* minsyms.h (struct bound_minimal_symbol): New.
[deliverable/binutils-gdb.git] / gdb / i386-tdep.c
1 /* Intel 386 target-dependent stuff.
2
3 Copyright (C) 1988-2013 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "opcode/i386.h"
22 #include "arch-utils.h"
23 #include "command.h"
24 #include "dummy-frame.h"
25 #include "dwarf2-frame.h"
26 #include "doublest.h"
27 #include "frame.h"
28 #include "frame-base.h"
29 #include "frame-unwind.h"
30 #include "inferior.h"
31 #include "gdbcmd.h"
32 #include "gdbcore.h"
33 #include "gdbtypes.h"
34 #include "objfiles.h"
35 #include "osabi.h"
36 #include "regcache.h"
37 #include "reggroups.h"
38 #include "regset.h"
39 #include "symfile.h"
40 #include "symtab.h"
41 #include "target.h"
42 #include "value.h"
43 #include "dis-asm.h"
44 #include "disasm.h"
45 #include "remote.h"
46 #include "exceptions.h"
47 #include "gdb_assert.h"
48 #include "gdb_string.h"
49
50 #include "i386-tdep.h"
51 #include "i387-tdep.h"
52 #include "i386-xstate.h"
53
54 #include "record.h"
55 #include "record-full.h"
56 #include <stdint.h>
57
58 #include "features/i386/i386.c"
59 #include "features/i386/i386-avx.c"
60 #include "features/i386/i386-mmx.c"
61
62 #include "ax.h"
63 #include "ax-gdb.h"
64
65 #include "stap-probe.h"
66 #include "user-regs.h"
67 #include "cli/cli-utils.h"
68 #include "expression.h"
69 #include "parser-defs.h"
70 #include <ctype.h>
71
72 /* Register names. */
73
74 static const char *i386_register_names[] =
75 {
76 "eax", "ecx", "edx", "ebx",
77 "esp", "ebp", "esi", "edi",
78 "eip", "eflags", "cs", "ss",
79 "ds", "es", "fs", "gs",
80 "st0", "st1", "st2", "st3",
81 "st4", "st5", "st6", "st7",
82 "fctrl", "fstat", "ftag", "fiseg",
83 "fioff", "foseg", "fooff", "fop",
84 "xmm0", "xmm1", "xmm2", "xmm3",
85 "xmm4", "xmm5", "xmm6", "xmm7",
86 "mxcsr"
87 };
88
89 static const char *i386_ymm_names[] =
90 {
91 "ymm0", "ymm1", "ymm2", "ymm3",
92 "ymm4", "ymm5", "ymm6", "ymm7",
93 };
94
95 static const char *i386_ymmh_names[] =
96 {
97 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
98 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
99 };
100
101 /* Register names for MMX pseudo-registers. */
102
103 static const char *i386_mmx_names[] =
104 {
105 "mm0", "mm1", "mm2", "mm3",
106 "mm4", "mm5", "mm6", "mm7"
107 };
108
109 /* Register names for byte pseudo-registers. */
110
111 static const char *i386_byte_names[] =
112 {
113 "al", "cl", "dl", "bl",
114 "ah", "ch", "dh", "bh"
115 };
116
117 /* Register names for word pseudo-registers. */
118
119 static const char *i386_word_names[] =
120 {
121 "ax", "cx", "dx", "bx",
122 "", "bp", "si", "di"
123 };
124
125 /* MMX register? */
126
127 static int
128 i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
129 {
130 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
131 int mm0_regnum = tdep->mm0_regnum;
132
133 if (mm0_regnum < 0)
134 return 0;
135
136 regnum -= mm0_regnum;
137 return regnum >= 0 && regnum < tdep->num_mmx_regs;
138 }
139
140 /* Byte register? */
141
142 int
143 i386_byte_regnum_p (struct gdbarch *gdbarch, int regnum)
144 {
145 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
146
147 regnum -= tdep->al_regnum;
148 return regnum >= 0 && regnum < tdep->num_byte_regs;
149 }
150
151 /* Word register? */
152
153 int
154 i386_word_regnum_p (struct gdbarch *gdbarch, int regnum)
155 {
156 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
157
158 regnum -= tdep->ax_regnum;
159 return regnum >= 0 && regnum < tdep->num_word_regs;
160 }
161
162 /* Dword register? */
163
164 int
165 i386_dword_regnum_p (struct gdbarch *gdbarch, int regnum)
166 {
167 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
168 int eax_regnum = tdep->eax_regnum;
169
170 if (eax_regnum < 0)
171 return 0;
172
173 regnum -= eax_regnum;
174 return regnum >= 0 && regnum < tdep->num_dword_regs;
175 }
176
177 static int
178 i386_ymmh_regnum_p (struct gdbarch *gdbarch, int regnum)
179 {
180 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
181 int ymm0h_regnum = tdep->ymm0h_regnum;
182
183 if (ymm0h_regnum < 0)
184 return 0;
185
186 regnum -= ymm0h_regnum;
187 return regnum >= 0 && regnum < tdep->num_ymm_regs;
188 }
189
190 /* AVX register? */
191
192 int
193 i386_ymm_regnum_p (struct gdbarch *gdbarch, int regnum)
194 {
195 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
196 int ymm0_regnum = tdep->ymm0_regnum;
197
198 if (ymm0_regnum < 0)
199 return 0;
200
201 regnum -= ymm0_regnum;
202 return regnum >= 0 && regnum < tdep->num_ymm_regs;
203 }
204
205 /* SSE register? */
206
207 int
208 i386_xmm_regnum_p (struct gdbarch *gdbarch, int regnum)
209 {
210 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
211 int num_xmm_regs = I387_NUM_XMM_REGS (tdep);
212
213 if (num_xmm_regs == 0)
214 return 0;
215
216 regnum -= I387_XMM0_REGNUM (tdep);
217 return regnum >= 0 && regnum < num_xmm_regs;
218 }
219
220 static int
221 i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
222 {
223 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
224
225 if (I387_NUM_XMM_REGS (tdep) == 0)
226 return 0;
227
228 return (regnum == I387_MXCSR_REGNUM (tdep));
229 }
230
231 /* FP register? */
232
233 int
234 i386_fp_regnum_p (struct gdbarch *gdbarch, int regnum)
235 {
236 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
237
238 if (I387_ST0_REGNUM (tdep) < 0)
239 return 0;
240
241 return (I387_ST0_REGNUM (tdep) <= regnum
242 && regnum < I387_FCTRL_REGNUM (tdep));
243 }
244
245 int
246 i386_fpc_regnum_p (struct gdbarch *gdbarch, int regnum)
247 {
248 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
249
250 if (I387_ST0_REGNUM (tdep) < 0)
251 return 0;
252
253 return (I387_FCTRL_REGNUM (tdep) <= regnum
254 && regnum < I387_XMM0_REGNUM (tdep));
255 }
256
257 /* Return the name of register REGNUM, or the empty string if it is
258 an anonymous register. */
259
260 static const char *
261 i386_register_name (struct gdbarch *gdbarch, int regnum)
262 {
263 /* Hide the upper YMM registers. */
264 if (i386_ymmh_regnum_p (gdbarch, regnum))
265 return "";
266
267 return tdesc_register_name (gdbarch, regnum);
268 }
269
270 /* Return the name of register REGNUM. */
271
272 const char *
273 i386_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
274 {
275 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
276 if (i386_mmx_regnum_p (gdbarch, regnum))
277 return i386_mmx_names[regnum - I387_MM0_REGNUM (tdep)];
278 else if (i386_ymm_regnum_p (gdbarch, regnum))
279 return i386_ymm_names[regnum - tdep->ymm0_regnum];
280 else if (i386_byte_regnum_p (gdbarch, regnum))
281 return i386_byte_names[regnum - tdep->al_regnum];
282 else if (i386_word_regnum_p (gdbarch, regnum))
283 return i386_word_names[regnum - tdep->ax_regnum];
284
285 internal_error (__FILE__, __LINE__, _("invalid regnum"));
286 }
287
288 /* Convert a dbx register number REG to the appropriate register
289 number used by GDB. */
290
291 static int
292 i386_dbx_reg_to_regnum (struct gdbarch *gdbarch, int reg)
293 {
294 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
295
296 /* This implements what GCC calls the "default" register map
297 (dbx_register_map[]). */
298
299 if (reg >= 0 && reg <= 7)
300 {
301 /* General-purpose registers. The debug info calls %ebp
302 register 4, and %esp register 5. */
303 if (reg == 4)
304 return 5;
305 else if (reg == 5)
306 return 4;
307 else return reg;
308 }
309 else if (reg >= 12 && reg <= 19)
310 {
311 /* Floating-point registers. */
312 return reg - 12 + I387_ST0_REGNUM (tdep);
313 }
314 else if (reg >= 21 && reg <= 28)
315 {
316 /* SSE registers. */
317 int ymm0_regnum = tdep->ymm0_regnum;
318
319 if (ymm0_regnum >= 0
320 && i386_xmm_regnum_p (gdbarch, reg))
321 return reg - 21 + ymm0_regnum;
322 else
323 return reg - 21 + I387_XMM0_REGNUM (tdep);
324 }
325 else if (reg >= 29 && reg <= 36)
326 {
327 /* MMX registers. */
328 return reg - 29 + I387_MM0_REGNUM (tdep);
329 }
330
331 /* This will hopefully provoke a warning. */
332 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
333 }
334
335 /* Convert SVR4 register number REG to the appropriate register number
336 used by GDB. */
337
338 static int
339 i386_svr4_reg_to_regnum (struct gdbarch *gdbarch, int reg)
340 {
341 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
342
343 /* This implements the GCC register map that tries to be compatible
344 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
345
346 /* The SVR4 register numbering includes %eip and %eflags, and
347 numbers the floating point registers differently. */
348 if (reg >= 0 && reg <= 9)
349 {
350 /* General-purpose registers. */
351 return reg;
352 }
353 else if (reg >= 11 && reg <= 18)
354 {
355 /* Floating-point registers. */
356 return reg - 11 + I387_ST0_REGNUM (tdep);
357 }
358 else if (reg >= 21 && reg <= 36)
359 {
360 /* The SSE and MMX registers have the same numbers as with dbx. */
361 return i386_dbx_reg_to_regnum (gdbarch, reg);
362 }
363
364 switch (reg)
365 {
366 case 37: return I387_FCTRL_REGNUM (tdep);
367 case 38: return I387_FSTAT_REGNUM (tdep);
368 case 39: return I387_MXCSR_REGNUM (tdep);
369 case 40: return I386_ES_REGNUM;
370 case 41: return I386_CS_REGNUM;
371 case 42: return I386_SS_REGNUM;
372 case 43: return I386_DS_REGNUM;
373 case 44: return I386_FS_REGNUM;
374 case 45: return I386_GS_REGNUM;
375 }
376
377 /* This will hopefully provoke a warning. */
378 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
379 }
380
381 \f
382
383 /* This is the variable that is set with "set disassembly-flavor", and
384 its legitimate values. */
385 static const char att_flavor[] = "att";
386 static const char intel_flavor[] = "intel";
387 static const char *const valid_flavors[] =
388 {
389 att_flavor,
390 intel_flavor,
391 NULL
392 };
393 static const char *disassembly_flavor = att_flavor;
394 \f
395
396 /* Use the program counter to determine the contents and size of a
397 breakpoint instruction. Return a pointer to a string of bytes that
398 encode a breakpoint instruction, store the length of the string in
399 *LEN and optionally adjust *PC to point to the correct memory
400 location for inserting the breakpoint.
401
402 On the i386 we have a single breakpoint that fits in a single byte
403 and can be inserted anywhere.
404
405 This function is 64-bit safe. */
406
407 static const gdb_byte *
408 i386_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
409 {
410 static gdb_byte break_insn[] = { 0xcc }; /* int 3 */
411
412 *len = sizeof (break_insn);
413 return break_insn;
414 }
415 \f
416 /* Displaced instruction handling. */
417
418 /* Skip the legacy instruction prefixes in INSN.
419 Not all prefixes are valid for any particular insn
420 but we needn't care, the insn will fault if it's invalid.
421 The result is a pointer to the first opcode byte,
422 or NULL if we run off the end of the buffer. */
423
424 static gdb_byte *
425 i386_skip_prefixes (gdb_byte *insn, size_t max_len)
426 {
427 gdb_byte *end = insn + max_len;
428
429 while (insn < end)
430 {
431 switch (*insn)
432 {
433 case DATA_PREFIX_OPCODE:
434 case ADDR_PREFIX_OPCODE:
435 case CS_PREFIX_OPCODE:
436 case DS_PREFIX_OPCODE:
437 case ES_PREFIX_OPCODE:
438 case FS_PREFIX_OPCODE:
439 case GS_PREFIX_OPCODE:
440 case SS_PREFIX_OPCODE:
441 case LOCK_PREFIX_OPCODE:
442 case REPE_PREFIX_OPCODE:
443 case REPNE_PREFIX_OPCODE:
444 ++insn;
445 continue;
446 default:
447 return insn;
448 }
449 }
450
451 return NULL;
452 }
453
454 static int
455 i386_absolute_jmp_p (const gdb_byte *insn)
456 {
457 /* jmp far (absolute address in operand). */
458 if (insn[0] == 0xea)
459 return 1;
460
461 if (insn[0] == 0xff)
462 {
463 /* jump near, absolute indirect (/4). */
464 if ((insn[1] & 0x38) == 0x20)
465 return 1;
466
467 /* jump far, absolute indirect (/5). */
468 if ((insn[1] & 0x38) == 0x28)
469 return 1;
470 }
471
472 return 0;
473 }
474
475 static int
476 i386_absolute_call_p (const gdb_byte *insn)
477 {
478 /* call far, absolute. */
479 if (insn[0] == 0x9a)
480 return 1;
481
482 if (insn[0] == 0xff)
483 {
484 /* Call near, absolute indirect (/2). */
485 if ((insn[1] & 0x38) == 0x10)
486 return 1;
487
488 /* Call far, absolute indirect (/3). */
489 if ((insn[1] & 0x38) == 0x18)
490 return 1;
491 }
492
493 return 0;
494 }
495
496 static int
497 i386_ret_p (const gdb_byte *insn)
498 {
499 switch (insn[0])
500 {
501 case 0xc2: /* ret near, pop N bytes. */
502 case 0xc3: /* ret near */
503 case 0xca: /* ret far, pop N bytes. */
504 case 0xcb: /* ret far */
505 case 0xcf: /* iret */
506 return 1;
507
508 default:
509 return 0;
510 }
511 }
512
513 static int
514 i386_call_p (const gdb_byte *insn)
515 {
516 if (i386_absolute_call_p (insn))
517 return 1;
518
519 /* call near, relative. */
520 if (insn[0] == 0xe8)
521 return 1;
522
523 return 0;
524 }
525
526 /* Return non-zero if INSN is a system call, and set *LENGTHP to its
527 length in bytes. Otherwise, return zero. */
528
529 static int
530 i386_syscall_p (const gdb_byte *insn, int *lengthp)
531 {
532 /* Is it 'int $0x80'? */
533 if ((insn[0] == 0xcd && insn[1] == 0x80)
534 /* Or is it 'sysenter'? */
535 || (insn[0] == 0x0f && insn[1] == 0x34)
536 /* Or is it 'syscall'? */
537 || (insn[0] == 0x0f && insn[1] == 0x05))
538 {
539 *lengthp = 2;
540 return 1;
541 }
542
543 return 0;
544 }
545
546 /* Some kernels may run one past a syscall insn, so we have to cope.
547 Otherwise this is just simple_displaced_step_copy_insn. */
548
549 struct displaced_step_closure *
550 i386_displaced_step_copy_insn (struct gdbarch *gdbarch,
551 CORE_ADDR from, CORE_ADDR to,
552 struct regcache *regs)
553 {
554 size_t len = gdbarch_max_insn_length (gdbarch);
555 gdb_byte *buf = xmalloc (len);
556
557 read_memory (from, buf, len);
558
559 /* GDB may get control back after the insn after the syscall.
560 Presumably this is a kernel bug.
561 If this is a syscall, make sure there's a nop afterwards. */
562 {
563 int syscall_length;
564 gdb_byte *insn;
565
566 insn = i386_skip_prefixes (buf, len);
567 if (insn != NULL && i386_syscall_p (insn, &syscall_length))
568 insn[syscall_length] = NOP_OPCODE;
569 }
570
571 write_memory (to, buf, len);
572
573 if (debug_displaced)
574 {
575 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
576 paddress (gdbarch, from), paddress (gdbarch, to));
577 displaced_step_dump_bytes (gdb_stdlog, buf, len);
578 }
579
580 return (struct displaced_step_closure *) buf;
581 }
582
583 /* Fix up the state of registers and memory after having single-stepped
584 a displaced instruction. */
585
586 void
587 i386_displaced_step_fixup (struct gdbarch *gdbarch,
588 struct displaced_step_closure *closure,
589 CORE_ADDR from, CORE_ADDR to,
590 struct regcache *regs)
591 {
592 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
593
594 /* The offset we applied to the instruction's address.
595 This could well be negative (when viewed as a signed 32-bit
596 value), but ULONGEST won't reflect that, so take care when
597 applying it. */
598 ULONGEST insn_offset = to - from;
599
600 /* Since we use simple_displaced_step_copy_insn, our closure is a
601 copy of the instruction. */
602 gdb_byte *insn = (gdb_byte *) closure;
603 /* The start of the insn, needed in case we see some prefixes. */
604 gdb_byte *insn_start = insn;
605
606 if (debug_displaced)
607 fprintf_unfiltered (gdb_stdlog,
608 "displaced: fixup (%s, %s), "
609 "insn = 0x%02x 0x%02x ...\n",
610 paddress (gdbarch, from), paddress (gdbarch, to),
611 insn[0], insn[1]);
612
613 /* The list of issues to contend with here is taken from
614 resume_execution in arch/i386/kernel/kprobes.c, Linux 2.6.20.
615 Yay for Free Software! */
616
617 /* Relocate the %eip, if necessary. */
618
619 /* The instruction recognizers we use assume any leading prefixes
620 have been skipped. */
621 {
622 /* This is the size of the buffer in closure. */
623 size_t max_insn_len = gdbarch_max_insn_length (gdbarch);
624 gdb_byte *opcode = i386_skip_prefixes (insn, max_insn_len);
625 /* If there are too many prefixes, just ignore the insn.
626 It will fault when run. */
627 if (opcode != NULL)
628 insn = opcode;
629 }
630
631 /* Except in the case of absolute or indirect jump or call
632 instructions, or a return instruction, the new eip is relative to
633 the displaced instruction; make it relative. Well, signal
634 handler returns don't need relocation either, but we use the
635 value of %eip to recognize those; see below. */
636 if (! i386_absolute_jmp_p (insn)
637 && ! i386_absolute_call_p (insn)
638 && ! i386_ret_p (insn))
639 {
640 ULONGEST orig_eip;
641 int insn_len;
642
643 regcache_cooked_read_unsigned (regs, I386_EIP_REGNUM, &orig_eip);
644
645 /* A signal trampoline system call changes the %eip, resuming
646 execution of the main program after the signal handler has
647 returned. That makes them like 'return' instructions; we
648 shouldn't relocate %eip.
649
650 But most system calls don't, and we do need to relocate %eip.
651
652 Our heuristic for distinguishing these cases: if stepping
653 over the system call instruction left control directly after
654 the instruction, the we relocate --- control almost certainly
655 doesn't belong in the displaced copy. Otherwise, we assume
656 the instruction has put control where it belongs, and leave
657 it unrelocated. Goodness help us if there are PC-relative
658 system calls. */
659 if (i386_syscall_p (insn, &insn_len)
660 && orig_eip != to + (insn - insn_start) + insn_len
661 /* GDB can get control back after the insn after the syscall.
662 Presumably this is a kernel bug.
663 i386_displaced_step_copy_insn ensures its a nop,
664 we add one to the length for it. */
665 && orig_eip != to + (insn - insn_start) + insn_len + 1)
666 {
667 if (debug_displaced)
668 fprintf_unfiltered (gdb_stdlog,
669 "displaced: syscall changed %%eip; "
670 "not relocating\n");
671 }
672 else
673 {
674 ULONGEST eip = (orig_eip - insn_offset) & 0xffffffffUL;
675
676 /* If we just stepped over a breakpoint insn, we don't backup
677 the pc on purpose; this is to match behaviour without
678 stepping. */
679
680 regcache_cooked_write_unsigned (regs, I386_EIP_REGNUM, eip);
681
682 if (debug_displaced)
683 fprintf_unfiltered (gdb_stdlog,
684 "displaced: "
685 "relocated %%eip from %s to %s\n",
686 paddress (gdbarch, orig_eip),
687 paddress (gdbarch, eip));
688 }
689 }
690
691 /* If the instruction was PUSHFL, then the TF bit will be set in the
692 pushed value, and should be cleared. We'll leave this for later,
693 since GDB already messes up the TF flag when stepping over a
694 pushfl. */
695
696 /* If the instruction was a call, the return address now atop the
697 stack is the address following the copied instruction. We need
698 to make it the address following the original instruction. */
699 if (i386_call_p (insn))
700 {
701 ULONGEST esp;
702 ULONGEST retaddr;
703 const ULONGEST retaddr_len = 4;
704
705 regcache_cooked_read_unsigned (regs, I386_ESP_REGNUM, &esp);
706 retaddr = read_memory_unsigned_integer (esp, retaddr_len, byte_order);
707 retaddr = (retaddr - insn_offset) & 0xffffffffUL;
708 write_memory_unsigned_integer (esp, retaddr_len, byte_order, retaddr);
709
710 if (debug_displaced)
711 fprintf_unfiltered (gdb_stdlog,
712 "displaced: relocated return addr at %s to %s\n",
713 paddress (gdbarch, esp),
714 paddress (gdbarch, retaddr));
715 }
716 }
717
718 static void
719 append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
720 {
721 target_write_memory (*to, buf, len);
722 *to += len;
723 }
724
725 static void
726 i386_relocate_instruction (struct gdbarch *gdbarch,
727 CORE_ADDR *to, CORE_ADDR oldloc)
728 {
729 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
730 gdb_byte buf[I386_MAX_INSN_LEN];
731 int offset = 0, rel32, newrel;
732 int insn_length;
733 gdb_byte *insn = buf;
734
735 read_memory (oldloc, buf, I386_MAX_INSN_LEN);
736
737 insn_length = gdb_buffered_insn_length (gdbarch, insn,
738 I386_MAX_INSN_LEN, oldloc);
739
740 /* Get past the prefixes. */
741 insn = i386_skip_prefixes (insn, I386_MAX_INSN_LEN);
742
743 /* Adjust calls with 32-bit relative addresses as push/jump, with
744 the address pushed being the location where the original call in
745 the user program would return to. */
746 if (insn[0] == 0xe8)
747 {
748 gdb_byte push_buf[16];
749 unsigned int ret_addr;
750
751 /* Where "ret" in the original code will return to. */
752 ret_addr = oldloc + insn_length;
753 push_buf[0] = 0x68; /* pushq $... */
754 store_unsigned_integer (&push_buf[1], 4, byte_order, ret_addr);
755 /* Push the push. */
756 append_insns (to, 5, push_buf);
757
758 /* Convert the relative call to a relative jump. */
759 insn[0] = 0xe9;
760
761 /* Adjust the destination offset. */
762 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
763 newrel = (oldloc - *to) + rel32;
764 store_signed_integer (insn + 1, 4, byte_order, newrel);
765
766 if (debug_displaced)
767 fprintf_unfiltered (gdb_stdlog,
768 "Adjusted insn rel32=%s at %s to"
769 " rel32=%s at %s\n",
770 hex_string (rel32), paddress (gdbarch, oldloc),
771 hex_string (newrel), paddress (gdbarch, *to));
772
773 /* Write the adjusted jump into its displaced location. */
774 append_insns (to, 5, insn);
775 return;
776 }
777
778 /* Adjust jumps with 32-bit relative addresses. Calls are already
779 handled above. */
780 if (insn[0] == 0xe9)
781 offset = 1;
782 /* Adjust conditional jumps. */
783 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
784 offset = 2;
785
786 if (offset)
787 {
788 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
789 newrel = (oldloc - *to) + rel32;
790 store_signed_integer (insn + offset, 4, byte_order, newrel);
791 if (debug_displaced)
792 fprintf_unfiltered (gdb_stdlog,
793 "Adjusted insn rel32=%s at %s to"
794 " rel32=%s at %s\n",
795 hex_string (rel32), paddress (gdbarch, oldloc),
796 hex_string (newrel), paddress (gdbarch, *to));
797 }
798
799 /* Write the adjusted instructions into their displaced
800 location. */
801 append_insns (to, insn_length, buf);
802 }
803
804 \f
805 #ifdef I386_REGNO_TO_SYMMETRY
806 #error "The Sequent Symmetry is no longer supported."
807 #endif
808
809 /* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
810 and %esp "belong" to the calling function. Therefore these
811 registers should be saved if they're going to be modified. */
812
813 /* The maximum number of saved registers. This should include all
814 registers mentioned above, and %eip. */
815 #define I386_NUM_SAVED_REGS I386_NUM_GREGS
816
817 struct i386_frame_cache
818 {
819 /* Base address. */
820 CORE_ADDR base;
821 int base_p;
822 LONGEST sp_offset;
823 CORE_ADDR pc;
824
825 /* Saved registers. */
826 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
827 CORE_ADDR saved_sp;
828 int saved_sp_reg;
829 int pc_in_eax;
830
831 /* Stack space reserved for local variables. */
832 long locals;
833 };
834
835 /* Allocate and initialize a frame cache. */
836
837 static struct i386_frame_cache *
838 i386_alloc_frame_cache (void)
839 {
840 struct i386_frame_cache *cache;
841 int i;
842
843 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
844
845 /* Base address. */
846 cache->base_p = 0;
847 cache->base = 0;
848 cache->sp_offset = -4;
849 cache->pc = 0;
850
851 /* Saved registers. We initialize these to -1 since zero is a valid
852 offset (that's where %ebp is supposed to be stored). */
853 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
854 cache->saved_regs[i] = -1;
855 cache->saved_sp = 0;
856 cache->saved_sp_reg = -1;
857 cache->pc_in_eax = 0;
858
859 /* Frameless until proven otherwise. */
860 cache->locals = -1;
861
862 return cache;
863 }
864
865 /* If the instruction at PC is a jump, return the address of its
866 target. Otherwise, return PC. */
867
868 static CORE_ADDR
869 i386_follow_jump (struct gdbarch *gdbarch, CORE_ADDR pc)
870 {
871 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
872 gdb_byte op;
873 long delta = 0;
874 int data16 = 0;
875
876 if (target_read_memory (pc, &op, 1))
877 return pc;
878
879 if (op == 0x66)
880 {
881 data16 = 1;
882 op = read_memory_unsigned_integer (pc + 1, 1, byte_order);
883 }
884
885 switch (op)
886 {
887 case 0xe9:
888 /* Relative jump: if data16 == 0, disp32, else disp16. */
889 if (data16)
890 {
891 delta = read_memory_integer (pc + 2, 2, byte_order);
892
893 /* Include the size of the jmp instruction (including the
894 0x66 prefix). */
895 delta += 4;
896 }
897 else
898 {
899 delta = read_memory_integer (pc + 1, 4, byte_order);
900
901 /* Include the size of the jmp instruction. */
902 delta += 5;
903 }
904 break;
905 case 0xeb:
906 /* Relative jump, disp8 (ignore data16). */
907 delta = read_memory_integer (pc + data16 + 1, 1, byte_order);
908
909 delta += data16 + 2;
910 break;
911 }
912
913 return pc + delta;
914 }
915
916 /* Check whether PC points at a prologue for a function returning a
917 structure or union. If so, it updates CACHE and returns the
918 address of the first instruction after the code sequence that
919 removes the "hidden" argument from the stack or CURRENT_PC,
920 whichever is smaller. Otherwise, return PC. */
921
922 static CORE_ADDR
923 i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
924 struct i386_frame_cache *cache)
925 {
926 /* Functions that return a structure or union start with:
927
928 popl %eax 0x58
929 xchgl %eax, (%esp) 0x87 0x04 0x24
930 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
931
932 (the System V compiler puts out the second `xchg' instruction,
933 and the assembler doesn't try to optimize it, so the 'sib' form
934 gets generated). This sequence is used to get the address of the
935 return buffer for a function that returns a structure. */
936 static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
937 static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
938 gdb_byte buf[4];
939 gdb_byte op;
940
941 if (current_pc <= pc)
942 return pc;
943
944 if (target_read_memory (pc, &op, 1))
945 return pc;
946
947 if (op != 0x58) /* popl %eax */
948 return pc;
949
950 if (target_read_memory (pc + 1, buf, 4))
951 return pc;
952
953 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
954 return pc;
955
956 if (current_pc == pc)
957 {
958 cache->sp_offset += 4;
959 return current_pc;
960 }
961
962 if (current_pc == pc + 1)
963 {
964 cache->pc_in_eax = 1;
965 return current_pc;
966 }
967
968 if (buf[1] == proto1[1])
969 return pc + 4;
970 else
971 return pc + 5;
972 }
973
974 static CORE_ADDR
975 i386_skip_probe (CORE_ADDR pc)
976 {
977 /* A function may start with
978
979 pushl constant
980 call _probe
981 addl $4, %esp
982
983 followed by
984
985 pushl %ebp
986
987 etc. */
988 gdb_byte buf[8];
989 gdb_byte op;
990
991 if (target_read_memory (pc, &op, 1))
992 return pc;
993
994 if (op == 0x68 || op == 0x6a)
995 {
996 int delta;
997
998 /* Skip past the `pushl' instruction; it has either a one-byte or a
999 four-byte operand, depending on the opcode. */
1000 if (op == 0x68)
1001 delta = 5;
1002 else
1003 delta = 2;
1004
1005 /* Read the following 8 bytes, which should be `call _probe' (6
1006 bytes) followed by `addl $4,%esp' (2 bytes). */
1007 read_memory (pc + delta, buf, sizeof (buf));
1008 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
1009 pc += delta + sizeof (buf);
1010 }
1011
1012 return pc;
1013 }
1014
1015 /* GCC 4.1 and later, can put code in the prologue to realign the
1016 stack pointer. Check whether PC points to such code, and update
1017 CACHE accordingly. Return the first instruction after the code
1018 sequence or CURRENT_PC, whichever is smaller. If we don't
1019 recognize the code, return PC. */
1020
1021 static CORE_ADDR
1022 i386_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1023 struct i386_frame_cache *cache)
1024 {
1025 /* There are 2 code sequences to re-align stack before the frame
1026 gets set up:
1027
1028 1. Use a caller-saved saved register:
1029
1030 leal 4(%esp), %reg
1031 andl $-XXX, %esp
1032 pushl -4(%reg)
1033
1034 2. Use a callee-saved saved register:
1035
1036 pushl %reg
1037 leal 8(%esp), %reg
1038 andl $-XXX, %esp
1039 pushl -4(%reg)
1040
1041 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
1042
1043 0x83 0xe4 0xf0 andl $-16, %esp
1044 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
1045 */
1046
1047 gdb_byte buf[14];
1048 int reg;
1049 int offset, offset_and;
1050 static int regnums[8] = {
1051 I386_EAX_REGNUM, /* %eax */
1052 I386_ECX_REGNUM, /* %ecx */
1053 I386_EDX_REGNUM, /* %edx */
1054 I386_EBX_REGNUM, /* %ebx */
1055 I386_ESP_REGNUM, /* %esp */
1056 I386_EBP_REGNUM, /* %ebp */
1057 I386_ESI_REGNUM, /* %esi */
1058 I386_EDI_REGNUM /* %edi */
1059 };
1060
1061 if (target_read_memory (pc, buf, sizeof buf))
1062 return pc;
1063
1064 /* Check caller-saved saved register. The first instruction has
1065 to be "leal 4(%esp), %reg". */
1066 if (buf[0] == 0x8d && buf[2] == 0x24 && buf[3] == 0x4)
1067 {
1068 /* MOD must be binary 10 and R/M must be binary 100. */
1069 if ((buf[1] & 0xc7) != 0x44)
1070 return pc;
1071
1072 /* REG has register number. */
1073 reg = (buf[1] >> 3) & 7;
1074 offset = 4;
1075 }
1076 else
1077 {
1078 /* Check callee-saved saved register. The first instruction
1079 has to be "pushl %reg". */
1080 if ((buf[0] & 0xf8) != 0x50)
1081 return pc;
1082
1083 /* Get register. */
1084 reg = buf[0] & 0x7;
1085
1086 /* The next instruction has to be "leal 8(%esp), %reg". */
1087 if (buf[1] != 0x8d || buf[3] != 0x24 || buf[4] != 0x8)
1088 return pc;
1089
1090 /* MOD must be binary 10 and R/M must be binary 100. */
1091 if ((buf[2] & 0xc7) != 0x44)
1092 return pc;
1093
1094 /* REG has register number. Registers in pushl and leal have to
1095 be the same. */
1096 if (reg != ((buf[2] >> 3) & 7))
1097 return pc;
1098
1099 offset = 5;
1100 }
1101
1102 /* Rigister can't be %esp nor %ebp. */
1103 if (reg == 4 || reg == 5)
1104 return pc;
1105
1106 /* The next instruction has to be "andl $-XXX, %esp". */
1107 if (buf[offset + 1] != 0xe4
1108 || (buf[offset] != 0x81 && buf[offset] != 0x83))
1109 return pc;
1110
1111 offset_and = offset;
1112 offset += buf[offset] == 0x81 ? 6 : 3;
1113
1114 /* The next instruction has to be "pushl -4(%reg)". 8bit -4 is
1115 0xfc. REG must be binary 110 and MOD must be binary 01. */
1116 if (buf[offset] != 0xff
1117 || buf[offset + 2] != 0xfc
1118 || (buf[offset + 1] & 0xf8) != 0x70)
1119 return pc;
1120
1121 /* R/M has register. Registers in leal and pushl have to be the
1122 same. */
1123 if (reg != (buf[offset + 1] & 7))
1124 return pc;
1125
1126 if (current_pc > pc + offset_and)
1127 cache->saved_sp_reg = regnums[reg];
1128
1129 return min (pc + offset + 3, current_pc);
1130 }
1131
1132 /* Maximum instruction length we need to handle. */
1133 #define I386_MAX_MATCHED_INSN_LEN 6
1134
1135 /* Instruction description. */
1136 struct i386_insn
1137 {
1138 size_t len;
1139 gdb_byte insn[I386_MAX_MATCHED_INSN_LEN];
1140 gdb_byte mask[I386_MAX_MATCHED_INSN_LEN];
1141 };
1142
1143 /* Return whether instruction at PC matches PATTERN. */
1144
1145 static int
1146 i386_match_pattern (CORE_ADDR pc, struct i386_insn pattern)
1147 {
1148 gdb_byte op;
1149
1150 if (target_read_memory (pc, &op, 1))
1151 return 0;
1152
1153 if ((op & pattern.mask[0]) == pattern.insn[0])
1154 {
1155 gdb_byte buf[I386_MAX_MATCHED_INSN_LEN - 1];
1156 int insn_matched = 1;
1157 size_t i;
1158
1159 gdb_assert (pattern.len > 1);
1160 gdb_assert (pattern.len <= I386_MAX_MATCHED_INSN_LEN);
1161
1162 if (target_read_memory (pc + 1, buf, pattern.len - 1))
1163 return 0;
1164
1165 for (i = 1; i < pattern.len; i++)
1166 {
1167 if ((buf[i - 1] & pattern.mask[i]) != pattern.insn[i])
1168 insn_matched = 0;
1169 }
1170 return insn_matched;
1171 }
1172 return 0;
1173 }
1174
1175 /* Search for the instruction at PC in the list INSN_PATTERNS. Return
1176 the first instruction description that matches. Otherwise, return
1177 NULL. */
1178
1179 static struct i386_insn *
1180 i386_match_insn (CORE_ADDR pc, struct i386_insn *insn_patterns)
1181 {
1182 struct i386_insn *pattern;
1183
1184 for (pattern = insn_patterns; pattern->len > 0; pattern++)
1185 {
1186 if (i386_match_pattern (pc, *pattern))
1187 return pattern;
1188 }
1189
1190 return NULL;
1191 }
1192
1193 /* Return whether PC points inside a sequence of instructions that
1194 matches INSN_PATTERNS. */
1195
1196 static int
1197 i386_match_insn_block (CORE_ADDR pc, struct i386_insn *insn_patterns)
1198 {
1199 CORE_ADDR current_pc;
1200 int ix, i;
1201 struct i386_insn *insn;
1202
1203 insn = i386_match_insn (pc, insn_patterns);
1204 if (insn == NULL)
1205 return 0;
1206
1207 current_pc = pc;
1208 ix = insn - insn_patterns;
1209 for (i = ix - 1; i >= 0; i--)
1210 {
1211 current_pc -= insn_patterns[i].len;
1212
1213 if (!i386_match_pattern (current_pc, insn_patterns[i]))
1214 return 0;
1215 }
1216
1217 current_pc = pc + insn->len;
1218 for (insn = insn_patterns + ix + 1; insn->len > 0; insn++)
1219 {
1220 if (!i386_match_pattern (current_pc, *insn))
1221 return 0;
1222
1223 current_pc += insn->len;
1224 }
1225
1226 return 1;
1227 }
1228
1229 /* Some special instructions that might be migrated by GCC into the
1230 part of the prologue that sets up the new stack frame. Because the
1231 stack frame hasn't been setup yet, no registers have been saved
1232 yet, and only the scratch registers %eax, %ecx and %edx can be
1233 touched. */
1234
1235 struct i386_insn i386_frame_setup_skip_insns[] =
1236 {
1237 /* Check for `movb imm8, r' and `movl imm32, r'.
