Fix relocation of jump and call instructions (used when inserting fast
[deliverable/binutils-gdb.git] / gdb / i386-tdep.c
1 /* Intel 386 target-dependent stuff.
2
3 Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
5 2010, 2011 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "opcode/i386.h"
24 #include "arch-utils.h"
25 #include "command.h"
26 #include "dummy-frame.h"
27 #include "dwarf2-frame.h"
28 #include "doublest.h"
29 #include "frame.h"
30 #include "frame-base.h"
31 #include "frame-unwind.h"
32 #include "inferior.h"
33 #include "gdbcmd.h"
34 #include "gdbcore.h"
35 #include "gdbtypes.h"
36 #include "objfiles.h"
37 #include "osabi.h"
38 #include "regcache.h"
39 #include "reggroups.h"
40 #include "regset.h"
41 #include "symfile.h"
42 #include "symtab.h"
43 #include "target.h"
44 #include "value.h"
45 #include "dis-asm.h"
46 #include "disasm.h"
47 #include "remote.h"
48
49 #include "gdb_assert.h"
50 #include "gdb_string.h"
51
52 #include "i386-tdep.h"
53 #include "i387-tdep.h"
54 #include "i386-xstate.h"
55
56 #include "record.h"
57 #include <stdint.h>
58
59 #include "features/i386/i386.c"
60 #include "features/i386/i386-avx.c"
61 #include "features/i386/i386-mmx.c"
62
63 /* Register names. */
64
65 static const char *i386_register_names[] =
66 {
67 "eax", "ecx", "edx", "ebx",
68 "esp", "ebp", "esi", "edi",
69 "eip", "eflags", "cs", "ss",
70 "ds", "es", "fs", "gs",
71 "st0", "st1", "st2", "st3",
72 "st4", "st5", "st6", "st7",
73 "fctrl", "fstat", "ftag", "fiseg",
74 "fioff", "foseg", "fooff", "fop",
75 "xmm0", "xmm1", "xmm2", "xmm3",
76 "xmm4", "xmm5", "xmm6", "xmm7",
77 "mxcsr"
78 };
79
80 static const char *i386_ymm_names[] =
81 {
82 "ymm0", "ymm1", "ymm2", "ymm3",
83 "ymm4", "ymm5", "ymm6", "ymm7",
84 };
85
86 static const char *i386_ymmh_names[] =
87 {
88 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
89 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
90 };
91
92 /* Register names for MMX pseudo-registers. */
93
94 static const char *i386_mmx_names[] =
95 {
96 "mm0", "mm1", "mm2", "mm3",
97 "mm4", "mm5", "mm6", "mm7"
98 };
99
100 /* Register names for byte pseudo-registers. */
101
102 static const char *i386_byte_names[] =
103 {
104 "al", "cl", "dl", "bl",
105 "ah", "ch", "dh", "bh"
106 };
107
108 /* Register names for word pseudo-registers. */
109
110 static const char *i386_word_names[] =
111 {
112 "ax", "cx", "dx", "bx",
113 "", "bp", "si", "di"
114 };
115
116 /* MMX register? */
117
118 static int
119 i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
120 {
121 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
122 int mm0_regnum = tdep->mm0_regnum;
123
124 if (mm0_regnum < 0)
125 return 0;
126
127 regnum -= mm0_regnum;
128 return regnum >= 0 && regnum < tdep->num_mmx_regs;
129 }
130
131 /* Byte register? */
132
133 int
134 i386_byte_regnum_p (struct gdbarch *gdbarch, int regnum)
135 {
136 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
137
138 regnum -= tdep->al_regnum;
139 return regnum >= 0 && regnum < tdep->num_byte_regs;
140 }
141
142 /* Word register? */
143
144 int
145 i386_word_regnum_p (struct gdbarch *gdbarch, int regnum)
146 {
147 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
148
149 regnum -= tdep->ax_regnum;
150 return regnum >= 0 && regnum < tdep->num_word_regs;
151 }
152
153 /* Dword register? */
154
155 int
156 i386_dword_regnum_p (struct gdbarch *gdbarch, int regnum)
157 {
158 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
159 int eax_regnum = tdep->eax_regnum;
160
161 if (eax_regnum < 0)
162 return 0;
163
164 regnum -= eax_regnum;
165 return regnum >= 0 && regnum < tdep->num_dword_regs;
166 }
167
168 static int
169 i386_ymmh_regnum_p (struct gdbarch *gdbarch, int regnum)
170 {
171 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
172 int ymm0h_regnum = tdep->ymm0h_regnum;
173
174 if (ymm0h_regnum < 0)
175 return 0;
176
177 regnum -= ymm0h_regnum;
178 return regnum >= 0 && regnum < tdep->num_ymm_regs;
179 }
180
181 /* AVX register? */
182
183 int
184 i386_ymm_regnum_p (struct gdbarch *gdbarch, int regnum)
185 {
186 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
187 int ymm0_regnum = tdep->ymm0_regnum;
188
189 if (ymm0_regnum < 0)
190 return 0;
191
192 regnum -= ymm0_regnum;
193 return regnum >= 0 && regnum < tdep->num_ymm_regs;
194 }
195
196 /* SSE register? */
197
198 int
199 i386_xmm_regnum_p (struct gdbarch *gdbarch, int regnum)
200 {
201 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
202 int num_xmm_regs = I387_NUM_XMM_REGS (tdep);
203
204 if (num_xmm_regs == 0)
205 return 0;
206
207 regnum -= I387_XMM0_REGNUM (tdep);
208 return regnum >= 0 && regnum < num_xmm_regs;
209 }
210
211 static int
212 i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
213 {
214 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
215
216 if (I387_NUM_XMM_REGS (tdep) == 0)
217 return 0;
218
219 return (regnum == I387_MXCSR_REGNUM (tdep));
220 }
221
222 /* FP register? */
223
224 int
225 i386_fp_regnum_p (struct gdbarch *gdbarch, int regnum)
226 {
227 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
228
229 if (I387_ST0_REGNUM (tdep) < 0)
230 return 0;
231
232 return (I387_ST0_REGNUM (tdep) <= regnum
233 && regnum < I387_FCTRL_REGNUM (tdep));
234 }
235
236 int
237 i386_fpc_regnum_p (struct gdbarch *gdbarch, int regnum)
238 {
239 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
240
241 if (I387_ST0_REGNUM (tdep) < 0)
242 return 0;
243
244 return (I387_FCTRL_REGNUM (tdep) <= regnum
245 && regnum < I387_XMM0_REGNUM (tdep));
246 }
247
248 /* Return the name of register REGNUM, or the empty string if it is
249 an anonymous register. */
250
251 static const char *
252 i386_register_name (struct gdbarch *gdbarch, int regnum)
253 {
254 /* Hide the upper YMM registers. */
255 if (i386_ymmh_regnum_p (gdbarch, regnum))
256 return "";
257
258 return tdesc_register_name (gdbarch, regnum);
259 }
260
261 /* Return the name of register REGNUM. */
262
263 const char *
264 i386_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
265 {
266 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
267 if (i386_mmx_regnum_p (gdbarch, regnum))
268 return i386_mmx_names[regnum - I387_MM0_REGNUM (tdep)];
269 else if (i386_ymm_regnum_p (gdbarch, regnum))
270 return i386_ymm_names[regnum - tdep->ymm0_regnum];
271 else if (i386_byte_regnum_p (gdbarch, regnum))
272 return i386_byte_names[regnum - tdep->al_regnum];
273 else if (i386_word_regnum_p (gdbarch, regnum))
274 return i386_word_names[regnum - tdep->ax_regnum];
275
276 internal_error (__FILE__, __LINE__, _("invalid regnum"));
277 }
278
279 /* Convert a dbx register number REG to the appropriate register
280 number used by GDB. */
281
282 static int
283 i386_dbx_reg_to_regnum (struct gdbarch *gdbarch, int reg)
284 {
285 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
286
287 /* This implements what GCC calls the "default" register map
288 (dbx_register_map[]). */
289
290 if (reg >= 0 && reg <= 7)
291 {
292 /* General-purpose registers. The debug info calls %ebp
293 register 4, and %esp register 5. */
294 if (reg == 4)
295 return 5;
296 else if (reg == 5)
297 return 4;
298 else return reg;
299 }
300 else if (reg >= 12 && reg <= 19)
301 {
302 /* Floating-point registers. */
303 return reg - 12 + I387_ST0_REGNUM (tdep);
304 }
305 else if (reg >= 21 && reg <= 28)
306 {
307 /* SSE registers. */
308 int ymm0_regnum = tdep->ymm0_regnum;
309
310 if (ymm0_regnum >= 0
311 && i386_xmm_regnum_p (gdbarch, reg))
312 return reg - 21 + ymm0_regnum;
313 else
314 return reg - 21 + I387_XMM0_REGNUM (tdep);
315 }
316 else if (reg >= 29 && reg <= 36)
317 {
318 /* MMX registers. */
319 return reg - 29 + I387_MM0_REGNUM (tdep);
320 }
321
322 /* This will hopefully provoke a warning. */
323 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
324 }
325
326 /* Convert SVR4 register number REG to the appropriate register number
327 used by GDB. */
328
329 static int
330 i386_svr4_reg_to_regnum (struct gdbarch *gdbarch, int reg)
331 {
332 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
333
334 /* This implements the GCC register map that tries to be compatible
335 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
336
337 /* The SVR4 register numbering includes %eip and %eflags, and
338 numbers the floating point registers differently. */
339 if (reg >= 0 && reg <= 9)
340 {
341 /* General-purpose registers. */
342 return reg;
343 }
344 else if (reg >= 11 && reg <= 18)
345 {
346 /* Floating-point registers. */
347 return reg - 11 + I387_ST0_REGNUM (tdep);
348 }
349 else if (reg >= 21 && reg <= 36)
350 {
351 /* The SSE and MMX registers have the same numbers as with dbx. */
352 return i386_dbx_reg_to_regnum (gdbarch, reg);
353 }
354
355 switch (reg)
356 {
357 case 37: return I387_FCTRL_REGNUM (tdep);
358 case 38: return I387_FSTAT_REGNUM (tdep);
359 case 39: return I387_MXCSR_REGNUM (tdep);
360 case 40: return I386_ES_REGNUM;
361 case 41: return I386_CS_REGNUM;
362 case 42: return I386_SS_REGNUM;
363 case 43: return I386_DS_REGNUM;
364 case 44: return I386_FS_REGNUM;
365 case 45: return I386_GS_REGNUM;
366 }
367
368 /* This will hopefully provoke a warning. */
369 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
370 }
371
372 \f
373
374 /* This is the variable that is set with "set disassembly-flavor", and
375 its legitimate values. */
376 static const char att_flavor[] = "att";
377 static const char intel_flavor[] = "intel";
378 static const char *valid_flavors[] =
379 {
380 att_flavor,
381 intel_flavor,
382 NULL
383 };
384 static const char *disassembly_flavor = att_flavor;
385 \f
386
387 /* Use the program counter to determine the contents and size of a
388 breakpoint instruction. Return a pointer to a string of bytes that
389 encode a breakpoint instruction, store the length of the string in
390 *LEN and optionally adjust *PC to point to the correct memory
391 location for inserting the breakpoint.
392
393 On the i386 we have a single breakpoint that fits in a single byte
394 and can be inserted anywhere.
395
396 This function is 64-bit safe. */
397
398 static const gdb_byte *
399 i386_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
400 {
401 static gdb_byte break_insn[] = { 0xcc }; /* int 3 */
402
403 *len = sizeof (break_insn);
404 return break_insn;
405 }
406 \f
407 /* Displaced instruction handling. */
408
409 /* Skip the legacy instruction prefixes in INSN.
410 Not all prefixes are valid for any particular insn
411 but we needn't care, the insn will fault if it's invalid.
412 The result is a pointer to the first opcode byte,
413 or NULL if we run off the end of the buffer. */
414
415 static gdb_byte *
416 i386_skip_prefixes (gdb_byte *insn, size_t max_len)
417 {
418 gdb_byte *end = insn + max_len;
419
420 while (insn < end)
421 {
422 switch (*insn)
423 {
424 case DATA_PREFIX_OPCODE:
425 case ADDR_PREFIX_OPCODE:
426 case CS_PREFIX_OPCODE:
427 case DS_PREFIX_OPCODE:
428 case ES_PREFIX_OPCODE:
429 case FS_PREFIX_OPCODE:
430 case GS_PREFIX_OPCODE:
431 case SS_PREFIX_OPCODE:
432 case LOCK_PREFIX_OPCODE:
433 case REPE_PREFIX_OPCODE:
434 case REPNE_PREFIX_OPCODE:
435 ++insn;
436 continue;
437 default:
438 return insn;
439 }
440 }
441
442 return NULL;
443 }
444
445 static int
446 i386_absolute_jmp_p (const gdb_byte *insn)
447 {
448 /* jmp far (absolute address in operand). */
449 if (insn[0] == 0xea)
450 return 1;
451
452 if (insn[0] == 0xff)
453 {
454 /* jump near, absolute indirect (/4). */
455 if ((insn[1] & 0x38) == 0x20)
456 return 1;
457
458 /* jump far, absolute indirect (/5). */
459 if ((insn[1] & 0x38) == 0x28)
460 return 1;
461 }
462
463 return 0;
464 }
465
466 static int
467 i386_absolute_call_p (const gdb_byte *insn)
468 {
469 /* call far, absolute. */
470 if (insn[0] == 0x9a)
471 return 1;
472
473 if (insn[0] == 0xff)
474 {
475 /* Call near, absolute indirect (/2). */
476 if ((insn[1] & 0x38) == 0x10)
477 return 1;
478
479 /* Call far, absolute indirect (/3). */
480 if ((insn[1] & 0x38) == 0x18)
481 return 1;
482 }
483
484 return 0;
485 }
486
487 static int
488 i386_ret_p (const gdb_byte *insn)
489 {
490 switch (insn[0])
491 {
492 case 0xc2: /* ret near, pop N bytes. */
493 case 0xc3: /* ret near */
494 case 0xca: /* ret far, pop N bytes. */
495 case 0xcb: /* ret far */
496 case 0xcf: /* iret */
497 return 1;
498
499 default:
500 return 0;
501 }
502 }
503
504 static int
505 i386_call_p (const gdb_byte *insn)
506 {
507 if (i386_absolute_call_p (insn))
508 return 1;
509
510 /* call near, relative. */
511 if (insn[0] == 0xe8)
512 return 1;
513
514 return 0;
515 }
516
517 /* Return non-zero if INSN is a system call, and set *LENGTHP to its
518 length in bytes. Otherwise, return zero. */
519
520 static int
521 i386_syscall_p (const gdb_byte *insn, int *lengthp)
522 {
523 if (insn[0] == 0xcd)
524 {
525 *lengthp = 2;
526 return 1;
527 }
528
529 return 0;
530 }
531
532 /* Some kernels may run one past a syscall insn, so we have to cope.
533 Otherwise this is just simple_displaced_step_copy_insn. */
534
535 struct displaced_step_closure *
536 i386_displaced_step_copy_insn (struct gdbarch *gdbarch,
537 CORE_ADDR from, CORE_ADDR to,
538 struct regcache *regs)
539 {
540 size_t len = gdbarch_max_insn_length (gdbarch);
541 gdb_byte *buf = xmalloc (len);
542
543 read_memory (from, buf, len);
544
545 /* GDB may get control back after the insn after the syscall.
546 Presumably this is a kernel bug.
547 If this is a syscall, make sure there's a nop afterwards. */
548 {
549 int syscall_length;
550 gdb_byte *insn;
551
552 insn = i386_skip_prefixes (buf, len);
553 if (insn != NULL && i386_syscall_p (insn, &syscall_length))
554 insn[syscall_length] = NOP_OPCODE;
555 }
556
557 write_memory (to, buf, len);
558
559 if (debug_displaced)
560 {
561 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
562 paddress (gdbarch, from), paddress (gdbarch, to));
563 displaced_step_dump_bytes (gdb_stdlog, buf, len);
564 }
565
566 return (struct displaced_step_closure *) buf;
567 }
568
569 /* Fix up the state of registers and memory after having single-stepped
570 a displaced instruction. */
571
572 void
573 i386_displaced_step_fixup (struct gdbarch *gdbarch,
574 struct displaced_step_closure *closure,
575 CORE_ADDR from, CORE_ADDR to,
576 struct regcache *regs)
577 {
578 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
579
580 /* The offset we applied to the instruction's address.
581 This could well be negative (when viewed as a signed 32-bit
582 value), but ULONGEST won't reflect that, so take care when
583 applying it. */
584 ULONGEST insn_offset = to - from;
585
586 /* Since we use simple_displaced_step_copy_insn, our closure is a
587 copy of the instruction. */
588 gdb_byte *insn = (gdb_byte *) closure;
589 /* The start of the insn, needed in case we see some prefixes. */
590 gdb_byte *insn_start = insn;
591
592 if (debug_displaced)
593 fprintf_unfiltered (gdb_stdlog,
594 "displaced: fixup (%s, %s), "
595 "insn = 0x%02x 0x%02x ...\n",
596 paddress (gdbarch, from), paddress (gdbarch, to),
597 insn[0], insn[1]);
598
599 /* The list of issues to contend with here is taken from
600 resume_execution in arch/i386/kernel/kprobes.c, Linux 2.6.20.
601 Yay for Free Software! */
602
603 /* Relocate the %eip, if necessary. */
604
605 /* The instruction recognizers we use assume any leading prefixes
606 have been skipped. */
607 {
608 /* This is the size of the buffer in closure. */
609 size_t max_insn_len = gdbarch_max_insn_length (gdbarch);
610 gdb_byte *opcode = i386_skip_prefixes (insn, max_insn_len);
611 /* If there are too many prefixes, just ignore the insn.
612 It will fault when run. */
613 if (opcode != NULL)
614 insn = opcode;
615 }
616
617 /* Except in the case of absolute or indirect jump or call
618 instructions, or a return instruction, the new eip is relative to
619 the displaced instruction; make it relative. Well, signal
620 handler returns don't need relocation either, but we use the
621 value of %eip to recognize those; see below. */
622 if (! i386_absolute_jmp_p (insn)
623 && ! i386_absolute_call_p (insn)
624 && ! i386_ret_p (insn))
625 {
626 ULONGEST orig_eip;
627 int insn_len;
628
629 regcache_cooked_read_unsigned (regs, I386_EIP_REGNUM, &orig_eip);
630
631 /* A signal trampoline system call changes the %eip, resuming
632 execution of the main program after the signal handler has
633 returned. That makes them like 'return' instructions; we
634 shouldn't relocate %eip.
635
636 But most system calls don't, and we do need to relocate %eip.
637
638 Our heuristic for distinguishing these cases: if stepping
639 over the system call instruction left control directly after
640 the instruction, the we relocate --- control almost certainly
641 doesn't belong in the displaced copy. Otherwise, we assume
642 the instruction has put control where it belongs, and leave
643 it unrelocated. Goodness help us if there are PC-relative
644 system calls. */
645 if (i386_syscall_p (insn, &insn_len)
646 && orig_eip != to + (insn - insn_start) + insn_len
647 /* GDB can get control back after the insn after the syscall.
648 Presumably this is a kernel bug.
649 i386_displaced_step_copy_insn ensures its a nop,
650 we add one to the length for it. */
651 && orig_eip != to + (insn - insn_start) + insn_len + 1)
652 {
653 if (debug_displaced)
654 fprintf_unfiltered (gdb_stdlog,
655 "displaced: syscall changed %%eip; "
656 "not relocating\n");
657 }
658 else
659 {
660 ULONGEST eip = (orig_eip - insn_offset) & 0xffffffffUL;
661
662 /* If we just stepped over a breakpoint insn, we don't backup
663 the pc on purpose; this is to match behaviour without
664 stepping. */
665
666 regcache_cooked_write_unsigned (regs, I386_EIP_REGNUM, eip);
667
668 if (debug_displaced)
669 fprintf_unfiltered (gdb_stdlog,
670 "displaced: "
671 "relocated %%eip from %s to %s\n",
672 paddress (gdbarch, orig_eip),
673 paddress (gdbarch, eip));
674 }
675 }
676
677 /* If the instruction was PUSHFL, then the TF bit will be set in the
678 pushed value, and should be cleared. We'll leave this for later,
679 since GDB already messes up the TF flag when stepping over a
680 pushfl. */
681
682 /* If the instruction was a call, the return address now atop the
683 stack is the address following the copied instruction. We need
684 to make it the address following the original instruction. */
685 if (i386_call_p (insn))
686 {
687 ULONGEST esp;
688 ULONGEST retaddr;
689 const ULONGEST retaddr_len = 4;
690
691 regcache_cooked_read_unsigned (regs, I386_ESP_REGNUM, &esp);
692 retaddr = read_memory_unsigned_integer (esp, retaddr_len, byte_order);
693 retaddr = (retaddr - insn_offset) & 0xffffffffUL;
694 write_memory_unsigned_integer (esp, retaddr_len, byte_order, retaddr);
695
696 if (debug_displaced)
697 fprintf_unfiltered (gdb_stdlog,
698 "displaced: relocated return addr at %s to %s\n",
699 paddress (gdbarch, esp),
700 paddress (gdbarch, retaddr));
701 }
702 }
703
704 static void
705 append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
706 {
707 target_write_memory (*to, buf, len);
708 *to += len;
709 }
710
711 static void
712 i386_relocate_instruction (struct gdbarch *gdbarch,
713 CORE_ADDR *to, CORE_ADDR oldloc)
714 {
715 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
716 gdb_byte buf[I386_MAX_INSN_LEN];
717 int offset = 0, rel32, newrel;
718 int insn_length;
719 gdb_byte *insn = buf;
720
721 read_memory (oldloc, buf, I386_MAX_INSN_LEN);
722
723 insn_length = gdb_buffered_insn_length (gdbarch, insn,
724 I386_MAX_INSN_LEN, oldloc);
725
726 /* Get past the prefixes. */
727 insn = i386_skip_prefixes (insn, I386_MAX_INSN_LEN);
728
729 /* Adjust calls with 32-bit relative addresses as push/jump, with
730 the address pushed being the location where the original call in
731 the user program would return to. */
732 if (insn[0] == 0xe8)
733 {
734 gdb_byte push_buf[16];
735 unsigned int ret_addr;
736
737 /* Where "ret" in the original code will return to. */
738 ret_addr = oldloc + insn_length;
739 push_buf[0] = 0x68; /* pushq $... */
740 memcpy (&push_buf[1], &ret_addr, 4);
741 /* Push the push. */
742 append_insns (to, 5, push_buf);
743
744 /* Convert the relative call to a relative jump. */
745 insn[0] = 0xe9;
746
747 /* Adjust the destination offset. */
748 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
749 newrel = (oldloc - *to) + rel32;
750 store_signed_integer (insn + 1, 4, byte_order, newrel);
751
752 if (debug_displaced)
753 fprintf_unfiltered (gdb_stdlog,
754 "Adjusted insn rel32=%s at %s to"
755 " rel32=%s at %s\n",
756 hex_string (rel32), paddress (gdbarch, oldloc),
757 hex_string (newrel), paddress (gdbarch, *to));
758
759 /* Write the adjusted jump into its displaced location. */
760 append_insns (to, 5, insn);
761 return;
762 }
763
764 /* Adjust jumps with 32-bit relative addresses. Calls are already
765 handled above. */
766 if (insn[0] == 0xe9)
767 offset = 1;
768 /* Adjust conditional jumps. */
769 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
770 offset = 2;
771
772 if (offset)
773 {
774 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
775 newrel = (oldloc - *to) + rel32;
776 store_signed_integer (insn + offset, 4, byte_order, newrel);
777 if (debug_displaced)
778 fprintf_unfiltered (gdb_stdlog,
779 "Adjusted insn rel32=%s at %s to"
780 " rel32=%s at %s\n",
781 hex_string (rel32), paddress (gdbarch, oldloc),
782 hex_string (newrel), paddress (gdbarch, *to));
783 }
784
785 /* Write the adjusted instructions into their displaced
786 location. */
787 append_insns (to, insn_length, buf);
788 }
789
790 \f
791 #ifdef I386_REGNO_TO_SYMMETRY
792 #error "The Sequent Symmetry is no longer supported."
