* gdb.base/miscexprs.c (main): Add usage of preprocessor
[deliverable/binutils-gdb.git] / gdb / i386-tdep.c
1 /* Intel 386 target-dependent stuff.
2 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "gdb_string.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "gdbcore.h"
28 #include "target.h"
29 #include "floatformat.h"
30 #include "symtab.h"
31 #include "gdbcmd.h"
32 #include "command.h"
33 #include "arch-utils.h"
34 #include "regcache.h"
35 #include "doublest.h"
36 #include "value.h"
37
38 #include "gdb_assert.h"
39
40 /* i386_register_byte[i] is the offset into the register file of the
41 start of register number i. We initialize this from
42 i386_register_raw_size. */
43 int i386_register_byte[MAX_NUM_REGS];
44
45 /* i386_register_raw_size[i] is the number of bytes of storage in
46 GDB's register array occupied by register i. */
47 int i386_register_raw_size[MAX_NUM_REGS] = {
48 4, 4, 4, 4,
49 4, 4, 4, 4,
50 4, 4, 4, 4,
51 4, 4, 4, 4,
52 10, 10, 10, 10,
53 10, 10, 10, 10,
54 4, 4, 4, 4,
55 4, 4, 4, 4,
56 16, 16, 16, 16,
57 16, 16, 16, 16,
58 4
59 };
60
61 /* i386_register_virtual_size[i] is the size in bytes of the virtual
62 type of register i. */
63 int i386_register_virtual_size[MAX_NUM_REGS];
64
65 /* Convert stabs register number REG to the appropriate register
66 number used by GDB. */
67
68 int
69 i386_stab_reg_to_regnum (int reg)
70 {
71 /* This implements what GCC calls the "default" register map. */
72 if (reg >= 0 && reg <= 7)
73 {
74 /* General registers. */
75 return reg;
76 }
77 else if (reg >= 12 && reg <= 19)
78 {
79 /* Floating-point registers. */
80 return reg - 12 + FP0_REGNUM;
81 }
82 else if (reg >= 21 && reg <= 28)
83 {
84 /* SSE registers. */
85 return reg - 21 + XMM0_REGNUM;
86 }
87 else if (reg >= 29 && reg <= 36)
88 {
89 /* MMX registers. */
90 /* FIXME: kettenis/2001-07-28: Should we have the MMX registers
91 as pseudo-registers? */
92 return reg - 29 + FP0_REGNUM;
93 }
94
95 /* This will hopefully provoke a warning. */
96 return NUM_REGS + NUM_PSEUDO_REGS;
97 }
98
99 /* Convert Dwarf register number REG to the appropriate register
100 number used by GDB. */
101
102 int
103 i386_dwarf_reg_to_regnum (int reg)
104 {
105 /* The DWARF register numbering includes %eip and %eflags, and
106 numbers the floating point registers differently. */
107 if (reg >= 0 && reg <= 9)
108 {
109 /* General registers. */
110 return reg;
111 }
112 else if (reg >= 11 && reg <= 18)
113 {
114 /* Floating-point registers. */
115 return reg - 11 + FP0_REGNUM;
116 }
117 else if (reg >= 21)
118 {
119 /* The SSE and MMX registers have identical numbers as in stabs. */
120 return i386_stab_reg_to_regnum (reg);
121 }
122
123 /* This will hopefully provoke a warning. */
124 return NUM_REGS + NUM_PSEUDO_REGS;
125 }
126 \f
127
128 /* This is the variable that is set with "set disassembly-flavor", and
129 its legitimate values. */
130 static const char att_flavor[] = "att";
131 static const char intel_flavor[] = "intel";
132 static const char *valid_flavors[] =
133 {
134 att_flavor,
135 intel_flavor,
136 NULL
137 };
138 static const char *disassembly_flavor = att_flavor;
139
140 /* This is used to keep the bfd arch_info in sync with the disassembly
141 flavor. */
142 static void set_disassembly_flavor_sfunc (char *, int,
143 struct cmd_list_element *);
144 static void set_disassembly_flavor (void);
145 \f
146
147 /* Stdio style buffering was used to minimize calls to ptrace, but
148 this buffering did not take into account that the code section
149 being accessed may not be an even number of buffers long (even if
150 the buffer is only sizeof(int) long). In cases where the code
151 section size happened to be a non-integral number of buffers long,
152 attempting to read the last buffer would fail. Simply using
153 target_read_memory and ignoring errors, rather than read_memory, is
154 not the correct solution, since legitimate access errors would then
155 be totally ignored. To properly handle this situation and continue
156 to use buffering would require that this code be able to determine
157 the minimum code section size granularity (not the alignment of the
158 section itself, since the actual failing case that pointed out this
159 problem had a section alignment of 4 but was not a multiple of 4
160 bytes long), on a target by target basis, and then adjust it's
161 buffer size accordingly. This is messy, but potentially feasible.
