44a5e8a91357a19927b84a94a491ccf1936e08b6
[deliverable/binutils-gdb.git] / gdb / i387-nat.c
1 /* Native-dependent code for the i387.
2 Copyright 2000, 2001 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21 #include "defs.h"
22 #include "inferior.h"
23 #include "value.h"
24 #include "regcache.h"
25
26 #include "i387-nat.h"
27
28 #if GDB_MULTI_ARCH > 0
29 #include "i386-tdep.h"
30 #endif
31
32 /* FIXME: kettenis/2000-05-21: Right now more than a few i386 targets
33 define their own routines to manage the floating-point registers in
34 GDB's register array. Most (if not all) of these targets use the
35 format used by the "fsave" instruction in their communication with
36 the OS. They should all be converted to use the routines below. */
37
38 /* At fsave_offset[REGNUM] you'll find the offset to the location in
39 the data structure used by the "fsave" instruction where GDB
40 register REGNUM is stored. */
41
42 static int fsave_offset[] =
43 {
44 28 + 0 * FPU_REG_RAW_SIZE, /* FP0_REGNUM through ... */
45 28 + 1 * FPU_REG_RAW_SIZE,
46 28 + 2 * FPU_REG_RAW_SIZE,
47 28 + 3 * FPU_REG_RAW_SIZE,
48 28 + 4 * FPU_REG_RAW_SIZE,
49 28 + 5 * FPU_REG_RAW_SIZE,
50 28 + 6 * FPU_REG_RAW_SIZE,
51 28 + 7 * FPU_REG_RAW_SIZE, /* ... FP7_REGNUM. */
52 0, /* FCTRL_REGNUM (16 bits). */
53 4, /* FSTAT_REGNUM (16 bits). */
54 8, /* FTAG_REGNUM (16 bits). */
55 16, /* FCS_REGNUM (16 bits). */
56 12, /* FCOFF_REGNUM. */
57 24, /* FDS_REGNUM. */
58 20, /* FDOFF_REGNUM. */
59 18 /* FOP_REGNUM (bottom 11 bits). */
60 };
61
62 #define FSAVE_ADDR(fsave, regnum) (fsave + fsave_offset[regnum - FP0_REGNUM])
63 \f
64
65 /* Fill register REGNUM in GDB's register array with the appropriate
66 value from *FSAVE. This function masks off any of the reserved
67 bits in *FSAVE. */
68
69 void
70 i387_supply_register (int regnum, char *fsave)
71 {
72 /* Most of the FPU control registers occupy only 16 bits in
73 the fsave area. Give those a special treatment. */
74 if (regnum >= FIRST_FPU_CTRL_REGNUM
75 && regnum != FCOFF_REGNUM && regnum != FDOFF_REGNUM)
76 {
77 unsigned int val = *(unsigned short *) (FSAVE_ADDR (fsave, regnum));
78
79 if (regnum == FOP_REGNUM)
80 {
81 val &= ((1 << 11) - 1);
82 supply_register (regnum, (char *) &val);
83 }
84 else
85 supply_register (regnum, (char *) &val);
86 }
87 else
88 supply_register (regnum, FSAVE_ADDR (fsave, regnum));
89 }
90
91 /* Fill GDB's register array with the floating-point register values
92 in *FSAVE. This function masks off any of the reserved
93 bits in *FSAVE. */
94
95 void
96 i387_supply_fsave (char *fsave)
97 {
98 int i;
99
100 for (i = FP0_REGNUM; i <= LAST_FPU_CTRL_REGNUM; i++)
101 i387_supply_register (i, fsave);
102 }
103
104 /* Fill register REGNUM (if it is a floating-point register) in *FSAVE
105 with the value in GDB's register array. If REGNUM is -1, do this
106 for all registers. This function doesn't touch any of the reserved
107 bits in *FSAVE. */
108
109 void
110 i387_fill_fsave (char *fsave, int regnum)
111 {
112 int i;
113
