2002-06-14 Chris Demetriou <cgd@broadcom.com>
[deliverable/binutils-gdb.git] / gdb / i386-tdep.c
1 /* Intel 386 target-dependent stuff.
2
3 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "gdb_string.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "gdbcore.h"
28 #include "target.h"
29 #include "floatformat.h"
30 #include "symtab.h"
31 #include "gdbcmd.h"
32 #include "command.h"
33 #include "arch-utils.h"
34 #include "regcache.h"
35 #include "doublest.h"
36 #include "value.h"
37 #include "gdb_assert.h"
38
39 #include "elf-bfd.h"
40
41 #include "i386-tdep.h"
42
43 /* Names of the registers. The first 10 registers match the register
44 numbering scheme used by GCC for stabs and DWARF. */
45 static char *i386_register_names[] =
46 {
47 "eax", "ecx", "edx", "ebx",
48 "esp", "ebp", "esi", "edi",
49 "eip", "eflags", "cs", "ss",
50 "ds", "es", "fs", "gs",
51 "st0", "st1", "st2", "st3",
52 "st4", "st5", "st6", "st7",
53 "fctrl", "fstat", "ftag", "fiseg",
54 "fioff", "foseg", "fooff", "fop",
55 "xmm0", "xmm1", "xmm2", "xmm3",
56 "xmm4", "xmm5", "xmm6", "xmm7",
57 "mxcsr"
58 };
59
60 /* i386_register_offset[i] is the offset into the register file of the
61 start of register number i. We initialize this from
62 i386_register_size. */
63 static int i386_register_offset[MAX_NUM_REGS];
64
65 /* i386_register_size[i] is the number of bytes of storage in GDB's
66 register array occupied by register i. */
67 static int i386_register_size[MAX_NUM_REGS] = {
68 4, 4, 4, 4,
69 4, 4, 4, 4,
70 4, 4, 4, 4,
71 4, 4, 4, 4,
72 10, 10, 10, 10,
73 10, 10, 10, 10,
74 4, 4, 4, 4,
75 4, 4, 4, 4,
76 16, 16, 16, 16,
77 16, 16, 16, 16,
78 4
79 };
80
81 /* Return the name of register REG. */
82
83 char *
84 i386_register_name (int reg)
85 {
86 if (reg < 0)
87 return NULL;
88 if (reg >= sizeof (i386_register_names) / sizeof (*i386_register_names))
89 return NULL;
90
91 return i386_register_names[reg];
92 }
93
94 /* Return the offset into the register array of the start of register
95 number REG. */
96 int
97 i386_register_byte (int reg)
98 {
99 return i386_register_offset[reg];
100 }
101
102 /* Return the number of bytes of storage in GDB's register array
103 occupied by register REG. */
104
105 int
106 i386_register_raw_size (int reg)
107 {
108 return i386_register_size[reg];
109 }
110
111 /* Return the size in bytes of the virtual type of register REG. */
112
113 int
114 i386_register_virtual_size (int reg)
115 {
116 return TYPE_LENGTH (REGISTER_VIRTUAL_TYPE (reg));
117 }
118
119 /* Convert stabs register number REG to the appropriate register
120 number used by GDB. */
121
122 int
123 i386_stab_reg_to_regnum (int reg)
124 {
125 /* This implements what GCC calls the "default" register map. */
126 if (reg >= 0 && reg <= 7)
127 {
128 /* General registers. */
129 return reg;
130 }
131 else if (reg >= 12 && reg <= 19)
132 {
133 /* Floating-point registers. */
134 return reg - 12 + FP0_REGNUM;
135 }
136 else if (reg >= 21 && reg <= 28)
137 {
138 /* SSE registers. */
139 return reg - 21 + XMM0_REGNUM;
140 }
141 else if (reg >= 29 && reg <= 36)
142 {
143 /* MMX registers. */
144 /* FIXME: kettenis/2001-07-28: Should we have the MMX registers
145 as pseudo-registers? */
146 return reg - 29 + FP0_REGNUM;
147 }
148
149 /* This will hopefully provoke a warning. */
150 return NUM_REGS + NUM_PSEUDO_REGS;
151 }
152
153 /* Convert Dwarf register number REG to the appropriate register
154 number used by GDB. */
155
156 int
157 i386_dwarf_reg_to_regnum (int reg)
158 {
159 /* The DWARF register numbering includes %eip and %eflags, and
160 numbers the floating point registers differently. */
161 if (reg >= 0 && reg <= 9)
162 {
163 /* General registers. */
164 return reg;
165 }
166 else if (reg >= 11 && reg <= 18)
167 {
168 /* Floating-point registers. */
169 return reg - 11 + FP0_REGNUM;
170 }
171 else if (reg >= 21)
172 {
173 /* The SSE and MMX registers have identical numbers as in stabs. */
174 return i386_stab_reg_to_regnum (reg);
175 }
176
177 /* This will hopefully provoke a warning. */
178 return NUM_REGS + NUM_PSEUDO_REGS;
179 }
180 \f
181
182 /* This is the variable that is set with "set disassembly-flavor", and
183 its legitimate values. */
184 static const char att_flavor[] = "att";
185 static const char intel_flavor[] = "intel";
186 static const char *valid_flavors[] =
187 {
188 att_flavor,
189 intel_flavor,
190 NULL
191 };
192 static const char *disassembly_flavor = att_flavor;
193
194 /* Stdio style buffering was used to minimize calls to ptrace, but
195 this buffering did not take into account that the code section
196 being accessed may not be an even number of buffers long (even if
197 the buffer is only sizeof(int) long). In cases where the code
198 section size happened to be a non-integral number of buffers long,
199 attempting to read the last buffer would fail. Simply using
200 target_read_memory and ignoring errors, rather than read_memory, is
201 not the correct solution, since legitimate access errors would then
202 be totally ignored. To properly handle this situation and continue
203 to use buffering would require that this code be able to determine
204 the minimum code section size granularity (not the alignment of the
205 section itself, since the actual failing case that pointed out this
206 problem had a section alignment of 4 but was not a multiple of 4
207 bytes long), on a target by target basis, and then adjust it's
208 buffer size accordingly. This is messy, but potentially feasible.
