2003-08-10 Andrew Cagney <cagney@redhat.com>
[deliverable/binutils-gdb.git] / gdb / i386-tdep.c
1 /* Intel 386 target-dependent stuff.
2
3 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "arch-utils.h"
25 #include "command.h"
26 #include "dummy-frame.h"
27 #include "dwarf2-frame.h"
28 #include "doublest.h"
29 #include "floatformat.h"
30 #include "frame.h"
31 #include "frame-base.h"
32 #include "frame-unwind.h"
33 #include "inferior.h"
34 #include "gdbcmd.h"
35 #include "gdbcore.h"
36 #include "objfiles.h"
37 #include "osabi.h"
38 #include "regcache.h"
39 #include "reggroups.h"
40 #include "symfile.h"
41 #include "symtab.h"
42 #include "target.h"
43 #include "value.h"
44
45 #include "gdb_assert.h"
46 #include "gdb_string.h"
47
48 #include "i386-tdep.h"
49 #include "i387-tdep.h"
50
51 /* Names of the registers. The first 10 registers match the register
52 numbering scheme used by GCC for stabs and DWARF. */
53
54 static char *i386_register_names[] =
55 {
56 "eax", "ecx", "edx", "ebx",
57 "esp", "ebp", "esi", "edi",
58 "eip", "eflags", "cs", "ss",
59 "ds", "es", "fs", "gs",
60 "st0", "st1", "st2", "st3",
61 "st4", "st5", "st6", "st7",
62 "fctrl", "fstat", "ftag", "fiseg",
63 "fioff", "foseg", "fooff", "fop",
64 "xmm0", "xmm1", "xmm2", "xmm3",
65 "xmm4", "xmm5", "xmm6", "xmm7",
66 "mxcsr"
67 };
68
69 static const int i386_num_register_names =
70 (sizeof (i386_register_names) / sizeof (*i386_register_names));
71
72 /* MMX registers. */
73
74 static char *i386_mmx_names[] =
75 {
76 "mm0", "mm1", "mm2", "mm3",
77 "mm4", "mm5", "mm6", "mm7"
78 };
79
80 static const int i386_num_mmx_regs =
81 (sizeof (i386_mmx_names) / sizeof (i386_mmx_names[0]));
82
83 #define MM0_REGNUM NUM_REGS
84
85 static int
86 i386_mmx_regnum_p (int regnum)
87 {
88 return (regnum >= MM0_REGNUM
89 && regnum < MM0_REGNUM + i386_num_mmx_regs);
90 }
91
92 /* FP register? */
93
94 int
95 i386_fp_regnum_p (int regnum)
96 {
97 return (regnum < NUM_REGS
98 && (FP0_REGNUM && FP0_REGNUM <= regnum && regnum < FPC_REGNUM));
99 }
100
101 int
102 i386_fpc_regnum_p (int regnum)
103 {
104 return (regnum < NUM_REGS
105 && (FPC_REGNUM <= regnum && regnum < XMM0_REGNUM));
106 }
107
108 /* SSE register? */
109
110 int
111 i386_sse_regnum_p (int regnum)
112 {
113 return (regnum < NUM_REGS
114 && (XMM0_REGNUM <= regnum && regnum < MXCSR_REGNUM));
115 }
116
117 int
118 i386_mxcsr_regnum_p (int regnum)
119 {
120 return (regnum < NUM_REGS
121 && regnum == MXCSR_REGNUM);
122 }
123
124 /* Return the name of register REG. */
125
126 const char *
127 i386_register_name (int reg)
128 {
129 if (i386_mmx_regnum_p (reg))
130 return i386_mmx_names[reg - MM0_REGNUM];
131
132 if (reg >= 0 && reg < i386_num_register_names)
133 return i386_register_names[reg];
134
135 return NULL;
136 }
137
138 /* Convert stabs register number REG to the appropriate register
139 number used by GDB. */
140
141 static int
142 i386_stab_reg_to_regnum (int reg)
143 {
144 /* This implements what GCC calls the "default" register map. */
145 if (reg >= 0 && reg <= 7)
146 {
147 /* General-purpose registers. */
148 return reg;
149 }
150 else if (reg >= 12 && reg <= 19)
151 {
152 /* Floating-point registers. */
153 return reg - 12 + FP0_REGNUM;
154 }
155 else if (reg >= 21 && reg <= 28)
156 {
157 /* SSE registers. */
158 return reg - 21 + XMM0_REGNUM;
159 }
160 else if (reg >= 29 && reg <= 36)
161 {
162 /* MMX registers. */
163 return reg - 29 + MM0_REGNUM;
164 }
165
166 /* This will hopefully provoke a warning. */
167 return NUM_REGS + NUM_PSEUDO_REGS;
168 }
169
170 /* Convert DWARF register number REG to the appropriate register
171 number used by GDB. */
172
173 static int
174 i386_dwarf_reg_to_regnum (int reg)
175 {
176 /* The DWARF register numbering includes %eip and %eflags, and
177 numbers the floating point registers differently. */
178 if (reg >= 0 && reg <= 9)
179 {
180 /* General-purpose registers. */
181 return reg;
182 }
183 else if (reg >= 11 && reg <= 18)
184 {
185 /* Floating-point registers. */
186 return reg - 11 + FP0_REGNUM;
187 }
188 else if (reg >= 21)
189 {
190 /* The SSE and MMX registers have identical numbers as in stabs. */
191 return i386_stab_reg_to_regnum (reg);
192 }
193
194 /* This will hopefully provoke a warning. */
195 return NUM_REGS + NUM_PSEUDO_REGS;
196 }
197 \f
198
199 /* This is the variable that is set with "set disassembly-flavor", and
200 its legitimate values. */
201 static const char att_flavor[] = "att";
202 static const char intel_flavor[] = "intel";
203 static const char *valid_flavors[] =
204 {
205 att_flavor,
206 intel_flavor,
207 NULL
208 };
209 static const char *disassembly_flavor = att_flavor;
210 \f
211
212 /* Use the program counter to determine the contents and size of a
213 breakpoint instruction. Return a pointer to a string of bytes that
214 encode a breakpoint instruction, store the length of the string in
215 *LEN and optionally adjust *PC to point to the correct memory
216 location for inserting the breakpoint.
217
218 On the i386 we have a single breakpoint that fits in a single byte
219 and can be inserted anywhere.
220
221 This function is 64-bit safe. */
222
223 static const unsigned char *
224 i386_breakpoint_from_pc (CORE_ADDR *pc, int *len)
225 {
226 static unsigned char break_insn[] = { 0xcc }; /* int 3 */
227
228 *len = sizeof (break_insn);
229 return break_insn;
230 }
231 \f
232 #ifdef I386_REGNO_TO_SYMMETRY
233 #error "The Sequent Symmetry is no longer supported."
