* dwarf2-frame.c (dwarf2_frame_prev_register): Use gdb_byte.
[deliverable/binutils-gdb.git] / gdb / i386-tdep.c
1 /* Intel 386 target-dependent stuff.
2
3 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software
5 Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
23
24 #include "defs.h"
25 #include "arch-utils.h"
26 #include "command.h"
27 #include "dummy-frame.h"
28 #include "dwarf2-frame.h"
29 #include "doublest.h"
30 #include "floatformat.h"
31 #include "frame.h"
32 #include "frame-base.h"
33 #include "frame-unwind.h"
34 #include "inferior.h"
35 #include "gdbcmd.h"
36 #include "gdbcore.h"
37 #include "objfiles.h"
38 #include "osabi.h"
39 #include "regcache.h"
40 #include "reggroups.h"
41 #include "regset.h"
42 #include "symfile.h"
43 #include "symtab.h"
44 #include "target.h"
45 #include "value.h"
46 #include "dis-asm.h"
47
48 #include "gdb_assert.h"
49 #include "gdb_string.h"
50
51 #include "i386-tdep.h"
52 #include "i387-tdep.h"
53
54 /* Register names. */
55
56 static char *i386_register_names[] =
57 {
58 "eax", "ecx", "edx", "ebx",
59 "esp", "ebp", "esi", "edi",
60 "eip", "eflags", "cs", "ss",
61 "ds", "es", "fs", "gs",
62 "st0", "st1", "st2", "st3",
63 "st4", "st5", "st6", "st7",
64 "fctrl", "fstat", "ftag", "fiseg",
65 "fioff", "foseg", "fooff", "fop",
66 "xmm0", "xmm1", "xmm2", "xmm3",
67 "xmm4", "xmm5", "xmm6", "xmm7",
68 "mxcsr"
69 };
70
71 static const int i386_num_register_names = ARRAY_SIZE (i386_register_names);
72
73 /* Register names for MMX pseudo-registers. */
74
75 static char *i386_mmx_names[] =
76 {
77 "mm0", "mm1", "mm2", "mm3",
78 "mm4", "mm5", "mm6", "mm7"
79 };
80
81 static const int i386_num_mmx_regs = ARRAY_SIZE (i386_mmx_names);
82
83 static int
84 i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
85 {
86 int mm0_regnum = gdbarch_tdep (gdbarch)->mm0_regnum;
87
88 if (mm0_regnum < 0)
89 return 0;
90
91 return (regnum >= mm0_regnum && regnum < mm0_regnum + i386_num_mmx_regs);
92 }
93
94 /* SSE register? */
95
96 static int
97 i386_sse_regnum_p (struct gdbarch *gdbarch, int regnum)
98 {
99 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
100
101 #define I387_ST0_REGNUM tdep->st0_regnum
102 #define I387_NUM_XMM_REGS tdep->num_xmm_regs
103
104 if (I387_NUM_XMM_REGS == 0)
105 return 0;
106
107 return (I387_XMM0_REGNUM <= regnum && regnum < I387_MXCSR_REGNUM);
108
109 #undef I387_ST0_REGNUM
110 #undef I387_NUM_XMM_REGS
111 }
112
113 static int
114 i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
115 {
116 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
117
118 #define I387_ST0_REGNUM tdep->st0_regnum
119 #define I387_NUM_XMM_REGS tdep->num_xmm_regs
120
121 if (I387_NUM_XMM_REGS == 0)
122 return 0;
123
124 return (regnum == I387_MXCSR_REGNUM);
125
126 #undef I387_ST0_REGNUM
127 #undef I387_NUM_XMM_REGS
128 }
129
130 #define I387_ST0_REGNUM (gdbarch_tdep (current_gdbarch)->st0_regnum)
131 #define I387_MM0_REGNUM (gdbarch_tdep (current_gdbarch)->mm0_regnum)
132 #define I387_NUM_XMM_REGS (gdbarch_tdep (current_gdbarch)->num_xmm_regs)
133
134 /* FP register? */
135
136 int
137 i386_fp_regnum_p (int regnum)
138 {
139 if (I387_ST0_REGNUM < 0)
140 return 0;
141
142 return (I387_ST0_REGNUM <= regnum && regnum < I387_FCTRL_REGNUM);
143 }
144
145 int
146 i386_fpc_regnum_p (int regnum)
147 {
148 if (I387_ST0_REGNUM < 0)
149 return 0;
150
151 return (I387_FCTRL_REGNUM <= regnum && regnum < I387_XMM0_REGNUM);
152 }
153
154 /* Return the name of register REGNUM. */
155
156 const char *
157 i386_register_name (int regnum)
158 {
159 if (i386_mmx_regnum_p (current_gdbarch, regnum))
160 return i386_mmx_names[regnum - I387_MM0_REGNUM];
161
162 if (regnum >= 0 && regnum < i386_num_register_names)
163 return i386_register_names[regnum];
164
165 return NULL;
166 }
167
168 /* Convert a dbx register number REG to the appropriate register
169 number used by GDB. */
170
171 static int
172 i386_dbx_reg_to_regnum (int reg)
173 {
174 /* This implements what GCC calls the "default" register map
175 (dbx_register_map[]). */
176
177 if (reg >= 0 && reg <= 7)
178 {
179 /* General-purpose registers. The debug info calls %ebp
180 register 4, and %esp register 5. */
181 if (reg == 4)
182 return 5;
183 else if (reg == 5)
184 return 4;
185 else return reg;
186 }
187 else if (reg >= 12 && reg <= 19)
188 {
189 /* Floating-point registers. */
190 return reg - 12 + I387_ST0_REGNUM;
191 }
192 else if (reg >= 21 && reg <= 28)
193 {
194 /* SSE registers. */
195 return reg - 21 + I387_XMM0_REGNUM;
196 }
197 else if (reg >= 29 && reg <= 36)
198 {
199 /* MMX registers. */
200 return reg - 29 + I387_MM0_REGNUM;
201 }
202
203 /* This will hopefully provoke a warning. */
204 return NUM_REGS + NUM_PSEUDO_REGS;
205 }
206
207 /* Convert SVR4 register number REG to the appropriate register number
208 used by GDB. */
209
210 static int
211 i386_svr4_reg_to_regnum (int reg)
212 {
213 /* This implements the GCC register map that tries to be compatible
214 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
215
216 /* The SVR4 register numbering includes %eip and %eflags, and
217 numbers the floating point registers differently. */
218 if (reg >= 0 && reg <= 9)
219 {
220 /* General-purpose registers. */
221 return reg;
222 }
223 else if (reg >= 11 && reg <= 18)
224 {
225 /* Floating-point registers. */
226 return reg - 11 + I387_ST0_REGNUM;
227 }
228 else if (reg >= 21)
229 {
230 /* The SSE and MMX registers have the same numbers as with dbx. */
231 return i386_dbx_reg_to_regnum (reg);
232 }
233
234 /* This will hopefully provoke a warning. */
235 return NUM_REGS + NUM_PSEUDO_REGS;
236 }
237
238 #undef I387_ST0_REGNUM
239 #undef I387_MM0_REGNUM
240 #undef I387_NUM_XMM_REGS
241 \f
242
243 /* This is the variable that is set with "set disassembly-flavor", and
244 its legitimate values. */
245 static const char att_flavor[] = "att";
246 static const char intel_flavor[] = "intel";
247 static const char *valid_flavors[] =
248 {
249 att_flavor,
250 intel_flavor,
251 NULL
252 };
253 static const char *disassembly_flavor = att_flavor;
254 \f
255
256 /* Use the program counter to determine the contents and size of a
257 breakpoint instruction. Return a pointer to a string of bytes that
258 encode a breakpoint instruction, store the length of the string in
259 *LEN and optionally adjust *PC to point to the correct memory
260 location for inserting the breakpoint.
261
262 On the i386 we have a single breakpoint that fits in a single byte
263 and can be inserted anywhere.
264
265 This function is 64-bit safe. */
266
267 static const gdb_byte *
268 i386_breakpoint_from_pc (CORE_ADDR *pc, int *len)
269 {
270 static gdb_byte break_insn[] = { 0xcc }; /* int 3 */
271
272 *len = sizeof (break_insn);
273 return break_insn;
274 }
275 \f
276 #ifdef I386_REGNO_TO_SYMMETRY
277 #error "The Sequent Symmetry is no longer supported."
