
5079 case 0x05:
5080 case 0x08:
5081 case 0x09:
5082 case 0x0a:
5083 case 0x0b:
5084 case 0x0c:
5085 case 0x0d:
5086 case 0x10:
5087 case 0x11:
5088 case 0x12:
5089 case 0x13:
5090 case 0x14:
5091 case 0x15:
5092 case 0x18:
5093 case 0x19:
5094 case 0x1a:
5095 case 0x1b:
5096 case 0x1c:
5097 case 0x1d:
5098 case 0x20:
5099 case 0x21:
5100 case 0x22:
5101 case 0x23:
5102 case 0x24:
5103 case 0x25:
5104 case 0x28:
5105 case 0x29:
5106 case 0x2a:
5107 case 0x2b:
5108 case 0x2c:
5109 case 0x2d:
5110 case 0x30:
5111 case 0x31:
5112 case 0x32:
5113 case 0x33:
5114 case 0x34:
5115 case 0x35:
5116 case 0x38:
5117 case 0x39:
5118 case 0x3a:
5119 case 0x3b:
5120 case 0x3c:
5121 case 0x3d:
5122 if (((opcode >> 3) & 7) != OP_CMPL)
5123 {
5124 if ((opcode & 1) == 0)
5125 ir.ot = OT_BYTE;
5126 else
5127 ir.ot = ir.dflag + OT_WORD;
5128
5129 switch ((opcode >> 1) & 3)
5130 {
5131 case 0: /* OP Ev, Gv */
5132 if (i386_record_modrm (&ir))
5133 return -1;
5134 if (ir.mod != 3)
5135 {
5136 if (i386_record_lea_modrm (&ir))
5137 return -1;
5138 }
5139 else
5140 {
5141 ir.rm |= ir.rex_b;
5142 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5143 ir.rm &= 0x3;
5144 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5145 }
5146 break;
5147 case 1: /* OP Gv, Ev */
5148 if (i386_record_modrm (&ir))
5149 return -1;
5150 ir.reg |= rex_r;
5151 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5152 ir.reg &= 0x3;
5153 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5154 break;
5155 case 2: /* OP A, Iv */
5156 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5157 break;
5158 }
5159 }
5160 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5161 break;
5162
5163 case 0x80: /* GRP1 */
5164 case 0x81:
5165 case 0x82:
5166 case 0x83:
5167 if (i386_record_modrm (&ir))
5168 return -1;
5169
5170 if (ir.reg != OP_CMPL)
5171 {
5172 if ((opcode & 1) == 0)
5173 ir.ot = OT_BYTE;
5174 else
5175 ir.ot = ir.dflag + OT_WORD;
5176
5177 if (ir.mod != 3)
5178 {
5179 if (opcode == 0x83)
5180 ir.rip_offset = 1;
5181 else
5182 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5183 if (i386_record_lea_modrm (&ir))
5184 return -1;
5185 }
5186 else
5187 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5188 }
5189 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5190 break;
5191
5192 case 0x40: /* inc */
5193 case 0x41:
5194 case 0x42:
5195 case 0x43:
5196 case 0x44:
5197 case 0x45:
5198 case 0x46:
5199 case 0x47:
5200
5201 case 0x48: /* dec */
5202 case 0x49:
5203 case 0x4a:
5204 case 0x4b:
5205 case 0x4c:
5206 case 0x4d:
5207 case 0x4e:
5208 case 0x4f:
5209
5210 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 7);
5211 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5212 break;
5213
5214 case 0xf6: /* GRP3 */
5215 case 0xf7:
5216 if ((opcode & 1) == 0)
5217 ir.ot = OT_BYTE;
5218 else
5219 ir.ot = ir.dflag + OT_WORD;
5220 if (i386_record_modrm (&ir))
5221 return -1;
5222
5223 if (ir.mod != 3 && ir.reg == 0)
5224 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5225
5226 switch (ir.reg)
5227 {
5228 case 0: /* test */
5229 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5230 break;
5231 case 2: /* not */
5232 case 3: /* neg */
5233 if (ir.mod != 3)
5234 {
5235 if (i386_record_lea_modrm (&ir))
5236 return -1;
5237 }
5238 else
5239 {
5240 ir.rm |= ir.rex_b;
5241 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5242 ir.rm &= 0x3;
5243 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5244 }
5245 if (ir.reg == 3) /* neg */
5246 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5247 break;
5248 case 4: /* mul */
5249 case 5: /* imul */
5250 case 6: /* div */
5251 case 7: /* idiv */
5252 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5253 if (ir.ot != OT_BYTE)
5254 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5255 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5256 break;
5257 default:
5258 ir.addr -= 2;
5259 opcode = opcode << 8 | ir.modrm;
5260 goto no_support;
5261 break;
5262 }
5263 break;
5264
5265 case 0xfe: /* GRP4 */
5266 case 0xff: /* GRP5 */
5267 if (i386_record_modrm (&ir))
5268 return -1;
5269 if (ir.reg >= 2 && opcode == 0xfe)
5270 {
5271 ir.addr -= 2;
5272 opcode = opcode << 8 | ir.modrm;
5273 goto no_support;
5274 }
5275 switch (ir.reg)
5276 {
5277 case 0: /* inc */
5278 case 1: /* dec */
5279 if ((opcode & 1) == 0)
5280 ir.ot = OT_BYTE;
5281 else
5282 ir.ot = ir.dflag + OT_WORD;
5283 if (ir.mod != 3)
5284 {
5285 if (i386_record_lea_modrm (&ir))
5286 return -1;
5287 }
5288 else
5289 {
5290 ir.rm |= ir.rex_b;
5291 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5292 ir.rm &= 0x3;
5293 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5294 }
5295 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5296 break;
5297 case 2: /* call */
5298 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5299 ir.dflag = 2;
5300 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5301 return -1;
5302 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5303 break;
5304 case 3: /* lcall */
5305 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
5306 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5307 return -1;
5308 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5309 break;
5310 case 4: /* jmp */
5311 case 5: /* ljmp */
5312 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5313 break;
5314 case 6: /* push */
5315 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5316 ir.dflag = 2;
5317 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5318 return -1;
5319 break;
5320 default:
5321 ir.addr -= 2;
5322 opcode = opcode << 8 | ir.modrm;
5323 goto no_support;
5324 break;
5325 }
5326 break;
5327
5328 case 0x84: /* test */
5329 case 0x85:
5330 case 0xa8:
5331 case 0xa9:
5332 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5333 break;
5334
5335 case 0x98: /* CWDE/CBW */
5336 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5337 break;
5338
5339 case 0x99: /* CDQ/CWD */
5340 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5341 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5342 break;
5343
5344 case 0x0faf: /* imul */
5345 case 0x69:
5346 case 0x6b:
5347 ir.ot = ir.dflag + OT_WORD;
5348 if (i386_record_modrm (&ir))
5349 return -1;
5350 if (opcode == 0x69)
5351 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5352 else if (opcode == 0x6b)
5353 ir.rip_offset = 1;
5354 ir.reg |= rex_r;
5355 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5356 ir.reg &= 0x3;
5357 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5358 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5359 break;
5360
5361 case 0x0fc0: /* xadd */
5362 case 0x0fc1:
5363 if ((opcode & 1) == 0)
5364 ir.ot = OT_BYTE;
5365 else
5366 ir.ot = ir.dflag + OT_WORD;
5367 if (i386_record_modrm (&ir))
5368 return -1;
5369 ir.reg |= rex_r;
5370 if (ir.mod == 3)
5371 {
5372 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5373 ir.reg &= 0x3;
5374 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5375 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5376 ir.rm &= 0x3;
5377 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5378 }
5379 else
5380 {
5381 if (i386_record_lea_modrm (&ir))
5382 return -1;
5383 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5384 ir.reg &= 0x3;
5385 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5386 }
5387 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5388 break;
5389
5390 case 0x0fb0: /* cmpxchg */
5391 case 0x0fb1:
5392 if ((opcode & 1) == 0)
5393 ir.ot = OT_BYTE;
5394 else
5395 ir.ot = ir.dflag + OT_WORD;
5396 if (i386_record_modrm (&ir))
5397 return -1;
5398 if (ir.mod == 3)
5399 {
5400 ir.reg |= rex_r;
5401 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5402 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5403 ir.reg &= 0x3;
5404 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5405 }
5406 else
5407 {
5408 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5409 if (i386_record_lea_modrm (&ir))
5410 return -1;
5411 }
5412 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5413 break;
5414
5415 case 0x0fc7: /* cmpxchg8b */
5416 if (i386_record_modrm (&ir))
5417 return -1;
5418 if (ir.mod == 3)
5419 {
5420 ir.addr -= 2;
5421 opcode = opcode << 8 | ir.modrm;
5422 goto no_support;
5423 }
5424 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5425 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5426 if (i386_record_lea_modrm (&ir))
5427 return -1;
5428 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5429 break;
5430
5431 case 0x50: /* push */
5432 case 0x51:
5433 case 0x52:
5434 case 0x53:
5435 case 0x54:
5436 case 0x55:
5437 case 0x56:
5438 case 0x57:
5439 case 0x68:
5440 case 0x6a:
5441 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5442 ir.dflag = 2;
5443 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5444 return -1;
5445 break;
5446
5447 case 0x06: /* push es */
5448 case 0x0e: /* push cs */
5449 case 0x16: /* push ss */
5450 case 0x1e: /* push ds */
5451 if (ir.regmap[X86_RECORD_R8_REGNUM])
5452 {
5453 ir.addr -= 1;
5454 goto no_support;
5455 }
5456 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5457 return -1;
5458 break;
5459
5460 case 0x0fa0: /* push fs */
5461 case 0x0fa8: /* push gs */
5462 if (ir.regmap[X86_RECORD_R8_REGNUM])
5463 {
5464 ir.addr -= 2;
5465 goto no_support;
5466 }
5467 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5468 return -1;
5469 break;
5470
5471 case 0x60: /* pusha */
5472 if (ir.regmap[X86_RECORD_R8_REGNUM])
5473 {
5474 ir.addr -= 1;
5475 goto no_support;
5476 }
5477 if (i386_record_push (&ir, 1 << (ir.dflag + 4)))
5478 return -1;
5479 break;
5480
5481 case 0x58: /* pop */
5482 case 0x59:
5483 case 0x5a:
5484 case 0x5b:
5485 case 0x5c:
5486 case 0x5d:
5487 case 0x5e:
5488 case 0x5f:
5489 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5490 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
5491 break;
5492
5493 case 0x61: /* popa */
5494 if (ir.regmap[X86_RECORD_R8_REGNUM])
5495 {
5496 ir.addr -= 1;
5497 goto no_support;
5498 }
5499 for (regnum = X86_RECORD_REAX_REGNUM;
5500 regnum <= X86_RECORD_REDI_REGNUM;
5501 regnum++)
5502 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5503 break;
5504
5505 case 0x8f: /* pop */
5506 if (ir.regmap[X86_RECORD_R8_REGNUM])
5507 ir.ot = ir.dflag ? OT_QUAD : OT_WORD;
5508 else
5509 ir.ot = ir.dflag + OT_WORD;
5510 if (i386_record_modrm (&ir))
5511 return -1;
5512 if (ir.mod == 3)
5513 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5514 else
5515 {
5516 ir.popl_esp_hack = 1 << ir.ot;
5517 if (i386_record_lea_modrm (&ir))
5518 return -1;
5519 }
5520 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5521 break;
5522
5523 case 0xc8: /* enter */
5524 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
5525 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5526 ir.dflag = 2;
5527 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5528 return -1;
5529 break;
5530
5531 case 0xc9: /* leave */
5532 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5533 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
5534 break;
5535
5536 case 0x07: /* pop es */
5537 if (ir.regmap[X86_RECORD_R8_REGNUM])
5538 {
5539 ir.addr -= 1;
5540 goto no_support;
5541 }
5542 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5543 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_ES_REGNUM);
5544 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5545 break;
5546
5547 case 0x17: /* pop ss */
5548 if (ir.regmap[X86_RECORD_R8_REGNUM])
5549 {
5550 ir.addr -= 1;
5551 goto no_support;
5552 }
5553 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5554 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_SS_REGNUM);
5555 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5556 break;
5557
5558 case 0x1f: /* pop ds */
5559 if (ir.regmap[X86_RECORD_R8_REGNUM])
5560 {
5561 ir.addr -= 1;
5562 goto no_support;
5563 }