209 It probably needs the bfd library's help and support. For now, the
210 buffer size is set to 1. (FIXME -fnf) */
211
212 #define CODESTREAM_BUFSIZ 1 /* Was sizeof(int), see note above. */
213 static CORE_ADDR codestream_next_addr;
214 static CORE_ADDR codestream_addr;
215 static unsigned char codestream_buf[CODESTREAM_BUFSIZ];
216 static int codestream_off;
217 static int codestream_cnt;
218
219 #define codestream_tell() (codestream_addr + codestream_off)
220 #define codestream_peek() \
221 (codestream_cnt == 0 ? \
222 codestream_fill(1) : codestream_buf[codestream_off])
223 #define codestream_get() \
224 (codestream_cnt-- == 0 ? \
225 codestream_fill(0) : codestream_buf[codestream_off++])
226
227 static unsigned char
228 codestream_fill (int peek_flag)
229 {
230 codestream_addr = codestream_next_addr;
231 codestream_next_addr += CODESTREAM_BUFSIZ;
232 codestream_off = 0;
233 codestream_cnt = CODESTREAM_BUFSIZ;
234 read_memory (codestream_addr, (char *) codestream_buf, CODESTREAM_BUFSIZ);
235
236 if (peek_flag)
237 return (codestream_peek ());
238 else
239 return (codestream_get ());
240 }
241
242 static void
243 codestream_seek (CORE_ADDR place)
244 {
245 codestream_next_addr = place / CODESTREAM_BUFSIZ;
246 codestream_next_addr *= CODESTREAM_BUFSIZ;
247 codestream_cnt = 0;
248 codestream_fill (1);
249 while (codestream_tell () != place)
250 codestream_get ();
251 }
252
253 static void
254 codestream_read (unsigned char *buf, int count)
255 {
256 unsigned char *p;
257 int i;
258 p = buf;
259 for (i = 0; i < count; i++)
260 *p++ = codestream_get ();
261 }
262 \f
263
264 /* If the next instruction is a jump, move to its target. */
265
266 static void
267 i386_follow_jump (void)
268 {
269 unsigned char buf[4];
270 long delta;
271
272 int data16;
273 CORE_ADDR pos;
274
275 pos = codestream_tell ();
276
277 data16 = 0;
278 if (codestream_peek () == 0x66)
279 {
280 codestream_get ();
281 data16 = 1;
282 }
283
284 switch (codestream_get ())
285 {
286 case 0xe9:
287 /* Relative jump: if data16 == 0, disp32, else disp16. */
288 if (data16)
289 {
290 codestream_read (buf, 2);
291 delta = extract_signed_integer (buf, 2);
292
293 /* Include the size of the jmp instruction (including the
294 0x66 prefix). */
295 pos += delta + 4;
296 }
297 else
298 {
299 codestream_read (buf, 4);
300 delta = extract_signed_integer (buf, 4);
301
302 pos += delta + 5;
303 }
304 break;
305 case 0xeb:
306 /* Relative jump, disp8 (ignore data16). */
307 codestream_read (buf, 1);
308 /* Sign-extend it. */
309 delta = extract_signed_integer (buf, 1);
310
311 pos += delta + 2;
312 break;
313 }
314 codestream_seek (pos);
315 }
316
317 /* Find & return the amount a local space allocated, and advance the
318 codestream to the first register push (if any).
319
320 If the entry sequence doesn't make sense, return -1, and leave
321 codestream pointer at a random spot. */
322
323 static long
324 i386_get_frame_setup (CORE_ADDR pc)
325 {
326 unsigned char op;
327
328 codestream_seek (pc);
329
330 i386_follow_jump ();
331
332 op = codestream_get ();
333
334 if (op == 0x58) /* popl %eax */
335 {
336 /* This function must start with
337
338 popl %eax 0x58
339 xchgl %eax, (%esp) 0x87 0x04 0x24
340 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
341
342 (the System V compiler puts out the second `xchg'
343 instruction, and the assembler doesn't try to optimize it, so
344 the 'sib' form gets generated). This sequence is used to get
345 the address of the return buffer for a function that returns
346 a structure. */
347 int pos;
348 unsigned char buf[4];
349 static unsigned char proto1[3] = { 0x87, 0x04, 0x24 };
350 static unsigned char proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
351
352 pos = codestream_tell ();
353 codestream_read (buf, 4);
354 if (memcmp (buf, proto1, 3) == 0)
355 pos += 3;
356 else if (memcmp (buf, proto2, 4) == 0)
357 pos += 4;
358
359 codestream_seek (pos);
360 op = codestream_get (); /* Update next opcode. */
361 }
362
363 if (op == 0x68 || op == 0x6a)
364 {
365 /* This function may start with
366
367 pushl constant
368 call _probe
369 addl $4, %esp
370
371 followed by
372
373 pushl %ebp
374
375 etc. */
376 int pos;
377 unsigned char buf[8];
378
379 /* Skip past the `pushl' instruction; it has either a one-byte
380 or a four-byte operand, depending on the opcode. */
381 pos = codestream_tell ();
382 if (op == 0x68)
383 pos += 4;
384 else
385 pos += 1;
386 codestream_seek (pos);
387
388 /* Read the following 8 bytes, which should be "call _probe" (6
389 bytes) followed by "addl $4,%esp" (2 bytes). */
390 codestream_read (buf, sizeof (buf));
391 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
392 pos += sizeof (buf);
393 codestream_seek (pos);
394 op = codestream_get (); /* Update next opcode. */
395 }
396
397 if (op == 0x55) /* pushl %ebp */
398 {
399 /* Check for "movl %esp, %ebp" -- can be written in two ways. */
400 switch (codestream_get ())
401 {
402 case 0x8b:
403 if (codestream_get () != 0xec)
404 return -1;
405 break;
406 case 0x89:
407 if (codestream_get () != 0xe5)
408 return -1;
409 break;
410 default:
411 return -1;
412 }
413 /* Check for stack adjustment
414
415 subl $XXX, %esp
416
417 NOTE: You can't subtract a 16 bit immediate from a 32 bit
418 reg, so we don't have to worry about a data16 prefix. */
419 op = codestream_peek ();
420 if (op == 0x83)
421 {
422 /* `subl' with 8 bit immediate. */
423 codestream_get ();
424 if (codestream_get () != 0xec)
425 /* Some instruction starting with 0x83 other than `subl'. */
426 {
427 codestream_seek (codestream_tell () - 2);
428 return 0;
429 }
430 /* `subl' with signed byte immediate (though it wouldn't
