* i386-tdep.c (i386_gdbarch_init): Fix typo.
[deliverable/binutils-gdb.git] / gdb / i386-tdep.c
1 /* Intel 386 target-dependent stuff.
2 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "gdb_string.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "gdbcore.h"
28 #include "target.h"
29 #include "floatformat.h"
30 #include "symtab.h"
31 #include "gdbcmd.h"
32 #include "command.h"
33 #include "arch-utils.h"
34 #include "regcache.h"
35 #include "doublest.h"
36 #include "value.h"
37 #include "i386-tdep.h"
38 #include "gdb_assert.h"
39
40 #undef XMALLOC
41 #define XMALLOC(TYPE) ((TYPE*) xmalloc (sizeof (TYPE)))
42
43 /* Names of the registers. The first 10 registers match the register
44 numbering scheme used by GCC for stabs and DWARF. */
45 static char *i386_register_names[] =
46 {
47 "eax", "ecx", "edx", "ebx",
48 "esp", "ebp", "esi", "edi",
49 "eip", "eflags", "cs", "ss",
50 "ds", "es", "fs", "gs",
51 "st0", "st1", "st2", "st3",
52 "st4", "st5", "st6", "st7",
53 "fctrl", "fstat", "ftag", "fiseg",
54 "fioff", "foseg", "fooff", "fop",
55 "xmm0", "xmm1", "xmm2", "xmm3",
56 "xmm4", "xmm5", "xmm6", "xmm7",
57 "mxcsr"
58 };
59
60 /* i386_register_offset[i] is the offset into the register file of the
61 start of register number i. We initialize this from
62 i386_register_size. */
63 static int i386_register_offset[MAX_NUM_REGS];
64
65 /* i386_register_size[i] is the number of bytes of storage in GDB's
66 register array occupied by register i. */
67 static int i386_register_size[MAX_NUM_REGS] = {
68 4, 4, 4, 4,
69 4, 4, 4, 4,
70 4, 4, 4, 4,
71 4, 4, 4, 4,
72 10, 10, 10, 10,
73 10, 10, 10, 10,
74 4, 4, 4, 4,
75 4, 4, 4, 4,
76 16, 16, 16, 16,
77 16, 16, 16, 16,
78 4
79 };
80
81 /* Return the name of register REG. */
82
83 char *
84 i386_register_name (int reg)
85 {
86 if (reg < 0)
87 return NULL;
88 if (reg >= sizeof (i386_register_names) / sizeof (*i386_register_names))
89 return NULL;
90
91 return i386_register_names[reg];
92 }
93
94 /* Return the offset into the register array of the start of register
95 number REG. */
96 int
97 i386_register_byte (int reg)
98 {
99 return i386_register_offset[reg];
100 }
101
102 /* Return the number of bytes of storage in GDB's register array
103 occupied by register REG. */
104
105 int
106 i386_register_raw_size (int reg)
107 {
108 return i386_register_size[reg];
109 }
110
111 /* Return the size in bytes of the virtual type of register REG. */
112
113 int
114 i386_register_virtual_size (int reg)
115 {
116 return TYPE_LENGTH (REGISTER_VIRTUAL_TYPE (reg));
117 }
118
119 /* Convert stabs register number REG to the appropriate register
120 number used by GDB. */
121
122 int
123 i386_stab_reg_to_regnum (int reg)
124 {
125 /* This implements what GCC calls the "default" register map. */
126 if (reg >= 0 && reg <= 7)
127 {
128 /* General registers. */
129 return reg;
130 }
131 else if (reg >= 12 && reg <= 19)
132 {
133 /* Floating-point registers. */
134 return reg - 12 + FP0_REGNUM;
135 }
136 else if (reg >= 21 && reg <= 28)
137 {
138 /* SSE registers. */
139 return reg - 21 + XMM0_REGNUM;
140 }
141 else if (reg >= 29 && reg <= 36)
142 {
143 /* MMX registers. */
144 /* FIXME: kettenis/2001-07-28: Should we have the MMX registers
145 as pseudo-registers? */
146 return reg - 29 + FP0_REGNUM;
147 }
148
149 /* This will hopefully provoke a warning. */
150 return NUM_REGS + NUM_PSEUDO_REGS;
151 }
152
153 /* Convert Dwarf register number REG to the appropriate register
154 number used by GDB. */
155
156 int
157 i386_dwarf_reg_to_regnum (int reg)
158 {
159 /* The DWARF register numbering includes %eip and %eflags, and
160 numbers the floating point registers differently. */
161 if (reg >= 0 && reg <= 9)
162 {
163 /* General registers. */
164 return reg;
165 }
166 else if (reg >= 11 && reg <= 18)
167 {
168 /* Floating-point registers. */
169 return reg - 11 + FP0_REGNUM;
170 }
171 else if (reg >= 21)
172 {
173 /* The SSE and MMX registers have identical numbers as in stabs. */
174 return i386_stab_reg_to_regnum (reg);
175 }
176
177 /* This will hopefully provoke a warning. */
178 return NUM_REGS + NUM_PSEUDO_REGS;
179 }
180 \f
181
182 /* This is the variable that is set with "set disassembly-flavor", and
183 its legitimate values. */
184 static const char att_flavor[] = "att";
185 static const char intel_flavor[] = "intel";
186 static const char *valid_flavors[] =
187 {
188 att_flavor,
189 intel_flavor,
190 NULL
191 };
192 static const char *disassembly_flavor = att_flavor;
193
194 /* Stdio style buffering was used to minimize calls to ptrace, but
195 this buffering did not take into account that the code section
196 being accessed may not be an even number of buffers long (even if
197 the buffer is only sizeof(int) long). In cases where the code
198 section size happened to be a non-integral number of buffers long,
199 attempting to read the last buffer would fail. Simply using
200 target_read_memory and ignoring errors, rather than read_memory, is
201 not the correct solution, since legitimate access errors would then
202 be totally ignored. To properly handle this situation and continue
203 to use buffering would require that this code be able to determine
204 the minimum code section size granularity (not the alignment of the
205 section itself, since the actual failing case that pointed out this
206 problem had a section alignment of 4 but was not a multiple of 4
207 bytes long), on a target by target basis, and then adjust it's
208 buffer size accordingly. This is messy, but potentially feasible.