278 #endif
279
280 /* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
281 and %esp "belong" to the calling function. Therefore these
282 registers should be saved if they're going to be modified. */
283
284 /* The maximum number of saved registers. This should include all
285 registers mentioned above, and %eip. */
286 #define I386_NUM_SAVED_REGS I386_NUM_GREGS
287
288 struct i386_frame_cache
289 {
290 /* Base address. */
291 CORE_ADDR base;
292 CORE_ADDR sp_offset;
293 CORE_ADDR pc;
294
295 /* Saved registers. */
296 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
297 CORE_ADDR saved_sp;
298 int pc_in_eax;
299
300 /* Stack space reserved for local variables. */
301 long locals;
302 };
303
304 /* Allocate and initialize a frame cache. */
305
306 static struct i386_frame_cache *
307 i386_alloc_frame_cache (void)
308 {
309 struct i386_frame_cache *cache;
310 int i;
311
312 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
313
314 /* Base address. */
315 cache->base = 0;
316 cache->sp_offset = -4;
317 cache->pc = 0;
318
319 /* Saved registers. We initialize these to -1 since zero is a valid
320 offset (that's where %ebp is supposed to be stored). */
321 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
322 cache->saved_regs[i] = -1;
323 cache->saved_sp = 0;
324 cache->pc_in_eax = 0;
325
326 /* Frameless until proven otherwise. */
327 cache->locals = -1;
328
329 return cache;
330 }
331
332 /* If the instruction at PC is a jump, return the address of its
333 target. Otherwise, return PC. */
334
335 static CORE_ADDR
336 i386_follow_jump (CORE_ADDR pc)
337 {
338 gdb_byte op;
339 long delta = 0;
340 int data16 = 0;
341
342 op = read_memory_unsigned_integer (pc, 1);
343 if (op == 0x66)
344 {
345 data16 = 1;
346 op = read_memory_unsigned_integer (pc + 1, 1);
347 }
348
349 switch (op)
350 {
351 case 0xe9:
352 /* Relative jump: if data16 == 0, disp32, else disp16. */
353 if (data16)
354 {
355 delta = read_memory_integer (pc + 2, 2);
356
357 /* Include the size of the jmp instruction (including the
358 0x66 prefix). */
359 delta += 4;
360 }
361 else
362 {
363 delta = read_memory_integer (pc + 1, 4);
364
365 /* Include the size of the jmp instruction. */
366 delta += 5;
367 }
368 break;
369 case 0xeb:
370 /* Relative jump, disp8 (ignore data16). */
371 delta = read_memory_integer (pc + data16 + 1, 1);
372
373 delta += data16 + 2;
374 break;
375 }
376
377 return pc + delta;
378 }
379
380 /* Check whether PC points at a prologue for a function returning a
381 structure or union. If so, it updates CACHE and returns the
382 address of the first instruction after the code sequence that
383 removes the "hidden" argument from the stack or CURRENT_PC,
384 whichever is smaller. Otherwise, return PC. */
385
386 static CORE_ADDR
387 i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
388 struct i386_frame_cache *cache)
389 {
390 /* Functions that return a structure or union start with:
391
392 popl %eax 0x58
393 xchgl %eax, (%esp) 0x87 0x04 0x24
394 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
395
396 (the System V compiler puts out the second `xchg' instruction,
397 and the assembler doesn't try to optimize it, so the 'sib' form
398 gets generated). This sequence is used to get the address of the
399 return buffer for a function that returns a structure. */
400 static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
401 static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
402 gdb_byte buf[4];
403 gdb_byte op;
404
405 if (current_pc <= pc)
406 return pc;
407
408 op = read_memory_unsigned_integer (pc, 1);
409
410 if (op != 0x58) /* popl %eax */
411 return pc;
412
413 read_memory (pc + 1, buf, 4);
414 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
415 return pc;
416
417 if (current_pc == pc)
418 {
419 cache->sp_offset += 4;
420 return current_pc;
421 }
422
423 if (current_pc == pc + 1)
424 {
425 cache->pc_in_eax = 1;
426 return current_pc;
427 }
428
429 if (buf[1] == proto1[1])
430 return pc + 4;
431 else
432 return pc + 5;
433 }
434
435 static CORE_ADDR
436 i386_skip_probe (CORE_ADDR pc)
437 {
438 /* A function may start with
439
440 pushl constant
441 call _probe
442 addl $4, %esp
443
444 followed by
445
446 pushl %ebp
447
448 etc. */
449 gdb_byte buf[8];
450 gdb_byte op;
451
452 op = read_memory_unsigned_integer (pc, 1);
453
454 if (op == 0x68 || op == 0x6a)
455 {
456 int delta;
457
458 /* Skip past the `pushl' instruction; it has either a one-byte or a
459 four-byte operand, depending on the opcode. */
460 if (op == 0x68)
461 delta = 5;
462 else
463 delta = 2;
464
465 /* Read the following 8 bytes, which should be `call _probe' (6
466 bytes) followed by `addl $4,%esp' (2 bytes). */
467 read_memory (pc + delta, buf, sizeof (buf));
468 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
469 pc += delta + sizeof (buf);
470 }
471
472 return pc;
473 }
474
475 /* Maximum instruction length we need to handle. */
476 #define I386_MAX_INSN_LEN 6
477
478 /* Instruction description. */
479 struct i386_insn
480 {
481 size_t len;
482 gdb_byte insn[I386_MAX_INSN_LEN];
483 gdb_byte mask[I386_MAX_INSN_LEN];
484 };
485
486 /* Search for the instruction at PC in the list SKIP_INSNS. Return
487 the first instruction description that matches. Otherwise, return
488 NULL. */
489
490 static struct i386_insn *
491 i386_match_insn (CORE_ADDR pc, struct i386_insn *skip_insns)
492 {
493 struct i386_insn *insn;
494 gdb_byte op;
495
496 op = read_memory_unsigned_integer (pc, 1);
497
498 for (insn = skip_insns; insn->len > 0; insn++)
499 {
500 if ((op & insn->mask[0]) == insn->insn[0])
501 {
502 unsigned char buf[I386_MAX_INSN_LEN - 1];
503 size_t i;
504
505 gdb_assert (insn->len > 1);
506 gdb_assert (insn->len <= I386_MAX_INSN_LEN);
507
508 read_memory (pc + 1, buf, insn->len - 1);
509 for (i = 1; i < insn->len; i++)
510 {
511 if ((buf[i - 1] & insn->mask[i]) != insn->insn[i])
512 break;
513
514 return insn;
515 }
516 }
517 }
518
519 return NULL;
520 }
521
522 /* Some special instructions that might be migrated by GCC into the
523 part of the prologue that sets up the new stack frame. Because the
524 stack frame hasn't been setup yet, no registers have been saved
525 yet, and only the scratch registers %eax, %ecx and %edx can be
526 touched. */
527
528 struct i386_insn i386_frame_setup_skip_insns[] =
529 {
530 /* Check for `movb imm8, r' and `movl imm32, r'.
531
532 ??? Should we handle 16-bit operand-sizes here? */
533
534 /* `movb imm8, %al' and `movb imm8, %ah' */
535 /* `movb imm8, %cl' and `movb imm8, %ch' */
536 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
537 /* `movb imm8, %dl' and `movb imm8, %dh' */
538 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
539 /* `movl imm32, %eax' and `movl imm32, %ecx' */
540 { 5, { 0xb8 }, { 0xfe } },
541 /* `movl imm32, %edx' */
542 { 5, { 0xba }, { 0xff } },
543
544 /* Check for `mov imm32, r32'. Note that there is an alternative
545 encoding for `mov m32, %eax'.
546
547 ??? Should we handle SIB adressing here?
548 ??? Should we handle 16-bit operand-sizes here? */
549
550 /* `movl m32, %eax' */
551 { 5, { 0xa1 }, { 0xff } },
552 /* `movl m32, %eax' and `mov; m32, %ecx' */
553 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
554 /* `movl m32, %edx' */
555 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
556
557 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
558 Because of the symmetry, there are actually two ways to encode
559 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
560 opcode bytes 0x31 and 0x33 for `xorl'. */
561
562 /* `subl %eax, %eax' */
563 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
564 /* `subl %ecx, %ecx' */
565 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
566 /* `subl %edx, %edx' */
567 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
568 /* `xorl %eax, %eax' */
569 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
570 /* `xorl %ecx, %ecx' */
571 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
572 /* `xorl %edx, %edx' */
573 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
574 { 0 }
575 };
576
577 /* Check whether PC points at a code that sets up a new stack frame.
578 If so, it updates CACHE and returns the address of the first
579 instruction after the sequence that sets up the frame or LIMIT,
580 whichever is smaller. If we don't recognize the code, return PC. */
581
582 static CORE_ADDR
583 i386_analyze_frame_setup (CORE_ADDR pc, CORE_ADDR limit,
584 struct i386_frame_cache *cache)
585 {
586 struct i386_insn *insn;
587 gdb_byte op;
588 int skip = 0;
589
590 if (limit <= pc)
591 return limit;
592
593 op = read_memory_unsigned_integer (pc, 1);
594
595 if (op == 0x55) /* pushl %ebp */
596 {
597 /* Take into account that we've executed the `pushl %ebp' that
598 starts this instruction sequence. */
599 cache->saved_regs[I386_EBP_REGNUM] = 0;
600 cache->sp_offset += 4;
601 pc++;
602
603 /* If that's all, return now. */
604 if (limit <= pc)
605 return limit;
606
607 /* Check for some special instructions that might be migrated by
608 GCC into the prologue and skip them. At this point in the
609 prologue, code should only touch the scratch registers %eax,
610 %ecx and %edx, so while the number of posibilities is sheer,
611 it is limited.
612
613 Make sure we only skip these instructions if we later see the
614 `movl %esp, %ebp' that actually sets up the frame. */
615 while (pc + skip < limit)
616 {
617 insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
618 if (insn == NULL)
619 break;
620
621 skip += insn->len;
622 }
623
624 /* If that's all, return now. */
625 if (limit <= pc + skip)
626 return limit;
627
628 op = read_memory_unsigned_integer (pc + skip, 1);
629
630 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
631 switch (op)
632 {
633 case 0x8b:
634 if (read_memory_unsigned_integer (pc + skip + 1, 1) != 0xec)
635 return pc;
636 break;
637 case 0x89:
638 if (read_memory_unsigned_integer (pc + skip + 1, 1) != 0xe5)
639 return pc;
640 break;
641 default:
642 return pc;
643 }
644
645 /* OK, we actually have a frame. We just don't know how large
646 it is yet. Set its size to zero. We'll adjust it if
647 necessary. We also now commit to skipping the special
648 instructions mentioned before. */
649 cache->locals = 0;
650 pc += (skip + 2);
651
652 /* If that's all, return now. */
653 if (limit <= pc)
654 return limit;
655
656 /* Check for stack adjustment
657
658 subl $XXX, %esp
659
660 NOTE: You can't subtract a 16-bit immediate from a 32-bit
661 reg, so we don't have to worry about a data16 prefix. */
662 op = read_memory_unsigned_integer (pc, 1);
663 if (op == 0x83)
664 {
665 /* `subl' with 8-bit immediate. */
666 if (read_memory_unsigned_integer (pc + 1, 1) != 0xec)
667 /* Some instruction starting with 0x83 other than `subl'. */
668 return pc;
669
670 /* `subl' with signed 8-bit immediate (though it wouldn't
671 make sense to be negative). */
672 cache->locals = read_memory_integer (pc + 2, 1);
673 return pc + 3;
674 }
675 else if (op == 0x81)
676 {
677 /* Maybe it is `subl' with a 32-bit immediate. */
678 if (read_memory_unsigned_integer (pc + 1, 1) != 0xec)
679 /* Some instruction starting with 0x81 other than `subl'. */
680 return pc;
681
682 /* It is `subl' with a 32-bit immediate. */
683 cache->locals = read_memory_integer (pc + 2, 4);
684 return pc + 6;
685 }
686 else
687 {
688 /* Some instruction other than `subl'. */
689 return pc;
690 }
691 }
692 else if (op == 0xc8) /* enter */
693 {
694 cache->locals = read_memory_unsigned_integer (pc + 1, 2);
695 return pc + 4;
696 }
697
698 return pc;
699 }
700
701 /* Check whether PC points at code that saves registers on the stack.
