* i386-tdep.h (i386_displaced_step_copy_insn): Declare.
[deliverable/binutils-gdb.git] / gdb / i386-tdep.c
1 /* Intel 386 target-dependent stuff.
2
3 Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
5 2010 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "opcode/i386.h"
24 #include "arch-utils.h"
25 #include "command.h"
26 #include "dummy-frame.h"
27 #include "dwarf2-frame.h"
28 #include "doublest.h"
29 #include "frame.h"
30 #include "frame-base.h"
31 #include "frame-unwind.h"
32 #include "inferior.h"
33 #include "gdbcmd.h"
34 #include "gdbcore.h"
35 #include "gdbtypes.h"
36 #include "objfiles.h"
37 #include "osabi.h"
38 #include "regcache.h"
39 #include "reggroups.h"
40 #include "regset.h"
41 #include "symfile.h"
42 #include "symtab.h"
43 #include "target.h"
44 #include "value.h"
45 #include "dis-asm.h"
46 #include "disasm.h"
47 #include "remote.h"
48
49 #include "gdb_assert.h"
50 #include "gdb_string.h"
51
52 #include "i386-tdep.h"
53 #include "i387-tdep.h"
54 #include "i386-xstate.h"
55
56 #include "record.h"
57 #include <stdint.h>
58
59 #include "features/i386/i386.c"
60 #include "features/i386/i386-avx.c"
61 #include "features/i386/i386-mmx.c"
62
63 /* Register names. */
64
65 static const char *i386_register_names[] =
66 {
67 "eax", "ecx", "edx", "ebx",
68 "esp", "ebp", "esi", "edi",
69 "eip", "eflags", "cs", "ss",
70 "ds", "es", "fs", "gs",
71 "st0", "st1", "st2", "st3",
72 "st4", "st5", "st6", "st7",
73 "fctrl", "fstat", "ftag", "fiseg",
74 "fioff", "foseg", "fooff", "fop",
75 "xmm0", "xmm1", "xmm2", "xmm3",
76 "xmm4", "xmm5", "xmm6", "xmm7",
77 "mxcsr"
78 };
79
80 static const char *i386_ymm_names[] =
81 {
82 "ymm0", "ymm1", "ymm2", "ymm3",
83 "ymm4", "ymm5", "ymm6", "ymm7",
84 };
85
86 static const char *i386_ymmh_names[] =
87 {
88 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
89 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
90 };
91
92 /* Register names for MMX pseudo-registers. */
93
94 static const char *i386_mmx_names[] =
95 {
96 "mm0", "mm1", "mm2", "mm3",
97 "mm4", "mm5", "mm6", "mm7"
98 };
99
100 /* Register names for byte pseudo-registers. */
101
102 static const char *i386_byte_names[] =
103 {
104 "al", "cl", "dl", "bl",
105 "ah", "ch", "dh", "bh"
106 };
107
108 /* Register names for word pseudo-registers. */
109
110 static const char *i386_word_names[] =
111 {
112 "ax", "cx", "dx", "bx",
113 "", "bp", "si", "di"
114 };
115
116 /* MMX register? */
117
118 static int
119 i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
120 {
121 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
122 int mm0_regnum = tdep->mm0_regnum;
123
124 if (mm0_regnum < 0)
125 return 0;
126
127 regnum -= mm0_regnum;
128 return regnum >= 0 && regnum < tdep->num_mmx_regs;
129 }
130
131 /* Byte register? */
132
133 int
134 i386_byte_regnum_p (struct gdbarch *gdbarch, int regnum)
135 {
136 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
137
138 regnum -= tdep->al_regnum;
139 return regnum >= 0 && regnum < tdep->num_byte_regs;
140 }
141
142 /* Word register? */
143
144 int
145 i386_word_regnum_p (struct gdbarch *gdbarch, int regnum)
146 {
147 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
148
149 regnum -= tdep->ax_regnum;
150 return regnum >= 0 && regnum < tdep->num_word_regs;
151 }
152
153 /* Dword register? */
154
155 int
156 i386_dword_regnum_p (struct gdbarch *gdbarch, int regnum)
157 {
158 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
159 int eax_regnum = tdep->eax_regnum;
160
161 if (eax_regnum < 0)
162 return 0;
163
164 regnum -= eax_regnum;
165 return regnum >= 0 && regnum < tdep->num_dword_regs;
166 }
167
168 int
169 i386_ymmh_regnum_p (struct gdbarch *gdbarch, int regnum)
170 {
171 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
172 int ymm0h_regnum = tdep->ymm0h_regnum;
173
174 if (ymm0h_regnum < 0)
175 return 0;
176
177 regnum -= ymm0h_regnum;
178 return regnum >= 0 && regnum < tdep->num_ymm_regs;
179 }
180
181 /* AVX register? */
182
183 int
184 i386_ymm_regnum_p (struct gdbarch *gdbarch, int regnum)
185 {
186 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
187 int ymm0_regnum = tdep->ymm0_regnum;
188
189 if (ymm0_regnum < 0)
190 return 0;
191
192 regnum -= ymm0_regnum;
193 return regnum >= 0 && regnum < tdep->num_ymm_regs;
194 }
195
196 /* SSE register? */
197
198 int
199 i386_xmm_regnum_p (struct gdbarch *gdbarch, int regnum)
200 {
201 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
202 int num_xmm_regs = I387_NUM_XMM_REGS (tdep);
203
204 if (num_xmm_regs == 0)
205 return 0;
206
207 regnum -= I387_XMM0_REGNUM (tdep);
208 return regnum >= 0 && regnum < num_xmm_regs;
209 }
210
211 static int
212 i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
213 {
214 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
215
216 if (I387_NUM_XMM_REGS (tdep) == 0)
217 return 0;
218
219 return (regnum == I387_MXCSR_REGNUM (tdep));
220 }
221
222 /* FP register? */
223
224 int
225 i386_fp_regnum_p (struct gdbarch *gdbarch, int regnum)
226 {
227 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
228
229 if (I387_ST0_REGNUM (tdep) < 0)
230 return 0;
231
232 return (I387_ST0_REGNUM (tdep) <= regnum
233 && regnum < I387_FCTRL_REGNUM (tdep));
234 }
235
236 int
237 i386_fpc_regnum_p (struct gdbarch *gdbarch, int regnum)
238 {
239 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
240
241 if (I387_ST0_REGNUM (tdep) < 0)
242 return 0;
243
244 return (I387_FCTRL_REGNUM (tdep) <= regnum
245 && regnum < I387_XMM0_REGNUM (tdep));
246 }
247
248 /* Return the name of register REGNUM, or the empty string if it is
249 an anonymous register. */
250
251 static const char *
252 i386_register_name (struct gdbarch *gdbarch, int regnum)
253 {
254 /* Hide the upper YMM registers. */
255 if (i386_ymmh_regnum_p (gdbarch, regnum))
256 return "";
257
258 return tdesc_register_name (gdbarch, regnum);
259 }
260
261 /* Return the name of register REGNUM. */
262
263 const char *
264 i386_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
265 {
266 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
267 if (i386_mmx_regnum_p (gdbarch, regnum))
268 return i386_mmx_names[regnum - I387_MM0_REGNUM (tdep)];
269 else if (i386_ymm_regnum_p (gdbarch, regnum))
270 return i386_ymm_names[regnum - tdep->ymm0_regnum];
271 else if (i386_byte_regnum_p (gdbarch, regnum))
272 return i386_byte_names[regnum - tdep->al_regnum];
273 else if (i386_word_regnum_p (gdbarch, regnum))
274 return i386_word_names[regnum - tdep->ax_regnum];
275
276 internal_error (__FILE__, __LINE__, _("invalid regnum"));
277 }
278
279 /* Convert a dbx register number REG to the appropriate register
280 number used by GDB. */
281
282 static int
283 i386_dbx_reg_to_regnum (struct gdbarch *gdbarch, int reg)
284 {
285 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
286
287 /* This implements what GCC calls the "default" register map
288 (dbx_register_map[]). */
289
290 if (reg >= 0 && reg <= 7)
291 {
292 /* General-purpose registers. The debug info calls %ebp
293 register 4, and %esp register 5. */
294 if (reg == 4)
295 return 5;
296 else if (reg == 5)
297 return 4;
298 else return reg;
299 }
300 else if (reg >= 12 && reg <= 19)
301 {
302 /* Floating-point registers. */
303 return reg - 12 + I387_ST0_REGNUM (tdep);
304 }
305 else if (reg >= 21 && reg <= 28)
306 {
307 /* SSE registers. */
308 int ymm0_regnum = tdep->ymm0_regnum;
309
310 if (ymm0_regnum >= 0
311 && i386_xmm_regnum_p (gdbarch, reg))
312 return reg - 21 + ymm0_regnum;
313 else
314 return reg - 21 + I387_XMM0_REGNUM (tdep);
315 }
316 else if (reg >= 29 && reg <= 36)
317 {
318 /* MMX registers. */
319 return reg - 29 + I387_MM0_REGNUM (tdep);
320 }
321
322 /* This will hopefully provoke a warning. */
323 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
324 }
325
326 /* Convert SVR4 register number REG to the appropriate register number
327 used by GDB. */
328
329 static int
330 i386_svr4_reg_to_regnum (struct gdbarch *gdbarch, int reg)
331 {
332 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
333
334 /* This implements the GCC register map that tries to be compatible
335 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
336
337 /* The SVR4 register numbering includes %eip and %eflags, and
338 numbers the floating point registers differently. */
339 if (reg >= 0 && reg <= 9)
340 {
341 /* General-purpose registers. */
342 return reg;
343 }
344 else if (reg >= 11 && reg <= 18)
345 {
346 /* Floating-point registers. */
347 return reg - 11 + I387_ST0_REGNUM (tdep);
348 }
349 else if (reg >= 21 && reg <= 36)
350 {
351 /* The SSE and MMX registers have the same numbers as with dbx. */
352 return i386_dbx_reg_to_regnum (gdbarch, reg);
353 }
354
355 switch (reg)
356 {
357 case 37: return I387_FCTRL_REGNUM (tdep);
358 case 38: return I387_FSTAT_REGNUM (tdep);
359 case 39: return I387_MXCSR_REGNUM (tdep);
360 case 40: return I386_ES_REGNUM;
361 case 41: return I386_CS_REGNUM;
362 case 42: return I386_SS_REGNUM;
363 case 43: return I386_DS_REGNUM;
364 case 44: return I386_FS_REGNUM;
365 case 45: return I386_GS_REGNUM;
366 }
367
368 /* This will hopefully provoke a warning. */
369 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
370 }
371
372 \f
373
374 /* This is the variable that is set with "set disassembly-flavor", and
375 its legitimate values. */
376 static const char att_flavor[] = "att";
377 static const char intel_flavor[] = "intel";
378 static const char *valid_flavors[] =
379 {
380 att_flavor,
381 intel_flavor,
382 NULL
383 };
384 static const char *disassembly_flavor = att_flavor;
385 \f
386
387 /* Use the program counter to determine the contents and size of a
388 breakpoint instruction. Return a pointer to a string of bytes that
389 encode a breakpoint instruction, store the length of the string in
390 *LEN and optionally adjust *PC to point to the correct memory
391 location for inserting the breakpoint.
392
393 On the i386 we have a single breakpoint that fits in a single byte
394 and can be inserted anywhere.
395
396 This function is 64-bit safe. */
397
398 static const gdb_byte *
399 i386_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
400 {
401 static gdb_byte break_insn[] = { 0xcc }; /* int 3 */
402
403 *len = sizeof (break_insn);
404 return break_insn;
405 }
406 \f
407 /* Displaced instruction handling. */
408
409 /* Skip the legacy instruction prefixes in INSN.
410 Not all prefixes are valid for any particular insn
411 but we needn't care, the insn will fault if it's invalid.
412 The result is a pointer to the first opcode byte,
413 or NULL if we run off the end of the buffer. */
414
415 static gdb_byte *
416 i386_skip_prefixes (gdb_byte *insn, size_t max_len)
417 {
418 gdb_byte *end = insn + max_len;
419
420 while (insn < end)
421 {
422 switch (*insn)
423 {
424 case DATA_PREFIX_OPCODE:
425 case ADDR_PREFIX_OPCODE:
426 case CS_PREFIX_OPCODE:
427 case DS_PREFIX_OPCODE:
428 case ES_PREFIX_OPCODE:
429 case FS_PREFIX_OPCODE:
430 case GS_PREFIX_OPCODE:
431 case SS_PREFIX_OPCODE:
432 case LOCK_PREFIX_OPCODE:
433 case REPE_PREFIX_OPCODE:
434 case REPNE_PREFIX_OPCODE:
435 ++insn;
436 continue;
437 default:
438 return insn;
439 }
440 }
441
442 return NULL;
443 }
444
445 static int
446 i386_absolute_jmp_p (const gdb_byte *insn)
447 {
448 /* jmp far (absolute address in operand) */
449 if (insn[0] == 0xea)
450 return 1;
451
452 if (insn[0] == 0xff)
453 {
454 /* jump near, absolute indirect (/4) */
455 if ((insn[1] & 0x38) == 0x20)
456 return 1;
457
458 /* jump far, absolute indirect (/5) */
459 if ((insn[1] & 0x38) == 0x28)
460 return 1;
461 }
462
463 return 0;
464 }
465
466 static int
467 i386_absolute_call_p (const gdb_byte *insn)
468 {
469 /* call far, absolute */
470 if (insn[0] == 0x9a)
471 return 1;
472
473 if (insn[0] == 0xff)
474 {
475 /* Call near, absolute indirect (/2) */
476 if ((insn[1] & 0x38) == 0x10)
477 return 1;
478
479 /* Call far, absolute indirect (/3) */
480 if ((insn[1] & 0x38) == 0x18)
481 return 1;
482 }
483
484 return 0;
485 }
486
487 static int
488 i386_ret_p (const gdb_byte *insn)
489 {
490 switch (insn[0])
491 {
492 case 0xc2: /* ret near, pop N bytes */
493 case 0xc3: /* ret near */
494 case 0xca: /* ret far, pop N bytes */
495 case 0xcb: /* ret far */
496 case 0xcf: /* iret */
497 return 1;
498
499 default:
500 return 0;
501 }
502 }
503
504 static int
505 i386_call_p (const gdb_byte *insn)
506 {
507 if (i386_absolute_call_p (insn))
508 return 1;
509
510 /* call near, relative */
511 if (insn[0] == 0xe8)
512 return 1;
513
514 return 0;
515 }
516
517 /* Return non-zero if INSN is a system call, and set *LENGTHP to its
518 length in bytes. Otherwise, return zero. */
519
520 static int
521 i386_syscall_p (const gdb_byte *insn, int *lengthp)
522 {
523 if (insn[0] == 0xcd)
524 {
525 *lengthp = 2;
526 return 1;
527 }
528
529 return 0;
530 }
531
532 /* Some kernels may run one past a syscall insn, so we have to cope.
533 Otherwise this is just simple_displaced_step_copy_insn. */
534
535 struct displaced_step_closure *
536 i386_displaced_step_copy_insn (struct gdbarch *gdbarch,
537 CORE_ADDR from, CORE_ADDR to,
538 struct regcache *regs)
539 {
540 size_t len = gdbarch_max_insn_length (gdbarch);
541 gdb_byte *buf = xmalloc (len);
542
543 read_memory (from, buf, len);
544
545 /* GDB may get control back after the insn after the syscall.
546 Presumably this is a kernel bug.
547 If this is a syscall, make sure there's a nop afterwards. */
548 {
549 int syscall_length;
550 gdb_byte *insn;
551
552 insn = i386_skip_prefixes (buf, len);
553 if (insn != NULL && i386_syscall_p (insn, &syscall_length))
554 insn[syscall_length] = NOP_OPCODE;
555 }
556
557 write_memory (to, buf, len);
558
559 if (debug_displaced)
560 {
561 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
562 paddress (gdbarch, from), paddress (gdbarch, to));
563 displaced_step_dump_bytes (gdb_stdlog, buf, len);
564 }
565
566 return (struct displaced_step_closure *) buf;
567 }
568
569 /* Fix up the state of registers and memory after having single-stepped
570 a displaced instruction. */
571
572 void
573 i386_displaced_step_fixup (struct gdbarch *gdbarch,
574 struct displaced_step_closure *closure,
575 CORE_ADDR from, CORE_ADDR to,
576 struct regcache *regs)
577 {
578 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
579
580 /* The offset we applied to the instruction's address.
581 This could well be negative (when viewed as a signed 32-bit
582 value), but ULONGEST won't reflect that, so take care when
583 applying it. */
584 ULONGEST insn_offset = to - from;
585
586 /* Since we use simple_displaced_step_copy_insn, our closure is a
587 copy of the instruction. */
588 gdb_byte *insn = (gdb_byte *) closure;
589 /* The start of the insn, needed in case we see some prefixes. */
590 gdb_byte *insn_start = insn;
591
592 if (debug_displaced)
593 fprintf_unfiltered (gdb_stdlog,
594 "displaced: fixup (%s, %s), "
595 "insn = 0x%02x 0x%02x ...\n",
596 paddress (gdbarch, from), paddress (gdbarch, to),
597 insn[0], insn[1]);
598
599 /* The list of issues to contend with here is taken from
600 resume_execution in arch/i386/kernel/kprobes.c, Linux 2.6.20.
601 Yay for Free Software! */
602
603 /* Relocate the %eip, if necessary. */
604
605 /* The instruction recognizers we use assume any leading prefixes
606 have been skipped. */
607 {
608 /* This is the size of the buffer in closure. */
609 size_t max_insn_len = gdbarch_max_insn_length (gdbarch);
610 gdb_byte *opcode = i386_skip_prefixes (insn, max_insn_len);
611 /* If there are too many prefixes, just ignore the insn.
612 It will fault when run. */
613 if (opcode != NULL)
614 insn = opcode;
615 }
616
617 /* Except in the case of absolute or indirect jump or call
618 instructions, or a return instruction, the new eip is relative to
619 the displaced instruction; make it relative. Well, signal
620 handler returns don't need relocation either, but we use the
621 value of %eip to recognize those; see below. */
622 if (! i386_absolute_jmp_p (insn)
623 && ! i386_absolute_call_p (insn)
624 && ! i386_ret_p (insn))
625 {
626 ULONGEST orig_eip;
627 int insn_len;
628
629 regcache_cooked_read_unsigned (regs, I386_EIP_REGNUM, &orig_eip);
630
631 /* A signal trampoline system call changes the %eip, resuming
632 execution of the main program after the signal handler has
633 returned. That makes them like 'return' instructions; we
634 shouldn't relocate %eip.
635
636 But most system calls don't, and we do need to relocate %eip.
637
638 Our heuristic for distinguishing these cases: if stepping
639 over the system call instruction left control directly after
640 the instruction, the we relocate --- control almost certainly
641 doesn't belong in the displaced copy. Otherwise, we assume
642 the instruction has put control where it belongs, and leave
643 it unrelocated. Goodness help us if there are PC-relative
644 system calls. */
645 if (i386_syscall_p (insn, &insn_len)
646 && orig_eip != to + (insn - insn_start) + insn_len
647 /* GDB can get control back after the insn after the syscall.
648 Presumably this is a kernel bug.
649 i386_displaced_step_copy_insn ensures its a nop,
650 we add one to the length for it. */
651 && orig_eip != to + (insn - insn_start) + insn_len + 1)
652 {
653 if (debug_displaced)
654 fprintf_unfiltered (gdb_stdlog,
655 "displaced: syscall changed %%eip; "
656 "not relocating\n");
657 }
658 else
659 {
660 ULONGEST eip = (orig_eip - insn_offset) & 0xffffffffUL;
661
662 /* If we just stepped over a breakpoint insn, we don't backup
663 the pc on purpose; this is to match behaviour without
664 stepping. */
665
666 regcache_cooked_write_unsigned (regs, I386_EIP_REGNUM, eip);
667
668 if (debug_displaced)
669 fprintf_unfiltered (gdb_stdlog,
670 "displaced: "
671 "relocated %%eip from %s to %s\n",
672 paddress (gdbarch, orig_eip),
673 paddress (gdbarch, eip));
674 }
675 }
676
677 /* If the instruction was PUSHFL, then the TF bit will be set in the
678 pushed value, and should be cleared. We'll leave this for later,
679 since GDB already messes up the TF flag when stepping over a
680 pushfl. */
681
682 /* If the instruction was a call, the return address now atop the
683 stack is the address following the copied instruction. We need
684 to make it the address following the original instruction. */
685 if (i386_call_p (insn))
686 {
687 ULONGEST esp;
688 ULONGEST retaddr;
689 const ULONGEST retaddr_len = 4;
690
691 regcache_cooked_read_unsigned (regs, I386_ESP_REGNUM, &esp);
692 retaddr = read_memory_unsigned_integer (esp, retaddr_len, byte_order);
693 retaddr = (retaddr - insn_offset) & 0xffffffffUL;
694 write_memory_unsigned_integer (esp, retaddr_len, byte_order, retaddr);
695
696 if (debug_displaced)
697 fprintf_unfiltered (gdb_stdlog,
698 "displaced: relocated return addr at %s to %s\n",
699 paddress (gdbarch, esp),
700 paddress (gdbarch, retaddr));
701 }
702 }
703
704 static void
705 append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
706 {
707 target_write_memory (*to, buf, len);
708 *to += len;
709 }
710
711 static void
712 i386_relocate_instruction (struct gdbarch *gdbarch,
713 CORE_ADDR *to, CORE_ADDR oldloc)
714 {
715 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
716 gdb_byte buf[I386_MAX_INSN_LEN];
717 int offset = 0, rel32, newrel;
718 int insn_length;
719 gdb_byte *insn = buf;
720
721 read_memory (oldloc, buf, I386_MAX_INSN_LEN);
722
723 insn_length = gdb_buffered_insn_length (gdbarch, insn,
724 I386_MAX_INSN_LEN, oldloc);
725
726 /* Get past the prefixes. */
727 insn = i386_skip_prefixes (insn, I386_MAX_INSN_LEN);
728
729 /* Adjust calls with 32-bit relative addresses as push/jump, with
730 the address pushed being the location where the original call in
731 the user program would return to. */
732 if (insn[0] == 0xe8)
733 {
734 gdb_byte push_buf[16];
735 unsigned int ret_addr;
736
737 /* Where "ret" in the original code will return to. */
738 ret_addr = oldloc + insn_length;
739 push_buf[0] = 0x68; /* pushq $... */
740 memcpy (&push_buf[1], &ret_addr, 4);
741 /* Push the push. */
742 append_insns (to, 5, push_buf);
743
744 /* Convert the relative call to a relative jump. */
745 insn[0] = 0xe9;
746
747 /* Adjust the destination offset. */
748 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
749 newrel = (oldloc - *to) + rel32;
750 store_signed_integer (insn + 1, 4, newrel, byte_order);
751
752 /* Write the adjusted jump into its displaced location. */
753 append_insns (to, 5, insn);
754 return;
755 }
756
757 /* Adjust jumps with 32-bit relative addresses. Calls are already
758 handled above. */
759 if (insn[0] == 0xe9)
760 offset = 1;
761 /* Adjust conditional jumps. */
762 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
763 offset = 2;
764
765 if (offset)
766 {
767 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
768 newrel = (oldloc - *to) + rel32;
769 store_signed_integer (insn + offset, 4, newrel, byte_order);
770 if (debug_displaced)
771 fprintf_unfiltered (gdb_stdlog,
772 "Adjusted insn rel32=0x%s at 0x%s to"
773 " rel32=0x%s at 0x%s\n",
774 hex_string (rel32), paddress (gdbarch, oldloc),
775 hex_string (newrel), paddress (gdbarch, *to));
776 }
777
778 /* Write the adjusted instructions into their displaced
779 location. */
780 append_insns (to, insn_length, buf);
781 }
782
783 \f
784 #ifdef I386_REGNO_TO_SYMMETRY
785 #error "The Sequent Symmetry is no longer supported."