162 It probably needs the bfd library's help and support. For now, the
163 buffer size is set to 1. (FIXME -fnf) */
164
165 #define CODESTREAM_BUFSIZ 1 /* Was sizeof(int), see note above. */
166 static CORE_ADDR codestream_next_addr;
167 static CORE_ADDR codestream_addr;
168 static unsigned char codestream_buf[CODESTREAM_BUFSIZ];
169 static int codestream_off;
170 static int codestream_cnt;
171
172 #define codestream_tell() (codestream_addr + codestream_off)
173 #define codestream_peek() \
174 (codestream_cnt == 0 ? \
175 codestream_fill(1) : codestream_buf[codestream_off])
176 #define codestream_get() \
177 (codestream_cnt-- == 0 ? \
178 codestream_fill(0) : codestream_buf[codestream_off++])
179
180 static unsigned char
181 codestream_fill (int peek_flag)
182 {
183 codestream_addr = codestream_next_addr;
184 codestream_next_addr += CODESTREAM_BUFSIZ;
185 codestream_off = 0;
186 codestream_cnt = CODESTREAM_BUFSIZ;
187 read_memory (codestream_addr, (char *) codestream_buf, CODESTREAM_BUFSIZ);
188
189 if (peek_flag)
190 return (codestream_peek ());
191 else
192 return (codestream_get ());
193 }
194
195 static void
196 codestream_seek (CORE_ADDR place)
197 {
198 codestream_next_addr = place / CODESTREAM_BUFSIZ;
199 codestream_next_addr *= CODESTREAM_BUFSIZ;
200 codestream_cnt = 0;
201 codestream_fill (1);
202 while (codestream_tell () != place)
203 codestream_get ();
204 }
205
206 static void
207 codestream_read (unsigned char *buf, int count)
208 {
209 unsigned char *p;
210 int i;
211 p = buf;
212 for (i = 0; i < count; i++)
213 *p++ = codestream_get ();
214 }
215 \f
216
217 /* If the next instruction is a jump, move to its target. */
218
219 static void
220 i386_follow_jump (void)
221 {
222 unsigned char buf[4];
223 long delta;
224
225 int data16;
226 CORE_ADDR pos;
227
228 pos = codestream_tell ();
229
230 data16 = 0;
231 if (codestream_peek () == 0x66)
232 {
233 codestream_get ();
234 data16 = 1;
235 }
236
237 switch (codestream_get ())
238 {
239 case 0xe9:
240 /* Relative jump: if data16 == 0, disp32, else disp16. */
241 if (data16)
242 {
243 codestream_read (buf, 2);
244 delta = extract_signed_integer (buf, 2);
245
246 /* Include the size of the jmp instruction (including the
247 0x66 prefix). */
248 pos += delta + 4;
249 }
250 else
251 {
252 codestream_read (buf, 4);
253 delta = extract_signed_integer (buf, 4);
254
255 pos += delta + 5;
256 }
257 break;
258 case 0xeb:
259 /* Relative jump, disp8 (ignore data16). */
260 codestream_read (buf, 1);
261 /* Sign-extend it. */
262 delta = extract_signed_integer (buf, 1);
263
264 pos += delta + 2;
265 break;
266 }
267 codestream_seek (pos);
268 }
269
270 /* Find & return the amount a local space allocated, and advance the
271 codestream to the first register push (if any).
272
273 If the entry sequence doesn't make sense, return -1, and leave
274 codestream pointer at a random spot. */
275
276 static long
277 i386_get_frame_setup (CORE_ADDR pc)
278 {
279 unsigned char op;
280
281 codestream_seek (pc);
282
283 i386_follow_jump ();
284
285 op = codestream_get ();
286
287 if (op == 0x58) /* popl %eax */
288 {
289 /* This function must start with
290
291 popl %eax 0x58
292 xchgl %eax, (%esp) 0x87 0x04 0x24
293 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
294
295 (the System V compiler puts out the second `xchg'
296 instruction, and the assembler doesn't try to optimize it, so
297 the 'sib' form gets generated). This sequence is used to get
298 the address of the return buffer for a function that returns
299 a structure. */
300 int pos;
301 unsigned char buf[4];
302 static unsigned char proto1[3] = { 0x87, 0x04, 0x24 };
303 static unsigned char proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
304
305 pos = codestream_tell ();
306 codestream_read (buf, 4);
307 if (memcmp (buf, proto1, 3) == 0)
308 pos += 3;
309 else if (memcmp (buf, proto2, 4) == 0)
310 pos += 4;
311
312 codestream_seek (pos);
313 op = codestream_get (); /* Update next opcode. */
314 }
315
316 if (op == 0x68 || op == 0x6a)
317 {
318 /* This function may start with
319
320 pushl constant
321 call _probe
322 addl $4, %esp
323
324 followed by
325
326 pushl %ebp
327
328 etc. */
329 int pos;
330 unsigned char buf[8];
331
332 /* Skip past the `pushl' instruction; it has either a one-byte
333 or a four-byte operand, depending on the opcode. */
334 pos = codestream_tell ();
335 if (op == 0x68)
336 pos += 4;
337 else
338 pos += 1;
339 codestream_seek (pos);
340
341 /* Read the following 8 bytes, which should be "call _probe" (6
342 bytes) followed by "addl $4,%esp" (2 bytes). */
343 codestream_read (buf, sizeof (buf));
344 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
