Rename in_function_epilogue_p to stack_frame_destroyed_p
[deliverable/binutils-gdb.git] / gdb / i386-tdep.c
1 /* Intel 386 target-dependent stuff.
2
3 Copyright (C) 1988-2015 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "opcode/i386.h"
22 #include "arch-utils.h"
23 #include "command.h"
24 #include "dummy-frame.h"
25 #include "dwarf2-frame.h"
26 #include "doublest.h"
27 #include "frame.h"
28 #include "frame-base.h"
29 #include "frame-unwind.h"
30 #include "inferior.h"
31 #include "infrun.h"
32 #include "gdbcmd.h"
33 #include "gdbcore.h"
34 #include "gdbtypes.h"
35 #include "objfiles.h"
36 #include "osabi.h"
37 #include "regcache.h"
38 #include "reggroups.h"
39 #include "regset.h"
40 #include "symfile.h"
41 #include "symtab.h"
42 #include "target.h"
43 #include "value.h"
44 #include "dis-asm.h"
45 #include "disasm.h"
46 #include "remote.h"
47 #include "i386-tdep.h"
48 #include "i387-tdep.h"
49 #include "x86-xstate.h"
50
51 #include "record.h"
52 #include "record-full.h"
53 #include <stdint.h>
54
55 #include "features/i386/i386.c"
56 #include "features/i386/i386-avx.c"
57 #include "features/i386/i386-mpx.c"
58 #include "features/i386/i386-avx512.c"
59 #include "features/i386/i386-mmx.c"
60
61 #include "ax.h"
62 #include "ax-gdb.h"
63
64 #include "stap-probe.h"
65 #include "user-regs.h"
66 #include "cli/cli-utils.h"
67 #include "expression.h"
68 #include "parser-defs.h"
69 #include <ctype.h>
70
71 /* Register names. */
72
73 static const char *i386_register_names[] =
74 {
75 "eax", "ecx", "edx", "ebx",
76 "esp", "ebp", "esi", "edi",
77 "eip", "eflags", "cs", "ss",
78 "ds", "es", "fs", "gs",
79 "st0", "st1", "st2", "st3",
80 "st4", "st5", "st6", "st7",
81 "fctrl", "fstat", "ftag", "fiseg",
82 "fioff", "foseg", "fooff", "fop",
83 "xmm0", "xmm1", "xmm2", "xmm3",
84 "xmm4", "xmm5", "xmm6", "xmm7",
85 "mxcsr"
86 };
87
88 static const char *i386_zmm_names[] =
89 {
90 "zmm0", "zmm1", "zmm2", "zmm3",
91 "zmm4", "zmm5", "zmm6", "zmm7"
92 };
93
94 static const char *i386_zmmh_names[] =
95 {
96 "zmm0h", "zmm1h", "zmm2h", "zmm3h",
97 "zmm4h", "zmm5h", "zmm6h", "zmm7h"
98 };
99
100 static const char *i386_k_names[] =
101 {
102 "k0", "k1", "k2", "k3",
103 "k4", "k5", "k6", "k7"
104 };
105
106 static const char *i386_ymm_names[] =
107 {
108 "ymm0", "ymm1", "ymm2", "ymm3",
109 "ymm4", "ymm5", "ymm6", "ymm7",
110 };
111
112 static const char *i386_ymmh_names[] =
113 {
114 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
115 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
116 };
117
118 static const char *i386_mpx_names[] =
119 {
120 "bnd0raw", "bnd1raw", "bnd2raw", "bnd3raw", "bndcfgu", "bndstatus"
121 };
122
123 /* Register names for MPX pseudo-registers. */
124
125 static const char *i386_bnd_names[] =
126 {
127 "bnd0", "bnd1", "bnd2", "bnd3"
128 };
129
130 /* Register names for MMX pseudo-registers. */
131
132 static const char *i386_mmx_names[] =
133 {
134 "mm0", "mm1", "mm2", "mm3",
135 "mm4", "mm5", "mm6", "mm7"
136 };
137
138 /* Register names for byte pseudo-registers. */
139
140 static const char *i386_byte_names[] =
141 {
142 "al", "cl", "dl", "bl",
143 "ah", "ch", "dh", "bh"
144 };
145
146 /* Register names for word pseudo-registers. */
147
148 static const char *i386_word_names[] =
149 {
150 "ax", "cx", "dx", "bx",
151 "", "bp", "si", "di"
152 };
153
154 /* Constant used for reading/writing pseudo registers. In 64-bit mode, we have
155 16 lower ZMM regs that extend corresponding xmm/ymm registers. In addition,
156 we have 16 upper ZMM regs that have to be handled differently. */
157
158 const int num_lower_zmm_regs = 16;
159
160 /* MMX register? */
161
162 static int
163 i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
164 {
165 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
166 int mm0_regnum = tdep->mm0_regnum;
167
168 if (mm0_regnum < 0)
169 return 0;
170
171 regnum -= mm0_regnum;
172 return regnum >= 0 && regnum < tdep->num_mmx_regs;
173 }
174
175 /* Byte register? */
176
177 int
178 i386_byte_regnum_p (struct gdbarch *gdbarch, int regnum)
179 {
180 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
181
182 regnum -= tdep->al_regnum;
183 return regnum >= 0 && regnum < tdep->num_byte_regs;
184 }
185
186 /* Word register? */
187
188 int
189 i386_word_regnum_p (struct gdbarch *gdbarch, int regnum)
190 {
191 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
192
193 regnum -= tdep->ax_regnum;
194 return regnum >= 0 && regnum < tdep->num_word_regs;
195 }
196
197 /* Dword register? */
198
199 int
200 i386_dword_regnum_p (struct gdbarch *gdbarch, int regnum)
201 {
202 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
203 int eax_regnum = tdep->eax_regnum;
204
205 if (eax_regnum < 0)
206 return 0;
207
208 regnum -= eax_regnum;
209 return regnum >= 0 && regnum < tdep->num_dword_regs;
210 }
211
212 /* AVX512 register? */
213
214 int
215 i386_zmmh_regnum_p (struct gdbarch *gdbarch, int regnum)
216 {
217 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
218 int zmm0h_regnum = tdep->zmm0h_regnum;
219
220 if (zmm0h_regnum < 0)
221 return 0;
222
223 regnum -= zmm0h_regnum;
224 return regnum >= 0 && regnum < tdep->num_zmm_regs;
225 }
226
227 int
228 i386_zmm_regnum_p (struct gdbarch *gdbarch, int regnum)
229 {
230 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
231 int zmm0_regnum = tdep->zmm0_regnum;
232
233 if (zmm0_regnum < 0)
234 return 0;
235
236 regnum -= zmm0_regnum;
237 return regnum >= 0 && regnum < tdep->num_zmm_regs;
238 }
239
240 int
241 i386_k_regnum_p (struct gdbarch *gdbarch, int regnum)
242 {
243 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
244 int k0_regnum = tdep->k0_regnum;
245
246 if (k0_regnum < 0)
247 return 0;
248
249 regnum -= k0_regnum;
250 return regnum >= 0 && regnum < I387_NUM_K_REGS;
251 }
252
253 static int
254 i386_ymmh_regnum_p (struct gdbarch *gdbarch, int regnum)
255 {
256 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
257 int ymm0h_regnum = tdep->ymm0h_regnum;
258
259 if (ymm0h_regnum < 0)
260 return 0;
261
262 regnum -= ymm0h_regnum;
263 return regnum >= 0 && regnum < tdep->num_ymm_regs;
264 }
265
266 /* AVX register? */
267
268 int
269 i386_ymm_regnum_p (struct gdbarch *gdbarch, int regnum)
270 {
271 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
272 int ymm0_regnum = tdep->ymm0_regnum;
273
274 if (ymm0_regnum < 0)
275 return 0;
276
277 regnum -= ymm0_regnum;
278 return regnum >= 0 && regnum < tdep->num_ymm_regs;
279 }
280
281 static int
282 i386_ymmh_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
283 {
284 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
285 int ymm16h_regnum = tdep->ymm16h_regnum;
286
287 if (ymm16h_regnum < 0)
288 return 0;
289
290 regnum -= ymm16h_regnum;
291 return regnum >= 0 && regnum < tdep->num_ymm_avx512_regs;
292 }
293
294 int
295 i386_ymm_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
296 {
297 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
298 int ymm16_regnum = tdep->ymm16_regnum;
299
300 if (ymm16_regnum < 0)
301 return 0;
302
303 regnum -= ymm16_regnum;
304 return regnum >= 0 && regnum < tdep->num_ymm_avx512_regs;
305 }
306
307 /* BND register? */
308
309 int
310 i386_bnd_regnum_p (struct gdbarch *gdbarch, int regnum)
311 {
312 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
313 int bnd0_regnum = tdep->bnd0_regnum;
314
315 if (bnd0_regnum < 0)
316 return 0;
317
318 regnum -= bnd0_regnum;
319 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
320 }
321
322 /* SSE register? */
323
324 int
325 i386_xmm_regnum_p (struct gdbarch *gdbarch, int regnum)
326 {
327 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
328 int num_xmm_regs = I387_NUM_XMM_REGS (tdep);
329
330 if (num_xmm_regs == 0)
331 return 0;
332
333 regnum -= I387_XMM0_REGNUM (tdep);
334 return regnum >= 0 && regnum < num_xmm_regs;
335 }
336
337 /* XMM_512 register? */
338
339 int
340 i386_xmm_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
341 {
342 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
343 int num_xmm_avx512_regs = I387_NUM_XMM_AVX512_REGS (tdep);
344
345 if (num_xmm_avx512_regs == 0)
346 return 0;
347
348 regnum -= I387_XMM16_REGNUM (tdep);
349 return regnum >= 0 && regnum < num_xmm_avx512_regs;
350 }
351
352 static int
353 i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
354 {
355 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
356
357 if (I387_NUM_XMM_REGS (tdep) == 0)
358 return 0;
359
360 return (regnum == I387_MXCSR_REGNUM (tdep));
361 }
362
363 /* FP register? */
364
365 int
366 i386_fp_regnum_p (struct gdbarch *gdbarch, int regnum)
367 {
368 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
369
370 if (I387_ST0_REGNUM (tdep) < 0)
371 return 0;
372
373 return (I387_ST0_REGNUM (tdep) <= regnum
374 && regnum < I387_FCTRL_REGNUM (tdep));
375 }
376
377 int
378 i386_fpc_regnum_p (struct gdbarch *gdbarch, int regnum)
379 {
380 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
381
382 if (I387_ST0_REGNUM (tdep) < 0)
383 return 0;
384
385 return (I387_FCTRL_REGNUM (tdep) <= regnum
386 && regnum < I387_XMM0_REGNUM (tdep));
387 }
388
389 /* BNDr (raw) register? */
390
391 static int
392 i386_bndr_regnum_p (struct gdbarch *gdbarch, int regnum)
393 {
394 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
395
396 if (I387_BND0R_REGNUM (tdep) < 0)
397 return 0;
398
399 regnum -= tdep->bnd0r_regnum;
400 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
401 }
402
403 /* BND control register? */
404
405 static int
406 i386_mpx_ctrl_regnum_p (struct gdbarch *gdbarch, int regnum)
407 {
408 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
409
410 if (I387_BNDCFGU_REGNUM (tdep) < 0)
411 return 0;
412
413 regnum -= I387_BNDCFGU_REGNUM (tdep);
414 return regnum >= 0 && regnum < I387_NUM_MPX_CTRL_REGS;
415 }
416
417 /* Return the name of register REGNUM, or the empty string if it is
418 an anonymous register. */
419
420 static const char *
421 i386_register_name (struct gdbarch *gdbarch, int regnum)
422 {
423 /* Hide the upper YMM registers. */
424 if (i386_ymmh_regnum_p (gdbarch, regnum))
425 return "";
426
427 /* Hide the upper YMM16-31 registers. */
428 if (i386_ymmh_avx512_regnum_p (gdbarch, regnum))
429 return "";
430
431 /* Hide the upper ZMM registers. */
432 if (i386_zmmh_regnum_p (gdbarch, regnum))
433 return "";
434
435 return tdesc_register_name (gdbarch, regnum);
436 }
437
438 /* Return the name of register REGNUM. */
439
440 const char *
441 i386_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
442 {
443 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
444 if (i386_bnd_regnum_p (gdbarch, regnum))
445 return i386_bnd_names[regnum - tdep->bnd0_regnum];
446 if (i386_mmx_regnum_p (gdbarch, regnum))
447 return i386_mmx_names[regnum - I387_MM0_REGNUM (tdep)];
448 else if (i386_ymm_regnum_p (gdbarch, regnum))
449 return i386_ymm_names[regnum - tdep->ymm0_regnum];
450 else if (i386_zmm_regnum_p (gdbarch, regnum))
451 return i386_zmm_names[regnum - tdep->zmm0_regnum];
452 else if (i386_byte_regnum_p (gdbarch, regnum))
453 return i386_byte_names[regnum - tdep->al_regnum];
454 else if (i386_word_regnum_p (gdbarch, regnum))
455 return i386_word_names[regnum - tdep->ax_regnum];
456
457 internal_error (__FILE__, __LINE__, _("invalid regnum"));
458 }
459
460 /* Convert a dbx register number REG to the appropriate register
461 number used by GDB. */
462
463 static int
464 i386_dbx_reg_to_regnum (struct gdbarch *gdbarch, int reg)
465 {
466 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
467
468 /* This implements what GCC calls the "default" register map
469 (dbx_register_map[]). */
470
471 if (reg >= 0 && reg <= 7)
472 {
473 /* General-purpose registers. The debug info calls %ebp
474 register 4, and %esp register 5. */
475 if (reg == 4)
476 return 5;
477 else if (reg == 5)
478 return 4;
479 else return reg;
480 }
481 else if (reg >= 12 && reg <= 19)
482 {
483 /* Floating-point registers. */
484 return reg - 12 + I387_ST0_REGNUM (tdep);
485 }
486 else if (reg >= 21 && reg <= 28)
487 {
488 /* SSE registers. */
489 int ymm0_regnum = tdep->ymm0_regnum;
490
491 if (ymm0_regnum >= 0
492 && i386_xmm_regnum_p (gdbarch, reg))
493 return reg - 21 + ymm0_regnum;
494 else
495 return reg - 21 + I387_XMM0_REGNUM (tdep);
496 }
497 else if (reg >= 29 && reg <= 36)
498 {
499 /* MMX registers. */
500 return reg - 29 + I387_MM0_REGNUM (tdep);
501 }
502
503 /* This will hopefully provoke a warning. */
504 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
505 }
506
507 /* Convert SVR4 register number REG to the appropriate register number
508 used by GDB. */
509
510 static int
511 i386_svr4_reg_to_regnum (struct gdbarch *gdbarch, int reg)
512 {
513 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
514
515 /* This implements the GCC register map that tries to be compatible
516 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
517
518 /* The SVR4 register numbering includes %eip and %eflags, and
519 numbers the floating point registers differently. */
520 if (reg >= 0 && reg <= 9)
521 {
522 /* General-purpose registers. */
523 return reg;
524 }
525 else if (reg >= 11 && reg <= 18)
526 {
527 /* Floating-point registers. */
528 return reg - 11 + I387_ST0_REGNUM (tdep);
529 }
530 else if (reg >= 21 && reg <= 36)
531 {
532 /* The SSE and MMX registers have the same numbers as with dbx. */
533 return i386_dbx_reg_to_regnum (gdbarch, reg);
534 }
535
536 switch (reg)
537 {
538 case 37: return I387_FCTRL_REGNUM (tdep);
539 case 38: return I387_FSTAT_REGNUM (tdep);
540 case 39: return I387_MXCSR_REGNUM (tdep);
541 case 40: return I386_ES_REGNUM;
542 case 41: return I386_CS_REGNUM;
543 case 42: return I386_SS_REGNUM;
544 case 43: return I386_DS_REGNUM;
545 case 44: return I386_FS_REGNUM;
546 case 45: return I386_GS_REGNUM;
547 }
548
549 /* This will hopefully provoke a warning. */
550 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
551 }
552
553 \f
554
555 /* This is the variable that is set with "set disassembly-flavor", and
556 its legitimate values. */
557 static const char att_flavor[] = "att";
558 static const char intel_flavor[] = "intel";
559 static const char *const valid_flavors[] =
560 {
561 att_flavor,
562 intel_flavor,
563 NULL
564 };
565 static const char *disassembly_flavor = att_flavor;
566 \f
567
568 /* Use the program counter to determine the contents and size of a
569 breakpoint instruction. Return a pointer to a string of bytes that
570 encode a breakpoint instruction, store the length of the string in
571 *LEN and optionally adjust *PC to point to the correct memory
572 location for inserting the breakpoint.
573
574 On the i386 we have a single breakpoint that fits in a single byte
575 and can be inserted anywhere.
576
577 This function is 64-bit safe. */
578
579 static const gdb_byte *
580 i386_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
581 {
582 static gdb_byte break_insn[] = { 0xcc }; /* int 3 */
583
584 *len = sizeof (break_insn);
585 return break_insn;
586 }
587 \f
588 /* Displaced instruction handling. */
589
590 /* Skip the legacy instruction prefixes in INSN.
591 Not all prefixes are valid for any particular insn
592 but we needn't care, the insn will fault if it's invalid.
593 The result is a pointer to the first opcode byte,
594 or NULL if we run off the end of the buffer. */
595
596 static gdb_byte *
597 i386_skip_prefixes (gdb_byte *insn, size_t max_len)
598 {
599 gdb_byte *end = insn + max_len;
600
601 while (insn < end)
602 {
603 switch (*insn)
604 {
605 case DATA_PREFIX_OPCODE:
606 case ADDR_PREFIX_OPCODE:
607 case CS_PREFIX_OPCODE:
608 case DS_PREFIX_OPCODE:
609 case ES_PREFIX_OPCODE:
610 case FS_PREFIX_OPCODE:
611 case GS_PREFIX_OPCODE:
612 case SS_PREFIX_OPCODE:
613 case LOCK_PREFIX_OPCODE:
614 case REPE_PREFIX_OPCODE:
615 case REPNE_PREFIX_OPCODE:
616 ++insn;
617 continue;
618 default:
619 return insn;
620 }
621 }
622
623 return NULL;
624 }
625
626 static int
627 i386_absolute_jmp_p (const gdb_byte *insn)
628 {
629 /* jmp far (absolute address in operand). */
630 if (insn[0] == 0xea)
631 return 1;
632
633 if (insn[0] == 0xff)
634 {
635 /* jump near, absolute indirect (/4). */
636 if ((insn[1] & 0x38) == 0x20)
637 return 1;
638
639 /* jump far, absolute indirect (/5). */
640 if ((insn[1] & 0x38) == 0x28)
641 return 1;
642 }
643
644 return 0;
645 }
646
647 /* Return non-zero if INSN is a jump, zero otherwise. */
648
649 static int
650 i386_jmp_p (const gdb_byte *insn)
651 {
652 /* jump short, relative. */
653 if (insn[0] == 0xeb)
654 return 1;
655
656 /* jump near, relative. */
657 if (insn[0] == 0xe9)
658 return 1;
659
660 return i386_absolute_jmp_p (insn);
661 }
662
663 static int
664 i386_absolute_call_p (const gdb_byte *insn)
665 {
666 /* call far, absolute. */
667 if (insn[0] == 0x9a)
668 return 1;
669
670 if (insn[0] == 0xff)
671 {
672 /* Call near, absolute indirect (/2). */
673 if ((insn[1] & 0x38) == 0x10)
674 return 1;
675
676 /* Call far, absolute indirect (/3). */
677 if ((insn[1] & 0x38) == 0x18)
678 return 1;
679 }
680
681 return 0;
682 }
683
684 static int
685 i386_ret_p (const gdb_byte *insn)
686 {
687 switch (insn[0])
688 {
689 case 0xc2: /* ret near, pop N bytes. */
690 case 0xc3: /* ret near */
691 case 0xca: /* ret far, pop N bytes. */
692 case 0xcb: /* ret far */
693 case 0xcf: /* iret */
694 return 1;
695
696 default:
697 return 0;
698 }
699 }
700
701 static int
702 i386_call_p (const gdb_byte *insn)
703 {
704 if (i386_absolute_call_p (insn))
705 return 1;
706
707 /* call near, relative. */
708 if (insn[0] == 0xe8)
709 return 1;
710
711 return 0;
712 }
713
714 /* Return non-zero if INSN is a system call, and set *LENGTHP to its
715 length in bytes. Otherwise, return zero. */
716
717 static int
718 i386_syscall_p (const gdb_byte *insn, int *lengthp)
719 {
720 /* Is it 'int $0x80'? */
721 if ((insn[0] == 0xcd && insn[1] == 0x80)
722 /* Or is it 'sysenter'? */
723 || (insn[0] == 0x0f && insn[1] == 0x34)
724 /* Or is it 'syscall'? */
725 || (insn[0] == 0x0f && insn[1] == 0x05))
726 {
727 *lengthp = 2;
728 return 1;
729 }
730
731 return 0;
732 }
733
734 /* The gdbarch insn_is_call method. */
735
736 static int
737 i386_insn_is_call (struct gdbarch *gdbarch, CORE_ADDR addr)
738 {
739 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
740
741 read_code (addr, buf, I386_MAX_INSN_LEN);
742 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
743
744 return i386_call_p (insn);
745 }
746
747 /* The gdbarch insn_is_ret method. */
748
749 static int
750 i386_insn_is_ret (struct gdbarch *gdbarch, CORE_ADDR addr)
751 {
752 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
753
754 read_code (addr, buf, I386_MAX_INSN_LEN);
755 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
756
757 return i386_ret_p (insn);
758 }
759
760 /* The gdbarch insn_is_jump method. */
761
762 static int
763 i386_insn_is_jump (struct gdbarch *gdbarch, CORE_ADDR addr)
764 {
765 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
766
767 read_code (addr, buf, I386_MAX_INSN_LEN);
768 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
769
770 return i386_jmp_p (insn);
771 }
772
773 /* Some kernels may run one past a syscall insn, so we have to cope.
774 Otherwise this is just simple_displaced_step_copy_insn. */
775
776 struct displaced_step_closure *
777 i386_displaced_step_copy_insn (struct gdbarch *gdbarch,
778 CORE_ADDR from, CORE_ADDR to,
779 struct regcache *regs)
780 {
781 size_t len = gdbarch_max_insn_length (gdbarch);
782 gdb_byte *buf = xmalloc (len);
783
784 read_memory (from, buf, len);
785
786 /* GDB may get control back after the insn after the syscall.
787 Presumably this is a kernel bug.
788 If this is a syscall, make sure there's a nop afterwards. */
789 {
790 int syscall_length;
791 gdb_byte *insn;
792
793 insn = i386_skip_prefixes (buf, len);
794 if (insn != NULL && i386_syscall_p (insn, &syscall_length))
795 insn[syscall_length] = NOP_OPCODE;
796 }
797
798 write_memory (to, buf, len);
799
800 if (debug_displaced)
801 {
802 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
803 paddress (gdbarch, from), paddress (gdbarch, to));
804 displaced_step_dump_bytes (gdb_stdlog, buf, len);
805 }
806
807 return (struct displaced_step_closure *) buf;
808 }
809
810 /* Fix up the state of registers and memory after having single-stepped
811 a displaced instruction. */
812
813 void
814 i386_displaced_step_fixup (struct gdbarch *gdbarch,
815 struct displaced_step_closure *closure,
816 CORE_ADDR from, CORE_ADDR to,
817 struct regcache *regs)
818 {
819 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
820
821 /* The offset we applied to the instruction's address.
822 This could well be negative (when viewed as a signed 32-bit
823 value), but ULONGEST won't reflect that, so take care when
824 applying it. */
825 ULONGEST insn_offset = to - from;
826
827 /* Since we use simple_displaced_step_copy_insn, our closure is a
828 copy of the instruction. */
829 gdb_byte *insn = (gdb_byte *) closure;
830 /* The start of the insn, needed in case we see some prefixes. */
831 gdb_byte *insn_start = insn;
832
833 if (debug_displaced)
834 fprintf_unfiltered (gdb_stdlog,
835 "displaced: fixup (%s, %s), "
836 "insn = 0x%02x 0x%02x ...\n",
837 paddress (gdbarch, from), paddress (gdbarch, to),
838 insn[0], insn[1]);
839
840 /* The list of issues to contend with here is taken from
841 resume_execution in arch/i386/kernel/kprobes.c, Linux 2.6.20.
842 Yay for Free Software! */
843
844 /* Relocate the %eip, if necessary. */
845
846 /* The instruction recognizers we use assume any leading prefixes
847 have been skipped. */
848 {
849 /* This is the size of the buffer in closure. */
850 size_t max_insn_len = gdbarch_max_insn_length (gdbarch);
851 gdb_byte *opcode = i386_skip_prefixes (insn, max_insn_len);
852 /* If there are too many prefixes, just ignore the insn.
853 It will fault when run. */
854 if (opcode != NULL)
855 insn = opcode;
856 }
857
858 /* Except in the case of absolute or indirect jump or call
859 instructions, or a return instruction, the new eip is relative to
860 the displaced instruction; make it relative. Well, signal
861 handler returns don't need relocation either, but we use the
862 value of %eip to recognize those; see below. */
863 if (! i386_absolute_jmp_p (insn)
864 && ! i386_absolute_call_p (insn)
865 && ! i386_ret_p (insn))
866 {
867 ULONGEST orig_eip;
868 int insn_len;
869
870 regcache_cooked_read_unsigned (regs, I386_EIP_REGNUM, &orig_eip);
871
872 /* A signal trampoline system call changes the %eip, resuming
873 execution of the main program after the signal handler has
874 returned. That makes them like 'return' instructions; we
875 shouldn't relocate %eip.
876
877 But most system calls don't, and we do need to relocate %eip.
878
879 Our heuristic for distinguishing these cases: if stepping
880 over the system call instruction left control directly after
881 the instruction, the we relocate --- control almost certainly
882 doesn't belong in the displaced copy. Otherwise, we assume
883 the instruction has put control where it belongs, and leave
884 it unrelocated. Goodness help us if there are PC-relative
885 system calls. */
886 if (i386_syscall_p (insn, &insn_len)
887 && orig_eip != to + (insn - insn_start) + insn_len
888 /* GDB can get control back after the insn after the syscall.
889 Presumably this is a kernel bug.
890 i386_displaced_step_copy_insn ensures its a nop,
891 we add one to the length for it. */
892 && orig_eip != to + (insn - insn_start) + insn_len + 1)
893 {
894 if (debug_displaced)
895 fprintf_unfiltered (gdb_stdlog,
896 "displaced: syscall changed %%eip; "
897 "not relocating\n");
898 }
899 else
900 {
901 ULONGEST eip = (orig_eip - insn_offset) & 0xffffffffUL;
902
903 /* If we just stepped over a breakpoint insn, we don't backup
904 the pc on purpose; this is to match behaviour without
905 stepping. */
906
907 regcache_cooked_write_unsigned (regs, I386_EIP_REGNUM, eip);
908
909 if (debug_displaced)
910 fprintf_unfiltered (gdb_stdlog,
911 "displaced: "
912 "relocated %%eip from %s to %s\n",
913 paddress (gdbarch, orig_eip),
914 paddress (gdbarch, eip));
915 }
916 }
917
918 /* If the instruction was PUSHFL, then the TF bit will be set in the
919 pushed value, and should be cleared. We'll leave this for later,
920 since GDB already messes up the TF flag when stepping over a
921 pushfl. */
922
923 /* If the instruction was a call, the return address now atop the
924 stack is the address following the copied instruction. We need
925 to make it the address following the original instruction. */
926 if (i386_call_p (insn))
927 {
928 ULONGEST esp;
929 ULONGEST retaddr;
930 const ULONGEST retaddr_len = 4;
931
932 regcache_cooked_read_unsigned (regs, I386_ESP_REGNUM, &esp);
933 retaddr = read_memory_unsigned_integer (esp, retaddr_len, byte_order);
934 retaddr = (retaddr - insn_offset) & 0xffffffffUL;
935 write_memory_unsigned_integer (esp, retaddr_len, byte_order, retaddr);
936
937 if (debug_displaced)
938 fprintf_unfiltered (gdb_stdlog,
939 "displaced: relocated return addr at %s to %s\n",
940 paddress (gdbarch, esp),
941 paddress (gdbarch, retaddr));
942 }
943 }
944
945 static void
946 append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
947 {
948 target_write_memory (*to, buf, len);
949 *to += len;
950 }
951
952 static void
953 i386_relocate_instruction (struct gdbarch *gdbarch,
954 CORE_ADDR *to, CORE_ADDR oldloc)
955 {
956 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
957 gdb_byte buf[I386_MAX_INSN_LEN];
958 int offset = 0, rel32, newrel;
959 int insn_length;
960 gdb_byte *insn = buf;
961
962 read_memory (oldloc, buf, I386_MAX_INSN_LEN);
963
964 insn_length = gdb_buffered_insn_length (gdbarch, insn,
965 I386_MAX_INSN_LEN, oldloc);
966
967 /* Get past the prefixes. */
968 insn = i386_skip_prefixes (insn, I386_MAX_INSN_LEN);
969
970 /* Adjust calls with 32-bit relative addresses as push/jump, with
971 the address pushed being the location where the original call in
972 the user program would return to. */
973 if (insn[0] == 0xe8)
974 {
975 gdb_byte push_buf[16];
976 unsigned int ret_addr;
977
978 /* Where "ret" in the original code will return to. */
979 ret_addr = oldloc + insn_length;
980 push_buf[0] = 0x68; /* pushq $... */
981 store_unsigned_integer (&push_buf[1], 4, byte_order, ret_addr);
982 /* Push the push. */
983 append_insns (to, 5, push_buf);
984
985 /* Convert the relative call to a relative jump. */
986 insn[0] = 0xe9;
987
988 /* Adjust the destination offset. */
989 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
990 newrel = (oldloc - *to) + rel32;
991 store_signed_integer (insn + 1, 4, byte_order, newrel);
992
993 if (debug_displaced)
994 fprintf_unfiltered (gdb_stdlog,
995 "Adjusted insn rel32=%s at %s to"
996 " rel32=%s at %s\n",
997 hex_string (rel32), paddress (gdbarch, oldloc),
998 hex_string (newrel), paddress (gdbarch, *to));
999
1000 /* Write the adjusted jump into its displaced location. */
1001 append_insns (to, 5, insn);
1002 return;
1003 }
1004
1005 /* Adjust jumps with 32-bit relative addresses. Calls are already
1006 handled above. */
1007 if (insn[0] == 0xe9)
1008 offset = 1;
1009 /* Adjust conditional jumps. */
1010 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
1011 offset = 2;
1012
1013 if (offset)
1014 {
1015 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
1016 newrel = (oldloc - *to) + rel32;
1017 store_signed_integer (insn + offset, 4, byte_order, newrel);
1018 if (debug_displaced)
1019 fprintf_unfiltered (gdb_stdlog,
1020 "Adjusted insn rel32=%s at %s to"
1021 " rel32=%s at %s\n",
1022 hex_string (rel32), paddress (gdbarch, oldloc),
1023 hex_string (newrel), paddress (gdbarch, *to));
1024 }
1025
1026 /* Write the adjusted instructions into their displaced
1027 location. */
1028 append_insns (to, insn_length, buf);
1029 }
1030
1031 \f
1032 #ifdef I386_REGNO_TO_SYMMETRY
1033 #error "The Sequent Symmetry is no longer supported."