1238
1239 ??? Should we handle 16-bit operand-sizes here? */
1240
1241 /* `movb imm8, %al' and `movb imm8, %ah' */
1242 /* `movb imm8, %cl' and `movb imm8, %ch' */
1243 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
1244 /* `movb imm8, %dl' and `movb imm8, %dh' */
1245 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
1246 /* `movl imm32, %eax' and `movl imm32, %ecx' */
1247 { 5, { 0xb8 }, { 0xfe } },
1248 /* `movl imm32, %edx' */
1249 { 5, { 0xba }, { 0xff } },
1250
1251 /* Check for `mov imm32, r32'. Note that there is an alternative
1252 encoding for `mov m32, %eax'.
1253
1254 ??? Should we handle SIB adressing here?
1255 ??? Should we handle 16-bit operand-sizes here? */
1256
1257 /* `movl m32, %eax' */
1258 { 5, { 0xa1 }, { 0xff } },
1259 /* `movl m32, %eax' and `mov; m32, %ecx' */
1260 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
1261 /* `movl m32, %edx' */
1262 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
1263
1264 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
1265 Because of the symmetry, there are actually two ways to encode
1266 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
1267 opcode bytes 0x31 and 0x33 for `xorl'. */
1268
1269 /* `subl %eax, %eax' */
1270 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
1271 /* `subl %ecx, %ecx' */
1272 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
1273 /* `subl %edx, %edx' */
1274 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
1275 /* `xorl %eax, %eax' */
1276 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
1277 /* `xorl %ecx, %ecx' */
1278 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
1279 /* `xorl %edx, %edx' */
1280 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
1281 { 0 }
1282 };
1283
1284
1285 /* Check whether PC points to a no-op instruction. */
1286 static CORE_ADDR
1287 i386_skip_noop (CORE_ADDR pc)
1288 {
1289 gdb_byte op;
1290 int check = 1;
1291
1292 if (target_read_memory (pc, &op, 1))
1293 return pc;
1294
1295 while (check)
1296 {
1297 check = 0;
1298 /* Ignore `nop' instruction. */
1299 if (op == 0x90)
1300 {
1301 pc += 1;
1302 if (target_read_memory (pc, &op, 1))
1303 return pc;
1304 check = 1;
1305 }
1306 /* Ignore no-op instruction `mov %edi, %edi'.
1307 Microsoft system dlls often start with
1308 a `mov %edi,%edi' instruction.
1309 The 5 bytes before the function start are
1310 filled with `nop' instructions.
1311 This pattern can be used for hot-patching:
1312 The `mov %edi, %edi' instruction can be replaced by a
1313 near jump to the location of the 5 `nop' instructions
1314 which can be replaced by a 32-bit jump to anywhere
1315 in the 32-bit address space. */
1316
1317 else if (op == 0x8b)
1318 {
1319 if (target_read_memory (pc + 1, &op, 1))
1320 return pc;
1321
1322 if (op == 0xff)
1323 {
1324 pc += 2;
1325 if (target_read_memory (pc, &op, 1))
1326 return pc;
1327
1328 check = 1;
1329 }
1330 }
1331 }
1332 return pc;
1333 }
1334
1335 /* Check whether PC points at a code that sets up a new stack frame.
1336 If so, it updates CACHE and returns the address of the first
1337 instruction after the sequence that sets up the frame or LIMIT,
1338 whichever is smaller. If we don't recognize the code, return PC. */
1339
1340 static CORE_ADDR
1341 i386_analyze_frame_setup (struct gdbarch *gdbarch,
1342 CORE_ADDR pc, CORE_ADDR limit,
1343 struct i386_frame_cache *cache)
1344 {
1345 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1346 struct i386_insn *insn;
1347 gdb_byte op;
1348 int skip = 0;
1349
1350 if (limit <= pc)
1351 return limit;
1352
1353 if (target_read_memory (pc, &op, 1))
1354 return pc;
1355
1356 if (op == 0x55) /* pushl %ebp */
1357 {
1358 /* Take into account that we've executed the `pushl %ebp' that
1359 starts this instruction sequence. */
1360 cache->saved_regs[I386_EBP_REGNUM] = 0;
1361 cache->sp_offset += 4;
1362 pc++;
1363
1364 /* If that's all, return now. */
1365 if (limit <= pc)
1366 return limit;
1367
1368 /* Check for some special instructions that might be migrated by
1369 GCC into the prologue and skip them. At this point in the
1370 prologue, code should only touch the scratch registers %eax,
1371 %ecx and %edx, so while the number of posibilities is sheer,
1372 it is limited.
1373
1374 Make sure we only skip these instructions if we later see the
1375 `movl %esp, %ebp' that actually sets up the frame. */
1376 while (pc + skip < limit)
1377 {
1378 insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
1379 if (insn == NULL)
1380 break;
1381
1382 skip += insn->len;
1383 }
1384
1385 /* If that's all, return now. */
1386 if (limit <= pc + skip)
1387 return limit;
1388
1389 if (target_read_memory (pc + skip, &op, 1))
1390 return pc + skip;
1391
1392 /* The i386 prologue looks like
1393
1394 push %ebp
1395 mov %esp,%ebp
1396 sub $0x10,%esp
1397
1398 and a different prologue can be generated for atom.
1399
1400 push %ebp
1401 lea (%esp),%ebp
1402 lea -0x10(%esp),%esp
1403
1404 We handle both of them here. */
1405
1406 switch (op)
1407 {
1408 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
1409 case 0x8b:
1410 if (read_memory_unsigned_integer (pc + skip + 1, 1, byte_order)
1411 != 0xec)
1412 return pc;
1413 pc += (skip + 2);
1414 break;
1415 case 0x89:
1416 if (read_memory_unsigned_integer (pc + skip + 1, 1, byte_order)
1417 != 0xe5)
1418 return pc;
1419 pc += (skip + 2);
1420 break;
1421 case 0x8d: /* Check for 'lea (%ebp), %ebp'. */
1422 if (read_memory_unsigned_integer (pc + skip + 1, 2, byte_order)
1423 != 0x242c)
1424 return pc;
1425 pc += (skip + 3);
1426 break;
1427 default:
1428 return pc;
1429 }
1430
1431 /* OK, we actually have a frame. We just don't know how large
1432 it is yet. Set its size to zero. We'll adjust it if
1433 necessary. We also now commit to skipping the special
1434 instructions mentioned before. */
1435 cache->locals = 0;
1436
1437 /* If that's all, return now. */
1438 if (limit <= pc)
1439 return limit;
1440
1441 /* Check for stack adjustment
1442
1443 subl $XXX, %esp
1444 or
1445 lea -XXX(%esp),%esp
1446
1447 NOTE: You can't subtract a 16-bit immediate from a 32-bit
1448 reg, so we don't have to worry about a data16 prefix. */
1449 if (target_read_memory (pc, &op, 1))
1450 return pc;
1451 if (op == 0x83)
1452 {
1453 /* `subl' with 8-bit immediate. */
1454 if (read_memory_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1455 /* Some instruction starting with 0x83 other than `subl'. */
1456 return pc;
1457
1458 /* `subl' with signed 8-bit immediate (though it wouldn't
1459 make sense to be negative). */
1460 cache->locals = read_memory_integer (pc + 2, 1, byte_order);
1461 return pc + 3;
1462 }
1463 else if (op == 0x81)
1464 {
1465 /* Maybe it is `subl' with a 32-bit immediate. */
1466 if (read_memory_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1467 /* Some instruction starting with 0x81 other than `subl'. */
1468 return pc;
1469
1470 /* It is `subl' with a 32-bit immediate. */
1471 cache->locals = read_memory_integer (pc + 2, 4, byte_order);
1472 return pc + 6;
1473 }
1474 else if (op == 0x8d)
1475 {
1476 /* The ModR/M byte is 0x64. */
1477 if (read_memory_unsigned_integer (pc + 1, 1, byte_order) != 0x64)
1478 return pc;
1479 /* 'lea' with 8-bit displacement. */
1480 cache->locals = -1 * read_memory_integer (pc + 3, 1, byte_order);
1481 return pc + 4;
1482 }
1483 else
1484 {
1485 /* Some instruction other than `subl' nor 'lea'. */
1486 return pc;
1487 }
1488 }
1489 else if (op == 0xc8) /* enter */
1490 {
1491 cache->locals = read_memory_unsigned_integer (pc + 1, 2, byte_order);
1492 return pc + 4;
1493 }
1494
1495 return pc;
1496 }
1497
1498 /* Check whether PC points at code that saves registers on the stack.
1499 If so, it updates CACHE and returns the address of the first
1500 instruction after the register saves or CURRENT_PC, whichever is
1501 smaller. Otherwise, return PC. */
1502
1503 static CORE_ADDR
1504 i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
1505 struct i386_frame_cache *cache)
1506 {
1507 CORE_ADDR offset = 0;
1508 gdb_byte op;
1509 int i;
1510
1511 if (cache->locals > 0)
1512 offset -= cache->locals;
1513 for (i = 0; i < 8 && pc < current_pc; i++)
1514 {
1515 if (target_read_memory (pc, &op, 1))
1516 return pc;
1517 if (op < 0x50 || op > 0x57)
1518 break;
1519
1520 offset -= 4;
1521 cache->saved_regs[op - 0x50] = offset;
1522 cache->sp_offset += 4;
1523 pc++;
1524 }
1525
1526 return pc;
1527 }
1528
1529 /* Do a full analysis of the prologue at PC and update CACHE
1530 accordingly. Bail out early if CURRENT_PC is reached. Return the
1531 address where the analysis stopped.
1532
1533 We handle these cases:
1534
1535 The startup sequence can be at the start of the function, or the
1536 function can start with a branch to startup code at the end.
1537
1538 %ebp can be set up with either the 'enter' instruction, or "pushl
1539 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
1540 once used in the System V compiler).
1541
1542 Local space is allocated just below the saved %ebp by either the
1543 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
1544 16-bit unsigned argument for space to allocate, and the 'addl'
1545 instruction could have either a signed byte, or 32-bit immediate.
1546
1547 Next, the registers used by this function are pushed. With the
1548 System V compiler they will always be in the order: %edi, %esi,
1549 %ebx (and sometimes a harmless bug causes it to also save but not
1550 restore %eax); however, the code below is willing to see the pushes
1551 in any order, and will handle up to 8 of them.
1552
1553 If the setup sequence is at the end of the function, then the next
1554 instruction will be a branch back to the start. */
1555
1556 static CORE_ADDR
1557 i386_analyze_prologue (struct gdbarch *gdbarch,
1558 CORE_ADDR pc, CORE_ADDR current_pc,
1559 struct i386_frame_cache *cache)
1560 {
1561 pc = i386_skip_noop (pc);
1562 pc = i386_follow_jump (gdbarch, pc);
1563 pc = i386_analyze_struct_return (pc, current_pc, cache);
1564 pc = i386_skip_probe (pc);
1565 pc = i386_analyze_stack_align (pc, current_pc, cache);
1566 pc = i386_analyze_frame_setup (gdbarch, pc, current_pc, cache);
1567 return i386_analyze_register_saves (pc, current_pc, cache);
1568 }
1569
1570 /* Return PC of first real instruction. */
1571
1572 static CORE_ADDR
1573 i386_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
1574 {
1575 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1576
1577 static gdb_byte pic_pat[6] =
1578 {
1579 0xe8, 0, 0, 0, 0, /* call 0x0 */
1580 0x5b, /* popl %ebx */
1581 };
1582 struct i386_frame_cache cache;
1583 CORE_ADDR pc;
1584 gdb_byte op;
1585 int i;
1586 CORE_ADDR func_addr;
1587
1588 if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
1589 {
1590 CORE_ADDR post_prologue_pc
1591 = skip_prologue_using_sal (gdbarch, func_addr);
1592 struct symtab *s = find_pc_symtab (func_addr);
1593
1594 /* Clang always emits a line note before the prologue and another
1595 one after. We trust clang to emit usable line notes. */
1596 if (post_prologue_pc
1597 && (s != NULL
1598 && s->producer != NULL
1599 && strncmp (s->producer, "clang ", sizeof ("clang ") - 1) == 0))
1600 return max (start_pc, post_prologue_pc);
1601 }
1602
1603 cache.locals = -1;
1604 pc = i386_analyze_prologue (gdbarch, start_pc, 0xffffffff, &cache);
1605 if (cache.locals < 0)
1606 return start_pc;
1607
1608 /* Found valid frame setup. */
1609
1610 /* The native cc on SVR4 in -K PIC mode inserts the following code
1611 to get the address of the global offset table (GOT) into register
1612 %ebx:
1613
1614 call 0x0
1615 popl %ebx
1616 movl %ebx,x(%ebp) (optional)
1617 addl y,%ebx
1618
1619 This code is with the rest of the prologue (at the end of the
1620 function), so we have to skip it to get to the first real
1621 instruction at the start of the function. */
1622
1623 for (i = 0; i < 6; i++)
1624 {
1625 if (target_read_memory (pc + i, &op, 1))
1626 return pc;
1627
1628 if (pic_pat[i] != op)
1629 break;
1630 }
1631 if (i == 6)
1632 {
1633 int delta = 6;
1634
1635 if (target_read_memory (pc + delta, &op, 1))
1636 return pc;
1637
1638 if (op == 0x89) /* movl %ebx, x(%ebp) */
1639 {
1640 op = read_memory_unsigned_integer (pc + delta + 1, 1, byte_order);
1641
1642 if (op == 0x5d) /* One byte offset from %ebp. */
1643 delta += 3;
1644 else if (op == 0x9d) /* Four byte offset from %ebp. */
1645 delta += 6;
1646 else /* Unexpected instruction. */
1647 delta = 0;
1648
1649 if (target_read_memory (pc + delta, &op, 1))
1650 return pc;
1651 }
1652
1653 /* addl y,%ebx */
1654 if (delta > 0 && op == 0x81
1655 && read_memory_unsigned_integer (pc + delta + 1, 1, byte_order)
1656 == 0xc3)
1657 {
1658 pc += delta + 6;
1659 }
1660 }
1661
1662 /* If the function starts with a branch (to startup code at the end)
1663 the last instruction should bring us back to the first
1664 instruction of the real code. */
1665 if (i386_follow_jump (gdbarch, start_pc) != start_pc)
1666 pc = i386_follow_jump (gdbarch, pc);
1667
1668 return pc;
1669 }
1670
1671 /* Check that the code pointed to by PC corresponds to a call to
1672 __main, skip it if so. Return PC otherwise. */
1673
1674 CORE_ADDR
1675 i386_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1676 {
1677 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1678 gdb_byte op;
1679
1680 if (target_read_memory (pc, &op, 1))
1681 return pc;
1682 if (op == 0xe8)
1683 {
1684 gdb_byte buf[4];
1685
1686 if (target_read_memory (pc + 1, buf, sizeof buf) == 0)
1687 {
1688 /* Make sure address is computed correctly as a 32bit
1689 integer even if CORE_ADDR is 64 bit wide. */
1690 struct bound_minimal_symbol s;
1691 CORE_ADDR call_dest;
1692
1693 call_dest = pc + 5 + extract_signed_integer (buf, 4, byte_order);
1694 call_dest = call_dest & 0xffffffffU;
1695 s = lookup_minimal_symbol_by_pc (call_dest);
1696 if (s.minsym != NULL
1697 && SYMBOL_LINKAGE_NAME (s.minsym) != NULL
1698 && strcmp (SYMBOL_LINKAGE_NAME (s.minsym), "__main") == 0)
1699 pc += 5;
1700 }
1701 }
1702
1703 return pc;
1704 }
1705
1706 /* This function is 64-bit safe. */
1707
1708 static CORE_ADDR
1709 i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1710 {
1711 gdb_byte buf[8];
1712
1713 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
1714 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
1715 }
1716 \f
1717
1718 /* Normal frames. */
1719
1720 static void
1721 i386_frame_cache_1 (struct frame_info *this_frame,
1722 struct i386_frame_cache *cache)
1723 {
1724 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1725 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1726 gdb_byte buf[4];
1727 int i;
1728
1729 cache->pc = get_frame_func (this_frame);
1730
1731 /* In principle, for normal frames, %ebp holds the frame pointer,
1732 which holds the base address for the current stack frame.
1733 However, for functions that don't need it, the frame pointer is
1734 optional. For these "frameless" functions the frame pointer is
1735 actually the frame pointer of the calling frame. Signal
1736 trampolines are just a special case of a "frameless" function.
1737 They (usually) share their frame pointer with the frame that was
1738 in progress when the signal occurred. */
1739
1740 get_frame_register (this_frame, I386_EBP_REGNUM, buf);
1741 cache->base = extract_unsigned_integer (buf, 4, byte_order);
1742 if (cache->base == 0)
1743 {
1744 cache->base_p = 1;
1745 return;
1746 }
1747
1748 /* For normal frames, %eip is stored at 4(%ebp). */
1749 cache->saved_regs[I386_EIP_REGNUM] = 4;
1750
1751 if (cache->pc != 0)
1752 i386_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
1753 cache);
1754
1755 if (cache->locals < 0)
1756 {
1757 /* We didn't find a valid frame, which means that CACHE->base
1758 currently holds the frame pointer for our calling frame. If
1759 we're at the start of a function, or somewhere half-way its
1760 prologue, the function's frame probably hasn't been fully
1761 setup yet. Try to reconstruct the base address for the stack
1762 frame by looking at the stack pointer. For truly "frameless"
1763 functions this might work too. */
1764
1765 if (cache->saved_sp_reg != -1)
1766 {
1767 /* Saved stack pointer has been saved. */
1768 get_frame_register (this_frame, cache->saved_sp_reg, buf);
1769 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
1770
1771 /* We're halfway aligning the stack. */
1772 cache->base = ((cache->saved_sp - 4) & 0xfffffff0) - 4;
1773 cache->saved_regs[I386_EIP_REGNUM] = cache->saved_sp - 4;
1774
1775 /* This will be added back below. */
1776 cache->saved_regs[I386_EIP_REGNUM] -= cache->base;
1777 }
1778 else if (cache->pc != 0
1779 || target_read_memory (get_frame_pc (this_frame), buf, 1))
1780 {
1781 /* We're in a known function, but did not find a frame
1782 setup. Assume that the function does not use %ebp.
1783 Alternatively, we may have jumped to an invalid
1784 address; in that case there is definitely no new
1785 frame in %ebp. */
1786 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
1787 cache->base = extract_unsigned_integer (buf, 4, byte_order)
1788 + cache->sp_offset;
1789 }
1790 else
1791 /* We're in an unknown function. We could not find the start
1792 of the function to analyze the prologue; our best option is
1793 to assume a typical frame layout with the caller's %ebp
1794 saved. */
1795 cache->saved_regs[I386_EBP_REGNUM] = 0;
1796 }
1797
1798 if (cache->saved_sp_reg != -1)
1799 {
1800 /* Saved stack pointer has been saved (but the SAVED_SP_REG
1801 register may be unavailable). */
1802 if (cache->saved_sp == 0
1803 && deprecated_frame_register_read (this_frame,
1804 cache->saved_sp_reg, buf))
1805 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
1806 }
1807 /* Now that we have the base address for the stack frame we can
1808 calculate the value of %esp in the calling frame. */
1809 else if (cache->saved_sp == 0)
1810 cache->saved_sp = cache->base + 8;
1811
1812 /* Adjust all the saved registers such that they contain addresses
1813 instead of offsets. */
1814 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
1815 if (cache->saved_regs[i] != -1)
1816 cache->saved_regs[i] += cache->base;
1817
1818 cache->base_p = 1;
1819 }
1820
1821 static struct i386_frame_cache *
1822 i386_frame_cache (struct frame_info *this_frame, void **this_cache)
1823 {
1824 volatile struct gdb_exception ex;
1825 struct i386_frame_cache *cache;
1826
1827 if (*this_cache)
1828 return *this_cache;
1829
1830 cache = i386_alloc_frame_cache ();
1831 *this_cache = cache;
1832
1833 TRY_CATCH (ex, RETURN_MASK_ERROR)
1834 {
1835 i386_frame_cache_1 (this_frame, cache);
1836 }
1837 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
1838 throw_exception (ex);
1839
1840 return cache;
1841 }
1842
1843 static void
1844 i386_frame_this_id (struct frame_info *this_frame, void **this_cache,
1845 struct frame_id *this_id)
1846 {
1847 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
1848
1849 /* This marks the outermost frame. */
1850 if (cache->base == 0)
1851 return;
1852
1853 /* See the end of i386_push_dummy_call. */
1854 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
1855 }
1856
1857 static enum unwind_stop_reason
1858 i386_frame_unwind_stop_reason (struct frame_info *this_frame,
1859 void **this_cache)
1860 {
1861 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
1862
1863 if (!cache->base_p)
1864 return UNWIND_UNAVAILABLE;
1865
1866 /* This marks the outermost frame. */
1867 if (cache->base == 0)
1868 return UNWIND_OUTERMOST;
1869
1870 return UNWIND_NO_REASON;
1871 }
1872
1873 static struct value *
1874 i386_frame_prev_register (struct frame_info *this_frame, void **this_cache,
1875 int regnum)
1876 {
1877 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
1878
1879 gdb_assert (regnum >= 0);
1880
1881 /* The System V ABI says that:
1882
1883 "The flags register contains the system flags, such as the
1884 direction flag and the carry flag. The direction flag must be
1885 set to the forward (that is, zero) direction before entry and
1886 upon exit from a function. Other user flags have no specified
1887 role in the standard calling sequence and are not preserved."
1888
1889 To guarantee the "upon exit" part of that statement we fake a
1890 saved flags register that has its direction flag cleared.
1891
1892 Note that GCC doesn't seem to rely on the fact that the direction
1893 flag is cleared after a function return; it always explicitly
1894 clears the flag before operations where it matters.