209 It probably needs the bfd library's help and support. For now, the
210 buffer size is set to 1. (FIXME -fnf) */
211
212 #define CODESTREAM_BUFSIZ 1 /* Was sizeof(int), see note above. */
213 static CORE_ADDR codestream_next_addr;
214 static CORE_ADDR codestream_addr;
215 static unsigned char codestream_buf[CODESTREAM_BUFSIZ];
216 static int codestream_off;
217 static int codestream_cnt;
218
219 #define codestream_tell() (codestream_addr + codestream_off)
220 #define codestream_peek() \
221 (codestream_cnt == 0 ? \
222 codestream_fill(1) : codestream_buf[codestream_off])
223 #define codestream_get() \
224 (codestream_cnt-- == 0 ? \
225 codestream_fill(0) : codestream_buf[codestream_off++])
226
227 static unsigned char
228 codestream_fill (int peek_flag)
229 {
230 codestream_addr = codestream_next_addr;
231 codestream_next_addr += CODESTREAM_BUFSIZ;
232 codestream_off = 0;
233 codestream_cnt = CODESTREAM_BUFSIZ;
234 read_memory (codestream_addr, (char *) codestream_buf, CODESTREAM_BUFSIZ);
235
236 if (peek_flag)
237 return (codestream_peek ());
238 else
239 return (codestream_get ());
240 }
241
242 static void
243 codestream_seek (CORE_ADDR place)
244 {
245 codestream_next_addr = place / CODESTREAM_BUFSIZ;
246 codestream_next_addr *= CODESTREAM_BUFSIZ;
247 codestream_cnt = 0;
248 codestream_fill (1);
249 while (codestream_tell () != place)
250 codestream_get ();
251 }
252
253 static void
254 codestream_read (unsigned char *buf, int count)
255 {
256 unsigned char *p;
257 int i;
258 p = buf;
259 for (i = 0; i < count; i++)
260 *p++ = codestream_get ();
261 }
262 \f
263
264 /* If the next instruction is a jump, move to its target. */
265
266 static void
267 i386_follow_jump (void)
268 {
269 unsigned char buf[4];
270 long delta;
271
272 int data16;
273 CORE_ADDR pos;
274
275 pos = codestream_tell ();
276
277 data16 = 0;
278 if (codestream_peek () == 0x66)
279 {
280 codestream_get ();
281 data16 = 1;
282 }
283
284 switch (codestream_get ())
285 {
286 case 0xe9:
287 /* Relative jump: if data16 == 0, disp32, else disp16. */
288 if (data16)
289 {
290 codestream_read (buf, 2);
291 delta = extract_signed_integer (buf, 2);
292
293 /* Include the size of the jmp instruction (including the
294 0x66 prefix). */
295 pos += delta + 4;
296 }
297 else
298 {
299 codestream_read (buf, 4);
300 delta = extract_signed_integer (buf, 4);
301
302 pos += delta + 5;
303 }
304 break;
305 case 0xeb:
306 /* Relative jump, disp8 (ignore data16). */
307 codestream_read (buf, 1);
308 /* Sign-extend it. */
309 delta = extract_signed_integer (buf, 1);
310
311 pos += delta + 2;
312 break;
313 }
314 codestream_seek (pos);
315 }
316
317 /* Find & return the amount a local space allocated, and advance the
318 codestream to the first register push (if any).
