* NEWS: Add item for process record and replay.
[deliverable/binutils-gdb.git] / gdb / i386-tdep.c
1 /* Intel 386 target-dependent stuff.
2
3 Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "opcode/i386.h"
24 #include "arch-utils.h"
25 #include "command.h"
26 #include "dummy-frame.h"
27 #include "dwarf2-frame.h"
28 #include "doublest.h"
29 #include "frame.h"
30 #include "frame-base.h"
31 #include "frame-unwind.h"
32 #include "inferior.h"
33 #include "gdbcmd.h"
34 #include "gdbcore.h"
35 #include "gdbtypes.h"
36 #include "objfiles.h"
37 #include "osabi.h"
38 #include "regcache.h"
39 #include "reggroups.h"
40 #include "regset.h"
41 #include "symfile.h"
42 #include "symtab.h"
43 #include "target.h"
44 #include "value.h"
45 #include "dis-asm.h"
46
47 #include "gdb_assert.h"
48 #include "gdb_string.h"
49
50 #include "i386-tdep.h"
51 #include "i387-tdep.h"
52
53 #include "record.h"
54 #include <stdint.h>
55
56 /* Register names. */
57
58 static char *i386_register_names[] =
59 {
60 "eax", "ecx", "edx", "ebx",
61 "esp", "ebp", "esi", "edi",
62 "eip", "eflags", "cs", "ss",
63 "ds", "es", "fs", "gs",
64 "st0", "st1", "st2", "st3",
65 "st4", "st5", "st6", "st7",
66 "fctrl", "fstat", "ftag", "fiseg",
67 "fioff", "foseg", "fooff", "fop",
68 "xmm0", "xmm1", "xmm2", "xmm3",
69 "xmm4", "xmm5", "xmm6", "xmm7",
70 "mxcsr"
71 };
72
73 static const int i386_num_register_names = ARRAY_SIZE (i386_register_names);
74
75 /* Register names for MMX pseudo-registers. */
76
77 static char *i386_mmx_names[] =
78 {
79 "mm0", "mm1", "mm2", "mm3",
80 "mm4", "mm5", "mm6", "mm7"
81 };
82
83 static const int i386_num_mmx_regs = ARRAY_SIZE (i386_mmx_names);
84
85 static int
86 i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
87 {
88 int mm0_regnum = gdbarch_tdep (gdbarch)->mm0_regnum;
89
90 if (mm0_regnum < 0)
91 return 0;
92
93 return (regnum >= mm0_regnum && regnum < mm0_regnum + i386_num_mmx_regs);
94 }
95
96 /* SSE register? */
97
98 static int
99 i386_sse_regnum_p (struct gdbarch *gdbarch, int regnum)
100 {
101 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
102
103 if (I387_NUM_XMM_REGS (tdep) == 0)
104 return 0;
105
106 return (I387_XMM0_REGNUM (tdep) <= regnum
107 && regnum < I387_MXCSR_REGNUM (tdep));
108 }
109
110 static int
111 i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
112 {
113 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
114
115 if (I387_NUM_XMM_REGS (tdep) == 0)
116 return 0;
117
118 return (regnum == I387_MXCSR_REGNUM (tdep));
119 }
120
121 /* FP register? */
122
123 int
124 i386_fp_regnum_p (struct gdbarch *gdbarch, int regnum)
125 {
126 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
127
128 if (I387_ST0_REGNUM (tdep) < 0)
129 return 0;
130
131 return (I387_ST0_REGNUM (tdep) <= regnum
132 && regnum < I387_FCTRL_REGNUM (tdep));
133 }
134
135 int
136 i386_fpc_regnum_p (struct gdbarch *gdbarch, int regnum)
137 {
138 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
139
140 if (I387_ST0_REGNUM (tdep) < 0)
141 return 0;
142
143 return (I387_FCTRL_REGNUM (tdep) <= regnum
144 && regnum < I387_XMM0_REGNUM (tdep));
145 }
146
147 /* Return the name of register REGNUM. */
148
149 const char *
150 i386_register_name (struct gdbarch *gdbarch, int regnum)
151 {
152 if (i386_mmx_regnum_p (gdbarch, regnum))
153 return i386_mmx_names[regnum - I387_MM0_REGNUM (gdbarch_tdep (gdbarch))];
154
155 if (regnum >= 0 && regnum < i386_num_register_names)
156 return i386_register_names[regnum];
157
158 return NULL;
159 }
160
161 /* Convert a dbx register number REG to the appropriate register
162 number used by GDB. */
163
164 static int
165 i386_dbx_reg_to_regnum (struct gdbarch *gdbarch, int reg)
166 {
167 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
168
169 /* This implements what GCC calls the "default" register map
170 (dbx_register_map[]). */
171
172 if (reg >= 0 && reg <= 7)
173 {
174 /* General-purpose registers. The debug info calls %ebp
175 register 4, and %esp register 5. */
176 if (reg == 4)
177 return 5;
178 else if (reg == 5)
179 return 4;
180 else return reg;
181 }
182 else if (reg >= 12 && reg <= 19)
183 {
184 /* Floating-point registers. */
185 return reg - 12 + I387_ST0_REGNUM (tdep);
186 }
187 else if (reg >= 21 && reg <= 28)
188 {
189 /* SSE registers. */
190 return reg - 21 + I387_XMM0_REGNUM (tdep);
191 }
192 else if (reg >= 29 && reg <= 36)
193 {
194 /* MMX registers. */
195 return reg - 29 + I387_MM0_REGNUM (tdep);
196 }
197
198 /* This will hopefully provoke a warning. */
199 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
200 }
201
202 /* Convert SVR4 register number REG to the appropriate register number
203 used by GDB. */
204
205 static int
206 i386_svr4_reg_to_regnum (struct gdbarch *gdbarch, int reg)
207 {
208 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
209
210 /* This implements the GCC register map that tries to be compatible
211 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
212
213 /* The SVR4 register numbering includes %eip and %eflags, and
214 numbers the floating point registers differently. */
215 if (reg >= 0 && reg <= 9)
216 {
217 /* General-purpose registers. */
218 return reg;
219 }
220 else if (reg >= 11 && reg <= 18)
221 {
222 /* Floating-point registers. */
223 return reg - 11 + I387_ST0_REGNUM (tdep);
224 }
225 else if (reg >= 21 && reg <= 36)
226 {
227 /* The SSE and MMX registers have the same numbers as with dbx. */
228 return i386_dbx_reg_to_regnum (gdbarch, reg);
229 }
230
231 switch (reg)
232 {
233 case 37: return I387_FCTRL_REGNUM (tdep);
234 case 38: return I387_FSTAT_REGNUM (tdep);
235 case 39: return I387_MXCSR_REGNUM (tdep);
236 case 40: return I386_ES_REGNUM;
237 case 41: return I386_CS_REGNUM;
238 case 42: return I386_SS_REGNUM;
239 case 43: return I386_DS_REGNUM;
240 case 44: return I386_FS_REGNUM;
241 case 45: return I386_GS_REGNUM;
242 }
243
244 /* This will hopefully provoke a warning. */
245 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
246 }
247
248 \f
249
250 /* This is the variable that is set with "set disassembly-flavor", and
251 its legitimate values. */
252 static const char att_flavor[] = "att";
253 static const char intel_flavor[] = "intel";
254 static const char *valid_flavors[] =
255 {
256 att_flavor,
257 intel_flavor,
258 NULL
259 };
260 static const char *disassembly_flavor = att_flavor;
261 \f
262
263 /* Use the program counter to determine the contents and size of a
264 breakpoint instruction. Return a pointer to a string of bytes that
265 encode a breakpoint instruction, store the length of the string in
266 *LEN and optionally adjust *PC to point to the correct memory
267 location for inserting the breakpoint.
268
269 On the i386 we have a single breakpoint that fits in a single byte
270 and can be inserted anywhere.
271
272 This function is 64-bit safe. */
273
274 static const gdb_byte *
275 i386_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
276 {
277 static gdb_byte break_insn[] = { 0xcc }; /* int 3 */
278
279 *len = sizeof (break_insn);
280 return break_insn;
281 }
282 \f
283 /* Displaced instruction handling. */
284
285 /* Skip the legacy instruction prefixes in INSN.
286 Not all prefixes are valid for any particular insn
287 but we needn't care, the insn will fault if it's invalid.
288 The result is a pointer to the first opcode byte,
289 or NULL if we run off the end of the buffer. */
290
291 static gdb_byte *
292 i386_skip_prefixes (gdb_byte *insn, size_t max_len)
293 {
294 gdb_byte *end = insn + max_len;
295
296 while (insn < end)
297 {
298 switch (*insn)
299 {
300 case DATA_PREFIX_OPCODE:
301 case ADDR_PREFIX_OPCODE:
302 case CS_PREFIX_OPCODE:
303 case DS_PREFIX_OPCODE:
304 case ES_PREFIX_OPCODE:
305 case FS_PREFIX_OPCODE:
306 case GS_PREFIX_OPCODE:
307 case SS_PREFIX_OPCODE:
308 case LOCK_PREFIX_OPCODE:
309 case REPE_PREFIX_OPCODE:
310 case REPNE_PREFIX_OPCODE:
311 ++insn;
312 continue;
313 default:
314 return insn;
315 }
316 }
317
318 return NULL;
319 }
320
321 static int
322 i386_absolute_jmp_p (const gdb_byte *insn)
323 {
324 /* jmp far (absolute address in operand) */
325 if (insn[0] == 0xea)
326 return 1;
327
328 if (insn[0] == 0xff)
329 {
330 /* jump near, absolute indirect (/4) */
331 if ((insn[1] & 0x38) == 0x20)
332 return 1;
333
334 /* jump far, absolute indirect (/5) */
335 if ((insn[1] & 0x38) == 0x28)
336 return 1;
337 }
338
339 return 0;
340 }
341
342 static int
343 i386_absolute_call_p (const gdb_byte *insn)
344 {
345 /* call far, absolute */
346 if (insn[0] == 0x9a)
347 return 1;
348
349 if (insn[0] == 0xff)
350 {
351 /* Call near, absolute indirect (/2) */
352 if ((insn[1] & 0x38) == 0x10)
353 return 1;
354
355 /* Call far, absolute indirect (/3) */
356 if ((insn[1] & 0x38) == 0x18)
357 return 1;
358 }
359
360 return 0;
361 }
362
363 static int
364 i386_ret_p (const gdb_byte *insn)
365 {
366 switch (insn[0])
367 {
368 case 0xc2: /* ret near, pop N bytes */
369 case 0xc3: /* ret near */
370 case 0xca: /* ret far, pop N bytes */
371 case 0xcb: /* ret far */
372 case 0xcf: /* iret */
373 return 1;
374
375 default:
376 return 0;
377 }
378 }
379
380 static int
381 i386_call_p (const gdb_byte *insn)
382 {
383 if (i386_absolute_call_p (insn))
384 return 1;
385
386 /* call near, relative */
387 if (insn[0] == 0xe8)
388 return 1;
389
390 return 0;
391 }
392
393 /* Return non-zero if INSN is a system call, and set *LENGTHP to its
394 length in bytes. Otherwise, return zero. */
395
396 static int
397 i386_syscall_p (const gdb_byte *insn, ULONGEST *lengthp)
398 {
399 if (insn[0] == 0xcd)
400 {
401 *lengthp = 2;
402 return 1;
403 }
404
405 return 0;
406 }
407
408 /* Fix up the state of registers and memory after having single-stepped
409 a displaced instruction. */
410
411 void
412 i386_displaced_step_fixup (struct gdbarch *gdbarch,
413 struct displaced_step_closure *closure,
414 CORE_ADDR from, CORE_ADDR to,
415 struct regcache *regs)
416 {
417 /* The offset we applied to the instruction's address.
418 This could well be negative (when viewed as a signed 32-bit
419 value), but ULONGEST won't reflect that, so take care when
420 applying it. */
421 ULONGEST insn_offset = to - from;
422
423 /* Since we use simple_displaced_step_copy_insn, our closure is a
424 copy of the instruction. */
425 gdb_byte *insn = (gdb_byte *) closure;
426 /* The start of the insn, needed in case we see some prefixes. */
427 gdb_byte *insn_start = insn;
428
429 if (debug_displaced)
430 fprintf_unfiltered (gdb_stdlog,
431 "displaced: fixup (0x%s, 0x%s), "
432 "insn = 0x%02x 0x%02x ...\n",
433 paddr_nz (from), paddr_nz (to), insn[0], insn[1]);
434
435 /* The list of issues to contend with here is taken from
436 resume_execution in arch/i386/kernel/kprobes.c, Linux 2.6.20.
437 Yay for Free Software! */
438
439 /* Relocate the %eip, if necessary. */
440
441 /* The instruction recognizers we use assume any leading prefixes
442 have been skipped. */
443 {
444 /* This is the size of the buffer in closure. */
445 size_t max_insn_len = gdbarch_max_insn_length (gdbarch);
446 gdb_byte *opcode = i386_skip_prefixes (insn, max_insn_len);
447 /* If there are too many prefixes, just ignore the insn.
448 It will fault when run. */
449 if (opcode != NULL)
450 insn = opcode;
451 }
452
453 /* Except in the case of absolute or indirect jump or call
454 instructions, or a return instruction, the new eip is relative to
455 the displaced instruction; make it relative. Well, signal
456 handler returns don't need relocation either, but we use the
457 value of %eip to recognize those; see below. */
458 if (! i386_absolute_jmp_p (insn)
459 && ! i386_absolute_call_p (insn)
460 && ! i386_ret_p (insn))
461 {
462 ULONGEST orig_eip;
463 ULONGEST insn_len;
464
465 regcache_cooked_read_unsigned (regs, I386_EIP_REGNUM, &orig_eip);
466
467 /* A signal trampoline system call changes the %eip, resuming
468 execution of the main program after the signal handler has
469 returned. That makes them like 'return' instructions; we
470 shouldn't relocate %eip.
471
472 But most system calls don't, and we do need to relocate %eip.
473
474 Our heuristic for distinguishing these cases: if stepping
475 over the system call instruction left control directly after
476 the instruction, the we relocate --- control almost certainly
477 doesn't belong in the displaced copy. Otherwise, we assume
478 the instruction has put control where it belongs, and leave
479 it unrelocated. Goodness help us if there are PC-relative
480 system calls. */
481 if (i386_syscall_p (insn, &insn_len)
482 && orig_eip != to + (insn - insn_start) + insn_len)
483 {
484 if (debug_displaced)
485 fprintf_unfiltered (gdb_stdlog,
486 "displaced: syscall changed %%eip; "
487 "not relocating\n");
488 }
489 else
490 {
491 ULONGEST eip = (orig_eip - insn_offset) & 0xffffffffUL;
492
493 /* If we just stepped over a breakpoint insn, we don't backup
494 the pc on purpose; this is to match behaviour without
495 stepping. */
496
497 regcache_cooked_write_unsigned (regs, I386_EIP_REGNUM, eip);
498
499 if (debug_displaced)
500 fprintf_unfiltered (gdb_stdlog,
501 "displaced: "
502 "relocated %%eip from 0x%s to 0x%s\n",
503 paddr_nz (orig_eip), paddr_nz (eip));
504 }
505 }
506
507 /* If the instruction was PUSHFL, then the TF bit will be set in the
508 pushed value, and should be cleared. We'll leave this for later,
509 since GDB already messes up the TF flag when stepping over a
510 pushfl. */
511
512 /* If the instruction was a call, the return address now atop the
513 stack is the address following the copied instruction. We need
514 to make it the address following the original instruction. */
515 if (i386_call_p (insn))
516 {
517 ULONGEST esp;
518 ULONGEST retaddr;
519 const ULONGEST retaddr_len = 4;
520
521 regcache_cooked_read_unsigned (regs, I386_ESP_REGNUM, &esp);
522 retaddr = read_memory_unsigned_integer (esp, retaddr_len);
523 retaddr = (retaddr - insn_offset) & 0xffffffffUL;
524 write_memory_unsigned_integer (esp, retaddr_len, retaddr);
525
526 if (debug_displaced)
527 fprintf_unfiltered (gdb_stdlog,
528 "displaced: relocated return addr at 0x%s "
529 "to 0x%s\n",
530 paddr_nz (esp),
531 paddr_nz (retaddr));
532 }
533 }
534 \f
535 #ifdef I386_REGNO_TO_SYMMETRY
536 #error "The Sequent Symmetry is no longer supported."