5564 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5565 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_DS_REGNUM);
5566 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5567 break;
5568
5569 case 0x0fa1: /* pop fs */
5570 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5571 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_FS_REGNUM);
5572 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5573 break;
5574
5575 case 0x0fa9: /* pop gs */
5576 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5577 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
5578 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5579 break;
5580
5581 case 0x88: /* mov */
5582 case 0x89:
5583 case 0xc6:
5584 case 0xc7:
5585 if ((opcode & 1) == 0)
5586 ir.ot = OT_BYTE;
5587 else
5588 ir.ot = ir.dflag + OT_WORD;
5589
5590 if (i386_record_modrm (&ir))
5591 return -1;
5592
5593 if (ir.mod != 3)
5594 {
5595 if (opcode == 0xc6 || opcode == 0xc7)
5596 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5597 if (i386_record_lea_modrm (&ir))
5598 return -1;
5599 }
5600 else
5601 {
5602 if (opcode == 0xc6 || opcode == 0xc7)
5603 ir.rm |= ir.rex_b;
5604 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5605 ir.rm &= 0x3;
5606 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5607 }
5608 break;
5609
5610 case 0x8a: /* mov */
5611 case 0x8b:
5612 if ((opcode & 1) == 0)
5613 ir.ot = OT_BYTE;
5614 else
5615 ir.ot = ir.dflag + OT_WORD;
5616 if (i386_record_modrm (&ir))
5617 return -1;
5618 ir.reg |= rex_r;
5619 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5620 ir.reg &= 0x3;
5621 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5622 break;
5623
5624 case 0x8c: /* mov seg */
5625 if (i386_record_modrm (&ir))
5626 return -1;
5627 if (ir.reg > 5)
5628 {
5629 ir.addr -= 2;
5630 opcode = opcode << 8 | ir.modrm;
5631 goto no_support;
5632 }
5633
5634 if (ir.mod == 3)
5635 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5636 else
5637 {
5638 ir.ot = OT_WORD;
5639 if (i386_record_lea_modrm (&ir))
5640 return -1;
5641 }
5642 break;
5643
5644 case 0x8e: /* mov seg */
5645 if (i386_record_modrm (&ir))
5646 return -1;
5647 switch (ir.reg)
5648 {
5649 case 0:
5650 regnum = X86_RECORD_ES_REGNUM;
5651 break;
5652 case 2:
5653 regnum = X86_RECORD_SS_REGNUM;
5654 break;
5655 case 3:
5656 regnum = X86_RECORD_DS_REGNUM;
5657 break;
5658 case 4:
5659 regnum = X86_RECORD_FS_REGNUM;
5660 break;
5661 case 5:
5662 regnum = X86_RECORD_GS_REGNUM;
5663 break;
5664 default:
5665 ir.addr -= 2;
5666 opcode = opcode << 8 | ir.modrm;
5667 goto no_support;
5668 break;
5669 }
5670 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5671 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5672 break;
5673
5674 case 0x0fb6: /* movzbS */
5675 case 0x0fb7: /* movzwS */
5676 case 0x0fbe: /* movsbS */
5677 case 0x0fbf: /* movswS */
5678 if (i386_record_modrm (&ir))
5679 return -1;
5680 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5681 break;
5682
5683 case 0x8d: /* lea */
5684 if (i386_record_modrm (&ir))
5685 return -1;
5686 if (ir.mod == 3)
5687 {
5688 ir.addr -= 2;
5689 opcode = opcode << 8 | ir.modrm;
5690 goto no_support;
5691 }
5692 ir.ot = ir.dflag;
5693 ir.reg |= rex_r;
5694 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5695 ir.reg &= 0x3;
5696 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5697 break;
5698
5699 case 0xa0: /* mov EAX */
5700 case 0xa1:
5701
5702 case 0xd7: /* xlat */
5703 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5704 break;
5705
5706 case 0xa2: /* mov EAX */
5707 case 0xa3:
5708 if (ir.override >= 0)
5709 {
5710 if (record_full_memory_query)
5711 {
5712 int q;
5713
5714 target_terminal_ours ();
5715 q = yquery (_("\
5716 Process record ignores the memory change of instruction at address %s\n\
5717 because it can't get the value of the segment register.\n\
5718 Do you want to stop the program?"),
5719 paddress (gdbarch, ir.orig_addr));
5720 target_terminal_inferior ();
5721 if (q)
5722 return -1;
5723 }
5724 }
5725 else
5726 {
5727 if ((opcode & 1) == 0)
5728 ir.ot = OT_BYTE;
5729 else
5730 ir.ot = ir.dflag + OT_WORD;
5731 if (ir.aflag == 2)
5732 {
5733 if (record_read_memory (gdbarch, ir.addr, buf, 8))
5734 return -1;
5735 ir.addr += 8;
5736 addr = extract_unsigned_integer (buf, 8, byte_order);
5737 }
5738 else if (ir.aflag)
5739 {
5740 if (record_read_memory (gdbarch, ir.addr, buf, 4))
5741 return -1;
5742 ir.addr += 4;
5743 addr = extract_unsigned_integer (buf, 4, byte_order);
5744 }
5745 else
5746 {
5747 if (record_read_memory (gdbarch, ir.addr, buf, 2))
5748 return -1;
5749 ir.addr += 2;
5750 addr = extract_unsigned_integer (buf, 2, byte_order);
5751 }
5752 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
5753 return -1;
5754 }
5755 break;
5756
5757 case 0xb0: /* mov R, Ib */
5758 case 0xb1:
5759 case 0xb2:
5760 case 0xb3:
5761 case 0xb4:
5762 case 0xb5:
5763 case 0xb6:
5764 case 0xb7:
5765 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((ir.regmap[X86_RECORD_R8_REGNUM])
5766 ? ((opcode & 0x7) | ir.rex_b)
5767 : ((opcode & 0x7) & 0x3));
5768 break;
5769
5770 case 0xb8: /* mov R, Iv */
5771 case 0xb9:
5772 case 0xba:
5773 case 0xbb:
5774 case 0xbc:
5775 case 0xbd:
5776 case 0xbe:
5777 case 0xbf:
5778 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
5779 break;
5780
5781 case 0x91: /* xchg R, EAX */
5782 case 0x92:
5783 case 0x93:
5784 case 0x94:
5785 case 0x95:
5786 case 0x96:
5787 case 0x97:
5788 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5789 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 0x7);
5790 break;
5791
5792 case 0x86: /* xchg Ev, Gv */
5793 case 0x87:
5794 if ((opcode & 1) == 0)
5795 ir.ot = OT_BYTE;
5796 else
5797 ir.ot = ir.dflag + OT_WORD;
5798 if (i386_record_modrm (&ir))
5799 return -1;
5800 if (ir.mod == 3)
5801 {
5802 ir.rm |= ir.rex_b;
5803 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5804 ir.rm &= 0x3;
5805 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5806 }
5807 else
5808 {
5809 if (i386_record_lea_modrm (&ir))
5810 return -1;
5811 }
5812 ir.reg |= rex_r;
5813 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5814 ir.reg &= 0x3;
5815 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5816 break;
5817
5818 case 0xc4: /* les Gv */
5819 case 0xc5: /* lds Gv */
5820 if (ir.regmap[X86_RECORD_R8_REGNUM])
5821 {
5822 ir.addr -= 1;
5823 goto no_support;
5824 }
5825 /* FALLTHROUGH */
5826 case 0x0fb2: /* lss Gv */
5827 case 0x0fb4: /* lfs Gv */
5828 case 0x0fb5: /* lgs Gv */
5829 if (i386_record_modrm (&ir))
5830 return -1;
5831 if (ir.mod == 3)
5832 {
5833 if (opcode > 0xff)
5834 ir.addr -= 3;
5835 else
5836 ir.addr -= 2;
5837 opcode = opcode << 8 | ir.modrm;
5838 goto no_support;
5839 }
5840 switch (opcode)
5841 {
5842 case 0xc4: /* les Gv */
5843 regnum = X86_RECORD_ES_REGNUM;
5844 break;
5845 case 0xc5: /* lds Gv */
5846 regnum = X86_RECORD_DS_REGNUM;
5847 break;
5848 case 0x0fb2: /* lss Gv */
5849 regnum = X86_RECORD_SS_REGNUM;
5850 break;
5851 case 0x0fb4: /* lfs Gv */
5852 regnum = X86_RECORD_FS_REGNUM;
5853 break;
5854 case 0x0fb5: /* lgs Gv */
5855 regnum = X86_RECORD_GS_REGNUM;
5856 break;
5857 }
5858 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5859 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5860 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5861 break;
5862
5863 case 0xc0: /* shifts */
5864 case 0xc1:
5865 case 0xd0:
5866 case 0xd1:
5867 case 0xd2:
5868 case 0xd3:
5869 if ((opcode & 1) == 0)
5870 ir.ot = OT_BYTE;
5871 else
5872 ir.ot = ir.dflag + OT_WORD;
5873 if (i386_record_modrm (&ir))
5874 return -1;
5875 if (ir.mod != 3 && (opcode == 0xd2 || opcode == 0xd3))
5876 {
5877 if (i386_record_lea_modrm (&ir))
5878 return -1;
5879 }
5880 else
5881 {
5882 ir.rm |= ir.rex_b;
5883 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5884 ir.rm &= 0x3;
5885 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5886 }
5887 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5888 break;
5889
5890 case 0x0fa4:
5891 case 0x0fa5:
5892 case 0x0fac:
5893 case 0x0fad:
5894 if (i386_record_modrm (&ir))
5895 return -1;
5896 if (ir.mod == 3)
5897 {
5898 if (record_full_arch_list_add_reg (ir.regcache, ir.rm))
5899 return -1;
5900 }
5901 else
5902 {
5903 if (i386_record_lea_modrm (&ir))
5904 return -1;
5905 }
5906 break;
5907
5908 case 0xd8: /* Floats. */
5909 case 0xd9:
5910 case 0xda:
5911 case 0xdb:
5912 case 0xdc:
5913 case 0xdd:
5914 case 0xde:
5915 case 0xdf:
5916 if (i386_record_modrm (&ir))
5917 return -1;
5918 ir.reg |= ((opcode & 7) << 3);
5919 if (ir.mod != 3)
5920 {
5921 /* Memory. */
5922 uint64_t addr64;
5923
5924 if (i386_record_lea_modrm_addr (&ir, &addr64))
5925 return -1;
5926 switch (ir.reg)
5927 {
5928 case 0x02:
5929 case 0x12:
5930 case 0x22:
5931 case 0x32:
5932 /* For fcom, ficom nothing to do. */
5933 break;
5934 case 0x03:
5935 case 0x13:
5936 case 0x23:
5937 case 0x33:
5938 /* For fcomp, ficomp pop FPU stack, store all. */
5939 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5940 return -1;
5941 break;
5942 case 0x00:
5943 case 0x01:
5944 case 0x04:
5945 case 0x05:
5946 case 0x06:
5947 case 0x07:
5948 case 0x10:
5949 case 0x11:
5950 case 0x14:
5951 case 0x15:
5952 case 0x16:
5953 case 0x17:
5954 case 0x20:
5955 case 0x21:
5956 case 0x24:
5957 case 0x25:
5958 case 0x26:
5959 case 0x27:
5960 case 0x30:
5961 case 0x31:
5962 case 0x34:
5963 case 0x35:
5964 case 0x36:
5965 case 0x37:
5966 /* For fadd, fmul, fsub, fsubr, fdiv, fdivr, fiadd, fimul,
5967 fisub, fisubr, fidiv, fidivr, modR/M.reg is an extension
5968 of code, always affects st(0) register. */
5969 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
5970 return -1;
5971 break;
5972 case 0x08:
5973 case 0x0a:
5974 case 0x0b:
5975 case 0x18:
5976 case 0x19:
5977 case 0x1a:
5978 case 0x1b:
5979 case 0x1d:
5980 case 0x28:
5981 case 0x29:
5982 case 0x2a:
5983 case 0x2b:
5984 case 0x38:
5985 case 0x39:
5986 case 0x3a:
5987 case 0x3b:
5988 case 0x3c:
5989 case 0x3d:
5990 switch (ir.reg & 7)
5991 {
5992 case 0:
5993 /* Handling fld, fild. */
5994 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5995 return -1;
5996 break;
5997 case 1:
5998 switch (ir.reg >> 4)
5999 {
6000 case 0:
6001 if (record_full_arch_list_add_mem (addr64, 4))
6002 return -1;
6003 break;
6004 case 2:
6005 if (record_full_arch_list_add_mem (addr64, 8))
6006 return -1;
6007 break;
6008 case 3:
6009 break;
6010 default:
6011 if (record_full_arch_list_add_mem (addr64, 2))
6012 return -1;
6013 break;
6014 }
6015 break;
6016 default:
6017 switch (ir.reg >> 4)
6018 {
6019 case 0:
6020 if (record_full_arch_list_add_mem (addr64, 4))
6021 return -1;
6022 if (3 == (ir.reg & 7))
6023 {
6024 /* For fstp m32fp. */
6025 if (i386_record_floats (gdbarch, &ir,
6026 I386_SAVE_FPU_REGS))
6027 return -1;
6028 }
6029 break;
6030 case 1:
6031 if (record_full_arch_list_add_mem (addr64, 4))
6032 return -1;
6033 if ((3 == (ir.reg & 7))
6034 || (5 == (ir.reg & 7))
6035 || (7 == (ir.reg & 7)))
6036 {
6037 /* For fstp insn. */
6038 if (i386_record_floats (gdbarch, &ir,
6039 I386_SAVE_FPU_REGS))
6040 return -1;
6041 }
6042 break;
6043 case 2:
6044 if (record_full_arch_list_add_mem (addr64, 8))
6045 return -1;
6046 if (3 == (ir.reg & 7))
6047 {
6048 /* For fstp m64fp. */
6049 if (i386_record_floats (gdbarch, &ir,
6050 I386_SAVE_FPU_REGS))
6051 return -1;
6052 }
6053 break;
6054 case 3:
6055 if ((3 <= (ir.reg & 7)) && (6 <= (ir.reg & 7)))
6056 {
6057 /* For fistp, fbld, fild, fbstp. */
6058 if (i386_record_floats (gdbarch, &ir,
6059 I386_SAVE_FPU_REGS))
6060 return -1;
6061 }
6062 /* Fall through */
6063 default:
6064 if (record_full_arch_list_add_mem (addr64, 2))
6065 return -1;
6066 break;
6067 }
6068 break;
6069 }
6070 break;
6071 case 0x0c:
6072 /* Insn fldenv. */
6073 if (i386_record_floats (gdbarch, &ir,
6074 I386_SAVE_FPU_ENV_REG_STACK))
6075 return -1;
6076 break;
6077 case 0x0d:
6078 /* Insn fldcw. */
6079 if (i386_record_floats (gdbarch, &ir, I387_FCTRL_REGNUM (tdep)))