786 #endif
787
788 /* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
789 and %esp "belong" to the calling function. Therefore these
790 registers should be saved if they're going to be modified. */
791
792 /* The maximum number of saved registers. This should include all
793 registers mentioned above, and %eip. */
794 #define I386_NUM_SAVED_REGS I386_NUM_GREGS
795
796 struct i386_frame_cache
797 {
798 /* Base address. */
799 CORE_ADDR base;
800 LONGEST sp_offset;
801 CORE_ADDR pc;
802
803 /* Saved registers. */
804 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
805 CORE_ADDR saved_sp;
806 int saved_sp_reg;
807 int pc_in_eax;
808
809 /* Stack space reserved for local variables. */
810 long locals;
811 };
812
813 /* Allocate and initialize a frame cache. */
814
815 static struct i386_frame_cache *
816 i386_alloc_frame_cache (void)
817 {
818 struct i386_frame_cache *cache;
819 int i;
820
821 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
822
823 /* Base address. */
824 cache->base = 0;
825 cache->sp_offset = -4;
826 cache->pc = 0;
827
828 /* Saved registers. We initialize these to -1 since zero is a valid
829 offset (that's where %ebp is supposed to be stored). */
830 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
831 cache->saved_regs[i] = -1;
832 cache->saved_sp = 0;
833 cache->saved_sp_reg = -1;
834 cache->pc_in_eax = 0;
835
836 /* Frameless until proven otherwise. */
837 cache->locals = -1;
838
839 return cache;
840 }
841
842 /* If the instruction at PC is a jump, return the address of its
843 target. Otherwise, return PC. */
844
845 static CORE_ADDR
846 i386_follow_jump (struct gdbarch *gdbarch, CORE_ADDR pc)
847 {
848 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
849 gdb_byte op;
850 long delta = 0;
851 int data16 = 0;
852
853 target_read_memory (pc, &op, 1);
854 if (op == 0x66)
855 {
856 data16 = 1;
857 op = read_memory_unsigned_integer (pc + 1, 1, byte_order);
858 }
859
860 switch (op)
861 {
862 case 0xe9:
863 /* Relative jump: if data16 == 0, disp32, else disp16. */
864 if (data16)
865 {
866 delta = read_memory_integer (pc + 2, 2, byte_order);
867
868 /* Include the size of the jmp instruction (including the
869 0x66 prefix). */
870 delta += 4;
871 }
872 else
873 {
874 delta = read_memory_integer (pc + 1, 4, byte_order);
875
876 /* Include the size of the jmp instruction. */
877 delta += 5;
878 }
879 break;
880 case 0xeb:
881 /* Relative jump, disp8 (ignore data16). */
882 delta = read_memory_integer (pc + data16 + 1, 1, byte_order);
883
884 delta += data16 + 2;
885 break;
886 }
887
888 return pc + delta;
889 }
890
891 /* Check whether PC points at a prologue for a function returning a
892 structure or union. If so, it updates CACHE and returns the
893 address of the first instruction after the code sequence that
894 removes the "hidden" argument from the stack or CURRENT_PC,
895 whichever is smaller. Otherwise, return PC. */
896
897 static CORE_ADDR
898 i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
899 struct i386_frame_cache *cache)
900 {
901 /* Functions that return a structure or union start with:
902
903 popl %eax 0x58
904 xchgl %eax, (%esp) 0x87 0x04 0x24
905 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
906
907 (the System V compiler puts out the second `xchg' instruction,
908 and the assembler doesn't try to optimize it, so the 'sib' form
909 gets generated). This sequence is used to get the address of the
910 return buffer for a function that returns a structure. */
911 static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
912 static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
913 gdb_byte buf[4];
914 gdb_byte op;
915
916 if (current_pc <= pc)
917 return pc;
918
919 target_read_memory (pc, &op, 1);
920
921 if (op != 0x58) /* popl %eax */
922 return pc;
923
924 target_read_memory (pc + 1, buf, 4);
925 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
926 return pc;
927
928 if (current_pc == pc)
929 {
930 cache->sp_offset += 4;
931 return current_pc;
932 }
933
934 if (current_pc == pc + 1)
935 {
936 cache->pc_in_eax = 1;
937 return current_pc;
938 }
939
940 if (buf[1] == proto1[1])
941 return pc + 4;
942 else
943 return pc + 5;
944 }
945
946 static CORE_ADDR
947 i386_skip_probe (CORE_ADDR pc)
948 {
949 /* A function may start with
950
951 pushl constant
952 call _probe
953 addl $4, %esp
954
955 followed by
956
957 pushl %ebp
958
959 etc. */
960 gdb_byte buf[8];
961 gdb_byte op;
962
963 target_read_memory (pc, &op, 1);
964
965 if (op == 0x68 || op == 0x6a)
966 {
967 int delta;
968
969 /* Skip past the `pushl' instruction; it has either a one-byte or a
970 four-byte operand, depending on the opcode. */
971 if (op == 0x68)
972 delta = 5;
973 else
974 delta = 2;
975
976 /* Read the following 8 bytes, which should be `call _probe' (6
977 bytes) followed by `addl $4,%esp' (2 bytes). */
978 read_memory (pc + delta, buf, sizeof (buf));
979 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
980 pc += delta + sizeof (buf);
981 }
982
983 return pc;
984 }
985
986 /* GCC 4.1 and later, can put code in the prologue to realign the
987 stack pointer. Check whether PC points to such code, and update
988 CACHE accordingly. Return the first instruction after the code
989 sequence or CURRENT_PC, whichever is smaller. If we don't
990 recognize the code, return PC. */
991
992 static CORE_ADDR
993 i386_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
994 struct i386_frame_cache *cache)
995 {
996 /* There are 2 code sequences to re-align stack before the frame
997 gets set up:
998
999 1. Use a caller-saved saved register:
1000
1001 leal 4(%esp), %reg
1002 andl $-XXX, %esp
1003 pushl -4(%reg)
1004
1005 2. Use a callee-saved saved register:
1006
1007 pushl %reg
1008 leal 8(%esp), %reg
1009 andl $-XXX, %esp
1010 pushl -4(%reg)
1011
1012 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
1013
1014 0x83 0xe4 0xf0 andl $-16, %esp
1015 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
1016 */
1017
1018 gdb_byte buf[14];
1019 int reg;
1020 int offset, offset_and;
1021 static int regnums[8] = {
1022 I386_EAX_REGNUM, /* %eax */
1023 I386_ECX_REGNUM, /* %ecx */
1024 I386_EDX_REGNUM, /* %edx */
1025 I386_EBX_REGNUM, /* %ebx */
1026 I386_ESP_REGNUM, /* %esp */
1027 I386_EBP_REGNUM, /* %ebp */
1028 I386_ESI_REGNUM, /* %esi */
1029 I386_EDI_REGNUM /* %edi */
1030 };
1031
1032 if (target_read_memory (pc, buf, sizeof buf))
1033 return pc;
1034
1035 /* Check caller-saved saved register. The first instruction has
1036 to be "leal 4(%esp), %reg". */
1037 if (buf[0] == 0x8d && buf[2] == 0x24 && buf[3] == 0x4)
1038 {
1039 /* MOD must be binary 10 and R/M must be binary 100. */
1040 if ((buf[1] & 0xc7) != 0x44)
1041 return pc;
1042
1043 /* REG has register number. */
1044 reg = (buf[1] >> 3) & 7;
1045 offset = 4;
1046 }
1047 else
1048 {
1049 /* Check callee-saved saved register. The first instruction
1050 has to be "pushl %reg". */
1051 if ((buf[0] & 0xf8) != 0x50)
1052 return pc;
1053
1054 /* Get register. */
1055 reg = buf[0] & 0x7;
1056
1057 /* The next instruction has to be "leal 8(%esp), %reg". */
1058 if (buf[1] != 0x8d || buf[3] != 0x24 || buf[4] != 0x8)
1059 return pc;
1060
1061 /* MOD must be binary 10 and R/M must be binary 100. */
1062 if ((buf[2] & 0xc7) != 0x44)
1063 return pc;
1064
1065 /* REG has register number. Registers in pushl and leal have to
1066 be the same. */
1067 if (reg != ((buf[2] >> 3) & 7))
1068 return pc;
1069
1070 offset = 5;
1071 }
1072
1073 /* Rigister can't be %esp nor %ebp. */
1074 if (reg == 4 || reg == 5)
1075 return pc;
1076
1077 /* The next instruction has to be "andl $-XXX, %esp". */
1078 if (buf[offset + 1] != 0xe4
1079 || (buf[offset] != 0x81 && buf[offset] != 0x83))
1080 return pc;
1081
1082 offset_and = offset;
1083 offset += buf[offset] == 0x81 ? 6 : 3;
1084
1085 /* The next instruction has to be "pushl -4(%reg)". 8bit -4 is
1086 0xfc. REG must be binary 110 and MOD must be binary 01. */
1087 if (buf[offset] != 0xff
1088 || buf[offset + 2] != 0xfc
1089 || (buf[offset + 1] & 0xf8) != 0x70)
1090 return pc;
1091
1092 /* R/M has register. Registers in leal and pushl have to be the
1093 same. */
1094 if (reg != (buf[offset + 1] & 7))
1095 return pc;
1096
1097 if (current_pc > pc + offset_and)
1098 cache->saved_sp_reg = regnums[reg];
1099
1100 return min (pc + offset + 3, current_pc);
1101 }
1102
1103 /* Maximum instruction length we need to handle. */
1104 #define I386_MAX_MATCHED_INSN_LEN 6
1105
1106 /* Instruction description. */
1107 struct i386_insn
1108 {
1109 size_t len;
1110 gdb_byte insn[I386_MAX_MATCHED_INSN_LEN];
1111 gdb_byte mask[I386_MAX_MATCHED_INSN_LEN];
1112 };
1113
1114 /* Search for the instruction at PC in the list SKIP_INSNS. Return
1115 the first instruction description that matches. Otherwise, return
1116 NULL. */
1117
1118 static struct i386_insn *
1119 i386_match_insn (CORE_ADDR pc, struct i386_insn *skip_insns)
1120 {
1121 struct i386_insn *insn;
1122 gdb_byte op;
1123
1124 target_read_memory (pc, &op, 1);
1125
1126 for (insn = skip_insns; insn->len > 0; insn++)
1127 {
1128 if ((op & insn->mask[0]) == insn->insn[0])
1129 {
1130 gdb_byte buf[I386_MAX_MATCHED_INSN_LEN - 1];
1131 int insn_matched = 1;
1132 size_t i;
1133
1134 gdb_assert (insn->len > 1);
1135 gdb_assert (insn->len <= I386_MAX_MATCHED_INSN_LEN);
1136
1137 target_read_memory (pc + 1, buf, insn->len - 1);
1138 for (i = 1; i < insn->len; i++)
1139 {
1140 if ((buf[i - 1] & insn->mask[i]) != insn->insn[i])
1141 insn_matched = 0;
1142 }
1143
1144 if (insn_matched)
1145 return insn;
1146 }
1147 }
1148
1149 return NULL;
1150 }
1151
1152 /* Some special instructions that might be migrated by GCC into the
1153 part of the prologue that sets up the new stack frame. Because the
1154 stack frame hasn't been setup yet, no registers have been saved
1155 yet, and only the scratch registers %eax, %ecx and %edx can be
1156 touched. */
1157
1158 struct i386_insn i386_frame_setup_skip_insns[] =
1159 {
1160 /* Check for `movb imm8, r' and `movl imm32, r'.
1161
1162 ??? Should we handle 16-bit operand-sizes here? */
1163
1164 /* `movb imm8, %al' and `movb imm8, %ah' */
1165 /* `movb imm8, %cl' and `movb imm8, %ch' */
1166 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
1167 /* `movb imm8, %dl' and `movb imm8, %dh' */
1168 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
1169 /* `movl imm32, %eax' and `movl imm32, %ecx' */
1170 { 5, { 0xb8 }, { 0xfe } },
1171 /* `movl imm32, %edx' */
1172 { 5, { 0xba }, { 0xff } },
1173
1174 /* Check for `mov imm32, r32'. Note that there is an alternative
1175 encoding for `mov m32, %eax'.
1176
1177 ??? Should we handle SIB adressing here?
1178 ??? Should we handle 16-bit operand-sizes here? */
1179
1180 /* `movl m32, %eax' */
1181 { 5, { 0xa1 }, { 0xff } },
1182 /* `movl m32, %eax' and `mov; m32, %ecx' */
1183 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
1184 /* `movl m32, %edx' */
1185 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
1186
1187 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
1188 Because of the symmetry, there are actually two ways to encode
1189 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
1190 opcode bytes 0x31 and 0x33 for `xorl'. */
1191
1192 /* `subl %eax, %eax' */
1193 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
1194 /* `subl %ecx, %ecx' */
1195 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
1196 /* `subl %edx, %edx' */
1197 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
1198 /* `xorl %eax, %eax' */
1199 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
1200 /* `xorl %ecx, %ecx' */
1201 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
1202 /* `xorl %edx, %edx' */
1203 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
1204 { 0 }
1205 };
1206
1207
1208 /* Check whether PC points to a no-op instruction. */
1209 static CORE_ADDR
1210 i386_skip_noop (CORE_ADDR pc)
1211 {
1212 gdb_byte op;
1213 int check = 1;
1214
1215 target_read_memory (pc, &op, 1);
1216
1217 while (check)
1218 {
1219 check = 0;
1220 /* Ignore `nop' instruction. */
1221 if (op == 0x90)
1222 {
1223 pc += 1;
1224 target_read_memory (pc, &op, 1);
1225 check = 1;
1226 }
1227 /* Ignore no-op instruction `mov %edi, %edi'.
1228 Microsoft system dlls often start with
1229 a `mov %edi,%edi' instruction.
1230 The 5 bytes before the function start are
1231 filled with `nop' instructions.
1232 This pattern can be used for hot-patching:
1233 The `mov %edi, %edi' instruction can be replaced by a
1234 near jump to the location of the 5 `nop' instructions
1235 which can be replaced by a 32-bit jump to anywhere
1236 in the 32-bit address space. */
1237
1238 else if (op == 0x8b)
1239 {
1240 target_read_memory (pc + 1, &op, 1);
1241 if (op == 0xff)
1242 {
1243 pc += 2;
1244 target_read_memory (pc, &op, 1);
1245 check = 1;
1246 }
1247 }
1248 }
1249 return pc;
1250 }
1251
1252 /* Check whether PC points at a code that sets up a new stack frame.
1253 If so, it updates CACHE and returns the address of the first
1254 instruction after the sequence that sets up the frame or LIMIT,
1255 whichever is smaller. If we don't recognize the code, return PC. */
1256
1257 static CORE_ADDR
1258 i386_analyze_frame_setup (struct gdbarch *gdbarch,
1259 CORE_ADDR pc, CORE_ADDR limit,
1260 struct i386_frame_cache *cache)
1261 {
1262 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1263 struct i386_insn *insn;
1264 gdb_byte op;
1265 int skip = 0;
1266
1267 if (limit <= pc)
1268 return limit;
1269
1270 target_read_memory (pc, &op, 1);
1271
1272 if (op == 0x55) /* pushl %ebp */
1273 {
1274 /* Take into account that we've executed the `pushl %ebp' that
1275 starts this instruction sequence. */
1276 cache->saved_regs[I386_EBP_REGNUM] = 0;
1277 cache->sp_offset += 4;
1278 pc++;
1279
1280 /* If that's all, return now. */
1281 if (limit <= pc)
1282 return limit;
1283
1284 /* Check for some special instructions that might be migrated by
1285 GCC into the prologue and skip them. At this point in the
1286 prologue, code should only touch the scratch registers %eax,
1287 %ecx and %edx, so while the number of posibilities is sheer,
1288 it is limited.
1289
1290 Make sure we only skip these instructions if we later see the
1291 `movl %esp, %ebp' that actually sets up the frame. */
1292 while (pc + skip < limit)
1293 {
1294 insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
1295 if (insn == NULL)
1296 break;
1297
1298 skip += insn->len;
1299 }
1300
1301 /* If that's all, return now. */
1302 if (limit <= pc + skip)
1303 return limit;
1304
1305 target_read_memory (pc + skip, &op, 1);
1306
1307 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
1308 switch (op)
1309 {
1310 case 0x8b:
1311 if (read_memory_unsigned_integer (pc + skip + 1, 1, byte_order)
1312 != 0xec)
1313 return pc;
1314 break;
1315 case 0x89:
1316 if (read_memory_unsigned_integer (pc + skip + 1, 1, byte_order)
1317 != 0xe5)
1318 return pc;
1319 break;
1320 default:
1321 return pc;
1322 }
1323
1324 /* OK, we actually have a frame. We just don't know how large
1325 it is yet. Set its size to zero. We'll adjust it if
1326 necessary. We also now commit to skipping the special
1327 instructions mentioned before. */
1328 cache->locals = 0;
1329 pc += (skip + 2);
1330
1331 /* If that's all, return now. */
1332 if (limit <= pc)
1333 return limit;
1334
1335 /* Check for stack adjustment
1336
1337 subl $XXX, %esp
1338
1339 NOTE: You can't subtract a 16-bit immediate from a 32-bit
1340 reg, so we don't have to worry about a data16 prefix. */
1341 target_read_memory (pc, &op, 1);
1342 if (op == 0x83)
1343 {
1344 /* `subl' with 8-bit immediate. */
1345 if (read_memory_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1346 /* Some instruction starting with 0x83 other than `subl'. */
1347 return pc;
1348
1349 /* `subl' with signed 8-bit immediate (though it wouldn't
1350 make sense to be negative). */
1351 cache->locals = read_memory_integer (pc + 2, 1, byte_order);
1352 return pc + 3;
1353 }
1354 else if (op == 0x81)
1355 {
1356 /* Maybe it is `subl' with a 32-bit immediate. */
1357 if (read_memory_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1358 /* Some instruction starting with 0x81 other than `subl'. */
1359 return pc;
1360
1361 /* It is `subl' with a 32-bit immediate. */
1362 cache->locals = read_memory_integer (pc + 2, 4, byte_order);
1363 return pc + 6;
1364 }
1365 else
1366 {
1367 /* Some instruction other than `subl'. */
1368 return pc;
1369 }
1370 }
1371 else if (op == 0xc8) /* enter */
1372 {
1373 cache->locals = read_memory_unsigned_integer (pc + 1, 2, byte_order);
1374 return pc + 4;
1375 }
1376
1377 return pc;
1378 }
1379
1380 /* Check whether PC points at code that saves registers on the stack.
1381 If so, it updates CACHE and returns the address of the first
1382 instruction after the register saves or CURRENT_PC, whichever is
1383 smaller. Otherwise, return PC. */
1384
1385 static CORE_ADDR
1386 i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
1387 struct i386_frame_cache *cache)
1388 {
1389 CORE_ADDR offset = 0;
1390 gdb_byte op;
1391 int i;
1392
1393 if (cache->locals > 0)
1394 offset -= cache->locals;
1395 for (i = 0; i < 8 && pc < current_pc; i++)
1396 {
1397 target_read_memory (pc, &op, 1);
1398 if (op < 0x50 || op > 0x57)
1399 break;
1400
1401 offset -= 4;
1402 cache->saved_regs[op - 0x50] = offset;
1403 cache->sp_offset += 4;
1404 pc++;
1405 }
1406
1407 return pc;
1408 }
1409
1410 /* Do a full analysis of the prologue at PC and update CACHE
1411 accordingly. Bail out early if CURRENT_PC is reached. Return the
1412 address where the analysis stopped.
1413
1414 We handle these cases:
1415
1416 The startup sequence can be at the start of the function, or the
1417 function can start with a branch to startup code at the end.
1418
1419 %ebp can be set up with either the 'enter' instruction, or "pushl
1420 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
1421 once used in the System V compiler).
1422
1423 Local space is allocated just below the saved %ebp by either the
1424 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
1425 16-bit unsigned argument for space to allocate, and the 'addl'
1426 instruction could have either a signed byte, or 32-bit immediate.
1427
1428 Next, the registers used by this function are pushed. With the
1429 System V compiler they will always be in the order: %edi, %esi,
1430 %ebx (and sometimes a harmless bug causes it to also save but not
1431 restore %eax); however, the code below is willing to see the pushes
1432 in any order, and will handle up to 8 of them.
1433
1434 If the setup sequence is at the end of the function, then the next
1435 instruction will be a branch back to the start. */
1436
1437 static CORE_ADDR
1438 i386_analyze_prologue (struct gdbarch *gdbarch,
1439 CORE_ADDR pc, CORE_ADDR current_pc,
1440 struct i386_frame_cache *cache)
1441 {
1442 pc = i386_skip_noop (pc);
1443 pc = i386_follow_jump (gdbarch, pc);
1444 pc = i386_analyze_struct_return (pc, current_pc, cache);
1445 pc = i386_skip_probe (pc);
1446 pc = i386_analyze_stack_align (pc, current_pc, cache);
1447 pc = i386_analyze_frame_setup (gdbarch, pc, current_pc, cache);
1448 return i386_analyze_register_saves (pc, current_pc, cache);
1449 }
1450
1451 /* Return PC of first real instruction. */
1452
1453 static CORE_ADDR
1454 i386_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
1455 {
1456 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1457
1458 static gdb_byte pic_pat[6] =
1459 {
1460 0xe8, 0, 0, 0, 0, /* call 0x0 */
1461 0x5b, /* popl %ebx */
1462 };
1463 struct i386_frame_cache cache;
1464 CORE_ADDR pc;
1465 gdb_byte op;
1466 int i;
1467
1468 cache.locals = -1;
1469 pc = i386_analyze_prologue (gdbarch, start_pc, 0xffffffff, &cache);
1470 if (cache.locals < 0)
1471 return start_pc;
1472
1473 /* Found valid frame setup. */
1474
1475 /* The native cc on SVR4 in -K PIC mode inserts the following code
1476 to get the address of the global offset table (GOT) into register
1477 %ebx:
1478
1479 call 0x0
1480 popl %ebx
1481 movl %ebx,x(%ebp) (optional)
1482 addl y,%ebx
1483
1484 This code is with the rest of the prologue (at the end of the
1485 function), so we have to skip it to get to the first real
1486 instruction at the start of the function. */
1487
1488 for (i = 0; i < 6; i++)
1489 {
1490 target_read_memory (pc + i, &op, 1);
1491 if (pic_pat[i] != op)
1492 break;
1493 }
1494 if (i == 6)
1495 {
1496 int delta = 6;
1497
1498 target_read_memory (pc + delta, &op, 1);
1499
1500 if (op == 0x89) /* movl %ebx, x(%ebp) */
1501 {
1502 op = read_memory_unsigned_integer (pc + delta + 1, 1, byte_order);
1503
1504 if (op == 0x5d) /* One byte offset from %ebp. */
1505 delta += 3;
1506 else if (op == 0x9d) /* Four byte offset from %ebp. */
1507 delta += 6;
1508 else /* Unexpected instruction. */
1509 delta = 0;
1510
1511 target_read_memory (pc + delta, &op, 1);
1512 }
1513
1514 /* addl y,%ebx */
1515 if (delta > 0 && op == 0x81
1516 && read_memory_unsigned_integer (pc + delta + 1, 1, byte_order)
1517 == 0xc3)
1518 {
1519 pc += delta + 6;
1520 }
1521 }
1522
1523 /* If the function starts with a branch (to startup code at the end)
1524 the last instruction should bring us back to the first
1525 instruction of the real code. */
1526 if (i386_follow_jump (gdbarch, start_pc) != start_pc)
1527 pc = i386_follow_jump (gdbarch, pc);
1528
1529 return pc;
1530 }
1531
1532 /* Check that the code pointed to by PC corresponds to a call to
1533 __main, skip it if so. Return PC otherwise. */
1534
1535 CORE_ADDR
1536 i386_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1537 {
1538 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1539 gdb_byte op;
1540
1541 target_read_memory (pc, &op, 1);
1542 if (op == 0xe8)
1543 {
1544 gdb_byte buf[4];
1545
1546 if (target_read_memory (pc + 1, buf, sizeof buf) == 0)
1547 {
1548 /* Make sure address is computed correctly as a 32bit
1549 integer even if CORE_ADDR is 64 bit wide. */
1550 struct minimal_symbol *s;
1551 CORE_ADDR call_dest;
1552
1553 call_dest = pc + 5 + extract_signed_integer (buf, 4, byte_order);
1554 call_dest = call_dest & 0xffffffffU;
1555 s = lookup_minimal_symbol_by_pc (call_dest);
1556 if (s != NULL
1557 && SYMBOL_LINKAGE_NAME (s) != NULL
1558 && strcmp (SYMBOL_LINKAGE_NAME (s), "__main") == 0)
1559 pc += 5;
1560 }
1561 }
1562
1563 return pc;
1564 }
1565
1566 /* This function is 64-bit safe. */
1567
1568 static CORE_ADDR
1569 i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1570 {
1571 gdb_byte buf[8];
1572
1573 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
1574 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
1575 }
1576 \f
1577
1578 /* Normal frames. */
1579
1580 static struct i386_frame_cache *
1581 i386_frame_cache (struct frame_info *this_frame, void **this_cache)
1582 {
1583 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1584 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1585 struct i386_frame_cache *cache;
1586 gdb_byte buf[4];
1587 int i;
1588
1589 if (*this_cache)
1590 return *this_cache;
1591
1592 cache = i386_alloc_frame_cache ();
1593 *this_cache = cache;
1594
1595 /* In principle, for normal frames, %ebp holds the frame pointer,
1596 which holds the base address for the current stack frame.
1597 However, for functions that don't need it, the frame pointer is
1598 optional. For these "frameless" functions the frame pointer is
1599 actually the frame pointer of the calling frame. Signal
1600 trampolines are just a special case of a "frameless" function.
1601 They (usually) share their frame pointer with the frame that was
1602 in progress when the signal occurred. */
1603
1604 get_frame_register (this_frame, I386_EBP_REGNUM, buf);
1605 cache->base = extract_unsigned_integer (buf, 4, byte_order);
1606 if (cache->base == 0)
1607 return cache;
1608
1609 /* For normal frames, %eip is stored at 4(%ebp). */
1610 cache->saved_regs[I386_EIP_REGNUM] = 4;
1611
1612 cache->pc = get_frame_func (this_frame);
1613 if (cache->pc != 0)
1614 i386_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
1615 cache);
1616
1617 if (cache->saved_sp_reg != -1)
1618 {
1619 /* Saved stack pointer has been saved. */
1620 get_frame_register (this_frame, cache->saved_sp_reg, buf);
1621 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
1622 }
1623
1624 if (cache->locals < 0)
1625 {
1626 /* We didn't find a valid frame, which means that CACHE->base
1627 currently holds the frame pointer for our calling frame. If
1628 we're at the start of a function, or somewhere half-way its
1629 prologue, the function's frame probably hasn't been fully
1630 setup yet. Try to reconstruct the base address for the stack
1631 frame by looking at the stack pointer. For truly "frameless"
1632 functions this might work too. */
1633
1634 if (cache->saved_sp_reg != -1)
1635 {
1636 /* We're halfway aligning the stack. */
1637 cache->base = ((cache->saved_sp - 4) & 0xfffffff0) - 4;
1638 cache->saved_regs[I386_EIP_REGNUM] = cache->saved_sp - 4;
1639
1640 /* This will be added back below. */
1641 cache->saved_regs[I386_EIP_REGNUM] -= cache->base;
1642 }
1643 else if (cache->pc != 0
1644 || target_read_memory (get_frame_pc (this_frame), buf, 1))
1645 {
1646 /* We're in a known function, but did not find a frame
1647 setup. Assume that the function does not use %ebp.
1648 Alternatively, we may have jumped to an invalid
1649 address; in that case there is definitely no new
1650 frame in %ebp. */
1651 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
1652 cache->base = extract_unsigned_integer (buf, 4, byte_order)
1653 + cache->sp_offset;
1654 }
1655 else
1656 /* We're in an unknown function. We could not find the start
1657 of the function to analyze the prologue; our best option is
1658 to assume a typical frame layout with the caller's %ebp
1659 saved. */
1660 cache->saved_regs[I386_EBP_REGNUM] = 0;
1661 }
1662
1663 /* Now that we have the base address for the stack frame we can
1664 calculate the value of %esp in the calling frame. */
1665 if (cache->saved_sp == 0)
1666 cache->saved_sp = cache->base + 8;
1667
1668 /* Adjust all the saved registers such that they contain addresses
1669 instead of offsets. */
1670 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
1671 if (cache->saved_regs[i] != -1)
1672 cache->saved_regs[i] += cache->base;
1673
1674 return cache;
1675 }
1676
1677 static void
1678 i386_frame_this_id (struct frame_info *this_frame, void **this_cache,
1679 struct frame_id *this_id)
1680 {
1681 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
1682
1683 /* This marks the outermost frame. */
1684 if (cache->base == 0)
1685 return;
1686
1687 /* See the end of i386_push_dummy_call. */
1688 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
1689 }
1690
1691 static struct value *
1692 i386_frame_prev_register (struct frame_info *this_frame, void **this_cache,
1693 int regnum)
1694 {
1695 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
1696
1697 gdb_assert (regnum >= 0);
1698
1699 /* The System V ABI says that:
1700
1701 "The flags register contains the system flags, such as the
1702 direction flag and the carry flag. The direction flag must be
1703 set to the forward (that is, zero) direction before entry and
1704 upon exit from a function. Other user flags have no specified
1705 role in the standard calling sequence and are not preserved."
1706
1707 To guarantee the "upon exit" part of that statement we fake a
1708 saved flags register that has its direction flag cleared.
1709
1710 Note that GCC doesn't seem to rely on the fact that the direction
1711 flag is cleared after a function return; it always explicitly
1712 clears the flag before operations where it matters.
1713
1714 FIXME: kettenis/20030316: I'm not quite sure whether this is the
1715 right thing to do. The way we fake the flags register here makes
1716 it impossible to change it. */
1717
1718 if (regnum == I386_EFLAGS_REGNUM)
1719 {
1720 ULONGEST val;
1721
1722 val = get_frame_register_unsigned (this_frame, regnum);
1723 val &= ~(1 << 10);
1724 return frame_unwind_got_constant (this_frame, regnum, val);
1725 }
1726
1727 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
1728 return frame_unwind_got_register (this_frame, regnum, I386_EAX_REGNUM);
1729
1730 if (regnum == I386_ESP_REGNUM && cache->saved_sp)
1731 return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
1732
1733 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
1734 return frame_unwind_got_memory (this_frame, regnum,
1735 cache->saved_regs[regnum]);
1736
1737 return frame_unwind_got_register (this_frame, regnum, regnum);
1738 }
1739
1740 static const struct frame_unwind i386_frame_unwind =
1741 {
1742 NORMAL_FRAME,
1743 i386_frame_this_id,
1744 i386_frame_prev_register,
1745 NULL,
1746 default_frame_sniffer
1747 };
1748
1749 /* Normal frames, but in a function epilogue. */
1750
1751 /* The epilogue is defined here as the 'ret' instruction, which will
1752 follow any instruction such as 'leave' or 'pop %ebp' that destroys
1753 the function's stack frame. */
1754
1755 static int
1756 i386_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
1757 {
1758 gdb_byte insn;
1759
1760 if (target_read_memory (pc, &insn, 1))
1761 return 0; /* Can't read memory at pc. */
1762
1763 if (insn != 0xc3) /* 'ret' instruction. */
1764 return 0;
1765
1766 return 1;
1767 }
1768
1769 static int
1770 i386_epilogue_frame_sniffer (const struct frame_unwind *self,
1771 struct frame_info *this_frame,
1772 void **this_prologue_cache)
1773 {
1774 if (frame_relative_level (this_frame) == 0)
1775 return i386_in_function_epilogue_p (get_frame_arch (this_frame),
1776 get_frame_pc (this_frame));
1777 else
1778 return 0;
1779 }
1780
1781 static struct i386_frame_cache *
1782 i386_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
1783 {
1784 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1785 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1786 struct i386_frame_cache *cache;
1787 gdb_byte buf[4];
1788
1789 if (*this_cache)
1790 return *this_cache;
1791
1792 cache = i386_alloc_frame_cache ();
1793 *this_cache = cache;
1794
1795 /* Cache base will be %esp plus cache->sp_offset (-4). */
1796 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
1797 cache->base = extract_unsigned_integer (buf, 4,
1798 byte_order) + cache->sp_offset;
1799
1800 /* Cache pc will be the frame func. */
1801 cache->pc = get_frame_pc (this_frame);
1802
1803 /* The saved %esp will be at cache->base plus 8. */
1804 cache->saved_sp = cache->base + 8;
1805
1806 /* The saved %eip will be at cache->base plus 4. */
1807 cache->saved_regs[I386_EIP_REGNUM] = cache->base + 4;
1808
1809 return cache;
1810 }
1811
1812 static void
1813 i386_epilogue_frame_this_id (struct frame_info *this_frame,
1814 void **this_cache,
1815 struct frame_id *this_id)
1816 {
1817 struct i386_frame_cache *cache = i386_epilogue_frame_cache (this_frame,
1818 this_cache);
1819
1820 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
1821 }
1822
1823 static const struct frame_unwind i386_epilogue_frame_unwind =
1824 {
1825 NORMAL_FRAME,
1826 i386_epilogue_frame_this_id,
1827 i386_frame_prev_register,
1828 NULL,
1829 i386_epilogue_frame_sniffer
1830 };
1831 \f
1832
1833 /* Signal trampolines. */
1834
1835 static struct i386_frame_cache *
1836 i386_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
1837 {
1838 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1839 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1840 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1841 struct i386_frame_cache *cache;
1842 CORE_ADDR addr;
1843 gdb_byte buf[4];
1844
1845 if (*this_cache)
1846 return *this_cache;
1847
1848 cache = i386_alloc_frame_cache ();
1849
1850 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
1851 cache->base = extract_unsigned_integer (buf, 4, byte_order) - 4;
1852
1853 addr = tdep->sigcontext_addr (this_frame);
1854 if (tdep->sc_reg_offset)
1855 {
1856 int i;
1857
1858 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
1859
1860 for (i = 0; i < tdep->sc_num_regs; i++)
1861 if (tdep->sc_reg_offset[i] != -1)
1862 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
1863 }
1864 else
1865 {
1866 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
1867 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
1868 }
1869
1870 *this_cache = cache;
1871 return cache;
1872 }
1873
1874 static void
1875 i386_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache,
1876 struct frame_id *this_id)
1877 {
1878 struct i386_frame_cache *cache =
1879 i386_sigtramp_frame_cache (this_frame, this_cache);
1880
1881 /* See the end of i386_push_dummy_call. */
1882 (*this_id) = frame_id_build (cache->base + 8, get_frame_pc (this_frame));
1883 }
1884
1885 static struct value *
1886 i386_sigtramp_frame_prev_register (struct frame_info *this_frame,
1887 void **this_cache, int regnum)
1888 {
1889 /* Make sure we've initialized the cache. */
1890 i386_sigtramp_frame_cache (this_frame, this_cache);
1891
1892 return i386_frame_prev_register (this_frame, this_cache, regnum);
1893 }
1894
1895 static int
1896 i386_sigtramp_frame_sniffer (const struct frame_unwind *self,
1897 struct frame_info *this_frame,
1898 void **this_prologue_cache)
1899 {
1900 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
1901
1902 /* We shouldn't even bother if we don't have a sigcontext_addr
1903 handler. */
1904 if (tdep->sigcontext_addr == NULL)
1905 return 0;
1906
1907 if (tdep->sigtramp_p != NULL)
1908 {
1909 if (tdep->sigtramp_p (this_frame))
1910 return 1;
1911 }
1912
1913 if (tdep->sigtramp_start != 0)
1914 {
1915 CORE_ADDR pc = get_frame_pc (this_frame);
1916
1917 gdb_assert (tdep->sigtramp_end != 0);
1918 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
1919 return 1;
1920 }
1921
1922 return 0;
1923 }
1924
1925 static const struct frame_unwind i386_sigtramp_frame_unwind =
1926 {
1927 SIGTRAMP_FRAME,
1928 i386_sigtramp_frame_this_id,
1929 i386_sigtramp_frame_prev_register,
1930 NULL,
1931 i386_sigtramp_frame_sniffer
1932 };
1933 \f
1934
1935 static CORE_ADDR
1936 i386_frame_base_address (struct frame_info *this_frame, void **this_cache)
1937 {
1938 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
1939
1940 return cache->base;
1941 }
1942
1943 static const struct frame_base i386_frame_base =
1944 {
1945 &i386_frame_unwind,
1946 i386_frame_base_address,
1947 i386_frame_base_address,
1948 i386_frame_base_address
1949 };
1950
1951 static struct frame_id
1952 i386_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1953 {
1954 CORE_ADDR fp;
1955
1956 fp = get_frame_register_unsigned (this_frame, I386_EBP_REGNUM);
1957
1958 /* See the end of i386_push_dummy_call. */
1959 return frame_id_build (fp + 8, get_frame_pc (this_frame));
1960 }
1961 \f
1962
1963 /* Figure out where the longjmp will land. Slurp the args out of the
1964 stack. We expect the first arg to be a pointer to the jmp_buf
1965 structure from which we extract the address that we will land at.
