PR gdb/13079
[deliverable/binutils-gdb.git] / gdb / i386-tdep.c
1 /* Intel 386 target-dependent stuff.
2
3 Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
5 2010, 2011 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "opcode/i386.h"
24 #include "arch-utils.h"
25 #include "command.h"
26 #include "dummy-frame.h"
27 #include "dwarf2-frame.h"
28 #include "doublest.h"
29 #include "frame.h"
30 #include "frame-base.h"
31 #include "frame-unwind.h"
32 #include "inferior.h"
33 #include "gdbcmd.h"
34 #include "gdbcore.h"
35 #include "gdbtypes.h"
36 #include "objfiles.h"
37 #include "osabi.h"
38 #include "regcache.h"
39 #include "reggroups.h"
40 #include "regset.h"
41 #include "symfile.h"
42 #include "symtab.h"
43 #include "target.h"
44 #include "value.h"
45 #include "dis-asm.h"
46 #include "disasm.h"
47 #include "remote.h"
48 #include "exceptions.h"
49 #include "gdb_assert.h"
50 #include "gdb_string.h"
51
52 #include "i386-tdep.h"
53 #include "i387-tdep.h"
54 #include "i386-xstate.h"
55
56 #include "record.h"
57 #include <stdint.h>
58
59 #include "features/i386/i386.c"
60 #include "features/i386/i386-avx.c"
61 #include "features/i386/i386-mmx.c"
62
63 /* Register names. */
64
65 static const char *i386_register_names[] =
66 {
67 "eax", "ecx", "edx", "ebx",
68 "esp", "ebp", "esi", "edi",
69 "eip", "eflags", "cs", "ss",
70 "ds", "es", "fs", "gs",
71 "st0", "st1", "st2", "st3",
72 "st4", "st5", "st6", "st7",
73 "fctrl", "fstat", "ftag", "fiseg",
74 "fioff", "foseg", "fooff", "fop",
75 "xmm0", "xmm1", "xmm2", "xmm3",
76 "xmm4", "xmm5", "xmm6", "xmm7",
77 "mxcsr"
78 };
79
80 static const char *i386_ymm_names[] =
81 {
82 "ymm0", "ymm1", "ymm2", "ymm3",
83 "ymm4", "ymm5", "ymm6", "ymm7",
84 };
85
86 static const char *i386_ymmh_names[] =
87 {
88 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
89 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
90 };
91
92 /* Register names for MMX pseudo-registers. */
93
94 static const char *i386_mmx_names[] =
95 {
96 "mm0", "mm1", "mm2", "mm3",
97 "mm4", "mm5", "mm6", "mm7"
98 };
99
100 /* Register names for byte pseudo-registers. */
101
102 static const char *i386_byte_names[] =
103 {
104 "al", "cl", "dl", "bl",
105 "ah", "ch", "dh", "bh"
106 };
107
108 /* Register names for word pseudo-registers. */
109
110 static const char *i386_word_names[] =
111 {
112 "ax", "cx", "dx", "bx",
113 "", "bp", "si", "di"
114 };
115
116 /* MMX register? */
117
118 static int
119 i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
120 {
121 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
122 int mm0_regnum = tdep->mm0_regnum;
123
124 if (mm0_regnum < 0)
125 return 0;
126
127 regnum -= mm0_regnum;
128 return regnum >= 0 && regnum < tdep->num_mmx_regs;
129 }
130
131 /* Byte register? */
132
133 int
134 i386_byte_regnum_p (struct gdbarch *gdbarch, int regnum)
135 {
136 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
137
138 regnum -= tdep->al_regnum;
139 return regnum >= 0 && regnum < tdep->num_byte_regs;
140 }
141
142 /* Word register? */
143
144 int
145 i386_word_regnum_p (struct gdbarch *gdbarch, int regnum)
146 {
147 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
148
149 regnum -= tdep->ax_regnum;
150 return regnum >= 0 && regnum < tdep->num_word_regs;
151 }
152
153 /* Dword register? */
154
155 int
156 i386_dword_regnum_p (struct gdbarch *gdbarch, int regnum)
157 {
158 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
159 int eax_regnum = tdep->eax_regnum;
160
161 if (eax_regnum < 0)
162 return 0;
163
164 regnum -= eax_regnum;
165 return regnum >= 0 && regnum < tdep->num_dword_regs;
166 }
167
168 static int
169 i386_ymmh_regnum_p (struct gdbarch *gdbarch, int regnum)
170 {
171 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
172 int ymm0h_regnum = tdep->ymm0h_regnum;
173
174 if (ymm0h_regnum < 0)
175 return 0;
176
177 regnum -= ymm0h_regnum;
178 return regnum >= 0 && regnum < tdep->num_ymm_regs;
179 }
180
181 /* AVX register? */
182
183 int
184 i386_ymm_regnum_p (struct gdbarch *gdbarch, int regnum)
185 {
186 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
187 int ymm0_regnum = tdep->ymm0_regnum;
188
189 if (ymm0_regnum < 0)
190 return 0;
191
192 regnum -= ymm0_regnum;
193 return regnum >= 0 && regnum < tdep->num_ymm_regs;
194 }
195
196 /* SSE register? */
197
198 int
199 i386_xmm_regnum_p (struct gdbarch *gdbarch, int regnum)
200 {
201 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
202 int num_xmm_regs = I387_NUM_XMM_REGS (tdep);
203
204 if (num_xmm_regs == 0)
205 return 0;
206
207 regnum -= I387_XMM0_REGNUM (tdep);
208 return regnum >= 0 && regnum < num_xmm_regs;
209 }
210
211 static int
212 i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
213 {
214 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
215
216 if (I387_NUM_XMM_REGS (tdep) == 0)
217 return 0;
218
219 return (regnum == I387_MXCSR_REGNUM (tdep));
220 }
221
222 /* FP register? */
223
224 int
225 i386_fp_regnum_p (struct gdbarch *gdbarch, int regnum)
226 {
227 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
228
229 if (I387_ST0_REGNUM (tdep) < 0)
230 return 0;
231
232 return (I387_ST0_REGNUM (tdep) <= regnum
233 && regnum < I387_FCTRL_REGNUM (tdep));
234 }
235
236 int
237 i386_fpc_regnum_p (struct gdbarch *gdbarch, int regnum)
238 {
239 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
240
241 if (I387_ST0_REGNUM (tdep) < 0)
242 return 0;
243
244 return (I387_FCTRL_REGNUM (tdep) <= regnum
245 && regnum < I387_XMM0_REGNUM (tdep));
246 }
247
248 /* Return the name of register REGNUM, or the empty string if it is
249 an anonymous register. */
250
251 static const char *
252 i386_register_name (struct gdbarch *gdbarch, int regnum)
253 {
254 /* Hide the upper YMM registers. */
255 if (i386_ymmh_regnum_p (gdbarch, regnum))
256 return "";
257
258 return tdesc_register_name (gdbarch, regnum);
259 }
260
261 /* Return the name of register REGNUM. */
262
263 const char *
264 i386_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
265 {
266 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
267 if (i386_mmx_regnum_p (gdbarch, regnum))
268 return i386_mmx_names[regnum - I387_MM0_REGNUM (tdep)];
269 else if (i386_ymm_regnum_p (gdbarch, regnum))
270 return i386_ymm_names[regnum - tdep->ymm0_regnum];
271 else if (i386_byte_regnum_p (gdbarch, regnum))
272 return i386_byte_names[regnum - tdep->al_regnum];
273 else if (i386_word_regnum_p (gdbarch, regnum))
274 return i386_word_names[regnum - tdep->ax_regnum];
275
276 internal_error (__FILE__, __LINE__, _("invalid regnum"));
277 }
278
279 /* Convert a dbx register number REG to the appropriate register
280 number used by GDB. */
281
282 static int
283 i386_dbx_reg_to_regnum (struct gdbarch *gdbarch, int reg)
284 {
285 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
286
287 /* This implements what GCC calls the "default" register map
288 (dbx_register_map[]). */
289
290 if (reg >= 0 && reg <= 7)
291 {
292 /* General-purpose registers. The debug info calls %ebp
293 register 4, and %esp register 5. */
294 if (reg == 4)
295 return 5;
296 else if (reg == 5)
297 return 4;
298 else return reg;
299 }
300 else if (reg >= 12 && reg <= 19)
301 {
302 /* Floating-point registers. */
303 return reg - 12 + I387_ST0_REGNUM (tdep);
304 }
305 else if (reg >= 21 && reg <= 28)
306 {
307 /* SSE registers. */
308 int ymm0_regnum = tdep->ymm0_regnum;
309
310 if (ymm0_regnum >= 0
311 && i386_xmm_regnum_p (gdbarch, reg))
312 return reg - 21 + ymm0_regnum;
313 else
314 return reg - 21 + I387_XMM0_REGNUM (tdep);
315 }
316 else if (reg >= 29 && reg <= 36)
317 {
318 /* MMX registers. */
319 return reg - 29 + I387_MM0_REGNUM (tdep);
320 }
321
322 /* This will hopefully provoke a warning. */
323 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
324 }
325
326 /* Convert SVR4 register number REG to the appropriate register number
327 used by GDB. */
328
329 static int
330 i386_svr4_reg_to_regnum (struct gdbarch *gdbarch, int reg)
331 {
332 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
333
334 /* This implements the GCC register map that tries to be compatible
335 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
336
337 /* The SVR4 register numbering includes %eip and %eflags, and
338 numbers the floating point registers differently. */
339 if (reg >= 0 && reg <= 9)
340 {
341 /* General-purpose registers. */
342 return reg;
343 }
344 else if (reg >= 11 && reg <= 18)
345 {
346 /* Floating-point registers. */
347 return reg - 11 + I387_ST0_REGNUM (tdep);
348 }
349 else if (reg >= 21 && reg <= 36)
350 {
351 /* The SSE and MMX registers have the same numbers as with dbx. */
352 return i386_dbx_reg_to_regnum (gdbarch, reg);
353 }
354
355 switch (reg)
356 {
357 case 37: return I387_FCTRL_REGNUM (tdep);
358 case 38: return I387_FSTAT_REGNUM (tdep);
359 case 39: return I387_MXCSR_REGNUM (tdep);
360 case 40: return I386_ES_REGNUM;
361 case 41: return I386_CS_REGNUM;
362 case 42: return I386_SS_REGNUM;
363 case 43: return I386_DS_REGNUM;
364 case 44: return I386_FS_REGNUM;
365 case 45: return I386_GS_REGNUM;
366 }
367
368 /* This will hopefully provoke a warning. */
369 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
370 }
371
372 \f
373
374 /* This is the variable that is set with "set disassembly-flavor", and
375 its legitimate values. */
376 static const char att_flavor[] = "att";
377 static const char intel_flavor[] = "intel";
378 static const char *valid_flavors[] =
379 {
380 att_flavor,
381 intel_flavor,
382 NULL
383 };
384 static const char *disassembly_flavor = att_flavor;
385 \f
386
387 /* Use the program counter to determine the contents and size of a
388 breakpoint instruction. Return a pointer to a string of bytes that
389 encode a breakpoint instruction, store the length of the string in
390 *LEN and optionally adjust *PC to point to the correct memory
391 location for inserting the breakpoint.
392
393 On the i386 we have a single breakpoint that fits in a single byte
394 and can be inserted anywhere.
395
396 This function is 64-bit safe. */
397
398 static const gdb_byte *
399 i386_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
400 {
401 static gdb_byte break_insn[] = { 0xcc }; /* int 3 */
402
403 *len = sizeof (break_insn);
404 return break_insn;
405 }
406 \f
407 /* Displaced instruction handling. */
408
409 /* Skip the legacy instruction prefixes in INSN.
410 Not all prefixes are valid for any particular insn
411 but we needn't care, the insn will fault if it's invalid.
412 The result is a pointer to the first opcode byte,
413 or NULL if we run off the end of the buffer. */
414
415 static gdb_byte *
416 i386_skip_prefixes (gdb_byte *insn, size_t max_len)
417 {
418 gdb_byte *end = insn + max_len;
419
420 while (insn < end)
421 {
422 switch (*insn)
423 {
424 case DATA_PREFIX_OPCODE:
425 case ADDR_PREFIX_OPCODE:
426 case CS_PREFIX_OPCODE:
427 case DS_PREFIX_OPCODE:
428 case ES_PREFIX_OPCODE:
429 case FS_PREFIX_OPCODE:
430 case GS_PREFIX_OPCODE:
431 case SS_PREFIX_OPCODE:
432 case LOCK_PREFIX_OPCODE:
433 case REPE_PREFIX_OPCODE:
434 case REPNE_PREFIX_OPCODE:
435 ++insn;
436 continue;
437 default:
438 return insn;
439 }
440 }
441
442 return NULL;
443 }
444
445 static int
446 i386_absolute_jmp_p (const gdb_byte *insn)
447 {
448 /* jmp far (absolute address in operand). */
449 if (insn[0] == 0xea)
450 return 1;
451
452 if (insn[0] == 0xff)
453 {
454 /* jump near, absolute indirect (/4). */
455 if ((insn[1] & 0x38) == 0x20)
456 return 1;
457
458 /* jump far, absolute indirect (/5). */
459 if ((insn[1] & 0x38) == 0x28)
460 return 1;
461 }
462
463 return 0;
464 }
465
466 static int
467 i386_absolute_call_p (const gdb_byte *insn)
468 {
469 /* call far, absolute. */
470 if (insn[0] == 0x9a)
471 return 1;
472
473 if (insn[0] == 0xff)
474 {
475 /* Call near, absolute indirect (/2). */
476 if ((insn[1] & 0x38) == 0x10)
477 return 1;
478
479 /* Call far, absolute indirect (/3). */
480 if ((insn[1] & 0x38) == 0x18)
481 return 1;
482 }
483
484 return 0;
485 }
486
487 static int
488 i386_ret_p (const gdb_byte *insn)
489 {
490 switch (insn[0])
491 {
492 case 0xc2: /* ret near, pop N bytes. */
493 case 0xc3: /* ret near */
494 case 0xca: /* ret far, pop N bytes. */
495 case 0xcb: /* ret far */
496 case 0xcf: /* iret */
497 return 1;
498
499 default:
500 return 0;
501 }
502 }
503
504 static int
505 i386_call_p (const gdb_byte *insn)
506 {
507 if (i386_absolute_call_p (insn))
508 return 1;
509
510 /* call near, relative. */
511 if (insn[0] == 0xe8)
512 return 1;
513
514 return 0;
515 }
516
517 /* Return non-zero if INSN is a system call, and set *LENGTHP to its
518 length in bytes. Otherwise, return zero. */
519
520 static int
521 i386_syscall_p (const gdb_byte *insn, int *lengthp)
522 {
523 if (insn[0] == 0xcd)
524 {
525 *lengthp = 2;
526 return 1;
527 }
528
529 return 0;
530 }
531
532 /* Some kernels may run one past a syscall insn, so we have to cope.
533 Otherwise this is just simple_displaced_step_copy_insn. */
534
535 struct displaced_step_closure *
536 i386_displaced_step_copy_insn (struct gdbarch *gdbarch,
537 CORE_ADDR from, CORE_ADDR to,
538 struct regcache *regs)
539 {
540 size_t len = gdbarch_max_insn_length (gdbarch);
541 gdb_byte *buf = xmalloc (len);
542
543 read_memory (from, buf, len);
544
545 /* GDB may get control back after the insn after the syscall.
546 Presumably this is a kernel bug.
547 If this is a syscall, make sure there's a nop afterwards. */
548 {
549 int syscall_length;
550 gdb_byte *insn;
551
552 insn = i386_skip_prefixes (buf, len);
553 if (insn != NULL && i386_syscall_p (insn, &syscall_length))
554 insn[syscall_length] = NOP_OPCODE;
555 }
556
557 write_memory (to, buf, len);
558
559 if (debug_displaced)
560 {
561 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
562 paddress (gdbarch, from), paddress (gdbarch, to));
563 displaced_step_dump_bytes (gdb_stdlog, buf, len);
564 }
565
566 return (struct displaced_step_closure *) buf;
567 }
568
569 /* Fix up the state of registers and memory after having single-stepped
570 a displaced instruction. */
571
572 void
573 i386_displaced_step_fixup (struct gdbarch *gdbarch,
574 struct displaced_step_closure *closure,
575 CORE_ADDR from, CORE_ADDR to,
576 struct regcache *regs)
577 {
578 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
579
580 /* The offset we applied to the instruction's address.
581 This could well be negative (when viewed as a signed 32-bit
582 value), but ULONGEST won't reflect that, so take care when
583 applying it. */
584 ULONGEST insn_offset = to - from;
585
586 /* Since we use simple_displaced_step_copy_insn, our closure is a
587 copy of the instruction. */
588 gdb_byte *insn = (gdb_byte *) closure;
589 /* The start of the insn, needed in case we see some prefixes. */
590 gdb_byte *insn_start = insn;
591
592 if (debug_displaced)
593 fprintf_unfiltered (gdb_stdlog,
594 "displaced: fixup (%s, %s), "
595 "insn = 0x%02x 0x%02x ...\n",
596 paddress (gdbarch, from), paddress (gdbarch, to),
597 insn[0], insn[1]);
598
599 /* The list of issues to contend with here is taken from
600 resume_execution in arch/i386/kernel/kprobes.c, Linux 2.6.20.
601 Yay for Free Software! */
602
603 /* Relocate the %eip, if necessary. */
604
605 /* The instruction recognizers we use assume any leading prefixes
606 have been skipped. */
607 {
608 /* This is the size of the buffer in closure. */
609 size_t max_insn_len = gdbarch_max_insn_length (gdbarch);
610 gdb_byte *opcode = i386_skip_prefixes (insn, max_insn_len);
611 /* If there are too many prefixes, just ignore the insn.
612 It will fault when run. */
613 if (opcode != NULL)
614 insn = opcode;
615 }
616
617 /* Except in the case of absolute or indirect jump or call
618 instructions, or a return instruction, the new eip is relative to
619 the displaced instruction; make it relative. Well, signal
620 handler returns don't need relocation either, but we use the
621 value of %eip to recognize those; see below. */
622 if (! i386_absolute_jmp_p (insn)
623 && ! i386_absolute_call_p (insn)
624 && ! i386_ret_p (insn))
625 {
626 ULONGEST orig_eip;
627 int insn_len;
628
629 regcache_cooked_read_unsigned (regs, I386_EIP_REGNUM, &orig_eip);
630
631 /* A signal trampoline system call changes the %eip, resuming
632 execution of the main program after the signal handler has
633 returned. That makes them like 'return' instructions; we
634 shouldn't relocate %eip.
635
636 But most system calls don't, and we do need to relocate %eip.
637
638 Our heuristic for distinguishing these cases: if stepping
639 over the system call instruction left control directly after
640 the instruction, the we relocate --- control almost certainly
641 doesn't belong in the displaced copy. Otherwise, we assume
642 the instruction has put control where it belongs, and leave
643 it unrelocated. Goodness help us if there are PC-relative
644 system calls. */
645 if (i386_syscall_p (insn, &insn_len)
646 && orig_eip != to + (insn - insn_start) + insn_len
647 /* GDB can get control back after the insn after the syscall.
648 Presumably this is a kernel bug.
649 i386_displaced_step_copy_insn ensures its a nop,
650 we add one to the length for it. */
651 && orig_eip != to + (insn - insn_start) + insn_len + 1)
652 {
653 if (debug_displaced)
654 fprintf_unfiltered (gdb_stdlog,
655 "displaced: syscall changed %%eip; "
656 "not relocating\n");
657 }
658 else
659 {
660 ULONGEST eip = (orig_eip - insn_offset) & 0xffffffffUL;
661
662 /* If we just stepped over a breakpoint insn, we don't backup
663 the pc on purpose; this is to match behaviour without
664 stepping. */
665
666 regcache_cooked_write_unsigned (regs, I386_EIP_REGNUM, eip);
667
668 if (debug_displaced)
669 fprintf_unfiltered (gdb_stdlog,
670 "displaced: "
671 "relocated %%eip from %s to %s\n",
672 paddress (gdbarch, orig_eip),
673 paddress (gdbarch, eip));
674 }
675 }
676
677 /* If the instruction was PUSHFL, then the TF bit will be set in the
678 pushed value, and should be cleared. We'll leave this for later,
679 since GDB already messes up the TF flag when stepping over a
680 pushfl. */
681
682 /* If the instruction was a call, the return address now atop the
683 stack is the address following the copied instruction. We need
684 to make it the address following the original instruction. */
685 if (i386_call_p (insn))
686 {
687 ULONGEST esp;
688 ULONGEST retaddr;
689 const ULONGEST retaddr_len = 4;
690
691 regcache_cooked_read_unsigned (regs, I386_ESP_REGNUM, &esp);
692 retaddr = read_memory_unsigned_integer (esp, retaddr_len, byte_order);
693 retaddr = (retaddr - insn_offset) & 0xffffffffUL;
694 write_memory_unsigned_integer (esp, retaddr_len, byte_order, retaddr);
695
696 if (debug_displaced)
697 fprintf_unfiltered (gdb_stdlog,
698 "displaced: relocated return addr at %s to %s\n",
699 paddress (gdbarch, esp),
700 paddress (gdbarch, retaddr));
701 }
702 }
703
704 static void
705 append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
706 {
707 target_write_memory (*to, buf, len);
708 *to += len;
709 }
710
711 static void
712 i386_relocate_instruction (struct gdbarch *gdbarch,
713 CORE_ADDR *to, CORE_ADDR oldloc)
714 {
715 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
716 gdb_byte buf[I386_MAX_INSN_LEN];
717 int offset = 0, rel32, newrel;
718 int insn_length;
719 gdb_byte *insn = buf;
720
721 read_memory (oldloc, buf, I386_MAX_INSN_LEN);
722
723 insn_length = gdb_buffered_insn_length (gdbarch, insn,
724 I386_MAX_INSN_LEN, oldloc);
725
726 /* Get past the prefixes. */
727 insn = i386_skip_prefixes (insn, I386_MAX_INSN_LEN);
728
729 /* Adjust calls with 32-bit relative addresses as push/jump, with
730 the address pushed being the location where the original call in
731 the user program would return to. */
732 if (insn[0] == 0xe8)
733 {
734 gdb_byte push_buf[16];
735 unsigned int ret_addr;
736
737 /* Where "ret" in the original code will return to. */
738 ret_addr = oldloc + insn_length;
739 push_buf[0] = 0x68; /* pushq $... */
740 memcpy (&push_buf[1], &ret_addr, 4);
741 /* Push the push. */
742 append_insns (to, 5, push_buf);
743
744 /* Convert the relative call to a relative jump. */
745 insn[0] = 0xe9;
746
747 /* Adjust the destination offset. */
748 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
749 newrel = (oldloc - *to) + rel32;
750 store_signed_integer (insn + 1, 4, byte_order, newrel);
751
752 if (debug_displaced)
753 fprintf_unfiltered (gdb_stdlog,
754 "Adjusted insn rel32=%s at %s to"
755 " rel32=%s at %s\n",
756 hex_string (rel32), paddress (gdbarch, oldloc),
757 hex_string (newrel), paddress (gdbarch, *to));
758
759 /* Write the adjusted jump into its displaced location. */
760 append_insns (to, 5, insn);
761 return;
762 }
763
764 /* Adjust jumps with 32-bit relative addresses. Calls are already
765 handled above. */
766 if (insn[0] == 0xe9)
767 offset = 1;
768 /* Adjust conditional jumps. */
769 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
770 offset = 2;
771
772 if (offset)
773 {
774 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
775 newrel = (oldloc - *to) + rel32;
776 store_signed_integer (insn + offset, 4, byte_order, newrel);
777 if (debug_displaced)
778 fprintf_unfiltered (gdb_stdlog,
779 "Adjusted insn rel32=%s at %s to"
780 " rel32=%s at %s\n",
781 hex_string (rel32), paddress (gdbarch, oldloc),
782 hex_string (newrel), paddress (gdbarch, *to));
783 }
784
785 /* Write the adjusted instructions into their displaced
786 location. */
787 append_insns (to, insn_length, buf);
788 }
789
790 \f
791 #ifdef I386_REGNO_TO_SYMMETRY
792 #error "The Sequent Symmetry is no longer supported."