319
320 If the entry sequence doesn't make sense, return -1, and leave
321 codestream pointer at a random spot. */
322
323 static long
324 i386_get_frame_setup (CORE_ADDR pc)
325 {
326 unsigned char op;
327
328 codestream_seek (pc);
329
330 i386_follow_jump ();
331
332 op = codestream_get ();
333
334 if (op == 0x58) /* popl %eax */
335 {
336 /* This function must start with
337
338 popl %eax 0x58
339 xchgl %eax, (%esp) 0x87 0x04 0x24
340 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
341
342 (the System V compiler puts out the second `xchg'
343 instruction, and the assembler doesn't try to optimize it, so
344 the 'sib' form gets generated). This sequence is used to get
345 the address of the return buffer for a function that returns
346 a structure. */
347 int pos;
348 unsigned char buf[4];
349 static unsigned char proto1[3] = { 0x87, 0x04, 0x24 };
350 static unsigned char proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
351
352 pos = codestream_tell ();
353 codestream_read (buf, 4);
354 if (memcmp (buf, proto1, 3) == 0)
355 pos += 3;
356 else if (memcmp (buf, proto2, 4) == 0)
357 pos += 4;
358
359 codestream_seek (pos);
360 op = codestream_get (); /* Update next opcode. */
361 }
362
363 if (op == 0x68 || op == 0x6a)
364 {
365 /* This function may start with
366
367 pushl constant
368 call _probe
369 addl $4, %esp
370
371 followed by
372
373 pushl %ebp
374
375 etc. */
376 int pos;
377 unsigned char buf[8];
378
379 /* Skip past the `pushl' instruction; it has either a one-byte
380 or a four-byte operand, depending on the opcode. */
381 pos = codestream_tell ();
382 if (op == 0x68)
383 pos += 4;
384 else
385 pos += 1;
386 codestream_seek (pos);
387
388 /* Read the following 8 bytes, which should be "call _probe" (6
389 bytes) followed by "addl $4,%esp" (2 bytes). */
390 codestream_read (buf, sizeof (buf));
391 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
392 pos += sizeof (buf);
393 codestream_seek (pos);
394 op = codestream_get (); /* Update next opcode. */
395 }
396
397 if (op == 0x55) /* pushl %ebp */
398 {
399 /* Check for "movl %esp, %ebp" -- can be written in two ways. */
400 switch (codestream_get ())
401 {
402 case 0x8b:
403 if (codestream_get () != 0xec)
404 return -1;
405 break;
406 case 0x89:
407 if (codestream_get () != 0xe5)
408 return -1;
409 break;
410 default:
411 return -1;
412 }
413 /* Check for stack adjustment
414
415 subl $XXX, %esp
416
417 NOTE: You can't subtract a 16 bit immediate from a 32 bit
418 reg, so we don't have to worry about a data16 prefix. */
419 op = codestream_peek ();
420 if (op == 0x83)
421 {
422 /* `subl' with 8 bit immediate. */
423 codestream_get ();
424 if (codestream_get () != 0xec)
425 /* Some instruction starting with 0x83 other than `subl'. */
426 {
427 codestream_seek (codestream_tell () - 2);
428 return 0;
429 }
430 /* `subl' with signed byte immediate (though it wouldn't
431 make sense to be negative). */
432 return (codestream_get ());
433 }
434 else if (op == 0x81)
435 {
436 char buf[4];
437 /* Maybe it is `subl' with a 32 bit immedediate. */
438 codestream_get ();
439 if (codestream_get () != 0xec)
440 /* Some instruction starting with 0x81 other than `subl'. */
441 {
442 codestream_seek (codestream_tell () - 2);
443 return 0;
444 }
445 /* It is `subl' with a 32 bit immediate. */
446 codestream_read ((unsigned char *) buf, 4);
447 return extract_signed_integer (buf, 4);
448 }
449 else
450 {
451 return 0;
452 }
453 }
454 else if (op == 0xc8)
455 {
456 char buf[2];
457 /* `enter' with 16 bit unsigned immediate. */
458 codestream_read ((unsigned char *) buf, 2);
459 codestream_get (); /* Flush final byte of enter instruction. */
460 return extract_unsigned_integer (buf, 2);
461 }
462 return (-1);
463 }
464
465 /* Return the chain-pointer for FRAME. In the case of the i386, the
466 frame's nominal address is the address of a 4-byte word containing
467 the calling frame's address. */
468
469 CORE_ADDR
470 i386_frame_chain (struct frame_info *frame)
471 {
472 if (frame->signal_handler_caller)
473 return frame->frame;
474
475 if (! inside_entry_file (frame->pc))
476 return read_memory_unsigned_integer (frame->frame, 4);
477
478 return 0;
479 }
480
481 /* Determine whether the function invocation represented by FRAME does
482 not have a from on the stack associated with it. If it does not,
483 return non-zero, otherwise return zero. */
484
485 int
486 i386_frameless_function_invocation (struct frame_info *frame)
487 {
488 if (frame->signal_handler_caller)
489 return 0;
490
491 return frameless_look_for_prologue (frame);
492 }
493
494 /* Return the saved program counter for FRAME. */
495
496 CORE_ADDR
497 i386_frame_saved_pc (struct frame_info *frame)
498 {
499 /* FIXME: kettenis/2001-05-09: Conditionalizing the next bit of code
500 on SIGCONTEXT_PC_OFFSET and I386V4_SIGTRAMP_SAVED_PC should be
501 considered a temporary hack. I plan to come up with something
502 better when we go multi-arch. */
503 #if defined (SIGCONTEXT_PC_OFFSET) || defined (I386V4_SIGTRAMP_SAVED_PC)
504 if (frame->signal_handler_caller)
505 return sigtramp_saved_pc (frame);
506 #endif
507
508 return read_memory_unsigned_integer (frame->frame + 4, 4);
509 }
510
511 /* Immediately after a function call, return the saved pc. */
512
513 CORE_ADDR
514 i386_saved_pc_after_call (struct frame_info *frame)
515 {
516 return read_memory_unsigned_integer (read_register (SP_REGNUM), 4);
517 }
518
519 /* Return number of args passed to a frame.