1966 This address is copied into PC. This routine returns non-zero on
1967 success. */
1968
1969 static int
1970 i386_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
1971 {
1972 gdb_byte buf[4];
1973 CORE_ADDR sp, jb_addr;
1974 struct gdbarch *gdbarch = get_frame_arch (frame);
1975 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1976 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
1977
1978 /* If JB_PC_OFFSET is -1, we have no way to find out where the
1979 longjmp will land. */
1980 if (jb_pc_offset == -1)
1981 return 0;
1982
1983 get_frame_register (frame, I386_ESP_REGNUM, buf);
1984 sp = extract_unsigned_integer (buf, 4, byte_order);
1985 if (target_read_memory (sp + 4, buf, 4))
1986 return 0;
1987
1988 jb_addr = extract_unsigned_integer (buf, 4, byte_order);
1989 if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
1990 return 0;
1991
1992 *pc = extract_unsigned_integer (buf, 4, byte_order);
1993 return 1;
1994 }
1995 \f
1996
1997 /* Check whether TYPE must be 16-byte-aligned when passed as a
1998 function argument. 16-byte vectors, _Decimal128 and structures or
1999 unions containing such types must be 16-byte-aligned; other
2000 arguments are 4-byte-aligned. */
2001
2002 static int
2003 i386_16_byte_align_p (struct type *type)
2004 {
2005 type = check_typedef (type);
2006 if ((TYPE_CODE (type) == TYPE_CODE_DECFLOAT
2007 || (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type)))
2008 && TYPE_LENGTH (type) == 16)
2009 return 1;
2010 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2011 return i386_16_byte_align_p (TYPE_TARGET_TYPE (type));
2012 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2013 || TYPE_CODE (type) == TYPE_CODE_UNION)
2014 {
2015 int i;
2016 for (i = 0; i < TYPE_NFIELDS (type); i++)
2017 {
2018 if (i386_16_byte_align_p (TYPE_FIELD_TYPE (type, i)))
2019 return 1;
2020 }
2021 }
2022 return 0;
2023 }
2024
2025 static CORE_ADDR
2026 i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2027 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2028 struct value **args, CORE_ADDR sp, int struct_return,
2029 CORE_ADDR struct_addr)
2030 {
2031 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2032 gdb_byte buf[4];
2033 int i;
2034 int write_pass;
2035 int args_space = 0;
2036
2037 /* Determine the total space required for arguments and struct
2038 return address in a first pass (allowing for 16-byte-aligned
2039 arguments), then push arguments in a second pass. */
2040
2041 for (write_pass = 0; write_pass < 2; write_pass++)
2042 {
2043 int args_space_used = 0;
2044 int have_16_byte_aligned_arg = 0;
2045
2046 if (struct_return)
2047 {
2048 if (write_pass)
2049 {
2050 /* Push value address. */
2051 store_unsigned_integer (buf, 4, byte_order, struct_addr);
2052 write_memory (sp, buf, 4);
2053 args_space_used += 4;
2054 }
2055 else
2056 args_space += 4;
2057 }
2058
2059 for (i = 0; i < nargs; i++)
2060 {
2061 int len = TYPE_LENGTH (value_enclosing_type (args[i]));
2062
2063 if (write_pass)
2064 {
2065 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2066 args_space_used = align_up (args_space_used, 16);
2067
2068 write_memory (sp + args_space_used,
2069 value_contents_all (args[i]), len);
2070 /* The System V ABI says that:
2071
2072 "An argument's size is increased, if necessary, to make it a
2073 multiple of [32-bit] words. This may require tail padding,
2074 depending on the size of the argument."
2075
2076 This makes sure the stack stays word-aligned. */
2077 args_space_used += align_up (len, 4);
2078 }
2079 else
2080 {
2081 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2082 {
2083 args_space = align_up (args_space, 16);
2084 have_16_byte_aligned_arg = 1;
2085 }
2086 args_space += align_up (len, 4);
2087 }
2088 }
2089
2090 if (!write_pass)
2091 {
2092 if (have_16_byte_aligned_arg)
2093 args_space = align_up (args_space, 16);
2094 sp -= args_space;
2095 }
2096 }
2097
2098 /* Store return address. */
2099 sp -= 4;
2100 store_unsigned_integer (buf, 4, byte_order, bp_addr);
2101 write_memory (sp, buf, 4);
2102
2103 /* Finally, update the stack pointer... */
2104 store_unsigned_integer (buf, 4, byte_order, sp);
2105 regcache_cooked_write (regcache, I386_ESP_REGNUM, buf);
2106
2107 /* ...and fake a frame pointer. */
2108 regcache_cooked_write (regcache, I386_EBP_REGNUM, buf);
2109
2110 /* MarkK wrote: This "+ 8" is all over the place:
2111 (i386_frame_this_id, i386_sigtramp_frame_this_id,
2112 i386_dummy_id). It's there, since all frame unwinders for
2113 a given target have to agree (within a certain margin) on the
2114 definition of the stack address of a frame. Otherwise frame id
2115 comparison might not work correctly. Since DWARF2/GCC uses the
2116 stack address *before* the function call as a frame's CFA. On
2117 the i386, when %ebp is used as a frame pointer, the offset
2118 between the contents %ebp and the CFA as defined by GCC. */
2119 return sp + 8;
2120 }
2121
2122 /* These registers are used for returning integers (and on some
2123 targets also for returning `struct' and `union' values when their
2124 size and alignment match an integer type). */
2125 #define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
2126 #define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
2127
2128 /* Read, for architecture GDBARCH, a function return value of TYPE
2129 from REGCACHE, and copy that into VALBUF. */
2130
2131 static void
2132 i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
2133 struct regcache *regcache, gdb_byte *valbuf)
2134 {
2135 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2136 int len = TYPE_LENGTH (type);
2137 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2138
2139 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2140 {
2141 if (tdep->st0_regnum < 0)
2142 {
2143 warning (_("Cannot find floating-point return value."));
2144 memset (valbuf, 0, len);
2145 return;
2146 }
2147
2148 /* Floating-point return values can be found in %st(0). Convert
2149 its contents to the desired type. This is probably not
2150 exactly how it would happen on the target itself, but it is
2151 the best we can do. */
2152 regcache_raw_read (regcache, I386_ST0_REGNUM, buf);
2153 convert_typed_floating (buf, i387_ext_type (gdbarch), valbuf, type);
2154 }
2155 else
2156 {
2157 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2158 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2159
2160 if (len <= low_size)
2161 {
2162 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
2163 memcpy (valbuf, buf, len);
2164 }
2165 else if (len <= (low_size + high_size))
2166 {
2167 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
2168 memcpy (valbuf, buf, low_size);
2169 regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
2170 memcpy (valbuf + low_size, buf, len - low_size);
2171 }
2172 else
2173 internal_error (__FILE__, __LINE__,
2174 _("Cannot extract return value of %d bytes long."), len);
2175 }
2176 }
2177
2178 /* Write, for architecture GDBARCH, a function return value of TYPE
2179 from VALBUF into REGCACHE. */
2180
2181 static void
2182 i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
2183 struct regcache *regcache, const gdb_byte *valbuf)
2184 {
2185 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2186 int len = TYPE_LENGTH (type);
2187
2188 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2189 {
2190 ULONGEST fstat;
2191 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2192
2193 if (tdep->st0_regnum < 0)
2194 {
2195 warning (_("Cannot set floating-point return value."));
2196 return;
2197 }
2198
2199 /* Returning floating-point values is a bit tricky. Apart from
2200 storing the return value in %st(0), we have to simulate the
2201 state of the FPU at function return point. */
2202
2203 /* Convert the value found in VALBUF to the extended
2204 floating-point format used by the FPU. This is probably
2205 not exactly how it would happen on the target itself, but
2206 it is the best we can do. */
2207 convert_typed_floating (valbuf, type, buf, i387_ext_type (gdbarch));
2208 regcache_raw_write (regcache, I386_ST0_REGNUM, buf);
2209
2210 /* Set the top of the floating-point register stack to 7. The
2211 actual value doesn't really matter, but 7 is what a normal
2212 function return would end up with if the program started out
2213 with a freshly initialized FPU. */
2214 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
2215 fstat |= (7 << 11);
2216 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM (tdep), fstat);
2217
2218 /* Mark %st(1) through %st(7) as empty. Since we set the top of
2219 the floating-point register stack to 7, the appropriate value
2220 for the tag word is 0x3fff. */
2221 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM (tdep), 0x3fff);
2222 }
2223 else
2224 {
2225 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2226 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2227
2228 if (len <= low_size)
2229 regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
2230 else if (len <= (low_size + high_size))
2231 {
2232 regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
2233 regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
2234 len - low_size, valbuf + low_size);
2235 }
2236 else
2237 internal_error (__FILE__, __LINE__,
2238 _("Cannot store return value of %d bytes long."), len);
2239 }
2240 }
2241 \f
2242
2243 /* This is the variable that is set with "set struct-convention", and
2244 its legitimate values. */
2245 static const char default_struct_convention[] = "default";
2246 static const char pcc_struct_convention[] = "pcc";
2247 static const char reg_struct_convention[] = "reg";
2248 static const char *valid_conventions[] =
2249 {
2250 default_struct_convention,
2251 pcc_struct_convention,
2252 reg_struct_convention,
2253 NULL
2254 };
2255 static const char *struct_convention = default_struct_convention;
2256
2257 /* Return non-zero if TYPE, which is assumed to be a structure,
2258 a union type, or an array type, should be returned in registers
2259 for architecture GDBARCH. */
2260
2261 static int
2262 i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
2263 {
2264 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2265 enum type_code code = TYPE_CODE (type);
2266 int len = TYPE_LENGTH (type);
2267
2268 gdb_assert (code == TYPE_CODE_STRUCT
2269 || code == TYPE_CODE_UNION
2270 || code == TYPE_CODE_ARRAY);
2271
2272 if (struct_convention == pcc_struct_convention
2273 || (struct_convention == default_struct_convention
2274 && tdep->struct_return == pcc_struct_return))
2275 return 0;
2276
2277 /* Structures consisting of a single `float', `double' or 'long
2278 double' member are returned in %st(0). */
2279 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2280 {
2281 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
2282 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2283 return (len == 4 || len == 8 || len == 12);
2284 }
2285
2286 return (len == 1 || len == 2 || len == 4 || len == 8);
2287 }
2288
2289 /* Determine, for architecture GDBARCH, how a return value of TYPE
2290 should be returned. If it is supposed to be returned in registers,
2291 and READBUF is non-zero, read the appropriate value from REGCACHE,
2292 and copy it into READBUF. If WRITEBUF is non-zero, write the value
2293 from WRITEBUF into REGCACHE. */
2294
2295 static enum return_value_convention
2296 i386_return_value (struct gdbarch *gdbarch, struct type *func_type,
2297 struct type *type, struct regcache *regcache,
2298 gdb_byte *readbuf, const gdb_byte *writebuf)
2299 {
2300 enum type_code code = TYPE_CODE (type);
2301
2302 if (((code == TYPE_CODE_STRUCT
2303 || code == TYPE_CODE_UNION
2304 || code == TYPE_CODE_ARRAY)
2305 && !i386_reg_struct_return_p (gdbarch, type))
2306 /* 128-bit decimal float uses the struct return convention. */
2307 || (code == TYPE_CODE_DECFLOAT && TYPE_LENGTH (type) == 16))
2308 {
2309 /* The System V ABI says that:
2310
2311 "A function that returns a structure or union also sets %eax
2312 to the value of the original address of the caller's area
2313 before it returns. Thus when the caller receives control
2314 again, the address of the returned object resides in register
2315 %eax and can be used to access the object."
2316
2317 So the ABI guarantees that we can always find the return
2318 value just after the function has returned. */
2319
2320 /* Note that the ABI doesn't mention functions returning arrays,
2321 which is something possible in certain languages such as Ada.
2322 In this case, the value is returned as if it was wrapped in
2323 a record, so the convention applied to records also applies
2324 to arrays. */
2325
2326 if (readbuf)
2327 {
2328 ULONGEST addr;
2329
2330 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
2331 read_memory (addr, readbuf, TYPE_LENGTH (type));
2332 }
2333
2334 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
2335 }
2336
2337 /* This special case is for structures consisting of a single
2338 `float', `double' or 'long double' member. These structures are
2339 returned in %st(0). For these structures, we call ourselves
2340 recursively, changing TYPE into the type of the first member of
2341 the structure. Since that should work for all structures that
2342 have only one member, we don't bother to check the member's type
2343 here. */
2344 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2345 {
2346 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
2347 return i386_return_value (gdbarch, func_type, type, regcache,
2348 readbuf, writebuf);
2349 }
2350
2351 if (readbuf)
2352 i386_extract_return_value (gdbarch, type, regcache, readbuf);
2353 if (writebuf)
2354 i386_store_return_value (gdbarch, type, regcache, writebuf);
2355
2356 return RETURN_VALUE_REGISTER_CONVENTION;
2357 }
2358 \f
2359
2360 struct type *
2361 i387_ext_type (struct gdbarch *gdbarch)
2362 {
2363 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2364
2365 if (!tdep->i387_ext_type)
2366 {
2367 tdep->i387_ext_type = tdesc_find_type (gdbarch, "i387_ext");
2368 gdb_assert (tdep->i387_ext_type != NULL);
2369 }
2370
2371 return tdep->i387_ext_type;
2372 }
2373
2374 /* Construct vector type for pseudo YMM registers. We can't use
2375 tdesc_find_type since YMM isn't described in target description. */
2376
2377 static struct type *
2378 i386_ymm_type (struct gdbarch *gdbarch)
2379 {
2380 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2381
2382 if (!tdep->i386_ymm_type)
2383 {
2384 const struct builtin_type *bt = builtin_type (gdbarch);
2385
2386 /* The type we're building is this: */
2387 #if 0
2388 union __gdb_builtin_type_vec256i
2389 {
2390 int128_t uint128[2];
2391 int64_t v2_int64[4];
2392 int32_t v4_int32[8];
2393 int16_t v8_int16[16];
2394 int8_t v16_int8[32];
2395 double v2_double[4];
2396 float v4_float[8];
2397 };
2398 #endif
2399
2400 struct type *t;
2401
2402 t = arch_composite_type (gdbarch,
2403 "__gdb_builtin_type_vec256i", TYPE_CODE_UNION);
2404 append_composite_type_field (t, "v8_float",
2405 init_vector_type (bt->builtin_float, 8));
2406 append_composite_type_field (t, "v4_double",
2407 init_vector_type (bt->builtin_double, 4));
2408 append_composite_type_field (t, "v32_int8",
2409 init_vector_type (bt->builtin_int8, 32));
2410 append_composite_type_field (t, "v16_int16",
2411 init_vector_type (bt->builtin_int16, 16));
2412 append_composite_type_field (t, "v8_int32",
2413 init_vector_type (bt->builtin_int32, 8));
2414 append_composite_type_field (t, "v4_int64",
2415 init_vector_type (bt->builtin_int64, 4));
2416 append_composite_type_field (t, "v2_int128",
2417 init_vector_type (bt->builtin_int128, 2));
2418
2419 TYPE_VECTOR (t) = 1;
2420 TYPE_NAME (t) = "builtin_type_vec128i";
2421 tdep->i386_ymm_type = t;
2422 }
2423
2424 return tdep->i386_ymm_type;
2425 }
2426
2427 /* Construct vector type for MMX registers. */
2428 static struct type *
2429 i386_mmx_type (struct gdbarch *gdbarch)
2430 {
2431 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2432
2433 if (!tdep->i386_mmx_type)
2434 {
2435 const struct builtin_type *bt = builtin_type (gdbarch);
2436
2437 /* The type we're building is this: */
2438 #if 0
2439 union __gdb_builtin_type_vec64i
2440 {
2441 int64_t uint64;
2442 int32_t v2_int32[2];
2443 int16_t v4_int16[4];
2444 int8_t v8_int8[8];
2445 };
2446 #endif
2447
2448 struct type *t;
2449
2450 t = arch_composite_type (gdbarch,
2451 "__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
2452
2453 append_composite_type_field (t, "uint64", bt->builtin_int64);
2454 append_composite_type_field (t, "v2_int32",
2455 init_vector_type (bt->builtin_int32, 2));
2456 append_composite_type_field (t, "v4_int16",
2457 init_vector_type (bt->builtin_int16, 4));
2458 append_composite_type_field (t, "v8_int8",
2459 init_vector_type (bt->builtin_int8, 8));
2460
2461 TYPE_VECTOR (t) = 1;
2462 TYPE_NAME (t) = "builtin_type_vec64i";
2463 tdep->i386_mmx_type = t;
2464 }
2465
2466 return tdep->i386_mmx_type;
2467 }
2468
2469 /* Return the GDB type object for the "standard" data type of data in
2470 register REGNUM. */
2471
2472 static struct type *
2473 i386_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
2474 {
2475 if (i386_mmx_regnum_p (gdbarch, regnum))
2476 return i386_mmx_type (gdbarch);
2477 else if (i386_ymm_regnum_p (gdbarch, regnum))
2478 return i386_ymm_type (gdbarch);
2479 else
2480 {
2481 const struct builtin_type *bt = builtin_type (gdbarch);
2482 if (i386_byte_regnum_p (gdbarch, regnum))
2483 return bt->builtin_int8;
2484 else if (i386_word_regnum_p (gdbarch, regnum))
2485 return bt->builtin_int16;
2486 else if (i386_dword_regnum_p (gdbarch, regnum))
2487 return bt->builtin_int32;
2488 }
2489
2490 internal_error (__FILE__, __LINE__, _("invalid regnum"));
2491 }
2492
2493 /* Map a cooked register onto a raw register or memory. For the i386,
2494 the MMX registers need to be mapped onto floating point registers. */
2495
2496 static int
2497 i386_mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
2498 {
2499 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
2500 int mmxreg, fpreg;
2501 ULONGEST fstat;
2502 int tos;
2503
2504 mmxreg = regnum - tdep->mm0_regnum;
2505 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
2506 tos = (fstat >> 11) & 0x7;
2507 fpreg = (mmxreg + tos) % 8;
2508
2509 return (I387_ST0_REGNUM (tdep) + fpreg);
2510 }
2511
2512 void
2513 i386_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2514 int regnum, gdb_byte *buf)
2515 {
2516 gdb_byte raw_buf[MAX_REGISTER_SIZE];
2517
2518 if (i386_mmx_regnum_p (gdbarch, regnum))
2519 {
2520 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
2521
2522 /* Extract (always little endian). */
2523 regcache_raw_read (regcache, fpnum, raw_buf);
2524 memcpy (buf, raw_buf, register_size (gdbarch, regnum));
2525 }
2526 else
2527 {
2528 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2529
2530 if (i386_ymm_regnum_p (gdbarch, regnum))
2531 {
2532 regnum -= tdep->ymm0_regnum;
2533
2534 /* Extract (always little endian). Read lower 128bits. */
2535 regcache_raw_read (regcache,
2536 I387_XMM0_REGNUM (tdep) + regnum,
2537 raw_buf);
2538 memcpy (buf, raw_buf, 16);
2539 /* Read upper 128bits. */
2540 regcache_raw_read (regcache,
2541 tdep->ymm0h_regnum + regnum,
2542 raw_buf);
2543 memcpy (buf + 16, raw_buf, 16);
2544 }
2545 else if (i386_word_regnum_p (gdbarch, regnum))
2546 {
2547 int gpnum = regnum - tdep->ax_regnum;
2548
2549 /* Extract (always little endian). */
2550 regcache_raw_read (regcache, gpnum, raw_buf);
2551 memcpy (buf, raw_buf, 2);
2552 }
2553 else if (i386_byte_regnum_p (gdbarch, regnum))
2554 {
2555 /* Check byte pseudo registers last since this function will
2556 be called from amd64_pseudo_register_read, which handles
2557 byte pseudo registers differently. */
2558 int gpnum = regnum - tdep->al_regnum;
2559
2560 /* Extract (always little endian). We read both lower and
2561 upper registers. */
2562 regcache_raw_read (regcache, gpnum % 4, raw_buf);
2563 if (gpnum >= 4)
2564 memcpy (buf, raw_buf + 1, 1);
2565 else
2566 memcpy (buf, raw_buf, 1);
2567 }
2568 else
2569 internal_error (__FILE__, __LINE__, _("invalid regnum"));
2570 }
2571 }
2572
2573 void
2574 i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2575 int regnum, const gdb_byte *buf)
2576 {
2577 gdb_byte raw_buf[MAX_REGISTER_SIZE];
2578
2579 if (i386_mmx_regnum_p (gdbarch, regnum))
2580 {
2581 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
2582
2583 /* Read ... */
2584 regcache_raw_read (regcache, fpnum, raw_buf);
2585 /* ... Modify ... (always little endian). */
2586 memcpy (raw_buf, buf, register_size (gdbarch, regnum));
2587 /* ... Write. */
2588 regcache_raw_write (regcache, fpnum, raw_buf);
2589 }
2590 else
2591 {
2592 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2593
2594 if (i386_ymm_regnum_p (gdbarch, regnum))
2595 {
2596 regnum -= tdep->ymm0_regnum;
2597
2598 /* ... Write lower 128bits. */
2599 regcache_raw_write (regcache,
2600 I387_XMM0_REGNUM (tdep) + regnum,
2601 buf);
2602 /* ... Write upper 128bits. */
2603 regcache_raw_write (regcache,
2604 tdep->ymm0h_regnum + regnum,
2605 buf + 16);
2606 }
2607 else if (i386_word_regnum_p (gdbarch, regnum))
2608 {
2609 int gpnum = regnum - tdep->ax_regnum;
2610
2611 /* Read ... */
2612 regcache_raw_read (regcache, gpnum, raw_buf);
2613 /* ... Modify ... (always little endian). */
2614 memcpy (raw_buf, buf, 2);
2615 /* ... Write. */
2616 regcache_raw_write (regcache, gpnum, raw_buf);
2617 }
2618 else if (i386_byte_regnum_p (gdbarch, regnum))
2619 {
2620 /* Check byte pseudo registers last since this function will
2621 be called from amd64_pseudo_register_read, which handles
2622 byte pseudo registers differently. */
2623 int gpnum = regnum - tdep->al_regnum;
2624
2625 /* Read ... We read both lower and upper registers. */
2626 regcache_raw_read (regcache, gpnum % 4, raw_buf);
2627 /* ... Modify ... (always little endian). */
2628 if (gpnum >= 4)
2629 memcpy (raw_buf + 1, buf, 1);
2630 else
2631 memcpy (raw_buf, buf, 1);
2632 /* ... Write. */
2633 regcache_raw_write (regcache, gpnum % 4, raw_buf);
2634 }
2635 else
2636 internal_error (__FILE__, __LINE__, _("invalid regnum"));
2637 }
2638 }
2639 \f
2640
2641 /* Return the register number of the register allocated by GCC after
2642 REGNUM, or -1 if there is no such register. */
2643
2644 static int
2645 i386_next_regnum (int regnum)
2646 {
2647 /* GCC allocates the registers in the order:
2648
2649 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
2650
2651 Since storing a variable in %esp doesn't make any sense we return
2652 -1 for %ebp and for %esp itself. */
2653 static int next_regnum[] =
2654 {
2655 I386_EDX_REGNUM, /* Slot for %eax. */
2656 I386_EBX_REGNUM, /* Slot for %ecx. */
2657 I386_ECX_REGNUM, /* Slot for %edx. */
2658 I386_ESI_REGNUM, /* Slot for %ebx. */
2659 -1, -1, /* Slots for %esp and %ebp. */
2660 I386_EDI_REGNUM, /* Slot for %esi. */
2661 I386_EBP_REGNUM /* Slot for %edi. */
2662 };
2663
2664 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
2665 return next_regnum[regnum];
2666
2667 return -1;
2668 }
2669
2670 /* Return nonzero if a value of type TYPE stored in register REGNUM
2671 needs any special handling. */
2672
2673 static int
2674 i386_convert_register_p (struct gdbarch *gdbarch, int regnum, struct type *type)
2675 {
2676 int len = TYPE_LENGTH (type);
2677
2678 /* Values may be spread across multiple registers. Most debugging
2679 formats aren't expressive enough to specify the locations, so
2680 some heuristics is involved. Right now we only handle types that
2681 have a length that is a multiple of the word size, since GCC
2682 doesn't seem to put any other types into registers. */
2683 if (len > 4 && len % 4 == 0)
2684 {
2685 int last_regnum = regnum;
2686
2687 while (len > 4)
2688 {
2689 last_regnum = i386_next_regnum (last_regnum);
2690 len -= 4;
2691 }
2692
2693 if (last_regnum != -1)
2694 return 1;
2695 }
2696
2697 return i387_convert_register_p (gdbarch, regnum, type);
2698 }
2699
2700 /* Read a value of type TYPE from register REGNUM in frame FRAME, and
2701 return its contents in TO. */
2702
2703 static void
2704 i386_register_to_value (struct frame_info *frame, int regnum,