793 #endif
794
795 /* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
796 and %esp "belong" to the calling function. Therefore these
797 registers should be saved if they're going to be modified. */
798
799 /* The maximum number of saved registers. This should include all
800 registers mentioned above, and %eip. */
801 #define I386_NUM_SAVED_REGS I386_NUM_GREGS
802
803 struct i386_frame_cache
804 {
805 /* Base address. */
806 CORE_ADDR base;
807 int base_p;
808 LONGEST sp_offset;
809 CORE_ADDR pc;
810
811 /* Saved registers. */
812 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
813 CORE_ADDR saved_sp;
814 int saved_sp_reg;
815 int pc_in_eax;
816
817 /* Stack space reserved for local variables. */
818 long locals;
819 };
820
821 /* Allocate and initialize a frame cache. */
822
823 static struct i386_frame_cache *
824 i386_alloc_frame_cache (void)
825 {
826 struct i386_frame_cache *cache;
827 int i;
828
829 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
830
831 /* Base address. */
832 cache->base_p = 0;
833 cache->base = 0;
834 cache->sp_offset = -4;
835 cache->pc = 0;
836
837 /* Saved registers. We initialize these to -1 since zero is a valid
838 offset (that's where %ebp is supposed to be stored). */
839 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
840 cache->saved_regs[i] = -1;
841 cache->saved_sp = 0;
842 cache->saved_sp_reg = -1;
843 cache->pc_in_eax = 0;
844
845 /* Frameless until proven otherwise. */
846 cache->locals = -1;
847
848 return cache;
849 }
850
851 /* If the instruction at PC is a jump, return the address of its
852 target. Otherwise, return PC. */
853
854 static CORE_ADDR
855 i386_follow_jump (struct gdbarch *gdbarch, CORE_ADDR pc)
856 {
857 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
858 gdb_byte op;
859 long delta = 0;
860 int data16 = 0;
861
862 if (target_read_memory (pc, &op, 1))
863 return pc;
864
865 if (op == 0x66)
866 {
867 data16 = 1;
868 op = read_memory_unsigned_integer (pc + 1, 1, byte_order);
869 }
870
871 switch (op)
872 {
873 case 0xe9:
874 /* Relative jump: if data16 == 0, disp32, else disp16. */
875 if (data16)
876 {
877 delta = read_memory_integer (pc + 2, 2, byte_order);
878
879 /* Include the size of the jmp instruction (including the
880 0x66 prefix). */
881 delta += 4;
882 }
883 else
884 {
885 delta = read_memory_integer (pc + 1, 4, byte_order);
886
887 /* Include the size of the jmp instruction. */
888 delta += 5;
889 }
890 break;
891 case 0xeb:
892 /* Relative jump, disp8 (ignore data16). */
893 delta = read_memory_integer (pc + data16 + 1, 1, byte_order);
894
895 delta += data16 + 2;
896 break;
897 }
898
899 return pc + delta;
900 }
901
902 /* Check whether PC points at a prologue for a function returning a
903 structure or union. If so, it updates CACHE and returns the
904 address of the first instruction after the code sequence that
905 removes the "hidden" argument from the stack or CURRENT_PC,
906 whichever is smaller. Otherwise, return PC. */
907
908 static CORE_ADDR
909 i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
910 struct i386_frame_cache *cache)
911 {
912 /* Functions that return a structure or union start with:
913
914 popl %eax 0x58
915 xchgl %eax, (%esp) 0x87 0x04 0x24
916 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
917
918 (the System V compiler puts out the second `xchg' instruction,
919 and the assembler doesn't try to optimize it, so the 'sib' form
920 gets generated). This sequence is used to get the address of the
921 return buffer for a function that returns a structure. */
922 static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
923 static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
924 gdb_byte buf[4];
925 gdb_byte op;
926
927 if (current_pc <= pc)
928 return pc;
929
930 if (target_read_memory (pc, &op, 1))
931 return pc;
932
933 if (op != 0x58) /* popl %eax */
934 return pc;
935
936 if (target_read_memory (pc + 1, buf, 4))
937 return pc;
938
939 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
940 return pc;
941
942 if (current_pc == pc)
943 {
944 cache->sp_offset += 4;
945 return current_pc;
946 }
947
948 if (current_pc == pc + 1)
949 {
950 cache->pc_in_eax = 1;
951 return current_pc;
952 }
953
954 if (buf[1] == proto1[1])
955 return pc + 4;
956 else
957 return pc + 5;
958 }
959
960 static CORE_ADDR
961 i386_skip_probe (CORE_ADDR pc)
962 {
963 /* A function may start with
964
965 pushl constant
966 call _probe
967 addl $4, %esp
968
969 followed by
970
971 pushl %ebp
972
973 etc. */
974 gdb_byte buf[8];
975 gdb_byte op;
976
977 if (target_read_memory (pc, &op, 1))
978 return pc;
979
980 if (op == 0x68 || op == 0x6a)
981 {
982 int delta;
983
984 /* Skip past the `pushl' instruction; it has either a one-byte or a
985 four-byte operand, depending on the opcode. */
986 if (op == 0x68)
987 delta = 5;
988 else
989 delta = 2;
990
991 /* Read the following 8 bytes, which should be `call _probe' (6
992 bytes) followed by `addl $4,%esp' (2 bytes). */
993 read_memory (pc + delta, buf, sizeof (buf));
994 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
995 pc += delta + sizeof (buf);
996 }
997
998 return pc;
999 }
1000
1001 /* GCC 4.1 and later, can put code in the prologue to realign the
1002 stack pointer. Check whether PC points to such code, and update
1003 CACHE accordingly. Return the first instruction after the code
1004 sequence or CURRENT_PC, whichever is smaller. If we don't
1005 recognize the code, return PC. */
1006
1007 static CORE_ADDR
1008 i386_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1009 struct i386_frame_cache *cache)
1010 {
1011 /* There are 2 code sequences to re-align stack before the frame
1012 gets set up:
1013
1014 1. Use a caller-saved saved register:
1015
1016 leal 4(%esp), %reg
1017 andl $-XXX, %esp
1018 pushl -4(%reg)
1019
1020 2. Use a callee-saved saved register:
1021
1022 pushl %reg
1023 leal 8(%esp), %reg
1024 andl $-XXX, %esp
1025 pushl -4(%reg)
1026
1027 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
1028
1029 0x83 0xe4 0xf0 andl $-16, %esp
1030 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
1031 */
1032
1033 gdb_byte buf[14];
1034 int reg;
1035 int offset, offset_and;
1036 static int regnums[8] = {
1037 I386_EAX_REGNUM, /* %eax */
1038 I386_ECX_REGNUM, /* %ecx */
1039 I386_EDX_REGNUM, /* %edx */
1040 I386_EBX_REGNUM, /* %ebx */
1041 I386_ESP_REGNUM, /* %esp */
1042 I386_EBP_REGNUM, /* %ebp */
1043 I386_ESI_REGNUM, /* %esi */
1044 I386_EDI_REGNUM /* %edi */
1045 };
1046
1047 if (target_read_memory (pc, buf, sizeof buf))
1048 return pc;
1049
1050 /* Check caller-saved saved register. The first instruction has
1051 to be "leal 4(%esp), %reg". */
1052 if (buf[0] == 0x8d && buf[2] == 0x24 && buf[3] == 0x4)
1053 {
1054 /* MOD must be binary 10 and R/M must be binary 100. */
1055 if ((buf[1] & 0xc7) != 0x44)
1056 return pc;
1057
1058 /* REG has register number. */
1059 reg = (buf[1] >> 3) & 7;
1060 offset = 4;
1061 }
1062 else
1063 {
1064 /* Check callee-saved saved register. The first instruction
1065 has to be "pushl %reg". */
1066 if ((buf[0] & 0xf8) != 0x50)
1067 return pc;
1068
1069 /* Get register. */
1070 reg = buf[0] & 0x7;
1071
1072 /* The next instruction has to be "leal 8(%esp), %reg". */
1073 if (buf[1] != 0x8d || buf[3] != 0x24 || buf[4] != 0x8)
1074 return pc;
1075
1076 /* MOD must be binary 10 and R/M must be binary 100. */
1077 if ((buf[2] & 0xc7) != 0x44)
1078 return pc;
1079
1080 /* REG has register number. Registers in pushl and leal have to
1081 be the same. */
1082 if (reg != ((buf[2] >> 3) & 7))
1083 return pc;
1084
1085 offset = 5;
1086 }
1087
1088 /* Rigister can't be %esp nor %ebp. */
1089 if (reg == 4 || reg == 5)
1090 return pc;
1091
1092 /* The next instruction has to be "andl $-XXX, %esp". */
1093 if (buf[offset + 1] != 0xe4
1094 || (buf[offset] != 0x81 && buf[offset] != 0x83))
1095 return pc;
1096
1097 offset_and = offset;
1098 offset += buf[offset] == 0x81 ? 6 : 3;
1099
1100 /* The next instruction has to be "pushl -4(%reg)". 8bit -4 is
1101 0xfc. REG must be binary 110 and MOD must be binary 01. */
1102 if (buf[offset] != 0xff
1103 || buf[offset + 2] != 0xfc
1104 || (buf[offset + 1] & 0xf8) != 0x70)
1105 return pc;
1106
1107 /* R/M has register. Registers in leal and pushl have to be the
1108 same. */
1109 if (reg != (buf[offset + 1] & 7))
1110 return pc;
1111
1112 if (current_pc > pc + offset_and)
1113 cache->saved_sp_reg = regnums[reg];
1114
1115 return min (pc + offset + 3, current_pc);
1116 }
1117
1118 /* Maximum instruction length we need to handle. */
1119 #define I386_MAX_MATCHED_INSN_LEN 6
1120
1121 /* Instruction description. */
1122 struct i386_insn
1123 {
1124 size_t len;
1125 gdb_byte insn[I386_MAX_MATCHED_INSN_LEN];
1126 gdb_byte mask[I386_MAX_MATCHED_INSN_LEN];
1127 };
1128
1129 /* Return whether instruction at PC matches PATTERN. */
1130
1131 static int
1132 i386_match_pattern (CORE_ADDR pc, struct i386_insn pattern)
1133 {
1134 gdb_byte op;
1135
1136 if (target_read_memory (pc, &op, 1))
1137 return 0;
1138
1139 if ((op & pattern.mask[0]) == pattern.insn[0])
1140 {
1141 gdb_byte buf[I386_MAX_MATCHED_INSN_LEN - 1];
1142 int insn_matched = 1;
1143 size_t i;
1144
1145 gdb_assert (pattern.len > 1);
1146 gdb_assert (pattern.len <= I386_MAX_MATCHED_INSN_LEN);
1147
1148 if (target_read_memory (pc + 1, buf, pattern.len - 1))
1149 return 0;
1150
1151 for (i = 1; i < pattern.len; i++)
1152 {
1153 if ((buf[i - 1] & pattern.mask[i]) != pattern.insn[i])
1154 insn_matched = 0;
1155 }
1156 return insn_matched;
1157 }
1158 return 0;
1159 }
1160
1161 /* Search for the instruction at PC in the list INSN_PATTERNS. Return
1162 the first instruction description that matches. Otherwise, return
1163 NULL. */
1164
1165 static struct i386_insn *
1166 i386_match_insn (CORE_ADDR pc, struct i386_insn *insn_patterns)
1167 {
1168 struct i386_insn *pattern;
1169
1170 for (pattern = insn_patterns; pattern->len > 0; pattern++)
1171 {
1172 if (i386_match_pattern (pc, *pattern))
1173 return pattern;
1174 }
1175
1176 return NULL;
1177 }
1178
1179 /* Return whether PC points inside a sequence of instructions that
1180 matches INSN_PATTERNS. */
1181
1182 static int
1183 i386_match_insn_block (CORE_ADDR pc, struct i386_insn *insn_patterns)
1184 {
1185 CORE_ADDR current_pc;
1186 int ix, i;
1187 gdb_byte op;
1188 struct i386_insn *insn;
1189
1190 insn = i386_match_insn (pc, insn_patterns);
1191 if (insn == NULL)
1192 return 0;
1193
1194 current_pc = pc;
1195 ix = insn - insn_patterns;
1196 for (i = ix - 1; i >= 0; i--)
1197 {
1198 current_pc -= insn_patterns[i].len;
1199
1200 if (!i386_match_pattern (current_pc, insn_patterns[i]))
1201 return 0;
1202 }
1203
1204 current_pc = pc + insn->len;
1205 for (insn = insn_patterns + ix + 1; insn->len > 0; insn++)
1206 {
1207 if (!i386_match_pattern (current_pc, *insn))
1208 return 0;
1209
1210 current_pc += insn->len;
1211 }
1212
1213 return 1;
1214 }
1215
1216 /* Some special instructions that might be migrated by GCC into the
1217 part of the prologue that sets up the new stack frame. Because the
1218 stack frame hasn't been setup yet, no registers have been saved
1219 yet, and only the scratch registers %eax, %ecx and %edx can be
1220 touched. */
1221
1222 struct i386_insn i386_frame_setup_skip_insns[] =
1223 {
1224 /* Check for `movb imm8, r' and `movl imm32, r'.
1225
1226 ??? Should we handle 16-bit operand-sizes here? */
1227
1228 /* `movb imm8, %al' and `movb imm8, %ah' */
1229 /* `movb imm8, %cl' and `movb imm8, %ch' */
1230 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
1231 /* `movb imm8, %dl' and `movb imm8, %dh' */
1232 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
1233 /* `movl imm32, %eax' and `movl imm32, %ecx' */
1234 { 5, { 0xb8 }, { 0xfe } },
1235 /* `movl imm32, %edx' */
1236 { 5, { 0xba }, { 0xff } },
1237
1238 /* Check for `mov imm32, r32'. Note that there is an alternative
1239 encoding for `mov m32, %eax'.
1240
1241 ??? Should we handle SIB adressing here?
1242 ??? Should we handle 16-bit operand-sizes here? */
1243
1244 /* `movl m32, %eax' */
1245 { 5, { 0xa1 }, { 0xff } },
1246 /* `movl m32, %eax' and `mov; m32, %ecx' */
1247 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
1248 /* `movl m32, %edx' */
1249 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
1250
1251 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
1252 Because of the symmetry, there are actually two ways to encode
1253 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
1254 opcode bytes 0x31 and 0x33 for `xorl'. */
1255
1256 /* `subl %eax, %eax' */
1257 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
1258 /* `subl %ecx, %ecx' */
1259 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
1260 /* `subl %edx, %edx' */
1261 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
1262 /* `xorl %eax, %eax' */
1263 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
1264 /* `xorl %ecx, %ecx' */
1265 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
1266 /* `xorl %edx, %edx' */
1267 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
1268 { 0 }
1269 };
1270
1271
1272 /* Check whether PC points to a no-op instruction. */
1273 static CORE_ADDR
1274 i386_skip_noop (CORE_ADDR pc)
1275 {
1276 gdb_byte op;
1277 int check = 1;
1278
1279 if (target_read_memory (pc, &op, 1))
1280 return pc;
1281
1282 while (check)
1283 {
1284 check = 0;
1285 /* Ignore `nop' instruction. */
1286 if (op == 0x90)
1287 {
1288 pc += 1;
1289 if (target_read_memory (pc, &op, 1))
1290 return pc;
1291 check = 1;
1292 }
1293 /* Ignore no-op instruction `mov %edi, %edi'.
1294 Microsoft system dlls often start with
1295 a `mov %edi,%edi' instruction.
1296 The 5 bytes before the function start are
1297 filled with `nop' instructions.
1298 This pattern can be used for hot-patching:
1299 The `mov %edi, %edi' instruction can be replaced by a
1300 near jump to the location of the 5 `nop' instructions
1301 which can be replaced by a 32-bit jump to anywhere
1302 in the 32-bit address space. */
1303
1304 else if (op == 0x8b)
1305 {
1306 if (target_read_memory (pc + 1, &op, 1))
1307 return pc;
1308
1309 if (op == 0xff)
1310 {
1311 pc += 2;
1312 if (target_read_memory (pc, &op, 1))
1313 return pc;
1314
1315 check = 1;
1316 }
1317 }
1318 }
1319 return pc;
1320 }
1321
1322 /* Check whether PC points at a code that sets up a new stack frame.
1323 If so, it updates CACHE and returns the address of the first
1324 instruction after the sequence that sets up the frame or LIMIT,
1325 whichever is smaller. If we don't recognize the code, return PC. */
1326
1327 static CORE_ADDR
1328 i386_analyze_frame_setup (struct gdbarch *gdbarch,
1329 CORE_ADDR pc, CORE_ADDR limit,
1330 struct i386_frame_cache *cache)
1331 {
1332 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1333 struct i386_insn *insn;
1334 gdb_byte op;
1335 int skip = 0;
1336
1337 if (limit <= pc)
1338 return limit;
1339
1340 if (target_read_memory (pc, &op, 1))
1341 return pc;
1342
1343 if (op == 0x55) /* pushl %ebp */
1344 {
1345 /* Take into account that we've executed the `pushl %ebp' that
1346 starts this instruction sequence. */
1347 cache->saved_regs[I386_EBP_REGNUM] = 0;
1348 cache->sp_offset += 4;
1349 pc++;
1350
1351 /* If that's all, return now. */
1352 if (limit <= pc)
1353 return limit;
1354
1355 /* Check for some special instructions that might be migrated by
1356 GCC into the prologue and skip them. At this point in the
1357 prologue, code should only touch the scratch registers %eax,
1358 %ecx and %edx, so while the number of posibilities is sheer,
1359 it is limited.
1360
1361 Make sure we only skip these instructions if we later see the
1362 `movl %esp, %ebp' that actually sets up the frame. */
1363 while (pc + skip < limit)
1364 {
1365 insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
1366 if (insn == NULL)
1367 break;
1368
1369 skip += insn->len;
1370 }
1371
1372 /* If that's all, return now. */
1373 if (limit <= pc + skip)
1374 return limit;
1375
1376 if (target_read_memory (pc + skip, &op, 1))
1377 return pc + skip;
1378
1379 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
1380 switch (op)
1381 {
1382 case 0x8b:
1383 if (read_memory_unsigned_integer (pc + skip + 1, 1, byte_order)
1384 != 0xec)
1385 return pc;
1386 break;
1387 case 0x89:
1388 if (read_memory_unsigned_integer (pc + skip + 1, 1, byte_order)
1389 != 0xe5)
1390 return pc;
1391 break;
1392 default:
1393 return pc;
1394 }
1395
1396 /* OK, we actually have a frame. We just don't know how large
1397 it is yet. Set its size to zero. We'll adjust it if
1398 necessary. We also now commit to skipping the special
1399 instructions mentioned before. */
1400 cache->locals = 0;
1401 pc += (skip + 2);
1402
1403 /* If that's all, return now. */
1404 if (limit <= pc)
1405 return limit;
1406
1407 /* Check for stack adjustment
1408
1409 subl $XXX, %esp
1410
1411 NOTE: You can't subtract a 16-bit immediate from a 32-bit
1412 reg, so we don't have to worry about a data16 prefix. */
1413 if (target_read_memory (pc, &op, 1))
1414 return pc;
1415 if (op == 0x83)
1416 {
1417 /* `subl' with 8-bit immediate. */
1418 if (read_memory_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1419 /* Some instruction starting with 0x83 other than `subl'. */
1420 return pc;
1421
1422 /* `subl' with signed 8-bit immediate (though it wouldn't
1423 make sense to be negative). */
1424 cache->locals = read_memory_integer (pc + 2, 1, byte_order);
1425 return pc + 3;
1426 }
1427 else if (op == 0x81)
1428 {
1429 /* Maybe it is `subl' with a 32-bit immediate. */
1430 if (read_memory_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1431 /* Some instruction starting with 0x81 other than `subl'. */
1432 return pc;
1433
1434 /* It is `subl' with a 32-bit immediate. */
1435 cache->locals = read_memory_integer (pc + 2, 4, byte_order);
1436 return pc + 6;
1437 }
1438 else
1439 {
1440 /* Some instruction other than `subl'. */
1441 return pc;
1442 }
1443 }
1444 else if (op == 0xc8) /* enter */
1445 {
1446 cache->locals = read_memory_unsigned_integer (pc + 1, 2, byte_order);
1447 return pc + 4;
1448 }
1449
1450 return pc;
1451 }
1452
1453 /* Check whether PC points at code that saves registers on the stack.
1454 If so, it updates CACHE and returns the address of the first
1455 instruction after the register saves or CURRENT_PC, whichever is
1456 smaller. Otherwise, return PC. */
1457
1458 static CORE_ADDR
1459 i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
1460 struct i386_frame_cache *cache)
1461 {
1462 CORE_ADDR offset = 0;
1463 gdb_byte op;
1464 int i;
1465
1466 if (cache->locals > 0)
1467 offset -= cache->locals;
1468 for (i = 0; i < 8 && pc < current_pc; i++)
1469 {
1470 if (target_read_memory (pc, &op, 1))
1471 return pc;
1472 if (op < 0x50 || op > 0x57)
1473 break;
1474
1475 offset -= 4;
1476 cache->saved_regs[op - 0x50] = offset;
1477 cache->sp_offset += 4;
1478 pc++;
1479 }
1480
1481 return pc;
1482 }
1483
1484 /* Do a full analysis of the prologue at PC and update CACHE
1485 accordingly. Bail out early if CURRENT_PC is reached. Return the
1486 address where the analysis stopped.
1487
1488 We handle these cases:
1489
1490 The startup sequence can be at the start of the function, or the
1491 function can start with a branch to startup code at the end.
1492
1493 %ebp can be set up with either the 'enter' instruction, or "pushl
1494 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
1495 once used in the System V compiler).
1496
1497 Local space is allocated just below the saved %ebp by either the
1498 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
1499 16-bit unsigned argument for space to allocate, and the 'addl'
1500 instruction could have either a signed byte, or 32-bit immediate.
1501
1502 Next, the registers used by this function are pushed. With the
1503 System V compiler they will always be in the order: %edi, %esi,
1504 %ebx (and sometimes a harmless bug causes it to also save but not
1505 restore %eax); however, the code below is willing to see the pushes
1506 in any order, and will handle up to 8 of them.
1507
1508 If the setup sequence is at the end of the function, then the next
1509 instruction will be a branch back to the start. */
1510
1511 static CORE_ADDR
1512 i386_analyze_prologue (struct gdbarch *gdbarch,
1513 CORE_ADDR pc, CORE_ADDR current_pc,
1514 struct i386_frame_cache *cache)
1515 {
1516 pc = i386_skip_noop (pc);
1517 pc = i386_follow_jump (gdbarch, pc);
1518 pc = i386_analyze_struct_return (pc, current_pc, cache);
1519 pc = i386_skip_probe (pc);
1520 pc = i386_analyze_stack_align (pc, current_pc, cache);
1521 pc = i386_analyze_frame_setup (gdbarch, pc, current_pc, cache);
1522 return i386_analyze_register_saves (pc, current_pc, cache);
1523 }
1524
1525 /* Return PC of first real instruction. */
1526
1527 static CORE_ADDR
1528 i386_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
1529 {
1530 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1531
1532 static gdb_byte pic_pat[6] =
1533 {
1534 0xe8, 0, 0, 0, 0, /* call 0x0 */
1535 0x5b, /* popl %ebx */
1536 };
1537 struct i386_frame_cache cache;
1538 CORE_ADDR pc;
1539 gdb_byte op;
1540 int i;
1541
1542 cache.locals = -1;
1543 pc = i386_analyze_prologue (gdbarch, start_pc, 0xffffffff, &cache);
1544 if (cache.locals < 0)
1545 return start_pc;
1546
1547 /* Found valid frame setup. */
1548
1549 /* The native cc on SVR4 in -K PIC mode inserts the following code
1550 to get the address of the global offset table (GOT) into register
1551 %ebx:
1552
1553 call 0x0
1554 popl %ebx
1555 movl %ebx,x(%ebp) (optional)
1556 addl y,%ebx
1557
1558 This code is with the rest of the prologue (at the end of the
1559 function), so we have to skip it to get to the first real
1560 instruction at the start of the function. */
1561
1562 for (i = 0; i < 6; i++)
1563 {
1564 if (target_read_memory (pc + i, &op, 1))
1565 return pc;
1566
1567 if (pic_pat[i] != op)
1568 break;
1569 }
1570 if (i == 6)
1571 {
1572 int delta = 6;
1573
1574 if (target_read_memory (pc + delta, &op, 1))
1575 return pc;
1576
1577 if (op == 0x89) /* movl %ebx, x(%ebp) */
1578 {
1579 op = read_memory_unsigned_integer (pc + delta + 1, 1, byte_order);
1580
1581 if (op == 0x5d) /* One byte offset from %ebp. */
1582 delta += 3;
1583 else if (op == 0x9d) /* Four byte offset from %ebp. */
1584 delta += 6;
1585 else /* Unexpected instruction. */
1586 delta = 0;
1587
1588 if (target_read_memory (pc + delta, &op, 1))
1589 return pc;
1590 }
1591
1592 /* addl y,%ebx */
1593 if (delta > 0 && op == 0x81
1594 && read_memory_unsigned_integer (pc + delta + 1, 1, byte_order)
1595 == 0xc3)
1596 {
1597 pc += delta + 6;
1598 }
1599 }
1600
1601 /* If the function starts with a branch (to startup code at the end)
1602 the last instruction should bring us back to the first
1603 instruction of the real code. */
1604 if (i386_follow_jump (gdbarch, start_pc) != start_pc)
1605 pc = i386_follow_jump (gdbarch, pc);
1606
1607 return pc;
1608 }
1609
1610 /* Check that the code pointed to by PC corresponds to a call to
1611 __main, skip it if so. Return PC otherwise. */
1612
1613 CORE_ADDR
1614 i386_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1615 {
1616 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1617 gdb_byte op;
1618
1619 if (target_read_memory (pc, &op, 1))
1620 return pc;
1621 if (op == 0xe8)
1622 {
1623 gdb_byte buf[4];
1624
1625 if (target_read_memory (pc + 1, buf, sizeof buf) == 0)
1626 {
1627 /* Make sure address is computed correctly as a 32bit
1628 integer even if CORE_ADDR is 64 bit wide. */
1629 struct minimal_symbol *s;
1630 CORE_ADDR call_dest;
1631
1632 call_dest = pc + 5 + extract_signed_integer (buf, 4, byte_order);
1633 call_dest = call_dest & 0xffffffffU;
1634 s = lookup_minimal_symbol_by_pc (call_dest);
1635 if (s != NULL
1636 && SYMBOL_LINKAGE_NAME (s) != NULL
1637 && strcmp (SYMBOL_LINKAGE_NAME (s), "__main") == 0)
1638 pc += 5;
1639 }
1640 }
1641
1642 return pc;
1643 }
1644
1645 /* This function is 64-bit safe. */
1646
1647 static CORE_ADDR
1648 i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1649 {
1650 gdb_byte buf[8];
1651
1652 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
1653 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
1654 }
1655 \f
1656
1657 /* Normal frames. */
1658
1659 static void
1660 i386_frame_cache_1 (struct frame_info *this_frame,
1661 struct i386_frame_cache *cache)
1662 {
1663 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1664 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1665 gdb_byte buf[4];
1666 int i;
1667
1668 cache->pc = get_frame_func (this_frame);
1669
1670 /* In principle, for normal frames, %ebp holds the frame pointer,
1671 which holds the base address for the current stack frame.
1672 However, for functions that don't need it, the frame pointer is
1673 optional. For these "frameless" functions the frame pointer is
1674 actually the frame pointer of the calling frame. Signal
1675 trampolines are just a special case of a "frameless" function.
1676 They (usually) share their frame pointer with the frame that was
1677 in progress when the signal occurred. */
1678
1679 get_frame_register (this_frame, I386_EBP_REGNUM, buf);
1680 cache->base = extract_unsigned_integer (buf, 4, byte_order);
1681 if (cache->base == 0)
1682 return;
1683
1684 /* For normal frames, %eip is stored at 4(%ebp). */
1685 cache->saved_regs[I386_EIP_REGNUM] = 4;
1686
1687 if (cache->pc != 0)
1688 i386_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
1689 cache);
1690
1691 if (cache->locals < 0)
1692 {
1693 /* We didn't find a valid frame, which means that CACHE->base
1694 currently holds the frame pointer for our calling frame. If
1695 we're at the start of a function, or somewhere half-way its
1696 prologue, the function's frame probably hasn't been fully
1697 setup yet. Try to reconstruct the base address for the stack
1698 frame by looking at the stack pointer. For truly "frameless"
1699 functions this might work too. */
1700
1701 if (cache->saved_sp_reg != -1)
1702 {
1703 /* Saved stack pointer has been saved. */
1704 get_frame_register (this_frame, cache->saved_sp_reg, buf);
1705 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
1706
1707 /* We're halfway aligning the stack. */
1708 cache->base = ((cache->saved_sp - 4) & 0xfffffff0) - 4;
1709 cache->saved_regs[I386_EIP_REGNUM] = cache->saved_sp - 4;
1710
1711 /* This will be added back below. */
1712 cache->saved_regs[I386_EIP_REGNUM] -= cache->base;
1713 }
1714 else if (cache->pc != 0
1715 || target_read_memory (get_frame_pc (this_frame), buf, 1))
1716 {
1717 /* We're in a known function, but did not find a frame
1718 setup. Assume that the function does not use %ebp.
1719 Alternatively, we may have jumped to an invalid
1720 address; in that case there is definitely no new
1721 frame in %ebp. */
1722 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
1723 cache->base = extract_unsigned_integer (buf, 4, byte_order)
1724 + cache->sp_offset;
1725 }
1726 else
1727 /* We're in an unknown function. We could not find the start
1728 of the function to analyze the prologue; our best option is
1729 to assume a typical frame layout with the caller's %ebp
1730 saved. */
1731 cache->saved_regs[I386_EBP_REGNUM] = 0;
1732 }
1733
1734 if (cache->saved_sp_reg != -1)
1735 {
1736 /* Saved stack pointer has been saved (but the SAVED_SP_REG
1737 register may be unavailable). */
1738 if (cache->saved_sp == 0
1739 && frame_register_read (this_frame, cache->saved_sp_reg, buf))
1740 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
1741 }
1742 /* Now that we have the base address for the stack frame we can
1743 calculate the value of %esp in the calling frame. */
1744 else if (cache->saved_sp == 0)
1745 cache->saved_sp = cache->base + 8;
1746
1747 /* Adjust all the saved registers such that they contain addresses
1748 instead of offsets. */
1749 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
1750 if (cache->saved_regs[i] != -1)
1751 cache->saved_regs[i] += cache->base;
1752
1753 cache->base_p = 1;
1754 }
1755
1756 static struct i386_frame_cache *
1757 i386_frame_cache (struct frame_info *this_frame, void **this_cache)
1758 {
1759 volatile struct gdb_exception ex;
1760 struct i386_frame_cache *cache;
1761
1762 if (*this_cache)
1763 return *this_cache;
1764
1765 cache = i386_alloc_frame_cache ();
1766 *this_cache = cache;
1767
1768 TRY_CATCH (ex, RETURN_MASK_ERROR)
1769 {
1770 i386_frame_cache_1 (this_frame, cache);
1771 }
1772 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
1773 throw_exception (ex);
1774
1775 return cache;
1776 }
1777
1778 static void
1779 i386_frame_this_id (struct frame_info *this_frame, void **this_cache,
1780 struct frame_id *this_id)
1781 {
1782 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
1783
1784 /* This marks the outermost frame. */
1785 if (cache->base == 0)
1786 return;
1787
1788 /* See the end of i386_push_dummy_call. */
1789 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
1790 }
1791
1792 static enum unwind_stop_reason
1793 i386_frame_unwind_stop_reason (struct frame_info *this_frame,
1794 void **this_cache)
1795 {
1796 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
1797
1798 if (!cache->base_p)
1799 return UNWIND_UNAVAILABLE;
1800
1801 /* This marks the outermost frame. */
1802 if (cache->base == 0)
1803 return UNWIND_OUTERMOST;
1804
1805 return UNWIND_NO_REASON;
1806 }
1807
1808 static struct value *
1809 i386_frame_prev_register (struct frame_info *this_frame, void **this_cache,
1810 int regnum)
1811 {
1812 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
1813
1814 gdb_assert (regnum >= 0);
1815
1816 /* The System V ABI says that:
1817
1818 "The flags register contains the system flags, such as the
1819 direction flag and the carry flag. The direction flag must be
1820 set to the forward (that is, zero) direction before entry and
1821 upon exit from a function. Other user flags have no specified
1822 role in the standard calling sequence and are not preserved."
1823
1824 To guarantee the "upon exit" part of that statement we fake a
1825 saved flags register that has its direction flag cleared.
1826
1827 Note that GCC doesn't seem to rely on the fact that the direction
1828 flag is cleared after a function return; it always explicitly
1829 clears the flag before operations where it matters.
