Include string.h in common-defs.h
[deliverable/binutils-gdb.git] / gdb / i386-tdep.c
1 /* Intel 386 target-dependent stuff.
2
3 Copyright (C) 1988-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "opcode/i386.h"
22 #include "arch-utils.h"
23 #include "command.h"
24 #include "dummy-frame.h"
25 #include "dwarf2-frame.h"
26 #include "doublest.h"
27 #include "frame.h"
28 #include "frame-base.h"
29 #include "frame-unwind.h"
30 #include "inferior.h"
31 #include "infrun.h"
32 #include "gdbcmd.h"
33 #include "gdbcore.h"
34 #include "gdbtypes.h"
35 #include "objfiles.h"
36 #include "osabi.h"
37 #include "regcache.h"
38 #include "reggroups.h"
39 #include "regset.h"
40 #include "symfile.h"
41 #include "symtab.h"
42 #include "target.h"
43 #include "value.h"
44 #include "dis-asm.h"
45 #include "disasm.h"
46 #include "remote.h"
47 #include "exceptions.h"
48 #include "i386-tdep.h"
49 #include "i387-tdep.h"
50 #include "i386-xstate.h"
51
52 #include "record.h"
53 #include "record-full.h"
54 #include <stdint.h>
55
56 #include "features/i386/i386.c"
57 #include "features/i386/i386-avx.c"
58 #include "features/i386/i386-mpx.c"
59 #include "features/i386/i386-avx512.c"
60 #include "features/i386/i386-mmx.c"
61
62 #include "ax.h"
63 #include "ax-gdb.h"
64
65 #include "stap-probe.h"
66 #include "user-regs.h"
67 #include "cli/cli-utils.h"
68 #include "expression.h"
69 #include "parser-defs.h"
70 #include <ctype.h>
71
72 /* Register names. */
73
74 static const char *i386_register_names[] =
75 {
76 "eax", "ecx", "edx", "ebx",
77 "esp", "ebp", "esi", "edi",
78 "eip", "eflags", "cs", "ss",
79 "ds", "es", "fs", "gs",
80 "st0", "st1", "st2", "st3",
81 "st4", "st5", "st6", "st7",
82 "fctrl", "fstat", "ftag", "fiseg",
83 "fioff", "foseg", "fooff", "fop",
84 "xmm0", "xmm1", "xmm2", "xmm3",
85 "xmm4", "xmm5", "xmm6", "xmm7",
86 "mxcsr"
87 };
88
89 static const char *i386_zmm_names[] =
90 {
91 "zmm0", "zmm1", "zmm2", "zmm3",
92 "zmm4", "zmm5", "zmm6", "zmm7"
93 };
94
95 static const char *i386_zmmh_names[] =
96 {
97 "zmm0h", "zmm1h", "zmm2h", "zmm3h",
98 "zmm4h", "zmm5h", "zmm6h", "zmm7h"
99 };
100
101 static const char *i386_k_names[] =
102 {
103 "k0", "k1", "k2", "k3",
104 "k4", "k5", "k6", "k7"
105 };
106
107 static const char *i386_ymm_names[] =
108 {
109 "ymm0", "ymm1", "ymm2", "ymm3",
110 "ymm4", "ymm5", "ymm6", "ymm7",
111 };
112
113 static const char *i386_ymmh_names[] =
114 {
115 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
116 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
117 };
118
119 static const char *i386_mpx_names[] =
120 {
121 "bnd0raw", "bnd1raw", "bnd2raw", "bnd3raw", "bndcfgu", "bndstatus"
122 };
123
124 /* Register names for MPX pseudo-registers. */
125
126 static const char *i386_bnd_names[] =
127 {
128 "bnd0", "bnd1", "bnd2", "bnd3"
129 };
130
131 /* Register names for MMX pseudo-registers. */
132
133 static const char *i386_mmx_names[] =
134 {
135 "mm0", "mm1", "mm2", "mm3",
136 "mm4", "mm5", "mm6", "mm7"
137 };
138
139 /* Register names for byte pseudo-registers. */
140
141 static const char *i386_byte_names[] =
142 {
143 "al", "cl", "dl", "bl",
144 "ah", "ch", "dh", "bh"
145 };
146
147 /* Register names for word pseudo-registers. */
148
149 static const char *i386_word_names[] =
150 {
151 "ax", "cx", "dx", "bx",
152 "", "bp", "si", "di"
153 };
154
155 /* Constant used for reading/writing pseudo registers. In 64-bit mode, we have
156 16 lower ZMM regs that extend corresponding xmm/ymm registers. In addition,
157 we have 16 upper ZMM regs that have to be handled differently. */
158
159 const int num_lower_zmm_regs = 16;
160
161 /* MMX register? */
162
163 static int
164 i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
165 {
166 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
167 int mm0_regnum = tdep->mm0_regnum;
168
169 if (mm0_regnum < 0)
170 return 0;
171
172 regnum -= mm0_regnum;
173 return regnum >= 0 && regnum < tdep->num_mmx_regs;
174 }
175
176 /* Byte register? */
177
178 int
179 i386_byte_regnum_p (struct gdbarch *gdbarch, int regnum)
180 {
181 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
182
183 regnum -= tdep->al_regnum;
184 return regnum >= 0 && regnum < tdep->num_byte_regs;
185 }
186
187 /* Word register? */
188
189 int
190 i386_word_regnum_p (struct gdbarch *gdbarch, int regnum)
191 {
192 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
193
194 regnum -= tdep->ax_regnum;
195 return regnum >= 0 && regnum < tdep->num_word_regs;
196 }
197
198 /* Dword register? */
199
200 int
201 i386_dword_regnum_p (struct gdbarch *gdbarch, int regnum)
202 {
203 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
204 int eax_regnum = tdep->eax_regnum;
205
206 if (eax_regnum < 0)
207 return 0;
208
209 regnum -= eax_regnum;
210 return regnum >= 0 && regnum < tdep->num_dword_regs;
211 }
212
213 /* AVX512 register? */
214
215 int
216 i386_zmmh_regnum_p (struct gdbarch *gdbarch, int regnum)
217 {
218 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
219 int zmm0h_regnum = tdep->zmm0h_regnum;
220
221 if (zmm0h_regnum < 0)
222 return 0;
223
224 regnum -= zmm0h_regnum;
225 return regnum >= 0 && regnum < tdep->num_zmm_regs;
226 }
227
228 int
229 i386_zmm_regnum_p (struct gdbarch *gdbarch, int regnum)
230 {
231 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
232 int zmm0_regnum = tdep->zmm0_regnum;
233
234 if (zmm0_regnum < 0)
235 return 0;
236
237 regnum -= zmm0_regnum;
238 return regnum >= 0 && regnum < tdep->num_zmm_regs;
239 }
240
241 int
242 i386_k_regnum_p (struct gdbarch *gdbarch, int regnum)
243 {
244 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
245 int k0_regnum = tdep->k0_regnum;
246
247 if (k0_regnum < 0)
248 return 0;
249
250 regnum -= k0_regnum;
251 return regnum >= 0 && regnum < I387_NUM_K_REGS;
252 }
253
254 static int
255 i386_ymmh_regnum_p (struct gdbarch *gdbarch, int regnum)
256 {
257 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
258 int ymm0h_regnum = tdep->ymm0h_regnum;
259
260 if (ymm0h_regnum < 0)
261 return 0;
262
263 regnum -= ymm0h_regnum;
264 return regnum >= 0 && regnum < tdep->num_ymm_regs;
265 }
266
267 /* AVX register? */
268
269 int
270 i386_ymm_regnum_p (struct gdbarch *gdbarch, int regnum)
271 {
272 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
273 int ymm0_regnum = tdep->ymm0_regnum;
274
275 if (ymm0_regnum < 0)
276 return 0;
277
278 regnum -= ymm0_regnum;
279 return regnum >= 0 && regnum < tdep->num_ymm_regs;
280 }
281
282 static int
283 i386_ymmh_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
284 {
285 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
286 int ymm16h_regnum = tdep->ymm16h_regnum;
287
288 if (ymm16h_regnum < 0)
289 return 0;
290
291 regnum -= ymm16h_regnum;
292 return regnum >= 0 && regnum < tdep->num_ymm_avx512_regs;
293 }
294
295 int
296 i386_ymm_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
297 {
298 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
299 int ymm16_regnum = tdep->ymm16_regnum;
300
301 if (ymm16_regnum < 0)
302 return 0;
303
304 regnum -= ymm16_regnum;
305 return regnum >= 0 && regnum < tdep->num_ymm_avx512_regs;
306 }
307
308 /* BND register? */
309
310 int
311 i386_bnd_regnum_p (struct gdbarch *gdbarch, int regnum)
312 {
313 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
314 int bnd0_regnum = tdep->bnd0_regnum;
315
316 if (bnd0_regnum < 0)
317 return 0;
318
319 regnum -= bnd0_regnum;
320 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
321 }
322
323 /* SSE register? */
324
325 int
326 i386_xmm_regnum_p (struct gdbarch *gdbarch, int regnum)
327 {
328 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
329 int num_xmm_regs = I387_NUM_XMM_REGS (tdep);
330
331 if (num_xmm_regs == 0)
332 return 0;
333
334 regnum -= I387_XMM0_REGNUM (tdep);
335 return regnum >= 0 && regnum < num_xmm_regs;
336 }
337
338 /* XMM_512 register? */
339
340 int
341 i386_xmm_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
342 {
343 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
344 int num_xmm_avx512_regs = I387_NUM_XMM_AVX512_REGS (tdep);
345
346 if (num_xmm_avx512_regs == 0)
347 return 0;
348
349 regnum -= I387_XMM16_REGNUM (tdep);
350 return regnum >= 0 && regnum < num_xmm_avx512_regs;
351 }
352
353 static int
354 i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
355 {
356 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
357
358 if (I387_NUM_XMM_REGS (tdep) == 0)
359 return 0;
360
361 return (regnum == I387_MXCSR_REGNUM (tdep));
362 }
363
364 /* FP register? */
365
366 int
367 i386_fp_regnum_p (struct gdbarch *gdbarch, int regnum)
368 {
369 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
370
371 if (I387_ST0_REGNUM (tdep) < 0)
372 return 0;
373
374 return (I387_ST0_REGNUM (tdep) <= regnum
375 && regnum < I387_FCTRL_REGNUM (tdep));
376 }
377
378 int
379 i386_fpc_regnum_p (struct gdbarch *gdbarch, int regnum)
380 {
381 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
382
383 if (I387_ST0_REGNUM (tdep) < 0)
384 return 0;
385
386 return (I387_FCTRL_REGNUM (tdep) <= regnum
387 && regnum < I387_XMM0_REGNUM (tdep));
388 }
389
390 /* BNDr (raw) register? */
391
392 static int
393 i386_bndr_regnum_p (struct gdbarch *gdbarch, int regnum)
394 {
395 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
396
397 if (I387_BND0R_REGNUM (tdep) < 0)
398 return 0;
399
400 regnum -= tdep->bnd0r_regnum;
401 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
402 }
403
404 /* BND control register? */
405
406 static int
407 i386_mpx_ctrl_regnum_p (struct gdbarch *gdbarch, int regnum)
408 {
409 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
410
411 if (I387_BNDCFGU_REGNUM (tdep) < 0)
412 return 0;
413
414 regnum -= I387_BNDCFGU_REGNUM (tdep);
415 return regnum >= 0 && regnum < I387_NUM_MPX_CTRL_REGS;
416 }
417
418 /* Return the name of register REGNUM, or the empty string if it is
419 an anonymous register. */
420
421 static const char *
422 i386_register_name (struct gdbarch *gdbarch, int regnum)
423 {
424 /* Hide the upper YMM registers. */
425 if (i386_ymmh_regnum_p (gdbarch, regnum))
426 return "";
427
428 /* Hide the upper YMM16-31 registers. */
429 if (i386_ymmh_avx512_regnum_p (gdbarch, regnum))
430 return "";
431
432 /* Hide the upper ZMM registers. */
433 if (i386_zmmh_regnum_p (gdbarch, regnum))
434 return "";
435
436 return tdesc_register_name (gdbarch, regnum);
437 }
438
439 /* Return the name of register REGNUM. */
440
441 const char *
442 i386_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
443 {
444 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
445 if (i386_bnd_regnum_p (gdbarch, regnum))
446 return i386_bnd_names[regnum - tdep->bnd0_regnum];
447 if (i386_mmx_regnum_p (gdbarch, regnum))
448 return i386_mmx_names[regnum - I387_MM0_REGNUM (tdep)];
449 else if (i386_ymm_regnum_p (gdbarch, regnum))
450 return i386_ymm_names[regnum - tdep->ymm0_regnum];
451 else if (i386_zmm_regnum_p (gdbarch, regnum))
452 return i386_zmm_names[regnum - tdep->zmm0_regnum];
453 else if (i386_byte_regnum_p (gdbarch, regnum))
454 return i386_byte_names[regnum - tdep->al_regnum];
455 else if (i386_word_regnum_p (gdbarch, regnum))
456 return i386_word_names[regnum - tdep->ax_regnum];
457
458 internal_error (__FILE__, __LINE__, _("invalid regnum"));
459 }
460
461 /* Convert a dbx register number REG to the appropriate register
462 number used by GDB. */
463
464 static int
465 i386_dbx_reg_to_regnum (struct gdbarch *gdbarch, int reg)
466 {
467 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
468
469 /* This implements what GCC calls the "default" register map
470 (dbx_register_map[]). */
471
472 if (reg >= 0 && reg <= 7)
473 {
474 /* General-purpose registers. The debug info calls %ebp
475 register 4, and %esp register 5. */
476 if (reg == 4)
477 return 5;
478 else if (reg == 5)
479 return 4;
480 else return reg;
481 }
482 else if (reg >= 12 && reg <= 19)
483 {
484 /* Floating-point registers. */
485 return reg - 12 + I387_ST0_REGNUM (tdep);
486 }
487 else if (reg >= 21 && reg <= 28)
488 {
489 /* SSE registers. */
490 int ymm0_regnum = tdep->ymm0_regnum;
491
492 if (ymm0_regnum >= 0
493 && i386_xmm_regnum_p (gdbarch, reg))
494 return reg - 21 + ymm0_regnum;
495 else
496 return reg - 21 + I387_XMM0_REGNUM (tdep);
497 }
498 else if (reg >= 29 && reg <= 36)
499 {
500 /* MMX registers. */
501 return reg - 29 + I387_MM0_REGNUM (tdep);
502 }
503
504 /* This will hopefully provoke a warning. */
505 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
506 }
507
508 /* Convert SVR4 register number REG to the appropriate register number
509 used by GDB. */
510
511 static int
512 i386_svr4_reg_to_regnum (struct gdbarch *gdbarch, int reg)
513 {
514 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
515
516 /* This implements the GCC register map that tries to be compatible
517 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
518
519 /* The SVR4 register numbering includes %eip and %eflags, and
520 numbers the floating point registers differently. */
521 if (reg >= 0 && reg <= 9)
522 {
523 /* General-purpose registers. */
524 return reg;
525 }
526 else if (reg >= 11 && reg <= 18)
527 {
528 /* Floating-point registers. */
529 return reg - 11 + I387_ST0_REGNUM (tdep);
530 }
531 else if (reg >= 21 && reg <= 36)
532 {
533 /* The SSE and MMX registers have the same numbers as with dbx. */
534 return i386_dbx_reg_to_regnum (gdbarch, reg);
535 }
536
537 switch (reg)
538 {
539 case 37: return I387_FCTRL_REGNUM (tdep);
540 case 38: return I387_FSTAT_REGNUM (tdep);
541 case 39: return I387_MXCSR_REGNUM (tdep);
542 case 40: return I386_ES_REGNUM;
543 case 41: return I386_CS_REGNUM;
544 case 42: return I386_SS_REGNUM;
545 case 43: return I386_DS_REGNUM;
546 case 44: return I386_FS_REGNUM;
547 case 45: return I386_GS_REGNUM;
548 }
549
550 /* This will hopefully provoke a warning. */
551 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
552 }
553
554 \f
555
556 /* This is the variable that is set with "set disassembly-flavor", and
557 its legitimate values. */
558 static const char att_flavor[] = "att";
559 static const char intel_flavor[] = "intel";
560 static const char *const valid_flavors[] =
561 {
562 att_flavor,
563 intel_flavor,
564 NULL
565 };
566 static const char *disassembly_flavor = att_flavor;
567 \f
568
569 /* Use the program counter to determine the contents and size of a
570 breakpoint instruction. Return a pointer to a string of bytes that
571 encode a breakpoint instruction, store the length of the string in
572 *LEN and optionally adjust *PC to point to the correct memory
573 location for inserting the breakpoint.
574
575 On the i386 we have a single breakpoint that fits in a single byte
576 and can be inserted anywhere.
577
578 This function is 64-bit safe. */
579
580 static const gdb_byte *
581 i386_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
582 {
583 static gdb_byte break_insn[] = { 0xcc }; /* int 3 */
584
585 *len = sizeof (break_insn);
586 return break_insn;
587 }
588 \f
589 /* Displaced instruction handling. */
590
591 /* Skip the legacy instruction prefixes in INSN.
592 Not all prefixes are valid for any particular insn
593 but we needn't care, the insn will fault if it's invalid.
594 The result is a pointer to the first opcode byte,
595 or NULL if we run off the end of the buffer. */
596
597 static gdb_byte *
598 i386_skip_prefixes (gdb_byte *insn, size_t max_len)
599 {
600 gdb_byte *end = insn + max_len;
601
602 while (insn < end)
603 {
604 switch (*insn)
605 {
606 case DATA_PREFIX_OPCODE:
607 case ADDR_PREFIX_OPCODE:
608 case CS_PREFIX_OPCODE:
609 case DS_PREFIX_OPCODE:
610 case ES_PREFIX_OPCODE:
611 case FS_PREFIX_OPCODE:
612 case GS_PREFIX_OPCODE:
613 case SS_PREFIX_OPCODE:
614 case LOCK_PREFIX_OPCODE:
615 case REPE_PREFIX_OPCODE:
616 case REPNE_PREFIX_OPCODE:
617 ++insn;
618 continue;
619 default:
620 return insn;
621 }
622 }
623
624 return NULL;
625 }
626
627 static int
628 i386_absolute_jmp_p (const gdb_byte *insn)
629 {
630 /* jmp far (absolute address in operand). */
631 if (insn[0] == 0xea)
632 return 1;
633
634 if (insn[0] == 0xff)
635 {
636 /* jump near, absolute indirect (/4). */
637 if ((insn[1] & 0x38) == 0x20)
638 return 1;
639
640 /* jump far, absolute indirect (/5). */
641 if ((insn[1] & 0x38) == 0x28)
642 return 1;
643 }
644
645 return 0;
646 }
647
648 /* Return non-zero if INSN is a jump, zero otherwise. */
649
650 static int
651 i386_jmp_p (const gdb_byte *insn)
652 {
653 /* jump short, relative. */
654 if (insn[0] == 0xeb)
655 return 1;
656
657 /* jump near, relative. */
658 if (insn[0] == 0xe9)
659 return 1;
660
661 return i386_absolute_jmp_p (insn);
662 }
663
664 static int
665 i386_absolute_call_p (const gdb_byte *insn)
666 {
667 /* call far, absolute. */
668 if (insn[0] == 0x9a)
669 return 1;
670
671 if (insn[0] == 0xff)
672 {
673 /* Call near, absolute indirect (/2). */
674 if ((insn[1] & 0x38) == 0x10)
675 return 1;
676
677 /* Call far, absolute indirect (/3). */
678 if ((insn[1] & 0x38) == 0x18)
679 return 1;
680 }
681
682 return 0;
683 }
684
685 static int
686 i386_ret_p (const gdb_byte *insn)
687 {
688 switch (insn[0])
689 {
690 case 0xc2: /* ret near, pop N bytes. */
691 case 0xc3: /* ret near */
692 case 0xca: /* ret far, pop N bytes. */
693 case 0xcb: /* ret far */
694 case 0xcf: /* iret */
695 return 1;
696
697 default:
698 return 0;
699 }
700 }
701
702 static int
703 i386_call_p (const gdb_byte *insn)
704 {
705 if (i386_absolute_call_p (insn))
706 return 1;
707
708 /* call near, relative. */
709 if (insn[0] == 0xe8)
710 return 1;
711
712 return 0;
713 }
714
715 /* Return non-zero if INSN is a system call, and set *LENGTHP to its
716 length in bytes. Otherwise, return zero. */
717
718 static int
719 i386_syscall_p (const gdb_byte *insn, int *lengthp)
720 {
721 /* Is it 'int $0x80'? */
722 if ((insn[0] == 0xcd && insn[1] == 0x80)
723 /* Or is it 'sysenter'? */
724 || (insn[0] == 0x0f && insn[1] == 0x34)
725 /* Or is it 'syscall'? */
726 || (insn[0] == 0x0f && insn[1] == 0x05))
727 {
728 *lengthp = 2;
729 return 1;
730 }
731
732 return 0;
733 }
734
735 /* The gdbarch insn_is_call method. */
736
737 static int
738 i386_insn_is_call (struct gdbarch *gdbarch, CORE_ADDR addr)
739 {
740 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
741
742 read_code (addr, buf, I386_MAX_INSN_LEN);
743 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
744
745 return i386_call_p (insn);
746 }
747
748 /* The gdbarch insn_is_ret method. */
749
750 static int
751 i386_insn_is_ret (struct gdbarch *gdbarch, CORE_ADDR addr)
752 {
753 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
754
755 read_code (addr, buf, I386_MAX_INSN_LEN);
756 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
757
758 return i386_ret_p (insn);
759 }
760
761 /* The gdbarch insn_is_jump method. */
762
763 static int
764 i386_insn_is_jump (struct gdbarch *gdbarch, CORE_ADDR addr)
765 {
766 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
767
768 read_code (addr, buf, I386_MAX_INSN_LEN);
769 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
770
771 return i386_jmp_p (insn);
772 }
773
774 /* Some kernels may run one past a syscall insn, so we have to cope.
775 Otherwise this is just simple_displaced_step_copy_insn. */
776
777 struct displaced_step_closure *
778 i386_displaced_step_copy_insn (struct gdbarch *gdbarch,
779 CORE_ADDR from, CORE_ADDR to,
780 struct regcache *regs)
781 {
782 size_t len = gdbarch_max_insn_length (gdbarch);
783 gdb_byte *buf = xmalloc (len);
784
785 read_memory (from, buf, len);
786
787 /* GDB may get control back after the insn after the syscall.
788 Presumably this is a kernel bug.
789 If this is a syscall, make sure there's a nop afterwards. */
790 {
791 int syscall_length;
792 gdb_byte *insn;
793
794 insn = i386_skip_prefixes (buf, len);
795 if (insn != NULL && i386_syscall_p (insn, &syscall_length))
796 insn[syscall_length] = NOP_OPCODE;
797 }
798
799 write_memory (to, buf, len);
800
801 if (debug_displaced)
802 {
803 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
804 paddress (gdbarch, from), paddress (gdbarch, to));
805 displaced_step_dump_bytes (gdb_stdlog, buf, len);
806 }
807
808 return (struct displaced_step_closure *) buf;
809 }
810
811 /* Fix up the state of registers and memory after having single-stepped
812 a displaced instruction. */
813
814 void
815 i386_displaced_step_fixup (struct gdbarch *gdbarch,
816 struct displaced_step_closure *closure,
817 CORE_ADDR from, CORE_ADDR to,
818 struct regcache *regs)
819 {
820 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
821
822 /* The offset we applied to the instruction's address.
823 This could well be negative (when viewed as a signed 32-bit
824 value), but ULONGEST won't reflect that, so take care when
825 applying it. */
826 ULONGEST insn_offset = to - from;
827
828 /* Since we use simple_displaced_step_copy_insn, our closure is a
829 copy of the instruction. */
830 gdb_byte *insn = (gdb_byte *) closure;
831 /* The start of the insn, needed in case we see some prefixes. */
832 gdb_byte *insn_start = insn;
833
834 if (debug_displaced)
835 fprintf_unfiltered (gdb_stdlog,
836 "displaced: fixup (%s, %s), "
837 "insn = 0x%02x 0x%02x ...\n",
838 paddress (gdbarch, from), paddress (gdbarch, to),
839 insn[0], insn[1]);
840
841 /* The list of issues to contend with here is taken from
842 resume_execution in arch/i386/kernel/kprobes.c, Linux 2.6.20.
843 Yay for Free Software! */
844
845 /* Relocate the %eip, if necessary. */
846
847 /* The instruction recognizers we use assume any leading prefixes
848 have been skipped. */
849 {
850 /* This is the size of the buffer in closure. */
851 size_t max_insn_len = gdbarch_max_insn_length (gdbarch);
852 gdb_byte *opcode = i386_skip_prefixes (insn, max_insn_len);
853 /* If there are too many prefixes, just ignore the insn.
854 It will fault when run. */
855 if (opcode != NULL)
856 insn = opcode;
857 }
858
859 /* Except in the case of absolute or indirect jump or call
860 instructions, or a return instruction, the new eip is relative to
861 the displaced instruction; make it relative. Well, signal
862 handler returns don't need relocation either, but we use the
863 value of %eip to recognize those; see below. */
864 if (! i386_absolute_jmp_p (insn)
865 && ! i386_absolute_call_p (insn)
866 && ! i386_ret_p (insn))
867 {
868 ULONGEST orig_eip;
869 int insn_len;
870
871 regcache_cooked_read_unsigned (regs, I386_EIP_REGNUM, &orig_eip);
872
873 /* A signal trampoline system call changes the %eip, resuming
874 execution of the main program after the signal handler has
875 returned. That makes them like 'return' instructions; we
876 shouldn't relocate %eip.
877
878 But most system calls don't, and we do need to relocate %eip.
879
880 Our heuristic for distinguishing these cases: if stepping
881 over the system call instruction left control directly after
882 the instruction, the we relocate --- control almost certainly
883 doesn't belong in the displaced copy. Otherwise, we assume
884 the instruction has put control where it belongs, and leave
885 it unrelocated. Goodness help us if there are PC-relative
886 system calls. */
887 if (i386_syscall_p (insn, &insn_len)
888 && orig_eip != to + (insn - insn_start) + insn_len
889 /* GDB can get control back after the insn after the syscall.
890 Presumably this is a kernel bug.
891 i386_displaced_step_copy_insn ensures its a nop,
892 we add one to the length for it. */
893 && orig_eip != to + (insn - insn_start) + insn_len + 1)
894 {
895 if (debug_displaced)
896 fprintf_unfiltered (gdb_stdlog,
897 "displaced: syscall changed %%eip; "
898 "not relocating\n");
899 }
900 else
901 {
902 ULONGEST eip = (orig_eip - insn_offset) & 0xffffffffUL;
903
904 /* If we just stepped over a breakpoint insn, we don't backup
905 the pc on purpose; this is to match behaviour without
906 stepping. */
907
908 regcache_cooked_write_unsigned (regs, I386_EIP_REGNUM, eip);
909
910 if (debug_displaced)
911 fprintf_unfiltered (gdb_stdlog,
912 "displaced: "
913 "relocated %%eip from %s to %s\n",
914 paddress (gdbarch, orig_eip),
915 paddress (gdbarch, eip));
916 }
917 }
918
919 /* If the instruction was PUSHFL, then the TF bit will be set in the
920 pushed value, and should be cleared. We'll leave this for later,
921 since GDB already messes up the TF flag when stepping over a
922 pushfl. */
923
924 /* If the instruction was a call, the return address now atop the
925 stack is the address following the copied instruction. We need
926 to make it the address following the original instruction. */
927 if (i386_call_p (insn))
928 {
929 ULONGEST esp;
930 ULONGEST retaddr;
931 const ULONGEST retaddr_len = 4;
932
933 regcache_cooked_read_unsigned (regs, I386_ESP_REGNUM, &esp);
934 retaddr = read_memory_unsigned_integer (esp, retaddr_len, byte_order);
935 retaddr = (retaddr - insn_offset) & 0xffffffffUL;
936 write_memory_unsigned_integer (esp, retaddr_len, byte_order, retaddr);
937
938 if (debug_displaced)
939 fprintf_unfiltered (gdb_stdlog,
940 "displaced: relocated return addr at %s to %s\n",
941 paddress (gdbarch, esp),
942 paddress (gdbarch, retaddr));
943 }
944 }
945
946 static void
947 append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
948 {
949 target_write_memory (*to, buf, len);
950 *to += len;
951 }
952
953 static void
954 i386_relocate_instruction (struct gdbarch *gdbarch,
955 CORE_ADDR *to, CORE_ADDR oldloc)
956 {
957 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
958 gdb_byte buf[I386_MAX_INSN_LEN];
959 int offset = 0, rel32, newrel;
960 int insn_length;
961 gdb_byte *insn = buf;
962
963 read_memory (oldloc, buf, I386_MAX_INSN_LEN);
964
965 insn_length = gdb_buffered_insn_length (gdbarch, insn,
966 I386_MAX_INSN_LEN, oldloc);
967
968 /* Get past the prefixes. */
969 insn = i386_skip_prefixes (insn, I386_MAX_INSN_LEN);
970
971 /* Adjust calls with 32-bit relative addresses as push/jump, with
972 the address pushed being the location where the original call in
973 the user program would return to. */
974 if (insn[0] == 0xe8)
975 {
976 gdb_byte push_buf[16];
977 unsigned int ret_addr;
978
979 /* Where "ret" in the original code will return to. */
980 ret_addr = oldloc + insn_length;
981 push_buf[0] = 0x68; /* pushq $... */
982 store_unsigned_integer (&push_buf[1], 4, byte_order, ret_addr);
983 /* Push the push. */
984 append_insns (to, 5, push_buf);
985
986 /* Convert the relative call to a relative jump. */
987 insn[0] = 0xe9;
988
989 /* Adjust the destination offset. */
990 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
991 newrel = (oldloc - *to) + rel32;
992 store_signed_integer (insn + 1, 4, byte_order, newrel);
993
994 if (debug_displaced)
995 fprintf_unfiltered (gdb_stdlog,
996 "Adjusted insn rel32=%s at %s to"
997 " rel32=%s at %s\n",
998 hex_string (rel32), paddress (gdbarch, oldloc),
999 hex_string (newrel), paddress (gdbarch, *to));
1000
1001 /* Write the adjusted jump into its displaced location. */
1002 append_insns (to, 5, insn);
1003 return;
1004 }
1005
1006 /* Adjust jumps with 32-bit relative addresses. Calls are already
1007 handled above. */
1008 if (insn[0] == 0xe9)
1009 offset = 1;
1010 /* Adjust conditional jumps. */
1011 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
1012 offset = 2;
1013
1014 if (offset)
1015 {
1016 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
1017 newrel = (oldloc - *to) + rel32;
1018 store_signed_integer (insn + offset, 4, byte_order, newrel);
1019 if (debug_displaced)
1020 fprintf_unfiltered (gdb_stdlog,
1021 "Adjusted insn rel32=%s at %s to"
1022 " rel32=%s at %s\n",
1023 hex_string (rel32), paddress (gdbarch, oldloc),
1024 hex_string (newrel), paddress (gdbarch, *to));
1025 }
1026
1027 /* Write the adjusted instructions into their displaced
1028 location. */
1029 append_insns (to, insn_length, buf);
1030 }
1031
1032 \f
1033 #ifdef I386_REGNO_TO_SYMMETRY
1034 #error "The Sequent Symmetry is no longer supported."
