2003-03-01 Andrew Cagney <cagney@redhat.com>
[deliverable/binutils-gdb.git] / gdb / i386-tdep.c
1 /* Intel 386 target-dependent stuff.
2
3 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "gdb_string.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "gdbcore.h"
28 #include "objfiles.h"
29 #include "target.h"
30 #include "floatformat.h"
31 #include "symfile.h"
32 #include "symtab.h"
33 #include "gdbcmd.h"
34 #include "command.h"
35 #include "arch-utils.h"
36 #include "regcache.h"
37 #include "doublest.h"
38 #include "value.h"
39 #include "gdb_assert.h"
40 #include "reggroups.h"
41 #include "dummy-frame.h"
42 #include "osabi.h"
43
44 #include "i386-tdep.h"
45 #include "i387-tdep.h"
46
47 /* Names of the registers. The first 10 registers match the register
48 numbering scheme used by GCC for stabs and DWARF. */
49 static char *i386_register_names[] =
50 {
51 "eax", "ecx", "edx", "ebx",
52 "esp", "ebp", "esi", "edi",
53 "eip", "eflags", "cs", "ss",
54 "ds", "es", "fs", "gs",
55 "st0", "st1", "st2", "st3",
56 "st4", "st5", "st6", "st7",
57 "fctrl", "fstat", "ftag", "fiseg",
58 "fioff", "foseg", "fooff", "fop",
59 "xmm0", "xmm1", "xmm2", "xmm3",
60 "xmm4", "xmm5", "xmm6", "xmm7",
61 "mxcsr"
62 };
63
64 /* MMX registers. */
65
66 static char *i386_mmx_names[] =
67 {
68 "mm0", "mm1", "mm2", "mm3",
69 "mm4", "mm5", "mm6", "mm7"
70 };
71 static const int mmx_num_regs = (sizeof (i386_mmx_names)
72 / sizeof (i386_mmx_names[0]));
73 #define MM0_REGNUM (NUM_REGS)
74
75 static int
76 i386_mmx_regnum_p (int reg)
77 {
78 return (reg >= MM0_REGNUM && reg < MM0_REGNUM + mmx_num_regs);
79 }
80
81 /* FP register? */
82
83 int
84 i386_fp_regnum_p (int regnum)
85 {
86 return (regnum < NUM_REGS
87 && (FP0_REGNUM && FP0_REGNUM <= (regnum) && (regnum) < FPC_REGNUM));
88 }
89
90 int
91 i386_fpc_regnum_p (int regnum)
92 {
93 return (regnum < NUM_REGS
94 && (FPC_REGNUM <= (regnum) && (regnum) < XMM0_REGNUM));
95 }
96
97 /* SSE register? */
98
99 int
100 i386_sse_regnum_p (int regnum)
101 {
102 return (regnum < NUM_REGS
103 && (XMM0_REGNUM <= (regnum) && (regnum) < MXCSR_REGNUM));
104 }
105
106 int
107 i386_mxcsr_regnum_p (int regnum)
108 {
109 return (regnum < NUM_REGS
110 && (regnum == MXCSR_REGNUM));
111 }
112
113 /* Return the name of register REG. */
114
115 const char *
116 i386_register_name (int reg)
117 {
118 if (reg < 0)
119 return NULL;
120 if (i386_mmx_regnum_p (reg))
121 return i386_mmx_names[reg - MM0_REGNUM];
122 if (reg >= sizeof (i386_register_names) / sizeof (*i386_register_names))
123 return NULL;
124
125 return i386_register_names[reg];
126 }
127
128 /* Convert stabs register number REG to the appropriate register
129 number used by GDB. */
130
131 static int
132 i386_stab_reg_to_regnum (int reg)
133 {
134 /* This implements what GCC calls the "default" register map. */
135 if (reg >= 0 && reg <= 7)
136 {
137 /* General registers. */
138 return reg;
139 }
140 else if (reg >= 12 && reg <= 19)
141 {
142 /* Floating-point registers. */
143 return reg - 12 + FP0_REGNUM;
144 }
145 else if (reg >= 21 && reg <= 28)
146 {
147 /* SSE registers. */
148 return reg - 21 + XMM0_REGNUM;
149 }
150 else if (reg >= 29 && reg <= 36)
151 {
152 /* MMX registers. */
153 return reg - 29 + MM0_REGNUM;
154 }
155
156 /* This will hopefully provoke a warning. */
157 return NUM_REGS + NUM_PSEUDO_REGS;
158 }
159
160 /* Convert DWARF register number REG to the appropriate register
161 number used by GDB. */
162
163 static int
164 i386_dwarf_reg_to_regnum (int reg)
165 {
166 /* The DWARF register numbering includes %eip and %eflags, and
167 numbers the floating point registers differently. */
168 if (reg >= 0 && reg <= 9)
169 {
170 /* General registers. */
171 return reg;
172 }
173 else if (reg >= 11 && reg <= 18)
174 {
175 /* Floating-point registers. */
176 return reg - 11 + FP0_REGNUM;
177 }
178 else if (reg >= 21)
179 {
180 /* The SSE and MMX registers have identical numbers as in stabs. */
181 return i386_stab_reg_to_regnum (reg);
182 }
183
184 /* This will hopefully provoke a warning. */
185 return NUM_REGS + NUM_PSEUDO_REGS;
186 }
187 \f
188
189 /* This is the variable that is set with "set disassembly-flavor", and
190 its legitimate values. */
191 static const char att_flavor[] = "att";
192 static const char intel_flavor[] = "intel";
193 static const char *valid_flavors[] =
194 {
195 att_flavor,
196 intel_flavor,
197 NULL
198 };
199 static const char *disassembly_flavor = att_flavor;
200
201 /* Stdio style buffering was used to minimize calls to ptrace, but
202 this buffering did not take into account that the code section
203 being accessed may not be an even number of buffers long (even if
204 the buffer is only sizeof(int) long). In cases where the code
205 section size happened to be a non-integral number of buffers long,
206 attempting to read the last buffer would fail. Simply using
207 target_read_memory and ignoring errors, rather than read_memory, is
208 not the correct solution, since legitimate access errors would then
209 be totally ignored. To properly handle this situation and continue
210 to use buffering would require that this code be able to determine
211 the minimum code section size granularity (not the alignment of the
212 section itself, since the actual failing case that pointed out this
213 problem had a section alignment of 4 but was not a multiple of 4
214 bytes long), on a target by target basis, and then adjust it's
215 buffer size accordingly. This is messy, but potentially feasible.