793 #endif
794
795 /* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
796 and %esp "belong" to the calling function. Therefore these
797 registers should be saved if they're going to be modified. */
798
799 /* The maximum number of saved registers. This should include all
800 registers mentioned above, and %eip. */
801 #define I386_NUM_SAVED_REGS I386_NUM_GREGS
802
803 struct i386_frame_cache
804 {
805 /* Base address. */
806 CORE_ADDR base;
807 LONGEST sp_offset;
808 CORE_ADDR pc;
809
810 /* Saved registers. */
811 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
812 CORE_ADDR saved_sp;
813 int saved_sp_reg;
814 int pc_in_eax;
815
816 /* Stack space reserved for local variables. */
817 long locals;
818 };
819
820 /* Allocate and initialize a frame cache. */
821
822 static struct i386_frame_cache *
823 i386_alloc_frame_cache (void)
824 {
825 struct i386_frame_cache *cache;
826 int i;
827
828 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
829
830 /* Base address. */
831 cache->base = 0;
832 cache->sp_offset = -4;
833 cache->pc = 0;
834
835 /* Saved registers. We initialize these to -1 since zero is a valid
836 offset (that's where %ebp is supposed to be stored). */
837 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
838 cache->saved_regs[i] = -1;
839 cache->saved_sp = 0;
840 cache->saved_sp_reg = -1;
841 cache->pc_in_eax = 0;
842
843 /* Frameless until proven otherwise. */
844 cache->locals = -1;
845
846 return cache;
847 }
848
849 /* If the instruction at PC is a jump, return the address of its
850 target. Otherwise, return PC. */
851
852 static CORE_ADDR
853 i386_follow_jump (struct gdbarch *gdbarch, CORE_ADDR pc)
854 {
855 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
856 gdb_byte op;
857 long delta = 0;
858 int data16 = 0;
859
860 if (target_read_memory (pc, &op, 1))
861 return pc;
862
863 if (op == 0x66)
864 {
865 data16 = 1;
866 op = read_memory_unsigned_integer (pc + 1, 1, byte_order);
867 }
868
869 switch (op)
870 {
871 case 0xe9:
872 /* Relative jump: if data16 == 0, disp32, else disp16. */
873 if (data16)
874 {
875 delta = read_memory_integer (pc + 2, 2, byte_order);
876
877 /* Include the size of the jmp instruction (including the
878 0x66 prefix). */
879 delta += 4;
880 }
881 else
882 {
883 delta = read_memory_integer (pc + 1, 4, byte_order);
884
885 /* Include the size of the jmp instruction. */
886 delta += 5;
887 }
888 break;
889 case 0xeb:
890 /* Relative jump, disp8 (ignore data16). */
891 delta = read_memory_integer (pc + data16 + 1, 1, byte_order);
892
893 delta += data16 + 2;
894 break;
895 }
896
897 return pc + delta;
898 }
899
900 /* Check whether PC points at a prologue for a function returning a
901 structure or union. If so, it updates CACHE and returns the
902 address of the first instruction after the code sequence that
903 removes the "hidden" argument from the stack or CURRENT_PC,
904 whichever is smaller. Otherwise, return PC. */
905
906 static CORE_ADDR
907 i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
908 struct i386_frame_cache *cache)
909 {
910 /* Functions that return a structure or union start with:
911
912 popl %eax 0x58
913 xchgl %eax, (%esp) 0x87 0x04 0x24
914 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
915
916 (the System V compiler puts out the second `xchg' instruction,
917 and the assembler doesn't try to optimize it, so the 'sib' form
918 gets generated). This sequence is used to get the address of the
919 return buffer for a function that returns a structure. */
920 static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
921 static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
922 gdb_byte buf[4];
923 gdb_byte op;
924
925 if (current_pc <= pc)
926 return pc;
927
928 if (target_read_memory (pc, &op, 1))
929 return pc;
930
931 if (op != 0x58) /* popl %eax */
932 return pc;
933
934 if (target_read_memory (pc + 1, buf, 4))
935 return pc;
936
937 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
938 return pc;
939
940 if (current_pc == pc)
941 {
942 cache->sp_offset += 4;
943 return current_pc;
944 }
945
946 if (current_pc == pc + 1)
947 {
948 cache->pc_in_eax = 1;
949 return current_pc;
950 }
951
952 if (buf[1] == proto1[1])
953 return pc + 4;
954 else
955 return pc + 5;
956 }
957
958 static CORE_ADDR
959 i386_skip_probe (CORE_ADDR pc)
960 {
961 /* A function may start with
962
963 pushl constant
964 call _probe
965 addl $4, %esp
966
967 followed by
968
969 pushl %ebp
970
971 etc. */
972 gdb_byte buf[8];
973 gdb_byte op;
974
975 if (target_read_memory (pc, &op, 1))
976 return pc;
977
978 if (op == 0x68 || op == 0x6a)
979 {
980 int delta;
981
982 /* Skip past the `pushl' instruction; it has either a one-byte or a
983 four-byte operand, depending on the opcode. */
984 if (op == 0x68)
985 delta = 5;
986 else
987 delta = 2;
988
989 /* Read the following 8 bytes, which should be `call _probe' (6
990 bytes) followed by `addl $4,%esp' (2 bytes). */
991 read_memory (pc + delta, buf, sizeof (buf));
992 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
993 pc += delta + sizeof (buf);
994 }
995
996 return pc;
997 }
998
999 /* GCC 4.1 and later, can put code in the prologue to realign the
1000 stack pointer. Check whether PC points to such code, and update
1001 CACHE accordingly. Return the first instruction after the code
1002 sequence or CURRENT_PC, whichever is smaller. If we don't
1003 recognize the code, return PC. */
1004
1005 static CORE_ADDR
1006 i386_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1007 struct i386_frame_cache *cache)
1008 {
1009 /* There are 2 code sequences to re-align stack before the frame
1010 gets set up:
1011
1012 1. Use a caller-saved saved register:
1013
1014 leal 4(%esp), %reg
1015 andl $-XXX, %esp
1016 pushl -4(%reg)
1017
1018 2. Use a callee-saved saved register:
1019
1020 pushl %reg
1021 leal 8(%esp), %reg
1022 andl $-XXX, %esp
1023 pushl -4(%reg)
1024
1025 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
1026
1027 0x83 0xe4 0xf0 andl $-16, %esp
1028 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
1029 */
1030
1031 gdb_byte buf[14];
1032 int reg;
1033 int offset, offset_and;
1034 static int regnums[8] = {
1035 I386_EAX_REGNUM, /* %eax */
1036 I386_ECX_REGNUM, /* %ecx */
1037 I386_EDX_REGNUM, /* %edx */
1038 I386_EBX_REGNUM, /* %ebx */
1039 I386_ESP_REGNUM, /* %esp */
1040 I386_EBP_REGNUM, /* %ebp */
1041 I386_ESI_REGNUM, /* %esi */
1042 I386_EDI_REGNUM /* %edi */
1043 };
1044
1045 if (target_read_memory (pc, buf, sizeof buf))
1046 return pc;
1047
1048 /* Check caller-saved saved register. The first instruction has
1049 to be "leal 4(%esp), %reg". */
1050 if (buf[0] == 0x8d && buf[2] == 0x24 && buf[3] == 0x4)
1051 {
1052 /* MOD must be binary 10 and R/M must be binary 100. */
1053 if ((buf[1] & 0xc7) != 0x44)
1054 return pc;
1055
1056 /* REG has register number. */
1057 reg = (buf[1] >> 3) & 7;
1058 offset = 4;
1059 }
1060 else
1061 {
1062 /* Check callee-saved saved register. The first instruction
1063 has to be "pushl %reg". */
1064 if ((buf[0] & 0xf8) != 0x50)
1065 return pc;
1066
1067 /* Get register. */
1068 reg = buf[0] & 0x7;
1069
1070 /* The next instruction has to be "leal 8(%esp), %reg". */
1071 if (buf[1] != 0x8d || buf[3] != 0x24 || buf[4] != 0x8)
1072 return pc;
1073
1074 /* MOD must be binary 10 and R/M must be binary 100. */
1075 if ((buf[2] & 0xc7) != 0x44)
1076 return pc;
1077
1078 /* REG has register number. Registers in pushl and leal have to
1079 be the same. */
1080 if (reg != ((buf[2] >> 3) & 7))
1081 return pc;
1082
1083 offset = 5;
1084 }
1085
1086 /* Rigister can't be %esp nor %ebp. */
1087 if (reg == 4 || reg == 5)
1088 return pc;
1089
1090 /* The next instruction has to be "andl $-XXX, %esp". */
1091 if (buf[offset + 1] != 0xe4
1092 || (buf[offset] != 0x81 && buf[offset] != 0x83))
1093 return pc;
1094
1095 offset_and = offset;
1096 offset += buf[offset] == 0x81 ? 6 : 3;
1097
1098 /* The next instruction has to be "pushl -4(%reg)". 8bit -4 is
1099 0xfc. REG must be binary 110 and MOD must be binary 01. */
1100 if (buf[offset] != 0xff
1101 || buf[offset + 2] != 0xfc
1102 || (buf[offset + 1] & 0xf8) != 0x70)
1103 return pc;
1104
1105 /* R/M has register. Registers in leal and pushl have to be the
1106 same. */
1107 if (reg != (buf[offset + 1] & 7))
1108 return pc;
1109
1110 if (current_pc > pc + offset_and)
1111 cache->saved_sp_reg = regnums[reg];
1112
1113 return min (pc + offset + 3, current_pc);
1114 }
1115
1116 /* Maximum instruction length we need to handle. */
1117 #define I386_MAX_MATCHED_INSN_LEN 6
1118
1119 /* Instruction description. */
1120 struct i386_insn
1121 {
1122 size_t len;
1123 gdb_byte insn[I386_MAX_MATCHED_INSN_LEN];
1124 gdb_byte mask[I386_MAX_MATCHED_INSN_LEN];
1125 };
1126
1127 /* Search for the instruction at PC in the list SKIP_INSNS. Return
1128 the first instruction description that matches. Otherwise, return
1129 NULL. */
1130
1131 static struct i386_insn *
1132 i386_match_insn (CORE_ADDR pc, struct i386_insn *skip_insns)
1133 {
1134 struct i386_insn *insn;
1135 gdb_byte op;
1136
1137 if (target_read_memory (pc, &op, 1))
1138 return NULL;
1139
1140 for (insn = skip_insns; insn->len > 0; insn++)
1141 {
1142 if ((op & insn->mask[0]) == insn->insn[0])
1143 {
1144 gdb_byte buf[I386_MAX_MATCHED_INSN_LEN - 1];
1145 int insn_matched = 1;
1146 size_t i;
1147
1148 gdb_assert (insn->len > 1);
1149 gdb_assert (insn->len <= I386_MAX_MATCHED_INSN_LEN);
1150
1151 if (target_read_memory (pc + 1, buf, insn->len - 1))
1152 return NULL;
1153
1154 for (i = 1; i < insn->len; i++)
1155 {
1156 if ((buf[i - 1] & insn->mask[i]) != insn->insn[i])
1157 insn_matched = 0;
1158 }
1159
1160 if (insn_matched)
1161 return insn;
1162 }
1163 }
1164
1165 return NULL;
1166 }
1167
1168 /* Some special instructions that might be migrated by GCC into the
1169 part of the prologue that sets up the new stack frame. Because the
1170 stack frame hasn't been setup yet, no registers have been saved
1171 yet, and only the scratch registers %eax, %ecx and %edx can be
1172 touched. */
1173
1174 struct i386_insn i386_frame_setup_skip_insns[] =
1175 {
1176 /* Check for `movb imm8, r' and `movl imm32, r'.
1177
1178 ??? Should we handle 16-bit operand-sizes here? */
1179
1180 /* `movb imm8, %al' and `movb imm8, %ah' */
1181 /* `movb imm8, %cl' and `movb imm8, %ch' */
1182 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
1183 /* `movb imm8, %dl' and `movb imm8, %dh' */
1184 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
1185 /* `movl imm32, %eax' and `movl imm32, %ecx' */
1186 { 5, { 0xb8 }, { 0xfe } },
1187 /* `movl imm32, %edx' */
1188 { 5, { 0xba }, { 0xff } },
1189
1190 /* Check for `mov imm32, r32'. Note that there is an alternative
1191 encoding for `mov m32, %eax'.
1192
1193 ??? Should we handle SIB adressing here?
1194 ??? Should we handle 16-bit operand-sizes here? */
1195
1196 /* `movl m32, %eax' */
1197 { 5, { 0xa1 }, { 0xff } },
1198 /* `movl m32, %eax' and `mov; m32, %ecx' */
1199 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
1200 /* `movl m32, %edx' */
1201 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
1202
1203 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
1204 Because of the symmetry, there are actually two ways to encode
1205 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
1206 opcode bytes 0x31 and 0x33 for `xorl'. */
1207
1208 /* `subl %eax, %eax' */
1209 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
1210 /* `subl %ecx, %ecx' */
1211 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
1212 /* `subl %edx, %edx' */
1213 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
1214 /* `xorl %eax, %eax' */
1215 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
1216 /* `xorl %ecx, %ecx' */
1217 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
1218 /* `xorl %edx, %edx' */
1219 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
1220 { 0 }
1221 };
1222
1223
1224 /* Check whether PC points to a no-op instruction. */
1225 static CORE_ADDR
1226 i386_skip_noop (CORE_ADDR pc)
1227 {
1228 gdb_byte op;
1229 int check = 1;
1230
1231 if (target_read_memory (pc, &op, 1))
1232 return pc;
1233
1234 while (check)
1235 {
1236 check = 0;
1237 /* Ignore `nop' instruction. */
1238 if (op == 0x90)
1239 {
1240 pc += 1;
1241 if (target_read_memory (pc, &op, 1))
1242 return pc;
1243 check = 1;
1244 }
1245 /* Ignore no-op instruction `mov %edi, %edi'.
1246 Microsoft system dlls often start with
1247 a `mov %edi,%edi' instruction.
1248 The 5 bytes before the function start are
1249 filled with `nop' instructions.
1250 This pattern can be used for hot-patching:
1251 The `mov %edi, %edi' instruction can be replaced by a
1252 near jump to the location of the 5 `nop' instructions
1253 which can be replaced by a 32-bit jump to anywhere
1254 in the 32-bit address space. */
1255
1256 else if (op == 0x8b)
1257 {
1258 if (target_read_memory (pc + 1, &op, 1))
1259 return pc;
1260
1261 if (op == 0xff)
1262 {
1263 pc += 2;
1264 if (target_read_memory (pc, &op, 1))
1265 return pc;
1266
1267 check = 1;
1268 }
1269 }
1270 }
1271 return pc;
1272 }
1273
1274 /* Check whether PC points at a code that sets up a new stack frame.
1275 If so, it updates CACHE and returns the address of the first
1276 instruction after the sequence that sets up the frame or LIMIT,
1277 whichever is smaller. If we don't recognize the code, return PC. */
1278
1279 static CORE_ADDR
1280 i386_analyze_frame_setup (struct gdbarch *gdbarch,
1281 CORE_ADDR pc, CORE_ADDR limit,
1282 struct i386_frame_cache *cache)
1283 {
1284 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1285 struct i386_insn *insn;
1286 gdb_byte op;
1287 int skip = 0;
1288
1289 if (limit <= pc)
1290 return limit;
1291
1292 if (target_read_memory (pc, &op, 1))
1293 return pc;
1294
1295 if (op == 0x55) /* pushl %ebp */
1296 {
1297 /* Take into account that we've executed the `pushl %ebp' that
1298 starts this instruction sequence. */
1299 cache->saved_regs[I386_EBP_REGNUM] = 0;
1300 cache->sp_offset += 4;
1301 pc++;
1302
1303 /* If that's all, return now. */
1304 if (limit <= pc)
1305 return limit;
1306
1307 /* Check for some special instructions that might be migrated by
1308 GCC into the prologue and skip them. At this point in the
1309 prologue, code should only touch the scratch registers %eax,
1310 %ecx and %edx, so while the number of posibilities is sheer,
1311 it is limited.
1312
1313 Make sure we only skip these instructions if we later see the
1314 `movl %esp, %ebp' that actually sets up the frame. */
1315 while (pc + skip < limit)
1316 {
1317 insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
1318 if (insn == NULL)
1319 break;
1320
1321 skip += insn->len;
1322 }
1323
1324 /* If that's all, return now. */
1325 if (limit <= pc + skip)
1326 return limit;
1327
1328 if (target_read_memory (pc + skip, &op, 1))
1329 return pc + skip;
1330
1331 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
1332 switch (op)
1333 {
1334 case 0x8b:
1335 if (read_memory_unsigned_integer (pc + skip + 1, 1, byte_order)
1336 != 0xec)
1337 return pc;
1338 break;
1339 case 0x89:
1340 if (read_memory_unsigned_integer (pc + skip + 1, 1, byte_order)
1341 != 0xe5)
1342 return pc;
1343 break;
1344 default:
1345 return pc;
1346 }
1347
1348 /* OK, we actually have a frame. We just don't know how large
1349 it is yet. Set its size to zero. We'll adjust it if
1350 necessary. We also now commit to skipping the special
1351 instructions mentioned before. */
1352 cache->locals = 0;
1353 pc += (skip + 2);
1354
1355 /* If that's all, return now. */
1356 if (limit <= pc)
1357 return limit;
1358
1359 /* Check for stack adjustment
1360
1361 subl $XXX, %esp
1362
1363 NOTE: You can't subtract a 16-bit immediate from a 32-bit
1364 reg, so we don't have to worry about a data16 prefix. */
1365 if (target_read_memory (pc, &op, 1))
1366 return pc;
1367 if (op == 0x83)
1368 {
1369 /* `subl' with 8-bit immediate. */
1370 if (read_memory_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1371 /* Some instruction starting with 0x83 other than `subl'. */
1372 return pc;
1373
1374 /* `subl' with signed 8-bit immediate (though it wouldn't
1375 make sense to be negative). */
1376 cache->locals = read_memory_integer (pc + 2, 1, byte_order);
1377 return pc + 3;
1378 }
1379 else if (op == 0x81)
1380 {
1381 /* Maybe it is `subl' with a 32-bit immediate. */
1382 if (read_memory_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1383 /* Some instruction starting with 0x81 other than `subl'. */
1384 return pc;
1385
1386 /* It is `subl' with a 32-bit immediate. */
1387 cache->locals = read_memory_integer (pc + 2, 4, byte_order);
1388 return pc + 6;
1389 }
1390 else
1391 {
1392 /* Some instruction other than `subl'. */
1393 return pc;
1394 }
1395 }
1396 else if (op == 0xc8) /* enter */
1397 {
1398 cache->locals = read_memory_unsigned_integer (pc + 1, 2, byte_order);
1399 return pc + 4;
1400 }
1401
1402 return pc;
1403 }
1404
1405 /* Check whether PC points at code that saves registers on the stack.
1406 If so, it updates CACHE and returns the address of the first
1407 instruction after the register saves or CURRENT_PC, whichever is
1408 smaller. Otherwise, return PC. */
1409
1410 static CORE_ADDR
1411 i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
1412 struct i386_frame_cache *cache)
1413 {
1414 CORE_ADDR offset = 0;
1415 gdb_byte op;
1416 int i;
1417
1418 if (cache->locals > 0)
1419 offset -= cache->locals;
1420 for (i = 0; i < 8 && pc < current_pc; i++)
1421 {
1422 if (target_read_memory (pc, &op, 1))
1423 return pc;
1424 if (op < 0x50 || op > 0x57)
1425 break;
1426
1427 offset -= 4;
1428 cache->saved_regs[op - 0x50] = offset;
1429 cache->sp_offset += 4;
1430 pc++;
1431 }
1432
1433 return pc;
1434 }
1435
1436 /* Do a full analysis of the prologue at PC and update CACHE
1437 accordingly. Bail out early if CURRENT_PC is reached. Return the
1438 address where the analysis stopped.
1439
1440 We handle these cases:
1441
1442 The startup sequence can be at the start of the function, or the
1443 function can start with a branch to startup code at the end.
1444
1445 %ebp can be set up with either the 'enter' instruction, or "pushl
1446 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
1447 once used in the System V compiler).
1448
1449 Local space is allocated just below the saved %ebp by either the
1450 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
1451 16-bit unsigned argument for space to allocate, and the 'addl'
1452 instruction could have either a signed byte, or 32-bit immediate.
1453
1454 Next, the registers used by this function are pushed. With the
1455 System V compiler they will always be in the order: %edi, %esi,
1456 %ebx (and sometimes a harmless bug causes it to also save but not
1457 restore %eax); however, the code below is willing to see the pushes
1458 in any order, and will handle up to 8 of them.
1459
1460 If the setup sequence is at the end of the function, then the next
1461 instruction will be a branch back to the start. */
1462
1463 static CORE_ADDR
1464 i386_analyze_prologue (struct gdbarch *gdbarch,
1465 CORE_ADDR pc, CORE_ADDR current_pc,
1466 struct i386_frame_cache *cache)
1467 {
1468 pc = i386_skip_noop (pc);
1469 pc = i386_follow_jump (gdbarch, pc);
1470 pc = i386_analyze_struct_return (pc, current_pc, cache);
1471 pc = i386_skip_probe (pc);
1472 pc = i386_analyze_stack_align (pc, current_pc, cache);
1473 pc = i386_analyze_frame_setup (gdbarch, pc, current_pc, cache);
1474 return i386_analyze_register_saves (pc, current_pc, cache);
1475 }
1476
1477 /* Return PC of first real instruction. */
1478
1479 static CORE_ADDR
1480 i386_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
1481 {
1482 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1483
1484 static gdb_byte pic_pat[6] =
1485 {
1486 0xe8, 0, 0, 0, 0, /* call 0x0 */
1487 0x5b, /* popl %ebx */
1488 };
1489 struct i386_frame_cache cache;
1490 CORE_ADDR pc;
1491 gdb_byte op;
1492 int i;
1493
1494 cache.locals = -1;
1495 pc = i386_analyze_prologue (gdbarch, start_pc, 0xffffffff, &cache);
1496 if (cache.locals < 0)
1497 return start_pc;
1498
1499 /* Found valid frame setup. */
1500
1501 /* The native cc on SVR4 in -K PIC mode inserts the following code
1502 to get the address of the global offset table (GOT) into register
1503 %ebx:
1504
1505 call 0x0
1506 popl %ebx
1507 movl %ebx,x(%ebp) (optional)
1508 addl y,%ebx
1509
1510 This code is with the rest of the prologue (at the end of the
1511 function), so we have to skip it to get to the first real
1512 instruction at the start of the function. */
1513
1514 for (i = 0; i < 6; i++)
1515 {
1516 if (target_read_memory (pc + i, &op, 1))
1517 return pc;
1518
1519 if (pic_pat[i] != op)
1520 break;
1521 }
1522 if (i == 6)
1523 {
1524 int delta = 6;
1525
1526 if (target_read_memory (pc + delta, &op, 1))
1527 return pc;
1528
1529 if (op == 0x89) /* movl %ebx, x(%ebp) */
1530 {
1531 op = read_memory_unsigned_integer (pc + delta + 1, 1, byte_order);
1532
1533 if (op == 0x5d) /* One byte offset from %ebp. */
1534 delta += 3;
1535 else if (op == 0x9d) /* Four byte offset from %ebp. */
1536 delta += 6;
1537 else /* Unexpected instruction. */
1538 delta = 0;
1539
1540 if (target_read_memory (pc + delta, &op, 1))
1541 return pc;
1542 }
1543
1544 /* addl y,%ebx */
1545 if (delta > 0 && op == 0x81
1546 && read_memory_unsigned_integer (pc + delta + 1, 1, byte_order)
1547 == 0xc3)
1548 {
1549 pc += delta + 6;
1550 }
1551 }
1552
1553 /* If the function starts with a branch (to startup code at the end)
1554 the last instruction should bring us back to the first
1555 instruction of the real code. */
1556 if (i386_follow_jump (gdbarch, start_pc) != start_pc)
1557 pc = i386_follow_jump (gdbarch, pc);
1558
1559 return pc;
1560 }
1561
1562 /* Check that the code pointed to by PC corresponds to a call to
1563 __main, skip it if so. Return PC otherwise. */
1564
1565 CORE_ADDR
1566 i386_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1567 {
1568 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1569 gdb_byte op;
1570
1571 if (target_read_memory (pc, &op, 1))
1572 return pc;
1573 if (op == 0xe8)
1574 {
1575 gdb_byte buf[4];
1576
1577 if (target_read_memory (pc + 1, buf, sizeof buf) == 0)
1578 {
1579 /* Make sure address is computed correctly as a 32bit
1580 integer even if CORE_ADDR is 64 bit wide. */
1581 struct minimal_symbol *s;
1582 CORE_ADDR call_dest;
1583
1584 call_dest = pc + 5 + extract_signed_integer (buf, 4, byte_order);
1585 call_dest = call_dest & 0xffffffffU;
1586 s = lookup_minimal_symbol_by_pc (call_dest);
1587 if (s != NULL
1588 && SYMBOL_LINKAGE_NAME (s) != NULL
1589 && strcmp (SYMBOL_LINKAGE_NAME (s), "__main") == 0)
1590 pc += 5;
1591 }
1592 }
1593
1594 return pc;
1595 }
1596
1597 /* This function is 64-bit safe. */
1598
1599 static CORE_ADDR
1600 i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1601 {
1602 gdb_byte buf[8];
1603
1604 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
1605 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
1606 }
1607 \f
1608
1609 /* Normal frames. */
1610
1611 static struct i386_frame_cache *
1612 i386_frame_cache (struct frame_info *this_frame, void **this_cache)
1613 {
1614 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1615 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1616 struct i386_frame_cache *cache;
1617 gdb_byte buf[4];
1618 int i;
1619
1620 if (*this_cache)
1621 return *this_cache;
1622
1623 cache = i386_alloc_frame_cache ();
1624 *this_cache = cache;
1625
1626 /* In principle, for normal frames, %ebp holds the frame pointer,
1627 which holds the base address for the current stack frame.
1628 However, for functions that don't need it, the frame pointer is
1629 optional. For these "frameless" functions the frame pointer is
1630 actually the frame pointer of the calling frame. Signal
1631 trampolines are just a special case of a "frameless" function.
1632 They (usually) share their frame pointer with the frame that was
1633 in progress when the signal occurred. */
1634
1635 get_frame_register (this_frame, I386_EBP_REGNUM, buf);
1636 cache->base = extract_unsigned_integer (buf, 4, byte_order);
1637 if (cache->base == 0)
1638 return cache;
1639
1640 /* For normal frames, %eip is stored at 4(%ebp). */
1641 cache->saved_regs[I386_EIP_REGNUM] = 4;
1642
1643 cache->pc = get_frame_func (this_frame);
1644 if (cache->pc != 0)
1645 i386_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
1646 cache);
1647
1648 if (cache->saved_sp_reg != -1)
1649 {
1650 /* Saved stack pointer has been saved. */
1651 get_frame_register (this_frame, cache->saved_sp_reg, buf);
1652 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
1653 }
1654
1655 if (cache->locals < 0)
1656 {
1657 /* We didn't find a valid frame, which means that CACHE->base
1658 currently holds the frame pointer for our calling frame. If
1659 we're at the start of a function, or somewhere half-way its
1660 prologue, the function's frame probably hasn't been fully
1661 setup yet. Try to reconstruct the base address for the stack
1662 frame by looking at the stack pointer. For truly "frameless"
1663 functions this might work too. */
1664
1665 if (cache->saved_sp_reg != -1)
1666 {
1667 /* We're halfway aligning the stack. */
1668 cache->base = ((cache->saved_sp - 4) & 0xfffffff0) - 4;
1669 cache->saved_regs[I386_EIP_REGNUM] = cache->saved_sp - 4;
1670
1671 /* This will be added back below. */
1672 cache->saved_regs[I386_EIP_REGNUM] -= cache->base;
1673 }
1674 else if (cache->pc != 0
1675 || target_read_memory (get_frame_pc (this_frame), buf, 1))
1676 {
1677 /* We're in a known function, but did not find a frame
1678 setup. Assume that the function does not use %ebp.
1679 Alternatively, we may have jumped to an invalid
1680 address; in that case there is definitely no new
1681 frame in %ebp. */
1682 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
1683 cache->base = extract_unsigned_integer (buf, 4, byte_order)
1684 + cache->sp_offset;
1685 }
1686 else
1687 /* We're in an unknown function. We could not find the start
1688 of the function to analyze the prologue; our best option is
1689 to assume a typical frame layout with the caller's %ebp
1690 saved. */
1691 cache->saved_regs[I386_EBP_REGNUM] = 0;
1692 }
1693
1694 /* Now that we have the base address for the stack frame we can
1695 calculate the value of %esp in the calling frame. */
1696 if (cache->saved_sp == 0)
1697 cache->saved_sp = cache->base + 8;
1698
1699 /* Adjust all the saved registers such that they contain addresses
1700 instead of offsets. */
1701 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
1702 if (cache->saved_regs[i] != -1)
1703 cache->saved_regs[i] += cache->base;
1704
1705 return cache;
1706 }
1707
1708 static void
1709 i386_frame_this_id (struct frame_info *this_frame, void **this_cache,
1710 struct frame_id *this_id)
1711 {
1712 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
1713
1714 /* This marks the outermost frame. */
1715 if (cache->base == 0)
1716 return;
1717
1718 /* See the end of i386_push_dummy_call. */
1719 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
1720 }
1721
1722 static struct value *
1723 i386_frame_prev_register (struct frame_info *this_frame, void **this_cache,
1724 int regnum)
1725 {
1726 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
1727
1728 gdb_assert (regnum >= 0);
1729
1730 /* The System V ABI says that:
1731
1732 "The flags register contains the system flags, such as the
1733 direction flag and the carry flag. The direction flag must be
1734 set to the forward (that is, zero) direction before entry and
1735 upon exit from a function. Other user flags have no specified
1736 role in the standard calling sequence and are not preserved."
1737
1738 To guarantee the "upon exit" part of that statement we fake a
1739 saved flags register that has its direction flag cleared.
1740
1741 Note that GCC doesn't seem to rely on the fact that the direction
1742 flag is cleared after a function return; it always explicitly
1743 clears the flag before operations where it matters.
1744
1745 FIXME: kettenis/20030316: I'm not quite sure whether this is the
1746 right thing to do. The way we fake the flags register here makes
1747 it impossible to change it. */
1748
1749 if (regnum == I386_EFLAGS_REGNUM)
1750 {
1751 ULONGEST val;
1752
1753 val = get_frame_register_unsigned (this_frame, regnum);
1754 val &= ~(1 << 10);
1755 return frame_unwind_got_constant (this_frame, regnum, val);
1756 }
1757
1758 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
1759 return frame_unwind_got_register (this_frame, regnum, I386_EAX_REGNUM);
1760
1761 if (regnum == I386_ESP_REGNUM && cache->saved_sp)
1762 return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
1763
1764 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
1765 return frame_unwind_got_memory (this_frame, regnum,
1766 cache->saved_regs[regnum]);
1767
1768 return frame_unwind_got_register (this_frame, regnum, regnum);
1769 }
1770
1771 static const struct frame_unwind i386_frame_unwind =
1772 {
1773 NORMAL_FRAME,
1774 i386_frame_this_id,
1775 i386_frame_prev_register,
1776 NULL,
1777 default_frame_sniffer
1778 };
1779
1780 /* Normal frames, but in a function epilogue. */
1781
1782 /* The epilogue is defined here as the 'ret' instruction, which will
1783 follow any instruction such as 'leave' or 'pop %ebp' that destroys
1784 the function's stack frame. */
1785
1786 static int
1787 i386_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
1788 {
1789 gdb_byte insn;
1790
1791 if (target_read_memory (pc, &insn, 1))
1792 return 0; /* Can't read memory at pc. */
1793
1794 if (insn != 0xc3) /* 'ret' instruction. */
1795 return 0;
1796
1797 return 1;
1798 }
1799
1800 static int
1801 i386_epilogue_frame_sniffer (const struct frame_unwind *self,
1802 struct frame_info *this_frame,
1803 void **this_prologue_cache)
1804 {
1805 if (frame_relative_level (this_frame) == 0)
1806 return i386_in_function_epilogue_p (get_frame_arch (this_frame),
1807 get_frame_pc (this_frame));
1808 else
1809 return 0;
1810 }
1811
1812 static struct i386_frame_cache *
1813 i386_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
1814 {
1815 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1816 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1817 struct i386_frame_cache *cache;
1818 gdb_byte buf[4];
1819
1820 if (*this_cache)
1821 return *this_cache;
1822
1823 cache = i386_alloc_frame_cache ();
1824 *this_cache = cache;
1825
1826 /* Cache base will be %esp plus cache->sp_offset (-4). */
1827 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
1828 cache->base = extract_unsigned_integer (buf, 4,
1829 byte_order) + cache->sp_offset;
1830
1831 /* Cache pc will be the frame func. */
1832 cache->pc = get_frame_pc (this_frame);
1833
1834 /* The saved %esp will be at cache->base plus 8. */
1835 cache->saved_sp = cache->base + 8;
1836
1837 /* The saved %eip will be at cache->base plus 4. */
1838 cache->saved_regs[I386_EIP_REGNUM] = cache->base + 4;
1839
1840 return cache;
1841 }
1842
1843 static void
1844 i386_epilogue_frame_this_id (struct frame_info *this_frame,
1845 void **this_cache,
1846 struct frame_id *this_id)
1847 {
1848 struct i386_frame_cache *cache = i386_epilogue_frame_cache (this_frame,
1849 this_cache);
1850
1851 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
1852 }
1853
1854 static const struct frame_unwind i386_epilogue_frame_unwind =
1855 {
1856 NORMAL_FRAME,
1857 i386_epilogue_frame_this_id,
1858 i386_frame_prev_register,
1859 NULL,
1860 i386_epilogue_frame_sniffer
1861 };
1862 \f
1863
1864 /* Signal trampolines. */
1865
1866 static struct i386_frame_cache *
1867 i386_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
1868 {
1869 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1870 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1871 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1872 struct i386_frame_cache *cache;
1873 CORE_ADDR addr;
1874 gdb_byte buf[4];
1875
1876 if (*this_cache)
1877 return *this_cache;
1878
1879 cache = i386_alloc_frame_cache ();
1880
1881 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
1882 cache->base = extract_unsigned_integer (buf, 4, byte_order) - 4;
1883
1884 addr = tdep->sigcontext_addr (this_frame);
1885 if (tdep->sc_reg_offset)
1886 {
1887 int i;
1888
1889 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
1890
1891 for (i = 0; i < tdep->sc_num_regs; i++)
1892 if (tdep->sc_reg_offset[i] != -1)
1893 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
1894 }
1895 else
1896 {
1897 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
1898 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
1899 }
1900
1901 *this_cache = cache;
1902 return cache;
1903 }
1904
1905 static void
1906 i386_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache,
1907 struct frame_id *this_id)
1908 {
1909 struct i386_frame_cache *cache =
1910 i386_sigtramp_frame_cache (this_frame, this_cache);
1911
1912 /* See the end of i386_push_dummy_call. */
1913 (*this_id) = frame_id_build (cache->base + 8, get_frame_pc (this_frame));
1914 }
1915
1916 static struct value *
1917 i386_sigtramp_frame_prev_register (struct frame_info *this_frame,
1918 void **this_cache, int regnum)
1919 {
1920 /* Make sure we've initialized the cache. */
1921 i386_sigtramp_frame_cache (this_frame, this_cache);
1922
1923 return i386_frame_prev_register (this_frame, this_cache, regnum);
1924 }
1925
1926 static int
1927 i386_sigtramp_frame_sniffer (const struct frame_unwind *self,
1928 struct frame_info *this_frame,
1929 void **this_prologue_cache)
1930 {
1931 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
1932
1933 /* We shouldn't even bother if we don't have a sigcontext_addr
1934 handler. */
1935 if (tdep->sigcontext_addr == NULL)
1936 return 0;
1937
1938 if (tdep->sigtramp_p != NULL)
1939 {
1940 if (tdep->sigtramp_p (this_frame))
1941 return 1;
1942 }
1943
1944 if (tdep->sigtramp_start != 0)
1945 {
1946 CORE_ADDR pc = get_frame_pc (this_frame);
1947
1948 gdb_assert (tdep->sigtramp_end != 0);
1949 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
1950 return 1;
1951 }
1952
1953 return 0;
1954 }
1955
1956 static const struct frame_unwind i386_sigtramp_frame_unwind =
1957 {
1958 SIGTRAMP_FRAME,
1959 i386_sigtramp_frame_this_id,
1960 i386_sigtramp_frame_prev_register,
1961 NULL,
1962 i386_sigtramp_frame_sniffer
1963 };
1964 \f
1965
1966 static CORE_ADDR
1967 i386_frame_base_address (struct frame_info *this_frame, void **this_cache)
1968 {
1969 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
1970
1971 return cache->base;
1972 }
1973
1974 static const struct frame_base i386_frame_base =
1975 {
1976 &i386_frame_unwind,
1977 i386_frame_base_address,
1978 i386_frame_base_address,
1979 i386_frame_base_address
1980 };
1981
1982 static struct frame_id
1983 i386_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1984 {
1985 CORE_ADDR fp;
1986
1987 fp = get_frame_register_unsigned (this_frame, I386_EBP_REGNUM);
1988
1989 /* See the end of i386_push_dummy_call. */
1990 return frame_id_build (fp + 8, get_frame_pc (this_frame));
1991 }
1992 \f
1993
1994 /* Figure out where the longjmp will land. Slurp the args out of the
1995 stack. We expect the first arg to be a pointer to the jmp_buf
1996 structure from which we extract the address that we will land at.