1035 #endif
1036
1037 /* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
1038 and %esp "belong" to the calling function. Therefore these
1039 registers should be saved if they're going to be modified. */
1040
1041 /* The maximum number of saved registers. This should include all
1042 registers mentioned above, and %eip. */
1043 #define I386_NUM_SAVED_REGS I386_NUM_GREGS
1044
1045 struct i386_frame_cache
1046 {
1047 /* Base address. */
1048 CORE_ADDR base;
1049 int base_p;
1050 LONGEST sp_offset;
1051 CORE_ADDR pc;
1052
1053 /* Saved registers. */
1054 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
1055 CORE_ADDR saved_sp;
1056 int saved_sp_reg;
1057 int pc_in_eax;
1058
1059 /* Stack space reserved for local variables. */
1060 long locals;
1061 };
1062
1063 /* Allocate and initialize a frame cache. */
1064
1065 static struct i386_frame_cache *
1066 i386_alloc_frame_cache (void)
1067 {
1068 struct i386_frame_cache *cache;
1069 int i;
1070
1071 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
1072
1073 /* Base address. */
1074 cache->base_p = 0;
1075 cache->base = 0;
1076 cache->sp_offset = -4;
1077 cache->pc = 0;
1078
1079 /* Saved registers. We initialize these to -1 since zero is a valid
1080 offset (that's where %ebp is supposed to be stored). */
1081 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
1082 cache->saved_regs[i] = -1;
1083 cache->saved_sp = 0;
1084 cache->saved_sp_reg = -1;
1085 cache->pc_in_eax = 0;
1086
1087 /* Frameless until proven otherwise. */
1088 cache->locals = -1;
1089
1090 return cache;
1091 }
1092
1093 /* If the instruction at PC is a jump, return the address of its
1094 target. Otherwise, return PC. */
1095
1096 static CORE_ADDR
1097 i386_follow_jump (struct gdbarch *gdbarch, CORE_ADDR pc)
1098 {
1099 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1100 gdb_byte op;
1101 long delta = 0;
1102 int data16 = 0;
1103
1104 if (target_read_code (pc, &op, 1))
1105 return pc;
1106
1107 if (op == 0x66)
1108 {
1109 data16 = 1;
1110
1111 op = read_code_unsigned_integer (pc + 1, 1, byte_order);
1112 }
1113
1114 switch (op)
1115 {
1116 case 0xe9:
1117 /* Relative jump: if data16 == 0, disp32, else disp16. */
1118 if (data16)
1119 {
1120 delta = read_memory_integer (pc + 2, 2, byte_order);
1121
1122 /* Include the size of the jmp instruction (including the
1123 0x66 prefix). */
1124 delta += 4;
1125 }
1126 else
1127 {
1128 delta = read_memory_integer (pc + 1, 4, byte_order);
1129
1130 /* Include the size of the jmp instruction. */
1131 delta += 5;
1132 }
1133 break;
1134 case 0xeb:
1135 /* Relative jump, disp8 (ignore data16). */
1136 delta = read_memory_integer (pc + data16 + 1, 1, byte_order);
1137
1138 delta += data16 + 2;
1139 break;
1140 }
1141
1142 return pc + delta;
1143 }
1144
1145 /* Check whether PC points at a prologue for a function returning a
1146 structure or union. If so, it updates CACHE and returns the
1147 address of the first instruction after the code sequence that
1148 removes the "hidden" argument from the stack or CURRENT_PC,
1149 whichever is smaller. Otherwise, return PC. */
1150
1151 static CORE_ADDR
1152 i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
1153 struct i386_frame_cache *cache)
1154 {
1155 /* Functions that return a structure or union start with:
1156
1157 popl %eax 0x58
1158 xchgl %eax, (%esp) 0x87 0x04 0x24
1159 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
1160
1161 (the System V compiler puts out the second `xchg' instruction,
1162 and the assembler doesn't try to optimize it, so the 'sib' form
1163 gets generated). This sequence is used to get the address of the
1164 return buffer for a function that returns a structure. */
1165 static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
1166 static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
1167 gdb_byte buf[4];
1168 gdb_byte op;
1169
1170 if (current_pc <= pc)
1171 return pc;
1172
1173 if (target_read_code (pc, &op, 1))
1174 return pc;
1175
1176 if (op != 0x58) /* popl %eax */
1177 return pc;
1178
1179 if (target_read_code (pc + 1, buf, 4))
1180 return pc;
1181
1182 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
1183 return pc;
1184
1185 if (current_pc == pc)
1186 {
1187 cache->sp_offset += 4;
1188 return current_pc;
1189 }
1190
1191 if (current_pc == pc + 1)
1192 {
1193 cache->pc_in_eax = 1;
1194 return current_pc;
1195 }
1196
1197 if (buf[1] == proto1[1])
1198 return pc + 4;
1199 else
1200 return pc + 5;
1201 }
1202
1203 static CORE_ADDR
1204 i386_skip_probe (CORE_ADDR pc)
1205 {
1206 /* A function may start with
1207
1208 pushl constant
1209 call _probe
1210 addl $4, %esp
1211
1212 followed by
1213
1214 pushl %ebp
1215
1216 etc. */
1217 gdb_byte buf[8];
1218 gdb_byte op;
1219
1220 if (target_read_code (pc, &op, 1))
1221 return pc;
1222
1223 if (op == 0x68 || op == 0x6a)
1224 {
1225 int delta;
1226
1227 /* Skip past the `pushl' instruction; it has either a one-byte or a
1228 four-byte operand, depending on the opcode. */
1229 if (op == 0x68)
1230 delta = 5;
1231 else
1232 delta = 2;
1233
1234 /* Read the following 8 bytes, which should be `call _probe' (6
1235 bytes) followed by `addl $4,%esp' (2 bytes). */
1236 read_memory (pc + delta, buf, sizeof (buf));
1237 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
1238 pc += delta + sizeof (buf);
1239 }
1240
1241 return pc;
1242 }
1243
1244 /* GCC 4.1 and later, can put code in the prologue to realign the
1245 stack pointer. Check whether PC points to such code, and update
1246 CACHE accordingly. Return the first instruction after the code
1247 sequence or CURRENT_PC, whichever is smaller. If we don't
1248 recognize the code, return PC. */
1249
1250 static CORE_ADDR
1251 i386_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1252 struct i386_frame_cache *cache)
1253 {
1254 /* There are 2 code sequences to re-align stack before the frame
1255 gets set up:
1256
1257 1. Use a caller-saved saved register:
1258
1259 leal 4(%esp), %reg
1260 andl $-XXX, %esp
1261 pushl -4(%reg)
1262
1263 2. Use a callee-saved saved register:
1264
1265 pushl %reg
1266 leal 8(%esp), %reg
1267 andl $-XXX, %esp
1268 pushl -4(%reg)
1269
1270 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
1271
1272 0x83 0xe4 0xf0 andl $-16, %esp
1273 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
1274 */
1275
1276 gdb_byte buf[14];
1277 int reg;
1278 int offset, offset_and;
1279 static int regnums[8] = {
1280 I386_EAX_REGNUM, /* %eax */
1281 I386_ECX_REGNUM, /* %ecx */
1282 I386_EDX_REGNUM, /* %edx */
1283 I386_EBX_REGNUM, /* %ebx */
1284 I386_ESP_REGNUM, /* %esp */
1285 I386_EBP_REGNUM, /* %ebp */
1286 I386_ESI_REGNUM, /* %esi */
1287 I386_EDI_REGNUM /* %edi */
1288 };
1289
1290 if (target_read_code (pc, buf, sizeof buf))
1291 return pc;
1292
1293 /* Check caller-saved saved register. The first instruction has
1294 to be "leal 4(%esp), %reg". */
1295 if (buf[0] == 0x8d && buf[2] == 0x24 && buf[3] == 0x4)
1296 {
1297 /* MOD must be binary 10 and R/M must be binary 100. */
1298 if ((buf[1] & 0xc7) != 0x44)
1299 return pc;
1300
1301 /* REG has register number. */
1302 reg = (buf[1] >> 3) & 7;
1303 offset = 4;
1304 }
1305 else
1306 {
1307 /* Check callee-saved saved register. The first instruction
1308 has to be "pushl %reg". */
1309 if ((buf[0] & 0xf8) != 0x50)
1310 return pc;
1311
1312 /* Get register. */
1313 reg = buf[0] & 0x7;
1314
1315 /* The next instruction has to be "leal 8(%esp), %reg". */
1316 if (buf[1] != 0x8d || buf[3] != 0x24 || buf[4] != 0x8)
1317 return pc;
1318
1319 /* MOD must be binary 10 and R/M must be binary 100. */
1320 if ((buf[2] & 0xc7) != 0x44)
1321 return pc;
1322
1323 /* REG has register number. Registers in pushl and leal have to
1324 be the same. */
1325 if (reg != ((buf[2] >> 3) & 7))
1326 return pc;
1327
1328 offset = 5;
1329 }
1330
1331 /* Rigister can't be %esp nor %ebp. */
1332 if (reg == 4 || reg == 5)
1333 return pc;
1334
1335 /* The next instruction has to be "andl $-XXX, %esp". */
1336 if (buf[offset + 1] != 0xe4
1337 || (buf[offset] != 0x81 && buf[offset] != 0x83))
1338 return pc;
1339
1340 offset_and = offset;
1341 offset += buf[offset] == 0x81 ? 6 : 3;
1342
1343 /* The next instruction has to be "pushl -4(%reg)". 8bit -4 is
1344 0xfc. REG must be binary 110 and MOD must be binary 01. */
1345 if (buf[offset] != 0xff
1346 || buf[offset + 2] != 0xfc
1347 || (buf[offset + 1] & 0xf8) != 0x70)
1348 return pc;
1349
1350 /* R/M has register. Registers in leal and pushl have to be the
1351 same. */
1352 if (reg != (buf[offset + 1] & 7))
1353 return pc;
1354
1355 if (current_pc > pc + offset_and)
1356 cache->saved_sp_reg = regnums[reg];
1357
1358 return min (pc + offset + 3, current_pc);
1359 }
1360
1361 /* Maximum instruction length we need to handle. */
1362 #define I386_MAX_MATCHED_INSN_LEN 6
1363
1364 /* Instruction description. */
1365 struct i386_insn
1366 {
1367 size_t len;
1368 gdb_byte insn[I386_MAX_MATCHED_INSN_LEN];
1369 gdb_byte mask[I386_MAX_MATCHED_INSN_LEN];
1370 };
1371
1372 /* Return whether instruction at PC matches PATTERN. */
1373
1374 static int
1375 i386_match_pattern (CORE_ADDR pc, struct i386_insn pattern)
1376 {
1377 gdb_byte op;
1378
1379 if (target_read_code (pc, &op, 1))
1380 return 0;
1381
1382 if ((op & pattern.mask[0]) == pattern.insn[0])
1383 {
1384 gdb_byte buf[I386_MAX_MATCHED_INSN_LEN - 1];
1385 int insn_matched = 1;
1386 size_t i;
1387
1388 gdb_assert (pattern.len > 1);
1389 gdb_assert (pattern.len <= I386_MAX_MATCHED_INSN_LEN);
1390
1391 if (target_read_code (pc + 1, buf, pattern.len - 1))
1392 return 0;
1393
1394 for (i = 1; i < pattern.len; i++)
1395 {
1396 if ((buf[i - 1] & pattern.mask[i]) != pattern.insn[i])
1397 insn_matched = 0;
1398 }
1399 return insn_matched;
1400 }
1401 return 0;
1402 }
1403
1404 /* Search for the instruction at PC in the list INSN_PATTERNS. Return
1405 the first instruction description that matches. Otherwise, return
1406 NULL. */
1407
1408 static struct i386_insn *
1409 i386_match_insn (CORE_ADDR pc, struct i386_insn *insn_patterns)
1410 {
1411 struct i386_insn *pattern;
1412
1413 for (pattern = insn_patterns; pattern->len > 0; pattern++)
1414 {
1415 if (i386_match_pattern (pc, *pattern))
1416 return pattern;
1417 }
1418
1419 return NULL;
1420 }
1421
1422 /* Return whether PC points inside a sequence of instructions that
1423 matches INSN_PATTERNS. */
1424
1425 static int
1426 i386_match_insn_block (CORE_ADDR pc, struct i386_insn *insn_patterns)
1427 {
1428 CORE_ADDR current_pc;
1429 int ix, i;
1430 struct i386_insn *insn;
1431
1432 insn = i386_match_insn (pc, insn_patterns);
1433 if (insn == NULL)
1434 return 0;
1435
1436 current_pc = pc;
1437 ix = insn - insn_patterns;
1438 for (i = ix - 1; i >= 0; i--)
1439 {
1440 current_pc -= insn_patterns[i].len;
1441
1442 if (!i386_match_pattern (current_pc, insn_patterns[i]))
1443 return 0;
1444 }
1445
1446 current_pc = pc + insn->len;
1447 for (insn = insn_patterns + ix + 1; insn->len > 0; insn++)
1448 {
1449 if (!i386_match_pattern (current_pc, *insn))
1450 return 0;
1451
1452 current_pc += insn->len;
1453 }
1454
1455 return 1;
1456 }
1457
1458 /* Some special instructions that might be migrated by GCC into the
1459 part of the prologue that sets up the new stack frame. Because the
1460 stack frame hasn't been setup yet, no registers have been saved
1461 yet, and only the scratch registers %eax, %ecx and %edx can be
1462 touched. */
1463
1464 struct i386_insn i386_frame_setup_skip_insns[] =
1465 {
1466 /* Check for `movb imm8, r' and `movl imm32, r'.
1467
1468 ??? Should we handle 16-bit operand-sizes here? */
1469
1470 /* `movb imm8, %al' and `movb imm8, %ah' */
1471 /* `movb imm8, %cl' and `movb imm8, %ch' */
1472 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
1473 /* `movb imm8, %dl' and `movb imm8, %dh' */
1474 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
1475 /* `movl imm32, %eax' and `movl imm32, %ecx' */
1476 { 5, { 0xb8 }, { 0xfe } },
1477 /* `movl imm32, %edx' */
1478 { 5, { 0xba }, { 0xff } },
1479
1480 /* Check for `mov imm32, r32'. Note that there is an alternative
1481 encoding for `mov m32, %eax'.
1482
1483 ??? Should we handle SIB adressing here?
1484 ??? Should we handle 16-bit operand-sizes here? */
1485
1486 /* `movl m32, %eax' */
1487 { 5, { 0xa1 }, { 0xff } },
1488 /* `movl m32, %eax' and `mov; m32, %ecx' */
1489 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
1490 /* `movl m32, %edx' */
1491 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
1492
1493 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
1494 Because of the symmetry, there are actually two ways to encode
1495 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
1496 opcode bytes 0x31 and 0x33 for `xorl'. */
1497
1498 /* `subl %eax, %eax' */
1499 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
1500 /* `subl %ecx, %ecx' */
1501 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
1502 /* `subl %edx, %edx' */
1503 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
1504 /* `xorl %eax, %eax' */
1505 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
1506 /* `xorl %ecx, %ecx' */
1507 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
1508 /* `xorl %edx, %edx' */
1509 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
1510 { 0 }
1511 };
1512
1513
1514 /* Check whether PC points to a no-op instruction. */
1515 static CORE_ADDR
1516 i386_skip_noop (CORE_ADDR pc)
1517 {
1518 gdb_byte op;
1519 int check = 1;
1520
1521 if (target_read_code (pc, &op, 1))
1522 return pc;
1523
1524 while (check)
1525 {
1526 check = 0;
1527 /* Ignore `nop' instruction. */
1528 if (op == 0x90)
1529 {
1530 pc += 1;
1531 if (target_read_code (pc, &op, 1))
1532 return pc;
1533 check = 1;
1534 }
1535 /* Ignore no-op instruction `mov %edi, %edi'.
1536 Microsoft system dlls often start with
1537 a `mov %edi,%edi' instruction.
1538 The 5 bytes before the function start are
1539 filled with `nop' instructions.
1540 This pattern can be used for hot-patching:
1541 The `mov %edi, %edi' instruction can be replaced by a
1542 near jump to the location of the 5 `nop' instructions
1543 which can be replaced by a 32-bit jump to anywhere
1544 in the 32-bit address space. */
1545
1546 else if (op == 0x8b)
1547 {
1548 if (target_read_code (pc + 1, &op, 1))
1549 return pc;
1550
1551 if (op == 0xff)
1552 {
1553 pc += 2;
1554 if (target_read_code (pc, &op, 1))
1555 return pc;
1556
1557 check = 1;
1558 }
1559 }
1560 }
1561 return pc;
1562 }
1563
1564 /* Check whether PC points at a code that sets up a new stack frame.
1565 If so, it updates CACHE and returns the address of the first
1566 instruction after the sequence that sets up the frame or LIMIT,
1567 whichever is smaller. If we don't recognize the code, return PC. */
1568
1569 static CORE_ADDR
1570 i386_analyze_frame_setup (struct gdbarch *gdbarch,
1571 CORE_ADDR pc, CORE_ADDR limit,
1572 struct i386_frame_cache *cache)
1573 {
1574 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1575 struct i386_insn *insn;
1576 gdb_byte op;
1577 int skip = 0;
1578
1579 if (limit <= pc)
1580 return limit;
1581
1582 if (target_read_code (pc, &op, 1))
1583 return pc;
1584
1585 if (op == 0x55) /* pushl %ebp */
1586 {
1587 /* Take into account that we've executed the `pushl %ebp' that
1588 starts this instruction sequence. */
1589 cache->saved_regs[I386_EBP_REGNUM] = 0;
1590 cache->sp_offset += 4;
1591 pc++;
1592
1593 /* If that's all, return now. */
1594 if (limit <= pc)
1595 return limit;
1596
1597 /* Check for some special instructions that might be migrated by
1598 GCC into the prologue and skip them. At this point in the
1599 prologue, code should only touch the scratch registers %eax,
1600 %ecx and %edx, so while the number of posibilities is sheer,
1601 it is limited.
1602
1603 Make sure we only skip these instructions if we later see the
1604 `movl %esp, %ebp' that actually sets up the frame. */
1605 while (pc + skip < limit)
1606 {
1607 insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
1608 if (insn == NULL)
1609 break;
1610
1611 skip += insn->len;
1612 }
1613
1614 /* If that's all, return now. */
1615 if (limit <= pc + skip)
1616 return limit;
1617
1618 if (target_read_code (pc + skip, &op, 1))
1619 return pc + skip;
1620
1621 /* The i386 prologue looks like
1622
1623 push %ebp
1624 mov %esp,%ebp
1625 sub $0x10,%esp
1626
1627 and a different prologue can be generated for atom.
1628
1629 push %ebp
1630 lea (%esp),%ebp
1631 lea -0x10(%esp),%esp
1632
1633 We handle both of them here. */
1634
1635 switch (op)
1636 {
1637 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
1638 case 0x8b:
1639 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
1640 != 0xec)
1641 return pc;
1642 pc += (skip + 2);
1643 break;
1644 case 0x89:
1645 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
1646 != 0xe5)
1647 return pc;
1648 pc += (skip + 2);
1649 break;
1650 case 0x8d: /* Check for 'lea (%ebp), %ebp'. */
1651 if (read_code_unsigned_integer (pc + skip + 1, 2, byte_order)
1652 != 0x242c)
1653 return pc;
1654 pc += (skip + 3);
1655 break;
1656 default:
1657 return pc;
1658 }
1659
1660 /* OK, we actually have a frame. We just don't know how large
1661 it is yet. Set its size to zero. We'll adjust it if
1662 necessary. We also now commit to skipping the special
1663 instructions mentioned before. */
1664 cache->locals = 0;
1665
1666 /* If that's all, return now. */
1667 if (limit <= pc)
1668 return limit;
1669
1670 /* Check for stack adjustment
1671
1672 subl $XXX, %esp
1673 or
1674 lea -XXX(%esp),%esp
1675
1676 NOTE: You can't subtract a 16-bit immediate from a 32-bit
1677 reg, so we don't have to worry about a data16 prefix. */
1678 if (target_read_code (pc, &op, 1))
1679 return pc;
1680 if (op == 0x83)
1681 {
1682 /* `subl' with 8-bit immediate. */
1683 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1684 /* Some instruction starting with 0x83 other than `subl'. */
1685 return pc;
1686
1687 /* `subl' with signed 8-bit immediate (though it wouldn't
1688 make sense to be negative). */
1689 cache->locals = read_code_integer (pc + 2, 1, byte_order);
1690 return pc + 3;
1691 }
1692 else if (op == 0x81)
1693 {
1694 /* Maybe it is `subl' with a 32-bit immediate. */
1695 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1696 /* Some instruction starting with 0x81 other than `subl'. */
1697 return pc;
1698
1699 /* It is `subl' with a 32-bit immediate. */
1700 cache->locals = read_code_integer (pc + 2, 4, byte_order);
1701 return pc + 6;
1702 }
1703 else if (op == 0x8d)
1704 {
1705 /* The ModR/M byte is 0x64. */
1706 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0x64)
1707 return pc;
1708 /* 'lea' with 8-bit displacement. */
1709 cache->locals = -1 * read_code_integer (pc + 3, 1, byte_order);
1710 return pc + 4;
1711 }
1712 else
1713 {
1714 /* Some instruction other than `subl' nor 'lea'. */
1715 return pc;
1716 }
1717 }
1718 else if (op == 0xc8) /* enter */
1719 {
1720 cache->locals = read_code_unsigned_integer (pc + 1, 2, byte_order);
1721 return pc + 4;
1722 }
1723
1724 return pc;
1725 }
1726
1727 /* Check whether PC points at code that saves registers on the stack.
1728 If so, it updates CACHE and returns the address of the first
1729 instruction after the register saves or CURRENT_PC, whichever is
1730 smaller. Otherwise, return PC. */
1731
1732 static CORE_ADDR
1733 i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
1734 struct i386_frame_cache *cache)
1735 {
1736 CORE_ADDR offset = 0;
1737 gdb_byte op;
1738 int i;
1739
1740 if (cache->locals > 0)
1741 offset -= cache->locals;
1742 for (i = 0; i < 8 && pc < current_pc; i++)
1743 {
1744 if (target_read_code (pc, &op, 1))
1745 return pc;
1746 if (op < 0x50 || op > 0x57)
1747 break;
1748
1749 offset -= 4;
1750 cache->saved_regs[op - 0x50] = offset;
1751 cache->sp_offset += 4;
1752 pc++;
1753 }
1754
1755 return pc;
1756 }
1757
1758 /* Do a full analysis of the prologue at PC and update CACHE
1759 accordingly. Bail out early if CURRENT_PC is reached. Return the
1760 address where the analysis stopped.
1761
1762 We handle these cases:
1763
1764 The startup sequence can be at the start of the function, or the
1765 function can start with a branch to startup code at the end.
1766
1767 %ebp can be set up with either the 'enter' instruction, or "pushl
1768 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
1769 once used in the System V compiler).
1770
1771 Local space is allocated just below the saved %ebp by either the
1772 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
1773 16-bit unsigned argument for space to allocate, and the 'addl'
1774 instruction could have either a signed byte, or 32-bit immediate.
1775
1776 Next, the registers used by this function are pushed. With the
1777 System V compiler they will always be in the order: %edi, %esi,
1778 %ebx (and sometimes a harmless bug causes it to also save but not
1779 restore %eax); however, the code below is willing to see the pushes
1780 in any order, and will handle up to 8 of them.
1781
1782 If the setup sequence is at the end of the function, then the next
1783 instruction will be a branch back to the start. */
1784
1785 static CORE_ADDR
1786 i386_analyze_prologue (struct gdbarch *gdbarch,
1787 CORE_ADDR pc, CORE_ADDR current_pc,
1788 struct i386_frame_cache *cache)
1789 {
1790 pc = i386_skip_noop (pc);
1791 pc = i386_follow_jump (gdbarch, pc);
1792 pc = i386_analyze_struct_return (pc, current_pc, cache);
1793 pc = i386_skip_probe (pc);
1794 pc = i386_analyze_stack_align (pc, current_pc, cache);
1795 pc = i386_analyze_frame_setup (gdbarch, pc, current_pc, cache);
1796 return i386_analyze_register_saves (pc, current_pc, cache);
1797 }
1798
1799 /* Return PC of first real instruction. */
1800
1801 static CORE_ADDR
1802 i386_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
1803 {
1804 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1805
1806 static gdb_byte pic_pat[6] =
1807 {
1808 0xe8, 0, 0, 0, 0, /* call 0x0 */
1809 0x5b, /* popl %ebx */
1810 };
1811 struct i386_frame_cache cache;
1812 CORE_ADDR pc;
1813 gdb_byte op;
1814 int i;
1815 CORE_ADDR func_addr;
1816
1817 if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
1818 {
1819 CORE_ADDR post_prologue_pc
1820 = skip_prologue_using_sal (gdbarch, func_addr);
1821 struct symtab *s = find_pc_symtab (func_addr);
1822
1823 /* Clang always emits a line note before the prologue and another
1824 one after. We trust clang to emit usable line notes. */
1825 if (post_prologue_pc
1826 && (s != NULL
1827 && s->producer != NULL
1828 && strncmp (s->producer, "clang ", sizeof ("clang ") - 1) == 0))
1829 return max (start_pc, post_prologue_pc);
1830 }
1831
1832 cache.locals = -1;
1833 pc = i386_analyze_prologue (gdbarch, start_pc, 0xffffffff, &cache);
1834 if (cache.locals < 0)
1835 return start_pc;
1836
1837 /* Found valid frame setup. */
1838
1839 /* The native cc on SVR4 in -K PIC mode inserts the following code
1840 to get the address of the global offset table (GOT) into register
1841 %ebx:
1842
1843 call 0x0
1844 popl %ebx
1845 movl %ebx,x(%ebp) (optional)
1846 addl y,%ebx
1847
1848 This code is with the rest of the prologue (at the end of the
1849 function), so we have to skip it to get to the first real
1850 instruction at the start of the function. */
1851
1852 for (i = 0; i < 6; i++)
1853 {
1854 if (target_read_code (pc + i, &op, 1))
1855 return pc;
1856
1857 if (pic_pat[i] != op)
1858 break;
1859 }
1860 if (i == 6)
1861 {
1862 int delta = 6;
1863
1864 if (target_read_code (pc + delta, &op, 1))
1865 return pc;
1866
1867 if (op == 0x89) /* movl %ebx, x(%ebp) */
1868 {
1869 op = read_code_unsigned_integer (pc + delta + 1, 1, byte_order);
1870
1871 if (op == 0x5d) /* One byte offset from %ebp. */
1872 delta += 3;
1873 else if (op == 0x9d) /* Four byte offset from %ebp. */
1874 delta += 6;
1875 else /* Unexpected instruction. */
1876 delta = 0;
1877
1878 if (target_read_code (pc + delta, &op, 1))
1879 return pc;
1880 }
1881
1882 /* addl y,%ebx */
1883 if (delta > 0 && op == 0x81
1884 && read_code_unsigned_integer (pc + delta + 1, 1, byte_order)
1885 == 0xc3)
1886 {
1887 pc += delta + 6;
1888 }
1889 }
1890
1891 /* If the function starts with a branch (to startup code at the end)
1892 the last instruction should bring us back to the first
1893 instruction of the real code. */
1894 if (i386_follow_jump (gdbarch, start_pc) != start_pc)
1895 pc = i386_follow_jump (gdbarch, pc);
1896
1897 return pc;
1898 }
1899
1900 /* Check that the code pointed to by PC corresponds to a call to
1901 __main, skip it if so. Return PC otherwise. */
1902
1903 CORE_ADDR
1904 i386_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1905 {
1906 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1907 gdb_byte op;
1908
1909 if (target_read_code (pc, &op, 1))
1910 return pc;
1911 if (op == 0xe8)
1912 {
1913 gdb_byte buf[4];
1914
1915 if (target_read_code (pc + 1, buf, sizeof buf) == 0)
1916 {
1917 /* Make sure address is computed correctly as a 32bit
1918 integer even if CORE_ADDR is 64 bit wide. */
1919 struct bound_minimal_symbol s;
1920 CORE_ADDR call_dest;
1921
1922 call_dest = pc + 5 + extract_signed_integer (buf, 4, byte_order);
1923 call_dest = call_dest & 0xffffffffU;
1924 s = lookup_minimal_symbol_by_pc (call_dest);
1925 if (s.minsym != NULL
1926 && MSYMBOL_LINKAGE_NAME (s.minsym) != NULL
1927 && strcmp (MSYMBOL_LINKAGE_NAME (s.minsym), "__main") == 0)
1928 pc += 5;
1929 }
1930 }
1931
1932 return pc;
1933 }
1934
1935 /* This function is 64-bit safe. */
1936
1937 static CORE_ADDR
1938 i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1939 {
1940 gdb_byte buf[8];
1941
1942 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
1943 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
1944 }
1945 \f
1946
1947 /* Normal frames. */
1948
1949 static void
1950 i386_frame_cache_1 (struct frame_info *this_frame,
1951 struct i386_frame_cache *cache)
1952 {
1953 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1954 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1955 gdb_byte buf[4];
1956 int i;
1957
1958 cache->pc = get_frame_func (this_frame);
1959
1960 /* In principle, for normal frames, %ebp holds the frame pointer,
1961 which holds the base address for the current stack frame.
1962 However, for functions that don't need it, the frame pointer is
1963 optional. For these "frameless" functions the frame pointer is
1964 actually the frame pointer of the calling frame. Signal
1965 trampolines are just a special case of a "frameless" function.
1966 They (usually) share their frame pointer with the frame that was
1967 in progress when the signal occurred. */
1968
1969 get_frame_register (this_frame, I386_EBP_REGNUM, buf);
1970 cache->base = extract_unsigned_integer (buf, 4, byte_order);
1971 if (cache->base == 0)
1972 {
1973 cache->base_p = 1;
1974 return;
1975 }
1976
1977 /* For normal frames, %eip is stored at 4(%ebp). */
1978 cache->saved_regs[I386_EIP_REGNUM] = 4;
1979
1980 if (cache->pc != 0)
1981 i386_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
1982 cache);
1983
1984 if (cache->locals < 0)
1985 {
1986 /* We didn't find a valid frame, which means that CACHE->base
1987 currently holds the frame pointer for our calling frame. If
1988 we're at the start of a function, or somewhere half-way its
1989 prologue, the function's frame probably hasn't been fully
1990 setup yet. Try to reconstruct the base address for the stack
1991 frame by looking at the stack pointer. For truly "frameless"
1992 functions this might work too. */
1993
1994 if (cache->saved_sp_reg != -1)
1995 {
1996 /* Saved stack pointer has been saved. */
1997 get_frame_register (this_frame, cache->saved_sp_reg, buf);
1998 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
1999
2000 /* We're halfway aligning the stack. */
2001 cache->base = ((cache->saved_sp - 4) & 0xfffffff0) - 4;
2002 cache->saved_regs[I386_EIP_REGNUM] = cache->saved_sp - 4;
2003
2004 /* This will be added back below. */
2005 cache->saved_regs[I386_EIP_REGNUM] -= cache->base;
2006 }
2007 else if (cache->pc != 0
2008 || target_read_code (get_frame_pc (this_frame), buf, 1))
2009 {
2010 /* We're in a known function, but did not find a frame
2011 setup. Assume that the function does not use %ebp.
2012 Alternatively, we may have jumped to an invalid
2013 address; in that case there is definitely no new
2014 frame in %ebp. */
2015 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2016 cache->base = extract_unsigned_integer (buf, 4, byte_order)
2017 + cache->sp_offset;
2018 }
2019 else
2020 /* We're in an unknown function. We could not find the start
2021 of the function to analyze the prologue; our best option is
2022 to assume a typical frame layout with the caller's %ebp
2023 saved. */
2024 cache->saved_regs[I386_EBP_REGNUM] = 0;
2025 }
2026
2027 if (cache->saved_sp_reg != -1)
2028 {
2029 /* Saved stack pointer has been saved (but the SAVED_SP_REG
2030 register may be unavailable). */
2031 if (cache->saved_sp == 0
2032 && deprecated_frame_register_read (this_frame,
2033 cache->saved_sp_reg, buf))
2034 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
2035 }
2036 /* Now that we have the base address for the stack frame we can
2037 calculate the value of %esp in the calling frame. */
2038 else if (cache->saved_sp == 0)
2039 cache->saved_sp = cache->base + 8;
2040
2041 /* Adjust all the saved registers such that they contain addresses
2042 instead of offsets. */
2043 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
2044 if (cache->saved_regs[i] != -1)
2045 cache->saved_regs[i] += cache->base;
2046
2047 cache->base_p = 1;
2048 }
2049
2050 static struct i386_frame_cache *
2051 i386_frame_cache (struct frame_info *this_frame, void **this_cache)
2052 {
2053 volatile struct gdb_exception ex;
2054 struct i386_frame_cache *cache;
2055
2056 if (*this_cache)
2057 return *this_cache;
2058
2059 cache = i386_alloc_frame_cache ();
2060 *this_cache = cache;
2061
2062 TRY_CATCH (ex, RETURN_MASK_ERROR)
2063 {
2064 i386_frame_cache_1 (this_frame, cache);
2065 }
2066 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
2067 throw_exception (ex);
2068
2069 return cache;
2070 }
2071
2072 static void
2073 i386_frame_this_id (struct frame_info *this_frame, void **this_cache,
2074 struct frame_id *this_id)
2075 {
2076 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2077
2078 if (!cache->base_p)
2079 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2080 else if (cache->base == 0)
2081 {
2082 /* This marks the outermost frame. */
2083 }
2084 else
2085 {
2086 /* See the end of i386_push_dummy_call. */
2087 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2088 }
2089 }
2090
2091 static enum unwind_stop_reason
2092 i386_frame_unwind_stop_reason (struct frame_info *this_frame,
2093 void **this_cache)
2094 {
2095 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2096
2097 if (!cache->base_p)
2098 return UNWIND_UNAVAILABLE;
2099
2100 /* This marks the outermost frame. */
2101 if (cache->base == 0)
2102 return UNWIND_OUTERMOST;
2103
2104 return UNWIND_NO_REASON;
2105 }
2106
2107 static struct value *
2108 i386_frame_prev_register (struct frame_info *this_frame, void **this_cache,
2109 int regnum)
2110 {
2111 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2112
2113 gdb_assert (regnum >= 0);
2114
2115 /* The System V ABI says that:
2116
2117 "The flags register contains the system flags, such as the
2118 direction flag and the carry flag. The direction flag must be
2119 set to the forward (that is, zero) direction before entry and
2120 upon exit from a function. Other user flags have no specified
2121 role in the standard calling sequence and are not preserved."
2122
2123 To guarantee the "upon exit" part of that statement we fake a
2124 saved flags register that has its direction flag cleared.
2125
2126 Note that GCC doesn't seem to rely on the fact that the direction
2127 flag is cleared after a function return; it always explicitly
2128 clears the flag before operations where it matters.