431 make sense to be negative). */
432 return (codestream_get ());
433 }
434 else if (op == 0x81)
435 {
436 char buf[4];
437 /* Maybe it is `subl' with a 32 bit immedediate. */
438 codestream_get ();
439 if (codestream_get () != 0xec)
440 /* Some instruction starting with 0x81 other than `subl'. */
441 {
442 codestream_seek (codestream_tell () - 2);
443 return 0;
444 }
445 /* It is `subl' with a 32 bit immediate. */
446 codestream_read ((unsigned char *) buf, 4);
447 return extract_signed_integer (buf, 4);
448 }
449 else
450 {
451 return 0;
452 }
453 }
454 else if (op == 0xc8)
455 {
456 char buf[2];
457 /* `enter' with 16 bit unsigned immediate. */
458 codestream_read ((unsigned char *) buf, 2);
459 codestream_get (); /* Flush final byte of enter instruction. */
460 return extract_unsigned_integer (buf, 2);
461 }
462 return (-1);
463 }
464
465 /* Return the chain-pointer for FRAME. In the case of the i386, the
466 frame's nominal address is the address of a 4-byte word containing
467 the calling frame's address. */
468
469 CORE_ADDR
470 i386_frame_chain (struct frame_info *frame)
471 {
472 if (frame->signal_handler_caller)
473 return frame->frame;
474
475 if (! inside_entry_file (frame->pc))
476 return read_memory_unsigned_integer (frame->frame, 4);
477
478 return 0;
479 }
480
481 /* Determine whether the function invocation represented by FRAME does
482 not have a from on the stack associated with it. If it does not,
483 return non-zero, otherwise return zero. */
484
485 int
486 i386_frameless_function_invocation (struct frame_info *frame)
487 {
488 if (frame->signal_handler_caller)
489 return 0;
490
491 return frameless_look_for_prologue (frame);
492 }
493
494 /* Return the saved program counter for FRAME. */
495
496 CORE_ADDR
497 i386_frame_saved_pc (struct frame_info *frame)
498 {
499 /* FIXME: kettenis/2001-05-09: Conditionalizing the next bit of code
500 on SIGCONTEXT_PC_OFFSET and I386V4_SIGTRAMP_SAVED_PC should be
501 considered a temporary hack. I plan to come up with something
502 better when we go multi-arch. */
503 #if defined (SIGCONTEXT_PC_OFFSET) || defined (I386V4_SIGTRAMP_SAVED_PC)
504 if (frame->signal_handler_caller)
505 return sigtramp_saved_pc (frame);
506 #endif
507
508 return read_memory_unsigned_integer (frame->frame + 4, 4);
509 }
510
511 CORE_ADDR
512 i386go32_frame_saved_pc (struct frame_info *frame)
513 {
514 return read_memory_integer (frame->frame + 4, 4);
515 }
516
517 /* Immediately after a function call, return the saved pc. */
518
519 CORE_ADDR
520 i386_saved_pc_after_call (struct frame_info *frame)
521 {
522 return read_memory_unsigned_integer (read_register (SP_REGNUM), 4);
523 }
524
525 /* Return number of args passed to a frame.
526 Can return -1, meaning no way to tell. */
527
528 int
529 i386_frame_num_args (struct frame_info *fi)
530 {
531 #if 1
532 return -1;
533 #else
534 /* This loses because not only might the compiler not be popping the
535 args right after the function call, it might be popping args from
536 both this call and a previous one, and we would say there are
537 more args than there really are. */
538
539 int retpc;
540 unsigned char op;
541 struct frame_info *pfi;
542
543 /* On the i386, the instruction following the call could be:
544 popl %ecx - one arg
545 addl $imm, %esp - imm/4 args; imm may be 8 or 32 bits
546 anything else - zero args. */
547
548 int frameless;
549
550 frameless = FRAMELESS_FUNCTION_INVOCATION (fi);
551 if (frameless)
552 /* In the absence of a frame pointer, GDB doesn't get correct
553 values for nameless arguments. Return -1, so it doesn't print
554 any nameless arguments. */
555 return -1;
556
557 pfi = get_prev_frame (fi);
558 if (pfi == 0)
559 {
560 /* NOTE: This can happen if we are looking at the frame for
561 main, because FRAME_CHAIN_VALID won't let us go into start.
562 If we have debugging symbols, that's not really a big deal;
563 it just means it will only show as many arguments to main as
564 are declared. */
565 return -1;
566 }
567 else
568 {
569 retpc = pfi->pc;
570 op = read_memory_integer (retpc, 1);
571 if (op == 0x59) /* pop %ecx */
572 return 1;
573 else if (op == 0x83)
574 {
575 op = read_memory_integer (retpc + 1, 1);
576 if (op == 0xc4)
577 /* addl $<signed imm 8 bits>, %esp */
578 return (read_memory_integer (retpc + 2, 1) & 0xff) / 4;
579 else
580 return 0;
581 }
582 else if (op == 0x81) /* `add' with 32 bit immediate. */
583 {
584 op = read_memory_integer (retpc + 1, 1);
585 if (op == 0xc4)
586 /* addl $<imm 32>, %esp */
587 return read_memory_integer (retpc + 2, 4) / 4;
588 else
589 return 0;
590 }
591 else
592 {
593 return 0;
594 }
595 }
596 #endif
597 }
598
599 /* Parse the first few instructions the function to see what registers
600 were stored.
601
602 We handle these cases:
603
604 The startup sequence can be at the start of the function, or the
605 function can start with a branch to startup code at the end.
606
607 %ebp can be set up with either the 'enter' instruction, or "pushl
608 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
609 once used in the System V compiler).
610
611 Local space is allocated just below the saved %ebp by either the
612 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a 16
613 bit unsigned argument for space to allocate, and the 'addl'
614 instruction could have either a signed byte, or 32 bit immediate.
615
616 Next, the registers used by this function are pushed. With the
617 System V compiler they will always be in the order: %edi, %esi,
618 %ebx (and sometimes a harmless bug causes it to also save but not
619 restore %eax); however, the code below is willing to see the pushes
620 in any order, and will handle up to 8 of them.