2705 struct type *type, gdb_byte *to)
2706 {
2707 struct gdbarch *gdbarch = get_frame_arch (frame);
2708 int len = TYPE_LENGTH (type);
2709
2710 /* FIXME: kettenis/20030609: What should we do if REGNUM isn't
2711 available in FRAME (i.e. if it wasn't saved)? */
2712
2713 if (i386_fp_regnum_p (gdbarch, regnum))
2714 {
2715 i387_register_to_value (frame, regnum, type, to);
2716 return;
2717 }
2718
2719 /* Read a value spread across multiple registers. */
2720
2721 gdb_assert (len > 4 && len % 4 == 0);
2722
2723 while (len > 0)
2724 {
2725 gdb_assert (regnum != -1);
2726 gdb_assert (register_size (gdbarch, regnum) == 4);
2727
2728 get_frame_register (frame, regnum, to);
2729 regnum = i386_next_regnum (regnum);
2730 len -= 4;
2731 to += 4;
2732 }
2733 }
2734
2735 /* Write the contents FROM of a value of type TYPE into register
2736 REGNUM in frame FRAME. */
2737
2738 static void
2739 i386_value_to_register (struct frame_info *frame, int regnum,
2740 struct type *type, const gdb_byte *from)
2741 {
2742 int len = TYPE_LENGTH (type);
2743
2744 if (i386_fp_regnum_p (get_frame_arch (frame), regnum))
2745 {
2746 i387_value_to_register (frame, regnum, type, from);
2747 return;
2748 }
2749
2750 /* Write a value spread across multiple registers. */
2751
2752 gdb_assert (len > 4 && len % 4 == 0);
2753
2754 while (len > 0)
2755 {
2756 gdb_assert (regnum != -1);
2757 gdb_assert (register_size (get_frame_arch (frame), regnum) == 4);
2758
2759 put_frame_register (frame, regnum, from);
2760 regnum = i386_next_regnum (regnum);
2761 len -= 4;
2762 from += 4;
2763 }
2764 }
2765 \f
2766 /* Supply register REGNUM from the buffer specified by GREGS and LEN
2767 in the general-purpose register set REGSET to register cache
2768 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
2769
2770 void
2771 i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
2772 int regnum, const void *gregs, size_t len)
2773 {
2774 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
2775 const gdb_byte *regs = gregs;
2776 int i;
2777
2778 gdb_assert (len == tdep->sizeof_gregset);
2779
2780 for (i = 0; i < tdep->gregset_num_regs; i++)
2781 {
2782 if ((regnum == i || regnum == -1)
2783 && tdep->gregset_reg_offset[i] != -1)
2784 regcache_raw_supply (regcache, i, regs + tdep->gregset_reg_offset[i]);
2785 }
2786 }
2787
2788 /* Collect register REGNUM from the register cache REGCACHE and store
2789 it in the buffer specified by GREGS and LEN as described by the
2790 general-purpose register set REGSET. If REGNUM is -1, do this for
2791 all registers in REGSET. */
2792
2793 void
2794 i386_collect_gregset (const struct regset *regset,
2795 const struct regcache *regcache,
2796 int regnum, void *gregs, size_t len)
2797 {
2798 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
2799 gdb_byte *regs = gregs;
2800 int i;
2801
2802 gdb_assert (len == tdep->sizeof_gregset);
2803
2804 for (i = 0; i < tdep->gregset_num_regs; i++)
2805 {
2806 if ((regnum == i || regnum == -1)
2807 && tdep->gregset_reg_offset[i] != -1)
2808 regcache_raw_collect (regcache, i, regs + tdep->gregset_reg_offset[i]);
2809 }
2810 }
2811
2812 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
2813 in the floating-point register set REGSET to register cache
2814 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
2815
2816 static void
2817 i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
2818 int regnum, const void *fpregs, size_t len)
2819 {
2820 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
2821
2822 if (len == I387_SIZEOF_FXSAVE)
2823 {
2824 i387_supply_fxsave (regcache, regnum, fpregs);
2825 return;
2826 }
2827
2828 gdb_assert (len == tdep->sizeof_fpregset);
2829 i387_supply_fsave (regcache, regnum, fpregs);
2830 }
2831
2832 /* Collect register REGNUM from the register cache REGCACHE and store
2833 it in the buffer specified by FPREGS and LEN as described by the
2834 floating-point register set REGSET. If REGNUM is -1, do this for
2835 all registers in REGSET. */
2836
2837 static void
2838 i386_collect_fpregset (const struct regset *regset,
2839 const struct regcache *regcache,
2840 int regnum, void *fpregs, size_t len)
2841 {
2842 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
2843
2844 if (len == I387_SIZEOF_FXSAVE)
2845 {
2846 i387_collect_fxsave (regcache, regnum, fpregs);
2847 return;
2848 }
2849
2850 gdb_assert (len == tdep->sizeof_fpregset);
2851 i387_collect_fsave (regcache, regnum, fpregs);
2852 }
2853
2854 /* Similar to i386_supply_fpregset, but use XSAVE extended state. */
2855
2856 static void
2857 i386_supply_xstateregset (const struct regset *regset,
2858 struct regcache *regcache, int regnum,
2859 const void *xstateregs, size_t len)
2860 {
2861 i387_supply_xsave (regcache, regnum, xstateregs);
2862 }
2863
2864 /* Similar to i386_collect_fpregset , but use XSAVE extended state. */
2865
2866 static void
2867 i386_collect_xstateregset (const struct regset *regset,
2868 const struct regcache *regcache,
2869 int regnum, void *xstateregs, size_t len)
2870 {
2871 i387_collect_xsave (regcache, regnum, xstateregs, 1);
2872 }
2873
2874 /* Return the appropriate register set for the core section identified
2875 by SECT_NAME and SECT_SIZE. */
2876
2877 const struct regset *
2878 i386_regset_from_core_section (struct gdbarch *gdbarch,
2879 const char *sect_name, size_t sect_size)
2880 {
2881 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2882
2883 if (strcmp (sect_name, ".reg") == 0 && sect_size == tdep->sizeof_gregset)
2884 {
2885 if (tdep->gregset == NULL)
2886 tdep->gregset = regset_alloc (gdbarch, i386_supply_gregset,
2887 i386_collect_gregset);
2888 return tdep->gregset;
2889 }
2890
2891 if ((strcmp (sect_name, ".reg2") == 0 && sect_size == tdep->sizeof_fpregset)
2892 || (strcmp (sect_name, ".reg-xfp") == 0
2893 && sect_size == I387_SIZEOF_FXSAVE))
2894 {
2895 if (tdep->fpregset == NULL)
2896 tdep->fpregset = regset_alloc (gdbarch, i386_supply_fpregset,
2897 i386_collect_fpregset);
2898 return tdep->fpregset;
2899 }
2900
2901 if (strcmp (sect_name, ".reg-xstate") == 0)
2902 {
2903 if (tdep->xstateregset == NULL)
2904 tdep->xstateregset = regset_alloc (gdbarch,
2905 i386_supply_xstateregset,
2906 i386_collect_xstateregset);
2907
2908 return tdep->xstateregset;
2909 }
2910
2911 return NULL;
2912 }
2913 \f
2914
2915 /* Stuff for WIN32 PE style DLL's but is pretty generic really. */
2916
2917 CORE_ADDR
2918 i386_pe_skip_trampoline_code (struct frame_info *frame,
2919 CORE_ADDR pc, char *name)
2920 {
2921 struct gdbarch *gdbarch = get_frame_arch (frame);
2922 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2923
2924 /* jmp *(dest) */
2925 if (pc && read_memory_unsigned_integer (pc, 2, byte_order) == 0x25ff)
2926 {
2927 unsigned long indirect =
2928 read_memory_unsigned_integer (pc + 2, 4, byte_order);
2929 struct minimal_symbol *indsym =
2930 indirect ? lookup_minimal_symbol_by_pc (indirect) : 0;
2931 char *symname = indsym ? SYMBOL_LINKAGE_NAME (indsym) : 0;
2932
2933 if (symname)
2934 {
2935 if (strncmp (symname, "__imp_", 6) == 0
2936 || strncmp (symname, "_imp_", 5) == 0)
2937 return name ? 1 :
2938 read_memory_unsigned_integer (indirect, 4, byte_order);
2939 }
2940 }
2941 return 0; /* Not a trampoline. */
2942 }
2943 \f
2944
2945 /* Return whether the THIS_FRAME corresponds to a sigtramp
2946 routine. */
2947
2948 int
2949 i386_sigtramp_p (struct frame_info *this_frame)
2950 {
2951 CORE_ADDR pc = get_frame_pc (this_frame);
2952 char *name;
2953
2954 find_pc_partial_function (pc, &name, NULL, NULL);
2955 return (name && strcmp ("_sigtramp", name) == 0);
2956 }
2957 \f
2958
2959 /* We have two flavours of disassembly. The machinery on this page
2960 deals with switching between those. */
2961
2962 static int
2963 i386_print_insn (bfd_vma pc, struct disassemble_info *info)
2964 {
2965 gdb_assert (disassembly_flavor == att_flavor
2966 || disassembly_flavor == intel_flavor);
2967
2968 /* FIXME: kettenis/20020915: Until disassembler_options is properly
2969 constified, cast to prevent a compiler warning. */
2970 info->disassembler_options = (char *) disassembly_flavor;
2971
2972 return print_insn_i386 (pc, info);
2973 }
2974 \f
2975
2976 /* There are a few i386 architecture variants that differ only
2977 slightly from the generic i386 target. For now, we don't give them
2978 their own source file, but include them here. As a consequence,
2979 they'll always be included. */
2980
2981 /* System V Release 4 (SVR4). */
2982
2983 /* Return whether THIS_FRAME corresponds to a SVR4 sigtramp
2984 routine. */
2985
2986 static int
2987 i386_svr4_sigtramp_p (struct frame_info *this_frame)
2988 {
2989 CORE_ADDR pc = get_frame_pc (this_frame);
2990 char *name;
2991
2992 /* UnixWare uses _sigacthandler. The origin of the other symbols is
2993 currently unknown. */
2994 find_pc_partial_function (pc, &name, NULL, NULL);
2995 return (name && (strcmp ("_sigreturn", name) == 0
2996 || strcmp ("_sigacthandler", name) == 0
2997 || strcmp ("sigvechandler", name) == 0));
2998 }
2999
3000 /* Assuming THIS_FRAME is for a SVR4 sigtramp routine, return the
3001 address of the associated sigcontext (ucontext) structure. */
3002
3003 static CORE_ADDR
3004 i386_svr4_sigcontext_addr (struct frame_info *this_frame)
3005 {
3006 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3007 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3008 gdb_byte buf[4];
3009 CORE_ADDR sp;
3010
3011 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
3012 sp = extract_unsigned_integer (buf, 4, byte_order);
3013
3014 return read_memory_unsigned_integer (sp + 8, 4, byte_order);
3015 }
3016 \f
3017
3018 /* Generic ELF. */
3019
3020 void
3021 i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3022 {
3023 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
3024 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
3025 }
3026
3027 /* System V Release 4 (SVR4). */
3028
3029 void
3030 i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3031 {
3032 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3033
3034 /* System V Release 4 uses ELF. */
3035 i386_elf_init_abi (info, gdbarch);
3036
3037 /* System V Release 4 has shared libraries. */
3038 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
3039
3040 tdep->sigtramp_p = i386_svr4_sigtramp_p;
3041 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
3042 tdep->sc_pc_offset = 36 + 14 * 4;
3043 tdep->sc_sp_offset = 36 + 17 * 4;
3044
3045 tdep->jb_pc_offset = 20;
3046 }
3047
3048 /* DJGPP. */
3049
3050 static void
3051 i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3052 {
3053 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3054
3055 /* DJGPP doesn't have any special frames for signal handlers. */
3056 tdep->sigtramp_p = NULL;
3057
3058 tdep->jb_pc_offset = 36;
3059
3060 /* DJGPP does not support the SSE registers. */
3061 if (! tdesc_has_registers (info.target_desc))
3062 tdep->tdesc = tdesc_i386_mmx;
3063
3064 /* Native compiler is GCC, which uses the SVR4 register numbering
3065 even in COFF and STABS. See the comment in i386_gdbarch_init,
3066 before the calls to set_gdbarch_stab_reg_to_regnum and
3067 set_gdbarch_sdb_reg_to_regnum. */
3068 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
3069 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
3070
3071 set_gdbarch_has_dos_based_file_system (gdbarch, 1);
3072 }
3073 \f
3074
3075 /* i386 register groups. In addition to the normal groups, add "mmx"
3076 and "sse". */
3077
3078 static struct reggroup *i386_sse_reggroup;
3079 static struct reggroup *i386_mmx_reggroup;
3080
3081 static void
3082 i386_init_reggroups (void)
3083 {
3084 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
3085 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
3086 }
3087
3088 static void
3089 i386_add_reggroups (struct gdbarch *gdbarch)
3090 {
3091 reggroup_add (gdbarch, i386_sse_reggroup);
3092 reggroup_add (gdbarch, i386_mmx_reggroup);
3093 reggroup_add (gdbarch, general_reggroup);
3094 reggroup_add (gdbarch, float_reggroup);
3095 reggroup_add (gdbarch, all_reggroup);
3096 reggroup_add (gdbarch, save_reggroup);
3097 reggroup_add (gdbarch, restore_reggroup);
3098 reggroup_add (gdbarch, vector_reggroup);
3099 reggroup_add (gdbarch, system_reggroup);
3100 }
3101
3102 int
3103 i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
3104 struct reggroup *group)
3105 {
3106 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3107 int fp_regnum_p, mmx_regnum_p, xmm_regnum_p, mxcsr_regnum_p,
3108 ymm_regnum_p, ymmh_regnum_p;
3109
3110 /* Don't include pseudo registers, except for MMX, in any register
3111 groups. */
3112 if (i386_byte_regnum_p (gdbarch, regnum))
3113 return 0;
3114
3115 if (i386_word_regnum_p (gdbarch, regnum))
3116 return 0;
3117
3118 if (i386_dword_regnum_p (gdbarch, regnum))
3119 return 0;
3120
3121 mmx_regnum_p = i386_mmx_regnum_p (gdbarch, regnum);
3122 if (group == i386_mmx_reggroup)
3123 return mmx_regnum_p;
3124
3125 xmm_regnum_p = i386_xmm_regnum_p (gdbarch, regnum);
3126 mxcsr_regnum_p = i386_mxcsr_regnum_p (gdbarch, regnum);
3127 if (group == i386_sse_reggroup)
3128 return xmm_regnum_p || mxcsr_regnum_p;
3129
3130 ymm_regnum_p = i386_ymm_regnum_p (gdbarch, regnum);
3131 if (group == vector_reggroup)
3132 return (mmx_regnum_p
3133 || ymm_regnum_p
3134 || mxcsr_regnum_p
3135 || (xmm_regnum_p
3136 && ((tdep->xcr0 & I386_XSTATE_AVX_MASK)
3137 == I386_XSTATE_SSE_MASK)));
3138
3139 fp_regnum_p = (i386_fp_regnum_p (gdbarch, regnum)
3140 || i386_fpc_regnum_p (gdbarch, regnum));
3141 if (group == float_reggroup)
3142 return fp_regnum_p;
3143
3144 /* For "info reg all", don't include upper YMM registers nor XMM
3145 registers when AVX is supported. */
3146 ymmh_regnum_p = i386_ymmh_regnum_p (gdbarch, regnum);
3147 if (group == all_reggroup
3148 && ((xmm_regnum_p
3149 && (tdep->xcr0 & I386_XSTATE_AVX))
3150 || ymmh_regnum_p))
3151 return 0;
3152
3153 if (group == general_reggroup)
3154 return (!fp_regnum_p
3155 && !mmx_regnum_p
3156 && !mxcsr_regnum_p
3157 && !xmm_regnum_p
3158 && !ymm_regnum_p
3159 && !ymmh_regnum_p);
3160
3161 return default_register_reggroup_p (gdbarch, regnum, group);
3162 }
3163 \f
3164
3165 /* Get the ARGIth function argument for the current function. */
3166
3167 static CORE_ADDR
3168 i386_fetch_pointer_argument (struct frame_info *frame, int argi,
3169 struct type *type)
3170 {
3171 struct gdbarch *gdbarch = get_frame_arch (frame);
3172 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3173 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
3174 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4, byte_order);
3175 }
3176
3177 static void
3178 i386_skip_permanent_breakpoint (struct regcache *regcache)
3179 {
3180 CORE_ADDR current_pc = regcache_read_pc (regcache);
3181
3182 /* On i386, breakpoint is exactly 1 byte long, so we just
3183 adjust the PC in the regcache. */
3184 current_pc += 1;
3185 regcache_write_pc (regcache, current_pc);
3186 }
3187
3188
3189 #define PREFIX_REPZ 0x01
3190 #define PREFIX_REPNZ 0x02
3191 #define PREFIX_LOCK 0x04
3192 #define PREFIX_DATA 0x08
3193 #define PREFIX_ADDR 0x10
3194
3195 /* operand size */
3196 enum
3197 {
3198 OT_BYTE = 0,
3199 OT_WORD,
3200 OT_LONG,
3201 OT_QUAD,
3202 OT_DQUAD,
3203 };
3204
3205 /* i386 arith/logic operations */
3206 enum
3207 {
3208 OP_ADDL,
3209 OP_ORL,
3210 OP_ADCL,
3211 OP_SBBL,
3212 OP_ANDL,
3213 OP_SUBL,
3214 OP_XORL,
3215 OP_CMPL,
3216 };
3217
3218 struct i386_record_s
3219 {
3220 struct gdbarch *gdbarch;
3221 struct regcache *regcache;
3222 CORE_ADDR orig_addr;
3223 CORE_ADDR addr;
3224 int aflag;
3225 int dflag;
3226 int override;
3227 uint8_t modrm;
3228 uint8_t mod, reg, rm;
3229 int ot;
3230 uint8_t rex_x;
3231 uint8_t rex_b;
3232 int rip_offset;
3233 int popl_esp_hack;
3234 const int *regmap;
3235 };
3236
3237 /* Parse "modrm" part in current memory address that irp->addr point to
3238 Return -1 if something wrong. */
3239
3240 static int
3241 i386_record_modrm (struct i386_record_s *irp)
3242 {
3243 struct gdbarch *gdbarch = irp->gdbarch;
3244
3245 if (target_read_memory (irp->addr, &irp->modrm, 1))
3246 {
3247 if (record_debug)
3248 printf_unfiltered (_("Process record: error reading memory at "
3249 "addr %s len = 1.\n"),
3250 paddress (gdbarch, irp->addr));
3251 return -1;
3252 }
3253 irp->addr++;
3254 irp->mod = (irp->modrm >> 6) & 3;
3255 irp->reg = (irp->modrm >> 3) & 7;
3256 irp->rm = irp->modrm & 7;
3257
3258 return 0;
3259 }
3260
3261 /* Get the memory address that current instruction write to and set it to
3262 the argument "addr".
3263 Return -1 if something wrong. */
3264
3265 static int
3266 i386_record_lea_modrm_addr (struct i386_record_s *irp, uint64_t *addr)
3267 {
3268 struct gdbarch *gdbarch = irp->gdbarch;
3269 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3270 gdb_byte buf[4];
3271 ULONGEST offset64;
3272
3273 *addr = 0;
3274 if (irp->aflag)
3275 {
3276 /* 32 bits */
3277 int havesib = 0;
3278 uint8_t scale = 0;
3279 uint8_t byte;
3280 uint8_t index = 0;
3281 uint8_t base = irp->rm;
3282
3283 if (base == 4)
3284 {
3285 havesib = 1;
3286 if (target_read_memory (irp->addr, &byte, 1))
3287 {
3288 if (record_debug)
3289 printf_unfiltered (_("Process record: error reading memory "
3290 "at addr %s len = 1.\n"),
3291 paddress (gdbarch, irp->addr));
3292 return -1;
3293 }
3294 irp->addr++;
3295 scale = (byte >> 6) & 3;
3296 index = ((byte >> 3) & 7) | irp->rex_x;
3297 base = (byte & 7);
3298 }
3299 base |= irp->rex_b;
3300
3301 switch (irp->mod)
3302 {
3303 case 0:
3304 if ((base & 7) == 5)
3305 {
3306 base = 0xff;
3307 if (target_read_memory (irp->addr, buf, 4))
3308 {
3309 if (record_debug)
3310 printf_unfiltered (_("Process record: error reading "
3311 "memory at addr %s len = 4.\n"),
3312 paddress (gdbarch, irp->addr));
3313 return -1;
3314 }
3315 irp->addr += 4;
3316 *addr = extract_signed_integer (buf, 4, byte_order);
3317 if (irp->regmap[X86_RECORD_R8_REGNUM] && !havesib)
3318 *addr += irp->addr + irp->rip_offset;
3319 }
3320 break;
3321 case 1:
3322 if (target_read_memory (irp->addr, buf, 1))
3323 {
3324 if (record_debug)
3325 printf_unfiltered (_("Process record: error reading memory "
3326 "at addr %s len = 1.\n"),
3327 paddress (gdbarch, irp->addr));
3328 return -1;
3329 }
3330 irp->addr++;
3331 *addr = (int8_t) buf[0];
3332 break;
3333 case 2:
3334 if (target_read_memory (irp->addr, buf, 4))
3335 {
3336 if (record_debug)
3337 printf_unfiltered (_("Process record: error reading memory "
3338 "at addr %s len = 4.\n"),
3339 paddress (gdbarch, irp->addr));
3340 return -1;
3341 }
3342 *addr = extract_signed_integer (buf, 4, byte_order);
3343 irp->addr += 4;
3344 break;
3345 }
3346
3347 offset64 = 0;
3348 if (base != 0xff)
3349 {
3350 if (base == 4 && irp->popl_esp_hack)
3351 *addr += irp->popl_esp_hack;
3352 regcache_raw_read_unsigned (irp->regcache, irp->regmap[base],
3353 &offset64);
3354 }
3355 if (irp->aflag == 2)
3356 {
3357 *addr += offset64;
3358 }
3359 else
3360 *addr = (uint32_t) (offset64 + *addr);
3361
3362 if (havesib && (index != 4 || scale != 0))
3363 {
3364 regcache_raw_read_unsigned (irp->regcache, irp->regmap[index],
3365 &offset64);
3366 if (irp->aflag == 2)
3367 *addr += offset64 << scale;
3368 else
3369 *addr = (uint32_t) (*addr + (offset64 << scale));
3370 }
3371 }
3372 else
3373 {
3374 /* 16 bits */
3375 switch (irp->mod)
3376 {
3377 case 0:
3378 if (irp->rm == 6)
3379 {
3380 if (target_read_memory (irp->addr, buf, 2))
3381 {
3382 if (record_debug)
3383 printf_unfiltered (_("Process record: error reading "
3384 "memory at addr %s len = 2.\n"),
3385 paddress (gdbarch, irp->addr));
3386 return -1;
3387 }
3388 irp->addr += 2;
3389 *addr = extract_signed_integer (buf, 2, byte_order);
3390 irp->rm = 0;
3391 goto no_rm;
3392 }
3393 break;
3394 case 1:
3395 if (target_read_memory (irp->addr, buf, 1))
3396 {
3397 if (record_debug)
3398 printf_unfiltered (_("Process record: error reading memory "
3399 "at addr %s len = 1.\n"),
3400 paddress (gdbarch, irp->addr));
3401 return -1;
3402 }
3403 irp->addr++;
3404 *addr = (int8_t) buf[0];
3405 break;
3406 case 2:
3407 if (target_read_memory (irp->addr, buf, 2))
3408 {
3409 if (record_debug)
3410 printf_unfiltered (_("Process record: error reading memory "
3411 "at addr %s len = 2.\n"),
3412 paddress (gdbarch, irp->addr));
3413 return -1;
3414 }
3415 irp->addr += 2;
3416 *addr = extract_signed_integer (buf, 2, byte_order);
3417 break;
3418 }
3419
3420 switch (irp->rm)
3421 {
3422 case 0:
3423 regcache_raw_read_unsigned (irp->regcache,
3424 irp->regmap[X86_RECORD_REBX_REGNUM],
3425 &offset64);
3426 *addr = (uint32_t) (*addr + offset64);
3427 regcache_raw_read_unsigned (irp->regcache,
3428 irp->regmap[X86_RECORD_RESI_REGNUM],
3429 &offset64);
3430 *addr = (uint32_t) (*addr + offset64);
3431 break;
3432 case 1:
3433 regcache_raw_read_unsigned (irp->regcache,
3434 irp->regmap[X86_RECORD_REBX_REGNUM],
3435 &offset64);
3436 *addr = (uint32_t) (*addr + offset64);
3437 regcache_raw_read_unsigned (irp->regcache,
3438 irp->regmap[X86_RECORD_REDI_REGNUM],
3439 &offset64);
3440 *addr = (uint32_t) (*addr + offset64);
3441 break;
3442 case 2:
3443 regcache_raw_read_unsigned (irp->regcache,
3444 irp->regmap[X86_RECORD_REBP_REGNUM],
3445 &offset64);
3446 *addr = (uint32_t) (*addr + offset64);
3447 regcache_raw_read_unsigned (irp->regcache,
3448 irp->regmap[X86_RECORD_RESI_REGNUM],
3449 &offset64);
3450 *addr = (uint32_t) (*addr + offset64);
3451 break;
3452 case 3:
3453 regcache_raw_read_unsigned (irp->regcache,
3454 irp->regmap[X86_RECORD_REBP_REGNUM],
3455 &offset64);
3456 *addr = (uint32_t) (*addr + offset64);
3457 regcache_raw_read_unsigned (irp->regcache,
3458 irp->regmap[X86_RECORD_REDI_REGNUM],
3459 &offset64);
3460 *addr = (uint32_t) (*addr + offset64);
3461 break;
3462 case 4:
3463 regcache_raw_read_unsigned (irp->regcache,
3464 irp->regmap[X86_RECORD_RESI_REGNUM],
3465 &offset64);
3466 *addr = (uint32_t) (*addr + offset64);
3467 break;
3468 case 5:
3469 regcache_raw_read_unsigned (irp->regcache,
3470 irp->regmap[X86_RECORD_REDI_REGNUM],
3471 &offset64);
3472 *addr = (uint32_t) (*addr + offset64);
3473 break;
3474 case 6:
3475 regcache_raw_read_unsigned (irp->regcache,
3476 irp->regmap[X86_RECORD_REBP_REGNUM],
3477 &offset64);
3478 *addr = (uint32_t) (*addr + offset64);
3479 break;
3480 case 7:
3481 regcache_raw_read_unsigned (irp->regcache,
3482 irp->regmap[X86_RECORD_REBX_REGNUM],
3483 &offset64);
3484 *addr = (uint32_t) (*addr + offset64);
3485 break;
3486 }
3487 *addr &= 0xffff;
3488 }
3489
3490 no_rm:
3491 return 0;
3492 }
3493
3494 /* Record the value of the memory that willbe changed in current instruction
3495 to "record_arch_list".
3496 Return -1 if something wrong. */
3497
3498 static int
3499 i386_record_lea_modrm (struct i386_record_s *irp)
3500 {
3501 struct gdbarch *gdbarch = irp->gdbarch;
3502 uint64_t addr;
3503
3504 if (irp->override >= 0)
3505 {
3506 warning (_("Process record ignores the memory change "
3507 "of instruction at address %s because it "
3508 "can't get the value of the segment register."),
3509 paddress (gdbarch, irp->orig_addr));
3510 return 0;
3511 }
3512
3513 if (i386_record_lea_modrm_addr (irp, &addr))
3514 return -1;
3515
3516 if (record_arch_list_add_mem (addr, 1 << irp->ot))
3517 return -1;
3518
3519 return 0;
3520 }
3521
3522 /* Record the push operation to "record_arch_list".
3523 Return -1 if something wrong. */
3524
3525 static int
3526 i386_record_push (struct i386_record_s *irp, int size)
3527 {
3528 ULONGEST addr;
3529
3530 if (record_arch_list_add_reg (irp->regcache,
3531 irp->regmap[X86_RECORD_RESP_REGNUM]))
3532 return -1;
3533 regcache_raw_read_unsigned (irp->regcache,
3534 irp->regmap[X86_RECORD_RESP_REGNUM],
3535 &addr);
3536 if (record_arch_list_add_mem ((CORE_ADDR) addr - size, size))
3537 return -1;
3538
3539 return 0;
3540 }
3541
3542
3543 /* Defines contents to record. */
3544 #define I386_SAVE_FPU_REGS 0xfffd
3545 #define I386_SAVE_FPU_ENV 0xfffe
3546 #define I386_SAVE_FPU_ENV_REG_STACK 0xffff
3547
3548 /* Record the value of floating point registers which will be changed by the
3549 current instruction to "record_arch_list". Return -1 if something is wrong.