702 If so, it updates CACHE and returns the address of the first
703 instruction after the register saves or CURRENT_PC, whichever is
704 smaller. Otherwise, return PC. */
705
706 static CORE_ADDR
707 i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
708 struct i386_frame_cache *cache)
709 {
710 CORE_ADDR offset = 0;
711 gdb_byte op;
712 int i;
713
714 if (cache->locals > 0)
715 offset -= cache->locals;
716 for (i = 0; i < 8 && pc < current_pc; i++)
717 {
718 op = read_memory_unsigned_integer (pc, 1);
719 if (op < 0x50 || op > 0x57)
720 break;
721
722 offset -= 4;
723 cache->saved_regs[op - 0x50] = offset;
724 cache->sp_offset += 4;
725 pc++;
726 }
727
728 return pc;
729 }
730
731 /* Do a full analysis of the prologue at PC and update CACHE
732 accordingly. Bail out early if CURRENT_PC is reached. Return the
733 address where the analysis stopped.
734
735 We handle these cases:
736
737 The startup sequence can be at the start of the function, or the
738 function can start with a branch to startup code at the end.
739
740 %ebp can be set up with either the 'enter' instruction, or "pushl
741 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
742 once used in the System V compiler).
743
744 Local space is allocated just below the saved %ebp by either the
745 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
746 16-bit unsigned argument for space to allocate, and the 'addl'
747 instruction could have either a signed byte, or 32-bit immediate.
748
749 Next, the registers used by this function are pushed. With the
750 System V compiler they will always be in the order: %edi, %esi,
751 %ebx (and sometimes a harmless bug causes it to also save but not
752 restore %eax); however, the code below is willing to see the pushes
753 in any order, and will handle up to 8 of them.
754
755 If the setup sequence is at the end of the function, then the next
756 instruction will be a branch back to the start. */
757
758 static CORE_ADDR
759 i386_analyze_prologue (CORE_ADDR pc, CORE_ADDR current_pc,
760 struct i386_frame_cache *cache)
761 {
762 pc = i386_follow_jump (pc);
763 pc = i386_analyze_struct_return (pc, current_pc, cache);
764 pc = i386_skip_probe (pc);
765 pc = i386_analyze_frame_setup (pc, current_pc, cache);
766 return i386_analyze_register_saves (pc, current_pc, cache);
767 }
768
769 /* Return PC of first real instruction. */
770
771 static CORE_ADDR
772 i386_skip_prologue (CORE_ADDR start_pc)
773 {
774 static gdb_byte pic_pat[6] =
775 {
776 0xe8, 0, 0, 0, 0, /* call 0x0 */
777 0x5b, /* popl %ebx */
778 };
779 struct i386_frame_cache cache;
780 CORE_ADDR pc;
781 gdb_byte op;
782 int i;
783
784 cache.locals = -1;
785 pc = i386_analyze_prologue (start_pc, 0xffffffff, &cache);
786 if (cache.locals < 0)
787 return start_pc;
788
789 /* Found valid frame setup. */
790
791 /* The native cc on SVR4 in -K PIC mode inserts the following code
792 to get the address of the global offset table (GOT) into register
793 %ebx:
794
795 call 0x0
796 popl %ebx
797 movl %ebx,x(%ebp) (optional)
798 addl y,%ebx
799
800 This code is with the rest of the prologue (at the end of the
801 function), so we have to skip it to get to the first real
802 instruction at the start of the function. */
803
804 for (i = 0; i < 6; i++)
805 {
806 op = read_memory_unsigned_integer (pc + i, 1);
807 if (pic_pat[i] != op)
808 break;
809 }
810 if (i == 6)
811 {
812 int delta = 6;
813
814 op = read_memory_unsigned_integer (pc + delta, 1);
815
816 if (op == 0x89) /* movl %ebx, x(%ebp) */
817 {
818 op = read_memory_unsigned_integer (pc + delta + 1, 1);
819
820 if (op == 0x5d) /* One byte offset from %ebp. */
821 delta += 3;
822 else if (op == 0x9d) /* Four byte offset from %ebp. */
823 delta += 6;
824 else /* Unexpected instruction. */
825 delta = 0;
826
827 op = read_memory_unsigned_integer (pc + delta, 1);
828 }
829
830 /* addl y,%ebx */
831 if (delta > 0 && op == 0x81
832 && read_memory_unsigned_integer (pc + delta + 1, 1) == 0xc3);
833 {
834 pc += delta + 6;
835 }
836 }
837
838 /* If the function starts with a branch (to startup code at the end)
839 the last instruction should bring us back to the first
840 instruction of the real code. */
841 if (i386_follow_jump (start_pc) != start_pc)
842 pc = i386_follow_jump (pc);
843
844 return pc;
845 }
846
847 /* This function is 64-bit safe. */
848
849 static CORE_ADDR
850 i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
851 {
852 gdb_byte buf[8];
853
854 frame_unwind_register (next_frame, PC_REGNUM, buf);
855 return extract_typed_address (buf, builtin_type_void_func_ptr);
856 }
857 \f
858
859 /* Normal frames. */
860
861 static struct i386_frame_cache *
862 i386_frame_cache (struct frame_info *next_frame, void **this_cache)
863 {
864 struct i386_frame_cache *cache;
865 gdb_byte buf[4];
866 int i;
867
868 if (*this_cache)
869 return *this_cache;
870
871 cache = i386_alloc_frame_cache ();
872 *this_cache = cache;
873
874 /* In principle, for normal frames, %ebp holds the frame pointer,
875 which holds the base address for the current stack frame.
876 However, for functions that don't need it, the frame pointer is
877 optional. For these "frameless" functions the frame pointer is
878 actually the frame pointer of the calling frame. Signal
879 trampolines are just a special case of a "frameless" function.
880 They (usually) share their frame pointer with the frame that was
881 in progress when the signal occurred. */
882
883 frame_unwind_register (next_frame, I386_EBP_REGNUM, buf);
884 cache->base = extract_unsigned_integer (buf, 4);
885 if (cache->base == 0)
886 return cache;
887
888 /* For normal frames, %eip is stored at 4(%ebp). */
889 cache->saved_regs[I386_EIP_REGNUM] = 4;
890
891 cache->pc = frame_func_unwind (next_frame);
892 if (cache->pc != 0)
893 i386_analyze_prologue (cache->pc, frame_pc_unwind (next_frame), cache);
894
895 if (cache->locals < 0)
896 {
897 /* We didn't find a valid frame, which means that CACHE->base
898 currently holds the frame pointer for our calling frame. If
899 we're at the start of a function, or somewhere half-way its
900 prologue, the function's frame probably hasn't been fully
901 setup yet. Try to reconstruct the base address for the stack
902 frame by looking at the stack pointer. For truly "frameless"
903 functions this might work too. */
904
905 frame_unwind_register (next_frame, I386_ESP_REGNUM, buf);
906 cache->base = extract_unsigned_integer (buf, 4) + cache->sp_offset;
907 }
908
909 /* Now that we have the base address for the stack frame we can
910 calculate the value of %esp in the calling frame. */
911 cache->saved_sp = cache->base + 8;
912
913 /* Adjust all the saved registers such that they contain addresses
914 instead of offsets. */
915 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
916 if (cache->saved_regs[i] != -1)
917 cache->saved_regs[i] += cache->base;
918
919 return cache;
920 }
921
922 static void
923 i386_frame_this_id (struct frame_info *next_frame, void **this_cache,
924 struct frame_id *this_id)
925 {
926 struct i386_frame_cache *cache = i386_frame_cache (next_frame, this_cache);
927
928 /* This marks the outermost frame. */
929 if (cache->base == 0)
930 return;
931
932 /* See the end of i386_push_dummy_call. */
933 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
934 }
935
936 static void
937 i386_frame_prev_register (struct frame_info *next_frame, void **this_cache,
938 int regnum, int *optimizedp,
939 enum lval_type *lvalp, CORE_ADDR *addrp,
940 int *realnump, gdb_byte *valuep)
941 {
942 struct i386_frame_cache *cache = i386_frame_cache (next_frame, this_cache);
943
944 gdb_assert (regnum >= 0);
945
946 /* The System V ABI says that:
947
948 "The flags register contains the system flags, such as the
949 direction flag and the carry flag. The direction flag must be
950 set to the forward (that is, zero) direction before entry and
951 upon exit from a function. Other user flags have no specified
952 role in the standard calling sequence and are not preserved."
953
954 To guarantee the "upon exit" part of that statement we fake a
955 saved flags register that has its direction flag cleared.
956
957 Note that GCC doesn't seem to rely on the fact that the direction
958 flag is cleared after a function return; it always explicitly
959 clears the flag before operations where it matters.