345 pos += sizeof (buf);
346 codestream_seek (pos);
347 op = codestream_get (); /* Update next opcode. */
348 }
349
350 if (op == 0x55) /* pushl %ebp */
351 {
352 /* Check for "movl %esp, %ebp" -- can be written in two ways. */
353 switch (codestream_get ())
354 {
355 case 0x8b:
356 if (codestream_get () != 0xec)
357 return -1;
358 break;
359 case 0x89:
360 if (codestream_get () != 0xe5)
361 return -1;
362 break;
363 default:
364 return -1;
365 }
366 /* Check for stack adjustment
367
368 subl $XXX, %esp
369
370 NOTE: You can't subtract a 16 bit immediate from a 32 bit
371 reg, so we don't have to worry about a data16 prefix. */
372 op = codestream_peek ();
373 if (op == 0x83)
374 {
375 /* `subl' with 8 bit immediate. */
376 codestream_get ();
377 if (codestream_get () != 0xec)
378 /* Some instruction starting with 0x83 other than `subl'. */
379 {
380 codestream_seek (codestream_tell () - 2);
381 return 0;
382 }
383 /* `subl' with signed byte immediate (though it wouldn't
384 make sense to be negative). */
385 return (codestream_get ());
386 }
387 else if (op == 0x81)
388 {
389 char buf[4];
390 /* Maybe it is `subl' with a 32 bit immedediate. */
391 codestream_get ();
392 if (codestream_get () != 0xec)
393 /* Some instruction starting with 0x81 other than `subl'. */
394 {
395 codestream_seek (codestream_tell () - 2);
396 return 0;
397 }
398 /* It is `subl' with a 32 bit immediate. */
399 codestream_read ((unsigned char *) buf, 4);
400 return extract_signed_integer (buf, 4);
401 }
402 else
403 {
404 return 0;
405 }
406 }
407 else if (op == 0xc8)
408 {
409 char buf[2];
410 /* `enter' with 16 bit unsigned immediate. */
411 codestream_read ((unsigned char *) buf, 2);
412 codestream_get (); /* Flush final byte of enter instruction. */
413 return extract_unsigned_integer (buf, 2);
414 }
415 return (-1);
416 }
417
418 /* Return the chain-pointer for FRAME. In the case of the i386, the
419 frame's nominal address is the address of a 4-byte word containing
420 the calling frame's address. */
421
422 CORE_ADDR
423 i386_frame_chain (struct frame_info *frame)
424 {
425 if (frame->signal_handler_caller)
426 return frame->frame;
427
428 if (! inside_entry_file (frame->pc))
429 return read_memory_unsigned_integer (frame->frame, 4);
430
431 return 0;
432 }
433
434 /* Determine whether the function invocation represented by FRAME does
435 not have a from on the stack associated with it. If it does not,
436 return non-zero, otherwise return zero. */
437
438 int
439 i386_frameless_function_invocation (struct frame_info *frame)
440 {
441 if (frame->signal_handler_caller)
442 return 0;
443
444 return frameless_look_for_prologue (frame);
445 }
446
447 /* Return the saved program counter for FRAME. */
448
449 CORE_ADDR
450 i386_frame_saved_pc (struct frame_info *frame)
451 {
452 /* FIXME: kettenis/2001-05-09: Conditionalizing the next bit of code
453 on SIGCONTEXT_PC_OFFSET and I386V4_SIGTRAMP_SAVED_PC should be
454 considered a temporary hack. I plan to come up with something
455 better when we go multi-arch. */
456 #if defined (SIGCONTEXT_PC_OFFSET) || defined (I386V4_SIGTRAMP_SAVED_PC)
457 if (frame->signal_handler_caller)
458 return sigtramp_saved_pc (frame);
459 #endif
460
461 return read_memory_unsigned_integer (frame->frame + 4, 4);
462 }
463
464 /* Immediately after a function call, return the saved pc. */
465
466 CORE_ADDR
467 i386_saved_pc_after_call (struct frame_info *frame)
468 {
469 return read_memory_unsigned_integer (read_register (SP_REGNUM), 4);
470 }
471
472 /* Return number of args passed to a frame.
473 Can return -1, meaning no way to tell. */
474
475 int
476 i386_frame_num_args (struct frame_info *fi)
477 {
478 #if 1
479 return -1;
480 #else
481 /* This loses because not only might the compiler not be popping the
482 args right after the function call, it might be popping args from
483 both this call and a previous one, and we would say there are
484 more args than there really are. */
485
486 int retpc;
487 unsigned char op;
488 struct frame_info *pfi;
489
490 /* On the i386, the instruction following the call could be:
491 popl %ecx - one arg
492 addl $imm, %esp - imm/4 args; imm may be 8 or 32 bits
493 anything else - zero args. */
494
495 int frameless;
496
497 frameless = FRAMELESS_FUNCTION_INVOCATION (fi);
498 if (frameless)
499 /* In the absence of a frame pointer, GDB doesn't get correct
500 values for nameless arguments. Return -1, so it doesn't print
501 any nameless arguments. */
502 return -1;
503
504 pfi = get_prev_frame (fi);
505 if (pfi == 0)
506 {
507 /* NOTE: This can happen if we are looking at the frame for
508 main, because FRAME_CHAIN_VALID won't let us go into start.
