Adjust i386 registers on SystemTap probes' arguments (PR breakpoints/24541)
[deliverable/binutils-gdb.git] / gdb / i386-tdep.c
1 /* Intel 386 target-dependent stuff.
2
3 Copyright (C) 1988-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "opcode/i386.h"
22 #include "arch-utils.h"
23 #include "command.h"
24 #include "dummy-frame.h"
25 #include "dwarf2-frame.h"
26 #include "frame.h"
27 #include "frame-base.h"
28 #include "frame-unwind.h"
29 #include "inferior.h"
30 #include "infrun.h"
31 #include "gdbcmd.h"
32 #include "gdbcore.h"
33 #include "gdbtypes.h"
34 #include "objfiles.h"
35 #include "osabi.h"
36 #include "regcache.h"
37 #include "reggroups.h"
38 #include "regset.h"
39 #include "symfile.h"
40 #include "symtab.h"
41 #include "target.h"
42 #include "target-float.h"
43 #include "value.h"
44 #include "dis-asm.h"
45 #include "disasm.h"
46 #include "remote.h"
47 #include "i386-tdep.h"
48 #include "i387-tdep.h"
49 #include "common/x86-xstate.h"
50 #include "x86-tdep.h"
51
52 #include "record.h"
53 #include "record-full.h"
54 #include "target-descriptions.h"
55 #include "arch/i386.h"
56
57 #include "ax.h"
58 #include "ax-gdb.h"
59
60 #include "stap-probe.h"
61 #include "user-regs.h"
62 #include "cli/cli-utils.h"
63 #include "expression.h"
64 #include "parser-defs.h"
65 #include <ctype.h>
66 #include <algorithm>
67 #include <unordered_set>
68
69 /* Register names. */
70
71 static const char *i386_register_names[] =
72 {
73 "eax", "ecx", "edx", "ebx",
74 "esp", "ebp", "esi", "edi",
75 "eip", "eflags", "cs", "ss",
76 "ds", "es", "fs", "gs",
77 "st0", "st1", "st2", "st3",
78 "st4", "st5", "st6", "st7",
79 "fctrl", "fstat", "ftag", "fiseg",
80 "fioff", "foseg", "fooff", "fop",
81 "xmm0", "xmm1", "xmm2", "xmm3",
82 "xmm4", "xmm5", "xmm6", "xmm7",
83 "mxcsr"
84 };
85
86 static const char *i386_zmm_names[] =
87 {
88 "zmm0", "zmm1", "zmm2", "zmm3",
89 "zmm4", "zmm5", "zmm6", "zmm7"
90 };
91
92 static const char *i386_zmmh_names[] =
93 {
94 "zmm0h", "zmm1h", "zmm2h", "zmm3h",
95 "zmm4h", "zmm5h", "zmm6h", "zmm7h"
96 };
97
98 static const char *i386_k_names[] =
99 {
100 "k0", "k1", "k2", "k3",
101 "k4", "k5", "k6", "k7"
102 };
103
104 static const char *i386_ymm_names[] =
105 {
106 "ymm0", "ymm1", "ymm2", "ymm3",
107 "ymm4", "ymm5", "ymm6", "ymm7",
108 };
109
110 static const char *i386_ymmh_names[] =
111 {
112 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
113 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
114 };
115
116 static const char *i386_mpx_names[] =
117 {
118 "bnd0raw", "bnd1raw", "bnd2raw", "bnd3raw", "bndcfgu", "bndstatus"
119 };
120
121 static const char* i386_pkeys_names[] =
122 {
123 "pkru"
124 };
125
126 /* Register names for MPX pseudo-registers. */
127
128 static const char *i386_bnd_names[] =
129 {
130 "bnd0", "bnd1", "bnd2", "bnd3"
131 };
132
133 /* Register names for MMX pseudo-registers. */
134
135 static const char *i386_mmx_names[] =
136 {
137 "mm0", "mm1", "mm2", "mm3",
138 "mm4", "mm5", "mm6", "mm7"
139 };
140
141 /* Register names for byte pseudo-registers. */
142
143 static const char *i386_byte_names[] =
144 {
145 "al", "cl", "dl", "bl",
146 "ah", "ch", "dh", "bh"
147 };
148
149 /* Register names for word pseudo-registers. */
150
151 static const char *i386_word_names[] =
152 {
153 "ax", "cx", "dx", "bx",
154 "", "bp", "si", "di"
155 };
156
157 /* Constant used for reading/writing pseudo registers. In 64-bit mode, we have
158 16 lower ZMM regs that extend corresponding xmm/ymm registers. In addition,
159 we have 16 upper ZMM regs that have to be handled differently. */
160
161 const int num_lower_zmm_regs = 16;
162
163 /* MMX register? */
164
165 static int
166 i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
167 {
168 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
169 int mm0_regnum = tdep->mm0_regnum;
170
171 if (mm0_regnum < 0)
172 return 0;
173
174 regnum -= mm0_regnum;
175 return regnum >= 0 && regnum < tdep->num_mmx_regs;
176 }
177
178 /* Byte register? */
179
180 int
181 i386_byte_regnum_p (struct gdbarch *gdbarch, int regnum)
182 {
183 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
184
185 regnum -= tdep->al_regnum;
186 return regnum >= 0 && regnum < tdep->num_byte_regs;
187 }
188
189 /* Word register? */
190
191 int
192 i386_word_regnum_p (struct gdbarch *gdbarch, int regnum)
193 {
194 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
195
196 regnum -= tdep->ax_regnum;
197 return regnum >= 0 && regnum < tdep->num_word_regs;
198 }
199
200 /* Dword register? */
201
202 int
203 i386_dword_regnum_p (struct gdbarch *gdbarch, int regnum)
204 {
205 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
206 int eax_regnum = tdep->eax_regnum;
207
208 if (eax_regnum < 0)
209 return 0;
210
211 regnum -= eax_regnum;
212 return regnum >= 0 && regnum < tdep->num_dword_regs;
213 }
214
215 /* AVX512 register? */
216
217 int
218 i386_zmmh_regnum_p (struct gdbarch *gdbarch, int regnum)
219 {
220 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
221 int zmm0h_regnum = tdep->zmm0h_regnum;
222
223 if (zmm0h_regnum < 0)
224 return 0;
225
226 regnum -= zmm0h_regnum;
227 return regnum >= 0 && regnum < tdep->num_zmm_regs;
228 }
229
230 int
231 i386_zmm_regnum_p (struct gdbarch *gdbarch, int regnum)
232 {
233 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
234 int zmm0_regnum = tdep->zmm0_regnum;
235
236 if (zmm0_regnum < 0)
237 return 0;
238
239 regnum -= zmm0_regnum;
240 return regnum >= 0 && regnum < tdep->num_zmm_regs;
241 }
242
243 int
244 i386_k_regnum_p (struct gdbarch *gdbarch, int regnum)
245 {
246 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
247 int k0_regnum = tdep->k0_regnum;
248
249 if (k0_regnum < 0)
250 return 0;
251
252 regnum -= k0_regnum;
253 return regnum >= 0 && regnum < I387_NUM_K_REGS;
254 }
255
256 static int
257 i386_ymmh_regnum_p (struct gdbarch *gdbarch, int regnum)
258 {
259 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
260 int ymm0h_regnum = tdep->ymm0h_regnum;
261
262 if (ymm0h_regnum < 0)
263 return 0;
264
265 regnum -= ymm0h_regnum;
266 return regnum >= 0 && regnum < tdep->num_ymm_regs;
267 }
268
269 /* AVX register? */
270
271 int
272 i386_ymm_regnum_p (struct gdbarch *gdbarch, int regnum)
273 {
274 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
275 int ymm0_regnum = tdep->ymm0_regnum;
276
277 if (ymm0_regnum < 0)
278 return 0;
279
280 regnum -= ymm0_regnum;
281 return regnum >= 0 && regnum < tdep->num_ymm_regs;
282 }
283
284 static int
285 i386_ymmh_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
286 {
287 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
288 int ymm16h_regnum = tdep->ymm16h_regnum;
289
290 if (ymm16h_regnum < 0)
291 return 0;
292
293 regnum -= ymm16h_regnum;
294 return regnum >= 0 && regnum < tdep->num_ymm_avx512_regs;
295 }
296
297 int
298 i386_ymm_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
299 {
300 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
301 int ymm16_regnum = tdep->ymm16_regnum;
302
303 if (ymm16_regnum < 0)
304 return 0;
305
306 regnum -= ymm16_regnum;
307 return regnum >= 0 && regnum < tdep->num_ymm_avx512_regs;
308 }
309
310 /* BND register? */
311
312 int
313 i386_bnd_regnum_p (struct gdbarch *gdbarch, int regnum)
314 {
315 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
316 int bnd0_regnum = tdep->bnd0_regnum;
317
318 if (bnd0_regnum < 0)
319 return 0;
320
321 regnum -= bnd0_regnum;
322 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
323 }
324
325 /* SSE register? */
326
327 int
328 i386_xmm_regnum_p (struct gdbarch *gdbarch, int regnum)
329 {
330 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
331 int num_xmm_regs = I387_NUM_XMM_REGS (tdep);
332
333 if (num_xmm_regs == 0)
334 return 0;
335
336 regnum -= I387_XMM0_REGNUM (tdep);
337 return regnum >= 0 && regnum < num_xmm_regs;
338 }
339
340 /* XMM_512 register? */
341
342 int
343 i386_xmm_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
344 {
345 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
346 int num_xmm_avx512_regs = I387_NUM_XMM_AVX512_REGS (tdep);
347
348 if (num_xmm_avx512_regs == 0)
349 return 0;
350
351 regnum -= I387_XMM16_REGNUM (tdep);
352 return regnum >= 0 && regnum < num_xmm_avx512_regs;
353 }
354
355 static int
356 i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
357 {
358 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
359
360 if (I387_NUM_XMM_REGS (tdep) == 0)
361 return 0;
362
363 return (regnum == I387_MXCSR_REGNUM (tdep));
364 }
365
366 /* FP register? */
367
368 int
369 i386_fp_regnum_p (struct gdbarch *gdbarch, int regnum)
370 {
371 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
372
373 if (I387_ST0_REGNUM (tdep) < 0)
374 return 0;
375
376 return (I387_ST0_REGNUM (tdep) <= regnum
377 && regnum < I387_FCTRL_REGNUM (tdep));
378 }
379
380 int
381 i386_fpc_regnum_p (struct gdbarch *gdbarch, int regnum)
382 {
383 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
384
385 if (I387_ST0_REGNUM (tdep) < 0)
386 return 0;
387
388 return (I387_FCTRL_REGNUM (tdep) <= regnum
389 && regnum < I387_XMM0_REGNUM (tdep));
390 }
391
392 /* BNDr (raw) register? */
393
394 static int
395 i386_bndr_regnum_p (struct gdbarch *gdbarch, int regnum)
396 {
397 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
398
399 if (I387_BND0R_REGNUM (tdep) < 0)
400 return 0;
401
402 regnum -= tdep->bnd0r_regnum;
403 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
404 }
405
406 /* BND control register? */
407
408 static int
409 i386_mpx_ctrl_regnum_p (struct gdbarch *gdbarch, int regnum)
410 {
411 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
412
413 if (I387_BNDCFGU_REGNUM (tdep) < 0)
414 return 0;
415
416 regnum -= I387_BNDCFGU_REGNUM (tdep);
417 return regnum >= 0 && regnum < I387_NUM_MPX_CTRL_REGS;
418 }
419
420 /* PKRU register? */
421
422 bool
423 i386_pkru_regnum_p (struct gdbarch *gdbarch, int regnum)
424 {
425 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
426 int pkru_regnum = tdep->pkru_regnum;
427
428 if (pkru_regnum < 0)
429 return false;
430
431 regnum -= pkru_regnum;
432 return regnum >= 0 && regnum < I387_NUM_PKEYS_REGS;
433 }
434
435 /* Return the name of register REGNUM, or the empty string if it is
436 an anonymous register. */
437
438 static const char *
439 i386_register_name (struct gdbarch *gdbarch, int regnum)
440 {
441 /* Hide the upper YMM registers. */
442 if (i386_ymmh_regnum_p (gdbarch, regnum))
443 return "";
444
445 /* Hide the upper YMM16-31 registers. */
446 if (i386_ymmh_avx512_regnum_p (gdbarch, regnum))
447 return "";
448
449 /* Hide the upper ZMM registers. */
450 if (i386_zmmh_regnum_p (gdbarch, regnum))
451 return "";
452
453 return tdesc_register_name (gdbarch, regnum);
454 }
455
456 /* Return the name of register REGNUM. */
457
458 const char *
459 i386_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
460 {
461 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
462 if (i386_bnd_regnum_p (gdbarch, regnum))
463 return i386_bnd_names[regnum - tdep->bnd0_regnum];
464 if (i386_mmx_regnum_p (gdbarch, regnum))
465 return i386_mmx_names[regnum - I387_MM0_REGNUM (tdep)];
466 else if (i386_ymm_regnum_p (gdbarch, regnum))
467 return i386_ymm_names[regnum - tdep->ymm0_regnum];
468 else if (i386_zmm_regnum_p (gdbarch, regnum))
469 return i386_zmm_names[regnum - tdep->zmm0_regnum];
470 else if (i386_byte_regnum_p (gdbarch, regnum))
471 return i386_byte_names[regnum - tdep->al_regnum];
472 else if (i386_word_regnum_p (gdbarch, regnum))
473 return i386_word_names[regnum - tdep->ax_regnum];
474
475 internal_error (__FILE__, __LINE__, _("invalid regnum"));
476 }
477
478 /* Convert a dbx register number REG to the appropriate register
479 number used by GDB. */
480
481 static int
482 i386_dbx_reg_to_regnum (struct gdbarch *gdbarch, int reg)
483 {
484 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
485
486 /* This implements what GCC calls the "default" register map
487 (dbx_register_map[]). */
488
489 if (reg >= 0 && reg <= 7)
490 {
491 /* General-purpose registers. The debug info calls %ebp
492 register 4, and %esp register 5. */
493 if (reg == 4)
494 return 5;
495 else if (reg == 5)
496 return 4;
497 else return reg;
498 }
499 else if (reg >= 12 && reg <= 19)
500 {
501 /* Floating-point registers. */
502 return reg - 12 + I387_ST0_REGNUM (tdep);
503 }
504 else if (reg >= 21 && reg <= 28)
505 {
506 /* SSE registers. */
507 int ymm0_regnum = tdep->ymm0_regnum;
508
509 if (ymm0_regnum >= 0
510 && i386_xmm_regnum_p (gdbarch, reg))
511 return reg - 21 + ymm0_regnum;
512 else
513 return reg - 21 + I387_XMM0_REGNUM (tdep);
514 }
515 else if (reg >= 29 && reg <= 36)
516 {
517 /* MMX registers. */
518 return reg - 29 + I387_MM0_REGNUM (tdep);
519 }
520
521 /* This will hopefully provoke a warning. */
522 return gdbarch_num_cooked_regs (gdbarch);
523 }
524
525 /* Convert SVR4 DWARF register number REG to the appropriate register number
526 used by GDB. */
527
528 static int
529 i386_svr4_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
530 {
531 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
532
533 /* This implements the GCC register map that tries to be compatible
534 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
535
536 /* The SVR4 register numbering includes %eip and %eflags, and
537 numbers the floating point registers differently. */
538 if (reg >= 0 && reg <= 9)
539 {
540 /* General-purpose registers. */
541 return reg;
542 }
543 else if (reg >= 11 && reg <= 18)
544 {
545 /* Floating-point registers. */
546 return reg - 11 + I387_ST0_REGNUM (tdep);
547 }
548 else if (reg >= 21 && reg <= 36)
549 {
550 /* The SSE and MMX registers have the same numbers as with dbx. */
551 return i386_dbx_reg_to_regnum (gdbarch, reg);
552 }
553
554 switch (reg)
555 {
556 case 37: return I387_FCTRL_REGNUM (tdep);
557 case 38: return I387_FSTAT_REGNUM (tdep);
558 case 39: return I387_MXCSR_REGNUM (tdep);
559 case 40: return I386_ES_REGNUM;
560 case 41: return I386_CS_REGNUM;
561 case 42: return I386_SS_REGNUM;
562 case 43: return I386_DS_REGNUM;
563 case 44: return I386_FS_REGNUM;
564 case 45: return I386_GS_REGNUM;
565 }
566
567 return -1;
568 }
569
570 /* Wrapper on i386_svr4_dwarf_reg_to_regnum to return
571 num_regs + num_pseudo_regs for other debug formats. */
572
573 int
574 i386_svr4_reg_to_regnum (struct gdbarch *gdbarch, int reg)
575 {
576 int regnum = i386_svr4_dwarf_reg_to_regnum (gdbarch, reg);
577
578 if (regnum == -1)
579 return gdbarch_num_cooked_regs (gdbarch);
580 return regnum;
581 }
582
583 \f
584
585 /* This is the variable that is set with "set disassembly-flavor", and
586 its legitimate values. */
587 static const char att_flavor[] = "att";
588 static const char intel_flavor[] = "intel";
589 static const char *const valid_flavors[] =
590 {
591 att_flavor,
592 intel_flavor,
593 NULL
594 };
595 static const char *disassembly_flavor = att_flavor;
596 \f
597
598 /* Use the program counter to determine the contents and size of a
599 breakpoint instruction. Return a pointer to a string of bytes that
600 encode a breakpoint instruction, store the length of the string in
601 *LEN and optionally adjust *PC to point to the correct memory
602 location for inserting the breakpoint.
603
604 On the i386 we have a single breakpoint that fits in a single byte
605 and can be inserted anywhere.
606
607 This function is 64-bit safe. */
608
609 constexpr gdb_byte i386_break_insn[] = { 0xcc }; /* int 3 */
610
611 typedef BP_MANIPULATION (i386_break_insn) i386_breakpoint;
612
613 \f
614 /* Displaced instruction handling. */
615
616 /* Skip the legacy instruction prefixes in INSN.
617 Not all prefixes are valid for any particular insn
618 but we needn't care, the insn will fault if it's invalid.
619 The result is a pointer to the first opcode byte,
620 or NULL if we run off the end of the buffer. */
621
622 static gdb_byte *
623 i386_skip_prefixes (gdb_byte *insn, size_t max_len)
624 {
625 gdb_byte *end = insn + max_len;
626
627 while (insn < end)
628 {
629 switch (*insn)
630 {
631 case DATA_PREFIX_OPCODE:
632 case ADDR_PREFIX_OPCODE:
633 case CS_PREFIX_OPCODE:
634 case DS_PREFIX_OPCODE:
635 case ES_PREFIX_OPCODE:
636 case FS_PREFIX_OPCODE:
637 case GS_PREFIX_OPCODE:
638 case SS_PREFIX_OPCODE:
639 case LOCK_PREFIX_OPCODE:
640 case REPE_PREFIX_OPCODE:
641 case REPNE_PREFIX_OPCODE:
642 ++insn;
643 continue;
644 default:
645 return insn;
646 }
647 }
648
649 return NULL;
650 }
651
652 static int
653 i386_absolute_jmp_p (const gdb_byte *insn)
654 {
655 /* jmp far (absolute address in operand). */
656 if (insn[0] == 0xea)
657 return 1;
658
659 if (insn[0] == 0xff)
660 {
661 /* jump near, absolute indirect (/4). */
662 if ((insn[1] & 0x38) == 0x20)
663 return 1;
664
665 /* jump far, absolute indirect (/5). */
666 if ((insn[1] & 0x38) == 0x28)
667 return 1;
668 }
669
670 return 0;
671 }
672
673 /* Return non-zero if INSN is a jump, zero otherwise. */
674
675 static int
676 i386_jmp_p (const gdb_byte *insn)
677 {
678 /* jump short, relative. */
679 if (insn[0] == 0xeb)
680 return 1;
681
682 /* jump near, relative. */
683 if (insn[0] == 0xe9)
684 return 1;
685
686 return i386_absolute_jmp_p (insn);
687 }
688
689 static int
690 i386_absolute_call_p (const gdb_byte *insn)
691 {
692 /* call far, absolute. */
693 if (insn[0] == 0x9a)
694 return 1;
695
696 if (insn[0] == 0xff)
697 {
698 /* Call near, absolute indirect (/2). */
699 if ((insn[1] & 0x38) == 0x10)
700 return 1;
701
702 /* Call far, absolute indirect (/3). */
703 if ((insn[1] & 0x38) == 0x18)
704 return 1;
705 }
706
707 return 0;
708 }
709
710 static int
711 i386_ret_p (const gdb_byte *insn)
712 {
713 switch (insn[0])
714 {
715 case 0xc2: /* ret near, pop N bytes. */
716 case 0xc3: /* ret near */
717 case 0xca: /* ret far, pop N bytes. */
718 case 0xcb: /* ret far */
719 case 0xcf: /* iret */
720 return 1;
721
722 default:
723 return 0;
724 }
725 }
726
727 static int
728 i386_call_p (const gdb_byte *insn)
729 {
730 if (i386_absolute_call_p (insn))
731 return 1;
732
733 /* call near, relative. */
734 if (insn[0] == 0xe8)
735 return 1;
736
737 return 0;
738 }
739
740 /* Return non-zero if INSN is a system call, and set *LENGTHP to its
741 length in bytes. Otherwise, return zero. */
742
743 static int
744 i386_syscall_p (const gdb_byte *insn, int *lengthp)
745 {
746 /* Is it 'int $0x80'? */
747 if ((insn[0] == 0xcd && insn[1] == 0x80)
748 /* Or is it 'sysenter'? */
749 || (insn[0] == 0x0f && insn[1] == 0x34)
750 /* Or is it 'syscall'? */
751 || (insn[0] == 0x0f && insn[1] == 0x05))
752 {
753 *lengthp = 2;
754 return 1;
755 }
756
757 return 0;
758 }
759
760 /* The gdbarch insn_is_call method. */
761
762 static int
763 i386_insn_is_call (struct gdbarch *gdbarch, CORE_ADDR addr)
764 {
765 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
766
767 read_code (addr, buf, I386_MAX_INSN_LEN);
768 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
769
770 return i386_call_p (insn);
771 }
772
773 /* The gdbarch insn_is_ret method. */
774
775 static int
776 i386_insn_is_ret (struct gdbarch *gdbarch, CORE_ADDR addr)
777 {
778 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
779
780 read_code (addr, buf, I386_MAX_INSN_LEN);
781 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
782
783 return i386_ret_p (insn);
784 }
785
786 /* The gdbarch insn_is_jump method. */
787
788 static int
789 i386_insn_is_jump (struct gdbarch *gdbarch, CORE_ADDR addr)
790 {
791 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
792
793 read_code (addr, buf, I386_MAX_INSN_LEN);
794 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
795
796 return i386_jmp_p (insn);
797 }
798
799 /* Some kernels may run one past a syscall insn, so we have to cope. */
800
801 struct displaced_step_closure *
802 i386_displaced_step_copy_insn (struct gdbarch *gdbarch,
803 CORE_ADDR from, CORE_ADDR to,
804 struct regcache *regs)
805 {
806 size_t len = gdbarch_max_insn_length (gdbarch);
807 i386_displaced_step_closure *closure = new i386_displaced_step_closure (len);
808 gdb_byte *buf = closure->buf.data ();
809
810 read_memory (from, buf, len);
811
812 /* GDB may get control back after the insn after the syscall.
813 Presumably this is a kernel bug.
814 If this is a syscall, make sure there's a nop afterwards. */
815 {
816 int syscall_length;
817 gdb_byte *insn;
818
819 insn = i386_skip_prefixes (buf, len);
820 if (insn != NULL && i386_syscall_p (insn, &syscall_length))
821 insn[syscall_length] = NOP_OPCODE;
822 }
823
824 write_memory (to, buf, len);
825
826 if (debug_displaced)
827 {
828 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
829 paddress (gdbarch, from), paddress (gdbarch, to));
830 displaced_step_dump_bytes (gdb_stdlog, buf, len);
831 }
832
833 return closure;
834 }
835
836 /* Fix up the state of registers and memory after having single-stepped
837 a displaced instruction. */
838
839 void
840 i386_displaced_step_fixup (struct gdbarch *gdbarch,
841 struct displaced_step_closure *closure_,
842 CORE_ADDR from, CORE_ADDR to,
843 struct regcache *regs)
844 {
845 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
846
847 /* The offset we applied to the instruction's address.
848 This could well be negative (when viewed as a signed 32-bit
849 value), but ULONGEST won't reflect that, so take care when
850 applying it. */
851 ULONGEST insn_offset = to - from;
852
853 i386_displaced_step_closure *closure
854 = (i386_displaced_step_closure *) closure_;
855 gdb_byte *insn = closure->buf.data ();
856 /* The start of the insn, needed in case we see some prefixes. */
857 gdb_byte *insn_start = insn;
858
859 if (debug_displaced)
860 fprintf_unfiltered (gdb_stdlog,
861 "displaced: fixup (%s, %s), "
862 "insn = 0x%02x 0x%02x ...\n",
863 paddress (gdbarch, from), paddress (gdbarch, to),
864 insn[0], insn[1]);
865
866 /* The list of issues to contend with here is taken from
867 resume_execution in arch/i386/kernel/kprobes.c, Linux 2.6.20.
868 Yay for Free Software! */
869
870 /* Relocate the %eip, if necessary. */
871
872 /* The instruction recognizers we use assume any leading prefixes
873 have been skipped. */
874 {
875 /* This is the size of the buffer in closure. */
876 size_t max_insn_len = gdbarch_max_insn_length (gdbarch);
877 gdb_byte *opcode = i386_skip_prefixes (insn, max_insn_len);
878 /* If there are too many prefixes, just ignore the insn.
879 It will fault when run. */
880 if (opcode != NULL)
881 insn = opcode;
882 }
883
884 /* Except in the case of absolute or indirect jump or call
885 instructions, or a return instruction, the new eip is relative to
886 the displaced instruction; make it relative. Well, signal
887 handler returns don't need relocation either, but we use the
888 value of %eip to recognize those; see below. */
889 if (! i386_absolute_jmp_p (insn)
890 && ! i386_absolute_call_p (insn)
891 && ! i386_ret_p (insn))
892 {
893 ULONGEST orig_eip;
894 int insn_len;
895
896 regcache_cooked_read_unsigned (regs, I386_EIP_REGNUM, &orig_eip);
897
898 /* A signal trampoline system call changes the %eip, resuming
899 execution of the main program after the signal handler has
900 returned. That makes them like 'return' instructions; we
901 shouldn't relocate %eip.
902
903 But most system calls don't, and we do need to relocate %eip.
904
905 Our heuristic for distinguishing these cases: if stepping
906 over the system call instruction left control directly after
907 the instruction, the we relocate --- control almost certainly
908 doesn't belong in the displaced copy. Otherwise, we assume
909 the instruction has put control where it belongs, and leave
910 it unrelocated. Goodness help us if there are PC-relative
911 system calls. */
912 if (i386_syscall_p (insn, &insn_len)
913 && orig_eip != to + (insn - insn_start) + insn_len
914 /* GDB can get control back after the insn after the syscall.
915 Presumably this is a kernel bug.
916 i386_displaced_step_copy_insn ensures its a nop,
917 we add one to the length for it. */
918 && orig_eip != to + (insn - insn_start) + insn_len + 1)
919 {
920 if (debug_displaced)
921 fprintf_unfiltered (gdb_stdlog,
922 "displaced: syscall changed %%eip; "
923 "not relocating\n");
924 }
925 else
926 {
927 ULONGEST eip = (orig_eip - insn_offset) & 0xffffffffUL;
928
929 /* If we just stepped over a breakpoint insn, we don't backup
930 the pc on purpose; this is to match behaviour without
931 stepping. */
932
933 regcache_cooked_write_unsigned (regs, I386_EIP_REGNUM, eip);
934
935 if (debug_displaced)
936 fprintf_unfiltered (gdb_stdlog,
937 "displaced: "
938 "relocated %%eip from %s to %s\n",
939 paddress (gdbarch, orig_eip),
940 paddress (gdbarch, eip));
941 }
942 }
943
944 /* If the instruction was PUSHFL, then the TF bit will be set in the
945 pushed value, and should be cleared. We'll leave this for later,
946 since GDB already messes up the TF flag when stepping over a
947 pushfl. */
948
949 /* If the instruction was a call, the return address now atop the
950 stack is the address following the copied instruction. We need
951 to make it the address following the original instruction. */
952 if (i386_call_p (insn))
953 {
954 ULONGEST esp;
955 ULONGEST retaddr;
956 const ULONGEST retaddr_len = 4;
957
958 regcache_cooked_read_unsigned (regs, I386_ESP_REGNUM, &esp);
959 retaddr = read_memory_unsigned_integer (esp, retaddr_len, byte_order);
960 retaddr = (retaddr - insn_offset) & 0xffffffffUL;
961 write_memory_unsigned_integer (esp, retaddr_len, byte_order, retaddr);
962
963 if (debug_displaced)
964 fprintf_unfiltered (gdb_stdlog,
965 "displaced: relocated return addr at %s to %s\n",
966 paddress (gdbarch, esp),
967 paddress (gdbarch, retaddr));
968 }
969 }
970
971 static void
972 append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
973 {
974 target_write_memory (*to, buf, len);
975 *to += len;
976 }
977
978 static void
979 i386_relocate_instruction (struct gdbarch *gdbarch,
980 CORE_ADDR *to, CORE_ADDR oldloc)
981 {
982 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
983 gdb_byte buf[I386_MAX_INSN_LEN];
984 int offset = 0, rel32, newrel;
985 int insn_length;
986 gdb_byte *insn = buf;
987
988 read_memory (oldloc, buf, I386_MAX_INSN_LEN);
989
990 insn_length = gdb_buffered_insn_length (gdbarch, insn,
991 I386_MAX_INSN_LEN, oldloc);
992
993 /* Get past the prefixes. */
994 insn = i386_skip_prefixes (insn, I386_MAX_INSN_LEN);
995
996 /* Adjust calls with 32-bit relative addresses as push/jump, with
997 the address pushed being the location where the original call in
998 the user program would return to. */
999 if (insn[0] == 0xe8)
1000 {
1001 gdb_byte push_buf[16];
1002 unsigned int ret_addr;
1003
1004 /* Where "ret" in the original code will return to. */
1005 ret_addr = oldloc + insn_length;
1006 push_buf[0] = 0x68; /* pushq $... */
1007 store_unsigned_integer (&push_buf[1], 4, byte_order, ret_addr);
1008 /* Push the push. */
1009 append_insns (to, 5, push_buf);
1010
1011 /* Convert the relative call to a relative jump. */
1012 insn[0] = 0xe9;
1013
1014 /* Adjust the destination offset. */
1015 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
1016 newrel = (oldloc - *to) + rel32;
1017 store_signed_integer (insn + 1, 4, byte_order, newrel);
1018
1019 if (debug_displaced)
1020 fprintf_unfiltered (gdb_stdlog,
1021 "Adjusted insn rel32=%s at %s to"
1022 " rel32=%s at %s\n",
1023 hex_string (rel32), paddress (gdbarch, oldloc),
1024 hex_string (newrel), paddress (gdbarch, *to));
1025
1026 /* Write the adjusted jump into its displaced location. */
1027 append_insns (to, 5, insn);
1028 return;
1029 }
1030
1031 /* Adjust jumps with 32-bit relative addresses. Calls are already
1032 handled above. */
1033 if (insn[0] == 0xe9)
1034 offset = 1;
1035 /* Adjust conditional jumps. */
1036 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
1037 offset = 2;
1038
1039 if (offset)
1040 {
1041 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
1042 newrel = (oldloc - *to) + rel32;
1043 store_signed_integer (insn + offset, 4, byte_order, newrel);
1044 if (debug_displaced)
1045 fprintf_unfiltered (gdb_stdlog,
1046 "Adjusted insn rel32=%s at %s to"
1047 " rel32=%s at %s\n",
1048 hex_string (rel32), paddress (gdbarch, oldloc),
1049 hex_string (newrel), paddress (gdbarch, *to));
1050 }
1051
1052 /* Write the adjusted instructions into their displaced
1053 location. */
1054 append_insns (to, insn_length, buf);
1055 }
1056
1057 \f
1058 #ifdef I386_REGNO_TO_SYMMETRY
1059 #error "The Sequent Symmetry is no longer supported."