3550 */
3551
3552 static int i386_record_floats (struct gdbarch *gdbarch,
3553 struct i386_record_s *ir,
3554 uint32_t iregnum)
3555 {
3556 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3557 int i;
3558
3559 /* Oza: Because of floating point insn push/pop of fpu stack is going to
3560 happen. Currently we store st0-st7 registers, but we need not store all
3561 registers all the time, in future we use ftag register and record only
3562 those who are not marked as an empty. */
3563
3564 if (I386_SAVE_FPU_REGS == iregnum)
3565 {
3566 for (i = I387_ST0_REGNUM (tdep); i <= I387_ST0_REGNUM (tdep) + 7; i++)
3567 {
3568 if (record_arch_list_add_reg (ir->regcache, i))
3569 return -1;
3570 }
3571 }
3572 else if (I386_SAVE_FPU_ENV == iregnum)
3573 {
3574 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
3575 {
3576 if (record_arch_list_add_reg (ir->regcache, i))
3577 return -1;
3578 }
3579 }
3580 else if (I386_SAVE_FPU_ENV_REG_STACK == iregnum)
3581 {
3582 for (i = I387_ST0_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
3583 {
3584 if (record_arch_list_add_reg (ir->regcache, i))
3585 return -1;
3586 }
3587 }
3588 else if ((iregnum >= I387_ST0_REGNUM (tdep)) &&
3589 (iregnum <= I387_FOP_REGNUM (tdep)))
3590 {
3591 if (record_arch_list_add_reg (ir->regcache,iregnum))
3592 return -1;
3593 }
3594 else
3595 {
3596 /* Parameter error. */
3597 return -1;
3598 }
3599 if(I386_SAVE_FPU_ENV != iregnum)
3600 {
3601 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
3602 {
3603 if (record_arch_list_add_reg (ir->regcache, i))
3604 return -1;
3605 }
3606 }
3607 return 0;
3608 }
3609
3610 /* Parse the current instruction and record the values of the registers and
3611 memory that will be changed in current instruction to "record_arch_list".
3612 Return -1 if something wrong. */
3613
3614 #define I386_RECORD_ARCH_LIST_ADD_REG(regnum) \
3615 record_arch_list_add_reg (ir.regcache, ir.regmap[(regnum)])
3616
3617 int
3618 i386_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
3619 CORE_ADDR input_addr)
3620 {
3621 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3622 int prefixes = 0;
3623 int regnum = 0;
3624 uint32_t opcode;
3625 uint8_t opcode8;
3626 ULONGEST addr;
3627 gdb_byte buf[MAX_REGISTER_SIZE];
3628 struct i386_record_s ir;
3629 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3630 int rex = 0;
3631 uint8_t rex_w = -1;
3632 uint8_t rex_r = 0;
3633
3634 memset (&ir, 0, sizeof (struct i386_record_s));
3635 ir.regcache = regcache;
3636 ir.addr = input_addr;
3637 ir.orig_addr = input_addr;
3638 ir.aflag = 1;
3639 ir.dflag = 1;
3640 ir.override = -1;
3641 ir.popl_esp_hack = 0;
3642 ir.regmap = tdep->record_regmap;
3643 ir.gdbarch = gdbarch;
3644
3645 if (record_debug > 1)
3646 fprintf_unfiltered (gdb_stdlog, "Process record: i386_process_record "
3647 "addr = %s\n",
3648 paddress (gdbarch, ir.addr));
3649
3650 /* prefixes */
3651 while (1)
3652 {
3653 if (target_read_memory (ir.addr, &opcode8, 1))
3654 {
3655 if (record_debug)
3656 printf_unfiltered (_("Process record: error reading memory at "
3657 "addr %s len = 1.\n"),
3658 paddress (gdbarch, ir.addr));
3659 return -1;
3660 }
3661 ir.addr++;
3662 switch (opcode8) /* Instruction prefixes */
3663 {
3664 case REPE_PREFIX_OPCODE:
3665 prefixes |= PREFIX_REPZ;
3666 break;
3667 case REPNE_PREFIX_OPCODE:
3668 prefixes |= PREFIX_REPNZ;
3669 break;
3670 case LOCK_PREFIX_OPCODE:
3671 prefixes |= PREFIX_LOCK;
3672 break;
3673 case CS_PREFIX_OPCODE:
3674 ir.override = X86_RECORD_CS_REGNUM;
3675 break;
3676 case SS_PREFIX_OPCODE:
3677 ir.override = X86_RECORD_SS_REGNUM;
3678 break;
3679 case DS_PREFIX_OPCODE:
3680 ir.override = X86_RECORD_DS_REGNUM;
3681 break;
3682 case ES_PREFIX_OPCODE:
3683 ir.override = X86_RECORD_ES_REGNUM;
3684 break;
3685 case FS_PREFIX_OPCODE:
3686 ir.override = X86_RECORD_FS_REGNUM;
3687 break;
3688 case GS_PREFIX_OPCODE:
3689 ir.override = X86_RECORD_GS_REGNUM;
3690 break;
3691 case DATA_PREFIX_OPCODE:
3692 prefixes |= PREFIX_DATA;
3693 break;
3694 case ADDR_PREFIX_OPCODE:
3695 prefixes |= PREFIX_ADDR;
3696 break;
3697 case 0x40: /* i386 inc %eax */
3698 case 0x41: /* i386 inc %ecx */
3699 case 0x42: /* i386 inc %edx */
3700 case 0x43: /* i386 inc %ebx */
3701 case 0x44: /* i386 inc %esp */
3702 case 0x45: /* i386 inc %ebp */
3703 case 0x46: /* i386 inc %esi */
3704 case 0x47: /* i386 inc %edi */
3705 case 0x48: /* i386 dec %eax */
3706 case 0x49: /* i386 dec %ecx */
3707 case 0x4a: /* i386 dec %edx */
3708 case 0x4b: /* i386 dec %ebx */
3709 case 0x4c: /* i386 dec %esp */
3710 case 0x4d: /* i386 dec %ebp */
3711 case 0x4e: /* i386 dec %esi */
3712 case 0x4f: /* i386 dec %edi */
3713 if (ir.regmap[X86_RECORD_R8_REGNUM]) /* 64 bit target */
3714 {
3715 /* REX */
3716 rex = 1;
3717 rex_w = (opcode8 >> 3) & 1;
3718 rex_r = (opcode8 & 0x4) << 1;
3719 ir.rex_x = (opcode8 & 0x2) << 2;
3720 ir.rex_b = (opcode8 & 0x1) << 3;
3721 }
3722 else /* 32 bit target */
3723 goto out_prefixes;
3724 break;
3725 default:
3726 goto out_prefixes;
3727 break;
3728 }
3729 }
3730 out_prefixes:
3731 if (ir.regmap[X86_RECORD_R8_REGNUM] && rex_w == 1)
3732 {
3733 ir.dflag = 2;
3734 }
3735 else
3736 {
3737 if (prefixes & PREFIX_DATA)
3738 ir.dflag ^= 1;
3739 }
3740 if (prefixes & PREFIX_ADDR)
3741 ir.aflag ^= 1;
3742 else if (ir.regmap[X86_RECORD_R8_REGNUM])
3743 ir.aflag = 2;
3744
3745 /* now check op code */
3746 opcode = (uint32_t) opcode8;
3747 reswitch:
3748 switch (opcode)
3749 {
3750 case 0x0f:
3751 if (target_read_memory (ir.addr, &opcode8, 1))
3752 {
3753 if (record_debug)
3754 printf_unfiltered (_("Process record: error reading memory at "
3755 "addr %s len = 1.\n"),
3756 paddress (gdbarch, ir.addr));
3757 return -1;
3758 }
3759 ir.addr++;
3760 opcode = (uint32_t) opcode8 | 0x0f00;
3761 goto reswitch;
3762 break;
3763
3764 case 0x00: /* arith & logic */
3765 case 0x01:
3766 case 0x02:
3767 case 0x03:
3768 case 0x04:
3769 case 0x05:
3770 case 0x08:
3771 case 0x09:
3772 case 0x0a:
3773 case 0x0b:
3774 case 0x0c:
3775 case 0x0d:
3776 case 0x10:
3777 case 0x11:
3778 case 0x12:
3779 case 0x13:
3780 case 0x14:
3781 case 0x15:
3782 case 0x18:
3783 case 0x19:
3784 case 0x1a:
3785 case 0x1b:
3786 case 0x1c:
3787 case 0x1d:
3788 case 0x20:
3789 case 0x21:
3790 case 0x22:
3791 case 0x23:
3792 case 0x24:
3793 case 0x25:
3794 case 0x28:
3795 case 0x29:
3796 case 0x2a:
3797 case 0x2b:
3798 case 0x2c:
3799 case 0x2d:
3800 case 0x30:
3801 case 0x31:
3802 case 0x32:
3803 case 0x33:
3804 case 0x34:
3805 case 0x35:
3806 case 0x38:
3807 case 0x39:
3808 case 0x3a:
3809 case 0x3b:
3810 case 0x3c:
3811 case 0x3d:
3812 if (((opcode >> 3) & 7) != OP_CMPL)
3813 {
3814 if ((opcode & 1) == 0)
3815 ir.ot = OT_BYTE;
3816 else
3817 ir.ot = ir.dflag + OT_WORD;
3818
3819 switch ((opcode >> 1) & 3)
3820 {
3821 case 0: /* OP Ev, Gv */
3822 if (i386_record_modrm (&ir))
3823 return -1;
3824 if (ir.mod != 3)
3825 {
3826 if (i386_record_lea_modrm (&ir))
3827 return -1;
3828 }
3829 else
3830 {
3831 ir.rm |= ir.rex_b;
3832 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
3833 ir.rm &= 0x3;
3834 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
3835 }
3836 break;
3837 case 1: /* OP Gv, Ev */
3838 if (i386_record_modrm (&ir))
3839 return -1;
3840 ir.reg |= rex_r;
3841 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
3842 ir.reg &= 0x3;
3843 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
3844 break;
3845 case 2: /* OP A, Iv */
3846 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
3847 break;
3848 }
3849 }
3850 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
3851 break;
3852
3853 case 0x80: /* GRP1 */
3854 case 0x81:
3855 case 0x82:
3856 case 0x83:
3857 if (i386_record_modrm (&ir))
3858 return -1;
3859
3860 if (ir.reg != OP_CMPL)
3861 {
3862 if ((opcode & 1) == 0)
3863 ir.ot = OT_BYTE;
3864 else
3865 ir.ot = ir.dflag + OT_WORD;
3866
3867 if (ir.mod != 3)
3868 {
3869 if (opcode == 0x83)
3870 ir.rip_offset = 1;
3871 else
3872 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
3873 if (i386_record_lea_modrm (&ir))
3874 return -1;
3875 }
3876 else
3877 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
3878 }
3879 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
3880 break;
3881
3882 case 0x40: /* inc */
3883 case 0x41:
3884 case 0x42:
3885 case 0x43:
3886 case 0x44:
3887 case 0x45:
3888 case 0x46:
3889 case 0x47:
3890
3891 case 0x48: /* dec */
3892 case 0x49:
3893 case 0x4a:
3894 case 0x4b:
3895 case 0x4c:
3896 case 0x4d:
3897 case 0x4e:
3898 case 0x4f:
3899
3900 I386_RECORD_ARCH_LIST_ADD_REG (opcode & 7);
3901 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
3902 break;
3903
3904 case 0xf6: /* GRP3 */
3905 case 0xf7:
3906 if ((opcode & 1) == 0)
3907 ir.ot = OT_BYTE;
3908 else
3909 ir.ot = ir.dflag + OT_WORD;
3910 if (i386_record_modrm (&ir))
3911 return -1;
3912
3913 if (ir.mod != 3 && ir.reg == 0)
3914 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
3915
3916 switch (ir.reg)
3917 {
3918 case 0: /* test */
3919 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
3920 break;
3921 case 2: /* not */
3922 case 3: /* neg */
3923 if (ir.mod != 3)
3924 {
3925 if (i386_record_lea_modrm (&ir))
3926 return -1;
3927 }
3928 else
3929 {
3930 ir.rm |= ir.rex_b;
3931 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
3932 ir.rm &= 0x3;
3933 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
3934 }
3935 if (ir.reg == 3) /* neg */
3936 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
3937 break;
3938 case 4: /* mul */
3939 case 5: /* imul */
3940 case 6: /* div */
3941 case 7: /* idiv */
3942 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
3943 if (ir.ot != OT_BYTE)
3944 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
3945 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
3946 break;
3947 default:
3948 ir.addr -= 2;
3949 opcode = opcode << 8 | ir.modrm;
3950 goto no_support;
3951 break;
3952 }
3953 break;
3954
3955 case 0xfe: /* GRP4 */
3956 case 0xff: /* GRP5 */
3957 if (i386_record_modrm (&ir))
3958 return -1;
3959 if (ir.reg >= 2 && opcode == 0xfe)
3960 {
3961 ir.addr -= 2;
3962 opcode = opcode << 8 | ir.modrm;
3963 goto no_support;
3964 }
3965 switch (ir.reg)
3966 {
3967 case 0: /* inc */
3968 case 1: /* dec */
3969 if ((opcode & 1) == 0)
3970 ir.ot = OT_BYTE;
3971 else
3972 ir.ot = ir.dflag + OT_WORD;
3973 if (ir.mod != 3)
3974 {
3975 if (i386_record_lea_modrm (&ir))
3976 return -1;
3977 }
3978 else
3979 {
3980 ir.rm |= ir.rex_b;
3981 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
3982 ir.rm &= 0x3;
3983 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
3984 }
3985 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
3986 break;
3987 case 2: /* call */
3988 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
3989 ir.dflag = 2;
3990 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
3991 return -1;
3992 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
3993 break;
3994 case 3: /* lcall */
3995 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
3996 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
3997 return -1;
3998 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
3999 break;
4000 case 4: /* jmp */
4001 case 5: /* ljmp */
4002 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4003 break;
4004 case 6: /* push */
4005 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4006 ir.dflag = 2;
4007 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4008 return -1;
4009 break;
4010 default:
4011 ir.addr -= 2;
4012 opcode = opcode << 8 | ir.modrm;
4013 goto no_support;
4014 break;
4015 }
4016 break;
4017
4018 case 0x84: /* test */
4019 case 0x85:
4020 case 0xa8:
4021 case 0xa9:
4022 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4023 break;
4024
4025 case 0x98: /* CWDE/CBW */
4026 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4027 break;
4028
4029 case 0x99: /* CDQ/CWD */
4030 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4031 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
4032 break;
4033
4034 case 0x0faf: /* imul */
4035 case 0x69:
4036 case 0x6b:
4037 ir.ot = ir.dflag + OT_WORD;
4038 if (i386_record_modrm (&ir))
4039 return -1;
4040 if (opcode == 0x69)
4041 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
4042 else if (opcode == 0x6b)
4043 ir.rip_offset = 1;
4044 ir.reg |= rex_r;
4045 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4046 ir.reg &= 0x3;
4047 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4048 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4049 break;
4050
4051 case 0x0fc0: /* xadd */
4052 case 0x0fc1:
4053 if ((opcode & 1) == 0)
4054 ir.ot = OT_BYTE;
4055 else
4056 ir.ot = ir.dflag + OT_WORD;
4057 if (i386_record_modrm (&ir))
4058 return -1;
4059 ir.reg |= rex_r;
4060 if (ir.mod == 3)
4061 {
4062 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4063 ir.reg &= 0x3;
4064 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4065 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4066 ir.rm &= 0x3;
4067 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
4068 }
4069 else
4070 {
4071 if (i386_record_lea_modrm (&ir))
4072 return -1;
4073 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4074 ir.reg &= 0x3;
4075 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4076 }
4077 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4078 break;
4079
4080 case 0x0fb0: /* cmpxchg */
4081 case 0x0fb1:
4082 if ((opcode & 1) == 0)
4083 ir.ot = OT_BYTE;
4084 else
4085 ir.ot = ir.dflag + OT_WORD;
4086 if (i386_record_modrm (&ir))
4087 return -1;
4088 if (ir.mod == 3)
4089 {
4090 ir.reg |= rex_r;
4091 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4092 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4093 ir.reg &= 0x3;
4094 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4095 }
4096 else
4097 {
4098 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4099 if (i386_record_lea_modrm (&ir))
4100 return -1;
4101 }
4102 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4103 break;
4104
4105 case 0x0fc7: /* cmpxchg8b */
4106 if (i386_record_modrm (&ir))
4107 return -1;
4108 if (ir.mod == 3)
4109 {
4110 ir.addr -= 2;
4111 opcode = opcode << 8 | ir.modrm;
4112 goto no_support;
4113 }
4114 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4115 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
4116 if (i386_record_lea_modrm (&ir))
4117 return -1;
4118 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4119 break;
4120
4121 case 0x50: /* push */
4122 case 0x51:
4123 case 0x52:
4124 case 0x53:
4125 case 0x54:
4126 case 0x55:
4127 case 0x56:
4128 case 0x57:
4129 case 0x68:
4130 case 0x6a:
4131 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4132 ir.dflag = 2;
4133 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4134 return -1;
4135 break;
4136
4137 case 0x06: /* push es */
4138 case 0x0e: /* push cs */
4139 case 0x16: /* push ss */
4140 case 0x1e: /* push ds */
4141 if (ir.regmap[X86_RECORD_R8_REGNUM])
4142 {
4143 ir.addr -= 1;
4144 goto no_support;
4145 }
4146 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4147 return -1;
4148 break;
4149
4150 case 0x0fa0: /* push fs */
4151 case 0x0fa8: /* push gs */
4152 if (ir.regmap[X86_RECORD_R8_REGNUM])
4153 {
4154 ir.addr -= 2;
4155 goto no_support;
4156 }
4157 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4158 return -1;
4159 break;
4160
4161 case 0x60: /* pusha */
4162 if (ir.regmap[X86_RECORD_R8_REGNUM])
4163 {
4164 ir.addr -= 1;
4165 goto no_support;
4166 }
4167 if (i386_record_push (&ir, 1 << (ir.dflag + 4)))
4168 return -1;
4169 break;
4170
4171 case 0x58: /* pop */
4172 case 0x59:
4173 case 0x5a:
4174 case 0x5b:
4175 case 0x5c:
4176 case 0x5d:
4177 case 0x5e:
4178 case 0x5f:
4179 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4180 I386_RECORD_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
4181 break;
4182
4183 case 0x61: /* popa */
4184 if (ir.regmap[X86_RECORD_R8_REGNUM])
4185 {
4186 ir.addr -= 1;
4187 goto no_support;
4188 }
4189 for (regnum = X86_RECORD_REAX_REGNUM;
4190 regnum <= X86_RECORD_REDI_REGNUM;
4191 regnum++)
4192 I386_RECORD_ARCH_LIST_ADD_REG (regnum);
4193 break;
4194
4195 case 0x8f: /* pop */
4196 if (ir.regmap[X86_RECORD_R8_REGNUM])
4197 ir.ot = ir.dflag ? OT_QUAD : OT_WORD;
4198 else
4199 ir.ot = ir.dflag + OT_WORD;
4200 if (i386_record_modrm (&ir))
4201 return -1;
4202 if (ir.mod == 3)
4203 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
4204 else
4205 {
4206 ir.popl_esp_hack = 1 << ir.ot;
4207 if (i386_record_lea_modrm (&ir))
4208 return -1;
4209 }
4210 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4211 break;
4212
4213 case 0xc8: /* enter */
4214 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
4215 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4216 ir.dflag = 2;
4217 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4218 return -1;
4219 break;
4220
4221 case 0xc9: /* leave */
4222 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4223 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
4224 break;
4225
4226 case 0x07: /* pop es */
4227 if (ir.regmap[X86_RECORD_R8_REGNUM])
4228 {
4229 ir.addr -= 1;
4230 goto no_support;
4231 }
4232 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4233 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_ES_REGNUM);
4234 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4235 break;
4236
4237 case 0x17: /* pop ss */
4238 if (ir.regmap[X86_RECORD_R8_REGNUM])
4239 {
4240 ir.addr -= 1;
4241 goto no_support;
4242 }
4243 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4244 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_SS_REGNUM);
4245 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4246 break;
4247
4248 case 0x1f: /* pop ds */
4249 if (ir.regmap[X86_RECORD_R8_REGNUM])
4250 {
4251 ir.addr -= 1;
4252 goto no_support;
4253 }
4254 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4255 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_DS_REGNUM);
4256 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4257 break;
4258
4259 case 0x0fa1: /* pop fs */
4260 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4261 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_FS_REGNUM);
4262 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4263 break;
4264
4265 case 0x0fa9: /* pop gs */
4266 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4267 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
4268 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4269 break;
4270
4271 case 0x88: /* mov */
4272 case 0x89:
4273 case 0xc6:
4274 case 0xc7:
4275 if ((opcode & 1) == 0)
4276 ir.ot = OT_BYTE;
4277 else
4278 ir.ot = ir.dflag + OT_WORD;
4279
4280 if (i386_record_modrm (&ir))
4281 return -1;
4282
4283 if (ir.mod != 3)
4284 {
4285 if (opcode == 0xc6 || opcode == 0xc7)
4286 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
4287 if (i386_record_lea_modrm (&ir))
4288 return -1;
4289 }
4290 else
4291 {
4292 if (opcode == 0xc6 || opcode == 0xc7)
4293 ir.rm |= ir.rex_b;
4294 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4295 ir.rm &= 0x3;
4296 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
4297 }
4298 break;
4299
4300 case 0x8a: /* mov */
4301 case 0x8b:
4302 if ((opcode & 1) == 0)
4303 ir.ot = OT_BYTE;
4304 else
4305 ir.ot = ir.dflag + OT_WORD;
4306 if (i386_record_modrm (&ir))
4307 return -1;
4308 ir.reg |= rex_r;
4309 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4310 ir.reg &= 0x3;
4311 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4312 break;
4313
4314 case 0x8c: /* mov seg */
4315 if (i386_record_modrm (&ir))
4316 return -1;
4317 if (ir.reg > 5)
4318 {
4319 ir.addr -= 2;
4320 opcode = opcode << 8 | ir.modrm;
4321 goto no_support;
4322 }
4323
4324 if (ir.mod == 3)
4325 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
4326 else
4327 {
4328 ir.ot = OT_WORD;
4329 if (i386_record_lea_modrm (&ir))
4330 return -1;
4331 }
4332 break;
4333
4334 case 0x8e: /* mov seg */
4335 if (i386_record_modrm (&ir))
4336 return -1;
4337 switch (ir.reg)
4338 {
4339 case 0:
4340 regnum = X86_RECORD_ES_REGNUM;
4341 break;
4342 case 2:
4343 regnum = X86_RECORD_SS_REGNUM;
4344 break;
4345 case 3:
4346 regnum = X86_RECORD_DS_REGNUM;
4347 break;
4348 case 4:
4349 regnum = X86_RECORD_FS_REGNUM;
4350 break;
4351 case 5:
4352 regnum = X86_RECORD_GS_REGNUM;
4353 break;
4354 default:
4355 ir.addr -= 2;
4356 opcode = opcode << 8 | ir.modrm;
4357 goto no_support;
4358 break;
4359 }
4360 I386_RECORD_ARCH_LIST_ADD_REG (regnum);
4361 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4362 break;
4363
4364 case 0x0fb6: /* movzbS */
4365 case 0x0fb7: /* movzwS */
4366 case 0x0fbe: /* movsbS */
4367 case 0x0fbf: /* movswS */
4368 if (i386_record_modrm (&ir))
4369 return -1;
4370 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
4371 break;
4372
4373 case 0x8d: /* lea */
4374 if (i386_record_modrm (&ir))
4375 return -1;
4376 if (ir.mod == 3)
4377 {
4378 ir.addr -= 2;
4379 opcode = opcode << 8 | ir.modrm;
4380 goto no_support;
4381 }
4382 ir.ot = ir.dflag;
4383 ir.reg |= rex_r;
4384 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4385 ir.reg &= 0x3;
4386 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4387 break;
4388
4389 case 0xa0: /* mov EAX */
4390 case 0xa1:
4391
4392 case 0xd7: /* xlat */
4393 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4394 break;
4395
4396 case 0xa2: /* mov EAX */
4397 case 0xa3:
4398 if (ir.override >= 0)
4399 {
4400 warning (_("Process record ignores the memory change "
4401 "of instruction at address %s because "
4402 "it can't get the value of the segment "
4403 "register."),
4404 paddress (gdbarch, ir.orig_addr));
4405 }
4406 else
4407 {
4408 if ((opcode & 1) == 0)
4409 ir.ot = OT_BYTE;
4410 else
4411 ir.ot = ir.dflag + OT_WORD;
4412 if (ir.aflag == 2)
4413 {
4414 if (target_read_memory (ir.addr, buf, 8))
4415 {
4416 if (record_debug)
4417 printf_unfiltered (_("Process record: error reading "
4418 "memory at addr 0x%s len = 8.\n"),
4419 paddress (gdbarch, ir.addr));
4420 return -1;
4421 }
4422 ir.addr += 8;
4423 addr = extract_unsigned_integer (buf, 8, byte_order);
4424 }
4425 else if (ir.aflag)
4426 {
4427 if (target_read_memory (ir.addr, buf, 4))
4428 {
4429 if (record_debug)
4430 printf_unfiltered (_("Process record: error reading "
4431 "memory at addr 0x%s len = 4.\n"),
4432 paddress (gdbarch, ir.addr));
4433 return -1;
4434 }
4435 ir.addr += 4;
4436 addr = extract_unsigned_integer (buf, 4, byte_order);
4437 }
4438 else
4439 {
4440 if (target_read_memory (ir.addr, buf, 2))
4441 {
4442 if (record_debug)
4443 printf_unfiltered (_("Process record: error reading "
4444 "memory at addr 0x%s len = 2.\n"),
4445 paddress (gdbarch, ir.addr));
4446 return -1;
4447 }
4448 ir.addr += 2;
4449 addr = extract_unsigned_integer (buf, 2, byte_order);
4450 }
4451 if (record_arch_list_add_mem (addr, 1 << ir.ot))
4452 return -1;
4453 }
4454 break;
4455
4456 case 0xb0: /* mov R, Ib */
4457 case 0xb1:
4458 case 0xb2:
4459 case 0xb3:
4460 case 0xb4:
4461 case 0xb5:
4462 case 0xb6:
4463 case 0xb7:
4464 I386_RECORD_ARCH_LIST_ADD_REG ((ir.regmap[X86_RECORD_R8_REGNUM])
4465 ? ((opcode & 0x7) | ir.rex_b)
4466 : ((opcode & 0x7) & 0x3));
4467 break;
4468
4469 case 0xb8: /* mov R, Iv */
4470 case 0xb9:
4471 case 0xba:
4472 case 0xbb:
4473 case 0xbc:
4474 case 0xbd:
4475 case 0xbe:
4476 case 0xbf:
4477 I386_RECORD_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
4478 break;
4479
4480 case 0x91: /* xchg R, EAX */
4481 case 0x92:
4482 case 0x93:
4483 case 0x94:
4484 case 0x95:
4485 case 0x96:
4486 case 0x97:
4487 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4488 I386_RECORD_ARCH_LIST_ADD_REG (opcode & 0x7);
4489 break;
4490
4491 case 0x86: /* xchg Ev, Gv */
4492 case 0x87:
4493 if ((opcode & 1) == 0)
4494 ir.ot = OT_BYTE;
4495 else
4496 ir.ot = ir.dflag + OT_WORD;
4497 if (i386_record_modrm (&ir))
4498 return -1;
4499 if (ir.mod == 3)
4500 {
4501 ir.rm |= ir.rex_b;
4502 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4503 ir.rm &= 0x3;