621
622 If the setup sequence is at the end of the function, then the next
623 instruction will be a branch back to the start. */
624
625 void
626 i386_frame_init_saved_regs (struct frame_info *fip)
627 {
628 long locals = -1;
629 unsigned char op;
630 CORE_ADDR dummy_bottom;
631 CORE_ADDR addr;
632 CORE_ADDR pc;
633 int i;
634
635 if (fip->saved_regs)
636 return;
637
638 frame_saved_regs_zalloc (fip);
639
640 /* If the frame is the end of a dummy, compute where the beginning
641 would be. */
642 dummy_bottom = fip->frame - 4 - REGISTER_BYTES - CALL_DUMMY_LENGTH;
643
644 /* Check if the PC points in the stack, in a dummy frame. */
645 if (dummy_bottom <= fip->pc && fip->pc <= fip->frame)
646 {
647 /* All registers were saved by push_call_dummy. */
648 addr = fip->frame;
649 for (i = 0; i < NUM_REGS; i++)
650 {
651 addr -= REGISTER_RAW_SIZE (i);
652 fip->saved_regs[i] = addr;
653 }
654 return;
655 }
656
657 pc = get_pc_function_start (fip->pc);
658 if (pc != 0)
659 locals = i386_get_frame_setup (pc);
660
661 if (locals >= 0)
662 {
663 addr = fip->frame - 4 - locals;
664 for (i = 0; i < 8; i++)
665 {
666 op = codestream_get ();
667 if (op < 0x50 || op > 0x57)
668 break;
669 #ifdef I386_REGNO_TO_SYMMETRY
670 /* Dynix uses different internal numbering. Ick. */
671 fip->saved_regs[I386_REGNO_TO_SYMMETRY (op - 0x50)] = addr;
672 #else
673 fip->saved_regs[op - 0x50] = addr;
674 #endif
675 addr -= 4;
676 }
677 }
678
679 fip->saved_regs[PC_REGNUM] = fip->frame + 4;
680 fip->saved_regs[FP_REGNUM] = fip->frame;
681 }
682
683 /* Return PC of first real instruction. */
684
685 int
686 i386_skip_prologue (int pc)
687 {
688 unsigned char op;
689 int i;
690 static unsigned char pic_pat[6] =
691 { 0xe8, 0, 0, 0, 0, /* call 0x0 */
692 0x5b, /* popl %ebx */
693 };
694 CORE_ADDR pos;
695
696 if (i386_get_frame_setup (pc) < 0)
697 return (pc);
698
699 /* Found valid frame setup -- codestream now points to start of push
700 instructions for saving registers. */
701
702 /* Skip over register saves. */
703 for (i = 0; i < 8; i++)
704 {
705 op = codestream_peek ();
706 /* Break if not `pushl' instrunction. */
707 if (op < 0x50 || op > 0x57)
708 break;
709 codestream_get ();
710 }
711
712 /* The native cc on SVR4 in -K PIC mode inserts the following code
713 to get the address of the global offset table (GOT) into register
714 %ebx
715
716 call 0x0
717 popl %ebx
718 movl %ebx,x(%ebp) (optional)
719 addl y,%ebx
720
721 This code is with the rest of the prologue (at the end of the
722 function), so we have to skip it to get to the first real
723 instruction at the start of the function. */
724
725 pos = codestream_tell ();
726 for (i = 0; i < 6; i++)
727 {
728 op = codestream_get ();
729 if (pic_pat[i] != op)
730 break;
731 }
732 if (i == 6)
733 {
734 unsigned char buf[4];
735 long delta = 6;
736
737 op = codestream_get ();
738 if (op == 0x89) /* movl %ebx, x(%ebp) */
739 {
740 op = codestream_get ();
741 if (op == 0x5d) /* One byte offset from %ebp. */
742 {
743 delta += 3;
744 codestream_read (buf, 1);
745 }
746 else if (op == 0x9d) /* Four byte offset from %ebp. */
747 {
748 delta += 6;
749 codestream_read (buf, 4);
750 }
751 else /* Unexpected instruction. */
752 delta = -1;
753 op = codestream_get ();
754 }
755 /* addl y,%ebx */
756 if (delta > 0 && op == 0x81 && codestream_get () == 0xc3)
757 {
758 pos += delta + 6;
759 }
760 }
761 codestream_seek (pos);
762
763 i386_follow_jump ();
764
765 return (codestream_tell ());
766 }
767
768 void
769 i386_push_dummy_frame (void)
770 {
771 CORE_ADDR sp = read_register (SP_REGNUM);
772 CORE_ADDR fp;
773 int regnum;
774 char regbuf[MAX_REGISTER_RAW_SIZE];
775
776 sp = push_word (sp, read_register (PC_REGNUM));
777 sp = push_word (sp, read_register (FP_REGNUM));
778 fp = sp;
779 for (regnum = 0; regnum < NUM_REGS; regnum++)
780 {
781 read_register_gen (regnum, regbuf);
782 sp = push_bytes (sp, regbuf, REGISTER_RAW_SIZE (regnum));
783 }
784 write_register (SP_REGNUM, sp);
785 write_register (FP_REGNUM, fp);
786 }
787
788 /* Insert the (relative) function address into the call sequence
789 stored at DYMMY. */
790
791 void
792 i386_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs,
793 struct value **args, struct type *type, int gcc_p)
794 {
795 int from, to, delta, loc;
796
797 loc = (int)(read_register (SP_REGNUM) - CALL_DUMMY_LENGTH);
798 from = loc + 5;
799 to = (int)(fun);
800 delta = to - from;
801
802 *((char *)(dummy) + 1) = (delta & 0xff);
803 *((char *)(dummy) + 2) = ((delta >> 8) & 0xff);
804 *((char *)(dummy) + 3) = ((delta >> 16) & 0xff);
805 *((char *)(dummy) + 4) = ((delta >> 24) & 0xff);
806 }
807
808 void
809 i386_pop_frame (void)
810 {
811 struct frame_info *frame = get_current_frame ();
812 CORE_ADDR fp;
813 int regnum;
814 char regbuf[MAX_REGISTER_RAW_SIZE];
815
816 fp = FRAME_FP (frame);
817 i386_frame_init_saved_regs (frame);
818
819 for (regnum = 0; regnum < NUM_REGS; regnum++)
820 {
821 CORE_ADDR addr;
822 addr = frame->saved_regs[regnum];
823 if (addr)
824 {
825 read_memory (addr, regbuf, REGISTER_RAW_SIZE (regnum));
826 write_register_bytes (REGISTER_BYTE (regnum), regbuf,
827 REGISTER_RAW_SIZE (regnum));
828 }
829 }
830 write_register (FP_REGNUM, read_memory_integer (fp, 4));
831 write_register (PC_REGNUM, read_memory_integer (fp + 4, 4));
832 write_register (SP_REGNUM, fp + 8);
833 flush_cached_frames ();
834 }
835 \f
836
837 #ifdef GET_LONGJMP_TARGET
838
839 /* FIXME: Multi-arching does not set JB_PC and JB_ELEMENT_SIZE yet.