1060 #endif
1061
1062 /* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
1063 and %esp "belong" to the calling function. Therefore these
1064 registers should be saved if they're going to be modified. */
1065
1066 /* The maximum number of saved registers. This should include all
1067 registers mentioned above, and %eip. */
1068 #define I386_NUM_SAVED_REGS I386_NUM_GREGS
1069
1070 struct i386_frame_cache
1071 {
1072 /* Base address. */
1073 CORE_ADDR base;
1074 int base_p;
1075 LONGEST sp_offset;
1076 CORE_ADDR pc;
1077
1078 /* Saved registers. */
1079 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
1080 CORE_ADDR saved_sp;
1081 int saved_sp_reg;
1082 int pc_in_eax;
1083
1084 /* Stack space reserved for local variables. */
1085 long locals;
1086 };
1087
1088 /* Allocate and initialize a frame cache. */
1089
1090 static struct i386_frame_cache *
1091 i386_alloc_frame_cache (void)
1092 {
1093 struct i386_frame_cache *cache;
1094 int i;
1095
1096 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
1097
1098 /* Base address. */
1099 cache->base_p = 0;
1100 cache->base = 0;
1101 cache->sp_offset = -4;
1102 cache->pc = 0;
1103
1104 /* Saved registers. We initialize these to -1 since zero is a valid
1105 offset (that's where %ebp is supposed to be stored). */
1106 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
1107 cache->saved_regs[i] = -1;
1108 cache->saved_sp = 0;
1109 cache->saved_sp_reg = -1;
1110 cache->pc_in_eax = 0;
1111
1112 /* Frameless until proven otherwise. */
1113 cache->locals = -1;
1114
1115 return cache;
1116 }
1117
1118 /* If the instruction at PC is a jump, return the address of its
1119 target. Otherwise, return PC. */
1120
1121 static CORE_ADDR
1122 i386_follow_jump (struct gdbarch *gdbarch, CORE_ADDR pc)
1123 {
1124 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1125 gdb_byte op;
1126 long delta = 0;
1127 int data16 = 0;
1128
1129 if (target_read_code (pc, &op, 1))
1130 return pc;
1131
1132 if (op == 0x66)
1133 {
1134 data16 = 1;
1135
1136 op = read_code_unsigned_integer (pc + 1, 1, byte_order);
1137 }
1138
1139 switch (op)
1140 {
1141 case 0xe9:
1142 /* Relative jump: if data16 == 0, disp32, else disp16. */
1143 if (data16)
1144 {
1145 delta = read_memory_integer (pc + 2, 2, byte_order);
1146
1147 /* Include the size of the jmp instruction (including the
1148 0x66 prefix). */
1149 delta += 4;
1150 }
1151 else
1152 {
1153 delta = read_memory_integer (pc + 1, 4, byte_order);
1154
1155 /* Include the size of the jmp instruction. */
1156 delta += 5;
1157 }
1158 break;
1159 case 0xeb:
1160 /* Relative jump, disp8 (ignore data16). */
1161 delta = read_memory_integer (pc + data16 + 1, 1, byte_order);
1162
1163 delta += data16 + 2;
1164 break;
1165 }
1166
1167 return pc + delta;
1168 }
1169
1170 /* Check whether PC points at a prologue for a function returning a
1171 structure or union. If so, it updates CACHE and returns the
1172 address of the first instruction after the code sequence that
1173 removes the "hidden" argument from the stack or CURRENT_PC,
1174 whichever is smaller. Otherwise, return PC. */
1175
1176 static CORE_ADDR
1177 i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
1178 struct i386_frame_cache *cache)
1179 {
1180 /* Functions that return a structure or union start with:
1181
1182 popl %eax 0x58
1183 xchgl %eax, (%esp) 0x87 0x04 0x24
1184 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
1185
1186 (the System V compiler puts out the second `xchg' instruction,
1187 and the assembler doesn't try to optimize it, so the 'sib' form
1188 gets generated). This sequence is used to get the address of the
1189 return buffer for a function that returns a structure. */
1190 static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
1191 static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
1192 gdb_byte buf[4];
1193 gdb_byte op;
1194
1195 if (current_pc <= pc)
1196 return pc;
1197
1198 if (target_read_code (pc, &op, 1))
1199 return pc;
1200
1201 if (op != 0x58) /* popl %eax */
1202 return pc;
1203
1204 if (target_read_code (pc + 1, buf, 4))
1205 return pc;
1206
1207 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
1208 return pc;
1209
1210 if (current_pc == pc)
1211 {
1212 cache->sp_offset += 4;
1213 return current_pc;
1214 }
1215
1216 if (current_pc == pc + 1)
1217 {
1218 cache->pc_in_eax = 1;
1219 return current_pc;
1220 }
1221
1222 if (buf[1] == proto1[1])
1223 return pc + 4;
1224 else
1225 return pc + 5;
1226 }
1227
1228 static CORE_ADDR
1229 i386_skip_probe (CORE_ADDR pc)
1230 {
1231 /* A function may start with
1232
1233 pushl constant
1234 call _probe
1235 addl $4, %esp
1236
1237 followed by
1238
1239 pushl %ebp
1240
1241 etc. */
1242 gdb_byte buf[8];
1243 gdb_byte op;
1244
1245 if (target_read_code (pc, &op, 1))
1246 return pc;
1247
1248 if (op == 0x68 || op == 0x6a)
1249 {
1250 int delta;
1251
1252 /* Skip past the `pushl' instruction; it has either a one-byte or a
1253 four-byte operand, depending on the opcode. */
1254 if (op == 0x68)
1255 delta = 5;
1256 else
1257 delta = 2;
1258
1259 /* Read the following 8 bytes, which should be `call _probe' (6
1260 bytes) followed by `addl $4,%esp' (2 bytes). */
1261 read_memory (pc + delta, buf, sizeof (buf));
1262 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
1263 pc += delta + sizeof (buf);
1264 }
1265
1266 return pc;
1267 }
1268
1269 /* GCC 4.1 and later, can put code in the prologue to realign the
1270 stack pointer. Check whether PC points to such code, and update
1271 CACHE accordingly. Return the first instruction after the code
1272 sequence or CURRENT_PC, whichever is smaller. If we don't
1273 recognize the code, return PC. */
1274
1275 static CORE_ADDR
1276 i386_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1277 struct i386_frame_cache *cache)
1278 {
1279 /* There are 2 code sequences to re-align stack before the frame
1280 gets set up:
1281
1282 1. Use a caller-saved saved register:
1283
1284 leal 4(%esp), %reg
1285 andl $-XXX, %esp
1286 pushl -4(%reg)
1287
1288 2. Use a callee-saved saved register:
1289
1290 pushl %reg
1291 leal 8(%esp), %reg
1292 andl $-XXX, %esp
1293 pushl -4(%reg)
1294
1295 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
1296
1297 0x83 0xe4 0xf0 andl $-16, %esp
1298 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
1299 */
1300
1301 gdb_byte buf[14];
1302 int reg;
1303 int offset, offset_and;
1304 static int regnums[8] = {
1305 I386_EAX_REGNUM, /* %eax */
1306 I386_ECX_REGNUM, /* %ecx */
1307 I386_EDX_REGNUM, /* %edx */
1308 I386_EBX_REGNUM, /* %ebx */
1309 I386_ESP_REGNUM, /* %esp */
1310 I386_EBP_REGNUM, /* %ebp */
1311 I386_ESI_REGNUM, /* %esi */
1312 I386_EDI_REGNUM /* %edi */
1313 };
1314
1315 if (target_read_code (pc, buf, sizeof buf))
1316 return pc;
1317
1318 /* Check caller-saved saved register. The first instruction has
1319 to be "leal 4(%esp), %reg". */
1320 if (buf[0] == 0x8d && buf[2] == 0x24 && buf[3] == 0x4)
1321 {
1322 /* MOD must be binary 10 and R/M must be binary 100. */
1323 if ((buf[1] & 0xc7) != 0x44)
1324 return pc;
1325
1326 /* REG has register number. */
1327 reg = (buf[1] >> 3) & 7;
1328 offset = 4;
1329 }
1330 else
1331 {
1332 /* Check callee-saved saved register. The first instruction
1333 has to be "pushl %reg". */
1334 if ((buf[0] & 0xf8) != 0x50)
1335 return pc;
1336
1337 /* Get register. */
1338 reg = buf[0] & 0x7;
1339
1340 /* The next instruction has to be "leal 8(%esp), %reg". */
1341 if (buf[1] != 0x8d || buf[3] != 0x24 || buf[4] != 0x8)
1342 return pc;
1343
1344 /* MOD must be binary 10 and R/M must be binary 100. */
1345 if ((buf[2] & 0xc7) != 0x44)
1346 return pc;
1347
1348 /* REG has register number. Registers in pushl and leal have to
1349 be the same. */
1350 if (reg != ((buf[2] >> 3) & 7))
1351 return pc;
1352
1353 offset = 5;
1354 }
1355
1356 /* Rigister can't be %esp nor %ebp. */
1357 if (reg == 4 || reg == 5)
1358 return pc;
1359
1360 /* The next instruction has to be "andl $-XXX, %esp". */
1361 if (buf[offset + 1] != 0xe4
1362 || (buf[offset] != 0x81 && buf[offset] != 0x83))
1363 return pc;
1364
1365 offset_and = offset;
1366 offset += buf[offset] == 0x81 ? 6 : 3;
1367
1368 /* The next instruction has to be "pushl -4(%reg)". 8bit -4 is
1369 0xfc. REG must be binary 110 and MOD must be binary 01. */
1370 if (buf[offset] != 0xff
1371 || buf[offset + 2] != 0xfc
1372 || (buf[offset + 1] & 0xf8) != 0x70)
1373 return pc;
1374
1375 /* R/M has register. Registers in leal and pushl have to be the
1376 same. */
1377 if (reg != (buf[offset + 1] & 7))
1378 return pc;
1379
1380 if (current_pc > pc + offset_and)
1381 cache->saved_sp_reg = regnums[reg];
1382
1383 return std::min (pc + offset + 3, current_pc);
1384 }
1385
1386 /* Maximum instruction length we need to handle. */
1387 #define I386_MAX_MATCHED_INSN_LEN 6
1388
1389 /* Instruction description. */
1390 struct i386_insn
1391 {
1392 size_t len;
1393 gdb_byte insn[I386_MAX_MATCHED_INSN_LEN];
1394 gdb_byte mask[I386_MAX_MATCHED_INSN_LEN];
1395 };
1396
1397 /* Return whether instruction at PC matches PATTERN. */
1398
1399 static int
1400 i386_match_pattern (CORE_ADDR pc, struct i386_insn pattern)
1401 {
1402 gdb_byte op;
1403
1404 if (target_read_code (pc, &op, 1))
1405 return 0;
1406
1407 if ((op & pattern.mask[0]) == pattern.insn[0])
1408 {
1409 gdb_byte buf[I386_MAX_MATCHED_INSN_LEN - 1];
1410 int insn_matched = 1;
1411 size_t i;
1412
1413 gdb_assert (pattern.len > 1);
1414 gdb_assert (pattern.len <= I386_MAX_MATCHED_INSN_LEN);
1415
1416 if (target_read_code (pc + 1, buf, pattern.len - 1))
1417 return 0;
1418
1419 for (i = 1; i < pattern.len; i++)
1420 {
1421 if ((buf[i - 1] & pattern.mask[i]) != pattern.insn[i])
1422 insn_matched = 0;
1423 }
1424 return insn_matched;
1425 }
1426 return 0;
1427 }
1428
1429 /* Search for the instruction at PC in the list INSN_PATTERNS. Return
1430 the first instruction description that matches. Otherwise, return
1431 NULL. */
1432
1433 static struct i386_insn *
1434 i386_match_insn (CORE_ADDR pc, struct i386_insn *insn_patterns)
1435 {
1436 struct i386_insn *pattern;
1437
1438 for (pattern = insn_patterns; pattern->len > 0; pattern++)
1439 {
1440 if (i386_match_pattern (pc, *pattern))
1441 return pattern;
1442 }
1443
1444 return NULL;
1445 }
1446
1447 /* Return whether PC points inside a sequence of instructions that
1448 matches INSN_PATTERNS. */
1449
1450 static int
1451 i386_match_insn_block (CORE_ADDR pc, struct i386_insn *insn_patterns)
1452 {
1453 CORE_ADDR current_pc;
1454 int ix, i;
1455 struct i386_insn *insn;
1456
1457 insn = i386_match_insn (pc, insn_patterns);
1458 if (insn == NULL)
1459 return 0;
1460
1461 current_pc = pc;
1462 ix = insn - insn_patterns;
1463 for (i = ix - 1; i >= 0; i--)
1464 {
1465 current_pc -= insn_patterns[i].len;
1466
1467 if (!i386_match_pattern (current_pc, insn_patterns[i]))
1468 return 0;
1469 }
1470
1471 current_pc = pc + insn->len;
1472 for (insn = insn_patterns + ix + 1; insn->len > 0; insn++)
1473 {
1474 if (!i386_match_pattern (current_pc, *insn))
1475 return 0;
1476
1477 current_pc += insn->len;
1478 }
1479
1480 return 1;
1481 }
1482
1483 /* Some special instructions that might be migrated by GCC into the
1484 part of the prologue that sets up the new stack frame. Because the
1485 stack frame hasn't been setup yet, no registers have been saved
1486 yet, and only the scratch registers %eax, %ecx and %edx can be
1487 touched. */
1488
1489 struct i386_insn i386_frame_setup_skip_insns[] =
1490 {
1491 /* Check for `movb imm8, r' and `movl imm32, r'.
1492
1493 ??? Should we handle 16-bit operand-sizes here? */
1494
1495 /* `movb imm8, %al' and `movb imm8, %ah' */
1496 /* `movb imm8, %cl' and `movb imm8, %ch' */
1497 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
1498 /* `movb imm8, %dl' and `movb imm8, %dh' */
1499 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
1500 /* `movl imm32, %eax' and `movl imm32, %ecx' */
1501 { 5, { 0xb8 }, { 0xfe } },
1502 /* `movl imm32, %edx' */
1503 { 5, { 0xba }, { 0xff } },
1504
1505 /* Check for `mov imm32, r32'. Note that there is an alternative
1506 encoding for `mov m32, %eax'.
1507
1508 ??? Should we handle SIB adressing here?
1509 ??? Should we handle 16-bit operand-sizes here? */
1510
1511 /* `movl m32, %eax' */
1512 { 5, { 0xa1 }, { 0xff } },
1513 /* `movl m32, %eax' and `mov; m32, %ecx' */
1514 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
1515 /* `movl m32, %edx' */
1516 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
1517
1518 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
1519 Because of the symmetry, there are actually two ways to encode
1520 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
1521 opcode bytes 0x31 and 0x33 for `xorl'. */
1522
1523 /* `subl %eax, %eax' */
1524 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
1525 /* `subl %ecx, %ecx' */
1526 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
1527 /* `subl %edx, %edx' */
1528 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
1529 /* `xorl %eax, %eax' */
1530 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
1531 /* `xorl %ecx, %ecx' */
1532 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
1533 /* `xorl %edx, %edx' */
1534 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
1535 { 0 }
1536 };
1537
1538
1539 /* Check whether PC points to a no-op instruction. */
1540 static CORE_ADDR
1541 i386_skip_noop (CORE_ADDR pc)
1542 {
1543 gdb_byte op;
1544 int check = 1;
1545
1546 if (target_read_code (pc, &op, 1))
1547 return pc;
1548
1549 while (check)
1550 {
1551 check = 0;
1552 /* Ignore `nop' instruction. */
1553 if (op == 0x90)
1554 {
1555 pc += 1;
1556 if (target_read_code (pc, &op, 1))
1557 return pc;
1558 check = 1;
1559 }
1560 /* Ignore no-op instruction `mov %edi, %edi'.
1561 Microsoft system dlls often start with
1562 a `mov %edi,%edi' instruction.
1563 The 5 bytes before the function start are
1564 filled with `nop' instructions.
1565 This pattern can be used for hot-patching:
1566 The `mov %edi, %edi' instruction can be replaced by a
1567 near jump to the location of the 5 `nop' instructions
1568 which can be replaced by a 32-bit jump to anywhere
1569 in the 32-bit address space. */
1570
1571 else if (op == 0x8b)
1572 {
1573 if (target_read_code (pc + 1, &op, 1))
1574 return pc;
1575
1576 if (op == 0xff)
1577 {
1578 pc += 2;
1579 if (target_read_code (pc, &op, 1))
1580 return pc;
1581
1582 check = 1;
1583 }
1584 }
1585 }
1586 return pc;
1587 }
1588
1589 /* Check whether PC points at a code that sets up a new stack frame.
1590 If so, it updates CACHE and returns the address of the first
1591 instruction after the sequence that sets up the frame or LIMIT,
1592 whichever is smaller. If we don't recognize the code, return PC. */
1593
1594 static CORE_ADDR
1595 i386_analyze_frame_setup (struct gdbarch *gdbarch,
1596 CORE_ADDR pc, CORE_ADDR limit,
1597 struct i386_frame_cache *cache)
1598 {
1599 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1600 struct i386_insn *insn;
1601 gdb_byte op;
1602 int skip = 0;
1603
1604 if (limit <= pc)
1605 return limit;
1606
1607 if (target_read_code (pc, &op, 1))
1608 return pc;
1609
1610 if (op == 0x55) /* pushl %ebp */
1611 {
1612 /* Take into account that we've executed the `pushl %ebp' that
1613 starts this instruction sequence. */
1614 cache->saved_regs[I386_EBP_REGNUM] = 0;
1615 cache->sp_offset += 4;
1616 pc++;
1617
1618 /* If that's all, return now. */
1619 if (limit <= pc)
1620 return limit;
1621
1622 /* Check for some special instructions that might be migrated by
1623 GCC into the prologue and skip them. At this point in the
1624 prologue, code should only touch the scratch registers %eax,
1625 %ecx and %edx, so while the number of posibilities is sheer,
1626 it is limited.
1627
1628 Make sure we only skip these instructions if we later see the
1629 `movl %esp, %ebp' that actually sets up the frame. */
1630 while (pc + skip < limit)
1631 {
1632 insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
1633 if (insn == NULL)
1634 break;
1635
1636 skip += insn->len;
1637 }
1638
1639 /* If that's all, return now. */
1640 if (limit <= pc + skip)
1641 return limit;
1642
1643 if (target_read_code (pc + skip, &op, 1))
1644 return pc + skip;
1645
1646 /* The i386 prologue looks like
1647
1648 push %ebp
1649 mov %esp,%ebp
1650 sub $0x10,%esp
1651
1652 and a different prologue can be generated for atom.
1653
1654 push %ebp
1655 lea (%esp),%ebp
1656 lea -0x10(%esp),%esp
1657
1658 We handle both of them here. */
1659
1660 switch (op)
1661 {
1662 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
1663 case 0x8b:
1664 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
1665 != 0xec)
1666 return pc;
1667 pc += (skip + 2);
1668 break;
1669 case 0x89:
1670 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
1671 != 0xe5)
1672 return pc;
1673 pc += (skip + 2);
1674 break;
1675 case 0x8d: /* Check for 'lea (%ebp), %ebp'. */
1676 if (read_code_unsigned_integer (pc + skip + 1, 2, byte_order)
1677 != 0x242c)
1678 return pc;
1679 pc += (skip + 3);
1680 break;
1681 default:
1682 return pc;
1683 }
1684
1685 /* OK, we actually have a frame. We just don't know how large
1686 it is yet. Set its size to zero. We'll adjust it if
1687 necessary. We also now commit to skipping the special
1688 instructions mentioned before. */
1689 cache->locals = 0;
1690
1691 /* If that's all, return now. */
1692 if (limit <= pc)
1693 return limit;
1694
1695 /* Check for stack adjustment
1696
1697 subl $XXX, %esp
1698 or
1699 lea -XXX(%esp),%esp
1700
1701 NOTE: You can't subtract a 16-bit immediate from a 32-bit
1702 reg, so we don't have to worry about a data16 prefix. */
1703 if (target_read_code (pc, &op, 1))
1704 return pc;
1705 if (op == 0x83)
1706 {
1707 /* `subl' with 8-bit immediate. */
1708 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1709 /* Some instruction starting with 0x83 other than `subl'. */
1710 return pc;
1711
1712 /* `subl' with signed 8-bit immediate (though it wouldn't
1713 make sense to be negative). */
1714 cache->locals = read_code_integer (pc + 2, 1, byte_order);
1715 return pc + 3;
1716 }
1717 else if (op == 0x81)
1718 {
1719 /* Maybe it is `subl' with a 32-bit immediate. */
1720 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1721 /* Some instruction starting with 0x81 other than `subl'. */
1722 return pc;
1723
1724 /* It is `subl' with a 32-bit immediate. */
1725 cache->locals = read_code_integer (pc + 2, 4, byte_order);
1726 return pc + 6;
1727 }
1728 else if (op == 0x8d)
1729 {
1730 /* The ModR/M byte is 0x64. */
1731 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0x64)
1732 return pc;
1733 /* 'lea' with 8-bit displacement. */
1734 cache->locals = -1 * read_code_integer (pc + 3, 1, byte_order);
1735 return pc + 4;
1736 }
1737 else
1738 {
1739 /* Some instruction other than `subl' nor 'lea'. */
1740 return pc;
1741 }
1742 }
1743 else if (op == 0xc8) /* enter */
1744 {
1745 cache->locals = read_code_unsigned_integer (pc + 1, 2, byte_order);
1746 return pc + 4;
1747 }
1748
1749 return pc;
1750 }
1751
1752 /* Check whether PC points at code that saves registers on the stack.
1753 If so, it updates CACHE and returns the address of the first
1754 instruction after the register saves or CURRENT_PC, whichever is
1755 smaller. Otherwise, return PC. */
1756
1757 static CORE_ADDR
1758 i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
1759 struct i386_frame_cache *cache)
1760 {
1761 CORE_ADDR offset = 0;
1762 gdb_byte op;
1763 int i;
1764
1765 if (cache->locals > 0)
1766 offset -= cache->locals;
1767 for (i = 0; i < 8 && pc < current_pc; i++)
1768 {
1769 if (target_read_code (pc, &op, 1))
1770 return pc;
1771 if (op < 0x50 || op > 0x57)
1772 break;
1773
1774 offset -= 4;
1775 cache->saved_regs[op - 0x50] = offset;
1776 cache->sp_offset += 4;
1777 pc++;
1778 }
1779
1780 return pc;
1781 }
1782
1783 /* Do a full analysis of the prologue at PC and update CACHE
1784 accordingly. Bail out early if CURRENT_PC is reached. Return the
1785 address where the analysis stopped.
1786
1787 We handle these cases:
1788
1789 The startup sequence can be at the start of the function, or the
1790 function can start with a branch to startup code at the end.
1791
1792 %ebp can be set up with either the 'enter' instruction, or "pushl
1793 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
1794 once used in the System V compiler).
1795
1796 Local space is allocated just below the saved %ebp by either the
1797 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
1798 16-bit unsigned argument for space to allocate, and the 'addl'
1799 instruction could have either a signed byte, or 32-bit immediate.
1800
1801 Next, the registers used by this function are pushed. With the
1802 System V compiler they will always be in the order: %edi, %esi,
1803 %ebx (and sometimes a harmless bug causes it to also save but not
1804 restore %eax); however, the code below is willing to see the pushes
1805 in any order, and will handle up to 8 of them.
1806
1807 If the setup sequence is at the end of the function, then the next
1808 instruction will be a branch back to the start. */
1809
1810 static CORE_ADDR
1811 i386_analyze_prologue (struct gdbarch *gdbarch,
1812 CORE_ADDR pc, CORE_ADDR current_pc,
1813 struct i386_frame_cache *cache)
1814 {
1815 pc = i386_skip_noop (pc);
1816 pc = i386_follow_jump (gdbarch, pc);
1817 pc = i386_analyze_struct_return (pc, current_pc, cache);
1818 pc = i386_skip_probe (pc);
1819 pc = i386_analyze_stack_align (pc, current_pc, cache);
1820 pc = i386_analyze_frame_setup (gdbarch, pc, current_pc, cache);
1821 return i386_analyze_register_saves (pc, current_pc, cache);
1822 }
1823
1824 /* Return PC of first real instruction. */
1825
1826 static CORE_ADDR
1827 i386_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
1828 {
1829 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1830
1831 static gdb_byte pic_pat[6] =
1832 {
1833 0xe8, 0, 0, 0, 0, /* call 0x0 */
1834 0x5b, /* popl %ebx */
1835 };
1836 struct i386_frame_cache cache;
1837 CORE_ADDR pc;
1838 gdb_byte op;
1839 int i;
1840 CORE_ADDR func_addr;
1841
1842 if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
1843 {
1844 CORE_ADDR post_prologue_pc
1845 = skip_prologue_using_sal (gdbarch, func_addr);
1846 struct compunit_symtab *cust = find_pc_compunit_symtab (func_addr);
1847
1848 /* Clang always emits a line note before the prologue and another
1849 one after. We trust clang to emit usable line notes. */
1850 if (post_prologue_pc
1851 && (cust != NULL
1852 && COMPUNIT_PRODUCER (cust) != NULL
1853 && startswith (COMPUNIT_PRODUCER (cust), "clang ")))
1854 return std::max (start_pc, post_prologue_pc);
1855 }
1856
1857 cache.locals = -1;
1858 pc = i386_analyze_prologue (gdbarch, start_pc, 0xffffffff, &cache);
1859 if (cache.locals < 0)
1860 return start_pc;
1861
1862 /* Found valid frame setup. */
1863
1864 /* The native cc on SVR4 in -K PIC mode inserts the following code
1865 to get the address of the global offset table (GOT) into register
1866 %ebx:
1867
1868 call 0x0
1869 popl %ebx
1870 movl %ebx,x(%ebp) (optional)
1871 addl y,%ebx
1872
1873 This code is with the rest of the prologue (at the end of the
1874 function), so we have to skip it to get to the first real
1875 instruction at the start of the function. */
1876
1877 for (i = 0; i < 6; i++)
1878 {
1879 if (target_read_code (pc + i, &op, 1))
1880 return pc;
1881
1882 if (pic_pat[i] != op)
1883 break;
1884 }
1885 if (i == 6)
1886 {
1887 int delta = 6;
1888
1889 if (target_read_code (pc + delta, &op, 1))
1890 return pc;
1891
1892 if (op == 0x89) /* movl %ebx, x(%ebp) */
1893 {
1894 op = read_code_unsigned_integer (pc + delta + 1, 1, byte_order);
1895
1896 if (op == 0x5d) /* One byte offset from %ebp. */
1897 delta += 3;
1898 else if (op == 0x9d) /* Four byte offset from %ebp. */
1899 delta += 6;
1900 else /* Unexpected instruction. */
1901 delta = 0;
1902
1903 if (target_read_code (pc + delta, &op, 1))
1904 return pc;
1905 }
1906
1907 /* addl y,%ebx */
1908 if (delta > 0 && op == 0x81
1909 && read_code_unsigned_integer (pc + delta + 1, 1, byte_order)
1910 == 0xc3)
1911 {
1912 pc += delta + 6;
1913 }
1914 }
1915
1916 /* If the function starts with a branch (to startup code at the end)
1917 the last instruction should bring us back to the first
1918 instruction of the real code. */
1919 if (i386_follow_jump (gdbarch, start_pc) != start_pc)
1920 pc = i386_follow_jump (gdbarch, pc);
1921
1922 return pc;
1923 }
1924
1925 /* Check that the code pointed to by PC corresponds to a call to
1926 __main, skip it if so. Return PC otherwise. */
1927
1928 CORE_ADDR
1929 i386_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1930 {
1931 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1932 gdb_byte op;
1933
1934 if (target_read_code (pc, &op, 1))
1935 return pc;
1936 if (op == 0xe8)
1937 {
1938 gdb_byte buf[4];
1939
1940 if (target_read_code (pc + 1, buf, sizeof buf) == 0)
1941 {
1942 /* Make sure address is computed correctly as a 32bit
1943 integer even if CORE_ADDR is 64 bit wide. */
1944 struct bound_minimal_symbol s;
1945 CORE_ADDR call_dest;
1946
1947 call_dest = pc + 5 + extract_signed_integer (buf, 4, byte_order);
1948 call_dest = call_dest & 0xffffffffU;
1949 s = lookup_minimal_symbol_by_pc (call_dest);
1950 if (s.minsym != NULL
1951 && MSYMBOL_LINKAGE_NAME (s.minsym) != NULL
1952 && strcmp (MSYMBOL_LINKAGE_NAME (s.minsym), "__main") == 0)
1953 pc += 5;
1954 }
1955 }
1956
1957 return pc;
1958 }
1959
1960 /* This function is 64-bit safe. */
1961
1962 static CORE_ADDR
1963 i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1964 {
1965 gdb_byte buf[8];
1966
1967 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
1968 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
1969 }
1970 \f
1971
1972 /* Normal frames. */
1973
1974 static void
1975 i386_frame_cache_1 (struct frame_info *this_frame,
1976 struct i386_frame_cache *cache)
1977 {
1978 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1979 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1980 gdb_byte buf[4];
1981 int i;
1982
1983 cache->pc = get_frame_func (this_frame);
1984
1985 /* In principle, for normal frames, %ebp holds the frame pointer,
1986 which holds the base address for the current stack frame.
1987 However, for functions that don't need it, the frame pointer is
1988 optional. For these "frameless" functions the frame pointer is
1989 actually the frame pointer of the calling frame. Signal
1990 trampolines are just a special case of a "frameless" function.
1991 They (usually) share their frame pointer with the frame that was
1992 in progress when the signal occurred. */
1993
1994 get_frame_register (this_frame, I386_EBP_REGNUM, buf);
1995 cache->base = extract_unsigned_integer (buf, 4, byte_order);
1996 if (cache->base == 0)
1997 {
1998 cache->base_p = 1;
1999 return;
2000 }
2001
2002 /* For normal frames, %eip is stored at 4(%ebp). */
2003 cache->saved_regs[I386_EIP_REGNUM] = 4;
2004
2005 if (cache->pc != 0)
2006 i386_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
2007 cache);
2008
2009 if (cache->locals < 0)
2010 {
2011 /* We didn't find a valid frame, which means that CACHE->base
2012 currently holds the frame pointer for our calling frame. If
2013 we're at the start of a function, or somewhere half-way its
2014 prologue, the function's frame probably hasn't been fully
2015 setup yet. Try to reconstruct the base address for the stack
2016 frame by looking at the stack pointer. For truly "frameless"
2017 functions this might work too. */
2018
2019 if (cache->saved_sp_reg != -1)
2020 {
2021 /* Saved stack pointer has been saved. */
2022 get_frame_register (this_frame, cache->saved_sp_reg, buf);
2023 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
2024
2025 /* We're halfway aligning the stack. */
2026 cache->base = ((cache->saved_sp - 4) & 0xfffffff0) - 4;
2027 cache->saved_regs[I386_EIP_REGNUM] = cache->saved_sp - 4;
2028
2029 /* This will be added back below. */
2030 cache->saved_regs[I386_EIP_REGNUM] -= cache->base;
2031 }
2032 else if (cache->pc != 0
2033 || target_read_code (get_frame_pc (this_frame), buf, 1))
2034 {
2035 /* We're in a known function, but did not find a frame
2036 setup. Assume that the function does not use %ebp.
2037 Alternatively, we may have jumped to an invalid
2038 address; in that case there is definitely no new
2039 frame in %ebp. */
2040 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2041 cache->base = extract_unsigned_integer (buf, 4, byte_order)
2042 + cache->sp_offset;
2043 }
2044 else
2045 /* We're in an unknown function. We could not find the start
2046 of the function to analyze the prologue; our best option is
2047 to assume a typical frame layout with the caller's %ebp
2048 saved. */
2049 cache->saved_regs[I386_EBP_REGNUM] = 0;
2050 }
2051
2052 if (cache->saved_sp_reg != -1)
2053 {
2054 /* Saved stack pointer has been saved (but the SAVED_SP_REG
2055 register may be unavailable). */
2056 if (cache->saved_sp == 0
2057 && deprecated_frame_register_read (this_frame,
2058 cache->saved_sp_reg, buf))
2059 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
2060 }
2061 /* Now that we have the base address for the stack frame we can
2062 calculate the value of %esp in the calling frame. */
2063 else if (cache->saved_sp == 0)
2064 cache->saved_sp = cache->base + 8;
2065
2066 /* Adjust all the saved registers such that they contain addresses
2067 instead of offsets. */
2068 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
2069 if (cache->saved_regs[i] != -1)
2070 cache->saved_regs[i] += cache->base;
2071
2072 cache->base_p = 1;
2073 }
2074
2075 static struct i386_frame_cache *
2076 i386_frame_cache (struct frame_info *this_frame, void **this_cache)
2077 {
2078 struct i386_frame_cache *cache;
2079
2080 if (*this_cache)
2081 return (struct i386_frame_cache *) *this_cache;
2082
2083 cache = i386_alloc_frame_cache ();
2084 *this_cache = cache;
2085
2086 try
2087 {
2088 i386_frame_cache_1 (this_frame, cache);
2089 }
2090 catch (const gdb_exception_error &ex)
2091 {
2092 if (ex.error != NOT_AVAILABLE_ERROR)
2093 throw;
2094 }
2095
2096 return cache;
2097 }
2098
2099 static void
2100 i386_frame_this_id (struct frame_info *this_frame, void **this_cache,
2101 struct frame_id *this_id)
2102 {
2103 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2104
2105 if (!cache->base_p)
2106 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2107 else if (cache->base == 0)
2108 {
2109 /* This marks the outermost frame. */
2110 }
2111 else
2112 {
2113 /* See the end of i386_push_dummy_call. */
2114 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2115 }
2116 }
2117
2118 static enum unwind_stop_reason
2119 i386_frame_unwind_stop_reason (struct frame_info *this_frame,
2120 void **this_cache)
2121 {
2122 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2123
2124 if (!cache->base_p)
2125 return UNWIND_UNAVAILABLE;
2126
2127 /* This marks the outermost frame. */
2128 if (cache->base == 0)
2129 return UNWIND_OUTERMOST;
2130
2131 return UNWIND_NO_REASON;
2132 }
2133
2134 static struct value *
2135 i386_frame_prev_register (struct frame_info *this_frame, void **this_cache,
2136 int regnum)
2137 {
2138 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2139
2140 gdb_assert (regnum >= 0);
2141
2142 /* The System V ABI says that:
2143
2144 "The flags register contains the system flags, such as the
2145 direction flag and the carry flag. The direction flag must be
2146 set to the forward (that is, zero) direction before entry and
2147 upon exit from a function. Other user flags have no specified
2148 role in the standard calling sequence and are not preserved."
2149
2150 To guarantee the "upon exit" part of that statement we fake a
2151 saved flags register that has its direction flag cleared.
2152
2153 Note that GCC doesn't seem to rely on the fact that the direction
2154 flag is cleared after a function return; it always explicitly
2155 clears the flag before operations where it matters.
2156
2157 FIXME: kettenis/20030316: I'm not quite sure whether this is the
2158 right thing to do. The way we fake the flags register here makes
2159 it impossible to change it. */
2160
2161 if (regnum == I386_EFLAGS_REGNUM)
2162 {
2163 ULONGEST val;
2164
2165 val = get_frame_register_unsigned (this_frame, regnum);
2166 val &= ~(1 << 10);
2167 return frame_unwind_got_constant (this_frame, regnum, val);
2168 }
2169
2170 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
2171 return frame_unwind_got_register (this_frame, regnum, I386_EAX_REGNUM);
2172
2173 if (regnum == I386_ESP_REGNUM
2174 && (cache->saved_sp != 0 || cache->saved_sp_reg != -1))
2175 {
2176 /* If the SP has been saved, but we don't know where, then this
2177 means that SAVED_SP_REG register was found unavailable back
2178 when we built the cache. */
2179 if (cache->saved_sp == 0)
2180 return frame_unwind_got_register (this_frame, regnum,
2181 cache->saved_sp_reg);
2182 else
2183 return frame_unwind_got_constant (this_frame, regnum,
2184 cache->saved_sp);
2185 }
2186
2187 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
2188 return frame_unwind_got_memory (this_frame, regnum,
2189 cache->saved_regs[regnum]);
2190
2191 return frame_unwind_got_register (this_frame, regnum, regnum);
2192 }
2193
2194 static const struct frame_unwind i386_frame_unwind =
2195 {
2196 NORMAL_FRAME,
2197 i386_frame_unwind_stop_reason,
2198 i386_frame_this_id,
2199 i386_frame_prev_register,
2200 NULL,
2201 default_frame_sniffer
2202 };
2203
2204 /* Normal frames, but in a function epilogue. */
2205
2206 /* Implement the stack_frame_destroyed_p gdbarch method.
2207
2208 The epilogue is defined here as the 'ret' instruction, which will
2209 follow any instruction such as 'leave' or 'pop %ebp' that destroys
2210 the function's stack frame. */
2211
2212 static int
2213 i386_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2214 {
2215 gdb_byte insn;
2216 struct compunit_symtab *cust;
2217
2218 cust = find_pc_compunit_symtab (pc);
2219 if (cust != NULL && COMPUNIT_EPILOGUE_UNWIND_VALID (cust))
2220 return 0;
2221
2222 if (target_read_memory (pc, &insn, 1))
2223 return 0; /* Can't read memory at pc. */
2224
2225 if (insn != 0xc3) /* 'ret' instruction. */
2226 return 0;
2227
2228 return 1;
2229 }
2230
2231 static int
2232 i386_epilogue_frame_sniffer (const struct frame_unwind *self,
2233 struct frame_info *this_frame,
2234 void **this_prologue_cache)
2235 {
2236 if (frame_relative_level (this_frame) == 0)
2237 return i386_stack_frame_destroyed_p (get_frame_arch (this_frame),
2238 get_frame_pc (this_frame));
2239 else
2240 return 0;
2241 }
2242
2243 static struct i386_frame_cache *
2244 i386_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
2245 {
2246 struct i386_frame_cache *cache;
2247 CORE_ADDR sp;
2248
2249 if (*this_cache)
2250 return (struct i386_frame_cache *) *this_cache;
2251
2252 cache = i386_alloc_frame_cache ();
2253 *this_cache = cache;
2254
2255 try
2256 {
2257 cache->pc = get_frame_func (this_frame);
2258
2259 /* At this point the stack looks as if we just entered the
2260 function, with the return address at the top of the
2261 stack. */
2262 sp = get_frame_register_unsigned (this_frame, I386_ESP_REGNUM);
2263 cache->base = sp + cache->sp_offset;
2264 cache->saved_sp = cache->base + 8;
2265 cache->saved_regs[I386_EIP_REGNUM] = cache->base + 4;
2266
2267 cache->base_p = 1;
2268 }
2269 catch (const gdb_exception_error &ex)
2270 {
2271 if (ex.error != NOT_AVAILABLE_ERROR)
2272 throw;
2273 }
2274
2275 return cache;
2276 }
2277
2278 static enum unwind_stop_reason
2279 i386_epilogue_frame_unwind_stop_reason (struct frame_info *this_frame,
2280 void **this_cache)
2281 {
2282 struct i386_frame_cache *cache =
2283 i386_epilogue_frame_cache (this_frame, this_cache);
2284
2285 if (!cache->base_p)
2286 return UNWIND_UNAVAILABLE;
2287
2288 return UNWIND_NO_REASON;
2289 }
2290
2291 static void
2292 i386_epilogue_frame_this_id (struct frame_info *this_frame,
2293 void **this_cache,
2294 struct frame_id *this_id)
2295 {
2296 struct i386_frame_cache *cache =
2297 i386_epilogue_frame_cache (this_frame, this_cache);
2298
2299 if (!cache->base_p)
2300 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2301 else
2302 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2303 }
2304
2305 static struct value *
2306 i386_epilogue_frame_prev_register (struct frame_info *this_frame,
2307 void **this_cache, int regnum)
2308 {
2309 /* Make sure we've initialized the cache. */
2310 i386_epilogue_frame_cache (this_frame, this_cache);
2311
2312 return i386_frame_prev_register (this_frame, this_cache, regnum);
2313 }
2314
2315 static const struct frame_unwind i386_epilogue_frame_unwind =
2316 {
2317 NORMAL_FRAME,
2318 i386_epilogue_frame_unwind_stop_reason,
2319 i386_epilogue_frame_this_id,
2320 i386_epilogue_frame_prev_register,
2321 NULL,
2322 i386_epilogue_frame_sniffer
2323 };
2324 \f
2325
2326 /* Stack-based trampolines. */
2327
2328 /* These trampolines are used on cross x86 targets, when taking the
2329 address of a nested function. When executing these trampolines,
2330 no stack frame is set up, so we are in a similar situation as in
2331 epilogues and i386_epilogue_frame_this_id can be re-used. */
2332
2333 /* Static chain passed in register. */
2334
2335 struct i386_insn i386_tramp_chain_in_reg_insns[] =
2336 {
2337 /* `movl imm32, %eax' and `movl imm32, %ecx' */
2338 { 5, { 0xb8 }, { 0xfe } },
2339
2340 /* `jmp imm32' */
2341 { 5, { 0xe9 }, { 0xff } },
2342
2343 {0}
2344 };
2345
2346 /* Static chain passed on stack (when regparm=3). */
2347
2348 struct i386_insn i386_tramp_chain_on_stack_insns[] =
2349 {
2350 /* `push imm32' */
2351 { 5, { 0x68 }, { 0xff } },
2352
2353 /* `jmp imm32' */
2354 { 5, { 0xe9 }, { 0xff } },
2355
2356 {0}
2357 };
2358
2359 /* Return whether PC points inside a stack trampoline. */
2360
2361 static int
2362 i386_in_stack_tramp_p (CORE_ADDR pc)
2363 {
2364 gdb_byte insn;
2365 const char *name;
2366
2367 /* A stack trampoline is detected if no name is associated
2368 to the current pc and if it points inside a trampoline
2369 sequence. */
2370
2371 find_pc_partial_function (pc, &name, NULL, NULL);
2372 if (name)
2373 return 0;
2374
2375 if (target_read_memory (pc, &insn, 1))
2376 return 0;
2377
2378 if (!i386_match_insn_block (pc, i386_tramp_chain_in_reg_insns)
2379 && !i386_match_insn_block (pc, i386_tramp_chain_on_stack_insns))
2380 return 0;
2381
2382 return 1;
2383 }
2384
2385 static int
2386 i386_stack_tramp_frame_sniffer (const struct frame_unwind *self,
2387 struct frame_info *this_frame,
2388 void **this_cache)
2389 {
2390 if (frame_relative_level (this_frame) == 0)
2391 return i386_in_stack_tramp_p (get_frame_pc (this_frame));
2392 else
2393 return 0;
2394 }
2395
2396 static const struct frame_unwind i386_stack_tramp_frame_unwind =
2397 {
2398 NORMAL_FRAME,
2399 i386_epilogue_frame_unwind_stop_reason,
2400 i386_epilogue_frame_this_id,
2401 i386_epilogue_frame_prev_register,
2402 NULL,
2403 i386_stack_tramp_frame_sniffer
2404 };
2405 \f
2406 /* Generate a bytecode expression to get the value of the saved PC. */
2407
2408 static void
2409 i386_gen_return_address (struct gdbarch *gdbarch,
2410 struct agent_expr *ax, struct axs_value *value,
2411 CORE_ADDR scope)
2412 {
2413 /* The following sequence assumes the traditional use of the base
2414 register. */
2415 ax_reg (ax, I386_EBP_REGNUM);
2416 ax_const_l (ax, 4);
2417 ax_simple (ax, aop_add);
2418 value->type = register_type (gdbarch, I386_EIP_REGNUM);
2419 value->kind = axs_lvalue_memory;
2420 }
2421 \f
2422
2423 /* Signal trampolines. */
2424
2425 static struct i386_frame_cache *
2426 i386_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
2427 {
2428 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2429 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2430 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2431 struct i386_frame_cache *cache;
2432 CORE_ADDR addr;
2433 gdb_byte buf[4];
2434
2435 if (*this_cache)
2436 return (struct i386_frame_cache *) *this_cache;
2437
2438 cache = i386_alloc_frame_cache ();
2439
2440 try
2441 {
2442 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2443 cache->base = extract_unsigned_integer (buf, 4, byte_order) - 4;
2444
2445 addr = tdep->sigcontext_addr (this_frame);
2446 if (tdep->sc_reg_offset)
2447 {
2448 int i;
2449
2450 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
2451
2452 for (i = 0; i < tdep->sc_num_regs; i++)
2453 if (tdep->sc_reg_offset[i] != -1)
2454 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
2455 }
2456 else
2457 {
2458 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
2459 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
2460 }
2461
2462 cache->base_p = 1;
2463 }
2464 catch (const gdb_exception_error &ex)
2465 {
2466 if (ex.error != NOT_AVAILABLE_ERROR)
2467 throw;
2468 }
2469
2470 *this_cache = cache;
2471 return cache;
2472 }
2473
2474 static enum unwind_stop_reason
2475 i386_sigtramp_frame_unwind_stop_reason (struct frame_info *this_frame,
2476 void **this_cache)
2477 {
2478 struct i386_frame_cache *cache =
2479 i386_sigtramp_frame_cache (this_frame, this_cache);
2480
2481 if (!cache->base_p)
2482 return UNWIND_UNAVAILABLE;
2483
2484 return UNWIND_NO_REASON;
2485 }
2486
2487 static void
2488 i386_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache,
2489 struct frame_id *this_id)
2490 {
2491 struct i386_frame_cache *cache =
2492 i386_sigtramp_frame_cache (this_frame, this_cache);
2493
2494 if (!cache->base_p)
2495 (*this_id) = frame_id_build_unavailable_stack (get_frame_pc (this_frame));
2496 else
2497 {
2498 /* See the end of i386_push_dummy_call. */
2499 (*this_id) = frame_id_build (cache->base + 8, get_frame_pc (this_frame));
2500 }
2501 }
2502
2503 static struct value *
2504 i386_sigtramp_frame_prev_register (struct frame_info *this_frame,
2505 void **this_cache, int regnum)
2506 {
2507 /* Make sure we've initialized the cache. */
2508 i386_sigtramp_frame_cache (this_frame, this_cache);
2509
2510 return i386_frame_prev_register (this_frame, this_cache, regnum);
2511 }
2512
2513 static int
2514 i386_sigtramp_frame_sniffer (const struct frame_unwind *self,
2515 struct frame_info *this_frame,
2516 void **this_prologue_cache)
2517 {
2518 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
2519
2520 /* We shouldn't even bother if we don't have a sigcontext_addr
2521 handler. */
2522 if (tdep->sigcontext_addr == NULL)
2523 return 0;
2524
2525 if (tdep->sigtramp_p != NULL)
2526 {
2527 if (tdep->sigtramp_p (this_frame))
2528 return 1;
2529 }
2530
2531 if (tdep->sigtramp_start != 0)
2532 {
2533 CORE_ADDR pc = get_frame_pc (this_frame);
2534
2535 gdb_assert (tdep->sigtramp_end != 0);
2536 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
2537 return 1;
2538 }
2539
2540 return 0;
2541 }
2542
2543 static const struct frame_unwind i386_sigtramp_frame_unwind =
2544 {
2545 SIGTRAMP_FRAME,
2546 i386_sigtramp_frame_unwind_stop_reason,
2547 i386_sigtramp_frame_this_id,
2548 i386_sigtramp_frame_prev_register,
2549 NULL,
2550 i386_sigtramp_frame_sniffer
2551 };
2552 \f
2553
2554 static CORE_ADDR
2555 i386_frame_base_address (struct frame_info *this_frame, void **this_cache)
2556 {
2557 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2558
2559 return cache->base;
2560 }
2561
2562 static const struct frame_base i386_frame_base =
2563 {
2564 &i386_frame_unwind,
2565 i386_frame_base_address,
2566 i386_frame_base_address,
2567 i386_frame_base_address
2568 };
2569
2570 static struct frame_id
2571 i386_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2572 {
2573 CORE_ADDR fp;
2574
2575 fp = get_frame_register_unsigned (this_frame, I386_EBP_REGNUM);
2576
2577 /* See the end of i386_push_dummy_call. */
2578 return frame_id_build (fp + 8, get_frame_pc (this_frame));
2579 }
2580
2581 /* _Decimal128 function return values need 16-byte alignment on the
2582 stack. */
2583
2584 static CORE_ADDR
2585 i386_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2586 {
2587 return sp & -(CORE_ADDR)16;
2588 }
2589 \f
2590
2591 /* Figure out where the longjmp will land. Slurp the args out of the
2592 stack. We expect the first arg to be a pointer to the jmp_buf
2593 structure from which we extract the address that we will land at.