537 #endif
538
539 /* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
540 and %esp "belong" to the calling function. Therefore these
541 registers should be saved if they're going to be modified. */
542
543 /* The maximum number of saved registers. This should include all
544 registers mentioned above, and %eip. */
545 #define I386_NUM_SAVED_REGS I386_NUM_GREGS
546
547 struct i386_frame_cache
548 {
549 /* Base address. */
550 CORE_ADDR base;
551 LONGEST sp_offset;
552 CORE_ADDR pc;
553
554 /* Saved registers. */
555 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
556 CORE_ADDR saved_sp;
557 int saved_sp_reg;
558 int pc_in_eax;
559
560 /* Stack space reserved for local variables. */
561 long locals;
562 };
563
564 /* Allocate and initialize a frame cache. */
565
566 static struct i386_frame_cache *
567 i386_alloc_frame_cache (void)
568 {
569 struct i386_frame_cache *cache;
570 int i;
571
572 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
573
574 /* Base address. */
575 cache->base = 0;
576 cache->sp_offset = -4;
577 cache->pc = 0;
578
579 /* Saved registers. We initialize these to -1 since zero is a valid
580 offset (that's where %ebp is supposed to be stored). */
581 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
582 cache->saved_regs[i] = -1;
583 cache->saved_sp = 0;
584 cache->saved_sp_reg = -1;
585 cache->pc_in_eax = 0;
586
587 /* Frameless until proven otherwise. */
588 cache->locals = -1;
589
590 return cache;
591 }
592
593 /* If the instruction at PC is a jump, return the address of its
594 target. Otherwise, return PC. */
595
596 static CORE_ADDR
597 i386_follow_jump (CORE_ADDR pc)
598 {
599 gdb_byte op;
600 long delta = 0;
601 int data16 = 0;
602
603 target_read_memory (pc, &op, 1);
604 if (op == 0x66)
605 {
606 data16 = 1;
607 op = read_memory_unsigned_integer (pc + 1, 1);
608 }
609
610 switch (op)
611 {
612 case 0xe9:
613 /* Relative jump: if data16 == 0, disp32, else disp16. */
614 if (data16)
615 {
616 delta = read_memory_integer (pc + 2, 2);
617
618 /* Include the size of the jmp instruction (including the
619 0x66 prefix). */
620 delta += 4;
621 }
622 else
623 {
624 delta = read_memory_integer (pc + 1, 4);
625
626 /* Include the size of the jmp instruction. */
627 delta += 5;
628 }
629 break;
630 case 0xeb:
631 /* Relative jump, disp8 (ignore data16). */
632 delta = read_memory_integer (pc + data16 + 1, 1);
633
634 delta += data16 + 2;
635 break;
636 }
637
638 return pc + delta;
639 }
640
641 /* Check whether PC points at a prologue for a function returning a
642 structure or union. If so, it updates CACHE and returns the
643 address of the first instruction after the code sequence that
644 removes the "hidden" argument from the stack or CURRENT_PC,
645 whichever is smaller. Otherwise, return PC. */
646
647 static CORE_ADDR
648 i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
649 struct i386_frame_cache *cache)
650 {
651 /* Functions that return a structure or union start with:
652
653 popl %eax 0x58
654 xchgl %eax, (%esp) 0x87 0x04 0x24
655 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
656
657 (the System V compiler puts out the second `xchg' instruction,
658 and the assembler doesn't try to optimize it, so the 'sib' form
659 gets generated). This sequence is used to get the address of the
660 return buffer for a function that returns a structure. */
661 static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
662 static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
663 gdb_byte buf[4];
664 gdb_byte op;
665
666 if (current_pc <= pc)
667 return pc;
668
669 target_read_memory (pc, &op, 1);
670
671 if (op != 0x58) /* popl %eax */
672 return pc;
673
674 target_read_memory (pc + 1, buf, 4);
675 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
676 return pc;
677
678 if (current_pc == pc)
679 {
680 cache->sp_offset += 4;
681 return current_pc;
682 }
683
684 if (current_pc == pc + 1)
685 {
686 cache->pc_in_eax = 1;
687 return current_pc;
688 }
689
690 if (buf[1] == proto1[1])
691 return pc + 4;
692 else
693 return pc + 5;
694 }
695
696 static CORE_ADDR
697 i386_skip_probe (CORE_ADDR pc)
698 {
699 /* A function may start with
700
701 pushl constant
702 call _probe
703 addl $4, %esp
704
705 followed by
706
707 pushl %ebp
708
709 etc. */
710 gdb_byte buf[8];
711 gdb_byte op;
712
713 target_read_memory (pc, &op, 1);
714
715 if (op == 0x68 || op == 0x6a)
716 {
717 int delta;
718
719 /* Skip past the `pushl' instruction; it has either a one-byte or a
720 four-byte operand, depending on the opcode. */
721 if (op == 0x68)
722 delta = 5;
723 else
724 delta = 2;
725
726 /* Read the following 8 bytes, which should be `call _probe' (6
727 bytes) followed by `addl $4,%esp' (2 bytes). */
728 read_memory (pc + delta, buf, sizeof (buf));
729 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
730 pc += delta + sizeof (buf);
731 }
732
733 return pc;
734 }
735
736 /* GCC 4.1 and later, can put code in the prologue to realign the
737 stack pointer. Check whether PC points to such code, and update
738 CACHE accordingly. Return the first instruction after the code
739 sequence or CURRENT_PC, whichever is smaller. If we don't
740 recognize the code, return PC. */
741
742 static CORE_ADDR
743 i386_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
744 struct i386_frame_cache *cache)
745 {
746 /* There are 2 code sequences to re-align stack before the frame
747 gets set up:
748
749 1. Use a caller-saved saved register:
750
751 leal 4(%esp), %reg
752 andl $-XXX, %esp
753 pushl -4(%reg)
754
755 2. Use a callee-saved saved register:
756
757 pushl %reg
758 leal 8(%esp), %reg
759 andl $-XXX, %esp
760 pushl -4(%reg)
761
762 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
763
764 0x83 0xe4 0xf0 andl $-16, %esp
765 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
766 */
767
768 gdb_byte buf[14];
769 int reg;
770 int offset, offset_and;
771 static int regnums[8] = {
772 I386_EAX_REGNUM, /* %eax */
773 I386_ECX_REGNUM, /* %ecx */
774 I386_EDX_REGNUM, /* %edx */
775 I386_EBX_REGNUM, /* %ebx */
776 I386_ESP_REGNUM, /* %esp */
777 I386_EBP_REGNUM, /* %ebp */
778 I386_ESI_REGNUM, /* %esi */
779 I386_EDI_REGNUM /* %edi */
780 };
781
782 if (target_read_memory (pc, buf, sizeof buf))
783 return pc;
784
785 /* Check caller-saved saved register. The first instruction has
786 to be "leal 4(%esp), %reg". */
787 if (buf[0] == 0x8d && buf[2] == 0x24 && buf[3] == 0x4)
788 {
789 /* MOD must be binary 10 and R/M must be binary 100. */
790 if ((buf[1] & 0xc7) != 0x44)
791 return pc;
792
793 /* REG has register number. */
794 reg = (buf[1] >> 3) & 7;
795 offset = 4;
796 }
797 else
798 {
799 /* Check callee-saved saved register. The first instruction
800 has to be "pushl %reg". */
801 if ((buf[0] & 0xf8) != 0x50)
802 return pc;
803
804 /* Get register. */
805 reg = buf[0] & 0x7;
806
807 /* The next instruction has to be "leal 8(%esp), %reg". */
808 if (buf[1] != 0x8d || buf[3] != 0x24 || buf[4] != 0x8)
809 return pc;
810
811 /* MOD must be binary 10 and R/M must be binary 100. */
812 if ((buf[2] & 0xc7) != 0x44)
813 return pc;
814
815 /* REG has register number. Registers in pushl and leal have to
816 be the same. */
817 if (reg != ((buf[2] >> 3) & 7))
818 return pc;
819
820 offset = 5;
821 }
822
823 /* Rigister can't be %esp nor %ebp. */
824 if (reg == 4 || reg == 5)
825 return pc;
826
827 /* The next instruction has to be "andl $-XXX, %esp". */
828 if (buf[offset + 1] != 0xe4
829 || (buf[offset] != 0x81 && buf[offset] != 0x83))
830 return pc;
831
832 offset_and = offset;
833 offset += buf[offset] == 0x81 ? 6 : 3;
834
835 /* The next instruction has to be "pushl -4(%reg)". 8bit -4 is
836 0xfc. REG must be binary 110 and MOD must be binary 01. */
837 if (buf[offset] != 0xff
838 || buf[offset + 2] != 0xfc
839 || (buf[offset + 1] & 0xf8) != 0x70)
840 return pc;
841
842 /* R/M has register. Registers in leal and pushl have to be the
843 same. */
844 if (reg != (buf[offset + 1] & 7))
845 return pc;
846
847 if (current_pc > pc + offset_and)
848 cache->saved_sp_reg = regnums[reg];
849
850 return min (pc + offset + 3, current_pc);
851 }
852
853 /* Maximum instruction length we need to handle. */
854 #define I386_MAX_MATCHED_INSN_LEN 6
855
856 /* Instruction description. */
857 struct i386_insn
858 {
859 size_t len;
860 gdb_byte insn[I386_MAX_MATCHED_INSN_LEN];
861 gdb_byte mask[I386_MAX_MATCHED_INSN_LEN];
862 };
863
864 /* Search for the instruction at PC in the list SKIP_INSNS. Return
865 the first instruction description that matches. Otherwise, return
866 NULL. */
867
868 static struct i386_insn *
869 i386_match_insn (CORE_ADDR pc, struct i386_insn *skip_insns)
870 {
871 struct i386_insn *insn;
872 gdb_byte op;
873
874 target_read_memory (pc, &op, 1);
875
876 for (insn = skip_insns; insn->len > 0; insn++)
877 {
878 if ((op & insn->mask[0]) == insn->insn[0])
879 {
880 gdb_byte buf[I386_MAX_MATCHED_INSN_LEN - 1];
881 int insn_matched = 1;
882 size_t i;
883
884 gdb_assert (insn->len > 1);
885 gdb_assert (insn->len <= I386_MAX_MATCHED_INSN_LEN);
886
887 target_read_memory (pc + 1, buf, insn->len - 1);
888 for (i = 1; i < insn->len; i++)
889 {
890 if ((buf[i - 1] & insn->mask[i]) != insn->insn[i])
891 insn_matched = 0;
892 }
893
894 if (insn_matched)
895 return insn;
896 }
897 }
898
899 return NULL;
900 }
901
902 /* Some special instructions that might be migrated by GCC into the
903 part of the prologue that sets up the new stack frame. Because the
904 stack frame hasn't been setup yet, no registers have been saved
905 yet, and only the scratch registers %eax, %ecx and %edx can be
906 touched. */
907
908 struct i386_insn i386_frame_setup_skip_insns[] =
909 {
910 /* Check for `movb imm8, r' and `movl imm32, r'.
911
912 ??? Should we handle 16-bit operand-sizes here? */
913
914 /* `movb imm8, %al' and `movb imm8, %ah' */
915 /* `movb imm8, %cl' and `movb imm8, %ch' */
916 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
917 /* `movb imm8, %dl' and `movb imm8, %dh' */
918 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
919 /* `movl imm32, %eax' and `movl imm32, %ecx' */
920 { 5, { 0xb8 }, { 0xfe } },
921 /* `movl imm32, %edx' */
922 { 5, { 0xba }, { 0xff } },
923
924 /* Check for `mov imm32, r32'. Note that there is an alternative
925 encoding for `mov m32, %eax'.
926
927 ??? Should we handle SIB adressing here?
928 ??? Should we handle 16-bit operand-sizes here? */
929
930 /* `movl m32, %eax' */
931 { 5, { 0xa1 }, { 0xff } },
932 /* `movl m32, %eax' and `mov; m32, %ecx' */
933 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
934 /* `movl m32, %edx' */
935 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
936
937 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
938 Because of the symmetry, there are actually two ways to encode
939 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
940 opcode bytes 0x31 and 0x33 for `xorl'. */
941
942 /* `subl %eax, %eax' */
943 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
944 /* `subl %ecx, %ecx' */
945 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
946 /* `subl %edx, %edx' */
947 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
948 /* `xorl %eax, %eax' */
949 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
950 /* `xorl %ecx, %ecx' */
951 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
952 /* `xorl %edx, %edx' */
953 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
954 { 0 }
955 };
956
957
958 /* Check whether PC points to a no-op instruction. */
959 static CORE_ADDR
960 i386_skip_noop (CORE_ADDR pc)
961 {
962 gdb_byte op;
963 int check = 1;
964
965 target_read_memory (pc, &op, 1);
966
967 while (check)
968 {
969 check = 0;
970 /* Ignore `nop' instruction. */
971 if (op == 0x90)
972 {
973 pc += 1;
974 target_read_memory (pc, &op, 1);
975 check = 1;
976 }
977 /* Ignore no-op instruction `mov %edi, %edi'.
978 Microsoft system dlls often start with
979 a `mov %edi,%edi' instruction.
980 The 5 bytes before the function start are
981 filled with `nop' instructions.
982 This pattern can be used for hot-patching:
983 The `mov %edi, %edi' instruction can be replaced by a
984 near jump to the location of the 5 `nop' instructions
985 which can be replaced by a 32-bit jump to anywhere
986 in the 32-bit address space. */
987
988 else if (op == 0x8b)
989 {
990 target_read_memory (pc + 1, &op, 1);
991 if (op == 0xff)
992 {
993 pc += 2;
994 target_read_memory (pc, &op, 1);
995 check = 1;
996 }
997 }
998 }
999 return pc;
1000 }
1001
1002 /* Check whether PC points at a code that sets up a new stack frame.
1003 If so, it updates CACHE and returns the address of the first
1004 instruction after the sequence that sets up the frame or LIMIT,
1005 whichever is smaller. If we don't recognize the code, return PC. */
1006
1007 static CORE_ADDR
1008 i386_analyze_frame_setup (CORE_ADDR pc, CORE_ADDR limit,
1009 struct i386_frame_cache *cache)
1010 {
1011 struct i386_insn *insn;
1012 gdb_byte op;
1013 int skip = 0;
1014
1015 if (limit <= pc)
1016 return limit;
1017
1018 target_read_memory (pc, &op, 1);
1019
1020 if (op == 0x55) /* pushl %ebp */
1021 {
1022 /* Take into account that we've executed the `pushl %ebp' that
1023 starts this instruction sequence. */
1024 cache->saved_regs[I386_EBP_REGNUM] = 0;
1025 cache->sp_offset += 4;
1026 pc++;
1027
1028 /* If that's all, return now. */
1029 if (limit <= pc)
1030 return limit;
1031
1032 /* Check for some special instructions that might be migrated by
1033 GCC into the prologue and skip them. At this point in the
1034 prologue, code should only touch the scratch registers %eax,
1035 %ecx and %edx, so while the number of posibilities is sheer,
1036 it is limited.
1037
1038 Make sure we only skip these instructions if we later see the
1039 `movl %esp, %ebp' that actually sets up the frame. */
1040 while (pc + skip < limit)
1041 {
1042 insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
1043 if (insn == NULL)
1044 break;
1045
1046 skip += insn->len;
1047 }
1048
1049 /* If that's all, return now. */
1050 if (limit <= pc + skip)
1051 return limit;
1052
1053 target_read_memory (pc + skip, &op, 1);
1054
1055 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
1056 switch (op)
1057 {
1058 case 0x8b:
1059 if (read_memory_unsigned_integer (pc + skip + 1, 1) != 0xec)
1060 return pc;
1061 break;
1062 case 0x89:
1063 if (read_memory_unsigned_integer (pc + skip + 1, 1) != 0xe5)
1064 return pc;
1065 break;
1066 default:
1067 return pc;
1068 }
1069
1070 /* OK, we actually have a frame. We just don't know how large
1071 it is yet. Set its size to zero. We'll adjust it if
1072 necessary. We also now commit to skipping the special
1073 instructions mentioned before. */
1074 cache->locals = 0;
1075 pc += (skip + 2);
1076
1077 /* If that's all, return now. */
1078 if (limit <= pc)
1079 return limit;
1080
1081 /* Check for stack adjustment
1082
1083 subl $XXX, %esp
1084
1085 NOTE: You can't subtract a 16-bit immediate from a 32-bit
1086 reg, so we don't have to worry about a data16 prefix. */
1087 target_read_memory (pc, &op, 1);
1088 if (op == 0x83)
1089 {
1090 /* `subl' with 8-bit immediate. */
1091 if (read_memory_unsigned_integer (pc + 1, 1) != 0xec)
1092 /* Some instruction starting with 0x83 other than `subl'. */
1093 return pc;
1094
1095 /* `subl' with signed 8-bit immediate (though it wouldn't
1096 make sense to be negative). */
1097 cache->locals = read_memory_integer (pc + 2, 1);
1098 return pc + 3;
1099 }
1100 else if (op == 0x81)
1101 {
1102 /* Maybe it is `subl' with a 32-bit immediate. */
1103 if (read_memory_unsigned_integer (pc + 1, 1) != 0xec)
1104 /* Some instruction starting with 0x81 other than `subl'. */
1105 return pc;
1106
1107 /* It is `subl' with a 32-bit immediate. */
1108 cache->locals = read_memory_integer (pc + 2, 4);
1109 return pc + 6;
1110 }
1111 else
1112 {
1113 /* Some instruction other than `subl'. */
1114 return pc;
1115 }
1116 }
1117 else if (op == 0xc8) /* enter */
1118 {
1119 cache->locals = read_memory_unsigned_integer (pc + 1, 2);
1120 return pc + 4;
1121 }
1122
1123 return pc;
1124 }
1125
1126 /* Check whether PC points at code that saves registers on the stack.
1127 If so, it updates CACHE and returns the address of the first
1128 instruction after the register saves or CURRENT_PC, whichever is
1129 smaller. Otherwise, return PC. */
1130
1131 static CORE_ADDR
1132 i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
1133 struct i386_frame_cache *cache)
1134 {
1135 CORE_ADDR offset = 0;
1136 gdb_byte op;
1137 int i;
1138
1139 if (cache->locals > 0)
1140 offset -= cache->locals;
1141 for (i = 0; i < 8 && pc < current_pc; i++)
1142 {
1143 target_read_memory (pc, &op, 1);
1144 if (op < 0x50 || op > 0x57)
1145 break;
1146
1147 offset -= 4;
1148 cache->saved_regs[op - 0x50] = offset;
1149 cache->sp_offset += 4;
1150 pc++;
1151 }
1152
1153 return pc;
1154 }
1155
1156 /* Do a full analysis of the prologue at PC and update CACHE
1157 accordingly. Bail out early if CURRENT_PC is reached. Return the
1158 address where the analysis stopped.
1159
1160 We handle these cases:
1161
1162 The startup sequence can be at the start of the function, or the
1163 function can start with a branch to startup code at the end.
1164
1165 %ebp can be set up with either the 'enter' instruction, or "pushl
1166 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
1167 once used in the System V compiler).
1168
1169 Local space is allocated just below the saved %ebp by either the
1170 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
1171 16-bit unsigned argument for space to allocate, and the 'addl'
1172 instruction could have either a signed byte, or 32-bit immediate.
1173
1174 Next, the registers used by this function are pushed. With the
1175 System V compiler they will always be in the order: %edi, %esi,
1176 %ebx (and sometimes a harmless bug causes it to also save but not
1177 restore %eax); however, the code below is willing to see the pushes
1178 in any order, and will handle up to 8 of them.
1179
1180 If the setup sequence is at the end of the function, then the next
1181 instruction will be a branch back to the start. */
1182
1183 static CORE_ADDR
1184 i386_analyze_prologue (CORE_ADDR pc, CORE_ADDR current_pc,
1185 struct i386_frame_cache *cache)
1186 {
1187 pc = i386_skip_noop (pc);
1188 pc = i386_follow_jump (pc);
1189 pc = i386_analyze_struct_return (pc, current_pc, cache);
1190 pc = i386_skip_probe (pc);
1191 pc = i386_analyze_stack_align (pc, current_pc, cache);
1192 pc = i386_analyze_frame_setup (pc, current_pc, cache);
1193 return i386_analyze_register_saves (pc, current_pc, cache);
1194 }
1195
1196 /* Return PC of first real instruction. */
1197
1198 static CORE_ADDR
1199 i386_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
1200 {
1201 static gdb_byte pic_pat[6] =
1202 {
1203 0xe8, 0, 0, 0, 0, /* call 0x0 */
1204 0x5b, /* popl %ebx */
1205 };
1206 struct i386_frame_cache cache;
1207 CORE_ADDR pc;
1208 gdb_byte op;
1209 int i;
1210
1211 cache.locals = -1;
1212 pc = i386_analyze_prologue (start_pc, 0xffffffff, &cache);
1213 if (cache.locals < 0)
1214 return start_pc;
1215
1216 /* Found valid frame setup. */
1217
1218 /* The native cc on SVR4 in -K PIC mode inserts the following code
1219 to get the address of the global offset table (GOT) into register
1220 %ebx:
1221
1222 call 0x0
1223 popl %ebx
1224 movl %ebx,x(%ebp) (optional)
1225 addl y,%ebx
1226
1227 This code is with the rest of the prologue (at the end of the
1228 function), so we have to skip it to get to the first real
1229 instruction at the start of the function. */
1230
1231 for (i = 0; i < 6; i++)
1232 {
1233 target_read_memory (pc + i, &op, 1);
1234 if (pic_pat[i] != op)
1235 break;
1236 }
1237 if (i == 6)
1238 {
1239 int delta = 6;
1240
1241 target_read_memory (pc + delta, &op, 1);
1242
1243 if (op == 0x89) /* movl %ebx, x(%ebp) */
1244 {
1245 op = read_memory_unsigned_integer (pc + delta + 1, 1);
1246
1247 if (op == 0x5d) /* One byte offset from %ebp. */
1248 delta += 3;
1249 else if (op == 0x9d) /* Four byte offset from %ebp. */
1250 delta += 6;
1251 else /* Unexpected instruction. */
1252 delta = 0;
1253
1254 target_read_memory (pc + delta, &op, 1);
1255 }
1256
1257 /* addl y,%ebx */
1258 if (delta > 0 && op == 0x81
1259 && read_memory_unsigned_integer (pc + delta + 1, 1) == 0xc3)
1260 {
1261 pc += delta + 6;
1262 }
1263 }
1264
1265 /* If the function starts with a branch (to startup code at the end)
1266 the last instruction should bring us back to the first
1267 instruction of the real code. */
1268 if (i386_follow_jump (start_pc) != start_pc)
1269 pc = i386_follow_jump (pc);
1270
1271 return pc;
1272 }
1273
1274 /* Check that the code pointed to by PC corresponds to a call to
1275 __main, skip it if so. Return PC otherwise. */
1276
1277 CORE_ADDR
1278 i386_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1279 {
1280 gdb_byte op;
1281
1282 target_read_memory (pc, &op, 1);
1283 if (op == 0xe8)
1284 {
1285 gdb_byte buf[4];
1286
1287 if (target_read_memory (pc + 1, buf, sizeof buf) == 0)
1288 {
1289 /* Make sure address is computed correctly as a 32bit
1290 integer even if CORE_ADDR is 64 bit wide. */
1291 struct minimal_symbol *s;
1292 CORE_ADDR call_dest = pc + 5 + extract_signed_integer (buf, 4);
1293
1294 call_dest = call_dest & 0xffffffffU;
1295 s = lookup_minimal_symbol_by_pc (call_dest);
1296 if (s != NULL
1297 && SYMBOL_LINKAGE_NAME (s) != NULL
1298 && strcmp (SYMBOL_LINKAGE_NAME (s), "__main") == 0)
1299 pc += 5;
1300 }
1301 }
1302
1303 return pc;
1304 }
1305
1306 /* This function is 64-bit safe. */
1307
1308 static CORE_ADDR
1309 i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1310 {
1311 gdb_byte buf[8];
1312
1313 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
1314 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
1315 }
1316 \f
1317
1318 /* Normal frames. */
1319
1320 static struct i386_frame_cache *
1321 i386_frame_cache (struct frame_info *this_frame, void **this_cache)
1322 {
1323 struct i386_frame_cache *cache;
1324 gdb_byte buf[4];
1325 int i;
1326
1327 if (*this_cache)
1328 return *this_cache;
1329
1330 cache = i386_alloc_frame_cache ();
1331 *this_cache = cache;
1332
1333 /* In principle, for normal frames, %ebp holds the frame pointer,
1334 which holds the base address for the current stack frame.
1335 However, for functions that don't need it, the frame pointer is
1336 optional. For these "frameless" functions the frame pointer is
1337 actually the frame pointer of the calling frame. Signal
1338 trampolines are just a special case of a "frameless" function.