1895
1896 FIXME: kettenis/20030316: I'm not quite sure whether this is the
1897 right thing to do. The way we fake the flags register here makes
1898 it impossible to change it. */
1899
1900 if (regnum == I386_EFLAGS_REGNUM)
1901 {
1902 ULONGEST val;
1903
1904 val = get_frame_register_unsigned (this_frame, regnum);
1905 val &= ~(1 << 10);
1906 return frame_unwind_got_constant (this_frame, regnum, val);
1907 }
1908
1909 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
1910 return frame_unwind_got_register (this_frame, regnum, I386_EAX_REGNUM);
1911
1912 if (regnum == I386_ESP_REGNUM
1913 && (cache->saved_sp != 0 || cache->saved_sp_reg != -1))
1914 {
1915 /* If the SP has been saved, but we don't know where, then this
1916 means that SAVED_SP_REG register was found unavailable back
1917 when we built the cache. */
1918 if (cache->saved_sp == 0)
1919 return frame_unwind_got_register (this_frame, regnum,
1920 cache->saved_sp_reg);
1921 else
1922 return frame_unwind_got_constant (this_frame, regnum,
1923 cache->saved_sp);
1924 }
1925
1926 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
1927 return frame_unwind_got_memory (this_frame, regnum,
1928 cache->saved_regs[regnum]);
1929
1930 return frame_unwind_got_register (this_frame, regnum, regnum);
1931 }
1932
1933 static const struct frame_unwind i386_frame_unwind =
1934 {
1935 NORMAL_FRAME,
1936 i386_frame_unwind_stop_reason,
1937 i386_frame_this_id,
1938 i386_frame_prev_register,
1939 NULL,
1940 default_frame_sniffer
1941 };
1942
1943 /* Normal frames, but in a function epilogue. */
1944
1945 /* The epilogue is defined here as the 'ret' instruction, which will
1946 follow any instruction such as 'leave' or 'pop %ebp' that destroys
1947 the function's stack frame. */
1948
1949 static int
1950 i386_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
1951 {
1952 gdb_byte insn;
1953 struct symtab *symtab;
1954
1955 symtab = find_pc_symtab (pc);
1956 if (symtab && symtab->epilogue_unwind_valid)
1957 return 0;
1958
1959 if (target_read_memory (pc, &insn, 1))
1960 return 0; /* Can't read memory at pc. */
1961
1962 if (insn != 0xc3) /* 'ret' instruction. */
1963 return 0;
1964
1965 return 1;
1966 }
1967
1968 static int
1969 i386_epilogue_frame_sniffer (const struct frame_unwind *self,
1970 struct frame_info *this_frame,
1971 void **this_prologue_cache)
1972 {
1973 if (frame_relative_level (this_frame) == 0)
1974 return i386_in_function_epilogue_p (get_frame_arch (this_frame),
1975 get_frame_pc (this_frame));
1976 else
1977 return 0;
1978 }
1979
1980 static struct i386_frame_cache *
1981 i386_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
1982 {
1983 volatile struct gdb_exception ex;
1984 struct i386_frame_cache *cache;
1985 CORE_ADDR sp;
1986
1987 if (*this_cache)
1988 return *this_cache;
1989
1990 cache = i386_alloc_frame_cache ();
1991 *this_cache = cache;
1992
1993 TRY_CATCH (ex, RETURN_MASK_ERROR)
1994 {
1995 cache->pc = get_frame_func (this_frame);
1996
1997 /* At this point the stack looks as if we just entered the
1998 function, with the return address at the top of the
1999 stack. */
2000 sp = get_frame_register_unsigned (this_frame, I386_ESP_REGNUM);
2001 cache->base = sp + cache->sp_offset;
2002 cache->saved_sp = cache->base + 8;
2003 cache->saved_regs[I386_EIP_REGNUM] = cache->base + 4;
2004
2005 cache->base_p = 1;
2006 }
2007 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
2008 throw_exception (ex);
2009
2010 return cache;
2011 }
2012
2013 static enum unwind_stop_reason
2014 i386_epilogue_frame_unwind_stop_reason (struct frame_info *this_frame,
2015 void **this_cache)
2016 {
2017 struct i386_frame_cache *cache =
2018 i386_epilogue_frame_cache (this_frame, this_cache);
2019
2020 if (!cache->base_p)
2021 return UNWIND_UNAVAILABLE;
2022
2023 return UNWIND_NO_REASON;
2024 }
2025
2026 static void
2027 i386_epilogue_frame_this_id (struct frame_info *this_frame,
2028 void **this_cache,
2029 struct frame_id *this_id)
2030 {
2031 struct i386_frame_cache *cache =
2032 i386_epilogue_frame_cache (this_frame, this_cache);
2033
2034 if (!cache->base_p)
2035 return;
2036
2037 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2038 }
2039
2040 static struct value *
2041 i386_epilogue_frame_prev_register (struct frame_info *this_frame,
2042 void **this_cache, int regnum)
2043 {
2044 /* Make sure we've initialized the cache. */
2045 i386_epilogue_frame_cache (this_frame, this_cache);
2046
2047 return i386_frame_prev_register (this_frame, this_cache, regnum);
2048 }
2049
2050 static const struct frame_unwind i386_epilogue_frame_unwind =
2051 {
2052 NORMAL_FRAME,
2053 i386_epilogue_frame_unwind_stop_reason,
2054 i386_epilogue_frame_this_id,
2055 i386_epilogue_frame_prev_register,
2056 NULL,
2057 i386_epilogue_frame_sniffer
2058 };
2059 \f
2060
2061 /* Stack-based trampolines. */
2062
2063 /* These trampolines are used on cross x86 targets, when taking the
2064 address of a nested function. When executing these trampolines,
2065 no stack frame is set up, so we are in a similar situation as in
2066 epilogues and i386_epilogue_frame_this_id can be re-used. */
2067
2068 /* Static chain passed in register. */
2069
2070 struct i386_insn i386_tramp_chain_in_reg_insns[] =
2071 {
2072 /* `movl imm32, %eax' and `movl imm32, %ecx' */
2073 { 5, { 0xb8 }, { 0xfe } },
2074
2075 /* `jmp imm32' */
2076 { 5, { 0xe9 }, { 0xff } },
2077
2078 {0}
2079 };
2080
2081 /* Static chain passed on stack (when regparm=3). */
2082
2083 struct i386_insn i386_tramp_chain_on_stack_insns[] =
2084 {
2085 /* `push imm32' */
2086 { 5, { 0x68 }, { 0xff } },
2087
2088 /* `jmp imm32' */
2089 { 5, { 0xe9 }, { 0xff } },
2090
2091 {0}
2092 };
2093
2094 /* Return whether PC points inside a stack trampoline. */
2095
2096 static int
2097 i386_in_stack_tramp_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2098 {
2099 gdb_byte insn;
2100 const char *name;
2101
2102 /* A stack trampoline is detected if no name is associated
2103 to the current pc and if it points inside a trampoline
2104 sequence. */
2105
2106 find_pc_partial_function (pc, &name, NULL, NULL);
2107 if (name)
2108 return 0;
2109
2110 if (target_read_memory (pc, &insn, 1))
2111 return 0;
2112
2113 if (!i386_match_insn_block (pc, i386_tramp_chain_in_reg_insns)
2114 && !i386_match_insn_block (pc, i386_tramp_chain_on_stack_insns))
2115 return 0;
2116
2117 return 1;
2118 }
2119
2120 static int
2121 i386_stack_tramp_frame_sniffer (const struct frame_unwind *self,
2122 struct frame_info *this_frame,
2123 void **this_cache)
2124 {
2125 if (frame_relative_level (this_frame) == 0)
2126 return i386_in_stack_tramp_p (get_frame_arch (this_frame),
2127 get_frame_pc (this_frame));
2128 else
2129 return 0;
2130 }
2131
2132 static const struct frame_unwind i386_stack_tramp_frame_unwind =
2133 {
2134 NORMAL_FRAME,
2135 i386_epilogue_frame_unwind_stop_reason,
2136 i386_epilogue_frame_this_id,
2137 i386_epilogue_frame_prev_register,
2138 NULL,
2139 i386_stack_tramp_frame_sniffer
2140 };
2141 \f
2142 /* Generate a bytecode expression to get the value of the saved PC. */
2143
2144 static void
2145 i386_gen_return_address (struct gdbarch *gdbarch,
2146 struct agent_expr *ax, struct axs_value *value,
2147 CORE_ADDR scope)
2148 {
2149 /* The following sequence assumes the traditional use of the base
2150 register. */
2151 ax_reg (ax, I386_EBP_REGNUM);
2152 ax_const_l (ax, 4);
2153 ax_simple (ax, aop_add);
2154 value->type = register_type (gdbarch, I386_EIP_REGNUM);
2155 value->kind = axs_lvalue_memory;
2156 }
2157 \f
2158
2159 /* Signal trampolines. */
2160
2161 static struct i386_frame_cache *
2162 i386_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
2163 {
2164 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2165 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2166 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2167 volatile struct gdb_exception ex;
2168 struct i386_frame_cache *cache;
2169 CORE_ADDR addr;
2170 gdb_byte buf[4];
2171
2172 if (*this_cache)
2173 return *this_cache;
2174
2175 cache = i386_alloc_frame_cache ();
2176
2177 TRY_CATCH (ex, RETURN_MASK_ERROR)
2178 {
2179 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2180 cache->base = extract_unsigned_integer (buf, 4, byte_order) - 4;
2181
2182 addr = tdep->sigcontext_addr (this_frame);
2183 if (tdep->sc_reg_offset)
2184 {
2185 int i;
2186
2187 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
2188
2189 for (i = 0; i < tdep->sc_num_regs; i++)
2190 if (tdep->sc_reg_offset[i] != -1)
2191 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
2192 }
2193 else
2194 {
2195 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
2196 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
2197 }
2198
2199 cache->base_p = 1;
2200 }
2201 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
2202 throw_exception (ex);
2203
2204 *this_cache = cache;
2205 return cache;
2206 }
2207
2208 static enum unwind_stop_reason
2209 i386_sigtramp_frame_unwind_stop_reason (struct frame_info *this_frame,
2210 void **this_cache)
2211 {
2212 struct i386_frame_cache *cache =
2213 i386_sigtramp_frame_cache (this_frame, this_cache);
2214
2215 if (!cache->base_p)
2216 return UNWIND_UNAVAILABLE;
2217
2218 return UNWIND_NO_REASON;
2219 }
2220
2221 static void
2222 i386_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache,
2223 struct frame_id *this_id)
2224 {
2225 struct i386_frame_cache *cache =
2226 i386_sigtramp_frame_cache (this_frame, this_cache);
2227
2228 if (!cache->base_p)
2229 return;
2230
2231 /* See the end of i386_push_dummy_call. */
2232 (*this_id) = frame_id_build (cache->base + 8, get_frame_pc (this_frame));
2233 }
2234
2235 static struct value *
2236 i386_sigtramp_frame_prev_register (struct frame_info *this_frame,
2237 void **this_cache, int regnum)
2238 {
2239 /* Make sure we've initialized the cache. */
2240 i386_sigtramp_frame_cache (this_frame, this_cache);
2241
2242 return i386_frame_prev_register (this_frame, this_cache, regnum);
2243 }
2244
2245 static int
2246 i386_sigtramp_frame_sniffer (const struct frame_unwind *self,
2247 struct frame_info *this_frame,
2248 void **this_prologue_cache)
2249 {
2250 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
2251
2252 /* We shouldn't even bother if we don't have a sigcontext_addr
2253 handler. */
2254 if (tdep->sigcontext_addr == NULL)
2255 return 0;
2256
2257 if (tdep->sigtramp_p != NULL)
2258 {
2259 if (tdep->sigtramp_p (this_frame))
2260 return 1;
2261 }
2262
2263 if (tdep->sigtramp_start != 0)
2264 {
2265 CORE_ADDR pc = get_frame_pc (this_frame);
2266
2267 gdb_assert (tdep->sigtramp_end != 0);
2268 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
2269 return 1;
2270 }
2271
2272 return 0;
2273 }
2274
2275 static const struct frame_unwind i386_sigtramp_frame_unwind =
2276 {
2277 SIGTRAMP_FRAME,
2278 i386_sigtramp_frame_unwind_stop_reason,
2279 i386_sigtramp_frame_this_id,
2280 i386_sigtramp_frame_prev_register,
2281 NULL,
2282 i386_sigtramp_frame_sniffer
2283 };
2284 \f
2285
2286 static CORE_ADDR
2287 i386_frame_base_address (struct frame_info *this_frame, void **this_cache)
2288 {
2289 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2290
2291 return cache->base;
2292 }
2293
2294 static const struct frame_base i386_frame_base =
2295 {
2296 &i386_frame_unwind,
2297 i386_frame_base_address,
2298 i386_frame_base_address,
2299 i386_frame_base_address
2300 };
2301
2302 static struct frame_id
2303 i386_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2304 {
2305 CORE_ADDR fp;
2306
2307 fp = get_frame_register_unsigned (this_frame, I386_EBP_REGNUM);
2308
2309 /* See the end of i386_push_dummy_call. */
2310 return frame_id_build (fp + 8, get_frame_pc (this_frame));
2311 }
2312
2313 /* _Decimal128 function return values need 16-byte alignment on the
2314 stack. */
2315
2316 static CORE_ADDR
2317 i386_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2318 {
2319 return sp & -(CORE_ADDR)16;
2320 }
2321 \f
2322
2323 /* Figure out where the longjmp will land. Slurp the args out of the
2324 stack. We expect the first arg to be a pointer to the jmp_buf
2325 structure from which we extract the address that we will land at.
2326 This address is copied into PC. This routine returns non-zero on
2327 success. */
2328
2329 static int
2330 i386_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
2331 {
2332 gdb_byte buf[4];
2333 CORE_ADDR sp, jb_addr;
2334 struct gdbarch *gdbarch = get_frame_arch (frame);
2335 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2336 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
2337
2338 /* If JB_PC_OFFSET is -1, we have no way to find out where the
2339 longjmp will land. */
2340 if (jb_pc_offset == -1)
2341 return 0;
2342
2343 get_frame_register (frame, I386_ESP_REGNUM, buf);
2344 sp = extract_unsigned_integer (buf, 4, byte_order);
2345 if (target_read_memory (sp + 4, buf, 4))
2346 return 0;
2347
2348 jb_addr = extract_unsigned_integer (buf, 4, byte_order);
2349 if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
2350 return 0;
2351
2352 *pc = extract_unsigned_integer (buf, 4, byte_order);
2353 return 1;
2354 }
2355 \f
2356
2357 /* Check whether TYPE must be 16-byte-aligned when passed as a
2358 function argument. 16-byte vectors, _Decimal128 and structures or
2359 unions containing such types must be 16-byte-aligned; other
2360 arguments are 4-byte-aligned. */
2361
2362 static int
2363 i386_16_byte_align_p (struct type *type)
2364 {
2365 type = check_typedef (type);
2366 if ((TYPE_CODE (type) == TYPE_CODE_DECFLOAT
2367 || (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type)))
2368 && TYPE_LENGTH (type) == 16)
2369 return 1;
2370 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2371 return i386_16_byte_align_p (TYPE_TARGET_TYPE (type));
2372 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2373 || TYPE_CODE (type) == TYPE_CODE_UNION)
2374 {
2375 int i;
2376 for (i = 0; i < TYPE_NFIELDS (type); i++)
2377 {
2378 if (i386_16_byte_align_p (TYPE_FIELD_TYPE (type, i)))
2379 return 1;
2380 }
2381 }
2382 return 0;
2383 }
2384
2385 /* Implementation for set_gdbarch_push_dummy_code. */
2386
2387 static CORE_ADDR
2388 i386_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, CORE_ADDR funaddr,
2389 struct value **args, int nargs, struct type *value_type,
2390 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
2391 struct regcache *regcache)
2392 {
2393 /* Use 0xcc breakpoint - 1 byte. */
2394 *bp_addr = sp - 1;
2395 *real_pc = funaddr;
2396
2397 /* Keep the stack aligned. */
2398 return sp - 16;
2399 }
2400
2401 static CORE_ADDR
2402 i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2403 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2404 struct value **args, CORE_ADDR sp, int struct_return,
2405 CORE_ADDR struct_addr)
2406 {
2407 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2408 gdb_byte buf[4];
2409 int i;
2410 int write_pass;
2411 int args_space = 0;
2412
2413 /* Determine the total space required for arguments and struct
2414 return address in a first pass (allowing for 16-byte-aligned
2415 arguments), then push arguments in a second pass. */
2416
2417 for (write_pass = 0; write_pass < 2; write_pass++)
2418 {
2419 int args_space_used = 0;
2420
2421 if (struct_return)
2422 {
2423 if (write_pass)
2424 {
2425 /* Push value address. */
2426 store_unsigned_integer (buf, 4, byte_order, struct_addr);
2427 write_memory (sp, buf, 4);
2428 args_space_used += 4;
2429 }
2430 else
2431 args_space += 4;
2432 }
2433
2434 for (i = 0; i < nargs; i++)
2435 {
2436 int len = TYPE_LENGTH (value_enclosing_type (args[i]));
2437
2438 if (write_pass)
2439 {
2440 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2441 args_space_used = align_up (args_space_used, 16);
2442
2443 write_memory (sp + args_space_used,
2444 value_contents_all (args[i]), len);
2445 /* The System V ABI says that:
2446
2447 "An argument's size is increased, if necessary, to make it a
2448 multiple of [32-bit] words. This may require tail padding,
2449 depending on the size of the argument."
2450
2451 This makes sure the stack stays word-aligned. */
2452 args_space_used += align_up (len, 4);
2453 }
2454 else
2455 {
2456 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2457 args_space = align_up (args_space, 16);
2458 args_space += align_up (len, 4);
2459 }
2460 }
2461
2462 if (!write_pass)
2463 {
2464 sp -= args_space;
2465
2466 /* The original System V ABI only requires word alignment,
2467 but modern incarnations need 16-byte alignment in order
2468 to support SSE. Since wasting a few bytes here isn't
2469 harmful we unconditionally enforce 16-byte alignment. */
2470 sp &= ~0xf;
2471 }
2472 }
2473
2474 /* Store return address. */
2475 sp -= 4;
2476 store_unsigned_integer (buf, 4, byte_order, bp_addr);
2477 write_memory (sp, buf, 4);
2478
2479 /* Finally, update the stack pointer... */
2480 store_unsigned_integer (buf, 4, byte_order, sp);
2481 regcache_cooked_write (regcache, I386_ESP_REGNUM, buf);
2482
2483 /* ...and fake a frame pointer. */
2484 regcache_cooked_write (regcache, I386_EBP_REGNUM, buf);
2485
2486 /* MarkK wrote: This "+ 8" is all over the place:
2487 (i386_frame_this_id, i386_sigtramp_frame_this_id,
2488 i386_dummy_id). It's there, since all frame unwinders for
2489 a given target have to agree (within a certain margin) on the
2490 definition of the stack address of a frame. Otherwise frame id
2491 comparison might not work correctly. Since DWARF2/GCC uses the
2492 stack address *before* the function call as a frame's CFA. On
2493 the i386, when %ebp is used as a frame pointer, the offset
2494 between the contents %ebp and the CFA as defined by GCC. */
2495 return sp + 8;
2496 }
2497
2498 /* These registers are used for returning integers (and on some
2499 targets also for returning `struct' and `union' values when their
2500 size and alignment match an integer type). */
2501 #define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
2502 #define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
2503
2504 /* Read, for architecture GDBARCH, a function return value of TYPE
2505 from REGCACHE, and copy that into VALBUF. */
2506
2507 static void
2508 i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
2509 struct regcache *regcache, gdb_byte *valbuf)
2510 {
2511 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2512 int len = TYPE_LENGTH (type);
2513 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2514
2515 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2516 {
2517 if (tdep->st0_regnum < 0)
2518 {
2519 warning (_("Cannot find floating-point return value."));
2520 memset (valbuf, 0, len);
2521 return;
2522 }
2523
2524 /* Floating-point return values can be found in %st(0). Convert
2525 its contents to the desired type. This is probably not
2526 exactly how it would happen on the target itself, but it is
2527 the best we can do. */
2528 regcache_raw_read (regcache, I386_ST0_REGNUM, buf);
2529 convert_typed_floating (buf, i387_ext_type (gdbarch), valbuf, type);
2530 }
2531 else
2532 {
2533 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2534 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2535
2536 if (len <= low_size)
2537 {
2538 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
2539 memcpy (valbuf, buf, len);
2540 }
2541 else if (len <= (low_size + high_size))
2542 {
2543 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
2544 memcpy (valbuf, buf, low_size);
2545 regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
2546 memcpy (valbuf + low_size, buf, len - low_size);
2547 }
2548 else
2549 internal_error (__FILE__, __LINE__,
2550 _("Cannot extract return value of %d bytes long."),
2551 len);
2552 }
2553 }
2554
2555 /* Write, for architecture GDBARCH, a function return value of TYPE
2556 from VALBUF into REGCACHE. */
2557
2558 static void
2559 i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
2560 struct regcache *regcache, const gdb_byte *valbuf)
2561 {
2562 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2563 int len = TYPE_LENGTH (type);
2564
2565 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2566 {
2567 ULONGEST fstat;
2568 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2569
2570 if (tdep->st0_regnum < 0)
2571 {
2572 warning (_("Cannot set floating-point return value."));
2573 return;
2574 }
2575
2576 /* Returning floating-point values is a bit tricky. Apart from
2577 storing the return value in %st(0), we have to simulate the
2578 state of the FPU at function return point. */
2579
2580 /* Convert the value found in VALBUF to the extended
2581 floating-point format used by the FPU. This is probably
2582 not exactly how it would happen on the target itself, but
2583 it is the best we can do. */
2584 convert_typed_floating (valbuf, type, buf, i387_ext_type (gdbarch));
2585 regcache_raw_write (regcache, I386_ST0_REGNUM, buf);
2586
2587 /* Set the top of the floating-point register stack to 7. The
2588 actual value doesn't really matter, but 7 is what a normal
2589 function return would end up with if the program started out
2590 with a freshly initialized FPU. */
2591 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
2592 fstat |= (7 << 11);
2593 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM (tdep), fstat);
2594
2595 /* Mark %st(1) through %st(7) as empty. Since we set the top of
2596 the floating-point register stack to 7, the appropriate value
2597 for the tag word is 0x3fff. */
2598 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM (tdep), 0x3fff);
2599 }
2600 else
2601 {
2602 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2603 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2604
2605 if (len <= low_size)
2606 regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
2607 else if (len <= (low_size + high_size))
2608 {
2609 regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
2610 regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
2611 len - low_size, valbuf + low_size);
2612 }
2613 else
2614 internal_error (__FILE__, __LINE__,
2615 _("Cannot store return value of %d bytes long."), len);
2616 }
2617 }
2618 \f
2619
2620 /* This is the variable that is set with "set struct-convention", and
2621 its legitimate values. */
2622 static const char default_struct_convention[] = "default";
2623 static const char pcc_struct_convention[] = "pcc";
2624 static const char reg_struct_convention[] = "reg";
2625 static const char *const valid_conventions[] =
2626 {
2627 default_struct_convention,
2628 pcc_struct_convention,
2629 reg_struct_convention,
2630 NULL
2631 };
2632 static const char *struct_convention = default_struct_convention;
2633
2634 /* Return non-zero if TYPE, which is assumed to be a structure,
2635 a union type, or an array type, should be returned in registers
2636 for architecture GDBARCH. */
2637
2638 static int
2639 i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
2640 {
2641 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2642 enum type_code code = TYPE_CODE (type);
2643 int len = TYPE_LENGTH (type);
2644
2645 gdb_assert (code == TYPE_CODE_STRUCT
2646 || code == TYPE_CODE_UNION
2647 || code == TYPE_CODE_ARRAY);
2648
2649 if (struct_convention == pcc_struct_convention
2650 || (struct_convention == default_struct_convention
2651 && tdep->struct_return == pcc_struct_return))
2652 return 0;
2653
2654 /* Structures consisting of a single `float', `double' or 'long
2655 double' member are returned in %st(0). */
2656 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2657 {
2658 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
2659 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2660 return (len == 4 || len == 8 || len == 12);
2661 }
2662
2663 return (len == 1 || len == 2 || len == 4 || len == 8);
2664 }
2665
2666 /* Determine, for architecture GDBARCH, how a return value of TYPE
2667 should be returned. If it is supposed to be returned in registers,
2668 and READBUF is non-zero, read the appropriate value from REGCACHE,
2669 and copy it into READBUF. If WRITEBUF is non-zero, write the value
2670 from WRITEBUF into REGCACHE. */
2671
2672 static enum return_value_convention
2673 i386_return_value (struct gdbarch *gdbarch, struct value *function,
2674 struct type *type, struct regcache *regcache,
2675 gdb_byte *readbuf, const gdb_byte *writebuf)
2676 {
2677 enum type_code code = TYPE_CODE (type);
2678
2679 if (((code == TYPE_CODE_STRUCT
2680 || code == TYPE_CODE_UNION
2681 || code == TYPE_CODE_ARRAY)
2682 && !i386_reg_struct_return_p (gdbarch, type))
2683 /* Complex double and long double uses the struct return covention. */
2684 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 16)
2685 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 24)
2686 /* 128-bit decimal float uses the struct return convention. */
2687 || (code == TYPE_CODE_DECFLOAT && TYPE_LENGTH (type) == 16))
2688 {
2689 /* The System V ABI says that:
2690
2691 "A function that returns a structure or union also sets %eax
2692 to the value of the original address of the caller's area
2693 before it returns. Thus when the caller receives control
2694 again, the address of the returned object resides in register
2695 %eax and can be used to access the object."
2696
2697 So the ABI guarantees that we can always find the return
2698 value just after the function has returned. */
2699
2700 /* Note that the ABI doesn't mention functions returning arrays,
2701 which is something possible in certain languages such as Ada.
2702 In this case, the value is returned as if it was wrapped in
2703 a record, so the convention applied to records also applies
2704 to arrays. */
2705
2706 if (readbuf)
2707 {
2708 ULONGEST addr;
2709
2710 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
2711 read_memory (addr, readbuf, TYPE_LENGTH (type));
2712 }
2713
2714 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
2715 }
2716
2717 /* This special case is for structures consisting of a single
2718 `float', `double' or 'long double' member. These structures are
2719 returned in %st(0). For these structures, we call ourselves
2720 recursively, changing TYPE into the type of the first member of
2721 the structure. Since that should work for all structures that
2722 have only one member, we don't bother to check the member's type
2723 here. */
2724 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2725 {
2726 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
2727 return i386_return_value (gdbarch, function, type, regcache,
2728 readbuf, writebuf);
2729 }
2730
2731 if (readbuf)
2732 i386_extract_return_value (gdbarch, type, regcache, readbuf);
2733 if (writebuf)
2734 i386_store_return_value (gdbarch, type, regcache, writebuf);
2735
2736 return RETURN_VALUE_REGISTER_CONVENTION;
2737 }
2738 \f
2739
2740 struct type *
2741 i387_ext_type (struct gdbarch *gdbarch)
2742 {
2743 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2744
2745 if (!tdep->i387_ext_type)
2746 {
2747 tdep->i387_ext_type = tdesc_find_type (gdbarch, "i387_ext");
2748 gdb_assert (tdep->i387_ext_type != NULL);
2749 }
2750
2751 return tdep->i387_ext_type;
2752 }
2753
2754 /* Construct vector type for pseudo YMM registers. We can't use
2755 tdesc_find_type since YMM isn't described in target description. */
2756
2757 static struct type *
2758 i386_ymm_type (struct gdbarch *gdbarch)
2759 {
2760 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2761
2762 if (!tdep->i386_ymm_type)
2763 {
2764 const struct builtin_type *bt = builtin_type (gdbarch);
2765
2766 /* The type we're building is this: */
2767 #if 0
2768 union __gdb_builtin_type_vec256i
2769 {
2770 int128_t uint128[2];
2771 int64_t v2_int64[4];
2772 int32_t v4_int32[8];
2773 int16_t v8_int16[16];
2774 int8_t v16_int8[32];
2775 double v2_double[4];
2776 float v4_float[8];
2777 };
2778 #endif
2779
2780 struct type *t;
2781
2782 t = arch_composite_type (gdbarch,
2783 "__gdb_builtin_type_vec256i", TYPE_CODE_UNION);
2784 append_composite_type_field (t, "v8_float",
2785 init_vector_type (bt->builtin_float, 8));
2786 append_composite_type_field (t, "v4_double",
2787 init_vector_type (bt->builtin_double, 4));
2788 append_composite_type_field (t, "v32_int8",
2789 init_vector_type (bt->builtin_int8, 32));
2790 append_composite_type_field (t, "v16_int16",
2791 init_vector_type (bt->builtin_int16, 16));
2792 append_composite_type_field (t, "v8_int32",
2793 init_vector_type (bt->builtin_int32, 8));
2794 append_composite_type_field (t, "v4_int64",
2795 init_vector_type (bt->builtin_int64, 4));
2796 append_composite_type_field (t, "v2_int128",
2797 init_vector_type (bt->builtin_int128, 2));
2798
2799 TYPE_VECTOR (t) = 1;
2800 TYPE_NAME (t) = "builtin_type_vec256i";
2801 tdep->i386_ymm_type = t;
2802 }
2803
2804 return tdep->i386_ymm_type;
2805 }
2806
2807 /* Construct vector type for MMX registers. */
2808 static struct type *
2809 i386_mmx_type (struct gdbarch *gdbarch)
2810 {
2811 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2812
2813 if (!tdep->i386_mmx_type)
2814 {
2815 const struct builtin_type *bt = builtin_type (gdbarch);
2816
2817 /* The type we're building is this: */
2818 #if 0
2819 union __gdb_builtin_type_vec64i
2820 {
2821 int64_t uint64;
2822 int32_t v2_int32[2];
2823 int16_t v4_int16[4];
2824 int8_t v8_int8[8];
2825 };
2826 #endif
2827
2828 struct type *t;
2829
2830 t = arch_composite_type (gdbarch,
2831 "__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
2832
2833 append_composite_type_field (t, "uint64", bt->builtin_int64);
2834 append_composite_type_field (t, "v2_int32",
2835 init_vector_type (bt->builtin_int32, 2));
2836 append_composite_type_field (t, "v4_int16",
2837 init_vector_type (bt->builtin_int16, 4));
2838 append_composite_type_field (t, "v8_int8",
2839 init_vector_type (bt->builtin_int8, 8));
2840
2841 TYPE_VECTOR (t) = 1;
2842 TYPE_NAME (t) = "builtin_type_vec64i";
2843 tdep->i386_mmx_type = t;
2844 }
2845
2846 return tdep->i386_mmx_type;
2847 }
2848
2849 /* Return the GDB type object for the "standard" data type of data in
2850 register REGNUM. */
2851
2852 struct type *
2853 i386_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
2854 {
2855 if (i386_mmx_regnum_p (gdbarch, regnum))
2856 return i386_mmx_type (gdbarch);
2857 else if (i386_ymm_regnum_p (gdbarch, regnum))
2858 return i386_ymm_type (gdbarch);
2859 else
2860 {
2861 const struct builtin_type *bt = builtin_type (gdbarch);
2862 if (i386_byte_regnum_p (gdbarch, regnum))
2863 return bt->builtin_int8;
2864 else if (i386_word_regnum_p (gdbarch, regnum))
2865 return bt->builtin_int16;
2866 else if (i386_dword_regnum_p (gdbarch, regnum))
2867 return bt->builtin_int32;
2868 }
2869
2870 internal_error (__FILE__, __LINE__, _("invalid regnum"));
2871 }
2872
2873 /* Map a cooked register onto a raw register or memory. For the i386,
2874 the MMX registers need to be mapped onto floating point registers. */
2875
2876 static int
2877 i386_mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
2878 {
2879 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
2880 int mmxreg, fpreg;