509 If we have debugging symbols, that's not really a big deal;
510 it just means it will only show as many arguments to main as
511 are declared. */
512 return -1;
513 }
514 else
515 {
516 retpc = pfi->pc;
517 op = read_memory_integer (retpc, 1);
518 if (op == 0x59) /* pop %ecx */
519 return 1;
520 else if (op == 0x83)
521 {
522 op = read_memory_integer (retpc + 1, 1);
523 if (op == 0xc4)
524 /* addl $<signed imm 8 bits>, %esp */
525 return (read_memory_integer (retpc + 2, 1) & 0xff) / 4;
526 else
527 return 0;
528 }
529 else if (op == 0x81) /* `add' with 32 bit immediate. */
530 {
531 op = read_memory_integer (retpc + 1, 1);
532 if (op == 0xc4)
533 /* addl $<imm 32>, %esp */
534 return read_memory_integer (retpc + 2, 4) / 4;
535 else
536 return 0;
537 }
538 else
539 {
540 return 0;
541 }
542 }
543 #endif
544 }
545
546 /* Parse the first few instructions the function to see what registers
547 were stored.
548
549 We handle these cases:
550
551 The startup sequence can be at the start of the function, or the
552 function can start with a branch to startup code at the end.
553
554 %ebp can be set up with either the 'enter' instruction, or "pushl
555 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
556 once used in the System V compiler).
557
558 Local space is allocated just below the saved %ebp by either the
559 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a 16
560 bit unsigned argument for space to allocate, and the 'addl'
561 instruction could have either a signed byte, or 32 bit immediate.
562
563 Next, the registers used by this function are pushed. With the
564 System V compiler they will always be in the order: %edi, %esi,
565 %ebx (and sometimes a harmless bug causes it to also save but not
566 restore %eax); however, the code below is willing to see the pushes
567 in any order, and will handle up to 8 of them.
568
569 If the setup sequence is at the end of the function, then the next
570 instruction will be a branch back to the start. */
571
572 void
573 i386_frame_init_saved_regs (struct frame_info *fip)
574 {
575 long locals = -1;
576 unsigned char op;
577 CORE_ADDR dummy_bottom;
578 CORE_ADDR addr;
579 CORE_ADDR pc;
580 int i;
581
582 if (fip->saved_regs)
583 return;
584
585 frame_saved_regs_zalloc (fip);
586
587 /* If the frame is the end of a dummy, compute where the beginning
588 would be. */
589 dummy_bottom = fip->frame - 4 - REGISTER_BYTES - CALL_DUMMY_LENGTH;
590
591 /* Check if the PC points in the stack, in a dummy frame. */
592 if (dummy_bottom <= fip->pc && fip->pc <= fip->frame)
593 {
594 /* All registers were saved by push_call_dummy. */
595 addr = fip->frame;
596 for (i = 0; i < NUM_REGS; i++)
597 {
598 addr -= REGISTER_RAW_SIZE (i);
599 fip->saved_regs[i] = addr;
600 }
601 return;
602 }
603
604 pc = get_pc_function_start (fip->pc);
605 if (pc != 0)
606 locals = i386_get_frame_setup (pc);
607
608 if (locals >= 0)
609 {
610 addr = fip->frame - 4 - locals;
611 for (i = 0; i < 8; i++)
612 {
613 op = codestream_get ();
614 if (op < 0x50 || op > 0x57)
615 break;
616 #ifdef I386_REGNO_TO_SYMMETRY
617 /* Dynix uses different internal numbering. Ick. */
618 fip->saved_regs[I386_REGNO_TO_SYMMETRY (op - 0x50)] = addr;
619 #else
620 fip->saved_regs[op - 0x50] = addr;
621 #endif
622 addr -= 4;
623 }
624 }
625
626 fip->saved_regs[PC_REGNUM] = fip->frame + 4;
627 fip->saved_regs[FP_REGNUM] = fip->frame;
628 }
629
630 /* Return PC of first real instruction. */
631
632 int
633 i386_skip_prologue (int pc)
634 {
635 unsigned char op;
636 int i;
637 static unsigned char pic_pat[6] =
638 { 0xe8, 0, 0, 0, 0, /* call 0x0 */
639 0x5b, /* popl %ebx */
640 };
641 CORE_ADDR pos;
642
643 if (i386_get_frame_setup (pc) < 0)
644 return (pc);
645
646 /* Found valid frame setup -- codestream now points to start of push
647 instructions for saving registers. */
648
649 /* Skip over register saves. */
650 for (i = 0; i < 8; i++)
651 {
652 op = codestream_peek ();
653 /* Break if not `pushl' instrunction. */
654 if (op < 0x50 || op > 0x57)
655 break;
656 codestream_get ();
657 }
658
659 /* The native cc on SVR4 in -K PIC mode inserts the following code
660 to get the address of the global offset table (GOT) into register
661 %ebx
662
663 call 0x0
