* i387-tdep.c (i387_supply_fsave, i387_supply_fxsave): Add
[deliverable/binutils-gdb.git] / gdb / i387-tdep.c
1 /* Intel 387 floating point stuff.
2
3 Copyright 1988, 1989, 1991, 1992, 1993, 1994, 1998, 1999, 2000,
4 2001, 2002, 2003 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "doublest.h"
25 #include "floatformat.h"
26 #include "frame.h"
27 #include "gdbcore.h"
28 #include "inferior.h"
29 #include "language.h"
30 #include "regcache.h"
31 #include "value.h"
32
33 #include "gdb_assert.h"
34 #include "gdb_string.h"
35
36 #include "i386-tdep.h"
37 #include "i387-tdep.h"
38
39 /* Implement the `info float' layout based on the register definitions
40 in `tm-i386.h'. */
41
42 /* Print the floating point number specified by RAW. */
43
44 static void
45 print_i387_value (char *raw, struct ui_file *file)
46 {
47 DOUBLEST value;
48
49 /* Using extract_typed_floating here might affect the representation
50 of certain numbers such as NaNs, even if GDB is running natively.
51 This is fine since our caller already detects such special
52 numbers and we print the hexadecimal representation anyway. */
53 value = extract_typed_floating (raw, builtin_type_i387_ext);
54
55 /* We try to print 19 digits. The last digit may or may not contain
56 garbage, but we'd better print one too many. We need enough room
57 to print the value, 1 position for the sign, 1 for the decimal
58 point, 19 for the digits and 6 for the exponent adds up to 27. */
59 #ifdef PRINTF_HAS_LONG_DOUBLE
60 fprintf_filtered (file, " %-+27.19Lg", (long double) value);
61 #else
62 fprintf_filtered (file, " %-+27.19g", (double) value);
63 #endif
64 }
65
66 /* Print the classification for the register contents RAW. */
67
68 static void
69 print_i387_ext (unsigned char *raw, struct ui_file *file)
70 {
71 int sign;
72 int integer;
73 unsigned int exponent;
74 unsigned long fraction[2];
75
76 sign = raw[9] & 0x80;
77 integer = raw[7] & 0x80;
78 exponent = (((raw[9] & 0x7f) << 8) | raw[8]);
79 fraction[0] = ((raw[3] << 24) | (raw[2] << 16) | (raw[1] << 8) | raw[0]);
80 fraction[1] = (((raw[7] & 0x7f) << 24) | (raw[6] << 16)
81 | (raw[5] << 8) | raw[4]);
82
83 if (exponent == 0x7fff && integer)
84 {
85 if (fraction[0] == 0x00000000 && fraction[1] == 0x00000000)
86 /* Infinity. */
87 fprintf_filtered (file, " %cInf", (sign ? '-' : '+'));
88 else if (sign && fraction[0] == 0x00000000 && fraction[1] == 0x40000000)
89 /* Real Indefinite (QNaN). */
90 fputs_unfiltered (" Real Indefinite (QNaN)", file);
91 else if (fraction[1] & 0x40000000)
92 /* QNaN. */
93 fputs_filtered (" QNaN", file);
94 else
95 /* SNaN. */
96 fputs_filtered (" SNaN", file);
97 }
98 else if (exponent < 0x7fff && exponent > 0x0000 && integer)
99 /* Normal. */
100 print_i387_value (raw, file);
101 else if (exponent == 0x0000)
102 {
103 /* Denormal or zero. */
104 print_i387_value (raw, file);
105
106 if (integer)
107 /* Pseudo-denormal. */
108 fputs_filtered (" Pseudo-denormal", file);
109 else if (fraction[0] || fraction[1])
110 /* Denormal. */
111 fputs_filtered (" Denormal", file);