960
961 FIXME: kettenis/20030316: I'm not quite sure whether this is the
962 right thing to do. The way we fake the flags register here makes
963 it impossible to change it. */
964
965 if (regnum == I386_EFLAGS_REGNUM)
966 {
967 *optimizedp = 0;
968 *lvalp = not_lval;
969 *addrp = 0;
970 *realnump = -1;
971 if (valuep)
972 {
973 ULONGEST val;
974
975 /* Clear the direction flag. */
976 val = frame_unwind_register_unsigned (next_frame,
977 I386_EFLAGS_REGNUM);
978 val &= ~(1 << 10);
979 store_unsigned_integer (valuep, 4, val);
980 }
981
982 return;
983 }
984
985 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
986 {
987 *optimizedp = 0;
988 *lvalp = lval_register;
989 *addrp = 0;
990 *realnump = I386_EAX_REGNUM;
991 if (valuep)
992 frame_unwind_register (next_frame, (*realnump), valuep);
993 return;
994 }
995
996 if (regnum == I386_ESP_REGNUM && cache->saved_sp)
997 {
998 *optimizedp = 0;
999 *lvalp = not_lval;
1000 *addrp = 0;
1001 *realnump = -1;
1002 if (valuep)
1003 {
1004 /* Store the value. */
1005 store_unsigned_integer (valuep, 4, cache->saved_sp);
1006 }
1007 return;
1008 }
1009
1010 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
1011 {
1012 *optimizedp = 0;
1013 *lvalp = lval_memory;
1014 *addrp = cache->saved_regs[regnum];
1015 *realnump = -1;
1016 if (valuep)
1017 {
1018 /* Read the value in from memory. */
1019 read_memory (*addrp, valuep,
1020 register_size (current_gdbarch, regnum));
1021 }
1022 return;
1023 }
1024
1025 *optimizedp = 0;
1026 *lvalp = lval_register;
1027 *addrp = 0;
1028 *realnump = regnum;
1029 if (valuep)
1030 frame_unwind_register (next_frame, (*realnump), valuep);
1031 }
1032
1033 static const struct frame_unwind i386_frame_unwind =
1034 {
1035 NORMAL_FRAME,
1036 i386_frame_this_id,
1037 i386_frame_prev_register
1038 };
1039
1040 static const struct frame_unwind *
1041 i386_frame_sniffer (struct frame_info *next_frame)
1042 {
1043 return &i386_frame_unwind;
1044 }
1045 \f
1046
1047 /* Signal trampolines. */
1048
1049 static struct i386_frame_cache *
1050 i386_sigtramp_frame_cache (struct frame_info *next_frame, void **this_cache)
1051 {
1052 struct i386_frame_cache *cache;
1053 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1054 CORE_ADDR addr;
1055 gdb_byte buf[4];
1056
1057 if (*this_cache)
1058 return *this_cache;
1059
1060 cache = i386_alloc_frame_cache ();
1061
1062 frame_unwind_register (next_frame, I386_ESP_REGNUM, buf);
1063 cache->base = extract_unsigned_integer (buf, 4) - 4;
1064
1065 addr = tdep->sigcontext_addr (next_frame);
1066 if (tdep->sc_reg_offset)
1067 {
1068 int i;
1069
1070 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
1071
1072 for (i = 0; i < tdep->sc_num_regs; i++)
1073 if (tdep->sc_reg_offset[i] != -1)
1074 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
1075 }
1076 else
1077 {
1078 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
1079 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
1080 }
1081
1082 *this_cache = cache;
1083 return cache;
1084 }
1085
1086 static void
1087 i386_sigtramp_frame_this_id (struct frame_info *next_frame, void **this_cache,
1088 struct frame_id *this_id)
1089 {
1090 struct i386_frame_cache *cache =
1091 i386_sigtramp_frame_cache (next_frame, this_cache);
1092
1093 /* See the end of i386_push_dummy_call. */
1094 (*this_id) = frame_id_build (cache->base + 8, frame_pc_unwind (next_frame));
1095 }
1096
1097 static void
1098 i386_sigtramp_frame_prev_register (struct frame_info *next_frame,
1099 void **this_cache,
1100 int regnum, int *optimizedp,
1101 enum lval_type *lvalp, CORE_ADDR *addrp,
1102 int *realnump, gdb_byte *valuep)
1103 {
1104 /* Make sure we've initialized the cache. */
1105 i386_sigtramp_frame_cache (next_frame, this_cache);
1106
1107 i386_frame_prev_register (next_frame, this_cache, regnum,
1108 optimizedp, lvalp, addrp, realnump, valuep);
1109 }
1110
1111 static const struct frame_unwind i386_sigtramp_frame_unwind =
1112 {
1113 SIGTRAMP_FRAME,
1114 i386_sigtramp_frame_this_id,
1115 i386_sigtramp_frame_prev_register
1116 };
1117
1118 static const struct frame_unwind *
1119 i386_sigtramp_frame_sniffer (struct frame_info *next_frame)
1120 {
1121 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (next_frame));
1122
1123 /* We shouldn't even bother if we don't have a sigcontext_addr
1124 handler. */
1125 if (tdep->sigcontext_addr == NULL)
1126 return NULL;
1127
1128 if (tdep->sigtramp_p != NULL)
1129 {
1130 if (tdep->sigtramp_p (next_frame))
1131 return &i386_sigtramp_frame_unwind;
1132 }
1133
1134 if (tdep->sigtramp_start != 0)
1135 {
1136 CORE_ADDR pc = frame_pc_unwind (next_frame);
1137
1138 gdb_assert (tdep->sigtramp_end != 0);
1139 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
1140 return &i386_sigtramp_frame_unwind;
1141 }
1142
1143 return NULL;
1144 }
1145 \f
1146
1147 static CORE_ADDR
1148 i386_frame_base_address (struct frame_info *next_frame, void **this_cache)
1149 {
1150 struct i386_frame_cache *cache = i386_frame_cache (next_frame, this_cache);
1151
1152 return cache->base;
1153 }
1154
1155 static const struct frame_base i386_frame_base =
1156 {
1157 &i386_frame_unwind,
1158 i386_frame_base_address,
1159 i386_frame_base_address,
1160 i386_frame_base_address
1161 };
1162
1163 static struct frame_id
1164 i386_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
1165 {
1166 gdb_byte buf[4];
1167 CORE_ADDR fp;
1168
1169 frame_unwind_register (next_frame, I386_EBP_REGNUM, buf);
1170 fp = extract_unsigned_integer (buf, 4);
1171
1172 /* See the end of i386_push_dummy_call. */
1173 return frame_id_build (fp + 8, frame_pc_unwind (next_frame));
1174 }
1175 \f
1176
1177 /* Figure out where the longjmp will land. Slurp the args out of the
1178 stack. We expect the first arg to be a pointer to the jmp_buf
1179 structure from which we extract the address that we will land at.
1180 This address is copied into PC. This routine returns non-zero on
1181 success.
1182
1183 This function is 64-bit safe. */
1184
1185 static int
1186 i386_get_longjmp_target (CORE_ADDR *pc)
1187 {
1188 gdb_byte buf[8];
1189 CORE_ADDR sp, jb_addr;
1190 int jb_pc_offset = gdbarch_tdep (current_gdbarch)->jb_pc_offset;
1191 int len = TYPE_LENGTH (builtin_type_void_func_ptr);
1192
1193 /* If JB_PC_OFFSET is -1, we have no way to find out where the
1194 longjmp will land. */
1195 if (jb_pc_offset == -1)
1196 return 0;
1197
1198 /* Don't use I386_ESP_REGNUM here, since this function is also used
1199 for AMD64. */
1200 regcache_cooked_read (current_regcache, SP_REGNUM, buf);
1201 sp = extract_typed_address (buf, builtin_type_void_data_ptr);
1202 if (target_read_memory (sp + len, buf, len))
1203 return 0;
1204
1205 jb_addr = extract_typed_address (buf, builtin_type_void_data_ptr);
1206 if (target_read_memory (jb_addr + jb_pc_offset, buf, len))
1207 return 0;
1208
1209 *pc = extract_typed_address (buf, builtin_type_void_func_ptr);
1210 return 1;
1211 }
1212 \f
1213
1214 static CORE_ADDR
1215 i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1216 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
1217 struct value **args, CORE_ADDR sp, int struct_return,
1218 CORE_ADDR struct_addr)
1219 {
1220 gdb_byte buf[4];
1221 int i;
1222
1223 /* Push arguments in reverse order. */
1224 for (i = nargs - 1; i >= 0; i--)
1225 {
1226 int len = TYPE_LENGTH (value_enclosing_type (args[i]));
1227
1228 /* The System V ABI says that:
1229
1230 "An argument's size is increased, if necessary, to make it a
1231 multiple of [32-bit] words. This may require tail padding,
1232 depending on the size of the argument."