2881 ULONGEST fstat;
2882 int tos;
2883
2884 mmxreg = regnum - tdep->mm0_regnum;
2885 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
2886 tos = (fstat >> 11) & 0x7;
2887 fpreg = (mmxreg + tos) % 8;
2888
2889 return (I387_ST0_REGNUM (tdep) + fpreg);
2890 }
2891
2892 /* A helper function for us by i386_pseudo_register_read_value and
2893 amd64_pseudo_register_read_value. It does all the work but reads
2894 the data into an already-allocated value. */
2895
2896 void
2897 i386_pseudo_register_read_into_value (struct gdbarch *gdbarch,
2898 struct regcache *regcache,
2899 int regnum,
2900 struct value *result_value)
2901 {
2902 gdb_byte raw_buf[MAX_REGISTER_SIZE];
2903 enum register_status status;
2904 gdb_byte *buf = value_contents_raw (result_value);
2905
2906 if (i386_mmx_regnum_p (gdbarch, regnum))
2907 {
2908 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
2909
2910 /* Extract (always little endian). */
2911 status = regcache_raw_read (regcache, fpnum, raw_buf);
2912 if (status != REG_VALID)
2913 mark_value_bytes_unavailable (result_value, 0,
2914 TYPE_LENGTH (value_type (result_value)));
2915 else
2916 memcpy (buf, raw_buf, register_size (gdbarch, regnum));
2917 }
2918 else
2919 {
2920 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2921
2922 if (i386_ymm_regnum_p (gdbarch, regnum))
2923 {
2924 regnum -= tdep->ymm0_regnum;
2925
2926 /* Extract (always little endian). Read lower 128bits. */
2927 status = regcache_raw_read (regcache,
2928 I387_XMM0_REGNUM (tdep) + regnum,
2929 raw_buf);
2930 if (status != REG_VALID)
2931 mark_value_bytes_unavailable (result_value, 0, 16);
2932 else
2933 memcpy (buf, raw_buf, 16);
2934 /* Read upper 128bits. */
2935 status = regcache_raw_read (regcache,
2936 tdep->ymm0h_regnum + regnum,
2937 raw_buf);
2938 if (status != REG_VALID)
2939 mark_value_bytes_unavailable (result_value, 16, 32);
2940 else
2941 memcpy (buf + 16, raw_buf, 16);
2942 }
2943 else if (i386_word_regnum_p (gdbarch, regnum))
2944 {
2945 int gpnum = regnum - tdep->ax_regnum;
2946
2947 /* Extract (always little endian). */
2948 status = regcache_raw_read (regcache, gpnum, raw_buf);
2949 if (status != REG_VALID)
2950 mark_value_bytes_unavailable (result_value, 0,
2951 TYPE_LENGTH (value_type (result_value)));
2952 else
2953 memcpy (buf, raw_buf, 2);
2954 }
2955 else if (i386_byte_regnum_p (gdbarch, regnum))
2956 {
2957 /* Check byte pseudo registers last since this function will
2958 be called from amd64_pseudo_register_read, which handles
2959 byte pseudo registers differently. */
2960 int gpnum = regnum - tdep->al_regnum;
2961
2962 /* Extract (always little endian). We read both lower and
2963 upper registers. */
2964 status = regcache_raw_read (regcache, gpnum % 4, raw_buf);
2965 if (status != REG_VALID)
2966 mark_value_bytes_unavailable (result_value, 0,
2967 TYPE_LENGTH (value_type (result_value)));
2968 else if (gpnum >= 4)
2969 memcpy (buf, raw_buf + 1, 1);
2970 else
2971 memcpy (buf, raw_buf, 1);
2972 }
2973 else
2974 internal_error (__FILE__, __LINE__, _("invalid regnum"));
2975 }
2976 }
2977
2978 static struct value *
2979 i386_pseudo_register_read_value (struct gdbarch *gdbarch,
2980 struct regcache *regcache,
2981 int regnum)
2982 {
2983 struct value *result;
2984
2985 result = allocate_value (register_type (gdbarch, regnum));
2986 VALUE_LVAL (result) = lval_register;
2987 VALUE_REGNUM (result) = regnum;
2988
2989 i386_pseudo_register_read_into_value (gdbarch, regcache, regnum, result);
2990
2991 return result;
2992 }
2993
2994 void
2995 i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2996 int regnum, const gdb_byte *buf)
2997 {
2998 gdb_byte raw_buf[MAX_REGISTER_SIZE];
2999
3000 if (i386_mmx_regnum_p (gdbarch, regnum))
3001 {
3002 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3003
3004 /* Read ... */
3005 regcache_raw_read (regcache, fpnum, raw_buf);
3006 /* ... Modify ... (always little endian). */
3007 memcpy (raw_buf, buf, register_size (gdbarch, regnum));
3008 /* ... Write. */
3009 regcache_raw_write (regcache, fpnum, raw_buf);
3010 }
3011 else
3012 {
3013 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3014
3015 if (i386_ymm_regnum_p (gdbarch, regnum))
3016 {
3017 regnum -= tdep->ymm0_regnum;
3018
3019 /* ... Write lower 128bits. */
3020 regcache_raw_write (regcache,
3021 I387_XMM0_REGNUM (tdep) + regnum,
3022 buf);
3023 /* ... Write upper 128bits. */
3024 regcache_raw_write (regcache,
3025 tdep->ymm0h_regnum + regnum,
3026 buf + 16);
3027 }
3028 else if (i386_word_regnum_p (gdbarch, regnum))
3029 {
3030 int gpnum = regnum - tdep->ax_regnum;
3031
3032 /* Read ... */
3033 regcache_raw_read (regcache, gpnum, raw_buf);
3034 /* ... Modify ... (always little endian). */
3035 memcpy (raw_buf, buf, 2);
3036 /* ... Write. */
3037 regcache_raw_write (regcache, gpnum, raw_buf);
3038 }
3039 else if (i386_byte_regnum_p (gdbarch, regnum))
3040 {
3041 /* Check byte pseudo registers last since this function will
3042 be called from amd64_pseudo_register_read, which handles
3043 byte pseudo registers differently. */
3044 int gpnum = regnum - tdep->al_regnum;
3045
3046 /* Read ... We read both lower and upper registers. */
3047 regcache_raw_read (regcache, gpnum % 4, raw_buf);
3048 /* ... Modify ... (always little endian). */
3049 if (gpnum >= 4)
3050 memcpy (raw_buf + 1, buf, 1);
3051 else
3052 memcpy (raw_buf, buf, 1);
3053 /* ... Write. */
3054 regcache_raw_write (regcache, gpnum % 4, raw_buf);
3055 }
3056 else
3057 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3058 }
3059 }
3060 \f
3061
3062 /* Return the register number of the register allocated by GCC after
3063 REGNUM, or -1 if there is no such register. */
3064
3065 static int
3066 i386_next_regnum (int regnum)
3067 {
3068 /* GCC allocates the registers in the order:
3069
3070 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
3071
3072 Since storing a variable in %esp doesn't make any sense we return
3073 -1 for %ebp and for %esp itself. */
3074 static int next_regnum[] =
3075 {
3076 I386_EDX_REGNUM, /* Slot for %eax. */
3077 I386_EBX_REGNUM, /* Slot for %ecx. */
3078 I386_ECX_REGNUM, /* Slot for %edx. */
3079 I386_ESI_REGNUM, /* Slot for %ebx. */
3080 -1, -1, /* Slots for %esp and %ebp. */
3081 I386_EDI_REGNUM, /* Slot for %esi. */
3082 I386_EBP_REGNUM /* Slot for %edi. */
3083 };
3084
3085 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
3086 return next_regnum[regnum];
3087
3088 return -1;
3089 }
3090
3091 /* Return nonzero if a value of type TYPE stored in register REGNUM
3092 needs any special handling. */
3093
3094 static int
3095 i386_convert_register_p (struct gdbarch *gdbarch,
3096 int regnum, struct type *type)
3097 {
3098 int len = TYPE_LENGTH (type);
3099
3100 /* Values may be spread across multiple registers. Most debugging
3101 formats aren't expressive enough to specify the locations, so
3102 some heuristics is involved. Right now we only handle types that
3103 have a length that is a multiple of the word size, since GCC
3104 doesn't seem to put any other types into registers. */
3105 if (len > 4 && len % 4 == 0)
3106 {
3107 int last_regnum = regnum;
3108
3109 while (len > 4)
3110 {
3111 last_regnum = i386_next_regnum (last_regnum);
3112 len -= 4;
3113 }
3114
3115 if (last_regnum != -1)
3116 return 1;
3117 }
3118
3119 return i387_convert_register_p (gdbarch, regnum, type);
3120 }
3121
3122 /* Read a value of type TYPE from register REGNUM in frame FRAME, and
3123 return its contents in TO. */
3124
3125 static int
3126 i386_register_to_value (struct frame_info *frame, int regnum,
3127 struct type *type, gdb_byte *to,
3128 int *optimizedp, int *unavailablep)
3129 {
3130 struct gdbarch *gdbarch = get_frame_arch (frame);
3131 int len = TYPE_LENGTH (type);
3132
3133 if (i386_fp_regnum_p (gdbarch, regnum))
3134 return i387_register_to_value (frame, regnum, type, to,
3135 optimizedp, unavailablep);
3136
3137 /* Read a value spread across multiple registers. */
3138
3139 gdb_assert (len > 4 && len % 4 == 0);
3140
3141 while (len > 0)
3142 {
3143 gdb_assert (regnum != -1);
3144 gdb_assert (register_size (gdbarch, regnum) == 4);
3145
3146 if (!get_frame_register_bytes (frame, regnum, 0,
3147 register_size (gdbarch, regnum),
3148 to, optimizedp, unavailablep))
3149 return 0;
3150
3151 regnum = i386_next_regnum (regnum);
3152 len -= 4;
3153 to += 4;
3154 }
3155
3156 *optimizedp = *unavailablep = 0;
3157 return 1;
3158 }
3159
3160 /* Write the contents FROM of a value of type TYPE into register
3161 REGNUM in frame FRAME. */
3162
3163 static void
3164 i386_value_to_register (struct frame_info *frame, int regnum,
3165 struct type *type, const gdb_byte *from)
3166 {
3167 int len = TYPE_LENGTH (type);
3168
3169 if (i386_fp_regnum_p (get_frame_arch (frame), regnum))
3170 {
3171 i387_value_to_register (frame, regnum, type, from);
3172 return;
3173 }
3174
3175 /* Write a value spread across multiple registers. */
3176
3177 gdb_assert (len > 4 && len % 4 == 0);
3178
3179 while (len > 0)
3180 {
3181 gdb_assert (regnum != -1);
3182 gdb_assert (register_size (get_frame_arch (frame), regnum) == 4);
3183
3184 put_frame_register (frame, regnum, from);
3185 regnum = i386_next_regnum (regnum);
3186 len -= 4;
3187 from += 4;
3188 }
3189 }
3190 \f
3191 /* Supply register REGNUM from the buffer specified by GREGS and LEN
3192 in the general-purpose register set REGSET to register cache
3193 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3194
3195 void
3196 i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
3197 int regnum, const void *gregs, size_t len)
3198 {
3199 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
3200 const gdb_byte *regs = gregs;
3201 int i;
3202
3203 gdb_assert (len == tdep->sizeof_gregset);
3204
3205 for (i = 0; i < tdep->gregset_num_regs; i++)
3206 {
3207 if ((regnum == i || regnum == -1)
3208 && tdep->gregset_reg_offset[i] != -1)
3209 regcache_raw_supply (regcache, i, regs + tdep->gregset_reg_offset[i]);
3210 }
3211 }
3212
3213 /* Collect register REGNUM from the register cache REGCACHE and store
3214 it in the buffer specified by GREGS and LEN as described by the
3215 general-purpose register set REGSET. If REGNUM is -1, do this for
3216 all registers in REGSET. */
3217
3218 void
3219 i386_collect_gregset (const struct regset *regset,
3220 const struct regcache *regcache,
3221 int regnum, void *gregs, size_t len)
3222 {
3223 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
3224 gdb_byte *regs = gregs;
3225 int i;
3226
3227 gdb_assert (len == tdep->sizeof_gregset);
3228
3229 for (i = 0; i < tdep->gregset_num_regs; i++)
3230 {
3231 if ((regnum == i || regnum == -1)
3232 && tdep->gregset_reg_offset[i] != -1)
3233 regcache_raw_collect (regcache, i, regs + tdep->gregset_reg_offset[i]);
3234 }
3235 }
3236
3237 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
3238 in the floating-point register set REGSET to register cache
3239 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3240
3241 static void
3242 i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
3243 int regnum, const void *fpregs, size_t len)
3244 {
3245 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
3246
3247 if (len == I387_SIZEOF_FXSAVE)
3248 {
3249 i387_supply_fxsave (regcache, regnum, fpregs);
3250 return;
3251 }
3252
3253 gdb_assert (len == tdep->sizeof_fpregset);
3254 i387_supply_fsave (regcache, regnum, fpregs);
3255 }
3256
3257 /* Collect register REGNUM from the register cache REGCACHE and store
3258 it in the buffer specified by FPREGS and LEN as described by the
3259 floating-point register set REGSET. If REGNUM is -1, do this for
3260 all registers in REGSET. */
3261
3262 static void
3263 i386_collect_fpregset (const struct regset *regset,
3264 const struct regcache *regcache,
3265 int regnum, void *fpregs, size_t len)
3266 {
3267 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
3268
3269 if (len == I387_SIZEOF_FXSAVE)
3270 {
3271 i387_collect_fxsave (regcache, regnum, fpregs);
3272 return;
3273 }
3274
3275 gdb_assert (len == tdep->sizeof_fpregset);
3276 i387_collect_fsave (regcache, regnum, fpregs);
3277 }
3278
3279 /* Similar to i386_supply_fpregset, but use XSAVE extended state. */
3280
3281 static void
3282 i386_supply_xstateregset (const struct regset *regset,
3283 struct regcache *regcache, int regnum,
3284 const void *xstateregs, size_t len)
3285 {
3286 i387_supply_xsave (regcache, regnum, xstateregs);
3287 }
3288
3289 /* Similar to i386_collect_fpregset , but use XSAVE extended state. */
3290
3291 static void
3292 i386_collect_xstateregset (const struct regset *regset,
3293 const struct regcache *regcache,
3294 int regnum, void *xstateregs, size_t len)
3295 {
3296 i387_collect_xsave (regcache, regnum, xstateregs, 1);
3297 }
3298
3299 /* Return the appropriate register set for the core section identified
3300 by SECT_NAME and SECT_SIZE. */
3301
3302 const struct regset *
3303 i386_regset_from_core_section (struct gdbarch *gdbarch,
3304 const char *sect_name, size_t sect_size)
3305 {
3306 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3307
3308 if (strcmp (sect_name, ".reg") == 0 && sect_size == tdep->sizeof_gregset)
3309 {
3310 if (tdep->gregset == NULL)
3311 tdep->gregset = regset_alloc (gdbarch, i386_supply_gregset,
3312 i386_collect_gregset);
3313 return tdep->gregset;
3314 }
3315
3316 if ((strcmp (sect_name, ".reg2") == 0 && sect_size == tdep->sizeof_fpregset)
3317 || (strcmp (sect_name, ".reg-xfp") == 0
3318 && sect_size == I387_SIZEOF_FXSAVE))
3319 {
3320 if (tdep->fpregset == NULL)
3321 tdep->fpregset = regset_alloc (gdbarch, i386_supply_fpregset,
3322 i386_collect_fpregset);
3323 return tdep->fpregset;
3324 }
3325
3326 if (strcmp (sect_name, ".reg-xstate") == 0)
3327 {
3328 if (tdep->xstateregset == NULL)
3329 tdep->xstateregset = regset_alloc (gdbarch,
3330 i386_supply_xstateregset,
3331 i386_collect_xstateregset);
3332
3333 return tdep->xstateregset;
3334 }
3335
3336 return NULL;
3337 }
3338 \f
3339
3340 /* Stuff for WIN32 PE style DLL's but is pretty generic really. */
3341
3342 CORE_ADDR
3343 i386_pe_skip_trampoline_code (struct frame_info *frame,
3344 CORE_ADDR pc, char *name)
3345 {
3346 struct gdbarch *gdbarch = get_frame_arch (frame);
3347 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3348
3349 /* jmp *(dest) */
3350 if (pc && read_memory_unsigned_integer (pc, 2, byte_order) == 0x25ff)
3351 {
3352 unsigned long indirect =
3353 read_memory_unsigned_integer (pc + 2, 4, byte_order);
3354 struct minimal_symbol *indsym =
3355 indirect ? lookup_minimal_symbol_by_pc (indirect).minsym : 0;
3356 const char *symname = indsym ? SYMBOL_LINKAGE_NAME (indsym) : 0;
3357
3358 if (symname)
3359 {
3360 if (strncmp (symname, "__imp_", 6) == 0
3361 || strncmp (symname, "_imp_", 5) == 0)
3362 return name ? 1 :
3363 read_memory_unsigned_integer (indirect, 4, byte_order);
3364 }
3365 }
3366 return 0; /* Not a trampoline. */
3367 }
3368 \f
3369
3370 /* Return whether the THIS_FRAME corresponds to a sigtramp
3371 routine. */
3372
3373 int
3374 i386_sigtramp_p (struct frame_info *this_frame)
3375 {
3376 CORE_ADDR pc = get_frame_pc (this_frame);
3377 const char *name;
3378
3379 find_pc_partial_function (pc, &name, NULL, NULL);
3380 return (name && strcmp ("_sigtramp", name) == 0);
3381 }
3382 \f
3383
3384 /* We have two flavours of disassembly. The machinery on this page
3385 deals with switching between those. */
3386
3387 static int
3388 i386_print_insn (bfd_vma pc, struct disassemble_info *info)
3389 {
3390 gdb_assert (disassembly_flavor == att_flavor
3391 || disassembly_flavor == intel_flavor);
3392
3393 /* FIXME: kettenis/20020915: Until disassembler_options is properly
3394 constified, cast to prevent a compiler warning. */
3395 info->disassembler_options = (char *) disassembly_flavor;
3396
3397 return print_insn_i386 (pc, info);
3398 }
3399 \f
3400
3401 /* There are a few i386 architecture variants that differ only
3402 slightly from the generic i386 target. For now, we don't give them
3403 their own source file, but include them here. As a consequence,
3404 they'll always be included. */
3405
3406 /* System V Release 4 (SVR4). */
3407
3408 /* Return whether THIS_FRAME corresponds to a SVR4 sigtramp
3409 routine. */
3410
3411 static int
3412 i386_svr4_sigtramp_p (struct frame_info *this_frame)
3413 {
3414 CORE_ADDR pc = get_frame_pc (this_frame);
3415 const char *name;
3416
3417 /* The origin of these symbols is currently unknown. */
3418 find_pc_partial_function (pc, &name, NULL, NULL);
3419 return (name && (strcmp ("_sigreturn", name) == 0
3420 || strcmp ("sigvechandler", name) == 0));
3421 }
3422
3423 /* Assuming THIS_FRAME is for a SVR4 sigtramp routine, return the
3424 address of the associated sigcontext (ucontext) structure. */
3425
3426 static CORE_ADDR
3427 i386_svr4_sigcontext_addr (struct frame_info *this_frame)
3428 {
3429 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3430 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3431 gdb_byte buf[4];
3432 CORE_ADDR sp;
3433
3434 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
3435 sp = extract_unsigned_integer (buf, 4, byte_order);
3436
3437 return read_memory_unsigned_integer (sp + 8, 4, byte_order);
3438 }
3439
3440 \f
3441
3442 /* Implementation of `gdbarch_stap_is_single_operand', as defined in
3443 gdbarch.h. */
3444
3445 int
3446 i386_stap_is_single_operand (struct gdbarch *gdbarch, const char *s)
3447 {
3448 return (*s == '$' /* Literal number. */
3449 || (isdigit (*s) && s[1] == '(' && s[2] == '%') /* Displacement. */
3450 || (*s == '(' && s[1] == '%') /* Register indirection. */
3451 || (*s == '%' && isalpha (s[1]))); /* Register access. */
3452 }
3453
3454 /* Implementation of `gdbarch_stap_parse_special_token', as defined in
3455 gdbarch.h. */
3456
3457 int
3458 i386_stap_parse_special_token (struct gdbarch *gdbarch,
3459 struct stap_parse_info *p)
3460 {
3461 /* In order to parse special tokens, we use a state-machine that go
3462 through every known token and try to get a match. */
3463 enum
3464 {
3465 TRIPLET,
3466 THREE_ARG_DISPLACEMENT,
3467 DONE
3468 } current_state;
3469
3470 current_state = TRIPLET;
3471
3472 /* The special tokens to be parsed here are:
3473
3474 - `register base + (register index * size) + offset', as represented
3475 in `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
3476
3477 - Operands of the form `-8+3+1(%rbp)', which must be interpreted as
3478 `*(-8 + 3 - 1 + (void *) $eax)'. */
3479
3480 while (current_state != DONE)
3481 {
3482 const char *s = p->arg;
3483
3484 switch (current_state)
3485 {
3486 case TRIPLET:
3487 {
3488 if (isdigit (*s) || *s == '-' || *s == '+')
3489 {
3490 int got_minus[3];
3491 int i;
3492 long displacements[3];
3493 const char *start;
3494 char *regname;
3495 int len;
3496 struct stoken str;
3497 char *endp;
3498
3499 got_minus[0] = 0;
3500 if (*s == '+')
3501 ++s;
3502 else if (*s == '-')
3503 {
3504 ++s;
3505 got_minus[0] = 1;
3506 }
3507
3508 displacements[0] = strtol (s, &endp, 10);
3509 s = endp;
3510
3511 if (*s != '+' && *s != '-')
3512 {
3513 /* We are not dealing with a triplet. */
3514 break;
3515 }
3516
3517 got_minus[1] = 0;
3518 if (*s == '+')
3519 ++s;
3520 else
3521 {
3522 ++s;
3523 got_minus[1] = 1;
3524 }
3525
3526 displacements[1] = strtol (s, &endp, 10);
3527 s = endp;
3528
3529 if (*s != '+' && *s != '-')
3530 {
3531 /* We are not dealing with a triplet. */
3532 break;
3533 }
3534
3535 got_minus[2] = 0;
3536 if (*s == '+')
3537 ++s;
3538 else
3539 {
3540 ++s;
3541 got_minus[2] = 1;
3542 }
3543
3544 displacements[2] = strtol (s, &endp, 10);
3545 s = endp;
3546
3547 if (*s != '(' || s[1] != '%')
3548 break;
3549
3550 s += 2;
3551 start = s;
3552
3553 while (isalnum (*s))
3554 ++s;
3555
3556 if (*s++ != ')')
3557 break;
3558
3559 len = s - start;
3560 regname = alloca (len + 1);
3561
3562 strncpy (regname, start, len);
3563 regname[len] = '\0';
3564
3565 if (user_reg_map_name_to_regnum (gdbarch,
3566 regname, len) == -1)
3567 error (_("Invalid register name `%s' "
3568 "on expression `%s'."),
3569 regname, p->saved_arg);
3570
3571 for (i = 0; i < 3; i++)
3572 {
3573 write_exp_elt_opcode (OP_LONG);
3574 write_exp_elt_type
3575 (builtin_type (gdbarch)->builtin_long);
3576 write_exp_elt_longcst (displacements[i]);
3577 write_exp_elt_opcode (OP_LONG);
3578 if (got_minus[i])
3579 write_exp_elt_opcode (UNOP_NEG);
3580 }
3581
3582 write_exp_elt_opcode (OP_REGISTER);
3583 str.ptr = regname;
3584 str.length = len;
3585 write_exp_string (str);
3586 write_exp_elt_opcode (OP_REGISTER);
3587
3588 write_exp_elt_opcode (UNOP_CAST);
3589 write_exp_elt_type (builtin_type (gdbarch)->builtin_data_ptr);
3590 write_exp_elt_opcode (UNOP_CAST);
3591
3592 write_exp_elt_opcode (BINOP_ADD);
3593 write_exp_elt_opcode (BINOP_ADD);
3594 write_exp_elt_opcode (BINOP_ADD);
3595
3596 write_exp_elt_opcode (UNOP_CAST);
3597 write_exp_elt_type (lookup_pointer_type (p->arg_type));
3598 write_exp_elt_opcode (UNOP_CAST);
3599
3600 write_exp_elt_opcode (UNOP_IND);
3601
3602 p->arg = s;
3603
3604 return 1;
3605 }
3606 break;
3607 }
3608 case THREE_ARG_DISPLACEMENT:
3609 {
3610 if (isdigit (*s) || *s == '(' || *s == '-' || *s == '+')
3611 {
3612 int offset_minus = 0;
3613 long offset = 0;
3614 int size_minus = 0;
3615 long size = 0;
3616 const char *start;
3617 char *base;
3618 int len_base;
3619 char *index;
3620 int len_index;
3621 struct stoken base_token, index_token;
3622
3623 if (*s == '+')
3624 ++s;
3625 else if (*s == '-')
3626 {
3627 ++s;
3628 offset_minus = 1;
3629 }
3630
3631 if (offset_minus && !isdigit (*s))
3632 break;
3633
3634 if (isdigit (*s))
3635 {
3636 char *endp;
3637
3638 offset = strtol (s, &endp, 10);
3639 s = endp;
3640 }
3641
3642 if (*s != '(' || s[1] != '%')
3643 break;
3644
3645 s += 2;
3646 start = s;
3647
3648 while (isalnum (*s))
3649 ++s;
3650
3651 if (*s != ',' || s[1] != '%')
3652 break;
3653
3654 len_base = s - start;
3655 base = alloca (len_base + 1);
3656 strncpy (base, start, len_base);
3657 base[len_base] = '\0';
3658
3659 if (user_reg_map_name_to_regnum (gdbarch,
3660 base, len_base) == -1)
3661 error (_("Invalid register name `%s' "
3662 "on expression `%s'."),
3663 base, p->saved_arg);
3664
3665 s += 2;
3666 start = s;
3667
3668 while (isalnum (*s))
3669 ++s;
3670
3671 len_index = s - start;
3672 index = alloca (len_index + 1);
3673 strncpy (index, start, len_index);
3674 index[len_index] = '\0';
3675
3676 if (user_reg_map_name_to_regnum (gdbarch,
3677 index, len_index) == -1)
3678 error (_("Invalid register name `%s' "
3679 "on expression `%s'."),
3680 index, p->saved_arg);
3681
3682 if (*s != ',' && *s != ')')
3683 break;
3684
3685 if (*s == ',')
3686 {
3687 char *endp;
3688
3689 ++s;
3690 if (*s == '+')
3691 ++s;
3692 else if (*s == '-')
3693 {
3694 ++s;
3695 size_minus = 1;
3696 }
3697
3698 size = strtol (s, &endp, 10);
3699 s = endp;
3700
3701 if (*s != ')')
3702 break;
3703 }
3704
3705 ++s;
3706
3707 if (offset)
3708 {
3709 write_exp_elt_opcode (OP_LONG);
3710 write_exp_elt_type
3711 (builtin_type (gdbarch)->builtin_long);
3712 write_exp_elt_longcst (offset);
3713 write_exp_elt_opcode (OP_LONG);
3714 if (offset_minus)
3715 write_exp_elt_opcode (UNOP_NEG);
3716 }
3717
3718 write_exp_elt_opcode (OP_REGISTER);
3719 base_token.ptr = base;
3720 base_token.length = len_base;
3721 write_exp_string (base_token);
3722 write_exp_elt_opcode (OP_REGISTER);
3723
3724 if (offset)
3725 write_exp_elt_opcode (BINOP_ADD);
3726
3727 write_exp_elt_opcode (OP_REGISTER);
3728 index_token.ptr = index;
3729 index_token.length = len_index;
3730 write_exp_string (index_token);
3731 write_exp_elt_opcode (OP_REGISTER);
3732
3733 if (size)
3734 {
3735 write_exp_elt_opcode (OP_LONG);
3736 write_exp_elt_type
3737 (builtin_type (gdbarch)->builtin_long);
3738 write_exp_elt_longcst (size);
3739 write_exp_elt_opcode (OP_LONG);
3740 if (size_minus)
3741 write_exp_elt_opcode (UNOP_NEG);
3742 write_exp_elt_opcode (BINOP_MUL);
3743 }
3744
3745 write_exp_elt_opcode (BINOP_ADD);
3746
3747 write_exp_elt_opcode (UNOP_CAST);
3748 write_exp_elt_type (lookup_pointer_type (p->arg_type));
3749 write_exp_elt_opcode (UNOP_CAST);
3750
3751 write_exp_elt_opcode (UNOP_IND);
3752
3753 p->arg = s;
3754
3755 return 1;
3756 }
3757 break;
3758 }
3759 }
3760
3761 /* Advancing to the next state. */
3762 ++current_state;
3763 }
3764
3765 return 0;
3766 }
3767
3768 \f
3769
3770 /* Generic ELF. */
3771
3772 void
3773 i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3774 {
3775 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
3776 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
3777
3778 /* Registering SystemTap handlers. */
3779 set_gdbarch_stap_integer_prefix (gdbarch, "$");
3780 set_gdbarch_stap_register_prefix (gdbarch, "%");
3781 set_gdbarch_stap_register_indirection_prefix (gdbarch, "(");
3782 set_gdbarch_stap_register_indirection_suffix (gdbarch, ")");
3783 set_gdbarch_stap_is_single_operand (gdbarch,
3784 i386_stap_is_single_operand);
3785 set_gdbarch_stap_parse_special_token (gdbarch,
3786 i386_stap_parse_special_token);
3787 }
3788
3789 /* System V Release 4 (SVR4). */
3790
3791 void
3792 i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3793 {
3794 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3795
3796 /* System V Release 4 uses ELF. */
3797 i386_elf_init_abi (info, gdbarch);
3798
3799 /* System V Release 4 has shared libraries. */
3800 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
3801
3802 tdep->sigtramp_p = i386_svr4_sigtramp_p;
3803 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
3804 tdep->sc_pc_offset = 36 + 14 * 4;
3805 tdep->sc_sp_offset = 36 + 17 * 4;
3806
3807 tdep->jb_pc_offset = 20;
3808 }
3809
3810 /* DJGPP. */
3811
3812 static void
3813 i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3814 {
3815 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3816
3817 /* DJGPP doesn't have any special frames for signal handlers. */
3818 tdep->sigtramp_p = NULL;
3819
3820 tdep->jb_pc_offset = 36;
3821
3822 /* DJGPP does not support the SSE registers. */
3823 if (! tdesc_has_registers (info.target_desc))
3824 tdep->tdesc = tdesc_i386_mmx;
3825
3826 /* Native compiler is GCC, which uses the SVR4 register numbering
3827 even in COFF and STABS. See the comment in i386_gdbarch_init,
3828 before the calls to set_gdbarch_stab_reg_to_regnum and
3829 set_gdbarch_sdb_reg_to_regnum. */
3830 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
3831 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
3832
3833 set_gdbarch_has_dos_based_file_system (gdbarch, 1);
3834 }
3835 \f
3836
3837 /* i386 register groups. In addition to the normal groups, add "mmx"
3838 and "sse". */
3839
3840 static struct reggroup *i386_sse_reggroup;
3841 static struct reggroup *i386_mmx_reggroup;
3842
3843 static void
3844 i386_init_reggroups (void)
3845 {
3846 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
3847 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
3848 }
3849
3850 static void
3851 i386_add_reggroups (struct gdbarch *gdbarch)
3852 {
3853 reggroup_add (gdbarch, i386_sse_reggroup);
3854 reggroup_add (gdbarch, i386_mmx_reggroup);
3855 reggroup_add (gdbarch, general_reggroup);
3856 reggroup_add (gdbarch, float_reggroup);
3857 reggroup_add (gdbarch, all_reggroup);
3858 reggroup_add (gdbarch, save_reggroup);
3859 reggroup_add (gdbarch, restore_reggroup);
3860 reggroup_add (gdbarch, vector_reggroup);
3861 reggroup_add (gdbarch, system_reggroup);
3862 }
3863
3864 int
3865 i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
3866 struct reggroup *group)
3867 {
3868 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3869 int fp_regnum_p, mmx_regnum_p, xmm_regnum_p, mxcsr_regnum_p,
3870 ymm_regnum_p, ymmh_regnum_p;
3871
3872 /* Don't include pseudo registers, except for MMX, in any register
3873 groups. */
3874 if (i386_byte_regnum_p (gdbarch, regnum))
3875 return 0;
3876
3877 if (i386_word_regnum_p (gdbarch, regnum))
3878 return 0;
3879
3880 if (i386_dword_regnum_p (gdbarch, regnum))
3881 return 0;
3882
3883 mmx_regnum_p = i386_mmx_regnum_p (gdbarch, regnum);
3884 if (group == i386_mmx_reggroup)
3885 return mmx_regnum_p;
3886
3887 xmm_regnum_p = i386_xmm_regnum_p (gdbarch, regnum);
3888 mxcsr_regnum_p = i386_mxcsr_regnum_p (gdbarch, regnum);
3889 if (group == i386_sse_reggroup)
3890 return xmm_regnum_p || mxcsr_regnum_p;
3891
3892 ymm_regnum_p = i386_ymm_regnum_p (gdbarch, regnum);
3893 if (group == vector_reggroup)
3894 return (mmx_regnum_p
3895 || ymm_regnum_p
3896 || mxcsr_regnum_p
3897 || (xmm_regnum_p
3898 && ((tdep->xcr0 & I386_XSTATE_AVX_MASK)
3899 == I386_XSTATE_SSE_MASK)));
3900
3901 fp_regnum_p = (i386_fp_regnum_p (gdbarch, regnum)
3902 || i386_fpc_regnum_p (gdbarch, regnum));
3903 if (group == float_reggroup)
3904 return fp_regnum_p;
3905
3906 /* For "info reg all", don't include upper YMM registers nor XMM
3907 registers when AVX is supported. */
3908 ymmh_regnum_p = i386_ymmh_regnum_p (gdbarch, regnum);
3909 if (group == all_reggroup
3910 && ((xmm_regnum_p
3911 && (tdep->xcr0 & I386_XSTATE_AVX))
3912 || ymmh_regnum_p))
3913 return 0;
3914
3915 if (group == general_reggroup)
3916 return (!fp_regnum_p
3917 && !mmx_regnum_p
3918 && !mxcsr_regnum_p
3919 && !xmm_regnum_p
3920 && !ymm_regnum_p
3921 && !ymmh_regnum_p);
3922
3923 return default_register_reggroup_p (gdbarch, regnum, group);
3924 }
3925 \f
3926
3927 /* Get the ARGIth function argument for the current function. */
3928
3929 static CORE_ADDR
3930 i386_fetch_pointer_argument (struct frame_info *frame, int argi,
3931 struct type *type)
3932 {
3933 struct gdbarch *gdbarch = get_frame_arch (frame);
3934 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3935 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
3936 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4, byte_order);
3937 }
3938
3939 static void
3940 i386_skip_permanent_breakpoint (struct regcache *regcache)
3941 {
3942 CORE_ADDR current_pc = regcache_read_pc (regcache);
3943
3944 /* On i386, breakpoint is exactly 1 byte long, so we just
3945 adjust the PC in the regcache. */
3946 current_pc += 1;
3947 regcache_write_pc (regcache, current_pc);
3948 }
3949
3950
3951 #define PREFIX_REPZ 0x01
3952 #define PREFIX_REPNZ 0x02
3953 #define PREFIX_LOCK 0x04
3954 #define PREFIX_DATA 0x08
3955 #define PREFIX_ADDR 0x10
3956
3957 /* operand size */
3958 enum
3959 {
3960 OT_BYTE = 0,
3961 OT_WORD,
3962 OT_LONG,
3963 OT_QUAD,
3964 OT_DQUAD,
3965 };
3966
3967 /* i386 arith/logic operations */
3968 enum
3969 {
3970 OP_ADDL,
3971 OP_ORL,
3972 OP_ADCL,
3973 OP_SBBL,
3974 OP_ANDL,
3975 OP_SUBL,
3976 OP_XORL,
3977 OP_CMPL,
3978 };
3979
3980 struct i386_record_s
3981 {
3982 struct gdbarch *gdbarch;
3983 struct regcache *regcache;
3984 CORE_ADDR orig_addr;
3985 CORE_ADDR addr;
3986 int aflag;
3987 int dflag;
3988 int override;
3989 uint8_t modrm;
3990 uint8_t mod, reg, rm;
3991 int ot;
3992 uint8_t rex_x;
3993 uint8_t rex_b;
3994 int rip_offset;
3995 int popl_esp_hack;
3996 const int *regmap;
3997 };
3998
3999 /* Parse the "modrm" part of the memory address irp->addr points at.