1339 They (usually) share their frame pointer with the frame that was
1340 in progress when the signal occurred. */
1341
1342 get_frame_register (this_frame, I386_EBP_REGNUM, buf);
1343 cache->base = extract_unsigned_integer (buf, 4);
1344 if (cache->base == 0)
1345 return cache;
1346
1347 /* For normal frames, %eip is stored at 4(%ebp). */
1348 cache->saved_regs[I386_EIP_REGNUM] = 4;
1349
1350 cache->pc = get_frame_func (this_frame);
1351 if (cache->pc != 0)
1352 i386_analyze_prologue (cache->pc, get_frame_pc (this_frame), cache);
1353
1354 if (cache->saved_sp_reg != -1)
1355 {
1356 /* Saved stack pointer has been saved. */
1357 get_frame_register (this_frame, cache->saved_sp_reg, buf);
1358 cache->saved_sp = extract_unsigned_integer(buf, 4);
1359 }
1360
1361 if (cache->locals < 0)
1362 {
1363 /* We didn't find a valid frame, which means that CACHE->base
1364 currently holds the frame pointer for our calling frame. If
1365 we're at the start of a function, or somewhere half-way its
1366 prologue, the function's frame probably hasn't been fully
1367 setup yet. Try to reconstruct the base address for the stack
1368 frame by looking at the stack pointer. For truly "frameless"
1369 functions this might work too. */
1370
1371 if (cache->saved_sp_reg != -1)
1372 {
1373 /* We're halfway aligning the stack. */
1374 cache->base = ((cache->saved_sp - 4) & 0xfffffff0) - 4;
1375 cache->saved_regs[I386_EIP_REGNUM] = cache->saved_sp - 4;
1376
1377 /* This will be added back below. */
1378 cache->saved_regs[I386_EIP_REGNUM] -= cache->base;
1379 }
1380 else
1381 {
1382 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
1383 cache->base = extract_unsigned_integer (buf, 4) + cache->sp_offset;
1384 }
1385 }
1386
1387 /* Now that we have the base address for the stack frame we can
1388 calculate the value of %esp in the calling frame. */
1389 if (cache->saved_sp == 0)
1390 cache->saved_sp = cache->base + 8;
1391
1392 /* Adjust all the saved registers such that they contain addresses
1393 instead of offsets. */
1394 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
1395 if (cache->saved_regs[i] != -1)
1396 cache->saved_regs[i] += cache->base;
1397
1398 return cache;
1399 }
1400
1401 static void
1402 i386_frame_this_id (struct frame_info *this_frame, void **this_cache,
1403 struct frame_id *this_id)
1404 {
1405 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
1406
1407 /* This marks the outermost frame. */
1408 if (cache->base == 0)
1409 return;
1410
1411 /* See the end of i386_push_dummy_call. */
1412 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
1413 }
1414
1415 static struct value *
1416 i386_frame_prev_register (struct frame_info *this_frame, void **this_cache,
1417 int regnum)
1418 {
1419 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
1420
1421 gdb_assert (regnum >= 0);
1422
1423 /* The System V ABI says that:
1424
1425 "The flags register contains the system flags, such as the
1426 direction flag and the carry flag. The direction flag must be
1427 set to the forward (that is, zero) direction before entry and
1428 upon exit from a function. Other user flags have no specified
1429 role in the standard calling sequence and are not preserved."
1430
1431 To guarantee the "upon exit" part of that statement we fake a
1432 saved flags register that has its direction flag cleared.
1433
1434 Note that GCC doesn't seem to rely on the fact that the direction
1435 flag is cleared after a function return; it always explicitly
1436 clears the flag before operations where it matters.
1437
1438 FIXME: kettenis/20030316: I'm not quite sure whether this is the
1439 right thing to do. The way we fake the flags register here makes
1440 it impossible to change it. */
1441
1442 if (regnum == I386_EFLAGS_REGNUM)
1443 {
1444 ULONGEST val;
1445
1446 val = get_frame_register_unsigned (this_frame, regnum);
1447 val &= ~(1 << 10);
1448 return frame_unwind_got_constant (this_frame, regnum, val);
1449 }
1450
1451 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
1452 return frame_unwind_got_register (this_frame, regnum, I386_EAX_REGNUM);
1453
1454 if (regnum == I386_ESP_REGNUM && cache->saved_sp)
1455 return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
1456
1457 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
1458 return frame_unwind_got_memory (this_frame, regnum,
1459 cache->saved_regs[regnum]);
1460
1461 return frame_unwind_got_register (this_frame, regnum, regnum);
1462 }
1463
1464 static const struct frame_unwind i386_frame_unwind =
1465 {
1466 NORMAL_FRAME,
1467 i386_frame_this_id,
1468 i386_frame_prev_register,
1469 NULL,
1470 default_frame_sniffer
1471 };
1472 \f
1473
1474 /* Signal trampolines. */
1475
1476 static struct i386_frame_cache *
1477 i386_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
1478 {
1479 struct i386_frame_cache *cache;
1480 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
1481 CORE_ADDR addr;
1482 gdb_byte buf[4];
1483
1484 if (*this_cache)
1485 return *this_cache;
1486
1487 cache = i386_alloc_frame_cache ();
1488
1489 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
1490 cache->base = extract_unsigned_integer (buf, 4) - 4;
1491
1492 addr = tdep->sigcontext_addr (this_frame);
1493 if (tdep->sc_reg_offset)
1494 {
1495 int i;
1496
1497 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
1498
1499 for (i = 0; i < tdep->sc_num_regs; i++)
1500 if (tdep->sc_reg_offset[i] != -1)
1501 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
1502 }
1503 else
1504 {
1505 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
1506 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
1507 }
1508
1509 *this_cache = cache;
1510 return cache;
1511 }
1512
1513 static void
1514 i386_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache,
1515 struct frame_id *this_id)
1516 {
1517 struct i386_frame_cache *cache =
1518 i386_sigtramp_frame_cache (this_frame, this_cache);
1519
1520 /* See the end of i386_push_dummy_call. */
1521 (*this_id) = frame_id_build (cache->base + 8, get_frame_pc (this_frame));
1522 }
1523
1524 static struct value *
1525 i386_sigtramp_frame_prev_register (struct frame_info *this_frame,
1526 void **this_cache, int regnum)
1527 {
1528 /* Make sure we've initialized the cache. */
1529 i386_sigtramp_frame_cache (this_frame, this_cache);
1530
1531 return i386_frame_prev_register (this_frame, this_cache, regnum);
1532 }
1533
1534 static int
1535 i386_sigtramp_frame_sniffer (const struct frame_unwind *self,
1536 struct frame_info *this_frame,
1537 void **this_prologue_cache)
1538 {
1539 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
1540
1541 /* We shouldn't even bother if we don't have a sigcontext_addr
1542 handler. */
1543 if (tdep->sigcontext_addr == NULL)
1544 return 0;
1545
1546 if (tdep->sigtramp_p != NULL)
1547 {
1548 if (tdep->sigtramp_p (this_frame))
1549 return 1;
1550 }
1551
1552 if (tdep->sigtramp_start != 0)
1553 {
1554 CORE_ADDR pc = get_frame_pc (this_frame);
1555
1556 gdb_assert (tdep->sigtramp_end != 0);
1557 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
1558 return 1;
1559 }
1560
1561 return 0;
1562 }
1563
1564 static const struct frame_unwind i386_sigtramp_frame_unwind =
1565 {
1566 SIGTRAMP_FRAME,
1567 i386_sigtramp_frame_this_id,
1568 i386_sigtramp_frame_prev_register,
1569 NULL,
1570 i386_sigtramp_frame_sniffer
1571 };
1572 \f
1573
1574 static CORE_ADDR
1575 i386_frame_base_address (struct frame_info *this_frame, void **this_cache)
1576 {
1577 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
1578
1579 return cache->base;
1580 }
1581
1582 static const struct frame_base i386_frame_base =
1583 {
1584 &i386_frame_unwind,
1585 i386_frame_base_address,
1586 i386_frame_base_address,
1587 i386_frame_base_address
1588 };
1589
1590 static struct frame_id
1591 i386_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1592 {
1593 CORE_ADDR fp;
1594
1595 fp = get_frame_register_unsigned (this_frame, I386_EBP_REGNUM);
1596
1597 /* See the end of i386_push_dummy_call. */
1598 return frame_id_build (fp + 8, get_frame_pc (this_frame));
1599 }
1600 \f
1601
1602 /* Figure out where the longjmp will land. Slurp the args out of the
1603 stack. We expect the first arg to be a pointer to the jmp_buf
1604 structure from which we extract the address that we will land at.
1605 This address is copied into PC. This routine returns non-zero on
1606 success. */
1607
1608 static int
1609 i386_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
1610 {
1611 gdb_byte buf[4];
1612 CORE_ADDR sp, jb_addr;
1613 struct gdbarch *gdbarch = get_frame_arch (frame);
1614 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
1615
1616 /* If JB_PC_OFFSET is -1, we have no way to find out where the
1617 longjmp will land. */
1618 if (jb_pc_offset == -1)
1619 return 0;
1620
1621 get_frame_register (frame, I386_ESP_REGNUM, buf);
1622 sp = extract_unsigned_integer (buf, 4);
1623 if (target_read_memory (sp + 4, buf, 4))
1624 return 0;
1625
1626 jb_addr = extract_unsigned_integer (buf, 4);
1627 if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
1628 return 0;
1629
1630 *pc = extract_unsigned_integer (buf, 4);
1631 return 1;
1632 }
1633 \f
1634
1635 /* Check whether TYPE must be 16-byte-aligned when passed as a
1636 function argument. 16-byte vectors, _Decimal128 and structures or
1637 unions containing such types must be 16-byte-aligned; other
1638 arguments are 4-byte-aligned. */
1639
1640 static int
1641 i386_16_byte_align_p (struct type *type)
1642 {
1643 type = check_typedef (type);
1644 if ((TYPE_CODE (type) == TYPE_CODE_DECFLOAT
1645 || (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type)))
1646 && TYPE_LENGTH (type) == 16)
1647 return 1;
1648 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
1649 return i386_16_byte_align_p (TYPE_TARGET_TYPE (type));
1650 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
1651 || TYPE_CODE (type) == TYPE_CODE_UNION)
1652 {
1653 int i;
1654 for (i = 0; i < TYPE_NFIELDS (type); i++)
1655 {
1656 if (i386_16_byte_align_p (TYPE_FIELD_TYPE (type, i)))
1657 return 1;
1658 }
1659 }
1660 return 0;
1661 }
1662
1663 static CORE_ADDR
1664 i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1665 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
1666 struct value **args, CORE_ADDR sp, int struct_return,
1667 CORE_ADDR struct_addr)
1668 {
1669 gdb_byte buf[4];
1670 int i;
1671 int write_pass;
1672 int args_space = 0;
1673
1674 /* Determine the total space required for arguments and struct
1675 return address in a first pass (allowing for 16-byte-aligned
1676 arguments), then push arguments in a second pass. */
1677
1678 for (write_pass = 0; write_pass < 2; write_pass++)
1679 {
1680 int args_space_used = 0;
1681 int have_16_byte_aligned_arg = 0;
1682
1683 if (struct_return)
1684 {
1685 if (write_pass)
1686 {
1687 /* Push value address. */
1688 store_unsigned_integer (buf, 4, struct_addr);
1689 write_memory (sp, buf, 4);
1690 args_space_used += 4;
1691 }
1692 else
1693 args_space += 4;
1694 }
1695
1696 for (i = 0; i < nargs; i++)
1697 {
1698 int len = TYPE_LENGTH (value_enclosing_type (args[i]));
1699
1700 if (write_pass)
1701 {
1702 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
1703 args_space_used = align_up (args_space_used, 16);
1704
1705 write_memory (sp + args_space_used,
1706 value_contents_all (args[i]), len);
1707 /* The System V ABI says that:
1708
1709 "An argument's size is increased, if necessary, to make it a
1710 multiple of [32-bit] words. This may require tail padding,
1711 depending on the size of the argument."
1712
1713 This makes sure the stack stays word-aligned. */
1714 args_space_used += align_up (len, 4);
1715 }
1716 else
1717 {
1718 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
1719 {
1720 args_space = align_up (args_space, 16);
1721 have_16_byte_aligned_arg = 1;
1722 }
1723 args_space += align_up (len, 4);
1724 }
1725 }
1726
1727 if (!write_pass)
1728 {
1729 if (have_16_byte_aligned_arg)
1730 args_space = align_up (args_space, 16);
1731 sp -= args_space;
1732 }
1733 }
1734
1735 /* Store return address. */
1736 sp -= 4;
1737 store_unsigned_integer (buf, 4, bp_addr);
1738 write_memory (sp, buf, 4);
1739
1740 /* Finally, update the stack pointer... */
1741 store_unsigned_integer (buf, 4, sp);
1742 regcache_cooked_write (regcache, I386_ESP_REGNUM, buf);
1743
1744 /* ...and fake a frame pointer. */
1745 regcache_cooked_write (regcache, I386_EBP_REGNUM, buf);
1746
1747 /* MarkK wrote: This "+ 8" is all over the place:
1748 (i386_frame_this_id, i386_sigtramp_frame_this_id,
1749 i386_dummy_id). It's there, since all frame unwinders for
1750 a given target have to agree (within a certain margin) on the
1751 definition of the stack address of a frame. Otherwise frame id
1752 comparison might not work correctly. Since DWARF2/GCC uses the
1753 stack address *before* the function call as a frame's CFA. On
1754 the i386, when %ebp is used as a frame pointer, the offset
1755 between the contents %ebp and the CFA as defined by GCC. */
1756 return sp + 8;
1757 }
1758
1759 /* These registers are used for returning integers (and on some
1760 targets also for returning `struct' and `union' values when their
1761 size and alignment match an integer type). */
1762 #define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
1763 #define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
1764
1765 /* Read, for architecture GDBARCH, a function return value of TYPE
1766 from REGCACHE, and copy that into VALBUF. */
1767
1768 static void
1769 i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
1770 struct regcache *regcache, gdb_byte *valbuf)
1771 {
1772 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1773 int len = TYPE_LENGTH (type);
1774 gdb_byte buf[I386_MAX_REGISTER_SIZE];
1775
1776 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1777 {
1778 if (tdep->st0_regnum < 0)
1779 {
1780 warning (_("Cannot find floating-point return value."));
1781 memset (valbuf, 0, len);
1782 return;
1783 }
1784
1785 /* Floating-point return values can be found in %st(0). Convert
1786 its contents to the desired type. This is probably not
1787 exactly how it would happen on the target itself, but it is
1788 the best we can do. */
1789 regcache_raw_read (regcache, I386_ST0_REGNUM, buf);
1790 convert_typed_floating (buf, builtin_type_i387_ext, valbuf, type);
1791 }
1792 else
1793 {
1794 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
1795 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
1796
1797 if (len <= low_size)
1798 {
1799 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
1800 memcpy (valbuf, buf, len);
1801 }
1802 else if (len <= (low_size + high_size))
1803 {
1804 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
1805 memcpy (valbuf, buf, low_size);
1806 regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
1807 memcpy (valbuf + low_size, buf, len - low_size);
1808 }
1809 else
1810 internal_error (__FILE__, __LINE__,
1811 _("Cannot extract return value of %d bytes long."), len);
1812 }
1813 }
1814
1815 /* Write, for architecture GDBARCH, a function return value of TYPE
1816 from VALBUF into REGCACHE. */
1817
1818 static void
1819 i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
1820 struct regcache *regcache, const gdb_byte *valbuf)
1821 {
1822 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1823 int len = TYPE_LENGTH (type);
1824
1825 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1826 {
1827 ULONGEST fstat;
1828 gdb_byte buf[I386_MAX_REGISTER_SIZE];
1829
1830 if (tdep->st0_regnum < 0)
1831 {
1832 warning (_("Cannot set floating-point return value."));
1833 return;
1834 }
1835
1836 /* Returning floating-point values is a bit tricky. Apart from
1837 storing the return value in %st(0), we have to simulate the
1838 state of the FPU at function return point. */
1839
1840 /* Convert the value found in VALBUF to the extended
1841 floating-point format used by the FPU. This is probably
1842 not exactly how it would happen on the target itself, but
1843 it is the best we can do. */
1844 convert_typed_floating (valbuf, type, buf, builtin_type_i387_ext);
1845 regcache_raw_write (regcache, I386_ST0_REGNUM, buf);
1846
1847 /* Set the top of the floating-point register stack to 7. The
1848 actual value doesn't really matter, but 7 is what a normal
1849 function return would end up with if the program started out
1850 with a freshly initialized FPU. */
1851 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
1852 fstat |= (7 << 11);
1853 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM (tdep), fstat);
1854
1855 /* Mark %st(1) through %st(7) as empty. Since we set the top of
1856 the floating-point register stack to 7, the appropriate value
1857 for the tag word is 0x3fff. */
1858 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM (tdep), 0x3fff);
1859 }
1860 else
1861 {
1862 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
1863 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
1864
1865 if (len <= low_size)
1866 regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
1867 else if (len <= (low_size + high_size))
1868 {
1869 regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
1870 regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
1871 len - low_size, valbuf + low_size);
1872 }
1873 else
1874 internal_error (__FILE__, __LINE__,
1875 _("Cannot store return value of %d bytes long."), len);
1876 }
1877 }
1878 \f
1879
1880 /* This is the variable that is set with "set struct-convention", and
1881 its legitimate values. */
1882 static const char default_struct_convention[] = "default";
1883 static const char pcc_struct_convention[] = "pcc";
1884 static const char reg_struct_convention[] = "reg";
1885 static const char *valid_conventions[] =
1886 {
1887 default_struct_convention,
1888 pcc_struct_convention,
1889 reg_struct_convention,
1890 NULL
1891 };
1892 static const char *struct_convention = default_struct_convention;
1893
1894 /* Return non-zero if TYPE, which is assumed to be a structure,
1895 a union type, or an array type, should be returned in registers
1896 for architecture GDBARCH. */
1897
1898 static int
1899 i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
1900 {
1901 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1902 enum type_code code = TYPE_CODE (type);
1903 int len = TYPE_LENGTH (type);
1904
1905 gdb_assert (code == TYPE_CODE_STRUCT
1906 || code == TYPE_CODE_UNION
1907 || code == TYPE_CODE_ARRAY);
1908
1909 if (struct_convention == pcc_struct_convention
1910 || (struct_convention == default_struct_convention
1911 && tdep->struct_return == pcc_struct_return))
1912 return 0;
1913
1914 /* Structures consisting of a single `float', `double' or 'long
1915 double' member are returned in %st(0). */
1916 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
1917 {
1918 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
1919 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1920 return (len == 4 || len == 8 || len == 12);
1921 }
1922
1923 return (len == 1 || len == 2 || len == 4 || len == 8);
1924 }
1925
1926 /* Determine, for architecture GDBARCH, how a return value of TYPE
1927 should be returned. If it is supposed to be returned in registers,
1928 and READBUF is non-zero, read the appropriate value from REGCACHE,
1929 and copy it into READBUF. If WRITEBUF is non-zero, write the value
1930 from WRITEBUF into REGCACHE. */
1931
1932 static enum return_value_convention
1933 i386_return_value (struct gdbarch *gdbarch, struct type *func_type,
1934 struct type *type, struct regcache *regcache,
1935 gdb_byte *readbuf, const gdb_byte *writebuf)
1936 {
1937 enum type_code code = TYPE_CODE (type);
1938
1939 if (((code == TYPE_CODE_STRUCT
1940 || code == TYPE_CODE_UNION
1941 || code == TYPE_CODE_ARRAY)
1942 && !i386_reg_struct_return_p (gdbarch, type))
1943 /* 128-bit decimal float uses the struct return convention. */
1944 || (code == TYPE_CODE_DECFLOAT && TYPE_LENGTH (type) == 16))
1945 {
1946 /* The System V ABI says that:
1947
1948 "A function that returns a structure or union also sets %eax
1949 to the value of the original address of the caller's area
1950 before it returns. Thus when the caller receives control
1951 again, the address of the returned object resides in register
1952 %eax and can be used to access the object."
1953
1954 So the ABI guarantees that we can always find the return
1955 value just after the function has returned. */
1956
1957 /* Note that the ABI doesn't mention functions returning arrays,
1958 which is something possible in certain languages such as Ada.
