* i386-tdep.c (i386_frameless_signal_p): New function.
[deliverable/binutils-gdb.git] / gdb / i386-tdep.c
1 /* Intel 386 target-dependent stuff.
2
3 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "gdb_string.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "gdbcore.h"
28 #include "target.h"
29 #include "floatformat.h"
30 #include "symtab.h"
31 #include "gdbcmd.h"
32 #include "command.h"
33 #include "arch-utils.h"
34 #include "regcache.h"
35 #include "doublest.h"
36 #include "value.h"
37 #include "gdb_assert.h"
38
39 #include "i386-tdep.h"
40
41 /* Names of the registers. The first 10 registers match the register
42 numbering scheme used by GCC for stabs and DWARF. */
43 static char *i386_register_names[] =
44 {
45 "eax", "ecx", "edx", "ebx",
46 "esp", "ebp", "esi", "edi",
47 "eip", "eflags", "cs", "ss",
48 "ds", "es", "fs", "gs",
49 "st0", "st1", "st2", "st3",
50 "st4", "st5", "st6", "st7",
51 "fctrl", "fstat", "ftag", "fiseg",
52 "fioff", "foseg", "fooff", "fop",
53 "xmm0", "xmm1", "xmm2", "xmm3",
54 "xmm4", "xmm5", "xmm6", "xmm7",
55 "mxcsr"
56 };
57
58 /* i386_register_offset[i] is the offset into the register file of the
59 start of register number i. We initialize this from
60 i386_register_size. */
61 static int i386_register_offset[I386_SSE_NUM_REGS];
62
63 /* i386_register_size[i] is the number of bytes of storage in GDB's
64 register array occupied by register i. */
65 static int i386_register_size[I386_SSE_NUM_REGS] = {
66 4, 4, 4, 4,
67 4, 4, 4, 4,
68 4, 4, 4, 4,
69 4, 4, 4, 4,
70 10, 10, 10, 10,
71 10, 10, 10, 10,
72 4, 4, 4, 4,
73 4, 4, 4, 4,
74 16, 16, 16, 16,
75 16, 16, 16, 16,
76 4
77 };
78
79 /* Return the name of register REG. */
80
81 const char *
82 i386_register_name (int reg)
83 {
84 if (reg < 0)
85 return NULL;
86 if (reg >= sizeof (i386_register_names) / sizeof (*i386_register_names))
87 return NULL;
88
89 return i386_register_names[reg];
90 }
91
92 /* Return the offset into the register array of the start of register
93 number REG. */
94 int
95 i386_register_byte (int reg)
96 {
97 return i386_register_offset[reg];
98 }
99
100 /* Return the number of bytes of storage in GDB's register array
101 occupied by register REG. */
102
103 int
104 i386_register_raw_size (int reg)
105 {
106 return i386_register_size[reg];
107 }
108
109 /* Convert stabs register number REG to the appropriate register
110 number used by GDB. */
111
112 static int
113 i386_stab_reg_to_regnum (int reg)
114 {
115 /* This implements what GCC calls the "default" register map. */
116 if (reg >= 0 && reg <= 7)
117 {
118 /* General registers. */
119 return reg;
120 }
121 else if (reg >= 12 && reg <= 19)
122 {
123 /* Floating-point registers. */
124 return reg - 12 + FP0_REGNUM;
125 }
126 else if (reg >= 21 && reg <= 28)
127 {
128 /* SSE registers. */
129 return reg - 21 + XMM0_REGNUM;
130 }
131 else if (reg >= 29 && reg <= 36)
132 {
133 /* MMX registers. */
134 /* FIXME: kettenis/2001-07-28: Should we have the MMX registers
135 as pseudo-registers? */
136 return reg - 29 + FP0_REGNUM;
137 }
138
139 /* This will hopefully provoke a warning. */
140 return NUM_REGS + NUM_PSEUDO_REGS;
141 }
142
143 /* Convert DWARF register number REG to the appropriate register
144 number used by GDB. */
145
146 static int
147 i386_dwarf_reg_to_regnum (int reg)
148 {
149 /* The DWARF register numbering includes %eip and %eflags, and
150 numbers the floating point registers differently. */
151 if (reg >= 0 && reg <= 9)
152 {
153 /* General registers. */
154 return reg;
155 }
156 else if (reg >= 11 && reg <= 18)
157 {
158 /* Floating-point registers. */
159 return reg - 11 + FP0_REGNUM;
160 }
161 else if (reg >= 21)
162 {
163 /* The SSE and MMX registers have identical numbers as in stabs. */
164 return i386_stab_reg_to_regnum (reg);
165 }
166
167 /* This will hopefully provoke a warning. */
168 return NUM_REGS + NUM_PSEUDO_REGS;
169 }
170 \f
171
172 /* This is the variable that is set with "set disassembly-flavor", and
173 its legitimate values. */
174 static const char att_flavor[] = "att";
175 static const char intel_flavor[] = "intel";
176 static const char *valid_flavors[] =
177 {
178 att_flavor,
179 intel_flavor,
180 NULL
181 };
182 static const char *disassembly_flavor = att_flavor;
183
184 /* Stdio style buffering was used to minimize calls to ptrace, but
185 this buffering did not take into account that the code section
186 being accessed may not be an even number of buffers long (even if
187 the buffer is only sizeof(int) long). In cases where the code
188 section size happened to be a non-integral number of buffers long,
189 attempting to read the last buffer would fail. Simply using
190 target_read_memory and ignoring errors, rather than read_memory, is
191 not the correct solution, since legitimate access errors would then
192 be totally ignored. To properly handle this situation and continue
193 to use buffering would require that this code be able to determine
194 the minimum code section size granularity (not the alignment of the
195 section itself, since the actual failing case that pointed out this
196 problem had a section alignment of 4 but was not a multiple of 4
197 bytes long), on a target by target basis, and then adjust it's
198 buffer size accordingly. This is messy, but potentially feasible.