234 #endif
235
236 /* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
237 and %esp "belong" to the calling function. Therefore these
238 registers should be saved if they're going to be modified. */
239
240 /* The maximum number of saved registers. This should include all
241 registers mentioned above, and %eip. */
242 #define I386_NUM_SAVED_REGS I386_NUM_GREGS
243
244 struct i386_frame_cache
245 {
246 /* Base address. */
247 CORE_ADDR base;
248 CORE_ADDR sp_offset;
249 CORE_ADDR pc;
250
251 /* Saved registers. */
252 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
253 CORE_ADDR saved_sp;
254 int pc_in_eax;
255
256 /* Stack space reserved for local variables. */
257 long locals;
258 };
259
260 /* Allocate and initialize a frame cache. */
261
262 static struct i386_frame_cache *
263 i386_alloc_frame_cache (void)
264 {
265 struct i386_frame_cache *cache;
266 int i;
267
268 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
269
270 /* Base address. */
271 cache->base = 0;
272 cache->sp_offset = -4;
273 cache->pc = 0;
274
275 /* Saved registers. We initialize these to -1 since zero is a valid
276 offset (that's where %ebp is supposed to be stored). */
277 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
278 cache->saved_regs[i] = -1;
279 cache->saved_sp = 0;
280 cache->pc_in_eax = 0;
281
282 /* Frameless until proven otherwise. */
283 cache->locals = -1;
284
285 return cache;
286 }
287
288 /* If the instruction at PC is a jump, return the address of its
289 target. Otherwise, return PC. */
290
291 static CORE_ADDR
292 i386_follow_jump (CORE_ADDR pc)
293 {
294 unsigned char op;
295 long delta = 0;
296 int data16 = 0;
297
298 op = read_memory_unsigned_integer (pc, 1);
299 if (op == 0x66)
300 {
301 data16 = 1;
302 op = read_memory_unsigned_integer (pc + 1, 1);
303 }
304
305 switch (op)
306 {
307 case 0xe9:
308 /* Relative jump: if data16 == 0, disp32, else disp16. */
309 if (data16)
310 {
311 delta = read_memory_integer (pc + 2, 2);
312
313 /* Include the size of the jmp instruction (including the
314 0x66 prefix). */
315 delta += 4;
316 }
317 else
318 {
319 delta = read_memory_integer (pc + 1, 4);
320
321 /* Include the size of the jmp instruction. */
322 delta += 5;
323 }
324 break;
325 case 0xeb:
326 /* Relative jump, disp8 (ignore data16). */
327 delta = read_memory_integer (pc + data16 + 1, 1);
328
329 delta += data16 + 2;
330 break;
331 }
332
333 return pc + delta;
334 }
335
336 /* Check whether PC points at a prologue for a function returning a
337 structure or union. If so, it updates CACHE and returns the
338 address of the first instruction after the code sequence that
339 removes the "hidden" argument from the stack or CURRENT_PC,
340 whichever is smaller. Otherwise, return PC. */
341
342 static CORE_ADDR
343 i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
344 struct i386_frame_cache *cache)
345 {
346 /* Functions that return a structure or union start with:
347
348 popl %eax 0x58
349 xchgl %eax, (%esp) 0x87 0x04 0x24
350 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
351
352 (the System V compiler puts out the second `xchg' instruction,
353 and the assembler doesn't try to optimize it, so the 'sib' form
354 gets generated). This sequence is used to get the address of the
355 return buffer for a function that returns a structure. */
356 static unsigned char proto1[3] = { 0x87, 0x04, 0x24 };
357 static unsigned char proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
358 unsigned char buf[4];
359 unsigned char op;
360
361 if (current_pc <= pc)
362 return pc;
363
364 op = read_memory_unsigned_integer (pc, 1);
365
366 if (op != 0x58) /* popl %eax */
367 return pc;
368
369 read_memory (pc + 1, buf, 4);
370 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
371 return pc;
372
373 if (current_pc == pc)
374 {
375 cache->sp_offset += 4;
376 return current_pc;
377 }
378
379 if (current_pc == pc + 1)
380 {
381 cache->pc_in_eax = 1;
382 return current_pc;
383 }
384
385 if (buf[1] == proto1[1])
386 return pc + 4;
387 else
388 return pc + 5;
389 }
390
391 static CORE_ADDR
392 i386_skip_probe (CORE_ADDR pc)
393 {
394 /* A function may start with
395
396 pushl constant
397 call _probe
398 addl $4, %esp
399
400 followed by
401
402 pushl %ebp
403
404 etc. */
405 unsigned char buf[8];
406 unsigned char op;
407
408 op = read_memory_unsigned_integer (pc, 1);
409
410 if (op == 0x68 || op == 0x6a)
411 {
412 int delta;
413
414 /* Skip past the `pushl' instruction; it has either a one-byte or a
415 four-byte operand, depending on the opcode. */
416 if (op == 0x68)
417 delta = 5;
418 else
419 delta = 2;
420
421 /* Read the following 8 bytes, which should be `call _probe' (6
422 bytes) followed by `addl $4,%esp' (2 bytes). */
423 read_memory (pc + delta, buf, sizeof (buf));
424 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
425 pc += delta + sizeof (buf);
426 }
427
428 return pc;
429 }
430
431 /* Check whether PC points at a code that sets up a new stack frame.
432 If so, it updates CACHE and returns the address of the first
433 instruction after the sequence that sets removes the "hidden"
434 argument from the stack or CURRENT_PC, whichever is smaller.
435 Otherwise, return PC. */
436
437 static CORE_ADDR
438 i386_analyze_frame_setup (CORE_ADDR pc, CORE_ADDR current_pc,
439 struct i386_frame_cache *cache)
440 {
441 unsigned char op;
442 int skip = 0;
443
444 if (current_pc <= pc)
445 return current_pc;
446
447 op = read_memory_unsigned_integer (pc, 1);
448
449 if (op == 0x55) /* pushl %ebp */
450 {
451 /* Take into account that we've executed the `pushl %ebp' that
452 starts this instruction sequence. */
453 cache->saved_regs[I386_EBP_REGNUM] = 0;
454 cache->sp_offset += 4;
455
456 /* If that's all, return now. */
457 if (current_pc <= pc + 1)
458 return current_pc;
459
460 op = read_memory_unsigned_integer (pc + 1, 1);
461
462 /* Check for some special instructions that might be migrated
463 by GCC into the prologue. We check for
464
465 xorl %ebx, %ebx
466 xorl %ecx, %ecx
467 xorl %edx, %edx
468
469 and the equivalent
470
471 subl %ebx, %ebx
472 subl %ecx, %ecx
473 subl %edx, %edx
474
475 Make sure we only skip these instructions if we later see the
476 `movl %esp, %ebp' that actually sets up the frame. */
477 while (op == 0x29 || op == 0x31)
478 {
479 op = read_memory_unsigned_integer (pc + skip + 2, 1);
480 switch (op)
481 {
482 case 0xdb: /* %ebx */
483 case 0xc9: /* %ecx */
484 case 0xd2: /* %edx */
485 skip += 2;
486 break;
487 default:
488 return pc + 1;
489 }
490
491 op = read_memory_unsigned_integer (pc + skip + 1, 1);
492 }
493
494 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
495 switch (op)
496 {
497 case 0x8b:
498 if (read_memory_unsigned_integer (pc + skip + 2, 1) != 0xec)
499 return pc + 1;
500 break;
501 case 0x89:
502 if (read_memory_unsigned_integer (pc + skip + 2, 1) != 0xe5)
503 return pc + 1;
504 break;
505 default:
506 return pc + 1;
507 }
508
509 /* OK, we actually have a frame. We just don't know how large
510 it is yet. Set its size to zero. We'll adjust it if
511 necessary. We also now commit to skipping the special
512 instructions mentioned before. */
513 cache->locals = 0;
514 pc += skip;
515
516 /* If that's all, return now. */
517 if (current_pc <= pc + 3)
518 return current_pc;
519
520 /* Check for stack adjustment
521
522 subl $XXX, %esp
523
524 NOTE: You can't subtract a 16 bit immediate from a 32 bit
525 reg, so we don't have to worry about a data16 prefix. */
526 op = read_memory_unsigned_integer (pc + 3, 1);
527 if (op == 0x83)
528 {
529 /* `subl' with 8 bit immediate. */
530 if (read_memory_unsigned_integer (pc + 4, 1) != 0xec)
531 /* Some instruction starting with 0x83 other than `subl'. */
532 return pc + 3;
533
534 /* `subl' with signed byte immediate (though it wouldn't make
535 sense to be negative). */
536 cache->locals = read_memory_integer (pc + 5, 1);
537 return pc + 6;
538 }
539 else if (op == 0x81)
540 {
541 /* Maybe it is `subl' with a 32 bit immedediate. */
542 if (read_memory_unsigned_integer (pc + 4, 1) != 0xec)
543 /* Some instruction starting with 0x81 other than `subl'. */
544 return pc + 3;
545
546 /* It is `subl' with a 32 bit immediate. */
547 cache->locals = read_memory_integer (pc + 5, 4);
548 return pc + 9;
549 }
550 else
551 {
552 /* Some instruction other than `subl'. */
553 return pc + 3;
554 }
555 }
556 else if (op == 0xc8) /* enter $XXX */
557 {
558 cache->locals = read_memory_unsigned_integer (pc + 1, 2);
559 return pc + 4;
560 }
561
562 return pc;
563 }
564
565 /* Check whether PC points at code that saves registers on the stack.