216 It probably needs the bfd library's help and support. For now, the
217 buffer size is set to 1. (FIXME -fnf) */
218
219 #define CODESTREAM_BUFSIZ 1 /* Was sizeof(int), see note above. */
220 static CORE_ADDR codestream_next_addr;
221 static CORE_ADDR codestream_addr;
222 static unsigned char codestream_buf[CODESTREAM_BUFSIZ];
223 static int codestream_off;
224 static int codestream_cnt;
225
226 #define codestream_tell() (codestream_addr + codestream_off)
227 #define codestream_peek() \
228 (codestream_cnt == 0 ? \
229 codestream_fill(1) : codestream_buf[codestream_off])
230 #define codestream_get() \
231 (codestream_cnt-- == 0 ? \
232 codestream_fill(0) : codestream_buf[codestream_off++])
233
234 static unsigned char
235 codestream_fill (int peek_flag)
236 {
237 codestream_addr = codestream_next_addr;
238 codestream_next_addr += CODESTREAM_BUFSIZ;
239 codestream_off = 0;
240 codestream_cnt = CODESTREAM_BUFSIZ;
241 read_memory (codestream_addr, (char *) codestream_buf, CODESTREAM_BUFSIZ);
242
243 if (peek_flag)
244 return (codestream_peek ());
245 else
246 return (codestream_get ());
247 }
248
249 static void
250 codestream_seek (CORE_ADDR place)
251 {
252 codestream_next_addr = place / CODESTREAM_BUFSIZ;
253 codestream_next_addr *= CODESTREAM_BUFSIZ;
254 codestream_cnt = 0;
255 codestream_fill (1);
256 while (codestream_tell () != place)
257 codestream_get ();
258 }
259
260 static void
261 codestream_read (unsigned char *buf, int count)
262 {
263 unsigned char *p;
264 int i;
265 p = buf;
266 for (i = 0; i < count; i++)
267 *p++ = codestream_get ();
268 }
269 \f
270
271 /* If the next instruction is a jump, move to its target. */
272
273 static void
274 i386_follow_jump (void)
275 {
276 unsigned char buf[4];
277 long delta;
278
279 int data16;
280 CORE_ADDR pos;
281
282 pos = codestream_tell ();
283
284 data16 = 0;
285 if (codestream_peek () == 0x66)
286 {
287 codestream_get ();
288 data16 = 1;
289 }
290
291 switch (codestream_get ())
292 {
293 case 0xe9:
294 /* Relative jump: if data16 == 0, disp32, else disp16. */
295 if (data16)
296 {
297 codestream_read (buf, 2);
298 delta = extract_signed_integer (buf, 2);
299
300 /* Include the size of the jmp instruction (including the
301 0x66 prefix). */
302 pos += delta + 4;
303 }
304 else
305 {
306 codestream_read (buf, 4);
307 delta = extract_signed_integer (buf, 4);
308
309 pos += delta + 5;
310 }
311 break;
312 case 0xeb:
313 /* Relative jump, disp8 (ignore data16). */
314 codestream_read (buf, 1);
315 /* Sign-extend it. */
316 delta = extract_signed_integer (buf, 1);
317
318 pos += delta + 2;
319 break;
320 }
321 codestream_seek (pos);
322 }
323
324 /* Find & return the amount a local space allocated, and advance the
325 codestream to the first register push (if any).
326
327 If the entry sequence doesn't make sense, return -1, and leave
328 codestream pointer at a random spot. */
329
330 static long
331 i386_get_frame_setup (CORE_ADDR pc)
332 {
333 unsigned char op;
334
335 codestream_seek (pc);
336
337 i386_follow_jump ();
338
339 op = codestream_get ();
340
341 if (op == 0x58) /* popl %eax */
342 {
343 /* This function must start with
344
345 popl %eax 0x58
346 xchgl %eax, (%esp) 0x87 0x04 0x24
347 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
348
349 (the System V compiler puts out the second `xchg'
350 instruction, and the assembler doesn't try to optimize it, so
351 the 'sib' form gets generated). This sequence is used to get
352 the address of the return buffer for a function that returns
353 a structure. */
354 int pos;
355 unsigned char buf[4];
356 static unsigned char proto1[3] = { 0x87, 0x04, 0x24 };
357 static unsigned char proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
358
359 pos = codestream_tell ();
360 codestream_read (buf, 4);
361 if (memcmp (buf, proto1, 3) == 0)
362 pos += 3;
363 else if (memcmp (buf, proto2, 4) == 0)
364 pos += 4;
365
366 codestream_seek (pos);
367 op = codestream_get (); /* Update next opcode. */
368 }
369
370 if (op == 0x68 || op == 0x6a)
371 {
372 /* This function may start with
373
374 pushl constant
375 call _probe
376 addl $4, %esp
377
378 followed by
379
380 pushl %ebp
381
382 etc. */
383 int pos;
384 unsigned char buf[8];
385
386 /* Skip past the `pushl' instruction; it has either a one-byte
387 or a four-byte operand, depending on the opcode. */
388 pos = codestream_tell ();
389 if (op == 0x68)
390 pos += 4;
391 else
392 pos += 1;
393 codestream_seek (pos);
394
395 /* Read the following 8 bytes, which should be "call _probe" (6
396 bytes) followed by "addl $4,%esp" (2 bytes). */
397 codestream_read (buf, sizeof (buf));
398 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
399 pos += sizeof (buf);
400 codestream_seek (pos);
401 op = codestream_get (); /* Update next opcode. */
402 }
403
404 if (op == 0x55) /* pushl %ebp */
405 {
406 /* Check for "movl %esp, %ebp" -- can be written in two ways. */
407 switch (codestream_get ())
408 {
409 case 0x8b:
410 if (codestream_get () != 0xec)
411 return -1;
412 break;
413 case 0x89:
414 if (codestream_get () != 0xe5)
415 return -1;
416 break;
417 default:
418 return -1;
419 }
420 /* Check for stack adjustment
421
422 subl $XXX, %esp
423
424 NOTE: You can't subtract a 16 bit immediate from a 32 bit
425 reg, so we don't have to worry about a data16 prefix. */
426 op = codestream_peek ();
427 if (op == 0x83)
428 {
429 /* `subl' with 8 bit immediate. */
430 codestream_get ();
431 if (codestream_get () != 0xec)
432 /* Some instruction starting with 0x83 other than `subl'. */
433 {
434 codestream_seek (codestream_tell () - 2);
435 return 0;
436 }
437 /* `subl' with signed byte immediate (though it wouldn't
438 make sense to be negative). */
439 return (codestream_get ());
440 }
441 else if (op == 0x81)
442 {
443 char buf[4];
444 /* Maybe it is `subl' with a 32 bit immedediate. */
445 codestream_get ();
446 if (codestream_get () != 0xec)
447 /* Some instruction starting with 0x81 other than `subl'. */
448 {
449 codestream_seek (codestream_tell () - 2);
450 return 0;
451 }
452 /* It is `subl' with a 32 bit immediate. */
453 codestream_read ((unsigned char *) buf, 4);
454 return extract_signed_integer (buf, 4);
455 }
456 else
457 {
458 return 0;
459 }
460 }
461 else if (op == 0xc8)
462 {
463 char buf[2];
464 /* `enter' with 16 bit unsigned immediate. */
465 codestream_read ((unsigned char *) buf, 2);
466 codestream_get (); /* Flush final byte of enter instruction. */
467 return extract_unsigned_integer (buf, 2);
468 }
469 return (-1);
470 }
471
472 /* Signal trampolines don't have a meaningful frame. The frame
473 pointer value we use is actually the frame pointer of the calling
474 frame -- that is, the frame which was in progress when the signal
475 trampoline was entered. GDB mostly treats this frame pointer value
476 as a magic cookie. We detect the case of a signal trampoline by
477 testing for get_frame_type() == SIGTRAMP_FRAME, which is set based
478 on PC_IN_SIGTRAMP.