664 popl %ebx
665 movl %ebx,x(%ebp) (optional)
666 addl y,%ebx
667
668 This code is with the rest of the prologue (at the end of the
669 function), so we have to skip it to get to the first real
670 instruction at the start of the function. */
671
672 pos = codestream_tell ();
673 for (i = 0; i < 6; i++)
674 {
675 op = codestream_get ();
676 if (pic_pat[i] != op)
677 break;
678 }
679 if (i == 6)
680 {
681 unsigned char buf[4];
682 long delta = 6;
683
684 op = codestream_get ();
685 if (op == 0x89) /* movl %ebx, x(%ebp) */
686 {
687 op = codestream_get ();
688 if (op == 0x5d) /* One byte offset from %ebp. */
689 {
690 delta += 3;
691 codestream_read (buf, 1);
692 }
693 else if (op == 0x9d) /* Four byte offset from %ebp. */
694 {
695 delta += 6;
696 codestream_read (buf, 4);
697 }
698 else /* Unexpected instruction. */
699 delta = -1;
700 op = codestream_get ();
701 }
702 /* addl y,%ebx */
703 if (delta > 0 && op == 0x81 && codestream_get () == 0xc3)
704 {
705 pos += delta + 6;
706 }
707 }
708 codestream_seek (pos);
709
710 i386_follow_jump ();
711
712 return (codestream_tell ());
713 }
714
715 void
716 i386_push_dummy_frame (void)
717 {
718 CORE_ADDR sp = read_register (SP_REGNUM);
719 int regnum;
720 char regbuf[MAX_REGISTER_RAW_SIZE];
721
722 sp = push_word (sp, read_register (PC_REGNUM));
723 sp = push_word (sp, read_register (FP_REGNUM));
724 write_register (FP_REGNUM, sp);
725 for (regnum = 0; regnum < NUM_REGS; regnum++)
726 {
727 read_register_gen (regnum, regbuf);
728 sp = push_bytes (sp, regbuf, REGISTER_RAW_SIZE (regnum));
729 }
730 write_register (SP_REGNUM, sp);
731 }
732
733 /* Insert the (relative) function address into the call sequence
734 stored at DYMMY. */
735
736 void
737 i386_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs,
738 struct value **args, struct type *type, int gcc_p)
739 {
740 int from, to, delta, loc;
741
742 loc = (int)(read_register (SP_REGNUM) - CALL_DUMMY_LENGTH);
743 from = loc + 5;
744 to = (int)(fun);
745 delta = to - from;
746
747 *((char *)(dummy) + 1) = (delta & 0xff);
748 *((char *)(dummy) + 2) = ((delta >> 8) & 0xff);
749 *((char *)(dummy) + 3) = ((delta >> 16) & 0xff);
750 *((char *)(dummy) + 4) = ((delta >> 24) & 0xff);
751 }
752
753 void
754 i386_pop_frame (void)
755 {
756 struct frame_info *frame = get_current_frame ();
757 CORE_ADDR fp;
758 int regnum;
759 char regbuf[MAX_REGISTER_RAW_SIZE];
760
761 fp = FRAME_FP (frame);
762 i386_frame_init_saved_regs (frame);
763
764 for (regnum = 0; regnum < NUM_REGS; regnum++)
765 {
766 CORE_ADDR addr;
767 addr = frame->saved_regs[regnum];
768 if (addr)
769 {
770 read_memory (addr, regbuf, REGISTER_RAW_SIZE (regnum));
771 write_register_bytes (REGISTER_BYTE (regnum), regbuf,
772 REGISTER_RAW_SIZE (regnum));
773 }
774 }
775 write_register (FP_REGNUM, read_memory_integer (fp, 4));
776 write_register (PC_REGNUM, read_memory_integer (fp + 4, 4));
777 write_register (SP_REGNUM, fp + 8);
778 flush_cached_frames ();
779 }
780 \f
781
782 #ifdef GET_LONGJMP_TARGET
783
784 /* Figure out where the longjmp will land. Slurp the args out of the
785 stack. We expect the first arg to be a pointer to the jmp_buf
786 structure from which we extract the pc (JB_PC) that we will land
787 at. The pc is copied into PC. This routine returns true on
788 success. */
789
790 int
791 get_longjmp_target (CORE_ADDR *pc)
792 {
793 char buf[TARGET_PTR_BIT / TARGET_CHAR_BIT];
794 CORE_ADDR sp, jb_addr;
795
796 sp = read_register (SP_REGNUM);
797
798 if (target_read_memory (sp + SP_ARG0, /* Offset of first arg on stack. */
799 buf,
800 TARGET_PTR_BIT / TARGET_CHAR_BIT))
801 return 0;
802
803 jb_addr = extract_address (buf, TARGET_PTR_BIT / TARGET_CHAR_BIT);
804
805 if (target_read_memory (jb_addr + JB_PC * JB_ELEMENT_SIZE, buf,
806 TARGET_PTR_BIT / TARGET_CHAR_BIT))
807 return 0;
808
809 *pc = extract_address (buf, TARGET_PTR_BIT / TARGET_CHAR_BIT);
810
811 return 1;
812 }
813
814 #endif /* GET_LONGJMP_TARGET */
815 \f
816
817 CORE_ADDR
818 i386_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
819 int struct_return, CORE_ADDR struct_addr)
820 {
821 sp = default_push_arguments (nargs, args, sp, struct_return, struct_addr);
822
823 if (struct_return)
824 {
825 char buf[4];
826