2129
2130 FIXME: kettenis/20030316: I'm not quite sure whether this is the
2131 right thing to do. The way we fake the flags register here makes
2132 it impossible to change it. */
2133
2134 if (regnum == I386_EFLAGS_REGNUM)
2135 {
2136 ULONGEST val;
2137
2138 val = get_frame_register_unsigned (this_frame, regnum);
2139 val &= ~(1 << 10);
2140 return frame_unwind_got_constant (this_frame, regnum, val);
2141 }
2142
2143 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
2144 return frame_unwind_got_register (this_frame, regnum, I386_EAX_REGNUM);
2145
2146 if (regnum == I386_ESP_REGNUM
2147 && (cache->saved_sp != 0 || cache->saved_sp_reg != -1))
2148 {
2149 /* If the SP has been saved, but we don't know where, then this
2150 means that SAVED_SP_REG register was found unavailable back
2151 when we built the cache. */
2152 if (cache->saved_sp == 0)
2153 return frame_unwind_got_register (this_frame, regnum,
2154 cache->saved_sp_reg);
2155 else
2156 return frame_unwind_got_constant (this_frame, regnum,
2157 cache->saved_sp);
2158 }
2159
2160 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
2161 return frame_unwind_got_memory (this_frame, regnum,
2162 cache->saved_regs[regnum]);
2163
2164 return frame_unwind_got_register (this_frame, regnum, regnum);
2165 }
2166
2167 static const struct frame_unwind i386_frame_unwind =
2168 {
2169 NORMAL_FRAME,
2170 i386_frame_unwind_stop_reason,
2171 i386_frame_this_id,
2172 i386_frame_prev_register,
2173 NULL,
2174 default_frame_sniffer
2175 };
2176
2177 /* Normal frames, but in a function epilogue. */
2178
2179 /* The epilogue is defined here as the 'ret' instruction, which will
2180 follow any instruction such as 'leave' or 'pop %ebp' that destroys
2181 the function's stack frame. */
2182
2183 static int
2184 i386_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2185 {
2186 gdb_byte insn;
2187 struct symtab *symtab;
2188
2189 symtab = find_pc_symtab (pc);
2190 if (symtab && symtab->epilogue_unwind_valid)
2191 return 0;
2192
2193 if (target_read_memory (pc, &insn, 1))
2194 return 0; /* Can't read memory at pc. */
2195
2196 if (insn != 0xc3) /* 'ret' instruction. */
2197 return 0;
2198
2199 return 1;
2200 }
2201
2202 static int
2203 i386_epilogue_frame_sniffer (const struct frame_unwind *self,
2204 struct frame_info *this_frame,
2205 void **this_prologue_cache)
2206 {
2207 if (frame_relative_level (this_frame) == 0)
2208 return i386_in_function_epilogue_p (get_frame_arch (this_frame),
2209 get_frame_pc (this_frame));
2210 else
2211 return 0;
2212 }
2213
2214 static struct i386_frame_cache *
2215 i386_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
2216 {
2217 volatile struct gdb_exception ex;
2218 struct i386_frame_cache *cache;
2219 CORE_ADDR sp;
2220
2221 if (*this_cache)
2222 return *this_cache;
2223
2224 cache = i386_alloc_frame_cache ();
2225 *this_cache = cache;
2226
2227 TRY_CATCH (ex, RETURN_MASK_ERROR)
2228 {
2229 cache->pc = get_frame_func (this_frame);
2230
2231 /* At this point the stack looks as if we just entered the
2232 function, with the return address at the top of the
2233 stack. */
2234 sp = get_frame_register_unsigned (this_frame, I386_ESP_REGNUM);
2235 cache->base = sp + cache->sp_offset;
2236 cache->saved_sp = cache->base + 8;
2237 cache->saved_regs[I386_EIP_REGNUM] = cache->base + 4;
2238
2239 cache->base_p = 1;
2240 }
2241 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
2242 throw_exception (ex);
2243
2244 return cache;
2245 }
2246
2247 static enum unwind_stop_reason
2248 i386_epilogue_frame_unwind_stop_reason (struct frame_info *this_frame,
2249 void **this_cache)
2250 {
2251 struct i386_frame_cache *cache =
2252 i386_epilogue_frame_cache (this_frame, this_cache);
2253
2254 if (!cache->base_p)
2255 return UNWIND_UNAVAILABLE;
2256
2257 return UNWIND_NO_REASON;
2258 }
2259
2260 static void
2261 i386_epilogue_frame_this_id (struct frame_info *this_frame,
2262 void **this_cache,
2263 struct frame_id *this_id)
2264 {
2265 struct i386_frame_cache *cache =
2266 i386_epilogue_frame_cache (this_frame, this_cache);
2267
2268 if (!cache->base_p)
2269 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2270 else
2271 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2272 }
2273
2274 static struct value *
2275 i386_epilogue_frame_prev_register (struct frame_info *this_frame,
2276 void **this_cache, int regnum)
2277 {
2278 /* Make sure we've initialized the cache. */
2279 i386_epilogue_frame_cache (this_frame, this_cache);
2280
2281 return i386_frame_prev_register (this_frame, this_cache, regnum);
2282 }
2283
2284 static const struct frame_unwind i386_epilogue_frame_unwind =
2285 {
2286 NORMAL_FRAME,
2287 i386_epilogue_frame_unwind_stop_reason,
2288 i386_epilogue_frame_this_id,
2289 i386_epilogue_frame_prev_register,
2290 NULL,
2291 i386_epilogue_frame_sniffer
2292 };
2293 \f
2294
2295 /* Stack-based trampolines. */
2296
2297 /* These trampolines are used on cross x86 targets, when taking the
2298 address of a nested function. When executing these trampolines,
2299 no stack frame is set up, so we are in a similar situation as in
2300 epilogues and i386_epilogue_frame_this_id can be re-used. */
2301
2302 /* Static chain passed in register. */
2303
2304 struct i386_insn i386_tramp_chain_in_reg_insns[] =
2305 {
2306 /* `movl imm32, %eax' and `movl imm32, %ecx' */
2307 { 5, { 0xb8 }, { 0xfe } },
2308
2309 /* `jmp imm32' */
2310 { 5, { 0xe9 }, { 0xff } },
2311
2312 {0}
2313 };
2314
2315 /* Static chain passed on stack (when regparm=3). */
2316
2317 struct i386_insn i386_tramp_chain_on_stack_insns[] =
2318 {
2319 /* `push imm32' */
2320 { 5, { 0x68 }, { 0xff } },
2321
2322 /* `jmp imm32' */
2323 { 5, { 0xe9 }, { 0xff } },
2324
2325 {0}
2326 };
2327
2328 /* Return whether PC points inside a stack trampoline. */
2329
2330 static int
2331 i386_in_stack_tramp_p (CORE_ADDR pc)
2332 {
2333 gdb_byte insn;
2334 const char *name;
2335
2336 /* A stack trampoline is detected if no name is associated
2337 to the current pc and if it points inside a trampoline
2338 sequence. */
2339
2340 find_pc_partial_function (pc, &name, NULL, NULL);
2341 if (name)
2342 return 0;
2343
2344 if (target_read_memory (pc, &insn, 1))
2345 return 0;
2346
2347 if (!i386_match_insn_block (pc, i386_tramp_chain_in_reg_insns)
2348 && !i386_match_insn_block (pc, i386_tramp_chain_on_stack_insns))
2349 return 0;
2350
2351 return 1;
2352 }
2353
2354 static int
2355 i386_stack_tramp_frame_sniffer (const struct frame_unwind *self,
2356 struct frame_info *this_frame,
2357 void **this_cache)
2358 {
2359 if (frame_relative_level (this_frame) == 0)
2360 return i386_in_stack_tramp_p (get_frame_pc (this_frame));
2361 else
2362 return 0;
2363 }
2364
2365 static const struct frame_unwind i386_stack_tramp_frame_unwind =
2366 {
2367 NORMAL_FRAME,
2368 i386_epilogue_frame_unwind_stop_reason,
2369 i386_epilogue_frame_this_id,
2370 i386_epilogue_frame_prev_register,
2371 NULL,
2372 i386_stack_tramp_frame_sniffer
2373 };
2374 \f
2375 /* Generate a bytecode expression to get the value of the saved PC. */
2376
2377 static void
2378 i386_gen_return_address (struct gdbarch *gdbarch,
2379 struct agent_expr *ax, struct axs_value *value,
2380 CORE_ADDR scope)
2381 {
2382 /* The following sequence assumes the traditional use of the base
2383 register. */
2384 ax_reg (ax, I386_EBP_REGNUM);
2385 ax_const_l (ax, 4);
2386 ax_simple (ax, aop_add);
2387 value->type = register_type (gdbarch, I386_EIP_REGNUM);
2388 value->kind = axs_lvalue_memory;
2389 }
2390 \f
2391
2392 /* Signal trampolines. */
2393
2394 static struct i386_frame_cache *
2395 i386_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
2396 {
2397 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2398 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2399 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2400 volatile struct gdb_exception ex;
2401 struct i386_frame_cache *cache;
2402 CORE_ADDR addr;
2403 gdb_byte buf[4];
2404
2405 if (*this_cache)
2406 return *this_cache;
2407
2408 cache = i386_alloc_frame_cache ();
2409
2410 TRY_CATCH (ex, RETURN_MASK_ERROR)
2411 {
2412 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2413 cache->base = extract_unsigned_integer (buf, 4, byte_order) - 4;
2414
2415 addr = tdep->sigcontext_addr (this_frame);
2416 if (tdep->sc_reg_offset)
2417 {
2418 int i;
2419
2420 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
2421
2422 for (i = 0; i < tdep->sc_num_regs; i++)
2423 if (tdep->sc_reg_offset[i] != -1)
2424 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
2425 }
2426 else
2427 {
2428 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
2429 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
2430 }
2431
2432 cache->base_p = 1;
2433 }
2434 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
2435 throw_exception (ex);
2436
2437 *this_cache = cache;
2438 return cache;
2439 }
2440
2441 static enum unwind_stop_reason
2442 i386_sigtramp_frame_unwind_stop_reason (struct frame_info *this_frame,
2443 void **this_cache)
2444 {
2445 struct i386_frame_cache *cache =
2446 i386_sigtramp_frame_cache (this_frame, this_cache);
2447
2448 if (!cache->base_p)
2449 return UNWIND_UNAVAILABLE;
2450
2451 return UNWIND_NO_REASON;
2452 }
2453
2454 static void
2455 i386_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache,
2456 struct frame_id *this_id)
2457 {
2458 struct i386_frame_cache *cache =
2459 i386_sigtramp_frame_cache (this_frame, this_cache);
2460
2461 if (!cache->base_p)
2462 (*this_id) = frame_id_build_unavailable_stack (get_frame_pc (this_frame));
2463 else
2464 {
2465 /* See the end of i386_push_dummy_call. */
2466 (*this_id) = frame_id_build (cache->base + 8, get_frame_pc (this_frame));
2467 }
2468 }
2469
2470 static struct value *
2471 i386_sigtramp_frame_prev_register (struct frame_info *this_frame,
2472 void **this_cache, int regnum)
2473 {
2474 /* Make sure we've initialized the cache. */
2475 i386_sigtramp_frame_cache (this_frame, this_cache);
2476
2477 return i386_frame_prev_register (this_frame, this_cache, regnum);
2478 }
2479
2480 static int
2481 i386_sigtramp_frame_sniffer (const struct frame_unwind *self,
2482 struct frame_info *this_frame,
2483 void **this_prologue_cache)
2484 {
2485 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
2486
2487 /* We shouldn't even bother if we don't have a sigcontext_addr
2488 handler. */
2489 if (tdep->sigcontext_addr == NULL)
2490 return 0;
2491
2492 if (tdep->sigtramp_p != NULL)
2493 {
2494 if (tdep->sigtramp_p (this_frame))
2495 return 1;
2496 }
2497
2498 if (tdep->sigtramp_start != 0)
2499 {
2500 CORE_ADDR pc = get_frame_pc (this_frame);
2501
2502 gdb_assert (tdep->sigtramp_end != 0);
2503 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
2504 return 1;
2505 }
2506
2507 return 0;
2508 }
2509
2510 static const struct frame_unwind i386_sigtramp_frame_unwind =
2511 {
2512 SIGTRAMP_FRAME,
2513 i386_sigtramp_frame_unwind_stop_reason,
2514 i386_sigtramp_frame_this_id,
2515 i386_sigtramp_frame_prev_register,
2516 NULL,
2517 i386_sigtramp_frame_sniffer
2518 };
2519 \f
2520
2521 static CORE_ADDR
2522 i386_frame_base_address (struct frame_info *this_frame, void **this_cache)
2523 {
2524 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2525
2526 return cache->base;
2527 }
2528
2529 static const struct frame_base i386_frame_base =
2530 {
2531 &i386_frame_unwind,
2532 i386_frame_base_address,
2533 i386_frame_base_address,
2534 i386_frame_base_address
2535 };
2536
2537 static struct frame_id
2538 i386_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2539 {
2540 CORE_ADDR fp;
2541
2542 fp = get_frame_register_unsigned (this_frame, I386_EBP_REGNUM);
2543
2544 /* See the end of i386_push_dummy_call. */
2545 return frame_id_build (fp + 8, get_frame_pc (this_frame));
2546 }
2547
2548 /* _Decimal128 function return values need 16-byte alignment on the
2549 stack. */
2550
2551 static CORE_ADDR
2552 i386_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2553 {
2554 return sp & -(CORE_ADDR)16;
2555 }
2556 \f
2557
2558 /* Figure out where the longjmp will land. Slurp the args out of the
2559 stack. We expect the first arg to be a pointer to the jmp_buf
2560 structure from which we extract the address that we will land at.
2561 This address is copied into PC. This routine returns non-zero on
2562 success. */
2563
2564 static int
2565 i386_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
2566 {
2567 gdb_byte buf[4];
2568 CORE_ADDR sp, jb_addr;
2569 struct gdbarch *gdbarch = get_frame_arch (frame);
2570 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2571 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
2572
2573 /* If JB_PC_OFFSET is -1, we have no way to find out where the
2574 longjmp will land. */
2575 if (jb_pc_offset == -1)
2576 return 0;
2577
2578 get_frame_register (frame, I386_ESP_REGNUM, buf);
2579 sp = extract_unsigned_integer (buf, 4, byte_order);
2580 if (target_read_memory (sp + 4, buf, 4))
2581 return 0;
2582
2583 jb_addr = extract_unsigned_integer (buf, 4, byte_order);
2584 if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
2585 return 0;
2586
2587 *pc = extract_unsigned_integer (buf, 4, byte_order);
2588 return 1;
2589 }
2590 \f
2591
2592 /* Check whether TYPE must be 16-byte-aligned when passed as a
2593 function argument. 16-byte vectors, _Decimal128 and structures or
2594 unions containing such types must be 16-byte-aligned; other
2595 arguments are 4-byte-aligned. */
2596
2597 static int
2598 i386_16_byte_align_p (struct type *type)
2599 {
2600 type = check_typedef (type);
2601 if ((TYPE_CODE (type) == TYPE_CODE_DECFLOAT
2602 || (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type)))
2603 && TYPE_LENGTH (type) == 16)
2604 return 1;
2605 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2606 return i386_16_byte_align_p (TYPE_TARGET_TYPE (type));
2607 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2608 || TYPE_CODE (type) == TYPE_CODE_UNION)
2609 {
2610 int i;
2611 for (i = 0; i < TYPE_NFIELDS (type); i++)
2612 {
2613 if (i386_16_byte_align_p (TYPE_FIELD_TYPE (type, i)))
2614 return 1;
2615 }
2616 }
2617 return 0;
2618 }
2619
2620 /* Implementation for set_gdbarch_push_dummy_code. */
2621
2622 static CORE_ADDR
2623 i386_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, CORE_ADDR funaddr,
2624 struct value **args, int nargs, struct type *value_type,
2625 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
2626 struct regcache *regcache)
2627 {
2628 /* Use 0xcc breakpoint - 1 byte. */
2629 *bp_addr = sp - 1;
2630 *real_pc = funaddr;
2631
2632 /* Keep the stack aligned. */
2633 return sp - 16;
2634 }
2635
2636 static CORE_ADDR
2637 i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2638 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2639 struct value **args, CORE_ADDR sp, int struct_return,
2640 CORE_ADDR struct_addr)
2641 {
2642 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2643 gdb_byte buf[4];
2644 int i;
2645 int write_pass;
2646 int args_space = 0;
2647
2648 /* Determine the total space required for arguments and struct
2649 return address in a first pass (allowing for 16-byte-aligned
2650 arguments), then push arguments in a second pass. */
2651
2652 for (write_pass = 0; write_pass < 2; write_pass++)
2653 {
2654 int args_space_used = 0;
2655
2656 if (struct_return)
2657 {
2658 if (write_pass)
2659 {
2660 /* Push value address. */
2661 store_unsigned_integer (buf, 4, byte_order, struct_addr);
2662 write_memory (sp, buf, 4);
2663 args_space_used += 4;
2664 }
2665 else
2666 args_space += 4;
2667 }
2668
2669 for (i = 0; i < nargs; i++)
2670 {
2671 int len = TYPE_LENGTH (value_enclosing_type (args[i]));
2672
2673 if (write_pass)
2674 {
2675 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2676 args_space_used = align_up (args_space_used, 16);
2677
2678 write_memory (sp + args_space_used,
2679 value_contents_all (args[i]), len);
2680 /* The System V ABI says that:
2681
2682 "An argument's size is increased, if necessary, to make it a
2683 multiple of [32-bit] words. This may require tail padding,
2684 depending on the size of the argument."
2685
2686 This makes sure the stack stays word-aligned. */
2687 args_space_used += align_up (len, 4);
2688 }
2689 else
2690 {
2691 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2692 args_space = align_up (args_space, 16);
2693 args_space += align_up (len, 4);
2694 }
2695 }
2696
2697 if (!write_pass)
2698 {
2699 sp -= args_space;
2700
2701 /* The original System V ABI only requires word alignment,
2702 but modern incarnations need 16-byte alignment in order
2703 to support SSE. Since wasting a few bytes here isn't
2704 harmful we unconditionally enforce 16-byte alignment. */
2705 sp &= ~0xf;
2706 }
2707 }
2708
2709 /* Store return address. */
2710 sp -= 4;
2711 store_unsigned_integer (buf, 4, byte_order, bp_addr);
2712 write_memory (sp, buf, 4);
2713
2714 /* Finally, update the stack pointer... */
2715 store_unsigned_integer (buf, 4, byte_order, sp);
2716 regcache_cooked_write (regcache, I386_ESP_REGNUM, buf);
2717
2718 /* ...and fake a frame pointer. */
2719 regcache_cooked_write (regcache, I386_EBP_REGNUM, buf);
2720
2721 /* MarkK wrote: This "+ 8" is all over the place:
2722 (i386_frame_this_id, i386_sigtramp_frame_this_id,
2723 i386_dummy_id). It's there, since all frame unwinders for
2724 a given target have to agree (within a certain margin) on the
2725 definition of the stack address of a frame. Otherwise frame id
2726 comparison might not work correctly. Since DWARF2/GCC uses the
2727 stack address *before* the function call as a frame's CFA. On
2728 the i386, when %ebp is used as a frame pointer, the offset
2729 between the contents %ebp and the CFA as defined by GCC. */
2730 return sp + 8;
2731 }
2732
2733 /* These registers are used for returning integers (and on some
2734 targets also for returning `struct' and `union' values when their
2735 size and alignment match an integer type). */
2736 #define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
2737 #define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
2738
2739 /* Read, for architecture GDBARCH, a function return value of TYPE
2740 from REGCACHE, and copy that into VALBUF. */
2741
2742 static void
2743 i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
2744 struct regcache *regcache, gdb_byte *valbuf)
2745 {
2746 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2747 int len = TYPE_LENGTH (type);
2748 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2749
2750 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2751 {
2752 if (tdep->st0_regnum < 0)
2753 {
2754 warning (_("Cannot find floating-point return value."));
2755 memset (valbuf, 0, len);
2756 return;
2757 }
2758
2759 /* Floating-point return values can be found in %st(0). Convert
2760 its contents to the desired type. This is probably not
2761 exactly how it would happen on the target itself, but it is
2762 the best we can do. */
2763 regcache_raw_read (regcache, I386_ST0_REGNUM, buf);
2764 convert_typed_floating (buf, i387_ext_type (gdbarch), valbuf, type);
2765 }
2766 else
2767 {
2768 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2769 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2770
2771 if (len <= low_size)
2772 {
2773 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
2774 memcpy (valbuf, buf, len);
2775 }
2776 else if (len <= (low_size + high_size))
2777 {
2778 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
2779 memcpy (valbuf, buf, low_size);
2780 regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
2781 memcpy (valbuf + low_size, buf, len - low_size);
2782 }
2783 else
2784 internal_error (__FILE__, __LINE__,
2785 _("Cannot extract return value of %d bytes long."),
2786 len);
2787 }
2788 }
2789
2790 /* Write, for architecture GDBARCH, a function return value of TYPE
2791 from VALBUF into REGCACHE. */
2792
2793 static void
2794 i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
2795 struct regcache *regcache, const gdb_byte *valbuf)
2796 {
2797 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2798 int len = TYPE_LENGTH (type);
2799
2800 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2801 {
2802 ULONGEST fstat;
2803 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2804
2805 if (tdep->st0_regnum < 0)
2806 {
2807 warning (_("Cannot set floating-point return value."));
2808 return;
2809 }
2810
2811 /* Returning floating-point values is a bit tricky. Apart from
2812 storing the return value in %st(0), we have to simulate the
2813 state of the FPU at function return point. */
2814
2815 /* Convert the value found in VALBUF to the extended
2816 floating-point format used by the FPU. This is probably
2817 not exactly how it would happen on the target itself, but
2818 it is the best we can do. */
2819 convert_typed_floating (valbuf, type, buf, i387_ext_type (gdbarch));
2820 regcache_raw_write (regcache, I386_ST0_REGNUM, buf);
2821
2822 /* Set the top of the floating-point register stack to 7. The
2823 actual value doesn't really matter, but 7 is what a normal
2824 function return would end up with if the program started out
2825 with a freshly initialized FPU. */
2826 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
2827 fstat |= (7 << 11);
2828 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM (tdep), fstat);
2829
2830 /* Mark %st(1) through %st(7) as empty. Since we set the top of
2831 the floating-point register stack to 7, the appropriate value
2832 for the tag word is 0x3fff. */
2833 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM (tdep), 0x3fff);
2834 }
2835 else
2836 {
2837 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2838 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2839
2840 if (len <= low_size)
2841 regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
2842 else if (len <= (low_size + high_size))
2843 {
2844 regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
2845 regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
2846 len - low_size, valbuf + low_size);
2847 }
2848 else
2849 internal_error (__FILE__, __LINE__,
2850 _("Cannot store return value of %d bytes long."), len);
2851 }
2852 }
2853 \f
2854
2855 /* This is the variable that is set with "set struct-convention", and
2856 its legitimate values. */
2857 static const char default_struct_convention[] = "default";
2858 static const char pcc_struct_convention[] = "pcc";
2859 static const char reg_struct_convention[] = "reg";
2860 static const char *const valid_conventions[] =
2861 {
2862 default_struct_convention,
2863 pcc_struct_convention,
2864 reg_struct_convention,
2865 NULL
2866 };
2867 static const char *struct_convention = default_struct_convention;
2868
2869 /* Return non-zero if TYPE, which is assumed to be a structure,
2870 a union type, or an array type, should be returned in registers
2871 for architecture GDBARCH. */
2872
2873 static int
2874 i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
2875 {
2876 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2877 enum type_code code = TYPE_CODE (type);
2878 int len = TYPE_LENGTH (type);
2879
2880 gdb_assert (code == TYPE_CODE_STRUCT
2881 || code == TYPE_CODE_UNION
2882 || code == TYPE_CODE_ARRAY);
2883
2884 if (struct_convention == pcc_struct_convention
2885 || (struct_convention == default_struct_convention
2886 && tdep->struct_return == pcc_struct_return))
2887 return 0;
2888
2889 /* Structures consisting of a single `float', `double' or 'long
2890 double' member are returned in %st(0). */
2891 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2892 {
2893 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
2894 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2895 return (len == 4 || len == 8 || len == 12);
2896 }
2897
2898 return (len == 1 || len == 2 || len == 4 || len == 8);
2899 }
2900
2901 /* Determine, for architecture GDBARCH, how a return value of TYPE
2902 should be returned. If it is supposed to be returned in registers,
2903 and READBUF is non-zero, read the appropriate value from REGCACHE,
2904 and copy it into READBUF. If WRITEBUF is non-zero, write the value
2905 from WRITEBUF into REGCACHE. */
2906
2907 static enum return_value_convention
2908 i386_return_value (struct gdbarch *gdbarch, struct value *function,
2909 struct type *type, struct regcache *regcache,
2910 gdb_byte *readbuf, const gdb_byte *writebuf)
2911 {
2912 enum type_code code = TYPE_CODE (type);
2913
2914 if (((code == TYPE_CODE_STRUCT
2915 || code == TYPE_CODE_UNION
2916 || code == TYPE_CODE_ARRAY)
2917 && !i386_reg_struct_return_p (gdbarch, type))
2918 /* Complex double and long double uses the struct return covention. */
2919 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 16)
2920 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 24)
2921 /* 128-bit decimal float uses the struct return convention. */
2922 || (code == TYPE_CODE_DECFLOAT && TYPE_LENGTH (type) == 16))
2923 {
2924 /* The System V ABI says that:
2925
2926 "A function that returns a structure or union also sets %eax
2927 to the value of the original address of the caller's area
2928 before it returns. Thus when the caller receives control
2929 again, the address of the returned object resides in register
2930 %eax and can be used to access the object."
2931
2932 So the ABI guarantees that we can always find the return
2933 value just after the function has returned. */
2934
2935 /* Note that the ABI doesn't mention functions returning arrays,
2936 which is something possible in certain languages such as Ada.
2937 In this case, the value is returned as if it was wrapped in
2938 a record, so the convention applied to records also applies
2939 to arrays. */
2940
2941 if (readbuf)
2942 {
2943 ULONGEST addr;
2944
2945 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
2946 read_memory (addr, readbuf, TYPE_LENGTH (type));
2947 }
2948
2949 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
2950 }
2951
2952 /* This special case is for structures consisting of a single
2953 `float', `double' or 'long double' member. These structures are
2954 returned in %st(0). For these structures, we call ourselves
2955 recursively, changing TYPE into the type of the first member of
2956 the structure. Since that should work for all structures that
2957 have only one member, we don't bother to check the member's type
2958 here. */
2959 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2960 {
2961 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
2962 return i386_return_value (gdbarch, function, type, regcache,
2963 readbuf, writebuf);
2964 }
2965
2966 if (readbuf)
2967 i386_extract_return_value (gdbarch, type, regcache, readbuf);
2968 if (writebuf)
2969 i386_store_return_value (gdbarch, type, regcache, writebuf);
2970
2971 return RETURN_VALUE_REGISTER_CONVENTION;
2972 }
2973 \f
2974
2975 struct type *
2976 i387_ext_type (struct gdbarch *gdbarch)
2977 {
2978 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2979
2980 if (!tdep->i387_ext_type)
2981 {
2982 tdep->i387_ext_type = tdesc_find_type (gdbarch, "i387_ext");
2983 gdb_assert (tdep->i387_ext_type != NULL);
2984 }
2985
2986 return tdep->i387_ext_type;
2987 }
2988
2989 /* Construct type for pseudo BND registers. We can't use
2990 tdesc_find_type since a complement of one value has to be used
2991 to describe the upper bound. */
2992
2993 static struct type *
2994 i386_bnd_type (struct gdbarch *gdbarch)
2995 {
2996 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2997
2998
2999 if (!tdep->i386_bnd_type)
3000 {
3001 struct type *t, *bound_t;
3002 const struct builtin_type *bt = builtin_type (gdbarch);
3003
3004 /* The type we're building is described bellow: */
3005 #if 0
3006 struct __bound128
3007 {
3008 void *lbound;
3009 void *ubound; /* One complement of raw ubound field. */
3010 };
3011 #endif
3012
3013 t = arch_composite_type (gdbarch,
3014 "__gdb_builtin_type_bound128", TYPE_CODE_STRUCT);
3015
3016 append_composite_type_field (t, "lbound", bt->builtin_data_ptr);
3017 append_composite_type_field (t, "ubound", bt->builtin_data_ptr);
3018
3019 TYPE_NAME (t) = "builtin_type_bound128";
3020 tdep->i386_bnd_type = t;
3021 }
3022
3023 return tdep->i386_bnd_type;
3024 }
3025
3026 /* Construct vector type for pseudo ZMM registers. We can't use
3027 tdesc_find_type since ZMM isn't described in target description. */
3028
3029 static struct type *
3030 i386_zmm_type (struct gdbarch *gdbarch)
3031 {
3032 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3033
3034 if (!tdep->i386_zmm_type)
3035 {
3036 const struct builtin_type *bt = builtin_type (gdbarch);
3037
3038 /* The type we're building is this: */
3039 #if 0
3040 union __gdb_builtin_type_vec512i
3041 {
3042 int128_t uint128[4];
3043 int64_t v4_int64[8];
3044 int32_t v8_int32[16];
3045 int16_t v16_int16[32];
3046 int8_t v32_int8[64];
3047 double v4_double[8];
3048 float v8_float[16];
3049 };
3050 #endif
3051
3052 struct type *t;
3053
3054 t = arch_composite_type (gdbarch,
3055 "__gdb_builtin_type_vec512i", TYPE_CODE_UNION);
3056 append_composite_type_field (t, "v16_float",
3057 init_vector_type (bt->builtin_float, 16));
3058 append_composite_type_field (t, "v8_double",
3059 init_vector_type (bt->builtin_double, 8));
3060 append_composite_type_field (t, "v64_int8",
3061 init_vector_type (bt->builtin_int8, 64));
3062 append_composite_type_field (t, "v32_int16",
3063 init_vector_type (bt->builtin_int16, 32));
3064 append_composite_type_field (t, "v16_int32",
3065 init_vector_type (bt->builtin_int32, 16));
3066 append_composite_type_field (t, "v8_int64",
3067 init_vector_type (bt->builtin_int64, 8));
3068 append_composite_type_field (t, "v4_int128",
3069 init_vector_type (bt->builtin_int128, 4));
3070
3071 TYPE_VECTOR (t) = 1;
3072 TYPE_NAME (t) = "builtin_type_vec512i";
3073 tdep->i386_zmm_type = t;
3074 }
3075
3076 return tdep->i386_zmm_type;
3077 }
3078
3079 /* Construct vector type for pseudo YMM registers. We can't use
3080 tdesc_find_type since YMM isn't described in target description. */
3081
3082 static struct type *
3083 i386_ymm_type (struct gdbarch *gdbarch)
3084 {
3085 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3086
3087 if (!tdep->i386_ymm_type)
3088 {
3089 const struct builtin_type *bt = builtin_type (gdbarch);
3090
3091 /* The type we're building is this: */
3092 #if 0
3093 union __gdb_builtin_type_vec256i
3094 {
3095 int128_t uint128[2];
3096 int64_t v2_int64[4];
3097 int32_t v4_int32[8];
3098 int16_t v8_int16[16];
3099 int8_t v16_int8[32];
3100 double v2_double[4];