479
480 When a signal trampoline is invoked from a frameless function, we
481 essentially have two frameless functions in a row. In this case,
482 we use the same magic cookie for three frames in a row. We detect
483 this case by seeing whether the next frame is a SIGTRAMP_FRAME,
484 and, if it does, checking whether the current frame is actually
485 frameless. In this case, we need to get the PC by looking at the
486 SP register value stored in the signal context.
487
488 This should work in most cases except in horrible situations where
489 a signal occurs just as we enter a function but before the frame
490 has been set up. Incidentally, that's just what happens when we
491 call a function from GDB with a signal pending (there's a test in
492 the testsuite that makes this happen). Therefore we pretend that
493 we have a frameless function if we're stopped at the start of a
494 function. */
495
496 /* Return non-zero if we're dealing with a frameless signal, that is,
497 a signal trampoline invoked from a frameless function. */
498
499 int
500 i386_frameless_signal_p (struct frame_info *frame)
501 {
502 return (get_next_frame (frame)
503 && get_frame_type (get_next_frame (frame)) == SIGTRAMP_FRAME
504 && (frameless_look_for_prologue (frame)
505 || get_frame_pc (frame) == get_pc_function_start (get_frame_pc (frame))));
506 }
507
508 /* Return the chain-pointer for FRAME. In the case of the i386, the
509 frame's nominal address is the address of a 4-byte word containing
510 the calling frame's address. */
511
512 static CORE_ADDR
513 i386_frame_chain (struct frame_info *frame)
514 {
515 if (pc_in_dummy_frame (get_frame_pc (frame)))
516 return get_frame_base (frame);
517
518 if (get_frame_type (frame) == SIGTRAMP_FRAME
519 || i386_frameless_signal_p (frame))
520 return get_frame_base (frame);
521
522 if (! inside_entry_file (get_frame_pc (frame)))
523 return read_memory_unsigned_integer (get_frame_base (frame), 4);
524
525 return 0;
526 }
527
528 /* Determine whether the function invocation represented by FRAME does
529 not have a from on the stack associated with it. If it does not,
530 return non-zero, otherwise return zero. */
531
532 static int
533 i386_frameless_function_invocation (struct frame_info *frame)
534 {
535 if (get_frame_type (frame) == SIGTRAMP_FRAME)
536 return 0;
537
538 return frameless_look_for_prologue (frame);
539 }
540
541 /* Assuming FRAME is for a sigtramp routine, return the saved program
542 counter. */
543
544 static CORE_ADDR
545 i386_sigtramp_saved_pc (struct frame_info *frame)
546 {
547 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
548 CORE_ADDR addr;
549
550 addr = tdep->sigcontext_addr (frame);
551 return read_memory_unsigned_integer (addr + tdep->sc_pc_offset, 4);
552 }
553
554 /* Assuming FRAME is for a sigtramp routine, return the saved stack
555 pointer. */
556
557 static CORE_ADDR
558 i386_sigtramp_saved_sp (struct frame_info *frame)
559 {
560 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
561 CORE_ADDR addr;
562
563 addr = tdep->sigcontext_addr (frame);
564 return read_memory_unsigned_integer (addr + tdep->sc_sp_offset, 4);
565 }
566
567 /* Return the saved program counter for FRAME. */
568
569 static CORE_ADDR
570 i386_frame_saved_pc (struct frame_info *frame)
571 {
572 if (pc_in_dummy_frame (get_frame_pc (frame)))
573 {
574 ULONGEST pc;
575
576 frame_unwind_unsigned_register (frame, PC_REGNUM, &pc);
577 return pc;
578 }
579
580 if (get_frame_type (frame) == SIGTRAMP_FRAME)
581 return i386_sigtramp_saved_pc (frame);
582
583 if (i386_frameless_signal_p (frame))
584 {
585 CORE_ADDR sp = i386_sigtramp_saved_sp (get_next_frame (frame));
586 return read_memory_unsigned_integer (sp, 4);
587 }
588
589 return read_memory_unsigned_integer (get_frame_base (frame) + 4, 4);
590 }
591
592 /* Immediately after a function call, return the saved pc. */
593
594 static CORE_ADDR
595 i386_saved_pc_after_call (struct frame_info *frame)
596 {
597 if (get_frame_type (frame) == SIGTRAMP_FRAME)
598 return i386_sigtramp_saved_pc (frame);
599
600 return read_memory_unsigned_integer (read_register (SP_REGNUM), 4);
601 }
602
603 /* Return number of args passed to a frame.
604 Can return -1, meaning no way to tell. */
605
606 static int
607 i386_frame_num_args (struct frame_info *fi)
608 {
609 #if 1
610 return -1;
611 #else
612 /* This loses because not only might the compiler not be popping the
613 args right after the function call, it might be popping args from
614 both this call and a previous one, and we would say there are
615 more args than there really are. */
616
617 int retpc;
618 unsigned char op;
619 struct frame_info *pfi;
620
621 /* On the i386, the instruction following the call could be:
622 popl %ecx - one arg
623 addl $imm, %esp - imm/4 args; imm may be 8 or 32 bits
624 anything else - zero args. */
625
626 int frameless;
627
628 frameless = FRAMELESS_FUNCTION_INVOCATION (fi);
629 if (frameless)
630 /* In the absence of a frame pointer, GDB doesn't get correct
631 values for nameless arguments. Return -1, so it doesn't print
632 any nameless arguments. */
633 return -1;
634
635 pfi = get_prev_frame (fi);
636 if (pfi == 0)
637 {
638 /* NOTE: This can happen if we are looking at the frame for
639 main, because FRAME_CHAIN_VALID won't let us go into start.
640 If we have debugging symbols, that's not really a big deal;
641 it just means it will only show as many arguments to main as
642 are declared. */
643 return -1;
644 }
645 else
646 {
647 retpc = pfi->pc;
648 op = read_memory_integer (retpc, 1);
649 if (op == 0x59) /* pop %ecx */
650 return 1;
651 else if (op == 0x83)
652 {
653 op = read_memory_integer (retpc + 1, 1);
654 if (op == 0xc4)
655 /* addl $<signed imm 8 bits>, %esp */
656 return (read_memory_integer (retpc + 2, 1) & 0xff) / 4;
657 else
658 return 0;
659 }
660 else if (op == 0x81) /* `add' with 32 bit immediate. */
661 {
662 op = read_memory_integer (retpc + 1, 1);
663 if (op == 0xc4)
664 /* addl $<imm 32>, %esp */
665 return read_memory_integer (retpc + 2, 4) / 4;
666 else
667 return 0;
668 }
669 else
670 {
671 return 0;
672 }
673 }
674 #endif
675 }
676
677 /* Parse the first few instructions the function to see what registers
678 were stored.
679
680 We handle these cases:
681
682 The startup sequence can be at the start of the function, or the
683 function can start with a branch to startup code at the end.
684
685 %ebp can be set up with either the 'enter' instruction, or "pushl
686 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
687 once used in the System V compiler).
688
689 Local space is allocated just below the saved %ebp by either the
690 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a 16
691 bit unsigned argument for space to allocate, and the 'addl'
692 instruction could have either a signed byte, or 32 bit immediate.
693
694 Next, the registers used by this function are pushed. With the
695 System V compiler they will always be in the order: %edi, %esi,
696 %ebx (and sometimes a harmless bug causes it to also save but not
697 restore %eax); however, the code below is willing to see the pushes
698 in any order, and will handle up to 8 of them.
