* breakpoint.h (breakpoint_restore_shadows): New
[deliverable/binutils-gdb.git] / gdb / i386-tdep.c
1 /* Intel 386 target-dependent stuff.
2
3 Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "command.h"
25 #include "dummy-frame.h"
26 #include "dwarf2-frame.h"
27 #include "doublest.h"
28 #include "frame.h"
29 #include "frame-base.h"
30 #include "frame-unwind.h"
31 #include "inferior.h"
32 #include "gdbcmd.h"
33 #include "gdbcore.h"
34 #include "gdbtypes.h"
35 #include "objfiles.h"
36 #include "osabi.h"
37 #include "regcache.h"
38 #include "reggroups.h"
39 #include "regset.h"
40 #include "symfile.h"
41 #include "symtab.h"
42 #include "target.h"
43 #include "value.h"
44 #include "dis-asm.h"
45
46 #include "gdb_assert.h"
47 #include "gdb_string.h"
48
49 #include "i386-tdep.h"
50 #include "i387-tdep.h"
51
52 /* Register names. */
53
54 static char *i386_register_names[] =
55 {
56 "eax", "ecx", "edx", "ebx",
57 "esp", "ebp", "esi", "edi",
58 "eip", "eflags", "cs", "ss",
59 "ds", "es", "fs", "gs",
60 "st0", "st1", "st2", "st3",
61 "st4", "st5", "st6", "st7",
62 "fctrl", "fstat", "ftag", "fiseg",
63 "fioff", "foseg", "fooff", "fop",
64 "xmm0", "xmm1", "xmm2", "xmm3",
65 "xmm4", "xmm5", "xmm6", "xmm7",
66 "mxcsr"
67 };
68
69 static const int i386_num_register_names = ARRAY_SIZE (i386_register_names);
70
71 /* Register names for MMX pseudo-registers. */
72
73 static char *i386_mmx_names[] =
74 {
75 "mm0", "mm1", "mm2", "mm3",
76 "mm4", "mm5", "mm6", "mm7"
77 };
78
79 static const int i386_num_mmx_regs = ARRAY_SIZE (i386_mmx_names);
80
81 static int
82 i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
83 {
84 int mm0_regnum = gdbarch_tdep (gdbarch)->mm0_regnum;
85
86 if (mm0_regnum < 0)
87 return 0;
88
89 return (regnum >= mm0_regnum && regnum < mm0_regnum + i386_num_mmx_regs);
90 }
91
92 /* SSE register? */
93
94 static int
95 i386_sse_regnum_p (struct gdbarch *gdbarch, int regnum)
96 {
97 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
98
99 if (I387_NUM_XMM_REGS (tdep) == 0)
100 return 0;
101
102 return (I387_XMM0_REGNUM (tdep) <= regnum
103 && regnum < I387_MXCSR_REGNUM (tdep));
104 }
105
106 static int
107 i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
108 {
109 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
110
111 if (I387_NUM_XMM_REGS (tdep) == 0)
112 return 0;
113
114 return (regnum == I387_MXCSR_REGNUM (tdep));
115 }
116
117 /* FP register? */
118
119 int
120 i386_fp_regnum_p (struct gdbarch *gdbarch, int regnum)
121 {
122 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
123
124 if (I387_ST0_REGNUM (tdep) < 0)
125 return 0;
126
127 return (I387_ST0_REGNUM (tdep) <= regnum
128 && regnum < I387_FCTRL_REGNUM (tdep));
129 }
130
131 int
132 i386_fpc_regnum_p (struct gdbarch *gdbarch, int regnum)
133 {
134 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
135
136 if (I387_ST0_REGNUM (tdep) < 0)
137 return 0;
138
139 return (I387_FCTRL_REGNUM (tdep) <= regnum
140 && regnum < I387_XMM0_REGNUM (tdep));
141 }
142
143 /* Return the name of register REGNUM. */
144
145 const char *
146 i386_register_name (struct gdbarch *gdbarch, int regnum)
147 {
148 if (i386_mmx_regnum_p (gdbarch, regnum))
149 return i386_mmx_names[regnum - I387_MM0_REGNUM (gdbarch_tdep (gdbarch))];
150
151 if (regnum >= 0 && regnum < i386_num_register_names)
152 return i386_register_names[regnum];
153
154 return NULL;
155 }
156
157 /* Convert a dbx register number REG to the appropriate register
158 number used by GDB. */
159
160 static int
161 i386_dbx_reg_to_regnum (struct gdbarch *gdbarch, int reg)
162 {
163 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
164
165 /* This implements what GCC calls the "default" register map
166 (dbx_register_map[]). */
167
168 if (reg >= 0 && reg <= 7)
169 {
170 /* General-purpose registers. The debug info calls %ebp
171 register 4, and %esp register 5. */
172 if (reg == 4)
173 return 5;
174 else if (reg == 5)
175 return 4;
176 else return reg;
177 }
178 else if (reg >= 12 && reg <= 19)
179 {
180 /* Floating-point registers. */
181 return reg - 12 + I387_ST0_REGNUM (tdep);
182 }
183 else if (reg >= 21 && reg <= 28)
184 {
185 /* SSE registers. */
186 return reg - 21 + I387_XMM0_REGNUM (tdep);
187 }
188 else if (reg >= 29 && reg <= 36)
189 {
190 /* MMX registers. */
191 return reg - 29 + I387_MM0_REGNUM (tdep);
192 }
193
194 /* This will hopefully provoke a warning. */
195 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
196 }
197
198 /* Convert SVR4 register number REG to the appropriate register number
199 used by GDB. */
200
201 static int
202 i386_svr4_reg_to_regnum (struct gdbarch *gdbarch, int reg)
203 {
204 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
205
206 /* This implements the GCC register map that tries to be compatible
207 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
208
209 /* The SVR4 register numbering includes %eip and %eflags, and
210 numbers the floating point registers differently. */
211 if (reg >= 0 && reg <= 9)
212 {
213 /* General-purpose registers. */
214 return reg;
215 }
216 else if (reg >= 11 && reg <= 18)
217 {
218 /* Floating-point registers. */
219 return reg - 11 + I387_ST0_REGNUM (tdep);
220 }
221 else if (reg >= 21 && reg <= 36)
222 {
223 /* The SSE and MMX registers have the same numbers as with dbx. */
224 return i386_dbx_reg_to_regnum (gdbarch, reg);
225 }
226
227 switch (reg)
228 {
229 case 37: return I387_FCTRL_REGNUM (tdep);
230 case 38: return I387_FSTAT_REGNUM (tdep);
231 case 39: return I387_MXCSR_REGNUM (tdep);
232 case 40: return I386_ES_REGNUM;
233 case 41: return I386_CS_REGNUM;
234 case 42: return I386_SS_REGNUM;
235 case 43: return I386_DS_REGNUM;
236 case 44: return I386_FS_REGNUM;
237 case 45: return I386_GS_REGNUM;
238 }
239
240 /* This will hopefully provoke a warning. */
241 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
242 }
243
244 \f
245
246 /* This is the variable that is set with "set disassembly-flavor", and
247 its legitimate values. */
248 static const char att_flavor[] = "att";
249 static const char intel_flavor[] = "intel";
250 static const char *valid_flavors[] =
251 {
252 att_flavor,
253 intel_flavor,
254 NULL
255 };
256 static const char *disassembly_flavor = att_flavor;
257 \f
258
259 /* Use the program counter to determine the contents and size of a
260 breakpoint instruction. Return a pointer to a string of bytes that
261 encode a breakpoint instruction, store the length of the string in
262 *LEN and optionally adjust *PC to point to the correct memory
263 location for inserting the breakpoint.
264
265 On the i386 we have a single breakpoint that fits in a single byte
266 and can be inserted anywhere.
267
268 This function is 64-bit safe. */
269
270 static const gdb_byte *
271 i386_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
272 {
273 static gdb_byte break_insn[] = { 0xcc }; /* int 3 */
274
275 *len = sizeof (break_insn);
276 return break_insn;
277 }
278 \f
279 #ifdef I386_REGNO_TO_SYMMETRY
280 #error "The Sequent Symmetry is no longer supported."