3101 float v4_float[8];
3102 };
3103 #endif
3104
3105 struct type *t;
3106
3107 t = arch_composite_type (gdbarch,
3108 "__gdb_builtin_type_vec256i", TYPE_CODE_UNION);
3109 append_composite_type_field (t, "v8_float",
3110 init_vector_type (bt->builtin_float, 8));
3111 append_composite_type_field (t, "v4_double",
3112 init_vector_type (bt->builtin_double, 4));
3113 append_composite_type_field (t, "v32_int8",
3114 init_vector_type (bt->builtin_int8, 32));
3115 append_composite_type_field (t, "v16_int16",
3116 init_vector_type (bt->builtin_int16, 16));
3117 append_composite_type_field (t, "v8_int32",
3118 init_vector_type (bt->builtin_int32, 8));
3119 append_composite_type_field (t, "v4_int64",
3120 init_vector_type (bt->builtin_int64, 4));
3121 append_composite_type_field (t, "v2_int128",
3122 init_vector_type (bt->builtin_int128, 2));
3123
3124 TYPE_VECTOR (t) = 1;
3125 TYPE_NAME (t) = "builtin_type_vec256i";
3126 tdep->i386_ymm_type = t;
3127 }
3128
3129 return tdep->i386_ymm_type;
3130 }
3131
3132 /* Construct vector type for MMX registers. */
3133 static struct type *
3134 i386_mmx_type (struct gdbarch *gdbarch)
3135 {
3136 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3137
3138 if (!tdep->i386_mmx_type)
3139 {
3140 const struct builtin_type *bt = builtin_type (gdbarch);
3141
3142 /* The type we're building is this: */
3143 #if 0
3144 union __gdb_builtin_type_vec64i
3145 {
3146 int64_t uint64;
3147 int32_t v2_int32[2];
3148 int16_t v4_int16[4];
3149 int8_t v8_int8[8];
3150 };
3151 #endif
3152
3153 struct type *t;
3154
3155 t = arch_composite_type (gdbarch,
3156 "__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
3157
3158 append_composite_type_field (t, "uint64", bt->builtin_int64);
3159 append_composite_type_field (t, "v2_int32",
3160 init_vector_type (bt->builtin_int32, 2));
3161 append_composite_type_field (t, "v4_int16",
3162 init_vector_type (bt->builtin_int16, 4));
3163 append_composite_type_field (t, "v8_int8",
3164 init_vector_type (bt->builtin_int8, 8));
3165
3166 TYPE_VECTOR (t) = 1;
3167 TYPE_NAME (t) = "builtin_type_vec64i";
3168 tdep->i386_mmx_type = t;
3169 }
3170
3171 return tdep->i386_mmx_type;
3172 }
3173
3174 /* Return the GDB type object for the "standard" data type of data in
3175 register REGNUM. */
3176
3177 struct type *
3178 i386_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
3179 {
3180 if (i386_bnd_regnum_p (gdbarch, regnum))
3181 return i386_bnd_type (gdbarch);
3182 if (i386_mmx_regnum_p (gdbarch, regnum))
3183 return i386_mmx_type (gdbarch);
3184 else if (i386_ymm_regnum_p (gdbarch, regnum))
3185 return i386_ymm_type (gdbarch);
3186 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3187 return i386_ymm_type (gdbarch);
3188 else if (i386_zmm_regnum_p (gdbarch, regnum))
3189 return i386_zmm_type (gdbarch);
3190 else
3191 {
3192 const struct builtin_type *bt = builtin_type (gdbarch);
3193 if (i386_byte_regnum_p (gdbarch, regnum))
3194 return bt->builtin_int8;
3195 else if (i386_word_regnum_p (gdbarch, regnum))
3196 return bt->builtin_int16;
3197 else if (i386_dword_regnum_p (gdbarch, regnum))
3198 return bt->builtin_int32;
3199 else if (i386_k_regnum_p (gdbarch, regnum))
3200 return bt->builtin_int64;
3201 }
3202
3203 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3204 }
3205
3206 /* Map a cooked register onto a raw register or memory. For the i386,
3207 the MMX registers need to be mapped onto floating point registers. */
3208
3209 static int
3210 i386_mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
3211 {
3212 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
3213 int mmxreg, fpreg;
3214 ULONGEST fstat;
3215 int tos;
3216
3217 mmxreg = regnum - tdep->mm0_regnum;
3218 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
3219 tos = (fstat >> 11) & 0x7;
3220 fpreg = (mmxreg + tos) % 8;
3221
3222 return (I387_ST0_REGNUM (tdep) + fpreg);
3223 }
3224
3225 /* A helper function for us by i386_pseudo_register_read_value and
3226 amd64_pseudo_register_read_value. It does all the work but reads
3227 the data into an already-allocated value. */
3228
3229 void
3230 i386_pseudo_register_read_into_value (struct gdbarch *gdbarch,
3231 struct regcache *regcache,
3232 int regnum,
3233 struct value *result_value)
3234 {
3235 gdb_byte raw_buf[MAX_REGISTER_SIZE];
3236 enum register_status status;
3237 gdb_byte *buf = value_contents_raw (result_value);
3238
3239 if (i386_mmx_regnum_p (gdbarch, regnum))
3240 {
3241 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3242
3243 /* Extract (always little endian). */
3244 status = regcache_raw_read (regcache, fpnum, raw_buf);
3245 if (status != REG_VALID)
3246 mark_value_bytes_unavailable (result_value, 0,
3247 TYPE_LENGTH (value_type (result_value)));
3248 else
3249 memcpy (buf, raw_buf, register_size (gdbarch, regnum));
3250 }
3251 else
3252 {
3253 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3254 if (i386_bnd_regnum_p (gdbarch, regnum))
3255 {
3256 regnum -= tdep->bnd0_regnum;
3257
3258 /* Extract (always little endian). Read lower 128bits. */
3259 status = regcache_raw_read (regcache,
3260 I387_BND0R_REGNUM (tdep) + regnum,
3261 raw_buf);
3262 if (status != REG_VALID)
3263 mark_value_bytes_unavailable (result_value, 0, 16);
3264 else
3265 {
3266 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3267 LONGEST upper, lower;
3268 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
3269
3270 lower = extract_unsigned_integer (raw_buf, 8, byte_order);
3271 upper = extract_unsigned_integer (raw_buf + 8, 8, byte_order);
3272 upper = ~upper;
3273
3274 memcpy (buf, &lower, size);
3275 memcpy (buf + size, &upper, size);
3276 }
3277 }
3278 else if (i386_k_regnum_p (gdbarch, regnum))
3279 {
3280 regnum -= tdep->k0_regnum;
3281
3282 /* Extract (always little endian). */
3283 status = regcache_raw_read (regcache,
3284 tdep->k0_regnum + regnum,
3285 raw_buf);
3286 if (status != REG_VALID)
3287 mark_value_bytes_unavailable (result_value, 0, 8);
3288 else
3289 memcpy (buf, raw_buf, 8);
3290 }
3291 else if (i386_zmm_regnum_p (gdbarch, regnum))
3292 {
3293 regnum -= tdep->zmm0_regnum;
3294
3295 if (regnum < num_lower_zmm_regs)
3296 {
3297 /* Extract (always little endian). Read lower 128bits. */
3298 status = regcache_raw_read (regcache,
3299 I387_XMM0_REGNUM (tdep) + regnum,
3300 raw_buf);
3301 if (status != REG_VALID)
3302 mark_value_bytes_unavailable (result_value, 0, 16);
3303 else
3304 memcpy (buf, raw_buf, 16);
3305
3306 /* Extract (always little endian). Read upper 128bits. */
3307 status = regcache_raw_read (regcache,
3308 tdep->ymm0h_regnum + regnum,
3309 raw_buf);
3310 if (status != REG_VALID)
3311 mark_value_bytes_unavailable (result_value, 16, 16);
3312 else
3313 memcpy (buf + 16, raw_buf, 16);
3314 }
3315 else
3316 {
3317 /* Extract (always little endian). Read lower 128bits. */
3318 status = regcache_raw_read (regcache,
3319 I387_XMM16_REGNUM (tdep) + regnum
3320 - num_lower_zmm_regs,
3321 raw_buf);
3322 if (status != REG_VALID)
3323 mark_value_bytes_unavailable (result_value, 0, 16);
3324 else
3325 memcpy (buf, raw_buf, 16);
3326
3327 /* Extract (always little endian). Read upper 128bits. */
3328 status = regcache_raw_read (regcache,
3329 I387_YMM16H_REGNUM (tdep) + regnum
3330 - num_lower_zmm_regs,
3331 raw_buf);
3332 if (status != REG_VALID)
3333 mark_value_bytes_unavailable (result_value, 16, 16);
3334 else
3335 memcpy (buf + 16, raw_buf, 16);
3336 }
3337
3338 /* Read upper 256bits. */
3339 status = regcache_raw_read (regcache,
3340 tdep->zmm0h_regnum + regnum,
3341 raw_buf);
3342 if (status != REG_VALID)
3343 mark_value_bytes_unavailable (result_value, 32, 32);
3344 else
3345 memcpy (buf + 32, raw_buf, 32);
3346 }
3347 else if (i386_ymm_regnum_p (gdbarch, regnum))
3348 {
3349 regnum -= tdep->ymm0_regnum;
3350
3351 /* Extract (always little endian). Read lower 128bits. */
3352 status = regcache_raw_read (regcache,
3353 I387_XMM0_REGNUM (tdep) + regnum,
3354 raw_buf);
3355 if (status != REG_VALID)
3356 mark_value_bytes_unavailable (result_value, 0, 16);
3357 else
3358 memcpy (buf, raw_buf, 16);
3359 /* Read upper 128bits. */
3360 status = regcache_raw_read (regcache,
3361 tdep->ymm0h_regnum + regnum,
3362 raw_buf);
3363 if (status != REG_VALID)
3364 mark_value_bytes_unavailable (result_value, 16, 32);
3365 else
3366 memcpy (buf + 16, raw_buf, 16);
3367 }
3368 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3369 {
3370 regnum -= tdep->ymm16_regnum;
3371 /* Extract (always little endian). Read lower 128bits. */
3372 status = regcache_raw_read (regcache,
3373 I387_XMM16_REGNUM (tdep) + regnum,
3374 raw_buf);
3375 if (status != REG_VALID)
3376 mark_value_bytes_unavailable (result_value, 0, 16);
3377 else
3378 memcpy (buf, raw_buf, 16);
3379 /* Read upper 128bits. */
3380 status = regcache_raw_read (regcache,
3381 tdep->ymm16h_regnum + regnum,
3382 raw_buf);
3383 if (status != REG_VALID)
3384 mark_value_bytes_unavailable (result_value, 16, 16);
3385 else
3386 memcpy (buf + 16, raw_buf, 16);
3387 }
3388 else if (i386_word_regnum_p (gdbarch, regnum))
3389 {
3390 int gpnum = regnum - tdep->ax_regnum;
3391
3392 /* Extract (always little endian). */
3393 status = regcache_raw_read (regcache, gpnum, raw_buf);
3394 if (status != REG_VALID)
3395 mark_value_bytes_unavailable (result_value, 0,
3396 TYPE_LENGTH (value_type (result_value)));
3397 else
3398 memcpy (buf, raw_buf, 2);
3399 }
3400 else if (i386_byte_regnum_p (gdbarch, regnum))
3401 {
3402 /* Check byte pseudo registers last since this function will
3403 be called from amd64_pseudo_register_read, which handles
3404 byte pseudo registers differently. */
3405 int gpnum = regnum - tdep->al_regnum;
3406
3407 /* Extract (always little endian). We read both lower and
3408 upper registers. */
3409 status = regcache_raw_read (regcache, gpnum % 4, raw_buf);
3410 if (status != REG_VALID)
3411 mark_value_bytes_unavailable (result_value, 0,
3412 TYPE_LENGTH (value_type (result_value)));
3413 else if (gpnum >= 4)
3414 memcpy (buf, raw_buf + 1, 1);
3415 else
3416 memcpy (buf, raw_buf, 1);
3417 }
3418 else
3419 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3420 }
3421 }
3422
3423 static struct value *
3424 i386_pseudo_register_read_value (struct gdbarch *gdbarch,
3425 struct regcache *regcache,
3426 int regnum)
3427 {
3428 struct value *result;
3429
3430 result = allocate_value (register_type (gdbarch, regnum));
3431 VALUE_LVAL (result) = lval_register;
3432 VALUE_REGNUM (result) = regnum;
3433
3434 i386_pseudo_register_read_into_value (gdbarch, regcache, regnum, result);
3435
3436 return result;
3437 }
3438
3439 void
3440 i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
3441 int regnum, const gdb_byte *buf)
3442 {
3443 gdb_byte raw_buf[MAX_REGISTER_SIZE];
3444
3445 if (i386_mmx_regnum_p (gdbarch, regnum))
3446 {
3447 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3448
3449 /* Read ... */
3450 regcache_raw_read (regcache, fpnum, raw_buf);
3451 /* ... Modify ... (always little endian). */
3452 memcpy (raw_buf, buf, register_size (gdbarch, regnum));
3453 /* ... Write. */
3454 regcache_raw_write (regcache, fpnum, raw_buf);
3455 }
3456 else
3457 {
3458 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3459
3460 if (i386_bnd_regnum_p (gdbarch, regnum))
3461 {
3462 ULONGEST upper, lower;
3463 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
3464 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3465
3466 /* New values from input value. */
3467 regnum -= tdep->bnd0_regnum;
3468 lower = extract_unsigned_integer (buf, size, byte_order);
3469 upper = extract_unsigned_integer (buf + size, size, byte_order);
3470
3471 /* Fetching register buffer. */
3472 regcache_raw_read (regcache,
3473 I387_BND0R_REGNUM (tdep) + regnum,
3474 raw_buf);
3475
3476 upper = ~upper;
3477
3478 /* Set register bits. */
3479 memcpy (raw_buf, &lower, 8);
3480 memcpy (raw_buf + 8, &upper, 8);
3481
3482
3483 regcache_raw_write (regcache,
3484 I387_BND0R_REGNUM (tdep) + regnum,
3485 raw_buf);
3486 }
3487 else if (i386_k_regnum_p (gdbarch, regnum))
3488 {
3489 regnum -= tdep->k0_regnum;
3490
3491 regcache_raw_write (regcache,
3492 tdep->k0_regnum + regnum,
3493 buf);
3494 }
3495 else if (i386_zmm_regnum_p (gdbarch, regnum))
3496 {
3497 regnum -= tdep->zmm0_regnum;
3498
3499 if (regnum < num_lower_zmm_regs)
3500 {
3501 /* Write lower 128bits. */
3502 regcache_raw_write (regcache,
3503 I387_XMM0_REGNUM (tdep) + regnum,
3504 buf);
3505 /* Write upper 128bits. */
3506 regcache_raw_write (regcache,
3507 I387_YMM0_REGNUM (tdep) + regnum,
3508 buf + 16);
3509 }
3510 else
3511 {
3512 /* Write lower 128bits. */
3513 regcache_raw_write (regcache,
3514 I387_XMM16_REGNUM (tdep) + regnum
3515 - num_lower_zmm_regs,
3516 buf);
3517 /* Write upper 128bits. */
3518 regcache_raw_write (regcache,
3519 I387_YMM16H_REGNUM (tdep) + regnum
3520 - num_lower_zmm_regs,
3521 buf + 16);
3522 }
3523 /* Write upper 256bits. */
3524 regcache_raw_write (regcache,
3525 tdep->zmm0h_regnum + regnum,
3526 buf + 32);
3527 }
3528 else if (i386_ymm_regnum_p (gdbarch, regnum))
3529 {
3530 regnum -= tdep->ymm0_regnum;
3531
3532 /* ... Write lower 128bits. */
3533 regcache_raw_write (regcache,
3534 I387_XMM0_REGNUM (tdep) + regnum,
3535 buf);
3536 /* ... Write upper 128bits. */
3537 regcache_raw_write (regcache,
3538 tdep->ymm0h_regnum + regnum,
3539 buf + 16);
3540 }
3541 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3542 {
3543 regnum -= tdep->ymm16_regnum;
3544
3545 /* ... Write lower 128bits. */
3546 regcache_raw_write (regcache,
3547 I387_XMM16_REGNUM (tdep) + regnum,
3548 buf);
3549 /* ... Write upper 128bits. */
3550 regcache_raw_write (regcache,
3551 tdep->ymm16h_regnum + regnum,
3552 buf + 16);
3553 }
3554 else if (i386_word_regnum_p (gdbarch, regnum))
3555 {
3556 int gpnum = regnum - tdep->ax_regnum;
3557
3558 /* Read ... */
3559 regcache_raw_read (regcache, gpnum, raw_buf);
3560 /* ... Modify ... (always little endian). */
3561 memcpy (raw_buf, buf, 2);
3562 /* ... Write. */
3563 regcache_raw_write (regcache, gpnum, raw_buf);
3564 }
3565 else if (i386_byte_regnum_p (gdbarch, regnum))
3566 {
3567 /* Check byte pseudo registers last since this function will
3568 be called from amd64_pseudo_register_read, which handles
3569 byte pseudo registers differently. */
3570 int gpnum = regnum - tdep->al_regnum;
3571
3572 /* Read ... We read both lower and upper registers. */
3573 regcache_raw_read (regcache, gpnum % 4, raw_buf);
3574 /* ... Modify ... (always little endian). */
3575 if (gpnum >= 4)
3576 memcpy (raw_buf + 1, buf, 1);
3577 else
3578 memcpy (raw_buf, buf, 1);
3579 /* ... Write. */
3580 regcache_raw_write (regcache, gpnum % 4, raw_buf);
3581 }
3582 else
3583 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3584 }
3585 }
3586 \f
3587
3588 /* Return the register number of the register allocated by GCC after
3589 REGNUM, or -1 if there is no such register. */
3590
3591 static int
3592 i386_next_regnum (int regnum)
3593 {
3594 /* GCC allocates the registers in the order:
3595
3596 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
3597
3598 Since storing a variable in %esp doesn't make any sense we return
3599 -1 for %ebp and for %esp itself. */
3600 static int next_regnum[] =
3601 {
3602 I386_EDX_REGNUM, /* Slot for %eax. */
3603 I386_EBX_REGNUM, /* Slot for %ecx. */
3604 I386_ECX_REGNUM, /* Slot for %edx. */
3605 I386_ESI_REGNUM, /* Slot for %ebx. */
3606 -1, -1, /* Slots for %esp and %ebp. */
3607 I386_EDI_REGNUM, /* Slot for %esi. */
3608 I386_EBP_REGNUM /* Slot for %edi. */
3609 };
3610
3611 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
3612 return next_regnum[regnum];
3613
3614 return -1;
3615 }
3616
3617 /* Return nonzero if a value of type TYPE stored in register REGNUM
3618 needs any special handling. */
3619
3620 static int
3621 i386_convert_register_p (struct gdbarch *gdbarch,
3622 int regnum, struct type *type)
3623 {
3624 int len = TYPE_LENGTH (type);
3625
3626 /* Values may be spread across multiple registers. Most debugging
3627 formats aren't expressive enough to specify the locations, so
3628 some heuristics is involved. Right now we only handle types that
3629 have a length that is a multiple of the word size, since GCC
3630 doesn't seem to put any other types into registers. */
3631 if (len > 4 && len % 4 == 0)
3632 {
3633 int last_regnum = regnum;
3634
3635 while (len > 4)
3636 {
3637 last_regnum = i386_next_regnum (last_regnum);
3638 len -= 4;
3639 }
3640
3641 if (last_regnum != -1)
3642 return 1;
3643 }
3644
3645 return i387_convert_register_p (gdbarch, regnum, type);
3646 }
3647
3648 /* Read a value of type TYPE from register REGNUM in frame FRAME, and
3649 return its contents in TO. */
3650
3651 static int
3652 i386_register_to_value (struct frame_info *frame, int regnum,
3653 struct type *type, gdb_byte *to,
3654 int *optimizedp, int *unavailablep)
3655 {
3656 struct gdbarch *gdbarch = get_frame_arch (frame);
3657 int len = TYPE_LENGTH (type);
3658
3659 if (i386_fp_regnum_p (gdbarch, regnum))
3660 return i387_register_to_value (frame, regnum, type, to,
3661 optimizedp, unavailablep);
3662
3663 /* Read a value spread across multiple registers. */
3664
3665 gdb_assert (len > 4 && len % 4 == 0);
3666
3667 while (len > 0)
3668 {
3669 gdb_assert (regnum != -1);
3670 gdb_assert (register_size (gdbarch, regnum) == 4);
3671
3672 if (!get_frame_register_bytes (frame, regnum, 0,
3673 register_size (gdbarch, regnum),
3674 to, optimizedp, unavailablep))
3675 return 0;
3676
3677 regnum = i386_next_regnum (regnum);
3678 len -= 4;
3679 to += 4;
3680 }
3681
3682 *optimizedp = *unavailablep = 0;
3683 return 1;
3684 }
3685
3686 /* Write the contents FROM of a value of type TYPE into register
3687 REGNUM in frame FRAME. */
3688
3689 static void
3690 i386_value_to_register (struct frame_info *frame, int regnum,
3691 struct type *type, const gdb_byte *from)
3692 {
3693 int len = TYPE_LENGTH (type);
3694
3695 if (i386_fp_regnum_p (get_frame_arch (frame), regnum))
3696 {
3697 i387_value_to_register (frame, regnum, type, from);
3698 return;
3699 }
3700
3701 /* Write a value spread across multiple registers. */
3702
3703 gdb_assert (len > 4 && len % 4 == 0);
3704
3705 while (len > 0)
3706 {
3707 gdb_assert (regnum != -1);
3708 gdb_assert (register_size (get_frame_arch (frame), regnum) == 4);
3709
3710 put_frame_register (frame, regnum, from);
3711 regnum = i386_next_regnum (regnum);
3712 len -= 4;
3713 from += 4;
3714 }
3715 }
3716 \f
3717 /* Supply register REGNUM from the buffer specified by GREGS and LEN
3718 in the general-purpose register set REGSET to register cache
3719 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3720
3721 void
3722 i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
3723 int regnum, const void *gregs, size_t len)
3724 {
3725 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3726 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3727 const gdb_byte *regs = gregs;
3728 int i;
3729
3730 gdb_assert (len == tdep->sizeof_gregset);
3731
3732 for (i = 0; i < tdep->gregset_num_regs; i++)
3733 {
3734 if ((regnum == i || regnum == -1)
3735 && tdep->gregset_reg_offset[i] != -1)
3736 regcache_raw_supply (regcache, i, regs + tdep->gregset_reg_offset[i]);
3737 }
3738 }
3739
3740 /* Collect register REGNUM from the register cache REGCACHE and store
3741 it in the buffer specified by GREGS and LEN as described by the
3742 general-purpose register set REGSET. If REGNUM is -1, do this for
3743 all registers in REGSET. */
3744
3745 static void
3746 i386_collect_gregset (const struct regset *regset,
3747 const struct regcache *regcache,
3748 int regnum, void *gregs, size_t len)
3749 {
3750 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3751 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3752 gdb_byte *regs = gregs;
3753 int i;
3754
3755 gdb_assert (len == tdep->sizeof_gregset);
3756
3757 for (i = 0; i < tdep->gregset_num_regs; i++)
3758 {
3759 if ((regnum == i || regnum == -1)
3760 && tdep->gregset_reg_offset[i] != -1)
3761 regcache_raw_collect (regcache, i, regs + tdep->gregset_reg_offset[i]);
3762 }
3763 }
3764
3765 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
3766 in the floating-point register set REGSET to register cache
3767 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3768
3769 static void
3770 i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
3771 int regnum, const void *fpregs, size_t len)
3772 {
3773 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3774 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3775
3776 if (len == I387_SIZEOF_FXSAVE)
3777 {
3778 i387_supply_fxsave (regcache, regnum, fpregs);
3779 return;
3780 }
3781
3782 gdb_assert (len == tdep->sizeof_fpregset);
3783 i387_supply_fsave (regcache, regnum, fpregs);
3784 }
3785
3786 /* Collect register REGNUM from the register cache REGCACHE and store
3787 it in the buffer specified by FPREGS and LEN as described by the
3788 floating-point register set REGSET. If REGNUM is -1, do this for
3789 all registers in REGSET. */
3790
3791 static void
3792 i386_collect_fpregset (const struct regset *regset,
3793 const struct regcache *regcache,
3794 int regnum, void *fpregs, size_t len)
3795 {
3796 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3797 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3798
3799 if (len == I387_SIZEOF_FXSAVE)
3800 {
3801 i387_collect_fxsave (regcache, regnum, fpregs);
3802 return;
3803 }
3804
3805 gdb_assert (len == tdep->sizeof_fpregset);
3806 i387_collect_fsave (regcache, regnum, fpregs);
3807 }
3808
3809 /* Similar to i386_supply_fpregset, but use XSAVE extended state. */
3810
3811 static void
3812 i386_supply_xstateregset (const struct regset *regset,
3813 struct regcache *regcache, int regnum,
3814 const void *xstateregs, size_t len)
3815 {
3816 i387_supply_xsave (regcache, regnum, xstateregs);
3817 }
3818
3819 /* Similar to i386_collect_fpregset , but use XSAVE extended state. */
3820
3821 static void
3822 i386_collect_xstateregset (const struct regset *regset,
3823 const struct regcache *regcache,
3824 int regnum, void *xstateregs, size_t len)
3825 {
3826 i387_collect_xsave (regcache, regnum, xstateregs, 1);
3827 }
3828
3829 /* Register set definitions. */
3830
3831 const struct regset i386_gregset =
3832 {
3833 NULL, i386_supply_gregset, i386_collect_gregset
3834 };
3835
3836 static const struct regset i386_fpregset =
3837 {
3838 NULL, i386_supply_fpregset, i386_collect_fpregset
3839 };
3840
3841 static const struct regset i386_xstateregset =
3842 {
3843 NULL, i386_supply_xstateregset, i386_collect_xstateregset
3844 };
3845
3846 /* Return the appropriate register set for the core section identified
3847 by SECT_NAME and SECT_SIZE. */
3848
3849 const struct regset *
3850 i386_regset_from_core_section (struct gdbarch *gdbarch,
3851 const char *sect_name, size_t sect_size)
3852 {
3853 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3854
3855 if (strcmp (sect_name, ".reg") == 0 && sect_size == tdep->sizeof_gregset)
3856 return &i386_gregset;
3857
3858 if ((strcmp (sect_name, ".reg2") == 0 && sect_size == tdep->sizeof_fpregset)
3859 || (strcmp (sect_name, ".reg-xfp") == 0
3860 && sect_size == I387_SIZEOF_FXSAVE))
3861 return &i386_fpregset;
3862
3863 if (strcmp (sect_name, ".reg-xstate") == 0)
3864 return &i386_xstateregset;
3865
3866 return NULL;
3867 }
3868 \f
3869
3870 /* Stuff for WIN32 PE style DLL's but is pretty generic really. */
3871
3872 CORE_ADDR
3873 i386_pe_skip_trampoline_code (struct frame_info *frame,
3874 CORE_ADDR pc, char *name)
3875 {
3876 struct gdbarch *gdbarch = get_frame_arch (frame);
3877 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3878
3879 /* jmp *(dest) */
3880 if (pc && read_memory_unsigned_integer (pc, 2, byte_order) == 0x25ff)
3881 {
3882 unsigned long indirect =
3883 read_memory_unsigned_integer (pc + 2, 4, byte_order);
3884 struct minimal_symbol *indsym =
3885 indirect ? lookup_minimal_symbol_by_pc (indirect).minsym : 0;
3886 const char *symname = indsym ? MSYMBOL_LINKAGE_NAME (indsym) : 0;
3887
3888 if (symname)
3889 {
3890 if (strncmp (symname, "__imp_", 6) == 0
3891 || strncmp (symname, "_imp_", 5) == 0)
3892 return name ? 1 :
3893 read_memory_unsigned_integer (indirect, 4, byte_order);
3894 }
3895 }
3896 return 0; /* Not a trampoline. */
3897 }
3898 \f
3899
3900 /* Return whether the THIS_FRAME corresponds to a sigtramp
3901 routine. */
3902
3903 int
3904 i386_sigtramp_p (struct frame_info *this_frame)
3905 {
3906 CORE_ADDR pc = get_frame_pc (this_frame);
3907 const char *name;
3908
3909 find_pc_partial_function (pc, &name, NULL, NULL);
3910 return (name && strcmp ("_sigtramp", name) == 0);
3911 }
3912 \f
3913
3914 /* We have two flavours of disassembly. The machinery on this page
3915 deals with switching between those. */
3916
3917 static int
3918 i386_print_insn (bfd_vma pc, struct disassemble_info *info)
3919 {
3920 gdb_assert (disassembly_flavor == att_flavor
3921 || disassembly_flavor == intel_flavor);
3922
3923 /* FIXME: kettenis/20020915: Until disassembler_options is properly
3924 constified, cast to prevent a compiler warning. */
3925 info->disassembler_options = (char *) disassembly_flavor;
3926
3927 return print_insn_i386 (pc, info);
3928 }
3929 \f
3930
3931 /* There are a few i386 architecture variants that differ only
3932 slightly from the generic i386 target. For now, we don't give them
3933 their own source file, but include them here. As a consequence,
3934 they'll always be included. */
3935
3936 /* System V Release 4 (SVR4). */
3937
3938 /* Return whether THIS_FRAME corresponds to a SVR4 sigtramp
3939 routine. */
3940
3941 static int
3942 i386_svr4_sigtramp_p (struct frame_info *this_frame)
3943 {
3944 CORE_ADDR pc = get_frame_pc (this_frame);
3945 const char *name;
3946
3947 /* The origin of these symbols is currently unknown. */
3948 find_pc_partial_function (pc, &name, NULL, NULL);
3949 return (name && (strcmp ("_sigreturn", name) == 0
3950 || strcmp ("sigvechandler", name) == 0));
3951 }
3952
3953 /* Assuming THIS_FRAME is for a SVR4 sigtramp routine, return the
3954 address of the associated sigcontext (ucontext) structure. */
3955
3956 static CORE_ADDR
3957 i386_svr4_sigcontext_addr (struct frame_info *this_frame)
3958 {
3959 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3960 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3961 gdb_byte buf[4];
3962 CORE_ADDR sp;
3963
3964 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
3965 sp = extract_unsigned_integer (buf, 4, byte_order);
3966
3967 return read_memory_unsigned_integer (sp + 8, 4, byte_order);
3968 }
3969
3970 \f
3971
3972 /* Implementation of `gdbarch_stap_is_single_operand', as defined in
3973 gdbarch.h. */
3974
3975 int
3976 i386_stap_is_single_operand (struct gdbarch *gdbarch, const char *s)
3977 {
3978 return (*s == '$' /* Literal number. */
3979 || (isdigit (*s) && s[1] == '(' && s[2] == '%') /* Displacement. */
3980 || (*s == '(' && s[1] == '%') /* Register indirection. */
3981 || (*s == '%' && isalpha (s[1]))); /* Register access. */
3982 }
3983
3984 /* Helper function for i386_stap_parse_special_token.
3985
3986 This function parses operands of the form `-8+3+1(%rbp)', which
3987 must be interpreted as `*(-8 + 3 - 1 + (void *) $eax)'.
3988
3989 Return 1 if the operand was parsed successfully, zero
3990 otherwise. */
3991
3992 static int
3993 i386_stap_parse_special_token_triplet (struct gdbarch *gdbarch,
3994 struct stap_parse_info *p)
3995 {
3996 const char *s = p->arg;
3997
3998 if (isdigit (*s) || *s == '-' || *s == '+')
3999 {
4000 int got_minus[3];
4001 int i;
4002 long displacements[3];
4003 const char *start;
4004 char *regname;
4005 int len;
4006 struct stoken str;
4007 char *endp;
4008
4009 got_minus[0] = 0;
4010 if (*s == '+')
4011 ++s;
4012 else if (*s == '-')
4013 {
4014 ++s;
4015 got_minus[0] = 1;
4016 }
4017
4018 if (!isdigit ((unsigned char) *s))
4019 return 0;
4020
4021 displacements[0] = strtol (s, &endp, 10);
4022 s = endp;
4023
4024 if (*s != '+' && *s != '-')
4025 {
4026 /* We are not dealing with a triplet. */
4027 return 0;
4028 }
4029
4030 got_minus[1] = 0;
4031 if (*s == '+')
4032 ++s;
4033 else
4034 {
4035 ++s;
4036 got_minus[1] = 1;
4037 }
4038
4039 if (!isdigit ((unsigned char) *s))
4040 return 0;
4041
4042 displacements[1] = strtol (s, &endp, 10);
4043 s = endp;
4044
4045 if (*s != '+' && *s != '-')
4046 {
4047 /* We are not dealing with a triplet. */
4048 return 0;
4049 }
4050
4051 got_minus[2] = 0;
4052 if (*s == '+')
4053 ++s;
4054 else
4055 {
4056 ++s;
4057 got_minus[2] = 1;
4058 }
4059
4060 if (!isdigit ((unsigned char) *s))
4061 return 0;
4062
4063 displacements[2] = strtol (s, &endp, 10);
4064 s = endp;
4065
4066 if (*s != '(' || s[1] != '%')
4067 return 0;
4068
4069 s += 2;
4070 start = s;
4071
4072 while (isalnum (*s))
4073 ++s;
4074
4075 if (*s++ != ')')
4076 return 0;
4077
4078 len = s - start - 1;
4079 regname = alloca (len + 1);
4080
4081 strncpy (regname, start, len);
4082 regname[len] = '\0';
4083
4084 if (user_reg_map_name_to_regnum (gdbarch, regname, len) == -1)
4085 error (_("Invalid register name `%s' on expression `%s'."),
4086 regname, p->saved_arg);
4087
4088 for (i = 0; i < 3; i++)
4089 {
4090 write_exp_elt_opcode (&p->pstate, OP_LONG);
4091 write_exp_elt_type
4092 (&p->pstate, builtin_type (gdbarch)->builtin_long);
4093 write_exp_elt_longcst (&p->pstate, displacements[i]);
4094 write_exp_elt_opcode (&p->pstate, OP_LONG);
4095 if (got_minus[i])
4096 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
4097 }
4098
4099 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4100 str.ptr = regname;
4101 str.length = len;
4102 write_exp_string (&p->pstate, str);
4103 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4104
4105 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4106 write_exp_elt_type (&p->pstate,
4107 builtin_type (gdbarch)->builtin_data_ptr);
4108 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4109
4110 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4111 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4112 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4113
4114 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4115 write_exp_elt_type (&p->pstate,
4116 lookup_pointer_type (p->arg_type));
4117 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4118
4119 write_exp_elt_opcode (&p->pstate, UNOP_IND);
4120
4121 p->arg = s;
4122
4123 return 1;
4124 }
4125
4126 return 0;
4127 }
4128
4129 /* Helper function for i386_stap_parse_special_token.