566 If so, it updates CACHE and returns the address of the first
567 instruction after the register saves or CURRENT_PC, whichever is
568 smaller. Otherwise, return PC. */
569
570 static CORE_ADDR
571 i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
572 struct i386_frame_cache *cache)
573 {
574 if (cache->locals >= 0)
575 {
576 CORE_ADDR offset;
577 unsigned char op;
578 int i;
579
580 offset = - 4 - cache->locals;
581 for (i = 0; i < 8 && pc < current_pc; i++)
582 {
583 op = read_memory_unsigned_integer (pc, 1);
584 if (op < 0x50 || op > 0x57)
585 break;
586
587 cache->saved_regs[op - 0x50] = offset;
588 offset -= 4;
589 pc++;
590 }
591 }
592
593 return pc;
594 }
595
596 /* Do a full analysis of the prologue at PC and update CACHE
597 accordingly. Bail out early if CURRENT_PC is reached. Return the
598 address where the analysis stopped.
599
600 We handle these cases:
601
602 The startup sequence can be at the start of the function, or the
603 function can start with a branch to startup code at the end.
604
605 %ebp can be set up with either the 'enter' instruction, or "pushl
606 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
607 once used in the System V compiler).
608
609 Local space is allocated just below the saved %ebp by either the
610 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a 16
611 bit unsigned argument for space to allocate, and the 'addl'
612 instruction could have either a signed byte, or 32 bit immediate.
613
614 Next, the registers used by this function are pushed. With the
615 System V compiler they will always be in the order: %edi, %esi,
616 %ebx (and sometimes a harmless bug causes it to also save but not
617 restore %eax); however, the code below is willing to see the pushes
618 in any order, and will handle up to 8 of them.
619
620 If the setup sequence is at the end of the function, then the next
621 instruction will be a branch back to the start. */
622
623 static CORE_ADDR
624 i386_analyze_prologue (CORE_ADDR pc, CORE_ADDR current_pc,
625 struct i386_frame_cache *cache)
626 {
627 pc = i386_follow_jump (pc);
628 pc = i386_analyze_struct_return (pc, current_pc, cache);
629 pc = i386_skip_probe (pc);
630 pc = i386_analyze_frame_setup (pc, current_pc, cache);
631 return i386_analyze_register_saves (pc, current_pc, cache);
632 }
633
634 /* Return PC of first real instruction. */
635
636 static CORE_ADDR
637 i386_skip_prologue (CORE_ADDR start_pc)
638 {
639 static unsigned char pic_pat[6] =
640 {
641 0xe8, 0, 0, 0, 0, /* call 0x0 */
642 0x5b, /* popl %ebx */
643 };
644 struct i386_frame_cache cache;
645 CORE_ADDR pc;
646 unsigned char op;
647 int i;
648
649 cache.locals = -1;
650 pc = i386_analyze_prologue (start_pc, 0xffffffff, &cache);
651 if (cache.locals < 0)
652 return start_pc;
653
654 /* Found valid frame setup. */
655
656 /* The native cc on SVR4 in -K PIC mode inserts the following code
657 to get the address of the global offset table (GOT) into register
658 %ebx:
659
660 call 0x0
661 popl %ebx
662 movl %ebx,x(%ebp) (optional)
663 addl y,%ebx
664
665 This code is with the rest of the prologue (at the end of the
666 function), so we have to skip it to get to the first real
667 instruction at the start of the function. */
668
669 for (i = 0; i < 6; i++)
670 {
671 op = read_memory_unsigned_integer (pc + i, 1);
672 if (pic_pat[i] != op)
673 break;
674 }
675 if (i == 6)
676 {
677 int delta = 6;
678
679 op = read_memory_unsigned_integer (pc + delta, 1);
680
681 if (op == 0x89) /* movl %ebx, x(%ebp) */
682 {
683 op = read_memory_unsigned_integer (pc + delta + 1, 1);
684
685 if (op == 0x5d) /* One byte offset from %ebp. */
686 delta += 3;
687 else if (op == 0x9d) /* Four byte offset from %ebp. */
688 delta += 6;
689 else /* Unexpected instruction. */
690 delta = 0;
691
692 op = read_memory_unsigned_integer (pc + delta, 1);
693 }
694
695 /* addl y,%ebx */
696 if (delta > 0 && op == 0x81
697 && read_memory_unsigned_integer (pc + delta + 1, 1) == 0xc3);
698 {
699 pc += delta + 6;
700 }
701 }
702
703 return i386_follow_jump (pc);
704 }
705
706 /* This function is 64-bit safe. */
707
708 static CORE_ADDR
709 i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
710 {
711 char buf[8];
712
713 frame_unwind_register (next_frame, PC_REGNUM, buf);
714 return extract_typed_address (buf, builtin_type_void_func_ptr);
715 }
716 \f
717
718 /* Normal frames. */
719
720 static struct i386_frame_cache *
721 i386_frame_cache (struct frame_info *next_frame, void **this_cache)
722 {
723 struct i386_frame_cache *cache;
724 char buf[4];
725 int i;
726
727 if (*this_cache)
728 return *this_cache;
729
730 cache = i386_alloc_frame_cache ();
731 *this_cache = cache;
732
733 /* In principle, for normal frames, %ebp holds the frame pointer,
734 which holds the base address for the current stack frame.
735 However, for functions that don't need it, the frame pointer is
736 optional. For these "frameless" functions the frame pointer is
737 actually the frame pointer of the calling frame. Signal
738 trampolines are just a special case of a "frameless" function.
739 They (usually) share their frame pointer with the frame that was
740 in progress when the signal occurred. */
741
742 frame_unwind_register (next_frame, I386_EBP_REGNUM, buf);
743 cache->base = extract_unsigned_integer (buf, 4);
744 if (cache->base == 0)
745 return cache;
746
747 /* For normal frames, %eip is stored at 4(%ebp). */
748 cache->saved_regs[I386_EIP_REGNUM] = 4;
749
750 cache->pc = frame_func_unwind (next_frame);
751 if (cache->pc != 0)
752 i386_analyze_prologue (cache->pc, frame_pc_unwind (next_frame), cache);
753
754 if (cache->locals < 0)
755 {
756 /* We didn't find a valid frame, which means that CACHE->base
757 currently holds the frame pointer for our calling frame. If
758 we're at the start of a function, or somewhere half-way its
759 prologue, the function's frame probably hasn't been fully
760 setup yet. Try to reconstruct the base address for the stack
761 frame by looking at the stack pointer. For truly "frameless"
762 functions this might work too. */
763
764 frame_unwind_register (next_frame, I386_ESP_REGNUM, buf);
765 cache->base = extract_unsigned_integer (buf, 4) + cache->sp_offset;
766 }
767
768 /* Now that we have the base address for the stack frame we can
769 calculate the value of %esp in the calling frame. */
770 cache->saved_sp = cache->base + 8;
771
772 /* Adjust all the saved registers such that they contain addresses
773 instead of offsets. */
774 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
775 if (cache->saved_regs[i] != -1)
776 cache->saved_regs[i] += cache->base;
777
778 return cache;
779 }
780
781 static void
782 i386_frame_this_id (struct frame_info *next_frame, void **this_cache,
783 struct frame_id *this_id)
784 {
785 struct i386_frame_cache *cache = i386_frame_cache (next_frame, this_cache);
786
787 /* This marks the outermost frame. */
788 if (cache->base == 0)
789 return;
790
791 /* See the end of i386_push_dummy_call. */
792 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
793 }
794
795 static void
796 i386_frame_prev_register (struct frame_info *next_frame, void **this_cache,
797 int regnum, int *optimizedp,
798 enum lval_type *lvalp, CORE_ADDR *addrp,
799 int *realnump, void *valuep)
800 {
801 struct i386_frame_cache *cache = i386_frame_cache (next_frame, this_cache);
802
803 gdb_assert (regnum >= 0);
804
805 /* The System V ABI says that:
806
807 "The flags register contains the system flags, such as the
808 direction flag and the carry flag. The direction flag must be
809 set to the forward (that is, zero) direction before entry and
810 upon exit from a function. Other user flags have no specified
811 role in the standard calling sequence and are not preserved."