281 #endif
282
283 /* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
284 and %esp "belong" to the calling function. Therefore these
285 registers should be saved if they're going to be modified. */
286
287 /* The maximum number of saved registers. This should include all
288 registers mentioned above, and %eip. */
289 #define I386_NUM_SAVED_REGS I386_NUM_GREGS
290
291 struct i386_frame_cache
292 {
293 /* Base address. */
294 CORE_ADDR base;
295 LONGEST sp_offset;
296 CORE_ADDR pc;
297
298 /* Saved registers. */
299 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
300 CORE_ADDR saved_sp;
301 int stack_align;
302 int pc_in_eax;
303
304 /* Stack space reserved for local variables. */
305 long locals;
306 };
307
308 /* Allocate and initialize a frame cache. */
309
310 static struct i386_frame_cache *
311 i386_alloc_frame_cache (void)
312 {
313 struct i386_frame_cache *cache;
314 int i;
315
316 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
317
318 /* Base address. */
319 cache->base = 0;
320 cache->sp_offset = -4;
321 cache->pc = 0;
322
323 /* Saved registers. We initialize these to -1 since zero is a valid
324 offset (that's where %ebp is supposed to be stored). */
325 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
326 cache->saved_regs[i] = -1;
327 cache->saved_sp = 0;
328 cache->stack_align = 0;
329 cache->pc_in_eax = 0;
330
331 /* Frameless until proven otherwise. */
332 cache->locals = -1;
333
334 return cache;
335 }
336
337 /* If the instruction at PC is a jump, return the address of its
338 target. Otherwise, return PC. */
339
340 static CORE_ADDR
341 i386_follow_jump (CORE_ADDR pc)
342 {
343 gdb_byte op;
344 long delta = 0;
345 int data16 = 0;
346
347 target_read_memory (pc, &op, 1);
348 if (op == 0x66)
349 {
350 data16 = 1;
351 op = read_memory_unsigned_integer (pc + 1, 1);
352 }
353
354 switch (op)
355 {
356 case 0xe9:
357 /* Relative jump: if data16 == 0, disp32, else disp16. */
358 if (data16)
359 {
360 delta = read_memory_integer (pc + 2, 2);
361
362 /* Include the size of the jmp instruction (including the
363 0x66 prefix). */
364 delta += 4;
365 }
366 else
367 {
368 delta = read_memory_integer (pc + 1, 4);
369
370 /* Include the size of the jmp instruction. */
371 delta += 5;
372 }
373 break;
374 case 0xeb:
375 /* Relative jump, disp8 (ignore data16). */
376 delta = read_memory_integer (pc + data16 + 1, 1);
377
378 delta += data16 + 2;
379 break;
380 }
381
382 return pc + delta;
383 }
384
385 /* Check whether PC points at a prologue for a function returning a
386 structure or union. If so, it updates CACHE and returns the
387 address of the first instruction after the code sequence that
388 removes the "hidden" argument from the stack or CURRENT_PC,
389 whichever is smaller. Otherwise, return PC. */
390
391 static CORE_ADDR
392 i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
393 struct i386_frame_cache *cache)
394 {
395 /* Functions that return a structure or union start with:
396
397 popl %eax 0x58
398 xchgl %eax, (%esp) 0x87 0x04 0x24
399 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
400
401 (the System V compiler puts out the second `xchg' instruction,
402 and the assembler doesn't try to optimize it, so the 'sib' form
403 gets generated). This sequence is used to get the address of the
404 return buffer for a function that returns a structure. */
405 static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
406 static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
407 gdb_byte buf[4];
408 gdb_byte op;
409
410 if (current_pc <= pc)
411 return pc;
412
413 target_read_memory (pc, &op, 1);
414
415 if (op != 0x58) /* popl %eax */
416 return pc;
417
418 target_read_memory (pc + 1, buf, 4);
419 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
420 return pc;
421
422 if (current_pc == pc)
423 {
424 cache->sp_offset += 4;
425 return current_pc;
426 }
427
428 if (current_pc == pc + 1)
429 {
430 cache->pc_in_eax = 1;
431 return current_pc;
432 }
433
434 if (buf[1] == proto1[1])
435 return pc + 4;
436 else
437 return pc + 5;
438 }
439
440 static CORE_ADDR
441 i386_skip_probe (CORE_ADDR pc)
442 {
443 /* A function may start with
444
445 pushl constant
446 call _probe
447 addl $4, %esp
448
449 followed by
450
451 pushl %ebp
452
453 etc. */
454 gdb_byte buf[8];
455 gdb_byte op;
456
457 target_read_memory (pc, &op, 1);
458
459 if (op == 0x68 || op == 0x6a)
460 {
461 int delta;
462
463 /* Skip past the `pushl' instruction; it has either a one-byte or a
464 four-byte operand, depending on the opcode. */
465 if (op == 0x68)
466 delta = 5;
467 else
468 delta = 2;
469
470 /* Read the following 8 bytes, which should be `call _probe' (6
471 bytes) followed by `addl $4,%esp' (2 bytes). */
472 read_memory (pc + delta, buf, sizeof (buf));
473 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
474 pc += delta + sizeof (buf);
475 }
476
477 return pc;
478 }
479
480 /* GCC 4.1 and later, can put code in the prologue to realign the
481 stack pointer. Check whether PC points to such code, and update
482 CACHE accordingly. Return the first instruction after the code
483 sequence or CURRENT_PC, whichever is smaller. If we don't
484 recognize the code, return PC. */
485
486 static CORE_ADDR
487 i386_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
488 struct i386_frame_cache *cache)
489 {
490 /* The register used by the compiler to perform the stack re-alignment
491 is, in order of preference, either %ecx, %edx, or %eax. GCC should
492 never use %ebx as it always treats it as callee-saved, whereas
493 the compiler can only use caller-saved registers. */
494 static const gdb_byte insns_ecx[10] = {
495 0x8d, 0x4c, 0x24, 0x04, /* leal 4(%esp), %ecx */
496 0x83, 0xe4, 0xf0, /* andl $-16, %esp */
497 0xff, 0x71, 0xfc /* pushl -4(%ecx) */
498 };
499 static const gdb_byte insns_edx[10] = {
500 0x8d, 0x54, 0x24, 0x04, /* leal 4(%esp), %edx */
501 0x83, 0xe4, 0xf0, /* andl $-16, %esp */
502 0xff, 0x72, 0xfc /* pushl -4(%edx) */
503 };
504 static const gdb_byte insns_eax[10] = {
505 0x8d, 0x44, 0x24, 0x04, /* leal 4(%esp), %eax */
506 0x83, 0xe4, 0xf0, /* andl $-16, %esp */
507 0xff, 0x70, 0xfc /* pushl -4(%eax) */
508 };
509 gdb_byte buf[10];
510
511 if (target_read_memory (pc, buf, sizeof buf)
512 || (memcmp (buf, insns_ecx, sizeof buf) != 0
513 && memcmp (buf, insns_edx, sizeof buf) != 0
514 && memcmp (buf, insns_eax, sizeof buf) != 0))
515 return pc;
516
517 if (current_pc > pc + 4)
518 cache->stack_align = 1;
519
520 return min (pc + 10, current_pc);
521 }
522
523 /* Maximum instruction length we need to handle. */
524 #define I386_MAX_INSN_LEN 6
525
526 /* Instruction description. */
527 struct i386_insn
528 {
529 size_t len;
530 gdb_byte insn[I386_MAX_INSN_LEN];
531 gdb_byte mask[I386_MAX_INSN_LEN];
532 };
533
534 /* Search for the instruction at PC in the list SKIP_INSNS. Return
535 the first instruction description that matches. Otherwise, return
536 NULL. */
537
538 static struct i386_insn *
539 i386_match_insn (CORE_ADDR pc, struct i386_insn *skip_insns)
540 {
541 struct i386_insn *insn;
542 gdb_byte op;
543
544 target_read_memory (pc, &op, 1);
545
546 for (insn = skip_insns; insn->len > 0; insn++)
547 {
548 if ((op & insn->mask[0]) == insn->insn[0])
549 {
550 gdb_byte buf[I386_MAX_INSN_LEN - 1];
551 int insn_matched = 1;
552 size_t i;
553
554 gdb_assert (insn->len > 1);
555 gdb_assert (insn->len <= I386_MAX_INSN_LEN);
556
557 target_read_memory (pc + 1, buf, insn->len - 1);
558 for (i = 1; i < insn->len; i++)
559 {
560 if ((buf[i - 1] & insn->mask[i]) != insn->insn[i])
561 insn_matched = 0;
562 }
563
564 if (insn_matched)
565 return insn;
566 }
567 }
568
569 return NULL;
570 }
571
572 /* Some special instructions that might be migrated by GCC into the
573 part of the prologue that sets up the new stack frame. Because the
574 stack frame hasn't been setup yet, no registers have been saved
575 yet, and only the scratch registers %eax, %ecx and %edx can be
576 touched. */
577
578 struct i386_insn i386_frame_setup_skip_insns[] =
579 {
580 /* Check for `movb imm8, r' and `movl imm32, r'.
581
582 ??? Should we handle 16-bit operand-sizes here? */
583
584 /* `movb imm8, %al' and `movb imm8, %ah' */
585 /* `movb imm8, %cl' and `movb imm8, %ch' */
586 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
587 /* `movb imm8, %dl' and `movb imm8, %dh' */
588 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
589 /* `movl imm32, %eax' and `movl imm32, %ecx' */
590 { 5, { 0xb8 }, { 0xfe } },
591 /* `movl imm32, %edx' */
592 { 5, { 0xba }, { 0xff } },
593
594 /* Check for `mov imm32, r32'. Note that there is an alternative
595 encoding for `mov m32, %eax'.
596
597 ??? Should we handle SIB adressing here?
598 ??? Should we handle 16-bit operand-sizes here? */
599
600 /* `movl m32, %eax' */
601 { 5, { 0xa1 }, { 0xff } },
602 /* `movl m32, %eax' and `mov; m32, %ecx' */
603 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
604 /* `movl m32, %edx' */
605 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
606
607 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
608 Because of the symmetry, there are actually two ways to encode
609 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
610 opcode bytes 0x31 and 0x33 for `xorl'. */
611
612 /* `subl %eax, %eax' */
613 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
614 /* `subl %ecx, %ecx' */
615 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
616 /* `subl %edx, %edx' */
617 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
618 /* `xorl %eax, %eax' */
619 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
620 /* `xorl %ecx, %ecx' */
621 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
622 /* `xorl %edx, %edx' */
623 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
624 { 0 }
625 };
626
627
628 /* Check whether PC points to a no-op instruction. */
629 static CORE_ADDR
630 i386_skip_noop (CORE_ADDR pc)
631 {
632 gdb_byte op;
633 int check = 1;
634
635 target_read_memory (pc, &op, 1);
636
637 while (check)
638 {
639 check = 0;
640 /* Ignore `nop' instruction. */
641 if (op == 0x90)
642 {
643 pc += 1;
644 target_read_memory (pc, &op, 1);
645 check = 1;
646 }
647 /* Ignore no-op instruction `mov %edi, %edi'.
648 Microsoft system dlls often start with
649 a `mov %edi,%edi' instruction.
650 The 5 bytes before the function start are
651 filled with `nop' instructions.
652 This pattern can be used for hot-patching:
653 The `mov %edi, %edi' instruction can be replaced by a
654 near jump to the location of the 5 `nop' instructions
655 which can be replaced by a 32-bit jump to anywhere
656 in the 32-bit address space. */
657
658 else if (op == 0x8b)
659 {
660 target_read_memory (pc + 1, &op, 1);
661 if (op == 0xff)
662 {
663 pc += 2;
664 target_read_memory (pc, &op, 1);
665 check = 1;
666 }
667 }
668 }
669 return pc;
670 }
671
672 /* Check whether PC points at a code that sets up a new stack frame.
673 If so, it updates CACHE and returns the address of the first
674 instruction after the sequence that sets up the frame or LIMIT,
675 whichever is smaller. If we don't recognize the code, return PC. */
676
677 static CORE_ADDR
678 i386_analyze_frame_setup (CORE_ADDR pc, CORE_ADDR limit,
679 struct i386_frame_cache *cache)
680 {
681 struct i386_insn *insn;
682 gdb_byte op;
683 int skip = 0;
684
685 if (limit <= pc)
686 return limit;
687
688 target_read_memory (pc, &op, 1);
689
690 if (op == 0x55) /* pushl %ebp */
691 {
692 /* Take into account that we've executed the `pushl %ebp' that
693 starts this instruction sequence. */
694 cache->saved_regs[I386_EBP_REGNUM] = 0;
695 cache->sp_offset += 4;
696 pc++;
697
698 /* If that's all, return now. */
699 if (limit <= pc)
700 return limit;
701
702 /* Check for some special instructions that might be migrated by
703 GCC into the prologue and skip them. At this point in the
704 prologue, code should only touch the scratch registers %eax,
705 %ecx and %edx, so while the number of posibilities is sheer,
706 it is limited.