4000 Returns -1 if something goes wrong, 0 otherwise. */
4001
4002 static int
4003 i386_record_modrm (struct i386_record_s *irp)
4004 {
4005 struct gdbarch *gdbarch = irp->gdbarch;
4006
4007 if (record_read_memory (gdbarch, irp->addr, &irp->modrm, 1))
4008 return -1;
4009
4010 irp->addr++;
4011 irp->mod = (irp->modrm >> 6) & 3;
4012 irp->reg = (irp->modrm >> 3) & 7;
4013 irp->rm = irp->modrm & 7;
4014
4015 return 0;
4016 }
4017
4018 /* Extract the memory address that the current instruction writes to,
4019 and return it in *ADDR. Return -1 if something goes wrong. */
4020
4021 static int
4022 i386_record_lea_modrm_addr (struct i386_record_s *irp, uint64_t *addr)
4023 {
4024 struct gdbarch *gdbarch = irp->gdbarch;
4025 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4026 gdb_byte buf[4];
4027 ULONGEST offset64;
4028
4029 *addr = 0;
4030 if (irp->aflag)
4031 {
4032 /* 32 bits */
4033 int havesib = 0;
4034 uint8_t scale = 0;
4035 uint8_t byte;
4036 uint8_t index = 0;
4037 uint8_t base = irp->rm;
4038
4039 if (base == 4)
4040 {
4041 havesib = 1;
4042 if (record_read_memory (gdbarch, irp->addr, &byte, 1))
4043 return -1;
4044 irp->addr++;
4045 scale = (byte >> 6) & 3;
4046 index = ((byte >> 3) & 7) | irp->rex_x;
4047 base = (byte & 7);
4048 }
4049 base |= irp->rex_b;
4050
4051 switch (irp->mod)
4052 {
4053 case 0:
4054 if ((base & 7) == 5)
4055 {
4056 base = 0xff;
4057 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4058 return -1;
4059 irp->addr += 4;
4060 *addr = extract_signed_integer (buf, 4, byte_order);
4061 if (irp->regmap[X86_RECORD_R8_REGNUM] && !havesib)
4062 *addr += irp->addr + irp->rip_offset;
4063 }
4064 break;
4065 case 1:
4066 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4067 return -1;
4068 irp->addr++;
4069 *addr = (int8_t) buf[0];
4070 break;
4071 case 2:
4072 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4073 return -1;
4074 *addr = extract_signed_integer (buf, 4, byte_order);
4075 irp->addr += 4;
4076 break;
4077 }
4078
4079 offset64 = 0;
4080 if (base != 0xff)
4081 {
4082 if (base == 4 && irp->popl_esp_hack)
4083 *addr += irp->popl_esp_hack;
4084 regcache_raw_read_unsigned (irp->regcache, irp->regmap[base],
4085 &offset64);
4086 }
4087 if (irp->aflag == 2)
4088 {
4089 *addr += offset64;
4090 }
4091 else
4092 *addr = (uint32_t) (offset64 + *addr);
4093
4094 if (havesib && (index != 4 || scale != 0))
4095 {
4096 regcache_raw_read_unsigned (irp->regcache, irp->regmap[index],
4097 &offset64);
4098 if (irp->aflag == 2)
4099 *addr += offset64 << scale;
4100 else
4101 *addr = (uint32_t) (*addr + (offset64 << scale));
4102 }
4103 }
4104 else
4105 {
4106 /* 16 bits */
4107 switch (irp->mod)
4108 {
4109 case 0:
4110 if (irp->rm == 6)
4111 {
4112 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4113 return -1;
4114 irp->addr += 2;
4115 *addr = extract_signed_integer (buf, 2, byte_order);
4116 irp->rm = 0;
4117 goto no_rm;
4118 }
4119 break;
4120 case 1:
4121 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4122 return -1;
4123 irp->addr++;
4124 *addr = (int8_t) buf[0];
4125 break;
4126 case 2:
4127 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4128 return -1;
4129 irp->addr += 2;
4130 *addr = extract_signed_integer (buf, 2, byte_order);
4131 break;
4132 }
4133
4134 switch (irp->rm)
4135 {
4136 case 0:
4137 regcache_raw_read_unsigned (irp->regcache,
4138 irp->regmap[X86_RECORD_REBX_REGNUM],
4139 &offset64);
4140 *addr = (uint32_t) (*addr + offset64);
4141 regcache_raw_read_unsigned (irp->regcache,
4142 irp->regmap[X86_RECORD_RESI_REGNUM],
4143 &offset64);
4144 *addr = (uint32_t) (*addr + offset64);
4145 break;
4146 case 1:
4147 regcache_raw_read_unsigned (irp->regcache,
4148 irp->regmap[X86_RECORD_REBX_REGNUM],
4149 &offset64);
4150 *addr = (uint32_t) (*addr + offset64);
4151 regcache_raw_read_unsigned (irp->regcache,
4152 irp->regmap[X86_RECORD_REDI_REGNUM],
4153 &offset64);
4154 *addr = (uint32_t) (*addr + offset64);
4155 break;
4156 case 2:
4157 regcache_raw_read_unsigned (irp->regcache,
4158 irp->regmap[X86_RECORD_REBP_REGNUM],
4159 &offset64);
4160 *addr = (uint32_t) (*addr + offset64);
4161 regcache_raw_read_unsigned (irp->regcache,
4162 irp->regmap[X86_RECORD_RESI_REGNUM],
4163 &offset64);
4164 *addr = (uint32_t) (*addr + offset64);
4165 break;
4166 case 3:
4167 regcache_raw_read_unsigned (irp->regcache,
4168 irp->regmap[X86_RECORD_REBP_REGNUM],
4169 &offset64);
4170 *addr = (uint32_t) (*addr + offset64);
4171 regcache_raw_read_unsigned (irp->regcache,
4172 irp->regmap[X86_RECORD_REDI_REGNUM],
4173 &offset64);
4174 *addr = (uint32_t) (*addr + offset64);
4175 break;
4176 case 4:
4177 regcache_raw_read_unsigned (irp->regcache,
4178 irp->regmap[X86_RECORD_RESI_REGNUM],
4179 &offset64);
4180 *addr = (uint32_t) (*addr + offset64);
4181 break;
4182 case 5:
4183 regcache_raw_read_unsigned (irp->regcache,
4184 irp->regmap[X86_RECORD_REDI_REGNUM],
4185 &offset64);
4186 *addr = (uint32_t) (*addr + offset64);
4187 break;
4188 case 6:
4189 regcache_raw_read_unsigned (irp->regcache,
4190 irp->regmap[X86_RECORD_REBP_REGNUM],
4191 &offset64);
4192 *addr = (uint32_t) (*addr + offset64);
4193 break;
4194 case 7:
4195 regcache_raw_read_unsigned (irp->regcache,
4196 irp->regmap[X86_RECORD_REBX_REGNUM],
4197 &offset64);
4198 *addr = (uint32_t) (*addr + offset64);
4199 break;
4200 }
4201 *addr &= 0xffff;
4202 }
4203
4204 no_rm:
4205 return 0;
4206 }
4207
4208 /* Record the address and contents of the memory that will be changed
4209 by the current instruction. Return -1 if something goes wrong, 0
4210 otherwise. */
4211
4212 static int
4213 i386_record_lea_modrm (struct i386_record_s *irp)
4214 {
4215 struct gdbarch *gdbarch = irp->gdbarch;
4216 uint64_t addr;
4217
4218 if (irp->override >= 0)
4219 {
4220 if (record_full_memory_query)
4221 {
4222 int q;
4223
4224 target_terminal_ours ();
4225 q = yquery (_("\
4226 Process record ignores the memory change of instruction at address %s\n\
4227 because it can't get the value of the segment register.\n\
4228 Do you want to stop the program?"),
4229 paddress (gdbarch, irp->orig_addr));
4230 target_terminal_inferior ();
4231 if (q)
4232 return -1;
4233 }
4234
4235 return 0;
4236 }
4237
4238 if (i386_record_lea_modrm_addr (irp, &addr))
4239 return -1;
4240
4241 if (record_full_arch_list_add_mem (addr, 1 << irp->ot))
4242 return -1;
4243
4244 return 0;
4245 }
4246
4247 /* Record the effects of a push operation. Return -1 if something
4248 goes wrong, 0 otherwise. */
4249
4250 static int
4251 i386_record_push (struct i386_record_s *irp, int size)
4252 {
4253 ULONGEST addr;
4254
4255 if (record_full_arch_list_add_reg (irp->regcache,
4256 irp->regmap[X86_RECORD_RESP_REGNUM]))
4257 return -1;
4258 regcache_raw_read_unsigned (irp->regcache,
4259 irp->regmap[X86_RECORD_RESP_REGNUM],
4260 &addr);
4261 if (record_full_arch_list_add_mem ((CORE_ADDR) addr - size, size))
4262 return -1;
4263
4264 return 0;
4265 }
4266
4267
4268 /* Defines contents to record. */
4269 #define I386_SAVE_FPU_REGS 0xfffd
4270 #define I386_SAVE_FPU_ENV 0xfffe
4271 #define I386_SAVE_FPU_ENV_REG_STACK 0xffff
4272
4273 /* Record the values of the floating point registers which will be
4274 changed by the current instruction. Returns -1 if something is
4275 wrong, 0 otherwise. */
4276
4277 static int i386_record_floats (struct gdbarch *gdbarch,
4278 struct i386_record_s *ir,
4279 uint32_t iregnum)
4280 {
4281 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4282 int i;
4283
4284 /* Oza: Because of floating point insn push/pop of fpu stack is going to
4285 happen. Currently we store st0-st7 registers, but we need not store all
4286 registers all the time, in future we use ftag register and record only
4287 those who are not marked as an empty. */
4288
4289 if (I386_SAVE_FPU_REGS == iregnum)
4290 {
4291 for (i = I387_ST0_REGNUM (tdep); i <= I387_ST0_REGNUM (tdep) + 7; i++)
4292 {
4293 if (record_full_arch_list_add_reg (ir->regcache, i))
4294 return -1;
4295 }
4296 }
4297 else if (I386_SAVE_FPU_ENV == iregnum)
4298 {
4299 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4300 {
4301 if (record_full_arch_list_add_reg (ir->regcache, i))
4302 return -1;
4303 }
4304 }
4305 else if (I386_SAVE_FPU_ENV_REG_STACK == iregnum)
4306 {
4307 for (i = I387_ST0_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4308 {
4309 if (record_full_arch_list_add_reg (ir->regcache, i))
4310 return -1;
4311 }
4312 }
4313 else if ((iregnum >= I387_ST0_REGNUM (tdep)) &&
4314 (iregnum <= I387_FOP_REGNUM (tdep)))
4315 {
4316 if (record_full_arch_list_add_reg (ir->regcache,iregnum))
4317 return -1;
4318 }
4319 else
4320 {
4321 /* Parameter error. */
4322 return -1;
4323 }
4324 if(I386_SAVE_FPU_ENV != iregnum)
4325 {
4326 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4327 {
4328 if (record_full_arch_list_add_reg (ir->regcache, i))
4329 return -1;
4330 }
4331 }
4332 return 0;
4333 }
4334
4335 /* Parse the current instruction, and record the values of the
4336 registers and memory that will be changed by the current
4337 instruction. Returns -1 if something goes wrong, 0 otherwise. */
4338
4339 #define I386_RECORD_FULL_ARCH_LIST_ADD_REG(regnum) \
4340 record_full_arch_list_add_reg (ir.regcache, ir.regmap[(regnum)])
4341
4342 int
4343 i386_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
4344 CORE_ADDR input_addr)
4345 {
4346 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4347 int prefixes = 0;
4348 int regnum = 0;
4349 uint32_t opcode;
4350 uint8_t opcode8;
4351 ULONGEST addr;
4352 gdb_byte buf[MAX_REGISTER_SIZE];
4353 struct i386_record_s ir;
4354 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4355 uint8_t rex_w = -1;
4356 uint8_t rex_r = 0;
4357
4358 memset (&ir, 0, sizeof (struct i386_record_s));
4359 ir.regcache = regcache;
4360 ir.addr = input_addr;
4361 ir.orig_addr = input_addr;
4362 ir.aflag = 1;
4363 ir.dflag = 1;
4364 ir.override = -1;
4365 ir.popl_esp_hack = 0;
4366 ir.regmap = tdep->record_regmap;
4367 ir.gdbarch = gdbarch;
4368
4369 if (record_debug > 1)
4370 fprintf_unfiltered (gdb_stdlog, "Process record: i386_process_record "
4371 "addr = %s\n",
4372 paddress (gdbarch, ir.addr));
4373
4374 /* prefixes */
4375 while (1)
4376 {
4377 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
4378 return -1;
4379 ir.addr++;
4380 switch (opcode8) /* Instruction prefixes */
4381 {
4382 case REPE_PREFIX_OPCODE:
4383 prefixes |= PREFIX_REPZ;
4384 break;
4385 case REPNE_PREFIX_OPCODE:
4386 prefixes |= PREFIX_REPNZ;
4387 break;
4388 case LOCK_PREFIX_OPCODE:
4389 prefixes |= PREFIX_LOCK;
4390 break;
4391 case CS_PREFIX_OPCODE:
4392 ir.override = X86_RECORD_CS_REGNUM;
4393 break;
4394 case SS_PREFIX_OPCODE:
4395 ir.override = X86_RECORD_SS_REGNUM;
4396 break;
4397 case DS_PREFIX_OPCODE:
4398 ir.override = X86_RECORD_DS_REGNUM;
4399 break;
4400 case ES_PREFIX_OPCODE:
4401 ir.override = X86_RECORD_ES_REGNUM;
4402 break;
4403 case FS_PREFIX_OPCODE:
4404 ir.override = X86_RECORD_FS_REGNUM;
4405 break;
4406 case GS_PREFIX_OPCODE:
4407 ir.override = X86_RECORD_GS_REGNUM;
4408 break;
4409 case DATA_PREFIX_OPCODE:
4410 prefixes |= PREFIX_DATA;
4411 break;
4412 case ADDR_PREFIX_OPCODE:
4413 prefixes |= PREFIX_ADDR;
4414 break;
4415 case 0x40: /* i386 inc %eax */
4416 case 0x41: /* i386 inc %ecx */
4417 case 0x42: /* i386 inc %edx */
4418 case 0x43: /* i386 inc %ebx */
4419 case 0x44: /* i386 inc %esp */
4420 case 0x45: /* i386 inc %ebp */
4421 case 0x46: /* i386 inc %esi */
4422 case 0x47: /* i386 inc %edi */
4423 case 0x48: /* i386 dec %eax */
4424 case 0x49: /* i386 dec %ecx */
4425 case 0x4a: /* i386 dec %edx */
4426 case 0x4b: /* i386 dec %ebx */
4427 case 0x4c: /* i386 dec %esp */
4428 case 0x4d: /* i386 dec %ebp */
4429 case 0x4e: /* i386 dec %esi */
4430 case 0x4f: /* i386 dec %edi */
4431 if (ir.regmap[X86_RECORD_R8_REGNUM]) /* 64 bit target */
4432 {
4433 /* REX */
4434 rex_w = (opcode8 >> 3) & 1;
4435 rex_r = (opcode8 & 0x4) << 1;
4436 ir.rex_x = (opcode8 & 0x2) << 2;
4437 ir.rex_b = (opcode8 & 0x1) << 3;
4438 }
4439 else /* 32 bit target */
4440 goto out_prefixes;
4441 break;
4442 default:
4443 goto out_prefixes;
4444 break;
4445 }
4446 }
4447 out_prefixes:
4448 if (ir.regmap[X86_RECORD_R8_REGNUM] && rex_w == 1)
4449 {
4450 ir.dflag = 2;
4451 }
4452 else
4453 {
4454 if (prefixes & PREFIX_DATA)
4455 ir.dflag ^= 1;
4456 }
4457 if (prefixes & PREFIX_ADDR)
4458 ir.aflag ^= 1;
4459 else if (ir.regmap[X86_RECORD_R8_REGNUM])
4460 ir.aflag = 2;
4461
4462 /* Now check op code. */
4463 opcode = (uint32_t) opcode8;
4464 reswitch:
4465 switch (opcode)
4466 {
4467 case 0x0f:
4468 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
4469 return -1;
4470 ir.addr++;
4471 opcode = (uint32_t) opcode8 | 0x0f00;
4472 goto reswitch;
4473 break;
4474
4475 case 0x00: /* arith & logic */
4476 case 0x01:
4477 case 0x02:
4478 case 0x03:
4479 case 0x04:
4480 case 0x05:
4481 case 0x08:
4482 case 0x09:
4483 case 0x0a:
4484 case 0x0b:
4485 case 0x0c:
4486 case 0x0d:
4487 case 0x10:
4488 case 0x11:
4489 case 0x12:
4490 case 0x13:
4491 case 0x14:
4492 case 0x15:
4493 case 0x18:
4494 case 0x19:
4495 case 0x1a:
4496 case 0x1b:
4497 case 0x1c:
4498 case 0x1d:
4499 case 0x20:
4500 case 0x21:
4501 case 0x22:
4502 case 0x23:
4503 case 0x24:
4504 case 0x25:
4505 case 0x28:
4506 case 0x29:
4507 case 0x2a:
4508 case 0x2b:
4509 case 0x2c:
4510 case 0x2d:
4511 case 0x30:
4512 case 0x31:
4513 case 0x32:
4514 case 0x33:
4515 case 0x34:
4516 case 0x35:
4517 case 0x38:
4518 case 0x39:
4519 case 0x3a:
4520 case 0x3b:
4521 case 0x3c:
4522 case 0x3d:
4523 if (((opcode >> 3) & 7) != OP_CMPL)
4524 {
4525 if ((opcode & 1) == 0)
4526 ir.ot = OT_BYTE;
4527 else
4528 ir.ot = ir.dflag + OT_WORD;
4529
4530 switch ((opcode >> 1) & 3)
4531 {
4532 case 0: /* OP Ev, Gv */
4533 if (i386_record_modrm (&ir))
4534 return -1;
4535 if (ir.mod != 3)
4536 {
4537 if (i386_record_lea_modrm (&ir))
4538 return -1;
4539 }
4540 else
4541 {
4542 ir.rm |= ir.rex_b;
4543 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4544 ir.rm &= 0x3;
4545 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
4546 }
4547 break;
4548 case 1: /* OP Gv, Ev */
4549 if (i386_record_modrm (&ir))
4550 return -1;
4551 ir.reg |= rex_r;
4552 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4553 ir.reg &= 0x3;
4554 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
4555 break;
4556 case 2: /* OP A, Iv */
4557 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4558 break;
4559 }
4560 }
4561 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4562 break;
4563
4564 case 0x80: /* GRP1 */
4565 case 0x81:
4566 case 0x82:
4567 case 0x83:
4568 if (i386_record_modrm (&ir))
4569 return -1;
4570
4571 if (ir.reg != OP_CMPL)
4572 {
4573 if ((opcode & 1) == 0)
4574 ir.ot = OT_BYTE;
4575 else
4576 ir.ot = ir.dflag + OT_WORD;
4577
4578 if (ir.mod != 3)
4579 {
4580 if (opcode == 0x83)
4581 ir.rip_offset = 1;
4582 else
4583 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
4584 if (i386_record_lea_modrm (&ir))
4585 return -1;
4586 }
4587 else
4588 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
4589 }
4590 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4591 break;
4592
4593 case 0x40: /* inc */
4594 case 0x41:
4595 case 0x42:
4596 case 0x43:
4597 case 0x44:
4598 case 0x45:
4599 case 0x46:
4600 case 0x47:
4601
4602 case 0x48: /* dec */
4603 case 0x49:
4604 case 0x4a:
4605 case 0x4b:
4606 case 0x4c:
4607 case 0x4d:
4608 case 0x4e:
4609 case 0x4f:
4610
4611 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 7);
4612 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4613 break;
4614
4615 case 0xf6: /* GRP3 */
4616 case 0xf7:
4617 if ((opcode & 1) == 0)
4618 ir.ot = OT_BYTE;
4619 else
4620 ir.ot = ir.dflag + OT_WORD;
4621 if (i386_record_modrm (&ir))
4622 return -1;
4623
4624 if (ir.mod != 3 && ir.reg == 0)
4625 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
4626
4627 switch (ir.reg)
4628 {
4629 case 0: /* test */
4630 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4631 break;
4632 case 2: /* not */
4633 case 3: /* neg */
4634 if (ir.mod != 3)
4635 {
4636 if (i386_record_lea_modrm (&ir))
4637 return -1;
4638 }
4639 else
4640 {
4641 ir.rm |= ir.rex_b;
4642 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4643 ir.rm &= 0x3;
4644 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
4645 }
4646 if (ir.reg == 3) /* neg */
4647 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4648 break;
4649 case 4: /* mul */
4650 case 5: /* imul */
4651 case 6: /* div */
4652 case 7: /* idiv */
4653 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4654 if (ir.ot != OT_BYTE)
4655 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
4656 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4657 break;
4658 default:
4659 ir.addr -= 2;
4660 opcode = opcode << 8 | ir.modrm;
4661 goto no_support;
4662 break;
4663 }
4664 break;
4665
4666 case 0xfe: /* GRP4 */
4667 case 0xff: /* GRP5 */
4668 if (i386_record_modrm (&ir))
4669 return -1;
4670 if (ir.reg >= 2 && opcode == 0xfe)
4671 {
4672 ir.addr -= 2;
4673 opcode = opcode << 8 | ir.modrm;
4674 goto no_support;
4675 }
4676 switch (ir.reg)
4677 {
4678 case 0: /* inc */
4679 case 1: /* dec */
4680 if ((opcode & 1) == 0)
4681 ir.ot = OT_BYTE;
4682 else
4683 ir.ot = ir.dflag + OT_WORD;
4684 if (ir.mod != 3)
4685 {
4686 if (i386_record_lea_modrm (&ir))
4687 return -1;
4688 }
4689 else
4690 {
4691 ir.rm |= ir.rex_b;
4692 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4693 ir.rm &= 0x3;
4694 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
4695 }
4696 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4697 break;
4698 case 2: /* call */
4699 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4700 ir.dflag = 2;
4701 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4702 return -1;
4703 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4704 break;
4705 case 3: /* lcall */
4706 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
4707 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4708 return -1;
4709 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4710 break;
4711 case 4: /* jmp */
4712 case 5: /* ljmp */
4713 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4714 break;
4715 case 6: /* push */
4716 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4717 ir.dflag = 2;
4718 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4719 return -1;
4720 break;
4721 default:
4722 ir.addr -= 2;
4723 opcode = opcode << 8 | ir.modrm;
4724 goto no_support;
4725 break;
4726 }
4727 break;
4728
4729 case 0x84: /* test */
4730 case 0x85:
4731 case 0xa8:
4732 case 0xa9:
4733 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4734 break;
4735
4736 case 0x98: /* CWDE/CBW */
4737 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4738 break;
4739
4740 case 0x99: /* CDQ/CWD */
4741 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4742 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
4743 break;
4744
4745 case 0x0faf: /* imul */
4746 case 0x69:
4747 case 0x6b:
4748 ir.ot = ir.dflag + OT_WORD;
4749 if (i386_record_modrm (&ir))
4750 return -1;
4751 if (opcode == 0x69)
4752 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
4753 else if (opcode == 0x6b)
4754 ir.rip_offset = 1;
4755 ir.reg |= rex_r;
4756 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4757 ir.reg &= 0x3;
4758 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
4759 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4760 break;
4761
4762 case 0x0fc0: /* xadd */
4763 case 0x0fc1:
4764 if ((opcode & 1) == 0)
4765 ir.ot = OT_BYTE;
4766 else
4767 ir.ot = ir.dflag + OT_WORD;
4768 if (i386_record_modrm (&ir))
4769 return -1;
4770 ir.reg |= rex_r;
4771 if (ir.mod == 3)
4772 {
4773 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4774 ir.reg &= 0x3;
4775 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
4776 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4777 ir.rm &= 0x3;
4778 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
4779 }
4780 else
4781 {
4782 if (i386_record_lea_modrm (&ir))
4783 return -1;
4784 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4785 ir.reg &= 0x3;
4786 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
4787 }
4788 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4789 break;
4790
4791 case 0x0fb0: /* cmpxchg */
4792 case 0x0fb1:
4793 if ((opcode & 1) == 0)
4794 ir.ot = OT_BYTE;
4795 else
4796 ir.ot = ir.dflag + OT_WORD;
4797 if (i386_record_modrm (&ir))
4798 return -1;
4799 if (ir.mod == 3)
4800 {
4801 ir.reg |= rex_r;
4802 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4803 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4804 ir.reg &= 0x3;
4805 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
4806 }
4807 else
4808 {
4809 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4810 if (i386_record_lea_modrm (&ir))
4811 return -1;
4812 }
4813 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4814 break;
4815
4816 case 0x0fc7: /* cmpxchg8b */
4817 if (i386_record_modrm (&ir))
4818 return -1;
4819 if (ir.mod == 3)
4820 {
4821 ir.addr -= 2;
4822 opcode = opcode << 8 | ir.modrm;
4823 goto no_support;
4824 }
4825 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4826 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
4827 if (i386_record_lea_modrm (&ir))
4828 return -1;
4829 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4830 break;
4831
4832 case 0x50: /* push */
4833 case 0x51:
4834 case 0x52:
4835 case 0x53:
4836 case 0x54:
4837 case 0x55:
4838 case 0x56:
4839 case 0x57:
4840 case 0x68:
4841 case 0x6a:
4842 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4843 ir.dflag = 2;
4844 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4845 return -1;
4846 break;
4847
4848 case 0x06: /* push es */
4849 case 0x0e: /* push cs */
4850 case 0x16: /* push ss */
4851 case 0x1e: /* push ds */
4852 if (ir.regmap[X86_RECORD_R8_REGNUM])
4853 {
4854 ir.addr -= 1;
4855 goto no_support;
4856 }
4857 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4858 return -1;
4859 break;
4860
4861 case 0x0fa0: /* push fs */
4862 case 0x0fa8: /* push gs */
4863 if (ir.regmap[X86_RECORD_R8_REGNUM])
4864 {
4865 ir.addr -= 2;
4866 goto no_support;
4867 }
4868 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4869 return -1;
4870 break;
4871
4872 case 0x60: /* pusha */
4873 if (ir.regmap[X86_RECORD_R8_REGNUM])
4874 {
4875 ir.addr -= 1;
4876 goto no_support;
4877 }
4878 if (i386_record_push (&ir, 1 << (ir.dflag + 4)))
4879 return -1;
4880 break;
4881
4882 case 0x58: /* pop */
4883 case 0x59:
4884 case 0x5a:
4885 case 0x5b:
4886 case 0x5c:
4887 case 0x5d:
4888 case 0x5e:
4889 case 0x5f:
4890 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4891 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
4892 break;
4893
4894 case 0x61: /* popa */
4895 if (ir.regmap[X86_RECORD_R8_REGNUM])
4896 {
4897 ir.addr -= 1;
4898 goto no_support;
4899 }
4900 for (regnum = X86_RECORD_REAX_REGNUM;
4901 regnum <= X86_RECORD_REDI_REGNUM;
4902 regnum++)
4903 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
4904 break;
4905
4906 case 0x8f: /* pop */
4907 if (ir.regmap[X86_RECORD_R8_REGNUM])
4908 ir.ot = ir.dflag ? OT_QUAD : OT_WORD;
4909 else
4910 ir.ot = ir.dflag + OT_WORD;
4911 if (i386_record_modrm (&ir))
4912 return -1;
4913 if (ir.mod == 3)
4914 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
4915 else
4916 {
4917 ir.popl_esp_hack = 1 << ir.ot;
4918 if (i386_record_lea_modrm (&ir))
4919 return -1;
4920 }
4921 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4922 break;
4923
4924 case 0xc8: /* enter */
4925 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
4926 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4927 ir.dflag = 2;
4928 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4929 return -1;
4930 break;
4931
4932 case 0xc9: /* leave */
4933 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4934 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
4935 break;
4936
4937 case 0x07: /* pop es */
4938 if (ir.regmap[X86_RECORD_R8_REGNUM])
4939 {
4940 ir.addr -= 1;
4941 goto no_support;
4942 }
4943 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4944 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_ES_REGNUM);
4945 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4946 break;
4947
4948 case 0x17: /* pop ss */
4949 if (ir.regmap[X86_RECORD_R8_REGNUM])
4950 {
4951 ir.addr -= 1;
4952 goto no_support;
4953 }
4954 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4955 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_SS_REGNUM);
4956 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4957 break;
4958
4959 case 0x1f: /* pop ds */
4960 if (ir.regmap[X86_RECORD_R8_REGNUM])
4961 {
4962 ir.addr -= 1;
4963 goto no_support;
4964 }
4965 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4966 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_DS_REGNUM);
4967 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4968 break;
4969
4970 case 0x0fa1: /* pop fs */
4971 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4972 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_FS_REGNUM);
4973 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4974 break;
4975
4976 case 0x0fa9: /* pop gs */
4977 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4978 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
4979 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4980 break;
4981
4982 case 0x88: /* mov */
4983 case 0x89:
4984 case 0xc6:
4985 case 0xc7:
4986 if ((opcode & 1) == 0)
4987 ir.ot = OT_BYTE;
4988 else
4989 ir.ot = ir.dflag + OT_WORD;
4990
4991 if (i386_record_modrm (&ir))
4992 return -1;
4993
4994 if (ir.mod != 3)
4995 {
4996 if (opcode == 0xc6 || opcode == 0xc7)
4997 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
4998 if (i386_record_lea_modrm (&ir))
4999 return -1;
5000 }
5001 else
5002 {
5003 if (opcode == 0xc6 || opcode == 0xc7)
5004 ir.rm |= ir.rex_b;
5005 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5006 ir.rm &= 0x3;
5007 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5008 }