699
700 If the setup sequence is at the end of the function, then the next
701 instruction will be a branch back to the start. */
702
703 static void
704 i386_frame_init_saved_regs (struct frame_info *fip)
705 {
706 long locals = -1;
707 unsigned char op;
708 CORE_ADDR addr;
709 CORE_ADDR pc;
710 int i;
711
712 if (get_frame_saved_regs (fip))
713 return;
714
715 frame_saved_regs_zalloc (fip);
716
717 pc = get_pc_function_start (get_frame_pc (fip));
718 if (pc != 0)
719 locals = i386_get_frame_setup (pc);
720
721 if (locals >= 0)
722 {
723 addr = get_frame_base (fip) - 4 - locals;
724 for (i = 0; i < 8; i++)
725 {
726 op = codestream_get ();
727 if (op < 0x50 || op > 0x57)
728 break;
729 #ifdef I386_REGNO_TO_SYMMETRY
730 /* Dynix uses different internal numbering. Ick. */
731 get_frame_saved_regs (fip)[I386_REGNO_TO_SYMMETRY (op - 0x50)] = addr;
732 #else
733 get_frame_saved_regs (fip)[op - 0x50] = addr;
734 #endif
735 addr -= 4;
736 }
737 }
738
739 get_frame_saved_regs (fip)[PC_REGNUM] = get_frame_base (fip) + 4;
740 get_frame_saved_regs (fip)[FP_REGNUM] = get_frame_base (fip);
741 }
742
743 /* Return PC of first real instruction. */
744
745 static CORE_ADDR
746 i386_skip_prologue (CORE_ADDR pc)
747 {
748 unsigned char op;
749 int i;
750 static unsigned char pic_pat[6] =
751 { 0xe8, 0, 0, 0, 0, /* call 0x0 */
752 0x5b, /* popl %ebx */
753 };
754 CORE_ADDR pos;
755
756 if (i386_get_frame_setup (pc) < 0)
757 return (pc);
758
759 /* Found valid frame setup -- codestream now points to start of push
760 instructions for saving registers. */
761
762 /* Skip over register saves. */
763 for (i = 0; i < 8; i++)
764 {
765 op = codestream_peek ();
766 /* Break if not `pushl' instrunction. */
767 if (op < 0x50 || op > 0x57)
768 break;
769 codestream_get ();
770 }
771
772 /* The native cc on SVR4 in -K PIC mode inserts the following code
773 to get the address of the global offset table (GOT) into register
774 %ebx
775
776 call 0x0
777 popl %ebx
778 movl %ebx,x(%ebp) (optional)
779 addl y,%ebx
780
781 This code is with the rest of the prologue (at the end of the
782 function), so we have to skip it to get to the first real
783 instruction at the start of the function. */
784
785 pos = codestream_tell ();
786 for (i = 0; i < 6; i++)
787 {
788 op = codestream_get ();
789 if (pic_pat[i] != op)
790 break;
791 }
792 if (i == 6)
793 {
794 unsigned char buf[4];
795 long delta = 6;
796
797 op = codestream_get ();
798 if (op == 0x89) /* movl %ebx, x(%ebp) */
799 {
800 op = codestream_get ();
801 if (op == 0x5d) /* One byte offset from %ebp. */
802 {
803 delta += 3;
804 codestream_read (buf, 1);
805 }
806 else if (op == 0x9d) /* Four byte offset from %ebp. */
807 {
808 delta += 6;
809 codestream_read (buf, 4);
810 }
811 else /* Unexpected instruction. */
812 delta = -1;
813 op = codestream_get ();
814 }
815 /* addl y,%ebx */
816 if (delta > 0 && op == 0x81 && codestream_get () == 0xc3)
817 {
818 pos += delta + 6;
819 }
820 }
821 codestream_seek (pos);
822
823 i386_follow_jump ();
824
825 return (codestream_tell ());
826 }
827
828 /* Use the program counter to determine the contents and size of a
829 breakpoint instruction. Return a pointer to a string of bytes that
830 encode a breakpoint instruction, store the length of the string in
831 *LEN and optionally adjust *PC to point to the correct memory
832 location for inserting the breakpoint.
833
834 On the i386 we have a single breakpoint that fits in a single byte
835 and can be inserted anywhere. */
836
837 static const unsigned char *
838 i386_breakpoint_from_pc (CORE_ADDR *pc, int *len)
839 {
840 static unsigned char break_insn[] = { 0xcc }; /* int 3 */
841
842 *len = sizeof (break_insn);
843 return break_insn;
844 }
845
846 /* Push the return address (pointing to the call dummy) onto the stack
847 and return the new value for the stack pointer. */
848
849 static CORE_ADDR
850 i386_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
851 {
852 char buf[4];
853
854 store_unsigned_integer (buf, 4, CALL_DUMMY_ADDRESS ());
855 write_memory (sp - 4, buf, 4);
856 return sp - 4;
857 }
858
859 static void
860 i386_do_pop_frame (struct frame_info *frame)
861 {
862 CORE_ADDR fp;
863 int regnum;
864 char regbuf[I386_MAX_REGISTER_SIZE];
865
866 fp = get_frame_base (frame);
867 i386_frame_init_saved_regs (frame);
868
869 for (regnum = 0; regnum < NUM_REGS; regnum++)
870 {
871 CORE_ADDR addr;
872 addr = get_frame_saved_regs (frame)[regnum];
873 if (addr)
874 {
875 read_memory (addr, regbuf, REGISTER_RAW_SIZE (regnum));
876 deprecated_write_register_gen (regnum, regbuf);
877 }
878 }
879 write_register (FP_REGNUM, read_memory_integer (fp, 4));
880 write_register (PC_REGNUM, read_memory_integer (fp + 4, 4));
881 write_register (SP_REGNUM, fp + 8);
882 flush_cached_frames ();
883 }
884
885 static void
886 i386_pop_frame (void)
887 {
888 generic_pop_current_frame (i386_do_pop_frame);
889 }
890 \f
891
892 /* Figure out where the longjmp will land. Slurp the args out of the
893 stack. We expect the first arg to be a pointer to the jmp_buf
894 structure from which we extract the address that we will land at.