707
708 Make sure we only skip these instructions if we later see the
709 `movl %esp, %ebp' that actually sets up the frame. */
710 while (pc + skip < limit)
711 {
712 insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
713 if (insn == NULL)
714 break;
715
716 skip += insn->len;
717 }
718
719 /* If that's all, return now. */
720 if (limit <= pc + skip)
721 return limit;
722
723 target_read_memory (pc + skip, &op, 1);
724
725 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
726 switch (op)
727 {
728 case 0x8b:
729 if (read_memory_unsigned_integer (pc + skip + 1, 1) != 0xec)
730 return pc;
731 break;
732 case 0x89:
733 if (read_memory_unsigned_integer (pc + skip + 1, 1) != 0xe5)
734 return pc;
735 break;
736 default:
737 return pc;
738 }
739
740 /* OK, we actually have a frame. We just don't know how large
741 it is yet. Set its size to zero. We'll adjust it if
742 necessary. We also now commit to skipping the special
743 instructions mentioned before. */
744 cache->locals = 0;
745 pc += (skip + 2);
746
747 /* If that's all, return now. */
748 if (limit <= pc)
749 return limit;
750
751 /* Check for stack adjustment
752
753 subl $XXX, %esp
754
755 NOTE: You can't subtract a 16-bit immediate from a 32-bit
756 reg, so we don't have to worry about a data16 prefix. */
757 target_read_memory (pc, &op, 1);
758 if (op == 0x83)
759 {
760 /* `subl' with 8-bit immediate. */
761 if (read_memory_unsigned_integer (pc + 1, 1) != 0xec)
762 /* Some instruction starting with 0x83 other than `subl'. */
763 return pc;
764
765 /* `subl' with signed 8-bit immediate (though it wouldn't
766 make sense to be negative). */
767 cache->locals = read_memory_integer (pc + 2, 1);
768 return pc + 3;
769 }
770 else if (op == 0x81)
771 {
772 /* Maybe it is `subl' with a 32-bit immediate. */
773 if (read_memory_unsigned_integer (pc + 1, 1) != 0xec)
774 /* Some instruction starting with 0x81 other than `subl'. */
775 return pc;
776
777 /* It is `subl' with a 32-bit immediate. */
778 cache->locals = read_memory_integer (pc + 2, 4);
779 return pc + 6;
780 }
781 else
782 {
783 /* Some instruction other than `subl'. */
784 return pc;
785 }
786 }
787 else if (op == 0xc8) /* enter */
788 {
789 cache->locals = read_memory_unsigned_integer (pc + 1, 2);
790 return pc + 4;
791 }
792
793 return pc;
794 }
795
796 /* Check whether PC points at code that saves registers on the stack.
797 If so, it updates CACHE and returns the address of the first
798 instruction after the register saves or CURRENT_PC, whichever is
799 smaller. Otherwise, return PC. */
800
801 static CORE_ADDR
802 i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
803 struct i386_frame_cache *cache)
804 {
805 CORE_ADDR offset = 0;
806 gdb_byte op;
807 int i;
808
809 if (cache->locals > 0)
810 offset -= cache->locals;
811 for (i = 0; i < 8 && pc < current_pc; i++)
812 {
813 target_read_memory (pc, &op, 1);
814 if (op < 0x50 || op > 0x57)
815 break;
816
817 offset -= 4;
818 cache->saved_regs[op - 0x50] = offset;
819 cache->sp_offset += 4;
820 pc++;
821 }
822
823 return pc;
824 }
825
826 /* Do a full analysis of the prologue at PC and update CACHE
827 accordingly. Bail out early if CURRENT_PC is reached. Return the
828 address where the analysis stopped.
829
830 We handle these cases:
831
832 The startup sequence can be at the start of the function, or the
833 function can start with a branch to startup code at the end.
834
835 %ebp can be set up with either the 'enter' instruction, or "pushl
836 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
837 once used in the System V compiler).
838
839 Local space is allocated just below the saved %ebp by either the
840 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
841 16-bit unsigned argument for space to allocate, and the 'addl'
842 instruction could have either a signed byte, or 32-bit immediate.
843
844 Next, the registers used by this function are pushed. With the
845 System V compiler they will always be in the order: %edi, %esi,
846 %ebx (and sometimes a harmless bug causes it to also save but not
847 restore %eax); however, the code below is willing to see the pushes
848 in any order, and will handle up to 8 of them.
849
850 If the setup sequence is at the end of the function, then the next
851 instruction will be a branch back to the start. */
852
853 static CORE_ADDR
854 i386_analyze_prologue (CORE_ADDR pc, CORE_ADDR current_pc,
855 struct i386_frame_cache *cache)
856 {
857 pc = i386_skip_noop (pc);
858 pc = i386_follow_jump (pc);
859 pc = i386_analyze_struct_return (pc, current_pc, cache);
860 pc = i386_skip_probe (pc);
861 pc = i386_analyze_stack_align (pc, current_pc, cache);
862 pc = i386_analyze_frame_setup (pc, current_pc, cache);
863 return i386_analyze_register_saves (pc, current_pc, cache);
864 }
865
866 /* Return PC of first real instruction. */
867
868 static CORE_ADDR
869 i386_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
870 {
871 static gdb_byte pic_pat[6] =
872 {
873 0xe8, 0, 0, 0, 0, /* call 0x0 */
874 0x5b, /* popl %ebx */
875 };
876 struct i386_frame_cache cache;
877 CORE_ADDR pc;
878 gdb_byte op;
879 int i;
880
881 cache.locals = -1;
882 pc = i386_analyze_prologue (start_pc, 0xffffffff, &cache);
883 if (cache.locals < 0)
884 return start_pc;
885
886 /* Found valid frame setup. */
887
888 /* The native cc on SVR4 in -K PIC mode inserts the following code
889 to get the address of the global offset table (GOT) into register
890 %ebx:
891
892 call 0x0
893 popl %ebx
894 movl %ebx,x(%ebp) (optional)
895 addl y,%ebx
896
897 This code is with the rest of the prologue (at the end of the
898 function), so we have to skip it to get to the first real
899 instruction at the start of the function. */
900
901 for (i = 0; i < 6; i++)
902 {
903 target_read_memory (pc + i, &op, 1);
904 if (pic_pat[i] != op)
905 break;
906 }
907 if (i == 6)
908 {
909 int delta = 6;
910
911 target_read_memory (pc + delta, &op, 1);
912
913 if (op == 0x89) /* movl %ebx, x(%ebp) */
914 {
915 op = read_memory_unsigned_integer (pc + delta + 1, 1);
916
917 if (op == 0x5d) /* One byte offset from %ebp. */
918 delta += 3;
919 else if (op == 0x9d) /* Four byte offset from %ebp. */
920 delta += 6;
921 else /* Unexpected instruction. */
922 delta = 0;
923
924 target_read_memory (pc + delta, &op, 1);
925 }
926
927 /* addl y,%ebx */
928 if (delta > 0 && op == 0x81
929 && read_memory_unsigned_integer (pc + delta + 1, 1) == 0xc3)
930 {
931 pc += delta + 6;
932 }
933 }
934
935 /* If the function starts with a branch (to startup code at the end)
936 the last instruction should bring us back to the first
937 instruction of the real code. */
938 if (i386_follow_jump (start_pc) != start_pc)
939 pc = i386_follow_jump (pc);
940
941 return pc;
942 }
943
944 /* This function is 64-bit safe. */
945
946 static CORE_ADDR
947 i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
948 {
949 gdb_byte buf[8];
950
951 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
952 return extract_typed_address (buf, builtin_type_void_func_ptr);
953 }
954 \f
955
956 /* Normal frames. */
957
958 static struct i386_frame_cache *
959 i386_frame_cache (struct frame_info *next_frame, void **this_cache)
960 {
961 struct i386_frame_cache *cache;
962 gdb_byte buf[4];
963 int i;
964
965 if (*this_cache)
966 return *this_cache;
967
968 cache = i386_alloc_frame_cache ();
969 *this_cache = cache;
970
971 /* In principle, for normal frames, %ebp holds the frame pointer,
972 which holds the base address for the current stack frame.
973 However, for functions that don't need it, the frame pointer is
974 optional. For these "frameless" functions the frame pointer is
975 actually the frame pointer of the calling frame. Signal
976 trampolines are just a special case of a "frameless" function.
977 They (usually) share their frame pointer with the frame that was
978 in progress when the signal occurred. */
979
980 frame_unwind_register (next_frame, I386_EBP_REGNUM, buf);
981 cache->base = extract_unsigned_integer (buf, 4);
982 if (cache->base == 0)
983 return cache;
984
985 /* For normal frames, %eip is stored at 4(%ebp). */
986 cache->saved_regs[I386_EIP_REGNUM] = 4;
987
988 cache->pc = frame_func_unwind (next_frame, NORMAL_FRAME);
989 if (cache->pc != 0)
990 i386_analyze_prologue (cache->pc, frame_pc_unwind (next_frame), cache);
991
992 if (cache->stack_align)
993 {
994 /* Saved stack pointer has been saved in %ecx. */
995 frame_unwind_register (next_frame, I386_ECX_REGNUM, buf);
996 cache->saved_sp = extract_unsigned_integer(buf, 4);
997 }
998
999 if (cache->locals < 0)
1000 {
1001 /* We didn't find a valid frame, which means that CACHE->base
1002 currently holds the frame pointer for our calling frame. If
1003 we're at the start of a function, or somewhere half-way its
1004 prologue, the function's frame probably hasn't been fully
1005 setup yet. Try to reconstruct the base address for the stack
1006 frame by looking at the stack pointer. For truly "frameless"
1007 functions this might work too. */
1008
1009 if (cache->stack_align)
1010 {
1011 /* We're halfway aligning the stack. */
1012 cache->base = ((cache->saved_sp - 4) & 0xfffffff0) - 4;
1013 cache->saved_regs[I386_EIP_REGNUM] = cache->saved_sp - 4;
1014
1015 /* This will be added back below. */
1016 cache->saved_regs[I386_EIP_REGNUM] -= cache->base;
1017 }
1018 else
1019 {
1020 frame_unwind_register (next_frame, I386_ESP_REGNUM, buf);
1021 cache->base = extract_unsigned_integer (buf, 4) + cache->sp_offset;
1022 }
1023 }
1024
1025 /* Now that we have the base address for the stack frame we can
1026 calculate the value of %esp in the calling frame. */
1027 if (cache->saved_sp == 0)
1028 cache->saved_sp = cache->base + 8;
1029
1030 /* Adjust all the saved registers such that they contain addresses
1031 instead of offsets. */
1032 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
1033 if (cache->saved_regs[i] != -1)
1034 cache->saved_regs[i] += cache->base;
1035
1036 return cache;
1037 }
1038
1039 static void
1040 i386_frame_this_id (struct frame_info *next_frame, void **this_cache,
1041 struct frame_id *this_id)
1042 {
1043 struct i386_frame_cache *cache = i386_frame_cache (next_frame, this_cache);
1044
1045 /* This marks the outermost frame. */
1046 if (cache->base == 0)
1047 return;
1048
1049 /* See the end of i386_push_dummy_call. */
1050 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
1051 }
1052
1053 static void
1054 i386_frame_prev_register (struct frame_info *next_frame, void **this_cache,
1055 int regnum, int *optimizedp,
1056 enum lval_type *lvalp, CORE_ADDR *addrp,
1057 int *realnump, gdb_byte *valuep)
1058 {
1059 struct i386_frame_cache *cache = i386_frame_cache (next_frame, this_cache);
1060
1061 gdb_assert (regnum >= 0);
1062
1063 /* The System V ABI says that:
1064
1065 "The flags register contains the system flags, such as the
1066 direction flag and the carry flag. The direction flag must be
1067 set to the forward (that is, zero) direction before entry and
1068 upon exit from a function. Other user flags have no specified
1069 role in the standard calling sequence and are not preserved."