812
813 To guarantee the "upon exit" part of that statement we fake a
814 saved flags register that has its direction flag cleared.
815
816 Note that GCC doesn't seem to rely on the fact that the direction
817 flag is cleared after a function return; it always explicitly
818 clears the flag before operations where it matters.
819
820 FIXME: kettenis/20030316: I'm not quite sure whether this is the
821 right thing to do. The way we fake the flags register here makes
822 it impossible to change it. */
823
824 if (regnum == I386_EFLAGS_REGNUM)
825 {
826 *optimizedp = 0;
827 *lvalp = not_lval;
828 *addrp = 0;
829 *realnump = -1;
830 if (valuep)
831 {
832 ULONGEST val;
833
834 /* Clear the direction flag. */
835 frame_unwind_unsigned_register (next_frame, PS_REGNUM, &val);
836 val &= ~(1 << 10);
837 store_unsigned_integer (valuep, 4, val);
838 }
839
840 return;
841 }
842
843 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
844 {
845 frame_register_unwind (next_frame, I386_EAX_REGNUM,
846 optimizedp, lvalp, addrp, realnump, valuep);
847 return;
848 }
849
850 if (regnum == I386_ESP_REGNUM && cache->saved_sp)
851 {
852 *optimizedp = 0;
853 *lvalp = not_lval;
854 *addrp = 0;
855 *realnump = -1;
856 if (valuep)
857 {
858 /* Store the value. */
859 store_unsigned_integer (valuep, 4, cache->saved_sp);
860 }
861 return;
862 }
863
864 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
865 {
866 *optimizedp = 0;
867 *lvalp = lval_memory;
868 *addrp = cache->saved_regs[regnum];
869 *realnump = -1;
870 if (valuep)
871 {
872 /* Read the value in from memory. */
873 read_memory (*addrp, valuep,
874 register_size (current_gdbarch, regnum));
875 }
876 return;
877 }
878
879 frame_register_unwind (next_frame, regnum,
880 optimizedp, lvalp, addrp, realnump, valuep);
881 }
882
883 static const struct frame_unwind i386_frame_unwind =
884 {
885 NORMAL_FRAME,
886 i386_frame_this_id,
887 i386_frame_prev_register
888 };
889
890 static const struct frame_unwind *
891 i386_frame_sniffer (struct frame_info *next_frame)
892 {
893 return &i386_frame_unwind;
894 }
895 \f
896
897 /* Signal trampolines. */
898
899 static struct i386_frame_cache *
900 i386_sigtramp_frame_cache (struct frame_info *next_frame, void **this_cache)
901 {
902 struct i386_frame_cache *cache;
903 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
904 CORE_ADDR addr;
905 char buf[4];
906
907 if (*this_cache)
908 return *this_cache;
909
910 cache = i386_alloc_frame_cache ();
911
912 frame_unwind_register (next_frame, I386_ESP_REGNUM, buf);
913 cache->base = extract_unsigned_integer (buf, 4) - 4;
914
915 addr = tdep->sigcontext_addr (next_frame);
916 if (tdep->sc_reg_offset)
917 {
918 int i;
919
920 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
921
922 for (i = 0; i < tdep->sc_num_regs; i++)
923 if (tdep->sc_reg_offset[i] != -1)
924 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
925 }
926 else
927 {
928 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
929 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
930 }
931
932 *this_cache = cache;
933 return cache;
934 }
935
936 static void
937 i386_sigtramp_frame_this_id (struct frame_info *next_frame, void **this_cache,
938 struct frame_id *this_id)
939 {
940 struct i386_frame_cache *cache =
941 i386_sigtramp_frame_cache (next_frame, this_cache);
942
943 /* See the end of i386_push_dummy_call. */
944 (*this_id) = frame_id_build (cache->base + 8, frame_pc_unwind (next_frame));
945 }
946
947 static void
948 i386_sigtramp_frame_prev_register (struct frame_info *next_frame,
949 void **this_cache,
950 int regnum, int *optimizedp,
951 enum lval_type *lvalp, CORE_ADDR *addrp,
952 int *realnump, void *valuep)
953 {
954 /* Make sure we've initialized the cache. */
955 i386_sigtramp_frame_cache (next_frame, this_cache);
956
957 i386_frame_prev_register (next_frame, this_cache, regnum,
958 optimizedp, lvalp, addrp, realnump, valuep);
959 }
960
961 static const struct frame_unwind i386_sigtramp_frame_unwind =
962 {
963 SIGTRAMP_FRAME,
964 i386_sigtramp_frame_this_id,
965 i386_sigtramp_frame_prev_register
966 };
967
968 static const struct frame_unwind *
969 i386_sigtramp_frame_sniffer (struct frame_info *next_frame)
970 {
971 CORE_ADDR pc = frame_pc_unwind (next_frame);
972 char *name;
973
974 /* We shouldn't even bother to try if the OSABI didn't register
975 a sigcontext_addr handler. */
976 if (!gdbarch_tdep (current_gdbarch)->sigcontext_addr)
977 return NULL;
978
979 find_pc_partial_function (pc, &name, NULL, NULL);
980 if (PC_IN_SIGTRAMP (pc, name))
981 return &i386_sigtramp_frame_unwind;
982
983 return NULL;
984 }
985 \f
986
987 static CORE_ADDR
988 i386_frame_base_address (struct frame_info *next_frame, void **this_cache)
989 {
990 struct i386_frame_cache *cache = i386_frame_cache (next_frame, this_cache);
991
992 return cache->base;
993 }
994
995 static const struct frame_base i386_frame_base =
996 {
997 &i386_frame_unwind,
998 i386_frame_base_address,
999 i386_frame_base_address,
1000 i386_frame_base_address
1001 };
1002
1003 static struct frame_id
1004 i386_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
1005 {
1006 char buf[4];
1007 CORE_ADDR fp;
1008
1009 frame_unwind_register (next_frame, I386_EBP_REGNUM, buf);
1010 fp = extract_unsigned_integer (buf, 4);
1011
1012 /* See the end of i386_push_dummy_call. */
1013 return frame_id_build (fp + 8, frame_pc_unwind (next_frame));
1014 }
1015 \f
1016
1017 /* Figure out where the longjmp will land. Slurp the args out of the
1018 stack. We expect the first arg to be a pointer to the jmp_buf
1019 structure from which we extract the address that we will land at.
1020 This address is copied into PC. This routine returns non-zero on
1021 success.
1022
1023 This function is 64-bit safe. */
1024
1025 static int
1026 i386_get_longjmp_target (CORE_ADDR *pc)
1027 {
1028 char buf[8];
1029 CORE_ADDR sp, jb_addr;
1030 int jb_pc_offset = gdbarch_tdep (current_gdbarch)->jb_pc_offset;
1031 int len = TYPE_LENGTH (builtin_type_void_func_ptr);
1032
1033 /* If JB_PC_OFFSET is -1, we have no way to find out where the
1034 longjmp will land. */
1035 if (jb_pc_offset == -1)
1036 return 0;
1037
1038 sp = read_register (SP_REGNUM);
1039 if (target_read_memory (sp + len, buf, len))
1040 return 0;
1041
1042 jb_addr = extract_typed_address (buf, builtin_type_void_func_ptr);
1043 if (target_read_memory (jb_addr + jb_pc_offset, buf, len))
1044 return 0;
1045
1046 *pc = extract_typed_address (buf, builtin_type_void_func_ptr);
1047 return 1;
1048 }
1049 \f
1050
1051 static CORE_ADDR
1052 i386_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
1053 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
1054 struct value **args, CORE_ADDR sp, int struct_return,
1055 CORE_ADDR struct_addr)
1056 {
1057 char buf[4];
1058 int i;
1059
1060 /* Push arguments in reverse order. */
1061 for (i = nargs - 1; i >= 0; i--)
1062 {
1063 int len = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (args[i]));
1064
1065 /* The System V ABI says that:
1066
1067 "An argument's size is increased, if necessary, to make it a
1068 multiple of [32-bit] words. This may require tail padding,
1069 depending on the size of the argument."