840 Fill in with dummy value to enable compilation. */
841 #ifndef JB_PC
842 #define JB_PC 0
843 #endif /* JB_PC */
844
845 #ifndef JB_ELEMENT_SIZE
846 #define JB_ELEMENT_SIZE 4
847 #endif /* JB_ELEMENT_SIZE */
848
849 /* Figure out where the longjmp will land. Slurp the args out of the
850 stack. We expect the first arg to be a pointer to the jmp_buf
851 structure from which we extract the pc (JB_PC) that we will land
852 at. The pc is copied into PC. This routine returns true on
853 success. */
854
855 int
856 get_longjmp_target (CORE_ADDR *pc)
857 {
858 char buf[TARGET_PTR_BIT / TARGET_CHAR_BIT];
859 CORE_ADDR sp, jb_addr;
860
861 sp = read_register (SP_REGNUM);
862
863 if (target_read_memory (sp + SP_ARG0, /* Offset of first arg on stack. */
864 buf,
865 TARGET_PTR_BIT / TARGET_CHAR_BIT))
866 return 0;
867
868 jb_addr = extract_address (buf, TARGET_PTR_BIT / TARGET_CHAR_BIT);
869
870 if (target_read_memory (jb_addr + JB_PC * JB_ELEMENT_SIZE, buf,
871 TARGET_PTR_BIT / TARGET_CHAR_BIT))
872 return 0;
873
874 *pc = extract_address (buf, TARGET_PTR_BIT / TARGET_CHAR_BIT);
875
876 return 1;
877 }
878
879 #endif /* GET_LONGJMP_TARGET */
880 \f
881
882 CORE_ADDR
883 i386_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
884 int struct_return, CORE_ADDR struct_addr)
885 {
886 sp = default_push_arguments (nargs, args, sp, struct_return, struct_addr);
887
888 if (struct_return)
889 {
890 char buf[4];
891
892 sp -= 4;
893 store_address (buf, 4, struct_addr);
894 write_memory (sp, buf, 4);
895 }
896
897 return sp;
898 }
899
900 void
901 i386_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
902 {
903 /* Do nothing. Everything was already done by i386_push_arguments. */
904 }
905
906 /* These registers are used for returning integers (and on some
907 targets also for returning `struct' and `union' values when their
908 size and alignment match an integer type). */
909 #define LOW_RETURN_REGNUM 0 /* %eax */
910 #define HIGH_RETURN_REGNUM 2 /* %edx */
911
912 /* Extract from an array REGBUF containing the (raw) register state, a
913 function return value of TYPE, and copy that, in virtual format,
914 into VALBUF. */
915
916 void
917 i386_extract_return_value (struct type *type, char *regbuf, char *valbuf)
918 {
919 int len = TYPE_LENGTH (type);
920
921 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
922 && TYPE_NFIELDS (type) == 1)
923 {
924 i386_extract_return_value (TYPE_FIELD_TYPE (type, 0), regbuf, valbuf);
925 return;
926 }
927
928 if (TYPE_CODE (type) == TYPE_CODE_FLT)
929 {
930 if (NUM_FREGS == 0)
931 {
932 warning ("Cannot find floating-point return value.");
933 memset (valbuf, 0, len);
934 return;
935 }
936
937 /* Floating-point return values can be found in %st(0). Convert
938 its contents to the desired type. This is probably not
939 exactly how it would happen on the target itself, but it is
940 the best we can do. */
941 convert_typed_floating (&regbuf[REGISTER_BYTE (FP0_REGNUM)],
942 builtin_type_i387_ext, valbuf, type);
943 }
944 else
945 {
946 int low_size = REGISTER_RAW_SIZE (LOW_RETURN_REGNUM);
947 int high_size = REGISTER_RAW_SIZE (HIGH_RETURN_REGNUM);
948
949 if (len <= low_size)
950 memcpy (valbuf, &regbuf[REGISTER_BYTE (LOW_RETURN_REGNUM)], len);
951 else if (len <= (low_size + high_size))
952 {
953 memcpy (valbuf,
954 &regbuf[REGISTER_BYTE (LOW_RETURN_REGNUM)], low_size);
955 memcpy (valbuf + low_size,
956 &regbuf[REGISTER_BYTE (HIGH_RETURN_REGNUM)], len - low_size);
957 }
958 else
959 internal_error (__FILE__, __LINE__,
960 "Cannot extract return value of %d bytes long.", len);
961 }
962 }
963
964 /* Write into the appropriate registers a function return value stored
965 in VALBUF of type TYPE, given in virtual format. */
966
967 void
968 i386_store_return_value (struct type *type, char *valbuf)
969 {
970 int len = TYPE_LENGTH (type);
971
972 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
973 && TYPE_NFIELDS (type) == 1)
974 {
975 i386_store_return_value (TYPE_FIELD_TYPE (type, 0), valbuf);
976 return;
977 }
978
979 if (TYPE_CODE (type) == TYPE_CODE_FLT)
980 {
981 unsigned int fstat;
982 char buf[FPU_REG_RAW_SIZE];
983
984 if (NUM_FREGS == 0)
985 {
986 warning ("Cannot set floating-point return value.");
987 return;
988 }
989
990 /* Returning floating-point values is a bit tricky. Apart from
991 storing the return value in %st(0), we have to simulate the
992 state of the FPU at function return point. */
993
994 /* Convert the value found in VALBUF to the extended
995 floating-point format used by the FPU. This is probably
996 not exactly how it would happen on the target itself, but
997 it is the best we can do. */
998 convert_typed_floating (valbuf, type, buf, builtin_type_i387_ext);
999 write_register_bytes (REGISTER_BYTE (FP0_REGNUM), buf,
1000 FPU_REG_RAW_SIZE);
1001
1002 /* Set the top of the floating-point register stack to 7. The
1003 actual value doesn't really matter, but 7 is what a normal
1004 function return would end up with if the program started out
1005 with a freshly initialized FPU. */
1006 fstat = read_register (FSTAT_REGNUM);
1007 fstat |= (7 << 11);
1008 write_register (FSTAT_REGNUM, fstat);
1009
1010 /* Mark %st(1) through %st(7) as empty. Since we set the top of
1011 the floating-point register stack to 7, the appropriate value
1012 for the tag word is 0x3fff. */
1013 write_register (FTAG_REGNUM, 0x3fff);
1014 }
1015 else
1016 {
1017 int low_size = REGISTER_RAW_SIZE (LOW_RETURN_REGNUM);