895 This address is copied into PC. This routine returns non-zero on
896 success. */
897
898 static int
899 i386_get_longjmp_target (CORE_ADDR *pc)
900 {
901 char buf[8];
902 CORE_ADDR sp, jb_addr;
903 int jb_pc_offset = gdbarch_tdep (current_gdbarch)->jb_pc_offset;
904 int len = TARGET_PTR_BIT / TARGET_CHAR_BIT;
905
906 /* If JB_PC_OFFSET is -1, we have no way to find out where the
907 longjmp will land. */
908 if (jb_pc_offset == -1)
909 return 0;
910
911 sp = read_register (SP_REGNUM);
912 if (target_read_memory (sp + len, buf, len))
913 return 0;
914
915 jb_addr = extract_address (buf, len);
916 if (target_read_memory (jb_addr + jb_pc_offset, buf, len))
917 return 0;
918
919 *pc = extract_address (buf, len);
920 return 1;
921 }
922 \f
923
924 static CORE_ADDR
925 i386_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
926 int struct_return, CORE_ADDR struct_addr)
927 {
928 sp = default_push_arguments (nargs, args, sp, struct_return, struct_addr);
929
930 if (struct_return)
931 {
932 char buf[4];
933
934 sp -= 4;
935 store_address (buf, 4, struct_addr);
936 write_memory (sp, buf, 4);
937 }
938
939 return sp;
940 }
941
942 static void
943 i386_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
944 {
945 /* Do nothing. Everything was already done by i386_push_arguments. */
946 }
947
948 /* These registers are used for returning integers (and on some
949 targets also for returning `struct' and `union' values when their
950 size and alignment match an integer type). */
951 #define LOW_RETURN_REGNUM 0 /* %eax */
952 #define HIGH_RETURN_REGNUM 2 /* %edx */
953
954 /* Extract from an array REGBUF containing the (raw) register state, a
955 function return value of TYPE, and copy that, in virtual format,
956 into VALBUF. */
957
958 static void
959 i386_extract_return_value (struct type *type, struct regcache *regcache,
960 void *dst)
961 {
962 bfd_byte *valbuf = dst;
963 int len = TYPE_LENGTH (type);
964 char buf[I386_MAX_REGISTER_SIZE];
965
966 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
967 && TYPE_NFIELDS (type) == 1)
968 {
969 i386_extract_return_value (TYPE_FIELD_TYPE (type, 0), regcache, valbuf);
970 return;
971 }
972
973 if (TYPE_CODE (type) == TYPE_CODE_FLT)
974 {
975 if (FP0_REGNUM == 0)
976 {
977 warning ("Cannot find floating-point return value.");
978 memset (valbuf, 0, len);
979 return;
980 }
981
982 /* Floating-point return values can be found in %st(0). Convert
983 its contents to the desired type. This is probably not
984 exactly how it would happen on the target itself, but it is
985 the best we can do. */
986 regcache_raw_read (regcache, FP0_REGNUM, buf);
987 convert_typed_floating (buf, builtin_type_i387_ext, valbuf, type);
988 }
989 else
990 {
991 int low_size = REGISTER_RAW_SIZE (LOW_RETURN_REGNUM);
992 int high_size = REGISTER_RAW_SIZE (HIGH_RETURN_REGNUM);
993
994 if (len <= low_size)
995 {
996 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
997 memcpy (valbuf, buf, len);
998 }
999 else if (len <= (low_size + high_size))
1000 {
1001 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
1002 memcpy (valbuf, buf, low_size);
1003 regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
1004 memcpy (valbuf + low_size, buf, len - low_size);
1005 }
1006 else
1007 internal_error (__FILE__, __LINE__,
1008 "Cannot extract return value of %d bytes long.", len);
1009 }
1010 }
1011
1012 /* Write into the appropriate registers a function return value stored
1013 in VALBUF of type TYPE, given in virtual format. */
1014
1015 static void
1016 i386_store_return_value (struct type *type, struct regcache *regcache,
1017 const void *valbuf)
1018 {
1019 int len = TYPE_LENGTH (type);
1020
1021 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
1022 && TYPE_NFIELDS (type) == 1)
1023 {
1024 i386_store_return_value (TYPE_FIELD_TYPE (type, 0), regcache, valbuf);
1025 return;
1026 }
1027
1028 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1029 {
1030 ULONGEST fstat;
1031 char buf[FPU_REG_RAW_SIZE];
1032
1033 if (FP0_REGNUM == 0)
1034 {
1035 warning ("Cannot set floating-point return value.");
1036 return;
1037 }
1038
1039 /* Returning floating-point values is a bit tricky. Apart from
1040 storing the return value in %st(0), we have to simulate the
1041 state of the FPU at function return point. */
1042
1043 /* Convert the value found in VALBUF to the extended
1044 floating-point format used by the FPU. This is probably
1045 not exactly how it would happen on the target itself, but
1046 it is the best we can do. */
1047 convert_typed_floating (valbuf, type, buf, builtin_type_i387_ext);
1048 regcache_raw_write (regcache, FP0_REGNUM, buf);
1049
1050 /* Set the top of the floating-point register stack to 7. The
1051 actual value doesn't really matter, but 7 is what a normal
1052 function return would end up with if the program started out
1053 with a freshly initialized FPU. */
1054 regcache_raw_read_unsigned (regcache, FSTAT_REGNUM, &fstat);
1055 fstat |= (7 << 11);
1056 regcache_raw_write_unsigned (regcache, FSTAT_REGNUM, fstat);
1057
1058 /* Mark %st(1) through %st(7) as empty. Since we set the top of
1059 the floating-point register stack to 7, the appropriate value
1060 for the tag word is 0x3fff. */
1061 regcache_raw_write_unsigned (regcache, FTAG_REGNUM, 0x3fff);
1062 }
1063 else
1064 {
1065 int low_size = REGISTER_RAW_SIZE (LOW_RETURN_REGNUM);
1066 int high_size = REGISTER_RAW_SIZE (HIGH_RETURN_REGNUM);
1067
1068 if (len <= low_size)
1069 regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
1070 else if (len <= (low_size + high_size))
1071 {
1072 regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
1073 regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
1074 len - low_size, (char *) valbuf + low_size);
1075 }
1076 else
1077 internal_error (__FILE__, __LINE__,
1078 "Cannot store return value of %d bytes long.", len);
1079 }
1080 }
1081
1082 /* Extract from REGCACHE, which contains the (raw) register state, the
1083 address in which a function should return its structure value, as a
1084 CORE_ADDR. */
1085
1086 static CORE_ADDR
1087 i386_extract_struct_value_address (struct regcache *regcache)
1088 {
1089 ULONGEST addr;
1090
1091 regcache_raw_read_unsigned (regcache, LOW_RETURN_REGNUM, &addr);
1092 return addr;
1093 }
1094 \f
1095
1096 /* This is the variable that is set with "set struct-convention", and
1097 its legitimate values. */
1098 static const char default_struct_convention[] = "default";
1099 static const char pcc_struct_convention[] = "pcc";