199 It probably needs the bfd library's help and support. For now, the
200 buffer size is set to 1. (FIXME -fnf) */
201
202 #define CODESTREAM_BUFSIZ 1 /* Was sizeof(int), see note above. */
203 static CORE_ADDR codestream_next_addr;
204 static CORE_ADDR codestream_addr;
205 static unsigned char codestream_buf[CODESTREAM_BUFSIZ];
206 static int codestream_off;
207 static int codestream_cnt;
208
209 #define codestream_tell() (codestream_addr + codestream_off)
210 #define codestream_peek() \
211 (codestream_cnt == 0 ? \
212 codestream_fill(1) : codestream_buf[codestream_off])
213 #define codestream_get() \
214 (codestream_cnt-- == 0 ? \
215 codestream_fill(0) : codestream_buf[codestream_off++])
216
217 static unsigned char
218 codestream_fill (int peek_flag)
219 {
220 codestream_addr = codestream_next_addr;
221 codestream_next_addr += CODESTREAM_BUFSIZ;
222 codestream_off = 0;
223 codestream_cnt = CODESTREAM_BUFSIZ;
224 read_memory (codestream_addr, (char *) codestream_buf, CODESTREAM_BUFSIZ);
225
226 if (peek_flag)
227 return (codestream_peek ());
228 else
229 return (codestream_get ());
230 }
231
232 static void
233 codestream_seek (CORE_ADDR place)
234 {
235 codestream_next_addr = place / CODESTREAM_BUFSIZ;
236 codestream_next_addr *= CODESTREAM_BUFSIZ;
237 codestream_cnt = 0;
238 codestream_fill (1);
239 while (codestream_tell () != place)
240 codestream_get ();
241 }
242
243 static void
244 codestream_read (unsigned char *buf, int count)
245 {
246 unsigned char *p;
247 int i;
248 p = buf;
249 for (i = 0; i < count; i++)
250 *p++ = codestream_get ();
251 }
252 \f
253
254 /* If the next instruction is a jump, move to its target. */
255
256 static void
257 i386_follow_jump (void)
258 {
259 unsigned char buf[4];
260 long delta;
261
262 int data16;
263 CORE_ADDR pos;
264
265 pos = codestream_tell ();
266
267 data16 = 0;
268 if (codestream_peek () == 0x66)
269 {
270 codestream_get ();
271 data16 = 1;
272 }
273
274 switch (codestream_get ())
275 {
276 case 0xe9:
277 /* Relative jump: if data16 == 0, disp32, else disp16. */
278 if (data16)
279 {
280 codestream_read (buf, 2);
281 delta = extract_signed_integer (buf, 2);
282
283 /* Include the size of the jmp instruction (including the
284 0x66 prefix). */
285 pos += delta + 4;
286 }
287 else
288 {
289 codestream_read (buf, 4);
290 delta = extract_signed_integer (buf, 4);
291
292 pos += delta + 5;
293 }
294 break;
295 case 0xeb:
296 /* Relative jump, disp8 (ignore data16). */
297 codestream_read (buf, 1);
298 /* Sign-extend it. */
299 delta = extract_signed_integer (buf, 1);
300
301 pos += delta + 2;
302 break;
303 }
304 codestream_seek (pos);
305 }
306
307 /* Find & return the amount a local space allocated, and advance the
308 codestream to the first register push (if any).
309
310 If the entry sequence doesn't make sense, return -1, and leave
311 codestream pointer at a random spot. */
312
313 static long
314 i386_get_frame_setup (CORE_ADDR pc)
315 {
316 unsigned char op;
317
318 codestream_seek (pc);
319
320 i386_follow_jump ();
321
322 op = codestream_get ();
323
324 if (op == 0x58) /* popl %eax */
325 {
326 /* This function must start with
327
328 popl %eax 0x58
329 xchgl %eax, (%esp) 0x87 0x04 0x24
330 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
331
332 (the System V compiler puts out the second `xchg'
333 instruction, and the assembler doesn't try to optimize it, so
334 the 'sib' form gets generated). This sequence is used to get
335 the address of the return buffer for a function that returns
336 a structure. */
337 int pos;
338 unsigned char buf[4];
339 static unsigned char proto1[3] = { 0x87, 0x04, 0x24 };
340 static unsigned char proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
341
342 pos = codestream_tell ();
343 codestream_read (buf, 4);
344 if (memcmp (buf, proto1, 3) == 0)
345 pos += 3;
346 else if (memcmp (buf, proto2, 4) == 0)
347 pos += 4;
348
349 codestream_seek (pos);
350 op = codestream_get (); /* Update next opcode. */
351 }
352
353 if (op == 0x68 || op == 0x6a)
354 {
355 /* This function may start with
356
357 pushl constant
358 call _probe
359 addl $4, %esp
360
361 followed by
362
363 pushl %ebp
364
365 etc. */
366 int pos;
367 unsigned char buf[8];
368
369 /* Skip past the `pushl' instruction; it has either a one-byte
370 or a four-byte operand, depending on the opcode. */
371 pos = codestream_tell ();
372 if (op == 0x68)
373 pos += 4;
374 else
375 pos += 1;
376 codestream_seek (pos);
377
378 /* Read the following 8 bytes, which should be "call _probe" (6
379 bytes) followed by "addl $4,%esp" (2 bytes). */
380 codestream_read (buf, sizeof (buf));
381 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
382 pos += sizeof (buf);
383 codestream_seek (pos);
384 op = codestream_get (); /* Update next opcode. */
385 }
386
387 if (op == 0x55) /* pushl %ebp */
388 {
389 /* Check for "movl %esp, %ebp" -- can be written in two ways. */
390 switch (codestream_get ())
391 {
392 case 0x8b:
393 if (codestream_get () != 0xec)
394 return -1;
395 break;
396 case 0x89:
397 if (codestream_get () != 0xe5)
398 return -1;
399 break;
400 default:
401 return -1;
402 }
403 /* Check for stack adjustment
404
405 subl $XXX, %esp
406
407 NOTE: You can't subtract a 16 bit immediate from a 32 bit
408 reg, so we don't have to worry about a data16 prefix. */
409 op = codestream_peek ();
410 if (op == 0x83)
411 {
412 /* `subl' with 8 bit immediate. */
413 codestream_get ();
414 if (codestream_get () != 0xec)
415 /* Some instruction starting with 0x83 other than `subl'. */
416 {
417 codestream_seek (codestream_tell () - 2);
418 return 0;
419 }
420 /* `subl' with signed byte immediate (though it wouldn't
421 make sense to be negative). */
422 return (codestream_get ());
423 }
424 else if (op == 0x81)
425 {
426 char buf[4];
427 /* Maybe it is `subl' with a 32 bit immedediate. */
428 codestream_get ();
429 if (codestream_get () != 0xec)
430 /* Some instruction starting with 0x81 other than `subl'. */
431 {
432 codestream_seek (codestream_tell () - 2);
433 return 0;
434 }
435 /* It is `subl' with a 32 bit immediate. */
436 codestream_read ((unsigned char *) buf, 4);
437 return extract_signed_integer (buf, 4);
438 }
439 else
440 {
441 return 0;
442 }
443 }
444 else if (op == 0xc8)
445 {
446 char buf[2];
447 /* `enter' with 16 bit unsigned immediate. */
448 codestream_read ((unsigned char *) buf, 2);
449 codestream_get (); /* Flush final byte of enter instruction. */
450 return extract_unsigned_integer (buf, 2);
451 }
452 return (-1);
453 }
454
455 /* Signal trampolines don't have a meaningful frame. The frame
456 pointer value we use is actually the frame pointer of the calling
457 frame -- that is, the frame which was in progress when the signal
458 trampoline was entered. GDB mostly treats this frame pointer value
459 as a magic cookie. We detect the case of a signal trampoline by
460 looking at the SIGNAL_HANDLER_CALLER field, which is set based on
461 PC_IN_SIGTRAMP.
462
463 When a signal trampoline is invoked from a frameless function, we
464 essentially have two frameless functions in a row. In this case,
465 we use the same magic cookie for three frames in a row. We detect
466 this case by seeing whether the next frame has
467 SIGNAL_HANDLER_CALLER set, and, if it does, checking whether the
468 current frame is actually frameless. In this case, we need to get
469 the PC by looking at the SP register value stored in the signal
470 context.