520 Can return -1, meaning no way to tell. */
521
522 int
523 i386_frame_num_args (struct frame_info *fi)
524 {
525 #if 1
526 return -1;
527 #else
528 /* This loses because not only might the compiler not be popping the
529 args right after the function call, it might be popping args from
530 both this call and a previous one, and we would say there are
531 more args than there really are. */
532
533 int retpc;
534 unsigned char op;
535 struct frame_info *pfi;
536
537 /* On the i386, the instruction following the call could be:
538 popl %ecx - one arg
539 addl $imm, %esp - imm/4 args; imm may be 8 or 32 bits
540 anything else - zero args. */
541
542 int frameless;
543
544 frameless = FRAMELESS_FUNCTION_INVOCATION (fi);
545 if (frameless)
546 /* In the absence of a frame pointer, GDB doesn't get correct
547 values for nameless arguments. Return -1, so it doesn't print
548 any nameless arguments. */
549 return -1;
550
551 pfi = get_prev_frame (fi);
552 if (pfi == 0)
553 {
554 /* NOTE: This can happen if we are looking at the frame for
555 main, because FRAME_CHAIN_VALID won't let us go into start.
556 If we have debugging symbols, that's not really a big deal;
557 it just means it will only show as many arguments to main as
558 are declared. */
559 return -1;
560 }
561 else
562 {
563 retpc = pfi->pc;
564 op = read_memory_integer (retpc, 1);
565 if (op == 0x59) /* pop %ecx */
566 return 1;
567 else if (op == 0x83)
568 {
569 op = read_memory_integer (retpc + 1, 1);
570 if (op == 0xc4)
571 /* addl $<signed imm 8 bits>, %esp */
572 return (read_memory_integer (retpc + 2, 1) & 0xff) / 4;
573 else
574 return 0;
575 }
576 else if (op == 0x81) /* `add' with 32 bit immediate. */
577 {
578 op = read_memory_integer (retpc + 1, 1);
579 if (op == 0xc4)
580 /* addl $<imm 32>, %esp */
581 return read_memory_integer (retpc + 2, 4) / 4;
582 else
583 return 0;
584 }
585 else
586 {
587 return 0;
588 }
589 }
590 #endif
591 }
592
593 /* Parse the first few instructions the function to see what registers
594 were stored.
595
596 We handle these cases:
597
598 The startup sequence can be at the start of the function, or the
599 function can start with a branch to startup code at the end.
600
601 %ebp can be set up with either the 'enter' instruction, or "pushl
602 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
603 once used in the System V compiler).
604
605 Local space is allocated just below the saved %ebp by either the
606 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a 16
607 bit unsigned argument for space to allocate, and the 'addl'
608 instruction could have either a signed byte, or 32 bit immediate.
609
610 Next, the registers used by this function are pushed. With the
611 System V compiler they will always be in the order: %edi, %esi,
612 %ebx (and sometimes a harmless bug causes it to also save but not
613 restore %eax); however, the code below is willing to see the pushes
614 in any order, and will handle up to 8 of them.
615
616 If the setup sequence is at the end of the function, then the next
617 instruction will be a branch back to the start. */
618
619 void
620 i386_frame_init_saved_regs (struct frame_info *fip)
621 {
622 long locals = -1;
623 unsigned char op;
624 CORE_ADDR dummy_bottom;
625 CORE_ADDR addr;
626 CORE_ADDR pc;
627 int i;
628
629 if (fip->saved_regs)
630 return;
631
632 frame_saved_regs_zalloc (fip);
633
634 /* If the frame is the end of a dummy, compute where the beginning
635 would be. */
636 dummy_bottom = fip->frame - 4 - REGISTER_BYTES - CALL_DUMMY_LENGTH;
637
638 /* Check if the PC points in the stack, in a dummy frame. */
639 if (dummy_bottom <= fip->pc && fip->pc <= fip->frame)
640 {
641 /* All registers were saved by push_call_dummy. */
642 addr = fip->frame;
643 for (i = 0; i < NUM_REGS; i++)
644 {
645 addr -= REGISTER_RAW_SIZE (i);
646 fip->saved_regs[i] = addr;
647 }
648 return;
649 }
650
651 pc = get_pc_function_start (fip->pc);
652 if (pc != 0)
653 locals = i386_get_frame_setup (pc);
654
655 if (locals >= 0)
656 {
657 addr = fip->frame - 4 - locals;
658 for (i = 0; i < 8; i++)
659 {
660 op = codestream_get ();
661 if (op < 0x50 || op > 0x57)
662 break;
663 #ifdef I386_REGNO_TO_SYMMETRY
664 /* Dynix uses different internal numbering. Ick. */
665 fip->saved_regs[I386_REGNO_TO_SYMMETRY (op - 0x50)] = addr;
666 #else
667 fip->saved_regs[op - 0x50] = addr;
668 #endif
669 addr -= 4;
670 }
671 }
672
673 fip->saved_regs[PC_REGNUM] = fip->frame + 4;
674 fip->saved_regs[FP_REGNUM] = fip->frame;