112 }
113 else
114 /* Unsupported. */
115 fputs_filtered (" Unsupported", file);
116 }
117
118 /* Print the status word STATUS. */
119
120 static void
121 print_i387_status_word (unsigned int status, struct ui_file *file)
122 {
123 fprintf_filtered (file, "Status Word: %s",
124 local_hex_string_custom (status, "04"));
125 fputs_filtered (" ", file);
126 fprintf_filtered (file, " %s", (status & 0x0001) ? "IE" : " ");
127 fprintf_filtered (file, " %s", (status & 0x0002) ? "DE" : " ");
128 fprintf_filtered (file, " %s", (status & 0x0004) ? "ZE" : " ");
129 fprintf_filtered (file, " %s", (status & 0x0008) ? "OE" : " ");
130 fprintf_filtered (file, " %s", (status & 0x0010) ? "UE" : " ");
131 fprintf_filtered (file, " %s", (status & 0x0020) ? "PE" : " ");
132 fputs_filtered (" ", file);
133 fprintf_filtered (file, " %s", (status & 0x0080) ? "ES" : " ");
134 fputs_filtered (" ", file);
135 fprintf_filtered (file, " %s", (status & 0x0040) ? "SF" : " ");
136 fputs_filtered (" ", file);
137 fprintf_filtered (file, " %s", (status & 0x0100) ? "C0" : " ");
138 fprintf_filtered (file, " %s", (status & 0x0200) ? "C1" : " ");
139 fprintf_filtered (file, " %s", (status & 0x0400) ? "C2" : " ");
140 fprintf_filtered (file, " %s", (status & 0x4000) ? "C3" : " ");
141
142 fputs_filtered ("\n", file);
143
144 fprintf_filtered (file,
145 " TOP: %d\n", ((status >> 11) & 7));
146 }
147
148 /* Print the control word CONTROL. */
149
150 static void
151 print_i387_control_word (unsigned int control, struct ui_file *file)
152 {
153 fprintf_filtered (file, "Control Word: %s",
154 local_hex_string_custom (control, "04"));
155 fputs_filtered (" ", file);
156 fprintf_filtered (file, " %s", (control & 0x0001) ? "IM" : " ");
157 fprintf_filtered (file, " %s", (control & 0x0002) ? "DM" : " ");
158 fprintf_filtered (file, " %s", (control & 0x0004) ? "ZM" : " ");
159 fprintf_filtered (file, " %s", (control & 0x0008) ? "OM" : " ");
160 fprintf_filtered (file, " %s", (control & 0x0010) ? "UM" : " ");
161 fprintf_filtered (file, " %s", (control & 0x0020) ? "PM" : " ");
162
163 fputs_filtered ("\n", file);
164
165 fputs_filtered (" PC: ", file);
166 switch ((control >> 8) & 3)
167 {
168 case 0:
169 fputs_filtered ("Single Precision (24-bits)\n", file);
170 break;
171 case 1:
172 fputs_filtered ("Reserved\n", file);
173 break;
174 case 2:
175 fputs_filtered ("Double Precision (53-bits)\n", file);
176 break;
177 case 3:
178 fputs_filtered ("Extended Precision (64-bits)\n", file);
179 break;
180 }
181
182 fputs_filtered (" RC: ", file);
183 switch ((control >> 10) & 3)
184 {
185 case 0:
186 fputs_filtered ("Round to nearest\n", file);
187 break;
188 case 1:
189 fputs_filtered ("Round down\n", file);
190 break;
191 case 2:
192 fputs_filtered ("Round up\n", file);
193 break;
194 case 3:
195 fputs_filtered ("Round toward zero\n", file);
196 break;
197 }
198 }
199
200 /* Print out the i387 floating point state. Note that we ignore FRAME
201 in the code below. That's OK since floating-point registers are