6080 return -1;
6081 break;
6082 case 0x2c:
6083 /* Insn frstor. */
6084 if (i386_record_floats (gdbarch, &ir,
6085 I386_SAVE_FPU_ENV_REG_STACK))
6086 return -1;
6087 break;
6088 case 0x0e:
6089 if (ir.dflag)
6090 {
6091 if (record_full_arch_list_add_mem (addr64, 28))
6092 return -1;
6093 }
6094 else
6095 {
6096 if (record_full_arch_list_add_mem (addr64, 14))
6097 return -1;
6098 }
6099 break;
6100 case 0x0f:
6101 case 0x2f:
6102 if (record_full_arch_list_add_mem (addr64, 2))
6103 return -1;
6104 /* Insn fstp, fbstp. */
6105 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6106 return -1;
6107 break;
6108 case 0x1f:
6109 case 0x3e:
6110 if (record_full_arch_list_add_mem (addr64, 10))
6111 return -1;
6112 break;
6113 case 0x2e:
6114 if (ir.dflag)
6115 {
6116 if (record_full_arch_list_add_mem (addr64, 28))
6117 return -1;
6118 addr64 += 28;
6119 }
6120 else
6121 {
6122 if (record_full_arch_list_add_mem (addr64, 14))
6123 return -1;
6124 addr64 += 14;
6125 }
6126 if (record_full_arch_list_add_mem (addr64, 80))
6127 return -1;
6128 /* Insn fsave. */
6129 if (i386_record_floats (gdbarch, &ir,
6130 I386_SAVE_FPU_ENV_REG_STACK))
6131 return -1;
6132 break;
6133 case 0x3f:
6134 if (record_full_arch_list_add_mem (addr64, 8))
6135 return -1;
6136 /* Insn fistp. */
6137 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6138 return -1;
6139 break;
6140 default:
6141 ir.addr -= 2;
6142 opcode = opcode << 8 | ir.modrm;
6143 goto no_support;
6144 break;
6145 }
6146 }
6147 /* Opcode is an extension of modR/M byte. */
6148 else
6149 {
6150 switch (opcode)
6151 {
6152 case 0xd8:
6153 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
6154 return -1;
6155 break;
6156 case 0xd9:
6157 if (0x0c == (ir.modrm >> 4))
6158 {
6159 if ((ir.modrm & 0x0f) <= 7)
6160 {
6161 if (i386_record_floats (gdbarch, &ir,
6162 I386_SAVE_FPU_REGS))
6163 return -1;
6164 }
6165 else
6166 {
6167 if (i386_record_floats (gdbarch, &ir,
6168 I387_ST0_REGNUM (tdep)))
6169 return -1;
6170 /* If only st(0) is changing, then we have already
6171 recorded. */
6172 if ((ir.modrm & 0x0f) - 0x08)
6173 {
6174 if (i386_record_floats (gdbarch, &ir,
6175 I387_ST0_REGNUM (tdep) +
6176 ((ir.modrm & 0x0f) - 0x08)))
6177 return -1;
6178 }
6179 }
6180 }
6181 else
6182 {
6183 switch (ir.modrm)
6184 {
6185 case 0xe0:
6186 case 0xe1:
6187 case 0xf0:
6188 case 0xf5:
6189 case 0xf8:
6190 case 0xfa:
6191 case 0xfc:
6192 case 0xfe:
6193 case 0xff:
6194 if (i386_record_floats (gdbarch, &ir,
6195 I387_ST0_REGNUM (tdep)))
6196 return -1;
6197 break;
6198 case 0xf1:
6199 case 0xf2:
6200 case 0xf3:
6201 case 0xf4:
6202 case 0xf6:
6203 case 0xf7:
6204 case 0xe8:
6205 case 0xe9:
6206 case 0xea:
6207 case 0xeb:
6208 case 0xec:
6209 case 0xed:
6210 case 0xee:
6211 case 0xf9:
6212 case 0xfb:
6213 if (i386_record_floats (gdbarch, &ir,
6214 I386_SAVE_FPU_REGS))
6215 return -1;
6216 break;
6217 case 0xfd:
6218 if (i386_record_floats (gdbarch, &ir,
6219 I387_ST0_REGNUM (tdep)))
6220 return -1;
6221 if (i386_record_floats (gdbarch, &ir,
6222 I387_ST0_REGNUM (tdep) + 1))
6223 return -1;
6224 break;
6225 }
6226 }
6227 break;
6228 case 0xda:
6229 if (0xe9 == ir.modrm)
6230 {
6231 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6232 return -1;
6233 }
6234 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
6235 {
6236 if (i386_record_floats (gdbarch, &ir,
6237 I387_ST0_REGNUM (tdep)))
6238 return -1;
6239 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
6240 {
6241 if (i386_record_floats (gdbarch, &ir,
6242 I387_ST0_REGNUM (tdep) +
6243 (ir.modrm & 0x0f)))
6244 return -1;
6245 }
6246 else if ((ir.modrm & 0x0f) - 0x08)
6247 {
6248 if (i386_record_floats (gdbarch, &ir,
6249 I387_ST0_REGNUM (tdep) +
6250 ((ir.modrm & 0x0f) - 0x08)))
6251 return -1;
6252 }
6253 }
6254 break;
6255 case 0xdb:
6256 if (0xe3 == ir.modrm)
6257 {
6258 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_ENV))
6259 return -1;
6260 }
6261 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
6262 {
6263 if (i386_record_floats (gdbarch, &ir,
6264 I387_ST0_REGNUM (tdep)))
6265 return -1;
6266 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
6267 {
6268 if (i386_record_floats (gdbarch, &ir,
6269 I387_ST0_REGNUM (tdep) +
6270 (ir.modrm & 0x0f)))
6271 return -1;
6272 }
6273 else if ((ir.modrm & 0x0f) - 0x08)
6274 {
6275 if (i386_record_floats (gdbarch, &ir,
6276 I387_ST0_REGNUM (tdep) +
6277 ((ir.modrm & 0x0f) - 0x08)))
6278 return -1;
6279 }
6280 }
6281 break;
6282 case 0xdc:
6283 if ((0x0c == ir.modrm >> 4)
6284 || (0x0d == ir.modrm >> 4)
6285 || (0x0f == ir.modrm >> 4))
6286 {
6287 if ((ir.modrm & 0x0f) <= 7)
6288 {
6289 if (i386_record_floats (gdbarch, &ir,
6290 I387_ST0_REGNUM (tdep) +
6291 (ir.modrm & 0x0f)))
6292 return -1;
6293 }
6294 else
6295 {
6296 if (i386_record_floats (gdbarch, &ir,
6297 I387_ST0_REGNUM (tdep) +
6298 ((ir.modrm & 0x0f) - 0x08)))
6299 return -1;
6300 }
6301 }
6302 break;
6303 case 0xdd:
6304 if (0x0c == ir.modrm >> 4)
6305 {
6306 if (i386_record_floats (gdbarch, &ir,
6307 I387_FTAG_REGNUM (tdep)))
6308 return -1;
6309 }
6310 else if ((0x0d == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
6311 {
6312 if ((ir.modrm & 0x0f) <= 7)
6313 {
6314 if (i386_record_floats (gdbarch, &ir,
6315 I387_ST0_REGNUM (tdep) +
6316 (ir.modrm & 0x0f)))
6317 return -1;
6318 }
6319 else
6320 {
6321 if (i386_record_floats (gdbarch, &ir,
6322 I386_SAVE_FPU_REGS))
6323 return -1;
6324 }
6325 }
6326 break;
6327 case 0xde:
6328 if ((0x0c == ir.modrm >> 4)
6329 || (0x0e == ir.modrm >> 4)
6330 || (0x0f == ir.modrm >> 4)
6331 || (0xd9 == ir.modrm))
6332 {
6333 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6334 return -1;
6335 }
6336 break;
6337 case 0xdf:
6338 if (0xe0 == ir.modrm)
6339 {
6340 if (record_full_arch_list_add_reg (ir.regcache,
6341 I386_EAX_REGNUM))
6342 return -1;
6343 }
6344 else if ((0x0f == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
6345 {
6346 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6347 return -1;
6348 }
6349 break;
6350 }
6351 }
6352 break;
6353 /* string ops */
6354 case 0xa4: /* movsS */
6355 case 0xa5:
6356 case 0xaa: /* stosS */
6357 case 0xab:
6358 case 0x6c: /* insS */
6359 case 0x6d:
6360 regcache_raw_read_unsigned (ir.regcache,
6361 ir.regmap[X86_RECORD_RECX_REGNUM],
6362 &addr);
6363 if (addr)
6364 {
6365 ULONGEST es, ds;
6366
6367 if ((opcode & 1) == 0)
6368 ir.ot = OT_BYTE;
6369 else
6370 ir.ot = ir.dflag + OT_WORD;
6371 regcache_raw_read_unsigned (ir.regcache,
6372 ir.regmap[X86_RECORD_REDI_REGNUM],
6373 &addr);
6374
6375 regcache_raw_read_unsigned (ir.regcache,
6376 ir.regmap[X86_RECORD_ES_REGNUM],
6377 &es);
6378 regcache_raw_read_unsigned (ir.regcache,
6379 ir.regmap[X86_RECORD_DS_REGNUM],
6380 &ds);
6381 if (ir.aflag && (es != ds))
6382 {
6383 /* addr += ((uint32_t) read_register (I386_ES_REGNUM)) << 4; */
6384 if (record_full_memory_query)
6385 {
6386 int q;
6387
6388 target_terminal_ours ();
6389 q = yquery (_("\
6390 Process record ignores the memory change of instruction at address %s\n\
6391 because it can't get the value of the segment register.\n\
6392 Do you want to stop the program?"),
6393 paddress (gdbarch, ir.orig_addr));
6394 target_terminal_inferior ();
6395 if (q)
6396 return -1;
6397 }
6398 }
6399 else
6400 {
6401 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
6402 return -1;
6403 }
6404
6405 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6406 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6407 if (opcode == 0xa4 || opcode == 0xa5)
6408 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6409 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6410 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6411 }
6412 break;
6413
6414 case 0xa6: /* cmpsS */
6415 case 0xa7:
6416 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6417 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6418 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6419 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6420 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6421 break;
6422
6423 case 0xac: /* lodsS */
6424 case 0xad:
6425 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6426 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6427 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6428 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6429 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6430 break;
6431
6432 case 0xae: /* scasS */
6433 case 0xaf:
6434 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6435 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6436 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6437 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6438 break;
6439
6440 case 0x6e: /* outsS */
6441 case 0x6f:
6442 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6443 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6444 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6445 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6446 break;
6447
6448 case 0xe4: /* port I/O */
6449 case 0xe5:
6450 case 0xec:
6451 case 0xed:
6452 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6453 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6454 break;
6455
6456 case 0xe6:
6457 case 0xe7:
6458 case 0xee:
6459 case 0xef:
6460 break;
6461
6462 /* control */
6463 case 0xc2: /* ret im */
6464 case 0xc3: /* ret */
6465 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6466 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6467 break;
6468
6469 case 0xca: /* lret im */
6470 case 0xcb: /* lret */
6471 case 0xcf: /* iret */
6472 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
6473 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6474 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6475 break;
6476
6477 case 0xe8: /* call im */
6478 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6479 ir.dflag = 2;
6480 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6481 return -1;
6482 break;
6483
6484 case 0x9a: /* lcall im */
6485 if (ir.regmap[X86_RECORD_R8_REGNUM])
6486 {
6487 ir.addr -= 1;
6488 goto no_support;
6489 }
6490 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
6491 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6492 return -1;
6493 break;
6494
6495 case 0xe9: /* jmp im */
6496 case 0xea: /* ljmp im */
6497 case 0xeb: /* jmp Jb */
6498 case 0x70: /* jcc Jb */
6499 case 0x71:
6500 case 0x72:
6501 case 0x73:
6502 case 0x74:
6503 case 0x75:
6504 case 0x76:
6505 case 0x77:
6506 case 0x78:
6507 case 0x79:
6508 case 0x7a:
6509 case 0x7b:
6510 case 0x7c:
6511 case 0x7d:
6512 case 0x7e:
6513 case 0x7f:
6514 case 0x0f80: /* jcc Jv */
6515 case 0x0f81:
6516 case 0x0f82:
6517 case 0x0f83:
6518 case 0x0f84:
6519 case 0x0f85:
6520 case 0x0f86:
6521 case 0x0f87:
6522 case 0x0f88:
6523 case 0x0f89:
6524 case 0x0f8a:
6525 case 0x0f8b:
6526 case 0x0f8c:
6527 case 0x0f8d:
6528 case 0x0f8e:
6529 case 0x0f8f:
6530 break;
6531
6532 case 0x0f90: /* setcc Gv */
6533 case 0x0f91:
6534 case 0x0f92:
6535 case 0x0f93:
6536 case 0x0f94:
6537 case 0x0f95:
6538 case 0x0f96:
6539 case 0x0f97:
6540 case 0x0f98:
6541 case 0x0f99:
6542 case 0x0f9a:
6543 case 0x0f9b:
6544 case 0x0f9c:
6545 case 0x0f9d:
6546 case 0x0f9e:
6547 case 0x0f9f:
6548 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6549 ir.ot = OT_BYTE;
6550 if (i386_record_modrm (&ir))
6551 return -1;
6552 if (ir.mod == 3)
6553 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rex_b ? (ir.rm | ir.rex_b)
6554 : (ir.rm & 0x3));
6555 else
6556 {
6557 if (i386_record_lea_modrm (&ir))
6558 return -1;
6559 }
6560 break;
6561
6562 case 0x0f40: /* cmov Gv, Ev */
6563 case 0x0f41:
6564 case 0x0f42:
6565 case 0x0f43:
6566 case 0x0f44:
6567 case 0x0f45:
6568 case 0x0f46:
6569 case 0x0f47:
6570 case 0x0f48:
6571 case 0x0f49:
6572 case 0x0f4a:
6573 case 0x0f4b:
6574 case 0x0f4c:
6575 case 0x0f4d:
6576 case 0x0f4e:
6577 case 0x0f4f:
6578 if (i386_record_modrm (&ir))
6579 return -1;
6580 ir.reg |= rex_r;
6581 if (ir.dflag == OT_BYTE)
6582 ir.reg &= 0x3;
6583 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
6584 break;
6585
6586 /* flags */
6587 case 0x9c: /* pushf */
6588 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6589 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6590 ir.dflag = 2;
6591 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6592 return -1;
6593 break;
6594
6595 case 0x9d: /* popf */
6596 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6597 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6598 break;
6599
6600 case 0x9e: /* sahf */
6601 if (ir.regmap[X86_RECORD_R8_REGNUM])
6602 {
6603 ir.addr -= 1;
6604 goto no_support;
6605 }
6606 /* FALLTHROUGH */
6607 case 0xf5: /* cmc */
6608 case 0xf8: /* clc */
6609 case 0xf9: /* stc */
6610 case 0xfc: /* cld */
6611 case 0xfd: /* std */
6612 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6613 break;
6614
6615 case 0x9f: /* lahf */
6616 if (ir.regmap[X86_RECORD_R8_REGNUM])
6617 {
6618 ir.addr -= 1;
6619 goto no_support;
6620 }
6621 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6622 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6623 break;
6624
6625 /* bit operations */
6626 case 0x0fba: /* bt/bts/btr/btc Gv, im */
6627 ir.ot = ir.dflag + OT_WORD;
6628 if (i386_record_modrm (&ir))
6629 return -1;
6630 if (ir.reg < 4)
6631 {
6632 ir.addr -= 2;
6633 opcode = opcode << 8 | ir.modrm;
6634 goto no_support;
6635 }
6636 if (ir.reg != 4)
6637 {
6638 if (ir.mod == 3)
6639 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6640 else
6641 {
6642 if (i386_record_lea_modrm (&ir))
6643 return -1;
6644 }
6645 }
6646 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6647 break;
6648
6649 case 0x0fa3: /* bt Gv, Ev */
6650 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6651 break;
6652
6653 case 0x0fab: /* bts */
6654 case 0x0fb3: /* btr */
6655 case 0x0fbb: /* btc */
6656 ir.ot = ir.dflag + OT_WORD;
6657 if (i386_record_modrm (&ir))
6658 return -1;
6659 if (ir.mod == 3)
6660 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6661 else
6662 {
6663 uint64_t addr64;
6664 if (i386_record_lea_modrm_addr (&ir, &addr64))
6665 return -1;
6666 regcache_raw_read_unsigned (ir.regcache,
6667 ir.regmap[ir.reg | rex_r],
6668 &addr);
6669 switch (ir.dflag)
6670 {
6671 case 0:
6672 addr64 += ((int16_t) addr >> 4) << 4;
6673 break;
6674 case 1:
6675 addr64 += ((int32_t) addr >> 5) << 5;
6676 break;
6677 case 2:
6678 addr64 += ((int64_t) addr >> 6) << 6;
6679 break;
6680 }
6681 if (record_full_arch_list_add_mem (addr64, 1 << ir.ot))
6682 return -1;
6683 if (i386_record_lea_modrm (&ir))
6684 return -1;
6685 }
6686 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6687 break;
6688
6689 case 0x0fbc: /* bsf */
6690 case 0x0fbd: /* bsr */
6691 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6692 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6693 break;
6694
6695 /* bcd */
6696 case 0x27: /* daa */
6697 case 0x2f: /* das */
6698 case 0x37: /* aaa */
6699 case 0x3f: /* aas */
6700 case 0xd4: /* aam */
6701 case 0xd5: /* aad */
6702 if (ir.regmap[X86_RECORD_R8_REGNUM])
6703 {
6704 ir.addr -= 1;
6705 goto no_support;
6706 }
6707 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6708 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6709 break;
6710
6711 /* misc */
6712 case 0x90: /* nop */
6713 if (prefixes & PREFIX_LOCK)
6714 {
6715 ir.addr -= 1;
6716 goto no_support;
6717 }
6718 break;
6719
6720 case 0x9b: /* fwait */
6721 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
6722 return -1;
6723 opcode = (uint32_t) opcode8;
6724 ir.addr++;
6725 goto reswitch;
6726 break;
6727
6728 /* XXX */
6729 case 0xcc: /* int3 */
6730 printf_unfiltered (_("Process record does not support instruction "
6731 "int3.\n"));
6732 ir.addr -= 1;
6733 goto no_support;
6734 break;
6735
6736 /* XXX */
6737 case 0xcd: /* int */
6738 {
6739 int ret;
6740 uint8_t interrupt;
6741 if (record_read_memory (gdbarch, ir.addr, &interrupt, 1))
6742 return -1;
6743 ir.addr++;
6744 if (interrupt != 0x80
6745 || tdep->i386_intx80_record == NULL)
6746 {
6747 printf_unfiltered (_("Process record does not support "
6748 "instruction int 0x%02x.\n"),
6749 interrupt);
6750 ir.addr -= 2;
6751 goto no_support;
6752 }
6753 ret = tdep->i386_intx80_record (ir.regcache);
6754 if (ret)
6755 return ret;
6756 }
6757 break;
6758
6759 /* XXX */
6760 case 0xce: /* into */
6761 printf_unfiltered (_("Process record does not support "
6762 "instruction into.\n"));
6763 ir.addr -= 1;
6764 goto no_support;
6765 break;
6766
6767 case 0xfa: /* cli */
6768 case 0xfb: /* sti */
6769 break;
6770
6771 case 0x62: /* bound */
6772 printf_unfiltered (_("Process record does not support "
6773 "instruction bound.\n"));
6774 ir.addr -= 1;
6775 goto no_support;
6776 break;
6777
6778 case 0x0fc8: /* bswap reg */
6779 case 0x0fc9:
6780 case 0x0fca:
6781 case 0x0fcb:
6782 case 0x0fcc:
6783 case 0x0fcd:
6784 case 0x0fce:
6785 case 0x0fcf:
6786 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 7) | ir.rex_b);
6787 break;
6788
6789 case 0xd6: /* salc */
6790 if (ir.regmap[X86_RECORD_R8_REGNUM])
6791 {
6792 ir.addr -= 1;
6793 goto no_support;
6794 }
6795 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6796 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6797 break;
6798
6799 case 0xe0: /* loopnz */
6800 case 0xe1: /* loopz */
6801 case 0xe2: /* loop */
6802 case 0xe3: /* jecxz */
6803 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6804 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6805 break;
6806
6807 case 0x0f30: /* wrmsr */
6808 printf_unfiltered (_("Process record does not support "
6809 "instruction wrmsr.\n"));
6810 ir.addr -= 2;
6811 goto no_support;
6812 break;
6813
6814 case 0x0f32: /* rdmsr */
6815 printf_unfiltered (_("Process record does not support "
6816 "instruction rdmsr.\n"));
6817 ir.addr -= 2;
6818 goto no_support;
6819 break;
6820
6821 case 0x0f31: /* rdtsc */
6822 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6823 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6824 break;
6825
6826 case 0x0f34: /* sysenter */
6827 {
6828 int ret;
6829 if (ir.regmap[X86_RECORD_R8_REGNUM])
6830 {
6831 ir.addr -= 2;
6832 goto no_support;
6833 }
6834 if (tdep->i386_sysenter_record == NULL)
6835 {
6836 printf_unfiltered (_("Process record does not support "
6837 "instruction sysenter.\n"));
6838 ir.addr -= 2;
6839 goto no_support;
6840 }
6841 ret = tdep->i386_sysenter_record (ir.regcache);
6842 if (ret)
6843 return ret;
6844 }
6845 break;
6846
6847 case 0x0f35: /* sysexit */
6848 printf_unfiltered (_("Process record does not support "
6849 "instruction sysexit.\n"));
6850 ir.addr -= 2;
6851 goto no_support;
6852 break;
6853
6854 case 0x0f05: /* syscall */
6855 {
6856 int ret;
6857 if (tdep->i386_syscall_record == NULL)
6858 {
6859 printf_unfiltered (_("Process record does not support "
6860 "instruction syscall.\n"));
6861 ir.addr -= 2;
6862 goto no_support;
6863 }
6864 ret = tdep->i386_syscall_record (ir.regcache);
6865 if (ret)
6866 return ret;
6867 }
6868 break;
6869
6870 case 0x0f07: /* sysret */
6871 printf_unfiltered (_("Process record does not support "
6872 "instruction sysret.\n"));
6873 ir.addr -= 2;
6874 goto no_support;
6875 break;
6876
6877 case 0x0fa2: /* cpuid */
6878 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6879 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6880 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6881 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
6882 break;
6883
6884 case 0xf4: /* hlt */
6885 printf_unfiltered (_("Process record does not support "
6886 "instruction hlt.\n"));
6887 ir.addr -= 1;
6888 goto no_support;
6889 break;
6890
6891 case 0x0f00:
6892 if (i386_record_modrm (&ir))
6893 return -1;
6894 switch (ir.reg)
6895 {
6896 case 0: /* sldt */
6897 case 1: /* str */
6898 if (ir.mod == 3)
6899 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6900 else
6901 {
6902 ir.ot = OT_WORD;
6903 if (i386_record_lea_modrm (&ir))
6904 return -1;
6905 }
6906 break;
6907 case 2: /* lldt */
6908 case 3: /* ltr */
6909 break;
6910 case 4: /* verr */
6911 case 5: /* verw */
6912 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6913 break;
6914 default:
6915 ir.addr -= 3;
6916 opcode = opcode << 8 | ir.modrm;
6917 goto no_support;
6918 break;
6919 }
6920 break;
6921
6922 case 0x0f01:
6923 if (i386_record_modrm (&ir))
6924 return -1;
6925 switch (ir.reg)
6926 {
6927 case 0: /* sgdt */
6928 {
6929 uint64_t addr64;
6930
6931 if (ir.mod == 3)
6932 {
6933 ir.addr -= 3;
6934 opcode = opcode << 8 | ir.modrm;
6935 goto no_support;
6936 }
6937 if (ir.override >= 0)
6938 {
6939 if (record_full_memory_query)
6940 {
6941 int q;
6942
6943 target_terminal_ours ();
6944 q = yquery (_("\
6945 Process record ignores the memory change of instruction at address %s\n\
6946 because it can't get the value of the segment register.\n\
6947 Do you want to stop the program?"),
6948 paddress (gdbarch, ir.orig_addr));
6949 target_terminal_inferior ();
6950 if (q)
6951 return -1;
6952 }
6953 }
6954 else
6955 {
6956 if (i386_record_lea_modrm_addr (&ir, &addr64))
6957 return -1;
6958 if (record_full_arch_list_add_mem (addr64, 2))
6959 return -1;
6960 addr64 += 2;
6961 if (ir.regmap[X86_RECORD_R8_REGNUM])
6962 {
6963 if (record_full_arch_list_add_mem (addr64, 8))
6964 return -1;
6965 }
6966 else
6967 {
6968 if (record_full_arch_list_add_mem (addr64, 4))
6969 return -1;
6970 }
6971 }
6972 }
6973 break;
6974 case 1:
6975 if (ir.mod == 3)
6976 {
6977 switch (ir.rm)
6978 {
6979 case 0: /* monitor */
6980 break;
6981 case 1: /* mwait */
6982 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6983 break;
6984 default:
6985 ir.addr -= 3;
6986 opcode = opcode << 8 | ir.modrm;
6987 goto no_support;
6988 break;
6989 }
6990 }
6991 else
6992 {
6993 /* sidt */
6994 if (ir.override >= 0)
6995 {
6996 if (record_full_memory_query)
6997 {
6998 int q;
6999
7000 target_terminal_ours ();
7001 q = yquery (_("\
7002 Process record ignores the memory change of instruction at address %s\n\
7003 because it can't get the value of the segment register.\n\
7004 Do you want to stop the program?"),
7005 paddress (gdbarch, ir.orig_addr));
7006 target_terminal_inferior ();
7007 if (q)
7008 return -1;
7009 }
7010 }
7011 else
7012 {
7013 uint64_t addr64;
7014
7015 if (i386_record_lea_modrm_addr (&ir, &addr64))
7016 return -1;
7017 if (record_full_arch_list_add_mem (addr64, 2))
7018 return -1;
7019 addr64 += 2;
7020 if (ir.regmap[X86_RECORD_R8_REGNUM])
7021 {
7022 if (record_full_arch_list_add_mem (addr64, 8))
7023 return -1;
7024 }
7025 else
7026 {
7027 if (record_full_arch_list_add_mem (addr64, 4))
7028 return -1;
7029 }
7030 }
7031 }
7032 break;
7033 case 2: /* lgdt */
7034 if (ir.mod == 3)
7035 {
7036 /* xgetbv */
7037 if (ir.rm == 0)
7038 {
7039 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7040 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7041 break;
7042 }
7043 /* xsetbv */
7044 else if (ir.rm == 1)
7045 break;
7046 }
7047 case 3: /* lidt */
7048 if (ir.mod == 3)
7049 {
7050 ir.addr -= 3;
7051 opcode = opcode << 8 | ir.modrm;
7052 goto no_support;
7053 }
7054 break;
7055 case 4: /* smsw */
7056 if (ir.mod == 3)
7057 {
7058 if (record_full_arch_list_add_reg (ir.regcache, ir.rm | ir.rex_b))
7059 return -1;
7060 }
7061 else
7062 {
7063 ir.ot = OT_WORD;
7064 if (i386_record_lea_modrm (&ir))
7065 return -1;
7066 }
7067 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7068 break;
7069 case 6: /* lmsw */
7070 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7071 break;
7072 case 7: /* invlpg */
7073 if (ir.mod == 3)
7074 {
7075 if (ir.rm == 0 && ir.regmap[X86_RECORD_R8_REGNUM])
7076 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
7077 else
7078 {
7079 ir.addr -= 3;
7080 opcode = opcode << 8 | ir.modrm;
7081 goto no_support;