4130
4131 This function parses operands of the form `register base +
4132 (register index * size) + offset', as represented in
4133 `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4134
4135 Return 1 if the operand was parsed successfully, zero
4136 otherwise. */
4137
4138 static int
4139 i386_stap_parse_special_token_three_arg_disp (struct gdbarch *gdbarch,
4140 struct stap_parse_info *p)
4141 {
4142 const char *s = p->arg;
4143
4144 if (isdigit (*s) || *s == '(' || *s == '-' || *s == '+')
4145 {
4146 int offset_minus = 0;
4147 long offset = 0;
4148 int size_minus = 0;
4149 long size = 0;
4150 const char *start;
4151 char *base;
4152 int len_base;
4153 char *index;
4154 int len_index;
4155 struct stoken base_token, index_token;
4156
4157 if (*s == '+')
4158 ++s;
4159 else if (*s == '-')
4160 {
4161 ++s;
4162 offset_minus = 1;
4163 }
4164
4165 if (offset_minus && !isdigit (*s))
4166 return 0;
4167
4168 if (isdigit (*s))
4169 {
4170 char *endp;
4171
4172 offset = strtol (s, &endp, 10);
4173 s = endp;
4174 }
4175
4176 if (*s != '(' || s[1] != '%')
4177 return 0;
4178
4179 s += 2;
4180 start = s;
4181
4182 while (isalnum (*s))
4183 ++s;
4184
4185 if (*s != ',' || s[1] != '%')
4186 return 0;
4187
4188 len_base = s - start;
4189 base = alloca (len_base + 1);
4190 strncpy (base, start, len_base);
4191 base[len_base] = '\0';
4192
4193 if (user_reg_map_name_to_regnum (gdbarch, base, len_base) == -1)
4194 error (_("Invalid register name `%s' on expression `%s'."),
4195 base, p->saved_arg);
4196
4197 s += 2;
4198 start = s;
4199
4200 while (isalnum (*s))
4201 ++s;
4202
4203 len_index = s - start;
4204 index = alloca (len_index + 1);
4205 strncpy (index, start, len_index);
4206 index[len_index] = '\0';
4207
4208 if (user_reg_map_name_to_regnum (gdbarch, index, len_index) == -1)
4209 error (_("Invalid register name `%s' on expression `%s'."),
4210 index, p->saved_arg);
4211
4212 if (*s != ',' && *s != ')')
4213 return 0;
4214
4215 if (*s == ',')
4216 {
4217 char *endp;
4218
4219 ++s;
4220 if (*s == '+')
4221 ++s;
4222 else if (*s == '-')
4223 {
4224 ++s;
4225 size_minus = 1;
4226 }
4227
4228 size = strtol (s, &endp, 10);
4229 s = endp;
4230
4231 if (*s != ')')
4232 return 0;
4233 }
4234
4235 ++s;
4236
4237 if (offset)
4238 {
4239 write_exp_elt_opcode (&p->pstate, OP_LONG);
4240 write_exp_elt_type (&p->pstate,
4241 builtin_type (gdbarch)->builtin_long);
4242 write_exp_elt_longcst (&p->pstate, offset);
4243 write_exp_elt_opcode (&p->pstate, OP_LONG);
4244 if (offset_minus)
4245 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
4246 }
4247
4248 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4249 base_token.ptr = base;
4250 base_token.length = len_base;
4251 write_exp_string (&p->pstate, base_token);
4252 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4253
4254 if (offset)
4255 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4256
4257 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4258 index_token.ptr = index;
4259 index_token.length = len_index;
4260 write_exp_string (&p->pstate, index_token);
4261 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4262
4263 if (size)
4264 {
4265 write_exp_elt_opcode (&p->pstate, OP_LONG);
4266 write_exp_elt_type (&p->pstate,
4267 builtin_type (gdbarch)->builtin_long);
4268 write_exp_elt_longcst (&p->pstate, size);
4269 write_exp_elt_opcode (&p->pstate, OP_LONG);
4270 if (size_minus)
4271 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
4272 write_exp_elt_opcode (&p->pstate, BINOP_MUL);
4273 }
4274
4275 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4276
4277 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4278 write_exp_elt_type (&p->pstate,
4279 lookup_pointer_type (p->arg_type));
4280 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4281
4282 write_exp_elt_opcode (&p->pstate, UNOP_IND);
4283
4284 p->arg = s;
4285
4286 return 1;
4287 }
4288
4289 return 0;
4290 }
4291
4292 /* Implementation of `gdbarch_stap_parse_special_token', as defined in
4293 gdbarch.h. */
4294
4295 int
4296 i386_stap_parse_special_token (struct gdbarch *gdbarch,
4297 struct stap_parse_info *p)
4298 {
4299 /* In order to parse special tokens, we use a state-machine that go
4300 through every known token and try to get a match. */
4301 enum
4302 {
4303 TRIPLET,
4304 THREE_ARG_DISPLACEMENT,
4305 DONE
4306 } current_state;
4307
4308 current_state = TRIPLET;
4309
4310 /* The special tokens to be parsed here are:
4311
4312 - `register base + (register index * size) + offset', as represented
4313 in `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4314
4315 - Operands of the form `-8+3+1(%rbp)', which must be interpreted as
4316 `*(-8 + 3 - 1 + (void *) $eax)'. */
4317
4318 while (current_state != DONE)
4319 {
4320 switch (current_state)
4321 {
4322 case TRIPLET:
4323 if (i386_stap_parse_special_token_triplet (gdbarch, p))
4324 return 1;
4325 break;
4326
4327 case THREE_ARG_DISPLACEMENT:
4328 if (i386_stap_parse_special_token_three_arg_disp (gdbarch, p))
4329 return 1;
4330 break;
4331 }
4332
4333 /* Advancing to the next state. */
4334 ++current_state;
4335 }
4336
4337 return 0;
4338 }
4339
4340 \f
4341
4342 /* Generic ELF. */
4343
4344 void
4345 i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4346 {
4347 static const char *const stap_integer_prefixes[] = { "$", NULL };
4348 static const char *const stap_register_prefixes[] = { "%", NULL };
4349 static const char *const stap_register_indirection_prefixes[] = { "(",
4350 NULL };
4351 static const char *const stap_register_indirection_suffixes[] = { ")",
4352 NULL };
4353
4354 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
4355 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
4356
4357 /* Registering SystemTap handlers. */
4358 set_gdbarch_stap_integer_prefixes (gdbarch, stap_integer_prefixes);
4359 set_gdbarch_stap_register_prefixes (gdbarch, stap_register_prefixes);
4360 set_gdbarch_stap_register_indirection_prefixes (gdbarch,
4361 stap_register_indirection_prefixes);
4362 set_gdbarch_stap_register_indirection_suffixes (gdbarch,
4363 stap_register_indirection_suffixes);
4364 set_gdbarch_stap_is_single_operand (gdbarch,
4365 i386_stap_is_single_operand);
4366 set_gdbarch_stap_parse_special_token (gdbarch,
4367 i386_stap_parse_special_token);
4368 }
4369
4370 /* System V Release 4 (SVR4). */
4371
4372 void
4373 i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4374 {
4375 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4376
4377 /* System V Release 4 uses ELF. */
4378 i386_elf_init_abi (info, gdbarch);
4379
4380 /* System V Release 4 has shared libraries. */
4381 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
4382
4383 tdep->sigtramp_p = i386_svr4_sigtramp_p;
4384 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
4385 tdep->sc_pc_offset = 36 + 14 * 4;
4386 tdep->sc_sp_offset = 36 + 17 * 4;
4387
4388 tdep->jb_pc_offset = 20;
4389 }
4390
4391 /* DJGPP. */
4392
4393 static void
4394 i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4395 {
4396 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4397
4398 /* DJGPP doesn't have any special frames for signal handlers. */
4399 tdep->sigtramp_p = NULL;
4400
4401 tdep->jb_pc_offset = 36;
4402
4403 /* DJGPP does not support the SSE registers. */
4404 if (! tdesc_has_registers (info.target_desc))
4405 tdep->tdesc = tdesc_i386_mmx;
4406
4407 /* Native compiler is GCC, which uses the SVR4 register numbering
4408 even in COFF and STABS. See the comment in i386_gdbarch_init,
4409 before the calls to set_gdbarch_stab_reg_to_regnum and
4410 set_gdbarch_sdb_reg_to_regnum. */
4411 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
4412 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
4413
4414 set_gdbarch_has_dos_based_file_system (gdbarch, 1);
4415 }
4416 \f
4417
4418 /* i386 register groups. In addition to the normal groups, add "mmx"
4419 and "sse". */
4420
4421 static struct reggroup *i386_sse_reggroup;
4422 static struct reggroup *i386_mmx_reggroup;
4423
4424 static void
4425 i386_init_reggroups (void)
4426 {
4427 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
4428 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
4429 }
4430
4431 static void
4432 i386_add_reggroups (struct gdbarch *gdbarch)
4433 {
4434 reggroup_add (gdbarch, i386_sse_reggroup);
4435 reggroup_add (gdbarch, i386_mmx_reggroup);
4436 reggroup_add (gdbarch, general_reggroup);
4437 reggroup_add (gdbarch, float_reggroup);
4438 reggroup_add (gdbarch, all_reggroup);
4439 reggroup_add (gdbarch, save_reggroup);
4440 reggroup_add (gdbarch, restore_reggroup);
4441 reggroup_add (gdbarch, vector_reggroup);
4442 reggroup_add (gdbarch, system_reggroup);
4443 }
4444
4445 int
4446 i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
4447 struct reggroup *group)
4448 {
4449 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4450 int fp_regnum_p, mmx_regnum_p, xmm_regnum_p, mxcsr_regnum_p,
4451 ymm_regnum_p, ymmh_regnum_p, ymm_avx512_regnum_p, ymmh_avx512_regnum_p,
4452 bndr_regnum_p, bnd_regnum_p, k_regnum_p, zmm_regnum_p, zmmh_regnum_p,
4453 zmm_avx512_regnum_p, mpx_ctrl_regnum_p, xmm_avx512_regnum_p,
4454 avx512_p, avx_p, sse_p;
4455
4456 /* Don't include pseudo registers, except for MMX, in any register
4457 groups. */
4458 if (i386_byte_regnum_p (gdbarch, regnum))
4459 return 0;
4460
4461 if (i386_word_regnum_p (gdbarch, regnum))
4462 return 0;
4463
4464 if (i386_dword_regnum_p (gdbarch, regnum))
4465 return 0;
4466
4467 mmx_regnum_p = i386_mmx_regnum_p (gdbarch, regnum);
4468 if (group == i386_mmx_reggroup)
4469 return mmx_regnum_p;
4470
4471 xmm_regnum_p = i386_xmm_regnum_p (gdbarch, regnum);
4472 xmm_avx512_regnum_p = i386_xmm_avx512_regnum_p (gdbarch, regnum);
4473 mxcsr_regnum_p = i386_mxcsr_regnum_p (gdbarch, regnum);
4474 if (group == i386_sse_reggroup)
4475 return xmm_regnum_p || xmm_avx512_regnum_p || mxcsr_regnum_p;
4476
4477 ymm_regnum_p = i386_ymm_regnum_p (gdbarch, regnum);
4478 ymm_avx512_regnum_p = i386_ymm_avx512_regnum_p (gdbarch, regnum);
4479 zmm_regnum_p = i386_zmm_regnum_p (gdbarch, regnum);
4480
4481 avx512_p = ((tdep->xcr0 & I386_XSTATE_AVX512_MASK)
4482 == I386_XSTATE_AVX512_MASK);
4483 avx_p = ((tdep->xcr0 & I386_XSTATE_AVX512_MASK)
4484 == I386_XSTATE_AVX_MASK) && !avx512_p;
4485 sse_p = ((tdep->xcr0 & I386_XSTATE_AVX512_MASK)
4486 == I386_XSTATE_SSE_MASK) && !avx512_p && ! avx_p;
4487
4488 if (group == vector_reggroup)
4489 return (mmx_regnum_p
4490 || (zmm_regnum_p && avx512_p)
4491 || ((ymm_regnum_p || ymm_avx512_regnum_p) && avx_p)
4492 || ((xmm_regnum_p || xmm_avx512_regnum_p) && sse_p)
4493 || mxcsr_regnum_p);
4494
4495 fp_regnum_p = (i386_fp_regnum_p (gdbarch, regnum)
4496 || i386_fpc_regnum_p (gdbarch, regnum));
4497 if (group == float_reggroup)
4498 return fp_regnum_p;
4499
4500 /* For "info reg all", don't include upper YMM registers nor XMM
4501 registers when AVX is supported. */
4502 ymmh_regnum_p = i386_ymmh_regnum_p (gdbarch, regnum);
4503 ymmh_avx512_regnum_p = i386_ymmh_avx512_regnum_p (gdbarch, regnum);
4504 zmmh_regnum_p = i386_zmmh_regnum_p (gdbarch, regnum);
4505 if (group == all_reggroup
4506 && (((xmm_regnum_p || xmm_avx512_regnum_p) && !sse_p)
4507 || ((ymm_regnum_p || ymm_avx512_regnum_p) && !avx_p)
4508 || ymmh_regnum_p
4509 || ymmh_avx512_regnum_p
4510 || zmmh_regnum_p))
4511 return 0;
4512
4513 bnd_regnum_p = i386_bnd_regnum_p (gdbarch, regnum);
4514 if (group == all_reggroup
4515 && ((bnd_regnum_p && (tdep->xcr0 & I386_XSTATE_MPX_MASK))))
4516 return bnd_regnum_p;
4517
4518 bndr_regnum_p = i386_bndr_regnum_p (gdbarch, regnum);
4519 if (group == all_reggroup
4520 && ((bndr_regnum_p && (tdep->xcr0 & I386_XSTATE_MPX_MASK))))
4521 return 0;
4522
4523 mpx_ctrl_regnum_p = i386_mpx_ctrl_regnum_p (gdbarch, regnum);
4524 if (group == all_reggroup
4525 && ((mpx_ctrl_regnum_p && (tdep->xcr0 & I386_XSTATE_MPX_MASK))))
4526 return mpx_ctrl_regnum_p;
4527
4528 if (group == general_reggroup)
4529 return (!fp_regnum_p
4530 && !mmx_regnum_p
4531 && !mxcsr_regnum_p
4532 && !xmm_regnum_p
4533 && !xmm_avx512_regnum_p
4534 && !ymm_regnum_p
4535 && !ymmh_regnum_p
4536 && !ymm_avx512_regnum_p
4537 && !ymmh_avx512_regnum_p
4538 && !bndr_regnum_p
4539 && !bnd_regnum_p
4540 && !mpx_ctrl_regnum_p
4541 && !zmm_regnum_p
4542 && !zmmh_regnum_p);
4543
4544 return default_register_reggroup_p (gdbarch, regnum, group);
4545 }
4546 \f
4547
4548 /* Get the ARGIth function argument for the current function. */
4549
4550 static CORE_ADDR
4551 i386_fetch_pointer_argument (struct frame_info *frame, int argi,
4552 struct type *type)
4553 {
4554 struct gdbarch *gdbarch = get_frame_arch (frame);
4555 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4556 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
4557 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4, byte_order);
4558 }
4559
4560 static void
4561 i386_skip_permanent_breakpoint (struct regcache *regcache)
4562 {
4563 CORE_ADDR current_pc = regcache_read_pc (regcache);
4564
4565 /* On i386, breakpoint is exactly 1 byte long, so we just
4566 adjust the PC in the regcache. */
4567 current_pc += 1;
4568 regcache_write_pc (regcache, current_pc);
4569 }
4570
4571
4572 #define PREFIX_REPZ 0x01
4573 #define PREFIX_REPNZ 0x02
4574 #define PREFIX_LOCK 0x04
4575 #define PREFIX_DATA 0x08
4576 #define PREFIX_ADDR 0x10
4577
4578 /* operand size */
4579 enum
4580 {
4581 OT_BYTE = 0,
4582 OT_WORD,
4583 OT_LONG,
4584 OT_QUAD,
4585 OT_DQUAD,
4586 };
4587
4588 /* i386 arith/logic operations */
4589 enum
4590 {
4591 OP_ADDL,
4592 OP_ORL,
4593 OP_ADCL,
4594 OP_SBBL,
4595 OP_ANDL,
4596 OP_SUBL,
4597 OP_XORL,
4598 OP_CMPL,
4599 };
4600
4601 struct i386_record_s
4602 {
4603 struct gdbarch *gdbarch;
4604 struct regcache *regcache;
4605 CORE_ADDR orig_addr;
4606 CORE_ADDR addr;
4607 int aflag;
4608 int dflag;
4609 int override;
4610 uint8_t modrm;
4611 uint8_t mod, reg, rm;
4612 int ot;
4613 uint8_t rex_x;
4614 uint8_t rex_b;
4615 int rip_offset;
4616 int popl_esp_hack;
4617 const int *regmap;
4618 };
4619
4620 /* Parse the "modrm" part of the memory address irp->addr points at.
4621 Returns -1 if something goes wrong, 0 otherwise. */
4622
4623 static int
4624 i386_record_modrm (struct i386_record_s *irp)
4625 {
4626 struct gdbarch *gdbarch = irp->gdbarch;
4627
4628 if (record_read_memory (gdbarch, irp->addr, &irp->modrm, 1))
4629 return -1;
4630
4631 irp->addr++;
4632 irp->mod = (irp->modrm >> 6) & 3;
4633 irp->reg = (irp->modrm >> 3) & 7;
4634 irp->rm = irp->modrm & 7;
4635
4636 return 0;
4637 }
4638
4639 /* Extract the memory address that the current instruction writes to,
4640 and return it in *ADDR. Return -1 if something goes wrong. */
4641
4642 static int
4643 i386_record_lea_modrm_addr (struct i386_record_s *irp, uint64_t *addr)
4644 {
4645 struct gdbarch *gdbarch = irp->gdbarch;
4646 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4647 gdb_byte buf[4];
4648 ULONGEST offset64;
4649
4650 *addr = 0;
4651 if (irp->aflag || irp->regmap[X86_RECORD_R8_REGNUM])
4652 {
4653 /* 32/64 bits */
4654 int havesib = 0;
4655 uint8_t scale = 0;
4656 uint8_t byte;
4657 uint8_t index = 0;
4658 uint8_t base = irp->rm;
4659
4660 if (base == 4)
4661 {
4662 havesib = 1;
4663 if (record_read_memory (gdbarch, irp->addr, &byte, 1))
4664 return -1;
4665 irp->addr++;
4666 scale = (byte >> 6) & 3;
4667 index = ((byte >> 3) & 7) | irp->rex_x;
4668 base = (byte & 7);
4669 }
4670 base |= irp->rex_b;
4671
4672 switch (irp->mod)
4673 {
4674 case 0:
4675 if ((base & 7) == 5)
4676 {
4677 base = 0xff;
4678 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4679 return -1;
4680 irp->addr += 4;
4681 *addr = extract_signed_integer (buf, 4, byte_order);
4682 if (irp->regmap[X86_RECORD_R8_REGNUM] && !havesib)
4683 *addr += irp->addr + irp->rip_offset;
4684 }
4685 break;
4686 case 1:
4687 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4688 return -1;
4689 irp->addr++;
4690 *addr = (int8_t) buf[0];
4691 break;
4692 case 2:
4693 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4694 return -1;
4695 *addr = extract_signed_integer (buf, 4, byte_order);
4696 irp->addr += 4;
4697 break;
4698 }
4699
4700 offset64 = 0;
4701 if (base != 0xff)
4702 {
4703 if (base == 4 && irp->popl_esp_hack)
4704 *addr += irp->popl_esp_hack;
4705 regcache_raw_read_unsigned (irp->regcache, irp->regmap[base],
4706 &offset64);
4707 }
4708 if (irp->aflag == 2)
4709 {
4710 *addr += offset64;
4711 }
4712 else
4713 *addr = (uint32_t) (offset64 + *addr);
4714
4715 if (havesib && (index != 4 || scale != 0))
4716 {
4717 regcache_raw_read_unsigned (irp->regcache, irp->regmap[index],
4718 &offset64);
4719 if (irp->aflag == 2)
4720 *addr += offset64 << scale;
4721 else
4722 *addr = (uint32_t) (*addr + (offset64 << scale));
4723 }
4724
4725 if (!irp->aflag)
4726 {
4727 /* Since we are in 64-bit mode with ADDR32 prefix, zero-extend
4728 address from 32-bit to 64-bit. */
4729 *addr = (uint32_t) *addr;
4730 }
4731 }
4732 else
4733 {
4734 /* 16 bits */
4735 switch (irp->mod)
4736 {
4737 case 0:
4738 if (irp->rm == 6)
4739 {
4740 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4741 return -1;
4742 irp->addr += 2;
4743 *addr = extract_signed_integer (buf, 2, byte_order);
4744 irp->rm = 0;
4745 goto no_rm;
4746 }
4747 break;
4748 case 1:
4749 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4750 return -1;
4751 irp->addr++;
4752 *addr = (int8_t) buf[0];
4753 break;
4754 case 2:
4755 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4756 return -1;
4757 irp->addr += 2;
4758 *addr = extract_signed_integer (buf, 2, byte_order);
4759 break;
4760 }
4761
4762 switch (irp->rm)
4763 {
4764 case 0:
4765 regcache_raw_read_unsigned (irp->regcache,
4766 irp->regmap[X86_RECORD_REBX_REGNUM],
4767 &offset64);
4768 *addr = (uint32_t) (*addr + offset64);
4769 regcache_raw_read_unsigned (irp->regcache,
4770 irp->regmap[X86_RECORD_RESI_REGNUM],
4771 &offset64);
4772 *addr = (uint32_t) (*addr + offset64);
4773 break;
4774 case 1:
4775 regcache_raw_read_unsigned (irp->regcache,
4776 irp->regmap[X86_RECORD_REBX_REGNUM],
4777 &offset64);
4778 *addr = (uint32_t) (*addr + offset64);
4779 regcache_raw_read_unsigned (irp->regcache,
4780 irp->regmap[X86_RECORD_REDI_REGNUM],
4781 &offset64);
4782 *addr = (uint32_t) (*addr + offset64);
4783 break;
4784 case 2:
4785 regcache_raw_read_unsigned (irp->regcache,
4786 irp->regmap[X86_RECORD_REBP_REGNUM],
4787 &offset64);
4788 *addr = (uint32_t) (*addr + offset64);
4789 regcache_raw_read_unsigned (irp->regcache,
4790 irp->regmap[X86_RECORD_RESI_REGNUM],
4791 &offset64);
4792 *addr = (uint32_t) (*addr + offset64);
4793 break;
4794 case 3:
4795 regcache_raw_read_unsigned (irp->regcache,
4796 irp->regmap[X86_RECORD_REBP_REGNUM],
4797 &offset64);
4798 *addr = (uint32_t) (*addr + offset64);
4799 regcache_raw_read_unsigned (irp->regcache,
4800 irp->regmap[X86_RECORD_REDI_REGNUM],
4801 &offset64);
4802 *addr = (uint32_t) (*addr + offset64);
4803 break;
4804 case 4:
4805 regcache_raw_read_unsigned (irp->regcache,
4806 irp->regmap[X86_RECORD_RESI_REGNUM],
4807 &offset64);
4808 *addr = (uint32_t) (*addr + offset64);
4809 break;
4810 case 5:
4811 regcache_raw_read_unsigned (irp->regcache,
4812 irp->regmap[X86_RECORD_REDI_REGNUM],
4813 &offset64);
4814 *addr = (uint32_t) (*addr + offset64);
4815 break;
4816 case 6:
4817 regcache_raw_read_unsigned (irp->regcache,
4818 irp->regmap[X86_RECORD_REBP_REGNUM],
4819 &offset64);
4820 *addr = (uint32_t) (*addr + offset64);
4821 break;
4822 case 7:
4823 regcache_raw_read_unsigned (irp->regcache,
4824 irp->regmap[X86_RECORD_REBX_REGNUM],
4825 &offset64);
4826 *addr = (uint32_t) (*addr + offset64);
4827 break;
4828 }
4829 *addr &= 0xffff;
4830 }
4831
4832 no_rm:
4833 return 0;
4834 }
4835
4836 /* Record the address and contents of the memory that will be changed
4837 by the current instruction. Return -1 if something goes wrong, 0
4838 otherwise. */
4839
4840 static int
4841 i386_record_lea_modrm (struct i386_record_s *irp)
4842 {
4843 struct gdbarch *gdbarch = irp->gdbarch;
4844 uint64_t addr;
4845
4846 if (irp->override >= 0)
4847 {
4848 if (record_full_memory_query)
4849 {
4850 int q;
4851
4852 target_terminal_ours ();
4853 q = yquery (_("\
4854 Process record ignores the memory change of instruction at address %s\n\
4855 because it can't get the value of the segment register.\n\
4856 Do you want to stop the program?"),
4857 paddress (gdbarch, irp->orig_addr));
4858 target_terminal_inferior ();
4859 if (q)
4860 return -1;
4861 }
4862
4863 return 0;
4864 }
4865
4866 if (i386_record_lea_modrm_addr (irp, &addr))
4867 return -1;
4868
4869 if (record_full_arch_list_add_mem (addr, 1 << irp->ot))
4870 return -1;
4871
4872 return 0;
4873 }
4874
4875 /* Record the effects of a push operation. Return -1 if something
4876 goes wrong, 0 otherwise. */
4877
4878 static int
4879 i386_record_push (struct i386_record_s *irp, int size)
4880 {
4881 ULONGEST addr;
4882
4883 if (record_full_arch_list_add_reg (irp->regcache,
4884 irp->regmap[X86_RECORD_RESP_REGNUM]))
4885 return -1;
4886 regcache_raw_read_unsigned (irp->regcache,
4887 irp->regmap[X86_RECORD_RESP_REGNUM],
4888 &addr);
4889 if (record_full_arch_list_add_mem ((CORE_ADDR) addr - size, size))
4890 return -1;
4891
4892 return 0;
4893 }
4894
4895
4896 /* Defines contents to record. */
4897 #define I386_SAVE_FPU_REGS 0xfffd
4898 #define I386_SAVE_FPU_ENV 0xfffe
4899 #define I386_SAVE_FPU_ENV_REG_STACK 0xffff
4900
4901 /* Record the values of the floating point registers which will be
4902 changed by the current instruction. Returns -1 if something is
4903 wrong, 0 otherwise. */
4904
4905 static int i386_record_floats (struct gdbarch *gdbarch,
4906 struct i386_record_s *ir,
4907 uint32_t iregnum)
4908 {
4909 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4910 int i;
4911
4912 /* Oza: Because of floating point insn push/pop of fpu stack is going to
4913 happen. Currently we store st0-st7 registers, but we need not store all
4914 registers all the time, in future we use ftag register and record only
4915 those who are not marked as an empty. */
4916
4917 if (I386_SAVE_FPU_REGS == iregnum)
4918 {
4919 for (i = I387_ST0_REGNUM (tdep); i <= I387_ST0_REGNUM (tdep) + 7; i++)
4920 {
4921 if (record_full_arch_list_add_reg (ir->regcache, i))
4922 return -1;
4923 }
4924 }
4925 else if (I386_SAVE_FPU_ENV == iregnum)
4926 {
4927 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4928 {
4929 if (record_full_arch_list_add_reg (ir->regcache, i))
4930 return -1;
4931 }
4932 }
4933 else if (I386_SAVE_FPU_ENV_REG_STACK == iregnum)
4934 {
4935 for (i = I387_ST0_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4936 {
4937 if (record_full_arch_list_add_reg (ir->regcache, i))
4938 return -1;
4939 }
4940 }
4941 else if ((iregnum >= I387_ST0_REGNUM (tdep)) &&
4942 (iregnum <= I387_FOP_REGNUM (tdep)))
4943 {
4944 if (record_full_arch_list_add_reg (ir->regcache,iregnum))
4945 return -1;
4946 }
4947 else
4948 {
4949 /* Parameter error. */
4950 return -1;
4951 }
4952 if(I386_SAVE_FPU_ENV != iregnum)
4953 {
4954 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4955 {
4956 if (record_full_arch_list_add_reg (ir->regcache, i))
4957 return -1;
4958 }
4959 }
4960 return 0;
4961 }
4962
4963 /* Parse the current instruction, and record the values of the
4964 registers and memory that will be changed by the current
4965 instruction. Returns -1 if something goes wrong, 0 otherwise. */
4966
4967 #define I386_RECORD_FULL_ARCH_LIST_ADD_REG(regnum) \
4968 record_full_arch_list_add_reg (ir.regcache, ir.regmap[(regnum)])
4969
4970 int
4971 i386_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
4972 CORE_ADDR input_addr)
4973 {
4974 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4975 int prefixes = 0;
4976 int regnum = 0;
4977 uint32_t opcode;
4978 uint8_t opcode8;
4979 ULONGEST addr;
4980 gdb_byte buf[MAX_REGISTER_SIZE];
4981 struct i386_record_s ir;
4982 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4983 uint8_t rex_w = -1;
4984 uint8_t rex_r = 0;
4985
4986 memset (&ir, 0, sizeof (struct i386_record_s));
4987 ir.regcache = regcache;
4988 ir.addr = input_addr;
4989 ir.orig_addr = input_addr;
4990 ir.aflag = 1;
4991 ir.dflag = 1;
4992 ir.override = -1;
4993 ir.popl_esp_hack = 0;
4994 ir.regmap = tdep->record_regmap;
4995 ir.gdbarch = gdbarch;
4996
4997 if (record_debug > 1)
4998 fprintf_unfiltered (gdb_stdlog, "Process record: i386_process_record "
4999 "addr = %s\n",
5000 paddress (gdbarch, ir.addr));
5001
5002 /* prefixes */
5003 while (1)
5004 {
5005 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
5006 return -1;
5007 ir.addr++;
5008 switch (opcode8) /* Instruction prefixes */
5009 {
5010 case REPE_PREFIX_OPCODE:
5011 prefixes |= PREFIX_REPZ;
5012 break;
5013 case REPNE_PREFIX_OPCODE:
5014 prefixes |= PREFIX_REPNZ;
5015 break;
5016 case LOCK_PREFIX_OPCODE:
5017 prefixes |= PREFIX_LOCK;
5018 break;
5019 case CS_PREFIX_OPCODE:
5020 ir.override = X86_RECORD_CS_REGNUM;
5021 break;
5022 case SS_PREFIX_OPCODE:
5023 ir.override = X86_RECORD_SS_REGNUM;
5024 break;
5025 case DS_PREFIX_OPCODE:
5026 ir.override = X86_RECORD_DS_REGNUM;
5027 break;
5028 case ES_PREFIX_OPCODE:
5029 ir.override = X86_RECORD_ES_REGNUM;
5030 break;
5031 case FS_PREFIX_OPCODE:
5032 ir.override = X86_RECORD_FS_REGNUM;
5033 break;
5034 case GS_PREFIX_OPCODE:
5035 ir.override = X86_RECORD_GS_REGNUM;
5036 break;
5037 case DATA_PREFIX_OPCODE:
5038 prefixes |= PREFIX_DATA;
5039 break;
5040 case ADDR_PREFIX_OPCODE:
5041 prefixes |= PREFIX_ADDR;
5042 break;
5043 case 0x40: /* i386 inc %eax */
5044 case 0x41: /* i386 inc %ecx */
5045 case 0x42: /* i386 inc %edx */
5046 case 0x43: /* i386 inc %ebx */
5047 case 0x44: /* i386 inc %esp */
5048 case 0x45: /* i386 inc %ebp */
5049 case 0x46: /* i386 inc %esi */
5050 case 0x47: /* i386 inc %edi */
5051 case 0x48: /* i386 dec %eax */
5052 case 0x49: /* i386 dec %ecx */
5053 case 0x4a: /* i386 dec %edx */
5054 case 0x4b: /* i386 dec %ebx */
5055 case 0x4c: /* i386 dec %esp */
5056 case 0x4d: /* i386 dec %ebp */
5057 case 0x4e: /* i386 dec %esi */
5058 case 0x4f: /* i386 dec %edi */
5059 if (ir.regmap[X86_RECORD_R8_REGNUM]) /* 64 bit target */
5060 {
5061 /* REX */
5062 rex_w = (opcode8 >> 3) & 1;
5063 rex_r = (opcode8 & 0x4) << 1;
5064 ir.rex_x = (opcode8 & 0x2) << 2;
5065 ir.rex_b = (opcode8 & 0x1) << 3;
5066 }
5067 else /* 32 bit target */
5068 goto out_prefixes;
5069 break;
5070 default:
5071 goto out_prefixes;
5072 break;
5073 }
5074 }
5075 out_prefixes:
5076 if (ir.regmap[X86_RECORD_R8_REGNUM] && rex_w == 1)
5077 {
5078 ir.dflag = 2;
5079 }
5080 else
5081 {
5082 if (prefixes & PREFIX_DATA)
5083 ir.dflag ^= 1;
5084 }
5085 if (prefixes & PREFIX_ADDR)
5086 ir.aflag ^= 1;
5087 else if (ir.regmap[X86_RECORD_R8_REGNUM])
5088 ir.aflag = 2;
5089
5090 /* Now check op code. */
5091 opcode = (uint32_t) opcode8;
5092 reswitch:
5093 switch (opcode)
5094 {
5095 case 0x0f:
5096 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
5097 return -1;
5098 ir.addr++;
5099 opcode = (uint32_t) opcode8 | 0x0f00;
5100 goto reswitch;
5101 break;
5102
5103 case 0x00: /* arith & logic */
5104 case 0x01:
5105 case 0x02:
5106 case 0x03:
5107 case 0x04:
5108 case 0x05:
5109 case 0x08:
5110 case 0x09:
5111 case 0x0a:
5112 case 0x0b:
5113 case 0x0c:
5114 case 0x0d:
5115 case 0x10:
5116 case 0x11:
5117 case 0x12:
5118 case 0x13:
5119 case 0x14:
5120 case 0x15:
5121 case 0x18:
5122 case 0x19:
5123 case 0x1a:
5124 case 0x1b:
5125 case 0x1c:
5126 case 0x1d:
5127 case 0x20:
5128 case 0x21:
5129 case 0x22:
5130 case 0x23:
5131 case 0x24:
5132 case 0x25:
5133 case 0x28:
5134 case 0x29:
5135 case 0x2a:
5136 case 0x2b:
5137 case 0x2c:
5138 case 0x2d:
5139 case 0x30:
5140 case 0x31:
5141 case 0x32:
5142 case 0x33:
5143 case 0x34:
5144 case 0x35:
5145 case 0x38:
5146 case 0x39:
5147 case 0x3a:
5148 case 0x3b:
5149 case 0x3c:
5150 case 0x3d:
5151 if (((opcode >> 3) & 7) != OP_CMPL)
5152 {
5153 if ((opcode & 1) == 0)
5154 ir.ot = OT_BYTE;
5155 else
5156 ir.ot = ir.dflag + OT_WORD;
5157
5158 switch ((opcode >> 1) & 3)
5159 {
5160 case 0: /* OP Ev, Gv */
5161 if (i386_record_modrm (&ir))
5162 return -1;
5163 if (ir.mod != 3)
5164 {
5165 if (i386_record_lea_modrm (&ir))
5166 return -1;
5167 }
5168 else
5169 {
5170 ir.rm |= ir.rex_b;
5171 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5172 ir.rm &= 0x3;
5173 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5174 }
5175 break;
5176 case 1: /* OP Gv, Ev */
5177 if (i386_record_modrm (&ir))
5178 return -1;
5179 ir.reg |= rex_r;
5180 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5181 ir.reg &= 0x3;
5182 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5183 break;
5184 case 2: /* OP A, Iv */
5185 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5186 break;
5187 }
5188 }
5189 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5190 break;
5191
5192 case 0x80: /* GRP1 */
5193 case 0x81:
5194 case 0x82:
5195 case 0x83:
5196 if (i386_record_modrm (&ir))
5197 return -1;
5198
5199 if (ir.reg != OP_CMPL)
5200 {
5201 if ((opcode & 1) == 0)
5202 ir.ot = OT_BYTE;
5203 else
5204 ir.ot = ir.dflag + OT_WORD;
5205
5206 if (ir.mod != 3)
5207 {
5208 if (opcode == 0x83)
5209 ir.rip_offset = 1;
5210 else
5211 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5212 if (i386_record_lea_modrm (&ir))
5213 return -1;
5214 }
5215 else
5216 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5217 }
5218 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5219 break;
5220
5221 case 0x40: /* inc */
5222 case 0x41:
5223 case 0x42:
5224 case 0x43:
5225 case 0x44:
5226 case 0x45:
5227 case 0x46:
5228 case 0x47:
5229
5230 case 0x48: /* dec */
5231 case 0x49:
5232 case 0x4a:
5233 case 0x4b:
5234 case 0x4c:
5235 case 0x4d:
5236 case 0x4e:
5237 case 0x4f:
5238
5239 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 7);
5240 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5241 break;
5242
5243 case 0xf6: /* GRP3 */
5244 case 0xf7:
5245 if ((opcode & 1) == 0)
5246 ir.ot = OT_BYTE;
5247 else
5248 ir.ot = ir.dflag + OT_WORD;
5249 if (i386_record_modrm (&ir))
5250 return -1;
5251
5252 if (ir.mod != 3 && ir.reg == 0)
5253 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5254
5255 switch (ir.reg)
5256 {
5257 case 0: /* test */
5258 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5259 break;
5260 case 2: /* not */
5261 case 3: /* neg */
5262 if (ir.mod != 3)
5263 {
5264 if (i386_record_lea_modrm (&ir))
5265 return -1;
5266 }
5267 else
5268 {
5269 ir.rm |= ir.rex_b;
5270 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5271 ir.rm &= 0x3;