1018 int high_size = REGISTER_RAW_SIZE (HIGH_RETURN_REGNUM);
1019
1020 if (len <= low_size)
1021 write_register_bytes (REGISTER_BYTE (LOW_RETURN_REGNUM), valbuf, len);
1022 else if (len <= (low_size + high_size))
1023 {
1024 write_register_bytes (REGISTER_BYTE (LOW_RETURN_REGNUM),
1025 valbuf, low_size);
1026 write_register_bytes (REGISTER_BYTE (HIGH_RETURN_REGNUM),
1027 valbuf + low_size, len - low_size);
1028 }
1029 else
1030 internal_error (__FILE__, __LINE__,
1031 "Cannot store return value of %d bytes long.", len);
1032 }
1033 }
1034
1035 /* Extract from an array REGBUF containing the (raw) register state
1036 the address in which a function should return its structure value,
1037 as a CORE_ADDR. */
1038
1039 CORE_ADDR
1040 i386_extract_struct_value_address (char *regbuf)
1041 {
1042 return extract_address (&regbuf[REGISTER_BYTE (LOW_RETURN_REGNUM)],
1043 REGISTER_RAW_SIZE (LOW_RETURN_REGNUM));
1044 }
1045 \f
1046
1047 /* Return the GDB type object for the "standard" data type of data in
1048 register REGNUM. Perhaps %esi and %edi should go here, but
1049 potentially they could be used for things other than address. */
1050
1051 struct type *
1052 i386_register_virtual_type (int regnum)
1053 {
1054 if (regnum == PC_REGNUM || regnum == FP_REGNUM || regnum == SP_REGNUM)
1055 return lookup_pointer_type (builtin_type_void);
1056
1057 if (IS_FP_REGNUM (regnum))
1058 return builtin_type_i387_ext;
1059
1060 if (IS_SSE_REGNUM (regnum))
1061 return builtin_type_vec128i;
1062
1063 return builtin_type_int;
1064 }
1065
1066 /* Return true iff register REGNUM's virtual format is different from
1067 its raw format. Note that this definition assumes that the host
1068 supports IEEE 32-bit floats, since it doesn't say that SSE
1069 registers need conversion. Even if we can't find a counterexample,
1070 this is still sloppy. */
1071
1072 int
1073 i386_register_convertible (int regnum)
1074 {
1075 return IS_FP_REGNUM (regnum);
1076 }
1077
1078 /* Convert data from raw format for register REGNUM in buffer FROM to
1079 virtual format with type TYPE in buffer TO. */
1080
1081 void
1082 i386_register_convert_to_virtual (int regnum, struct type *type,
1083 char *from, char *to)
1084 {
1085 gdb_assert (IS_FP_REGNUM (regnum));
1086
1087 /* We only support floating-point values. */
1088 if (TYPE_CODE (type) != TYPE_CODE_FLT)
1089 {
1090 warning ("Cannot convert floating-point register value "
1091 "to non-floating-point type.");
1092 memset (to, 0, TYPE_LENGTH (type));
1093 return;
1094 }
1095
1096 /* Convert to TYPE. This should be a no-op if TYPE is equivalent to
1097 the extended floating-point format used by the FPU. */
1098 convert_typed_floating (from, builtin_type_i387_ext, to, type);
1099 }
1100
1101 /* Convert data from virtual format with type TYPE in buffer FROM to
1102 raw format for register REGNUM in buffer TO. */
1103
1104 void
1105 i386_register_convert_to_raw (struct type *type, int regnum,
1106 char *from, char *to)
1107 {
1108 gdb_assert (IS_FP_REGNUM (regnum));
1109
1110 /* We only support floating-point values. */
1111 if (TYPE_CODE (type) != TYPE_CODE_FLT)
1112 {
1113 warning ("Cannot convert non-floating-point type "
1114 "to floating-point register value.");
1115 memset (to, 0, TYPE_LENGTH (type));
1116 return;
1117 }
1118
1119 /* Convert from TYPE. This should be a no-op if TYPE is equivalent
1120 to the extended floating-point format used by the FPU. */
1121 convert_typed_floating (from, type, to, builtin_type_i387_ext);
1122 }
1123 \f
1124
1125 #ifdef I386V4_SIGTRAMP_SAVED_PC
1126 /* Get saved user PC for sigtramp from the pushed ucontext on the
1127 stack for all three variants of SVR4 sigtramps. */
1128
1129 CORE_ADDR
1130 i386v4_sigtramp_saved_pc (struct frame_info *frame)
1131 {
1132 CORE_ADDR saved_pc_offset = 4;
1133 char *name = NULL;
1134
1135 find_pc_partial_function (frame->pc, &name, NULL, NULL);
1136 if (name)
1137 {
1138 if (STREQ (name, "_sigreturn"))
1139 saved_pc_offset = 132 + 14 * 4;
1140 else if (STREQ (name, "_sigacthandler"))
1141 saved_pc_offset = 80 + 14 * 4;
1142 else if (STREQ (name, "sigvechandler"))
1143 saved_pc_offset = 120 + 14 * 4;
1144 }
1145
1146 if (frame->next)
1147 return read_memory_integer (frame->next->frame + saved_pc_offset, 4);
1148 return read_memory_integer (read_register (SP_REGNUM) + saved_pc_offset, 4);
1149 }
1150 #endif /* I386V4_SIGTRAMP_SAVED_PC */
1151 \f
1152
1153 #ifdef STATIC_TRANSFORM_NAME
1154 /* SunPRO encodes the static variables. This is not related to C++
1155 mangling, it is done for C too. */
1156
1157 char *
1158 sunpro_static_transform_name (char *name)
1159 {
1160 char *p;
1161 if (IS_STATIC_TRANSFORM_NAME (name))
1162 {
1163 /* For file-local statics there will be a period, a bunch of
1164 junk (the contents of which match a string given in the
1165 N_OPT), a period and the name. For function-local statics
1166 there will be a bunch of junk (which seems to change the
1167 second character from 'A' to 'B'), a period, the name of the
1168 function, and the name. So just skip everything before the
1169 last period. */
1170 p = strrchr (name, '.');
1171 if (p != NULL)
1172 name = p + 1;
1173 }
1174 return name;
1175 }
1176 #endif /* STATIC_TRANSFORM_NAME */
1177 \f
1178
1179 /* Stuff for WIN32 PE style DLL's but is pretty generic really. */
1180
1181 CORE_ADDR
1182 skip_trampoline_code (CORE_ADDR pc, char *name)
1183 {
1184 if (pc && read_memory_unsigned_integer (pc, 2) == 0x25ff) /* jmp *(dest) */