1997 This address is copied into PC. This routine returns non-zero on
1998 success. */
1999
2000 static int
2001 i386_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
2002 {
2003 gdb_byte buf[4];
2004 CORE_ADDR sp, jb_addr;
2005 struct gdbarch *gdbarch = get_frame_arch (frame);
2006 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2007 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
2008
2009 /* If JB_PC_OFFSET is -1, we have no way to find out where the
2010 longjmp will land. */
2011 if (jb_pc_offset == -1)
2012 return 0;
2013
2014 get_frame_register (frame, I386_ESP_REGNUM, buf);
2015 sp = extract_unsigned_integer (buf, 4, byte_order);
2016 if (target_read_memory (sp + 4, buf, 4))
2017 return 0;
2018
2019 jb_addr = extract_unsigned_integer (buf, 4, byte_order);
2020 if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
2021 return 0;
2022
2023 *pc = extract_unsigned_integer (buf, 4, byte_order);
2024 return 1;
2025 }
2026 \f
2027
2028 /* Check whether TYPE must be 16-byte-aligned when passed as a
2029 function argument. 16-byte vectors, _Decimal128 and structures or
2030 unions containing such types must be 16-byte-aligned; other
2031 arguments are 4-byte-aligned. */
2032
2033 static int
2034 i386_16_byte_align_p (struct type *type)
2035 {
2036 type = check_typedef (type);
2037 if ((TYPE_CODE (type) == TYPE_CODE_DECFLOAT
2038 || (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type)))
2039 && TYPE_LENGTH (type) == 16)
2040 return 1;
2041 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2042 return i386_16_byte_align_p (TYPE_TARGET_TYPE (type));
2043 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2044 || TYPE_CODE (type) == TYPE_CODE_UNION)
2045 {
2046 int i;
2047 for (i = 0; i < TYPE_NFIELDS (type); i++)
2048 {
2049 if (i386_16_byte_align_p (TYPE_FIELD_TYPE (type, i)))
2050 return 1;
2051 }
2052 }
2053 return 0;
2054 }
2055
2056 static CORE_ADDR
2057 i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2058 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2059 struct value **args, CORE_ADDR sp, int struct_return,
2060 CORE_ADDR struct_addr)
2061 {
2062 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2063 gdb_byte buf[4];
2064 int i;
2065 int write_pass;
2066 int args_space = 0;
2067
2068 /* Determine the total space required for arguments and struct
2069 return address in a first pass (allowing for 16-byte-aligned
2070 arguments), then push arguments in a second pass. */
2071
2072 for (write_pass = 0; write_pass < 2; write_pass++)
2073 {
2074 int args_space_used = 0;
2075 int have_16_byte_aligned_arg = 0;
2076
2077 if (struct_return)
2078 {
2079 if (write_pass)
2080 {
2081 /* Push value address. */
2082 store_unsigned_integer (buf, 4, byte_order, struct_addr);
2083 write_memory (sp, buf, 4);
2084 args_space_used += 4;
2085 }
2086 else
2087 args_space += 4;
2088 }
2089
2090 for (i = 0; i < nargs; i++)
2091 {
2092 int len = TYPE_LENGTH (value_enclosing_type (args[i]));
2093
2094 if (write_pass)
2095 {
2096 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2097 args_space_used = align_up (args_space_used, 16);
2098
2099 write_memory (sp + args_space_used,
2100 value_contents_all (args[i]), len);
2101 /* The System V ABI says that:
2102
2103 "An argument's size is increased, if necessary, to make it a
2104 multiple of [32-bit] words. This may require tail padding,
2105 depending on the size of the argument."
2106
2107 This makes sure the stack stays word-aligned. */
2108 args_space_used += align_up (len, 4);
2109 }
2110 else
2111 {
2112 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2113 {
2114 args_space = align_up (args_space, 16);
2115 have_16_byte_aligned_arg = 1;
2116 }
2117 args_space += align_up (len, 4);
2118 }
2119 }
2120
2121 if (!write_pass)
2122 {
2123 if (have_16_byte_aligned_arg)
2124 args_space = align_up (args_space, 16);
2125 sp -= args_space;
2126 }
2127 }
2128
2129 /* Store return address. */
2130 sp -= 4;
2131 store_unsigned_integer (buf, 4, byte_order, bp_addr);
2132 write_memory (sp, buf, 4);
2133
2134 /* Finally, update the stack pointer... */
2135 store_unsigned_integer (buf, 4, byte_order, sp);
2136 regcache_cooked_write (regcache, I386_ESP_REGNUM, buf);
2137
2138 /* ...and fake a frame pointer. */
2139 regcache_cooked_write (regcache, I386_EBP_REGNUM, buf);
2140
2141 /* MarkK wrote: This "+ 8" is all over the place:
2142 (i386_frame_this_id, i386_sigtramp_frame_this_id,
2143 i386_dummy_id). It's there, since all frame unwinders for
2144 a given target have to agree (within a certain margin) on the
2145 definition of the stack address of a frame. Otherwise frame id
2146 comparison might not work correctly. Since DWARF2/GCC uses the
2147 stack address *before* the function call as a frame's CFA. On
2148 the i386, when %ebp is used as a frame pointer, the offset
2149 between the contents %ebp and the CFA as defined by GCC. */
2150 return sp + 8;
2151 }
2152
2153 /* These registers are used for returning integers (and on some
2154 targets also for returning `struct' and `union' values when their
2155 size and alignment match an integer type). */
2156 #define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
2157 #define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
2158
2159 /* Read, for architecture GDBARCH, a function return value of TYPE
2160 from REGCACHE, and copy that into VALBUF. */
2161
2162 static void
2163 i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
2164 struct regcache *regcache, gdb_byte *valbuf)
2165 {
2166 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2167 int len = TYPE_LENGTH (type);
2168 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2169
2170 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2171 {
2172 if (tdep->st0_regnum < 0)
2173 {
2174 warning (_("Cannot find floating-point return value."));
2175 memset (valbuf, 0, len);
2176 return;
2177 }
2178
2179 /* Floating-point return values can be found in %st(0). Convert
2180 its contents to the desired type. This is probably not
2181 exactly how it would happen on the target itself, but it is
2182 the best we can do. */
2183 regcache_raw_read (regcache, I386_ST0_REGNUM, buf);
2184 convert_typed_floating (buf, i387_ext_type (gdbarch), valbuf, type);
2185 }
2186 else
2187 {
2188 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2189 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2190
2191 if (len <= low_size)
2192 {
2193 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
2194 memcpy (valbuf, buf, len);
2195 }
2196 else if (len <= (low_size + high_size))
2197 {
2198 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
2199 memcpy (valbuf, buf, low_size);
2200 regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
2201 memcpy (valbuf + low_size, buf, len - low_size);
2202 }
2203 else
2204 internal_error (__FILE__, __LINE__,
2205 _("Cannot extract return value of %d bytes long."),
2206 len);
2207 }
2208 }
2209
2210 /* Write, for architecture GDBARCH, a function return value of TYPE
2211 from VALBUF into REGCACHE. */
2212
2213 static void
2214 i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
2215 struct regcache *regcache, const gdb_byte *valbuf)
2216 {
2217 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2218 int len = TYPE_LENGTH (type);
2219
2220 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2221 {
2222 ULONGEST fstat;
2223 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2224
2225 if (tdep->st0_regnum < 0)
2226 {
2227 warning (_("Cannot set floating-point return value."));
2228 return;
2229 }
2230
2231 /* Returning floating-point values is a bit tricky. Apart from
2232 storing the return value in %st(0), we have to simulate the
2233 state of the FPU at function return point. */
2234
2235 /* Convert the value found in VALBUF to the extended
2236 floating-point format used by the FPU. This is probably
2237 not exactly how it would happen on the target itself, but
2238 it is the best we can do. */
2239 convert_typed_floating (valbuf, type, buf, i387_ext_type (gdbarch));
2240 regcache_raw_write (regcache, I386_ST0_REGNUM, buf);
2241
2242 /* Set the top of the floating-point register stack to 7. The
2243 actual value doesn't really matter, but 7 is what a normal
2244 function return would end up with if the program started out
2245 with a freshly initialized FPU. */
2246 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
2247 fstat |= (7 << 11);
2248 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM (tdep), fstat);
2249
2250 /* Mark %st(1) through %st(7) as empty. Since we set the top of
2251 the floating-point register stack to 7, the appropriate value
2252 for the tag word is 0x3fff. */
2253 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM (tdep), 0x3fff);
2254 }
2255 else
2256 {
2257 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2258 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2259
2260 if (len <= low_size)
2261 regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
2262 else if (len <= (low_size + high_size))
2263 {
2264 regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
2265 regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
2266 len - low_size, valbuf + low_size);
2267 }
2268 else
2269 internal_error (__FILE__, __LINE__,
2270 _("Cannot store return value of %d bytes long."), len);
2271 }
2272 }
2273 \f
2274
2275 /* This is the variable that is set with "set struct-convention", and
2276 its legitimate values. */
2277 static const char default_struct_convention[] = "default";
2278 static const char pcc_struct_convention[] = "pcc";
2279 static const char reg_struct_convention[] = "reg";
2280 static const char *valid_conventions[] =
2281 {
2282 default_struct_convention,
2283 pcc_struct_convention,
2284 reg_struct_convention,
2285 NULL
2286 };
2287 static const char *struct_convention = default_struct_convention;
2288
2289 /* Return non-zero if TYPE, which is assumed to be a structure,
2290 a union type, or an array type, should be returned in registers
2291 for architecture GDBARCH. */
2292
2293 static int
2294 i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
2295 {
2296 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2297 enum type_code code = TYPE_CODE (type);
2298 int len = TYPE_LENGTH (type);
2299
2300 gdb_assert (code == TYPE_CODE_STRUCT
2301 || code == TYPE_CODE_UNION
2302 || code == TYPE_CODE_ARRAY);
2303
2304 if (struct_convention == pcc_struct_convention
2305 || (struct_convention == default_struct_convention
2306 && tdep->struct_return == pcc_struct_return))
2307 return 0;
2308
2309 /* Structures consisting of a single `float', `double' or 'long
2310 double' member are returned in %st(0). */
2311 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2312 {
2313 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
2314 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2315 return (len == 4 || len == 8 || len == 12);
2316 }
2317
2318 return (len == 1 || len == 2 || len == 4 || len == 8);
2319 }
2320
2321 /* Determine, for architecture GDBARCH, how a return value of TYPE
2322 should be returned. If it is supposed to be returned in registers,
2323 and READBUF is non-zero, read the appropriate value from REGCACHE,
2324 and copy it into READBUF. If WRITEBUF is non-zero, write the value
2325 from WRITEBUF into REGCACHE. */
2326
2327 static enum return_value_convention
2328 i386_return_value (struct gdbarch *gdbarch, struct type *func_type,
2329 struct type *type, struct regcache *regcache,
2330 gdb_byte *readbuf, const gdb_byte *writebuf)
2331 {
2332 enum type_code code = TYPE_CODE (type);
2333
2334 if (((code == TYPE_CODE_STRUCT
2335 || code == TYPE_CODE_UNION
2336 || code == TYPE_CODE_ARRAY)
2337 && !i386_reg_struct_return_p (gdbarch, type))
2338 /* 128-bit decimal float uses the struct return convention. */
2339 || (code == TYPE_CODE_DECFLOAT && TYPE_LENGTH (type) == 16))
2340 {
2341 /* The System V ABI says that:
2342
2343 "A function that returns a structure or union also sets %eax
2344 to the value of the original address of the caller's area
2345 before it returns. Thus when the caller receives control
2346 again, the address of the returned object resides in register
2347 %eax and can be used to access the object."
2348
2349 So the ABI guarantees that we can always find the return
2350 value just after the function has returned. */
2351
2352 /* Note that the ABI doesn't mention functions returning arrays,
2353 which is something possible in certain languages such as Ada.
2354 In this case, the value is returned as if it was wrapped in
2355 a record, so the convention applied to records also applies
2356 to arrays. */
2357
2358 if (readbuf)
2359 {
2360 ULONGEST addr;
2361
2362 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
2363 read_memory (addr, readbuf, TYPE_LENGTH (type));
2364 }
2365
2366 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
2367 }
2368
2369 /* This special case is for structures consisting of a single
2370 `float', `double' or 'long double' member. These structures are
2371 returned in %st(0). For these structures, we call ourselves
2372 recursively, changing TYPE into the type of the first member of
2373 the structure. Since that should work for all structures that
2374 have only one member, we don't bother to check the member's type
2375 here. */
2376 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2377 {
2378 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
2379 return i386_return_value (gdbarch, func_type, type, regcache,
2380 readbuf, writebuf);
2381 }
2382
2383 if (readbuf)
2384 i386_extract_return_value (gdbarch, type, regcache, readbuf);
2385 if (writebuf)
2386 i386_store_return_value (gdbarch, type, regcache, writebuf);
2387
2388 return RETURN_VALUE_REGISTER_CONVENTION;
2389 }
2390 \f
2391
2392 struct type *
2393 i387_ext_type (struct gdbarch *gdbarch)
2394 {
2395 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2396
2397 if (!tdep->i387_ext_type)
2398 {
2399 tdep->i387_ext_type = tdesc_find_type (gdbarch, "i387_ext");
2400 gdb_assert (tdep->i387_ext_type != NULL);
2401 }
2402
2403 return tdep->i387_ext_type;
2404 }
2405
2406 /* Construct vector type for pseudo YMM registers. We can't use
2407 tdesc_find_type since YMM isn't described in target description. */
2408
2409 static struct type *
2410 i386_ymm_type (struct gdbarch *gdbarch)
2411 {
2412 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2413
2414 if (!tdep->i386_ymm_type)
2415 {
2416 const struct builtin_type *bt = builtin_type (gdbarch);
2417
2418 /* The type we're building is this: */
2419 #if 0
2420 union __gdb_builtin_type_vec256i
2421 {
2422 int128_t uint128[2];
2423 int64_t v2_int64[4];
2424 int32_t v4_int32[8];
2425 int16_t v8_int16[16];
2426 int8_t v16_int8[32];
2427 double v2_double[4];
2428 float v4_float[8];
2429 };
2430 #endif
2431
2432 struct type *t;
2433
2434 t = arch_composite_type (gdbarch,
2435 "__gdb_builtin_type_vec256i", TYPE_CODE_UNION);
2436 append_composite_type_field (t, "v8_float",
2437 init_vector_type (bt->builtin_float, 8));
2438 append_composite_type_field (t, "v4_double",
2439 init_vector_type (bt->builtin_double, 4));
2440 append_composite_type_field (t, "v32_int8",
2441 init_vector_type (bt->builtin_int8, 32));
2442 append_composite_type_field (t, "v16_int16",
2443 init_vector_type (bt->builtin_int16, 16));
2444 append_composite_type_field (t, "v8_int32",
2445 init_vector_type (bt->builtin_int32, 8));
2446 append_composite_type_field (t, "v4_int64",
2447 init_vector_type (bt->builtin_int64, 4));
2448 append_composite_type_field (t, "v2_int128",
2449 init_vector_type (bt->builtin_int128, 2));
2450
2451 TYPE_VECTOR (t) = 1;
2452 TYPE_NAME (t) = "builtin_type_vec256i";
2453 tdep->i386_ymm_type = t;
2454 }
2455
2456 return tdep->i386_ymm_type;
2457 }
2458
2459 /* Construct vector type for MMX registers. */
2460 static struct type *
2461 i386_mmx_type (struct gdbarch *gdbarch)
2462 {
2463 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2464
2465 if (!tdep->i386_mmx_type)
2466 {
2467 const struct builtin_type *bt = builtin_type (gdbarch);
2468
2469 /* The type we're building is this: */
2470 #if 0
2471 union __gdb_builtin_type_vec64i
2472 {
2473 int64_t uint64;
2474 int32_t v2_int32[2];
2475 int16_t v4_int16[4];
2476 int8_t v8_int8[8];
2477 };
2478 #endif
2479
2480 struct type *t;
2481
2482 t = arch_composite_type (gdbarch,
2483 "__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
2484
2485 append_composite_type_field (t, "uint64", bt->builtin_int64);
2486 append_composite_type_field (t, "v2_int32",
2487 init_vector_type (bt->builtin_int32, 2));
2488 append_composite_type_field (t, "v4_int16",
2489 init_vector_type (bt->builtin_int16, 4));
2490 append_composite_type_field (t, "v8_int8",
2491 init_vector_type (bt->builtin_int8, 8));
2492
2493 TYPE_VECTOR (t) = 1;
2494 TYPE_NAME (t) = "builtin_type_vec64i";
2495 tdep->i386_mmx_type = t;
2496 }
2497
2498 return tdep->i386_mmx_type;
2499 }
2500
2501 /* Return the GDB type object for the "standard" data type of data in
2502 register REGNUM. */
2503
2504 static struct type *
2505 i386_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
2506 {
2507 if (i386_mmx_regnum_p (gdbarch, regnum))
2508 return i386_mmx_type (gdbarch);
2509 else if (i386_ymm_regnum_p (gdbarch, regnum))
2510 return i386_ymm_type (gdbarch);
2511 else
2512 {
2513 const struct builtin_type *bt = builtin_type (gdbarch);
2514 if (i386_byte_regnum_p (gdbarch, regnum))
2515 return bt->builtin_int8;
2516 else if (i386_word_regnum_p (gdbarch, regnum))
2517 return bt->builtin_int16;
2518 else if (i386_dword_regnum_p (gdbarch, regnum))
2519 return bt->builtin_int32;
2520 }
2521
2522 internal_error (__FILE__, __LINE__, _("invalid regnum"));
2523 }
2524
2525 /* Map a cooked register onto a raw register or memory. For the i386,
2526 the MMX registers need to be mapped onto floating point registers. */
2527
2528 static int
2529 i386_mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
2530 {
2531 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
2532 int mmxreg, fpreg;
2533 ULONGEST fstat;
2534 int tos;
2535
2536 mmxreg = regnum - tdep->mm0_regnum;
2537 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
2538 tos = (fstat >> 11) & 0x7;
2539 fpreg = (mmxreg + tos) % 8;
2540
2541 return (I387_ST0_REGNUM (tdep) + fpreg);
2542 }
2543
2544 void
2545 i386_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2546 int regnum, gdb_byte *buf)
2547 {
2548 gdb_byte raw_buf[MAX_REGISTER_SIZE];
2549
2550 if (i386_mmx_regnum_p (gdbarch, regnum))
2551 {
2552 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
2553
2554 /* Extract (always little endian). */
2555 regcache_raw_read (regcache, fpnum, raw_buf);
2556 memcpy (buf, raw_buf, register_size (gdbarch, regnum));
2557 }
2558 else
2559 {
2560 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2561
2562 if (i386_ymm_regnum_p (gdbarch, regnum))
2563 {
2564 regnum -= tdep->ymm0_regnum;
2565
2566 /* Extract (always little endian). Read lower 128bits. */
2567 regcache_raw_read (regcache,
2568 I387_XMM0_REGNUM (tdep) + regnum,
2569 raw_buf);
2570 memcpy (buf, raw_buf, 16);
2571 /* Read upper 128bits. */
2572 regcache_raw_read (regcache,
2573 tdep->ymm0h_regnum + regnum,
2574 raw_buf);
2575 memcpy (buf + 16, raw_buf, 16);
2576 }
2577 else if (i386_word_regnum_p (gdbarch, regnum))
2578 {
2579 int gpnum = regnum - tdep->ax_regnum;
2580
2581 /* Extract (always little endian). */
2582 regcache_raw_read (regcache, gpnum, raw_buf);
2583 memcpy (buf, raw_buf, 2);
2584 }
2585 else if (i386_byte_regnum_p (gdbarch, regnum))
2586 {
2587 /* Check byte pseudo registers last since this function will
2588 be called from amd64_pseudo_register_read, which handles
2589 byte pseudo registers differently. */
2590 int gpnum = regnum - tdep->al_regnum;
2591
2592 /* Extract (always little endian). We read both lower and
2593 upper registers. */
2594 regcache_raw_read (regcache, gpnum % 4, raw_buf);
2595 if (gpnum >= 4)
2596 memcpy (buf, raw_buf + 1, 1);
2597 else
2598 memcpy (buf, raw_buf, 1);
2599 }
2600 else
2601 internal_error (__FILE__, __LINE__, _("invalid regnum"));
2602 }
2603 }
2604
2605 void
2606 i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2607 int regnum, const gdb_byte *buf)
2608 {
2609 gdb_byte raw_buf[MAX_REGISTER_SIZE];
2610
2611 if (i386_mmx_regnum_p (gdbarch, regnum))
2612 {
2613 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
2614
2615 /* Read ... */
2616 regcache_raw_read (regcache, fpnum, raw_buf);
2617 /* ... Modify ... (always little endian). */
2618 memcpy (raw_buf, buf, register_size (gdbarch, regnum));
2619 /* ... Write. */
2620 regcache_raw_write (regcache, fpnum, raw_buf);
2621 }
2622 else
2623 {
2624 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2625
2626 if (i386_ymm_regnum_p (gdbarch, regnum))
2627 {
2628 regnum -= tdep->ymm0_regnum;
2629
2630 /* ... Write lower 128bits. */
2631 regcache_raw_write (regcache,
2632 I387_XMM0_REGNUM (tdep) + regnum,
2633 buf);
2634 /* ... Write upper 128bits. */
2635 regcache_raw_write (regcache,
2636 tdep->ymm0h_regnum + regnum,
2637 buf + 16);
2638 }
2639 else if (i386_word_regnum_p (gdbarch, regnum))
2640 {
2641 int gpnum = regnum - tdep->ax_regnum;
2642
2643 /* Read ... */
2644 regcache_raw_read (regcache, gpnum, raw_buf);
2645 /* ... Modify ... (always little endian). */
2646 memcpy (raw_buf, buf, 2);
2647 /* ... Write. */
2648 regcache_raw_write (regcache, gpnum, raw_buf);
2649 }
2650 else if (i386_byte_regnum_p (gdbarch, regnum))
2651 {
2652 /* Check byte pseudo registers last since this function will
2653 be called from amd64_pseudo_register_read, which handles
2654 byte pseudo registers differently. */
2655 int gpnum = regnum - tdep->al_regnum;
2656
2657 /* Read ... We read both lower and upper registers. */
2658 regcache_raw_read (regcache, gpnum % 4, raw_buf);
2659 /* ... Modify ... (always little endian). */
2660 if (gpnum >= 4)
2661 memcpy (raw_buf + 1, buf, 1);
2662 else
2663 memcpy (raw_buf, buf, 1);
2664 /* ... Write. */
2665 regcache_raw_write (regcache, gpnum % 4, raw_buf);
2666 }
2667 else
2668 internal_error (__FILE__, __LINE__, _("invalid regnum"));
2669 }
2670 }
2671 \f
2672
2673 /* Return the register number of the register allocated by GCC after
2674 REGNUM, or -1 if there is no such register. */
2675
2676 static int
2677 i386_next_regnum (int regnum)
2678 {
2679 /* GCC allocates the registers in the order:
2680
2681 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
2682
2683 Since storing a variable in %esp doesn't make any sense we return
2684 -1 for %ebp and for %esp itself. */
2685 static int next_regnum[] =
2686 {
2687 I386_EDX_REGNUM, /* Slot for %eax. */
2688 I386_EBX_REGNUM, /* Slot for %ecx. */
2689 I386_ECX_REGNUM, /* Slot for %edx. */
2690 I386_ESI_REGNUM, /* Slot for %ebx. */
2691 -1, -1, /* Slots for %esp and %ebp. */
2692 I386_EDI_REGNUM, /* Slot for %esi. */
2693 I386_EBP_REGNUM /* Slot for %edi. */
2694 };
2695
2696 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
2697 return next_regnum[regnum];
2698
2699 return -1;
2700 }
2701
2702 /* Return nonzero if a value of type TYPE stored in register REGNUM
2703 needs any special handling. */
2704
2705 static int
2706 i386_convert_register_p (struct gdbarch *gdbarch,
2707 int regnum, struct type *type)
2708 {
2709 int len = TYPE_LENGTH (type);
2710
2711 /* Values may be spread across multiple registers. Most debugging
2712 formats aren't expressive enough to specify the locations, so
2713 some heuristics is involved. Right now we only handle types that
2714 have a length that is a multiple of the word size, since GCC
2715 doesn't seem to put any other types into registers. */
2716 if (len > 4 && len % 4 == 0)
2717 {
2718 int last_regnum = regnum;
2719
2720 while (len > 4)
2721 {
2722 last_regnum = i386_next_regnum (last_regnum);
2723 len -= 4;
2724 }
2725
2726 if (last_regnum != -1)
2727 return 1;
2728 }
2729
2730 return i387_convert_register_p (gdbarch, regnum, type);
2731 }
2732
2733 /* Read a value of type TYPE from register REGNUM in frame FRAME, and
2734 return its contents in TO. */
2735
2736 static void
2737 i386_register_to_value (struct frame_info *frame, int regnum,
2738 struct type *type, gdb_byte *to)
2739 {
2740 struct gdbarch *gdbarch = get_frame_arch (frame);
2741 int len = TYPE_LENGTH (type);
2742
2743 /* FIXME: kettenis/20030609: What should we do if REGNUM isn't
2744 available in FRAME (i.e. if it wasn't saved)? */
2745
2746 if (i386_fp_regnum_p (gdbarch, regnum))
2747 {
2748 i387_register_to_value (frame, regnum, type, to);
2749 return;
2750 }
2751
2752 /* Read a value spread across multiple registers. */
2753
2754 gdb_assert (len > 4 && len % 4 == 0);
2755
2756 while (len > 0)
2757 {
2758 gdb_assert (regnum != -1);
2759 gdb_assert (register_size (gdbarch, regnum) == 4);
2760
2761 get_frame_register (frame, regnum, to);
2762 regnum = i386_next_regnum (regnum);
2763 len -= 4;
2764 to += 4;
2765 }
2766 }
2767
2768 /* Write the contents FROM of a value of type TYPE into register
2769 REGNUM in frame FRAME. */
2770
2771 static void
2772 i386_value_to_register (struct frame_info *frame, int regnum,