471
472 This should work in most cases except in horrible situations where
473 a signal occurs just as we enter a function but before the frame
474 has been set up. */
475
476 /* Return non-zero if we're dealing with a frameless signal, that is,
477 a signal trampoline invoked from a frameless function. */
478
479 static int
480 i386_frameless_signal_p (struct frame_info *frame)
481 {
482 return (frame->next
483 && frame->next->signal_handler_caller
484 && frameless_look_for_prologue);
485 }
486
487 /* Return the chain-pointer for FRAME. In the case of the i386, the
488 frame's nominal address is the address of a 4-byte word containing
489 the calling frame's address. */
490
491 static CORE_ADDR
492 i386_frame_chain (struct frame_info *frame)
493 {
494 if (frame->signal_handler_caller
495 || i386_frameless_signal_p (frame))
496 return frame->frame;
497
498 if (! inside_entry_file (frame->pc))
499 return read_memory_unsigned_integer (frame->frame, 4);
500
501 return 0;
502 }
503
504 /* Determine whether the function invocation represented by FRAME does
505 not have a from on the stack associated with it. If it does not,
506 return non-zero, otherwise return zero. */
507
508 static int
509 i386_frameless_function_invocation (struct frame_info *frame)
510 {
511 if (frame->signal_handler_caller)
512 return 0;
513
514 return frameless_look_for_prologue (frame);
515 }
516
517 /* Assuming FRAME is for a sigtramp routine, return the saved program
518 counter. */
519
520 static CORE_ADDR
521 i386_sigtramp_saved_pc (struct frame_info *frame)
522 {
523 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
524 CORE_ADDR addr;
525
526 addr = tdep->sigcontext_addr (frame);
527 return read_memory_unsigned_integer (addr + tdep->sc_pc_offset, 4);
528 }
529
530 /* Assuming FRAME is for a sigtramp routine, return the saved stack
531 pointer. */
532
533 static CORE_ADDR
534 i386_sigtramp_saved_sp (struct frame_info *frame)
535 {
536 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
537 CORE_ADDR addr;
538
539 addr = tdep->sigcontext_addr (frame);
540 return read_memory_unsigned_integer (addr + tdep->sc_sp_offset, 4);
541 }
542
543 /* Return the saved program counter for FRAME. */
544
545 static CORE_ADDR
546 i386_frame_saved_pc (struct frame_info *frame)
547 {
548 if (frame->signal_handler_caller)
549 return i386_sigtramp_saved_pc (frame);
550
551 if (i386_frameless_signal_p (frame))
552 {
553 CORE_ADDR sp = i386_sigtramp_saved_sp (frame->next);
554 return read_memory_unsigned_integer (sp, 4);
555 }
556
557 return read_memory_unsigned_integer (frame->frame + 4, 4);
558 }
559
560 /* Immediately after a function call, return the saved pc. */
561
562 static CORE_ADDR
563 i386_saved_pc_after_call (struct frame_info *frame)
564 {
565 if (frame->signal_handler_caller)
566 return i386_sigtramp_saved_pc (frame);
567
568 return read_memory_unsigned_integer (read_register (SP_REGNUM), 4);
569 }
570
571 /* Return number of args passed to a frame.
572 Can return -1, meaning no way to tell. */
573
574 static int
575 i386_frame_num_args (struct frame_info *fi)
576 {
577 #if 1
578 return -1;
579 #else
580 /* This loses because not only might the compiler not be popping the
581 args right after the function call, it might be popping args from
582 both this call and a previous one, and we would say there are
583 more args than there really are. */
584
585 int retpc;
586 unsigned char op;
587 struct frame_info *pfi;
588
589 /* On the i386, the instruction following the call could be:
590 popl %ecx - one arg
591 addl $imm, %esp - imm/4 args; imm may be 8 or 32 bits
592 anything else - zero args. */
593
594 int frameless;
595
596 frameless = FRAMELESS_FUNCTION_INVOCATION (fi);
597 if (frameless)
598 /* In the absence of a frame pointer, GDB doesn't get correct
599 values for nameless arguments. Return -1, so it doesn't print
600 any nameless arguments. */
601 return -1;
602
603 pfi = get_prev_frame (fi);
604 if (pfi == 0)
605 {
606 /* NOTE: This can happen if we are looking at the frame for
607 main, because FRAME_CHAIN_VALID won't let us go into start.
608 If we have debugging symbols, that's not really a big deal;
609 it just means it will only show as many arguments to main as
610 are declared. */
611 return -1;
612 }
613 else
614 {
615 retpc = pfi->pc;
616 op = read_memory_integer (retpc, 1);
617 if (op == 0x59) /* pop %ecx */
618 return 1;
619 else if (op == 0x83)
620 {
621 op = read_memory_integer (retpc + 1, 1);
622 if (op == 0xc4)
623 /* addl $<signed imm 8 bits>, %esp */
624 return (read_memory_integer (retpc + 2, 1) & 0xff) / 4;
625 else
626 return 0;
627 }
628 else if (op == 0x81) /* `add' with 32 bit immediate. */
629 {
630 op = read_memory_integer (retpc + 1, 1);
631 if (op == 0xc4)
632 /* addl $<imm 32>, %esp */
633 return read_memory_integer (retpc + 2, 4) / 4;
634 else
635 return 0;
636 }
637 else
638 {
639 return 0;
640 }
641 }
642 #endif
643 }
644
645 /* Parse the first few instructions the function to see what registers
646 were stored.
647
648 We handle these cases:
649
650 The startup sequence can be at the start of the function, or the
651 function can start with a branch to startup code at the end.
652
653 %ebp can be set up with either the 'enter' instruction, or "pushl
654 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
655 once used in the System V compiler).
656
657 Local space is allocated just below the saved %ebp by either the
658 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a 16
659 bit unsigned argument for space to allocate, and the 'addl'
660 instruction could have either a signed byte, or 32 bit immediate.
661
662 Next, the registers used by this function are pushed. With the
663 System V compiler they will always be in the order: %edi, %esi,
664 %ebx (and sometimes a harmless bug causes it to also save but not
665 restore %eax); however, the code below is willing to see the pushes
666 in any order, and will handle up to 8 of them.