1100 static const char reg_struct_convention[] = "reg";
1101 static const char *valid_conventions[] =
1102 {
1103 default_struct_convention,
1104 pcc_struct_convention,
1105 reg_struct_convention,
1106 NULL
1107 };
1108 static const char *struct_convention = default_struct_convention;
1109
1110 static int
1111 i386_use_struct_convention (int gcc_p, struct type *type)
1112 {
1113 enum struct_return struct_return;
1114
1115 if (struct_convention == default_struct_convention)
1116 struct_return = gdbarch_tdep (current_gdbarch)->struct_return;
1117 else if (struct_convention == pcc_struct_convention)
1118 struct_return = pcc_struct_return;
1119 else
1120 struct_return = reg_struct_return;
1121
1122 return generic_use_struct_convention (struct_return == reg_struct_return,
1123 type);
1124 }
1125 \f
1126
1127 /* Return the GDB type object for the "standard" data type of data in
1128 register REGNUM. Perhaps %esi and %edi should go here, but
1129 potentially they could be used for things other than address. */
1130
1131 static struct type *
1132 i386_register_virtual_type (int regnum)
1133 {
1134 if (regnum == PC_REGNUM || regnum == FP_REGNUM || regnum == SP_REGNUM)
1135 return lookup_pointer_type (builtin_type_void);
1136
1137 if (i386_fp_regnum_p (regnum))
1138 return builtin_type_i387_ext;
1139
1140 if (i386_sse_regnum_p (regnum))
1141 return builtin_type_vec128i;
1142
1143 if (i386_mmx_regnum_p (regnum))
1144 return builtin_type_vec64i;
1145
1146 return builtin_type_int;
1147 }
1148
1149 /* Map a cooked register onto a raw register or memory. For the i386,
1150 the MMX registers need to be mapped onto floating point registers. */
1151
1152 static int
1153 mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
1154 {
1155 int mmxi;
1156 ULONGEST fstat;
1157 int tos;
1158 int fpi;
1159 mmxi = regnum - MM0_REGNUM;
1160 regcache_raw_read_unsigned (regcache, FSTAT_REGNUM, &fstat);
1161 tos = (fstat >> 11) & 0x7;
1162 fpi = (mmxi + tos) % 8;
1163 return (FP0_REGNUM + fpi);
1164 }
1165
1166 static void
1167 i386_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
1168 int regnum, void *buf)
1169 {
1170 if (i386_mmx_regnum_p (regnum))
1171 {
1172 char *mmx_buf = alloca (MAX_REGISTER_RAW_SIZE);
1173 int fpnum = mmx_regnum_to_fp_regnum (regcache, regnum);
1174 regcache_raw_read (regcache, fpnum, mmx_buf);
1175 /* Extract (always little endian). */
1176 memcpy (buf, mmx_buf, REGISTER_RAW_SIZE (regnum));
1177 }
1178 else
1179 regcache_raw_read (regcache, regnum, buf);
1180 }
1181
1182 static void
1183 i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
1184 int regnum, const void *buf)
1185 {
1186 if (i386_mmx_regnum_p (regnum))
1187 {
1188 char *mmx_buf = alloca (MAX_REGISTER_RAW_SIZE);
1189 int fpnum = mmx_regnum_to_fp_regnum (regcache, regnum);
1190 /* Read ... */
1191 regcache_raw_read (regcache, fpnum, mmx_buf);
1192 /* ... Modify ... (always little endian). */
1193 memcpy (mmx_buf, buf, REGISTER_RAW_SIZE (regnum));
1194 /* ... Write. */
1195 regcache_raw_write (regcache, fpnum, mmx_buf);
1196 }
1197 else
1198 regcache_raw_write (regcache, regnum, buf);
1199 }
1200
1201 /* Return true iff register REGNUM's virtual format is different from
1202 its raw format. Note that this definition assumes that the host
1203 supports IEEE 32-bit floats, since it doesn't say that SSE
1204 registers need conversion. Even if we can't find a counterexample,
1205 this is still sloppy. */
1206
1207 static int
1208 i386_register_convertible (int regnum)
1209 {
1210 return i386_fp_regnum_p (regnum);
1211 }
1212
1213 /* Convert data from raw format for register REGNUM in buffer FROM to
1214 virtual format with type TYPE in buffer TO. */
1215
1216 static void
1217 i386_register_convert_to_virtual (int regnum, struct type *type,
1218 char *from, char *to)
1219 {
1220 gdb_assert (i386_fp_regnum_p (regnum));
1221
1222 /* We only support floating-point values. */
1223 if (TYPE_CODE (type) != TYPE_CODE_FLT)
1224 {
1225 warning ("Cannot convert floating-point register value "
1226 "to non-floating-point type.");
1227 memset (to, 0, TYPE_LENGTH (type));
1228 return;
1229 }
1230
1231 /* Convert to TYPE. This should be a no-op if TYPE is equivalent to
1232 the extended floating-point format used by the FPU. */
1233 convert_typed_floating (from, builtin_type_i387_ext, to, type);
1234 }
1235
1236 /* Convert data from virtual format with type TYPE in buffer FROM to
1237 raw format for register REGNUM in buffer TO. */
1238
1239 static void
1240 i386_register_convert_to_raw (struct type *type, int regnum,
1241 char *from, char *to)
1242 {
1243 gdb_assert (i386_fp_regnum_p (regnum));
1244
1245 /* We only support floating-point values. */
1246 if (TYPE_CODE (type) != TYPE_CODE_FLT)
1247 {
1248 warning ("Cannot convert non-floating-point type "
1249 "to floating-point register value.");
1250 memset (to, 0, TYPE_LENGTH (type));
1251 return;
1252 }
1253
1254 /* Convert from TYPE. This should be a no-op if TYPE is equivalent
1255 to the extended floating-point format used by the FPU. */
1256 convert_typed_floating (from, type, to, builtin_type_i387_ext);
1257 }
1258 \f
1259
1260 #ifdef STATIC_TRANSFORM_NAME
1261 /* SunPRO encodes the static variables. This is not related to C++
1262 mangling, it is done for C too. */
1263
1264 char *
1265 sunpro_static_transform_name (char *name)
1266 {
1267 char *p;
1268 if (IS_STATIC_TRANSFORM_NAME (name))
1269 {
1270 /* For file-local statics there will be a period, a bunch of
1271 junk (the contents of which match a string given in the
1272 N_OPT), a period and the name. For function-local statics
1273 there will be a bunch of junk (which seems to change the
1274 second character from 'A' to 'B'), a period, the name of the
1275 function, and the name. So just skip everything before the
1276 last period. */
1277 p = strrchr (name, '.');
1278 if (p != NULL)
1279 name = p + 1;
1280 }
1281 return name;
1282 }
1283 #endif /* STATIC_TRANSFORM_NAME */
1284 \f
1285
1286 /* Stuff for WIN32 PE style DLL's but is pretty generic really. */
1287
1288 CORE_ADDR
1289 i386_pe_skip_trampoline_code (CORE_ADDR pc, char *name)
1290 {
1291 if (pc && read_memory_unsigned_integer (pc, 2) == 0x25ff) /* jmp *(dest) */
1292 {
1293 unsigned long indirect = read_memory_unsigned_integer (pc + 2, 4);
1294 struct minimal_symbol *indsym =
1295 indirect ? lookup_minimal_symbol_by_pc (indirect) : 0;
1296 char *symname = indsym ? DEPRECATED_SYMBOL_NAME (indsym) : 0;
1297
1298 if (symname)
1299 {
1300 if (strncmp (symname, "__imp_", 6) == 0
1301 || strncmp (symname, "_imp_", 5) == 0)