1070
1071 To guarantee the "upon exit" part of that statement we fake a
1072 saved flags register that has its direction flag cleared.
1073
1074 Note that GCC doesn't seem to rely on the fact that the direction
1075 flag is cleared after a function return; it always explicitly
1076 clears the flag before operations where it matters.
1077
1078 FIXME: kettenis/20030316: I'm not quite sure whether this is the
1079 right thing to do. The way we fake the flags register here makes
1080 it impossible to change it. */
1081
1082 if (regnum == I386_EFLAGS_REGNUM)
1083 {
1084 *optimizedp = 0;
1085 *lvalp = not_lval;
1086 *addrp = 0;
1087 *realnump = -1;
1088 if (valuep)
1089 {
1090 ULONGEST val;
1091
1092 /* Clear the direction flag. */
1093 val = frame_unwind_register_unsigned (next_frame,
1094 I386_EFLAGS_REGNUM);
1095 val &= ~(1 << 10);
1096 store_unsigned_integer (valuep, 4, val);
1097 }
1098
1099 return;
1100 }
1101
1102 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
1103 {
1104 *optimizedp = 0;
1105 *lvalp = lval_register;
1106 *addrp = 0;
1107 *realnump = I386_EAX_REGNUM;
1108 if (valuep)
1109 frame_unwind_register (next_frame, (*realnump), valuep);
1110 return;
1111 }
1112
1113 if (regnum == I386_ESP_REGNUM && cache->saved_sp)
1114 {
1115 *optimizedp = 0;
1116 *lvalp = not_lval;
1117 *addrp = 0;
1118 *realnump = -1;
1119 if (valuep)
1120 {
1121 /* Store the value. */
1122 store_unsigned_integer (valuep, 4, cache->saved_sp);
1123 }
1124 return;
1125 }
1126
1127 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
1128 {
1129 *optimizedp = 0;
1130 *lvalp = lval_memory;
1131 *addrp = cache->saved_regs[regnum];
1132 *realnump = -1;
1133 if (valuep)
1134 {
1135 /* Read the value in from memory. */
1136 read_memory (*addrp, valuep,
1137 register_size (get_frame_arch (next_frame), regnum));
1138 }
1139 return;
1140 }
1141
1142 *optimizedp = 0;
1143 *lvalp = lval_register;
1144 *addrp = 0;
1145 *realnump = regnum;
1146 if (valuep)
1147 frame_unwind_register (next_frame, (*realnump), valuep);
1148 }
1149
1150 static const struct frame_unwind i386_frame_unwind =
1151 {
1152 NORMAL_FRAME,
1153 i386_frame_this_id,
1154 i386_frame_prev_register
1155 };
1156
1157 static const struct frame_unwind *
1158 i386_frame_sniffer (struct frame_info *next_frame)
1159 {
1160 return &i386_frame_unwind;
1161 }
1162 \f
1163
1164 /* Signal trampolines. */
1165
1166 static struct i386_frame_cache *
1167 i386_sigtramp_frame_cache (struct frame_info *next_frame, void **this_cache)
1168 {
1169 struct i386_frame_cache *cache;
1170 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (next_frame));
1171 CORE_ADDR addr;
1172 gdb_byte buf[4];
1173
1174 if (*this_cache)
1175 return *this_cache;
1176
1177 cache = i386_alloc_frame_cache ();
1178
1179 frame_unwind_register (next_frame, I386_ESP_REGNUM, buf);
1180 cache->base = extract_unsigned_integer (buf, 4) - 4;
1181
1182 addr = tdep->sigcontext_addr (next_frame);
1183 if (tdep->sc_reg_offset)
1184 {
1185 int i;
1186
1187 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
1188
1189 for (i = 0; i < tdep->sc_num_regs; i++)
1190 if (tdep->sc_reg_offset[i] != -1)
1191 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
1192 }
1193 else
1194 {
1195 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
1196 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
1197 }
1198
1199 *this_cache = cache;
1200 return cache;
1201 }
1202
1203 static void
1204 i386_sigtramp_frame_this_id (struct frame_info *next_frame, void **this_cache,
1205 struct frame_id *this_id)
1206 {
1207 struct i386_frame_cache *cache =
1208 i386_sigtramp_frame_cache (next_frame, this_cache);
1209
1210 /* See the end of i386_push_dummy_call. */
1211 (*this_id) = frame_id_build (cache->base + 8, frame_pc_unwind (next_frame));
1212 }
1213
1214 static void
1215 i386_sigtramp_frame_prev_register (struct frame_info *next_frame,
1216 void **this_cache,
1217 int regnum, int *optimizedp,
1218 enum lval_type *lvalp, CORE_ADDR *addrp,
1219 int *realnump, gdb_byte *valuep)
1220 {
1221 /* Make sure we've initialized the cache. */
1222 i386_sigtramp_frame_cache (next_frame, this_cache);
1223
1224 i386_frame_prev_register (next_frame, this_cache, regnum,
1225 optimizedp, lvalp, addrp, realnump, valuep);
1226 }
1227
1228 static const struct frame_unwind i386_sigtramp_frame_unwind =
1229 {
1230 SIGTRAMP_FRAME,
1231 i386_sigtramp_frame_this_id,
1232 i386_sigtramp_frame_prev_register
1233 };
1234
1235 static const struct frame_unwind *
1236 i386_sigtramp_frame_sniffer (struct frame_info *next_frame)
1237 {
1238 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (next_frame));
1239
1240 /* We shouldn't even bother if we don't have a sigcontext_addr
1241 handler. */
1242 if (tdep->sigcontext_addr == NULL)
1243 return NULL;
1244
1245 if (tdep->sigtramp_p != NULL)
1246 {
1247 if (tdep->sigtramp_p (next_frame))
1248 return &i386_sigtramp_frame_unwind;
1249 }
1250
1251 if (tdep->sigtramp_start != 0)
1252 {
1253 CORE_ADDR pc = frame_pc_unwind (next_frame);
1254
1255 gdb_assert (tdep->sigtramp_end != 0);
1256 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
1257 return &i386_sigtramp_frame_unwind;
1258 }
1259
1260 return NULL;
1261 }
1262 \f
1263
1264 static CORE_ADDR
1265 i386_frame_base_address (struct frame_info *next_frame, void **this_cache)
1266 {
1267 struct i386_frame_cache *cache = i386_frame_cache (next_frame, this_cache);
1268
1269 return cache->base;
1270 }
1271
1272 static const struct frame_base i386_frame_base =
1273 {
1274 &i386_frame_unwind,
1275 i386_frame_base_address,
1276 i386_frame_base_address,
1277 i386_frame_base_address
1278 };
1279
1280 static struct frame_id
1281 i386_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
1282 {
1283 gdb_byte buf[4];
1284 CORE_ADDR fp;
1285
1286 frame_unwind_register (next_frame, I386_EBP_REGNUM, buf);
1287 fp = extract_unsigned_integer (buf, 4);
1288
1289 /* See the end of i386_push_dummy_call. */
1290 return frame_id_build (fp + 8, frame_pc_unwind (next_frame));
1291 }
1292 \f
1293
1294 /* Figure out where the longjmp will land. Slurp the args out of the
1295 stack. We expect the first arg to be a pointer to the jmp_buf
1296 structure from which we extract the address that we will land at.
1297 This address is copied into PC. This routine returns non-zero on
1298 success.
1299
1300 This function is 64-bit safe. */
1301
1302 static int
1303 i386_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
1304 {
1305 gdb_byte buf[8];
1306 CORE_ADDR sp, jb_addr;
1307 struct gdbarch *gdbarch = get_frame_arch (frame);
1308 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
1309 int len = TYPE_LENGTH (builtin_type_void_func_ptr);
1310
1311 /* If JB_PC_OFFSET is -1, we have no way to find out where the
1312 longjmp will land. */
1313 if (jb_pc_offset == -1)
1314 return 0;
1315
1316 /* Don't use I386_ESP_REGNUM here, since this function is also used
1317 for AMD64. */
1318 get_frame_register (frame, gdbarch_sp_regnum (gdbarch), buf);
1319 sp = extract_typed_address (buf, builtin_type_void_data_ptr);
1320 if (target_read_memory (sp + len, buf, len))
1321 return 0;
1322
1323 jb_addr = extract_typed_address (buf, builtin_type_void_data_ptr);
1324 if (target_read_memory (jb_addr + jb_pc_offset, buf, len))
1325 return 0;
1326
1327 *pc = extract_typed_address (buf, builtin_type_void_func_ptr);
1328 return 1;
1329 }
1330 \f
1331
1332 static CORE_ADDR
1333 i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1334 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
1335 struct value **args, CORE_ADDR sp, int struct_return,
1336 CORE_ADDR struct_addr)
1337 {
1338 gdb_byte buf[4];
1339 int i;
1340
1341 /* Push arguments in reverse order. */
1342 for (i = nargs - 1; i >= 0; i--)
1343 {
1344 int len = TYPE_LENGTH (value_enclosing_type (args[i]));
1345
1346 /* The System V ABI says that:
1347
1348 "An argument's size is increased, if necessary, to make it a
1349 multiple of [32-bit] words. This may require tail padding,
1350 depending on the size of the argument."