202 never saved on the stack. */
203
204 void
205 i387_print_float_info (struct gdbarch *gdbarch, struct ui_file *file,
206 struct frame_info *frame, const char *args)
207 {
208 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (frame));
209 char buf[4];
210 ULONGEST fctrl;
211 ULONGEST fstat;
212 ULONGEST ftag;
213 ULONGEST fiseg;
214 ULONGEST fioff;
215 ULONGEST foseg;
216 ULONGEST fooff;
217 ULONGEST fop;
218 int fpreg;
219 int top;
220
221 gdb_assert (gdbarch == get_frame_arch (frame));
222
223 /* Define I387_ST0_REGNUM such that we use the proper definitions
224 for FRAME's architecture. */
225 #define I387_ST0_REGNUM tdep->st0_regnum
226
227 fctrl = get_frame_register_unsigned (frame, I387_FCTRL_REGNUM);
228 fstat = get_frame_register_unsigned (frame, I387_FSTAT_REGNUM);
229 ftag = get_frame_register_unsigned (frame, I387_FTAG_REGNUM);
230 fiseg = get_frame_register_unsigned (frame, I387_FISEG_REGNUM);
231 fioff = get_frame_register_unsigned (frame, I387_FIOFF_REGNUM);
232 foseg = get_frame_register_unsigned (frame, I387_FOSEG_REGNUM);
233 fooff = get_frame_register_unsigned (frame, I387_FOOFF_REGNUM);
234 fop = get_frame_register_unsigned (frame, I387_FOP_REGNUM);
235
236 top = ((fstat >> 11) & 7);
237
238 for (fpreg = 7; fpreg >= 0; fpreg--)
239 {
240 unsigned char raw[I386_MAX_REGISTER_SIZE];
241 int tag = (ftag >> (fpreg * 2)) & 3;
242 int i;
243
244 fprintf_filtered (file, "%sR%d: ", fpreg == top ? "=>" : " ", fpreg);
245
246 switch (tag)
247 {
248 case 0:
249 fputs_filtered ("Valid ", file);
250 break;
251 case 1:
252 fputs_filtered ("Zero ", file);
253 break;
254 case 2:
255 fputs_filtered ("Special ", file);
256 break;
257 case 3:
258 fputs_filtered ("Empty ", file);
259 break;
260 }
261
262 get_frame_register (frame, (fpreg + 8 - top) % 8 + I387_ST0_REGNUM, raw);
263
264 fputs_filtered ("0x", file);
265 for (i = 9; i >= 0; i--)
266 fprintf_filtered (file, "%02x", raw[i]);
267
268 if (tag != 3)
269 print_i387_ext (raw, file);
270
271 fputs_filtered ("\n", file);
272 }
273
274 fputs_filtered ("\n", file);
275
276 print_i387_status_word (fstat, file);
277 print_i387_control_word (fctrl, file);
278 fprintf_filtered (file, "Tag Word: %s\n",
279 local_hex_string_custom (ftag, "04"));
280 fprintf_filtered (file, "Instruction Pointer: %s:",
281 local_hex_string_custom (fiseg, "02"));
282 fprintf_filtered (file, "%s\n", local_hex_string_custom (fioff, "08"));
283 fprintf_filtered (file, "Operand Pointer: %s:",
284 local_hex_string_custom (foseg, "02"));
285 fprintf_filtered (file, "%s\n", local_hex_string_custom (fooff, "08"));
286 fprintf_filtered (file, "Opcode: %s\n",
287 local_hex_string_custom (fop ? (fop | 0xd800) : 0, "04"));
288
289 #undef I387_ST0_REGNUM
290 }
291 \f
292
293 /* Read a value of type TYPE from register REGNUM in frame FRAME, and
294 return its contents in TO. */
295
296 void
297 i387_register_to_value (struct frame_info *frame, int regnum,
298 struct type *type, void *to)
299 {
300 char from[I386_MAX_REGISTER_SIZE];
301
302 gdb_assert (i386_fp_regnum_p (regnum));