1233
1234 This makes sure the stack says word-aligned. */
1235 sp -= (len + 3) & ~3;
1236 write_memory (sp, value_contents_all (args[i]), len);
1237 }
1238
1239 /* Push value address. */
1240 if (struct_return)
1241 {
1242 sp -= 4;
1243 store_unsigned_integer (buf, 4, struct_addr);
1244 write_memory (sp, buf, 4);
1245 }
1246
1247 /* Store return address. */
1248 sp -= 4;
1249 store_unsigned_integer (buf, 4, bp_addr);
1250 write_memory (sp, buf, 4);
1251
1252 /* Finally, update the stack pointer... */
1253 store_unsigned_integer (buf, 4, sp);
1254 regcache_cooked_write (regcache, I386_ESP_REGNUM, buf);
1255
1256 /* ...and fake a frame pointer. */
1257 regcache_cooked_write (regcache, I386_EBP_REGNUM, buf);
1258
1259 /* MarkK wrote: This "+ 8" is all over the place:
1260 (i386_frame_this_id, i386_sigtramp_frame_this_id,
1261 i386_unwind_dummy_id). It's there, since all frame unwinders for
1262 a given target have to agree (within a certain margin) on the
1263 definition of the stack address of a frame. Otherwise
1264 frame_id_inner() won't work correctly. Since DWARF2/GCC uses the
1265 stack address *before* the function call as a frame's CFA. On
1266 the i386, when %ebp is used as a frame pointer, the offset
1267 between the contents %ebp and the CFA as defined by GCC. */
1268 return sp + 8;
1269 }
1270
1271 /* These registers are used for returning integers (and on some
1272 targets also for returning `struct' and `union' values when their
1273 size and alignment match an integer type). */
1274 #define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
1275 #define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
1276
1277 /* Read, for architecture GDBARCH, a function return value of TYPE
1278 from REGCACHE, and copy that into VALBUF. */
1279
1280 static void
1281 i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
1282 struct regcache *regcache, gdb_byte *valbuf)
1283 {
1284 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1285 int len = TYPE_LENGTH (type);
1286 gdb_byte buf[I386_MAX_REGISTER_SIZE];
1287
1288 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1289 {
1290 if (tdep->st0_regnum < 0)
1291 {
1292 warning (_("Cannot find floating-point return value."));
1293 memset (valbuf, 0, len);
1294 return;
1295 }
1296
1297 /* Floating-point return values can be found in %st(0). Convert
1298 its contents to the desired type. This is probably not
1299 exactly how it would happen on the target itself, but it is
1300 the best we can do. */
1301 regcache_raw_read (regcache, I386_ST0_REGNUM, buf);
1302 convert_typed_floating (buf, builtin_type_i387_ext, valbuf, type);
1303 }
1304 else
1305 {
1306 int low_size = register_size (current_gdbarch, LOW_RETURN_REGNUM);
1307 int high_size = register_size (current_gdbarch, HIGH_RETURN_REGNUM);
1308
1309 if (len <= low_size)
1310 {
1311 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
1312 memcpy (valbuf, buf, len);
1313 }
1314 else if (len <= (low_size + high_size))
1315 {
1316 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
1317 memcpy (valbuf, buf, low_size);
1318 regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
1319 memcpy (valbuf + low_size, buf, len - low_size);
1320 }
1321 else
1322 internal_error (__FILE__, __LINE__,
1323 _("Cannot extract return value of %d bytes long."), len);
1324 }
1325 }
1326
1327 /* Write, for architecture GDBARCH, a function return value of TYPE
1328 from VALBUF into REGCACHE. */
1329
1330 static void
1331 i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
1332 struct regcache *regcache, const gdb_byte *valbuf)
1333 {
1334 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1335 int len = TYPE_LENGTH (type);
1336
1337 /* Define I387_ST0_REGNUM such that we use the proper definitions
1338 for the architecture. */
1339 #define I387_ST0_REGNUM I386_ST0_REGNUM
1340
1341 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1342 {
1343 ULONGEST fstat;
1344 gdb_byte buf[I386_MAX_REGISTER_SIZE];
1345
1346 if (tdep->st0_regnum < 0)
1347 {
1348 warning (_("Cannot set floating-point return value."));
1349 return;
1350 }
1351
1352 /* Returning floating-point values is a bit tricky. Apart from
1353 storing the return value in %st(0), we have to simulate the
1354 state of the FPU at function return point. */
1355
1356 /* Convert the value found in VALBUF to the extended
1357 floating-point format used by the FPU. This is probably
1358 not exactly how it would happen on the target itself, but
1359 it is the best we can do. */
1360 convert_typed_floating (valbuf, type, buf, builtin_type_i387_ext);
1361 regcache_raw_write (regcache, I386_ST0_REGNUM, buf);
1362
1363 /* Set the top of the floating-point register stack to 7. The
1364 actual value doesn't really matter, but 7 is what a normal
1365 function return would end up with if the program started out
1366 with a freshly initialized FPU. */
1367 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM, &fstat);
1368 fstat |= (7 << 11);
1369 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM, fstat);
1370
1371 /* Mark %st(1) through %st(7) as empty. Since we set the top of
1372 the floating-point register stack to 7, the appropriate value
1373 for the tag word is 0x3fff. */
1374 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM, 0x3fff);
1375 }
1376 else
1377 {
1378 int low_size = register_size (current_gdbarch, LOW_RETURN_REGNUM);
1379 int high_size = register_size (current_gdbarch, HIGH_RETURN_REGNUM);
1380
1381 if (len <= low_size)
1382 regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
1383 else if (len <= (low_size + high_size))
1384 {
1385 regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
1386 regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
1387 len - low_size, valbuf + low_size);
1388 }
1389 else
1390 internal_error (__FILE__, __LINE__,
1391 _("Cannot store return value of %d bytes long."), len);
1392 }
1393
1394 #undef I387_ST0_REGNUM
1395 }
1396 \f
1397
1398 /* This is the variable that is set with "set struct-convention", and
1399 its legitimate values. */
1400 static const char default_struct_convention[] = "default";
1401 static const char pcc_struct_convention[] = "pcc";
1402 static const char reg_struct_convention[] = "reg";
1403 static const char *valid_conventions[] =
1404 {
1405 default_struct_convention,
1406 pcc_struct_convention,
1407 reg_struct_convention,
1408 NULL
1409 };
1410 static const char *struct_convention = default_struct_convention;
1411
1412 /* Return non-zero if TYPE, which is assumed to be a structure or
1413 union type, should be returned in registers for architecture
1414 GDBARCH. */
1415
1416 static int
1417 i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
1418 {
1419 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1420 enum type_code code = TYPE_CODE (type);
1421 int len = TYPE_LENGTH (type);
1422
1423 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
1424
1425 if (struct_convention == pcc_struct_convention
1426 || (struct_convention == default_struct_convention
1427 && tdep->struct_return == pcc_struct_return))
1428 return 0;
1429
1430 return (len == 1 || len == 2 || len == 4 || len == 8);
1431 }
1432
1433 /* Determine, for architecture GDBARCH, how a return value of TYPE
1434 should be returned. If it is supposed to be returned in registers,
1435 and READBUF is non-zero, read the appropriate value from REGCACHE,
1436 and copy it into READBUF. If WRITEBUF is non-zero, write the value
1437 from WRITEBUF into REGCACHE. */
1438
1439 static enum return_value_convention
1440 i386_return_value (struct gdbarch *gdbarch, struct type *type,
1441 struct regcache *regcache, gdb_byte *readbuf,
1442 const gdb_byte *writebuf)
1443 {
1444 enum type_code code = TYPE_CODE (type);
1445
1446 if ((code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION)
1447 && !i386_reg_struct_return_p (gdbarch, type))
1448 {
1449 /* The System V ABI says that:
1450
1451 "A function that returns a structure or union also sets %eax
1452 to the value of the original address of the caller's area
1453 before it returns. Thus when the caller receives control
1454 again, the address of the returned object resides in register
1455 %eax and can be used to access the object."
1456
1457 So the ABI guarantees that we can always find the return
1458 value just after the function has returned. */
1459
1460 if (readbuf)
1461 {
1462 ULONGEST addr;
1463
1464 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
1465 read_memory (addr, readbuf, TYPE_LENGTH (type));
1466 }
1467
1468 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
1469 }
1470
1471 /* This special case is for structures consisting of a single
1472 `float' or `double' member. These structures are returned in
1473 %st(0). For these structures, we call ourselves recursively,
1474 changing TYPE into the type of the first member of the structure.