1351
1352 This makes sure the stack stays word-aligned. */
1353 sp -= (len + 3) & ~3;
1354 write_memory (sp, value_contents_all (args[i]), len);
1355 }
1356
1357 /* Push value address. */
1358 if (struct_return)
1359 {
1360 sp -= 4;
1361 store_unsigned_integer (buf, 4, struct_addr);
1362 write_memory (sp, buf, 4);
1363 }
1364
1365 /* Store return address. */
1366 sp -= 4;
1367 store_unsigned_integer (buf, 4, bp_addr);
1368 write_memory (sp, buf, 4);
1369
1370 /* Finally, update the stack pointer... */
1371 store_unsigned_integer (buf, 4, sp);
1372 regcache_cooked_write (regcache, I386_ESP_REGNUM, buf);
1373
1374 /* ...and fake a frame pointer. */
1375 regcache_cooked_write (regcache, I386_EBP_REGNUM, buf);
1376
1377 /* MarkK wrote: This "+ 8" is all over the place:
1378 (i386_frame_this_id, i386_sigtramp_frame_this_id,
1379 i386_unwind_dummy_id). It's there, since all frame unwinders for
1380 a given target have to agree (within a certain margin) on the
1381 definition of the stack address of a frame. Otherwise
1382 frame_id_inner() won't work correctly. Since DWARF2/GCC uses the
1383 stack address *before* the function call as a frame's CFA. On
1384 the i386, when %ebp is used as a frame pointer, the offset
1385 between the contents %ebp and the CFA as defined by GCC. */
1386 return sp + 8;
1387 }
1388
1389 /* These registers are used for returning integers (and on some
1390 targets also for returning `struct' and `union' values when their
1391 size and alignment match an integer type). */
1392 #define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
1393 #define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
1394
1395 /* Read, for architecture GDBARCH, a function return value of TYPE
1396 from REGCACHE, and copy that into VALBUF. */
1397
1398 static void
1399 i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
1400 struct regcache *regcache, gdb_byte *valbuf)
1401 {
1402 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1403 int len = TYPE_LENGTH (type);
1404 gdb_byte buf[I386_MAX_REGISTER_SIZE];
1405
1406 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1407 {
1408 if (tdep->st0_regnum < 0)
1409 {
1410 warning (_("Cannot find floating-point return value."));
1411 memset (valbuf, 0, len);
1412 return;
1413 }
1414
1415 /* Floating-point return values can be found in %st(0). Convert
1416 its contents to the desired type. This is probably not
1417 exactly how it would happen on the target itself, but it is
1418 the best we can do. */
1419 regcache_raw_read (regcache, I386_ST0_REGNUM, buf);
1420 convert_typed_floating (buf, builtin_type_i387_ext, valbuf, type);
1421 }
1422 else
1423 {
1424 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
1425 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
1426
1427 if (len <= low_size)
1428 {
1429 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
1430 memcpy (valbuf, buf, len);
1431 }
1432 else if (len <= (low_size + high_size))
1433 {
1434 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
1435 memcpy (valbuf, buf, low_size);
1436 regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
1437 memcpy (valbuf + low_size, buf, len - low_size);
1438 }
1439 else
1440 internal_error (__FILE__, __LINE__,
1441 _("Cannot extract return value of %d bytes long."), len);
1442 }
1443 }
1444
1445 /* Write, for architecture GDBARCH, a function return value of TYPE
1446 from VALBUF into REGCACHE. */
1447
1448 static void
1449 i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
1450 struct regcache *regcache, const gdb_byte *valbuf)
1451 {
1452 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1453 int len = TYPE_LENGTH (type);
1454
1455 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1456 {
1457 ULONGEST fstat;
1458 gdb_byte buf[I386_MAX_REGISTER_SIZE];
1459
1460 if (tdep->st0_regnum < 0)
1461 {
1462 warning (_("Cannot set floating-point return value."));
1463 return;
1464 }
1465
1466 /* Returning floating-point values is a bit tricky. Apart from
1467 storing the return value in %st(0), we have to simulate the
1468 state of the FPU at function return point. */
1469
1470 /* Convert the value found in VALBUF to the extended
1471 floating-point format used by the FPU. This is probably
1472 not exactly how it would happen on the target itself, but
1473 it is the best we can do. */
1474 convert_typed_floating (valbuf, type, buf, builtin_type_i387_ext);
1475 regcache_raw_write (regcache, I386_ST0_REGNUM, buf);
1476
1477 /* Set the top of the floating-point register stack to 7. The
1478 actual value doesn't really matter, but 7 is what a normal
1479 function return would end up with if the program started out
1480 with a freshly initialized FPU. */
1481 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
1482 fstat |= (7 << 11);
1483 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM (tdep), fstat);
1484
1485 /* Mark %st(1) through %st(7) as empty. Since we set the top of
1486 the floating-point register stack to 7, the appropriate value
1487 for the tag word is 0x3fff. */
1488 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM (tdep), 0x3fff);
1489 }
1490 else
1491 {
1492 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
1493 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
1494
1495 if (len <= low_size)
1496 regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
1497 else if (len <= (low_size + high_size))
1498 {
1499 regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
1500 regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
1501 len - low_size, valbuf + low_size);
1502 }
1503 else
1504 internal_error (__FILE__, __LINE__,
1505 _("Cannot store return value of %d bytes long."), len);
1506 }
1507 }
1508 \f
1509
1510 /* This is the variable that is set with "set struct-convention", and
1511 its legitimate values. */
1512 static const char default_struct_convention[] = "default";
1513 static const char pcc_struct_convention[] = "pcc";
1514 static const char reg_struct_convention[] = "reg";
1515 static const char *valid_conventions[] =
1516 {
1517 default_struct_convention,
1518 pcc_struct_convention,
1519 reg_struct_convention,
1520 NULL
1521 };
1522 static const char *struct_convention = default_struct_convention;
1523
1524 /* Return non-zero if TYPE, which is assumed to be a structure,
1525 a union type, or an array type, should be returned in registers
1526 for architecture GDBARCH. */
1527
1528 static int
1529 i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
1530 {
1531 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1532 enum type_code code = TYPE_CODE (type);
1533 int len = TYPE_LENGTH (type);
1534
1535 gdb_assert (code == TYPE_CODE_STRUCT
1536 || code == TYPE_CODE_UNION
1537 || code == TYPE_CODE_ARRAY);
1538
1539 if (struct_convention == pcc_struct_convention
1540 || (struct_convention == default_struct_convention
1541 && tdep->struct_return == pcc_struct_return))
1542 return 0;
1543
1544 /* Structures consisting of a single `float', `double' or 'long
1545 double' member are returned in %st(0). */
1546 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
1547 {
1548 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
1549 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1550 return (len == 4 || len == 8 || len == 12);
1551 }
1552
1553 return (len == 1 || len == 2 || len == 4 || len == 8);
1554 }
1555
1556 /* Determine, for architecture GDBARCH, how a return value of TYPE
1557 should be returned. If it is supposed to be returned in registers,
1558 and READBUF is non-zero, read the appropriate value from REGCACHE,
1559 and copy it into READBUF. If WRITEBUF is non-zero, write the value
1560 from WRITEBUF into REGCACHE. */
1561
1562 static enum return_value_convention
1563 i386_return_value (struct gdbarch *gdbarch, struct type *type,
1564 struct regcache *regcache, gdb_byte *readbuf,
1565 const gdb_byte *writebuf)
1566 {
1567 enum type_code code = TYPE_CODE (type);
1568
1569 if (((code == TYPE_CODE_STRUCT
1570 || code == TYPE_CODE_UNION
1571 || code == TYPE_CODE_ARRAY)
1572 && !i386_reg_struct_return_p (gdbarch, type))
1573 /* 128-bit decimal float uses the struct return convention. */
1574 || (code == TYPE_CODE_DECFLOAT && TYPE_LENGTH (type) == 16))
1575 {
1576 /* The System V ABI says that:
1577
1578 "A function that returns a structure or union also sets %eax
1579 to the value of the original address of the caller's area
1580 before it returns. Thus when the caller receives control
1581 again, the address of the returned object resides in register
1582 %eax and can be used to access the object."
1583
1584 So the ABI guarantees that we can always find the return
1585 value just after the function has returned. */
1586
1587 /* Note that the ABI doesn't mention functions returning arrays,
1588 which is something possible in certain languages such as Ada.