303
304 /* We only support floating-point values. */
305 if (TYPE_CODE (type) != TYPE_CODE_FLT)
306 {
307 warning ("Cannot convert floating-point register value "
308 "to non-floating-point type.");
309 return;
310 }
311
312 /* Convert to TYPE. This should be a no-op if TYPE is equivalent to
313 the extended floating-point format used by the FPU. */
314 get_frame_register (frame, regnum, from);
315 convert_typed_floating (from, builtin_type_i387_ext, to, type);
316 }
317
318 /* Write the contents FROM of a value of type TYPE into register
319 REGNUM in frame FRAME. */
320
321 void
322 i387_value_to_register (struct frame_info *frame, int regnum,
323 struct type *type, const void *from)
324 {
325 char to[I386_MAX_REGISTER_SIZE];
326
327 gdb_assert (i386_fp_regnum_p (regnum));
328
329 /* We only support floating-point values. */
330 if (TYPE_CODE (type) != TYPE_CODE_FLT)
331 {
332 warning ("Cannot convert non-floating-point type "
333 "to floating-point register value.");
334 return;
335 }
336
337 /* Convert from TYPE. This should be a no-op if TYPE is equivalent
338 to the extended floating-point format used by the FPU. */
339 convert_typed_floating (from, type, to, builtin_type_i387_ext);
340 put_frame_register (frame, regnum, to);
341 }
342 \f
343 \f
344
345 /* Handle FSAVE and FXSAVE formats. */
346
347 /* FIXME: kettenis/20030927: The functions below should accept a
348 `regcache' argument, but I don't want to change the function
349 signature just yet. There's some band-aid in the functions below
350 in the form of the `regcache' local variables. This will ease the
351 transition later on. */
352
353 /* At fsave_offset[REGNUM] you'll find the offset to the location in
354 the data structure used by the "fsave" instruction where GDB
355 register REGNUM is stored. */
356
357 static int fsave_offset[] =
358 {
359 28 + 0 * 10, /* %st(0) ... */
360 28 + 1 * 10,
361 28 + 2 * 10,
362 28 + 3 * 10,
363 28 + 4 * 10,
364 28 + 5 * 10,
365 28 + 6 * 10,
366 28 + 7 * 10, /* ... %st(7). */
367 0, /* `fctrl' (16 bits). */
368 4, /* `fstat' (16 bits). */
369 8, /* `ftag' (16 bits). */
370 16, /* `fiseg' (16 bits). */
371 12, /* `fioff'. */
372 24, /* `foseg' (16 bits). */
373 20, /* `fooff'. */
374 18 /* `fop' (bottom 11 bits). */
375 };
376
377 #define FSAVE_ADDR(fsave, regnum) \
378 (fsave + fsave_offset[regnum - I387_ST0_REGNUM])
379 \f
380
381 /* Fill register REGNUM in REGCACHE with the appropriate value from
382 *FSAVE. This function masks off any of the reserved bits in
383 *FSAVE. */
384
385 void
386 i387_supply_fsave (struct regcache *regcache, int regnum, const void *fsave)
387 {
388 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
389 const char *regs = fsave;
390 int i;
391
392 gdb_assert (tdep->st0_regnum >= I386_ST0_REGNUM);
393
394 /* Define I387_ST0_REGNUM such that we use the proper definitions
395 for REGCACHE's architecture. */
396 #define I387_ST0_REGNUM tdep->st0_regnum
397
398 for (i = I387_ST0_REGNUM; i < I387_XMM0_REGNUM; i++)
399 if (regnum == -1 || regnum == i)