1475 Since that should work for all structures that have only one
1476 member, we don't bother to check the member's type here. */
1477 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
1478 {
1479 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
1480 return i386_return_value (gdbarch, type, regcache, readbuf, writebuf);
1481 }
1482
1483 if (readbuf)
1484 i386_extract_return_value (gdbarch, type, regcache, readbuf);
1485 if (writebuf)
1486 i386_store_return_value (gdbarch, type, regcache, writebuf);
1487
1488 return RETURN_VALUE_REGISTER_CONVENTION;
1489 }
1490 \f
1491
1492 /* Types for the MMX and SSE registers. */
1493 static struct type *i386_mmx_type;
1494 static struct type *i386_sse_type;
1495
1496 /* Construct the type for MMX registers. */
1497 static struct type *
1498 i386_build_mmx_type (void)
1499 {
1500 /* The type we're building is this: */
1501 #if 0
1502 union __gdb_builtin_type_vec64i
1503 {
1504 int64_t uint64;
1505 int32_t v2_int32[2];
1506 int16_t v4_int16[4];
1507 int8_t v8_int8[8];
1508 };
1509 #endif
1510
1511 if (! i386_mmx_type)
1512 {
1513 struct type *t;
1514
1515 t = init_composite_type ("__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
1516 append_composite_type_field (t, "uint64", builtin_type_int64);
1517 append_composite_type_field (t, "v2_int32", builtin_type_v2_int32);
1518 append_composite_type_field (t, "v4_int16", builtin_type_v4_int16);
1519 append_composite_type_field (t, "v8_int8", builtin_type_v8_int8);
1520
1521 TYPE_FLAGS (t) |= TYPE_FLAG_VECTOR;
1522 TYPE_NAME (t) = "builtin_type_vec64i";
1523
1524 i386_mmx_type = t;
1525 }
1526
1527 return i386_mmx_type;
1528 }
1529
1530 /* Construct the type for SSE registers. */
1531 static struct type *
1532 i386_build_sse_type (void)
1533 {
1534 if (! i386_sse_type)
1535 {
1536 struct type *t;
1537
1538 t = init_composite_type ("__gdb_builtin_type_vec128i", TYPE_CODE_UNION);
1539 append_composite_type_field (t, "v4_float", builtin_type_v4_float);
1540 append_composite_type_field (t, "v2_double", builtin_type_v2_double);
1541 append_composite_type_field (t, "v16_int8", builtin_type_v16_int8);
1542 append_composite_type_field (t, "v8_int16", builtin_type_v8_int16);
1543 append_composite_type_field (t, "v4_int32", builtin_type_v4_int32);
1544 append_composite_type_field (t, "v2_int64", builtin_type_v2_int64);
1545 append_composite_type_field (t, "uint128", builtin_type_int128);
1546
1547 TYPE_FLAGS (t) |= TYPE_FLAG_VECTOR;
1548 TYPE_NAME (t) = "builtin_type_vec128i";
1549
1550 i386_sse_type = t;
1551 }
1552
1553 return i386_sse_type;
1554 }
1555
1556 /* Return the GDB type object for the "standard" data type of data in
1557 register REGNUM. Perhaps %esi and %edi should go here, but
1558 potentially they could be used for things other than address. */
1559
1560 static struct type *
1561 i386_register_type (struct gdbarch *gdbarch, int regnum)
1562 {
1563 if (regnum == I386_EIP_REGNUM
1564 || regnum == I386_EBP_REGNUM || regnum == I386_ESP_REGNUM)
1565 return lookup_pointer_type (builtin_type_void);
1566
1567 if (i386_fp_regnum_p (regnum))
1568 return builtin_type_i387_ext;
1569
1570 if (i386_sse_regnum_p (gdbarch, regnum))
1571 return i386_build_sse_type ();
1572
1573 if (i386_mmx_regnum_p (gdbarch, regnum))
1574 return i386_build_mmx_type ();
1575
1576 return builtin_type_int;
1577 }
1578
1579 /* Map a cooked register onto a raw register or memory. For the i386,
1580 the MMX registers need to be mapped onto floating point registers. */
1581
1582 static int
1583 i386_mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
1584 {
1585 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
1586 int mmxreg, fpreg;
1587 ULONGEST fstat;
1588 int tos;
1589
1590 /* Define I387_ST0_REGNUM such that we use the proper definitions
1591 for REGCACHE's architecture. */
1592 #define I387_ST0_REGNUM tdep->st0_regnum
1593
1594 mmxreg = regnum - tdep->mm0_regnum;
1595 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM, &fstat);
1596 tos = (fstat >> 11) & 0x7;
1597 fpreg = (mmxreg + tos) % 8;
1598
1599 return (I387_ST0_REGNUM + fpreg);
1600
1601 #undef I387_ST0_REGNUM
1602 }
1603
1604 static void
1605 i386_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
1606 int regnum, gdb_byte *buf)
1607 {
1608 if (i386_mmx_regnum_p (gdbarch, regnum))
1609 {
1610 gdb_byte mmx_buf[MAX_REGISTER_SIZE];
1611 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
1612
1613 /* Extract (always little endian). */
1614 regcache_raw_read (regcache, fpnum, mmx_buf);
1615 memcpy (buf, mmx_buf, register_size (gdbarch, regnum));
1616 }
1617 else
1618 regcache_raw_read (regcache, regnum, buf);
1619 }
1620
1621 static void
1622 i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
1623 int regnum, const gdb_byte *buf)
1624 {
1625 if (i386_mmx_regnum_p (gdbarch, regnum))
1626 {
1627 gdb_byte mmx_buf[MAX_REGISTER_SIZE];
1628 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
1629
1630 /* Read ... */
1631 regcache_raw_read (regcache, fpnum, mmx_buf);
1632 /* ... Modify ... (always little endian). */
1633 memcpy (mmx_buf, buf, register_size (gdbarch, regnum));
1634 /* ... Write. */
1635 regcache_raw_write (regcache, fpnum, mmx_buf);
1636 }
1637 else
1638 regcache_raw_write (regcache, regnum, buf);
1639 }
1640 \f
1641
1642 /* Return the register number of the register allocated by GCC after
1643 REGNUM, or -1 if there is no such register. */
1644
1645 static int
1646 i386_next_regnum (int regnum)
1647 {
1648 /* GCC allocates the registers in the order:
1649
1650 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
1651
1652 Since storing a variable in %esp doesn't make any sense we return
1653 -1 for %ebp and for %esp itself. */
1654 static int next_regnum[] =
1655 {
1656 I386_EDX_REGNUM, /* Slot for %eax. */
1657 I386_EBX_REGNUM, /* Slot for %ecx. */
1658 I386_ECX_REGNUM, /* Slot for %edx. */
1659 I386_ESI_REGNUM, /* Slot for %ebx. */
1660 -1, -1, /* Slots for %esp and %ebp. */
1661 I386_EDI_REGNUM, /* Slot for %esi. */
1662 I386_EBP_REGNUM /* Slot for %edi. */
1663 };
1664
1665 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
1666 return next_regnum[regnum];
1667
1668 return -1;
1669 }
1670
1671 /* Return nonzero if a value of type TYPE stored in register REGNUM
1672 needs any special handling. */
1673
1674 static int
1675 i386_convert_register_p (int regnum, struct type *type)
1676 {
1677 int len = TYPE_LENGTH (type);
1678
1679 /* Values may be spread across multiple registers. Most debugging
1680 formats aren't expressive enough to specify the locations, so
1681 some heuristics is involved. Right now we only handle types that
1682 have a length that is a multiple of the word size, since GCC
1683 doesn't seem to put any other types into registers. */
1684 if (len > 4 && len % 4 == 0)
1685 {
1686 int last_regnum = regnum;
1687
1688 while (len > 4)
1689 {
1690 last_regnum = i386_next_regnum (last_regnum);
1691 len -= 4;
1692 }
1693
1694 if (last_regnum != -1)
1695 return 1;
1696 }
1697
1698 return i386_fp_regnum_p (regnum);
1699 }
1700
1701 /* Read a value of type TYPE from register REGNUM in frame FRAME, and
1702 return its contents in TO. */
1703
1704 static void
1705 i386_register_to_value (struct frame_info *frame, int regnum,
1706 struct type *type, gdb_byte *to)
1707 {
1708 int len = TYPE_LENGTH (type);
1709
1710 /* FIXME: kettenis/20030609: What should we do if REGNUM isn't
1711 available in FRAME (i.e. if it wasn't saved)? */
1712
1713 if (i386_fp_regnum_p (regnum))
1714 {
1715 i387_register_to_value (frame, regnum, type, to);
1716 return;
1717 }
1718
1719 /* Read a value spread across multiple registers. */
1720
1721 gdb_assert (len > 4 && len % 4 == 0);
1722
1723 while (len > 0)
1724 {
1725 gdb_assert (regnum != -1);
1726 gdb_assert (register_size (current_gdbarch, regnum) == 4);
1727
1728 get_frame_register (frame, regnum, to);
1729 regnum = i386_next_regnum (regnum);
1730 len -= 4;
1731 to += 4;
1732 }
1733 }
1734
1735 /* Write the contents FROM of a value of type TYPE into register
1736 REGNUM in frame FRAME. */
1737
1738 static void
1739 i386_value_to_register (struct frame_info *frame, int regnum,
1740 struct type *type, const gdb_byte *from)
1741 {
1742 int len = TYPE_LENGTH (type);
1743
1744 if (i386_fp_regnum_p (regnum))
1745 {
1746 i387_value_to_register (frame, regnum, type, from);
1747 return;
1748 }
1749
1750 /* Write a value spread across multiple registers. */
1751
1752 gdb_assert (len > 4 && len % 4 == 0);
1753
1754 while (len > 0)
1755 {
1756 gdb_assert (regnum != -1);
1757 gdb_assert (register_size (current_gdbarch, regnum) == 4);
1758
1759 put_frame_register (frame, regnum, from);
1760 regnum = i386_next_regnum (regnum);
1761 len -= 4;
1762 from += 4;
1763 }
1764 }
1765 \f
1766 /* Supply register REGNUM from the buffer specified by GREGS and LEN
1767 in the general-purpose register set REGSET to register cache
1768 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
1769
1770 void
1771 i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
1772 int regnum, const void *gregs, size_t len)
1773 {
1774 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
1775 const gdb_byte *regs = gregs;
1776 int i;
1777
1778 gdb_assert (len == tdep->sizeof_gregset);
1779
1780 for (i = 0; i < tdep->gregset_num_regs; i++)
1781 {
1782 if ((regnum == i || regnum == -1)
1783 && tdep->gregset_reg_offset[i] != -1)
1784 regcache_raw_supply (regcache, i, regs + tdep->gregset_reg_offset[i]);
1785 }
1786 }
1787
1788 /* Collect register REGNUM from the register cache REGCACHE and store
1789 it in the buffer specified by GREGS and LEN as described by the
1790 general-purpose register set REGSET. If REGNUM is -1, do this for
1791 all registers in REGSET. */
1792
1793 void
1794 i386_collect_gregset (const struct regset *regset,
1795 const struct regcache *regcache,
1796 int regnum, void *gregs, size_t len)
1797 {
1798 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
1799 gdb_byte *regs = gregs;
1800 int i;
1801
1802 gdb_assert (len == tdep->sizeof_gregset);
1803
1804 for (i = 0; i < tdep->gregset_num_regs; i++)
1805 {
1806 if ((regnum == i || regnum == -1)
1807 && tdep->gregset_reg_offset[i] != -1)
1808 regcache_raw_collect (regcache, i, regs + tdep->gregset_reg_offset[i]);
1809 }
1810 }
1811
1812 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
1813 in the floating-point register set REGSET to register cache
1814 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
1815
1816 static void
1817 i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
1818 int regnum, const void *fpregs, size_t len)
1819 {
1820 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