1830
1831 FIXME: kettenis/20030316: I'm not quite sure whether this is the
1832 right thing to do. The way we fake the flags register here makes
1833 it impossible to change it. */
1834
1835 if (regnum == I386_EFLAGS_REGNUM)
1836 {
1837 ULONGEST val;
1838
1839 val = get_frame_register_unsigned (this_frame, regnum);
1840 val &= ~(1 << 10);
1841 return frame_unwind_got_constant (this_frame, regnum, val);
1842 }
1843
1844 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
1845 return frame_unwind_got_register (this_frame, regnum, I386_EAX_REGNUM);
1846
1847 if (regnum == I386_ESP_REGNUM
1848 && (cache->saved_sp != 0 || cache->saved_sp_reg != -1))
1849 {
1850 /* If the SP has been saved, but we don't know where, then this
1851 means that SAVED_SP_REG register was found unavailable back
1852 when we built the cache. */
1853 if (cache->saved_sp == 0)
1854 return frame_unwind_got_register (this_frame, regnum,
1855 cache->saved_sp_reg);
1856 else
1857 return frame_unwind_got_constant (this_frame, regnum,
1858 cache->saved_sp);
1859 }
1860
1861 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
1862 return frame_unwind_got_memory (this_frame, regnum,
1863 cache->saved_regs[regnum]);
1864
1865 return frame_unwind_got_register (this_frame, regnum, regnum);
1866 }
1867
1868 static const struct frame_unwind i386_frame_unwind =
1869 {
1870 NORMAL_FRAME,
1871 i386_frame_unwind_stop_reason,
1872 i386_frame_this_id,
1873 i386_frame_prev_register,
1874 NULL,
1875 default_frame_sniffer
1876 };
1877
1878 /* Normal frames, but in a function epilogue. */
1879
1880 /* The epilogue is defined here as the 'ret' instruction, which will
1881 follow any instruction such as 'leave' or 'pop %ebp' that destroys
1882 the function's stack frame. */
1883
1884 static int
1885 i386_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
1886 {
1887 gdb_byte insn;
1888 struct symtab *symtab;
1889
1890 symtab = find_pc_symtab (pc);
1891 if (symtab && symtab->epilogue_unwind_valid)
1892 return 0;
1893
1894 if (target_read_memory (pc, &insn, 1))
1895 return 0; /* Can't read memory at pc. */
1896
1897 if (insn != 0xc3) /* 'ret' instruction. */
1898 return 0;
1899
1900 return 1;
1901 }
1902
1903 static int
1904 i386_epilogue_frame_sniffer (const struct frame_unwind *self,
1905 struct frame_info *this_frame,
1906 void **this_prologue_cache)
1907 {
1908 if (frame_relative_level (this_frame) == 0)
1909 return i386_in_function_epilogue_p (get_frame_arch (this_frame),
1910 get_frame_pc (this_frame));
1911 else
1912 return 0;
1913 }
1914
1915 static struct i386_frame_cache *
1916 i386_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
1917 {
1918 volatile struct gdb_exception ex;
1919 struct i386_frame_cache *cache;
1920 CORE_ADDR sp;
1921
1922 if (*this_cache)
1923 return *this_cache;
1924
1925 cache = i386_alloc_frame_cache ();
1926 *this_cache = cache;
1927
1928 TRY_CATCH (ex, RETURN_MASK_ERROR)
1929 {
1930 cache->pc = get_frame_func (this_frame);
1931
1932 /* At this point the stack looks as if we just entered the
1933 function, with the return address at the top of the
1934 stack. */
1935 sp = get_frame_register_unsigned (this_frame, I386_ESP_REGNUM);
1936 cache->base = sp + cache->sp_offset;
1937 cache->saved_sp = cache->base + 8;
1938 cache->saved_regs[I386_EIP_REGNUM] = cache->base + 4;
1939
1940 cache->base_p = 1;
1941 }
1942 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
1943 throw_exception (ex);
1944
1945 return cache;
1946 }
1947
1948 static enum unwind_stop_reason
1949 i386_epilogue_frame_unwind_stop_reason (struct frame_info *this_frame,
1950 void **this_cache)
1951 {
1952 struct i386_frame_cache *cache =
1953 i386_epilogue_frame_cache (this_frame, this_cache);
1954
1955 if (!cache->base_p)
1956 return UNWIND_UNAVAILABLE;
1957
1958 return UNWIND_NO_REASON;
1959 }
1960
1961 static void
1962 i386_epilogue_frame_this_id (struct frame_info *this_frame,
1963 void **this_cache,
1964 struct frame_id *this_id)
1965 {
1966 struct i386_frame_cache *cache =
1967 i386_epilogue_frame_cache (this_frame, this_cache);
1968
1969 if (!cache->base_p)
1970 return;
1971
1972 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
1973 }
1974
1975 static struct value *
1976 i386_epilogue_frame_prev_register (struct frame_info *this_frame,
1977 void **this_cache, int regnum)
1978 {
1979 /* Make sure we've initialized the cache. */
1980 i386_epilogue_frame_cache (this_frame, this_cache);
1981
1982 return i386_frame_prev_register (this_frame, this_cache, regnum);
1983 }
1984
1985 static const struct frame_unwind i386_epilogue_frame_unwind =
1986 {
1987 NORMAL_FRAME,
1988 i386_epilogue_frame_unwind_stop_reason,
1989 i386_epilogue_frame_this_id,
1990 i386_epilogue_frame_prev_register,
1991 NULL,
1992 i386_epilogue_frame_sniffer
1993 };
1994 \f
1995
1996 /* Stack-based trampolines. */
1997
1998 /* These trampolines are used on cross x86 targets, when taking the
1999 address of a nested function. When executing these trampolines,
2000 no stack frame is set up, so we are in a similar situation as in
2001 epilogues and i386_epilogue_frame_this_id can be re-used. */
2002
2003 /* Static chain passed in register. */
2004
2005 struct i386_insn i386_tramp_chain_in_reg_insns[] =
2006 {
2007 /* `movl imm32, %eax' and `movl imm32, %ecx' */
2008 { 5, { 0xb8 }, { 0xfe } },
2009
2010 /* `jmp imm32' */
2011 { 5, { 0xe9 }, { 0xff } },
2012
2013 {0}
2014 };
2015
2016 /* Static chain passed on stack (when regparm=3). */
2017
2018 struct i386_insn i386_tramp_chain_on_stack_insns[] =
2019 {
2020 /* `push imm32' */
2021 { 5, { 0x68 }, { 0xff } },
2022
2023 /* `jmp imm32' */
2024 { 5, { 0xe9 }, { 0xff } },
2025
2026 {0}
2027 };
2028
2029 /* Return whether PC points inside a stack trampoline. */
2030
2031 static int
2032 i386_in_stack_tramp_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2033 {
2034 gdb_byte insn;
2035 char *name;
2036
2037 /* A stack trampoline is detected if no name is associated
2038 to the current pc and if it points inside a trampoline
2039 sequence. */
2040
2041 find_pc_partial_function (pc, &name, NULL, NULL);
2042 if (name)
2043 return 0;
2044
2045 if (target_read_memory (pc, &insn, 1))
2046 return 0;
2047
2048 if (!i386_match_insn_block (pc, i386_tramp_chain_in_reg_insns)
2049 && !i386_match_insn_block (pc, i386_tramp_chain_on_stack_insns))
2050 return 0;
2051
2052 return 1;
2053 }
2054
2055 static int
2056 i386_stack_tramp_frame_sniffer (const struct frame_unwind *self,
2057 struct frame_info *this_frame,
2058 void **this_cache)
2059 {
2060 if (frame_relative_level (this_frame) == 0)
2061 return i386_in_stack_tramp_p (get_frame_arch (this_frame),
2062 get_frame_pc (this_frame));
2063 else
2064 return 0;
2065 }
2066
2067 static const struct frame_unwind i386_stack_tramp_frame_unwind =
2068 {
2069 NORMAL_FRAME,
2070 i386_epilogue_frame_unwind_stop_reason,
2071 i386_epilogue_frame_this_id,
2072 i386_epilogue_frame_prev_register,
2073 NULL,
2074 i386_stack_tramp_frame_sniffer
2075 };
2076 \f
2077
2078 /* Signal trampolines. */
2079
2080 static struct i386_frame_cache *
2081 i386_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
2082 {
2083 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2084 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2085 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2086 volatile struct gdb_exception ex;
2087 struct i386_frame_cache *cache;
2088 CORE_ADDR addr;
2089 gdb_byte buf[4];
2090
2091 if (*this_cache)
2092 return *this_cache;
2093
2094 cache = i386_alloc_frame_cache ();
2095
2096 TRY_CATCH (ex, RETURN_MASK_ERROR)
2097 {
2098 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2099 cache->base = extract_unsigned_integer (buf, 4, byte_order) - 4;
2100
2101 addr = tdep->sigcontext_addr (this_frame);
2102 if (tdep->sc_reg_offset)
2103 {
2104 int i;
2105
2106 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
2107
2108 for (i = 0; i < tdep->sc_num_regs; i++)
2109 if (tdep->sc_reg_offset[i] != -1)
2110 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
2111 }
2112 else
2113 {
2114 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
2115 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
2116 }
2117
2118 cache->base_p = 1;
2119 }
2120 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
2121 throw_exception (ex);
2122
2123 *this_cache = cache;
2124 return cache;
2125 }
2126
2127 static enum unwind_stop_reason
2128 i386_sigtramp_frame_unwind_stop_reason (struct frame_info *this_frame,
2129 void **this_cache)
2130 {
2131 struct i386_frame_cache *cache =
2132 i386_sigtramp_frame_cache (this_frame, this_cache);
2133
2134 if (!cache->base_p)
2135 return UNWIND_UNAVAILABLE;
2136
2137 return UNWIND_NO_REASON;
2138 }
2139
2140 static void
2141 i386_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache,
2142 struct frame_id *this_id)
2143 {
2144 struct i386_frame_cache *cache =
2145 i386_sigtramp_frame_cache (this_frame, this_cache);
2146
2147 if (!cache->base_p)
2148 return;
2149
2150 /* See the end of i386_push_dummy_call. */
2151 (*this_id) = frame_id_build (cache->base + 8, get_frame_pc (this_frame));
2152 }
2153
2154 static struct value *
2155 i386_sigtramp_frame_prev_register (struct frame_info *this_frame,
2156 void **this_cache, int regnum)
2157 {
2158 /* Make sure we've initialized the cache. */
2159 i386_sigtramp_frame_cache (this_frame, this_cache);
2160
2161 return i386_frame_prev_register (this_frame, this_cache, regnum);
2162 }
2163
2164 static int
2165 i386_sigtramp_frame_sniffer (const struct frame_unwind *self,
2166 struct frame_info *this_frame,
2167 void **this_prologue_cache)
2168 {
2169 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
2170
2171 /* We shouldn't even bother if we don't have a sigcontext_addr
2172 handler. */
2173 if (tdep->sigcontext_addr == NULL)
2174 return 0;
2175
2176 if (tdep->sigtramp_p != NULL)
2177 {
2178 if (tdep->sigtramp_p (this_frame))
2179 return 1;
2180 }
2181
2182 if (tdep->sigtramp_start != 0)
2183 {
2184 CORE_ADDR pc = get_frame_pc (this_frame);
2185
2186 gdb_assert (tdep->sigtramp_end != 0);
2187 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
2188 return 1;
2189 }
2190
2191 return 0;
2192 }
2193
2194 static const struct frame_unwind i386_sigtramp_frame_unwind =
2195 {
2196 SIGTRAMP_FRAME,
2197 i386_sigtramp_frame_unwind_stop_reason,
2198 i386_sigtramp_frame_this_id,
2199 i386_sigtramp_frame_prev_register,
2200 NULL,
2201 i386_sigtramp_frame_sniffer
2202 };
2203 \f
2204
2205 static CORE_ADDR
2206 i386_frame_base_address (struct frame_info *this_frame, void **this_cache)
2207 {
2208 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2209
2210 return cache->base;
2211 }
2212
2213 static const struct frame_base i386_frame_base =
2214 {
2215 &i386_frame_unwind,
2216 i386_frame_base_address,
2217 i386_frame_base_address,
2218 i386_frame_base_address
2219 };
2220
2221 static struct frame_id
2222 i386_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2223 {
2224 CORE_ADDR fp;
2225
2226 fp = get_frame_register_unsigned (this_frame, I386_EBP_REGNUM);
2227
2228 /* See the end of i386_push_dummy_call. */
2229 return frame_id_build (fp + 8, get_frame_pc (this_frame));
2230 }
2231
2232 /* _Decimal128 function return values need 16-byte alignment on the
2233 stack. */
2234
2235 static CORE_ADDR
2236 i386_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2237 {
2238 return sp & -(CORE_ADDR)16;
2239 }
2240 \f
2241
2242 /* Figure out where the longjmp will land. Slurp the args out of the
2243 stack. We expect the first arg to be a pointer to the jmp_buf
2244 structure from which we extract the address that we will land at.
2245 This address is copied into PC. This routine returns non-zero on
2246 success. */
2247
2248 static int
2249 i386_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
2250 {
2251 gdb_byte buf[4];
2252 CORE_ADDR sp, jb_addr;
2253 struct gdbarch *gdbarch = get_frame_arch (frame);
2254 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2255 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
2256
2257 /* If JB_PC_OFFSET is -1, we have no way to find out where the
2258 longjmp will land. */
2259 if (jb_pc_offset == -1)
2260 return 0;
2261
2262 get_frame_register (frame, I386_ESP_REGNUM, buf);
2263 sp = extract_unsigned_integer (buf, 4, byte_order);
2264 if (target_read_memory (sp + 4, buf, 4))
2265 return 0;
2266
2267 jb_addr = extract_unsigned_integer (buf, 4, byte_order);
2268 if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
2269 return 0;
2270
2271 *pc = extract_unsigned_integer (buf, 4, byte_order);
2272 return 1;
2273 }
2274 \f
2275
2276 /* Check whether TYPE must be 16-byte-aligned when passed as a
2277 function argument. 16-byte vectors, _Decimal128 and structures or
2278 unions containing such types must be 16-byte-aligned; other
2279 arguments are 4-byte-aligned. */
2280
2281 static int
2282 i386_16_byte_align_p (struct type *type)
2283 {
2284 type = check_typedef (type);
2285 if ((TYPE_CODE (type) == TYPE_CODE_DECFLOAT
2286 || (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type)))
2287 && TYPE_LENGTH (type) == 16)
2288 return 1;
2289 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2290 return i386_16_byte_align_p (TYPE_TARGET_TYPE (type));
2291 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2292 || TYPE_CODE (type) == TYPE_CODE_UNION)
2293 {
2294 int i;
2295 for (i = 0; i < TYPE_NFIELDS (type); i++)
2296 {
2297 if (i386_16_byte_align_p (TYPE_FIELD_TYPE (type, i)))
2298 return 1;
2299 }
2300 }
2301 return 0;
2302 }
2303
2304 static CORE_ADDR
2305 i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2306 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2307 struct value **args, CORE_ADDR sp, int struct_return,
2308 CORE_ADDR struct_addr)
2309 {
2310 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2311 gdb_byte buf[4];
2312 int i;
2313 int write_pass;
2314 int args_space = 0;
2315
2316 /* Determine the total space required for arguments and struct
2317 return address in a first pass (allowing for 16-byte-aligned
2318 arguments), then push arguments in a second pass. */
2319
2320 for (write_pass = 0; write_pass < 2; write_pass++)
2321 {
2322 int args_space_used = 0;
2323 int have_16_byte_aligned_arg = 0;
2324
2325 if (struct_return)
2326 {
2327 if (write_pass)
2328 {
2329 /* Push value address. */
2330 store_unsigned_integer (buf, 4, byte_order, struct_addr);
2331 write_memory (sp, buf, 4);
2332 args_space_used += 4;
2333 }
2334 else
2335 args_space += 4;
2336 }
2337
2338 for (i = 0; i < nargs; i++)
2339 {
2340 int len = TYPE_LENGTH (value_enclosing_type (args[i]));
2341
2342 if (write_pass)
2343 {
2344 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2345 args_space_used = align_up (args_space_used, 16);
2346
2347 write_memory (sp + args_space_used,
2348 value_contents_all (args[i]), len);
2349 /* The System V ABI says that:
2350
2351 "An argument's size is increased, if necessary, to make it a
2352 multiple of [32-bit] words. This may require tail padding,
2353 depending on the size of the argument."
2354
2355 This makes sure the stack stays word-aligned. */
2356 args_space_used += align_up (len, 4);
2357 }
2358 else
2359 {
2360 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2361 {
2362 args_space = align_up (args_space, 16);
2363 have_16_byte_aligned_arg = 1;
2364 }
2365 args_space += align_up (len, 4);
2366 }
2367 }
2368
2369 if (!write_pass)
2370 {
2371 if (have_16_byte_aligned_arg)
2372 args_space = align_up (args_space, 16);
2373 sp -= args_space;
2374 }
2375 }
2376
2377 /* Store return address. */
2378 sp -= 4;
2379 store_unsigned_integer (buf, 4, byte_order, bp_addr);
2380 write_memory (sp, buf, 4);
2381
2382 /* Finally, update the stack pointer... */
2383 store_unsigned_integer (buf, 4, byte_order, sp);
2384 regcache_cooked_write (regcache, I386_ESP_REGNUM, buf);
2385
2386 /* ...and fake a frame pointer. */
2387 regcache_cooked_write (regcache, I386_EBP_REGNUM, buf);
2388
2389 /* MarkK wrote: This "+ 8" is all over the place:
2390 (i386_frame_this_id, i386_sigtramp_frame_this_id,
2391 i386_dummy_id). It's there, since all frame unwinders for
2392 a given target have to agree (within a certain margin) on the
2393 definition of the stack address of a frame. Otherwise frame id
2394 comparison might not work correctly. Since DWARF2/GCC uses the
2395 stack address *before* the function call as a frame's CFA. On
2396 the i386, when %ebp is used as a frame pointer, the offset
2397 between the contents %ebp and the CFA as defined by GCC. */
2398 return sp + 8;
2399 }
2400
2401 /* These registers are used for returning integers (and on some
2402 targets also for returning `struct' and `union' values when their
2403 size and alignment match an integer type). */
2404 #define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
2405 #define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
2406
2407 /* Read, for architecture GDBARCH, a function return value of TYPE
2408 from REGCACHE, and copy that into VALBUF. */
2409
2410 static void
2411 i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
2412 struct regcache *regcache, gdb_byte *valbuf)
2413 {
2414 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2415 int len = TYPE_LENGTH (type);
2416 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2417
2418 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2419 {
2420 if (tdep->st0_regnum < 0)
2421 {
2422 warning (_("Cannot find floating-point return value."));
2423 memset (valbuf, 0, len);
2424 return;
2425 }
2426
2427 /* Floating-point return values can be found in %st(0). Convert
2428 its contents to the desired type. This is probably not
2429 exactly how it would happen on the target itself, but it is
2430 the best we can do. */
2431 regcache_raw_read (regcache, I386_ST0_REGNUM, buf);
2432 convert_typed_floating (buf, i387_ext_type (gdbarch), valbuf, type);
2433 }
2434 else
2435 {
2436 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2437 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2438
2439 if (len <= low_size)
2440 {
2441 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
2442 memcpy (valbuf, buf, len);
2443 }
2444 else if (len <= (low_size + high_size))
2445 {
2446 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
2447 memcpy (valbuf, buf, low_size);
2448 regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
2449 memcpy (valbuf + low_size, buf, len - low_size);
2450 }
2451 else
2452 internal_error (__FILE__, __LINE__,
2453 _("Cannot extract return value of %d bytes long."),
2454 len);
2455 }
2456 }
2457
2458 /* Write, for architecture GDBARCH, a function return value of TYPE
2459 from VALBUF into REGCACHE. */
2460
2461 static void
2462 i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
2463 struct regcache *regcache, const gdb_byte *valbuf)
2464 {
2465 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2466 int len = TYPE_LENGTH (type);
2467
2468 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2469 {
2470 ULONGEST fstat;
2471 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2472
2473 if (tdep->st0_regnum < 0)
2474 {
2475 warning (_("Cannot set floating-point return value."));
2476 return;
2477 }
2478
2479 /* Returning floating-point values is a bit tricky. Apart from
2480 storing the return value in %st(0), we have to simulate the
2481 state of the FPU at function return point. */
2482
2483 /* Convert the value found in VALBUF to the extended
2484 floating-point format used by the FPU. This is probably
2485 not exactly how it would happen on the target itself, but
2486 it is the best we can do. */
2487 convert_typed_floating (valbuf, type, buf, i387_ext_type (gdbarch));
2488 regcache_raw_write (regcache, I386_ST0_REGNUM, buf);
2489
2490 /* Set the top of the floating-point register stack to 7. The
2491 actual value doesn't really matter, but 7 is what a normal
2492 function return would end up with if the program started out
2493 with a freshly initialized FPU. */
2494 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
2495 fstat |= (7 << 11);
2496 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM (tdep), fstat);
2497
2498 /* Mark %st(1) through %st(7) as empty. Since we set the top of
2499 the floating-point register stack to 7, the appropriate value
2500 for the tag word is 0x3fff. */
2501 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM (tdep), 0x3fff);
2502 }
2503 else
2504 {
2505 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2506 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2507
2508 if (len <= low_size)
2509 regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
2510 else if (len <= (low_size + high_size))
2511 {
2512 regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
2513 regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
2514 len - low_size, valbuf + low_size);
2515 }
2516 else
2517 internal_error (__FILE__, __LINE__,
2518 _("Cannot store return value of %d bytes long."), len);
2519 }
2520 }
2521 \f
2522
2523 /* This is the variable that is set with "set struct-convention", and
2524 its legitimate values. */
2525 static const char default_struct_convention[] = "default";
2526 static const char pcc_struct_convention[] = "pcc";
2527 static const char reg_struct_convention[] = "reg";
2528 static const char *valid_conventions[] =
2529 {
2530 default_struct_convention,
2531 pcc_struct_convention,
2532 reg_struct_convention,
2533 NULL
2534 };
2535 static const char *struct_convention = default_struct_convention;
2536
2537 /* Return non-zero if TYPE, which is assumed to be a structure,
2538 a union type, or an array type, should be returned in registers
2539 for architecture GDBARCH. */
2540
2541 static int
2542 i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
2543 {
2544 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2545 enum type_code code = TYPE_CODE (type);
2546 int len = TYPE_LENGTH (type);
2547
2548 gdb_assert (code == TYPE_CODE_STRUCT
2549 || code == TYPE_CODE_UNION
2550 || code == TYPE_CODE_ARRAY);
2551
2552 if (struct_convention == pcc_struct_convention
2553 || (struct_convention == default_struct_convention
2554 && tdep->struct_return == pcc_struct_return))
2555 return 0;
2556
2557 /* Structures consisting of a single `float', `double' or 'long
2558 double' member are returned in %st(0). */
2559 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2560 {
2561 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
2562 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2563 return (len == 4 || len == 8 || len == 12);
2564 }
2565
2566 return (len == 1 || len == 2 || len == 4 || len == 8);
2567 }
2568
2569 /* Determine, for architecture GDBARCH, how a return value of TYPE
2570 should be returned. If it is supposed to be returned in registers,
2571 and READBUF is non-zero, read the appropriate value from REGCACHE,
2572 and copy it into READBUF. If WRITEBUF is non-zero, write the value
2573 from WRITEBUF into REGCACHE. */
2574
2575 static enum return_value_convention
2576 i386_return_value (struct gdbarch *gdbarch, struct type *func_type,
2577 struct type *type, struct regcache *regcache,
2578 gdb_byte *readbuf, const gdb_byte *writebuf)
2579 {
2580 enum type_code code = TYPE_CODE (type);
2581
2582 if (((code == TYPE_CODE_STRUCT
2583 || code == TYPE_CODE_UNION
2584 || code == TYPE_CODE_ARRAY)
2585 && !i386_reg_struct_return_p (gdbarch, type))
2586 /* 128-bit decimal float uses the struct return convention. */
2587 || (code == TYPE_CODE_DECFLOAT && TYPE_LENGTH (type) == 16))
2588 {
2589 /* The System V ABI says that:
2590
2591 "A function that returns a structure or union also sets %eax
2592 to the value of the original address of the caller's area
2593 before it returns. Thus when the caller receives control
2594 again, the address of the returned object resides in register
2595 %eax and can be used to access the object."
2596
2597 So the ABI guarantees that we can always find the return
2598 value just after the function has returned. */
2599
2600 /* Note that the ABI doesn't mention functions returning arrays,
2601 which is something possible in certain languages such as Ada.
2602 In this case, the value is returned as if it was wrapped in
2603 a record, so the convention applied to records also applies
2604 to arrays. */
2605
2606 if (readbuf)
2607 {
2608 ULONGEST addr;
2609
2610 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
2611 read_memory (addr, readbuf, TYPE_LENGTH (type));
2612 }
2613
2614 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
2615 }
2616
2617 /* This special case is for structures consisting of a single
2618 `float', `double' or 'long double' member. These structures are
2619 returned in %st(0). For these structures, we call ourselves
2620 recursively, changing TYPE into the type of the first member of
2621 the structure. Since that should work for all structures that
2622 have only one member, we don't bother to check the member's type
2623 here. */
2624 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2625 {
2626 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
2627 return i386_return_value (gdbarch, func_type, type, regcache,
2628 readbuf, writebuf);
2629 }
2630
2631 if (readbuf)
2632 i386_extract_return_value (gdbarch, type, regcache, readbuf);
2633 if (writebuf)
2634 i386_store_return_value (gdbarch, type, regcache, writebuf);
2635
2636 return RETURN_VALUE_REGISTER_CONVENTION;
2637 }
2638 \f
2639
2640 struct type *
2641 i387_ext_type (struct gdbarch *gdbarch)
2642 {
2643 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2644
2645 if (!tdep->i387_ext_type)
2646 {
2647 tdep->i387_ext_type = tdesc_find_type (gdbarch, "i387_ext");
2648 gdb_assert (tdep->i387_ext_type != NULL);
2649 }
2650
2651 return tdep->i387_ext_type;
2652 }
2653
2654 /* Construct vector type for pseudo YMM registers. We can't use
2655 tdesc_find_type since YMM isn't described in target description. */
2656
2657 static struct type *
2658 i386_ymm_type (struct gdbarch *gdbarch)
2659 {
2660 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2661
2662 if (!tdep->i386_ymm_type)
2663 {
2664 const struct builtin_type *bt = builtin_type (gdbarch);
2665
2666 /* The type we're building is this: */
2667 #if 0
2668 union __gdb_builtin_type_vec256i
2669 {
2670 int128_t uint128[2];
2671 int64_t v2_int64[4];
2672 int32_t v4_int32[8];
2673 int16_t v8_int16[16];
2674 int8_t v16_int8[32];
2675 double v2_double[4];
2676 float v4_float[8];
2677 };
2678 #endif
2679
2680 struct type *t;
2681
2682 t = arch_composite_type (gdbarch,
2683 "__gdb_builtin_type_vec256i", TYPE_CODE_UNION);
2684 append_composite_type_field (t, "v8_float",
2685 init_vector_type (bt->builtin_float, 8));
2686 append_composite_type_field (t, "v4_double",
2687 init_vector_type (bt->builtin_double, 4));
2688 append_composite_type_field (t, "v32_int8",
2689 init_vector_type (bt->builtin_int8, 32));
2690 append_composite_type_field (t, "v16_int16",
2691 init_vector_type (bt->builtin_int16, 16));
2692 append_composite_type_field (t, "v8_int32",
2693 init_vector_type (bt->builtin_int32, 8));
2694 append_composite_type_field (t, "v4_int64",
2695 init_vector_type (bt->builtin_int64, 4));
2696 append_composite_type_field (t, "v2_int128",
2697 init_vector_type (bt->builtin_int128, 2));
2698
2699 TYPE_VECTOR (t) = 1;
2700 TYPE_NAME (t) = "builtin_type_vec256i";
2701 tdep->i386_ymm_type = t;
2702 }
2703
2704 return tdep->i386_ymm_type;
2705 }
2706
2707 /* Construct vector type for MMX registers. */
2708 static struct type *
2709 i386_mmx_type (struct gdbarch *gdbarch)
2710 {
2711 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2712
2713 if (!tdep->i386_mmx_type)
2714 {
2715 const struct builtin_type *bt = builtin_type (gdbarch);
2716
2717 /* The type we're building is this: */
2718 #if 0
2719 union __gdb_builtin_type_vec64i
2720 {
2721 int64_t uint64;
2722 int32_t v2_int32[2];
2723 int16_t v4_int16[4];
2724 int8_t v8_int8[8];
2725 };
2726 #endif
2727
2728 struct type *t;
2729
2730 t = arch_composite_type (gdbarch,
2731 "__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
2732
2733 append_composite_type_field (t, "uint64", bt->builtin_int64);
2734 append_composite_type_field (t, "v2_int32",
2735 init_vector_type (bt->builtin_int32, 2));
2736 append_composite_type_field (t, "v4_int16",
2737 init_vector_type (bt->builtin_int16, 4));
2738 append_composite_type_field (t, "v8_int8",
2739 init_vector_type (bt->builtin_int8, 8));
2740
2741 TYPE_VECTOR (t) = 1;
2742 TYPE_NAME (t) = "builtin_type_vec64i";
2743 tdep->i386_mmx_type = t;
2744 }
2745
2746 return tdep->i386_mmx_type;
2747 }
2748
2749 /* Return the GDB type object for the "standard" data type of data in
2750 register REGNUM. */
2751
2752 static struct type *
2753 i386_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
2754 {
2755 if (i386_mmx_regnum_p (gdbarch, regnum))
2756 return i386_mmx_type (gdbarch);
2757 else if (i386_ymm_regnum_p (gdbarch, regnum))
2758 return i386_ymm_type (gdbarch);
2759 else
2760 {
2761 const struct builtin_type *bt = builtin_type (gdbarch);
2762 if (i386_byte_regnum_p (gdbarch, regnum))
2763 return bt->builtin_int8;
2764 else if (i386_word_regnum_p (gdbarch, regnum))
2765 return bt->builtin_int16;
2766 else if (i386_dword_regnum_p (gdbarch, regnum))
2767 return bt->builtin_int32;
2768 }
2769
2770 internal_error (__FILE__, __LINE__, _("invalid regnum"));
2771 }
2772
2773 /* Map a cooked register onto a raw register or memory. For the i386,
2774 the MMX registers need to be mapped onto floating point registers. */
2775
2776 static int
2777 i386_mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
2778 {
2779 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
2780 int mmxreg, fpreg;
2781 ULONGEST fstat;
2782 int tos;
2783
2784 mmxreg = regnum - tdep->mm0_regnum;
2785 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
2786 tos = (fstat >> 11) & 0x7;
2787 fpreg = (mmxreg + tos) % 8;
2788
2789 return (I387_ST0_REGNUM (tdep) + fpreg);
2790 }
2791