1034 #endif
1035
1036 /* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
1037 and %esp "belong" to the calling function. Therefore these
1038 registers should be saved if they're going to be modified. */
1039
1040 /* The maximum number of saved registers. This should include all
1041 registers mentioned above, and %eip. */
1042 #define I386_NUM_SAVED_REGS I386_NUM_GREGS
1043
1044 struct i386_frame_cache
1045 {
1046 /* Base address. */
1047 CORE_ADDR base;
1048 int base_p;
1049 LONGEST sp_offset;
1050 CORE_ADDR pc;
1051
1052 /* Saved registers. */
1053 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
1054 CORE_ADDR saved_sp;
1055 int saved_sp_reg;
1056 int pc_in_eax;
1057
1058 /* Stack space reserved for local variables. */
1059 long locals;
1060 };
1061
1062 /* Allocate and initialize a frame cache. */
1063
1064 static struct i386_frame_cache *
1065 i386_alloc_frame_cache (void)
1066 {
1067 struct i386_frame_cache *cache;
1068 int i;
1069
1070 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
1071
1072 /* Base address. */
1073 cache->base_p = 0;
1074 cache->base = 0;
1075 cache->sp_offset = -4;
1076 cache->pc = 0;
1077
1078 /* Saved registers. We initialize these to -1 since zero is a valid
1079 offset (that's where %ebp is supposed to be stored). */
1080 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
1081 cache->saved_regs[i] = -1;
1082 cache->saved_sp = 0;
1083 cache->saved_sp_reg = -1;
1084 cache->pc_in_eax = 0;
1085
1086 /* Frameless until proven otherwise. */
1087 cache->locals = -1;
1088
1089 return cache;
1090 }
1091
1092 /* If the instruction at PC is a jump, return the address of its
1093 target. Otherwise, return PC. */
1094
1095 static CORE_ADDR
1096 i386_follow_jump (struct gdbarch *gdbarch, CORE_ADDR pc)
1097 {
1098 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1099 gdb_byte op;
1100 long delta = 0;
1101 int data16 = 0;
1102
1103 if (target_read_code (pc, &op, 1))
1104 return pc;
1105
1106 if (op == 0x66)
1107 {
1108 data16 = 1;
1109
1110 op = read_code_unsigned_integer (pc + 1, 1, byte_order);
1111 }
1112
1113 switch (op)
1114 {
1115 case 0xe9:
1116 /* Relative jump: if data16 == 0, disp32, else disp16. */
1117 if (data16)
1118 {
1119 delta = read_memory_integer (pc + 2, 2, byte_order);
1120
1121 /* Include the size of the jmp instruction (including the
1122 0x66 prefix). */
1123 delta += 4;
1124 }
1125 else
1126 {
1127 delta = read_memory_integer (pc + 1, 4, byte_order);
1128
1129 /* Include the size of the jmp instruction. */
1130 delta += 5;
1131 }
1132 break;
1133 case 0xeb:
1134 /* Relative jump, disp8 (ignore data16). */
1135 delta = read_memory_integer (pc + data16 + 1, 1, byte_order);
1136
1137 delta += data16 + 2;
1138 break;
1139 }
1140
1141 return pc + delta;
1142 }
1143
1144 /* Check whether PC points at a prologue for a function returning a
1145 structure or union. If so, it updates CACHE and returns the
1146 address of the first instruction after the code sequence that
1147 removes the "hidden" argument from the stack or CURRENT_PC,
1148 whichever is smaller. Otherwise, return PC. */
1149
1150 static CORE_ADDR
1151 i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
1152 struct i386_frame_cache *cache)
1153 {
1154 /* Functions that return a structure or union start with:
1155
1156 popl %eax 0x58
1157 xchgl %eax, (%esp) 0x87 0x04 0x24
1158 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
1159
1160 (the System V compiler puts out the second `xchg' instruction,
1161 and the assembler doesn't try to optimize it, so the 'sib' form
1162 gets generated). This sequence is used to get the address of the
1163 return buffer for a function that returns a structure. */
1164 static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
1165 static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
1166 gdb_byte buf[4];
1167 gdb_byte op;
1168
1169 if (current_pc <= pc)
1170 return pc;
1171
1172 if (target_read_code (pc, &op, 1))
1173 return pc;
1174
1175 if (op != 0x58) /* popl %eax */
1176 return pc;
1177
1178 if (target_read_code (pc + 1, buf, 4))
1179 return pc;
1180
1181 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
1182 return pc;
1183
1184 if (current_pc == pc)
1185 {
1186 cache->sp_offset += 4;
1187 return current_pc;
1188 }
1189
1190 if (current_pc == pc + 1)
1191 {
1192 cache->pc_in_eax = 1;
1193 return current_pc;
1194 }
1195
1196 if (buf[1] == proto1[1])
1197 return pc + 4;
1198 else
1199 return pc + 5;
1200 }
1201
1202 static CORE_ADDR
1203 i386_skip_probe (CORE_ADDR pc)
1204 {
1205 /* A function may start with
1206
1207 pushl constant
1208 call _probe
1209 addl $4, %esp
1210
1211 followed by
1212
1213 pushl %ebp
1214
1215 etc. */
1216 gdb_byte buf[8];
1217 gdb_byte op;
1218
1219 if (target_read_code (pc, &op, 1))
1220 return pc;
1221
1222 if (op == 0x68 || op == 0x6a)
1223 {
1224 int delta;
1225
1226 /* Skip past the `pushl' instruction; it has either a one-byte or a
1227 four-byte operand, depending on the opcode. */
1228 if (op == 0x68)
1229 delta = 5;
1230 else
1231 delta = 2;
1232
1233 /* Read the following 8 bytes, which should be `call _probe' (6
1234 bytes) followed by `addl $4,%esp' (2 bytes). */
1235 read_memory (pc + delta, buf, sizeof (buf));
1236 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
1237 pc += delta + sizeof (buf);
1238 }
1239
1240 return pc;
1241 }
1242
1243 /* GCC 4.1 and later, can put code in the prologue to realign the
1244 stack pointer. Check whether PC points to such code, and update
1245 CACHE accordingly. Return the first instruction after the code
1246 sequence or CURRENT_PC, whichever is smaller. If we don't
1247 recognize the code, return PC. */
1248
1249 static CORE_ADDR
1250 i386_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1251 struct i386_frame_cache *cache)
1252 {
1253 /* There are 2 code sequences to re-align stack before the frame
1254 gets set up:
1255
1256 1. Use a caller-saved saved register:
1257
1258 leal 4(%esp), %reg
1259 andl $-XXX, %esp
1260 pushl -4(%reg)
1261
1262 2. Use a callee-saved saved register:
1263
1264 pushl %reg
1265 leal 8(%esp), %reg
1266 andl $-XXX, %esp
1267 pushl -4(%reg)
1268
1269 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
1270
1271 0x83 0xe4 0xf0 andl $-16, %esp
1272 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
1273 */
1274
1275 gdb_byte buf[14];
1276 int reg;
1277 int offset, offset_and;
1278 static int regnums[8] = {
1279 I386_EAX_REGNUM, /* %eax */
1280 I386_ECX_REGNUM, /* %ecx */
1281 I386_EDX_REGNUM, /* %edx */
1282 I386_EBX_REGNUM, /* %ebx */
1283 I386_ESP_REGNUM, /* %esp */
1284 I386_EBP_REGNUM, /* %ebp */
1285 I386_ESI_REGNUM, /* %esi */
1286 I386_EDI_REGNUM /* %edi */
1287 };
1288
1289 if (target_read_code (pc, buf, sizeof buf))
1290 return pc;
1291
1292 /* Check caller-saved saved register. The first instruction has
1293 to be "leal 4(%esp), %reg". */
1294 if (buf[0] == 0x8d && buf[2] == 0x24 && buf[3] == 0x4)
1295 {
1296 /* MOD must be binary 10 and R/M must be binary 100. */
1297 if ((buf[1] & 0xc7) != 0x44)
1298 return pc;
1299
1300 /* REG has register number. */
1301 reg = (buf[1] >> 3) & 7;
1302 offset = 4;
1303 }
1304 else
1305 {
1306 /* Check callee-saved saved register. The first instruction
1307 has to be "pushl %reg". */
1308 if ((buf[0] & 0xf8) != 0x50)
1309 return pc;
1310
1311 /* Get register. */
1312 reg = buf[0] & 0x7;
1313
1314 /* The next instruction has to be "leal 8(%esp), %reg". */
1315 if (buf[1] != 0x8d || buf[3] != 0x24 || buf[4] != 0x8)
1316 return pc;
1317
1318 /* MOD must be binary 10 and R/M must be binary 100. */
1319 if ((buf[2] & 0xc7) != 0x44)
1320 return pc;
1321
1322 /* REG has register number. Registers in pushl and leal have to
1323 be the same. */
1324 if (reg != ((buf[2] >> 3) & 7))
1325 return pc;
1326
1327 offset = 5;
1328 }
1329
1330 /* Rigister can't be %esp nor %ebp. */
1331 if (reg == 4 || reg == 5)
1332 return pc;
1333
1334 /* The next instruction has to be "andl $-XXX, %esp". */
1335 if (buf[offset + 1] != 0xe4
1336 || (buf[offset] != 0x81 && buf[offset] != 0x83))
1337 return pc;
1338
1339 offset_and = offset;
1340 offset += buf[offset] == 0x81 ? 6 : 3;
1341
1342 /* The next instruction has to be "pushl -4(%reg)". 8bit -4 is
1343 0xfc. REG must be binary 110 and MOD must be binary 01. */
1344 if (buf[offset] != 0xff
1345 || buf[offset + 2] != 0xfc
1346 || (buf[offset + 1] & 0xf8) != 0x70)
1347 return pc;
1348
1349 /* R/M has register. Registers in leal and pushl have to be the
1350 same. */
1351 if (reg != (buf[offset + 1] & 7))
1352 return pc;
1353
1354 if (current_pc > pc + offset_and)
1355 cache->saved_sp_reg = regnums[reg];
1356
1357 return min (pc + offset + 3, current_pc);
1358 }
1359
1360 /* Maximum instruction length we need to handle. */
1361 #define I386_MAX_MATCHED_INSN_LEN 6
1362
1363 /* Instruction description. */
1364 struct i386_insn
1365 {
1366 size_t len;
1367 gdb_byte insn[I386_MAX_MATCHED_INSN_LEN];
1368 gdb_byte mask[I386_MAX_MATCHED_INSN_LEN];
1369 };
1370
1371 /* Return whether instruction at PC matches PATTERN. */
1372
1373 static int
1374 i386_match_pattern (CORE_ADDR pc, struct i386_insn pattern)
1375 {
1376 gdb_byte op;
1377
1378 if (target_read_code (pc, &op, 1))
1379 return 0;
1380
1381 if ((op & pattern.mask[0]) == pattern.insn[0])
1382 {
1383 gdb_byte buf[I386_MAX_MATCHED_INSN_LEN - 1];
1384 int insn_matched = 1;
1385 size_t i;
1386
1387 gdb_assert (pattern.len > 1);
1388 gdb_assert (pattern.len <= I386_MAX_MATCHED_INSN_LEN);
1389
1390 if (target_read_code (pc + 1, buf, pattern.len - 1))
1391 return 0;
1392
1393 for (i = 1; i < pattern.len; i++)
1394 {
1395 if ((buf[i - 1] & pattern.mask[i]) != pattern.insn[i])
1396 insn_matched = 0;
1397 }
1398 return insn_matched;
1399 }
1400 return 0;
1401 }
1402
1403 /* Search for the instruction at PC in the list INSN_PATTERNS. Return
1404 the first instruction description that matches. Otherwise, return
1405 NULL. */
1406
1407 static struct i386_insn *
1408 i386_match_insn (CORE_ADDR pc, struct i386_insn *insn_patterns)
1409 {
1410 struct i386_insn *pattern;
1411
1412 for (pattern = insn_patterns; pattern->len > 0; pattern++)
1413 {
1414 if (i386_match_pattern (pc, *pattern))
1415 return pattern;
1416 }
1417
1418 return NULL;
1419 }
1420
1421 /* Return whether PC points inside a sequence of instructions that
1422 matches INSN_PATTERNS. */
1423
1424 static int
1425 i386_match_insn_block (CORE_ADDR pc, struct i386_insn *insn_patterns)
1426 {
1427 CORE_ADDR current_pc;
1428 int ix, i;
1429 struct i386_insn *insn;
1430
1431 insn = i386_match_insn (pc, insn_patterns);
1432 if (insn == NULL)
1433 return 0;
1434
1435 current_pc = pc;
1436 ix = insn - insn_patterns;
1437 for (i = ix - 1; i >= 0; i--)
1438 {
1439 current_pc -= insn_patterns[i].len;
1440
1441 if (!i386_match_pattern (current_pc, insn_patterns[i]))
1442 return 0;
1443 }
1444
1445 current_pc = pc + insn->len;
1446 for (insn = insn_patterns + ix + 1; insn->len > 0; insn++)
1447 {
1448 if (!i386_match_pattern (current_pc, *insn))
1449 return 0;
1450
1451 current_pc += insn->len;
1452 }
1453
1454 return 1;
1455 }
1456
1457 /* Some special instructions that might be migrated by GCC into the
1458 part of the prologue that sets up the new stack frame. Because the
1459 stack frame hasn't been setup yet, no registers have been saved
1460 yet, and only the scratch registers %eax, %ecx and %edx can be
1461 touched. */
1462
1463 struct i386_insn i386_frame_setup_skip_insns[] =
1464 {
1465 /* Check for `movb imm8, r' and `movl imm32, r'.
1466
1467 ??? Should we handle 16-bit operand-sizes here? */
1468
1469 /* `movb imm8, %al' and `movb imm8, %ah' */
1470 /* `movb imm8, %cl' and `movb imm8, %ch' */
1471 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
1472 /* `movb imm8, %dl' and `movb imm8, %dh' */
1473 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
1474 /* `movl imm32, %eax' and `movl imm32, %ecx' */
1475 { 5, { 0xb8 }, { 0xfe } },
1476 /* `movl imm32, %edx' */
1477 { 5, { 0xba }, { 0xff } },
1478
1479 /* Check for `mov imm32, r32'. Note that there is an alternative
1480 encoding for `mov m32, %eax'.
1481
1482 ??? Should we handle SIB adressing here?
1483 ??? Should we handle 16-bit operand-sizes here? */
1484
1485 /* `movl m32, %eax' */
1486 { 5, { 0xa1 }, { 0xff } },
1487 /* `movl m32, %eax' and `mov; m32, %ecx' */
1488 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
1489 /* `movl m32, %edx' */
1490 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
1491
1492 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
1493 Because of the symmetry, there are actually two ways to encode
1494 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
1495 opcode bytes 0x31 and 0x33 for `xorl'. */
1496
1497 /* `subl %eax, %eax' */
1498 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
1499 /* `subl %ecx, %ecx' */
1500 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
1501 /* `subl %edx, %edx' */
1502 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
1503 /* `xorl %eax, %eax' */
1504 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
1505 /* `xorl %ecx, %ecx' */
1506 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
1507 /* `xorl %edx, %edx' */
1508 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
1509 { 0 }
1510 };
1511
1512
1513 /* Check whether PC points to a no-op instruction. */
1514 static CORE_ADDR
1515 i386_skip_noop (CORE_ADDR pc)
1516 {
1517 gdb_byte op;
1518 int check = 1;
1519
1520 if (target_read_code (pc, &op, 1))
1521 return pc;
1522
1523 while (check)
1524 {
1525 check = 0;
1526 /* Ignore `nop' instruction. */
1527 if (op == 0x90)
1528 {
1529 pc += 1;
1530 if (target_read_code (pc, &op, 1))
1531 return pc;
1532 check = 1;
1533 }
1534 /* Ignore no-op instruction `mov %edi, %edi'.
1535 Microsoft system dlls often start with
1536 a `mov %edi,%edi' instruction.
1537 The 5 bytes before the function start are
1538 filled with `nop' instructions.
1539 This pattern can be used for hot-patching:
1540 The `mov %edi, %edi' instruction can be replaced by a
1541 near jump to the location of the 5 `nop' instructions
1542 which can be replaced by a 32-bit jump to anywhere
1543 in the 32-bit address space. */
1544
1545 else if (op == 0x8b)
1546 {
1547 if (target_read_code (pc + 1, &op, 1))
1548 return pc;
1549
1550 if (op == 0xff)
1551 {
1552 pc += 2;
1553 if (target_read_code (pc, &op, 1))
1554 return pc;
1555
1556 check = 1;
1557 }
1558 }
1559 }
1560 return pc;
1561 }
1562
1563 /* Check whether PC points at a code that sets up a new stack frame.
1564 If so, it updates CACHE and returns the address of the first
1565 instruction after the sequence that sets up the frame or LIMIT,
1566 whichever is smaller. If we don't recognize the code, return PC. */
1567
1568 static CORE_ADDR
1569 i386_analyze_frame_setup (struct gdbarch *gdbarch,
1570 CORE_ADDR pc, CORE_ADDR limit,
1571 struct i386_frame_cache *cache)
1572 {
1573 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1574 struct i386_insn *insn;
1575 gdb_byte op;
1576 int skip = 0;
1577
1578 if (limit <= pc)
1579 return limit;
1580
1581 if (target_read_code (pc, &op, 1))
1582 return pc;
1583
1584 if (op == 0x55) /* pushl %ebp */
1585 {
1586 /* Take into account that we've executed the `pushl %ebp' that
1587 starts this instruction sequence. */
1588 cache->saved_regs[I386_EBP_REGNUM] = 0;
1589 cache->sp_offset += 4;
1590 pc++;
1591
1592 /* If that's all, return now. */
1593 if (limit <= pc)
1594 return limit;
1595
1596 /* Check for some special instructions that might be migrated by
1597 GCC into the prologue and skip them. At this point in the
1598 prologue, code should only touch the scratch registers %eax,
1599 %ecx and %edx, so while the number of posibilities is sheer,
1600 it is limited.
1601
1602 Make sure we only skip these instructions if we later see the
1603 `movl %esp, %ebp' that actually sets up the frame. */
1604 while (pc + skip < limit)
1605 {
1606 insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
1607 if (insn == NULL)
1608 break;
1609
1610 skip += insn->len;
1611 }
1612
1613 /* If that's all, return now. */
1614 if (limit <= pc + skip)
1615 return limit;
1616
1617 if (target_read_code (pc + skip, &op, 1))
1618 return pc + skip;
1619
1620 /* The i386 prologue looks like
1621
1622 push %ebp
1623 mov %esp,%ebp
1624 sub $0x10,%esp
1625
1626 and a different prologue can be generated for atom.
1627
1628 push %ebp
1629 lea (%esp),%ebp
1630 lea -0x10(%esp),%esp
1631
1632 We handle both of them here. */
1633
1634 switch (op)
1635 {
1636 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
1637 case 0x8b:
1638 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
1639 != 0xec)
1640 return pc;
1641 pc += (skip + 2);
1642 break;
1643 case 0x89:
1644 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
1645 != 0xe5)
1646 return pc;
1647 pc += (skip + 2);
1648 break;
1649 case 0x8d: /* Check for 'lea (%ebp), %ebp'. */
1650 if (read_code_unsigned_integer (pc + skip + 1, 2, byte_order)
1651 != 0x242c)
1652 return pc;
1653 pc += (skip + 3);
1654 break;
1655 default:
1656 return pc;
1657 }
1658
1659 /* OK, we actually have a frame. We just don't know how large
1660 it is yet. Set its size to zero. We'll adjust it if
1661 necessary. We also now commit to skipping the special
1662 instructions mentioned before. */
1663 cache->locals = 0;
1664
1665 /* If that's all, return now. */
1666 if (limit <= pc)
1667 return limit;
1668
1669 /* Check for stack adjustment
1670
1671 subl $XXX, %esp
1672 or
1673 lea -XXX(%esp),%esp
1674
1675 NOTE: You can't subtract a 16-bit immediate from a 32-bit
1676 reg, so we don't have to worry about a data16 prefix. */
1677 if (target_read_code (pc, &op, 1))
1678 return pc;
1679 if (op == 0x83)
1680 {
1681 /* `subl' with 8-bit immediate. */
1682 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1683 /* Some instruction starting with 0x83 other than `subl'. */
1684 return pc;
1685
1686 /* `subl' with signed 8-bit immediate (though it wouldn't
1687 make sense to be negative). */
1688 cache->locals = read_code_integer (pc + 2, 1, byte_order);
1689 return pc + 3;
1690 }
1691 else if (op == 0x81)
1692 {
1693 /* Maybe it is `subl' with a 32-bit immediate. */
1694 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1695 /* Some instruction starting with 0x81 other than `subl'. */
1696 return pc;
1697
1698 /* It is `subl' with a 32-bit immediate. */
1699 cache->locals = read_code_integer (pc + 2, 4, byte_order);
1700 return pc + 6;
1701 }
1702 else if (op == 0x8d)
1703 {
1704 /* The ModR/M byte is 0x64. */
1705 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0x64)
1706 return pc;
1707 /* 'lea' with 8-bit displacement. */
1708 cache->locals = -1 * read_code_integer (pc + 3, 1, byte_order);
1709 return pc + 4;
1710 }
1711 else
1712 {
1713 /* Some instruction other than `subl' nor 'lea'. */
1714 return pc;
1715 }
1716 }
1717 else if (op == 0xc8) /* enter */
1718 {
1719 cache->locals = read_code_unsigned_integer (pc + 1, 2, byte_order);
1720 return pc + 4;
1721 }
1722
1723 return pc;
1724 }
1725
1726 /* Check whether PC points at code that saves registers on the stack.
1727 If so, it updates CACHE and returns the address of the first
1728 instruction after the register saves or CURRENT_PC, whichever is
1729 smaller. Otherwise, return PC. */
1730
1731 static CORE_ADDR
1732 i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
1733 struct i386_frame_cache *cache)
1734 {
1735 CORE_ADDR offset = 0;
1736 gdb_byte op;
1737 int i;
1738
1739 if (cache->locals > 0)
1740 offset -= cache->locals;
1741 for (i = 0; i < 8 && pc < current_pc; i++)
1742 {
1743 if (target_read_code (pc, &op, 1))
1744 return pc;
1745 if (op < 0x50 || op > 0x57)
1746 break;
1747
1748 offset -= 4;
1749 cache->saved_regs[op - 0x50] = offset;
1750 cache->sp_offset += 4;
1751 pc++;
1752 }
1753
1754 return pc;
1755 }
1756
1757 /* Do a full analysis of the prologue at PC and update CACHE
1758 accordingly. Bail out early if CURRENT_PC is reached. Return the
1759 address where the analysis stopped.
1760
1761 We handle these cases:
1762
1763 The startup sequence can be at the start of the function, or the
1764 function can start with a branch to startup code at the end.
1765
1766 %ebp can be set up with either the 'enter' instruction, or "pushl
1767 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
1768 once used in the System V compiler).
1769
1770 Local space is allocated just below the saved %ebp by either the
1771 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
1772 16-bit unsigned argument for space to allocate, and the 'addl'
1773 instruction could have either a signed byte, or 32-bit immediate.
1774
1775 Next, the registers used by this function are pushed. With the
1776 System V compiler they will always be in the order: %edi, %esi,
1777 %ebx (and sometimes a harmless bug causes it to also save but not
1778 restore %eax); however, the code below is willing to see the pushes
1779 in any order, and will handle up to 8 of them.
1780
1781 If the setup sequence is at the end of the function, then the next
1782 instruction will be a branch back to the start. */
1783
1784 static CORE_ADDR
1785 i386_analyze_prologue (struct gdbarch *gdbarch,
1786 CORE_ADDR pc, CORE_ADDR current_pc,
1787 struct i386_frame_cache *cache)
1788 {
1789 pc = i386_skip_noop (pc);
1790 pc = i386_follow_jump (gdbarch, pc);
1791 pc = i386_analyze_struct_return (pc, current_pc, cache);
1792 pc = i386_skip_probe (pc);
1793 pc = i386_analyze_stack_align (pc, current_pc, cache);
1794 pc = i386_analyze_frame_setup (gdbarch, pc, current_pc, cache);
1795 return i386_analyze_register_saves (pc, current_pc, cache);
1796 }
1797
1798 /* Return PC of first real instruction. */
1799
1800 static CORE_ADDR
1801 i386_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
1802 {
1803 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1804
1805 static gdb_byte pic_pat[6] =
1806 {
1807 0xe8, 0, 0, 0, 0, /* call 0x0 */
1808 0x5b, /* popl %ebx */
1809 };
1810 struct i386_frame_cache cache;
1811 CORE_ADDR pc;
1812 gdb_byte op;
1813 int i;
1814 CORE_ADDR func_addr;
1815
1816 if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
1817 {
1818 CORE_ADDR post_prologue_pc
1819 = skip_prologue_using_sal (gdbarch, func_addr);
1820 struct compunit_symtab *cust = find_pc_compunit_symtab (func_addr);
1821
1822 /* Clang always emits a line note before the prologue and another
1823 one after. We trust clang to emit usable line notes. */
1824 if (post_prologue_pc
1825 && (cust != NULL
1826 && COMPUNIT_PRODUCER (cust) != NULL
1827 && startswith (COMPUNIT_PRODUCER (cust), "clang ")))
1828 return max (start_pc, post_prologue_pc);
1829 }
1830
1831 cache.locals = -1;
1832 pc = i386_analyze_prologue (gdbarch, start_pc, 0xffffffff, &cache);
1833 if (cache.locals < 0)
1834 return start_pc;
1835
1836 /* Found valid frame setup. */
1837
1838 /* The native cc on SVR4 in -K PIC mode inserts the following code
1839 to get the address of the global offset table (GOT) into register
1840 %ebx:
1841
1842 call 0x0
1843 popl %ebx
1844 movl %ebx,x(%ebp) (optional)
1845 addl y,%ebx
1846
1847 This code is with the rest of the prologue (at the end of the
1848 function), so we have to skip it to get to the first real
1849 instruction at the start of the function. */
1850
1851 for (i = 0; i < 6; i++)
1852 {
1853 if (target_read_code (pc + i, &op, 1))
1854 return pc;
1855
1856 if (pic_pat[i] != op)
1857 break;
1858 }
1859 if (i == 6)
1860 {
1861 int delta = 6;
1862
1863 if (target_read_code (pc + delta, &op, 1))
1864 return pc;
1865
1866 if (op == 0x89) /* movl %ebx, x(%ebp) */
1867 {
1868 op = read_code_unsigned_integer (pc + delta + 1, 1, byte_order);
1869
1870 if (op == 0x5d) /* One byte offset from %ebp. */
1871 delta += 3;
1872 else if (op == 0x9d) /* Four byte offset from %ebp. */
1873 delta += 6;
1874 else /* Unexpected instruction. */
1875 delta = 0;
1876
1877 if (target_read_code (pc + delta, &op, 1))
1878 return pc;
1879 }
1880
1881 /* addl y,%ebx */
1882 if (delta > 0 && op == 0x81
1883 && read_code_unsigned_integer (pc + delta + 1, 1, byte_order)
1884 == 0xc3)
1885 {
1886 pc += delta + 6;
1887 }
1888 }
1889
1890 /* If the function starts with a branch (to startup code at the end)
1891 the last instruction should bring us back to the first
1892 instruction of the real code. */
1893 if (i386_follow_jump (gdbarch, start_pc) != start_pc)
1894 pc = i386_follow_jump (gdbarch, pc);
1895
1896 return pc;
1897 }
1898
1899 /* Check that the code pointed to by PC corresponds to a call to
1900 __main, skip it if so. Return PC otherwise. */
1901
1902 CORE_ADDR
1903 i386_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1904 {
1905 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1906 gdb_byte op;
1907
1908 if (target_read_code (pc, &op, 1))
1909 return pc;
1910 if (op == 0xe8)
1911 {
1912 gdb_byte buf[4];
1913
1914 if (target_read_code (pc + 1, buf, sizeof buf) == 0)
1915 {
1916 /* Make sure address is computed correctly as a 32bit
1917 integer even if CORE_ADDR is 64 bit wide. */
1918 struct bound_minimal_symbol s;
1919 CORE_ADDR call_dest;
1920
1921 call_dest = pc + 5 + extract_signed_integer (buf, 4, byte_order);
1922 call_dest = call_dest & 0xffffffffU;
1923 s = lookup_minimal_symbol_by_pc (call_dest);
1924 if (s.minsym != NULL
1925 && MSYMBOL_LINKAGE_NAME (s.minsym) != NULL
1926 && strcmp (MSYMBOL_LINKAGE_NAME (s.minsym), "__main") == 0)
1927 pc += 5;
1928 }
1929 }
1930
1931 return pc;
1932 }
1933
1934 /* This function is 64-bit safe. */
1935
1936 static CORE_ADDR
1937 i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1938 {
1939 gdb_byte buf[8];
1940
1941 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
1942 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
1943 }
1944 \f
1945
1946 /* Normal frames. */
1947
1948 static void
1949 i386_frame_cache_1 (struct frame_info *this_frame,
1950 struct i386_frame_cache *cache)
1951 {
1952 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1953 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1954 gdb_byte buf[4];
1955 int i;
1956
1957 cache->pc = get_frame_func (this_frame);
1958
1959 /* In principle, for normal frames, %ebp holds the frame pointer,
1960 which holds the base address for the current stack frame.
1961 However, for functions that don't need it, the frame pointer is
1962 optional. For these "frameless" functions the frame pointer is
1963 actually the frame pointer of the calling frame. Signal
1964 trampolines are just a special case of a "frameless" function.
1965 They (usually) share their frame pointer with the frame that was
1966 in progress when the signal occurred. */
1967
1968 get_frame_register (this_frame, I386_EBP_REGNUM, buf);
1969 cache->base = extract_unsigned_integer (buf, 4, byte_order);
1970 if (cache->base == 0)
1971 {
1972 cache->base_p = 1;
1973 return;
1974 }
1975
1976 /* For normal frames, %eip is stored at 4(%ebp). */
1977 cache->saved_regs[I386_EIP_REGNUM] = 4;
1978
1979 if (cache->pc != 0)
1980 i386_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
1981 cache);
1982
1983 if (cache->locals < 0)
1984 {
1985 /* We didn't find a valid frame, which means that CACHE->base
1986 currently holds the frame pointer for our calling frame. If
1987 we're at the start of a function, or somewhere half-way its
1988 prologue, the function's frame probably hasn't been fully
1989 setup yet. Try to reconstruct the base address for the stack
1990 frame by looking at the stack pointer. For truly "frameless"
1991 functions this might work too. */
1992
1993 if (cache->saved_sp_reg != -1)
1994 {
1995 /* Saved stack pointer has been saved. */
1996 get_frame_register (this_frame, cache->saved_sp_reg, buf);
1997 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
1998
1999 /* We're halfway aligning the stack. */
2000 cache->base = ((cache->saved_sp - 4) & 0xfffffff0) - 4;
2001 cache->saved_regs[I386_EIP_REGNUM] = cache->saved_sp - 4;
2002
2003 /* This will be added back below. */
2004 cache->saved_regs[I386_EIP_REGNUM] -= cache->base;
2005 }
2006 else if (cache->pc != 0
2007 || target_read_code (get_frame_pc (this_frame), buf, 1))
2008 {
2009 /* We're in a known function, but did not find a frame
2010 setup. Assume that the function does not use %ebp.
2011 Alternatively, we may have jumped to an invalid
2012 address; in that case there is definitely no new
2013 frame in %ebp. */
2014 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2015 cache->base = extract_unsigned_integer (buf, 4, byte_order)
2016 + cache->sp_offset;
2017 }
2018 else
2019 /* We're in an unknown function. We could not find the start
2020 of the function to analyze the prologue; our best option is
2021 to assume a typical frame layout with the caller's %ebp
2022 saved. */
2023 cache->saved_regs[I386_EBP_REGNUM] = 0;
2024 }
2025
2026 if (cache->saved_sp_reg != -1)
2027 {
2028 /* Saved stack pointer has been saved (but the SAVED_SP_REG
2029 register may be unavailable). */
2030 if (cache->saved_sp == 0
2031 && deprecated_frame_register_read (this_frame,
2032 cache->saved_sp_reg, buf))
2033 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
2034 }
2035 /* Now that we have the base address for the stack frame we can
2036 calculate the value of %esp in the calling frame. */
2037 else if (cache->saved_sp == 0)
2038 cache->saved_sp = cache->base + 8;
2039
2040 /* Adjust all the saved registers such that they contain addresses
2041 instead of offsets. */
2042 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
2043 if (cache->saved_regs[i] != -1)
2044 cache->saved_regs[i] += cache->base;
2045
2046 cache->base_p = 1;
2047 }
2048
2049 static struct i386_frame_cache *
2050 i386_frame_cache (struct frame_info *this_frame, void **this_cache)
2051 {
2052 struct i386_frame_cache *cache;
2053
2054 if (*this_cache)
2055 return *this_cache;
2056
2057 cache = i386_alloc_frame_cache ();
2058 *this_cache = cache;
2059
2060 TRY
2061 {
2062 i386_frame_cache_1 (this_frame, cache);
2063 }
2064 CATCH (ex, RETURN_MASK_ERROR)
2065 {
2066 if (ex.error != NOT_AVAILABLE_ERROR)
2067 throw_exception (ex);
2068 }
2069 END_CATCH
2070
2071 return cache;
2072 }
2073
2074 static void
2075 i386_frame_this_id (struct frame_info *this_frame, void **this_cache,
2076 struct frame_id *this_id)
2077 {
2078 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2079
2080 if (!cache->base_p)
2081 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2082 else if (cache->base == 0)
2083 {
2084 /* This marks the outermost frame. */
2085 }
2086 else
2087 {
2088 /* See the end of i386_push_dummy_call. */
2089 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2090 }
2091 }
2092
2093 static enum unwind_stop_reason
2094 i386_frame_unwind_stop_reason (struct frame_info *this_frame,
2095 void **this_cache)
2096 {
2097 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2098
2099 if (!cache->base_p)
2100 return UNWIND_UNAVAILABLE;
2101
2102 /* This marks the outermost frame. */
2103 if (cache->base == 0)
2104 return UNWIND_OUTERMOST;
2105
2106 return UNWIND_NO_REASON;
2107 }
2108
2109 static struct value *
2110 i386_frame_prev_register (struct frame_info *this_frame, void **this_cache,
2111 int regnum)
2112 {
2113 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2114
2115 gdb_assert (regnum >= 0);
2116
2117 /* The System V ABI says that:
2118
2119 "The flags register contains the system flags, such as the
2120 direction flag and the carry flag. The direction flag must be
2121 set to the forward (that is, zero) direction before entry and
2122 upon exit from a function. Other user flags have no specified
2123 role in the standard calling sequence and are not preserved."
2124
2125 To guarantee the "upon exit" part of that statement we fake a
2126 saved flags register that has its direction flag cleared.
2127
2128 Note that GCC doesn't seem to rely on the fact that the direction
2129 flag is cleared after a function return; it always explicitly
2130 clears the flag before operations where it matters.
2131
2132 FIXME: kettenis/20030316: I'm not quite sure whether this is the
2133 right thing to do. The way we fake the flags register here makes
2134 it impossible to change it. */
2135
2136 if (regnum == I386_EFLAGS_REGNUM)
2137 {
2138 ULONGEST val;
2139
2140 val = get_frame_register_unsigned (this_frame, regnum);
2141 val &= ~(1 << 10);
2142 return frame_unwind_got_constant (this_frame, regnum, val);
2143 }
2144
2145 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
2146 return frame_unwind_got_register (this_frame, regnum, I386_EAX_REGNUM);
2147
2148 if (regnum == I386_ESP_REGNUM
2149 && (cache->saved_sp != 0 || cache->saved_sp_reg != -1))
2150 {
2151 /* If the SP has been saved, but we don't know where, then this
2152 means that SAVED_SP_REG register was found unavailable back
2153 when we built the cache. */
2154 if (cache->saved_sp == 0)
2155 return frame_unwind_got_register (this_frame, regnum,
2156 cache->saved_sp_reg);
2157 else
2158 return frame_unwind_got_constant (this_frame, regnum,
2159 cache->saved_sp);
2160 }
2161
2162 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
2163 return frame_unwind_got_memory (this_frame, regnum,
2164 cache->saved_regs[regnum]);
2165
2166 return frame_unwind_got_register (this_frame, regnum, regnum);
2167 }
2168
2169 static const struct frame_unwind i386_frame_unwind =
2170 {
2171 NORMAL_FRAME,
2172 i386_frame_unwind_stop_reason,
2173 i386_frame_this_id,
2174 i386_frame_prev_register,
2175 NULL,
2176 default_frame_sniffer
2177 };
2178
2179 /* Normal frames, but in a function epilogue. */
2180
2181 /* Implement the stack_frame_destroyed_p gdbarch method.