827 sp -= 4;
828 store_address (buf, 4, struct_addr);
829 write_memory (sp, buf, 4);
830 }
831
832 return sp;
833 }
834
835 void
836 i386_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
837 {
838 /* Do nothing. Everything was already done by i386_push_arguments. */
839 }
840
841 /* These registers are used for returning integers (and on some
842 targets also for returning `struct' and `union' values when their
843 size and alignment match an integer type). */
844 #define LOW_RETURN_REGNUM 0 /* %eax */
845 #define HIGH_RETURN_REGNUM 2 /* %edx */
846
847 /* Extract from an array REGBUF containing the (raw) register state, a
848 function return value of TYPE, and copy that, in virtual format,
849 into VALBUF. */
850
851 void
852 i386_extract_return_value (struct type *type, char *regbuf, char *valbuf)
853 {
854 int len = TYPE_LENGTH (type);
855
856 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
857 && TYPE_NFIELDS (type) == 1)
858 {
859 i386_extract_return_value (TYPE_FIELD_TYPE (type, 0), regbuf, valbuf);
860 return;
861 }
862
863 if (TYPE_CODE (type) == TYPE_CODE_FLT)
864 {
865 if (NUM_FREGS == 0)
866 {
867 warning ("Cannot find floating-point return value.");
868 memset (valbuf, 0, len);
869 return;
870 }
871
872 /* Floating-point return values can be found in %st(0). Convert
873 its contents to the desired type. This is probably not
874 exactly how it would happen on the target itself, but it is
875 the best we can do. */
876 convert_typed_floating (&regbuf[REGISTER_BYTE (FP0_REGNUM)],
877 builtin_type_i387_ext, valbuf, type);
878 }
879 else
880 {
881 int low_size = REGISTER_RAW_SIZE (LOW_RETURN_REGNUM);
882 int high_size = REGISTER_RAW_SIZE (HIGH_RETURN_REGNUM);
883
884 if (len <= low_size)
885 memcpy (valbuf, &regbuf[REGISTER_BYTE (LOW_RETURN_REGNUM)], len);
886 else if (len <= (low_size + high_size))
887 {
888 memcpy (valbuf,
889 &regbuf[REGISTER_BYTE (LOW_RETURN_REGNUM)], low_size);
890 memcpy (valbuf + low_size,
891 &regbuf[REGISTER_BYTE (HIGH_RETURN_REGNUM)], len - low_size);
892 }
893 else
894 internal_error (__FILE__, __LINE__,
895 "Cannot extract return value of %d bytes long.", len);
896 }
897 }
898
899 /* Write into the appropriate registers a function return value stored
900 in VALBUF of type TYPE, given in virtual format. */
901
902 void
903 i386_store_return_value (struct type *type, char *valbuf)
904 {
905 int len = TYPE_LENGTH (type);
906
907 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
908 && TYPE_NFIELDS (type) == 1)
909 {
910 i386_store_return_value (TYPE_FIELD_TYPE (type, 0), valbuf);
911 return;
912 }
913
914 if (TYPE_CODE (type) == TYPE_CODE_FLT)
915 {
916 unsigned int fstat;
917 char buf[FPU_REG_RAW_SIZE];
918
919 if (NUM_FREGS == 0)
920 {
921 warning ("Cannot set floating-point return value.");
922 return;
923 }
924
925 /* Returning floating-point values is a bit tricky. Apart from
926 storing the return value in %st(0), we have to simulate the
927 state of the FPU at function return point. */
928
929 /* Convert the value found in VALBUF to the extended
930 floating-point format used by the FPU. This is probably
931 not exactly how it would happen on the target itself, but
932 it is the best we can do. */
933 convert_typed_floating (valbuf, type, buf, builtin_type_i387_ext);
934 write_register_bytes (REGISTER_BYTE (FP0_REGNUM), buf,
935 FPU_REG_RAW_SIZE);
936
937 /* Set the top of the floating-point register stack to 7. The
938 actual value doesn't really matter, but 7 is what a normal
939 function return would end up with if the program started out
940 with a freshly initialized FPU. */
941 fstat = read_register (FSTAT_REGNUM);
942 fstat |= (7 << 11);
943 write_register (FSTAT_REGNUM, fstat);
944
945 /* Mark %st(1) through %st(7) as empty. Since we set the top of
946 the floating-point register stack to 7, the appropriate value
947 for the tag word is 0x3fff. */
948 write_register (FTAG_REGNUM, 0x3fff);
949 }
950 else
951 {
952 int low_size = REGISTER_RAW_SIZE (LOW_RETURN_REGNUM);
953 int high_size = REGISTER_RAW_SIZE (HIGH_RETURN_REGNUM);
954
955 if (len <= low_size)
956 write_register_bytes (REGISTER_BYTE (LOW_RETURN_REGNUM), valbuf, len);
957 else if (len <= (low_size + high_size))
958 {