5009 break;
5010
5011 case 0x8a: /* mov */
5012 case 0x8b:
5013 if ((opcode & 1) == 0)
5014 ir.ot = OT_BYTE;
5015 else
5016 ir.ot = ir.dflag + OT_WORD;
5017 if (i386_record_modrm (&ir))
5018 return -1;
5019 ir.reg |= rex_r;
5020 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5021 ir.reg &= 0x3;
5022 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5023 break;
5024
5025 case 0x8c: /* mov seg */
5026 if (i386_record_modrm (&ir))
5027 return -1;
5028 if (ir.reg > 5)
5029 {
5030 ir.addr -= 2;
5031 opcode = opcode << 8 | ir.modrm;
5032 goto no_support;
5033 }
5034
5035 if (ir.mod == 3)
5036 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5037 else
5038 {
5039 ir.ot = OT_WORD;
5040 if (i386_record_lea_modrm (&ir))
5041 return -1;
5042 }
5043 break;
5044
5045 case 0x8e: /* mov seg */
5046 if (i386_record_modrm (&ir))
5047 return -1;
5048 switch (ir.reg)
5049 {
5050 case 0:
5051 regnum = X86_RECORD_ES_REGNUM;
5052 break;
5053 case 2:
5054 regnum = X86_RECORD_SS_REGNUM;
5055 break;
5056 case 3:
5057 regnum = X86_RECORD_DS_REGNUM;
5058 break;
5059 case 4:
5060 regnum = X86_RECORD_FS_REGNUM;
5061 break;
5062 case 5:
5063 regnum = X86_RECORD_GS_REGNUM;
5064 break;
5065 default:
5066 ir.addr -= 2;
5067 opcode = opcode << 8 | ir.modrm;
5068 goto no_support;
5069 break;
5070 }
5071 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5072 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5073 break;
5074
5075 case 0x0fb6: /* movzbS */
5076 case 0x0fb7: /* movzwS */
5077 case 0x0fbe: /* movsbS */
5078 case 0x0fbf: /* movswS */
5079 if (i386_record_modrm (&ir))
5080 return -1;
5081 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5082 break;
5083
5084 case 0x8d: /* lea */
5085 if (i386_record_modrm (&ir))
5086 return -1;
5087 if (ir.mod == 3)
5088 {
5089 ir.addr -= 2;
5090 opcode = opcode << 8 | ir.modrm;
5091 goto no_support;
5092 }
5093 ir.ot = ir.dflag;
5094 ir.reg |= rex_r;
5095 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5096 ir.reg &= 0x3;
5097 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5098 break;
5099
5100 case 0xa0: /* mov EAX */
5101 case 0xa1:
5102
5103 case 0xd7: /* xlat */
5104 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5105 break;
5106
5107 case 0xa2: /* mov EAX */
5108 case 0xa3:
5109 if (ir.override >= 0)
5110 {
5111 if (record_full_memory_query)
5112 {
5113 int q;
5114
5115 target_terminal_ours ();
5116 q = yquery (_("\
5117 Process record ignores the memory change of instruction at address %s\n\
5118 because it can't get the value of the segment register.\n\
5119 Do you want to stop the program?"),
5120 paddress (gdbarch, ir.orig_addr));
5121 target_terminal_inferior ();
5122 if (q)
5123 return -1;
5124 }
5125 }
5126 else
5127 {
5128 if ((opcode & 1) == 0)
5129 ir.ot = OT_BYTE;
5130 else
5131 ir.ot = ir.dflag + OT_WORD;
5132 if (ir.aflag == 2)
5133 {
5134 if (record_read_memory (gdbarch, ir.addr, buf, 8))
5135 return -1;
5136 ir.addr += 8;
5137 addr = extract_unsigned_integer (buf, 8, byte_order);
5138 }
5139 else if (ir.aflag)
5140 {
5141 if (record_read_memory (gdbarch, ir.addr, buf, 4))
5142 return -1;
5143 ir.addr += 4;
5144 addr = extract_unsigned_integer (buf, 4, byte_order);
5145 }
5146 else
5147 {
5148 if (record_read_memory (gdbarch, ir.addr, buf, 2))
5149 return -1;
5150 ir.addr += 2;
5151 addr = extract_unsigned_integer (buf, 2, byte_order);
5152 }
5153 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
5154 return -1;
5155 }
5156 break;
5157
5158 case 0xb0: /* mov R, Ib */
5159 case 0xb1:
5160 case 0xb2:
5161 case 0xb3:
5162 case 0xb4:
5163 case 0xb5:
5164 case 0xb6:
5165 case 0xb7:
5166 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((ir.regmap[X86_RECORD_R8_REGNUM])
5167 ? ((opcode & 0x7) | ir.rex_b)
5168 : ((opcode & 0x7) & 0x3));
5169 break;
5170
5171 case 0xb8: /* mov R, Iv */
5172 case 0xb9:
5173 case 0xba:
5174 case 0xbb:
5175 case 0xbc:
5176 case 0xbd:
5177 case 0xbe:
5178 case 0xbf:
5179 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
5180 break;
5181
5182 case 0x91: /* xchg R, EAX */
5183 case 0x92:
5184 case 0x93:
5185 case 0x94:
5186 case 0x95:
5187 case 0x96:
5188 case 0x97:
5189 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5190 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 0x7);
5191 break;
5192
5193 case 0x86: /* xchg Ev, Gv */
5194 case 0x87:
5195 if ((opcode & 1) == 0)
5196 ir.ot = OT_BYTE;
5197 else
5198 ir.ot = ir.dflag + OT_WORD;
5199 if (i386_record_modrm (&ir))
5200 return -1;
5201 if (ir.mod == 3)
5202 {
5203 ir.rm |= ir.rex_b;
5204 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5205 ir.rm &= 0x3;
5206 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5207 }
5208 else
5209 {
5210 if (i386_record_lea_modrm (&ir))
5211 return -1;
5212 }
5213 ir.reg |= rex_r;
5214 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5215 ir.reg &= 0x3;
5216 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5217 break;
5218
5219 case 0xc4: /* les Gv */
5220 case 0xc5: /* lds Gv */
5221 if (ir.regmap[X86_RECORD_R8_REGNUM])
5222 {
5223 ir.addr -= 1;
5224 goto no_support;
5225 }
5226 /* FALLTHROUGH */
5227 case 0x0fb2: /* lss Gv */
5228 case 0x0fb4: /* lfs Gv */
5229 case 0x0fb5: /* lgs Gv */
5230 if (i386_record_modrm (&ir))
5231 return -1;
5232 if (ir.mod == 3)
5233 {
5234 if (opcode > 0xff)
5235 ir.addr -= 3;
5236 else
5237 ir.addr -= 2;
5238 opcode = opcode << 8 | ir.modrm;
5239 goto no_support;
5240 }
5241 switch (opcode)
5242 {
5243 case 0xc4: /* les Gv */
5244 regnum = X86_RECORD_ES_REGNUM;
5245 break;
5246 case 0xc5: /* lds Gv */
5247 regnum = X86_RECORD_DS_REGNUM;
5248 break;
5249 case 0x0fb2: /* lss Gv */
5250 regnum = X86_RECORD_SS_REGNUM;
5251 break;
5252 case 0x0fb4: /* lfs Gv */
5253 regnum = X86_RECORD_FS_REGNUM;
5254 break;
5255 case 0x0fb5: /* lgs Gv */
5256 regnum = X86_RECORD_GS_REGNUM;
5257 break;
5258 }
5259 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5260 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5261 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5262 break;
5263
5264 case 0xc0: /* shifts */
5265 case 0xc1:
5266 case 0xd0:
5267 case 0xd1:
5268 case 0xd2:
5269 case 0xd3:
5270 if ((opcode & 1) == 0)
5271 ir.ot = OT_BYTE;
5272 else
5273 ir.ot = ir.dflag + OT_WORD;
5274 if (i386_record_modrm (&ir))
5275 return -1;
5276 if (ir.mod != 3 && (opcode == 0xd2 || opcode == 0xd3))
5277 {
5278 if (i386_record_lea_modrm (&ir))
5279 return -1;
5280 }
5281 else
5282 {
5283 ir.rm |= ir.rex_b;
5284 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5285 ir.rm &= 0x3;
5286 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5287 }
5288 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5289 break;
5290
5291 case 0x0fa4:
5292 case 0x0fa5:
5293 case 0x0fac:
5294 case 0x0fad:
5295 if (i386_record_modrm (&ir))
5296 return -1;
5297 if (ir.mod == 3)
5298 {
5299 if (record_full_arch_list_add_reg (ir.regcache, ir.rm))
5300 return -1;
5301 }
5302 else
5303 {
5304 if (i386_record_lea_modrm (&ir))
5305 return -1;
5306 }
5307 break;
5308
5309 case 0xd8: /* Floats. */
5310 case 0xd9:
5311 case 0xda:
5312 case 0xdb:
5313 case 0xdc:
5314 case 0xdd:
5315 case 0xde:
5316 case 0xdf:
5317 if (i386_record_modrm (&ir))
5318 return -1;
5319 ir.reg |= ((opcode & 7) << 3);
5320 if (ir.mod != 3)
5321 {
5322 /* Memory. */
5323 uint64_t addr64;
5324
5325 if (i386_record_lea_modrm_addr (&ir, &addr64))
5326 return -1;
5327 switch (ir.reg)
5328 {
5329 case 0x02:
5330 case 0x12:
5331 case 0x22:
5332 case 0x32:
5333 /* For fcom, ficom nothing to do. */
5334 break;
5335 case 0x03:
5336 case 0x13:
5337 case 0x23:
5338 case 0x33:
5339 /* For fcomp, ficomp pop FPU stack, store all. */
5340 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5341 return -1;
5342 break;
5343 case 0x00:
5344 case 0x01:
5345 case 0x04:
5346 case 0x05:
5347 case 0x06:
5348 case 0x07:
5349 case 0x10:
5350 case 0x11:
5351 case 0x14:
5352 case 0x15:
5353 case 0x16:
5354 case 0x17:
5355 case 0x20:
5356 case 0x21:
5357 case 0x24:
5358 case 0x25:
5359 case 0x26:
5360 case 0x27:
5361 case 0x30:
5362 case 0x31:
5363 case 0x34:
5364 case 0x35:
5365 case 0x36:
5366 case 0x37:
5367 /* For fadd, fmul, fsub, fsubr, fdiv, fdivr, fiadd, fimul,
5368 fisub, fisubr, fidiv, fidivr, modR/M.reg is an extension
5369 of code, always affects st(0) register. */
5370 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
5371 return -1;
5372 break;
5373 case 0x08:
5374 case 0x0a:
5375 case 0x0b:
5376 case 0x18:
5377 case 0x19:
5378 case 0x1a:
5379 case 0x1b:
5380 case 0x1d:
5381 case 0x28:
5382 case 0x29:
5383 case 0x2a:
5384 case 0x2b:
5385 case 0x38:
5386 case 0x39:
5387 case 0x3a:
5388 case 0x3b:
5389 case 0x3c:
5390 case 0x3d:
5391 switch (ir.reg & 7)
5392 {
5393 case 0:
5394 /* Handling fld, fild. */
5395 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5396 return -1;
5397 break;
5398 case 1:
5399 switch (ir.reg >> 4)
5400 {
5401 case 0:
5402 if (record_full_arch_list_add_mem (addr64, 4))
5403 return -1;
5404 break;
5405 case 2:
5406 if (record_full_arch_list_add_mem (addr64, 8))
5407 return -1;
5408 break;
5409 case 3:
5410 break;
5411 default:
5412 if (record_full_arch_list_add_mem (addr64, 2))
5413 return -1;
5414 break;
5415 }
5416 break;
5417 default:
5418 switch (ir.reg >> 4)
5419 {
5420 case 0:
5421 if (record_full_arch_list_add_mem (addr64, 4))
5422 return -1;
5423 if (3 == (ir.reg & 7))
5424 {
5425 /* For fstp m32fp. */
5426 if (i386_record_floats (gdbarch, &ir,
5427 I386_SAVE_FPU_REGS))
5428 return -1;
5429 }
5430 break;
5431 case 1:
5432 if (record_full_arch_list_add_mem (addr64, 4))
5433 return -1;
5434 if ((3 == (ir.reg & 7))
5435 || (5 == (ir.reg & 7))
5436 || (7 == (ir.reg & 7)))
5437 {
5438 /* For fstp insn. */
5439 if (i386_record_floats (gdbarch, &ir,
5440 I386_SAVE_FPU_REGS))
5441 return -1;
5442 }
5443 break;
5444 case 2:
5445 if (record_full_arch_list_add_mem (addr64, 8))
5446 return -1;
5447 if (3 == (ir.reg & 7))
5448 {
5449 /* For fstp m64fp. */
5450 if (i386_record_floats (gdbarch, &ir,
5451 I386_SAVE_FPU_REGS))
5452 return -1;
5453 }
5454 break;
5455 case 3:
5456 if ((3 <= (ir.reg & 7)) && (6 <= (ir.reg & 7)))
5457 {
5458 /* For fistp, fbld, fild, fbstp. */
5459 if (i386_record_floats (gdbarch, &ir,
5460 I386_SAVE_FPU_REGS))
5461 return -1;
5462 }
5463 /* Fall through */
5464 default:
5465 if (record_full_arch_list_add_mem (addr64, 2))
5466 return -1;
5467 break;
5468 }
5469 break;
5470 }
5471 break;
5472 case 0x0c:
5473 /* Insn fldenv. */
5474 if (i386_record_floats (gdbarch, &ir,
5475 I386_SAVE_FPU_ENV_REG_STACK))
5476 return -1;
5477 break;
5478 case 0x0d:
5479 /* Insn fldcw. */
5480 if (i386_record_floats (gdbarch, &ir, I387_FCTRL_REGNUM (tdep)))
5481 return -1;
5482 break;
5483 case 0x2c:
5484 /* Insn frstor. */
5485 if (i386_record_floats (gdbarch, &ir,
5486 I386_SAVE_FPU_ENV_REG_STACK))
5487 return -1;
5488 break;
5489 case 0x0e:
5490 if (ir.dflag)
5491 {
5492 if (record_full_arch_list_add_mem (addr64, 28))
5493 return -1;
5494 }
5495 else
5496 {
5497 if (record_full_arch_list_add_mem (addr64, 14))
5498 return -1;
5499 }
5500 break;
5501 case 0x0f:
5502 case 0x2f:
5503 if (record_full_arch_list_add_mem (addr64, 2))
5504 return -1;
5505 /* Insn fstp, fbstp. */
5506 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5507 return -1;
5508 break;
5509 case 0x1f:
5510 case 0x3e:
5511 if (record_full_arch_list_add_mem (addr64, 10))
5512 return -1;
5513 break;
5514 case 0x2e:
5515 if (ir.dflag)
5516 {
5517 if (record_full_arch_list_add_mem (addr64, 28))
5518 return -1;
5519 addr64 += 28;
5520 }
5521 else
5522 {
5523 if (record_full_arch_list_add_mem (addr64, 14))
5524 return -1;
5525 addr64 += 14;
5526 }
5527 if (record_full_arch_list_add_mem (addr64, 80))
5528 return -1;
5529 /* Insn fsave. */
5530 if (i386_record_floats (gdbarch, &ir,
5531 I386_SAVE_FPU_ENV_REG_STACK))
5532 return -1;
5533 break;
5534 case 0x3f:
5535 if (record_full_arch_list_add_mem (addr64, 8))
5536 return -1;
5537 /* Insn fistp. */
5538 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5539 return -1;
5540 break;
5541 default:
5542 ir.addr -= 2;
5543 opcode = opcode << 8 | ir.modrm;
5544 goto no_support;
5545 break;
5546 }
5547 }
5548 /* Opcode is an extension of modR/M byte. */
5549 else
5550 {
5551 switch (opcode)
5552 {
5553 case 0xd8:
5554 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
5555 return -1;
5556 break;
5557 case 0xd9:
5558 if (0x0c == (ir.modrm >> 4))
5559 {
5560 if ((ir.modrm & 0x0f) <= 7)
5561 {
5562 if (i386_record_floats (gdbarch, &ir,
5563 I386_SAVE_FPU_REGS))
5564 return -1;
5565 }
5566 else
5567 {
5568 if (i386_record_floats (gdbarch, &ir,
5569 I387_ST0_REGNUM (tdep)))
5570 return -1;
5571 /* If only st(0) is changing, then we have already
5572 recorded. */
5573 if ((ir.modrm & 0x0f) - 0x08)
5574 {
5575 if (i386_record_floats (gdbarch, &ir,
5576 I387_ST0_REGNUM (tdep) +
5577 ((ir.modrm & 0x0f) - 0x08)))
5578 return -1;
5579 }
5580 }
5581 }
5582 else
5583 {
5584 switch (ir.modrm)
5585 {
5586 case 0xe0:
5587 case 0xe1:
5588 case 0xf0:
5589 case 0xf5:
5590 case 0xf8:
5591 case 0xfa:
5592 case 0xfc:
5593 case 0xfe:
5594 case 0xff:
5595 if (i386_record_floats (gdbarch, &ir,
5596 I387_ST0_REGNUM (tdep)))
5597 return -1;
5598 break;
5599 case 0xf1:
5600 case 0xf2:
5601 case 0xf3:
5602 case 0xf4:
5603 case 0xf6:
5604 case 0xf7:
5605 case 0xe8:
5606 case 0xe9:
5607 case 0xea:
5608 case 0xeb:
5609 case 0xec:
5610 case 0xed:
5611 case 0xee:
5612 case 0xf9:
5613 case 0xfb:
5614 if (i386_record_floats (gdbarch, &ir,
5615 I386_SAVE_FPU_REGS))
5616 return -1;
5617 break;
5618 case 0xfd:
5619 if (i386_record_floats (gdbarch, &ir,
5620 I387_ST0_REGNUM (tdep)))
5621 return -1;
5622 if (i386_record_floats (gdbarch, &ir,
5623 I387_ST0_REGNUM (tdep) + 1))
5624 return -1;
5625 break;
5626 }
5627 }
5628 break;
5629 case 0xda:
5630 if (0xe9 == ir.modrm)
5631 {
5632 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5633 return -1;
5634 }
5635 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
5636 {
5637 if (i386_record_floats (gdbarch, &ir,
5638 I387_ST0_REGNUM (tdep)))
5639 return -1;
5640 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
5641 {
5642 if (i386_record_floats (gdbarch, &ir,
5643 I387_ST0_REGNUM (tdep) +
5644 (ir.modrm & 0x0f)))
5645 return -1;
5646 }
5647 else if ((ir.modrm & 0x0f) - 0x08)
5648 {
5649 if (i386_record_floats (gdbarch, &ir,
5650 I387_ST0_REGNUM (tdep) +
5651 ((ir.modrm & 0x0f) - 0x08)))
5652 return -1;
5653 }
5654 }
5655 break;
5656 case 0xdb:
5657 if (0xe3 == ir.modrm)
5658 {
5659 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_ENV))
5660 return -1;
5661 }
5662 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
5663 {
5664 if (i386_record_floats (gdbarch, &ir,
5665 I387_ST0_REGNUM (tdep)))
5666 return -1;
5667 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
5668 {
5669 if (i386_record_floats (gdbarch, &ir,
5670 I387_ST0_REGNUM (tdep) +
5671 (ir.modrm & 0x0f)))
5672 return -1;
5673 }
5674 else if ((ir.modrm & 0x0f) - 0x08)
5675 {
5676 if (i386_record_floats (gdbarch, &ir,
5677 I387_ST0_REGNUM (tdep) +
5678 ((ir.modrm & 0x0f) - 0x08)))
5679 return -1;
5680 }
5681 }
5682 break;
5683 case 0xdc:
5684 if ((0x0c == ir.modrm >> 4)
5685 || (0x0d == ir.modrm >> 4)
5686 || (0x0f == ir.modrm >> 4))
5687 {
5688 if ((ir.modrm & 0x0f) <= 7)
5689 {
5690 if (i386_record_floats (gdbarch, &ir,
5691 I387_ST0_REGNUM (tdep) +
5692 (ir.modrm & 0x0f)))
5693 return -1;
5694 }
5695 else
5696 {
5697 if (i386_record_floats (gdbarch, &ir,
5698 I387_ST0_REGNUM (tdep) +
5699 ((ir.modrm & 0x0f) - 0x08)))
5700 return -1;
5701 }
5702 }
5703 break;
5704 case 0xdd:
5705 if (0x0c == ir.modrm >> 4)
5706 {
5707 if (i386_record_floats (gdbarch, &ir,
5708 I387_FTAG_REGNUM (tdep)))
5709 return -1;
5710 }
5711 else if ((0x0d == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
5712 {
5713 if ((ir.modrm & 0x0f) <= 7)
5714 {
5715 if (i386_record_floats (gdbarch, &ir,
5716 I387_ST0_REGNUM (tdep) +
5717 (ir.modrm & 0x0f)))
5718 return -1;
5719 }
5720 else
5721 {
5722 if (i386_record_floats (gdbarch, &ir,
5723 I386_SAVE_FPU_REGS))
5724 return -1;
5725 }
5726 }
5727 break;
5728 case 0xde:
5729 if ((0x0c == ir.modrm >> 4)
5730 || (0x0e == ir.modrm >> 4)
5731 || (0x0f == ir.modrm >> 4)
5732 || (0xd9 == ir.modrm))
5733 {
5734 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5735 return -1;
5736 }
5737 break;
5738 case 0xdf:
5739 if (0xe0 == ir.modrm)
5740 {
5741 if (record_full_arch_list_add_reg (ir.regcache,
5742 I386_EAX_REGNUM))
5743 return -1;
5744 }
5745 else if ((0x0f == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
5746 {
5747 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5748 return -1;
5749 }
5750 break;
5751 }
5752 }
5753 break;
5754 /* string ops */
5755 case 0xa4: /* movsS */
5756 case 0xa5:
5757 case 0xaa: /* stosS */
5758 case 0xab:
5759 case 0x6c: /* insS */
5760 case 0x6d:
5761 regcache_raw_read_unsigned (ir.regcache,
5762 ir.regmap[X86_RECORD_RECX_REGNUM],
5763 &addr);
5764 if (addr)
5765 {
5766 ULONGEST es, ds;
5767
5768 if ((opcode & 1) == 0)
5769 ir.ot = OT_BYTE;
5770 else
5771 ir.ot = ir.dflag + OT_WORD;
5772 regcache_raw_read_unsigned (ir.regcache,
5773 ir.regmap[X86_RECORD_REDI_REGNUM],
5774 &addr);
5775
5776 regcache_raw_read_unsigned (ir.regcache,
5777 ir.regmap[X86_RECORD_ES_REGNUM],
5778 &es);
5779 regcache_raw_read_unsigned (ir.regcache,
5780 ir.regmap[X86_RECORD_DS_REGNUM],
5781 &ds);
5782 if (ir.aflag && (es != ds))
5783 {
5784 /* addr += ((uint32_t) read_register (I386_ES_REGNUM)) << 4; */
5785 if (record_full_memory_query)
5786 {
5787 int q;
5788
5789 target_terminal_ours ();
5790 q = yquery (_("\
5791 Process record ignores the memory change of instruction at address %s\n\
5792 because it can't get the value of the segment register.\n\
5793 Do you want to stop the program?"),
5794 paddress (gdbarch, ir.orig_addr));
5795 target_terminal_inferior ();
5796 if (q)
5797 return -1;
5798 }
5799 }
5800 else
5801 {
5802 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
5803 return -1;
5804 }
5805
5806 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
5807 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5808 if (opcode == 0xa4 || opcode == 0xa5)
5809 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
5810 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
5811 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5812 }
5813 break;
5814
5815 case 0xa6: /* cmpsS */
5816 case 0xa7:
5817 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
5818 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
5819 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
5820 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5821 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5822 break;
5823
5824 case 0xac: /* lodsS */
5825 case 0xad:
5826 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5827 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
5828 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
5829 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5830 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5831 break;
5832
5833 case 0xae: /* scasS */
5834 case 0xaf:
5835 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
5836 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
5837 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5838 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5839 break;
5840
5841 case 0x6e: /* outsS */
5842 case 0x6f:
5843 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
5844 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
5845 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5846 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5847 break;
5848
5849 case 0xe4: /* port I/O */
5850 case 0xe5:
5851 case 0xec:
5852 case 0xed:
5853 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5854 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5855 break;
5856
5857 case 0xe6:
5858 case 0xe7:
5859 case 0xee:
5860 case 0xef:
5861 break;
5862
5863 /* control */
5864 case 0xc2: /* ret im */
5865 case 0xc3: /* ret */
5866 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5867 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5868 break;
5869
5870 case 0xca: /* lret im */
5871 case 0xcb: /* lret */
5872 case 0xcf: /* iret */
5873 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
5874 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5875 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5876 break;
5877
5878 case 0xe8: /* call im */
5879 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5880 ir.dflag = 2;
5881 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5882 return -1;
5883 break;
5884
5885 case 0x9a: /* lcall im */
5886 if (ir.regmap[X86_RECORD_R8_REGNUM])
5887 {
5888 ir.addr -= 1;
5889 goto no_support;
5890 }
5891 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
5892 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5893 return -1;
5894 break;
5895
5896 case 0xe9: /* jmp im */
5897 case 0xea: /* ljmp im */
5898 case 0xeb: /* jmp Jb */
5899 case 0x70: /* jcc Jb */
5900 case 0x71:
5901 case 0x72:
5902 case 0x73:
5903 case 0x74:
5904 case 0x75:
5905 case 0x76:
5906 case 0x77:
5907 case 0x78:
5908 case 0x79:
5909 case 0x7a:
5910 case 0x7b:
5911 case 0x7c:
5912 case 0x7d:
5913 case 0x7e:
5914 case 0x7f:
5915 case 0x0f80: /* jcc Jv */
5916 case 0x0f81:
5917 case 0x0f82:
5918 case 0x0f83:
5919 case 0x0f84:
5920 case 0x0f85:
5921 case 0x0f86:
5922 case 0x0f87:
5923 case 0x0f88:
5924 case 0x0f89:
5925 case 0x0f8a:
5926 case 0x0f8b:
5927 case 0x0f8c:
5928 case 0x0f8d:
5929 case 0x0f8e:
5930 case 0x0f8f:
5931 break;
5932
5933 case 0x0f90: /* setcc Gv */
5934 case 0x0f91:
5935 case 0x0f92:
5936 case 0x0f93:
5937 case 0x0f94:
5938 case 0x0f95:
5939 case 0x0f96:
5940 case 0x0f97:
5941 case 0x0f98:
5942 case 0x0f99:
5943 case 0x0f9a:
5944 case 0x0f9b:
5945 case 0x0f9c:
5946 case 0x0f9d:
5947 case 0x0f9e:
5948 case 0x0f9f:
5949 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5950 ir.ot = OT_BYTE;
5951 if (i386_record_modrm (&ir))
5952 return -1;
5953 if (ir.mod == 3)
5954 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rex_b ? (ir.rm | ir.rex_b)
5955 : (ir.rm & 0x3));
5956 else
5957 {
5958 if (i386_record_lea_modrm (&ir))
5959 return -1;
5960 }
5961 break;
5962
5963 case 0x0f40: /* cmov Gv, Ev */
5964 case 0x0f41:
5965 case 0x0f42:
5966 case 0x0f43:
5967 case 0x0f44:
5968 case 0x0f45:
5969 case 0x0f46:
5970 case 0x0f47:
5971 case 0x0f48:
5972 case 0x0f49:
5973 case 0x0f4a:
5974 case 0x0f4b:
5975 case 0x0f4c:
5976 case 0x0f4d:
5977 case 0x0f4e:
5978 case 0x0f4f:
5979 if (i386_record_modrm (&ir))
5980 return -1;
5981 ir.reg |= rex_r;
5982 if (ir.dflag == OT_BYTE)
5983 ir.reg &= 0x3;
5984 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5985 break;
5986
5987 /* flags */
5988 case 0x9c: /* pushf */
5989 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5990 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5991 ir.dflag = 2;
5992 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5993 return -1;
5994 break;
5995
5996 case 0x9d: /* popf */
5997 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5998 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5999 break;
6000
6001 case 0x9e: /* sahf */
6002 if (ir.regmap[X86_RECORD_R8_REGNUM])
6003 {
6004 ir.addr -= 1;
6005 goto no_support;
6006 }
6007 /* FALLTHROUGH */
6008 case 0xf5: /* cmc */
6009 case 0xf8: /* clc */
6010 case 0xf9: /* stc */
6011 case 0xfc: /* cld */
6012 case 0xfd: /* std */
6013 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6014 break;
6015
6016 case 0x9f: /* lahf */
6017 if (ir.regmap[X86_RECORD_R8_REGNUM])
6018 {
6019 ir.addr -= 1;
6020 goto no_support;
6021 }
6022 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6023 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6024 break;
6025
6026 /* bit operations */
6027 case 0x0fba: /* bt/bts/btr/btc Gv, im */
6028 ir.ot = ir.dflag + OT_WORD;
6029 if (i386_record_modrm (&ir))
6030 return -1;
6031 if (ir.reg < 4)
6032 {
6033 ir.addr -= 2;
6034 opcode = opcode << 8 | ir.modrm;
6035 goto no_support;
6036 }
6037 if (ir.reg != 4)
6038 {
6039 if (ir.mod == 3)
6040 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6041 else
6042 {
6043 if (i386_record_lea_modrm (&ir))
6044 return -1;
6045 }
6046 }
6047 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6048 break;
6049
6050 case 0x0fa3: /* bt Gv, Ev */
6051 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6052 break;
6053
6054 case 0x0fab: /* bts */
6055 case 0x0fb3: /* btr */
6056 case 0x0fbb: /* btc */
6057 ir.ot = ir.dflag + OT_WORD;
6058 if (i386_record_modrm (&ir))
6059 return -1;
6060 if (ir.mod == 3)
6061 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6062 else
6063 {
6064 uint64_t addr64;
6065 if (i386_record_lea_modrm_addr (&ir, &addr64))
6066 return -1;
6067 regcache_raw_read_unsigned (ir.regcache,
6068 ir.regmap[ir.reg | rex_r],
6069 &addr);
6070 switch (ir.dflag)
6071 {
6072 case 0:
6073 addr64 += ((int16_t) addr >> 4) << 4;
6074 break;
6075 case 1:
6076 addr64 += ((int32_t) addr >> 5) << 5;
6077 break;
6078 case 2:
6079 addr64 += ((int64_t) addr >> 6) << 6;
6080 break;
6081 }
6082 if (record_full_arch_list_add_mem (addr64, 1 << ir.ot))
6083 return -1;
6084 if (i386_record_lea_modrm (&ir))
6085 return -1;
6086 }
6087 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6088 break;
6089
6090 case 0x0fbc: /* bsf */
6091 case 0x0fbd: /* bsr */
6092 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6093 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6094 break;
6095
6096 /* bcd */
6097 case 0x27: /* daa */
6098 case 0x2f: /* das */
6099 case 0x37: /* aaa */
6100 case 0x3f: /* aas */
6101 case 0xd4: /* aam */
6102 case 0xd5: /* aad */
6103 if (ir.regmap[X86_RECORD_R8_REGNUM])
6104 {
6105 ir.addr -= 1;
6106 goto no_support;
6107 }
6108 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6109 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6110 break;
6111
6112 /* misc */