1959 In this case, the value is returned as if it was wrapped in
1960 a record, so the convention applied to records also applies
1961 to arrays. */
1962
1963 if (readbuf)
1964 {
1965 ULONGEST addr;
1966
1967 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
1968 read_memory (addr, readbuf, TYPE_LENGTH (type));
1969 }
1970
1971 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
1972 }
1973
1974 /* This special case is for structures consisting of a single
1975 `float', `double' or 'long double' member. These structures are
1976 returned in %st(0). For these structures, we call ourselves
1977 recursively, changing TYPE into the type of the first member of
1978 the structure. Since that should work for all structures that
1979 have only one member, we don't bother to check the member's type
1980 here. */
1981 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
1982 {
1983 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
1984 return i386_return_value (gdbarch, func_type, type, regcache,
1985 readbuf, writebuf);
1986 }
1987
1988 if (readbuf)
1989 i386_extract_return_value (gdbarch, type, regcache, readbuf);
1990 if (writebuf)
1991 i386_store_return_value (gdbarch, type, regcache, writebuf);
1992
1993 return RETURN_VALUE_REGISTER_CONVENTION;
1994 }
1995 \f
1996
1997 /* Type for %eflags. */
1998 struct type *i386_eflags_type;
1999
2000 /* Type for %mxcsr. */
2001 struct type *i386_mxcsr_type;
2002
2003 /* Construct types for ISA-specific registers. */
2004 static void
2005 i386_init_types (void)
2006 {
2007 struct type *type;
2008
2009 type = init_flags_type ("builtin_type_i386_eflags", 4);
2010 append_flags_type_flag (type, 0, "CF");
2011 append_flags_type_flag (type, 1, NULL);
2012 append_flags_type_flag (type, 2, "PF");
2013 append_flags_type_flag (type, 4, "AF");
2014 append_flags_type_flag (type, 6, "ZF");
2015 append_flags_type_flag (type, 7, "SF");
2016 append_flags_type_flag (type, 8, "TF");
2017 append_flags_type_flag (type, 9, "IF");
2018 append_flags_type_flag (type, 10, "DF");
2019 append_flags_type_flag (type, 11, "OF");
2020 append_flags_type_flag (type, 14, "NT");
2021 append_flags_type_flag (type, 16, "RF");
2022 append_flags_type_flag (type, 17, "VM");
2023 append_flags_type_flag (type, 18, "AC");
2024 append_flags_type_flag (type, 19, "VIF");
2025 append_flags_type_flag (type, 20, "VIP");
2026 append_flags_type_flag (type, 21, "ID");
2027 i386_eflags_type = type;
2028
2029 type = init_flags_type ("builtin_type_i386_mxcsr", 4);
2030 append_flags_type_flag (type, 0, "IE");
2031 append_flags_type_flag (type, 1, "DE");
2032 append_flags_type_flag (type, 2, "ZE");
2033 append_flags_type_flag (type, 3, "OE");
2034 append_flags_type_flag (type, 4, "UE");
2035 append_flags_type_flag (type, 5, "PE");
2036 append_flags_type_flag (type, 6, "DAZ");
2037 append_flags_type_flag (type, 7, "IM");
2038 append_flags_type_flag (type, 8, "DM");
2039 append_flags_type_flag (type, 9, "ZM");
2040 append_flags_type_flag (type, 10, "OM");
2041 append_flags_type_flag (type, 11, "UM");
2042 append_flags_type_flag (type, 12, "PM");
2043 append_flags_type_flag (type, 15, "FZ");
2044 i386_mxcsr_type = type;
2045 }
2046
2047 /* Construct vector type for MMX registers. */
2048 struct type *
2049 i386_mmx_type (struct gdbarch *gdbarch)
2050 {
2051 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2052
2053 if (!tdep->i386_mmx_type)
2054 {
2055 /* The type we're building is this: */
2056 #if 0
2057 union __gdb_builtin_type_vec64i
2058 {
2059 int64_t uint64;
2060 int32_t v2_int32[2];
2061 int16_t v4_int16[4];
2062 int8_t v8_int8[8];
2063 };
2064 #endif
2065
2066 struct type *t;
2067
2068 t = init_composite_type ("__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
2069 append_composite_type_field (t, "uint64", builtin_type_int64);
2070 append_composite_type_field (t, "v2_int32",
2071 init_vector_type (builtin_type_int32, 2));
2072 append_composite_type_field (t, "v4_int16",
2073 init_vector_type (builtin_type_int16, 4));
2074 append_composite_type_field (t, "v8_int8",
2075 init_vector_type (builtin_type_int8, 8));
2076
2077 TYPE_VECTOR (t) = 1;
2078 TYPE_NAME (t) = "builtin_type_vec64i";
2079 tdep->i386_mmx_type = t;
2080 }
2081
2082 return tdep->i386_mmx_type;
2083 }
2084
2085 struct type *
2086 i386_sse_type (struct gdbarch *gdbarch)
2087 {
2088 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2089
2090 if (!tdep->i386_sse_type)
2091 {
2092 /* The type we're building is this: */
2093 #if 0
2094 union __gdb_builtin_type_vec128i
2095 {
2096 int128_t uint128;
2097 int64_t v2_int64[2];
2098 int32_t v4_int32[4];
2099 int16_t v8_int16[8];
2100 int8_t v16_int8[16];
2101 double v2_double[2];
2102 float v4_float[4];
2103 };
2104 #endif
2105
2106 struct type *t;
2107
2108 t = init_composite_type ("__gdb_builtin_type_vec128i", TYPE_CODE_UNION);
2109 append_composite_type_field (t, "v4_float",
2110 init_vector_type (builtin_type (gdbarch)
2111 ->builtin_float, 4));
2112 append_composite_type_field (t, "v2_double",
2113 init_vector_type (builtin_type (gdbarch)
2114 ->builtin_double, 2));
2115 append_composite_type_field (t, "v16_int8",
2116 init_vector_type (builtin_type_int8, 16));
2117 append_composite_type_field (t, "v8_int16",
2118 init_vector_type (builtin_type_int16, 8));
2119 append_composite_type_field (t, "v4_int32",
2120 init_vector_type (builtin_type_int32, 4));
2121 append_composite_type_field (t, "v2_int64",
2122 init_vector_type (builtin_type_int64, 2));
2123 append_composite_type_field (t, "uint128", builtin_type_int128);
2124
2125 TYPE_VECTOR (t) = 1;
2126 TYPE_NAME (t) = "builtin_type_vec128i";
2127 tdep->i386_sse_type = t;
2128 }
2129
2130 return tdep->i386_sse_type;
2131 }
2132
2133 /* Return the GDB type object for the "standard" data type of data in
2134 register REGNUM. Perhaps %esi and %edi should go here, but
2135 potentially they could be used for things other than address. */
2136
2137 static struct type *
2138 i386_register_type (struct gdbarch *gdbarch, int regnum)
2139 {
2140 if (regnum == I386_EIP_REGNUM)
2141 return builtin_type (gdbarch)->builtin_func_ptr;
2142
2143 if (regnum == I386_EFLAGS_REGNUM)
2144 return i386_eflags_type;
2145
2146 if (regnum == I386_EBP_REGNUM || regnum == I386_ESP_REGNUM)
2147 return builtin_type (gdbarch)->builtin_data_ptr;
2148
2149 if (i386_fp_regnum_p (gdbarch, regnum))
2150 return builtin_type_i387_ext;
2151
2152 if (i386_mmx_regnum_p (gdbarch, regnum))
2153 return i386_mmx_type (gdbarch);
2154
2155 if (i386_sse_regnum_p (gdbarch, regnum))
2156 return i386_sse_type (gdbarch);
2157
2158 if (regnum == I387_MXCSR_REGNUM (gdbarch_tdep (gdbarch)))
2159 return i386_mxcsr_type;
2160
2161 return builtin_type (gdbarch)->builtin_int;
2162 }
2163
2164 /* Map a cooked register onto a raw register or memory. For the i386,
2165 the MMX registers need to be mapped onto floating point registers. */
2166
2167 static int
2168 i386_mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
2169 {
2170 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
2171 int mmxreg, fpreg;
2172 ULONGEST fstat;
2173 int tos;
2174
2175 mmxreg = regnum - tdep->mm0_regnum;
2176 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
2177 tos = (fstat >> 11) & 0x7;
2178 fpreg = (mmxreg + tos) % 8;
2179
2180 return (I387_ST0_REGNUM (tdep) + fpreg);
2181 }
2182
2183 static void
2184 i386_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2185 int regnum, gdb_byte *buf)
2186 {
2187 if (i386_mmx_regnum_p (gdbarch, regnum))
2188 {
2189 gdb_byte mmx_buf[MAX_REGISTER_SIZE];
2190 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
2191
2192 /* Extract (always little endian). */
2193 regcache_raw_read (regcache, fpnum, mmx_buf);
2194 memcpy (buf, mmx_buf, register_size (gdbarch, regnum));
2195 }
2196 else
2197 regcache_raw_read (regcache, regnum, buf);
2198 }
2199
2200 static void
2201 i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2202 int regnum, const gdb_byte *buf)
2203 {
2204 if (i386_mmx_regnum_p (gdbarch, regnum))
2205 {
2206 gdb_byte mmx_buf[MAX_REGISTER_SIZE];
2207 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
2208
2209 /* Read ... */
2210 regcache_raw_read (regcache, fpnum, mmx_buf);
2211 /* ... Modify ... (always little endian). */
2212 memcpy (mmx_buf, buf, register_size (gdbarch, regnum));
2213 /* ... Write. */
2214 regcache_raw_write (regcache, fpnum, mmx_buf);
2215 }
2216 else
2217 regcache_raw_write (regcache, regnum, buf);
2218 }
2219 \f
2220
2221 /* Return the register number of the register allocated by GCC after
2222 REGNUM, or -1 if there is no such register. */
2223
2224 static int
2225 i386_next_regnum (int regnum)
2226 {
2227 /* GCC allocates the registers in the order:
2228
2229 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
2230
2231 Since storing a variable in %esp doesn't make any sense we return
2232 -1 for %ebp and for %esp itself. */
2233 static int next_regnum[] =
2234 {
2235 I386_EDX_REGNUM, /* Slot for %eax. */
2236 I386_EBX_REGNUM, /* Slot for %ecx. */
2237 I386_ECX_REGNUM, /* Slot for %edx. */
2238 I386_ESI_REGNUM, /* Slot for %ebx. */
2239 -1, -1, /* Slots for %esp and %ebp. */
2240 I386_EDI_REGNUM, /* Slot for %esi. */
2241 I386_EBP_REGNUM /* Slot for %edi. */
2242 };
2243
2244 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
2245 return next_regnum[regnum];
2246
2247 return -1;
2248 }
2249
2250 /* Return nonzero if a value of type TYPE stored in register REGNUM
2251 needs any special handling. */
2252
2253 static int
2254 i386_convert_register_p (struct gdbarch *gdbarch, int regnum, struct type *type)
2255 {
2256 int len = TYPE_LENGTH (type);
2257
2258 /* Values may be spread across multiple registers. Most debugging
2259 formats aren't expressive enough to specify the locations, so
2260 some heuristics is involved. Right now we only handle types that
2261 have a length that is a multiple of the word size, since GCC
2262 doesn't seem to put any other types into registers. */
2263 if (len > 4 && len % 4 == 0)
2264 {
2265 int last_regnum = regnum;
2266
2267 while (len > 4)
2268 {
2269 last_regnum = i386_next_regnum (last_regnum);
2270 len -= 4;
2271 }
2272
2273 if (last_regnum != -1)
2274 return 1;
2275 }
2276
2277 return i387_convert_register_p (gdbarch, regnum, type);
2278 }
2279
2280 /* Read a value of type TYPE from register REGNUM in frame FRAME, and
2281 return its contents in TO. */
2282
2283 static void
2284 i386_register_to_value (struct frame_info *frame, int regnum,
2285 struct type *type, gdb_byte *to)
2286 {
2287 struct gdbarch *gdbarch = get_frame_arch (frame);
2288 int len = TYPE_LENGTH (type);
2289
2290 /* FIXME: kettenis/20030609: What should we do if REGNUM isn't
2291 available in FRAME (i.e. if it wasn't saved)? */
2292
2293 if (i386_fp_regnum_p (gdbarch, regnum))
2294 {
2295 i387_register_to_value (frame, regnum, type, to);
2296 return;
2297 }
2298
2299 /* Read a value spread across multiple registers. */
2300
2301 gdb_assert (len > 4 && len % 4 == 0);
2302
2303 while (len > 0)
2304 {
2305 gdb_assert (regnum != -1);
2306 gdb_assert (register_size (gdbarch, regnum) == 4);
2307
2308 get_frame_register (frame, regnum, to);
2309 regnum = i386_next_regnum (regnum);
2310 len -= 4;
2311 to += 4;
2312 }
2313 }
2314
2315 /* Write the contents FROM of a value of type TYPE into register
2316 REGNUM in frame FRAME. */
2317
2318 static void
2319 i386_value_to_register (struct frame_info *frame, int regnum,
2320 struct type *type, const gdb_byte *from)
2321 {
2322 int len = TYPE_LENGTH (type);
2323
2324 if (i386_fp_regnum_p (get_frame_arch (frame), regnum))
2325 {
2326 i387_value_to_register (frame, regnum, type, from);
2327 return;
2328 }
2329
2330 /* Write a value spread across multiple registers. */
2331
2332 gdb_assert (len > 4 && len % 4 == 0);
2333
2334 while (len > 0)
2335 {
2336 gdb_assert (regnum != -1);
2337 gdb_assert (register_size (get_frame_arch (frame), regnum) == 4);
2338
2339 put_frame_register (frame, regnum, from);
2340 regnum = i386_next_regnum (regnum);
2341 len -= 4;
2342 from += 4;
2343 }
2344 }
2345 \f
2346 /* Supply register REGNUM from the buffer specified by GREGS and LEN
2347 in the general-purpose register set REGSET to register cache
2348 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
2349
2350 void
2351 i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
2352 int regnum, const void *gregs, size_t len)
2353 {
2354 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
2355 const gdb_byte *regs = gregs;
2356 int i;
2357
2358 gdb_assert (len == tdep->sizeof_gregset);
2359
2360 for (i = 0; i < tdep->gregset_num_regs; i++)
2361 {
2362 if ((regnum == i || regnum == -1)
2363 && tdep->gregset_reg_offset[i] != -1)
2364 regcache_raw_supply (regcache, i, regs + tdep->gregset_reg_offset[i]);
2365 }
2366 }
2367
2368 /* Collect register REGNUM from the register cache REGCACHE and store
2369 it in the buffer specified by GREGS and LEN as described by the
2370 general-purpose register set REGSET. If REGNUM is -1, do this for
2371 all registers in REGSET. */
2372
2373 void
2374 i386_collect_gregset (const struct regset *regset,
2375 const struct regcache *regcache,
2376 int regnum, void *gregs, size_t len)
2377 {
2378 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
2379 gdb_byte *regs = gregs;
2380 int i;
2381
2382 gdb_assert (len == tdep->sizeof_gregset);
2383
2384 for (i = 0; i < tdep->gregset_num_regs; i++)
2385 {
2386 if ((regnum == i || regnum == -1)
2387 && tdep->gregset_reg_offset[i] != -1)
2388 regcache_raw_collect (regcache, i, regs + tdep->gregset_reg_offset[i]);
2389 }
2390 }
2391
2392 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
2393 in the floating-point register set REGSET to register cache
2394 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
2395
2396 static void
2397 i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
2398 int regnum, const void *fpregs, size_t len)
2399 {
2400 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
2401
2402 if (len == I387_SIZEOF_FXSAVE)
2403 {
2404 i387_supply_fxsave (regcache, regnum, fpregs);
2405 return;
2406 }
2407
2408 gdb_assert (len == tdep->sizeof_fpregset);
2409 i387_supply_fsave (regcache, regnum, fpregs);
2410 }
2411
2412 /* Collect register REGNUM from the register cache REGCACHE and store
2413 it in the buffer specified by FPREGS and LEN as described by the
2414 floating-point register set REGSET. If REGNUM is -1, do this for
2415 all registers in REGSET. */
2416
2417 static void
2418 i386_collect_fpregset (const struct regset *regset,
2419 const struct regcache *regcache,
2420 int regnum, void *fpregs, size_t len)
2421 {
2422 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
2423
2424 if (len == I387_SIZEOF_FXSAVE)
2425 {
2426 i387_collect_fxsave (regcache, regnum, fpregs);
2427 return;
2428 }
2429
2430 gdb_assert (len == tdep->sizeof_fpregset);
2431 i387_collect_fsave (regcache, regnum, fpregs);
2432 }
2433
2434 /* Return the appropriate register set for the core section identified
2435 by SECT_NAME and SECT_SIZE. */
2436
2437 const struct regset *
2438 i386_regset_from_core_section (struct gdbarch *gdbarch,
2439 const char *sect_name, size_t sect_size)
2440 {
2441 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2442
2443 if (strcmp (sect_name, ".reg") == 0 && sect_size == tdep->sizeof_gregset)
2444 {
2445 if (tdep->gregset == NULL)
2446 tdep->gregset = regset_alloc (gdbarch, i386_supply_gregset,
2447 i386_collect_gregset);
2448 return tdep->gregset;
2449 }
2450
2451 if ((strcmp (sect_name, ".reg2") == 0 && sect_size == tdep->sizeof_fpregset)
2452 || (strcmp (sect_name, ".reg-xfp") == 0
2453 && sect_size == I387_SIZEOF_FXSAVE))
2454 {
2455 if (tdep->fpregset == NULL)
2456 tdep->fpregset = regset_alloc (gdbarch, i386_supply_fpregset,
2457 i386_collect_fpregset);
2458 return tdep->fpregset;
2459 }
2460
2461 return NULL;
2462 }
2463 \f
2464
2465 /* Stuff for WIN32 PE style DLL's but is pretty generic really. */
2466
2467 CORE_ADDR
2468 i386_pe_skip_trampoline_code (CORE_ADDR pc, char *name)
2469 {
2470 if (pc && read_memory_unsigned_integer (pc, 2) == 0x25ff) /* jmp *(dest) */
2471 {
2472 unsigned long indirect = read_memory_unsigned_integer (pc + 2, 4);
2473 struct minimal_symbol *indsym =
2474 indirect ? lookup_minimal_symbol_by_pc (indirect) : 0;
2475 char *symname = indsym ? SYMBOL_LINKAGE_NAME (indsym) : 0;
2476
2477 if (symname)
2478 {
2479 if (strncmp (symname, "__imp_", 6) == 0
2480 || strncmp (symname, "_imp_", 5) == 0)
2481 return name ? 1 : read_memory_unsigned_integer (indirect, 4);
2482 }
2483 }
2484 return 0; /* Not a trampoline. */
2485 }
2486 \f
2487
2488 /* Return whether the THIS_FRAME corresponds to a sigtramp
2489 routine. */
2490
2491 int
2492 i386_sigtramp_p (struct frame_info *this_frame)
2493 {
2494 CORE_ADDR pc = get_frame_pc (this_frame);
2495 char *name;
2496
2497 find_pc_partial_function (pc, &name, NULL, NULL);
2498 return (name && strcmp ("_sigtramp", name) == 0);
2499 }
2500 \f
2501
2502 /* We have two flavours of disassembly. The machinery on this page
2503 deals with switching between those. */
2504
2505 static int
2506 i386_print_insn (bfd_vma pc, struct disassemble_info *info)
2507 {
2508 gdb_assert (disassembly_flavor == att_flavor
2509 || disassembly_flavor == intel_flavor);
2510
2511 /* FIXME: kettenis/20020915: Until disassembler_options is properly
2512 constified, cast to prevent a compiler warning. */
2513 info->disassembler_options = (char *) disassembly_flavor;
2514
2515 return print_insn_i386 (pc, info);
2516 }
2517 \f
2518
2519 /* There are a few i386 architecture variants that differ only
2520 slightly from the generic i386 target. For now, we don't give them
2521 their own source file, but include them here. As a consequence,
2522 they'll always be included. */
2523
2524 /* System V Release 4 (SVR4). */
2525
2526 /* Return whether THIS_FRAME corresponds to a SVR4 sigtramp
2527 routine. */
2528
2529 static int
2530 i386_svr4_sigtramp_p (struct frame_info *this_frame)
2531 {
2532 CORE_ADDR pc = get_frame_pc (this_frame);
2533 char *name;
2534
2535 /* UnixWare uses _sigacthandler. The origin of the other symbols is
2536 currently unknown. */
2537 find_pc_partial_function (pc, &name, NULL, NULL);
2538 return (name && (strcmp ("_sigreturn", name) == 0
2539 || strcmp ("_sigacthandler", name) == 0
2540 || strcmp ("sigvechandler", name) == 0));
2541 }
2542
2543 /* Assuming THIS_FRAME is for a SVR4 sigtramp routine, return the
2544 address of the associated sigcontext (ucontext) structure. */
2545
2546 static CORE_ADDR
2547 i386_svr4_sigcontext_addr (struct frame_info *this_frame)
2548 {
2549 gdb_byte buf[4];
2550 CORE_ADDR sp;
2551
2552 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2553 sp = extract_unsigned_integer (buf, 4);
2554
2555 return read_memory_unsigned_integer (sp + 8, 4);
2556 }
2557 \f
2558
2559 /* Generic ELF. */
2560
2561 void
2562 i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2563 {
2564 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
2565 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
2566 }
2567
2568 /* System V Release 4 (SVR4). */
2569
2570 void
2571 i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2572 {
2573 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2574
2575 /* System V Release 4 uses ELF. */
2576 i386_elf_init_abi (info, gdbarch);
2577
2578 /* System V Release 4 has shared libraries. */
2579 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
2580
2581 tdep->sigtramp_p = i386_svr4_sigtramp_p;
2582 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
2583 tdep->sc_pc_offset = 36 + 14 * 4;
2584 tdep->sc_sp_offset = 36 + 17 * 4;
2585
2586 tdep->jb_pc_offset = 20;
2587 }
2588
2589 /* DJGPP. */
2590
2591 static void
2592 i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2593 {
2594 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2595
2596 /* DJGPP doesn't have any special frames for signal handlers. */
2597 tdep->sigtramp_p = NULL;
2598
2599 tdep->jb_pc_offset = 36;
2600
2601 /* DJGPP does not support the SSE registers. */
2602 tdep->num_xmm_regs = 0;
2603 set_gdbarch_num_regs (gdbarch, I386_NUM_GREGS + I386_NUM_FREGS);
2604 }
2605 \f
2606
2607 /* i386 register groups. In addition to the normal groups, add "mmx"
2608 and "sse". */
2609
2610 static struct reggroup *i386_sse_reggroup;
2611 static struct reggroup *i386_mmx_reggroup;
2612
2613 static void
2614 i386_init_reggroups (void)
2615 {
2616 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
2617 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
2618 }
2619
2620 static void
2621 i386_add_reggroups (struct gdbarch *gdbarch)
2622 {
2623 reggroup_add (gdbarch, i386_sse_reggroup);
2624 reggroup_add (gdbarch, i386_mmx_reggroup);
2625 reggroup_add (gdbarch, general_reggroup);
2626 reggroup_add (gdbarch, float_reggroup);
2627 reggroup_add (gdbarch, all_reggroup);
2628 reggroup_add (gdbarch, save_reggroup);
2629 reggroup_add (gdbarch, restore_reggroup);
2630 reggroup_add (gdbarch, vector_reggroup);
2631 reggroup_add (gdbarch, system_reggroup);
2632 }
2633
2634 int
2635 i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
2636 struct reggroup *group)
2637 {
2638 int sse_regnum_p = (i386_sse_regnum_p (gdbarch, regnum)
2639 || i386_mxcsr_regnum_p (gdbarch, regnum));
2640 int fp_regnum_p = (i386_fp_regnum_p (gdbarch, regnum)
2641 || i386_fpc_regnum_p (gdbarch, regnum));
2642 int mmx_regnum_p = (i386_mmx_regnum_p (gdbarch, regnum));
2643
2644 if (group == i386_mmx_reggroup)
2645 return mmx_regnum_p;
2646 if (group == i386_sse_reggroup)
2647 return sse_regnum_p;
2648 if (group == vector_reggroup)
2649 return (mmx_regnum_p || sse_regnum_p);
2650 if (group == float_reggroup)
2651 return fp_regnum_p;
2652 if (group == general_reggroup)
2653 return (!fp_regnum_p && !mmx_regnum_p && !sse_regnum_p);
2654
2655 return default_register_reggroup_p (gdbarch, regnum, group);
2656 }
2657 \f
2658
2659 /* Get the ARGIth function argument for the current function. */
2660
2661 static CORE_ADDR
2662 i386_fetch_pointer_argument (struct frame_info *frame, int argi,
2663 struct type *type)
2664 {
2665 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
2666 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4);
2667 }
2668
2669 static void
2670 i386_skip_permanent_breakpoint (struct regcache *regcache)
2671 {
2672 CORE_ADDR current_pc = regcache_read_pc (regcache);
2673
2674 /* On i386, breakpoint is exactly 1 byte long, so we just
2675 adjust the PC in the regcache. */
2676 current_pc += 1;
2677 regcache_write_pc (regcache, current_pc);
2678 }
2679
2680
2681 #define PREFIX_REPZ 0x01
2682 #define PREFIX_REPNZ 0x02
2683 #define PREFIX_LOCK 0x04
2684 #define PREFIX_DATA 0x08
2685 #define PREFIX_ADDR 0x10
2686
2687 /* operand size */
2688 enum
2689 {
2690 OT_BYTE = 0,
2691 OT_WORD,
2692 OT_LONG,
2693 };
2694
2695 /* i386 arith/logic operations */
2696 enum
2697 {
2698 OP_ADDL,
2699 OP_ORL,
2700 OP_ADCL,
2701 OP_SBBL,
2702 OP_ANDL,
2703 OP_SUBL,
2704 OP_XORL,
2705 OP_CMPL,
2706 };
2707
2708 struct i386_record_s
2709 {
2710 struct regcache *regcache;
2711 CORE_ADDR addr;
2712 int aflag;
2713 int dflag;
2714 int override;
2715 uint8_t modrm;
2716 uint8_t mod, reg, rm;
2717 int ot;
2718 };
2719
2720 /* Parse "modrm" part in current memory address that irp->addr point to
2721 Return -1 if something wrong. */
2722
2723 static int
2724 i386_record_modrm (struct i386_record_s *irp)
2725 {
2726 if (target_read_memory (irp->addr, &irp->modrm, 1))
2727 {
2728 if (record_debug)
2729 printf_unfiltered (_("Process record: error reading memory at "
2730 "addr 0x%s len = 1.\n"),
2731 paddr_nz (irp->addr));
2732 return -1;
2733 }
2734 irp->addr++;
2735 irp->mod = (irp->modrm >> 6) & 3;
2736 irp->reg = (irp->modrm >> 3) & 7;
2737 irp->rm = irp->modrm & 7;
2738
2739 return 0;
2740 }
2741
2742 /* Get the memory address that current instruction write to and set it to
2743 the argument "addr".