959 write_register_bytes (REGISTER_BYTE (LOW_RETURN_REGNUM),
960 valbuf, low_size);
961 write_register_bytes (REGISTER_BYTE (HIGH_RETURN_REGNUM),
962 valbuf + low_size, len - low_size);
963 }
964 else
965 internal_error (__FILE__, __LINE__,
966 "Cannot store return value of %d bytes long.", len);
967 }
968 }
969
970 /* Extract from an array REGBUF containing the (raw) register state
971 the address in which a function should return its structure value,
972 as a CORE_ADDR. */
973
974 CORE_ADDR
975 i386_extract_struct_value_address (char *regbuf)
976 {
977 return extract_address (&regbuf[REGISTER_BYTE (LOW_RETURN_REGNUM)],
978 REGISTER_RAW_SIZE (LOW_RETURN_REGNUM));
979 }
980 \f
981
982 /* Return the GDB type object for the "standard" data type of data in
983 register REGNUM. Perhaps %esi and %edi should go here, but
984 potentially they could be used for things other than address. */
985
986 struct type *
987 i386_register_virtual_type (int regnum)
988 {
989 if (regnum == PC_REGNUM || regnum == FP_REGNUM || regnum == SP_REGNUM)
990 return lookup_pointer_type (builtin_type_void);
991
992 if (IS_FP_REGNUM (regnum))
993 return builtin_type_i387_ext;
994
995 if (IS_SSE_REGNUM (regnum))
996 return builtin_type_v4sf;
997
998 return builtin_type_int;
999 }
1000
1001 /* Return true iff register REGNUM's virtual format is different from
1002 its raw format. Note that this definition assumes that the host
1003 supports IEEE 32-bit floats, since it doesn't say that SSE
1004 registers need conversion. Even if we can't find a counterexample,
1005 this is still sloppy. */
1006
1007 int
1008 i386_register_convertible (int regnum)
1009 {
1010 return IS_FP_REGNUM (regnum);
1011 }
1012
1013 /* Convert data from raw format for register REGNUM in buffer FROM to
1014 virtual format with type TYPE in buffer TO. */
1015
1016 void
1017 i386_register_convert_to_virtual (int regnum, struct type *type,
1018 char *from, char *to)
1019 {
1020 gdb_assert (IS_FP_REGNUM (regnum));
1021
1022 /* We only support floating-point values. */
1023 if (TYPE_CODE (type) != TYPE_CODE_FLT)
1024 {
1025 warning ("Cannot convert floating-point register value "
1026 "to non-floating-point type.");
1027 memset (to, 0, TYPE_LENGTH (type));
1028 return;
1029 }
1030
1031 /* Convert to TYPE. This should be a no-op if TYPE is equivalent to
1032 the extended floating-point format used by the FPU. */
1033 convert_typed_floating (from, builtin_type_i387_ext, to, type);
1034 }
1035
1036 /* Convert data from virtual format with type TYPE in buffer FROM to
1037 raw format for register REGNUM in buffer TO. */
1038
1039 void
1040 i386_register_convert_to_raw (struct type *type, int regnum,
1041 char *from, char *to)
1042 {
1043 gdb_assert (IS_FP_REGNUM (regnum));
1044
1045 /* We only support floating-point values. */
1046 if (TYPE_CODE (type) != TYPE_CODE_FLT)
1047 {
1048 warning ("Cannot convert non-floating-point type "
1049 "to floating-point register value.");
1050 memset (to, 0, TYPE_LENGTH (type));
1051 return;
1052 }
1053
1054 /* Convert from TYPE. This should be a no-op if TYPE is equivalent
1055 to the extended floating-point format used by the FPU. */
1056 convert_typed_floating (from, type, to, builtin_type_i387_ext);
1057 }
1058 \f
1059
1060 #ifdef I386V4_SIGTRAMP_SAVED_PC
1061 /* Get saved user PC for sigtramp from the pushed ucontext on the
1062 stack for all three variants of SVR4 sigtramps. */
1063
1064 CORE_ADDR
1065 i386v4_sigtramp_saved_pc (struct frame_info *frame)
1066 {
1067 CORE_ADDR saved_pc_offset = 4;
1068 char *name = NULL;
1069
1070 find_pc_partial_function (frame->pc, &name, NULL, NULL);
1071 if (name)
1072 {
1073 if (STREQ (name, "_sigreturn"))
1074 saved_pc_offset = 132 + 14 * 4;
1075 else if (STREQ (name, "_sigacthandler"))
1076 saved_pc_offset = 80 + 14 * 4;
1077 else if (STREQ (name, "sigvechandler"))
1078 saved_pc_offset = 120 + 14 * 4;
1079 }
1080
1081 if (frame->next)
1082 return read_memory_integer (frame->next->frame + saved_pc_offset, 4);
1083 return read_memory_integer (read_register (SP_REGNUM) + saved_pc_offset, 4);
1084 }
1085 #endif /* I386V4_SIGTRAMP_SAVED_PC */
1086 \f
1087
1088 #ifdef STATIC_TRANSFORM_NAME
1089 /* SunPRO encodes the static variables. This is not related to C++