7082 }
7083 }
7084 else
7085 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7086 break;
7087 default:
7088 ir.addr -= 3;
7089 opcode = opcode << 8 | ir.modrm;
7090 goto no_support;
7091 break;
7092 }
7093 break;
7094
7095 case 0x0f08: /* invd */
7096 case 0x0f09: /* wbinvd */
7097 break;
7098
7099 case 0x63: /* arpl */
7100 if (i386_record_modrm (&ir))
7101 return -1;
7102 if (ir.mod == 3 || ir.regmap[X86_RECORD_R8_REGNUM])
7103 {
7104 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.regmap[X86_RECORD_R8_REGNUM]
7105 ? (ir.reg | rex_r) : ir.rm);
7106 }
7107 else
7108 {
7109 ir.ot = ir.dflag ? OT_LONG : OT_WORD;
7110 if (i386_record_lea_modrm (&ir))
7111 return -1;
7112 }
7113 if (!ir.regmap[X86_RECORD_R8_REGNUM])
7114 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7115 break;
7116
7117 case 0x0f02: /* lar */
7118 case 0x0f03: /* lsl */
7119 if (i386_record_modrm (&ir))
7120 return -1;
7121 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7122 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7123 break;
7124
7125 case 0x0f18:
7126 if (i386_record_modrm (&ir))
7127 return -1;
7128 if (ir.mod == 3 && ir.reg == 3)
7129 {
7130 ir.addr -= 3;
7131 opcode = opcode << 8 | ir.modrm;
7132 goto no_support;
7133 }
7134 break;
7135
7136 case 0x0f19:
7137 case 0x0f1a:
7138 case 0x0f1b:
7139 case 0x0f1c:
7140 case 0x0f1d:
7141 case 0x0f1e:
7142 case 0x0f1f:
7143 /* nop (multi byte) */
7144 break;
7145
7146 case 0x0f20: /* mov reg, crN */
7147 case 0x0f22: /* mov crN, reg */
7148 if (i386_record_modrm (&ir))
7149 return -1;
7150 if ((ir.modrm & 0xc0) != 0xc0)
7151 {
7152 ir.addr -= 3;
7153 opcode = opcode << 8 | ir.modrm;
7154 goto no_support;
7155 }
7156 switch (ir.reg)
7157 {
7158 case 0:
7159 case 2:
7160 case 3:
7161 case 4:
7162 case 8:
7163 if (opcode & 2)
7164 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7165 else
7166 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7167 break;
7168 default:
7169 ir.addr -= 3;
7170 opcode = opcode << 8 | ir.modrm;
7171 goto no_support;
7172 break;
7173 }
7174 break;
7175
7176 case 0x0f21: /* mov reg, drN */
7177 case 0x0f23: /* mov drN, reg */
7178 if (i386_record_modrm (&ir))
7179 return -1;
7180 if ((ir.modrm & 0xc0) != 0xc0 || ir.reg == 4
7181 || ir.reg == 5 || ir.reg >= 8)
7182 {
7183 ir.addr -= 3;
7184 opcode = opcode << 8 | ir.modrm;
7185 goto no_support;
7186 }
7187 if (opcode & 2)
7188 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7189 else
7190 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7191 break;
7192
7193 case 0x0f06: /* clts */
7194 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7195 break;
7196
7197 /* MMX 3DNow! SSE SSE2 SSE3 SSSE3 SSE4 */
7198
7199 case 0x0f0d: /* 3DNow! prefetch */
7200 break;
7201
7202 case 0x0f0e: /* 3DNow! femms */
7203 case 0x0f77: /* emms */
7204 if (i386_fpc_regnum_p (gdbarch, I387_FTAG_REGNUM(tdep)))
7205 goto no_support;
7206 record_full_arch_list_add_reg (ir.regcache, I387_FTAG_REGNUM(tdep));
7207 break;
7208
7209 case 0x0f0f: /* 3DNow! data */
7210 if (i386_record_modrm (&ir))
7211 return -1;
7212 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
7213 return -1;
7214 ir.addr++;
7215 switch (opcode8)
7216 {
7217 case 0x0c: /* 3DNow! pi2fw */
7218 case 0x0d: /* 3DNow! pi2fd */
7219 case 0x1c: /* 3DNow! pf2iw */
7220 case 0x1d: /* 3DNow! pf2id */
7221 case 0x8a: /* 3DNow! pfnacc */
7222 case 0x8e: /* 3DNow! pfpnacc */
7223 case 0x90: /* 3DNow! pfcmpge */
7224 case 0x94: /* 3DNow! pfmin */
7225 case 0x96: /* 3DNow! pfrcp */
7226 case 0x97: /* 3DNow! pfrsqrt */
7227 case 0x9a: /* 3DNow! pfsub */
7228 case 0x9e: /* 3DNow! pfadd */
7229 case 0xa0: /* 3DNow! pfcmpgt */
7230 case 0xa4: /* 3DNow! pfmax */
7231 case 0xa6: /* 3DNow! pfrcpit1 */
7232 case 0xa7: /* 3DNow! pfrsqit1 */
7233 case 0xaa: /* 3DNow! pfsubr */
7234 case 0xae: /* 3DNow! pfacc */
7235 case 0xb0: /* 3DNow! pfcmpeq */
7236 case 0xb4: /* 3DNow! pfmul */
7237 case 0xb6: /* 3DNow! pfrcpit2 */
7238 case 0xb7: /* 3DNow! pmulhrw */
7239 case 0xbb: /* 3DNow! pswapd */
7240 case 0xbf: /* 3DNow! pavgusb */
7241 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7242 goto no_support_3dnow_data;
7243 record_full_arch_list_add_reg (ir.regcache, ir.reg);
7244 break;
7245
7246 default:
7247 no_support_3dnow_data:
7248 opcode = (opcode << 8) | opcode8;
7249 goto no_support;
7250 break;
7251 }
7252 break;
7253
7254 case 0x0faa: /* rsm */
7255 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7256 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7257 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
7258 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7259 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
7260 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
7261 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
7262 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
7263 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
7264 break;
7265
7266 case 0x0fae:
7267 if (i386_record_modrm (&ir))
7268 return -1;
7269 switch(ir.reg)
7270 {
7271 case 0: /* fxsave */
7272 {
7273 uint64_t tmpu64;
7274
7275 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7276 if (i386_record_lea_modrm_addr (&ir, &tmpu64))
7277 return -1;
7278 if (record_full_arch_list_add_mem (tmpu64, 512))
7279 return -1;
7280 }
7281 break;
7282
7283 case 1: /* fxrstor */
7284 {
7285 int i;
7286
7287 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7288
7289 for (i = I387_MM0_REGNUM (tdep);
7290 i386_mmx_regnum_p (gdbarch, i); i++)
7291 record_full_arch_list_add_reg (ir.regcache, i);
7292
7293 for (i = I387_XMM0_REGNUM (tdep);
7294 i386_xmm_regnum_p (gdbarch, i); i++)
7295 record_full_arch_list_add_reg (ir.regcache, i);
7296
7297 if (i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
7298 record_full_arch_list_add_reg (ir.regcache,
7299 I387_MXCSR_REGNUM(tdep));
7300
7301 for (i = I387_ST0_REGNUM (tdep);
7302 i386_fp_regnum_p (gdbarch, i); i++)
7303 record_full_arch_list_add_reg (ir.regcache, i);
7304
7305 for (i = I387_FCTRL_REGNUM (tdep);
7306 i386_fpc_regnum_p (gdbarch, i); i++)
7307 record_full_arch_list_add_reg (ir.regcache, i);
7308 }
7309 break;
7310
7311 case 2: /* ldmxcsr */
7312 if (!i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
7313 goto no_support;
7314 record_full_arch_list_add_reg (ir.regcache, I387_MXCSR_REGNUM(tdep));
7315 break;
7316
7317 case 3: /* stmxcsr */
7318 ir.ot = OT_LONG;
7319 if (i386_record_lea_modrm (&ir))
7320 return -1;
7321 break;
7322
7323 case 5: /* lfence */
7324 case 6: /* mfence */
7325 case 7: /* sfence clflush */
7326 break;
7327
7328 default:
7329 opcode = (opcode << 8) | ir.modrm;
7330 goto no_support;
7331 break;
7332 }
7333 break;
7334
7335 case 0x0fc3: /* movnti */
7336 ir.ot = (ir.dflag == 2) ? OT_QUAD : OT_LONG;
7337 if (i386_record_modrm (&ir))
7338 return -1;
7339 if (ir.mod == 3)
7340 goto no_support;
7341 ir.reg |= rex_r;
7342 if (i386_record_lea_modrm (&ir))
7343 return -1;
7344 break;
7345
7346 /* Add prefix to opcode. */
7347 case 0x0f10:
7348 case 0x0f11:
7349 case 0x0f12:
7350 case 0x0f13:
7351 case 0x0f14:
7352 case 0x0f15:
7353 case 0x0f16:
7354 case 0x0f17:
7355 case 0x0f28:
7356 case 0x0f29:
7357 case 0x0f2a:
7358 case 0x0f2b:
7359 case 0x0f2c:
7360 case 0x0f2d:
7361 case 0x0f2e:
7362 case 0x0f2f:
7363 case 0x0f38:
7364 case 0x0f39:
7365 case 0x0f3a:
7366 case 0x0f50:
7367 case 0x0f51:
7368 case 0x0f52:
7369 case 0x0f53:
7370 case 0x0f54:
7371 case 0x0f55:
7372 case 0x0f56:
7373 case 0x0f57:
7374 case 0x0f58:
7375 case 0x0f59:
7376 case 0x0f5a:
7377 case 0x0f5b:
7378 case 0x0f5c:
7379 case 0x0f5d:
7380 case 0x0f5e:
7381 case 0x0f5f:
7382 case 0x0f60:
7383 case 0x0f61:
7384 case 0x0f62:
7385 case 0x0f63:
7386 case 0x0f64:
7387 case 0x0f65:
7388 case 0x0f66:
7389 case 0x0f67:
7390 case 0x0f68:
7391 case 0x0f69:
7392 case 0x0f6a:
7393 case 0x0f6b:
7394 case 0x0f6c:
7395 case 0x0f6d:
7396 case 0x0f6e:
7397 case 0x0f6f:
7398 case 0x0f70:
7399 case 0x0f71:
7400 case 0x0f72:
7401 case 0x0f73:
7402 case 0x0f74:
7403 case 0x0f75:
7404 case 0x0f76:
7405 case 0x0f7c:
7406 case 0x0f7d:
7407 case 0x0f7e:
7408 case 0x0f7f:
7409 case 0x0fb8:
7410 case 0x0fc2:
7411 case 0x0fc4:
7412 case 0x0fc5:
7413 case 0x0fc6:
7414 case 0x0fd0:
7415 case 0x0fd1:
7416 case 0x0fd2:
7417 case 0x0fd3:
7418 case 0x0fd4:
7419 case 0x0fd5:
7420 case 0x0fd6:
7421 case 0x0fd7:
7422 case 0x0fd8:
7423 case 0x0fd9:
7424 case 0x0fda:
7425 case 0x0fdb:
7426 case 0x0fdc:
7427 case 0x0fdd:
7428 case 0x0fde:
7429 case 0x0fdf:
7430 case 0x0fe0:
7431 case 0x0fe1:
7432 case 0x0fe2:
7433 case 0x0fe3:
7434 case 0x0fe4:
7435 case 0x0fe5:
7436 case 0x0fe6:
7437 case 0x0fe7:
7438 case 0x0fe8:
7439 case 0x0fe9:
7440 case 0x0fea:
7441 case 0x0feb:
7442 case 0x0fec:
7443 case 0x0fed:
7444 case 0x0fee:
7445 case 0x0fef:
7446 case 0x0ff0:
7447 case 0x0ff1:
7448 case 0x0ff2:
7449 case 0x0ff3:
7450 case 0x0ff4:
7451 case 0x0ff5:
7452 case 0x0ff6:
7453 case 0x0ff7:
7454 case 0x0ff8:
7455 case 0x0ff9:
7456 case 0x0ffa:
7457 case 0x0ffb:
7458 case 0x0ffc:
7459 case 0x0ffd:
7460 case 0x0ffe:
7461 /* Mask out PREFIX_ADDR. */
7462 switch ((prefixes & ~PREFIX_ADDR))
7463 {
7464 case PREFIX_REPNZ:
7465 opcode |= 0xf20000;
7466 break;
7467 case PREFIX_DATA:
7468 opcode |= 0x660000;
7469 break;
7470 case PREFIX_REPZ:
7471 opcode |= 0xf30000;
7472 break;
7473 }
7474 reswitch_prefix_add:
7475 switch (opcode)
7476 {
7477 case 0x0f38:
7478 case 0x660f38:
7479 case 0xf20f38:
7480 case 0x0f3a:
7481 case 0x660f3a:
7482 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
7483 return -1;
7484 ir.addr++;
7485 opcode = (uint32_t) opcode8 | opcode << 8;
7486 goto reswitch_prefix_add;
7487 break;
7488
7489 case 0x0f10: /* movups */
7490 case 0x660f10: /* movupd */
7491 case 0xf30f10: /* movss */
7492 case 0xf20f10: /* movsd */
7493 case 0x0f12: /* movlps */
7494 case 0x660f12: /* movlpd */
7495 case 0xf30f12: /* movsldup */
7496 case 0xf20f12: /* movddup */
7497 case 0x0f14: /* unpcklps */
7498 case 0x660f14: /* unpcklpd */
7499 case 0x0f15: /* unpckhps */
7500 case 0x660f15: /* unpckhpd */
7501 case 0x0f16: /* movhps */
7502 case 0x660f16: /* movhpd */
7503 case 0xf30f16: /* movshdup */
7504 case 0x0f28: /* movaps */
7505 case 0x660f28: /* movapd */
7506 case 0x0f2a: /* cvtpi2ps */
7507 case 0x660f2a: /* cvtpi2pd */
7508 case 0xf30f2a: /* cvtsi2ss */
7509 case 0xf20f2a: /* cvtsi2sd */
7510 case 0x0f2c: /* cvttps2pi */
7511 case 0x660f2c: /* cvttpd2pi */
7512 case 0x0f2d: /* cvtps2pi */
7513 case 0x660f2d: /* cvtpd2pi */
7514 case 0x660f3800: /* pshufb */
7515 case 0x660f3801: /* phaddw */
7516 case 0x660f3802: /* phaddd */
7517 case 0x660f3803: /* phaddsw */
7518 case 0x660f3804: /* pmaddubsw */
7519 case 0x660f3805: /* phsubw */
7520 case 0x660f3806: /* phsubd */
7521 case 0x660f3807: /* phsubsw */
7522 case 0x660f3808: /* psignb */
7523 case 0x660f3809: /* psignw */
7524 case 0x660f380a: /* psignd */
7525 case 0x660f380b: /* pmulhrsw */
7526 case 0x660f3810: /* pblendvb */
7527 case 0x660f3814: /* blendvps */
7528 case 0x660f3815: /* blendvpd */
7529 case 0x660f381c: /* pabsb */
7530 case 0x660f381d: /* pabsw */
7531 case 0x660f381e: /* pabsd */
7532 case 0x660f3820: /* pmovsxbw */
7533 case 0x660f3821: /* pmovsxbd */
7534 case 0x660f3822: /* pmovsxbq */
7535 case 0x660f3823: /* pmovsxwd */
7536 case 0x660f3824: /* pmovsxwq */
7537 case 0x660f3825: /* pmovsxdq */
7538 case 0x660f3828: /* pmuldq */
7539 case 0x660f3829: /* pcmpeqq */
7540 case 0x660f382a: /* movntdqa */
7541 case 0x660f3a08: /* roundps */
7542 case 0x660f3a09: /* roundpd */
7543 case 0x660f3a0a: /* roundss */
7544 case 0x660f3a0b: /* roundsd */
7545 case 0x660f3a0c: /* blendps */
7546 case 0x660f3a0d: /* blendpd */
7547 case 0x660f3a0e: /* pblendw */
7548 case 0x660f3a0f: /* palignr */
7549 case 0x660f3a20: /* pinsrb */
7550 case 0x660f3a21: /* insertps */
7551 case 0x660f3a22: /* pinsrd pinsrq */
7552 case 0x660f3a40: /* dpps */