5272 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5273 }
5274 if (ir.reg == 3) /* neg */
5275 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5276 break;
5277 case 4: /* mul */
5278 case 5: /* imul */
5279 case 6: /* div */
5280 case 7: /* idiv */
5281 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5282 if (ir.ot != OT_BYTE)
5283 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5284 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5285 break;
5286 default:
5287 ir.addr -= 2;
5288 opcode = opcode << 8 | ir.modrm;
5289 goto no_support;
5290 break;
5291 }
5292 break;
5293
5294 case 0xfe: /* GRP4 */
5295 case 0xff: /* GRP5 */
5296 if (i386_record_modrm (&ir))
5297 return -1;
5298 if (ir.reg >= 2 && opcode == 0xfe)
5299 {
5300 ir.addr -= 2;
5301 opcode = opcode << 8 | ir.modrm;
5302 goto no_support;
5303 }
5304 switch (ir.reg)
5305 {
5306 case 0: /* inc */
5307 case 1: /* dec */
5308 if ((opcode & 1) == 0)
5309 ir.ot = OT_BYTE;
5310 else
5311 ir.ot = ir.dflag + OT_WORD;
5312 if (ir.mod != 3)
5313 {
5314 if (i386_record_lea_modrm (&ir))
5315 return -1;
5316 }
5317 else
5318 {
5319 ir.rm |= ir.rex_b;
5320 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5321 ir.rm &= 0x3;
5322 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5323 }
5324 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5325 break;
5326 case 2: /* call */
5327 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5328 ir.dflag = 2;
5329 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5330 return -1;
5331 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5332 break;
5333 case 3: /* lcall */
5334 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
5335 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5336 return -1;
5337 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5338 break;
5339 case 4: /* jmp */
5340 case 5: /* ljmp */
5341 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5342 break;
5343 case 6: /* push */
5344 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5345 ir.dflag = 2;
5346 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5347 return -1;
5348 break;
5349 default:
5350 ir.addr -= 2;
5351 opcode = opcode << 8 | ir.modrm;
5352 goto no_support;
5353 break;
5354 }
5355 break;
5356
5357 case 0x84: /* test */
5358 case 0x85:
5359 case 0xa8:
5360 case 0xa9:
5361 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5362 break;
5363
5364 case 0x98: /* CWDE/CBW */
5365 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5366 break;
5367
5368 case 0x99: /* CDQ/CWD */
5369 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5370 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5371 break;
5372
5373 case 0x0faf: /* imul */
5374 case 0x69:
5375 case 0x6b:
5376 ir.ot = ir.dflag + OT_WORD;
5377 if (i386_record_modrm (&ir))
5378 return -1;
5379 if (opcode == 0x69)
5380 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5381 else if (opcode == 0x6b)
5382 ir.rip_offset = 1;
5383 ir.reg |= rex_r;
5384 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5385 ir.reg &= 0x3;
5386 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5387 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5388 break;
5389
5390 case 0x0fc0: /* xadd */
5391 case 0x0fc1:
5392 if ((opcode & 1) == 0)
5393 ir.ot = OT_BYTE;
5394 else
5395 ir.ot = ir.dflag + OT_WORD;
5396 if (i386_record_modrm (&ir))
5397 return -1;
5398 ir.reg |= rex_r;
5399 if (ir.mod == 3)
5400 {
5401 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5402 ir.reg &= 0x3;
5403 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5404 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5405 ir.rm &= 0x3;
5406 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5407 }
5408 else
5409 {
5410 if (i386_record_lea_modrm (&ir))
5411 return -1;
5412 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5413 ir.reg &= 0x3;
5414 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5415 }
5416 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5417 break;
5418
5419 case 0x0fb0: /* cmpxchg */
5420 case 0x0fb1:
5421 if ((opcode & 1) == 0)
5422 ir.ot = OT_BYTE;
5423 else
5424 ir.ot = ir.dflag + OT_WORD;
5425 if (i386_record_modrm (&ir))
5426 return -1;
5427 if (ir.mod == 3)
5428 {
5429 ir.reg |= rex_r;
5430 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5431 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5432 ir.reg &= 0x3;
5433 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5434 }
5435 else
5436 {
5437 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5438 if (i386_record_lea_modrm (&ir))
5439 return -1;
5440 }
5441 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5442 break;
5443
5444 case 0x0fc7: /* cmpxchg8b */
5445 if (i386_record_modrm (&ir))
5446 return -1;
5447 if (ir.mod == 3)
5448 {
5449 ir.addr -= 2;
5450 opcode = opcode << 8 | ir.modrm;
5451 goto no_support;
5452 }
5453 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5454 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5455 if (i386_record_lea_modrm (&ir))
5456 return -1;
5457 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5458 break;
5459
5460 case 0x50: /* push */
5461 case 0x51:
5462 case 0x52:
5463 case 0x53:
5464 case 0x54:
5465 case 0x55:
5466 case 0x56:
5467 case 0x57:
5468 case 0x68:
5469 case 0x6a:
5470 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5471 ir.dflag = 2;
5472 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5473 return -1;
5474 break;
5475
5476 case 0x06: /* push es */
5477 case 0x0e: /* push cs */
5478 case 0x16: /* push ss */
5479 case 0x1e: /* push ds */
5480 if (ir.regmap[X86_RECORD_R8_REGNUM])
5481 {
5482 ir.addr -= 1;
5483 goto no_support;
5484 }
5485 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5486 return -1;
5487 break;
5488
5489 case 0x0fa0: /* push fs */
5490 case 0x0fa8: /* push gs */
5491 if (ir.regmap[X86_RECORD_R8_REGNUM])
5492 {
5493 ir.addr -= 2;
5494 goto no_support;
5495 }
5496 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5497 return -1;
5498 break;
5499
5500 case 0x60: /* pusha */
5501 if (ir.regmap[X86_RECORD_R8_REGNUM])
5502 {
5503 ir.addr -= 1;
5504 goto no_support;
5505 }
5506 if (i386_record_push (&ir, 1 << (ir.dflag + 4)))
5507 return -1;
5508 break;
5509
5510 case 0x58: /* pop */
5511 case 0x59:
5512 case 0x5a:
5513 case 0x5b:
5514 case 0x5c:
5515 case 0x5d:
5516 case 0x5e:
5517 case 0x5f:
5518 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5519 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
5520 break;
5521
5522 case 0x61: /* popa */
5523 if (ir.regmap[X86_RECORD_R8_REGNUM])
5524 {
5525 ir.addr -= 1;
5526 goto no_support;
5527 }
5528 for (regnum = X86_RECORD_REAX_REGNUM;
5529 regnum <= X86_RECORD_REDI_REGNUM;
5530 regnum++)
5531 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5532 break;
5533
5534 case 0x8f: /* pop */
5535 if (ir.regmap[X86_RECORD_R8_REGNUM])
5536 ir.ot = ir.dflag ? OT_QUAD : OT_WORD;
5537 else
5538 ir.ot = ir.dflag + OT_WORD;
5539 if (i386_record_modrm (&ir))
5540 return -1;
5541 if (ir.mod == 3)
5542 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5543 else
5544 {
5545 ir.popl_esp_hack = 1 << ir.ot;
5546 if (i386_record_lea_modrm (&ir))
5547 return -1;
5548 }
5549 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5550 break;
5551
5552 case 0xc8: /* enter */
5553 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
5554 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5555 ir.dflag = 2;
5556 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5557 return -1;
5558 break;
5559
5560 case 0xc9: /* leave */
5561 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5562 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
5563 break;
5564
5565 case 0x07: /* pop es */
5566 if (ir.regmap[X86_RECORD_R8_REGNUM])
5567 {
5568 ir.addr -= 1;
5569 goto no_support;
5570 }
5571 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5572 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_ES_REGNUM);
5573 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5574 break;
5575
5576 case 0x17: /* pop ss */
5577 if (ir.regmap[X86_RECORD_R8_REGNUM])
5578 {
5579 ir.addr -= 1;
5580 goto no_support;
5581 }
5582 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5583 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_SS_REGNUM);
5584 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5585 break;
5586
5587 case 0x1f: /* pop ds */
5588 if (ir.regmap[X86_RECORD_R8_REGNUM])
5589 {
5590 ir.addr -= 1;
5591 goto no_support;
5592 }
5593 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5594 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_DS_REGNUM);
5595 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5596 break;
5597
5598 case 0x0fa1: /* pop fs */
5599 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5600 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_FS_REGNUM);
5601 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5602 break;
5603
5604 case 0x0fa9: /* pop gs */
5605 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5606 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
5607 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5608 break;
5609
5610 case 0x88: /* mov */
5611 case 0x89:
5612 case 0xc6:
5613 case 0xc7:
5614 if ((opcode & 1) == 0)
5615 ir.ot = OT_BYTE;
5616 else
5617 ir.ot = ir.dflag + OT_WORD;
5618
5619 if (i386_record_modrm (&ir))
5620 return -1;
5621
5622 if (ir.mod != 3)
5623 {
5624 if (opcode == 0xc6 || opcode == 0xc7)
5625 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5626 if (i386_record_lea_modrm (&ir))
5627 return -1;
5628 }
5629 else
5630 {
5631 if (opcode == 0xc6 || opcode == 0xc7)
5632 ir.rm |= ir.rex_b;
5633 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5634 ir.rm &= 0x3;
5635 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5636 }
5637 break;
5638
5639 case 0x8a: /* mov */
5640 case 0x8b:
5641 if ((opcode & 1) == 0)
5642 ir.ot = OT_BYTE;
5643 else
5644 ir.ot = ir.dflag + OT_WORD;
5645 if (i386_record_modrm (&ir))
5646 return -1;
5647 ir.reg |= rex_r;
5648 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5649 ir.reg &= 0x3;
5650 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5651 break;
5652
5653 case 0x8c: /* mov seg */
5654 if (i386_record_modrm (&ir))
5655 return -1;
5656 if (ir.reg > 5)
5657 {
5658 ir.addr -= 2;
5659 opcode = opcode << 8 | ir.modrm;
5660 goto no_support;
5661 }
5662
5663 if (ir.mod == 3)
5664 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5665 else
5666 {
5667 ir.ot = OT_WORD;
5668 if (i386_record_lea_modrm (&ir))
5669 return -1;
5670 }
5671 break;
5672
5673 case 0x8e: /* mov seg */
5674 if (i386_record_modrm (&ir))
5675 return -1;
5676 switch (ir.reg)
5677 {
5678 case 0:
5679 regnum = X86_RECORD_ES_REGNUM;
5680 break;
5681 case 2:
5682 regnum = X86_RECORD_SS_REGNUM;
5683 break;
5684 case 3:
5685 regnum = X86_RECORD_DS_REGNUM;
5686 break;
5687 case 4:
5688 regnum = X86_RECORD_FS_REGNUM;
5689 break;
5690 case 5:
5691 regnum = X86_RECORD_GS_REGNUM;
5692 break;
5693 default:
5694 ir.addr -= 2;
5695 opcode = opcode << 8 | ir.modrm;
5696 goto no_support;
5697 break;
5698 }
5699 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5700 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5701 break;
5702
5703 case 0x0fb6: /* movzbS */
5704 case 0x0fb7: /* movzwS */
5705 case 0x0fbe: /* movsbS */
5706 case 0x0fbf: /* movswS */
5707 if (i386_record_modrm (&ir))
5708 return -1;
5709 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5710 break;
5711
5712 case 0x8d: /* lea */
5713 if (i386_record_modrm (&ir))
5714 return -1;
5715 if (ir.mod == 3)
5716 {
5717 ir.addr -= 2;
5718 opcode = opcode << 8 | ir.modrm;
5719 goto no_support;
5720 }
5721 ir.ot = ir.dflag;
5722 ir.reg |= rex_r;
5723 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5724 ir.reg &= 0x3;
5725 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5726 break;
5727
5728 case 0xa0: /* mov EAX */
5729 case 0xa1:
5730
5731 case 0xd7: /* xlat */
5732 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5733 break;
5734
5735 case 0xa2: /* mov EAX */
5736 case 0xa3:
5737 if (ir.override >= 0)
5738 {
5739 if (record_full_memory_query)
5740 {
5741 int q;
5742
5743 target_terminal_ours ();
5744 q = yquery (_("\
5745 Process record ignores the memory change of instruction at address %s\n\
5746 because it can't get the value of the segment register.\n\
5747 Do you want to stop the program?"),
5748 paddress (gdbarch, ir.orig_addr));
5749 target_terminal_inferior ();
5750 if (q)
5751 return -1;
5752 }
5753 }
5754 else
5755 {
5756 if ((opcode & 1) == 0)
5757 ir.ot = OT_BYTE;
5758 else
5759 ir.ot = ir.dflag + OT_WORD;
5760 if (ir.aflag == 2)
5761 {
5762 if (record_read_memory (gdbarch, ir.addr, buf, 8))
5763 return -1;
5764 ir.addr += 8;
5765 addr = extract_unsigned_integer (buf, 8, byte_order);
5766 }
5767 else if (ir.aflag)
5768 {
5769 if (record_read_memory (gdbarch, ir.addr, buf, 4))
5770 return -1;
5771 ir.addr += 4;
5772 addr = extract_unsigned_integer (buf, 4, byte_order);
5773 }
5774 else
5775 {
5776 if (record_read_memory (gdbarch, ir.addr, buf, 2))
5777 return -1;
5778 ir.addr += 2;
5779 addr = extract_unsigned_integer (buf, 2, byte_order);
5780 }
5781 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
5782 return -1;
5783 }
5784 break;
5785
5786 case 0xb0: /* mov R, Ib */
5787 case 0xb1:
5788 case 0xb2:
5789 case 0xb3:
5790 case 0xb4:
5791 case 0xb5:
5792 case 0xb6:
5793 case 0xb7:
5794 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((ir.regmap[X86_RECORD_R8_REGNUM])
5795 ? ((opcode & 0x7) | ir.rex_b)
5796 : ((opcode & 0x7) & 0x3));
5797 break;
5798
5799 case 0xb8: /* mov R, Iv */
5800 case 0xb9:
5801 case 0xba:
5802 case 0xbb:
5803 case 0xbc:
5804 case 0xbd:
5805 case 0xbe:
5806 case 0xbf:
5807 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
5808 break;
5809
5810 case 0x91: /* xchg R, EAX */
5811 case 0x92:
5812 case 0x93:
5813 case 0x94:
5814 case 0x95:
5815 case 0x96:
5816 case 0x97:
5817 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5818 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 0x7);
5819 break;
5820
5821 case 0x86: /* xchg Ev, Gv */
5822 case 0x87:
5823 if ((opcode & 1) == 0)
5824 ir.ot = OT_BYTE;
5825 else
5826 ir.ot = ir.dflag + OT_WORD;
5827 if (i386_record_modrm (&ir))
5828 return -1;
5829 if (ir.mod == 3)
5830 {
5831 ir.rm |= ir.rex_b;
5832 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5833 ir.rm &= 0x3;
5834 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5835 }
5836 else
5837 {
5838 if (i386_record_lea_modrm (&ir))
5839 return -1;
5840 }
5841 ir.reg |= rex_r;
5842 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5843 ir.reg &= 0x3;
5844 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5845 break;
5846
5847 case 0xc4: /* les Gv */
5848 case 0xc5: /* lds Gv */
5849 if (ir.regmap[X86_RECORD_R8_REGNUM])
5850 {
5851 ir.addr -= 1;
5852 goto no_support;
5853 }
5854 /* FALLTHROUGH */
5855 case 0x0fb2: /* lss Gv */
5856 case 0x0fb4: /* lfs Gv */
5857 case 0x0fb5: /* lgs Gv */
5858 if (i386_record_modrm (&ir))
5859 return -1;
5860 if (ir.mod == 3)
5861 {
5862 if (opcode > 0xff)
5863 ir.addr -= 3;
5864 else
5865 ir.addr -= 2;
5866 opcode = opcode << 8 | ir.modrm;
5867 goto no_support;
5868 }
5869 switch (opcode)
5870 {
5871 case 0xc4: /* les Gv */
5872 regnum = X86_RECORD_ES_REGNUM;
5873 break;
5874 case 0xc5: /* lds Gv */
5875 regnum = X86_RECORD_DS_REGNUM;
5876 break;
5877 case 0x0fb2: /* lss Gv */
5878 regnum = X86_RECORD_SS_REGNUM;
5879 break;
5880 case 0x0fb4: /* lfs Gv */
5881 regnum = X86_RECORD_FS_REGNUM;
5882 break;
5883 case 0x0fb5: /* lgs Gv */
5884 regnum = X86_RECORD_GS_REGNUM;
5885 break;
5886 }
5887 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5888 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5889 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5890 break;
5891
5892 case 0xc0: /* shifts */
5893 case 0xc1:
5894 case 0xd0:
5895 case 0xd1:
5896 case 0xd2:
5897 case 0xd3:
5898 if ((opcode & 1) == 0)
5899 ir.ot = OT_BYTE;
5900 else
5901 ir.ot = ir.dflag + OT_WORD;
5902 if (i386_record_modrm (&ir))
5903 return -1;
5904 if (ir.mod != 3 && (opcode == 0xd2 || opcode == 0xd3))
5905 {
5906 if (i386_record_lea_modrm (&ir))
5907 return -1;
5908 }
5909 else
5910 {
5911 ir.rm |= ir.rex_b;
5912 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5913 ir.rm &= 0x3;
5914 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5915 }
5916 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5917 break;
5918
5919 case 0x0fa4:
5920 case 0x0fa5:
5921 case 0x0fac:
5922 case 0x0fad:
5923 if (i386_record_modrm (&ir))
5924 return -1;
5925 if (ir.mod == 3)
5926 {
5927 if (record_full_arch_list_add_reg (ir.regcache, ir.rm))
5928 return -1;
5929 }
5930 else
5931 {
5932 if (i386_record_lea_modrm (&ir))
5933 return -1;
5934 }
5935 break;
5936
5937 case 0xd8: /* Floats. */
5938 case 0xd9:
5939 case 0xda:
5940 case 0xdb:
5941 case 0xdc:
5942 case 0xdd:
5943 case 0xde:
5944 case 0xdf:
5945 if (i386_record_modrm (&ir))
5946 return -1;
5947 ir.reg |= ((opcode & 7) << 3);
5948 if (ir.mod != 3)
5949 {
5950 /* Memory. */
5951 uint64_t addr64;
5952
5953 if (i386_record_lea_modrm_addr (&ir, &addr64))
5954 return -1;
5955 switch (ir.reg)
5956 {
5957 case 0x02:
5958 case 0x12:
5959 case 0x22:
5960 case 0x32:
5961 /* For fcom, ficom nothing to do. */
5962 break;
5963 case 0x03:
5964 case 0x13:
5965 case 0x23:
5966 case 0x33:
5967 /* For fcomp, ficomp pop FPU stack, store all. */
5968 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5969 return -1;
5970 break;
5971 case 0x00:
5972 case 0x01:
5973 case 0x04:
5974 case 0x05:
5975 case 0x06:
5976 case 0x07:
5977 case 0x10:
5978 case 0x11:
5979 case 0x14:
5980 case 0x15:
5981 case 0x16:
5982 case 0x17:
5983 case 0x20:
5984 case 0x21:
5985 case 0x24:
5986 case 0x25:
5987 case 0x26:
5988 case 0x27:
5989 case 0x30:
5990 case 0x31:
5991 case 0x34:
5992 case 0x35:
5993 case 0x36:
5994 case 0x37:
5995 /* For fadd, fmul, fsub, fsubr, fdiv, fdivr, fiadd, fimul,
5996 fisub, fisubr, fidiv, fidivr, modR/M.reg is an extension
5997 of code, always affects st(0) register. */
5998 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
5999 return -1;
6000 break;
6001 case 0x08:
6002 case 0x0a:
6003 case 0x0b:
6004 case 0x18:
6005 case 0x19:
6006 case 0x1a:
6007 case 0x1b:
6008 case 0x1d:
6009 case 0x28:
6010 case 0x29:
6011 case 0x2a:
6012 case 0x2b:
6013 case 0x38:
6014 case 0x39:
6015 case 0x3a:
6016 case 0x3b:
6017 case 0x3c:
6018 case 0x3d:
6019 switch (ir.reg & 7)
6020 {
6021 case 0:
6022 /* Handling fld, fild. */
6023 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6024 return -1;
6025 break;
6026 case 1:
6027 switch (ir.reg >> 4)
6028 {
6029 case 0:
6030 if (record_full_arch_list_add_mem (addr64, 4))
6031 return -1;
6032 break;
6033 case 2:
6034 if (record_full_arch_list_add_mem (addr64, 8))
6035 return -1;
6036 break;
6037 case 3:
6038 break;
6039 default:
6040 if (record_full_arch_list_add_mem (addr64, 2))
6041 return -1;
6042 break;
6043 }
6044 break;
6045 default:
6046 switch (ir.reg >> 4)
6047 {
6048 case 0:
6049 if (record_full_arch_list_add_mem (addr64, 4))
6050 return -1;
6051 if (3 == (ir.reg & 7))
6052 {
6053 /* For fstp m32fp. */
6054 if (i386_record_floats (gdbarch, &ir,
6055 I386_SAVE_FPU_REGS))
6056 return -1;
6057 }
6058 break;
6059 case 1:
6060 if (record_full_arch_list_add_mem (addr64, 4))
6061 return -1;
6062 if ((3 == (ir.reg & 7))
6063 || (5 == (ir.reg & 7))
6064 || (7 == (ir.reg & 7)))
6065 {
6066 /* For fstp insn. */
6067 if (i386_record_floats (gdbarch, &ir,
6068 I386_SAVE_FPU_REGS))
6069 return -1;
6070 }
6071 break;
6072 case 2:
6073 if (record_full_arch_list_add_mem (addr64, 8))
6074 return -1;
6075 if (3 == (ir.reg & 7))
6076 {
6077 /* For fstp m64fp. */
6078 if (i386_record_floats (gdbarch, &ir,
6079 I386_SAVE_FPU_REGS))
6080 return -1;
6081 }
6082 break;
6083 case 3:
6084 if ((3 <= (ir.reg & 7)) && (6 <= (ir.reg & 7)))
6085 {
6086 /* For fistp, fbld, fild, fbstp. */
6087 if (i386_record_floats (gdbarch, &ir,
6088 I386_SAVE_FPU_REGS))
6089 return -1;
6090 }
6091 /* Fall through */
6092 default:
6093 if (record_full_arch_list_add_mem (addr64, 2))
6094 return -1;
6095 break;
6096 }
6097 break;
6098 }
6099 break;
6100 case 0x0c:
6101 /* Insn fldenv. */
6102 if (i386_record_floats (gdbarch, &ir,
6103 I386_SAVE_FPU_ENV_REG_STACK))
6104 return -1;
6105 break;
6106 case 0x0d:
6107 /* Insn fldcw. */
6108 if (i386_record_floats (gdbarch, &ir, I387_FCTRL_REGNUM (tdep)))
6109 return -1;
6110 break;
6111 case 0x2c:
6112 /* Insn frstor. */
6113 if (i386_record_floats (gdbarch, &ir,
6114 I386_SAVE_FPU_ENV_REG_STACK))
6115 return -1;
6116 break;
6117 case 0x0e:
6118 if (ir.dflag)
6119 {
6120 if (record_full_arch_list_add_mem (addr64, 28))
6121 return -1;
6122 }
6123 else
6124 {
6125 if (record_full_arch_list_add_mem (addr64, 14))
6126 return -1;
6127 }
6128 break;
6129 case 0x0f:
6130 case 0x2f:
6131 if (record_full_arch_list_add_mem (addr64, 2))
6132 return -1;
6133 /* Insn fstp, fbstp. */
6134 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6135 return -1;
6136 break;
6137 case 0x1f:
6138 case 0x3e:
6139 if (record_full_arch_list_add_mem (addr64, 10))
6140 return -1;
6141 break;
6142 case 0x2e:
6143 if (ir.dflag)
6144 {
6145 if (record_full_arch_list_add_mem (addr64, 28))
6146 return -1;
6147 addr64 += 28;
6148 }
6149 else
6150 {
6151 if (record_full_arch_list_add_mem (addr64, 14))
6152 return -1;
6153 addr64 += 14;
6154 }
6155 if (record_full_arch_list_add_mem (addr64, 80))
6156 return -1;
6157 /* Insn fsave. */
6158 if (i386_record_floats (gdbarch, &ir,
6159 I386_SAVE_FPU_ENV_REG_STACK))
6160 return -1;
6161 break;
6162 case 0x3f:
6163 if (record_full_arch_list_add_mem (addr64, 8))
6164 return -1;
6165 /* Insn fistp. */
6166 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6167 return -1;
6168 break;
6169 default:
6170 ir.addr -= 2;
6171 opcode = opcode << 8 | ir.modrm;
6172 goto no_support;
6173 break;
6174 }
6175 }
6176 /* Opcode is an extension of modR/M byte. */
6177 else
6178 {
6179 switch (opcode)
6180 {
6181 case 0xd8:
6182 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
6183 return -1;
6184 break;
6185 case 0xd9:
6186 if (0x0c == (ir.modrm >> 4))
6187 {
6188 if ((ir.modrm & 0x0f) <= 7)
6189 {
6190 if (i386_record_floats (gdbarch, &ir,
6191 I386_SAVE_FPU_REGS))
6192 return -1;
6193 }
6194 else
6195 {
6196 if (i386_record_floats (gdbarch, &ir,
6197 I387_ST0_REGNUM (tdep)))
6198 return -1;
6199 /* If only st(0) is changing, then we have already
6200 recorded. */
6201 if ((ir.modrm & 0x0f) - 0x08)
6202 {
6203 if (i386_record_floats (gdbarch, &ir,
6204 I387_ST0_REGNUM (tdep) +
6205 ((ir.modrm & 0x0f) - 0x08)))
6206 return -1;
6207 }
6208 }
6209 }
6210 else
6211 {
6212 switch (ir.modrm)
6213 {
6214 case 0xe0:
6215 case 0xe1:
6216 case 0xf0:
6217 case 0xf5:
6218 case 0xf8:
6219 case 0xfa:
6220 case 0xfc:
6221 case 0xfe:
6222 case 0xff:
6223 if (i386_record_floats (gdbarch, &ir,
6224 I387_ST0_REGNUM (tdep)))
6225 return -1;
6226 break;
6227 case 0xf1:
6228 case 0xf2:
6229 case 0xf3:
6230 case 0xf4:
6231 case 0xf6:
6232 case 0xf7:
6233 case 0xe8:
6234 case 0xe9:
6235 case 0xea:
6236 case 0xeb:
6237 case 0xec:
6238 case 0xed:
6239 case 0xee:
6240 case 0xf9:
6241 case 0xfb:
6242 if (i386_record_floats (gdbarch, &ir,
6243 I386_SAVE_FPU_REGS))
6244 return -1;
6245 break;
6246 case 0xfd:
6247 if (i386_record_floats (gdbarch, &ir,
6248 I387_ST0_REGNUM (tdep)))
6249 return -1;
6250 if (i386_record_floats (gdbarch, &ir,
6251 I387_ST0_REGNUM (tdep) + 1))
6252 return -1;
6253 break;
6254 }
6255 }
6256 break;
6257 case 0xda:
6258 if (0xe9 == ir.modrm)
6259 {
6260 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6261 return -1;
6262 }
6263 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
6264 {
6265 if (i386_record_floats (gdbarch, &ir,
6266 I387_ST0_REGNUM (tdep)))
6267 return -1;
6268 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
6269 {
6270 if (i386_record_floats (gdbarch, &ir,
6271 I387_ST0_REGNUM (tdep) +
6272 (ir.modrm & 0x0f)))
6273 return -1;
6274 }
6275 else if ((ir.modrm & 0x0f) - 0x08)
6276 {
6277 if (i386_record_floats (gdbarch, &ir,
6278 I387_ST0_REGNUM (tdep) +
6279 ((ir.modrm & 0x0f) - 0x08)))
6280 return -1;
6281 }
6282 }
6283 break;
6284 case 0xdb:
6285 if (0xe3 == ir.modrm)
6286 {
6287 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_ENV))
6288 return -1;
6289 }
6290 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
6291 {
6292 if (i386_record_floats (gdbarch, &ir,
6293 I387_ST0_REGNUM (tdep)))
6294 return -1;
6295 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
6296 {
6297 if (i386_record_floats (gdbarch, &ir,
6298 I387_ST0_REGNUM (tdep) +
6299 (ir.modrm & 0x0f)))
6300 return -1;
6301 }
6302 else if ((ir.modrm & 0x0f) - 0x08)
6303 {
6304 if (i386_record_floats (gdbarch, &ir,
6305 I387_ST0_REGNUM (tdep) +
6306 ((ir.modrm & 0x0f) - 0x08)))
6307 return -1;
6308 }
6309 }
6310 break;
6311 case 0xdc:
6312 if ((0x0c == ir.modrm >> 4)
6313 || (0x0d == ir.modrm >> 4)
6314 || (0x0f == ir.modrm >> 4))
6315 {
6316 if ((ir.modrm & 0x0f) <= 7)
6317 {
6318 if (i386_record_floats (gdbarch, &ir,
6319 I387_ST0_REGNUM (tdep) +
6320 (ir.modrm & 0x0f)))
6321 return -1;
6322 }
6323 else
6324 {
6325 if (i386_record_floats (gdbarch, &ir,
6326 I387_ST0_REGNUM (tdep) +
6327 ((ir.modrm & 0x0f) - 0x08)))
6328 return -1;
6329 }
6330 }
6331 break;
6332 case 0xdd:
6333 if (0x0c == ir.modrm >> 4)
6334 {
6335 if (i386_record_floats (gdbarch, &ir,
6336 I387_FTAG_REGNUM (tdep)))
6337 return -1;
6338 }
6339 else if ((0x0d == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
6340 {
6341 if ((ir.modrm & 0x0f) <= 7)
6342 {
6343 if (i386_record_floats (gdbarch, &ir,
6344 I387_ST0_REGNUM (tdep) +
6345 (ir.modrm & 0x0f)))
6346 return -1;
6347 }
6348 else
6349 {
6350 if (i386_record_floats (gdbarch, &ir,
6351 I386_SAVE_FPU_REGS))
6352 return -1;
6353 }
6354 }
6355 break;
6356 case 0xde:
6357 if ((0x0c == ir.modrm >> 4)
6358 || (0x0e == ir.modrm >> 4)
6359 || (0x0f == ir.modrm >> 4)
6360 || (0xd9 == ir.modrm))
6361 {
6362 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6363 return -1;
6364 }
6365 break;
6366 case 0xdf:
6367 if (0xe0 == ir.modrm)
6368 {
6369 if (record_full_arch_list_add_reg (ir.regcache,
6370 I386_EAX_REGNUM))
6371 return -1;
6372 }
6373 else if ((0x0f == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
6374 {
6375 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6376 return -1;
6377 }
6378 break;
6379 }
6380 }
6381 break;
6382 /* string ops */
6383 case 0xa4: /* movsS */
6384 case 0xa5:
6385 case 0xaa: /* stosS */
6386 case 0xab:
6387 case 0x6c: /* insS */
6388 case 0x6d:
6389 regcache_raw_read_unsigned (ir.regcache,
6390 ir.regmap[X86_RECORD_RECX_REGNUM],
6391 &addr);
6392 if (addr)
6393 {
6394 ULONGEST es, ds;
6395
6396 if ((opcode & 1) == 0)
6397 ir.ot = OT_BYTE;
6398 else
6399 ir.ot = ir.dflag + OT_WORD;
6400 regcache_raw_read_unsigned (ir.regcache,
6401 ir.regmap[X86_RECORD_REDI_REGNUM],
6402 &addr);
6403
6404 regcache_raw_read_unsigned (ir.regcache,
6405 ir.regmap[X86_RECORD_ES_REGNUM],
6406 &es);
6407 regcache_raw_read_unsigned (ir.regcache,
6408 ir.regmap[X86_RECORD_DS_REGNUM],
6409 &ds);
6410 if (ir.aflag && (es != ds))
6411 {
6412 /* addr += ((uint32_t) read_register (I386_ES_REGNUM)) << 4; */
6413 if (record_full_memory_query)
6414 {
6415 int q;
6416
6417 target_terminal_ours ();
6418 q = yquery (_("\
6419 Process record ignores the memory change of instruction at address %s\n\
6420 because it can't get the value of the segment register.\n\
6421 Do you want to stop the program?"),
6422 paddress (gdbarch, ir.orig_addr));
6423 target_terminal_inferior ();
6424 if (q)
6425 return -1;
6426 }
6427 }
6428 else
6429 {
6430 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
6431 return -1;
6432 }
6433
6434 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6435 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6436 if (opcode == 0xa4 || opcode == 0xa5)
6437 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6438 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6439 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6440 }
6441 break;
6442
6443 case 0xa6: /* cmpsS */
6444 case 0xa7:
6445 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6446 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6447 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6448 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6449 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6450 break;
6451
6452 case 0xac: /* lodsS */
6453 case 0xad:
6454 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6455 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6456 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6457 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6458 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6459 break;
6460
6461 case 0xae: /* scasS */
6462 case 0xaf:
6463 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6464 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6465 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6466 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6467 break;
6468
6469 case 0x6e: /* outsS */
6470 case 0x6f:
6471 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6472 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6473 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6474 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6475 break;
6476
6477 case 0xe4: /* port I/O */
6478 case 0xe5:
6479 case 0xec:
6480 case 0xed:
6481 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6482 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6483 break;
6484
6485 case 0xe6:
6486 case 0xe7:
6487 case 0xee:
6488 case 0xef:
6489 break;
6490
6491 /* control */
6492 case 0xc2: /* ret im */
6493 case 0xc3: /* ret */
6494 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6495 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6496 break;
6497
6498 case 0xca: /* lret im */
6499 case 0xcb: /* lret */
6500 case 0xcf: /* iret */
6501 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
6502 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6503 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6504 break;
6505
6506 case 0xe8: /* call im */
6507 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6508 ir.dflag = 2;
6509 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6510 return -1;
6511 break;
6512
6513 case 0x9a: /* lcall im */
6514 if (ir.regmap[X86_RECORD_R8_REGNUM])