2182
2183 The epilogue is defined here as the 'ret' instruction, which will
2184 follow any instruction such as 'leave' or 'pop %ebp' that destroys
2185 the function's stack frame. */
2186
2187 static int
2188 i386_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2189 {
2190 gdb_byte insn;
2191 struct compunit_symtab *cust;
2192
2193 cust = find_pc_compunit_symtab (pc);
2194 if (cust != NULL && COMPUNIT_EPILOGUE_UNWIND_VALID (cust))
2195 return 0;
2196
2197 if (target_read_memory (pc, &insn, 1))
2198 return 0; /* Can't read memory at pc. */
2199
2200 if (insn != 0xc3) /* 'ret' instruction. */
2201 return 0;
2202
2203 return 1;
2204 }
2205
2206 static int
2207 i386_epilogue_frame_sniffer (const struct frame_unwind *self,
2208 struct frame_info *this_frame,
2209 void **this_prologue_cache)
2210 {
2211 if (frame_relative_level (this_frame) == 0)
2212 return i386_stack_frame_destroyed_p (get_frame_arch (this_frame),
2213 get_frame_pc (this_frame));
2214 else
2215 return 0;
2216 }
2217
2218 static struct i386_frame_cache *
2219 i386_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
2220 {
2221 struct i386_frame_cache *cache;
2222 CORE_ADDR sp;
2223
2224 if (*this_cache)
2225 return *this_cache;
2226
2227 cache = i386_alloc_frame_cache ();
2228 *this_cache = cache;
2229
2230 TRY
2231 {
2232 cache->pc = get_frame_func (this_frame);
2233
2234 /* At this point the stack looks as if we just entered the
2235 function, with the return address at the top of the
2236 stack. */
2237 sp = get_frame_register_unsigned (this_frame, I386_ESP_REGNUM);
2238 cache->base = sp + cache->sp_offset;
2239 cache->saved_sp = cache->base + 8;
2240 cache->saved_regs[I386_EIP_REGNUM] = cache->base + 4;
2241
2242 cache->base_p = 1;
2243 }
2244 CATCH (ex, RETURN_MASK_ERROR)
2245 {
2246 if (ex.error != NOT_AVAILABLE_ERROR)
2247 throw_exception (ex);
2248 }
2249 END_CATCH
2250
2251 return cache;
2252 }
2253
2254 static enum unwind_stop_reason
2255 i386_epilogue_frame_unwind_stop_reason (struct frame_info *this_frame,
2256 void **this_cache)
2257 {
2258 struct i386_frame_cache *cache =
2259 i386_epilogue_frame_cache (this_frame, this_cache);
2260
2261 if (!cache->base_p)
2262 return UNWIND_UNAVAILABLE;
2263
2264 return UNWIND_NO_REASON;
2265 }
2266
2267 static void
2268 i386_epilogue_frame_this_id (struct frame_info *this_frame,
2269 void **this_cache,
2270 struct frame_id *this_id)
2271 {
2272 struct i386_frame_cache *cache =
2273 i386_epilogue_frame_cache (this_frame, this_cache);
2274
2275 if (!cache->base_p)
2276 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2277 else
2278 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2279 }
2280
2281 static struct value *
2282 i386_epilogue_frame_prev_register (struct frame_info *this_frame,
2283 void **this_cache, int regnum)
2284 {
2285 /* Make sure we've initialized the cache. */
2286 i386_epilogue_frame_cache (this_frame, this_cache);
2287
2288 return i386_frame_prev_register (this_frame, this_cache, regnum);
2289 }
2290
2291 static const struct frame_unwind i386_epilogue_frame_unwind =
2292 {
2293 NORMAL_FRAME,
2294 i386_epilogue_frame_unwind_stop_reason,
2295 i386_epilogue_frame_this_id,
2296 i386_epilogue_frame_prev_register,
2297 NULL,
2298 i386_epilogue_frame_sniffer
2299 };
2300 \f
2301
2302 /* Stack-based trampolines. */
2303
2304 /* These trampolines are used on cross x86 targets, when taking the
2305 address of a nested function. When executing these trampolines,
2306 no stack frame is set up, so we are in a similar situation as in
2307 epilogues and i386_epilogue_frame_this_id can be re-used. */
2308
2309 /* Static chain passed in register. */
2310
2311 struct i386_insn i386_tramp_chain_in_reg_insns[] =
2312 {
2313 /* `movl imm32, %eax' and `movl imm32, %ecx' */
2314 { 5, { 0xb8 }, { 0xfe } },
2315
2316 /* `jmp imm32' */
2317 { 5, { 0xe9 }, { 0xff } },
2318
2319 {0}
2320 };
2321
2322 /* Static chain passed on stack (when regparm=3). */
2323
2324 struct i386_insn i386_tramp_chain_on_stack_insns[] =
2325 {
2326 /* `push imm32' */
2327 { 5, { 0x68 }, { 0xff } },
2328
2329 /* `jmp imm32' */
2330 { 5, { 0xe9 }, { 0xff } },
2331
2332 {0}
2333 };
2334
2335 /* Return whether PC points inside a stack trampoline. */
2336
2337 static int
2338 i386_in_stack_tramp_p (CORE_ADDR pc)
2339 {
2340 gdb_byte insn;
2341 const char *name;
2342
2343 /* A stack trampoline is detected if no name is associated
2344 to the current pc and if it points inside a trampoline
2345 sequence. */
2346
2347 find_pc_partial_function (pc, &name, NULL, NULL);
2348 if (name)
2349 return 0;
2350
2351 if (target_read_memory (pc, &insn, 1))
2352 return 0;
2353
2354 if (!i386_match_insn_block (pc, i386_tramp_chain_in_reg_insns)
2355 && !i386_match_insn_block (pc, i386_tramp_chain_on_stack_insns))
2356 return 0;
2357
2358 return 1;
2359 }
2360
2361 static int
2362 i386_stack_tramp_frame_sniffer (const struct frame_unwind *self,
2363 struct frame_info *this_frame,
2364 void **this_cache)
2365 {
2366 if (frame_relative_level (this_frame) == 0)
2367 return i386_in_stack_tramp_p (get_frame_pc (this_frame));
2368 else
2369 return 0;
2370 }
2371
2372 static const struct frame_unwind i386_stack_tramp_frame_unwind =
2373 {
2374 NORMAL_FRAME,
2375 i386_epilogue_frame_unwind_stop_reason,
2376 i386_epilogue_frame_this_id,
2377 i386_epilogue_frame_prev_register,
2378 NULL,
2379 i386_stack_tramp_frame_sniffer
2380 };
2381 \f
2382 /* Generate a bytecode expression to get the value of the saved PC. */
2383
2384 static void
2385 i386_gen_return_address (struct gdbarch *gdbarch,
2386 struct agent_expr *ax, struct axs_value *value,
2387 CORE_ADDR scope)
2388 {
2389 /* The following sequence assumes the traditional use of the base
2390 register. */
2391 ax_reg (ax, I386_EBP_REGNUM);
2392 ax_const_l (ax, 4);
2393 ax_simple (ax, aop_add);
2394 value->type = register_type (gdbarch, I386_EIP_REGNUM);
2395 value->kind = axs_lvalue_memory;
2396 }
2397 \f
2398
2399 /* Signal trampolines. */
2400
2401 static struct i386_frame_cache *
2402 i386_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
2403 {
2404 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2405 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2406 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2407 struct i386_frame_cache *cache;
2408 CORE_ADDR addr;
2409 gdb_byte buf[4];
2410
2411 if (*this_cache)
2412 return *this_cache;
2413
2414 cache = i386_alloc_frame_cache ();
2415
2416 TRY
2417 {
2418 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2419 cache->base = extract_unsigned_integer (buf, 4, byte_order) - 4;
2420
2421 addr = tdep->sigcontext_addr (this_frame);
2422 if (tdep->sc_reg_offset)
2423 {
2424 int i;
2425
2426 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
2427
2428 for (i = 0; i < tdep->sc_num_regs; i++)
2429 if (tdep->sc_reg_offset[i] != -1)
2430 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
2431 }
2432 else
2433 {
2434 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
2435 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
2436 }
2437
2438 cache->base_p = 1;
2439 }
2440 CATCH (ex, RETURN_MASK_ERROR)
2441 {
2442 if (ex.error != NOT_AVAILABLE_ERROR)
2443 throw_exception (ex);
2444 }
2445 END_CATCH
2446
2447 *this_cache = cache;
2448 return cache;
2449 }
2450
2451 static enum unwind_stop_reason
2452 i386_sigtramp_frame_unwind_stop_reason (struct frame_info *this_frame,
2453 void **this_cache)
2454 {
2455 struct i386_frame_cache *cache =
2456 i386_sigtramp_frame_cache (this_frame, this_cache);
2457
2458 if (!cache->base_p)
2459 return UNWIND_UNAVAILABLE;
2460
2461 return UNWIND_NO_REASON;
2462 }
2463
2464 static void
2465 i386_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache,
2466 struct frame_id *this_id)
2467 {
2468 struct i386_frame_cache *cache =
2469 i386_sigtramp_frame_cache (this_frame, this_cache);
2470
2471 if (!cache->base_p)
2472 (*this_id) = frame_id_build_unavailable_stack (get_frame_pc (this_frame));
2473 else
2474 {
2475 /* See the end of i386_push_dummy_call. */
2476 (*this_id) = frame_id_build (cache->base + 8, get_frame_pc (this_frame));
2477 }
2478 }
2479
2480 static struct value *
2481 i386_sigtramp_frame_prev_register (struct frame_info *this_frame,
2482 void **this_cache, int regnum)
2483 {
2484 /* Make sure we've initialized the cache. */
2485 i386_sigtramp_frame_cache (this_frame, this_cache);
2486
2487 return i386_frame_prev_register (this_frame, this_cache, regnum);
2488 }
2489
2490 static int
2491 i386_sigtramp_frame_sniffer (const struct frame_unwind *self,
2492 struct frame_info *this_frame,
2493 void **this_prologue_cache)
2494 {
2495 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
2496
2497 /* We shouldn't even bother if we don't have a sigcontext_addr
2498 handler. */
2499 if (tdep->sigcontext_addr == NULL)
2500 return 0;
2501
2502 if (tdep->sigtramp_p != NULL)
2503 {
2504 if (tdep->sigtramp_p (this_frame))
2505 return 1;
2506 }
2507
2508 if (tdep->sigtramp_start != 0)
2509 {
2510 CORE_ADDR pc = get_frame_pc (this_frame);
2511
2512 gdb_assert (tdep->sigtramp_end != 0);
2513 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
2514 return 1;
2515 }
2516
2517 return 0;
2518 }
2519
2520 static const struct frame_unwind i386_sigtramp_frame_unwind =
2521 {
2522 SIGTRAMP_FRAME,
2523 i386_sigtramp_frame_unwind_stop_reason,
2524 i386_sigtramp_frame_this_id,
2525 i386_sigtramp_frame_prev_register,
2526 NULL,
2527 i386_sigtramp_frame_sniffer
2528 };
2529 \f
2530
2531 static CORE_ADDR
2532 i386_frame_base_address (struct frame_info *this_frame, void **this_cache)
2533 {
2534 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2535
2536 return cache->base;
2537 }
2538
2539 static const struct frame_base i386_frame_base =
2540 {
2541 &i386_frame_unwind,
2542 i386_frame_base_address,
2543 i386_frame_base_address,
2544 i386_frame_base_address
2545 };
2546
2547 static struct frame_id
2548 i386_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2549 {
2550 CORE_ADDR fp;
2551
2552 fp = get_frame_register_unsigned (this_frame, I386_EBP_REGNUM);
2553
2554 /* See the end of i386_push_dummy_call. */
2555 return frame_id_build (fp + 8, get_frame_pc (this_frame));
2556 }
2557
2558 /* _Decimal128 function return values need 16-byte alignment on the
2559 stack. */
2560
2561 static CORE_ADDR
2562 i386_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2563 {
2564 return sp & -(CORE_ADDR)16;
2565 }
2566 \f
2567
2568 /* Figure out where the longjmp will land. Slurp the args out of the
2569 stack. We expect the first arg to be a pointer to the jmp_buf
2570 structure from which we extract the address that we will land at.
2571 This address is copied into PC. This routine returns non-zero on
2572 success. */
2573
2574 static int
2575 i386_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
2576 {
2577 gdb_byte buf[4];
2578 CORE_ADDR sp, jb_addr;
2579 struct gdbarch *gdbarch = get_frame_arch (frame);
2580 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2581 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
2582
2583 /* If JB_PC_OFFSET is -1, we have no way to find out where the
2584 longjmp will land. */
2585 if (jb_pc_offset == -1)
2586 return 0;
2587
2588 get_frame_register (frame, I386_ESP_REGNUM, buf);
2589 sp = extract_unsigned_integer (buf, 4, byte_order);
2590 if (target_read_memory (sp + 4, buf, 4))
2591 return 0;
2592
2593 jb_addr = extract_unsigned_integer (buf, 4, byte_order);
2594 if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
2595 return 0;
2596
2597 *pc = extract_unsigned_integer (buf, 4, byte_order);
2598 return 1;
2599 }
2600 \f
2601
2602 /* Check whether TYPE must be 16-byte-aligned when passed as a
2603 function argument. 16-byte vectors, _Decimal128 and structures or
2604 unions containing such types must be 16-byte-aligned; other
2605 arguments are 4-byte-aligned. */
2606
2607 static int
2608 i386_16_byte_align_p (struct type *type)
2609 {
2610 type = check_typedef (type);
2611 if ((TYPE_CODE (type) == TYPE_CODE_DECFLOAT
2612 || (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type)))
2613 && TYPE_LENGTH (type) == 16)
2614 return 1;
2615 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2616 return i386_16_byte_align_p (TYPE_TARGET_TYPE (type));
2617 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2618 || TYPE_CODE (type) == TYPE_CODE_UNION)
2619 {
2620 int i;
2621 for (i = 0; i < TYPE_NFIELDS (type); i++)
2622 {
2623 if (i386_16_byte_align_p (TYPE_FIELD_TYPE (type, i)))
2624 return 1;
2625 }
2626 }
2627 return 0;
2628 }
2629
2630 /* Implementation for set_gdbarch_push_dummy_code. */
2631
2632 static CORE_ADDR
2633 i386_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, CORE_ADDR funaddr,
2634 struct value **args, int nargs, struct type *value_type,
2635 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
2636 struct regcache *regcache)
2637 {
2638 /* Use 0xcc breakpoint - 1 byte. */
2639 *bp_addr = sp - 1;
2640 *real_pc = funaddr;
2641
2642 /* Keep the stack aligned. */
2643 return sp - 16;
2644 }
2645
2646 static CORE_ADDR
2647 i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2648 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2649 struct value **args, CORE_ADDR sp, int struct_return,
2650 CORE_ADDR struct_addr)
2651 {
2652 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2653 gdb_byte buf[4];
2654 int i;
2655 int write_pass;
2656 int args_space = 0;
2657
2658 /* Determine the total space required for arguments and struct
2659 return address in a first pass (allowing for 16-byte-aligned
2660 arguments), then push arguments in a second pass. */
2661
2662 for (write_pass = 0; write_pass < 2; write_pass++)
2663 {
2664 int args_space_used = 0;
2665
2666 if (struct_return)
2667 {
2668 if (write_pass)
2669 {
2670 /* Push value address. */
2671 store_unsigned_integer (buf, 4, byte_order, struct_addr);
2672 write_memory (sp, buf, 4);
2673 args_space_used += 4;
2674 }
2675 else
2676 args_space += 4;
2677 }
2678
2679 for (i = 0; i < nargs; i++)
2680 {
2681 int len = TYPE_LENGTH (value_enclosing_type (args[i]));
2682
2683 if (write_pass)
2684 {
2685 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2686 args_space_used = align_up (args_space_used, 16);
2687
2688 write_memory (sp + args_space_used,
2689 value_contents_all (args[i]), len);
2690 /* The System V ABI says that:
2691
2692 "An argument's size is increased, if necessary, to make it a
2693 multiple of [32-bit] words. This may require tail padding,
2694 depending on the size of the argument."
2695
2696 This makes sure the stack stays word-aligned. */
2697 args_space_used += align_up (len, 4);
2698 }
2699 else
2700 {
2701 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2702 args_space = align_up (args_space, 16);
2703 args_space += align_up (len, 4);
2704 }
2705 }
2706
2707 if (!write_pass)
2708 {
2709 sp -= args_space;
2710
2711 /* The original System V ABI only requires word alignment,
2712 but modern incarnations need 16-byte alignment in order
2713 to support SSE. Since wasting a few bytes here isn't
2714 harmful we unconditionally enforce 16-byte alignment. */
2715 sp &= ~0xf;
2716 }
2717 }
2718
2719 /* Store return address. */
2720 sp -= 4;
2721 store_unsigned_integer (buf, 4, byte_order, bp_addr);
2722 write_memory (sp, buf, 4);
2723
2724 /* Finally, update the stack pointer... */
2725 store_unsigned_integer (buf, 4, byte_order, sp);
2726 regcache_cooked_write (regcache, I386_ESP_REGNUM, buf);
2727
2728 /* ...and fake a frame pointer. */
2729 regcache_cooked_write (regcache, I386_EBP_REGNUM, buf);
2730
2731 /* MarkK wrote: This "+ 8" is all over the place:
2732 (i386_frame_this_id, i386_sigtramp_frame_this_id,
2733 i386_dummy_id). It's there, since all frame unwinders for
2734 a given target have to agree (within a certain margin) on the
2735 definition of the stack address of a frame. Otherwise frame id
2736 comparison might not work correctly. Since DWARF2/GCC uses the
2737 stack address *before* the function call as a frame's CFA. On
2738 the i386, when %ebp is used as a frame pointer, the offset
2739 between the contents %ebp and the CFA as defined by GCC. */
2740 return sp + 8;
2741 }
2742
2743 /* These registers are used for returning integers (and on some
2744 targets also for returning `struct' and `union' values when their
2745 size and alignment match an integer type). */
2746 #define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
2747 #define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
2748
2749 /* Read, for architecture GDBARCH, a function return value of TYPE
2750 from REGCACHE, and copy that into VALBUF. */
2751
2752 static void
2753 i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
2754 struct regcache *regcache, gdb_byte *valbuf)
2755 {
2756 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2757 int len = TYPE_LENGTH (type);
2758 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2759
2760 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2761 {
2762 if (tdep->st0_regnum < 0)
2763 {
2764 warning (_("Cannot find floating-point return value."));
2765 memset (valbuf, 0, len);
2766 return;
2767 }
2768
2769 /* Floating-point return values can be found in %st(0). Convert
2770 its contents to the desired type. This is probably not
2771 exactly how it would happen on the target itself, but it is
2772 the best we can do. */
2773 regcache_raw_read (regcache, I386_ST0_REGNUM, buf);
2774 convert_typed_floating (buf, i387_ext_type (gdbarch), valbuf, type);
2775 }
2776 else
2777 {
2778 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2779 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2780
2781 if (len <= low_size)
2782 {
2783 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
2784 memcpy (valbuf, buf, len);
2785 }
2786 else if (len <= (low_size + high_size))
2787 {
2788 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
2789 memcpy (valbuf, buf, low_size);
2790 regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
2791 memcpy (valbuf + low_size, buf, len - low_size);
2792 }
2793 else
2794 internal_error (__FILE__, __LINE__,
2795 _("Cannot extract return value of %d bytes long."),
2796 len);
2797 }
2798 }
2799
2800 /* Write, for architecture GDBARCH, a function return value of TYPE
2801 from VALBUF into REGCACHE. */
2802
2803 static void
2804 i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
2805 struct regcache *regcache, const gdb_byte *valbuf)
2806 {
2807 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2808 int len = TYPE_LENGTH (type);
2809
2810 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2811 {
2812 ULONGEST fstat;
2813 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2814
2815 if (tdep->st0_regnum < 0)
2816 {
2817 warning (_("Cannot set floating-point return value."));
2818 return;
2819 }
2820
2821 /* Returning floating-point values is a bit tricky. Apart from
2822 storing the return value in %st(0), we have to simulate the
2823 state of the FPU at function return point. */
2824
2825 /* Convert the value found in VALBUF to the extended
2826 floating-point format used by the FPU. This is probably
2827 not exactly how it would happen on the target itself, but
2828 it is the best we can do. */
2829 convert_typed_floating (valbuf, type, buf, i387_ext_type (gdbarch));
2830 regcache_raw_write (regcache, I386_ST0_REGNUM, buf);
2831
2832 /* Set the top of the floating-point register stack to 7. The
2833 actual value doesn't really matter, but 7 is what a normal
2834 function return would end up with if the program started out
2835 with a freshly initialized FPU. */
2836 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
2837 fstat |= (7 << 11);
2838 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM (tdep), fstat);
2839
2840 /* Mark %st(1) through %st(7) as empty. Since we set the top of
2841 the floating-point register stack to 7, the appropriate value
2842 for the tag word is 0x3fff. */
2843 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM (tdep), 0x3fff);
2844 }
2845 else
2846 {
2847 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2848 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2849
2850 if (len <= low_size)
2851 regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
2852 else if (len <= (low_size + high_size))
2853 {
2854 regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
2855 regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
2856 len - low_size, valbuf + low_size);
2857 }
2858 else
2859 internal_error (__FILE__, __LINE__,
2860 _("Cannot store return value of %d bytes long."), len);
2861 }
2862 }
2863 \f
2864
2865 /* This is the variable that is set with "set struct-convention", and
2866 its legitimate values. */
2867 static const char default_struct_convention[] = "default";
2868 static const char pcc_struct_convention[] = "pcc";
2869 static const char reg_struct_convention[] = "reg";
2870 static const char *const valid_conventions[] =
2871 {
2872 default_struct_convention,
2873 pcc_struct_convention,
2874 reg_struct_convention,
2875 NULL
2876 };
2877 static const char *struct_convention = default_struct_convention;
2878
2879 /* Return non-zero if TYPE, which is assumed to be a structure,
2880 a union type, or an array type, should be returned in registers
2881 for architecture GDBARCH. */
2882
2883 static int
2884 i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
2885 {
2886 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2887 enum type_code code = TYPE_CODE (type);
2888 int len = TYPE_LENGTH (type);
2889
2890 gdb_assert (code == TYPE_CODE_STRUCT
2891 || code == TYPE_CODE_UNION
2892 || code == TYPE_CODE_ARRAY);
2893
2894 if (struct_convention == pcc_struct_convention
2895 || (struct_convention == default_struct_convention
2896 && tdep->struct_return == pcc_struct_return))
2897 return 0;
2898
2899 /* Structures consisting of a single `float', `double' or 'long
2900 double' member are returned in %st(0). */
2901 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2902 {
2903 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
2904 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2905 return (len == 4 || len == 8 || len == 12);
2906 }
2907
2908 return (len == 1 || len == 2 || len == 4 || len == 8);
2909 }
2910
2911 /* Determine, for architecture GDBARCH, how a return value of TYPE
2912 should be returned. If it is supposed to be returned in registers,
2913 and READBUF is non-zero, read the appropriate value from REGCACHE,
2914 and copy it into READBUF. If WRITEBUF is non-zero, write the value
2915 from WRITEBUF into REGCACHE. */
2916
2917 static enum return_value_convention
2918 i386_return_value (struct gdbarch *gdbarch, struct value *function,
2919 struct type *type, struct regcache *regcache,
2920 gdb_byte *readbuf, const gdb_byte *writebuf)
2921 {
2922 enum type_code code = TYPE_CODE (type);
2923
2924 if (((code == TYPE_CODE_STRUCT
2925 || code == TYPE_CODE_UNION
2926 || code == TYPE_CODE_ARRAY)
2927 && !i386_reg_struct_return_p (gdbarch, type))
2928 /* Complex double and long double uses the struct return covention. */
2929 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 16)
2930 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 24)
2931 /* 128-bit decimal float uses the struct return convention. */
2932 || (code == TYPE_CODE_DECFLOAT && TYPE_LENGTH (type) == 16))
2933 {
2934 /* The System V ABI says that:
2935
2936 "A function that returns a structure or union also sets %eax
2937 to the value of the original address of the caller's area
2938 before it returns. Thus when the caller receives control
2939 again, the address of the returned object resides in register
2940 %eax and can be used to access the object."
2941
2942 So the ABI guarantees that we can always find the return
2943 value just after the function has returned. */
2944
2945 /* Note that the ABI doesn't mention functions returning arrays,
2946 which is something possible in certain languages such as Ada.
2947 In this case, the value is returned as if it was wrapped in
2948 a record, so the convention applied to records also applies
2949 to arrays. */
2950
2951 if (readbuf)
2952 {
2953 ULONGEST addr;
2954
2955 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
2956 read_memory (addr, readbuf, TYPE_LENGTH (type));
2957 }
2958
2959 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
2960 }
2961
2962 /* This special case is for structures consisting of a single
2963 `float', `double' or 'long double' member. These structures are
2964 returned in %st(0). For these structures, we call ourselves
2965 recursively, changing TYPE into the type of the first member of
2966 the structure. Since that should work for all structures that
2967 have only one member, we don't bother to check the member's type
2968 here. */
2969 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2970 {
2971 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
2972 return i386_return_value (gdbarch, function, type, regcache,
2973 readbuf, writebuf);
2974 }
2975
2976 if (readbuf)
2977 i386_extract_return_value (gdbarch, type, regcache, readbuf);
2978 if (writebuf)
2979 i386_store_return_value (gdbarch, type, regcache, writebuf);
2980
2981 return RETURN_VALUE_REGISTER_CONVENTION;
2982 }
2983 \f
2984
2985 struct type *
2986 i387_ext_type (struct gdbarch *gdbarch)
2987 {
2988 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2989
2990 if (!tdep->i387_ext_type)
2991 {
2992 tdep->i387_ext_type = tdesc_find_type (gdbarch, "i387_ext");
2993 gdb_assert (tdep->i387_ext_type != NULL);
2994 }
2995
2996 return tdep->i387_ext_type;
2997 }
2998
2999 /* Construct type for pseudo BND registers. We can't use
3000 tdesc_find_type since a complement of one value has to be used
3001 to describe the upper bound. */
3002
3003 static struct type *
3004 i386_bnd_type (struct gdbarch *gdbarch)
3005 {
3006 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3007
3008
3009 if (!tdep->i386_bnd_type)
3010 {
3011 struct type *t, *bound_t;
3012 const struct builtin_type *bt = builtin_type (gdbarch);
3013
3014 /* The type we're building is described bellow: */
3015 #if 0
3016 struct __bound128
3017 {
3018 void *lbound;
3019 void *ubound; /* One complement of raw ubound field. */
3020 };
3021 #endif
3022
3023 t = arch_composite_type (gdbarch,
3024 "__gdb_builtin_type_bound128", TYPE_CODE_STRUCT);
3025
3026 append_composite_type_field (t, "lbound", bt->builtin_data_ptr);
3027 append_composite_type_field (t, "ubound", bt->builtin_data_ptr);
3028
3029 TYPE_NAME (t) = "builtin_type_bound128";
3030 tdep->i386_bnd_type = t;
3031 }
3032
3033 return tdep->i386_bnd_type;
3034 }
3035
3036 /* Construct vector type for pseudo ZMM registers. We can't use
3037 tdesc_find_type since ZMM isn't described in target description. */
3038
3039 static struct type *
3040 i386_zmm_type (struct gdbarch *gdbarch)
3041 {
3042 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3043
3044 if (!tdep->i386_zmm_type)
3045 {
3046 const struct builtin_type *bt = builtin_type (gdbarch);
3047
3048 /* The type we're building is this: */
3049 #if 0
3050 union __gdb_builtin_type_vec512i
3051 {
3052 int128_t uint128[4];
3053 int64_t v4_int64[8];
3054 int32_t v8_int32[16];
3055 int16_t v16_int16[32];
3056 int8_t v32_int8[64];
3057 double v4_double[8];
3058 float v8_float[16];
3059 };
3060 #endif
3061
3062 struct type *t;
3063
3064 t = arch_composite_type (gdbarch,
3065 "__gdb_builtin_type_vec512i", TYPE_CODE_UNION);
3066 append_composite_type_field (t, "v16_float",
3067 init_vector_type (bt->builtin_float, 16));
3068 append_composite_type_field (t, "v8_double",
3069 init_vector_type (bt->builtin_double, 8));
3070 append_composite_type_field (t, "v64_int8",
3071 init_vector_type (bt->builtin_int8, 64));
3072 append_composite_type_field (t, "v32_int16",
3073 init_vector_type (bt->builtin_int16, 32));
3074 append_composite_type_field (t, "v16_int32",
3075 init_vector_type (bt->builtin_int32, 16));
3076 append_composite_type_field (t, "v8_int64",
3077 init_vector_type (bt->builtin_int64, 8));
3078 append_composite_type_field (t, "v4_int128",
3079 init_vector_type (bt->builtin_int128, 4));
3080
3081 TYPE_VECTOR (t) = 1;
3082 TYPE_NAME (t) = "builtin_type_vec512i";
3083 tdep->i386_zmm_type = t;
3084 }
3085
3086 return tdep->i386_zmm_type;
3087 }
3088
3089 /* Construct vector type for pseudo YMM registers. We can't use
3090 tdesc_find_type since YMM isn't described in target description. */
3091
3092 static struct type *
3093 i386_ymm_type (struct gdbarch *gdbarch)
3094 {
3095 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3096
3097 if (!tdep->i386_ymm_type)
3098 {
3099 const struct builtin_type *bt = builtin_type (gdbarch);
3100
3101 /* The type we're building is this: */
3102 #if 0
3103 union __gdb_builtin_type_vec256i
3104 {
3105 int128_t uint128[2];
3106 int64_t v2_int64[4];
3107 int32_t v4_int32[8];
3108 int16_t v8_int16[16];
3109 int8_t v16_int8[32];
3110 double v2_double[4];
3111 float v4_float[8];
3112 };
3113 #endif
3114
3115 struct type *t;
3116
3117 t = arch_composite_type (gdbarch,
3118 "__gdb_builtin_type_vec256i", TYPE_CODE_UNION);
3119 append_composite_type_field (t, "v8_float",
3120 init_vector_type (bt->builtin_float, 8));