400 {
401 if (fsave == NULL)
402 {
403 regcache_raw_supply (regcache, i, NULL);
404 continue;
405 }
406
407 /* Most of the FPU control registers occupy only 16 bits in the
408 fsave area. Give those a special treatment. */
409 if (i >= I387_FCTRL_REGNUM
410 && i != I387_FIOFF_REGNUM && i != I387_FOOFF_REGNUM)
411 {
412 unsigned char val[4];
413
414 memcpy (val, FSAVE_ADDR (regs, i), 2);
415 val[2] = val[3] = 0;
416 if (i == I387_FOP_REGNUM)
417 val[1] &= ((1 << 3) - 1);
418 regcache_raw_supply (regcache, i, val);
419 }
420 else
421 regcache_raw_supply (regcache, i, FSAVE_ADDR (regs, i));
422 }
423 #undef I387_ST0_REGNUM
424 }
425
426 /* Fill register REGNUM (if it is a floating-point register) in *FSAVE
427 with the value in GDB's register cache. If REGNUM is -1, do this
428 for all registers. This function doesn't touch any of the reserved
429 bits in *FSAVE. */
430
431 void
432 i387_fill_fsave (void *fsave, int regnum)
433 {
434 struct regcache *regcache = current_regcache;
435 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
436 char *regs = fsave;
437 int i;
438
439 gdb_assert (tdep->st0_regnum >= I386_ST0_REGNUM);
440
441 /* Define I387_ST0_REGNUM such that we use the proper definitions
442 for REGCACHE's architecture. */
443 #define I387_ST0_REGNUM tdep->st0_regnum
444
445 for (i = I387_ST0_REGNUM; i < I387_XMM0_REGNUM; i++)
446 if (regnum == -1 || regnum == i)
447 {
448 /* Most of the FPU control registers occupy only 16 bits in
449 the fsave area. Give those a special treatment. */
450 if (i >= I387_FCTRL_REGNUM
451 && i != I387_FIOFF_REGNUM && i != I387_FOOFF_REGNUM)
452 {
453 unsigned char buf[4];
454
455 regcache_raw_collect (regcache, i, buf);
456
457 if (i == I387_FOP_REGNUM)
458 {
459 /* The opcode occupies only 11 bits. Make sure we
460 don't touch the other bits. */
461 buf[1] &= ((1 << 3) - 1);
462 buf[1] |= ((FSAVE_ADDR (regs, i))[1] & ~((1 << 3) - 1));
463 }
464 memcpy (FSAVE_ADDR (regs, i), buf, 2);
465 }
466 else
467 regcache_raw_collect (regcache, i, FSAVE_ADDR (regs, i));
468 }
469 #undef I387_ST0_REGNUM
470 }
471 \f
472
473 /* At fxsave_offset[REGNUM] you'll find the offset to the location in
474 the data structure used by the "fxsave" instruction where GDB
475 register REGNUM is stored. */
476
477 static int fxsave_offset[] =
478 {
479 32, /* %st(0) through ... */
480 48,
481 64,
482 80,
483 96,
484 112,
485 128,
486 144, /* ... %st(7) (80 bits each). */
487 0, /* `fctrl' (16 bits). */
488 2, /* `fstat' (16 bits). */
489 4, /* `ftag' (16 bits). */
490 12, /* `fiseg' (16 bits). */
491 8, /* `fioff'. */
492 20, /* `foseg' (16 bits). */
493 16, /* `fooff'. */
494 6, /* `fop' (bottom 11 bits). */
495 160 + 0 * 16, /* %xmm0 through ... */
496 160 + 1 * 16,
497 160 + 2 * 16,
498 160 + 3 * 16,
499 160 + 4 * 16,
500 160 + 5 * 16,
501 160 + 6 * 16,
502 160 + 7 * 16,
503 160 + 8 * 16,
504 160 + 9 * 16,
505 160 + 10 * 16,
506 160 + 11 * 16,
507 160 + 12 * 16,
508 160 + 13 * 16,
509 160 + 14 * 16,
510 160 + 15 * 16, /* ... %xmm15 (128 bits each). */