6515 {
6516 ir.addr -= 1;
6517 goto no_support;
6518 }
6519 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
6520 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6521 return -1;
6522 break;
6523
6524 case 0xe9: /* jmp im */
6525 case 0xea: /* ljmp im */
6526 case 0xeb: /* jmp Jb */
6527 case 0x70: /* jcc Jb */
6528 case 0x71:
6529 case 0x72:
6530 case 0x73:
6531 case 0x74:
6532 case 0x75:
6533 case 0x76:
6534 case 0x77:
6535 case 0x78:
6536 case 0x79:
6537 case 0x7a:
6538 case 0x7b:
6539 case 0x7c:
6540 case 0x7d:
6541 case 0x7e:
6542 case 0x7f:
6543 case 0x0f80: /* jcc Jv */
6544 case 0x0f81:
6545 case 0x0f82:
6546 case 0x0f83:
6547 case 0x0f84:
6548 case 0x0f85:
6549 case 0x0f86:
6550 case 0x0f87:
6551 case 0x0f88:
6552 case 0x0f89:
6553 case 0x0f8a:
6554 case 0x0f8b:
6555 case 0x0f8c:
6556 case 0x0f8d:
6557 case 0x0f8e:
6558 case 0x0f8f:
6559 break;
6560
6561 case 0x0f90: /* setcc Gv */
6562 case 0x0f91:
6563 case 0x0f92:
6564 case 0x0f93:
6565 case 0x0f94:
6566 case 0x0f95:
6567 case 0x0f96:
6568 case 0x0f97:
6569 case 0x0f98:
6570 case 0x0f99:
6571 case 0x0f9a:
6572 case 0x0f9b:
6573 case 0x0f9c:
6574 case 0x0f9d:
6575 case 0x0f9e:
6576 case 0x0f9f:
6577 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6578 ir.ot = OT_BYTE;
6579 if (i386_record_modrm (&ir))
6580 return -1;
6581 if (ir.mod == 3)
6582 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rex_b ? (ir.rm | ir.rex_b)
6583 : (ir.rm & 0x3));
6584 else
6585 {
6586 if (i386_record_lea_modrm (&ir))
6587 return -1;
6588 }
6589 break;
6590
6591 case 0x0f40: /* cmov Gv, Ev */
6592 case 0x0f41:
6593 case 0x0f42:
6594 case 0x0f43:
6595 case 0x0f44:
6596 case 0x0f45:
6597 case 0x0f46:
6598 case 0x0f47:
6599 case 0x0f48:
6600 case 0x0f49:
6601 case 0x0f4a:
6602 case 0x0f4b:
6603 case 0x0f4c:
6604 case 0x0f4d:
6605 case 0x0f4e:
6606 case 0x0f4f:
6607 if (i386_record_modrm (&ir))
6608 return -1;
6609 ir.reg |= rex_r;
6610 if (ir.dflag == OT_BYTE)
6611 ir.reg &= 0x3;
6612 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
6613 break;
6614
6615 /* flags */
6616 case 0x9c: /* pushf */
6617 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6618 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6619 ir.dflag = 2;
6620 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6621 return -1;
6622 break;
6623
6624 case 0x9d: /* popf */
6625 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6626 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6627 break;
6628
6629 case 0x9e: /* sahf */
6630 if (ir.regmap[X86_RECORD_R8_REGNUM])
6631 {
6632 ir.addr -= 1;
6633 goto no_support;
6634 }
6635 /* FALLTHROUGH */
6636 case 0xf5: /* cmc */
6637 case 0xf8: /* clc */
6638 case 0xf9: /* stc */
6639 case 0xfc: /* cld */
6640 case 0xfd: /* std */
6641 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6642 break;
6643
6644 case 0x9f: /* lahf */
6645 if (ir.regmap[X86_RECORD_R8_REGNUM])
6646 {
6647 ir.addr -= 1;
6648 goto no_support;
6649 }
6650 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6651 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6652 break;
6653
6654 /* bit operations */
6655 case 0x0fba: /* bt/bts/btr/btc Gv, im */
6656 ir.ot = ir.dflag + OT_WORD;
6657 if (i386_record_modrm (&ir))
6658 return -1;
6659 if (ir.reg < 4)
6660 {
6661 ir.addr -= 2;
6662 opcode = opcode << 8 | ir.modrm;
6663 goto no_support;
6664 }
6665 if (ir.reg != 4)
6666 {
6667 if (ir.mod == 3)
6668 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6669 else
6670 {
6671 if (i386_record_lea_modrm (&ir))
6672 return -1;
6673 }
6674 }
6675 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6676 break;
6677
6678 case 0x0fa3: /* bt Gv, Ev */
6679 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6680 break;
6681
6682 case 0x0fab: /* bts */
6683 case 0x0fb3: /* btr */
6684 case 0x0fbb: /* btc */
6685 ir.ot = ir.dflag + OT_WORD;
6686 if (i386_record_modrm (&ir))
6687 return -1;
6688 if (ir.mod == 3)
6689 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6690 else
6691 {
6692 uint64_t addr64;
6693 if (i386_record_lea_modrm_addr (&ir, &addr64))
6694 return -1;
6695 regcache_raw_read_unsigned (ir.regcache,
6696 ir.regmap[ir.reg | rex_r],
6697 &addr);
6698 switch (ir.dflag)
6699 {
6700 case 0:
6701 addr64 += ((int16_t) addr >> 4) << 4;
6702 break;
6703 case 1:
6704 addr64 += ((int32_t) addr >> 5) << 5;
6705 break;
6706 case 2:
6707 addr64 += ((int64_t) addr >> 6) << 6;
6708 break;
6709 }
6710 if (record_full_arch_list_add_mem (addr64, 1 << ir.ot))
6711 return -1;
6712 if (i386_record_lea_modrm (&ir))
6713 return -1;
6714 }
6715 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6716 break;
6717
6718 case 0x0fbc: /* bsf */
6719 case 0x0fbd: /* bsr */
6720 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6721 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6722 break;
6723
6724 /* bcd */
6725 case 0x27: /* daa */
6726 case 0x2f: /* das */
6727 case 0x37: /* aaa */
6728 case 0x3f: /* aas */
6729 case 0xd4: /* aam */
6730 case 0xd5: /* aad */
6731 if (ir.regmap[X86_RECORD_R8_REGNUM])
6732 {
6733 ir.addr -= 1;
6734 goto no_support;
6735 }
6736 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6737 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6738 break;
6739
6740 /* misc */
6741 case 0x90: /* nop */
6742 if (prefixes & PREFIX_LOCK)
6743 {
6744 ir.addr -= 1;
6745 goto no_support;
6746 }
6747 break;
6748
6749 case 0x9b: /* fwait */
6750 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
6751 return -1;
6752 opcode = (uint32_t) opcode8;
6753 ir.addr++;
6754 goto reswitch;
6755 break;
6756
6757 /* XXX */
6758 case 0xcc: /* int3 */
6759 printf_unfiltered (_("Process record does not support instruction "
6760 "int3.\n"));
6761 ir.addr -= 1;
6762 goto no_support;
6763 break;
6764
6765 /* XXX */
6766 case 0xcd: /* int */
6767 {
6768 int ret;
6769 uint8_t interrupt;
6770 if (record_read_memory (gdbarch, ir.addr, &interrupt, 1))
6771 return -1;
6772 ir.addr++;
6773 if (interrupt != 0x80
6774 || tdep->i386_intx80_record == NULL)
6775 {
6776 printf_unfiltered (_("Process record does not support "
6777 "instruction int 0x%02x.\n"),
6778 interrupt);
6779 ir.addr -= 2;
6780 goto no_support;
6781 }
6782 ret = tdep->i386_intx80_record (ir.regcache);
6783 if (ret)
6784 return ret;
6785 }
6786 break;
6787
6788 /* XXX */
6789 case 0xce: /* into */
6790 printf_unfiltered (_("Process record does not support "
6791 "instruction into.\n"));
6792 ir.addr -= 1;
6793 goto no_support;
6794 break;
6795
6796 case 0xfa: /* cli */
6797 case 0xfb: /* sti */
6798 break;
6799
6800 case 0x62: /* bound */
6801 printf_unfiltered (_("Process record does not support "
6802 "instruction bound.\n"));
6803 ir.addr -= 1;
6804 goto no_support;
6805 break;
6806
6807 case 0x0fc8: /* bswap reg */
6808 case 0x0fc9:
6809 case 0x0fca:
6810 case 0x0fcb:
6811 case 0x0fcc:
6812 case 0x0fcd:
6813 case 0x0fce:
6814 case 0x0fcf:
6815 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 7) | ir.rex_b);
6816 break;
6817
6818 case 0xd6: /* salc */
6819 if (ir.regmap[X86_RECORD_R8_REGNUM])
6820 {
6821 ir.addr -= 1;
6822 goto no_support;
6823 }
6824 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6825 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6826 break;
6827
6828 case 0xe0: /* loopnz */
6829 case 0xe1: /* loopz */
6830 case 0xe2: /* loop */
6831 case 0xe3: /* jecxz */
6832 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6833 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6834 break;
6835
6836 case 0x0f30: /* wrmsr */
6837 printf_unfiltered (_("Process record does not support "
6838 "instruction wrmsr.\n"));
6839 ir.addr -= 2;
6840 goto no_support;
6841 break;
6842
6843 case 0x0f32: /* rdmsr */
6844 printf_unfiltered (_("Process record does not support "
6845 "instruction rdmsr.\n"));
6846 ir.addr -= 2;
6847 goto no_support;
6848 break;
6849
6850 case 0x0f31: /* rdtsc */
6851 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6852 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6853 break;
6854
6855 case 0x0f34: /* sysenter */
6856 {
6857 int ret;
6858 if (ir.regmap[X86_RECORD_R8_REGNUM])
6859 {
6860 ir.addr -= 2;
6861 goto no_support;
6862 }
6863 if (tdep->i386_sysenter_record == NULL)
6864 {
6865 printf_unfiltered (_("Process record does not support "
6866 "instruction sysenter.\n"));
6867 ir.addr -= 2;
6868 goto no_support;
6869 }
6870 ret = tdep->i386_sysenter_record (ir.regcache);
6871 if (ret)
6872 return ret;
6873 }
6874 break;
6875
6876 case 0x0f35: /* sysexit */
6877 printf_unfiltered (_("Process record does not support "
6878 "instruction sysexit.\n"));
6879 ir.addr -= 2;
6880 goto no_support;
6881 break;
6882
6883 case 0x0f05: /* syscall */
6884 {
6885 int ret;
6886 if (tdep->i386_syscall_record == NULL)
6887 {
6888 printf_unfiltered (_("Process record does not support "
6889 "instruction syscall.\n"));
6890 ir.addr -= 2;
6891 goto no_support;
6892 }
6893 ret = tdep->i386_syscall_record (ir.regcache);
6894 if (ret)
6895 return ret;
6896 }
6897 break;
6898
6899 case 0x0f07: /* sysret */
6900 printf_unfiltered (_("Process record does not support "
6901 "instruction sysret.\n"));
6902 ir.addr -= 2;
6903 goto no_support;
6904 break;
6905
6906 case 0x0fa2: /* cpuid */
6907 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6908 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6909 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6910 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
6911 break;
6912
6913 case 0xf4: /* hlt */
6914 printf_unfiltered (_("Process record does not support "
6915 "instruction hlt.\n"));
6916 ir.addr -= 1;
6917 goto no_support;
6918 break;
6919
6920 case 0x0f00:
6921 if (i386_record_modrm (&ir))
6922 return -1;
6923 switch (ir.reg)
6924 {
6925 case 0: /* sldt */
6926 case 1: /* str */
6927 if (ir.mod == 3)
6928 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6929 else
6930 {
6931 ir.ot = OT_WORD;
6932 if (i386_record_lea_modrm (&ir))
6933 return -1;
6934 }
6935 break;
6936 case 2: /* lldt */
6937 case 3: /* ltr */
6938 break;
6939 case 4: /* verr */
6940 case 5: /* verw */
6941 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6942 break;
6943 default:
6944 ir.addr -= 3;
6945 opcode = opcode << 8 | ir.modrm;
6946 goto no_support;
6947 break;
6948 }
6949 break;
6950
6951 case 0x0f01:
6952 if (i386_record_modrm (&ir))
6953 return -1;
6954 switch (ir.reg)
6955 {
6956 case 0: /* sgdt */
6957 {
6958 uint64_t addr64;
6959
6960 if (ir.mod == 3)
6961 {
6962 ir.addr -= 3;
6963 opcode = opcode << 8 | ir.modrm;
6964 goto no_support;
6965 }
6966 if (ir.override >= 0)
6967 {
6968 if (record_full_memory_query)
6969 {
6970 int q;
6971
6972 target_terminal_ours ();
6973 q = yquery (_("\
6974 Process record ignores the memory change of instruction at address %s\n\
6975 because it can't get the value of the segment register.\n\
6976 Do you want to stop the program?"),
6977 paddress (gdbarch, ir.orig_addr));
6978 target_terminal_inferior ();
6979 if (q)
6980 return -1;
6981 }
6982 }
6983 else
6984 {
6985 if (i386_record_lea_modrm_addr (&ir, &addr64))
6986 return -1;
6987 if (record_full_arch_list_add_mem (addr64, 2))
6988 return -1;
6989 addr64 += 2;
6990 if (ir.regmap[X86_RECORD_R8_REGNUM])
6991 {
6992 if (record_full_arch_list_add_mem (addr64, 8))
6993 return -1;
6994 }
6995 else
6996 {
6997 if (record_full_arch_list_add_mem (addr64, 4))
6998 return -1;
6999 }
7000 }
7001 }
7002 break;
7003 case 1:
7004 if (ir.mod == 3)
7005 {
7006 switch (ir.rm)
7007 {
7008 case 0: /* monitor */
7009 break;
7010 case 1: /* mwait */
7011 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7012 break;
7013 default:
7014 ir.addr -= 3;
7015 opcode = opcode << 8 | ir.modrm;
7016 goto no_support;
7017 break;
7018 }
7019 }
7020 else
7021 {
7022 /* sidt */
7023 if (ir.override >= 0)
7024 {
7025 if (record_full_memory_query)
7026 {
7027 int q;
7028
7029 target_terminal_ours ();
7030 q = yquery (_("\
7031 Process record ignores the memory change of instruction at address %s\n\
7032 because it can't get the value of the segment register.\n\
7033 Do you want to stop the program?"),
7034 paddress (gdbarch, ir.orig_addr));
7035 target_terminal_inferior ();
7036 if (q)
7037 return -1;
7038 }
7039 }
7040 else
7041 {
7042 uint64_t addr64;
7043
7044 if (i386_record_lea_modrm_addr (&ir, &addr64))
7045 return -1;
7046 if (record_full_arch_list_add_mem (addr64, 2))
7047 return -1;
7048 addr64 += 2;
7049 if (ir.regmap[X86_RECORD_R8_REGNUM])
7050 {
7051 if (record_full_arch_list_add_mem (addr64, 8))
7052 return -1;
7053 }
7054 else
7055 {
7056 if (record_full_arch_list_add_mem (addr64, 4))
7057 return -1;
7058 }
7059 }
7060 }
7061 break;
7062 case 2: /* lgdt */
7063 if (ir.mod == 3)
7064 {
7065 /* xgetbv */
7066 if (ir.rm == 0)
7067 {
7068 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7069 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7070 break;
7071 }
7072 /* xsetbv */
7073 else if (ir.rm == 1)
7074 break;
7075 }
7076 case 3: /* lidt */
7077 if (ir.mod == 3)
7078 {
7079 ir.addr -= 3;
7080 opcode = opcode << 8 | ir.modrm;
7081 goto no_support;
7082 }
7083 break;
7084 case 4: /* smsw */
7085 if (ir.mod == 3)
7086 {
7087 if (record_full_arch_list_add_reg (ir.regcache, ir.rm | ir.rex_b))
7088 return -1;
7089 }
7090 else
7091 {
7092 ir.ot = OT_WORD;
7093 if (i386_record_lea_modrm (&ir))
7094 return -1;
7095 }
7096 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7097 break;
7098 case 6: /* lmsw */
7099 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7100 break;
7101 case 7: /* invlpg */
7102 if (ir.mod == 3)
7103 {
7104 if (ir.rm == 0 && ir.regmap[X86_RECORD_R8_REGNUM])
7105 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
7106 else
7107 {
7108 ir.addr -= 3;
7109 opcode = opcode << 8 | ir.modrm;
7110 goto no_support;
7111 }
7112 }
7113 else
7114 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7115 break;
7116 default:
7117 ir.addr -= 3;
7118 opcode = opcode << 8 | ir.modrm;
7119 goto no_support;
7120 break;
7121 }
7122 break;
7123
7124 case 0x0f08: /* invd */
7125 case 0x0f09: /* wbinvd */
7126 break;
7127
7128 case 0x63: /* arpl */
7129 if (i386_record_modrm (&ir))
7130 return -1;
7131 if (ir.mod == 3 || ir.regmap[X86_RECORD_R8_REGNUM])
7132 {
7133 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.regmap[X86_RECORD_R8_REGNUM]
7134 ? (ir.reg | rex_r) : ir.rm);
7135 }
7136 else
7137 {
7138 ir.ot = ir.dflag ? OT_LONG : OT_WORD;
7139 if (i386_record_lea_modrm (&ir))
7140 return -1;
7141 }
7142 if (!ir.regmap[X86_RECORD_R8_REGNUM])
7143 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7144 break;
7145
7146 case 0x0f02: /* lar */
7147 case 0x0f03: /* lsl */
7148 if (i386_record_modrm (&ir))
7149 return -1;
7150 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7151 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7152 break;
7153
7154 case 0x0f18:
7155 if (i386_record_modrm (&ir))
7156 return -1;
7157 if (ir.mod == 3 && ir.reg == 3)
7158 {
7159 ir.addr -= 3;
7160 opcode = opcode << 8 | ir.modrm;
7161 goto no_support;
7162 }
7163 break;
7164
7165 case 0x0f19:
7166 case 0x0f1a:
7167 case 0x0f1b:
7168 case 0x0f1c:
7169 case 0x0f1d:
7170 case 0x0f1e:
7171 case 0x0f1f:
7172 /* nop (multi byte) */
7173 break;
7174
7175 case 0x0f20: /* mov reg, crN */
7176 case 0x0f22: /* mov crN, reg */
7177 if (i386_record_modrm (&ir))
7178 return -1;
7179 if ((ir.modrm & 0xc0) != 0xc0)
7180 {
7181 ir.addr -= 3;
7182 opcode = opcode << 8 | ir.modrm;
7183 goto no_support;
7184 }
7185 switch (ir.reg)
7186 {
7187 case 0:
7188 case 2:
7189 case 3:
7190 case 4:
7191 case 8:
7192 if (opcode & 2)
7193 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7194 else
7195 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7196 break;
7197 default:
7198 ir.addr -= 3;
7199 opcode = opcode << 8 | ir.modrm;
7200 goto no_support;
7201 break;
7202 }
7203 break;
7204
7205 case 0x0f21: /* mov reg, drN */
7206 case 0x0f23: /* mov drN, reg */
7207 if (i386_record_modrm (&ir))
7208 return -1;
7209 if ((ir.modrm & 0xc0) != 0xc0 || ir.reg == 4
7210 || ir.reg == 5 || ir.reg >= 8)
7211 {
7212 ir.addr -= 3;
7213 opcode = opcode << 8 | ir.modrm;
7214 goto no_support;
7215 }
7216 if (opcode & 2)
7217 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7218 else
7219 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7220 break;
7221
7222 case 0x0f06: /* clts */
7223 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7224 break;
7225
7226 /* MMX 3DNow! SSE SSE2 SSE3 SSSE3 SSE4 */
7227
7228 case 0x0f0d: /* 3DNow! prefetch */
7229 break;
7230
7231 case 0x0f0e: /* 3DNow! femms */
7232 case 0x0f77: /* emms */
7233 if (i386_fpc_regnum_p (gdbarch, I387_FTAG_REGNUM(tdep)))
7234 goto no_support;
7235 record_full_arch_list_add_reg (ir.regcache, I387_FTAG_REGNUM(tdep));
7236 break;
7237
7238 case 0x0f0f: /* 3DNow! data */
7239 if (i386_record_modrm (&ir))
7240 return -1;
7241 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
7242 return -1;
7243 ir.addr++;
7244 switch (opcode8)
7245 {
7246 case 0x0c: /* 3DNow! pi2fw */
7247 case 0x0d: /* 3DNow! pi2fd */
7248 case 0x1c: /* 3DNow! pf2iw */
7249 case 0x1d: /* 3DNow! pf2id */
7250 case 0x8a: /* 3DNow! pfnacc */
7251 case 0x8e: /* 3DNow! pfpnacc */
7252 case 0x90: /* 3DNow! pfcmpge */
7253 case 0x94: /* 3DNow! pfmin */
7254 case 0x96: /* 3DNow! pfrcp */
7255 case 0x97: /* 3DNow! pfrsqrt */
7256 case 0x9a: /* 3DNow! pfsub */
7257 case 0x9e: /* 3DNow! pfadd */
7258 case 0xa0: /* 3DNow! pfcmpgt */
7259 case 0xa4: /* 3DNow! pfmax */
7260 case 0xa6: /* 3DNow! pfrcpit1 */
7261 case 0xa7: /* 3DNow! pfrsqit1 */
7262 case 0xaa: /* 3DNow! pfsubr */
7263 case 0xae: /* 3DNow! pfacc */
7264 case 0xb0: /* 3DNow! pfcmpeq */
7265 case 0xb4: /* 3DNow! pfmul */
7266 case 0xb6: /* 3DNow! pfrcpit2 */
7267 case 0xb7: /* 3DNow! pmulhrw */
7268 case 0xbb: /* 3DNow! pswapd */
7269 case 0xbf: /* 3DNow! pavgusb */
7270 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7271 goto no_support_3dnow_data;
7272 record_full_arch_list_add_reg (ir.regcache, ir.reg);
7273 break;
7274
7275 default:
7276 no_support_3dnow_data:
7277 opcode = (opcode << 8) | opcode8;
7278 goto no_support;
7279 break;
7280 }
7281 break;
7282
7283 case 0x0faa: /* rsm */
7284 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7285 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7286 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
7287 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7288 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
7289 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
7290 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
7291 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
7292 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
7293 break;
7294
7295 case 0x0fae:
7296 if (i386_record_modrm (&ir))
7297 return -1;
7298 switch(ir.reg)
7299 {
7300 case 0: /* fxsave */
7301 {
7302 uint64_t tmpu64;
7303
7304 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7305 if (i386_record_lea_modrm_addr (&ir, &tmpu64))
7306 return -1;
7307 if (record_full_arch_list_add_mem (tmpu64, 512))
7308 return -1;
7309 }
7310 break;
7311
7312 case 1: /* fxrstor */
7313 {
7314 int i;
7315
7316 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7317
7318 for (i = I387_MM0_REGNUM (tdep);
7319 i386_mmx_regnum_p (gdbarch, i); i++)
7320 record_full_arch_list_add_reg (ir.regcache, i);
7321
7322 for (i = I387_XMM0_REGNUM (tdep);
7323 i386_xmm_regnum_p (gdbarch, i); i++)
7324 record_full_arch_list_add_reg (ir.regcache, i);
7325
7326 if (i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
7327 record_full_arch_list_add_reg (ir.regcache,
7328 I387_MXCSR_REGNUM(tdep));
7329
7330 for (i = I387_ST0_REGNUM (tdep);
7331 i386_fp_regnum_p (gdbarch, i); i++)
7332 record_full_arch_list_add_reg (ir.regcache, i);
7333
7334 for (i = I387_FCTRL_REGNUM (tdep);
7335 i386_fpc_regnum_p (gdbarch, i); i++)
7336 record_full_arch_list_add_reg (ir.regcache, i);
7337 }
7338 break;
7339
7340 case 2: /* ldmxcsr */
7341 if (!i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
7342 goto no_support;
7343 record_full_arch_list_add_reg (ir.regcache, I387_MXCSR_REGNUM(tdep));
7344 break;
7345
7346 case 3: /* stmxcsr */
7347 ir.ot = OT_LONG;
7348 if (i386_record_lea_modrm (&ir))
7349 return -1;
7350 break;
7351
7352 case 5: /* lfence */
7353 case 6: /* mfence */
7354 case 7: /* sfence clflush */
7355 break;
7356
7357 default:
7358 opcode = (opcode << 8) | ir.modrm;
7359 goto no_support;
7360 break;
7361 }
7362 break;
7363
7364 case 0x0fc3: /* movnti */
7365 ir.ot = (ir.dflag == 2) ? OT_QUAD : OT_LONG;
7366 if (i386_record_modrm (&ir))
7367 return -1;
7368 if (ir.mod == 3)
7369 goto no_support;
7370 ir.reg |= rex_r;
7371 if (i386_record_lea_modrm (&ir))
7372 return -1;
7373 break;
7374
7375 /* Add prefix to opcode. */
7376 case 0x0f10:
7377 case 0x0f11:
7378 case 0x0f12:
7379 case 0x0f13:
7380 case 0x0f14:
7381 case 0x0f15:
7382 case 0x0f16:
7383 case 0x0f17:
7384 case 0x0f28:
7385 case 0x0f29:
7386 case 0x0f2a:
7387 case 0x0f2b:
7388 case 0x0f2c:
7389 case 0x0f2d:
7390 case 0x0f2e:
7391 case 0x0f2f:
7392 case 0x0f38:
7393 case 0x0f39:
7394 case 0x0f3a:
7395 case 0x0f50:
7396 case 0x0f51:
7397 case 0x0f52:
7398 case 0x0f53:
7399 case 0x0f54:
7400 case 0x0f55:
7401 case 0x0f56:
7402 case 0x0f57:
7403 case 0x0f58:
7404 case 0x0f59:
7405 case 0x0f5a:
7406 case 0x0f5b:
7407 case 0x0f5c:
7408 case 0x0f5d:
7409 case 0x0f5e:
7410 case 0x0f5f:
7411 case 0x0f60:
7412 case 0x0f61:
7413 case 0x0f62:
7414 case 0x0f63:
7415 case 0x0f64:
7416 case 0x0f65:
7417 case 0x0f66:
7418 case 0x0f67:
7419 case 0x0f68:
7420 case 0x0f69:
7421 case 0x0f6a:
7422 case 0x0f6b:
7423 case 0x0f6c:
7424 case 0x0f6d:
7425 case 0x0f6e:
7426 case 0x0f6f:
7427 case 0x0f70:
7428 case 0x0f71:
7429 case 0x0f72:
7430 case 0x0f73:
7431 case 0x0f74:
7432 case 0x0f75:
7433 case 0x0f76:
7434 case 0x0f7c:
7435 case 0x0f7d:
7436 case 0x0f7e:
7437 case 0x0f7f:
7438 case 0x0fb8:
7439 case 0x0fc2:
7440 case 0x0fc4:
7441 case 0x0fc5:
7442 case 0x0fc6:
7443 case 0x0fd0:
7444 case 0x0fd1:
7445 case 0x0fd2:
7446 case 0x0fd3:
7447 case 0x0fd4:
7448 case 0x0fd5:
7449 case 0x0fd6:
7450 case 0x0fd7:
7451 case 0x0fd8:
7452 case 0x0fd9:
7453 case 0x0fda:
7454 case 0x0fdb:
7455 case 0x0fdc:
7456 case 0x0fdd:
7457 case 0x0fde:
7458 case 0x0fdf:
7459 case 0x0fe0:
7460 case 0x0fe1:
7461 case 0x0fe2:
7462 case 0x0fe3:
7463 case 0x0fe4:
7464 case 0x0fe5:
7465 case 0x0fe6:
7466 case 0x0fe7:
7467 case 0x0fe8:
7468 case 0x0fe9:
7469 case 0x0fea:
7470 case 0x0feb:
7471 case 0x0fec:
7472 case 0x0fed:
7473 case 0x0fee:
7474 case 0x0fef:
7475 case 0x0ff0:
7476 case 0x0ff1:
7477 case 0x0ff2:
7478 case 0x0ff3:
7479 case 0x0ff4:
7480 case 0x0ff5:
7481 case 0x0ff6:
7482 case 0x0ff7:
7483 case 0x0ff8:
7484 case 0x0ff9:
7485 case 0x0ffa:
7486 case 0x0ffb:
7487 case 0x0ffc:
7488 case 0x0ffd:
7489 case 0x0ffe:
7490 /* Mask out PREFIX_ADDR. */
7491 switch ((prefixes & ~PREFIX_ADDR))
7492 {
7493 case PREFIX_REPNZ:
7494 opcode |= 0xf20000;
7495 break;
7496 case PREFIX_DATA:
7497 opcode |= 0x660000;
7498 break;
7499 case PREFIX_REPZ:
7500 opcode |= 0xf30000;
7501 break;
7502 }
7503 reswitch_prefix_add:
7504 switch (opcode)
7505 {
7506 case 0x0f38:
7507 case 0x660f38:
7508 case 0xf20f38:
7509 case 0x0f3a:
7510 case 0x660f3a:
7511 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
7512 return -1;
7513 ir.addr++;
7514 opcode = (uint32_t) opcode8 | opcode << 8;
7515 goto reswitch_prefix_add;
7516 break;
7517
7518 case 0x0f10: /* movups */
7519 case 0x660f10: /* movupd */
7520 case 0xf30f10: /* movss */
7521 case 0xf20f10: /* movsd */
7522 case 0x0f12: /* movlps */
7523 case 0x660f12: /* movlpd */
7524 case 0xf30f12: /* movsldup */
7525 case 0xf20f12: /* movddup */
7526 case 0x0f14: /* unpcklps */
7527 case 0x660f14: /* unpcklpd */
7528 case 0x0f15: /* unpckhps */
7529 case 0x660f15: /* unpckhpd */
7530 case 0x0f16: /* movhps */
7531 case 0x660f16: /* movhpd */
7532 case 0xf30f16: /* movshdup */
7533 case 0x0f28: /* movaps */
7534 case 0x660f28: /* movapd */
7535 case 0x0f2a: /* cvtpi2ps */
7536 case 0x660f2a: /* cvtpi2pd */
7537 case 0xf30f2a: /* cvtsi2ss */
7538 case 0xf20f2a: /* cvtsi2sd */
7539 case 0x0f2c: /* cvttps2pi */
7540 case 0x660f2c: /* cvttpd2pi */
7541 case 0x0f2d: /* cvtps2pi */
7542 case 0x660f2d: /* cvtpd2pi */
7543 case 0x660f3800: /* pshufb */
7544 case 0x660f3801: /* phaddw */
7545 case 0x660f3802: /* phaddd */
7546 case 0x660f3803: /* phaddsw */
7547 case 0x660f3804: /* pmaddubsw */
7548 case 0x660f3805: /* phsubw */
7549 case 0x660f3806: /* phsubd */
7550 case 0x660f3807: /* phsubsw */
7551 case 0x660f3808: /* psignb */
7552 case 0x660f3809: /* psignw */
7553 case 0x660f380a: /* psignd */
7554 case 0x660f380b: /* pmulhrsw */
7555 case 0x660f3810: /* pblendvb */
7556 case 0x660f3814: /* blendvps */
7557 case 0x660f3815: /* blendvpd */
7558 case 0x660f381c: /* pabsb */
7559 case 0x660f381d: /* pabsw */
7560 case 0x660f381e: /* pabsd */
7561 case 0x660f3820: /* pmovsxbw */
7562 case 0x660f3821: /* pmovsxbd */
7563 case 0x660f3822: /* pmovsxbq */
7564 case 0x660f3823: /* pmovsxwd */
7565 case 0x660f3824: /* pmovsxwq */
7566 case 0x660f3825: /* pmovsxdq */
7567 case 0x660f3828: /* pmuldq */
7568 case 0x660f3829: /* pcmpeqq */
7569 case 0x660f382a: /* movntdqa */
7570 case 0x660f3a08: /* roundps */
7571 case 0x660f3a09: /* roundpd */
7572 case 0x660f3a0a: /* roundss */
7573 case 0x660f3a0b: /* roundsd */
7574 case 0x660f3a0c: /* blendps */
7575 case 0x660f3a0d: /* blendpd */
7576 case 0x660f3a0e: /* pblendw */
7577 case 0x660f3a0f: /* palignr */
7578 case 0x660f3a20: /* pinsrb */
7579 case 0x660f3a21: /* insertps */
7580 case 0x660f3a22: /* pinsrd pinsrq */
7581 case 0x660f3a40: /* dpps */
7582 case 0x660f3a41: /* dppd */
7583 case 0x660f3a42: /* mpsadbw */
7584 case 0x660f3a60: /* pcmpestrm */
7585 case 0x660f3a61: /* pcmpestri */
7586 case 0x660f3a62: /* pcmpistrm */
7587 case 0x660f3a63: /* pcmpistri */
7588 case 0x0f51: /* sqrtps */
7589 case 0x660f51: /* sqrtpd */
7590 case 0xf20f51: /* sqrtsd */
7591 case 0xf30f51: /* sqrtss */
7592 case 0x0f52: /* rsqrtps */
7593 case 0xf30f52: /* rsqrtss */
7594 case 0x0f53: /* rcpps */
7595 case 0xf30f53: /* rcpss */
7596 case 0x0f54: /* andps */
7597 case 0x660f54: /* andpd */
7598 case 0x0f55: /* andnps */
7599 case 0x660f55: /* andnpd */
7600 case 0x0f56: /* orps */
7601 case 0x660f56: /* orpd */
7602 case 0x0f57: /* xorps */
7603 case 0x660f57: /* xorpd */
7604 case 0x0f58: /* addps */
7605 case 0x660f58: /* addpd */
7606 case 0xf20f58: /* addsd */
7607 case 0xf30f58: /* addss */
7608 case 0x0f59: /* mulps */
7609 case 0x660f59: /* mulpd */
7610 case 0xf20f59: /* mulsd */
7611 case 0xf30f59: /* mulss */
7612 case 0x0f5a: /* cvtps2pd */
7613 case 0x660f5a: /* cvtpd2ps */
7614 case 0xf20f5a: /* cvtsd2ss */
7615 case 0xf30f5a: /* cvtss2sd */
7616 case 0x0f5b: /* cvtdq2ps */
7617 case 0x660f5b: /* cvtps2dq */
7618 case 0xf30f5b: /* cvttps2dq */
7619 case 0x0f5c: /* subps */
7620 case 0x660f5c: /* subpd */
7621 case 0xf20f5c: /* subsd */
7622 case 0xf30f5c: /* subss */
7623 case 0x0f5d: /* minps */
7624 case 0x660f5d: /* minpd */
7625 case 0xf20f5d: /* minsd */
7626 case 0xf30f5d: /* minss */
7627 case 0x0f5e: /* divps */
7628 case 0x660f5e: /* divpd */
7629 case 0xf20f5e: /* divsd */
7630 case 0xf30f5e: /* divss */
7631 case 0x0f5f: /* maxps */
7632 case 0x660f5f: /* maxpd */
7633 case 0xf20f5f: /* maxsd */
7634 case 0xf30f5f: /* maxss */
7635 case 0x660f60: /* punpcklbw */
7636 case 0x660f61: /* punpcklwd */
7637 case 0x660f62: /* punpckldq */
7638 case 0x660f63: /* packsswb */
7639 case 0x660f64: /* pcmpgtb */
7640 case 0x660f65: /* pcmpgtw */
7641 case 0x660f66: /* pcmpgtd */
7642 case 0x660f67: /* packuswb */
7643 case 0x660f68: /* punpckhbw */
7644 case 0x660f69: /* punpckhwd */
7645 case 0x660f6a: /* punpckhdq */
7646 case 0x660f6b: /* packssdw */
7647 case 0x660f6c: /* punpcklqdq */
7648 case 0x660f6d: /* punpckhqdq */
7649 case 0x660f6e: /* movd */
7650 case 0x660f6f: /* movdqa */
7651 case 0xf30f6f: /* movdqu */
7652 case 0x660f70: /* pshufd */
7653 case 0xf20f70: /* pshuflw */
7654 case 0xf30f70: /* pshufhw */
7655 case 0x660f74: /* pcmpeqb */
7656 case 0x660f75: /* pcmpeqw */
7657 case 0x660f76: /* pcmpeqd */
7658 case 0x660f7c: /* haddpd */
7659 case 0xf20f7c: /* haddps */
7660 case 0x660f7d: /* hsubpd */
7661 case 0xf20f7d: /* hsubps */
7662 case 0xf30f7e: /* movq */
7663 case 0x0fc2: /* cmpps */
7664 case 0x660fc2: /* cmppd */
7665 case 0xf20fc2: /* cmpsd */
7666 case 0xf30fc2: /* cmpss */
7667 case 0x660fc4: /* pinsrw */
7668 case 0x0fc6: /* shufps */
7669 case 0x660fc6: /* shufpd */
7670 case 0x660fd0: /* addsubpd */
7671 case 0xf20fd0: /* addsubps */
7672 case 0x660fd1: /* psrlw */
7673 case 0x660fd2: /* psrld */
7674 case 0x660fd3: /* psrlq */
7675 case 0x660fd4: /* paddq */
7676 case 0x660fd5: /* pmullw */
7677 case 0xf30fd6: /* movq2dq */
7678 case 0x660fd8: /* psubusb */
7679 case 0x660fd9: /* psubusw */
7680 case 0x660fda: /* pminub */
7681 case 0x660fdb: /* pand */
7682 case 0x660fdc: /* paddusb */
7683 case 0x660fdd: /* paddusw */
7684 case 0x660fde: /* pmaxub */
7685 case 0x660fdf: /* pandn */
7686 case 0x660fe0: /* pavgb */
7687 case 0x660fe1: /* psraw */
7688 case 0x660fe2: /* psrad */
7689 case 0x660fe3: /* pavgw */
7690 case 0x660fe4: /* pmulhuw */
7691 case 0x660fe5: /* pmulhw */
7692 case 0x660fe6: /* cvttpd2dq */
7693 case 0xf20fe6: /* cvtpd2dq */
7694 case 0xf30fe6: /* cvtdq2pd */
7695 case 0x660fe8: /* psubsb */
7696 case 0x660fe9: /* psubsw */
7697 case 0x660fea: /* pminsw */
7698 case 0x660feb: /* por */
7699 case 0x660fec: /* paddsb */
7700 case 0x660fed: /* paddsw */
7701 case 0x660fee: /* pmaxsw */
7702 case 0x660fef: /* pxor */
7703 case 0xf20ff0: /* lddqu */
7704 case 0x660ff1: /* psllw */
7705 case 0x660ff2: /* pslld */
7706 case 0x660ff3: /* psllq */
7707 case 0x660ff4: /* pmuludq */
7708 case 0x660ff5: /* pmaddwd */
7709 case 0x660ff6: /* psadbw */
7710 case 0x660ff8: /* psubb */
7711 case 0x660ff9: /* psubw */
7712 case 0x660ffa: /* psubd */
7713 case 0x660ffb: /* psubq */
7714 case 0x660ffc: /* paddb */
7715 case 0x660ffd: /* paddw */
7716 case 0x660ffe: /* paddd */
7717 if (i386_record_modrm (&ir))
7718 return -1;
7719 ir.reg |= rex_r;
7720 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.reg))
7721 goto no_support;
7722 record_full_arch_list_add_reg (ir.regcache,
7723 I387_XMM0_REGNUM (tdep) + ir.reg);
7724 if ((opcode & 0xfffffffc) == 0x660f3a60)
7725 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7726 break;