1070
1071 This makes sure the stack says word-aligned. */
1072 sp -= (len + 3) & ~3;
1073 write_memory (sp, VALUE_CONTENTS_ALL (args[i]), len);
1074 }
1075
1076 /* Push value address. */
1077 if (struct_return)
1078 {
1079 sp -= 4;
1080 store_unsigned_integer (buf, 4, struct_addr);
1081 write_memory (sp, buf, 4);
1082 }
1083
1084 /* Store return address. */
1085 sp -= 4;
1086 store_unsigned_integer (buf, 4, bp_addr);
1087 write_memory (sp, buf, 4);
1088
1089 /* Finally, update the stack pointer... */
1090 store_unsigned_integer (buf, 4, sp);
1091 regcache_cooked_write (regcache, I386_ESP_REGNUM, buf);
1092
1093 /* ...and fake a frame pointer. */
1094 regcache_cooked_write (regcache, I386_EBP_REGNUM, buf);
1095
1096 /* MarkK wrote: This "+ 8" is all over the place:
1097 (i386_frame_this_id, i386_sigtramp_frame_this_id,
1098 i386_unwind_dummy_id). It's there, since all frame unwinders for
1099 a given target have to agree (within a certain margin) on the
1100 defenition of the stack address of a frame. Otherwise
1101 frame_id_inner() won't work correctly. Since DWARF2/GCC uses the
1102 stack address *before* the function call as a frame's CFA. On
1103 the i386, when %ebp is used as a frame pointer, the offset
1104 between the contents %ebp and the CFA as defined by GCC. */
1105 return sp + 8;
1106 }
1107
1108 /* These registers are used for returning integers (and on some
1109 targets also for returning `struct' and `union' values when their
1110 size and alignment match an integer type). */
1111 #define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
1112 #define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
1113
1114 /* Extract from an array REGBUF containing the (raw) register state, a
1115 function return value of TYPE, and copy that, in virtual format,
1116 into VALBUF. */
1117
1118 static void
1119 i386_extract_return_value (struct type *type, struct regcache *regcache,
1120 void *dst)
1121 {
1122 bfd_byte *valbuf = dst;
1123 int len = TYPE_LENGTH (type);
1124 char buf[I386_MAX_REGISTER_SIZE];
1125
1126 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
1127 && TYPE_NFIELDS (type) == 1)
1128 {
1129 i386_extract_return_value (TYPE_FIELD_TYPE (type, 0), regcache, valbuf);
1130 return;
1131 }
1132
1133 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1134 {
1135 if (FP0_REGNUM < 0)
1136 {
1137 warning ("Cannot find floating-point return value.");
1138 memset (valbuf, 0, len);
1139 return;
1140 }
1141
1142 /* Floating-point return values can be found in %st(0). Convert
1143 its contents to the desired type. This is probably not
1144 exactly how it would happen on the target itself, but it is
1145 the best we can do. */
1146 regcache_raw_read (regcache, I386_ST0_REGNUM, buf);
1147 convert_typed_floating (buf, builtin_type_i387_ext, valbuf, type);
1148 }
1149 else
1150 {
1151 int low_size = REGISTER_RAW_SIZE (LOW_RETURN_REGNUM);
1152 int high_size = REGISTER_RAW_SIZE (HIGH_RETURN_REGNUM);
1153
1154 if (len <= low_size)
1155 {
1156 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
1157 memcpy (valbuf, buf, len);
1158 }
1159 else if (len <= (low_size + high_size))
1160 {
1161 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
1162 memcpy (valbuf, buf, low_size);
1163 regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
1164 memcpy (valbuf + low_size, buf, len - low_size);
1165 }
1166 else
1167 internal_error (__FILE__, __LINE__,
1168 "Cannot extract return value of %d bytes long.", len);
1169 }
1170 }
1171
1172 /* Write into the appropriate registers a function return value stored
1173 in VALBUF of type TYPE, given in virtual format. */
1174
1175 static void
1176 i386_store_return_value (struct type *type, struct regcache *regcache,
1177 const void *valbuf)
1178 {
1179 int len = TYPE_LENGTH (type);
1180
1181 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
1182 && TYPE_NFIELDS (type) == 1)
1183 {
1184 i386_store_return_value (TYPE_FIELD_TYPE (type, 0), regcache, valbuf);
1185 return;
1186 }
1187
1188 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1189 {
1190 ULONGEST fstat;
1191 char buf[FPU_REG_RAW_SIZE];
1192
1193 if (FP0_REGNUM < 0)
1194 {
1195 warning ("Cannot set floating-point return value.");
1196 return;
1197 }
1198
1199 /* Returning floating-point values is a bit tricky. Apart from
1200 storing the return value in %st(0), we have to simulate the
1201 state of the FPU at function return point. */
1202
1203 /* Convert the value found in VALBUF to the extended
1204 floating-point format used by the FPU. This is probably
1205 not exactly how it would happen on the target itself, but
1206 it is the best we can do. */
1207 convert_typed_floating (valbuf, type, buf, builtin_type_i387_ext);
1208 regcache_raw_write (regcache, I386_ST0_REGNUM, buf);
1209
1210 /* Set the top of the floating-point register stack to 7. The
1211 actual value doesn't really matter, but 7 is what a normal
1212 function return would end up with if the program started out
1213 with a freshly initialized FPU. */
1214 regcache_raw_read_unsigned (regcache, FSTAT_REGNUM, &fstat);
1215 fstat |= (7 << 11);
1216 regcache_raw_write_unsigned (regcache, FSTAT_REGNUM, fstat);
1217
1218 /* Mark %st(1) through %st(7) as empty. Since we set the top of
1219 the floating-point register stack to 7, the appropriate value
1220 for the tag word is 0x3fff. */
1221 regcache_raw_write_unsigned (regcache, FTAG_REGNUM, 0x3fff);
1222 }
1223 else
1224 {
1225 int low_size = REGISTER_RAW_SIZE (LOW_RETURN_REGNUM);
1226 int high_size = REGISTER_RAW_SIZE (HIGH_RETURN_REGNUM);
1227
1228 if (len <= low_size)
1229 regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
1230 else if (len <= (low_size + high_size))
1231 {
1232 regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
1233 regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
1234 len - low_size, (char *) valbuf + low_size);
1235 }
1236 else
1237 internal_error (__FILE__, __LINE__,
1238 "Cannot store return value of %d bytes long.", len);
1239 }
1240 }
1241
1242 /* Extract from REGCACHE, which contains the (raw) register state, the
1243 address in which a function should return its structure value, as a
1244 CORE_ADDR. */
1245
1246 static CORE_ADDR
1247 i386_extract_struct_value_address (struct regcache *regcache)
1248 {
1249 char buf[4];
1250
1251 regcache_cooked_read (regcache, I386_EAX_REGNUM, buf);
1252 return extract_unsigned_integer (buf, 4);
1253 }
1254 \f
1255
1256 /* This is the variable that is set with "set struct-convention", and
1257 its legitimate values. */
1258 static const char default_struct_convention[] = "default";
1259 static const char pcc_struct_convention[] = "pcc";
1260 static const char reg_struct_convention[] = "reg";
1261 static const char *valid_conventions[] =
1262 {
1263 default_struct_convention,
1264 pcc_struct_convention,
1265 reg_struct_convention,
1266 NULL
1267 };
1268 static const char *struct_convention = default_struct_convention;
1269
1270 static int
1271 i386_use_struct_convention (int gcc_p, struct type *type)
1272 {
1273 enum struct_return struct_return;
1274
1275 if (struct_convention == default_struct_convention)