2773 struct type *type, const gdb_byte *from)
2774 {
2775 int len = TYPE_LENGTH (type);
2776
2777 if (i386_fp_regnum_p (get_frame_arch (frame), regnum))
2778 {
2779 i387_value_to_register (frame, regnum, type, from);
2780 return;
2781 }
2782
2783 /* Write a value spread across multiple registers. */
2784
2785 gdb_assert (len > 4 && len % 4 == 0);
2786
2787 while (len > 0)
2788 {
2789 gdb_assert (regnum != -1);
2790 gdb_assert (register_size (get_frame_arch (frame), regnum) == 4);
2791
2792 put_frame_register (frame, regnum, from);
2793 regnum = i386_next_regnum (regnum);
2794 len -= 4;
2795 from += 4;
2796 }
2797 }
2798 \f
2799 /* Supply register REGNUM from the buffer specified by GREGS and LEN
2800 in the general-purpose register set REGSET to register cache
2801 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
2802
2803 void
2804 i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
2805 int regnum, const void *gregs, size_t len)
2806 {
2807 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
2808 const gdb_byte *regs = gregs;
2809 int i;
2810
2811 gdb_assert (len == tdep->sizeof_gregset);
2812
2813 for (i = 0; i < tdep->gregset_num_regs; i++)
2814 {
2815 if ((regnum == i || regnum == -1)
2816 && tdep->gregset_reg_offset[i] != -1)
2817 regcache_raw_supply (regcache, i, regs + tdep->gregset_reg_offset[i]);
2818 }
2819 }
2820
2821 /* Collect register REGNUM from the register cache REGCACHE and store
2822 it in the buffer specified by GREGS and LEN as described by the
2823 general-purpose register set REGSET. If REGNUM is -1, do this for
2824 all registers in REGSET. */
2825
2826 void
2827 i386_collect_gregset (const struct regset *regset,
2828 const struct regcache *regcache,
2829 int regnum, void *gregs, size_t len)
2830 {
2831 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
2832 gdb_byte *regs = gregs;
2833 int i;
2834
2835 gdb_assert (len == tdep->sizeof_gregset);
2836
2837 for (i = 0; i < tdep->gregset_num_regs; i++)
2838 {
2839 if ((regnum == i || regnum == -1)
2840 && tdep->gregset_reg_offset[i] != -1)
2841 regcache_raw_collect (regcache, i, regs + tdep->gregset_reg_offset[i]);
2842 }
2843 }
2844
2845 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
2846 in the floating-point register set REGSET to register cache
2847 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
2848
2849 static void
2850 i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
2851 int regnum, const void *fpregs, size_t len)
2852 {
2853 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
2854
2855 if (len == I387_SIZEOF_FXSAVE)
2856 {
2857 i387_supply_fxsave (regcache, regnum, fpregs);
2858 return;
2859 }
2860
2861 gdb_assert (len == tdep->sizeof_fpregset);
2862 i387_supply_fsave (regcache, regnum, fpregs);
2863 }
2864
2865 /* Collect register REGNUM from the register cache REGCACHE and store
2866 it in the buffer specified by FPREGS and LEN as described by the
2867 floating-point register set REGSET. If REGNUM is -1, do this for
2868 all registers in REGSET. */
2869
2870 static void
2871 i386_collect_fpregset (const struct regset *regset,
2872 const struct regcache *regcache,
2873 int regnum, void *fpregs, size_t len)
2874 {
2875 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
2876
2877 if (len == I387_SIZEOF_FXSAVE)
2878 {
2879 i387_collect_fxsave (regcache, regnum, fpregs);
2880 return;
2881 }
2882
2883 gdb_assert (len == tdep->sizeof_fpregset);
2884 i387_collect_fsave (regcache, regnum, fpregs);
2885 }
2886
2887 /* Similar to i386_supply_fpregset, but use XSAVE extended state. */
2888
2889 static void
2890 i386_supply_xstateregset (const struct regset *regset,
2891 struct regcache *regcache, int regnum,
2892 const void *xstateregs, size_t len)
2893 {
2894 i387_supply_xsave (regcache, regnum, xstateregs);
2895 }
2896
2897 /* Similar to i386_collect_fpregset , but use XSAVE extended state. */
2898
2899 static void
2900 i386_collect_xstateregset (const struct regset *regset,
2901 const struct regcache *regcache,
2902 int regnum, void *xstateregs, size_t len)
2903 {
2904 i387_collect_xsave (regcache, regnum, xstateregs, 1);
2905 }
2906
2907 /* Return the appropriate register set for the core section identified
2908 by SECT_NAME and SECT_SIZE. */
2909
2910 const struct regset *
2911 i386_regset_from_core_section (struct gdbarch *gdbarch,
2912 const char *sect_name, size_t sect_size)
2913 {
2914 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2915
2916 if (strcmp (sect_name, ".reg") == 0 && sect_size == tdep->sizeof_gregset)
2917 {
2918 if (tdep->gregset == NULL)
2919 tdep->gregset = regset_alloc (gdbarch, i386_supply_gregset,
2920 i386_collect_gregset);
2921 return tdep->gregset;
2922 }
2923
2924 if ((strcmp (sect_name, ".reg2") == 0 && sect_size == tdep->sizeof_fpregset)
2925 || (strcmp (sect_name, ".reg-xfp") == 0
2926 && sect_size == I387_SIZEOF_FXSAVE))
2927 {
2928 if (tdep->fpregset == NULL)
2929 tdep->fpregset = regset_alloc (gdbarch, i386_supply_fpregset,
2930 i386_collect_fpregset);
2931 return tdep->fpregset;
2932 }
2933
2934 if (strcmp (sect_name, ".reg-xstate") == 0)
2935 {
2936 if (tdep->xstateregset == NULL)
2937 tdep->xstateregset = regset_alloc (gdbarch,
2938 i386_supply_xstateregset,
2939 i386_collect_xstateregset);
2940
2941 return tdep->xstateregset;
2942 }
2943
2944 return NULL;
2945 }
2946 \f
2947
2948 /* Stuff for WIN32 PE style DLL's but is pretty generic really. */
2949
2950 CORE_ADDR
2951 i386_pe_skip_trampoline_code (struct frame_info *frame,
2952 CORE_ADDR pc, char *name)
2953 {
2954 struct gdbarch *gdbarch = get_frame_arch (frame);
2955 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2956
2957 /* jmp *(dest) */
2958 if (pc && read_memory_unsigned_integer (pc, 2, byte_order) == 0x25ff)
2959 {
2960 unsigned long indirect =
2961 read_memory_unsigned_integer (pc + 2, 4, byte_order);
2962 struct minimal_symbol *indsym =
2963 indirect ? lookup_minimal_symbol_by_pc (indirect) : 0;
2964 char *symname = indsym ? SYMBOL_LINKAGE_NAME (indsym) : 0;
2965
2966 if (symname)
2967 {
2968 if (strncmp (symname, "__imp_", 6) == 0
2969 || strncmp (symname, "_imp_", 5) == 0)
2970 return name ? 1 :
2971 read_memory_unsigned_integer (indirect, 4, byte_order);
2972 }
2973 }
2974 return 0; /* Not a trampoline. */
2975 }
2976 \f
2977
2978 /* Return whether the THIS_FRAME corresponds to a sigtramp
2979 routine. */
2980
2981 int
2982 i386_sigtramp_p (struct frame_info *this_frame)
2983 {
2984 CORE_ADDR pc = get_frame_pc (this_frame);
2985 char *name;
2986
2987 find_pc_partial_function (pc, &name, NULL, NULL);
2988 return (name && strcmp ("_sigtramp", name) == 0);
2989 }
2990 \f
2991
2992 /* We have two flavours of disassembly. The machinery on this page
2993 deals with switching between those. */
2994
2995 static int
2996 i386_print_insn (bfd_vma pc, struct disassemble_info *info)
2997 {
2998 gdb_assert (disassembly_flavor == att_flavor
2999 || disassembly_flavor == intel_flavor);
3000
3001 /* FIXME: kettenis/20020915: Until disassembler_options is properly
3002 constified, cast to prevent a compiler warning. */
3003 info->disassembler_options = (char *) disassembly_flavor;
3004
3005 return print_insn_i386 (pc, info);
3006 }
3007 \f
3008
3009 /* There are a few i386 architecture variants that differ only
3010 slightly from the generic i386 target. For now, we don't give them
3011 their own source file, but include them here. As a consequence,
3012 they'll always be included. */
3013
3014 /* System V Release 4 (SVR4). */
3015
3016 /* Return whether THIS_FRAME corresponds to a SVR4 sigtramp
3017 routine. */
3018
3019 static int
3020 i386_svr4_sigtramp_p (struct frame_info *this_frame)
3021 {
3022 CORE_ADDR pc = get_frame_pc (this_frame);
3023 char *name;
3024
3025 /* UnixWare uses _sigacthandler. The origin of the other symbols is
3026 currently unknown. */
3027 find_pc_partial_function (pc, &name, NULL, NULL);
3028 return (name && (strcmp ("_sigreturn", name) == 0
3029 || strcmp ("_sigacthandler", name) == 0
3030 || strcmp ("sigvechandler", name) == 0));
3031 }
3032
3033 /* Assuming THIS_FRAME is for a SVR4 sigtramp routine, return the
3034 address of the associated sigcontext (ucontext) structure. */
3035
3036 static CORE_ADDR
3037 i386_svr4_sigcontext_addr (struct frame_info *this_frame)
3038 {
3039 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3040 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3041 gdb_byte buf[4];
3042 CORE_ADDR sp;
3043
3044 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
3045 sp = extract_unsigned_integer (buf, 4, byte_order);
3046
3047 return read_memory_unsigned_integer (sp + 8, 4, byte_order);
3048 }
3049 \f
3050
3051 /* Generic ELF. */
3052
3053 void
3054 i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3055 {
3056 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
3057 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
3058 }
3059
3060 /* System V Release 4 (SVR4). */
3061
3062 void
3063 i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3064 {
3065 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3066
3067 /* System V Release 4 uses ELF. */
3068 i386_elf_init_abi (info, gdbarch);
3069
3070 /* System V Release 4 has shared libraries. */
3071 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
3072
3073 tdep->sigtramp_p = i386_svr4_sigtramp_p;
3074 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
3075 tdep->sc_pc_offset = 36 + 14 * 4;
3076 tdep->sc_sp_offset = 36 + 17 * 4;
3077
3078 tdep->jb_pc_offset = 20;
3079 }
3080
3081 /* DJGPP. */
3082
3083 static void
3084 i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3085 {
3086 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3087
3088 /* DJGPP doesn't have any special frames for signal handlers. */
3089 tdep->sigtramp_p = NULL;
3090
3091 tdep->jb_pc_offset = 36;
3092
3093 /* DJGPP does not support the SSE registers. */
3094 if (! tdesc_has_registers (info.target_desc))
3095 tdep->tdesc = tdesc_i386_mmx;
3096
3097 /* Native compiler is GCC, which uses the SVR4 register numbering
3098 even in COFF and STABS. See the comment in i386_gdbarch_init,
3099 before the calls to set_gdbarch_stab_reg_to_regnum and
3100 set_gdbarch_sdb_reg_to_regnum. */
3101 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
3102 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
3103
3104 set_gdbarch_has_dos_based_file_system (gdbarch, 1);
3105 }
3106 \f
3107
3108 /* i386 register groups. In addition to the normal groups, add "mmx"
3109 and "sse". */
3110
3111 static struct reggroup *i386_sse_reggroup;
3112 static struct reggroup *i386_mmx_reggroup;
3113
3114 static void
3115 i386_init_reggroups (void)
3116 {
3117 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
3118 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
3119 }
3120
3121 static void
3122 i386_add_reggroups (struct gdbarch *gdbarch)
3123 {
3124 reggroup_add (gdbarch, i386_sse_reggroup);
3125 reggroup_add (gdbarch, i386_mmx_reggroup);
3126 reggroup_add (gdbarch, general_reggroup);
3127 reggroup_add (gdbarch, float_reggroup);
3128 reggroup_add (gdbarch, all_reggroup);
3129 reggroup_add (gdbarch, save_reggroup);
3130 reggroup_add (gdbarch, restore_reggroup);
3131 reggroup_add (gdbarch, vector_reggroup);
3132 reggroup_add (gdbarch, system_reggroup);
3133 }
3134
3135 int
3136 i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
3137 struct reggroup *group)
3138 {
3139 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3140 int fp_regnum_p, mmx_regnum_p, xmm_regnum_p, mxcsr_regnum_p,
3141 ymm_regnum_p, ymmh_regnum_p;
3142
3143 /* Don't include pseudo registers, except for MMX, in any register
3144 groups. */
3145 if (i386_byte_regnum_p (gdbarch, regnum))
3146 return 0;
3147
3148 if (i386_word_regnum_p (gdbarch, regnum))
3149 return 0;
3150
3151 if (i386_dword_regnum_p (gdbarch, regnum))
3152 return 0;
3153
3154 mmx_regnum_p = i386_mmx_regnum_p (gdbarch, regnum);
3155 if (group == i386_mmx_reggroup)
3156 return mmx_regnum_p;
3157
3158 xmm_regnum_p = i386_xmm_regnum_p (gdbarch, regnum);
3159 mxcsr_regnum_p = i386_mxcsr_regnum_p (gdbarch, regnum);
3160 if (group == i386_sse_reggroup)
3161 return xmm_regnum_p || mxcsr_regnum_p;
3162
3163 ymm_regnum_p = i386_ymm_regnum_p (gdbarch, regnum);
3164 if (group == vector_reggroup)
3165 return (mmx_regnum_p
3166 || ymm_regnum_p
3167 || mxcsr_regnum_p
3168 || (xmm_regnum_p
3169 && ((tdep->xcr0 & I386_XSTATE_AVX_MASK)
3170 == I386_XSTATE_SSE_MASK)));
3171
3172 fp_regnum_p = (i386_fp_regnum_p (gdbarch, regnum)
3173 || i386_fpc_regnum_p (gdbarch, regnum));
3174 if (group == float_reggroup)
3175 return fp_regnum_p;
3176
3177 /* For "info reg all", don't include upper YMM registers nor XMM
3178 registers when AVX is supported. */
3179 ymmh_regnum_p = i386_ymmh_regnum_p (gdbarch, regnum);
3180 if (group == all_reggroup
3181 && ((xmm_regnum_p
3182 && (tdep->xcr0 & I386_XSTATE_AVX))
3183 || ymmh_regnum_p))
3184 return 0;
3185
3186 if (group == general_reggroup)
3187 return (!fp_regnum_p
3188 && !mmx_regnum_p
3189 && !mxcsr_regnum_p
3190 && !xmm_regnum_p
3191 && !ymm_regnum_p
3192 && !ymmh_regnum_p);
3193
3194 return default_register_reggroup_p (gdbarch, regnum, group);
3195 }
3196 \f
3197
3198 /* Get the ARGIth function argument for the current function. */
3199
3200 static CORE_ADDR
3201 i386_fetch_pointer_argument (struct frame_info *frame, int argi,
3202 struct type *type)
3203 {
3204 struct gdbarch *gdbarch = get_frame_arch (frame);
3205 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3206 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
3207 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4, byte_order);
3208 }
3209
3210 static void
3211 i386_skip_permanent_breakpoint (struct regcache *regcache)
3212 {
3213 CORE_ADDR current_pc = regcache_read_pc (regcache);
3214
3215 /* On i386, breakpoint is exactly 1 byte long, so we just
3216 adjust the PC in the regcache. */
3217 current_pc += 1;
3218 regcache_write_pc (regcache, current_pc);
3219 }
3220
3221
3222 #define PREFIX_REPZ 0x01
3223 #define PREFIX_REPNZ 0x02
3224 #define PREFIX_LOCK 0x04
3225 #define PREFIX_DATA 0x08
3226 #define PREFIX_ADDR 0x10
3227
3228 /* operand size */
3229 enum
3230 {
3231 OT_BYTE = 0,
3232 OT_WORD,
3233 OT_LONG,
3234 OT_QUAD,
3235 OT_DQUAD,
3236 };
3237
3238 /* i386 arith/logic operations */
3239 enum
3240 {
3241 OP_ADDL,
3242 OP_ORL,
3243 OP_ADCL,
3244 OP_SBBL,
3245 OP_ANDL,
3246 OP_SUBL,
3247 OP_XORL,
3248 OP_CMPL,
3249 };
3250
3251 struct i386_record_s
3252 {
3253 struct gdbarch *gdbarch;
3254 struct regcache *regcache;
3255 CORE_ADDR orig_addr;
3256 CORE_ADDR addr;
3257 int aflag;
3258 int dflag;
3259 int override;
3260 uint8_t modrm;
3261 uint8_t mod, reg, rm;
3262 int ot;
3263 uint8_t rex_x;
3264 uint8_t rex_b;
3265 int rip_offset;
3266 int popl_esp_hack;
3267 const int *regmap;
3268 };
3269
3270 /* Parse "modrm" part in current memory address that irp->addr point to
3271 Return -1 if something wrong. */
3272
3273 static int
3274 i386_record_modrm (struct i386_record_s *irp)
3275 {
3276 struct gdbarch *gdbarch = irp->gdbarch;
3277
3278 if (target_read_memory (irp->addr, &irp->modrm, 1))
3279 {
3280 if (record_debug)
3281 printf_unfiltered (_("Process record: error reading memory at "
3282 "addr %s len = 1.\n"),
3283 paddress (gdbarch, irp->addr));
3284 return -1;
3285 }
3286 irp->addr++;
3287 irp->mod = (irp->modrm >> 6) & 3;
3288 irp->reg = (irp->modrm >> 3) & 7;
3289 irp->rm = irp->modrm & 7;
3290
3291 return 0;
3292 }
3293
3294 /* Get the memory address that current instruction write to and set it to
3295 the argument "addr".
3296 Return -1 if something wrong. */
3297
3298 static int
3299 i386_record_lea_modrm_addr (struct i386_record_s *irp, uint64_t *addr)
3300 {
3301 struct gdbarch *gdbarch = irp->gdbarch;
3302 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3303 gdb_byte buf[4];
3304 ULONGEST offset64;
3305
3306 *addr = 0;
3307 if (irp->aflag)
3308 {
3309 /* 32 bits */
3310 int havesib = 0;
3311 uint8_t scale = 0;
3312 uint8_t byte;
3313 uint8_t index = 0;
3314 uint8_t base = irp->rm;
3315
3316 if (base == 4)
3317 {
3318 havesib = 1;
3319 if (target_read_memory (irp->addr, &byte, 1))
3320 {
3321 if (record_debug)
3322 printf_unfiltered (_("Process record: error reading memory "
3323 "at addr %s len = 1.\n"),
3324 paddress (gdbarch, irp->addr));
3325 return -1;
3326 }
3327 irp->addr++;
3328 scale = (byte >> 6) & 3;
3329 index = ((byte >> 3) & 7) | irp->rex_x;
3330 base = (byte & 7);
3331 }
3332 base |= irp->rex_b;
3333
3334 switch (irp->mod)
3335 {
3336 case 0:
3337 if ((base & 7) == 5)
3338 {
3339 base = 0xff;
3340 if (target_read_memory (irp->addr, buf, 4))
3341 {
3342 if (record_debug)
3343 printf_unfiltered (_("Process record: error reading "
3344 "memory at addr %s len = 4.\n"),
3345 paddress (gdbarch, irp->addr));
3346 return -1;
3347 }
3348 irp->addr += 4;
3349 *addr = extract_signed_integer (buf, 4, byte_order);
3350 if (irp->regmap[X86_RECORD_R8_REGNUM] && !havesib)
3351 *addr += irp->addr + irp->rip_offset;
3352 }
3353 break;
3354 case 1:
3355 if (target_read_memory (irp->addr, buf, 1))
3356 {
3357 if (record_debug)
3358 printf_unfiltered (_("Process record: error reading memory "
3359 "at addr %s len = 1.\n"),
3360 paddress (gdbarch, irp->addr));
3361 return -1;
3362 }
3363 irp->addr++;
3364 *addr = (int8_t) buf[0];
3365 break;
3366 case 2:
3367 if (target_read_memory (irp->addr, buf, 4))
3368 {
3369 if (record_debug)
3370 printf_unfiltered (_("Process record: error reading memory "
3371 "at addr %s len = 4.\n"),
3372 paddress (gdbarch, irp->addr));
3373 return -1;
3374 }
3375 *addr = extract_signed_integer (buf, 4, byte_order);
3376 irp->addr += 4;
3377 break;
3378 }
3379
3380 offset64 = 0;
3381 if (base != 0xff)
3382 {
3383 if (base == 4 && irp->popl_esp_hack)
3384 *addr += irp->popl_esp_hack;
3385 regcache_raw_read_unsigned (irp->regcache, irp->regmap[base],
3386 &offset64);
3387 }
3388 if (irp->aflag == 2)
3389 {
3390 *addr += offset64;
3391 }
3392 else
3393 *addr = (uint32_t) (offset64 + *addr);
3394
3395 if (havesib && (index != 4 || scale != 0))
3396 {
3397 regcache_raw_read_unsigned (irp->regcache, irp->regmap[index],
3398 &offset64);
3399 if (irp->aflag == 2)
3400 *addr += offset64 << scale;
3401 else
3402 *addr = (uint32_t) (*addr + (offset64 << scale));
3403 }
3404 }
3405 else
3406 {
3407 /* 16 bits */
3408 switch (irp->mod)
3409 {
3410 case 0:
3411 if (irp->rm == 6)
3412 {
3413 if (target_read_memory (irp->addr, buf, 2))
3414 {
3415 if (record_debug)
3416 printf_unfiltered (_("Process record: error reading "
3417 "memory at addr %s len = 2.\n"),
3418 paddress (gdbarch, irp->addr));
3419 return -1;
3420 }
3421 irp->addr += 2;
3422 *addr = extract_signed_integer (buf, 2, byte_order);
3423 irp->rm = 0;
3424 goto no_rm;
3425 }
3426 break;
3427 case 1:
3428 if (target_read_memory (irp->addr, buf, 1))
3429 {
3430 if (record_debug)
3431 printf_unfiltered (_("Process record: error reading memory "
3432 "at addr %s len = 1.\n"),
3433 paddress (gdbarch, irp->addr));
3434 return -1;
3435 }
3436 irp->addr++;
3437 *addr = (int8_t) buf[0];
3438 break;
3439 case 2:
3440 if (target_read_memory (irp->addr, buf, 2))
3441 {
3442 if (record_debug)
3443 printf_unfiltered (_("Process record: error reading memory "
3444 "at addr %s len = 2.\n"),
3445 paddress (gdbarch, irp->addr));
3446 return -1;
3447 }
3448 irp->addr += 2;
3449 *addr = extract_signed_integer (buf, 2, byte_order);
3450 break;
3451 }
3452
3453 switch (irp->rm)
3454 {
3455 case 0:
3456 regcache_raw_read_unsigned (irp->regcache,
3457 irp->regmap[X86_RECORD_REBX_REGNUM],
3458 &offset64);
3459 *addr = (uint32_t) (*addr + offset64);
3460 regcache_raw_read_unsigned (irp->regcache,
3461 irp->regmap[X86_RECORD_RESI_REGNUM],
3462 &offset64);
3463 *addr = (uint32_t) (*addr + offset64);
3464 break;
3465 case 1:
3466 regcache_raw_read_unsigned (irp->regcache,
3467 irp->regmap[X86_RECORD_REBX_REGNUM],
3468 &offset64);
3469 *addr = (uint32_t) (*addr + offset64);
3470 regcache_raw_read_unsigned (irp->regcache,
3471 irp->regmap[X86_RECORD_REDI_REGNUM],
3472 &offset64);
3473 *addr = (uint32_t) (*addr + offset64);
3474 break;
3475 case 2:
3476 regcache_raw_read_unsigned (irp->regcache,
3477 irp->regmap[X86_RECORD_REBP_REGNUM],
3478 &offset64);
3479 *addr = (uint32_t) (*addr + offset64);
3480 regcache_raw_read_unsigned (irp->regcache,
3481 irp->regmap[X86_RECORD_RESI_REGNUM],
3482 &offset64);
3483 *addr = (uint32_t) (*addr + offset64);
3484 break;
3485 case 3:
3486 regcache_raw_read_unsigned (irp->regcache,
3487 irp->regmap[X86_RECORD_REBP_REGNUM],
3488 &offset64);
3489 *addr = (uint32_t) (*addr + offset64);
3490 regcache_raw_read_unsigned (irp->regcache,
3491 irp->regmap[X86_RECORD_REDI_REGNUM],
3492 &offset64);
3493 *addr = (uint32_t) (*addr + offset64);
3494 break;
3495 case 4:
3496 regcache_raw_read_unsigned (irp->regcache,
3497 irp->regmap[X86_RECORD_RESI_REGNUM],
3498 &offset64);
3499 *addr = (uint32_t) (*addr + offset64);
3500 break;
3501 case 5:
3502 regcache_raw_read_unsigned (irp->regcache,
3503 irp->regmap[X86_RECORD_REDI_REGNUM],
3504 &offset64);
3505 *addr = (uint32_t) (*addr + offset64);
3506 break;
3507 case 6:
3508 regcache_raw_read_unsigned (irp->regcache,
3509 irp->regmap[X86_RECORD_REBP_REGNUM],
3510 &offset64);
3511 *addr = (uint32_t) (*addr + offset64);
3512 break;
3513 case 7:
3514 regcache_raw_read_unsigned (irp->regcache,
3515 irp->regmap[X86_RECORD_REBX_REGNUM],
3516 &offset64);
3517 *addr = (uint32_t) (*addr + offset64);
3518 break;
3519 }
3520 *addr &= 0xffff;
3521 }
3522
3523 no_rm:
3524 return 0;
3525 }
3526
3527 /* Record the value of the memory that willbe changed in current instruction
3528 to "record_arch_list".
3529 Return -1 if something wrong. */
3530
3531 static int
3532 i386_record_lea_modrm (struct i386_record_s *irp)
3533 {
3534 struct gdbarch *gdbarch = irp->gdbarch;
3535 uint64_t addr;
3536
3537 if (irp->override >= 0)
3538 {
3539 if (record_memory_query)
3540 {
3541 int q;
3542
3543 target_terminal_ours ();
3544 q = yquery (_("\
3545 Process record ignores the memory change of instruction at address %s\n\
3546 because it can't get the value of the segment register.\n\
3547 Do you want to stop the program?"),
3548 paddress (gdbarch, irp->orig_addr));
3549 target_terminal_inferior ();
3550 if (q)
3551 return -1;
3552 }
3553
3554 return 0;
3555 }
3556
3557 if (i386_record_lea_modrm_addr (irp, &addr))
3558 return -1;
3559
3560 if (record_arch_list_add_mem (addr, 1 << irp->ot))
3561 return -1;
3562
3563 return 0;
3564 }
3565
3566 /* Record the push operation to "record_arch_list".
3567 Return -1 if something wrong. */
3568
3569 static int
3570 i386_record_push (struct i386_record_s *irp, int size)
3571 {
3572 ULONGEST addr;
3573
3574 if (record_arch_list_add_reg (irp->regcache,
3575 irp->regmap[X86_RECORD_RESP_REGNUM]))
3576 return -1;
3577 regcache_raw_read_unsigned (irp->regcache,
3578 irp->regmap[X86_RECORD_RESP_REGNUM],
3579 &addr);
3580 if (record_arch_list_add_mem ((CORE_ADDR) addr - size, size))
3581 return -1;
3582
3583 return 0;
3584 }
3585
3586
3587 /* Defines contents to record. */
3588 #define I386_SAVE_FPU_REGS 0xfffd
3589 #define I386_SAVE_FPU_ENV 0xfffe
3590 #define I386_SAVE_FPU_ENV_REG_STACK 0xffff
3591
3592 /* Record the value of floating point registers which will be changed
3593 by the current instruction to "record_arch_list". Return -1 if
3594 something is wrong. */
3595
3596 static int i386_record_floats (struct gdbarch *gdbarch,
3597 struct i386_record_s *ir,
3598 uint32_t iregnum)
3599 {
3600 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3601 int i;
3602
3603 /* Oza: Because of floating point insn push/pop of fpu stack is going to
3604 happen. Currently we store st0-st7 registers, but we need not store all
3605 registers all the time, in future we use ftag register and record only
3606 those who are not marked as an empty. */
3607
3608 if (I386_SAVE_FPU_REGS == iregnum)
3609 {
3610 for (i = I387_ST0_REGNUM (tdep); i <= I387_ST0_REGNUM (tdep) + 7; i++)
3611 {
3612 if (record_arch_list_add_reg (ir->regcache, i))
3613 return -1;
3614 }
3615 }
3616 else if (I386_SAVE_FPU_ENV == iregnum)
3617 {
3618 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
3619 {
3620 if (record_arch_list_add_reg (ir->regcache, i))
3621 return -1;
3622 }
3623 }
3624 else if (I386_SAVE_FPU_ENV_REG_STACK == iregnum)
3625 {
3626 for (i = I387_ST0_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
3627 {
3628 if (record_arch_list_add_reg (ir->regcache, i))
3629 return -1;
3630 }
3631 }
3632 else if ((iregnum >= I387_ST0_REGNUM (tdep)) &&
3633 (iregnum <= I387_FOP_REGNUM (tdep)))
3634 {
3635 if (record_arch_list_add_reg (ir->regcache,iregnum))
3636 return -1;
3637 }
3638 else
3639 {
3640 /* Parameter error. */
3641 return -1;
3642 }
3643 if(I386_SAVE_FPU_ENV != iregnum)
3644 {
3645 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
3646 {
3647 if (record_arch_list_add_reg (ir->regcache, i))
3648 return -1;
3649 }
3650 }
3651 return 0;
3652 }
3653
3654 /* Parse the current instruction and record the values of the registers and
3655 memory that will be changed in current instruction to "record_arch_list".