2792 /* A helper function for us by i386_pseudo_register_read_value and
2793 amd64_pseudo_register_read_value. It does all the work but reads
2794 the data into an already-allocated value. */
2795
2796 void
2797 i386_pseudo_register_read_into_value (struct gdbarch *gdbarch,
2798 struct regcache *regcache,
2799 int regnum,
2800 struct value *result_value)
2801 {
2802 gdb_byte raw_buf[MAX_REGISTER_SIZE];
2803 enum register_status status;
2804 gdb_byte *buf = value_contents_raw (result_value);
2805
2806 if (i386_mmx_regnum_p (gdbarch, regnum))
2807 {
2808 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
2809
2810 /* Extract (always little endian). */
2811 status = regcache_raw_read (regcache, fpnum, raw_buf);
2812 if (status != REG_VALID)
2813 mark_value_bytes_unavailable (result_value, 0,
2814 TYPE_LENGTH (value_type (result_value)));
2815 else
2816 memcpy (buf, raw_buf, register_size (gdbarch, regnum));
2817 }
2818 else
2819 {
2820 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2821
2822 if (i386_ymm_regnum_p (gdbarch, regnum))
2823 {
2824 regnum -= tdep->ymm0_regnum;
2825
2826 /* Extract (always little endian). Read lower 128bits. */
2827 status = regcache_raw_read (regcache,
2828 I387_XMM0_REGNUM (tdep) + regnum,
2829 raw_buf);
2830 if (status != REG_VALID)
2831 mark_value_bytes_unavailable (result_value, 0, 16);
2832 else
2833 memcpy (buf, raw_buf, 16);
2834 /* Read upper 128bits. */
2835 status = regcache_raw_read (regcache,
2836 tdep->ymm0h_regnum + regnum,
2837 raw_buf);
2838 if (status != REG_VALID)
2839 mark_value_bytes_unavailable (result_value, 16, 32);
2840 else
2841 memcpy (buf + 16, raw_buf, 16);
2842 }
2843 else if (i386_word_regnum_p (gdbarch, regnum))
2844 {
2845 int gpnum = regnum - tdep->ax_regnum;
2846
2847 /* Extract (always little endian). */
2848 status = regcache_raw_read (regcache, gpnum, raw_buf);
2849 if (status != REG_VALID)
2850 mark_value_bytes_unavailable (result_value, 0,
2851 TYPE_LENGTH (value_type (result_value)));
2852 else
2853 memcpy (buf, raw_buf, 2);
2854 }
2855 else if (i386_byte_regnum_p (gdbarch, regnum))
2856 {
2857 /* Check byte pseudo registers last since this function will
2858 be called from amd64_pseudo_register_read, which handles
2859 byte pseudo registers differently. */
2860 int gpnum = regnum - tdep->al_regnum;
2861
2862 /* Extract (always little endian). We read both lower and
2863 upper registers. */
2864 status = regcache_raw_read (regcache, gpnum % 4, raw_buf);
2865 if (status != REG_VALID)
2866 mark_value_bytes_unavailable (result_value, 0,
2867 TYPE_LENGTH (value_type (result_value)));
2868 else if (gpnum >= 4)
2869 memcpy (buf, raw_buf + 1, 1);
2870 else
2871 memcpy (buf, raw_buf, 1);
2872 }
2873 else
2874 internal_error (__FILE__, __LINE__, _("invalid regnum"));
2875 }
2876 }
2877
2878 static struct value *
2879 i386_pseudo_register_read_value (struct gdbarch *gdbarch,
2880 struct regcache *regcache,
2881 int regnum)
2882 {
2883 struct value *result;
2884
2885 result = allocate_value (register_type (gdbarch, regnum));
2886 VALUE_LVAL (result) = lval_register;
2887 VALUE_REGNUM (result) = regnum;
2888
2889 i386_pseudo_register_read_into_value (gdbarch, regcache, regnum, result);
2890
2891 return result;
2892 }
2893
2894 void
2895 i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2896 int regnum, const gdb_byte *buf)
2897 {
2898 gdb_byte raw_buf[MAX_REGISTER_SIZE];
2899
2900 if (i386_mmx_regnum_p (gdbarch, regnum))
2901 {
2902 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
2903
2904 /* Read ... */
2905 regcache_raw_read (regcache, fpnum, raw_buf);
2906 /* ... Modify ... (always little endian). */
2907 memcpy (raw_buf, buf, register_size (gdbarch, regnum));
2908 /* ... Write. */
2909 regcache_raw_write (regcache, fpnum, raw_buf);
2910 }
2911 else
2912 {
2913 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2914
2915 if (i386_ymm_regnum_p (gdbarch, regnum))
2916 {
2917 regnum -= tdep->ymm0_regnum;
2918
2919 /* ... Write lower 128bits. */
2920 regcache_raw_write (regcache,
2921 I387_XMM0_REGNUM (tdep) + regnum,
2922 buf);
2923 /* ... Write upper 128bits. */
2924 regcache_raw_write (regcache,
2925 tdep->ymm0h_regnum + regnum,
2926 buf + 16);
2927 }
2928 else if (i386_word_regnum_p (gdbarch, regnum))
2929 {
2930 int gpnum = regnum - tdep->ax_regnum;
2931
2932 /* Read ... */
2933 regcache_raw_read (regcache, gpnum, raw_buf);
2934 /* ... Modify ... (always little endian). */
2935 memcpy (raw_buf, buf, 2);
2936 /* ... Write. */
2937 regcache_raw_write (regcache, gpnum, raw_buf);
2938 }
2939 else if (i386_byte_regnum_p (gdbarch, regnum))
2940 {
2941 /* Check byte pseudo registers last since this function will
2942 be called from amd64_pseudo_register_read, which handles
2943 byte pseudo registers differently. */
2944 int gpnum = regnum - tdep->al_regnum;
2945
2946 /* Read ... We read both lower and upper registers. */
2947 regcache_raw_read (regcache, gpnum % 4, raw_buf);
2948 /* ... Modify ... (always little endian). */
2949 if (gpnum >= 4)
2950 memcpy (raw_buf + 1, buf, 1);
2951 else
2952 memcpy (raw_buf, buf, 1);
2953 /* ... Write. */
2954 regcache_raw_write (regcache, gpnum % 4, raw_buf);
2955 }
2956 else
2957 internal_error (__FILE__, __LINE__, _("invalid regnum"));
2958 }
2959 }
2960 \f
2961
2962 /* Return the register number of the register allocated by GCC after
2963 REGNUM, or -1 if there is no such register. */
2964
2965 static int
2966 i386_next_regnum (int regnum)
2967 {
2968 /* GCC allocates the registers in the order:
2969
2970 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
2971
2972 Since storing a variable in %esp doesn't make any sense we return
2973 -1 for %ebp and for %esp itself. */
2974 static int next_regnum[] =
2975 {
2976 I386_EDX_REGNUM, /* Slot for %eax. */
2977 I386_EBX_REGNUM, /* Slot for %ecx. */
2978 I386_ECX_REGNUM, /* Slot for %edx. */
2979 I386_ESI_REGNUM, /* Slot for %ebx. */
2980 -1, -1, /* Slots for %esp and %ebp. */
2981 I386_EDI_REGNUM, /* Slot for %esi. */
2982 I386_EBP_REGNUM /* Slot for %edi. */
2983 };
2984
2985 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
2986 return next_regnum[regnum];
2987
2988 return -1;
2989 }
2990
2991 /* Return nonzero if a value of type TYPE stored in register REGNUM
2992 needs any special handling. */
2993
2994 static int
2995 i386_convert_register_p (struct gdbarch *gdbarch,
2996 int regnum, struct type *type)
2997 {
2998 int len = TYPE_LENGTH (type);
2999
3000 /* Values may be spread across multiple registers. Most debugging
3001 formats aren't expressive enough to specify the locations, so
3002 some heuristics is involved. Right now we only handle types that
3003 have a length that is a multiple of the word size, since GCC
3004 doesn't seem to put any other types into registers. */
3005 if (len > 4 && len % 4 == 0)
3006 {
3007 int last_regnum = regnum;
3008
3009 while (len > 4)
3010 {
3011 last_regnum = i386_next_regnum (last_regnum);
3012 len -= 4;
3013 }
3014
3015 if (last_regnum != -1)
3016 return 1;
3017 }
3018
3019 return i387_convert_register_p (gdbarch, regnum, type);
3020 }
3021
3022 /* Read a value of type TYPE from register REGNUM in frame FRAME, and
3023 return its contents in TO. */
3024
3025 static int
3026 i386_register_to_value (struct frame_info *frame, int regnum,
3027 struct type *type, gdb_byte *to,
3028 int *optimizedp, int *unavailablep)
3029 {
3030 struct gdbarch *gdbarch = get_frame_arch (frame);
3031 int len = TYPE_LENGTH (type);
3032
3033 if (i386_fp_regnum_p (gdbarch, regnum))
3034 return i387_register_to_value (frame, regnum, type, to,
3035 optimizedp, unavailablep);
3036
3037 /* Read a value spread across multiple registers. */
3038
3039 gdb_assert (len > 4 && len % 4 == 0);
3040
3041 while (len > 0)
3042 {
3043 gdb_assert (regnum != -1);
3044 gdb_assert (register_size (gdbarch, regnum) == 4);
3045
3046 if (!get_frame_register_bytes (frame, regnum, 0,
3047 register_size (gdbarch, regnum),
3048 to, optimizedp, unavailablep))
3049 return 0;
3050
3051 regnum = i386_next_regnum (regnum);
3052 len -= 4;
3053 to += 4;
3054 }
3055
3056 *optimizedp = *unavailablep = 0;
3057 return 1;
3058 }
3059
3060 /* Write the contents FROM of a value of type TYPE into register
3061 REGNUM in frame FRAME. */
3062
3063 static void
3064 i386_value_to_register (struct frame_info *frame, int regnum,
3065 struct type *type, const gdb_byte *from)
3066 {
3067 int len = TYPE_LENGTH (type);
3068
3069 if (i386_fp_regnum_p (get_frame_arch (frame), regnum))
3070 {
3071 i387_value_to_register (frame, regnum, type, from);
3072 return;
3073 }
3074
3075 /* Write a value spread across multiple registers. */
3076
3077 gdb_assert (len > 4 && len % 4 == 0);
3078
3079 while (len > 0)
3080 {
3081 gdb_assert (regnum != -1);
3082 gdb_assert (register_size (get_frame_arch (frame), regnum) == 4);
3083
3084 put_frame_register (frame, regnum, from);
3085 regnum = i386_next_regnum (regnum);
3086 len -= 4;
3087 from += 4;
3088 }
3089 }
3090 \f
3091 /* Supply register REGNUM from the buffer specified by GREGS and LEN
3092 in the general-purpose register set REGSET to register cache
3093 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3094
3095 void
3096 i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
3097 int regnum, const void *gregs, size_t len)
3098 {
3099 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
3100 const gdb_byte *regs = gregs;
3101 int i;
3102
3103 gdb_assert (len == tdep->sizeof_gregset);
3104
3105 for (i = 0; i < tdep->gregset_num_regs; i++)
3106 {
3107 if ((regnum == i || regnum == -1)
3108 && tdep->gregset_reg_offset[i] != -1)
3109 regcache_raw_supply (regcache, i, regs + tdep->gregset_reg_offset[i]);
3110 }
3111 }
3112
3113 /* Collect register REGNUM from the register cache REGCACHE and store
3114 it in the buffer specified by GREGS and LEN as described by the
3115 general-purpose register set REGSET. If REGNUM is -1, do this for
3116 all registers in REGSET. */
3117
3118 void
3119 i386_collect_gregset (const struct regset *regset,
3120 const struct regcache *regcache,
3121 int regnum, void *gregs, size_t len)
3122 {
3123 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
3124 gdb_byte *regs = gregs;
3125 int i;
3126
3127 gdb_assert (len == tdep->sizeof_gregset);
3128
3129 for (i = 0; i < tdep->gregset_num_regs; i++)
3130 {
3131 if ((regnum == i || regnum == -1)
3132 && tdep->gregset_reg_offset[i] != -1)
3133 regcache_raw_collect (regcache, i, regs + tdep->gregset_reg_offset[i]);
3134 }
3135 }
3136
3137 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
3138 in the floating-point register set REGSET to register cache
3139 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3140
3141 static void
3142 i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
3143 int regnum, const void *fpregs, size_t len)
3144 {
3145 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
3146
3147 if (len == I387_SIZEOF_FXSAVE)
3148 {
3149 i387_supply_fxsave (regcache, regnum, fpregs);
3150 return;
3151 }
3152
3153 gdb_assert (len == tdep->sizeof_fpregset);
3154 i387_supply_fsave (regcache, regnum, fpregs);
3155 }
3156
3157 /* Collect register REGNUM from the register cache REGCACHE and store
3158 it in the buffer specified by FPREGS and LEN as described by the
3159 floating-point register set REGSET. If REGNUM is -1, do this for
3160 all registers in REGSET. */
3161
3162 static void
3163 i386_collect_fpregset (const struct regset *regset,
3164 const struct regcache *regcache,
3165 int regnum, void *fpregs, size_t len)
3166 {
3167 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
3168
3169 if (len == I387_SIZEOF_FXSAVE)
3170 {
3171 i387_collect_fxsave (regcache, regnum, fpregs);
3172 return;
3173 }
3174
3175 gdb_assert (len == tdep->sizeof_fpregset);
3176 i387_collect_fsave (regcache, regnum, fpregs);
3177 }
3178
3179 /* Similar to i386_supply_fpregset, but use XSAVE extended state. */
3180
3181 static void
3182 i386_supply_xstateregset (const struct regset *regset,
3183 struct regcache *regcache, int regnum,
3184 const void *xstateregs, size_t len)
3185 {
3186 i387_supply_xsave (regcache, regnum, xstateregs);
3187 }
3188
3189 /* Similar to i386_collect_fpregset , but use XSAVE extended state. */
3190
3191 static void
3192 i386_collect_xstateregset (const struct regset *regset,
3193 const struct regcache *regcache,
3194 int regnum, void *xstateregs, size_t len)
3195 {
3196 i387_collect_xsave (regcache, regnum, xstateregs, 1);
3197 }
3198
3199 /* Return the appropriate register set for the core section identified
3200 by SECT_NAME and SECT_SIZE. */
3201
3202 const struct regset *
3203 i386_regset_from_core_section (struct gdbarch *gdbarch,
3204 const char *sect_name, size_t sect_size)
3205 {
3206 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3207
3208 if (strcmp (sect_name, ".reg") == 0 && sect_size == tdep->sizeof_gregset)
3209 {
3210 if (tdep->gregset == NULL)
3211 tdep->gregset = regset_alloc (gdbarch, i386_supply_gregset,
3212 i386_collect_gregset);
3213 return tdep->gregset;
3214 }
3215
3216 if ((strcmp (sect_name, ".reg2") == 0 && sect_size == tdep->sizeof_fpregset)
3217 || (strcmp (sect_name, ".reg-xfp") == 0
3218 && sect_size == I387_SIZEOF_FXSAVE))
3219 {
3220 if (tdep->fpregset == NULL)
3221 tdep->fpregset = regset_alloc (gdbarch, i386_supply_fpregset,
3222 i386_collect_fpregset);
3223 return tdep->fpregset;
3224 }
3225
3226 if (strcmp (sect_name, ".reg-xstate") == 0)
3227 {
3228 if (tdep->xstateregset == NULL)
3229 tdep->xstateregset = regset_alloc (gdbarch,
3230 i386_supply_xstateregset,
3231 i386_collect_xstateregset);
3232
3233 return tdep->xstateregset;
3234 }
3235
3236 return NULL;
3237 }
3238 \f
3239
3240 /* Stuff for WIN32 PE style DLL's but is pretty generic really. */
3241
3242 CORE_ADDR
3243 i386_pe_skip_trampoline_code (struct frame_info *frame,
3244 CORE_ADDR pc, char *name)
3245 {
3246 struct gdbarch *gdbarch = get_frame_arch (frame);
3247 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3248
3249 /* jmp *(dest) */
3250 if (pc && read_memory_unsigned_integer (pc, 2, byte_order) == 0x25ff)
3251 {
3252 unsigned long indirect =
3253 read_memory_unsigned_integer (pc + 2, 4, byte_order);
3254 struct minimal_symbol *indsym =
3255 indirect ? lookup_minimal_symbol_by_pc (indirect) : 0;
3256 char *symname = indsym ? SYMBOL_LINKAGE_NAME (indsym) : 0;
3257
3258 if (symname)
3259 {
3260 if (strncmp (symname, "__imp_", 6) == 0
3261 || strncmp (symname, "_imp_", 5) == 0)
3262 return name ? 1 :
3263 read_memory_unsigned_integer (indirect, 4, byte_order);
3264 }
3265 }
3266 return 0; /* Not a trampoline. */
3267 }
3268 \f
3269
3270 /* Return whether the THIS_FRAME corresponds to a sigtramp
3271 routine. */
3272
3273 int
3274 i386_sigtramp_p (struct frame_info *this_frame)
3275 {
3276 CORE_ADDR pc = get_frame_pc (this_frame);
3277 char *name;
3278
3279 find_pc_partial_function (pc, &name, NULL, NULL);
3280 return (name && strcmp ("_sigtramp", name) == 0);
3281 }
3282 \f
3283
3284 /* We have two flavours of disassembly. The machinery on this page
3285 deals with switching between those. */
3286
3287 static int
3288 i386_print_insn (bfd_vma pc, struct disassemble_info *info)
3289 {
3290 gdb_assert (disassembly_flavor == att_flavor
3291 || disassembly_flavor == intel_flavor);
3292
3293 /* FIXME: kettenis/20020915: Until disassembler_options is properly
3294 constified, cast to prevent a compiler warning. */
3295 info->disassembler_options = (char *) disassembly_flavor;
3296
3297 return print_insn_i386 (pc, info);
3298 }
3299 \f
3300
3301 /* There are a few i386 architecture variants that differ only
3302 slightly from the generic i386 target. For now, we don't give them
3303 their own source file, but include them here. As a consequence,
3304 they'll always be included. */
3305
3306 /* System V Release 4 (SVR4). */
3307
3308 /* Return whether THIS_FRAME corresponds to a SVR4 sigtramp
3309 routine. */
3310
3311 static int
3312 i386_svr4_sigtramp_p (struct frame_info *this_frame)
3313 {
3314 CORE_ADDR pc = get_frame_pc (this_frame);
3315 char *name;
3316
3317 /* UnixWare uses _sigacthandler. The origin of the other symbols is
3318 currently unknown. */
3319 find_pc_partial_function (pc, &name, NULL, NULL);
3320 return (name && (strcmp ("_sigreturn", name) == 0
3321 || strcmp ("_sigacthandler", name) == 0
3322 || strcmp ("sigvechandler", name) == 0));
3323 }
3324
3325 /* Assuming THIS_FRAME is for a SVR4 sigtramp routine, return the
3326 address of the associated sigcontext (ucontext) structure. */
3327
3328 static CORE_ADDR
3329 i386_svr4_sigcontext_addr (struct frame_info *this_frame)
3330 {
3331 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3332 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3333 gdb_byte buf[4];
3334 CORE_ADDR sp;
3335
3336 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
3337 sp = extract_unsigned_integer (buf, 4, byte_order);
3338
3339 return read_memory_unsigned_integer (sp + 8, 4, byte_order);
3340 }
3341 \f
3342
3343 /* Generic ELF. */
3344
3345 void
3346 i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3347 {
3348 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
3349 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
3350 }
3351
3352 /* System V Release 4 (SVR4). */
3353
3354 void
3355 i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3356 {
3357 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3358
3359 /* System V Release 4 uses ELF. */
3360 i386_elf_init_abi (info, gdbarch);
3361
3362 /* System V Release 4 has shared libraries. */
3363 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
3364
3365 tdep->sigtramp_p = i386_svr4_sigtramp_p;
3366 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
3367 tdep->sc_pc_offset = 36 + 14 * 4;
3368 tdep->sc_sp_offset = 36 + 17 * 4;
3369
3370 tdep->jb_pc_offset = 20;
3371 }
3372
3373 /* DJGPP. */
3374
3375 static void
3376 i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3377 {
3378 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3379
3380 /* DJGPP doesn't have any special frames for signal handlers. */
3381 tdep->sigtramp_p = NULL;
3382
3383 tdep->jb_pc_offset = 36;
3384
3385 /* DJGPP does not support the SSE registers. */
3386 if (! tdesc_has_registers (info.target_desc))
3387 tdep->tdesc = tdesc_i386_mmx;
3388
3389 /* Native compiler is GCC, which uses the SVR4 register numbering
3390 even in COFF and STABS. See the comment in i386_gdbarch_init,
3391 before the calls to set_gdbarch_stab_reg_to_regnum and
3392 set_gdbarch_sdb_reg_to_regnum. */
3393 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
3394 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
3395
3396 set_gdbarch_has_dos_based_file_system (gdbarch, 1);
3397 }
3398 \f
3399
3400 /* i386 register groups. In addition to the normal groups, add "mmx"
3401 and "sse". */
3402
3403 static struct reggroup *i386_sse_reggroup;
3404 static struct reggroup *i386_mmx_reggroup;
3405
3406 static void
3407 i386_init_reggroups (void)
3408 {
3409 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
3410 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
3411 }
3412
3413 static void
3414 i386_add_reggroups (struct gdbarch *gdbarch)
3415 {
3416 reggroup_add (gdbarch, i386_sse_reggroup);
3417 reggroup_add (gdbarch, i386_mmx_reggroup);
3418 reggroup_add (gdbarch, general_reggroup);
3419 reggroup_add (gdbarch, float_reggroup);
3420 reggroup_add (gdbarch, all_reggroup);
3421 reggroup_add (gdbarch, save_reggroup);
3422 reggroup_add (gdbarch, restore_reggroup);
3423 reggroup_add (gdbarch, vector_reggroup);
3424 reggroup_add (gdbarch, system_reggroup);
3425 }
3426
3427 int
3428 i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
3429 struct reggroup *group)
3430 {
3431 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3432 int fp_regnum_p, mmx_regnum_p, xmm_regnum_p, mxcsr_regnum_p,
3433 ymm_regnum_p, ymmh_regnum_p;
3434
3435 /* Don't include pseudo registers, except for MMX, in any register
3436 groups. */
3437 if (i386_byte_regnum_p (gdbarch, regnum))
3438 return 0;
3439
3440 if (i386_word_regnum_p (gdbarch, regnum))
3441 return 0;
3442
3443 if (i386_dword_regnum_p (gdbarch, regnum))
3444 return 0;
3445
3446 mmx_regnum_p = i386_mmx_regnum_p (gdbarch, regnum);
3447 if (group == i386_mmx_reggroup)
3448 return mmx_regnum_p;
3449
3450 xmm_regnum_p = i386_xmm_regnum_p (gdbarch, regnum);
3451 mxcsr_regnum_p = i386_mxcsr_regnum_p (gdbarch, regnum);
3452 if (group == i386_sse_reggroup)
3453 return xmm_regnum_p || mxcsr_regnum_p;
3454
3455 ymm_regnum_p = i386_ymm_regnum_p (gdbarch, regnum);
3456 if (group == vector_reggroup)
3457 return (mmx_regnum_p
3458 || ymm_regnum_p
3459 || mxcsr_regnum_p
3460 || (xmm_regnum_p
3461 && ((tdep->xcr0 & I386_XSTATE_AVX_MASK)
3462 == I386_XSTATE_SSE_MASK)));
3463
3464 fp_regnum_p = (i386_fp_regnum_p (gdbarch, regnum)
3465 || i386_fpc_regnum_p (gdbarch, regnum));
3466 if (group == float_reggroup)
3467 return fp_regnum_p;
3468
3469 /* For "info reg all", don't include upper YMM registers nor XMM
3470 registers when AVX is supported. */
3471 ymmh_regnum_p = i386_ymmh_regnum_p (gdbarch, regnum);
3472 if (group == all_reggroup
3473 && ((xmm_regnum_p
3474 && (tdep->xcr0 & I386_XSTATE_AVX))
3475 || ymmh_regnum_p))
3476 return 0;
3477
3478 if (group == general_reggroup)
3479 return (!fp_regnum_p
3480 && !mmx_regnum_p
3481 && !mxcsr_regnum_p
3482 && !xmm_regnum_p
3483 && !ymm_regnum_p
3484 && !ymmh_regnum_p);
3485
3486 return default_register_reggroup_p (gdbarch, regnum, group);
3487 }
3488 \f
3489
3490 /* Get the ARGIth function argument for the current function. */
3491
3492 static CORE_ADDR
3493 i386_fetch_pointer_argument (struct frame_info *frame, int argi,
3494 struct type *type)
3495 {
3496 struct gdbarch *gdbarch = get_frame_arch (frame);
3497 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3498 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
3499 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4, byte_order);
3500 }
3501
3502 static void
3503 i386_skip_permanent_breakpoint (struct regcache *regcache)
3504 {
3505 CORE_ADDR current_pc = regcache_read_pc (regcache);
3506
3507 /* On i386, breakpoint is exactly 1 byte long, so we just
3508 adjust the PC in the regcache. */
3509 current_pc += 1;
3510 regcache_write_pc (regcache, current_pc);
3511 }
3512
3513
3514 #define PREFIX_REPZ 0x01
3515 #define PREFIX_REPNZ 0x02
3516 #define PREFIX_LOCK 0x04
3517 #define PREFIX_DATA 0x08
3518 #define PREFIX_ADDR 0x10
3519
3520 /* operand size */
3521 enum
3522 {
3523 OT_BYTE = 0,
3524 OT_WORD,
3525 OT_LONG,
3526 OT_QUAD,
3527 OT_DQUAD,
3528 };
3529
3530 /* i386 arith/logic operations */
3531 enum
3532 {
3533 OP_ADDL,
3534 OP_ORL,
3535 OP_ADCL,
3536 OP_SBBL,
3537 OP_ANDL,
3538 OP_SUBL,
3539 OP_XORL,
3540 OP_CMPL,
3541 };
3542
3543 struct i386_record_s
3544 {
3545 struct gdbarch *gdbarch;
3546 struct regcache *regcache;
3547 CORE_ADDR orig_addr;
3548 CORE_ADDR addr;
3549 int aflag;
3550 int dflag;
3551 int override;
3552 uint8_t modrm;
3553 uint8_t mod, reg, rm;
3554 int ot;
3555 uint8_t rex_x;
3556 uint8_t rex_b;
3557 int rip_offset;
3558 int popl_esp_hack;
3559 const int *regmap;
3560 };
3561
3562 /* Parse "modrm" part in current memory address that irp->addr point to
3563 Return -1 if something wrong. */
3564
3565 static int
3566 i386_record_modrm (struct i386_record_s *irp)
3567 {
3568 struct gdbarch *gdbarch = irp->gdbarch;
3569
3570 if (target_read_memory (irp->addr, &irp->modrm, 1))
3571 {
3572 if (record_debug)
3573 printf_unfiltered (_("Process record: error reading memory at "
3574 "addr %s len = 1.\n"),
3575 paddress (gdbarch, irp->addr));
3576 return -1;
3577 }
3578 irp->addr++;
3579 irp->mod = (irp->modrm >> 6) & 3;
3580 irp->reg = (irp->modrm >> 3) & 7;
3581 irp->rm = irp->modrm & 7;
3582
3583 return 0;
3584 }
3585
3586 /* Get the memory address that current instruction write to and set it to
3587 the argument "addr".
3588 Return -1 if something wrong. */
3589
3590 static int
3591 i386_record_lea_modrm_addr (struct i386_record_s *irp, uint64_t *addr)
3592 {
3593 struct gdbarch *gdbarch = irp->gdbarch;
3594 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3595 gdb_byte buf[4];
3596 ULONGEST offset64;
3597
3598 *addr = 0;
3599 if (irp->aflag)
3600 {
3601 /* 32 bits */
3602 int havesib = 0;
3603 uint8_t scale = 0;
3604 uint8_t byte;
3605 uint8_t index = 0;
3606 uint8_t base = irp->rm;
3607
3608 if (base == 4)
3609 {
3610 havesib = 1;
3611 if (target_read_memory (irp->addr, &byte, 1))
3612 {
3613 if (record_debug)
3614 printf_unfiltered (_("Process record: error reading memory "
3615 "at addr %s len = 1.\n"),
3616 paddress (gdbarch, irp->addr));
3617 return -1;
3618 }
3619 irp->addr++;
3620 scale = (byte >> 6) & 3;
3621 index = ((byte >> 3) & 7) | irp->rex_x;
3622 base = (byte & 7);
3623 }
3624 base |= irp->rex_b;
3625
3626 switch (irp->mod)
3627 {
3628 case 0:
3629 if ((base & 7) == 5)
3630 {
3631 base = 0xff;
3632 if (target_read_memory (irp->addr, buf, 4))
3633 {
3634 if (record_debug)
3635 printf_unfiltered (_("Process record: error reading "
3636 "memory at addr %s len = 4.\n"),
3637 paddress (gdbarch, irp->addr));
3638 return -1;
3639 }
3640 irp->addr += 4;
3641 *addr = extract_signed_integer (buf, 4, byte_order);
3642 if (irp->regmap[X86_RECORD_R8_REGNUM] && !havesib)
3643 *addr += irp->addr + irp->rip_offset;
3644 }
3645 break;
3646 case 1:
3647 if (target_read_memory (irp->addr, buf, 1))
3648 {
3649 if (record_debug)
3650 printf_unfiltered (_("Process record: error reading memory "
3651 "at addr %s len = 1.\n"),
3652 paddress (gdbarch, irp->addr));
3653 return -1;
3654 }
3655 irp->addr++;
3656 *addr = (int8_t) buf[0];
3657 break;
3658 case 2:
3659 if (target_read_memory (irp->addr, buf, 4))
3660 {
3661 if (record_debug)
3662 printf_unfiltered (_("Process record: error reading memory "
3663 "at addr %s len = 4.\n"),
3664 paddress (gdbarch, irp->addr));
3665 return -1;
3666 }
3667 *addr = extract_signed_integer (buf, 4, byte_order);
3668 irp->addr += 4;
3669 break;
3670 }
3671
3672 offset64 = 0;
3673 if (base != 0xff)
3674 {
3675 if (base == 4 && irp->popl_esp_hack)
3676 *addr += irp->popl_esp_hack;
3677 regcache_raw_read_unsigned (irp->regcache, irp->regmap[base],
3678 &offset64);
3679 }
3680 if (irp->aflag == 2)
3681 {
3682 *addr += offset64;
3683 }
3684 else
3685 *addr = (uint32_t) (offset64 + *addr);
3686
3687 if (havesib && (index != 4 || scale != 0))
3688 {
3689 regcache_raw_read_unsigned (irp->regcache, irp->regmap[index],
3690 &offset64);
3691 if (irp->aflag == 2)
3692 *addr += offset64 << scale;
3693 else
3694 *addr = (uint32_t) (*addr + (offset64 << scale));
3695 }
3696 }
3697 else
3698 {
3699 /* 16 bits */
3700 switch (irp->mod)
3701 {
3702 case 0:
3703 if (irp->rm == 6)
3704 {
3705 if (target_read_memory (irp->addr, buf, 2))
3706 {
3707 if (record_debug)
3708 printf_unfiltered (_("Process record: error reading "
3709 "memory at addr %s len = 2.\n"),
3710 paddress (gdbarch, irp->addr));
3711 return -1;
3712 }
3713 irp->addr += 2;
3714 *addr = extract_signed_integer (buf, 2, byte_order);
3715 irp->rm = 0;
3716 goto no_rm;
3717 }
3718 break;
3719 case 1:
3720 if (target_read_memory (irp->addr, buf, 1))
3721 {
3722 if (record_debug)
3723 printf_unfiltered (_("Process record: error reading memory "
3724 "at addr %s len = 1.\n"),
3725 paddress (gdbarch, irp->addr));
3726 return -1;
3727 }
3728 irp->addr++;
3729 *addr = (int8_t) buf[0];
3730 break;
3731 case 2:
3732 if (target_read_memory (irp->addr, buf, 2))
3733 {
3734 if (record_debug)
3735 printf_unfiltered (_("Process record: error reading memory "
3736 "at addr %s len = 2.\n"),
3737 paddress (gdbarch, irp->addr));
3738 return -1;
3739 }
3740 irp->addr += 2;
3741 *addr = extract_signed_integer (buf, 2, byte_order);
3742 break;
3743 }
3744
3745 switch (irp->rm)
3746 {
3747 case 0:
3748 regcache_raw_read_unsigned (irp->regcache,
3749 irp->regmap[X86_RECORD_REBX_REGNUM],
3750 &offset64);
3751 *addr = (uint32_t) (*addr + offset64);
3752 regcache_raw_read_unsigned (irp->regcache,
3753 irp->regmap[X86_RECORD_RESI_REGNUM],
3754 &offset64);
3755 *addr = (uint32_t) (*addr + offset64);
3756 break;
3757 case 1:
3758 regcache_raw_read_unsigned (irp->regcache,
3759 irp->regmap[X86_RECORD_REBX_REGNUM],
3760 &offset64);
3761 *addr = (uint32_t) (*addr + offset64);
3762 regcache_raw_read_unsigned (irp->regcache,
3763 irp->regmap[X86_RECORD_REDI_REGNUM],
3764 &offset64);
3765 *addr = (uint32_t) (*addr + offset64);
3766 break;
3767 case 2:
3768 regcache_raw_read_unsigned (irp->regcache,
3769 irp->regmap[X86_RECORD_REBP_REGNUM],
3770 &offset64);
3771 *addr = (uint32_t) (*addr + offset64);
3772 regcache_raw_read_unsigned (irp->regcache,
3773 irp->regmap[X86_RECORD_RESI_REGNUM],
3774 &offset64);
3775 *addr = (uint32_t) (*addr + offset64);
3776 break;
3777 case 3:
3778 regcache_raw_read_unsigned (irp->regcache,
3779 irp->regmap[X86_RECORD_REBP_REGNUM],
3780 &offset64);
3781 *addr = (uint32_t) (*addr + offset64);
3782 regcache_raw_read_unsigned (irp->regcache,
3783 irp->regmap[X86_RECORD_REDI_REGNUM],
3784 &offset64);
3785 *addr = (uint32_t) (*addr + offset64);
3786 break;
3787 case 4:
3788 regcache_raw_read_unsigned (irp->regcache,
3789 irp->regmap[X86_RECORD_RESI_REGNUM],
3790 &offset64);
3791 *addr = (uint32_t) (*addr + offset64);
3792 break;
3793 case 5:
3794 regcache_raw_read_unsigned (irp->regcache,
3795 irp->regmap[X86_RECORD_REDI_REGNUM],
3796 &offset64);
3797 *addr = (uint32_t) (*addr + offset64);
3798 break;
3799 case 6:
3800 regcache_raw_read_unsigned (irp->regcache,
3801 irp->regmap[X86_RECORD_REBP_REGNUM],
3802 &offset64);
3803 *addr = (uint32_t) (*addr + offset64);
3804 break;
3805 case 7:
3806 regcache_raw_read_unsigned (irp->regcache,
3807 irp->regmap[X86_RECORD_REBX_REGNUM],
3808 &offset64);
3809 *addr = (uint32_t) (*addr + offset64);
3810 break;
3811 }
3812 *addr &= 0xffff;
3813 }
3814
3815 no_rm:
3816 return 0;
3817 }
3818
3819 /* Record the value of the memory that willbe changed in current instruction
3820 to "record_arch_list".