3121 append_composite_type_field (t, "v4_double",
3122 init_vector_type (bt->builtin_double, 4));
3123 append_composite_type_field (t, "v32_int8",
3124 init_vector_type (bt->builtin_int8, 32));
3125 append_composite_type_field (t, "v16_int16",
3126 init_vector_type (bt->builtin_int16, 16));
3127 append_composite_type_field (t, "v8_int32",
3128 init_vector_type (bt->builtin_int32, 8));
3129 append_composite_type_field (t, "v4_int64",
3130 init_vector_type (bt->builtin_int64, 4));
3131 append_composite_type_field (t, "v2_int128",
3132 init_vector_type (bt->builtin_int128, 2));
3133
3134 TYPE_VECTOR (t) = 1;
3135 TYPE_NAME (t) = "builtin_type_vec256i";
3136 tdep->i386_ymm_type = t;
3137 }
3138
3139 return tdep->i386_ymm_type;
3140 }
3141
3142 /* Construct vector type for MMX registers. */
3143 static struct type *
3144 i386_mmx_type (struct gdbarch *gdbarch)
3145 {
3146 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3147
3148 if (!tdep->i386_mmx_type)
3149 {
3150 const struct builtin_type *bt = builtin_type (gdbarch);
3151
3152 /* The type we're building is this: */
3153 #if 0
3154 union __gdb_builtin_type_vec64i
3155 {
3156 int64_t uint64;
3157 int32_t v2_int32[2];
3158 int16_t v4_int16[4];
3159 int8_t v8_int8[8];
3160 };
3161 #endif
3162
3163 struct type *t;
3164
3165 t = arch_composite_type (gdbarch,
3166 "__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
3167
3168 append_composite_type_field (t, "uint64", bt->builtin_int64);
3169 append_composite_type_field (t, "v2_int32",
3170 init_vector_type (bt->builtin_int32, 2));
3171 append_composite_type_field (t, "v4_int16",
3172 init_vector_type (bt->builtin_int16, 4));
3173 append_composite_type_field (t, "v8_int8",
3174 init_vector_type (bt->builtin_int8, 8));
3175
3176 TYPE_VECTOR (t) = 1;
3177 TYPE_NAME (t) = "builtin_type_vec64i";
3178 tdep->i386_mmx_type = t;
3179 }
3180
3181 return tdep->i386_mmx_type;
3182 }
3183
3184 /* Return the GDB type object for the "standard" data type of data in
3185 register REGNUM. */
3186
3187 struct type *
3188 i386_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
3189 {
3190 if (i386_bnd_regnum_p (gdbarch, regnum))
3191 return i386_bnd_type (gdbarch);
3192 if (i386_mmx_regnum_p (gdbarch, regnum))
3193 return i386_mmx_type (gdbarch);
3194 else if (i386_ymm_regnum_p (gdbarch, regnum))
3195 return i386_ymm_type (gdbarch);
3196 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3197 return i386_ymm_type (gdbarch);
3198 else if (i386_zmm_regnum_p (gdbarch, regnum))
3199 return i386_zmm_type (gdbarch);
3200 else
3201 {
3202 const struct builtin_type *bt = builtin_type (gdbarch);
3203 if (i386_byte_regnum_p (gdbarch, regnum))
3204 return bt->builtin_int8;
3205 else if (i386_word_regnum_p (gdbarch, regnum))
3206 return bt->builtin_int16;
3207 else if (i386_dword_regnum_p (gdbarch, regnum))
3208 return bt->builtin_int32;
3209 else if (i386_k_regnum_p (gdbarch, regnum))
3210 return bt->builtin_int64;
3211 }
3212
3213 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3214 }
3215
3216 /* Map a cooked register onto a raw register or memory. For the i386,
3217 the MMX registers need to be mapped onto floating point registers. */
3218
3219 static int
3220 i386_mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
3221 {
3222 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
3223 int mmxreg, fpreg;
3224 ULONGEST fstat;
3225 int tos;
3226
3227 mmxreg = regnum - tdep->mm0_regnum;
3228 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
3229 tos = (fstat >> 11) & 0x7;
3230 fpreg = (mmxreg + tos) % 8;
3231
3232 return (I387_ST0_REGNUM (tdep) + fpreg);
3233 }
3234
3235 /* A helper function for us by i386_pseudo_register_read_value and
3236 amd64_pseudo_register_read_value. It does all the work but reads
3237 the data into an already-allocated value. */
3238
3239 void
3240 i386_pseudo_register_read_into_value (struct gdbarch *gdbarch,
3241 struct regcache *regcache,
3242 int regnum,
3243 struct value *result_value)
3244 {
3245 gdb_byte raw_buf[MAX_REGISTER_SIZE];
3246 enum register_status status;
3247 gdb_byte *buf = value_contents_raw (result_value);
3248
3249 if (i386_mmx_regnum_p (gdbarch, regnum))
3250 {
3251 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3252
3253 /* Extract (always little endian). */
3254 status = regcache_raw_read (regcache, fpnum, raw_buf);
3255 if (status != REG_VALID)
3256 mark_value_bytes_unavailable (result_value, 0,
3257 TYPE_LENGTH (value_type (result_value)));
3258 else
3259 memcpy (buf, raw_buf, register_size (gdbarch, regnum));
3260 }
3261 else
3262 {
3263 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3264 if (i386_bnd_regnum_p (gdbarch, regnum))
3265 {
3266 regnum -= tdep->bnd0_regnum;
3267
3268 /* Extract (always little endian). Read lower 128bits. */
3269 status = regcache_raw_read (regcache,
3270 I387_BND0R_REGNUM (tdep) + regnum,
3271 raw_buf);
3272 if (status != REG_VALID)
3273 mark_value_bytes_unavailable (result_value, 0, 16);
3274 else
3275 {
3276 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3277 LONGEST upper, lower;
3278 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
3279
3280 lower = extract_unsigned_integer (raw_buf, 8, byte_order);
3281 upper = extract_unsigned_integer (raw_buf + 8, 8, byte_order);
3282 upper = ~upper;
3283
3284 memcpy (buf, &lower, size);
3285 memcpy (buf + size, &upper, size);
3286 }
3287 }
3288 else if (i386_k_regnum_p (gdbarch, regnum))
3289 {
3290 regnum -= tdep->k0_regnum;
3291
3292 /* Extract (always little endian). */
3293 status = regcache_raw_read (regcache,
3294 tdep->k0_regnum + regnum,
3295 raw_buf);
3296 if (status != REG_VALID)
3297 mark_value_bytes_unavailable (result_value, 0, 8);
3298 else
3299 memcpy (buf, raw_buf, 8);
3300 }
3301 else if (i386_zmm_regnum_p (gdbarch, regnum))
3302 {
3303 regnum -= tdep->zmm0_regnum;
3304
3305 if (regnum < num_lower_zmm_regs)
3306 {
3307 /* Extract (always little endian). Read lower 128bits. */
3308 status = regcache_raw_read (regcache,
3309 I387_XMM0_REGNUM (tdep) + regnum,
3310 raw_buf);
3311 if (status != REG_VALID)
3312 mark_value_bytes_unavailable (result_value, 0, 16);
3313 else
3314 memcpy (buf, raw_buf, 16);
3315
3316 /* Extract (always little endian). Read upper 128bits. */
3317 status = regcache_raw_read (regcache,
3318 tdep->ymm0h_regnum + regnum,
3319 raw_buf);
3320 if (status != REG_VALID)
3321 mark_value_bytes_unavailable (result_value, 16, 16);
3322 else
3323 memcpy (buf + 16, raw_buf, 16);
3324 }
3325 else
3326 {
3327 /* Extract (always little endian). Read lower 128bits. */
3328 status = regcache_raw_read (regcache,
3329 I387_XMM16_REGNUM (tdep) + regnum
3330 - num_lower_zmm_regs,
3331 raw_buf);
3332 if (status != REG_VALID)
3333 mark_value_bytes_unavailable (result_value, 0, 16);
3334 else
3335 memcpy (buf, raw_buf, 16);
3336
3337 /* Extract (always little endian). Read upper 128bits. */
3338 status = regcache_raw_read (regcache,
3339 I387_YMM16H_REGNUM (tdep) + regnum
3340 - num_lower_zmm_regs,
3341 raw_buf);
3342 if (status != REG_VALID)
3343 mark_value_bytes_unavailable (result_value, 16, 16);
3344 else
3345 memcpy (buf + 16, raw_buf, 16);
3346 }
3347
3348 /* Read upper 256bits. */
3349 status = regcache_raw_read (regcache,
3350 tdep->zmm0h_regnum + regnum,
3351 raw_buf);
3352 if (status != REG_VALID)
3353 mark_value_bytes_unavailable (result_value, 32, 32);
3354 else
3355 memcpy (buf + 32, raw_buf, 32);
3356 }
3357 else if (i386_ymm_regnum_p (gdbarch, regnum))
3358 {
3359 regnum -= tdep->ymm0_regnum;
3360
3361 /* Extract (always little endian). Read lower 128bits. */
3362 status = regcache_raw_read (regcache,
3363 I387_XMM0_REGNUM (tdep) + regnum,
3364 raw_buf);
3365 if (status != REG_VALID)
3366 mark_value_bytes_unavailable (result_value, 0, 16);
3367 else
3368 memcpy (buf, raw_buf, 16);
3369 /* Read upper 128bits. */
3370 status = regcache_raw_read (regcache,
3371 tdep->ymm0h_regnum + regnum,
3372 raw_buf);
3373 if (status != REG_VALID)
3374 mark_value_bytes_unavailable (result_value, 16, 32);
3375 else
3376 memcpy (buf + 16, raw_buf, 16);
3377 }
3378 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3379 {
3380 regnum -= tdep->ymm16_regnum;
3381 /* Extract (always little endian). Read lower 128bits. */
3382 status = regcache_raw_read (regcache,
3383 I387_XMM16_REGNUM (tdep) + regnum,
3384 raw_buf);
3385 if (status != REG_VALID)
3386 mark_value_bytes_unavailable (result_value, 0, 16);
3387 else
3388 memcpy (buf, raw_buf, 16);
3389 /* Read upper 128bits. */
3390 status = regcache_raw_read (regcache,
3391 tdep->ymm16h_regnum + regnum,
3392 raw_buf);
3393 if (status != REG_VALID)
3394 mark_value_bytes_unavailable (result_value, 16, 16);
3395 else
3396 memcpy (buf + 16, raw_buf, 16);
3397 }
3398 else if (i386_word_regnum_p (gdbarch, regnum))
3399 {
3400 int gpnum = regnum - tdep->ax_regnum;
3401
3402 /* Extract (always little endian). */
3403 status = regcache_raw_read (regcache, gpnum, raw_buf);
3404 if (status != REG_VALID)
3405 mark_value_bytes_unavailable (result_value, 0,
3406 TYPE_LENGTH (value_type (result_value)));
3407 else
3408 memcpy (buf, raw_buf, 2);
3409 }
3410 else if (i386_byte_regnum_p (gdbarch, regnum))
3411 {
3412 /* Check byte pseudo registers last since this function will
3413 be called from amd64_pseudo_register_read, which handles
3414 byte pseudo registers differently. */
3415 int gpnum = regnum - tdep->al_regnum;
3416
3417 /* Extract (always little endian). We read both lower and
3418 upper registers. */
3419 status = regcache_raw_read (regcache, gpnum % 4, raw_buf);
3420 if (status != REG_VALID)
3421 mark_value_bytes_unavailable (result_value, 0,
3422 TYPE_LENGTH (value_type (result_value)));
3423 else if (gpnum >= 4)
3424 memcpy (buf, raw_buf + 1, 1);
3425 else
3426 memcpy (buf, raw_buf, 1);
3427 }
3428 else
3429 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3430 }
3431 }
3432
3433 static struct value *
3434 i386_pseudo_register_read_value (struct gdbarch *gdbarch,
3435 struct regcache *regcache,
3436 int regnum)
3437 {
3438 struct value *result;
3439
3440 result = allocate_value (register_type (gdbarch, regnum));
3441 VALUE_LVAL (result) = lval_register;
3442 VALUE_REGNUM (result) = regnum;
3443
3444 i386_pseudo_register_read_into_value (gdbarch, regcache, regnum, result);
3445
3446 return result;
3447 }
3448
3449 void
3450 i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
3451 int regnum, const gdb_byte *buf)
3452 {
3453 gdb_byte raw_buf[MAX_REGISTER_SIZE];
3454
3455 if (i386_mmx_regnum_p (gdbarch, regnum))
3456 {
3457 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3458
3459 /* Read ... */
3460 regcache_raw_read (regcache, fpnum, raw_buf);
3461 /* ... Modify ... (always little endian). */
3462 memcpy (raw_buf, buf, register_size (gdbarch, regnum));
3463 /* ... Write. */
3464 regcache_raw_write (regcache, fpnum, raw_buf);
3465 }
3466 else
3467 {
3468 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3469
3470 if (i386_bnd_regnum_p (gdbarch, regnum))
3471 {
3472 ULONGEST upper, lower;
3473 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
3474 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3475
3476 /* New values from input value. */
3477 regnum -= tdep->bnd0_regnum;
3478 lower = extract_unsigned_integer (buf, size, byte_order);
3479 upper = extract_unsigned_integer (buf + size, size, byte_order);
3480
3481 /* Fetching register buffer. */
3482 regcache_raw_read (regcache,
3483 I387_BND0R_REGNUM (tdep) + regnum,
3484 raw_buf);
3485
3486 upper = ~upper;
3487
3488 /* Set register bits. */
3489 memcpy (raw_buf, &lower, 8);
3490 memcpy (raw_buf + 8, &upper, 8);
3491
3492
3493 regcache_raw_write (regcache,
3494 I387_BND0R_REGNUM (tdep) + regnum,
3495 raw_buf);
3496 }
3497 else if (i386_k_regnum_p (gdbarch, regnum))
3498 {
3499 regnum -= tdep->k0_regnum;
3500
3501 regcache_raw_write (regcache,
3502 tdep->k0_regnum + regnum,
3503 buf);
3504 }
3505 else if (i386_zmm_regnum_p (gdbarch, regnum))
3506 {
3507 regnum -= tdep->zmm0_regnum;
3508
3509 if (regnum < num_lower_zmm_regs)
3510 {
3511 /* Write lower 128bits. */
3512 regcache_raw_write (regcache,
3513 I387_XMM0_REGNUM (tdep) + regnum,
3514 buf);
3515 /* Write upper 128bits. */
3516 regcache_raw_write (regcache,
3517 I387_YMM0_REGNUM (tdep) + regnum,
3518 buf + 16);
3519 }
3520 else
3521 {
3522 /* Write lower 128bits. */
3523 regcache_raw_write (regcache,
3524 I387_XMM16_REGNUM (tdep) + regnum
3525 - num_lower_zmm_regs,
3526 buf);
3527 /* Write upper 128bits. */
3528 regcache_raw_write (regcache,
3529 I387_YMM16H_REGNUM (tdep) + regnum
3530 - num_lower_zmm_regs,
3531 buf + 16);
3532 }
3533 /* Write upper 256bits. */
3534 regcache_raw_write (regcache,
3535 tdep->zmm0h_regnum + regnum,
3536 buf + 32);
3537 }
3538 else if (i386_ymm_regnum_p (gdbarch, regnum))
3539 {
3540 regnum -= tdep->ymm0_regnum;
3541
3542 /* ... Write lower 128bits. */
3543 regcache_raw_write (regcache,
3544 I387_XMM0_REGNUM (tdep) + regnum,
3545 buf);
3546 /* ... Write upper 128bits. */
3547 regcache_raw_write (regcache,
3548 tdep->ymm0h_regnum + regnum,
3549 buf + 16);
3550 }
3551 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3552 {
3553 regnum -= tdep->ymm16_regnum;
3554
3555 /* ... Write lower 128bits. */
3556 regcache_raw_write (regcache,
3557 I387_XMM16_REGNUM (tdep) + regnum,
3558 buf);
3559 /* ... Write upper 128bits. */
3560 regcache_raw_write (regcache,
3561 tdep->ymm16h_regnum + regnum,
3562 buf + 16);
3563 }
3564 else if (i386_word_regnum_p (gdbarch, regnum))
3565 {
3566 int gpnum = regnum - tdep->ax_regnum;
3567
3568 /* Read ... */
3569 regcache_raw_read (regcache, gpnum, raw_buf);
3570 /* ... Modify ... (always little endian). */
3571 memcpy (raw_buf, buf, 2);
3572 /* ... Write. */
3573 regcache_raw_write (regcache, gpnum, raw_buf);
3574 }
3575 else if (i386_byte_regnum_p (gdbarch, regnum))
3576 {
3577 /* Check byte pseudo registers last since this function will
3578 be called from amd64_pseudo_register_read, which handles
3579 byte pseudo registers differently. */
3580 int gpnum = regnum - tdep->al_regnum;
3581
3582 /* Read ... We read both lower and upper registers. */
3583 regcache_raw_read (regcache, gpnum % 4, raw_buf);
3584 /* ... Modify ... (always little endian). */
3585 if (gpnum >= 4)
3586 memcpy (raw_buf + 1, buf, 1);
3587 else
3588 memcpy (raw_buf, buf, 1);
3589 /* ... Write. */
3590 regcache_raw_write (regcache, gpnum % 4, raw_buf);
3591 }
3592 else
3593 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3594 }
3595 }
3596 \f
3597
3598 /* Return the register number of the register allocated by GCC after
3599 REGNUM, or -1 if there is no such register. */
3600
3601 static int
3602 i386_next_regnum (int regnum)
3603 {
3604 /* GCC allocates the registers in the order:
3605
3606 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
3607
3608 Since storing a variable in %esp doesn't make any sense we return
3609 -1 for %ebp and for %esp itself. */
3610 static int next_regnum[] =
3611 {
3612 I386_EDX_REGNUM, /* Slot for %eax. */
3613 I386_EBX_REGNUM, /* Slot for %ecx. */
3614 I386_ECX_REGNUM, /* Slot for %edx. */
3615 I386_ESI_REGNUM, /* Slot for %ebx. */
3616 -1, -1, /* Slots for %esp and %ebp. */
3617 I386_EDI_REGNUM, /* Slot for %esi. */
3618 I386_EBP_REGNUM /* Slot for %edi. */
3619 };
3620
3621 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
3622 return next_regnum[regnum];
3623
3624 return -1;
3625 }
3626
3627 /* Return nonzero if a value of type TYPE stored in register REGNUM
3628 needs any special handling. */
3629
3630 static int
3631 i386_convert_register_p (struct gdbarch *gdbarch,
3632 int regnum, struct type *type)
3633 {
3634 int len = TYPE_LENGTH (type);
3635
3636 /* Values may be spread across multiple registers. Most debugging
3637 formats aren't expressive enough to specify the locations, so
3638 some heuristics is involved. Right now we only handle types that
3639 have a length that is a multiple of the word size, since GCC
3640 doesn't seem to put any other types into registers. */
3641 if (len > 4 && len % 4 == 0)
3642 {
3643 int last_regnum = regnum;
3644
3645 while (len > 4)
3646 {
3647 last_regnum = i386_next_regnum (last_regnum);
3648 len -= 4;
3649 }
3650
3651 if (last_regnum != -1)
3652 return 1;
3653 }
3654
3655 return i387_convert_register_p (gdbarch, regnum, type);
3656 }
3657
3658 /* Read a value of type TYPE from register REGNUM in frame FRAME, and
3659 return its contents in TO. */
3660
3661 static int
3662 i386_register_to_value (struct frame_info *frame, int regnum,
3663 struct type *type, gdb_byte *to,
3664 int *optimizedp, int *unavailablep)
3665 {
3666 struct gdbarch *gdbarch = get_frame_arch (frame);
3667 int len = TYPE_LENGTH (type);
3668
3669 if (i386_fp_regnum_p (gdbarch, regnum))
3670 return i387_register_to_value (frame, regnum, type, to,
3671 optimizedp, unavailablep);
3672
3673 /* Read a value spread across multiple registers. */
3674
3675 gdb_assert (len > 4 && len % 4 == 0);
3676
3677 while (len > 0)
3678 {
3679 gdb_assert (regnum != -1);
3680 gdb_assert (register_size (gdbarch, regnum) == 4);
3681
3682 if (!get_frame_register_bytes (frame, regnum, 0,
3683 register_size (gdbarch, regnum),
3684 to, optimizedp, unavailablep))
3685 return 0;
3686
3687 regnum = i386_next_regnum (regnum);
3688 len -= 4;
3689 to += 4;
3690 }
3691
3692 *optimizedp = *unavailablep = 0;
3693 return 1;
3694 }
3695
3696 /* Write the contents FROM of a value of type TYPE into register
3697 REGNUM in frame FRAME. */
3698
3699 static void
3700 i386_value_to_register (struct frame_info *frame, int regnum,
3701 struct type *type, const gdb_byte *from)
3702 {
3703 int len = TYPE_LENGTH (type);
3704
3705 if (i386_fp_regnum_p (get_frame_arch (frame), regnum))
3706 {
3707 i387_value_to_register (frame, regnum, type, from);
3708 return;
3709 }
3710
3711 /* Write a value spread across multiple registers. */
3712
3713 gdb_assert (len > 4 && len % 4 == 0);
3714
3715 while (len > 0)
3716 {
3717 gdb_assert (regnum != -1);
3718 gdb_assert (register_size (get_frame_arch (frame), regnum) == 4);
3719
3720 put_frame_register (frame, regnum, from);
3721 regnum = i386_next_regnum (regnum);
3722 len -= 4;
3723 from += 4;
3724 }
3725 }
3726 \f
3727 /* Supply register REGNUM from the buffer specified by GREGS and LEN
3728 in the general-purpose register set REGSET to register cache
3729 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3730
3731 void
3732 i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
3733 int regnum, const void *gregs, size_t len)
3734 {
3735 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3736 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3737 const gdb_byte *regs = gregs;
3738 int i;
3739
3740 gdb_assert (len >= tdep->sizeof_gregset);
3741
3742 for (i = 0; i < tdep->gregset_num_regs; i++)
3743 {
3744 if ((regnum == i || regnum == -1)
3745 && tdep->gregset_reg_offset[i] != -1)
3746 regcache_raw_supply (regcache, i, regs + tdep->gregset_reg_offset[i]);
3747 }
3748 }
3749
3750 /* Collect register REGNUM from the register cache REGCACHE and store
3751 it in the buffer specified by GREGS and LEN as described by the
3752 general-purpose register set REGSET. If REGNUM is -1, do this for
3753 all registers in REGSET. */
3754
3755 static void
3756 i386_collect_gregset (const struct regset *regset,
3757 const struct regcache *regcache,
3758 int regnum, void *gregs, size_t len)
3759 {
3760 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3761 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3762 gdb_byte *regs = gregs;
3763 int i;
3764
3765 gdb_assert (len >= tdep->sizeof_gregset);
3766
3767 for (i = 0; i < tdep->gregset_num_regs; i++)
3768 {
3769 if ((regnum == i || regnum == -1)
3770 && tdep->gregset_reg_offset[i] != -1)
3771 regcache_raw_collect (regcache, i, regs + tdep->gregset_reg_offset[i]);
3772 }
3773 }
3774
3775 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
3776 in the floating-point register set REGSET to register cache
3777 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3778
3779 static void
3780 i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
3781 int regnum, const void *fpregs, size_t len)
3782 {
3783 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3784 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3785
3786 if (len == I387_SIZEOF_FXSAVE)
3787 {
3788 i387_supply_fxsave (regcache, regnum, fpregs);
3789 return;
3790 }
3791
3792 gdb_assert (len >= tdep->sizeof_fpregset);
3793 i387_supply_fsave (regcache, regnum, fpregs);
3794 }
3795
3796 /* Collect register REGNUM from the register cache REGCACHE and store
3797 it in the buffer specified by FPREGS and LEN as described by the
3798 floating-point register set REGSET. If REGNUM is -1, do this for
3799 all registers in REGSET. */
3800
3801 static void
3802 i386_collect_fpregset (const struct regset *regset,
3803 const struct regcache *regcache,
3804 int regnum, void *fpregs, size_t len)
3805 {
3806 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3807 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3808
3809 if (len == I387_SIZEOF_FXSAVE)
3810 {
3811 i387_collect_fxsave (regcache, regnum, fpregs);
3812 return;
3813 }
3814
3815 gdb_assert (len >= tdep->sizeof_fpregset);
3816 i387_collect_fsave (regcache, regnum, fpregs);
3817 }
3818
3819 /* Register set definitions. */
3820
3821 const struct regset i386_gregset =
3822 {
3823 NULL, i386_supply_gregset, i386_collect_gregset
3824 };
3825
3826 const struct regset i386_fpregset =
3827 {
3828 NULL, i386_supply_fpregset, i386_collect_fpregset
3829 };
3830
3831 /* Default iterator over core file register note sections. */
3832
3833 void
3834 i386_iterate_over_regset_sections (struct gdbarch *gdbarch,
3835 iterate_over_regset_sections_cb *cb,
3836 void *cb_data,
3837 const struct regcache *regcache)
3838 {
3839 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3840
3841 cb (".reg", tdep->sizeof_gregset, &i386_gregset, NULL, cb_data);
3842 if (tdep->sizeof_fpregset)
3843 cb (".reg2", tdep->sizeof_fpregset, tdep->fpregset, NULL, cb_data);
3844 }
3845 \f
3846
3847 /* Stuff for WIN32 PE style DLL's but is pretty generic really. */
3848
3849 CORE_ADDR
3850 i386_pe_skip_trampoline_code (struct frame_info *frame,
3851 CORE_ADDR pc, char *name)
3852 {
3853 struct gdbarch *gdbarch = get_frame_arch (frame);
3854 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3855
3856 /* jmp *(dest) */
3857 if (pc && read_memory_unsigned_integer (pc, 2, byte_order) == 0x25ff)
3858 {
3859 unsigned long indirect =
3860 read_memory_unsigned_integer (pc + 2, 4, byte_order);
3861 struct minimal_symbol *indsym =
3862 indirect ? lookup_minimal_symbol_by_pc (indirect).minsym : 0;
3863 const char *symname = indsym ? MSYMBOL_LINKAGE_NAME (indsym) : 0;
3864
3865 if (symname)
3866 {
3867 if (startswith (symname, "__imp_")
3868 || startswith (symname, "_imp_"))
3869 return name ? 1 :
3870 read_memory_unsigned_integer (indirect, 4, byte_order);
3871 }
3872 }
3873 return 0; /* Not a trampoline. */
3874 }
3875 \f
3876
3877 /* Return whether the THIS_FRAME corresponds to a sigtramp
3878 routine. */
3879
3880 int
3881 i386_sigtramp_p (struct frame_info *this_frame)
3882 {
3883 CORE_ADDR pc = get_frame_pc (this_frame);
3884 const char *name;
3885
3886 find_pc_partial_function (pc, &name, NULL, NULL);
3887 return (name && strcmp ("_sigtramp", name) == 0);
3888 }
3889 \f
3890
3891 /* We have two flavours of disassembly. The machinery on this page
3892 deals with switching between those. */
3893
3894 static int
3895 i386_print_insn (bfd_vma pc, struct disassemble_info *info)
3896 {
3897 gdb_assert (disassembly_flavor == att_flavor
3898 || disassembly_flavor == intel_flavor);
3899
3900 /* FIXME: kettenis/20020915: Until disassembler_options is properly
3901 constified, cast to prevent a compiler warning. */
3902 info->disassembler_options = (char *) disassembly_flavor;
3903
3904 return print_insn_i386 (pc, info);
3905 }
3906 \f
3907
3908 /* There are a few i386 architecture variants that differ only
3909 slightly from the generic i386 target. For now, we don't give them
3910 their own source file, but include them here. As a consequence,
3911 they'll always be included. */
3912
3913 /* System V Release 4 (SVR4). */
3914
3915 /* Return whether THIS_FRAME corresponds to a SVR4 sigtramp
3916 routine. */
3917
3918 static int
3919 i386_svr4_sigtramp_p (struct frame_info *this_frame)
3920 {
3921 CORE_ADDR pc = get_frame_pc (this_frame);
3922 const char *name;
3923
3924 /* The origin of these symbols is currently unknown. */
3925 find_pc_partial_function (pc, &name, NULL, NULL);
3926 return (name && (strcmp ("_sigreturn", name) == 0
3927 || strcmp ("sigvechandler", name) == 0));
3928 }
3929
3930 /* Assuming THIS_FRAME is for a SVR4 sigtramp routine, return the
3931 address of the associated sigcontext (ucontext) structure. */
3932
3933 static CORE_ADDR
3934 i386_svr4_sigcontext_addr (struct frame_info *this_frame)
3935 {
3936 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3937 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3938 gdb_byte buf[4];
3939 CORE_ADDR sp;
3940
3941 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
3942 sp = extract_unsigned_integer (buf, 4, byte_order);
3943
3944 return read_memory_unsigned_integer (sp + 8, 4, byte_order);
3945 }
3946
3947 \f
3948
3949 /* Implementation of `gdbarch_stap_is_single_operand', as defined in
3950 gdbarch.h. */
3951
3952 int
3953 i386_stap_is_single_operand (struct gdbarch *gdbarch, const char *s)
3954 {
3955 return (*s == '$' /* Literal number. */
3956 || (isdigit (*s) && s[1] == '(' && s[2] == '%') /* Displacement. */
3957 || (*s == '(' && s[1] == '%') /* Register indirection. */
3958 || (*s == '%' && isalpha (s[1]))); /* Register access. */
3959 }
3960
3961 /* Helper function for i386_stap_parse_special_token.
3962
3963 This function parses operands of the form `-8+3+1(%rbp)', which
3964 must be interpreted as `*(-8 + 3 - 1 + (void *) $eax)'.
3965
3966 Return 1 if the operand was parsed successfully, zero
3967 otherwise. */
3968
3969 static int
3970 i386_stap_parse_special_token_triplet (struct gdbarch *gdbarch,
3971 struct stap_parse_info *p)
3972 {
3973 const char *s = p->arg;
3974
3975 if (isdigit (*s) || *s == '-' || *s == '+')
3976 {
3977 int got_minus[3];
3978 int i;
3979 long displacements[3];
3980 const char *start;
3981 char *regname;
3982 int len;
3983 struct stoken str;
3984 char *endp;
3985
3986 got_minus[0] = 0;
3987 if (*s == '+')
3988 ++s;
3989 else if (*s == '-')
3990 {
3991 ++s;
3992 got_minus[0] = 1;
3993 }
3994
3995 if (!isdigit ((unsigned char) *s))
3996 return 0;
3997
3998 displacements[0] = strtol (s, &endp, 10);
3999 s = endp;
4000
4001 if (*s != '+' && *s != '-')
4002 {
4003 /* We are not dealing with a triplet. */
4004 return 0;
4005 }
4006
4007 got_minus[1] = 0;
4008 if (*s == '+')
4009 ++s;
4010 else
4011 {
4012 ++s;
4013 got_minus[1] = 1;
4014 }
4015
4016 if (!isdigit ((unsigned char) *s))
4017 return 0;
4018
4019 displacements[1] = strtol (s, &endp, 10);
4020 s = endp;
4021
4022 if (*s != '+' && *s != '-')
4023 {
4024 /* We are not dealing with a triplet. */
4025 return 0;
4026 }
4027
4028 got_minus[2] = 0;
4029 if (*s == '+')
4030 ++s;
4031 else
4032 {
4033 ++s;
4034 got_minus[2] = 1;
4035 }
4036
4037 if (!isdigit ((unsigned char) *s))
4038 return 0;
4039
4040 displacements[2] = strtol (s, &endp, 10);
4041 s = endp;
4042
4043 if (*s != '(' || s[1] != '%')
4044 return 0;
4045
4046 s += 2;
4047 start = s;
4048
4049 while (isalnum (*s))
4050 ++s;
4051
4052 if (*s++ != ')')
4053 return 0;
4054
4055 len = s - start - 1;
4056 regname = alloca (len + 1);
4057
4058 strncpy (regname, start, len);
4059 regname[len] = '\0';
4060
4061 if (user_reg_map_name_to_regnum (gdbarch, regname, len) == -1)
4062 error (_("Invalid register name `%s' on expression `%s'."),
4063 regname, p->saved_arg);
4064
4065 for (i = 0; i < 3; i++)
4066 {
4067 write_exp_elt_opcode (&p->pstate, OP_LONG);
4068 write_exp_elt_type
4069 (&p->pstate, builtin_type (gdbarch)->builtin_long);
4070 write_exp_elt_longcst (&p->pstate, displacements[i]);
4071 write_exp_elt_opcode (&p->pstate, OP_LONG);
4072 if (got_minus[i])
4073 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
4074 }
4075
4076 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4077 str.ptr = regname;
4078 str.length = len;
4079 write_exp_string (&p->pstate, str);
4080 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4081
4082 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4083 write_exp_elt_type (&p->pstate,
4084 builtin_type (gdbarch)->builtin_data_ptr);
4085 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4086
4087 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4088 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4089 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4090
4091 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4092 write_exp_elt_type (&p->pstate,
4093 lookup_pointer_type (p->arg_type));
4094 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4095
4096 write_exp_elt_opcode (&p->pstate, UNOP_IND);
4097
4098 p->arg = s;
4099
4100 return 1;
4101 }
4102
4103 return 0;
4104 }
4105
4106 /* Helper function for i386_stap_parse_special_token.