7727
7728 case 0x0f11: /* movups */
7729 case 0x660f11: /* movupd */
7730 case 0xf30f11: /* movss */
7731 case 0xf20f11: /* movsd */
7732 case 0x0f13: /* movlps */
7733 case 0x660f13: /* movlpd */
7734 case 0x0f17: /* movhps */
7735 case 0x660f17: /* movhpd */
7736 case 0x0f29: /* movaps */
7737 case 0x660f29: /* movapd */
7738 case 0x660f3a14: /* pextrb */
7739 case 0x660f3a15: /* pextrw */
7740 case 0x660f3a16: /* pextrd pextrq */
7741 case 0x660f3a17: /* extractps */
7742 case 0x660f7f: /* movdqa */
7743 case 0xf30f7f: /* movdqu */
7744 if (i386_record_modrm (&ir))
7745 return -1;
7746 if (ir.mod == 3)
7747 {
7748 if (opcode == 0x0f13 || opcode == 0x660f13
7749 || opcode == 0x0f17 || opcode == 0x660f17)
7750 goto no_support;
7751 ir.rm |= ir.rex_b;
7752 if (!i386_xmm_regnum_p (gdbarch,
7753 I387_XMM0_REGNUM (tdep) + ir.rm))
7754 goto no_support;
7755 record_full_arch_list_add_reg (ir.regcache,
7756 I387_XMM0_REGNUM (tdep) + ir.rm);
7757 }
7758 else
7759 {
7760 switch (opcode)
7761 {
7762 case 0x660f3a14:
7763 ir.ot = OT_BYTE;
7764 break;
7765 case 0x660f3a15:
7766 ir.ot = OT_WORD;
7767 break;
7768 case 0x660f3a16:
7769 ir.ot = OT_LONG;
7770 break;
7771 case 0x660f3a17:
7772 ir.ot = OT_QUAD;
7773 break;
7774 default:
7775 ir.ot = OT_DQUAD;
7776 break;
7777 }
7778 if (i386_record_lea_modrm (&ir))
7779 return -1;
7780 }
7781 break;
7782
7783 case 0x0f2b: /* movntps */
7784 case 0x660f2b: /* movntpd */
7785 case 0x0fe7: /* movntq */
7786 case 0x660fe7: /* movntdq */
7787 if (ir.mod == 3)
7788 goto no_support;
7789 if (opcode == 0x0fe7)
7790 ir.ot = OT_QUAD;
7791 else
7792 ir.ot = OT_DQUAD;
7793 if (i386_record_lea_modrm (&ir))
7794 return -1;
7795 break;
7796
7797 case 0xf30f2c: /* cvttss2si */
7798 case 0xf20f2c: /* cvttsd2si */
7799 case 0xf30f2d: /* cvtss2si */
7800 case 0xf20f2d: /* cvtsd2si */
7801 case 0xf20f38f0: /* crc32 */
7802 case 0xf20f38f1: /* crc32 */
7803 case 0x0f50: /* movmskps */
7804 case 0x660f50: /* movmskpd */
7805 case 0x0fc5: /* pextrw */
7806 case 0x660fc5: /* pextrw */
7807 case 0x0fd7: /* pmovmskb */
7808 case 0x660fd7: /* pmovmskb */
7809 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7810 break;
7811
7812 case 0x0f3800: /* pshufb */
7813 case 0x0f3801: /* phaddw */
7814 case 0x0f3802: /* phaddd */
7815 case 0x0f3803: /* phaddsw */
7816 case 0x0f3804: /* pmaddubsw */
7817 case 0x0f3805: /* phsubw */
7818 case 0x0f3806: /* phsubd */
7819 case 0x0f3807: /* phsubsw */
7820 case 0x0f3808: /* psignb */
7821 case 0x0f3809: /* psignw */
7822 case 0x0f380a: /* psignd */
7823 case 0x0f380b: /* pmulhrsw */
7824 case 0x0f381c: /* pabsb */
7825 case 0x0f381d: /* pabsw */
7826 case 0x0f381e: /* pabsd */
7827 case 0x0f382b: /* packusdw */
7828 case 0x0f3830: /* pmovzxbw */
7829 case 0x0f3831: /* pmovzxbd */
7830 case 0x0f3832: /* pmovzxbq */
7831 case 0x0f3833: /* pmovzxwd */
7832 case 0x0f3834: /* pmovzxwq */
7833 case 0x0f3835: /* pmovzxdq */
7834 case 0x0f3837: /* pcmpgtq */
7835 case 0x0f3838: /* pminsb */
7836 case 0x0f3839: /* pminsd */
7837 case 0x0f383a: /* pminuw */
7838 case 0x0f383b: /* pminud */
7839 case 0x0f383c: /* pmaxsb */
7840 case 0x0f383d: /* pmaxsd */
7841 case 0x0f383e: /* pmaxuw */
7842 case 0x0f383f: /* pmaxud */
7843 case 0x0f3840: /* pmulld */
7844 case 0x0f3841: /* phminposuw */
7845 case 0x0f3a0f: /* palignr */
7846 case 0x0f60: /* punpcklbw */
7847 case 0x0f61: /* punpcklwd */
7848 case 0x0f62: /* punpckldq */
7849 case 0x0f63: /* packsswb */
7850 case 0x0f64: /* pcmpgtb */
7851 case 0x0f65: /* pcmpgtw */
7852 case 0x0f66: /* pcmpgtd */
7853 case 0x0f67: /* packuswb */
7854 case 0x0f68: /* punpckhbw */
7855 case 0x0f69: /* punpckhwd */
7856 case 0x0f6a: /* punpckhdq */
7857 case 0x0f6b: /* packssdw */
7858 case 0x0f6e: /* movd */
7859 case 0x0f6f: /* movq */
7860 case 0x0f70: /* pshufw */
7861 case 0x0f74: /* pcmpeqb */
7862 case 0x0f75: /* pcmpeqw */
7863 case 0x0f76: /* pcmpeqd */
7864 case 0x0fc4: /* pinsrw */
7865 case 0x0fd1: /* psrlw */
7866 case 0x0fd2: /* psrld */
7867 case 0x0fd3: /* psrlq */
7868 case 0x0fd4: /* paddq */
7869 case 0x0fd5: /* pmullw */
7870 case 0xf20fd6: /* movdq2q */
7871 case 0x0fd8: /* psubusb */
7872 case 0x0fd9: /* psubusw */
7873 case 0x0fda: /* pminub */
7874 case 0x0fdb: /* pand */
7875 case 0x0fdc: /* paddusb */
7876 case 0x0fdd: /* paddusw */
7877 case 0x0fde: /* pmaxub */
7878 case 0x0fdf: /* pandn */
7879 case 0x0fe0: /* pavgb */
7880 case 0x0fe1: /* psraw */
7881 case 0x0fe2: /* psrad */
7882 case 0x0fe3: /* pavgw */
7883 case 0x0fe4: /* pmulhuw */
7884 case 0x0fe5: /* pmulhw */
7885 case 0x0fe8: /* psubsb */
7886 case 0x0fe9: /* psubsw */
7887 case 0x0fea: /* pminsw */
7888 case 0x0feb: /* por */
7889 case 0x0fec: /* paddsb */
7890 case 0x0fed: /* paddsw */
7891 case 0x0fee: /* pmaxsw */
7892 case 0x0fef: /* pxor */
7893 case 0x0ff1: /* psllw */
7894 case 0x0ff2: /* pslld */
7895 case 0x0ff3: /* psllq */
7896 case 0x0ff4: /* pmuludq */
7897 case 0x0ff5: /* pmaddwd */
7898 case 0x0ff6: /* psadbw */
7899 case 0x0ff8: /* psubb */
7900 case 0x0ff9: /* psubw */
7901 case 0x0ffa: /* psubd */
7902 case 0x0ffb: /* psubq */
7903 case 0x0ffc: /* paddb */
7904 case 0x0ffd: /* paddw */
7905 case 0x0ffe: /* paddd */
7906 if (i386_record_modrm (&ir))
7907 return -1;
7908 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7909 goto no_support;
7910 record_full_arch_list_add_reg (ir.regcache,
7911 I387_MM0_REGNUM (tdep) + ir.reg);
7912 break;
7913
7914 case 0x0f71: /* psllw */
7915 case 0x0f72: /* pslld */
7916 case 0x0f73: /* psllq */
7917 if (i386_record_modrm (&ir))
7918 return -1;
7919 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
7920 goto no_support;
7921 record_full_arch_list_add_reg (ir.regcache,
7922 I387_MM0_REGNUM (tdep) + ir.rm);
7923 break;
7924
7925 case 0x660f71: /* psllw */
7926 case 0x660f72: /* pslld */
7927 case 0x660f73: /* psllq */
7928 if (i386_record_modrm (&ir))
7929 return -1;
7930 ir.rm |= ir.rex_b;
7931 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.rm))
7932 goto no_support;
7933 record_full_arch_list_add_reg (ir.regcache,
7934 I387_XMM0_REGNUM (tdep) + ir.rm);
7935 break;
7936
7937 case 0x0f7e: /* movd */
7938 case 0x660f7e: /* movd */
7939 if (i386_record_modrm (&ir))
7940 return -1;
7941 if (ir.mod == 3)
7942 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7943 else
7944 {
7945 if (ir.dflag == 2)
7946 ir.ot = OT_QUAD;
7947 else
7948 ir.ot = OT_LONG;
7949 if (i386_record_lea_modrm (&ir))
7950 return -1;
7951 }
7952 break;
7953
7954 case 0x0f7f: /* movq */
7955 if (i386_record_modrm (&ir))
7956 return -1;
7957 if (ir.mod == 3)
7958 {
7959 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
7960 goto no_support;
7961 record_full_arch_list_add_reg (ir.regcache,
7962 I387_MM0_REGNUM (tdep) + ir.rm);
7963 }
7964 else
7965 {
7966 ir.ot = OT_QUAD;
7967 if (i386_record_lea_modrm (&ir))
7968 return -1;
7969 }
7970 break;
7971
7972 case 0xf30fb8: /* popcnt */
7973 if (i386_record_modrm (&ir))
7974 return -1;
7975 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
7976 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7977 break;
7978
7979 case 0x660fd6: /* movq */
7980 if (i386_record_modrm (&ir))
7981 return -1;
7982 if (ir.mod == 3)
7983 {
7984 ir.rm |= ir.rex_b;
7985 if (!i386_xmm_regnum_p (gdbarch,
7986 I387_XMM0_REGNUM (tdep) + ir.rm))
7987 goto no_support;
7988 record_full_arch_list_add_reg (ir.regcache,
7989 I387_XMM0_REGNUM (tdep) + ir.rm);
7990 }
7991 else
7992 {
7993 ir.ot = OT_QUAD;
7994 if (i386_record_lea_modrm (&ir))
7995 return -1;
7996 }
7997 break;
7998
7999 case 0x660f3817: /* ptest */
8000 case 0x0f2e: /* ucomiss */
8001 case 0x660f2e: /* ucomisd */
8002 case 0x0f2f: /* comiss */
8003 case 0x660f2f: /* comisd */
8004 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
8005 break;
8006
8007 case 0x0ff7: /* maskmovq */
8008 regcache_raw_read_unsigned (ir.regcache,
8009 ir.regmap[X86_RECORD_REDI_REGNUM],
8010 &addr);
8011 if (record_full_arch_list_add_mem (addr, 64))
8012 return -1;
8013 break;
8014
8015 case 0x660ff7: /* maskmovdqu */
8016 regcache_raw_read_unsigned (ir.regcache,
8017 ir.regmap[X86_RECORD_REDI_REGNUM],
8018 &addr);
8019 if (record_full_arch_list_add_mem (addr, 128))
8020 return -1;
8021 break;
8022
8023 default:
8024 goto no_support;
8025 break;
8026 }
8027 break;
8028
8029 default:
8030 goto no_support;
8031 break;
8032 }
8033
8034 /* In the future, maybe still need to deal with need_dasm. */
8035 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REIP_REGNUM);
8036 if (record_full_arch_list_add_end ())
8037 return -1;
8038
8039 return 0;
8040
8041 no_support:
8042 printf_unfiltered (_("Process record does not support instruction 0x%02x "
8043 "at address %s.\n"),
8044 (unsigned int) (opcode),
8045 paddress (gdbarch, ir.orig_addr));
8046 return -1;
8047 }
8048
8049 static const int i386_record_regmap[] =
8050 {
8051 I386_EAX_REGNUM, I386_ECX_REGNUM, I386_EDX_REGNUM, I386_EBX_REGNUM,
8052 I386_ESP_REGNUM, I386_EBP_REGNUM, I386_ESI_REGNUM, I386_EDI_REGNUM,
8053 0, 0, 0, 0, 0, 0, 0, 0,
8054 I386_EIP_REGNUM, I386_EFLAGS_REGNUM, I386_CS_REGNUM, I386_SS_REGNUM,
8055 I386_DS_REGNUM, I386_ES_REGNUM, I386_FS_REGNUM, I386_GS_REGNUM
8056 };
8057
8058 /* Check that the given address appears suitable for a fast
8059 tracepoint, which on x86-64 means that we need an instruction of at
8060 least 5 bytes, so that we can overwrite it with a 4-byte-offset
8061 jump and not have to worry about program jumps to an address in the
8062 middle of the tracepoint jump. On x86, it may be possible to use
8063 4-byte jumps with a 2-byte offset to a trampoline located in the
8064 bottom 64 KiB of memory. Returns 1 if OK, and writes a size
8065 of instruction to replace, and 0 if not, plus an explanatory
8066 string. */
8067
8068 static int
8069 i386_fast_tracepoint_valid_at (struct gdbarch *gdbarch,
8070 CORE_ADDR addr, int *isize, char **msg)
8071 {
8072 int len, jumplen;
8073 static struct ui_file *gdb_null = NULL;
8074
8075 /* Ask the target for the minimum instruction length supported. */
8076 jumplen = target_get_min_fast_tracepoint_insn_len ();
8077
8078 if (jumplen < 0)
8079 {
8080 /* If the target does not support the get_min_fast_tracepoint_insn_len
8081 operation, assume that fast tracepoints will always be implemented
8082 using 4-byte relative jumps on both x86 and x86-64. */
8083 jumplen = 5;
8084 }
8085 else if (jumplen == 0)
8086 {
8087 /* If the target does support get_min_fast_tracepoint_insn_len but
8088 returns zero, then the IPA has not loaded yet. In this case,
8089 we optimistically assume that truncated 2-byte relative jumps
8090 will be available on x86, and compensate later if this assumption
8091 turns out to be incorrect. On x86-64 architectures, 4-byte relative
8092 jumps will always be used. */
8093 jumplen = (register_size (gdbarch, 0) == 8) ? 5 : 4;
8094 }
8095
8096 /* Dummy file descriptor for the disassembler. */
8097 if (!gdb_null)
8098 gdb_null = ui_file_new ();
8099
8100 /* Check for fit. */
8101 len = gdb_print_insn (gdbarch, addr, gdb_null, NULL);
8102 if (isize)
8103 *isize = len;
8104
8105 if (len < jumplen)
8106 {
8107 /* Return a bit of target-specific detail to add to the caller's
8108 generic failure message. */
8109 if (msg)
8110 *msg = xstrprintf (_("; instruction is only %d bytes long, "
8111 "need at least %d bytes for the jump"),
8112 len, jumplen);
8113 return 0;
8114 }
8115 else
8116 {
8117 if (msg)
8118 *msg = NULL;
8119 return 1;
8120 }
8121 }
8122
8123 static int
8124 i386_validate_tdesc_p (struct gdbarch_tdep *tdep,
8125 struct tdesc_arch_data *tdesc_data)
8126 {
8127 const struct target_desc *tdesc = tdep->tdesc;
8128 const struct tdesc_feature *feature_core;
8129
8130 const struct tdesc_feature *feature_sse, *feature_avx, *feature_mpx,
8131 *feature_avx512;
8132 int i, num_regs, valid_p;
8133
8134 if (! tdesc_has_registers (tdesc))
8135 return 0;
8136
8137 /* Get core registers. */
8138 feature_core = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.core");
8139 if (feature_core == NULL)
8140 return 0;
8141
8142 /* Get SSE registers. */
8143 feature_sse = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.sse");
8144
8145 /* Try AVX registers. */
8146 feature_avx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx");
8147
8148 /* Try MPX registers. */
8149 feature_mpx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx");
8150
8151 /* Try AVX512 registers. */
8152 feature_avx512 = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx512");
8153
8154 valid_p = 1;
8155
8156 /* The XCR0 bits. */
8157 if (feature_avx512)
8158 {
8159 /* AVX512 register description requires AVX register description. */
8160 if (!feature_avx)
8161 return 0;
8162
8163 tdep->xcr0 = I386_XSTATE_MPX_AVX512_MASK;
8164
8165 /* It may have been set by OSABI initialization function. */
8166 if (tdep->k0_regnum < 0)
8167 {
8168 tdep->k_register_names = i386_k_names;
8169 tdep->k0_regnum = I386_K0_REGNUM;
8170 }
8171
8172 for (i = 0; i < I387_NUM_K_REGS; i++)
8173 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8174 tdep->k0_regnum + i,
8175 i386_k_names[i]);
8176
8177 if (tdep->num_zmm_regs == 0)
8178 {
8179 tdep->zmmh_register_names = i386_zmmh_names;
8180 tdep->num_zmm_regs = 8;
8181 tdep->zmm0h_regnum = I386_ZMM0H_REGNUM;
8182 }
8183
8184 for (i = 0; i < tdep->num_zmm_regs; i++)
8185 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8186 tdep->zmm0h_regnum + i,
8187 tdep->zmmh_register_names[i]);
8188
8189 for (i = 0; i < tdep->num_xmm_avx512_regs; i++)
8190 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8191 tdep->xmm16_regnum + i,
8192 tdep->xmm_avx512_register_names[i]);
8193
8194 for (i = 0; i < tdep->num_ymm_avx512_regs; i++)
8195 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8196 tdep->ymm16h_regnum + i,
8197 tdep->ymm16h_register_names[i]);
8198 }
8199 if (feature_avx)
8200 {
8201 /* AVX register description requires SSE register description. */
8202 if (!feature_sse)
8203 return 0;
8204
8205 if (!feature_avx512)
8206 tdep->xcr0 = I386_XSTATE_AVX_MASK;
8207
8208 /* It may have been set by OSABI initialization function. */
8209 if (tdep->num_ymm_regs == 0)
8210 {
8211 tdep->ymmh_register_names = i386_ymmh_names;
8212 tdep->num_ymm_regs = 8;
8213 tdep->ymm0h_regnum = I386_YMM0H_REGNUM;
8214 }
8215
8216 for (i = 0; i < tdep->num_ymm_regs; i++)
8217 valid_p &= tdesc_numbered_register (feature_avx, tdesc_data,
8218 tdep->ymm0h_regnum + i,
8219 tdep->ymmh_register_names[i]);
8220 }
8221 else if (feature_sse)
8222 tdep->xcr0 = I386_XSTATE_SSE_MASK;
8223 else
8224 {
8225 tdep->xcr0 = I386_XSTATE_X87_MASK;
8226 tdep->num_xmm_regs = 0;
8227 }
8228
8229 num_regs = tdep->num_core_regs;
8230 for (i = 0; i < num_regs; i++)
8231 valid_p &= tdesc_numbered_register (feature_core, tdesc_data, i,
8232 tdep->register_names[i]);
8233
8234 if (feature_sse)
8235 {
8236 /* Need to include %mxcsr, so add one. */
8237 num_regs += tdep->num_xmm_regs + 1;
8238 for (; i < num_regs; i++)
8239 valid_p &= tdesc_numbered_register (feature_sse, tdesc_data, i,
8240 tdep->register_names[i]);
8241 }
8242
8243 if (feature_mpx)
8244 {
8245 tdep->xcr0 |= I386_XSTATE_MPX_MASK;
8246
8247 if (tdep->bnd0r_regnum < 0)
8248 {
8249 tdep->mpx_register_names = i386_mpx_names;
8250 tdep->bnd0r_regnum = I386_BND0R_REGNUM;
8251 tdep->bndcfgu_regnum = I386_BNDCFGU_REGNUM;
8252 }
8253
8254 for (i = 0; i < I387_NUM_MPX_REGS; i++)
8255 valid_p &= tdesc_numbered_register (feature_mpx, tdesc_data,
8256 I387_BND0R_REGNUM (tdep) + i,
8257 tdep->mpx_register_names[i]);
8258 }
8259
8260 return valid_p;
8261 }
8262
8263 \f
8264 static struct gdbarch *
8265 i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
8266 {
8267 struct gdbarch_tdep *tdep;
8268 struct gdbarch *gdbarch;
8269 struct tdesc_arch_data *tdesc_data;
8270 const struct target_desc *tdesc;
8271 int mm0_regnum;
8272 int ymm0_regnum;
8273 int bnd0_regnum;
8274 int num_bnd_cooked;
8275 int k0_regnum;
8276 int zmm0_regnum;
8277
8278 /* If there is already a candidate, use it. */
8279 arches = gdbarch_list_lookup_by_info (arches, &info);
8280 if (arches != NULL)
8281 return arches->gdbarch;
8282
8283 /* Allocate space for the new architecture. */
8284 tdep = XCNEW (struct gdbarch_tdep);
8285 gdbarch = gdbarch_alloc (&info, tdep);
8286
8287 /* General-purpose registers. */
8288 tdep->gregset_reg_offset = NULL;
8289 tdep->gregset_num_regs = I386_NUM_GREGS;
8290 tdep->sizeof_gregset = 0;
8291
8292 /* Floating-point registers. */
8293 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
8294
8295 /* The default settings include the FPU registers, the MMX registers
8296 and the SSE registers. This can be overridden for a specific ABI
8297 by adjusting the members `st0_regnum', `mm0_regnum' and
8298 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
8299 will show up in the output of "info all-registers". */
8300
8301 tdep->st0_regnum = I386_ST0_REGNUM;
8302
8303 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
8304 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
8305
8306 tdep->jb_pc_offset = -1;
8307 tdep->struct_return = pcc_struct_return;
8308 tdep->sigtramp_start = 0;
8309 tdep->sigtramp_end = 0;
8310 tdep->sigtramp_p = i386_sigtramp_p;
8311 tdep->sigcontext_addr = NULL;
8312 tdep->sc_reg_offset = NULL;
8313 tdep->sc_pc_offset = -1;
8314 tdep->sc_sp_offset = -1;
8315
8316 tdep->xsave_xcr0_offset = -1;
8317
8318 tdep->record_regmap = i386_record_regmap;
8319
8320 set_gdbarch_long_long_align_bit (gdbarch, 32);
8321
8322 /* The format used for `long double' on almost all i386 targets is
8323 the i387 extended floating-point format. In fact, of all targets
8324 in the GCC 2.95 tree, only OSF/1 does it different, and insists
8325 on having a `long double' that's not `long' at all. */
8326 set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext);
8327
8328 /* Although the i387 extended floating-point has only 80 significant
8329 bits, a `long double' actually takes up 96, probably to enforce
8330 alignment. */
8331 set_gdbarch_long_double_bit (gdbarch, 96);
8332
8333 /* Register numbers of various important registers. */
8334 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
8335 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
8336 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
8337 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
8338
8339 /* NOTE: kettenis/20040418: GCC does have two possible register
8340 numbering schemes on the i386: dbx and SVR4. These schemes
8341 differ in how they number %ebp, %esp, %eflags, and the
8342 floating-point registers, and are implemented by the arrays
8343 dbx_register_map[] and svr4_dbx_register_map in
8344 gcc/config/i386.c. GCC also defines a third numbering scheme in
8345 gcc/config/i386.c, which it designates as the "default" register
8346 map used in 64bit mode. This last register numbering scheme is
8347 implemented in dbx64_register_map, and is used for AMD64; see
8348 amd64-tdep.c.
8349
8350 Currently, each GCC i386 target always uses the same register
8351 numbering scheme across all its supported debugging formats
8352 i.e. SDB (COFF), stabs and DWARF 2. This is because
8353 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
8354 DBX_REGISTER_NUMBER macro which is defined by each target's
8355 respective config header in a manner independent of the requested
8356 output debugging format.
8357
8358 This does not match the arrangement below, which presumes that
8359 the SDB and stabs numbering schemes differ from the DWARF and
8360 DWARF 2 ones. The reason for this arrangement is that it is
8361 likely to get the numbering scheme for the target's
8362 default/native debug format right. For targets where GCC is the
8363 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
8364 targets where the native toolchain uses a different numbering
8365 scheme for a particular debug format (stabs-in-ELF on Solaris)
8366 the defaults below will have to be overridden, like
8367 i386_elf_init_abi() does. */
8368
8369 /* Use the dbx register numbering scheme for stabs and COFF. */
8370 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
8371 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
8372
8373 /* Use the SVR4 register numbering scheme for DWARF 2. */
8374 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
8375
8376 /* We don't set gdbarch_stab_reg_to_regnum, since ECOFF doesn't seem to
8377 be in use on any of the supported i386 targets. */
8378
8379 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
8380
8381 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
8382
8383 /* Call dummy code. */
8384 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
8385 set_gdbarch_push_dummy_code (gdbarch, i386_push_dummy_code);
8386 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
8387 set_gdbarch_frame_align (gdbarch, i386_frame_align);
8388
8389 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
8390 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
8391 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
8392
8393 set_gdbarch_return_value (gdbarch, i386_return_value);
8394
8395 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
8396
8397 /* Stack grows downward. */
8398 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
8399
8400 set_gdbarch_breakpoint_from_pc (gdbarch, i386_breakpoint_from_pc);
8401 set_gdbarch_decr_pc_after_break (gdbarch, 1);
8402 set_gdbarch_max_insn_length (gdbarch, I386_MAX_INSN_LEN);
8403
8404 set_gdbarch_frame_args_skip (gdbarch, 8);
8405
8406 set_gdbarch_print_insn (gdbarch, i386_print_insn);
8407
8408 set_gdbarch_dummy_id (gdbarch, i386_dummy_id);
8409
8410 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
8411
8412 /* Add the i386 register groups. */
8413 i386_add_reggroups (gdbarch);
8414 tdep->register_reggroup_p = i386_register_reggroup_p;
8415
8416 /* Helper for function argument information. */
8417 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
8418
8419 /* Hook the function epilogue frame unwinder. This unwinder is
8420 appended to the list first, so that it supercedes the DWARF
8421 unwinder in function epilogues (where the DWARF unwinder
8422 currently fails). */
8423 frame_unwind_append_unwinder (gdbarch, &i386_epilogue_frame_unwind);
8424
8425 /* Hook in the DWARF CFI frame unwinder. This unwinder is appended
8426 to the list before the prologue-based unwinders, so that DWARF
8427 CFI info will be used if it is available. */
8428 dwarf2_append_unwinders (gdbarch);
8429
8430 frame_base_set_default (gdbarch, &i386_frame_base);
8431
8432 /* Pseudo registers may be changed by amd64_init_abi. */
8433 set_gdbarch_pseudo_register_read_value (gdbarch,
8434 i386_pseudo_register_read_value);
8435 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
8436
8437 set_tdesc_pseudo_register_type (gdbarch, i386_pseudo_register_type);
8438 set_tdesc_pseudo_register_name (gdbarch, i386_pseudo_register_name);
8439
8440 /* Override the normal target description method to make the AVX
8441 upper halves anonymous. */
8442 set_gdbarch_register_name (gdbarch, i386_register_name);
8443
8444 /* Even though the default ABI only includes general-purpose registers,
8445 floating-point registers and the SSE registers, we have to leave a
8446 gap for the upper AVX, MPX and AVX512 registers. */
8447 set_gdbarch_num_regs (gdbarch, I386_AVX512_NUM_REGS);
8448
8449 /* Get the x86 target description from INFO. */
8450 tdesc = info.target_desc;
8451 if (! tdesc_has_registers (tdesc))
8452 tdesc = tdesc_i386;
8453 tdep->tdesc = tdesc;
8454
8455 tdep->num_core_regs = I386_NUM_GREGS + I387_NUM_REGS;
8456 tdep->register_names = i386_register_names;
8457
8458 /* No upper YMM registers. */
8459 tdep->ymmh_register_names = NULL;
8460 tdep->ymm0h_regnum = -1;
8461
8462 /* No upper ZMM registers. */
8463 tdep->zmmh_register_names = NULL;
8464 tdep->zmm0h_regnum = -1;
8465
8466 /* No high XMM registers. */
8467 tdep->xmm_avx512_register_names = NULL;
8468 tdep->xmm16_regnum = -1;
8469
8470 /* No upper YMM16-31 registers. */
8471 tdep->ymm16h_register_names = NULL;
8472 tdep->ymm16h_regnum = -1;
8473
8474 tdep->num_byte_regs = 8;
8475 tdep->num_word_regs = 8;
8476 tdep->num_dword_regs = 0;
8477 tdep->num_mmx_regs = 8;
8478 tdep->num_ymm_regs = 0;
8479
8480 /* No MPX registers. */
8481 tdep->bnd0r_regnum = -1;
8482 tdep->bndcfgu_regnum = -1;
8483
8484 /* No AVX512 registers. */
8485 tdep->k0_regnum = -1;
8486 tdep->num_zmm_regs = 0;
8487 tdep->num_ymm_avx512_regs = 0;
8488 tdep->num_xmm_avx512_regs = 0;
8489
8490 tdesc_data = tdesc_data_alloc ();
8491
8492 set_gdbarch_relocate_instruction (gdbarch, i386_relocate_instruction);
8493
8494 set_gdbarch_gen_return_address (gdbarch, i386_gen_return_address);
8495
8496 set_gdbarch_insn_is_call (gdbarch, i386_insn_is_call);
8497 set_gdbarch_insn_is_ret (gdbarch, i386_insn_is_ret);
8498 set_gdbarch_insn_is_jump (gdbarch, i386_insn_is_jump);
8499
8500 /* Hook in ABI-specific overrides, if they have been registered. */
8501 info.tdep_info = (void *) tdesc_data;
8502 gdbarch_init_osabi (info, gdbarch);
8503
8504 if (!i386_validate_tdesc_p (tdep, tdesc_data))
8505 {
8506 tdesc_data_cleanup (tdesc_data);
8507 xfree (tdep);
8508 gdbarch_free (gdbarch);
8509 return NULL;
8510 }
8511
8512 num_bnd_cooked = (tdep->bnd0r_regnum > 0 ? I387_NUM_BND_REGS : 0);
8513
8514 /* Wire in pseudo registers. Number of pseudo registers may be
8515 changed. */
8516 set_gdbarch_num_pseudo_regs (gdbarch, (tdep->num_byte_regs
8517 + tdep->num_word_regs
8518 + tdep->num_dword_regs
8519 + tdep->num_mmx_regs
8520 + tdep->num_ymm_regs
8521 + num_bnd_cooked
8522 + tdep->num_ymm_avx512_regs
8523 + tdep->num_zmm_regs));
8524
8525 /* Target description may be changed. */
8526 tdesc = tdep->tdesc;
8527
8528 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
8529
8530 /* Override gdbarch_register_reggroup_p set in tdesc_use_registers. */
8531 set_gdbarch_register_reggroup_p (gdbarch, tdep->register_reggroup_p);
8532
8533 /* Make %al the first pseudo-register. */
8534 tdep->al_regnum = gdbarch_num_regs (gdbarch);
8535 tdep->ax_regnum = tdep->al_regnum + tdep->num_byte_regs;
8536
8537 ymm0_regnum = tdep->ax_regnum + tdep->num_word_regs;
8538 if (tdep->num_dword_regs)
8539 {
8540 /* Support dword pseudo-register if it hasn't been disabled. */
8541 tdep->eax_regnum = ymm0_regnum;
8542 ymm0_regnum += tdep->num_dword_regs;
8543 }
8544 else
8545 tdep->eax_regnum = -1;
8546
8547 mm0_regnum = ymm0_regnum;
8548 if (tdep->num_ymm_regs)
8549 {
8550 /* Support YMM pseudo-register if it is available. */
8551 tdep->ymm0_regnum = ymm0_regnum;
8552 mm0_regnum += tdep->num_ymm_regs;
8553 }
8554 else
8555 tdep->ymm0_regnum = -1;
8556
8557 if (tdep->num_ymm_avx512_regs)
8558 {
8559 /* Support YMM16-31 pseudo registers if available. */
8560 tdep->ymm16_regnum = mm0_regnum;
8561 mm0_regnum += tdep->num_ymm_avx512_regs;
8562 }
8563 else
8564 tdep->ymm16_regnum = -1;
8565
8566 if (tdep->num_zmm_regs)
8567 {
8568 /* Support ZMM pseudo-register if it is available. */
8569 tdep->zmm0_regnum = mm0_regnum;
8570 mm0_regnum += tdep->num_zmm_regs;
8571 }
8572 else
8573 tdep->zmm0_regnum = -1;
8574
8575 bnd0_regnum = mm0_regnum;
8576 if (tdep->num_mmx_regs != 0)
8577 {
8578 /* Support MMX pseudo-register if MMX hasn't been disabled. */
8579 tdep->mm0_regnum = mm0_regnum;
8580 bnd0_regnum += tdep->num_mmx_regs;
8581 }
8582 else
8583 tdep->mm0_regnum = -1;
8584
8585 if (tdep->bnd0r_regnum > 0)
8586 tdep->bnd0_regnum = bnd0_regnum;
8587 else
8588 tdep-> bnd0_regnum = -1;
8589
8590 /* Hook in the legacy prologue-based unwinders last (fallback). */
8591 frame_unwind_append_unwinder (gdbarch, &i386_stack_tramp_frame_unwind);
8592 frame_unwind_append_unwinder (gdbarch, &i386_sigtramp_frame_unwind);
8593 frame_unwind_append_unwinder (gdbarch, &i386_frame_unwind);
8594
8595 /* If we have a register mapping, enable the generic core file
8596 support, unless it has already been enabled. */
8597 if (tdep->gregset_reg_offset
8598 && !gdbarch_regset_from_core_section_p (gdbarch))
8599 set_gdbarch_regset_from_core_section (gdbarch,
8600 i386_regset_from_core_section);
8601
8602 set_gdbarch_skip_permanent_breakpoint (gdbarch,
8603 i386_skip_permanent_breakpoint);
8604
8605 set_gdbarch_fast_tracepoint_valid_at (gdbarch,
8606 i386_fast_tracepoint_valid_at);
8607
8608 return gdbarch;
8609 }
8610
8611 static enum gdb_osabi
8612 i386_coff_osabi_sniffer (bfd *abfd)
8613 {
8614 if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
8615 || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
8616 return GDB_OSABI_GO32;
8617
8618 return GDB_OSABI_UNKNOWN;
8619 }
8620 \f
8621
8622 /* Provide a prototype to silence -Wmissing-prototypes. */
8623 void _initialize_i386_tdep (void);
8624
8625 void
8626 _initialize_i386_tdep (void)
8627 {
8628 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
8629
8630 /* Add the variable that controls the disassembly flavor. */
8631 add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
8632 &disassembly_flavor, _("\
8633 Set the disassembly flavor."), _("\
8634 Show the disassembly flavor."), _("\
8635 The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
8636 NULL,
8637 NULL, /* FIXME: i18n: */
8638 &setlist, &showlist);
8639
8640 /* Add the variable that controls the convention for returning
8641 structs. */
8642 add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
8643 &struct_convention, _("\
8644 Set the convention for returning small structs."), _("\
8645 Show the convention for returning small structs."), _("\
8646 Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
8647 is \"default\"."),
8648 NULL,
8649 NULL, /* FIXME: i18n: */
8650 &setlist, &showlist);
8651
8652 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
8653 i386_coff_osabi_sniffer);
8654
8655 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
8656 i386_svr4_init_abi);
8657 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_GO32,
8658 i386_go32_init_abi);
8659
8660 /* Initialize the i386-specific register groups. */
8661 i386_init_reggroups ();
8662
8663 /* Initialize the standard target descriptions. */
8664 initialize_tdesc_i386 ();
8665 initialize_tdesc_i386_mmx ();
8666 initialize_tdesc_i386_avx ();
8667 initialize_tdesc_i386_mpx ();
8668 initialize_tdesc_i386_avx512 ();
8669
8670 /* Tell remote stub that we support XML target description. */
8671 register_remote_support_xml ("i386");
8672 }
This page took 0.219736 seconds and 5 git commands to generate.