4504 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
4505 }
4506 else
4507 {
4508 if (i386_record_lea_modrm (&ir))
4509 return -1;
4510 }
4511 ir.reg |= rex_r;
4512 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4513 ir.reg &= 0x3;
4514 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4515 break;
4516
4517 case 0xc4: /* les Gv */
4518 case 0xc5: /* lds Gv */
4519 if (ir.regmap[X86_RECORD_R8_REGNUM])
4520 {
4521 ir.addr -= 1;
4522 goto no_support;
4523 }
4524 case 0x0fb2: /* lss Gv */
4525 case 0x0fb4: /* lfs Gv */
4526 case 0x0fb5: /* lgs Gv */
4527 if (i386_record_modrm (&ir))
4528 return -1;
4529 if (ir.mod == 3)
4530 {
4531 if (opcode > 0xff)
4532 ir.addr -= 3;
4533 else
4534 ir.addr -= 2;
4535 opcode = opcode << 8 | ir.modrm;
4536 goto no_support;
4537 }
4538 switch (opcode)
4539 {
4540 case 0xc4: /* les Gv */
4541 regnum = X86_RECORD_ES_REGNUM;
4542 break;
4543 case 0xc5: /* lds Gv */
4544 regnum = X86_RECORD_DS_REGNUM;
4545 break;
4546 case 0x0fb2: /* lss Gv */
4547 regnum = X86_RECORD_SS_REGNUM;
4548 break;
4549 case 0x0fb4: /* lfs Gv */
4550 regnum = X86_RECORD_FS_REGNUM;
4551 break;
4552 case 0x0fb5: /* lgs Gv */
4553 regnum = X86_RECORD_GS_REGNUM;
4554 break;
4555 }
4556 I386_RECORD_ARCH_LIST_ADD_REG (regnum);
4557 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
4558 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4559 break;
4560
4561 case 0xc0: /* shifts */
4562 case 0xc1:
4563 case 0xd0:
4564 case 0xd1:
4565 case 0xd2:
4566 case 0xd3:
4567 if ((opcode & 1) == 0)
4568 ir.ot = OT_BYTE;
4569 else
4570 ir.ot = ir.dflag + OT_WORD;
4571 if (i386_record_modrm (&ir))
4572 return -1;
4573 if (ir.mod != 3 && (opcode == 0xd2 || opcode == 0xd3))
4574 {
4575 if (i386_record_lea_modrm (&ir))
4576 return -1;
4577 }
4578 else
4579 {
4580 ir.rm |= ir.rex_b;
4581 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4582 ir.rm &= 0x3;
4583 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
4584 }
4585 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4586 break;
4587
4588 case 0x0fa4:
4589 case 0x0fa5:
4590 case 0x0fac:
4591 case 0x0fad:
4592 if (i386_record_modrm (&ir))
4593 return -1;
4594 if (ir.mod == 3)
4595 {
4596 if (record_arch_list_add_reg (ir.regcache, ir.rm))
4597 return -1;
4598 }
4599 else
4600 {
4601 if (i386_record_lea_modrm (&ir))
4602 return -1;
4603 }
4604 break;
4605
4606 case 0xd8: /* Floats. */
4607 case 0xd9:
4608 case 0xda:
4609 case 0xdb:
4610 case 0xdc:
4611 case 0xdd:
4612 case 0xde:
4613 case 0xdf:
4614 if (i386_record_modrm (&ir))
4615 return -1;
4616 ir.reg |= ((opcode & 7) << 3);
4617 if (ir.mod != 3)
4618 {
4619 /* Memory. */
4620 uint64_t addr64;
4621
4622 if (i386_record_lea_modrm_addr (&ir, &addr64))
4623 return -1;
4624 switch (ir.reg)
4625 {
4626 case 0x02:
4627 case 0x12:
4628 case 0x22:
4629 case 0x32:
4630 /* For fcom, ficom nothing to do. */
4631 break;
4632 case 0x03:
4633 case 0x13:
4634 case 0x23:
4635 case 0x33:
4636 /* For fcomp, ficomp pop FPU stack, store all. */
4637 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
4638 return -1;
4639 break;
4640 case 0x00:
4641 case 0x01:
4642 case 0x04:
4643 case 0x05:
4644 case 0x06:
4645 case 0x07:
4646 case 0x10:
4647 case 0x11:
4648 case 0x14:
4649 case 0x15:
4650 case 0x16:
4651 case 0x17:
4652 case 0x20:
4653 case 0x21:
4654 case 0x24:
4655 case 0x25:
4656 case 0x26:
4657 case 0x27:
4658 case 0x30:
4659 case 0x31:
4660 case 0x34:
4661 case 0x35:
4662 case 0x36:
4663 case 0x37:
4664 /* For fadd, fmul, fsub, fsubr, fdiv, fdivr, fiadd, fimul,
4665 fisub, fisubr, fidiv, fidivr, modR/M.reg is an extension
4666 of code, always affects st(0) register. */
4667 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
4668 return -1;
4669 break;
4670 case 0x08:
4671 case 0x0a:
4672 case 0x0b:
4673 case 0x18:
4674 case 0x19:
4675 case 0x1a:
4676 case 0x1b:
4677 case 0x1d:
4678 case 0x28:
4679 case 0x29:
4680 case 0x2a:
4681 case 0x2b:
4682 case 0x38:
4683 case 0x39:
4684 case 0x3a:
4685 case 0x3b:
4686 case 0x3c:
4687 case 0x3d:
4688 switch (ir.reg & 7)
4689 {
4690 case 0:
4691 /* Handling fld, fild. */
4692 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
4693 return -1;
4694 break;
4695 case 1:
4696 switch (ir.reg >> 4)
4697 {
4698 case 0:
4699 if (record_arch_list_add_mem (addr64, 4))
4700 return -1;
4701 break;
4702 case 2:
4703 if (record_arch_list_add_mem (addr64, 8))
4704 return -1;
4705 break;
4706 case 3:
4707 break;
4708 default:
4709 if (record_arch_list_add_mem (addr64, 2))
4710 return -1;
4711 break;
4712 }
4713 break;
4714 default:
4715 switch (ir.reg >> 4)
4716 {
4717 case 0:
4718 if (record_arch_list_add_mem (addr64, 4))
4719 return -1;
4720 if (3 == (ir.reg & 7))
4721 {
4722 /* For fstp m32fp. */
4723 if (i386_record_floats (gdbarch, &ir,
4724 I386_SAVE_FPU_REGS))
4725 return -1;
4726 }
4727 break;
4728 case 1:
4729 if (record_arch_list_add_mem (addr64, 4))
4730 return -1;
4731 if ((3 == (ir.reg & 7))
4732 || (5 == (ir.reg & 7))
4733 || (7 == (ir.reg & 7)))
4734 {
4735 /* For fstp insn. */
4736 if (i386_record_floats (gdbarch, &ir,
4737 I386_SAVE_FPU_REGS))
4738 return -1;
4739 }
4740 break;
4741 case 2:
4742 if (record_arch_list_add_mem (addr64, 8))
4743 return -1;
4744 if (3 == (ir.reg & 7))
4745 {
4746 /* For fstp m64fp. */
4747 if (i386_record_floats (gdbarch, &ir,
4748 I386_SAVE_FPU_REGS))
4749 return -1;
4750 }
4751 break;
4752 case 3:
4753 if ((3 <= (ir.reg & 7)) && (6 <= (ir.reg & 7)))
4754 {
4755 /* For fistp, fbld, fild, fbstp. */
4756 if (i386_record_floats (gdbarch, &ir,
4757 I386_SAVE_FPU_REGS))
4758 return -1;
4759 }
4760 /* Fall through */
4761 default:
4762 if (record_arch_list_add_mem (addr64, 2))
4763 return -1;
4764 break;
4765 }
4766 break;
4767 }
4768 break;
4769 case 0x0c:
4770 /* Insn fldenv. */
4771 if (i386_record_floats (gdbarch, &ir,
4772 I386_SAVE_FPU_ENV_REG_STACK))
4773 return -1;
4774 break;
4775 case 0x0d:
4776 /* Insn fldcw. */
4777 if (i386_record_floats (gdbarch, &ir, I387_FCTRL_REGNUM (tdep)))
4778 return -1;
4779 break;
4780 case 0x2c:
4781 /* Insn frstor. */
4782 if (i386_record_floats (gdbarch, &ir,
4783 I386_SAVE_FPU_ENV_REG_STACK))
4784 return -1;
4785 break;
4786 case 0x0e:
4787 if (ir.dflag)
4788 {
4789 if (record_arch_list_add_mem (addr64, 28))
4790 return -1;
4791 }
4792 else
4793 {
4794 if (record_arch_list_add_mem (addr64, 14))
4795 return -1;
4796 }
4797 break;
4798 case 0x0f:
4799 case 0x2f:
4800 if (record_arch_list_add_mem (addr64, 2))
4801 return -1;
4802 /* Insn fstp, fbstp. */
4803 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
4804 return -1;
4805 break;
4806 case 0x1f:
4807 case 0x3e:
4808 if (record_arch_list_add_mem (addr64, 10))
4809 return -1;
4810 break;
4811 case 0x2e:
4812 if (ir.dflag)
4813 {
4814 if (record_arch_list_add_mem (addr64, 28))
4815 return -1;
4816 addr64 += 28;
4817 }
4818 else
4819 {
4820 if (record_arch_list_add_mem (addr64, 14))
4821 return -1;
4822 addr64 += 14;
4823 }
4824 if (record_arch_list_add_mem (addr64, 80))
4825 return -1;
4826 /* Insn fsave. */
4827 if (i386_record_floats (gdbarch, &ir,
4828 I386_SAVE_FPU_ENV_REG_STACK))
4829 return -1;
4830 break;
4831 case 0x3f:
4832 if (record_arch_list_add_mem (addr64, 8))
4833 return -1;
4834 /* Insn fistp. */
4835 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
4836 return -1;
4837 break;
4838 default:
4839 ir.addr -= 2;
4840 opcode = opcode << 8 | ir.modrm;
4841 goto no_support;
4842 break;
4843 }
4844 }
4845 /* Opcode is an extension of modR/M byte. */
4846 else
4847 {
4848 switch (opcode)
4849 {
4850 case 0xd8:
4851 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
4852 return -1;
4853 break;
4854 case 0xd9:
4855 if (0x0c == (ir.modrm >> 4))
4856 {
4857 if ((ir.modrm & 0x0f) <= 7)
4858 {
4859 if (i386_record_floats (gdbarch, &ir,
4860 I386_SAVE_FPU_REGS))
4861 return -1;
4862 }
4863 else
4864 {
4865 if (i386_record_floats (gdbarch, &ir,
4866 I387_ST0_REGNUM (tdep)))
4867 return -1;
4868 /* If only st(0) is changing, then we have already
4869 recorded. */
4870 if ((ir.modrm & 0x0f) - 0x08)
4871 {
4872 if (i386_record_floats (gdbarch, &ir,
4873 I387_ST0_REGNUM (tdep) +
4874 ((ir.modrm & 0x0f) - 0x08)))
4875 return -1;
4876 }
4877 }
4878 }
4879 else
4880 {
4881 switch (ir.modrm)
4882 {
4883 case 0xe0:
4884 case 0xe1:
4885 case 0xf0:
4886 case 0xf5:
4887 case 0xf8:
4888 case 0xfa:
4889 case 0xfc:
4890 case 0xfe:
4891 case 0xff:
4892 if (i386_record_floats (gdbarch, &ir,
4893 I387_ST0_REGNUM (tdep)))
4894 return -1;
4895 break;
4896 case 0xf1:
4897 case 0xf2:
4898 case 0xf3:
4899 case 0xf4:
4900 case 0xf6:
4901 case 0xf7:
4902 case 0xe8:
4903 case 0xe9:
4904 case 0xea:
4905 case 0xeb:
4906 case 0xec:
4907 case 0xed:
4908 case 0xee:
4909 case 0xf9:
4910 case 0xfb:
4911 if (i386_record_floats (gdbarch, &ir,
4912 I386_SAVE_FPU_REGS))
4913 return -1;
4914 break;
4915 case 0xfd:
4916 if (i386_record_floats (gdbarch, &ir,
4917 I387_ST0_REGNUM (tdep)))
4918 return -1;
4919 if (i386_record_floats (gdbarch, &ir,
4920 I387_ST0_REGNUM (tdep) + 1))
4921 return -1;
4922 break;
4923 }
4924 }
4925 break;
4926 case 0xda:
4927 if (0xe9 == ir.modrm)
4928 {
4929 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
4930 return -1;
4931 }
4932 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
4933 {
4934 if (i386_record_floats (gdbarch, &ir,
4935 I387_ST0_REGNUM (tdep)))
4936 return -1;
4937 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
4938 {
4939 if (i386_record_floats (gdbarch, &ir,
4940 I387_ST0_REGNUM (tdep) +
4941 (ir.modrm & 0x0f)))
4942 return -1;
4943 }
4944 else if ((ir.modrm & 0x0f) - 0x08)
4945 {
4946 if (i386_record_floats (gdbarch, &ir,
4947 I387_ST0_REGNUM (tdep) +
4948 ((ir.modrm & 0x0f) - 0x08)))
4949 return -1;
4950 }
4951 }
4952 break;
4953 case 0xdb:
4954 if (0xe3 == ir.modrm)
4955 {
4956 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_ENV))
4957 return -1;
4958 }
4959 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
4960 {
4961 if (i386_record_floats (gdbarch, &ir,
4962 I387_ST0_REGNUM (tdep)))
4963 return -1;
4964 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
4965 {
4966 if (i386_record_floats (gdbarch, &ir,
4967 I387_ST0_REGNUM (tdep) +
4968 (ir.modrm & 0x0f)))
4969 return -1;
4970 }
4971 else if ((ir.modrm & 0x0f) - 0x08)
4972 {
4973 if (i386_record_floats (gdbarch, &ir,
4974 I387_ST0_REGNUM (tdep) +
4975 ((ir.modrm & 0x0f) - 0x08)))
4976 return -1;
4977 }
4978 }
4979 break;
4980 case 0xdc:
4981 if ((0x0c == ir.modrm >> 4)
4982 || (0x0d == ir.modrm >> 4)
4983 || (0x0f == ir.modrm >> 4))
4984 {
4985 if ((ir.modrm & 0x0f) <= 7)
4986 {
4987 if (i386_record_floats (gdbarch, &ir,
4988 I387_ST0_REGNUM (tdep) +
4989 (ir.modrm & 0x0f)))
4990 return -1;
4991 }
4992 else
4993 {
4994 if (i386_record_floats (gdbarch, &ir,
4995 I387_ST0_REGNUM (tdep) +
4996 ((ir.modrm & 0x0f) - 0x08)))
4997 return -1;
4998 }
4999 }
5000 break;
5001 case 0xdd:
5002 if (0x0c == ir.modrm >> 4)
5003 {
5004 if (i386_record_floats (gdbarch, &ir,
5005 I387_FTAG_REGNUM (tdep)))
5006 return -1;
5007 }
5008 else if ((0x0d == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
5009 {
5010 if ((ir.modrm & 0x0f) <= 7)
5011 {
5012 if (i386_record_floats (gdbarch, &ir,
5013 I387_ST0_REGNUM (tdep) +
5014 (ir.modrm & 0x0f)))
5015 return -1;
5016 }
5017 else
5018 {
5019 if (i386_record_floats (gdbarch, &ir,
5020 I386_SAVE_FPU_REGS))
5021 return -1;
5022 }
5023 }
5024 break;
5025 case 0xde:
5026 if ((0x0c == ir.modrm >> 4)
5027 || (0x0e == ir.modrm >> 4)
5028 || (0x0f == ir.modrm >> 4)
5029 || (0xd9 == ir.modrm))
5030 {
5031 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5032 return -1;
5033 }
5034 break;
5035 case 0xdf:
5036 if (0xe0 == ir.modrm)
5037 {
5038 if (record_arch_list_add_reg (ir.regcache, I386_EAX_REGNUM))
5039 return -1;
5040 }
5041 else if ((0x0f == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
5042 {
5043 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5044 return -1;
5045 }
5046 break;
5047 }
5048 }
5049 break;
5050 /* string ops */
5051 case 0xa4: /* movsS */
5052 case 0xa5:
5053 case 0xaa: /* stosS */
5054 case 0xab:
5055 case 0x6c: /* insS */
5056 case 0x6d:
5057 regcache_raw_read_unsigned (ir.regcache,
5058 ir.regmap[X86_RECORD_RECX_REGNUM],
5059 &addr);
5060 if (addr)
5061 {
5062 ULONGEST es, ds;
5063
5064 if ((opcode & 1) == 0)
5065 ir.ot = OT_BYTE;
5066 else
5067 ir.ot = ir.dflag + OT_WORD;
5068 regcache_raw_read_unsigned (ir.regcache,
5069 ir.regmap[X86_RECORD_REDI_REGNUM],
5070 &addr);
5071
5072 regcache_raw_read_unsigned (ir.regcache,
5073 ir.regmap[X86_RECORD_ES_REGNUM],
5074 &es);
5075 regcache_raw_read_unsigned (ir.regcache,
5076 ir.regmap[X86_RECORD_DS_REGNUM],
5077 &ds);
5078 if (ir.aflag && (es != ds))
5079 {
5080 /* addr += ((uint32_t) read_register (I386_ES_REGNUM)) << 4; */
5081 warning (_("Process record ignores the memory "
5082 "change of instruction at address %s "
5083 "because it can't get the value of the "
5084 "ES segment register."),
5085 paddress (gdbarch, ir.orig_addr));
5086 }
5087 else
5088 {
5089 if (record_arch_list_add_mem (addr, 1 << ir.ot))
5090 return -1;
5091 }
5092
5093 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
5094 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5095 if (opcode == 0xa4 || opcode == 0xa5)
5096 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
5097 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
5098 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5099 }
5100 break;
5101
5102 case 0xa6: /* cmpsS */
5103 case 0xa7:
5104 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
5105 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
5106 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
5107 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5108 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5109 break;
5110
5111 case 0xac: /* lodsS */
5112 case 0xad:
5113 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5114 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
5115 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
5116 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5117 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5118 break;
5119
5120 case 0xae: /* scasS */
5121 case 0xaf:
5122 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
5123 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
5124 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5125 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5126 break;
5127
5128 case 0x6e: /* outsS */
5129 case 0x6f:
5130 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
5131 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
5132 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5133 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5134 break;
5135
5136 case 0xe4: /* port I/O */
5137 case 0xe5:
5138 case 0xec:
5139 case 0xed:
5140 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5141 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5142 break;
5143
5144 case 0xe6:
5145 case 0xe7:
5146 case 0xee:
5147 case 0xef:
5148 break;
5149
5150 /* control */
5151 case 0xc2: /* ret im */
5152 case 0xc3: /* ret */
5153 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5154 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5155 break;
5156
5157 case 0xca: /* lret im */
5158 case 0xcb: /* lret */
5159 case 0xcf: /* iret */
5160 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
5161 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5162 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5163 break;
5164
5165 case 0xe8: /* call im */
5166 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5167 ir.dflag = 2;
5168 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5169 return -1;
5170 break;
5171
5172 case 0x9a: /* lcall im */
5173 if (ir.regmap[X86_RECORD_R8_REGNUM])
5174 {
5175 ir.addr -= 1;
5176 goto no_support;
5177 }
5178 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
5179 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5180 return -1;
5181 break;
5182
5183 case 0xe9: /* jmp im */
5184 case 0xea: /* ljmp im */
5185 case 0xeb: /* jmp Jb */
5186 case 0x70: /* jcc Jb */
5187 case 0x71:
5188 case 0x72:
5189 case 0x73:
5190 case 0x74:
5191 case 0x75:
5192 case 0x76:
5193 case 0x77:
5194 case 0x78:
5195 case 0x79:
5196 case 0x7a:
5197 case 0x7b:
5198 case 0x7c:
5199 case 0x7d:
5200 case 0x7e:
5201 case 0x7f:
5202 case 0x0f80: /* jcc Jv */
5203 case 0x0f81:
5204 case 0x0f82:
5205 case 0x0f83:
5206 case 0x0f84:
5207 case 0x0f85:
5208 case 0x0f86:
5209 case 0x0f87:
5210 case 0x0f88:
5211 case 0x0f89:
5212 case 0x0f8a:
5213 case 0x0f8b:
5214 case 0x0f8c:
5215 case 0x0f8d:
5216 case 0x0f8e:
5217 case 0x0f8f:
5218 break;
5219
5220 case 0x0f90: /* setcc Gv */
5221 case 0x0f91:
5222 case 0x0f92:
5223 case 0x0f93:
5224 case 0x0f94:
5225 case 0x0f95:
5226 case 0x0f96:
5227 case 0x0f97:
5228 case 0x0f98:
5229 case 0x0f99:
5230 case 0x0f9a:
5231 case 0x0f9b:
5232 case 0x0f9c:
5233 case 0x0f9d:
5234 case 0x0f9e:
5235 case 0x0f9f:
5236 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5237 ir.ot = OT_BYTE;
5238 if (i386_record_modrm (&ir))
5239 return -1;
5240 if (ir.mod == 3)
5241 I386_RECORD_ARCH_LIST_ADD_REG (ir.rex_b ? (ir.rm | ir.rex_b)
5242 : (ir.rm & 0x3));
5243 else
5244 {
5245 if (i386_record_lea_modrm (&ir))
5246 return -1;
5247 }
5248 break;
5249
5250 case 0x0f40: /* cmov Gv, Ev */
5251 case 0x0f41:
5252 case 0x0f42:
5253 case 0x0f43:
5254 case 0x0f44:
5255 case 0x0f45:
5256 case 0x0f46:
5257 case 0x0f47:
5258 case 0x0f48:
5259 case 0x0f49:
5260 case 0x0f4a:
5261 case 0x0f4b:
5262 case 0x0f4c:
5263 case 0x0f4d:
5264 case 0x0f4e:
5265 case 0x0f4f:
5266 if (i386_record_modrm (&ir))
5267 return -1;
5268 ir.reg |= rex_r;
5269 if (ir.dflag == OT_BYTE)
5270 ir.reg &= 0x3;
5271 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
5272 break;
5273
5274 /* flags */
5275 case 0x9c: /* pushf */
5276 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5277 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5278 ir.dflag = 2;
5279 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5280 return -1;
5281 break;
5282
5283 case 0x9d: /* popf */
5284 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5285 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5286 break;
5287
5288 case 0x9e: /* sahf */
5289 if (ir.regmap[X86_RECORD_R8_REGNUM])
5290 {
5291 ir.addr -= 1;
5292 goto no_support;
5293 }
5294 case 0xf5: /* cmc */
5295 case 0xf8: /* clc */
5296 case 0xf9: /* stc */
5297 case 0xfc: /* cld */
5298 case 0xfd: /* std */
5299 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5300 break;
5301
5302 case 0x9f: /* lahf */
5303 if (ir.regmap[X86_RECORD_R8_REGNUM])
5304 {
5305 ir.addr -= 1;
5306 goto no_support;
5307 }
5308 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5309 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5310 break;
5311
5312 /* bit operations */
5313 case 0x0fba: /* bt/bts/btr/btc Gv, im */
5314 ir.ot = ir.dflag + OT_WORD;
5315 if (i386_record_modrm (&ir))
5316 return -1;
5317 if (ir.reg < 4)
5318 {
5319 ir.addr -= 2;
5320 opcode = opcode << 8 | ir.modrm;
5321 goto no_support;
5322 }
5323 if (ir.reg != 4)
5324 {
5325 if (ir.mod == 3)
5326 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5327 else
5328 {
5329 if (i386_record_lea_modrm (&ir))
5330 return -1;
5331 }
5332 }
5333 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5334 break;
5335
5336 case 0x0fa3: /* bt Gv, Ev */
5337 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5338 break;
5339
5340 case 0x0fab: /* bts */
5341 case 0x0fb3: /* btr */
5342 case 0x0fbb: /* btc */
5343 ir.ot = ir.dflag + OT_WORD;
5344 if (i386_record_modrm (&ir))
5345 return -1;
5346 if (ir.mod == 3)
5347 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5348 else
5349 {
5350 uint64_t addr64;
5351 if (i386_record_lea_modrm_addr (&ir, &addr64))
5352 return -1;
5353 regcache_raw_read_unsigned (ir.regcache,
5354 ir.regmap[ir.reg | rex_r],
5355 &addr);
5356 switch (ir.dflag)
5357 {
5358 case 0:
5359 addr64 += ((int16_t) addr >> 4) << 4;
5360 break;
5361 case 1:
5362 addr64 += ((int32_t) addr >> 5) << 5;
5363 break;
5364 case 2:
5365 addr64 += ((int64_t) addr >> 6) << 6;
5366 break;
5367 }
5368 if (record_arch_list_add_mem (addr64, 1 << ir.ot))
5369 return -1;
5370 if (i386_record_lea_modrm (&ir))
5371 return -1;
5372 }
5373 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5374 break;
5375
5376 case 0x0fbc: /* bsf */
5377 case 0x0fbd: /* bsr */
5378 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5379 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5380 break;
5381
5382 /* bcd */
5383 case 0x27: /* daa */
5384 case 0x2f: /* das */
5385 case 0x37: /* aaa */
5386 case 0x3f: /* aas */
5387 case 0xd4: /* aam */
5388 case 0xd5: /* aad */
5389 if (ir.regmap[X86_RECORD_R8_REGNUM])
5390 {
5391 ir.addr -= 1;
5392 goto no_support;
5393 }
5394 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5395 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5396 break;
5397
5398 /* misc */
5399 case 0x90: /* nop */
5400 if (prefixes & PREFIX_LOCK)
5401 {
5402 ir.addr -= 1;
5403 goto no_support;
5404 }
5405 break;
5406
5407 case 0x9b: /* fwait */
5408 if (target_read_memory (ir.addr, &opcode8, 1))
5409 {
5410 if (record_debug)
5411 printf_unfiltered (_("Process record: error reading memory at "
5412 "addr 0x%s len = 1.\n"),
5413 paddress (gdbarch, ir.addr));
5414 return -1;
5415 }
5416 opcode = (uint32_t) opcode8;
5417 ir.addr++;
5418 goto reswitch;
5419 break;
5420
5421 /* XXX */
5422 case 0xcc: /* int3 */
5423 printf_unfiltered (_("Process record does not support instruction "
5424 "int3.\n"));
5425 ir.addr -= 1;
5426 goto no_support;
5427 break;
5428
5429 /* XXX */
5430 case 0xcd: /* int */
5431 {
5432 int ret;
5433 uint8_t interrupt;
5434 if (target_read_memory (ir.addr, &interrupt, 1))
5435 {
5436 if (record_debug)
5437 printf_unfiltered (_("Process record: error reading memory "
5438 "at addr %s len = 1.\n"),
5439 paddress (gdbarch, ir.addr));
5440 return -1;
5441 }
5442 ir.addr++;
5443 if (interrupt != 0x80
5444 || tdep->i386_intx80_record == NULL)
5445 {
5446 printf_unfiltered (_("Process record does not support "
5447 "instruction int 0x%02x.\n"),
5448 interrupt);
5449 ir.addr -= 2;
5450 goto no_support;
5451 }
5452 ret = tdep->i386_intx80_record (ir.regcache);
5453 if (ret)
5454 return ret;
5455 }
5456 break;
5457
5458 /* XXX */
5459 case 0xce: /* into */
5460 printf_unfiltered (_("Process record does not support "
5461 "instruction into.\n"));
5462 ir.addr -= 1;
5463 goto no_support;
5464 break;
5465
5466 case 0xfa: /* cli */
5467 case 0xfb: /* sti */
5468 break;
5469
5470 case 0x62: /* bound */
5471 printf_unfiltered (_("Process record does not support "
5472 "instruction bound.\n"));
5473 ir.addr -= 1;
5474 goto no_support;
5475 break;
5476
5477 case 0x0fc8: /* bswap reg */
5478 case 0x0fc9:
5479 case 0x0fca:
5480 case 0x0fcb:
5481 case 0x0fcc:
5482 case 0x0fcd:
5483 case 0x0fce:
5484 case 0x0fcf:
5485 I386_RECORD_ARCH_LIST_ADD_REG ((opcode & 7) | ir.rex_b);
5486 break;
5487
5488 case 0xd6: /* salc */
5489 if (ir.regmap[X86_RECORD_R8_REGNUM])
5490 {
5491 ir.addr -= 1;
5492 goto no_support;
5493 }
5494 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5495 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5496 break;
5497
5498 case 0xe0: /* loopnz */
5499 case 0xe1: /* loopz */
5500 case 0xe2: /* loop */
5501 case 0xe3: /* jecxz */
5502 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5503 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5504 break;
5505
5506 case 0x0f30: /* wrmsr */
5507 printf_unfiltered (_("Process record does not support "
5508 "instruction wrmsr.\n"));
5509 ir.addr -= 2;
5510 goto no_support;
5511 break;
5512
5513 case 0x0f32: /* rdmsr */
5514 printf_unfiltered (_("Process record does not support "
5515 "instruction rdmsr.\n"));
5516 ir.addr -= 2;
5517 goto no_support;
5518 break;
5519
5520 case 0x0f31: /* rdtsc */