511 };
512
513 #define FXSAVE_ADDR(fxsave, regnum) \
514 (fxsave + fxsave_offset[regnum - I387_ST0_REGNUM])
515
516 /* We made an unfortunate choice in putting %mxcsr after the SSE
517 registers %xmm0-%xmm7 instead of before, since it makes supporting
518 the registers %xmm8-%xmm15 on AMD64 a bit involved. Therefore we
519 don't include the offset for %mxcsr here above. */
520
521 #define FXSAVE_MXCSR_ADDR(fxsave) (fxsave + 24)
522
523 static int i387_tag (const unsigned char *raw);
524 \f
525
526 /* Fill register REGNUM in REGCACHE with the appropriate
527 floating-point or SSE register value from *FXSAVE. This function
528 masks off any of the reserved bits in *FXSAVE. */
529
530 void
531 i387_supply_fxsave (struct regcache *regcache, int regnum, const void *fxsave)
532 {
533 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
534 const char *regs = fxsave;
535 int i;
536
537 gdb_assert (tdep->st0_regnum >= I386_ST0_REGNUM);
538 gdb_assert (tdep->num_xmm_regs > 0);
539
540 /* Define I387_ST0_REGNUM and I387_NUM_XMM_REGS such that we use the
541 proper definitions for REGCACHE's architecture. */
542
543 #define I387_ST0_REGNUM tdep->st0_regnum
544 #define I387_NUM_XMM_REGS tdep->num_xmm_regs
545
546 for (i = I387_ST0_REGNUM; i < I387_MXCSR_REGNUM; i++)
547 if (regnum == -1 || regnum == i)
548 {
549 if (regs == NULL)
550 {
551 regcache_raw_supply (regcache, i, NULL);
552 continue;
553 }
554
555 /* Most of the FPU control registers occupy only 16 bits in
556 the fxsave area. Give those a special treatment. */
557 if (i >= I387_FCTRL_REGNUM && i < I387_XMM0_REGNUM
558 && i != I387_FIOFF_REGNUM && i != I387_FOOFF_REGNUM)
559 {
560 unsigned char val[4];
561
562 memcpy (val, FXSAVE_ADDR (regs, i), 2);
563 val[2] = val[3] = 0;
564 if (i == I387_FOP_REGNUM)
565 val[1] &= ((1 << 3) - 1);
566 else if (i== I387_FTAG_REGNUM)
567 {
568 /* The fxsave area contains a simplified version of
569 the tag word. We have to look at the actual 80-bit
570 FP data to recreate the traditional i387 tag word. */
571
572 unsigned long ftag = 0;
573 int fpreg;
574 int top;
575
576 top = ((FXSAVE_ADDR (regs, I387_FSTAT_REGNUM))[1] >> 3);
577 top &= 0x7;
578
579 for (fpreg = 7; fpreg >= 0; fpreg--)
580 {
581 int tag;
582
583 if (val[0] & (1 << fpreg))
584 {
585 int regnum = (fpreg + 8 - top) % 8 + I387_ST0_REGNUM;
586 tag = i387_tag (FXSAVE_ADDR (regs, regnum));
587 }
588 else
589 tag = 3; /* Empty */
590
591 ftag |= tag << (2 * fpreg);
592 }
593 val[0] = ftag & 0xff;
594 val[1] = (ftag >> 8) & 0xff;
595 }
596 regcache_raw_supply (regcache, i, val);
597 }
598 else
599 regcache_raw_supply (regcache, i, FXSAVE_ADDR (regs, i));
600 }
601
602 if (regnum == I387_MXCSR_REGNUM || regnum == -1)
603 {
604 if (regs == NULL)
605 regcache_raw_supply (regcache, I387_MXCSR_REGNUM, NULL);
606 else
607 regcache_raw_supply (regcache, I387_MXCSR_REGNUM,
608 FXSAVE_MXCSR_ADDR (regs));
609 }
610
611 #undef I387_ST0_REGNUM
612 #undef I387_NUM_XMM_REGS
613 }
614
615 /* Fill register REGNUM (if it is a floating-point or SSE register) in