1090 mangling, it is done for C too. */
1091
1092 char *
1093 sunpro_static_transform_name (char *name)
1094 {
1095 char *p;
1096 if (IS_STATIC_TRANSFORM_NAME (name))
1097 {
1098 /* For file-local statics there will be a period, a bunch of
1099 junk (the contents of which match a string given in the
1100 N_OPT), a period and the name. For function-local statics
1101 there will be a bunch of junk (which seems to change the
1102 second character from 'A' to 'B'), a period, the name of the
1103 function, and the name. So just skip everything before the
1104 last period. */
1105 p = strrchr (name, '.');
1106 if (p != NULL)
1107 name = p + 1;
1108 }
1109 return name;
1110 }
1111 #endif /* STATIC_TRANSFORM_NAME */
1112 \f
1113
1114 /* Stuff for WIN32 PE style DLL's but is pretty generic really. */
1115
1116 CORE_ADDR
1117 skip_trampoline_code (CORE_ADDR pc, char *name)
1118 {
1119 if (pc && read_memory_unsigned_integer (pc, 2) == 0x25ff) /* jmp *(dest) */
1120 {
1121 unsigned long indirect = read_memory_unsigned_integer (pc + 2, 4);
1122 struct minimal_symbol *indsym =
1123 indirect ? lookup_minimal_symbol_by_pc (indirect) : 0;
1124 char *symname = indsym ? SYMBOL_NAME (indsym) : 0;
1125
1126 if (symname)
1127 {
1128 if (strncmp (symname, "__imp_", 6) == 0
1129 || strncmp (symname, "_imp_", 5) == 0)
1130 return name ? 1 : read_memory_unsigned_integer (indirect, 4);
1131 }
1132 }
1133 return 0; /* Not a trampoline. */
1134 }
1135 \f
1136
1137 /* We have two flavours of disassembly. The machinery on this page
1138 deals with switching between those. */
1139
1140 static int
1141 gdb_print_insn_i386 (bfd_vma memaddr, disassemble_info *info)
1142 {
1143 if (disassembly_flavor == att_flavor)
1144 return print_insn_i386_att (memaddr, info);
1145 else if (disassembly_flavor == intel_flavor)
1146 return print_insn_i386_intel (memaddr, info);
1147 /* Never reached -- disassembly_flavour is always either att_flavor
1148 or intel_flavor. */
1149 internal_error (__FILE__, __LINE__, "failed internal consistency check");
1150 }
1151
1152 /* If the disassembly mode is intel, we have to also switch the bfd
1153 mach_type. This function is run in the set disassembly_flavor
1154 command, and does that. */
1155
1156 static void
1157 set_disassembly_flavor_sfunc (char *args, int from_tty,
1158 struct cmd_list_element *c)
1159 {
1160 set_disassembly_flavor ();
1161 }
1162
1163 static void
1164 set_disassembly_flavor (void)
1165 {
1166 if (disassembly_flavor == att_flavor)
1167 set_architecture_from_arch_mach (bfd_arch_i386, bfd_mach_i386_i386);
1168 else if (disassembly_flavor == intel_flavor)
1169 set_architecture_from_arch_mach (bfd_arch_i386,
1170 bfd_mach_i386_i386_intel_syntax);
1171 }
1172 \f
1173
1174 /* Provide a prototype to silence -Wmissing-prototypes. */
1175 void _initialize_i386_tdep (void);
1176
1177 void
1178 _initialize_i386_tdep (void)
1179 {
1180 /* Initialize the table saying where each register starts in the
1181 register file. */
1182 {
1183 int i, offset;
1184
1185 offset = 0;
1186 for (i = 0; i < MAX_NUM_REGS; i++)
1187 {
1188 i386_register_byte[i] = offset;
1189 offset += i386_register_raw_size[i];
1190 }
1191 }
1192
1193 /* Initialize the table of virtual register sizes. */
1194 {
1195 int i;
1196
1197 for (i = 0; i < MAX_NUM_REGS; i++)
1198 i386_register_virtual_size[i] = TYPE_LENGTH (REGISTER_VIRTUAL_TYPE (i));
1199 }
1200
1201 tm_print_insn = gdb_print_insn_i386;
1202 tm_print_insn_info.mach = bfd_lookup_arch (bfd_arch_i386, 0)->mach;
1203
1204 /* Add the variable that controls the disassembly flavor. */
1205 {
1206 struct cmd_list_element *new_cmd;
1207
1208 new_cmd = add_set_enum_cmd ("disassembly-flavor", no_class,
1209 valid_flavors,
1210 &disassembly_flavor,
1211 "\
1212 Set the disassembly flavor, the valid values are \"att\" and \"intel\", \
1213 and the default value is \"att\".",
1214 &setlist);
1215 new_cmd->function.sfunc = set_disassembly_flavor_sfunc;
1216 add_show_from_set (new_cmd, &showlist);
1217 }
1218
1219 /* Finally, initialize the disassembly flavor to the default given
1220 in the disassembly_flavor variable. */
1221 set_disassembly_flavor ();
1222 }
This page took 0.05739 seconds and 5 git commands to generate.