1302 return name ? 1 : read_memory_unsigned_integer (indirect, 4);
1303 }
1304 }
1305 return 0; /* Not a trampoline. */
1306 }
1307 \f
1308
1309 /* Return non-zero if PC and NAME show that we are in a signal
1310 trampoline. */
1311
1312 static int
1313 i386_pc_in_sigtramp (CORE_ADDR pc, char *name)
1314 {
1315 return (name && strcmp ("_sigtramp", name) == 0);
1316 }
1317 \f
1318
1319 /* We have two flavours of disassembly. The machinery on this page
1320 deals with switching between those. */
1321
1322 static int
1323 i386_print_insn (bfd_vma pc, disassemble_info *info)
1324 {
1325 gdb_assert (disassembly_flavor == att_flavor
1326 || disassembly_flavor == intel_flavor);
1327
1328 /* FIXME: kettenis/20020915: Until disassembler_options is properly
1329 constified, cast to prevent a compiler warning. */
1330 info->disassembler_options = (char *) disassembly_flavor;
1331 info->mach = gdbarch_bfd_arch_info (current_gdbarch)->mach;
1332
1333 return print_insn_i386 (pc, info);
1334 }
1335 \f
1336
1337 /* There are a few i386 architecture variants that differ only
1338 slightly from the generic i386 target. For now, we don't give them
1339 their own source file, but include them here. As a consequence,
1340 they'll always be included. */
1341
1342 /* System V Release 4 (SVR4). */
1343
1344 static int
1345 i386_svr4_pc_in_sigtramp (CORE_ADDR pc, char *name)
1346 {
1347 return (name && (strcmp ("_sigreturn", name) == 0
1348 || strcmp ("_sigacthandler", name) == 0
1349 || strcmp ("sigvechandler", name) == 0));
1350 }
1351
1352 /* Get address of the pushed ucontext (sigcontext) on the stack for
1353 all three variants of SVR4 sigtramps. */
1354
1355 static CORE_ADDR
1356 i386_svr4_sigcontext_addr (struct frame_info *frame)
1357 {
1358 int sigcontext_offset = -1;
1359 char *name = NULL;
1360
1361 find_pc_partial_function (get_frame_pc (frame), &name, NULL, NULL);
1362 if (name)
1363 {
1364 if (strcmp (name, "_sigreturn") == 0)
1365 sigcontext_offset = 132;
1366 else if (strcmp (name, "_sigacthandler") == 0)
1367 sigcontext_offset = 80;
1368 else if (strcmp (name, "sigvechandler") == 0)
1369 sigcontext_offset = 120;
1370 }
1371
1372 gdb_assert (sigcontext_offset != -1);
1373
1374 if (get_next_frame (frame))
1375 return get_frame_base (get_next_frame (frame)) + sigcontext_offset;
1376 return read_register (SP_REGNUM) + sigcontext_offset;
1377 }
1378 \f
1379
1380 /* DJGPP. */
1381
1382 static int
1383 i386_go32_pc_in_sigtramp (CORE_ADDR pc, char *name)
1384 {
1385 /* DJGPP doesn't have any special frames for signal handlers. */
1386 return 0;
1387 }
1388 \f
1389
1390 /* Generic ELF. */
1391
1392 void
1393 i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1394 {
1395 /* We typically use stabs-in-ELF with the DWARF register numbering. */
1396 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dwarf_reg_to_regnum);
1397 }
1398
1399 /* System V Release 4 (SVR4). */
1400
1401 void
1402 i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1403 {
1404 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1405
1406 /* System V Release 4 uses ELF. */
1407 i386_elf_init_abi (info, gdbarch);
1408
1409 /* System V Release 4 has shared libraries. */
1410 set_gdbarch_in_solib_call_trampoline (gdbarch, in_plt_section);
1411 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
1412
1413 set_gdbarch_pc_in_sigtramp (gdbarch, i386_svr4_pc_in_sigtramp);
1414 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
1415 tdep->sc_pc_offset = 14 * 4;
1416 tdep->sc_sp_offset = 7 * 4;
1417
1418 tdep->jb_pc_offset = 20;
1419 }
1420
1421 /* DJGPP. */
1422
1423 static void
1424 i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1425 {
1426 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1427
1428 set_gdbarch_pc_in_sigtramp (gdbarch, i386_go32_pc_in_sigtramp);
1429
1430 tdep->jb_pc_offset = 36;
1431 }
1432
1433 /* NetWare. */
1434
1435 static void
1436 i386_nw_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1437 {
1438 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1439
1440 tdep->jb_pc_offset = 24;
1441 }
1442 \f
1443
1444 /* i386 register groups. In addition to the normal groups, add "mmx"
1445 and "sse". */
1446
1447 static struct reggroup *i386_sse_reggroup;
1448 static struct reggroup *i386_mmx_reggroup;
1449
1450 static void
1451 i386_init_reggroups (void)
1452 {
1453 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
1454 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
1455 }
1456
1457 static void
1458 i386_add_reggroups (struct gdbarch *gdbarch)
1459 {
1460 reggroup_add (gdbarch, i386_sse_reggroup);
1461 reggroup_add (gdbarch, i386_mmx_reggroup);
1462 reggroup_add (gdbarch, general_reggroup);
1463 reggroup_add (gdbarch, float_reggroup);
1464 reggroup_add (gdbarch, all_reggroup);
1465 reggroup_add (gdbarch, save_reggroup);
1466 reggroup_add (gdbarch, restore_reggroup);
1467 reggroup_add (gdbarch, vector_reggroup);
1468 reggroup_add (gdbarch, system_reggroup);
1469 }
1470
1471 int
1472 i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
1473 struct reggroup *group)
1474 {
1475 int sse_regnum_p = (i386_sse_regnum_p (regnum)
1476 || i386_mxcsr_regnum_p (regnum));
1477 int fp_regnum_p = (i386_fp_regnum_p (regnum)
1478 || i386_fpc_regnum_p (regnum));
1479 int mmx_regnum_p = (i386_mmx_regnum_p (regnum));
1480 if (group == i386_mmx_reggroup)
1481 return mmx_regnum_p;
1482 if (group == i386_sse_reggroup)
1483 return sse_regnum_p;
1484 if (group == vector_reggroup)
1485 return (mmx_regnum_p || sse_regnum_p);
1486 if (group == float_reggroup)
1487 return fp_regnum_p;
1488 if (group == general_reggroup)
1489 return (!fp_regnum_p && !mmx_regnum_p && !sse_regnum_p);
1490 return default_register_reggroup_p (gdbarch, regnum, group);
1491 }
1492
1493 \f
1494 static struct gdbarch *
1495 i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1496 {
1497 struct gdbarch_tdep *tdep;
1498 struct gdbarch *gdbarch;
1499
1500 /* If there is already a candidate, use it. */
1501 arches = gdbarch_list_lookup_by_info (arches, &info);
1502 if (arches != NULL)
1503 return arches->gdbarch;
1504
1505 /* Allocate space for the new architecture. */
1506 tdep = XMALLOC (struct gdbarch_tdep);
1507 gdbarch = gdbarch_alloc (&info, tdep);
1508
1509 /* NOTE: cagney/2002-12-06: This can be deleted when this arch is
1510 ready to unwind the PC first (see frame.c:get_prev_frame()). */
1511 set_gdbarch_deprecated_init_frame_pc (gdbarch, init_frame_pc_default);
1512
1513 /* The i386 default settings don't include the SSE registers.