5521 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5522 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5523 break;
5524
5525 case 0x0f34: /* sysenter */
5526 {
5527 int ret;
5528 if (ir.regmap[X86_RECORD_R8_REGNUM])
5529 {
5530 ir.addr -= 2;
5531 goto no_support;
5532 }
5533 if (tdep->i386_sysenter_record == NULL)
5534 {
5535 printf_unfiltered (_("Process record does not support "
5536 "instruction sysenter.\n"));
5537 ir.addr -= 2;
5538 goto no_support;
5539 }
5540 ret = tdep->i386_sysenter_record (ir.regcache);
5541 if (ret)
5542 return ret;
5543 }
5544 break;
5545
5546 case 0x0f35: /* sysexit */
5547 printf_unfiltered (_("Process record does not support "
5548 "instruction sysexit.\n"));
5549 ir.addr -= 2;
5550 goto no_support;
5551 break;
5552
5553 case 0x0f05: /* syscall */
5554 {
5555 int ret;
5556 if (tdep->i386_syscall_record == NULL)
5557 {
5558 printf_unfiltered (_("Process record does not support "
5559 "instruction syscall.\n"));
5560 ir.addr -= 2;
5561 goto no_support;
5562 }
5563 ret = tdep->i386_syscall_record (ir.regcache);
5564 if (ret)
5565 return ret;
5566 }
5567 break;
5568
5569 case 0x0f07: /* sysret */
5570 printf_unfiltered (_("Process record does not support "
5571 "instruction sysret.\n"));
5572 ir.addr -= 2;
5573 goto no_support;
5574 break;
5575
5576 case 0x0fa2: /* cpuid */
5577 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5578 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5579 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5580 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
5581 break;
5582
5583 case 0xf4: /* hlt */
5584 printf_unfiltered (_("Process record does not support "
5585 "instruction hlt.\n"));
5586 ir.addr -= 1;
5587 goto no_support;
5588 break;
5589
5590 case 0x0f00:
5591 if (i386_record_modrm (&ir))
5592 return -1;
5593 switch (ir.reg)
5594 {
5595 case 0: /* sldt */
5596 case 1: /* str */
5597 if (ir.mod == 3)
5598 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5599 else
5600 {
5601 ir.ot = OT_WORD;
5602 if (i386_record_lea_modrm (&ir))
5603 return -1;
5604 }
5605 break;
5606 case 2: /* lldt */
5607 case 3: /* ltr */
5608 break;
5609 case 4: /* verr */
5610 case 5: /* verw */
5611 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5612 break;
5613 default:
5614 ir.addr -= 3;
5615 opcode = opcode << 8 | ir.modrm;
5616 goto no_support;
5617 break;
5618 }
5619 break;
5620
5621 case 0x0f01:
5622 if (i386_record_modrm (&ir))
5623 return -1;
5624 switch (ir.reg)
5625 {
5626 case 0: /* sgdt */
5627 {
5628 uint64_t addr64;
5629
5630 if (ir.mod == 3)
5631 {
5632 ir.addr -= 3;
5633 opcode = opcode << 8 | ir.modrm;
5634 goto no_support;
5635 }
5636 if (ir.override >= 0)
5637 {
5638 warning (_("Process record ignores the memory "
5639 "change of instruction at "
5640 "address %s because it can't get "
5641 "the value of the segment "
5642 "register."),
5643 paddress (gdbarch, ir.orig_addr));
5644 }
5645 else
5646 {
5647 if (i386_record_lea_modrm_addr (&ir, &addr64))
5648 return -1;
5649 if (record_arch_list_add_mem (addr64, 2))
5650 return -1;
5651 addr64 += 2;
5652 if (ir.regmap[X86_RECORD_R8_REGNUM])
5653 {
5654 if (record_arch_list_add_mem (addr64, 8))
5655 return -1;
5656 }
5657 else
5658 {
5659 if (record_arch_list_add_mem (addr64, 4))
5660 return -1;
5661 }
5662 }
5663 }
5664 break;
5665 case 1:
5666 if (ir.mod == 3)
5667 {
5668 switch (ir.rm)
5669 {
5670 case 0: /* monitor */
5671 break;
5672 case 1: /* mwait */
5673 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5674 break;
5675 default:
5676 ir.addr -= 3;
5677 opcode = opcode << 8 | ir.modrm;
5678 goto no_support;
5679 break;
5680 }
5681 }
5682 else
5683 {
5684 /* sidt */
5685 if (ir.override >= 0)
5686 {
5687 warning (_("Process record ignores the memory "
5688 "change of instruction at "
5689 "address %s because it can't get "
5690 "the value of the segment "
5691 "register."),
5692 paddress (gdbarch, ir.orig_addr));
5693 }
5694 else
5695 {
5696 uint64_t addr64;
5697
5698 if (i386_record_lea_modrm_addr (&ir, &addr64))
5699 return -1;
5700 if (record_arch_list_add_mem (addr64, 2))
5701 return -1;
5702 addr64 += 2;
5703 if (ir.regmap[X86_RECORD_R8_REGNUM])
5704 {
5705 if (record_arch_list_add_mem (addr64, 8))
5706 return -1;
5707 }
5708 else
5709 {
5710 if (record_arch_list_add_mem (addr64, 4))
5711 return -1;
5712 }
5713 }
5714 }
5715 break;
5716 case 2: /* lgdt */
5717 if (ir.mod == 3)
5718 {
5719 /* xgetbv */
5720 if (ir.rm == 0)
5721 {
5722 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5723 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5724 break;
5725 }
5726 /* xsetbv */
5727 else if (ir.rm == 1)
5728 break;
5729 }
5730 case 3: /* lidt */
5731 if (ir.mod == 3)
5732 {
5733 ir.addr -= 3;
5734 opcode = opcode << 8 | ir.modrm;
5735 goto no_support;
5736 }
5737 break;
5738 case 4: /* smsw */
5739 if (ir.mod == 3)
5740 {
5741 if (record_arch_list_add_reg (ir.regcache, ir.rm | ir.rex_b))
5742 return -1;
5743 }
5744 else
5745 {
5746 ir.ot = OT_WORD;
5747 if (i386_record_lea_modrm (&ir))
5748 return -1;
5749 }
5750 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5751 break;
5752 case 6: /* lmsw */
5753 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5754 break;
5755 case 7: /* invlpg */
5756 if (ir.mod == 3)
5757 {
5758 if (ir.rm == 0 && ir.regmap[X86_RECORD_R8_REGNUM])
5759 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
5760 else
5761 {
5762 ir.addr -= 3;
5763 opcode = opcode << 8 | ir.modrm;
5764 goto no_support;
5765 }
5766 }
5767 else
5768 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5769 break;
5770 default:
5771 ir.addr -= 3;
5772 opcode = opcode << 8 | ir.modrm;
5773 goto no_support;
5774 break;
5775 }
5776 break;
5777
5778 case 0x0f08: /* invd */
5779 case 0x0f09: /* wbinvd */
5780 break;
5781
5782 case 0x63: /* arpl */
5783 if (i386_record_modrm (&ir))
5784 return -1;
5785 if (ir.mod == 3 || ir.regmap[X86_RECORD_R8_REGNUM])
5786 {
5787 I386_RECORD_ARCH_LIST_ADD_REG (ir.regmap[X86_RECORD_R8_REGNUM]
5788 ? (ir.reg | rex_r) : ir.rm);
5789 }
5790 else
5791 {
5792 ir.ot = ir.dflag ? OT_LONG : OT_WORD;
5793 if (i386_record_lea_modrm (&ir))
5794 return -1;
5795 }
5796 if (!ir.regmap[X86_RECORD_R8_REGNUM])
5797 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5798 break;
5799
5800 case 0x0f02: /* lar */
5801 case 0x0f03: /* lsl */
5802 if (i386_record_modrm (&ir))
5803 return -1;
5804 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5805 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5806 break;
5807
5808 case 0x0f18:
5809 if (i386_record_modrm (&ir))
5810 return -1;
5811 if (ir.mod == 3 && ir.reg == 3)
5812 {
5813 ir.addr -= 3;
5814 opcode = opcode << 8 | ir.modrm;
5815 goto no_support;
5816 }
5817 break;
5818
5819 case 0x0f19:
5820 case 0x0f1a:
5821 case 0x0f1b:
5822 case 0x0f1c:
5823 case 0x0f1d:
5824 case 0x0f1e:
5825 case 0x0f1f:
5826 /* nop (multi byte) */
5827 break;
5828
5829 case 0x0f20: /* mov reg, crN */
5830 case 0x0f22: /* mov crN, reg */
5831 if (i386_record_modrm (&ir))
5832 return -1;
5833 if ((ir.modrm & 0xc0) != 0xc0)
5834 {
5835 ir.addr -= 3;
5836 opcode = opcode << 8 | ir.modrm;
5837 goto no_support;
5838 }
5839 switch (ir.reg)
5840 {
5841 case 0:
5842 case 2:
5843 case 3:
5844 case 4:
5845 case 8:
5846 if (opcode & 2)
5847 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5848 else
5849 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5850 break;
5851 default:
5852 ir.addr -= 3;
5853 opcode = opcode << 8 | ir.modrm;
5854 goto no_support;
5855 break;
5856 }
5857 break;
5858
5859 case 0x0f21: /* mov reg, drN */
5860 case 0x0f23: /* mov drN, reg */
5861 if (i386_record_modrm (&ir))
5862 return -1;
5863 if ((ir.modrm & 0xc0) != 0xc0 || ir.reg == 4
5864 || ir.reg == 5 || ir.reg >= 8)
5865 {
5866 ir.addr -= 3;
5867 opcode = opcode << 8 | ir.modrm;
5868 goto no_support;
5869 }
5870 if (opcode & 2)
5871 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5872 else
5873 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5874 break;
5875
5876 case 0x0f06: /* clts */
5877 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5878 break;
5879
5880 /* MMX 3DNow! SSE SSE2 SSE3 SSSE3 SSE4 */
5881
5882 case 0x0f0d: /* 3DNow! prefetch */
5883 break;
5884
5885 case 0x0f0e: /* 3DNow! femms */
5886 case 0x0f77: /* emms */
5887 if (i386_fpc_regnum_p (gdbarch, I387_FTAG_REGNUM(tdep)))
5888 goto no_support;
5889 record_arch_list_add_reg (ir.regcache, I387_FTAG_REGNUM(tdep));
5890 break;
5891
5892 case 0x0f0f: /* 3DNow! data */
5893 if (i386_record_modrm (&ir))
5894 return -1;
5895 if (target_read_memory (ir.addr, &opcode8, 1))
5896 {
5897 printf_unfiltered (_("Process record: error reading memory at "
5898 "addr %s len = 1.\n"),
5899 paddress (gdbarch, ir.addr));
5900 return -1;
5901 }
5902 ir.addr++;
5903 switch (opcode8)
5904 {
5905 case 0x0c: /* 3DNow! pi2fw */
5906 case 0x0d: /* 3DNow! pi2fd */
5907 case 0x1c: /* 3DNow! pf2iw */
5908 case 0x1d: /* 3DNow! pf2id */
5909 case 0x8a: /* 3DNow! pfnacc */
5910 case 0x8e: /* 3DNow! pfpnacc */
5911 case 0x90: /* 3DNow! pfcmpge */
5912 case 0x94: /* 3DNow! pfmin */
5913 case 0x96: /* 3DNow! pfrcp */
5914 case 0x97: /* 3DNow! pfrsqrt */
5915 case 0x9a: /* 3DNow! pfsub */
5916 case 0x9e: /* 3DNow! pfadd */
5917 case 0xa0: /* 3DNow! pfcmpgt */
5918 case 0xa4: /* 3DNow! pfmax */
5919 case 0xa6: /* 3DNow! pfrcpit1 */
5920 case 0xa7: /* 3DNow! pfrsqit1 */
5921 case 0xaa: /* 3DNow! pfsubr */
5922 case 0xae: /* 3DNow! pfacc */
5923 case 0xb0: /* 3DNow! pfcmpeq */
5924 case 0xb4: /* 3DNow! pfmul */
5925 case 0xb6: /* 3DNow! pfrcpit2 */
5926 case 0xb7: /* 3DNow! pmulhrw */
5927 case 0xbb: /* 3DNow! pswapd */
5928 case 0xbf: /* 3DNow! pavgusb */
5929 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
5930 goto no_support_3dnow_data;
5931 record_arch_list_add_reg (ir.regcache, ir.reg);
5932 break;
5933
5934 default:
5935 no_support_3dnow_data:
5936 opcode = (opcode << 8) | opcode8;
5937 goto no_support;
5938 break;
5939 }
5940 break;
5941
5942 case 0x0faa: /* rsm */
5943 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5944 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5945 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5946 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5947 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
5948 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5949 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
5950 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
5951 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
5952 break;
5953
5954 case 0x0fae:
5955 if (i386_record_modrm (&ir))
5956 return -1;
5957 switch(ir.reg)
5958 {
5959 case 0: /* fxsave */
5960 {
5961 uint64_t tmpu64;
5962
5963 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5964 if (i386_record_lea_modrm_addr (&ir, &tmpu64))
5965 return -1;
5966 if (record_arch_list_add_mem (tmpu64, 512))
5967 return -1;
5968 }
5969 break;
5970
5971 case 1: /* fxrstor */
5972 {
5973 int i;
5974
5975 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5976
5977 for (i = I387_MM0_REGNUM (tdep);
5978 i386_mmx_regnum_p (gdbarch, i); i++)
5979 record_arch_list_add_reg (ir.regcache, i);
5980
5981 for (i = I387_XMM0_REGNUM (tdep);
5982 i386_xmm_regnum_p (gdbarch, i); i++)
5983 record_arch_list_add_reg (ir.regcache, i);
5984
5985 if (i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
5986 record_arch_list_add_reg (ir.regcache, I387_MXCSR_REGNUM(tdep));
5987
5988 for (i = I387_ST0_REGNUM (tdep);
5989 i386_fp_regnum_p (gdbarch, i); i++)
5990 record_arch_list_add_reg (ir.regcache, i);
5991
5992 for (i = I387_FCTRL_REGNUM (tdep);
5993 i386_fpc_regnum_p (gdbarch, i); i++)
5994 record_arch_list_add_reg (ir.regcache, i);
5995 }
5996 break;
5997
5998 case 2: /* ldmxcsr */
5999 if (!i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
6000 goto no_support;
6001 record_arch_list_add_reg (ir.regcache, I387_MXCSR_REGNUM(tdep));
6002 break;
6003
6004 case 3: /* stmxcsr */
6005 ir.ot = OT_LONG;
6006 if (i386_record_lea_modrm (&ir))
6007 return -1;
6008 break;
6009
6010 case 5: /* lfence */
6011 case 6: /* mfence */
6012 case 7: /* sfence clflush */
6013 break;
6014
6015 default:
6016 opcode = (opcode << 8) | ir.modrm;
6017 goto no_support;
6018 break;
6019 }
6020 break;
6021
6022 case 0x0fc3: /* movnti */
6023 ir.ot = (ir.dflag == 2) ? OT_QUAD : OT_LONG;
6024 if (i386_record_modrm (&ir))
6025 return -1;
6026 if (ir.mod == 3)
6027 goto no_support;
6028 ir.reg |= rex_r;
6029 if (i386_record_lea_modrm (&ir))
6030 return -1;
6031 break;
6032
6033 /* Add prefix to opcode. */
6034 case 0x0f10:
6035 case 0x0f11:
6036 case 0x0f12:
6037 case 0x0f13:
6038 case 0x0f14:
6039 case 0x0f15:
6040 case 0x0f16:
6041 case 0x0f17:
6042 case 0x0f28:
6043 case 0x0f29:
6044 case 0x0f2a:
6045 case 0x0f2b:
6046 case 0x0f2c:
6047 case 0x0f2d:
6048 case 0x0f2e:
6049 case 0x0f2f:
6050 case 0x0f38:
6051 case 0x0f39:
6052 case 0x0f3a:
6053 case 0x0f50:
6054 case 0x0f51:
6055 case 0x0f52:
6056 case 0x0f53:
6057 case 0x0f54:
6058 case 0x0f55:
6059 case 0x0f56:
6060 case 0x0f57:
6061 case 0x0f58:
6062 case 0x0f59:
6063 case 0x0f5a:
6064 case 0x0f5b:
6065 case 0x0f5c:
6066 case 0x0f5d:
6067 case 0x0f5e:
6068 case 0x0f5f:
6069 case 0x0f60:
6070 case 0x0f61:
6071 case 0x0f62:
6072 case 0x0f63:
6073 case 0x0f64:
6074 case 0x0f65:
6075 case 0x0f66:
6076 case 0x0f67:
6077 case 0x0f68:
6078 case 0x0f69:
6079 case 0x0f6a:
6080 case 0x0f6b:
6081 case 0x0f6c:
6082 case 0x0f6d:
6083 case 0x0f6e:
6084 case 0x0f6f:
6085 case 0x0f70:
6086 case 0x0f71:
6087 case 0x0f72:
6088 case 0x0f73:
6089 case 0x0f74:
6090 case 0x0f75:
6091 case 0x0f76:
6092 case 0x0f7c:
6093 case 0x0f7d:
6094 case 0x0f7e:
6095 case 0x0f7f:
6096 case 0x0fb8:
6097 case 0x0fc2:
6098 case 0x0fc4:
6099 case 0x0fc5:
6100 case 0x0fc6:
6101 case 0x0fd0:
6102 case 0x0fd1:
6103 case 0x0fd2:
6104 case 0x0fd3:
6105 case 0x0fd4:
6106 case 0x0fd5:
6107 case 0x0fd6:
6108 case 0x0fd7:
6109 case 0x0fd8:
6110 case 0x0fd9:
6111 case 0x0fda:
6112 case 0x0fdb:
6113 case 0x0fdc:
6114 case 0x0fdd:
6115 case 0x0fde:
6116 case 0x0fdf:
6117 case 0x0fe0:
6118 case 0x0fe1:
6119 case 0x0fe2:
6120 case 0x0fe3:
6121 case 0x0fe4:
6122 case 0x0fe5:
6123 case 0x0fe6:
6124 case 0x0fe7:
6125 case 0x0fe8:
6126 case 0x0fe9:
6127 case 0x0fea:
6128 case 0x0feb:
6129 case 0x0fec:
6130 case 0x0fed:
6131 case 0x0fee:
6132 case 0x0fef:
6133 case 0x0ff0:
6134 case 0x0ff1:
6135 case 0x0ff2:
6136 case 0x0ff3:
6137 case 0x0ff4:
6138 case 0x0ff5:
6139 case 0x0ff6:
6140 case 0x0ff7:
6141 case 0x0ff8:
6142 case 0x0ff9:
6143 case 0x0ffa:
6144 case 0x0ffb:
6145 case 0x0ffc:
6146 case 0x0ffd:
6147 case 0x0ffe:
6148 switch (prefixes)
6149 {
6150 case PREFIX_REPNZ:
6151 opcode |= 0xf20000;
6152 break;
6153 case PREFIX_DATA:
6154 opcode |= 0x660000;
6155 break;
6156 case PREFIX_REPZ:
6157 opcode |= 0xf30000;
6158 break;
6159 }
6160 reswitch_prefix_add:
6161 switch (opcode)
6162 {
6163 case 0x0f38:
6164 case 0x660f38:
6165 case 0xf20f38:
6166 case 0x0f3a:
6167 case 0x660f3a:
6168 if (target_read_memory (ir.addr, &opcode8, 1))
6169 {
6170 printf_unfiltered (_("Process record: error reading memory at "
6171 "addr %s len = 1.\n"),
6172 paddress (gdbarch, ir.addr));
6173 return -1;
6174 }
6175 ir.addr++;
6176 opcode = (uint32_t) opcode8 | opcode << 8;
6177 goto reswitch_prefix_add;
6178 break;
6179
6180 case 0x0f10: /* movups */
6181 case 0x660f10: /* movupd */
6182 case 0xf30f10: /* movss */
6183 case 0xf20f10: /* movsd */
6184 case 0x0f12: /* movlps */
6185 case 0x660f12: /* movlpd */
6186 case 0xf30f12: /* movsldup */
6187 case 0xf20f12: /* movddup */
6188 case 0x0f14: /* unpcklps */
6189 case 0x660f14: /* unpcklpd */
6190 case 0x0f15: /* unpckhps */
6191 case 0x660f15: /* unpckhpd */
6192 case 0x0f16: /* movhps */
6193 case 0x660f16: /* movhpd */
6194 case 0xf30f16: /* movshdup */
6195 case 0x0f28: /* movaps */
6196 case 0x660f28: /* movapd */
6197 case 0x0f2a: /* cvtpi2ps */
6198 case 0x660f2a: /* cvtpi2pd */
6199 case 0xf30f2a: /* cvtsi2ss */
6200 case 0xf20f2a: /* cvtsi2sd */
6201 case 0x0f2c: /* cvttps2pi */
6202 case 0x660f2c: /* cvttpd2pi */
6203 case 0x0f2d: /* cvtps2pi */
6204 case 0x660f2d: /* cvtpd2pi */
6205 case 0x660f3800: /* pshufb */
6206 case 0x660f3801: /* phaddw */
6207 case 0x660f3802: /* phaddd */
6208 case 0x660f3803: /* phaddsw */
6209 case 0x660f3804: /* pmaddubsw */
6210 case 0x660f3805: /* phsubw */
6211 case 0x660f3806: /* phsubd */
6212 case 0x660f3807: /* phaddsw */
6213 case 0x660f3808: /* psignb */
6214 case 0x660f3809: /* psignw */
6215 case 0x660f380a: /* psignd */
6216 case 0x660f380b: /* pmulhrsw */
6217 case 0x660f3810: /* pblendvb */
6218 case 0x660f3814: /* blendvps */
6219 case 0x660f3815: /* blendvpd */
6220 case 0x660f381c: /* pabsb */
6221 case 0x660f381d: /* pabsw */
6222 case 0x660f381e: /* pabsd */
6223 case 0x660f3820: /* pmovsxbw */
6224 case 0x660f3821: /* pmovsxbd */
6225 case 0x660f3822: /* pmovsxbq */
6226 case 0x660f3823: /* pmovsxwd */
6227 case 0x660f3824: /* pmovsxwq */
6228 case 0x660f3825: /* pmovsxdq */
6229 case 0x660f3828: /* pmuldq */
6230 case 0x660f3829: /* pcmpeqq */
6231 case 0x660f382a: /* movntdqa */
6232 case 0x660f3a08: /* roundps */
6233 case 0x660f3a09: /* roundpd */
6234 case 0x660f3a0a: /* roundss */
6235 case 0x660f3a0b: /* roundsd */
6236 case 0x660f3a0c: /* blendps */
6237 case 0x660f3a0d: /* blendpd */
6238 case 0x660f3a0e: /* pblendw */
6239 case 0x660f3a0f: /* palignr */
6240 case 0x660f3a20: /* pinsrb */
6241 case 0x660f3a21: /* insertps */
6242 case 0x660f3a22: /* pinsrd pinsrq */
6243 case 0x660f3a40: /* dpps */
6244 case 0x660f3a41: /* dppd */
6245 case 0x660f3a42: /* mpsadbw */
6246 case 0x660f3a60: /* pcmpestrm */
6247 case 0x660f3a61: /* pcmpestri */
6248 case 0x660f3a62: /* pcmpistrm */
6249 case 0x660f3a63: /* pcmpistri */
6250 case 0x0f51: /* sqrtps */
6251 case 0x660f51: /* sqrtpd */
6252 case 0xf20f51: /* sqrtsd */
6253 case 0xf30f51: /* sqrtss */
6254 case 0x0f52: /* rsqrtps */
6255 case 0xf30f52: /* rsqrtss */
6256 case 0x0f53: /* rcpps */
6257 case 0xf30f53: /* rcpss */
6258 case 0x0f54: /* andps */
6259 case 0x660f54: /* andpd */
6260 case 0x0f55: /* andnps */
6261 case 0x660f55: /* andnpd */
6262 case 0x0f56: /* orps */
6263 case 0x660f56: /* orpd */
6264 case 0x0f57: /* xorps */
6265 case 0x660f57: /* xorpd */
6266 case 0x0f58: /* addps */
6267 case 0x660f58: /* addpd */
6268 case 0xf20f58: /* addsd */
6269 case 0xf30f58: /* addss */
6270 case 0x0f59: /* mulps */
6271 case 0x660f59: /* mulpd */
6272 case 0xf20f59: /* mulsd */
6273 case 0xf30f59: /* mulss */
6274 case 0x0f5a: /* cvtps2pd */
6275 case 0x660f5a: /* cvtpd2ps */
6276 case 0xf20f5a: /* cvtsd2ss */
6277 case 0xf30f5a: /* cvtss2sd */
6278 case 0x0f5b: /* cvtdq2ps */
6279 case 0x660f5b: /* cvtps2dq */
6280 case 0xf30f5b: /* cvttps2dq */
6281 case 0x0f5c: /* subps */
6282 case 0x660f5c: /* subpd */
6283 case 0xf20f5c: /* subsd */
6284 case 0xf30f5c: /* subss */
6285 case 0x0f5d: /* minps */
6286 case 0x660f5d: /* minpd */
6287 case 0xf20f5d: /* minsd */
6288 case 0xf30f5d: /* minss */
6289 case 0x0f5e: /* divps */
6290 case 0x660f5e: /* divpd */
6291 case 0xf20f5e: /* divsd */
6292 case 0xf30f5e: /* divss */
6293 case 0x0f5f: /* maxps */
6294 case 0x660f5f: /* maxpd */
6295 case 0xf20f5f: /* maxsd */
6296 case 0xf30f5f: /* maxss */
6297 case 0x660f60: /* punpcklbw */
6298 case 0x660f61: /* punpcklwd */
6299 case 0x660f62: /* punpckldq */
6300 case 0x660f63: /* packsswb */
6301 case 0x660f64: /* pcmpgtb */
6302 case 0x660f65: /* pcmpgtw */
6303 case 0x660f66: /* pcmpgtl */
6304 case 0x660f67: /* packuswb */
6305 case 0x660f68: /* punpckhbw */
6306 case 0x660f69: /* punpckhwd */
6307 case 0x660f6a: /* punpckhdq */
6308 case 0x660f6b: /* packssdw */
6309 case 0x660f6c: /* punpcklqdq */
6310 case 0x660f6d: /* punpckhqdq */
6311 case 0x660f6e: /* movd */
6312 case 0x660f6f: /* movdqa */
6313 case 0xf30f6f: /* movdqu */
6314 case 0x660f70: /* pshufd */
6315 case 0xf20f70: /* pshuflw */
6316 case 0xf30f70: /* pshufhw */
6317 case 0x660f74: /* pcmpeqb */
6318 case 0x660f75: /* pcmpeqw */
6319 case 0x660f76: /* pcmpeql */
6320 case 0x660f7c: /* haddpd */
6321 case 0xf20f7c: /* haddps */
6322 case 0x660f7d: /* hsubpd */
6323 case 0xf20f7d: /* hsubps */
6324 case 0xf30f7e: /* movq */
6325 case 0x0fc2: /* cmpps */
6326 case 0x660fc2: /* cmppd */
6327 case 0xf20fc2: /* cmpsd */
6328 case 0xf30fc2: /* cmpss */
6329 case 0x660fc4: /* pinsrw */
6330 case 0x0fc6: /* shufps */
6331 case 0x660fc6: /* shufpd */
6332 case 0x660fd0: /* addsubpd */
6333 case 0xf20fd0: /* addsubps */
6334 case 0x660fd1: /* psrlw */
6335 case 0x660fd2: /* psrld */
6336 case 0x660fd3: /* psrlq */
6337 case 0x660fd4: /* paddq */
6338 case 0x660fd5: /* pmullw */
6339 case 0xf30fd6: /* movq2dq */
6340 case 0x660fd8: /* psubusb */
6341 case 0x660fd9: /* psubusw */
6342 case 0x660fda: /* pminub */
6343 case 0x660fdb: /* pand */
6344 case 0x660fdc: /* paddusb */
6345 case 0x660fdd: /* paddusw */
6346 case 0x660fde: /* pmaxub */
6347 case 0x660fdf: /* pandn */
6348 case 0x660fe0: /* pavgb */
6349 case 0x660fe1: /* psraw */
6350 case 0x660fe2: /* psrad */
6351 case 0x660fe3: /* pavgw */
6352 case 0x660fe4: /* pmulhuw */
6353 case 0x660fe5: /* pmulhw */
6354 case 0x660fe6: /* cvttpd2dq */
6355 case 0xf20fe6: /* cvtpd2dq */
6356 case 0xf30fe6: /* cvtdq2pd */
6357 case 0x660fe8: /* psubsb */
6358 case 0x660fe9: /* psubsw */
6359 case 0x660fea: /* pminsw */
6360 case 0x660feb: /* por */
6361 case 0x660fec: /* paddsb */
6362 case 0x660fed: /* paddsw */
6363 case 0x660fee: /* pmaxsw */
6364 case 0x660fef: /* pxor */
6365 case 0x660ff0: /* lddqu */
6366 case 0x660ff1: /* psllw */
6367 case 0x660ff2: /* pslld */
6368 case 0x660ff3: /* psllq */
6369 case 0x660ff4: /* pmuludq */
6370 case 0x660ff5: /* pmaddwd */
6371 case 0x660ff6: /* psadbw */
6372 case 0x660ff8: /* psubb */
6373 case 0x660ff9: /* psubw */
6374 case 0x660ffa: /* psubl */
6375 case 0x660ffb: /* psubq */
6376 case 0x660ffc: /* paddb */
6377 case 0x660ffd: /* paddw */
6378 case 0x660ffe: /* paddl */
6379 if (i386_record_modrm (&ir))
6380 return -1;
6381 ir.reg |= rex_r;
6382 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.reg))
6383 goto no_support;
6384 record_arch_list_add_reg (ir.regcache,
6385 I387_XMM0_REGNUM (tdep) + ir.reg);
6386 if ((opcode & 0xfffffffc) == 0x660f3a60)
6387 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6388 break;
6389
6390 case 0x0f11: /* movups */
6391 case 0x660f11: /* movupd */
6392 case 0xf30f11: /* movss */
6393 case 0xf20f11: /* movsd */
6394 case 0x0f13: /* movlps */
6395 case 0x660f13: /* movlpd */
6396 case 0x0f17: /* movhps */
6397 case 0x660f17: /* movhpd */
6398 case 0x0f29: /* movaps */
6399 case 0x660f29: /* movapd */
6400 case 0x660f3a14: /* pextrb */
6401 case 0x660f3a15: /* pextrw */
6402 case 0x660f3a16: /* pextrd pextrq */
6403 case 0x660f3a17: /* extractps */
6404 case 0x660f7f: /* movdqa */
6405 case 0xf30f7f: /* movdqu */
6406 if (i386_record_modrm (&ir))
6407 return -1;
6408 if (ir.mod == 3)
6409 {
6410 if (opcode == 0x0f13 || opcode == 0x660f13
6411 || opcode == 0x0f17 || opcode == 0x660f17)
6412 goto no_support;
6413 ir.rm |= ir.rex_b;
6414 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.rm))
6415 goto no_support;
6416 record_arch_list_add_reg (ir.regcache,
6417 I387_XMM0_REGNUM (tdep) + ir.rm);
6418 }
6419 else
6420 {
6421 switch (opcode)
6422 {
6423 case 0x660f3a14:
6424 ir.ot = OT_BYTE;
6425 break;
6426 case 0x660f3a15:
6427 ir.ot = OT_WORD;
6428 break;
6429 case 0x660f3a16:
6430 ir.ot = OT_LONG;
6431 break;
6432 case 0x660f3a17:
6433 ir.ot = OT_QUAD;
6434 break;
6435 default:
6436 ir.ot = OT_DQUAD;
6437 break;
6438 }
6439 if (i386_record_lea_modrm (&ir))
6440 return -1;
6441 }
6442 break;
6443
6444 case 0x0f2b: /* movntps */
6445 case 0x660f2b: /* movntpd */
6446 case 0x0fe7: /* movntq */
6447 case 0x660fe7: /* movntdq */
6448 if (ir.mod == 3)
6449 goto no_support;