7553 case 0x660f3a41: /* dppd */
7554 case 0x660f3a42: /* mpsadbw */
7555 case 0x660f3a60: /* pcmpestrm */
7556 case 0x660f3a61: /* pcmpestri */
7557 case 0x660f3a62: /* pcmpistrm */
7558 case 0x660f3a63: /* pcmpistri */
7559 case 0x0f51: /* sqrtps */
7560 case 0x660f51: /* sqrtpd */
7561 case 0xf20f51: /* sqrtsd */
7562 case 0xf30f51: /* sqrtss */
7563 case 0x0f52: /* rsqrtps */
7564 case 0xf30f52: /* rsqrtss */
7565 case 0x0f53: /* rcpps */
7566 case 0xf30f53: /* rcpss */
7567 case 0x0f54: /* andps */
7568 case 0x660f54: /* andpd */
7569 case 0x0f55: /* andnps */
7570 case 0x660f55: /* andnpd */
7571 case 0x0f56: /* orps */
7572 case 0x660f56: /* orpd */
7573 case 0x0f57: /* xorps */
7574 case 0x660f57: /* xorpd */
7575 case 0x0f58: /* addps */
7576 case 0x660f58: /* addpd */
7577 case 0xf20f58: /* addsd */
7578 case 0xf30f58: /* addss */
7579 case 0x0f59: /* mulps */
7580 case 0x660f59: /* mulpd */
7581 case 0xf20f59: /* mulsd */
7582 case 0xf30f59: /* mulss */
7583 case 0x0f5a: /* cvtps2pd */
7584 case 0x660f5a: /* cvtpd2ps */
7585 case 0xf20f5a: /* cvtsd2ss */
7586 case 0xf30f5a: /* cvtss2sd */
7587 case 0x0f5b: /* cvtdq2ps */
7588 case 0x660f5b: /* cvtps2dq */
7589 case 0xf30f5b: /* cvttps2dq */
7590 case 0x0f5c: /* subps */
7591 case 0x660f5c: /* subpd */
7592 case 0xf20f5c: /* subsd */
7593 case 0xf30f5c: /* subss */
7594 case 0x0f5d: /* minps */
7595 case 0x660f5d: /* minpd */
7596 case 0xf20f5d: /* minsd */
7597 case 0xf30f5d: /* minss */
7598 case 0x0f5e: /* divps */
7599 case 0x660f5e: /* divpd */
7600 case 0xf20f5e: /* divsd */
7601 case 0xf30f5e: /* divss */
7602 case 0x0f5f: /* maxps */
7603 case 0x660f5f: /* maxpd */
7604 case 0xf20f5f: /* maxsd */
7605 case 0xf30f5f: /* maxss */
7606 case 0x660f60: /* punpcklbw */
7607 case 0x660f61: /* punpcklwd */
7608 case 0x660f62: /* punpckldq */
7609 case 0x660f63: /* packsswb */
7610 case 0x660f64: /* pcmpgtb */
7611 case 0x660f65: /* pcmpgtw */
7612 case 0x660f66: /* pcmpgtd */
7613 case 0x660f67: /* packuswb */
7614 case 0x660f68: /* punpckhbw */
7615 case 0x660f69: /* punpckhwd */
7616 case 0x660f6a: /* punpckhdq */
7617 case 0x660f6b: /* packssdw */
7618 case 0x660f6c: /* punpcklqdq */
7619 case 0x660f6d: /* punpckhqdq */
7620 case 0x660f6e: /* movd */
7621 case 0x660f6f: /* movdqa */
7622 case 0xf30f6f: /* movdqu */
7623 case 0x660f70: /* pshufd */
7624 case 0xf20f70: /* pshuflw */
7625 case 0xf30f70: /* pshufhw */
7626 case 0x660f74: /* pcmpeqb */
7627 case 0x660f75: /* pcmpeqw */
7628 case 0x660f76: /* pcmpeqd */
7629 case 0x660f7c: /* haddpd */
7630 case 0xf20f7c: /* haddps */
7631 case 0x660f7d: /* hsubpd */
7632 case 0xf20f7d: /* hsubps */
7633 case 0xf30f7e: /* movq */
7634 case 0x0fc2: /* cmpps */
7635 case 0x660fc2: /* cmppd */
7636 case 0xf20fc2: /* cmpsd */
7637 case 0xf30fc2: /* cmpss */
7638 case 0x660fc4: /* pinsrw */
7639 case 0x0fc6: /* shufps */
7640 case 0x660fc6: /* shufpd */
7641 case 0x660fd0: /* addsubpd */
7642 case 0xf20fd0: /* addsubps */
7643 case 0x660fd1: /* psrlw */
7644 case 0x660fd2: /* psrld */
7645 case 0x660fd3: /* psrlq */
7646 case 0x660fd4: /* paddq */
7647 case 0x660fd5: /* pmullw */
7648 case 0xf30fd6: /* movq2dq */
7649 case 0x660fd8: /* psubusb */
7650 case 0x660fd9: /* psubusw */
7651 case 0x660fda: /* pminub */
7652 case 0x660fdb: /* pand */
7653 case 0x660fdc: /* paddusb */
7654 case 0x660fdd: /* paddusw */
7655 case 0x660fde: /* pmaxub */
7656 case 0x660fdf: /* pandn */
7657 case 0x660fe0: /* pavgb */
7658 case 0x660fe1: /* psraw */
7659 case 0x660fe2: /* psrad */
7660 case 0x660fe3: /* pavgw */
7661 case 0x660fe4: /* pmulhuw */
7662 case 0x660fe5: /* pmulhw */
7663 case 0x660fe6: /* cvttpd2dq */
7664 case 0xf20fe6: /* cvtpd2dq */
7665 case 0xf30fe6: /* cvtdq2pd */
7666 case 0x660fe8: /* psubsb */
7667 case 0x660fe9: /* psubsw */
7668 case 0x660fea: /* pminsw */
7669 case 0x660feb: /* por */
7670 case 0x660fec: /* paddsb */
7671 case 0x660fed: /* paddsw */
7672 case 0x660fee: /* pmaxsw */
7673 case 0x660fef: /* pxor */
7674 case 0xf20ff0: /* lddqu */
7675 case 0x660ff1: /* psllw */
7676 case 0x660ff2: /* pslld */
7677 case 0x660ff3: /* psllq */
7678 case 0x660ff4: /* pmuludq */
7679 case 0x660ff5: /* pmaddwd */
7680 case 0x660ff6: /* psadbw */
7681 case 0x660ff8: /* psubb */
7682 case 0x660ff9: /* psubw */
7683 case 0x660ffa: /* psubd */
7684 case 0x660ffb: /* psubq */
7685 case 0x660ffc: /* paddb */
7686 case 0x660ffd: /* paddw */
7687 case 0x660ffe: /* paddd */
7688 if (i386_record_modrm (&ir))
7689 return -1;
7690 ir.reg |= rex_r;
7691 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.reg))
7692 goto no_support;
7693 record_full_arch_list_add_reg (ir.regcache,
7694 I387_XMM0_REGNUM (tdep) + ir.reg);
7695 if ((opcode & 0xfffffffc) == 0x660f3a60)
7696 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7697 break;
7698
7699 case 0x0f11: /* movups */
7700 case 0x660f11: /* movupd */
7701 case 0xf30f11: /* movss */
7702 case 0xf20f11: /* movsd */
7703 case 0x0f13: /* movlps */
7704 case 0x660f13: /* movlpd */
7705 case 0x0f17: /* movhps */
7706 case 0x660f17: /* movhpd */
7707 case 0x0f29: /* movaps */
7708 case 0x660f29: /* movapd */
7709 case 0x660f3a14: /* pextrb */
7710 case 0x660f3a15: /* pextrw */
7711 case 0x660f3a16: /* pextrd pextrq */
7712 case 0x660f3a17: /* extractps */
7713 case 0x660f7f: /* movdqa */
7714 case 0xf30f7f: /* movdqu */
7715 if (i386_record_modrm (&ir))
7716 return -1;
7717 if (ir.mod == 3)
7718 {
7719 if (opcode == 0x0f13 || opcode == 0x660f13
7720 || opcode == 0x0f17 || opcode == 0x660f17)
7721 goto no_support;
7722 ir.rm |= ir.rex_b;
7723 if (!i386_xmm_regnum_p (gdbarch,
7724 I387_XMM0_REGNUM (tdep) + ir.rm))
7725 goto no_support;
7726 record_full_arch_list_add_reg (ir.regcache,
7727 I387_XMM0_REGNUM (tdep) + ir.rm);
7728 }
7729 else
7730 {
7731 switch (opcode)
7732 {
7733 case 0x660f3a14:
7734 ir.ot = OT_BYTE;
7735 break;
7736 case 0x660f3a15:
7737 ir.ot = OT_WORD;
7738 break;
7739 case 0x660f3a16:
7740 ir.ot = OT_LONG;
7741 break;
7742 case 0x660f3a17:
7743 ir.ot = OT_QUAD;
7744 break;
7745 default:
7746 ir.ot = OT_DQUAD;
7747 break;
7748 }
7749 if (i386_record_lea_modrm (&ir))
7750 return -1;
7751 }
7752 break;
7753
7754 case 0x0f2b: /* movntps */
7755 case 0x660f2b: /* movntpd */
7756 case 0x0fe7: /* movntq */
7757 case 0x660fe7: /* movntdq */
7758 if (ir.mod == 3)
7759 goto no_support;
7760 if (opcode == 0x0fe7)
7761 ir.ot = OT_QUAD;
7762 else
7763 ir.ot = OT_DQUAD;
7764 if (i386_record_lea_modrm (&ir))
7765 return -1;
7766 break;
7767
7768 case 0xf30f2c: /* cvttss2si */
7769 case 0xf20f2c: /* cvttsd2si */
7770 case 0xf30f2d: /* cvtss2si */
7771 case 0xf20f2d: /* cvtsd2si */
7772 case 0xf20f38f0: /* crc32 */
7773 case 0xf20f38f1: /* crc32 */
7774 case 0x0f50: /* movmskps */
7775 case 0x660f50: /* movmskpd */
7776 case 0x0fc5: /* pextrw */
7777 case 0x660fc5: /* pextrw */
7778 case 0x0fd7: /* pmovmskb */
7779 case 0x660fd7: /* pmovmskb */
7780 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7781 break;
7782
7783 case 0x0f3800: /* pshufb */
7784 case 0x0f3801: /* phaddw */
7785 case 0x0f3802: /* phaddd */
7786 case 0x0f3803: /* phaddsw */
7787 case 0x0f3804: /* pmaddubsw */
7788 case 0x0f3805: /* phsubw */
7789 case 0x0f3806: /* phsubd */
7790 case 0x0f3807: /* phsubsw */
7791 case 0x0f3808: /* psignb */
7792 case 0x0f3809: /* psignw */
7793 case 0x0f380a: /* psignd */
7794 case 0x0f380b: /* pmulhrsw */
7795 case 0x0f381c: /* pabsb */
7796 case 0x0f381d: /* pabsw */
7797 case 0x0f381e: /* pabsd */
7798 case 0x0f382b: /* packusdw */
7799 case 0x0f3830: /* pmovzxbw */
7800 case 0x0f3831: /* pmovzxbd */
7801 case 0x0f3832: /* pmovzxbq */
7802 case 0x0f3833: /* pmovzxwd */
7803 case 0x0f3834: /* pmovzxwq */
7804 case 0x0f3835: /* pmovzxdq */
7805 case 0x0f3837: /* pcmpgtq */
7806 case 0x0f3838: /* pminsb */
7807 case 0x0f3839: /* pminsd */
7808 case 0x0f383a: /* pminuw */
7809 case 0x0f383b: /* pminud */
7810 case 0x0f383c: /* pmaxsb */
7811 case 0x0f383d: /* pmaxsd */
7812 case 0x0f383e: /* pmaxuw */
7813 case 0x0f383f: /* pmaxud */
7814 case 0x0f3840: /* pmulld */
7815 case 0x0f3841: /* phminposuw */
7816 case 0x0f3a0f: /* palignr */
7817 case 0x0f60: /* punpcklbw */
7818 case 0x0f61: /* punpcklwd */
7819 case 0x0f62: /* punpckldq */
7820 case 0x0f63: /* packsswb */
7821 case 0x0f64: /* pcmpgtb */
7822 case 0x0f65: /* pcmpgtw */
7823 case 0x0f66: /* pcmpgtd */
7824 case 0x0f67: /* packuswb */
7825 case 0x0f68: /* punpckhbw */
7826 case 0x0f69: /* punpckhwd */
7827 case 0x0f6a: /* punpckhdq */
7828 case 0x0f6b: /* packssdw */
7829 case 0x0f6e: /* movd */
7830 case 0x0f6f: /* movq */
7831 case 0x0f70: /* pshufw */
7832 case 0x0f74: /* pcmpeqb */
7833 case 0x0f75: /* pcmpeqw */
7834 case 0x0f76: /* pcmpeqd */
7835 case 0x0fc4: /* pinsrw */
7836 case 0x0fd1: /* psrlw */
7837 case 0x0fd2: /* psrld */
7838 case 0x0fd3: /* psrlq */
7839 case 0x0fd4: /* paddq */
7840 case 0x0fd5: /* pmullw */
7841 case 0xf20fd6: /* movdq2q */
7842 case 0x0fd8: /* psubusb */
7843 case 0x0fd9: /* psubusw */
7844 case 0x0fda: /* pminub */
7845 case 0x0fdb: /* pand */
7846 case 0x0fdc: /* paddusb */
7847 case 0x0fdd: /* paddusw */
7848 case 0x0fde: /* pmaxub */
7849 case 0x0fdf: /* pandn */
7850 case 0x0fe0: /* pavgb */
7851 case 0x0fe1: /* psraw */
7852 case 0x0fe2: /* psrad */
7853 case 0x0fe3: /* pavgw */
7854 case 0x0fe4: /* pmulhuw */
7855 case 0x0fe5: /* pmulhw */
7856 case 0x0fe8: /* psubsb */
7857 case 0x0fe9: /* psubsw */
7858 case 0x0fea: /* pminsw */
7859 case 0x0feb: /* por */
7860 case 0x0fec: /* paddsb */
7861 case 0x0fed: /* paddsw */
7862 case 0x0fee: /* pmaxsw */
7863 case 0x0fef: /* pxor */
7864 case 0x0ff1: /* psllw */
7865 case 0x0ff2: /* pslld */
7866 case 0x0ff3: /* psllq */
7867 case 0x0ff4: /* pmuludq */
7868 case 0x0ff5: /* pmaddwd */
7869 case 0x0ff6: /* psadbw */
7870 case 0x0ff8: /* psubb */
7871 case 0x0ff9: /* psubw */
7872 case 0x0ffa: /* psubd */
7873 case 0x0ffb: /* psubq */
7874 case 0x0ffc: /* paddb */
7875 case 0x0ffd: /* paddw */
7876 case 0x0ffe: /* paddd */
7877 if (i386_record_modrm (&ir))
7878 return -1;
7879 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7880 goto no_support;
7881 record_full_arch_list_add_reg (ir.regcache,
7882 I387_MM0_REGNUM (tdep) + ir.reg);
7883 break;
7884
7885 case 0x0f71: /* psllw */
7886 case 0x0f72: /* pslld */
7887 case 0x0f73: /* psllq */
7888 if (i386_record_modrm (&ir))
7889 return -1;
7890 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
7891 goto no_support;
7892 record_full_arch_list_add_reg (ir.regcache,
7893 I387_MM0_REGNUM (tdep) + ir.rm);
7894 break;
7895
7896 case 0x660f71: /* psllw */
7897 case 0x660f72: /* pslld */
7898 case 0x660f73: /* psllq */
7899 if (i386_record_modrm (&ir))
7900 return -1;
7901 ir.rm |= ir.rex_b;
7902 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.rm))
7903 goto no_support;
7904 record_full_arch_list_add_reg (ir.regcache,
7905 I387_XMM0_REGNUM (tdep) + ir.rm);
7906 break;
7907
7908 case 0x0f7e: /* movd */
7909 case 0x660f7e: /* movd */
7910 if (i386_record_modrm (&ir))
7911 return -1;
7912 if (ir.mod == 3)
7913 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7914 else
7915 {
7916 if (ir.dflag == 2)
7917 ir.ot = OT_QUAD;
7918 else
7919 ir.ot = OT_LONG;
7920 if (i386_record_lea_modrm (&ir))
7921 return -1;
7922 }
7923 break;
7924
7925 case 0x0f7f: /* movq */
7926 if (i386_record_modrm (&ir))
7927 return -1;
7928 if (ir.mod == 3)
7929 {
7930 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
7931 goto no_support;
7932 record_full_arch_list_add_reg (ir.regcache,
7933 I387_MM0_REGNUM (tdep) + ir.rm);
7934 }
7935 else
7936 {
7937 ir.ot = OT_QUAD;
7938 if (i386_record_lea_modrm (&ir))
7939 return -1;
7940 }
7941 break;
7942
7943 case 0xf30fb8: /* popcnt */
7944 if (i386_record_modrm (&ir))
7945 return -1;
7946 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
7947 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7948 break;