1514 FIXME: kettenis/20020614: They do include the FPU registers for
1515 now, which probably is not quite right. */
1516 tdep->num_xmm_regs = 0;
1517
1518 tdep->jb_pc_offset = -1;
1519 tdep->struct_return = pcc_struct_return;
1520 tdep->sigtramp_start = 0;
1521 tdep->sigtramp_end = 0;
1522 tdep->sigcontext_addr = NULL;
1523 tdep->sc_pc_offset = -1;
1524 tdep->sc_sp_offset = -1;
1525
1526 /* The format used for `long double' on almost all i386 targets is
1527 the i387 extended floating-point format. In fact, of all targets
1528 in the GCC 2.95 tree, only OSF/1 does it different, and insists
1529 on having a `long double' that's not `long' at all. */
1530 set_gdbarch_long_double_format (gdbarch, &floatformat_i387_ext);
1531
1532 /* Although the i387 extended floating-point has only 80 significant
1533 bits, a `long double' actually takes up 96, probably to enforce
1534 alignment. */
1535 set_gdbarch_long_double_bit (gdbarch, 96);
1536
1537 /* NOTE: tm-i386aix.h, tm-i386bsd.h, tm-i386os9k.h, tm-ptx.h,
1538 tm-symmetry.h currently override this. Sigh. */
1539 set_gdbarch_num_regs (gdbarch, I386_NUM_GREGS + I386_NUM_FREGS);
1540
1541 set_gdbarch_sp_regnum (gdbarch, 4); /* %esp */
1542 set_gdbarch_fp_regnum (gdbarch, 5); /* %ebp */
1543 set_gdbarch_pc_regnum (gdbarch, 8); /* %eip */
1544 set_gdbarch_ps_regnum (gdbarch, 9); /* %eflags */
1545 set_gdbarch_fp0_regnum (gdbarch, 16); /* %st(0) */
1546
1547 /* Use the "default" register numbering scheme for stabs and COFF. */
1548 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_stab_reg_to_regnum);
1549 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_stab_reg_to_regnum);
1550
1551 /* Use the DWARF register numbering scheme for DWARF and DWARF 2. */
1552 set_gdbarch_dwarf_reg_to_regnum (gdbarch, i386_dwarf_reg_to_regnum);
1553 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_dwarf_reg_to_regnum);
1554
1555 /* We don't define ECOFF_REG_TO_REGNUM, since ECOFF doesn't seem to
1556 be in use on any of the supported i386 targets. */
1557
1558 set_gdbarch_register_name (gdbarch, i386_register_name);
1559 set_gdbarch_register_size (gdbarch, 4);
1560 set_gdbarch_register_bytes (gdbarch, I386_SIZEOF_GREGS + I386_SIZEOF_FREGS);
1561 set_gdbarch_max_register_raw_size (gdbarch, I386_MAX_REGISTER_SIZE);
1562 set_gdbarch_max_register_virtual_size (gdbarch, I386_MAX_REGISTER_SIZE);
1563 set_gdbarch_register_virtual_type (gdbarch, i386_register_virtual_type);
1564
1565 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
1566
1567 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
1568
1569 /* Call dummy code. */
1570 set_gdbarch_call_dummy_address (gdbarch, entry_point_address);
1571 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
1572 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
1573 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
1574 set_gdbarch_call_dummy_length (gdbarch, 0);
1575 set_gdbarch_call_dummy_p (gdbarch, 1);
1576 set_gdbarch_call_dummy_words (gdbarch, NULL);
1577 set_gdbarch_sizeof_call_dummy_words (gdbarch, 0);
1578 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
1579 set_gdbarch_fix_call_dummy (gdbarch, generic_fix_call_dummy);
1580
1581 set_gdbarch_register_convertible (gdbarch, i386_register_convertible);
1582 set_gdbarch_register_convert_to_virtual (gdbarch,
1583 i386_register_convert_to_virtual);
1584 set_gdbarch_register_convert_to_raw (gdbarch, i386_register_convert_to_raw);
1585
1586 /* "An argument's size is increased, if necessary, to make it a
1587 multiple of [32-bit] words. This may require tail padding,
1588 depending on the size of the argument" -- from the x86 ABI. */
1589 set_gdbarch_parm_boundary (gdbarch, 32);
1590
1591 set_gdbarch_extract_return_value (gdbarch, i386_extract_return_value);
1592 set_gdbarch_push_arguments (gdbarch, i386_push_arguments);
1593 set_gdbarch_push_return_address (gdbarch, i386_push_return_address);
1594 set_gdbarch_pop_frame (gdbarch, i386_pop_frame);
1595 set_gdbarch_store_struct_return (gdbarch, i386_store_struct_return);
1596 set_gdbarch_store_return_value (gdbarch, i386_store_return_value);
1597 set_gdbarch_extract_struct_value_address (gdbarch,
1598 i386_extract_struct_value_address);
1599 set_gdbarch_use_struct_convention (gdbarch, i386_use_struct_convention);
1600
1601 set_gdbarch_deprecated_frame_init_saved_regs (gdbarch, i386_frame_init_saved_regs);
1602 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
1603
1604 /* Stack grows downward. */
1605 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1606
1607 set_gdbarch_breakpoint_from_pc (gdbarch, i386_breakpoint_from_pc);
1608 set_gdbarch_decr_pc_after_break (gdbarch, 1);
1609 set_gdbarch_function_start_offset (gdbarch, 0);
1610
1611 /* The following redefines make backtracing through sigtramp work.
1612 They manufacture a fake sigtramp frame and obtain the saved pc in
1613 sigtramp from the sigcontext structure which is pushed by the
1614 kernel on the user stack, along with a pointer to it. */
1615
1616 set_gdbarch_frame_args_skip (gdbarch, 8);
1617 set_gdbarch_frameless_function_invocation (gdbarch,
1618 i386_frameless_function_invocation);
1619 set_gdbarch_frame_chain (gdbarch, i386_frame_chain);
1620 set_gdbarch_frame_saved_pc (gdbarch, i386_frame_saved_pc);
1621 set_gdbarch_saved_pc_after_call (gdbarch, i386_saved_pc_after_call);
1622 set_gdbarch_frame_num_args (gdbarch, i386_frame_num_args);
1623 set_gdbarch_pc_in_sigtramp (gdbarch, i386_pc_in_sigtramp);
1624
1625 /* Wire in the MMX registers. */
1626 set_gdbarch_num_pseudo_regs (gdbarch, mmx_num_regs);
1627 set_gdbarch_pseudo_register_read (gdbarch, i386_pseudo_register_read);
1628 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
1629
1630 set_gdbarch_print_insn (gdbarch, i386_print_insn);
1631
1632 /* Add the i386 register groups. */
1633 i386_add_reggroups (gdbarch);
1634 set_gdbarch_register_reggroup_p (gdbarch, i386_register_reggroup_p);
1635
1636 /* Hook in ABI-specific overrides, if they have been registered. */
1637 gdbarch_init_osabi (info, gdbarch);
1638
1639 return gdbarch;
1640 }
1641
1642 static enum gdb_osabi
1643 i386_coff_osabi_sniffer (bfd *abfd)
1644 {
1645 if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
1646 || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
1647 return GDB_OSABI_GO32;
1648
1649 return GDB_OSABI_UNKNOWN;
1650 }
1651
1652 static enum gdb_osabi
1653 i386_nlm_osabi_sniffer (bfd *abfd)
1654 {
1655 return GDB_OSABI_NETWARE;
1656 }
1657 \f
1658
1659 /* Provide a prototype to silence -Wmissing-prototypes. */
1660 void _initialize_i386_tdep (void);
1661
1662 void
1663 _initialize_i386_tdep (void)
1664 {
1665 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
1666
1667 /* Add the variable that controls the disassembly flavor. */
1668 {
1669 struct cmd_list_element *new_cmd;
1670
1671 new_cmd = add_set_enum_cmd ("disassembly-flavor", no_class,
1672 valid_flavors,
1673 &disassembly_flavor,
1674 "\
1675 Set the disassembly flavor, the valid values are \"att\" and \"intel\", \
1676 and the default value is \"att\".",
1677 &setlist);
1678 add_show_from_set (new_cmd, &showlist);
1679 }
1680
1681 /* Add the variable that controls the convention for returning
1682 structs. */
1683 {
1684 struct cmd_list_element *new_cmd;
1685
1686 new_cmd = add_set_enum_cmd ("struct-convention", no_class,
1687 valid_conventions,
1688 &struct_convention, "\
1689 Set the convention for returning small structs, valid values \
1690 are \"default\", \"pcc\" and \"reg\", and the default value is \"default\".",
1691 &setlist);
1692 add_show_from_set (new_cmd, &showlist);
1693 }
1694
1695 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
1696 i386_coff_osabi_sniffer);
1697 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_nlm_flavour,
1698 i386_nlm_osabi_sniffer);
1699
1700 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
1701 i386_svr4_init_abi);
1702 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_GO32,
1703 i386_go32_init_abi);
1704 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_NETWARE,
1705 i386_nw_init_abi);
1706
1707 /* Initialize the i386 specific register groups. */
1708 i386_init_reggroups ();
1709 }
This page took 0.080806 seconds and 5 git commands to generate.