667
668 If the setup sequence is at the end of the function, then the next
669 instruction will be a branch back to the start. */
670
671 static void
672 i386_frame_init_saved_regs (struct frame_info *fip)
673 {
674 long locals = -1;
675 unsigned char op;
676 CORE_ADDR dummy_bottom;
677 CORE_ADDR addr;
678 CORE_ADDR pc;
679 int i;
680
681 if (fip->saved_regs)
682 return;
683
684 frame_saved_regs_zalloc (fip);
685
686 /* If the frame is the end of a dummy, compute where the beginning
687 would be. */
688 dummy_bottom = fip->frame - 4 - REGISTER_BYTES - CALL_DUMMY_LENGTH;
689
690 /* Check if the PC points in the stack, in a dummy frame. */
691 if (dummy_bottom <= fip->pc && fip->pc <= fip->frame)
692 {
693 /* All registers were saved by push_call_dummy. */
694 addr = fip->frame;
695 for (i = 0; i < NUM_REGS; i++)
696 {
697 addr -= REGISTER_RAW_SIZE (i);
698 fip->saved_regs[i] = addr;
699 }
700 return;
701 }
702
703 pc = get_pc_function_start (fip->pc);
704 if (pc != 0)
705 locals = i386_get_frame_setup (pc);
706
707 if (locals >= 0)
708 {
709 addr = fip->frame - 4 - locals;
710 for (i = 0; i < 8; i++)
711 {
712 op = codestream_get ();
713 if (op < 0x50 || op > 0x57)
714 break;
715 #ifdef I386_REGNO_TO_SYMMETRY
716 /* Dynix uses different internal numbering. Ick. */
717 fip->saved_regs[I386_REGNO_TO_SYMMETRY (op - 0x50)] = addr;
718 #else
719 fip->saved_regs[op - 0x50] = addr;
720 #endif
721 addr -= 4;
722 }
723 }
724
725 fip->saved_regs[PC_REGNUM] = fip->frame + 4;
726 fip->saved_regs[FP_REGNUM] = fip->frame;
727 }
728
729 /* Return PC of first real instruction. */
730
731 static CORE_ADDR
732 i386_skip_prologue (CORE_ADDR pc)
733 {
734 unsigned char op;
735 int i;
736 static unsigned char pic_pat[6] =
737 { 0xe8, 0, 0, 0, 0, /* call 0x0 */
738 0x5b, /* popl %ebx */
739 };
740 CORE_ADDR pos;
741
742 if (i386_get_frame_setup (pc) < 0)
743 return (pc);
744
745 /* Found valid frame setup -- codestream now points to start of push
746 instructions for saving registers. */
747
748 /* Skip over register saves. */
749 for (i = 0; i < 8; i++)
750 {
751 op = codestream_peek ();
752 /* Break if not `pushl' instrunction. */
753 if (op < 0x50 || op > 0x57)
754 break;
755 codestream_get ();
756 }
757
758 /* The native cc on SVR4 in -K PIC mode inserts the following code
759 to get the address of the global offset table (GOT) into register
760 %ebx
761
762 call 0x0
763 popl %ebx
764 movl %ebx,x(%ebp) (optional)
765 addl y,%ebx
766
767 This code is with the rest of the prologue (at the end of the
768 function), so we have to skip it to get to the first real
769 instruction at the start of the function. */
770
771 pos = codestream_tell ();
772 for (i = 0; i < 6; i++)
773 {
774 op = codestream_get ();
775 if (pic_pat[i] != op)
776 break;
777 }
778 if (i == 6)
779 {
780 unsigned char buf[4];
781 long delta = 6;
782
783 op = codestream_get ();
784 if (op == 0x89) /* movl %ebx, x(%ebp) */
785 {
786 op = codestream_get ();
787 if (op == 0x5d) /* One byte offset from %ebp. */
788 {
789 delta += 3;
790 codestream_read (buf, 1);
791 }
792 else if (op == 0x9d) /* Four byte offset from %ebp. */
793 {
794 delta += 6;
795 codestream_read (buf, 4);
796 }
797 else /* Unexpected instruction. */
798 delta = -1;
799 op = codestream_get ();
800 }
801 /* addl y,%ebx */
802 if (delta > 0 && op == 0x81 && codestream_get () == 0xc3)
803 {
804 pos += delta + 6;
805 }
806 }
807 codestream_seek (pos);
808
809 i386_follow_jump ();
810
811 return (codestream_tell ());
812 }
813
814 /* Use the program counter to determine the contents and size of a
815 breakpoint instruction. Return a pointer to a string of bytes that
816 encode a breakpoint instruction, store the length of the string in
817 *LEN and optionally adjust *PC to point to the correct memory
818 location for inserting the breakpoint.
819
820 On the i386 we have a single breakpoint that fits in a single byte
821 and can be inserted anywhere. */
822
823 static const unsigned char *
824 i386_breakpoint_from_pc (CORE_ADDR *pc, int *len)
825 {
826 static unsigned char break_insn[] = { 0xcc }; /* int 3 */
827
828 *len = sizeof (break_insn);
829 return break_insn;
830 }
831
832 static void
833 i386_push_dummy_frame (void)
834 {
835 CORE_ADDR sp = read_register (SP_REGNUM);
836 CORE_ADDR fp;
837 int regnum;
838 char regbuf[MAX_REGISTER_RAW_SIZE];
839
840 sp = push_word (sp, read_register (PC_REGNUM));
841 sp = push_word (sp, read_register (FP_REGNUM));
842 fp = sp;
843 for (regnum = 0; regnum < NUM_REGS; regnum++)
844 {
845 read_register_gen (regnum, regbuf);
846 sp = push_bytes (sp, regbuf, REGISTER_RAW_SIZE (regnum));
847 }
848 write_register (SP_REGNUM, sp);
849 write_register (FP_REGNUM, fp);
850 }
851
852 /* The i386 call dummy sequence:
853
854 call 11223344 (32-bit relative)
855 int 3
856
857 It is 8 bytes long. */
858
859 static LONGEST i386_call_dummy_words[] =
860 {
861 0x223344e8,
862 0xcc11
863 };
864
865 /* Insert the (relative) function address into the call sequence
866 stored at DYMMY. */
867
868 static void
869 i386_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs,
870 struct value **args, struct type *type, int gcc_p)
871 {
872 int from, to, delta, loc;
873
874 loc = (int)(read_register (SP_REGNUM) - CALL_DUMMY_LENGTH);
875 from = loc + 5;
876 to = (int)(fun);
877 delta = to - from;
878
879 *((char *)(dummy) + 1) = (delta & 0xff);
880 *((char *)(dummy) + 2) = ((delta >> 8) & 0xff);
881 *((char *)(dummy) + 3) = ((delta >> 16) & 0xff);
882 *((char *)(dummy) + 4) = ((delta >> 24) & 0xff);
883 }
884
885 static void
886 i386_pop_frame (void)
887 {
888 struct frame_info *frame = get_current_frame ();
889 CORE_ADDR fp;
890 int regnum;
891 char regbuf[MAX_REGISTER_RAW_SIZE];
892
893 fp = FRAME_FP (frame);
894 i386_frame_init_saved_regs (frame);
895
896 for (regnum = 0; regnum < NUM_REGS; regnum++)
897 {
898 CORE_ADDR addr;
899 addr = frame->saved_regs[regnum];
900 if (addr)
901 {
902 read_memory (addr, regbuf, REGISTER_RAW_SIZE (regnum));
903 write_register_bytes (REGISTER_BYTE (regnum), regbuf,
904 REGISTER_RAW_SIZE (regnum));
905 }
906 }
907 write_register (FP_REGNUM, read_memory_integer (fp, 4));
908 write_register (PC_REGNUM, read_memory_integer (fp + 4, 4));
909 write_register (SP_REGNUM, fp + 8);
910 flush_cached_frames ();
911 }
912 \f
913
914 /* Figure out where the longjmp will land. Slurp the args out of the
915 stack. We expect the first arg to be a pointer to the jmp_buf
916 structure from which we extract the address that we will land at.