3821 Return -1 if something wrong. */
3822
3823 static int
3824 i386_record_lea_modrm (struct i386_record_s *irp)
3825 {
3826 struct gdbarch *gdbarch = irp->gdbarch;
3827 uint64_t addr;
3828
3829 if (irp->override >= 0)
3830 {
3831 if (record_memory_query)
3832 {
3833 int q;
3834
3835 target_terminal_ours ();
3836 q = yquery (_("\
3837 Process record ignores the memory change of instruction at address %s\n\
3838 because it can't get the value of the segment register.\n\
3839 Do you want to stop the program?"),
3840 paddress (gdbarch, irp->orig_addr));
3841 target_terminal_inferior ();
3842 if (q)
3843 return -1;
3844 }
3845
3846 return 0;
3847 }
3848
3849 if (i386_record_lea_modrm_addr (irp, &addr))
3850 return -1;
3851
3852 if (record_arch_list_add_mem (addr, 1 << irp->ot))
3853 return -1;
3854
3855 return 0;
3856 }
3857
3858 /* Record the push operation to "record_arch_list".
3859 Return -1 if something wrong. */
3860
3861 static int
3862 i386_record_push (struct i386_record_s *irp, int size)
3863 {
3864 ULONGEST addr;
3865
3866 if (record_arch_list_add_reg (irp->regcache,
3867 irp->regmap[X86_RECORD_RESP_REGNUM]))
3868 return -1;
3869 regcache_raw_read_unsigned (irp->regcache,
3870 irp->regmap[X86_RECORD_RESP_REGNUM],
3871 &addr);
3872 if (record_arch_list_add_mem ((CORE_ADDR) addr - size, size))
3873 return -1;
3874
3875 return 0;
3876 }
3877
3878
3879 /* Defines contents to record. */
3880 #define I386_SAVE_FPU_REGS 0xfffd
3881 #define I386_SAVE_FPU_ENV 0xfffe
3882 #define I386_SAVE_FPU_ENV_REG_STACK 0xffff
3883
3884 /* Record the value of floating point registers which will be changed
3885 by the current instruction to "record_arch_list". Return -1 if
3886 something is wrong. */
3887
3888 static int i386_record_floats (struct gdbarch *gdbarch,
3889 struct i386_record_s *ir,
3890 uint32_t iregnum)
3891 {
3892 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3893 int i;
3894
3895 /* Oza: Because of floating point insn push/pop of fpu stack is going to
3896 happen. Currently we store st0-st7 registers, but we need not store all
3897 registers all the time, in future we use ftag register and record only
3898 those who are not marked as an empty. */
3899
3900 if (I386_SAVE_FPU_REGS == iregnum)
3901 {
3902 for (i = I387_ST0_REGNUM (tdep); i <= I387_ST0_REGNUM (tdep) + 7; i++)
3903 {
3904 if (record_arch_list_add_reg (ir->regcache, i))
3905 return -1;
3906 }
3907 }
3908 else if (I386_SAVE_FPU_ENV == iregnum)
3909 {
3910 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
3911 {
3912 if (record_arch_list_add_reg (ir->regcache, i))
3913 return -1;
3914 }
3915 }
3916 else if (I386_SAVE_FPU_ENV_REG_STACK == iregnum)
3917 {
3918 for (i = I387_ST0_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
3919 {
3920 if (record_arch_list_add_reg (ir->regcache, i))
3921 return -1;
3922 }
3923 }
3924 else if ((iregnum >= I387_ST0_REGNUM (tdep)) &&
3925 (iregnum <= I387_FOP_REGNUM (tdep)))
3926 {
3927 if (record_arch_list_add_reg (ir->regcache,iregnum))
3928 return -1;
3929 }
3930 else
3931 {
3932 /* Parameter error. */
3933 return -1;
3934 }
3935 if(I386_SAVE_FPU_ENV != iregnum)
3936 {
3937 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
3938 {
3939 if (record_arch_list_add_reg (ir->regcache, i))
3940 return -1;
3941 }
3942 }
3943 return 0;
3944 }
3945
3946 /* Parse the current instruction and record the values of the registers and
3947 memory that will be changed in current instruction to "record_arch_list".
3948 Return -1 if something wrong. */
3949
3950 #define I386_RECORD_ARCH_LIST_ADD_REG(regnum) \
3951 record_arch_list_add_reg (ir.regcache, ir.regmap[(regnum)])
3952
3953 int
3954 i386_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
3955 CORE_ADDR input_addr)
3956 {
3957 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3958 int prefixes = 0;
3959 int regnum = 0;
3960 uint32_t opcode;
3961 uint8_t opcode8;
3962 ULONGEST addr;
3963 gdb_byte buf[MAX_REGISTER_SIZE];
3964 struct i386_record_s ir;
3965 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3966 int rex = 0;
3967 uint8_t rex_w = -1;
3968 uint8_t rex_r = 0;
3969
3970 memset (&ir, 0, sizeof (struct i386_record_s));
3971 ir.regcache = regcache;
3972 ir.addr = input_addr;
3973 ir.orig_addr = input_addr;
3974 ir.aflag = 1;
3975 ir.dflag = 1;
3976 ir.override = -1;
3977 ir.popl_esp_hack = 0;
3978 ir.regmap = tdep->record_regmap;
3979 ir.gdbarch = gdbarch;
3980
3981 if (record_debug > 1)
3982 fprintf_unfiltered (gdb_stdlog, "Process record: i386_process_record "
3983 "addr = %s\n",
3984 paddress (gdbarch, ir.addr));
3985
3986 /* prefixes */
3987 while (1)
3988 {
3989 if (target_read_memory (ir.addr, &opcode8, 1))
3990 {
3991 if (record_debug)
3992 printf_unfiltered (_("Process record: error reading memory at "
3993 "addr %s len = 1.\n"),
3994 paddress (gdbarch, ir.addr));
3995 return -1;
3996 }
3997 ir.addr++;
3998 switch (opcode8) /* Instruction prefixes */
3999 {
4000 case REPE_PREFIX_OPCODE:
4001 prefixes |= PREFIX_REPZ;
4002 break;
4003 case REPNE_PREFIX_OPCODE:
4004 prefixes |= PREFIX_REPNZ;
4005 break;
4006 case LOCK_PREFIX_OPCODE:
4007 prefixes |= PREFIX_LOCK;
4008 break;
4009 case CS_PREFIX_OPCODE:
4010 ir.override = X86_RECORD_CS_REGNUM;
4011 break;
4012 case SS_PREFIX_OPCODE:
4013 ir.override = X86_RECORD_SS_REGNUM;
4014 break;
4015 case DS_PREFIX_OPCODE:
4016 ir.override = X86_RECORD_DS_REGNUM;
4017 break;
4018 case ES_PREFIX_OPCODE:
4019 ir.override = X86_RECORD_ES_REGNUM;
4020 break;
4021 case FS_PREFIX_OPCODE:
4022 ir.override = X86_RECORD_FS_REGNUM;
4023 break;
4024 case GS_PREFIX_OPCODE:
4025 ir.override = X86_RECORD_GS_REGNUM;
4026 break;
4027 case DATA_PREFIX_OPCODE:
4028 prefixes |= PREFIX_DATA;
4029 break;
4030 case ADDR_PREFIX_OPCODE:
4031 prefixes |= PREFIX_ADDR;
4032 break;
4033 case 0x40: /* i386 inc %eax */
4034 case 0x41: /* i386 inc %ecx */
4035 case 0x42: /* i386 inc %edx */
4036 case 0x43: /* i386 inc %ebx */
4037 case 0x44: /* i386 inc %esp */
4038 case 0x45: /* i386 inc %ebp */
4039 case 0x46: /* i386 inc %esi */
4040 case 0x47: /* i386 inc %edi */
4041 case 0x48: /* i386 dec %eax */
4042 case 0x49: /* i386 dec %ecx */
4043 case 0x4a: /* i386 dec %edx */
4044 case 0x4b: /* i386 dec %ebx */
4045 case 0x4c: /* i386 dec %esp */
4046 case 0x4d: /* i386 dec %ebp */
4047 case 0x4e: /* i386 dec %esi */
4048 case 0x4f: /* i386 dec %edi */
4049 if (ir.regmap[X86_RECORD_R8_REGNUM]) /* 64 bit target */
4050 {
4051 /* REX */
4052 rex = 1;
4053 rex_w = (opcode8 >> 3) & 1;
4054 rex_r = (opcode8 & 0x4) << 1;
4055 ir.rex_x = (opcode8 & 0x2) << 2;
4056 ir.rex_b = (opcode8 & 0x1) << 3;
4057 }
4058 else /* 32 bit target */
4059 goto out_prefixes;
4060 break;
4061 default:
4062 goto out_prefixes;
4063 break;
4064 }
4065 }
4066 out_prefixes:
4067 if (ir.regmap[X86_RECORD_R8_REGNUM] && rex_w == 1)
4068 {
4069 ir.dflag = 2;
4070 }
4071 else
4072 {
4073 if (prefixes & PREFIX_DATA)
4074 ir.dflag ^= 1;
4075 }
4076 if (prefixes & PREFIX_ADDR)
4077 ir.aflag ^= 1;
4078 else if (ir.regmap[X86_RECORD_R8_REGNUM])
4079 ir.aflag = 2;
4080
4081 /* Now check op code. */
4082 opcode = (uint32_t) opcode8;
4083 reswitch:
4084 switch (opcode)
4085 {
4086 case 0x0f:
4087 if (target_read_memory (ir.addr, &opcode8, 1))
4088 {
4089 if (record_debug)
4090 printf_unfiltered (_("Process record: error reading memory at "
4091 "addr %s len = 1.\n"),
4092 paddress (gdbarch, ir.addr));
4093 return -1;
4094 }
4095 ir.addr++;
4096 opcode = (uint32_t) opcode8 | 0x0f00;
4097 goto reswitch;
4098 break;
4099
4100 case 0x00: /* arith & logic */
4101 case 0x01:
4102 case 0x02:
4103 case 0x03:
4104 case 0x04:
4105 case 0x05:
4106 case 0x08:
4107 case 0x09:
4108 case 0x0a:
4109 case 0x0b:
4110 case 0x0c:
4111 case 0x0d:
4112 case 0x10:
4113 case 0x11:
4114 case 0x12:
4115 case 0x13:
4116 case 0x14:
4117 case 0x15:
4118 case 0x18:
4119 case 0x19:
4120 case 0x1a:
4121 case 0x1b:
4122 case 0x1c:
4123 case 0x1d:
4124 case 0x20:
4125 case 0x21:
4126 case 0x22:
4127 case 0x23:
4128 case 0x24:
4129 case 0x25:
4130 case 0x28:
4131 case 0x29:
4132 case 0x2a:
4133 case 0x2b:
4134 case 0x2c:
4135 case 0x2d:
4136 case 0x30:
4137 case 0x31:
4138 case 0x32:
4139 case 0x33:
4140 case 0x34:
4141 case 0x35:
4142 case 0x38:
4143 case 0x39:
4144 case 0x3a:
4145 case 0x3b:
4146 case 0x3c:
4147 case 0x3d:
4148 if (((opcode >> 3) & 7) != OP_CMPL)
4149 {
4150 if ((opcode & 1) == 0)
4151 ir.ot = OT_BYTE;
4152 else
4153 ir.ot = ir.dflag + OT_WORD;
4154
4155 switch ((opcode >> 1) & 3)
4156 {
4157 case 0: /* OP Ev, Gv */
4158 if (i386_record_modrm (&ir))
4159 return -1;
4160 if (ir.mod != 3)
4161 {
4162 if (i386_record_lea_modrm (&ir))
4163 return -1;
4164 }
4165 else
4166 {
4167 ir.rm |= ir.rex_b;
4168 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4169 ir.rm &= 0x3;
4170 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
4171 }
4172 break;
4173 case 1: /* OP Gv, Ev */
4174 if (i386_record_modrm (&ir))
4175 return -1;
4176 ir.reg |= rex_r;
4177 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4178 ir.reg &= 0x3;
4179 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4180 break;
4181 case 2: /* OP A, Iv */
4182 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4183 break;
4184 }
4185 }
4186 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4187 break;
4188
4189 case 0x80: /* GRP1 */
4190 case 0x81:
4191 case 0x82:
4192 case 0x83:
4193 if (i386_record_modrm (&ir))
4194 return -1;
4195
4196 if (ir.reg != OP_CMPL)
4197 {
4198 if ((opcode & 1) == 0)
4199 ir.ot = OT_BYTE;
4200 else
4201 ir.ot = ir.dflag + OT_WORD;
4202
4203 if (ir.mod != 3)
4204 {
4205 if (opcode == 0x83)
4206 ir.rip_offset = 1;
4207 else
4208 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
4209 if (i386_record_lea_modrm (&ir))
4210 return -1;
4211 }
4212 else
4213 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
4214 }
4215 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4216 break;
4217
4218 case 0x40: /* inc */
4219 case 0x41:
4220 case 0x42:
4221 case 0x43:
4222 case 0x44:
4223 case 0x45:
4224 case 0x46:
4225 case 0x47:
4226
4227 case 0x48: /* dec */
4228 case 0x49:
4229 case 0x4a:
4230 case 0x4b:
4231 case 0x4c:
4232 case 0x4d:
4233 case 0x4e:
4234 case 0x4f:
4235
4236 I386_RECORD_ARCH_LIST_ADD_REG (opcode & 7);
4237 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4238 break;
4239
4240 case 0xf6: /* GRP3 */
4241 case 0xf7:
4242 if ((opcode & 1) == 0)
4243 ir.ot = OT_BYTE;
4244 else
4245 ir.ot = ir.dflag + OT_WORD;
4246 if (i386_record_modrm (&ir))
4247 return -1;
4248
4249 if (ir.mod != 3 && ir.reg == 0)
4250 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
4251
4252 switch (ir.reg)
4253 {
4254 case 0: /* test */
4255 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4256 break;
4257 case 2: /* not */
4258 case 3: /* neg */
4259 if (ir.mod != 3)
4260 {
4261 if (i386_record_lea_modrm (&ir))
4262 return -1;
4263 }
4264 else
4265 {
4266 ir.rm |= ir.rex_b;
4267 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4268 ir.rm &= 0x3;
4269 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
4270 }
4271 if (ir.reg == 3) /* neg */
4272 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4273 break;
4274 case 4: /* mul */
4275 case 5: /* imul */
4276 case 6: /* div */
4277 case 7: /* idiv */
4278 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4279 if (ir.ot != OT_BYTE)
4280 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
4281 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4282 break;
4283 default:
4284 ir.addr -= 2;
4285 opcode = opcode << 8 | ir.modrm;
4286 goto no_support;
4287 break;
4288 }
4289 break;
4290
4291 case 0xfe: /* GRP4 */
4292 case 0xff: /* GRP5 */
4293 if (i386_record_modrm (&ir))
4294 return -1;
4295 if (ir.reg >= 2 && opcode == 0xfe)
4296 {
4297 ir.addr -= 2;
4298 opcode = opcode << 8 | ir.modrm;
4299 goto no_support;
4300 }
4301 switch (ir.reg)
4302 {
4303 case 0: /* inc */
4304 case 1: /* dec */
4305 if ((opcode & 1) == 0)
4306 ir.ot = OT_BYTE;
4307 else
4308 ir.ot = ir.dflag + OT_WORD;
4309 if (ir.mod != 3)
4310 {
4311 if (i386_record_lea_modrm (&ir))
4312 return -1;
4313 }
4314 else
4315 {
4316 ir.rm |= ir.rex_b;
4317 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4318 ir.rm &= 0x3;
4319 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
4320 }
4321 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4322 break;
4323 case 2: /* call */
4324 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4325 ir.dflag = 2;
4326 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4327 return -1;
4328 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4329 break;
4330 case 3: /* lcall */
4331 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
4332 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4333 return -1;
4334 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4335 break;
4336 case 4: /* jmp */
4337 case 5: /* ljmp */
4338 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4339 break;
4340 case 6: /* push */
4341 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4342 ir.dflag = 2;
4343 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4344 return -1;
4345 break;
4346 default:
4347 ir.addr -= 2;
4348 opcode = opcode << 8 | ir.modrm;
4349 goto no_support;
4350 break;
4351 }
4352 break;
4353
4354 case 0x84: /* test */
4355 case 0x85:
4356 case 0xa8:
4357 case 0xa9:
4358 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4359 break;
4360
4361 case 0x98: /* CWDE/CBW */
4362 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4363 break;
4364
4365 case 0x99: /* CDQ/CWD */
4366 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4367 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
4368 break;
4369
4370 case 0x0faf: /* imul */
4371 case 0x69:
4372 case 0x6b:
4373 ir.ot = ir.dflag + OT_WORD;
4374 if (i386_record_modrm (&ir))
4375 return -1;
4376 if (opcode == 0x69)
4377 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
4378 else if (opcode == 0x6b)
4379 ir.rip_offset = 1;
4380 ir.reg |= rex_r;
4381 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4382 ir.reg &= 0x3;
4383 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4384 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4385 break;
4386
4387 case 0x0fc0: /* xadd */
4388 case 0x0fc1:
4389 if ((opcode & 1) == 0)
4390 ir.ot = OT_BYTE;
4391 else
4392 ir.ot = ir.dflag + OT_WORD;
4393 if (i386_record_modrm (&ir))
4394 return -1;
4395 ir.reg |= rex_r;
4396 if (ir.mod == 3)
4397 {
4398 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4399 ir.reg &= 0x3;
4400 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4401 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4402 ir.rm &= 0x3;
4403 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
4404 }
4405 else
4406 {
4407 if (i386_record_lea_modrm (&ir))
4408 return -1;
4409 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4410 ir.reg &= 0x3;
4411 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4412 }
4413 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4414 break;
4415
4416 case 0x0fb0: /* cmpxchg */
4417 case 0x0fb1:
4418 if ((opcode & 1) == 0)
4419 ir.ot = OT_BYTE;
4420 else
4421 ir.ot = ir.dflag + OT_WORD;
4422 if (i386_record_modrm (&ir))
4423 return -1;
4424 if (ir.mod == 3)
4425 {
4426 ir.reg |= rex_r;
4427 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4428 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4429 ir.reg &= 0x3;
4430 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4431 }
4432 else
4433 {
4434 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4435 if (i386_record_lea_modrm (&ir))
4436 return -1;
4437 }
4438 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4439 break;
4440
4441 case 0x0fc7: /* cmpxchg8b */
4442 if (i386_record_modrm (&ir))
4443 return -1;
4444 if (ir.mod == 3)
4445 {
4446 ir.addr -= 2;
4447 opcode = opcode << 8 | ir.modrm;
4448 goto no_support;
4449 }
4450 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4451 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
4452 if (i386_record_lea_modrm (&ir))
4453 return -1;
4454 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4455 break;
4456
4457 case 0x50: /* push */
4458 case 0x51:
4459 case 0x52:
4460 case 0x53:
4461 case 0x54:
4462 case 0x55:
4463 case 0x56:
4464 case 0x57:
4465 case 0x68:
4466 case 0x6a:
4467 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4468 ir.dflag = 2;
4469 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4470 return -1;
4471 break;
4472
4473 case 0x06: /* push es */
4474 case 0x0e: /* push cs */
4475 case 0x16: /* push ss */
4476 case 0x1e: /* push ds */
4477 if (ir.regmap[X86_RECORD_R8_REGNUM])
4478 {
4479 ir.addr -= 1;
4480 goto no_support;
4481 }
4482 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4483 return -1;
4484 break;
4485
4486 case 0x0fa0: /* push fs */
4487 case 0x0fa8: /* push gs */
4488 if (ir.regmap[X86_RECORD_R8_REGNUM])
4489 {
4490 ir.addr -= 2;
4491 goto no_support;
4492 }
4493 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4494 return -1;
4495 break;
4496
4497 case 0x60: /* pusha */
4498 if (ir.regmap[X86_RECORD_R8_REGNUM])
4499 {
4500 ir.addr -= 1;
4501 goto no_support;
4502 }
4503 if (i386_record_push (&ir, 1 << (ir.dflag + 4)))
4504 return -1;
4505 break;
4506
4507 case 0x58: /* pop */
4508 case 0x59:
4509 case 0x5a:
4510 case 0x5b:
4511 case 0x5c:
4512 case 0x5d:
4513 case 0x5e:
4514 case 0x5f:
4515 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4516 I386_RECORD_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
4517 break;
4518
4519 case 0x61: /* popa */
4520 if (ir.regmap[X86_RECORD_R8_REGNUM])
4521 {
4522 ir.addr -= 1;
4523 goto no_support;
4524 }
4525 for (regnum = X86_RECORD_REAX_REGNUM;
4526 regnum <= X86_RECORD_REDI_REGNUM;
4527 regnum++)
4528 I386_RECORD_ARCH_LIST_ADD_REG (regnum);
4529 break;
4530
4531 case 0x8f: /* pop */
4532 if (ir.regmap[X86_RECORD_R8_REGNUM])
4533 ir.ot = ir.dflag ? OT_QUAD : OT_WORD;
4534 else
4535 ir.ot = ir.dflag + OT_WORD;
4536 if (i386_record_modrm (&ir))
4537 return -1;
4538 if (ir.mod == 3)
4539 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
4540 else
4541 {
4542 ir.popl_esp_hack = 1 << ir.ot;
4543 if (i386_record_lea_modrm (&ir))
4544 return -1;
4545 }
4546 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4547 break;
4548
4549 case 0xc8: /* enter */
4550 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
4551 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4552 ir.dflag = 2;
4553 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4554 return -1;
4555 break;
4556
4557 case 0xc9: /* leave */
4558 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4559 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
4560 break;
4561
4562 case 0x07: /* pop es */
4563 if (ir.regmap[X86_RECORD_R8_REGNUM])
4564 {
4565 ir.addr -= 1;
4566 goto no_support;
4567 }
4568 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4569 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_ES_REGNUM);
4570 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4571 break;
4572
4573 case 0x17: /* pop ss */
4574 if (ir.regmap[X86_RECORD_R8_REGNUM])
4575 {
4576 ir.addr -= 1;
4577 goto no_support;
4578 }
4579 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4580 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_SS_REGNUM);
4581 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4582 break;
4583
4584 case 0x1f: /* pop ds */
4585 if (ir.regmap[X86_RECORD_R8_REGNUM])
4586 {
4587 ir.addr -= 1;
4588 goto no_support;
4589 }
4590 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4591 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_DS_REGNUM);
4592 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4593 break;
4594
4595 case 0x0fa1: /* pop fs */
4596 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4597 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_FS_REGNUM);
4598 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4599 break;
4600
4601 case 0x0fa9: /* pop gs */
4602 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4603 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
4604 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4605 break;
4606
4607 case 0x88: /* mov */
4608 case 0x89:
4609 case 0xc6:
4610 case 0xc7:
4611 if ((opcode & 1) == 0)
4612 ir.ot = OT_BYTE;
4613 else
4614 ir.ot = ir.dflag + OT_WORD;
4615
4616 if (i386_record_modrm (&ir))
4617 return -1;
4618
4619 if (ir.mod != 3)
4620 {
4621 if (opcode == 0xc6 || opcode == 0xc7)
4622 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
4623 if (i386_record_lea_modrm (&ir))
4624 return -1;
4625 }
4626 else
4627 {
4628 if (opcode == 0xc6 || opcode == 0xc7)
4629 ir.rm |= ir.rex_b;
4630 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4631 ir.rm &= 0x3;
4632 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
4633 }
4634 break;
4635
4636 case 0x8a: /* mov */
4637 case 0x8b:
4638 if ((opcode & 1) == 0)
4639 ir.ot = OT_BYTE;
4640 else
4641 ir.ot = ir.dflag + OT_WORD;
4642 if (i386_record_modrm (&ir))
4643 return -1;
4644 ir.reg |= rex_r;
4645 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4646 ir.reg &= 0x3;
4647 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4648 break;
4649
4650 case 0x8c: /* mov seg */
4651 if (i386_record_modrm (&ir))
4652 return -1;
4653 if (ir.reg > 5)
4654 {
4655 ir.addr -= 2;
4656 opcode = opcode << 8 | ir.modrm;
4657 goto no_support;
4658 }
4659
4660 if (ir.mod == 3)
4661 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
4662 else
4663 {
4664 ir.ot = OT_WORD;
4665 if (i386_record_lea_modrm (&ir))
4666 return -1;
4667 }
4668 break;
4669
4670 case 0x8e: /* mov seg */
4671 if (i386_record_modrm (&ir))
4672 return -1;
4673 switch (ir.reg)
4674 {
4675 case 0:
4676 regnum = X86_RECORD_ES_REGNUM;
4677 break;
4678 case 2:
4679 regnum = X86_RECORD_SS_REGNUM;
4680 break;
4681 case 3:
4682 regnum = X86_RECORD_DS_REGNUM;
4683 break;
4684 case 4:
4685 regnum = X86_RECORD_FS_REGNUM;
4686 break;
4687 case 5:
4688 regnum = X86_RECORD_GS_REGNUM;
4689 break;
4690 default:
4691 ir.addr -= 2;
4692 opcode = opcode << 8 | ir.modrm;
4693 goto no_support;
4694 break;
4695 }
4696 I386_RECORD_ARCH_LIST_ADD_REG (regnum);
4697 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4698 break;
4699
4700 case 0x0fb6: /* movzbS */
4701 case 0x0fb7: /* movzwS */
4702 case 0x0fbe: /* movsbS */
4703 case 0x0fbf: /* movswS */
4704 if (i386_record_modrm (&ir))
4705 return -1;
4706 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
4707 break;
4708
4709 case 0x8d: /* lea */
4710 if (i386_record_modrm (&ir))
4711 return -1;
4712 if (ir.mod == 3)
4713 {
4714 ir.addr -= 2;
4715 opcode = opcode << 8 | ir.modrm;
4716 goto no_support;
4717 }
4718 ir.ot = ir.dflag;
4719 ir.reg |= rex_r;
4720 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4721 ir.reg &= 0x3;
4722 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4723 break;
4724
4725 case 0xa0: /* mov EAX */
4726 case 0xa1:
4727
4728 case 0xd7: /* xlat */
4729 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4730 break;
4731
4732 case 0xa2: /* mov EAX */
4733 case 0xa3:
4734 if (ir.override >= 0)
4735 {
4736 if (record_memory_query)
4737 {
4738 int q;
4739
4740 target_terminal_ours ();
4741 q = yquery (_("\
4742 Process record ignores the memory change of instruction at address %s\n\
4743 because it can't get the value of the segment register.\n\
4744 Do you want to stop the program?"),
4745 paddress (gdbarch, ir.orig_addr));
4746 target_terminal_inferior ();
4747 if (q)
4748 return -1;
4749 }
4750 }
4751 else
4752 {
4753 if ((opcode & 1) == 0)
4754 ir.ot = OT_BYTE;
4755 else
4756 ir.ot = ir.dflag + OT_WORD;
4757 if (ir.aflag == 2)
4758 {
4759 if (target_read_memory (ir.addr, buf, 8))
4760 {
4761 if (record_debug)
4762 printf_unfiltered (_("Process record: error reading "
4763 "memory at addr 0x%s len = 8.\n"),
4764 paddress (gdbarch, ir.addr));
4765 return -1;
4766 }
4767 ir.addr += 8;
4768 addr = extract_unsigned_integer (buf, 8, byte_order);
4769 }
4770 else if (ir.aflag)
4771 {
4772 if (target_read_memory (ir.addr, buf, 4))
4773 {
4774 if (record_debug)
4775 printf_unfiltered (_("Process record: error reading "
4776 "memory at addr 0x%s len = 4.\n"),
4777 paddress (gdbarch, ir.addr));
4778 return -1;
4779 }
4780 ir.addr += 4;
4781 addr = extract_unsigned_integer (buf, 4, byte_order);
4782 }
4783 else
4784 {
4785 if (target_read_memory (ir.addr, buf, 2))
4786 {
4787 if (record_debug)
4788 printf_unfiltered (_("Process record: error reading "
4789 "memory at addr 0x%s len = 2.\n"),
4790 paddress (gdbarch, ir.addr));
4791 return -1;
4792 }
4793 ir.addr += 2;
4794 addr = extract_unsigned_integer (buf, 2, byte_order);