1821
1822 if (len == I387_SIZEOF_FXSAVE)
1823 {
1824 i387_supply_fxsave (regcache, regnum, fpregs);
1825 return;
1826 }
1827
1828 gdb_assert (len == tdep->sizeof_fpregset);
1829 i387_supply_fsave (regcache, regnum, fpregs);
1830 }
1831
1832 /* Collect register REGNUM from the register cache REGCACHE and store
1833 it in the buffer specified by FPREGS and LEN as described by the
1834 floating-point register set REGSET. If REGNUM is -1, do this for
1835 all registers in REGSET. */
1836
1837 static void
1838 i386_collect_fpregset (const struct regset *regset,
1839 const struct regcache *regcache,
1840 int regnum, void *fpregs, size_t len)
1841 {
1842 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
1843
1844 if (len == I387_SIZEOF_FXSAVE)
1845 {
1846 i387_collect_fxsave (regcache, regnum, fpregs);
1847 return;
1848 }
1849
1850 gdb_assert (len == tdep->sizeof_fpregset);
1851 i387_collect_fsave (regcache, regnum, fpregs);
1852 }
1853
1854 /* Return the appropriate register set for the core section identified
1855 by SECT_NAME and SECT_SIZE. */
1856
1857 const struct regset *
1858 i386_regset_from_core_section (struct gdbarch *gdbarch,
1859 const char *sect_name, size_t sect_size)
1860 {
1861 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1862
1863 if (strcmp (sect_name, ".reg") == 0 && sect_size == tdep->sizeof_gregset)
1864 {
1865 if (tdep->gregset == NULL)
1866 tdep->gregset = regset_alloc (gdbarch, i386_supply_gregset,
1867 i386_collect_gregset);
1868 return tdep->gregset;
1869 }
1870
1871 if ((strcmp (sect_name, ".reg2") == 0 && sect_size == tdep->sizeof_fpregset)
1872 || (strcmp (sect_name, ".reg-xfp") == 0
1873 && sect_size == I387_SIZEOF_FXSAVE))
1874 {
1875 if (tdep->fpregset == NULL)
1876 tdep->fpregset = regset_alloc (gdbarch, i386_supply_fpregset,
1877 i386_collect_fpregset);
1878 return tdep->fpregset;
1879 }
1880
1881 return NULL;
1882 }
1883 \f
1884
1885 #ifdef STATIC_TRANSFORM_NAME
1886 /* SunPRO encodes the static variables. This is not related to C++
1887 mangling, it is done for C too. */
1888
1889 char *
1890 sunpro_static_transform_name (char *name)
1891 {
1892 char *p;
1893 if (IS_STATIC_TRANSFORM_NAME (name))
1894 {
1895 /* For file-local statics there will be a period, a bunch of
1896 junk (the contents of which match a string given in the
1897 N_OPT), a period and the name. For function-local statics
1898 there will be a bunch of junk (which seems to change the
1899 second character from 'A' to 'B'), a period, the name of the
1900 function, and the name. So just skip everything before the
1901 last period. */
1902 p = strrchr (name, '.');
1903 if (p != NULL)
1904 name = p + 1;
1905 }
1906 return name;
1907 }
1908 #endif /* STATIC_TRANSFORM_NAME */
1909 \f
1910
1911 /* Stuff for WIN32 PE style DLL's but is pretty generic really. */
1912
1913 CORE_ADDR
1914 i386_pe_skip_trampoline_code (CORE_ADDR pc, char *name)
1915 {
1916 if (pc && read_memory_unsigned_integer (pc, 2) == 0x25ff) /* jmp *(dest) */
1917 {
1918 unsigned long indirect = read_memory_unsigned_integer (pc + 2, 4);
1919 struct minimal_symbol *indsym =
1920 indirect ? lookup_minimal_symbol_by_pc (indirect) : 0;
1921 char *symname = indsym ? SYMBOL_LINKAGE_NAME (indsym) : 0;
1922
1923 if (symname)
1924 {
1925 if (strncmp (symname, "__imp_", 6) == 0
1926 || strncmp (symname, "_imp_", 5) == 0)
1927 return name ? 1 : read_memory_unsigned_integer (indirect, 4);
1928 }
1929 }
1930 return 0; /* Not a trampoline. */
1931 }
1932 \f
1933
1934 /* Return whether the frame preceding NEXT_FRAME corresponds to a
1935 sigtramp routine. */
1936
1937 static int
1938 i386_sigtramp_p (struct frame_info *next_frame)
1939 {
1940 CORE_ADDR pc = frame_pc_unwind (next_frame);
1941 char *name;
1942
1943 find_pc_partial_function (pc, &name, NULL, NULL);
1944 return (name && strcmp ("_sigtramp", name) == 0);
1945 }
1946 \f
1947
1948 /* We have two flavours of disassembly. The machinery on this page
1949 deals with switching between those. */
1950
1951 static int
1952 i386_print_insn (bfd_vma pc, struct disassemble_info *info)
1953 {
1954 gdb_assert (disassembly_flavor == att_flavor
1955 || disassembly_flavor == intel_flavor);
1956
1957 /* FIXME: kettenis/20020915: Until disassembler_options is properly
1958 constified, cast to prevent a compiler warning. */
1959 info->disassembler_options = (char *) disassembly_flavor;
1960 info->mach = gdbarch_bfd_arch_info (current_gdbarch)->mach;
1961
1962 return print_insn_i386 (pc, info);
1963 }
1964 \f
1965
1966 /* There are a few i386 architecture variants that differ only
1967 slightly from the generic i386 target. For now, we don't give them
1968 their own source file, but include them here. As a consequence,
1969 they'll always be included. */
1970
1971 /* System V Release 4 (SVR4). */
1972
1973 /* Return whether the frame preceding NEXT_FRAME corresponds to a SVR4
1974 sigtramp routine. */
1975
1976 static int
1977 i386_svr4_sigtramp_p (struct frame_info *next_frame)
1978 {
1979 CORE_ADDR pc = frame_pc_unwind (next_frame);
1980 char *name;
1981
1982 /* UnixWare uses _sigacthandler. The origin of the other symbols is
1983 currently unknown. */
1984 find_pc_partial_function (pc, &name, NULL, NULL);
1985 return (name && (strcmp ("_sigreturn", name) == 0
1986 || strcmp ("_sigacthandler", name) == 0
1987 || strcmp ("sigvechandler", name) == 0));
1988 }
1989
1990 /* Assuming NEXT_FRAME is for a frame following a SVR4 sigtramp
1991 routine, return the address of the associated sigcontext (ucontext)
1992 structure. */
1993
1994 static CORE_ADDR
1995 i386_svr4_sigcontext_addr (struct frame_info *next_frame)
1996 {
1997 gdb_byte buf[4];
1998 CORE_ADDR sp;
1999
2000 frame_unwind_register (next_frame, I386_ESP_REGNUM, buf);
2001 sp = extract_unsigned_integer (buf, 4);
2002
2003 return read_memory_unsigned_integer (sp + 8, 4);
2004 }
2005 \f
2006
2007 /* Generic ELF. */
2008
2009 void
2010 i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2011 {
2012 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
2013 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
2014 }
2015
2016 /* System V Release 4 (SVR4). */
2017
2018 void
2019 i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2020 {
2021 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2022
2023 /* System V Release 4 uses ELF. */
2024 i386_elf_init_abi (info, gdbarch);
2025
2026 /* System V Release 4 has shared libraries. */
2027 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
2028
2029 tdep->sigtramp_p = i386_svr4_sigtramp_p;
2030 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
2031 tdep->sc_pc_offset = 36 + 14 * 4;
2032 tdep->sc_sp_offset = 36 + 17 * 4;
2033
2034 tdep->jb_pc_offset = 20;
2035 }
2036
2037 /* DJGPP. */
2038
2039 static void
2040 i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2041 {
2042 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2043
2044 /* DJGPP doesn't have any special frames for signal handlers. */
2045 tdep->sigtramp_p = NULL;
2046
2047 tdep->jb_pc_offset = 36;
2048 }
2049
2050 /* NetWare. */
2051
2052 static void
2053 i386_nw_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2054 {
2055 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2056
2057 tdep->jb_pc_offset = 24;
2058 }
2059 \f
2060
2061 /* i386 register groups. In addition to the normal groups, add "mmx"
2062 and "sse". */
2063
2064 static struct reggroup *i386_sse_reggroup;
2065 static struct reggroup *i386_mmx_reggroup;
2066
2067 static void
2068 i386_init_reggroups (void)
2069 {
2070 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
2071 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
2072 }
2073
2074 static void
2075 i386_add_reggroups (struct gdbarch *gdbarch)
2076 {
2077 reggroup_add (gdbarch, i386_sse_reggroup);
2078 reggroup_add (gdbarch, i386_mmx_reggroup);
2079 reggroup_add (gdbarch, general_reggroup);
2080 reggroup_add (gdbarch, float_reggroup);
2081 reggroup_add (gdbarch, all_reggroup);
2082 reggroup_add (gdbarch, save_reggroup);
2083 reggroup_add (gdbarch, restore_reggroup);
2084 reggroup_add (gdbarch, vector_reggroup);
2085 reggroup_add (gdbarch, system_reggroup);
2086 }
2087
2088 int
2089 i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
2090 struct reggroup *group)
2091 {
2092 int sse_regnum_p = (i386_sse_regnum_p (gdbarch, regnum)
2093 || i386_mxcsr_regnum_p (gdbarch, regnum));
2094 int fp_regnum_p = (i386_fp_regnum_p (regnum)
2095 || i386_fpc_regnum_p (regnum));
2096 int mmx_regnum_p = (i386_mmx_regnum_p (gdbarch, regnum));
2097
2098 if (group == i386_mmx_reggroup)
2099 return mmx_regnum_p;
2100 if (group == i386_sse_reggroup)
2101 return sse_regnum_p;
2102 if (group == vector_reggroup)
2103 return (mmx_regnum_p || sse_regnum_p);
2104 if (group == float_reggroup)
2105 return fp_regnum_p;
2106 if (group == general_reggroup)
2107 return (!fp_regnum_p && !mmx_regnum_p && !sse_regnum_p);
2108
2109 return default_register_reggroup_p (gdbarch, regnum, group);
2110 }
2111 \f
2112
2113 /* Get the ARGIth function argument for the current function. */
2114
2115 static CORE_ADDR
2116 i386_fetch_pointer_argument (struct frame_info *frame, int argi,
2117 struct type *type)
2118 {
2119 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
2120 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4);
2121 }
2122
2123 \f
2124 static struct gdbarch *
2125 i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2126 {
2127 struct gdbarch_tdep *tdep;
2128 struct gdbarch *gdbarch;
2129
2130 /* If there is already a candidate, use it. */
2131 arches = gdbarch_list_lookup_by_info (arches, &info);
2132 if (arches != NULL)
2133 return arches->gdbarch;
2134
2135 /* Allocate space for the new architecture. */
2136 tdep = XMALLOC (struct gdbarch_tdep);
2137 gdbarch = gdbarch_alloc (&info, tdep);
2138
2139 /* General-purpose registers. */
2140 tdep->gregset = NULL;
2141 tdep->gregset_reg_offset = NULL;
2142 tdep->gregset_num_regs = I386_NUM_GREGS;
2143 tdep->sizeof_gregset = 0;
2144
2145 /* Floating-point registers. */
2146 tdep->fpregset = NULL;
2147 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
2148
2149 /* The default settings include the FPU registers, the MMX registers
2150 and the SSE registers. This can be overridden for a specific ABI
2151 by adjusting the members `st0_regnum', `mm0_regnum' and
2152 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
2153 will show up in the output of "info all-registers". Ideally we
2154 should try to autodetect whether they are available, such that we
2155 can prevent "info all-registers" from displaying registers that
2156 aren't available.