1276 struct_return = gdbarch_tdep (current_gdbarch)->struct_return;
1277 else if (struct_convention == pcc_struct_convention)
1278 struct_return = pcc_struct_return;
1279 else
1280 struct_return = reg_struct_return;
1281
1282 return generic_use_struct_convention (struct_return == reg_struct_return,
1283 type);
1284 }
1285 \f
1286
1287 /* Return the GDB type object for the "standard" data type of data in
1288 register REGNUM. Perhaps %esi and %edi should go here, but
1289 potentially they could be used for things other than address. */
1290
1291 static struct type *
1292 i386_register_type (struct gdbarch *gdbarch, int regnum)
1293 {
1294 if (regnum == I386_EIP_REGNUM
1295 || regnum == I386_EBP_REGNUM || regnum == I386_ESP_REGNUM)
1296 return lookup_pointer_type (builtin_type_void);
1297
1298 if (i386_fp_regnum_p (regnum))
1299 return builtin_type_i387_ext;
1300
1301 if (i386_sse_regnum_p (regnum))
1302 return builtin_type_vec128i;
1303
1304 if (i386_mmx_regnum_p (regnum))
1305 return builtin_type_vec64i;
1306
1307 return builtin_type_int;
1308 }
1309
1310 /* Map a cooked register onto a raw register or memory. For the i386,
1311 the MMX registers need to be mapped onto floating point registers. */
1312
1313 static int
1314 i386_mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
1315 {
1316 int mmxi;
1317 ULONGEST fstat;
1318 int tos;
1319 int fpi;
1320
1321 mmxi = regnum - MM0_REGNUM;
1322 regcache_raw_read_unsigned (regcache, FSTAT_REGNUM, &fstat);
1323 tos = (fstat >> 11) & 0x7;
1324 fpi = (mmxi + tos) % 8;
1325
1326 return (FP0_REGNUM + fpi);
1327 }
1328
1329 static void
1330 i386_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
1331 int regnum, void *buf)
1332 {
1333 if (i386_mmx_regnum_p (regnum))
1334 {
1335 char mmx_buf[MAX_REGISTER_SIZE];
1336 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
1337
1338 /* Extract (always little endian). */
1339 regcache_raw_read (regcache, fpnum, mmx_buf);
1340 memcpy (buf, mmx_buf, REGISTER_RAW_SIZE (regnum));
1341 }
1342 else
1343 regcache_raw_read (regcache, regnum, buf);
1344 }
1345
1346 static void
1347 i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
1348 int regnum, const void *buf)
1349 {
1350 if (i386_mmx_regnum_p (regnum))
1351 {
1352 char mmx_buf[MAX_REGISTER_SIZE];
1353 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
1354
1355 /* Read ... */
1356 regcache_raw_read (regcache, fpnum, mmx_buf);
1357 /* ... Modify ... (always little endian). */
1358 memcpy (mmx_buf, buf, REGISTER_RAW_SIZE (regnum));
1359 /* ... Write. */
1360 regcache_raw_write (regcache, fpnum, mmx_buf);
1361 }
1362 else
1363 regcache_raw_write (regcache, regnum, buf);
1364 }
1365 \f
1366
1367 /* These registers don't have pervasive standard uses. Move them to
1368 i386-tdep.h if necessary. */
1369
1370 #define I386_EBX_REGNUM 3 /* %ebx */
1371 #define I386_ECX_REGNUM 1 /* %ecx */
1372 #define I386_ESI_REGNUM 6 /* %esi */
1373 #define I386_EDI_REGNUM 7 /* %edi */
1374
1375 /* Return the register number of the register allocated by GCC after
1376 REGNUM, or -1 if there is no such register. */
1377
1378 static int
1379 i386_next_regnum (int regnum)
1380 {
1381 /* GCC allocates the registers in the order:
1382
1383 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
1384
1385 Since storing a variable in %esp doesn't make any sense we return
1386 -1 for %ebp and for %esp itself. */
1387 static int next_regnum[] =
1388 {
1389 I386_EDX_REGNUM, /* Slot for %eax. */
1390 I386_EBX_REGNUM, /* Slot for %ecx. */
1391 I386_ECX_REGNUM, /* Slot for %edx. */
1392 I386_ESI_REGNUM, /* Slot for %ebx. */
1393 -1, -1, /* Slots for %esp and %ebp. */
1394 I386_EDI_REGNUM, /* Slot for %esi. */
1395 I386_EBP_REGNUM /* Slot for %edi. */
1396 };
1397
1398 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
1399 return next_regnum[regnum];
1400
1401 return -1;
1402 }
1403
1404 /* Return nonzero if a value of type TYPE stored in register REGNUM
1405 needs any special handling. */
1406
1407 static int
1408 i386_convert_register_p (int regnum, struct type *type)
1409 {
1410 int len = TYPE_LENGTH (type);
1411
1412 /* Values may be spread across multiple registers. Most debugging
1413 formats aren't expressive enough to specify the locations, so
1414 some heuristics is involved. Right now we only handle types that
1415 have a length that is a multiple of the word size, since GCC
1416 doesn't seem to put any other types into registers. */
1417 if (len > 4 && len % 4 == 0)
1418 {
1419 int last_regnum = regnum;
1420
1421 while (len > 4)
1422 {
1423 last_regnum = i386_next_regnum (last_regnum);
1424 len -= 4;
1425 }
1426
1427 if (last_regnum != -1)
1428 return 1;
1429 }
1430
1431 return i386_fp_regnum_p (regnum);
1432 }
1433
1434 /* Read a value of type TYPE from register REGNUM in frame FRAME, and
1435 return its contents in TO. */
1436
1437 static void
1438 i386_register_to_value (struct frame_info *frame, int regnum,
1439 struct type *type, void *to)
1440 {
1441 int len = TYPE_LENGTH (type);
1442 char *buf = to;
1443
1444 /* FIXME: kettenis/20030609: What should we do if REGNUM isn't
1445 available in FRAME (i.e. if it wasn't saved)? */
1446
1447 if (i386_fp_regnum_p (regnum))
1448 {
1449 i387_register_to_value (frame, regnum, type, to);
1450 return;
1451 }
1452
1453 /* Read a value spread accross multiple registers. */
1454
1455 gdb_assert (len > 4 && len % 4 == 0);
1456
1457 while (len > 0)
1458 {
1459 gdb_assert (regnum != -1);
1460 gdb_assert (register_size (current_gdbarch, regnum) == 4);
1461
1462 frame_read_register (frame, regnum, buf);
1463 regnum = i386_next_regnum (regnum);
1464 len -= 4;
1465 buf += 4;
1466 }
1467 }
1468
1469 /* Write the contents FROM of a value of type TYPE into register
1470 REGNUM in frame FRAME. */
1471
1472 static void
1473 i386_value_to_register (struct frame_info *frame, int regnum,
1474 struct type *type, const void *from)
1475 {
1476 int len = TYPE_LENGTH (type);
1477 const char *buf = from;
1478
1479 if (i386_fp_regnum_p (regnum))
1480 {
1481 i387_value_to_register (frame, regnum, type, from);
1482 return;
1483 }
1484
1485 /* Write a value spread accross multiple registers. */
1486
1487 gdb_assert (len > 4 && len % 4 == 0);
1488
1489 while (len > 0)
1490 {
1491 gdb_assert (regnum != -1);
1492 gdb_assert (register_size (current_gdbarch, regnum) == 4);
1493
1494 put_frame_register (frame, regnum, buf);
1495 regnum = i386_next_regnum (regnum);
1496 len -= 4;
1497 buf += 4;
1498 }
1499 }
1500 \f
1501
1502
1503 #ifdef STATIC_TRANSFORM_NAME
1504 /* SunPRO encodes the static variables. This is not related to C++
1505 mangling, it is done for C too. */
1506
1507 char *
1508 sunpro_static_transform_name (char *name)
1509 {
1510 char *p;
1511 if (IS_STATIC_TRANSFORM_NAME (name))
1512 {
1513 /* For file-local statics there will be a period, a bunch of
1514 junk (the contents of which match a string given in the
1515 N_OPT), a period and the name. For function-local statics
1516 there will be a bunch of junk (which seems to change the
1517 second character from 'A' to 'B'), a period, the name of the
1518 function, and the name. So just skip everything before the
1519 last period. */