675 }
676
677 /* Return PC of first real instruction. */
678
679 int
680 i386_skip_prologue (int pc)
681 {
682 unsigned char op;
683 int i;
684 static unsigned char pic_pat[6] =
685 { 0xe8, 0, 0, 0, 0, /* call 0x0 */
686 0x5b, /* popl %ebx */
687 };
688 CORE_ADDR pos;
689
690 if (i386_get_frame_setup (pc) < 0)
691 return (pc);
692
693 /* Found valid frame setup -- codestream now points to start of push
694 instructions for saving registers. */
695
696 /* Skip over register saves. */
697 for (i = 0; i < 8; i++)
698 {
699 op = codestream_peek ();
700 /* Break if not `pushl' instrunction. */
701 if (op < 0x50 || op > 0x57)
702 break;
703 codestream_get ();
704 }
705
706 /* The native cc on SVR4 in -K PIC mode inserts the following code
707 to get the address of the global offset table (GOT) into register
708 %ebx
709
710 call 0x0
711 popl %ebx
712 movl %ebx,x(%ebp) (optional)
713 addl y,%ebx
714
715 This code is with the rest of the prologue (at the end of the
716 function), so we have to skip it to get to the first real
717 instruction at the start of the function. */
718
719 pos = codestream_tell ();
720 for (i = 0; i < 6; i++)
721 {
722 op = codestream_get ();
723 if (pic_pat[i] != op)
724 break;
725 }
726 if (i == 6)
727 {
728 unsigned char buf[4];
729 long delta = 6;
730
731 op = codestream_get ();
732 if (op == 0x89) /* movl %ebx, x(%ebp) */
733 {
734 op = codestream_get ();
735 if (op == 0x5d) /* One byte offset from %ebp. */
736 {
737 delta += 3;
738 codestream_read (buf, 1);
739 }
740 else if (op == 0x9d) /* Four byte offset from %ebp. */
741 {
742 delta += 6;
743 codestream_read (buf, 4);
744 }
745 else /* Unexpected instruction. */
746 delta = -1;
747 op = codestream_get ();
748 }
749 /* addl y,%ebx */
750 if (delta > 0 && op == 0x81 && codestream_get () == 0xc3)
751 {
752 pos += delta + 6;
753 }
754 }
755 codestream_seek (pos);
756
757 i386_follow_jump ();
758
759 return (codestream_tell ());
760 }
761
762 void
763 i386_push_dummy_frame (void)
764 {
765 CORE_ADDR sp = read_register (SP_REGNUM);
766 int regnum;
767 char regbuf[MAX_REGISTER_RAW_SIZE];
768
769 sp = push_word (sp, read_register (PC_REGNUM));
770 sp = push_word (sp, read_register (FP_REGNUM));
771 write_register (FP_REGNUM, sp);
772 for (regnum = 0; regnum < NUM_REGS; regnum++)
773 {
774 read_register_gen (regnum, regbuf);
775 sp = push_bytes (sp, regbuf, REGISTER_RAW_SIZE (regnum));
776 }
777 write_register (SP_REGNUM, sp);
778 }
779
780 /* Insert the (relative) function address into the call sequence
781 stored at DYMMY. */
782
783 void
784 i386_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs,
785 struct value **args, struct type *type, int gcc_p)
786 {
787 int from, to, delta, loc;
788
789 loc = (int)(read_register (SP_REGNUM) - CALL_DUMMY_LENGTH);
790 from = loc + 5;
791 to = (int)(fun);
792 delta = to - from;
793
794 *((char *)(dummy) + 1) = (delta & 0xff);
795 *((char *)(dummy) + 2) = ((delta >> 8) & 0xff);
796 *((char *)(dummy) + 3) = ((delta >> 16) & 0xff);
797 *((char *)(dummy) + 4) = ((delta >> 24) & 0xff);
798 }
799
800 void
801 i386_pop_frame (void)
802 {
803 struct frame_info *frame = get_current_frame ();
804 CORE_ADDR fp;
805 int regnum;
806 char regbuf[MAX_REGISTER_RAW_SIZE];
807
808 fp = FRAME_FP (frame);
809 i386_frame_init_saved_regs (frame);
810
811 for (regnum = 0; regnum < NUM_REGS; regnum++)
812 {
813 CORE_ADDR addr;
814 addr = frame->saved_regs[regnum];
815 if (addr)
816 {
817 read_memory (addr, regbuf, REGISTER_RAW_SIZE (regnum));
818 write_register_bytes (REGISTER_BYTE (regnum), regbuf,
819 REGISTER_RAW_SIZE (regnum));
820 }
821 }
822 write_register (FP_REGNUM, read_memory_integer (fp, 4));
823 write_register (PC_REGNUM, read_memory_integer (fp + 4, 4));
824 write_register (SP_REGNUM, fp + 8);
825 flush_cached_frames ();
826 }
827 \f
828
829 #ifdef GET_LONGJMP_TARGET
830
831 /* Figure out where the longjmp will land. Slurp the args out of the
832 stack. We expect the first arg to be a pointer to the jmp_buf
833 structure from which we extract the pc (JB_PC) that we will land
834 at. The pc is copied into PC. This routine returns true on
835 success. */
836
837 int
838 get_longjmp_target (CORE_ADDR *pc)
839 {
840 char buf[TARGET_PTR_BIT / TARGET_CHAR_BIT];
841 CORE_ADDR sp, jb_addr;
842
843 sp = read_register (SP_REGNUM);
844
845 if (target_read_memory (sp + SP_ARG0, /* Offset of first arg on stack. */
846 buf,
847 TARGET_PTR_BIT / TARGET_CHAR_BIT))
848 return 0;
849