3656 Return -1 if something wrong. */
3657
3658 #define I386_RECORD_ARCH_LIST_ADD_REG(regnum) \
3659 record_arch_list_add_reg (ir.regcache, ir.regmap[(regnum)])
3660
3661 int
3662 i386_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
3663 CORE_ADDR input_addr)
3664 {
3665 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3666 int prefixes = 0;
3667 int regnum = 0;
3668 uint32_t opcode;
3669 uint8_t opcode8;
3670 ULONGEST addr;
3671 gdb_byte buf[MAX_REGISTER_SIZE];
3672 struct i386_record_s ir;
3673 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3674 int rex = 0;
3675 uint8_t rex_w = -1;
3676 uint8_t rex_r = 0;
3677
3678 memset (&ir, 0, sizeof (struct i386_record_s));
3679 ir.regcache = regcache;
3680 ir.addr = input_addr;
3681 ir.orig_addr = input_addr;
3682 ir.aflag = 1;
3683 ir.dflag = 1;
3684 ir.override = -1;
3685 ir.popl_esp_hack = 0;
3686 ir.regmap = tdep->record_regmap;
3687 ir.gdbarch = gdbarch;
3688
3689 if (record_debug > 1)
3690 fprintf_unfiltered (gdb_stdlog, "Process record: i386_process_record "
3691 "addr = %s\n",
3692 paddress (gdbarch, ir.addr));
3693
3694 /* prefixes */
3695 while (1)
3696 {
3697 if (target_read_memory (ir.addr, &opcode8, 1))
3698 {
3699 if (record_debug)
3700 printf_unfiltered (_("Process record: error reading memory at "
3701 "addr %s len = 1.\n"),
3702 paddress (gdbarch, ir.addr));
3703 return -1;
3704 }
3705 ir.addr++;
3706 switch (opcode8) /* Instruction prefixes */
3707 {
3708 case REPE_PREFIX_OPCODE:
3709 prefixes |= PREFIX_REPZ;
3710 break;
3711 case REPNE_PREFIX_OPCODE:
3712 prefixes |= PREFIX_REPNZ;
3713 break;
3714 case LOCK_PREFIX_OPCODE:
3715 prefixes |= PREFIX_LOCK;
3716 break;
3717 case CS_PREFIX_OPCODE:
3718 ir.override = X86_RECORD_CS_REGNUM;
3719 break;
3720 case SS_PREFIX_OPCODE:
3721 ir.override = X86_RECORD_SS_REGNUM;
3722 break;
3723 case DS_PREFIX_OPCODE:
3724 ir.override = X86_RECORD_DS_REGNUM;
3725 break;
3726 case ES_PREFIX_OPCODE:
3727 ir.override = X86_RECORD_ES_REGNUM;
3728 break;
3729 case FS_PREFIX_OPCODE:
3730 ir.override = X86_RECORD_FS_REGNUM;
3731 break;
3732 case GS_PREFIX_OPCODE:
3733 ir.override = X86_RECORD_GS_REGNUM;
3734 break;
3735 case DATA_PREFIX_OPCODE:
3736 prefixes |= PREFIX_DATA;
3737 break;
3738 case ADDR_PREFIX_OPCODE:
3739 prefixes |= PREFIX_ADDR;
3740 break;
3741 case 0x40: /* i386 inc %eax */
3742 case 0x41: /* i386 inc %ecx */
3743 case 0x42: /* i386 inc %edx */
3744 case 0x43: /* i386 inc %ebx */
3745 case 0x44: /* i386 inc %esp */
3746 case 0x45: /* i386 inc %ebp */
3747 case 0x46: /* i386 inc %esi */
3748 case 0x47: /* i386 inc %edi */
3749 case 0x48: /* i386 dec %eax */
3750 case 0x49: /* i386 dec %ecx */
3751 case 0x4a: /* i386 dec %edx */
3752 case 0x4b: /* i386 dec %ebx */
3753 case 0x4c: /* i386 dec %esp */
3754 case 0x4d: /* i386 dec %ebp */
3755 case 0x4e: /* i386 dec %esi */
3756 case 0x4f: /* i386 dec %edi */
3757 if (ir.regmap[X86_RECORD_R8_REGNUM]) /* 64 bit target */
3758 {
3759 /* REX */
3760 rex = 1;
3761 rex_w = (opcode8 >> 3) & 1;
3762 rex_r = (opcode8 & 0x4) << 1;
3763 ir.rex_x = (opcode8 & 0x2) << 2;
3764 ir.rex_b = (opcode8 & 0x1) << 3;
3765 }
3766 else /* 32 bit target */
3767 goto out_prefixes;
3768 break;
3769 default:
3770 goto out_prefixes;
3771 break;
3772 }
3773 }
3774 out_prefixes:
3775 if (ir.regmap[X86_RECORD_R8_REGNUM] && rex_w == 1)
3776 {
3777 ir.dflag = 2;
3778 }
3779 else
3780 {
3781 if (prefixes & PREFIX_DATA)
3782 ir.dflag ^= 1;
3783 }
3784 if (prefixes & PREFIX_ADDR)
3785 ir.aflag ^= 1;
3786 else if (ir.regmap[X86_RECORD_R8_REGNUM])
3787 ir.aflag = 2;
3788
3789 /* Now check op code. */
3790 opcode = (uint32_t) opcode8;
3791 reswitch:
3792 switch (opcode)
3793 {
3794 case 0x0f:
3795 if (target_read_memory (ir.addr, &opcode8, 1))
3796 {
3797 if (record_debug)
3798 printf_unfiltered (_("Process record: error reading memory at "
3799 "addr %s len = 1.\n"),
3800 paddress (gdbarch, ir.addr));
3801 return -1;
3802 }
3803 ir.addr++;
3804 opcode = (uint32_t) opcode8 | 0x0f00;
3805 goto reswitch;
3806 break;
3807
3808 case 0x00: /* arith & logic */
3809 case 0x01:
3810 case 0x02:
3811 case 0x03:
3812 case 0x04:
3813 case 0x05:
3814 case 0x08:
3815 case 0x09:
3816 case 0x0a:
3817 case 0x0b:
3818 case 0x0c:
3819 case 0x0d:
3820 case 0x10:
3821 case 0x11:
3822 case 0x12:
3823 case 0x13:
3824 case 0x14:
3825 case 0x15:
3826 case 0x18:
3827 case 0x19:
3828 case 0x1a:
3829 case 0x1b:
3830 case 0x1c:
3831 case 0x1d:
3832 case 0x20:
3833 case 0x21:
3834 case 0x22:
3835 case 0x23:
3836 case 0x24:
3837 case 0x25:
3838 case 0x28:
3839 case 0x29:
3840 case 0x2a:
3841 case 0x2b:
3842 case 0x2c:
3843 case 0x2d:
3844 case 0x30:
3845 case 0x31:
3846 case 0x32:
3847 case 0x33:
3848 case 0x34:
3849 case 0x35:
3850 case 0x38:
3851 case 0x39:
3852 case 0x3a:
3853 case 0x3b:
3854 case 0x3c:
3855 case 0x3d:
3856 if (((opcode >> 3) & 7) != OP_CMPL)
3857 {
3858 if ((opcode & 1) == 0)
3859 ir.ot = OT_BYTE;
3860 else
3861 ir.ot = ir.dflag + OT_WORD;
3862
3863 switch ((opcode >> 1) & 3)
3864 {
3865 case 0: /* OP Ev, Gv */
3866 if (i386_record_modrm (&ir))
3867 return -1;
3868 if (ir.mod != 3)
3869 {
3870 if (i386_record_lea_modrm (&ir))
3871 return -1;
3872 }
3873 else
3874 {
3875 ir.rm |= ir.rex_b;
3876 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
3877 ir.rm &= 0x3;
3878 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
3879 }
3880 break;
3881 case 1: /* OP Gv, Ev */
3882 if (i386_record_modrm (&ir))
3883 return -1;
3884 ir.reg |= rex_r;
3885 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
3886 ir.reg &= 0x3;
3887 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
3888 break;
3889 case 2: /* OP A, Iv */
3890 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
3891 break;
3892 }
3893 }
3894 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
3895 break;
3896
3897 case 0x80: /* GRP1 */
3898 case 0x81:
3899 case 0x82:
3900 case 0x83:
3901 if (i386_record_modrm (&ir))
3902 return -1;
3903
3904 if (ir.reg != OP_CMPL)
3905 {
3906 if ((opcode & 1) == 0)
3907 ir.ot = OT_BYTE;
3908 else
3909 ir.ot = ir.dflag + OT_WORD;
3910
3911 if (ir.mod != 3)
3912 {
3913 if (opcode == 0x83)
3914 ir.rip_offset = 1;
3915 else
3916 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
3917 if (i386_record_lea_modrm (&ir))
3918 return -1;
3919 }
3920 else
3921 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
3922 }
3923 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
3924 break;
3925
3926 case 0x40: /* inc */
3927 case 0x41:
3928 case 0x42:
3929 case 0x43:
3930 case 0x44:
3931 case 0x45:
3932 case 0x46:
3933 case 0x47:
3934
3935 case 0x48: /* dec */
3936 case 0x49:
3937 case 0x4a:
3938 case 0x4b:
3939 case 0x4c:
3940 case 0x4d:
3941 case 0x4e:
3942 case 0x4f:
3943
3944 I386_RECORD_ARCH_LIST_ADD_REG (opcode & 7);
3945 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
3946 break;
3947
3948 case 0xf6: /* GRP3 */
3949 case 0xf7:
3950 if ((opcode & 1) == 0)
3951 ir.ot = OT_BYTE;
3952 else
3953 ir.ot = ir.dflag + OT_WORD;
3954 if (i386_record_modrm (&ir))
3955 return -1;
3956
3957 if (ir.mod != 3 && ir.reg == 0)
3958 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
3959
3960 switch (ir.reg)
3961 {
3962 case 0: /* test */
3963 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
3964 break;
3965 case 2: /* not */
3966 case 3: /* neg */
3967 if (ir.mod != 3)
3968 {
3969 if (i386_record_lea_modrm (&ir))
3970 return -1;
3971 }
3972 else
3973 {
3974 ir.rm |= ir.rex_b;
3975 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
3976 ir.rm &= 0x3;
3977 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
3978 }
3979 if (ir.reg == 3) /* neg */
3980 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
3981 break;
3982 case 4: /* mul */
3983 case 5: /* imul */
3984 case 6: /* div */
3985 case 7: /* idiv */
3986 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
3987 if (ir.ot != OT_BYTE)
3988 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
3989 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
3990 break;
3991 default:
3992 ir.addr -= 2;
3993 opcode = opcode << 8 | ir.modrm;
3994 goto no_support;
3995 break;
3996 }
3997 break;
3998
3999 case 0xfe: /* GRP4 */
4000 case 0xff: /* GRP5 */
4001 if (i386_record_modrm (&ir))
4002 return -1;
4003 if (ir.reg >= 2 && opcode == 0xfe)
4004 {
4005 ir.addr -= 2;
4006 opcode = opcode << 8 | ir.modrm;
4007 goto no_support;
4008 }
4009 switch (ir.reg)
4010 {
4011 case 0: /* inc */
4012 case 1: /* dec */
4013 if ((opcode & 1) == 0)
4014 ir.ot = OT_BYTE;
4015 else
4016 ir.ot = ir.dflag + OT_WORD;
4017 if (ir.mod != 3)
4018 {
4019 if (i386_record_lea_modrm (&ir))
4020 return -1;
4021 }
4022 else
4023 {
4024 ir.rm |= ir.rex_b;
4025 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4026 ir.rm &= 0x3;
4027 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
4028 }
4029 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4030 break;
4031 case 2: /* call */
4032 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4033 ir.dflag = 2;
4034 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4035 return -1;
4036 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4037 break;
4038 case 3: /* lcall */
4039 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
4040 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4041 return -1;
4042 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4043 break;
4044 case 4: /* jmp */
4045 case 5: /* ljmp */
4046 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4047 break;
4048 case 6: /* push */
4049 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4050 ir.dflag = 2;
4051 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4052 return -1;
4053 break;
4054 default:
4055 ir.addr -= 2;
4056 opcode = opcode << 8 | ir.modrm;
4057 goto no_support;
4058 break;
4059 }
4060 break;
4061
4062 case 0x84: /* test */
4063 case 0x85:
4064 case 0xa8:
4065 case 0xa9:
4066 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4067 break;
4068
4069 case 0x98: /* CWDE/CBW */
4070 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4071 break;
4072
4073 case 0x99: /* CDQ/CWD */
4074 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4075 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
4076 break;
4077
4078 case 0x0faf: /* imul */
4079 case 0x69:
4080 case 0x6b:
4081 ir.ot = ir.dflag + OT_WORD;
4082 if (i386_record_modrm (&ir))
4083 return -1;
4084 if (opcode == 0x69)
4085 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
4086 else if (opcode == 0x6b)
4087 ir.rip_offset = 1;
4088 ir.reg |= rex_r;
4089 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4090 ir.reg &= 0x3;
4091 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4092 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4093 break;
4094
4095 case 0x0fc0: /* xadd */
4096 case 0x0fc1:
4097 if ((opcode & 1) == 0)
4098 ir.ot = OT_BYTE;
4099 else
4100 ir.ot = ir.dflag + OT_WORD;
4101 if (i386_record_modrm (&ir))
4102 return -1;
4103 ir.reg |= rex_r;
4104 if (ir.mod == 3)
4105 {
4106 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4107 ir.reg &= 0x3;
4108 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4109 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4110 ir.rm &= 0x3;
4111 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
4112 }
4113 else
4114 {
4115 if (i386_record_lea_modrm (&ir))
4116 return -1;
4117 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4118 ir.reg &= 0x3;
4119 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4120 }
4121 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4122 break;
4123
4124 case 0x0fb0: /* cmpxchg */
4125 case 0x0fb1:
4126 if ((opcode & 1) == 0)
4127 ir.ot = OT_BYTE;
4128 else
4129 ir.ot = ir.dflag + OT_WORD;
4130 if (i386_record_modrm (&ir))
4131 return -1;
4132 if (ir.mod == 3)
4133 {
4134 ir.reg |= rex_r;
4135 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4136 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4137 ir.reg &= 0x3;
4138 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4139 }
4140 else
4141 {
4142 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4143 if (i386_record_lea_modrm (&ir))
4144 return -1;
4145 }
4146 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4147 break;
4148
4149 case 0x0fc7: /* cmpxchg8b */
4150 if (i386_record_modrm (&ir))
4151 return -1;
4152 if (ir.mod == 3)
4153 {
4154 ir.addr -= 2;
4155 opcode = opcode << 8 | ir.modrm;
4156 goto no_support;
4157 }
4158 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4159 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
4160 if (i386_record_lea_modrm (&ir))
4161 return -1;
4162 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4163 break;
4164
4165 case 0x50: /* push */
4166 case 0x51:
4167 case 0x52:
4168 case 0x53:
4169 case 0x54:
4170 case 0x55:
4171 case 0x56:
4172 case 0x57:
4173 case 0x68:
4174 case 0x6a:
4175 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4176 ir.dflag = 2;
4177 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4178 return -1;
4179 break;
4180
4181 case 0x06: /* push es */
4182 case 0x0e: /* push cs */
4183 case 0x16: /* push ss */
4184 case 0x1e: /* push ds */
4185 if (ir.regmap[X86_RECORD_R8_REGNUM])
4186 {
4187 ir.addr -= 1;
4188 goto no_support;
4189 }
4190 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4191 return -1;
4192 break;
4193
4194 case 0x0fa0: /* push fs */
4195 case 0x0fa8: /* push gs */
4196 if (ir.regmap[X86_RECORD_R8_REGNUM])
4197 {
4198 ir.addr -= 2;
4199 goto no_support;
4200 }
4201 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4202 return -1;
4203 break;
4204
4205 case 0x60: /* pusha */
4206 if (ir.regmap[X86_RECORD_R8_REGNUM])
4207 {
4208 ir.addr -= 1;
4209 goto no_support;
4210 }
4211 if (i386_record_push (&ir, 1 << (ir.dflag + 4)))
4212 return -1;
4213 break;
4214
4215 case 0x58: /* pop */
4216 case 0x59:
4217 case 0x5a:
4218 case 0x5b:
4219 case 0x5c:
4220 case 0x5d:
4221 case 0x5e:
4222 case 0x5f:
4223 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4224 I386_RECORD_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
4225 break;
4226
4227 case 0x61: /* popa */
4228 if (ir.regmap[X86_RECORD_R8_REGNUM])
4229 {
4230 ir.addr -= 1;
4231 goto no_support;
4232 }
4233 for (regnum = X86_RECORD_REAX_REGNUM;
4234 regnum <= X86_RECORD_REDI_REGNUM;
4235 regnum++)
4236 I386_RECORD_ARCH_LIST_ADD_REG (regnum);
4237 break;
4238
4239 case 0x8f: /* pop */
4240 if (ir.regmap[X86_RECORD_R8_REGNUM])
4241 ir.ot = ir.dflag ? OT_QUAD : OT_WORD;
4242 else
4243 ir.ot = ir.dflag + OT_WORD;
4244 if (i386_record_modrm (&ir))
4245 return -1;
4246 if (ir.mod == 3)
4247 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
4248 else
4249 {
4250 ir.popl_esp_hack = 1 << ir.ot;
4251 if (i386_record_lea_modrm (&ir))
4252 return -1;
4253 }
4254 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4255 break;
4256
4257 case 0xc8: /* enter */
4258 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
4259 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4260 ir.dflag = 2;
4261 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4262 return -1;
4263 break;
4264
4265 case 0xc9: /* leave */
4266 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4267 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
4268 break;
4269
4270 case 0x07: /* pop es */
4271 if (ir.regmap[X86_RECORD_R8_REGNUM])
4272 {
4273 ir.addr -= 1;
4274 goto no_support;
4275 }
4276 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4277 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_ES_REGNUM);
4278 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4279 break;
4280
4281 case 0x17: /* pop ss */
4282 if (ir.regmap[X86_RECORD_R8_REGNUM])
4283 {
4284 ir.addr -= 1;
4285 goto no_support;
4286 }
4287 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4288 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_SS_REGNUM);
4289 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4290 break;
4291
4292 case 0x1f: /* pop ds */
4293 if (ir.regmap[X86_RECORD_R8_REGNUM])
4294 {
4295 ir.addr -= 1;
4296 goto no_support;
4297 }
4298 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4299 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_DS_REGNUM);
4300 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4301 break;
4302
4303 case 0x0fa1: /* pop fs */
4304 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4305 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_FS_REGNUM);
4306 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4307 break;
4308
4309 case 0x0fa9: /* pop gs */
4310 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4311 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
4312 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4313 break;
4314
4315 case 0x88: /* mov */
4316 case 0x89:
4317 case 0xc6:
4318 case 0xc7:
4319 if ((opcode & 1) == 0)
4320 ir.ot = OT_BYTE;
4321 else
4322 ir.ot = ir.dflag + OT_WORD;
4323
4324 if (i386_record_modrm (&ir))
4325 return -1;
4326
4327 if (ir.mod != 3)
4328 {
4329 if (opcode == 0xc6 || opcode == 0xc7)
4330 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
4331 if (i386_record_lea_modrm (&ir))
4332 return -1;
4333 }
4334 else
4335 {
4336 if (opcode == 0xc6 || opcode == 0xc7)
4337 ir.rm |= ir.rex_b;
4338 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4339 ir.rm &= 0x3;
4340 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
4341 }
4342 break;
4343
4344 case 0x8a: /* mov */
4345 case 0x8b:
4346 if ((opcode & 1) == 0)
4347 ir.ot = OT_BYTE;
4348 else
4349 ir.ot = ir.dflag + OT_WORD;
4350 if (i386_record_modrm (&ir))
4351 return -1;
4352 ir.reg |= rex_r;
4353 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4354 ir.reg &= 0x3;
4355 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4356 break;
4357
4358 case 0x8c: /* mov seg */
4359 if (i386_record_modrm (&ir))
4360 return -1;
4361 if (ir.reg > 5)
4362 {
4363 ir.addr -= 2;
4364 opcode = opcode << 8 | ir.modrm;
4365 goto no_support;
4366 }
4367
4368 if (ir.mod == 3)
4369 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
4370 else
4371 {
4372 ir.ot = OT_WORD;
4373 if (i386_record_lea_modrm (&ir))
4374 return -1;
4375 }
4376 break;
4377
4378 case 0x8e: /* mov seg */
4379 if (i386_record_modrm (&ir))
4380 return -1;
4381 switch (ir.reg)
4382 {
4383 case 0:
4384 regnum = X86_RECORD_ES_REGNUM;
4385 break;
4386 case 2:
4387 regnum = X86_RECORD_SS_REGNUM;
4388 break;
4389 case 3:
4390 regnum = X86_RECORD_DS_REGNUM;
4391 break;
4392 case 4:
4393 regnum = X86_RECORD_FS_REGNUM;
4394 break;
4395 case 5:
4396 regnum = X86_RECORD_GS_REGNUM;
4397 break;
4398 default:
4399 ir.addr -= 2;
4400 opcode = opcode << 8 | ir.modrm;
4401 goto no_support;
4402 break;
4403 }
4404 I386_RECORD_ARCH_LIST_ADD_REG (regnum);
4405 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4406 break;
4407
4408 case 0x0fb6: /* movzbS */
4409 case 0x0fb7: /* movzwS */
4410 case 0x0fbe: /* movsbS */
4411 case 0x0fbf: /* movswS */
4412 if (i386_record_modrm (&ir))
4413 return -1;
4414 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
4415 break;
4416
4417 case 0x8d: /* lea */
4418 if (i386_record_modrm (&ir))
4419 return -1;
4420 if (ir.mod == 3)
4421 {
4422 ir.addr -= 2;
4423 opcode = opcode << 8 | ir.modrm;
4424 goto no_support;
4425 }
4426 ir.ot = ir.dflag;
4427 ir.reg |= rex_r;
4428 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4429 ir.reg &= 0x3;
4430 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4431 break;
4432
4433 case 0xa0: /* mov EAX */
4434 case 0xa1:
4435
4436 case 0xd7: /* xlat */
4437 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4438 break;
4439
4440 case 0xa2: /* mov EAX */
4441 case 0xa3:
4442 if (ir.override >= 0)
4443 {
4444 if (record_memory_query)
4445 {
4446 int q;
4447
4448 target_terminal_ours ();
4449 q = yquery (_("\
4450 Process record ignores the memory change of instruction at address %s\n\
4451 because it can't get the value of the segment register.\n\
4452 Do you want to stop the program?"),
4453 paddress (gdbarch, ir.orig_addr));
4454 target_terminal_inferior ();
4455 if (q)
4456 return -1;
4457 }
4458 }
4459 else
4460 {
4461 if ((opcode & 1) == 0)
4462 ir.ot = OT_BYTE;
4463 else
4464 ir.ot = ir.dflag + OT_WORD;
4465 if (ir.aflag == 2)
4466 {
4467 if (target_read_memory (ir.addr, buf, 8))
4468 {
4469 if (record_debug)
4470 printf_unfiltered (_("Process record: error reading "
4471 "memory at addr 0x%s len = 8.\n"),
4472 paddress (gdbarch, ir.addr));
4473 return -1;
4474 }
4475 ir.addr += 8;
4476 addr = extract_unsigned_integer (buf, 8, byte_order);
4477 }
4478 else if (ir.aflag)
4479 {
4480 if (target_read_memory (ir.addr, buf, 4))
4481 {
4482 if (record_debug)
4483 printf_unfiltered (_("Process record: error reading "
4484 "memory at addr 0x%s len = 4.\n"),
4485 paddress (gdbarch, ir.addr));
4486 return -1;
4487 }
4488 ir.addr += 4;
4489 addr = extract_unsigned_integer (buf, 4, byte_order);
4490 }
4491 else
4492 {
4493 if (target_read_memory (ir.addr, buf, 2))
4494 {
4495 if (record_debug)
4496 printf_unfiltered (_("Process record: error reading "
4497 "memory at addr 0x%s len = 2.\n"),
4498 paddress (gdbarch, ir.addr));
4499 return -1;
4500 }
4501 ir.addr += 2;
4502 addr = extract_unsigned_integer (buf, 2, byte_order);
4503 }
4504 if (record_arch_list_add_mem (addr, 1 << ir.ot))
4505 return -1;
4506 }
4507 break;
4508
4509 case 0xb0: /* mov R, Ib */
4510 case 0xb1:
4511 case 0xb2:
4512 case 0xb3:
4513 case 0xb4:
4514 case 0xb5:
4515 case 0xb6:
4516 case 0xb7:
4517 I386_RECORD_ARCH_LIST_ADD_REG ((ir.regmap[X86_RECORD_R8_REGNUM])
4518 ? ((opcode & 0x7) | ir.rex_b)
4519 : ((opcode & 0x7) & 0x3));
4520 break;
4521
4522 case 0xb8: /* mov R, Iv */
4523 case 0xb9:
4524 case 0xba:
4525 case 0xbb:
4526 case 0xbc:
4527 case 0xbd:
4528 case 0xbe:
4529 case 0xbf:
4530 I386_RECORD_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
4531 break;
4532
4533 case 0x91: /* xchg R, EAX */
4534 case 0x92:
4535 case 0x93:
4536 case 0x94:
4537 case 0x95:
4538 case 0x96:
4539 case 0x97:
4540 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4541 I386_RECORD_ARCH_LIST_ADD_REG (opcode & 0x7);
4542 break;
4543
4544 case 0x86: /* xchg Ev, Gv */
4545 case 0x87:
4546 if ((opcode & 1) == 0)
4547 ir.ot = OT_BYTE;
4548 else
4549 ir.ot = ir.dflag + OT_WORD;
4550 if (i386_record_modrm (&ir))
4551 return -1;
4552 if (ir.mod == 3)
4553 {
4554 ir.rm |= ir.rex_b;
4555 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4556 ir.rm &= 0x3;
4557 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
4558 }
4559 else
4560 {
4561 if (i386_record_lea_modrm (&ir))
4562 return -1;
4563 }
4564 ir.reg |= rex_r;
4565 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4566 ir.reg &= 0x3;
4567 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4568 break;
4569
4570 case 0xc4: /* les Gv */
4571 case 0xc5: /* lds Gv */
4572 if (ir.regmap[X86_RECORD_R8_REGNUM])
4573 {
4574 ir.addr -= 1;
4575 goto no_support;
4576 }
4577 /* FALLTHROUGH */
4578 case 0x0fb2: /* lss Gv */
4579 case 0x0fb4: /* lfs Gv */
4580 case 0x0fb5: /* lgs Gv */
4581 if (i386_record_modrm (&ir))
4582 return -1;
4583 if (ir.mod == 3)
4584 {
4585 if (opcode > 0xff)
4586 ir.addr -= 3;
4587 else
4588 ir.addr -= 2;
4589 opcode = opcode << 8 | ir.modrm;
4590 goto no_support;
4591 }
4592 switch (opcode)
4593 {
4594 case 0xc4: /* les Gv */
4595 regnum = X86_RECORD_ES_REGNUM;
4596 break;
4597 case 0xc5: /* lds Gv */
4598 regnum = X86_RECORD_DS_REGNUM;
4599 break;
4600 case 0x0fb2: /* lss Gv */
4601 regnum = X86_RECORD_SS_REGNUM;
4602 break;
4603 case 0x0fb4: /* lfs Gv */
4604 regnum = X86_RECORD_FS_REGNUM;
4605 break;
4606 case 0x0fb5: /* lgs Gv */
4607 regnum = X86_RECORD_GS_REGNUM;
4608 break;
4609 }
4610 I386_RECORD_ARCH_LIST_ADD_REG (regnum);
4611 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