4107
4108 This function parses operands of the form `register base +
4109 (register index * size) + offset', as represented in
4110 `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4111
4112 Return 1 if the operand was parsed successfully, zero
4113 otherwise. */
4114
4115 static int
4116 i386_stap_parse_special_token_three_arg_disp (struct gdbarch *gdbarch,
4117 struct stap_parse_info *p)
4118 {
4119 const char *s = p->arg;
4120
4121 if (isdigit (*s) || *s == '(' || *s == '-' || *s == '+')
4122 {
4123 int offset_minus = 0;
4124 long offset = 0;
4125 int size_minus = 0;
4126 long size = 0;
4127 const char *start;
4128 char *base;
4129 int len_base;
4130 char *index;
4131 int len_index;
4132 struct stoken base_token, index_token;
4133
4134 if (*s == '+')
4135 ++s;
4136 else if (*s == '-')
4137 {
4138 ++s;
4139 offset_minus = 1;
4140 }
4141
4142 if (offset_minus && !isdigit (*s))
4143 return 0;
4144
4145 if (isdigit (*s))
4146 {
4147 char *endp;
4148
4149 offset = strtol (s, &endp, 10);
4150 s = endp;
4151 }
4152
4153 if (*s != '(' || s[1] != '%')
4154 return 0;
4155
4156 s += 2;
4157 start = s;
4158
4159 while (isalnum (*s))
4160 ++s;
4161
4162 if (*s != ',' || s[1] != '%')
4163 return 0;
4164
4165 len_base = s - start;
4166 base = alloca (len_base + 1);
4167 strncpy (base, start, len_base);
4168 base[len_base] = '\0';
4169
4170 if (user_reg_map_name_to_regnum (gdbarch, base, len_base) == -1)
4171 error (_("Invalid register name `%s' on expression `%s'."),
4172 base, p->saved_arg);
4173
4174 s += 2;
4175 start = s;
4176
4177 while (isalnum (*s))
4178 ++s;
4179
4180 len_index = s - start;
4181 index = alloca (len_index + 1);
4182 strncpy (index, start, len_index);
4183 index[len_index] = '\0';
4184
4185 if (user_reg_map_name_to_regnum (gdbarch, index, len_index) == -1)
4186 error (_("Invalid register name `%s' on expression `%s'."),
4187 index, p->saved_arg);
4188
4189 if (*s != ',' && *s != ')')
4190 return 0;
4191
4192 if (*s == ',')
4193 {
4194 char *endp;
4195
4196 ++s;
4197 if (*s == '+')
4198 ++s;
4199 else if (*s == '-')
4200 {
4201 ++s;
4202 size_minus = 1;
4203 }
4204
4205 size = strtol (s, &endp, 10);
4206 s = endp;
4207
4208 if (*s != ')')
4209 return 0;
4210 }
4211
4212 ++s;
4213
4214 if (offset)
4215 {
4216 write_exp_elt_opcode (&p->pstate, OP_LONG);
4217 write_exp_elt_type (&p->pstate,
4218 builtin_type (gdbarch)->builtin_long);
4219 write_exp_elt_longcst (&p->pstate, offset);
4220 write_exp_elt_opcode (&p->pstate, OP_LONG);
4221 if (offset_minus)
4222 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
4223 }
4224
4225 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4226 base_token.ptr = base;
4227 base_token.length = len_base;
4228 write_exp_string (&p->pstate, base_token);
4229 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4230
4231 if (offset)
4232 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4233
4234 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4235 index_token.ptr = index;
4236 index_token.length = len_index;
4237 write_exp_string (&p->pstate, index_token);
4238 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4239
4240 if (size)
4241 {
4242 write_exp_elt_opcode (&p->pstate, OP_LONG);
4243 write_exp_elt_type (&p->pstate,
4244 builtin_type (gdbarch)->builtin_long);
4245 write_exp_elt_longcst (&p->pstate, size);
4246 write_exp_elt_opcode (&p->pstate, OP_LONG);
4247 if (size_minus)
4248 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
4249 write_exp_elt_opcode (&p->pstate, BINOP_MUL);
4250 }
4251
4252 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4253
4254 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4255 write_exp_elt_type (&p->pstate,
4256 lookup_pointer_type (p->arg_type));
4257 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4258
4259 write_exp_elt_opcode (&p->pstate, UNOP_IND);
4260
4261 p->arg = s;
4262
4263 return 1;
4264 }
4265
4266 return 0;
4267 }
4268
4269 /* Implementation of `gdbarch_stap_parse_special_token', as defined in
4270 gdbarch.h. */
4271
4272 int
4273 i386_stap_parse_special_token (struct gdbarch *gdbarch,
4274 struct stap_parse_info *p)
4275 {
4276 /* In order to parse special tokens, we use a state-machine that go
4277 through every known token and try to get a match. */
4278 enum
4279 {
4280 TRIPLET,
4281 THREE_ARG_DISPLACEMENT,
4282 DONE
4283 };
4284 int current_state;
4285
4286 current_state = TRIPLET;
4287
4288 /* The special tokens to be parsed here are:
4289
4290 - `register base + (register index * size) + offset', as represented
4291 in `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4292
4293 - Operands of the form `-8+3+1(%rbp)', which must be interpreted as
4294 `*(-8 + 3 - 1 + (void *) $eax)'. */
4295
4296 while (current_state != DONE)
4297 {
4298 switch (current_state)
4299 {
4300 case TRIPLET:
4301 if (i386_stap_parse_special_token_triplet (gdbarch, p))
4302 return 1;
4303 break;
4304
4305 case THREE_ARG_DISPLACEMENT:
4306 if (i386_stap_parse_special_token_three_arg_disp (gdbarch, p))
4307 return 1;
4308 break;
4309 }
4310
4311 /* Advancing to the next state. */
4312 ++current_state;
4313 }
4314
4315 return 0;
4316 }
4317
4318 \f
4319
4320 /* gdbarch gnu_triplet_regexp method. Both arches are acceptable as GDB always
4321 also supplies -m64 or -m32 by gdbarch_gcc_target_options. */
4322
4323 static const char *
4324 i386_gnu_triplet_regexp (struct gdbarch *gdbarch)
4325 {
4326 return "(x86_64|i.86)";
4327 }
4328
4329 \f
4330
4331 /* Generic ELF. */
4332
4333 void
4334 i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4335 {
4336 static const char *const stap_integer_prefixes[] = { "$", NULL };
4337 static const char *const stap_register_prefixes[] = { "%", NULL };
4338 static const char *const stap_register_indirection_prefixes[] = { "(",
4339 NULL };
4340 static const char *const stap_register_indirection_suffixes[] = { ")",
4341 NULL };
4342
4343 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
4344 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
4345
4346 /* Registering SystemTap handlers. */
4347 set_gdbarch_stap_integer_prefixes (gdbarch, stap_integer_prefixes);
4348 set_gdbarch_stap_register_prefixes (gdbarch, stap_register_prefixes);
4349 set_gdbarch_stap_register_indirection_prefixes (gdbarch,
4350 stap_register_indirection_prefixes);
4351 set_gdbarch_stap_register_indirection_suffixes (gdbarch,
4352 stap_register_indirection_suffixes);
4353 set_gdbarch_stap_is_single_operand (gdbarch,
4354 i386_stap_is_single_operand);
4355 set_gdbarch_stap_parse_special_token (gdbarch,
4356 i386_stap_parse_special_token);
4357
4358 set_gdbarch_gnu_triplet_regexp (gdbarch, i386_gnu_triplet_regexp);
4359 }
4360
4361 /* System V Release 4 (SVR4). */
4362
4363 void
4364 i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4365 {
4366 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4367
4368 /* System V Release 4 uses ELF. */
4369 i386_elf_init_abi (info, gdbarch);
4370
4371 /* System V Release 4 has shared libraries. */
4372 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
4373
4374 tdep->sigtramp_p = i386_svr4_sigtramp_p;
4375 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
4376 tdep->sc_pc_offset = 36 + 14 * 4;
4377 tdep->sc_sp_offset = 36 + 17 * 4;
4378
4379 tdep->jb_pc_offset = 20;
4380 }
4381
4382 /* DJGPP. */
4383
4384 static void
4385 i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4386 {
4387 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4388
4389 /* DJGPP doesn't have any special frames for signal handlers. */
4390 tdep->sigtramp_p = NULL;
4391
4392 tdep->jb_pc_offset = 36;
4393
4394 /* DJGPP does not support the SSE registers. */
4395 if (! tdesc_has_registers (info.target_desc))
4396 tdep->tdesc = tdesc_i386_mmx;
4397
4398 /* Native compiler is GCC, which uses the SVR4 register numbering
4399 even in COFF and STABS. See the comment in i386_gdbarch_init,
4400 before the calls to set_gdbarch_stab_reg_to_regnum and
4401 set_gdbarch_sdb_reg_to_regnum. */
4402 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
4403 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
4404
4405 set_gdbarch_has_dos_based_file_system (gdbarch, 1);
4406
4407 set_gdbarch_gnu_triplet_regexp (gdbarch, i386_gnu_triplet_regexp);
4408 }
4409 \f
4410
4411 /* i386 register groups. In addition to the normal groups, add "mmx"
4412 and "sse". */
4413
4414 static struct reggroup *i386_sse_reggroup;
4415 static struct reggroup *i386_mmx_reggroup;
4416
4417 static void
4418 i386_init_reggroups (void)
4419 {
4420 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
4421 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
4422 }
4423
4424 static void
4425 i386_add_reggroups (struct gdbarch *gdbarch)
4426 {
4427 reggroup_add (gdbarch, i386_sse_reggroup);
4428 reggroup_add (gdbarch, i386_mmx_reggroup);
4429 reggroup_add (gdbarch, general_reggroup);
4430 reggroup_add (gdbarch, float_reggroup);
4431 reggroup_add (gdbarch, all_reggroup);
4432 reggroup_add (gdbarch, save_reggroup);
4433 reggroup_add (gdbarch, restore_reggroup);
4434 reggroup_add (gdbarch, vector_reggroup);
4435 reggroup_add (gdbarch, system_reggroup);
4436 }
4437
4438 int
4439 i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
4440 struct reggroup *group)
4441 {
4442 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4443 int fp_regnum_p, mmx_regnum_p, xmm_regnum_p, mxcsr_regnum_p,
4444 ymm_regnum_p, ymmh_regnum_p, ymm_avx512_regnum_p, ymmh_avx512_regnum_p,
4445 bndr_regnum_p, bnd_regnum_p, k_regnum_p, zmm_regnum_p, zmmh_regnum_p,
4446 zmm_avx512_regnum_p, mpx_ctrl_regnum_p, xmm_avx512_regnum_p,
4447 avx512_p, avx_p, sse_p;
4448
4449 /* Don't include pseudo registers, except for MMX, in any register
4450 groups. */
4451 if (i386_byte_regnum_p (gdbarch, regnum))
4452 return 0;
4453
4454 if (i386_word_regnum_p (gdbarch, regnum))
4455 return 0;
4456
4457 if (i386_dword_regnum_p (gdbarch, regnum))
4458 return 0;
4459
4460 mmx_regnum_p = i386_mmx_regnum_p (gdbarch, regnum);
4461 if (group == i386_mmx_reggroup)
4462 return mmx_regnum_p;
4463
4464 xmm_regnum_p = i386_xmm_regnum_p (gdbarch, regnum);
4465 xmm_avx512_regnum_p = i386_xmm_avx512_regnum_p (gdbarch, regnum);
4466 mxcsr_regnum_p = i386_mxcsr_regnum_p (gdbarch, regnum);
4467 if (group == i386_sse_reggroup)
4468 return xmm_regnum_p || xmm_avx512_regnum_p || mxcsr_regnum_p;
4469
4470 ymm_regnum_p = i386_ymm_regnum_p (gdbarch, regnum);
4471 ymm_avx512_regnum_p = i386_ymm_avx512_regnum_p (gdbarch, regnum);
4472 zmm_regnum_p = i386_zmm_regnum_p (gdbarch, regnum);
4473
4474 avx512_p = ((tdep->xcr0 & X86_XSTATE_AVX512_MASK)
4475 == X86_XSTATE_AVX512_MASK);
4476 avx_p = ((tdep->xcr0 & X86_XSTATE_AVX512_MASK)
4477 == X86_XSTATE_AVX_MASK) && !avx512_p;
4478 sse_p = ((tdep->xcr0 & X86_XSTATE_AVX512_MASK)
4479 == X86_XSTATE_SSE_MASK) && !avx512_p && ! avx_p;
4480
4481 if (group == vector_reggroup)
4482 return (mmx_regnum_p
4483 || (zmm_regnum_p && avx512_p)
4484 || ((ymm_regnum_p || ymm_avx512_regnum_p) && avx_p)
4485 || ((xmm_regnum_p || xmm_avx512_regnum_p) && sse_p)
4486 || mxcsr_regnum_p);
4487
4488 fp_regnum_p = (i386_fp_regnum_p (gdbarch, regnum)
4489 || i386_fpc_regnum_p (gdbarch, regnum));
4490 if (group == float_reggroup)
4491 return fp_regnum_p;
4492
4493 /* For "info reg all", don't include upper YMM registers nor XMM
4494 registers when AVX is supported. */
4495 ymmh_regnum_p = i386_ymmh_regnum_p (gdbarch, regnum);
4496 ymmh_avx512_regnum_p = i386_ymmh_avx512_regnum_p (gdbarch, regnum);
4497 zmmh_regnum_p = i386_zmmh_regnum_p (gdbarch, regnum);
4498 if (group == all_reggroup
4499 && (((xmm_regnum_p || xmm_avx512_regnum_p) && !sse_p)
4500 || ((ymm_regnum_p || ymm_avx512_regnum_p) && !avx_p)
4501 || ymmh_regnum_p
4502 || ymmh_avx512_regnum_p
4503 || zmmh_regnum_p))
4504 return 0;
4505
4506 bnd_regnum_p = i386_bnd_regnum_p (gdbarch, regnum);
4507 if (group == all_reggroup
4508 && ((bnd_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4509 return bnd_regnum_p;
4510
4511 bndr_regnum_p = i386_bndr_regnum_p (gdbarch, regnum);
4512 if (group == all_reggroup
4513 && ((bndr_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4514 return 0;
4515
4516 mpx_ctrl_regnum_p = i386_mpx_ctrl_regnum_p (gdbarch, regnum);
4517 if (group == all_reggroup
4518 && ((mpx_ctrl_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4519 return mpx_ctrl_regnum_p;
4520
4521 if (group == general_reggroup)
4522 return (!fp_regnum_p
4523 && !mmx_regnum_p
4524 && !mxcsr_regnum_p
4525 && !xmm_regnum_p
4526 && !xmm_avx512_regnum_p
4527 && !ymm_regnum_p
4528 && !ymmh_regnum_p
4529 && !ymm_avx512_regnum_p
4530 && !ymmh_avx512_regnum_p
4531 && !bndr_regnum_p
4532 && !bnd_regnum_p
4533 && !mpx_ctrl_regnum_p
4534 && !zmm_regnum_p
4535 && !zmmh_regnum_p);
4536
4537 return default_register_reggroup_p (gdbarch, regnum, group);
4538 }
4539 \f
4540
4541 /* Get the ARGIth function argument for the current function. */
4542
4543 static CORE_ADDR
4544 i386_fetch_pointer_argument (struct frame_info *frame, int argi,
4545 struct type *type)
4546 {
4547 struct gdbarch *gdbarch = get_frame_arch (frame);
4548 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4549 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
4550 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4, byte_order);
4551 }
4552
4553 #define PREFIX_REPZ 0x01
4554 #define PREFIX_REPNZ 0x02
4555 #define PREFIX_LOCK 0x04
4556 #define PREFIX_DATA 0x08
4557 #define PREFIX_ADDR 0x10
4558
4559 /* operand size */
4560 enum
4561 {
4562 OT_BYTE = 0,
4563 OT_WORD,
4564 OT_LONG,
4565 OT_QUAD,
4566 OT_DQUAD,
4567 };
4568
4569 /* i386 arith/logic operations */
4570 enum
4571 {
4572 OP_ADDL,
4573 OP_ORL,
4574 OP_ADCL,
4575 OP_SBBL,
4576 OP_ANDL,
4577 OP_SUBL,
4578 OP_XORL,
4579 OP_CMPL,
4580 };
4581
4582 struct i386_record_s
4583 {
4584 struct gdbarch *gdbarch;
4585 struct regcache *regcache;
4586 CORE_ADDR orig_addr;
4587 CORE_ADDR addr;
4588 int aflag;
4589 int dflag;
4590 int override;
4591 uint8_t modrm;
4592 uint8_t mod, reg, rm;
4593 int ot;
4594 uint8_t rex_x;
4595 uint8_t rex_b;
4596 int rip_offset;
4597 int popl_esp_hack;
4598 const int *regmap;
4599 };
4600
4601 /* Parse the "modrm" part of the memory address irp->addr points at.
4602 Returns -1 if something goes wrong, 0 otherwise. */
4603
4604 static int
4605 i386_record_modrm (struct i386_record_s *irp)
4606 {
4607 struct gdbarch *gdbarch = irp->gdbarch;
4608
4609 if (record_read_memory (gdbarch, irp->addr, &irp->modrm, 1))
4610 return -1;
4611
4612 irp->addr++;
4613 irp->mod = (irp->modrm >> 6) & 3;
4614 irp->reg = (irp->modrm >> 3) & 7;
4615 irp->rm = irp->modrm & 7;
4616
4617 return 0;
4618 }
4619
4620 /* Extract the memory address that the current instruction writes to,
4621 and return it in *ADDR. Return -1 if something goes wrong. */
4622
4623 static int
4624 i386_record_lea_modrm_addr (struct i386_record_s *irp, uint64_t *addr)
4625 {
4626 struct gdbarch *gdbarch = irp->gdbarch;
4627 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4628 gdb_byte buf[4];
4629 ULONGEST offset64;
4630
4631 *addr = 0;
4632 if (irp->aflag || irp->regmap[X86_RECORD_R8_REGNUM])
4633 {
4634 /* 32/64 bits */
4635 int havesib = 0;
4636 uint8_t scale = 0;
4637 uint8_t byte;
4638 uint8_t index = 0;
4639 uint8_t base = irp->rm;
4640
4641 if (base == 4)
4642 {
4643 havesib = 1;
4644 if (record_read_memory (gdbarch, irp->addr, &byte, 1))
4645 return -1;
4646 irp->addr++;
4647 scale = (byte >> 6) & 3;
4648 index = ((byte >> 3) & 7) | irp->rex_x;
4649 base = (byte & 7);
4650 }
4651 base |= irp->rex_b;
4652
4653 switch (irp->mod)
4654 {
4655 case 0:
4656 if ((base & 7) == 5)
4657 {
4658 base = 0xff;
4659 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4660 return -1;
4661 irp->addr += 4;
4662 *addr = extract_signed_integer (buf, 4, byte_order);
4663 if (irp->regmap[X86_RECORD_R8_REGNUM] && !havesib)
4664 *addr += irp->addr + irp->rip_offset;
4665 }
4666 break;
4667 case 1:
4668 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4669 return -1;
4670 irp->addr++;
4671 *addr = (int8_t) buf[0];
4672 break;
4673 case 2:
4674 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4675 return -1;
4676 *addr = extract_signed_integer (buf, 4, byte_order);
4677 irp->addr += 4;
4678 break;
4679 }
4680
4681 offset64 = 0;
4682 if (base != 0xff)
4683 {
4684 if (base == 4 && irp->popl_esp_hack)
4685 *addr += irp->popl_esp_hack;
4686 regcache_raw_read_unsigned (irp->regcache, irp->regmap[base],
4687 &offset64);
4688 }
4689 if (irp->aflag == 2)
4690 {
4691 *addr += offset64;
4692 }
4693 else
4694 *addr = (uint32_t) (offset64 + *addr);
4695
4696 if (havesib && (index != 4 || scale != 0))
4697 {
4698 regcache_raw_read_unsigned (irp->regcache, irp->regmap[index],
4699 &offset64);
4700 if (irp->aflag == 2)
4701 *addr += offset64 << scale;
4702 else
4703 *addr = (uint32_t) (*addr + (offset64 << scale));
4704 }
4705
4706 if (!irp->aflag)
4707 {
4708 /* Since we are in 64-bit mode with ADDR32 prefix, zero-extend
4709 address from 32-bit to 64-bit. */
4710 *addr = (uint32_t) *addr;
4711 }
4712 }
4713 else
4714 {
4715 /* 16 bits */
4716 switch (irp->mod)
4717 {
4718 case 0:
4719 if (irp->rm == 6)
4720 {
4721 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4722 return -1;
4723 irp->addr += 2;
4724 *addr = extract_signed_integer (buf, 2, byte_order);
4725 irp->rm = 0;
4726 goto no_rm;
4727 }
4728 break;
4729 case 1:
4730 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4731 return -1;
4732 irp->addr++;
4733 *addr = (int8_t) buf[0];
4734 break;
4735 case 2:
4736 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4737 return -1;
4738 irp->addr += 2;
4739 *addr = extract_signed_integer (buf, 2, byte_order);
4740 break;
4741 }
4742
4743 switch (irp->rm)
4744 {
4745 case 0:
4746 regcache_raw_read_unsigned (irp->regcache,
4747 irp->regmap[X86_RECORD_REBX_REGNUM],
4748 &offset64);
4749 *addr = (uint32_t) (*addr + offset64);
4750 regcache_raw_read_unsigned (irp->regcache,
4751 irp->regmap[X86_RECORD_RESI_REGNUM],
4752 &offset64);
4753 *addr = (uint32_t) (*addr + offset64);
4754 break;
4755 case 1:
4756 regcache_raw_read_unsigned (irp->regcache,
4757 irp->regmap[X86_RECORD_REBX_REGNUM],
4758 &offset64);
4759 *addr = (uint32_t) (*addr + offset64);
4760 regcache_raw_read_unsigned (irp->regcache,
4761 irp->regmap[X86_RECORD_REDI_REGNUM],
4762 &offset64);
4763 *addr = (uint32_t) (*addr + offset64);
4764 break;
4765 case 2:
4766 regcache_raw_read_unsigned (irp->regcache,
4767 irp->regmap[X86_RECORD_REBP_REGNUM],
4768 &offset64);
4769 *addr = (uint32_t) (*addr + offset64);
4770 regcache_raw_read_unsigned (irp->regcache,
4771 irp->regmap[X86_RECORD_RESI_REGNUM],
4772 &offset64);
4773 *addr = (uint32_t) (*addr + offset64);
4774 break;
4775 case 3:
4776 regcache_raw_read_unsigned (irp->regcache,
4777 irp->regmap[X86_RECORD_REBP_REGNUM],
4778 &offset64);
4779 *addr = (uint32_t) (*addr + offset64);
4780 regcache_raw_read_unsigned (irp->regcache,
4781 irp->regmap[X86_RECORD_REDI_REGNUM],
4782 &offset64);
4783 *addr = (uint32_t) (*addr + offset64);
4784 break;
4785 case 4:
4786 regcache_raw_read_unsigned (irp->regcache,
4787 irp->regmap[X86_RECORD_RESI_REGNUM],
4788 &offset64);
4789 *addr = (uint32_t) (*addr + offset64);
4790 break;
4791 case 5:
4792 regcache_raw_read_unsigned (irp->regcache,
4793 irp->regmap[X86_RECORD_REDI_REGNUM],
4794 &offset64);
4795 *addr = (uint32_t) (*addr + offset64);
4796 break;
4797 case 6:
4798 regcache_raw_read_unsigned (irp->regcache,
4799 irp->regmap[X86_RECORD_REBP_REGNUM],
4800 &offset64);
4801 *addr = (uint32_t) (*addr + offset64);
4802 break;
4803 case 7:
4804 regcache_raw_read_unsigned (irp->regcache,
4805 irp->regmap[X86_RECORD_REBX_REGNUM],
4806 &offset64);
4807 *addr = (uint32_t) (*addr + offset64);
4808 break;
4809 }
4810 *addr &= 0xffff;
4811 }
4812
4813 no_rm:
4814 return 0;
4815 }
4816
4817 /* Record the address and contents of the memory that will be changed
4818 by the current instruction. Return -1 if something goes wrong, 0
4819 otherwise. */
4820
4821 static int
4822 i386_record_lea_modrm (struct i386_record_s *irp)
4823 {
4824 struct gdbarch *gdbarch = irp->gdbarch;
4825 uint64_t addr;
4826
4827 if (irp->override >= 0)
4828 {
4829 if (record_full_memory_query)
4830 {
4831 int q;
4832
4833 target_terminal_ours ();
4834 q = yquery (_("\
4835 Process record ignores the memory change of instruction at address %s\n\
4836 because it can't get the value of the segment register.\n\
4837 Do you want to stop the program?"),
4838 paddress (gdbarch, irp->orig_addr));
4839 target_terminal_inferior ();
4840 if (q)
4841 return -1;
4842 }
4843
4844 return 0;
4845 }
4846
4847 if (i386_record_lea_modrm_addr (irp, &addr))
4848 return -1;
4849
4850 if (record_full_arch_list_add_mem (addr, 1 << irp->ot))
4851 return -1;
4852
4853 return 0;
4854 }
4855
4856 /* Record the effects of a push operation. Return -1 if something
4857 goes wrong, 0 otherwise. */
4858
4859 static int
4860 i386_record_push (struct i386_record_s *irp, int size)
4861 {
4862 ULONGEST addr;
4863
4864 if (record_full_arch_list_add_reg (irp->regcache,
4865 irp->regmap[X86_RECORD_RESP_REGNUM]))
4866 return -1;
4867 regcache_raw_read_unsigned (irp->regcache,
4868 irp->regmap[X86_RECORD_RESP_REGNUM],
4869 &addr);
4870 if (record_full_arch_list_add_mem ((CORE_ADDR) addr - size, size))
4871 return -1;
4872
4873 return 0;
4874 }
4875
4876
4877 /* Defines contents to record. */
4878 #define I386_SAVE_FPU_REGS 0xfffd
4879 #define I386_SAVE_FPU_ENV 0xfffe
4880 #define I386_SAVE_FPU_ENV_REG_STACK 0xffff
4881
4882 /* Record the values of the floating point registers which will be
4883 changed by the current instruction. Returns -1 if something is
4884 wrong, 0 otherwise. */
4885
4886 static int i386_record_floats (struct gdbarch *gdbarch,
4887 struct i386_record_s *ir,
4888 uint32_t iregnum)
4889 {
4890 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4891 int i;
4892
4893 /* Oza: Because of floating point insn push/pop of fpu stack is going to
4894 happen. Currently we store st0-st7 registers, but we need not store all
4895 registers all the time, in future we use ftag register and record only
4896 those who are not marked as an empty. */
4897
4898 if (I386_SAVE_FPU_REGS == iregnum)
4899 {
4900 for (i = I387_ST0_REGNUM (tdep); i <= I387_ST0_REGNUM (tdep) + 7; i++)
4901 {
4902 if (record_full_arch_list_add_reg (ir->regcache, i))
4903 return -1;
4904 }
4905 }
4906 else if (I386_SAVE_FPU_ENV == iregnum)
4907 {
4908 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4909 {
4910 if (record_full_arch_list_add_reg (ir->regcache, i))
4911 return -1;
4912 }
4913 }
4914 else if (I386_SAVE_FPU_ENV_REG_STACK == iregnum)
4915 {
4916 for (i = I387_ST0_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4917 {
4918 if (record_full_arch_list_add_reg (ir->regcache, i))
4919 return -1;
4920 }
4921 }
4922 else if ((iregnum >= I387_ST0_REGNUM (tdep)) &&
4923 (iregnum <= I387_FOP_REGNUM (tdep)))
4924 {
4925 if (record_full_arch_list_add_reg (ir->regcache,iregnum))
4926 return -1;
4927 }
4928 else
4929 {
4930 /* Parameter error. */
4931 return -1;
4932 }
4933 if(I386_SAVE_FPU_ENV != iregnum)
4934 {
4935 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4936 {
4937 if (record_full_arch_list_add_reg (ir->regcache, i))
4938 return -1;
4939 }
4940 }
4941 return 0;
4942 }
4943
4944 /* Parse the current instruction, and record the values of the
4945 registers and memory that will be changed by the current
4946 instruction. Returns -1 if something goes wrong, 0 otherwise. */
4947
4948 #define I386_RECORD_FULL_ARCH_LIST_ADD_REG(regnum) \
4949 record_full_arch_list_add_reg (ir.regcache, ir.regmap[(regnum)])
4950
4951 int
4952 i386_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
4953 CORE_ADDR input_addr)
4954 {
4955 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4956 int prefixes = 0;
4957 int regnum = 0;
4958 uint32_t opcode;
4959 uint8_t opcode8;
4960 ULONGEST addr;
4961 gdb_byte buf[MAX_REGISTER_SIZE];
4962 struct i386_record_s ir;
4963 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4964 uint8_t rex_w = -1;
4965 uint8_t rex_r = 0;
4966
4967 memset (&ir, 0, sizeof (struct i386_record_s));
4968 ir.regcache = regcache;
4969 ir.addr = input_addr;
4970 ir.orig_addr = input_addr;
4971 ir.aflag = 1;
4972 ir.dflag = 1;
4973 ir.override = -1;
4974 ir.popl_esp_hack = 0;
4975 ir.regmap = tdep->record_regmap;
4976 ir.gdbarch = gdbarch;
4977
4978 if (record_debug > 1)
4979 fprintf_unfiltered (gdb_stdlog, "Process record: i386_process_record "
4980 "addr = %s\n",
4981 paddress (gdbarch, ir.addr));
4982
4983 /* prefixes */
4984 while (1)
4985 {
4986 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
4987 return -1;
4988 ir.addr++;
4989 switch (opcode8) /* Instruction prefixes */
4990 {
4991 case REPE_PREFIX_OPCODE:
4992 prefixes |= PREFIX_REPZ;
4993 break;
4994 case REPNE_PREFIX_OPCODE:
4995 prefixes |= PREFIX_REPNZ;
4996 break;
4997 case LOCK_PREFIX_OPCODE:
4998 prefixes |= PREFIX_LOCK;
4999 break;
5000 case CS_PREFIX_OPCODE:
5001 ir.override = X86_RECORD_CS_REGNUM;
5002 break;
5003 case SS_PREFIX_OPCODE:
5004 ir.override = X86_RECORD_SS_REGNUM;
5005 break;
5006 case DS_PREFIX_OPCODE:
5007 ir.override = X86_RECORD_DS_REGNUM;
5008 break;
5009 case ES_PREFIX_OPCODE:
5010 ir.override = X86_RECORD_ES_REGNUM;
5011 break;
5012 case FS_PREFIX_OPCODE:
5013 ir.override = X86_RECORD_FS_REGNUM;
5014 break;
5015 case GS_PREFIX_OPCODE:
5016 ir.override = X86_RECORD_GS_REGNUM;
5017 break;
5018 case DATA_PREFIX_OPCODE:
5019 prefixes |= PREFIX_DATA;
5020 break;
5021 case ADDR_PREFIX_OPCODE:
5022 prefixes |= PREFIX_ADDR;
5023 break;
5024 case 0x40: /* i386 inc %eax */
5025 case 0x41: /* i386 inc %ecx */
5026 case 0x42: /* i386 inc %edx */
5027 case 0x43: /* i386 inc %ebx */
5028 case 0x44: /* i386 inc %esp */
5029 case 0x45: /* i386 inc %ebp */
5030 case 0x46: /* i386 inc %esi */
5031 case 0x47: /* i386 inc %edi */
5032 case 0x48: /* i386 dec %eax */
5033 case 0x49: /* i386 dec %ecx */
5034 case 0x4a: /* i386 dec %edx */
5035 case 0x4b: /* i386 dec %ebx */
5036 case 0x4c: /* i386 dec %esp */
5037 case 0x4d: /* i386 dec %ebp */
5038 case 0x4e: /* i386 dec %esi */
5039 case 0x4f: /* i386 dec %edi */
5040 if (ir.regmap[X86_RECORD_R8_REGNUM]) /* 64 bit target */
5041 {
5042 /* REX */
5043 rex_w = (opcode8 >> 3) & 1;
5044 rex_r = (opcode8 & 0x4) << 1;
5045 ir.rex_x = (opcode8 & 0x2) << 2;
5046 ir.rex_b = (opcode8 & 0x1) << 3;
5047 }
5048 else /* 32 bit target */
5049 goto out_prefixes;
5050 break;
5051 default:
5052 goto out_prefixes;
5053 break;
5054 }
5055 }
5056 out_prefixes:
5057 if (ir.regmap[X86_RECORD_R8_REGNUM] && rex_w == 1)
5058 {
5059 ir.dflag = 2;
5060 }
5061 else
5062 {
5063 if (prefixes & PREFIX_DATA)
5064 ir.dflag ^= 1;
5065 }
5066 if (prefixes & PREFIX_ADDR)
5067 ir.aflag ^= 1;
5068 else if (ir.regmap[X86_RECORD_R8_REGNUM])
5069 ir.aflag = 2;
5070
5071 /* Now check op code. */
5072 opcode = (uint32_t) opcode8;
5073 reswitch:
5074 switch (opcode)
5075 {
5076 case 0x0f:
5077 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
5078 return -1;
5079 ir.addr++;
5080 opcode = (uint32_t) opcode8 | 0x0f00;
5081 goto reswitch;
5082 break;
5083
5084 case 0x00: /* arith & logic */
5085 case 0x01:
5086 case 0x02:
5087 case 0x03:
5088 case 0x04:
5089 case 0x05:
5090 case 0x08:
5091 case 0x09:
5092 case 0x0a:
5093 case 0x0b:
5094 case 0x0c:
5095 case 0x0d:
5096 case 0x10:
5097 case 0x11:
5098 case 0x12:
5099 case 0x13:
5100 case 0x14:
5101 case 0x15:
5102 case 0x18:
5103 case 0x19:
5104 case 0x1a:
5105 case 0x1b:
5106 case 0x1c:
5107 case 0x1d:
5108 case 0x20:
5109 case 0x21:
5110 case 0x22:
5111 case 0x23:
5112 case 0x24:
5113 case 0x25:
5114 case 0x28:
5115 case 0x29:
5116 case 0x2a:
5117 case 0x2b:
5118 case 0x2c:
5119 case 0x2d:
5120 case 0x30:
5121 case 0x31:
5122 case 0x32:
5123 case 0x33:
5124 case 0x34:
5125 case 0x35:
5126 case 0x38:
5127 case 0x39:
5128 case 0x3a:
5129 case 0x3b:
5130 case 0x3c:
5131 case 0x3d:
5132 if (((opcode >> 3) & 7) != OP_CMPL)
5133 {
5134 if ((opcode & 1) == 0)
5135 ir.ot = OT_BYTE;
5136 else
5137 ir.ot = ir.dflag + OT_WORD;
5138
5139 switch ((opcode >> 1) & 3)
5140 {
5141 case 0: /* OP Ev, Gv */
5142 if (i386_record_modrm (&ir))
5143 return -1;
5144 if (ir.mod != 3)
5145 {
5146 if (i386_record_lea_modrm (&ir))
5147 return -1;
5148 }
5149 else
5150 {
5151 ir.rm |= ir.rex_b;
5152 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5153 ir.rm &= 0x3;
5154 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5155 }
5156 break;
5157 case 1: /* OP Gv, Ev */
5158 if (i386_record_modrm (&ir))
5159 return -1;
5160 ir.reg |= rex_r;
5161 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5162 ir.reg &= 0x3;
5163 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5164 break;
5165 case 2: /* OP A, Iv */
5166 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5167 break;
5168 }
5169 }
5170 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5171 break;
5172
5173 case 0x80: /* GRP1 */
5174 case 0x81:
5175 case 0x82:
5176 case 0x83:
5177 if (i386_record_modrm (&ir))
5178 return -1;
5179
5180 if (ir.reg != OP_CMPL)
5181 {
5182 if ((opcode & 1) == 0)
5183 ir.ot = OT_BYTE;
5184 else
5185 ir.ot = ir.dflag + OT_WORD;
5186
5187 if (ir.mod != 3)
5188 {
5189 if (opcode == 0x83)
5190 ir.rip_offset = 1;
5191 else
5192 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5193 if (i386_record_lea_modrm (&ir))
5194 return -1;
5195 }
5196 else
5197 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5198 }
5199 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5200 break;
5201
5202 case 0x40: /* inc */
5203 case 0x41:
5204 case 0x42:
5205 case 0x43:
5206 case 0x44:
5207 case 0x45:
5208 case 0x46:
5209 case 0x47:
5210
5211 case 0x48: /* dec */
5212 case 0x49:
5213 case 0x4a:
5214 case 0x4b:
5215 case 0x4c:
5216 case 0x4d:
5217 case 0x4e:
5218 case 0x4f:
5219
5220 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 7);
5221 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5222 break;
5223
5224 case 0xf6: /* GRP3 */
5225 case 0xf7:
5226 if ((opcode & 1) == 0)
5227 ir.ot = OT_BYTE;
5228 else
5229 ir.ot = ir.dflag + OT_WORD;
5230 if (i386_record_modrm (&ir))
5231 return -1;
5232
5233 if (ir.mod != 3 && ir.reg == 0)
5234 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5235
5236 switch (ir.reg)
5237 {
5238 case 0: /* test */
5239 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5240 break;
5241 case 2: /* not */
5242 case 3: /* neg */
5243 if (ir.mod != 3)
5244 {
5245 if (i386_record_lea_modrm (&ir))
5246 return -1;
5247 }
5248 else
5249 {
5250 ir.rm |= ir.rex_b;
5251 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5252 ir.rm &= 0x3;