1589 In this case, the value is returned as if it was wrapped in
1590 a record, so the convention applied to records also applies
1591 to arrays. */
1592
1593 if (readbuf)
1594 {
1595 ULONGEST addr;
1596
1597 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
1598 read_memory (addr, readbuf, TYPE_LENGTH (type));
1599 }
1600
1601 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
1602 }
1603
1604 /* This special case is for structures consisting of a single
1605 `float', `double' or 'long double' member. These structures are
1606 returned in %st(0). For these structures, we call ourselves
1607 recursively, changing TYPE into the type of the first member of
1608 the structure. Since that should work for all structures that
1609 have only one member, we don't bother to check the member's type
1610 here. */
1611 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
1612 {
1613 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
1614 return i386_return_value (gdbarch, type, regcache, readbuf, writebuf);
1615 }
1616
1617 if (readbuf)
1618 i386_extract_return_value (gdbarch, type, regcache, readbuf);
1619 if (writebuf)
1620 i386_store_return_value (gdbarch, type, regcache, writebuf);
1621
1622 return RETURN_VALUE_REGISTER_CONVENTION;
1623 }
1624 \f
1625
1626 /* Type for %eflags. */
1627 struct type *i386_eflags_type;
1628
1629 /* Type for %mxcsr. */
1630 struct type *i386_mxcsr_type;
1631
1632 /* Construct types for ISA-specific registers. */
1633 static void
1634 i386_init_types (void)
1635 {
1636 struct type *type;
1637
1638 type = init_flags_type ("builtin_type_i386_eflags", 4);
1639 append_flags_type_flag (type, 0, "CF");
1640 append_flags_type_flag (type, 1, NULL);
1641 append_flags_type_flag (type, 2, "PF");
1642 append_flags_type_flag (type, 4, "AF");
1643 append_flags_type_flag (type, 6, "ZF");
1644 append_flags_type_flag (type, 7, "SF");
1645 append_flags_type_flag (type, 8, "TF");
1646 append_flags_type_flag (type, 9, "IF");
1647 append_flags_type_flag (type, 10, "DF");
1648 append_flags_type_flag (type, 11, "OF");
1649 append_flags_type_flag (type, 14, "NT");
1650 append_flags_type_flag (type, 16, "RF");
1651 append_flags_type_flag (type, 17, "VM");
1652 append_flags_type_flag (type, 18, "AC");
1653 append_flags_type_flag (type, 19, "VIF");
1654 append_flags_type_flag (type, 20, "VIP");
1655 append_flags_type_flag (type, 21, "ID");
1656 i386_eflags_type = type;
1657
1658 type = init_flags_type ("builtin_type_i386_mxcsr", 4);
1659 append_flags_type_flag (type, 0, "IE");
1660 append_flags_type_flag (type, 1, "DE");
1661 append_flags_type_flag (type, 2, "ZE");
1662 append_flags_type_flag (type, 3, "OE");
1663 append_flags_type_flag (type, 4, "UE");
1664 append_flags_type_flag (type, 5, "PE");
1665 append_flags_type_flag (type, 6, "DAZ");
1666 append_flags_type_flag (type, 7, "IM");
1667 append_flags_type_flag (type, 8, "DM");
1668 append_flags_type_flag (type, 9, "ZM");
1669 append_flags_type_flag (type, 10, "OM");
1670 append_flags_type_flag (type, 11, "UM");
1671 append_flags_type_flag (type, 12, "PM");
1672 append_flags_type_flag (type, 15, "FZ");
1673 i386_mxcsr_type = type;
1674 }
1675
1676 /* Construct vector type for MMX registers. */
1677 struct type *
1678 i386_mmx_type (struct gdbarch *gdbarch)
1679 {
1680 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1681
1682 if (!tdep->i386_mmx_type)
1683 {
1684 /* The type we're building is this: */
1685 #if 0
1686 union __gdb_builtin_type_vec64i
1687 {
1688 int64_t uint64;
1689 int32_t v2_int32[2];
1690 int16_t v4_int16[4];
1691 int8_t v8_int8[8];
1692 };
1693 #endif
1694
1695 struct type *t;
1696
1697 t = init_composite_type ("__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
1698 append_composite_type_field (t, "uint64", builtin_type_int64);
1699 append_composite_type_field (t, "v2_int32",
1700 init_vector_type (builtin_type_int32, 2));
1701 append_composite_type_field (t, "v4_int16",
1702 init_vector_type (builtin_type_int16, 4));
1703 append_composite_type_field (t, "v8_int8",
1704 init_vector_type (builtin_type_int8, 8));
1705
1706 TYPE_FLAGS (t) |= TYPE_FLAG_VECTOR;
1707 TYPE_NAME (t) = "builtin_type_vec64i";
1708 tdep->i386_mmx_type = t;
1709 }
1710
1711 return tdep->i386_mmx_type;
1712 }
1713
1714 struct type *
1715 i386_sse_type (struct gdbarch *gdbarch)
1716 {
1717 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1718
1719 if (!tdep->i386_sse_type)
1720 {
1721 /* The type we're building is this: */
1722 #if 0
1723 union __gdb_builtin_type_vec128i
1724 {
1725 int128_t uint128;
1726 int64_t v2_int64[2];
1727 int32_t v4_int32[4];
1728 int16_t v8_int16[8];
1729 int8_t v16_int8[16];
1730 double v2_double[2];
1731 float v4_float[4];
1732 };
1733 #endif
1734
1735 struct type *t;
1736
1737 t = init_composite_type ("__gdb_builtin_type_vec128i", TYPE_CODE_UNION);
1738 append_composite_type_field (t, "v4_float",
1739 init_vector_type (builtin_type_float, 4));
1740 append_composite_type_field (t, "v2_double",
1741 init_vector_type (builtin_type_double, 2));
1742 append_composite_type_field (t, "v16_int8",
1743 init_vector_type (builtin_type_int8, 16));
1744 append_composite_type_field (t, "v8_int16",
1745 init_vector_type (builtin_type_int16, 8));
1746 append_composite_type_field (t, "v4_int32",
1747 init_vector_type (builtin_type_int32, 4));
1748 append_composite_type_field (t, "v2_int64",
1749 init_vector_type (builtin_type_int64, 2));
1750 append_composite_type_field (t, "uint128", builtin_type_int128);
1751
1752 TYPE_FLAGS (t) |= TYPE_FLAG_VECTOR;
1753 TYPE_NAME (t) = "builtin_type_vec128i";
1754 tdep->i386_sse_type = t;
1755 }
1756
1757 return tdep->i386_sse_type;
1758 }
1759
1760 /* Return the GDB type object for the "standard" data type of data in
1761 register REGNUM. Perhaps %esi and %edi should go here, but
1762 potentially they could be used for things other than address. */
1763
1764 static struct type *
1765 i386_register_type (struct gdbarch *gdbarch, int regnum)
1766 {
1767 if (regnum == I386_EIP_REGNUM)
1768 return builtin_type_void_func_ptr;
1769
1770 if (regnum == I386_EFLAGS_REGNUM)
1771 return i386_eflags_type;
1772
1773 if (regnum == I386_EBP_REGNUM || regnum == I386_ESP_REGNUM)
1774 return builtin_type_void_data_ptr;
1775
1776 if (i386_fp_regnum_p (gdbarch, regnum))
1777 return builtin_type_i387_ext;
1778
1779 if (i386_mmx_regnum_p (gdbarch, regnum))
1780 return i386_mmx_type (gdbarch);
1781
1782 if (i386_sse_regnum_p (gdbarch, regnum))
1783 return i386_sse_type (gdbarch);
1784
1785 if (regnum == I387_MXCSR_REGNUM (gdbarch_tdep (gdbarch)))
1786 return i386_mxcsr_type;
1787
1788 return builtin_type_int;
1789 }
1790
1791 /* Map a cooked register onto a raw register or memory. For the i386,
1792 the MMX registers need to be mapped onto floating point registers. */
1793
1794 static int
1795 i386_mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
1796 {
1797 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
1798 int mmxreg, fpreg;
1799 ULONGEST fstat;
1800 int tos;
1801
1802 mmxreg = regnum - tdep->mm0_regnum;
1803 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
1804 tos = (fstat >> 11) & 0x7;
1805 fpreg = (mmxreg + tos) % 8;
1806
1807 return (I387_ST0_REGNUM (tdep) + fpreg);
1808 }
1809
1810 static void
1811 i386_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
1812 int regnum, gdb_byte *buf)
1813 {
1814 if (i386_mmx_regnum_p (gdbarch, regnum))
1815 {
1816 gdb_byte mmx_buf[MAX_REGISTER_SIZE];
1817 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
1818
1819 /* Extract (always little endian). */
1820 regcache_raw_read (regcache, fpnum, mmx_buf);
1821 memcpy (buf, mmx_buf, register_size (gdbarch, regnum));
1822 }
1823 else
1824 regcache_raw_read (regcache, regnum, buf);
1825 }
1826
1827 static void
1828 i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
1829 int regnum, const gdb_byte *buf)
1830 {
1831 if (i386_mmx_regnum_p (gdbarch, regnum))
1832 {
1833 gdb_byte mmx_buf[MAX_REGISTER_SIZE];
1834 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
1835
1836 /* Read ... */
1837 regcache_raw_read (regcache, fpnum, mmx_buf);
1838 /* ... Modify ... (always little endian). */
1839 memcpy (mmx_buf, buf, register_size (gdbarch, regnum));
1840 /* ... Write. */
1841 regcache_raw_write (regcache, fpnum, mmx_buf);
1842 }
1843 else
1844 regcache_raw_write (regcache, regnum, buf);
1845 }
1846 \f
1847
1848 /* Return the register number of the register allocated by GCC after
1849 REGNUM, or -1 if there is no such register. */
1850
1851 static int
1852 i386_next_regnum (int regnum)
1853 {
1854 /* GCC allocates the registers in the order:
1855
1856 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
1857
1858 Since storing a variable in %esp doesn't make any sense we return
1859 -1 for %ebp and for %esp itself. */
1860 static int next_regnum[] =
1861 {
1862 I386_EDX_REGNUM, /* Slot for %eax. */
1863 I386_EBX_REGNUM, /* Slot for %ecx. */
1864 I386_ECX_REGNUM, /* Slot for %edx. */
1865 I386_ESI_REGNUM, /* Slot for %ebx. */
1866 -1, -1, /* Slots for %esp and %ebp. */
1867 I386_EDI_REGNUM, /* Slot for %esi. */
1868 I386_EBP_REGNUM /* Slot for %edi. */
1869 };
1870
1871 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
1872 return next_regnum[regnum];
1873
1874 return -1;
1875 }
1876
1877 /* Return nonzero if a value of type TYPE stored in register REGNUM
1878 needs any special handling. */
1879
1880 static int
1881 i386_convert_register_p (struct gdbarch *gdbarch, int regnum, struct type *type)
1882 {
1883 int len = TYPE_LENGTH (type);
1884
1885 /* Values may be spread across multiple registers. Most debugging
1886 formats aren't expressive enough to specify the locations, so
1887 some heuristics is involved. Right now we only handle types that
1888 have a length that is a multiple of the word size, since GCC
1889 doesn't seem to put any other types into registers. */
1890 if (len > 4 && len % 4 == 0)
1891 {
1892 int last_regnum = regnum;
1893
1894 while (len > 4)
1895 {
1896 last_regnum = i386_next_regnum (last_regnum);
1897 len -= 4;
1898 }
1899
1900 if (last_regnum != -1)
1901 return 1;
1902 }
1903
1904 return i387_convert_register_p (gdbarch, regnum, type);
1905 }
1906
1907 /* Read a value of type TYPE from register REGNUM in frame FRAME, and
1908 return its contents in TO. */
1909
1910 static void
1911 i386_register_to_value (struct frame_info *frame, int regnum,
1912 struct type *type, gdb_byte *to)
1913 {
1914 struct gdbarch *gdbarch = get_frame_arch (frame);
1915 int len = TYPE_LENGTH (type);
1916
1917 /* FIXME: kettenis/20030609: What should we do if REGNUM isn't
1918 available in FRAME (i.e. if it wasn't saved)? */
1919
1920 if (i386_fp_regnum_p (gdbarch, regnum))
1921 {
1922 i387_register_to_value (frame, regnum, type, to);
1923 return;
1924 }
1925
1926 /* Read a value spread across multiple registers. */
1927
1928 gdb_assert (len > 4 && len % 4 == 0);
1929
1930 while (len > 0)
1931 {
1932 gdb_assert (regnum != -1);
1933 gdb_assert (register_size (gdbarch, regnum) == 4);
1934
1935 get_frame_register (frame, regnum, to);
1936 regnum = i386_next_regnum (regnum);
1937 len -= 4;
1938 to += 4;
1939 }
1940 }
1941
1942 /* Write the contents FROM of a value of type TYPE into register
1943 REGNUM in frame FRAME. */
1944
1945 static void
1946 i386_value_to_register (struct frame_info *frame, int regnum,
1947 struct type *type, const gdb_byte *from)
1948 {
1949 int len = TYPE_LENGTH (type);
1950
1951 if (i386_fp_regnum_p (get_frame_arch (frame), regnum))
1952 {
1953 i387_value_to_register (frame, regnum, type, from);
1954 return;
1955 }
1956
1957 /* Write a value spread across multiple registers. */
1958
1959 gdb_assert (len > 4 && len % 4 == 0);
1960
1961 while (len > 0)