4612 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4613 break;
4614
4615 case 0xc0: /* shifts */
4616 case 0xc1:
4617 case 0xd0:
4618 case 0xd1:
4619 case 0xd2:
4620 case 0xd3:
4621 if ((opcode & 1) == 0)
4622 ir.ot = OT_BYTE;
4623 else
4624 ir.ot = ir.dflag + OT_WORD;
4625 if (i386_record_modrm (&ir))
4626 return -1;
4627 if (ir.mod != 3 && (opcode == 0xd2 || opcode == 0xd3))
4628 {
4629 if (i386_record_lea_modrm (&ir))
4630 return -1;
4631 }
4632 else
4633 {
4634 ir.rm |= ir.rex_b;
4635 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4636 ir.rm &= 0x3;
4637 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
4638 }
4639 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4640 break;
4641
4642 case 0x0fa4:
4643 case 0x0fa5:
4644 case 0x0fac:
4645 case 0x0fad:
4646 if (i386_record_modrm (&ir))
4647 return -1;
4648 if (ir.mod == 3)
4649 {
4650 if (record_arch_list_add_reg (ir.regcache, ir.rm))
4651 return -1;
4652 }
4653 else
4654 {
4655 if (i386_record_lea_modrm (&ir))
4656 return -1;
4657 }
4658 break;
4659
4660 case 0xd8: /* Floats. */
4661 case 0xd9:
4662 case 0xda:
4663 case 0xdb:
4664 case 0xdc:
4665 case 0xdd:
4666 case 0xde:
4667 case 0xdf:
4668 if (i386_record_modrm (&ir))
4669 return -1;
4670 ir.reg |= ((opcode & 7) << 3);
4671 if (ir.mod != 3)
4672 {
4673 /* Memory. */
4674 uint64_t addr64;
4675
4676 if (i386_record_lea_modrm_addr (&ir, &addr64))
4677 return -1;
4678 switch (ir.reg)
4679 {
4680 case 0x02:
4681 case 0x12:
4682 case 0x22:
4683 case 0x32:
4684 /* For fcom, ficom nothing to do. */
4685 break;
4686 case 0x03:
4687 case 0x13:
4688 case 0x23:
4689 case 0x33:
4690 /* For fcomp, ficomp pop FPU stack, store all. */
4691 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
4692 return -1;
4693 break;
4694 case 0x00:
4695 case 0x01:
4696 case 0x04:
4697 case 0x05:
4698 case 0x06:
4699 case 0x07:
4700 case 0x10:
4701 case 0x11:
4702 case 0x14:
4703 case 0x15:
4704 case 0x16:
4705 case 0x17:
4706 case 0x20:
4707 case 0x21:
4708 case 0x24:
4709 case 0x25:
4710 case 0x26:
4711 case 0x27:
4712 case 0x30:
4713 case 0x31:
4714 case 0x34:
4715 case 0x35:
4716 case 0x36:
4717 case 0x37:
4718 /* For fadd, fmul, fsub, fsubr, fdiv, fdivr, fiadd, fimul,
4719 fisub, fisubr, fidiv, fidivr, modR/M.reg is an extension
4720 of code, always affects st(0) register. */
4721 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
4722 return -1;
4723 break;
4724 case 0x08:
4725 case 0x0a:
4726 case 0x0b:
4727 case 0x18:
4728 case 0x19:
4729 case 0x1a:
4730 case 0x1b:
4731 case 0x1d:
4732 case 0x28:
4733 case 0x29:
4734 case 0x2a:
4735 case 0x2b:
4736 case 0x38:
4737 case 0x39:
4738 case 0x3a:
4739 case 0x3b:
4740 case 0x3c:
4741 case 0x3d:
4742 switch (ir.reg & 7)
4743 {
4744 case 0:
4745 /* Handling fld, fild. */
4746 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
4747 return -1;
4748 break;
4749 case 1:
4750 switch (ir.reg >> 4)
4751 {
4752 case 0:
4753 if (record_arch_list_add_mem (addr64, 4))
4754 return -1;
4755 break;
4756 case 2:
4757 if (record_arch_list_add_mem (addr64, 8))
4758 return -1;
4759 break;
4760 case 3:
4761 break;
4762 default:
4763 if (record_arch_list_add_mem (addr64, 2))
4764 return -1;
4765 break;
4766 }
4767 break;
4768 default:
4769 switch (ir.reg >> 4)
4770 {
4771 case 0:
4772 if (record_arch_list_add_mem (addr64, 4))
4773 return -1;
4774 if (3 == (ir.reg & 7))
4775 {
4776 /* For fstp m32fp. */
4777 if (i386_record_floats (gdbarch, &ir,
4778 I386_SAVE_FPU_REGS))
4779 return -1;
4780 }
4781 break;
4782 case 1:
4783 if (record_arch_list_add_mem (addr64, 4))
4784 return -1;
4785 if ((3 == (ir.reg & 7))
4786 || (5 == (ir.reg & 7))
4787 || (7 == (ir.reg & 7)))
4788 {
4789 /* For fstp insn. */
4790 if (i386_record_floats (gdbarch, &ir,
4791 I386_SAVE_FPU_REGS))
4792 return -1;
4793 }
4794 break;
4795 case 2:
4796 if (record_arch_list_add_mem (addr64, 8))
4797 return -1;
4798 if (3 == (ir.reg & 7))
4799 {
4800 /* For fstp m64fp. */
4801 if (i386_record_floats (gdbarch, &ir,
4802 I386_SAVE_FPU_REGS))
4803 return -1;
4804 }
4805 break;
4806 case 3:
4807 if ((3 <= (ir.reg & 7)) && (6 <= (ir.reg & 7)))
4808 {
4809 /* For fistp, fbld, fild, fbstp. */
4810 if (i386_record_floats (gdbarch, &ir,
4811 I386_SAVE_FPU_REGS))
4812 return -1;
4813 }
4814 /* Fall through */
4815 default:
4816 if (record_arch_list_add_mem (addr64, 2))
4817 return -1;
4818 break;
4819 }
4820 break;
4821 }
4822 break;
4823 case 0x0c:
4824 /* Insn fldenv. */
4825 if (i386_record_floats (gdbarch, &ir,
4826 I386_SAVE_FPU_ENV_REG_STACK))
4827 return -1;
4828 break;
4829 case 0x0d:
4830 /* Insn fldcw. */
4831 if (i386_record_floats (gdbarch, &ir, I387_FCTRL_REGNUM (tdep)))
4832 return -1;
4833 break;
4834 case 0x2c:
4835 /* Insn frstor. */
4836 if (i386_record_floats (gdbarch, &ir,
4837 I386_SAVE_FPU_ENV_REG_STACK))
4838 return -1;
4839 break;
4840 case 0x0e:
4841 if (ir.dflag)
4842 {
4843 if (record_arch_list_add_mem (addr64, 28))
4844 return -1;
4845 }
4846 else
4847 {
4848 if (record_arch_list_add_mem (addr64, 14))
4849 return -1;
4850 }
4851 break;
4852 case 0x0f:
4853 case 0x2f:
4854 if (record_arch_list_add_mem (addr64, 2))
4855 return -1;
4856 /* Insn fstp, fbstp. */
4857 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
4858 return -1;
4859 break;
4860 case 0x1f:
4861 case 0x3e:
4862 if (record_arch_list_add_mem (addr64, 10))
4863 return -1;
4864 break;
4865 case 0x2e:
4866 if (ir.dflag)
4867 {
4868 if (record_arch_list_add_mem (addr64, 28))
4869 return -1;
4870 addr64 += 28;
4871 }
4872 else
4873 {
4874 if (record_arch_list_add_mem (addr64, 14))
4875 return -1;
4876 addr64 += 14;
4877 }
4878 if (record_arch_list_add_mem (addr64, 80))
4879 return -1;
4880 /* Insn fsave. */
4881 if (i386_record_floats (gdbarch, &ir,
4882 I386_SAVE_FPU_ENV_REG_STACK))
4883 return -1;
4884 break;
4885 case 0x3f:
4886 if (record_arch_list_add_mem (addr64, 8))
4887 return -1;
4888 /* Insn fistp. */
4889 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
4890 return -1;
4891 break;
4892 default:
4893 ir.addr -= 2;
4894 opcode = opcode << 8 | ir.modrm;
4895 goto no_support;
4896 break;
4897 }
4898 }
4899 /* Opcode is an extension of modR/M byte. */
4900 else
4901 {
4902 switch (opcode)
4903 {
4904 case 0xd8:
4905 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
4906 return -1;
4907 break;
4908 case 0xd9:
4909 if (0x0c == (ir.modrm >> 4))
4910 {
4911 if ((ir.modrm & 0x0f) <= 7)
4912 {
4913 if (i386_record_floats (gdbarch, &ir,
4914 I386_SAVE_FPU_REGS))
4915 return -1;
4916 }
4917 else
4918 {
4919 if (i386_record_floats (gdbarch, &ir,
4920 I387_ST0_REGNUM (tdep)))
4921 return -1;
4922 /* If only st(0) is changing, then we have already
4923 recorded. */
4924 if ((ir.modrm & 0x0f) - 0x08)
4925 {
4926 if (i386_record_floats (gdbarch, &ir,
4927 I387_ST0_REGNUM (tdep) +
4928 ((ir.modrm & 0x0f) - 0x08)))
4929 return -1;
4930 }
4931 }
4932 }
4933 else
4934 {
4935 switch (ir.modrm)
4936 {
4937 case 0xe0:
4938 case 0xe1:
4939 case 0xf0:
4940 case 0xf5:
4941 case 0xf8:
4942 case 0xfa:
4943 case 0xfc:
4944 case 0xfe:
4945 case 0xff:
4946 if (i386_record_floats (gdbarch, &ir,
4947 I387_ST0_REGNUM (tdep)))
4948 return -1;
4949 break;
4950 case 0xf1:
4951 case 0xf2:
4952 case 0xf3:
4953 case 0xf4:
4954 case 0xf6:
4955 case 0xf7:
4956 case 0xe8:
4957 case 0xe9:
4958 case 0xea:
4959 case 0xeb:
4960 case 0xec:
4961 case 0xed:
4962 case 0xee:
4963 case 0xf9:
4964 case 0xfb:
4965 if (i386_record_floats (gdbarch, &ir,
4966 I386_SAVE_FPU_REGS))
4967 return -1;
4968 break;
4969 case 0xfd:
4970 if (i386_record_floats (gdbarch, &ir,
4971 I387_ST0_REGNUM (tdep)))
4972 return -1;
4973 if (i386_record_floats (gdbarch, &ir,
4974 I387_ST0_REGNUM (tdep) + 1))
4975 return -1;
4976 break;
4977 }
4978 }
4979 break;
4980 case 0xda:
4981 if (0xe9 == ir.modrm)
4982 {
4983 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
4984 return -1;
4985 }
4986 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
4987 {
4988 if (i386_record_floats (gdbarch, &ir,
4989 I387_ST0_REGNUM (tdep)))
4990 return -1;
4991 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
4992 {
4993 if (i386_record_floats (gdbarch, &ir,
4994 I387_ST0_REGNUM (tdep) +
4995 (ir.modrm & 0x0f)))
4996 return -1;
4997 }
4998 else if ((ir.modrm & 0x0f) - 0x08)
4999 {
5000 if (i386_record_floats (gdbarch, &ir,
5001 I387_ST0_REGNUM (tdep) +
5002 ((ir.modrm & 0x0f) - 0x08)))
5003 return -1;
5004 }
5005 }
5006 break;
5007 case 0xdb:
5008 if (0xe3 == ir.modrm)
5009 {
5010 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_ENV))
5011 return -1;
5012 }
5013 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
5014 {
5015 if (i386_record_floats (gdbarch, &ir,
5016 I387_ST0_REGNUM (tdep)))
5017 return -1;
5018 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
5019 {
5020 if (i386_record_floats (gdbarch, &ir,
5021 I387_ST0_REGNUM (tdep) +
5022 (ir.modrm & 0x0f)))
5023 return -1;
5024 }
5025 else if ((ir.modrm & 0x0f) - 0x08)
5026 {
5027 if (i386_record_floats (gdbarch, &ir,
5028 I387_ST0_REGNUM (tdep) +
5029 ((ir.modrm & 0x0f) - 0x08)))
5030 return -1;
5031 }
5032 }
5033 break;
5034 case 0xdc:
5035 if ((0x0c == ir.modrm >> 4)
5036 || (0x0d == ir.modrm >> 4)
5037 || (0x0f == ir.modrm >> 4))
5038 {
5039 if ((ir.modrm & 0x0f) <= 7)
5040 {
5041 if (i386_record_floats (gdbarch, &ir,
5042 I387_ST0_REGNUM (tdep) +
5043 (ir.modrm & 0x0f)))
5044 return -1;
5045 }
5046 else
5047 {
5048 if (i386_record_floats (gdbarch, &ir,
5049 I387_ST0_REGNUM (tdep) +
5050 ((ir.modrm & 0x0f) - 0x08)))
5051 return -1;
5052 }
5053 }
5054 break;
5055 case 0xdd:
5056 if (0x0c == ir.modrm >> 4)
5057 {
5058 if (i386_record_floats (gdbarch, &ir,
5059 I387_FTAG_REGNUM (tdep)))
5060 return -1;
5061 }
5062 else if ((0x0d == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
5063 {
5064 if ((ir.modrm & 0x0f) <= 7)
5065 {
5066 if (i386_record_floats (gdbarch, &ir,
5067 I387_ST0_REGNUM (tdep) +
5068 (ir.modrm & 0x0f)))
5069 return -1;
5070 }
5071 else
5072 {
5073 if (i386_record_floats (gdbarch, &ir,
5074 I386_SAVE_FPU_REGS))
5075 return -1;
5076 }
5077 }
5078 break;
5079 case 0xde:
5080 if ((0x0c == ir.modrm >> 4)
5081 || (0x0e == ir.modrm >> 4)
5082 || (0x0f == ir.modrm >> 4)
5083 || (0xd9 == ir.modrm))
5084 {
5085 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5086 return -1;
5087 }
5088 break;
5089 case 0xdf:
5090 if (0xe0 == ir.modrm)
5091 {
5092 if (record_arch_list_add_reg (ir.regcache, I386_EAX_REGNUM))
5093 return -1;
5094 }
5095 else if ((0x0f == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
5096 {
5097 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5098 return -1;
5099 }
5100 break;
5101 }
5102 }
5103 break;
5104 /* string ops */
5105 case 0xa4: /* movsS */
5106 case 0xa5:
5107 case 0xaa: /* stosS */
5108 case 0xab:
5109 case 0x6c: /* insS */
5110 case 0x6d:
5111 regcache_raw_read_unsigned (ir.regcache,
5112 ir.regmap[X86_RECORD_RECX_REGNUM],
5113 &addr);
5114 if (addr)
5115 {
5116 ULONGEST es, ds;
5117
5118 if ((opcode & 1) == 0)
5119 ir.ot = OT_BYTE;
5120 else
5121 ir.ot = ir.dflag + OT_WORD;
5122 regcache_raw_read_unsigned (ir.regcache,
5123 ir.regmap[X86_RECORD_REDI_REGNUM],
5124 &addr);
5125
5126 regcache_raw_read_unsigned (ir.regcache,
5127 ir.regmap[X86_RECORD_ES_REGNUM],
5128 &es);
5129 regcache_raw_read_unsigned (ir.regcache,
5130 ir.regmap[X86_RECORD_DS_REGNUM],
5131 &ds);
5132 if (ir.aflag && (es != ds))
5133 {
5134 /* addr += ((uint32_t) read_register (I386_ES_REGNUM)) << 4; */
5135 if (record_memory_query)
5136 {
5137 int q;
5138
5139 target_terminal_ours ();
5140 q = yquery (_("\
5141 Process record ignores the memory change of instruction at address %s\n\
5142 because it can't get the value of the segment register.\n\
5143 Do you want to stop the program?"),
5144 paddress (gdbarch, ir.orig_addr));
5145 target_terminal_inferior ();
5146 if (q)
5147 return -1;
5148 }
5149 }
5150 else
5151 {
5152 if (record_arch_list_add_mem (addr, 1 << ir.ot))
5153 return -1;
5154 }
5155
5156 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
5157 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5158 if (opcode == 0xa4 || opcode == 0xa5)
5159 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
5160 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
5161 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5162 }
5163 break;
5164
5165 case 0xa6: /* cmpsS */
5166 case 0xa7:
5167 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
5168 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
5169 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
5170 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5171 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5172 break;
5173
5174 case 0xac: /* lodsS */
5175 case 0xad:
5176 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5177 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
5178 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
5179 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5180 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5181 break;
5182
5183 case 0xae: /* scasS */
5184 case 0xaf:
5185 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
5186 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
5187 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5188 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5189 break;
5190
5191 case 0x6e: /* outsS */
5192 case 0x6f:
5193 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
5194 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
5195 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5196 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5197 break;
5198
5199 case 0xe4: /* port I/O */
5200 case 0xe5:
5201 case 0xec:
5202 case 0xed:
5203 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5204 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5205 break;
5206
5207 case 0xe6:
5208 case 0xe7:
5209 case 0xee:
5210 case 0xef:
5211 break;
5212
5213 /* control */
5214 case 0xc2: /* ret im */
5215 case 0xc3: /* ret */
5216 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5217 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5218 break;
5219
5220 case 0xca: /* lret im */
5221 case 0xcb: /* lret */
5222 case 0xcf: /* iret */
5223 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
5224 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5225 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5226 break;
5227
5228 case 0xe8: /* call im */
5229 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5230 ir.dflag = 2;
5231 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5232 return -1;
5233 break;
5234
5235 case 0x9a: /* lcall im */
5236 if (ir.regmap[X86_RECORD_R8_REGNUM])
5237 {
5238 ir.addr -= 1;
5239 goto no_support;
5240 }
5241 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
5242 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5243 return -1;
5244 break;
5245
5246 case 0xe9: /* jmp im */
5247 case 0xea: /* ljmp im */
5248 case 0xeb: /* jmp Jb */
5249 case 0x70: /* jcc Jb */
5250 case 0x71:
5251 case 0x72:
5252 case 0x73:
5253 case 0x74:
5254 case 0x75:
5255 case 0x76:
5256 case 0x77:
5257 case 0x78:
5258 case 0x79:
5259 case 0x7a:
5260 case 0x7b:
5261 case 0x7c:
5262 case 0x7d:
5263 case 0x7e:
5264 case 0x7f:
5265 case 0x0f80: /* jcc Jv */
5266 case 0x0f81:
5267 case 0x0f82:
5268 case 0x0f83:
5269 case 0x0f84:
5270 case 0x0f85:
5271 case 0x0f86:
5272 case 0x0f87:
5273 case 0x0f88:
5274 case 0x0f89:
5275 case 0x0f8a:
5276 case 0x0f8b:
5277 case 0x0f8c:
5278 case 0x0f8d:
5279 case 0x0f8e:
5280 case 0x0f8f:
5281 break;
5282
5283 case 0x0f90: /* setcc Gv */
5284 case 0x0f91:
5285 case 0x0f92:
5286 case 0x0f93:
5287 case 0x0f94:
5288 case 0x0f95:
5289 case 0x0f96:
5290 case 0x0f97:
5291 case 0x0f98:
5292 case 0x0f99:
5293 case 0x0f9a:
5294 case 0x0f9b:
5295 case 0x0f9c:
5296 case 0x0f9d:
5297 case 0x0f9e:
5298 case 0x0f9f:
5299 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5300 ir.ot = OT_BYTE;
5301 if (i386_record_modrm (&ir))
5302 return -1;
5303 if (ir.mod == 3)
5304 I386_RECORD_ARCH_LIST_ADD_REG (ir.rex_b ? (ir.rm | ir.rex_b)
5305 : (ir.rm & 0x3));
5306 else
5307 {
5308 if (i386_record_lea_modrm (&ir))
5309 return -1;
5310 }
5311 break;
5312
5313 case 0x0f40: /* cmov Gv, Ev */
5314 case 0x0f41:
5315 case 0x0f42:
5316 case 0x0f43:
5317 case 0x0f44:
5318 case 0x0f45:
5319 case 0x0f46:
5320 case 0x0f47:
5321 case 0x0f48:
5322 case 0x0f49:
5323 case 0x0f4a:
5324 case 0x0f4b:
5325 case 0x0f4c:
5326 case 0x0f4d:
5327 case 0x0f4e:
5328 case 0x0f4f:
5329 if (i386_record_modrm (&ir))
5330 return -1;
5331 ir.reg |= rex_r;
5332 if (ir.dflag == OT_BYTE)
5333 ir.reg &= 0x3;
5334 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
5335 break;
5336
5337 /* flags */
5338 case 0x9c: /* pushf */
5339 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5340 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5341 ir.dflag = 2;
5342 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5343 return -1;
5344 break;
5345
5346 case 0x9d: /* popf */
5347 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5348 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5349 break;
5350
5351 case 0x9e: /* sahf */
5352 if (ir.regmap[X86_RECORD_R8_REGNUM])
5353 {
5354 ir.addr -= 1;
5355 goto no_support;
5356 }
5357 /* FALLTHROUGH */
5358 case 0xf5: /* cmc */
5359 case 0xf8: /* clc */
5360 case 0xf9: /* stc */
5361 case 0xfc: /* cld */
5362 case 0xfd: /* std */
5363 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5364 break;
5365
5366 case 0x9f: /* lahf */
5367 if (ir.regmap[X86_RECORD_R8_REGNUM])
5368 {
5369 ir.addr -= 1;
5370 goto no_support;
5371 }
5372 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5373 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5374 break;
5375
5376 /* bit operations */
5377 case 0x0fba: /* bt/bts/btr/btc Gv, im */
5378 ir.ot = ir.dflag + OT_WORD;
5379 if (i386_record_modrm (&ir))
5380 return -1;
5381 if (ir.reg < 4)
5382 {
5383 ir.addr -= 2;
5384 opcode = opcode << 8 | ir.modrm;
5385 goto no_support;
5386 }
5387 if (ir.reg != 4)
5388 {
5389 if (ir.mod == 3)
5390 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5391 else
5392 {
5393 if (i386_record_lea_modrm (&ir))
5394 return -1;
5395 }
5396 }
5397 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5398 break;
5399
5400 case 0x0fa3: /* bt Gv, Ev */
5401 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5402 break;
5403
5404 case 0x0fab: /* bts */
5405 case 0x0fb3: /* btr */
5406 case 0x0fbb: /* btc */
5407 ir.ot = ir.dflag + OT_WORD;
5408 if (i386_record_modrm (&ir))
5409 return -1;
5410 if (ir.mod == 3)
5411 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5412 else
5413 {
5414 uint64_t addr64;
5415 if (i386_record_lea_modrm_addr (&ir, &addr64))
5416 return -1;
5417 regcache_raw_read_unsigned (ir.regcache,
5418 ir.regmap[ir.reg | rex_r],
5419 &addr);
5420 switch (ir.dflag)
5421 {
5422 case 0:
5423 addr64 += ((int16_t) addr >> 4) << 4;
5424 break;
5425 case 1:
5426 addr64 += ((int32_t) addr >> 5) << 5;
5427 break;
5428 case 2:
5429 addr64 += ((int64_t) addr >> 6) << 6;
5430 break;
5431 }
5432 if (record_arch_list_add_mem (addr64, 1 << ir.ot))
5433 return -1;
5434 if (i386_record_lea_modrm (&ir))
5435 return -1;
5436 }
5437 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5438 break;
5439
5440 case 0x0fbc: /* bsf */
5441 case 0x0fbd: /* bsr */
5442 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5443 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5444 break;
5445
5446 /* bcd */
5447 case 0x27: /* daa */
5448 case 0x2f: /* das */
5449 case 0x37: /* aaa */
5450 case 0x3f: /* aas */
5451 case 0xd4: /* aam */
5452 case 0xd5: /* aad */
5453 if (ir.regmap[X86_RECORD_R8_REGNUM])
5454 {
5455 ir.addr -= 1;
5456 goto no_support;
5457 }
5458 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5459 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5460 break;
5461
5462 /* misc */
5463 case 0x90: /* nop */
5464 if (prefixes & PREFIX_LOCK)
5465 {
5466 ir.addr -= 1;
5467 goto no_support;
5468 }
5469 break;
5470
5471 case 0x9b: /* fwait */
5472 if (target_read_memory (ir.addr, &opcode8, 1))
5473 {
5474 if (record_debug)
5475 printf_unfiltered (_("Process record: error reading memory at "
5476 "addr 0x%s len = 1.\n"),
5477 paddress (gdbarch, ir.addr));
5478 return -1;
5479 }
5480 opcode = (uint32_t) opcode8;
5481 ir.addr++;
5482 goto reswitch;
5483 break;
5484
5485 /* XXX */
5486 case 0xcc: /* int3 */
5487 printf_unfiltered (_("Process record does not support instruction "
5488 "int3.\n"));
5489 ir.addr -= 1;
5490 goto no_support;
5491 break;
5492
5493 /* XXX */
5494 case 0xcd: /* int */
5495 {
5496 int ret;
5497 uint8_t interrupt;
5498 if (target_read_memory (ir.addr, &interrupt, 1))
5499 {
5500 if (record_debug)
5501 printf_unfiltered (_("Process record: error reading memory "
5502 "at addr %s len = 1.\n"),
5503 paddress (gdbarch, ir.addr));
5504 return -1;
5505 }
5506 ir.addr++;
5507 if (interrupt != 0x80
5508 || tdep->i386_intx80_record == NULL)
5509 {
5510 printf_unfiltered (_("Process record does not support "
5511 "instruction int 0x%02x.\n"),
5512 interrupt);
5513 ir.addr -= 2;
5514 goto no_support;
5515 }
5516 ret = tdep->i386_intx80_record (ir.regcache);
5517 if (ret)
5518 return ret;
5519 }
5520 break;
5521
5522 /* XXX */
5523 case 0xce: /* into */
5524 printf_unfiltered (_("Process record does not support "
5525 "instruction into.\n"));
5526 ir.addr -= 1;
5527 goto no_support;
5528 break;
5529
5530 case 0xfa: /* cli */
5531 case 0xfb: /* sti */
5532 break;
5533
5534 case 0x62: /* bound */
5535 printf_unfiltered (_("Process record does not support "
5536 "instruction bound.\n"));
5537 ir.addr -= 1;
5538 goto no_support;
5539 break;
5540
5541 case 0x0fc8: /* bswap reg */
5542 case 0x0fc9:
5543 case 0x0fca:
5544 case 0x0fcb:
5545 case 0x0fcc:
5546 case 0x0fcd:
5547 case 0x0fce:
5548 case 0x0fcf:
5549 I386_RECORD_ARCH_LIST_ADD_REG ((opcode & 7) | ir.rex_b);
5550 break;
5551
5552 case 0xd6: /* salc */
5553 if (ir.regmap[X86_RECORD_R8_REGNUM])
5554 {
5555 ir.addr -= 1;
5556 goto no_support;
5557 }
5558 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5559 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5560 break;
5561
5562 case 0xe0: /* loopnz */
5563 case 0xe1: /* loopz */
5564 case 0xe2: /* loop */
5565 case 0xe3: /* jecxz */
5566 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5567 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5568 break;
5569
5570 case 0x0f30: /* wrmsr */
5571 printf_unfiltered (_("Process record does not support "
5572 "instruction wrmsr.\n"));
5573 ir.addr -= 2;
5574 goto no_support;
5575 break;
5576
5577 case 0x0f32: /* rdmsr */
5578 printf_unfiltered (_("Process record does not support "
5579 "instruction rdmsr.\n"));
5580 ir.addr -= 2;
5581 goto no_support;
5582 break;
5583
5584 case 0x0f31: /* rdtsc */
5585 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5586 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5587 break;
5588
5589 case 0x0f34: /* sysenter */
5590 {
5591 int ret;
5592 if (ir.regmap[X86_RECORD_R8_REGNUM])
5593 {
5594 ir.addr -= 2;
5595 goto no_support;
5596 }
5597 if (tdep->i386_sysenter_record == NULL)
5598 {
5599 printf_unfiltered (_("Process record does not support "
5600 "instruction sysenter.\n"));
5601 ir.addr -= 2;
5602 goto no_support;
5603 }
5604 ret = tdep->i386_sysenter_record (ir.regcache);
5605 if (ret)
5606 return ret;
5607 }
5608 break;
5609
5610 case 0x0f35: /* sysexit */
5611 printf_unfiltered (_("Process record does not support "
5612 "instruction sysexit.\n"));
5613 ir.addr -= 2;
5614 goto no_support;
5615 break;
5616
5617 case 0x0f05: /* syscall */
5618 {
5619 int ret;
5620 if (tdep->i386_syscall_record == NULL)