2594 This address is copied into PC. This routine returns non-zero on
2595 success. */
2596
2597 static int
2598 i386_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
2599 {
2600 gdb_byte buf[4];
2601 CORE_ADDR sp, jb_addr;
2602 struct gdbarch *gdbarch = get_frame_arch (frame);
2603 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2604 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
2605
2606 /* If JB_PC_OFFSET is -1, we have no way to find out where the
2607 longjmp will land. */
2608 if (jb_pc_offset == -1)
2609 return 0;
2610
2611 get_frame_register (frame, I386_ESP_REGNUM, buf);
2612 sp = extract_unsigned_integer (buf, 4, byte_order);
2613 if (target_read_memory (sp + 4, buf, 4))
2614 return 0;
2615
2616 jb_addr = extract_unsigned_integer (buf, 4, byte_order);
2617 if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
2618 return 0;
2619
2620 *pc = extract_unsigned_integer (buf, 4, byte_order);
2621 return 1;
2622 }
2623 \f
2624
2625 /* Check whether TYPE must be 16-byte-aligned when passed as a
2626 function argument. 16-byte vectors, _Decimal128 and structures or
2627 unions containing such types must be 16-byte-aligned; other
2628 arguments are 4-byte-aligned. */
2629
2630 static int
2631 i386_16_byte_align_p (struct type *type)
2632 {
2633 type = check_typedef (type);
2634 if ((TYPE_CODE (type) == TYPE_CODE_DECFLOAT
2635 || (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type)))
2636 && TYPE_LENGTH (type) == 16)
2637 return 1;
2638 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2639 return i386_16_byte_align_p (TYPE_TARGET_TYPE (type));
2640 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2641 || TYPE_CODE (type) == TYPE_CODE_UNION)
2642 {
2643 int i;
2644 for (i = 0; i < TYPE_NFIELDS (type); i++)
2645 {
2646 if (i386_16_byte_align_p (TYPE_FIELD_TYPE (type, i)))
2647 return 1;
2648 }
2649 }
2650 return 0;
2651 }
2652
2653 /* Implementation for set_gdbarch_push_dummy_code. */
2654
2655 static CORE_ADDR
2656 i386_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, CORE_ADDR funaddr,
2657 struct value **args, int nargs, struct type *value_type,
2658 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
2659 struct regcache *regcache)
2660 {
2661 /* Use 0xcc breakpoint - 1 byte. */
2662 *bp_addr = sp - 1;
2663 *real_pc = funaddr;
2664
2665 /* Keep the stack aligned. */
2666 return sp - 16;
2667 }
2668
2669 static CORE_ADDR
2670 i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2671 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2672 struct value **args, CORE_ADDR sp,
2673 function_call_return_method return_method,
2674 CORE_ADDR struct_addr)
2675 {
2676 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2677 gdb_byte buf[4];
2678 int i;
2679 int write_pass;
2680 int args_space = 0;
2681
2682 /* BND registers can be in arbitrary values at the moment of the
2683 inferior call. This can cause boundary violations that are not
2684 due to a real bug or even desired by the user. The best to be done
2685 is set the BND registers to allow access to the whole memory, INIT
2686 state, before pushing the inferior call. */
2687 i387_reset_bnd_regs (gdbarch, regcache);
2688
2689 /* Determine the total space required for arguments and struct
2690 return address in a first pass (allowing for 16-byte-aligned
2691 arguments), then push arguments in a second pass. */
2692
2693 for (write_pass = 0; write_pass < 2; write_pass++)
2694 {
2695 int args_space_used = 0;
2696
2697 if (return_method == return_method_struct)
2698 {
2699 if (write_pass)
2700 {
2701 /* Push value address. */
2702 store_unsigned_integer (buf, 4, byte_order, struct_addr);
2703 write_memory (sp, buf, 4);
2704 args_space_used += 4;
2705 }
2706 else
2707 args_space += 4;
2708 }
2709
2710 for (i = 0; i < nargs; i++)
2711 {
2712 int len = TYPE_LENGTH (value_enclosing_type (args[i]));
2713
2714 if (write_pass)
2715 {
2716 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2717 args_space_used = align_up (args_space_used, 16);
2718
2719 write_memory (sp + args_space_used,
2720 value_contents_all (args[i]), len);
2721 /* The System V ABI says that:
2722
2723 "An argument's size is increased, if necessary, to make it a
2724 multiple of [32-bit] words. This may require tail padding,
2725 depending on the size of the argument."
2726
2727 This makes sure the stack stays word-aligned. */
2728 args_space_used += align_up (len, 4);
2729 }
2730 else
2731 {
2732 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2733 args_space = align_up (args_space, 16);
2734 args_space += align_up (len, 4);
2735 }
2736 }
2737
2738 if (!write_pass)
2739 {
2740 sp -= args_space;
2741
2742 /* The original System V ABI only requires word alignment,
2743 but modern incarnations need 16-byte alignment in order
2744 to support SSE. Since wasting a few bytes here isn't
2745 harmful we unconditionally enforce 16-byte alignment. */
2746 sp &= ~0xf;
2747 }
2748 }
2749
2750 /* Store return address. */
2751 sp -= 4;
2752 store_unsigned_integer (buf, 4, byte_order, bp_addr);
2753 write_memory (sp, buf, 4);
2754
2755 /* Finally, update the stack pointer... */
2756 store_unsigned_integer (buf, 4, byte_order, sp);
2757 regcache->cooked_write (I386_ESP_REGNUM, buf);
2758
2759 /* ...and fake a frame pointer. */
2760 regcache->cooked_write (I386_EBP_REGNUM, buf);
2761
2762 /* MarkK wrote: This "+ 8" is all over the place:
2763 (i386_frame_this_id, i386_sigtramp_frame_this_id,
2764 i386_dummy_id). It's there, since all frame unwinders for
2765 a given target have to agree (within a certain margin) on the
2766 definition of the stack address of a frame. Otherwise frame id
2767 comparison might not work correctly. Since DWARF2/GCC uses the
2768 stack address *before* the function call as a frame's CFA. On
2769 the i386, when %ebp is used as a frame pointer, the offset
2770 between the contents %ebp and the CFA as defined by GCC. */
2771 return sp + 8;
2772 }
2773
2774 /* These registers are used for returning integers (and on some
2775 targets also for returning `struct' and `union' values when their
2776 size and alignment match an integer type). */
2777 #define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
2778 #define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
2779
2780 /* Read, for architecture GDBARCH, a function return value of TYPE
2781 from REGCACHE, and copy that into VALBUF. */
2782
2783 static void
2784 i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
2785 struct regcache *regcache, gdb_byte *valbuf)
2786 {
2787 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2788 int len = TYPE_LENGTH (type);
2789 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2790
2791 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2792 {
2793 if (tdep->st0_regnum < 0)
2794 {
2795 warning (_("Cannot find floating-point return value."));
2796 memset (valbuf, 0, len);
2797 return;
2798 }
2799
2800 /* Floating-point return values can be found in %st(0). Convert
2801 its contents to the desired type. This is probably not
2802 exactly how it would happen on the target itself, but it is
2803 the best we can do. */
2804 regcache->raw_read (I386_ST0_REGNUM, buf);
2805 target_float_convert (buf, i387_ext_type (gdbarch), valbuf, type);
2806 }
2807 else
2808 {
2809 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2810 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2811
2812 if (len <= low_size)
2813 {
2814 regcache->raw_read (LOW_RETURN_REGNUM, buf);
2815 memcpy (valbuf, buf, len);
2816 }
2817 else if (len <= (low_size + high_size))
2818 {
2819 regcache->raw_read (LOW_RETURN_REGNUM, buf);
2820 memcpy (valbuf, buf, low_size);
2821 regcache->raw_read (HIGH_RETURN_REGNUM, buf);
2822 memcpy (valbuf + low_size, buf, len - low_size);
2823 }
2824 else
2825 internal_error (__FILE__, __LINE__,
2826 _("Cannot extract return value of %d bytes long."),
2827 len);
2828 }
2829 }
2830
2831 /* Write, for architecture GDBARCH, a function return value of TYPE
2832 from VALBUF into REGCACHE. */
2833
2834 static void
2835 i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
2836 struct regcache *regcache, const gdb_byte *valbuf)
2837 {
2838 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2839 int len = TYPE_LENGTH (type);
2840
2841 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2842 {
2843 ULONGEST fstat;
2844 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2845
2846 if (tdep->st0_regnum < 0)
2847 {
2848 warning (_("Cannot set floating-point return value."));
2849 return;
2850 }
2851
2852 /* Returning floating-point values is a bit tricky. Apart from
2853 storing the return value in %st(0), we have to simulate the
2854 state of the FPU at function return point. */
2855
2856 /* Convert the value found in VALBUF to the extended
2857 floating-point format used by the FPU. This is probably
2858 not exactly how it would happen on the target itself, but
2859 it is the best we can do. */
2860 target_float_convert (valbuf, type, buf, i387_ext_type (gdbarch));
2861 regcache->raw_write (I386_ST0_REGNUM, buf);
2862
2863 /* Set the top of the floating-point register stack to 7. The
2864 actual value doesn't really matter, but 7 is what a normal
2865 function return would end up with if the program started out
2866 with a freshly initialized FPU. */
2867 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
2868 fstat |= (7 << 11);
2869 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM (tdep), fstat);
2870
2871 /* Mark %st(1) through %st(7) as empty. Since we set the top of
2872 the floating-point register stack to 7, the appropriate value
2873 for the tag word is 0x3fff. */
2874 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM (tdep), 0x3fff);
2875 }
2876 else
2877 {
2878 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2879 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2880
2881 if (len <= low_size)
2882 regcache->raw_write_part (LOW_RETURN_REGNUM, 0, len, valbuf);
2883 else if (len <= (low_size + high_size))
2884 {
2885 regcache->raw_write (LOW_RETURN_REGNUM, valbuf);
2886 regcache->raw_write_part (HIGH_RETURN_REGNUM, 0, len - low_size,
2887 valbuf + low_size);
2888 }
2889 else
2890 internal_error (__FILE__, __LINE__,
2891 _("Cannot store return value of %d bytes long."), len);
2892 }
2893 }
2894 \f
2895
2896 /* This is the variable that is set with "set struct-convention", and
2897 its legitimate values. */
2898 static const char default_struct_convention[] = "default";
2899 static const char pcc_struct_convention[] = "pcc";
2900 static const char reg_struct_convention[] = "reg";
2901 static const char *const valid_conventions[] =
2902 {
2903 default_struct_convention,
2904 pcc_struct_convention,
2905 reg_struct_convention,
2906 NULL
2907 };
2908 static const char *struct_convention = default_struct_convention;
2909
2910 /* Return non-zero if TYPE, which is assumed to be a structure,
2911 a union type, or an array type, should be returned in registers
2912 for architecture GDBARCH. */
2913
2914 static int
2915 i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
2916 {
2917 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2918 enum type_code code = TYPE_CODE (type);
2919 int len = TYPE_LENGTH (type);
2920
2921 gdb_assert (code == TYPE_CODE_STRUCT
2922 || code == TYPE_CODE_UNION
2923 || code == TYPE_CODE_ARRAY);
2924
2925 if (struct_convention == pcc_struct_convention
2926 || (struct_convention == default_struct_convention
2927 && tdep->struct_return == pcc_struct_return))
2928 return 0;
2929
2930 /* Structures consisting of a single `float', `double' or 'long
2931 double' member are returned in %st(0). */
2932 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2933 {
2934 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
2935 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2936 return (len == 4 || len == 8 || len == 12);
2937 }
2938
2939 return (len == 1 || len == 2 || len == 4 || len == 8);
2940 }
2941
2942 /* Determine, for architecture GDBARCH, how a return value of TYPE
2943 should be returned. If it is supposed to be returned in registers,
2944 and READBUF is non-zero, read the appropriate value from REGCACHE,
2945 and copy it into READBUF. If WRITEBUF is non-zero, write the value
2946 from WRITEBUF into REGCACHE. */
2947
2948 static enum return_value_convention
2949 i386_return_value (struct gdbarch *gdbarch, struct value *function,
2950 struct type *type, struct regcache *regcache,
2951 gdb_byte *readbuf, const gdb_byte *writebuf)
2952 {
2953 enum type_code code = TYPE_CODE (type);
2954
2955 if (((code == TYPE_CODE_STRUCT
2956 || code == TYPE_CODE_UNION
2957 || code == TYPE_CODE_ARRAY)
2958 && !i386_reg_struct_return_p (gdbarch, type))
2959 /* Complex double and long double uses the struct return covention. */
2960 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 16)
2961 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 24)
2962 /* 128-bit decimal float uses the struct return convention. */
2963 || (code == TYPE_CODE_DECFLOAT && TYPE_LENGTH (type) == 16))
2964 {
2965 /* The System V ABI says that:
2966
2967 "A function that returns a structure or union also sets %eax
2968 to the value of the original address of the caller's area
2969 before it returns. Thus when the caller receives control
2970 again, the address of the returned object resides in register
2971 %eax and can be used to access the object."
2972
2973 So the ABI guarantees that we can always find the return
2974 value just after the function has returned. */
2975
2976 /* Note that the ABI doesn't mention functions returning arrays,
2977 which is something possible in certain languages such as Ada.
2978 In this case, the value is returned as if it was wrapped in
2979 a record, so the convention applied to records also applies
2980 to arrays. */
2981
2982 if (readbuf)
2983 {
2984 ULONGEST addr;
2985
2986 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
2987 read_memory (addr, readbuf, TYPE_LENGTH (type));
2988 }
2989
2990 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
2991 }
2992
2993 /* This special case is for structures consisting of a single
2994 `float', `double' or 'long double' member. These structures are
2995 returned in %st(0). For these structures, we call ourselves
2996 recursively, changing TYPE into the type of the first member of
2997 the structure. Since that should work for all structures that
2998 have only one member, we don't bother to check the member's type
2999 here. */
3000 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
3001 {
3002 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
3003 return i386_return_value (gdbarch, function, type, regcache,
3004 readbuf, writebuf);
3005 }
3006
3007 if (readbuf)
3008 i386_extract_return_value (gdbarch, type, regcache, readbuf);
3009 if (writebuf)
3010 i386_store_return_value (gdbarch, type, regcache, writebuf);
3011
3012 return RETURN_VALUE_REGISTER_CONVENTION;
3013 }
3014 \f
3015
3016 struct type *
3017 i387_ext_type (struct gdbarch *gdbarch)
3018 {
3019 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3020
3021 if (!tdep->i387_ext_type)
3022 {
3023 tdep->i387_ext_type = tdesc_find_type (gdbarch, "i387_ext");
3024 gdb_assert (tdep->i387_ext_type != NULL);
3025 }
3026
3027 return tdep->i387_ext_type;
3028 }
3029
3030 /* Construct type for pseudo BND registers. We can't use
3031 tdesc_find_type since a complement of one value has to be used
3032 to describe the upper bound. */
3033
3034 static struct type *
3035 i386_bnd_type (struct gdbarch *gdbarch)
3036 {
3037 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3038
3039
3040 if (!tdep->i386_bnd_type)
3041 {
3042 struct type *t;
3043 const struct builtin_type *bt = builtin_type (gdbarch);
3044
3045 /* The type we're building is described bellow: */
3046 #if 0
3047 struct __bound128
3048 {
3049 void *lbound;
3050 void *ubound; /* One complement of raw ubound field. */
3051 };
3052 #endif
3053
3054 t = arch_composite_type (gdbarch,
3055 "__gdb_builtin_type_bound128", TYPE_CODE_STRUCT);
3056
3057 append_composite_type_field (t, "lbound", bt->builtin_data_ptr);
3058 append_composite_type_field (t, "ubound", bt->builtin_data_ptr);
3059
3060 TYPE_NAME (t) = "builtin_type_bound128";
3061 tdep->i386_bnd_type = t;
3062 }
3063
3064 return tdep->i386_bnd_type;
3065 }
3066
3067 /* Construct vector type for pseudo ZMM registers. We can't use
3068 tdesc_find_type since ZMM isn't described in target description. */
3069
3070 static struct type *
3071 i386_zmm_type (struct gdbarch *gdbarch)
3072 {
3073 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3074
3075 if (!tdep->i386_zmm_type)
3076 {
3077 const struct builtin_type *bt = builtin_type (gdbarch);
3078
3079 /* The type we're building is this: */
3080 #if 0
3081 union __gdb_builtin_type_vec512i
3082 {
3083 int128_t uint128[4];
3084 int64_t v4_int64[8];
3085 int32_t v8_int32[16];
3086 int16_t v16_int16[32];
3087 int8_t v32_int8[64];
3088 double v4_double[8];
3089 float v8_float[16];
3090 };
3091 #endif
3092
3093 struct type *t;
3094
3095 t = arch_composite_type (gdbarch,
3096 "__gdb_builtin_type_vec512i", TYPE_CODE_UNION);
3097 append_composite_type_field (t, "v16_float",
3098 init_vector_type (bt->builtin_float, 16));
3099 append_composite_type_field (t, "v8_double",
3100 init_vector_type (bt->builtin_double, 8));
3101 append_composite_type_field (t, "v64_int8",
3102 init_vector_type (bt->builtin_int8, 64));
3103 append_composite_type_field (t, "v32_int16",
3104 init_vector_type (bt->builtin_int16, 32));
3105 append_composite_type_field (t, "v16_int32",
3106 init_vector_type (bt->builtin_int32, 16));
3107 append_composite_type_field (t, "v8_int64",
3108 init_vector_type (bt->builtin_int64, 8));
3109 append_composite_type_field (t, "v4_int128",
3110 init_vector_type (bt->builtin_int128, 4));
3111
3112 TYPE_VECTOR (t) = 1;
3113 TYPE_NAME (t) = "builtin_type_vec512i";
3114 tdep->i386_zmm_type = t;
3115 }
3116
3117 return tdep->i386_zmm_type;
3118 }
3119
3120 /* Construct vector type for pseudo YMM registers. We can't use
3121 tdesc_find_type since YMM isn't described in target description. */
3122
3123 static struct type *
3124 i386_ymm_type (struct gdbarch *gdbarch)
3125 {
3126 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3127
3128 if (!tdep->i386_ymm_type)
3129 {
3130 const struct builtin_type *bt = builtin_type (gdbarch);
3131
3132 /* The type we're building is this: */
3133 #if 0
3134 union __gdb_builtin_type_vec256i
3135 {
3136 int128_t uint128[2];
3137 int64_t v2_int64[4];
3138 int32_t v4_int32[8];
3139 int16_t v8_int16[16];
3140 int8_t v16_int8[32];
3141 double v2_double[4];
3142 float v4_float[8];
3143 };
3144 #endif
3145
3146 struct type *t;
3147
3148 t = arch_composite_type (gdbarch,
3149 "__gdb_builtin_type_vec256i", TYPE_CODE_UNION);
3150 append_composite_type_field (t, "v8_float",
3151 init_vector_type (bt->builtin_float, 8));
3152 append_composite_type_field (t, "v4_double",
3153 init_vector_type (bt->builtin_double, 4));
3154 append_composite_type_field (t, "v32_int8",
3155 init_vector_type (bt->builtin_int8, 32));
3156 append_composite_type_field (t, "v16_int16",
3157 init_vector_type (bt->builtin_int16, 16));
3158 append_composite_type_field (t, "v8_int32",
3159 init_vector_type (bt->builtin_int32, 8));
3160 append_composite_type_field (t, "v4_int64",
3161 init_vector_type (bt->builtin_int64, 4));
3162 append_composite_type_field (t, "v2_int128",
3163 init_vector_type (bt->builtin_int128, 2));
3164
3165 TYPE_VECTOR (t) = 1;
3166 TYPE_NAME (t) = "builtin_type_vec256i";
3167 tdep->i386_ymm_type = t;
3168 }
3169
3170 return tdep->i386_ymm_type;
3171 }
3172
3173 /* Construct vector type for MMX registers. */
3174 static struct type *
3175 i386_mmx_type (struct gdbarch *gdbarch)
3176 {
3177 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3178
3179 if (!tdep->i386_mmx_type)
3180 {
3181 const struct builtin_type *bt = builtin_type (gdbarch);
3182
3183 /* The type we're building is this: */
3184 #if 0
3185 union __gdb_builtin_type_vec64i
3186 {
3187 int64_t uint64;
3188 int32_t v2_int32[2];
3189 int16_t v4_int16[4];
3190 int8_t v8_int8[8];
3191 };
3192 #endif
3193
3194 struct type *t;
3195
3196 t = arch_composite_type (gdbarch,
3197 "__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
3198
3199 append_composite_type_field (t, "uint64", bt->builtin_int64);
3200 append_composite_type_field (t, "v2_int32",
3201 init_vector_type (bt->builtin_int32, 2));
3202 append_composite_type_field (t, "v4_int16",
3203 init_vector_type (bt->builtin_int16, 4));
3204 append_composite_type_field (t, "v8_int8",
3205 init_vector_type (bt->builtin_int8, 8));
3206
3207 TYPE_VECTOR (t) = 1;
3208 TYPE_NAME (t) = "builtin_type_vec64i";
3209 tdep->i386_mmx_type = t;
3210 }
3211
3212 return tdep->i386_mmx_type;
3213 }
3214
3215 /* Return the GDB type object for the "standard" data type of data in
3216 register REGNUM. */
3217
3218 struct type *
3219 i386_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
3220 {
3221 if (i386_bnd_regnum_p (gdbarch, regnum))
3222 return i386_bnd_type (gdbarch);
3223 if (i386_mmx_regnum_p (gdbarch, regnum))
3224 return i386_mmx_type (gdbarch);
3225 else if (i386_ymm_regnum_p (gdbarch, regnum))
3226 return i386_ymm_type (gdbarch);
3227 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3228 return i386_ymm_type (gdbarch);
3229 else if (i386_zmm_regnum_p (gdbarch, regnum))
3230 return i386_zmm_type (gdbarch);
3231 else
3232 {
3233 const struct builtin_type *bt = builtin_type (gdbarch);
3234 if (i386_byte_regnum_p (gdbarch, regnum))
3235 return bt->builtin_int8;
3236 else if (i386_word_regnum_p (gdbarch, regnum))
3237 return bt->builtin_int16;
3238 else if (i386_dword_regnum_p (gdbarch, regnum))
3239 return bt->builtin_int32;
3240 else if (i386_k_regnum_p (gdbarch, regnum))
3241 return bt->builtin_int64;
3242 }
3243
3244 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3245 }
3246
3247 /* Map a cooked register onto a raw register or memory. For the i386,
3248 the MMX registers need to be mapped onto floating point registers. */
3249
3250 static int
3251 i386_mmx_regnum_to_fp_regnum (readable_regcache *regcache, int regnum)
3252 {
3253 struct gdbarch_tdep *tdep = gdbarch_tdep (regcache->arch ());
3254 int mmxreg, fpreg;
3255 ULONGEST fstat;
3256 int tos;
3257
3258 mmxreg = regnum - tdep->mm0_regnum;
3259 regcache->raw_read (I387_FSTAT_REGNUM (tdep), &fstat);
3260 tos = (fstat >> 11) & 0x7;
3261 fpreg = (mmxreg + tos) % 8;
3262
3263 return (I387_ST0_REGNUM (tdep) + fpreg);
3264 }
3265
3266 /* A helper function for us by i386_pseudo_register_read_value and
3267 amd64_pseudo_register_read_value. It does all the work but reads
3268 the data into an already-allocated value. */
3269
3270 void
3271 i386_pseudo_register_read_into_value (struct gdbarch *gdbarch,
3272 readable_regcache *regcache,
3273 int regnum,
3274 struct value *result_value)
3275 {
3276 gdb_byte raw_buf[I386_MAX_REGISTER_SIZE];
3277 enum register_status status;
3278 gdb_byte *buf = value_contents_raw (result_value);
3279
3280 if (i386_mmx_regnum_p (gdbarch, regnum))
3281 {
3282 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3283
3284 /* Extract (always little endian). */
3285 status = regcache->raw_read (fpnum, raw_buf);
3286 if (status != REG_VALID)
3287 mark_value_bytes_unavailable (result_value, 0,
3288 TYPE_LENGTH (value_type (result_value)));
3289 else
3290 memcpy (buf, raw_buf, register_size (gdbarch, regnum));
3291 }
3292 else
3293 {
3294 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3295 if (i386_bnd_regnum_p (gdbarch, regnum))
3296 {
3297 regnum -= tdep->bnd0_regnum;
3298
3299 /* Extract (always little endian). Read lower 128bits. */
3300 status = regcache->raw_read (I387_BND0R_REGNUM (tdep) + regnum,
3301 raw_buf);
3302 if (status != REG_VALID)
3303 mark_value_bytes_unavailable (result_value, 0, 16);
3304 else
3305 {
3306 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3307 LONGEST upper, lower;
3308 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
3309
3310 lower = extract_unsigned_integer (raw_buf, 8, byte_order);
3311 upper = extract_unsigned_integer (raw_buf + 8, 8, byte_order);
3312 upper = ~upper;
3313
3314 memcpy (buf, &lower, size);
3315 memcpy (buf + size, &upper, size);
3316 }
3317 }
3318 else if (i386_k_regnum_p (gdbarch, regnum))
3319 {
3320 regnum -= tdep->k0_regnum;
3321
3322 /* Extract (always little endian). */
3323 status = regcache->raw_read (tdep->k0_regnum + regnum, raw_buf);
3324 if (status != REG_VALID)
3325 mark_value_bytes_unavailable (result_value, 0, 8);
3326 else
3327 memcpy (buf, raw_buf, 8);
3328 }
3329 else if (i386_zmm_regnum_p (gdbarch, regnum))
3330 {
3331 regnum -= tdep->zmm0_regnum;
3332
3333 if (regnum < num_lower_zmm_regs)
3334 {
3335 /* Extract (always little endian). Read lower 128bits. */
3336 status = regcache->raw_read (I387_XMM0_REGNUM (tdep) + regnum,
3337 raw_buf);
3338 if (status != REG_VALID)
3339 mark_value_bytes_unavailable (result_value, 0, 16);
3340 else
3341 memcpy (buf, raw_buf, 16);
3342
3343 /* Extract (always little endian). Read upper 128bits. */
3344 status = regcache->raw_read (tdep->ymm0h_regnum + regnum,
3345 raw_buf);
3346 if (status != REG_VALID)
3347 mark_value_bytes_unavailable (result_value, 16, 16);
3348 else
3349 memcpy (buf + 16, raw_buf, 16);
3350 }
3351 else
3352 {
3353 /* Extract (always little endian). Read lower 128bits. */
3354 status = regcache->raw_read (I387_XMM16_REGNUM (tdep) + regnum
3355 - num_lower_zmm_regs,
3356 raw_buf);
3357 if (status != REG_VALID)
3358 mark_value_bytes_unavailable (result_value, 0, 16);
3359 else
3360 memcpy (buf, raw_buf, 16);
3361
3362 /* Extract (always little endian). Read upper 128bits. */
3363 status = regcache->raw_read (I387_YMM16H_REGNUM (tdep) + regnum
3364 - num_lower_zmm_regs,
3365 raw_buf);
3366 if (status != REG_VALID)
3367 mark_value_bytes_unavailable (result_value, 16, 16);
3368 else
3369 memcpy (buf + 16, raw_buf, 16);
3370 }
3371
3372 /* Read upper 256bits. */
3373 status = regcache->raw_read (tdep->zmm0h_regnum + regnum,
3374 raw_buf);
3375 if (status != REG_VALID)
3376 mark_value_bytes_unavailable (result_value, 32, 32);
3377 else
3378 memcpy (buf + 32, raw_buf, 32);
3379 }
3380 else if (i386_ymm_regnum_p (gdbarch, regnum))
3381 {
3382 regnum -= tdep->ymm0_regnum;
3383
3384 /* Extract (always little endian). Read lower 128bits. */
3385 status = regcache->raw_read (I387_XMM0_REGNUM (tdep) + regnum,
3386 raw_buf);
3387 if (status != REG_VALID)
3388 mark_value_bytes_unavailable (result_value, 0, 16);
3389 else
3390 memcpy (buf, raw_buf, 16);
3391 /* Read upper 128bits. */
3392 status = regcache->raw_read (tdep->ymm0h_regnum + regnum,
3393 raw_buf);
3394 if (status != REG_VALID)
3395 mark_value_bytes_unavailable (result_value, 16, 32);
3396 else
3397 memcpy (buf + 16, raw_buf, 16);
3398 }
3399 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3400 {
3401 regnum -= tdep->ymm16_regnum;
3402 /* Extract (always little endian). Read lower 128bits. */
3403 status = regcache->raw_read (I387_XMM16_REGNUM (tdep) + regnum,
3404 raw_buf);
3405 if (status != REG_VALID)
3406 mark_value_bytes_unavailable (result_value, 0, 16);
3407 else
3408 memcpy (buf, raw_buf, 16);
3409 /* Read upper 128bits. */
3410 status = regcache->raw_read (tdep->ymm16h_regnum + regnum,
3411 raw_buf);
3412 if (status != REG_VALID)
3413 mark_value_bytes_unavailable (result_value, 16, 16);
3414 else
3415 memcpy (buf + 16, raw_buf, 16);
3416 }
3417 else if (i386_word_regnum_p (gdbarch, regnum))
3418 {
3419 int gpnum = regnum - tdep->ax_regnum;
3420
3421 /* Extract (always little endian). */
3422 status = regcache->raw_read (gpnum, raw_buf);
3423 if (status != REG_VALID)
3424 mark_value_bytes_unavailable (result_value, 0,
3425 TYPE_LENGTH (value_type (result_value)));
3426 else
3427 memcpy (buf, raw_buf, 2);
3428 }
3429 else if (i386_byte_regnum_p (gdbarch, regnum))
3430 {
3431 int gpnum = regnum - tdep->al_regnum;
3432
3433 /* Extract (always little endian). We read both lower and
3434 upper registers. */
3435 status = regcache->raw_read (gpnum % 4, raw_buf);
3436 if (status != REG_VALID)
3437 mark_value_bytes_unavailable (result_value, 0,
3438 TYPE_LENGTH (value_type (result_value)));
3439 else if (gpnum >= 4)
3440 memcpy (buf, raw_buf + 1, 1);
3441 else
3442 memcpy (buf, raw_buf, 1);
3443 }
3444 else
3445 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3446 }
3447 }
3448
3449 static struct value *
3450 i386_pseudo_register_read_value (struct gdbarch *gdbarch,
3451 readable_regcache *regcache,
3452 int regnum)
3453 {
3454 struct value *result;
3455
3456 result = allocate_value (register_type (gdbarch, regnum));
3457 VALUE_LVAL (result) = lval_register;
3458 VALUE_REGNUM (result) = regnum;
3459
3460 i386_pseudo_register_read_into_value (gdbarch, regcache, regnum, result);
3461
3462 return result;
3463 }
3464
3465 void
3466 i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
3467 int regnum, const gdb_byte *buf)
3468 {
3469 gdb_byte raw_buf[I386_MAX_REGISTER_SIZE];
3470
3471 if (i386_mmx_regnum_p (gdbarch, regnum))
3472 {
3473 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3474
3475 /* Read ... */
3476 regcache->raw_read (fpnum, raw_buf);
3477 /* ... Modify ... (always little endian). */
3478 memcpy (raw_buf, buf, register_size (gdbarch, regnum));
3479 /* ... Write. */
3480 regcache->raw_write (fpnum, raw_buf);
3481 }
3482 else
3483 {
3484 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3485
3486 if (i386_bnd_regnum_p (gdbarch, regnum))
3487 {
3488 ULONGEST upper, lower;
3489 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
3490 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3491
3492 /* New values from input value. */
3493 regnum -= tdep->bnd0_regnum;
3494 lower = extract_unsigned_integer (buf, size, byte_order);
3495 upper = extract_unsigned_integer (buf + size, size, byte_order);
3496
3497 /* Fetching register buffer. */
3498 regcache->raw_read (I387_BND0R_REGNUM (tdep) + regnum,
3499 raw_buf);
3500
3501 upper = ~upper;
3502
3503 /* Set register bits. */
3504 memcpy (raw_buf, &lower, 8);
3505 memcpy (raw_buf + 8, &upper, 8);
3506
3507 regcache->raw_write (I387_BND0R_REGNUM (tdep) + regnum, raw_buf);
3508 }
3509 else if (i386_k_regnum_p (gdbarch, regnum))
3510 {
3511 regnum -= tdep->k0_regnum;
3512
3513 regcache->raw_write (tdep->k0_regnum + regnum, buf);
3514 }
3515 else if (i386_zmm_regnum_p (gdbarch, regnum))
3516 {
3517 regnum -= tdep->zmm0_regnum;
3518
3519 if (regnum < num_lower_zmm_regs)
3520 {
3521 /* Write lower 128bits. */
3522 regcache->raw_write (I387_XMM0_REGNUM (tdep) + regnum, buf);
3523 /* Write upper 128bits. */
3524 regcache->raw_write (I387_YMM0_REGNUM (tdep) + regnum, buf + 16);
3525 }
3526 else
3527 {
3528 /* Write lower 128bits. */
3529 regcache->raw_write (I387_XMM16_REGNUM (tdep) + regnum
3530 - num_lower_zmm_regs, buf);
3531 /* Write upper 128bits. */
3532 regcache->raw_write (I387_YMM16H_REGNUM (tdep) + regnum
3533 - num_lower_zmm_regs, buf + 16);
3534 }
3535 /* Write upper 256bits. */
3536 regcache->raw_write (tdep->zmm0h_regnum + regnum, buf + 32);
3537 }
3538 else if (i386_ymm_regnum_p (gdbarch, regnum))
3539 {
3540 regnum -= tdep->ymm0_regnum;
3541
3542 /* ... Write lower 128bits. */
3543 regcache->raw_write (I387_XMM0_REGNUM (tdep) + regnum, buf);
3544 /* ... Write upper 128bits. */
3545 regcache->raw_write (tdep->ymm0h_regnum + regnum, buf + 16);
3546 }
3547 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3548 {
3549 regnum -= tdep->ymm16_regnum;
3550
3551 /* ... Write lower 128bits. */
3552 regcache->raw_write (I387_XMM16_REGNUM (tdep) + regnum, buf);
3553 /* ... Write upper 128bits. */
3554 regcache->raw_write (tdep->ymm16h_regnum + regnum, buf + 16);
3555 }
3556 else if (i386_word_regnum_p (gdbarch, regnum))
3557 {
3558 int gpnum = regnum - tdep->ax_regnum;
3559
3560 /* Read ... */
3561 regcache->raw_read (gpnum, raw_buf);
3562 /* ... Modify ... (always little endian). */
3563 memcpy (raw_buf, buf, 2);
3564 /* ... Write. */
3565 regcache->raw_write (gpnum, raw_buf);
3566 }
3567 else if (i386_byte_regnum_p (gdbarch, regnum))