1185 {
1186 unsigned long indirect = read_memory_unsigned_integer (pc + 2, 4);
1187 struct minimal_symbol *indsym =
1188 indirect ? lookup_minimal_symbol_by_pc (indirect) : 0;
1189 char *symname = indsym ? SYMBOL_NAME (indsym) : 0;
1190
1191 if (symname)
1192 {
1193 if (strncmp (symname, "__imp_", 6) == 0
1194 || strncmp (symname, "_imp_", 5) == 0)
1195 return name ? 1 : read_memory_unsigned_integer (indirect, 4);
1196 }
1197 }
1198 return 0; /* Not a trampoline. */
1199 }
1200 \f
1201
1202 /* We have two flavours of disassembly. The machinery on this page
1203 deals with switching between those. */
1204
1205 static int
1206 gdb_print_insn_i386 (bfd_vma memaddr, disassemble_info *info)
1207 {
1208 if (disassembly_flavor == att_flavor)
1209 return print_insn_i386_att (memaddr, info);
1210 else if (disassembly_flavor == intel_flavor)
1211 return print_insn_i386_intel (memaddr, info);
1212 /* Never reached -- disassembly_flavour is always either att_flavor
1213 or intel_flavor. */
1214 internal_error (__FILE__, __LINE__, "failed internal consistency check");
1215 }
1216
1217 \f
1218 /* This table matches the indices assigned to enum i386_abi. Keep
1219 them in sync. */
1220 static const char * const i386_abi_names[] =
1221 {
1222 "<unknown>",
1223 "SVR4",
1224 "NetBSD",
1225 "GNU/Linux",
1226 "GNU/Hurd",
1227 "Solaris",
1228 "FreeBSD",
1229 NULL
1230 };
1231
1232
1233 #define ABI_TAG_OS_GNU_LINUX I386_ABI_LINUX
1234 #define ABI_TAG_OS_GNU_HURD I386_ABI_HURD
1235 #define ABI_TAG_OS_GNU_SOLARIS I386_ABI_INVALID
1236 #define ABI_TAG_OS_FREEBSD I386_ABI_FREEBSD
1237 #define ABI_TAG_OS_NETBSD I386_ABI_NETBSD
1238
1239 static void
1240 process_note_sections (bfd *abfd, asection *sect, void *obj)
1241 {
1242 int *abi = obj;
1243 const char *name;
1244 unsigned int sectsize;
1245
1246 name = bfd_get_section_name (abfd, sect);
1247 sectsize = bfd_section_size (abfd, sect);
1248
1249 if (strcmp (name, ".note.ABI-tag") == 0 && sectsize > 0)
1250 {
1251 unsigned int name_length, data_length, note_type;
1252 char *note;
1253
1254 /* If the section is larger than this, it's probably not what we
1255 are looking for. */
1256 if (sectsize > 128)
1257 sectsize = 128;
1258
1259 note = alloca (sectsize);
1260
1261 bfd_get_section_contents (abfd, sect, note,
1262 (file_ptr) 0, (bfd_size_type) sectsize);
1263
1264 name_length = bfd_h_get_32 (abfd, note);
1265 data_length = bfd_h_get_32 (abfd, note + 4);
1266 note_type = bfd_h_get_32 (abfd, note + 8);
1267
1268 if (name_length == 4 && data_length == 16
1269 && note_type == NT_GNU_ABI_TAG
1270 && strcmp (note + 12, "GNU") == 0)
1271 {
1272 int abi_tag_os = bfd_h_get_32 (abfd, note + 16);
1273
1274 /* The case numbers are from abi-tags in glibc. */
1275 switch (abi_tag_os)
1276 {
1277 case GNU_ABI_TAG_LINUX:
1278 *abi = ABI_TAG_OS_GNU_LINUX;
1279 break;
1280
1281 case GNU_ABI_TAG_HURD:
1282 *abi = ABI_TAG_OS_GNU_HURD;
1283 break;
1284
1285 case GNU_ABI_TAG_SOLARIS:
1286 *abi = ABI_TAG_OS_GNU_SOLARIS;
1287 break;
1288
1289 default:
1290 internal_error
1291 (__FILE__, __LINE__,
1292 "process_note_abi_sections: unknown ABI OS tag %d",
1293 abi_tag_os);
1294 break;
1295 }
1296 }
1297 else if (name_length == 8 && data_length == 4
1298 && note_type == NT_FREEBSD_ABI_TAG
1299 && strcmp (note + 12, "FreeBSD") == 0)
1300 *abi = ABI_TAG_OS_FREEBSD;
1301 }
1302 /* NetBSD uses a similar trick. */
1303 else if (strcmp (name, ".note.netbsd.ident") == 0 && sectsize > 0)
1304 {
1305 unsigned int name_length, desc_length, note_type;
1306 char *note;
1307
1308 /* If the section is larger than this, it's probably not what we are
1309 looking for. */
1310 if (sectsize > 128)
1311 sectsize = 128;
1312
1313 note = alloca (sectsize);
1314
1315 bfd_get_section_contents (abfd, sect, note,
1316 (file_ptr) 0, (bfd_size_type) sectsize);
1317
1318 name_length = bfd_h_get_32 (abfd, note);
1319 desc_length = bfd_h_get_32 (abfd, note + 4);
1320 note_type = bfd_h_get_32 (abfd, note + 8);
1321
1322 if (name_length == 7 && desc_length == 4
1323 && note_type == NT_NETBSD_IDENT
1324 && strcmp (note + 12, "NetBSD") == 0)
1325 *abi = ABI_TAG_OS_NETBSD;
1326 }
1327 }
1328
1329 static int
1330 i386_elf_abi_from_note (bfd *abfd)
1331 {
1332 enum i386_abi abi = I386_ABI_UNKNOWN;
1333
1334 bfd_map_over_sections (abfd, process_note_sections, &abi);
1335
1336 return abi;
1337 }
1338
1339 static enum i386_abi
1340 i386_elf_abi (bfd *abfd)
1341 {
1342 int elfosabi = elf_elfheader (abfd)->e_ident[EI_OSABI];
1343
1344 /* The fact that the EI_OSABI byte is set to ELFOSABI_NONE doesn't
1345 necessarily mean that this is a System V ELF binary. To further
1346 distinguish between binaries for differens operating systems,
1347 check for vendor-specific note elements. */
1348 if (elfosabi == ELFOSABI_NONE)
1349 {
1350 enum i386_abi abi = i386_elf_abi_from_note (abfd);
1351
1352 if (abi != I386_ABI_UNKNOWN)
1353 return abi;
1354
1355 /* FreeBSD folks are naughty; they stored the string "FreeBSD"
1356 in the padding of the e_ident field of the ELF header. */
1357 if (strcmp (&elf_elfheader (abfd)->e_ident[8], "FreeBSD") == 0)
1358 return I386_ABI_FREEBSD;
1359 }
1360
1361 switch (elfosabi)
1362 {
1363 case ELFOSABI_NONE:
1364 return I386_ABI_SVR4;
1365 case ELFOSABI_FREEBSD:
1366 return I386_ABI_FREEBSD;
1367 }
1368
1369 return I386_ABI_UNKNOWN;
1370 }
1371
1372 struct i386_abi_handler
1373 {
1374 struct i386_abi_handler *next;
1375 enum i386_abi abi;