114 for (i = FP0_REGNUM; i <= LAST_FPU_CTRL_REGNUM; i++)
115 if (regnum == -1 || regnum == i)
116 {
117 /* Most of the FPU control registers occupy only 16 bits in
118 the fsave area. Give those a special treatment. */
119 if (i >= FIRST_FPU_CTRL_REGNUM
120 && i != FCOFF_REGNUM && i != FDOFF_REGNUM)
121 {
122 if (i == FOP_REGNUM)
123 {
124 unsigned short oldval, newval;
125
126 /* The opcode occupies only 11 bits. */
127 oldval = (*(unsigned short *) (FSAVE_ADDR (fsave, i)));
128 newval = *(unsigned short *) &registers[REGISTER_BYTE (i)];
129 newval &= ((1 << 11) - 1);
130 newval |= oldval & ~((1 << 11) - 1);
131 memcpy (FSAVE_ADDR (fsave, i), &newval, 2);
132 }
133 else
134 memcpy (FSAVE_ADDR (fsave, i), &registers[REGISTER_BYTE (i)], 2);
135 }
136 else
137 memcpy (FSAVE_ADDR (fsave, i), &registers[REGISTER_BYTE (i)],
138 REGISTER_RAW_SIZE (i));
139 }
140 }
141 \f
142
143 /* At fxsave_offset[REGNUM] you'll find the offset to the location in
144 the data structure used by the "fxsave" instruction where GDB
145 register REGNUM is stored. */
146
147 static int fxsave_offset[] =
148 {
149 32, /* FP0_REGNUM through ... */
150 48,
151 64,
152 80,
153 96,
154 112,
155 128,
156 144, /* ... FP7_REGNUM (80 bits each). */
157 0, /* FCTRL_REGNUM (16 bits). */
158 2, /* FSTAT_REGNUM (16 bits). */
159 4, /* FTAG_REGNUM (16 bits). */
160 12, /* FCS_REGNUM (16 bits). */
161 8, /* FCOFF_REGNUM. */
162 20, /* FDS_REGNUM (16 bits). */
163 16, /* FDOFF_REGNUM. */
164 6, /* FOP_REGNUM (bottom 11 bits). */
165 160, /* XMM0_REGNUM through ... */
166 176,
167 192,
168 208,
169 224,
170 240,
171 256,
172 272, /* ... XMM7_REGNUM (128 bits each). */
173 24, /* MXCSR_REGNUM. */
174 };
175
176 #define FXSAVE_ADDR(fxsave, regnum) \
177 (fxsave + fxsave_offset[regnum - FP0_REGNUM])
178
179 static int i387_tag (unsigned char *raw);
180 \f
181
182 /* Fill GDB's register array with the floating-point and SSE register
183 values in *FXSAVE. This function masks off any of the reserved
184 bits in *FXSAVE. */
185
186 void
187 i387_supply_fxsave (char *fxsave)
188 {
189 int i;
190
191 for (i = FP0_REGNUM; i <= MXCSR_REGNUM; i++)
192 {
193 /* Most of the FPU control registers occupy only 16 bits in
194 the fxsave area. Give those a special treatment. */
195 if (i >= FIRST_FPU_CTRL_REGNUM && i < XMM0_REGNUM
196 && i != FCOFF_REGNUM && i != FDOFF_REGNUM)
197 {
198 unsigned long val = *(unsigned short *) (FXSAVE_ADDR (fxsave, i));
199
200 if (i == FOP_REGNUM)
201 {
202 val &= ((1 << 11) - 1);
203 supply_register (i, (char *) &val);
204 }
205 else if (i== FTAG_REGNUM)
206 {
207 /* The fxsave area contains a simplified version of the
208 tag word. We have to look at the actual 80-bit FP
209 data to recreate the traditional i387 tag word. */
210
211 unsigned long ftag = 0;
212 unsigned long fstat;
213 int fpreg;
214 int top;
215
216 fstat = *(unsigned short *) (FXSAVE_ADDR (fxsave, FSTAT_REGNUM));
217 top = ((fstat >> 11) & 0x7);
218
219 for (fpreg = 7; fpreg >= 0; fpreg--)
220 {
221 int tag;
222