4795 }
4796 if (record_arch_list_add_mem (addr, 1 << ir.ot))
4797 return -1;
4798 }
4799 break;
4800
4801 case 0xb0: /* mov R, Ib */
4802 case 0xb1:
4803 case 0xb2:
4804 case 0xb3:
4805 case 0xb4:
4806 case 0xb5:
4807 case 0xb6:
4808 case 0xb7:
4809 I386_RECORD_ARCH_LIST_ADD_REG ((ir.regmap[X86_RECORD_R8_REGNUM])
4810 ? ((opcode & 0x7) | ir.rex_b)
4811 : ((opcode & 0x7) & 0x3));
4812 break;
4813
4814 case 0xb8: /* mov R, Iv */
4815 case 0xb9:
4816 case 0xba:
4817 case 0xbb:
4818 case 0xbc:
4819 case 0xbd:
4820 case 0xbe:
4821 case 0xbf:
4822 I386_RECORD_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
4823 break;
4824
4825 case 0x91: /* xchg R, EAX */
4826 case 0x92:
4827 case 0x93:
4828 case 0x94:
4829 case 0x95:
4830 case 0x96:
4831 case 0x97:
4832 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4833 I386_RECORD_ARCH_LIST_ADD_REG (opcode & 0x7);
4834 break;
4835
4836 case 0x86: /* xchg Ev, Gv */
4837 case 0x87:
4838 if ((opcode & 1) == 0)
4839 ir.ot = OT_BYTE;
4840 else
4841 ir.ot = ir.dflag + OT_WORD;
4842 if (i386_record_modrm (&ir))
4843 return -1;
4844 if (ir.mod == 3)
4845 {
4846 ir.rm |= ir.rex_b;
4847 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4848 ir.rm &= 0x3;
4849 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
4850 }
4851 else
4852 {
4853 if (i386_record_lea_modrm (&ir))
4854 return -1;
4855 }
4856 ir.reg |= rex_r;
4857 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4858 ir.reg &= 0x3;
4859 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4860 break;
4861
4862 case 0xc4: /* les Gv */
4863 case 0xc5: /* lds Gv */
4864 if (ir.regmap[X86_RECORD_R8_REGNUM])
4865 {
4866 ir.addr -= 1;
4867 goto no_support;
4868 }
4869 /* FALLTHROUGH */
4870 case 0x0fb2: /* lss Gv */
4871 case 0x0fb4: /* lfs Gv */
4872 case 0x0fb5: /* lgs Gv */
4873 if (i386_record_modrm (&ir))
4874 return -1;
4875 if (ir.mod == 3)
4876 {
4877 if (opcode > 0xff)
4878 ir.addr -= 3;
4879 else
4880 ir.addr -= 2;
4881 opcode = opcode << 8 | ir.modrm;
4882 goto no_support;
4883 }
4884 switch (opcode)
4885 {
4886 case 0xc4: /* les Gv */
4887 regnum = X86_RECORD_ES_REGNUM;
4888 break;
4889 case 0xc5: /* lds Gv */
4890 regnum = X86_RECORD_DS_REGNUM;
4891 break;
4892 case 0x0fb2: /* lss Gv */
4893 regnum = X86_RECORD_SS_REGNUM;
4894 break;
4895 case 0x0fb4: /* lfs Gv */
4896 regnum = X86_RECORD_FS_REGNUM;
4897 break;
4898 case 0x0fb5: /* lgs Gv */
4899 regnum = X86_RECORD_GS_REGNUM;
4900 break;
4901 }
4902 I386_RECORD_ARCH_LIST_ADD_REG (regnum);
4903 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
4904 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4905 break;
4906
4907 case 0xc0: /* shifts */
4908 case 0xc1:
4909 case 0xd0:
4910 case 0xd1:
4911 case 0xd2:
4912 case 0xd3:
4913 if ((opcode & 1) == 0)
4914 ir.ot = OT_BYTE;
4915 else
4916 ir.ot = ir.dflag + OT_WORD;
4917 if (i386_record_modrm (&ir))
4918 return -1;
4919 if (ir.mod != 3 && (opcode == 0xd2 || opcode == 0xd3))
4920 {
4921 if (i386_record_lea_modrm (&ir))
4922 return -1;
4923 }
4924 else
4925 {
4926 ir.rm |= ir.rex_b;
4927 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4928 ir.rm &= 0x3;
4929 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
4930 }
4931 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4932 break;
4933
4934 case 0x0fa4:
4935 case 0x0fa5:
4936 case 0x0fac:
4937 case 0x0fad:
4938 if (i386_record_modrm (&ir))
4939 return -1;
4940 if (ir.mod == 3)
4941 {
4942 if (record_arch_list_add_reg (ir.regcache, ir.rm))
4943 return -1;
4944 }
4945 else
4946 {
4947 if (i386_record_lea_modrm (&ir))
4948 return -1;
4949 }
4950 break;
4951
4952 case 0xd8: /* Floats. */
4953 case 0xd9:
4954 case 0xda:
4955 case 0xdb:
4956 case 0xdc:
4957 case 0xdd:
4958 case 0xde:
4959 case 0xdf:
4960 if (i386_record_modrm (&ir))
4961 return -1;
4962 ir.reg |= ((opcode & 7) << 3);
4963 if (ir.mod != 3)
4964 {
4965 /* Memory. */
4966 uint64_t addr64;
4967
4968 if (i386_record_lea_modrm_addr (&ir, &addr64))
4969 return -1;
4970 switch (ir.reg)
4971 {
4972 case 0x02:
4973 case 0x12:
4974 case 0x22:
4975 case 0x32:
4976 /* For fcom, ficom nothing to do. */
4977 break;
4978 case 0x03:
4979 case 0x13:
4980 case 0x23:
4981 case 0x33:
4982 /* For fcomp, ficomp pop FPU stack, store all. */
4983 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
4984 return -1;
4985 break;
4986 case 0x00:
4987 case 0x01:
4988 case 0x04:
4989 case 0x05:
4990 case 0x06:
4991 case 0x07:
4992 case 0x10:
4993 case 0x11:
4994 case 0x14:
4995 case 0x15:
4996 case 0x16:
4997 case 0x17:
4998 case 0x20:
4999 case 0x21:
5000 case 0x24:
5001 case 0x25:
5002 case 0x26:
5003 case 0x27:
5004 case 0x30:
5005 case 0x31:
5006 case 0x34:
5007 case 0x35:
5008 case 0x36:
5009 case 0x37:
5010 /* For fadd, fmul, fsub, fsubr, fdiv, fdivr, fiadd, fimul,
5011 fisub, fisubr, fidiv, fidivr, modR/M.reg is an extension
5012 of code, always affects st(0) register. */
5013 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
5014 return -1;
5015 break;
5016 case 0x08:
5017 case 0x0a:
5018 case 0x0b:
5019 case 0x18:
5020 case 0x19:
5021 case 0x1a:
5022 case 0x1b:
5023 case 0x1d:
5024 case 0x28:
5025 case 0x29:
5026 case 0x2a:
5027 case 0x2b:
5028 case 0x38:
5029 case 0x39:
5030 case 0x3a:
5031 case 0x3b:
5032 case 0x3c:
5033 case 0x3d:
5034 switch (ir.reg & 7)
5035 {
5036 case 0:
5037 /* Handling fld, fild. */
5038 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5039 return -1;
5040 break;
5041 case 1:
5042 switch (ir.reg >> 4)
5043 {
5044 case 0:
5045 if (record_arch_list_add_mem (addr64, 4))
5046 return -1;
5047 break;
5048 case 2:
5049 if (record_arch_list_add_mem (addr64, 8))
5050 return -1;
5051 break;
5052 case 3:
5053 break;
5054 default:
5055 if (record_arch_list_add_mem (addr64, 2))
5056 return -1;
5057 break;
5058 }
5059 break;
5060 default:
5061 switch (ir.reg >> 4)
5062 {
5063 case 0:
5064 if (record_arch_list_add_mem (addr64, 4))
5065 return -1;
5066 if (3 == (ir.reg & 7))
5067 {
5068 /* For fstp m32fp. */
5069 if (i386_record_floats (gdbarch, &ir,
5070 I386_SAVE_FPU_REGS))
5071 return -1;
5072 }
5073 break;
5074 case 1:
5075 if (record_arch_list_add_mem (addr64, 4))
5076 return -1;
5077 if ((3 == (ir.reg & 7))
5078 || (5 == (ir.reg & 7))
5079 || (7 == (ir.reg & 7)))
5080 {
5081 /* For fstp insn. */
5082 if (i386_record_floats (gdbarch, &ir,
5083 I386_SAVE_FPU_REGS))
5084 return -1;
5085 }
5086 break;
5087 case 2:
5088 if (record_arch_list_add_mem (addr64, 8))
5089 return -1;
5090 if (3 == (ir.reg & 7))
5091 {
5092 /* For fstp m64fp. */
5093 if (i386_record_floats (gdbarch, &ir,
5094 I386_SAVE_FPU_REGS))
5095 return -1;
5096 }
5097 break;
5098 case 3:
5099 if ((3 <= (ir.reg & 7)) && (6 <= (ir.reg & 7)))
5100 {
5101 /* For fistp, fbld, fild, fbstp. */
5102 if (i386_record_floats (gdbarch, &ir,
5103 I386_SAVE_FPU_REGS))
5104 return -1;
5105 }
5106 /* Fall through */
5107 default:
5108 if (record_arch_list_add_mem (addr64, 2))
5109 return -1;
5110 break;
5111 }
5112 break;
5113 }
5114 break;
5115 case 0x0c:
5116 /* Insn fldenv. */
5117 if (i386_record_floats (gdbarch, &ir,
5118 I386_SAVE_FPU_ENV_REG_STACK))
5119 return -1;
5120 break;
5121 case 0x0d:
5122 /* Insn fldcw. */
5123 if (i386_record_floats (gdbarch, &ir, I387_FCTRL_REGNUM (tdep)))
5124 return -1;
5125 break;
5126 case 0x2c:
5127 /* Insn frstor. */
5128 if (i386_record_floats (gdbarch, &ir,
5129 I386_SAVE_FPU_ENV_REG_STACK))
5130 return -1;
5131 break;
5132 case 0x0e:
5133 if (ir.dflag)
5134 {
5135 if (record_arch_list_add_mem (addr64, 28))
5136 return -1;
5137 }
5138 else
5139 {
5140 if (record_arch_list_add_mem (addr64, 14))
5141 return -1;
5142 }
5143 break;
5144 case 0x0f:
5145 case 0x2f:
5146 if (record_arch_list_add_mem (addr64, 2))
5147 return -1;
5148 /* Insn fstp, fbstp. */
5149 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5150 return -1;
5151 break;
5152 case 0x1f:
5153 case 0x3e:
5154 if (record_arch_list_add_mem (addr64, 10))
5155 return -1;
5156 break;
5157 case 0x2e:
5158 if (ir.dflag)
5159 {
5160 if (record_arch_list_add_mem (addr64, 28))
5161 return -1;
5162 addr64 += 28;
5163 }
5164 else
5165 {
5166 if (record_arch_list_add_mem (addr64, 14))
5167 return -1;
5168 addr64 += 14;
5169 }
5170 if (record_arch_list_add_mem (addr64, 80))
5171 return -1;
5172 /* Insn fsave. */
5173 if (i386_record_floats (gdbarch, &ir,
5174 I386_SAVE_FPU_ENV_REG_STACK))
5175 return -1;
5176 break;
5177 case 0x3f:
5178 if (record_arch_list_add_mem (addr64, 8))
5179 return -1;
5180 /* Insn fistp. */
5181 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5182 return -1;
5183 break;
5184 default:
5185 ir.addr -= 2;
5186 opcode = opcode << 8 | ir.modrm;
5187 goto no_support;
5188 break;
5189 }
5190 }
5191 /* Opcode is an extension of modR/M byte. */
5192 else
5193 {
5194 switch (opcode)
5195 {
5196 case 0xd8:
5197 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
5198 return -1;
5199 break;
5200 case 0xd9:
5201 if (0x0c == (ir.modrm >> 4))
5202 {
5203 if ((ir.modrm & 0x0f) <= 7)
5204 {
5205 if (i386_record_floats (gdbarch, &ir,
5206 I386_SAVE_FPU_REGS))
5207 return -1;
5208 }
5209 else
5210 {
5211 if (i386_record_floats (gdbarch, &ir,
5212 I387_ST0_REGNUM (tdep)))
5213 return -1;
5214 /* If only st(0) is changing, then we have already
5215 recorded. */
5216 if ((ir.modrm & 0x0f) - 0x08)
5217 {
5218 if (i386_record_floats (gdbarch, &ir,
5219 I387_ST0_REGNUM (tdep) +
5220 ((ir.modrm & 0x0f) - 0x08)))
5221 return -1;
5222 }
5223 }
5224 }
5225 else
5226 {
5227 switch (ir.modrm)
5228 {
5229 case 0xe0:
5230 case 0xe1:
5231 case 0xf0:
5232 case 0xf5:
5233 case 0xf8:
5234 case 0xfa:
5235 case 0xfc:
5236 case 0xfe:
5237 case 0xff:
5238 if (i386_record_floats (gdbarch, &ir,
5239 I387_ST0_REGNUM (tdep)))
5240 return -1;
5241 break;
5242 case 0xf1:
5243 case 0xf2:
5244 case 0xf3:
5245 case 0xf4:
5246 case 0xf6:
5247 case 0xf7:
5248 case 0xe8:
5249 case 0xe9:
5250 case 0xea:
5251 case 0xeb:
5252 case 0xec:
5253 case 0xed:
5254 case 0xee:
5255 case 0xf9:
5256 case 0xfb:
5257 if (i386_record_floats (gdbarch, &ir,
5258 I386_SAVE_FPU_REGS))
5259 return -1;
5260 break;
5261 case 0xfd:
5262 if (i386_record_floats (gdbarch, &ir,
5263 I387_ST0_REGNUM (tdep)))
5264 return -1;
5265 if (i386_record_floats (gdbarch, &ir,
5266 I387_ST0_REGNUM (tdep) + 1))
5267 return -1;
5268 break;
5269 }
5270 }
5271 break;
5272 case 0xda:
5273 if (0xe9 == ir.modrm)
5274 {
5275 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5276 return -1;
5277 }
5278 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
5279 {
5280 if (i386_record_floats (gdbarch, &ir,
5281 I387_ST0_REGNUM (tdep)))
5282 return -1;
5283 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
5284 {
5285 if (i386_record_floats (gdbarch, &ir,
5286 I387_ST0_REGNUM (tdep) +
5287 (ir.modrm & 0x0f)))
5288 return -1;
5289 }
5290 else if ((ir.modrm & 0x0f) - 0x08)
5291 {
5292 if (i386_record_floats (gdbarch, &ir,
5293 I387_ST0_REGNUM (tdep) +
5294 ((ir.modrm & 0x0f) - 0x08)))
5295 return -1;
5296 }
5297 }
5298 break;
5299 case 0xdb:
5300 if (0xe3 == ir.modrm)
5301 {
5302 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_ENV))
5303 return -1;
5304 }
5305 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
5306 {
5307 if (i386_record_floats (gdbarch, &ir,
5308 I387_ST0_REGNUM (tdep)))
5309 return -1;
5310 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
5311 {
5312 if (i386_record_floats (gdbarch, &ir,
5313 I387_ST0_REGNUM (tdep) +
5314 (ir.modrm & 0x0f)))
5315 return -1;
5316 }
5317 else if ((ir.modrm & 0x0f) - 0x08)
5318 {
5319 if (i386_record_floats (gdbarch, &ir,
5320 I387_ST0_REGNUM (tdep) +
5321 ((ir.modrm & 0x0f) - 0x08)))
5322 return -1;
5323 }
5324 }
5325 break;
5326 case 0xdc:
5327 if ((0x0c == ir.modrm >> 4)
5328 || (0x0d == ir.modrm >> 4)
5329 || (0x0f == ir.modrm >> 4))
5330 {
5331 if ((ir.modrm & 0x0f) <= 7)
5332 {
5333 if (i386_record_floats (gdbarch, &ir,
5334 I387_ST0_REGNUM (tdep) +
5335 (ir.modrm & 0x0f)))
5336 return -1;
5337 }
5338 else
5339 {
5340 if (i386_record_floats (gdbarch, &ir,
5341 I387_ST0_REGNUM (tdep) +
5342 ((ir.modrm & 0x0f) - 0x08)))
5343 return -1;
5344 }
5345 }
5346 break;
5347 case 0xdd:
5348 if (0x0c == ir.modrm >> 4)
5349 {
5350 if (i386_record_floats (gdbarch, &ir,
5351 I387_FTAG_REGNUM (tdep)))
5352 return -1;
5353 }
5354 else if ((0x0d == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
5355 {
5356 if ((ir.modrm & 0x0f) <= 7)
5357 {
5358 if (i386_record_floats (gdbarch, &ir,
5359 I387_ST0_REGNUM (tdep) +
5360 (ir.modrm & 0x0f)))
5361 return -1;
5362 }
5363 else
5364 {
5365 if (i386_record_floats (gdbarch, &ir,
5366 I386_SAVE_FPU_REGS))
5367 return -1;
5368 }
5369 }
5370 break;
5371 case 0xde:
5372 if ((0x0c == ir.modrm >> 4)
5373 || (0x0e == ir.modrm >> 4)
5374 || (0x0f == ir.modrm >> 4)
5375 || (0xd9 == ir.modrm))
5376 {
5377 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5378 return -1;
5379 }
5380 break;
5381 case 0xdf:
5382 if (0xe0 == ir.modrm)
5383 {
5384 if (record_arch_list_add_reg (ir.regcache, I386_EAX_REGNUM))
5385 return -1;
5386 }
5387 else if ((0x0f == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
5388 {
5389 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5390 return -1;
5391 }
5392 break;
5393 }
5394 }
5395 break;
5396 /* string ops */
5397 case 0xa4: /* movsS */
5398 case 0xa5:
5399 case 0xaa: /* stosS */
5400 case 0xab:
5401 case 0x6c: /* insS */
5402 case 0x6d:
5403 regcache_raw_read_unsigned (ir.regcache,
5404 ir.regmap[X86_RECORD_RECX_REGNUM],
5405 &addr);
5406 if (addr)
5407 {
5408 ULONGEST es, ds;
5409
5410 if ((opcode & 1) == 0)
5411 ir.ot = OT_BYTE;
5412 else
5413 ir.ot = ir.dflag + OT_WORD;
5414 regcache_raw_read_unsigned (ir.regcache,
5415 ir.regmap[X86_RECORD_REDI_REGNUM],
5416 &addr);
5417
5418 regcache_raw_read_unsigned (ir.regcache,
5419 ir.regmap[X86_RECORD_ES_REGNUM],
5420 &es);
5421 regcache_raw_read_unsigned (ir.regcache,
5422 ir.regmap[X86_RECORD_DS_REGNUM],
5423 &ds);
5424 if (ir.aflag && (es != ds))
5425 {
5426 /* addr += ((uint32_t) read_register (I386_ES_REGNUM)) << 4; */
5427 if (record_memory_query)
5428 {
5429 int q;
5430
5431 target_terminal_ours ();
5432 q = yquery (_("\
5433 Process record ignores the memory change of instruction at address %s\n\
5434 because it can't get the value of the segment register.\n\
5435 Do you want to stop the program?"),
5436 paddress (gdbarch, ir.orig_addr));
5437 target_terminal_inferior ();
5438 if (q)
5439 return -1;
5440 }
5441 }
5442 else
5443 {
5444 if (record_arch_list_add_mem (addr, 1 << ir.ot))
5445 return -1;
5446 }
5447
5448 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
5449 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5450 if (opcode == 0xa4 || opcode == 0xa5)
5451 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
5452 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
5453 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5454 }
5455 break;
5456
5457 case 0xa6: /* cmpsS */
5458 case 0xa7:
5459 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
5460 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
5461 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
5462 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5463 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5464 break;
5465
5466 case 0xac: /* lodsS */
5467 case 0xad:
5468 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5469 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
5470 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
5471 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5472 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5473 break;
5474
5475 case 0xae: /* scasS */
5476 case 0xaf:
5477 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
5478 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
5479 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5480 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5481 break;
5482
5483 case 0x6e: /* outsS */
5484 case 0x6f:
5485 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
5486 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
5487 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5488 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5489 break;
5490
5491 case 0xe4: /* port I/O */
5492 case 0xe5:
5493 case 0xec:
5494 case 0xed:
5495 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5496 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5497 break;
5498
5499 case 0xe6:
5500 case 0xe7:
5501 case 0xee:
5502 case 0xef:
5503 break;
5504
5505 /* control */
5506 case 0xc2: /* ret im */
5507 case 0xc3: /* ret */
5508 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5509 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5510 break;
5511
5512 case 0xca: /* lret im */
5513 case 0xcb: /* lret */
5514 case 0xcf: /* iret */
5515 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
5516 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5517 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5518 break;
5519
5520 case 0xe8: /* call im */
5521 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5522 ir.dflag = 2;
5523 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5524 return -1;
5525 break;
5526
5527 case 0x9a: /* lcall im */
5528 if (ir.regmap[X86_RECORD_R8_REGNUM])
5529 {
5530 ir.addr -= 1;
5531 goto no_support;
5532 }
5533 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
5534 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5535 return -1;
5536 break;
5537
5538 case 0xe9: /* jmp im */
5539 case 0xea: /* ljmp im */
5540 case 0xeb: /* jmp Jb */
5541 case 0x70: /* jcc Jb */
5542 case 0x71:
5543 case 0x72:
5544 case 0x73:
5545 case 0x74:
5546 case 0x75:
5547 case 0x76:
5548 case 0x77:
5549 case 0x78:
5550 case 0x79:
5551 case 0x7a:
5552 case 0x7b:
5553 case 0x7c:
5554 case 0x7d:
5555 case 0x7e:
5556 case 0x7f:
5557 case 0x0f80: /* jcc Jv */
5558 case 0x0f81:
5559 case 0x0f82:
5560 case 0x0f83:
5561 case 0x0f84:
5562 case 0x0f85:
5563 case 0x0f86:
5564 case 0x0f87:
5565 case 0x0f88:
5566 case 0x0f89:
5567 case 0x0f8a:
5568 case 0x0f8b:
5569 case 0x0f8c:
5570 case 0x0f8d:
5571 case 0x0f8e:
5572 case 0x0f8f:
5573 break;
5574
5575 case 0x0f90: /* setcc Gv */
5576 case 0x0f91:
5577 case 0x0f92:
5578 case 0x0f93:
5579 case 0x0f94:
5580 case 0x0f95:
5581 case 0x0f96:
5582 case 0x0f97:
5583 case 0x0f98:
5584 case 0x0f99:
5585 case 0x0f9a:
5586 case 0x0f9b:
5587 case 0x0f9c:
5588 case 0x0f9d:
5589 case 0x0f9e:
5590 case 0x0f9f:
5591 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5592 ir.ot = OT_BYTE;
5593 if (i386_record_modrm (&ir))
5594 return -1;
5595 if (ir.mod == 3)
5596 I386_RECORD_ARCH_LIST_ADD_REG (ir.rex_b ? (ir.rm | ir.rex_b)
5597 : (ir.rm & 0x3));
5598 else
5599 {
5600 if (i386_record_lea_modrm (&ir))
5601 return -1;
5602 }
5603 break;
5604
5605 case 0x0f40: /* cmov Gv, Ev */
5606 case 0x0f41:
5607 case 0x0f42:
5608 case 0x0f43:
5609 case 0x0f44:
5610 case 0x0f45:
5611 case 0x0f46:
5612 case 0x0f47:
5613 case 0x0f48:
5614 case 0x0f49:
5615 case 0x0f4a:
5616 case 0x0f4b:
5617 case 0x0f4c:
5618 case 0x0f4d:
5619 case 0x0f4e:
5620 case 0x0f4f:
5621 if (i386_record_modrm (&ir))
5622 return -1;
5623 ir.reg |= rex_r;
5624 if (ir.dflag == OT_BYTE)
5625 ir.reg &= 0x3;
5626 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
5627 break;
5628
5629 /* flags */
5630 case 0x9c: /* pushf */
5631 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5632 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5633 ir.dflag = 2;
5634 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5635 return -1;
5636 break;
5637
5638 case 0x9d: /* popf */
5639 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5640 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5641 break;
5642
5643 case 0x9e: /* sahf */
5644 if (ir.regmap[X86_RECORD_R8_REGNUM])
5645 {
5646 ir.addr -= 1;
5647 goto no_support;
5648 }
5649 /* FALLTHROUGH */
5650 case 0xf5: /* cmc */
5651 case 0xf8: /* clc */
5652 case 0xf9: /* stc */
5653 case 0xfc: /* cld */
5654 case 0xfd: /* std */
5655 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5656 break;
5657
5658 case 0x9f: /* lahf */
5659 if (ir.regmap[X86_RECORD_R8_REGNUM])
5660 {
5661 ir.addr -= 1;
5662 goto no_support;
5663 }
5664 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5665 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5666 break;
5667
5668 /* bit operations */
5669 case 0x0fba: /* bt/bts/btr/btc Gv, im */
5670 ir.ot = ir.dflag + OT_WORD;
5671 if (i386_record_modrm (&ir))
5672 return -1;
5673 if (ir.reg < 4)
5674 {
5675 ir.addr -= 2;
5676 opcode = opcode << 8 | ir.modrm;
5677 goto no_support;
5678 }
5679 if (ir.reg != 4)
5680 {
5681 if (ir.mod == 3)
5682 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5683 else
5684 {
5685 if (i386_record_lea_modrm (&ir))
5686 return -1;
5687 }
5688 }
5689 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5690 break;
5691
5692 case 0x0fa3: /* bt Gv, Ev */
5693 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5694 break;
5695
5696 case 0x0fab: /* bts */
5697 case 0x0fb3: /* btr */
5698 case 0x0fbb: /* btc */
5699 ir.ot = ir.dflag + OT_WORD;
5700 if (i386_record_modrm (&ir))
5701 return -1;
5702 if (ir.mod == 3)
5703 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5704 else
5705 {
5706 uint64_t addr64;
5707 if (i386_record_lea_modrm_addr (&ir, &addr64))
5708 return -1;
5709 regcache_raw_read_unsigned (ir.regcache,
5710 ir.regmap[ir.reg | rex_r],
5711 &addr);
5712 switch (ir.dflag)
5713 {
5714 case 0:
5715 addr64 += ((int16_t) addr >> 4) << 4;
5716 break;
5717 case 1:
5718 addr64 += ((int32_t) addr >> 5) << 5;
5719 break;
5720 case 2:
5721 addr64 += ((int64_t) addr >> 6) << 6;
5722 break;
5723 }
5724 if (record_arch_list_add_mem (addr64, 1 << ir.ot))
5725 return -1;
5726 if (i386_record_lea_modrm (&ir))
5727 return -1;
5728 }
5729 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5730 break;
5731
5732 case 0x0fbc: /* bsf */
5733 case 0x0fbd: /* bsr */
5734 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5735 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5736 break;
5737
5738 /* bcd */
5739 case 0x27: /* daa */
5740 case 0x2f: /* das */
5741 case 0x37: /* aaa */
5742 case 0x3f: /* aas */
5743 case 0xd4: /* aam */
5744 case 0xd5: /* aad */
5745 if (ir.regmap[X86_RECORD_R8_REGNUM])
5746 {
5747 ir.addr -= 1;
5748 goto no_support;
5749 }
5750 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5751 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5752 break;
5753
5754 /* misc */
5755 case 0x90: /* nop */
5756 if (prefixes & PREFIX_LOCK)
5757 {
5758 ir.addr -= 1;
5759 goto no_support;
5760 }
5761 break;
5762
5763 case 0x9b: /* fwait */
5764 if (target_read_memory (ir.addr, &opcode8, 1))
5765 {
5766 if (record_debug)
5767 printf_unfiltered (_("Process record: error reading memory at "
5768 "addr 0x%s len = 1.\n"),
5769 paddress (gdbarch, ir.addr));
5770 return -1;
5771 }
5772 opcode = (uint32_t) opcode8;
5773 ir.addr++;
5774 goto reswitch;
5775 break;
5776
5777 /* XXX */
5778 case 0xcc: /* int3 */
5779 printf_unfiltered (_("Process record does not support instruction "
5780 "int3.\n"));
5781 ir.addr -= 1;
5782 goto no_support;
5783 break;
5784
5785 /* XXX */
5786 case 0xcd: /* int */
5787 {
5788 int ret;
5789 uint8_t interrupt;
5790 if (target_read_memory (ir.addr, &interrupt, 1))
5791 {
5792 if (record_debug)
5793 printf_unfiltered (_("Process record: error reading memory "
5794 "at addr %s len = 1.\n"),
5795 paddress (gdbarch, ir.addr));
5796 return -1;
5797 }
5798 ir.addr++;
5799 if (interrupt != 0x80
5800 || tdep->i386_intx80_record == NULL)
5801 {
5802 printf_unfiltered (_("Process record does not support "
5803 "instruction int 0x%02x.\n"),
5804 interrupt);
5805 ir.addr -= 2;
5806 goto no_support;
5807 }
5808 ret = tdep->i386_intx80_record (ir.regcache);
5809 if (ret)
5810 return ret;
5811 }
5812 break;
5813
5814 /* XXX */
5815 case 0xce: /* into */
5816 printf_unfiltered (_("Process record does not support "
5817 "instruction into.\n"));
5818 ir.addr -= 1;
5819 goto no_support;
5820 break;
5821
5822 case 0xfa: /* cli */
5823 case 0xfb: /* sti */
5824 break;
5825
5826 case 0x62: /* bound */
5827 printf_unfiltered (_("Process record does not support "
5828 "instruction bound.\n"));
5829 ir.addr -= 1;
5830 goto no_support;
5831 break;
5832
5833 case 0x0fc8: /* bswap reg */
5834 case 0x0fc9:
5835 case 0x0fca:
5836 case 0x0fcb:
5837 case 0x0fcc:
5838 case 0x0fcd:
5839 case 0x0fce:
5840 case 0x0fcf:
5841 I386_RECORD_ARCH_LIST_ADD_REG ((opcode & 7) | ir.rex_b);
5842 break;
5843
5844 case 0xd6: /* salc */
5845 if (ir.regmap[X86_RECORD_R8_REGNUM])
5846 {
5847 ir.addr -= 1;