2744 Return -1 if something wrong. */
2745
2746 static int
2747 i386_record_lea_modrm_addr (struct i386_record_s *irp, uint32_t * addr)
2748 {
2749 uint8_t tmpu8;
2750 uint16_t tmpu16;
2751 uint32_t tmpu32;
2752
2753 *addr = 0;
2754 if (irp->aflag)
2755 {
2756 /* 32 bits */
2757 int havesib = 0;
2758 uint8_t scale = 0;
2759 uint8_t index = 0;
2760 uint8_t base = irp->rm;
2761
2762 if (base == 4)
2763 {
2764 havesib = 1;
2765 if (target_read_memory (irp->addr, &tmpu8, 1))
2766 {
2767 if (record_debug)
2768 printf_unfiltered (_("Process record: error reading memory "
2769 "at addr 0x%s len = 1.\n"),
2770 paddr_nz (irp->addr));
2771 return -1;
2772 }
2773 irp->addr++;
2774 scale = (tmpu8 >> 6) & 3;
2775 index = ((tmpu8 >> 3) & 7);
2776 base = (tmpu8 & 7);
2777 }
2778
2779 switch (irp->mod)
2780 {
2781 case 0:
2782 if ((base & 7) == 5)
2783 {
2784 base = 0xff;
2785 if (target_read_memory (irp->addr, (gdb_byte *) addr, 4))
2786 {
2787 if (record_debug)
2788 printf_unfiltered (_("Process record: error reading "
2789 "memory at addr 0x%s len = 4.\n"),
2790 paddr_nz (irp->addr));
2791 return -1;
2792 }
2793 irp->addr += 4;
2794 }
2795 else
2796 {
2797 *addr = 0;
2798 }
2799 break;
2800 case 1:
2801 if (target_read_memory (irp->addr, &tmpu8, 1))
2802 {
2803 if (record_debug)
2804 printf_unfiltered (_("Process record: error reading memory "
2805 "at addr 0x%s len = 1.\n"),
2806 paddr_nz (irp->addr));
2807 return -1;
2808 }
2809 irp->addr++;
2810 *addr = (int8_t) tmpu8;
2811 break;
2812 case 2:
2813 if (target_read_memory (irp->addr, (gdb_byte *) addr, 4))
2814 {
2815 if (record_debug)
2816 printf_unfiltered (_("Process record: error reading memory "
2817 "at addr 0x%s len = 4.\n"),
2818 paddr_nz (irp->addr));
2819 return -1;
2820 }
2821 irp->addr += 4;
2822 break;
2823 }
2824
2825 if (base != 0xff)
2826 {
2827 regcache_raw_read (irp->regcache, base, (gdb_byte *) & tmpu32);
2828 *addr += tmpu32;
2829 }
2830
2831 /* XXX: index == 4 is always invalid */
2832 if (havesib && (index != 4 || scale != 0))
2833 {
2834 regcache_raw_read (irp->regcache, index, (gdb_byte *) & tmpu32);
2835 *addr += tmpu32 << scale;
2836 }
2837 }
2838 else
2839 {
2840 /* 16 bits */
2841 switch (irp->mod)
2842 {
2843 case 0:
2844 if (irp->rm == 6)
2845 {
2846 if (target_read_memory
2847 (irp->addr, (gdb_byte *) & tmpu16, 2))
2848 {
2849 if (record_debug)
2850 printf_unfiltered (_("Process record: error reading "
2851 "memory at addr 0x%s len = 2.\n"),
2852 paddr_nz (irp->addr));
2853 return -1;
2854 }
2855 irp->addr += 2;
2856 *addr = (int16_t) tmpu16;
2857 irp->rm = 0;
2858 goto no_rm;
2859 }
2860 else
2861 {
2862 *addr = 0;
2863 }
2864 break;
2865 case 1:
2866 if (target_read_memory (irp->addr, &tmpu8, 1))
2867 {
2868 if (record_debug)
2869 printf_unfiltered (_("Process record: error reading memory "
2870 "at addr 0x%s len = 1.\n"),
2871 paddr_nz (irp->addr));
2872 return -1;
2873 }
2874 irp->addr++;
2875 *addr = (int8_t) tmpu8;
2876 break;
2877 case 2:
2878 if (target_read_memory (irp->addr, (gdb_byte *) & tmpu16, 2))
2879 {
2880 if (record_debug)
2881 printf_unfiltered (_("Process record: error reading memory "
2882 "at addr 0x%s len = 2.\n"),
2883 paddr_nz (irp->addr));
2884 return -1;
2885 }
2886 irp->addr += 2;
2887 *addr = (int16_t) tmpu16;
2888 break;
2889 }
2890
2891 switch (irp->rm)
2892 {
2893 case 0:
2894 regcache_raw_read (irp->regcache, I386_EBX_REGNUM,
2895 (gdb_byte *) & tmpu32);
2896 *addr += tmpu32;
2897 regcache_raw_read (irp->regcache, I386_ESI_REGNUM,
2898 (gdb_byte *) & tmpu32);
2899 *addr += tmpu32;
2900 break;
2901 case 1:
2902 regcache_raw_read (irp->regcache, I386_EBX_REGNUM,
2903 (gdb_byte *) & tmpu32);
2904 *addr += tmpu32;
2905 regcache_raw_read (irp->regcache, I386_EDI_REGNUM,
2906 (gdb_byte *) & tmpu32);
2907 *addr += tmpu32;
2908 break;
2909 case 2:
2910 regcache_raw_read (irp->regcache, I386_EBP_REGNUM,
2911 (gdb_byte *) & tmpu32);
2912 *addr += tmpu32;
2913 regcache_raw_read (irp->regcache, I386_ESI_REGNUM,
2914 (gdb_byte *) & tmpu32);
2915 *addr += tmpu32;
2916 break;
2917 case 3:
2918 regcache_raw_read (irp->regcache, I386_EBP_REGNUM,
2919 (gdb_byte *) & tmpu32);
2920 *addr += tmpu32;
2921 regcache_raw_read (irp->regcache, I386_EDI_REGNUM,
2922 (gdb_byte *) & tmpu32);
2923 *addr += tmpu32;
2924 break;
2925 case 4:
2926 regcache_raw_read (irp->regcache, I386_ESI_REGNUM,
2927 (gdb_byte *) & tmpu32);
2928 *addr += tmpu32;
2929 break;
2930 case 5:
2931 regcache_raw_read (irp->regcache, I386_EDI_REGNUM,
2932 (gdb_byte *) & tmpu32);
2933 *addr += tmpu32;
2934 break;
2935 case 6:
2936 regcache_raw_read (irp->regcache, I386_EBP_REGNUM,
2937 (gdb_byte *) & tmpu32);
2938 *addr += tmpu32;
2939 break;
2940 case 7:
2941 regcache_raw_read (irp->regcache, I386_EBX_REGNUM,
2942 (gdb_byte *) & tmpu32);
2943 *addr += tmpu32;
2944 break;
2945 }
2946 *addr &= 0xffff;
2947 }
2948
2949 no_rm:
2950 return 0;
2951 }
2952
2953 /* Record the value of the memory that willbe changed in current instruction
2954 to "record_arch_list".
2955 Return -1 if something wrong. */
2956
2957 static int
2958 i386_record_lea_modrm (struct i386_record_s *irp)
2959 {
2960 uint32_t addr;
2961
2962 if (irp->override)
2963 {
2964 if (record_debug)
2965 printf_unfiltered (_("Process record ignores the memory change "
2966 "of instruction at address 0x%s because it "
2967 "can't get the value of the segment register.\n"),
2968 paddr_nz (irp->addr));
2969 return 0;
2970 }
2971
2972 if (i386_record_lea_modrm_addr (irp, &addr))
2973 return -1;
2974
2975 if (record_arch_list_add_mem (addr, 1 << irp->ot))
2976 return -1;
2977
2978 return 0;
2979 }
2980
2981 /* Parse the current instruction and record the values of the registers and
2982 memory that will be changed in current instruction to "record_arch_list".
2983 Return -1 if something wrong. */
2984
2985 static int
2986 i386_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
2987 CORE_ADDR addr)
2988 {
2989 int prefixes = 0;
2990 uint8_t tmpu8;
2991 uint16_t tmpu16;
2992 uint32_t tmpu32;
2993 uint32_t opcode;
2994 struct i386_record_s ir;
2995
2996 bzero (&ir, sizeof (struct i386_record_s));
2997 ir.regcache = regcache;
2998 ir.addr = addr;
2999 ir.aflag = 1;
3000 ir.dflag = 1;
3001
3002 if (record_debug > 1)
3003 fprintf_unfiltered (gdb_stdlog, "Process record: i386_process_record "
3004 "addr = 0x%s\n",
3005 paddr_nz (ir.addr));
3006
3007 /* prefixes */
3008 while (1)
3009 {
3010 if (target_read_memory (ir.addr, &tmpu8, 1))
3011 {
3012 if (record_debug)
3013 printf_unfiltered (_("Process record: error reading memory at "
3014 "addr 0x%s len = 1.\n"),
3015 paddr_nz (ir.addr));
3016 return -1;
3017 }
3018 ir.addr++;
3019 switch (tmpu8)
3020 {
3021 case 0xf3:
3022 prefixes |= PREFIX_REPZ;
3023 break;
3024 case 0xf2:
3025 prefixes |= PREFIX_REPNZ;
3026 break;
3027 case 0xf0:
3028 prefixes |= PREFIX_LOCK;
3029 break;
3030 case 0x2e:
3031 ir.override = I386_CS_REGNUM;
3032 break;
3033 case 0x36:
3034 ir.override = I386_SS_REGNUM;
3035 break;
3036 case 0x3e:
3037 ir.override = I386_DS_REGNUM;
3038 break;
3039 case 0x26:
3040 ir.override = I386_ES_REGNUM;
3041 break;
3042 case 0x64:
3043 ir.override = I386_FS_REGNUM;
3044 break;
3045 case 0x65:
3046 ir.override = I386_GS_REGNUM;
3047 break;
3048 case 0x66:
3049 prefixes |= PREFIX_DATA;
3050 break;
3051 case 0x67:
3052 prefixes |= PREFIX_ADDR;
3053 break;
3054 default:
3055 goto out_prefixes;
3056 break;
3057 }
3058 }
3059 out_prefixes:
3060 if (prefixes & PREFIX_DATA)
3061 ir.dflag ^= 1;
3062 if (prefixes & PREFIX_ADDR)
3063 ir.aflag ^= 1;
3064
3065 /* now check op code */
3066 opcode = (uint32_t) tmpu8;
3067 reswitch:
3068 switch (opcode)
3069 {
3070 case 0x0f:
3071 if (target_read_memory (ir.addr, &tmpu8, 1))
3072 {
3073 if (record_debug)
3074 printf_unfiltered (_("Process record: error reading memory at "
3075 "addr 0x%s len = 1.\n"),
3076 paddr_nz (ir.addr));
3077 return -1;
3078 }
3079 ir.addr++;
3080 opcode = (uint16_t) tmpu8 | 0x0f00;
3081 goto reswitch;
3082 break;
3083
3084 /* arith & logic */
3085 case 0x00:
3086 case 0x01:
3087 case 0x02:
3088 case 0x03:
3089 case 0x04:
3090 case 0x05:
3091 case 0x08:
3092 case 0x09:
3093 case 0x0a:
3094 case 0x0b:
3095 case 0x0c:
3096 case 0x0d:
3097 case 0x10:
3098 case 0x11:
3099 case 0x12:
3100 case 0x13:
3101 case 0x14:
3102 case 0x15:
3103 case 0x18:
3104 case 0x19:
3105 case 0x1a:
3106 case 0x1b:
3107 case 0x1c:
3108 case 0x1d:
3109 case 0x20:
3110 case 0x21:
3111 case 0x22:
3112 case 0x23:
3113 case 0x24:
3114 case 0x25:
3115 case 0x28:
3116 case 0x29:
3117 case 0x2a:
3118 case 0x2b:
3119 case 0x2c:
3120 case 0x2d:
3121 case 0x30:
3122 case 0x31:
3123 case 0x32:
3124 case 0x33:
3125 case 0x34:
3126 case 0x35:
3127 case 0x38:
3128 case 0x39:
3129 case 0x3a:
3130 case 0x3b:
3131 case 0x3c:
3132 case 0x3d:
3133 if (((opcode >> 3) & 7) != OP_CMPL)
3134 {
3135 if ((opcode & 1) == 0)
3136 ir.ot = OT_BYTE;
3137 else
3138 ir.ot = ir.dflag + OT_WORD;
3139
3140 switch ((opcode >> 1) & 3)
3141 {
3142 /* OP Ev, Gv */
3143 case 0:
3144 if (i386_record_modrm (&ir))
3145 return -1;
3146 if (ir.mod != 3)
3147 {
3148 if (i386_record_lea_modrm (&ir))
3149 return -1;
3150 }
3151 else
3152 {
3153 if (ir.ot == OT_BYTE)
3154 ir.rm &= 0x3;
3155 if (record_arch_list_add_reg (ir.regcache, ir.rm))
3156 return -1;
3157 }
3158 break;
3159 /* OP Gv, Ev */
3160 case 1:
3161 if (i386_record_modrm (&ir))
3162 return -1;
3163 if (ir.ot == OT_BYTE)
3164 ir.reg &= 0x3;
3165 if (record_arch_list_add_reg (ir.regcache, ir.reg))
3166 return -1;
3167 break;
3168 /* OP A, Iv */
3169 case 2:
3170 if (record_arch_list_add_reg (ir.regcache, I386_EAX_REGNUM))
3171 return -1;
3172 break;
3173 }
3174 }
3175 if (record_arch_list_add_reg (ir.regcache, I386_EFLAGS_REGNUM))
3176 return -1;
3177 break;
3178
3179 /* GRP1 */
3180 case 0x80:
3181 case 0x81:
3182 case 0x82:
3183 case 0x83:
3184 if (i386_record_modrm (&ir))
3185 return -1;
3186
3187 if (ir.reg != OP_CMPL)
3188 {
3189 if ((opcode & 1) == 0)
3190 ir.ot = OT_BYTE;
3191 else
3192 ir.ot = ir.dflag + OT_WORD;
3193
3194 if (ir.mod != 3)
3195 {
3196 if (i386_record_lea_modrm (&ir))
3197 return -1;
3198 }
3199 else
3200 {
3201 if (record_arch_list_add_reg (ir.regcache, ir.rm))
3202 return -1;
3203 }
3204 }
3205 if (record_arch_list_add_reg (ir.regcache, I386_EFLAGS_REGNUM))
3206 return -1;
3207 break;
3208
3209 /* inv */
3210 case 0x40:
3211 case 0x41:
3212 case 0x42:
3213 case 0x43:
3214 case 0x44:
3215 case 0x45:
3216 case 0x46:
3217 case 0x47:
3218 /* dec */
3219 case 0x48:
3220 case 0x49:
3221 case 0x4a:
3222 case 0x4b:
3223 case 0x4c:
3224 case 0x4d:
3225 case 0x4e:
3226 case 0x4f:
3227 if (record_arch_list_add_reg (ir.regcache, opcode & 7))
3228 return -1;
3229 if (record_arch_list_add_reg (ir.regcache, I386_EFLAGS_REGNUM))
3230 return -1;
3231 break;
3232
3233 /* GRP3 */
3234 case 0xf6:
3235 case 0xf7:
3236 if ((opcode & 1) == 0)
3237 ir.ot = OT_BYTE;
3238 else
3239 ir.ot = ir.dflag + OT_WORD;
3240 if (i386_record_modrm (&ir))
3241 return -1;
3242
3243 switch (ir.reg)
3244 {
3245 /* test */
3246 case 0:
3247 if (record_arch_list_add_reg (ir.regcache, I386_EFLAGS_REGNUM))
3248 return -1;
3249 break;
3250 /* not */
3251 case 2:
3252 if (ir.mod != 3)
3253 {
3254 if (i386_record_lea_modrm (&ir))
3255 return -1;
3256 }
3257 else
3258 {
3259 if (ir.ot == OT_BYTE)
3260 ir.rm &= 0x3;
3261 if (record_arch_list_add_reg (ir.regcache, ir.rm))
3262 return -1;
3263 }
3264 break;
3265 /* neg */
3266 case 3:
3267 if (ir.mod != 3)
3268 {
3269 if (i386_record_lea_modrm (&ir))
3270 return -1;
3271 }
3272 else
3273 {
3274 if (ir.ot == OT_BYTE)
3275 ir.rm &= 0x3;
3276 if (record_arch_list_add_reg (ir.regcache, ir.rm))
3277 return -1;
3278 }
3279 if (record_arch_list_add_reg (ir.regcache, I386_EFLAGS_REGNUM))
3280 return -1;
3281 break;
3282 /* mul */
3283 case 4:
3284 /* imul */
3285 case 5:
3286 /* div */
3287 case 6:
3288 /* idiv */
3289 case 7:
3290 if (record_arch_list_add_reg (ir.regcache, I386_EAX_REGNUM))
3291 return -1;
3292 if (ir.ot != OT_BYTE)
3293 {
3294 if (record_arch_list_add_reg (ir.regcache, I386_EDX_REGNUM))
3295 return -1;
3296 }
3297 if (record_arch_list_add_reg (ir.regcache, I386_EFLAGS_REGNUM))
3298 return -1;
3299 break;
3300 default:
3301 ir.addr -= 2;
3302 opcode = opcode << 8 | ir.modrm;
3303 goto no_support;
3304 break;
3305 }
3306 break;
3307
3308 /* GRP4 */
3309 case 0xfe:
3310 /* GRP5 */
3311 case 0xff:
3312 if ((opcode & 1) == 0)
3313 ir.ot = OT_BYTE;
3314 else
3315 ir.ot = ir.dflag + OT_WORD;
3316 if (i386_record_modrm (&ir))
3317 return -1;
3318 if (ir.reg >= 2 && opcode == 0xfe)
3319 {
3320 ir.addr -= 2;
3321 opcode = opcode << 8 | ir.modrm;
3322 goto no_support;
3323 }
3324
3325 switch (ir.reg)
3326 {
3327 /* inc */
3328 case 0:
3329 /* dec */
3330 case 1:
3331 if (ir.mod != 3)
3332 {
3333 if (i386_record_lea_modrm (&ir))
3334 return -1;
3335 }
3336 else
3337 {
3338 if (ir.ot == OT_BYTE)
3339 ir.rm &= 0x3;
3340 if (record_arch_list_add_reg (ir.regcache, ir.rm))
3341 return -1;
3342 }
3343 if (record_arch_list_add_reg (ir.regcache, I386_EFLAGS_REGNUM))
3344 return -1;
3345 break;
3346 /* call */
3347 case 2:
3348 /* push */
3349 case 6:
3350 if (record_arch_list_add_reg (ir.regcache, I386_ESP_REGNUM))
3351 return -1;
3352 regcache_raw_read (ir.regcache, I386_ESP_REGNUM,
3353 (gdb_byte *) & tmpu32);
3354 if (record_arch_list_add_mem
3355 ((CORE_ADDR) tmpu32 - (1 << (ir.dflag + 1)), (1 << (ir.dflag + 1))))
3356 return -1;
3357 break;
3358 /* lcall */
3359 case 3:
3360 if (record_arch_list_add_reg (ir.regcache, I386_ESP_REGNUM))
3361 return -1;
3362 if (record_arch_list_add_reg (ir.regcache, I386_CS_REGNUM))
3363 return -1;
3364 regcache_raw_read (ir.regcache, I386_ESP_REGNUM,
3365 (gdb_byte *) & tmpu32);
3366 if (record_arch_list_add_mem
3367 ((CORE_ADDR) tmpu32 - (1 << (ir.dflag + 2)), (1 << (ir.dflag + 2))))
3368 return -1;
3369 break;
3370 /* jmp */
3371 case 4:
3372 /* ljmp */
3373 case 5:
3374 break;
3375 default:
3376 ir.addr -= 2;
3377 opcode = opcode << 8 | ir.modrm;
3378 goto no_support;
3379 break;
3380 }
3381 break;
3382
3383 /* test */
3384 case 0x84:
3385 case 0x85:
3386 case 0xa8:
3387 case 0xa9:
3388 if (record_arch_list_add_reg (ir.regcache, I386_EFLAGS_REGNUM))
3389 return -1;
3390 break;
3391
3392 /* CWDE/CBW */
3393 case 0x98:
3394 if (record_arch_list_add_reg (ir.regcache, I386_EAX_REGNUM))
3395 return -1;
3396 break;
3397
3398 /* CDQ/CWD */
3399 case 0x99:
3400 if (record_arch_list_add_reg (ir.regcache, I386_EAX_REGNUM))
3401 return -1;
3402 if (record_arch_list_add_reg (ir.regcache, I386_EDX_REGNUM))
3403 return -1;
3404 break;
3405
3406 /* imul */
3407 case 0x0faf:
3408 case 0x69:
3409 case 0x6b:
3410 ir.ot = ir.dflag + OT_WORD;
3411 if (i386_record_modrm (&ir))
3412 return -1;
3413 if (ir.ot == OT_BYTE)
3414 ir.reg &= 0x3;
3415 if (record_arch_list_add_reg (ir.regcache, ir.reg))
3416 return -1;
3417 if (record_arch_list_add_reg (ir.regcache, I386_EFLAGS_REGNUM))
3418 return -1;
3419 break;
3420
3421 /* xadd */
3422 case 0x0fc0:
3423 case 0x0fc1:
3424 if ((opcode & 1) == 0)
3425 ir.ot = OT_BYTE;
3426 else
3427 ir.ot = ir.dflag + OT_WORD;