2157
2158 NOTE: kevinb/2003-07-13: ... if it's a choice between printing
2159 [the SSE registers] always (even when they don't exist) or never
2160 showing them to the user (even when they do exist), I prefer the
2161 former over the latter. */
2162
2163 tdep->st0_regnum = I386_ST0_REGNUM;
2164
2165 /* The MMX registers are implemented as pseudo-registers. Put off
2166 calculating the register number for %mm0 until we know the number
2167 of raw registers. */
2168 tdep->mm0_regnum = 0;
2169
2170 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
2171 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
2172
2173 tdep->jb_pc_offset = -1;
2174 tdep->struct_return = pcc_struct_return;
2175 tdep->sigtramp_start = 0;
2176 tdep->sigtramp_end = 0;
2177 tdep->sigtramp_p = i386_sigtramp_p;
2178 tdep->sigcontext_addr = NULL;
2179 tdep->sc_reg_offset = NULL;
2180 tdep->sc_pc_offset = -1;
2181 tdep->sc_sp_offset = -1;
2182
2183 /* The format used for `long double' on almost all i386 targets is
2184 the i387 extended floating-point format. In fact, of all targets
2185 in the GCC 2.95 tree, only OSF/1 does it different, and insists
2186 on having a `long double' that's not `long' at all. */
2187 set_gdbarch_long_double_format (gdbarch, &floatformat_i387_ext);
2188
2189 /* Although the i387 extended floating-point has only 80 significant
2190 bits, a `long double' actually takes up 96, probably to enforce
2191 alignment. */
2192 set_gdbarch_long_double_bit (gdbarch, 96);
2193
2194 /* The default ABI includes general-purpose registers,
2195 floating-point registers, and the SSE registers. */
2196 set_gdbarch_num_regs (gdbarch, I386_SSE_NUM_REGS);
2197 set_gdbarch_register_name (gdbarch, i386_register_name);
2198 set_gdbarch_register_type (gdbarch, i386_register_type);
2199
2200 /* Register numbers of various important registers. */
2201 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
2202 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
2203 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
2204 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
2205
2206 /* NOTE: kettenis/20040418: GCC does have two possible register
2207 numbering schemes on the i386: dbx and SVR4. These schemes
2208 differ in how they number %ebp, %esp, %eflags, and the
2209 floating-point registers, and are implemented by the arrays
2210 dbx_register_map[] and svr4_dbx_register_map in
2211 gcc/config/i386.c. GCC also defines a third numbering scheme in
2212 gcc/config/i386.c, which it designates as the "default" register
2213 map used in 64bit mode. This last register numbering scheme is
2214 implemented in dbx64_register_map, and is used for AMD64; see
2215 amd64-tdep.c.
2216
2217 Currently, each GCC i386 target always uses the same register
2218 numbering scheme across all its supported debugging formats
2219 i.e. SDB (COFF), stabs and DWARF 2. This is because
2220 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
2221 DBX_REGISTER_NUMBER macro which is defined by each target's
2222 respective config header in a manner independent of the requested
2223 output debugging format.
2224
2225 This does not match the arrangement below, which presumes that
2226 the SDB and stabs numbering schemes differ from the DWARF and
2227 DWARF 2 ones. The reason for this arrangement is that it is
2228 likely to get the numbering scheme for the target's
2229 default/native debug format right. For targets where GCC is the
2230 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
2231 targets where the native toolchain uses a different numbering
2232 scheme for a particular debug format (stabs-in-ELF on Solaris)
2233 the defaults below will have to be overridden, like
2234 i386_elf_init_abi() does. */
2235
2236 /* Use the dbx register numbering scheme for stabs and COFF. */
2237 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
2238 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
2239
2240 /* Use the SVR4 register numbering scheme for DWARF and DWARF 2. */
2241 set_gdbarch_dwarf_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
2242 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
2243
2244 /* We don't define ECOFF_REG_TO_REGNUM, since ECOFF doesn't seem to
2245 be in use on any of the supported i386 targets. */
2246
2247 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
2248
2249 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
2250
2251 /* Call dummy code. */
2252 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
2253
2254 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
2255 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
2256 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
2257
2258 set_gdbarch_return_value (gdbarch, i386_return_value);
2259
2260 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
2261
2262 /* Stack grows downward. */
2263 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2264
2265 set_gdbarch_breakpoint_from_pc (gdbarch, i386_breakpoint_from_pc);
2266 set_gdbarch_decr_pc_after_break (gdbarch, 1);
2267
2268 set_gdbarch_frame_args_skip (gdbarch, 8);
2269
2270 /* Wire in the MMX registers. */
2271 set_gdbarch_num_pseudo_regs (gdbarch, i386_num_mmx_regs);
2272 set_gdbarch_pseudo_register_read (gdbarch, i386_pseudo_register_read);
2273 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
2274
2275 set_gdbarch_print_insn (gdbarch, i386_print_insn);
2276
2277 set_gdbarch_unwind_dummy_id (gdbarch, i386_unwind_dummy_id);
2278
2279 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
2280
2281 /* Add the i386 register groups. */
2282 i386_add_reggroups (gdbarch);
2283 set_gdbarch_register_reggroup_p (gdbarch, i386_register_reggroup_p);
2284
2285 /* Helper for function argument information. */
2286 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
2287
2288 /* Hook in the DWARF CFI frame unwinder. */
2289 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
2290
2291 frame_base_set_default (gdbarch, &i386_frame_base);
2292
2293 /* Hook in ABI-specific overrides, if they have been registered. */
2294 gdbarch_init_osabi (info, gdbarch);
2295
2296 frame_unwind_append_sniffer (gdbarch, i386_sigtramp_frame_sniffer);
2297 frame_unwind_append_sniffer (gdbarch, i386_frame_sniffer);
2298
2299 /* If we have a register mapping, enable the generic core file
2300 support, unless it has already been enabled. */
2301 if (tdep->gregset_reg_offset
2302 && !gdbarch_regset_from_core_section_p (gdbarch))
2303 set_gdbarch_regset_from_core_section (gdbarch,
2304 i386_regset_from_core_section);
2305
2306 /* Unless support for MMX has been disabled, make %mm0 the first
2307 pseudo-register. */
2308 if (tdep->mm0_regnum == 0)
2309 tdep->mm0_regnum = gdbarch_num_regs (gdbarch);
2310
2311 return gdbarch;
2312 }
2313
2314 static enum gdb_osabi
2315 i386_coff_osabi_sniffer (bfd *abfd)
2316 {
2317 if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
2318 || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
2319 return GDB_OSABI_GO32;
2320
2321 return GDB_OSABI_UNKNOWN;
2322 }
2323
2324 static enum gdb_osabi
2325 i386_nlm_osabi_sniffer (bfd *abfd)
2326 {
2327 return GDB_OSABI_NETWARE;
2328 }
2329 \f
2330
2331 /* Provide a prototype to silence -Wmissing-prototypes. */
2332 void _initialize_i386_tdep (void);
2333
2334 void
2335 _initialize_i386_tdep (void)
2336 {
2337 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
2338
2339 /* Add the variable that controls the disassembly flavor. */
2340 add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
2341 &disassembly_flavor, _("\
2342 Set the disassembly flavor."), _("\
2343 Show the disassembly flavor."), _("\
2344 The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
2345 NULL,
2346 NULL, /* FIXME: i18n: */
2347 &setlist, &showlist);
2348
2349 /* Add the variable that controls the convention for returning
2350 structs. */
2351 add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
2352 &struct_convention, _("\
2353 Set the convention for returning small structs."), _("\
2354 Show the convention for returning small structs."), _("\
2355 Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
2356 is \"default\"."),
2357 NULL,
2358 NULL, /* FIXME: i18n: */
2359 &setlist, &showlist);
2360
2361 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
2362 i386_coff_osabi_sniffer);
2363 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_nlm_flavour,
2364 i386_nlm_osabi_sniffer);
2365
2366 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
2367 i386_svr4_init_abi);
2368 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_GO32,
2369 i386_go32_init_abi);
2370 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_NETWARE,
2371 i386_nw_init_abi);
2372
2373 /* Initialize the i386 specific register groups. */
2374 i386_init_reggroups ();
2375 }
This page took 0.121313 seconds and 5 git commands to generate.