6450 if (opcode == 0x0fe7)
6451 ir.ot = OT_QUAD;
6452 else
6453 ir.ot = OT_DQUAD;
6454 if (i386_record_lea_modrm (&ir))
6455 return -1;
6456 break;
6457
6458 case 0xf30f2c: /* cvttss2si */
6459 case 0xf20f2c: /* cvttsd2si */
6460 case 0xf30f2d: /* cvtss2si */
6461 case 0xf20f2d: /* cvtsd2si */
6462 case 0xf20f38f0: /* crc32 */
6463 case 0xf20f38f1: /* crc32 */
6464 case 0x0f50: /* movmskps */
6465 case 0x660f50: /* movmskpd */
6466 case 0x0fc5: /* pextrw */
6467 case 0x660fc5: /* pextrw */
6468 case 0x0fd7: /* pmovmskb */
6469 case 0x660fd7: /* pmovmskb */
6470 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6471 break;
6472
6473 case 0x0f3800: /* pshufb */
6474 case 0x0f3801: /* phaddw */
6475 case 0x0f3802: /* phaddd */
6476 case 0x0f3803: /* phaddsw */
6477 case 0x0f3804: /* pmaddubsw */
6478 case 0x0f3805: /* phsubw */
6479 case 0x0f3806: /* phsubd */
6480 case 0x0f3807: /* phaddsw */
6481 case 0x0f3808: /* psignb */
6482 case 0x0f3809: /* psignw */
6483 case 0x0f380a: /* psignd */
6484 case 0x0f380b: /* pmulhrsw */
6485 case 0x0f381c: /* pabsb */
6486 case 0x0f381d: /* pabsw */
6487 case 0x0f381e: /* pabsd */
6488 case 0x0f382b: /* packusdw */
6489 case 0x0f3830: /* pmovzxbw */
6490 case 0x0f3831: /* pmovzxbd */
6491 case 0x0f3832: /* pmovzxbq */
6492 case 0x0f3833: /* pmovzxwd */
6493 case 0x0f3834: /* pmovzxwq */
6494 case 0x0f3835: /* pmovzxdq */
6495 case 0x0f3837: /* pcmpgtq */
6496 case 0x0f3838: /* pminsb */
6497 case 0x0f3839: /* pminsd */
6498 case 0x0f383a: /* pminuw */
6499 case 0x0f383b: /* pminud */
6500 case 0x0f383c: /* pmaxsb */
6501 case 0x0f383d: /* pmaxsd */
6502 case 0x0f383e: /* pmaxuw */
6503 case 0x0f383f: /* pmaxud */
6504 case 0x0f3840: /* pmulld */
6505 case 0x0f3841: /* phminposuw */
6506 case 0x0f3a0f: /* palignr */
6507 case 0x0f60: /* punpcklbw */
6508 case 0x0f61: /* punpcklwd */
6509 case 0x0f62: /* punpckldq */
6510 case 0x0f63: /* packsswb */
6511 case 0x0f64: /* pcmpgtb */
6512 case 0x0f65: /* pcmpgtw */
6513 case 0x0f66: /* pcmpgtl */
6514 case 0x0f67: /* packuswb */
6515 case 0x0f68: /* punpckhbw */
6516 case 0x0f69: /* punpckhwd */
6517 case 0x0f6a: /* punpckhdq */
6518 case 0x0f6b: /* packssdw */
6519 case 0x0f6e: /* movd */
6520 case 0x0f6f: /* movq */
6521 case 0x0f70: /* pshufw */
6522 case 0x0f74: /* pcmpeqb */
6523 case 0x0f75: /* pcmpeqw */
6524 case 0x0f76: /* pcmpeql */
6525 case 0x0fc4: /* pinsrw */
6526 case 0x0fd1: /* psrlw */
6527 case 0x0fd2: /* psrld */
6528 case 0x0fd3: /* psrlq */
6529 case 0x0fd4: /* paddq */
6530 case 0x0fd5: /* pmullw */
6531 case 0xf20fd6: /* movdq2q */
6532 case 0x0fd8: /* psubusb */
6533 case 0x0fd9: /* psubusw */
6534 case 0x0fda: /* pminub */
6535 case 0x0fdb: /* pand */
6536 case 0x0fdc: /* paddusb */
6537 case 0x0fdd: /* paddusw */
6538 case 0x0fde: /* pmaxub */
6539 case 0x0fdf: /* pandn */
6540 case 0x0fe0: /* pavgb */
6541 case 0x0fe1: /* psraw */
6542 case 0x0fe2: /* psrad */
6543 case 0x0fe3: /* pavgw */
6544 case 0x0fe4: /* pmulhuw */
6545 case 0x0fe5: /* pmulhw */
6546 case 0x0fe8: /* psubsb */
6547 case 0x0fe9: /* psubsw */
6548 case 0x0fea: /* pminsw */
6549 case 0x0feb: /* por */
6550 case 0x0fec: /* paddsb */
6551 case 0x0fed: /* paddsw */
6552 case 0x0fee: /* pmaxsw */
6553 case 0x0fef: /* pxor */
6554 case 0x0ff1: /* psllw */
6555 case 0x0ff2: /* pslld */
6556 case 0x0ff3: /* psllq */
6557 case 0x0ff4: /* pmuludq */
6558 case 0x0ff5: /* pmaddwd */
6559 case 0x0ff6: /* psadbw */
6560 case 0x0ff8: /* psubb */
6561 case 0x0ff9: /* psubw */
6562 case 0x0ffa: /* psubl */
6563 case 0x0ffb: /* psubq */
6564 case 0x0ffc: /* paddb */
6565 case 0x0ffd: /* paddw */
6566 case 0x0ffe: /* paddl */
6567 if (i386_record_modrm (&ir))
6568 return -1;
6569 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
6570 goto no_support;
6571 record_arch_list_add_reg (ir.regcache,
6572 I387_MM0_REGNUM (tdep) + ir.reg);
6573 break;
6574
6575 case 0x0f71: /* psllw */
6576 case 0x0f72: /* pslld */
6577 case 0x0f73: /* psllq */
6578 if (i386_record_modrm (&ir))
6579 return -1;
6580 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
6581 goto no_support;
6582 record_arch_list_add_reg (ir.regcache,
6583 I387_MM0_REGNUM (tdep) + ir.rm);
6584 break;
6585
6586 case 0x660f71: /* psllw */
6587 case 0x660f72: /* pslld */
6588 case 0x660f73: /* psllq */
6589 if (i386_record_modrm (&ir))
6590 return -1;
6591 ir.rm |= ir.rex_b;
6592 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.rm))
6593 goto no_support;
6594 record_arch_list_add_reg (ir.regcache,
6595 I387_XMM0_REGNUM (tdep) + ir.rm);
6596 break;
6597
6598 case 0x0f7e: /* movd */
6599 case 0x660f7e: /* movd */
6600 if (i386_record_modrm (&ir))
6601 return -1;
6602 if (ir.mod == 3)
6603 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6604 else
6605 {
6606 if (ir.dflag == 2)
6607 ir.ot = OT_QUAD;
6608 else
6609 ir.ot = OT_LONG;
6610 if (i386_record_lea_modrm (&ir))
6611 return -1;
6612 }
6613 break;
6614
6615 case 0x0f7f: /* movq */
6616 if (i386_record_modrm (&ir))
6617 return -1;
6618 if (ir.mod == 3)
6619 {
6620 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
6621 goto no_support;
6622 record_arch_list_add_reg (ir.regcache,
6623 I387_MM0_REGNUM (tdep) + ir.rm);
6624 }
6625 else
6626 {
6627 ir.ot = OT_QUAD;
6628 if (i386_record_lea_modrm (&ir))
6629 return -1;
6630 }
6631 break;
6632
6633 case 0xf30fb8: /* popcnt */
6634 if (i386_record_modrm (&ir))
6635 return -1;
6636 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
6637 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6638 break;
6639
6640 case 0x660fd6: /* movq */
6641 if (i386_record_modrm (&ir))
6642 return -1;
6643 if (ir.mod == 3)
6644 {
6645 ir.rm |= ir.rex_b;
6646 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.rm))
6647 goto no_support;
6648 record_arch_list_add_reg (ir.regcache,
6649 I387_XMM0_REGNUM (tdep) + ir.rm);
6650 }
6651 else
6652 {
6653 ir.ot = OT_QUAD;
6654 if (i386_record_lea_modrm (&ir))
6655 return -1;
6656 }
6657 break;
6658
6659 case 0x660f3817: /* ptest */
6660 case 0x0f2e: /* ucomiss */
6661 case 0x660f2e: /* ucomisd */
6662 case 0x0f2f: /* comiss */
6663 case 0x660f2f: /* comisd */
6664 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6665 break;
6666
6667 case 0x0ff7: /* maskmovq */
6668 regcache_raw_read_unsigned (ir.regcache,
6669 ir.regmap[X86_RECORD_REDI_REGNUM],
6670 &addr);
6671 if (record_arch_list_add_mem (addr, 64))
6672 return -1;
6673 break;
6674
6675 case 0x660ff7: /* maskmovdqu */
6676 regcache_raw_read_unsigned (ir.regcache,
6677 ir.regmap[X86_RECORD_REDI_REGNUM],
6678 &addr);
6679 if (record_arch_list_add_mem (addr, 128))
6680 return -1;
6681 break;
6682
6683 default:
6684 goto no_support;
6685 break;
6686 }
6687 break;
6688
6689 default:
6690 goto no_support;
6691 break;
6692 }
6693
6694 /* In the future, maybe still need to deal with need_dasm. */
6695 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REIP_REGNUM);
6696 if (record_arch_list_add_end ())
6697 return -1;
6698
6699 return 0;
6700
6701 no_support:
6702 printf_unfiltered (_("Process record does not support instruction 0x%02x "
6703 "at address %s.\n"),
6704 (unsigned int) (opcode),
6705 paddress (gdbarch, ir.orig_addr));
6706 return -1;
6707 }
6708
6709 static const int i386_record_regmap[] =
6710 {
6711 I386_EAX_REGNUM, I386_ECX_REGNUM, I386_EDX_REGNUM, I386_EBX_REGNUM,
6712 I386_ESP_REGNUM, I386_EBP_REGNUM, I386_ESI_REGNUM, I386_EDI_REGNUM,
6713 0, 0, 0, 0, 0, 0, 0, 0,
6714 I386_EIP_REGNUM, I386_EFLAGS_REGNUM, I386_CS_REGNUM, I386_SS_REGNUM,
6715 I386_DS_REGNUM, I386_ES_REGNUM, I386_FS_REGNUM, I386_GS_REGNUM
6716 };
6717
6718 /* Check that the given address appears suitable for a fast
6719 tracepoint, which on x86 means that we need an instruction of at
6720 least 5 bytes, so that we can overwrite it with a 4-byte-offset
6721 jump and not have to worry about program jumps to an address in the
6722 middle of the tracepoint jump. Returns 1 if OK, and writes a size
6723 of instruction to replace, and 0 if not, plus an explanatory
6724 string. */
6725
6726 static int
6727 i386_fast_tracepoint_valid_at (struct gdbarch *gdbarch,
6728 CORE_ADDR addr, int *isize, char **msg)
6729 {
6730 int len, jumplen;
6731 static struct ui_file *gdb_null = NULL;
6732
6733 /* This is based on the target agent using a 4-byte relative jump.
6734 Alternate future possibilities include 8-byte offset for x86-84,
6735 or 3-byte jumps if the program has trampoline space close by. */
6736 jumplen = 5;
6737
6738 /* Dummy file descriptor for the disassembler. */
6739 if (!gdb_null)
6740 gdb_null = ui_file_new ();
6741
6742 /* Check for fit. */
6743 len = gdb_print_insn (gdbarch, addr, gdb_null, NULL);
6744 if (len < jumplen)
6745 {
6746 /* Return a bit of target-specific detail to add to the caller's
6747 generic failure message. */
6748 if (msg)
6749 *msg = xstrprintf (_("; instruction is only %d bytes long, need at least %d bytes for the jump"),
6750 len, jumplen);
6751 return 0;
6752 }
6753
6754 if (isize)
6755 *isize = len;
6756 if (msg)
6757 *msg = NULL;
6758 return 1;
6759 }
6760
6761 static int
6762 i386_validate_tdesc_p (struct gdbarch_tdep *tdep,
6763 struct tdesc_arch_data *tdesc_data)
6764 {
6765 const struct target_desc *tdesc = tdep->tdesc;
6766 const struct tdesc_feature *feature_core;
6767 const struct tdesc_feature *feature_sse, *feature_avx;
6768 int i, num_regs, valid_p;
6769
6770 if (! tdesc_has_registers (tdesc))
6771 return 0;
6772
6773 /* Get core registers. */
6774 feature_core = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.core");
6775 if (feature_core == NULL)
6776 return 0;
6777
6778 /* Get SSE registers. */
6779 feature_sse = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.sse");
6780
6781 /* Try AVX registers. */
6782 feature_avx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx");
6783
6784 valid_p = 1;
6785
6786 /* The XCR0 bits. */
6787 if (feature_avx)
6788 {
6789 /* AVX register description requires SSE register description. */
6790 if (!feature_sse)
6791 return 0;
6792
6793 tdep->xcr0 = I386_XSTATE_AVX_MASK;
6794
6795 /* It may have been set by OSABI initialization function. */
6796 if (tdep->num_ymm_regs == 0)
6797 {
6798 tdep->ymmh_register_names = i386_ymmh_names;
6799 tdep->num_ymm_regs = 8;
6800 tdep->ymm0h_regnum = I386_YMM0H_REGNUM;
6801 }
6802
6803 for (i = 0; i < tdep->num_ymm_regs; i++)
6804 valid_p &= tdesc_numbered_register (feature_avx, tdesc_data,
6805 tdep->ymm0h_regnum + i,
6806 tdep->ymmh_register_names[i]);
6807 }
6808 else if (feature_sse)
6809 tdep->xcr0 = I386_XSTATE_SSE_MASK;
6810 else
6811 {
6812 tdep->xcr0 = I386_XSTATE_X87_MASK;
6813 tdep->num_xmm_regs = 0;
6814 }
6815
6816 num_regs = tdep->num_core_regs;
6817 for (i = 0; i < num_regs; i++)
6818 valid_p &= tdesc_numbered_register (feature_core, tdesc_data, i,
6819 tdep->register_names[i]);
6820
6821 if (feature_sse)
6822 {
6823 /* Need to include %mxcsr, so add one. */
6824 num_regs += tdep->num_xmm_regs + 1;
6825 for (; i < num_regs; i++)
6826 valid_p &= tdesc_numbered_register (feature_sse, tdesc_data, i,
6827 tdep->register_names[i]);
6828 }
6829
6830 return valid_p;
6831 }
6832
6833 \f
6834 static struct gdbarch *
6835 i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
6836 {
6837 struct gdbarch_tdep *tdep;
6838 struct gdbarch *gdbarch;
6839 struct tdesc_arch_data *tdesc_data;
6840 const struct target_desc *tdesc;
6841 int mm0_regnum;
6842 int ymm0_regnum;
6843
6844 /* If there is already a candidate, use it. */
6845 arches = gdbarch_list_lookup_by_info (arches, &info);
6846 if (arches != NULL)
6847 return arches->gdbarch;
6848
6849 /* Allocate space for the new architecture. */
6850 tdep = XCALLOC (1, struct gdbarch_tdep);
6851 gdbarch = gdbarch_alloc (&info, tdep);
6852
6853 /* General-purpose registers. */
6854 tdep->gregset = NULL;
6855 tdep->gregset_reg_offset = NULL;
6856 tdep->gregset_num_regs = I386_NUM_GREGS;
6857 tdep->sizeof_gregset = 0;
6858
6859 /* Floating-point registers. */
6860 tdep->fpregset = NULL;
6861 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
6862
6863 tdep->xstateregset = NULL;
6864
6865 /* The default settings include the FPU registers, the MMX registers
6866 and the SSE registers. This can be overridden for a specific ABI
6867 by adjusting the members `st0_regnum', `mm0_regnum' and
6868 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
6869 will show up in the output of "info all-registers". */
6870
6871 tdep->st0_regnum = I386_ST0_REGNUM;
6872
6873 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
6874 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
6875
6876 tdep->jb_pc_offset = -1;
6877 tdep->struct_return = pcc_struct_return;
6878 tdep->sigtramp_start = 0;
6879 tdep->sigtramp_end = 0;
6880 tdep->sigtramp_p = i386_sigtramp_p;
6881 tdep->sigcontext_addr = NULL;
6882 tdep->sc_reg_offset = NULL;
6883 tdep->sc_pc_offset = -1;
6884 tdep->sc_sp_offset = -1;
6885
6886 tdep->xsave_xcr0_offset = -1;
6887
6888 tdep->record_regmap = i386_record_regmap;
6889
6890 /* The format used for `long double' on almost all i386 targets is
6891 the i387 extended floating-point format. In fact, of all targets
6892 in the GCC 2.95 tree, only OSF/1 does it different, and insists
6893 on having a `long double' that's not `long' at all. */
6894 set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext);
6895
6896 /* Although the i387 extended floating-point has only 80 significant
6897 bits, a `long double' actually takes up 96, probably to enforce
6898 alignment. */
6899 set_gdbarch_long_double_bit (gdbarch, 96);
6900
6901 /* Register numbers of various important registers. */
6902 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
6903 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
6904 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
6905 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
6906
6907 /* NOTE: kettenis/20040418: GCC does have two possible register
6908 numbering schemes on the i386: dbx and SVR4. These schemes
6909 differ in how they number %ebp, %esp, %eflags, and the
6910 floating-point registers, and are implemented by the arrays
6911 dbx_register_map[] and svr4_dbx_register_map in
6912 gcc/config/i386.c. GCC also defines a third numbering scheme in
6913 gcc/config/i386.c, which it designates as the "default" register
6914 map used in 64bit mode. This last register numbering scheme is
6915 implemented in dbx64_register_map, and is used for AMD64; see
6916 amd64-tdep.c.
6917
6918 Currently, each GCC i386 target always uses the same register
6919 numbering scheme across all its supported debugging formats
6920 i.e. SDB (COFF), stabs and DWARF 2. This is because
6921 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
6922 DBX_REGISTER_NUMBER macro which is defined by each target's
6923 respective config header in a manner independent of the requested
6924 output debugging format.
6925
6926 This does not match the arrangement below, which presumes that
6927 the SDB and stabs numbering schemes differ from the DWARF and
6928 DWARF 2 ones. The reason for this arrangement is that it is
6929 likely to get the numbering scheme for the target's
6930 default/native debug format right. For targets where GCC is the
6931 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
6932 targets where the native toolchain uses a different numbering
6933 scheme for a particular debug format (stabs-in-ELF on Solaris)
6934 the defaults below will have to be overridden, like
6935 i386_elf_init_abi() does. */
6936
6937 /* Use the dbx register numbering scheme for stabs and COFF. */
6938 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
6939 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
6940
6941 /* Use the SVR4 register numbering scheme for DWARF 2. */
6942 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
6943
6944 /* We don't set gdbarch_stab_reg_to_regnum, since ECOFF doesn't seem to
6945 be in use on any of the supported i386 targets. */
6946
6947 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
6948
6949 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
6950
6951 /* Call dummy code. */
6952 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
6953
6954 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
6955 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
6956 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
6957
6958 set_gdbarch_return_value (gdbarch, i386_return_value);
6959
6960 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
6961
6962 /* Stack grows downward. */
6963 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
6964
6965 set_gdbarch_breakpoint_from_pc (gdbarch, i386_breakpoint_from_pc);
6966 set_gdbarch_decr_pc_after_break (gdbarch, 1);
6967 set_gdbarch_max_insn_length (gdbarch, I386_MAX_INSN_LEN);
6968
6969 set_gdbarch_frame_args_skip (gdbarch, 8);
6970
6971 set_gdbarch_print_insn (gdbarch, i386_print_insn);
6972
6973 set_gdbarch_dummy_id (gdbarch, i386_dummy_id);
6974
6975 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
6976
6977 /* Add the i386 register groups. */
6978 i386_add_reggroups (gdbarch);
6979 tdep->register_reggroup_p = i386_register_reggroup_p;
6980
6981 /* Helper for function argument information. */
6982 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
6983
6984 /* Hook the function epilogue frame unwinder. This unwinder is
6985 appended to the list first, so that it supercedes the Dwarf
6986 unwinder in function epilogues (where the Dwarf unwinder
6987 currently fails). */
6988 frame_unwind_append_unwinder (gdbarch, &i386_epilogue_frame_unwind);
6989
6990 /* Hook in the DWARF CFI frame unwinder. This unwinder is appended
6991 to the list before the prologue-based unwinders, so that Dwarf
6992 CFI info will be used if it is available. */
6993 dwarf2_append_unwinders (gdbarch);
6994
6995 frame_base_set_default (gdbarch, &i386_frame_base);
6996
6997 /* Pseudo registers may be changed by amd64_init_abi. */
6998 set_gdbarch_pseudo_register_read (gdbarch, i386_pseudo_register_read);
6999 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
7000
7001 set_tdesc_pseudo_register_type (gdbarch, i386_pseudo_register_type);
7002 set_tdesc_pseudo_register_name (gdbarch, i386_pseudo_register_name);
7003
7004 /* Override the normal target description method to make the AVX
7005 upper halves anonymous. */
7006 set_gdbarch_register_name (gdbarch, i386_register_name);
7007
7008 /* Even though the default ABI only includes general-purpose registers,
7009 floating-point registers and the SSE registers, we have to leave a
7010 gap for the upper AVX registers. */
7011 set_gdbarch_num_regs (gdbarch, I386_AVX_NUM_REGS);
7012
7013 /* Get the x86 target description from INFO. */
7014 tdesc = info.target_desc;
7015 if (! tdesc_has_registers (tdesc))
7016 tdesc = tdesc_i386;
7017 tdep->tdesc = tdesc;
7018
7019 tdep->num_core_regs = I386_NUM_GREGS + I387_NUM_REGS;
7020 tdep->register_names = i386_register_names;
7021
7022 /* No upper YMM registers. */
7023 tdep->ymmh_register_names = NULL;
7024 tdep->ymm0h_regnum = -1;
7025
7026 tdep->num_byte_regs = 8;
7027 tdep->num_word_regs = 8;
7028 tdep->num_dword_regs = 0;
7029 tdep->num_mmx_regs = 8;
7030 tdep->num_ymm_regs = 0;
7031
7032 tdesc_data = tdesc_data_alloc ();
7033
7034 set_gdbarch_relocate_instruction (gdbarch, i386_relocate_instruction);
7035
7036 /* Hook in ABI-specific overrides, if they have been registered. */
7037 info.tdep_info = (void *) tdesc_data;
7038 gdbarch_init_osabi (info, gdbarch);
7039
7040 if (!i386_validate_tdesc_p (tdep, tdesc_data))
7041 {
7042 tdesc_data_cleanup (tdesc_data);
7043 xfree (tdep);
7044 gdbarch_free (gdbarch);
7045 return NULL;
7046 }
7047
7048 /* Wire in pseudo registers. Number of pseudo registers may be
7049 changed. */
7050 set_gdbarch_num_pseudo_regs (gdbarch, (tdep->num_byte_regs
7051 + tdep->num_word_regs
7052 + tdep->num_dword_regs
7053 + tdep->num_mmx_regs
7054 + tdep->num_ymm_regs));
7055
7056 /* Target description may be changed. */
7057 tdesc = tdep->tdesc;
7058
7059 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
7060
7061 /* Override gdbarch_register_reggroup_p set in tdesc_use_registers. */
7062 set_gdbarch_register_reggroup_p (gdbarch, tdep->register_reggroup_p);
7063
7064 /* Make %al the first pseudo-register. */
7065 tdep->al_regnum = gdbarch_num_regs (gdbarch);
7066 tdep->ax_regnum = tdep->al_regnum + tdep->num_byte_regs;
7067
7068 ymm0_regnum = tdep->ax_regnum + tdep->num_word_regs;
7069 if (tdep->num_dword_regs)
7070 {
7071 /* Support dword pseudo-registesr if it hasn't been disabled, */
7072 tdep->eax_regnum = ymm0_regnum;
7073 ymm0_regnum += tdep->num_dword_regs;
7074 }
7075 else
7076 tdep->eax_regnum = -1;
7077
7078 mm0_regnum = ymm0_regnum;
7079 if (tdep->num_ymm_regs)
7080 {
7081 /* Support YMM pseudo-registesr if it is available, */
7082 tdep->ymm0_regnum = ymm0_regnum;
7083 mm0_regnum += tdep->num_ymm_regs;
7084 }
7085 else
7086 tdep->ymm0_regnum = -1;
7087
7088 if (tdep->num_mmx_regs != 0)
7089 {
7090 /* Support MMX pseudo-registesr if MMX hasn't been disabled, */
7091 tdep->mm0_regnum = mm0_regnum;
7092 }
7093 else
7094 tdep->mm0_regnum = -1;
7095
7096 /* Hook in the legacy prologue-based unwinders last (fallback). */
7097 frame_unwind_append_unwinder (gdbarch, &i386_sigtramp_frame_unwind);
7098 frame_unwind_append_unwinder (gdbarch, &i386_frame_unwind);
7099
7100 /* If we have a register mapping, enable the generic core file
7101 support, unless it has already been enabled. */
7102 if (tdep->gregset_reg_offset
7103 && !gdbarch_regset_from_core_section_p (gdbarch))
7104 set_gdbarch_regset_from_core_section (gdbarch,
7105 i386_regset_from_core_section);
7106
7107 set_gdbarch_skip_permanent_breakpoint (gdbarch,
7108 i386_skip_permanent_breakpoint);
7109
7110 set_gdbarch_fast_tracepoint_valid_at (gdbarch,
7111 i386_fast_tracepoint_valid_at);
7112
7113 return gdbarch;
7114 }
7115
7116 static enum gdb_osabi
7117 i386_coff_osabi_sniffer (bfd *abfd)
7118 {
7119 if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
7120 || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
7121 return GDB_OSABI_GO32;
7122
7123 return GDB_OSABI_UNKNOWN;
7124 }
7125 \f
7126
7127 /* Provide a prototype to silence -Wmissing-prototypes. */
7128 void _initialize_i386_tdep (void);
7129
7130 void
7131 _initialize_i386_tdep (void)
7132 {
7133 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
7134
7135 /* Add the variable that controls the disassembly flavor. */
7136 add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
7137 &disassembly_flavor, _("\
7138 Set the disassembly flavor."), _("\
7139 Show the disassembly flavor."), _("\
7140 The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
7141 NULL,
7142 NULL, /* FIXME: i18n: */
7143 &setlist, &showlist);
7144
7145 /* Add the variable that controls the convention for returning
7146 structs. */
7147 add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
7148 &struct_convention, _("\
7149 Set the convention for returning small structs."), _("\
7150 Show the convention for returning small structs."), _("\
7151 Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
7152 is \"default\"."),
7153 NULL,
7154 NULL, /* FIXME: i18n: */
7155 &setlist, &showlist);
7156
7157 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
7158 i386_coff_osabi_sniffer);
7159
7160 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
7161 i386_svr4_init_abi);
7162 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_GO32,
7163 i386_go32_init_abi);
7164
7165 /* Initialize the i386-specific register groups. */
7166 i386_init_reggroups ();
7167
7168 /* Initialize the standard target descriptions. */
7169 initialize_tdesc_i386 ();
7170 initialize_tdesc_i386_mmx ();
7171 initialize_tdesc_i386_avx ();
7172
7173 /* Tell remote stub that we support XML target description. */
7174 register_remote_support_xml ("i386");
7175 }
This page took 0.22066 seconds and 5 git commands to generate.