3428 if (i386_record_modrm (&ir))
3429 return -1;
3430 if (ir.mod == 3)
3431 {
3432 if (ir.ot == OT_BYTE)
3433 ir.reg &= 0x3;
3434 if (record_arch_list_add_reg (ir.regcache, ir.reg))
3435 return -1;
3436 if (ir.ot == OT_BYTE)
3437 ir.rm &= 0x3;
3438 if (record_arch_list_add_reg (ir.regcache, ir.rm))
3439 return -1;
3440 }
3441 else
3442 {
3443 if (i386_record_lea_modrm (&ir))
3444 return -1;
3445 if (ir.ot == OT_BYTE)
3446 ir.reg &= 0x3;
3447 if (record_arch_list_add_reg (ir.regcache, ir.reg))
3448 return -1;
3449 }
3450 if (record_arch_list_add_reg (ir.regcache, I386_EFLAGS_REGNUM))
3451 return -1;
3452 break;
3453
3454 /* cmpxchg */
3455 case 0x0fb0:
3456 case 0x0fb1:
3457 if ((opcode & 1) == 0)
3458 ir.ot = OT_BYTE;
3459 else
3460 ir.ot = ir.dflag + OT_WORD;
3461 if (i386_record_modrm (&ir))
3462 return -1;
3463 if (ir.mod == 3)
3464 {
3465 if (record_arch_list_add_reg (ir.regcache, I386_EAX_REGNUM))
3466 return -1;
3467 if (ir.ot == OT_BYTE)
3468 ir.reg &= 0x3;
3469 if (record_arch_list_add_reg (ir.regcache, ir.reg))
3470 return -1;
3471 }
3472 else
3473 {
3474 if (record_arch_list_add_reg (ir.regcache, I386_EAX_REGNUM))
3475 return -1;
3476 if (i386_record_lea_modrm (&ir))
3477 return -1;
3478 }
3479 if (record_arch_list_add_reg (ir.regcache, I386_EFLAGS_REGNUM))
3480 return -1;
3481 break;
3482
3483 /* cmpxchg8b */
3484 case 0x0fc7:
3485 if (i386_record_modrm (&ir))
3486 return -1;
3487 if (ir.mod == 3)
3488 {
3489 ir.addr -= 2;
3490 opcode = opcode << 8 | ir.modrm;
3491 goto no_support;
3492 }
3493 if (record_arch_list_add_reg (ir.regcache, I386_EAX_REGNUM))
3494 return -1;
3495 if (record_arch_list_add_reg (ir.regcache, I386_EDX_REGNUM))
3496 return -1;
3497 if (i386_record_lea_modrm (&ir))
3498 return -1;
3499 if (record_arch_list_add_reg (ir.regcache, I386_EFLAGS_REGNUM))
3500 return -1;
3501 break;
3502
3503 /* push */
3504 case 0x50:
3505 case 0x51:
3506 case 0x52:
3507 case 0x53:
3508 case 0x54:
3509 case 0x55:
3510 case 0x56:
3511 case 0x57:
3512 case 0x68:
3513 case 0x6a:
3514 /* push es */
3515 case 0x06:
3516 /* push cs */
3517 case 0x0e:
3518 /* push ss */
3519 case 0x16:
3520 /* push ds */
3521 case 0x1e:
3522 /* push fs */
3523 case 0x0fa0:
3524 /* push gs */
3525 case 0x0fa8:
3526 if (record_arch_list_add_reg (ir.regcache, I386_ESP_REGNUM))
3527 return -1;
3528 regcache_raw_read (ir.regcache, I386_ESP_REGNUM,
3529 (gdb_byte *) & tmpu32);
3530 if (record_arch_list_add_mem
3531 ((CORE_ADDR) tmpu32 - (1 << (ir.dflag + 1)), (1 << (ir.dflag + 1))))
3532 return -1;
3533 break;
3534
3535 /* pop */
3536 case 0x58:
3537 case 0x59:
3538 case 0x5a:
3539 case 0x5b:
3540 case 0x5c:
3541 case 0x5d:
3542 case 0x5e:
3543 case 0x5f:
3544 ir.ot = ir.dflag + OT_WORD;
3545 if (record_arch_list_add_reg (ir.regcache, I386_ESP_REGNUM))
3546 return -1;
3547 if (ir.ot == OT_BYTE)
3548 opcode &= 0x3;
3549 if (record_arch_list_add_reg (ir.regcache, opcode & 0x7))
3550 return -1;
3551 break;
3552
3553 /* pusha */
3554 case 0x60:
3555 if (record_arch_list_add_reg (ir.regcache, I386_ESP_REGNUM))
3556 return -1;
3557 regcache_raw_read (ir.regcache, I386_ESP_REGNUM,
3558 (gdb_byte *) & tmpu32);
3559 if (record_arch_list_add_mem
3560 ((CORE_ADDR) tmpu32 - (1 << (ir.dflag + 4)), (1 << (ir.dflag + 4))))
3561 return -1;
3562 break;
3563
3564 /* popa */
3565 case 0x61:
3566 for (tmpu8 = I386_EAX_REGNUM; tmpu8 <= I386_EDI_REGNUM; tmpu8++)
3567 {
3568 if (record_arch_list_add_reg (ir.regcache, tmpu8))
3569 return -1;
3570 }
3571 break;
3572
3573 /* pop */
3574 case 0x8f:
3575 ir.ot = ir.dflag + OT_WORD;
3576 if (i386_record_modrm (&ir))
3577 return -1;
3578 if (ir.mod == 3)
3579 {
3580 if (record_arch_list_add_reg (ir.regcache, ir.rm))
3581 return -1;
3582 }
3583 else
3584 {
3585 if (i386_record_lea_modrm (&ir))
3586 return -1;
3587 }
3588 if (record_arch_list_add_reg (ir.regcache, I386_ESP_REGNUM))
3589 return -1;
3590 break;
3591
3592 /* enter */
3593 case 0xc8:
3594 if (record_arch_list_add_reg (ir.regcache, I386_ESP_REGNUM))
3595 return -1;
3596 if (record_arch_list_add_reg (ir.regcache, I386_EBP_REGNUM))
3597 return -1;
3598 regcache_raw_read (ir.regcache, I386_ESP_REGNUM,
3599 (gdb_byte *) & tmpu32);
3600 if (record_arch_list_add_mem
3601 ((CORE_ADDR) tmpu32 - (1 << (ir.dflag + 1)), (1 << (ir.dflag + 1))))
3602 return -1;
3603 break;
3604
3605 /* leave */
3606 case 0xc9:
3607 if (record_arch_list_add_reg (ir.regcache, I386_ESP_REGNUM))
3608 return -1;
3609 if (record_arch_list_add_reg (ir.regcache, I386_EBP_REGNUM))
3610 return -1;
3611 break;
3612
3613 /* pop es */
3614 case 0x07:
3615 if (record_arch_list_add_reg (ir.regcache, I386_ESP_REGNUM))
3616 return -1;
3617 if (record_arch_list_add_reg (ir.regcache, I386_ES_REGNUM))
3618 return -1;
3619 break;
3620
3621 /* pop ss */
3622 case 0x17:
3623 if (record_arch_list_add_reg (ir.regcache, I386_ESP_REGNUM))
3624 return -1;
3625 if (record_arch_list_add_reg (ir.regcache, I386_SS_REGNUM))
3626 return -1;
3627 break;
3628
3629 /* pop ds */
3630 case 0x1f:
3631 if (record_arch_list_add_reg (ir.regcache, I386_ESP_REGNUM))
3632 return -1;
3633 if (record_arch_list_add_reg (ir.regcache, I386_DS_REGNUM))
3634 return -1;
3635 break;
3636
3637 /* pop fs */
3638 case 0x0fa1:
3639 if (record_arch_list_add_reg (ir.regcache, I386_ESP_REGNUM))
3640 return -1;
3641 if (record_arch_list_add_reg (ir.regcache, I386_FS_REGNUM))
3642 return -1;
3643 break;
3644
3645 /* pop gs */
3646 case 0x0fa9:
3647 if (record_arch_list_add_reg (ir.regcache, I386_ESP_REGNUM))
3648 return -1;
3649 if (record_arch_list_add_reg (ir.regcache, I386_GS_REGNUM))
3650 return -1;
3651 break;
3652
3653 /* mov */
3654 case 0x88:
3655 case 0x89:
3656 case 0xc6:
3657 case 0xc7:
3658 if ((opcode & 1) == 0)
3659 ir.ot = OT_BYTE;
3660 else
3661 ir.ot = ir.dflag + OT_WORD;
3662
3663 if (i386_record_modrm (&ir))
3664 return -1;
3665
3666 if (ir.mod != 3)
3667 {
3668 if (i386_record_lea_modrm (&ir))
3669 return -1;
3670 }
3671 else
3672 {
3673 if (ir.ot == OT_BYTE)
3674 ir.rm &= 0x3;
3675 if (record_arch_list_add_reg (ir.regcache, ir.rm))
3676 return -1;
3677 }
3678 if (record_arch_list_add_reg (ir.regcache, I386_EFLAGS_REGNUM))
3679 return -1;
3680 break;
3681 /* mov */
3682 case 0x8a:
3683 case 0x8b:
3684 if ((opcode & 1) == 0)
3685 ir.ot = OT_BYTE;
3686 else
3687 ir.ot = ir.dflag + OT_WORD;
3688
3689 if (i386_record_modrm (&ir))
3690 return -1;
3691
3692 if (ir.ot == OT_BYTE)
3693 ir.reg &= 0x3;
3694 if (record_arch_list_add_reg (ir.regcache, ir.reg))
3695 return -1;
3696
3697 if (record_arch_list_add_reg (ir.regcache, I386_EFLAGS_REGNUM))
3698 return -1;
3699 break;
3700
3701 /* mov seg */
3702 case 0x8e:
3703 if (i386_record_modrm (&ir))
3704 return -1;
3705
3706 switch (ir.reg)
3707 {
3708 case 0:
3709 tmpu8 = I386_ES_REGNUM;
3710 break;
3711 case 2:
3712 tmpu8 = I386_SS_REGNUM;
3713 break;
3714 case 3:
3715 tmpu8 = I386_DS_REGNUM;
3716 break;
3717 case 4:
3718 tmpu8 = I386_FS_REGNUM;
3719 break;
3720 case 5:
3721 tmpu8 = I386_GS_REGNUM;
3722 break;
3723 default:
3724 ir.addr -= 2;
3725 opcode = opcode << 8 | ir.modrm;
3726 goto no_support;
3727 break;
3728 }
3729 if (record_arch_list_add_reg (ir.regcache, tmpu8))
3730 return -1;
3731
3732 if (record_arch_list_add_reg (ir.regcache, I386_EFLAGS_REGNUM))
3733 return -1;
3734 break;
3735
3736 /* mov seg */
3737 case 0x8c:
3738 if (i386_record_modrm (&ir))
3739 return -1;
3740 if (ir.reg > 5)
3741 {
3742 ir.addr -= 2;
3743 opcode = opcode << 8 | ir.modrm;
3744 goto no_support;
3745 }
3746
3747 if (ir.mod == 3)
3748 {
3749 if (record_arch_list_add_reg (ir.regcache, ir.rm))
3750 return -1;
3751 }
3752 else
3753 {
3754 ir.ot = OT_WORD;
3755 if (i386_record_lea_modrm (&ir))
3756 return -1;
3757 }
3758
3759 if (record_arch_list_add_reg (ir.regcache, I386_EFLAGS_REGNUM))
3760 return -1;
3761 break;
3762
3763 /* movzbS */
3764 case 0x0fb6:
3765 /* movzwS */
3766 case 0x0fb7:
3767 /* movsbS */
3768 case 0x0fbe:
3769 /* movswS */
3770 case 0x0fbf:
3771 if (i386_record_modrm (&ir))
3772 return -1;
3773 if (record_arch_list_add_reg (ir.regcache, ir.reg))
3774 return -1;
3775 break;
3776
3777 /* lea */
3778 case 0x8d:
3779 if (i386_record_modrm (&ir))
3780 return -1;
3781 if (ir.mod == 3)
3782 {
3783 ir.addr -= 2;
3784 opcode = opcode << 8 | ir.modrm;
3785 goto no_support;
3786 }
3787
3788 ir.ot = ir.dflag;
3789 if (ir.ot == OT_BYTE)
3790 ir.reg &= 0x3;
3791 if (record_arch_list_add_reg (ir.regcache, ir.reg))
3792 return -1;
3793 break;
3794
3795 /* mov EAX */
3796 case 0xa0:
3797 case 0xa1:
3798 /* xlat */
3799 case 0xd7:
3800 if (record_arch_list_add_reg (ir.regcache, I386_EAX_REGNUM))
3801 return -1;
3802 break;
3803
3804 /* mov EAX */
3805 case 0xa2:
3806 case 0xa3:
3807 {
3808 uint32_t addr;
3809
3810 if (ir.override)
3811 {
3812 if (record_debug)
3813 printf_unfiltered (_("Process record ignores the memory change "
3814 "of instruction at address 0x%s because "
3815 "it can't get the value of the segment "
3816 "register.\n"),
3817 paddr_nz (ir.addr));
3818 }
3819 else
3820 {
3821 if ((opcode & 1) == 0)
3822 ir.ot = OT_BYTE;
3823 else
3824 ir.ot = ir.dflag + OT_WORD;
3825 if (ir.aflag)
3826 {
3827 if (target_read_memory
3828 (ir.addr, (gdb_byte *) & addr, 4))
3829 {
3830 if (record_debug)
3831 printf_unfiltered (_("Process record: error reading "
3832 "memory at addr 0x%s len = 4.\n"),
3833 paddr_nz (ir.addr));
3834 return -1;
3835 }
3836 ir.addr += 4;
3837 }
3838 else
3839 {
3840 if (target_read_memory
3841 (ir.addr, (gdb_byte *) & tmpu16, 4))
3842 {
3843 if (record_debug)
3844 printf_unfiltered (_("Process record: error reading "
3845 "memory at addr 0x%s len = 4.\n"),
3846 paddr_nz (ir.addr));
3847 return -1;
3848 }
3849 ir.addr += 2;
3850 addr = tmpu16;
3851 }
3852 if (record_arch_list_add_mem (addr, 1 << ir.ot))
3853 return -1;
3854 }
3855 }
3856 break;
3857
3858 /* mov R, Ib */
3859 case 0xb0:
3860 case 0xb1:
3861 case 0xb2:
3862 case 0xb3:
3863 case 0xb4:
3864 case 0xb5:
3865 case 0xb6:
3866 case 0xb7:
3867 if (record_arch_list_add_reg (ir.regcache, (opcode & 0x7) & 0x3))
3868 return -1;
3869 break;
3870
3871 /* mov R, Iv */
3872 case 0xb8:
3873 case 0xb9:
3874 case 0xba:
3875 case 0xbb:
3876 case 0xbc:
3877 case 0xbd:
3878 case 0xbe:
3879 case 0xbf:
3880 if (record_arch_list_add_reg (ir.regcache, opcode & 0x7))
3881 return -1;
3882 break;
3883
3884 /* xchg R, EAX */
3885 case 0x91:
3886 case 0x92:
3887 case 0x93:
3888 case 0x94:
3889 case 0x95:
3890 case 0x96:
3891 case 0x97:
3892 if (record_arch_list_add_reg (ir.regcache, I386_EAX_REGNUM))
3893 return -1;
3894 if (record_arch_list_add_reg (ir.regcache, opcode & 0x7))
3895 return -1;
3896 break;
3897
3898 /* xchg Ev, Gv */
3899 case 0x86:
3900 case 0x87:
3901 if ((opcode & 1) == 0)
3902 ir.ot = OT_BYTE;
3903 else
3904 ir.ot = ir.dflag + OT_WORD;
3905
3906 if (i386_record_modrm (&ir))
3907 return -1;
3908
3909 if (ir.mod == 3)
3910 {
3911 if (ir.ot == OT_BYTE)
3912 ir.rm &= 0x3;
3913 if (record_arch_list_add_reg (ir.regcache, ir.rm))
3914 return -1;
3915 }
3916 else
3917 {
3918 if (i386_record_lea_modrm (&ir))
3919 return -1;
3920 }
3921
3922 if (ir.ot == OT_BYTE)
3923 ir.reg &= 0x3;
3924 if (record_arch_list_add_reg (ir.regcache, ir.reg))
3925 return -1;
3926 break;
3927
3928 /* les Gv */
3929 case 0xc4:
3930 /* lds Gv */
3931 case 0xc5:
3932 /* lss Gv */
3933 case 0x0fb2:
3934 /* lfs Gv */
3935 case 0x0fb4:
3936 /* lgs Gv */
3937 case 0x0fb5:
3938 if (i386_record_modrm (&ir))
3939 return -1;
3940 if (ir.mod == 3)
3941 {
3942 if (opcode > 0xff)
3943 ir.addr -= 3;
3944 else
3945 ir.addr -= 2;
3946 opcode = opcode << 8 | ir.modrm;
3947 goto no_support;
3948 }
3949
3950 switch (opcode)
3951 {
3952 /* les Gv */
3953 case 0xc4:
3954 tmpu8 = I386_ES_REGNUM;
3955 break;
3956 /* lds Gv */
3957 case 0xc5:
3958 tmpu8 = I386_DS_REGNUM;
3959 break;
3960 /* lss Gv */
3961 case 0x0fb2:
3962 tmpu8 = I386_SS_REGNUM;
3963 break;
3964 /* lfs Gv */
3965 case 0x0fb4:
3966 tmpu8 = I386_FS_REGNUM;
3967 break;
3968 /* lgs Gv */
3969 case 0x0fb5:
3970 tmpu8 = I386_GS_REGNUM;
3971 break;
3972 }
3973 if (record_arch_list_add_reg (ir.regcache, tmpu8))
3974 return -1;
3975
3976 if (record_arch_list_add_reg (ir.regcache, ir.reg))
3977 return -1;
3978 break;
3979
3980 /* shifts */
3981 case 0xc0:
3982 case 0xc1:
3983 case 0xd0:
3984 case 0xd1:
3985 case 0xd2:
3986 case 0xd3:
3987 if ((opcode & 1) == 0)
3988 ir.ot = OT_BYTE;
3989 else
3990 ir.ot = ir.dflag + OT_WORD;
3991
3992 if (i386_record_modrm (&ir))
3993 return -1;
3994
3995 if (ir.mod != 3 && (opcode == 0xd2 || opcode == 0xd3))
3996 {
3997 if (i386_record_lea_modrm (&ir))
3998 return -1;
3999 }
4000 else
4001 {
4002 if (ir.ot == OT_BYTE)
4003 ir.rm &= 0x3;
4004 if (record_arch_list_add_reg (ir.regcache, ir.rm))
4005 return -1;
4006 }
4007
4008 if (record_arch_list_add_reg (ir.regcache, I386_EFLAGS_REGNUM))
4009 return -1;
4010 break;
4011
4012 case 0x0fa4:
4013 case 0x0fa5:
4014 case 0x0fac:
4015 case 0x0fad:
4016 if (i386_record_modrm (&ir))
4017 return -1;
4018 if (ir.mod == 3)
4019 {
4020 if (record_arch_list_add_reg (ir.regcache, ir.rm))
4021 return -1;
4022 }
4023 else
4024 {
4025 if (i386_record_lea_modrm (&ir))
4026 return -1;
4027 }
4028 break;
4029
4030 /* floats */
4031 /* It just record the memory change of instrcution. */
4032 case 0xd8:
4033 case 0xd9:
4034 case 0xda:
4035 case 0xdb:
4036 case 0xdc:
4037 case 0xdd:
4038 case 0xde:
4039 case 0xdf:
4040 if (i386_record_modrm (&ir))
4041 return -1;
4042 ir.reg |= ((opcode & 7) << 3);
4043 if (ir.mod != 3)
4044 {
4045 /* memory */
4046 uint32_t addr;
4047
4048 if (i386_record_lea_modrm_addr (&ir, &addr))
4049 return -1;
4050 switch (ir.reg)
4051 {
4052 case 0x00:
4053 case 0x01:
4054 case 0x02:
4055 case 0x03:
4056 case 0x04:
4057 case 0x05:
4058 case 0x06:
4059 case 0x07:
4060 case 0x10:
4061 case 0x11:
4062 case 0x12:
4063 case 0x13:
4064 case 0x14:
4065 case 0x15:
4066 case 0x16:
4067 case 0x17:
4068 case 0x20:
4069 case 0x21:
4070 case 0x22:
4071 case 0x23:
4072 case 0x24:
4073 case 0x25:
4074 case 0x26:
4075 case 0x27:
4076 case 0x30:
4077 case 0x31:
4078 case 0x32:
4079 case 0x33:
4080 case 0x34:
4081 case 0x35:
4082 case 0x36:
4083 case 0x37:
4084 break;
4085 case 0x08:
4086 case 0x0a:
4087 case 0x0b:
4088 case 0x18:
4089 case 0x19:
4090 case 0x1a:
4091 case 0x1b:
4092 case 0x28:
4093 case 0x29:
4094 case 0x2a:
4095 case 0x2b:
4096 case 0x38:
4097 case 0x39:
4098 case 0x3a:
4099 case 0x3b:
4100 switch (ir.reg & 7)
4101 {
4102 case 0:
4103 break;
4104 case 1:
4105 switch (ir.reg >> 4)
4106 {
4107 case 0:
4108 if (record_arch_list_add_mem (addr, 4))
4109 return -1;
4110 break;
4111 case 2:
4112 if (record_arch_list_add_mem (addr, 8))
4113 return -1;
4114 break;
4115 case 3:
4116 default:
4117 if (record_arch_list_add_mem (addr, 2))
4118 return -1;
4119 break;
4120 }
4121 break;
4122 default:
4123 switch (ir.reg >> 4)
4124 {
4125 case 0:
4126 case 1:
4127 if (record_arch_list_add_mem (addr, 4))
4128 return -1;
4129 break;
4130 case 2:
4131 if (record_arch_list_add_mem (addr, 8))
4132 return -1;
4133 break;
4134 case 3:
4135 default:
4136 if (record_arch_list_add_mem (addr, 2))