917 This address is copied into PC. This routine returns true on
918 success. */
919
920 static int
921 i386_get_longjmp_target (CORE_ADDR *pc)
922 {
923 char buf[4];
924 CORE_ADDR sp, jb_addr;
925 int jb_pc_offset = gdbarch_tdep (current_gdbarch)->jb_pc_offset;
926
927 /* If JB_PC_OFFSET is -1, we have no way to find out where the
928 longjmp will land. */
929 if (jb_pc_offset == -1)
930 return 0;
931
932 sp = read_register (SP_REGNUM);
933 if (target_read_memory (sp + 4, buf, 4))
934 return 0;
935
936 jb_addr = extract_address (buf, 4);
937 if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
938 return 0;
939
940 *pc = extract_address (buf, 4);
941 return 1;
942 }
943 \f
944
945 static CORE_ADDR
946 i386_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
947 int struct_return, CORE_ADDR struct_addr)
948 {
949 sp = default_push_arguments (nargs, args, sp, struct_return, struct_addr);
950
951 if (struct_return)
952 {
953 char buf[4];
954
955 sp -= 4;
956 store_address (buf, 4, struct_addr);
957 write_memory (sp, buf, 4);
958 }
959
960 return sp;
961 }
962
963 static void
964 i386_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
965 {
966 /* Do nothing. Everything was already done by i386_push_arguments. */
967 }
968
969 /* These registers are used for returning integers (and on some
970 targets also for returning `struct' and `union' values when their
971 size and alignment match an integer type). */
972 #define LOW_RETURN_REGNUM 0 /* %eax */
973 #define HIGH_RETURN_REGNUM 2 /* %edx */
974
975 /* Extract from an array REGBUF containing the (raw) register state, a
976 function return value of TYPE, and copy that, in virtual format,
977 into VALBUF. */
978
979 static void
980 i386_extract_return_value (struct type *type, char *regbuf, char *valbuf)
981 {
982 int len = TYPE_LENGTH (type);
983
984 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
985 && TYPE_NFIELDS (type) == 1)
986 {
987 i386_extract_return_value (TYPE_FIELD_TYPE (type, 0), regbuf, valbuf);
988 return;
989 }
990
991 if (TYPE_CODE (type) == TYPE_CODE_FLT)
992 {
993 if (FP0_REGNUM == 0)
994 {
995 warning ("Cannot find floating-point return value.");
996 memset (valbuf, 0, len);
997 return;
998 }
999
1000 /* Floating-point return values can be found in %st(0). Convert
1001 its contents to the desired type. This is probably not
1002 exactly how it would happen on the target itself, but it is
1003 the best we can do. */
1004 convert_typed_floating (&regbuf[REGISTER_BYTE (FP0_REGNUM)],
1005 builtin_type_i387_ext, valbuf, type);
1006 }
1007 else
1008 {
1009 int low_size = REGISTER_RAW_SIZE (LOW_RETURN_REGNUM);
1010 int high_size = REGISTER_RAW_SIZE (HIGH_RETURN_REGNUM);
1011
1012 if (len <= low_size)
1013 memcpy (valbuf, &regbuf[REGISTER_BYTE (LOW_RETURN_REGNUM)], len);
1014 else if (len <= (low_size + high_size))
1015 {
1016 memcpy (valbuf,
1017 &regbuf[REGISTER_BYTE (LOW_RETURN_REGNUM)], low_size);
1018 memcpy (valbuf + low_size,
1019 &regbuf[REGISTER_BYTE (HIGH_RETURN_REGNUM)], len - low_size);
1020 }
1021 else
1022 internal_error (__FILE__, __LINE__,
1023 "Cannot extract return value of %d bytes long.", len);
1024 }
1025 }
1026
1027 /* Write into the appropriate registers a function return value stored
1028 in VALBUF of type TYPE, given in virtual format. */
1029
1030 static void
1031 i386_store_return_value (struct type *type, char *valbuf)
1032 {
1033 int len = TYPE_LENGTH (type);
1034
1035 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
1036 && TYPE_NFIELDS (type) == 1)
1037 {
1038 i386_store_return_value (TYPE_FIELD_TYPE (type, 0), valbuf);
1039 return;
1040 }
1041
1042 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1043 {
1044 unsigned int fstat;
1045 char buf[FPU_REG_RAW_SIZE];
1046
1047 if (FP0_REGNUM == 0)
1048 {
1049 warning ("Cannot set floating-point return value.");
1050 return;
1051 }
1052
1053 /* Returning floating-point values is a bit tricky. Apart from
1054 storing the return value in %st(0), we have to simulate the
1055 state of the FPU at function return point. */
1056
1057 /* Convert the value found in VALBUF to the extended
1058 floating-point format used by the FPU. This is probably
1059 not exactly how it would happen on the target itself, but
1060 it is the best we can do. */
1061 convert_typed_floating (valbuf, type, buf, builtin_type_i387_ext);
1062 write_register_bytes (REGISTER_BYTE (FP0_REGNUM), buf,
1063 FPU_REG_RAW_SIZE);
1064
1065 /* Set the top of the floating-point register stack to 7. The
1066 actual value doesn't really matter, but 7 is what a normal
1067 function return would end up with if the program started out
1068 with a freshly initialized FPU. */
1069 fstat = read_register (FSTAT_REGNUM);
1070 fstat |= (7 << 11);
1071 write_register (FSTAT_REGNUM, fstat);
1072
1073 /* Mark %st(1) through %st(7) as empty. Since we set the top of
1074 the floating-point register stack to 7, the appropriate value
1075 for the tag word is 0x3fff. */
1076 write_register (FTAG_REGNUM, 0x3fff);
1077 }
1078 else
1079 {
1080 int low_size = REGISTER_RAW_SIZE (LOW_RETURN_REGNUM);
1081 int high_size = REGISTER_RAW_SIZE (HIGH_RETURN_REGNUM);
1082
1083 if (len <= low_size)
1084 write_register_bytes (REGISTER_BYTE (LOW_RETURN_REGNUM), valbuf, len);
1085 else if (len <= (low_size + high_size))
1086 {
1087 write_register_bytes (REGISTER_BYTE (LOW_RETURN_REGNUM),
1088 valbuf, low_size);
1089 write_register_bytes (REGISTER_BYTE (HIGH_RETURN_REGNUM),
1090 valbuf + low_size, len - low_size);
1091 }
1092 else
1093 internal_error (__FILE__, __LINE__,
1094 "Cannot store return value of %d bytes long.", len);
1095 }
1096 }
1097
1098 /* Extract from an array REGBUF containing the (raw) register state
1099 the address in which a function should return its structure value,
1100 as a CORE_ADDR. */
1101
1102 static CORE_ADDR
1103 i386_extract_struct_value_address (char *regbuf)
1104 {
1105 return extract_address (&regbuf[REGISTER_BYTE (LOW_RETURN_REGNUM)],
1106 REGISTER_RAW_SIZE (LOW_RETURN_REGNUM));
1107 }
1108 \f
1109
1110 /* This is the variable that is set with "set struct-convention", and
1111 its legitimate values. */
1112 static const char default_struct_convention[] = "default";