3568 {
3569 int gpnum = regnum - tdep->al_regnum;
3570
3571 /* Read ... We read both lower and upper registers. */
3572 regcache->raw_read (gpnum % 4, raw_buf);
3573 /* ... Modify ... (always little endian). */
3574 if (gpnum >= 4)
3575 memcpy (raw_buf + 1, buf, 1);
3576 else
3577 memcpy (raw_buf, buf, 1);
3578 /* ... Write. */
3579 regcache->raw_write (gpnum % 4, raw_buf);
3580 }
3581 else
3582 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3583 }
3584 }
3585
3586 /* Implement the 'ax_pseudo_register_collect' gdbarch method. */
3587
3588 int
3589 i386_ax_pseudo_register_collect (struct gdbarch *gdbarch,
3590 struct agent_expr *ax, int regnum)
3591 {
3592 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3593
3594 if (i386_mmx_regnum_p (gdbarch, regnum))
3595 {
3596 /* MMX to FPU register mapping depends on current TOS. Let's just
3597 not care and collect everything... */
3598 int i;
3599
3600 ax_reg_mask (ax, I387_FSTAT_REGNUM (tdep));
3601 for (i = 0; i < 8; i++)
3602 ax_reg_mask (ax, I387_ST0_REGNUM (tdep) + i);
3603 return 0;
3604 }
3605 else if (i386_bnd_regnum_p (gdbarch, regnum))
3606 {
3607 regnum -= tdep->bnd0_regnum;
3608 ax_reg_mask (ax, I387_BND0R_REGNUM (tdep) + regnum);
3609 return 0;
3610 }
3611 else if (i386_k_regnum_p (gdbarch, regnum))
3612 {
3613 regnum -= tdep->k0_regnum;
3614 ax_reg_mask (ax, tdep->k0_regnum + regnum);
3615 return 0;
3616 }
3617 else if (i386_zmm_regnum_p (gdbarch, regnum))
3618 {
3619 regnum -= tdep->zmm0_regnum;
3620 if (regnum < num_lower_zmm_regs)
3621 {
3622 ax_reg_mask (ax, I387_XMM0_REGNUM (tdep) + regnum);
3623 ax_reg_mask (ax, tdep->ymm0h_regnum + regnum);
3624 }
3625 else
3626 {
3627 ax_reg_mask (ax, I387_XMM16_REGNUM (tdep) + regnum
3628 - num_lower_zmm_regs);
3629 ax_reg_mask (ax, I387_YMM16H_REGNUM (tdep) + regnum
3630 - num_lower_zmm_regs);
3631 }
3632 ax_reg_mask (ax, tdep->zmm0h_regnum + regnum);
3633 return 0;
3634 }
3635 else if (i386_ymm_regnum_p (gdbarch, regnum))
3636 {
3637 regnum -= tdep->ymm0_regnum;
3638 ax_reg_mask (ax, I387_XMM0_REGNUM (tdep) + regnum);
3639 ax_reg_mask (ax, tdep->ymm0h_regnum + regnum);
3640 return 0;
3641 }
3642 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3643 {
3644 regnum -= tdep->ymm16_regnum;
3645 ax_reg_mask (ax, I387_XMM16_REGNUM (tdep) + regnum);
3646 ax_reg_mask (ax, tdep->ymm16h_regnum + regnum);
3647 return 0;
3648 }
3649 else if (i386_word_regnum_p (gdbarch, regnum))
3650 {
3651 int gpnum = regnum - tdep->ax_regnum;
3652
3653 ax_reg_mask (ax, gpnum);
3654 return 0;
3655 }
3656 else if (i386_byte_regnum_p (gdbarch, regnum))
3657 {
3658 int gpnum = regnum - tdep->al_regnum;
3659
3660 ax_reg_mask (ax, gpnum % 4);
3661 return 0;
3662 }
3663 else
3664 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3665 return 1;
3666 }
3667 \f
3668
3669 /* Return the register number of the register allocated by GCC after
3670 REGNUM, or -1 if there is no such register. */
3671
3672 static int
3673 i386_next_regnum (int regnum)
3674 {
3675 /* GCC allocates the registers in the order:
3676
3677 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
3678
3679 Since storing a variable in %esp doesn't make any sense we return
3680 -1 for %ebp and for %esp itself. */
3681 static int next_regnum[] =
3682 {
3683 I386_EDX_REGNUM, /* Slot for %eax. */
3684 I386_EBX_REGNUM, /* Slot for %ecx. */
3685 I386_ECX_REGNUM, /* Slot for %edx. */
3686 I386_ESI_REGNUM, /* Slot for %ebx. */
3687 -1, -1, /* Slots for %esp and %ebp. */
3688 I386_EDI_REGNUM, /* Slot for %esi. */
3689 I386_EBP_REGNUM /* Slot for %edi. */
3690 };
3691
3692 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
3693 return next_regnum[regnum];
3694
3695 return -1;
3696 }
3697
3698 /* Return nonzero if a value of type TYPE stored in register REGNUM
3699 needs any special handling. */
3700
3701 static int
3702 i386_convert_register_p (struct gdbarch *gdbarch,
3703 int regnum, struct type *type)
3704 {
3705 int len = TYPE_LENGTH (type);
3706
3707 /* Values may be spread across multiple registers. Most debugging
3708 formats aren't expressive enough to specify the locations, so
3709 some heuristics is involved. Right now we only handle types that
3710 have a length that is a multiple of the word size, since GCC
3711 doesn't seem to put any other types into registers. */
3712 if (len > 4 && len % 4 == 0)
3713 {
3714 int last_regnum = regnum;
3715
3716 while (len > 4)
3717 {
3718 last_regnum = i386_next_regnum (last_regnum);
3719 len -= 4;
3720 }
3721
3722 if (last_regnum != -1)
3723 return 1;
3724 }
3725
3726 return i387_convert_register_p (gdbarch, regnum, type);
3727 }
3728
3729 /* Read a value of type TYPE from register REGNUM in frame FRAME, and
3730 return its contents in TO. */
3731
3732 static int
3733 i386_register_to_value (struct frame_info *frame, int regnum,
3734 struct type *type, gdb_byte *to,
3735 int *optimizedp, int *unavailablep)
3736 {
3737 struct gdbarch *gdbarch = get_frame_arch (frame);
3738 int len = TYPE_LENGTH (type);
3739
3740 if (i386_fp_regnum_p (gdbarch, regnum))
3741 return i387_register_to_value (frame, regnum, type, to,
3742 optimizedp, unavailablep);
3743
3744 /* Read a value spread across multiple registers. */
3745
3746 gdb_assert (len > 4 && len % 4 == 0);
3747
3748 while (len > 0)
3749 {
3750 gdb_assert (regnum != -1);
3751 gdb_assert (register_size (gdbarch, regnum) == 4);
3752
3753 if (!get_frame_register_bytes (frame, regnum, 0,
3754 register_size (gdbarch, regnum),
3755 to, optimizedp, unavailablep))
3756 return 0;
3757
3758 regnum = i386_next_regnum (regnum);
3759 len -= 4;
3760 to += 4;
3761 }
3762
3763 *optimizedp = *unavailablep = 0;
3764 return 1;
3765 }
3766
3767 /* Write the contents FROM of a value of type TYPE into register
3768 REGNUM in frame FRAME. */
3769
3770 static void
3771 i386_value_to_register (struct frame_info *frame, int regnum,
3772 struct type *type, const gdb_byte *from)
3773 {
3774 int len = TYPE_LENGTH (type);
3775
3776 if (i386_fp_regnum_p (get_frame_arch (frame), regnum))
3777 {
3778 i387_value_to_register (frame, regnum, type, from);
3779 return;
3780 }
3781
3782 /* Write a value spread across multiple registers. */
3783
3784 gdb_assert (len > 4 && len % 4 == 0);
3785
3786 while (len > 0)
3787 {
3788 gdb_assert (regnum != -1);
3789 gdb_assert (register_size (get_frame_arch (frame), regnum) == 4);
3790
3791 put_frame_register (frame, regnum, from);
3792 regnum = i386_next_regnum (regnum);
3793 len -= 4;
3794 from += 4;
3795 }
3796 }
3797 \f
3798 /* Supply register REGNUM from the buffer specified by GREGS and LEN
3799 in the general-purpose register set REGSET to register cache
3800 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3801
3802 void
3803 i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
3804 int regnum, const void *gregs, size_t len)
3805 {
3806 struct gdbarch *gdbarch = regcache->arch ();
3807 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3808 const gdb_byte *regs = (const gdb_byte *) gregs;
3809 int i;
3810
3811 gdb_assert (len >= tdep->sizeof_gregset);
3812
3813 for (i = 0; i < tdep->gregset_num_regs; i++)
3814 {
3815 if ((regnum == i || regnum == -1)
3816 && tdep->gregset_reg_offset[i] != -1)
3817 regcache->raw_supply (i, regs + tdep->gregset_reg_offset[i]);
3818 }
3819 }
3820
3821 /* Collect register REGNUM from the register cache REGCACHE and store
3822 it in the buffer specified by GREGS and LEN as described by the
3823 general-purpose register set REGSET. If REGNUM is -1, do this for
3824 all registers in REGSET. */
3825
3826 static void
3827 i386_collect_gregset (const struct regset *regset,
3828 const struct regcache *regcache,
3829 int regnum, void *gregs, size_t len)
3830 {
3831 struct gdbarch *gdbarch = regcache->arch ();
3832 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3833 gdb_byte *regs = (gdb_byte *) gregs;
3834 int i;
3835
3836 gdb_assert (len >= tdep->sizeof_gregset);
3837
3838 for (i = 0; i < tdep->gregset_num_regs; i++)
3839 {
3840 if ((regnum == i || regnum == -1)
3841 && tdep->gregset_reg_offset[i] != -1)
3842 regcache->raw_collect (i, regs + tdep->gregset_reg_offset[i]);
3843 }
3844 }
3845
3846 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
3847 in the floating-point register set REGSET to register cache
3848 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3849
3850 static void
3851 i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
3852 int regnum, const void *fpregs, size_t len)
3853 {
3854 struct gdbarch *gdbarch = regcache->arch ();
3855 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3856
3857 if (len == I387_SIZEOF_FXSAVE)
3858 {
3859 i387_supply_fxsave (regcache, regnum, fpregs);
3860 return;
3861 }
3862
3863 gdb_assert (len >= tdep->sizeof_fpregset);
3864 i387_supply_fsave (regcache, regnum, fpregs);
3865 }
3866
3867 /* Collect register REGNUM from the register cache REGCACHE and store
3868 it in the buffer specified by FPREGS and LEN as described by the
3869 floating-point register set REGSET. If REGNUM is -1, do this for
3870 all registers in REGSET. */
3871
3872 static void
3873 i386_collect_fpregset (const struct regset *regset,
3874 const struct regcache *regcache,
3875 int regnum, void *fpregs, size_t len)
3876 {
3877 struct gdbarch *gdbarch = regcache->arch ();
3878 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3879
3880 if (len == I387_SIZEOF_FXSAVE)
3881 {
3882 i387_collect_fxsave (regcache, regnum, fpregs);
3883 return;
3884 }
3885
3886 gdb_assert (len >= tdep->sizeof_fpregset);
3887 i387_collect_fsave (regcache, regnum, fpregs);
3888 }
3889
3890 /* Register set definitions. */
3891
3892 const struct regset i386_gregset =
3893 {
3894 NULL, i386_supply_gregset, i386_collect_gregset
3895 };
3896
3897 const struct regset i386_fpregset =
3898 {
3899 NULL, i386_supply_fpregset, i386_collect_fpregset
3900 };
3901
3902 /* Default iterator over core file register note sections. */
3903
3904 void
3905 i386_iterate_over_regset_sections (struct gdbarch *gdbarch,
3906 iterate_over_regset_sections_cb *cb,
3907 void *cb_data,
3908 const struct regcache *regcache)
3909 {
3910 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3911
3912 cb (".reg", tdep->sizeof_gregset, tdep->sizeof_gregset, &i386_gregset, NULL,
3913 cb_data);
3914 if (tdep->sizeof_fpregset)
3915 cb (".reg2", tdep->sizeof_fpregset, tdep->sizeof_fpregset, tdep->fpregset,
3916 NULL, cb_data);
3917 }
3918 \f
3919
3920 /* Stuff for WIN32 PE style DLL's but is pretty generic really. */
3921
3922 CORE_ADDR
3923 i386_pe_skip_trampoline_code (struct frame_info *frame,
3924 CORE_ADDR pc, char *name)
3925 {
3926 struct gdbarch *gdbarch = get_frame_arch (frame);
3927 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3928
3929 /* jmp *(dest) */
3930 if (pc && read_memory_unsigned_integer (pc, 2, byte_order) == 0x25ff)
3931 {
3932 unsigned long indirect =
3933 read_memory_unsigned_integer (pc + 2, 4, byte_order);
3934 struct minimal_symbol *indsym =
3935 indirect ? lookup_minimal_symbol_by_pc (indirect).minsym : 0;
3936 const char *symname = indsym ? MSYMBOL_LINKAGE_NAME (indsym) : 0;
3937
3938 if (symname)
3939 {
3940 if (startswith (symname, "__imp_")
3941 || startswith (symname, "_imp_"))
3942 return name ? 1 :
3943 read_memory_unsigned_integer (indirect, 4, byte_order);
3944 }
3945 }
3946 return 0; /* Not a trampoline. */
3947 }
3948 \f
3949
3950 /* Return whether the THIS_FRAME corresponds to a sigtramp
3951 routine. */
3952
3953 int
3954 i386_sigtramp_p (struct frame_info *this_frame)
3955 {
3956 CORE_ADDR pc = get_frame_pc (this_frame);
3957 const char *name;
3958
3959 find_pc_partial_function (pc, &name, NULL, NULL);
3960 return (name && strcmp ("_sigtramp", name) == 0);
3961 }
3962 \f
3963
3964 /* We have two flavours of disassembly. The machinery on this page
3965 deals with switching between those. */
3966
3967 static int
3968 i386_print_insn (bfd_vma pc, struct disassemble_info *info)
3969 {
3970 gdb_assert (disassembly_flavor == att_flavor
3971 || disassembly_flavor == intel_flavor);
3972
3973 info->disassembler_options = disassembly_flavor;
3974
3975 return default_print_insn (pc, info);
3976 }
3977 \f
3978
3979 /* There are a few i386 architecture variants that differ only
3980 slightly from the generic i386 target. For now, we don't give them
3981 their own source file, but include them here. As a consequence,
3982 they'll always be included. */
3983
3984 /* System V Release 4 (SVR4). */
3985
3986 /* Return whether THIS_FRAME corresponds to a SVR4 sigtramp
3987 routine. */
3988
3989 static int
3990 i386_svr4_sigtramp_p (struct frame_info *this_frame)
3991 {
3992 CORE_ADDR pc = get_frame_pc (this_frame);
3993 const char *name;
3994
3995 /* The origin of these symbols is currently unknown. */
3996 find_pc_partial_function (pc, &name, NULL, NULL);
3997 return (name && (strcmp ("_sigreturn", name) == 0
3998 || strcmp ("sigvechandler", name) == 0));
3999 }
4000
4001 /* Assuming THIS_FRAME is for a SVR4 sigtramp routine, return the
4002 address of the associated sigcontext (ucontext) structure. */
4003
4004 static CORE_ADDR
4005 i386_svr4_sigcontext_addr (struct frame_info *this_frame)
4006 {
4007 struct gdbarch *gdbarch = get_frame_arch (this_frame);
4008 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4009 gdb_byte buf[4];
4010 CORE_ADDR sp;
4011
4012 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
4013 sp = extract_unsigned_integer (buf, 4, byte_order);
4014
4015 return read_memory_unsigned_integer (sp + 8, 4, byte_order);
4016 }
4017
4018 \f
4019
4020 /* Implementation of `gdbarch_stap_is_single_operand', as defined in
4021 gdbarch.h. */
4022
4023 int
4024 i386_stap_is_single_operand (struct gdbarch *gdbarch, const char *s)
4025 {
4026 return (*s == '$' /* Literal number. */
4027 || (isdigit (*s) && s[1] == '(' && s[2] == '%') /* Displacement. */
4028 || (*s == '(' && s[1] == '%') /* Register indirection. */
4029 || (*s == '%' && isalpha (s[1]))); /* Register access. */
4030 }
4031
4032 /* Helper function for i386_stap_parse_special_token.
4033
4034 This function parses operands of the form `-8+3+1(%rbp)', which
4035 must be interpreted as `*(-8 + 3 - 1 + (void *) $eax)'.
4036
4037 Return true if the operand was parsed successfully, false
4038 otherwise. */
4039
4040 static bool
4041 i386_stap_parse_special_token_triplet (struct gdbarch *gdbarch,
4042 struct stap_parse_info *p)
4043 {
4044 const char *s = p->arg;
4045
4046 if (isdigit (*s) || *s == '-' || *s == '+')
4047 {
4048 bool got_minus[3];
4049 int i;
4050 long displacements[3];
4051 const char *start;
4052 char *regname;
4053 int len;
4054 struct stoken str;
4055 char *endp;
4056
4057 got_minus[0] = false;
4058 if (*s == '+')
4059 ++s;
4060 else if (*s == '-')
4061 {
4062 ++s;
4063 got_minus[0] = true;
4064 }
4065
4066 if (!isdigit ((unsigned char) *s))
4067 return false;
4068
4069 displacements[0] = strtol (s, &endp, 10);
4070 s = endp;
4071
4072 if (*s != '+' && *s != '-')
4073 {
4074 /* We are not dealing with a triplet. */
4075 return false;
4076 }
4077
4078 got_minus[1] = false;
4079 if (*s == '+')
4080 ++s;
4081 else
4082 {
4083 ++s;
4084 got_minus[1] = true;
4085 }
4086
4087 if (!isdigit ((unsigned char) *s))
4088 return false;
4089
4090 displacements[1] = strtol (s, &endp, 10);
4091 s = endp;
4092
4093 if (*s != '+' && *s != '-')
4094 {
4095 /* We are not dealing with a triplet. */
4096 return false;
4097 }
4098
4099 got_minus[2] = false;
4100 if (*s == '+')
4101 ++s;
4102 else
4103 {
4104 ++s;
4105 got_minus[2] = true;
4106 }
4107
4108 if (!isdigit ((unsigned char) *s))
4109 return false;
4110
4111 displacements[2] = strtol (s, &endp, 10);
4112 s = endp;
4113
4114 if (*s != '(' || s[1] != '%')
4115 return false;
4116
4117 s += 2;
4118 start = s;
4119
4120 while (isalnum (*s))
4121 ++s;
4122
4123 if (*s++ != ')')
4124 return false;
4125
4126 len = s - start - 1;
4127 regname = (char *) alloca (len + 1);
4128
4129 strncpy (regname, start, len);
4130 regname[len] = '\0';
4131
4132 if (user_reg_map_name_to_regnum (gdbarch, regname, len) == -1)
4133 error (_("Invalid register name `%s' on expression `%s'."),
4134 regname, p->saved_arg);
4135
4136 for (i = 0; i < 3; i++)
4137 {
4138 write_exp_elt_opcode (&p->pstate, OP_LONG);
4139 write_exp_elt_type
4140 (&p->pstate, builtin_type (gdbarch)->builtin_long);
4141 write_exp_elt_longcst (&p->pstate, displacements[i]);
4142 write_exp_elt_opcode (&p->pstate, OP_LONG);
4143 if (got_minus[i])
4144 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
4145 }
4146
4147 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4148 str.ptr = regname;
4149 str.length = len;
4150 write_exp_string (&p->pstate, str);
4151 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4152
4153 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4154 write_exp_elt_type (&p->pstate,
4155 builtin_type (gdbarch)->builtin_data_ptr);
4156 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4157
4158 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4159 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4160 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4161
4162 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4163 write_exp_elt_type (&p->pstate,
4164 lookup_pointer_type (p->arg_type));
4165 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4166
4167 write_exp_elt_opcode (&p->pstate, UNOP_IND);
4168
4169 p->arg = s;
4170
4171 return true;
4172 }
4173
4174 return false;
4175 }
4176
4177 /* Helper function for i386_stap_parse_special_token.
4178
4179 This function parses operands of the form `register base +
4180 (register index * size) + offset', as represented in
4181 `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4182
4183 Return true if the operand was parsed successfully, false
4184 otherwise. */
4185
4186 static bool
4187 i386_stap_parse_special_token_three_arg_disp (struct gdbarch *gdbarch,
4188 struct stap_parse_info *p)
4189 {
4190 const char *s = p->arg;
4191
4192 if (isdigit (*s) || *s == '(' || *s == '-' || *s == '+')
4193 {
4194 bool offset_minus = false;
4195 long offset = 0;
4196 bool size_minus = false;
4197 long size = 0;
4198 const char *start;
4199 char *base;
4200 int len_base;
4201 char *index;
4202 int len_index;
4203 struct stoken base_token, index_token;
4204
4205 if (*s == '+')
4206 ++s;
4207 else if (*s == '-')
4208 {
4209 ++s;
4210 offset_minus = true;
4211 }
4212
4213 if (offset_minus && !isdigit (*s))
4214 return false;
4215
4216 if (isdigit (*s))
4217 {
4218 char *endp;
4219
4220 offset = strtol (s, &endp, 10);
4221 s = endp;
4222 }
4223
4224 if (*s != '(' || s[1] != '%')
4225 return false;
4226
4227 s += 2;
4228 start = s;
4229
4230 while (isalnum (*s))
4231 ++s;
4232
4233 if (*s != ',' || s[1] != '%')
4234 return false;
4235
4236 len_base = s - start;
4237 base = (char *) alloca (len_base + 1);
4238 strncpy (base, start, len_base);
4239 base[len_base] = '\0';
4240
4241 if (user_reg_map_name_to_regnum (gdbarch, base, len_base) == -1)
4242 error (_("Invalid register name `%s' on expression `%s'."),
4243 base, p->saved_arg);
4244
4245 s += 2;
4246 start = s;
4247
4248 while (isalnum (*s))
4249 ++s;
4250
4251 len_index = s - start;
4252 index = (char *) alloca (len_index + 1);
4253 strncpy (index, start, len_index);
4254 index[len_index] = '\0';
4255
4256 if (user_reg_map_name_to_regnum (gdbarch, index, len_index) == -1)
4257 error (_("Invalid register name `%s' on expression `%s'."),
4258 index, p->saved_arg);
4259
4260 if (*s != ',' && *s != ')')
4261 return false;
4262
4263 if (*s == ',')
4264 {
4265 char *endp;
4266
4267 ++s;
4268 if (*s == '+')
4269 ++s;
4270 else if (*s == '-')
4271 {
4272 ++s;
4273 size_minus = true;
4274 }
4275
4276 size = strtol (s, &endp, 10);
4277 s = endp;
4278
4279 if (*s != ')')
4280 return false;
4281 }
4282
4283 ++s;
4284
4285 if (offset)
4286 {
4287 write_exp_elt_opcode (&p->pstate, OP_LONG);
4288 write_exp_elt_type (&p->pstate,
4289 builtin_type (gdbarch)->builtin_long);
4290 write_exp_elt_longcst (&p->pstate, offset);
4291 write_exp_elt_opcode (&p->pstate, OP_LONG);
4292 if (offset_minus)
4293 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
4294 }
4295
4296 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4297 base_token.ptr = base;
4298 base_token.length = len_base;
4299 write_exp_string (&p->pstate, base_token);
4300 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4301
4302 if (offset)
4303 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4304
4305 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4306 index_token.ptr = index;
4307 index_token.length = len_index;
4308 write_exp_string (&p->pstate, index_token);
4309 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4310
4311 if (size)
4312 {
4313 write_exp_elt_opcode (&p->pstate, OP_LONG);
4314 write_exp_elt_type (&p->pstate,
4315 builtin_type (gdbarch)->builtin_long);
4316 write_exp_elt_longcst (&p->pstate, size);
4317 write_exp_elt_opcode (&p->pstate, OP_LONG);
4318 if (size_minus)
4319 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
4320 write_exp_elt_opcode (&p->pstate, BINOP_MUL);
4321 }
4322
4323 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4324
4325 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4326 write_exp_elt_type (&p->pstate,
4327 lookup_pointer_type (p->arg_type));
4328 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4329
4330 write_exp_elt_opcode (&p->pstate, UNOP_IND);
4331
4332 p->arg = s;
4333
4334 return true;
4335 }
4336
4337 return false;
4338 }
4339
4340 /* Implementation of `gdbarch_stap_parse_special_token', as defined in
4341 gdbarch.h. */
4342
4343 int
4344 i386_stap_parse_special_token (struct gdbarch *gdbarch,
4345 struct stap_parse_info *p)
4346 {
4347 /* In order to parse special tokens, we use a state-machine that go
4348 through every known token and try to get a match. */
4349 enum
4350 {
4351 TRIPLET,
4352 THREE_ARG_DISPLACEMENT,
4353 DONE
4354 };
4355 int current_state;
4356
4357 current_state = TRIPLET;
4358
4359 /* The special tokens to be parsed here are:
4360
4361 - `register base + (register index * size) + offset', as represented
4362 in `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4363
4364 - Operands of the form `-8+3+1(%rbp)', which must be interpreted as
4365 `*(-8 + 3 - 1 + (void *) $eax)'. */
4366
4367 while (current_state != DONE)
4368 {
4369 switch (current_state)
4370 {
4371 case TRIPLET:
4372 if (i386_stap_parse_special_token_triplet (gdbarch, p))
4373 return 1;
4374 break;
4375
4376 case THREE_ARG_DISPLACEMENT:
4377 if (i386_stap_parse_special_token_three_arg_disp (gdbarch, p))
4378 return 1;
4379 break;
4380 }
4381
4382 /* Advancing to the next state. */
4383 ++current_state;
4384 }
4385
4386 return 0;
4387 }
4388
4389 /* Implementation of 'gdbarch_stap_adjust_register', as defined in
4390 gdbarch.h. */
4391
4392 static void
4393 i386_stap_adjust_register (struct gdbarch *gdbarch, struct stap_parse_info *p,
4394 std::string &regname, int regnum)
4395 {
4396 static const std::unordered_set<std::string> reg_assoc
4397 = { "ax", "bx", "cx", "dx",
4398 "si", "di", "bp", "sp" };
4399
4400 if (register_size (gdbarch, regnum) >= TYPE_LENGTH (p->arg_type))
4401 {
4402 /* If we're dealing with a register whose size is greater or
4403 equal than the size specified by the "[-]N@" prefix, then we
4404 don't need to do anything. */
4405 return;
4406 }
4407
4408 if (reg_assoc.find (regname) != reg_assoc.end ())
4409 {
4410 /* Use the extended version of the register. */
4411 regname = "e" + regname;
4412 }
4413 }
4414
4415 \f
4416
4417 /* gdbarch gnu_triplet_regexp method. Both arches are acceptable as GDB always
4418 also supplies -m64 or -m32 by gdbarch_gcc_target_options. */
4419
4420 static const char *
4421 i386_gnu_triplet_regexp (struct gdbarch *gdbarch)
4422 {
4423 return "(x86_64|i.86)";
4424 }
4425
4426 \f
4427
4428 /* Implement the "in_indirect_branch_thunk" gdbarch function. */
4429
4430 static bool
4431 i386_in_indirect_branch_thunk (struct gdbarch *gdbarch, CORE_ADDR pc)
4432 {
4433 return x86_in_indirect_branch_thunk (pc, i386_register_names,
4434 I386_EAX_REGNUM, I386_EIP_REGNUM);
4435 }
4436
4437 /* Generic ELF. */
4438
4439 void
4440 i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4441 {
4442 static const char *const stap_integer_prefixes[] = { "$", NULL };
4443 static const char *const stap_register_prefixes[] = { "%", NULL };
4444 static const char *const stap_register_indirection_prefixes[] = { "(",
4445 NULL };
4446 static const char *const stap_register_indirection_suffixes[] = { ")",
4447 NULL };
4448
4449 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
4450 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
4451
4452 /* Registering SystemTap handlers. */
4453 set_gdbarch_stap_integer_prefixes (gdbarch, stap_integer_prefixes);
4454 set_gdbarch_stap_register_prefixes (gdbarch, stap_register_prefixes);
4455 set_gdbarch_stap_register_indirection_prefixes (gdbarch,
4456 stap_register_indirection_prefixes);
4457 set_gdbarch_stap_register_indirection_suffixes (gdbarch,
4458 stap_register_indirection_suffixes);
4459 set_gdbarch_stap_is_single_operand (gdbarch,
4460 i386_stap_is_single_operand);
4461 set_gdbarch_stap_parse_special_token (gdbarch,
4462 i386_stap_parse_special_token);
4463 set_gdbarch_stap_adjust_register (gdbarch,
4464 i386_stap_adjust_register);
4465
4466 set_gdbarch_in_indirect_branch_thunk (gdbarch,
4467 i386_in_indirect_branch_thunk);
4468 }
4469
4470 /* System V Release 4 (SVR4). */
4471
4472 void
4473 i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4474 {
4475 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4476
4477 /* System V Release 4 uses ELF. */
4478 i386_elf_init_abi (info, gdbarch);
4479
4480 /* System V Release 4 has shared libraries. */
4481 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
4482
4483 tdep->sigtramp_p = i386_svr4_sigtramp_p;
4484 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
4485 tdep->sc_pc_offset = 36 + 14 * 4;
4486 tdep->sc_sp_offset = 36 + 17 * 4;
4487
4488 tdep->jb_pc_offset = 20;
4489 }
4490
4491 \f
4492
4493 /* i386 register groups. In addition to the normal groups, add "mmx"
4494 and "sse". */
4495
4496 static struct reggroup *i386_sse_reggroup;
4497 static struct reggroup *i386_mmx_reggroup;
4498
4499 static void
4500 i386_init_reggroups (void)
4501 {
4502 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
4503 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
4504 }
4505
4506 static void
4507 i386_add_reggroups (struct gdbarch *gdbarch)
4508 {
4509 reggroup_add (gdbarch, i386_sse_reggroup);
4510 reggroup_add (gdbarch, i386_mmx_reggroup);
4511 reggroup_add (gdbarch, general_reggroup);
4512 reggroup_add (gdbarch, float_reggroup);
4513 reggroup_add (gdbarch, all_reggroup);
4514 reggroup_add (gdbarch, save_reggroup);
4515 reggroup_add (gdbarch, restore_reggroup);
4516 reggroup_add (gdbarch, vector_reggroup);
4517 reggroup_add (gdbarch, system_reggroup);
4518 }
4519
4520 int
4521 i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
4522 struct reggroup *group)
4523 {
4524 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4525 int fp_regnum_p, mmx_regnum_p, xmm_regnum_p, mxcsr_regnum_p,
4526 ymm_regnum_p, ymmh_regnum_p, ymm_avx512_regnum_p, ymmh_avx512_regnum_p,
4527 bndr_regnum_p, bnd_regnum_p, zmm_regnum_p, zmmh_regnum_p,
4528 mpx_ctrl_regnum_p, xmm_avx512_regnum_p,
4529 avx512_p, avx_p, sse_p, pkru_regnum_p;
4530
4531 /* Don't include pseudo registers, except for MMX, in any register
4532 groups. */
4533 if (i386_byte_regnum_p (gdbarch, regnum))
4534 return 0;
4535
4536 if (i386_word_regnum_p (gdbarch, regnum))
4537 return 0;
4538
4539 if (i386_dword_regnum_p (gdbarch, regnum))
4540 return 0;
4541
4542 mmx_regnum_p = i386_mmx_regnum_p (gdbarch, regnum);
4543 if (group == i386_mmx_reggroup)
4544 return mmx_regnum_p;
4545
4546 pkru_regnum_p = i386_pkru_regnum_p(gdbarch, regnum);
4547 xmm_regnum_p = i386_xmm_regnum_p (gdbarch, regnum);
4548 xmm_avx512_regnum_p = i386_xmm_avx512_regnum_p (gdbarch, regnum);
4549 mxcsr_regnum_p = i386_mxcsr_regnum_p (gdbarch, regnum);
4550 if (group == i386_sse_reggroup)
4551 return xmm_regnum_p || xmm_avx512_regnum_p || mxcsr_regnum_p;
4552
4553 ymm_regnum_p = i386_ymm_regnum_p (gdbarch, regnum);
4554 ymm_avx512_regnum_p = i386_ymm_avx512_regnum_p (gdbarch, regnum);
4555 zmm_regnum_p = i386_zmm_regnum_p (gdbarch, regnum);
4556
4557 avx512_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
4558 == X86_XSTATE_AVX_AVX512_MASK);
4559 avx_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
4560 == X86_XSTATE_AVX_MASK) && !avx512_p;
4561 sse_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
4562 == X86_XSTATE_SSE_MASK) && !avx512_p && ! avx_p;
4563
4564 if (group == vector_reggroup)
4565 return (mmx_regnum_p
4566 || (zmm_regnum_p && avx512_p)
4567 || ((ymm_regnum_p || ymm_avx512_regnum_p) && avx_p)
4568 || ((xmm_regnum_p || xmm_avx512_regnum_p) && sse_p)
4569 || mxcsr_regnum_p);
4570
4571 fp_regnum_p = (i386_fp_regnum_p (gdbarch, regnum)
4572 || i386_fpc_regnum_p (gdbarch, regnum));
4573 if (group == float_reggroup)
4574 return fp_regnum_p;
4575
4576 /* For "info reg all", don't include upper YMM registers nor XMM
4577 registers when AVX is supported. */
4578 ymmh_regnum_p = i386_ymmh_regnum_p (gdbarch, regnum);
4579 ymmh_avx512_regnum_p = i386_ymmh_avx512_regnum_p (gdbarch, regnum);
4580 zmmh_regnum_p = i386_zmmh_regnum_p (gdbarch, regnum);
4581 if (group == all_reggroup
4582 && (((xmm_regnum_p || xmm_avx512_regnum_p) && !sse_p)
4583 || ((ymm_regnum_p || ymm_avx512_regnum_p) && !avx_p)
4584 || ymmh_regnum_p
4585 || ymmh_avx512_regnum_p
4586 || zmmh_regnum_p))
4587 return 0;
4588
4589 bnd_regnum_p = i386_bnd_regnum_p (gdbarch, regnum);
4590 if (group == all_reggroup
4591 && ((bnd_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4592 return bnd_regnum_p;
4593
4594 bndr_regnum_p = i386_bndr_regnum_p (gdbarch, regnum);
4595 if (group == all_reggroup
4596 && ((bndr_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4597 return 0;
4598
4599 mpx_ctrl_regnum_p = i386_mpx_ctrl_regnum_p (gdbarch, regnum);
4600 if (group == all_reggroup
4601 && ((mpx_ctrl_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4602 return mpx_ctrl_regnum_p;
4603
4604 if (group == general_reggroup)
4605 return (!fp_regnum_p
4606 && !mmx_regnum_p
4607 && !mxcsr_regnum_p
4608 && !xmm_regnum_p
4609 && !xmm_avx512_regnum_p
4610 && !ymm_regnum_p
4611 && !ymmh_regnum_p
4612 && !ymm_avx512_regnum_p
4613 && !ymmh_avx512_regnum_p
4614 && !bndr_regnum_p
4615 && !bnd_regnum_p
4616 && !mpx_ctrl_regnum_p
4617 && !zmm_regnum_p
4618 && !zmmh_regnum_p
4619 && !pkru_regnum_p);
4620
4621 return default_register_reggroup_p (gdbarch, regnum, group);
4622 }
4623 \f
4624
4625 /* Get the ARGIth function argument for the current function. */
4626
4627 static CORE_ADDR
4628 i386_fetch_pointer_argument (struct frame_info *frame, int argi,
4629 struct type *type)
4630 {
4631 struct gdbarch *gdbarch = get_frame_arch (frame);
4632 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4633 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
4634 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4, byte_order);
4635 }
4636
4637 #define PREFIX_REPZ 0x01
4638 #define PREFIX_REPNZ 0x02
4639 #define PREFIX_LOCK 0x04
4640 #define PREFIX_DATA 0x08
4641 #define PREFIX_ADDR 0x10
4642
4643 /* operand size */
4644 enum
4645 {
4646 OT_BYTE = 0,
4647 OT_WORD,
4648 OT_LONG,
4649 OT_QUAD,
4650 OT_DQUAD,
4651 };
4652
4653 /* i386 arith/logic operations */
4654 enum
4655 {
4656 OP_ADDL,
4657 OP_ORL,
4658 OP_ADCL,
4659 OP_SBBL,
4660 OP_ANDL,
4661 OP_SUBL,
4662 OP_XORL,
4663 OP_CMPL,
4664 };
4665
4666 struct i386_record_s
4667 {
4668 struct gdbarch *gdbarch;
4669 struct regcache *regcache;
4670 CORE_ADDR orig_addr;
4671 CORE_ADDR addr;
4672 int aflag;
4673 int dflag;
4674 int override;
4675 uint8_t modrm;
4676 uint8_t mod, reg, rm;
4677 int ot;
4678 uint8_t rex_x;
4679 uint8_t rex_b;
4680 int rip_offset;
4681 int popl_esp_hack;
4682 const int *regmap;
4683 };
4684
4685 /* Parse the "modrm" part of the memory address irp->addr points at.