850 jb_addr = extract_address (buf, TARGET_PTR_BIT / TARGET_CHAR_BIT);
851
852 if (target_read_memory (jb_addr + JB_PC * JB_ELEMENT_SIZE, buf,
853 TARGET_PTR_BIT / TARGET_CHAR_BIT))
854 return 0;
855
856 *pc = extract_address (buf, TARGET_PTR_BIT / TARGET_CHAR_BIT);
857
858 return 1;
859 }
860
861 #endif /* GET_LONGJMP_TARGET */
862 \f
863
864 CORE_ADDR
865 i386_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
866 int struct_return, CORE_ADDR struct_addr)
867 {
868 sp = default_push_arguments (nargs, args, sp, struct_return, struct_addr);
869
870 if (struct_return)
871 {
872 char buf[4];
873
874 sp -= 4;
875 store_address (buf, 4, struct_addr);
876 write_memory (sp, buf, 4);
877 }
878
879 return sp;
880 }
881
882 void
883 i386_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
884 {
885 /* Do nothing. Everything was already done by i386_push_arguments. */
886 }
887
888 /* These registers are used for returning integers (and on some
889 targets also for returning `struct' and `union' values when their
890 size and alignment match an integer type). */
891 #define LOW_RETURN_REGNUM 0 /* %eax */
892 #define HIGH_RETURN_REGNUM 2 /* %edx */
893
894 /* Extract from an array REGBUF containing the (raw) register state, a
895 function return value of TYPE, and copy that, in virtual format,
896 into VALBUF. */
897
898 void
899 i386_extract_return_value (struct type *type, char *regbuf, char *valbuf)
900 {
901 int len = TYPE_LENGTH (type);
902
903 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
904 && TYPE_NFIELDS (type) == 1)
905 {
906 i386_extract_return_value (TYPE_FIELD_TYPE (type, 0), regbuf, valbuf);
907 return;
908 }
909
910 if (TYPE_CODE (type) == TYPE_CODE_FLT)
911 {
912 if (NUM_FREGS == 0)
913 {
914 warning ("Cannot find floating-point return value.");
915 memset (valbuf, 0, len);
916 return;
917 }
918
919 /* Floating-point return values can be found in %st(0). Convert
920 its contents to the desired type. This is probably not
921 exactly how it would happen on the target itself, but it is
922 the best we can do. */
923 convert_typed_floating (&regbuf[REGISTER_BYTE (FP0_REGNUM)],
924 builtin_type_i387_ext, valbuf, type);
925 }
926 else
927 {
928 int low_size = REGISTER_RAW_SIZE (LOW_RETURN_REGNUM);
929 int high_size = REGISTER_RAW_SIZE (HIGH_RETURN_REGNUM);
930
931 if (len <= low_size)
932 memcpy (valbuf, &regbuf[REGISTER_BYTE (LOW_RETURN_REGNUM)], len);
933 else if (len <= (low_size + high_size))
934 {
935 memcpy (valbuf,
936 &regbuf[REGISTER_BYTE (LOW_RETURN_REGNUM)], low_size);
937 memcpy (valbuf + low_size,
938 &regbuf[REGISTER_BYTE (HIGH_RETURN_REGNUM)], len - low_size);
939 }
940 else
941 internal_error (__FILE__, __LINE__,
942 "Cannot extract return value of %d bytes long.", len);
943 }
944 }
945
946 /* Write into the appropriate registers a function return value stored
947 in VALBUF of type TYPE, given in virtual format. */
948
949 void
950 i386_store_return_value (struct type *type, char *valbuf)
951 {
952 int len = TYPE_LENGTH (type);
953
954 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
955 && TYPE_NFIELDS (type) == 1)
956 {
957 i386_store_return_value (TYPE_FIELD_TYPE (type, 0), valbuf);
958 return;
959 }
960
961 if (TYPE_CODE (type) == TYPE_CODE_FLT)
962 {
963 unsigned int fstat;
964 char buf[FPU_REG_RAW_SIZE];
965
966 if (NUM_FREGS == 0)
967 {
968 warning ("Cannot set floating-point return value.");
969 return;
970 }
971
972 /* Returning floating-point values is a bit tricky. Apart from
973 storing the return value in %st(0), we have to simulate the
974 state of the FPU at function return point. */
975
976 /* Convert the value found in VALBUF to the extended
977 floating-point format used by the FPU. This is probably
978 not exactly how it would happen on the target itself, but
979 it is the best we can do. */
980 convert_typed_floating (valbuf, type, buf, builtin_type_i387_ext);
981 write_register_bytes (REGISTER_BYTE (FP0_REGNUM), buf,
982 FPU_REG_RAW_SIZE);
983
984 /* Set the top of the floating-point register stack to 7. The
985 actual value doesn't really matter, but 7 is what a normal
986 function return would end up with if the program started out
987 with a freshly initialized FPU. */
988 fstat = read_register (FSTAT_REGNUM);
989 fstat |= (7 << 11);
990 write_register (FSTAT_REGNUM, fstat);
991
992 /* Mark %st(1) through %st(7) as empty. Since we set the top of
993 the floating-point register stack to 7, the appropriate value
994 for the tag word is 0x3fff. */
995 write_register (FTAG_REGNUM, 0x3fff);