5253 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5254 }
5255 if (ir.reg == 3) /* neg */
5256 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5257 break;
5258 case 4: /* mul */
5259 case 5: /* imul */
5260 case 6: /* div */
5261 case 7: /* idiv */
5262 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5263 if (ir.ot != OT_BYTE)
5264 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5265 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5266 break;
5267 default:
5268 ir.addr -= 2;
5269 opcode = opcode << 8 | ir.modrm;
5270 goto no_support;
5271 break;
5272 }
5273 break;
5274
5275 case 0xfe: /* GRP4 */
5276 case 0xff: /* GRP5 */
5277 if (i386_record_modrm (&ir))
5278 return -1;
5279 if (ir.reg >= 2 && opcode == 0xfe)
5280 {
5281 ir.addr -= 2;
5282 opcode = opcode << 8 | ir.modrm;
5283 goto no_support;
5284 }
5285 switch (ir.reg)
5286 {
5287 case 0: /* inc */
5288 case 1: /* dec */
5289 if ((opcode & 1) == 0)
5290 ir.ot = OT_BYTE;
5291 else
5292 ir.ot = ir.dflag + OT_WORD;
5293 if (ir.mod != 3)
5294 {
5295 if (i386_record_lea_modrm (&ir))
5296 return -1;
5297 }
5298 else
5299 {
5300 ir.rm |= ir.rex_b;
5301 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5302 ir.rm &= 0x3;
5303 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5304 }
5305 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5306 break;
5307 case 2: /* call */
5308 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5309 ir.dflag = 2;
5310 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5311 return -1;
5312 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5313 break;
5314 case 3: /* lcall */
5315 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
5316 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5317 return -1;
5318 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5319 break;
5320 case 4: /* jmp */
5321 case 5: /* ljmp */
5322 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5323 break;
5324 case 6: /* push */
5325 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5326 ir.dflag = 2;
5327 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5328 return -1;
5329 break;
5330 default:
5331 ir.addr -= 2;
5332 opcode = opcode << 8 | ir.modrm;
5333 goto no_support;
5334 break;
5335 }
5336 break;
5337
5338 case 0x84: /* test */
5339 case 0x85:
5340 case 0xa8:
5341 case 0xa9:
5342 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5343 break;
5344
5345 case 0x98: /* CWDE/CBW */
5346 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5347 break;
5348
5349 case 0x99: /* CDQ/CWD */
5350 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5351 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5352 break;
5353
5354 case 0x0faf: /* imul */
5355 case 0x69:
5356 case 0x6b:
5357 ir.ot = ir.dflag + OT_WORD;
5358 if (i386_record_modrm (&ir))
5359 return -1;
5360 if (opcode == 0x69)
5361 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5362 else if (opcode == 0x6b)
5363 ir.rip_offset = 1;
5364 ir.reg |= rex_r;
5365 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5366 ir.reg &= 0x3;
5367 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5368 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5369 break;
5370
5371 case 0x0fc0: /* xadd */
5372 case 0x0fc1:
5373 if ((opcode & 1) == 0)
5374 ir.ot = OT_BYTE;
5375 else
5376 ir.ot = ir.dflag + OT_WORD;
5377 if (i386_record_modrm (&ir))
5378 return -1;
5379 ir.reg |= rex_r;
5380 if (ir.mod == 3)
5381 {
5382 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5383 ir.reg &= 0x3;
5384 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5385 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5386 ir.rm &= 0x3;
5387 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5388 }
5389 else
5390 {
5391 if (i386_record_lea_modrm (&ir))
5392 return -1;
5393 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5394 ir.reg &= 0x3;
5395 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5396 }
5397 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5398 break;
5399
5400 case 0x0fb0: /* cmpxchg */
5401 case 0x0fb1:
5402 if ((opcode & 1) == 0)
5403 ir.ot = OT_BYTE;
5404 else
5405 ir.ot = ir.dflag + OT_WORD;
5406 if (i386_record_modrm (&ir))
5407 return -1;
5408 if (ir.mod == 3)
5409 {
5410 ir.reg |= rex_r;
5411 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5412 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5413 ir.reg &= 0x3;
5414 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5415 }
5416 else
5417 {
5418 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5419 if (i386_record_lea_modrm (&ir))
5420 return -1;
5421 }
5422 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5423 break;
5424
5425 case 0x0fc7: /* cmpxchg8b */
5426 if (i386_record_modrm (&ir))
5427 return -1;
5428 if (ir.mod == 3)
5429 {
5430 ir.addr -= 2;
5431 opcode = opcode << 8 | ir.modrm;
5432 goto no_support;
5433 }
5434 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5435 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5436 if (i386_record_lea_modrm (&ir))
5437 return -1;
5438 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5439 break;
5440
5441 case 0x50: /* push */
5442 case 0x51:
5443 case 0x52:
5444 case 0x53:
5445 case 0x54:
5446 case 0x55:
5447 case 0x56:
5448 case 0x57:
5449 case 0x68:
5450 case 0x6a:
5451 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5452 ir.dflag = 2;
5453 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5454 return -1;
5455 break;
5456
5457 case 0x06: /* push es */
5458 case 0x0e: /* push cs */
5459 case 0x16: /* push ss */
5460 case 0x1e: /* push ds */
5461 if (ir.regmap[X86_RECORD_R8_REGNUM])
5462 {
5463 ir.addr -= 1;
5464 goto no_support;
5465 }
5466 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5467 return -1;
5468 break;
5469
5470 case 0x0fa0: /* push fs */
5471 case 0x0fa8: /* push gs */
5472 if (ir.regmap[X86_RECORD_R8_REGNUM])
5473 {
5474 ir.addr -= 2;
5475 goto no_support;
5476 }
5477 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5478 return -1;
5479 break;
5480
5481 case 0x60: /* pusha */
5482 if (ir.regmap[X86_RECORD_R8_REGNUM])
5483 {
5484 ir.addr -= 1;
5485 goto no_support;
5486 }
5487 if (i386_record_push (&ir, 1 << (ir.dflag + 4)))
5488 return -1;
5489 break;
5490
5491 case 0x58: /* pop */
5492 case 0x59:
5493 case 0x5a:
5494 case 0x5b:
5495 case 0x5c:
5496 case 0x5d:
5497 case 0x5e:
5498 case 0x5f:
5499 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5500 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
5501 break;
5502
5503 case 0x61: /* popa */
5504 if (ir.regmap[X86_RECORD_R8_REGNUM])
5505 {
5506 ir.addr -= 1;
5507 goto no_support;
5508 }
5509 for (regnum = X86_RECORD_REAX_REGNUM;
5510 regnum <= X86_RECORD_REDI_REGNUM;
5511 regnum++)
5512 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5513 break;
5514
5515 case 0x8f: /* pop */
5516 if (ir.regmap[X86_RECORD_R8_REGNUM])
5517 ir.ot = ir.dflag ? OT_QUAD : OT_WORD;
5518 else
5519 ir.ot = ir.dflag + OT_WORD;
5520 if (i386_record_modrm (&ir))
5521 return -1;
5522 if (ir.mod == 3)
5523 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5524 else
5525 {
5526 ir.popl_esp_hack = 1 << ir.ot;
5527 if (i386_record_lea_modrm (&ir))
5528 return -1;
5529 }
5530 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5531 break;
5532
5533 case 0xc8: /* enter */
5534 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
5535 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5536 ir.dflag = 2;
5537 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5538 return -1;
5539 break;
5540
5541 case 0xc9: /* leave */
5542 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5543 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
5544 break;
5545
5546 case 0x07: /* pop es */
5547 if (ir.regmap[X86_RECORD_R8_REGNUM])
5548 {
5549 ir.addr -= 1;
5550 goto no_support;
5551 }
5552 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5553 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_ES_REGNUM);
5554 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5555 break;
5556
5557 case 0x17: /* pop ss */
5558 if (ir.regmap[X86_RECORD_R8_REGNUM])
5559 {
5560 ir.addr -= 1;
5561 goto no_support;
5562 }
5563 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5564 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_SS_REGNUM);
5565 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5566 break;
5567
5568 case 0x1f: /* pop ds */
5569 if (ir.regmap[X86_RECORD_R8_REGNUM])
5570 {
5571 ir.addr -= 1;
5572 goto no_support;
5573 }
5574 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5575 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_DS_REGNUM);
5576 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5577 break;
5578
5579 case 0x0fa1: /* pop fs */
5580 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5581 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_FS_REGNUM);
5582 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5583 break;
5584
5585 case 0x0fa9: /* pop gs */
5586 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5587 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
5588 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5589 break;
5590
5591 case 0x88: /* mov */
5592 case 0x89:
5593 case 0xc6:
5594 case 0xc7:
5595 if ((opcode & 1) == 0)
5596 ir.ot = OT_BYTE;
5597 else
5598 ir.ot = ir.dflag + OT_WORD;
5599
5600 if (i386_record_modrm (&ir))
5601 return -1;
5602
5603 if (ir.mod != 3)
5604 {
5605 if (opcode == 0xc6 || opcode == 0xc7)
5606 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5607 if (i386_record_lea_modrm (&ir))
5608 return -1;
5609 }
5610 else
5611 {
5612 if (opcode == 0xc6 || opcode == 0xc7)
5613 ir.rm |= ir.rex_b;
5614 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5615 ir.rm &= 0x3;
5616 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5617 }
5618 break;
5619
5620 case 0x8a: /* mov */
5621 case 0x8b:
5622 if ((opcode & 1) == 0)
5623 ir.ot = OT_BYTE;
5624 else
5625 ir.ot = ir.dflag + OT_WORD;
5626 if (i386_record_modrm (&ir))
5627 return -1;
5628 ir.reg |= rex_r;
5629 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5630 ir.reg &= 0x3;
5631 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5632 break;
5633
5634 case 0x8c: /* mov seg */
5635 if (i386_record_modrm (&ir))
5636 return -1;
5637 if (ir.reg > 5)
5638 {
5639 ir.addr -= 2;
5640 opcode = opcode << 8 | ir.modrm;
5641 goto no_support;
5642 }
5643
5644 if (ir.mod == 3)
5645 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5646 else
5647 {
5648 ir.ot = OT_WORD;
5649 if (i386_record_lea_modrm (&ir))
5650 return -1;
5651 }
5652 break;
5653
5654 case 0x8e: /* mov seg */
5655 if (i386_record_modrm (&ir))
5656 return -1;
5657 switch (ir.reg)
5658 {
5659 case 0:
5660 regnum = X86_RECORD_ES_REGNUM;
5661 break;
5662 case 2:
5663 regnum = X86_RECORD_SS_REGNUM;
5664 break;
5665 case 3:
5666 regnum = X86_RECORD_DS_REGNUM;
5667 break;
5668 case 4:
5669 regnum = X86_RECORD_FS_REGNUM;
5670 break;
5671 case 5:
5672 regnum = X86_RECORD_GS_REGNUM;
5673 break;
5674 default:
5675 ir.addr -= 2;
5676 opcode = opcode << 8 | ir.modrm;
5677 goto no_support;
5678 break;
5679 }
5680 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5681 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5682 break;
5683
5684 case 0x0fb6: /* movzbS */
5685 case 0x0fb7: /* movzwS */
5686 case 0x0fbe: /* movsbS */
5687 case 0x0fbf: /* movswS */
5688 if (i386_record_modrm (&ir))
5689 return -1;
5690 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5691 break;
5692
5693 case 0x8d: /* lea */
5694 if (i386_record_modrm (&ir))
5695 return -1;
5696 if (ir.mod == 3)
5697 {
5698 ir.addr -= 2;
5699 opcode = opcode << 8 | ir.modrm;
5700 goto no_support;
5701 }
5702 ir.ot = ir.dflag;
5703 ir.reg |= rex_r;
5704 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5705 ir.reg &= 0x3;
5706 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5707 break;
5708
5709 case 0xa0: /* mov EAX */
5710 case 0xa1:
5711
5712 case 0xd7: /* xlat */
5713 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5714 break;
5715
5716 case 0xa2: /* mov EAX */
5717 case 0xa3:
5718 if (ir.override >= 0)
5719 {
5720 if (record_full_memory_query)
5721 {
5722 int q;
5723
5724 target_terminal_ours ();
5725 q = yquery (_("\
5726 Process record ignores the memory change of instruction at address %s\n\
5727 because it can't get the value of the segment register.\n\
5728 Do you want to stop the program?"),
5729 paddress (gdbarch, ir.orig_addr));
5730 target_terminal_inferior ();
5731 if (q)
5732 return -1;
5733 }
5734 }
5735 else
5736 {
5737 if ((opcode & 1) == 0)
5738 ir.ot = OT_BYTE;
5739 else
5740 ir.ot = ir.dflag + OT_WORD;
5741 if (ir.aflag == 2)
5742 {
5743 if (record_read_memory (gdbarch, ir.addr, buf, 8))
5744 return -1;
5745 ir.addr += 8;
5746 addr = extract_unsigned_integer (buf, 8, byte_order);
5747 }
5748 else if (ir.aflag)
5749 {
5750 if (record_read_memory (gdbarch, ir.addr, buf, 4))
5751 return -1;
5752 ir.addr += 4;
5753 addr = extract_unsigned_integer (buf, 4, byte_order);
5754 }
5755 else
5756 {
5757 if (record_read_memory (gdbarch, ir.addr, buf, 2))
5758 return -1;
5759 ir.addr += 2;
5760 addr = extract_unsigned_integer (buf, 2, byte_order);
5761 }
5762 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
5763 return -1;
5764 }
5765 break;
5766
5767 case 0xb0: /* mov R, Ib */
5768 case 0xb1:
5769 case 0xb2:
5770 case 0xb3:
5771 case 0xb4:
5772 case 0xb5:
5773 case 0xb6:
5774 case 0xb7:
5775 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((ir.regmap[X86_RECORD_R8_REGNUM])
5776 ? ((opcode & 0x7) | ir.rex_b)
5777 : ((opcode & 0x7) & 0x3));
5778 break;
5779
5780 case 0xb8: /* mov R, Iv */
5781 case 0xb9:
5782 case 0xba:
5783 case 0xbb:
5784 case 0xbc:
5785 case 0xbd:
5786 case 0xbe:
5787 case 0xbf:
5788 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
5789 break;
5790
5791 case 0x91: /* xchg R, EAX */
5792 case 0x92:
5793 case 0x93:
5794 case 0x94:
5795 case 0x95:
5796 case 0x96:
5797 case 0x97:
5798 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5799 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 0x7);
5800 break;
5801
5802 case 0x86: /* xchg Ev, Gv */
5803 case 0x87:
5804 if ((opcode & 1) == 0)
5805 ir.ot = OT_BYTE;
5806 else
5807 ir.ot = ir.dflag + OT_WORD;
5808 if (i386_record_modrm (&ir))
5809 return -1;
5810 if (ir.mod == 3)
5811 {
5812 ir.rm |= ir.rex_b;
5813 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5814 ir.rm &= 0x3;
5815 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5816 }
5817 else
5818 {
5819 if (i386_record_lea_modrm (&ir))
5820 return -1;
5821 }
5822 ir.reg |= rex_r;
5823 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5824 ir.reg &= 0x3;
5825 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5826 break;
5827
5828 case 0xc4: /* les Gv */
5829 case 0xc5: /* lds Gv */
5830 if (ir.regmap[X86_RECORD_R8_REGNUM])
5831 {
5832 ir.addr -= 1;
5833 goto no_support;
5834 }
5835 /* FALLTHROUGH */
5836 case 0x0fb2: /* lss Gv */
5837 case 0x0fb4: /* lfs Gv */
5838 case 0x0fb5: /* lgs Gv */
5839 if (i386_record_modrm (&ir))
5840 return -1;
5841 if (ir.mod == 3)
5842 {
5843 if (opcode > 0xff)
5844 ir.addr -= 3;
5845 else
5846 ir.addr -= 2;
5847 opcode = opcode << 8 | ir.modrm;
5848 goto no_support;
5849 }
5850 switch (opcode)
5851 {
5852 case 0xc4: /* les Gv */
5853 regnum = X86_RECORD_ES_REGNUM;
5854 break;
5855 case 0xc5: /* lds Gv */
5856 regnum = X86_RECORD_DS_REGNUM;
5857 break;
5858 case 0x0fb2: /* lss Gv */
5859 regnum = X86_RECORD_SS_REGNUM;
5860 break;
5861 case 0x0fb4: /* lfs Gv */
5862 regnum = X86_RECORD_FS_REGNUM;
5863 break;
5864 case 0x0fb5: /* lgs Gv */
5865 regnum = X86_RECORD_GS_REGNUM;
5866 break;
5867 }
5868 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5869 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5870 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5871 break;
5872
5873 case 0xc0: /* shifts */
5874 case 0xc1:
5875 case 0xd0:
5876 case 0xd1:
5877 case 0xd2:
5878 case 0xd3:
5879 if ((opcode & 1) == 0)
5880 ir.ot = OT_BYTE;
5881 else
5882 ir.ot = ir.dflag + OT_WORD;
5883 if (i386_record_modrm (&ir))
5884 return -1;
5885 if (ir.mod != 3 && (opcode == 0xd2 || opcode == 0xd3))
5886 {
5887 if (i386_record_lea_modrm (&ir))
5888 return -1;
5889 }
5890 else
5891 {
5892 ir.rm |= ir.rex_b;
5893 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5894 ir.rm &= 0x3;
5895 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5896 }
5897 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5898 break;
5899
5900 case 0x0fa4:
5901 case 0x0fa5:
5902 case 0x0fac:
5903 case 0x0fad:
5904 if (i386_record_modrm (&ir))
5905 return -1;
5906 if (ir.mod == 3)
5907 {
5908 if (record_full_arch_list_add_reg (ir.regcache, ir.rm))
5909 return -1;
5910 }
5911 else
5912 {
5913 if (i386_record_lea_modrm (&ir))
5914 return -1;
5915 }
5916 break;
5917
5918 case 0xd8: /* Floats. */
5919 case 0xd9:
5920 case 0xda:
5921 case 0xdb:
5922 case 0xdc:
5923 case 0xdd:
5924 case 0xde:
5925 case 0xdf:
5926 if (i386_record_modrm (&ir))
5927 return -1;
5928 ir.reg |= ((opcode & 7) << 3);
5929 if (ir.mod != 3)
5930 {
5931 /* Memory. */
5932 uint64_t addr64;
5933
5934 if (i386_record_lea_modrm_addr (&ir, &addr64))
5935 return -1;
5936 switch (ir.reg)
5937 {
5938 case 0x02:
5939 case 0x12:
5940 case 0x22:
5941 case 0x32:
5942 /* For fcom, ficom nothing to do. */
5943 break;
5944 case 0x03:
5945 case 0x13:
5946 case 0x23:
5947 case 0x33:
5948 /* For fcomp, ficomp pop FPU stack, store all. */
5949 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5950 return -1;
5951 break;
5952 case 0x00:
5953 case 0x01:
5954 case 0x04:
5955 case 0x05:
5956 case 0x06:
5957 case 0x07:
5958 case 0x10:
5959 case 0x11:
5960 case 0x14:
5961 case 0x15:
5962 case 0x16:
5963 case 0x17:
5964 case 0x20:
5965 case 0x21:
5966 case 0x24:
5967 case 0x25:
5968 case 0x26:
5969 case 0x27:
5970 case 0x30:
5971 case 0x31:
5972 case 0x34:
5973 case 0x35:
5974 case 0x36:
5975 case 0x37:
5976 /* For fadd, fmul, fsub, fsubr, fdiv, fdivr, fiadd, fimul,
5977 fisub, fisubr, fidiv, fidivr, modR/M.reg is an extension
5978 of code, always affects st(0) register. */
5979 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
5980 return -1;
5981 break;
5982 case 0x08:
5983 case 0x0a:
5984 case 0x0b:
5985 case 0x18:
5986 case 0x19:
5987 case 0x1a:
5988 case 0x1b:
5989 case 0x1d:
5990 case 0x28:
5991 case 0x29:
5992 case 0x2a:
5993 case 0x2b:
5994 case 0x38:
5995 case 0x39:
5996 case 0x3a:
5997 case 0x3b:
5998 case 0x3c:
5999 case 0x3d:
6000 switch (ir.reg & 7)
6001 {
6002 case 0:
6003 /* Handling fld, fild. */
6004 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6005 return -1;
6006 break;
6007 case 1:
6008 switch (ir.reg >> 4)
6009 {
6010 case 0:
6011 if (record_full_arch_list_add_mem (addr64, 4))
6012 return -1;
6013 break;
6014 case 2:
6015 if (record_full_arch_list_add_mem (addr64, 8))
6016 return -1;
6017 break;
6018 case 3:
6019 break;
6020 default:
6021 if (record_full_arch_list_add_mem (addr64, 2))
6022 return -1;
6023 break;
6024 }
6025 break;
6026 default:
6027 switch (ir.reg >> 4)
6028 {
6029 case 0:
6030 if (record_full_arch_list_add_mem (addr64, 4))
6031 return -1;
6032 if (3 == (ir.reg & 7))
6033 {
6034 /* For fstp m32fp. */
6035 if (i386_record_floats (gdbarch, &ir,
6036 I386_SAVE_FPU_REGS))
6037 return -1;
6038 }
6039 break;
6040 case 1:
6041 if (record_full_arch_list_add_mem (addr64, 4))
6042 return -1;
6043 if ((3 == (ir.reg & 7))
6044 || (5 == (ir.reg & 7))
6045 || (7 == (ir.reg & 7)))
6046 {
6047 /* For fstp insn. */
6048 if (i386_record_floats (gdbarch, &ir,
6049 I386_SAVE_FPU_REGS))
6050 return -1;
6051 }
6052 break;
6053 case 2:
6054 if (record_full_arch_list_add_mem (addr64, 8))
6055 return -1;
6056 if (3 == (ir.reg & 7))
6057 {
6058 /* For fstp m64fp. */
6059 if (i386_record_floats (gdbarch, &ir,
6060 I386_SAVE_FPU_REGS))
6061 return -1;
6062 }
6063 break;
6064 case 3:
6065 if ((3 <= (ir.reg & 7)) && (6 <= (ir.reg & 7)))
6066 {
6067 /* For fistp, fbld, fild, fbstp. */
6068 if (i386_record_floats (gdbarch, &ir,
6069 I386_SAVE_FPU_REGS))
6070 return -1;
6071 }
6072 /* Fall through */
6073 default:
6074 if (record_full_arch_list_add_mem (addr64, 2))
6075 return -1;
6076 break;
6077 }
6078 break;
6079 }
6080 break;
6081 case 0x0c:
6082 /* Insn fldenv. */
6083 if (i386_record_floats (gdbarch, &ir,
6084 I386_SAVE_FPU_ENV_REG_STACK))
6085 return -1;
6086 break;
6087 case 0x0d:
6088 /* Insn fldcw. */
6089 if (i386_record_floats (gdbarch, &ir, I387_FCTRL_REGNUM (tdep)))
6090 return -1;
6091 break;
6092 case 0x2c:
6093 /* Insn frstor. */
6094 if (i386_record_floats (gdbarch, &ir,
6095 I386_SAVE_FPU_ENV_REG_STACK))
6096 return -1;
6097 break;
6098 case 0x0e:
6099 if (ir.dflag)
6100 {
6101 if (record_full_arch_list_add_mem (addr64, 28))
6102 return -1;
6103 }
6104 else
6105 {
6106 if (record_full_arch_list_add_mem (addr64, 14))
6107 return -1;
6108 }
6109 break;
6110 case 0x0f:
6111 case 0x2f:
6112 if (record_full_arch_list_add_mem (addr64, 2))
6113 return -1;
6114 /* Insn fstp, fbstp. */
6115 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6116 return -1;
6117 break;
6118 case 0x1f:
6119 case 0x3e:
6120 if (record_full_arch_list_add_mem (addr64, 10))
6121 return -1;
6122 break;
6123 case 0x2e:
6124 if (ir.dflag)
6125 {
6126 if (record_full_arch_list_add_mem (addr64, 28))
6127 return -1;
6128 addr64 += 28;
6129 }
6130 else
6131 {
6132 if (record_full_arch_list_add_mem (addr64, 14))
6133 return -1;
6134 addr64 += 14;
6135 }
6136 if (record_full_arch_list_add_mem (addr64, 80))
6137 return -1;
6138 /* Insn fsave. */
6139 if (i386_record_floats (gdbarch, &ir,
6140 I386_SAVE_FPU_ENV_REG_STACK))
6141 return -1;
6142 break;
6143 case 0x3f:
6144 if (record_full_arch_list_add_mem (addr64, 8))
6145 return -1;
6146 /* Insn fistp. */
6147 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6148 return -1;
6149 break;
6150 default:
6151 ir.addr -= 2;
6152 opcode = opcode << 8 | ir.modrm;
6153 goto no_support;
6154 break;
6155 }
6156 }
6157 /* Opcode is an extension of modR/M byte. */
6158 else
6159 {
6160 switch (opcode)
6161 {
6162 case 0xd8:
6163 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
6164 return -1;
6165 break;
6166 case 0xd9:
6167 if (0x0c == (ir.modrm >> 4))
6168 {
6169 if ((ir.modrm & 0x0f) <= 7)
6170 {
6171 if (i386_record_floats (gdbarch, &ir,
6172 I386_SAVE_FPU_REGS))
6173 return -1;
6174 }
6175 else
6176 {
6177 if (i386_record_floats (gdbarch, &ir,
6178 I387_ST0_REGNUM (tdep)))
6179 return -1;
6180 /* If only st(0) is changing, then we have already
6181 recorded. */
6182 if ((ir.modrm & 0x0f) - 0x08)
6183 {
6184 if (i386_record_floats (gdbarch, &ir,
6185 I387_ST0_REGNUM (tdep) +
6186 ((ir.modrm & 0x0f) - 0x08)))
6187 return -1;
6188 }
6189 }
6190 }
6191 else
6192 {
6193 switch (ir.modrm)
6194 {
6195 case 0xe0:
6196 case 0xe1:
6197 case 0xf0:
6198 case 0xf5:
6199 case 0xf8:
6200 case 0xfa:
6201 case 0xfc:
6202 case 0xfe:
6203 case 0xff:
6204 if (i386_record_floats (gdbarch, &ir,
6205 I387_ST0_REGNUM (tdep)))
6206 return -1;
6207 break;
6208 case 0xf1:
6209 case 0xf2:
6210 case 0xf3:
6211 case 0xf4:
6212 case 0xf6:
6213 case 0xf7:
6214 case 0xe8:
6215 case 0xe9:
6216 case 0xea:
6217 case 0xeb:
6218 case 0xec:
6219 case 0xed:
6220 case 0xee:
6221 case 0xf9:
6222 case 0xfb:
6223 if (i386_record_floats (gdbarch, &ir,
6224 I386_SAVE_FPU_REGS))
6225 return -1;
6226 break;
6227 case 0xfd:
6228 if (i386_record_floats (gdbarch, &ir,
6229 I387_ST0_REGNUM (tdep)))
6230 return -1;
6231 if (i386_record_floats (gdbarch, &ir,
6232 I387_ST0_REGNUM (tdep) + 1))
6233 return -1;
6234 break;
6235 }
6236 }
6237 break;
6238 case 0xda:
6239 if (0xe9 == ir.modrm)
6240 {
6241 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6242 return -1;
6243 }
6244 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
6245 {
6246 if (i386_record_floats (gdbarch, &ir,
6247 I387_ST0_REGNUM (tdep)))
6248 return -1;
6249 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
6250 {
6251 if (i386_record_floats (gdbarch, &ir,
6252 I387_ST0_REGNUM (tdep) +
6253 (ir.modrm & 0x0f)))
6254 return -1;
6255 }
6256 else if ((ir.modrm & 0x0f) - 0x08)
6257 {
6258 if (i386_record_floats (gdbarch, &ir,
6259 I387_ST0_REGNUM (tdep) +
6260 ((ir.modrm & 0x0f) - 0x08)))
6261 return -1;
6262 }
6263 }
6264 break;
6265 case 0xdb:
6266 if (0xe3 == ir.modrm)
6267 {
6268 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_ENV))
6269 return -1;
6270 }
6271 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
6272 {
6273 if (i386_record_floats (gdbarch, &ir,
6274 I387_ST0_REGNUM (tdep)))
6275 return -1;
6276 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
6277 {
6278 if (i386_record_floats (gdbarch, &ir,
6279 I387_ST0_REGNUM (tdep) +
6280 (ir.modrm & 0x0f)))
6281 return -1;
6282 }
6283 else if ((ir.modrm & 0x0f) - 0x08)
6284 {
6285 if (i386_record_floats (gdbarch, &ir,
6286 I387_ST0_REGNUM (tdep) +
6287 ((ir.modrm & 0x0f) - 0x08)))
6288 return -1;
6289 }
6290 }
6291 break;
6292 case 0xdc:
6293 if ((0x0c == ir.modrm >> 4)
6294 || (0x0d == ir.modrm >> 4)
6295 || (0x0f == ir.modrm >> 4))
6296 {
6297 if ((ir.modrm & 0x0f) <= 7)
6298 {
6299 if (i386_record_floats (gdbarch, &ir,
6300 I387_ST0_REGNUM (tdep) +
6301 (ir.modrm & 0x0f)))
6302 return -1;
6303 }
6304 else
6305 {
6306 if (i386_record_floats (gdbarch, &ir,
6307 I387_ST0_REGNUM (tdep) +
6308 ((ir.modrm & 0x0f) - 0x08)))
6309 return -1;
6310 }
6311 }
6312 break;
6313 case 0xdd:
6314 if (0x0c == ir.modrm >> 4)
6315 {
6316 if (i386_record_floats (gdbarch, &ir,
6317 I387_FTAG_REGNUM (tdep)))
6318 return -1;
6319 }
6320 else if ((0x0d == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
6321 {
6322 if ((ir.modrm & 0x0f) <= 7)
6323 {
6324 if (i386_record_floats (gdbarch, &ir,
6325 I387_ST0_REGNUM (tdep) +
6326 (ir.modrm & 0x0f)))
6327 return -1;
6328 }
6329 else
6330 {
6331 if (i386_record_floats (gdbarch, &ir,
6332 I386_SAVE_FPU_REGS))
6333 return -1;
6334 }
6335 }
6336 break;
6337 case 0xde:
6338 if ((0x0c == ir.modrm >> 4)
6339 || (0x0e == ir.modrm >> 4)
6340 || (0x0f == ir.modrm >> 4)
6341 || (0xd9 == ir.modrm))
6342 {
6343 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6344 return -1;
6345 }
6346 break;
6347 case 0xdf:
6348 if (0xe0 == ir.modrm)
6349 {
6350 if (record_full_arch_list_add_reg (ir.regcache,
6351 I386_EAX_REGNUM))
6352 return -1;
6353 }
6354 else if ((0x0f == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
6355 {
6356 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6357 return -1;
6358 }
6359 break;
6360 }
6361 }
6362 break;
6363 /* string ops */
6364 case 0xa4: /* movsS */
6365 case 0xa5:
6366 case 0xaa: /* stosS */
6367 case 0xab:
6368 case 0x6c: /* insS */
6369 case 0x6d:
6370 regcache_raw_read_unsigned (ir.regcache,
6371 ir.regmap[X86_RECORD_RECX_REGNUM],
6372 &addr);
6373 if (addr)
6374 {
6375 ULONGEST es, ds;
6376
6377 if ((opcode & 1) == 0)
6378 ir.ot = OT_BYTE;
6379 else
6380 ir.ot = ir.dflag + OT_WORD;
6381 regcache_raw_read_unsigned (ir.regcache,
6382 ir.regmap[X86_RECORD_REDI_REGNUM],
6383 &addr);
6384
6385 regcache_raw_read_unsigned (ir.regcache,
6386 ir.regmap[X86_RECORD_ES_REGNUM],
6387 &es);
6388 regcache_raw_read_unsigned (ir.regcache,
6389 ir.regmap[X86_RECORD_DS_REGNUM],
6390 &ds);
6391 if (ir.aflag && (es != ds))
6392 {
6393 /* addr += ((uint32_t) read_register (I386_ES_REGNUM)) << 4; */
6394 if (record_full_memory_query)
6395 {
6396 int q;
6397
6398 target_terminal_ours ();
6399 q = yquery (_("\
6400 Process record ignores the memory change of instruction at address %s\n\
6401 because it can't get the value of the segment register.\n\
6402 Do you want to stop the program?"),
6403 paddress (gdbarch, ir.orig_addr));
6404 target_terminal_inferior ();
6405 if (q)
6406 return -1;
6407 }
6408 }
6409 else
6410 {
6411 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
6412 return -1;
6413 }
6414
6415 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6416 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6417 if (opcode == 0xa4 || opcode == 0xa5)
6418 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6419 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6420 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6421 }
6422 break;
6423
6424 case 0xa6: /* cmpsS */
6425 case 0xa7:
6426 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6427 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6428 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6429 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6430 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6431 break;
6432
6433 case 0xac: /* lodsS */
6434 case 0xad:
6435 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6436 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6437 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6438 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6439 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6440 break;
6441
6442 case 0xae: /* scasS */
6443 case 0xaf:
6444 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6445 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6446 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6447 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6448 break;
6449
6450 case 0x6e: /* outsS */
6451 case 0x6f:
6452 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6453 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6454 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6455 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6456 break;
6457
6458 case 0xe4: /* port I/O */
6459 case 0xe5:
6460 case 0xec:
6461 case 0xed:
6462 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6463 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6464 break;
6465
6466 case 0xe6:
6467 case 0xe7:
6468 case 0xee:
6469 case 0xef:
6470 break;
6471
6472 /* control */
6473 case 0xc2: /* ret im */
6474 case 0xc3: /* ret */
6475 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6476 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6477 break;
6478
6479 case 0xca: /* lret im */
6480 case 0xcb: /* lret */
6481 case 0xcf: /* iret */
6482 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
6483 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6484 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6485 break;
6486
6487 case 0xe8: /* call im */
6488 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6489 ir.dflag = 2;
6490 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6491 return -1;
6492 break;
6493
6494 case 0x9a: /* lcall im */
6495 if (ir.regmap[X86_RECORD_R8_REGNUM])
6496 {
6497 ir.addr -= 1;
6498 goto no_support;
6499 }
6500 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
6501 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6502 return -1;