1376 void (*init_abi)(struct gdbarch_info, struct gdbarch *);
1377 };
1378
1379 struct i386_abi_handler *i386_abi_handler_list = NULL;
1380
1381 void
1382 i386_gdbarch_register_os_abi (enum i386_abi abi,
1383 void (*init_abi)(struct gdbarch_info,
1384 struct gdbarch *))
1385 {
1386 struct i386_abi_handler **handler_p;
1387
1388 for (handler_p = &i386_abi_handler_list; *handler_p != NULL;
1389 handler_p = &(*handler_p)->next)
1390 {
1391 if ((*handler_p)->abi == abi)
1392 {
1393 internal_error
1394 (__FILE__, __LINE__,
1395 "i386_gdbarch_register_abi: A handler for this ABI variant "
1396 "(%d) has already been registered", (int) abi);
1397 /* If user wants to continue, override previous definition. */
1398 (*handler_p)->init_abi = init_abi;
1399 return;
1400 }
1401 }
1402 (*handler_p)
1403 = (struct i386_abi_handler *) xmalloc (sizeof (struct i386_abi_handler));
1404 (*handler_p)->next = NULL;
1405 (*handler_p)->abi = abi;
1406 (*handler_p)->init_abi = init_abi;
1407 }
1408
1409 struct gdbarch *
1410 i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1411 {
1412 struct gdbarch_tdep *tdep;
1413 struct gdbarch *gdbarch;
1414 enum i386_abi abi = I386_ABI_UNKNOWN;
1415 struct i386_abi_handler *abi_handler;
1416
1417 if (info.abfd != NULL)
1418 {
1419 switch (bfd_get_flavour (info.abfd))
1420 {
1421 case bfd_target_elf_flavour:
1422 abi= i386_elf_abi (info.abfd);
1423 break;
1424
1425 default:
1426 /* Not sure what to do here, leave the ABI as unknown. */
1427 break;
1428 }
1429 }
1430
1431 /* Find a candidate among extant architectures. */
1432 for (arches = gdbarch_list_lookup_by_info (arches, &info);
1433 arches != NULL;
1434 arches = gdbarch_list_lookup_by_info (arches->next, &info))
1435 {
1436 /* Make sure the ABI selection matches. */
1437 tdep = gdbarch_tdep (arches->gdbarch);
1438 if (tdep && tdep->abi == abi)
1439 return arches->gdbarch;
1440 }
1441
1442 /* Allocate space for the new architecture. */
1443 tdep = XMALLOC (struct gdbarch_tdep);
1444 gdbarch = gdbarch_alloc (&info, tdep);
1445
1446 tdep->abi = abi;
1447
1448 /* FIXME: kettenis/2001-11-24: Although not all IA-32 processors
1449 have the SSE registers, it's easier to set the default to 8. */
1450 tdep->num_xmm_regs = 8;
1451
1452 set_gdbarch_use_generic_dummy_frames (gdbarch, 0);
1453
1454 /* Call dummy code. */
1455 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
1456 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 5);
1457 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
1458 set_gdbarch_call_dummy_p (gdbarch, 1);
1459 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
1460
1461 set_gdbarch_get_saved_register (gdbarch, generic_get_saved_register);
1462 set_gdbarch_push_arguments (gdbarch, i386_push_arguments);
1463
1464 set_gdbarch_pc_in_call_dummy (gdbarch, pc_in_call_dummy_on_stack);
1465
1466 /* NOTE: tm-i386nw.h and tm-i386v4.h override this. */
1467 set_gdbarch_frame_chain_valid (gdbarch, file_frame_chain_valid);
1468
1469 /* NOTE: tm-i386aix.h, tm-i386bsd.h, tm-i386os9k.h, tm-linux.h,
1470 tm-ptx.h, tm-symmetry.h currently override this. Sigh. */
1471 set_gdbarch_num_regs (gdbarch, NUM_GREGS + NUM_FREGS + NUM_SSE_REGS);
1472
1473 /* Hook in ABI-specific overrides, if they have been registered. */
1474 if (abi == I386_ABI_UNKNOWN)
1475 {
1476 /* Don't complain about not knowing the ABI variant if we don't
1477 have an inferior. */
1478 if (info.abfd)
1479 fprintf_filtered
1480 (gdb_stderr, "GDB doesn't recognize the ABI of the inferior. "
1481 "Attempting to continue with the default i386 settings");
1482 }
1483 else
1484 {
1485 for (abi_handler = i386_abi_handler_list; abi_handler != NULL;
1486 abi_handler = abi_handler->next)
1487 if (abi_handler->abi == abi)
1488 break;
1489
1490 if (abi_handler)
1491 abi_handler->init_abi (info, gdbarch);
1492 else
1493 {
1494 /* We assume that if GDB_MULTI_ARCH is less than
1495 GDB_MULTI_ARCH_TM that an ABI variant can be supported by
1496 overriding definitions in this file. */
1497 if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL)
1498 fprintf_filtered
1499 (gdb_stderr,
1500 "A handler for the ABI variant \"%s\" is not built into this "
1501 "configuration of GDB. "
1502 "Attempting to continue with the default i386 settings",
1503 i386_abi_names[abi]);
1504 }
1505 }
1506
1507 return gdbarch;
1508 }
1509
1510 /* Provide a prototype to silence -Wmissing-prototypes. */
1511 void _initialize_i386_tdep (void);
1512
1513 void
1514 _initialize_i386_tdep (void)
1515 {
1516 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
1517
1518 /* Initialize the table saying where each register starts in the
1519 register file. */
1520 {
1521 int i, offset;
1522
1523 offset = 0;
1524 for (i = 0; i < MAX_NUM_REGS; i++)
1525 {
1526 i386_register_offset[i] = offset;
1527 offset += i386_register_size[i];
1528 }
1529 }
1530
1531 tm_print_insn = gdb_print_insn_i386;
1532 tm_print_insn_info.mach = bfd_lookup_arch (bfd_arch_i386, 0)->mach;
1533
1534 /* Add the variable that controls the disassembly flavor. */
1535 {
1536 struct cmd_list_element *new_cmd;
1537
1538 new_cmd = add_set_enum_cmd ("disassembly-flavor", no_class,
1539 valid_flavors,
1540 &disassembly_flavor,
1541 "\
1542 Set the disassembly flavor, the valid values are \"att\" and \"intel\", \
1543 and the default value is \"att\".",
1544 &setlist);
1545 add_show_from_set (new_cmd, &showlist);
1546 }
1547 }
This page took 0.086455 seconds and 5 git commands to generate.