996 }
997 else
998 {
999 int low_size = REGISTER_RAW_SIZE (LOW_RETURN_REGNUM);
1000 int high_size = REGISTER_RAW_SIZE (HIGH_RETURN_REGNUM);
1001
1002 if (len <= low_size)
1003 write_register_bytes (REGISTER_BYTE (LOW_RETURN_REGNUM), valbuf, len);
1004 else if (len <= (low_size + high_size))
1005 {
1006 write_register_bytes (REGISTER_BYTE (LOW_RETURN_REGNUM),
1007 valbuf, low_size);
1008 write_register_bytes (REGISTER_BYTE (HIGH_RETURN_REGNUM),
1009 valbuf + low_size, len - low_size);
1010 }
1011 else
1012 internal_error (__FILE__, __LINE__,
1013 "Cannot store return value of %d bytes long.", len);
1014 }
1015 }
1016
1017 /* Extract from an array REGBUF containing the (raw) register state
1018 the address in which a function should return its structure value,
1019 as a CORE_ADDR. */
1020
1021 CORE_ADDR
1022 i386_extract_struct_value_address (char *regbuf)
1023 {
1024 return extract_address (&regbuf[REGISTER_BYTE (LOW_RETURN_REGNUM)],
1025 REGISTER_RAW_SIZE (LOW_RETURN_REGNUM));
1026 }
1027 \f
1028
1029 /* Return the GDB type object for the "standard" data type of data in
1030 register REGNUM. Perhaps %esi and %edi should go here, but
1031 potentially they could be used for things other than address. */
1032
1033 struct type *
1034 i386_register_virtual_type (int regnum)
1035 {
1036 if (regnum == PC_REGNUM || regnum == FP_REGNUM || regnum == SP_REGNUM)
1037 return lookup_pointer_type (builtin_type_void);
1038
1039 if (IS_FP_REGNUM (regnum))
1040 return builtin_type_i387_ext;
1041
1042 if (IS_SSE_REGNUM (regnum))
1043 return builtin_type_v4sf;
1044
1045 return builtin_type_int;
1046 }
1047
1048 /* Return true iff register REGNUM's virtual format is different from
1049 its raw format. Note that this definition assumes that the host
1050 supports IEEE 32-bit floats, since it doesn't say that SSE
1051 registers need conversion. Even if we can't find a counterexample,
1052 this is still sloppy. */
1053
1054 int
1055 i386_register_convertible (int regnum)
1056 {
1057 return IS_FP_REGNUM (regnum);
1058 }
1059
1060 /* Convert data from raw format for register REGNUM in buffer FROM to
1061 virtual format with type TYPE in buffer TO. */
1062
1063 void
1064 i386_register_convert_to_virtual (int regnum, struct type *type,
1065 char *from, char *to)
1066 {
1067 gdb_assert (IS_FP_REGNUM (regnum));
1068
1069 /* We only support floating-point values. */
1070 if (TYPE_CODE (type) != TYPE_CODE_FLT)
1071 {
1072 warning ("Cannot convert floating-point register value "
1073 "to non-floating-point type.");
1074 memset (to, 0, TYPE_LENGTH (type));
1075 return;
1076 }
1077
1078 /* Convert to TYPE. This should be a no-op if TYPE is equivalent to
1079 the extended floating-point format used by the FPU. */
1080 convert_typed_floating (from, builtin_type_i387_ext, to, type);
1081 }
1082
1083 /* Convert data from virtual format with type TYPE in buffer FROM to
1084 raw format for register REGNUM in buffer TO. */
1085
1086 void
1087 i386_register_convert_to_raw (struct type *type, int regnum,
1088 char *from, char *to)
1089 {
1090 gdb_assert (IS_FP_REGNUM (regnum));
1091
1092 /* We only support floating-point values. */
1093 if (TYPE_CODE (type) != TYPE_CODE_FLT)
1094 {
1095 warning ("Cannot convert non-floating-point type "
1096 "to floating-point register value.");
1097 memset (to, 0, TYPE_LENGTH (type));
1098 return;
1099 }
1100
1101 /* Convert from TYPE. This should be a no-op if TYPE is equivalent
1102 to the extended floating-point format used by the FPU. */
1103 convert_typed_floating (from, type, to, builtin_type_i387_ext);
1104 }
1105 \f
1106
1107 #ifdef I386V4_SIGTRAMP_SAVED_PC
1108 /* Get saved user PC for sigtramp from the pushed ucontext on the
1109 stack for all three variants of SVR4 sigtramps. */
1110
1111 CORE_ADDR
1112 i386v4_sigtramp_saved_pc (struct frame_info *frame)
1113 {
1114 CORE_ADDR saved_pc_offset = 4;
1115 char *name = NULL;
1116
1117 find_pc_partial_function (frame->pc, &name, NULL, NULL);
1118 if (name)
1119 {
1120 if (STREQ (name, "_sigreturn"))
1121 saved_pc_offset = 132 + 14 * 4;
1122 else if (STREQ (name, "_sigacthandler"))
1123 saved_pc_offset = 80 + 14 * 4;
1124 else if (STREQ (name, "sigvechandler"))
1125 saved_pc_offset = 120 + 14 * 4;
1126 }
1127
1128 if (frame->next)
1129 return read_memory_integer (frame->next->frame + saved_pc_offset, 4);
1130 return read_memory_integer (read_register (SP_REGNUM) + saved_pc_offset, 4);
1131 }
1132 #endif /* I386V4_SIGTRAMP_SAVED_PC */
1133 \f