7949
7950 case 0x660fd6: /* movq */
7951 if (i386_record_modrm (&ir))
7952 return -1;
7953 if (ir.mod == 3)
7954 {
7955 ir.rm |= ir.rex_b;
7956 if (!i386_xmm_regnum_p (gdbarch,
7957 I387_XMM0_REGNUM (tdep) + ir.rm))
7958 goto no_support;
7959 record_full_arch_list_add_reg (ir.regcache,
7960 I387_XMM0_REGNUM (tdep) + ir.rm);
7961 }
7962 else
7963 {
7964 ir.ot = OT_QUAD;
7965 if (i386_record_lea_modrm (&ir))
7966 return -1;
7967 }
7968 break;
7969
7970 case 0x660f3817: /* ptest */
7971 case 0x0f2e: /* ucomiss */
7972 case 0x660f2e: /* ucomisd */
7973 case 0x0f2f: /* comiss */
7974 case 0x660f2f: /* comisd */
7975 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7976 break;
7977
7978 case 0x0ff7: /* maskmovq */
7979 regcache_raw_read_unsigned (ir.regcache,
7980 ir.regmap[X86_RECORD_REDI_REGNUM],
7981 &addr);
7982 if (record_full_arch_list_add_mem (addr, 64))
7983 return -1;
7984 break;
7985
7986 case 0x660ff7: /* maskmovdqu */
7987 regcache_raw_read_unsigned (ir.regcache,
7988 ir.regmap[X86_RECORD_REDI_REGNUM],
7989 &addr);
7990 if (record_full_arch_list_add_mem (addr, 128))
7991 return -1;
7992 break;
7993
7994 default:
7995 goto no_support;
7996 break;
7997 }
7998 break;
7999
8000 default:
8001 goto no_support;
8002 break;
8003 }
8004
8005 /* In the future, maybe still need to deal with need_dasm. */
8006 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REIP_REGNUM);
8007 if (record_full_arch_list_add_end ())
8008 return -1;
8009
8010 return 0;
8011
8012 no_support:
8013 printf_unfiltered (_("Process record does not support instruction 0x%02x "
8014 "at address %s.\n"),
8015 (unsigned int) (opcode),
8016 paddress (gdbarch, ir.orig_addr));
8017 return -1;
8018 }
8019
8020 static const int i386_record_regmap[] =
8021 {
8022 I386_EAX_REGNUM, I386_ECX_REGNUM, I386_EDX_REGNUM, I386_EBX_REGNUM,
8023 I386_ESP_REGNUM, I386_EBP_REGNUM, I386_ESI_REGNUM, I386_EDI_REGNUM,
8024 0, 0, 0, 0, 0, 0, 0, 0,
8025 I386_EIP_REGNUM, I386_EFLAGS_REGNUM, I386_CS_REGNUM, I386_SS_REGNUM,
8026 I386_DS_REGNUM, I386_ES_REGNUM, I386_FS_REGNUM, I386_GS_REGNUM
8027 };
8028
8029 /* Check that the given address appears suitable for a fast
8030 tracepoint, which on x86-64 means that we need an instruction of at
8031 least 5 bytes, so that we can overwrite it with a 4-byte-offset
8032 jump and not have to worry about program jumps to an address in the
8033 middle of the tracepoint jump. On x86, it may be possible to use
8034 4-byte jumps with a 2-byte offset to a trampoline located in the
8035 bottom 64 KiB of memory. Returns 1 if OK, and writes a size
8036 of instruction to replace, and 0 if not, plus an explanatory
8037 string. */
8038
8039 static int
8040 i386_fast_tracepoint_valid_at (struct gdbarch *gdbarch,
8041 CORE_ADDR addr, int *isize, char **msg)
8042 {
8043 int len, jumplen;
8044 static struct ui_file *gdb_null = NULL;
8045
8046 /* Ask the target for the minimum instruction length supported. */
8047 jumplen = target_get_min_fast_tracepoint_insn_len ();
8048
8049 if (jumplen < 0)
8050 {
8051 /* If the target does not support the get_min_fast_tracepoint_insn_len
8052 operation, assume that fast tracepoints will always be implemented
8053 using 4-byte relative jumps on both x86 and x86-64. */
8054 jumplen = 5;
8055 }
8056 else if (jumplen == 0)
8057 {
8058 /* If the target does support get_min_fast_tracepoint_insn_len but
8059 returns zero, then the IPA has not loaded yet. In this case,
8060 we optimistically assume that truncated 2-byte relative jumps
8061 will be available on x86, and compensate later if this assumption
8062 turns out to be incorrect. On x86-64 architectures, 4-byte relative
8063 jumps will always be used. */
8064 jumplen = (register_size (gdbarch, 0) == 8) ? 5 : 4;
8065 }
8066
8067 /* Dummy file descriptor for the disassembler. */
8068 if (!gdb_null)
8069 gdb_null = ui_file_new ();
8070
8071 /* Check for fit. */
8072 len = gdb_print_insn (gdbarch, addr, gdb_null, NULL);
8073 if (isize)
8074 *isize = len;
8075
8076 if (len < jumplen)
8077 {
8078 /* Return a bit of target-specific detail to add to the caller's
8079 generic failure message. */
8080 if (msg)
8081 *msg = xstrprintf (_("; instruction is only %d bytes long, "
8082 "need at least %d bytes for the jump"),
8083 len, jumplen);
8084 return 0;
8085 }
8086 else
8087 {
8088 if (msg)
8089 *msg = NULL;
8090 return 1;
8091 }
8092 }
8093
8094 static int
8095 i386_validate_tdesc_p (struct gdbarch_tdep *tdep,
8096 struct tdesc_arch_data *tdesc_data)
8097 {
8098 const struct target_desc *tdesc = tdep->tdesc;
8099 const struct tdesc_feature *feature_core;
8100
8101 const struct tdesc_feature *feature_sse, *feature_avx, *feature_mpx,
8102 *feature_avx512;
8103 int i, num_regs, valid_p;
8104
8105 if (! tdesc_has_registers (tdesc))
8106 return 0;
8107
8108 /* Get core registers. */
8109 feature_core = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.core");
8110 if (feature_core == NULL)
8111 return 0;
8112
8113 /* Get SSE registers. */
8114 feature_sse = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.sse");
8115
8116 /* Try AVX registers. */
8117 feature_avx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx");
8118
8119 /* Try MPX registers. */
8120 feature_mpx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx");
8121
8122 /* Try AVX512 registers. */
8123 feature_avx512 = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx512");
8124
8125 valid_p = 1;
8126
8127 /* The XCR0 bits. */
8128 if (feature_avx512)
8129 {
8130 /* AVX512 register description requires AVX register description. */
8131 if (!feature_avx)
8132 return 0;
8133
8134 tdep->xcr0 = X86_XSTATE_MPX_AVX512_MASK;
8135
8136 /* It may have been set by OSABI initialization function. */
8137 if (tdep->k0_regnum < 0)
8138 {
8139 tdep->k_register_names = i386_k_names;
8140 tdep->k0_regnum = I386_K0_REGNUM;
8141 }
8142
8143 for (i = 0; i < I387_NUM_K_REGS; i++)
8144 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8145 tdep->k0_regnum + i,
8146 i386_k_names[i]);
8147
8148 if (tdep->num_zmm_regs == 0)
8149 {
8150 tdep->zmmh_register_names = i386_zmmh_names;
8151 tdep->num_zmm_regs = 8;
8152 tdep->zmm0h_regnum = I386_ZMM0H_REGNUM;
8153 }
8154
8155 for (i = 0; i < tdep->num_zmm_regs; i++)
8156 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8157 tdep->zmm0h_regnum + i,
8158 tdep->zmmh_register_names[i]);
8159
8160 for (i = 0; i < tdep->num_xmm_avx512_regs; i++)
8161 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8162 tdep->xmm16_regnum + i,
8163 tdep->xmm_avx512_register_names[i]);
8164
8165 for (i = 0; i < tdep->num_ymm_avx512_regs; i++)
8166 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8167 tdep->ymm16h_regnum + i,
8168 tdep->ymm16h_register_names[i]);
8169 }
8170 if (feature_avx)
8171 {
8172 /* AVX register description requires SSE register description. */
8173 if (!feature_sse)
8174 return 0;
8175
8176 if (!feature_avx512)
8177 tdep->xcr0 = X86_XSTATE_AVX_MASK;
8178
8179 /* It may have been set by OSABI initialization function. */
8180 if (tdep->num_ymm_regs == 0)
8181 {
8182 tdep->ymmh_register_names = i386_ymmh_names;
8183 tdep->num_ymm_regs = 8;
8184 tdep->ymm0h_regnum = I386_YMM0H_REGNUM;
8185 }
8186
8187 for (i = 0; i < tdep->num_ymm_regs; i++)
8188 valid_p &= tdesc_numbered_register (feature_avx, tdesc_data,
8189 tdep->ymm0h_regnum + i,
8190 tdep->ymmh_register_names[i]);
8191 }
8192 else if (feature_sse)
8193 tdep->xcr0 = X86_XSTATE_SSE_MASK;
8194 else
8195 {
8196 tdep->xcr0 = X86_XSTATE_X87_MASK;
8197 tdep->num_xmm_regs = 0;
8198 }
8199
8200 num_regs = tdep->num_core_regs;
8201 for (i = 0; i < num_regs; i++)
8202 valid_p &= tdesc_numbered_register (feature_core, tdesc_data, i,
8203 tdep->register_names[i]);
8204
8205 if (feature_sse)
8206 {
8207 /* Need to include %mxcsr, so add one. */
8208 num_regs += tdep->num_xmm_regs + 1;
8209 for (; i < num_regs; i++)
8210 valid_p &= tdesc_numbered_register (feature_sse, tdesc_data, i,
8211 tdep->register_names[i]);
8212 }
8213
8214 if (feature_mpx)
8215 {
8216 tdep->xcr0 |= X86_XSTATE_MPX_MASK;
8217
8218 if (tdep->bnd0r_regnum < 0)
8219 {
8220 tdep->mpx_register_names = i386_mpx_names;
8221 tdep->bnd0r_regnum = I386_BND0R_REGNUM;
8222 tdep->bndcfgu_regnum = I386_BNDCFGU_REGNUM;
8223 }
8224
8225 for (i = 0; i < I387_NUM_MPX_REGS; i++)
8226 valid_p &= tdesc_numbered_register (feature_mpx, tdesc_data,
8227 I387_BND0R_REGNUM (tdep) + i,
8228 tdep->mpx_register_names[i]);
8229 }
8230
8231 return valid_p;
8232 }
8233
8234 \f
8235 static struct gdbarch *
8236 i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
8237 {
8238 struct gdbarch_tdep *tdep;
8239 struct gdbarch *gdbarch;
8240 struct tdesc_arch_data *tdesc_data;
8241 const struct target_desc *tdesc;
8242 int mm0_regnum;
8243 int ymm0_regnum;
8244 int bnd0_regnum;
8245 int num_bnd_cooked;
8246 int k0_regnum;
8247 int zmm0_regnum;
8248
8249 /* If there is already a candidate, use it. */
8250 arches = gdbarch_list_lookup_by_info (arches, &info);
8251 if (arches != NULL)
8252 return arches->gdbarch;
8253
8254 /* Allocate space for the new architecture. */
8255 tdep = XCNEW (struct gdbarch_tdep);
8256 gdbarch = gdbarch_alloc (&info, tdep);
8257
8258 /* General-purpose registers. */
8259 tdep->gregset_reg_offset = NULL;
8260 tdep->gregset_num_regs = I386_NUM_GREGS;
8261 tdep->sizeof_gregset = 0;
8262
8263 /* Floating-point registers. */
8264 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
8265 tdep->fpregset = &i386_fpregset;
8266
8267 /* The default settings include the FPU registers, the MMX registers
8268 and the SSE registers. This can be overridden for a specific ABI
8269 by adjusting the members `st0_regnum', `mm0_regnum' and
8270 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
8271 will show up in the output of "info all-registers". */
8272
8273 tdep->st0_regnum = I386_ST0_REGNUM;
8274
8275 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
8276 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
8277
8278 tdep->jb_pc_offset = -1;
8279 tdep->struct_return = pcc_struct_return;
8280 tdep->sigtramp_start = 0;
8281 tdep->sigtramp_end = 0;
8282 tdep->sigtramp_p = i386_sigtramp_p;
8283 tdep->sigcontext_addr = NULL;
8284 tdep->sc_reg_offset = NULL;
8285 tdep->sc_pc_offset = -1;
8286 tdep->sc_sp_offset = -1;
8287
8288 tdep->xsave_xcr0_offset = -1;
8289
8290 tdep->record_regmap = i386_record_regmap;
8291
8292 set_gdbarch_long_long_align_bit (gdbarch, 32);
8293
8294 /* The format used for `long double' on almost all i386 targets is
8295 the i387 extended floating-point format. In fact, of all targets
8296 in the GCC 2.95 tree, only OSF/1 does it different, and insists
8297 on having a `long double' that's not `long' at all. */
8298 set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext);
8299
8300 /* Although the i387 extended floating-point has only 80 significant
8301 bits, a `long double' actually takes up 96, probably to enforce
8302 alignment. */
8303 set_gdbarch_long_double_bit (gdbarch, 96);
8304
8305 /* Register numbers of various important registers. */
8306 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
8307 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
8308 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
8309 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
8310
8311 /* NOTE: kettenis/20040418: GCC does have two possible register
8312 numbering schemes on the i386: dbx and SVR4. These schemes
8313 differ in how they number %ebp, %esp, %eflags, and the
8314 floating-point registers, and are implemented by the arrays
8315 dbx_register_map[] and svr4_dbx_register_map in
8316 gcc/config/i386.c. GCC also defines a third numbering scheme in
8317 gcc/config/i386.c, which it designates as the "default" register
8318 map used in 64bit mode. This last register numbering scheme is
8319 implemented in dbx64_register_map, and is used for AMD64; see
8320 amd64-tdep.c.