616 *FXSAVE with the value in GDB's register cache. If REGNUM is -1, do
617 this for all registers. This function doesn't touch any of the
618 reserved bits in *FXSAVE. */
619
620 void
621 i387_fill_fxsave (void *fxsave, int regnum)
622 {
623 struct regcache *regcache = current_regcache;
624 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
625 char *regs = fxsave;
626 int i;
627
628 gdb_assert (tdep->st0_regnum >= I386_ST0_REGNUM);
629 gdb_assert (tdep->num_xmm_regs > 0);
630
631 /* Define I387_ST0_REGNUM and I387_NUM_XMM_REGS such that we use the
632 proper definitions for REGCACHE's architecture. */
633
634 #define I387_ST0_REGNUM tdep->st0_regnum
635 #define I387_NUM_XMM_REGS tdep->num_xmm_regs
636
637 for (i = I387_ST0_REGNUM; i < I387_MXCSR_REGNUM; i++)
638 if (regnum == -1 || regnum == i)
639 {
640 /* Most of the FPU control registers occupy only 16 bits in
641 the fxsave area. Give those a special treatment. */
642 if (i >= I387_FCTRL_REGNUM && i < I387_XMM0_REGNUM
643 && i != I387_FIOFF_REGNUM && i != I387_FOOFF_REGNUM)
644 {
645 unsigned char buf[4];
646
647 regcache_raw_collect (regcache, i, buf);
648
649 if (i == I387_FOP_REGNUM)
650 {
651 /* The opcode occupies only 11 bits. Make sure we
652 don't touch the other bits. */
653 buf[1] &= ((1 << 3) - 1);
654 buf[1] |= ((FXSAVE_ADDR (regs, i))[1] & ~((1 << 3) - 1));
655 }
656 else if (i == I387_FTAG_REGNUM)
657 {
658 /* Converting back is much easier. */
659
660 unsigned short ftag;
661 int fpreg;
662
663 ftag = (buf[1] << 8) | buf[0];
664 buf[0] = 0;
665 buf[1] = 0;
666
667 for (fpreg = 7; fpreg >= 0; fpreg--)
668 {
669 int tag = (ftag >> (fpreg * 2)) & 3;
670
671 if (tag != 3)
672 buf[0] |= (1 << fpreg);
673 }
674 }
675 memcpy (FXSAVE_ADDR (regs, i), buf, 2);
676 }
677 else
678 regcache_raw_collect (regcache, i, FXSAVE_ADDR (regs, i));
679 }
680
681 if (regnum == I387_MXCSR_REGNUM || regnum == -1)
682 regcache_raw_collect (regcache, I387_MXCSR_REGNUM,
683 FXSAVE_MXCSR_ADDR (regs));
684
685 #undef I387_ST0_REGNUM
686 #undef I387_NUM_XMM_REGS
687 }
688
689 /* Recreate the FTW (tag word) valid bits from the 80-bit FP data in
690 *RAW. */
691
692 static int
693 i387_tag (const unsigned char *raw)
694 {
695 int integer;
696 unsigned int exponent;
697 unsigned long fraction[2];
698
699 integer = raw[7] & 0x80;
700 exponent = (((raw[9] & 0x7f) << 8) | raw[8]);
701 fraction[0] = ((raw[3] << 24) | (raw[2] << 16) | (raw[1] << 8) | raw[0]);
702 fraction[1] = (((raw[7] & 0x7f) << 24) | (raw[6] << 16)
703 | (raw[5] << 8) | raw[4]);
704
705 if (exponent == 0x7fff)
706 {
707 /* Special. */
708 return (2);
709 }
710 else if (exponent == 0x0000)
711 {
712 if (fraction[0] == 0x0000 && fraction[1] == 0x0000 && !integer)
713 {
714 /* Zero. */
715 return (1);
716 }
717 else
718 {
719 /* Special. */
720 return (2);
721 }
722 }
723 else
724 {
725 if (integer)
726 {
727 /* Valid. */
728 return (0);
729 }
730 else
731 {
732 /* Special. */
733 return (2);
734 }
735 }
736 }
This page took 0.077512 seconds and 5 git commands to generate.