1134
1135 #ifdef STATIC_TRANSFORM_NAME
1136 /* SunPRO encodes the static variables. This is not related to C++
1137 mangling, it is done for C too. */
1138
1139 char *
1140 sunpro_static_transform_name (char *name)
1141 {
1142 char *p;
1143 if (IS_STATIC_TRANSFORM_NAME (name))
1144 {
1145 /* For file-local statics there will be a period, a bunch of
1146 junk (the contents of which match a string given in the
1147 N_OPT), a period and the name. For function-local statics
1148 there will be a bunch of junk (which seems to change the
1149 second character from 'A' to 'B'), a period, the name of the
1150 function, and the name. So just skip everything before the
1151 last period. */
1152 p = strrchr (name, '.');
1153 if (p != NULL)
1154 name = p + 1;
1155 }
1156 return name;
1157 }
1158 #endif /* STATIC_TRANSFORM_NAME */
1159 \f
1160
1161 /* Stuff for WIN32 PE style DLL's but is pretty generic really. */
1162
1163 CORE_ADDR
1164 skip_trampoline_code (CORE_ADDR pc, char *name)
1165 {
1166 if (pc && read_memory_unsigned_integer (pc, 2) == 0x25ff) /* jmp *(dest) */
1167 {
1168 unsigned long indirect = read_memory_unsigned_integer (pc + 2, 4);
1169 struct minimal_symbol *indsym =
1170 indirect ? lookup_minimal_symbol_by_pc (indirect) : 0;
1171 char *symname = indsym ? SYMBOL_NAME (indsym) : 0;
1172
1173 if (symname)
1174 {
1175 if (strncmp (symname, "__imp_", 6) == 0
1176 || strncmp (symname, "_imp_", 5) == 0)
1177 return name ? 1 : read_memory_unsigned_integer (indirect, 4);
1178 }
1179 }
1180 return 0; /* Not a trampoline. */
1181 }
1182 \f
1183
1184 /* We have two flavours of disassembly. The machinery on this page
1185 deals with switching between those. */
1186
1187 static int
1188 gdb_print_insn_i386 (bfd_vma memaddr, disassemble_info *info)
1189 {
1190 if (disassembly_flavor == att_flavor)
1191 return print_insn_i386_att (memaddr, info);
1192 else if (disassembly_flavor == intel_flavor)
1193 return print_insn_i386_intel (memaddr, info);
1194 /* Never reached -- disassembly_flavour is always either att_flavor
1195 or intel_flavor. */
1196 internal_error (__FILE__, __LINE__, "failed internal consistency check");
1197 }
1198
1199 \f
1200
1201 struct gdbarch *
1202 i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1203 {
1204 struct gdbarch_tdep *tdep;
1205 struct gdbarch *gdbarch;
1206
1207 /* For the moment there is only one i386 architecture. */
1208 if (arches != NULL)
1209 return arches->gdbarch;
1210
1211 /* Allocate space for the new architecture. */
1212 tdep = XMALLOC (struct gdbarch_tdep);
1213 gdbarch = gdbarch_alloc (&info, tdep);
1214
1215 set_gdbarch_use_generic_dummy_frames (gdbarch, 0);
1216
1217 /* Call dummy code. */
1218 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
1219 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 5);
1220 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
1221 set_gdbarch_call_dummy_p (gdbarch, 1);
1222 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
1223
1224 set_gdbarch_get_saved_register (gdbarch, generic_get_saved_register);
1225 set_gdbarch_push_arguments (gdbarch, i386_push_arguments);
1226
1227 set_gdbarch_pc_in_call_dummy (gdbarch, pc_in_call_dummy_on_stack);
1228
1229 /* NOTE: tm-i386nw.h and tm-i386v4.h override this. */
1230 set_gdbarch_frame_chain_valid (gdbarch, file_frame_chain_valid);
1231
1232 return gdbarch;
1233 }
1234
1235 /* Provide a prototype to silence -Wmissing-prototypes. */
1236 void _initialize_i386_tdep (void);
1237
1238 void
1239 _initialize_i386_tdep (void)
1240 {
1241 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
1242
1243 /* Initialize the table saying where each register starts in the
1244 register file. */
1245 {
1246 int i, offset;
1247
1248 offset = 0;
1249 for (i = 0; i < MAX_NUM_REGS; i++)
1250 {
1251 i386_register_offset[i] = offset;
1252 offset += i386_register_size[i];
1253 }
1254 }
1255
1256 tm_print_insn = gdb_print_insn_i386;
1257 tm_print_insn_info.mach = bfd_lookup_arch (bfd_arch_i386, 0)->mach;
1258
1259 /* Add the variable that controls the disassembly flavor. */
1260 {
1261 struct cmd_list_element *new_cmd;
1262
1263 new_cmd = add_set_enum_cmd ("disassembly-flavor", no_class,
1264 valid_flavors,
1265 &disassembly_flavor,
1266 "\
1267 Set the disassembly flavor, the valid values are \"att\" and \"intel\", \
1268 and the default value is \"att\".",
1269 &setlist);
1270 add_show_from_set (new_cmd, &showlist);
1271 }
1272 }
This page took 0.061398 seconds and 5 git commands to generate.