8321
8322 Currently, each GCC i386 target always uses the same register
8323 numbering scheme across all its supported debugging formats
8324 i.e. SDB (COFF), stabs and DWARF 2. This is because
8325 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
8326 DBX_REGISTER_NUMBER macro which is defined by each target's
8327 respective config header in a manner independent of the requested
8328 output debugging format.
8329
8330 This does not match the arrangement below, which presumes that
8331 the SDB and stabs numbering schemes differ from the DWARF and
8332 DWARF 2 ones. The reason for this arrangement is that it is
8333 likely to get the numbering scheme for the target's
8334 default/native debug format right. For targets where GCC is the
8335 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
8336 targets where the native toolchain uses a different numbering
8337 scheme for a particular debug format (stabs-in-ELF on Solaris)
8338 the defaults below will have to be overridden, like
8339 i386_elf_init_abi() does. */
8340
8341 /* Use the dbx register numbering scheme for stabs and COFF. */
8342 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
8343 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
8344
8345 /* Use the SVR4 register numbering scheme for DWARF 2. */
8346 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
8347
8348 /* We don't set gdbarch_stab_reg_to_regnum, since ECOFF doesn't seem to
8349 be in use on any of the supported i386 targets. */
8350
8351 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
8352
8353 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
8354
8355 /* Call dummy code. */
8356 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
8357 set_gdbarch_push_dummy_code (gdbarch, i386_push_dummy_code);
8358 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
8359 set_gdbarch_frame_align (gdbarch, i386_frame_align);
8360
8361 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
8362 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
8363 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
8364
8365 set_gdbarch_return_value (gdbarch, i386_return_value);
8366
8367 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
8368
8369 /* Stack grows downward. */
8370 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
8371
8372 set_gdbarch_breakpoint_from_pc (gdbarch, i386_breakpoint_from_pc);
8373 set_gdbarch_decr_pc_after_break (gdbarch, 1);
8374 set_gdbarch_max_insn_length (gdbarch, I386_MAX_INSN_LEN);
8375
8376 set_gdbarch_frame_args_skip (gdbarch, 8);
8377
8378 set_gdbarch_print_insn (gdbarch, i386_print_insn);
8379
8380 set_gdbarch_dummy_id (gdbarch, i386_dummy_id);
8381
8382 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
8383
8384 /* Add the i386 register groups. */
8385 i386_add_reggroups (gdbarch);
8386 tdep->register_reggroup_p = i386_register_reggroup_p;
8387
8388 /* Helper for function argument information. */
8389 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
8390
8391 /* Hook the function epilogue frame unwinder. This unwinder is
8392 appended to the list first, so that it supercedes the DWARF
8393 unwinder in function epilogues (where the DWARF unwinder
8394 currently fails). */
8395 frame_unwind_append_unwinder (gdbarch, &i386_epilogue_frame_unwind);
8396
8397 /* Hook in the DWARF CFI frame unwinder. This unwinder is appended
8398 to the list before the prologue-based unwinders, so that DWARF
8399 CFI info will be used if it is available. */
8400 dwarf2_append_unwinders (gdbarch);
8401
8402 frame_base_set_default (gdbarch, &i386_frame_base);
8403
8404 /* Pseudo registers may be changed by amd64_init_abi. */
8405 set_gdbarch_pseudo_register_read_value (gdbarch,
8406 i386_pseudo_register_read_value);
8407 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
8408
8409 set_tdesc_pseudo_register_type (gdbarch, i386_pseudo_register_type);
8410 set_tdesc_pseudo_register_name (gdbarch, i386_pseudo_register_name);
8411
8412 /* Override the normal target description method to make the AVX
8413 upper halves anonymous. */
8414 set_gdbarch_register_name (gdbarch, i386_register_name);
8415
8416 /* Even though the default ABI only includes general-purpose registers,
8417 floating-point registers and the SSE registers, we have to leave a
8418 gap for the upper AVX, MPX and AVX512 registers. */
8419 set_gdbarch_num_regs (gdbarch, I386_AVX512_NUM_REGS);
8420
8421 set_gdbarch_gnu_triplet_regexp (gdbarch, i386_gnu_triplet_regexp);
8422
8423 /* Get the x86 target description from INFO. */
8424 tdesc = info.target_desc;
8425 if (! tdesc_has_registers (tdesc))
8426 tdesc = tdesc_i386;
8427 tdep->tdesc = tdesc;
8428
8429 tdep->num_core_regs = I386_NUM_GREGS + I387_NUM_REGS;
8430 tdep->register_names = i386_register_names;
8431
8432 /* No upper YMM registers. */
8433 tdep->ymmh_register_names = NULL;
8434 tdep->ymm0h_regnum = -1;
8435
8436 /* No upper ZMM registers. */
8437 tdep->zmmh_register_names = NULL;
8438 tdep->zmm0h_regnum = -1;
8439
8440 /* No high XMM registers. */
8441 tdep->xmm_avx512_register_names = NULL;
8442 tdep->xmm16_regnum = -1;
8443
8444 /* No upper YMM16-31 registers. */
8445 tdep->ymm16h_register_names = NULL;
8446 tdep->ymm16h_regnum = -1;
8447
8448 tdep->num_byte_regs = 8;
8449 tdep->num_word_regs = 8;
8450 tdep->num_dword_regs = 0;
8451 tdep->num_mmx_regs = 8;
8452 tdep->num_ymm_regs = 0;
8453
8454 /* No MPX registers. */
8455 tdep->bnd0r_regnum = -1;
8456 tdep->bndcfgu_regnum = -1;
8457
8458 /* No AVX512 registers. */
8459 tdep->k0_regnum = -1;
8460 tdep->num_zmm_regs = 0;
8461 tdep->num_ymm_avx512_regs = 0;
8462 tdep->num_xmm_avx512_regs = 0;
8463
8464 tdesc_data = tdesc_data_alloc ();
8465
8466 set_gdbarch_relocate_instruction (gdbarch, i386_relocate_instruction);
8467
8468 set_gdbarch_gen_return_address (gdbarch, i386_gen_return_address);
8469
8470 set_gdbarch_insn_is_call (gdbarch, i386_insn_is_call);
8471 set_gdbarch_insn_is_ret (gdbarch, i386_insn_is_ret);
8472 set_gdbarch_insn_is_jump (gdbarch, i386_insn_is_jump);
8473
8474 /* Hook in ABI-specific overrides, if they have been registered. */
8475 info.tdep_info = (void *) tdesc_data;
8476 gdbarch_init_osabi (info, gdbarch);
8477
8478 if (!i386_validate_tdesc_p (tdep, tdesc_data))
8479 {
8480 tdesc_data_cleanup (tdesc_data);
8481 xfree (tdep);
8482 gdbarch_free (gdbarch);
8483 return NULL;
8484 }
8485
8486 num_bnd_cooked = (tdep->bnd0r_regnum > 0 ? I387_NUM_BND_REGS : 0);
8487
8488 /* Wire in pseudo registers. Number of pseudo registers may be
8489 changed. */
8490 set_gdbarch_num_pseudo_regs (gdbarch, (tdep->num_byte_regs
8491 + tdep->num_word_regs
8492 + tdep->num_dword_regs
8493 + tdep->num_mmx_regs
8494 + tdep->num_ymm_regs
8495 + num_bnd_cooked
8496 + tdep->num_ymm_avx512_regs
8497 + tdep->num_zmm_regs));
8498
8499 /* Target description may be changed. */
8500 tdesc = tdep->tdesc;
8501
8502 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
8503
8504 /* Override gdbarch_register_reggroup_p set in tdesc_use_registers. */
8505 set_gdbarch_register_reggroup_p (gdbarch, tdep->register_reggroup_p);
8506
8507 /* Make %al the first pseudo-register. */
8508 tdep->al_regnum = gdbarch_num_regs (gdbarch);
8509 tdep->ax_regnum = tdep->al_regnum + tdep->num_byte_regs;
8510
8511 ymm0_regnum = tdep->ax_regnum + tdep->num_word_regs;
8512 if (tdep->num_dword_regs)
8513 {
8514 /* Support dword pseudo-register if it hasn't been disabled. */
8515 tdep->eax_regnum = ymm0_regnum;
8516 ymm0_regnum += tdep->num_dword_regs;
8517 }
8518 else
8519 tdep->eax_regnum = -1;
8520
8521 mm0_regnum = ymm0_regnum;
8522 if (tdep->num_ymm_regs)
8523 {
8524 /* Support YMM pseudo-register if it is available. */
8525 tdep->ymm0_regnum = ymm0_regnum;
8526 mm0_regnum += tdep->num_ymm_regs;
8527 }
8528 else
8529 tdep->ymm0_regnum = -1;
8530
8531 if (tdep->num_ymm_avx512_regs)
8532 {
8533 /* Support YMM16-31 pseudo registers if available. */
8534 tdep->ymm16_regnum = mm0_regnum;
8535 mm0_regnum += tdep->num_ymm_avx512_regs;
8536 }
8537 else
8538 tdep->ymm16_regnum = -1;
8539
8540 if (tdep->num_zmm_regs)
8541 {
8542 /* Support ZMM pseudo-register if it is available. */
8543 tdep->zmm0_regnum = mm0_regnum;
8544 mm0_regnum += tdep->num_zmm_regs;
8545 }
8546 else
8547 tdep->zmm0_regnum = -1;
8548
8549 bnd0_regnum = mm0_regnum;
8550 if (tdep->num_mmx_regs != 0)
8551 {
8552 /* Support MMX pseudo-register if MMX hasn't been disabled. */
8553 tdep->mm0_regnum = mm0_regnum;
8554 bnd0_regnum += tdep->num_mmx_regs;
8555 }
8556 else
8557 tdep->mm0_regnum = -1;
8558
8559 if (tdep->bnd0r_regnum > 0)
8560 tdep->bnd0_regnum = bnd0_regnum;
8561 else
8562 tdep-> bnd0_regnum = -1;
8563
8564 /* Hook in the legacy prologue-based unwinders last (fallback). */
8565 frame_unwind_append_unwinder (gdbarch, &i386_stack_tramp_frame_unwind);
8566 frame_unwind_append_unwinder (gdbarch, &i386_sigtramp_frame_unwind);
8567 frame_unwind_append_unwinder (gdbarch, &i386_frame_unwind);
8568
8569 /* If we have a register mapping, enable the generic core file
8570 support, unless it has already been enabled. */
8571 if (tdep->gregset_reg_offset
8572 && !gdbarch_iterate_over_regset_sections_p (gdbarch))
8573 set_gdbarch_iterate_over_regset_sections
8574 (gdbarch, i386_iterate_over_regset_sections);
8575
8576 set_gdbarch_fast_tracepoint_valid_at (gdbarch,
8577 i386_fast_tracepoint_valid_at);
8578
8579 return gdbarch;
8580 }
8581
8582 static enum gdb_osabi
8583 i386_coff_osabi_sniffer (bfd *abfd)
8584 {
8585 if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
8586 || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
8587 return GDB_OSABI_GO32;
8588
8589 return GDB_OSABI_UNKNOWN;
8590 }
8591 \f
8592
8593 /* Provide a prototype to silence -Wmissing-prototypes. */
8594 void _initialize_i386_tdep (void);
8595
8596 void
8597 _initialize_i386_tdep (void)
8598 {
8599 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
8600
8601 /* Add the variable that controls the disassembly flavor. */
8602 add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
8603 &disassembly_flavor, _("\
8604 Set the disassembly flavor."), _("\
8605 Show the disassembly flavor."), _("\
8606 The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
8607 NULL,
8608 NULL, /* FIXME: i18n: */
8609 &setlist, &showlist);
8610
8611 /* Add the variable that controls the convention for returning
8612 structs. */
8613 add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
8614 &struct_convention, _("\
8615 Set the convention for returning small structs."), _("\
8616 Show the convention for returning small structs."), _("\
8617 Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
8618 is \"default\"."),
8619 NULL,
8620 NULL, /* FIXME: i18n: */
8621 &setlist, &showlist);
8622
8623 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
8624 i386_coff_osabi_sniffer);
8625
8626 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
8627 i386_svr4_init_abi);
8628 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_GO32,
8629 i386_go32_init_abi);
8630
8631 /* Initialize the i386-specific register groups. */
8632 i386_init_reggroups ();
8633
8634 /* Initialize the standard target descriptions. */
8635 initialize_tdesc_i386 ();
8636 initialize_tdesc_i386_mmx ();
8637 initialize_tdesc_i386_avx ();
8638 initialize_tdesc_i386_mpx ();
8639 initialize_tdesc_i386_avx512 ();
8640
8641 /* Tell remote stub that we support XML target description. */
8642 register_remote_support_xml ("i386");
8643 }
This page took 0.220654 seconds and 5 git commands to generate.