4686 Returns -1 if something goes wrong, 0 otherwise. */
4687
4688 static int
4689 i386_record_modrm (struct i386_record_s *irp)
4690 {
4691 struct gdbarch *gdbarch = irp->gdbarch;
4692
4693 if (record_read_memory (gdbarch, irp->addr, &irp->modrm, 1))
4694 return -1;
4695
4696 irp->addr++;
4697 irp->mod = (irp->modrm >> 6) & 3;
4698 irp->reg = (irp->modrm >> 3) & 7;
4699 irp->rm = irp->modrm & 7;
4700
4701 return 0;
4702 }
4703
4704 /* Extract the memory address that the current instruction writes to,
4705 and return it in *ADDR. Return -1 if something goes wrong. */
4706
4707 static int
4708 i386_record_lea_modrm_addr (struct i386_record_s *irp, uint64_t *addr)
4709 {
4710 struct gdbarch *gdbarch = irp->gdbarch;
4711 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4712 gdb_byte buf[4];
4713 ULONGEST offset64;
4714
4715 *addr = 0;
4716 if (irp->aflag || irp->regmap[X86_RECORD_R8_REGNUM])
4717 {
4718 /* 32/64 bits */
4719 int havesib = 0;
4720 uint8_t scale = 0;
4721 uint8_t byte;
4722 uint8_t index = 0;
4723 uint8_t base = irp->rm;
4724
4725 if (base == 4)
4726 {
4727 havesib = 1;
4728 if (record_read_memory (gdbarch, irp->addr, &byte, 1))
4729 return -1;
4730 irp->addr++;
4731 scale = (byte >> 6) & 3;
4732 index = ((byte >> 3) & 7) | irp->rex_x;
4733 base = (byte & 7);
4734 }
4735 base |= irp->rex_b;
4736
4737 switch (irp->mod)
4738 {
4739 case 0:
4740 if ((base & 7) == 5)
4741 {
4742 base = 0xff;
4743 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4744 return -1;
4745 irp->addr += 4;
4746 *addr = extract_signed_integer (buf, 4, byte_order);
4747 if (irp->regmap[X86_RECORD_R8_REGNUM] && !havesib)
4748 *addr += irp->addr + irp->rip_offset;
4749 }
4750 break;
4751 case 1:
4752 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4753 return -1;
4754 irp->addr++;
4755 *addr = (int8_t) buf[0];
4756 break;
4757 case 2:
4758 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4759 return -1;
4760 *addr = extract_signed_integer (buf, 4, byte_order);
4761 irp->addr += 4;
4762 break;
4763 }
4764
4765 offset64 = 0;
4766 if (base != 0xff)
4767 {
4768 if (base == 4 && irp->popl_esp_hack)
4769 *addr += irp->popl_esp_hack;
4770 regcache_raw_read_unsigned (irp->regcache, irp->regmap[base],
4771 &offset64);
4772 }
4773 if (irp->aflag == 2)
4774 {
4775 *addr += offset64;
4776 }
4777 else
4778 *addr = (uint32_t) (offset64 + *addr);
4779
4780 if (havesib && (index != 4 || scale != 0))
4781 {
4782 regcache_raw_read_unsigned (irp->regcache, irp->regmap[index],
4783 &offset64);
4784 if (irp->aflag == 2)
4785 *addr += offset64 << scale;
4786 else
4787 *addr = (uint32_t) (*addr + (offset64 << scale));
4788 }
4789
4790 if (!irp->aflag)
4791 {
4792 /* Since we are in 64-bit mode with ADDR32 prefix, zero-extend
4793 address from 32-bit to 64-bit. */
4794 *addr = (uint32_t) *addr;
4795 }
4796 }
4797 else
4798 {
4799 /* 16 bits */
4800 switch (irp->mod)
4801 {
4802 case 0:
4803 if (irp->rm == 6)
4804 {
4805 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4806 return -1;
4807 irp->addr += 2;
4808 *addr = extract_signed_integer (buf, 2, byte_order);
4809 irp->rm = 0;
4810 goto no_rm;
4811 }
4812 break;
4813 case 1:
4814 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4815 return -1;
4816 irp->addr++;
4817 *addr = (int8_t) buf[0];
4818 break;
4819 case 2:
4820 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4821 return -1;
4822 irp->addr += 2;
4823 *addr = extract_signed_integer (buf, 2, byte_order);
4824 break;
4825 }
4826
4827 switch (irp->rm)
4828 {
4829 case 0:
4830 regcache_raw_read_unsigned (irp->regcache,
4831 irp->regmap[X86_RECORD_REBX_REGNUM],
4832 &offset64);
4833 *addr = (uint32_t) (*addr + offset64);
4834 regcache_raw_read_unsigned (irp->regcache,
4835 irp->regmap[X86_RECORD_RESI_REGNUM],
4836 &offset64);
4837 *addr = (uint32_t) (*addr + offset64);
4838 break;
4839 case 1:
4840 regcache_raw_read_unsigned (irp->regcache,
4841 irp->regmap[X86_RECORD_REBX_REGNUM],
4842 &offset64);
4843 *addr = (uint32_t) (*addr + offset64);
4844 regcache_raw_read_unsigned (irp->regcache,
4845 irp->regmap[X86_RECORD_REDI_REGNUM],
4846 &offset64);
4847 *addr = (uint32_t) (*addr + offset64);
4848 break;
4849 case 2:
4850 regcache_raw_read_unsigned (irp->regcache,
4851 irp->regmap[X86_RECORD_REBP_REGNUM],
4852 &offset64);
4853 *addr = (uint32_t) (*addr + offset64);
4854 regcache_raw_read_unsigned (irp->regcache,
4855 irp->regmap[X86_RECORD_RESI_REGNUM],
4856 &offset64);
4857 *addr = (uint32_t) (*addr + offset64);
4858 break;
4859 case 3:
4860 regcache_raw_read_unsigned (irp->regcache,
4861 irp->regmap[X86_RECORD_REBP_REGNUM],
4862 &offset64);
4863 *addr = (uint32_t) (*addr + offset64);
4864 regcache_raw_read_unsigned (irp->regcache,
4865 irp->regmap[X86_RECORD_REDI_REGNUM],
4866 &offset64);
4867 *addr = (uint32_t) (*addr + offset64);
4868 break;
4869 case 4:
4870 regcache_raw_read_unsigned (irp->regcache,
4871 irp->regmap[X86_RECORD_RESI_REGNUM],
4872 &offset64);
4873 *addr = (uint32_t) (*addr + offset64);
4874 break;
4875 case 5:
4876 regcache_raw_read_unsigned (irp->regcache,
4877 irp->regmap[X86_RECORD_REDI_REGNUM],
4878 &offset64);
4879 *addr = (uint32_t) (*addr + offset64);
4880 break;
4881 case 6:
4882 regcache_raw_read_unsigned (irp->regcache,
4883 irp->regmap[X86_RECORD_REBP_REGNUM],
4884 &offset64);
4885 *addr = (uint32_t) (*addr + offset64);
4886 break;
4887 case 7:
4888 regcache_raw_read_unsigned (irp->regcache,
4889 irp->regmap[X86_RECORD_REBX_REGNUM],
4890 &offset64);
4891 *addr = (uint32_t) (*addr + offset64);
4892 break;
4893 }
4894 *addr &= 0xffff;
4895 }
4896
4897 no_rm:
4898 return 0;
4899 }
4900
4901 /* Record the address and contents of the memory that will be changed
4902 by the current instruction. Return -1 if something goes wrong, 0
4903 otherwise. */
4904
4905 static int
4906 i386_record_lea_modrm (struct i386_record_s *irp)
4907 {
4908 struct gdbarch *gdbarch = irp->gdbarch;
4909 uint64_t addr;
4910
4911 if (irp->override >= 0)
4912 {
4913 if (record_full_memory_query)
4914 {
4915 if (yquery (_("\
4916 Process record ignores the memory change of instruction at address %s\n\
4917 because it can't get the value of the segment register.\n\
4918 Do you want to stop the program?"),
4919 paddress (gdbarch, irp->orig_addr)))
4920 return -1;
4921 }
4922
4923 return 0;
4924 }
4925
4926 if (i386_record_lea_modrm_addr (irp, &addr))
4927 return -1;
4928
4929 if (record_full_arch_list_add_mem (addr, 1 << irp->ot))
4930 return -1;
4931
4932 return 0;
4933 }
4934
4935 /* Record the effects of a push operation. Return -1 if something
4936 goes wrong, 0 otherwise. */
4937
4938 static int
4939 i386_record_push (struct i386_record_s *irp, int size)
4940 {
4941 ULONGEST addr;
4942
4943 if (record_full_arch_list_add_reg (irp->regcache,
4944 irp->regmap[X86_RECORD_RESP_REGNUM]))
4945 return -1;
4946 regcache_raw_read_unsigned (irp->regcache,
4947 irp->regmap[X86_RECORD_RESP_REGNUM],
4948 &addr);
4949 if (record_full_arch_list_add_mem ((CORE_ADDR) addr - size, size))
4950 return -1;
4951
4952 return 0;
4953 }
4954
4955
4956 /* Defines contents to record. */
4957 #define I386_SAVE_FPU_REGS 0xfffd
4958 #define I386_SAVE_FPU_ENV 0xfffe
4959 #define I386_SAVE_FPU_ENV_REG_STACK 0xffff
4960
4961 /* Record the values of the floating point registers which will be
4962 changed by the current instruction. Returns -1 if something is
4963 wrong, 0 otherwise. */
4964
4965 static int i386_record_floats (struct gdbarch *gdbarch,
4966 struct i386_record_s *ir,
4967 uint32_t iregnum)
4968 {
4969 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4970 int i;
4971
4972 /* Oza: Because of floating point insn push/pop of fpu stack is going to
4973 happen. Currently we store st0-st7 registers, but we need not store all
4974 registers all the time, in future we use ftag register and record only
4975 those who are not marked as an empty. */
4976
4977 if (I386_SAVE_FPU_REGS == iregnum)
4978 {
4979 for (i = I387_ST0_REGNUM (tdep); i <= I387_ST0_REGNUM (tdep) + 7; i++)
4980 {
4981 if (record_full_arch_list_add_reg (ir->regcache, i))
4982 return -1;
4983 }
4984 }
4985 else if (I386_SAVE_FPU_ENV == iregnum)
4986 {
4987 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4988 {
4989 if (record_full_arch_list_add_reg (ir->regcache, i))
4990 return -1;
4991 }
4992 }
4993 else if (I386_SAVE_FPU_ENV_REG_STACK == iregnum)
4994 {
4995 for (i = I387_ST0_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4996 {
4997 if (record_full_arch_list_add_reg (ir->regcache, i))
4998 return -1;
4999 }
5000 }
5001 else if ((iregnum >= I387_ST0_REGNUM (tdep)) &&
5002 (iregnum <= I387_FOP_REGNUM (tdep)))
5003 {
5004 if (record_full_arch_list_add_reg (ir->regcache,iregnum))
5005 return -1;
5006 }
5007 else
5008 {
5009 /* Parameter error. */
5010 return -1;
5011 }
5012 if(I386_SAVE_FPU_ENV != iregnum)
5013 {
5014 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
5015 {
5016 if (record_full_arch_list_add_reg (ir->regcache, i))
5017 return -1;
5018 }
5019 }
5020 return 0;
5021 }
5022
5023 /* Parse the current instruction, and record the values of the
5024 registers and memory that will be changed by the current
5025 instruction. Returns -1 if something goes wrong, 0 otherwise. */
5026
5027 #define I386_RECORD_FULL_ARCH_LIST_ADD_REG(regnum) \
5028 record_full_arch_list_add_reg (ir.regcache, ir.regmap[(regnum)])
5029
5030 int
5031 i386_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
5032 CORE_ADDR input_addr)
5033 {
5034 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
5035 int prefixes = 0;
5036 int regnum = 0;
5037 uint32_t opcode;
5038 uint8_t opcode8;
5039 ULONGEST addr;
5040 gdb_byte buf[I386_MAX_REGISTER_SIZE];
5041 struct i386_record_s ir;
5042 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5043 uint8_t rex_w = -1;
5044 uint8_t rex_r = 0;
5045
5046 memset (&ir, 0, sizeof (struct i386_record_s));
5047 ir.regcache = regcache;
5048 ir.addr = input_addr;
5049 ir.orig_addr = input_addr;
5050 ir.aflag = 1;
5051 ir.dflag = 1;
5052 ir.override = -1;
5053 ir.popl_esp_hack = 0;
5054 ir.regmap = tdep->record_regmap;
5055 ir.gdbarch = gdbarch;
5056
5057 if (record_debug > 1)
5058 fprintf_unfiltered (gdb_stdlog, "Process record: i386_process_record "
5059 "addr = %s\n",
5060 paddress (gdbarch, ir.addr));
5061
5062 /* prefixes */
5063 while (1)
5064 {
5065 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
5066 return -1;
5067 ir.addr++;
5068 switch (opcode8) /* Instruction prefixes */
5069 {
5070 case REPE_PREFIX_OPCODE:
5071 prefixes |= PREFIX_REPZ;
5072 break;
5073 case REPNE_PREFIX_OPCODE:
5074 prefixes |= PREFIX_REPNZ;
5075 break;
5076 case LOCK_PREFIX_OPCODE:
5077 prefixes |= PREFIX_LOCK;
5078 break;
5079 case CS_PREFIX_OPCODE:
5080 ir.override = X86_RECORD_CS_REGNUM;
5081 break;
5082 case SS_PREFIX_OPCODE:
5083 ir.override = X86_RECORD_SS_REGNUM;
5084 break;
5085 case DS_PREFIX_OPCODE:
5086 ir.override = X86_RECORD_DS_REGNUM;
5087 break;
5088 case ES_PREFIX_OPCODE:
5089 ir.override = X86_RECORD_ES_REGNUM;
5090 break;
5091 case FS_PREFIX_OPCODE:
5092 ir.override = X86_RECORD_FS_REGNUM;
5093 break;
5094 case GS_PREFIX_OPCODE:
5095 ir.override = X86_RECORD_GS_REGNUM;
5096 break;
5097 case DATA_PREFIX_OPCODE:
5098 prefixes |= PREFIX_DATA;
5099 break;
5100 case ADDR_PREFIX_OPCODE:
5101 prefixes |= PREFIX_ADDR;
5102 break;
5103 case 0x40: /* i386 inc %eax */
5104 case 0x41: /* i386 inc %ecx */
5105 case 0x42: /* i386 inc %edx */
5106 case 0x43: /* i386 inc %ebx */
5107 case 0x44: /* i386 inc %esp */
5108 case 0x45: /* i386 inc %ebp */
5109 case 0x46: /* i386 inc %esi */
5110 case 0x47: /* i386 inc %edi */
5111 case 0x48: /* i386 dec %eax */
5112 case 0x49: /* i386 dec %ecx */
5113 case 0x4a: /* i386 dec %edx */
5114 case 0x4b: /* i386 dec %ebx */
5115 case 0x4c: /* i386 dec %esp */
5116 case 0x4d: /* i386 dec %ebp */
5117 case 0x4e: /* i386 dec %esi */
5118 case 0x4f: /* i386 dec %edi */
5119 if (ir.regmap[X86_RECORD_R8_REGNUM]) /* 64 bit target */
5120 {
5121 /* REX */
5122 rex_w = (opcode8 >> 3) & 1;
5123 rex_r = (opcode8 & 0x4) << 1;
5124 ir.rex_x = (opcode8 & 0x2) << 2;
5125 ir.rex_b = (opcode8 & 0x1) << 3;
5126 }
5127 else /* 32 bit target */
5128 goto out_prefixes;
5129 break;
5130 default:
5131 goto out_prefixes;
5132 break;
5133 }
5134 }
5135 out_prefixes:
5136 if (ir.regmap[X86_RECORD_R8_REGNUM] && rex_w == 1)
5137 {
5138 ir.dflag = 2;
5139 }
5140 else
5141 {
5142 if (prefixes & PREFIX_DATA)
5143 ir.dflag ^= 1;
5144 }
5145 if (prefixes & PREFIX_ADDR)
5146 ir.aflag ^= 1;
5147 else if (ir.regmap[X86_RECORD_R8_REGNUM])
5148 ir.aflag = 2;
5149
5150 /* Now check op code. */
5151 opcode = (uint32_t) opcode8;
5152 reswitch:
5153 switch (opcode)
5154 {
5155 case 0x0f:
5156 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
5157 return -1;
5158 ir.addr++;
5159 opcode = (uint32_t) opcode8 | 0x0f00;
5160 goto reswitch;
5161 break;
5162
5163 case 0x00: /* arith & logic */
5164 case 0x01:
5165 case 0x02:
5166 case 0x03:
5167 case 0x04:
5168 case 0x05:
5169 case 0x08:
5170 case 0x09:
5171 case 0x0a:
5172 case 0x0b:
5173 case 0x0c:
5174 case 0x0d:
5175 case 0x10:
5176 case 0x11:
5177 case 0x12:
5178 case 0x13:
5179 case 0x14:
5180 case 0x15:
5181 case 0x18:
5182 case 0x19:
5183 case 0x1a:
5184 case 0x1b:
5185 case 0x1c:
5186 case 0x1d:
5187 case 0x20:
5188 case 0x21:
5189 case 0x22:
5190 case 0x23:
5191 case 0x24:
5192 case 0x25:
5193 case 0x28:
5194 case 0x29:
5195 case 0x2a:
5196 case 0x2b:
5197 case 0x2c:
5198 case 0x2d:
5199 case 0x30:
5200 case 0x31:
5201 case 0x32:
5202 case 0x33:
5203 case 0x34:
5204 case 0x35:
5205 case 0x38:
5206 case 0x39:
5207 case 0x3a:
5208 case 0x3b:
5209 case 0x3c:
5210 case 0x3d:
5211 if (((opcode >> 3) & 7) != OP_CMPL)
5212 {
5213 if ((opcode & 1) == 0)
5214 ir.ot = OT_BYTE;
5215 else
5216 ir.ot = ir.dflag + OT_WORD;
5217
5218 switch ((opcode >> 1) & 3)
5219 {
5220 case 0: /* OP Ev, Gv */
5221 if (i386_record_modrm (&ir))
5222 return -1;
5223 if (ir.mod != 3)
5224 {
5225 if (i386_record_lea_modrm (&ir))
5226 return -1;
5227 }
5228 else
5229 {
5230 ir.rm |= ir.rex_b;
5231 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5232 ir.rm &= 0x3;
5233 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5234 }
5235 break;
5236 case 1: /* OP Gv, Ev */
5237 if (i386_record_modrm (&ir))
5238 return -1;
5239 ir.reg |= rex_r;
5240 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5241 ir.reg &= 0x3;
5242 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5243 break;
5244 case 2: /* OP A, Iv */
5245 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5246 break;
5247 }
5248 }
5249 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5250 break;
5251
5252 case 0x80: /* GRP1 */
5253 case 0x81:
5254 case 0x82:
5255 case 0x83:
5256 if (i386_record_modrm (&ir))
5257 return -1;
5258
5259 if (ir.reg != OP_CMPL)
5260 {
5261 if ((opcode & 1) == 0)
5262 ir.ot = OT_BYTE;
5263 else
5264 ir.ot = ir.dflag + OT_WORD;
5265
5266 if (ir.mod != 3)
5267 {
5268 if (opcode == 0x83)
5269 ir.rip_offset = 1;
5270 else
5271 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5272 if (i386_record_lea_modrm (&ir))
5273 return -1;
5274 }
5275 else
5276 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5277 }
5278 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5279 break;
5280
5281 case 0x40: /* inc */
5282 case 0x41:
5283 case 0x42:
5284 case 0x43:
5285 case 0x44:
5286 case 0x45:
5287 case 0x46:
5288 case 0x47:
5289
5290 case 0x48: /* dec */
5291 case 0x49:
5292 case 0x4a:
5293 case 0x4b:
5294 case 0x4c:
5295 case 0x4d:
5296 case 0x4e:
5297 case 0x4f:
5298
5299 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 7);
5300 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5301 break;
5302
5303 case 0xf6: /* GRP3 */
5304 case 0xf7:
5305 if ((opcode & 1) == 0)
5306 ir.ot = OT_BYTE;
5307 else
5308 ir.ot = ir.dflag + OT_WORD;
5309 if (i386_record_modrm (&ir))
5310 return -1;
5311
5312 if (ir.mod != 3 && ir.reg == 0)
5313 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5314
5315 switch (ir.reg)
5316 {
5317 case 0: /* test */
5318 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5319 break;
5320 case 2: /* not */
5321 case 3: /* neg */
5322 if (ir.mod != 3)
5323 {
5324 if (i386_record_lea_modrm (&ir))
5325 return -1;
5326 }
5327 else
5328 {
5329 ir.rm |= ir.rex_b;
5330 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5331 ir.rm &= 0x3;
5332 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5333 }
5334 if (ir.reg == 3) /* neg */
5335 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5336 break;
5337 case 4: /* mul */
5338 case 5: /* imul */
5339 case 6: /* div */
5340 case 7: /* idiv */
5341 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5342 if (ir.ot != OT_BYTE)
5343 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5344 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5345 break;
5346 default:
5347 ir.addr -= 2;
5348 opcode = opcode << 8 | ir.modrm;
5349 goto no_support;
5350 break;
5351 }
5352 break;
5353
5354 case 0xfe: /* GRP4 */
5355 case 0xff: /* GRP5 */
5356 if (i386_record_modrm (&ir))
5357 return -1;
5358 if (ir.reg >= 2 && opcode == 0xfe)
5359 {
5360 ir.addr -= 2;
5361 opcode = opcode << 8 | ir.modrm;
5362 goto no_support;
5363 }
5364 switch (ir.reg)
5365 {
5366 case 0: /* inc */
5367 case 1: /* dec */
5368 if ((opcode & 1) == 0)
5369 ir.ot = OT_BYTE;
5370 else
5371 ir.ot = ir.dflag + OT_WORD;
5372 if (ir.mod != 3)
5373 {
5374 if (i386_record_lea_modrm (&ir))
5375 return -1;
5376 }
5377 else
5378 {
5379 ir.rm |= ir.rex_b;
5380 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5381 ir.rm &= 0x3;
5382 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5383 }
5384 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5385 break;
5386 case 2: /* call */
5387 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5388 ir.dflag = 2;
5389 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5390 return -1;
5391 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5392 break;
5393 case 3: /* lcall */
5394 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
5395 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5396 return -1;
5397 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5398 break;
5399 case 4: /* jmp */
5400 case 5: /* ljmp */
5401 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5402 break;
5403 case 6: /* push */
5404 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5405 ir.dflag = 2;
5406 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5407 return -1;
5408 break;
5409 default:
5410 ir.addr -= 2;
5411 opcode = opcode << 8 | ir.modrm;
5412 goto no_support;
5413 break;
5414 }
5415 break;
5416
5417 case 0x84: /* test */
5418 case 0x85:
5419 case 0xa8:
5420 case 0xa9:
5421 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5422 break;
5423
5424 case 0x98: /* CWDE/CBW */
5425 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5426 break;
5427
5428 case 0x99: /* CDQ/CWD */
5429 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5430 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5431 break;
5432
5433 case 0x0faf: /* imul */
5434 case 0x69:
5435 case 0x6b:
5436 ir.ot = ir.dflag + OT_WORD;
5437 if (i386_record_modrm (&ir))
5438 return -1;
5439 if (opcode == 0x69)
5440 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5441 else if (opcode == 0x6b)
5442 ir.rip_offset = 1;
5443 ir.reg |= rex_r;
5444 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5445 ir.reg &= 0x3;
5446 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5447 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5448 break;
5449
5450 case 0x0fc0: /* xadd */
5451 case 0x0fc1:
5452 if ((opcode & 1) == 0)
5453 ir.ot = OT_BYTE;
5454 else
5455 ir.ot = ir.dflag + OT_WORD;
5456 if (i386_record_modrm (&ir))
5457 return -1;
5458 ir.reg |= rex_r;
5459 if (ir.mod == 3)
5460 {
5461 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5462 ir.reg &= 0x3;
5463 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5464 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5465 ir.rm &= 0x3;
5466 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5467 }
5468 else
5469 {
5470 if (i386_record_lea_modrm (&ir))
5471 return -1;
5472 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5473 ir.reg &= 0x3;
5474 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5475 }
5476 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5477 break;
5478
5479 case 0x0fb0: /* cmpxchg */
5480 case 0x0fb1:
5481 if ((opcode & 1) == 0)
5482 ir.ot = OT_BYTE;
5483 else
5484 ir.ot = ir.dflag + OT_WORD;
5485 if (i386_record_modrm (&ir))
5486 return -1;
5487 if (ir.mod == 3)
5488 {
5489 ir.reg |= rex_r;
5490 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5491 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5492 ir.reg &= 0x3;
5493 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5494 }
5495 else
5496 {
5497 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5498 if (i386_record_lea_modrm (&ir))
5499 return -1;
5500 }
5501 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5502 break;
5503
5504 case 0x0fc7: /* cmpxchg8b / rdrand / rdseed */
5505 if (i386_record_modrm (&ir))
5506 return -1;
5507 if (ir.mod == 3)
5508 {
5509 /* rdrand and rdseed use the 3 bits of the REG field of ModR/M as
5510 an extended opcode. rdrand has bits 110 (/6) and rdseed
5511 has bits 111 (/7). */
5512 if (ir.reg == 6 || ir.reg == 7)
5513 {
5514 /* The storage register is described by the 3 R/M bits, but the
5515 REX.B prefix may be used to give access to registers
5516 R8~R15. In this case ir.rex_b + R/M will give us the register
5517 in the range R8~R15.