5848 goto no_support;
5849 }
5850 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5851 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5852 break;
5853
5854 case 0xe0: /* loopnz */
5855 case 0xe1: /* loopz */
5856 case 0xe2: /* loop */
5857 case 0xe3: /* jecxz */
5858 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5859 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5860 break;
5861
5862 case 0x0f30: /* wrmsr */
5863 printf_unfiltered (_("Process record does not support "
5864 "instruction wrmsr.\n"));
5865 ir.addr -= 2;
5866 goto no_support;
5867 break;
5868
5869 case 0x0f32: /* rdmsr */
5870 printf_unfiltered (_("Process record does not support "
5871 "instruction rdmsr.\n"));
5872 ir.addr -= 2;
5873 goto no_support;
5874 break;
5875
5876 case 0x0f31: /* rdtsc */
5877 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5878 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5879 break;
5880
5881 case 0x0f34: /* sysenter */
5882 {
5883 int ret;
5884 if (ir.regmap[X86_RECORD_R8_REGNUM])
5885 {
5886 ir.addr -= 2;
5887 goto no_support;
5888 }
5889 if (tdep->i386_sysenter_record == NULL)
5890 {
5891 printf_unfiltered (_("Process record does not support "
5892 "instruction sysenter.\n"));
5893 ir.addr -= 2;
5894 goto no_support;
5895 }
5896 ret = tdep->i386_sysenter_record (ir.regcache);
5897 if (ret)
5898 return ret;
5899 }
5900 break;
5901
5902 case 0x0f35: /* sysexit */
5903 printf_unfiltered (_("Process record does not support "
5904 "instruction sysexit.\n"));
5905 ir.addr -= 2;
5906 goto no_support;
5907 break;
5908
5909 case 0x0f05: /* syscall */
5910 {
5911 int ret;
5912 if (tdep->i386_syscall_record == NULL)
5913 {
5914 printf_unfiltered (_("Process record does not support "
5915 "instruction syscall.\n"));
5916 ir.addr -= 2;
5917 goto no_support;
5918 }
5919 ret = tdep->i386_syscall_record (ir.regcache);
5920 if (ret)
5921 return ret;
5922 }
5923 break;
5924
5925 case 0x0f07: /* sysret */
5926 printf_unfiltered (_("Process record does not support "
5927 "instruction sysret.\n"));
5928 ir.addr -= 2;
5929 goto no_support;
5930 break;
5931
5932 case 0x0fa2: /* cpuid */
5933 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5934 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5935 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5936 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
5937 break;
5938
5939 case 0xf4: /* hlt */
5940 printf_unfiltered (_("Process record does not support "
5941 "instruction hlt.\n"));
5942 ir.addr -= 1;
5943 goto no_support;
5944 break;
5945
5946 case 0x0f00:
5947 if (i386_record_modrm (&ir))
5948 return -1;
5949 switch (ir.reg)
5950 {
5951 case 0: /* sldt */
5952 case 1: /* str */
5953 if (ir.mod == 3)
5954 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5955 else
5956 {
5957 ir.ot = OT_WORD;
5958 if (i386_record_lea_modrm (&ir))
5959 return -1;
5960 }
5961 break;
5962 case 2: /* lldt */
5963 case 3: /* ltr */
5964 break;
5965 case 4: /* verr */
5966 case 5: /* verw */
5967 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5968 break;
5969 default:
5970 ir.addr -= 3;
5971 opcode = opcode << 8 | ir.modrm;
5972 goto no_support;
5973 break;
5974 }
5975 break;
5976
5977 case 0x0f01:
5978 if (i386_record_modrm (&ir))
5979 return -1;
5980 switch (ir.reg)
5981 {
5982 case 0: /* sgdt */
5983 {
5984 uint64_t addr64;
5985
5986 if (ir.mod == 3)
5987 {
5988 ir.addr -= 3;
5989 opcode = opcode << 8 | ir.modrm;
5990 goto no_support;
5991 }
5992 if (ir.override >= 0)
5993 {
5994 if (record_memory_query)
5995 {
5996 int q;
5997
5998 target_terminal_ours ();
5999 q = yquery (_("\
6000 Process record ignores the memory change of instruction at address %s\n\
6001 because it can't get the value of the segment register.\n\
6002 Do you want to stop the program?"),
6003 paddress (gdbarch, ir.orig_addr));
6004 target_terminal_inferior ();
6005 if (q)
6006 return -1;
6007 }
6008 }
6009 else
6010 {
6011 if (i386_record_lea_modrm_addr (&ir, &addr64))
6012 return -1;
6013 if (record_arch_list_add_mem (addr64, 2))
6014 return -1;
6015 addr64 += 2;
6016 if (ir.regmap[X86_RECORD_R8_REGNUM])
6017 {
6018 if (record_arch_list_add_mem (addr64, 8))
6019 return -1;
6020 }
6021 else
6022 {
6023 if (record_arch_list_add_mem (addr64, 4))
6024 return -1;
6025 }
6026 }
6027 }
6028 break;
6029 case 1:
6030 if (ir.mod == 3)
6031 {
6032 switch (ir.rm)
6033 {
6034 case 0: /* monitor */
6035 break;
6036 case 1: /* mwait */
6037 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6038 break;
6039 default:
6040 ir.addr -= 3;
6041 opcode = opcode << 8 | ir.modrm;
6042 goto no_support;
6043 break;
6044 }
6045 }
6046 else
6047 {
6048 /* sidt */
6049 if (ir.override >= 0)
6050 {
6051 if (record_memory_query)
6052 {
6053 int q;
6054
6055 target_terminal_ours ();
6056 q = yquery (_("\
6057 Process record ignores the memory change of instruction at address %s\n\
6058 because it can't get the value of the segment register.\n\
6059 Do you want to stop the program?"),
6060 paddress (gdbarch, ir.orig_addr));
6061 target_terminal_inferior ();
6062 if (q)
6063 return -1;
6064 }
6065 }
6066 else
6067 {
6068 uint64_t addr64;
6069
6070 if (i386_record_lea_modrm_addr (&ir, &addr64))
6071 return -1;
6072 if (record_arch_list_add_mem (addr64, 2))
6073 return -1;
6074 addr64 += 2;
6075 if (ir.regmap[X86_RECORD_R8_REGNUM])
6076 {
6077 if (record_arch_list_add_mem (addr64, 8))
6078 return -1;
6079 }
6080 else
6081 {
6082 if (record_arch_list_add_mem (addr64, 4))
6083 return -1;
6084 }
6085 }
6086 }
6087 break;
6088 case 2: /* lgdt */
6089 if (ir.mod == 3)
6090 {
6091 /* xgetbv */
6092 if (ir.rm == 0)
6093 {
6094 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6095 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6096 break;
6097 }
6098 /* xsetbv */
6099 else if (ir.rm == 1)
6100 break;
6101 }
6102 case 3: /* lidt */
6103 if (ir.mod == 3)
6104 {
6105 ir.addr -= 3;
6106 opcode = opcode << 8 | ir.modrm;
6107 goto no_support;
6108 }
6109 break;
6110 case 4: /* smsw */
6111 if (ir.mod == 3)
6112 {
6113 if (record_arch_list_add_reg (ir.regcache, ir.rm | ir.rex_b))
6114 return -1;
6115 }
6116 else
6117 {
6118 ir.ot = OT_WORD;
6119 if (i386_record_lea_modrm (&ir))
6120 return -1;
6121 }
6122 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6123 break;
6124 case 6: /* lmsw */
6125 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6126 break;
6127 case 7: /* invlpg */
6128 if (ir.mod == 3)
6129 {
6130 if (ir.rm == 0 && ir.regmap[X86_RECORD_R8_REGNUM])
6131 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
6132 else
6133 {
6134 ir.addr -= 3;
6135 opcode = opcode << 8 | ir.modrm;
6136 goto no_support;
6137 }
6138 }
6139 else
6140 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6141 break;
6142 default:
6143 ir.addr -= 3;
6144 opcode = opcode << 8 | ir.modrm;
6145 goto no_support;
6146 break;
6147 }
6148 break;
6149
6150 case 0x0f08: /* invd */
6151 case 0x0f09: /* wbinvd */
6152 break;
6153
6154 case 0x63: /* arpl */
6155 if (i386_record_modrm (&ir))
6156 return -1;
6157 if (ir.mod == 3 || ir.regmap[X86_RECORD_R8_REGNUM])
6158 {
6159 I386_RECORD_ARCH_LIST_ADD_REG (ir.regmap[X86_RECORD_R8_REGNUM]
6160 ? (ir.reg | rex_r) : ir.rm);
6161 }
6162 else
6163 {
6164 ir.ot = ir.dflag ? OT_LONG : OT_WORD;
6165 if (i386_record_lea_modrm (&ir))
6166 return -1;
6167 }
6168 if (!ir.regmap[X86_RECORD_R8_REGNUM])
6169 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6170 break;
6171
6172 case 0x0f02: /* lar */
6173 case 0x0f03: /* lsl */
6174 if (i386_record_modrm (&ir))
6175 return -1;
6176 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6177 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6178 break;
6179
6180 case 0x0f18:
6181 if (i386_record_modrm (&ir))
6182 return -1;
6183 if (ir.mod == 3 && ir.reg == 3)
6184 {
6185 ir.addr -= 3;
6186 opcode = opcode << 8 | ir.modrm;
6187 goto no_support;
6188 }
6189 break;
6190
6191 case 0x0f19:
6192 case 0x0f1a:
6193 case 0x0f1b:
6194 case 0x0f1c:
6195 case 0x0f1d:
6196 case 0x0f1e:
6197 case 0x0f1f:
6198 /* nop (multi byte) */
6199 break;
6200
6201 case 0x0f20: /* mov reg, crN */
6202 case 0x0f22: /* mov crN, reg */
6203 if (i386_record_modrm (&ir))
6204 return -1;
6205 if ((ir.modrm & 0xc0) != 0xc0)
6206 {
6207 ir.addr -= 3;
6208 opcode = opcode << 8 | ir.modrm;
6209 goto no_support;
6210 }
6211 switch (ir.reg)
6212 {
6213 case 0:
6214 case 2:
6215 case 3:
6216 case 4:
6217 case 8:
6218 if (opcode & 2)
6219 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6220 else
6221 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6222 break;
6223 default:
6224 ir.addr -= 3;
6225 opcode = opcode << 8 | ir.modrm;
6226 goto no_support;
6227 break;
6228 }
6229 break;
6230
6231 case 0x0f21: /* mov reg, drN */
6232 case 0x0f23: /* mov drN, reg */
6233 if (i386_record_modrm (&ir))
6234 return -1;
6235 if ((ir.modrm & 0xc0) != 0xc0 || ir.reg == 4
6236 || ir.reg == 5 || ir.reg >= 8)
6237 {
6238 ir.addr -= 3;
6239 opcode = opcode << 8 | ir.modrm;
6240 goto no_support;
6241 }
6242 if (opcode & 2)
6243 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6244 else
6245 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6246 break;
6247
6248 case 0x0f06: /* clts */
6249 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6250 break;
6251
6252 /* MMX 3DNow! SSE SSE2 SSE3 SSSE3 SSE4 */
6253
6254 case 0x0f0d: /* 3DNow! prefetch */
6255 break;
6256
6257 case 0x0f0e: /* 3DNow! femms */
6258 case 0x0f77: /* emms */
6259 if (i386_fpc_regnum_p (gdbarch, I387_FTAG_REGNUM(tdep)))
6260 goto no_support;
6261 record_arch_list_add_reg (ir.regcache, I387_FTAG_REGNUM(tdep));
6262 break;
6263
6264 case 0x0f0f: /* 3DNow! data */
6265 if (i386_record_modrm (&ir))
6266 return -1;
6267 if (target_read_memory (ir.addr, &opcode8, 1))
6268 {
6269 printf_unfiltered (_("Process record: error reading memory at "
6270 "addr %s len = 1.\n"),
6271 paddress (gdbarch, ir.addr));
6272 return -1;
6273 }
6274 ir.addr++;
6275 switch (opcode8)
6276 {
6277 case 0x0c: /* 3DNow! pi2fw */
6278 case 0x0d: /* 3DNow! pi2fd */
6279 case 0x1c: /* 3DNow! pf2iw */
6280 case 0x1d: /* 3DNow! pf2id */
6281 case 0x8a: /* 3DNow! pfnacc */
6282 case 0x8e: /* 3DNow! pfpnacc */
6283 case 0x90: /* 3DNow! pfcmpge */
6284 case 0x94: /* 3DNow! pfmin */
6285 case 0x96: /* 3DNow! pfrcp */
6286 case 0x97: /* 3DNow! pfrsqrt */
6287 case 0x9a: /* 3DNow! pfsub */
6288 case 0x9e: /* 3DNow! pfadd */
6289 case 0xa0: /* 3DNow! pfcmpgt */
6290 case 0xa4: /* 3DNow! pfmax */
6291 case 0xa6: /* 3DNow! pfrcpit1 */
6292 case 0xa7: /* 3DNow! pfrsqit1 */
6293 case 0xaa: /* 3DNow! pfsubr */
6294 case 0xae: /* 3DNow! pfacc */
6295 case 0xb0: /* 3DNow! pfcmpeq */
6296 case 0xb4: /* 3DNow! pfmul */
6297 case 0xb6: /* 3DNow! pfrcpit2 */
6298 case 0xb7: /* 3DNow! pmulhrw */
6299 case 0xbb: /* 3DNow! pswapd */
6300 case 0xbf: /* 3DNow! pavgusb */
6301 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
6302 goto no_support_3dnow_data;
6303 record_arch_list_add_reg (ir.regcache, ir.reg);
6304 break;
6305
6306 default:
6307 no_support_3dnow_data:
6308 opcode = (opcode << 8) | opcode8;
6309 goto no_support;
6310 break;
6311 }
6312 break;
6313
6314 case 0x0faa: /* rsm */
6315 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6316 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6317 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6318 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6319 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
6320 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6321 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
6322 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6323 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6324 break;
6325
6326 case 0x0fae:
6327 if (i386_record_modrm (&ir))
6328 return -1;
6329 switch(ir.reg)
6330 {
6331 case 0: /* fxsave */
6332 {
6333 uint64_t tmpu64;
6334
6335 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6336 if (i386_record_lea_modrm_addr (&ir, &tmpu64))
6337 return -1;
6338 if (record_arch_list_add_mem (tmpu64, 512))
6339 return -1;
6340 }
6341 break;
6342
6343 case 1: /* fxrstor */
6344 {
6345 int i;
6346
6347 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6348
6349 for (i = I387_MM0_REGNUM (tdep);
6350 i386_mmx_regnum_p (gdbarch, i); i++)
6351 record_arch_list_add_reg (ir.regcache, i);
6352
6353 for (i = I387_XMM0_REGNUM (tdep);
6354 i386_xmm_regnum_p (gdbarch, i); i++)
6355 record_arch_list_add_reg (ir.regcache, i);
6356
6357 if (i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
6358 record_arch_list_add_reg (ir.regcache, I387_MXCSR_REGNUM(tdep));
6359
6360 for (i = I387_ST0_REGNUM (tdep);
6361 i386_fp_regnum_p (gdbarch, i); i++)
6362 record_arch_list_add_reg (ir.regcache, i);
6363
6364 for (i = I387_FCTRL_REGNUM (tdep);
6365 i386_fpc_regnum_p (gdbarch, i); i++)
6366 record_arch_list_add_reg (ir.regcache, i);
6367 }
6368 break;
6369
6370 case 2: /* ldmxcsr */
6371 if (!i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
6372 goto no_support;
6373 record_arch_list_add_reg (ir.regcache, I387_MXCSR_REGNUM(tdep));
6374 break;
6375
6376 case 3: /* stmxcsr */
6377 ir.ot = OT_LONG;
6378 if (i386_record_lea_modrm (&ir))
6379 return -1;
6380 break;
6381
6382 case 5: /* lfence */
6383 case 6: /* mfence */
6384 case 7: /* sfence clflush */
6385 break;
6386
6387 default:
6388 opcode = (opcode << 8) | ir.modrm;
6389 goto no_support;
6390 break;
6391 }
6392 break;
6393
6394 case 0x0fc3: /* movnti */
6395 ir.ot = (ir.dflag == 2) ? OT_QUAD : OT_LONG;
6396 if (i386_record_modrm (&ir))
6397 return -1;
6398 if (ir.mod == 3)
6399 goto no_support;
6400 ir.reg |= rex_r;
6401 if (i386_record_lea_modrm (&ir))
6402 return -1;
6403 break;
6404
6405 /* Add prefix to opcode. */
6406 case 0x0f10:
6407 case 0x0f11:
6408 case 0x0f12:
6409 case 0x0f13:
6410 case 0x0f14:
6411 case 0x0f15:
6412 case 0x0f16:
6413 case 0x0f17:
6414 case 0x0f28:
6415 case 0x0f29:
6416 case 0x0f2a:
6417 case 0x0f2b:
6418 case 0x0f2c:
6419 case 0x0f2d:
6420 case 0x0f2e:
6421 case 0x0f2f:
6422 case 0x0f38:
6423 case 0x0f39:
6424 case 0x0f3a:
6425 case 0x0f50:
6426 case 0x0f51:
6427 case 0x0f52:
6428 case 0x0f53:
6429 case 0x0f54:
6430 case 0x0f55:
6431 case 0x0f56:
6432 case 0x0f57:
6433 case 0x0f58:
6434 case 0x0f59:
6435 case 0x0f5a:
6436 case 0x0f5b:
6437 case 0x0f5c:
6438 case 0x0f5d:
6439 case 0x0f5e:
6440 case 0x0f5f:
6441 case 0x0f60:
6442 case 0x0f61:
6443 case 0x0f62:
6444 case 0x0f63:
6445 case 0x0f64:
6446 case 0x0f65:
6447 case 0x0f66:
6448 case 0x0f67:
6449 case 0x0f68:
6450 case 0x0f69:
6451 case 0x0f6a:
6452 case 0x0f6b:
6453 case 0x0f6c:
6454 case 0x0f6d:
6455 case 0x0f6e:
6456 case 0x0f6f:
6457 case 0x0f70:
6458 case 0x0f71:
6459 case 0x0f72:
6460 case 0x0f73:
6461 case 0x0f74:
6462 case 0x0f75:
6463 case 0x0f76:
6464 case 0x0f7c:
6465 case 0x0f7d:
6466 case 0x0f7e:
6467 case 0x0f7f:
6468 case 0x0fb8:
6469 case 0x0fc2:
6470 case 0x0fc4:
6471 case 0x0fc5:
6472 case 0x0fc6:
6473 case 0x0fd0:
6474 case 0x0fd1:
6475 case 0x0fd2:
6476 case 0x0fd3:
6477 case 0x0fd4:
6478 case 0x0fd5:
6479 case 0x0fd6:
6480 case 0x0fd7:
6481 case 0x0fd8:
6482 case 0x0fd9:
6483 case 0x0fda:
6484 case 0x0fdb:
6485 case 0x0fdc:
6486 case 0x0fdd:
6487 case 0x0fde:
6488 case 0x0fdf:
6489 case 0x0fe0:
6490 case 0x0fe1:
6491 case 0x0fe2:
6492 case 0x0fe3:
6493 case 0x0fe4:
6494 case 0x0fe5:
6495 case 0x0fe6:
6496 case 0x0fe7:
6497 case 0x0fe8:
6498 case 0x0fe9:
6499 case 0x0fea:
6500 case 0x0feb:
6501 case 0x0fec:
6502 case 0x0fed:
6503 case 0x0fee:
6504 case 0x0fef:
6505 case 0x0ff0:
6506 case 0x0ff1:
6507 case 0x0ff2:
6508 case 0x0ff3:
6509 case 0x0ff4:
6510 case 0x0ff5:
6511 case 0x0ff6:
6512 case 0x0ff7:
6513 case 0x0ff8:
6514 case 0x0ff9:
6515 case 0x0ffa:
6516 case 0x0ffb:
6517 case 0x0ffc:
6518 case 0x0ffd:
6519 case 0x0ffe:
6520 switch (prefixes)
6521 {
6522 case PREFIX_REPNZ:
6523 opcode |= 0xf20000;
6524 break;
6525 case PREFIX_DATA:
6526 opcode |= 0x660000;
6527 break;
6528 case PREFIX_REPZ:
6529 opcode |= 0xf30000;
6530 break;
6531 }
6532 reswitch_prefix_add:
6533 switch (opcode)
6534 {
6535 case 0x0f38:
6536 case 0x660f38:
6537 case 0xf20f38:
6538 case 0x0f3a:
6539 case 0x660f3a:
6540 if (target_read_memory (ir.addr, &opcode8, 1))
6541 {
6542 printf_unfiltered (_("Process record: error reading memory at "
6543 "addr %s len = 1.\n"),
6544 paddress (gdbarch, ir.addr));
6545 return -1;
6546 }
6547 ir.addr++;
6548 opcode = (uint32_t) opcode8 | opcode << 8;
6549 goto reswitch_prefix_add;
6550 break;
6551
6552 case 0x0f10: /* movups */
6553 case 0x660f10: /* movupd */
6554 case 0xf30f10: /* movss */
6555 case 0xf20f10: /* movsd */
6556 case 0x0f12: /* movlps */
6557 case 0x660f12: /* movlpd */
6558 case 0xf30f12: /* movsldup */
6559 case 0xf20f12: /* movddup */
6560 case 0x0f14: /* unpcklps */
6561 case 0x660f14: /* unpcklpd */
6562 case 0x0f15: /* unpckhps */
6563 case 0x660f15: /* unpckhpd */
6564 case 0x0f16: /* movhps */
6565 case 0x660f16: /* movhpd */
6566 case 0xf30f16: /* movshdup */
6567 case 0x0f28: /* movaps */
6568 case 0x660f28: /* movapd */
6569 case 0x0f2a: /* cvtpi2ps */
6570 case 0x660f2a: /* cvtpi2pd */
6571 case 0xf30f2a: /* cvtsi2ss */
6572 case 0xf20f2a: /* cvtsi2sd */
6573 case 0x0f2c: /* cvttps2pi */
6574 case 0x660f2c: /* cvttpd2pi */
6575 case 0x0f2d: /* cvtps2pi */
6576 case 0x660f2d: /* cvtpd2pi */
6577 case 0x660f3800: /* pshufb */
6578 case 0x660f3801: /* phaddw */
6579 case 0x660f3802: /* phaddd */
6580 case 0x660f3803: /* phaddsw */
6581 case 0x660f3804: /* pmaddubsw */
6582 case 0x660f3805: /* phsubw */
6583 case 0x660f3806: /* phsubd */
6584 case 0x660f3807: /* phsubsw */
6585 case 0x660f3808: /* psignb */
6586 case 0x660f3809: /* psignw */
6587 case 0x660f380a: /* psignd */
6588 case 0x660f380b: /* pmulhrsw */
6589 case 0x660f3810: /* pblendvb */
6590 case 0x660f3814: /* blendvps */
6591 case 0x660f3815: /* blendvpd */
6592 case 0x660f381c: /* pabsb */
6593 case 0x660f381d: /* pabsw */
6594 case 0x660f381e: /* pabsd */
6595 case 0x660f3820: /* pmovsxbw */
6596 case 0x660f3821: /* pmovsxbd */
6597 case 0x660f3822: /* pmovsxbq */
6598 case 0x660f3823: /* pmovsxwd */
6599 case 0x660f3824: /* pmovsxwq */
6600 case 0x660f3825: /* pmovsxdq */
6601 case 0x660f3828: /* pmuldq */
6602 case 0x660f3829: /* pcmpeqq */
6603 case 0x660f382a: /* movntdqa */
6604 case 0x660f3a08: /* roundps */
6605 case 0x660f3a09: /* roundpd */
6606 case 0x660f3a0a: /* roundss */
6607 case 0x660f3a0b: /* roundsd */
6608 case 0x660f3a0c: /* blendps */
6609 case 0x660f3a0d: /* blendpd */
6610 case 0x660f3a0e: /* pblendw */
6611 case 0x660f3a0f: /* palignr */
6612 case 0x660f3a20: /* pinsrb */
6613 case 0x660f3a21: /* insertps */
6614 case 0x660f3a22: /* pinsrd pinsrq */
6615 case 0x660f3a40: /* dpps */
6616 case 0x660f3a41: /* dppd */
6617 case 0x660f3a42: /* mpsadbw */
6618 case 0x660f3a60: /* pcmpestrm */
6619 case 0x660f3a61: /* pcmpestri */
6620 case 0x660f3a62: /* pcmpistrm */
6621 case 0x660f3a63: /* pcmpistri */
6622 case 0x0f51: /* sqrtps */
6623 case 0x660f51: /* sqrtpd */
6624 case 0xf20f51: /* sqrtsd */
6625 case 0xf30f51: /* sqrtss */
6626 case 0x0f52: /* rsqrtps */
6627 case 0xf30f52: /* rsqrtss */
6628 case 0x0f53: /* rcpps */
6629 case 0xf30f53: /* rcpss */
6630 case 0x0f54: /* andps */
6631 case 0x660f54: /* andpd */
6632 case 0x0f55: /* andnps */
6633 case 0x660f55: /* andnpd */
6634 case 0x0f56: /* orps */
6635 case 0x660f56: /* orpd */
6636 case 0x0f57: /* xorps */
6637 case 0x660f57: /* xorpd */
6638 case 0x0f58: /* addps */
6639 case 0x660f58: /* addpd */
6640 case 0xf20f58: /* addsd */
6641 case 0xf30f58: /* addss */
6642 case 0x0f59: /* mulps */
6643 case 0x660f59: /* mulpd */
6644 case 0xf20f59: /* mulsd */
6645 case 0xf30f59: /* mulss */
6646 case 0x0f5a: /* cvtps2pd */
6647 case 0x660f5a: /* cvtpd2ps */
6648 case 0xf20f5a: /* cvtsd2ss */
6649 case 0xf30f5a: /* cvtss2sd */
6650 case 0x0f5b: /* cvtdq2ps */
6651 case 0x660f5b: /* cvtps2dq */
6652 case 0xf30f5b: /* cvttps2dq */
6653 case 0x0f5c: /* subps */
6654 case 0x660f5c: /* subpd */
6655 case 0xf20f5c: /* subsd */
6656 case 0xf30f5c: /* subss */
6657 case 0x0f5d: /* minps */
6658 case 0x660f5d: /* minpd */
6659 case 0xf20f5d: /* minsd */
6660 case 0xf30f5d: /* minss */
6661 case 0x0f5e: /* divps */
6662 case 0x660f5e: /* divpd */
6663 case 0xf20f5e: /* divsd */
6664 case 0xf30f5e: /* divss */
6665 case 0x0f5f: /* maxps */
6666 case 0x660f5f: /* maxpd */
6667 case 0xf20f5f: /* maxsd */
6668 case 0xf30f5f: /* maxss */
6669 case 0x660f60: /* punpcklbw */
6670 case 0x660f61: /* punpcklwd */
6671 case 0x660f62: /* punpckldq */
6672 case 0x660f63: /* packsswb */
6673 case 0x660f64: /* pcmpgtb */
6674 case 0x660f65: /* pcmpgtw */
6675 case 0x660f66: /* pcmpgtd */
6676 case 0x660f67: /* packuswb */
6677 case 0x660f68: /* punpckhbw */
6678 case 0x660f69: /* punpckhwd */
6679 case 0x660f6a: /* punpckhdq */
6680 case 0x660f6b: /* packssdw */
6681 case 0x660f6c: /* punpcklqdq */
6682 case 0x660f6d: /* punpckhqdq */
6683 case 0x660f6e: /* movd */
6684 case 0x660f6f: /* movdqa */
6685 case 0xf30f6f: /* movdqu */
6686 case 0x660f70: /* pshufd */
6687 case 0xf20f70: /* pshuflw */
6688 case 0xf30f70: /* pshufhw */
6689 case 0x660f74: /* pcmpeqb */
6690 case 0x660f75: /* pcmpeqw */
6691 case 0x660f76: /* pcmpeqd */
6692 case 0x660f7c: /* haddpd */
6693 case 0xf20f7c: /* haddps */
6694 case 0x660f7d: /* hsubpd */
6695 case 0xf20f7d: /* hsubps */
6696 case 0xf30f7e: /* movq */
6697 case 0x0fc2: /* cmpps */
6698 case 0x660fc2: /* cmppd */
6699 case 0xf20fc2: /* cmpsd */
6700 case 0xf30fc2: /* cmpss */
6701 case 0x660fc4: /* pinsrw */
6702 case 0x0fc6: /* shufps */
6703 case 0x660fc6: /* shufpd */
6704 case 0x660fd0: /* addsubpd */
6705 case 0xf20fd0: /* addsubps */
6706 case 0x660fd1: /* psrlw */
6707 case 0x660fd2: /* psrld */
6708 case 0x660fd3: /* psrlq */
6709 case 0x660fd4: /* paddq */
6710 case 0x660fd5: /* pmullw */
6711 case 0xf30fd6: /* movq2dq */
6712 case 0x660fd8: /* psubusb */
6713 case 0x660fd9: /* psubusw */
6714 case 0x660fda: /* pminub */
6715 case 0x660fdb: /* pand */
6716 case 0x660fdc: /* paddusb */
6717 case 0x660fdd: /* paddusw */
6718 case 0x660fde: /* pmaxub */
6719 case 0x660fdf: /* pandn */
6720 case 0x660fe0: /* pavgb */
6721 case 0x660fe1: /* psraw */
6722 case 0x660fe2: /* psrad */
6723 case 0x660fe3: /* pavgw */
6724 case 0x660fe4: /* pmulhuw */
6725 case 0x660fe5: /* pmulhw */
6726 case 0x660fe6: /* cvttpd2dq */
6727 case 0xf20fe6: /* cvtpd2dq */
6728 case 0xf30fe6: /* cvtdq2pd */
6729 case 0x660fe8: /* psubsb */
6730 case 0x660fe9: /* psubsw */
6731 case 0x660fea: /* pminsw */
6732 case 0x660feb: /* por */
6733 case 0x660fec: /* paddsb */
6734 case 0x660fed: /* paddsw */
6735 case 0x660fee: /* pmaxsw */
6736 case 0x660fef: /* pxor */
6737 case 0xf20ff0: /* lddqu */
6738 case 0x660ff1: /* psllw */
6739 case 0x660ff2: /* pslld */
6740 case 0x660ff3: /* psllq */
6741 case 0x660ff4: /* pmuludq */
6742 case 0x660ff5: /* pmaddwd */
6743 case 0x660ff6: /* psadbw */
6744 case 0x660ff8: /* psubb */
6745 case 0x660ff9: /* psubw */
6746 case 0x660ffa: /* psubd */
6747 case 0x660ffb: /* psubq */
6748 case 0x660ffc: /* paddb */
6749 case 0x660ffd: /* paddw */
6750 case 0x660ffe: /* paddd */
6751 if (i386_record_modrm (&ir))
6752 return -1;
6753 ir.reg |= rex_r;
6754 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.reg))
6755 goto no_support;
6756 record_arch_list_add_reg (ir.regcache,
6757 I387_XMM0_REGNUM (tdep) + ir.reg);
6758 if ((opcode & 0xfffffffc) == 0x660f3a60)
6759 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6760 break;
6761
6762 case 0x0f11: /* movups */
6763 case 0x660f11: /* movupd */
6764 case 0xf30f11: /* movss */
6765 case 0xf20f11: /* movsd */
6766 case 0x0f13: /* movlps */
6767 case 0x660f13: /* movlpd */
6768 case 0x0f17: /* movhps */
6769 case 0x660f17: /* movhpd */
6770 case 0x0f29: /* movaps */
6771 case 0x660f29: /* movapd */
6772 case 0x660f3a14: /* pextrb */
6773 case 0x660f3a15: /* pextrw */
6774 case 0x660f3a16: /* pextrd pextrq */
6775 case 0x660f3a17: /* extractps */
6776 case 0x660f7f: /* movdqa */
6777 case 0xf30f7f: /* movdqu */
6778 if (i386_record_modrm (&ir))
6779 return -1;
6780 if (ir.mod == 3)
6781 {
6782 if (opcode == 0x0f13 || opcode == 0x660f13
6783 || opcode == 0x0f17 || opcode == 0x660f17)
6784 goto no_support;
6785 ir.rm |= ir.rex_b;
6786 if (!i386_xmm_regnum_p (gdbarch,
6787 I387_XMM0_REGNUM (tdep) + ir.rm))
6788 goto no_support;
6789 record_arch_list_add_reg (ir.regcache,
6790 I387_XMM0_REGNUM (tdep) + ir.rm);
6791 }
6792 else
6793 {
6794 switch (opcode)
6795 {
6796 case 0x660f3a14:
6797 ir.ot = OT_BYTE;
6798 break;