1520 p = strrchr (name, '.');
1521 if (p != NULL)
1522 name = p + 1;
1523 }
1524 return name;
1525 }
1526 #endif /* STATIC_TRANSFORM_NAME */
1527 \f
1528
1529 /* Stuff for WIN32 PE style DLL's but is pretty generic really. */
1530
1531 CORE_ADDR
1532 i386_pe_skip_trampoline_code (CORE_ADDR pc, char *name)
1533 {
1534 if (pc && read_memory_unsigned_integer (pc, 2) == 0x25ff) /* jmp *(dest) */
1535 {
1536 unsigned long indirect = read_memory_unsigned_integer (pc + 2, 4);
1537 struct minimal_symbol *indsym =
1538 indirect ? lookup_minimal_symbol_by_pc (indirect) : 0;
1539 char *symname = indsym ? SYMBOL_LINKAGE_NAME (indsym) : 0;
1540
1541 if (symname)
1542 {
1543 if (strncmp (symname, "__imp_", 6) == 0
1544 || strncmp (symname, "_imp_", 5) == 0)
1545 return name ? 1 : read_memory_unsigned_integer (indirect, 4);
1546 }
1547 }
1548 return 0; /* Not a trampoline. */
1549 }
1550 \f
1551
1552 /* Return non-zero if PC and NAME show that we are in a signal
1553 trampoline. */
1554
1555 static int
1556 i386_pc_in_sigtramp (CORE_ADDR pc, char *name)
1557 {
1558 return (name && strcmp ("_sigtramp", name) == 0);
1559 }
1560 \f
1561
1562 /* We have two flavours of disassembly. The machinery on this page
1563 deals with switching between those. */
1564
1565 static int
1566 i386_print_insn (bfd_vma pc, disassemble_info *info)
1567 {
1568 gdb_assert (disassembly_flavor == att_flavor
1569 || disassembly_flavor == intel_flavor);
1570
1571 /* FIXME: kettenis/20020915: Until disassembler_options is properly
1572 constified, cast to prevent a compiler warning. */
1573 info->disassembler_options = (char *) disassembly_flavor;
1574 info->mach = gdbarch_bfd_arch_info (current_gdbarch)->mach;
1575
1576 return print_insn_i386 (pc, info);
1577 }
1578 \f
1579
1580 /* There are a few i386 architecture variants that differ only
1581 slightly from the generic i386 target. For now, we don't give them
1582 their own source file, but include them here. As a consequence,
1583 they'll always be included. */
1584
1585 /* System V Release 4 (SVR4). */
1586
1587 static int
1588 i386_svr4_pc_in_sigtramp (CORE_ADDR pc, char *name)
1589 {
1590 /* UnixWare uses _sigacthandler. The origin of the other symbols is
1591 currently unknown. */
1592 return (name && (strcmp ("_sigreturn", name) == 0
1593 || strcmp ("_sigacthandler", name) == 0
1594 || strcmp ("sigvechandler", name) == 0));
1595 }
1596
1597 /* Assuming NEXT_FRAME is for a frame following a SVR4 sigtramp
1598 routine, return the address of the associated sigcontext (ucontext)
1599 structure. */
1600
1601 static CORE_ADDR
1602 i386_svr4_sigcontext_addr (struct frame_info *next_frame)
1603 {
1604 char buf[4];
1605 CORE_ADDR sp;
1606
1607 frame_unwind_register (next_frame, I386_ESP_REGNUM, buf);
1608 sp = extract_unsigned_integer (buf, 4);
1609
1610 return read_memory_unsigned_integer (sp + 8, 4);
1611 }
1612 \f
1613
1614 /* DJGPP. */
1615
1616 static int
1617 i386_go32_pc_in_sigtramp (CORE_ADDR pc, char *name)
1618 {
1619 /* DJGPP doesn't have any special frames for signal handlers. */
1620 return 0;
1621 }
1622 \f
1623
1624 /* Generic ELF. */
1625
1626 void
1627 i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1628 {
1629 /* We typically use stabs-in-ELF with the DWARF register numbering. */
1630 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dwarf_reg_to_regnum);
1631 }
1632
1633 /* System V Release 4 (SVR4). */
1634
1635 void
1636 i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1637 {
1638 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1639
1640 /* System V Release 4 uses ELF. */
1641 i386_elf_init_abi (info, gdbarch);
1642
1643 /* System V Release 4 has shared libraries. */
1644 set_gdbarch_in_solib_call_trampoline (gdbarch, in_plt_section);
1645 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
1646
1647 set_gdbarch_pc_in_sigtramp (gdbarch, i386_svr4_pc_in_sigtramp);
1648 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
1649 tdep->sc_pc_offset = 36 + 14 * 4;
1650 tdep->sc_sp_offset = 36 + 17 * 4;
1651
1652 tdep->jb_pc_offset = 20;
1653 }
1654
1655 /* DJGPP. */
1656
1657 static void
1658 i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1659 {
1660 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1661
1662 set_gdbarch_pc_in_sigtramp (gdbarch, i386_go32_pc_in_sigtramp);
1663
1664 tdep->jb_pc_offset = 36;
1665 }
1666
1667 /* NetWare. */
1668
1669 static void
1670 i386_nw_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1671 {
1672 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1673
1674 tdep->jb_pc_offset = 24;
1675 }
1676 \f
1677
1678 /* i386 register groups. In addition to the normal groups, add "mmx"
1679 and "sse". */
1680
1681 static struct reggroup *i386_sse_reggroup;
1682 static struct reggroup *i386_mmx_reggroup;
1683
1684 static void
1685 i386_init_reggroups (void)
1686 {
1687 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
1688 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
1689 }
1690
1691 static void
1692 i386_add_reggroups (struct gdbarch *gdbarch)
1693 {
1694 reggroup_add (gdbarch, i386_sse_reggroup);
1695 reggroup_add (gdbarch, i386_mmx_reggroup);
1696 reggroup_add (gdbarch, general_reggroup);
1697 reggroup_add (gdbarch, float_reggroup);
1698 reggroup_add (gdbarch, all_reggroup);
1699 reggroup_add (gdbarch, save_reggroup);
1700 reggroup_add (gdbarch, restore_reggroup);
1701 reggroup_add (gdbarch, vector_reggroup);
1702 reggroup_add (gdbarch, system_reggroup);
1703 }
1704
1705 int
1706 i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
1707 struct reggroup *group)
1708 {
1709 int sse_regnum_p = (i386_sse_regnum_p (regnum)
1710 || i386_mxcsr_regnum_p (regnum));
1711 int fp_regnum_p = (i386_fp_regnum_p (regnum)
1712 || i386_fpc_regnum_p (regnum));
1713 int mmx_regnum_p = (i386_mmx_regnum_p (regnum));
1714
1715 if (group == i386_mmx_reggroup)
1716 return mmx_regnum_p;
1717 if (group == i386_sse_reggroup)
1718 return sse_regnum_p;
1719 if (group == vector_reggroup)
1720 return (mmx_regnum_p || sse_regnum_p);
1721 if (group == float_reggroup)
1722 return fp_regnum_p;
1723 if (group == general_reggroup)
1724 return (!fp_regnum_p && !mmx_regnum_p && !sse_regnum_p);
1725
1726 return default_register_reggroup_p (gdbarch, regnum, group);
1727 }
1728 \f
1729
1730 /* Get the ith function argument for the current function. */
1731 static CORE_ADDR
1732 i386_fetch_pointer_argument (struct frame_info *frame, int argi,
1733 struct type *type)
1734 {
1735 CORE_ADDR stack;
1736 frame_read_register (frame, SP_REGNUM, &stack);
1737 return read_memory_unsigned_integer (stack + (4 * (argi + 1)), 4);
1738 }
1739
1740 \f
1741 static struct gdbarch *
1742 i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1743 {
1744 struct gdbarch_tdep *tdep;
1745 struct gdbarch *gdbarch;
1746
1747 /* If there is already a candidate, use it. */
1748 arches = gdbarch_list_lookup_by_info (arches, &info);
1749 if (arches != NULL)
1750 return arches->gdbarch;
1751
1752 /* Allocate space for the new architecture. */
1753 tdep = XMALLOC (struct gdbarch_tdep);
1754 gdbarch = gdbarch_alloc (&info, tdep);
1755
1756 /* The i386 default settings don't include the SSE registers.