5621 {
5622 printf_unfiltered (_("Process record does not support "
5623 "instruction syscall.\n"));
5624 ir.addr -= 2;
5625 goto no_support;
5626 }
5627 ret = tdep->i386_syscall_record (ir.regcache);
5628 if (ret)
5629 return ret;
5630 }
5631 break;
5632
5633 case 0x0f07: /* sysret */
5634 printf_unfiltered (_("Process record does not support "
5635 "instruction sysret.\n"));
5636 ir.addr -= 2;
5637 goto no_support;
5638 break;
5639
5640 case 0x0fa2: /* cpuid */
5641 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5642 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5643 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5644 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
5645 break;
5646
5647 case 0xf4: /* hlt */
5648 printf_unfiltered (_("Process record does not support "
5649 "instruction hlt.\n"));
5650 ir.addr -= 1;
5651 goto no_support;
5652 break;
5653
5654 case 0x0f00:
5655 if (i386_record_modrm (&ir))
5656 return -1;
5657 switch (ir.reg)
5658 {
5659 case 0: /* sldt */
5660 case 1: /* str */
5661 if (ir.mod == 3)
5662 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5663 else
5664 {
5665 ir.ot = OT_WORD;
5666 if (i386_record_lea_modrm (&ir))
5667 return -1;
5668 }
5669 break;
5670 case 2: /* lldt */
5671 case 3: /* ltr */
5672 break;
5673 case 4: /* verr */
5674 case 5: /* verw */
5675 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5676 break;
5677 default:
5678 ir.addr -= 3;
5679 opcode = opcode << 8 | ir.modrm;
5680 goto no_support;
5681 break;
5682 }
5683 break;
5684
5685 case 0x0f01:
5686 if (i386_record_modrm (&ir))
5687 return -1;
5688 switch (ir.reg)
5689 {
5690 case 0: /* sgdt */
5691 {
5692 uint64_t addr64;
5693
5694 if (ir.mod == 3)
5695 {
5696 ir.addr -= 3;
5697 opcode = opcode << 8 | ir.modrm;
5698 goto no_support;
5699 }
5700 if (ir.override >= 0)
5701 {
5702 if (record_memory_query)
5703 {
5704 int q;
5705
5706 target_terminal_ours ();
5707 q = yquery (_("\
5708 Process record ignores the memory change of instruction at address %s\n\
5709 because it can't get the value of the segment register.\n\
5710 Do you want to stop the program?"),
5711 paddress (gdbarch, ir.orig_addr));
5712 target_terminal_inferior ();
5713 if (q)
5714 return -1;
5715 }
5716 }
5717 else
5718 {
5719 if (i386_record_lea_modrm_addr (&ir, &addr64))
5720 return -1;
5721 if (record_arch_list_add_mem (addr64, 2))
5722 return -1;
5723 addr64 += 2;
5724 if (ir.regmap[X86_RECORD_R8_REGNUM])
5725 {
5726 if (record_arch_list_add_mem (addr64, 8))
5727 return -1;
5728 }
5729 else
5730 {
5731 if (record_arch_list_add_mem (addr64, 4))
5732 return -1;
5733 }
5734 }
5735 }
5736 break;
5737 case 1:
5738 if (ir.mod == 3)
5739 {
5740 switch (ir.rm)
5741 {
5742 case 0: /* monitor */
5743 break;
5744 case 1: /* mwait */
5745 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5746 break;
5747 default:
5748 ir.addr -= 3;
5749 opcode = opcode << 8 | ir.modrm;
5750 goto no_support;
5751 break;
5752 }
5753 }
5754 else
5755 {
5756 /* sidt */
5757 if (ir.override >= 0)
5758 {
5759 if (record_memory_query)
5760 {
5761 int q;
5762
5763 target_terminal_ours ();
5764 q = yquery (_("\
5765 Process record ignores the memory change of instruction at address %s\n\
5766 because it can't get the value of the segment register.\n\
5767 Do you want to stop the program?"),
5768 paddress (gdbarch, ir.orig_addr));
5769 target_terminal_inferior ();
5770 if (q)
5771 return -1;
5772 }
5773 }
5774 else
5775 {
5776 uint64_t addr64;
5777
5778 if (i386_record_lea_modrm_addr (&ir, &addr64))
5779 return -1;
5780 if (record_arch_list_add_mem (addr64, 2))
5781 return -1;
5782 addr64 += 2;
5783 if (ir.regmap[X86_RECORD_R8_REGNUM])
5784 {
5785 if (record_arch_list_add_mem (addr64, 8))
5786 return -1;
5787 }
5788 else
5789 {
5790 if (record_arch_list_add_mem (addr64, 4))
5791 return -1;
5792 }
5793 }
5794 }
5795 break;
5796 case 2: /* lgdt */
5797 if (ir.mod == 3)
5798 {
5799 /* xgetbv */
5800 if (ir.rm == 0)
5801 {
5802 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5803 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5804 break;
5805 }
5806 /* xsetbv */
5807 else if (ir.rm == 1)
5808 break;
5809 }
5810 case 3: /* lidt */
5811 if (ir.mod == 3)
5812 {
5813 ir.addr -= 3;
5814 opcode = opcode << 8 | ir.modrm;
5815 goto no_support;
5816 }
5817 break;
5818 case 4: /* smsw */
5819 if (ir.mod == 3)
5820 {
5821 if (record_arch_list_add_reg (ir.regcache, ir.rm | ir.rex_b))
5822 return -1;
5823 }
5824 else
5825 {
5826 ir.ot = OT_WORD;
5827 if (i386_record_lea_modrm (&ir))
5828 return -1;
5829 }
5830 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5831 break;
5832 case 6: /* lmsw */
5833 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5834 break;
5835 case 7: /* invlpg */
5836 if (ir.mod == 3)
5837 {
5838 if (ir.rm == 0 && ir.regmap[X86_RECORD_R8_REGNUM])
5839 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
5840 else
5841 {
5842 ir.addr -= 3;
5843 opcode = opcode << 8 | ir.modrm;
5844 goto no_support;
5845 }
5846 }
5847 else
5848 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5849 break;
5850 default:
5851 ir.addr -= 3;
5852 opcode = opcode << 8 | ir.modrm;
5853 goto no_support;
5854 break;
5855 }
5856 break;
5857
5858 case 0x0f08: /* invd */
5859 case 0x0f09: /* wbinvd */
5860 break;
5861
5862 case 0x63: /* arpl */
5863 if (i386_record_modrm (&ir))
5864 return -1;
5865 if (ir.mod == 3 || ir.regmap[X86_RECORD_R8_REGNUM])
5866 {
5867 I386_RECORD_ARCH_LIST_ADD_REG (ir.regmap[X86_RECORD_R8_REGNUM]
5868 ? (ir.reg | rex_r) : ir.rm);
5869 }
5870 else
5871 {
5872 ir.ot = ir.dflag ? OT_LONG : OT_WORD;
5873 if (i386_record_lea_modrm (&ir))
5874 return -1;
5875 }
5876 if (!ir.regmap[X86_RECORD_R8_REGNUM])
5877 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5878 break;
5879
5880 case 0x0f02: /* lar */
5881 case 0x0f03: /* lsl */
5882 if (i386_record_modrm (&ir))
5883 return -1;
5884 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5885 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5886 break;
5887
5888 case 0x0f18:
5889 if (i386_record_modrm (&ir))
5890 return -1;
5891 if (ir.mod == 3 && ir.reg == 3)
5892 {
5893 ir.addr -= 3;
5894 opcode = opcode << 8 | ir.modrm;
5895 goto no_support;
5896 }
5897 break;
5898
5899 case 0x0f19:
5900 case 0x0f1a:
5901 case 0x0f1b:
5902 case 0x0f1c:
5903 case 0x0f1d:
5904 case 0x0f1e:
5905 case 0x0f1f:
5906 /* nop (multi byte) */
5907 break;
5908
5909 case 0x0f20: /* mov reg, crN */
5910 case 0x0f22: /* mov crN, reg */
5911 if (i386_record_modrm (&ir))
5912 return -1;
5913 if ((ir.modrm & 0xc0) != 0xc0)
5914 {
5915 ir.addr -= 3;
5916 opcode = opcode << 8 | ir.modrm;
5917 goto no_support;
5918 }
5919 switch (ir.reg)
5920 {
5921 case 0:
5922 case 2:
5923 case 3:
5924 case 4:
5925 case 8:
5926 if (opcode & 2)
5927 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5928 else
5929 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5930 break;
5931 default:
5932 ir.addr -= 3;
5933 opcode = opcode << 8 | ir.modrm;
5934 goto no_support;
5935 break;
5936 }
5937 break;
5938
5939 case 0x0f21: /* mov reg, drN */
5940 case 0x0f23: /* mov drN, reg */
5941 if (i386_record_modrm (&ir))
5942 return -1;
5943 if ((ir.modrm & 0xc0) != 0xc0 || ir.reg == 4
5944 || ir.reg == 5 || ir.reg >= 8)
5945 {
5946 ir.addr -= 3;
5947 opcode = opcode << 8 | ir.modrm;
5948 goto no_support;
5949 }
5950 if (opcode & 2)
5951 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5952 else
5953 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5954 break;
5955
5956 case 0x0f06: /* clts */
5957 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5958 break;
5959
5960 /* MMX 3DNow! SSE SSE2 SSE3 SSSE3 SSE4 */
5961
5962 case 0x0f0d: /* 3DNow! prefetch */
5963 break;
5964
5965 case 0x0f0e: /* 3DNow! femms */
5966 case 0x0f77: /* emms */
5967 if (i386_fpc_regnum_p (gdbarch, I387_FTAG_REGNUM(tdep)))
5968 goto no_support;
5969 record_arch_list_add_reg (ir.regcache, I387_FTAG_REGNUM(tdep));
5970 break;
5971
5972 case 0x0f0f: /* 3DNow! data */
5973 if (i386_record_modrm (&ir))
5974 return -1;
5975 if (target_read_memory (ir.addr, &opcode8, 1))
5976 {
5977 printf_unfiltered (_("Process record: error reading memory at "
5978 "addr %s len = 1.\n"),
5979 paddress (gdbarch, ir.addr));
5980 return -1;
5981 }
5982 ir.addr++;
5983 switch (opcode8)
5984 {
5985 case 0x0c: /* 3DNow! pi2fw */
5986 case 0x0d: /* 3DNow! pi2fd */
5987 case 0x1c: /* 3DNow! pf2iw */
5988 case 0x1d: /* 3DNow! pf2id */
5989 case 0x8a: /* 3DNow! pfnacc */
5990 case 0x8e: /* 3DNow! pfpnacc */
5991 case 0x90: /* 3DNow! pfcmpge */
5992 case 0x94: /* 3DNow! pfmin */
5993 case 0x96: /* 3DNow! pfrcp */
5994 case 0x97: /* 3DNow! pfrsqrt */
5995 case 0x9a: /* 3DNow! pfsub */
5996 case 0x9e: /* 3DNow! pfadd */
5997 case 0xa0: /* 3DNow! pfcmpgt */
5998 case 0xa4: /* 3DNow! pfmax */
5999 case 0xa6: /* 3DNow! pfrcpit1 */
6000 case 0xa7: /* 3DNow! pfrsqit1 */
6001 case 0xaa: /* 3DNow! pfsubr */
6002 case 0xae: /* 3DNow! pfacc */
6003 case 0xb0: /* 3DNow! pfcmpeq */
6004 case 0xb4: /* 3DNow! pfmul */
6005 case 0xb6: /* 3DNow! pfrcpit2 */
6006 case 0xb7: /* 3DNow! pmulhrw */
6007 case 0xbb: /* 3DNow! pswapd */
6008 case 0xbf: /* 3DNow! pavgusb */
6009 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
6010 goto no_support_3dnow_data;
6011 record_arch_list_add_reg (ir.regcache, ir.reg);
6012 break;
6013
6014 default:
6015 no_support_3dnow_data:
6016 opcode = (opcode << 8) | opcode8;
6017 goto no_support;
6018 break;
6019 }
6020 break;
6021
6022 case 0x0faa: /* rsm */
6023 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6024 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6025 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6026 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6027 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
6028 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6029 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
6030 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6031 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6032 break;
6033
6034 case 0x0fae:
6035 if (i386_record_modrm (&ir))
6036 return -1;
6037 switch(ir.reg)
6038 {
6039 case 0: /* fxsave */
6040 {
6041 uint64_t tmpu64;
6042
6043 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6044 if (i386_record_lea_modrm_addr (&ir, &tmpu64))
6045 return -1;
6046 if (record_arch_list_add_mem (tmpu64, 512))
6047 return -1;
6048 }
6049 break;
6050
6051 case 1: /* fxrstor */
6052 {
6053 int i;
6054
6055 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6056
6057 for (i = I387_MM0_REGNUM (tdep);
6058 i386_mmx_regnum_p (gdbarch, i); i++)
6059 record_arch_list_add_reg (ir.regcache, i);
6060
6061 for (i = I387_XMM0_REGNUM (tdep);
6062 i386_xmm_regnum_p (gdbarch, i); i++)
6063 record_arch_list_add_reg (ir.regcache, i);
6064
6065 if (i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
6066 record_arch_list_add_reg (ir.regcache, I387_MXCSR_REGNUM(tdep));
6067
6068 for (i = I387_ST0_REGNUM (tdep);
6069 i386_fp_regnum_p (gdbarch, i); i++)
6070 record_arch_list_add_reg (ir.regcache, i);
6071
6072 for (i = I387_FCTRL_REGNUM (tdep);
6073 i386_fpc_regnum_p (gdbarch, i); i++)
6074 record_arch_list_add_reg (ir.regcache, i);
6075 }
6076 break;
6077
6078 case 2: /* ldmxcsr */
6079 if (!i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
6080 goto no_support;
6081 record_arch_list_add_reg (ir.regcache, I387_MXCSR_REGNUM(tdep));
6082 break;
6083
6084 case 3: /* stmxcsr */
6085 ir.ot = OT_LONG;
6086 if (i386_record_lea_modrm (&ir))
6087 return -1;
6088 break;
6089
6090 case 5: /* lfence */
6091 case 6: /* mfence */
6092 case 7: /* sfence clflush */
6093 break;
6094
6095 default:
6096 opcode = (opcode << 8) | ir.modrm;
6097 goto no_support;
6098 break;
6099 }
6100 break;
6101
6102 case 0x0fc3: /* movnti */
6103 ir.ot = (ir.dflag == 2) ? OT_QUAD : OT_LONG;
6104 if (i386_record_modrm (&ir))
6105 return -1;
6106 if (ir.mod == 3)
6107 goto no_support;
6108 ir.reg |= rex_r;
6109 if (i386_record_lea_modrm (&ir))
6110 return -1;
6111 break;
6112
6113 /* Add prefix to opcode. */
6114 case 0x0f10:
6115 case 0x0f11:
6116 case 0x0f12:
6117 case 0x0f13:
6118 case 0x0f14:
6119 case 0x0f15:
6120 case 0x0f16:
6121 case 0x0f17:
6122 case 0x0f28:
6123 case 0x0f29:
6124 case 0x0f2a:
6125 case 0x0f2b:
6126 case 0x0f2c:
6127 case 0x0f2d:
6128 case 0x0f2e:
6129 case 0x0f2f:
6130 case 0x0f38:
6131 case 0x0f39:
6132 case 0x0f3a:
6133 case 0x0f50:
6134 case 0x0f51:
6135 case 0x0f52:
6136 case 0x0f53:
6137 case 0x0f54:
6138 case 0x0f55:
6139 case 0x0f56:
6140 case 0x0f57:
6141 case 0x0f58:
6142 case 0x0f59:
6143 case 0x0f5a:
6144 case 0x0f5b:
6145 case 0x0f5c:
6146 case 0x0f5d:
6147 case 0x0f5e:
6148 case 0x0f5f:
6149 case 0x0f60:
6150 case 0x0f61:
6151 case 0x0f62:
6152 case 0x0f63:
6153 case 0x0f64:
6154 case 0x0f65:
6155 case 0x0f66:
6156 case 0x0f67:
6157 case 0x0f68:
6158 case 0x0f69:
6159 case 0x0f6a:
6160 case 0x0f6b:
6161 case 0x0f6c:
6162 case 0x0f6d:
6163 case 0x0f6e:
6164 case 0x0f6f:
6165 case 0x0f70:
6166 case 0x0f71:
6167 case 0x0f72:
6168 case 0x0f73:
6169 case 0x0f74:
6170 case 0x0f75:
6171 case 0x0f76:
6172 case 0x0f7c:
6173 case 0x0f7d:
6174 case 0x0f7e:
6175 case 0x0f7f:
6176 case 0x0fb8:
6177 case 0x0fc2:
6178 case 0x0fc4:
6179 case 0x0fc5:
6180 case 0x0fc6:
6181 case 0x0fd0:
6182 case 0x0fd1:
6183 case 0x0fd2:
6184 case 0x0fd3:
6185 case 0x0fd4:
6186 case 0x0fd5:
6187 case 0x0fd6:
6188 case 0x0fd7:
6189 case 0x0fd8:
6190 case 0x0fd9:
6191 case 0x0fda:
6192 case 0x0fdb:
6193 case 0x0fdc:
6194 case 0x0fdd:
6195 case 0x0fde:
6196 case 0x0fdf:
6197 case 0x0fe0:
6198 case 0x0fe1:
6199 case 0x0fe2:
6200 case 0x0fe3:
6201 case 0x0fe4:
6202 case 0x0fe5:
6203 case 0x0fe6:
6204 case 0x0fe7:
6205 case 0x0fe8:
6206 case 0x0fe9:
6207 case 0x0fea:
6208 case 0x0feb:
6209 case 0x0fec:
6210 case 0x0fed:
6211 case 0x0fee:
6212 case 0x0fef:
6213 case 0x0ff0:
6214 case 0x0ff1:
6215 case 0x0ff2:
6216 case 0x0ff3:
6217 case 0x0ff4:
6218 case 0x0ff5:
6219 case 0x0ff6:
6220 case 0x0ff7:
6221 case 0x0ff8:
6222 case 0x0ff9:
6223 case 0x0ffa:
6224 case 0x0ffb:
6225 case 0x0ffc:
6226 case 0x0ffd:
6227 case 0x0ffe:
6228 switch (prefixes)
6229 {
6230 case PREFIX_REPNZ:
6231 opcode |= 0xf20000;
6232 break;
6233 case PREFIX_DATA:
6234 opcode |= 0x660000;
6235 break;
6236 case PREFIX_REPZ:
6237 opcode |= 0xf30000;
6238 break;
6239 }
6240 reswitch_prefix_add:
6241 switch (opcode)
6242 {
6243 case 0x0f38:
6244 case 0x660f38:
6245 case 0xf20f38:
6246 case 0x0f3a:
6247 case 0x660f3a:
6248 if (target_read_memory (ir.addr, &opcode8, 1))
6249 {
6250 printf_unfiltered (_("Process record: error reading memory at "
6251 "addr %s len = 1.\n"),
6252 paddress (gdbarch, ir.addr));
6253 return -1;
6254 }
6255 ir.addr++;
6256 opcode = (uint32_t) opcode8 | opcode << 8;
6257 goto reswitch_prefix_add;
6258 break;
6259
6260 case 0x0f10: /* movups */
6261 case 0x660f10: /* movupd */
6262 case 0xf30f10: /* movss */
6263 case 0xf20f10: /* movsd */
6264 case 0x0f12: /* movlps */
6265 case 0x660f12: /* movlpd */
6266 case 0xf30f12: /* movsldup */
6267 case 0xf20f12: /* movddup */
6268 case 0x0f14: /* unpcklps */
6269 case 0x660f14: /* unpcklpd */
6270 case 0x0f15: /* unpckhps */
6271 case 0x660f15: /* unpckhpd */
6272 case 0x0f16: /* movhps */
6273 case 0x660f16: /* movhpd */
6274 case 0xf30f16: /* movshdup */
6275 case 0x0f28: /* movaps */
6276 case 0x660f28: /* movapd */
6277 case 0x0f2a: /* cvtpi2ps */
6278 case 0x660f2a: /* cvtpi2pd */
6279 case 0xf30f2a: /* cvtsi2ss */
6280 case 0xf20f2a: /* cvtsi2sd */
6281 case 0x0f2c: /* cvttps2pi */
6282 case 0x660f2c: /* cvttpd2pi */
6283 case 0x0f2d: /* cvtps2pi */
6284 case 0x660f2d: /* cvtpd2pi */
6285 case 0x660f3800: /* pshufb */
6286 case 0x660f3801: /* phaddw */
6287 case 0x660f3802: /* phaddd */
6288 case 0x660f3803: /* phaddsw */
6289 case 0x660f3804: /* pmaddubsw */
6290 case 0x660f3805: /* phsubw */
6291 case 0x660f3806: /* phsubd */
6292 case 0x660f3807: /* phsubsw */
6293 case 0x660f3808: /* psignb */
6294 case 0x660f3809: /* psignw */
6295 case 0x660f380a: /* psignd */
6296 case 0x660f380b: /* pmulhrsw */
6297 case 0x660f3810: /* pblendvb */
6298 case 0x660f3814: /* blendvps */
6299 case 0x660f3815: /* blendvpd */
6300 case 0x660f381c: /* pabsb */
6301 case 0x660f381d: /* pabsw */
6302 case 0x660f381e: /* pabsd */
6303 case 0x660f3820: /* pmovsxbw */
6304 case 0x660f3821: /* pmovsxbd */
6305 case 0x660f3822: /* pmovsxbq */
6306 case 0x660f3823: /* pmovsxwd */
6307 case 0x660f3824: /* pmovsxwq */
6308 case 0x660f3825: /* pmovsxdq */
6309 case 0x660f3828: /* pmuldq */
6310 case 0x660f3829: /* pcmpeqq */
6311 case 0x660f382a: /* movntdqa */
6312 case 0x660f3a08: /* roundps */
6313 case 0x660f3a09: /* roundpd */
6314 case 0x660f3a0a: /* roundss */
6315 case 0x660f3a0b: /* roundsd */
6316 case 0x660f3a0c: /* blendps */
6317 case 0x660f3a0d: /* blendpd */
6318 case 0x660f3a0e: /* pblendw */
6319 case 0x660f3a0f: /* palignr */
6320 case 0x660f3a20: /* pinsrb */
6321 case 0x660f3a21: /* insertps */
6322 case 0x660f3a22: /* pinsrd pinsrq */
6323 case 0x660f3a40: /* dpps */
6324 case 0x660f3a41: /* dppd */
6325 case 0x660f3a42: /* mpsadbw */
6326 case 0x660f3a60: /* pcmpestrm */
6327 case 0x660f3a61: /* pcmpestri */
6328 case 0x660f3a62: /* pcmpistrm */
6329 case 0x660f3a63: /* pcmpistri */
6330 case 0x0f51: /* sqrtps */
6331 case 0x660f51: /* sqrtpd */
6332 case 0xf20f51: /* sqrtsd */
6333 case 0xf30f51: /* sqrtss */
6334 case 0x0f52: /* rsqrtps */
6335 case 0xf30f52: /* rsqrtss */
6336 case 0x0f53: /* rcpps */
6337 case 0xf30f53: /* rcpss */
6338 case 0x0f54: /* andps */
6339 case 0x660f54: /* andpd */
6340 case 0x0f55: /* andnps */
6341 case 0x660f55: /* andnpd */
6342 case 0x0f56: /* orps */
6343 case 0x660f56: /* orpd */
6344 case 0x0f57: /* xorps */
6345 case 0x660f57: /* xorpd */
6346 case 0x0f58: /* addps */
6347 case 0x660f58: /* addpd */
6348 case 0xf20f58: /* addsd */
6349 case 0xf30f58: /* addss */
6350 case 0x0f59: /* mulps */
6351 case 0x660f59: /* mulpd */
6352 case 0xf20f59: /* mulsd */
6353 case 0xf30f59: /* mulss */
6354 case 0x0f5a: /* cvtps2pd */
6355 case 0x660f5a: /* cvtpd2ps */
6356 case 0xf20f5a: /* cvtsd2ss */
6357 case 0xf30f5a: /* cvtss2sd */
6358 case 0x0f5b: /* cvtdq2ps */
6359 case 0x660f5b: /* cvtps2dq */
6360 case 0xf30f5b: /* cvttps2dq */
6361 case 0x0f5c: /* subps */
6362 case 0x660f5c: /* subpd */
6363 case 0xf20f5c: /* subsd */
6364 case 0xf30f5c: /* subss */
6365 case 0x0f5d: /* minps */
6366 case 0x660f5d: /* minpd */
6367 case 0xf20f5d: /* minsd */
6368 case 0xf30f5d: /* minss */
6369 case 0x0f5e: /* divps */
6370 case 0x660f5e: /* divpd */
6371 case 0xf20f5e: /* divsd */
6372 case 0xf30f5e: /* divss */
6373 case 0x0f5f: /* maxps */
6374 case 0x660f5f: /* maxpd */
6375 case 0xf20f5f: /* maxsd */
6376 case 0xf30f5f: /* maxss */
6377 case 0x660f60: /* punpcklbw */
6378 case 0x660f61: /* punpcklwd */
6379 case 0x660f62: /* punpckldq */
6380 case 0x660f63: /* packsswb */
6381 case 0x660f64: /* pcmpgtb */
6382 case 0x660f65: /* pcmpgtw */
6383 case 0x660f66: /* pcmpgtd */
6384 case 0x660f67: /* packuswb */
6385 case 0x660f68: /* punpckhbw */
6386 case 0x660f69: /* punpckhwd */
6387 case 0x660f6a: /* punpckhdq */
6388 case 0x660f6b: /* packssdw */
6389 case 0x660f6c: /* punpcklqdq */
6390 case 0x660f6d: /* punpckhqdq */
6391 case 0x660f6e: /* movd */
6392 case 0x660f6f: /* movdqa */
6393 case 0xf30f6f: /* movdqu */
6394 case 0x660f70: /* pshufd */
6395 case 0xf20f70: /* pshuflw */
6396 case 0xf30f70: /* pshufhw */
6397 case 0x660f74: /* pcmpeqb */
6398 case 0x660f75: /* pcmpeqw */
6399 case 0x660f76: /* pcmpeqd */
6400 case 0x660f7c: /* haddpd */
6401 case 0xf20f7c: /* haddps */
6402 case 0x660f7d: /* hsubpd */
6403 case 0xf20f7d: /* hsubps */
6404 case 0xf30f7e: /* movq */
6405 case 0x0fc2: /* cmpps */
6406 case 0x660fc2: /* cmppd */
6407 case 0xf20fc2: /* cmpsd */
6408 case 0xf30fc2: /* cmpss */
6409 case 0x660fc4: /* pinsrw */
6410 case 0x0fc6: /* shufps */
6411 case 0x660fc6: /* shufpd */
6412 case 0x660fd0: /* addsubpd */
6413 case 0xf20fd0: /* addsubps */
6414 case 0x660fd1: /* psrlw */
6415 case 0x660fd2: /* psrld */
6416 case 0x660fd3: /* psrlq */
6417 case 0x660fd4: /* paddq */
6418 case 0x660fd5: /* pmullw */
6419 case 0xf30fd6: /* movq2dq */
6420 case 0x660fd8: /* psubusb */
6421 case 0x660fd9: /* psubusw */
6422 case 0x660fda: /* pminub */
6423 case 0x660fdb: /* pand */
6424 case 0x660fdc: /* paddusb */
6425 case 0x660fdd: /* paddusw */
6426 case 0x660fde: /* pmaxub */
6427 case 0x660fdf: /* pandn */
6428 case 0x660fe0: /* pavgb */
6429 case 0x660fe1: /* psraw */
6430 case 0x660fe2: /* psrad */
6431 case 0x660fe3: /* pavgw */
6432 case 0x660fe4: /* pmulhuw */
6433 case 0x660fe5: /* pmulhw */
6434 case 0x660fe6: /* cvttpd2dq */
6435 case 0xf20fe6: /* cvtpd2dq */
6436 case 0xf30fe6: /* cvtdq2pd */
6437 case 0x660fe8: /* psubsb */
6438 case 0x660fe9: /* psubsw */
6439 case 0x660fea: /* pminsw */
6440 case 0x660feb: /* por */
6441 case 0x660fec: /* paddsb */
6442 case 0x660fed: /* paddsw */
6443 case 0x660fee: /* pmaxsw */
6444 case 0x660fef: /* pxor */
6445 case 0xf20ff0: /* lddqu */
6446 case 0x660ff1: /* psllw */
6447 case 0x660ff2: /* pslld */
6448 case 0x660ff3: /* psllq */
6449 case 0x660ff4: /* pmuludq */
6450 case 0x660ff5: /* pmaddwd */
6451 case 0x660ff6: /* psadbw */
6452 case 0x660ff8: /* psubb */
6453 case 0x660ff9: /* psubw */
6454 case 0x660ffa: /* psubd */
6455 case 0x660ffb: /* psubq */
6456 case 0x660ffc: /* paddb */
6457 case 0x660ffd: /* paddw */
6458 case 0x660ffe: /* paddd */
6459 if (i386_record_modrm (&ir))
6460 return -1;
6461 ir.reg |= rex_r;
6462 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.reg))
6463 goto no_support;
6464 record_arch_list_add_reg (ir.regcache,
6465 I387_XMM0_REGNUM (tdep) + ir.reg);
6466 if ((opcode & 0xfffffffc) == 0x660f3a60)
6467 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6468 break;
6469
6470 case 0x0f11: /* movups */
6471 case 0x660f11: /* movupd */
6472 case 0xf30f11: /* movss */
6473 case 0xf20f11: /* movsd */
6474 case 0x0f13: /* movlps */
6475 case 0x660f13: /* movlpd */
6476 case 0x0f17: /* movhps */
6477 case 0x660f17: /* movhpd */
6478 case 0x0f29: /* movaps */
6479 case 0x660f29: /* movapd */
6480 case 0x660f3a14: /* pextrb */
6481 case 0x660f3a15: /* pextrw */
6482 case 0x660f3a16: /* pextrd pextrq */
6483 case 0x660f3a17: /* extractps */
6484 case 0x660f7f: /* movdqa */
6485 case 0xf30f7f: /* movdqu */
6486 if (i386_record_modrm (&ir))
6487 return -1;
6488 if (ir.mod == 3)
6489 {
6490 if (opcode == 0x0f13 || opcode == 0x660f13
6491 || opcode == 0x0f17 || opcode == 0x660f17)
6492 goto no_support;
6493 ir.rm |= ir.rex_b;
6494 if (!i386_xmm_regnum_p (gdbarch,
6495 I387_XMM0_REGNUM (tdep) + ir.rm))
6496 goto no_support;
6497 record_arch_list_add_reg (ir.regcache,
6498 I387_XMM0_REGNUM (tdep) + ir.rm);
6499 }
6500 else
6501 {
6502 switch (opcode)
6503 {
6504 case 0x660f3a14:
6505 ir.ot = OT_BYTE;
6506 break;
6507 case 0x660f3a15:
6508 ir.ot = OT_WORD;
6509 break;
6510 case 0x660f3a16:
6511 ir.ot = OT_LONG;
6512 break;
6513 case 0x660f3a17:
6514 ir.ot = OT_QUAD;
6515 break;
6516 default:
6517 ir.ot = OT_DQUAD;
6518 break;
6519 }
6520 if (i386_record_lea_modrm (&ir))
6521 return -1;
6522 }
6523 break;
6524
6525 case 0x0f2b: /* movntps */
6526 case 0x660f2b: /* movntpd */
6527 case 0x0fe7: /* movntq */
6528 case 0x660fe7: /* movntdq */
6529 if (ir.mod == 3)
6530 goto no_support;
6531 if (opcode == 0x0fe7)
6532 ir.ot = OT_QUAD;
6533 else
6534 ir.ot = OT_DQUAD;
6535 if (i386_record_lea_modrm (&ir))
6536 return -1;
6537 break;
6538
6539 case 0xf30f2c: /* cvttss2si */
6540 case 0xf20f2c: /* cvttsd2si */
6541 case 0xf30f2d: /* cvtss2si */