1962 {
1963 gdb_assert (regnum != -1);
1964 gdb_assert (register_size (get_frame_arch (frame), regnum) == 4);
1965
1966 put_frame_register (frame, regnum, from);
1967 regnum = i386_next_regnum (regnum);
1968 len -= 4;
1969 from += 4;
1970 }
1971 }
1972 \f
1973 /* Supply register REGNUM from the buffer specified by GREGS and LEN
1974 in the general-purpose register set REGSET to register cache
1975 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
1976
1977 void
1978 i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
1979 int regnum, const void *gregs, size_t len)
1980 {
1981 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
1982 const gdb_byte *regs = gregs;
1983 int i;
1984
1985 gdb_assert (len == tdep->sizeof_gregset);
1986
1987 for (i = 0; i < tdep->gregset_num_regs; i++)
1988 {
1989 if ((regnum == i || regnum == -1)
1990 && tdep->gregset_reg_offset[i] != -1)
1991 regcache_raw_supply (regcache, i, regs + tdep->gregset_reg_offset[i]);
1992 }
1993 }
1994
1995 /* Collect register REGNUM from the register cache REGCACHE and store
1996 it in the buffer specified by GREGS and LEN as described by the
1997 general-purpose register set REGSET. If REGNUM is -1, do this for
1998 all registers in REGSET. */
1999
2000 void
2001 i386_collect_gregset (const struct regset *regset,
2002 const struct regcache *regcache,
2003 int regnum, void *gregs, size_t len)
2004 {
2005 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
2006 gdb_byte *regs = gregs;
2007 int i;
2008
2009 gdb_assert (len == tdep->sizeof_gregset);
2010
2011 for (i = 0; i < tdep->gregset_num_regs; i++)
2012 {
2013 if ((regnum == i || regnum == -1)
2014 && tdep->gregset_reg_offset[i] != -1)
2015 regcache_raw_collect (regcache, i, regs + tdep->gregset_reg_offset[i]);
2016 }
2017 }
2018
2019 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
2020 in the floating-point register set REGSET to register cache
2021 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
2022
2023 static void
2024 i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
2025 int regnum, const void *fpregs, size_t len)
2026 {
2027 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
2028
2029 if (len == I387_SIZEOF_FXSAVE)
2030 {
2031 i387_supply_fxsave (regcache, regnum, fpregs);
2032 return;
2033 }
2034
2035 gdb_assert (len == tdep->sizeof_fpregset);
2036 i387_supply_fsave (regcache, regnum, fpregs);
2037 }
2038
2039 /* Collect register REGNUM from the register cache REGCACHE and store
2040 it in the buffer specified by FPREGS and LEN as described by the
2041 floating-point register set REGSET. If REGNUM is -1, do this for
2042 all registers in REGSET. */
2043
2044 static void
2045 i386_collect_fpregset (const struct regset *regset,
2046 const struct regcache *regcache,
2047 int regnum, void *fpregs, size_t len)
2048 {
2049 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
2050
2051 if (len == I387_SIZEOF_FXSAVE)
2052 {
2053 i387_collect_fxsave (regcache, regnum, fpregs);
2054 return;
2055 }
2056
2057 gdb_assert (len == tdep->sizeof_fpregset);
2058 i387_collect_fsave (regcache, regnum, fpregs);
2059 }
2060
2061 /* Return the appropriate register set for the core section identified
2062 by SECT_NAME and SECT_SIZE. */
2063
2064 const struct regset *
2065 i386_regset_from_core_section (struct gdbarch *gdbarch,
2066 const char *sect_name, size_t sect_size)
2067 {
2068 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2069
2070 if (strcmp (sect_name, ".reg") == 0 && sect_size == tdep->sizeof_gregset)
2071 {
2072 if (tdep->gregset == NULL)
2073 tdep->gregset = regset_alloc (gdbarch, i386_supply_gregset,
2074 i386_collect_gregset);
2075 return tdep->gregset;
2076 }
2077
2078 if ((strcmp (sect_name, ".reg2") == 0 && sect_size == tdep->sizeof_fpregset)
2079 || (strcmp (sect_name, ".reg-xfp") == 0
2080 && sect_size == I387_SIZEOF_FXSAVE))
2081 {
2082 if (tdep->fpregset == NULL)
2083 tdep->fpregset = regset_alloc (gdbarch, i386_supply_fpregset,
2084 i386_collect_fpregset);
2085 return tdep->fpregset;
2086 }
2087
2088 return NULL;
2089 }
2090 \f
2091
2092 /* Stuff for WIN32 PE style DLL's but is pretty generic really. */
2093
2094 CORE_ADDR
2095 i386_pe_skip_trampoline_code (CORE_ADDR pc, char *name)
2096 {
2097 if (pc && read_memory_unsigned_integer (pc, 2) == 0x25ff) /* jmp *(dest) */
2098 {
2099 unsigned long indirect = read_memory_unsigned_integer (pc + 2, 4);
2100 struct minimal_symbol *indsym =
2101 indirect ? lookup_minimal_symbol_by_pc (indirect) : 0;
2102 char *symname = indsym ? SYMBOL_LINKAGE_NAME (indsym) : 0;
2103
2104 if (symname)
2105 {
2106 if (strncmp (symname, "__imp_", 6) == 0
2107 || strncmp (symname, "_imp_", 5) == 0)
2108 return name ? 1 : read_memory_unsigned_integer (indirect, 4);
2109 }
2110 }
2111 return 0; /* Not a trampoline. */
2112 }
2113 \f
2114
2115 /* Return whether the frame preceding NEXT_FRAME corresponds to a
2116 sigtramp routine. */
2117
2118 static int
2119 i386_sigtramp_p (struct frame_info *next_frame)
2120 {
2121 CORE_ADDR pc = frame_pc_unwind (next_frame);
2122 char *name;
2123
2124 find_pc_partial_function (pc, &name, NULL, NULL);
2125 return (name && strcmp ("_sigtramp", name) == 0);
2126 }
2127 \f
2128
2129 /* We have two flavours of disassembly. The machinery on this page
2130 deals with switching between those. */
2131
2132 static int
2133 i386_print_insn (bfd_vma pc, struct disassemble_info *info)
2134 {
2135 gdb_assert (disassembly_flavor == att_flavor
2136 || disassembly_flavor == intel_flavor);
2137
2138 /* FIXME: kettenis/20020915: Until disassembler_options is properly
2139 constified, cast to prevent a compiler warning. */
2140 info->disassembler_options = (char *) disassembly_flavor;
2141 info->mach = gdbarch_bfd_arch_info (current_gdbarch)->mach;
2142
2143 return print_insn_i386 (pc, info);
2144 }
2145 \f
2146
2147 /* There are a few i386 architecture variants that differ only
2148 slightly from the generic i386 target. For now, we don't give them
2149 their own source file, but include them here. As a consequence,
2150 they'll always be included. */
2151
2152 /* System V Release 4 (SVR4). */
2153
2154 /* Return whether the frame preceding NEXT_FRAME corresponds to a SVR4
2155 sigtramp routine. */
2156
2157 static int
2158 i386_svr4_sigtramp_p (struct frame_info *next_frame)
2159 {
2160 CORE_ADDR pc = frame_pc_unwind (next_frame);
2161 char *name;
2162
2163 /* UnixWare uses _sigacthandler. The origin of the other symbols is
2164 currently unknown. */
2165 find_pc_partial_function (pc, &name, NULL, NULL);
2166 return (name && (strcmp ("_sigreturn", name) == 0
2167 || strcmp ("_sigacthandler", name) == 0
2168 || strcmp ("sigvechandler", name) == 0));
2169 }
2170
2171 /* Assuming NEXT_FRAME is for a frame following a SVR4 sigtramp
2172 routine, return the address of the associated sigcontext (ucontext)
2173 structure. */
2174
2175 static CORE_ADDR
2176 i386_svr4_sigcontext_addr (struct frame_info *next_frame)
2177 {
2178 gdb_byte buf[4];
2179 CORE_ADDR sp;
2180
2181 frame_unwind_register (next_frame, I386_ESP_REGNUM, buf);
2182 sp = extract_unsigned_integer (buf, 4);
2183
2184 return read_memory_unsigned_integer (sp + 8, 4);
2185 }
2186 \f
2187
2188 /* Generic ELF. */
2189
2190 void
2191 i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2192 {
2193 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
2194 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
2195 }
2196
2197 /* System V Release 4 (SVR4). */
2198
2199 void
2200 i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2201 {
2202 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2203
2204 /* System V Release 4 uses ELF. */
2205 i386_elf_init_abi (info, gdbarch);
2206
2207 /* System V Release 4 has shared libraries. */
2208 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
2209
2210 tdep->sigtramp_p = i386_svr4_sigtramp_p;
2211 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
2212 tdep->sc_pc_offset = 36 + 14 * 4;
2213 tdep->sc_sp_offset = 36 + 17 * 4;
2214
2215 tdep->jb_pc_offset = 20;
2216 }
2217
2218 /* DJGPP. */
2219
2220 static void
2221 i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2222 {
2223 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2224
2225 /* DJGPP doesn't have any special frames for signal handlers. */
2226 tdep->sigtramp_p = NULL;
2227
2228 tdep->jb_pc_offset = 36;
2229 }
2230 \f
2231
2232 /* i386 register groups. In addition to the normal groups, add "mmx"
2233 and "sse". */
2234
2235 static struct reggroup *i386_sse_reggroup;
2236 static struct reggroup *i386_mmx_reggroup;
2237
2238 static void
2239 i386_init_reggroups (void)
2240 {
2241 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
2242 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
2243 }
2244
2245 static void
2246 i386_add_reggroups (struct gdbarch *gdbarch)
2247 {
2248 reggroup_add (gdbarch, i386_sse_reggroup);
2249 reggroup_add (gdbarch, i386_mmx_reggroup);
2250 reggroup_add (gdbarch, general_reggroup);
2251 reggroup_add (gdbarch, float_reggroup);
2252 reggroup_add (gdbarch, all_reggroup);
2253 reggroup_add (gdbarch, save_reggroup);
2254 reggroup_add (gdbarch, restore_reggroup);
2255 reggroup_add (gdbarch, vector_reggroup);
2256 reggroup_add (gdbarch, system_reggroup);
2257 }
2258
2259 int
2260 i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
2261 struct reggroup *group)
2262 {
2263 int sse_regnum_p = (i386_sse_regnum_p (gdbarch, regnum)
2264 || i386_mxcsr_regnum_p (gdbarch, regnum));
2265 int fp_regnum_p = (i386_fp_regnum_p (gdbarch, regnum)
2266 || i386_fpc_regnum_p (gdbarch, regnum));
2267 int mmx_regnum_p = (i386_mmx_regnum_p (gdbarch, regnum));
2268
2269 if (group == i386_mmx_reggroup)
2270 return mmx_regnum_p;
2271 if (group == i386_sse_reggroup)
2272 return sse_regnum_p;
2273 if (group == vector_reggroup)
2274 return (mmx_regnum_p || sse_regnum_p);
2275 if (group == float_reggroup)
2276 return fp_regnum_p;
2277 if (group == general_reggroup)
2278 return (!fp_regnum_p && !mmx_regnum_p && !sse_regnum_p);
2279
2280 return default_register_reggroup_p (gdbarch, regnum, group);
2281 }
2282 \f
2283
2284 /* Get the ARGIth function argument for the current function. */
2285
2286 static CORE_ADDR
2287 i386_fetch_pointer_argument (struct frame_info *frame, int argi,
2288 struct type *type)
2289 {
2290 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
2291 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4);
2292 }
2293
2294 \f
2295 static struct gdbarch *
2296 i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2297 {
2298 struct gdbarch_tdep *tdep;
2299 struct gdbarch *gdbarch;
2300
2301 /* If there is already a candidate, use it. */
2302 arches = gdbarch_list_lookup_by_info (arches, &info);
2303 if (arches != NULL)
2304 return arches->gdbarch;
2305
2306 /* Allocate space for the new architecture. */
2307 tdep = XCALLOC (1, struct gdbarch_tdep);
2308 gdbarch = gdbarch_alloc (&info, tdep);
2309
2310 /* General-purpose registers. */
2311 tdep->gregset = NULL;
2312 tdep->gregset_reg_offset = NULL;
2313 tdep->gregset_num_regs = I386_NUM_GREGS;
2314 tdep->sizeof_gregset = 0;
2315
2316 /* Floating-point registers. */
2317 tdep->fpregset = NULL;
2318 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
2319
2320 /* The default settings include the FPU registers, the MMX registers
2321 and the SSE registers. This can be overridden for a specific ABI
2322 by adjusting the members `st0_regnum', `mm0_regnum' and
2323 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
2324 will show up in the output of "info all-registers". Ideally we
2325 should try to autodetect whether they are available, such that we
2326 can prevent "info all-registers" from displaying registers that
2327 aren't available.