6503 break;
6504
6505 case 0xe9: /* jmp im */
6506 case 0xea: /* ljmp im */
6507 case 0xeb: /* jmp Jb */
6508 case 0x70: /* jcc Jb */
6509 case 0x71:
6510 case 0x72:
6511 case 0x73:
6512 case 0x74:
6513 case 0x75:
6514 case 0x76:
6515 case 0x77:
6516 case 0x78:
6517 case 0x79:
6518 case 0x7a:
6519 case 0x7b:
6520 case 0x7c:
6521 case 0x7d:
6522 case 0x7e:
6523 case 0x7f:
6524 case 0x0f80: /* jcc Jv */
6525 case 0x0f81:
6526 case 0x0f82:
6527 case 0x0f83:
6528 case 0x0f84:
6529 case 0x0f85:
6530 case 0x0f86:
6531 case 0x0f87:
6532 case 0x0f88:
6533 case 0x0f89:
6534 case 0x0f8a:
6535 case 0x0f8b:
6536 case 0x0f8c:
6537 case 0x0f8d:
6538 case 0x0f8e:
6539 case 0x0f8f:
6540 break;
6541
6542 case 0x0f90: /* setcc Gv */
6543 case 0x0f91:
6544 case 0x0f92:
6545 case 0x0f93:
6546 case 0x0f94:
6547 case 0x0f95:
6548 case 0x0f96:
6549 case 0x0f97:
6550 case 0x0f98:
6551 case 0x0f99:
6552 case 0x0f9a:
6553 case 0x0f9b:
6554 case 0x0f9c:
6555 case 0x0f9d:
6556 case 0x0f9e:
6557 case 0x0f9f:
6558 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6559 ir.ot = OT_BYTE;
6560 if (i386_record_modrm (&ir))
6561 return -1;
6562 if (ir.mod == 3)
6563 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rex_b ? (ir.rm | ir.rex_b)
6564 : (ir.rm & 0x3));
6565 else
6566 {
6567 if (i386_record_lea_modrm (&ir))
6568 return -1;
6569 }
6570 break;
6571
6572 case 0x0f40: /* cmov Gv, Ev */
6573 case 0x0f41:
6574 case 0x0f42:
6575 case 0x0f43:
6576 case 0x0f44:
6577 case 0x0f45:
6578 case 0x0f46:
6579 case 0x0f47:
6580 case 0x0f48:
6581 case 0x0f49:
6582 case 0x0f4a:
6583 case 0x0f4b:
6584 case 0x0f4c:
6585 case 0x0f4d:
6586 case 0x0f4e:
6587 case 0x0f4f:
6588 if (i386_record_modrm (&ir))
6589 return -1;
6590 ir.reg |= rex_r;
6591 if (ir.dflag == OT_BYTE)
6592 ir.reg &= 0x3;
6593 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
6594 break;
6595
6596 /* flags */
6597 case 0x9c: /* pushf */
6598 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6599 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6600 ir.dflag = 2;
6601 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6602 return -1;
6603 break;
6604
6605 case 0x9d: /* popf */
6606 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6607 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6608 break;
6609
6610 case 0x9e: /* sahf */
6611 if (ir.regmap[X86_RECORD_R8_REGNUM])
6612 {
6613 ir.addr -= 1;
6614 goto no_support;
6615 }
6616 /* FALLTHROUGH */
6617 case 0xf5: /* cmc */
6618 case 0xf8: /* clc */
6619 case 0xf9: /* stc */
6620 case 0xfc: /* cld */
6621 case 0xfd: /* std */
6622 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6623 break;
6624
6625 case 0x9f: /* lahf */
6626 if (ir.regmap[X86_RECORD_R8_REGNUM])
6627 {
6628 ir.addr -= 1;
6629 goto no_support;
6630 }
6631 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6632 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6633 break;
6634
6635 /* bit operations */
6636 case 0x0fba: /* bt/bts/btr/btc Gv, im */
6637 ir.ot = ir.dflag + OT_WORD;
6638 if (i386_record_modrm (&ir))
6639 return -1;
6640 if (ir.reg < 4)
6641 {
6642 ir.addr -= 2;
6643 opcode = opcode << 8 | ir.modrm;
6644 goto no_support;
6645 }
6646 if (ir.reg != 4)
6647 {
6648 if (ir.mod == 3)
6649 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6650 else
6651 {
6652 if (i386_record_lea_modrm (&ir))
6653 return -1;
6654 }
6655 }
6656 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6657 break;
6658
6659 case 0x0fa3: /* bt Gv, Ev */
6660 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6661 break;
6662
6663 case 0x0fab: /* bts */
6664 case 0x0fb3: /* btr */
6665 case 0x0fbb: /* btc */
6666 ir.ot = ir.dflag + OT_WORD;
6667 if (i386_record_modrm (&ir))
6668 return -1;
6669 if (ir.mod == 3)
6670 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6671 else
6672 {
6673 uint64_t addr64;
6674 if (i386_record_lea_modrm_addr (&ir, &addr64))
6675 return -1;
6676 regcache_raw_read_unsigned (ir.regcache,
6677 ir.regmap[ir.reg | rex_r],
6678 &addr);
6679 switch (ir.dflag)
6680 {
6681 case 0:
6682 addr64 += ((int16_t) addr >> 4) << 4;
6683 break;
6684 case 1:
6685 addr64 += ((int32_t) addr >> 5) << 5;
6686 break;
6687 case 2:
6688 addr64 += ((int64_t) addr >> 6) << 6;
6689 break;
6690 }
6691 if (record_full_arch_list_add_mem (addr64, 1 << ir.ot))
6692 return -1;
6693 if (i386_record_lea_modrm (&ir))
6694 return -1;
6695 }
6696 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6697 break;
6698
6699 case 0x0fbc: /* bsf */
6700 case 0x0fbd: /* bsr */
6701 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6702 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6703 break;
6704
6705 /* bcd */
6706 case 0x27: /* daa */
6707 case 0x2f: /* das */
6708 case 0x37: /* aaa */
6709 case 0x3f: /* aas */
6710 case 0xd4: /* aam */
6711 case 0xd5: /* aad */
6712 if (ir.regmap[X86_RECORD_R8_REGNUM])
6713 {
6714 ir.addr -= 1;
6715 goto no_support;
6716 }
6717 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6718 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6719 break;
6720
6721 /* misc */
6722 case 0x90: /* nop */
6723 if (prefixes & PREFIX_LOCK)
6724 {
6725 ir.addr -= 1;
6726 goto no_support;
6727 }
6728 break;
6729
6730 case 0x9b: /* fwait */
6731 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
6732 return -1;
6733 opcode = (uint32_t) opcode8;
6734 ir.addr++;
6735 goto reswitch;
6736 break;
6737
6738 /* XXX */
6739 case 0xcc: /* int3 */
6740 printf_unfiltered (_("Process record does not support instruction "
6741 "int3.\n"));
6742 ir.addr -= 1;
6743 goto no_support;
6744 break;
6745
6746 /* XXX */
6747 case 0xcd: /* int */
6748 {
6749 int ret;
6750 uint8_t interrupt;
6751 if (record_read_memory (gdbarch, ir.addr, &interrupt, 1))
6752 return -1;
6753 ir.addr++;
6754 if (interrupt != 0x80
6755 || tdep->i386_intx80_record == NULL)
6756 {
6757 printf_unfiltered (_("Process record does not support "
6758 "instruction int 0x%02x.\n"),
6759 interrupt);
6760 ir.addr -= 2;
6761 goto no_support;
6762 }
6763 ret = tdep->i386_intx80_record (ir.regcache);
6764 if (ret)
6765 return ret;
6766 }
6767 break;
6768
6769 /* XXX */
6770 case 0xce: /* into */
6771 printf_unfiltered (_("Process record does not support "
6772 "instruction into.\n"));
6773 ir.addr -= 1;
6774 goto no_support;
6775 break;
6776
6777 case 0xfa: /* cli */
6778 case 0xfb: /* sti */
6779 break;
6780
6781 case 0x62: /* bound */
6782 printf_unfiltered (_("Process record does not support "
6783 "instruction bound.\n"));
6784 ir.addr -= 1;
6785 goto no_support;
6786 break;
6787
6788 case 0x0fc8: /* bswap reg */
6789 case 0x0fc9:
6790 case 0x0fca:
6791 case 0x0fcb:
6792 case 0x0fcc:
6793 case 0x0fcd:
6794 case 0x0fce:
6795 case 0x0fcf:
6796 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 7) | ir.rex_b);
6797 break;
6798
6799 case 0xd6: /* salc */
6800 if (ir.regmap[X86_RECORD_R8_REGNUM])
6801 {
6802 ir.addr -= 1;
6803 goto no_support;
6804 }
6805 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6806 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6807 break;
6808
6809 case 0xe0: /* loopnz */
6810 case 0xe1: /* loopz */
6811 case 0xe2: /* loop */
6812 case 0xe3: /* jecxz */
6813 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6814 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6815 break;
6816
6817 case 0x0f30: /* wrmsr */
6818 printf_unfiltered (_("Process record does not support "
6819 "instruction wrmsr.\n"));
6820 ir.addr -= 2;
6821 goto no_support;
6822 break;
6823
6824 case 0x0f32: /* rdmsr */
6825 printf_unfiltered (_("Process record does not support "
6826 "instruction rdmsr.\n"));
6827 ir.addr -= 2;
6828 goto no_support;
6829 break;
6830
6831 case 0x0f31: /* rdtsc */
6832 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6833 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6834 break;
6835
6836 case 0x0f34: /* sysenter */
6837 {
6838 int ret;
6839 if (ir.regmap[X86_RECORD_R8_REGNUM])
6840 {
6841 ir.addr -= 2;
6842 goto no_support;
6843 }
6844 if (tdep->i386_sysenter_record == NULL)
6845 {
6846 printf_unfiltered (_("Process record does not support "
6847 "instruction sysenter.\n"));
6848 ir.addr -= 2;
6849 goto no_support;
6850 }
6851 ret = tdep->i386_sysenter_record (ir.regcache);
6852 if (ret)
6853 return ret;
6854 }
6855 break;
6856
6857 case 0x0f35: /* sysexit */
6858 printf_unfiltered (_("Process record does not support "
6859 "instruction sysexit.\n"));
6860 ir.addr -= 2;
6861 goto no_support;
6862 break;
6863
6864 case 0x0f05: /* syscall */
6865 {
6866 int ret;
6867 if (tdep->i386_syscall_record == NULL)
6868 {
6869 printf_unfiltered (_("Process record does not support "
6870 "instruction syscall.\n"));
6871 ir.addr -= 2;
6872 goto no_support;
6873 }
6874 ret = tdep->i386_syscall_record (ir.regcache);
6875 if (ret)
6876 return ret;
6877 }
6878 break;
6879
6880 case 0x0f07: /* sysret */
6881 printf_unfiltered (_("Process record does not support "
6882 "instruction sysret.\n"));
6883 ir.addr -= 2;
6884 goto no_support;
6885 break;
6886
6887 case 0x0fa2: /* cpuid */
6888 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6889 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6890 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6891 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
6892 break;
6893
6894 case 0xf4: /* hlt */
6895 printf_unfiltered (_("Process record does not support "
6896 "instruction hlt.\n"));
6897 ir.addr -= 1;
6898 goto no_support;
6899 break;
6900
6901 case 0x0f00:
6902 if (i386_record_modrm (&ir))
6903 return -1;
6904 switch (ir.reg)
6905 {
6906 case 0: /* sldt */
6907 case 1: /* str */
6908 if (ir.mod == 3)
6909 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6910 else
6911 {
6912 ir.ot = OT_WORD;
6913 if (i386_record_lea_modrm (&ir))
6914 return -1;
6915 }
6916 break;
6917 case 2: /* lldt */
6918 case 3: /* ltr */
6919 break;
6920 case 4: /* verr */
6921 case 5: /* verw */
6922 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6923 break;
6924 default:
6925 ir.addr -= 3;
6926 opcode = opcode << 8 | ir.modrm;
6927 goto no_support;
6928 break;
6929 }
6930 break;
6931
6932 case 0x0f01:
6933 if (i386_record_modrm (&ir))
6934 return -1;
6935 switch (ir.reg)
6936 {
6937 case 0: /* sgdt */
6938 {
6939 uint64_t addr64;
6940
6941 if (ir.mod == 3)
6942 {
6943 ir.addr -= 3;
6944 opcode = opcode << 8 | ir.modrm;
6945 goto no_support;
6946 }
6947 if (ir.override >= 0)
6948 {
6949 if (record_full_memory_query)
6950 {
6951 int q;
6952
6953 target_terminal_ours ();
6954 q = yquery (_("\
6955 Process record ignores the memory change of instruction at address %s\n\
6956 because it can't get the value of the segment register.\n\
6957 Do you want to stop the program?"),
6958 paddress (gdbarch, ir.orig_addr));
6959 target_terminal_inferior ();
6960 if (q)
6961 return -1;
6962 }
6963 }
6964 else
6965 {
6966 if (i386_record_lea_modrm_addr (&ir, &addr64))
6967 return -1;
6968 if (record_full_arch_list_add_mem (addr64, 2))
6969 return -1;
6970 addr64 += 2;
6971 if (ir.regmap[X86_RECORD_R8_REGNUM])
6972 {
6973 if (record_full_arch_list_add_mem (addr64, 8))
6974 return -1;
6975 }
6976 else
6977 {
6978 if (record_full_arch_list_add_mem (addr64, 4))
6979 return -1;
6980 }
6981 }
6982 }
6983 break;
6984 case 1:
6985 if (ir.mod == 3)
6986 {
6987 switch (ir.rm)
6988 {
6989 case 0: /* monitor */
6990 break;
6991 case 1: /* mwait */
6992 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6993 break;
6994 default:
6995 ir.addr -= 3;
6996 opcode = opcode << 8 | ir.modrm;
6997 goto no_support;
6998 break;
6999 }
7000 }
7001 else
7002 {
7003 /* sidt */
7004 if (ir.override >= 0)
7005 {
7006 if (record_full_memory_query)
7007 {
7008 int q;
7009
7010 target_terminal_ours ();
7011 q = yquery (_("\
7012 Process record ignores the memory change of instruction at address %s\n\
7013 because it can't get the value of the segment register.\n\
7014 Do you want to stop the program?"),
7015 paddress (gdbarch, ir.orig_addr));
7016 target_terminal_inferior ();
7017 if (q)
7018 return -1;
7019 }
7020 }
7021 else
7022 {
7023 uint64_t addr64;
7024
7025 if (i386_record_lea_modrm_addr (&ir, &addr64))
7026 return -1;
7027 if (record_full_arch_list_add_mem (addr64, 2))
7028 return -1;
7029 addr64 += 2;
7030 if (ir.regmap[X86_RECORD_R8_REGNUM])
7031 {
7032 if (record_full_arch_list_add_mem (addr64, 8))
7033 return -1;
7034 }
7035 else
7036 {
7037 if (record_full_arch_list_add_mem (addr64, 4))
7038 return -1;
7039 }
7040 }
7041 }
7042 break;
7043 case 2: /* lgdt */
7044 if (ir.mod == 3)
7045 {
7046 /* xgetbv */
7047 if (ir.rm == 0)
7048 {
7049 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7050 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7051 break;
7052 }
7053 /* xsetbv */
7054 else if (ir.rm == 1)
7055 break;
7056 }
7057 case 3: /* lidt */
7058 if (ir.mod == 3)
7059 {
7060 ir.addr -= 3;
7061 opcode = opcode << 8 | ir.modrm;
7062 goto no_support;
7063 }
7064 break;
7065 case 4: /* smsw */
7066 if (ir.mod == 3)
7067 {
7068 if (record_full_arch_list_add_reg (ir.regcache, ir.rm | ir.rex_b))
7069 return -1;
7070 }
7071 else
7072 {
7073 ir.ot = OT_WORD;
7074 if (i386_record_lea_modrm (&ir))
7075 return -1;
7076 }
7077 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7078 break;
7079 case 6: /* lmsw */
7080 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7081 break;
7082 case 7: /* invlpg */
7083 if (ir.mod == 3)
7084 {
7085 if (ir.rm == 0 && ir.regmap[X86_RECORD_R8_REGNUM])
7086 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
7087 else
7088 {
7089 ir.addr -= 3;
7090 opcode = opcode << 8 | ir.modrm;
7091 goto no_support;
7092 }
7093 }
7094 else
7095 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7096 break;
7097 default:
7098 ir.addr -= 3;
7099 opcode = opcode << 8 | ir.modrm;
7100 goto no_support;
7101 break;
7102 }
7103 break;
7104
7105 case 0x0f08: /* invd */
7106 case 0x0f09: /* wbinvd */
7107 break;
7108
7109 case 0x63: /* arpl */
7110 if (i386_record_modrm (&ir))
7111 return -1;
7112 if (ir.mod == 3 || ir.regmap[X86_RECORD_R8_REGNUM])
7113 {
7114 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.regmap[X86_RECORD_R8_REGNUM]
7115 ? (ir.reg | rex_r) : ir.rm);
7116 }
7117 else
7118 {
7119 ir.ot = ir.dflag ? OT_LONG : OT_WORD;
7120 if (i386_record_lea_modrm (&ir))
7121 return -1;
7122 }
7123 if (!ir.regmap[X86_RECORD_R8_REGNUM])
7124 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7125 break;
7126
7127 case 0x0f02: /* lar */
7128 case 0x0f03: /* lsl */
7129 if (i386_record_modrm (&ir))
7130 return -1;
7131 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7132 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7133 break;
7134
7135 case 0x0f18:
7136 if (i386_record_modrm (&ir))
7137 return -1;
7138 if (ir.mod == 3 && ir.reg == 3)
7139 {
7140 ir.addr -= 3;
7141 opcode = opcode << 8 | ir.modrm;
7142 goto no_support;
7143 }
7144 break;
7145
7146 case 0x0f19:
7147 case 0x0f1a:
7148 case 0x0f1b:
7149 case 0x0f1c:
7150 case 0x0f1d:
7151 case 0x0f1e:
7152 case 0x0f1f:
7153 /* nop (multi byte) */
7154 break;
7155
7156 case 0x0f20: /* mov reg, crN */
7157 case 0x0f22: /* mov crN, reg */
7158 if (i386_record_modrm (&ir))
7159 return -1;
7160 if ((ir.modrm & 0xc0) != 0xc0)
7161 {
7162 ir.addr -= 3;
7163 opcode = opcode << 8 | ir.modrm;
7164 goto no_support;
7165 }
7166 switch (ir.reg)
7167 {
7168 case 0:
7169 case 2:
7170 case 3:
7171 case 4:
7172 case 8:
7173 if (opcode & 2)
7174 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7175 else
7176 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7177 break;
7178 default:
7179 ir.addr -= 3;
7180 opcode = opcode << 8 | ir.modrm;
7181 goto no_support;
7182 break;
7183 }
7184 break;
7185
7186 case 0x0f21: /* mov reg, drN */
7187 case 0x0f23: /* mov drN, reg */
7188 if (i386_record_modrm (&ir))
7189 return -1;
7190 if ((ir.modrm & 0xc0) != 0xc0 || ir.reg == 4
7191 || ir.reg == 5 || ir.reg >= 8)
7192 {
7193 ir.addr -= 3;
7194 opcode = opcode << 8 | ir.modrm;
7195 goto no_support;
7196 }
7197 if (opcode & 2)
7198 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7199 else
7200 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7201 break;
7202
7203 case 0x0f06: /* clts */
7204 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7205 break;
7206
7207 /* MMX 3DNow! SSE SSE2 SSE3 SSSE3 SSE4 */
7208
7209 case 0x0f0d: /* 3DNow! prefetch */
7210 break;
7211
7212 case 0x0f0e: /* 3DNow! femms */
7213 case 0x0f77: /* emms */
7214 if (i386_fpc_regnum_p (gdbarch, I387_FTAG_REGNUM(tdep)))
7215 goto no_support;
7216 record_full_arch_list_add_reg (ir.regcache, I387_FTAG_REGNUM(tdep));
7217 break;
7218
7219 case 0x0f0f: /* 3DNow! data */
7220 if (i386_record_modrm (&ir))
7221 return -1;
7222 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
7223 return -1;
7224 ir.addr++;
7225 switch (opcode8)
7226 {
7227 case 0x0c: /* 3DNow! pi2fw */
7228 case 0x0d: /* 3DNow! pi2fd */
7229 case 0x1c: /* 3DNow! pf2iw */
7230 case 0x1d: /* 3DNow! pf2id */
7231 case 0x8a: /* 3DNow! pfnacc */
7232 case 0x8e: /* 3DNow! pfpnacc */
7233 case 0x90: /* 3DNow! pfcmpge */
7234 case 0x94: /* 3DNow! pfmin */
7235 case 0x96: /* 3DNow! pfrcp */
7236 case 0x97: /* 3DNow! pfrsqrt */
7237 case 0x9a: /* 3DNow! pfsub */
7238 case 0x9e: /* 3DNow! pfadd */
7239 case 0xa0: /* 3DNow! pfcmpgt */
7240 case 0xa4: /* 3DNow! pfmax */
7241 case 0xa6: /* 3DNow! pfrcpit1 */
7242 case 0xa7: /* 3DNow! pfrsqit1 */
7243 case 0xaa: /* 3DNow! pfsubr */
7244 case 0xae: /* 3DNow! pfacc */
7245 case 0xb0: /* 3DNow! pfcmpeq */
7246 case 0xb4: /* 3DNow! pfmul */
7247 case 0xb6: /* 3DNow! pfrcpit2 */
7248 case 0xb7: /* 3DNow! pmulhrw */
7249 case 0xbb: /* 3DNow! pswapd */
7250 case 0xbf: /* 3DNow! pavgusb */
7251 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7252 goto no_support_3dnow_data;
7253 record_full_arch_list_add_reg (ir.regcache, ir.reg);
7254 break;
7255
7256 default:
7257 no_support_3dnow_data:
7258 opcode = (opcode << 8) | opcode8;
7259 goto no_support;
7260 break;
7261 }
7262 break;
7263
7264 case 0x0faa: /* rsm */
7265 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7266 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7267 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
7268 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7269 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
7270 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
7271 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
7272 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
7273 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
7274 break;
7275
7276 case 0x0fae:
7277 if (i386_record_modrm (&ir))
7278 return -1;
7279 switch(ir.reg)
7280 {
7281 case 0: /* fxsave */
7282 {
7283 uint64_t tmpu64;
7284
7285 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7286 if (i386_record_lea_modrm_addr (&ir, &tmpu64))
7287 return -1;
7288 if (record_full_arch_list_add_mem (tmpu64, 512))
7289 return -1;
7290 }
7291 break;
7292
7293 case 1: /* fxrstor */
7294 {
7295 int i;
7296
7297 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7298
7299 for (i = I387_MM0_REGNUM (tdep);
7300 i386_mmx_regnum_p (gdbarch, i); i++)
7301 record_full_arch_list_add_reg (ir.regcache, i);
7302
7303 for (i = I387_XMM0_REGNUM (tdep);
7304 i386_xmm_regnum_p (gdbarch, i); i++)
7305 record_full_arch_list_add_reg (ir.regcache, i);
7306
7307 if (i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
7308 record_full_arch_list_add_reg (ir.regcache,
7309 I387_MXCSR_REGNUM(tdep));
7310
7311 for (i = I387_ST0_REGNUM (tdep);
7312 i386_fp_regnum_p (gdbarch, i); i++)
7313 record_full_arch_list_add_reg (ir.regcache, i);
7314
7315 for (i = I387_FCTRL_REGNUM (tdep);
7316 i386_fpc_regnum_p (gdbarch, i); i++)
7317 record_full_arch_list_add_reg (ir.regcache, i);
7318 }
7319 break;
7320
7321 case 2: /* ldmxcsr */
7322 if (!i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
7323 goto no_support;
7324 record_full_arch_list_add_reg (ir.regcache, I387_MXCSR_REGNUM(tdep));
7325 break;
7326
7327 case 3: /* stmxcsr */
7328 ir.ot = OT_LONG;
7329 if (i386_record_lea_modrm (&ir))
7330 return -1;
7331 break;
7332
7333 case 5: /* lfence */
7334 case 6: /* mfence */
7335 case 7: /* sfence clflush */
7336 break;
7337
7338 default:
7339 opcode = (opcode << 8) | ir.modrm;
7340 goto no_support;
7341 break;
7342 }
7343 break;
7344
7345 case 0x0fc3: /* movnti */
7346 ir.ot = (ir.dflag == 2) ? OT_QUAD : OT_LONG;
7347 if (i386_record_modrm (&ir))
7348 return -1;
7349 if (ir.mod == 3)
7350 goto no_support;
7351 ir.reg |= rex_r;
7352 if (i386_record_lea_modrm (&ir))
7353 return -1;
7354 break;
7355
7356 /* Add prefix to opcode. */
7357 case 0x0f10:
7358 case 0x0f11:
7359 case 0x0f12:
7360 case 0x0f13:
7361 case 0x0f14:
7362 case 0x0f15:
7363 case 0x0f16:
7364 case 0x0f17:
7365 case 0x0f28:
7366 case 0x0f29:
7367 case 0x0f2a:
7368 case 0x0f2b:
7369 case 0x0f2c:
7370 case 0x0f2d:
7371 case 0x0f2e:
7372 case 0x0f2f:
7373 case 0x0f38:
7374 case 0x0f39:
7375 case 0x0f3a:
7376 case 0x0f50:
7377 case 0x0f51:
7378 case 0x0f52:
7379 case 0x0f53:
7380 case 0x0f54:
7381 case 0x0f55:
7382 case 0x0f56:
7383 case 0x0f57:
7384 case 0x0f58:
7385 case 0x0f59:
7386 case 0x0f5a:
7387 case 0x0f5b:
7388 case 0x0f5c:
7389 case 0x0f5d:
7390 case 0x0f5e:
7391 case 0x0f5f:
7392 case 0x0f60:
7393 case 0x0f61:
7394 case 0x0f62:
7395 case 0x0f63:
7396 case 0x0f64:
7397 case 0x0f65:
7398 case 0x0f66:
7399 case 0x0f67:
7400 case 0x0f68:
7401 case 0x0f69:
7402 case 0x0f6a:
7403 case 0x0f6b:
7404 case 0x0f6c:
7405 case 0x0f6d:
7406 case 0x0f6e:
7407 case 0x0f6f:
7408 case 0x0f70:
7409 case 0x0f71:
7410 case 0x0f72:
7411 case 0x0f73:
7412 case 0x0f74:
7413 case 0x0f75:
7414 case 0x0f76:
7415 case 0x0f7c:
7416 case 0x0f7d:
7417 case 0x0f7e:
7418 case 0x0f7f:
7419 case 0x0fb8:
7420 case 0x0fc2:
7421 case 0x0fc4:
7422 case 0x0fc5:
7423 case 0x0fc6:
7424 case 0x0fd0:
7425 case 0x0fd1:
7426 case 0x0fd2:
7427 case 0x0fd3:
7428 case 0x0fd4:
7429 case 0x0fd5:
7430 case 0x0fd6:
7431 case 0x0fd7:
7432 case 0x0fd8:
7433 case 0x0fd9:
7434 case 0x0fda:
7435 case 0x0fdb:
7436 case 0x0fdc:
7437 case 0x0fdd:
7438 case 0x0fde:
7439 case 0x0fdf:
7440 case 0x0fe0:
7441 case 0x0fe1:
7442 case 0x0fe2:
7443 case 0x0fe3:
7444 case 0x0fe4:
7445 case 0x0fe5:
7446 case 0x0fe6:
7447 case 0x0fe7:
7448 case 0x0fe8:
7449 case 0x0fe9:
7450 case 0x0fea:
7451 case 0x0feb:
7452 case 0x0fec:
7453 case 0x0fed:
7454 case 0x0fee:
7455 case 0x0fef:
7456 case 0x0ff0:
7457 case 0x0ff1:
7458 case 0x0ff2:
7459 case 0x0ff3:
7460 case 0x0ff4:
7461 case 0x0ff5:
7462 case 0x0ff6:
7463 case 0x0ff7:
7464 case 0x0ff8:
7465 case 0x0ff9:
7466 case 0x0ffa:
7467 case 0x0ffb:
7468 case 0x0ffc:
7469 case 0x0ffd:
7470 case 0x0ffe:
7471 /* Mask out PREFIX_ADDR. */
7472 switch ((prefixes & ~PREFIX_ADDR))
7473 {
7474 case PREFIX_REPNZ:
7475 opcode |= 0xf20000;
7476 break;
7477 case PREFIX_DATA:
7478 opcode |= 0x660000;
7479 break;
7480 case PREFIX_REPZ:
7481 opcode |= 0xf30000;
7482 break;
7483 }
7484 reswitch_prefix_add:
7485 switch (opcode)
7486 {
7487 case 0x0f38:
7488 case 0x660f38:
7489 case 0xf20f38:
7490 case 0x0f3a:
7491 case 0x660f3a:
7492 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
7493 return -1;
7494 ir.addr++;
7495 opcode = (uint32_t) opcode8 | opcode << 8;
7496 goto reswitch_prefix_add;
7497 break;
7498
7499 case 0x0f10: /* movups */
7500 case 0x660f10: /* movupd */
7501 case 0xf30f10: /* movss */
7502 case 0xf20f10: /* movsd */
7503 case 0x0f12: /* movlps */
7504 case 0x660f12: /* movlpd */
7505 case 0xf30f12: /* movsldup */
7506 case 0xf20f12: /* movddup */
7507 case 0x0f14: /* unpcklps */
7508 case 0x660f14: /* unpcklpd */
7509 case 0x0f15: /* unpckhps */
7510 case 0x660f15: /* unpckhpd */
7511 case 0x0f16: /* movhps */
7512 case 0x660f16: /* movhpd */
7513 case 0xf30f16: /* movshdup */
7514 case 0x0f28: /* movaps */
7515 case 0x660f28: /* movapd */
7516 case 0x0f2a: /* cvtpi2ps */
7517 case 0x660f2a: /* cvtpi2pd */
7518 case 0xf30f2a: /* cvtsi2ss */
7519 case 0xf20f2a: /* cvtsi2sd */
7520 case 0x0f2c: /* cvttps2pi */
7521 case 0x660f2c: /* cvttpd2pi */
7522 case 0x0f2d: /* cvtps2pi */
7523 case 0x660f2d: /* cvtpd2pi */
7524 case 0x660f3800: /* pshufb */
7525 case 0x660f3801: /* phaddw */
7526 case 0x660f3802: /* phaddd */
7527 case 0x660f3803: /* phaddsw */
7528 case 0x660f3804: /* pmaddubsw */
7529 case 0x660f3805: /* phsubw */
7530 case 0x660f3806: /* phsubd */
7531 case 0x660f3807: /* phsubsw */
7532 case 0x660f3808: /* psignb */
7533 case 0x660f3809: /* psignw */
7534 case 0x660f380a: /* psignd */
7535 case 0x660f380b: /* pmulhrsw */
7536 case 0x660f3810: /* pblendvb */
7537 case 0x660f3814: /* blendvps */
7538 case 0x660f3815: /* blendvpd */
7539 case 0x660f381c: /* pabsb */
7540 case 0x660f381d: /* pabsw */
7541 case 0x660f381e: /* pabsd */
7542 case 0x660f3820: /* pmovsxbw */
7543 case 0x660f3821: /* pmovsxbd */
7544 case 0x660f3822: /* pmovsxbq */
7545 case 0x660f3823: /* pmovsxwd */
7546 case 0x660f3824: /* pmovsxwq */
7547 case 0x660f3825: /* pmovsxdq */
7548 case 0x660f3828: /* pmuldq */
7549 case 0x660f3829: /* pcmpeqq */
7550 case 0x660f382a: /* movntdqa */
7551 case 0x660f3a08: /* roundps */
7552 case 0x660f3a09: /* roundpd */
7553 case 0x660f3a0a: /* roundss */
7554 case 0x660f3a0b: /* roundsd */
7555 case 0x660f3a0c: /* blendps */
7556 case 0x660f3a0d: /* blendpd */
7557 case 0x660f3a0e: /* pblendw */
7558 case 0x660f3a0f: /* palignr */
7559 case 0x660f3a20: /* pinsrb */
7560 case 0x660f3a21: /* insertps */
7561 case 0x660f3a22: /* pinsrd pinsrq */
7562 case 0x660f3a40: /* dpps */
7563 case 0x660f3a41: /* dppd */
7564 case 0x660f3a42: /* mpsadbw */
7565 case 0x660f3a60: /* pcmpestrm */
7566 case 0x660f3a61: /* pcmpestri */
7567 case 0x660f3a62: /* pcmpistrm */
7568 case 0x660f3a63: /* pcmpistri */
7569 case 0x0f51: /* sqrtps */
7570 case 0x660f51: /* sqrtpd */
7571 case 0xf20f51: /* sqrtsd */
7572 case 0xf30f51: /* sqrtss */
7573 case 0x0f52: /* rsqrtps */
7574 case 0xf30f52: /* rsqrtss */
7575 case 0x0f53: /* rcpps */
7576 case 0xf30f53: /* rcpss */
7577 case 0x0f54: /* andps */
7578 case 0x660f54: /* andpd */
7579 case 0x0f55: /* andnps */
7580 case 0x660f55: /* andnpd */
7581 case 0x0f56: /* orps */
7582 case 0x660f56: /* orpd */
7583 case 0x0f57: /* xorps */
7584 case 0x660f57: /* xorpd */
7585 case 0x0f58: /* addps */
7586 case 0x660f58: /* addpd */
7587 case 0xf20f58: /* addsd */
7588 case 0xf30f58: /* addss */
7589 case 0x0f59: /* mulps */
7590 case 0x660f59: /* mulpd */
7591 case 0xf20f59: /* mulsd */
7592 case 0xf30f59: /* mulss */
7593 case 0x0f5a: /* cvtps2pd */
7594 case 0x660f5a: /* cvtpd2ps */
7595 case 0xf20f5a: /* cvtsd2ss */
7596 case 0xf30f5a: /* cvtss2sd */
7597 case 0x0f5b: /* cvtdq2ps */
7598 case 0x660f5b: /* cvtps2dq */
7599 case 0xf30f5b: /* cvttps2dq */
7600 case 0x0f5c: /* subps */
7601 case 0x660f5c: /* subpd */
7602 case 0xf20f5c: /* subsd */
7603 case 0xf30f5c: /* subss */
7604 case 0x0f5d: /* minps */
7605 case 0x660f5d: /* minpd */
7606 case 0xf20f5d: /* minsd */
7607 case 0xf30f5d: /* minss */
7608 case 0x0f5e: /* divps */
7609 case 0x660f5e: /* divpd */
7610 case 0xf20f5e: /* divsd */
7611 case 0xf30f5e: /* divss */
7612 case 0x0f5f: /* maxps */
7613 case 0x660f5f: /* maxpd */
7614 case 0xf20f5f: /* maxsd */
7615 case 0xf30f5f: /* maxss */
7616 case 0x660f60: /* punpcklbw */
7617 case 0x660f61: /* punpcklwd */
7618 case 0x660f62: /* punpckldq */
7619 case 0x660f63: /* packsswb */
7620 case 0x660f64: /* pcmpgtb */
7621 case 0x660f65: /* pcmpgtw */
7622 case 0x660f66: /* pcmpgtd */
7623 case 0x660f67: /* packuswb */
7624 case 0x660f68: /* punpckhbw */
7625 case 0x660f69: /* punpckhwd */
7626 case 0x660f6a: /* punpckhdq */
7627 case 0x660f6b: /* packssdw */
7628 case 0x660f6c: /* punpcklqdq */
7629 case 0x660f6d: /* punpckhqdq */
7630 case 0x660f6e: /* movd */
7631 case 0x660f6f: /* movdqa */
7632 case 0xf30f6f: /* movdqu */
7633 case 0x660f70: /* pshufd */
7634 case 0xf20f70: /* pshuflw */
7635 case 0xf30f70: /* pshufhw */
7636 case 0x660f74: /* pcmpeqb */
7637 case 0x660f75: /* pcmpeqw */
7638 case 0x660f76: /* pcmpeqd */
7639 case 0x660f7c: /* haddpd */
7640 case 0xf20f7c: /* haddps */
7641 case 0x660f7d: /* hsubpd */
7642 case 0xf20f7d: /* hsubps */
7643 case 0xf30f7e: /* movq */
7644 case 0x0fc2: /* cmpps */
7645 case 0x660fc2: /* cmppd */
7646 case 0xf20fc2: /* cmpsd */
7647 case 0xf30fc2: /* cmpss */
7648 case 0x660fc4: /* pinsrw */
7649 case 0x0fc6: /* shufps */
7650 case 0x660fc6: /* shufpd */
7651 case 0x660fd0: /* addsubpd */
7652 case 0xf20fd0: /* addsubps */
7653 case 0x660fd1: /* psrlw */
7654 case 0x660fd2: /* psrld */
7655 case 0x660fd3: /* psrlq */
7656 case 0x660fd4: /* paddq */
7657 case 0x660fd5: /* pmullw */
7658 case 0xf30fd6: /* movq2dq */
7659 case 0x660fd8: /* psubusb */
7660 case 0x660fd9: /* psubusw */
7661 case 0x660fda: /* pminub */
7662 case 0x660fdb: /* pand */
7663 case 0x660fdc: /* paddusb */
7664 case 0x660fdd: /* paddusw */
7665 case 0x660fde: /* pmaxub */
7666 case 0x660fdf: /* pandn */
7667 case 0x660fe0: /* pavgb */
7668 case 0x660fe1: /* psraw */
7669 case 0x660fe2: /* psrad */
7670 case 0x660fe3: /* pavgw */
7671 case 0x660fe4: /* pmulhuw */
7672 case 0x660fe5: /* pmulhw */
7673 case 0x660fe6: /* cvttpd2dq */
7674 case 0xf20fe6: /* cvtpd2dq */
7675 case 0xf30fe6: /* cvtdq2pd */
7676 case 0x660fe8: /* psubsb */
7677 case 0x660fe9: /* psubsw */
7678 case 0x660fea: /* pminsw */
7679 case 0x660feb: /* por */
7680 case 0x660fec: /* paddsb */
7681 case 0x660fed: /* paddsw */
7682 case 0x660fee: /* pmaxsw */
7683 case 0x660fef: /* pxor */
7684 case 0xf20ff0: /* lddqu */
7685 case 0x660ff1: /* psllw */
7686 case 0x660ff2: /* pslld */
7687 case 0x660ff3: /* psllq */
7688 case 0x660ff4: /* pmuludq */
7689 case 0x660ff5: /* pmaddwd */
7690 case 0x660ff6: /* psadbw */
7691 case 0x660ff8: /* psubb */
7692 case 0x660ff9: /* psubw */
7693 case 0x660ffa: /* psubd */
7694 case 0x660ffb: /* psubq */
7695 case 0x660ffc: /* paddb */
7696 case 0x660ffd: /* paddw */
7697 case 0x660ffe: /* paddd */
7698 if (i386_record_modrm (&ir))
7699 return -1;
7700 ir.reg |= rex_r;
7701 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.reg))
7702 goto no_support;
7703 record_full_arch_list_add_reg (ir.regcache,
7704 I387_XMM0_REGNUM (tdep) + ir.reg);
7705 if ((opcode & 0xfffffffc) == 0x660f3a60)
7706 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7707 break;
7708
7709 case 0x0f11: /* movups */
7710 case 0x660f11: /* movupd */
7711 case 0xf30f11: /* movss */
7712 case 0xf20f11: /* movsd */
7713 case 0x0f13: /* movlps */
7714 case 0x660f13: /* movlpd */
7715 case 0x0f17: /* movhps */
7716 case 0x660f17: /* movhpd */
7717 case 0x0f29: /* movaps */
7718 case 0x660f29: /* movapd */