5518
5519 REX.W may also be used to access 64-bit registers, but we
5520 already record entire registers and not just partial bits
5521 of them. */
5522 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rex_b + ir.rm);
5523 /* These instructions also set conditional bits. */
5524 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5525 break;
5526 }
5527 else
5528 {
5529 /* We don't handle this particular instruction yet. */
5530 ir.addr -= 2;
5531 opcode = opcode << 8 | ir.modrm;
5532 goto no_support;
5533 }
5534 }
5535 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5536 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5537 if (i386_record_lea_modrm (&ir))
5538 return -1;
5539 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5540 break;
5541
5542 case 0x50: /* push */
5543 case 0x51:
5544 case 0x52:
5545 case 0x53:
5546 case 0x54:
5547 case 0x55:
5548 case 0x56:
5549 case 0x57:
5550 case 0x68:
5551 case 0x6a:
5552 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5553 ir.dflag = 2;
5554 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5555 return -1;
5556 break;
5557
5558 case 0x06: /* push es */
5559 case 0x0e: /* push cs */
5560 case 0x16: /* push ss */
5561 case 0x1e: /* push ds */
5562 if (ir.regmap[X86_RECORD_R8_REGNUM])
5563 {
5564 ir.addr -= 1;
5565 goto no_support;
5566 }
5567 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5568 return -1;
5569 break;
5570
5571 case 0x0fa0: /* push fs */
5572 case 0x0fa8: /* push gs */
5573 if (ir.regmap[X86_RECORD_R8_REGNUM])
5574 {
5575 ir.addr -= 2;
5576 goto no_support;
5577 }
5578 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5579 return -1;
5580 break;
5581
5582 case 0x60: /* pusha */
5583 if (ir.regmap[X86_RECORD_R8_REGNUM])
5584 {
5585 ir.addr -= 1;
5586 goto no_support;
5587 }
5588 if (i386_record_push (&ir, 1 << (ir.dflag + 4)))
5589 return -1;
5590 break;
5591
5592 case 0x58: /* pop */
5593 case 0x59:
5594 case 0x5a:
5595 case 0x5b:
5596 case 0x5c:
5597 case 0x5d:
5598 case 0x5e:
5599 case 0x5f:
5600 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5601 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
5602 break;
5603
5604 case 0x61: /* popa */
5605 if (ir.regmap[X86_RECORD_R8_REGNUM])
5606 {
5607 ir.addr -= 1;
5608 goto no_support;
5609 }
5610 for (regnum = X86_RECORD_REAX_REGNUM;
5611 regnum <= X86_RECORD_REDI_REGNUM;
5612 regnum++)
5613 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5614 break;
5615
5616 case 0x8f: /* pop */
5617 if (ir.regmap[X86_RECORD_R8_REGNUM])
5618 ir.ot = ir.dflag ? OT_QUAD : OT_WORD;
5619 else
5620 ir.ot = ir.dflag + OT_WORD;
5621 if (i386_record_modrm (&ir))
5622 return -1;
5623 if (ir.mod == 3)
5624 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5625 else
5626 {
5627 ir.popl_esp_hack = 1 << ir.ot;
5628 if (i386_record_lea_modrm (&ir))
5629 return -1;
5630 }
5631 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5632 break;
5633
5634 case 0xc8: /* enter */
5635 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
5636 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5637 ir.dflag = 2;
5638 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5639 return -1;
5640 break;
5641
5642 case 0xc9: /* leave */
5643 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5644 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
5645 break;
5646
5647 case 0x07: /* pop es */
5648 if (ir.regmap[X86_RECORD_R8_REGNUM])
5649 {
5650 ir.addr -= 1;
5651 goto no_support;
5652 }
5653 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5654 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_ES_REGNUM);
5655 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5656 break;
5657
5658 case 0x17: /* pop ss */
5659 if (ir.regmap[X86_RECORD_R8_REGNUM])
5660 {
5661 ir.addr -= 1;
5662 goto no_support;
5663 }
5664 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5665 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_SS_REGNUM);
5666 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5667 break;
5668
5669 case 0x1f: /* pop ds */
5670 if (ir.regmap[X86_RECORD_R8_REGNUM])
5671 {
5672 ir.addr -= 1;
5673 goto no_support;
5674 }
5675 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5676 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_DS_REGNUM);
5677 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5678 break;
5679
5680 case 0x0fa1: /* pop fs */
5681 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5682 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_FS_REGNUM);
5683 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5684 break;
5685
5686 case 0x0fa9: /* pop gs */
5687 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5688 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
5689 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5690 break;
5691
5692 case 0x88: /* mov */
5693 case 0x89:
5694 case 0xc6:
5695 case 0xc7:
5696 if ((opcode & 1) == 0)
5697 ir.ot = OT_BYTE;
5698 else
5699 ir.ot = ir.dflag + OT_WORD;
5700
5701 if (i386_record_modrm (&ir))
5702 return -1;
5703
5704 if (ir.mod != 3)
5705 {
5706 if (opcode == 0xc6 || opcode == 0xc7)
5707 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5708 if (i386_record_lea_modrm (&ir))
5709 return -1;
5710 }
5711 else
5712 {
5713 if (opcode == 0xc6 || opcode == 0xc7)
5714 ir.rm |= ir.rex_b;
5715 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5716 ir.rm &= 0x3;
5717 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5718 }
5719 break;
5720
5721 case 0x8a: /* mov */
5722 case 0x8b:
5723 if ((opcode & 1) == 0)
5724 ir.ot = OT_BYTE;
5725 else
5726 ir.ot = ir.dflag + OT_WORD;
5727 if (i386_record_modrm (&ir))
5728 return -1;
5729 ir.reg |= rex_r;
5730 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5731 ir.reg &= 0x3;
5732 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5733 break;
5734
5735 case 0x8c: /* mov seg */
5736 if (i386_record_modrm (&ir))
5737 return -1;
5738 if (ir.reg > 5)
5739 {
5740 ir.addr -= 2;
5741 opcode = opcode << 8 | ir.modrm;
5742 goto no_support;
5743 }
5744
5745 if (ir.mod == 3)
5746 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5747 else
5748 {
5749 ir.ot = OT_WORD;
5750 if (i386_record_lea_modrm (&ir))
5751 return -1;
5752 }
5753 break;
5754
5755 case 0x8e: /* mov seg */
5756 if (i386_record_modrm (&ir))
5757 return -1;
5758 switch (ir.reg)
5759 {
5760 case 0:
5761 regnum = X86_RECORD_ES_REGNUM;
5762 break;
5763 case 2:
5764 regnum = X86_RECORD_SS_REGNUM;
5765 break;
5766 case 3:
5767 regnum = X86_RECORD_DS_REGNUM;
5768 break;
5769 case 4:
5770 regnum = X86_RECORD_FS_REGNUM;
5771 break;
5772 case 5:
5773 regnum = X86_RECORD_GS_REGNUM;
5774 break;
5775 default:
5776 ir.addr -= 2;
5777 opcode = opcode << 8 | ir.modrm;
5778 goto no_support;
5779 break;
5780 }
5781 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5782 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5783 break;
5784
5785 case 0x0fb6: /* movzbS */
5786 case 0x0fb7: /* movzwS */
5787 case 0x0fbe: /* movsbS */
5788 case 0x0fbf: /* movswS */
5789 if (i386_record_modrm (&ir))
5790 return -1;
5791 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5792 break;
5793
5794 case 0x8d: /* lea */
5795 if (i386_record_modrm (&ir))
5796 return -1;
5797 if (ir.mod == 3)
5798 {
5799 ir.addr -= 2;
5800 opcode = opcode << 8 | ir.modrm;
5801 goto no_support;
5802 }
5803 ir.ot = ir.dflag;
5804 ir.reg |= rex_r;
5805 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5806 ir.reg &= 0x3;
5807 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5808 break;
5809
5810 case 0xa0: /* mov EAX */
5811 case 0xa1:
5812
5813 case 0xd7: /* xlat */
5814 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5815 break;
5816
5817 case 0xa2: /* mov EAX */
5818 case 0xa3:
5819 if (ir.override >= 0)
5820 {
5821 if (record_full_memory_query)
5822 {
5823 if (yquery (_("\
5824 Process record ignores the memory change of instruction at address %s\n\
5825 because it can't get the value of the segment register.\n\
5826 Do you want to stop the program?"),
5827 paddress (gdbarch, ir.orig_addr)))
5828 return -1;
5829 }
5830 }
5831 else
5832 {
5833 if ((opcode & 1) == 0)
5834 ir.ot = OT_BYTE;
5835 else
5836 ir.ot = ir.dflag + OT_WORD;
5837 if (ir.aflag == 2)
5838 {
5839 if (record_read_memory (gdbarch, ir.addr, buf, 8))
5840 return -1;
5841 ir.addr += 8;
5842 addr = extract_unsigned_integer (buf, 8, byte_order);
5843 }
5844 else if (ir.aflag)
5845 {
5846 if (record_read_memory (gdbarch, ir.addr, buf, 4))
5847 return -1;
5848 ir.addr += 4;
5849 addr = extract_unsigned_integer (buf, 4, byte_order);
5850 }
5851 else
5852 {
5853 if (record_read_memory (gdbarch, ir.addr, buf, 2))
5854 return -1;
5855 ir.addr += 2;
5856 addr = extract_unsigned_integer (buf, 2, byte_order);
5857 }
5858 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
5859 return -1;
5860 }
5861 break;
5862
5863 case 0xb0: /* mov R, Ib */
5864 case 0xb1:
5865 case 0xb2:
5866 case 0xb3:
5867 case 0xb4:
5868 case 0xb5:
5869 case 0xb6:
5870 case 0xb7:
5871 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((ir.regmap[X86_RECORD_R8_REGNUM])
5872 ? ((opcode & 0x7) | ir.rex_b)
5873 : ((opcode & 0x7) & 0x3));
5874 break;
5875
5876 case 0xb8: /* mov R, Iv */
5877 case 0xb9:
5878 case 0xba:
5879 case 0xbb:
5880 case 0xbc:
5881 case 0xbd:
5882 case 0xbe:
5883 case 0xbf:
5884 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
5885 break;
5886
5887 case 0x91: /* xchg R, EAX */
5888 case 0x92:
5889 case 0x93:
5890 case 0x94:
5891 case 0x95:
5892 case 0x96:
5893 case 0x97:
5894 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5895 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 0x7);
5896 break;
5897
5898 case 0x86: /* xchg Ev, Gv */
5899 case 0x87:
5900 if ((opcode & 1) == 0)
5901 ir.ot = OT_BYTE;
5902 else
5903 ir.ot = ir.dflag + OT_WORD;
5904 if (i386_record_modrm (&ir))
5905 return -1;
5906 if (ir.mod == 3)
5907 {
5908 ir.rm |= ir.rex_b;
5909 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5910 ir.rm &= 0x3;
5911 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5912 }
5913 else
5914 {
5915 if (i386_record_lea_modrm (&ir))
5916 return -1;
5917 }
5918 ir.reg |= rex_r;
5919 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5920 ir.reg &= 0x3;
5921 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5922 break;
5923
5924 case 0xc4: /* les Gv */
5925 case 0xc5: /* lds Gv */
5926 if (ir.regmap[X86_RECORD_R8_REGNUM])
5927 {
5928 ir.addr -= 1;
5929 goto no_support;
5930 }
5931 /* FALLTHROUGH */
5932 case 0x0fb2: /* lss Gv */
5933 case 0x0fb4: /* lfs Gv */
5934 case 0x0fb5: /* lgs Gv */
5935 if (i386_record_modrm (&ir))
5936 return -1;
5937 if (ir.mod == 3)
5938 {
5939 if (opcode > 0xff)
5940 ir.addr -= 3;
5941 else
5942 ir.addr -= 2;
5943 opcode = opcode << 8 | ir.modrm;
5944 goto no_support;
5945 }
5946 switch (opcode)
5947 {
5948 case 0xc4: /* les Gv */
5949 regnum = X86_RECORD_ES_REGNUM;
5950 break;
5951 case 0xc5: /* lds Gv */
5952 regnum = X86_RECORD_DS_REGNUM;
5953 break;
5954 case 0x0fb2: /* lss Gv */
5955 regnum = X86_RECORD_SS_REGNUM;
5956 break;
5957 case 0x0fb4: /* lfs Gv */
5958 regnum = X86_RECORD_FS_REGNUM;
5959 break;
5960 case 0x0fb5: /* lgs Gv */
5961 regnum = X86_RECORD_GS_REGNUM;
5962 break;
5963 }
5964 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5965 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5966 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5967 break;
5968
5969 case 0xc0: /* shifts */
5970 case 0xc1:
5971 case 0xd0:
5972 case 0xd1:
5973 case 0xd2:
5974 case 0xd3:
5975 if ((opcode & 1) == 0)
5976 ir.ot = OT_BYTE;
5977 else
5978 ir.ot = ir.dflag + OT_WORD;
5979 if (i386_record_modrm (&ir))
5980 return -1;
5981 if (ir.mod != 3 && (opcode == 0xd2 || opcode == 0xd3))
5982 {
5983 if (i386_record_lea_modrm (&ir))
5984 return -1;
5985 }
5986 else
5987 {
5988 ir.rm |= ir.rex_b;
5989 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5990 ir.rm &= 0x3;
5991 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5992 }
5993 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5994 break;
5995
5996 case 0x0fa4:
5997 case 0x0fa5:
5998 case 0x0fac:
5999 case 0x0fad:
6000 if (i386_record_modrm (&ir))
6001 return -1;
6002 if (ir.mod == 3)
6003 {
6004 if (record_full_arch_list_add_reg (ir.regcache, ir.rm))
6005 return -1;
6006 }
6007 else
6008 {
6009 if (i386_record_lea_modrm (&ir))
6010 return -1;
6011 }
6012 break;
6013
6014 case 0xd8: /* Floats. */
6015 case 0xd9:
6016 case 0xda:
6017 case 0xdb:
6018 case 0xdc:
6019 case 0xdd:
6020 case 0xde:
6021 case 0xdf:
6022 if (i386_record_modrm (&ir))
6023 return -1;
6024 ir.reg |= ((opcode & 7) << 3);
6025 if (ir.mod != 3)
6026 {
6027 /* Memory. */
6028 uint64_t addr64;
6029
6030 if (i386_record_lea_modrm_addr (&ir, &addr64))
6031 return -1;
6032 switch (ir.reg)
6033 {
6034 case 0x02:
6035 case 0x12:
6036 case 0x22:
6037 case 0x32:
6038 /* For fcom, ficom nothing to do. */
6039 break;
6040 case 0x03:
6041 case 0x13:
6042 case 0x23:
6043 case 0x33:
6044 /* For fcomp, ficomp pop FPU stack, store all. */
6045 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6046 return -1;
6047 break;
6048 case 0x00:
6049 case 0x01:
6050 case 0x04:
6051 case 0x05:
6052 case 0x06:
6053 case 0x07:
6054 case 0x10:
6055 case 0x11:
6056 case 0x14:
6057 case 0x15:
6058 case 0x16:
6059 case 0x17:
6060 case 0x20:
6061 case 0x21:
6062 case 0x24:
6063 case 0x25:
6064 case 0x26:
6065 case 0x27:
6066 case 0x30:
6067 case 0x31:
6068 case 0x34:
6069 case 0x35:
6070 case 0x36:
6071 case 0x37:
6072 /* For fadd, fmul, fsub, fsubr, fdiv, fdivr, fiadd, fimul,
6073 fisub, fisubr, fidiv, fidivr, modR/M.reg is an extension
6074 of code, always affects st(0) register. */
6075 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
6076 return -1;
6077 break;
6078 case 0x08:
6079 case 0x0a:
6080 case 0x0b:
6081 case 0x18:
6082 case 0x19:
6083 case 0x1a:
6084 case 0x1b:
6085 case 0x1d:
6086 case 0x28:
6087 case 0x29:
6088 case 0x2a:
6089 case 0x2b:
6090 case 0x38:
6091 case 0x39:
6092 case 0x3a:
6093 case 0x3b:
6094 case 0x3c:
6095 case 0x3d:
6096 switch (ir.reg & 7)
6097 {
6098 case 0:
6099 /* Handling fld, fild. */
6100 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6101 return -1;
6102 break;
6103 case 1:
6104 switch (ir.reg >> 4)
6105 {
6106 case 0:
6107 if (record_full_arch_list_add_mem (addr64, 4))
6108 return -1;
6109 break;
6110 case 2:
6111 if (record_full_arch_list_add_mem (addr64, 8))
6112 return -1;
6113 break;
6114 case 3:
6115 break;
6116 default:
6117 if (record_full_arch_list_add_mem (addr64, 2))
6118 return -1;
6119 break;
6120 }
6121 break;
6122 default:
6123 switch (ir.reg >> 4)
6124 {
6125 case 0:
6126 if (record_full_arch_list_add_mem (addr64, 4))
6127 return -1;
6128 if (3 == (ir.reg & 7))
6129 {
6130 /* For fstp m32fp. */
6131 if (i386_record_floats (gdbarch, &ir,
6132 I386_SAVE_FPU_REGS))
6133 return -1;
6134 }
6135 break;
6136 case 1:
6137 if (record_full_arch_list_add_mem (addr64, 4))
6138 return -1;
6139 if ((3 == (ir.reg & 7))
6140 || (5 == (ir.reg & 7))
6141 || (7 == (ir.reg & 7)))
6142 {
6143 /* For fstp insn. */
6144 if (i386_record_floats (gdbarch, &ir,
6145 I386_SAVE_FPU_REGS))
6146 return -1;
6147 }
6148 break;
6149 case 2:
6150 if (record_full_arch_list_add_mem (addr64, 8))
6151 return -1;
6152 if (3 == (ir.reg & 7))
6153 {
6154 /* For fstp m64fp. */
6155 if (i386_record_floats (gdbarch, &ir,
6156 I386_SAVE_FPU_REGS))
6157 return -1;
6158 }
6159 break;
6160 case 3:
6161 if ((3 <= (ir.reg & 7)) && (6 <= (ir.reg & 7)))
6162 {
6163 /* For fistp, fbld, fild, fbstp. */
6164 if (i386_record_floats (gdbarch, &ir,
6165 I386_SAVE_FPU_REGS))
6166 return -1;
6167 }
6168 /* Fall through */
6169 default:
6170 if (record_full_arch_list_add_mem (addr64, 2))
6171 return -1;
6172 break;
6173 }
6174 break;
6175 }
6176 break;
6177 case 0x0c:
6178 /* Insn fldenv. */
6179 if (i386_record_floats (gdbarch, &ir,
6180 I386_SAVE_FPU_ENV_REG_STACK))
6181 return -1;
6182 break;
6183 case 0x0d:
6184 /* Insn fldcw. */
6185 if (i386_record_floats (gdbarch, &ir, I387_FCTRL_REGNUM (tdep)))
6186 return -1;
6187 break;
6188 case 0x2c:
6189 /* Insn frstor. */
6190 if (i386_record_floats (gdbarch, &ir,
6191 I386_SAVE_FPU_ENV_REG_STACK))
6192 return -1;
6193 break;
6194 case 0x0e:
6195 if (ir.dflag)
6196 {
6197 if (record_full_arch_list_add_mem (addr64, 28))
6198 return -1;
6199 }
6200 else
6201 {
6202 if (record_full_arch_list_add_mem (addr64, 14))
6203 return -1;
6204 }
6205 break;
6206 case 0x0f:
6207 case 0x2f:
6208 if (record_full_arch_list_add_mem (addr64, 2))
6209 return -1;
6210 /* Insn fstp, fbstp. */
6211 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6212 return -1;
6213 break;
6214 case 0x1f:
6215 case 0x3e:
6216 if (record_full_arch_list_add_mem (addr64, 10))
6217 return -1;
6218 break;
6219 case 0x2e:
6220 if (ir.dflag)
6221 {
6222 if (record_full_arch_list_add_mem (addr64, 28))
6223 return -1;
6224 addr64 += 28;
6225 }
6226 else
6227 {
6228 if (record_full_arch_list_add_mem (addr64, 14))
6229 return -1;
6230 addr64 += 14;
6231 }
6232 if (record_full_arch_list_add_mem (addr64, 80))
6233 return -1;
6234 /* Insn fsave. */
6235 if (i386_record_floats (gdbarch, &ir,
6236 I386_SAVE_FPU_ENV_REG_STACK))
6237 return -1;
6238 break;
6239 case 0x3f:
6240 if (record_full_arch_list_add_mem (addr64, 8))
6241 return -1;
6242 /* Insn fistp. */
6243 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6244 return -1;
6245 break;
6246 default:
6247 ir.addr -= 2;
6248 opcode = opcode << 8 | ir.modrm;
6249 goto no_support;
6250 break;
6251 }
6252 }
6253 /* Opcode is an extension of modR/M byte. */
6254 else
6255 {
6256 switch (opcode)
6257 {
6258 case 0xd8:
6259 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
6260 return -1;
6261 break;
6262 case 0xd9:
6263 if (0x0c == (ir.modrm >> 4))
6264 {
6265 if ((ir.modrm & 0x0f) <= 7)
6266 {
6267 if (i386_record_floats (gdbarch, &ir,
6268 I386_SAVE_FPU_REGS))
6269 return -1;
6270 }
6271 else
6272 {
6273 if (i386_record_floats (gdbarch, &ir,
6274 I387_ST0_REGNUM (tdep)))
6275 return -1;
6276 /* If only st(0) is changing, then we have already
6277 recorded. */
6278 if ((ir.modrm & 0x0f) - 0x08)
6279 {
6280 if (i386_record_floats (gdbarch, &ir,
6281 I387_ST0_REGNUM (tdep) +
6282 ((ir.modrm & 0x0f) - 0x08)))
6283 return -1;
6284 }
6285 }
6286 }
6287 else
6288 {
6289 switch (ir.modrm)
6290 {
6291 case 0xe0:
6292 case 0xe1:
6293 case 0xf0:
6294 case 0xf5:
6295 case 0xf8:
6296 case 0xfa:
6297 case 0xfc:
6298 case 0xfe:
6299 case 0xff:
6300 if (i386_record_floats (gdbarch, &ir,
6301 I387_ST0_REGNUM (tdep)))
6302 return -1;
6303 break;
6304 case 0xf1:
6305 case 0xf2:
6306 case 0xf3:
6307 case 0xf4:
6308 case 0xf6:
6309 case 0xf7:
6310 case 0xe8:
6311 case 0xe9:
6312 case 0xea:
6313 case 0xeb:
6314 case 0xec:
6315 case 0xed:
6316 case 0xee:
6317 case 0xf9:
6318 case 0xfb:
6319 if (i386_record_floats (gdbarch, &ir,
6320 I386_SAVE_FPU_REGS))
6321 return -1;
6322 break;
6323 case 0xfd:
6324 if (i386_record_floats (gdbarch, &ir,
6325 I387_ST0_REGNUM (tdep)))
6326 return -1;
6327 if (i386_record_floats (gdbarch, &ir,
6328 I387_ST0_REGNUM (tdep) + 1))
6329 return -1;
6330 break;
6331 }
6332 }
6333 break;
6334 case 0xda:
6335 if (0xe9 == ir.modrm)
6336 {
6337 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6338 return -1;
6339 }
6340 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
6341 {
6342 if (i386_record_floats (gdbarch, &ir,
6343 I387_ST0_REGNUM (tdep)))
6344 return -1;
6345 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
6346 {
6347 if (i386_record_floats (gdbarch, &ir,
6348 I387_ST0_REGNUM (tdep) +
6349 (ir.modrm & 0x0f)))
6350 return -1;
6351 }
6352 else if ((ir.modrm & 0x0f) - 0x08)
6353 {
6354 if (i386_record_floats (gdbarch, &ir,
6355 I387_ST0_REGNUM (tdep) +
6356 ((ir.modrm & 0x0f) - 0x08)))
6357 return -1;
6358 }
6359 }
6360 break;
6361 case 0xdb:
6362 if (0xe3 == ir.modrm)
6363 {
6364 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_ENV))
6365 return -1;
6366 }
6367 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
6368 {
6369 if (i386_record_floats (gdbarch, &ir,
6370 I387_ST0_REGNUM (tdep)))
6371 return -1;
6372 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
6373 {
6374 if (i386_record_floats (gdbarch, &ir,
6375 I387_ST0_REGNUM (tdep) +
6376 (ir.modrm & 0x0f)))
6377 return -1;
6378 }
6379 else if ((ir.modrm & 0x0f) - 0x08)
6380 {
6381 if (i386_record_floats (gdbarch, &ir,
6382 I387_ST0_REGNUM (tdep) +
6383 ((ir.modrm & 0x0f) - 0x08)))
6384 return -1;
6385 }
6386 }
6387 break;
6388 case 0xdc:
6389 if ((0x0c == ir.modrm >> 4)
6390 || (0x0d == ir.modrm >> 4)
6391 || (0x0f == ir.modrm >> 4))
6392 {
6393 if ((ir.modrm & 0x0f) <= 7)
6394 {
6395 if (i386_record_floats (gdbarch, &ir,
6396 I387_ST0_REGNUM (tdep) +
6397 (ir.modrm & 0x0f)))
6398 return -1;
6399 }
6400 else
6401 {
6402 if (i386_record_floats (gdbarch, &ir,
6403 I387_ST0_REGNUM (tdep) +
6404 ((ir.modrm & 0x0f) - 0x08)))
6405 return -1;
6406 }
6407 }
6408 break;
6409 case 0xdd:
6410 if (0x0c == ir.modrm >> 4)
6411 {
6412 if (i386_record_floats (gdbarch, &ir,
6413 I387_FTAG_REGNUM (tdep)))
6414 return -1;
6415 }
6416 else if ((0x0d == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
6417 {
6418 if ((ir.modrm & 0x0f) <= 7)
6419 {
6420 if (i386_record_floats (gdbarch, &ir,
6421 I387_ST0_REGNUM (tdep) +
6422 (ir.modrm & 0x0f)))
6423 return -1;
6424 }
6425 else
6426 {
6427 if (i386_record_floats (gdbarch, &ir,
6428 I386_SAVE_FPU_REGS))
6429 return -1;
6430 }
6431 }
6432 break;
6433 case 0xde:
6434 if ((0x0c == ir.modrm >> 4)
6435 || (0x0e == ir.modrm >> 4)
6436 || (0x0f == ir.modrm >> 4)
6437 || (0xd9 == ir.modrm))
6438 {
6439 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6440 return -1;
6441 }
6442 break;
6443 case 0xdf:
6444 if (0xe0 == ir.modrm)
6445 {
6446 if (record_full_arch_list_add_reg (ir.regcache,
6447 I386_EAX_REGNUM))
6448 return -1;
6449 }
6450 else if ((0x0f == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
6451 {
6452 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6453 return -1;
6454 }
6455 break;
6456 }
6457 }
6458 break;
6459 /* string ops */
6460 case 0xa4: /* movsS */
6461 case 0xa5:
6462 case 0xaa: /* stosS */
6463 case 0xab:
6464 case 0x6c: /* insS */
6465 case 0x6d:
6466 regcache_raw_read_unsigned (ir.regcache,
6467 ir.regmap[X86_RECORD_RECX_REGNUM],
6468 &addr);
6469 if (addr)
6470 {
6471 ULONGEST es, ds;
6472
6473 if ((opcode & 1) == 0)
6474 ir.ot = OT_BYTE;
6475 else
6476 ir.ot = ir.dflag + OT_WORD;
6477 regcache_raw_read_unsigned (ir.regcache,
6478 ir.regmap[X86_RECORD_REDI_REGNUM],
6479 &addr);
6480
6481 regcache_raw_read_unsigned (ir.regcache,
6482 ir.regmap[X86_RECORD_ES_REGNUM],
6483 &es);
6484 regcache_raw_read_unsigned (ir.regcache,
6485 ir.regmap[X86_RECORD_DS_REGNUM],
6486 &ds);
6487 if (ir.aflag && (es != ds))
6488 {
6489 /* addr += ((uint32_t) read_register (I386_ES_REGNUM)) << 4; */
6490 if (record_full_memory_query)
6491 {
6492 if (yquery (_("\
6493 Process record ignores the memory change of instruction at address %s\n\
6494 because it can't get the value of the segment register.\n\
6495 Do you want to stop the program?"),
6496 paddress (gdbarch, ir.orig_addr)))
6497 return -1;
6498 }
6499 }
6500 else
6501 {
6502 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
6503 return -1;
6504 }
6505
6506 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6507 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6508 if (opcode == 0xa4 || opcode == 0xa5)
6509 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6510 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6511 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6512 }
6513 break;
6514
6515 case 0xa6: /* cmpsS */
6516 case 0xa7:
6517 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6518 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6519 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6520 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6521 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6522 break;
6523
6524 case 0xac: /* lodsS */
6525 case 0xad:
6526 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6527 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6528 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6529 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6530 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6531 break;
6532
6533 case 0xae: /* scasS */
6534 case 0xaf:
6535 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6536 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6537 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6538 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6539 break;
6540
6541 case 0x6e: /* outsS */
6542 case 0x6f:
6543 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6544 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6545 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6546 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6547 break;
6548
6549 case 0xe4: /* port I/O */
6550 case 0xe5:
6551 case 0xec:
6552 case 0xed:
6553 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6554 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6555 break;
6556
6557 case 0xe6:
6558 case 0xe7:
6559 case 0xee:
6560 case 0xef:
6561 break;
6562
6563 /* control */
6564 case 0xc2: /* ret im */
6565 case 0xc3: /* ret */
6566 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6567 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6568 break;
6569
6570 case 0xca: /* lret im */
6571 case 0xcb: /* lret */
6572 case 0xcf: /* iret */
6573 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
6574 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6575 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6576 break;
6577
6578 case 0xe8: /* call im */
6579 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6580 ir.dflag = 2;
6581 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6582 return -1;
6583 break;
6584
6585 case 0x9a: /* lcall im */
6586 if (ir.regmap[X86_RECORD_R8_REGNUM])
6587 {
6588 ir.addr -= 1;
6589 goto no_support;
6590 }
6591 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
6592 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6593 return -1;
6594 break;
6595
6596 case 0xe9: /* jmp im */
6597 case 0xea: /* ljmp im */
6598 case 0xeb: /* jmp Jb */
6599 case 0x70: /* jcc Jb */
6600 case 0x71:
6601 case 0x72:
6602 case 0x73:
6603 case 0x74:
6604 case 0x75:
6605 case 0x76:
6606 case 0x77:
6607 case 0x78:
6608 case 0x79:
6609 case 0x7a:
6610 case 0x7b:
6611 case 0x7c:
6612 case 0x7d:
6613 case 0x7e:
6614 case 0x7f:
6615 case 0x0f80: /* jcc Jv */
6616 case 0x0f81:
6617 case 0x0f82:
6618 case 0x0f83:
6619 case 0x0f84:
6620 case 0x0f85:
6621 case 0x0f86:
6622 case 0x0f87:
6623 case 0x0f88:
6624 case 0x0f89:
6625 case 0x0f8a:
6626 case 0x0f8b:
6627 case 0x0f8c:
6628 case 0x0f8d:
6629 case 0x0f8e:
6630 case 0x0f8f:
6631 break;
6632
6633 case 0x0f90: /* setcc Gv */
6634 case 0x0f91:
6635 case 0x0f92:
6636 case 0x0f93:
6637 case 0x0f94:
6638 case 0x0f95:
6639 case 0x0f96:
6640 case 0x0f97:
6641 case 0x0f98:
6642 case 0x0f99:
6643 case 0x0f9a:
6644 case 0x0f9b:
6645 case 0x0f9c:
6646 case 0x0f9d:
6647 case 0x0f9e:
6648 case 0x0f9f:
6649 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6650 ir.ot = OT_BYTE;
6651 if (i386_record_modrm (&ir))
6652 return -1;
6653 if (ir.mod == 3)
6654 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rex_b ? (ir.rm | ir.rex_b)
6655 : (ir.rm & 0x3));
6656 else
6657 {
6658 if (i386_record_lea_modrm (&ir))
6659 return -1;
6660 }
6661 break;
6662
6663 case 0x0f40: /* cmov Gv, Ev */
6664 case 0x0f41:
6665 case 0x0f42:
6666 case 0x0f43:
6667 case 0x0f44:
6668 case 0x0f45:
6669 case 0x0f46:
6670 case 0x0f47:
6671 case 0x0f48:
6672 case 0x0f49:
6673 case 0x0f4a:
6674 case 0x0f4b:
6675 case 0x0f4c:
6676 case 0x0f4d:
6677 case 0x0f4e:
6678 case 0x0f4f:
6679 if (i386_record_modrm (&ir))
6680 return -1;
6681 ir.reg |= rex_r;
6682 if (ir.dflag == OT_BYTE)
6683 ir.reg &= 0x3;
6684 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
6685 break;
6686
6687 /* flags */
6688 case 0x9c: /* pushf */
6689 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6690 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6691 ir.dflag = 2;
6692 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6693 return -1;
6694 break;
6695
6696 case 0x9d: /* popf */
6697 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6698 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6699 break;
6700
6701 case 0x9e: /* sahf */
6702 if (ir.regmap[X86_RECORD_R8_REGNUM])
6703 {
6704 ir.addr -= 1;
6705 goto no_support;
6706 }
6707 /* FALLTHROUGH */
6708 case 0xf5: /* cmc */
6709 case 0xf8: /* clc */
6710 case 0xf9: /* stc */
6711 case 0xfc: /* cld */
6712 case 0xfd: /* std */
6713 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6714 break;
6715
6716 case 0x9f: /* lahf */
6717 if (ir.regmap[X86_RECORD_R8_REGNUM])
6718 {
6719 ir.addr -= 1;
6720 goto no_support;
6721 }
6722 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6723 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6724 break;
6725
6726 /* bit operations */
6727 case 0x0fba: /* bt/bts/btr/btc Gv, im */
6728 ir.ot = ir.dflag + OT_WORD;
6729 if (i386_record_modrm (&ir))
6730 return -1;
6731 if (ir.reg < 4)
6732 {
6733 ir.addr -= 2;
6734 opcode = opcode << 8 | ir.modrm;
6735 goto no_support;
6736 }
6737 if (ir.reg != 4)
6738 {
6739 if (ir.mod == 3)
6740 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6741 else
6742 {
6743 if (i386_record_lea_modrm (&ir))
6744 return -1;
6745 }
6746 }
6747 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6748 break;
6749
6750 case 0x0fa3: /* bt Gv, Ev */
6751 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6752 break;
6753
6754 case 0x0fab: /* bts */
6755 case 0x0fb3: /* btr */
6756 case 0x0fbb: /* btc */
6757 ir.ot = ir.dflag + OT_WORD;
6758 if (i386_record_modrm (&ir))
6759 return -1;
6760 if (ir.mod == 3)
6761 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6762 else
6763 {
6764 uint64_t addr64;
6765 if (i386_record_lea_modrm_addr (&ir, &addr64))
6766 return -1;
6767 regcache_raw_read_unsigned (ir.regcache,
6768 ir.regmap[ir.reg | rex_r],
6769 &addr);
6770 switch (ir.dflag)
6771 {
6772 case 0:
6773 addr64 += ((int16_t) addr >> 4) << 4;
6774 break;
6775 case 1:
6776 addr64 += ((int32_t) addr >> 5) << 5;
6777 break;
6778 case 2:
6779 addr64 += ((int64_t) addr >> 6) << 6;
6780 break;
6781 }
6782 if (record_full_arch_list_add_mem (addr64, 1 << ir.ot))
6783 return -1;
6784 if (i386_record_lea_modrm (&ir))
6785 return -1;
6786 }
6787 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6788 break;
6789
6790 case 0x0fbc: /* bsf */
6791 case 0x0fbd: /* bsr */
6792 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6793 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6794 break;
6795
6796 /* bcd */
6797 case 0x27: /* daa */
6798 case 0x2f: /* das */
6799 case 0x37: /* aaa */
6800 case 0x3f: /* aas */
6801 case 0xd4: /* aam */
6802 case 0xd5: /* aad */
6803 if (ir.regmap[X86_RECORD_R8_REGNUM])
6804 {
6805 ir.addr -= 1;
6806 goto no_support;
6807 }
6808 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6809 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6810 break;
6811
6812 /* misc */
6813 case 0x90: /* nop */
6814 if (prefixes & PREFIX_LOCK)
6815 {
6816 ir.addr -= 1;
6817 goto no_support;
6818 }
6819 break;
6820
6821 case 0x9b: /* fwait */
6822 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
6823 return -1;
6824 opcode = (uint32_t) opcode8;
6825 ir.addr++;
6826 goto reswitch;
6827 break;
6828
6829 /* XXX */
6830 case 0xcc: /* int3 */
6831 printf_unfiltered (_("Process record does not support instruction "
6832 "int3.\n"));
6833 ir.addr -= 1;
6834 goto no_support;
6835 break;
6836
6837 /* XXX */
6838 case 0xcd: /* int */
6839 {
6840 int ret;
6841 uint8_t interrupt;
6842 if (record_read_memory (gdbarch, ir.addr, &interrupt, 1))
6843 return -1;
6844 ir.addr++;
6845 if (interrupt != 0x80
6846 || tdep->i386_intx80_record == NULL)
6847 {
6848 printf_unfiltered (_("Process record does not support "
6849 "instruction int 0x%02x.\n"),
6850 interrupt);
6851 ir.addr -= 2;
6852 goto no_support;
6853 }
6854 ret = tdep->i386_intx80_record (ir.regcache);
6855 if (ret)
6856 return ret;
6857 }
6858 break;
6859
6860 /* XXX */
6861 case 0xce: /* into */
6862 printf_unfiltered (_("Process record does not support "
6863 "instruction into.\n"));
6864 ir.addr -= 1;
6865 goto no_support;
6866 break;
6867
6868 case 0xfa: /* cli */
6869 case 0xfb: /* sti */
6870 break;
6871
6872 case 0x62: /* bound */
6873 printf_unfiltered (_("Process record does not support "
6874 "instruction bound.\n"));
6875 ir.addr -= 1;
6876 goto no_support;
6877 break;
6878
6879 case 0x0fc8: /* bswap reg */
6880 case 0x0fc9:
6881 case 0x0fca:
6882 case 0x0fcb:
6883 case 0x0fcc:
6884 case 0x0fcd:
6885 case 0x0fce:
6886 case 0x0fcf:
6887 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 7) | ir.rex_b);
6888 break;
6889
6890 case 0xd6: /* salc */
6891 if (ir.regmap[X86_RECORD_R8_REGNUM])
6892 {
6893 ir.addr -= 1;
6894 goto no_support;
6895 }
6896 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6897 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6898 break;
6899
6900 case 0xe0: /* loopnz */
6901 case 0xe1: /* loopz */
6902 case 0xe2: /* loop */
6903 case 0xe3: /* jecxz */
6904 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6905 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6906 break;
6907
6908 case 0x0f30: /* wrmsr */
6909 printf_unfiltered (_("Process record does not support "
6910 "instruction wrmsr.\n"));
6911 ir.addr -= 2;
6912 goto no_support;
6913 break;
6914
6915 case 0x0f32: /* rdmsr */
6916 printf_unfiltered (_("Process record does not support "
6917 "instruction rdmsr.\n"));
6918 ir.addr -= 2;
6919 goto no_support;
6920 break;
6921
6922 case 0x0f31: /* rdtsc */