223 if (val & (1 << fpreg))
224 {
225 int regnum = (fpreg + 8 - top) % 8 + FP0_REGNUM;
226 tag = i387_tag (FXSAVE_ADDR (fxsave, regnum));
227 }
228 else
229 tag = 3; /* Empty */
230
231 ftag |= tag << (2 * fpreg);
232 }
233 supply_register (i, (char *) &ftag);
234 }
235 else
236 supply_register (i, (char *) &val);
237 }
238 else
239 supply_register (i, FXSAVE_ADDR (fxsave, i));
240 }
241 }
242
243 /* Fill register REGNUM (if it is a floating-point or SSE register) in
244 *FXSAVE with the value in GDB's register array. If REGNUM is -1, do
245 this for all registers. This function doesn't touch any of the
246 reserved bits in *FXSAVE. */
247
248 void
249 i387_fill_fxsave (char *fxsave, int regnum)
250 {
251 int i;
252
253 for (i = FP0_REGNUM; i <= MXCSR_REGNUM; i++)
254 if (regnum == -1 || regnum == i)
255 {
256 /* Most of the FPU control registers occupy only 16 bits in
257 the fxsave area. Give those a special treatment. */
258 if (i >= FIRST_FPU_CTRL_REGNUM && i < XMM0_REGNUM
259 && i != FCOFF_REGNUM && i != FDOFF_REGNUM)
260 {
261 if (i == FOP_REGNUM)
262 {
263 unsigned short oldval, newval;
264
265 /* The opcode occupies only 11 bits. */
266 oldval = (*(unsigned short *) (FXSAVE_ADDR (fxsave, i)));
267 newval = *(unsigned short *) &registers[REGISTER_BYTE (i)];
268 newval &= ((1 << 11) - 1);
269 newval |= oldval & ~((1 << 11) - 1);
270 memcpy (FXSAVE_ADDR (fxsave, i), &newval, 2);
271 }
272 else if (i == FTAG_REGNUM)
273 {
274 /* Converting back is much easier. */
275
276 unsigned char val = 0;
277 unsigned short ftag;
278 int fpreg;
279
280 ftag = *(unsigned short *) &registers[REGISTER_BYTE (i)];
281
282 for (fpreg = 7; fpreg >= 0; fpreg--)
283 {
284 int tag = (ftag >> (fpreg * 2)) & 3;
285
286 if (tag != 3)
287 val |= (1 << (fpreg * 2));
288 }
289
290 memcpy (FXSAVE_ADDR (fxsave, i), &val, 2);
291 }
292 else
293 memcpy (FXSAVE_ADDR (fxsave, i),
294 &registers[REGISTER_BYTE (i)], 2);
295 }
296 else
297 memcpy (FXSAVE_ADDR (fxsave, i), &registers[REGISTER_BYTE (i)],
298 REGISTER_RAW_SIZE (i));
299 }
300 }
301
302 /* Recreate the FTW (tag word) valid bits from the 80-bit FP data in
303 *RAW. */
304
305 static int
306 i387_tag (unsigned char *raw)
307 {
308 int integer;
309 unsigned int exponent;
310 unsigned long fraction[2];
311
312 integer = raw[7] & 0x80;
313 exponent = (((raw[9] & 0x7f) << 8) | raw[8]);
314 fraction[0] = ((raw[3] << 24) | (raw[2] << 16) | (raw[1] << 8) | raw[0]);
315 fraction[1] = (((raw[7] & 0x7f) << 24) | (raw[6] << 16)
316 | (raw[5] << 8) | raw[4]);
317
318 if (exponent == 0x7fff)
319 {
320 /* Special. */
321 return (2);
322 }
323 else if (exponent == 0x0000)
324 {
325 if (fraction[0] == 0x0000 && fraction[1] == 0x0000 && !integer)
326 {
327 /* Zero. */
328 return (1);
329 }
330 else
331 {
332 /* Special. */
333 return (2);
334 }
335 }
336 else
337 {
338 if (integer)
339 {
340 /* Valid. */
341 return (0);
342 }
343 else
344 {
345 /* Special. */
346 return (2);
347 }
348 }
349 }
This page took 0.040193 seconds and 3 git commands to generate.