7719 case 0x660f3a14: /* pextrb */
7720 case 0x660f3a15: /* pextrw */
7721 case 0x660f3a16: /* pextrd pextrq */
7722 case 0x660f3a17: /* extractps */
7723 case 0x660f7f: /* movdqa */
7724 case 0xf30f7f: /* movdqu */
7725 if (i386_record_modrm (&ir))
7726 return -1;
7727 if (ir.mod == 3)
7728 {
7729 if (opcode == 0x0f13 || opcode == 0x660f13
7730 || opcode == 0x0f17 || opcode == 0x660f17)
7731 goto no_support;
7732 ir.rm |= ir.rex_b;
7733 if (!i386_xmm_regnum_p (gdbarch,
7734 I387_XMM0_REGNUM (tdep) + ir.rm))
7735 goto no_support;
7736 record_full_arch_list_add_reg (ir.regcache,
7737 I387_XMM0_REGNUM (tdep) + ir.rm);
7738 }
7739 else
7740 {
7741 switch (opcode)
7742 {
7743 case 0x660f3a14:
7744 ir.ot = OT_BYTE;
7745 break;
7746 case 0x660f3a15:
7747 ir.ot = OT_WORD;
7748 break;
7749 case 0x660f3a16:
7750 ir.ot = OT_LONG;
7751 break;
7752 case 0x660f3a17:
7753 ir.ot = OT_QUAD;
7754 break;
7755 default:
7756 ir.ot = OT_DQUAD;
7757 break;
7758 }
7759 if (i386_record_lea_modrm (&ir))
7760 return -1;
7761 }
7762 break;
7763
7764 case 0x0f2b: /* movntps */
7765 case 0x660f2b: /* movntpd */
7766 case 0x0fe7: /* movntq */
7767 case 0x660fe7: /* movntdq */
7768 if (ir.mod == 3)
7769 goto no_support;
7770 if (opcode == 0x0fe7)
7771 ir.ot = OT_QUAD;
7772 else
7773 ir.ot = OT_DQUAD;
7774 if (i386_record_lea_modrm (&ir))
7775 return -1;
7776 break;
7777
7778 case 0xf30f2c: /* cvttss2si */
7779 case 0xf20f2c: /* cvttsd2si */
7780 case 0xf30f2d: /* cvtss2si */
7781 case 0xf20f2d: /* cvtsd2si */
7782 case 0xf20f38f0: /* crc32 */
7783 case 0xf20f38f1: /* crc32 */
7784 case 0x0f50: /* movmskps */
7785 case 0x660f50: /* movmskpd */
7786 case 0x0fc5: /* pextrw */
7787 case 0x660fc5: /* pextrw */
7788 case 0x0fd7: /* pmovmskb */
7789 case 0x660fd7: /* pmovmskb */
7790 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7791 break;
7792
7793 case 0x0f3800: /* pshufb */
7794 case 0x0f3801: /* phaddw */
7795 case 0x0f3802: /* phaddd */
7796 case 0x0f3803: /* phaddsw */
7797 case 0x0f3804: /* pmaddubsw */
7798 case 0x0f3805: /* phsubw */
7799 case 0x0f3806: /* phsubd */
7800 case 0x0f3807: /* phsubsw */
7801 case 0x0f3808: /* psignb */
7802 case 0x0f3809: /* psignw */
7803 case 0x0f380a: /* psignd */
7804 case 0x0f380b: /* pmulhrsw */
7805 case 0x0f381c: /* pabsb */
7806 case 0x0f381d: /* pabsw */
7807 case 0x0f381e: /* pabsd */
7808 case 0x0f382b: /* packusdw */
7809 case 0x0f3830: /* pmovzxbw */
7810 case 0x0f3831: /* pmovzxbd */
7811 case 0x0f3832: /* pmovzxbq */
7812 case 0x0f3833: /* pmovzxwd */
7813 case 0x0f3834: /* pmovzxwq */
7814 case 0x0f3835: /* pmovzxdq */
7815 case 0x0f3837: /* pcmpgtq */
7816 case 0x0f3838: /* pminsb */
7817 case 0x0f3839: /* pminsd */
7818 case 0x0f383a: /* pminuw */
7819 case 0x0f383b: /* pminud */
7820 case 0x0f383c: /* pmaxsb */
7821 case 0x0f383d: /* pmaxsd */
7822 case 0x0f383e: /* pmaxuw */
7823 case 0x0f383f: /* pmaxud */
7824 case 0x0f3840: /* pmulld */
7825 case 0x0f3841: /* phminposuw */
7826 case 0x0f3a0f: /* palignr */
7827 case 0x0f60: /* punpcklbw */
7828 case 0x0f61: /* punpcklwd */
7829 case 0x0f62: /* punpckldq */
7830 case 0x0f63: /* packsswb */
7831 case 0x0f64: /* pcmpgtb */
7832 case 0x0f65: /* pcmpgtw */
7833 case 0x0f66: /* pcmpgtd */
7834 case 0x0f67: /* packuswb */
7835 case 0x0f68: /* punpckhbw */
7836 case 0x0f69: /* punpckhwd */
7837 case 0x0f6a: /* punpckhdq */
7838 case 0x0f6b: /* packssdw */
7839 case 0x0f6e: /* movd */
7840 case 0x0f6f: /* movq */
7841 case 0x0f70: /* pshufw */
7842 case 0x0f74: /* pcmpeqb */
7843 case 0x0f75: /* pcmpeqw */
7844 case 0x0f76: /* pcmpeqd */
7845 case 0x0fc4: /* pinsrw */
7846 case 0x0fd1: /* psrlw */
7847 case 0x0fd2: /* psrld */
7848 case 0x0fd3: /* psrlq */
7849 case 0x0fd4: /* paddq */
7850 case 0x0fd5: /* pmullw */
7851 case 0xf20fd6: /* movdq2q */
7852 case 0x0fd8: /* psubusb */
7853 case 0x0fd9: /* psubusw */
7854 case 0x0fda: /* pminub */
7855 case 0x0fdb: /* pand */
7856 case 0x0fdc: /* paddusb */
7857 case 0x0fdd: /* paddusw */
7858 case 0x0fde: /* pmaxub */
7859 case 0x0fdf: /* pandn */
7860 case 0x0fe0: /* pavgb */
7861 case 0x0fe1: /* psraw */
7862 case 0x0fe2: /* psrad */
7863 case 0x0fe3: /* pavgw */
7864 case 0x0fe4: /* pmulhuw */
7865 case 0x0fe5: /* pmulhw */
7866 case 0x0fe8: /* psubsb */
7867 case 0x0fe9: /* psubsw */
7868 case 0x0fea: /* pminsw */
7869 case 0x0feb: /* por */
7870 case 0x0fec: /* paddsb */
7871 case 0x0fed: /* paddsw */
7872 case 0x0fee: /* pmaxsw */
7873 case 0x0fef: /* pxor */
7874 case 0x0ff1: /* psllw */
7875 case 0x0ff2: /* pslld */
7876 case 0x0ff3: /* psllq */
7877 case 0x0ff4: /* pmuludq */
7878 case 0x0ff5: /* pmaddwd */
7879 case 0x0ff6: /* psadbw */
7880 case 0x0ff8: /* psubb */
7881 case 0x0ff9: /* psubw */
7882 case 0x0ffa: /* psubd */
7883 case 0x0ffb: /* psubq */
7884 case 0x0ffc: /* paddb */
7885 case 0x0ffd: /* paddw */
7886 case 0x0ffe: /* paddd */
7887 if (i386_record_modrm (&ir))
7888 return -1;
7889 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7890 goto no_support;
7891 record_full_arch_list_add_reg (ir.regcache,
7892 I387_MM0_REGNUM (tdep) + ir.reg);
7893 break;
7894
7895 case 0x0f71: /* psllw */
7896 case 0x0f72: /* pslld */
7897 case 0x0f73: /* psllq */
7898 if (i386_record_modrm (&ir))
7899 return -1;
7900 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
7901 goto no_support;
7902 record_full_arch_list_add_reg (ir.regcache,
7903 I387_MM0_REGNUM (tdep) + ir.rm);
7904 break;
7905
7906 case 0x660f71: /* psllw */
7907 case 0x660f72: /* pslld */
7908 case 0x660f73: /* psllq */
7909 if (i386_record_modrm (&ir))
7910 return -1;
7911 ir.rm |= ir.rex_b;
7912 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.rm))
7913 goto no_support;
7914 record_full_arch_list_add_reg (ir.regcache,
7915 I387_XMM0_REGNUM (tdep) + ir.rm);
7916 break;
7917
7918 case 0x0f7e: /* movd */
7919 case 0x660f7e: /* movd */
7920 if (i386_record_modrm (&ir))
7921 return -1;
7922 if (ir.mod == 3)
7923 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7924 else
7925 {
7926 if (ir.dflag == 2)
7927 ir.ot = OT_QUAD;
7928 else
7929 ir.ot = OT_LONG;
7930 if (i386_record_lea_modrm (&ir))
7931 return -1;
7932 }
7933 break;
7934
7935 case 0x0f7f: /* movq */
7936 if (i386_record_modrm (&ir))
7937 return -1;
7938 if (ir.mod == 3)
7939 {
7940 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
7941 goto no_support;
7942 record_full_arch_list_add_reg (ir.regcache,
7943 I387_MM0_REGNUM (tdep) + ir.rm);
7944 }
7945 else
7946 {
7947 ir.ot = OT_QUAD;
7948 if (i386_record_lea_modrm (&ir))
7949 return -1;
7950 }
7951 break;
7952
7953 case 0xf30fb8: /* popcnt */
7954 if (i386_record_modrm (&ir))
7955 return -1;
7956 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
7957 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7958 break;
7959
7960 case 0x660fd6: /* movq */
7961 if (i386_record_modrm (&ir))
7962 return -1;
7963 if (ir.mod == 3)
7964 {
7965 ir.rm |= ir.rex_b;
7966 if (!i386_xmm_regnum_p (gdbarch,
7967 I387_XMM0_REGNUM (tdep) + ir.rm))
7968 goto no_support;
7969 record_full_arch_list_add_reg (ir.regcache,
7970 I387_XMM0_REGNUM (tdep) + ir.rm);
7971 }
7972 else
7973 {
7974 ir.ot = OT_QUAD;
7975 if (i386_record_lea_modrm (&ir))
7976 return -1;
7977 }
7978 break;
7979
7980 case 0x660f3817: /* ptest */
7981 case 0x0f2e: /* ucomiss */
7982 case 0x660f2e: /* ucomisd */
7983 case 0x0f2f: /* comiss */
7984 case 0x660f2f: /* comisd */
7985 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7986 break;
7987
7988 case 0x0ff7: /* maskmovq */
7989 regcache_raw_read_unsigned (ir.regcache,
7990 ir.regmap[X86_RECORD_REDI_REGNUM],
7991 &addr);
7992 if (record_full_arch_list_add_mem (addr, 64))
7993 return -1;
7994 break;
7995
7996 case 0x660ff7: /* maskmovdqu */
7997 regcache_raw_read_unsigned (ir.regcache,
7998 ir.regmap[X86_RECORD_REDI_REGNUM],
7999 &addr);
8000 if (record_full_arch_list_add_mem (addr, 128))
8001 return -1;
8002 break;
8003
8004 default:
8005 goto no_support;
8006 break;
8007 }
8008 break;
8009
8010 default:
8011 goto no_support;
8012 break;
8013 }
8014
8015 /* In the future, maybe still need to deal with need_dasm. */
8016 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REIP_REGNUM);
8017 if (record_full_arch_list_add_end ())
8018 return -1;
8019
8020 return 0;
8021
8022 no_support:
8023 printf_unfiltered (_("Process record does not support instruction 0x%02x "
8024 "at address %s.\n"),
8025 (unsigned int) (opcode),
8026 paddress (gdbarch, ir.orig_addr));
8027 return -1;
8028 }
8029
8030 static const int i386_record_regmap[] =
8031 {
8032 I386_EAX_REGNUM, I386_ECX_REGNUM, I386_EDX_REGNUM, I386_EBX_REGNUM,
8033 I386_ESP_REGNUM, I386_EBP_REGNUM, I386_ESI_REGNUM, I386_EDI_REGNUM,
8034 0, 0, 0, 0, 0, 0, 0, 0,
8035 I386_EIP_REGNUM, I386_EFLAGS_REGNUM, I386_CS_REGNUM, I386_SS_REGNUM,
8036 I386_DS_REGNUM, I386_ES_REGNUM, I386_FS_REGNUM, I386_GS_REGNUM
8037 };
8038
8039 /* Check that the given address appears suitable for a fast
8040 tracepoint, which on x86-64 means that we need an instruction of at
8041 least 5 bytes, so that we can overwrite it with a 4-byte-offset
8042 jump and not have to worry about program jumps to an address in the
8043 middle of the tracepoint jump. On x86, it may be possible to use
8044 4-byte jumps with a 2-byte offset to a trampoline located in the
8045 bottom 64 KiB of memory. Returns 1 if OK, and writes a size
8046 of instruction to replace, and 0 if not, plus an explanatory
8047 string. */
8048
8049 static int
8050 i386_fast_tracepoint_valid_at (struct gdbarch *gdbarch,
8051 CORE_ADDR addr, int *isize, char **msg)
8052 {
8053 int len, jumplen;
8054 static struct ui_file *gdb_null = NULL;
8055
8056 /* Ask the target for the minimum instruction length supported. */
8057 jumplen = target_get_min_fast_tracepoint_insn_len ();
8058
8059 if (jumplen < 0)
8060 {
8061 /* If the target does not support the get_min_fast_tracepoint_insn_len
8062 operation, assume that fast tracepoints will always be implemented
8063 using 4-byte relative jumps on both x86 and x86-64. */
8064 jumplen = 5;
8065 }
8066 else if (jumplen == 0)
8067 {
8068 /* If the target does support get_min_fast_tracepoint_insn_len but
8069 returns zero, then the IPA has not loaded yet. In this case,
8070 we optimistically assume that truncated 2-byte relative jumps
8071 will be available on x86, and compensate later if this assumption
8072 turns out to be incorrect. On x86-64 architectures, 4-byte relative
8073 jumps will always be used. */
8074 jumplen = (register_size (gdbarch, 0) == 8) ? 5 : 4;
8075 }
8076
8077 /* Dummy file descriptor for the disassembler. */
8078 if (!gdb_null)
8079 gdb_null = ui_file_new ();
8080
8081 /* Check for fit. */
8082 len = gdb_print_insn (gdbarch, addr, gdb_null, NULL);
8083 if (isize)
8084 *isize = len;
8085
8086 if (len < jumplen)
8087 {
8088 /* Return a bit of target-specific detail to add to the caller's
8089 generic failure message. */
8090 if (msg)
8091 *msg = xstrprintf (_("; instruction is only %d bytes long, "
8092 "need at least %d bytes for the jump"),
8093 len, jumplen);
8094 return 0;
8095 }
8096 else
8097 {
8098 if (msg)
8099 *msg = NULL;
8100 return 1;
8101 }
8102 }
8103
8104 static int
8105 i386_validate_tdesc_p (struct gdbarch_tdep *tdep,
8106 struct tdesc_arch_data *tdesc_data)
8107 {
8108 const struct target_desc *tdesc = tdep->tdesc;
8109 const struct tdesc_feature *feature_core;
8110
8111 const struct tdesc_feature *feature_sse, *feature_avx, *feature_mpx,
8112 *feature_avx512;
8113 int i, num_regs, valid_p;
8114
8115 if (! tdesc_has_registers (tdesc))
8116 return 0;
8117
8118 /* Get core registers. */
8119 feature_core = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.core");
8120 if (feature_core == NULL)
8121 return 0;
8122
8123 /* Get SSE registers. */
8124 feature_sse = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.sse");
8125
8126 /* Try AVX registers. */
8127 feature_avx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx");
8128
8129 /* Try MPX registers. */
8130 feature_mpx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx");
8131
8132 /* Try AVX512 registers. */
8133 feature_avx512 = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx512");
8134
8135 valid_p = 1;
8136
8137 /* The XCR0 bits. */
8138 if (feature_avx512)
8139 {
8140 /* AVX512 register description requires AVX register description. */
8141 if (!feature_avx)
8142 return 0;
8143
8144 tdep->xcr0 = X86_XSTATE_MPX_AVX512_MASK;
8145
8146 /* It may have been set by OSABI initialization function. */
8147 if (tdep->k0_regnum < 0)
8148 {
8149 tdep->k_register_names = i386_k_names;
8150 tdep->k0_regnum = I386_K0_REGNUM;
8151 }
8152
8153 for (i = 0; i < I387_NUM_K_REGS; i++)
8154 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8155 tdep->k0_regnum + i,
8156 i386_k_names[i]);
8157
8158 if (tdep->num_zmm_regs == 0)
8159 {
8160 tdep->zmmh_register_names = i386_zmmh_names;
8161 tdep->num_zmm_regs = 8;
8162 tdep->zmm0h_regnum = I386_ZMM0H_REGNUM;
8163 }
8164
8165 for (i = 0; i < tdep->num_zmm_regs; i++)
8166 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8167 tdep->zmm0h_regnum + i,
8168 tdep->zmmh_register_names[i]);
8169
8170 for (i = 0; i < tdep->num_xmm_avx512_regs; i++)
8171 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8172 tdep->xmm16_regnum + i,
8173 tdep->xmm_avx512_register_names[i]);
8174
8175 for (i = 0; i < tdep->num_ymm_avx512_regs; i++)
8176 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8177 tdep->ymm16h_regnum + i,
8178 tdep->ymm16h_register_names[i]);
8179 }
8180 if (feature_avx)
8181 {
8182 /* AVX register description requires SSE register description. */
8183 if (!feature_sse)
8184 return 0;
8185
8186 if (!feature_avx512)
8187 tdep->xcr0 = X86_XSTATE_AVX_MASK;
8188
8189 /* It may have been set by OSABI initialization function. */
8190 if (tdep->num_ymm_regs == 0)
8191 {
8192 tdep->ymmh_register_names = i386_ymmh_names;
8193 tdep->num_ymm_regs = 8;
8194 tdep->ymm0h_regnum = I386_YMM0H_REGNUM;
8195 }
8196
8197 for (i = 0; i < tdep->num_ymm_regs; i++)
8198 valid_p &= tdesc_numbered_register (feature_avx, tdesc_data,
8199 tdep->ymm0h_regnum + i,
8200 tdep->ymmh_register_names[i]);
8201 }
8202 else if (feature_sse)
8203 tdep->xcr0 = X86_XSTATE_SSE_MASK;
8204 else
8205 {
8206 tdep->xcr0 = X86_XSTATE_X87_MASK;
8207 tdep->num_xmm_regs = 0;
8208 }
8209
8210 num_regs = tdep->num_core_regs;
8211 for (i = 0; i < num_regs; i++)
8212 valid_p &= tdesc_numbered_register (feature_core, tdesc_data, i,
8213 tdep->register_names[i]);
8214
8215 if (feature_sse)
8216 {
8217 /* Need to include %mxcsr, so add one. */
8218 num_regs += tdep->num_xmm_regs + 1;
8219 for (; i < num_regs; i++)
8220 valid_p &= tdesc_numbered_register (feature_sse, tdesc_data, i,
8221 tdep->register_names[i]);
8222 }
8223
8224 if (feature_mpx)
8225 {
8226 tdep->xcr0 |= X86_XSTATE_MPX_MASK;
8227
8228 if (tdep->bnd0r_regnum < 0)
8229 {
8230 tdep->mpx_register_names = i386_mpx_names;
8231 tdep->bnd0r_regnum = I386_BND0R_REGNUM;
8232 tdep->bndcfgu_regnum = I386_BNDCFGU_REGNUM;
8233 }
8234
8235 for (i = 0; i < I387_NUM_MPX_REGS; i++)
8236 valid_p &= tdesc_numbered_register (feature_mpx, tdesc_data,
8237 I387_BND0R_REGNUM (tdep) + i,
8238 tdep->mpx_register_names[i]);
8239 }
8240
8241 return valid_p;
8242 }
8243
8244 \f
8245 static struct gdbarch *
8246 i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
8247 {
8248 struct gdbarch_tdep *tdep;
8249 struct gdbarch *gdbarch;
8250 struct tdesc_arch_data *tdesc_data;
8251 const struct target_desc *tdesc;
8252 int mm0_regnum;
8253 int ymm0_regnum;
8254 int bnd0_regnum;
8255 int num_bnd_cooked;
8256 int k0_regnum;
8257 int zmm0_regnum;
8258
8259 /* If there is already a candidate, use it. */
8260 arches = gdbarch_list_lookup_by_info (arches, &info);
8261 if (arches != NULL)
8262 return arches->gdbarch;
8263
8264 /* Allocate space for the new architecture. */
8265 tdep = XCNEW (struct gdbarch_tdep);
8266 gdbarch = gdbarch_alloc (&info, tdep);
8267
8268 /* General-purpose registers. */
8269 tdep->gregset_reg_offset = NULL;
8270 tdep->gregset_num_regs = I386_NUM_GREGS;
8271 tdep->sizeof_gregset = 0;
8272
8273 /* Floating-point registers. */
8274 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
8275 tdep->fpregset = &i386_fpregset;
8276
8277 /* The default settings include the FPU registers, the MMX registers
8278 and the SSE registers. This can be overridden for a specific ABI
8279 by adjusting the members `st0_regnum', `mm0_regnum' and
8280 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
8281 will show up in the output of "info all-registers". */
8282
8283 tdep->st0_regnum = I386_ST0_REGNUM;
8284
8285 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
8286 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
8287
8288 tdep->jb_pc_offset = -1;
8289 tdep->struct_return = pcc_struct_return;
8290 tdep->sigtramp_start = 0;
8291 tdep->sigtramp_end = 0;
8292 tdep->sigtramp_p = i386_sigtramp_p;
8293 tdep->sigcontext_addr = NULL;
8294 tdep->sc_reg_offset = NULL;
8295 tdep->sc_pc_offset = -1;
8296 tdep->sc_sp_offset = -1;
8297
8298 tdep->xsave_xcr0_offset = -1;
8299
8300 tdep->record_regmap = i386_record_regmap;
8301
8302 set_gdbarch_long_long_align_bit (gdbarch, 32);
8303
8304 /* The format used for `long double' on almost all i386 targets is
8305 the i387 extended floating-point format. In fact, of all targets
8306 in the GCC 2.95 tree, only OSF/1 does it different, and insists
8307 on having a `long double' that's not `long' at all. */
8308 set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext);
8309
8310 /* Although the i387 extended floating-point has only 80 significant
8311 bits, a `long double' actually takes up 96, probably to enforce
8312 alignment. */
8313 set_gdbarch_long_double_bit (gdbarch, 96);
8314
8315 /* Register numbers of various important registers. */
8316 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
8317 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
8318 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
8319 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
8320
8321 /* NOTE: kettenis/20040418: GCC does have two possible register
8322 numbering schemes on the i386: dbx and SVR4. These schemes
8323 differ in how they number %ebp, %esp, %eflags, and the
8324 floating-point registers, and are implemented by the arrays
8325 dbx_register_map[] and svr4_dbx_register_map in
8326 gcc/config/i386.c. GCC also defines a third numbering scheme in
8327 gcc/config/i386.c, which it designates as the "default" register
8328 map used in 64bit mode. This last register numbering scheme is
8329 implemented in dbx64_register_map, and is used for AMD64; see
8330 amd64-tdep.c.
8331
8332 Currently, each GCC i386 target always uses the same register
8333 numbering scheme across all its supported debugging formats
8334 i.e. SDB (COFF), stabs and DWARF 2. This is because
8335 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
8336 DBX_REGISTER_NUMBER macro which is defined by each target's
8337 respective config header in a manner independent of the requested
8338 output debugging format.
8339
8340 This does not match the arrangement below, which presumes that
8341 the SDB and stabs numbering schemes differ from the DWARF and
8342 DWARF 2 ones. The reason for this arrangement is that it is
8343 likely to get the numbering scheme for the target's
8344 default/native debug format right. For targets where GCC is the
8345 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
8346 targets where the native toolchain uses a different numbering
8347 scheme for a particular debug format (stabs-in-ELF on Solaris)
8348 the defaults below will have to be overridden, like
8349 i386_elf_init_abi() does. */
8350
8351 /* Use the dbx register numbering scheme for stabs and COFF. */
8352 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
8353 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
8354
8355 /* Use the SVR4 register numbering scheme for DWARF 2. */
8356 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
8357
8358 /* We don't set gdbarch_stab_reg_to_regnum, since ECOFF doesn't seem to
8359 be in use on any of the supported i386 targets. */
8360
8361 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
8362
8363 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
8364
8365 /* Call dummy code. */
8366 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
8367 set_gdbarch_push_dummy_code (gdbarch, i386_push_dummy_code);
8368 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
8369 set_gdbarch_frame_align (gdbarch, i386_frame_align);
8370
8371 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
8372 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
8373 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
8374
8375 set_gdbarch_return_value (gdbarch, i386_return_value);
8376
8377 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
8378
8379 /* Stack grows downward. */
8380 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
8381
8382 set_gdbarch_breakpoint_from_pc (gdbarch, i386_breakpoint_from_pc);
8383 set_gdbarch_decr_pc_after_break (gdbarch, 1);
8384 set_gdbarch_max_insn_length (gdbarch, I386_MAX_INSN_LEN);
8385
8386 set_gdbarch_frame_args_skip (gdbarch, 8);
8387
8388 set_gdbarch_print_insn (gdbarch, i386_print_insn);
8389
8390 set_gdbarch_dummy_id (gdbarch, i386_dummy_id);
8391
8392 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
8393
8394 /* Add the i386 register groups. */
8395 i386_add_reggroups (gdbarch);
8396 tdep->register_reggroup_p = i386_register_reggroup_p;
8397
8398 /* Helper for function argument information. */
8399 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
8400
8401 /* Hook the function epilogue frame unwinder. This unwinder is
8402 appended to the list first, so that it supercedes the DWARF
8403 unwinder in function epilogues (where the DWARF unwinder
8404 currently fails). */
8405 frame_unwind_append_unwinder (gdbarch, &i386_epilogue_frame_unwind);
8406
8407 /* Hook in the DWARF CFI frame unwinder. This unwinder is appended
8408 to the list before the prologue-based unwinders, so that DWARF
8409 CFI info will be used if it is available. */
8410 dwarf2_append_unwinders (gdbarch);
8411
8412 frame_base_set_default (gdbarch, &i386_frame_base);
8413
8414 /* Pseudo registers may be changed by amd64_init_abi. */
8415 set_gdbarch_pseudo_register_read_value (gdbarch,
8416 i386_pseudo_register_read_value);
8417 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
8418
8419 set_tdesc_pseudo_register_type (gdbarch, i386_pseudo_register_type);
8420 set_tdesc_pseudo_register_name (gdbarch, i386_pseudo_register_name);
8421
8422 /* Override the normal target description method to make the AVX
8423 upper halves anonymous. */
8424 set_gdbarch_register_name (gdbarch, i386_register_name);
8425
8426 /* Even though the default ABI only includes general-purpose registers,
8427 floating-point registers and the SSE registers, we have to leave a
8428 gap for the upper AVX, MPX and AVX512 registers. */
8429 set_gdbarch_num_regs (gdbarch, I386_AVX512_NUM_REGS);
8430
8431 set_gdbarch_gnu_triplet_regexp (gdbarch, i386_gnu_triplet_regexp);
8432
8433 /* Get the x86 target description from INFO. */
8434 tdesc = info.target_desc;
8435 if (! tdesc_has_registers (tdesc))
8436 tdesc = tdesc_i386;
8437 tdep->tdesc = tdesc;
8438
8439 tdep->num_core_regs = I386_NUM_GREGS + I387_NUM_REGS;
8440 tdep->register_names = i386_register_names;
8441
8442 /* No upper YMM registers. */
8443 tdep->ymmh_register_names = NULL;
8444 tdep->ymm0h_regnum = -1;
8445
8446 /* No upper ZMM registers. */
8447 tdep->zmmh_register_names = NULL;
8448 tdep->zmm0h_regnum = -1;
8449
8450 /* No high XMM registers. */
8451 tdep->xmm_avx512_register_names = NULL;
8452 tdep->xmm16_regnum = -1;
8453
8454 /* No upper YMM16-31 registers. */
8455 tdep->ymm16h_register_names = NULL;
8456 tdep->ymm16h_regnum = -1;
8457
8458 tdep->num_byte_regs = 8;
8459 tdep->num_word_regs = 8;
8460 tdep->num_dword_regs = 0;
8461 tdep->num_mmx_regs = 8;
8462 tdep->num_ymm_regs = 0;
8463
8464 /* No MPX registers. */
8465 tdep->bnd0r_regnum = -1;
8466 tdep->bndcfgu_regnum = -1;
8467
8468 /* No AVX512 registers. */
8469 tdep->k0_regnum = -1;
8470 tdep->num_zmm_regs = 0;
8471 tdep->num_ymm_avx512_regs = 0;
8472 tdep->num_xmm_avx512_regs = 0;
8473
8474 tdesc_data = tdesc_data_alloc ();
8475
8476 set_gdbarch_relocate_instruction (gdbarch, i386_relocate_instruction);
8477
8478 set_gdbarch_gen_return_address (gdbarch, i386_gen_return_address);
8479
8480 set_gdbarch_insn_is_call (gdbarch, i386_insn_is_call);
8481 set_gdbarch_insn_is_ret (gdbarch, i386_insn_is_ret);
8482 set_gdbarch_insn_is_jump (gdbarch, i386_insn_is_jump);
8483
8484 /* Hook in ABI-specific overrides, if they have been registered. */
8485 info.tdep_info = (void *) tdesc_data;
8486 gdbarch_init_osabi (info, gdbarch);
8487
8488 if (!i386_validate_tdesc_p (tdep, tdesc_data))
8489 {
8490 tdesc_data_cleanup (tdesc_data);
8491 xfree (tdep);
8492 gdbarch_free (gdbarch);
8493 return NULL;
8494 }
8495
8496 num_bnd_cooked = (tdep->bnd0r_regnum > 0 ? I387_NUM_BND_REGS : 0);
8497
8498 /* Wire in pseudo registers. Number of pseudo registers may be
8499 changed. */
8500 set_gdbarch_num_pseudo_regs (gdbarch, (tdep->num_byte_regs
8501 + tdep->num_word_regs
8502 + tdep->num_dword_regs
8503 + tdep->num_mmx_regs
8504 + tdep->num_ymm_regs
8505 + num_bnd_cooked
8506 + tdep->num_ymm_avx512_regs
8507 + tdep->num_zmm_regs));
8508
8509 /* Target description may be changed. */
8510 tdesc = tdep->tdesc;
8511
8512 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
8513
8514 /* Override gdbarch_register_reggroup_p set in tdesc_use_registers. */
8515 set_gdbarch_register_reggroup_p (gdbarch, tdep->register_reggroup_p);
8516
8517 /* Make %al the first pseudo-register. */
8518 tdep->al_regnum = gdbarch_num_regs (gdbarch);
8519 tdep->ax_regnum = tdep->al_regnum + tdep->num_byte_regs;
8520
8521 ymm0_regnum = tdep->ax_regnum + tdep->num_word_regs;
8522 if (tdep->num_dword_regs)
8523 {
8524 /* Support dword pseudo-register if it hasn't been disabled. */
8525 tdep->eax_regnum = ymm0_regnum;
8526 ymm0_regnum += tdep->num_dword_regs;
8527 }
8528 else
8529 tdep->eax_regnum = -1;
8530
8531 mm0_regnum = ymm0_regnum;
8532 if (tdep->num_ymm_regs)
8533 {
8534 /* Support YMM pseudo-register if it is available. */
8535 tdep->ymm0_regnum = ymm0_regnum;
8536 mm0_regnum += tdep->num_ymm_regs;
8537 }
8538 else
8539 tdep->ymm0_regnum = -1;
8540
8541 if (tdep->num_ymm_avx512_regs)
8542 {
8543 /* Support YMM16-31 pseudo registers if available. */
8544 tdep->ymm16_regnum = mm0_regnum;
8545 mm0_regnum += tdep->num_ymm_avx512_regs;
8546 }
8547 else
8548 tdep->ymm16_regnum = -1;
8549
8550 if (tdep->num_zmm_regs)
8551 {
8552 /* Support ZMM pseudo-register if it is available. */
8553 tdep->zmm0_regnum = mm0_regnum;
8554 mm0_regnum += tdep->num_zmm_regs;
8555 }
8556 else
8557 tdep->zmm0_regnum = -1;
8558
8559 bnd0_regnum = mm0_regnum;
8560 if (tdep->num_mmx_regs != 0)
8561 {
8562 /* Support MMX pseudo-register if MMX hasn't been disabled. */
8563 tdep->mm0_regnum = mm0_regnum;
8564 bnd0_regnum += tdep->num_mmx_regs;
8565 }
8566 else
8567 tdep->mm0_regnum = -1;
8568
8569 if (tdep->bnd0r_regnum > 0)
8570 tdep->bnd0_regnum = bnd0_regnum;
8571 else
8572 tdep-> bnd0_regnum = -1;
8573
8574 /* Hook in the legacy prologue-based unwinders last (fallback). */
8575 frame_unwind_append_unwinder (gdbarch, &i386_stack_tramp_frame_unwind);
8576 frame_unwind_append_unwinder (gdbarch, &i386_sigtramp_frame_unwind);
8577 frame_unwind_append_unwinder (gdbarch, &i386_frame_unwind);
8578
8579 /* If we have a register mapping, enable the generic core file
8580 support, unless it has already been enabled. */
8581 if (tdep->gregset_reg_offset
8582 && !gdbarch_iterate_over_regset_sections_p (gdbarch))
8583 set_gdbarch_iterate_over_regset_sections
8584 (gdbarch, i386_iterate_over_regset_sections);
8585
8586 set_gdbarch_fast_tracepoint_valid_at (gdbarch,
8587 i386_fast_tracepoint_valid_at);
8588
8589 return gdbarch;
8590 }
8591
8592 static enum gdb_osabi
8593 i386_coff_osabi_sniffer (bfd *abfd)
8594 {
8595 if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
8596 || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
8597 return GDB_OSABI_GO32;
8598
8599 return GDB_OSABI_UNKNOWN;
8600 }
8601 \f
8602
8603 /* Return the target description for a specified XSAVE feature mask. */
8604
8605 const struct target_desc *
8606 i386_target_description (uint64_t xcr0)
8607 {
8608 switch (xcr0 & X86_XSTATE_ALL_MASK)
8609 {
8610 case X86_XSTATE_MPX_AVX512_MASK:
8611 case X86_XSTATE_AVX512_MASK:
8612 return tdesc_i386_avx512;
8613 case X86_XSTATE_MPX_MASK:
8614 return tdesc_i386_mpx;
8615 case X86_XSTATE_AVX_MASK:
8616 return tdesc_i386_avx;
8617 default:
8618 return tdesc_i386;
8619 }
8620 }
8621
8622 /* Provide a prototype to silence -Wmissing-prototypes. */
8623 void _initialize_i386_tdep (void);
8624
8625 void
8626 _initialize_i386_tdep (void)
8627 {
8628 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
8629
8630 /* Add the variable that controls the disassembly flavor. */
8631 add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
8632 &disassembly_flavor, _("\
8633 Set the disassembly flavor."), _("\
8634 Show the disassembly flavor."), _("\
8635 The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
8636 NULL,
8637 NULL, /* FIXME: i18n: */
8638 &setlist, &showlist);
8639
8640 /* Add the variable that controls the convention for returning
8641 structs. */
8642 add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
8643 &struct_convention, _("\
8644 Set the convention for returning small structs."), _("\
8645 Show the convention for returning small structs."), _("\
8646 Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
8647 is \"default\"."),
8648 NULL,
8649 NULL, /* FIXME: i18n: */
8650 &setlist, &showlist);
8651
8652 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
8653 i386_coff_osabi_sniffer);
8654
8655 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
8656 i386_svr4_init_abi);
8657 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_GO32,
8658 i386_go32_init_abi);
8659
8660 /* Initialize the i386-specific register groups. */
8661 i386_init_reggroups ();
8662
8663 /* Initialize the standard target descriptions. */
8664 initialize_tdesc_i386 ();
8665 initialize_tdesc_i386_mmx ();
8666 initialize_tdesc_i386_avx ();
8667 initialize_tdesc_i386_mpx ();
8668 initialize_tdesc_i386_avx512 ();
8669
8670 /* Tell remote stub that we support XML target description. */
8671 register_remote_support_xml ("i386");
8672 }
This page took 0.198276 seconds and 5 git commands to generate.