6923 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6924 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6925 break;
6926
6927 case 0x0f34: /* sysenter */
6928 {
6929 int ret;
6930 if (ir.regmap[X86_RECORD_R8_REGNUM])
6931 {
6932 ir.addr -= 2;
6933 goto no_support;
6934 }
6935 if (tdep->i386_sysenter_record == NULL)
6936 {
6937 printf_unfiltered (_("Process record does not support "
6938 "instruction sysenter.\n"));
6939 ir.addr -= 2;
6940 goto no_support;
6941 }
6942 ret = tdep->i386_sysenter_record (ir.regcache);
6943 if (ret)
6944 return ret;
6945 }
6946 break;
6947
6948 case 0x0f35: /* sysexit */
6949 printf_unfiltered (_("Process record does not support "
6950 "instruction sysexit.\n"));
6951 ir.addr -= 2;
6952 goto no_support;
6953 break;
6954
6955 case 0x0f05: /* syscall */
6956 {
6957 int ret;
6958 if (tdep->i386_syscall_record == NULL)
6959 {
6960 printf_unfiltered (_("Process record does not support "
6961 "instruction syscall.\n"));
6962 ir.addr -= 2;
6963 goto no_support;
6964 }
6965 ret = tdep->i386_syscall_record (ir.regcache);
6966 if (ret)
6967 return ret;
6968 }
6969 break;
6970
6971 case 0x0f07: /* sysret */
6972 printf_unfiltered (_("Process record does not support "
6973 "instruction sysret.\n"));
6974 ir.addr -= 2;
6975 goto no_support;
6976 break;
6977
6978 case 0x0fa2: /* cpuid */
6979 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6980 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6981 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6982 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
6983 break;
6984
6985 case 0xf4: /* hlt */
6986 printf_unfiltered (_("Process record does not support "
6987 "instruction hlt.\n"));
6988 ir.addr -= 1;
6989 goto no_support;
6990 break;
6991
6992 case 0x0f00:
6993 if (i386_record_modrm (&ir))
6994 return -1;
6995 switch (ir.reg)
6996 {
6997 case 0: /* sldt */
6998 case 1: /* str */
6999 if (ir.mod == 3)
7000 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7001 else
7002 {
7003 ir.ot = OT_WORD;
7004 if (i386_record_lea_modrm (&ir))
7005 return -1;
7006 }
7007 break;
7008 case 2: /* lldt */
7009 case 3: /* ltr */
7010 break;
7011 case 4: /* verr */
7012 case 5: /* verw */
7013 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7014 break;
7015 default:
7016 ir.addr -= 3;
7017 opcode = opcode << 8 | ir.modrm;
7018 goto no_support;
7019 break;
7020 }
7021 break;
7022
7023 case 0x0f01:
7024 if (i386_record_modrm (&ir))
7025 return -1;
7026 switch (ir.reg)
7027 {
7028 case 0: /* sgdt */
7029 {
7030 uint64_t addr64;
7031
7032 if (ir.mod == 3)
7033 {
7034 ir.addr -= 3;
7035 opcode = opcode << 8 | ir.modrm;
7036 goto no_support;
7037 }
7038 if (ir.override >= 0)
7039 {
7040 if (record_full_memory_query)
7041 {
7042 if (yquery (_("\
7043 Process record ignores the memory change of instruction at address %s\n\
7044 because it can't get the value of the segment register.\n\
7045 Do you want to stop the program?"),
7046 paddress (gdbarch, ir.orig_addr)))
7047 return -1;
7048 }
7049 }
7050 else
7051 {
7052 if (i386_record_lea_modrm_addr (&ir, &addr64))
7053 return -1;
7054 if (record_full_arch_list_add_mem (addr64, 2))
7055 return -1;
7056 addr64 += 2;
7057 if (ir.regmap[X86_RECORD_R8_REGNUM])
7058 {
7059 if (record_full_arch_list_add_mem (addr64, 8))
7060 return -1;
7061 }
7062 else
7063 {
7064 if (record_full_arch_list_add_mem (addr64, 4))
7065 return -1;
7066 }
7067 }
7068 }
7069 break;
7070 case 1:
7071 if (ir.mod == 3)
7072 {
7073 switch (ir.rm)
7074 {
7075 case 0: /* monitor */
7076 break;
7077 case 1: /* mwait */
7078 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7079 break;
7080 default:
7081 ir.addr -= 3;
7082 opcode = opcode << 8 | ir.modrm;
7083 goto no_support;
7084 break;
7085 }
7086 }
7087 else
7088 {
7089 /* sidt */
7090 if (ir.override >= 0)
7091 {
7092 if (record_full_memory_query)
7093 {
7094 if (yquery (_("\
7095 Process record ignores the memory change of instruction at address %s\n\
7096 because it can't get the value of the segment register.\n\
7097 Do you want to stop the program?"),
7098 paddress (gdbarch, ir.orig_addr)))
7099 return -1;
7100 }
7101 }
7102 else
7103 {
7104 uint64_t addr64;
7105
7106 if (i386_record_lea_modrm_addr (&ir, &addr64))
7107 return -1;
7108 if (record_full_arch_list_add_mem (addr64, 2))
7109 return -1;
7110 addr64 += 2;
7111 if (ir.regmap[X86_RECORD_R8_REGNUM])
7112 {
7113 if (record_full_arch_list_add_mem (addr64, 8))
7114 return -1;
7115 }
7116 else
7117 {
7118 if (record_full_arch_list_add_mem (addr64, 4))
7119 return -1;
7120 }
7121 }
7122 }
7123 break;
7124 case 2: /* lgdt */
7125 if (ir.mod == 3)
7126 {
7127 /* xgetbv */
7128 if (ir.rm == 0)
7129 {
7130 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7131 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7132 break;
7133 }
7134 /* xsetbv */
7135 else if (ir.rm == 1)
7136 break;
7137 }
7138 /* Fall through. */
7139 case 3: /* lidt */
7140 if (ir.mod == 3)
7141 {
7142 ir.addr -= 3;
7143 opcode = opcode << 8 | ir.modrm;
7144 goto no_support;
7145 }
7146 break;
7147 case 4: /* smsw */
7148 if (ir.mod == 3)
7149 {
7150 if (record_full_arch_list_add_reg (ir.regcache, ir.rm | ir.rex_b))
7151 return -1;
7152 }
7153 else
7154 {
7155 ir.ot = OT_WORD;
7156 if (i386_record_lea_modrm (&ir))
7157 return -1;
7158 }
7159 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7160 break;
7161 case 6: /* lmsw */
7162 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7163 break;
7164 case 7: /* invlpg */
7165 if (ir.mod == 3)
7166 {
7167 if (ir.rm == 0 && ir.regmap[X86_RECORD_R8_REGNUM])
7168 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
7169 else
7170 {
7171 ir.addr -= 3;
7172 opcode = opcode << 8 | ir.modrm;
7173 goto no_support;
7174 }
7175 }
7176 else
7177 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7178 break;
7179 default:
7180 ir.addr -= 3;
7181 opcode = opcode << 8 | ir.modrm;
7182 goto no_support;
7183 break;
7184 }
7185 break;
7186
7187 case 0x0f08: /* invd */
7188 case 0x0f09: /* wbinvd */
7189 break;
7190
7191 case 0x63: /* arpl */
7192 if (i386_record_modrm (&ir))
7193 return -1;
7194 if (ir.mod == 3 || ir.regmap[X86_RECORD_R8_REGNUM])
7195 {
7196 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.regmap[X86_RECORD_R8_REGNUM]
7197 ? (ir.reg | rex_r) : ir.rm);
7198 }
7199 else
7200 {
7201 ir.ot = ir.dflag ? OT_LONG : OT_WORD;
7202 if (i386_record_lea_modrm (&ir))
7203 return -1;
7204 }
7205 if (!ir.regmap[X86_RECORD_R8_REGNUM])
7206 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7207 break;
7208
7209 case 0x0f02: /* lar */
7210 case 0x0f03: /* lsl */
7211 if (i386_record_modrm (&ir))
7212 return -1;
7213 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7214 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7215 break;
7216
7217 case 0x0f18:
7218 if (i386_record_modrm (&ir))
7219 return -1;
7220 if (ir.mod == 3 && ir.reg == 3)
7221 {
7222 ir.addr -= 3;
7223 opcode = opcode << 8 | ir.modrm;
7224 goto no_support;
7225 }
7226 break;
7227
7228 case 0x0f19:
7229 case 0x0f1a:
7230 case 0x0f1b:
7231 case 0x0f1c:
7232 case 0x0f1d:
7233 case 0x0f1e:
7234 case 0x0f1f:
7235 /* nop (multi byte) */
7236 break;
7237
7238 case 0x0f20: /* mov reg, crN */
7239 case 0x0f22: /* mov crN, reg */
7240 if (i386_record_modrm (&ir))
7241 return -1;
7242 if ((ir.modrm & 0xc0) != 0xc0)
7243 {
7244 ir.addr -= 3;
7245 opcode = opcode << 8 | ir.modrm;
7246 goto no_support;
7247 }
7248 switch (ir.reg)
7249 {
7250 case 0:
7251 case 2:
7252 case 3:
7253 case 4:
7254 case 8:
7255 if (opcode & 2)
7256 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7257 else
7258 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7259 break;
7260 default:
7261 ir.addr -= 3;
7262 opcode = opcode << 8 | ir.modrm;
7263 goto no_support;
7264 break;
7265 }
7266 break;
7267
7268 case 0x0f21: /* mov reg, drN */
7269 case 0x0f23: /* mov drN, reg */
7270 if (i386_record_modrm (&ir))
7271 return -1;
7272 if ((ir.modrm & 0xc0) != 0xc0 || ir.reg == 4
7273 || ir.reg == 5 || ir.reg >= 8)
7274 {
7275 ir.addr -= 3;
7276 opcode = opcode << 8 | ir.modrm;
7277 goto no_support;
7278 }
7279 if (opcode & 2)
7280 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7281 else
7282 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7283 break;
7284
7285 case 0x0f06: /* clts */
7286 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7287 break;
7288
7289 /* MMX 3DNow! SSE SSE2 SSE3 SSSE3 SSE4 */
7290
7291 case 0x0f0d: /* 3DNow! prefetch */
7292 break;
7293
7294 case 0x0f0e: /* 3DNow! femms */
7295 case 0x0f77: /* emms */
7296 if (i386_fpc_regnum_p (gdbarch, I387_FTAG_REGNUM(tdep)))
7297 goto no_support;
7298 record_full_arch_list_add_reg (ir.regcache, I387_FTAG_REGNUM(tdep));
7299 break;
7300
7301 case 0x0f0f: /* 3DNow! data */
7302 if (i386_record_modrm (&ir))
7303 return -1;
7304 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
7305 return -1;
7306 ir.addr++;
7307 switch (opcode8)
7308 {
7309 case 0x0c: /* 3DNow! pi2fw */
7310 case 0x0d: /* 3DNow! pi2fd */
7311 case 0x1c: /* 3DNow! pf2iw */
7312 case 0x1d: /* 3DNow! pf2id */
7313 case 0x8a: /* 3DNow! pfnacc */
7314 case 0x8e: /* 3DNow! pfpnacc */
7315 case 0x90: /* 3DNow! pfcmpge */
7316 case 0x94: /* 3DNow! pfmin */
7317 case 0x96: /* 3DNow! pfrcp */
7318 case 0x97: /* 3DNow! pfrsqrt */
7319 case 0x9a: /* 3DNow! pfsub */
7320 case 0x9e: /* 3DNow! pfadd */
7321 case 0xa0: /* 3DNow! pfcmpgt */
7322 case 0xa4: /* 3DNow! pfmax */
7323 case 0xa6: /* 3DNow! pfrcpit1 */
7324 case 0xa7: /* 3DNow! pfrsqit1 */
7325 case 0xaa: /* 3DNow! pfsubr */
7326 case 0xae: /* 3DNow! pfacc */
7327 case 0xb0: /* 3DNow! pfcmpeq */
7328 case 0xb4: /* 3DNow! pfmul */
7329 case 0xb6: /* 3DNow! pfrcpit2 */
7330 case 0xb7: /* 3DNow! pmulhrw */
7331 case 0xbb: /* 3DNow! pswapd */
7332 case 0xbf: /* 3DNow! pavgusb */
7333 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7334 goto no_support_3dnow_data;
7335 record_full_arch_list_add_reg (ir.regcache, ir.reg);
7336 break;
7337
7338 default:
7339 no_support_3dnow_data:
7340 opcode = (opcode << 8) | opcode8;
7341 goto no_support;
7342 break;
7343 }
7344 break;
7345
7346 case 0x0faa: /* rsm */
7347 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7348 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7349 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
7350 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7351 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
7352 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
7353 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
7354 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
7355 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
7356 break;
7357
7358 case 0x0fae:
7359 if (i386_record_modrm (&ir))
7360 return -1;
7361 switch(ir.reg)
7362 {
7363 case 0: /* fxsave */
7364 {
7365 uint64_t tmpu64;
7366
7367 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7368 if (i386_record_lea_modrm_addr (&ir, &tmpu64))
7369 return -1;
7370 if (record_full_arch_list_add_mem (tmpu64, 512))
7371 return -1;
7372 }
7373 break;
7374
7375 case 1: /* fxrstor */
7376 {
7377 int i;
7378
7379 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7380
7381 for (i = I387_MM0_REGNUM (tdep);
7382 i386_mmx_regnum_p (gdbarch, i); i++)
7383 record_full_arch_list_add_reg (ir.regcache, i);
7384
7385 for (i = I387_XMM0_REGNUM (tdep);
7386 i386_xmm_regnum_p (gdbarch, i); i++)
7387 record_full_arch_list_add_reg (ir.regcache, i);
7388
7389 if (i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
7390 record_full_arch_list_add_reg (ir.regcache,
7391 I387_MXCSR_REGNUM(tdep));
7392
7393 for (i = I387_ST0_REGNUM (tdep);
7394 i386_fp_regnum_p (gdbarch, i); i++)
7395 record_full_arch_list_add_reg (ir.regcache, i);
7396
7397 for (i = I387_FCTRL_REGNUM (tdep);
7398 i386_fpc_regnum_p (gdbarch, i); i++)
7399 record_full_arch_list_add_reg (ir.regcache, i);
7400 }
7401 break;
7402
7403 case 2: /* ldmxcsr */
7404 if (!i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
7405 goto no_support;
7406 record_full_arch_list_add_reg (ir.regcache, I387_MXCSR_REGNUM(tdep));
7407 break;
7408
7409 case 3: /* stmxcsr */
7410 ir.ot = OT_LONG;
7411 if (i386_record_lea_modrm (&ir))
7412 return -1;
7413 break;
7414
7415 case 5: /* lfence */
7416 case 6: /* mfence */
7417 case 7: /* sfence clflush */
7418 break;
7419
7420 default:
7421 opcode = (opcode << 8) | ir.modrm;
7422 goto no_support;
7423 break;
7424 }
7425 break;
7426
7427 case 0x0fc3: /* movnti */
7428 ir.ot = (ir.dflag == 2) ? OT_QUAD : OT_LONG;
7429 if (i386_record_modrm (&ir))
7430 return -1;
7431 if (ir.mod == 3)
7432 goto no_support;
7433 ir.reg |= rex_r;
7434 if (i386_record_lea_modrm (&ir))
7435 return -1;
7436 break;
7437
7438 /* Add prefix to opcode. */
7439 case 0x0f10:
7440 case 0x0f11:
7441 case 0x0f12:
7442 case 0x0f13:
7443 case 0x0f14:
7444 case 0x0f15:
7445 case 0x0f16:
7446 case 0x0f17:
7447 case 0x0f28:
7448 case 0x0f29:
7449 case 0x0f2a:
7450 case 0x0f2b:
7451 case 0x0f2c:
7452 case 0x0f2d:
7453 case 0x0f2e:
7454 case 0x0f2f:
7455 case 0x0f38:
7456 case 0x0f39:
7457 case 0x0f3a:
7458 case 0x0f50:
7459 case 0x0f51:
7460 case 0x0f52:
7461 case 0x0f53:
7462 case 0x0f54:
7463 case 0x0f55:
7464 case 0x0f56:
7465 case 0x0f57:
7466 case 0x0f58:
7467 case 0x0f59:
7468 case 0x0f5a:
7469 case 0x0f5b:
7470 case 0x0f5c:
7471 case 0x0f5d:
7472 case 0x0f5e:
7473 case 0x0f5f:
7474 case 0x0f60:
7475 case 0x0f61:
7476 case 0x0f62:
7477 case 0x0f63:
7478 case 0x0f64:
7479 case 0x0f65:
7480 case 0x0f66:
7481 case 0x0f67:
7482 case 0x0f68:
7483 case 0x0f69:
7484 case 0x0f6a:
7485 case 0x0f6b:
7486 case 0x0f6c:
7487 case 0x0f6d:
7488 case 0x0f6e:
7489 case 0x0f6f:
7490 case 0x0f70:
7491 case 0x0f71:
7492 case 0x0f72:
7493 case 0x0f73:
7494 case 0x0f74:
7495 case 0x0f75:
7496 case 0x0f76:
7497 case 0x0f7c:
7498 case 0x0f7d:
7499 case 0x0f7e:
7500 case 0x0f7f:
7501 case 0x0fb8:
7502 case 0x0fc2:
7503 case 0x0fc4:
7504 case 0x0fc5:
7505 case 0x0fc6:
7506 case 0x0fd0:
7507 case 0x0fd1:
7508 case 0x0fd2:
7509 case 0x0fd3:
7510 case 0x0fd4:
7511 case 0x0fd5:
7512 case 0x0fd6:
7513 case 0x0fd7:
7514 case 0x0fd8:
7515 case 0x0fd9:
7516 case 0x0fda:
7517 case 0x0fdb:
7518 case 0x0fdc:
7519 case 0x0fdd:
7520 case 0x0fde:
7521 case 0x0fdf:
7522 case 0x0fe0:
7523 case 0x0fe1:
7524 case 0x0fe2:
7525 case 0x0fe3:
7526 case 0x0fe4:
7527 case 0x0fe5:
7528 case 0x0fe6:
7529 case 0x0fe7:
7530 case 0x0fe8:
7531 case 0x0fe9:
7532 case 0x0fea:
7533 case 0x0feb:
7534 case 0x0fec:
7535 case 0x0fed:
7536 case 0x0fee:
7537 case 0x0fef:
7538 case 0x0ff0:
7539 case 0x0ff1:
7540 case 0x0ff2:
7541 case 0x0ff3:
7542 case 0x0ff4:
7543 case 0x0ff5:
7544 case 0x0ff6:
7545 case 0x0ff7:
7546 case 0x0ff8:
7547 case 0x0ff9:
7548 case 0x0ffa:
7549 case 0x0ffb:
7550 case 0x0ffc:
7551 case 0x0ffd:
7552 case 0x0ffe:
7553 /* Mask out PREFIX_ADDR. */
7554 switch ((prefixes & ~PREFIX_ADDR))
7555 {
7556 case PREFIX_REPNZ:
7557 opcode |= 0xf20000;
7558 break;
7559 case PREFIX_DATA:
7560 opcode |= 0x660000;
7561 break;
7562 case PREFIX_REPZ:
7563 opcode |= 0xf30000;
7564 break;
7565 }
7566 reswitch_prefix_add:
7567 switch (opcode)
7568 {
7569 case 0x0f38:
7570 case 0x660f38:
7571 case 0xf20f38:
7572 case 0x0f3a:
7573 case 0x660f3a:
7574 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
7575 return -1;
7576 ir.addr++;
7577 opcode = (uint32_t) opcode8 | opcode << 8;
7578 goto reswitch_prefix_add;
7579 break;
7580
7581 case 0x0f10: /* movups */
7582 case 0x660f10: /* movupd */
7583 case 0xf30f10: /* movss */
7584 case 0xf20f10: /* movsd */
7585 case 0x0f12: /* movlps */
7586 case 0x660f12: /* movlpd */
7587 case 0xf30f12: /* movsldup */
7588 case 0xf20f12: /* movddup */
7589 case 0x0f14: /* unpcklps */
7590 case 0x660f14: /* unpcklpd */
7591 case 0x0f15: /* unpckhps */
7592 case 0x660f15: /* unpckhpd */
7593 case 0x0f16: /* movhps */
7594 case 0x660f16: /* movhpd */
7595 case 0xf30f16: /* movshdup */
7596 case 0x0f28: /* movaps */
7597 case 0x660f28: /* movapd */
7598 case 0x0f2a: /* cvtpi2ps */
7599 case 0x660f2a: /* cvtpi2pd */
7600 case 0xf30f2a: /* cvtsi2ss */
7601 case 0xf20f2a: /* cvtsi2sd */
7602 case 0x0f2c: /* cvttps2pi */
7603 case 0x660f2c: /* cvttpd2pi */
7604 case 0x0f2d: /* cvtps2pi */
7605 case 0x660f2d: /* cvtpd2pi */
7606 case 0x660f3800: /* pshufb */
7607 case 0x660f3801: /* phaddw */
7608 case 0x660f3802: /* phaddd */
7609 case 0x660f3803: /* phaddsw */
7610 case 0x660f3804: /* pmaddubsw */
7611 case 0x660f3805: /* phsubw */
7612 case 0x660f3806: /* phsubd */
7613 case 0x660f3807: /* phsubsw */
7614 case 0x660f3808: /* psignb */
7615 case 0x660f3809: /* psignw */
7616 case 0x660f380a: /* psignd */
7617 case 0x660f380b: /* pmulhrsw */
7618 case 0x660f3810: /* pblendvb */
7619 case 0x660f3814: /* blendvps */
7620 case 0x660f3815: /* blendvpd */
7621 case 0x660f381c: /* pabsb */
7622 case 0x660f381d: /* pabsw */
7623 case 0x660f381e: /* pabsd */
7624 case 0x660f3820: /* pmovsxbw */
7625 case 0x660f3821: /* pmovsxbd */
7626 case 0x660f3822: /* pmovsxbq */
7627 case 0x660f3823: /* pmovsxwd */
7628 case 0x660f3824: /* pmovsxwq */
7629 case 0x660f3825: /* pmovsxdq */
7630 case 0x660f3828: /* pmuldq */
7631 case 0x660f3829: /* pcmpeqq */
7632 case 0x660f382a: /* movntdqa */
7633 case 0x660f3a08: /* roundps */
7634 case 0x660f3a09: /* roundpd */
7635 case 0x660f3a0a: /* roundss */
7636 case 0x660f3a0b: /* roundsd */
7637 case 0x660f3a0c: /* blendps */
7638 case 0x660f3a0d: /* blendpd */
7639 case 0x660f3a0e: /* pblendw */
7640 case 0x660f3a0f: /* palignr */
7641 case 0x660f3a20: /* pinsrb */
7642 case 0x660f3a21: /* insertps */
7643 case 0x660f3a22: /* pinsrd pinsrq */
7644 case 0x660f3a40: /* dpps */
7645 case 0x660f3a41: /* dppd */
7646 case 0x660f3a42: /* mpsadbw */
7647 case 0x660f3a60: /* pcmpestrm */
7648 case 0x660f3a61: /* pcmpestri */
7649 case 0x660f3a62: /* pcmpistrm */
7650 case 0x660f3a63: /* pcmpistri */
7651 case 0x0f51: /* sqrtps */
7652 case 0x660f51: /* sqrtpd */
7653 case 0xf20f51: /* sqrtsd */
7654 case 0xf30f51: /* sqrtss */
7655 case 0x0f52: /* rsqrtps */
7656 case 0xf30f52: /* rsqrtss */
7657 case 0x0f53: /* rcpps */
7658 case 0xf30f53: /* rcpss */
7659 case 0x0f54: /* andps */
7660 case 0x660f54: /* andpd */
7661 case 0x0f55: /* andnps */
7662 case 0x660f55: /* andnpd */
7663 case 0x0f56: /* orps */
7664 case 0x660f56: /* orpd */
7665 case 0x0f57: /* xorps */
7666 case 0x660f57: /* xorpd */
7667 case 0x0f58: /* addps */
7668 case 0x660f58: /* addpd */
7669 case 0xf20f58: /* addsd */
7670 case 0xf30f58: /* addss */
7671 case 0x0f59: /* mulps */
7672 case 0x660f59: /* mulpd */
7673 case 0xf20f59: /* mulsd */
7674 case 0xf30f59: /* mulss */
7675 case 0x0f5a: /* cvtps2pd */
7676 case 0x660f5a: /* cvtpd2ps */
7677 case 0xf20f5a: /* cvtsd2ss */
7678 case 0xf30f5a: /* cvtss2sd */
7679 case 0x0f5b: /* cvtdq2ps */
7680 case 0x660f5b: /* cvtps2dq */
7681 case 0xf30f5b: /* cvttps2dq */
7682 case 0x0f5c: /* subps */
7683 case 0x660f5c: /* subpd */
7684 case 0xf20f5c: /* subsd */
7685 case 0xf30f5c: /* subss */
7686 case 0x0f5d: /* minps */
7687 case 0x660f5d: /* minpd */
7688 case 0xf20f5d: /* minsd */
7689 case 0xf30f5d: /* minss */
7690 case 0x0f5e: /* divps */
7691 case 0x660f5e: /* divpd */
7692 case 0xf20f5e: /* divsd */
7693 case 0xf30f5e: /* divss */
7694 case 0x0f5f: /* maxps */
7695 case 0x660f5f: /* maxpd */
7696 case 0xf20f5f: /* maxsd */
7697 case 0xf30f5f: /* maxss */
7698 case 0x660f60: /* punpcklbw */
7699 case 0x660f61: /* punpcklwd */
7700 case 0x660f62: /* punpckldq */
7701 case 0x660f63: /* packsswb */
7702 case 0x660f64: /* pcmpgtb */
7703 case 0x660f65: /* pcmpgtw */
7704 case 0x660f66: /* pcmpgtd */
7705 case 0x660f67: /* packuswb */
7706 case 0x660f68: /* punpckhbw */
7707 case 0x660f69: /* punpckhwd */
7708 case 0x660f6a: /* punpckhdq */
7709 case 0x660f6b: /* packssdw */
7710 case 0x660f6c: /* punpcklqdq */
7711 case 0x660f6d: /* punpckhqdq */
7712 case 0x660f6e: /* movd */
7713 case 0x660f6f: /* movdqa */
7714 case 0xf30f6f: /* movdqu */
7715 case 0x660f70: /* pshufd */
7716 case 0xf20f70: /* pshuflw */
7717 case 0xf30f70: /* pshufhw */
7718 case 0x660f74: /* pcmpeqb */
7719 case 0x660f75: /* pcmpeqw */
7720 case 0x660f76: /* pcmpeqd */
7721 case 0x660f7c: /* haddpd */
7722 case 0xf20f7c: /* haddps */
7723 case 0x660f7d: /* hsubpd */
7724 case 0xf20f7d: /* hsubps */
7725 case 0xf30f7e: /* movq */
7726 case 0x0fc2: /* cmpps */
7727 case 0x660fc2: /* cmppd */
7728 case 0xf20fc2: /* cmpsd */
7729 case 0xf30fc2: /* cmpss */
7730 case 0x660fc4: /* pinsrw */
7731 case 0x0fc6: /* shufps */
7732 case 0x660fc6: /* shufpd */
7733 case 0x660fd0: /* addsubpd */
7734 case 0xf20fd0: /* addsubps */
7735 case 0x660fd1: /* psrlw */
7736 case 0x660fd2: /* psrld */
7737 case 0x660fd3: /* psrlq */
7738 case 0x660fd4: /* paddq */
7739 case 0x660fd5: /* pmullw */
7740 case 0xf30fd6: /* movq2dq */
7741 case 0x660fd8: /* psubusb */
7742 case 0x660fd9: /* psubusw */
7743 case 0x660fda: /* pminub */
7744 case 0x660fdb: /* pand */
7745 case 0x660fdc: /* paddusb */
7746 case 0x660fdd: /* paddusw */
7747 case 0x660fde: /* pmaxub */
7748 case 0x660fdf: /* pandn */
7749 case 0x660fe0: /* pavgb */
7750 case 0x660fe1: /* psraw */
7751 case 0x660fe2: /* psrad */
7752 case 0x660fe3: /* pavgw */
7753 case 0x660fe4: /* pmulhuw */
7754 case 0x660fe5: /* pmulhw */
7755 case 0x660fe6: /* cvttpd2dq */
7756 case 0xf20fe6: /* cvtpd2dq */
7757 case 0xf30fe6: /* cvtdq2pd */
7758 case 0x660fe8: /* psubsb */
7759 case 0x660fe9: /* psubsw */
7760 case 0x660fea: /* pminsw */
7761 case 0x660feb: /* por */
7762 case 0x660fec: /* paddsb */
7763 case 0x660fed: /* paddsw */
7764 case 0x660fee: /* pmaxsw */
7765 case 0x660fef: /* pxor */
7766 case 0xf20ff0: /* lddqu */
7767 case 0x660ff1: /* psllw */
7768 case 0x660ff2: /* pslld */
7769 case 0x660ff3: /* psllq */
7770 case 0x660ff4: /* pmuludq */
7771 case 0x660ff5: /* pmaddwd */
7772 case 0x660ff6: /* psadbw */
7773 case 0x660ff8: /* psubb */
7774 case 0x660ff9: /* psubw */
7775 case 0x660ffa: /* psubd */
7776 case 0x660ffb: /* psubq */
7777 case 0x660ffc: /* paddb */
7778 case 0x660ffd: /* paddw */
7779 case 0x660ffe: /* paddd */
7780 if (i386_record_modrm (&ir))
7781 return -1;
7782 ir.reg |= rex_r;
7783 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.reg))
7784 goto no_support;
7785 record_full_arch_list_add_reg (ir.regcache,
7786 I387_XMM0_REGNUM (tdep) + ir.reg);
7787 if ((opcode & 0xfffffffc) == 0x660f3a60)
7788 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7789 break;
7790
7791 case 0x0f11: /* movups */
7792 case 0x660f11: /* movupd */
7793 case 0xf30f11: /* movss */
7794 case 0xf20f11: /* movsd */
7795 case 0x0f13: /* movlps */
7796 case 0x660f13: /* movlpd */
7797 case 0x0f17: /* movhps */
7798 case 0x660f17: /* movhpd */
7799 case 0x0f29: /* movaps */
7800 case 0x660f29: /* movapd */
7801 case 0x660f3a14: /* pextrb */
7802 case 0x660f3a15: /* pextrw */
7803 case 0x660f3a16: /* pextrd pextrq */
7804 case 0x660f3a17: /* extractps */
7805 case 0x660f7f: /* movdqa */
7806 case 0xf30f7f: /* movdqu */
7807 if (i386_record_modrm (&ir))
7808 return -1;
7809 if (ir.mod == 3)
7810 {
7811 if (opcode == 0x0f13 || opcode == 0x660f13
7812 || opcode == 0x0f17 || opcode == 0x660f17)
7813 goto no_support;
7814 ir.rm |= ir.rex_b;
7815 if (!i386_xmm_regnum_p (gdbarch,
7816 I387_XMM0_REGNUM (tdep) + ir.rm))
7817 goto no_support;
7818 record_full_arch_list_add_reg (ir.regcache,
7819 I387_XMM0_REGNUM (tdep) + ir.rm);
7820 }
7821 else
7822 {
7823 switch (opcode)
7824 {
7825 case 0x660f3a14:
7826 ir.ot = OT_BYTE;
7827 break;
7828 case 0x660f3a15:
7829 ir.ot = OT_WORD;
7830 break;
7831 case 0x660f3a16:
7832 ir.ot = OT_LONG;
7833 break;
7834 case 0x660f3a17:
7835 ir.ot = OT_QUAD;
7836 break;
7837 default:
7838 ir.ot = OT_DQUAD;
7839 break;
7840 }
7841 if (i386_record_lea_modrm (&ir))
7842 return -1;
7843 }
7844 break;
7845
7846 case 0x0f2b: /* movntps */
7847 case 0x660f2b: /* movntpd */
7848 case 0x0fe7: /* movntq */
7849 case 0x660fe7: /* movntdq */
7850 if (ir.mod == 3)
7851 goto no_support;
7852 if (opcode == 0x0fe7)
7853 ir.ot = OT_QUAD;
7854 else
7855 ir.ot = OT_DQUAD;
7856 if (i386_record_lea_modrm (&ir))
7857 return -1;
7858 break;
7859
7860 case 0xf30f2c: /* cvttss2si */
7861 case 0xf20f2c: /* cvttsd2si */
7862 case 0xf30f2d: /* cvtss2si */
7863 case 0xf20f2d: /* cvtsd2si */
7864 case 0xf20f38f0: /* crc32 */
7865 case 0xf20f38f1: /* crc32 */
7866 case 0x0f50: /* movmskps */
7867 case 0x660f50: /* movmskpd */
7868 case 0x0fc5: /* pextrw */
7869 case 0x660fc5: /* pextrw */
7870 case 0x0fd7: /* pmovmskb */
7871 case 0x660fd7: /* pmovmskb */
7872 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7873 break;
7874
7875 case 0x0f3800: /* pshufb */
7876 case 0x0f3801: /* phaddw */
7877 case 0x0f3802: /* phaddd */
7878 case 0x0f3803: /* phaddsw */
7879 case 0x0f3804: /* pmaddubsw */
7880 case 0x0f3805: /* phsubw */
7881 case 0x0f3806: /* phsubd */
7882 case 0x0f3807: /* phsubsw */
7883 case 0x0f3808: /* psignb */
7884 case 0x0f3809: /* psignw */
7885 case 0x0f380a: /* psignd */
7886 case 0x0f380b: /* pmulhrsw */
7887 case 0x0f381c: /* pabsb */
7888 case 0x0f381d: /* pabsw */
7889 case 0x0f381e: /* pabsd */
7890 case 0x0f382b: /* packusdw */
7891 case 0x0f3830: /* pmovzxbw */
7892 case 0x0f3831: /* pmovzxbd */
7893 case 0x0f3832: /* pmovzxbq */
7894 case 0x0f3833: /* pmovzxwd */
7895 case 0x0f3834: /* pmovzxwq */
7896 case 0x0f3835: /* pmovzxdq */
7897 case 0x0f3837: /* pcmpgtq */
7898 case 0x0f3838: /* pminsb */
7899 case 0x0f3839: /* pminsd */
7900 case 0x0f383a: /* pminuw */
7901 case 0x0f383b: /* pminud */
7902 case 0x0f383c: /* pmaxsb */
7903 case 0x0f383d: /* pmaxsd */
7904 case 0x0f383e: /* pmaxuw */
7905 case 0x0f383f: /* pmaxud */
7906 case 0x0f3840: /* pmulld */
7907 case 0x0f3841: /* phminposuw */
7908 case 0x0f3a0f: /* palignr */
7909 case 0x0f60: /* punpcklbw */
7910 case 0x0f61: /* punpcklwd */
7911 case 0x0f62: /* punpckldq */
7912 case 0x0f63: /* packsswb */
7913 case 0x0f64: /* pcmpgtb */
7914 case 0x0f65: /* pcmpgtw */
7915 case 0x0f66: /* pcmpgtd */
7916 case 0x0f67: /* packuswb */
7917 case 0x0f68: /* punpckhbw */
7918 case 0x0f69: /* punpckhwd */
7919 case 0x0f6a: /* punpckhdq */
7920 case 0x0f6b: /* packssdw */
7921 case 0x0f6e: /* movd */
7922 case 0x0f6f: /* movq */
7923 case 0x0f70: /* pshufw */
7924 case 0x0f74: /* pcmpeqb */
7925 case 0x0f75: /* pcmpeqw */
7926 case 0x0f76: /* pcmpeqd */
7927 case 0x0fc4: /* pinsrw */
7928 case 0x0fd1: /* psrlw */
7929 case 0x0fd2: /* psrld */
7930 case 0x0fd3: /* psrlq */
7931 case 0x0fd4: /* paddq */
7932 case 0x0fd5: /* pmullw */
7933 case 0xf20fd6: /* movdq2q */
7934 case 0x0fd8: /* psubusb */
7935 case 0x0fd9: /* psubusw */
7936 case 0x0fda: /* pminub */
7937 case 0x0fdb: /* pand */
7938 case 0x0fdc: /* paddusb */
7939 case 0x0fdd: /* paddusw */
7940 case 0x0fde: /* pmaxub */
7941 case 0x0fdf: /* pandn */
7942 case 0x0fe0: /* pavgb */
7943 case 0x0fe1: /* psraw */
7944 case 0x0fe2: /* psrad */
7945 case 0x0fe3: /* pavgw */
7946 case 0x0fe4: /* pmulhuw */
7947 case 0x0fe5: /* pmulhw */
7948 case 0x0fe8: /* psubsb */
7949 case 0x0fe9: /* psubsw */
7950 case 0x0fea: /* pminsw */
7951 case 0x0feb: /* por */
7952 case 0x0fec: /* paddsb */
7953 case 0x0fed: /* paddsw */
7954 case 0x0fee: /* pmaxsw */
7955 case 0x0fef: /* pxor */
7956 case 0x0ff1: /* psllw */
7957 case 0x0ff2: /* pslld */
7958 case 0x0ff3: /* psllq */
7959 case 0x0ff4: /* pmuludq */
7960 case 0x0ff5: /* pmaddwd */
7961 case 0x0ff6: /* psadbw */
7962 case 0x0ff8: /* psubb */
7963 case 0x0ff9: /* psubw */
7964 case 0x0ffa: /* psubd */
7965 case 0x0ffb: /* psubq */
7966 case 0x0ffc: /* paddb */
7967 case 0x0ffd: /* paddw */
7968 case 0x0ffe: /* paddd */
7969 if (i386_record_modrm (&ir))
7970 return -1;
7971 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7972 goto no_support;
7973 record_full_arch_list_add_reg (ir.regcache,
7974 I387_MM0_REGNUM (tdep) + ir.reg);
7975 break;
7976
7977 case 0x0f71: /* psllw */
7978 case 0x0f72: /* pslld */
7979 case 0x0f73: /* psllq */
7980 if (i386_record_modrm (&ir))
7981 return -1;
7982 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
7983 goto no_support;
7984 record_full_arch_list_add_reg (ir.regcache,
7985 I387_MM0_REGNUM (tdep) + ir.rm);
7986 break;
7987
7988 case 0x660f71: /* psllw */
7989 case 0x660f72: /* pslld */
7990 case 0x660f73: /* psllq */
7991 if (i386_record_modrm (&ir))
7992 return -1;
7993 ir.rm |= ir.rex_b;
7994 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.rm))
7995 goto no_support;
7996 record_full_arch_list_add_reg (ir.regcache,
7997 I387_XMM0_REGNUM (tdep) + ir.rm);
7998 break;
7999
8000 case 0x0f7e: /* movd */
8001 case 0x660f7e: /* movd */
8002 if (i386_record_modrm (&ir))
8003 return -1;
8004 if (ir.mod == 3)
8005 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
8006 else
8007 {
8008 if (ir.dflag == 2)
8009 ir.ot = OT_QUAD;
8010 else
8011 ir.ot = OT_LONG;
8012 if (i386_record_lea_modrm (&ir))
8013 return -1;
8014 }
8015 break;
8016
8017 case 0x0f7f: /* movq */
8018 if (i386_record_modrm (&ir))
8019 return -1;
8020 if (ir.mod == 3)
8021 {
8022 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
8023 goto no_support;
8024 record_full_arch_list_add_reg (ir.regcache,
8025 I387_MM0_REGNUM (tdep) + ir.rm);
8026 }
8027 else
8028 {
8029 ir.ot = OT_QUAD;
8030 if (i386_record_lea_modrm (&ir))
8031 return -1;
8032 }
8033 break;
8034
8035 case 0xf30fb8: /* popcnt */
8036 if (i386_record_modrm (&ir))
8037 return -1;
8038 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
8039 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
8040 break;
8041
8042 case 0x660fd6: /* movq */
8043 if (i386_record_modrm (&ir))
8044 return -1;
8045 if (ir.mod == 3)
8046 {
8047 ir.rm |= ir.rex_b;
8048 if (!i386_xmm_regnum_p (gdbarch,
8049 I387_XMM0_REGNUM (tdep) + ir.rm))
8050 goto no_support;
8051 record_full_arch_list_add_reg (ir.regcache,
8052 I387_XMM0_REGNUM (tdep) + ir.rm);
8053 }
8054 else
8055 {
8056 ir.ot = OT_QUAD;
8057 if (i386_record_lea_modrm (&ir))
8058 return -1;
8059 }
8060 break;
8061
8062 case 0x660f3817: /* ptest */
8063 case 0x0f2e: /* ucomiss */
8064 case 0x660f2e: /* ucomisd */
8065 case 0x0f2f: /* comiss */
8066 case 0x660f2f: /* comisd */
8067 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
8068 break;
8069
8070 case 0x0ff7: /* maskmovq */
8071 regcache_raw_read_unsigned (ir.regcache,
8072 ir.regmap[X86_RECORD_REDI_REGNUM],
8073 &addr);
8074 if (record_full_arch_list_add_mem (addr, 64))
8075 return -1;
8076 break;
8077
8078 case 0x660ff7: /* maskmovdqu */
8079 regcache_raw_read_unsigned (ir.regcache,
8080 ir.regmap[X86_RECORD_REDI_REGNUM],
8081 &addr);
8082 if (record_full_arch_list_add_mem (addr, 128))
8083 return -1;
8084 break;
8085
8086 default:
8087 goto no_support;
8088 break;
8089 }
8090 break;
8091
8092 default:
8093 goto no_support;
8094 break;
8095 }
8096
8097 /* In the future, maybe still need to deal with need_dasm. */
8098 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REIP_REGNUM);
8099 if (record_full_arch_list_add_end ())
8100 return -1;
8101
8102 return 0;
8103
8104 no_support:
8105 printf_unfiltered (_("Process record does not support instruction 0x%02x "
8106 "at address %s.\n"),
8107 (unsigned int) (opcode),
8108 paddress (gdbarch, ir.orig_addr));
8109 return -1;
8110 }
8111
8112 static const int i386_record_regmap[] =
8113 {
8114 I386_EAX_REGNUM, I386_ECX_REGNUM, I386_EDX_REGNUM, I386_EBX_REGNUM,
8115 I386_ESP_REGNUM, I386_EBP_REGNUM, I386_ESI_REGNUM, I386_EDI_REGNUM,
8116 0, 0, 0, 0, 0, 0, 0, 0,
8117 I386_EIP_REGNUM, I386_EFLAGS_REGNUM, I386_CS_REGNUM, I386_SS_REGNUM,
8118 I386_DS_REGNUM, I386_ES_REGNUM, I386_FS_REGNUM, I386_GS_REGNUM
8119 };
8120
8121 /* Check that the given address appears suitable for a fast
8122 tracepoint, which on x86-64 means that we need an instruction of at
8123 least 5 bytes, so that we can overwrite it with a 4-byte-offset
8124 jump and not have to worry about program jumps to an address in the
8125 middle of the tracepoint jump. On x86, it may be possible to use
8126 4-byte jumps with a 2-byte offset to a trampoline located in the
8127 bottom 64 KiB of memory. Returns 1 if OK, and writes a size
8128 of instruction to replace, and 0 if not, plus an explanatory
8129 string. */
8130
8131 static int
8132 i386_fast_tracepoint_valid_at (struct gdbarch *gdbarch, CORE_ADDR addr,
8133 std::string *msg)
8134 {
8135 int len, jumplen;
8136
8137 /* Ask the target for the minimum instruction length supported. */
8138 jumplen = target_get_min_fast_tracepoint_insn_len ();
8139
8140 if (jumplen < 0)
8141 {
8142 /* If the target does not support the get_min_fast_tracepoint_insn_len
8143 operation, assume that fast tracepoints will always be implemented
8144 using 4-byte relative jumps on both x86 and x86-64. */
8145 jumplen = 5;
8146 }
8147 else if (jumplen == 0)
8148 {
8149 /* If the target does support get_min_fast_tracepoint_insn_len but
8150 returns zero, then the IPA has not loaded yet. In this case,
8151 we optimistically assume that truncated 2-byte relative jumps
8152 will be available on x86, and compensate later if this assumption
8153 turns out to be incorrect. On x86-64 architectures, 4-byte relative
8154 jumps will always be used. */
8155 jumplen = (register_size (gdbarch, 0) == 8) ? 5 : 4;
8156 }
8157
8158 /* Check for fit. */
8159 len = gdb_insn_length (gdbarch, addr);
8160
8161 if (len < jumplen)
8162 {
8163 /* Return a bit of target-specific detail to add to the caller's
8164 generic failure message. */
8165 if (msg)
8166 *msg = string_printf (_("; instruction is only %d bytes long, "
8167 "need at least %d bytes for the jump"),
8168 len, jumplen);
8169 return 0;
8170 }
8171 else
8172 {
8173 if (msg)
8174 msg->clear ();
8175 return 1;
8176 }
8177 }
8178
8179 /* Return a floating-point format for a floating-point variable of
8180 length LEN in bits. If non-NULL, NAME is the name of its type.