4137 return -1;
4138 break;
4139 }
4140 break;
4141 }
4142 break;
4143 case 0x0c:
4144 case 0x0d:
4145 case 0x1d:
4146 case 0x2c:
4147 case 0x3c:
4148 case 0x3d:
4149 break;
4150 case 0x0e:
4151 if (ir.dflag)
4152 {
4153 if (record_arch_list_add_mem (addr, 28))
4154 return -1;
4155 }
4156 else
4157 {
4158 if (record_arch_list_add_mem (addr, 14))
4159 return -1;
4160 }
4161 break;
4162 case 0x0f:
4163 case 0x2f:
4164 if (record_arch_list_add_mem (addr, 2))
4165 return -1;
4166 break;
4167 case 0x1f:
4168 case 0x3e:
4169 if (record_arch_list_add_mem (addr, 10))
4170 return -1;
4171 break;
4172 case 0x2e:
4173 if (ir.dflag)
4174 {
4175 if (record_arch_list_add_mem (addr, 28))
4176 return -1;
4177 addr += 28;
4178 }
4179 else
4180 {
4181 if (record_arch_list_add_mem (addr, 14))
4182 return -1;
4183 addr += 14;
4184 }
4185 if (record_arch_list_add_mem (addr, 80))
4186 return -1;
4187 break;
4188 case 0x3f:
4189 if (record_arch_list_add_mem (addr, 8))
4190 return -1;
4191 break;
4192 default:
4193 ir.addr -= 2;
4194 opcode = opcode << 8 | ir.modrm;
4195 goto no_support;
4196 break;
4197 }
4198 }
4199 break;
4200
4201 /* string ops */
4202 /* movsS */
4203 case 0xa4:
4204 case 0xa5:
4205 /* stosS */
4206 case 0xaa:
4207 case 0xab:
4208 /* insS */
4209 case 0x6c:
4210 case 0x6d:
4211 {
4212 uint32_t addr;
4213
4214 if ((opcode & 1) == 0)
4215 ir.ot = OT_BYTE;
4216 else
4217 ir.ot = ir.dflag + OT_WORD;
4218 if (opcode == 0xa4 || opcode == 0xa5)
4219 {
4220 if (record_arch_list_add_reg (ir.regcache, I386_ESI_REGNUM))
4221 return -1;
4222 }
4223 if (record_arch_list_add_reg (ir.regcache, I386_EDI_REGNUM))
4224 return -1;
4225
4226 regcache_raw_read (ir.regcache, I386_EDI_REGNUM,
4227 (gdb_byte *) & addr);
4228 if (!ir.aflag)
4229 {
4230 addr &= 0xffff;
4231 /* addr += ((uint32_t)read_register (I386_ES_REGNUM)) << 4; */
4232 if (record_debug)
4233 printf_unfiltered (_("Process record ignores the memory change "
4234 "of instruction at address 0x%s because "
4235 "it can't get the value of the segment "
4236 "register.\n"),
4237 paddr_nz (ir.addr));
4238 }
4239
4240 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
4241 {
4242 uint32_t count;
4243
4244 regcache_raw_read (ir.regcache, I386_ECX_REGNUM,
4245 (gdb_byte *) & count);
4246 if (!ir.aflag)
4247 count &= 0xffff;
4248
4249 regcache_raw_read (ir.regcache, I386_EFLAGS_REGNUM,
4250 (gdb_byte *) & tmpu32);
4251 if ((tmpu32 >> 10) & 0x1)
4252 addr -= (count - 1) * (1 << ir.ot);
4253
4254 if (ir.aflag)
4255 {
4256 if (record_arch_list_add_mem (addr, count * (1 << ir.ot)))
4257 return -1;
4258 }
4259
4260 if (record_arch_list_add_reg (ir.regcache, I386_ECX_REGNUM))
4261 return -1;
4262 }
4263 else
4264 {
4265 if (ir.aflag)
4266 {
4267 if (record_arch_list_add_mem (addr, 1 << ir.ot))
4268 return -1;
4269 }
4270 }
4271 }
4272 break;
4273
4274 /* lodsS */
4275 case 0xac:
4276 case 0xad:
4277 if (record_arch_list_add_reg (ir.regcache, I386_EAX_REGNUM))
4278 return -1;
4279 if (record_arch_list_add_reg (ir.regcache, I386_ESI_REGNUM))
4280 return -1;
4281 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
4282 {
4283 if (record_arch_list_add_reg (ir.regcache, I386_ECX_REGNUM))
4284 return -1;
4285 }
4286 break;
4287
4288 /* outsS */
4289 case 0x6e:
4290 case 0x6f:
4291 if (record_arch_list_add_reg (ir.regcache, I386_ESI_REGNUM))
4292 return -1;
4293 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
4294 {
4295 if (record_arch_list_add_reg (ir.regcache, I386_ECX_REGNUM))
4296 return -1;
4297 }
4298 break;
4299
4300 /* scasS */
4301 case 0xae:
4302 case 0xaf:
4303 if (record_arch_list_add_reg (ir.regcache, I386_EDI_REGNUM))
4304 return -1;
4305 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
4306 {
4307 if (record_arch_list_add_reg (ir.regcache, I386_ECX_REGNUM))
4308 return -1;
4309 }
4310 if (record_arch_list_add_reg (ir.regcache, I386_EFLAGS_REGNUM))
4311 return -1;
4312 break;
4313
4314 /* cmpsS */
4315 case 0xa6:
4316 case 0xa7:
4317 if (record_arch_list_add_reg (ir.regcache, I386_EDI_REGNUM))
4318 return -1;
4319 if (record_arch_list_add_reg (ir.regcache, I386_ESI_REGNUM))
4320 return -1;
4321 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
4322 {
4323 if (record_arch_list_add_reg (ir.regcache, I386_ECX_REGNUM))
4324 return -1;
4325 }
4326 if (record_arch_list_add_reg (ir.regcache, I386_EFLAGS_REGNUM))
4327 return -1;
4328 break;
4329
4330 /* port I/O */
4331 case 0xe4:
4332 case 0xe5:
4333 case 0xec:
4334 case 0xed:
4335 if (record_arch_list_add_reg (ir.regcache, I386_EAX_REGNUM))
4336 return -1;
4337 break;
4338
4339 case 0xe6:
4340 case 0xe7:
4341 case 0xee:
4342 case 0xef:
4343 break;
4344
4345 /* control */
4346 /* ret im */
4347 case 0xc2:
4348 /* ret */
4349 case 0xc3:
4350 /* lret im */
4351 case 0xca:
4352 /* lret */
4353 case 0xcb:
4354 if (record_arch_list_add_reg (ir.regcache, I386_ESP_REGNUM))
4355 return -1;
4356 if (record_arch_list_add_reg (ir.regcache, I386_CS_REGNUM))
4357 return -1;
4358 break;
4359
4360 /* iret */
4361 case 0xcf:
4362 if (record_arch_list_add_reg (ir.regcache, I386_ESP_REGNUM))
4363 return -1;
4364 if (record_arch_list_add_reg (ir.regcache, I386_CS_REGNUM))
4365 return -1;
4366 if (record_arch_list_add_reg (ir.regcache, I386_EFLAGS_REGNUM))
4367 return -1;
4368 break;
4369
4370 /* call im */
4371 case 0xe8:
4372 if (record_arch_list_add_reg (ir.regcache, I386_ESP_REGNUM))
4373 return -1;
4374 regcache_raw_read (ir.regcache, I386_ESP_REGNUM,
4375 (gdb_byte *) & tmpu32);
4376 if (record_arch_list_add_mem
4377 ((CORE_ADDR) tmpu32 - (1 << (ir.dflag + 1)), (1 << (ir.dflag + 1))))
4378 return -1;
4379 break;
4380
4381 /* lcall im */
4382 case 0x9a:
4383 if (record_arch_list_add_reg (ir.regcache, I386_CS_REGNUM))
4384 return -1;
4385 if (record_arch_list_add_reg (ir.regcache, I386_ESP_REGNUM))
4386 return -1;
4387 regcache_raw_read (ir.regcache, I386_ESP_REGNUM,
4388 (gdb_byte *) & tmpu32);
4389 if (record_arch_list_add_mem
4390 ((CORE_ADDR) tmpu32 - (1 << (ir.dflag + 2)), (1 << (ir.dflag + 2))))
4391 return -1;
4392 break;
4393
4394 /* jmp im */
4395 case 0xe9:
4396 /* ljmp im */
4397 case 0xea:
4398 /* jmp Jb */
4399 case 0xeb:
4400 /* jcc Jb */
4401 case 0x70:
4402 case 0x71:
4403 case 0x72:
4404 case 0x73:
4405 case 0x74:
4406 case 0x75:
4407 case 0x76:
4408 case 0x77:
4409 case 0x78:
4410 case 0x79:
4411 case 0x7a:
4412 case 0x7b:
4413 case 0x7c:
4414 case 0x7d:
4415 case 0x7e:
4416 case 0x7f:
4417 /* jcc Jv */
4418 case 0x0f80:
4419 case 0x0f81:
4420 case 0x0f82:
4421 case 0x0f83:
4422 case 0x0f84:
4423 case 0x0f85:
4424 case 0x0f86:
4425 case 0x0f87:
4426 case 0x0f88:
4427 case 0x0f89:
4428 case 0x0f8a:
4429 case 0x0f8b:
4430 case 0x0f8c:
4431 case 0x0f8d:
4432 case 0x0f8e:
4433 case 0x0f8f:
4434 break;
4435
4436 /* setcc Gv */
4437 case 0x0f90:
4438 case 0x0f91:
4439 case 0x0f92:
4440 case 0x0f93:
4441 case 0x0f94:
4442 case 0x0f95:
4443 case 0x0f96:
4444 case 0x0f97:
4445 case 0x0f98:
4446 case 0x0f99:
4447 case 0x0f9a:
4448 case 0x0f9b:
4449 case 0x0f9c:
4450 case 0x0f9d:
4451 case 0x0f9e:
4452 case 0x0f9f:
4453 ir.ot = OT_BYTE;
4454 if (i386_record_modrm (&ir))
4455 return -1;
4456 if (ir.mod == 3)
4457 {
4458 if (record_arch_list_add_reg (ir.regcache, ir.rm & 0x3))
4459 return -1;
4460 }
4461 else
4462 {
4463 if (i386_record_lea_modrm (&ir))
4464 return -1;
4465 }
4466 break;
4467
4468 /* cmov Gv, Ev */
4469 case 0x0f40:
4470 case 0x0f41:
4471 case 0x0f42:
4472 case 0x0f43:
4473 case 0x0f44:
4474 case 0x0f45:
4475 case 0x0f46:
4476 case 0x0f47:
4477 case 0x0f48:
4478 case 0x0f49:
4479 case 0x0f4a:
4480 case 0x0f4b:
4481 case 0x0f4c:
4482 case 0x0f4d:
4483 case 0x0f4e:
4484 case 0x0f4f:
4485 if (i386_record_modrm (&ir))
4486 return -1;
4487 if (ir.dflag == OT_BYTE)
4488 ir.reg &= 0x3;
4489 if (record_arch_list_add_reg (ir.regcache, ir.reg & 0x3))
4490 return -1;
4491 break;
4492
4493 /* flags */
4494 /* pushf */
4495 case 0x9c:
4496 if (record_arch_list_add_reg (ir.regcache, I386_ESP_REGNUM))
4497 return -1;
4498 regcache_raw_read (ir.regcache, I386_ESP_REGNUM,
4499 (gdb_byte *) & tmpu32);
4500 if (record_arch_list_add_mem
4501 ((CORE_ADDR) tmpu32 - (1 << (ir.dflag + 1)), (1 << (ir.dflag + 1))))
4502 return -1;
4503 break;
4504
4505 /* popf */
4506 case 0x9d:
4507 if (record_arch_list_add_reg (ir.regcache, I386_ESP_REGNUM))
4508 return -1;
4509 if (record_arch_list_add_reg (ir.regcache, I386_EFLAGS_REGNUM))
4510 return -1;
4511 break;
4512
4513 /* sahf */
4514 case 0x9e:
4515 /* cmc */
4516 case 0xf5:
4517 /* clc */
4518 case 0xf8:
4519 /* stc */
4520 case 0xf9:
4521 /* cld */
4522 case 0xfc:
4523 /* std */
4524 case 0xfd:
4525 if (record_arch_list_add_reg (ir.regcache, I386_EFLAGS_REGNUM))
4526 return -1;
4527 break;
4528
4529 /* lahf */
4530 case 0x9f:
4531 if (record_arch_list_add_reg (ir.regcache, I386_EAX_REGNUM))
4532 return -1;
4533 break;
4534
4535 /* bit operations */
4536 /* bt/bts/btr/btc Gv, im */
4537 case 0x0fba:
4538 /* bts */
4539 case 0x0fab:
4540 /* btr */
4541 case 0x0fb3:
4542 /* btc */
4543 case 0x0fbb:
4544 ir.ot = ir.dflag + OT_WORD;
4545 if (i386_record_modrm (&ir))
4546 return -1;
4547 if (ir.reg < 4)
4548 {
4549 ir.addr -= 3;
4550 opcode = opcode << 8 | ir.modrm;
4551 goto no_support;
4552 }
4553 ir.reg -= 4;
4554 if (ir.reg != 0)
4555 {
4556 if (ir.mod != 3)
4557 {
4558 if (i386_record_lea_modrm (&ir))
4559 return -1;
4560 }
4561 else
4562 {
4563 if (record_arch_list_add_reg (ir.regcache, ir.rm))
4564 return -1;
4565 }
4566 }
4567 if (record_arch_list_add_reg (ir.regcache, I386_EFLAGS_REGNUM))
4568 return -1;
4569 break;
4570
4571 /* bt Gv, Ev */
4572 case 0x0fa3:
4573 if (record_arch_list_add_reg (ir.regcache, I386_EFLAGS_REGNUM))
4574 return -1;
4575 break;
4576
4577 /* bsf */
4578 case 0x0fbc:
4579 /* bsr */
4580 case 0x0fbd:
4581 if (record_arch_list_add_reg (ir.regcache, ir.reg))
4582 return -1;
4583 if (record_arch_list_add_reg (ir.regcache, I386_EFLAGS_REGNUM))
4584 return -1;
4585 break;
4586
4587 /* bcd */
4588 /* daa */
4589 case 0x27:
4590 /* das */
4591 case 0x2f:
4592 /* aaa */
4593 case 0x37:
4594 /* aas */
4595 case 0x3f:
4596 /* aam */
4597 case 0xd4:
4598 /* aad */
4599 case 0xd5:
4600 if (record_arch_list_add_reg (ir.regcache, I386_EAX_REGNUM))
4601 return -1;
4602 if (record_arch_list_add_reg (ir.regcache, I386_EFLAGS_REGNUM))
4603 return -1;
4604 break;
4605
4606 /* misc */
4607 /* nop */
4608 case 0x90:
4609 if (prefixes & PREFIX_LOCK)
4610 {
4611 ir.addr -= 1;
4612 goto no_support;
4613 }
4614 break;
4615
4616 /* fwait */
4617 /* XXX */
4618 case 0x9b:
4619 printf_unfiltered (_("Process record doesn't support instruction "
4620 "fwait.\n"));
4621 ir.addr -= 1;
4622 goto no_support;
4623 break;
4624
4625 /* int3 */
4626 /* XXX */
4627 case 0xcc:
4628 printf_unfiltered (_("Process record doesn't support instruction "
4629 "int3.\n"));
4630 ir.addr -= 1;
4631 goto no_support;
4632 break;
4633
4634 /* int */
4635 /* XXX */
4636 case 0xcd:
4637 {
4638 int ret;
4639 if (target_read_memory (ir.addr, &tmpu8, 1))
4640 {
4641 if (record_debug)
4642 printf_unfiltered (_("Process record: error reading memory "
4643 "at addr 0x%s len = 1.\n"),
4644 paddr_nz (ir.addr));
4645 return -1;
4646 }
4647 ir.addr++;
4648 if (tmpu8 != 0x80
4649 || gdbarch_tdep (gdbarch)->i386_intx80_record == NULL)
4650 {
4651 printf_unfiltered (_("Process record doesn't support "
4652 "instruction int 0x%02x.\n"),
4653 tmpu8);
4654 ir.addr -= 2;
4655 goto no_support;
4656 }
4657 ret = gdbarch_tdep (gdbarch)->i386_intx80_record (ir.regcache);
4658 if (ret)
4659 return ret;
4660 }
4661 break;
4662
4663 /* into */
4664 /* XXX */
4665 case 0xce:
4666 printf_unfiltered (_("Process record doesn't support "
4667 "instruction into.\n"));
4668 ir.addr -= 1;
4669 goto no_support;
4670 break;
4671
4672 /* cli */
4673 case 0xfa:
4674 /* sti */
4675 case 0xfb:
4676 break;
4677
4678 /* bound */
4679 case 0x62:
4680 printf_unfiltered (_("Process record doesn't support "
4681 "instruction bound.\n"));
4682 ir.addr -= 1;
4683 goto no_support;
4684 break;
4685
4686 /* bswap reg */
4687 case 0x0fc8:
4688 case 0x0fc9:
4689 case 0x0fca:
4690 case 0x0fcb:
4691 case 0x0fcc:
4692 case 0x0fcd:
4693 case 0x0fce:
4694 case 0x0fcf:
4695 if (record_arch_list_add_reg (ir.regcache, opcode & 7))
4696 return -1;
4697 break;
4698
4699 /* salc */
4700 case 0xd6:
4701 if (record_arch_list_add_reg (ir.regcache, I386_EAX_REGNUM))
4702 return -1;
4703 if (record_arch_list_add_reg (ir.regcache, I386_EFLAGS_REGNUM))
4704 return -1;
4705 break;
4706
4707 /* loopnz */
4708 case 0xe0:
4709 /* loopz */
4710 case 0xe1:
4711 /* loop */
4712 case 0xe2:
4713 /* jecxz */
4714 case 0xe3:
4715 if (record_arch_list_add_reg (ir.regcache, I386_ECX_REGNUM))
4716 return -1;
4717 break;
4718
4719 /* wrmsr */
4720 case 0x0f30:
4721 printf_unfiltered (_("Process record doesn't support "
4722 "instruction wrmsr.\n"));
4723 ir.addr -= 2;
4724 goto no_support;
4725 break;
4726
4727 /* rdmsr */
4728 case 0x0f32:
4729 printf_unfiltered (_("Process record doesn't support "
4730 "instruction rdmsr.\n"));
4731 ir.addr -= 2;
4732 goto no_support;
4733 break;
4734
4735 /* rdtsc */
4736 case 0x0f31:
4737 printf_unfiltered (_("Process record doesn't support "
4738 "instruction rdtsc.\n"));
4739 ir.addr -= 2;
4740 goto no_support;
4741 break;
4742
4743 /* sysenter */
4744 case 0x0f34:
4745 {
4746 int ret;
4747 if (gdbarch_tdep (gdbarch)->i386_sysenter_record == NULL)
4748 {
4749 printf_unfiltered (_("Process record doesn't support "
4750 "instruction sysenter.\n"));
4751 ir.addr -= 2;
4752 goto no_support;
4753 }
4754 ret = gdbarch_tdep (gdbarch)->i386_sysenter_record (ir.regcache);
4755 if (ret)
4756 return ret;
4757 }
4758 break;
4759
4760 /* sysexit */
4761 case 0x0f35:
4762 printf_unfiltered (_("Process record doesn't support "
4763 "instruction sysexit.\n"));
4764 ir.addr -= 2;
4765 goto no_support;
4766 break;
4767
4768 /* cpuid */
4769 case 0x0fa2:
4770 if (record_arch_list_add_reg (ir.regcache, I386_EAX_REGNUM))
4771 return -1;
4772 if (record_arch_list_add_reg (ir.regcache, I386_ECX_REGNUM))
4773 return -1;
4774 if (record_arch_list_add_reg (ir.regcache, I386_EDX_REGNUM))
4775 return -1;
4776 if (record_arch_list_add_reg (ir.regcache, I386_EBX_REGNUM))
4777 return -1;
4778 break;
4779
4780 /* hlt */
4781 case 0xf4:
4782 printf_unfiltered (_("Process record doesn't support "
4783 "instruction hlt.\n"));
4784 ir.addr -= 1;
4785 goto no_support;
4786 break;
4787
4788 case 0x0f00:
4789 if (i386_record_modrm (&ir))
4790 return -1;
4791 switch (ir.reg)
4792 {
4793 /* sldt */
4794 case 0:
4795 /* str */
4796 case 1:
4797 if (ir.mod == 3)
4798 {
4799 if (record_arch_list_add_reg (ir.regcache, ir.rm))
4800 return -1;
4801 }
4802 else
4803 {
4804 ir.ot = OT_WORD;
4805 if (i386_record_lea_modrm (&ir))
4806 return -1;
4807 }
4808 break;
4809 /* lldt */
4810 case 2:
4811 /* ltr */
4812 case 3:
4813 break;
4814 /* verr */
4815 case 4:
4816 /* verw */
4817 case 5:
4818 if (record_arch_list_add_reg (ir.regcache, I386_EFLAGS_REGNUM))
4819 return -1;
4820 break;
4821 default:
4822 ir.addr -= 3;
4823 opcode = opcode << 8 | ir.modrm;