6542 case 0xf20f2d: /* cvtsd2si */
6543 case 0xf20f38f0: /* crc32 */
6544 case 0xf20f38f1: /* crc32 */
6545 case 0x0f50: /* movmskps */
6546 case 0x660f50: /* movmskpd */
6547 case 0x0fc5: /* pextrw */
6548 case 0x660fc5: /* pextrw */
6549 case 0x0fd7: /* pmovmskb */
6550 case 0x660fd7: /* pmovmskb */
6551 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6552 break;
6553
6554 case 0x0f3800: /* pshufb */
6555 case 0x0f3801: /* phaddw */
6556 case 0x0f3802: /* phaddd */
6557 case 0x0f3803: /* phaddsw */
6558 case 0x0f3804: /* pmaddubsw */
6559 case 0x0f3805: /* phsubw */
6560 case 0x0f3806: /* phsubd */
6561 case 0x0f3807: /* phsubsw */
6562 case 0x0f3808: /* psignb */
6563 case 0x0f3809: /* psignw */
6564 case 0x0f380a: /* psignd */
6565 case 0x0f380b: /* pmulhrsw */
6566 case 0x0f381c: /* pabsb */
6567 case 0x0f381d: /* pabsw */
6568 case 0x0f381e: /* pabsd */
6569 case 0x0f382b: /* packusdw */
6570 case 0x0f3830: /* pmovzxbw */
6571 case 0x0f3831: /* pmovzxbd */
6572 case 0x0f3832: /* pmovzxbq */
6573 case 0x0f3833: /* pmovzxwd */
6574 case 0x0f3834: /* pmovzxwq */
6575 case 0x0f3835: /* pmovzxdq */
6576 case 0x0f3837: /* pcmpgtq */
6577 case 0x0f3838: /* pminsb */
6578 case 0x0f3839: /* pminsd */
6579 case 0x0f383a: /* pminuw */
6580 case 0x0f383b: /* pminud */
6581 case 0x0f383c: /* pmaxsb */
6582 case 0x0f383d: /* pmaxsd */
6583 case 0x0f383e: /* pmaxuw */
6584 case 0x0f383f: /* pmaxud */
6585 case 0x0f3840: /* pmulld */
6586 case 0x0f3841: /* phminposuw */
6587 case 0x0f3a0f: /* palignr */
6588 case 0x0f60: /* punpcklbw */
6589 case 0x0f61: /* punpcklwd */
6590 case 0x0f62: /* punpckldq */
6591 case 0x0f63: /* packsswb */
6592 case 0x0f64: /* pcmpgtb */
6593 case 0x0f65: /* pcmpgtw */
6594 case 0x0f66: /* pcmpgtd */
6595 case 0x0f67: /* packuswb */
6596 case 0x0f68: /* punpckhbw */
6597 case 0x0f69: /* punpckhwd */
6598 case 0x0f6a: /* punpckhdq */
6599 case 0x0f6b: /* packssdw */
6600 case 0x0f6e: /* movd */
6601 case 0x0f6f: /* movq */
6602 case 0x0f70: /* pshufw */
6603 case 0x0f74: /* pcmpeqb */
6604 case 0x0f75: /* pcmpeqw */
6605 case 0x0f76: /* pcmpeqd */
6606 case 0x0fc4: /* pinsrw */
6607 case 0x0fd1: /* psrlw */
6608 case 0x0fd2: /* psrld */
6609 case 0x0fd3: /* psrlq */
6610 case 0x0fd4: /* paddq */
6611 case 0x0fd5: /* pmullw */
6612 case 0xf20fd6: /* movdq2q */
6613 case 0x0fd8: /* psubusb */
6614 case 0x0fd9: /* psubusw */
6615 case 0x0fda: /* pminub */
6616 case 0x0fdb: /* pand */
6617 case 0x0fdc: /* paddusb */
6618 case 0x0fdd: /* paddusw */
6619 case 0x0fde: /* pmaxub */
6620 case 0x0fdf: /* pandn */
6621 case 0x0fe0: /* pavgb */
6622 case 0x0fe1: /* psraw */
6623 case 0x0fe2: /* psrad */
6624 case 0x0fe3: /* pavgw */
6625 case 0x0fe4: /* pmulhuw */
6626 case 0x0fe5: /* pmulhw */
6627 case 0x0fe8: /* psubsb */
6628 case 0x0fe9: /* psubsw */
6629 case 0x0fea: /* pminsw */
6630 case 0x0feb: /* por */
6631 case 0x0fec: /* paddsb */
6632 case 0x0fed: /* paddsw */
6633 case 0x0fee: /* pmaxsw */
6634 case 0x0fef: /* pxor */
6635 case 0x0ff1: /* psllw */
6636 case 0x0ff2: /* pslld */
6637 case 0x0ff3: /* psllq */
6638 case 0x0ff4: /* pmuludq */
6639 case 0x0ff5: /* pmaddwd */
6640 case 0x0ff6: /* psadbw */
6641 case 0x0ff8: /* psubb */
6642 case 0x0ff9: /* psubw */
6643 case 0x0ffa: /* psubd */
6644 case 0x0ffb: /* psubq */
6645 case 0x0ffc: /* paddb */
6646 case 0x0ffd: /* paddw */
6647 case 0x0ffe: /* paddd */
6648 if (i386_record_modrm (&ir))
6649 return -1;
6650 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
6651 goto no_support;
6652 record_arch_list_add_reg (ir.regcache,
6653 I387_MM0_REGNUM (tdep) + ir.reg);
6654 break;
6655
6656 case 0x0f71: /* psllw */
6657 case 0x0f72: /* pslld */
6658 case 0x0f73: /* psllq */
6659 if (i386_record_modrm (&ir))
6660 return -1;
6661 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
6662 goto no_support;
6663 record_arch_list_add_reg (ir.regcache,
6664 I387_MM0_REGNUM (tdep) + ir.rm);
6665 break;
6666
6667 case 0x660f71: /* psllw */
6668 case 0x660f72: /* pslld */
6669 case 0x660f73: /* psllq */
6670 if (i386_record_modrm (&ir))
6671 return -1;
6672 ir.rm |= ir.rex_b;
6673 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.rm))
6674 goto no_support;
6675 record_arch_list_add_reg (ir.regcache,
6676 I387_XMM0_REGNUM (tdep) + ir.rm);
6677 break;
6678
6679 case 0x0f7e: /* movd */
6680 case 0x660f7e: /* movd */
6681 if (i386_record_modrm (&ir))
6682 return -1;
6683 if (ir.mod == 3)
6684 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6685 else
6686 {
6687 if (ir.dflag == 2)
6688 ir.ot = OT_QUAD;
6689 else
6690 ir.ot = OT_LONG;
6691 if (i386_record_lea_modrm (&ir))
6692 return -1;
6693 }
6694 break;
6695
6696 case 0x0f7f: /* movq */
6697 if (i386_record_modrm (&ir))
6698 return -1;
6699 if (ir.mod == 3)
6700 {
6701 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
6702 goto no_support;
6703 record_arch_list_add_reg (ir.regcache,
6704 I387_MM0_REGNUM (tdep) + ir.rm);
6705 }
6706 else
6707 {
6708 ir.ot = OT_QUAD;
6709 if (i386_record_lea_modrm (&ir))
6710 return -1;
6711 }
6712 break;
6713
6714 case 0xf30fb8: /* popcnt */
6715 if (i386_record_modrm (&ir))
6716 return -1;
6717 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
6718 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6719 break;
6720
6721 case 0x660fd6: /* movq */
6722 if (i386_record_modrm (&ir))
6723 return -1;
6724 if (ir.mod == 3)
6725 {
6726 ir.rm |= ir.rex_b;
6727 if (!i386_xmm_regnum_p (gdbarch,
6728 I387_XMM0_REGNUM (tdep) + ir.rm))
6729 goto no_support;
6730 record_arch_list_add_reg (ir.regcache,
6731 I387_XMM0_REGNUM (tdep) + ir.rm);
6732 }
6733 else
6734 {
6735 ir.ot = OT_QUAD;
6736 if (i386_record_lea_modrm (&ir))
6737 return -1;
6738 }
6739 break;
6740
6741 case 0x660f3817: /* ptest */
6742 case 0x0f2e: /* ucomiss */
6743 case 0x660f2e: /* ucomisd */
6744 case 0x0f2f: /* comiss */
6745 case 0x660f2f: /* comisd */
6746 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6747 break;
6748
6749 case 0x0ff7: /* maskmovq */
6750 regcache_raw_read_unsigned (ir.regcache,
6751 ir.regmap[X86_RECORD_REDI_REGNUM],
6752 &addr);
6753 if (record_arch_list_add_mem (addr, 64))
6754 return -1;
6755 break;
6756
6757 case 0x660ff7: /* maskmovdqu */
6758 regcache_raw_read_unsigned (ir.regcache,
6759 ir.regmap[X86_RECORD_REDI_REGNUM],
6760 &addr);
6761 if (record_arch_list_add_mem (addr, 128))
6762 return -1;
6763 break;
6764
6765 default:
6766 goto no_support;
6767 break;
6768 }
6769 break;
6770
6771 default:
6772 goto no_support;
6773 break;
6774 }
6775
6776 /* In the future, maybe still need to deal with need_dasm. */
6777 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REIP_REGNUM);
6778 if (record_arch_list_add_end ())
6779 return -1;
6780
6781 return 0;
6782
6783 no_support:
6784 printf_unfiltered (_("Process record does not support instruction 0x%02x "
6785 "at address %s.\n"),
6786 (unsigned int) (opcode),
6787 paddress (gdbarch, ir.orig_addr));
6788 return -1;
6789 }
6790
6791 static const int i386_record_regmap[] =
6792 {
6793 I386_EAX_REGNUM, I386_ECX_REGNUM, I386_EDX_REGNUM, I386_EBX_REGNUM,
6794 I386_ESP_REGNUM, I386_EBP_REGNUM, I386_ESI_REGNUM, I386_EDI_REGNUM,
6795 0, 0, 0, 0, 0, 0, 0, 0,
6796 I386_EIP_REGNUM, I386_EFLAGS_REGNUM, I386_CS_REGNUM, I386_SS_REGNUM,
6797 I386_DS_REGNUM, I386_ES_REGNUM, I386_FS_REGNUM, I386_GS_REGNUM
6798 };
6799
6800 /* Check that the given address appears suitable for a fast
6801 tracepoint, which on x86 means that we need an instruction of at
6802 least 5 bytes, so that we can overwrite it with a 4-byte-offset
6803 jump and not have to worry about program jumps to an address in the
6804 middle of the tracepoint jump. Returns 1 if OK, and writes a size
6805 of instruction to replace, and 0 if not, plus an explanatory
6806 string. */
6807
6808 static int
6809 i386_fast_tracepoint_valid_at (struct gdbarch *gdbarch,
6810 CORE_ADDR addr, int *isize, char **msg)
6811 {
6812 int len, jumplen;
6813 static struct ui_file *gdb_null = NULL;
6814
6815 /* This is based on the target agent using a 4-byte relative jump.
6816 Alternate future possibilities include 8-byte offset for x86-84,
6817 or 3-byte jumps if the program has trampoline space close by. */
6818 jumplen = 5;
6819
6820 /* Dummy file descriptor for the disassembler. */
6821 if (!gdb_null)
6822 gdb_null = ui_file_new ();
6823
6824 /* Check for fit. */
6825 len = gdb_print_insn (gdbarch, addr, gdb_null, NULL);
6826 if (len < jumplen)
6827 {
6828 /* Return a bit of target-specific detail to add to the caller's
6829 generic failure message. */
6830 if (msg)
6831 *msg = xstrprintf (_("; instruction is only %d bytes long, "
6832 "need at least %d bytes for the jump"),
6833 len, jumplen);
6834 return 0;
6835 }
6836
6837 if (isize)
6838 *isize = len;
6839 if (msg)
6840 *msg = NULL;
6841 return 1;
6842 }
6843
6844 static int
6845 i386_validate_tdesc_p (struct gdbarch_tdep *tdep,
6846 struct tdesc_arch_data *tdesc_data)
6847 {
6848 const struct target_desc *tdesc = tdep->tdesc;
6849 const struct tdesc_feature *feature_core;
6850 const struct tdesc_feature *feature_sse, *feature_avx;
6851 int i, num_regs, valid_p;
6852
6853 if (! tdesc_has_registers (tdesc))
6854 return 0;
6855
6856 /* Get core registers. */
6857 feature_core = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.core");
6858 if (feature_core == NULL)
6859 return 0;
6860
6861 /* Get SSE registers. */
6862 feature_sse = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.sse");
6863
6864 /* Try AVX registers. */
6865 feature_avx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx");
6866
6867 valid_p = 1;
6868
6869 /* The XCR0 bits. */
6870 if (feature_avx)
6871 {
6872 /* AVX register description requires SSE register description. */
6873 if (!feature_sse)
6874 return 0;
6875
6876 tdep->xcr0 = I386_XSTATE_AVX_MASK;
6877
6878 /* It may have been set by OSABI initialization function. */
6879 if (tdep->num_ymm_regs == 0)
6880 {
6881 tdep->ymmh_register_names = i386_ymmh_names;
6882 tdep->num_ymm_regs = 8;
6883 tdep->ymm0h_regnum = I386_YMM0H_REGNUM;
6884 }
6885
6886 for (i = 0; i < tdep->num_ymm_regs; i++)
6887 valid_p &= tdesc_numbered_register (feature_avx, tdesc_data,
6888 tdep->ymm0h_regnum + i,
6889 tdep->ymmh_register_names[i]);
6890 }
6891 else if (feature_sse)
6892 tdep->xcr0 = I386_XSTATE_SSE_MASK;
6893 else
6894 {
6895 tdep->xcr0 = I386_XSTATE_X87_MASK;
6896 tdep->num_xmm_regs = 0;
6897 }
6898
6899 num_regs = tdep->num_core_regs;
6900 for (i = 0; i < num_regs; i++)
6901 valid_p &= tdesc_numbered_register (feature_core, tdesc_data, i,
6902 tdep->register_names[i]);
6903
6904 if (feature_sse)
6905 {
6906 /* Need to include %mxcsr, so add one. */
6907 num_regs += tdep->num_xmm_regs + 1;
6908 for (; i < num_regs; i++)
6909 valid_p &= tdesc_numbered_register (feature_sse, tdesc_data, i,
6910 tdep->register_names[i]);
6911 }
6912
6913 return valid_p;
6914 }
6915
6916 \f
6917 static struct gdbarch *
6918 i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
6919 {
6920 struct gdbarch_tdep *tdep;
6921 struct gdbarch *gdbarch;
6922 struct tdesc_arch_data *tdesc_data;
6923 const struct target_desc *tdesc;
6924 int mm0_regnum;
6925 int ymm0_regnum;
6926
6927 /* If there is already a candidate, use it. */
6928 arches = gdbarch_list_lookup_by_info (arches, &info);
6929 if (arches != NULL)
6930 return arches->gdbarch;
6931
6932 /* Allocate space for the new architecture. */
6933 tdep = XCALLOC (1, struct gdbarch_tdep);
6934 gdbarch = gdbarch_alloc (&info, tdep);
6935
6936 /* General-purpose registers. */
6937 tdep->gregset = NULL;
6938 tdep->gregset_reg_offset = NULL;
6939 tdep->gregset_num_regs = I386_NUM_GREGS;
6940 tdep->sizeof_gregset = 0;
6941
6942 /* Floating-point registers. */
6943 tdep->fpregset = NULL;
6944 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
6945
6946 tdep->xstateregset = NULL;
6947
6948 /* The default settings include the FPU registers, the MMX registers
6949 and the SSE registers. This can be overridden for a specific ABI
6950 by adjusting the members `st0_regnum', `mm0_regnum' and
6951 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
6952 will show up in the output of "info all-registers". */
6953
6954 tdep->st0_regnum = I386_ST0_REGNUM;
6955
6956 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
6957 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
6958
6959 tdep->jb_pc_offset = -1;
6960 tdep->struct_return = pcc_struct_return;
6961 tdep->sigtramp_start = 0;
6962 tdep->sigtramp_end = 0;
6963 tdep->sigtramp_p = i386_sigtramp_p;
6964 tdep->sigcontext_addr = NULL;
6965 tdep->sc_reg_offset = NULL;
6966 tdep->sc_pc_offset = -1;
6967 tdep->sc_sp_offset = -1;
6968
6969 tdep->xsave_xcr0_offset = -1;
6970
6971 tdep->record_regmap = i386_record_regmap;
6972
6973 /* The format used for `long double' on almost all i386 targets is
6974 the i387 extended floating-point format. In fact, of all targets
6975 in the GCC 2.95 tree, only OSF/1 does it different, and insists
6976 on having a `long double' that's not `long' at all. */
6977 set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext);
6978
6979 /* Although the i387 extended floating-point has only 80 significant
6980 bits, a `long double' actually takes up 96, probably to enforce
6981 alignment. */
6982 set_gdbarch_long_double_bit (gdbarch, 96);
6983
6984 /* Register numbers of various important registers. */
6985 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
6986 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
6987 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
6988 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
6989
6990 /* NOTE: kettenis/20040418: GCC does have two possible register
6991 numbering schemes on the i386: dbx and SVR4. These schemes
6992 differ in how they number %ebp, %esp, %eflags, and the
6993 floating-point registers, and are implemented by the arrays
6994 dbx_register_map[] and svr4_dbx_register_map in
6995 gcc/config/i386.c. GCC also defines a third numbering scheme in
6996 gcc/config/i386.c, which it designates as the "default" register
6997 map used in 64bit mode. This last register numbering scheme is
6998 implemented in dbx64_register_map, and is used for AMD64; see
6999 amd64-tdep.c.
7000
7001 Currently, each GCC i386 target always uses the same register
7002 numbering scheme across all its supported debugging formats
7003 i.e. SDB (COFF), stabs and DWARF 2. This is because
7004 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
7005 DBX_REGISTER_NUMBER macro which is defined by each target's
7006 respective config header in a manner independent of the requested
7007 output debugging format.
7008
7009 This does not match the arrangement below, which presumes that
7010 the SDB and stabs numbering schemes differ from the DWARF and
7011 DWARF 2 ones. The reason for this arrangement is that it is
7012 likely to get the numbering scheme for the target's
7013 default/native debug format right. For targets where GCC is the
7014 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
7015 targets where the native toolchain uses a different numbering
7016 scheme for a particular debug format (stabs-in-ELF on Solaris)
7017 the defaults below will have to be overridden, like
7018 i386_elf_init_abi() does. */
7019
7020 /* Use the dbx register numbering scheme for stabs and COFF. */
7021 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
7022 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
7023
7024 /* Use the SVR4 register numbering scheme for DWARF 2. */
7025 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
7026
7027 /* We don't set gdbarch_stab_reg_to_regnum, since ECOFF doesn't seem to
7028 be in use on any of the supported i386 targets. */
7029
7030 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
7031
7032 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
7033
7034 /* Call dummy code. */
7035 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
7036
7037 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
7038 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
7039 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
7040
7041 set_gdbarch_return_value (gdbarch, i386_return_value);
7042
7043 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
7044
7045 /* Stack grows downward. */
7046 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
7047
7048 set_gdbarch_breakpoint_from_pc (gdbarch, i386_breakpoint_from_pc);
7049 set_gdbarch_decr_pc_after_break (gdbarch, 1);
7050 set_gdbarch_max_insn_length (gdbarch, I386_MAX_INSN_LEN);
7051
7052 set_gdbarch_frame_args_skip (gdbarch, 8);
7053
7054 set_gdbarch_print_insn (gdbarch, i386_print_insn);
7055
7056 set_gdbarch_dummy_id (gdbarch, i386_dummy_id);
7057
7058 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
7059
7060 /* Add the i386 register groups. */
7061 i386_add_reggroups (gdbarch);
7062 tdep->register_reggroup_p = i386_register_reggroup_p;
7063
7064 /* Helper for function argument information. */
7065 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
7066
7067 /* Hook the function epilogue frame unwinder. This unwinder is
7068 appended to the list first, so that it supercedes the Dwarf
7069 unwinder in function epilogues (where the Dwarf unwinder
7070 currently fails). */
7071 frame_unwind_append_unwinder (gdbarch, &i386_epilogue_frame_unwind);
7072
7073 /* Hook in the DWARF CFI frame unwinder. This unwinder is appended
7074 to the list before the prologue-based unwinders, so that Dwarf
7075 CFI info will be used if it is available. */
7076 dwarf2_append_unwinders (gdbarch);
7077
7078 frame_base_set_default (gdbarch, &i386_frame_base);
7079
7080 /* Pseudo registers may be changed by amd64_init_abi. */
7081 set_gdbarch_pseudo_register_read (gdbarch, i386_pseudo_register_read);
7082 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
7083
7084 set_tdesc_pseudo_register_type (gdbarch, i386_pseudo_register_type);
7085 set_tdesc_pseudo_register_name (gdbarch, i386_pseudo_register_name);
7086
7087 /* Override the normal target description method to make the AVX
7088 upper halves anonymous. */
7089 set_gdbarch_register_name (gdbarch, i386_register_name);
7090
7091 /* Even though the default ABI only includes general-purpose registers,
7092 floating-point registers and the SSE registers, we have to leave a
7093 gap for the upper AVX registers. */
7094 set_gdbarch_num_regs (gdbarch, I386_AVX_NUM_REGS);
7095
7096 /* Get the x86 target description from INFO. */
7097 tdesc = info.target_desc;
7098 if (! tdesc_has_registers (tdesc))
7099 tdesc = tdesc_i386;
7100 tdep->tdesc = tdesc;
7101
7102 tdep->num_core_regs = I386_NUM_GREGS + I387_NUM_REGS;
7103 tdep->register_names = i386_register_names;
7104
7105 /* No upper YMM registers. */
7106 tdep->ymmh_register_names = NULL;
7107 tdep->ymm0h_regnum = -1;
7108
7109 tdep->num_byte_regs = 8;
7110 tdep->num_word_regs = 8;
7111 tdep->num_dword_regs = 0;
7112 tdep->num_mmx_regs = 8;
7113 tdep->num_ymm_regs = 0;
7114
7115 tdesc_data = tdesc_data_alloc ();
7116
7117 set_gdbarch_relocate_instruction (gdbarch, i386_relocate_instruction);
7118
7119 /* Hook in ABI-specific overrides, if they have been registered. */
7120 info.tdep_info = (void *) tdesc_data;
7121 gdbarch_init_osabi (info, gdbarch);
7122
7123 if (!i386_validate_tdesc_p (tdep, tdesc_data))
7124 {
7125 tdesc_data_cleanup (tdesc_data);
7126 xfree (tdep);
7127 gdbarch_free (gdbarch);
7128 return NULL;
7129 }
7130
7131 /* Wire in pseudo registers. Number of pseudo registers may be
7132 changed. */
7133 set_gdbarch_num_pseudo_regs (gdbarch, (tdep->num_byte_regs
7134 + tdep->num_word_regs
7135 + tdep->num_dword_regs
7136 + tdep->num_mmx_regs
7137 + tdep->num_ymm_regs));
7138
7139 /* Target description may be changed. */
7140 tdesc = tdep->tdesc;
7141
7142 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
7143
7144 /* Override gdbarch_register_reggroup_p set in tdesc_use_registers. */
7145 set_gdbarch_register_reggroup_p (gdbarch, tdep->register_reggroup_p);
7146
7147 /* Make %al the first pseudo-register. */
7148 tdep->al_regnum = gdbarch_num_regs (gdbarch);
7149 tdep->ax_regnum = tdep->al_regnum + tdep->num_byte_regs;
7150
7151 ymm0_regnum = tdep->ax_regnum + tdep->num_word_regs;
7152 if (tdep->num_dword_regs)
7153 {
7154 /* Support dword pseudo-register if it hasn't been disabled. */
7155 tdep->eax_regnum = ymm0_regnum;
7156 ymm0_regnum += tdep->num_dword_regs;
7157 }
7158 else
7159 tdep->eax_regnum = -1;
7160
7161 mm0_regnum = ymm0_regnum;
7162 if (tdep->num_ymm_regs)
7163 {
7164 /* Support YMM pseudo-register if it is available. */
7165 tdep->ymm0_regnum = ymm0_regnum;
7166 mm0_regnum += tdep->num_ymm_regs;
7167 }
7168 else
7169 tdep->ymm0_regnum = -1;
7170
7171 if (tdep->num_mmx_regs != 0)
7172 {
7173 /* Support MMX pseudo-register if MMX hasn't been disabled. */
7174 tdep->mm0_regnum = mm0_regnum;
7175 }
7176 else
7177 tdep->mm0_regnum = -1;
7178
7179 /* Hook in the legacy prologue-based unwinders last (fallback). */
7180 frame_unwind_append_unwinder (gdbarch, &i386_sigtramp_frame_unwind);
7181 frame_unwind_append_unwinder (gdbarch, &i386_frame_unwind);
7182
7183 /* If we have a register mapping, enable the generic core file
7184 support, unless it has already been enabled. */
7185 if (tdep->gregset_reg_offset
7186 && !gdbarch_regset_from_core_section_p (gdbarch))
7187 set_gdbarch_regset_from_core_section (gdbarch,
7188 i386_regset_from_core_section);
7189
7190 set_gdbarch_skip_permanent_breakpoint (gdbarch,
7191 i386_skip_permanent_breakpoint);
7192
7193 set_gdbarch_fast_tracepoint_valid_at (gdbarch,
7194 i386_fast_tracepoint_valid_at);
7195
7196 return gdbarch;
7197 }
7198
7199 static enum gdb_osabi
7200 i386_coff_osabi_sniffer (bfd *abfd)
7201 {
7202 if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
7203 || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
7204 return GDB_OSABI_GO32;
7205
7206 return GDB_OSABI_UNKNOWN;
7207 }
7208 \f
7209
7210 /* Provide a prototype to silence -Wmissing-prototypes. */
7211 void _initialize_i386_tdep (void);
7212
7213 void
7214 _initialize_i386_tdep (void)
7215 {
7216 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
7217
7218 /* Add the variable that controls the disassembly flavor. */
7219 add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
7220 &disassembly_flavor, _("\
7221 Set the disassembly flavor."), _("\
7222 Show the disassembly flavor."), _("\
7223 The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
7224 NULL,
7225 NULL, /* FIXME: i18n: */
7226 &setlist, &showlist);
7227
7228 /* Add the variable that controls the convention for returning
7229 structs. */
7230 add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
7231 &struct_convention, _("\
7232 Set the convention for returning small structs."), _("\
7233 Show the convention for returning small structs."), _("\
7234 Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
7235 is \"default\"."),
7236 NULL,
7237 NULL, /* FIXME: i18n: */
7238 &setlist, &showlist);
7239
7240 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
7241 i386_coff_osabi_sniffer);
7242
7243 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
7244 i386_svr4_init_abi);
7245 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_GO32,
7246 i386_go32_init_abi);
7247
7248 /* Initialize the i386-specific register groups. */
7249 i386_init_reggroups ();
7250
7251 /* Initialize the standard target descriptions. */
7252 initialize_tdesc_i386 ();
7253 initialize_tdesc_i386_mmx ();
7254 initialize_tdesc_i386_avx ();
7255
7256 /* Tell remote stub that we support XML target description. */
7257 register_remote_support_xml ("i386");
7258 }
This page took 0.225192 seconds and 5 git commands to generate.