1113 static const char pcc_struct_convention[] = "pcc";
1114 static const char reg_struct_convention[] = "reg";
1115 static const char *valid_conventions[] =
1116 {
1117 default_struct_convention,
1118 pcc_struct_convention,
1119 reg_struct_convention,
1120 NULL
1121 };
1122 static const char *struct_convention = default_struct_convention;
1123
1124 static int
1125 i386_use_struct_convention (int gcc_p, struct type *type)
1126 {
1127 enum struct_return struct_return;
1128
1129 if (struct_convention == default_struct_convention)
1130 struct_return = gdbarch_tdep (current_gdbarch)->struct_return;
1131 else if (struct_convention == pcc_struct_convention)
1132 struct_return = pcc_struct_return;
1133 else
1134 struct_return = reg_struct_return;
1135
1136 return generic_use_struct_convention (struct_return == reg_struct_return,
1137 type);
1138 }
1139 \f
1140
1141 /* Return the GDB type object for the "standard" data type of data in
1142 register REGNUM. Perhaps %esi and %edi should go here, but
1143 potentially they could be used for things other than address. */
1144
1145 static struct type *
1146 i386_register_virtual_type (int regnum)
1147 {
1148 if (regnum == PC_REGNUM || regnum == FP_REGNUM || regnum == SP_REGNUM)
1149 return lookup_pointer_type (builtin_type_void);
1150
1151 if (IS_FP_REGNUM (regnum))
1152 return builtin_type_i387_ext;
1153
1154 if (IS_SSE_REGNUM (regnum))
1155 return builtin_type_vec128i;
1156
1157 return builtin_type_int;
1158 }
1159
1160 /* Return true iff register REGNUM's virtual format is different from
1161 its raw format. Note that this definition assumes that the host
1162 supports IEEE 32-bit floats, since it doesn't say that SSE
1163 registers need conversion. Even if we can't find a counterexample,
1164 this is still sloppy. */
1165
1166 static int
1167 i386_register_convertible (int regnum)
1168 {
1169 return IS_FP_REGNUM (regnum);
1170 }
1171
1172 /* Convert data from raw format for register REGNUM in buffer FROM to
1173 virtual format with type TYPE in buffer TO. */
1174
1175 static void
1176 i386_register_convert_to_virtual (int regnum, struct type *type,
1177 char *from, char *to)
1178 {
1179 gdb_assert (IS_FP_REGNUM (regnum));
1180
1181 /* We only support floating-point values. */
1182 if (TYPE_CODE (type) != TYPE_CODE_FLT)
1183 {
1184 warning ("Cannot convert floating-point register value "
1185 "to non-floating-point type.");
1186 memset (to, 0, TYPE_LENGTH (type));
1187 return;
1188 }
1189
1190 /* Convert to TYPE. This should be a no-op if TYPE is equivalent to
1191 the extended floating-point format used by the FPU. */
1192 convert_typed_floating (from, builtin_type_i387_ext, to, type);
1193 }
1194
1195 /* Convert data from virtual format with type TYPE in buffer FROM to
1196 raw format for register REGNUM in buffer TO. */
1197
1198 static void
1199 i386_register_convert_to_raw (struct type *type, int regnum,
1200 char *from, char *to)
1201 {
1202 gdb_assert (IS_FP_REGNUM (regnum));
1203
1204 /* We only support floating-point values. */
1205 if (TYPE_CODE (type) != TYPE_CODE_FLT)
1206 {
1207 warning ("Cannot convert non-floating-point type "
1208 "to floating-point register value.");
1209 memset (to, 0, TYPE_LENGTH (type));
1210 return;
1211 }
1212
1213 /* Convert from TYPE. This should be a no-op if TYPE is equivalent
1214 to the extended floating-point format used by the FPU. */
1215 convert_typed_floating (from, type, to, builtin_type_i387_ext);
1216 }
1217 \f
1218
1219 #ifdef STATIC_TRANSFORM_NAME
1220 /* SunPRO encodes the static variables. This is not related to C++
1221 mangling, it is done for C too. */
1222
1223 char *
1224 sunpro_static_transform_name (char *name)
1225 {
1226 char *p;
1227 if (IS_STATIC_TRANSFORM_NAME (name))
1228 {
1229 /* For file-local statics there will be a period, a bunch of
1230 junk (the contents of which match a string given in the
1231 N_OPT), a period and the name. For function-local statics
1232 there will be a bunch of junk (which seems to change the
1233 second character from 'A' to 'B'), a period, the name of the
1234 function, and the name. So just skip everything before the
1235 last period. */
1236 p = strrchr (name, '.');
1237 if (p != NULL)
1238 name = p + 1;
1239 }
1240 return name;
1241 }
1242 #endif /* STATIC_TRANSFORM_NAME */
1243 \f
1244
1245 /* Stuff for WIN32 PE style DLL's but is pretty generic really. */
1246
1247 CORE_ADDR
1248 skip_trampoline_code (CORE_ADDR pc, char *name)
1249 {
1250 if (pc && read_memory_unsigned_integer (pc, 2) == 0x25ff) /* jmp *(dest) */
1251 {
1252 unsigned long indirect = read_memory_unsigned_integer (pc + 2, 4);
1253 struct minimal_symbol *indsym =
1254 indirect ? lookup_minimal_symbol_by_pc (indirect) : 0;
1255 char *symname = indsym ? SYMBOL_NAME (indsym) : 0;
1256
1257 if (symname)
1258 {
1259 if (strncmp (symname, "__imp_", 6) == 0
1260 || strncmp (symname, "_imp_", 5) == 0)
1261 return name ? 1 : read_memory_unsigned_integer (indirect, 4);
1262 }
1263 }
1264 return 0; /* Not a trampoline. */
1265 }
1266 \f
1267
1268 /* Return non-zero if PC and NAME show that we are in a signal
1269 trampoline. */
1270
1271 static int
1272 i386_pc_in_sigtramp (CORE_ADDR pc, char *name)
1273 {
1274 return (name && strcmp ("_sigtramp", name) == 0);
1275 }
1276 \f
1277
1278 /* We have two flavours of disassembly. The machinery on this page
1279 deals with switching between those. */
1280
1281 static int
1282 gdb_print_insn_i386 (bfd_vma memaddr, disassemble_info *info)
1283 {
1284 if (disassembly_flavor == att_flavor)
1285 return print_insn_i386_att (memaddr, info);
1286 else if (disassembly_flavor == intel_flavor)
1287 return print_insn_i386_intel (memaddr, info);
1288 /* Never reached -- disassembly_flavour is always either att_flavor
1289 or intel_flavor. */
1290 internal_error (__FILE__, __LINE__, "failed internal consistency check");
1291 }
1292 \f
1293
1294 /* There are a few i386 architecture variants that differ only
1295 slightly from the generic i386 target. For now, we don't give them
1296 their own source file, but include them here. As a consequence,
1297 they'll always be included. */
1298
1299 /* System V Release 4 (SVR4). */
1300
1301 static int