6113 case 0x90: /* nop */
6114 if (prefixes & PREFIX_LOCK)
6115 {
6116 ir.addr -= 1;
6117 goto no_support;
6118 }
6119 break;
6120
6121 case 0x9b: /* fwait */
6122 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
6123 return -1;
6124 opcode = (uint32_t) opcode8;
6125 ir.addr++;
6126 goto reswitch;
6127 break;
6128
6129 /* XXX */
6130 case 0xcc: /* int3 */
6131 printf_unfiltered (_("Process record does not support instruction "
6132 "int3.\n"));
6133 ir.addr -= 1;
6134 goto no_support;
6135 break;
6136
6137 /* XXX */
6138 case 0xcd: /* int */
6139 {
6140 int ret;
6141 uint8_t interrupt;
6142 if (record_read_memory (gdbarch, ir.addr, &interrupt, 1))
6143 return -1;
6144 ir.addr++;
6145 if (interrupt != 0x80
6146 || tdep->i386_intx80_record == NULL)
6147 {
6148 printf_unfiltered (_("Process record does not support "
6149 "instruction int 0x%02x.\n"),
6150 interrupt);
6151 ir.addr -= 2;
6152 goto no_support;
6153 }
6154 ret = tdep->i386_intx80_record (ir.regcache);
6155 if (ret)
6156 return ret;
6157 }
6158 break;
6159
6160 /* XXX */
6161 case 0xce: /* into */
6162 printf_unfiltered (_("Process record does not support "
6163 "instruction into.\n"));
6164 ir.addr -= 1;
6165 goto no_support;
6166 break;
6167
6168 case 0xfa: /* cli */
6169 case 0xfb: /* sti */
6170 break;
6171
6172 case 0x62: /* bound */
6173 printf_unfiltered (_("Process record does not support "
6174 "instruction bound.\n"));
6175 ir.addr -= 1;
6176 goto no_support;
6177 break;
6178
6179 case 0x0fc8: /* bswap reg */
6180 case 0x0fc9:
6181 case 0x0fca:
6182 case 0x0fcb:
6183 case 0x0fcc:
6184 case 0x0fcd:
6185 case 0x0fce:
6186 case 0x0fcf:
6187 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 7) | ir.rex_b);
6188 break;
6189
6190 case 0xd6: /* salc */
6191 if (ir.regmap[X86_RECORD_R8_REGNUM])
6192 {
6193 ir.addr -= 1;
6194 goto no_support;
6195 }
6196 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6197 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6198 break;
6199
6200 case 0xe0: /* loopnz */
6201 case 0xe1: /* loopz */
6202 case 0xe2: /* loop */
6203 case 0xe3: /* jecxz */
6204 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6205 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6206 break;
6207
6208 case 0x0f30: /* wrmsr */
6209 printf_unfiltered (_("Process record does not support "
6210 "instruction wrmsr.\n"));
6211 ir.addr -= 2;
6212 goto no_support;
6213 break;
6214
6215 case 0x0f32: /* rdmsr */
6216 printf_unfiltered (_("Process record does not support "
6217 "instruction rdmsr.\n"));
6218 ir.addr -= 2;
6219 goto no_support;
6220 break;
6221
6222 case 0x0f31: /* rdtsc */
6223 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6224 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6225 break;
6226
6227 case 0x0f34: /* sysenter */
6228 {
6229 int ret;
6230 if (ir.regmap[X86_RECORD_R8_REGNUM])
6231 {
6232 ir.addr -= 2;
6233 goto no_support;
6234 }
6235 if (tdep->i386_sysenter_record == NULL)
6236 {
6237 printf_unfiltered (_("Process record does not support "
6238 "instruction sysenter.\n"));
6239 ir.addr -= 2;
6240 goto no_support;
6241 }
6242 ret = tdep->i386_sysenter_record (ir.regcache);
6243 if (ret)
6244 return ret;
6245 }
6246 break;
6247
6248 case 0x0f35: /* sysexit */
6249 printf_unfiltered (_("Process record does not support "
6250 "instruction sysexit.\n"));
6251 ir.addr -= 2;
6252 goto no_support;
6253 break;
6254
6255 case 0x0f05: /* syscall */
6256 {
6257 int ret;
6258 if (tdep->i386_syscall_record == NULL)
6259 {
6260 printf_unfiltered (_("Process record does not support "
6261 "instruction syscall.\n"));
6262 ir.addr -= 2;
6263 goto no_support;
6264 }
6265 ret = tdep->i386_syscall_record (ir.regcache);
6266 if (ret)
6267 return ret;
6268 }
6269 break;
6270
6271 case 0x0f07: /* sysret */
6272 printf_unfiltered (_("Process record does not support "
6273 "instruction sysret.\n"));
6274 ir.addr -= 2;
6275 goto no_support;
6276 break;
6277
6278 case 0x0fa2: /* cpuid */
6279 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6280 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6281 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6282 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
6283 break;
6284
6285 case 0xf4: /* hlt */
6286 printf_unfiltered (_("Process record does not support "
6287 "instruction hlt.\n"));
6288 ir.addr -= 1;
6289 goto no_support;
6290 break;
6291
6292 case 0x0f00:
6293 if (i386_record_modrm (&ir))
6294 return -1;
6295 switch (ir.reg)
6296 {
6297 case 0: /* sldt */
6298 case 1: /* str */
6299 if (ir.mod == 3)
6300 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6301 else
6302 {
6303 ir.ot = OT_WORD;
6304 if (i386_record_lea_modrm (&ir))
6305 return -1;
6306 }
6307 break;
6308 case 2: /* lldt */
6309 case 3: /* ltr */
6310 break;
6311 case 4: /* verr */
6312 case 5: /* verw */
6313 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6314 break;
6315 default:
6316 ir.addr -= 3;
6317 opcode = opcode << 8 | ir.modrm;
6318 goto no_support;
6319 break;
6320 }
6321 break;
6322
6323 case 0x0f01:
6324 if (i386_record_modrm (&ir))
6325 return -1;
6326 switch (ir.reg)
6327 {
6328 case 0: /* sgdt */
6329 {
6330 uint64_t addr64;
6331
6332 if (ir.mod == 3)
6333 {
6334 ir.addr -= 3;
6335 opcode = opcode << 8 | ir.modrm;
6336 goto no_support;
6337 }
6338 if (ir.override >= 0)
6339 {
6340 if (record_full_memory_query)
6341 {
6342 int q;
6343
6344 target_terminal_ours ();
6345 q = yquery (_("\
6346 Process record ignores the memory change of instruction at address %s\n\
6347 because it can't get the value of the segment register.\n\
6348 Do you want to stop the program?"),
6349 paddress (gdbarch, ir.orig_addr));
6350 target_terminal_inferior ();
6351 if (q)
6352 return -1;
6353 }
6354 }
6355 else
6356 {
6357 if (i386_record_lea_modrm_addr (&ir, &addr64))
6358 return -1;
6359 if (record_full_arch_list_add_mem (addr64, 2))
6360 return -1;
6361 addr64 += 2;
6362 if (ir.regmap[X86_RECORD_R8_REGNUM])
6363 {
6364 if (record_full_arch_list_add_mem (addr64, 8))
6365 return -1;
6366 }
6367 else
6368 {
6369 if (record_full_arch_list_add_mem (addr64, 4))
6370 return -1;
6371 }
6372 }
6373 }
6374 break;
6375 case 1:
6376 if (ir.mod == 3)
6377 {
6378 switch (ir.rm)
6379 {
6380 case 0: /* monitor */
6381 break;
6382 case 1: /* mwait */
6383 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6384 break;
6385 default:
6386 ir.addr -= 3;
6387 opcode = opcode << 8 | ir.modrm;
6388 goto no_support;
6389 break;
6390 }
6391 }
6392 else
6393 {
6394 /* sidt */
6395 if (ir.override >= 0)
6396 {
6397 if (record_full_memory_query)
6398 {
6399 int q;
6400
6401 target_terminal_ours ();
6402 q = yquery (_("\
6403 Process record ignores the memory change of instruction at address %s\n\
6404 because it can't get the value of the segment register.\n\
6405 Do you want to stop the program?"),
6406 paddress (gdbarch, ir.orig_addr));
6407 target_terminal_inferior ();
6408 if (q)
6409 return -1;
6410 }
6411 }
6412 else
6413 {
6414 uint64_t addr64;
6415
6416 if (i386_record_lea_modrm_addr (&ir, &addr64))
6417 return -1;
6418 if (record_full_arch_list_add_mem (addr64, 2))
6419 return -1;
6420 addr64 += 2;
6421 if (ir.regmap[X86_RECORD_R8_REGNUM])
6422 {
6423 if (record_full_arch_list_add_mem (addr64, 8))
6424 return -1;
6425 }
6426 else
6427 {
6428 if (record_full_arch_list_add_mem (addr64, 4))
6429 return -1;
6430 }
6431 }
6432 }
6433 break;
6434 case 2: /* lgdt */
6435 if (ir.mod == 3)
6436 {
6437 /* xgetbv */
6438 if (ir.rm == 0)
6439 {
6440 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6441 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6442 break;
6443 }
6444 /* xsetbv */
6445 else if (ir.rm == 1)
6446 break;
6447 }
6448 case 3: /* lidt */
6449 if (ir.mod == 3)
6450 {
6451 ir.addr -= 3;
6452 opcode = opcode << 8 | ir.modrm;
6453 goto no_support;
6454 }
6455 break;
6456 case 4: /* smsw */
6457 if (ir.mod == 3)
6458 {
6459 if (record_full_arch_list_add_reg (ir.regcache, ir.rm | ir.rex_b))
6460 return -1;
6461 }
6462 else
6463 {
6464 ir.ot = OT_WORD;
6465 if (i386_record_lea_modrm (&ir))
6466 return -1;
6467 }
6468 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6469 break;
6470 case 6: /* lmsw */
6471 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6472 break;
6473 case 7: /* invlpg */
6474 if (ir.mod == 3)
6475 {
6476 if (ir.rm == 0 && ir.regmap[X86_RECORD_R8_REGNUM])
6477 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
6478 else
6479 {
6480 ir.addr -= 3;
6481 opcode = opcode << 8 | ir.modrm;
6482 goto no_support;
6483 }
6484 }
6485 else
6486 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6487 break;
6488 default:
6489 ir.addr -= 3;
6490 opcode = opcode << 8 | ir.modrm;
6491 goto no_support;
6492 break;
6493 }
6494 break;
6495
6496 case 0x0f08: /* invd */
6497 case 0x0f09: /* wbinvd */
6498 break;
6499
6500 case 0x63: /* arpl */
6501 if (i386_record_modrm (&ir))
6502 return -1;
6503 if (ir.mod == 3 || ir.regmap[X86_RECORD_R8_REGNUM])
6504 {
6505 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.regmap[X86_RECORD_R8_REGNUM]
6506 ? (ir.reg | rex_r) : ir.rm);
6507 }
6508 else
6509 {
6510 ir.ot = ir.dflag ? OT_LONG : OT_WORD;
6511 if (i386_record_lea_modrm (&ir))
6512 return -1;
6513 }
6514 if (!ir.regmap[X86_RECORD_R8_REGNUM])
6515 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6516 break;
6517
6518 case 0x0f02: /* lar */
6519 case 0x0f03: /* lsl */
6520 if (i386_record_modrm (&ir))
6521 return -1;
6522 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6523 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6524 break;
6525
6526 case 0x0f18:
6527 if (i386_record_modrm (&ir))
6528 return -1;
6529 if (ir.mod == 3 && ir.reg == 3)
6530 {
6531 ir.addr -= 3;
6532 opcode = opcode << 8 | ir.modrm;
6533 goto no_support;
6534 }
6535 break;
6536
6537 case 0x0f19:
6538 case 0x0f1a:
6539 case 0x0f1b:
6540 case 0x0f1c:
6541 case 0x0f1d:
6542 case 0x0f1e:
6543 case 0x0f1f:
6544 /* nop (multi byte) */
6545 break;
6546
6547 case 0x0f20: /* mov reg, crN */
6548 case 0x0f22: /* mov crN, reg */
6549 if (i386_record_modrm (&ir))
6550 return -1;
6551 if ((ir.modrm & 0xc0) != 0xc0)
6552 {
6553 ir.addr -= 3;
6554 opcode = opcode << 8 | ir.modrm;
6555 goto no_support;
6556 }
6557 switch (ir.reg)
6558 {
6559 case 0:
6560 case 2:
6561 case 3:
6562 case 4:
6563 case 8:
6564 if (opcode & 2)
6565 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6566 else
6567 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6568 break;
6569 default:
6570 ir.addr -= 3;
6571 opcode = opcode << 8 | ir.modrm;
6572 goto no_support;
6573 break;
6574 }
6575 break;
6576
6577 case 0x0f21: /* mov reg, drN */
6578 case 0x0f23: /* mov drN, reg */
6579 if (i386_record_modrm (&ir))
6580 return -1;
6581 if ((ir.modrm & 0xc0) != 0xc0 || ir.reg == 4
6582 || ir.reg == 5 || ir.reg >= 8)
6583 {
6584 ir.addr -= 3;
6585 opcode = opcode << 8 | ir.modrm;
6586 goto no_support;
6587 }
6588 if (opcode & 2)
6589 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6590 else
6591 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6592 break;
6593
6594 case 0x0f06: /* clts */
6595 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6596 break;
6597
6598 /* MMX 3DNow! SSE SSE2 SSE3 SSSE3 SSE4 */
6599
6600 case 0x0f0d: /* 3DNow! prefetch */
6601 break;
6602
6603 case 0x0f0e: /* 3DNow! femms */
6604 case 0x0f77: /* emms */
6605 if (i386_fpc_regnum_p (gdbarch, I387_FTAG_REGNUM(tdep)))
6606 goto no_support;
6607 record_full_arch_list_add_reg (ir.regcache, I387_FTAG_REGNUM(tdep));
6608 break;
6609
6610 case 0x0f0f: /* 3DNow! data */
6611 if (i386_record_modrm (&ir))
6612 return -1;
6613 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
6614 return -1;
6615 ir.addr++;
6616 switch (opcode8)
6617 {
6618 case 0x0c: /* 3DNow! pi2fw */
6619 case 0x0d: /* 3DNow! pi2fd */
6620 case 0x1c: /* 3DNow! pf2iw */
6621 case 0x1d: /* 3DNow! pf2id */
6622 case 0x8a: /* 3DNow! pfnacc */
6623 case 0x8e: /* 3DNow! pfpnacc */
6624 case 0x90: /* 3DNow! pfcmpge */
6625 case 0x94: /* 3DNow! pfmin */
6626 case 0x96: /* 3DNow! pfrcp */
6627 case 0x97: /* 3DNow! pfrsqrt */
6628 case 0x9a: /* 3DNow! pfsub */
6629 case 0x9e: /* 3DNow! pfadd */
6630 case 0xa0: /* 3DNow! pfcmpgt */
6631 case 0xa4: /* 3DNow! pfmax */
6632 case 0xa6: /* 3DNow! pfrcpit1 */
6633 case 0xa7: /* 3DNow! pfrsqit1 */
6634 case 0xaa: /* 3DNow! pfsubr */
6635 case 0xae: /* 3DNow! pfacc */
6636 case 0xb0: /* 3DNow! pfcmpeq */
6637 case 0xb4: /* 3DNow! pfmul */
6638 case 0xb6: /* 3DNow! pfrcpit2 */
6639 case 0xb7: /* 3DNow! pmulhrw */
6640 case 0xbb: /* 3DNow! pswapd */
6641 case 0xbf: /* 3DNow! pavgusb */
6642 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
6643 goto no_support_3dnow_data;
6644 record_full_arch_list_add_reg (ir.regcache, ir.reg);
6645 break;
6646
6647 default:
6648 no_support_3dnow_data:
6649 opcode = (opcode << 8) | opcode8;
6650 goto no_support;
6651 break;
6652 }
6653 break;
6654
6655 case 0x0faa: /* rsm */
6656 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6657 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6658 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6659 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6660 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
6661 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6662 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
6663 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6664 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6665 break;
6666
6667 case 0x0fae:
6668 if (i386_record_modrm (&ir))
6669 return -1;
6670 switch(ir.reg)
6671 {
6672 case 0: /* fxsave */
6673 {
6674 uint64_t tmpu64;
6675
6676 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6677 if (i386_record_lea_modrm_addr (&ir, &tmpu64))
6678 return -1;
6679 if (record_full_arch_list_add_mem (tmpu64, 512))
6680 return -1;
6681 }
6682 break;
6683
6684 case 1: /* fxrstor */
6685 {
6686 int i;
6687
6688 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6689
6690 for (i = I387_MM0_REGNUM (tdep);
6691 i386_mmx_regnum_p (gdbarch, i); i++)
6692 record_full_arch_list_add_reg (ir.regcache, i);
6693
6694 for (i = I387_XMM0_REGNUM (tdep);
6695 i386_xmm_regnum_p (gdbarch, i); i++)
6696 record_full_arch_list_add_reg (ir.regcache, i);
6697
6698 if (i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
6699 record_full_arch_list_add_reg (ir.regcache,
6700 I387_MXCSR_REGNUM(tdep));
6701
6702 for (i = I387_ST0_REGNUM (tdep);
6703 i386_fp_regnum_p (gdbarch, i); i++)
6704 record_full_arch_list_add_reg (ir.regcache, i);
6705
6706 for (i = I387_FCTRL_REGNUM (tdep);
6707 i386_fpc_regnum_p (gdbarch, i); i++)
6708 record_full_arch_list_add_reg (ir.regcache, i);
6709 }
6710 break;
6711
6712 case 2: /* ldmxcsr */
6713 if (!i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
6714 goto no_support;
6715 record_full_arch_list_add_reg (ir.regcache, I387_MXCSR_REGNUM(tdep));
6716 break;
6717
6718 case 3: /* stmxcsr */
6719 ir.ot = OT_LONG;
6720 if (i386_record_lea_modrm (&ir))
6721 return -1;
6722 break;
6723
6724 case 5: /* lfence */
6725 case 6: /* mfence */
6726 case 7: /* sfence clflush */
6727 break;
6728
6729 default:
6730 opcode = (opcode << 8) | ir.modrm;
6731 goto no_support;
6732 break;
6733 }
6734 break;
6735
6736 case 0x0fc3: /* movnti */
6737 ir.ot = (ir.dflag == 2) ? OT_QUAD : OT_LONG;
6738 if (i386_record_modrm (&ir))
6739 return -1;
6740 if (ir.mod == 3)
6741 goto no_support;
6742 ir.reg |= rex_r;
6743 if (i386_record_lea_modrm (&ir))
6744 return -1;
6745 break;
6746
6747 /* Add prefix to opcode. */
6748 case 0x0f10:
6749 case 0x0f11:
6750 case 0x0f12:
6751 case 0x0f13:
6752 case 0x0f14:
6753 case 0x0f15:
6754 case 0x0f16:
6755 case 0x0f17:
6756 case 0x0f28:
6757 case 0x0f29:
6758 case 0x0f2a:
6759 case 0x0f2b:
6760 case 0x0f2c:
6761 case 0x0f2d:
6762 case 0x0f2e:
6763 case 0x0f2f:
6764 case 0x0f38:
6765 case 0x0f39:
6766 case 0x0f3a:
6767 case 0x0f50:
6768 case 0x0f51:
6769 case 0x0f52:
6770 case 0x0f53:
6771 case 0x0f54:
6772 case 0x0f55:
6773 case 0x0f56:
6774 case 0x0f57:
6775 case 0x0f58:
6776 case 0x0f59:
6777 case 0x0f5a:
6778 case 0x0f5b:
6779 case 0x0f5c:
6780 case 0x0f5d:
6781 case 0x0f5e:
6782 case 0x0f5f:
6783 case 0x0f60:
6784 case 0x0f61:
6785 case 0x0f62:
6786 case 0x0f63:
6787 case 0x0f64:
6788 case 0x0f65:
6789 case 0x0f66:
6790 case 0x0f67:
6791 case 0x0f68:
6792 case 0x0f69:
6793 case 0x0f6a:
6794 case 0x0f6b:
6795 case 0x0f6c:
6796 case 0x0f6d:
6797 case 0x0f6e:
6798 case 0x0f6f:
6799 case 0x0f70:
6800 case 0x0f71:
6801 case 0x0f72:
6802 case 0x0f73:
6803 case 0x0f74:
6804 case 0x0f75:
6805 case 0x0f76:
6806 case 0x0f7c:
6807 case 0x0f7d:
6808 case 0x0f7e:
6809 case 0x0f7f:
6810 case 0x0fb8:
6811 case 0x0fc2:
6812 case 0x0fc4:
6813 case 0x0fc5:
6814 case 0x0fc6:
6815 case 0x0fd0:
6816 case 0x0fd1:
6817 case 0x0fd2:
6818 case 0x0fd3:
6819 case 0x0fd4:
6820 case 0x0fd5:
6821 case 0x0fd6:
6822 case 0x0fd7:
6823 case 0x0fd8:
6824 case 0x0fd9:
6825 case 0x0fda:
6826 case 0x0fdb:
6827 case 0x0fdc:
6828 case 0x0fdd:
6829 case 0x0fde:
6830 case 0x0fdf:
6831 case 0x0fe0:
6832 case 0x0fe1:
6833 case 0x0fe2:
6834 case 0x0fe3:
6835 case 0x0fe4:
6836 case 0x0fe5:
6837 case 0x0fe6:
6838 case 0x0fe7:
6839 case 0x0fe8:
6840 case 0x0fe9:
6841 case 0x0fea:
6842 case 0x0feb:
6843 case 0x0fec:
6844 case 0x0fed:
6845 case 0x0fee:
6846 case 0x0fef:
6847 case 0x0ff0:
6848 case 0x0ff1:
6849 case 0x0ff2:
6850 case 0x0ff3:
6851 case 0x0ff4:
6852 case 0x0ff5:
6853 case 0x0ff6:
6854 case 0x0ff7:
6855 case 0x0ff8:
6856 case 0x0ff9:
6857 case 0x0ffa:
6858 case 0x0ffb:
6859 case 0x0ffc:
6860 case 0x0ffd:
6861 case 0x0ffe:
6862 switch (prefixes)
6863 {
6864 case PREFIX_REPNZ:
6865 opcode |= 0xf20000;
6866 break;
6867 case PREFIX_DATA:
6868 opcode |= 0x660000;
6869 break;
6870 case PREFIX_REPZ:
6871 opcode |= 0xf30000;
6872 break;
6873 }
6874 reswitch_prefix_add:
6875 switch (opcode)
6876 {
6877 case 0x0f38:
6878 case 0x660f38:
6879 case 0xf20f38:
6880 case 0x0f3a:
6881 case 0x660f3a:
6882 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
6883 return -1;
6884 ir.addr++;
6885 opcode = (uint32_t) opcode8 | opcode << 8;
6886 goto reswitch_prefix_add;
6887 break;
6888
6889 case 0x0f10: /* movups */
6890 case 0x660f10: /* movupd */
6891 case 0xf30f10: /* movss */
6892 case 0xf20f10: /* movsd */
6893 case 0x0f12: /* movlps */
6894 case 0x660f12: /* movlpd */
6895 case 0xf30f12: /* movsldup */
6896 case 0xf20f12: /* movddup */
6897 case 0x0f14: /* unpcklps */
6898 case 0x660f14: /* unpcklpd */
6899 case 0x0f15: /* unpckhps */
6900 case 0x660f15: /* unpckhpd */
6901 case 0x0f16: /* movhps */
6902 case 0x660f16: /* movhpd */
6903 case 0xf30f16: /* movshdup */
6904 case 0x0f28: /* movaps */
6905 case 0x660f28: /* movapd */
6906 case 0x0f2a: /* cvtpi2ps */
6907 case 0x660f2a: /* cvtpi2pd */
6908 case 0xf30f2a: /* cvtsi2ss */
6909 case 0xf20f2a: /* cvtsi2sd */
6910 case 0x0f2c: /* cvttps2pi */
6911 case 0x660f2c: /* cvttpd2pi */
6912 case 0x0f2d: /* cvtps2pi */
6913 case 0x660f2d: /* cvtpd2pi */
6914 case 0x660f3800: /* pshufb */
6915 case 0x660f3801: /* phaddw */
6916 case 0x660f3802: /* phaddd */
6917 case 0x660f3803: /* phaddsw */
6918 case 0x660f3804: /* pmaddubsw */
6919 case 0x660f3805: /* phsubw */
6920 case 0x660f3806: /* phsubd */
6921 case 0x660f3807: /* phsubsw */
6922 case 0x660f3808: /* psignb */
6923 case 0x660f3809: /* psignw */
6924 case 0x660f380a: /* psignd */
6925 case 0x660f380b: /* pmulhrsw */
6926 case 0x660f3810: /* pblendvb */
6927 case 0x660f3814: /* blendvps */
6928 case 0x660f3815: /* blendvpd */
6929 case 0x660f381c: /* pabsb */
6930 case 0x660f381d: /* pabsw */
6931 case 0x660f381e: /* pabsd */
6932 case 0x660f3820: /* pmovsxbw */
6933 case 0x660f3821: /* pmovsxbd */
6934 case 0x660f3822: /* pmovsxbq */
6935 case 0x660f3823: /* pmovsxwd */
6936 case 0x660f3824: /* pmovsxwq */
6937 case 0x660f3825: /* pmovsxdq */
6938 case 0x660f3828: /* pmuldq */
6939 case 0x660f3829: /* pcmpeqq */
6940 case 0x660f382a: /* movntdqa */
6941 case 0x660f3a08: /* roundps */
6942 case 0x660f3a09: /* roundpd */
6943 case 0x660f3a0a: /* roundss */
6944 case 0x660f3a0b: /* roundsd */
6945 case 0x660f3a0c: /* blendps */
6946 case 0x660f3a0d: /* blendpd */
6947 case 0x660f3a0e: /* pblendw */
6948 case 0x660f3a0f: /* palignr */
6949 case 0x660f3a20: /* pinsrb */
6950 case 0x660f3a21: /* insertps */
6951 case 0x660f3a22: /* pinsrd pinsrq */
6952 case 0x660f3a40: /* dpps */
6953 case 0x660f3a41: /* dppd */
6954 case 0x660f3a42: /* mpsadbw */
6955 case 0x660f3a60: /* pcmpestrm */
6956 case 0x660f3a61: /* pcmpestri */
6957 case 0x660f3a62: /* pcmpistrm */
6958 case 0x660f3a63: /* pcmpistri */
6959 case 0x0f51: /* sqrtps */
6960 case 0x660f51: /* sqrtpd */
6961 case 0xf20f51: /* sqrtsd */
6962 case 0xf30f51: /* sqrtss */
6963 case 0x0f52: /* rsqrtps */
6964 case 0xf30f52: /* rsqrtss */
6965 case 0x0f53: /* rcpps */
6966 case 0xf30f53: /* rcpss */
6967 case 0x0f54: /* andps */
6968 case 0x660f54: /* andpd */
6969 case 0x0f55: /* andnps */
6970 case 0x660f55: /* andnpd */
6971 case 0x0f56: /* orps */
6972 case 0x660f56: /* orpd */
6973 case 0x0f57: /* xorps */
6974 case 0x660f57: /* xorpd */
6975 case 0x0f58: /* addps */
6976 case 0x660f58: /* addpd */
6977 case 0xf20f58: /* addsd */
6978 case 0xf30f58: /* addss */
6979 case 0x0f59: /* mulps */
6980 case 0x660f59: /* mulpd */
6981 case 0xf20f59: /* mulsd */
6982 case 0xf30f59: /* mulss */
6983 case 0x0f5a: /* cvtps2pd */
6984 case 0x660f5a: /* cvtpd2ps */
6985 case 0xf20f5a: /* cvtsd2ss */
6986 case 0xf30f5a: /* cvtss2sd */
6987 case 0x0f5b: /* cvtdq2ps */
6988 case 0x660f5b: /* cvtps2dq */
6989 case 0xf30f5b: /* cvttps2dq */
6990 case 0x0f5c: /* subps */
6991 case 0x660f5c: /* subpd */
6992 case 0xf20f5c: /* subsd */
6993 case 0xf30f5c: /* subss */
6994 case 0x0f5d: /* minps */
6995 case 0x660f5d: /* minpd */
6996 case 0xf20f5d: /* minsd */
6997 case 0xf30f5d: /* minss */
6998 case 0x0f5e: /* divps */
6999 case 0x660f5e: /* divpd */
7000 case 0xf20f5e: /* divsd */
7001 case 0xf30f5e: /* divss */
7002 case 0x0f5f: /* maxps */
7003 case 0x660f5f: /* maxpd */
7004 case 0xf20f5f: /* maxsd */
7005 case 0xf30f5f: /* maxss */
7006 case 0x660f60: /* punpcklbw */
7007 case 0x660f61: /* punpcklwd */
7008 case 0x660f62: /* punpckldq */
7009 case 0x660f63: /* packsswb */
7010 case 0x660f64: /* pcmpgtb */
7011 case 0x660f65: /* pcmpgtw */
7012 case 0x660f66: /* pcmpgtd */
7013 case 0x660f67: /* packuswb */
7014 case 0x660f68: /* punpckhbw */
7015 case 0x660f69: /* punpckhwd */
7016 case 0x660f6a: /* punpckhdq */
7017 case 0x660f6b: /* packssdw */
7018 case 0x660f6c: /* punpcklqdq */
7019 case 0x660f6d: /* punpckhqdq */
7020 case 0x660f6e: /* movd */
7021 case 0x660f6f: /* movdqa */
7022 case 0xf30f6f: /* movdqu */
7023 case 0x660f70: /* pshufd */
7024 case 0xf20f70: /* pshuflw */
7025 case 0xf30f70: /* pshufhw */
7026 case 0x660f74: /* pcmpeqb */
7027 case 0x660f75: /* pcmpeqw */
7028 case 0x660f76: /* pcmpeqd */
7029 case 0x660f7c: /* haddpd */
7030 case 0xf20f7c: /* haddps */
7031 case 0x660f7d: /* hsubpd */
7032 case 0xf20f7d: /* hsubps */
7033 case 0xf30f7e: /* movq */
7034 case 0x0fc2: /* cmpps */
7035 case 0x660fc2: /* cmppd */
7036 case 0xf20fc2: /* cmpsd */
7037 case 0xf30fc2: /* cmpss */
7038 case 0x660fc4: /* pinsrw */
7039 case 0x0fc6: /* shufps */
7040 case 0x660fc6: /* shufpd */
7041 case 0x660fd0: /* addsubpd */
7042 case 0xf20fd0: /* addsubps */
7043 case 0x660fd1: /* psrlw */
7044 case 0x660fd2: /* psrld */
7045 case 0x660fd3: /* psrlq */
7046 case 0x660fd4: /* paddq */
7047 case 0x660fd5: /* pmullw */
7048 case 0xf30fd6: /* movq2dq */
7049 case 0x660fd8: /* psubusb */
7050 case 0x660fd9: /* psubusw */
7051 case 0x660fda: /* pminub */
7052 case 0x660fdb: /* pand */
7053 case 0x660fdc: /* paddusb */
7054 case 0x660fdd: /* paddusw */
7055 case 0x660fde: /* pmaxub */
7056 case 0x660fdf: /* pandn */
7057 case 0x660fe0: /* pavgb */
7058 case 0x660fe1: /* psraw */
7059 case 0x660fe2: /* psrad */
7060 case 0x660fe3: /* pavgw */
7061 case 0x660fe4: /* pmulhuw */
7062 case 0x660fe5: /* pmulhw */
7063 case 0x660fe6: /* cvttpd2dq */
7064 case 0xf20fe6: /* cvtpd2dq */
7065 case 0xf30fe6: /* cvtdq2pd */
7066 case 0x660fe8: /* psubsb */
7067 case 0x660fe9: /* psubsw */
7068 case 0x660fea: /* pminsw */
7069 case 0x660feb: /* por */
7070 case 0x660fec: /* paddsb */
7071 case 0x660fed: /* paddsw */
7072 case 0x660fee: /* pmaxsw */
7073 case 0x660fef: /* pxor */
7074 case 0xf20ff0: /* lddqu */
7075 case 0x660ff1: /* psllw */
7076 case 0x660ff2: /* pslld */
7077 case 0x660ff3: /* psllq */
7078 case 0x660ff4: /* pmuludq */
7079 case 0x660ff5: /* pmaddwd */
7080 case 0x660ff6: /* psadbw */
7081 case 0x660ff8: /* psubb */
7082 case 0x660ff9: /* psubw */
7083 case 0x660ffa: /* psubd */
7084 case 0x660ffb: /* psubq */
7085 case 0x660ffc: /* paddb */
7086 case 0x660ffd: /* paddw */
7087 case 0x660ffe: /* paddd */
7088 if (i386_record_modrm (&ir))
7089 return -1;
7090 ir.reg |= rex_r;
7091 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.reg))
7092 goto no_support;
7093 record_full_arch_list_add_reg (ir.regcache,
7094 I387_XMM0_REGNUM (tdep) + ir.reg);
7095 if ((opcode & 0xfffffffc) == 0x660f3a60)
7096 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7097 break;
7098
7099 case 0x0f11: /* movups */
7100 case 0x660f11: /* movupd */
7101 case 0xf30f11: /* movss */
7102 case 0xf20f11: /* movsd */
7103 case 0x0f13: /* movlps */
7104 case 0x660f13: /* movlpd */
7105 case 0x0f17: /* movhps */
7106 case 0x660f17: /* movhpd */
7107 case 0x0f29: /* movaps */
7108 case 0x660f29: /* movapd */
7109 case 0x660f3a14: /* pextrb */
7110 case 0x660f3a15: /* pextrw */
7111 case 0x660f3a16: /* pextrd pextrq */
7112 case 0x660f3a17: /* extractps */
7113 case 0x660f7f: /* movdqa */
7114 case 0xf30f7f: /* movdqu */
7115 if (i386_record_modrm (&ir))
7116 return -1;
7117 if (ir.mod == 3)
7118 {
7119 if (opcode == 0x0f13 || opcode == 0x660f13
7120 || opcode == 0x0f17 || opcode == 0x660f17)
7121 goto no_support;
7122 ir.rm |= ir.rex_b;