1757 FIXME: kettenis/20020614: They do include the FPU registers for
1758 now, which probably is not quite right. */
1759 tdep->num_xmm_regs = 0;
1760
1761 tdep->jb_pc_offset = -1;
1762 tdep->struct_return = pcc_struct_return;
1763 tdep->sigtramp_start = 0;
1764 tdep->sigtramp_end = 0;
1765 tdep->sigcontext_addr = NULL;
1766 tdep->sc_reg_offset = NULL;
1767 tdep->sc_pc_offset = -1;
1768 tdep->sc_sp_offset = -1;
1769
1770 /* The format used for `long double' on almost all i386 targets is
1771 the i387 extended floating-point format. In fact, of all targets
1772 in the GCC 2.95 tree, only OSF/1 does it different, and insists
1773 on having a `long double' that's not `long' at all. */
1774 set_gdbarch_long_double_format (gdbarch, &floatformat_i387_ext);
1775
1776 /* Although the i387 extended floating-point has only 80 significant
1777 bits, a `long double' actually takes up 96, probably to enforce
1778 alignment. */
1779 set_gdbarch_long_double_bit (gdbarch, 96);
1780
1781 /* The default ABI includes general-purpose registers and
1782 floating-point registers. */
1783 set_gdbarch_num_regs (gdbarch, I386_NUM_GREGS + I386_NUM_FREGS);
1784 set_gdbarch_register_name (gdbarch, i386_register_name);
1785 set_gdbarch_register_type (gdbarch, i386_register_type);
1786
1787 /* Register numbers of various important registers. */
1788 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
1789 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
1790 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
1791 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
1792
1793 /* Use the "default" register numbering scheme for stabs and COFF. */
1794 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_stab_reg_to_regnum);
1795 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_stab_reg_to_regnum);
1796
1797 /* Use the DWARF register numbering scheme for DWARF and DWARF 2. */
1798 set_gdbarch_dwarf_reg_to_regnum (gdbarch, i386_dwarf_reg_to_regnum);
1799 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_dwarf_reg_to_regnum);
1800
1801 /* We don't define ECOFF_REG_TO_REGNUM, since ECOFF doesn't seem to
1802 be in use on any of the supported i386 targets. */
1803
1804 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
1805
1806 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
1807
1808 /* Call dummy code. */
1809 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
1810
1811 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
1812 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
1813 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
1814
1815 set_gdbarch_extract_return_value (gdbarch, i386_extract_return_value);
1816 set_gdbarch_store_return_value (gdbarch, i386_store_return_value);
1817 set_gdbarch_extract_struct_value_address (gdbarch,
1818 i386_extract_struct_value_address);
1819 set_gdbarch_use_struct_convention (gdbarch, i386_use_struct_convention);
1820
1821 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
1822
1823 /* Stack grows downward. */
1824 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1825
1826 set_gdbarch_breakpoint_from_pc (gdbarch, i386_breakpoint_from_pc);
1827 set_gdbarch_decr_pc_after_break (gdbarch, 1);
1828 set_gdbarch_function_start_offset (gdbarch, 0);
1829
1830 set_gdbarch_frame_args_skip (gdbarch, 8);
1831 set_gdbarch_pc_in_sigtramp (gdbarch, i386_pc_in_sigtramp);
1832
1833 /* Wire in the MMX registers. */
1834 set_gdbarch_num_pseudo_regs (gdbarch, i386_num_mmx_regs);
1835 set_gdbarch_pseudo_register_read (gdbarch, i386_pseudo_register_read);
1836 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
1837
1838 set_gdbarch_print_insn (gdbarch, i386_print_insn);
1839
1840 set_gdbarch_unwind_dummy_id (gdbarch, i386_unwind_dummy_id);
1841
1842 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
1843
1844 /* Add the i386 register groups. */
1845 i386_add_reggroups (gdbarch);
1846 set_gdbarch_register_reggroup_p (gdbarch, i386_register_reggroup_p);
1847
1848 /* Helper for function argument information. */
1849 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
1850
1851 /* Hook in the DWARF CFI frame unwinder. */
1852 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
1853
1854 frame_base_set_default (gdbarch, &i386_frame_base);
1855
1856 /* Hook in ABI-specific overrides, if they have been registered. */
1857 gdbarch_init_osabi (info, gdbarch);
1858
1859 frame_unwind_append_sniffer (gdbarch, i386_sigtramp_frame_sniffer);
1860 frame_unwind_append_sniffer (gdbarch, i386_frame_sniffer);
1861
1862 return gdbarch;
1863 }
1864
1865 static enum gdb_osabi
1866 i386_coff_osabi_sniffer (bfd *abfd)
1867 {
1868 if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
1869 || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
1870 return GDB_OSABI_GO32;
1871
1872 return GDB_OSABI_UNKNOWN;
1873 }
1874
1875 static enum gdb_osabi
1876 i386_nlm_osabi_sniffer (bfd *abfd)
1877 {
1878 return GDB_OSABI_NETWARE;
1879 }
1880 \f
1881
1882 /* Provide a prototype to silence -Wmissing-prototypes. */
1883 void _initialize_i386_tdep (void);
1884
1885 void
1886 _initialize_i386_tdep (void)
1887 {
1888 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
1889
1890 /* Add the variable that controls the disassembly flavor. */
1891 {
1892 struct cmd_list_element *new_cmd;
1893
1894 new_cmd = add_set_enum_cmd ("disassembly-flavor", no_class,
1895 valid_flavors,
1896 &disassembly_flavor,
1897 "\
1898 Set the disassembly flavor, the valid values are \"att\" and \"intel\", \
1899 and the default value is \"att\".",
1900 &setlist);
1901 add_show_from_set (new_cmd, &showlist);
1902 }
1903
1904 /* Add the variable that controls the convention for returning
1905 structs. */
1906 {
1907 struct cmd_list_element *new_cmd;
1908
1909 new_cmd = add_set_enum_cmd ("struct-convention", no_class,
1910 valid_conventions,
1911 &struct_convention, "\
1912 Set the convention for returning small structs, valid values \
1913 are \"default\", \"pcc\" and \"reg\", and the default value is \"default\".",
1914 &setlist);
1915 add_show_from_set (new_cmd, &showlist);
1916 }
1917
1918 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
1919 i386_coff_osabi_sniffer);
1920 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_nlm_flavour,
1921 i386_nlm_osabi_sniffer);
1922
1923 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
1924 i386_svr4_init_abi);
1925 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_GO32,
1926 i386_go32_init_abi);
1927 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_NETWARE,
1928 i386_nw_init_abi);
1929
1930 /* Initialize the i386 specific register groups. */
1931 i386_init_reggroups ();
1932 }
This page took 0.068014 seconds and 5 git commands to generate.