4824 goto no_support;
4825 break;
4826 }
4827 break;
4828
4829 case 0x0f01:
4830 if (i386_record_modrm (&ir))
4831 return -1;
4832 switch (ir.reg)
4833 {
4834 /* sgdt */
4835 case 0:
4836 {
4837 uint32_t addr;
4838
4839 if (ir.mod == 3)
4840 {
4841 ir.addr -= 3;
4842 opcode = opcode << 8 | ir.modrm;
4843 goto no_support;
4844 }
4845
4846 if (ir.override)
4847 {
4848 if (record_debug)
4849 printf_unfiltered (_("Process record ignores the memory "
4850 "change of instruction at "
4851 "address 0x%s because it can't get "
4852 "the value of the segment "
4853 "register.\n"),
4854 paddr_nz (ir.addr));
4855 }
4856 else
4857 {
4858 if (i386_record_lea_modrm_addr (&ir, &addr))
4859 return -1;
4860 if (record_arch_list_add_mem (addr, 2))
4861 return -1;
4862 addr += 2;
4863 if (record_arch_list_add_mem (addr, 4))
4864 return -1;
4865 }
4866 }
4867 break;
4868 case 1:
4869 if (ir.mod == 3)
4870 {
4871 switch (ir.rm)
4872 {
4873 /* monitor */
4874 case 0:
4875 break;
4876 /* mwait */
4877 case 1:
4878 if (record_arch_list_add_reg (ir.regcache, I386_EFLAGS_REGNUM))
4879 return -1;
4880 break;
4881 default:
4882 ir.addr -= 3;
4883 opcode = opcode << 8 | ir.modrm;
4884 goto no_support;
4885 break;
4886 }
4887 }
4888 else
4889 {
4890 /* sidt */
4891 if (ir.override)
4892 {
4893 if (record_debug)
4894 printf_unfiltered (_("Process record ignores the memory "
4895 "change of instruction at "
4896 "address 0x%s because it can't get "
4897 "the value of the segment "
4898 "register.\n"),
4899 paddr_nz (ir.addr));
4900 }
4901 else
4902 {
4903 uint32_t addr;
4904
4905 if (i386_record_lea_modrm_addr (&ir, &addr))
4906 return -1;
4907 if (record_arch_list_add_mem (addr, 2))
4908 return -1;
4909 addr += 2;
4910 if (record_arch_list_add_mem (addr, 4))
4911 return -1;
4912 }
4913 }
4914 break;
4915 /* lgdt */
4916 case 2:
4917 /* lidt */
4918 case 3:
4919 /* invlpg */
4920 case 7:
4921 default:
4922 if (ir.mod == 3)
4923 {
4924 ir.addr -= 3;
4925 opcode = opcode << 8 | ir.modrm;
4926 goto no_support;
4927 }
4928 break;
4929 /* smsw */
4930 case 4:
4931 if (ir.mod == 3)
4932 {
4933 if (record_arch_list_add_reg (ir.regcache, ir.rm))
4934 return -1;
4935 }
4936 else
4937 {
4938 ir.ot = OT_WORD;
4939 if (i386_record_lea_modrm (&ir))
4940 return -1;
4941 }
4942 break;
4943 /* lmsw */
4944 case 6:
4945 break;
4946 }
4947 break;
4948
4949 /* invd */
4950 case 0x0f08:
4951 /* wbinvd */
4952 case 0x0f09:
4953 break;
4954
4955 /* arpl */
4956 case 0x63:
4957 ir.ot = ir.dflag ? OT_LONG : OT_WORD;
4958 if (i386_record_modrm (&ir))
4959 return -1;
4960 if (ir.mod != 3)
4961 {
4962 if (i386_record_lea_modrm (&ir))
4963 return -1;
4964 }
4965 else
4966 {
4967 if (record_arch_list_add_reg (ir.regcache, ir.rm))
4968 return -1;
4969 }
4970 if (record_arch_list_add_reg (ir.regcache, I386_EFLAGS_REGNUM))
4971 return -1;
4972 break;
4973
4974 /* lar */
4975 case 0x0f02:
4976 /* lsl */
4977 case 0x0f03:
4978 if (i386_record_modrm (&ir))
4979 return -1;
4980 if (record_arch_list_add_reg (ir.regcache, ir.reg))
4981 return -1;
4982 if (record_arch_list_add_reg (ir.regcache, I386_EFLAGS_REGNUM))
4983 return -1;
4984 break;
4985
4986 case 0x0f18:
4987 break;
4988
4989 /* nop (multi byte) */
4990 case 0x0f19:
4991 case 0x0f1a:
4992 case 0x0f1b:
4993 case 0x0f1c:
4994 case 0x0f1d:
4995 case 0x0f1e:
4996 case 0x0f1f:
4997 break;
4998
4999 /* mov reg, crN */
5000 case 0x0f20:
5001 /* mov crN, reg */
5002 case 0x0f22:
5003 if (i386_record_modrm (&ir))
5004 return -1;
5005 if ((ir.modrm & 0xc0) != 0xc0)
5006 {
5007 ir.addr -= 2;
5008 opcode = opcode << 8 | ir.modrm;
5009 goto no_support;
5010 }
5011 switch (ir.reg)
5012 {
5013 case 0:
5014 case 2:
5015 case 3:
5016 case 4:
5017 case 8:
5018 if (opcode & 2)
5019 {
5020 }
5021 else
5022 {
5023 if (record_arch_list_add_reg (ir.regcache, ir.rm))
5024 return -1;
5025 }
5026 break;
5027 default:
5028 ir.addr -= 2;
5029 opcode = opcode << 8 | ir.modrm;
5030 goto no_support;
5031 break;
5032 }
5033 break;
5034
5035 /* mov reg, drN */
5036 case 0x0f21:
5037 /* mov drN, reg */
5038 case 0x0f23:
5039 if (i386_record_modrm (&ir))
5040 return -1;
5041 if ((ir.modrm & 0xc0) != 0xc0 || ir.reg == 4
5042 || ir.reg == 5 || ir.reg >= 8)
5043 {
5044 ir.addr -= 2;
5045 opcode = opcode << 8 | ir.modrm;
5046 goto no_support;
5047 }
5048 if (opcode & 2)
5049 {
5050 }
5051 else
5052 {
5053 if (record_arch_list_add_reg (ir.regcache, ir.rm))
5054 return -1;
5055 }
5056 break;
5057
5058 /* clts */
5059 case 0x0f06:
5060 break;
5061
5062 /* MMX/SSE/SSE2/PNI support */
5063 /* XXX */
5064
5065 default:
5066 if (opcode > 0xff)
5067 ir.addr -= 2;
5068 else
5069 ir.addr -= 1;
5070 goto no_support;
5071 break;
5072 }
5073
5074 /* In the future, Maybe still need to deal with need_dasm */
5075 if (record_arch_list_add_reg (ir.regcache, I386_EIP_REGNUM))
5076 return -1;
5077 if (record_arch_list_add_end ())
5078 return -1;
5079
5080 return 0;
5081
5082 no_support:
5083 printf_unfiltered (_("Process record doesn't support instruction 0x%02x "
5084 "at address 0x%s.\n"),
5085 (unsigned int) (opcode), paddr_nz (ir.addr));
5086 return -1;
5087 }
5088
5089 \f
5090 static struct gdbarch *
5091 i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
5092 {
5093 struct gdbarch_tdep *tdep;
5094 struct gdbarch *gdbarch;
5095
5096 /* If there is already a candidate, use it. */
5097 arches = gdbarch_list_lookup_by_info (arches, &info);
5098 if (arches != NULL)
5099 return arches->gdbarch;
5100
5101 /* Allocate space for the new architecture. */
5102 tdep = XCALLOC (1, struct gdbarch_tdep);
5103 gdbarch = gdbarch_alloc (&info, tdep);
5104
5105 /* General-purpose registers. */
5106 tdep->gregset = NULL;
5107 tdep->gregset_reg_offset = NULL;
5108 tdep->gregset_num_regs = I386_NUM_GREGS;
5109 tdep->sizeof_gregset = 0;
5110
5111 /* Floating-point registers. */
5112 tdep->fpregset = NULL;
5113 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
5114
5115 /* The default settings include the FPU registers, the MMX registers
5116 and the SSE registers. This can be overridden for a specific ABI
5117 by adjusting the members `st0_regnum', `mm0_regnum' and
5118 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
5119 will show up in the output of "info all-registers". Ideally we
5120 should try to autodetect whether they are available, such that we
5121 can prevent "info all-registers" from displaying registers that
5122 aren't available.
5123
5124 NOTE: kevinb/2003-07-13: ... if it's a choice between printing
5125 [the SSE registers] always (even when they don't exist) or never
5126 showing them to the user (even when they do exist), I prefer the
5127 former over the latter. */
5128
5129 tdep->st0_regnum = I386_ST0_REGNUM;
5130
5131 /* The MMX registers are implemented as pseudo-registers. Put off
5132 calculating the register number for %mm0 until we know the number
5133 of raw registers. */
5134 tdep->mm0_regnum = 0;
5135
5136 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
5137 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
5138
5139 tdep->jb_pc_offset = -1;
5140 tdep->struct_return = pcc_struct_return;
5141 tdep->sigtramp_start = 0;
5142 tdep->sigtramp_end = 0;
5143 tdep->sigtramp_p = i386_sigtramp_p;
5144 tdep->sigcontext_addr = NULL;
5145 tdep->sc_reg_offset = NULL;
5146 tdep->sc_pc_offset = -1;
5147 tdep->sc_sp_offset = -1;
5148
5149 /* The format used for `long double' on almost all i386 targets is
5150 the i387 extended floating-point format. In fact, of all targets
5151 in the GCC 2.95 tree, only OSF/1 does it different, and insists
5152 on having a `long double' that's not `long' at all. */
5153 set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext);
5154
5155 /* Although the i387 extended floating-point has only 80 significant
5156 bits, a `long double' actually takes up 96, probably to enforce
5157 alignment. */
5158 set_gdbarch_long_double_bit (gdbarch, 96);
5159
5160 /* The default ABI includes general-purpose registers,
5161 floating-point registers, and the SSE registers. */
5162 set_gdbarch_num_regs (gdbarch, I386_SSE_NUM_REGS);
5163 set_gdbarch_register_name (gdbarch, i386_register_name);
5164 set_gdbarch_register_type (gdbarch, i386_register_type);
5165
5166 /* Register numbers of various important registers. */
5167 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
5168 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
5169 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
5170 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
5171
5172 /* NOTE: kettenis/20040418: GCC does have two possible register
5173 numbering schemes on the i386: dbx and SVR4. These schemes
5174 differ in how they number %ebp, %esp, %eflags, and the
5175 floating-point registers, and are implemented by the arrays
5176 dbx_register_map[] and svr4_dbx_register_map in
5177 gcc/config/i386.c. GCC also defines a third numbering scheme in
5178 gcc/config/i386.c, which it designates as the "default" register
5179 map used in 64bit mode. This last register numbering scheme is
5180 implemented in dbx64_register_map, and is used for AMD64; see
5181 amd64-tdep.c.
5182
5183 Currently, each GCC i386 target always uses the same register
5184 numbering scheme across all its supported debugging formats
5185 i.e. SDB (COFF), stabs and DWARF 2. This is because
5186 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
5187 DBX_REGISTER_NUMBER macro which is defined by each target's
5188 respective config header in a manner independent of the requested
5189 output debugging format.
5190
5191 This does not match the arrangement below, which presumes that
5192 the SDB and stabs numbering schemes differ from the DWARF and
5193 DWARF 2 ones. The reason for this arrangement is that it is
5194 likely to get the numbering scheme for the target's
5195 default/native debug format right. For targets where GCC is the
5196 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
5197 targets where the native toolchain uses a different numbering
5198 scheme for a particular debug format (stabs-in-ELF on Solaris)
5199 the defaults below will have to be overridden, like
5200 i386_elf_init_abi() does. */
5201
5202 /* Use the dbx register numbering scheme for stabs and COFF. */
5203 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
5204 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
5205
5206 /* Use the SVR4 register numbering scheme for DWARF 2. */
5207 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
5208
5209 /* We don't set gdbarch_stab_reg_to_regnum, since ECOFF doesn't seem to
5210 be in use on any of the supported i386 targets. */
5211
5212 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
5213
5214 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
5215
5216 /* Call dummy code. */
5217 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
5218
5219 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
5220 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
5221 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
5222
5223 set_gdbarch_return_value (gdbarch, i386_return_value);
5224
5225 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
5226
5227 /* Stack grows downward. */
5228 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
5229
5230 set_gdbarch_breakpoint_from_pc (gdbarch, i386_breakpoint_from_pc);
5231 set_gdbarch_decr_pc_after_break (gdbarch, 1);
5232 set_gdbarch_max_insn_length (gdbarch, I386_MAX_INSN_LEN);
5233
5234 set_gdbarch_frame_args_skip (gdbarch, 8);
5235
5236 /* Wire in the MMX registers. */
5237 set_gdbarch_num_pseudo_regs (gdbarch, i386_num_mmx_regs);
5238 set_gdbarch_pseudo_register_read (gdbarch, i386_pseudo_register_read);
5239 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
5240
5241 set_gdbarch_print_insn (gdbarch, i386_print_insn);
5242
5243 set_gdbarch_dummy_id (gdbarch, i386_dummy_id);
5244
5245 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
5246
5247 /* Add the i386 register groups. */
5248 i386_add_reggroups (gdbarch);
5249 set_gdbarch_register_reggroup_p (gdbarch, i386_register_reggroup_p);
5250
5251 /* Helper for function argument information. */
5252 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
5253
5254 /* Hook in the DWARF CFI frame unwinder. */
5255 dwarf2_append_unwinders (gdbarch);
5256
5257 frame_base_set_default (gdbarch, &i386_frame_base);
5258
5259 /* Hook in ABI-specific overrides, if they have been registered. */
5260 gdbarch_init_osabi (info, gdbarch);
5261
5262 frame_unwind_append_unwinder (gdbarch, &i386_sigtramp_frame_unwind);
5263 frame_unwind_append_unwinder (gdbarch, &i386_frame_unwind);
5264
5265 /* If we have a register mapping, enable the generic core file
5266 support, unless it has already been enabled. */
5267 if (tdep->gregset_reg_offset
5268 && !gdbarch_regset_from_core_section_p (gdbarch))
5269 set_gdbarch_regset_from_core_section (gdbarch,
5270 i386_regset_from_core_section);
5271
5272 /* Unless support for MMX has been disabled, make %mm0 the first
5273 pseudo-register. */
5274 if (tdep->mm0_regnum == 0)
5275 tdep->mm0_regnum = gdbarch_num_regs (gdbarch);
5276
5277 set_gdbarch_skip_permanent_breakpoint (gdbarch,
5278 i386_skip_permanent_breakpoint);
5279
5280 set_gdbarch_process_record (gdbarch, i386_process_record);
5281
5282 return gdbarch;
5283 }
5284
5285 static enum gdb_osabi
5286 i386_coff_osabi_sniffer (bfd *abfd)
5287 {
5288 if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
5289 || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
5290 return GDB_OSABI_GO32;
5291
5292 return GDB_OSABI_UNKNOWN;
5293 }
5294 \f
5295
5296 /* Provide a prototype to silence -Wmissing-prototypes. */
5297 void _initialize_i386_tdep (void);
5298
5299 void
5300 _initialize_i386_tdep (void)
5301 {
5302 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
5303
5304 /* Add the variable that controls the disassembly flavor. */
5305 add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
5306 &disassembly_flavor, _("\
5307 Set the disassembly flavor."), _("\
5308 Show the disassembly flavor."), _("\
5309 The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
5310 NULL,
5311 NULL, /* FIXME: i18n: */
5312 &setlist, &showlist);
5313
5314 /* Add the variable that controls the convention for returning
5315 structs. */
5316 add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
5317 &struct_convention, _("\
5318 Set the convention for returning small structs."), _("\
5319 Show the convention for returning small structs."), _("\
5320 Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
5321 is \"default\"."),
5322 NULL,
5323 NULL, /* FIXME: i18n: */
5324 &setlist, &showlist);
5325
5326 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
5327 i386_coff_osabi_sniffer);
5328
5329 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
5330 i386_svr4_init_abi);
5331 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_GO32,
5332 i386_go32_init_abi);
5333
5334 /* Initialize the i386-specific register groups & types. */
5335 i386_init_reggroups ();
5336 i386_init_types();
5337 }
This page took 0.224408 seconds and 5 git commands to generate.