7123 if (!i386_xmm_regnum_p (gdbarch,
7124 I387_XMM0_REGNUM (tdep) + ir.rm))
7125 goto no_support;
7126 record_full_arch_list_add_reg (ir.regcache,
7127 I387_XMM0_REGNUM (tdep) + ir.rm);
7128 }
7129 else
7130 {
7131 switch (opcode)
7132 {
7133 case 0x660f3a14:
7134 ir.ot = OT_BYTE;
7135 break;
7136 case 0x660f3a15:
7137 ir.ot = OT_WORD;
7138 break;
7139 case 0x660f3a16:
7140 ir.ot = OT_LONG;
7141 break;
7142 case 0x660f3a17:
7143 ir.ot = OT_QUAD;
7144 break;
7145 default:
7146 ir.ot = OT_DQUAD;
7147 break;
7148 }
7149 if (i386_record_lea_modrm (&ir))
7150 return -1;
7151 }
7152 break;
7153
7154 case 0x0f2b: /* movntps */
7155 case 0x660f2b: /* movntpd */
7156 case 0x0fe7: /* movntq */
7157 case 0x660fe7: /* movntdq */
7158 if (ir.mod == 3)
7159 goto no_support;
7160 if (opcode == 0x0fe7)
7161 ir.ot = OT_QUAD;
7162 else
7163 ir.ot = OT_DQUAD;
7164 if (i386_record_lea_modrm (&ir))
7165 return -1;
7166 break;
7167
7168 case 0xf30f2c: /* cvttss2si */
7169 case 0xf20f2c: /* cvttsd2si */
7170 case 0xf30f2d: /* cvtss2si */
7171 case 0xf20f2d: /* cvtsd2si */
7172 case 0xf20f38f0: /* crc32 */
7173 case 0xf20f38f1: /* crc32 */
7174 case 0x0f50: /* movmskps */
7175 case 0x660f50: /* movmskpd */
7176 case 0x0fc5: /* pextrw */
7177 case 0x660fc5: /* pextrw */
7178 case 0x0fd7: /* pmovmskb */
7179 case 0x660fd7: /* pmovmskb */
7180 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7181 break;
7182
7183 case 0x0f3800: /* pshufb */
7184 case 0x0f3801: /* phaddw */
7185 case 0x0f3802: /* phaddd */
7186 case 0x0f3803: /* phaddsw */
7187 case 0x0f3804: /* pmaddubsw */
7188 case 0x0f3805: /* phsubw */
7189 case 0x0f3806: /* phsubd */
7190 case 0x0f3807: /* phsubsw */
7191 case 0x0f3808: /* psignb */
7192 case 0x0f3809: /* psignw */
7193 case 0x0f380a: /* psignd */
7194 case 0x0f380b: /* pmulhrsw */
7195 case 0x0f381c: /* pabsb */
7196 case 0x0f381d: /* pabsw */
7197 case 0x0f381e: /* pabsd */
7198 case 0x0f382b: /* packusdw */
7199 case 0x0f3830: /* pmovzxbw */
7200 case 0x0f3831: /* pmovzxbd */
7201 case 0x0f3832: /* pmovzxbq */
7202 case 0x0f3833: /* pmovzxwd */
7203 case 0x0f3834: /* pmovzxwq */
7204 case 0x0f3835: /* pmovzxdq */
7205 case 0x0f3837: /* pcmpgtq */
7206 case 0x0f3838: /* pminsb */
7207 case 0x0f3839: /* pminsd */
7208 case 0x0f383a: /* pminuw */
7209 case 0x0f383b: /* pminud */
7210 case 0x0f383c: /* pmaxsb */
7211 case 0x0f383d: /* pmaxsd */
7212 case 0x0f383e: /* pmaxuw */
7213 case 0x0f383f: /* pmaxud */
7214 case 0x0f3840: /* pmulld */
7215 case 0x0f3841: /* phminposuw */
7216 case 0x0f3a0f: /* palignr */
7217 case 0x0f60: /* punpcklbw */
7218 case 0x0f61: /* punpcklwd */
7219 case 0x0f62: /* punpckldq */
7220 case 0x0f63: /* packsswb */
7221 case 0x0f64: /* pcmpgtb */
7222 case 0x0f65: /* pcmpgtw */
7223 case 0x0f66: /* pcmpgtd */
7224 case 0x0f67: /* packuswb */
7225 case 0x0f68: /* punpckhbw */
7226 case 0x0f69: /* punpckhwd */
7227 case 0x0f6a: /* punpckhdq */
7228 case 0x0f6b: /* packssdw */
7229 case 0x0f6e: /* movd */
7230 case 0x0f6f: /* movq */
7231 case 0x0f70: /* pshufw */
7232 case 0x0f74: /* pcmpeqb */
7233 case 0x0f75: /* pcmpeqw */
7234 case 0x0f76: /* pcmpeqd */
7235 case 0x0fc4: /* pinsrw */
7236 case 0x0fd1: /* psrlw */
7237 case 0x0fd2: /* psrld */
7238 case 0x0fd3: /* psrlq */
7239 case 0x0fd4: /* paddq */
7240 case 0x0fd5: /* pmullw */
7241 case 0xf20fd6: /* movdq2q */
7242 case 0x0fd8: /* psubusb */
7243 case 0x0fd9: /* psubusw */
7244 case 0x0fda: /* pminub */
7245 case 0x0fdb: /* pand */
7246 case 0x0fdc: /* paddusb */
7247 case 0x0fdd: /* paddusw */
7248 case 0x0fde: /* pmaxub */
7249 case 0x0fdf: /* pandn */
7250 case 0x0fe0: /* pavgb */
7251 case 0x0fe1: /* psraw */
7252 case 0x0fe2: /* psrad */
7253 case 0x0fe3: /* pavgw */
7254 case 0x0fe4: /* pmulhuw */
7255 case 0x0fe5: /* pmulhw */
7256 case 0x0fe8: /* psubsb */
7257 case 0x0fe9: /* psubsw */
7258 case 0x0fea: /* pminsw */
7259 case 0x0feb: /* por */
7260 case 0x0fec: /* paddsb */
7261 case 0x0fed: /* paddsw */
7262 case 0x0fee: /* pmaxsw */
7263 case 0x0fef: /* pxor */
7264 case 0x0ff1: /* psllw */
7265 case 0x0ff2: /* pslld */
7266 case 0x0ff3: /* psllq */
7267 case 0x0ff4: /* pmuludq */
7268 case 0x0ff5: /* pmaddwd */
7269 case 0x0ff6: /* psadbw */
7270 case 0x0ff8: /* psubb */
7271 case 0x0ff9: /* psubw */
7272 case 0x0ffa: /* psubd */
7273 case 0x0ffb: /* psubq */
7274 case 0x0ffc: /* paddb */
7275 case 0x0ffd: /* paddw */
7276 case 0x0ffe: /* paddd */
7277 if (i386_record_modrm (&ir))
7278 return -1;
7279 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7280 goto no_support;
7281 record_full_arch_list_add_reg (ir.regcache,
7282 I387_MM0_REGNUM (tdep) + ir.reg);
7283 break;
7284
7285 case 0x0f71: /* psllw */
7286 case 0x0f72: /* pslld */
7287 case 0x0f73: /* psllq */
7288 if (i386_record_modrm (&ir))
7289 return -1;
7290 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
7291 goto no_support;
7292 record_full_arch_list_add_reg (ir.regcache,
7293 I387_MM0_REGNUM (tdep) + ir.rm);
7294 break;
7295
7296 case 0x660f71: /* psllw */
7297 case 0x660f72: /* pslld */
7298 case 0x660f73: /* psllq */
7299 if (i386_record_modrm (&ir))
7300 return -1;
7301 ir.rm |= ir.rex_b;
7302 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.rm))
7303 goto no_support;
7304 record_full_arch_list_add_reg (ir.regcache,
7305 I387_XMM0_REGNUM (tdep) + ir.rm);
7306 break;
7307
7308 case 0x0f7e: /* movd */
7309 case 0x660f7e: /* movd */
7310 if (i386_record_modrm (&ir))
7311 return -1;
7312 if (ir.mod == 3)
7313 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7314 else
7315 {
7316 if (ir.dflag == 2)
7317 ir.ot = OT_QUAD;
7318 else
7319 ir.ot = OT_LONG;
7320 if (i386_record_lea_modrm (&ir))
7321 return -1;
7322 }
7323 break;
7324
7325 case 0x0f7f: /* movq */
7326 if (i386_record_modrm (&ir))
7327 return -1;
7328 if (ir.mod == 3)
7329 {
7330 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
7331 goto no_support;
7332 record_full_arch_list_add_reg (ir.regcache,
7333 I387_MM0_REGNUM (tdep) + ir.rm);
7334 }
7335 else
7336 {
7337 ir.ot = OT_QUAD;
7338 if (i386_record_lea_modrm (&ir))
7339 return -1;
7340 }
7341 break;
7342
7343 case 0xf30fb8: /* popcnt */
7344 if (i386_record_modrm (&ir))
7345 return -1;
7346 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
7347 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7348 break;
7349
7350 case 0x660fd6: /* movq */
7351 if (i386_record_modrm (&ir))
7352 return -1;
7353 if (ir.mod == 3)
7354 {
7355 ir.rm |= ir.rex_b;
7356 if (!i386_xmm_regnum_p (gdbarch,
7357 I387_XMM0_REGNUM (tdep) + ir.rm))
7358 goto no_support;
7359 record_full_arch_list_add_reg (ir.regcache,
7360 I387_XMM0_REGNUM (tdep) + ir.rm);
7361 }
7362 else
7363 {
7364 ir.ot = OT_QUAD;
7365 if (i386_record_lea_modrm (&ir))
7366 return -1;
7367 }
7368 break;
7369
7370 case 0x660f3817: /* ptest */
7371 case 0x0f2e: /* ucomiss */
7372 case 0x660f2e: /* ucomisd */
7373 case 0x0f2f: /* comiss */
7374 case 0x660f2f: /* comisd */
7375 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7376 break;
7377
7378 case 0x0ff7: /* maskmovq */
7379 regcache_raw_read_unsigned (ir.regcache,
7380 ir.regmap[X86_RECORD_REDI_REGNUM],
7381 &addr);
7382 if (record_full_arch_list_add_mem (addr, 64))
7383 return -1;
7384 break;
7385
7386 case 0x660ff7: /* maskmovdqu */
7387 regcache_raw_read_unsigned (ir.regcache,
7388 ir.regmap[X86_RECORD_REDI_REGNUM],
7389 &addr);
7390 if (record_full_arch_list_add_mem (addr, 128))
7391 return -1;
7392 break;
7393
7394 default:
7395 goto no_support;
7396 break;
7397 }
7398 break;
7399
7400 default:
7401 goto no_support;
7402 break;
7403 }
7404
7405 /* In the future, maybe still need to deal with need_dasm. */
7406 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REIP_REGNUM);
7407 if (record_full_arch_list_add_end ())
7408 return -1;
7409
7410 return 0;
7411
7412 no_support:
7413 printf_unfiltered (_("Process record does not support instruction 0x%02x "
7414 "at address %s.\n"),
7415 (unsigned int) (opcode),
7416 paddress (gdbarch, ir.orig_addr));
7417 return -1;
7418 }
7419
7420 static const int i386_record_regmap[] =
7421 {
7422 I386_EAX_REGNUM, I386_ECX_REGNUM, I386_EDX_REGNUM, I386_EBX_REGNUM,
7423 I386_ESP_REGNUM, I386_EBP_REGNUM, I386_ESI_REGNUM, I386_EDI_REGNUM,
7424 0, 0, 0, 0, 0, 0, 0, 0,
7425 I386_EIP_REGNUM, I386_EFLAGS_REGNUM, I386_CS_REGNUM, I386_SS_REGNUM,
7426 I386_DS_REGNUM, I386_ES_REGNUM, I386_FS_REGNUM, I386_GS_REGNUM
7427 };
7428
7429 /* Check that the given address appears suitable for a fast
7430 tracepoint, which on x86-64 means that we need an instruction of at
7431 least 5 bytes, so that we can overwrite it with a 4-byte-offset
7432 jump and not have to worry about program jumps to an address in the
7433 middle of the tracepoint jump. On x86, it may be possible to use
7434 4-byte jumps with a 2-byte offset to a trampoline located in the
7435 bottom 64 KiB of memory. Returns 1 if OK, and writes a size
7436 of instruction to replace, and 0 if not, plus an explanatory
7437 string. */
7438
7439 static int
7440 i386_fast_tracepoint_valid_at (struct gdbarch *gdbarch,
7441 CORE_ADDR addr, int *isize, char **msg)
7442 {
7443 int len, jumplen;
7444 static struct ui_file *gdb_null = NULL;
7445
7446 /* Ask the target for the minimum instruction length supported. */
7447 jumplen = target_get_min_fast_tracepoint_insn_len ();
7448
7449 if (jumplen < 0)
7450 {
7451 /* If the target does not support the get_min_fast_tracepoint_insn_len
7452 operation, assume that fast tracepoints will always be implemented
7453 using 4-byte relative jumps on both x86 and x86-64. */
7454 jumplen = 5;
7455 }
7456 else if (jumplen == 0)
7457 {
7458 /* If the target does support get_min_fast_tracepoint_insn_len but
7459 returns zero, then the IPA has not loaded yet. In this case,
7460 we optimistically assume that truncated 2-byte relative jumps
7461 will be available on x86, and compensate later if this assumption
7462 turns out to be incorrect. On x86-64 architectures, 4-byte relative
7463 jumps will always be used. */
7464 jumplen = (register_size (gdbarch, 0) == 8) ? 5 : 4;
7465 }
7466
7467 /* Dummy file descriptor for the disassembler. */
7468 if (!gdb_null)
7469 gdb_null = ui_file_new ();
7470
7471 /* Check for fit. */
7472 len = gdb_print_insn (gdbarch, addr, gdb_null, NULL);
7473 if (isize)
7474 *isize = len;
7475
7476 if (len < jumplen)
7477 {
7478 /* Return a bit of target-specific detail to add to the caller's
7479 generic failure message. */
7480 if (msg)
7481 *msg = xstrprintf (_("; instruction is only %d bytes long, "
7482 "need at least %d bytes for the jump"),
7483 len, jumplen);
7484 return 0;
7485 }
7486 else
7487 {
7488 if (msg)
7489 *msg = NULL;
7490 return 1;
7491 }
7492 }
7493
7494 static int
7495 i386_validate_tdesc_p (struct gdbarch_tdep *tdep,
7496 struct tdesc_arch_data *tdesc_data)
7497 {
7498 const struct target_desc *tdesc = tdep->tdesc;
7499 const struct tdesc_feature *feature_core;
7500 const struct tdesc_feature *feature_sse, *feature_avx;
7501 int i, num_regs, valid_p;
7502
7503 if (! tdesc_has_registers (tdesc))
7504 return 0;
7505
7506 /* Get core registers. */
7507 feature_core = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.core");
7508 if (feature_core == NULL)
7509 return 0;
7510
7511 /* Get SSE registers. */
7512 feature_sse = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.sse");
7513
7514 /* Try AVX registers. */
7515 feature_avx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx");
7516
7517 valid_p = 1;
7518
7519 /* The XCR0 bits. */
7520 if (feature_avx)
7521 {
7522 /* AVX register description requires SSE register description. */
7523 if (!feature_sse)
7524 return 0;
7525
7526 tdep->xcr0 = I386_XSTATE_AVX_MASK;
7527
7528 /* It may have been set by OSABI initialization function. */
7529 if (tdep->num_ymm_regs == 0)
7530 {
7531 tdep->ymmh_register_names = i386_ymmh_names;
7532 tdep->num_ymm_regs = 8;
7533 tdep->ymm0h_regnum = I386_YMM0H_REGNUM;
7534 }
7535
7536 for (i = 0; i < tdep->num_ymm_regs; i++)
7537 valid_p &= tdesc_numbered_register (feature_avx, tdesc_data,
7538 tdep->ymm0h_regnum + i,
7539 tdep->ymmh_register_names[i]);
7540 }
7541 else if (feature_sse)
7542 tdep->xcr0 = I386_XSTATE_SSE_MASK;
7543 else
7544 {
7545 tdep->xcr0 = I386_XSTATE_X87_MASK;
7546 tdep->num_xmm_regs = 0;
7547 }
7548
7549 num_regs = tdep->num_core_regs;
7550 for (i = 0; i < num_regs; i++)
7551 valid_p &= tdesc_numbered_register (feature_core, tdesc_data, i,
7552 tdep->register_names[i]);
7553
7554 if (feature_sse)
7555 {
7556 /* Need to include %mxcsr, so add one. */
7557 num_regs += tdep->num_xmm_regs + 1;
7558 for (; i < num_regs; i++)
7559 valid_p &= tdesc_numbered_register (feature_sse, tdesc_data, i,
7560 tdep->register_names[i]);
7561 }
7562
7563 return valid_p;
7564 }
7565
7566 \f
7567 static struct gdbarch *
7568 i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
7569 {
7570 struct gdbarch_tdep *tdep;
7571 struct gdbarch *gdbarch;
7572 struct tdesc_arch_data *tdesc_data;
7573 const struct target_desc *tdesc;
7574 int mm0_regnum;
7575 int ymm0_regnum;
7576
7577 /* If there is already a candidate, use it. */
7578 arches = gdbarch_list_lookup_by_info (arches, &info);
7579 if (arches != NULL)
7580 return arches->gdbarch;
7581
7582 /* Allocate space for the new architecture. */
7583 tdep = XCALLOC (1, struct gdbarch_tdep);
7584 gdbarch = gdbarch_alloc (&info, tdep);
7585
7586 /* General-purpose registers. */
7587 tdep->gregset = NULL;
7588 tdep->gregset_reg_offset = NULL;
7589 tdep->gregset_num_regs = I386_NUM_GREGS;
7590 tdep->sizeof_gregset = 0;
7591
7592 /* Floating-point registers. */
7593 tdep->fpregset = NULL;
7594 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
7595
7596 tdep->xstateregset = NULL;
7597
7598 /* The default settings include the FPU registers, the MMX registers
7599 and the SSE registers. This can be overridden for a specific ABI
7600 by adjusting the members `st0_regnum', `mm0_regnum' and
7601 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
7602 will show up in the output of "info all-registers". */
7603
7604 tdep->st0_regnum = I386_ST0_REGNUM;
7605
7606 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
7607 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
7608
7609 tdep->jb_pc_offset = -1;
7610 tdep->struct_return = pcc_struct_return;
7611 tdep->sigtramp_start = 0;
7612 tdep->sigtramp_end = 0;
7613 tdep->sigtramp_p = i386_sigtramp_p;
7614 tdep->sigcontext_addr = NULL;
7615 tdep->sc_reg_offset = NULL;
7616 tdep->sc_pc_offset = -1;
7617 tdep->sc_sp_offset = -1;
7618
7619 tdep->xsave_xcr0_offset = -1;
7620
7621 tdep->record_regmap = i386_record_regmap;
7622
7623 set_gdbarch_long_long_align_bit (gdbarch, 32);
7624
7625 /* The format used for `long double' on almost all i386 targets is
7626 the i387 extended floating-point format. In fact, of all targets
7627 in the GCC 2.95 tree, only OSF/1 does it different, and insists
7628 on having a `long double' that's not `long' at all. */
7629 set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext);
7630
7631 /* Although the i387 extended floating-point has only 80 significant
7632 bits, a `long double' actually takes up 96, probably to enforce
7633 alignment. */
7634 set_gdbarch_long_double_bit (gdbarch, 96);
7635
7636 /* Register numbers of various important registers. */
7637 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
7638 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
7639 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
7640 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
7641
7642 /* NOTE: kettenis/20040418: GCC does have two possible register
7643 numbering schemes on the i386: dbx and SVR4. These schemes
7644 differ in how they number %ebp, %esp, %eflags, and the
7645 floating-point registers, and are implemented by the arrays
7646 dbx_register_map[] and svr4_dbx_register_map in
7647 gcc/config/i386.c. GCC also defines a third numbering scheme in
7648 gcc/config/i386.c, which it designates as the "default" register
7649 map used in 64bit mode. This last register numbering scheme is
7650 implemented in dbx64_register_map, and is used for AMD64; see
7651 amd64-tdep.c.
7652
7653 Currently, each GCC i386 target always uses the same register
7654 numbering scheme across all its supported debugging formats
7655 i.e. SDB (COFF), stabs and DWARF 2. This is because
7656 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
7657 DBX_REGISTER_NUMBER macro which is defined by each target's
7658 respective config header in a manner independent of the requested
7659 output debugging format.
7660
7661 This does not match the arrangement below, which presumes that
7662 the SDB and stabs numbering schemes differ from the DWARF and
7663 DWARF 2 ones. The reason for this arrangement is that it is
7664 likely to get the numbering scheme for the target's
7665 default/native debug format right. For targets where GCC is the
7666 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
7667 targets where the native toolchain uses a different numbering
7668 scheme for a particular debug format (stabs-in-ELF on Solaris)
7669 the defaults below will have to be overridden, like
7670 i386_elf_init_abi() does. */
7671
7672 /* Use the dbx register numbering scheme for stabs and COFF. */
7673 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
7674 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
7675
7676 /* Use the SVR4 register numbering scheme for DWARF 2. */
7677 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
7678
7679 /* We don't set gdbarch_stab_reg_to_regnum, since ECOFF doesn't seem to
7680 be in use on any of the supported i386 targets. */
7681
7682 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
7683
7684 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
7685
7686 /* Call dummy code. */
7687 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
7688 set_gdbarch_push_dummy_code (gdbarch, i386_push_dummy_code);
7689 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
7690 set_gdbarch_frame_align (gdbarch, i386_frame_align);
7691
7692 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
7693 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
7694 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
7695
7696 set_gdbarch_return_value (gdbarch, i386_return_value);
7697
7698 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
7699
7700 /* Stack grows downward. */
7701 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
7702
7703 set_gdbarch_breakpoint_from_pc (gdbarch, i386_breakpoint_from_pc);
7704 set_gdbarch_decr_pc_after_break (gdbarch, 1);
7705 set_gdbarch_max_insn_length (gdbarch, I386_MAX_INSN_LEN);
7706
7707 set_gdbarch_frame_args_skip (gdbarch, 8);
7708
7709 set_gdbarch_print_insn (gdbarch, i386_print_insn);
7710
7711 set_gdbarch_dummy_id (gdbarch, i386_dummy_id);
7712
7713 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
7714
7715 /* Add the i386 register groups. */
7716 i386_add_reggroups (gdbarch);
7717 tdep->register_reggroup_p = i386_register_reggroup_p;
7718
7719 /* Helper for function argument information. */
7720 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
7721
7722 /* Hook the function epilogue frame unwinder. This unwinder is
7723 appended to the list first, so that it supercedes the DWARF
7724 unwinder in function epilogues (where the DWARF unwinder
7725 currently fails). */
7726 frame_unwind_append_unwinder (gdbarch, &i386_epilogue_frame_unwind);
7727
7728 /* Hook in the DWARF CFI frame unwinder. This unwinder is appended
7729 to the list before the prologue-based unwinders, so that DWARF
7730 CFI info will be used if it is available. */
7731 dwarf2_append_unwinders (gdbarch);
7732
7733 frame_base_set_default (gdbarch, &i386_frame_base);
7734
7735 /* Pseudo registers may be changed by amd64_init_abi. */
7736 set_gdbarch_pseudo_register_read_value (gdbarch,
7737 i386_pseudo_register_read_value);
7738 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
7739
7740 set_tdesc_pseudo_register_type (gdbarch, i386_pseudo_register_type);
7741 set_tdesc_pseudo_register_name (gdbarch, i386_pseudo_register_name);
7742
7743 /* Override the normal target description method to make the AVX
7744 upper halves anonymous. */
7745 set_gdbarch_register_name (gdbarch, i386_register_name);
7746
7747 /* Even though the default ABI only includes general-purpose registers,
7748 floating-point registers and the SSE registers, we have to leave a
7749 gap for the upper AVX registers. */
7750 set_gdbarch_num_regs (gdbarch, I386_AVX_NUM_REGS);
7751
7752 /* Get the x86 target description from INFO. */
7753 tdesc = info.target_desc;
7754 if (! tdesc_has_registers (tdesc))
7755 tdesc = tdesc_i386;
7756 tdep->tdesc = tdesc;
7757
7758 tdep->num_core_regs = I386_NUM_GREGS + I387_NUM_REGS;
7759 tdep->register_names = i386_register_names;
7760
7761 /* No upper YMM registers. */
7762 tdep->ymmh_register_names = NULL;
7763 tdep->ymm0h_regnum = -1;
7764
7765 tdep->num_byte_regs = 8;
7766 tdep->num_word_regs = 8;
7767 tdep->num_dword_regs = 0;
7768 tdep->num_mmx_regs = 8;
7769 tdep->num_ymm_regs = 0;
7770
7771 tdesc_data = tdesc_data_alloc ();
7772
7773 set_gdbarch_relocate_instruction (gdbarch, i386_relocate_instruction);
7774
7775 set_gdbarch_gen_return_address (gdbarch, i386_gen_return_address);
7776
7777 /* Hook in ABI-specific overrides, if they have been registered. */
7778 info.tdep_info = (void *) tdesc_data;
7779 gdbarch_init_osabi (info, gdbarch);
7780
7781 if (!i386_validate_tdesc_p (tdep, tdesc_data))
7782 {
7783 tdesc_data_cleanup (tdesc_data);
7784 xfree (tdep);
7785 gdbarch_free (gdbarch);
7786 return NULL;
7787 }
7788
7789 /* Wire in pseudo registers. Number of pseudo registers may be
7790 changed. */
7791 set_gdbarch_num_pseudo_regs (gdbarch, (tdep->num_byte_regs
7792 + tdep->num_word_regs
7793 + tdep->num_dword_regs
7794 + tdep->num_mmx_regs
7795 + tdep->num_ymm_regs));
7796
7797 /* Target description may be changed. */
7798 tdesc = tdep->tdesc;
7799
7800 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
7801
7802 /* Override gdbarch_register_reggroup_p set in tdesc_use_registers. */
7803 set_gdbarch_register_reggroup_p (gdbarch, tdep->register_reggroup_p);
7804
7805 /* Make %al the first pseudo-register. */
7806 tdep->al_regnum = gdbarch_num_regs (gdbarch);
7807 tdep->ax_regnum = tdep->al_regnum + tdep->num_byte_regs;
7808
7809 ymm0_regnum = tdep->ax_regnum + tdep->num_word_regs;
7810 if (tdep->num_dword_regs)
7811 {
7812 /* Support dword pseudo-register if it hasn't been disabled. */
7813 tdep->eax_regnum = ymm0_regnum;
7814 ymm0_regnum += tdep->num_dword_regs;
7815 }
7816 else
7817 tdep->eax_regnum = -1;
7818
7819 mm0_regnum = ymm0_regnum;
7820 if (tdep->num_ymm_regs)
7821 {
7822 /* Support YMM pseudo-register if it is available. */
7823 tdep->ymm0_regnum = ymm0_regnum;
7824 mm0_regnum += tdep->num_ymm_regs;
7825 }
7826 else
7827 tdep->ymm0_regnum = -1;
7828
7829 if (tdep->num_mmx_regs != 0)
7830 {
7831 /* Support MMX pseudo-register if MMX hasn't been disabled. */
7832 tdep->mm0_regnum = mm0_regnum;
7833 }
7834 else
7835 tdep->mm0_regnum = -1;
7836
7837 /* Hook in the legacy prologue-based unwinders last (fallback). */
7838 frame_unwind_append_unwinder (gdbarch, &i386_stack_tramp_frame_unwind);
7839 frame_unwind_append_unwinder (gdbarch, &i386_sigtramp_frame_unwind);
7840 frame_unwind_append_unwinder (gdbarch, &i386_frame_unwind);
7841
7842 /* If we have a register mapping, enable the generic core file
7843 support, unless it has already been enabled. */
7844 if (tdep->gregset_reg_offset
7845 && !gdbarch_regset_from_core_section_p (gdbarch))
7846 set_gdbarch_regset_from_core_section (gdbarch,
7847 i386_regset_from_core_section);
7848
7849 set_gdbarch_skip_permanent_breakpoint (gdbarch,
7850 i386_skip_permanent_breakpoint);
7851
7852 set_gdbarch_fast_tracepoint_valid_at (gdbarch,
7853 i386_fast_tracepoint_valid_at);
7854
7855 return gdbarch;
7856 }
7857
7858 static enum gdb_osabi
7859 i386_coff_osabi_sniffer (bfd *abfd)
7860 {
7861 if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
7862 || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
7863 return GDB_OSABI_GO32;
7864
7865 return GDB_OSABI_UNKNOWN;
7866 }
7867 \f
7868
7869 /* Provide a prototype to silence -Wmissing-prototypes. */
7870 void _initialize_i386_tdep (void);
7871
7872 void
7873 _initialize_i386_tdep (void)
7874 {
7875 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
7876
7877 /* Add the variable that controls the disassembly flavor. */
7878 add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
7879 &disassembly_flavor, _("\
7880 Set the disassembly flavor."), _("\
7881 Show the disassembly flavor."), _("\
7882 The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
7883 NULL,
7884 NULL, /* FIXME: i18n: */
7885 &setlist, &showlist);
7886
7887 /* Add the variable that controls the convention for returning
7888 structs. */
7889 add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
7890 &struct_convention, _("\
7891 Set the convention for returning small structs."), _("\
7892 Show the convention for returning small structs."), _("\
7893 Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
7894 is \"default\"."),
7895 NULL,
7896 NULL, /* FIXME: i18n: */
7897 &setlist, &showlist);
7898
7899 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
7900 i386_coff_osabi_sniffer);
7901
7902 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
7903 i386_svr4_init_abi);
7904 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_GO32,
7905 i386_go32_init_abi);
7906
7907 /* Initialize the i386-specific register groups. */
7908 i386_init_reggroups ();
7909
7910 /* Initialize the standard target descriptions. */
7911 initialize_tdesc_i386 ();
7912 initialize_tdesc_i386_mmx ();
7913 initialize_tdesc_i386_avx ();
7914
7915 /* Tell remote stub that we support XML target description. */
7916 register_remote_support_xml ("i386");
7917 }
This page took 0.191252 seconds and 5 git commands to generate.