1302 i386_svr4_pc_in_sigtramp (CORE_ADDR pc, char *name)
1303 {
1304 return (name && (strcmp ("_sigreturn", name) == 0
1305 || strcmp ("_sigacthandler", name) == 0
1306 || strcmp ("sigvechandler", name) == 0));
1307 }
1308
1309 /* Get address of the pushed ucontext (sigcontext) on the stack for
1310 all three variants of SVR4 sigtramps. */
1311
1312 static CORE_ADDR
1313 i386_svr4_sigcontext_addr (struct frame_info *frame)
1314 {
1315 int sigcontext_offset = -1;
1316 char *name = NULL;
1317
1318 find_pc_partial_function (frame->pc, &name, NULL, NULL);
1319 if (name)
1320 {
1321 if (strcmp (name, "_sigreturn") == 0)
1322 sigcontext_offset = 132;
1323 else if (strcmp (name, "_sigacthandler") == 0)
1324 sigcontext_offset = 80;
1325 else if (strcmp (name, "sigvechandler") == 0)
1326 sigcontext_offset = 120;
1327 }
1328
1329 gdb_assert (sigcontext_offset != -1);
1330
1331 if (frame->next)
1332 return frame->next->frame + sigcontext_offset;
1333 return read_register (SP_REGNUM) + sigcontext_offset;
1334 }
1335 \f
1336
1337 /* DJGPP. */
1338
1339 static int
1340 i386_go32_pc_in_sigtramp (CORE_ADDR pc, char *name)
1341 {
1342 /* DJGPP doesn't have any special frames for signal handlers. */
1343 return 0;
1344 }
1345 \f
1346
1347 /* Generic ELF. */
1348
1349 void
1350 i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1351 {
1352 /* We typically use stabs-in-ELF with the DWARF register numbering. */
1353 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dwarf_reg_to_regnum);
1354 }
1355
1356 /* System V Release 4 (SVR4). */
1357
1358 void
1359 i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1360 {
1361 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1362
1363 /* System V Release 4 uses ELF. */
1364 i386_elf_init_abi (info, gdbarch);
1365
1366 /* FIXME: kettenis/20020511: Why do we override this function here? */
1367 set_gdbarch_frame_chain_valid (gdbarch, func_frame_chain_valid);
1368
1369 set_gdbarch_pc_in_sigtramp (gdbarch, i386_svr4_pc_in_sigtramp);
1370 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
1371 tdep->sc_pc_offset = 14 * 4;
1372 tdep->sc_sp_offset = 7 * 4;
1373
1374 tdep->jb_pc_offset = 20;
1375 }
1376
1377 /* DJGPP. */
1378
1379 static void
1380 i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1381 {
1382 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1383
1384 set_gdbarch_pc_in_sigtramp (gdbarch, i386_go32_pc_in_sigtramp);
1385
1386 tdep->jb_pc_offset = 36;
1387 }
1388
1389 /* NetWare. */
1390
1391 static void
1392 i386_nw_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1393 {
1394 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1395
1396 /* FIXME: kettenis/20020511: Why do we override this function here? */
1397 set_gdbarch_frame_chain_valid (gdbarch, func_frame_chain_valid);
1398
1399 tdep->jb_pc_offset = 24;
1400 }
1401 \f
1402
1403 static struct gdbarch *
1404 i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1405 {
1406 struct gdbarch_tdep *tdep;
1407 struct gdbarch *gdbarch;
1408 enum gdb_osabi osabi = GDB_OSABI_UNKNOWN;
1409
1410 /* Try to determine the OS ABI of the object we're loading. */
1411 if (info.abfd != NULL)
1412 osabi = gdbarch_lookup_osabi (info.abfd);
1413
1414 /* Find a candidate among extant architectures. */
1415 for (arches = gdbarch_list_lookup_by_info (arches, &info);
1416 arches != NULL;
1417 arches = gdbarch_list_lookup_by_info (arches->next, &info))
1418 {
1419 /* Make sure the OS ABI selection matches. */
1420 tdep = gdbarch_tdep (arches->gdbarch);
1421 if (tdep && tdep->osabi == osabi)
1422 return arches->gdbarch;
1423 }
1424
1425 /* Allocate space for the new architecture. */
1426 tdep = XMALLOC (struct gdbarch_tdep);
1427 gdbarch = gdbarch_alloc (&info, tdep);
1428
1429 tdep->osabi = osabi;
1430
1431 /* The i386 default settings don't include the SSE registers.
1432 FIXME: kettenis/20020614: They do include the FPU registers for
1433 now, which probably is not quite right. */
1434 tdep->num_xmm_regs = 0;
1435
1436 tdep->jb_pc_offset = -1;
1437 tdep->struct_return = pcc_struct_return;
1438 tdep->sigtramp_start = 0;
1439 tdep->sigtramp_end = 0;
1440 tdep->sigcontext_addr = NULL;
1441 tdep->sc_pc_offset = -1;
1442 tdep->sc_sp_offset = -1;
1443
1444 /* The format used for `long double' on almost all i386 targets is
1445 the i387 extended floating-point format. In fact, of all targets
1446 in the GCC 2.95 tree, only OSF/1 does it different, and insists
1447 on having a `long double' that's not `long' at all. */
1448 set_gdbarch_long_double_format (gdbarch, &floatformat_i387_ext);
1449
1450 /* Although the i386 extended floating-point has only 80 significant
1451 bits, a `long double' actually takes up 96, probably to enforce
1452 alignment. */
1453 set_gdbarch_long_double_bit (gdbarch, 96);
1454
1455 /* NOTE: tm-i386aix.h, tm-i386bsd.h, tm-i386os9k.h, tm-ptx.h,
1456 tm-symmetry.h currently override this. Sigh. */
1457 set_gdbarch_num_regs (gdbarch, I386_NUM_GREGS + I386_NUM_FREGS);
1458
1459 set_gdbarch_sp_regnum (gdbarch, 4);
1460 set_gdbarch_fp_regnum (gdbarch, 5);
1461 set_gdbarch_pc_regnum (gdbarch, 8);
1462 set_gdbarch_ps_regnum (gdbarch, 9);
1463 set_gdbarch_fp0_regnum (gdbarch, 16);
1464
1465 /* Use the "default" register numbering scheme for stabs and COFF. */
1466 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_stab_reg_to_regnum);
1467 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_stab_reg_to_regnum);
1468
1469 /* Use the DWARF register numbering scheme for DWARF and DWARF 2. */
1470 set_gdbarch_dwarf_reg_to_regnum (gdbarch, i386_dwarf_reg_to_regnum);
1471 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_dwarf_reg_to_regnum);
1472
1473 /* We don't define ECOFF_REG_TO_REGNUM, since ECOFF doesn't seem to
1474 be in use on any of the supported i386 targets. */
1475
1476 set_gdbarch_register_name (gdbarch, i386_register_name);
1477 set_gdbarch_register_size (gdbarch, 4);
1478 set_gdbarch_register_bytes (gdbarch, I386_SIZEOF_GREGS + I386_SIZEOF_FREGS);
1479 set_gdbarch_register_byte (gdbarch, i386_register_byte);
1480 set_gdbarch_register_raw_size (gdbarch, i386_register_raw_size);
1481 set_gdbarch_max_register_raw_size (gdbarch, 16);
1482 set_gdbarch_max_register_virtual_size (gdbarch, 16);