8181 If no suitable type is found, return NULL. */
8182
8183 const struct floatformat **
8184 i386_floatformat_for_type (struct gdbarch *gdbarch,
8185 const char *name, int len)
8186 {
8187 if (len == 128 && name)
8188 if (strcmp (name, "__float128") == 0
8189 || strcmp (name, "_Float128") == 0
8190 || strcmp (name, "complex _Float128") == 0
8191 || strcmp (name, "complex(kind=16)") == 0
8192 || strcmp (name, "real(kind=16)") == 0)
8193 return floatformats_ia64_quad;
8194
8195 return default_floatformat_for_type (gdbarch, name, len);
8196 }
8197
8198 static int
8199 i386_validate_tdesc_p (struct gdbarch_tdep *tdep,
8200 struct tdesc_arch_data *tdesc_data)
8201 {
8202 const struct target_desc *tdesc = tdep->tdesc;
8203 const struct tdesc_feature *feature_core;
8204
8205 const struct tdesc_feature *feature_sse, *feature_avx, *feature_mpx,
8206 *feature_avx512, *feature_pkeys, *feature_segments;
8207 int i, num_regs, valid_p;
8208
8209 if (! tdesc_has_registers (tdesc))
8210 return 0;
8211
8212 /* Get core registers. */
8213 feature_core = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.core");
8214 if (feature_core == NULL)
8215 return 0;
8216
8217 /* Get SSE registers. */
8218 feature_sse = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.sse");
8219
8220 /* Try AVX registers. */
8221 feature_avx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx");
8222
8223 /* Try MPX registers. */
8224 feature_mpx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx");
8225
8226 /* Try AVX512 registers. */
8227 feature_avx512 = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx512");
8228
8229 /* Try segment base registers. */
8230 feature_segments = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.segments");
8231
8232 /* Try PKEYS */
8233 feature_pkeys = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.pkeys");
8234
8235 valid_p = 1;
8236
8237 /* The XCR0 bits. */
8238 if (feature_avx512)
8239 {
8240 /* AVX512 register description requires AVX register description. */
8241 if (!feature_avx)
8242 return 0;
8243
8244 tdep->xcr0 = X86_XSTATE_AVX_AVX512_MASK;
8245
8246 /* It may have been set by OSABI initialization function. */
8247 if (tdep->k0_regnum < 0)
8248 {
8249 tdep->k_register_names = i386_k_names;
8250 tdep->k0_regnum = I386_K0_REGNUM;
8251 }
8252
8253 for (i = 0; i < I387_NUM_K_REGS; i++)
8254 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8255 tdep->k0_regnum + i,
8256 i386_k_names[i]);
8257
8258 if (tdep->num_zmm_regs == 0)
8259 {
8260 tdep->zmmh_register_names = i386_zmmh_names;
8261 tdep->num_zmm_regs = 8;
8262 tdep->zmm0h_regnum = I386_ZMM0H_REGNUM;
8263 }
8264
8265 for (i = 0; i < tdep->num_zmm_regs; i++)
8266 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8267 tdep->zmm0h_regnum + i,
8268 tdep->zmmh_register_names[i]);
8269
8270 for (i = 0; i < tdep->num_xmm_avx512_regs; i++)
8271 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8272 tdep->xmm16_regnum + i,
8273 tdep->xmm_avx512_register_names[i]);
8274
8275 for (i = 0; i < tdep->num_ymm_avx512_regs; i++)
8276 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8277 tdep->ymm16h_regnum + i,
8278 tdep->ymm16h_register_names[i]);
8279 }
8280 if (feature_avx)
8281 {
8282 /* AVX register description requires SSE register description. */
8283 if (!feature_sse)
8284 return 0;
8285
8286 if (!feature_avx512)
8287 tdep->xcr0 = X86_XSTATE_AVX_MASK;
8288
8289 /* It may have been set by OSABI initialization function. */
8290 if (tdep->num_ymm_regs == 0)
8291 {
8292 tdep->ymmh_register_names = i386_ymmh_names;
8293 tdep->num_ymm_regs = 8;
8294 tdep->ymm0h_regnum = I386_YMM0H_REGNUM;
8295 }
8296
8297 for (i = 0; i < tdep->num_ymm_regs; i++)
8298 valid_p &= tdesc_numbered_register (feature_avx, tdesc_data,
8299 tdep->ymm0h_regnum + i,
8300 tdep->ymmh_register_names[i]);
8301 }
8302 else if (feature_sse)
8303 tdep->xcr0 = X86_XSTATE_SSE_MASK;
8304 else
8305 {
8306 tdep->xcr0 = X86_XSTATE_X87_MASK;
8307 tdep->num_xmm_regs = 0;
8308 }
8309
8310 num_regs = tdep->num_core_regs;
8311 for (i = 0; i < num_regs; i++)
8312 valid_p &= tdesc_numbered_register (feature_core, tdesc_data, i,
8313 tdep->register_names[i]);
8314
8315 if (feature_sse)
8316 {
8317 /* Need to include %mxcsr, so add one. */
8318 num_regs += tdep->num_xmm_regs + 1;
8319 for (; i < num_regs; i++)
8320 valid_p &= tdesc_numbered_register (feature_sse, tdesc_data, i,
8321 tdep->register_names[i]);
8322 }
8323
8324 if (feature_mpx)
8325 {
8326 tdep->xcr0 |= X86_XSTATE_MPX_MASK;
8327
8328 if (tdep->bnd0r_regnum < 0)
8329 {
8330 tdep->mpx_register_names = i386_mpx_names;
8331 tdep->bnd0r_regnum = I386_BND0R_REGNUM;
8332 tdep->bndcfgu_regnum = I386_BNDCFGU_REGNUM;
8333 }
8334
8335 for (i = 0; i < I387_NUM_MPX_REGS; i++)
8336 valid_p &= tdesc_numbered_register (feature_mpx, tdesc_data,
8337 I387_BND0R_REGNUM (tdep) + i,
8338 tdep->mpx_register_names[i]);
8339 }
8340
8341 if (feature_segments)
8342 {
8343 if (tdep->fsbase_regnum < 0)
8344 tdep->fsbase_regnum = I386_FSBASE_REGNUM;
8345 valid_p &= tdesc_numbered_register (feature_segments, tdesc_data,
8346 tdep->fsbase_regnum, "fs_base");
8347 valid_p &= tdesc_numbered_register (feature_segments, tdesc_data,
8348 tdep->fsbase_regnum + 1, "gs_base");
8349 }
8350
8351 if (feature_pkeys)
8352 {
8353 tdep->xcr0 |= X86_XSTATE_PKRU;
8354 if (tdep->pkru_regnum < 0)
8355 {
8356 tdep->pkeys_register_names = i386_pkeys_names;
8357 tdep->pkru_regnum = I386_PKRU_REGNUM;
8358 tdep->num_pkeys_regs = 1;
8359 }
8360
8361 for (i = 0; i < I387_NUM_PKEYS_REGS; i++)
8362 valid_p &= tdesc_numbered_register (feature_pkeys, tdesc_data,
8363 I387_PKRU_REGNUM (tdep) + i,
8364 tdep->pkeys_register_names[i]);
8365 }
8366
8367 return valid_p;
8368 }
8369
8370 \f
8371
8372 /* Implement the type_align gdbarch function. */
8373
8374 static ULONGEST
8375 i386_type_align (struct gdbarch *gdbarch, struct type *type)
8376 {
8377 type = check_typedef (type);
8378
8379 if (gdbarch_ptr_bit (gdbarch) == 32)
8380 {
8381 if ((TYPE_CODE (type) == TYPE_CODE_INT
8382 || TYPE_CODE (type) == TYPE_CODE_FLT)
8383 && TYPE_LENGTH (type) > 4)
8384 return 4;
8385
8386 /* Handle x86's funny long double. */
8387 if (TYPE_CODE (type) == TYPE_CODE_FLT
8388 && gdbarch_long_double_bit (gdbarch) == TYPE_LENGTH (type) * 8)
8389 return 4;
8390 }
8391
8392 return 0;
8393 }
8394
8395 \f
8396 /* Note: This is called for both i386 and amd64. */
8397
8398 static struct gdbarch *
8399 i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
8400 {
8401 struct gdbarch_tdep *tdep;
8402 struct gdbarch *gdbarch;
8403 struct tdesc_arch_data *tdesc_data;
8404 const struct target_desc *tdesc;
8405 int mm0_regnum;
8406 int ymm0_regnum;
8407 int bnd0_regnum;
8408 int num_bnd_cooked;
8409
8410 /* If there is already a candidate, use it. */
8411 arches = gdbarch_list_lookup_by_info (arches, &info);
8412 if (arches != NULL)
8413 return arches->gdbarch;
8414
8415 /* Allocate space for the new architecture. Assume i386 for now. */
8416 tdep = XCNEW (struct gdbarch_tdep);
8417 gdbarch = gdbarch_alloc (&info, tdep);
8418
8419 /* General-purpose registers. */
8420 tdep->gregset_reg_offset = NULL;
8421 tdep->gregset_num_regs = I386_NUM_GREGS;
8422 tdep->sizeof_gregset = 0;
8423
8424 /* Floating-point registers. */
8425 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
8426 tdep->fpregset = &i386_fpregset;
8427
8428 /* The default settings include the FPU registers, the MMX registers
8429 and the SSE registers. This can be overridden for a specific ABI
8430 by adjusting the members `st0_regnum', `mm0_regnum' and
8431 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
8432 will show up in the output of "info all-registers". */
8433
8434 tdep->st0_regnum = I386_ST0_REGNUM;
8435
8436 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
8437 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
8438
8439 tdep->jb_pc_offset = -1;
8440 tdep->struct_return = pcc_struct_return;
8441 tdep->sigtramp_start = 0;
8442 tdep->sigtramp_end = 0;
8443 tdep->sigtramp_p = i386_sigtramp_p;
8444 tdep->sigcontext_addr = NULL;
8445 tdep->sc_reg_offset = NULL;
8446 tdep->sc_pc_offset = -1;
8447 tdep->sc_sp_offset = -1;
8448
8449 tdep->xsave_xcr0_offset = -1;
8450
8451 tdep->record_regmap = i386_record_regmap;
8452
8453 set_gdbarch_type_align (gdbarch, i386_type_align);
8454
8455 /* The format used for `long double' on almost all i386 targets is
8456 the i387 extended floating-point format. In fact, of all targets
8457 in the GCC 2.95 tree, only OSF/1 does it different, and insists
8458 on having a `long double' that's not `long' at all. */
8459 set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext);
8460
8461 /* Although the i387 extended floating-point has only 80 significant
8462 bits, a `long double' actually takes up 96, probably to enforce
8463 alignment. */
8464 set_gdbarch_long_double_bit (gdbarch, 96);
8465
8466 /* Support for floating-point data type variants. */
8467 set_gdbarch_floatformat_for_type (gdbarch, i386_floatformat_for_type);
8468
8469 /* Register numbers of various important registers. */
8470 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
8471 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
8472 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
8473 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
8474
8475 /* NOTE: kettenis/20040418: GCC does have two possible register
8476 numbering schemes on the i386: dbx and SVR4. These schemes
8477 differ in how they number %ebp, %esp, %eflags, and the
8478 floating-point registers, and are implemented by the arrays
8479 dbx_register_map[] and svr4_dbx_register_map in
8480 gcc/config/i386.c. GCC also defines a third numbering scheme in
8481 gcc/config/i386.c, which it designates as the "default" register
8482 map used in 64bit mode. This last register numbering scheme is
8483 implemented in dbx64_register_map, and is used for AMD64; see
8484 amd64-tdep.c.
8485
8486 Currently, each GCC i386 target always uses the same register
8487 numbering scheme across all its supported debugging formats
8488 i.e. SDB (COFF), stabs and DWARF 2. This is because
8489 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
8490 DBX_REGISTER_NUMBER macro which is defined by each target's
8491 respective config header in a manner independent of the requested
8492 output debugging format.
8493
8494 This does not match the arrangement below, which presumes that
8495 the SDB and stabs numbering schemes differ from the DWARF and
8496 DWARF 2 ones. The reason for this arrangement is that it is
8497 likely to get the numbering scheme for the target's
8498 default/native debug format right. For targets where GCC is the
8499 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
8500 targets where the native toolchain uses a different numbering
8501 scheme for a particular debug format (stabs-in-ELF on Solaris)
8502 the defaults below will have to be overridden, like
8503 i386_elf_init_abi() does. */
8504
8505 /* Use the dbx register numbering scheme for stabs and COFF. */
8506 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
8507 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
8508
8509 /* Use the SVR4 register numbering scheme for DWARF 2. */
8510 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_dwarf_reg_to_regnum);
8511
8512 /* We don't set gdbarch_stab_reg_to_regnum, since ECOFF doesn't seem to
8513 be in use on any of the supported i386 targets. */
8514
8515 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
8516
8517 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
8518
8519 /* Call dummy code. */
8520 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
8521 set_gdbarch_push_dummy_code (gdbarch, i386_push_dummy_code);
8522 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
8523 set_gdbarch_frame_align (gdbarch, i386_frame_align);
8524
8525 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
8526 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
8527 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
8528
8529 set_gdbarch_return_value (gdbarch, i386_return_value);
8530
8531 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
8532
8533 /* Stack grows downward. */
8534 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
8535
8536 set_gdbarch_breakpoint_kind_from_pc (gdbarch, i386_breakpoint::kind_from_pc);
8537 set_gdbarch_sw_breakpoint_from_kind (gdbarch, i386_breakpoint::bp_from_kind);
8538
8539 set_gdbarch_decr_pc_after_break (gdbarch, 1);
8540 set_gdbarch_max_insn_length (gdbarch, I386_MAX_INSN_LEN);
8541
8542 set_gdbarch_frame_args_skip (gdbarch, 8);
8543
8544 set_gdbarch_print_insn (gdbarch, i386_print_insn);
8545
8546 set_gdbarch_dummy_id (gdbarch, i386_dummy_id);
8547
8548 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
8549
8550 /* Add the i386 register groups. */
8551 i386_add_reggroups (gdbarch);
8552 tdep->register_reggroup_p = i386_register_reggroup_p;
8553
8554 /* Helper for function argument information. */
8555 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
8556
8557 /* Hook the function epilogue frame unwinder. This unwinder is
8558 appended to the list first, so that it supercedes the DWARF
8559 unwinder in function epilogues (where the DWARF unwinder
8560 currently fails). */
8561 frame_unwind_append_unwinder (gdbarch, &i386_epilogue_frame_unwind);
8562
8563 /* Hook in the DWARF CFI frame unwinder. This unwinder is appended
8564 to the list before the prologue-based unwinders, so that DWARF
8565 CFI info will be used if it is available. */
8566 dwarf2_append_unwinders (gdbarch);
8567
8568 frame_base_set_default (gdbarch, &i386_frame_base);
8569
8570 /* Pseudo registers may be changed by amd64_init_abi. */
8571 set_gdbarch_pseudo_register_read_value (gdbarch,
8572 i386_pseudo_register_read_value);
8573 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
8574 set_gdbarch_ax_pseudo_register_collect (gdbarch,
8575 i386_ax_pseudo_register_collect);
8576
8577 set_tdesc_pseudo_register_type (gdbarch, i386_pseudo_register_type);
8578 set_tdesc_pseudo_register_name (gdbarch, i386_pseudo_register_name);
8579
8580 /* Override the normal target description method to make the AVX
8581 upper halves anonymous. */
8582 set_gdbarch_register_name (gdbarch, i386_register_name);
8583
8584 /* Even though the default ABI only includes general-purpose registers,
8585 floating-point registers and the SSE registers, we have to leave a
8586 gap for the upper AVX, MPX and AVX512 registers. */
8587 set_gdbarch_num_regs (gdbarch, I386_NUM_REGS);
8588
8589 set_gdbarch_gnu_triplet_regexp (gdbarch, i386_gnu_triplet_regexp);
8590
8591 /* Get the x86 target description from INFO. */
8592 tdesc = info.target_desc;
8593 if (! tdesc_has_registers (tdesc))
8594 tdesc = i386_target_description (X86_XSTATE_SSE_MASK, false);
8595 tdep->tdesc = tdesc;
8596
8597 tdep->num_core_regs = I386_NUM_GREGS + I387_NUM_REGS;
8598 tdep->register_names = i386_register_names;
8599
8600 /* No upper YMM registers. */
8601 tdep->ymmh_register_names = NULL;
8602 tdep->ymm0h_regnum = -1;
8603
8604 /* No upper ZMM registers. */
8605 tdep->zmmh_register_names = NULL;
8606 tdep->zmm0h_regnum = -1;
8607
8608 /* No high XMM registers. */
8609 tdep->xmm_avx512_register_names = NULL;
8610 tdep->xmm16_regnum = -1;
8611
8612 /* No upper YMM16-31 registers. */
8613 tdep->ymm16h_register_names = NULL;
8614 tdep->ymm16h_regnum = -1;
8615
8616 tdep->num_byte_regs = 8;
8617 tdep->num_word_regs = 8;
8618 tdep->num_dword_regs = 0;
8619 tdep->num_mmx_regs = 8;
8620 tdep->num_ymm_regs = 0;
8621
8622 /* No MPX registers. */
8623 tdep->bnd0r_regnum = -1;
8624 tdep->bndcfgu_regnum = -1;
8625
8626 /* No AVX512 registers. */
8627 tdep->k0_regnum = -1;
8628 tdep->num_zmm_regs = 0;
8629 tdep->num_ymm_avx512_regs = 0;
8630 tdep->num_xmm_avx512_regs = 0;
8631
8632 /* No PKEYS registers */
8633 tdep->pkru_regnum = -1;
8634 tdep->num_pkeys_regs = 0;
8635
8636 /* No segment base registers. */
8637 tdep->fsbase_regnum = -1;
8638
8639 tdesc_data = tdesc_data_alloc ();
8640
8641 set_gdbarch_relocate_instruction (gdbarch, i386_relocate_instruction);
8642
8643 set_gdbarch_gen_return_address (gdbarch, i386_gen_return_address);
8644
8645 set_gdbarch_insn_is_call (gdbarch, i386_insn_is_call);
8646 set_gdbarch_insn_is_ret (gdbarch, i386_insn_is_ret);
8647 set_gdbarch_insn_is_jump (gdbarch, i386_insn_is_jump);
8648
8649 /* Hook in ABI-specific overrides, if they have been registered.
8650 Note: If INFO specifies a 64 bit arch, this is where we turn
8651 a 32-bit i386 into a 64-bit amd64. */
8652 info.tdesc_data = tdesc_data;
8653 gdbarch_init_osabi (info, gdbarch);
8654
8655 if (!i386_validate_tdesc_p (tdep, tdesc_data))
8656 {
8657 tdesc_data_cleanup (tdesc_data);
8658 xfree (tdep);
8659 gdbarch_free (gdbarch);
8660 return NULL;
8661 }
8662
8663 num_bnd_cooked = (tdep->bnd0r_regnum > 0 ? I387_NUM_BND_REGS : 0);
8664
8665 /* Wire in pseudo registers. Number of pseudo registers may be
8666 changed. */
8667 set_gdbarch_num_pseudo_regs (gdbarch, (tdep->num_byte_regs
8668 + tdep->num_word_regs
8669 + tdep->num_dword_regs
8670 + tdep->num_mmx_regs
8671 + tdep->num_ymm_regs
8672 + num_bnd_cooked
8673 + tdep->num_ymm_avx512_regs
8674 + tdep->num_zmm_regs));
8675
8676 /* Target description may be changed. */
8677 tdesc = tdep->tdesc;
8678
8679 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
8680
8681 /* Override gdbarch_register_reggroup_p set in tdesc_use_registers. */
8682 set_gdbarch_register_reggroup_p (gdbarch, tdep->register_reggroup_p);
8683
8684 /* Make %al the first pseudo-register. */
8685 tdep->al_regnum = gdbarch_num_regs (gdbarch);
8686 tdep->ax_regnum = tdep->al_regnum + tdep->num_byte_regs;
8687
8688 ymm0_regnum = tdep->ax_regnum + tdep->num_word_regs;
8689 if (tdep->num_dword_regs)
8690 {
8691 /* Support dword pseudo-register if it hasn't been disabled. */
8692 tdep->eax_regnum = ymm0_regnum;
8693 ymm0_regnum += tdep->num_dword_regs;
8694 }
8695 else
8696 tdep->eax_regnum = -1;
8697
8698 mm0_regnum = ymm0_regnum;
8699 if (tdep->num_ymm_regs)
8700 {
8701 /* Support YMM pseudo-register if it is available. */
8702 tdep->ymm0_regnum = ymm0_regnum;
8703 mm0_regnum += tdep->num_ymm_regs;
8704 }
8705 else
8706 tdep->ymm0_regnum = -1;
8707
8708 if (tdep->num_ymm_avx512_regs)
8709 {
8710 /* Support YMM16-31 pseudo registers if available. */
8711 tdep->ymm16_regnum = mm0_regnum;
8712 mm0_regnum += tdep->num_ymm_avx512_regs;
8713 }
8714 else
8715 tdep->ymm16_regnum = -1;
8716
8717 if (tdep->num_zmm_regs)
8718 {
8719 /* Support ZMM pseudo-register if it is available. */
8720 tdep->zmm0_regnum = mm0_regnum;
8721 mm0_regnum += tdep->num_zmm_regs;
8722 }
8723 else
8724 tdep->zmm0_regnum = -1;
8725
8726 bnd0_regnum = mm0_regnum;
8727 if (tdep->num_mmx_regs != 0)
8728 {
8729 /* Support MMX pseudo-register if MMX hasn't been disabled. */
8730 tdep->mm0_regnum = mm0_regnum;
8731 bnd0_regnum += tdep->num_mmx_regs;
8732 }
8733 else
8734 tdep->mm0_regnum = -1;
8735
8736 if (tdep->bnd0r_regnum > 0)
8737 tdep->bnd0_regnum = bnd0_regnum;
8738 else
8739 tdep-> bnd0_regnum = -1;
8740
8741 /* Hook in the legacy prologue-based unwinders last (fallback). */
8742 frame_unwind_append_unwinder (gdbarch, &i386_stack_tramp_frame_unwind);
8743 frame_unwind_append_unwinder (gdbarch, &i386_sigtramp_frame_unwind);
8744 frame_unwind_append_unwinder (gdbarch, &i386_frame_unwind);
8745
8746 /* If we have a register mapping, enable the generic core file
8747 support, unless it has already been enabled. */
8748 if (tdep->gregset_reg_offset
8749 && !gdbarch_iterate_over_regset_sections_p (gdbarch))
8750 set_gdbarch_iterate_over_regset_sections
8751 (gdbarch, i386_iterate_over_regset_sections);
8752
8753 set_gdbarch_fast_tracepoint_valid_at (gdbarch,
8754 i386_fast_tracepoint_valid_at);
8755
8756 return gdbarch;
8757 }
8758
8759 \f
8760
8761 /* Return the target description for a specified XSAVE feature mask. */
8762
8763 const struct target_desc *
8764 i386_target_description (uint64_t xcr0, bool segments)
8765 {
8766 static target_desc *i386_tdescs \
8767 [2/*SSE*/][2/*AVX*/][2/*MPX*/][2/*AVX512*/][2/*PKRU*/][2/*segments*/] = {};
8768 target_desc **tdesc;
8769
8770 tdesc = &i386_tdescs[(xcr0 & X86_XSTATE_SSE) ? 1 : 0]
8771 [(xcr0 & X86_XSTATE_AVX) ? 1 : 0]
8772 [(xcr0 & X86_XSTATE_MPX) ? 1 : 0]
8773 [(xcr0 & X86_XSTATE_AVX512) ? 1 : 0]
8774 [(xcr0 & X86_XSTATE_PKRU) ? 1 : 0]
8775 [segments ? 1 : 0];
8776
8777 if (*tdesc == NULL)
8778 *tdesc = i386_create_target_description (xcr0, false, segments);
8779
8780 return *tdesc;
8781 }
8782
8783 #define MPX_BASE_MASK (~(ULONGEST) 0xfff)
8784
8785 /* Find the bound directory base address. */
8786
8787 static unsigned long
8788 i386_mpx_bd_base (void)
8789 {
8790 struct regcache *rcache;
8791 struct gdbarch_tdep *tdep;
8792 ULONGEST ret;
8793 enum register_status regstatus;
8794
8795 rcache = get_current_regcache ();
8796 tdep = gdbarch_tdep (rcache->arch ());
8797
8798 regstatus = regcache_raw_read_unsigned (rcache, tdep->bndcfgu_regnum, &ret);
8799
8800 if (regstatus != REG_VALID)
8801 error (_("BNDCFGU register invalid, read status %d."), regstatus);
8802
8803 return ret & MPX_BASE_MASK;
8804 }
8805
8806 int
8807 i386_mpx_enabled (void)
8808 {
8809 const struct gdbarch_tdep *tdep = gdbarch_tdep (get_current_arch ());
8810 const struct target_desc *tdesc = tdep->tdesc;
8811
8812 return (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx") != NULL);
8813 }
8814
8815 #define MPX_BD_MASK 0xfffffff00000ULL /* select bits [47:20] */
8816 #define MPX_BT_MASK 0x0000000ffff8 /* select bits [19:3] */
8817 #define MPX_BD_MASK_32 0xfffff000 /* select bits [31:12] */
8818 #define MPX_BT_MASK_32 0x00000ffc /* select bits [11:2] */
8819
8820 /* Find the bound table entry given the pointer location and the base
8821 address of the table. */
8822
8823 static CORE_ADDR
8824 i386_mpx_get_bt_entry (CORE_ADDR ptr, CORE_ADDR bd_base)
8825 {
8826 CORE_ADDR offset1;
8827 CORE_ADDR offset2;
8828 CORE_ADDR mpx_bd_mask, bd_ptr_r_shift, bd_ptr_l_shift;
8829 CORE_ADDR bt_mask, bt_select_r_shift, bt_select_l_shift;
8830 CORE_ADDR bd_entry_addr;
8831 CORE_ADDR bt_addr;
8832 CORE_ADDR bd_entry;
8833 struct gdbarch *gdbarch = get_current_arch ();
8834 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8835
8836
8837 if (gdbarch_ptr_bit (gdbarch) == 64)
8838 {
8839 mpx_bd_mask = (CORE_ADDR) MPX_BD_MASK;
8840 bd_ptr_r_shift = 20;
8841 bd_ptr_l_shift = 3;
8842 bt_select_r_shift = 3;
8843 bt_select_l_shift = 5;
8844 bt_mask = (CORE_ADDR) MPX_BT_MASK;
8845
8846 if ( sizeof (CORE_ADDR) == 4)
8847 error (_("bound table examination not supported\
8848 for 64-bit process with 32-bit GDB"));
8849 }
8850 else
8851 {
8852 mpx_bd_mask = MPX_BD_MASK_32;
8853 bd_ptr_r_shift = 12;
8854 bd_ptr_l_shift = 2;
8855 bt_select_r_shift = 2;
8856 bt_select_l_shift = 4;
8857 bt_mask = MPX_BT_MASK_32;
8858 }
8859
8860 offset1 = ((ptr & mpx_bd_mask) >> bd_ptr_r_shift) << bd_ptr_l_shift;
8861 bd_entry_addr = bd_base + offset1;
8862 bd_entry = read_memory_typed_address (bd_entry_addr, data_ptr_type);
8863
8864 if ((bd_entry & 0x1) == 0)
8865 error (_("Invalid bounds directory entry at %s."),
8866 paddress (get_current_arch (), bd_entry_addr));
8867
8868 /* Clearing status bit. */
8869 bd_entry--;
8870 bt_addr = bd_entry & ~bt_select_r_shift;
8871 offset2 = ((ptr & bt_mask) >> bt_select_r_shift) << bt_select_l_shift;
8872
8873 return bt_addr + offset2;
8874 }
8875
8876 /* Print routine for the mpx bounds. */
8877
8878 static void
8879 i386_mpx_print_bounds (const CORE_ADDR bt_entry[4])
8880 {
8881 struct ui_out *uiout = current_uiout;
8882 LONGEST size;
8883 struct gdbarch *gdbarch = get_current_arch ();
8884 CORE_ADDR onecompl = ~((CORE_ADDR) 0);
8885 int bounds_in_map = ((~bt_entry[1] == 0 && bt_entry[0] == onecompl) ? 1 : 0);
8886
8887 if (bounds_in_map == 1)
8888 {
8889 uiout->text ("Null bounds on map:");
8890 uiout->text (" pointer value = ");
8891 uiout->field_core_addr ("pointer-value", gdbarch, bt_entry[2]);
8892 uiout->text (".");
8893 uiout->text ("\n");
8894 }
8895 else
8896 {
8897 uiout->text ("{lbound = ");
8898 uiout->field_core_addr ("lower-bound", gdbarch, bt_entry[0]);
8899 uiout->text (", ubound = ");
8900
8901 /* The upper bound is stored in 1's complement. */
8902 uiout->field_core_addr ("upper-bound", gdbarch, ~bt_entry[1]);
8903 uiout->text ("}: pointer value = ");
8904 uiout->field_core_addr ("pointer-value", gdbarch, bt_entry[2]);
8905
8906 if (gdbarch_ptr_bit (gdbarch) == 64)
8907 size = ( (~(int64_t) bt_entry[1]) - (int64_t) bt_entry[0]);
8908 else
8909 size = ( ~((int32_t) bt_entry[1]) - (int32_t) bt_entry[0]);
8910
8911 /* In case the bounds are 0x0 and 0xffff... the difference will be -1.
8912 -1 represents in this sense full memory access, and there is no need
8913 one to the size. */
8914
8915 size = (size > -1 ? size + 1 : size);
8916 uiout->text (", size = ");
8917 uiout->field_fmt ("size", "%s", plongest (size));
8918
8919 uiout->text (", metadata = ");
8920 uiout->field_core_addr ("metadata", gdbarch, bt_entry[3]);
8921 uiout->text ("\n");
8922 }
8923 }
8924
8925 /* Implement the command "show mpx bound". */
8926
8927 static void
8928 i386_mpx_info_bounds (const char *args, int from_tty)
8929 {
8930 CORE_ADDR bd_base = 0;
8931 CORE_ADDR addr;
8932 CORE_ADDR bt_entry_addr = 0;
8933 CORE_ADDR bt_entry[4];
8934 int i;
8935 struct gdbarch *gdbarch = get_current_arch ();
8936 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8937
8938 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_i386
8939 || !i386_mpx_enabled ())
8940 {
8941 printf_unfiltered (_("Intel Memory Protection Extensions not "
8942 "supported on this target.\n"));
8943 return;
8944 }
8945
8946 if (args == NULL)
8947 {
8948 printf_unfiltered (_("Address of pointer variable expected.\n"));
8949 return;
8950 }
8951
8952 addr = parse_and_eval_address (args);
8953
8954 bd_base = i386_mpx_bd_base ();
8955 bt_entry_addr = i386_mpx_get_bt_entry (addr, bd_base);
8956
8957 memset (bt_entry, 0, sizeof (bt_entry));
8958
8959 for (i = 0; i < 4; i++)
8960 bt_entry[i] = read_memory_typed_address (bt_entry_addr
8961 + i * TYPE_LENGTH (data_ptr_type),
8962 data_ptr_type);
8963
8964 i386_mpx_print_bounds (bt_entry);
8965 }
8966
8967 /* Implement the command "set mpx bound". */
8968
8969 static void
8970 i386_mpx_set_bounds (const char *args, int from_tty)
8971 {
8972 CORE_ADDR bd_base = 0;
8973 CORE_ADDR addr, lower, upper;
8974 CORE_ADDR bt_entry_addr = 0;
8975 CORE_ADDR bt_entry[2];
8976 const char *input = args;
8977 int i;
8978 struct gdbarch *gdbarch = get_current_arch ();
8979 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
8980 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8981
8982 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_i386
8983 || !i386_mpx_enabled ())
8984 error (_("Intel Memory Protection Extensions not supported\
8985 on this target."));
8986
8987 if (args == NULL)
8988 error (_("Pointer value expected."));
8989
8990 addr = value_as_address (parse_to_comma_and_eval (&input));
8991
8992 if (input[0] == ',')
8993 ++input;
8994 if (input[0] == '\0')
8995 error (_("wrong number of arguments: missing lower and upper bound."));
8996 lower = value_as_address (parse_to_comma_and_eval (&input));
8997
8998 if (input[0] == ',')
8999 ++input;
9000 if (input[0] == '\0')
9001 error (_("Wrong number of arguments; Missing upper bound."));
9002 upper = value_as_address (parse_to_comma_and_eval (&input));
9003
9004 bd_base = i386_mpx_bd_base ();
9005 bt_entry_addr = i386_mpx_get_bt_entry (addr, bd_base);
9006 for (i = 0; i < 2; i++)
9007 bt_entry[i] = read_memory_typed_address (bt_entry_addr
9008 + i * TYPE_LENGTH (data_ptr_type),
9009 data_ptr_type);
9010 bt_entry[0] = (uint64_t) lower;
9011 bt_entry[1] = ~(uint64_t) upper;
9012
9013 for (i = 0; i < 2; i++)
9014 write_memory_unsigned_integer (bt_entry_addr
9015 + i * TYPE_LENGTH (data_ptr_type),
9016 TYPE_LENGTH (data_ptr_type), byte_order,
9017 bt_entry[i]);
9018 }
9019
9020 static struct cmd_list_element *mpx_set_cmdlist, *mpx_show_cmdlist;
9021
9022 /* Helper function for the CLI commands. */
9023
9024 static void
9025 set_mpx_cmd (const char *args, int from_tty)
9026 {
9027 help_list (mpx_set_cmdlist, "set mpx ", all_commands, gdb_stdout);
9028 }
9029
9030 /* Helper function for the CLI commands. */
9031
9032 static void
9033 show_mpx_cmd (const char *args, int from_tty)
9034 {
9035 cmd_show_list (mpx_show_cmdlist, from_tty, "");
9036 }
9037
9038 void
9039 _initialize_i386_tdep (void)
9040 {
9041 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
9042
9043 /* Add the variable that controls the disassembly flavor. */
9044 add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
9045 &disassembly_flavor, _("\
9046 Set the disassembly flavor."), _("\
9047 Show the disassembly flavor."), _("\
9048 The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
9049 NULL,
9050 NULL, /* FIXME: i18n: */
9051 &setlist, &showlist);
9052
9053 /* Add the variable that controls the convention for returning
9054 structs. */
9055 add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
9056 &struct_convention, _("\
9057 Set the convention for returning small structs."), _("\
9058 Show the convention for returning small structs."), _("\
9059 Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
9060 is \"default\"."),
9061 NULL,
9062 NULL, /* FIXME: i18n: */
9063 &setlist, &showlist);
9064
9065 /* Add "mpx" prefix for the set commands. */
9066
9067 add_prefix_cmd ("mpx", class_support, set_mpx_cmd, _("\
9068 Set Intel Memory Protection Extensions specific variables."),
9069 &mpx_set_cmdlist, "set mpx ",
9070 0 /* allow-unknown */, &setlist);
9071
9072 /* Add "mpx" prefix for the show commands. */
9073
9074 add_prefix_cmd ("mpx", class_support, show_mpx_cmd, _("\
9075 Show Intel Memory Protection Extensions specific variables."),
9076 &mpx_show_cmdlist, "show mpx ",
9077 0 /* allow-unknown */, &showlist);
9078
9079 /* Add "bound" command for the show mpx commands list. */
9080
9081 add_cmd ("bound", no_class, i386_mpx_info_bounds,
9082 "Show the memory bounds for a given array/pointer storage\
9083 in the bound table.",
9084 &mpx_show_cmdlist);
9085
9086 /* Add "bound" command for the set mpx commands list. */
9087
9088 add_cmd ("bound", no_class, i386_mpx_set_bounds,
9089 "Set the memory bounds for a given array/pointer storage\
9090 in the bound table.",
9091 &mpx_set_cmdlist);
9092
9093 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
9094 i386_svr4_init_abi);
9095
9096 /* Initialize the i386-specific register groups. */
9097 i386_init_reggroups ();
9098
9099 /* Tell remote stub that we support XML target description. */
9100 register_remote_support_xml ("i386");
9101
9102 #if GDB_SELF_TEST
9103 struct
9104 {
9105 const char *xml;
9106 uint64_t mask;
9107 } xml_masks[] = {
9108 { "i386/i386.xml", X86_XSTATE_SSE_MASK },
9109 { "i386/i386-mmx.xml", X86_XSTATE_X87_MASK },
9110 { "i386/i386-avx.xml", X86_XSTATE_AVX_MASK },
9111 { "i386/i386-mpx.xml", X86_XSTATE_MPX_MASK },
9112 { "i386/i386-avx-mpx.xml", X86_XSTATE_AVX_MPX_MASK },
9113 { "i386/i386-avx-avx512.xml", X86_XSTATE_AVX_AVX512_MASK },
9114 { "i386/i386-avx-mpx-avx512-pku.xml",
9115 X86_XSTATE_AVX_MPX_AVX512_PKU_MASK },
9116 };
9117
9118 for (auto &a : xml_masks)
9119 {
9120 auto tdesc = i386_target_description (a.mask, false);
9121
9122 selftests::record_xml_tdesc (a.xml, tdesc);
9123 }
9124 #endif /* GDB_SELF_TEST */
9125 }
This page took 0.32577 seconds and 5 git commands to generate.