6799 case 0x660f3a15:
6800 ir.ot = OT_WORD;
6801 break;
6802 case 0x660f3a16:
6803 ir.ot = OT_LONG;
6804 break;
6805 case 0x660f3a17:
6806 ir.ot = OT_QUAD;
6807 break;
6808 default:
6809 ir.ot = OT_DQUAD;
6810 break;
6811 }
6812 if (i386_record_lea_modrm (&ir))
6813 return -1;
6814 }
6815 break;
6816
6817 case 0x0f2b: /* movntps */
6818 case 0x660f2b: /* movntpd */
6819 case 0x0fe7: /* movntq */
6820 case 0x660fe7: /* movntdq */
6821 if (ir.mod == 3)
6822 goto no_support;
6823 if (opcode == 0x0fe7)
6824 ir.ot = OT_QUAD;
6825 else
6826 ir.ot = OT_DQUAD;
6827 if (i386_record_lea_modrm (&ir))
6828 return -1;
6829 break;
6830
6831 case 0xf30f2c: /* cvttss2si */
6832 case 0xf20f2c: /* cvttsd2si */
6833 case 0xf30f2d: /* cvtss2si */
6834 case 0xf20f2d: /* cvtsd2si */
6835 case 0xf20f38f0: /* crc32 */
6836 case 0xf20f38f1: /* crc32 */
6837 case 0x0f50: /* movmskps */
6838 case 0x660f50: /* movmskpd */
6839 case 0x0fc5: /* pextrw */
6840 case 0x660fc5: /* pextrw */
6841 case 0x0fd7: /* pmovmskb */
6842 case 0x660fd7: /* pmovmskb */
6843 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6844 break;
6845
6846 case 0x0f3800: /* pshufb */
6847 case 0x0f3801: /* phaddw */
6848 case 0x0f3802: /* phaddd */
6849 case 0x0f3803: /* phaddsw */
6850 case 0x0f3804: /* pmaddubsw */
6851 case 0x0f3805: /* phsubw */
6852 case 0x0f3806: /* phsubd */
6853 case 0x0f3807: /* phsubsw */
6854 case 0x0f3808: /* psignb */
6855 case 0x0f3809: /* psignw */
6856 case 0x0f380a: /* psignd */
6857 case 0x0f380b: /* pmulhrsw */
6858 case 0x0f381c: /* pabsb */
6859 case 0x0f381d: /* pabsw */
6860 case 0x0f381e: /* pabsd */
6861 case 0x0f382b: /* packusdw */
6862 case 0x0f3830: /* pmovzxbw */
6863 case 0x0f3831: /* pmovzxbd */
6864 case 0x0f3832: /* pmovzxbq */
6865 case 0x0f3833: /* pmovzxwd */
6866 case 0x0f3834: /* pmovzxwq */
6867 case 0x0f3835: /* pmovzxdq */
6868 case 0x0f3837: /* pcmpgtq */
6869 case 0x0f3838: /* pminsb */
6870 case 0x0f3839: /* pminsd */
6871 case 0x0f383a: /* pminuw */
6872 case 0x0f383b: /* pminud */
6873 case 0x0f383c: /* pmaxsb */
6874 case 0x0f383d: /* pmaxsd */
6875 case 0x0f383e: /* pmaxuw */
6876 case 0x0f383f: /* pmaxud */
6877 case 0x0f3840: /* pmulld */
6878 case 0x0f3841: /* phminposuw */
6879 case 0x0f3a0f: /* palignr */
6880 case 0x0f60: /* punpcklbw */
6881 case 0x0f61: /* punpcklwd */
6882 case 0x0f62: /* punpckldq */
6883 case 0x0f63: /* packsswb */
6884 case 0x0f64: /* pcmpgtb */
6885 case 0x0f65: /* pcmpgtw */
6886 case 0x0f66: /* pcmpgtd */
6887 case 0x0f67: /* packuswb */
6888 case 0x0f68: /* punpckhbw */
6889 case 0x0f69: /* punpckhwd */
6890 case 0x0f6a: /* punpckhdq */
6891 case 0x0f6b: /* packssdw */
6892 case 0x0f6e: /* movd */
6893 case 0x0f6f: /* movq */
6894 case 0x0f70: /* pshufw */
6895 case 0x0f74: /* pcmpeqb */
6896 case 0x0f75: /* pcmpeqw */
6897 case 0x0f76: /* pcmpeqd */
6898 case 0x0fc4: /* pinsrw */
6899 case 0x0fd1: /* psrlw */
6900 case 0x0fd2: /* psrld */
6901 case 0x0fd3: /* psrlq */
6902 case 0x0fd4: /* paddq */
6903 case 0x0fd5: /* pmullw */
6904 case 0xf20fd6: /* movdq2q */
6905 case 0x0fd8: /* psubusb */
6906 case 0x0fd9: /* psubusw */
6907 case 0x0fda: /* pminub */
6908 case 0x0fdb: /* pand */
6909 case 0x0fdc: /* paddusb */
6910 case 0x0fdd: /* paddusw */
6911 case 0x0fde: /* pmaxub */
6912 case 0x0fdf: /* pandn */
6913 case 0x0fe0: /* pavgb */
6914 case 0x0fe1: /* psraw */
6915 case 0x0fe2: /* psrad */
6916 case 0x0fe3: /* pavgw */
6917 case 0x0fe4: /* pmulhuw */
6918 case 0x0fe5: /* pmulhw */
6919 case 0x0fe8: /* psubsb */
6920 case 0x0fe9: /* psubsw */
6921 case 0x0fea: /* pminsw */
6922 case 0x0feb: /* por */
6923 case 0x0fec: /* paddsb */
6924 case 0x0fed: /* paddsw */
6925 case 0x0fee: /* pmaxsw */
6926 case 0x0fef: /* pxor */
6927 case 0x0ff1: /* psllw */
6928 case 0x0ff2: /* pslld */
6929 case 0x0ff3: /* psllq */
6930 case 0x0ff4: /* pmuludq */
6931 case 0x0ff5: /* pmaddwd */
6932 case 0x0ff6: /* psadbw */
6933 case 0x0ff8: /* psubb */
6934 case 0x0ff9: /* psubw */
6935 case 0x0ffa: /* psubd */
6936 case 0x0ffb: /* psubq */
6937 case 0x0ffc: /* paddb */
6938 case 0x0ffd: /* paddw */
6939 case 0x0ffe: /* paddd */
6940 if (i386_record_modrm (&ir))
6941 return -1;
6942 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
6943 goto no_support;
6944 record_arch_list_add_reg (ir.regcache,
6945 I387_MM0_REGNUM (tdep) + ir.reg);
6946 break;
6947
6948 case 0x0f71: /* psllw */
6949 case 0x0f72: /* pslld */
6950 case 0x0f73: /* psllq */
6951 if (i386_record_modrm (&ir))
6952 return -1;
6953 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
6954 goto no_support;
6955 record_arch_list_add_reg (ir.regcache,
6956 I387_MM0_REGNUM (tdep) + ir.rm);
6957 break;
6958
6959 case 0x660f71: /* psllw */
6960 case 0x660f72: /* pslld */
6961 case 0x660f73: /* psllq */
6962 if (i386_record_modrm (&ir))
6963 return -1;
6964 ir.rm |= ir.rex_b;
6965 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.rm))
6966 goto no_support;
6967 record_arch_list_add_reg (ir.regcache,
6968 I387_XMM0_REGNUM (tdep) + ir.rm);
6969 break;
6970
6971 case 0x0f7e: /* movd */
6972 case 0x660f7e: /* movd */
6973 if (i386_record_modrm (&ir))
6974 return -1;
6975 if (ir.mod == 3)
6976 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6977 else
6978 {
6979 if (ir.dflag == 2)
6980 ir.ot = OT_QUAD;
6981 else
6982 ir.ot = OT_LONG;
6983 if (i386_record_lea_modrm (&ir))
6984 return -1;
6985 }
6986 break;
6987
6988 case 0x0f7f: /* movq */
6989 if (i386_record_modrm (&ir))
6990 return -1;
6991 if (ir.mod == 3)
6992 {
6993 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
6994 goto no_support;
6995 record_arch_list_add_reg (ir.regcache,
6996 I387_MM0_REGNUM (tdep) + ir.rm);
6997 }
6998 else
6999 {
7000 ir.ot = OT_QUAD;
7001 if (i386_record_lea_modrm (&ir))
7002 return -1;
7003 }
7004 break;
7005
7006 case 0xf30fb8: /* popcnt */
7007 if (i386_record_modrm (&ir))
7008 return -1;
7009 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
7010 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7011 break;
7012
7013 case 0x660fd6: /* movq */
7014 if (i386_record_modrm (&ir))
7015 return -1;
7016 if (ir.mod == 3)
7017 {
7018 ir.rm |= ir.rex_b;
7019 if (!i386_xmm_regnum_p (gdbarch,
7020 I387_XMM0_REGNUM (tdep) + ir.rm))
7021 goto no_support;
7022 record_arch_list_add_reg (ir.regcache,
7023 I387_XMM0_REGNUM (tdep) + ir.rm);
7024 }
7025 else
7026 {
7027 ir.ot = OT_QUAD;
7028 if (i386_record_lea_modrm (&ir))
7029 return -1;
7030 }
7031 break;
7032
7033 case 0x660f3817: /* ptest */
7034 case 0x0f2e: /* ucomiss */
7035 case 0x660f2e: /* ucomisd */
7036 case 0x0f2f: /* comiss */
7037 case 0x660f2f: /* comisd */
7038 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7039 break;
7040
7041 case 0x0ff7: /* maskmovq */
7042 regcache_raw_read_unsigned (ir.regcache,
7043 ir.regmap[X86_RECORD_REDI_REGNUM],
7044 &addr);
7045 if (record_arch_list_add_mem (addr, 64))
7046 return -1;
7047 break;
7048
7049 case 0x660ff7: /* maskmovdqu */
7050 regcache_raw_read_unsigned (ir.regcache,
7051 ir.regmap[X86_RECORD_REDI_REGNUM],
7052 &addr);
7053 if (record_arch_list_add_mem (addr, 128))
7054 return -1;
7055 break;
7056
7057 default:
7058 goto no_support;
7059 break;
7060 }
7061 break;
7062
7063 default:
7064 goto no_support;
7065 break;
7066 }
7067
7068 /* In the future, maybe still need to deal with need_dasm. */
7069 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REIP_REGNUM);
7070 if (record_arch_list_add_end ())
7071 return -1;
7072
7073 return 0;
7074
7075 no_support:
7076 printf_unfiltered (_("Process record does not support instruction 0x%02x "
7077 "at address %s.\n"),
7078 (unsigned int) (opcode),
7079 paddress (gdbarch, ir.orig_addr));
7080 return -1;
7081 }
7082
7083 static const int i386_record_regmap[] =
7084 {
7085 I386_EAX_REGNUM, I386_ECX_REGNUM, I386_EDX_REGNUM, I386_EBX_REGNUM,
7086 I386_ESP_REGNUM, I386_EBP_REGNUM, I386_ESI_REGNUM, I386_EDI_REGNUM,
7087 0, 0, 0, 0, 0, 0, 0, 0,
7088 I386_EIP_REGNUM, I386_EFLAGS_REGNUM, I386_CS_REGNUM, I386_SS_REGNUM,
7089 I386_DS_REGNUM, I386_ES_REGNUM, I386_FS_REGNUM, I386_GS_REGNUM
7090 };
7091
7092 /* Check that the given address appears suitable for a fast
7093 tracepoint, which on x86 means that we need an instruction of at
7094 least 5 bytes, so that we can overwrite it with a 4-byte-offset
7095 jump and not have to worry about program jumps to an address in the
7096 middle of the tracepoint jump. Returns 1 if OK, and writes a size
7097 of instruction to replace, and 0 if not, plus an explanatory
7098 string. */
7099
7100 static int
7101 i386_fast_tracepoint_valid_at (struct gdbarch *gdbarch,
7102 CORE_ADDR addr, int *isize, char **msg)
7103 {
7104 int len, jumplen;
7105 static struct ui_file *gdb_null = NULL;
7106
7107 /* This is based on the target agent using a 4-byte relative jump.
7108 Alternate future possibilities include 8-byte offset for x86-84,
7109 or 3-byte jumps if the program has trampoline space close by. */
7110 jumplen = 5;
7111
7112 /* Dummy file descriptor for the disassembler. */
7113 if (!gdb_null)
7114 gdb_null = ui_file_new ();
7115
7116 /* Check for fit. */
7117 len = gdb_print_insn (gdbarch, addr, gdb_null, NULL);
7118 if (len < jumplen)
7119 {
7120 /* Return a bit of target-specific detail to add to the caller's
7121 generic failure message. */
7122 if (msg)
7123 *msg = xstrprintf (_("; instruction is only %d bytes long, "
7124 "need at least %d bytes for the jump"),
7125 len, jumplen);
7126 return 0;
7127 }
7128
7129 if (isize)
7130 *isize = len;
7131 if (msg)
7132 *msg = NULL;
7133 return 1;
7134 }
7135
7136 static int
7137 i386_validate_tdesc_p (struct gdbarch_tdep *tdep,
7138 struct tdesc_arch_data *tdesc_data)
7139 {
7140 const struct target_desc *tdesc = tdep->tdesc;
7141 const struct tdesc_feature *feature_core;
7142 const struct tdesc_feature *feature_sse, *feature_avx;
7143 int i, num_regs, valid_p;
7144
7145 if (! tdesc_has_registers (tdesc))
7146 return 0;
7147
7148 /* Get core registers. */
7149 feature_core = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.core");
7150 if (feature_core == NULL)
7151 return 0;
7152
7153 /* Get SSE registers. */
7154 feature_sse = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.sse");
7155
7156 /* Try AVX registers. */
7157 feature_avx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx");
7158
7159 valid_p = 1;
7160
7161 /* The XCR0 bits. */
7162 if (feature_avx)
7163 {
7164 /* AVX register description requires SSE register description. */
7165 if (!feature_sse)
7166 return 0;
7167
7168 tdep->xcr0 = I386_XSTATE_AVX_MASK;
7169
7170 /* It may have been set by OSABI initialization function. */
7171 if (tdep->num_ymm_regs == 0)
7172 {
7173 tdep->ymmh_register_names = i386_ymmh_names;
7174 tdep->num_ymm_regs = 8;
7175 tdep->ymm0h_regnum = I386_YMM0H_REGNUM;
7176 }
7177
7178 for (i = 0; i < tdep->num_ymm_regs; i++)
7179 valid_p &= tdesc_numbered_register (feature_avx, tdesc_data,
7180 tdep->ymm0h_regnum + i,
7181 tdep->ymmh_register_names[i]);
7182 }
7183 else if (feature_sse)
7184 tdep->xcr0 = I386_XSTATE_SSE_MASK;
7185 else
7186 {
7187 tdep->xcr0 = I386_XSTATE_X87_MASK;
7188 tdep->num_xmm_regs = 0;
7189 }
7190
7191 num_regs = tdep->num_core_regs;
7192 for (i = 0; i < num_regs; i++)
7193 valid_p &= tdesc_numbered_register (feature_core, tdesc_data, i,
7194 tdep->register_names[i]);
7195
7196 if (feature_sse)
7197 {
7198 /* Need to include %mxcsr, so add one. */
7199 num_regs += tdep->num_xmm_regs + 1;
7200 for (; i < num_regs; i++)
7201 valid_p &= tdesc_numbered_register (feature_sse, tdesc_data, i,
7202 tdep->register_names[i]);
7203 }
7204
7205 return valid_p;
7206 }
7207
7208 \f
7209 static struct gdbarch *
7210 i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
7211 {
7212 struct gdbarch_tdep *tdep;
7213 struct gdbarch *gdbarch;
7214 struct tdesc_arch_data *tdesc_data;
7215 const struct target_desc *tdesc;
7216 int mm0_regnum;
7217 int ymm0_regnum;
7218
7219 /* If there is already a candidate, use it. */
7220 arches = gdbarch_list_lookup_by_info (arches, &info);
7221 if (arches != NULL)
7222 return arches->gdbarch;
7223
7224 /* Allocate space for the new architecture. */
7225 tdep = XCALLOC (1, struct gdbarch_tdep);
7226 gdbarch = gdbarch_alloc (&info, tdep);
7227
7228 /* General-purpose registers. */
7229 tdep->gregset = NULL;
7230 tdep->gregset_reg_offset = NULL;
7231 tdep->gregset_num_regs = I386_NUM_GREGS;
7232 tdep->sizeof_gregset = 0;
7233
7234 /* Floating-point registers. */
7235 tdep->fpregset = NULL;
7236 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
7237
7238 tdep->xstateregset = NULL;
7239
7240 /* The default settings include the FPU registers, the MMX registers
7241 and the SSE registers. This can be overridden for a specific ABI
7242 by adjusting the members `st0_regnum', `mm0_regnum' and
7243 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
7244 will show up in the output of "info all-registers". */
7245
7246 tdep->st0_regnum = I386_ST0_REGNUM;
7247
7248 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
7249 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
7250
7251 tdep->jb_pc_offset = -1;
7252 tdep->struct_return = pcc_struct_return;
7253 tdep->sigtramp_start = 0;
7254 tdep->sigtramp_end = 0;
7255 tdep->sigtramp_p = i386_sigtramp_p;
7256 tdep->sigcontext_addr = NULL;
7257 tdep->sc_reg_offset = NULL;
7258 tdep->sc_pc_offset = -1;
7259 tdep->sc_sp_offset = -1;
7260
7261 tdep->xsave_xcr0_offset = -1;
7262
7263 tdep->record_regmap = i386_record_regmap;
7264
7265 /* The format used for `long double' on almost all i386 targets is
7266 the i387 extended floating-point format. In fact, of all targets
7267 in the GCC 2.95 tree, only OSF/1 does it different, and insists
7268 on having a `long double' that's not `long' at all. */
7269 set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext);
7270
7271 /* Although the i387 extended floating-point has only 80 significant
7272 bits, a `long double' actually takes up 96, probably to enforce
7273 alignment. */
7274 set_gdbarch_long_double_bit (gdbarch, 96);
7275
7276 /* Register numbers of various important registers. */
7277 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
7278 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
7279 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
7280 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
7281
7282 /* NOTE: kettenis/20040418: GCC does have two possible register
7283 numbering schemes on the i386: dbx and SVR4. These schemes
7284 differ in how they number %ebp, %esp, %eflags, and the
7285 floating-point registers, and are implemented by the arrays
7286 dbx_register_map[] and svr4_dbx_register_map in
7287 gcc/config/i386.c. GCC also defines a third numbering scheme in
7288 gcc/config/i386.c, which it designates as the "default" register
7289 map used in 64bit mode. This last register numbering scheme is
7290 implemented in dbx64_register_map, and is used for AMD64; see
7291 amd64-tdep.c.
7292
7293 Currently, each GCC i386 target always uses the same register
7294 numbering scheme across all its supported debugging formats
7295 i.e. SDB (COFF), stabs and DWARF 2. This is because
7296 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
7297 DBX_REGISTER_NUMBER macro which is defined by each target's
7298 respective config header in a manner independent of the requested
7299 output debugging format.
7300
7301 This does not match the arrangement below, which presumes that
7302 the SDB and stabs numbering schemes differ from the DWARF and
7303 DWARF 2 ones. The reason for this arrangement is that it is
7304 likely to get the numbering scheme for the target's
7305 default/native debug format right. For targets where GCC is the
7306 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
7307 targets where the native toolchain uses a different numbering
7308 scheme for a particular debug format (stabs-in-ELF on Solaris)
7309 the defaults below will have to be overridden, like
7310 i386_elf_init_abi() does. */
7311
7312 /* Use the dbx register numbering scheme for stabs and COFF. */
7313 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
7314 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
7315
7316 /* Use the SVR4 register numbering scheme for DWARF 2. */
7317 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
7318
7319 /* We don't set gdbarch_stab_reg_to_regnum, since ECOFF doesn't seem to
7320 be in use on any of the supported i386 targets. */
7321
7322 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
7323
7324 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
7325
7326 /* Call dummy code. */
7327 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
7328 set_gdbarch_frame_align (gdbarch, i386_frame_align);
7329
7330 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
7331 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
7332 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
7333
7334 set_gdbarch_return_value (gdbarch, i386_return_value);
7335
7336 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
7337
7338 /* Stack grows downward. */
7339 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
7340
7341 set_gdbarch_breakpoint_from_pc (gdbarch, i386_breakpoint_from_pc);
7342 set_gdbarch_decr_pc_after_break (gdbarch, 1);
7343 set_gdbarch_max_insn_length (gdbarch, I386_MAX_INSN_LEN);
7344
7345 set_gdbarch_frame_args_skip (gdbarch, 8);
7346
7347 set_gdbarch_print_insn (gdbarch, i386_print_insn);
7348
7349 set_gdbarch_dummy_id (gdbarch, i386_dummy_id);
7350
7351 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
7352
7353 /* Add the i386 register groups. */
7354 i386_add_reggroups (gdbarch);
7355 tdep->register_reggroup_p = i386_register_reggroup_p;
7356
7357 /* Helper for function argument information. */
7358 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
7359
7360 /* Hook the function epilogue frame unwinder. This unwinder is
7361 appended to the list first, so that it supercedes the DWARF
7362 unwinder in function epilogues (where the DWARF unwinder
7363 currently fails). */
7364 frame_unwind_append_unwinder (gdbarch, &i386_epilogue_frame_unwind);
7365
7366 /* Hook in the DWARF CFI frame unwinder. This unwinder is appended
7367 to the list before the prologue-based unwinders, so that DWARF
7368 CFI info will be used if it is available. */
7369 dwarf2_append_unwinders (gdbarch);
7370
7371 frame_base_set_default (gdbarch, &i386_frame_base);
7372
7373 /* Pseudo registers may be changed by amd64_init_abi. */
7374 set_gdbarch_pseudo_register_read_value (gdbarch,
7375 i386_pseudo_register_read_value);
7376 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
7377
7378 set_tdesc_pseudo_register_type (gdbarch, i386_pseudo_register_type);
7379 set_tdesc_pseudo_register_name (gdbarch, i386_pseudo_register_name);
7380
7381 /* Override the normal target description method to make the AVX
7382 upper halves anonymous. */
7383 set_gdbarch_register_name (gdbarch, i386_register_name);
7384
7385 /* Even though the default ABI only includes general-purpose registers,
7386 floating-point registers and the SSE registers, we have to leave a
7387 gap for the upper AVX registers. */
7388 set_gdbarch_num_regs (gdbarch, I386_AVX_NUM_REGS);
7389
7390 /* Get the x86 target description from INFO. */
7391 tdesc = info.target_desc;
7392 if (! tdesc_has_registers (tdesc))
7393 tdesc = tdesc_i386;
7394 tdep->tdesc = tdesc;
7395
7396 tdep->num_core_regs = I386_NUM_GREGS + I387_NUM_REGS;
7397 tdep->register_names = i386_register_names;
7398
7399 /* No upper YMM registers. */
7400 tdep->ymmh_register_names = NULL;
7401 tdep->ymm0h_regnum = -1;
7402
7403 tdep->num_byte_regs = 8;
7404 tdep->num_word_regs = 8;
7405 tdep->num_dword_regs = 0;
7406 tdep->num_mmx_regs = 8;
7407 tdep->num_ymm_regs = 0;
7408
7409 tdesc_data = tdesc_data_alloc ();
7410
7411 set_gdbarch_relocate_instruction (gdbarch, i386_relocate_instruction);
7412
7413 /* Hook in ABI-specific overrides, if they have been registered. */
7414 info.tdep_info = (void *) tdesc_data;
7415 gdbarch_init_osabi (info, gdbarch);
7416
7417 if (!i386_validate_tdesc_p (tdep, tdesc_data))
7418 {
7419 tdesc_data_cleanup (tdesc_data);
7420 xfree (tdep);
7421 gdbarch_free (gdbarch);
7422 return NULL;
7423 }
7424
7425 /* Wire in pseudo registers. Number of pseudo registers may be
7426 changed. */
7427 set_gdbarch_num_pseudo_regs (gdbarch, (tdep->num_byte_regs
7428 + tdep->num_word_regs
7429 + tdep->num_dword_regs
7430 + tdep->num_mmx_regs
7431 + tdep->num_ymm_regs));
7432
7433 /* Target description may be changed. */
7434 tdesc = tdep->tdesc;
7435
7436 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
7437
7438 /* Override gdbarch_register_reggroup_p set in tdesc_use_registers. */
7439 set_gdbarch_register_reggroup_p (gdbarch, tdep->register_reggroup_p);
7440
7441 /* Make %al the first pseudo-register. */
7442 tdep->al_regnum = gdbarch_num_regs (gdbarch);
7443 tdep->ax_regnum = tdep->al_regnum + tdep->num_byte_regs;
7444
7445 ymm0_regnum = tdep->ax_regnum + tdep->num_word_regs;
7446 if (tdep->num_dword_regs)
7447 {
7448 /* Support dword pseudo-register if it hasn't been disabled. */
7449 tdep->eax_regnum = ymm0_regnum;
7450 ymm0_regnum += tdep->num_dword_regs;
7451 }
7452 else
7453 tdep->eax_regnum = -1;
7454
7455 mm0_regnum = ymm0_regnum;
7456 if (tdep->num_ymm_regs)
7457 {
7458 /* Support YMM pseudo-register if it is available. */
7459 tdep->ymm0_regnum = ymm0_regnum;
7460 mm0_regnum += tdep->num_ymm_regs;
7461 }
7462 else
7463 tdep->ymm0_regnum = -1;
7464
7465 if (tdep->num_mmx_regs != 0)
7466 {
7467 /* Support MMX pseudo-register if MMX hasn't been disabled. */
7468 tdep->mm0_regnum = mm0_regnum;
7469 }
7470 else
7471 tdep->mm0_regnum = -1;
7472
7473 /* Hook in the legacy prologue-based unwinders last (fallback). */
7474 frame_unwind_append_unwinder (gdbarch, &i386_stack_tramp_frame_unwind);
7475 frame_unwind_append_unwinder (gdbarch, &i386_sigtramp_frame_unwind);
7476 frame_unwind_append_unwinder (gdbarch, &i386_frame_unwind);
7477
7478 /* If we have a register mapping, enable the generic core file
7479 support, unless it has already been enabled. */
7480 if (tdep->gregset_reg_offset
7481 && !gdbarch_regset_from_core_section_p (gdbarch))
7482 set_gdbarch_regset_from_core_section (gdbarch,
7483 i386_regset_from_core_section);
7484
7485 set_gdbarch_skip_permanent_breakpoint (gdbarch,
7486 i386_skip_permanent_breakpoint);
7487
7488 set_gdbarch_fast_tracepoint_valid_at (gdbarch,
7489 i386_fast_tracepoint_valid_at);
7490
7491 return gdbarch;
7492 }
7493
7494 static enum gdb_osabi
7495 i386_coff_osabi_sniffer (bfd *abfd)
7496 {
7497 if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
7498 || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
7499 return GDB_OSABI_GO32;
7500
7501 return GDB_OSABI_UNKNOWN;
7502 }
7503 \f
7504
7505 /* Provide a prototype to silence -Wmissing-prototypes. */
7506 void _initialize_i386_tdep (void);
7507
7508 void
7509 _initialize_i386_tdep (void)
7510 {
7511 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
7512
7513 /* Add the variable that controls the disassembly flavor. */
7514 add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
7515 &disassembly_flavor, _("\
7516 Set the disassembly flavor."), _("\
7517 Show the disassembly flavor."), _("\
7518 The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
7519 NULL,
7520 NULL, /* FIXME: i18n: */
7521 &setlist, &showlist);
7522
7523 /* Add the variable that controls the convention for returning
7524 structs. */
7525 add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
7526 &struct_convention, _("\
7527 Set the convention for returning small structs."), _("\
7528 Show the convention for returning small structs."), _("\
7529 Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
7530 is \"default\"."),
7531 NULL,
7532 NULL, /* FIXME: i18n: */
7533 &setlist, &showlist);
7534
7535 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
7536 i386_coff_osabi_sniffer);
7537
7538 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
7539 i386_svr4_init_abi);
7540 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_GO32,
7541 i386_go32_init_abi);
7542
7543 /* Initialize the i386-specific register groups. */
7544 i386_init_reggroups ();
7545
7546 /* Initialize the standard target descriptions. */
7547 initialize_tdesc_i386 ();
7548 initialize_tdesc_i386_mmx ();
7549 initialize_tdesc_i386_avx ();
7550
7551 /* Tell remote stub that we support XML target description. */
7552 register_remote_support_xml ("i386");
7553 }
This page took 0.278309 seconds and 5 git commands to generate.