1483 set_gdbarch_register_virtual_type (gdbarch, i386_register_virtual_type);
1484
1485 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
1486
1487 set_gdbarch_use_generic_dummy_frames (gdbarch, 0);
1488
1489 /* Call dummy code. */
1490 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
1491 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
1492 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 5);
1493 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
1494 set_gdbarch_call_dummy_length (gdbarch, 8);
1495 set_gdbarch_call_dummy_p (gdbarch, 1);
1496 set_gdbarch_call_dummy_words (gdbarch, i386_call_dummy_words);
1497 set_gdbarch_sizeof_call_dummy_words (gdbarch,
1498 sizeof (i386_call_dummy_words));
1499 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
1500 set_gdbarch_fix_call_dummy (gdbarch, i386_fix_call_dummy);
1501
1502 set_gdbarch_register_convertible (gdbarch, i386_register_convertible);
1503 set_gdbarch_register_convert_to_virtual (gdbarch,
1504 i386_register_convert_to_virtual);
1505 set_gdbarch_register_convert_to_raw (gdbarch, i386_register_convert_to_raw);
1506
1507 set_gdbarch_get_saved_register (gdbarch, generic_get_saved_register);
1508 set_gdbarch_push_arguments (gdbarch, i386_push_arguments);
1509
1510 set_gdbarch_pc_in_call_dummy (gdbarch, pc_in_call_dummy_on_stack);
1511
1512 /* "An argument's size is increased, if necessary, to make it a
1513 multiple of [32-bit] words. This may require tail padding,
1514 depending on the size of the argument" -- from the x86 ABI. */
1515 set_gdbarch_parm_boundary (gdbarch, 32);
1516
1517 set_gdbarch_deprecated_extract_return_value (gdbarch,
1518 i386_extract_return_value);
1519 set_gdbarch_push_arguments (gdbarch, i386_push_arguments);
1520 set_gdbarch_push_dummy_frame (gdbarch, i386_push_dummy_frame);
1521 set_gdbarch_pop_frame (gdbarch, i386_pop_frame);
1522 set_gdbarch_store_struct_return (gdbarch, i386_store_struct_return);
1523 set_gdbarch_store_return_value (gdbarch, i386_store_return_value);
1524 set_gdbarch_deprecated_extract_struct_value_address (gdbarch,
1525 i386_extract_struct_value_address);
1526 set_gdbarch_use_struct_convention (gdbarch, i386_use_struct_convention);
1527
1528 set_gdbarch_frame_init_saved_regs (gdbarch, i386_frame_init_saved_regs);
1529 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
1530
1531 /* Stack grows downward. */
1532 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1533
1534 set_gdbarch_breakpoint_from_pc (gdbarch, i386_breakpoint_from_pc);
1535 set_gdbarch_decr_pc_after_break (gdbarch, 1);
1536 set_gdbarch_function_start_offset (gdbarch, 0);
1537
1538 /* The following redefines make backtracing through sigtramp work.
1539 They manufacture a fake sigtramp frame and obtain the saved pc in
1540 sigtramp from the sigcontext structure which is pushed by the
1541 kernel on the user stack, along with a pointer to it. */
1542
1543 set_gdbarch_frame_args_skip (gdbarch, 8);
1544 set_gdbarch_frameless_function_invocation (gdbarch,
1545 i386_frameless_function_invocation);
1546 set_gdbarch_frame_chain (gdbarch, i386_frame_chain);
1547 set_gdbarch_frame_chain_valid (gdbarch, file_frame_chain_valid);
1548 set_gdbarch_frame_saved_pc (gdbarch, i386_frame_saved_pc);
1549 set_gdbarch_frame_args_address (gdbarch, default_frame_address);
1550 set_gdbarch_frame_locals_address (gdbarch, default_frame_address);
1551 set_gdbarch_saved_pc_after_call (gdbarch, i386_saved_pc_after_call);
1552 set_gdbarch_frame_num_args (gdbarch, i386_frame_num_args);
1553 set_gdbarch_pc_in_sigtramp (gdbarch, i386_pc_in_sigtramp);
1554
1555 /* Hook in ABI-specific overrides, if they have been registered. */
1556 gdbarch_init_osabi (info, gdbarch, osabi);
1557
1558 return gdbarch;
1559 }
1560
1561 static enum gdb_osabi
1562 i386_coff_osabi_sniffer (bfd *abfd)
1563 {
1564 if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
1565 || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
1566 return GDB_OSABI_GO32;
1567
1568 return GDB_OSABI_UNKNOWN;
1569 }
1570
1571 static enum gdb_osabi
1572 i386_nlm_osabi_sniffer (bfd *abfd)
1573 {
1574 return GDB_OSABI_NETWARE;
1575 }
1576 \f
1577
1578 /* Provide a prototype to silence -Wmissing-prototypes. */
1579 void _initialize_i386_tdep (void);
1580
1581 void
1582 _initialize_i386_tdep (void)
1583 {
1584 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
1585
1586 /* Initialize the table saying where each register starts in the
1587 register file. */
1588 {
1589 int i, offset;
1590
1591 offset = 0;
1592 for (i = 0; i < I386_SSE_NUM_REGS; i++)
1593 {
1594 i386_register_offset[i] = offset;
1595 offset += i386_register_size[i];
1596 }
1597 }
1598
1599 tm_print_insn = gdb_print_insn_i386;
1600 tm_print_insn_info.mach = bfd_lookup_arch (bfd_arch_i386, 0)->mach;
1601
1602 /* Add the variable that controls the disassembly flavor. */
1603 {
1604 struct cmd_list_element *new_cmd;
1605
1606 new_cmd = add_set_enum_cmd ("disassembly-flavor", no_class,
1607 valid_flavors,
1608 &disassembly_flavor,
1609 "\
1610 Set the disassembly flavor, the valid values are \"att\" and \"intel\", \
1611 and the default value is \"att\".",
1612 &setlist);
1613 add_show_from_set (new_cmd, &showlist);
1614 }
1615
1616 /* Add the variable that controls the convention for returning
1617 structs. */
1618 {
1619 struct cmd_list_element *new_cmd;
1620
1621 new_cmd = add_set_enum_cmd ("struct-convention", no_class,
1622 valid_conventions,
1623 &struct_convention, "\
1624 Set the convention for returning small structs, valid values \
1625 are \"default\", \"pcc\" and \"reg\", and the default value is \"default\".",
1626 &setlist);
1627 add_show_from_set (new_cmd, &showlist);
1628 }
1629
1630 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
1631 i386_coff_osabi_sniffer);
1632 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_nlm_flavour,
1633 i386_nlm_osabi_sniffer);
1634
1635 gdbarch_register_osabi (bfd_arch_i386, GDB_OSABI_SVR4,
1636 i386_svr4_init_abi);
1637 gdbarch_register_osabi (bfd_arch_i386, GDB_OSABI_GO32,
1638 i386_go32_init_abi);
1639 gdbarch_register_osabi (bfd_arch_i386, GDB_OSABI_NETWARE,
1640 i386_nw_init_abi);
1641 }
This page took 0.076246 seconds and 5 git commands to generate.