2328
2329 NOTE: kevinb/2003-07-13: ... if it's a choice between printing
2330 [the SSE registers] always (even when they don't exist) or never
2331 showing them to the user (even when they do exist), I prefer the
2332 former over the latter. */
2333
2334 tdep->st0_regnum = I386_ST0_REGNUM;
2335
2336 /* The MMX registers are implemented as pseudo-registers. Put off
2337 calculating the register number for %mm0 until we know the number
2338 of raw registers. */
2339 tdep->mm0_regnum = 0;
2340
2341 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
2342 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
2343
2344 tdep->jb_pc_offset = -1;
2345 tdep->struct_return = pcc_struct_return;
2346 tdep->sigtramp_start = 0;
2347 tdep->sigtramp_end = 0;
2348 tdep->sigtramp_p = i386_sigtramp_p;
2349 tdep->sigcontext_addr = NULL;
2350 tdep->sc_reg_offset = NULL;
2351 tdep->sc_pc_offset = -1;
2352 tdep->sc_sp_offset = -1;
2353
2354 /* The format used for `long double' on almost all i386 targets is
2355 the i387 extended floating-point format. In fact, of all targets
2356 in the GCC 2.95 tree, only OSF/1 does it different, and insists
2357 on having a `long double' that's not `long' at all. */
2358 set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext);
2359
2360 /* Although the i387 extended floating-point has only 80 significant
2361 bits, a `long double' actually takes up 96, probably to enforce
2362 alignment. */
2363 set_gdbarch_long_double_bit (gdbarch, 96);
2364
2365 /* The default ABI includes general-purpose registers,
2366 floating-point registers, and the SSE registers. */
2367 set_gdbarch_num_regs (gdbarch, I386_SSE_NUM_REGS);
2368 set_gdbarch_register_name (gdbarch, i386_register_name);
2369 set_gdbarch_register_type (gdbarch, i386_register_type);
2370
2371 /* Register numbers of various important registers. */
2372 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
2373 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
2374 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
2375 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
2376
2377 /* NOTE: kettenis/20040418: GCC does have two possible register
2378 numbering schemes on the i386: dbx and SVR4. These schemes
2379 differ in how they number %ebp, %esp, %eflags, and the
2380 floating-point registers, and are implemented by the arrays
2381 dbx_register_map[] and svr4_dbx_register_map in
2382 gcc/config/i386.c. GCC also defines a third numbering scheme in
2383 gcc/config/i386.c, which it designates as the "default" register
2384 map used in 64bit mode. This last register numbering scheme is
2385 implemented in dbx64_register_map, and is used for AMD64; see
2386 amd64-tdep.c.
2387
2388 Currently, each GCC i386 target always uses the same register
2389 numbering scheme across all its supported debugging formats
2390 i.e. SDB (COFF), stabs and DWARF 2. This is because
2391 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
2392 DBX_REGISTER_NUMBER macro which is defined by each target's
2393 respective config header in a manner independent of the requested
2394 output debugging format.
2395
2396 This does not match the arrangement below, which presumes that
2397 the SDB and stabs numbering schemes differ from the DWARF and
2398 DWARF 2 ones. The reason for this arrangement is that it is
2399 likely to get the numbering scheme for the target's
2400 default/native debug format right. For targets where GCC is the
2401 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
2402 targets where the native toolchain uses a different numbering
2403 scheme for a particular debug format (stabs-in-ELF on Solaris)
2404 the defaults below will have to be overridden, like
2405 i386_elf_init_abi() does. */
2406
2407 /* Use the dbx register numbering scheme for stabs and COFF. */
2408 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
2409 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
2410
2411 /* Use the SVR4 register numbering scheme for DWARF and DWARF 2. */
2412 set_gdbarch_dwarf_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
2413 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
2414
2415 /* We don't set gdbarch_stab_reg_to_regnum, since ECOFF doesn't seem to
2416 be in use on any of the supported i386 targets. */
2417
2418 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
2419
2420 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
2421
2422 /* Call dummy code. */
2423 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
2424
2425 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
2426 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
2427 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
2428
2429 set_gdbarch_return_value (gdbarch, i386_return_value);
2430
2431 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
2432
2433 /* Stack grows downward. */
2434 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2435
2436 set_gdbarch_breakpoint_from_pc (gdbarch, i386_breakpoint_from_pc);
2437 set_gdbarch_decr_pc_after_break (gdbarch, 1);
2438
2439 set_gdbarch_frame_args_skip (gdbarch, 8);
2440
2441 /* Wire in the MMX registers. */
2442 set_gdbarch_num_pseudo_regs (gdbarch, i386_num_mmx_regs);
2443 set_gdbarch_pseudo_register_read (gdbarch, i386_pseudo_register_read);
2444 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
2445
2446 set_gdbarch_print_insn (gdbarch, i386_print_insn);
2447
2448 set_gdbarch_unwind_dummy_id (gdbarch, i386_unwind_dummy_id);
2449
2450 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
2451
2452 /* Add the i386 register groups. */
2453 i386_add_reggroups (gdbarch);
2454 set_gdbarch_register_reggroup_p (gdbarch, i386_register_reggroup_p);
2455
2456 /* Helper for function argument information. */
2457 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
2458
2459 /* Hook in the DWARF CFI frame unwinder. */
2460 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
2461
2462 frame_base_set_default (gdbarch, &i386_frame_base);
2463
2464 /* Hook in ABI-specific overrides, if they have been registered. */
2465 gdbarch_init_osabi (info, gdbarch);
2466
2467 frame_unwind_append_sniffer (gdbarch, i386_sigtramp_frame_sniffer);
2468 frame_unwind_append_sniffer (gdbarch, i386_frame_sniffer);
2469
2470 /* If we have a register mapping, enable the generic core file
2471 support, unless it has already been enabled. */
2472 if (tdep->gregset_reg_offset
2473 && !gdbarch_regset_from_core_section_p (gdbarch))
2474 set_gdbarch_regset_from_core_section (gdbarch,
2475 i386_regset_from_core_section);
2476
2477 /* Unless support for MMX has been disabled, make %mm0 the first
2478 pseudo-register. */
2479 if (tdep->mm0_regnum == 0)
2480 tdep->mm0_regnum = gdbarch_num_regs (gdbarch);
2481
2482 return gdbarch;
2483 }
2484
2485 static enum gdb_osabi
2486 i386_coff_osabi_sniffer (bfd *abfd)
2487 {
2488 if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
2489 || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
2490 return GDB_OSABI_GO32;
2491
2492 return GDB_OSABI_UNKNOWN;
2493 }
2494 \f
2495
2496 /* Provide a prototype to silence -Wmissing-prototypes. */
2497 void _initialize_i386_tdep (void);
2498
2499 void
2500 _initialize_i386_tdep (void)
2501 {
2502 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
2503
2504 /* Add the variable that controls the disassembly flavor. */
2505 add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
2506 &disassembly_flavor, _("\
2507 Set the disassembly flavor."), _("\
2508 Show the disassembly flavor."), _("\
2509 The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
2510 NULL,
2511 NULL, /* FIXME: i18n: */
2512 &setlist, &showlist);
2513
2514 /* Add the variable that controls the convention for returning
2515 structs. */
2516 add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
2517 &struct_convention, _("\
2518 Set the convention for returning small structs."), _("\
2519 Show the convention for returning small structs."), _("\
2520 Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
2521 is \"default\"."),
2522 NULL,
2523 NULL, /* FIXME: i18n: */
2524 &setlist, &showlist);
2525
2526 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
2527 i386_coff_osabi_sniffer);
2528
2529 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
2530 i386_svr4_init_abi);
2531 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_GO32,
2532 i386_go32_init_abi);
2533
2534 /* Initialize the i386-specific register groups & types. */
2535 i386_init_reggroups ();
2536 i386_init_types();
2537 }
This page took 0.079818 seconds and 5 git commands to generate.